1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 148 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 static void ipsq_clean_all(ill_t *ill); 153 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 162 static void ipif_delete_cache_ire(ire_t *, char *); 163 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 164 static void ipif_free(ipif_t *ipif); 165 static void ipif_free_tail(ipif_t *ipif); 166 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 167 static void ipif_multicast_down(ipif_t *ipif); 168 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 169 static void ipif_set_default(ipif_t *ipif); 170 static int ipif_set_values(queue_t *q, mblk_t *mp, 171 char *interf_name, uint_t *ppa); 172 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 173 queue_t *q); 174 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 175 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 176 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 177 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 178 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 179 180 static int ill_alloc_ppa(ill_if_t *, ill_t *); 181 static int ill_arp_off(ill_t *ill); 182 static int ill_arp_on(ill_t *ill); 183 static void ill_delete_interface_type(ill_if_t *); 184 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 185 static void ill_dl_down(ill_t *ill); 186 static void ill_down(ill_t *ill); 187 static void ill_downi(ire_t *ire, char *ill_arg); 188 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 189 static void ill_down_tail(ill_t *ill); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static boolean_t ill_has_usable_ipif(ill_t *); 193 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 194 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 195 static void ill_phyint_free(ill_t *ill); 196 static void ill_phyint_reinit(ill_t *ill); 197 static void ill_set_nce_router_flags(ill_t *, boolean_t); 198 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 199 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 201 static void ill_stq_cache_delete(ire_t *, char *); 202 203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 in6_addr_t *); 212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 ipaddr_t *); 214 215 static void ipif_save_ire(ipif_t *, ire_t *); 216 static void ipif_remove_ire(ipif_t *, ire_t *); 217 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 218 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 219 220 /* 221 * Per-ill IPsec capabilities management. 222 */ 223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 224 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 225 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 226 static void ill_ipsec_capab_delete(ill_t *, uint_t); 227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 228 static void ill_capability_proto(ill_t *, int, mblk_t *); 229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 230 boolean_t); 231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 239 dl_capability_sub_t *); 240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static void ill_capability_lso_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 245 static void ill_capability_dls_reset(ill_t *, mblk_t **); 246 static void ill_capability_dls_disable(ill_t *); 247 248 static void illgrp_cache_delete(ire_t *, char *); 249 static void illgrp_delete(ill_t *ill); 250 static void illgrp_reset_schednext(ill_t *ill); 251 252 static ill_t *ill_prev_usesrc(ill_t *); 253 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 254 static void ill_disband_usesrc_group(ill_t *); 255 256 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 257 258 /* 259 * if we go over the memory footprint limit more than once in this msec 260 * interval, we'll start pruning aggressively. 261 */ 262 int ip_min_frag_prune_time = 0; 263 264 /* 265 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 266 * and the IPsec DOI 267 */ 268 #define MAX_IPSEC_ALGS 256 269 270 #define BITSPERBYTE 8 271 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 272 273 #define IPSEC_ALG_ENABLE(algs, algid) \ 274 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 275 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 276 277 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 278 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 279 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 280 281 typedef uint8_t ipsec_capab_elem_t; 282 283 /* 284 * Per-algorithm parameters. Note that at present, only encryption 285 * algorithms have variable keysize (IKE does not provide a way to negotiate 286 * auth algorithm keysize). 287 * 288 * All sizes here are in bits. 289 */ 290 typedef struct 291 { 292 uint16_t minkeylen; 293 uint16_t maxkeylen; 294 } ipsec_capab_algparm_t; 295 296 /* 297 * Per-ill capabilities. 298 */ 299 struct ill_ipsec_capab_s { 300 ipsec_capab_elem_t *encr_hw_algs; 301 ipsec_capab_elem_t *auth_hw_algs; 302 uint32_t algs_size; /* size of _hw_algs in bytes */ 303 /* algorithm key lengths */ 304 ipsec_capab_algparm_t *encr_algparm; 305 uint32_t encr_algparm_size; 306 uint32_t encr_algparm_end; 307 }; 308 309 /* 310 * The field values are larger than strictly necessary for simple 311 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 312 */ 313 static area_t ip_area_template = { 314 AR_ENTRY_ADD, /* area_cmd */ 315 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 316 /* area_name_offset */ 317 /* area_name_length temporarily holds this structure length */ 318 sizeof (area_t), /* area_name_length */ 319 IP_ARP_PROTO_TYPE, /* area_proto */ 320 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 321 IP_ADDR_LEN, /* area_proto_addr_length */ 322 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 323 /* area_proto_mask_offset */ 324 0, /* area_flags */ 325 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 326 /* area_hw_addr_offset */ 327 /* Zero length hw_addr_length means 'use your idea of the address' */ 328 0 /* area_hw_addr_length */ 329 }; 330 331 /* 332 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 333 * support 334 */ 335 static area_t ip6_area_template = { 336 AR_ENTRY_ADD, /* area_cmd */ 337 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 338 /* area_name_offset */ 339 /* area_name_length temporarily holds this structure length */ 340 sizeof (area_t), /* area_name_length */ 341 IP_ARP_PROTO_TYPE, /* area_proto */ 342 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 343 IPV6_ADDR_LEN, /* area_proto_addr_length */ 344 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 345 /* area_proto_mask_offset */ 346 0, /* area_flags */ 347 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 348 /* area_hw_addr_offset */ 349 /* Zero length hw_addr_length means 'use your idea of the address' */ 350 0 /* area_hw_addr_length */ 351 }; 352 353 static ared_t ip_ared_template = { 354 AR_ENTRY_DELETE, 355 sizeof (ared_t) + IP_ADDR_LEN, 356 sizeof (ared_t), 357 IP_ARP_PROTO_TYPE, 358 sizeof (ared_t), 359 IP_ADDR_LEN 360 }; 361 362 static ared_t ip6_ared_template = { 363 AR_ENTRY_DELETE, 364 sizeof (ared_t) + IPV6_ADDR_LEN, 365 sizeof (ared_t), 366 IP_ARP_PROTO_TYPE, 367 sizeof (ared_t), 368 IPV6_ADDR_LEN 369 }; 370 371 /* 372 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 373 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 374 * areq is used). 375 */ 376 static areq_t ip_areq_template = { 377 AR_ENTRY_QUERY, /* cmd */ 378 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 379 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 380 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 381 sizeof (areq_t), /* target addr offset */ 382 IP_ADDR_LEN, /* target addr_length */ 383 0, /* flags */ 384 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 385 IP_ADDR_LEN, /* sender addr length */ 386 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 387 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 388 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 389 /* anything else filled in by the code */ 390 }; 391 392 static arc_t ip_aru_template = { 393 AR_INTERFACE_UP, 394 sizeof (arc_t), /* Name offset */ 395 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 396 }; 397 398 static arc_t ip_ard_template = { 399 AR_INTERFACE_DOWN, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_aron_template = { 405 AR_INTERFACE_ON, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aroff_template = { 411 AR_INTERFACE_OFF, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 417 static arma_t ip_arma_multi_template = { 418 AR_MAPPING_ADD, 419 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 420 /* Name offset */ 421 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 422 IP_ARP_PROTO_TYPE, 423 sizeof (arma_t), /* proto_addr_offset */ 424 IP_ADDR_LEN, /* proto_addr_length */ 425 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 426 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 427 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 428 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 429 IP_MAX_HW_LEN, /* hw_addr_length */ 430 0, /* hw_mapping_start */ 431 }; 432 433 static ipft_t ip_ioctl_ftbl[] = { 434 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 435 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 436 IPFT_F_NO_REPLY }, 437 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 438 IPFT_F_NO_REPLY }, 439 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 440 { 0 } 441 }; 442 443 /* Simple ICMP IP Header Template */ 444 static ipha_t icmp_ipha = { 445 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 446 }; 447 448 /* Flag descriptors for ip_ipif_report */ 449 static nv_t ipif_nv_tbl[] = { 450 { IPIF_UP, "UP" }, 451 { IPIF_BROADCAST, "BROADCAST" }, 452 { ILLF_DEBUG, "DEBUG" }, 453 { PHYI_LOOPBACK, "LOOPBACK" }, 454 { IPIF_POINTOPOINT, "POINTOPOINT" }, 455 { ILLF_NOTRAILERS, "NOTRAILERS" }, 456 { PHYI_RUNNING, "RUNNING" }, 457 { ILLF_NOARP, "NOARP" }, 458 { PHYI_PROMISC, "PROMISC" }, 459 { PHYI_ALLMULTI, "ALLMULTI" }, 460 { PHYI_INTELLIGENT, "INTELLIGENT" }, 461 { ILLF_MULTICAST, "MULTICAST" }, 462 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 463 { IPIF_UNNUMBERED, "UNNUMBERED" }, 464 { IPIF_DHCPRUNNING, "DHCP" }, 465 { IPIF_PRIVATE, "PRIVATE" }, 466 { IPIF_NOXMIT, "NOXMIT" }, 467 { IPIF_NOLOCAL, "NOLOCAL" }, 468 { IPIF_DEPRECATED, "DEPRECATED" }, 469 { IPIF_PREFERRED, "PREFERRED" }, 470 { IPIF_TEMPORARY, "TEMPORARY" }, 471 { IPIF_ADDRCONF, "ADDRCONF" }, 472 { PHYI_VIRTUAL, "VIRTUAL" }, 473 { ILLF_ROUTER, "ROUTER" }, 474 { ILLF_NONUD, "NONUD" }, 475 { IPIF_ANYCAST, "ANYCAST" }, 476 { ILLF_NORTEXCH, "NORTEXCH" }, 477 { ILLF_IPV4, "IPV4" }, 478 { ILLF_IPV6, "IPV6" }, 479 { IPIF_MIPRUNNING, "MIP" }, 480 { IPIF_NOFAILOVER, "NOFAILOVER" }, 481 { PHYI_FAILED, "FAILED" }, 482 { PHYI_STANDBY, "STANDBY" }, 483 { PHYI_INACTIVE, "INACTIVE" }, 484 { PHYI_OFFLINE, "OFFLINE" }, 485 }; 486 487 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 488 489 static ip_m_t ip_m_tbl[] = { 490 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 491 ip_ether_v6intfid }, 492 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 493 ip_nodef_v6intfid }, 494 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 495 ip_nodef_v6intfid }, 496 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_nodef_v6intfid }, 498 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_ether_v6intfid }, 500 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 501 ip_ib_v6intfid }, 502 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 503 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid } 505 }; 506 507 static ill_t ill_null; /* Empty ILL for init. */ 508 char ipif_loopback_name[] = "lo0"; 509 static char *ipv4_forward_suffix = ":ip_forwarding"; 510 static char *ipv6_forward_suffix = ":ip6_forwarding"; 511 static sin6_t sin6_null; /* Zero address for quick clears */ 512 static sin_t sin_null; /* Zero address for quick clears */ 513 514 /* When set search for unused ipif_seqid */ 515 static ipif_t ipif_zero; 516 517 /* 518 * ppa arena is created after these many 519 * interfaces have been plumbed. 520 */ 521 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 522 523 /* 524 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 525 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 526 * set through platform specific code (Niagara/Ontario). 527 */ 528 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 529 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 530 531 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 532 533 static uint_t 534 ipif_rand(ip_stack_t *ipst) 535 { 536 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 537 12345; 538 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 539 } 540 541 /* 542 * Allocate per-interface mibs. 543 * Returns true if ok. False otherwise. 544 * ipsq may not yet be allocated (loopback case ). 545 */ 546 static boolean_t 547 ill_allocate_mibs(ill_t *ill) 548 { 549 /* Already allocated? */ 550 if (ill->ill_ip_mib != NULL) { 551 if (ill->ill_isv6) 552 ASSERT(ill->ill_icmp6_mib != NULL); 553 return (B_TRUE); 554 } 555 556 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 557 KM_NOSLEEP); 558 if (ill->ill_ip_mib == NULL) { 559 return (B_FALSE); 560 } 561 562 /* Setup static information */ 563 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 564 sizeof (mib2_ipIfStatsEntry_t)); 565 if (ill->ill_isv6) { 566 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 567 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 568 sizeof (mib2_ipv6AddrEntry_t)); 569 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 570 sizeof (mib2_ipv6RouteEntry_t)); 571 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 572 sizeof (mib2_ipv6NetToMediaEntry_t)); 573 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 574 sizeof (ipv6_member_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 576 sizeof (ipv6_grpsrc_t)); 577 } else { 578 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 579 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 580 sizeof (mib2_ipAddrEntry_t)); 581 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 582 sizeof (mib2_ipRouteEntry_t)); 583 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 584 sizeof (mib2_ipNetToMediaEntry_t)); 585 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 586 sizeof (ip_member_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 588 sizeof (ip_grpsrc_t)); 589 590 /* 591 * For a v4 ill, we are done at this point, because per ill 592 * icmp mibs are only used for v6. 593 */ 594 return (B_TRUE); 595 } 596 597 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 598 KM_NOSLEEP); 599 if (ill->ill_icmp6_mib == NULL) { 600 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 601 ill->ill_ip_mib = NULL; 602 return (B_FALSE); 603 } 604 /* static icmp info */ 605 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 606 sizeof (mib2_ipv6IfIcmpEntry_t); 607 /* 608 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 609 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 610 * -> ill_phyint_reinit 611 */ 612 return (B_TRUE); 613 } 614 615 /* 616 * Common code for preparation of ARP commands. Two points to remember: 617 * 1) The ill_name is tacked on at the end of the allocated space so 618 * the templates name_offset field must contain the total space 619 * to allocate less the name length. 620 * 621 * 2) The templates name_length field should contain the *template* 622 * length. We use it as a parameter to bcopy() and then write 623 * the real ill_name_length into the name_length field of the copy. 624 * (Always called as writer.) 625 */ 626 mblk_t * 627 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 628 { 629 arc_t *arc = (arc_t *)template; 630 char *cp; 631 int len; 632 mblk_t *mp; 633 uint_t name_length = ill->ill_name_length; 634 uint_t template_len = arc->arc_name_length; 635 636 len = arc->arc_name_offset + name_length; 637 mp = allocb(len, BPRI_HI); 638 if (mp == NULL) 639 return (NULL); 640 cp = (char *)mp->b_rptr; 641 mp->b_wptr = (uchar_t *)&cp[len]; 642 if (template_len) 643 bcopy(template, cp, template_len); 644 if (len > template_len) 645 bzero(&cp[template_len], len - template_len); 646 mp->b_datap->db_type = M_PROTO; 647 648 arc = (arc_t *)cp; 649 arc->arc_name_length = name_length; 650 cp = (char *)arc + arc->arc_name_offset; 651 bcopy(ill->ill_name, cp, name_length); 652 653 if (addr) { 654 area_t *area = (area_t *)mp->b_rptr; 655 656 cp = (char *)area + area->area_proto_addr_offset; 657 bcopy(addr, cp, area->area_proto_addr_length); 658 if (area->area_cmd == AR_ENTRY_ADD) { 659 cp = (char *)area; 660 len = area->area_proto_addr_length; 661 if (area->area_proto_mask_offset) 662 cp += area->area_proto_mask_offset; 663 else 664 cp += area->area_proto_addr_offset + len; 665 while (len-- > 0) 666 *cp++ = (char)~0; 667 } 668 } 669 return (mp); 670 } 671 672 mblk_t * 673 ipif_area_alloc(ipif_t *ipif) 674 { 675 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 676 (char *)&ipif->ipif_lcl_addr)); 677 } 678 679 mblk_t * 680 ipif_ared_alloc(ipif_t *ipif) 681 { 682 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 683 (char *)&ipif->ipif_lcl_addr)); 684 } 685 686 mblk_t * 687 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 688 { 689 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 690 (char *)&addr)); 691 } 692 693 /* 694 * Completely vaporize a lower level tap and all associated interfaces. 695 * ill_delete is called only out of ip_close when the device control 696 * stream is being closed. 697 */ 698 void 699 ill_delete(ill_t *ill) 700 { 701 ipif_t *ipif; 702 ill_t *prev_ill; 703 ip_stack_t *ipst = ill->ill_ipst; 704 705 /* 706 * ill_delete may be forcibly entering the ipsq. The previous 707 * ioctl may not have completed and may need to be aborted. 708 * ipsq_flush takes care of it. If we don't need to enter the 709 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 710 * ill_delete_tail is sufficient. 711 */ 712 ipsq_flush(ill); 713 714 /* 715 * Nuke all interfaces. ipif_free will take down the interface, 716 * remove it from the list, and free the data structure. 717 * Walk down the ipif list and remove the logical interfaces 718 * first before removing the main ipif. We can't unplumb 719 * zeroth interface first in the case of IPv6 as reset_conn_ill 720 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 721 * POINTOPOINT. 722 * 723 * If ill_ipif was not properly initialized (i.e low on memory), 724 * then no interfaces to clean up. In this case just clean up the 725 * ill. 726 */ 727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 728 ipif_free(ipif); 729 730 /* 731 * Used only by ill_arp_on and ill_arp_off, which are writers. 732 * So nobody can be using this mp now. Free the mp allocated for 733 * honoring ILLF_NOARP 734 */ 735 freemsg(ill->ill_arp_on_mp); 736 ill->ill_arp_on_mp = NULL; 737 738 /* Clean up msgs on pending upcalls for mrouted */ 739 reset_mrt_ill(ill); 740 741 /* 742 * ipif_free -> reset_conn_ipif will remove all multicast 743 * references for IPv4. For IPv6, we need to do it here as 744 * it points only at ills. 745 */ 746 reset_conn_ill(ill); 747 748 /* 749 * ill_down will arrange to blow off any IRE's dependent on this 750 * ILL, and shut down fragmentation reassembly. 751 */ 752 ill_down(ill); 753 754 /* Let SCTP know, so that it can remove this from its list. */ 755 sctp_update_ill(ill, SCTP_ILL_REMOVE); 756 757 /* 758 * If an address on this ILL is being used as a source address then 759 * clear out the pointers in other ILLs that point to this ILL. 760 */ 761 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 762 if (ill->ill_usesrc_grp_next != NULL) { 763 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 764 ill_disband_usesrc_group(ill); 765 } else { /* consumer of the usesrc ILL */ 766 prev_ill = ill_prev_usesrc(ill); 767 prev_ill->ill_usesrc_grp_next = 768 ill->ill_usesrc_grp_next; 769 } 770 } 771 rw_exit(&ipst->ips_ill_g_usesrc_lock); 772 } 773 774 static void 775 ipif_non_duplicate(ipif_t *ipif) 776 { 777 ill_t *ill = ipif->ipif_ill; 778 mutex_enter(&ill->ill_lock); 779 if (ipif->ipif_flags & IPIF_DUPLICATE) { 780 ipif->ipif_flags &= ~IPIF_DUPLICATE; 781 ASSERT(ill->ill_ipif_dup_count > 0); 782 ill->ill_ipif_dup_count--; 783 } 784 mutex_exit(&ill->ill_lock); 785 } 786 787 /* 788 * Send all deferred messages without waiting for their ACKs. 789 */ 790 void 791 ill_send_all_deferred_mp(ill_t *ill) 792 { 793 mblk_t *mp, *next; 794 795 /* 796 * Clear ill_dlpi_pending so that the message is not queued in 797 * ill_dlpi_send(). 798 */ 799 ill->ill_dlpi_pending = DL_PRIM_INVAL; 800 801 for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) { 802 next = mp->b_next; 803 mp->b_next = NULL; 804 ill_dlpi_send(ill, mp); 805 } 806 ill->ill_dlpi_deferred = NULL; 807 } 808 809 /* 810 * ill_delete_tail is called from ip_modclose after all references 811 * to the closing ill are gone. The wait is done in ip_modclose 812 */ 813 void 814 ill_delete_tail(ill_t *ill) 815 { 816 mblk_t **mpp; 817 ipif_t *ipif; 818 ip_stack_t *ipst = ill->ill_ipst; 819 820 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 821 ipif_non_duplicate(ipif); 822 ipif_down_tail(ipif); 823 } 824 825 ASSERT(ill->ill_ipif_dup_count == 0 && 826 ill->ill_arp_down_mp == NULL && 827 ill->ill_arp_del_mapping_mp == NULL); 828 829 /* 830 * If polling capability is enabled (which signifies direct 831 * upcall into IP and driver has ill saved as a handle), 832 * we need to make sure that unbind has completed before we 833 * let the ill disappear and driver no longer has any reference 834 * to this ill. 835 */ 836 mutex_enter(&ill->ill_lock); 837 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 838 cv_wait(&ill->ill_cv, &ill->ill_lock); 839 mutex_exit(&ill->ill_lock); 840 841 /* 842 * Clean up polling and soft ring capabilities 843 */ 844 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 845 ill_capability_dls_disable(ill); 846 847 /* 848 * Send the detach if there's one to send (i.e., if we're above a 849 * style 2 DLPI driver). 850 */ 851 if (ill->ill_detach_mp != NULL) { 852 ill_dlpi_send(ill, ill->ill_detach_mp); 853 ill->ill_detach_mp = NULL; 854 } 855 856 if (ill->ill_net_type != IRE_LOOPBACK) 857 qprocsoff(ill->ill_rq); 858 859 /* 860 * We do an ipsq_flush once again now. New messages could have 861 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 862 * could also have landed up if an ioctl thread had looked up 863 * the ill before we set the ILL_CONDEMNED flag, but not yet 864 * enqueued the ioctl when we did the ipsq_flush last time. 865 */ 866 ipsq_flush(ill); 867 868 /* 869 * Free capabilities. 870 */ 871 if (ill->ill_ipsec_capab_ah != NULL) { 872 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 873 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 874 ill->ill_ipsec_capab_ah = NULL; 875 } 876 877 if (ill->ill_ipsec_capab_esp != NULL) { 878 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 879 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 880 ill->ill_ipsec_capab_esp = NULL; 881 } 882 883 if (ill->ill_mdt_capab != NULL) { 884 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 885 ill->ill_mdt_capab = NULL; 886 } 887 888 if (ill->ill_hcksum_capab != NULL) { 889 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 890 ill->ill_hcksum_capab = NULL; 891 } 892 893 if (ill->ill_zerocopy_capab != NULL) { 894 kmem_free(ill->ill_zerocopy_capab, 895 sizeof (ill_zerocopy_capab_t)); 896 ill->ill_zerocopy_capab = NULL; 897 } 898 899 if (ill->ill_lso_capab != NULL) { 900 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 901 ill->ill_lso_capab = NULL; 902 } 903 904 if (ill->ill_dls_capab != NULL) { 905 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 906 ill->ill_dls_capab->ill_unbind_conn = NULL; 907 kmem_free(ill->ill_dls_capab, 908 sizeof (ill_dls_capab_t) + 909 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 910 ill->ill_dls_capab = NULL; 911 } 912 913 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 914 915 while (ill->ill_ipif != NULL) 916 ipif_free_tail(ill->ill_ipif); 917 918 ill_down_tail(ill); 919 920 /* 921 * We have removed all references to ilm from conn and the ones joined 922 * within the kernel. 923 * 924 * We don't walk conns, mrts and ires because 925 * 926 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 927 * 2) ill_down ->ill_downi walks all the ires and cleans up 928 * ill references. 929 */ 930 ASSERT(ilm_walk_ill(ill) == 0); 931 /* 932 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 933 * could free the phyint. No more reference to the phyint after this 934 * point. 935 */ 936 (void) ill_glist_delete(ill); 937 938 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 939 if (ill->ill_ndd_name != NULL) 940 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 941 rw_exit(&ipst->ips_ip_g_nd_lock); 942 943 944 if (ill->ill_frag_ptr != NULL) { 945 uint_t count; 946 947 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 948 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 949 } 950 mi_free(ill->ill_frag_ptr); 951 ill->ill_frag_ptr = NULL; 952 ill->ill_frag_hash_tbl = NULL; 953 } 954 955 freemsg(ill->ill_nd_lla_mp); 956 /* Free all retained control messages. */ 957 mpp = &ill->ill_first_mp_to_free; 958 do { 959 while (mpp[0]) { 960 mblk_t *mp; 961 mblk_t *mp1; 962 963 mp = mpp[0]; 964 mpp[0] = mp->b_next; 965 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 966 mp1->b_next = NULL; 967 mp1->b_prev = NULL; 968 } 969 freemsg(mp); 970 } 971 } while (mpp++ != &ill->ill_last_mp_to_free); 972 973 ill_free_mib(ill); 974 /* Drop refcnt here */ 975 netstack_rele(ill->ill_ipst->ips_netstack); 976 ill->ill_ipst = NULL; 977 978 ILL_TRACE_CLEANUP(ill); 979 } 980 981 static void 982 ill_free_mib(ill_t *ill) 983 { 984 ip_stack_t *ipst = ill->ill_ipst; 985 986 /* 987 * MIB statistics must not be lost, so when an interface 988 * goes away the counter values will be added to the global 989 * MIBs. 990 */ 991 if (ill->ill_ip_mib != NULL) { 992 if (ill->ill_isv6) { 993 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 994 ill->ill_ip_mib); 995 } else { 996 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 997 ill->ill_ip_mib); 998 } 999 1000 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1001 ill->ill_ip_mib = NULL; 1002 } 1003 if (ill->ill_icmp6_mib != NULL) { 1004 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 1005 ill->ill_icmp6_mib); 1006 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1007 ill->ill_icmp6_mib = NULL; 1008 } 1009 } 1010 1011 /* 1012 * Concatenate together a physical address and a sap. 1013 * 1014 * Sap_lengths are interpreted as follows: 1015 * sap_length == 0 ==> no sap 1016 * sap_length > 0 ==> sap is at the head of the dlpi address 1017 * sap_length < 0 ==> sap is at the tail of the dlpi address 1018 */ 1019 static void 1020 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1021 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1022 { 1023 uint16_t sap_addr = (uint16_t)sap_src; 1024 1025 if (sap_length == 0) { 1026 if (phys_src == NULL) 1027 bzero(dst, phys_length); 1028 else 1029 bcopy(phys_src, dst, phys_length); 1030 } else if (sap_length < 0) { 1031 if (phys_src == NULL) 1032 bzero(dst, phys_length); 1033 else 1034 bcopy(phys_src, dst, phys_length); 1035 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1036 } else { 1037 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1038 if (phys_src == NULL) 1039 bzero((char *)dst + sap_length, phys_length); 1040 else 1041 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1042 } 1043 } 1044 1045 /* 1046 * Generate a dl_unitdata_req mblk for the device and address given. 1047 * addr_length is the length of the physical portion of the address. 1048 * If addr is NULL include an all zero address of the specified length. 1049 * TRUE? In any case, addr_length is taken to be the entire length of the 1050 * dlpi address, including the absolute value of sap_length. 1051 */ 1052 mblk_t * 1053 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1054 t_scalar_t sap_length) 1055 { 1056 dl_unitdata_req_t *dlur; 1057 mblk_t *mp; 1058 t_scalar_t abs_sap_length; /* absolute value */ 1059 1060 abs_sap_length = ABS(sap_length); 1061 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1062 DL_UNITDATA_REQ); 1063 if (mp == NULL) 1064 return (NULL); 1065 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1066 /* HACK: accomodate incompatible DLPI drivers */ 1067 if (addr_length == 8) 1068 addr_length = 6; 1069 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1070 dlur->dl_dest_addr_offset = sizeof (*dlur); 1071 dlur->dl_priority.dl_min = 0; 1072 dlur->dl_priority.dl_max = 0; 1073 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1074 (uchar_t *)&dlur[1]); 1075 return (mp); 1076 } 1077 1078 /* 1079 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1080 * Return an error if we already have 1 or more ioctls in progress. 1081 * This is used only for non-exclusive ioctls. Currently this is used 1082 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1083 * and thus need to use ipsq_pending_mp_add. 1084 */ 1085 boolean_t 1086 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1087 { 1088 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1089 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1090 /* 1091 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1092 */ 1093 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1094 (add_mp->b_datap->db_type == M_IOCTL)); 1095 1096 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1097 /* 1098 * Return error if the conn has started closing. The conn 1099 * could have finished cleaning up the pending mp list, 1100 * If so we should not add another mp to the list negating 1101 * the cleanup. 1102 */ 1103 if (connp->conn_state_flags & CONN_CLOSING) 1104 return (B_FALSE); 1105 /* 1106 * Add the pending mp to the head of the list, chained by b_next. 1107 * Note down the conn on which the ioctl request came, in b_prev. 1108 * This will be used to later get the conn, when we get a response 1109 * on the ill queue, from some other module (typically arp) 1110 */ 1111 add_mp->b_next = (void *)ill->ill_pending_mp; 1112 add_mp->b_queue = CONNP_TO_WQ(connp); 1113 ill->ill_pending_mp = add_mp; 1114 if (connp != NULL) 1115 connp->conn_oper_pending_ill = ill; 1116 return (B_TRUE); 1117 } 1118 1119 /* 1120 * Retrieve the ill_pending_mp and return it. We have to walk the list 1121 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1122 */ 1123 mblk_t * 1124 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1125 { 1126 mblk_t *prev = NULL; 1127 mblk_t *curr = NULL; 1128 uint_t id; 1129 conn_t *connp; 1130 1131 /* 1132 * When the conn closes, conn_ioctl_cleanup needs to clean 1133 * up the pending mp, but it does not know the ioc_id and 1134 * passes in a zero for it. 1135 */ 1136 mutex_enter(&ill->ill_lock); 1137 if (ioc_id != 0) 1138 *connpp = NULL; 1139 1140 /* Search the list for the appropriate ioctl based on ioc_id */ 1141 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1142 prev = curr, curr = curr->b_next) { 1143 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1144 connp = Q_TO_CONN(curr->b_queue); 1145 /* Match based on the ioc_id or based on the conn */ 1146 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1147 break; 1148 } 1149 1150 if (curr != NULL) { 1151 /* Unlink the mblk from the pending mp list */ 1152 if (prev != NULL) { 1153 prev->b_next = curr->b_next; 1154 } else { 1155 ASSERT(ill->ill_pending_mp == curr); 1156 ill->ill_pending_mp = curr->b_next; 1157 } 1158 1159 /* 1160 * conn refcnt must have been bumped up at the start of 1161 * the ioctl. So we can safely access the conn. 1162 */ 1163 ASSERT(CONN_Q(curr->b_queue)); 1164 *connpp = Q_TO_CONN(curr->b_queue); 1165 curr->b_next = NULL; 1166 curr->b_queue = NULL; 1167 } 1168 1169 mutex_exit(&ill->ill_lock); 1170 1171 return (curr); 1172 } 1173 1174 /* 1175 * Add the pending mp to the list. There can be only 1 pending mp 1176 * in the list. Any exclusive ioctl that needs to wait for a response 1177 * from another module or driver needs to use this function to set 1178 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1179 * the other module/driver. This is also used while waiting for the 1180 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1181 */ 1182 boolean_t 1183 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1184 int waitfor) 1185 { 1186 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1187 1188 ASSERT(IAM_WRITER_IPIF(ipif)); 1189 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1190 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1191 ASSERT(ipsq->ipsq_pending_mp == NULL); 1192 /* 1193 * The caller may be using a different ipif than the one passed into 1194 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1195 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1196 * that `ipsq_current_ipif == ipif'. 1197 */ 1198 ASSERT(ipsq->ipsq_current_ipif != NULL); 1199 1200 /* 1201 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1202 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1203 */ 1204 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1205 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1206 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1207 1208 if (connp != NULL) { 1209 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1210 /* 1211 * Return error if the conn has started closing. The conn 1212 * could have finished cleaning up the pending mp list, 1213 * If so we should not add another mp to the list negating 1214 * the cleanup. 1215 */ 1216 if (connp->conn_state_flags & CONN_CLOSING) 1217 return (B_FALSE); 1218 } 1219 mutex_enter(&ipsq->ipsq_lock); 1220 ipsq->ipsq_pending_ipif = ipif; 1221 /* 1222 * Note down the queue in b_queue. This will be returned by 1223 * ipsq_pending_mp_get. Caller will then use these values to restart 1224 * the processing 1225 */ 1226 add_mp->b_next = NULL; 1227 add_mp->b_queue = q; 1228 ipsq->ipsq_pending_mp = add_mp; 1229 ipsq->ipsq_waitfor = waitfor; 1230 1231 if (connp != NULL) 1232 connp->conn_oper_pending_ill = ipif->ipif_ill; 1233 mutex_exit(&ipsq->ipsq_lock); 1234 return (B_TRUE); 1235 } 1236 1237 /* 1238 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1239 * queued in the list. 1240 */ 1241 mblk_t * 1242 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1243 { 1244 mblk_t *curr = NULL; 1245 1246 mutex_enter(&ipsq->ipsq_lock); 1247 *connpp = NULL; 1248 if (ipsq->ipsq_pending_mp == NULL) { 1249 mutex_exit(&ipsq->ipsq_lock); 1250 return (NULL); 1251 } 1252 1253 /* There can be only 1 such excl message */ 1254 curr = ipsq->ipsq_pending_mp; 1255 ASSERT(curr != NULL && curr->b_next == NULL); 1256 ipsq->ipsq_pending_ipif = NULL; 1257 ipsq->ipsq_pending_mp = NULL; 1258 ipsq->ipsq_waitfor = 0; 1259 mutex_exit(&ipsq->ipsq_lock); 1260 1261 if (CONN_Q(curr->b_queue)) { 1262 /* 1263 * This mp did a refhold on the conn, at the start of the ioctl. 1264 * So we can safely return a pointer to the conn to the caller. 1265 */ 1266 *connpp = Q_TO_CONN(curr->b_queue); 1267 } else { 1268 *connpp = NULL; 1269 } 1270 curr->b_next = NULL; 1271 curr->b_prev = NULL; 1272 return (curr); 1273 } 1274 1275 /* 1276 * Cleanup the ioctl mp queued in ipsq_pending_mp 1277 * - Called in the ill_delete path 1278 * - Called in the M_ERROR or M_HANGUP path on the ill. 1279 * - Called in the conn close path. 1280 */ 1281 boolean_t 1282 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1283 { 1284 mblk_t *mp; 1285 ipsq_t *ipsq; 1286 queue_t *q; 1287 ipif_t *ipif; 1288 1289 ASSERT(IAM_WRITER_ILL(ill)); 1290 ipsq = ill->ill_phyint->phyint_ipsq; 1291 mutex_enter(&ipsq->ipsq_lock); 1292 /* 1293 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1294 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1295 * even if it is meant for another ill, since we have to enqueue 1296 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1297 * If connp is non-null we are called from the conn close path. 1298 */ 1299 mp = ipsq->ipsq_pending_mp; 1300 if (mp == NULL || (connp != NULL && 1301 mp->b_queue != CONNP_TO_WQ(connp))) { 1302 mutex_exit(&ipsq->ipsq_lock); 1303 return (B_FALSE); 1304 } 1305 /* Now remove from the ipsq_pending_mp */ 1306 ipsq->ipsq_pending_mp = NULL; 1307 q = mp->b_queue; 1308 mp->b_next = NULL; 1309 mp->b_prev = NULL; 1310 mp->b_queue = NULL; 1311 1312 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1313 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1314 if (ill->ill_move_in_progress) { 1315 ILL_CLEAR_MOVE(ill); 1316 } else if (ill->ill_up_ipifs) { 1317 ill_group_cleanup(ill); 1318 } 1319 1320 ipif = ipsq->ipsq_pending_ipif; 1321 ipsq->ipsq_pending_ipif = NULL; 1322 ipsq->ipsq_waitfor = 0; 1323 ipsq->ipsq_current_ipif = NULL; 1324 ipsq->ipsq_current_ioctl = 0; 1325 mutex_exit(&ipsq->ipsq_lock); 1326 1327 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1328 if (connp == NULL) { 1329 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1330 } else { 1331 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1332 mutex_enter(&ipif->ipif_ill->ill_lock); 1333 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1334 mutex_exit(&ipif->ipif_ill->ill_lock); 1335 } 1336 } else { 1337 /* 1338 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1339 * be just inet_freemsg. we have to restart it 1340 * otherwise the thread will be stuck. 1341 */ 1342 inet_freemsg(mp); 1343 } 1344 return (B_TRUE); 1345 } 1346 1347 /* 1348 * The ill is closing. Cleanup all the pending mps. Called exclusively 1349 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1350 * knows this ill, and hence nobody can add an mp to this list 1351 */ 1352 static void 1353 ill_pending_mp_cleanup(ill_t *ill) 1354 { 1355 mblk_t *mp; 1356 queue_t *q; 1357 1358 ASSERT(IAM_WRITER_ILL(ill)); 1359 1360 mutex_enter(&ill->ill_lock); 1361 /* 1362 * Every mp on the pending mp list originating from an ioctl 1363 * added 1 to the conn refcnt, at the start of the ioctl. 1364 * So bump it down now. See comments in ip_wput_nondata() 1365 */ 1366 while (ill->ill_pending_mp != NULL) { 1367 mp = ill->ill_pending_mp; 1368 ill->ill_pending_mp = mp->b_next; 1369 mutex_exit(&ill->ill_lock); 1370 1371 q = mp->b_queue; 1372 ASSERT(CONN_Q(q)); 1373 mp->b_next = NULL; 1374 mp->b_prev = NULL; 1375 mp->b_queue = NULL; 1376 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1377 mutex_enter(&ill->ill_lock); 1378 } 1379 ill->ill_pending_ipif = NULL; 1380 1381 mutex_exit(&ill->ill_lock); 1382 } 1383 1384 /* 1385 * Called in the conn close path and ill delete path 1386 */ 1387 static void 1388 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1389 { 1390 ipsq_t *ipsq; 1391 mblk_t *prev; 1392 mblk_t *curr; 1393 mblk_t *next; 1394 queue_t *q; 1395 mblk_t *tmp_list = NULL; 1396 1397 ASSERT(IAM_WRITER_ILL(ill)); 1398 if (connp != NULL) 1399 q = CONNP_TO_WQ(connp); 1400 else 1401 q = ill->ill_wq; 1402 1403 ipsq = ill->ill_phyint->phyint_ipsq; 1404 /* 1405 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1406 * In the case of ioctl from a conn, there can be only 1 mp 1407 * queued on the ipsq. If an ill is being unplumbed, only messages 1408 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1409 * ioctls meant for this ill form conn's are not flushed. They will 1410 * be processed during ipsq_exit and will not find the ill and will 1411 * return error. 1412 */ 1413 mutex_enter(&ipsq->ipsq_lock); 1414 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1415 curr = next) { 1416 next = curr->b_next; 1417 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1418 /* Unlink the mblk from the pending mp list */ 1419 if (prev != NULL) { 1420 prev->b_next = curr->b_next; 1421 } else { 1422 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1423 ipsq->ipsq_xopq_mphead = curr->b_next; 1424 } 1425 if (ipsq->ipsq_xopq_mptail == curr) 1426 ipsq->ipsq_xopq_mptail = prev; 1427 /* 1428 * Create a temporary list and release the ipsq lock 1429 * New elements are added to the head of the tmp_list 1430 */ 1431 curr->b_next = tmp_list; 1432 tmp_list = curr; 1433 } else { 1434 prev = curr; 1435 } 1436 } 1437 mutex_exit(&ipsq->ipsq_lock); 1438 1439 while (tmp_list != NULL) { 1440 curr = tmp_list; 1441 tmp_list = curr->b_next; 1442 curr->b_next = NULL; 1443 curr->b_prev = NULL; 1444 curr->b_queue = NULL; 1445 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1446 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1447 CONN_CLOSE : NO_COPYOUT, NULL); 1448 } else { 1449 /* 1450 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1451 * this can't be just inet_freemsg. we have to 1452 * restart it otherwise the thread will be stuck. 1453 */ 1454 inet_freemsg(curr); 1455 } 1456 } 1457 } 1458 1459 /* 1460 * This conn has started closing. Cleanup any pending ioctl from this conn. 1461 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1462 */ 1463 void 1464 conn_ioctl_cleanup(conn_t *connp) 1465 { 1466 mblk_t *curr; 1467 ipsq_t *ipsq; 1468 ill_t *ill; 1469 boolean_t refheld; 1470 1471 /* 1472 * Is any exclusive ioctl pending ? If so clean it up. If the 1473 * ioctl has not yet started, the mp is pending in the list headed by 1474 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1475 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1476 * is currently executing now the mp is not queued anywhere but 1477 * conn_oper_pending_ill is null. The conn close will wait 1478 * till the conn_ref drops to zero. 1479 */ 1480 mutex_enter(&connp->conn_lock); 1481 ill = connp->conn_oper_pending_ill; 1482 if (ill == NULL) { 1483 mutex_exit(&connp->conn_lock); 1484 return; 1485 } 1486 1487 curr = ill_pending_mp_get(ill, &connp, 0); 1488 if (curr != NULL) { 1489 mutex_exit(&connp->conn_lock); 1490 CONN_DEC_REF(connp); 1491 inet_freemsg(curr); 1492 return; 1493 } 1494 /* 1495 * We may not be able to refhold the ill if the ill/ipif 1496 * is changing. But we need to make sure that the ill will 1497 * not vanish. So we just bump up the ill_waiter count. 1498 */ 1499 refheld = ill_waiter_inc(ill); 1500 mutex_exit(&connp->conn_lock); 1501 if (refheld) { 1502 if (ipsq_enter(ill, B_TRUE)) { 1503 ill_waiter_dcr(ill); 1504 /* 1505 * Check whether this ioctl has started and is 1506 * pending now in ipsq_pending_mp. If it is not 1507 * found there then check whether this ioctl has 1508 * not even started and is in the ipsq_xopq list. 1509 */ 1510 if (!ipsq_pending_mp_cleanup(ill, connp)) 1511 ipsq_xopq_mp_cleanup(ill, connp); 1512 ipsq = ill->ill_phyint->phyint_ipsq; 1513 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1514 return; 1515 } 1516 } 1517 1518 /* 1519 * The ill is also closing and we could not bump up the 1520 * ill_waiter_count or we could not enter the ipsq. Leave 1521 * the cleanup to ill_delete 1522 */ 1523 mutex_enter(&connp->conn_lock); 1524 while (connp->conn_oper_pending_ill != NULL) 1525 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1526 mutex_exit(&connp->conn_lock); 1527 if (refheld) 1528 ill_waiter_dcr(ill); 1529 } 1530 1531 /* 1532 * ipcl_walk function for cleaning up conn_*_ill fields. 1533 */ 1534 static void 1535 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1536 { 1537 ill_t *ill = (ill_t *)arg; 1538 ire_t *ire; 1539 1540 mutex_enter(&connp->conn_lock); 1541 if (connp->conn_multicast_ill == ill) { 1542 /* Revert to late binding */ 1543 connp->conn_multicast_ill = NULL; 1544 connp->conn_orig_multicast_ifindex = 0; 1545 } 1546 if (connp->conn_incoming_ill == ill) 1547 connp->conn_incoming_ill = NULL; 1548 if (connp->conn_outgoing_ill == ill) 1549 connp->conn_outgoing_ill = NULL; 1550 if (connp->conn_outgoing_pill == ill) 1551 connp->conn_outgoing_pill = NULL; 1552 if (connp->conn_nofailover_ill == ill) 1553 connp->conn_nofailover_ill = NULL; 1554 if (connp->conn_xmit_if_ill == ill) 1555 connp->conn_xmit_if_ill = NULL; 1556 if (connp->conn_ire_cache != NULL) { 1557 ire = connp->conn_ire_cache; 1558 /* 1559 * ip_newroute creates IRE_CACHE with ire_stq coming from 1560 * interface X and ipif coming from interface Y, if interface 1561 * X and Y are part of the same IPMPgroup. Thus whenever 1562 * interface X goes down, remove all references to it by 1563 * checking both on ire_ipif and ire_stq. 1564 */ 1565 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1566 (ire->ire_type == IRE_CACHE && 1567 ire->ire_stq == ill->ill_wq)) { 1568 connp->conn_ire_cache = NULL; 1569 mutex_exit(&connp->conn_lock); 1570 ire_refrele_notr(ire); 1571 return; 1572 } 1573 } 1574 mutex_exit(&connp->conn_lock); 1575 1576 } 1577 1578 /* ARGSUSED */ 1579 void 1580 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1581 { 1582 ill_t *ill = q->q_ptr; 1583 ipif_t *ipif; 1584 1585 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1586 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1587 ipif_non_duplicate(ipif); 1588 ipif_down_tail(ipif); 1589 } 1590 ill_down_tail(ill); 1591 freemsg(mp); 1592 ipsq_current_finish(ipsq); 1593 } 1594 1595 /* 1596 * ill_down_start is called when we want to down this ill and bring it up again 1597 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1598 * all interfaces, but don't tear down any plumbing. 1599 */ 1600 boolean_t 1601 ill_down_start(queue_t *q, mblk_t *mp) 1602 { 1603 ill_t *ill = q->q_ptr; 1604 ipif_t *ipif; 1605 1606 ASSERT(IAM_WRITER_ILL(ill)); 1607 1608 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1609 (void) ipif_down(ipif, NULL, NULL); 1610 1611 ill_down(ill); 1612 1613 (void) ipsq_pending_mp_cleanup(ill, NULL); 1614 1615 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1616 1617 /* 1618 * Atomically test and add the pending mp if references are active. 1619 */ 1620 mutex_enter(&ill->ill_lock); 1621 if (!ill_is_quiescent(ill)) { 1622 /* call cannot fail since `conn_t *' argument is NULL */ 1623 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1624 mp, ILL_DOWN); 1625 mutex_exit(&ill->ill_lock); 1626 return (B_FALSE); 1627 } 1628 mutex_exit(&ill->ill_lock); 1629 return (B_TRUE); 1630 } 1631 1632 static void 1633 ill_down(ill_t *ill) 1634 { 1635 ip_stack_t *ipst = ill->ill_ipst; 1636 1637 /* Blow off any IREs dependent on this ILL. */ 1638 ire_walk(ill_downi, (char *)ill, ipst); 1639 1640 mutex_enter(&ipst->ips_ire_mrtun_lock); 1641 if (ipst->ips_ire_mrtun_count != 0) { 1642 mutex_exit(&ipst->ips_ire_mrtun_lock); 1643 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1644 (char *)ill, NULL, ipst); 1645 } else { 1646 mutex_exit(&ipst->ips_ire_mrtun_lock); 1647 } 1648 1649 /* 1650 * If any interface based forwarding table exists 1651 * Blow off the ires there dependent on this ill 1652 */ 1653 mutex_enter(&ipst->ips_ire_srcif_table_lock); 1654 if (ipst->ips_ire_srcif_table_count > 0) { 1655 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1656 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill, 1657 ipst); 1658 } else { 1659 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1660 } 1661 1662 /* Remove any conn_*_ill depending on this ill */ 1663 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1664 1665 if (ill->ill_group != NULL) { 1666 illgrp_delete(ill); 1667 } 1668 } 1669 1670 static void 1671 ill_down_tail(ill_t *ill) 1672 { 1673 int i; 1674 1675 /* Destroy ill_srcif_table if it exists */ 1676 /* Lock not reqd really because nobody should be able to access */ 1677 mutex_enter(&ill->ill_lock); 1678 if (ill->ill_srcif_table != NULL) { 1679 ill->ill_srcif_refcnt = 0; 1680 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1681 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1682 } 1683 kmem_free(ill->ill_srcif_table, 1684 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1685 ill->ill_srcif_table = NULL; 1686 ill->ill_srcif_refcnt = 0; 1687 ill->ill_mrtun_refcnt = 0; 1688 } 1689 mutex_exit(&ill->ill_lock); 1690 } 1691 1692 /* 1693 * ire_walk routine used to delete every IRE that depends on queues 1694 * associated with 'ill'. (Always called as writer.) 1695 */ 1696 static void 1697 ill_downi(ire_t *ire, char *ill_arg) 1698 { 1699 ill_t *ill = (ill_t *)ill_arg; 1700 1701 /* 1702 * ip_newroute creates IRE_CACHE with ire_stq coming from 1703 * interface X and ipif coming from interface Y, if interface 1704 * X and Y are part of the same IPMP group. Thus whenever interface 1705 * X goes down, remove all references to it by checking both 1706 * on ire_ipif and ire_stq. 1707 */ 1708 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1709 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1710 ire_delete(ire); 1711 } 1712 } 1713 1714 /* 1715 * A seperate routine for deleting revtun and srcif based routes 1716 * are needed because the ires only deleted when the interface 1717 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1718 * we want to keep mobile IP specific code separate. 1719 */ 1720 static void 1721 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1722 { 1723 ill_t *ill = (ill_t *)ill_arg; 1724 1725 ASSERT(ire->ire_in_ill != NULL); 1726 1727 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1728 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1729 ire_delete(ire); 1730 } 1731 } 1732 1733 /* 1734 * Remove ire/nce from the fastpath list. 1735 */ 1736 void 1737 ill_fastpath_nack(ill_t *ill) 1738 { 1739 nce_fastpath_list_dispatch(ill, NULL, NULL); 1740 } 1741 1742 /* Consume an M_IOCACK of the fastpath probe. */ 1743 void 1744 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1745 { 1746 mblk_t *mp1 = mp; 1747 1748 /* 1749 * If this was the first attempt turn on the fastpath probing. 1750 */ 1751 mutex_enter(&ill->ill_lock); 1752 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1753 ill->ill_dlpi_fastpath_state = IDS_OK; 1754 mutex_exit(&ill->ill_lock); 1755 1756 /* Free the M_IOCACK mblk, hold on to the data */ 1757 mp = mp->b_cont; 1758 freeb(mp1); 1759 if (mp == NULL) 1760 return; 1761 if (mp->b_cont != NULL) { 1762 /* 1763 * Update all IRE's or NCE's that are waiting for 1764 * fastpath update. 1765 */ 1766 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1767 mp1 = mp->b_cont; 1768 freeb(mp); 1769 mp = mp1; 1770 } else { 1771 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1772 } 1773 1774 freeb(mp); 1775 } 1776 1777 /* 1778 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1779 * The data portion of the request is a dl_unitdata_req_t template for 1780 * what we would send downstream in the absence of a fastpath confirmation. 1781 */ 1782 int 1783 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1784 { 1785 struct iocblk *ioc; 1786 mblk_t *mp; 1787 1788 if (dlur_mp == NULL) 1789 return (EINVAL); 1790 1791 mutex_enter(&ill->ill_lock); 1792 switch (ill->ill_dlpi_fastpath_state) { 1793 case IDS_FAILED: 1794 /* 1795 * Driver NAKed the first fastpath ioctl - assume it doesn't 1796 * support it. 1797 */ 1798 mutex_exit(&ill->ill_lock); 1799 return (ENOTSUP); 1800 case IDS_UNKNOWN: 1801 /* This is the first probe */ 1802 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1803 break; 1804 default: 1805 break; 1806 } 1807 mutex_exit(&ill->ill_lock); 1808 1809 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1810 return (EAGAIN); 1811 1812 mp->b_cont = copyb(dlur_mp); 1813 if (mp->b_cont == NULL) { 1814 freeb(mp); 1815 return (EAGAIN); 1816 } 1817 1818 ioc = (struct iocblk *)mp->b_rptr; 1819 ioc->ioc_count = msgdsize(mp->b_cont); 1820 1821 putnext(ill->ill_wq, mp); 1822 return (0); 1823 } 1824 1825 void 1826 ill_capability_probe(ill_t *ill) 1827 { 1828 /* 1829 * Do so only if negotiation is enabled, capabilities are unknown, 1830 * and a capability negotiation is not already in progress. 1831 */ 1832 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1833 ill->ill_dlpi_capab_state != IDS_RENEG) 1834 return; 1835 1836 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1837 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1838 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1839 } 1840 1841 void 1842 ill_capability_reset(ill_t *ill) 1843 { 1844 mblk_t *sc_mp = NULL; 1845 mblk_t *tmp; 1846 1847 /* 1848 * Note here that we reset the state to UNKNOWN, and later send 1849 * down the DL_CAPABILITY_REQ without first setting the state to 1850 * INPROGRESS. We do this in order to distinguish the 1851 * DL_CAPABILITY_ACK response which may come back in response to 1852 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1853 * also handle the case where the driver doesn't send us back 1854 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1855 * requires the state to be in UNKNOWN anyway. In any case, all 1856 * features are turned off until the state reaches IDS_OK. 1857 */ 1858 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1859 1860 /* 1861 * Disable sub-capabilities and request a list of sub-capability 1862 * messages which will be sent down to the driver. Each handler 1863 * allocates the corresponding dl_capability_sub_t inside an 1864 * mblk, and links it to the existing sc_mp mblk, or return it 1865 * as sc_mp if it's the first sub-capability (the passed in 1866 * sc_mp is NULL). Upon returning from all capability handlers, 1867 * sc_mp will be pulled-up, before passing it downstream. 1868 */ 1869 ill_capability_mdt_reset(ill, &sc_mp); 1870 ill_capability_hcksum_reset(ill, &sc_mp); 1871 ill_capability_zerocopy_reset(ill, &sc_mp); 1872 ill_capability_ipsec_reset(ill, &sc_mp); 1873 ill_capability_dls_reset(ill, &sc_mp); 1874 ill_capability_lso_reset(ill, &sc_mp); 1875 1876 /* Nothing to send down in order to disable the capabilities? */ 1877 if (sc_mp == NULL) 1878 return; 1879 1880 tmp = msgpullup(sc_mp, -1); 1881 freemsg(sc_mp); 1882 if ((sc_mp = tmp) == NULL) { 1883 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1884 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1885 return; 1886 } 1887 1888 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1889 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1890 } 1891 1892 /* 1893 * Request or set new-style hardware capabilities supported by DLS provider. 1894 */ 1895 static void 1896 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1897 { 1898 mblk_t *mp; 1899 dl_capability_req_t *capb; 1900 size_t size = 0; 1901 uint8_t *ptr; 1902 1903 if (reqp != NULL) 1904 size = MBLKL(reqp); 1905 1906 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1907 if (mp == NULL) { 1908 freemsg(reqp); 1909 return; 1910 } 1911 ptr = mp->b_rptr; 1912 1913 capb = (dl_capability_req_t *)ptr; 1914 ptr += sizeof (dl_capability_req_t); 1915 1916 if (reqp != NULL) { 1917 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1918 capb->dl_sub_length = size; 1919 bcopy(reqp->b_rptr, ptr, size); 1920 ptr += size; 1921 mp->b_cont = reqp->b_cont; 1922 freeb(reqp); 1923 } 1924 ASSERT(ptr == mp->b_wptr); 1925 1926 ill_dlpi_send(ill, mp); 1927 } 1928 1929 static void 1930 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1931 { 1932 dl_capab_id_t *id_ic; 1933 uint_t sub_dl_cap = outers->dl_cap; 1934 dl_capability_sub_t *inners; 1935 uint8_t *capend; 1936 1937 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1938 1939 /* 1940 * Note: range checks here are not absolutely sufficient to 1941 * make us robust against malformed messages sent by drivers; 1942 * this is in keeping with the rest of IP's dlpi handling. 1943 * (Remember, it's coming from something else in the kernel 1944 * address space) 1945 */ 1946 1947 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1948 if (capend > mp->b_wptr) { 1949 cmn_err(CE_WARN, "ill_capability_id_ack: " 1950 "malformed sub-capability too long for mblk"); 1951 return; 1952 } 1953 1954 id_ic = (dl_capab_id_t *)(outers + 1); 1955 1956 if (outers->dl_length < sizeof (*id_ic) || 1957 (inners = &id_ic->id_subcap, 1958 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1959 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1960 "encapsulated capab type %d too long for mblk", 1961 inners->dl_cap); 1962 return; 1963 } 1964 1965 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1966 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1967 "isn't as expected; pass-thru module(s) detected, " 1968 "discarding capability\n", inners->dl_cap)); 1969 return; 1970 } 1971 1972 /* Process the encapsulated sub-capability */ 1973 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1974 } 1975 1976 /* 1977 * Process Multidata Transmit capability negotiation ack received from a 1978 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1979 * DL_CAPABILITY_ACK message. 1980 */ 1981 static void 1982 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1983 { 1984 mblk_t *nmp = NULL; 1985 dl_capability_req_t *oc; 1986 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1987 ill_mdt_capab_t **ill_mdt_capab; 1988 uint_t sub_dl_cap = isub->dl_cap; 1989 uint8_t *capend; 1990 1991 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1992 1993 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1994 1995 /* 1996 * Note: range checks here are not absolutely sufficient to 1997 * make us robust against malformed messages sent by drivers; 1998 * this is in keeping with the rest of IP's dlpi handling. 1999 * (Remember, it's coming from something else in the kernel 2000 * address space) 2001 */ 2002 2003 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2004 if (capend > mp->b_wptr) { 2005 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2006 "malformed sub-capability too long for mblk"); 2007 return; 2008 } 2009 2010 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 2011 2012 if (mdt_ic->mdt_version != MDT_VERSION_2) { 2013 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 2014 "unsupported MDT sub-capability (version %d, expected %d)", 2015 mdt_ic->mdt_version, MDT_VERSION_2); 2016 return; 2017 } 2018 2019 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2020 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2021 "capability isn't as expected; pass-thru module(s) " 2022 "detected, discarding capability\n")); 2023 return; 2024 } 2025 2026 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2027 2028 if (*ill_mdt_capab == NULL) { 2029 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2030 KM_NOSLEEP); 2031 2032 if (*ill_mdt_capab == NULL) { 2033 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2034 "could not enable MDT version %d " 2035 "for %s (ENOMEM)\n", MDT_VERSION_2, 2036 ill->ill_name); 2037 return; 2038 } 2039 } 2040 2041 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2042 "MDT version %d (%d bytes leading, %d bytes trailing " 2043 "header spaces, %d max pld bufs, %d span limit)\n", 2044 ill->ill_name, MDT_VERSION_2, 2045 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2046 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2047 2048 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2049 (*ill_mdt_capab)->ill_mdt_on = 1; 2050 /* 2051 * Round the following values to the nearest 32-bit; ULP 2052 * may further adjust them to accomodate for additional 2053 * protocol headers. We pass these values to ULP during 2054 * bind time. 2055 */ 2056 (*ill_mdt_capab)->ill_mdt_hdr_head = 2057 roundup(mdt_ic->mdt_hdr_head, 4); 2058 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2059 roundup(mdt_ic->mdt_hdr_tail, 4); 2060 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2061 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2062 2063 ill->ill_capabilities |= ILL_CAPAB_MDT; 2064 } else { 2065 uint_t size; 2066 uchar_t *rptr; 2067 2068 size = sizeof (dl_capability_req_t) + 2069 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2070 2071 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2072 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2073 "could not enable MDT for %s (ENOMEM)\n", 2074 ill->ill_name); 2075 return; 2076 } 2077 2078 rptr = nmp->b_rptr; 2079 /* initialize dl_capability_req_t */ 2080 oc = (dl_capability_req_t *)nmp->b_rptr; 2081 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2082 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2083 sizeof (dl_capab_mdt_t); 2084 nmp->b_rptr += sizeof (dl_capability_req_t); 2085 2086 /* initialize dl_capability_sub_t */ 2087 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2088 nmp->b_rptr += sizeof (*isub); 2089 2090 /* initialize dl_capab_mdt_t */ 2091 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2092 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2093 2094 nmp->b_rptr = rptr; 2095 2096 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2097 "to enable MDT version %d\n", ill->ill_name, 2098 MDT_VERSION_2)); 2099 2100 /* set ENABLE flag */ 2101 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2102 2103 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2104 ill_dlpi_send(ill, nmp); 2105 } 2106 } 2107 2108 static void 2109 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2110 { 2111 mblk_t *mp; 2112 dl_capab_mdt_t *mdt_subcap; 2113 dl_capability_sub_t *dl_subcap; 2114 int size; 2115 2116 if (!ILL_MDT_CAPABLE(ill)) 2117 return; 2118 2119 ASSERT(ill->ill_mdt_capab != NULL); 2120 /* 2121 * Clear the capability flag for MDT but retain the ill_mdt_capab 2122 * structure since it's possible that another thread is still 2123 * referring to it. The structure only gets deallocated when 2124 * we destroy the ill. 2125 */ 2126 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2127 2128 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2129 2130 mp = allocb(size, BPRI_HI); 2131 if (mp == NULL) { 2132 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2133 "request to disable MDT\n")); 2134 return; 2135 } 2136 2137 mp->b_wptr = mp->b_rptr + size; 2138 2139 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2140 dl_subcap->dl_cap = DL_CAPAB_MDT; 2141 dl_subcap->dl_length = sizeof (*mdt_subcap); 2142 2143 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2144 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2145 mdt_subcap->mdt_flags = 0; 2146 mdt_subcap->mdt_hdr_head = 0; 2147 mdt_subcap->mdt_hdr_tail = 0; 2148 2149 if (*sc_mp != NULL) 2150 linkb(*sc_mp, mp); 2151 else 2152 *sc_mp = mp; 2153 } 2154 2155 /* 2156 * Send a DL_NOTIFY_REQ to the specified ill to enable 2157 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2158 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2159 * acceleration. 2160 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2161 */ 2162 static boolean_t 2163 ill_enable_promisc_notify(ill_t *ill) 2164 { 2165 mblk_t *mp; 2166 dl_notify_req_t *req; 2167 2168 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2169 2170 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2171 if (mp == NULL) 2172 return (B_FALSE); 2173 2174 req = (dl_notify_req_t *)mp->b_rptr; 2175 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2176 DL_NOTE_PROMISC_OFF_PHYS; 2177 2178 ill_dlpi_send(ill, mp); 2179 2180 return (B_TRUE); 2181 } 2182 2183 2184 /* 2185 * Allocate an IPsec capability request which will be filled by our 2186 * caller to turn on support for one or more algorithms. 2187 */ 2188 static mblk_t * 2189 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2190 { 2191 mblk_t *nmp; 2192 dl_capability_req_t *ocap; 2193 dl_capab_ipsec_t *ocip; 2194 dl_capab_ipsec_t *icip; 2195 uint8_t *ptr; 2196 icip = (dl_capab_ipsec_t *)(isub + 1); 2197 2198 /* 2199 * The first time around, we send a DL_NOTIFY_REQ to enable 2200 * PROMISC_ON/OFF notification from the provider. We need to 2201 * do this before enabling the algorithms to avoid leakage of 2202 * cleartext packets. 2203 */ 2204 2205 if (!ill_enable_promisc_notify(ill)) 2206 return (NULL); 2207 2208 /* 2209 * Allocate new mblk which will contain a new capability 2210 * request to enable the capabilities. 2211 */ 2212 2213 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2214 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2215 if (nmp == NULL) 2216 return (NULL); 2217 2218 ptr = nmp->b_rptr; 2219 2220 /* initialize dl_capability_req_t */ 2221 ocap = (dl_capability_req_t *)ptr; 2222 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2223 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2224 ptr += sizeof (dl_capability_req_t); 2225 2226 /* initialize dl_capability_sub_t */ 2227 bcopy(isub, ptr, sizeof (*isub)); 2228 ptr += sizeof (*isub); 2229 2230 /* initialize dl_capab_ipsec_t */ 2231 ocip = (dl_capab_ipsec_t *)ptr; 2232 bcopy(icip, ocip, sizeof (*icip)); 2233 2234 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2235 return (nmp); 2236 } 2237 2238 /* 2239 * Process an IPsec capability negotiation ack received from a DLS Provider. 2240 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2241 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2242 */ 2243 static void 2244 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2245 { 2246 dl_capab_ipsec_t *icip; 2247 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2248 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2249 uint_t cipher, nciphers; 2250 mblk_t *nmp; 2251 uint_t alg_len; 2252 boolean_t need_sadb_dump; 2253 uint_t sub_dl_cap = isub->dl_cap; 2254 ill_ipsec_capab_t **ill_capab; 2255 uint64_t ill_capab_flag; 2256 uint8_t *capend, *ciphend; 2257 boolean_t sadb_resync; 2258 2259 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2260 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2261 2262 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2263 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2264 ill_capab_flag = ILL_CAPAB_AH; 2265 } else { 2266 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2267 ill_capab_flag = ILL_CAPAB_ESP; 2268 } 2269 2270 /* 2271 * If the ill capability structure exists, then this incoming 2272 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2273 * If this is so, then we'd need to resynchronize the SADB 2274 * after re-enabling the offloaded ciphers. 2275 */ 2276 sadb_resync = (*ill_capab != NULL); 2277 2278 /* 2279 * Note: range checks here are not absolutely sufficient to 2280 * make us robust against malformed messages sent by drivers; 2281 * this is in keeping with the rest of IP's dlpi handling. 2282 * (Remember, it's coming from something else in the kernel 2283 * address space) 2284 */ 2285 2286 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2287 if (capend > mp->b_wptr) { 2288 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2289 "malformed sub-capability too long for mblk"); 2290 return; 2291 } 2292 2293 /* 2294 * There are two types of acks we process here: 2295 * 1. acks in reply to a (first form) generic capability req 2296 * (no ENABLE flag set) 2297 * 2. acks in reply to a ENABLE capability req. 2298 * (ENABLE flag set) 2299 * 2300 * We process the subcapability passed as argument as follows: 2301 * 1 do initializations 2302 * 1.1 initialize nmp = NULL 2303 * 1.2 set need_sadb_dump to B_FALSE 2304 * 2 for each cipher in subcapability: 2305 * 2.1 if ENABLE flag is set: 2306 * 2.1.1 update per-ill ipsec capabilities info 2307 * 2.1.2 set need_sadb_dump to B_TRUE 2308 * 2.2 if ENABLE flag is not set: 2309 * 2.2.1 if nmp is NULL: 2310 * 2.2.1.1 allocate and initialize nmp 2311 * 2.2.1.2 init current pos in nmp 2312 * 2.2.2 copy current cipher to current pos in nmp 2313 * 2.2.3 set ENABLE flag in nmp 2314 * 2.2.4 update current pos 2315 * 3 if nmp is not equal to NULL, send enable request 2316 * 3.1 send capability request 2317 * 4 if need_sadb_dump is B_TRUE 2318 * 4.1 enable promiscuous on/off notifications 2319 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2320 * AH or ESP SA's to interface. 2321 */ 2322 2323 nmp = NULL; 2324 oalg = NULL; 2325 need_sadb_dump = B_FALSE; 2326 icip = (dl_capab_ipsec_t *)(isub + 1); 2327 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2328 2329 nciphers = icip->cip_nciphers; 2330 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2331 2332 if (ciphend > capend) { 2333 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2334 "too many ciphers for sub-capability len"); 2335 return; 2336 } 2337 2338 for (cipher = 0; cipher < nciphers; cipher++) { 2339 alg_len = sizeof (dl_capab_ipsec_alg_t); 2340 2341 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2342 /* 2343 * TBD: when we provide a way to disable capabilities 2344 * from above, need to manage the request-pending state 2345 * and fail if we were not expecting this ACK. 2346 */ 2347 IPSECHW_DEBUG(IPSECHW_CAPAB, 2348 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2349 2350 /* 2351 * Update IPsec capabilities for this ill 2352 */ 2353 2354 if (*ill_capab == NULL) { 2355 IPSECHW_DEBUG(IPSECHW_CAPAB, 2356 ("ill_capability_ipsec_ack: " 2357 "allocating ipsec_capab for ill\n")); 2358 *ill_capab = ill_ipsec_capab_alloc(); 2359 2360 if (*ill_capab == NULL) { 2361 cmn_err(CE_WARN, 2362 "ill_capability_ipsec_ack: " 2363 "could not enable IPsec Hardware " 2364 "acceleration for %s (ENOMEM)\n", 2365 ill->ill_name); 2366 return; 2367 } 2368 } 2369 2370 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2371 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2372 2373 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2374 cmn_err(CE_WARN, 2375 "ill_capability_ipsec_ack: " 2376 "malformed IPsec algorithm id %d", 2377 ialg->alg_prim); 2378 continue; 2379 } 2380 2381 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2382 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2383 ialg->alg_prim); 2384 } else { 2385 ipsec_capab_algparm_t *alp; 2386 2387 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2388 ialg->alg_prim); 2389 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2390 ialg->alg_prim)) { 2391 cmn_err(CE_WARN, 2392 "ill_capability_ipsec_ack: " 2393 "no space for IPsec alg id %d", 2394 ialg->alg_prim); 2395 continue; 2396 } 2397 alp = &((*ill_capab)->encr_algparm[ 2398 ialg->alg_prim]); 2399 alp->minkeylen = ialg->alg_minbits; 2400 alp->maxkeylen = ialg->alg_maxbits; 2401 } 2402 ill->ill_capabilities |= ill_capab_flag; 2403 /* 2404 * indicate that a capability was enabled, which 2405 * will be used below to kick off a SADB dump 2406 * to the ill. 2407 */ 2408 need_sadb_dump = B_TRUE; 2409 } else { 2410 IPSECHW_DEBUG(IPSECHW_CAPAB, 2411 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2412 ialg->alg_prim)); 2413 2414 if (nmp == NULL) { 2415 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2416 if (nmp == NULL) { 2417 /* 2418 * Sending the PROMISC_ON/OFF 2419 * notification request failed. 2420 * We cannot enable the algorithms 2421 * since the Provider will not 2422 * notify IP of promiscous mode 2423 * changes, which could lead 2424 * to leakage of packets. 2425 */ 2426 cmn_err(CE_WARN, 2427 "ill_capability_ipsec_ack: " 2428 "could not enable IPsec Hardware " 2429 "acceleration for %s (ENOMEM)\n", 2430 ill->ill_name); 2431 return; 2432 } 2433 /* ptr to current output alg specifier */ 2434 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2435 } 2436 2437 /* 2438 * Copy current alg specifier, set ENABLE 2439 * flag, and advance to next output alg. 2440 * For now we enable all IPsec capabilities. 2441 */ 2442 ASSERT(oalg != NULL); 2443 bcopy(ialg, oalg, alg_len); 2444 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2445 nmp->b_wptr += alg_len; 2446 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2447 } 2448 2449 /* move to next input algorithm specifier */ 2450 ialg = (dl_capab_ipsec_alg_t *) 2451 ((char *)ialg + alg_len); 2452 } 2453 2454 if (nmp != NULL) 2455 /* 2456 * nmp points to a DL_CAPABILITY_REQ message to enable 2457 * IPsec hardware acceleration. 2458 */ 2459 ill_dlpi_send(ill, nmp); 2460 2461 if (need_sadb_dump) 2462 /* 2463 * An acknowledgement corresponding to a request to 2464 * enable acceleration was received, notify SADB. 2465 */ 2466 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2467 } 2468 2469 /* 2470 * Given an mblk with enough space in it, create sub-capability entries for 2471 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2472 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2473 * in preparation for the reset the DL_CAPABILITY_REQ message. 2474 */ 2475 static void 2476 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2477 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2478 { 2479 dl_capab_ipsec_t *oipsec; 2480 dl_capab_ipsec_alg_t *oalg; 2481 dl_capability_sub_t *dl_subcap; 2482 int i, k; 2483 2484 ASSERT(nciphers > 0); 2485 ASSERT(ill_cap != NULL); 2486 ASSERT(mp != NULL); 2487 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2488 2489 /* dl_capability_sub_t for "stype" */ 2490 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2491 dl_subcap->dl_cap = stype; 2492 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2493 mp->b_wptr += sizeof (dl_capability_sub_t); 2494 2495 /* dl_capab_ipsec_t for "stype" */ 2496 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2497 oipsec->cip_version = 1; 2498 oipsec->cip_nciphers = nciphers; 2499 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2500 2501 /* create entries for "stype" AUTH ciphers */ 2502 for (i = 0; i < ill_cap->algs_size; i++) { 2503 for (k = 0; k < BITSPERBYTE; k++) { 2504 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2505 continue; 2506 2507 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2508 bzero((void *)oalg, sizeof (*oalg)); 2509 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2510 oalg->alg_prim = k + (BITSPERBYTE * i); 2511 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2512 } 2513 } 2514 /* create entries for "stype" ENCR ciphers */ 2515 for (i = 0; i < ill_cap->algs_size; i++) { 2516 for (k = 0; k < BITSPERBYTE; k++) { 2517 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2518 continue; 2519 2520 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2521 bzero((void *)oalg, sizeof (*oalg)); 2522 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2523 oalg->alg_prim = k + (BITSPERBYTE * i); 2524 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2525 } 2526 } 2527 } 2528 2529 /* 2530 * Macro to count number of 1s in a byte (8-bit word). The total count is 2531 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2532 * POPC instruction, but our macro is more flexible for an arbitrary length 2533 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2534 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2535 * stays that way, we can reduce the number of iterations required. 2536 */ 2537 #define COUNT_1S(val, sum) { \ 2538 uint8_t x = val & 0xff; \ 2539 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2540 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2541 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2542 } 2543 2544 /* ARGSUSED */ 2545 static void 2546 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2547 { 2548 mblk_t *mp; 2549 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2550 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2551 uint64_t ill_capabilities = ill->ill_capabilities; 2552 int ah_cnt = 0, esp_cnt = 0; 2553 int ah_len = 0, esp_len = 0; 2554 int i, size = 0; 2555 2556 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2557 return; 2558 2559 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2560 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2561 2562 /* Find out the number of ciphers for AH */ 2563 if (cap_ah != NULL) { 2564 for (i = 0; i < cap_ah->algs_size; i++) { 2565 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2566 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2567 } 2568 if (ah_cnt > 0) { 2569 size += sizeof (dl_capability_sub_t) + 2570 sizeof (dl_capab_ipsec_t); 2571 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2572 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2573 size += ah_len; 2574 } 2575 } 2576 2577 /* Find out the number of ciphers for ESP */ 2578 if (cap_esp != NULL) { 2579 for (i = 0; i < cap_esp->algs_size; i++) { 2580 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2581 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2582 } 2583 if (esp_cnt > 0) { 2584 size += sizeof (dl_capability_sub_t) + 2585 sizeof (dl_capab_ipsec_t); 2586 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2587 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2588 size += esp_len; 2589 } 2590 } 2591 2592 if (size == 0) { 2593 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2594 "there's nothing to reset\n")); 2595 return; 2596 } 2597 2598 mp = allocb(size, BPRI_HI); 2599 if (mp == NULL) { 2600 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2601 "request to disable IPSEC Hardware Acceleration\n")); 2602 return; 2603 } 2604 2605 /* 2606 * Clear the capability flags for IPSec HA but retain the ill 2607 * capability structures since it's possible that another thread 2608 * is still referring to them. The structures only get deallocated 2609 * when we destroy the ill. 2610 * 2611 * Various places check the flags to see if the ill is capable of 2612 * hardware acceleration, and by clearing them we ensure that new 2613 * outbound IPSec packets are sent down encrypted. 2614 */ 2615 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2616 2617 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2618 if (ah_cnt > 0) { 2619 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2620 cap_ah, mp); 2621 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2622 } 2623 2624 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2625 if (esp_cnt > 0) { 2626 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2627 cap_esp, mp); 2628 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2629 } 2630 2631 /* 2632 * At this point we've composed a bunch of sub-capabilities to be 2633 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2634 * by the caller. Upon receiving this reset message, the driver 2635 * must stop inbound decryption (by destroying all inbound SAs) 2636 * and let the corresponding packets come in encrypted. 2637 */ 2638 2639 if (*sc_mp != NULL) 2640 linkb(*sc_mp, mp); 2641 else 2642 *sc_mp = mp; 2643 } 2644 2645 static void 2646 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2647 boolean_t encapsulated) 2648 { 2649 boolean_t legacy = B_FALSE; 2650 2651 /* 2652 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2653 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2654 * instructed the driver to disable its advertised capabilities, 2655 * so there's no point in accepting any response at this moment. 2656 */ 2657 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2658 return; 2659 2660 /* 2661 * Note that only the following two sub-capabilities may be 2662 * considered as "legacy", since their original definitions 2663 * do not incorporate the dl_mid_t module ID token, and hence 2664 * may require the use of the wrapper sub-capability. 2665 */ 2666 switch (subp->dl_cap) { 2667 case DL_CAPAB_IPSEC_AH: 2668 case DL_CAPAB_IPSEC_ESP: 2669 legacy = B_TRUE; 2670 break; 2671 } 2672 2673 /* 2674 * For legacy sub-capabilities which don't incorporate a queue_t 2675 * pointer in their structures, discard them if we detect that 2676 * there are intermediate modules in between IP and the driver. 2677 */ 2678 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2679 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2680 "%d discarded; %d module(s) present below IP\n", 2681 subp->dl_cap, ill->ill_lmod_cnt)); 2682 return; 2683 } 2684 2685 switch (subp->dl_cap) { 2686 case DL_CAPAB_IPSEC_AH: 2687 case DL_CAPAB_IPSEC_ESP: 2688 ill_capability_ipsec_ack(ill, mp, subp); 2689 break; 2690 case DL_CAPAB_MDT: 2691 ill_capability_mdt_ack(ill, mp, subp); 2692 break; 2693 case DL_CAPAB_HCKSUM: 2694 ill_capability_hcksum_ack(ill, mp, subp); 2695 break; 2696 case DL_CAPAB_ZEROCOPY: 2697 ill_capability_zerocopy_ack(ill, mp, subp); 2698 break; 2699 case DL_CAPAB_POLL: 2700 if (!SOFT_RINGS_ENABLED()) 2701 ill_capability_dls_ack(ill, mp, subp); 2702 break; 2703 case DL_CAPAB_SOFT_RING: 2704 if (SOFT_RINGS_ENABLED()) 2705 ill_capability_dls_ack(ill, mp, subp); 2706 break; 2707 case DL_CAPAB_LSO: 2708 ill_capability_lso_ack(ill, mp, subp); 2709 break; 2710 default: 2711 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2712 subp->dl_cap)); 2713 } 2714 } 2715 2716 /* 2717 * As part of negotiating polling capability, the driver tells us 2718 * the default (or normal) blanking interval and packet threshold 2719 * (the receive timer fires if blanking interval is reached or 2720 * the packet threshold is reached). 2721 * 2722 * As part of manipulating the polling interval, we always use our 2723 * estimated interval (avg service time * number of packets queued 2724 * on the squeue) but we try to blank for a minimum of 2725 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2726 * packet threshold during this time. When we are not in polling mode 2727 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2728 * rr_min_blank_ratio but up the packet cnt by a ratio of 2729 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2730 * possible although for a shorter interval. 2731 */ 2732 #define RR_MAX_BLANK_RATIO 20 2733 #define RR_MIN_BLANK_RATIO 10 2734 #define RR_MAX_PKT_CNT_RATIO 3 2735 #define RR_MIN_PKT_CNT_RATIO 3 2736 2737 /* 2738 * These can be tuned via /etc/system. 2739 */ 2740 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2741 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2742 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2743 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2744 2745 static mac_resource_handle_t 2746 ill_ring_add(void *arg, mac_resource_t *mrp) 2747 { 2748 ill_t *ill = (ill_t *)arg; 2749 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2750 ill_rx_ring_t *rx_ring; 2751 int ip_rx_index; 2752 2753 ASSERT(mrp != NULL); 2754 if (mrp->mr_type != MAC_RX_FIFO) { 2755 return (NULL); 2756 } 2757 ASSERT(ill != NULL); 2758 ASSERT(ill->ill_dls_capab != NULL); 2759 2760 mutex_enter(&ill->ill_lock); 2761 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2762 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2763 ASSERT(rx_ring != NULL); 2764 2765 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2766 time_t normal_blank_time = 2767 mrfp->mrf_normal_blank_time; 2768 uint_t normal_pkt_cnt = 2769 mrfp->mrf_normal_pkt_count; 2770 2771 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2772 2773 rx_ring->rr_blank = mrfp->mrf_blank; 2774 rx_ring->rr_handle = mrfp->mrf_arg; 2775 rx_ring->rr_ill = ill; 2776 rx_ring->rr_normal_blank_time = normal_blank_time; 2777 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2778 2779 rx_ring->rr_max_blank_time = 2780 normal_blank_time * rr_max_blank_ratio; 2781 rx_ring->rr_min_blank_time = 2782 normal_blank_time * rr_min_blank_ratio; 2783 rx_ring->rr_max_pkt_cnt = 2784 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2785 rx_ring->rr_min_pkt_cnt = 2786 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2787 2788 rx_ring->rr_ring_state = ILL_RING_INUSE; 2789 mutex_exit(&ill->ill_lock); 2790 2791 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2792 (int), ip_rx_index); 2793 return ((mac_resource_handle_t)rx_ring); 2794 } 2795 } 2796 2797 /* 2798 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2799 * we have devices which can overwhelm this limit, ILL_MAX_RING 2800 * should be made configurable. Meanwhile it cause no panic because 2801 * driver will pass ip_input a NULL handle which will make 2802 * IP allocate the default squeue and Polling mode will not 2803 * be used for this ring. 2804 */ 2805 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2806 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2807 2808 mutex_exit(&ill->ill_lock); 2809 return (NULL); 2810 } 2811 2812 static boolean_t 2813 ill_capability_dls_init(ill_t *ill) 2814 { 2815 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2816 conn_t *connp; 2817 size_t sz; 2818 ip_stack_t *ipst = ill->ill_ipst; 2819 2820 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2821 if (ill_dls == NULL) { 2822 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2823 "soft_ring enabled for ill=%s (%p) but data " 2824 "structs uninitialized\n", ill->ill_name, 2825 (void *)ill); 2826 } 2827 return (B_TRUE); 2828 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2829 if (ill_dls == NULL) { 2830 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2831 "polling enabled for ill=%s (%p) but data " 2832 "structs uninitialized\n", ill->ill_name, 2833 (void *)ill); 2834 } 2835 return (B_TRUE); 2836 } 2837 2838 if (ill_dls != NULL) { 2839 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2840 /* Soft_Ring or polling is being re-enabled */ 2841 2842 connp = ill_dls->ill_unbind_conn; 2843 ASSERT(rx_ring != NULL); 2844 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2845 bzero((void *)rx_ring, 2846 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2847 ill_dls->ill_ring_tbl = rx_ring; 2848 ill_dls->ill_unbind_conn = connp; 2849 return (B_TRUE); 2850 } 2851 2852 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2853 ipst->ips_netstack)) == NULL) 2854 return (B_FALSE); 2855 2856 sz = sizeof (ill_dls_capab_t); 2857 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2858 2859 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2860 if (ill_dls == NULL) { 2861 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2862 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2863 (void *)ill); 2864 CONN_DEC_REF(connp); 2865 return (B_FALSE); 2866 } 2867 2868 /* Allocate space to hold ring table */ 2869 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2870 ill->ill_dls_capab = ill_dls; 2871 ill_dls->ill_unbind_conn = connp; 2872 return (B_TRUE); 2873 } 2874 2875 /* 2876 * ill_capability_dls_disable: disable soft_ring and/or polling 2877 * capability. Since any of the rings might already be in use, need 2878 * to call ipsq_clean_all() which gets behind the squeue to disable 2879 * direct calls if necessary. 2880 */ 2881 static void 2882 ill_capability_dls_disable(ill_t *ill) 2883 { 2884 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2885 2886 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2887 ipsq_clean_all(ill); 2888 ill_dls->ill_tx = NULL; 2889 ill_dls->ill_tx_handle = NULL; 2890 ill_dls->ill_dls_change_status = NULL; 2891 ill_dls->ill_dls_bind = NULL; 2892 ill_dls->ill_dls_unbind = NULL; 2893 } 2894 2895 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2896 } 2897 2898 static void 2899 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2900 dl_capability_sub_t *isub) 2901 { 2902 uint_t size; 2903 uchar_t *rptr; 2904 dl_capab_dls_t dls, *odls; 2905 ill_dls_capab_t *ill_dls; 2906 mblk_t *nmp = NULL; 2907 dl_capability_req_t *ocap; 2908 uint_t sub_dl_cap = isub->dl_cap; 2909 2910 if (!ill_capability_dls_init(ill)) 2911 return; 2912 ill_dls = ill->ill_dls_capab; 2913 2914 /* Copy locally to get the members aligned */ 2915 bcopy((void *)idls, (void *)&dls, 2916 sizeof (dl_capab_dls_t)); 2917 2918 /* Get the tx function and handle from dld */ 2919 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2920 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2921 2922 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2923 ill_dls->ill_dls_change_status = 2924 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2925 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2926 ill_dls->ill_dls_unbind = 2927 (ip_dls_unbind_t)dls.dls_ring_unbind; 2928 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2929 } 2930 2931 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2932 isub->dl_length; 2933 2934 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2935 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2936 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2937 ill->ill_name, (void *)ill); 2938 return; 2939 } 2940 2941 /* initialize dl_capability_req_t */ 2942 rptr = nmp->b_rptr; 2943 ocap = (dl_capability_req_t *)rptr; 2944 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2945 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2946 rptr += sizeof (dl_capability_req_t); 2947 2948 /* initialize dl_capability_sub_t */ 2949 bcopy(isub, rptr, sizeof (*isub)); 2950 rptr += sizeof (*isub); 2951 2952 odls = (dl_capab_dls_t *)rptr; 2953 rptr += sizeof (dl_capab_dls_t); 2954 2955 /* initialize dl_capab_dls_t to be sent down */ 2956 dls.dls_rx_handle = (uintptr_t)ill; 2957 dls.dls_rx = (uintptr_t)ip_input; 2958 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2959 2960 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2961 dls.dls_ring_cnt = ip_soft_rings_cnt; 2962 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2963 dls.dls_flags = SOFT_RING_ENABLE; 2964 } else { 2965 dls.dls_flags = POLL_ENABLE; 2966 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2967 "to enable polling\n", ill->ill_name)); 2968 } 2969 bcopy((void *)&dls, (void *)odls, 2970 sizeof (dl_capab_dls_t)); 2971 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2972 /* 2973 * nmp points to a DL_CAPABILITY_REQ message to 2974 * enable either soft_ring or polling 2975 */ 2976 ill_dlpi_send(ill, nmp); 2977 } 2978 2979 static void 2980 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2981 { 2982 mblk_t *mp; 2983 dl_capab_dls_t *idls; 2984 dl_capability_sub_t *dl_subcap; 2985 int size; 2986 2987 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2988 return; 2989 2990 ASSERT(ill->ill_dls_capab != NULL); 2991 2992 size = sizeof (*dl_subcap) + sizeof (*idls); 2993 2994 mp = allocb(size, BPRI_HI); 2995 if (mp == NULL) { 2996 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2997 "request to disable soft_ring\n")); 2998 return; 2999 } 3000 3001 mp->b_wptr = mp->b_rptr + size; 3002 3003 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3004 dl_subcap->dl_length = sizeof (*idls); 3005 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3006 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 3007 else 3008 dl_subcap->dl_cap = DL_CAPAB_POLL; 3009 3010 idls = (dl_capab_dls_t *)(dl_subcap + 1); 3011 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3012 idls->dls_flags = SOFT_RING_DISABLE; 3013 else 3014 idls->dls_flags = POLL_DISABLE; 3015 3016 if (*sc_mp != NULL) 3017 linkb(*sc_mp, mp); 3018 else 3019 *sc_mp = mp; 3020 } 3021 3022 /* 3023 * Process a soft_ring/poll capability negotiation ack received 3024 * from a DLS Provider.isub must point to the sub-capability 3025 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3026 */ 3027 static void 3028 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3029 { 3030 dl_capab_dls_t *idls; 3031 uint_t sub_dl_cap = isub->dl_cap; 3032 uint8_t *capend; 3033 3034 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3035 sub_dl_cap == DL_CAPAB_POLL); 3036 3037 if (ill->ill_isv6) 3038 return; 3039 3040 /* 3041 * Note: range checks here are not absolutely sufficient to 3042 * make us robust against malformed messages sent by drivers; 3043 * this is in keeping with the rest of IP's dlpi handling. 3044 * (Remember, it's coming from something else in the kernel 3045 * address space) 3046 */ 3047 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3048 if (capend > mp->b_wptr) { 3049 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3050 "malformed sub-capability too long for mblk"); 3051 return; 3052 } 3053 3054 /* 3055 * There are two types of acks we process here: 3056 * 1. acks in reply to a (first form) generic capability req 3057 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3058 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3059 * capability req. 3060 */ 3061 idls = (dl_capab_dls_t *)(isub + 1); 3062 3063 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3064 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3065 "capability isn't as expected; pass-thru " 3066 "module(s) detected, discarding capability\n")); 3067 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3068 /* 3069 * This is a capability renegotitation case. 3070 * The interface better be unusable at this 3071 * point other wise bad things will happen 3072 * if we disable direct calls on a running 3073 * and up interface. 3074 */ 3075 ill_capability_dls_disable(ill); 3076 } 3077 return; 3078 } 3079 3080 switch (idls->dls_flags) { 3081 default: 3082 /* Disable if unknown flag */ 3083 case SOFT_RING_DISABLE: 3084 case POLL_DISABLE: 3085 ill_capability_dls_disable(ill); 3086 break; 3087 case SOFT_RING_CAPABLE: 3088 case POLL_CAPABLE: 3089 /* 3090 * If the capability was already enabled, its safe 3091 * to disable it first to get rid of stale information 3092 * and then start enabling it again. 3093 */ 3094 ill_capability_dls_disable(ill); 3095 ill_capability_dls_capable(ill, idls, isub); 3096 break; 3097 case SOFT_RING_ENABLE: 3098 case POLL_ENABLE: 3099 mutex_enter(&ill->ill_lock); 3100 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3101 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3102 ASSERT(ill->ill_dls_capab != NULL); 3103 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3104 } 3105 if (sub_dl_cap == DL_CAPAB_POLL && 3106 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3107 ASSERT(ill->ill_dls_capab != NULL); 3108 ill->ill_capabilities |= ILL_CAPAB_POLL; 3109 ip1dbg(("ill_capability_dls_ack: interface %s " 3110 "has enabled polling\n", ill->ill_name)); 3111 } 3112 mutex_exit(&ill->ill_lock); 3113 break; 3114 } 3115 } 3116 3117 /* 3118 * Process a hardware checksum offload capability negotiation ack received 3119 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3120 * of a DL_CAPABILITY_ACK message. 3121 */ 3122 static void 3123 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3124 { 3125 dl_capability_req_t *ocap; 3126 dl_capab_hcksum_t *ihck, *ohck; 3127 ill_hcksum_capab_t **ill_hcksum; 3128 mblk_t *nmp = NULL; 3129 uint_t sub_dl_cap = isub->dl_cap; 3130 uint8_t *capend; 3131 3132 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3133 3134 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3135 3136 /* 3137 * Note: range checks here are not absolutely sufficient to 3138 * make us robust against malformed messages sent by drivers; 3139 * this is in keeping with the rest of IP's dlpi handling. 3140 * (Remember, it's coming from something else in the kernel 3141 * address space) 3142 */ 3143 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3144 if (capend > mp->b_wptr) { 3145 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3146 "malformed sub-capability too long for mblk"); 3147 return; 3148 } 3149 3150 /* 3151 * There are two types of acks we process here: 3152 * 1. acks in reply to a (first form) generic capability req 3153 * (no ENABLE flag set) 3154 * 2. acks in reply to a ENABLE capability req. 3155 * (ENABLE flag set) 3156 */ 3157 ihck = (dl_capab_hcksum_t *)(isub + 1); 3158 3159 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3160 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3161 "unsupported hardware checksum " 3162 "sub-capability (version %d, expected %d)", 3163 ihck->hcksum_version, HCKSUM_VERSION_1); 3164 return; 3165 } 3166 3167 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3168 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3169 "checksum capability isn't as expected; pass-thru " 3170 "module(s) detected, discarding capability\n")); 3171 return; 3172 } 3173 3174 #define CURR_HCKSUM_CAPAB \ 3175 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3176 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3177 3178 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3179 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3180 /* do ENABLE processing */ 3181 if (*ill_hcksum == NULL) { 3182 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3183 KM_NOSLEEP); 3184 3185 if (*ill_hcksum == NULL) { 3186 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3187 "could not enable hcksum version %d " 3188 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3189 ill->ill_name); 3190 return; 3191 } 3192 } 3193 3194 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3195 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3196 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3197 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3198 "has enabled hardware checksumming\n ", 3199 ill->ill_name)); 3200 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3201 /* 3202 * Enabling hardware checksum offload 3203 * Currently IP supports {TCP,UDP}/IPv4 3204 * partial and full cksum offload and 3205 * IPv4 header checksum offload. 3206 * Allocate new mblk which will 3207 * contain a new capability request 3208 * to enable hardware checksum offload. 3209 */ 3210 uint_t size; 3211 uchar_t *rptr; 3212 3213 size = sizeof (dl_capability_req_t) + 3214 sizeof (dl_capability_sub_t) + isub->dl_length; 3215 3216 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3217 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3218 "could not enable hardware cksum for %s (ENOMEM)\n", 3219 ill->ill_name); 3220 return; 3221 } 3222 3223 rptr = nmp->b_rptr; 3224 /* initialize dl_capability_req_t */ 3225 ocap = (dl_capability_req_t *)nmp->b_rptr; 3226 ocap->dl_sub_offset = 3227 sizeof (dl_capability_req_t); 3228 ocap->dl_sub_length = 3229 sizeof (dl_capability_sub_t) + 3230 isub->dl_length; 3231 nmp->b_rptr += sizeof (dl_capability_req_t); 3232 3233 /* initialize dl_capability_sub_t */ 3234 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3235 nmp->b_rptr += sizeof (*isub); 3236 3237 /* initialize dl_capab_hcksum_t */ 3238 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3239 bcopy(ihck, ohck, sizeof (*ihck)); 3240 3241 nmp->b_rptr = rptr; 3242 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3243 3244 /* Set ENABLE flag */ 3245 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3246 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3247 3248 /* 3249 * nmp points to a DL_CAPABILITY_REQ message to enable 3250 * hardware checksum acceleration. 3251 */ 3252 ill_dlpi_send(ill, nmp); 3253 } else { 3254 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3255 "advertised %x hardware checksum capability flags\n", 3256 ill->ill_name, ihck->hcksum_txflags)); 3257 } 3258 } 3259 3260 static void 3261 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3262 { 3263 mblk_t *mp; 3264 dl_capab_hcksum_t *hck_subcap; 3265 dl_capability_sub_t *dl_subcap; 3266 int size; 3267 3268 if (!ILL_HCKSUM_CAPABLE(ill)) 3269 return; 3270 3271 ASSERT(ill->ill_hcksum_capab != NULL); 3272 /* 3273 * Clear the capability flag for hardware checksum offload but 3274 * retain the ill_hcksum_capab structure since it's possible that 3275 * another thread is still referring to it. The structure only 3276 * gets deallocated when we destroy the ill. 3277 */ 3278 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3279 3280 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3281 3282 mp = allocb(size, BPRI_HI); 3283 if (mp == NULL) { 3284 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3285 "request to disable hardware checksum offload\n")); 3286 return; 3287 } 3288 3289 mp->b_wptr = mp->b_rptr + size; 3290 3291 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3292 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3293 dl_subcap->dl_length = sizeof (*hck_subcap); 3294 3295 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3296 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3297 hck_subcap->hcksum_txflags = 0; 3298 3299 if (*sc_mp != NULL) 3300 linkb(*sc_mp, mp); 3301 else 3302 *sc_mp = mp; 3303 } 3304 3305 static void 3306 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3307 { 3308 mblk_t *nmp = NULL; 3309 dl_capability_req_t *oc; 3310 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3311 ill_zerocopy_capab_t **ill_zerocopy_capab; 3312 uint_t sub_dl_cap = isub->dl_cap; 3313 uint8_t *capend; 3314 3315 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3316 3317 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3318 3319 /* 3320 * Note: range checks here are not absolutely sufficient to 3321 * make us robust against malformed messages sent by drivers; 3322 * this is in keeping with the rest of IP's dlpi handling. 3323 * (Remember, it's coming from something else in the kernel 3324 * address space) 3325 */ 3326 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3327 if (capend > mp->b_wptr) { 3328 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3329 "malformed sub-capability too long for mblk"); 3330 return; 3331 } 3332 3333 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3334 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3335 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3336 "unsupported ZEROCOPY sub-capability (version %d, " 3337 "expected %d)", zc_ic->zerocopy_version, 3338 ZEROCOPY_VERSION_1); 3339 return; 3340 } 3341 3342 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3343 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3344 "capability isn't as expected; pass-thru module(s) " 3345 "detected, discarding capability\n")); 3346 return; 3347 } 3348 3349 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3350 if (*ill_zerocopy_capab == NULL) { 3351 *ill_zerocopy_capab = 3352 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3353 KM_NOSLEEP); 3354 3355 if (*ill_zerocopy_capab == NULL) { 3356 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3357 "could not enable Zero-copy version %d " 3358 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3359 ill->ill_name); 3360 return; 3361 } 3362 } 3363 3364 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3365 "supports Zero-copy version %d\n", ill->ill_name, 3366 ZEROCOPY_VERSION_1)); 3367 3368 (*ill_zerocopy_capab)->ill_zerocopy_version = 3369 zc_ic->zerocopy_version; 3370 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3371 zc_ic->zerocopy_flags; 3372 3373 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3374 } else { 3375 uint_t size; 3376 uchar_t *rptr; 3377 3378 size = sizeof (dl_capability_req_t) + 3379 sizeof (dl_capability_sub_t) + 3380 sizeof (dl_capab_zerocopy_t); 3381 3382 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3383 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3384 "could not enable zerocopy for %s (ENOMEM)\n", 3385 ill->ill_name); 3386 return; 3387 } 3388 3389 rptr = nmp->b_rptr; 3390 /* initialize dl_capability_req_t */ 3391 oc = (dl_capability_req_t *)rptr; 3392 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3393 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3394 sizeof (dl_capab_zerocopy_t); 3395 rptr += sizeof (dl_capability_req_t); 3396 3397 /* initialize dl_capability_sub_t */ 3398 bcopy(isub, rptr, sizeof (*isub)); 3399 rptr += sizeof (*isub); 3400 3401 /* initialize dl_capab_zerocopy_t */ 3402 zc_oc = (dl_capab_zerocopy_t *)rptr; 3403 *zc_oc = *zc_ic; 3404 3405 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3406 "to enable zero-copy version %d\n", ill->ill_name, 3407 ZEROCOPY_VERSION_1)); 3408 3409 /* set VMSAFE_MEM flag */ 3410 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3411 3412 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3413 ill_dlpi_send(ill, nmp); 3414 } 3415 } 3416 3417 static void 3418 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3419 { 3420 mblk_t *mp; 3421 dl_capab_zerocopy_t *zerocopy_subcap; 3422 dl_capability_sub_t *dl_subcap; 3423 int size; 3424 3425 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3426 return; 3427 3428 ASSERT(ill->ill_zerocopy_capab != NULL); 3429 /* 3430 * Clear the capability flag for Zero-copy but retain the 3431 * ill_zerocopy_capab structure since it's possible that another 3432 * thread is still referring to it. The structure only gets 3433 * deallocated when we destroy the ill. 3434 */ 3435 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3436 3437 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3438 3439 mp = allocb(size, BPRI_HI); 3440 if (mp == NULL) { 3441 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3442 "request to disable Zero-copy\n")); 3443 return; 3444 } 3445 3446 mp->b_wptr = mp->b_rptr + size; 3447 3448 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3449 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3450 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3451 3452 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3453 zerocopy_subcap->zerocopy_version = 3454 ill->ill_zerocopy_capab->ill_zerocopy_version; 3455 zerocopy_subcap->zerocopy_flags = 0; 3456 3457 if (*sc_mp != NULL) 3458 linkb(*sc_mp, mp); 3459 else 3460 *sc_mp = mp; 3461 } 3462 3463 /* 3464 * Process Large Segment Offload capability negotiation ack received from a 3465 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3466 * DL_CAPABILITY_ACK message. 3467 */ 3468 static void 3469 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3470 { 3471 mblk_t *nmp = NULL; 3472 dl_capability_req_t *oc; 3473 dl_capab_lso_t *lso_ic, *lso_oc; 3474 ill_lso_capab_t **ill_lso_capab; 3475 uint_t sub_dl_cap = isub->dl_cap; 3476 uint8_t *capend; 3477 3478 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3479 3480 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3481 3482 /* 3483 * Note: range checks here are not absolutely sufficient to 3484 * make us robust against malformed messages sent by drivers; 3485 * this is in keeping with the rest of IP's dlpi handling. 3486 * (Remember, it's coming from something else in the kernel 3487 * address space) 3488 */ 3489 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3490 if (capend > mp->b_wptr) { 3491 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3492 "malformed sub-capability too long for mblk"); 3493 return; 3494 } 3495 3496 lso_ic = (dl_capab_lso_t *)(isub + 1); 3497 3498 if (lso_ic->lso_version != LSO_VERSION_1) { 3499 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3500 "unsupported LSO sub-capability (version %d, expected %d)", 3501 lso_ic->lso_version, LSO_VERSION_1); 3502 return; 3503 } 3504 3505 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3506 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3507 "capability isn't as expected; pass-thru module(s) " 3508 "detected, discarding capability\n")); 3509 return; 3510 } 3511 3512 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3513 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3514 if (*ill_lso_capab == NULL) { 3515 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3516 KM_NOSLEEP); 3517 3518 if (*ill_lso_capab == NULL) { 3519 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3520 "could not enable LSO version %d " 3521 "for %s (ENOMEM)\n", LSO_VERSION_1, 3522 ill->ill_name); 3523 return; 3524 } 3525 } 3526 3527 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3528 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3529 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3530 ill->ill_capabilities |= ILL_CAPAB_LSO; 3531 3532 ip1dbg(("ill_capability_lso_ack: interface %s " 3533 "has enabled LSO\n ", ill->ill_name)); 3534 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3535 uint_t size; 3536 uchar_t *rptr; 3537 3538 size = sizeof (dl_capability_req_t) + 3539 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3540 3541 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3542 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3543 "could not enable LSO for %s (ENOMEM)\n", 3544 ill->ill_name); 3545 return; 3546 } 3547 3548 rptr = nmp->b_rptr; 3549 /* initialize dl_capability_req_t */ 3550 oc = (dl_capability_req_t *)nmp->b_rptr; 3551 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3552 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3553 sizeof (dl_capab_lso_t); 3554 nmp->b_rptr += sizeof (dl_capability_req_t); 3555 3556 /* initialize dl_capability_sub_t */ 3557 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3558 nmp->b_rptr += sizeof (*isub); 3559 3560 /* initialize dl_capab_lso_t */ 3561 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3562 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3563 3564 nmp->b_rptr = rptr; 3565 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3566 3567 /* set ENABLE flag */ 3568 lso_oc->lso_flags |= LSO_TX_ENABLE; 3569 3570 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3571 ill_dlpi_send(ill, nmp); 3572 } else { 3573 ip1dbg(("ill_capability_lso_ack: interface %s has " 3574 "advertised %x LSO capability flags\n", 3575 ill->ill_name, lso_ic->lso_flags)); 3576 } 3577 } 3578 3579 3580 static void 3581 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3582 { 3583 mblk_t *mp; 3584 dl_capab_lso_t *lso_subcap; 3585 dl_capability_sub_t *dl_subcap; 3586 int size; 3587 3588 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3589 return; 3590 3591 ASSERT(ill->ill_lso_capab != NULL); 3592 /* 3593 * Clear the capability flag for LSO but retain the 3594 * ill_lso_capab structure since it's possible that another 3595 * thread is still referring to it. The structure only gets 3596 * deallocated when we destroy the ill. 3597 */ 3598 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3599 3600 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3601 3602 mp = allocb(size, BPRI_HI); 3603 if (mp == NULL) { 3604 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3605 "request to disable LSO\n")); 3606 return; 3607 } 3608 3609 mp->b_wptr = mp->b_rptr + size; 3610 3611 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3612 dl_subcap->dl_cap = DL_CAPAB_LSO; 3613 dl_subcap->dl_length = sizeof (*lso_subcap); 3614 3615 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3616 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3617 lso_subcap->lso_flags = 0; 3618 3619 if (*sc_mp != NULL) 3620 linkb(*sc_mp, mp); 3621 else 3622 *sc_mp = mp; 3623 } 3624 3625 /* 3626 * Consume a new-style hardware capabilities negotiation ack. 3627 * Called from ip_rput_dlpi_writer(). 3628 */ 3629 void 3630 ill_capability_ack(ill_t *ill, mblk_t *mp) 3631 { 3632 dl_capability_ack_t *capp; 3633 dl_capability_sub_t *subp, *endp; 3634 3635 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3636 ill->ill_dlpi_capab_state = IDS_OK; 3637 3638 capp = (dl_capability_ack_t *)mp->b_rptr; 3639 3640 if (capp->dl_sub_length == 0) 3641 /* no new-style capabilities */ 3642 return; 3643 3644 /* make sure the driver supplied correct dl_sub_length */ 3645 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3646 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3647 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3648 return; 3649 } 3650 3651 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3652 /* 3653 * There are sub-capabilities. Process the ones we know about. 3654 * Loop until we don't have room for another sub-cap header.. 3655 */ 3656 for (subp = SC(capp, capp->dl_sub_offset), 3657 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3658 subp <= endp; 3659 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3660 3661 switch (subp->dl_cap) { 3662 case DL_CAPAB_ID_WRAPPER: 3663 ill_capability_id_ack(ill, mp, subp); 3664 break; 3665 default: 3666 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3667 break; 3668 } 3669 } 3670 #undef SC 3671 } 3672 3673 /* 3674 * This routine is called to scan the fragmentation reassembly table for 3675 * the specified ILL for any packets that are starting to smell. 3676 * dead_interval is the maximum time in seconds that will be tolerated. It 3677 * will either be the value specified in ip_g_frag_timeout, or zero if the 3678 * ILL is shutting down and it is time to blow everything off. 3679 * 3680 * It returns the number of seconds (as a time_t) that the next frag timer 3681 * should be scheduled for, 0 meaning that the timer doesn't need to be 3682 * re-started. Note that the method of calculating next_timeout isn't 3683 * entirely accurate since time will flow between the time we grab 3684 * current_time and the time we schedule the next timeout. This isn't a 3685 * big problem since this is the timer for sending an ICMP reassembly time 3686 * exceeded messages, and it doesn't have to be exactly accurate. 3687 * 3688 * This function is 3689 * sometimes called as writer, although this is not required. 3690 */ 3691 time_t 3692 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3693 { 3694 ipfb_t *ipfb; 3695 ipfb_t *endp; 3696 ipf_t *ipf; 3697 ipf_t *ipfnext; 3698 mblk_t *mp; 3699 time_t current_time = gethrestime_sec(); 3700 time_t next_timeout = 0; 3701 uint32_t hdr_length; 3702 mblk_t *send_icmp_head; 3703 mblk_t *send_icmp_head_v6; 3704 zoneid_t zoneid; 3705 ip_stack_t *ipst = ill->ill_ipst; 3706 3707 ipfb = ill->ill_frag_hash_tbl; 3708 if (ipfb == NULL) 3709 return (B_FALSE); 3710 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3711 /* Walk the frag hash table. */ 3712 for (; ipfb < endp; ipfb++) { 3713 send_icmp_head = NULL; 3714 send_icmp_head_v6 = NULL; 3715 mutex_enter(&ipfb->ipfb_lock); 3716 while ((ipf = ipfb->ipfb_ipf) != 0) { 3717 time_t frag_time = current_time - ipf->ipf_timestamp; 3718 time_t frag_timeout; 3719 3720 if (frag_time < dead_interval) { 3721 /* 3722 * There are some outstanding fragments 3723 * that will timeout later. Make note of 3724 * the time so that we can reschedule the 3725 * next timeout appropriately. 3726 */ 3727 frag_timeout = dead_interval - frag_time; 3728 if (next_timeout == 0 || 3729 frag_timeout < next_timeout) { 3730 next_timeout = frag_timeout; 3731 } 3732 break; 3733 } 3734 /* Time's up. Get it out of here. */ 3735 hdr_length = ipf->ipf_nf_hdr_len; 3736 ipfnext = ipf->ipf_hash_next; 3737 if (ipfnext) 3738 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3739 *ipf->ipf_ptphn = ipfnext; 3740 mp = ipf->ipf_mp->b_cont; 3741 for (; mp; mp = mp->b_cont) { 3742 /* Extra points for neatness. */ 3743 IP_REASS_SET_START(mp, 0); 3744 IP_REASS_SET_END(mp, 0); 3745 } 3746 mp = ipf->ipf_mp->b_cont; 3747 ill->ill_frag_count -= ipf->ipf_count; 3748 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3749 ipfb->ipfb_count -= ipf->ipf_count; 3750 ASSERT(ipfb->ipfb_frag_pkts > 0); 3751 ipfb->ipfb_frag_pkts--; 3752 /* 3753 * We do not send any icmp message from here because 3754 * we currently are holding the ipfb_lock for this 3755 * hash chain. If we try and send any icmp messages 3756 * from here we may end up via a put back into ip 3757 * trying to get the same lock, causing a recursive 3758 * mutex panic. Instead we build a list and send all 3759 * the icmp messages after we have dropped the lock. 3760 */ 3761 if (ill->ill_isv6) { 3762 if (hdr_length != 0) { 3763 mp->b_next = send_icmp_head_v6; 3764 send_icmp_head_v6 = mp; 3765 } else { 3766 freemsg(mp); 3767 } 3768 } else { 3769 if (hdr_length != 0) { 3770 mp->b_next = send_icmp_head; 3771 send_icmp_head = mp; 3772 } else { 3773 freemsg(mp); 3774 } 3775 } 3776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3777 freeb(ipf->ipf_mp); 3778 } 3779 mutex_exit(&ipfb->ipfb_lock); 3780 /* 3781 * Now need to send any icmp messages that we delayed from 3782 * above. 3783 */ 3784 while (send_icmp_head_v6 != NULL) { 3785 ip6_t *ip6h; 3786 3787 mp = send_icmp_head_v6; 3788 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3789 mp->b_next = NULL; 3790 if (mp->b_datap->db_type == M_CTL) 3791 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3792 else 3793 ip6h = (ip6_t *)mp->b_rptr; 3794 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3795 ill, ipst); 3796 if (zoneid == ALL_ZONES) { 3797 freemsg(mp); 3798 } else { 3799 icmp_time_exceeded_v6(ill->ill_wq, mp, 3800 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3801 B_FALSE, zoneid, ipst); 3802 } 3803 } 3804 while (send_icmp_head != NULL) { 3805 ipaddr_t dst; 3806 3807 mp = send_icmp_head; 3808 send_icmp_head = send_icmp_head->b_next; 3809 mp->b_next = NULL; 3810 3811 if (mp->b_datap->db_type == M_CTL) 3812 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3813 else 3814 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3815 3816 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3817 if (zoneid == ALL_ZONES) { 3818 freemsg(mp); 3819 } else { 3820 icmp_time_exceeded(ill->ill_wq, mp, 3821 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3822 ipst); 3823 } 3824 } 3825 } 3826 /* 3827 * A non-dying ILL will use the return value to decide whether to 3828 * restart the frag timer, and for how long. 3829 */ 3830 return (next_timeout); 3831 } 3832 3833 /* 3834 * This routine is called when the approximate count of mblk memory used 3835 * for the specified ILL has exceeded max_count. 3836 */ 3837 void 3838 ill_frag_prune(ill_t *ill, uint_t max_count) 3839 { 3840 ipfb_t *ipfb; 3841 ipf_t *ipf; 3842 size_t count; 3843 3844 /* 3845 * If we are here within ip_min_frag_prune_time msecs remove 3846 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3847 * ill_frag_free_num_pkts. 3848 */ 3849 mutex_enter(&ill->ill_lock); 3850 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3851 (ip_min_frag_prune_time != 0 ? 3852 ip_min_frag_prune_time : msec_per_tick)) { 3853 3854 ill->ill_frag_free_num_pkts++; 3855 3856 } else { 3857 ill->ill_frag_free_num_pkts = 0; 3858 } 3859 ill->ill_last_frag_clean_time = lbolt; 3860 mutex_exit(&ill->ill_lock); 3861 3862 /* 3863 * free ill_frag_free_num_pkts oldest packets from each bucket. 3864 */ 3865 if (ill->ill_frag_free_num_pkts != 0) { 3866 int ix; 3867 3868 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3869 ipfb = &ill->ill_frag_hash_tbl[ix]; 3870 mutex_enter(&ipfb->ipfb_lock); 3871 if (ipfb->ipfb_ipf != NULL) { 3872 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3873 ill->ill_frag_free_num_pkts); 3874 } 3875 mutex_exit(&ipfb->ipfb_lock); 3876 } 3877 } 3878 /* 3879 * While the reassembly list for this ILL is too big, prune a fragment 3880 * queue by age, oldest first. Note that the per ILL count is 3881 * approximate, while the per frag hash bucket counts are accurate. 3882 */ 3883 while (ill->ill_frag_count > max_count) { 3884 int ix; 3885 ipfb_t *oipfb = NULL; 3886 uint_t oldest = UINT_MAX; 3887 3888 count = 0; 3889 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3890 ipfb = &ill->ill_frag_hash_tbl[ix]; 3891 mutex_enter(&ipfb->ipfb_lock); 3892 ipf = ipfb->ipfb_ipf; 3893 if (ipf != NULL && ipf->ipf_gen < oldest) { 3894 oldest = ipf->ipf_gen; 3895 oipfb = ipfb; 3896 } 3897 count += ipfb->ipfb_count; 3898 mutex_exit(&ipfb->ipfb_lock); 3899 } 3900 /* Refresh the per ILL count */ 3901 ill->ill_frag_count = count; 3902 if (oipfb == NULL) { 3903 ill->ill_frag_count = 0; 3904 break; 3905 } 3906 if (count <= max_count) 3907 return; /* Somebody beat us to it, nothing to do */ 3908 mutex_enter(&oipfb->ipfb_lock); 3909 ipf = oipfb->ipfb_ipf; 3910 if (ipf != NULL) { 3911 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3912 } 3913 mutex_exit(&oipfb->ipfb_lock); 3914 } 3915 } 3916 3917 /* 3918 * free 'free_cnt' fragmented packets starting at ipf. 3919 */ 3920 void 3921 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3922 { 3923 size_t count; 3924 mblk_t *mp; 3925 mblk_t *tmp; 3926 ipf_t **ipfp = ipf->ipf_ptphn; 3927 3928 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3929 ASSERT(ipfp != NULL); 3930 ASSERT(ipf != NULL); 3931 3932 while (ipf != NULL && free_cnt-- > 0) { 3933 count = ipf->ipf_count; 3934 mp = ipf->ipf_mp; 3935 ipf = ipf->ipf_hash_next; 3936 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3937 IP_REASS_SET_START(tmp, 0); 3938 IP_REASS_SET_END(tmp, 0); 3939 } 3940 ill->ill_frag_count -= count; 3941 ASSERT(ipfb->ipfb_count >= count); 3942 ipfb->ipfb_count -= count; 3943 ASSERT(ipfb->ipfb_frag_pkts > 0); 3944 ipfb->ipfb_frag_pkts--; 3945 freemsg(mp); 3946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3947 } 3948 3949 if (ipf) 3950 ipf->ipf_ptphn = ipfp; 3951 ipfp[0] = ipf; 3952 } 3953 3954 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3955 "obsolete and may be removed in a future release of Solaris. Use " \ 3956 "ifconfig(1M) to manipulate the forwarding status of an interface." 3957 3958 /* 3959 * For obsolete per-interface forwarding configuration; 3960 * called in response to ND_GET. 3961 */ 3962 /* ARGSUSED */ 3963 static int 3964 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3965 { 3966 ill_t *ill = (ill_t *)cp; 3967 3968 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3969 3970 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3971 return (0); 3972 } 3973 3974 /* 3975 * For obsolete per-interface forwarding configuration; 3976 * called in response to ND_SET. 3977 */ 3978 /* ARGSUSED */ 3979 static int 3980 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3981 cred_t *ioc_cr) 3982 { 3983 long value; 3984 int retval; 3985 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3986 3987 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3988 3989 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3990 value < 0 || value > 1) { 3991 return (EINVAL); 3992 } 3993 3994 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3995 retval = ill_forward_set(q, mp, (value != 0), cp); 3996 rw_exit(&ipst->ips_ill_g_lock); 3997 return (retval); 3998 } 3999 4000 /* 4001 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 4002 * IPMP group, make sure all ill's in the group adopt the new policy. Send 4003 * up RTS_IFINFO routing socket messages for each interface whose flags we 4004 * change. 4005 */ 4006 /* ARGSUSED */ 4007 int 4008 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 4009 { 4010 ill_t *ill = (ill_t *)cp; 4011 ill_group_t *illgrp; 4012 ip_stack_t *ipst = ill->ill_ipst; 4013 4014 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 4015 4016 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 4017 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 4018 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 4019 return (EINVAL); 4020 4021 /* 4022 * If the ill is in an IPMP group, set the forwarding policy on all 4023 * members of the group to the same value. 4024 */ 4025 illgrp = ill->ill_group; 4026 if (illgrp != NULL) { 4027 ill_t *tmp_ill; 4028 4029 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4030 tmp_ill = tmp_ill->ill_group_next) { 4031 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4032 (enable ? "Enabling" : "Disabling"), 4033 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4034 tmp_ill->ill_name)); 4035 mutex_enter(&tmp_ill->ill_lock); 4036 if (enable) 4037 tmp_ill->ill_flags |= ILLF_ROUTER; 4038 else 4039 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4040 mutex_exit(&tmp_ill->ill_lock); 4041 if (tmp_ill->ill_isv6) 4042 ill_set_nce_router_flags(tmp_ill, enable); 4043 /* Notify routing socket listeners of this change. */ 4044 ip_rts_ifmsg(tmp_ill->ill_ipif); 4045 } 4046 } else { 4047 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4048 (enable ? "Enabling" : "Disabling"), 4049 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4050 mutex_enter(&ill->ill_lock); 4051 if (enable) 4052 ill->ill_flags |= ILLF_ROUTER; 4053 else 4054 ill->ill_flags &= ~ILLF_ROUTER; 4055 mutex_exit(&ill->ill_lock); 4056 if (ill->ill_isv6) 4057 ill_set_nce_router_flags(ill, enable); 4058 /* Notify routing socket listeners of this change. */ 4059 ip_rts_ifmsg(ill->ill_ipif); 4060 } 4061 4062 return (0); 4063 } 4064 4065 /* 4066 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4067 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4068 * set or clear. 4069 */ 4070 static void 4071 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4072 { 4073 ipif_t *ipif; 4074 nce_t *nce; 4075 4076 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4077 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4078 if (nce != NULL) { 4079 mutex_enter(&nce->nce_lock); 4080 if (enable) 4081 nce->nce_flags |= NCE_F_ISROUTER; 4082 else 4083 nce->nce_flags &= ~NCE_F_ISROUTER; 4084 mutex_exit(&nce->nce_lock); 4085 NCE_REFRELE(nce); 4086 } 4087 } 4088 } 4089 4090 /* 4091 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4092 * for this ill. Make sure the v6/v4 question has been answered about this 4093 * ill. The creation of this ndd variable is only for backwards compatibility. 4094 * The preferred way to control per-interface IP forwarding is through the 4095 * ILLF_ROUTER interface flag. 4096 */ 4097 static int 4098 ill_set_ndd_name(ill_t *ill) 4099 { 4100 char *suffix; 4101 ip_stack_t *ipst = ill->ill_ipst; 4102 4103 ASSERT(IAM_WRITER_ILL(ill)); 4104 4105 if (ill->ill_isv6) 4106 suffix = ipv6_forward_suffix; 4107 else 4108 suffix = ipv4_forward_suffix; 4109 4110 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4111 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4112 /* 4113 * Copies over the '\0'. 4114 * Note that strlen(suffix) is always bounded. 4115 */ 4116 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4117 strlen(suffix) + 1); 4118 4119 /* 4120 * Use of the nd table requires holding the reader lock. 4121 * Modifying the nd table thru nd_load/nd_unload requires 4122 * the writer lock. 4123 */ 4124 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4125 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4126 nd_ill_forward_set, (caddr_t)ill)) { 4127 /* 4128 * If the nd_load failed, it only meant that it could not 4129 * allocate a new bunch of room for further NDD expansion. 4130 * Because of that, the ill_ndd_name will be set to 0, and 4131 * this interface is at the mercy of the global ip_forwarding 4132 * variable. 4133 */ 4134 rw_exit(&ipst->ips_ip_g_nd_lock); 4135 ill->ill_ndd_name = NULL; 4136 return (ENOMEM); 4137 } 4138 rw_exit(&ipst->ips_ip_g_nd_lock); 4139 return (0); 4140 } 4141 4142 /* 4143 * Intializes the context structure and returns the first ill in the list 4144 * cuurently start_list and end_list can have values: 4145 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4146 * IP_V4_G_HEAD Traverse IPV4 list only. 4147 * IP_V6_G_HEAD Traverse IPV6 list only. 4148 */ 4149 4150 /* 4151 * We don't check for CONDEMNED ills here. Caller must do that if 4152 * necessary under the ill lock. 4153 */ 4154 ill_t * 4155 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4156 ip_stack_t *ipst) 4157 { 4158 ill_if_t *ifp; 4159 ill_t *ill; 4160 avl_tree_t *avl_tree; 4161 4162 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4163 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4164 4165 /* 4166 * setup the lists to search 4167 */ 4168 if (end_list != MAX_G_HEADS) { 4169 ctx->ctx_current_list = start_list; 4170 ctx->ctx_last_list = end_list; 4171 } else { 4172 ctx->ctx_last_list = MAX_G_HEADS - 1; 4173 ctx->ctx_current_list = 0; 4174 } 4175 4176 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4177 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4178 if (ifp != (ill_if_t *) 4179 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4180 avl_tree = &ifp->illif_avl_by_ppa; 4181 ill = avl_first(avl_tree); 4182 /* 4183 * ill is guaranteed to be non NULL or ifp should have 4184 * not existed. 4185 */ 4186 ASSERT(ill != NULL); 4187 return (ill); 4188 } 4189 ctx->ctx_current_list++; 4190 } 4191 4192 return (NULL); 4193 } 4194 4195 /* 4196 * returns the next ill in the list. ill_first() must have been called 4197 * before calling ill_next() or bad things will happen. 4198 */ 4199 4200 /* 4201 * We don't check for CONDEMNED ills here. Caller must do that if 4202 * necessary under the ill lock. 4203 */ 4204 ill_t * 4205 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4206 { 4207 ill_if_t *ifp; 4208 ill_t *ill; 4209 ip_stack_t *ipst = lastill->ill_ipst; 4210 4211 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4212 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4213 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4214 AVL_AFTER)) != NULL) { 4215 return (ill); 4216 } 4217 4218 /* goto next ill_ifp in the list. */ 4219 ifp = lastill->ill_ifptr->illif_next; 4220 4221 /* make sure not at end of circular list */ 4222 while (ifp == 4223 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4224 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4225 return (NULL); 4226 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4227 } 4228 4229 return (avl_first(&ifp->illif_avl_by_ppa)); 4230 } 4231 4232 /* 4233 * Check interface name for correct format which is name+ppa. 4234 * name can contain characters and digits, the right most digits 4235 * make up the ppa number. use of octal is not allowed, name must contain 4236 * a ppa, return pointer to the start of ppa. 4237 * In case of error return NULL. 4238 */ 4239 static char * 4240 ill_get_ppa_ptr(char *name) 4241 { 4242 int namelen = mi_strlen(name); 4243 4244 int len = namelen; 4245 4246 name += len; 4247 while (len > 0) { 4248 name--; 4249 if (*name < '0' || *name > '9') 4250 break; 4251 len--; 4252 } 4253 4254 /* empty string, all digits, or no trailing digits */ 4255 if (len == 0 || len == (int)namelen) 4256 return (NULL); 4257 4258 name++; 4259 /* check for attempted use of octal */ 4260 if (*name == '0' && len != (int)namelen - 1) 4261 return (NULL); 4262 return (name); 4263 } 4264 4265 /* 4266 * use avl tree to locate the ill. 4267 */ 4268 static ill_t * 4269 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4270 ipsq_func_t func, int *error, ip_stack_t *ipst) 4271 { 4272 char *ppa_ptr = NULL; 4273 int len; 4274 uint_t ppa; 4275 ill_t *ill = NULL; 4276 ill_if_t *ifp; 4277 int list; 4278 ipsq_t *ipsq; 4279 4280 if (error != NULL) 4281 *error = 0; 4282 4283 /* 4284 * get ppa ptr 4285 */ 4286 if (isv6) 4287 list = IP_V6_G_HEAD; 4288 else 4289 list = IP_V4_G_HEAD; 4290 4291 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4292 if (error != NULL) 4293 *error = ENXIO; 4294 return (NULL); 4295 } 4296 4297 len = ppa_ptr - name + 1; 4298 4299 ppa = stoi(&ppa_ptr); 4300 4301 ifp = IP_VX_ILL_G_LIST(list, ipst); 4302 4303 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4304 /* 4305 * match is done on len - 1 as the name is not null 4306 * terminated it contains ppa in addition to the interface 4307 * name. 4308 */ 4309 if ((ifp->illif_name_len == len) && 4310 bcmp(ifp->illif_name, name, len - 1) == 0) { 4311 break; 4312 } else { 4313 ifp = ifp->illif_next; 4314 } 4315 } 4316 4317 4318 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4319 /* 4320 * Even the interface type does not exist. 4321 */ 4322 if (error != NULL) 4323 *error = ENXIO; 4324 return (NULL); 4325 } 4326 4327 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4328 if (ill != NULL) { 4329 /* 4330 * The block comment at the start of ipif_down 4331 * explains the use of the macros used below 4332 */ 4333 GRAB_CONN_LOCK(q); 4334 mutex_enter(&ill->ill_lock); 4335 if (ILL_CAN_LOOKUP(ill)) { 4336 ill_refhold_locked(ill); 4337 mutex_exit(&ill->ill_lock); 4338 RELEASE_CONN_LOCK(q); 4339 return (ill); 4340 } else if (ILL_CAN_WAIT(ill, q)) { 4341 ipsq = ill->ill_phyint->phyint_ipsq; 4342 mutex_enter(&ipsq->ipsq_lock); 4343 mutex_exit(&ill->ill_lock); 4344 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4345 mutex_exit(&ipsq->ipsq_lock); 4346 RELEASE_CONN_LOCK(q); 4347 *error = EINPROGRESS; 4348 return (NULL); 4349 } 4350 mutex_exit(&ill->ill_lock); 4351 RELEASE_CONN_LOCK(q); 4352 } 4353 if (error != NULL) 4354 *error = ENXIO; 4355 return (NULL); 4356 } 4357 4358 /* 4359 * comparison function for use with avl. 4360 */ 4361 static int 4362 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4363 { 4364 uint_t ppa; 4365 uint_t ill_ppa; 4366 4367 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4368 4369 ppa = *((uint_t *)ppa_ptr); 4370 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4371 /* 4372 * We want the ill with the lowest ppa to be on the 4373 * top. 4374 */ 4375 if (ill_ppa < ppa) 4376 return (1); 4377 if (ill_ppa > ppa) 4378 return (-1); 4379 return (0); 4380 } 4381 4382 /* 4383 * remove an interface type from the global list. 4384 */ 4385 static void 4386 ill_delete_interface_type(ill_if_t *interface) 4387 { 4388 ASSERT(interface != NULL); 4389 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4390 4391 avl_destroy(&interface->illif_avl_by_ppa); 4392 if (interface->illif_ppa_arena != NULL) 4393 vmem_destroy(interface->illif_ppa_arena); 4394 4395 remque(interface); 4396 4397 mi_free(interface); 4398 } 4399 4400 /* Defined in ip_netinfo.c */ 4401 extern ddi_taskq_t *eventq_queue_nic; 4402 4403 /* 4404 * remove ill from the global list. 4405 */ 4406 static void 4407 ill_glist_delete(ill_t *ill) 4408 { 4409 char *nicname; 4410 size_t nicnamelen; 4411 hook_nic_event_t *info; 4412 ip_stack_t *ipst; 4413 4414 if (ill == NULL) 4415 return; 4416 ipst = ill->ill_ipst; 4417 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4418 4419 if (ill->ill_name != NULL) { 4420 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4421 if (nicname != NULL) { 4422 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4423 nicnamelen = ill->ill_name_length; 4424 } 4425 } else { 4426 nicname = NULL; 4427 nicnamelen = 0; 4428 } 4429 4430 /* 4431 * If the ill was never inserted into the AVL tree 4432 * we skip the if branch. 4433 */ 4434 if (ill->ill_ifptr != NULL) { 4435 /* 4436 * remove from AVL tree and free ppa number 4437 */ 4438 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4439 4440 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4441 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4442 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4443 } 4444 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4445 ill_delete_interface_type(ill->ill_ifptr); 4446 } 4447 4448 /* 4449 * Indicate ill is no longer in the list. 4450 */ 4451 ill->ill_ifptr = NULL; 4452 ill->ill_name_length = 0; 4453 ill->ill_name[0] = '\0'; 4454 ill->ill_ppa = UINT_MAX; 4455 } 4456 4457 /* 4458 * Run the unplumb hook after the NIC has disappeared from being 4459 * visible so that attempts to revalidate its existance will fail. 4460 * 4461 * This needs to be run inside the ill_g_lock perimeter to ensure 4462 * that the ordering of delivered events to listeners matches the 4463 * order of them in the kernel. 4464 */ 4465 if ((info = ill->ill_nic_event_info) != NULL) { 4466 if (info->hne_event != NE_DOWN) { 4467 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4468 "attached for %s\n", info->hne_event, 4469 ill->ill_name)); 4470 if (info->hne_data != NULL) 4471 kmem_free(info->hne_data, info->hne_datalen); 4472 kmem_free(info, sizeof (hook_nic_event_t)); 4473 } else { 4474 if (ddi_taskq_dispatch(eventq_queue_nic, 4475 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4476 == DDI_FAILURE) { 4477 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4478 "failed\n")); 4479 if (info->hne_data != NULL) 4480 kmem_free(info->hne_data, 4481 info->hne_datalen); 4482 kmem_free(info, sizeof (hook_nic_event_t)); 4483 } 4484 } 4485 } 4486 4487 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4488 if (info != NULL) { 4489 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4490 info->hne_lif = 0; 4491 info->hne_event = NE_UNPLUMB; 4492 info->hne_data = nicname; 4493 info->hne_datalen = nicnamelen; 4494 info->hne_family = ill->ill_isv6 ? 4495 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4496 } else { 4497 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4498 "information for %s (ENOMEM)\n", ill->ill_name)); 4499 if (nicname != NULL) 4500 kmem_free(nicname, nicnamelen); 4501 } 4502 4503 ill->ill_nic_event_info = info; 4504 4505 ill_phyint_free(ill); 4506 rw_exit(&ipst->ips_ill_g_lock); 4507 } 4508 4509 /* 4510 * allocate a ppa, if the number of plumbed interfaces of this type are 4511 * less than ill_no_arena do a linear search to find a unused ppa. 4512 * When the number goes beyond ill_no_arena switch to using an arena. 4513 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4514 * is the return value for an error condition, so allocation starts at one 4515 * and is decremented by one. 4516 */ 4517 static int 4518 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4519 { 4520 ill_t *tmp_ill; 4521 uint_t start, end; 4522 int ppa; 4523 4524 if (ifp->illif_ppa_arena == NULL && 4525 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4526 /* 4527 * Create an arena. 4528 */ 4529 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4530 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4531 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4532 /* allocate what has already been assigned */ 4533 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4534 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4535 tmp_ill, AVL_AFTER)) { 4536 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4537 1, /* size */ 4538 1, /* align/quantum */ 4539 0, /* phase */ 4540 0, /* nocross */ 4541 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4542 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4543 VM_NOSLEEP|VM_FIRSTFIT); 4544 if (ppa == 0) { 4545 ip1dbg(("ill_alloc_ppa: ppa allocation" 4546 " failed while switching")); 4547 vmem_destroy(ifp->illif_ppa_arena); 4548 ifp->illif_ppa_arena = NULL; 4549 break; 4550 } 4551 } 4552 } 4553 4554 if (ifp->illif_ppa_arena != NULL) { 4555 if (ill->ill_ppa == UINT_MAX) { 4556 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4557 1, VM_NOSLEEP|VM_FIRSTFIT); 4558 if (ppa == 0) 4559 return (EAGAIN); 4560 ill->ill_ppa = --ppa; 4561 } else { 4562 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4563 1, /* size */ 4564 1, /* align/quantum */ 4565 0, /* phase */ 4566 0, /* nocross */ 4567 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4568 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4569 VM_NOSLEEP|VM_FIRSTFIT); 4570 /* 4571 * Most likely the allocation failed because 4572 * the requested ppa was in use. 4573 */ 4574 if (ppa == 0) 4575 return (EEXIST); 4576 } 4577 return (0); 4578 } 4579 4580 /* 4581 * No arena is in use and not enough (>ill_no_arena) interfaces have 4582 * been plumbed to create one. Do a linear search to get a unused ppa. 4583 */ 4584 if (ill->ill_ppa == UINT_MAX) { 4585 end = UINT_MAX - 1; 4586 start = 0; 4587 } else { 4588 end = start = ill->ill_ppa; 4589 } 4590 4591 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4592 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4593 if (start++ >= end) { 4594 if (ill->ill_ppa == UINT_MAX) 4595 return (EAGAIN); 4596 else 4597 return (EEXIST); 4598 } 4599 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4600 } 4601 ill->ill_ppa = start; 4602 return (0); 4603 } 4604 4605 /* 4606 * Insert ill into the list of configured ill's. Once this function completes, 4607 * the ill is globally visible and is available through lookups. More precisely 4608 * this happens after the caller drops the ill_g_lock. 4609 */ 4610 static int 4611 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4612 { 4613 ill_if_t *ill_interface; 4614 avl_index_t where = 0; 4615 int error; 4616 int name_length; 4617 int index; 4618 boolean_t check_length = B_FALSE; 4619 ip_stack_t *ipst = ill->ill_ipst; 4620 4621 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4622 4623 name_length = mi_strlen(name) + 1; 4624 4625 if (isv6) 4626 index = IP_V6_G_HEAD; 4627 else 4628 index = IP_V4_G_HEAD; 4629 4630 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4631 /* 4632 * Search for interface type based on name 4633 */ 4634 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4635 if ((ill_interface->illif_name_len == name_length) && 4636 (strcmp(ill_interface->illif_name, name) == 0)) { 4637 break; 4638 } 4639 ill_interface = ill_interface->illif_next; 4640 } 4641 4642 /* 4643 * Interface type not found, create one. 4644 */ 4645 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4646 4647 ill_g_head_t ghead; 4648 4649 /* 4650 * allocate ill_if_t structure 4651 */ 4652 4653 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4654 if (ill_interface == NULL) { 4655 return (ENOMEM); 4656 } 4657 4658 4659 4660 (void) strcpy(ill_interface->illif_name, name); 4661 ill_interface->illif_name_len = name_length; 4662 4663 avl_create(&ill_interface->illif_avl_by_ppa, 4664 ill_compare_ppa, sizeof (ill_t), 4665 offsetof(struct ill_s, ill_avl_byppa)); 4666 4667 /* 4668 * link the structure in the back to maintain order 4669 * of configuration for ifconfig output. 4670 */ 4671 ghead = ipst->ips_ill_g_heads[index]; 4672 insque(ill_interface, ghead.ill_g_list_tail); 4673 4674 } 4675 4676 if (ill->ill_ppa == UINT_MAX) 4677 check_length = B_TRUE; 4678 4679 error = ill_alloc_ppa(ill_interface, ill); 4680 if (error != 0) { 4681 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4682 ill_delete_interface_type(ill->ill_ifptr); 4683 return (error); 4684 } 4685 4686 /* 4687 * When the ppa is choosen by the system, check that there is 4688 * enough space to insert ppa. if a specific ppa was passed in this 4689 * check is not required as the interface name passed in will have 4690 * the right ppa in it. 4691 */ 4692 if (check_length) { 4693 /* 4694 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4695 */ 4696 char buf[sizeof (uint_t) * 3]; 4697 4698 /* 4699 * convert ppa to string to calculate the amount of space 4700 * required for it in the name. 4701 */ 4702 numtos(ill->ill_ppa, buf); 4703 4704 /* Do we have enough space to insert ppa ? */ 4705 4706 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4707 /* Free ppa and interface type struct */ 4708 if (ill_interface->illif_ppa_arena != NULL) { 4709 vmem_free(ill_interface->illif_ppa_arena, 4710 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4711 } 4712 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4713 0) { 4714 ill_delete_interface_type(ill->ill_ifptr); 4715 } 4716 4717 return (EINVAL); 4718 } 4719 } 4720 4721 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4722 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4723 4724 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4725 &where); 4726 ill->ill_ifptr = ill_interface; 4727 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4728 4729 ill_phyint_reinit(ill); 4730 return (0); 4731 } 4732 4733 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4734 static boolean_t 4735 ipsq_init(ill_t *ill) 4736 { 4737 ipsq_t *ipsq; 4738 4739 /* Init the ipsq and impicitly enter as writer */ 4740 ill->ill_phyint->phyint_ipsq = 4741 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4742 if (ill->ill_phyint->phyint_ipsq == NULL) 4743 return (B_FALSE); 4744 ipsq = ill->ill_phyint->phyint_ipsq; 4745 ipsq->ipsq_phyint_list = ill->ill_phyint; 4746 ill->ill_phyint->phyint_ipsq_next = NULL; 4747 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4748 ipsq->ipsq_refs = 1; 4749 ipsq->ipsq_writer = curthread; 4750 ipsq->ipsq_reentry_cnt = 1; 4751 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4752 #ifdef ILL_DEBUG 4753 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4754 #endif 4755 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4756 return (B_TRUE); 4757 } 4758 4759 /* 4760 * ill_init is called by ip_open when a device control stream is opened. 4761 * It does a few initializations, and shoots a DL_INFO_REQ message down 4762 * to the driver. The response is later picked up in ip_rput_dlpi and 4763 * used to set up default mechanisms for talking to the driver. (Always 4764 * called as writer.) 4765 * 4766 * If this function returns error, ip_open will call ip_close which in 4767 * turn will call ill_delete to clean up any memory allocated here that 4768 * is not yet freed. 4769 */ 4770 int 4771 ill_init(queue_t *q, ill_t *ill) 4772 { 4773 int count; 4774 dl_info_req_t *dlir; 4775 mblk_t *info_mp; 4776 uchar_t *frag_ptr; 4777 4778 /* 4779 * The ill is initialized to zero by mi_alloc*(). In addition 4780 * some fields already contain valid values, initialized in 4781 * ip_open(), before we reach here. 4782 */ 4783 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4784 4785 ill->ill_rq = q; 4786 ill->ill_wq = WR(q); 4787 4788 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4789 BPRI_HI); 4790 if (info_mp == NULL) 4791 return (ENOMEM); 4792 4793 /* 4794 * Allocate sufficient space to contain our fragment hash table and 4795 * the device name. 4796 */ 4797 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4798 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4799 if (frag_ptr == NULL) { 4800 freemsg(info_mp); 4801 return (ENOMEM); 4802 } 4803 ill->ill_frag_ptr = frag_ptr; 4804 ill->ill_frag_free_num_pkts = 0; 4805 ill->ill_last_frag_clean_time = 0; 4806 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4807 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4808 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4809 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4810 NULL, MUTEX_DEFAULT, NULL); 4811 } 4812 4813 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4814 if (ill->ill_phyint == NULL) { 4815 freemsg(info_mp); 4816 mi_free(frag_ptr); 4817 return (ENOMEM); 4818 } 4819 4820 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4821 /* 4822 * For now pretend this is a v4 ill. We need to set phyint_ill* 4823 * at this point because of the following reason. If we can't 4824 * enter the ipsq at some point and cv_wait, the writer that 4825 * wakes us up tries to locate us using the list of all phyints 4826 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4827 * If we don't set it now, we risk a missed wakeup. 4828 */ 4829 ill->ill_phyint->phyint_illv4 = ill; 4830 ill->ill_ppa = UINT_MAX; 4831 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4832 4833 if (!ipsq_init(ill)) { 4834 freemsg(info_mp); 4835 mi_free(frag_ptr); 4836 mi_free(ill->ill_phyint); 4837 return (ENOMEM); 4838 } 4839 4840 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4841 4842 4843 /* Frag queue limit stuff */ 4844 ill->ill_frag_count = 0; 4845 ill->ill_ipf_gen = 0; 4846 4847 ill->ill_global_timer = INFINITY; 4848 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4849 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4850 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4851 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4852 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4853 4854 /* 4855 * Initialize IPv6 configuration variables. The IP module is always 4856 * opened as an IPv4 module. Instead tracking down the cases where 4857 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4858 * here for convenience, this has no effect until the ill is set to do 4859 * IPv6. 4860 */ 4861 ill->ill_reachable_time = ND_REACHABLE_TIME; 4862 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4863 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4864 ill->ill_max_buf = ND_MAX_Q; 4865 ill->ill_refcnt = 0; 4866 4867 /* Send down the Info Request to the driver. */ 4868 info_mp->b_datap->db_type = M_PCPROTO; 4869 dlir = (dl_info_req_t *)info_mp->b_rptr; 4870 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4871 dlir->dl_primitive = DL_INFO_REQ; 4872 4873 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4874 4875 qprocson(q); 4876 ill_dlpi_send(ill, info_mp); 4877 4878 return (0); 4879 } 4880 4881 /* 4882 * ill_dls_info 4883 * creates datalink socket info from the device. 4884 */ 4885 int 4886 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4887 { 4888 size_t len; 4889 ill_t *ill = ipif->ipif_ill; 4890 4891 sdl->sdl_family = AF_LINK; 4892 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4893 sdl->sdl_type = ill->ill_type; 4894 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4895 len = strlen(sdl->sdl_data); 4896 ASSERT(len < 256); 4897 sdl->sdl_nlen = (uchar_t)len; 4898 sdl->sdl_alen = ill->ill_phys_addr_length; 4899 sdl->sdl_slen = 0; 4900 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4901 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4902 4903 return (sizeof (struct sockaddr_dl)); 4904 } 4905 4906 /* 4907 * ill_xarp_info 4908 * creates xarp info from the device. 4909 */ 4910 static int 4911 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4912 { 4913 sdl->sdl_family = AF_LINK; 4914 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4915 sdl->sdl_type = ill->ill_type; 4916 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4917 sizeof (sdl->sdl_data)); 4918 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4919 sdl->sdl_alen = ill->ill_phys_addr_length; 4920 sdl->sdl_slen = 0; 4921 return (sdl->sdl_nlen); 4922 } 4923 4924 static int 4925 loopback_kstat_update(kstat_t *ksp, int rw) 4926 { 4927 kstat_named_t *kn; 4928 netstackid_t stackid; 4929 netstack_t *ns; 4930 ip_stack_t *ipst; 4931 4932 if (ksp == NULL || ksp->ks_data == NULL) 4933 return (EIO); 4934 4935 if (rw == KSTAT_WRITE) 4936 return (EACCES); 4937 4938 kn = KSTAT_NAMED_PTR(ksp); 4939 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4940 4941 ns = netstack_find_by_stackid(stackid); 4942 if (ns == NULL) 4943 return (-1); 4944 4945 ipst = ns->netstack_ip; 4946 if (ipst == NULL) { 4947 netstack_rele(ns); 4948 return (-1); 4949 } 4950 kn[0].value.ui32 = ipst->ips_loopback_packets; 4951 kn[1].value.ui32 = ipst->ips_loopback_packets; 4952 netstack_rele(ns); 4953 return (0); 4954 } 4955 4956 4957 /* 4958 * Has ifindex been plumbed already. 4959 */ 4960 static boolean_t 4961 phyint_exists(uint_t index, ip_stack_t *ipst) 4962 { 4963 phyint_t *phyi; 4964 4965 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4966 /* 4967 * Indexes are stored in the phyint - a common structure 4968 * to both IPv4 and IPv6. 4969 */ 4970 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4971 (void *) &index, NULL); 4972 return (phyi != NULL); 4973 } 4974 4975 /* 4976 * Assign a unique interface index for the phyint. 4977 */ 4978 static boolean_t 4979 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4980 { 4981 uint_t starting_index; 4982 4983 ASSERT(phyi->phyint_ifindex == 0); 4984 if (!ipst->ips_ill_index_wrap) { 4985 phyi->phyint_ifindex = ipst->ips_ill_index++; 4986 if (ipst->ips_ill_index == 0) { 4987 /* Reached the uint_t limit Next time wrap */ 4988 ipst->ips_ill_index_wrap = B_TRUE; 4989 } 4990 return (B_TRUE); 4991 } 4992 4993 /* 4994 * Start reusing unused indexes. Note that we hold the ill_g_lock 4995 * at this point and don't want to call any function that attempts 4996 * to get the lock again. 4997 */ 4998 starting_index = ipst->ips_ill_index++; 4999 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 5000 if (ipst->ips_ill_index != 0 && 5001 !phyint_exists(ipst->ips_ill_index, ipst)) { 5002 /* found unused index - use it */ 5003 phyi->phyint_ifindex = ipst->ips_ill_index; 5004 return (B_TRUE); 5005 } 5006 } 5007 5008 /* 5009 * all interface indicies are inuse. 5010 */ 5011 return (B_FALSE); 5012 } 5013 5014 /* 5015 * Return a pointer to the ill which matches the supplied name. Note that 5016 * the ill name length includes the null termination character. (May be 5017 * called as writer.) 5018 * If do_alloc and the interface is "lo0" it will be automatically created. 5019 * Cannot bump up reference on condemned ills. So dup detect can't be done 5020 * using this func. 5021 */ 5022 ill_t * 5023 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5024 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 5025 ip_stack_t *ipst) 5026 { 5027 ill_t *ill; 5028 ipif_t *ipif; 5029 kstat_named_t *kn; 5030 boolean_t isloopback; 5031 ipsq_t *old_ipsq; 5032 in6_addr_t ov6addr; 5033 5034 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5035 5036 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5037 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5038 rw_exit(&ipst->ips_ill_g_lock); 5039 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5040 return (ill); 5041 5042 /* 5043 * Couldn't find it. Does this happen to be a lookup for the 5044 * loopback device and are we allowed to allocate it? 5045 */ 5046 if (!isloopback || !do_alloc) 5047 return (NULL); 5048 5049 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 5050 5051 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5052 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5053 rw_exit(&ipst->ips_ill_g_lock); 5054 return (ill); 5055 } 5056 5057 /* Create the loopback device on demand */ 5058 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5059 sizeof (ipif_loopback_name), BPRI_MED)); 5060 if (ill == NULL) 5061 goto done; 5062 5063 *ill = ill_null; 5064 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5065 ill->ill_ipst = ipst; 5066 netstack_hold(ipst->ips_netstack); 5067 /* 5068 * For exclusive stacks we set the zoneid to zero 5069 * to make IP operate as if in the global zone. 5070 */ 5071 ill->ill_zoneid = GLOBAL_ZONEID; 5072 5073 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5074 if (ill->ill_phyint == NULL) 5075 goto done; 5076 5077 if (isv6) 5078 ill->ill_phyint->phyint_illv6 = ill; 5079 else 5080 ill->ill_phyint->phyint_illv4 = ill; 5081 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5082 ill->ill_max_frag = IP_LOOPBACK_MTU; 5083 /* Add room for tcp+ip headers */ 5084 if (isv6) { 5085 ill->ill_isv6 = B_TRUE; 5086 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5087 } else { 5088 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5089 } 5090 if (!ill_allocate_mibs(ill)) 5091 goto done; 5092 ill->ill_max_mtu = ill->ill_max_frag; 5093 /* 5094 * ipif_loopback_name can't be pointed at directly because its used 5095 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5096 * from the glist, ill_glist_delete() sets the first character of 5097 * ill_name to '\0'. 5098 */ 5099 ill->ill_name = (char *)ill + sizeof (*ill); 5100 (void) strcpy(ill->ill_name, ipif_loopback_name); 5101 ill->ill_name_length = sizeof (ipif_loopback_name); 5102 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5103 5104 ill->ill_global_timer = INFINITY; 5105 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5106 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5107 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5108 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5109 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5110 5111 /* No resolver here. */ 5112 ill->ill_net_type = IRE_LOOPBACK; 5113 5114 /* Initialize the ipsq */ 5115 if (!ipsq_init(ill)) 5116 goto done; 5117 5118 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5119 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5120 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5121 #ifdef ILL_DEBUG 5122 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5123 #endif 5124 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5125 if (ipif == NULL) 5126 goto done; 5127 5128 ill->ill_flags = ILLF_MULTICAST; 5129 5130 ov6addr = ipif->ipif_v6lcl_addr; 5131 /* Set up default loopback address and mask. */ 5132 if (!isv6) { 5133 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5134 5135 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5136 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5137 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5138 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5139 ipif->ipif_v6subnet); 5140 ill->ill_flags |= ILLF_IPV4; 5141 } else { 5142 ipif->ipif_v6lcl_addr = ipv6_loopback; 5143 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5144 ipif->ipif_v6net_mask = ipv6_all_ones; 5145 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5146 ipif->ipif_v6subnet); 5147 ill->ill_flags |= ILLF_IPV6; 5148 } 5149 5150 /* 5151 * Chain us in at the end of the ill list. hold the ill 5152 * before we make it globally visible. 1 for the lookup. 5153 */ 5154 ill->ill_refcnt = 0; 5155 ill_refhold(ill); 5156 5157 ill->ill_frag_count = 0; 5158 ill->ill_frag_free_num_pkts = 0; 5159 ill->ill_last_frag_clean_time = 0; 5160 5161 old_ipsq = ill->ill_phyint->phyint_ipsq; 5162 5163 if (ill_glist_insert(ill, "lo", isv6) != 0) 5164 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5165 5166 /* Let SCTP know so that it can add this to its list */ 5167 sctp_update_ill(ill, SCTP_ILL_INSERT); 5168 5169 /* 5170 * We have already assigned ipif_v6lcl_addr above, but we need to 5171 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5172 * requires to be after ill_glist_insert() since we need the 5173 * ill_index set. Pass on ipv6_loopback as the old address. 5174 */ 5175 sctp_update_ipif_addr(ipif, ov6addr); 5176 5177 /* 5178 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5179 */ 5180 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5181 /* Loopback ills aren't in any IPMP group */ 5182 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5183 ipsq_delete(old_ipsq); 5184 } 5185 5186 /* 5187 * Delay this till the ipif is allocated as ipif_allocate 5188 * de-references ill_phyint for getting the ifindex. We 5189 * can't do this before ipif_allocate because ill_phyint_reinit 5190 * -> phyint_assign_ifindex expects ipif to be present. 5191 */ 5192 mutex_enter(&ill->ill_phyint->phyint_lock); 5193 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5194 mutex_exit(&ill->ill_phyint->phyint_lock); 5195 5196 if (ipst->ips_loopback_ksp == NULL) { 5197 /* Export loopback interface statistics */ 5198 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5199 ipif_loopback_name, "net", 5200 KSTAT_TYPE_NAMED, 2, 0, 5201 ipst->ips_netstack->netstack_stackid); 5202 if (ipst->ips_loopback_ksp != NULL) { 5203 ipst->ips_loopback_ksp->ks_update = 5204 loopback_kstat_update; 5205 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5206 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5207 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5208 ipst->ips_loopback_ksp->ks_private = 5209 (void *)(uintptr_t)ipst->ips_netstack-> 5210 netstack_stackid; 5211 kstat_install(ipst->ips_loopback_ksp); 5212 } 5213 } 5214 5215 if (error != NULL) 5216 *error = 0; 5217 *did_alloc = B_TRUE; 5218 rw_exit(&ipst->ips_ill_g_lock); 5219 return (ill); 5220 done: 5221 if (ill != NULL) { 5222 if (ill->ill_phyint != NULL) { 5223 ipsq_t *ipsq; 5224 5225 ipsq = ill->ill_phyint->phyint_ipsq; 5226 if (ipsq != NULL) { 5227 ipsq->ipsq_ipst = NULL; 5228 kmem_free(ipsq, sizeof (ipsq_t)); 5229 } 5230 mi_free(ill->ill_phyint); 5231 } 5232 ill_free_mib(ill); 5233 if (ill->ill_ipst != NULL) 5234 netstack_rele(ill->ill_ipst->ips_netstack); 5235 mi_free(ill); 5236 } 5237 rw_exit(&ipst->ips_ill_g_lock); 5238 if (error != NULL) 5239 *error = ENOMEM; 5240 return (NULL); 5241 } 5242 5243 /* 5244 * For IPP calls - use the ip_stack_t for global stack. 5245 */ 5246 ill_t * 5247 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5248 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5249 { 5250 ip_stack_t *ipst; 5251 ill_t *ill; 5252 5253 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5254 if (ipst == NULL) { 5255 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5256 return (NULL); 5257 } 5258 5259 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5260 netstack_rele(ipst->ips_netstack); 5261 return (ill); 5262 } 5263 5264 /* 5265 * Return a pointer to the ill which matches the index and IP version type. 5266 */ 5267 ill_t * 5268 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5269 ipsq_func_t func, int *err, ip_stack_t *ipst) 5270 { 5271 ill_t *ill; 5272 ipsq_t *ipsq; 5273 phyint_t *phyi; 5274 5275 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5276 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5277 5278 if (err != NULL) 5279 *err = 0; 5280 5281 /* 5282 * Indexes are stored in the phyint - a common structure 5283 * to both IPv4 and IPv6. 5284 */ 5285 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5286 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5287 (void *) &index, NULL); 5288 if (phyi != NULL) { 5289 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5290 if (ill != NULL) { 5291 /* 5292 * The block comment at the start of ipif_down 5293 * explains the use of the macros used below 5294 */ 5295 GRAB_CONN_LOCK(q); 5296 mutex_enter(&ill->ill_lock); 5297 if (ILL_CAN_LOOKUP(ill)) { 5298 ill_refhold_locked(ill); 5299 mutex_exit(&ill->ill_lock); 5300 RELEASE_CONN_LOCK(q); 5301 rw_exit(&ipst->ips_ill_g_lock); 5302 return (ill); 5303 } else if (ILL_CAN_WAIT(ill, q)) { 5304 ipsq = ill->ill_phyint->phyint_ipsq; 5305 mutex_enter(&ipsq->ipsq_lock); 5306 rw_exit(&ipst->ips_ill_g_lock); 5307 mutex_exit(&ill->ill_lock); 5308 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5309 mutex_exit(&ipsq->ipsq_lock); 5310 RELEASE_CONN_LOCK(q); 5311 *err = EINPROGRESS; 5312 return (NULL); 5313 } 5314 RELEASE_CONN_LOCK(q); 5315 mutex_exit(&ill->ill_lock); 5316 } 5317 } 5318 rw_exit(&ipst->ips_ill_g_lock); 5319 if (err != NULL) 5320 *err = ENXIO; 5321 return (NULL); 5322 } 5323 5324 /* 5325 * Return the ifindex next in sequence after the passed in ifindex. 5326 * If there is no next ifindex for the given protocol, return 0. 5327 */ 5328 uint_t 5329 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5330 { 5331 phyint_t *phyi; 5332 phyint_t *phyi_initial; 5333 uint_t ifindex; 5334 5335 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5336 5337 if (index == 0) { 5338 phyi = avl_first( 5339 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5340 } else { 5341 phyi = phyi_initial = avl_find( 5342 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5343 (void *) &index, NULL); 5344 } 5345 5346 for (; phyi != NULL; 5347 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5348 phyi, AVL_AFTER)) { 5349 /* 5350 * If we're not returning the first interface in the tree 5351 * and we still haven't moved past the phyint_t that 5352 * corresponds to index, avl_walk needs to be called again 5353 */ 5354 if (!((index != 0) && (phyi == phyi_initial))) { 5355 if (isv6) { 5356 if ((phyi->phyint_illv6) && 5357 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5358 (phyi->phyint_illv6->ill_isv6 == 1)) 5359 break; 5360 } else { 5361 if ((phyi->phyint_illv4) && 5362 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5363 (phyi->phyint_illv4->ill_isv6 == 0)) 5364 break; 5365 } 5366 } 5367 } 5368 5369 rw_exit(&ipst->ips_ill_g_lock); 5370 5371 if (phyi != NULL) 5372 ifindex = phyi->phyint_ifindex; 5373 else 5374 ifindex = 0; 5375 5376 return (ifindex); 5377 } 5378 5379 5380 /* 5381 * Return the ifindex for the named interface. 5382 * If there is no next ifindex for the interface, return 0. 5383 */ 5384 uint_t 5385 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5386 { 5387 phyint_t *phyi; 5388 avl_index_t where = 0; 5389 uint_t ifindex; 5390 5391 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5392 5393 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5394 name, &where)) == NULL) { 5395 rw_exit(&ipst->ips_ill_g_lock); 5396 return (0); 5397 } 5398 5399 ifindex = phyi->phyint_ifindex; 5400 5401 rw_exit(&ipst->ips_ill_g_lock); 5402 5403 return (ifindex); 5404 } 5405 5406 5407 /* 5408 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5409 * that gives a running thread a reference to the ill. This reference must be 5410 * released by the thread when it is done accessing the ill and related 5411 * objects. ill_refcnt can not be used to account for static references 5412 * such as other structures pointing to an ill. Callers must generally 5413 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5414 * or be sure that the ill is not being deleted or changing state before 5415 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5416 * ill won't change any of its critical state such as address, netmask etc. 5417 */ 5418 void 5419 ill_refhold(ill_t *ill) 5420 { 5421 mutex_enter(&ill->ill_lock); 5422 ill->ill_refcnt++; 5423 ILL_TRACE_REF(ill); 5424 mutex_exit(&ill->ill_lock); 5425 } 5426 5427 void 5428 ill_refhold_locked(ill_t *ill) 5429 { 5430 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5431 ill->ill_refcnt++; 5432 ILL_TRACE_REF(ill); 5433 } 5434 5435 int 5436 ill_check_and_refhold(ill_t *ill) 5437 { 5438 mutex_enter(&ill->ill_lock); 5439 if (ILL_CAN_LOOKUP(ill)) { 5440 ill_refhold_locked(ill); 5441 mutex_exit(&ill->ill_lock); 5442 return (0); 5443 } 5444 mutex_exit(&ill->ill_lock); 5445 return (ILL_LOOKUP_FAILED); 5446 } 5447 5448 /* 5449 * Must not be called while holding any locks. Otherwise if this is 5450 * the last reference to be released, there is a chance of recursive mutex 5451 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5452 * to restart an ioctl. 5453 */ 5454 void 5455 ill_refrele(ill_t *ill) 5456 { 5457 mutex_enter(&ill->ill_lock); 5458 ASSERT(ill->ill_refcnt != 0); 5459 ill->ill_refcnt--; 5460 ILL_UNTRACE_REF(ill); 5461 if (ill->ill_refcnt != 0) { 5462 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5463 mutex_exit(&ill->ill_lock); 5464 return; 5465 } 5466 5467 /* Drops the ill_lock */ 5468 ipif_ill_refrele_tail(ill); 5469 } 5470 5471 /* 5472 * Obtain a weak reference count on the ill. This reference ensures the 5473 * ill won't be freed, but the ill may change any of its critical state 5474 * such as netmask, address etc. Returns an error if the ill has started 5475 * closing. 5476 */ 5477 boolean_t 5478 ill_waiter_inc(ill_t *ill) 5479 { 5480 mutex_enter(&ill->ill_lock); 5481 if (ill->ill_state_flags & ILL_CONDEMNED) { 5482 mutex_exit(&ill->ill_lock); 5483 return (B_FALSE); 5484 } 5485 ill->ill_waiters++; 5486 mutex_exit(&ill->ill_lock); 5487 return (B_TRUE); 5488 } 5489 5490 void 5491 ill_waiter_dcr(ill_t *ill) 5492 { 5493 mutex_enter(&ill->ill_lock); 5494 ill->ill_waiters--; 5495 if (ill->ill_waiters == 0) 5496 cv_broadcast(&ill->ill_cv); 5497 mutex_exit(&ill->ill_lock); 5498 } 5499 5500 /* 5501 * Named Dispatch routine to produce a formatted report on all ILLs. 5502 * This report is accessed by using the ndd utility to "get" ND variable 5503 * "ip_ill_status". 5504 */ 5505 /* ARGSUSED */ 5506 int 5507 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5508 { 5509 ill_t *ill; 5510 ill_walk_context_t ctx; 5511 ip_stack_t *ipst; 5512 5513 ipst = CONNQ_TO_IPST(q); 5514 5515 (void) mi_mpprintf(mp, 5516 "ILL " MI_COL_HDRPAD_STR 5517 /* 01234567[89ABCDEF] */ 5518 "rq " MI_COL_HDRPAD_STR 5519 /* 01234567[89ABCDEF] */ 5520 "wq " MI_COL_HDRPAD_STR 5521 /* 01234567[89ABCDEF] */ 5522 "upcnt mxfrg err name"); 5523 /* 12345 12345 123 xxxxxxxx */ 5524 5525 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5526 ill = ILL_START_WALK_ALL(&ctx, ipst); 5527 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5528 (void) mi_mpprintf(mp, 5529 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5530 "%05u %05u %03d %s", 5531 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5532 ill->ill_ipif_up_count, 5533 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5534 } 5535 rw_exit(&ipst->ips_ill_g_lock); 5536 5537 return (0); 5538 } 5539 5540 /* 5541 * Named Dispatch routine to produce a formatted report on all IPIFs. 5542 * This report is accessed by using the ndd utility to "get" ND variable 5543 * "ip_ipif_status". 5544 */ 5545 /* ARGSUSED */ 5546 int 5547 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5548 { 5549 char buf1[INET6_ADDRSTRLEN]; 5550 char buf2[INET6_ADDRSTRLEN]; 5551 char buf3[INET6_ADDRSTRLEN]; 5552 char buf4[INET6_ADDRSTRLEN]; 5553 char buf5[INET6_ADDRSTRLEN]; 5554 char buf6[INET6_ADDRSTRLEN]; 5555 char buf[LIFNAMSIZ]; 5556 ill_t *ill; 5557 ipif_t *ipif; 5558 nv_t *nvp; 5559 uint64_t flags; 5560 zoneid_t zoneid; 5561 ill_walk_context_t ctx; 5562 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5563 5564 (void) mi_mpprintf(mp, 5565 "IPIF metric mtu in/out/forward name zone flags...\n" 5566 "\tlocal address\n" 5567 "\tsrc address\n" 5568 "\tsubnet\n" 5569 "\tmask\n" 5570 "\tbroadcast\n" 5571 "\tp-p-dst"); 5572 5573 ASSERT(q->q_next == NULL); 5574 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5575 5576 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5577 ill = ILL_START_WALK_ALL(&ctx, ipst); 5578 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5579 for (ipif = ill->ill_ipif; ipif != NULL; 5580 ipif = ipif->ipif_next) { 5581 if (zoneid != GLOBAL_ZONEID && 5582 zoneid != ipif->ipif_zoneid && 5583 ipif->ipif_zoneid != ALL_ZONES) 5584 continue; 5585 (void) mi_mpprintf(mp, 5586 MI_COL_PTRFMT_STR 5587 "%04u %05u %u/%u/%u %s %d", 5588 (void *)ipif, 5589 ipif->ipif_metric, ipif->ipif_mtu, 5590 ipif->ipif_ib_pkt_count, 5591 ipif->ipif_ob_pkt_count, 5592 ipif->ipif_fo_pkt_count, 5593 ipif_get_name(ipif, buf, sizeof (buf)), 5594 ipif->ipif_zoneid); 5595 5596 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5597 ipif->ipif_ill->ill_phyint->phyint_flags; 5598 5599 /* Tack on text strings for any flags. */ 5600 nvp = ipif_nv_tbl; 5601 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5602 if (nvp->nv_value & flags) 5603 (void) mi_mpprintf_nr(mp, " %s", 5604 nvp->nv_name); 5605 } 5606 (void) mi_mpprintf(mp, 5607 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5608 inet_ntop(AF_INET6, 5609 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5610 inet_ntop(AF_INET6, 5611 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5612 inet_ntop(AF_INET6, 5613 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5614 inet_ntop(AF_INET6, 5615 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5616 inet_ntop(AF_INET6, 5617 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5618 inet_ntop(AF_INET6, 5619 &ipif->ipif_v6pp_dst_addr, 5620 buf6, sizeof (buf6))); 5621 } 5622 } 5623 rw_exit(&ipst->ips_ill_g_lock); 5624 return (0); 5625 } 5626 5627 /* 5628 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5629 * driver. We construct best guess defaults for lower level information that 5630 * we need. If an interface is brought up without injection of any overriding 5631 * information from outside, we have to be ready to go with these defaults. 5632 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5633 * we primarely want the dl_provider_style. 5634 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5635 * at which point we assume the other part of the information is valid. 5636 */ 5637 void 5638 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5639 { 5640 uchar_t *brdcst_addr; 5641 uint_t brdcst_addr_length, phys_addr_length; 5642 t_scalar_t sap_length; 5643 dl_info_ack_t *dlia; 5644 ip_m_t *ipm; 5645 dl_qos_cl_sel1_t *sel1; 5646 5647 ASSERT(IAM_WRITER_ILL(ill)); 5648 5649 /* 5650 * Till the ill is fully up ILL_CHANGING will be set and 5651 * the ill is not globally visible. So no need for a lock. 5652 */ 5653 dlia = (dl_info_ack_t *)mp->b_rptr; 5654 ill->ill_mactype = dlia->dl_mac_type; 5655 5656 ipm = ip_m_lookup(dlia->dl_mac_type); 5657 if (ipm == NULL) { 5658 ipm = ip_m_lookup(DL_OTHER); 5659 ASSERT(ipm != NULL); 5660 } 5661 ill->ill_media = ipm; 5662 5663 /* 5664 * When the new DLPI stuff is ready we'll pull lengths 5665 * from dlia. 5666 */ 5667 if (dlia->dl_version == DL_VERSION_2) { 5668 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5669 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5670 brdcst_addr_length); 5671 if (brdcst_addr == NULL) { 5672 brdcst_addr_length = 0; 5673 } 5674 sap_length = dlia->dl_sap_length; 5675 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5676 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5677 brdcst_addr_length, sap_length, phys_addr_length)); 5678 } else { 5679 brdcst_addr_length = 6; 5680 brdcst_addr = ip_six_byte_all_ones; 5681 sap_length = -2; 5682 phys_addr_length = brdcst_addr_length; 5683 } 5684 5685 ill->ill_bcast_addr_length = brdcst_addr_length; 5686 ill->ill_phys_addr_length = phys_addr_length; 5687 ill->ill_sap_length = sap_length; 5688 ill->ill_max_frag = dlia->dl_max_sdu; 5689 ill->ill_max_mtu = ill->ill_max_frag; 5690 5691 ill->ill_type = ipm->ip_m_type; 5692 5693 if (!ill->ill_dlpi_style_set) { 5694 if (dlia->dl_provider_style == DL_STYLE2) 5695 ill->ill_needs_attach = 1; 5696 5697 /* 5698 * Allocate the first ipif on this ill. We don't delay it 5699 * further as ioctl handling assumes atleast one ipif to 5700 * be present. 5701 * 5702 * At this point we don't know whether the ill is v4 or v6. 5703 * We will know this whan the SIOCSLIFNAME happens and 5704 * the correct value for ill_isv6 will be assigned in 5705 * ipif_set_values(). We need to hold the ill lock and 5706 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5707 * the wakeup. 5708 */ 5709 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5710 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5711 mutex_enter(&ill->ill_lock); 5712 ASSERT(ill->ill_dlpi_style_set == 0); 5713 ill->ill_dlpi_style_set = 1; 5714 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5715 cv_broadcast(&ill->ill_cv); 5716 mutex_exit(&ill->ill_lock); 5717 freemsg(mp); 5718 return; 5719 } 5720 ASSERT(ill->ill_ipif != NULL); 5721 /* 5722 * We know whether it is IPv4 or IPv6 now, as this is the 5723 * second DL_INFO_ACK we are recieving in response to the 5724 * DL_INFO_REQ sent in ipif_set_values. 5725 */ 5726 if (ill->ill_isv6) 5727 ill->ill_sap = IP6_DL_SAP; 5728 else 5729 ill->ill_sap = IP_DL_SAP; 5730 /* 5731 * Set ipif_mtu which is used to set the IRE's 5732 * ire_max_frag value. The driver could have sent 5733 * a different mtu from what it sent last time. No 5734 * need to call ipif_mtu_change because IREs have 5735 * not yet been created. 5736 */ 5737 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5738 /* 5739 * Clear all the flags that were set based on ill_bcast_addr_length 5740 * and ill_phys_addr_length (in ipif_set_values) as these could have 5741 * changed now and we need to re-evaluate. 5742 */ 5743 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5744 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5745 5746 /* 5747 * Free ill_resolver_mp and ill_bcast_mp as things could have 5748 * changed now. 5749 */ 5750 if (ill->ill_bcast_addr_length == 0) { 5751 if (ill->ill_resolver_mp != NULL) 5752 freemsg(ill->ill_resolver_mp); 5753 if (ill->ill_bcast_mp != NULL) 5754 freemsg(ill->ill_bcast_mp); 5755 if (ill->ill_flags & ILLF_XRESOLV) 5756 ill->ill_net_type = IRE_IF_RESOLVER; 5757 else 5758 ill->ill_net_type = IRE_IF_NORESOLVER; 5759 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5760 ill->ill_phys_addr_length, 5761 ill->ill_sap, 5762 ill->ill_sap_length); 5763 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5764 5765 if (ill->ill_isv6) 5766 /* 5767 * Note: xresolv interfaces will eventually need NOARP 5768 * set here as well, but that will require those 5769 * external resolvers to have some knowledge of 5770 * that flag and act appropriately. Not to be changed 5771 * at present. 5772 */ 5773 ill->ill_flags |= ILLF_NONUD; 5774 else 5775 ill->ill_flags |= ILLF_NOARP; 5776 5777 if (ill->ill_phys_addr_length == 0) { 5778 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5779 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5780 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5781 } else { 5782 /* pt-pt supports multicast. */ 5783 ill->ill_flags |= ILLF_MULTICAST; 5784 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5785 } 5786 } 5787 } else { 5788 ill->ill_net_type = IRE_IF_RESOLVER; 5789 if (ill->ill_bcast_mp != NULL) 5790 freemsg(ill->ill_bcast_mp); 5791 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5792 ill->ill_bcast_addr_length, ill->ill_sap, 5793 ill->ill_sap_length); 5794 /* 5795 * Later detect lack of DLPI driver multicast 5796 * capability by catching DL_ENABMULTI errors in 5797 * ip_rput_dlpi. 5798 */ 5799 ill->ill_flags |= ILLF_MULTICAST; 5800 if (!ill->ill_isv6) 5801 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5802 } 5803 /* By default an interface does not support any CoS marking */ 5804 ill->ill_flags &= ~ILLF_COS_ENABLED; 5805 5806 /* 5807 * If we get QoS information in DL_INFO_ACK, the device supports 5808 * some form of CoS marking, set ILLF_COS_ENABLED. 5809 */ 5810 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5811 dlia->dl_qos_length); 5812 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5813 ill->ill_flags |= ILLF_COS_ENABLED; 5814 } 5815 5816 /* Clear any previous error indication. */ 5817 ill->ill_error = 0; 5818 freemsg(mp); 5819 } 5820 5821 /* 5822 * Perform various checks to verify that an address would make sense as a 5823 * local, remote, or subnet interface address. 5824 */ 5825 static boolean_t 5826 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5827 { 5828 ipaddr_t net_mask; 5829 5830 /* 5831 * Don't allow all zeroes, all ones or experimental address, but allow 5832 * all ones netmask. 5833 */ 5834 if ((net_mask = ip_net_mask(addr)) == 0) 5835 return (B_FALSE); 5836 /* A given netmask overrides the "guess" netmask */ 5837 if (subnet_mask != 0) 5838 net_mask = subnet_mask; 5839 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5840 (addr == (addr | ~net_mask)))) { 5841 return (B_FALSE); 5842 } 5843 if (CLASSD(addr)) 5844 return (B_FALSE); 5845 5846 return (B_TRUE); 5847 } 5848 5849 /* 5850 * ipif_lookup_group 5851 * Returns held ipif 5852 */ 5853 ipif_t * 5854 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5855 { 5856 ire_t *ire; 5857 ipif_t *ipif; 5858 5859 ire = ire_lookup_multi(group, zoneid, ipst); 5860 if (ire == NULL) 5861 return (NULL); 5862 ipif = ire->ire_ipif; 5863 ipif_refhold(ipif); 5864 ire_refrele(ire); 5865 return (ipif); 5866 } 5867 5868 /* 5869 * Look for an ipif with the specified interface address and destination. 5870 * The destination address is used only for matching point-to-point interfaces. 5871 */ 5872 ipif_t * 5873 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5874 ipsq_func_t func, int *error, ip_stack_t *ipst) 5875 { 5876 ipif_t *ipif; 5877 ill_t *ill; 5878 ill_walk_context_t ctx; 5879 ipsq_t *ipsq; 5880 5881 if (error != NULL) 5882 *error = 0; 5883 5884 /* 5885 * First match all the point-to-point interfaces 5886 * before looking at non-point-to-point interfaces. 5887 * This is done to avoid returning non-point-to-point 5888 * ipif instead of unnumbered point-to-point ipif. 5889 */ 5890 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5891 ill = ILL_START_WALK_V4(&ctx, ipst); 5892 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5893 GRAB_CONN_LOCK(q); 5894 mutex_enter(&ill->ill_lock); 5895 for (ipif = ill->ill_ipif; ipif != NULL; 5896 ipif = ipif->ipif_next) { 5897 /* Allow the ipif to be down */ 5898 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5899 (ipif->ipif_lcl_addr == if_addr) && 5900 (ipif->ipif_pp_dst_addr == dst)) { 5901 /* 5902 * The block comment at the start of ipif_down 5903 * explains the use of the macros used below 5904 */ 5905 if (IPIF_CAN_LOOKUP(ipif)) { 5906 ipif_refhold_locked(ipif); 5907 mutex_exit(&ill->ill_lock); 5908 RELEASE_CONN_LOCK(q); 5909 rw_exit(&ipst->ips_ill_g_lock); 5910 return (ipif); 5911 } else if (IPIF_CAN_WAIT(ipif, q)) { 5912 ipsq = ill->ill_phyint->phyint_ipsq; 5913 mutex_enter(&ipsq->ipsq_lock); 5914 mutex_exit(&ill->ill_lock); 5915 rw_exit(&ipst->ips_ill_g_lock); 5916 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5917 ill); 5918 mutex_exit(&ipsq->ipsq_lock); 5919 RELEASE_CONN_LOCK(q); 5920 *error = EINPROGRESS; 5921 return (NULL); 5922 } 5923 } 5924 } 5925 mutex_exit(&ill->ill_lock); 5926 RELEASE_CONN_LOCK(q); 5927 } 5928 rw_exit(&ipst->ips_ill_g_lock); 5929 5930 /* lookup the ipif based on interface address */ 5931 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5932 ipst); 5933 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5934 return (ipif); 5935 } 5936 5937 /* 5938 * Look for an ipif with the specified address. For point-point links 5939 * we look for matches on either the destination address and the local 5940 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5941 * is set. 5942 * Matches on a specific ill if match_ill is set. 5943 */ 5944 ipif_t * 5945 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5946 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5947 { 5948 ipif_t *ipif; 5949 ill_t *ill; 5950 boolean_t ptp = B_FALSE; 5951 ipsq_t *ipsq; 5952 ill_walk_context_t ctx; 5953 5954 if (error != NULL) 5955 *error = 0; 5956 5957 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5958 /* 5959 * Repeat twice, first based on local addresses and 5960 * next time for pointopoint. 5961 */ 5962 repeat: 5963 ill = ILL_START_WALK_V4(&ctx, ipst); 5964 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5965 if (match_ill != NULL && ill != match_ill) { 5966 continue; 5967 } 5968 GRAB_CONN_LOCK(q); 5969 mutex_enter(&ill->ill_lock); 5970 for (ipif = ill->ill_ipif; ipif != NULL; 5971 ipif = ipif->ipif_next) { 5972 if (zoneid != ALL_ZONES && 5973 zoneid != ipif->ipif_zoneid && 5974 ipif->ipif_zoneid != ALL_ZONES) 5975 continue; 5976 /* Allow the ipif to be down */ 5977 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5978 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5979 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5980 (ipif->ipif_pp_dst_addr == addr))) { 5981 /* 5982 * The block comment at the start of ipif_down 5983 * explains the use of the macros used below 5984 */ 5985 if (IPIF_CAN_LOOKUP(ipif)) { 5986 ipif_refhold_locked(ipif); 5987 mutex_exit(&ill->ill_lock); 5988 RELEASE_CONN_LOCK(q); 5989 rw_exit(&ipst->ips_ill_g_lock); 5990 return (ipif); 5991 } else if (IPIF_CAN_WAIT(ipif, q)) { 5992 ipsq = ill->ill_phyint->phyint_ipsq; 5993 mutex_enter(&ipsq->ipsq_lock); 5994 mutex_exit(&ill->ill_lock); 5995 rw_exit(&ipst->ips_ill_g_lock); 5996 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5997 ill); 5998 mutex_exit(&ipsq->ipsq_lock); 5999 RELEASE_CONN_LOCK(q); 6000 *error = EINPROGRESS; 6001 return (NULL); 6002 } 6003 } 6004 } 6005 mutex_exit(&ill->ill_lock); 6006 RELEASE_CONN_LOCK(q); 6007 } 6008 6009 /* If we already did the ptp case, then we are done */ 6010 if (ptp) { 6011 rw_exit(&ipst->ips_ill_g_lock); 6012 if (error != NULL) 6013 *error = ENXIO; 6014 return (NULL); 6015 } 6016 ptp = B_TRUE; 6017 goto repeat; 6018 } 6019 6020 /* 6021 * Look for an ipif with the specified address. For point-point links 6022 * we look for matches on either the destination address and the local 6023 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6024 * is set. 6025 * Matches on a specific ill if match_ill is set. 6026 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6027 */ 6028 zoneid_t 6029 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6030 { 6031 zoneid_t zoneid; 6032 ipif_t *ipif; 6033 ill_t *ill; 6034 boolean_t ptp = B_FALSE; 6035 ill_walk_context_t ctx; 6036 6037 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6038 /* 6039 * Repeat twice, first based on local addresses and 6040 * next time for pointopoint. 6041 */ 6042 repeat: 6043 ill = ILL_START_WALK_V4(&ctx, ipst); 6044 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6045 if (match_ill != NULL && ill != match_ill) { 6046 continue; 6047 } 6048 mutex_enter(&ill->ill_lock); 6049 for (ipif = ill->ill_ipif; ipif != NULL; 6050 ipif = ipif->ipif_next) { 6051 /* Allow the ipif to be down */ 6052 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6053 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6054 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6055 (ipif->ipif_pp_dst_addr == addr)) && 6056 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6057 zoneid = ipif->ipif_zoneid; 6058 mutex_exit(&ill->ill_lock); 6059 rw_exit(&ipst->ips_ill_g_lock); 6060 /* 6061 * If ipif_zoneid was ALL_ZONES then we have 6062 * a trusted extensions shared IP address. 6063 * In that case GLOBAL_ZONEID works to send. 6064 */ 6065 if (zoneid == ALL_ZONES) 6066 zoneid = GLOBAL_ZONEID; 6067 return (zoneid); 6068 } 6069 } 6070 mutex_exit(&ill->ill_lock); 6071 } 6072 6073 /* If we already did the ptp case, then we are done */ 6074 if (ptp) { 6075 rw_exit(&ipst->ips_ill_g_lock); 6076 return (ALL_ZONES); 6077 } 6078 ptp = B_TRUE; 6079 goto repeat; 6080 } 6081 6082 /* 6083 * Look for an ipif that matches the specified remote address i.e. the 6084 * ipif that would receive the specified packet. 6085 * First look for directly connected interfaces and then do a recursive 6086 * IRE lookup and pick the first ipif corresponding to the source address in the 6087 * ire. 6088 * Returns: held ipif 6089 */ 6090 ipif_t * 6091 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6092 { 6093 ipif_t *ipif; 6094 ire_t *ire; 6095 ip_stack_t *ipst = ill->ill_ipst; 6096 6097 ASSERT(!ill->ill_isv6); 6098 6099 /* 6100 * Someone could be changing this ipif currently or change it 6101 * after we return this. Thus a few packets could use the old 6102 * old values. However structure updates/creates (ire, ilg, ilm etc) 6103 * will atomically be updated or cleaned up with the new value 6104 * Thus we don't need a lock to check the flags or other attrs below. 6105 */ 6106 mutex_enter(&ill->ill_lock); 6107 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6108 if (!IPIF_CAN_LOOKUP(ipif)) 6109 continue; 6110 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6111 ipif->ipif_zoneid != ALL_ZONES) 6112 continue; 6113 /* Allow the ipif to be down */ 6114 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6115 if ((ipif->ipif_pp_dst_addr == addr) || 6116 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6117 ipif->ipif_lcl_addr == addr)) { 6118 ipif_refhold_locked(ipif); 6119 mutex_exit(&ill->ill_lock); 6120 return (ipif); 6121 } 6122 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6123 ipif_refhold_locked(ipif); 6124 mutex_exit(&ill->ill_lock); 6125 return (ipif); 6126 } 6127 } 6128 mutex_exit(&ill->ill_lock); 6129 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6130 NULL, MATCH_IRE_RECURSIVE, ipst); 6131 if (ire != NULL) { 6132 /* 6133 * The callers of this function wants to know the 6134 * interface on which they have to send the replies 6135 * back. For IRE_CACHES that have ire_stq and ire_ipif 6136 * derived from different ills, we really don't care 6137 * what we return here. 6138 */ 6139 ipif = ire->ire_ipif; 6140 if (ipif != NULL) { 6141 ipif_refhold(ipif); 6142 ire_refrele(ire); 6143 return (ipif); 6144 } 6145 ire_refrele(ire); 6146 } 6147 /* Pick the first interface */ 6148 ipif = ipif_get_next_ipif(NULL, ill); 6149 return (ipif); 6150 } 6151 6152 /* 6153 * This func does not prevent refcnt from increasing. But if 6154 * the caller has taken steps to that effect, then this func 6155 * can be used to determine whether the ill has become quiescent 6156 */ 6157 boolean_t 6158 ill_is_quiescent(ill_t *ill) 6159 { 6160 ipif_t *ipif; 6161 6162 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6163 6164 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6165 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6166 return (B_FALSE); 6167 } 6168 } 6169 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6170 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6171 ill->ill_mrtun_refcnt != 0) { 6172 return (B_FALSE); 6173 } 6174 return (B_TRUE); 6175 } 6176 6177 /* 6178 * This func does not prevent refcnt from increasing. But if 6179 * the caller has taken steps to that effect, then this func 6180 * can be used to determine whether the ipif has become quiescent 6181 */ 6182 static boolean_t 6183 ipif_is_quiescent(ipif_t *ipif) 6184 { 6185 ill_t *ill; 6186 6187 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6188 6189 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6190 return (B_FALSE); 6191 } 6192 6193 ill = ipif->ipif_ill; 6194 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6195 ill->ill_logical_down) { 6196 return (B_TRUE); 6197 } 6198 6199 /* This is the last ipif going down or being deleted on this ill */ 6200 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6201 return (B_FALSE); 6202 } 6203 6204 return (B_TRUE); 6205 } 6206 6207 /* 6208 * This func does not prevent refcnt from increasing. But if 6209 * the caller has taken steps to that effect, then this func 6210 * can be used to determine whether the ipifs marked with IPIF_MOVING 6211 * have become quiescent and can be moved in a failover/failback. 6212 */ 6213 static ipif_t * 6214 ill_quiescent_to_move(ill_t *ill) 6215 { 6216 ipif_t *ipif; 6217 6218 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6219 6220 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6221 if (ipif->ipif_state_flags & IPIF_MOVING) { 6222 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6223 return (ipif); 6224 } 6225 } 6226 } 6227 return (NULL); 6228 } 6229 6230 /* 6231 * The ipif/ill/ire has been refreled. Do the tail processing. 6232 * Determine if the ipif or ill in question has become quiescent and if so 6233 * wakeup close and/or restart any queued pending ioctl that is waiting 6234 * for the ipif_down (or ill_down) 6235 */ 6236 void 6237 ipif_ill_refrele_tail(ill_t *ill) 6238 { 6239 mblk_t *mp; 6240 conn_t *connp; 6241 ipsq_t *ipsq; 6242 ipif_t *ipif; 6243 dl_notify_ind_t *dlindp; 6244 6245 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6246 6247 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6248 ill_is_quiescent(ill)) { 6249 /* ill_close may be waiting */ 6250 cv_broadcast(&ill->ill_cv); 6251 } 6252 6253 /* ipsq can't change because ill_lock is held */ 6254 ipsq = ill->ill_phyint->phyint_ipsq; 6255 if (ipsq->ipsq_waitfor == 0) { 6256 /* Not waiting for anything, just return. */ 6257 mutex_exit(&ill->ill_lock); 6258 return; 6259 } 6260 ASSERT(ipsq->ipsq_pending_mp != NULL && 6261 ipsq->ipsq_pending_ipif != NULL); 6262 /* 6263 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6264 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6265 * be zero for restarting an ioctl that ends up downing the ill. 6266 */ 6267 ipif = ipsq->ipsq_pending_ipif; 6268 if (ipif->ipif_ill != ill) { 6269 /* The ioctl is pending on some other ill. */ 6270 mutex_exit(&ill->ill_lock); 6271 return; 6272 } 6273 6274 switch (ipsq->ipsq_waitfor) { 6275 case IPIF_DOWN: 6276 case IPIF_FREE: 6277 if (!ipif_is_quiescent(ipif)) { 6278 mutex_exit(&ill->ill_lock); 6279 return; 6280 } 6281 break; 6282 6283 case ILL_DOWN: 6284 case ILL_FREE: 6285 /* 6286 * case ILL_FREE arises only for loopback. otherwise ill_delete 6287 * waits synchronously in ip_close, and no message is queued in 6288 * ipsq_pending_mp at all in this case 6289 */ 6290 if (!ill_is_quiescent(ill)) { 6291 mutex_exit(&ill->ill_lock); 6292 return; 6293 } 6294 6295 break; 6296 6297 case ILL_MOVE_OK: 6298 if (ill_quiescent_to_move(ill) != NULL) { 6299 mutex_exit(&ill->ill_lock); 6300 return; 6301 } 6302 6303 break; 6304 default: 6305 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6306 (void *)ipsq, ipsq->ipsq_waitfor); 6307 } 6308 6309 /* 6310 * Incr refcnt for the qwriter_ip call below which 6311 * does a refrele 6312 */ 6313 ill_refhold_locked(ill); 6314 mutex_exit(&ill->ill_lock); 6315 6316 mp = ipsq_pending_mp_get(ipsq, &connp); 6317 ASSERT(mp != NULL); 6318 6319 switch (mp->b_datap->db_type) { 6320 case M_PCPROTO: 6321 case M_PROTO: 6322 /* 6323 * For now, only DL_NOTIFY_IND messages can use this facility. 6324 */ 6325 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6326 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6327 6328 switch (dlindp->dl_notification) { 6329 case DL_NOTE_PHYS_ADDR: 6330 qwriter_ip(NULL, ill, ill->ill_rq, mp, 6331 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6332 return; 6333 default: 6334 ASSERT(0); 6335 } 6336 break; 6337 6338 case M_ERROR: 6339 case M_HANGUP: 6340 qwriter_ip(NULL, ill, ill->ill_rq, mp, ipif_all_down_tail, 6341 CUR_OP, B_TRUE); 6342 return; 6343 6344 case M_IOCTL: 6345 case M_IOCDATA: 6346 qwriter_ip(NULL, ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6347 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6348 return; 6349 6350 default: 6351 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6352 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6353 } 6354 } 6355 6356 #ifdef ILL_DEBUG 6357 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6358 void 6359 th_trace_rrecord(th_trace_t *th_trace) 6360 { 6361 tr_buf_t *tr_buf; 6362 uint_t lastref; 6363 6364 lastref = th_trace->th_trace_lastref; 6365 lastref++; 6366 if (lastref == TR_BUF_MAX) 6367 lastref = 0; 6368 th_trace->th_trace_lastref = lastref; 6369 tr_buf = &th_trace->th_trbuf[lastref]; 6370 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6371 } 6372 6373 th_trace_t * 6374 th_trace_ipif_lookup(ipif_t *ipif) 6375 { 6376 int bucket_id; 6377 th_trace_t *th_trace; 6378 6379 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6380 6381 bucket_id = IP_TR_HASH(curthread); 6382 ASSERT(bucket_id < IP_TR_HASH_MAX); 6383 6384 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6385 th_trace = th_trace->th_next) { 6386 if (th_trace->th_id == curthread) 6387 return (th_trace); 6388 } 6389 return (NULL); 6390 } 6391 6392 void 6393 ipif_trace_ref(ipif_t *ipif) 6394 { 6395 int bucket_id; 6396 th_trace_t *th_trace; 6397 6398 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6399 6400 if (ipif->ipif_trace_disable) 6401 return; 6402 6403 /* 6404 * Attempt to locate the trace buffer for the curthread. 6405 * If it does not exist, then allocate a new trace buffer 6406 * and link it in list of trace bufs for this ipif, at the head 6407 */ 6408 th_trace = th_trace_ipif_lookup(ipif); 6409 if (th_trace == NULL) { 6410 bucket_id = IP_TR_HASH(curthread); 6411 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6412 KM_NOSLEEP); 6413 if (th_trace == NULL) { 6414 ipif->ipif_trace_disable = B_TRUE; 6415 ipif_trace_cleanup(ipif); 6416 return; 6417 } 6418 th_trace->th_id = curthread; 6419 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6420 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6421 if (th_trace->th_next != NULL) 6422 th_trace->th_next->th_prev = &th_trace->th_next; 6423 ipif->ipif_trace[bucket_id] = th_trace; 6424 } 6425 ASSERT(th_trace->th_refcnt >= 0 && 6426 th_trace->th_refcnt < TR_BUF_MAX -1); 6427 th_trace->th_refcnt++; 6428 th_trace_rrecord(th_trace); 6429 } 6430 6431 void 6432 ipif_untrace_ref(ipif_t *ipif) 6433 { 6434 th_trace_t *th_trace; 6435 6436 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6437 6438 if (ipif->ipif_trace_disable) 6439 return; 6440 th_trace = th_trace_ipif_lookup(ipif); 6441 ASSERT(th_trace != NULL); 6442 ASSERT(th_trace->th_refcnt > 0); 6443 6444 th_trace->th_refcnt--; 6445 th_trace_rrecord(th_trace); 6446 } 6447 6448 th_trace_t * 6449 th_trace_ill_lookup(ill_t *ill) 6450 { 6451 th_trace_t *th_trace; 6452 int bucket_id; 6453 6454 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6455 6456 bucket_id = IP_TR_HASH(curthread); 6457 ASSERT(bucket_id < IP_TR_HASH_MAX); 6458 6459 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6460 th_trace = th_trace->th_next) { 6461 if (th_trace->th_id == curthread) 6462 return (th_trace); 6463 } 6464 return (NULL); 6465 } 6466 6467 void 6468 ill_trace_ref(ill_t *ill) 6469 { 6470 int bucket_id; 6471 th_trace_t *th_trace; 6472 6473 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6474 if (ill->ill_trace_disable) 6475 return; 6476 /* 6477 * Attempt to locate the trace buffer for the curthread. 6478 * If it does not exist, then allocate a new trace buffer 6479 * and link it in list of trace bufs for this ill, at the head 6480 */ 6481 th_trace = th_trace_ill_lookup(ill); 6482 if (th_trace == NULL) { 6483 bucket_id = IP_TR_HASH(curthread); 6484 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6485 KM_NOSLEEP); 6486 if (th_trace == NULL) { 6487 ill->ill_trace_disable = B_TRUE; 6488 ill_trace_cleanup(ill); 6489 return; 6490 } 6491 th_trace->th_id = curthread; 6492 th_trace->th_next = ill->ill_trace[bucket_id]; 6493 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6494 if (th_trace->th_next != NULL) 6495 th_trace->th_next->th_prev = &th_trace->th_next; 6496 ill->ill_trace[bucket_id] = th_trace; 6497 } 6498 ASSERT(th_trace->th_refcnt >= 0 && 6499 th_trace->th_refcnt < TR_BUF_MAX - 1); 6500 6501 th_trace->th_refcnt++; 6502 th_trace_rrecord(th_trace); 6503 } 6504 6505 void 6506 ill_untrace_ref(ill_t *ill) 6507 { 6508 th_trace_t *th_trace; 6509 6510 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6511 6512 if (ill->ill_trace_disable) 6513 return; 6514 th_trace = th_trace_ill_lookup(ill); 6515 ASSERT(th_trace != NULL); 6516 ASSERT(th_trace->th_refcnt > 0); 6517 6518 th_trace->th_refcnt--; 6519 th_trace_rrecord(th_trace); 6520 } 6521 6522 /* 6523 * Verify that this thread has no refs to the ipif and free 6524 * the trace buffers 6525 */ 6526 /* ARGSUSED */ 6527 void 6528 ipif_thread_exit(ipif_t *ipif, void *dummy) 6529 { 6530 th_trace_t *th_trace; 6531 6532 mutex_enter(&ipif->ipif_ill->ill_lock); 6533 6534 th_trace = th_trace_ipif_lookup(ipif); 6535 if (th_trace == NULL) { 6536 mutex_exit(&ipif->ipif_ill->ill_lock); 6537 return; 6538 } 6539 ASSERT(th_trace->th_refcnt == 0); 6540 /* unlink th_trace and free it */ 6541 *th_trace->th_prev = th_trace->th_next; 6542 if (th_trace->th_next != NULL) 6543 th_trace->th_next->th_prev = th_trace->th_prev; 6544 th_trace->th_next = NULL; 6545 th_trace->th_prev = NULL; 6546 kmem_free(th_trace, sizeof (th_trace_t)); 6547 6548 mutex_exit(&ipif->ipif_ill->ill_lock); 6549 } 6550 6551 /* 6552 * Verify that this thread has no refs to the ill and free 6553 * the trace buffers 6554 */ 6555 /* ARGSUSED */ 6556 void 6557 ill_thread_exit(ill_t *ill, void *dummy) 6558 { 6559 th_trace_t *th_trace; 6560 6561 mutex_enter(&ill->ill_lock); 6562 6563 th_trace = th_trace_ill_lookup(ill); 6564 if (th_trace == NULL) { 6565 mutex_exit(&ill->ill_lock); 6566 return; 6567 } 6568 ASSERT(th_trace->th_refcnt == 0); 6569 /* unlink th_trace and free it */ 6570 *th_trace->th_prev = th_trace->th_next; 6571 if (th_trace->th_next != NULL) 6572 th_trace->th_next->th_prev = th_trace->th_prev; 6573 th_trace->th_next = NULL; 6574 th_trace->th_prev = NULL; 6575 kmem_free(th_trace, sizeof (th_trace_t)); 6576 6577 mutex_exit(&ill->ill_lock); 6578 } 6579 #endif 6580 6581 #ifdef ILL_DEBUG 6582 void 6583 ip_thread_exit(ip_stack_t *ipst) 6584 { 6585 ill_t *ill; 6586 ipif_t *ipif; 6587 ill_walk_context_t ctx; 6588 6589 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6590 ill = ILL_START_WALK_ALL(&ctx, ipst); 6591 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6592 for (ipif = ill->ill_ipif; ipif != NULL; 6593 ipif = ipif->ipif_next) { 6594 ipif_thread_exit(ipif, NULL); 6595 } 6596 ill_thread_exit(ill, NULL); 6597 } 6598 rw_exit(&ipst->ips_ill_g_lock); 6599 6600 ire_walk(ire_thread_exit, NULL, ipst); 6601 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6602 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6603 } 6604 6605 /* 6606 * Called when ipif is unplumbed or when memory alloc fails 6607 */ 6608 void 6609 ipif_trace_cleanup(ipif_t *ipif) 6610 { 6611 int i; 6612 th_trace_t *th_trace; 6613 th_trace_t *th_trace_next; 6614 6615 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6616 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6617 th_trace = th_trace_next) { 6618 th_trace_next = th_trace->th_next; 6619 kmem_free(th_trace, sizeof (th_trace_t)); 6620 } 6621 ipif->ipif_trace[i] = NULL; 6622 } 6623 } 6624 6625 /* 6626 * Called when ill is unplumbed or when memory alloc fails 6627 */ 6628 void 6629 ill_trace_cleanup(ill_t *ill) 6630 { 6631 int i; 6632 th_trace_t *th_trace; 6633 th_trace_t *th_trace_next; 6634 6635 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6636 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6637 th_trace = th_trace_next) { 6638 th_trace_next = th_trace->th_next; 6639 kmem_free(th_trace, sizeof (th_trace_t)); 6640 } 6641 ill->ill_trace[i] = NULL; 6642 } 6643 } 6644 6645 #else 6646 void ip_thread_exit(void) {} 6647 #endif 6648 6649 void 6650 ipif_refhold_locked(ipif_t *ipif) 6651 { 6652 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6653 ipif->ipif_refcnt++; 6654 IPIF_TRACE_REF(ipif); 6655 } 6656 6657 void 6658 ipif_refhold(ipif_t *ipif) 6659 { 6660 ill_t *ill; 6661 6662 ill = ipif->ipif_ill; 6663 mutex_enter(&ill->ill_lock); 6664 ipif->ipif_refcnt++; 6665 IPIF_TRACE_REF(ipif); 6666 mutex_exit(&ill->ill_lock); 6667 } 6668 6669 /* 6670 * Must not be called while holding any locks. Otherwise if this is 6671 * the last reference to be released there is a chance of recursive mutex 6672 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6673 * to restart an ioctl. 6674 */ 6675 void 6676 ipif_refrele(ipif_t *ipif) 6677 { 6678 ill_t *ill; 6679 6680 ill = ipif->ipif_ill; 6681 6682 mutex_enter(&ill->ill_lock); 6683 ASSERT(ipif->ipif_refcnt != 0); 6684 ipif->ipif_refcnt--; 6685 IPIF_UNTRACE_REF(ipif); 6686 if (ipif->ipif_refcnt != 0) { 6687 mutex_exit(&ill->ill_lock); 6688 return; 6689 } 6690 6691 /* Drops the ill_lock */ 6692 ipif_ill_refrele_tail(ill); 6693 } 6694 6695 ipif_t * 6696 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6697 { 6698 ipif_t *ipif; 6699 6700 mutex_enter(&ill->ill_lock); 6701 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6702 ipif != NULL; ipif = ipif->ipif_next) { 6703 if (!IPIF_CAN_LOOKUP(ipif)) 6704 continue; 6705 ipif_refhold_locked(ipif); 6706 mutex_exit(&ill->ill_lock); 6707 return (ipif); 6708 } 6709 mutex_exit(&ill->ill_lock); 6710 return (NULL); 6711 } 6712 6713 /* 6714 * TODO: make this table extendible at run time 6715 * Return a pointer to the mac type info for 'mac_type' 6716 */ 6717 static ip_m_t * 6718 ip_m_lookup(t_uscalar_t mac_type) 6719 { 6720 ip_m_t *ipm; 6721 6722 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6723 if (ipm->ip_m_mac_type == mac_type) 6724 return (ipm); 6725 return (NULL); 6726 } 6727 6728 /* 6729 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6730 * ipif_arg is passed in to associate it with the correct interface. 6731 * We may need to restart this operation if the ipif cannot be looked up 6732 * due to an exclusive operation that is currently in progress. The restart 6733 * entry point is specified by 'func' 6734 */ 6735 int 6736 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6737 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6738 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6739 ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst) 6740 { 6741 ire_t *ire; 6742 ire_t *gw_ire = NULL; 6743 ipif_t *ipif = NULL; 6744 boolean_t ipif_refheld = B_FALSE; 6745 uint_t type; 6746 int match_flags = MATCH_IRE_TYPE; 6747 int error; 6748 tsol_gc_t *gc = NULL; 6749 tsol_gcgrp_t *gcgrp = NULL; 6750 boolean_t gcgrp_xtraref = B_FALSE; 6751 6752 ip1dbg(("ip_rt_add:")); 6753 6754 if (ire_arg != NULL) 6755 *ire_arg = NULL; 6756 6757 /* 6758 * If this is the case of RTF_HOST being set, then we set the netmask 6759 * to all ones (regardless if one was supplied). 6760 */ 6761 if (flags & RTF_HOST) 6762 mask = IP_HOST_MASK; 6763 6764 /* 6765 * Prevent routes with a zero gateway from being created (since 6766 * interfaces can currently be plumbed and brought up no assigned 6767 * address). 6768 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6769 */ 6770 if (gw_addr == 0 && src_ipif == NULL) 6771 return (ENETUNREACH); 6772 /* 6773 * Get the ipif, if any, corresponding to the gw_addr 6774 */ 6775 if (gw_addr != 0) { 6776 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6777 &error, ipst); 6778 if (ipif != NULL) { 6779 if (IS_VNI(ipif->ipif_ill)) { 6780 ipif_refrele(ipif); 6781 return (EINVAL); 6782 } 6783 ipif_refheld = B_TRUE; 6784 } else if (error == EINPROGRESS) { 6785 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6786 return (EINPROGRESS); 6787 } else { 6788 error = 0; 6789 } 6790 } 6791 6792 if (ipif != NULL) { 6793 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6794 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6795 } else { 6796 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6797 } 6798 6799 /* 6800 * GateD will attempt to create routes with a loopback interface 6801 * address as the gateway and with RTF_GATEWAY set. We allow 6802 * these routes to be added, but create them as interface routes 6803 * since the gateway is an interface address. 6804 */ 6805 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6806 flags &= ~RTF_GATEWAY; 6807 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6808 mask == IP_HOST_MASK) { 6809 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6810 ALL_ZONES, NULL, match_flags, ipst); 6811 if (ire != NULL) { 6812 ire_refrele(ire); 6813 if (ipif_refheld) 6814 ipif_refrele(ipif); 6815 return (EEXIST); 6816 } 6817 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6818 "for 0x%x\n", (void *)ipif, 6819 ipif->ipif_ire_type, 6820 ntohl(ipif->ipif_lcl_addr))); 6821 ire = ire_create( 6822 (uchar_t *)&dst_addr, /* dest address */ 6823 (uchar_t *)&mask, /* mask */ 6824 (uchar_t *)&ipif->ipif_src_addr, 6825 NULL, /* no gateway */ 6826 NULL, 6827 &ipif->ipif_mtu, 6828 NULL, 6829 ipif->ipif_rq, /* recv-from queue */ 6830 NULL, /* no send-to queue */ 6831 ipif->ipif_ire_type, /* LOOPBACK */ 6832 NULL, 6833 ipif, 6834 NULL, 6835 0, 6836 0, 6837 0, 6838 (ipif->ipif_flags & IPIF_PRIVATE) ? 6839 RTF_PRIVATE : 0, 6840 &ire_uinfo_null, 6841 NULL, 6842 NULL, 6843 ipst); 6844 6845 if (ire == NULL) { 6846 if (ipif_refheld) 6847 ipif_refrele(ipif); 6848 return (ENOMEM); 6849 } 6850 error = ire_add(&ire, q, mp, func, B_FALSE); 6851 if (error == 0) 6852 goto save_ire; 6853 if (ipif_refheld) 6854 ipif_refrele(ipif); 6855 return (error); 6856 6857 } 6858 } 6859 6860 /* 6861 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6862 * and the gateway address provided is one of the system's interface 6863 * addresses. By using the routing socket interface and supplying an 6864 * RTA_IFP sockaddr with an interface index, an alternate method of 6865 * specifying an interface route to be created is available which uses 6866 * the interface index that specifies the outgoing interface rather than 6867 * the address of an outgoing interface (which may not be able to 6868 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6869 * flag, routes can be specified which not only specify the next-hop to 6870 * be used when routing to a certain prefix, but also which outgoing 6871 * interface should be used. 6872 * 6873 * Previously, interfaces would have unique addresses assigned to them 6874 * and so the address assigned to a particular interface could be used 6875 * to identify a particular interface. One exception to this was the 6876 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6877 * 6878 * With the advent of IPv6 and its link-local addresses, this 6879 * restriction was relaxed and interfaces could share addresses between 6880 * themselves. In fact, typically all of the link-local interfaces on 6881 * an IPv6 node or router will have the same link-local address. In 6882 * order to differentiate between these interfaces, the use of an 6883 * interface index is necessary and this index can be carried inside a 6884 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6885 * of using the interface index, however, is that all of the ipif's that 6886 * are part of an ill have the same index and so the RTA_IFP sockaddr 6887 * cannot be used to differentiate between ipif's (or logical 6888 * interfaces) that belong to the same ill (physical interface). 6889 * 6890 * For example, in the following case involving IPv4 interfaces and 6891 * logical interfaces 6892 * 6893 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6894 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6895 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6896 * 6897 * the ipif's corresponding to each of these interface routes can be 6898 * uniquely identified by the "gateway" (actually interface address). 6899 * 6900 * In this case involving multiple IPv6 default routes to a particular 6901 * link-local gateway, the use of RTA_IFP is necessary to specify which 6902 * default route is of interest: 6903 * 6904 * default fe80::123:4567:89ab:cdef U if0 6905 * default fe80::123:4567:89ab:cdef U if1 6906 */ 6907 6908 /* RTF_GATEWAY not set */ 6909 if (!(flags & RTF_GATEWAY)) { 6910 queue_t *stq; 6911 queue_t *rfq = NULL; 6912 ill_t *in_ill = NULL; 6913 6914 if (sp != NULL) { 6915 ip2dbg(("ip_rt_add: gateway security attributes " 6916 "cannot be set with interface route\n")); 6917 if (ipif_refheld) 6918 ipif_refrele(ipif); 6919 return (EINVAL); 6920 } 6921 6922 /* 6923 * As the interface index specified with the RTA_IFP sockaddr is 6924 * the same for all ipif's off of an ill, the matching logic 6925 * below uses MATCH_IRE_ILL if such an index was specified. 6926 * This means that routes sharing the same prefix when added 6927 * using a RTA_IFP sockaddr must have distinct interface 6928 * indices (namely, they must be on distinct ill's). 6929 * 6930 * On the other hand, since the gateway address will usually be 6931 * different for each ipif on the system, the matching logic 6932 * uses MATCH_IRE_IPIF in the case of a traditional interface 6933 * route. This means that interface routes for the same prefix 6934 * can be created if they belong to distinct ipif's and if a 6935 * RTA_IFP sockaddr is not present. 6936 */ 6937 if (ipif_arg != NULL) { 6938 if (ipif_refheld) { 6939 ipif_refrele(ipif); 6940 ipif_refheld = B_FALSE; 6941 } 6942 ipif = ipif_arg; 6943 match_flags |= MATCH_IRE_ILL; 6944 } else { 6945 /* 6946 * Check the ipif corresponding to the gw_addr 6947 */ 6948 if (ipif == NULL) 6949 return (ENETUNREACH); 6950 match_flags |= MATCH_IRE_IPIF; 6951 } 6952 ASSERT(ipif != NULL); 6953 /* 6954 * If src_ipif is not NULL, we have to create 6955 * an ire with non-null ire_in_ill value 6956 */ 6957 if (src_ipif != NULL) { 6958 in_ill = src_ipif->ipif_ill; 6959 } 6960 6961 /* 6962 * We check for an existing entry at this point. 6963 * 6964 * Since a netmask isn't passed in via the ioctl interface 6965 * (SIOCADDRT), we don't check for a matching netmask in that 6966 * case. 6967 */ 6968 if (!ioctl_msg) 6969 match_flags |= MATCH_IRE_MASK; 6970 if (src_ipif != NULL) { 6971 /* Look up in the special table */ 6972 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6973 ipif, src_ipif->ipif_ill, match_flags); 6974 } else { 6975 ire = ire_ftable_lookup(dst_addr, mask, 0, 6976 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6977 NULL, match_flags, ipst); 6978 } 6979 if (ire != NULL) { 6980 ire_refrele(ire); 6981 if (ipif_refheld) 6982 ipif_refrele(ipif); 6983 return (EEXIST); 6984 } 6985 6986 if (src_ipif != NULL) { 6987 /* 6988 * Create the special ire for the IRE table 6989 * which hangs out of ire_in_ill. This ire 6990 * is in-between IRE_CACHE and IRE_INTERFACE. 6991 * Thus rfq is non-NULL. 6992 */ 6993 rfq = ipif->ipif_rq; 6994 } 6995 /* Create the usual interface ires */ 6996 6997 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6998 ? ipif->ipif_rq : ipif->ipif_wq; 6999 7000 /* 7001 * Create a copy of the IRE_LOOPBACK, 7002 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7003 * the modified address and netmask. 7004 */ 7005 ire = ire_create( 7006 (uchar_t *)&dst_addr, 7007 (uint8_t *)&mask, 7008 (uint8_t *)&ipif->ipif_src_addr, 7009 NULL, 7010 NULL, 7011 &ipif->ipif_mtu, 7012 NULL, 7013 rfq, 7014 stq, 7015 ipif->ipif_net_type, 7016 ipif->ipif_resolver_mp, 7017 ipif, 7018 in_ill, 7019 0, 7020 0, 7021 0, 7022 flags, 7023 &ire_uinfo_null, 7024 NULL, 7025 NULL, 7026 ipst); 7027 if (ire == NULL) { 7028 if (ipif_refheld) 7029 ipif_refrele(ipif); 7030 return (ENOMEM); 7031 } 7032 7033 /* 7034 * Some software (for example, GateD and Sun Cluster) attempts 7035 * to create (what amount to) IRE_PREFIX routes with the 7036 * loopback address as the gateway. This is primarily done to 7037 * set up prefixes with the RTF_REJECT flag set (for example, 7038 * when generating aggregate routes.) 7039 * 7040 * If the IRE type (as defined by ipif->ipif_net_type) is 7041 * IRE_LOOPBACK, then we map the request into a 7042 * IRE_IF_NORESOLVER. 7043 * 7044 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7045 * routine, but rather using ire_create() directly. 7046 * 7047 */ 7048 if (ipif->ipif_net_type == IRE_LOOPBACK) 7049 ire->ire_type = IRE_IF_NORESOLVER; 7050 7051 error = ire_add(&ire, q, mp, func, B_FALSE); 7052 if (error == 0) 7053 goto save_ire; 7054 7055 /* 7056 * In the result of failure, ire_add() will have already 7057 * deleted the ire in question, so there is no need to 7058 * do that here. 7059 */ 7060 if (ipif_refheld) 7061 ipif_refrele(ipif); 7062 return (error); 7063 } 7064 if (ipif_refheld) { 7065 ipif_refrele(ipif); 7066 ipif_refheld = B_FALSE; 7067 } 7068 7069 if (src_ipif != NULL) { 7070 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 7071 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 7072 return (EINVAL); 7073 } 7074 /* 7075 * Get an interface IRE for the specified gateway. 7076 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7077 * gateway, it is currently unreachable and we fail the request 7078 * accordingly. 7079 */ 7080 ipif = ipif_arg; 7081 if (ipif_arg != NULL) 7082 match_flags |= MATCH_IRE_ILL; 7083 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7084 ALL_ZONES, 0, NULL, match_flags, ipst); 7085 if (gw_ire == NULL) 7086 return (ENETUNREACH); 7087 7088 /* 7089 * We create one of three types of IREs as a result of this request 7090 * based on the netmask. A netmask of all ones (which is automatically 7091 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7092 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7093 * created. Otherwise, an IRE_PREFIX route is created for the 7094 * destination prefix. 7095 */ 7096 if (mask == IP_HOST_MASK) 7097 type = IRE_HOST; 7098 else if (mask == 0) 7099 type = IRE_DEFAULT; 7100 else 7101 type = IRE_PREFIX; 7102 7103 /* check for a duplicate entry */ 7104 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7105 NULL, ALL_ZONES, 0, NULL, 7106 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7107 if (ire != NULL) { 7108 ire_refrele(gw_ire); 7109 ire_refrele(ire); 7110 return (EEXIST); 7111 } 7112 7113 /* Security attribute exists */ 7114 if (sp != NULL) { 7115 tsol_gcgrp_addr_t ga; 7116 7117 /* find or create the gateway credentials group */ 7118 ga.ga_af = AF_INET; 7119 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7120 7121 /* we hold reference to it upon success */ 7122 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7123 if (gcgrp == NULL) { 7124 ire_refrele(gw_ire); 7125 return (ENOMEM); 7126 } 7127 7128 /* 7129 * Create and add the security attribute to the group; a 7130 * reference to the group is made upon allocating a new 7131 * entry successfully. If it finds an already-existing 7132 * entry for the security attribute in the group, it simply 7133 * returns it and no new reference is made to the group. 7134 */ 7135 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7136 if (gc == NULL) { 7137 /* release reference held by gcgrp_lookup */ 7138 GCGRP_REFRELE(gcgrp); 7139 ire_refrele(gw_ire); 7140 return (ENOMEM); 7141 } 7142 } 7143 7144 /* Create the IRE. */ 7145 ire = ire_create( 7146 (uchar_t *)&dst_addr, /* dest address */ 7147 (uchar_t *)&mask, /* mask */ 7148 /* src address assigned by the caller? */ 7149 (uchar_t *)(((src_addr != INADDR_ANY) && 7150 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7151 (uchar_t *)&gw_addr, /* gateway address */ 7152 NULL, /* no in-srcaddress */ 7153 &gw_ire->ire_max_frag, 7154 NULL, /* no Fast Path header */ 7155 NULL, /* no recv-from queue */ 7156 NULL, /* no send-to queue */ 7157 (ushort_t)type, /* IRE type */ 7158 NULL, 7159 ipif_arg, 7160 NULL, 7161 0, 7162 0, 7163 0, 7164 flags, 7165 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7166 gc, /* security attribute */ 7167 NULL, 7168 ipst); 7169 7170 /* 7171 * The ire holds a reference to the 'gc' and the 'gc' holds a 7172 * reference to the 'gcgrp'. We can now release the extra reference 7173 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7174 */ 7175 if (gcgrp_xtraref) 7176 GCGRP_REFRELE(gcgrp); 7177 if (ire == NULL) { 7178 if (gc != NULL) 7179 GC_REFRELE(gc); 7180 ire_refrele(gw_ire); 7181 return (ENOMEM); 7182 } 7183 7184 /* 7185 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7186 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7187 */ 7188 7189 /* Add the new IRE. */ 7190 error = ire_add(&ire, q, mp, func, B_FALSE); 7191 if (error != 0) { 7192 /* 7193 * In the result of failure, ire_add() will have already 7194 * deleted the ire in question, so there is no need to 7195 * do that here. 7196 */ 7197 ire_refrele(gw_ire); 7198 return (error); 7199 } 7200 7201 if (flags & RTF_MULTIRT) { 7202 /* 7203 * Invoke the CGTP (multirouting) filtering module 7204 * to add the dst address in the filtering database. 7205 * Replicated inbound packets coming from that address 7206 * will be filtered to discard the duplicates. 7207 * It is not necessary to call the CGTP filter hook 7208 * when the dst address is a broadcast or multicast, 7209 * because an IP source address cannot be a broadcast 7210 * or a multicast. 7211 */ 7212 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7213 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7214 if (ire_dst != NULL) { 7215 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7216 ire_refrele(ire_dst); 7217 goto save_ire; 7218 } 7219 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) && 7220 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7221 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7222 ire->ire_addr, 7223 ire->ire_gateway_addr, 7224 ire->ire_src_addr, 7225 gw_ire->ire_src_addr); 7226 if (res != 0) { 7227 ire_refrele(gw_ire); 7228 ire_delete(ire); 7229 return (res); 7230 } 7231 } 7232 } 7233 7234 /* 7235 * Now that the prefix IRE entry has been created, delete any 7236 * existing gateway IRE cache entries as well as any IRE caches 7237 * using the gateway, and force them to be created through 7238 * ip_newroute. 7239 */ 7240 if (gc != NULL) { 7241 ASSERT(gcgrp != NULL); 7242 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7243 } 7244 7245 save_ire: 7246 if (gw_ire != NULL) { 7247 ire_refrele(gw_ire); 7248 } 7249 /* 7250 * We do not do save_ire for the routes added with RTA_SRCIFP 7251 * flag. This route is only added and deleted by mipagent. 7252 * So, for simplicity of design, we refrain from saving 7253 * ires that are created with srcif value. This may change 7254 * in future if we find more usage of srcifp feature. 7255 */ 7256 if (ipif != NULL && src_ipif == NULL) { 7257 /* 7258 * Save enough information so that we can recreate the IRE if 7259 * the interface goes down and then up. The metrics associated 7260 * with the route will be saved as well when rts_setmetrics() is 7261 * called after the IRE has been created. In the case where 7262 * memory cannot be allocated, none of this information will be 7263 * saved. 7264 */ 7265 ipif_save_ire(ipif, ire); 7266 } 7267 if (ioctl_msg) 7268 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7269 if (ire_arg != NULL) { 7270 /* 7271 * Store the ire that was successfully added into where ire_arg 7272 * points to so that callers don't have to look it up 7273 * themselves (but they are responsible for ire_refrele()ing 7274 * the ire when they are finished with it). 7275 */ 7276 *ire_arg = ire; 7277 } else { 7278 ire_refrele(ire); /* Held in ire_add */ 7279 } 7280 if (ipif_refheld) 7281 ipif_refrele(ipif); 7282 return (0); 7283 } 7284 7285 /* 7286 * ip_rt_delete is called to delete an IPv4 route. 7287 * ipif_arg is passed in to associate it with the correct interface. 7288 * src_ipif is passed to associate the incoming interface of the packet. 7289 * We may need to restart this operation if the ipif cannot be looked up 7290 * due to an exclusive operation that is currently in progress. The restart 7291 * entry point is specified by 'func' 7292 */ 7293 /* ARGSUSED4 */ 7294 int 7295 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7296 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7297 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 7298 ip_stack_t *ipst) 7299 { 7300 ire_t *ire = NULL; 7301 ipif_t *ipif; 7302 boolean_t ipif_refheld = B_FALSE; 7303 uint_t type; 7304 uint_t match_flags = MATCH_IRE_TYPE; 7305 int err = 0; 7306 7307 ip1dbg(("ip_rt_delete:")); 7308 /* 7309 * If this is the case of RTF_HOST being set, then we set the netmask 7310 * to all ones. Otherwise, we use the netmask if one was supplied. 7311 */ 7312 if (flags & RTF_HOST) { 7313 mask = IP_HOST_MASK; 7314 match_flags |= MATCH_IRE_MASK; 7315 } else if (rtm_addrs & RTA_NETMASK) { 7316 match_flags |= MATCH_IRE_MASK; 7317 } 7318 7319 /* 7320 * Note that RTF_GATEWAY is never set on a delete, therefore 7321 * we check if the gateway address is one of our interfaces first, 7322 * and fall back on RTF_GATEWAY routes. 7323 * 7324 * This makes it possible to delete an original 7325 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7326 * 7327 * As the interface index specified with the RTA_IFP sockaddr is the 7328 * same for all ipif's off of an ill, the matching logic below uses 7329 * MATCH_IRE_ILL if such an index was specified. This means a route 7330 * sharing the same prefix and interface index as the the route 7331 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7332 * is specified in the request. 7333 * 7334 * On the other hand, since the gateway address will usually be 7335 * different for each ipif on the system, the matching logic 7336 * uses MATCH_IRE_IPIF in the case of a traditional interface 7337 * route. This means that interface routes for the same prefix can be 7338 * uniquely identified if they belong to distinct ipif's and if a 7339 * RTA_IFP sockaddr is not present. 7340 * 7341 * For more detail on specifying routes by gateway address and by 7342 * interface index, see the comments in ip_rt_add(). 7343 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7344 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7345 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7346 * succeed. 7347 */ 7348 if (src_ipif != NULL) { 7349 if (ipif_arg == NULL && gw_addr != 0) { 7350 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7351 q, mp, func, &err, ipst); 7352 if (ipif_arg != NULL) 7353 ipif_refheld = B_TRUE; 7354 } 7355 if (ipif_arg == NULL) { 7356 err = (err == EINPROGRESS) ? err : ESRCH; 7357 return (err); 7358 } 7359 ipif = ipif_arg; 7360 } else { 7361 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7362 q, mp, func, &err, ipst); 7363 if (ipif != NULL) 7364 ipif_refheld = B_TRUE; 7365 else if (err == EINPROGRESS) 7366 return (err); 7367 else 7368 err = 0; 7369 } 7370 if (ipif != NULL) { 7371 if (ipif_arg != NULL) { 7372 if (ipif_refheld) { 7373 ipif_refrele(ipif); 7374 ipif_refheld = B_FALSE; 7375 } 7376 ipif = ipif_arg; 7377 match_flags |= MATCH_IRE_ILL; 7378 } else { 7379 match_flags |= MATCH_IRE_IPIF; 7380 } 7381 if (src_ipif != NULL) { 7382 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7383 ipif, src_ipif->ipif_ill, match_flags); 7384 } else { 7385 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7386 ire = ire_ctable_lookup(dst_addr, 0, 7387 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7388 match_flags, ipst); 7389 } 7390 if (ire == NULL) { 7391 ire = ire_ftable_lookup(dst_addr, mask, 0, 7392 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7393 NULL, match_flags, ipst); 7394 } 7395 } 7396 } 7397 7398 if (ire == NULL) { 7399 /* 7400 * At this point, the gateway address is not one of our own 7401 * addresses or a matching interface route was not found. We 7402 * set the IRE type to lookup based on whether 7403 * this is a host route, a default route or just a prefix. 7404 * 7405 * If an ipif_arg was passed in, then the lookup is based on an 7406 * interface index so MATCH_IRE_ILL is added to match_flags. 7407 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7408 * set as the route being looked up is not a traditional 7409 * interface route. 7410 * Since we do not add gateway route with srcipif, we don't 7411 * expect to find it either. 7412 */ 7413 if (src_ipif != NULL) { 7414 if (ipif_refheld) 7415 ipif_refrele(ipif); 7416 return (ESRCH); 7417 } else { 7418 match_flags &= ~MATCH_IRE_IPIF; 7419 match_flags |= MATCH_IRE_GW; 7420 if (ipif_arg != NULL) 7421 match_flags |= MATCH_IRE_ILL; 7422 if (mask == IP_HOST_MASK) 7423 type = IRE_HOST; 7424 else if (mask == 0) 7425 type = IRE_DEFAULT; 7426 else 7427 type = IRE_PREFIX; 7428 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7429 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, 7430 ipst); 7431 } 7432 } 7433 7434 if (ipif_refheld) 7435 ipif_refrele(ipif); 7436 7437 /* ipif is not refheld anymore */ 7438 if (ire == NULL) 7439 return (ESRCH); 7440 7441 if (ire->ire_flags & RTF_MULTIRT) { 7442 /* 7443 * Invoke the CGTP (multirouting) filtering module 7444 * to remove the dst address from the filtering database. 7445 * Packets coming from that address will no longer be 7446 * filtered to remove duplicates. 7447 */ 7448 if (ip_cgtp_filter_ops != NULL && 7449 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7450 err = ip_cgtp_filter_ops->cfo_del_dest_v4( 7451 ire->ire_addr, ire->ire_gateway_addr); 7452 } 7453 ip_cgtp_bcast_delete(ire, ipst); 7454 } 7455 7456 ipif = ire->ire_ipif; 7457 /* 7458 * Removing from ipif_saved_ire_mp is not necessary 7459 * when src_ipif being non-NULL. ip_rt_add does not 7460 * save the ires which src_ipif being non-NULL. 7461 */ 7462 if (ipif != NULL && src_ipif == NULL) { 7463 ipif_remove_ire(ipif, ire); 7464 } 7465 if (ioctl_msg) 7466 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7467 ire_delete(ire); 7468 ire_refrele(ire); 7469 return (err); 7470 } 7471 7472 /* 7473 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7474 */ 7475 /* ARGSUSED */ 7476 int 7477 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7478 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7479 { 7480 ipaddr_t dst_addr; 7481 ipaddr_t gw_addr; 7482 ipaddr_t mask; 7483 int error = 0; 7484 mblk_t *mp1; 7485 struct rtentry *rt; 7486 ipif_t *ipif = NULL; 7487 ip_stack_t *ipst; 7488 7489 ASSERT(q->q_next == NULL); 7490 ipst = CONNQ_TO_IPST(q); 7491 7492 ip1dbg(("ip_siocaddrt:")); 7493 /* Existence of mp1 verified in ip_wput_nondata */ 7494 mp1 = mp->b_cont->b_cont; 7495 rt = (struct rtentry *)mp1->b_rptr; 7496 7497 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7498 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7499 7500 /* 7501 * If the RTF_HOST flag is on, this is a request to assign a gateway 7502 * to a particular host address. In this case, we set the netmask to 7503 * all ones for the particular destination address. Otherwise, 7504 * determine the netmask to be used based on dst_addr and the interfaces 7505 * in use. 7506 */ 7507 if (rt->rt_flags & RTF_HOST) { 7508 mask = IP_HOST_MASK; 7509 } else { 7510 /* 7511 * Note that ip_subnet_mask returns a zero mask in the case of 7512 * default (an all-zeroes address). 7513 */ 7514 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7515 } 7516 7517 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7518 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7519 if (ipif != NULL) 7520 ipif_refrele(ipif); 7521 return (error); 7522 } 7523 7524 /* 7525 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7526 */ 7527 /* ARGSUSED */ 7528 int 7529 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7530 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7531 { 7532 ipaddr_t dst_addr; 7533 ipaddr_t gw_addr; 7534 ipaddr_t mask; 7535 int error; 7536 mblk_t *mp1; 7537 struct rtentry *rt; 7538 ipif_t *ipif = NULL; 7539 ip_stack_t *ipst; 7540 7541 ASSERT(q->q_next == NULL); 7542 ipst = CONNQ_TO_IPST(q); 7543 7544 ip1dbg(("ip_siocdelrt:")); 7545 /* Existence of mp1 verified in ip_wput_nondata */ 7546 mp1 = mp->b_cont->b_cont; 7547 rt = (struct rtentry *)mp1->b_rptr; 7548 7549 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7550 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7551 7552 /* 7553 * If the RTF_HOST flag is on, this is a request to delete a gateway 7554 * to a particular host address. In this case, we set the netmask to 7555 * all ones for the particular destination address. Otherwise, 7556 * determine the netmask to be used based on dst_addr and the interfaces 7557 * in use. 7558 */ 7559 if (rt->rt_flags & RTF_HOST) { 7560 mask = IP_HOST_MASK; 7561 } else { 7562 /* 7563 * Note that ip_subnet_mask returns a zero mask in the case of 7564 * default (an all-zeroes address). 7565 */ 7566 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7567 } 7568 7569 error = ip_rt_delete(dst_addr, mask, gw_addr, 7570 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7571 B_TRUE, q, mp, ip_process_ioctl, ipst); 7572 if (ipif != NULL) 7573 ipif_refrele(ipif); 7574 return (error); 7575 } 7576 7577 /* 7578 * Enqueue the mp onto the ipsq, chained by b_next. 7579 * b_prev stores the function to be executed later, and b_queue the queue 7580 * where this mp originated. 7581 */ 7582 void 7583 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7584 ill_t *pending_ill) 7585 { 7586 conn_t *connp = NULL; 7587 7588 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7589 ASSERT(func != NULL); 7590 7591 mp->b_queue = q; 7592 mp->b_prev = (void *)func; 7593 mp->b_next = NULL; 7594 7595 switch (type) { 7596 case CUR_OP: 7597 if (ipsq->ipsq_mptail != NULL) { 7598 ASSERT(ipsq->ipsq_mphead != NULL); 7599 ipsq->ipsq_mptail->b_next = mp; 7600 } else { 7601 ASSERT(ipsq->ipsq_mphead == NULL); 7602 ipsq->ipsq_mphead = mp; 7603 } 7604 ipsq->ipsq_mptail = mp; 7605 break; 7606 7607 case NEW_OP: 7608 if (ipsq->ipsq_xopq_mptail != NULL) { 7609 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7610 ipsq->ipsq_xopq_mptail->b_next = mp; 7611 } else { 7612 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7613 ipsq->ipsq_xopq_mphead = mp; 7614 } 7615 ipsq->ipsq_xopq_mptail = mp; 7616 break; 7617 default: 7618 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7619 } 7620 7621 if (CONN_Q(q) && pending_ill != NULL) { 7622 connp = Q_TO_CONN(q); 7623 7624 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7625 connp->conn_oper_pending_ill = pending_ill; 7626 } 7627 } 7628 7629 /* 7630 * Return the mp at the head of the ipsq. After emptying the ipsq 7631 * look at the next ioctl, if this ioctl is complete. Otherwise 7632 * return, we will resume when we complete the current ioctl. 7633 * The current ioctl will wait till it gets a response from the 7634 * driver below. 7635 */ 7636 static mblk_t * 7637 ipsq_dq(ipsq_t *ipsq) 7638 { 7639 mblk_t *mp; 7640 7641 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7642 7643 mp = ipsq->ipsq_mphead; 7644 if (mp != NULL) { 7645 ipsq->ipsq_mphead = mp->b_next; 7646 if (ipsq->ipsq_mphead == NULL) 7647 ipsq->ipsq_mptail = NULL; 7648 mp->b_next = NULL; 7649 return (mp); 7650 } 7651 if (ipsq->ipsq_current_ipif != NULL) 7652 return (NULL); 7653 mp = ipsq->ipsq_xopq_mphead; 7654 if (mp != NULL) { 7655 ipsq->ipsq_xopq_mphead = mp->b_next; 7656 if (ipsq->ipsq_xopq_mphead == NULL) 7657 ipsq->ipsq_xopq_mptail = NULL; 7658 mp->b_next = NULL; 7659 return (mp); 7660 } 7661 return (NULL); 7662 } 7663 7664 /* 7665 * Enter the ipsq corresponding to ill, by waiting synchronously till 7666 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7667 * will have to drain completely before ipsq_enter returns success. 7668 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7669 * and the ipsq_exit logic will start the next enqueued ioctl after 7670 * completion of the current ioctl. If 'force' is used, we don't wait 7671 * for the enqueued ioctls. This is needed when a conn_close wants to 7672 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7673 * of an ill can also use this option. But we dont' use it currently. 7674 */ 7675 #define ENTER_SQ_WAIT_TICKS 100 7676 boolean_t 7677 ipsq_enter(ill_t *ill, boolean_t force) 7678 { 7679 ipsq_t *ipsq; 7680 boolean_t waited_enough = B_FALSE; 7681 7682 /* 7683 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7684 * Since the <ill-ipsq> assocs could change while we wait for the 7685 * writer, it is easier to wait on a fixed global rather than try to 7686 * cv_wait on a changing ipsq. 7687 */ 7688 mutex_enter(&ill->ill_lock); 7689 for (;;) { 7690 if (ill->ill_state_flags & ILL_CONDEMNED) { 7691 mutex_exit(&ill->ill_lock); 7692 return (B_FALSE); 7693 } 7694 7695 ipsq = ill->ill_phyint->phyint_ipsq; 7696 mutex_enter(&ipsq->ipsq_lock); 7697 if (ipsq->ipsq_writer == NULL && 7698 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7699 break; 7700 } else if (ipsq->ipsq_writer != NULL) { 7701 mutex_exit(&ipsq->ipsq_lock); 7702 cv_wait(&ill->ill_cv, &ill->ill_lock); 7703 } else { 7704 mutex_exit(&ipsq->ipsq_lock); 7705 if (force) { 7706 (void) cv_timedwait(&ill->ill_cv, 7707 &ill->ill_lock, 7708 lbolt + ENTER_SQ_WAIT_TICKS); 7709 waited_enough = B_TRUE; 7710 continue; 7711 } else { 7712 cv_wait(&ill->ill_cv, &ill->ill_lock); 7713 } 7714 } 7715 } 7716 7717 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7718 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7719 ipsq->ipsq_writer = curthread; 7720 ipsq->ipsq_reentry_cnt++; 7721 #ifdef ILL_DEBUG 7722 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7723 #endif 7724 mutex_exit(&ipsq->ipsq_lock); 7725 mutex_exit(&ill->ill_lock); 7726 return (B_TRUE); 7727 } 7728 7729 /* 7730 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7731 * certain critical operations like plumbing (i.e. most set ioctls), 7732 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7733 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7734 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7735 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7736 * threads executing in the ipsq. Responses from the driver pertain to the 7737 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7738 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7739 * 7740 * If a thread does not want to reenter the ipsq when it is already writer, 7741 * it must make sure that the specified reentry point to be called later 7742 * when the ipsq is empty, nor any code path starting from the specified reentry 7743 * point must never ever try to enter the ipsq again. Otherwise it can lead 7744 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7745 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7746 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7747 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7748 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7749 * ioctl if the current ioctl has completed. If the current ioctl is still 7750 * in progress it simply returns. The current ioctl could be waiting for 7751 * a response from another module (arp_ or the driver or could be waiting for 7752 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7753 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7754 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7755 * ipsq_current_ipif is clear which happens only on ioctl completion. 7756 */ 7757 7758 /* 7759 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7760 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7761 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7762 * completion. 7763 */ 7764 ipsq_t * 7765 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7766 ipsq_func_t func, int type, boolean_t reentry_ok) 7767 { 7768 ipsq_t *ipsq; 7769 7770 /* Only 1 of ipif or ill can be specified */ 7771 ASSERT((ipif != NULL) ^ (ill != NULL)); 7772 if (ipif != NULL) 7773 ill = ipif->ipif_ill; 7774 7775 /* 7776 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7777 * ipsq of an ill can't change when ill_lock is held. 7778 */ 7779 GRAB_CONN_LOCK(q); 7780 mutex_enter(&ill->ill_lock); 7781 ipsq = ill->ill_phyint->phyint_ipsq; 7782 mutex_enter(&ipsq->ipsq_lock); 7783 7784 /* 7785 * 1. Enter the ipsq if we are already writer and reentry is ok. 7786 * (Note: If the caller does not specify reentry_ok then neither 7787 * 'func' nor any of its callees must ever attempt to enter the ipsq 7788 * again. Otherwise it can lead to an infinite loop 7789 * 2. Enter the ipsq if there is no current writer and this attempted 7790 * entry is part of the current ioctl or operation 7791 * 3. Enter the ipsq if there is no current writer and this is a new 7792 * ioctl (or operation) and the ioctl (or operation) queue is 7793 * empty and there is no ioctl (or operation) currently in progress 7794 */ 7795 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7796 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7797 ipsq->ipsq_current_ipif == NULL))) || 7798 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7799 /* Success. */ 7800 ipsq->ipsq_reentry_cnt++; 7801 ipsq->ipsq_writer = curthread; 7802 mutex_exit(&ipsq->ipsq_lock); 7803 mutex_exit(&ill->ill_lock); 7804 RELEASE_CONN_LOCK(q); 7805 #ifdef ILL_DEBUG 7806 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7807 #endif 7808 return (ipsq); 7809 } 7810 7811 ipsq_enq(ipsq, q, mp, func, type, ill); 7812 7813 mutex_exit(&ipsq->ipsq_lock); 7814 mutex_exit(&ill->ill_lock); 7815 RELEASE_CONN_LOCK(q); 7816 return (NULL); 7817 } 7818 7819 /* 7820 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7821 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7822 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7823 * completion. 7824 * 7825 * This function does a refrele on the ipif/ill. 7826 */ 7827 void 7828 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7829 ipsq_func_t func, int type, boolean_t reentry_ok) 7830 { 7831 ipsq_t *ipsq; 7832 7833 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7834 /* 7835 * Caller must have done a refhold on the ipif. ipif_refrele 7836 * happens on the passed ipif. We can do this since we are 7837 * already exclusive, or we won't access ipif henceforth, Both 7838 * this func and caller will just return if we ipsq_try_enter 7839 * fails above. This is needed because func needs to 7840 * see the correct refcount. Eg. removeif can work only then. 7841 */ 7842 if (ipif != NULL) 7843 ipif_refrele(ipif); 7844 else 7845 ill_refrele(ill); 7846 if (ipsq != NULL) { 7847 (*func)(ipsq, q, mp, NULL); 7848 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7849 } 7850 } 7851 7852 /* 7853 * If there are more than ILL_GRP_CNT ills in a group, 7854 * we use kmem alloc'd buffers, else use the stack 7855 */ 7856 #define ILL_GRP_CNT 14 7857 /* 7858 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7859 * Called by a thread that is currently exclusive on this ipsq. 7860 */ 7861 void 7862 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7863 { 7864 queue_t *q; 7865 mblk_t *mp; 7866 ipsq_func_t func; 7867 int next; 7868 ill_t **ill_list = NULL; 7869 size_t ill_list_size = 0; 7870 int cnt = 0; 7871 boolean_t need_ipsq_free = B_FALSE; 7872 ip_stack_t *ipst = ipsq->ipsq_ipst; 7873 7874 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7875 mutex_enter(&ipsq->ipsq_lock); 7876 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7877 if (ipsq->ipsq_reentry_cnt != 1) { 7878 ipsq->ipsq_reentry_cnt--; 7879 mutex_exit(&ipsq->ipsq_lock); 7880 return; 7881 } 7882 7883 mp = ipsq_dq(ipsq); 7884 while (mp != NULL) { 7885 again: 7886 mutex_exit(&ipsq->ipsq_lock); 7887 func = (ipsq_func_t)mp->b_prev; 7888 q = (queue_t *)mp->b_queue; 7889 mp->b_prev = NULL; 7890 mp->b_queue = NULL; 7891 7892 /* 7893 * If 'q' is an conn queue, it is valid, since we did a 7894 * a refhold on the connp, at the start of the ioctl. 7895 * If 'q' is an ill queue, it is valid, since close of an 7896 * ill will clean up the 'ipsq'. 7897 */ 7898 (*func)(ipsq, q, mp, NULL); 7899 7900 mutex_enter(&ipsq->ipsq_lock); 7901 mp = ipsq_dq(ipsq); 7902 } 7903 7904 mutex_exit(&ipsq->ipsq_lock); 7905 7906 /* 7907 * Need to grab the locks in the right order. Need to 7908 * atomically check (under ipsq_lock) that there are no 7909 * messages before relinquishing the ipsq. Also need to 7910 * atomically wakeup waiters on ill_cv while holding ill_lock. 7911 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7912 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7913 * to grab ill_g_lock as writer. 7914 */ 7915 rw_enter(&ipst->ips_ill_g_lock, 7916 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7917 7918 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7919 if (ipsq->ipsq_refs != 0) { 7920 /* At most 2 ills v4/v6 per phyint */ 7921 cnt = ipsq->ipsq_refs << 1; 7922 ill_list_size = cnt * sizeof (ill_t *); 7923 /* 7924 * If memory allocation fails, we will do the split 7925 * the next time ipsq_exit is called for whatever reason. 7926 * As long as the ipsq_split flag is set the need to 7927 * split is remembered. 7928 */ 7929 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7930 if (ill_list != NULL) 7931 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7932 } 7933 mutex_enter(&ipsq->ipsq_lock); 7934 mp = ipsq_dq(ipsq); 7935 if (mp != NULL) { 7936 /* oops, some message has landed up, we can't get out */ 7937 if (ill_list != NULL) 7938 ill_unlock_ills(ill_list, cnt); 7939 rw_exit(&ipst->ips_ill_g_lock); 7940 if (ill_list != NULL) 7941 kmem_free(ill_list, ill_list_size); 7942 ill_list = NULL; 7943 ill_list_size = 0; 7944 cnt = 0; 7945 goto again; 7946 } 7947 7948 /* 7949 * Split only if no ioctl is pending and if memory alloc succeeded 7950 * above. 7951 */ 7952 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7953 ill_list != NULL) { 7954 /* 7955 * No new ill can join this ipsq since we are holding the 7956 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7957 * ipsq. ill_split_ipsq may fail due to memory shortage. 7958 * If so we will retry on the next ipsq_exit. 7959 */ 7960 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7961 } 7962 7963 /* 7964 * We are holding the ipsq lock, hence no new messages can 7965 * land up on the ipsq, and there are no messages currently. 7966 * Now safe to get out. Wake up waiters and relinquish ipsq 7967 * atomically while holding ill locks. 7968 */ 7969 ipsq->ipsq_writer = NULL; 7970 ipsq->ipsq_reentry_cnt--; 7971 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7972 #ifdef ILL_DEBUG 7973 ipsq->ipsq_depth = 0; 7974 #endif 7975 mutex_exit(&ipsq->ipsq_lock); 7976 /* 7977 * For IPMP this should wake up all ills in this ipsq. 7978 * We need to hold the ill_lock while waking up waiters to 7979 * avoid missed wakeups. But there is no need to acquire all 7980 * the ill locks and then wakeup. If we have not acquired all 7981 * the locks (due to memory failure above) ill_signal_ipsq_ills 7982 * wakes up ills one at a time after getting the right ill_lock 7983 */ 7984 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7985 if (ill_list != NULL) 7986 ill_unlock_ills(ill_list, cnt); 7987 if (ipsq->ipsq_refs == 0) 7988 need_ipsq_free = B_TRUE; 7989 rw_exit(&ipst->ips_ill_g_lock); 7990 if (ill_list != 0) 7991 kmem_free(ill_list, ill_list_size); 7992 7993 if (need_ipsq_free) { 7994 /* 7995 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7996 * looked up. ipsq can be looked up only thru ill or phyint 7997 * and there are no ills/phyint on this ipsq. 7998 */ 7999 ipsq_delete(ipsq); 8000 } 8001 /* 8002 * Now start any igmp or mld timers that could not be started 8003 * while inside the ipsq. The timers can't be started while inside 8004 * the ipsq, since igmp_start_timers may need to call untimeout() 8005 * which can't be done while holding a lock i.e. the ipsq. Otherwise 8006 * there could be a deadlock since the timeout handlers 8007 * mld_timeout_handler / igmp_timeout_handler also synchronously 8008 * wait in ipsq_enter() trying to get the ipsq. 8009 * 8010 * However there is one exception to the above. If this thread is 8011 * itself the igmp/mld timeout handler thread, then we don't want 8012 * to start any new timer until the current handler is done. The 8013 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8014 * all others pass B_TRUE. 8015 */ 8016 if (start_igmp_timer) { 8017 mutex_enter(&ipst->ips_igmp_timer_lock); 8018 next = ipst->ips_igmp_deferred_next; 8019 ipst->ips_igmp_deferred_next = INFINITY; 8020 mutex_exit(&ipst->ips_igmp_timer_lock); 8021 8022 if (next != INFINITY) 8023 igmp_start_timers(next, ipst); 8024 } 8025 8026 if (start_mld_timer) { 8027 mutex_enter(&ipst->ips_mld_timer_lock); 8028 next = ipst->ips_mld_deferred_next; 8029 ipst->ips_mld_deferred_next = INFINITY; 8030 mutex_exit(&ipst->ips_mld_timer_lock); 8031 8032 if (next != INFINITY) 8033 mld_start_timers(next, ipst); 8034 } 8035 } 8036 8037 /* 8038 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8039 * and `ioccmd'. 8040 */ 8041 void 8042 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8043 { 8044 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8045 8046 mutex_enter(&ipsq->ipsq_lock); 8047 ASSERT(ipsq->ipsq_current_ipif == NULL); 8048 ASSERT(ipsq->ipsq_current_ioctl == 0); 8049 ipsq->ipsq_current_ipif = ipif; 8050 ipsq->ipsq_current_ioctl = ioccmd; 8051 mutex_exit(&ipsq->ipsq_lock); 8052 } 8053 8054 /* 8055 * Finish the current exclusive operation on `ipsq'. Note that other 8056 * operations will not be able to proceed until an ipsq_exit() is done. 8057 */ 8058 void 8059 ipsq_current_finish(ipsq_t *ipsq) 8060 { 8061 ipif_t *ipif = ipsq->ipsq_current_ipif; 8062 hook_nic_event_t *info; 8063 8064 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8065 8066 /* 8067 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8068 * (but we're careful to never set IPIF_CHANGING in that case). 8069 */ 8070 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8071 mutex_enter(&ipif->ipif_ill->ill_lock); 8072 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8073 /* 8074 * Unhook the nic event message from the ill and enqueue it 8075 * into the nic event taskq. 8076 */ 8077 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 8078 if (ddi_taskq_dispatch(eventq_queue_nic, 8079 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 8080 ip2dbg(("ipsq_current_finish: " 8081 "ddi_taskq_dispatch failed\n")); 8082 if (info->hne_data != NULL) 8083 kmem_free(info->hne_data, 8084 info->hne_datalen); 8085 kmem_free(info, sizeof (hook_nic_event_t)); 8086 } 8087 ipif->ipif_ill->ill_nic_event_info = NULL; 8088 } 8089 mutex_exit(&ipif->ipif_ill->ill_lock); 8090 } 8091 8092 mutex_enter(&ipsq->ipsq_lock); 8093 ASSERT(ipsq->ipsq_current_ipif != NULL); 8094 ipsq->ipsq_current_ipif = NULL; 8095 ipsq->ipsq_current_ioctl = 0; 8096 mutex_exit(&ipsq->ipsq_lock); 8097 } 8098 8099 /* 8100 * The ill is closing. Flush all messages on the ipsq that originated 8101 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8102 * for this ill since ipsq_enter could not have entered until then. 8103 * New messages can't be queued since the CONDEMNED flag is set. 8104 */ 8105 static void 8106 ipsq_flush(ill_t *ill) 8107 { 8108 queue_t *q; 8109 mblk_t *prev; 8110 mblk_t *mp; 8111 mblk_t *mp_next; 8112 ipsq_t *ipsq; 8113 8114 ASSERT(IAM_WRITER_ILL(ill)); 8115 ipsq = ill->ill_phyint->phyint_ipsq; 8116 /* 8117 * Flush any messages sent up by the driver. 8118 */ 8119 mutex_enter(&ipsq->ipsq_lock); 8120 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8121 mp_next = mp->b_next; 8122 q = mp->b_queue; 8123 if (q == ill->ill_rq || q == ill->ill_wq) { 8124 /* Remove the mp from the ipsq */ 8125 if (prev == NULL) 8126 ipsq->ipsq_mphead = mp->b_next; 8127 else 8128 prev->b_next = mp->b_next; 8129 if (ipsq->ipsq_mptail == mp) { 8130 ASSERT(mp_next == NULL); 8131 ipsq->ipsq_mptail = prev; 8132 } 8133 inet_freemsg(mp); 8134 } else { 8135 prev = mp; 8136 } 8137 } 8138 mutex_exit(&ipsq->ipsq_lock); 8139 (void) ipsq_pending_mp_cleanup(ill, NULL); 8140 ipsq_xopq_mp_cleanup(ill, NULL); 8141 ill_pending_mp_cleanup(ill); 8142 } 8143 8144 /* 8145 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 8146 * The real cleanup happens behind the squeue via ip_squeue_clean function but 8147 * we need to protect ourselfs from 2 threads trying to cleanup at the same 8148 * time (possible with one port going down for aggr and someone tearing down the 8149 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 8150 * to indicate when the cleanup has started (1 ref) and when the cleanup 8151 * is done (0 ref). When a new ring gets assigned to squeue, we start by 8152 * putting 2 ref on ill_inuse_ref. 8153 */ 8154 static void 8155 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 8156 { 8157 conn_t *connp; 8158 squeue_t *sqp; 8159 mblk_t *mp; 8160 8161 ASSERT(rx_ring != NULL); 8162 8163 /* Just clean one squeue */ 8164 mutex_enter(&ill->ill_lock); 8165 /* 8166 * Reset the ILL_SOFT_RING_ASSIGN bit so that 8167 * ip_squeue_soft_ring_affinty() will not go 8168 * ahead with assigning rings. 8169 */ 8170 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 8171 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 8172 /* Some operations pending on the ring. Wait */ 8173 cv_wait(&ill->ill_cv, &ill->ill_lock); 8174 8175 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 8176 /* 8177 * Someone already trying to clean 8178 * this squeue or its already been cleaned. 8179 */ 8180 mutex_exit(&ill->ill_lock); 8181 return; 8182 } 8183 sqp = rx_ring->rr_sqp; 8184 8185 if (sqp == NULL) { 8186 /* 8187 * The rx_ring never had a squeue assigned to it. 8188 * We are under ill_lock so we can clean it up 8189 * here itself since no one can get to it. 8190 */ 8191 rx_ring->rr_blank = NULL; 8192 rx_ring->rr_handle = NULL; 8193 rx_ring->rr_sqp = NULL; 8194 rx_ring->rr_ring_state = ILL_RING_FREE; 8195 mutex_exit(&ill->ill_lock); 8196 return; 8197 } 8198 8199 /* Set the state that its being cleaned */ 8200 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 8201 ASSERT(sqp != NULL); 8202 mutex_exit(&ill->ill_lock); 8203 8204 /* 8205 * Use the preallocated ill_unbind_conn for this purpose 8206 */ 8207 connp = ill->ill_dls_capab->ill_unbind_conn; 8208 8209 ASSERT(!connp->conn_tcp->tcp_closemp.b_prev); 8210 TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15); 8211 if (connp->conn_tcp->tcp_closemp.b_prev == NULL) 8212 connp->conn_tcp->tcp_closemp_used = 1; 8213 else 8214 connp->conn_tcp->tcp_closemp_used++; 8215 mp = &connp->conn_tcp->tcp_closemp; 8216 CONN_INC_REF(connp); 8217 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 8218 8219 mutex_enter(&ill->ill_lock); 8220 while (rx_ring->rr_ring_state != ILL_RING_FREE) 8221 cv_wait(&ill->ill_cv, &ill->ill_lock); 8222 8223 mutex_exit(&ill->ill_lock); 8224 } 8225 8226 static void 8227 ipsq_clean_all(ill_t *ill) 8228 { 8229 int idx; 8230 8231 /* 8232 * No need to clean if poll_capab isn't set for this ill 8233 */ 8234 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 8235 return; 8236 8237 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 8238 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 8239 ipsq_clean_ring(ill, ipr); 8240 } 8241 8242 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 8243 } 8244 8245 /* ARGSUSED */ 8246 int 8247 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8248 ip_ioctl_cmd_t *ipip, void *ifreq) 8249 { 8250 ill_t *ill; 8251 struct lifreq *lifr = (struct lifreq *)ifreq; 8252 boolean_t isv6; 8253 conn_t *connp; 8254 ip_stack_t *ipst; 8255 8256 connp = Q_TO_CONN(q); 8257 ipst = connp->conn_netstack->netstack_ip; 8258 isv6 = connp->conn_af_isv6; 8259 /* 8260 * Set original index. 8261 * Failover and failback move logical interfaces 8262 * from one physical interface to another. The 8263 * original index indicates the parent of a logical 8264 * interface, in other words, the physical interface 8265 * the logical interface will be moved back to on 8266 * failback. 8267 */ 8268 8269 /* 8270 * Don't allow the original index to be changed 8271 * for non-failover addresses, autoconfigured 8272 * addresses, or IPv6 link local addresses. 8273 */ 8274 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8275 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8276 return (EINVAL); 8277 } 8278 /* 8279 * The new original index must be in use by some 8280 * physical interface. 8281 */ 8282 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8283 NULL, NULL, ipst); 8284 if (ill == NULL) 8285 return (ENXIO); 8286 ill_refrele(ill); 8287 8288 ipif->ipif_orig_ifindex = lifr->lifr_index; 8289 /* 8290 * When this ipif gets failed back, don't 8291 * preserve the original id, as it is no 8292 * longer applicable. 8293 */ 8294 ipif->ipif_orig_ipifid = 0; 8295 /* 8296 * For IPv4, change the original index of any 8297 * multicast addresses associated with the 8298 * ipif to the new value. 8299 */ 8300 if (!isv6) { 8301 ilm_t *ilm; 8302 8303 mutex_enter(&ipif->ipif_ill->ill_lock); 8304 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8305 ilm = ilm->ilm_next) { 8306 if (ilm->ilm_ipif == ipif) { 8307 ilm->ilm_orig_ifindex = lifr->lifr_index; 8308 } 8309 } 8310 mutex_exit(&ipif->ipif_ill->ill_lock); 8311 } 8312 return (0); 8313 } 8314 8315 /* ARGSUSED */ 8316 int 8317 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8318 ip_ioctl_cmd_t *ipip, void *ifreq) 8319 { 8320 struct lifreq *lifr = (struct lifreq *)ifreq; 8321 8322 /* 8323 * Get the original interface index i.e the one 8324 * before FAILOVER if it ever happened. 8325 */ 8326 lifr->lifr_index = ipif->ipif_orig_ifindex; 8327 return (0); 8328 } 8329 8330 /* 8331 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8332 * refhold and return the associated ipif 8333 */ 8334 int 8335 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8336 { 8337 boolean_t exists; 8338 struct iftun_req *ta; 8339 ipif_t *ipif; 8340 ill_t *ill; 8341 boolean_t isv6; 8342 mblk_t *mp1; 8343 int error; 8344 conn_t *connp; 8345 ip_stack_t *ipst; 8346 8347 /* Existence verified in ip_wput_nondata */ 8348 mp1 = mp->b_cont->b_cont; 8349 ta = (struct iftun_req *)mp1->b_rptr; 8350 /* 8351 * Null terminate the string to protect against buffer 8352 * overrun. String was generated by user code and may not 8353 * be trusted. 8354 */ 8355 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8356 8357 connp = Q_TO_CONN(q); 8358 isv6 = connp->conn_af_isv6; 8359 ipst = connp->conn_netstack->netstack_ip; 8360 8361 /* Disallows implicit create */ 8362 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8363 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8364 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8365 if (ipif == NULL) 8366 return (error); 8367 8368 if (ipif->ipif_id != 0) { 8369 /* 8370 * We really don't want to set/get tunnel parameters 8371 * on virtual tunnel interfaces. Only allow the 8372 * base tunnel to do these. 8373 */ 8374 ipif_refrele(ipif); 8375 return (EINVAL); 8376 } 8377 8378 /* 8379 * Send down to tunnel mod for ioctl processing. 8380 * Will finish ioctl in ip_rput_other(). 8381 */ 8382 ill = ipif->ipif_ill; 8383 if (ill->ill_net_type == IRE_LOOPBACK) { 8384 ipif_refrele(ipif); 8385 return (EOPNOTSUPP); 8386 } 8387 8388 if (ill->ill_wq == NULL) { 8389 ipif_refrele(ipif); 8390 return (ENXIO); 8391 } 8392 /* 8393 * Mark the ioctl as coming from an IPv6 interface for 8394 * tun's convenience. 8395 */ 8396 if (ill->ill_isv6) 8397 ta->ifta_flags |= 0x80000000; 8398 *ipifp = ipif; 8399 return (0); 8400 } 8401 8402 /* 8403 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8404 * and return the associated ipif. 8405 * Return value: 8406 * Non zero: An error has occurred. ci may not be filled out. 8407 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8408 * a held ipif in ci.ci_ipif. 8409 */ 8410 int 8411 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8412 cmd_info_t *ci, ipsq_func_t func) 8413 { 8414 sin_t *sin; 8415 sin6_t *sin6; 8416 char *name; 8417 struct ifreq *ifr; 8418 struct lifreq *lifr; 8419 ipif_t *ipif = NULL; 8420 ill_t *ill; 8421 conn_t *connp; 8422 boolean_t isv6; 8423 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8424 boolean_t exists; 8425 int err; 8426 mblk_t *mp1; 8427 zoneid_t zoneid; 8428 ip_stack_t *ipst; 8429 8430 if (q->q_next != NULL) { 8431 ill = (ill_t *)q->q_ptr; 8432 isv6 = ill->ill_isv6; 8433 connp = NULL; 8434 zoneid = ALL_ZONES; 8435 ipst = ill->ill_ipst; 8436 } else { 8437 ill = NULL; 8438 connp = Q_TO_CONN(q); 8439 isv6 = connp->conn_af_isv6; 8440 zoneid = connp->conn_zoneid; 8441 if (zoneid == GLOBAL_ZONEID) { 8442 /* global zone can access ipifs in all zones */ 8443 zoneid = ALL_ZONES; 8444 } 8445 ipst = connp->conn_netstack->netstack_ip; 8446 } 8447 8448 /* Has been checked in ip_wput_nondata */ 8449 mp1 = mp->b_cont->b_cont; 8450 8451 8452 if (cmd_type == IF_CMD) { 8453 /* This a old style SIOC[GS]IF* command */ 8454 ifr = (struct ifreq *)mp1->b_rptr; 8455 /* 8456 * Null terminate the string to protect against buffer 8457 * overrun. String was generated by user code and may not 8458 * be trusted. 8459 */ 8460 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8461 sin = (sin_t *)&ifr->ifr_addr; 8462 name = ifr->ifr_name; 8463 ci->ci_sin = sin; 8464 ci->ci_sin6 = NULL; 8465 ci->ci_lifr = (struct lifreq *)ifr; 8466 } else { 8467 /* This a new style SIOC[GS]LIF* command */ 8468 ASSERT(cmd_type == LIF_CMD); 8469 lifr = (struct lifreq *)mp1->b_rptr; 8470 /* 8471 * Null terminate the string to protect against buffer 8472 * overrun. String was generated by user code and may not 8473 * be trusted. 8474 */ 8475 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8476 name = lifr->lifr_name; 8477 sin = (sin_t *)&lifr->lifr_addr; 8478 sin6 = (sin6_t *)&lifr->lifr_addr; 8479 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8480 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8481 LIFNAMSIZ); 8482 } 8483 ci->ci_sin = sin; 8484 ci->ci_sin6 = sin6; 8485 ci->ci_lifr = lifr; 8486 } 8487 8488 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8489 /* 8490 * The ioctl will be failed if the ioctl comes down 8491 * an conn stream 8492 */ 8493 if (ill == NULL) { 8494 /* 8495 * Not an ill queue, return EINVAL same as the 8496 * old error code. 8497 */ 8498 return (ENXIO); 8499 } 8500 ipif = ill->ill_ipif; 8501 ipif_refhold(ipif); 8502 } else { 8503 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8504 &exists, isv6, zoneid, 8505 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8506 ipst); 8507 if (ipif == NULL) { 8508 if (err == EINPROGRESS) 8509 return (err); 8510 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8511 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8512 /* 8513 * Need to try both v4 and v6 since this 8514 * ioctl can come down either v4 or v6 8515 * socket. The lifreq.lifr_family passed 8516 * down by this ioctl is AF_UNSPEC. 8517 */ 8518 ipif = ipif_lookup_on_name(name, 8519 mi_strlen(name), B_FALSE, &exists, !isv6, 8520 zoneid, (connp == NULL) ? q : 8521 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8522 if (err == EINPROGRESS) 8523 return (err); 8524 } 8525 err = 0; /* Ensure we don't use it below */ 8526 } 8527 } 8528 8529 /* 8530 * Old style [GS]IFCMD does not admit IPv6 ipif 8531 */ 8532 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8533 ipif_refrele(ipif); 8534 return (ENXIO); 8535 } 8536 8537 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8538 name[0] == '\0') { 8539 /* 8540 * Handle a or a SIOC?IF* with a null name 8541 * during plumb (on the ill queue before the I_PLINK). 8542 */ 8543 ipif = ill->ill_ipif; 8544 ipif_refhold(ipif); 8545 } 8546 8547 if (ipif == NULL) 8548 return (ENXIO); 8549 8550 /* 8551 * Allow only GET operations if this ipif has been created 8552 * temporarily due to a MOVE operation. 8553 */ 8554 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8555 ipif_refrele(ipif); 8556 return (EINVAL); 8557 } 8558 8559 ci->ci_ipif = ipif; 8560 return (0); 8561 } 8562 8563 /* 8564 * Return the total number of ipifs. 8565 */ 8566 static uint_t 8567 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8568 { 8569 uint_t numifs = 0; 8570 ill_t *ill; 8571 ill_walk_context_t ctx; 8572 ipif_t *ipif; 8573 8574 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8575 ill = ILL_START_WALK_V4(&ctx, ipst); 8576 8577 while (ill != NULL) { 8578 for (ipif = ill->ill_ipif; ipif != NULL; 8579 ipif = ipif->ipif_next) { 8580 if (ipif->ipif_zoneid == zoneid || 8581 ipif->ipif_zoneid == ALL_ZONES) 8582 numifs++; 8583 } 8584 ill = ill_next(&ctx, ill); 8585 } 8586 rw_exit(&ipst->ips_ill_g_lock); 8587 return (numifs); 8588 } 8589 8590 /* 8591 * Return the total number of ipifs. 8592 */ 8593 static uint_t 8594 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8595 { 8596 uint_t numifs = 0; 8597 ill_t *ill; 8598 ipif_t *ipif; 8599 ill_walk_context_t ctx; 8600 8601 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8602 8603 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8604 if (family == AF_INET) 8605 ill = ILL_START_WALK_V4(&ctx, ipst); 8606 else if (family == AF_INET6) 8607 ill = ILL_START_WALK_V6(&ctx, ipst); 8608 else 8609 ill = ILL_START_WALK_ALL(&ctx, ipst); 8610 8611 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8612 for (ipif = ill->ill_ipif; ipif != NULL; 8613 ipif = ipif->ipif_next) { 8614 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8615 !(lifn_flags & LIFC_NOXMIT)) 8616 continue; 8617 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8618 !(lifn_flags & LIFC_TEMPORARY)) 8619 continue; 8620 if (((ipif->ipif_flags & 8621 (IPIF_NOXMIT|IPIF_NOLOCAL| 8622 IPIF_DEPRECATED)) || 8623 (ill->ill_phyint->phyint_flags & 8624 PHYI_LOOPBACK) || 8625 !(ipif->ipif_flags & IPIF_UP)) && 8626 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8627 continue; 8628 8629 if (zoneid != ipif->ipif_zoneid && 8630 ipif->ipif_zoneid != ALL_ZONES && 8631 (zoneid != GLOBAL_ZONEID || 8632 !(lifn_flags & LIFC_ALLZONES))) 8633 continue; 8634 8635 numifs++; 8636 } 8637 } 8638 rw_exit(&ipst->ips_ill_g_lock); 8639 return (numifs); 8640 } 8641 8642 uint_t 8643 ip_get_lifsrcofnum(ill_t *ill) 8644 { 8645 uint_t numifs = 0; 8646 ill_t *ill_head = ill; 8647 ip_stack_t *ipst = ill->ill_ipst; 8648 8649 /* 8650 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8651 * other thread may be trying to relink the ILLs in this usesrc group 8652 * and adjusting the ill_usesrc_grp_next pointers 8653 */ 8654 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8655 if ((ill->ill_usesrc_ifindex == 0) && 8656 (ill->ill_usesrc_grp_next != NULL)) { 8657 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8658 ill = ill->ill_usesrc_grp_next) 8659 numifs++; 8660 } 8661 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8662 8663 return (numifs); 8664 } 8665 8666 /* Null values are passed in for ipif, sin, and ifreq */ 8667 /* ARGSUSED */ 8668 int 8669 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8670 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8671 { 8672 int *nump; 8673 conn_t *connp = Q_TO_CONN(q); 8674 8675 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8676 8677 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8678 nump = (int *)mp->b_cont->b_cont->b_rptr; 8679 8680 *nump = ip_get_numifs(connp->conn_zoneid, 8681 connp->conn_netstack->netstack_ip); 8682 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8683 return (0); 8684 } 8685 8686 /* Null values are passed in for ipif, sin, and ifreq */ 8687 /* ARGSUSED */ 8688 int 8689 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8690 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8691 { 8692 struct lifnum *lifn; 8693 mblk_t *mp1; 8694 conn_t *connp = Q_TO_CONN(q); 8695 8696 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8697 8698 /* Existence checked in ip_wput_nondata */ 8699 mp1 = mp->b_cont->b_cont; 8700 8701 lifn = (struct lifnum *)mp1->b_rptr; 8702 switch (lifn->lifn_family) { 8703 case AF_UNSPEC: 8704 case AF_INET: 8705 case AF_INET6: 8706 break; 8707 default: 8708 return (EAFNOSUPPORT); 8709 } 8710 8711 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8712 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8713 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8714 return (0); 8715 } 8716 8717 /* ARGSUSED */ 8718 int 8719 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8720 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8721 { 8722 STRUCT_HANDLE(ifconf, ifc); 8723 mblk_t *mp1; 8724 struct iocblk *iocp; 8725 struct ifreq *ifr; 8726 ill_walk_context_t ctx; 8727 ill_t *ill; 8728 ipif_t *ipif; 8729 struct sockaddr_in *sin; 8730 int32_t ifclen; 8731 zoneid_t zoneid; 8732 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8733 8734 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8735 8736 ip1dbg(("ip_sioctl_get_ifconf")); 8737 /* Existence verified in ip_wput_nondata */ 8738 mp1 = mp->b_cont->b_cont; 8739 iocp = (struct iocblk *)mp->b_rptr; 8740 zoneid = Q_TO_CONN(q)->conn_zoneid; 8741 8742 /* 8743 * The original SIOCGIFCONF passed in a struct ifconf which specified 8744 * the user buffer address and length into which the list of struct 8745 * ifreqs was to be copied. Since AT&T Streams does not seem to 8746 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8747 * the SIOCGIFCONF operation was redefined to simply provide 8748 * a large output buffer into which we are supposed to jam the ifreq 8749 * array. The same ioctl command code was used, despite the fact that 8750 * both the applications and the kernel code had to change, thus making 8751 * it impossible to support both interfaces. 8752 * 8753 * For reasons not good enough to try to explain, the following 8754 * algorithm is used for deciding what to do with one of these: 8755 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8756 * form with the output buffer coming down as the continuation message. 8757 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8758 * and we have to copy in the ifconf structure to find out how big the 8759 * output buffer is and where to copy out to. Sure no problem... 8760 * 8761 */ 8762 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8763 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8764 int numifs = 0; 8765 size_t ifc_bufsize; 8766 8767 /* 8768 * Must be (better be!) continuation of a TRANSPARENT 8769 * IOCTL. We just copied in the ifconf structure. 8770 */ 8771 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8772 (struct ifconf *)mp1->b_rptr); 8773 8774 /* 8775 * Allocate a buffer to hold requested information. 8776 * 8777 * If ifc_len is larger than what is needed, we only 8778 * allocate what we will use. 8779 * 8780 * If ifc_len is smaller than what is needed, return 8781 * EINVAL. 8782 * 8783 * XXX: the ill_t structure can hava 2 counters, for 8784 * v4 and v6 (not just ill_ipif_up_count) to store the 8785 * number of interfaces for a device, so we don't need 8786 * to count them here... 8787 */ 8788 numifs = ip_get_numifs(zoneid, ipst); 8789 8790 ifclen = STRUCT_FGET(ifc, ifc_len); 8791 ifc_bufsize = numifs * sizeof (struct ifreq); 8792 if (ifc_bufsize > ifclen) { 8793 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8794 /* old behaviour */ 8795 return (EINVAL); 8796 } else { 8797 ifc_bufsize = ifclen; 8798 } 8799 } 8800 8801 mp1 = mi_copyout_alloc(q, mp, 8802 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8803 if (mp1 == NULL) 8804 return (ENOMEM); 8805 8806 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8807 } 8808 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8809 /* 8810 * the SIOCGIFCONF ioctl only knows about 8811 * IPv4 addresses, so don't try to tell 8812 * it about interfaces with IPv6-only 8813 * addresses. (Last parm 'isv6' is B_FALSE) 8814 */ 8815 8816 ifr = (struct ifreq *)mp1->b_rptr; 8817 8818 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8819 ill = ILL_START_WALK_V4(&ctx, ipst); 8820 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8821 for (ipif = ill->ill_ipif; ipif != NULL; 8822 ipif = ipif->ipif_next) { 8823 if (zoneid != ipif->ipif_zoneid && 8824 ipif->ipif_zoneid != ALL_ZONES) 8825 continue; 8826 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8827 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8828 /* old behaviour */ 8829 rw_exit(&ipst->ips_ill_g_lock); 8830 return (EINVAL); 8831 } else { 8832 goto if_copydone; 8833 } 8834 } 8835 (void) ipif_get_name(ipif, 8836 ifr->ifr_name, 8837 sizeof (ifr->ifr_name)); 8838 sin = (sin_t *)&ifr->ifr_addr; 8839 *sin = sin_null; 8840 sin->sin_family = AF_INET; 8841 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8842 ifr++; 8843 } 8844 } 8845 if_copydone: 8846 rw_exit(&ipst->ips_ill_g_lock); 8847 mp1->b_wptr = (uchar_t *)ifr; 8848 8849 if (STRUCT_BUF(ifc) != NULL) { 8850 STRUCT_FSET(ifc, ifc_len, 8851 (int)((uchar_t *)ifr - mp1->b_rptr)); 8852 } 8853 return (0); 8854 } 8855 8856 /* 8857 * Get the interfaces using the address hosted on the interface passed in, 8858 * as a source adddress 8859 */ 8860 /* ARGSUSED */ 8861 int 8862 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8863 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8864 { 8865 mblk_t *mp1; 8866 ill_t *ill, *ill_head; 8867 ipif_t *ipif, *orig_ipif; 8868 int numlifs = 0; 8869 size_t lifs_bufsize, lifsmaxlen; 8870 struct lifreq *lifr; 8871 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8872 uint_t ifindex; 8873 zoneid_t zoneid; 8874 int err = 0; 8875 boolean_t isv6 = B_FALSE; 8876 struct sockaddr_in *sin; 8877 struct sockaddr_in6 *sin6; 8878 STRUCT_HANDLE(lifsrcof, lifs); 8879 ip_stack_t *ipst; 8880 8881 ipst = CONNQ_TO_IPST(q); 8882 8883 ASSERT(q->q_next == NULL); 8884 8885 zoneid = Q_TO_CONN(q)->conn_zoneid; 8886 8887 /* Existence verified in ip_wput_nondata */ 8888 mp1 = mp->b_cont->b_cont; 8889 8890 /* 8891 * Must be (better be!) continuation of a TRANSPARENT 8892 * IOCTL. We just copied in the lifsrcof structure. 8893 */ 8894 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8895 (struct lifsrcof *)mp1->b_rptr); 8896 8897 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8898 return (EINVAL); 8899 8900 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8901 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8902 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8903 ip_process_ioctl, &err, ipst); 8904 if (ipif == NULL) { 8905 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8906 ifindex)); 8907 return (err); 8908 } 8909 8910 8911 /* Allocate a buffer to hold requested information */ 8912 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8913 lifs_bufsize = numlifs * sizeof (struct lifreq); 8914 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8915 /* The actual size needed is always returned in lifs_len */ 8916 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8917 8918 /* If the amount we need is more than what is passed in, abort */ 8919 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8920 ipif_refrele(ipif); 8921 return (0); 8922 } 8923 8924 mp1 = mi_copyout_alloc(q, mp, 8925 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8926 if (mp1 == NULL) { 8927 ipif_refrele(ipif); 8928 return (ENOMEM); 8929 } 8930 8931 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8932 bzero(mp1->b_rptr, lifs_bufsize); 8933 8934 lifr = (struct lifreq *)mp1->b_rptr; 8935 8936 ill = ill_head = ipif->ipif_ill; 8937 orig_ipif = ipif; 8938 8939 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8940 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8941 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8942 8943 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8944 for (; (ill != NULL) && (ill != ill_head); 8945 ill = ill->ill_usesrc_grp_next) { 8946 8947 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8948 break; 8949 8950 ipif = ill->ill_ipif; 8951 (void) ipif_get_name(ipif, 8952 lifr->lifr_name, sizeof (lifr->lifr_name)); 8953 if (ipif->ipif_isv6) { 8954 sin6 = (sin6_t *)&lifr->lifr_addr; 8955 *sin6 = sin6_null; 8956 sin6->sin6_family = AF_INET6; 8957 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8958 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8959 &ipif->ipif_v6net_mask); 8960 } else { 8961 sin = (sin_t *)&lifr->lifr_addr; 8962 *sin = sin_null; 8963 sin->sin_family = AF_INET; 8964 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8965 lifr->lifr_addrlen = ip_mask_to_plen( 8966 ipif->ipif_net_mask); 8967 } 8968 lifr++; 8969 } 8970 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8971 rw_exit(&ipst->ips_ill_g_lock); 8972 ipif_refrele(orig_ipif); 8973 mp1->b_wptr = (uchar_t *)lifr; 8974 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8975 8976 return (0); 8977 } 8978 8979 /* ARGSUSED */ 8980 int 8981 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8982 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8983 { 8984 mblk_t *mp1; 8985 int list; 8986 ill_t *ill; 8987 ipif_t *ipif; 8988 int flags; 8989 int numlifs = 0; 8990 size_t lifc_bufsize; 8991 struct lifreq *lifr; 8992 sa_family_t family; 8993 struct sockaddr_in *sin; 8994 struct sockaddr_in6 *sin6; 8995 ill_walk_context_t ctx; 8996 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8997 int32_t lifclen; 8998 zoneid_t zoneid; 8999 STRUCT_HANDLE(lifconf, lifc); 9000 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9001 9002 ip1dbg(("ip_sioctl_get_lifconf")); 9003 9004 ASSERT(q->q_next == NULL); 9005 9006 zoneid = Q_TO_CONN(q)->conn_zoneid; 9007 9008 /* Existence verified in ip_wput_nondata */ 9009 mp1 = mp->b_cont->b_cont; 9010 9011 /* 9012 * An extended version of SIOCGIFCONF that takes an 9013 * additional address family and flags field. 9014 * AF_UNSPEC retrieve both IPv4 and IPv6. 9015 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 9016 * interfaces are omitted. 9017 * Similarly, IPIF_TEMPORARY interfaces are omitted 9018 * unless LIFC_TEMPORARY is specified. 9019 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 9020 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 9021 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 9022 * has priority over LIFC_NOXMIT. 9023 */ 9024 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 9025 9026 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 9027 return (EINVAL); 9028 9029 /* 9030 * Must be (better be!) continuation of a TRANSPARENT 9031 * IOCTL. We just copied in the lifconf structure. 9032 */ 9033 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 9034 9035 family = STRUCT_FGET(lifc, lifc_family); 9036 flags = STRUCT_FGET(lifc, lifc_flags); 9037 9038 switch (family) { 9039 case AF_UNSPEC: 9040 /* 9041 * walk all ILL's. 9042 */ 9043 list = MAX_G_HEADS; 9044 break; 9045 case AF_INET: 9046 /* 9047 * walk only IPV4 ILL's. 9048 */ 9049 list = IP_V4_G_HEAD; 9050 break; 9051 case AF_INET6: 9052 /* 9053 * walk only IPV6 ILL's. 9054 */ 9055 list = IP_V6_G_HEAD; 9056 break; 9057 default: 9058 return (EAFNOSUPPORT); 9059 } 9060 9061 /* 9062 * Allocate a buffer to hold requested information. 9063 * 9064 * If lifc_len is larger than what is needed, we only 9065 * allocate what we will use. 9066 * 9067 * If lifc_len is smaller than what is needed, return 9068 * EINVAL. 9069 */ 9070 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 9071 lifc_bufsize = numlifs * sizeof (struct lifreq); 9072 lifclen = STRUCT_FGET(lifc, lifc_len); 9073 if (lifc_bufsize > lifclen) { 9074 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 9075 return (EINVAL); 9076 else 9077 lifc_bufsize = lifclen; 9078 } 9079 9080 mp1 = mi_copyout_alloc(q, mp, 9081 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 9082 if (mp1 == NULL) 9083 return (ENOMEM); 9084 9085 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 9086 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 9087 9088 lifr = (struct lifreq *)mp1->b_rptr; 9089 9090 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9091 ill = ill_first(list, list, &ctx, ipst); 9092 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9093 for (ipif = ill->ill_ipif; ipif != NULL; 9094 ipif = ipif->ipif_next) { 9095 if ((ipif->ipif_flags & IPIF_NOXMIT) && 9096 !(flags & LIFC_NOXMIT)) 9097 continue; 9098 9099 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 9100 !(flags & LIFC_TEMPORARY)) 9101 continue; 9102 9103 if (((ipif->ipif_flags & 9104 (IPIF_NOXMIT|IPIF_NOLOCAL| 9105 IPIF_DEPRECATED)) || 9106 (ill->ill_phyint->phyint_flags & 9107 PHYI_LOOPBACK) || 9108 !(ipif->ipif_flags & IPIF_UP)) && 9109 (flags & LIFC_EXTERNAL_SOURCE)) 9110 continue; 9111 9112 if (zoneid != ipif->ipif_zoneid && 9113 ipif->ipif_zoneid != ALL_ZONES && 9114 (zoneid != GLOBAL_ZONEID || 9115 !(flags & LIFC_ALLZONES))) 9116 continue; 9117 9118 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9119 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9120 rw_exit(&ipst->ips_ill_g_lock); 9121 return (EINVAL); 9122 } else { 9123 goto lif_copydone; 9124 } 9125 } 9126 9127 (void) ipif_get_name(ipif, 9128 lifr->lifr_name, 9129 sizeof (lifr->lifr_name)); 9130 if (ipif->ipif_isv6) { 9131 sin6 = (sin6_t *)&lifr->lifr_addr; 9132 *sin6 = sin6_null; 9133 sin6->sin6_family = AF_INET6; 9134 sin6->sin6_addr = 9135 ipif->ipif_v6lcl_addr; 9136 lifr->lifr_addrlen = 9137 ip_mask_to_plen_v6( 9138 &ipif->ipif_v6net_mask); 9139 } else { 9140 sin = (sin_t *)&lifr->lifr_addr; 9141 *sin = sin_null; 9142 sin->sin_family = AF_INET; 9143 sin->sin_addr.s_addr = 9144 ipif->ipif_lcl_addr; 9145 lifr->lifr_addrlen = 9146 ip_mask_to_plen( 9147 ipif->ipif_net_mask); 9148 } 9149 lifr++; 9150 } 9151 } 9152 lif_copydone: 9153 rw_exit(&ipst->ips_ill_g_lock); 9154 9155 mp1->b_wptr = (uchar_t *)lifr; 9156 if (STRUCT_BUF(lifc) != NULL) { 9157 STRUCT_FSET(lifc, lifc_len, 9158 (int)((uchar_t *)lifr - mp1->b_rptr)); 9159 } 9160 return (0); 9161 } 9162 9163 /* ARGSUSED */ 9164 int 9165 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9166 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9167 { 9168 ip_stack_t *ipst; 9169 9170 if (q->q_next == NULL) 9171 ipst = CONNQ_TO_IPST(q); 9172 else 9173 ipst = ILLQ_TO_IPST(q); 9174 9175 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9176 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9177 return (0); 9178 } 9179 9180 static void 9181 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9182 { 9183 ip6_asp_t *table; 9184 size_t table_size; 9185 mblk_t *data_mp; 9186 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9187 ip_stack_t *ipst; 9188 9189 if (q->q_next == NULL) 9190 ipst = CONNQ_TO_IPST(q); 9191 else 9192 ipst = ILLQ_TO_IPST(q); 9193 9194 /* These two ioctls are I_STR only */ 9195 if (iocp->ioc_count == TRANSPARENT) { 9196 miocnak(q, mp, 0, EINVAL); 9197 return; 9198 } 9199 9200 data_mp = mp->b_cont; 9201 if (data_mp == NULL) { 9202 /* The user passed us a NULL argument */ 9203 table = NULL; 9204 table_size = iocp->ioc_count; 9205 } else { 9206 /* 9207 * The user provided a table. The stream head 9208 * may have copied in the user data in chunks, 9209 * so make sure everything is pulled up 9210 * properly. 9211 */ 9212 if (MBLKL(data_mp) < iocp->ioc_count) { 9213 mblk_t *new_data_mp; 9214 if ((new_data_mp = msgpullup(data_mp, -1)) == 9215 NULL) { 9216 miocnak(q, mp, 0, ENOMEM); 9217 return; 9218 } 9219 freemsg(data_mp); 9220 data_mp = new_data_mp; 9221 mp->b_cont = data_mp; 9222 } 9223 table = (ip6_asp_t *)data_mp->b_rptr; 9224 table_size = iocp->ioc_count; 9225 } 9226 9227 switch (iocp->ioc_cmd) { 9228 case SIOCGIP6ADDRPOLICY: 9229 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9230 if (iocp->ioc_rval == -1) 9231 iocp->ioc_error = EINVAL; 9232 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9233 else if (table != NULL && 9234 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9235 ip6_asp_t *src = table; 9236 ip6_asp32_t *dst = (void *)table; 9237 int count = table_size / sizeof (ip6_asp_t); 9238 int i; 9239 9240 /* 9241 * We need to do an in-place shrink of the array 9242 * to match the alignment attributes of the 9243 * 32-bit ABI looking at it. 9244 */ 9245 /* LINTED: logical expression always true: op "||" */ 9246 ASSERT(sizeof (*src) > sizeof (*dst)); 9247 for (i = 1; i < count; i++) 9248 bcopy(src + i, dst + i, sizeof (*dst)); 9249 } 9250 #endif 9251 break; 9252 9253 case SIOCSIP6ADDRPOLICY: 9254 ASSERT(mp->b_prev == NULL); 9255 mp->b_prev = (void *)q; 9256 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9257 /* 9258 * We pass in the datamodel here so that the ip6_asp_replace() 9259 * routine can handle converting from 32-bit to native formats 9260 * where necessary. 9261 * 9262 * A better way to handle this might be to convert the inbound 9263 * data structure here, and hang it off a new 'mp'; thus the 9264 * ip6_asp_replace() logic would always be dealing with native 9265 * format data structures.. 9266 * 9267 * (An even simpler way to handle these ioctls is to just 9268 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9269 * and just recompile everything that depends on it.) 9270 */ 9271 #endif 9272 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9273 iocp->ioc_flag & IOC_MODELS); 9274 return; 9275 } 9276 9277 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9278 qreply(q, mp); 9279 } 9280 9281 static void 9282 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9283 { 9284 mblk_t *data_mp; 9285 struct dstinforeq *dir; 9286 uint8_t *end, *cur; 9287 in6_addr_t *daddr, *saddr; 9288 ipaddr_t v4daddr; 9289 ire_t *ire; 9290 char *slabel, *dlabel; 9291 boolean_t isipv4; 9292 int match_ire; 9293 ill_t *dst_ill; 9294 ipif_t *src_ipif, *ire_ipif; 9295 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9296 zoneid_t zoneid; 9297 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9298 9299 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9300 zoneid = Q_TO_CONN(q)->conn_zoneid; 9301 9302 /* 9303 * This ioctl is I_STR only, and must have a 9304 * data mblk following the M_IOCTL mblk. 9305 */ 9306 data_mp = mp->b_cont; 9307 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9308 miocnak(q, mp, 0, EINVAL); 9309 return; 9310 } 9311 9312 if (MBLKL(data_mp) < iocp->ioc_count) { 9313 mblk_t *new_data_mp; 9314 9315 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9316 miocnak(q, mp, 0, ENOMEM); 9317 return; 9318 } 9319 freemsg(data_mp); 9320 data_mp = new_data_mp; 9321 mp->b_cont = data_mp; 9322 } 9323 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9324 9325 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9326 end - cur >= sizeof (struct dstinforeq); 9327 cur += sizeof (struct dstinforeq)) { 9328 dir = (struct dstinforeq *)cur; 9329 daddr = &dir->dir_daddr; 9330 saddr = &dir->dir_saddr; 9331 9332 /* 9333 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9334 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9335 * and ipif_select_source[_v6]() do not. 9336 */ 9337 dir->dir_dscope = ip_addr_scope_v6(daddr); 9338 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9339 9340 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9341 if (isipv4) { 9342 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9343 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9344 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9345 } else { 9346 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9347 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9348 } 9349 if (ire == NULL) { 9350 dir->dir_dreachable = 0; 9351 9352 /* move on to next dst addr */ 9353 continue; 9354 } 9355 dir->dir_dreachable = 1; 9356 9357 ire_ipif = ire->ire_ipif; 9358 if (ire_ipif == NULL) 9359 goto next_dst; 9360 9361 /* 9362 * We expect to get back an interface ire or a 9363 * gateway ire cache entry. For both types, the 9364 * output interface is ire_ipif->ipif_ill. 9365 */ 9366 dst_ill = ire_ipif->ipif_ill; 9367 dir->dir_dmactype = dst_ill->ill_mactype; 9368 9369 if (isipv4) { 9370 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9371 } else { 9372 src_ipif = ipif_select_source_v6(dst_ill, 9373 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9374 zoneid); 9375 } 9376 if (src_ipif == NULL) 9377 goto next_dst; 9378 9379 *saddr = src_ipif->ipif_v6lcl_addr; 9380 dir->dir_sscope = ip_addr_scope_v6(saddr); 9381 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9382 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9383 dir->dir_sdeprecated = 9384 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9385 ipif_refrele(src_ipif); 9386 next_dst: 9387 ire_refrele(ire); 9388 } 9389 miocack(q, mp, iocp->ioc_count, 0); 9390 } 9391 9392 9393 /* 9394 * Check if this is an address assigned to this machine. 9395 * Skips interfaces that are down by using ire checks. 9396 * Translates mapped addresses to v4 addresses and then 9397 * treats them as such, returning true if the v4 address 9398 * associated with this mapped address is configured. 9399 * Note: Applications will have to be careful what they do 9400 * with the response; use of mapped addresses limits 9401 * what can be done with the socket, especially with 9402 * respect to socket options and ioctls - neither IPv4 9403 * options nor IPv6 sticky options/ancillary data options 9404 * may be used. 9405 */ 9406 /* ARGSUSED */ 9407 int 9408 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9409 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9410 { 9411 struct sioc_addrreq *sia; 9412 sin_t *sin; 9413 ire_t *ire; 9414 mblk_t *mp1; 9415 zoneid_t zoneid; 9416 ip_stack_t *ipst; 9417 9418 ip1dbg(("ip_sioctl_tmyaddr")); 9419 9420 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9421 zoneid = Q_TO_CONN(q)->conn_zoneid; 9422 ipst = CONNQ_TO_IPST(q); 9423 9424 /* Existence verified in ip_wput_nondata */ 9425 mp1 = mp->b_cont->b_cont; 9426 sia = (struct sioc_addrreq *)mp1->b_rptr; 9427 sin = (sin_t *)&sia->sa_addr; 9428 switch (sin->sin_family) { 9429 case AF_INET6: { 9430 sin6_t *sin6 = (sin6_t *)sin; 9431 9432 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9433 ipaddr_t v4_addr; 9434 9435 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9436 v4_addr); 9437 ire = ire_ctable_lookup(v4_addr, 0, 9438 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9439 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9440 } else { 9441 in6_addr_t v6addr; 9442 9443 v6addr = sin6->sin6_addr; 9444 ire = ire_ctable_lookup_v6(&v6addr, 0, 9445 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9446 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9447 } 9448 break; 9449 } 9450 case AF_INET: { 9451 ipaddr_t v4addr; 9452 9453 v4addr = sin->sin_addr.s_addr; 9454 ire = ire_ctable_lookup(v4addr, 0, 9455 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9456 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9457 break; 9458 } 9459 default: 9460 return (EAFNOSUPPORT); 9461 } 9462 if (ire != NULL) { 9463 sia->sa_res = 1; 9464 ire_refrele(ire); 9465 } else { 9466 sia->sa_res = 0; 9467 } 9468 return (0); 9469 } 9470 9471 /* 9472 * Check if this is an address assigned on-link i.e. neighbor, 9473 * and makes sure it's reachable from the current zone. 9474 * Returns true for my addresses as well. 9475 * Translates mapped addresses to v4 addresses and then 9476 * treats them as such, returning true if the v4 address 9477 * associated with this mapped address is configured. 9478 * Note: Applications will have to be careful what they do 9479 * with the response; use of mapped addresses limits 9480 * what can be done with the socket, especially with 9481 * respect to socket options and ioctls - neither IPv4 9482 * options nor IPv6 sticky options/ancillary data options 9483 * may be used. 9484 */ 9485 /* ARGSUSED */ 9486 int 9487 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9488 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9489 { 9490 struct sioc_addrreq *sia; 9491 sin_t *sin; 9492 mblk_t *mp1; 9493 ire_t *ire = NULL; 9494 zoneid_t zoneid; 9495 ip_stack_t *ipst; 9496 9497 ip1dbg(("ip_sioctl_tonlink")); 9498 9499 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9500 zoneid = Q_TO_CONN(q)->conn_zoneid; 9501 ipst = CONNQ_TO_IPST(q); 9502 9503 /* Existence verified in ip_wput_nondata */ 9504 mp1 = mp->b_cont->b_cont; 9505 sia = (struct sioc_addrreq *)mp1->b_rptr; 9506 sin = (sin_t *)&sia->sa_addr; 9507 9508 /* 9509 * Match addresses with a zero gateway field to avoid 9510 * routes going through a router. 9511 * Exclude broadcast and multicast addresses. 9512 */ 9513 switch (sin->sin_family) { 9514 case AF_INET6: { 9515 sin6_t *sin6 = (sin6_t *)sin; 9516 9517 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9518 ipaddr_t v4_addr; 9519 9520 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9521 v4_addr); 9522 if (!CLASSD(v4_addr)) { 9523 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9524 NULL, NULL, zoneid, NULL, 9525 MATCH_IRE_GW, ipst); 9526 } 9527 } else { 9528 in6_addr_t v6addr; 9529 in6_addr_t v6gw; 9530 9531 v6addr = sin6->sin6_addr; 9532 v6gw = ipv6_all_zeros; 9533 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9534 ire = ire_route_lookup_v6(&v6addr, 0, 9535 &v6gw, 0, NULL, NULL, zoneid, 9536 NULL, MATCH_IRE_GW, ipst); 9537 } 9538 } 9539 break; 9540 } 9541 case AF_INET: { 9542 ipaddr_t v4addr; 9543 9544 v4addr = sin->sin_addr.s_addr; 9545 if (!CLASSD(v4addr)) { 9546 ire = ire_route_lookup(v4addr, 0, 0, 0, 9547 NULL, NULL, zoneid, NULL, 9548 MATCH_IRE_GW, ipst); 9549 } 9550 break; 9551 } 9552 default: 9553 return (EAFNOSUPPORT); 9554 } 9555 sia->sa_res = 0; 9556 if (ire != NULL) { 9557 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9558 IRE_LOCAL|IRE_LOOPBACK)) { 9559 sia->sa_res = 1; 9560 } 9561 ire_refrele(ire); 9562 } 9563 return (0); 9564 } 9565 9566 /* 9567 * TBD: implement when kernel maintaines a list of site prefixes. 9568 */ 9569 /* ARGSUSED */ 9570 int 9571 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9572 ip_ioctl_cmd_t *ipip, void *ifreq) 9573 { 9574 return (ENXIO); 9575 } 9576 9577 /* ARGSUSED */ 9578 int 9579 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9580 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9581 { 9582 ill_t *ill; 9583 mblk_t *mp1; 9584 conn_t *connp; 9585 boolean_t success; 9586 9587 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9588 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9589 /* ioctl comes down on an conn */ 9590 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9591 connp = Q_TO_CONN(q); 9592 9593 mp->b_datap->db_type = M_IOCTL; 9594 9595 /* 9596 * Send down a copy. (copymsg does not copy b_next/b_prev). 9597 * The original mp contains contaminated b_next values due to 'mi', 9598 * which is needed to do the mi_copy_done. Unfortunately if we 9599 * send down the original mblk itself and if we are popped due to an 9600 * an unplumb before the response comes back from tunnel, 9601 * the streamhead (which does a freemsg) will see this contaminated 9602 * message and the assertion in freemsg about non-null b_next/b_prev 9603 * will panic a DEBUG kernel. 9604 */ 9605 mp1 = copymsg(mp); 9606 if (mp1 == NULL) 9607 return (ENOMEM); 9608 9609 ill = ipif->ipif_ill; 9610 mutex_enter(&connp->conn_lock); 9611 mutex_enter(&ill->ill_lock); 9612 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9613 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9614 mp, 0); 9615 } else { 9616 success = ill_pending_mp_add(ill, connp, mp); 9617 } 9618 mutex_exit(&ill->ill_lock); 9619 mutex_exit(&connp->conn_lock); 9620 9621 if (success) { 9622 ip1dbg(("sending down tunparam request ")); 9623 putnext(ill->ill_wq, mp1); 9624 return (EINPROGRESS); 9625 } else { 9626 /* The conn has started closing */ 9627 freemsg(mp1); 9628 return (EINTR); 9629 } 9630 } 9631 9632 static int 9633 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9634 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9635 { 9636 mblk_t *mp1; 9637 mblk_t *mp2; 9638 mblk_t *pending_mp; 9639 ipaddr_t ipaddr; 9640 area_t *area; 9641 struct iocblk *iocp; 9642 conn_t *connp; 9643 struct arpreq *ar; 9644 struct xarpreq *xar; 9645 boolean_t success; 9646 int flags, alength; 9647 char *lladdr; 9648 ip_stack_t *ipst; 9649 9650 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9651 connp = Q_TO_CONN(q); 9652 ipst = connp->conn_netstack->netstack_ip; 9653 9654 iocp = (struct iocblk *)mp->b_rptr; 9655 /* 9656 * ill has already been set depending on whether 9657 * bsd style or interface style ioctl. 9658 */ 9659 ASSERT(ill != NULL); 9660 9661 /* 9662 * Is this one of the new SIOC*XARP ioctls? 9663 */ 9664 if (x_arp_ioctl) { 9665 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9666 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9667 ar = NULL; 9668 9669 flags = xar->xarp_flags; 9670 lladdr = LLADDR(&xar->xarp_ha); 9671 /* 9672 * Validate against user's link layer address length 9673 * input and name and addr length limits. 9674 */ 9675 alength = ill->ill_phys_addr_length; 9676 if (iocp->ioc_cmd == SIOCSXARP) { 9677 if (alength != xar->xarp_ha.sdl_alen || 9678 (alength + xar->xarp_ha.sdl_nlen > 9679 sizeof (xar->xarp_ha.sdl_data))) 9680 return (EINVAL); 9681 } 9682 } else { 9683 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9684 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9685 xar = NULL; 9686 9687 flags = ar->arp_flags; 9688 lladdr = ar->arp_ha.sa_data; 9689 /* 9690 * Theoretically, the sa_family could tell us what link 9691 * layer type this operation is trying to deal with. By 9692 * common usage AF_UNSPEC means ethernet. We'll assume 9693 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9694 * for now. Our new SIOC*XARP ioctls can be used more 9695 * generally. 9696 * 9697 * If the underlying media happens to have a non 6 byte 9698 * address, arp module will fail set/get, but the del 9699 * operation will succeed. 9700 */ 9701 alength = 6; 9702 if ((iocp->ioc_cmd != SIOCDARP) && 9703 (alength != ill->ill_phys_addr_length)) { 9704 return (EINVAL); 9705 } 9706 } 9707 9708 /* 9709 * We are going to pass up to ARP a packet chain that looks 9710 * like: 9711 * 9712 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9713 * 9714 * Get a copy of the original IOCTL mblk to head the chain, 9715 * to be sent up (in mp1). Also get another copy to store 9716 * in the ill_pending_mp list, for matching the response 9717 * when it comes back from ARP. 9718 */ 9719 mp1 = copyb(mp); 9720 pending_mp = copymsg(mp); 9721 if (mp1 == NULL || pending_mp == NULL) { 9722 if (mp1 != NULL) 9723 freeb(mp1); 9724 if (pending_mp != NULL) 9725 inet_freemsg(pending_mp); 9726 return (ENOMEM); 9727 } 9728 9729 ipaddr = sin->sin_addr.s_addr; 9730 9731 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9732 (caddr_t)&ipaddr); 9733 if (mp2 == NULL) { 9734 freeb(mp1); 9735 inet_freemsg(pending_mp); 9736 return (ENOMEM); 9737 } 9738 /* Put together the chain. */ 9739 mp1->b_cont = mp2; 9740 mp1->b_datap->db_type = M_IOCTL; 9741 mp2->b_cont = mp; 9742 mp2->b_datap->db_type = M_DATA; 9743 9744 iocp = (struct iocblk *)mp1->b_rptr; 9745 9746 /* 9747 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9748 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9749 * cp_private field (or cp_rval on 32-bit systems) in place of the 9750 * ioc_count field; set ioc_count to be correct. 9751 */ 9752 iocp->ioc_count = MBLKL(mp1->b_cont); 9753 9754 /* 9755 * Set the proper command in the ARP message. 9756 * Convert the SIOC{G|S|D}ARP calls into our 9757 * AR_ENTRY_xxx calls. 9758 */ 9759 area = (area_t *)mp2->b_rptr; 9760 switch (iocp->ioc_cmd) { 9761 case SIOCDARP: 9762 case SIOCDXARP: 9763 /* 9764 * We defer deleting the corresponding IRE until 9765 * we return from arp. 9766 */ 9767 area->area_cmd = AR_ENTRY_DELETE; 9768 area->area_proto_mask_offset = 0; 9769 break; 9770 case SIOCGARP: 9771 case SIOCGXARP: 9772 area->area_cmd = AR_ENTRY_SQUERY; 9773 area->area_proto_mask_offset = 0; 9774 break; 9775 case SIOCSARP: 9776 case SIOCSXARP: { 9777 /* 9778 * Delete the corresponding ire to make sure IP will 9779 * pick up any change from arp. 9780 */ 9781 if (!if_arp_ioctl) { 9782 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9783 break; 9784 } else { 9785 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9786 if (ipif != NULL) { 9787 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9788 ipst); 9789 ipif_refrele(ipif); 9790 } 9791 break; 9792 } 9793 } 9794 } 9795 iocp->ioc_cmd = area->area_cmd; 9796 9797 /* 9798 * Before sending 'mp' to ARP, we have to clear the b_next 9799 * and b_prev. Otherwise if STREAMS encounters such a message 9800 * in freemsg(), (because ARP can close any time) it can cause 9801 * a panic. But mi code needs the b_next and b_prev values of 9802 * mp->b_cont, to complete the ioctl. So we store it here 9803 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9804 * when the response comes down from ARP. 9805 */ 9806 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9807 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9808 mp->b_cont->b_next = NULL; 9809 mp->b_cont->b_prev = NULL; 9810 9811 mutex_enter(&connp->conn_lock); 9812 mutex_enter(&ill->ill_lock); 9813 /* conn has not yet started closing, hence this can't fail */ 9814 success = ill_pending_mp_add(ill, connp, pending_mp); 9815 ASSERT(success); 9816 mutex_exit(&ill->ill_lock); 9817 mutex_exit(&connp->conn_lock); 9818 9819 /* 9820 * Fill in the rest of the ARP operation fields. 9821 */ 9822 area->area_hw_addr_length = alength; 9823 bcopy(lladdr, 9824 (char *)area + area->area_hw_addr_offset, 9825 area->area_hw_addr_length); 9826 /* Translate the flags. */ 9827 if (flags & ATF_PERM) 9828 area->area_flags |= ACE_F_PERMANENT; 9829 if (flags & ATF_PUBL) 9830 area->area_flags |= ACE_F_PUBLISH; 9831 if (flags & ATF_AUTHORITY) 9832 area->area_flags |= ACE_F_AUTHORITY; 9833 9834 /* 9835 * Up to ARP it goes. The response will come 9836 * back in ip_wput as an M_IOCACK message, and 9837 * will be handed to ip_sioctl_iocack for 9838 * completion. 9839 */ 9840 putnext(ill->ill_rq, mp1); 9841 return (EINPROGRESS); 9842 } 9843 9844 /* ARGSUSED */ 9845 int 9846 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9847 ip_ioctl_cmd_t *ipip, void *ifreq) 9848 { 9849 struct xarpreq *xar; 9850 boolean_t isv6; 9851 mblk_t *mp1; 9852 int err; 9853 conn_t *connp; 9854 int ifnamelen; 9855 ire_t *ire = NULL; 9856 ill_t *ill = NULL; 9857 struct sockaddr_in *sin; 9858 boolean_t if_arp_ioctl = B_FALSE; 9859 ip_stack_t *ipst; 9860 9861 /* ioctl comes down on an conn */ 9862 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9863 connp = Q_TO_CONN(q); 9864 isv6 = connp->conn_af_isv6; 9865 ipst = connp->conn_netstack->netstack_ip; 9866 9867 /* Existance verified in ip_wput_nondata */ 9868 mp1 = mp->b_cont->b_cont; 9869 9870 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9871 xar = (struct xarpreq *)mp1->b_rptr; 9872 sin = (sin_t *)&xar->xarp_pa; 9873 9874 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9875 (xar->xarp_pa.ss_family != AF_INET)) 9876 return (ENXIO); 9877 9878 ifnamelen = xar->xarp_ha.sdl_nlen; 9879 if (ifnamelen != 0) { 9880 char *cptr, cval; 9881 9882 if (ifnamelen >= LIFNAMSIZ) 9883 return (EINVAL); 9884 9885 /* 9886 * Instead of bcopying a bunch of bytes, 9887 * null-terminate the string in-situ. 9888 */ 9889 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9890 cval = *cptr; 9891 *cptr = '\0'; 9892 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9893 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9894 &err, NULL, ipst); 9895 *cptr = cval; 9896 if (ill == NULL) 9897 return (err); 9898 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9899 ill_refrele(ill); 9900 return (ENXIO); 9901 } 9902 9903 if_arp_ioctl = B_TRUE; 9904 } else { 9905 /* 9906 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9907 * as an extended BSD ioctl. The kernel uses the IP address 9908 * to figure out the network interface. 9909 */ 9910 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9911 ipst); 9912 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9913 ((ill = ire_to_ill(ire)) == NULL) || 9914 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9915 if (ire != NULL) 9916 ire_refrele(ire); 9917 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9918 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9919 NULL, MATCH_IRE_TYPE, ipst); 9920 if ((ire == NULL) || 9921 ((ill = ire_to_ill(ire)) == NULL)) { 9922 if (ire != NULL) 9923 ire_refrele(ire); 9924 return (ENXIO); 9925 } 9926 } 9927 ASSERT(ire != NULL && ill != NULL); 9928 } 9929 9930 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9931 if (if_arp_ioctl) 9932 ill_refrele(ill); 9933 if (ire != NULL) 9934 ire_refrele(ire); 9935 9936 return (err); 9937 } 9938 9939 /* 9940 * ARP IOCTLs. 9941 * How does IP get in the business of fronting ARP configuration/queries? 9942 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9943 * are by tradition passed in through a datagram socket. That lands in IP. 9944 * As it happens, this is just as well since the interface is quite crude in 9945 * that it passes in no information about protocol or hardware types, or 9946 * interface association. After making the protocol assumption, IP is in 9947 * the position to look up the name of the ILL, which ARP will need, and 9948 * format a request that can be handled by ARP. The request is passed up 9949 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9950 * back a response. ARP supports its own set of more general IOCTLs, in 9951 * case anyone is interested. 9952 */ 9953 /* ARGSUSED */ 9954 int 9955 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9956 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9957 { 9958 struct arpreq *ar; 9959 struct sockaddr_in *sin; 9960 ire_t *ire; 9961 boolean_t isv6; 9962 mblk_t *mp1; 9963 int err; 9964 conn_t *connp; 9965 ill_t *ill; 9966 ip_stack_t *ipst; 9967 9968 /* ioctl comes down on an conn */ 9969 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9970 connp = Q_TO_CONN(q); 9971 ipst = CONNQ_TO_IPST(q); 9972 isv6 = connp->conn_af_isv6; 9973 if (isv6) 9974 return (ENXIO); 9975 9976 /* Existance verified in ip_wput_nondata */ 9977 mp1 = mp->b_cont->b_cont; 9978 9979 ar = (struct arpreq *)mp1->b_rptr; 9980 sin = (sin_t *)&ar->arp_pa; 9981 9982 /* 9983 * We need to let ARP know on which interface the IP 9984 * address has an ARP mapping. In the IPMP case, a 9985 * simple forwarding table lookup will return the 9986 * IRE_IF_RESOLVER for the first interface in the group, 9987 * which might not be the interface on which the 9988 * requested IP address was resolved due to the ill 9989 * selection algorithm (see ip_newroute_get_dst_ill()). 9990 * So we do a cache table lookup first: if the IRE cache 9991 * entry for the IP address is still there, it will 9992 * contain the ill pointer for the right interface, so 9993 * we use that. If the cache entry has been flushed, we 9994 * fall back to the forwarding table lookup. This should 9995 * be rare enough since IRE cache entries have a longer 9996 * life expectancy than ARP cache entries. 9997 */ 9998 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst); 9999 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 10000 ((ill = ire_to_ill(ire)) == NULL)) { 10001 if (ire != NULL) 10002 ire_refrele(ire); 10003 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 10004 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 10005 NULL, MATCH_IRE_TYPE, ipst); 10006 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 10007 if (ire != NULL) 10008 ire_refrele(ire); 10009 return (ENXIO); 10010 } 10011 } 10012 ASSERT(ire != NULL && ill != NULL); 10013 10014 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 10015 ire_refrele(ire); 10016 return (err); 10017 } 10018 10019 /* 10020 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 10021 * atomically set/clear the muxids. Also complete the ioctl by acking or 10022 * naking it. Note that the code is structured such that the link type, 10023 * whether it's persistent or not, is treated equally. ifconfig(1M) and 10024 * its clones use the persistent link, while pppd(1M) and perhaps many 10025 * other daemons may use non-persistent link. When combined with some 10026 * ill_t states, linking and unlinking lower streams may be used as 10027 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 10028 */ 10029 /* ARGSUSED */ 10030 void 10031 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10032 { 10033 mblk_t *mp1; 10034 mblk_t *mp2; 10035 struct linkblk *li; 10036 queue_t *ipwq; 10037 char *name; 10038 struct qinit *qinfo; 10039 struct ipmx_s *ipmxp; 10040 ill_t *ill = NULL; 10041 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10042 int err = 0; 10043 boolean_t entered_ipsq = B_FALSE; 10044 boolean_t islink; 10045 queue_t *dwq = NULL; 10046 ip_stack_t *ipst; 10047 10048 if (CONN_Q(q)) 10049 ipst = CONNQ_TO_IPST(q); 10050 else 10051 ipst = ILLQ_TO_IPST(q); 10052 10053 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 10054 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 10055 10056 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 10057 B_TRUE : B_FALSE; 10058 10059 mp1 = mp->b_cont; /* This is the linkblk info */ 10060 li = (struct linkblk *)mp1->b_rptr; 10061 10062 /* 10063 * ARP has added this special mblk, and the utility is asking us 10064 * to perform consistency checks, and also atomically set the 10065 * muxid. Ifconfig is an example. It achieves this by using 10066 * /dev/arp as the mux to plink the arp stream, and pushes arp on 10067 * to /dev/udp[6] stream for use as the mux when plinking the IP 10068 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 10069 * and other comments in this routine for more details. 10070 */ 10071 mp2 = mp1->b_cont; /* This is added by ARP */ 10072 10073 /* 10074 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 10075 * ifconfig which didn't push ARP on top of the dummy mux, we won't 10076 * get the special mblk above. For backward compatibility, we just 10077 * return success. The utility will use SIOCSLIFMUXID to store 10078 * the muxids. This is not atomic, and can leave the streams 10079 * unplumbable if the utility is interrrupted, before it does the 10080 * SIOCSLIFMUXID. 10081 */ 10082 if (mp2 == NULL) { 10083 /* 10084 * At this point we don't know whether or not this is the 10085 * IP module stream or the ARP device stream. We need to 10086 * walk the lower stream in order to find this out, since 10087 * the capability negotiation is done only on the IP module 10088 * stream. IP module instance is identified by the module 10089 * name IP, non-null q_next, and it's wput not being ip_lwput. 10090 * STREAMS ensures that the lower stream (l_qbot) will not 10091 * vanish until this ioctl completes. So we can safely walk 10092 * the stream or refer to the q_ptr. 10093 */ 10094 ipwq = li->l_qbot; 10095 while (ipwq != NULL) { 10096 qinfo = ipwq->q_qinfo; 10097 name = qinfo->qi_minfo->mi_idname; 10098 if (name != NULL && name[0] != NULL && 10099 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10100 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10101 (ipwq->q_next != NULL)) { 10102 break; 10103 } 10104 ipwq = ipwq->q_next; 10105 } 10106 /* 10107 * This looks like an IP module stream, so trigger 10108 * the capability reset or re-negotiation if necessary. 10109 */ 10110 if (ipwq != NULL) { 10111 ill = ipwq->q_ptr; 10112 ASSERT(ill != NULL); 10113 10114 if (ipsq == NULL) { 10115 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10116 ip_sioctl_plink, NEW_OP, B_TRUE); 10117 if (ipsq == NULL) 10118 return; 10119 entered_ipsq = B_TRUE; 10120 } 10121 ASSERT(IAM_WRITER_ILL(ill)); 10122 /* 10123 * Store the upper read queue of the module 10124 * immediately below IP, and count the total 10125 * number of lower modules. Do this only 10126 * for I_PLINK or I_LINK event. 10127 */ 10128 ill->ill_lmod_rq = NULL; 10129 ill->ill_lmod_cnt = 0; 10130 if (islink && (dwq = ipwq->q_next) != NULL) { 10131 ill->ill_lmod_rq = RD(dwq); 10132 10133 while (dwq != NULL) { 10134 ill->ill_lmod_cnt++; 10135 dwq = dwq->q_next; 10136 } 10137 } 10138 /* 10139 * There's no point in resetting or re-negotiating if 10140 * we are not bound to the driver, so only do this if 10141 * the DLPI state is idle (up); we assume such state 10142 * since ill_ipif_up_count gets incremented in 10143 * ipif_up_done(), which is after we are bound to the 10144 * driver. Note that in the case of logical 10145 * interfaces, IP won't rebind to the driver unless 10146 * the ill_ipif_up_count is 0, meaning that all other 10147 * IP interfaces (including the main ipif) are in the 10148 * down state. Because of this, we use such counter 10149 * as an indicator, instead of relying on the IPIF_UP 10150 * flag, which is per ipif instance. 10151 */ 10152 if (ill->ill_ipif_up_count > 0) { 10153 if (islink) 10154 ill_capability_probe(ill); 10155 else 10156 ill_capability_reset(ill); 10157 } 10158 } 10159 goto done; 10160 } 10161 10162 /* 10163 * This is an I_{P}LINK sent down by ifconfig on 10164 * /dev/arp. ARP has appended this last (3rd) mblk, 10165 * giving more info. STREAMS ensures that the lower 10166 * stream (l_qbot) will not vanish until this ioctl 10167 * completes. So we can safely walk the stream or refer 10168 * to the q_ptr. 10169 */ 10170 ipmxp = (struct ipmx_s *)mp2->b_rptr; 10171 if (ipmxp->ipmx_arpdev_stream) { 10172 /* 10173 * The operation is occuring on the arp-device 10174 * stream. 10175 */ 10176 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 10177 q, mp, ip_sioctl_plink, &err, NULL, ipst); 10178 if (ill == NULL) { 10179 if (err == EINPROGRESS) { 10180 return; 10181 } else { 10182 err = EINVAL; 10183 goto done; 10184 } 10185 } 10186 10187 if (ipsq == NULL) { 10188 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10189 NEW_OP, B_TRUE); 10190 if (ipsq == NULL) { 10191 ill_refrele(ill); 10192 return; 10193 } 10194 entered_ipsq = B_TRUE; 10195 } 10196 ASSERT(IAM_WRITER_ILL(ill)); 10197 ill_refrele(ill); 10198 /* 10199 * To ensure consistency between IP and ARP, 10200 * the following LIFO scheme is used in 10201 * plink/punlink. (IP first, ARP last). 10202 * This is because the muxid's are stored 10203 * in the IP stream on the ill. 10204 * 10205 * I_{P}LINK: ifconfig plinks the IP stream before 10206 * plinking the ARP stream. On an arp-dev 10207 * stream, IP checks that it is not yet 10208 * plinked, and it also checks that the 10209 * corresponding IP stream is already plinked. 10210 * 10211 * I_{P}UNLINK: ifconfig punlinks the ARP stream 10212 * before punlinking the IP stream. IP does 10213 * not allow punlink of the IP stream unless 10214 * the arp stream has been punlinked. 10215 * 10216 */ 10217 if ((islink && 10218 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10219 (!islink && 10220 ill->ill_arp_muxid != li->l_index)) { 10221 err = EINVAL; 10222 goto done; 10223 } 10224 if (islink) { 10225 ill->ill_arp_muxid = li->l_index; 10226 } else { 10227 ill->ill_arp_muxid = 0; 10228 } 10229 } else { 10230 /* 10231 * This must be the IP module stream with or 10232 * without arp. Walk the stream and locate the 10233 * IP module. An IP module instance is 10234 * identified by the module name IP, non-null 10235 * q_next, and it's wput not being ip_lwput. 10236 */ 10237 ipwq = li->l_qbot; 10238 while (ipwq != NULL) { 10239 qinfo = ipwq->q_qinfo; 10240 name = qinfo->qi_minfo->mi_idname; 10241 if (name != NULL && name[0] != NULL && 10242 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10243 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10244 (ipwq->q_next != NULL)) { 10245 break; 10246 } 10247 ipwq = ipwq->q_next; 10248 } 10249 if (ipwq != NULL) { 10250 ill = ipwq->q_ptr; 10251 ASSERT(ill != NULL); 10252 10253 if (ipsq == NULL) { 10254 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10255 ip_sioctl_plink, NEW_OP, B_TRUE); 10256 if (ipsq == NULL) 10257 return; 10258 entered_ipsq = B_TRUE; 10259 } 10260 ASSERT(IAM_WRITER_ILL(ill)); 10261 /* 10262 * Return error if the ip_mux_id is 10263 * non-zero and command is I_{P}LINK. 10264 * If command is I_{P}UNLINK, return 10265 * error if the arp-devstr is not 10266 * yet punlinked. 10267 */ 10268 if ((islink && ill->ill_ip_muxid != 0) || 10269 (!islink && ill->ill_arp_muxid != 0)) { 10270 err = EINVAL; 10271 goto done; 10272 } 10273 ill->ill_lmod_rq = NULL; 10274 ill->ill_lmod_cnt = 0; 10275 if (islink) { 10276 /* 10277 * Store the upper read queue of the module 10278 * immediately below IP, and count the total 10279 * number of lower modules. 10280 */ 10281 if ((dwq = ipwq->q_next) != NULL) { 10282 ill->ill_lmod_rq = RD(dwq); 10283 10284 while (dwq != NULL) { 10285 ill->ill_lmod_cnt++; 10286 dwq = dwq->q_next; 10287 } 10288 } 10289 ill->ill_ip_muxid = li->l_index; 10290 } else { 10291 ill->ill_ip_muxid = 0; 10292 } 10293 10294 /* 10295 * See comments above about resetting/re- 10296 * negotiating driver sub-capabilities. 10297 */ 10298 if (ill->ill_ipif_up_count > 0) { 10299 if (islink) 10300 ill_capability_probe(ill); 10301 else 10302 ill_capability_reset(ill); 10303 } 10304 } 10305 } 10306 done: 10307 iocp->ioc_count = 0; 10308 iocp->ioc_error = err; 10309 if (err == 0) 10310 mp->b_datap->db_type = M_IOCACK; 10311 else 10312 mp->b_datap->db_type = M_IOCNAK; 10313 qreply(q, mp); 10314 10315 /* Conn was refheld in ip_sioctl_copyin_setup */ 10316 if (CONN_Q(q)) 10317 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10318 if (entered_ipsq) 10319 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10320 } 10321 10322 /* 10323 * Search the ioctl command in the ioctl tables and return a pointer 10324 * to the ioctl command information. The ioctl command tables are 10325 * static and fully populated at compile time. 10326 */ 10327 ip_ioctl_cmd_t * 10328 ip_sioctl_lookup(int ioc_cmd) 10329 { 10330 int index; 10331 ip_ioctl_cmd_t *ipip; 10332 ip_ioctl_cmd_t *ipip_end; 10333 10334 if (ioc_cmd == IPI_DONTCARE) 10335 return (NULL); 10336 10337 /* 10338 * Do a 2 step search. First search the indexed table 10339 * based on the least significant byte of the ioctl cmd. 10340 * If we don't find a match, then search the misc table 10341 * serially. 10342 */ 10343 index = ioc_cmd & 0xFF; 10344 if (index < ip_ndx_ioctl_count) { 10345 ipip = &ip_ndx_ioctl_table[index]; 10346 if (ipip->ipi_cmd == ioc_cmd) { 10347 /* Found a match in the ndx table */ 10348 return (ipip); 10349 } 10350 } 10351 10352 /* Search the misc table */ 10353 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10354 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10355 if (ipip->ipi_cmd == ioc_cmd) 10356 /* Found a match in the misc table */ 10357 return (ipip); 10358 } 10359 10360 return (NULL); 10361 } 10362 10363 /* 10364 * Wrapper function for resuming deferred ioctl processing 10365 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10366 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10367 */ 10368 /* ARGSUSED */ 10369 void 10370 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10371 void *dummy_arg) 10372 { 10373 ip_sioctl_copyin_setup(q, mp); 10374 } 10375 10376 /* 10377 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10378 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10379 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10380 * We establish here the size of the block to be copied in. mi_copyin 10381 * arranges for this to happen, an processing continues in ip_wput with 10382 * an M_IOCDATA message. 10383 */ 10384 void 10385 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10386 { 10387 int copyin_size; 10388 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10389 ip_ioctl_cmd_t *ipip; 10390 cred_t *cr; 10391 ip_stack_t *ipst; 10392 10393 if (CONN_Q(q)) 10394 ipst = CONNQ_TO_IPST(q); 10395 else 10396 ipst = ILLQ_TO_IPST(q); 10397 10398 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10399 if (ipip == NULL) { 10400 /* 10401 * The ioctl is not one we understand or own. 10402 * Pass it along to be processed down stream, 10403 * if this is a module instance of IP, else nak 10404 * the ioctl. 10405 */ 10406 if (q->q_next == NULL) { 10407 goto nak; 10408 } else { 10409 putnext(q, mp); 10410 return; 10411 } 10412 } 10413 10414 /* 10415 * If this is deferred, then we will do all the checks when we 10416 * come back. 10417 */ 10418 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10419 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10420 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10421 return; 10422 } 10423 10424 /* 10425 * Only allow a very small subset of IP ioctls on this stream if 10426 * IP is a module and not a driver. Allowing ioctls to be processed 10427 * in this case may cause assert failures or data corruption. 10428 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10429 * ioctls allowed on an IP module stream, after which this stream 10430 * normally becomes a multiplexor (at which time the stream head 10431 * will fail all ioctls). 10432 */ 10433 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10434 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10435 /* 10436 * Pass common Streams ioctls which the IP 10437 * module does not own or consume along to 10438 * be processed down stream. 10439 */ 10440 putnext(q, mp); 10441 return; 10442 } else { 10443 goto nak; 10444 } 10445 } 10446 10447 /* Make sure we have ioctl data to process. */ 10448 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10449 goto nak; 10450 10451 /* 10452 * Prefer dblk credential over ioctl credential; some synthesized 10453 * ioctls have kcred set because there's no way to crhold() 10454 * a credential in some contexts. (ioc_cr is not crfree() by 10455 * the framework; the caller of ioctl needs to hold the reference 10456 * for the duration of the call). 10457 */ 10458 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10459 10460 /* Make sure normal users don't send down privileged ioctls */ 10461 if ((ipip->ipi_flags & IPI_PRIV) && 10462 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10463 /* We checked the privilege earlier but log it here */ 10464 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10465 return; 10466 } 10467 10468 /* 10469 * The ioctl command tables can only encode fixed length 10470 * ioctl data. If the length is variable, the table will 10471 * encode the length as zero. Such special cases are handled 10472 * below in the switch. 10473 */ 10474 if (ipip->ipi_copyin_size != 0) { 10475 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10476 return; 10477 } 10478 10479 switch (iocp->ioc_cmd) { 10480 case O_SIOCGIFCONF: 10481 case SIOCGIFCONF: 10482 /* 10483 * This IOCTL is hilarious. See comments in 10484 * ip_sioctl_get_ifconf for the story. 10485 */ 10486 if (iocp->ioc_count == TRANSPARENT) 10487 copyin_size = SIZEOF_STRUCT(ifconf, 10488 iocp->ioc_flag); 10489 else 10490 copyin_size = iocp->ioc_count; 10491 mi_copyin(q, mp, NULL, copyin_size); 10492 return; 10493 10494 case O_SIOCGLIFCONF: 10495 case SIOCGLIFCONF: 10496 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10497 mi_copyin(q, mp, NULL, copyin_size); 10498 return; 10499 10500 case SIOCGLIFSRCOF: 10501 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10502 mi_copyin(q, mp, NULL, copyin_size); 10503 return; 10504 case SIOCGIP6ADDRPOLICY: 10505 ip_sioctl_ip6addrpolicy(q, mp); 10506 ip6_asp_table_refrele(ipst); 10507 return; 10508 10509 case SIOCSIP6ADDRPOLICY: 10510 ip_sioctl_ip6addrpolicy(q, mp); 10511 return; 10512 10513 case SIOCGDSTINFO: 10514 ip_sioctl_dstinfo(q, mp); 10515 ip6_asp_table_refrele(ipst); 10516 return; 10517 10518 case I_PLINK: 10519 case I_PUNLINK: 10520 case I_LINK: 10521 case I_UNLINK: 10522 /* 10523 * We treat non-persistent link similarly as the persistent 10524 * link case, in terms of plumbing/unplumbing, as well as 10525 * dynamic re-plumbing events indicator. See comments 10526 * in ip_sioctl_plink() for more. 10527 * 10528 * Request can be enqueued in the 'ipsq' while waiting 10529 * to become exclusive. So bump up the conn ref. 10530 */ 10531 if (CONN_Q(q)) 10532 CONN_INC_REF(Q_TO_CONN(q)); 10533 ip_sioctl_plink(NULL, q, mp, NULL); 10534 return; 10535 10536 case ND_GET: 10537 case ND_SET: 10538 /* 10539 * Use of the nd table requires holding the reader lock. 10540 * Modifying the nd table thru nd_load/nd_unload requires 10541 * the writer lock. 10542 */ 10543 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10544 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10545 rw_exit(&ipst->ips_ip_g_nd_lock); 10546 10547 if (iocp->ioc_error) 10548 iocp->ioc_count = 0; 10549 mp->b_datap->db_type = M_IOCACK; 10550 qreply(q, mp); 10551 return; 10552 } 10553 rw_exit(&ipst->ips_ip_g_nd_lock); 10554 /* 10555 * We don't understand this subioctl of ND_GET / ND_SET. 10556 * Maybe intended for some driver / module below us 10557 */ 10558 if (q->q_next) { 10559 putnext(q, mp); 10560 } else { 10561 iocp->ioc_error = ENOENT; 10562 mp->b_datap->db_type = M_IOCNAK; 10563 iocp->ioc_count = 0; 10564 qreply(q, mp); 10565 } 10566 return; 10567 10568 case IP_IOCTL: 10569 ip_wput_ioctl(q, mp); 10570 return; 10571 default: 10572 cmn_err(CE_PANIC, "should not happen "); 10573 } 10574 nak: 10575 if (mp->b_cont != NULL) { 10576 freemsg(mp->b_cont); 10577 mp->b_cont = NULL; 10578 } 10579 iocp->ioc_error = EINVAL; 10580 mp->b_datap->db_type = M_IOCNAK; 10581 iocp->ioc_count = 0; 10582 qreply(q, mp); 10583 } 10584 10585 /* ip_wput hands off ARP IOCTL responses to us */ 10586 void 10587 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10588 { 10589 struct arpreq *ar; 10590 struct xarpreq *xar; 10591 area_t *area; 10592 mblk_t *area_mp; 10593 struct iocblk *iocp; 10594 mblk_t *orig_ioc_mp, *tmp; 10595 struct iocblk *orig_iocp; 10596 ill_t *ill; 10597 conn_t *connp = NULL; 10598 uint_t ioc_id; 10599 mblk_t *pending_mp; 10600 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10601 int *flagsp; 10602 char *storage = NULL; 10603 sin_t *sin; 10604 ipaddr_t addr; 10605 int err; 10606 ip_stack_t *ipst; 10607 10608 ill = q->q_ptr; 10609 ASSERT(ill != NULL); 10610 ipst = ill->ill_ipst; 10611 10612 /* 10613 * We should get back from ARP a packet chain that looks like: 10614 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10615 */ 10616 if (!(area_mp = mp->b_cont) || 10617 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10618 !(orig_ioc_mp = area_mp->b_cont) || 10619 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10620 freemsg(mp); 10621 return; 10622 } 10623 10624 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10625 10626 tmp = (orig_ioc_mp->b_cont)->b_cont; 10627 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10628 (orig_iocp->ioc_cmd == SIOCSXARP) || 10629 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10630 x_arp_ioctl = B_TRUE; 10631 xar = (struct xarpreq *)tmp->b_rptr; 10632 sin = (sin_t *)&xar->xarp_pa; 10633 flagsp = &xar->xarp_flags; 10634 storage = xar->xarp_ha.sdl_data; 10635 if (xar->xarp_ha.sdl_nlen != 0) 10636 ifx_arp_ioctl = B_TRUE; 10637 } else { 10638 ar = (struct arpreq *)tmp->b_rptr; 10639 sin = (sin_t *)&ar->arp_pa; 10640 flagsp = &ar->arp_flags; 10641 storage = ar->arp_ha.sa_data; 10642 } 10643 10644 iocp = (struct iocblk *)mp->b_rptr; 10645 10646 /* 10647 * Pick out the originating queue based on the ioc_id. 10648 */ 10649 ioc_id = iocp->ioc_id; 10650 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10651 if (pending_mp == NULL) { 10652 ASSERT(connp == NULL); 10653 inet_freemsg(mp); 10654 return; 10655 } 10656 ASSERT(connp != NULL); 10657 q = CONNP_TO_WQ(connp); 10658 10659 /* Uncouple the internally generated IOCTL from the original one */ 10660 area = (area_t *)area_mp->b_rptr; 10661 area_mp->b_cont = NULL; 10662 10663 /* 10664 * Restore the b_next and b_prev used by mi code. This is needed 10665 * to complete the ioctl using mi* functions. We stored them in 10666 * the pending mp prior to sending the request to ARP. 10667 */ 10668 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10669 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10670 inet_freemsg(pending_mp); 10671 10672 /* 10673 * We're done if there was an error or if this is not an SIOCG{X}ARP 10674 * Catch the case where there is an IRE_CACHE by no entry in the 10675 * arp table. 10676 */ 10677 addr = sin->sin_addr.s_addr; 10678 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10679 ire_t *ire; 10680 dl_unitdata_req_t *dlup; 10681 mblk_t *llmp; 10682 int addr_len; 10683 ill_t *ipsqill = NULL; 10684 10685 if (ifx_arp_ioctl) { 10686 /* 10687 * There's no need to lookup the ill, since 10688 * we've already done that when we started 10689 * processing the ioctl and sent the message 10690 * to ARP on that ill. So use the ill that 10691 * is stored in q->q_ptr. 10692 */ 10693 ipsqill = ill; 10694 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10695 ipsqill->ill_ipif, ALL_ZONES, 10696 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10697 } else { 10698 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10699 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10700 if (ire != NULL) 10701 ipsqill = ire_to_ill(ire); 10702 } 10703 10704 if ((x_arp_ioctl) && (ipsqill != NULL)) 10705 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10706 10707 if (ire != NULL) { 10708 /* 10709 * Since the ire obtained from cachetable is used for 10710 * mac addr copying below, treat an incomplete ire as if 10711 * as if we never found it. 10712 */ 10713 if (ire->ire_nce != NULL && 10714 ire->ire_nce->nce_state != ND_REACHABLE) { 10715 ire_refrele(ire); 10716 ire = NULL; 10717 ipsqill = NULL; 10718 goto errack; 10719 } 10720 *flagsp = ATF_INUSE; 10721 llmp = (ire->ire_nce != NULL ? 10722 ire->ire_nce->nce_res_mp : NULL); 10723 if (llmp != NULL && ipsqill != NULL) { 10724 uchar_t *macaddr; 10725 10726 addr_len = ipsqill->ill_phys_addr_length; 10727 if (x_arp_ioctl && ((addr_len + 10728 ipsqill->ill_name_length) > 10729 sizeof (xar->xarp_ha.sdl_data))) { 10730 ire_refrele(ire); 10731 freemsg(mp); 10732 ip_ioctl_finish(q, orig_ioc_mp, 10733 EINVAL, NO_COPYOUT, NULL); 10734 return; 10735 } 10736 *flagsp |= ATF_COM; 10737 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10738 if (ipsqill->ill_sap_length < 0) 10739 macaddr = llmp->b_rptr + 10740 dlup->dl_dest_addr_offset; 10741 else 10742 macaddr = llmp->b_rptr + 10743 dlup->dl_dest_addr_offset + 10744 ipsqill->ill_sap_length; 10745 /* 10746 * For SIOCGARP, MAC address length 10747 * validation has already been done 10748 * before the ioctl was issued to ARP to 10749 * allow it to progress only on 6 byte 10750 * addressable (ethernet like) media. Thus 10751 * the mac address copying can not overwrite 10752 * the sa_data area below. 10753 */ 10754 bcopy(macaddr, storage, addr_len); 10755 } 10756 /* Ditch the internal IOCTL. */ 10757 freemsg(mp); 10758 ire_refrele(ire); 10759 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10760 return; 10761 } 10762 } 10763 10764 /* 10765 * Delete the coresponding IRE_CACHE if any. 10766 * Reset the error if there was one (in case there was no entry 10767 * in arp.) 10768 */ 10769 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10770 ipif_t *ipintf = NULL; 10771 10772 if (ifx_arp_ioctl) { 10773 /* 10774 * There's no need to lookup the ill, since 10775 * we've already done that when we started 10776 * processing the ioctl and sent the message 10777 * to ARP on that ill. So use the ill that 10778 * is stored in q->q_ptr. 10779 */ 10780 ipintf = ill->ill_ipif; 10781 } 10782 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10783 /* 10784 * The address in "addr" may be an entry for a 10785 * router. If that's true, then any off-net 10786 * IRE_CACHE entries that go through the router 10787 * with address "addr" must be clobbered. Use 10788 * ire_walk to achieve this goal. 10789 */ 10790 if (ifx_arp_ioctl) 10791 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10792 ire_delete_cache_gw, (char *)&addr, ill); 10793 else 10794 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10795 ALL_ZONES, ipst); 10796 iocp->ioc_error = 0; 10797 } 10798 } 10799 errack: 10800 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10801 err = iocp->ioc_error; 10802 freemsg(mp); 10803 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10804 return; 10805 } 10806 10807 /* 10808 * Completion of an SIOCG{X}ARP. Translate the information from 10809 * the area_t into the struct {x}arpreq. 10810 */ 10811 if (x_arp_ioctl) { 10812 storage += ill_xarp_info(&xar->xarp_ha, ill); 10813 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10814 sizeof (xar->xarp_ha.sdl_data)) { 10815 freemsg(mp); 10816 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10817 NULL); 10818 return; 10819 } 10820 } 10821 *flagsp = ATF_INUSE; 10822 if (area->area_flags & ACE_F_PERMANENT) 10823 *flagsp |= ATF_PERM; 10824 if (area->area_flags & ACE_F_PUBLISH) 10825 *flagsp |= ATF_PUBL; 10826 if (area->area_flags & ACE_F_AUTHORITY) 10827 *flagsp |= ATF_AUTHORITY; 10828 if (area->area_hw_addr_length != 0) { 10829 *flagsp |= ATF_COM; 10830 /* 10831 * For SIOCGARP, MAC address length validation has 10832 * already been done before the ioctl was issued to ARP 10833 * to allow it to progress only on 6 byte addressable 10834 * (ethernet like) media. Thus the mac address copying 10835 * can not overwrite the sa_data area below. 10836 */ 10837 bcopy((char *)area + area->area_hw_addr_offset, 10838 storage, area->area_hw_addr_length); 10839 } 10840 10841 /* Ditch the internal IOCTL. */ 10842 freemsg(mp); 10843 /* Complete the original. */ 10844 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10845 } 10846 10847 /* 10848 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10849 * interface) create the next available logical interface for this 10850 * physical interface. 10851 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10852 * ipif with the specified name. 10853 * 10854 * If the address family is not AF_UNSPEC then set the address as well. 10855 * 10856 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10857 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10858 * 10859 * Executed as a writer on the ill or ill group. 10860 * So no lock is needed to traverse the ipif chain, or examine the 10861 * phyint flags. 10862 */ 10863 /* ARGSUSED */ 10864 int 10865 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10866 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10867 { 10868 mblk_t *mp1; 10869 struct lifreq *lifr; 10870 boolean_t isv6; 10871 boolean_t exists; 10872 char *name; 10873 char *endp; 10874 char *cp; 10875 int namelen; 10876 ipif_t *ipif; 10877 long id; 10878 ipsq_t *ipsq; 10879 ill_t *ill; 10880 sin_t *sin; 10881 int err = 0; 10882 boolean_t found_sep = B_FALSE; 10883 conn_t *connp; 10884 zoneid_t zoneid; 10885 int orig_ifindex = 0; 10886 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10887 10888 ASSERT(q->q_next == NULL); 10889 ip1dbg(("ip_sioctl_addif\n")); 10890 /* Existence of mp1 has been checked in ip_wput_nondata */ 10891 mp1 = mp->b_cont->b_cont; 10892 /* 10893 * Null terminate the string to protect against buffer 10894 * overrun. String was generated by user code and may not 10895 * be trusted. 10896 */ 10897 lifr = (struct lifreq *)mp1->b_rptr; 10898 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10899 name = lifr->lifr_name; 10900 ASSERT(CONN_Q(q)); 10901 connp = Q_TO_CONN(q); 10902 isv6 = connp->conn_af_isv6; 10903 zoneid = connp->conn_zoneid; 10904 namelen = mi_strlen(name); 10905 if (namelen == 0) 10906 return (EINVAL); 10907 10908 exists = B_FALSE; 10909 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10910 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10911 /* 10912 * Allow creating lo0 using SIOCLIFADDIF. 10913 * can't be any other writer thread. So can pass null below 10914 * for the last 4 args to ipif_lookup_name. 10915 */ 10916 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10917 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10918 /* Prevent any further action */ 10919 if (ipif == NULL) { 10920 return (ENOBUFS); 10921 } else if (!exists) { 10922 /* We created the ipif now and as writer */ 10923 ipif_refrele(ipif); 10924 return (0); 10925 } else { 10926 ill = ipif->ipif_ill; 10927 ill_refhold(ill); 10928 ipif_refrele(ipif); 10929 } 10930 } else { 10931 /* Look for a colon in the name. */ 10932 endp = &name[namelen]; 10933 for (cp = endp; --cp > name; ) { 10934 if (*cp == IPIF_SEPARATOR_CHAR) { 10935 found_sep = B_TRUE; 10936 /* 10937 * Reject any non-decimal aliases for plumbing 10938 * of logical interfaces. Aliases with leading 10939 * zeroes are also rejected as they introduce 10940 * ambiguity in the naming of the interfaces. 10941 * Comparing with "0" takes care of all such 10942 * cases. 10943 */ 10944 if ((strncmp("0", cp+1, 1)) == 0) 10945 return (EINVAL); 10946 10947 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10948 id <= 0 || *endp != '\0') { 10949 return (EINVAL); 10950 } 10951 *cp = '\0'; 10952 break; 10953 } 10954 } 10955 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10956 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10957 if (found_sep) 10958 *cp = IPIF_SEPARATOR_CHAR; 10959 if (ill == NULL) 10960 return (err); 10961 } 10962 10963 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10964 B_TRUE); 10965 10966 /* 10967 * Release the refhold due to the lookup, now that we are excl 10968 * or we are just returning 10969 */ 10970 ill_refrele(ill); 10971 10972 if (ipsq == NULL) 10973 return (EINPROGRESS); 10974 10975 /* 10976 * If the interface is failed, inactive or offlined, look for a working 10977 * interface in the ill group and create the ipif there. If we can't 10978 * find a good interface, create the ipif anyway so that in.mpathd can 10979 * move it to the first repaired interface. 10980 */ 10981 if ((ill->ill_phyint->phyint_flags & 10982 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10983 ill->ill_phyint->phyint_groupname_len != 0) { 10984 phyint_t *phyi; 10985 char *groupname = ill->ill_phyint->phyint_groupname; 10986 10987 /* 10988 * We're looking for a working interface, but it doesn't matter 10989 * if it's up or down; so instead of following the group lists, 10990 * we look at each physical interface and compare the groupname. 10991 * We're only interested in interfaces with IPv4 (resp. IPv6) 10992 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10993 * Otherwise we create the ipif on the failed interface. 10994 */ 10995 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10996 phyi = avl_first(&ipst->ips_phyint_g_list-> 10997 phyint_list_avl_by_index); 10998 for (; phyi != NULL; 10999 phyi = avl_walk(&ipst->ips_phyint_g_list-> 11000 phyint_list_avl_by_index, 11001 phyi, AVL_AFTER)) { 11002 if (phyi->phyint_groupname_len == 0) 11003 continue; 11004 ASSERT(phyi->phyint_groupname != NULL); 11005 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 11006 !(phyi->phyint_flags & 11007 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 11008 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 11009 (phyi->phyint_illv4 != NULL))) { 11010 break; 11011 } 11012 } 11013 rw_exit(&ipst->ips_ill_g_lock); 11014 11015 if (phyi != NULL) { 11016 orig_ifindex = ill->ill_phyint->phyint_ifindex; 11017 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 11018 phyi->phyint_illv4); 11019 } 11020 } 11021 11022 /* 11023 * We are now exclusive on the ipsq, so an ill move will be serialized 11024 * before or after us. 11025 */ 11026 ASSERT(IAM_WRITER_ILL(ill)); 11027 ASSERT(ill->ill_move_in_progress == B_FALSE); 11028 11029 if (found_sep && orig_ifindex == 0) { 11030 /* Now see if there is an IPIF with this unit number. */ 11031 for (ipif = ill->ill_ipif; ipif != NULL; 11032 ipif = ipif->ipif_next) { 11033 if (ipif->ipif_id == id) { 11034 err = EEXIST; 11035 goto done; 11036 } 11037 } 11038 } 11039 11040 /* 11041 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 11042 * of lo0. We never come here when we plumb lo0:0. It 11043 * happens in ipif_lookup_on_name. 11044 * The specified unit number is ignored when we create the ipif on a 11045 * different interface. However, we save it in ipif_orig_ipifid below so 11046 * that the ipif fails back to the right position. 11047 */ 11048 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 11049 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 11050 err = ENOBUFS; 11051 goto done; 11052 } 11053 11054 /* Return created name with ioctl */ 11055 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 11056 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 11057 ip1dbg(("created %s\n", lifr->lifr_name)); 11058 11059 /* Set address */ 11060 sin = (sin_t *)&lifr->lifr_addr; 11061 if (sin->sin_family != AF_UNSPEC) { 11062 err = ip_sioctl_addr(ipif, sin, q, mp, 11063 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 11064 } 11065 11066 /* Set ifindex and unit number for failback */ 11067 if (err == 0 && orig_ifindex != 0) { 11068 ipif->ipif_orig_ifindex = orig_ifindex; 11069 if (found_sep) { 11070 ipif->ipif_orig_ipifid = id; 11071 } 11072 } 11073 11074 done: 11075 ipsq_exit(ipsq, B_TRUE, B_TRUE); 11076 return (err); 11077 } 11078 11079 /* 11080 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 11081 * interface) delete it based on the IP address (on this physical interface). 11082 * Otherwise delete it based on the ipif_id. 11083 * Also, special handling to allow a removeif of lo0. 11084 */ 11085 /* ARGSUSED */ 11086 int 11087 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11088 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11089 { 11090 conn_t *connp; 11091 ill_t *ill = ipif->ipif_ill; 11092 boolean_t success; 11093 ip_stack_t *ipst; 11094 11095 ipst = CONNQ_TO_IPST(q); 11096 11097 ASSERT(q->q_next == NULL); 11098 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 11099 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11100 ASSERT(IAM_WRITER_IPIF(ipif)); 11101 11102 connp = Q_TO_CONN(q); 11103 /* 11104 * Special case for unplumbing lo0 (the loopback physical interface). 11105 * If unplumbing lo0, the incoming address structure has been 11106 * initialized to all zeros. When unplumbing lo0, all its logical 11107 * interfaces must be removed too. 11108 * 11109 * Note that this interface may be called to remove a specific 11110 * loopback logical interface (eg, lo0:1). But in that case 11111 * ipif->ipif_id != 0 so that the code path for that case is the 11112 * same as any other interface (meaning it skips the code directly 11113 * below). 11114 */ 11115 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11116 if (sin->sin_family == AF_UNSPEC && 11117 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 11118 /* 11119 * Mark it condemned. No new ref. will be made to ill. 11120 */ 11121 mutex_enter(&ill->ill_lock); 11122 ill->ill_state_flags |= ILL_CONDEMNED; 11123 for (ipif = ill->ill_ipif; ipif != NULL; 11124 ipif = ipif->ipif_next) { 11125 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11126 } 11127 mutex_exit(&ill->ill_lock); 11128 11129 ipif = ill->ill_ipif; 11130 /* unplumb the loopback interface */ 11131 ill_delete(ill); 11132 mutex_enter(&connp->conn_lock); 11133 mutex_enter(&ill->ill_lock); 11134 ASSERT(ill->ill_group == NULL); 11135 11136 /* Are any references to this ill active */ 11137 if (ill_is_quiescent(ill)) { 11138 mutex_exit(&ill->ill_lock); 11139 mutex_exit(&connp->conn_lock); 11140 ill_delete_tail(ill); 11141 mi_free(ill); 11142 return (0); 11143 } 11144 success = ipsq_pending_mp_add(connp, ipif, 11145 CONNP_TO_WQ(connp), mp, ILL_FREE); 11146 mutex_exit(&connp->conn_lock); 11147 mutex_exit(&ill->ill_lock); 11148 if (success) 11149 return (EINPROGRESS); 11150 else 11151 return (EINTR); 11152 } 11153 } 11154 11155 /* 11156 * We are exclusive on the ipsq, so an ill move will be serialized 11157 * before or after us. 11158 */ 11159 ASSERT(ill->ill_move_in_progress == B_FALSE); 11160 11161 if (ipif->ipif_id == 0) { 11162 /* Find based on address */ 11163 if (ipif->ipif_isv6) { 11164 sin6_t *sin6; 11165 11166 if (sin->sin_family != AF_INET6) 11167 return (EAFNOSUPPORT); 11168 11169 sin6 = (sin6_t *)sin; 11170 /* We are a writer, so we should be able to lookup */ 11171 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11172 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 11173 if (ipif == NULL) { 11174 /* 11175 * Maybe the address in on another interface in 11176 * the same IPMP group? We check this below. 11177 */ 11178 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11179 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 11180 ipst); 11181 } 11182 } else { 11183 ipaddr_t addr; 11184 11185 if (sin->sin_family != AF_INET) 11186 return (EAFNOSUPPORT); 11187 11188 addr = sin->sin_addr.s_addr; 11189 /* We are a writer, so we should be able to lookup */ 11190 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11191 NULL, NULL, NULL, ipst); 11192 if (ipif == NULL) { 11193 /* 11194 * Maybe the address in on another interface in 11195 * the same IPMP group? We check this below. 11196 */ 11197 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11198 NULL, NULL, NULL, NULL, ipst); 11199 } 11200 } 11201 if (ipif == NULL) { 11202 return (EADDRNOTAVAIL); 11203 } 11204 /* 11205 * When the address to be removed is hosted on a different 11206 * interface, we check if the interface is in the same IPMP 11207 * group as the specified one; if so we proceed with the 11208 * removal. 11209 * ill->ill_group is NULL when the ill is down, so we have to 11210 * compare the group names instead. 11211 */ 11212 if (ipif->ipif_ill != ill && 11213 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11214 ill->ill_phyint->phyint_groupname_len == 0 || 11215 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11216 ill->ill_phyint->phyint_groupname) != 0)) { 11217 ipif_refrele(ipif); 11218 return (EADDRNOTAVAIL); 11219 } 11220 11221 /* This is a writer */ 11222 ipif_refrele(ipif); 11223 } 11224 11225 /* 11226 * Can not delete instance zero since it is tied to the ill. 11227 */ 11228 if (ipif->ipif_id == 0) 11229 return (EBUSY); 11230 11231 mutex_enter(&ill->ill_lock); 11232 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11233 mutex_exit(&ill->ill_lock); 11234 11235 ipif_free(ipif); 11236 11237 mutex_enter(&connp->conn_lock); 11238 mutex_enter(&ill->ill_lock); 11239 11240 /* Are any references to this ipif active */ 11241 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11242 mutex_exit(&ill->ill_lock); 11243 mutex_exit(&connp->conn_lock); 11244 ipif_non_duplicate(ipif); 11245 ipif_down_tail(ipif); 11246 ipif_free_tail(ipif); 11247 return (0); 11248 } 11249 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11250 IPIF_FREE); 11251 mutex_exit(&ill->ill_lock); 11252 mutex_exit(&connp->conn_lock); 11253 if (success) 11254 return (EINPROGRESS); 11255 else 11256 return (EINTR); 11257 } 11258 11259 /* 11260 * Restart the removeif ioctl. The refcnt has gone down to 0. 11261 * The ipif is already condemned. So can't find it thru lookups. 11262 */ 11263 /* ARGSUSED */ 11264 int 11265 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11266 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11267 { 11268 ill_t *ill; 11269 11270 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11271 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11272 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11273 ill = ipif->ipif_ill; 11274 ASSERT(IAM_WRITER_ILL(ill)); 11275 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11276 (ill->ill_state_flags & IPIF_CONDEMNED)); 11277 ill_delete_tail(ill); 11278 mi_free(ill); 11279 return (0); 11280 } 11281 11282 ill = ipif->ipif_ill; 11283 ASSERT(IAM_WRITER_IPIF(ipif)); 11284 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11285 11286 ipif_non_duplicate(ipif); 11287 ipif_down_tail(ipif); 11288 ipif_free_tail(ipif); 11289 11290 ILL_UNMARK_CHANGING(ill); 11291 return (0); 11292 } 11293 11294 /* 11295 * Set the local interface address. 11296 * Allow an address of all zero when the interface is down. 11297 */ 11298 /* ARGSUSED */ 11299 int 11300 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11301 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11302 { 11303 int err = 0; 11304 in6_addr_t v6addr; 11305 boolean_t need_up = B_FALSE; 11306 11307 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11308 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11309 11310 ASSERT(IAM_WRITER_IPIF(ipif)); 11311 11312 if (ipif->ipif_isv6) { 11313 sin6_t *sin6; 11314 ill_t *ill; 11315 phyint_t *phyi; 11316 11317 if (sin->sin_family != AF_INET6) 11318 return (EAFNOSUPPORT); 11319 11320 sin6 = (sin6_t *)sin; 11321 v6addr = sin6->sin6_addr; 11322 ill = ipif->ipif_ill; 11323 phyi = ill->ill_phyint; 11324 11325 /* 11326 * Enforce that true multicast interfaces have a link-local 11327 * address for logical unit 0. 11328 */ 11329 if (ipif->ipif_id == 0 && 11330 (ill->ill_flags & ILLF_MULTICAST) && 11331 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11332 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11333 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11334 return (EADDRNOTAVAIL); 11335 } 11336 11337 /* 11338 * up interfaces shouldn't have the unspecified address 11339 * unless they also have the IPIF_NOLOCAL flags set and 11340 * have a subnet assigned. 11341 */ 11342 if ((ipif->ipif_flags & IPIF_UP) && 11343 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11344 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11345 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11346 return (EADDRNOTAVAIL); 11347 } 11348 11349 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11350 return (EADDRNOTAVAIL); 11351 } else { 11352 ipaddr_t addr; 11353 11354 if (sin->sin_family != AF_INET) 11355 return (EAFNOSUPPORT); 11356 11357 addr = sin->sin_addr.s_addr; 11358 11359 /* Allow 0 as the local address. */ 11360 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11361 return (EADDRNOTAVAIL); 11362 11363 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11364 } 11365 11366 11367 /* 11368 * Even if there is no change we redo things just to rerun 11369 * ipif_set_default. 11370 */ 11371 if (ipif->ipif_flags & IPIF_UP) { 11372 /* 11373 * Setting a new local address, make sure 11374 * we have net and subnet bcast ire's for 11375 * the old address if we need them. 11376 */ 11377 if (!ipif->ipif_isv6) 11378 ipif_check_bcast_ires(ipif); 11379 /* 11380 * If the interface is already marked up, 11381 * we call ipif_down which will take care 11382 * of ditching any IREs that have been set 11383 * up based on the old interface address. 11384 */ 11385 err = ipif_logical_down(ipif, q, mp); 11386 if (err == EINPROGRESS) 11387 return (err); 11388 ipif_down_tail(ipif); 11389 need_up = 1; 11390 } 11391 11392 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11393 return (err); 11394 } 11395 11396 int 11397 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11398 boolean_t need_up) 11399 { 11400 in6_addr_t v6addr; 11401 in6_addr_t ov6addr; 11402 ipaddr_t addr; 11403 sin6_t *sin6; 11404 int sinlen; 11405 int err = 0; 11406 ill_t *ill = ipif->ipif_ill; 11407 boolean_t need_dl_down; 11408 boolean_t need_arp_down; 11409 struct iocblk *iocp; 11410 11411 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11412 11413 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11414 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11415 ASSERT(IAM_WRITER_IPIF(ipif)); 11416 11417 /* Must cancel any pending timer before taking the ill_lock */ 11418 if (ipif->ipif_recovery_id != 0) 11419 (void) untimeout(ipif->ipif_recovery_id); 11420 ipif->ipif_recovery_id = 0; 11421 11422 if (ipif->ipif_isv6) { 11423 sin6 = (sin6_t *)sin; 11424 v6addr = sin6->sin6_addr; 11425 sinlen = sizeof (struct sockaddr_in6); 11426 } else { 11427 addr = sin->sin_addr.s_addr; 11428 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11429 sinlen = sizeof (struct sockaddr_in); 11430 } 11431 mutex_enter(&ill->ill_lock); 11432 ov6addr = ipif->ipif_v6lcl_addr; 11433 ipif->ipif_v6lcl_addr = v6addr; 11434 sctp_update_ipif_addr(ipif, ov6addr); 11435 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11436 ipif->ipif_v6src_addr = ipv6_all_zeros; 11437 } else { 11438 ipif->ipif_v6src_addr = v6addr; 11439 } 11440 ipif->ipif_addr_ready = 0; 11441 11442 /* 11443 * If the interface was previously marked as a duplicate, then since 11444 * we've now got a "new" address, it should no longer be considered a 11445 * duplicate -- even if the "new" address is the same as the old one. 11446 * Note that if all ipifs are down, we may have a pending ARP down 11447 * event to handle. This is because we want to recover from duplicates 11448 * and thus delay tearing down ARP until the duplicates have been 11449 * removed or disabled. 11450 */ 11451 need_dl_down = need_arp_down = B_FALSE; 11452 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11453 need_arp_down = !need_up; 11454 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11455 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11456 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11457 need_dl_down = B_TRUE; 11458 } 11459 } 11460 11461 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11462 !ill->ill_is_6to4tun) { 11463 queue_t *wqp = ill->ill_wq; 11464 11465 /* 11466 * The local address of this interface is a 6to4 address, 11467 * check if this interface is in fact a 6to4 tunnel or just 11468 * an interface configured with a 6to4 address. We are only 11469 * interested in the former. 11470 */ 11471 if (wqp != NULL) { 11472 while ((wqp->q_next != NULL) && 11473 (wqp->q_next->q_qinfo != NULL) && 11474 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11475 11476 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11477 == TUN6TO4_MODID) { 11478 /* set for use in IP */ 11479 ill->ill_is_6to4tun = 1; 11480 break; 11481 } 11482 wqp = wqp->q_next; 11483 } 11484 } 11485 } 11486 11487 ipif_set_default(ipif); 11488 11489 /* 11490 * When publishing an interface address change event, we only notify 11491 * the event listeners of the new address. It is assumed that if they 11492 * actively care about the addresses assigned that they will have 11493 * already discovered the previous address assigned (if there was one.) 11494 * 11495 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11496 */ 11497 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11498 hook_nic_event_t *info; 11499 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11500 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11501 "attached for %s\n", info->hne_event, 11502 ill->ill_name)); 11503 if (info->hne_data != NULL) 11504 kmem_free(info->hne_data, info->hne_datalen); 11505 kmem_free(info, sizeof (hook_nic_event_t)); 11506 } 11507 11508 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11509 if (info != NULL) { 11510 ip_stack_t *ipst = ill->ill_ipst; 11511 11512 info->hne_nic = 11513 ipif->ipif_ill->ill_phyint->phyint_ifindex; 11514 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11515 info->hne_event = NE_ADDRESS_CHANGE; 11516 info->hne_family = ipif->ipif_isv6 ? 11517 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11518 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11519 if (info->hne_data != NULL) { 11520 info->hne_datalen = sinlen; 11521 bcopy(sin, info->hne_data, sinlen); 11522 } else { 11523 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11524 "address information for ADDRESS_CHANGE nic" 11525 " event of %s (ENOMEM)\n", 11526 ipif->ipif_ill->ill_name)); 11527 kmem_free(info, sizeof (hook_nic_event_t)); 11528 } 11529 } else 11530 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11531 "ADDRESS_CHANGE nic event information for %s " 11532 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11533 11534 ipif->ipif_ill->ill_nic_event_info = info; 11535 } 11536 11537 mutex_exit(&ill->ill_lock); 11538 11539 if (need_up) { 11540 /* 11541 * Now bring the interface back up. If this 11542 * is the only IPIF for the ILL, ipif_up 11543 * will have to re-bind to the device, so 11544 * we may get back EINPROGRESS, in which 11545 * case, this IOCTL will get completed in 11546 * ip_rput_dlpi when we see the DL_BIND_ACK. 11547 */ 11548 err = ipif_up(ipif, q, mp); 11549 } 11550 11551 if (need_dl_down) 11552 ill_dl_down(ill); 11553 if (need_arp_down) 11554 ipif_arp_down(ipif); 11555 11556 return (err); 11557 } 11558 11559 11560 /* 11561 * Restart entry point to restart the address set operation after the 11562 * refcounts have dropped to zero. 11563 */ 11564 /* ARGSUSED */ 11565 int 11566 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11567 ip_ioctl_cmd_t *ipip, void *ifreq) 11568 { 11569 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11570 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11571 ASSERT(IAM_WRITER_IPIF(ipif)); 11572 ipif_down_tail(ipif); 11573 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11574 } 11575 11576 /* ARGSUSED */ 11577 int 11578 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11579 ip_ioctl_cmd_t *ipip, void *if_req) 11580 { 11581 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11582 struct lifreq *lifr = (struct lifreq *)if_req; 11583 11584 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11585 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11586 /* 11587 * The net mask and address can't change since we have a 11588 * reference to the ipif. So no lock is necessary. 11589 */ 11590 if (ipif->ipif_isv6) { 11591 *sin6 = sin6_null; 11592 sin6->sin6_family = AF_INET6; 11593 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11594 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11595 lifr->lifr_addrlen = 11596 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11597 } else { 11598 *sin = sin_null; 11599 sin->sin_family = AF_INET; 11600 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11601 if (ipip->ipi_cmd_type == LIF_CMD) { 11602 lifr->lifr_addrlen = 11603 ip_mask_to_plen(ipif->ipif_net_mask); 11604 } 11605 } 11606 return (0); 11607 } 11608 11609 /* 11610 * Set the destination address for a pt-pt interface. 11611 */ 11612 /* ARGSUSED */ 11613 int 11614 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11615 ip_ioctl_cmd_t *ipip, void *if_req) 11616 { 11617 int err = 0; 11618 in6_addr_t v6addr; 11619 boolean_t need_up = B_FALSE; 11620 11621 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11622 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11623 ASSERT(IAM_WRITER_IPIF(ipif)); 11624 11625 if (ipif->ipif_isv6) { 11626 sin6_t *sin6; 11627 11628 if (sin->sin_family != AF_INET6) 11629 return (EAFNOSUPPORT); 11630 11631 sin6 = (sin6_t *)sin; 11632 v6addr = sin6->sin6_addr; 11633 11634 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11635 return (EADDRNOTAVAIL); 11636 } else { 11637 ipaddr_t addr; 11638 11639 if (sin->sin_family != AF_INET) 11640 return (EAFNOSUPPORT); 11641 11642 addr = sin->sin_addr.s_addr; 11643 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11644 return (EADDRNOTAVAIL); 11645 11646 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11647 } 11648 11649 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11650 return (0); /* No change */ 11651 11652 if (ipif->ipif_flags & IPIF_UP) { 11653 /* 11654 * If the interface is already marked up, 11655 * we call ipif_down which will take care 11656 * of ditching any IREs that have been set 11657 * up based on the old pp dst address. 11658 */ 11659 err = ipif_logical_down(ipif, q, mp); 11660 if (err == EINPROGRESS) 11661 return (err); 11662 ipif_down_tail(ipif); 11663 need_up = B_TRUE; 11664 } 11665 /* 11666 * could return EINPROGRESS. If so ioctl will complete in 11667 * ip_rput_dlpi_writer 11668 */ 11669 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11670 return (err); 11671 } 11672 11673 static int 11674 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11675 boolean_t need_up) 11676 { 11677 in6_addr_t v6addr; 11678 ill_t *ill = ipif->ipif_ill; 11679 int err = 0; 11680 boolean_t need_dl_down; 11681 boolean_t need_arp_down; 11682 11683 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11684 ipif->ipif_id, (void *)ipif)); 11685 11686 /* Must cancel any pending timer before taking the ill_lock */ 11687 if (ipif->ipif_recovery_id != 0) 11688 (void) untimeout(ipif->ipif_recovery_id); 11689 ipif->ipif_recovery_id = 0; 11690 11691 if (ipif->ipif_isv6) { 11692 sin6_t *sin6; 11693 11694 sin6 = (sin6_t *)sin; 11695 v6addr = sin6->sin6_addr; 11696 } else { 11697 ipaddr_t addr; 11698 11699 addr = sin->sin_addr.s_addr; 11700 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11701 } 11702 mutex_enter(&ill->ill_lock); 11703 /* Set point to point destination address. */ 11704 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11705 /* 11706 * Allow this as a means of creating logical 11707 * pt-pt interfaces on top of e.g. an Ethernet. 11708 * XXX Undocumented HACK for testing. 11709 * pt-pt interfaces are created with NUD disabled. 11710 */ 11711 ipif->ipif_flags |= IPIF_POINTOPOINT; 11712 ipif->ipif_flags &= ~IPIF_BROADCAST; 11713 if (ipif->ipif_isv6) 11714 ill->ill_flags |= ILLF_NONUD; 11715 } 11716 11717 /* 11718 * If the interface was previously marked as a duplicate, then since 11719 * we've now got a "new" address, it should no longer be considered a 11720 * duplicate -- even if the "new" address is the same as the old one. 11721 * Note that if all ipifs are down, we may have a pending ARP down 11722 * event to handle. 11723 */ 11724 need_dl_down = need_arp_down = B_FALSE; 11725 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11726 need_arp_down = !need_up; 11727 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11728 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11729 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11730 need_dl_down = B_TRUE; 11731 } 11732 } 11733 11734 /* Set the new address. */ 11735 ipif->ipif_v6pp_dst_addr = v6addr; 11736 /* Make sure subnet tracks pp_dst */ 11737 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11738 mutex_exit(&ill->ill_lock); 11739 11740 if (need_up) { 11741 /* 11742 * Now bring the interface back up. If this 11743 * is the only IPIF for the ILL, ipif_up 11744 * will have to re-bind to the device, so 11745 * we may get back EINPROGRESS, in which 11746 * case, this IOCTL will get completed in 11747 * ip_rput_dlpi when we see the DL_BIND_ACK. 11748 */ 11749 err = ipif_up(ipif, q, mp); 11750 } 11751 11752 if (need_dl_down) 11753 ill_dl_down(ill); 11754 11755 if (need_arp_down) 11756 ipif_arp_down(ipif); 11757 return (err); 11758 } 11759 11760 /* 11761 * Restart entry point to restart the dstaddress set operation after the 11762 * refcounts have dropped to zero. 11763 */ 11764 /* ARGSUSED */ 11765 int 11766 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11767 ip_ioctl_cmd_t *ipip, void *ifreq) 11768 { 11769 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11770 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11771 ipif_down_tail(ipif); 11772 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11773 } 11774 11775 /* ARGSUSED */ 11776 int 11777 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11778 ip_ioctl_cmd_t *ipip, void *if_req) 11779 { 11780 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11781 11782 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11783 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11784 /* 11785 * Get point to point destination address. The addresses can't 11786 * change since we hold a reference to the ipif. 11787 */ 11788 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11789 return (EADDRNOTAVAIL); 11790 11791 if (ipif->ipif_isv6) { 11792 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11793 *sin6 = sin6_null; 11794 sin6->sin6_family = AF_INET6; 11795 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11796 } else { 11797 *sin = sin_null; 11798 sin->sin_family = AF_INET; 11799 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11800 } 11801 return (0); 11802 } 11803 11804 /* 11805 * part of ipmp, make this func return the active/inactive state and 11806 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11807 */ 11808 /* 11809 * This function either sets or clears the IFF_INACTIVE flag. 11810 * 11811 * As long as there are some addresses or multicast memberships on the 11812 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11813 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11814 * will be used for outbound packets. 11815 * 11816 * Caller needs to verify the validity of setting IFF_INACTIVE. 11817 */ 11818 static void 11819 phyint_inactive(phyint_t *phyi) 11820 { 11821 ill_t *ill_v4; 11822 ill_t *ill_v6; 11823 ipif_t *ipif; 11824 ilm_t *ilm; 11825 11826 ill_v4 = phyi->phyint_illv4; 11827 ill_v6 = phyi->phyint_illv6; 11828 11829 /* 11830 * No need for a lock while traversing the list since iam 11831 * a writer 11832 */ 11833 if (ill_v4 != NULL) { 11834 ASSERT(IAM_WRITER_ILL(ill_v4)); 11835 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11836 ipif = ipif->ipif_next) { 11837 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11838 mutex_enter(&phyi->phyint_lock); 11839 phyi->phyint_flags &= ~PHYI_INACTIVE; 11840 mutex_exit(&phyi->phyint_lock); 11841 return; 11842 } 11843 } 11844 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11845 ilm = ilm->ilm_next) { 11846 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11847 mutex_enter(&phyi->phyint_lock); 11848 phyi->phyint_flags &= ~PHYI_INACTIVE; 11849 mutex_exit(&phyi->phyint_lock); 11850 return; 11851 } 11852 } 11853 } 11854 if (ill_v6 != NULL) { 11855 ill_v6 = phyi->phyint_illv6; 11856 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11857 ipif = ipif->ipif_next) { 11858 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11859 mutex_enter(&phyi->phyint_lock); 11860 phyi->phyint_flags &= ~PHYI_INACTIVE; 11861 mutex_exit(&phyi->phyint_lock); 11862 return; 11863 } 11864 } 11865 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11866 ilm = ilm->ilm_next) { 11867 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11868 mutex_enter(&phyi->phyint_lock); 11869 phyi->phyint_flags &= ~PHYI_INACTIVE; 11870 mutex_exit(&phyi->phyint_lock); 11871 return; 11872 } 11873 } 11874 } 11875 mutex_enter(&phyi->phyint_lock); 11876 phyi->phyint_flags |= PHYI_INACTIVE; 11877 mutex_exit(&phyi->phyint_lock); 11878 } 11879 11880 /* 11881 * This function is called only when the phyint flags change. Currently 11882 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11883 * that we can select a good ill. 11884 */ 11885 static void 11886 ip_redo_nomination(phyint_t *phyi) 11887 { 11888 ill_t *ill_v4; 11889 11890 ill_v4 = phyi->phyint_illv4; 11891 11892 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11893 ASSERT(IAM_WRITER_ILL(ill_v4)); 11894 if (ill_v4->ill_group->illgrp_ill_count > 1) 11895 ill_nominate_bcast_rcv(ill_v4->ill_group); 11896 } 11897 } 11898 11899 /* 11900 * Heuristic to check if ill is INACTIVE. 11901 * Checks if ill has an ipif with an usable ip address. 11902 * 11903 * Return values: 11904 * B_TRUE - ill is INACTIVE; has no usable ipif 11905 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11906 */ 11907 static boolean_t 11908 ill_is_inactive(ill_t *ill) 11909 { 11910 ipif_t *ipif; 11911 11912 /* Check whether it is in an IPMP group */ 11913 if (ill->ill_phyint->phyint_groupname == NULL) 11914 return (B_FALSE); 11915 11916 if (ill->ill_ipif_up_count == 0) 11917 return (B_TRUE); 11918 11919 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11920 uint64_t flags = ipif->ipif_flags; 11921 11922 /* 11923 * This ipif is usable if it is IPIF_UP and not a 11924 * dedicated test address. A dedicated test address 11925 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11926 * (note in particular that V6 test addresses are 11927 * link-local data addresses and thus are marked 11928 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11929 */ 11930 if ((flags & IPIF_UP) && 11931 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11932 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11933 return (B_FALSE); 11934 } 11935 return (B_TRUE); 11936 } 11937 11938 /* 11939 * Set interface flags. 11940 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11941 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11942 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11943 * 11944 * NOTE : We really don't enforce that ipif_id zero should be used 11945 * for setting any flags other than IFF_LOGINT_FLAGS. This 11946 * is because applications generally does SICGLIFFLAGS and 11947 * ORs in the new flags (that affects the logical) and does a 11948 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11949 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11950 * flags that will be turned on is correct with respect to 11951 * ipif_id 0. For backward compatibility reasons, it is not done. 11952 */ 11953 /* ARGSUSED */ 11954 int 11955 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11956 ip_ioctl_cmd_t *ipip, void *if_req) 11957 { 11958 uint64_t turn_on; 11959 uint64_t turn_off; 11960 int err; 11961 boolean_t need_up = B_FALSE; 11962 phyint_t *phyi; 11963 ill_t *ill; 11964 uint64_t intf_flags; 11965 boolean_t phyint_flags_modified = B_FALSE; 11966 uint64_t flags; 11967 struct ifreq *ifr; 11968 struct lifreq *lifr; 11969 boolean_t set_linklocal = B_FALSE; 11970 boolean_t zero_source = B_FALSE; 11971 ip_stack_t *ipst; 11972 11973 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11974 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11975 11976 ASSERT(IAM_WRITER_IPIF(ipif)); 11977 11978 ill = ipif->ipif_ill; 11979 phyi = ill->ill_phyint; 11980 ipst = ill->ill_ipst; 11981 11982 if (ipip->ipi_cmd_type == IF_CMD) { 11983 ifr = (struct ifreq *)if_req; 11984 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11985 } else { 11986 lifr = (struct lifreq *)if_req; 11987 flags = lifr->lifr_flags; 11988 } 11989 11990 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11991 11992 /* 11993 * Has the flags been set correctly till now ? 11994 */ 11995 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11996 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11997 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11998 /* 11999 * Compare the new flags to the old, and partition 12000 * into those coming on and those going off. 12001 * For the 16 bit command keep the bits above bit 16 unchanged. 12002 */ 12003 if (ipip->ipi_cmd == SIOCSIFFLAGS) 12004 flags |= intf_flags & ~0xFFFF; 12005 12006 /* 12007 * First check which bits will change and then which will 12008 * go on and off 12009 */ 12010 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 12011 if (!turn_on) 12012 return (0); /* No change */ 12013 12014 turn_off = intf_flags & turn_on; 12015 turn_on ^= turn_off; 12016 err = 0; 12017 12018 /* 12019 * Don't allow any bits belonging to the logical interface 12020 * to be set or cleared on the replacement ipif that was 12021 * created temporarily during a MOVE. 12022 */ 12023 if (ipif->ipif_replace_zero && 12024 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 12025 return (EINVAL); 12026 } 12027 12028 /* 12029 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 12030 * IPv6 interfaces. 12031 */ 12032 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 12033 return (EINVAL); 12034 12035 /* 12036 * Don't allow the IFF_ROUTER flag to be turned on on loopback 12037 * interfaces. It makes no sense in that context. 12038 */ 12039 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 12040 return (EINVAL); 12041 12042 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 12043 zero_source = B_TRUE; 12044 12045 /* 12046 * For IPv6 ipif_id 0, don't allow the interface to be up without 12047 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 12048 * If the link local address isn't set, and can be set, it will get 12049 * set later on in this function. 12050 */ 12051 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 12052 (flags & IFF_UP) && !zero_source && 12053 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12054 if (ipif_cant_setlinklocal(ipif)) 12055 return (EINVAL); 12056 set_linklocal = B_TRUE; 12057 } 12058 12059 /* 12060 * ILL cannot be part of a usesrc group and and IPMP group at the 12061 * same time. No need to grab ill_g_usesrc_lock here, see 12062 * synchronization notes in ip.c 12063 */ 12064 if (turn_on & PHYI_STANDBY && 12065 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 12066 return (EINVAL); 12067 } 12068 12069 /* 12070 * If we modify physical interface flags, we'll potentially need to 12071 * send up two routing socket messages for the changes (one for the 12072 * IPv4 ill, and another for the IPv6 ill). Note that here. 12073 */ 12074 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 12075 phyint_flags_modified = B_TRUE; 12076 12077 /* 12078 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 12079 * we need to flush the IRE_CACHES belonging to this ill. 12080 * We handle this case here without doing the DOWN/UP dance 12081 * like it is done for other flags. If some other flags are 12082 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 12083 * below will handle it by bringing it down and then 12084 * bringing it UP. 12085 */ 12086 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 12087 ill_t *ill_v4, *ill_v6; 12088 12089 ill_v4 = phyi->phyint_illv4; 12090 ill_v6 = phyi->phyint_illv6; 12091 12092 /* 12093 * First set the INACTIVE flag if needed. Then delete the ires. 12094 * ire_add will atomically prevent creating new IRE_CACHEs 12095 * unless hidden flag is set. 12096 * PHYI_FAILED and PHYI_INACTIVE are exclusive 12097 */ 12098 if ((turn_on & PHYI_FAILED) && 12099 ((intf_flags & PHYI_STANDBY) || 12100 !ipst->ips_ipmp_enable_failback)) { 12101 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 12102 phyi->phyint_flags &= ~PHYI_INACTIVE; 12103 } 12104 if ((turn_off & PHYI_FAILED) && 12105 ((intf_flags & PHYI_STANDBY) || 12106 (!ipst->ips_ipmp_enable_failback && 12107 ill_is_inactive(ill)))) { 12108 phyint_inactive(phyi); 12109 } 12110 12111 if (turn_on & PHYI_STANDBY) { 12112 /* 12113 * We implicitly set INACTIVE only when STANDBY is set. 12114 * INACTIVE is also set on non-STANDBY phyint when user 12115 * disables FAILBACK using configuration file. 12116 * Do not allow STANDBY to be set on such INACTIVE 12117 * phyint 12118 */ 12119 if (phyi->phyint_flags & PHYI_INACTIVE) 12120 return (EINVAL); 12121 if (!(phyi->phyint_flags & PHYI_FAILED)) 12122 phyint_inactive(phyi); 12123 } 12124 if (turn_off & PHYI_STANDBY) { 12125 if (ipst->ips_ipmp_enable_failback) { 12126 /* 12127 * Reset PHYI_INACTIVE. 12128 */ 12129 phyi->phyint_flags &= ~PHYI_INACTIVE; 12130 } else if (ill_is_inactive(ill) && 12131 !(phyi->phyint_flags & PHYI_FAILED)) { 12132 /* 12133 * Need to set INACTIVE, when user sets 12134 * STANDBY on a non-STANDBY phyint and 12135 * later resets STANDBY 12136 */ 12137 phyint_inactive(phyi); 12138 } 12139 } 12140 /* 12141 * We should always send up a message so that the 12142 * daemons come to know of it. Note that the zeroth 12143 * interface can be down and the check below for IPIF_UP 12144 * will not make sense as we are actually setting 12145 * a phyint flag here. We assume that the ipif used 12146 * is always the zeroth ipif. (ip_rts_ifmsg does not 12147 * send up any message for non-zero ipifs). 12148 */ 12149 phyint_flags_modified = B_TRUE; 12150 12151 if (ill_v4 != NULL) { 12152 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12153 IRE_CACHE, ill_stq_cache_delete, 12154 (char *)ill_v4, ill_v4); 12155 illgrp_reset_schednext(ill_v4); 12156 } 12157 if (ill_v6 != NULL) { 12158 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12159 IRE_CACHE, ill_stq_cache_delete, 12160 (char *)ill_v6, ill_v6); 12161 illgrp_reset_schednext(ill_v6); 12162 } 12163 } 12164 12165 /* 12166 * If ILLF_ROUTER changes, we need to change the ip forwarding 12167 * status of the interface and, if the interface is part of an IPMP 12168 * group, all other interfaces that are part of the same IPMP 12169 * group. 12170 */ 12171 if ((turn_on | turn_off) & ILLF_ROUTER) { 12172 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 12173 (caddr_t)ill); 12174 } 12175 12176 /* 12177 * If the interface is not UP and we are not going to 12178 * bring it UP, record the flags and return. When the 12179 * interface comes UP later, the right actions will be 12180 * taken. 12181 */ 12182 if (!(ipif->ipif_flags & IPIF_UP) && 12183 !(turn_on & IPIF_UP)) { 12184 /* Record new flags in their respective places. */ 12185 mutex_enter(&ill->ill_lock); 12186 mutex_enter(&ill->ill_phyint->phyint_lock); 12187 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12188 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12189 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12190 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12191 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12192 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12193 mutex_exit(&ill->ill_lock); 12194 mutex_exit(&ill->ill_phyint->phyint_lock); 12195 12196 /* 12197 * We do the broadcast and nomination here rather 12198 * than waiting for a FAILOVER/FAILBACK to happen. In 12199 * the case of FAILBACK from INACTIVE standby to the 12200 * interface that has been repaired, PHYI_FAILED has not 12201 * been cleared yet. If there are only two interfaces in 12202 * that group, all we have is a FAILED and INACTIVE 12203 * interface. If we do the nomination soon after a failback, 12204 * the broadcast nomination code would select the 12205 * INACTIVE interface for receiving broadcasts as FAILED is 12206 * not yet cleared. As we don't want STANDBY/INACTIVE to 12207 * receive broadcast packets, we need to redo nomination 12208 * when the FAILED is cleared here. Thus, in general we 12209 * always do the nomination here for FAILED, STANDBY 12210 * and OFFLINE. 12211 */ 12212 if (((turn_on | turn_off) & 12213 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12214 ip_redo_nomination(phyi); 12215 } 12216 if (phyint_flags_modified) { 12217 if (phyi->phyint_illv4 != NULL) { 12218 ip_rts_ifmsg(phyi->phyint_illv4-> 12219 ill_ipif); 12220 } 12221 if (phyi->phyint_illv6 != NULL) { 12222 ip_rts_ifmsg(phyi->phyint_illv6-> 12223 ill_ipif); 12224 } 12225 } 12226 return (0); 12227 } else if (set_linklocal || zero_source) { 12228 mutex_enter(&ill->ill_lock); 12229 if (set_linklocal) 12230 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12231 if (zero_source) 12232 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12233 mutex_exit(&ill->ill_lock); 12234 } 12235 12236 /* 12237 * Disallow IPv6 interfaces coming up that have the unspecified address, 12238 * or point-to-point interfaces with an unspecified destination. We do 12239 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12240 * have a subnet assigned, which is how in.ndpd currently manages its 12241 * onlink prefix list when no addresses are configured with those 12242 * prefixes. 12243 */ 12244 if (ipif->ipif_isv6 && 12245 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12246 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12247 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12248 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12249 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12250 return (EINVAL); 12251 } 12252 12253 /* 12254 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12255 * from being brought up. 12256 */ 12257 if (!ipif->ipif_isv6 && 12258 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12259 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12260 return (EINVAL); 12261 } 12262 12263 /* 12264 * The only flag changes that we currently take specific action on 12265 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12266 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12267 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12268 * the flags and bringing it back up again. 12269 */ 12270 if ((turn_on|turn_off) & 12271 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12272 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12273 /* 12274 * Taking this ipif down, make sure we have 12275 * valid net and subnet bcast ire's for other 12276 * logical interfaces, if we need them. 12277 */ 12278 if (!ipif->ipif_isv6) 12279 ipif_check_bcast_ires(ipif); 12280 12281 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12282 !(turn_off & IPIF_UP)) { 12283 need_up = B_TRUE; 12284 if (ipif->ipif_flags & IPIF_UP) 12285 ill->ill_logical_down = 1; 12286 turn_on &= ~IPIF_UP; 12287 } 12288 err = ipif_down(ipif, q, mp); 12289 ip1dbg(("ipif_down returns %d err ", err)); 12290 if (err == EINPROGRESS) 12291 return (err); 12292 ipif_down_tail(ipif); 12293 } 12294 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12295 } 12296 12297 static int 12298 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12299 boolean_t need_up) 12300 { 12301 ill_t *ill; 12302 phyint_t *phyi; 12303 uint64_t turn_on; 12304 uint64_t turn_off; 12305 uint64_t intf_flags; 12306 boolean_t phyint_flags_modified = B_FALSE; 12307 int err = 0; 12308 boolean_t set_linklocal = B_FALSE; 12309 boolean_t zero_source = B_FALSE; 12310 12311 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12312 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12313 12314 ASSERT(IAM_WRITER_IPIF(ipif)); 12315 12316 ill = ipif->ipif_ill; 12317 phyi = ill->ill_phyint; 12318 12319 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12320 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12321 12322 turn_off = intf_flags & turn_on; 12323 turn_on ^= turn_off; 12324 12325 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12326 phyint_flags_modified = B_TRUE; 12327 12328 /* 12329 * Now we change the flags. Track current value of 12330 * other flags in their respective places. 12331 */ 12332 mutex_enter(&ill->ill_lock); 12333 mutex_enter(&phyi->phyint_lock); 12334 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12335 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12336 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12337 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12338 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12339 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12340 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12341 set_linklocal = B_TRUE; 12342 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12343 } 12344 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12345 zero_source = B_TRUE; 12346 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12347 } 12348 mutex_exit(&ill->ill_lock); 12349 mutex_exit(&phyi->phyint_lock); 12350 12351 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12352 ip_redo_nomination(phyi); 12353 12354 if (set_linklocal) { 12355 in6_addr_t ov6addr; 12356 12357 ov6addr = ipif->ipif_v6lcl_addr; 12358 (void) ipif_setlinklocal(ipif); 12359 sctp_update_ipif_addr(ipif, ov6addr); 12360 } 12361 if (zero_source) 12362 ipif->ipif_v6src_addr = ipv6_all_zeros; 12363 else 12364 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12365 12366 if (need_up) { 12367 /* 12368 * XXX ipif_up really does not know whether a phyint flags 12369 * was modified or not. So, it sends up information on 12370 * only one routing sockets message. As we don't bring up 12371 * the interface and also set STANDBY/FAILED simultaneously 12372 * it should be okay. 12373 */ 12374 err = ipif_up(ipif, q, mp); 12375 } else { 12376 /* 12377 * Make sure routing socket sees all changes to the flags. 12378 * ipif_up_done* handles this when we use ipif_up. 12379 */ 12380 if (phyint_flags_modified) { 12381 if (phyi->phyint_illv4 != NULL) { 12382 ip_rts_ifmsg(phyi->phyint_illv4-> 12383 ill_ipif); 12384 } 12385 if (phyi->phyint_illv6 != NULL) { 12386 ip_rts_ifmsg(phyi->phyint_illv6-> 12387 ill_ipif); 12388 } 12389 } else { 12390 ip_rts_ifmsg(ipif); 12391 } 12392 } 12393 /* Update the flags in SCTP's IPIF list */ 12394 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12395 return (err); 12396 } 12397 12398 /* 12399 * Restart entry point to restart the flags restart operation after the 12400 * refcounts have dropped to zero. 12401 */ 12402 /* ARGSUSED */ 12403 int 12404 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12405 ip_ioctl_cmd_t *ipip, void *if_req) 12406 { 12407 int err; 12408 struct ifreq *ifr = (struct ifreq *)if_req; 12409 struct lifreq *lifr = (struct lifreq *)if_req; 12410 12411 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12412 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12413 12414 ipif_down_tail(ipif); 12415 if (ipip->ipi_cmd_type == IF_CMD) { 12416 /* 12417 * Since ip_sioctl_flags expects an int and ifr_flags 12418 * is a short we need to cast ifr_flags into an int 12419 * to avoid having sign extension cause bits to get 12420 * set that should not be. 12421 */ 12422 err = ip_sioctl_flags_tail(ipif, 12423 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12424 q, mp, B_TRUE); 12425 } else { 12426 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12427 q, mp, B_TRUE); 12428 } 12429 return (err); 12430 } 12431 12432 /* 12433 * Can operate on either a module or a driver queue. 12434 */ 12435 /* ARGSUSED */ 12436 int 12437 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12438 ip_ioctl_cmd_t *ipip, void *if_req) 12439 { 12440 /* 12441 * Has the flags been set correctly till now ? 12442 */ 12443 ill_t *ill = ipif->ipif_ill; 12444 phyint_t *phyi = ill->ill_phyint; 12445 12446 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12447 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12448 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12449 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12450 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12451 12452 /* 12453 * Need a lock since some flags can be set even when there are 12454 * references to the ipif. 12455 */ 12456 mutex_enter(&ill->ill_lock); 12457 if (ipip->ipi_cmd_type == IF_CMD) { 12458 struct ifreq *ifr = (struct ifreq *)if_req; 12459 12460 /* Get interface flags (low 16 only). */ 12461 ifr->ifr_flags = ((ipif->ipif_flags | 12462 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12463 } else { 12464 struct lifreq *lifr = (struct lifreq *)if_req; 12465 12466 /* Get interface flags. */ 12467 lifr->lifr_flags = ipif->ipif_flags | 12468 ill->ill_flags | phyi->phyint_flags; 12469 } 12470 mutex_exit(&ill->ill_lock); 12471 return (0); 12472 } 12473 12474 /* ARGSUSED */ 12475 int 12476 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12477 ip_ioctl_cmd_t *ipip, void *if_req) 12478 { 12479 int mtu; 12480 int ip_min_mtu; 12481 struct ifreq *ifr; 12482 struct lifreq *lifr; 12483 ire_t *ire; 12484 ip_stack_t *ipst; 12485 12486 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12487 ipif->ipif_id, (void *)ipif)); 12488 if (ipip->ipi_cmd_type == IF_CMD) { 12489 ifr = (struct ifreq *)if_req; 12490 mtu = ifr->ifr_metric; 12491 } else { 12492 lifr = (struct lifreq *)if_req; 12493 mtu = lifr->lifr_mtu; 12494 } 12495 12496 if (ipif->ipif_isv6) 12497 ip_min_mtu = IPV6_MIN_MTU; 12498 else 12499 ip_min_mtu = IP_MIN_MTU; 12500 12501 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12502 return (EINVAL); 12503 12504 /* 12505 * Change the MTU size in all relevant ire's. 12506 * Mtu change Vs. new ire creation - protocol below. 12507 * First change ipif_mtu and the ire_max_frag of the 12508 * interface ire. Then do an ire walk and change the 12509 * ire_max_frag of all affected ires. During ire_add 12510 * under the bucket lock, set the ire_max_frag of the 12511 * new ire being created from the ipif/ire from which 12512 * it is being derived. If an mtu change happens after 12513 * the ire is added, the new ire will be cleaned up. 12514 * Conversely if the mtu change happens before the ire 12515 * is added, ire_add will see the new value of the mtu. 12516 */ 12517 ipif->ipif_mtu = mtu; 12518 ipif->ipif_flags |= IPIF_FIXEDMTU; 12519 12520 if (ipif->ipif_isv6) 12521 ire = ipif_to_ire_v6(ipif); 12522 else 12523 ire = ipif_to_ire(ipif); 12524 if (ire != NULL) { 12525 ire->ire_max_frag = ipif->ipif_mtu; 12526 ire_refrele(ire); 12527 } 12528 ipst = ipif->ipif_ill->ill_ipst; 12529 if (ipif->ipif_flags & IPIF_UP) { 12530 if (ipif->ipif_isv6) 12531 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12532 ipst); 12533 else 12534 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12535 ipst); 12536 } 12537 /* Update the MTU in SCTP's list */ 12538 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12539 return (0); 12540 } 12541 12542 /* Get interface MTU. */ 12543 /* ARGSUSED */ 12544 int 12545 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12546 ip_ioctl_cmd_t *ipip, void *if_req) 12547 { 12548 struct ifreq *ifr; 12549 struct lifreq *lifr; 12550 12551 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12552 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12553 if (ipip->ipi_cmd_type == IF_CMD) { 12554 ifr = (struct ifreq *)if_req; 12555 ifr->ifr_metric = ipif->ipif_mtu; 12556 } else { 12557 lifr = (struct lifreq *)if_req; 12558 lifr->lifr_mtu = ipif->ipif_mtu; 12559 } 12560 return (0); 12561 } 12562 12563 /* Set interface broadcast address. */ 12564 /* ARGSUSED2 */ 12565 int 12566 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12567 ip_ioctl_cmd_t *ipip, void *if_req) 12568 { 12569 ipaddr_t addr; 12570 ire_t *ire; 12571 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12572 12573 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12574 ipif->ipif_id)); 12575 12576 ASSERT(IAM_WRITER_IPIF(ipif)); 12577 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12578 return (EADDRNOTAVAIL); 12579 12580 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12581 12582 if (sin->sin_family != AF_INET) 12583 return (EAFNOSUPPORT); 12584 12585 addr = sin->sin_addr.s_addr; 12586 if (ipif->ipif_flags & IPIF_UP) { 12587 /* 12588 * If we are already up, make sure the new 12589 * broadcast address makes sense. If it does, 12590 * there should be an IRE for it already. 12591 * Don't match on ipif, only on the ill 12592 * since we are sharing these now. Don't use 12593 * MATCH_IRE_ILL_GROUP as we are looking for 12594 * the broadcast ire on this ill and each ill 12595 * in the group has its own broadcast ire. 12596 */ 12597 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12598 ipif, ALL_ZONES, NULL, 12599 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12600 if (ire == NULL) { 12601 return (EINVAL); 12602 } else { 12603 ire_refrele(ire); 12604 } 12605 } 12606 /* 12607 * Changing the broadcast addr for this ipif. 12608 * Make sure we have valid net and subnet bcast 12609 * ire's for other logical interfaces, if needed. 12610 */ 12611 if (addr != ipif->ipif_brd_addr) 12612 ipif_check_bcast_ires(ipif); 12613 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12614 return (0); 12615 } 12616 12617 /* Get interface broadcast address. */ 12618 /* ARGSUSED */ 12619 int 12620 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12621 ip_ioctl_cmd_t *ipip, void *if_req) 12622 { 12623 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12624 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12625 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12626 return (EADDRNOTAVAIL); 12627 12628 /* IPIF_BROADCAST not possible with IPv6 */ 12629 ASSERT(!ipif->ipif_isv6); 12630 *sin = sin_null; 12631 sin->sin_family = AF_INET; 12632 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12633 return (0); 12634 } 12635 12636 /* 12637 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12638 */ 12639 /* ARGSUSED */ 12640 int 12641 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12642 ip_ioctl_cmd_t *ipip, void *if_req) 12643 { 12644 int err = 0; 12645 in6_addr_t v6mask; 12646 12647 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12648 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12649 12650 ASSERT(IAM_WRITER_IPIF(ipif)); 12651 12652 if (ipif->ipif_isv6) { 12653 sin6_t *sin6; 12654 12655 if (sin->sin_family != AF_INET6) 12656 return (EAFNOSUPPORT); 12657 12658 sin6 = (sin6_t *)sin; 12659 v6mask = sin6->sin6_addr; 12660 } else { 12661 ipaddr_t mask; 12662 12663 if (sin->sin_family != AF_INET) 12664 return (EAFNOSUPPORT); 12665 12666 mask = sin->sin_addr.s_addr; 12667 V4MASK_TO_V6(mask, v6mask); 12668 } 12669 12670 /* 12671 * No big deal if the interface isn't already up, or the mask 12672 * isn't really changing, or this is pt-pt. 12673 */ 12674 if (!(ipif->ipif_flags & IPIF_UP) || 12675 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12676 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12677 ipif->ipif_v6net_mask = v6mask; 12678 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12679 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12680 ipif->ipif_v6net_mask, 12681 ipif->ipif_v6subnet); 12682 } 12683 return (0); 12684 } 12685 /* 12686 * Make sure we have valid net and subnet broadcast ire's 12687 * for the old netmask, if needed by other logical interfaces. 12688 */ 12689 if (!ipif->ipif_isv6) 12690 ipif_check_bcast_ires(ipif); 12691 12692 err = ipif_logical_down(ipif, q, mp); 12693 if (err == EINPROGRESS) 12694 return (err); 12695 ipif_down_tail(ipif); 12696 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12697 return (err); 12698 } 12699 12700 static int 12701 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12702 { 12703 in6_addr_t v6mask; 12704 int err = 0; 12705 12706 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12707 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12708 12709 if (ipif->ipif_isv6) { 12710 sin6_t *sin6; 12711 12712 sin6 = (sin6_t *)sin; 12713 v6mask = sin6->sin6_addr; 12714 } else { 12715 ipaddr_t mask; 12716 12717 mask = sin->sin_addr.s_addr; 12718 V4MASK_TO_V6(mask, v6mask); 12719 } 12720 12721 ipif->ipif_v6net_mask = v6mask; 12722 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12723 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12724 ipif->ipif_v6subnet); 12725 } 12726 err = ipif_up(ipif, q, mp); 12727 12728 if (err == 0 || err == EINPROGRESS) { 12729 /* 12730 * The interface must be DL_BOUND if this packet has to 12731 * go out on the wire. Since we only go through a logical 12732 * down and are bound with the driver during an internal 12733 * down/up that is satisfied. 12734 */ 12735 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12736 /* Potentially broadcast an address mask reply. */ 12737 ipif_mask_reply(ipif); 12738 } 12739 } 12740 return (err); 12741 } 12742 12743 /* ARGSUSED */ 12744 int 12745 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12746 ip_ioctl_cmd_t *ipip, void *if_req) 12747 { 12748 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12749 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12750 ipif_down_tail(ipif); 12751 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12752 } 12753 12754 /* Get interface net mask. */ 12755 /* ARGSUSED */ 12756 int 12757 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12758 ip_ioctl_cmd_t *ipip, void *if_req) 12759 { 12760 struct lifreq *lifr = (struct lifreq *)if_req; 12761 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12762 12763 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12764 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12765 12766 /* 12767 * net mask can't change since we have a reference to the ipif. 12768 */ 12769 if (ipif->ipif_isv6) { 12770 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12771 *sin6 = sin6_null; 12772 sin6->sin6_family = AF_INET6; 12773 sin6->sin6_addr = ipif->ipif_v6net_mask; 12774 lifr->lifr_addrlen = 12775 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12776 } else { 12777 *sin = sin_null; 12778 sin->sin_family = AF_INET; 12779 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12780 if (ipip->ipi_cmd_type == LIF_CMD) { 12781 lifr->lifr_addrlen = 12782 ip_mask_to_plen(ipif->ipif_net_mask); 12783 } 12784 } 12785 return (0); 12786 } 12787 12788 /* ARGSUSED */ 12789 int 12790 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12791 ip_ioctl_cmd_t *ipip, void *if_req) 12792 { 12793 12794 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12795 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12796 /* 12797 * Set interface metric. We don't use this for 12798 * anything but we keep track of it in case it is 12799 * important to routing applications or such. 12800 */ 12801 if (ipip->ipi_cmd_type == IF_CMD) { 12802 struct ifreq *ifr; 12803 12804 ifr = (struct ifreq *)if_req; 12805 ipif->ipif_metric = ifr->ifr_metric; 12806 } else { 12807 struct lifreq *lifr; 12808 12809 lifr = (struct lifreq *)if_req; 12810 ipif->ipif_metric = lifr->lifr_metric; 12811 } 12812 return (0); 12813 } 12814 12815 12816 /* ARGSUSED */ 12817 int 12818 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12819 ip_ioctl_cmd_t *ipip, void *if_req) 12820 { 12821 12822 /* Get interface metric. */ 12823 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12824 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12825 if (ipip->ipi_cmd_type == IF_CMD) { 12826 struct ifreq *ifr; 12827 12828 ifr = (struct ifreq *)if_req; 12829 ifr->ifr_metric = ipif->ipif_metric; 12830 } else { 12831 struct lifreq *lifr; 12832 12833 lifr = (struct lifreq *)if_req; 12834 lifr->lifr_metric = ipif->ipif_metric; 12835 } 12836 12837 return (0); 12838 } 12839 12840 /* ARGSUSED */ 12841 int 12842 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12843 ip_ioctl_cmd_t *ipip, void *if_req) 12844 { 12845 12846 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12847 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12848 /* 12849 * Set the muxid returned from I_PLINK. 12850 */ 12851 if (ipip->ipi_cmd_type == IF_CMD) { 12852 struct ifreq *ifr = (struct ifreq *)if_req; 12853 12854 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12855 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12856 } else { 12857 struct lifreq *lifr = (struct lifreq *)if_req; 12858 12859 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12860 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12861 } 12862 return (0); 12863 } 12864 12865 /* ARGSUSED */ 12866 int 12867 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12868 ip_ioctl_cmd_t *ipip, void *if_req) 12869 { 12870 12871 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12872 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12873 /* 12874 * Get the muxid saved in ill for I_PUNLINK. 12875 */ 12876 if (ipip->ipi_cmd_type == IF_CMD) { 12877 struct ifreq *ifr = (struct ifreq *)if_req; 12878 12879 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12880 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12881 } else { 12882 struct lifreq *lifr = (struct lifreq *)if_req; 12883 12884 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12885 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12886 } 12887 return (0); 12888 } 12889 12890 /* 12891 * Set the subnet prefix. Does not modify the broadcast address. 12892 */ 12893 /* ARGSUSED */ 12894 int 12895 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12896 ip_ioctl_cmd_t *ipip, void *if_req) 12897 { 12898 int err = 0; 12899 in6_addr_t v6addr; 12900 in6_addr_t v6mask; 12901 boolean_t need_up = B_FALSE; 12902 int addrlen; 12903 12904 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12905 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12906 12907 ASSERT(IAM_WRITER_IPIF(ipif)); 12908 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12909 12910 if (ipif->ipif_isv6) { 12911 sin6_t *sin6; 12912 12913 if (sin->sin_family != AF_INET6) 12914 return (EAFNOSUPPORT); 12915 12916 sin6 = (sin6_t *)sin; 12917 v6addr = sin6->sin6_addr; 12918 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12919 return (EADDRNOTAVAIL); 12920 } else { 12921 ipaddr_t addr; 12922 12923 if (sin->sin_family != AF_INET) 12924 return (EAFNOSUPPORT); 12925 12926 addr = sin->sin_addr.s_addr; 12927 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12928 return (EADDRNOTAVAIL); 12929 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12930 /* Add 96 bits */ 12931 addrlen += IPV6_ABITS - IP_ABITS; 12932 } 12933 12934 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12935 return (EINVAL); 12936 12937 /* Check if bits in the address is set past the mask */ 12938 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12939 return (EINVAL); 12940 12941 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12942 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12943 return (0); /* No change */ 12944 12945 if (ipif->ipif_flags & IPIF_UP) { 12946 /* 12947 * If the interface is already marked up, 12948 * we call ipif_down which will take care 12949 * of ditching any IREs that have been set 12950 * up based on the old interface address. 12951 */ 12952 err = ipif_logical_down(ipif, q, mp); 12953 if (err == EINPROGRESS) 12954 return (err); 12955 ipif_down_tail(ipif); 12956 need_up = B_TRUE; 12957 } 12958 12959 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12960 return (err); 12961 } 12962 12963 static int 12964 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12965 queue_t *q, mblk_t *mp, boolean_t need_up) 12966 { 12967 ill_t *ill = ipif->ipif_ill; 12968 int err = 0; 12969 12970 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12971 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12972 12973 /* Set the new address. */ 12974 mutex_enter(&ill->ill_lock); 12975 ipif->ipif_v6net_mask = v6mask; 12976 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12977 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12978 ipif->ipif_v6subnet); 12979 } 12980 mutex_exit(&ill->ill_lock); 12981 12982 if (need_up) { 12983 /* 12984 * Now bring the interface back up. If this 12985 * is the only IPIF for the ILL, ipif_up 12986 * will have to re-bind to the device, so 12987 * we may get back EINPROGRESS, in which 12988 * case, this IOCTL will get completed in 12989 * ip_rput_dlpi when we see the DL_BIND_ACK. 12990 */ 12991 err = ipif_up(ipif, q, mp); 12992 if (err == EINPROGRESS) 12993 return (err); 12994 } 12995 return (err); 12996 } 12997 12998 /* ARGSUSED */ 12999 int 13000 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13001 ip_ioctl_cmd_t *ipip, void *if_req) 13002 { 13003 int addrlen; 13004 in6_addr_t v6addr; 13005 in6_addr_t v6mask; 13006 struct lifreq *lifr = (struct lifreq *)if_req; 13007 13008 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 13009 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13010 ipif_down_tail(ipif); 13011 13012 addrlen = lifr->lifr_addrlen; 13013 if (ipif->ipif_isv6) { 13014 sin6_t *sin6; 13015 13016 sin6 = (sin6_t *)sin; 13017 v6addr = sin6->sin6_addr; 13018 } else { 13019 ipaddr_t addr; 13020 13021 addr = sin->sin_addr.s_addr; 13022 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 13023 addrlen += IPV6_ABITS - IP_ABITS; 13024 } 13025 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 13026 13027 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 13028 } 13029 13030 /* ARGSUSED */ 13031 int 13032 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13033 ip_ioctl_cmd_t *ipip, void *if_req) 13034 { 13035 struct lifreq *lifr = (struct lifreq *)if_req; 13036 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 13037 13038 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 13039 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13040 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 13041 13042 if (ipif->ipif_isv6) { 13043 *sin6 = sin6_null; 13044 sin6->sin6_family = AF_INET6; 13045 sin6->sin6_addr = ipif->ipif_v6subnet; 13046 lifr->lifr_addrlen = 13047 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 13048 } else { 13049 *sin = sin_null; 13050 sin->sin_family = AF_INET; 13051 sin->sin_addr.s_addr = ipif->ipif_subnet; 13052 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 13053 } 13054 return (0); 13055 } 13056 13057 /* 13058 * Set the IPv6 address token. 13059 */ 13060 /* ARGSUSED */ 13061 int 13062 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13063 ip_ioctl_cmd_t *ipi, void *if_req) 13064 { 13065 ill_t *ill = ipif->ipif_ill; 13066 int err; 13067 in6_addr_t v6addr; 13068 in6_addr_t v6mask; 13069 boolean_t need_up = B_FALSE; 13070 int i; 13071 sin6_t *sin6 = (sin6_t *)sin; 13072 struct lifreq *lifr = (struct lifreq *)if_req; 13073 int addrlen; 13074 13075 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 13076 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13077 ASSERT(IAM_WRITER_IPIF(ipif)); 13078 13079 addrlen = lifr->lifr_addrlen; 13080 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13081 if (ipif->ipif_id != 0) 13082 return (EINVAL); 13083 13084 if (!ipif->ipif_isv6) 13085 return (EINVAL); 13086 13087 if (addrlen > IPV6_ABITS) 13088 return (EINVAL); 13089 13090 v6addr = sin6->sin6_addr; 13091 13092 /* 13093 * The length of the token is the length from the end. To get 13094 * the proper mask for this, compute the mask of the bits not 13095 * in the token; ie. the prefix, and then xor to get the mask. 13096 */ 13097 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 13098 return (EINVAL); 13099 for (i = 0; i < 4; i++) { 13100 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13101 } 13102 13103 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 13104 ill->ill_token_length == addrlen) 13105 return (0); /* No change */ 13106 13107 if (ipif->ipif_flags & IPIF_UP) { 13108 err = ipif_logical_down(ipif, q, mp); 13109 if (err == EINPROGRESS) 13110 return (err); 13111 ipif_down_tail(ipif); 13112 need_up = B_TRUE; 13113 } 13114 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 13115 return (err); 13116 } 13117 13118 static int 13119 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 13120 mblk_t *mp, boolean_t need_up) 13121 { 13122 in6_addr_t v6addr; 13123 in6_addr_t v6mask; 13124 ill_t *ill = ipif->ipif_ill; 13125 int i; 13126 int err = 0; 13127 13128 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 13129 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13130 v6addr = sin6->sin6_addr; 13131 /* 13132 * The length of the token is the length from the end. To get 13133 * the proper mask for this, compute the mask of the bits not 13134 * in the token; ie. the prefix, and then xor to get the mask. 13135 */ 13136 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 13137 for (i = 0; i < 4; i++) 13138 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13139 13140 mutex_enter(&ill->ill_lock); 13141 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 13142 ill->ill_token_length = addrlen; 13143 mutex_exit(&ill->ill_lock); 13144 13145 if (need_up) { 13146 /* 13147 * Now bring the interface back up. If this 13148 * is the only IPIF for the ILL, ipif_up 13149 * will have to re-bind to the device, so 13150 * we may get back EINPROGRESS, in which 13151 * case, this IOCTL will get completed in 13152 * ip_rput_dlpi when we see the DL_BIND_ACK. 13153 */ 13154 err = ipif_up(ipif, q, mp); 13155 if (err == EINPROGRESS) 13156 return (err); 13157 } 13158 return (err); 13159 } 13160 13161 /* ARGSUSED */ 13162 int 13163 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13164 ip_ioctl_cmd_t *ipi, void *if_req) 13165 { 13166 ill_t *ill; 13167 sin6_t *sin6 = (sin6_t *)sin; 13168 struct lifreq *lifr = (struct lifreq *)if_req; 13169 13170 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13171 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13172 if (ipif->ipif_id != 0) 13173 return (EINVAL); 13174 13175 ill = ipif->ipif_ill; 13176 if (!ill->ill_isv6) 13177 return (ENXIO); 13178 13179 *sin6 = sin6_null; 13180 sin6->sin6_family = AF_INET6; 13181 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13182 sin6->sin6_addr = ill->ill_token; 13183 lifr->lifr_addrlen = ill->ill_token_length; 13184 return (0); 13185 } 13186 13187 /* 13188 * Set (hardware) link specific information that might override 13189 * what was acquired through the DL_INFO_ACK. 13190 * The logic is as follows. 13191 * 13192 * become exclusive 13193 * set CHANGING flag 13194 * change mtu on affected IREs 13195 * clear CHANGING flag 13196 * 13197 * An ire add that occurs before the CHANGING flag is set will have its mtu 13198 * changed by the ip_sioctl_lnkinfo. 13199 * 13200 * During the time the CHANGING flag is set, no new ires will be added to the 13201 * bucket, and ire add will fail (due the CHANGING flag). 13202 * 13203 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13204 * before it is added to the bucket. 13205 * 13206 * Obviously only 1 thread can set the CHANGING flag and we need to become 13207 * exclusive to set the flag. 13208 */ 13209 /* ARGSUSED */ 13210 int 13211 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13212 ip_ioctl_cmd_t *ipi, void *if_req) 13213 { 13214 ill_t *ill = ipif->ipif_ill; 13215 ipif_t *nipif; 13216 int ip_min_mtu; 13217 boolean_t mtu_walk = B_FALSE; 13218 struct lifreq *lifr = (struct lifreq *)if_req; 13219 lif_ifinfo_req_t *lir; 13220 ire_t *ire; 13221 13222 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13223 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13224 lir = &lifr->lifr_ifinfo; 13225 ASSERT(IAM_WRITER_IPIF(ipif)); 13226 13227 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13228 if (ipif->ipif_id != 0) 13229 return (EINVAL); 13230 13231 /* Set interface MTU. */ 13232 if (ipif->ipif_isv6) 13233 ip_min_mtu = IPV6_MIN_MTU; 13234 else 13235 ip_min_mtu = IP_MIN_MTU; 13236 13237 /* 13238 * Verify values before we set anything. Allow zero to 13239 * mean unspecified. 13240 */ 13241 if (lir->lir_maxmtu != 0 && 13242 (lir->lir_maxmtu > ill->ill_max_frag || 13243 lir->lir_maxmtu < ip_min_mtu)) 13244 return (EINVAL); 13245 if (lir->lir_reachtime != 0 && 13246 lir->lir_reachtime > ND_MAX_REACHTIME) 13247 return (EINVAL); 13248 if (lir->lir_reachretrans != 0 && 13249 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13250 return (EINVAL); 13251 13252 mutex_enter(&ill->ill_lock); 13253 ill->ill_state_flags |= ILL_CHANGING; 13254 for (nipif = ill->ill_ipif; nipif != NULL; 13255 nipif = nipif->ipif_next) { 13256 nipif->ipif_state_flags |= IPIF_CHANGING; 13257 } 13258 13259 mutex_exit(&ill->ill_lock); 13260 13261 if (lir->lir_maxmtu != 0) { 13262 ill->ill_max_mtu = lir->lir_maxmtu; 13263 ill->ill_mtu_userspecified = 1; 13264 mtu_walk = B_TRUE; 13265 } 13266 13267 if (lir->lir_reachtime != 0) 13268 ill->ill_reachable_time = lir->lir_reachtime; 13269 13270 if (lir->lir_reachretrans != 0) 13271 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13272 13273 ill->ill_max_hops = lir->lir_maxhops; 13274 13275 ill->ill_max_buf = ND_MAX_Q; 13276 13277 if (mtu_walk) { 13278 /* 13279 * Set the MTU on all ipifs associated with this ill except 13280 * for those whose MTU was fixed via SIOCSLIFMTU. 13281 */ 13282 for (nipif = ill->ill_ipif; nipif != NULL; 13283 nipif = nipif->ipif_next) { 13284 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13285 continue; 13286 13287 nipif->ipif_mtu = ill->ill_max_mtu; 13288 13289 if (!(nipif->ipif_flags & IPIF_UP)) 13290 continue; 13291 13292 if (nipif->ipif_isv6) 13293 ire = ipif_to_ire_v6(nipif); 13294 else 13295 ire = ipif_to_ire(nipif); 13296 if (ire != NULL) { 13297 ire->ire_max_frag = ipif->ipif_mtu; 13298 ire_refrele(ire); 13299 } 13300 if (ill->ill_isv6) { 13301 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13302 ipif_mtu_change, (char *)nipif, 13303 ill); 13304 } else { 13305 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13306 ipif_mtu_change, (char *)nipif, 13307 ill); 13308 } 13309 } 13310 } 13311 13312 mutex_enter(&ill->ill_lock); 13313 for (nipif = ill->ill_ipif; nipif != NULL; 13314 nipif = nipif->ipif_next) { 13315 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13316 } 13317 ILL_UNMARK_CHANGING(ill); 13318 mutex_exit(&ill->ill_lock); 13319 13320 return (0); 13321 } 13322 13323 /* ARGSUSED */ 13324 int 13325 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13326 ip_ioctl_cmd_t *ipi, void *if_req) 13327 { 13328 struct lif_ifinfo_req *lir; 13329 ill_t *ill = ipif->ipif_ill; 13330 13331 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13332 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13333 if (ipif->ipif_id != 0) 13334 return (EINVAL); 13335 13336 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13337 lir->lir_maxhops = ill->ill_max_hops; 13338 lir->lir_reachtime = ill->ill_reachable_time; 13339 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13340 lir->lir_maxmtu = ill->ill_max_mtu; 13341 13342 return (0); 13343 } 13344 13345 /* 13346 * Return best guess as to the subnet mask for the specified address. 13347 * Based on the subnet masks for all the configured interfaces. 13348 * 13349 * We end up returning a zero mask in the case of default, multicast or 13350 * experimental. 13351 */ 13352 static ipaddr_t 13353 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13354 { 13355 ipaddr_t net_mask; 13356 ill_t *ill; 13357 ipif_t *ipif; 13358 ill_walk_context_t ctx; 13359 ipif_t *fallback_ipif = NULL; 13360 13361 net_mask = ip_net_mask(addr); 13362 if (net_mask == 0) { 13363 *ipifp = NULL; 13364 return (0); 13365 } 13366 13367 /* Let's check to see if this is maybe a local subnet route. */ 13368 /* this function only applies to IPv4 interfaces */ 13369 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13370 ill = ILL_START_WALK_V4(&ctx, ipst); 13371 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13372 mutex_enter(&ill->ill_lock); 13373 for (ipif = ill->ill_ipif; ipif != NULL; 13374 ipif = ipif->ipif_next) { 13375 if (!IPIF_CAN_LOOKUP(ipif)) 13376 continue; 13377 if (!(ipif->ipif_flags & IPIF_UP)) 13378 continue; 13379 if ((ipif->ipif_subnet & net_mask) == 13380 (addr & net_mask)) { 13381 /* 13382 * Don't trust pt-pt interfaces if there are 13383 * other interfaces. 13384 */ 13385 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13386 if (fallback_ipif == NULL) { 13387 ipif_refhold_locked(ipif); 13388 fallback_ipif = ipif; 13389 } 13390 continue; 13391 } 13392 13393 /* 13394 * Fine. Just assume the same net mask as the 13395 * directly attached subnet interface is using. 13396 */ 13397 ipif_refhold_locked(ipif); 13398 mutex_exit(&ill->ill_lock); 13399 rw_exit(&ipst->ips_ill_g_lock); 13400 if (fallback_ipif != NULL) 13401 ipif_refrele(fallback_ipif); 13402 *ipifp = ipif; 13403 return (ipif->ipif_net_mask); 13404 } 13405 } 13406 mutex_exit(&ill->ill_lock); 13407 } 13408 rw_exit(&ipst->ips_ill_g_lock); 13409 13410 *ipifp = fallback_ipif; 13411 return ((fallback_ipif != NULL) ? 13412 fallback_ipif->ipif_net_mask : net_mask); 13413 } 13414 13415 /* 13416 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13417 */ 13418 static void 13419 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13420 { 13421 IOCP iocp; 13422 ipft_t *ipft; 13423 ipllc_t *ipllc; 13424 mblk_t *mp1; 13425 cred_t *cr; 13426 int error = 0; 13427 conn_t *connp; 13428 13429 ip1dbg(("ip_wput_ioctl")); 13430 iocp = (IOCP)mp->b_rptr; 13431 mp1 = mp->b_cont; 13432 if (mp1 == NULL) { 13433 iocp->ioc_error = EINVAL; 13434 mp->b_datap->db_type = M_IOCNAK; 13435 iocp->ioc_count = 0; 13436 qreply(q, mp); 13437 return; 13438 } 13439 13440 /* 13441 * These IOCTLs provide various control capabilities to 13442 * upstream agents such as ULPs and processes. There 13443 * are currently two such IOCTLs implemented. They 13444 * are used by TCP to provide update information for 13445 * existing IREs and to forcibly delete an IRE for a 13446 * host that is not responding, thereby forcing an 13447 * attempt at a new route. 13448 */ 13449 iocp->ioc_error = EINVAL; 13450 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13451 goto done; 13452 13453 ipllc = (ipllc_t *)mp1->b_rptr; 13454 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13455 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13456 break; 13457 } 13458 /* 13459 * prefer credential from mblk over ioctl; 13460 * see ip_sioctl_copyin_setup 13461 */ 13462 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13463 13464 /* 13465 * Refhold the conn in case the request gets queued up in some lookup 13466 */ 13467 ASSERT(CONN_Q(q)); 13468 connp = Q_TO_CONN(q); 13469 CONN_INC_REF(connp); 13470 if (ipft->ipft_pfi && 13471 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13472 pullupmsg(mp1, ipft->ipft_min_size))) { 13473 error = (*ipft->ipft_pfi)(q, 13474 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13475 } 13476 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13477 /* 13478 * CONN_OPER_PENDING_DONE happens in the function called 13479 * through ipft_pfi above. 13480 */ 13481 return; 13482 } 13483 13484 CONN_OPER_PENDING_DONE(connp); 13485 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13486 freemsg(mp); 13487 return; 13488 } 13489 iocp->ioc_error = error; 13490 13491 done: 13492 mp->b_datap->db_type = M_IOCACK; 13493 if (iocp->ioc_error) 13494 iocp->ioc_count = 0; 13495 qreply(q, mp); 13496 } 13497 13498 /* 13499 * Lookup an ipif using the sequence id (ipif_seqid) 13500 */ 13501 ipif_t * 13502 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13503 { 13504 ipif_t *ipif; 13505 13506 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13507 13508 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13509 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13510 return (ipif); 13511 } 13512 return (NULL); 13513 } 13514 13515 /* 13516 * Assign a unique id for the ipif. This is used later when we send 13517 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13518 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13519 * IRE is added, we verify that ipif has not disappeared. 13520 */ 13521 13522 static void 13523 ipif_assign_seqid(ipif_t *ipif) 13524 { 13525 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13526 13527 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13528 } 13529 13530 /* 13531 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13532 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13533 * be inserted into the first space available in the list. The value of 13534 * ipif_id will then be set to the appropriate value for its position. 13535 */ 13536 static int 13537 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13538 { 13539 ill_t *ill; 13540 ipif_t *tipif; 13541 ipif_t **tipifp; 13542 int id; 13543 ip_stack_t *ipst; 13544 13545 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13546 IAM_WRITER_IPIF(ipif)); 13547 13548 ill = ipif->ipif_ill; 13549 ASSERT(ill != NULL); 13550 ipst = ill->ill_ipst; 13551 13552 /* 13553 * In the case of lo0:0 we already hold the ill_g_lock. 13554 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13555 * ipif_insert. Another such caller is ipif_move. 13556 */ 13557 if (acquire_g_lock) 13558 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13559 if (acquire_ill_lock) 13560 mutex_enter(&ill->ill_lock); 13561 id = ipif->ipif_id; 13562 tipifp = &(ill->ill_ipif); 13563 if (id == -1) { /* need to find a real id */ 13564 id = 0; 13565 while ((tipif = *tipifp) != NULL) { 13566 ASSERT(tipif->ipif_id >= id); 13567 if (tipif->ipif_id != id) 13568 break; /* non-consecutive id */ 13569 id++; 13570 tipifp = &(tipif->ipif_next); 13571 } 13572 /* limit number of logical interfaces */ 13573 if (id >= ipst->ips_ip_addrs_per_if) { 13574 if (acquire_ill_lock) 13575 mutex_exit(&ill->ill_lock); 13576 if (acquire_g_lock) 13577 rw_exit(&ipst->ips_ill_g_lock); 13578 return (-1); 13579 } 13580 ipif->ipif_id = id; /* assign new id */ 13581 } else if (id < ipst->ips_ip_addrs_per_if) { 13582 /* we have a real id; insert ipif in the right place */ 13583 while ((tipif = *tipifp) != NULL) { 13584 ASSERT(tipif->ipif_id != id); 13585 if (tipif->ipif_id > id) 13586 break; /* found correct location */ 13587 tipifp = &(tipif->ipif_next); 13588 } 13589 } else { 13590 if (acquire_ill_lock) 13591 mutex_exit(&ill->ill_lock); 13592 if (acquire_g_lock) 13593 rw_exit(&ipst->ips_ill_g_lock); 13594 return (-1); 13595 } 13596 13597 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13598 13599 ipif->ipif_next = tipif; 13600 *tipifp = ipif; 13601 if (acquire_ill_lock) 13602 mutex_exit(&ill->ill_lock); 13603 if (acquire_g_lock) 13604 rw_exit(&ipst->ips_ill_g_lock); 13605 return (0); 13606 } 13607 13608 /* 13609 * Allocate and initialize a new interface control structure. (Always 13610 * called as writer.) 13611 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13612 * is not part of the global linked list of ills. ipif_seqid is unique 13613 * in the system and to preserve the uniqueness, it is assigned only 13614 * when ill becomes part of the global list. At that point ill will 13615 * have a name. If it doesn't get assigned here, it will get assigned 13616 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13617 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13618 * the interface flags or any other information from the DL_INFO_ACK for 13619 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13620 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13621 * second DL_INFO_ACK comes in from the driver. 13622 */ 13623 static ipif_t * 13624 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13625 { 13626 ipif_t *ipif; 13627 phyint_t *phyi; 13628 13629 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13630 ill->ill_name, id, (void *)ill)); 13631 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13632 13633 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13634 return (NULL); 13635 *ipif = ipif_zero; /* start clean */ 13636 13637 ipif->ipif_ill = ill; 13638 ipif->ipif_id = id; /* could be -1 */ 13639 /* 13640 * Inherit the zoneid from the ill; for the shared stack instance 13641 * this is always the global zone 13642 */ 13643 ipif->ipif_zoneid = ill->ill_zoneid; 13644 13645 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13646 13647 ipif->ipif_refcnt = 0; 13648 ipif->ipif_saved_ire_cnt = 0; 13649 13650 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13651 mi_free(ipif); 13652 return (NULL); 13653 } 13654 /* -1 id should have been replaced by real id */ 13655 id = ipif->ipif_id; 13656 ASSERT(id >= 0); 13657 13658 if (ill->ill_name[0] != '\0') 13659 ipif_assign_seqid(ipif); 13660 13661 /* 13662 * Keep a copy of original id in ipif_orig_ipifid. Failback 13663 * will attempt to restore the original id. The SIOCSLIFOINDEX 13664 * ioctl sets ipif_orig_ipifid to zero. 13665 */ 13666 ipif->ipif_orig_ipifid = id; 13667 13668 /* 13669 * We grab the ill_lock and phyint_lock to protect the flag changes. 13670 * The ipif is still not up and can't be looked up until the 13671 * ioctl completes and the IPIF_CHANGING flag is cleared. 13672 */ 13673 mutex_enter(&ill->ill_lock); 13674 mutex_enter(&ill->ill_phyint->phyint_lock); 13675 /* 13676 * Set the running flag when logical interface zero is created. 13677 * For subsequent logical interfaces, a DLPI link down 13678 * notification message may have cleared the running flag to 13679 * indicate the link is down, so we shouldn't just blindly set it. 13680 */ 13681 if (id == 0) 13682 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13683 ipif->ipif_ire_type = ire_type; 13684 phyi = ill->ill_phyint; 13685 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13686 13687 if (ipif->ipif_isv6) { 13688 ill->ill_flags |= ILLF_IPV6; 13689 } else { 13690 ipaddr_t inaddr_any = INADDR_ANY; 13691 13692 ill->ill_flags |= ILLF_IPV4; 13693 13694 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13695 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13696 &ipif->ipif_v6lcl_addr); 13697 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13698 &ipif->ipif_v6src_addr); 13699 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13700 &ipif->ipif_v6subnet); 13701 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13702 &ipif->ipif_v6net_mask); 13703 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13704 &ipif->ipif_v6brd_addr); 13705 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13706 &ipif->ipif_v6pp_dst_addr); 13707 } 13708 13709 /* 13710 * Don't set the interface flags etc. now, will do it in 13711 * ip_ll_subnet_defaults. 13712 */ 13713 if (!initialize) { 13714 mutex_exit(&ill->ill_lock); 13715 mutex_exit(&ill->ill_phyint->phyint_lock); 13716 return (ipif); 13717 } 13718 ipif->ipif_mtu = ill->ill_max_mtu; 13719 13720 if (ill->ill_bcast_addr_length != 0) { 13721 /* 13722 * Later detect lack of DLPI driver multicast 13723 * capability by catching DL_ENABMULTI errors in 13724 * ip_rput_dlpi. 13725 */ 13726 ill->ill_flags |= ILLF_MULTICAST; 13727 if (!ipif->ipif_isv6) 13728 ipif->ipif_flags |= IPIF_BROADCAST; 13729 } else { 13730 if (ill->ill_net_type != IRE_LOOPBACK) { 13731 if (ipif->ipif_isv6) 13732 /* 13733 * Note: xresolv interfaces will eventually need 13734 * NOARP set here as well, but that will require 13735 * those external resolvers to have some 13736 * knowledge of that flag and act appropriately. 13737 * Not to be changed at present. 13738 */ 13739 ill->ill_flags |= ILLF_NONUD; 13740 else 13741 ill->ill_flags |= ILLF_NOARP; 13742 } 13743 if (ill->ill_phys_addr_length == 0) { 13744 if (ill->ill_media && 13745 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13746 ipif->ipif_flags |= IPIF_NOXMIT; 13747 phyi->phyint_flags |= PHYI_VIRTUAL; 13748 } else { 13749 /* pt-pt supports multicast. */ 13750 ill->ill_flags |= ILLF_MULTICAST; 13751 if (ill->ill_net_type == IRE_LOOPBACK) { 13752 phyi->phyint_flags |= 13753 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13754 } else { 13755 ipif->ipif_flags |= IPIF_POINTOPOINT; 13756 } 13757 } 13758 } 13759 } 13760 mutex_exit(&ill->ill_lock); 13761 mutex_exit(&ill->ill_phyint->phyint_lock); 13762 return (ipif); 13763 } 13764 13765 /* 13766 * If appropriate, send a message up to the resolver delete the entry 13767 * for the address of this interface which is going out of business. 13768 * (Always called as writer). 13769 * 13770 * NOTE : We need to check for NULL mps as some of the fields are 13771 * initialized only for some interface types. See ipif_resolver_up() 13772 * for details. 13773 */ 13774 void 13775 ipif_arp_down(ipif_t *ipif) 13776 { 13777 mblk_t *mp; 13778 ill_t *ill = ipif->ipif_ill; 13779 13780 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13781 ASSERT(IAM_WRITER_IPIF(ipif)); 13782 13783 /* Delete the mapping for the local address */ 13784 mp = ipif->ipif_arp_del_mp; 13785 if (mp != NULL) { 13786 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13787 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13788 putnext(ill->ill_rq, mp); 13789 ipif->ipif_arp_del_mp = NULL; 13790 } 13791 13792 /* 13793 * If this is the last ipif that is going down and there are no 13794 * duplicate addresses we may yet attempt to re-probe, then we need to 13795 * clean up ARP completely. 13796 */ 13797 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13798 13799 /* Send up AR_INTERFACE_DOWN message */ 13800 mp = ill->ill_arp_down_mp; 13801 if (mp != NULL) { 13802 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13803 *(unsigned *)mp->b_rptr, ill->ill_name, 13804 ipif->ipif_id)); 13805 putnext(ill->ill_rq, mp); 13806 ill->ill_arp_down_mp = NULL; 13807 } 13808 13809 /* Tell ARP to delete the multicast mappings */ 13810 mp = ill->ill_arp_del_mapping_mp; 13811 if (mp != NULL) { 13812 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13813 *(unsigned *)mp->b_rptr, ill->ill_name, 13814 ipif->ipif_id)); 13815 putnext(ill->ill_rq, mp); 13816 ill->ill_arp_del_mapping_mp = NULL; 13817 } 13818 } 13819 } 13820 13821 /* 13822 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13823 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13824 * that it wants the add_mp allocated in this function to be returned 13825 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13826 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13827 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13828 * as it does a ipif_arp_down after calling this function - which will 13829 * remove what we add here. 13830 * 13831 * Returns -1 on failures and 0 on success. 13832 */ 13833 int 13834 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13835 { 13836 mblk_t *del_mp = NULL; 13837 mblk_t *add_mp = NULL; 13838 mblk_t *mp; 13839 ill_t *ill = ipif->ipif_ill; 13840 phyint_t *phyi = ill->ill_phyint; 13841 ipaddr_t addr, mask, extract_mask = 0; 13842 arma_t *arma; 13843 uint8_t *maddr, *bphys_addr; 13844 uint32_t hw_start; 13845 dl_unitdata_req_t *dlur; 13846 13847 ASSERT(IAM_WRITER_IPIF(ipif)); 13848 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13849 return (0); 13850 13851 /* 13852 * Delete the existing mapping from ARP. Normally ipif_down 13853 * -> ipif_arp_down should send this up to ARP. The only 13854 * reason we would find this when we are switching from 13855 * Multicast to Broadcast where we did not do a down. 13856 */ 13857 mp = ill->ill_arp_del_mapping_mp; 13858 if (mp != NULL) { 13859 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13860 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13861 putnext(ill->ill_rq, mp); 13862 ill->ill_arp_del_mapping_mp = NULL; 13863 } 13864 13865 if (arp_add_mapping_mp != NULL) 13866 *arp_add_mapping_mp = NULL; 13867 13868 /* 13869 * Check that the address is not to long for the constant 13870 * length reserved in the template arma_t. 13871 */ 13872 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13873 return (-1); 13874 13875 /* Add mapping mblk */ 13876 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13877 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13878 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13879 (caddr_t)&addr); 13880 if (add_mp == NULL) 13881 return (-1); 13882 arma = (arma_t *)add_mp->b_rptr; 13883 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13884 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13885 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13886 13887 /* 13888 * Determine the broadcast address. 13889 */ 13890 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13891 if (ill->ill_sap_length < 0) 13892 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13893 else 13894 bphys_addr = (uchar_t *)dlur + 13895 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13896 /* 13897 * Check PHYI_MULTI_BCAST and length of physical 13898 * address to determine if we use the mapping or the 13899 * broadcast address. 13900 */ 13901 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13902 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13903 bphys_addr, maddr, &hw_start, &extract_mask)) 13904 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13905 13906 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13907 (ill->ill_flags & ILLF_MULTICAST)) { 13908 /* Make sure this will not match the "exact" entry. */ 13909 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13910 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13911 (caddr_t)&addr); 13912 if (del_mp == NULL) { 13913 freemsg(add_mp); 13914 return (-1); 13915 } 13916 bcopy(&extract_mask, (char *)arma + 13917 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13918 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13919 /* Use link-layer broadcast address for MULTI_BCAST */ 13920 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13921 ip2dbg(("ipif_arp_setup_multicast: adding" 13922 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13923 } else { 13924 arma->arma_hw_mapping_start = hw_start; 13925 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13926 " ARP setup for %s\n", ill->ill_name)); 13927 } 13928 } else { 13929 freemsg(add_mp); 13930 ASSERT(del_mp == NULL); 13931 /* It is neither MULTICAST nor MULTI_BCAST */ 13932 return (0); 13933 } 13934 ASSERT(add_mp != NULL && del_mp != NULL); 13935 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13936 ill->ill_arp_del_mapping_mp = del_mp; 13937 if (arp_add_mapping_mp != NULL) { 13938 /* The caller just wants the mblks allocated */ 13939 *arp_add_mapping_mp = add_mp; 13940 } else { 13941 /* The caller wants us to send it to arp */ 13942 putnext(ill->ill_rq, add_mp); 13943 } 13944 return (0); 13945 } 13946 13947 /* 13948 * Get the resolver set up for a new interface address. 13949 * (Always called as writer.) 13950 * Called both for IPv4 and IPv6 interfaces, 13951 * though it only sets up the resolver for v6 13952 * if it's an xresolv interface (one using an external resolver). 13953 * Honors ILLF_NOARP. 13954 * The enumerated value res_act is used to tune the behavior. 13955 * If set to Res_act_initial, then we set up all the resolver 13956 * structures for a new interface. If set to Res_act_move, then 13957 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13958 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13959 * asynchronous hardware address change notification. If set to 13960 * Res_act_defend, then we tell ARP that it needs to send a single 13961 * gratuitous message in defense of the address. 13962 * Returns error on failure. 13963 */ 13964 int 13965 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13966 { 13967 caddr_t addr; 13968 mblk_t *arp_up_mp = NULL; 13969 mblk_t *arp_down_mp = NULL; 13970 mblk_t *arp_add_mp = NULL; 13971 mblk_t *arp_del_mp = NULL; 13972 mblk_t *arp_add_mapping_mp = NULL; 13973 mblk_t *arp_del_mapping_mp = NULL; 13974 ill_t *ill = ipif->ipif_ill; 13975 uchar_t *area_p = NULL; 13976 uchar_t *ared_p = NULL; 13977 int err = ENOMEM; 13978 boolean_t was_dup; 13979 13980 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13981 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13982 ASSERT(IAM_WRITER_IPIF(ipif)); 13983 13984 was_dup = B_FALSE; 13985 if (res_act == Res_act_initial) { 13986 ipif->ipif_addr_ready = 0; 13987 /* 13988 * We're bringing an interface up here. There's no way that we 13989 * should need to shut down ARP now. 13990 */ 13991 mutex_enter(&ill->ill_lock); 13992 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13993 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13994 ill->ill_ipif_dup_count--; 13995 was_dup = B_TRUE; 13996 } 13997 mutex_exit(&ill->ill_lock); 13998 } 13999 if (ipif->ipif_recovery_id != 0) 14000 (void) untimeout(ipif->ipif_recovery_id); 14001 ipif->ipif_recovery_id = 0; 14002 if (ill->ill_net_type != IRE_IF_RESOLVER) { 14003 ipif->ipif_addr_ready = 1; 14004 return (0); 14005 } 14006 /* NDP will set the ipif_addr_ready flag when it's ready */ 14007 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 14008 return (0); 14009 14010 if (ill->ill_isv6) { 14011 /* 14012 * External resolver for IPv6 14013 */ 14014 ASSERT(res_act == Res_act_initial); 14015 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 14016 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 14017 area_p = (uchar_t *)&ip6_area_template; 14018 ared_p = (uchar_t *)&ip6_ared_template; 14019 } 14020 } else { 14021 /* 14022 * IPv4 arp case. If the ARP stream has already started 14023 * closing, fail this request for ARP bringup. Else 14024 * record the fact that an ARP bringup is pending. 14025 */ 14026 mutex_enter(&ill->ill_lock); 14027 if (ill->ill_arp_closing) { 14028 mutex_exit(&ill->ill_lock); 14029 err = EINVAL; 14030 goto failed; 14031 } else { 14032 if (ill->ill_ipif_up_count == 0 && 14033 ill->ill_ipif_dup_count == 0 && !was_dup) 14034 ill->ill_arp_bringup_pending = 1; 14035 mutex_exit(&ill->ill_lock); 14036 } 14037 if (ipif->ipif_lcl_addr != INADDR_ANY) { 14038 addr = (caddr_t)&ipif->ipif_lcl_addr; 14039 area_p = (uchar_t *)&ip_area_template; 14040 ared_p = (uchar_t *)&ip_ared_template; 14041 } 14042 } 14043 14044 /* 14045 * Add an entry for the local address in ARP only if it 14046 * is not UNNUMBERED and the address is not INADDR_ANY. 14047 */ 14048 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 14049 area_t *area; 14050 14051 /* Now ask ARP to publish our address. */ 14052 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 14053 if (arp_add_mp == NULL) 14054 goto failed; 14055 area = (area_t *)arp_add_mp->b_rptr; 14056 if (res_act != Res_act_initial) { 14057 /* 14058 * Copy the new hardware address and length into 14059 * arp_add_mp to be sent to ARP. 14060 */ 14061 area->area_hw_addr_length = ill->ill_phys_addr_length; 14062 bcopy(ill->ill_phys_addr, 14063 ((char *)area + area->area_hw_addr_offset), 14064 area->area_hw_addr_length); 14065 } 14066 14067 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 14068 ACE_F_MYADDR; 14069 14070 if (res_act == Res_act_defend) { 14071 area->area_flags |= ACE_F_DEFEND; 14072 /* 14073 * If we're just defending our address now, then 14074 * there's no need to set up ARP multicast mappings. 14075 * The publish command is enough. 14076 */ 14077 goto done; 14078 } 14079 14080 if (res_act != Res_act_initial) 14081 goto arp_setup_multicast; 14082 14083 /* 14084 * Allocate an ARP deletion message so we know we can tell ARP 14085 * when the interface goes down. 14086 */ 14087 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 14088 if (arp_del_mp == NULL) 14089 goto failed; 14090 14091 } else { 14092 if (res_act != Res_act_initial) 14093 goto done; 14094 } 14095 /* 14096 * Need to bring up ARP or setup multicast mapping only 14097 * when the first interface is coming UP. 14098 */ 14099 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 14100 was_dup) { 14101 goto done; 14102 } 14103 14104 /* 14105 * Allocate an ARP down message (to be saved) and an ARP up 14106 * message. 14107 */ 14108 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 14109 if (arp_down_mp == NULL) 14110 goto failed; 14111 14112 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 14113 if (arp_up_mp == NULL) 14114 goto failed; 14115 14116 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14117 goto done; 14118 14119 arp_setup_multicast: 14120 /* 14121 * Setup the multicast mappings. This function initializes 14122 * ill_arp_del_mapping_mp also. This does not need to be done for 14123 * IPv6. 14124 */ 14125 if (!ill->ill_isv6) { 14126 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 14127 if (err != 0) 14128 goto failed; 14129 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 14130 ASSERT(arp_add_mapping_mp != NULL); 14131 } 14132 14133 done: 14134 if (arp_del_mp != NULL) { 14135 ASSERT(ipif->ipif_arp_del_mp == NULL); 14136 ipif->ipif_arp_del_mp = arp_del_mp; 14137 } 14138 if (arp_down_mp != NULL) { 14139 ASSERT(ill->ill_arp_down_mp == NULL); 14140 ill->ill_arp_down_mp = arp_down_mp; 14141 } 14142 if (arp_del_mapping_mp != NULL) { 14143 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 14144 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 14145 } 14146 if (arp_up_mp != NULL) { 14147 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 14148 ill->ill_name, ipif->ipif_id)); 14149 putnext(ill->ill_rq, arp_up_mp); 14150 } 14151 if (arp_add_mp != NULL) { 14152 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 14153 ill->ill_name, ipif->ipif_id)); 14154 /* 14155 * If it's an extended ARP implementation, then we'll wait to 14156 * hear that DAD has finished before using the interface. 14157 */ 14158 if (!ill->ill_arp_extend) 14159 ipif->ipif_addr_ready = 1; 14160 putnext(ill->ill_rq, arp_add_mp); 14161 } else { 14162 ipif->ipif_addr_ready = 1; 14163 } 14164 if (arp_add_mapping_mp != NULL) { 14165 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14166 ill->ill_name, ipif->ipif_id)); 14167 putnext(ill->ill_rq, arp_add_mapping_mp); 14168 } 14169 if (res_act != Res_act_initial) 14170 return (0); 14171 14172 if (ill->ill_flags & ILLF_NOARP) 14173 err = ill_arp_off(ill); 14174 else 14175 err = ill_arp_on(ill); 14176 if (err != 0) { 14177 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14178 freemsg(ipif->ipif_arp_del_mp); 14179 freemsg(ill->ill_arp_down_mp); 14180 freemsg(ill->ill_arp_del_mapping_mp); 14181 ipif->ipif_arp_del_mp = NULL; 14182 ill->ill_arp_down_mp = NULL; 14183 ill->ill_arp_del_mapping_mp = NULL; 14184 return (err); 14185 } 14186 return ((ill->ill_ipif_up_count != 0 || was_dup || 14187 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14188 14189 failed: 14190 ip1dbg(("ipif_resolver_up: FAILED\n")); 14191 freemsg(arp_add_mp); 14192 freemsg(arp_del_mp); 14193 freemsg(arp_add_mapping_mp); 14194 freemsg(arp_up_mp); 14195 freemsg(arp_down_mp); 14196 ill->ill_arp_bringup_pending = 0; 14197 return (err); 14198 } 14199 14200 /* 14201 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14202 * just gone back up. 14203 */ 14204 static void 14205 ipif_arp_start_dad(ipif_t *ipif) 14206 { 14207 ill_t *ill = ipif->ipif_ill; 14208 mblk_t *arp_add_mp; 14209 area_t *area; 14210 14211 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14212 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14213 ipif->ipif_lcl_addr == INADDR_ANY || 14214 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14215 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14216 /* 14217 * If we can't contact ARP for some reason, that's not really a 14218 * problem. Just send out the routing socket notification that 14219 * DAD completion would have done, and continue. 14220 */ 14221 ipif_mask_reply(ipif); 14222 ip_rts_ifmsg(ipif); 14223 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14224 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14225 ipif->ipif_addr_ready = 1; 14226 return; 14227 } 14228 14229 /* Setting the 'unverified' flag restarts DAD */ 14230 area = (area_t *)arp_add_mp->b_rptr; 14231 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14232 ACE_F_UNVERIFIED; 14233 putnext(ill->ill_rq, arp_add_mp); 14234 } 14235 14236 static void 14237 ipif_ndp_start_dad(ipif_t *ipif) 14238 { 14239 nce_t *nce; 14240 14241 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14242 if (nce == NULL) 14243 return; 14244 14245 if (!ndp_restart_dad(nce)) { 14246 /* 14247 * If we can't restart DAD for some reason, that's not really a 14248 * problem. Just send out the routing socket notification that 14249 * DAD completion would have done, and continue. 14250 */ 14251 ip_rts_ifmsg(ipif); 14252 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14253 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14254 ipif->ipif_addr_ready = 1; 14255 } 14256 NCE_REFRELE(nce); 14257 } 14258 14259 /* 14260 * Restart duplicate address detection on all interfaces on the given ill. 14261 * 14262 * This is called when an interface transitions from down to up 14263 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14264 * 14265 * Note that since the underlying physical link has transitioned, we must cause 14266 * at least one routing socket message to be sent here, either via DAD 14267 * completion or just by default on the first ipif. (If we don't do this, then 14268 * in.mpathd will see long delays when doing link-based failure recovery.) 14269 */ 14270 void 14271 ill_restart_dad(ill_t *ill, boolean_t went_up) 14272 { 14273 ipif_t *ipif; 14274 14275 if (ill == NULL) 14276 return; 14277 14278 /* 14279 * If layer two doesn't support duplicate address detection, then just 14280 * send the routing socket message now and be done with it. 14281 */ 14282 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14283 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14284 ip_rts_ifmsg(ill->ill_ipif); 14285 return; 14286 } 14287 14288 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14289 if (went_up) { 14290 if (ipif->ipif_flags & IPIF_UP) { 14291 if (ill->ill_isv6) 14292 ipif_ndp_start_dad(ipif); 14293 else 14294 ipif_arp_start_dad(ipif); 14295 } else if (ill->ill_isv6 && 14296 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14297 /* 14298 * For IPv4, the ARP module itself will 14299 * automatically start the DAD process when it 14300 * sees DL_NOTE_LINK_UP. We respond to the 14301 * AR_CN_READY at the completion of that task. 14302 * For IPv6, we must kick off the bring-up 14303 * process now. 14304 */ 14305 ndp_do_recovery(ipif); 14306 } else { 14307 /* 14308 * Unfortunately, the first ipif is "special" 14309 * and represents the underlying ill in the 14310 * routing socket messages. Thus, when this 14311 * one ipif is down, we must still notify so 14312 * that the user knows the IFF_RUNNING status 14313 * change. (If the first ipif is up, then 14314 * we'll handle eventual routing socket 14315 * notification via DAD completion.) 14316 */ 14317 if (ipif == ill->ill_ipif) 14318 ip_rts_ifmsg(ill->ill_ipif); 14319 } 14320 } else { 14321 /* 14322 * After link down, we'll need to send a new routing 14323 * message when the link comes back, so clear 14324 * ipif_addr_ready. 14325 */ 14326 ipif->ipif_addr_ready = 0; 14327 } 14328 } 14329 14330 /* 14331 * If we've torn down links, then notify the user right away. 14332 */ 14333 if (!went_up) 14334 ip_rts_ifmsg(ill->ill_ipif); 14335 } 14336 14337 /* 14338 * Wakeup all threads waiting to enter the ipsq, and sleeping 14339 * on any of the ills in this ipsq. The ill_lock of the ill 14340 * must be held so that waiters don't miss wakeups 14341 */ 14342 static void 14343 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14344 { 14345 phyint_t *phyint; 14346 14347 phyint = ipsq->ipsq_phyint_list; 14348 while (phyint != NULL) { 14349 if (phyint->phyint_illv4) { 14350 if (!caller_holds_lock) 14351 mutex_enter(&phyint->phyint_illv4->ill_lock); 14352 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14353 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14354 if (!caller_holds_lock) 14355 mutex_exit(&phyint->phyint_illv4->ill_lock); 14356 } 14357 if (phyint->phyint_illv6) { 14358 if (!caller_holds_lock) 14359 mutex_enter(&phyint->phyint_illv6->ill_lock); 14360 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14361 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14362 if (!caller_holds_lock) 14363 mutex_exit(&phyint->phyint_illv6->ill_lock); 14364 } 14365 phyint = phyint->phyint_ipsq_next; 14366 } 14367 } 14368 14369 static ipsq_t * 14370 ipsq_create(char *groupname, ip_stack_t *ipst) 14371 { 14372 ipsq_t *ipsq; 14373 14374 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14375 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14376 if (ipsq == NULL) { 14377 return (NULL); 14378 } 14379 14380 if (groupname != NULL) 14381 (void) strcpy(ipsq->ipsq_name, groupname); 14382 else 14383 ipsq->ipsq_name[0] = '\0'; 14384 14385 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14386 ipsq->ipsq_flags |= IPSQ_GROUP; 14387 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14388 ipst->ips_ipsq_g_head = ipsq; 14389 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14390 return (ipsq); 14391 } 14392 14393 /* 14394 * Return an ipsq correspoding to the groupname. If 'create' is true 14395 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14396 * uniquely with an IPMP group. However during IPMP groupname operations, 14397 * multiple IPMP groups may be associated with a single ipsq. But no 14398 * IPMP group can be associated with more than 1 ipsq at any time. 14399 * For example 14400 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14401 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14402 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14403 * 14404 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14405 * status shown below during the execution of the above command. 14406 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14407 * 14408 * After the completion of the above groupname command we return to the stable 14409 * state shown below. 14410 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14411 * hme4 mpk17-85 ipsq2 mpk17-85 1 14412 * 14413 * Because of the above, we don't search based on the ipsq_name since that 14414 * would miss the correct ipsq during certain windows as shown above. 14415 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14416 * natural state. 14417 */ 14418 static ipsq_t * 14419 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14420 ip_stack_t *ipst) 14421 { 14422 ipsq_t *ipsq; 14423 int group_len; 14424 phyint_t *phyint; 14425 14426 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14427 14428 group_len = strlen(groupname); 14429 ASSERT(group_len != 0); 14430 group_len++; 14431 14432 for (ipsq = ipst->ips_ipsq_g_head; 14433 ipsq != NULL; 14434 ipsq = ipsq->ipsq_next) { 14435 /* 14436 * When an ipsq is being split, and ill_split_ipsq 14437 * calls this function, we exclude it from being considered. 14438 */ 14439 if (ipsq == exclude_ipsq) 14440 continue; 14441 14442 /* 14443 * Compare against the ipsq_name. The groupname change happens 14444 * in 2 phases. The 1st phase merges the from group into 14445 * the to group's ipsq, by calling ill_merge_groups and restarts 14446 * the ioctl. The 2nd phase then locates the ipsq again thru 14447 * ipsq_name. At this point the phyint_groupname has not been 14448 * updated. 14449 */ 14450 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14451 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14452 /* 14453 * Verify that an ipmp groupname is exactly 14454 * part of 1 ipsq and is not found in any other 14455 * ipsq. 14456 */ 14457 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14458 NULL); 14459 return (ipsq); 14460 } 14461 14462 /* 14463 * Comparison against ipsq_name alone is not sufficient. 14464 * In the case when groups are currently being 14465 * merged, the ipsq could hold other IPMP groups temporarily. 14466 * so we walk the phyint list and compare against the 14467 * phyint_groupname as well. 14468 */ 14469 phyint = ipsq->ipsq_phyint_list; 14470 while (phyint != NULL) { 14471 if ((group_len == phyint->phyint_groupname_len) && 14472 (bcmp(phyint->phyint_groupname, groupname, 14473 group_len) == 0)) { 14474 /* 14475 * Verify that an ipmp groupname is exactly 14476 * part of 1 ipsq and is not found in any other 14477 * ipsq. 14478 */ 14479 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14480 ipst) == NULL); 14481 return (ipsq); 14482 } 14483 phyint = phyint->phyint_ipsq_next; 14484 } 14485 } 14486 if (create) 14487 ipsq = ipsq_create(groupname, ipst); 14488 return (ipsq); 14489 } 14490 14491 static void 14492 ipsq_delete(ipsq_t *ipsq) 14493 { 14494 ipsq_t *nipsq; 14495 ipsq_t *pipsq = NULL; 14496 ip_stack_t *ipst = ipsq->ipsq_ipst; 14497 14498 /* 14499 * We don't hold the ipsq lock, but we are sure no new 14500 * messages can land up, since the ipsq_refs is zero. 14501 * i.e. this ipsq is unnamed and no phyint or phyint group 14502 * is associated with this ipsq. (Lookups are based on ill_name 14503 * or phyint_group_name) 14504 */ 14505 ASSERT(ipsq->ipsq_refs == 0); 14506 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14507 ASSERT(ipsq->ipsq_pending_mp == NULL); 14508 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14509 /* 14510 * This is not the ipsq of an IPMP group. 14511 */ 14512 ipsq->ipsq_ipst = NULL; 14513 kmem_free(ipsq, sizeof (ipsq_t)); 14514 return; 14515 } 14516 14517 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14518 14519 /* 14520 * Locate the ipsq before we can remove it from 14521 * the singly linked list of ipsq's. 14522 */ 14523 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14524 nipsq = nipsq->ipsq_next) { 14525 if (nipsq == ipsq) { 14526 break; 14527 } 14528 pipsq = nipsq; 14529 } 14530 14531 ASSERT(nipsq == ipsq); 14532 14533 /* unlink ipsq from the list */ 14534 if (pipsq != NULL) 14535 pipsq->ipsq_next = ipsq->ipsq_next; 14536 else 14537 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14538 ipsq->ipsq_ipst = NULL; 14539 kmem_free(ipsq, sizeof (ipsq_t)); 14540 rw_exit(&ipst->ips_ill_g_lock); 14541 } 14542 14543 static void 14544 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14545 queue_t *q) 14546 { 14547 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14548 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14549 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14550 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14551 ASSERT(current_mp != NULL); 14552 14553 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14554 NEW_OP, NULL); 14555 14556 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14557 new_ipsq->ipsq_xopq_mphead != NULL); 14558 14559 /* 14560 * move from old ipsq to the new ipsq. 14561 */ 14562 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14563 if (old_ipsq->ipsq_xopq_mphead != NULL) 14564 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14565 14566 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14567 } 14568 14569 void 14570 ill_group_cleanup(ill_t *ill) 14571 { 14572 ill_t *ill_v4; 14573 ill_t *ill_v6; 14574 ipif_t *ipif; 14575 14576 ill_v4 = ill->ill_phyint->phyint_illv4; 14577 ill_v6 = ill->ill_phyint->phyint_illv6; 14578 14579 if (ill_v4 != NULL) { 14580 mutex_enter(&ill_v4->ill_lock); 14581 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14582 ipif = ipif->ipif_next) { 14583 IPIF_UNMARK_MOVING(ipif); 14584 } 14585 ill_v4->ill_up_ipifs = B_FALSE; 14586 mutex_exit(&ill_v4->ill_lock); 14587 } 14588 14589 if (ill_v6 != NULL) { 14590 mutex_enter(&ill_v6->ill_lock); 14591 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14592 ipif = ipif->ipif_next) { 14593 IPIF_UNMARK_MOVING(ipif); 14594 } 14595 ill_v6->ill_up_ipifs = B_FALSE; 14596 mutex_exit(&ill_v6->ill_lock); 14597 } 14598 } 14599 /* 14600 * This function is called when an ill has had a change in its group status 14601 * to bring up all the ipifs that were up before the change. 14602 */ 14603 int 14604 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14605 { 14606 ipif_t *ipif; 14607 ill_t *ill_v4; 14608 ill_t *ill_v6; 14609 ill_t *from_ill; 14610 int err = 0; 14611 14612 14613 ASSERT(IAM_WRITER_ILL(ill)); 14614 14615 /* 14616 * Except for ipif_state_flags and ill_state_flags the other 14617 * fields of the ipif/ill that are modified below are protected 14618 * implicitly since we are a writer. We would have tried to down 14619 * even an ipif that was already down, in ill_down_ipifs. So we 14620 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14621 */ 14622 ill_v4 = ill->ill_phyint->phyint_illv4; 14623 ill_v6 = ill->ill_phyint->phyint_illv6; 14624 if (ill_v4 != NULL) { 14625 ill_v4->ill_up_ipifs = B_TRUE; 14626 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14627 ipif = ipif->ipif_next) { 14628 mutex_enter(&ill_v4->ill_lock); 14629 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14630 IPIF_UNMARK_MOVING(ipif); 14631 mutex_exit(&ill_v4->ill_lock); 14632 if (ipif->ipif_was_up) { 14633 if (!(ipif->ipif_flags & IPIF_UP)) 14634 err = ipif_up(ipif, q, mp); 14635 ipif->ipif_was_up = B_FALSE; 14636 if (err != 0) { 14637 /* 14638 * Can there be any other error ? 14639 */ 14640 ASSERT(err == EINPROGRESS); 14641 return (err); 14642 } 14643 } 14644 } 14645 mutex_enter(&ill_v4->ill_lock); 14646 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14647 mutex_exit(&ill_v4->ill_lock); 14648 ill_v4->ill_up_ipifs = B_FALSE; 14649 if (ill_v4->ill_move_in_progress) { 14650 ASSERT(ill_v4->ill_move_peer != NULL); 14651 ill_v4->ill_move_in_progress = B_FALSE; 14652 from_ill = ill_v4->ill_move_peer; 14653 from_ill->ill_move_in_progress = B_FALSE; 14654 from_ill->ill_move_peer = NULL; 14655 mutex_enter(&from_ill->ill_lock); 14656 from_ill->ill_state_flags &= ~ILL_CHANGING; 14657 mutex_exit(&from_ill->ill_lock); 14658 if (ill_v6 == NULL) { 14659 if (from_ill->ill_phyint->phyint_flags & 14660 PHYI_STANDBY) { 14661 phyint_inactive(from_ill->ill_phyint); 14662 } 14663 if (ill_v4->ill_phyint->phyint_flags & 14664 PHYI_STANDBY) { 14665 phyint_inactive(ill_v4->ill_phyint); 14666 } 14667 } 14668 ill_v4->ill_move_peer = NULL; 14669 } 14670 } 14671 14672 if (ill_v6 != NULL) { 14673 ill_v6->ill_up_ipifs = B_TRUE; 14674 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14675 ipif = ipif->ipif_next) { 14676 mutex_enter(&ill_v6->ill_lock); 14677 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14678 IPIF_UNMARK_MOVING(ipif); 14679 mutex_exit(&ill_v6->ill_lock); 14680 if (ipif->ipif_was_up) { 14681 if (!(ipif->ipif_flags & IPIF_UP)) 14682 err = ipif_up(ipif, q, mp); 14683 ipif->ipif_was_up = B_FALSE; 14684 if (err != 0) { 14685 /* 14686 * Can there be any other error ? 14687 */ 14688 ASSERT(err == EINPROGRESS); 14689 return (err); 14690 } 14691 } 14692 } 14693 mutex_enter(&ill_v6->ill_lock); 14694 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14695 mutex_exit(&ill_v6->ill_lock); 14696 ill_v6->ill_up_ipifs = B_FALSE; 14697 if (ill_v6->ill_move_in_progress) { 14698 ASSERT(ill_v6->ill_move_peer != NULL); 14699 ill_v6->ill_move_in_progress = B_FALSE; 14700 from_ill = ill_v6->ill_move_peer; 14701 from_ill->ill_move_in_progress = B_FALSE; 14702 from_ill->ill_move_peer = NULL; 14703 mutex_enter(&from_ill->ill_lock); 14704 from_ill->ill_state_flags &= ~ILL_CHANGING; 14705 mutex_exit(&from_ill->ill_lock); 14706 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14707 phyint_inactive(from_ill->ill_phyint); 14708 } 14709 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14710 phyint_inactive(ill_v6->ill_phyint); 14711 } 14712 ill_v6->ill_move_peer = NULL; 14713 } 14714 } 14715 return (0); 14716 } 14717 14718 /* 14719 * bring down all the approriate ipifs. 14720 */ 14721 /* ARGSUSED */ 14722 static void 14723 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14724 { 14725 ipif_t *ipif; 14726 14727 ASSERT(IAM_WRITER_ILL(ill)); 14728 14729 /* 14730 * Except for ipif_state_flags the other fields of the ipif/ill that 14731 * are modified below are protected implicitly since we are a writer 14732 */ 14733 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14734 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14735 continue; 14736 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14737 /* 14738 * We go through the ipif_down logic even if the ipif 14739 * is already down, since routes can be added based 14740 * on down ipifs. Going through ipif_down once again 14741 * will delete any IREs created based on these routes. 14742 */ 14743 if (ipif->ipif_flags & IPIF_UP) 14744 ipif->ipif_was_up = B_TRUE; 14745 /* 14746 * If called with chk_nofailover true ipif is moving. 14747 */ 14748 mutex_enter(&ill->ill_lock); 14749 if (chk_nofailover) { 14750 ipif->ipif_state_flags |= 14751 IPIF_MOVING | IPIF_CHANGING; 14752 } else { 14753 ipif->ipif_state_flags |= IPIF_CHANGING; 14754 } 14755 mutex_exit(&ill->ill_lock); 14756 /* 14757 * Need to re-create net/subnet bcast ires if 14758 * they are dependent on ipif. 14759 */ 14760 if (!ipif->ipif_isv6) 14761 ipif_check_bcast_ires(ipif); 14762 (void) ipif_logical_down(ipif, NULL, NULL); 14763 ipif_non_duplicate(ipif); 14764 ipif_down_tail(ipif); 14765 /* 14766 * We don't do ipif_multicast_down for IPv4 in 14767 * ipif_down. We need to set this so that 14768 * ipif_multicast_up will join the 14769 * ALLHOSTS_GROUP on to_ill. 14770 */ 14771 ipif->ipif_multicast_up = B_FALSE; 14772 } 14773 } 14774 } 14775 14776 #define IPSQ_INC_REF(ipsq, ipst) { \ 14777 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14778 (ipsq)->ipsq_refs++; \ 14779 } 14780 14781 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14782 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14783 (ipsq)->ipsq_refs--; \ 14784 if ((ipsq)->ipsq_refs == 0) \ 14785 (ipsq)->ipsq_name[0] = '\0'; \ 14786 } 14787 14788 /* 14789 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14790 * new_ipsq. 14791 */ 14792 static void 14793 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14794 { 14795 phyint_t *phyint; 14796 phyint_t *next_phyint; 14797 14798 /* 14799 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14800 * writer and the ill_lock of the ill in question. Also the dest 14801 * ipsq can't vanish while we hold the ill_g_lock as writer. 14802 */ 14803 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14804 14805 phyint = cur_ipsq->ipsq_phyint_list; 14806 cur_ipsq->ipsq_phyint_list = NULL; 14807 while (phyint != NULL) { 14808 next_phyint = phyint->phyint_ipsq_next; 14809 IPSQ_DEC_REF(cur_ipsq, ipst); 14810 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14811 new_ipsq->ipsq_phyint_list = phyint; 14812 IPSQ_INC_REF(new_ipsq, ipst); 14813 phyint->phyint_ipsq = new_ipsq; 14814 phyint = next_phyint; 14815 } 14816 } 14817 14818 #define SPLIT_SUCCESS 0 14819 #define SPLIT_NOT_NEEDED 1 14820 #define SPLIT_FAILED 2 14821 14822 int 14823 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14824 ip_stack_t *ipst) 14825 { 14826 ipsq_t *newipsq = NULL; 14827 14828 /* 14829 * Assertions denote pre-requisites for changing the ipsq of 14830 * a phyint 14831 */ 14832 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14833 /* 14834 * <ill-phyint> assocs can't change while ill_g_lock 14835 * is held as writer. See ill_phyint_reinit() 14836 */ 14837 ASSERT(phyint->phyint_illv4 == NULL || 14838 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14839 ASSERT(phyint->phyint_illv6 == NULL || 14840 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14841 14842 if ((phyint->phyint_groupname_len != 14843 (strlen(cur_ipsq->ipsq_name) + 1) || 14844 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14845 phyint->phyint_groupname_len) != 0)) { 14846 /* 14847 * Once we fail in creating a new ipsq due to memory shortage, 14848 * don't attempt to create new ipsq again, based on another 14849 * phyint, since we want all phyints belonging to an IPMP group 14850 * to be in the same ipsq even in the event of mem alloc fails. 14851 */ 14852 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14853 cur_ipsq, ipst); 14854 if (newipsq == NULL) { 14855 /* Memory allocation failure */ 14856 return (SPLIT_FAILED); 14857 } else { 14858 /* ipsq_refs protected by ill_g_lock (writer) */ 14859 IPSQ_DEC_REF(cur_ipsq, ipst); 14860 phyint->phyint_ipsq = newipsq; 14861 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14862 newipsq->ipsq_phyint_list = phyint; 14863 IPSQ_INC_REF(newipsq, ipst); 14864 return (SPLIT_SUCCESS); 14865 } 14866 } 14867 return (SPLIT_NOT_NEEDED); 14868 } 14869 14870 /* 14871 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14872 * to do this split 14873 */ 14874 static int 14875 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14876 { 14877 ipsq_t *newipsq; 14878 14879 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14880 /* 14881 * <ill-phyint> assocs can't change while ill_g_lock 14882 * is held as writer. See ill_phyint_reinit() 14883 */ 14884 14885 ASSERT(phyint->phyint_illv4 == NULL || 14886 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14887 ASSERT(phyint->phyint_illv6 == NULL || 14888 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14889 14890 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14891 phyint->phyint_illv4: phyint->phyint_illv6)) { 14892 /* 14893 * ipsq_init failed due to no memory 14894 * caller will use the same ipsq 14895 */ 14896 return (SPLIT_FAILED); 14897 } 14898 14899 /* ipsq_ref is protected by ill_g_lock (writer) */ 14900 IPSQ_DEC_REF(cur_ipsq, ipst); 14901 14902 /* 14903 * This is a new ipsq that is unknown to the world. 14904 * So we don't need to hold ipsq_lock, 14905 */ 14906 newipsq = phyint->phyint_ipsq; 14907 newipsq->ipsq_writer = NULL; 14908 newipsq->ipsq_reentry_cnt--; 14909 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14910 #ifdef ILL_DEBUG 14911 newipsq->ipsq_depth = 0; 14912 #endif 14913 14914 return (SPLIT_SUCCESS); 14915 } 14916 14917 /* 14918 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14919 * ipsq's representing their individual groups or themselves. Return 14920 * whether split needs to be retried again later. 14921 */ 14922 static boolean_t 14923 ill_split_ipsq(ipsq_t *cur_ipsq) 14924 { 14925 phyint_t *phyint; 14926 phyint_t *next_phyint; 14927 int error; 14928 boolean_t need_retry = B_FALSE; 14929 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14930 14931 phyint = cur_ipsq->ipsq_phyint_list; 14932 cur_ipsq->ipsq_phyint_list = NULL; 14933 while (phyint != NULL) { 14934 next_phyint = phyint->phyint_ipsq_next; 14935 /* 14936 * 'created' will tell us whether the callee actually 14937 * created an ipsq. Lack of memory may force the callee 14938 * to return without creating an ipsq. 14939 */ 14940 if (phyint->phyint_groupname == NULL) { 14941 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14942 } else { 14943 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14944 need_retry, ipst); 14945 } 14946 14947 switch (error) { 14948 case SPLIT_FAILED: 14949 need_retry = B_TRUE; 14950 /* FALLTHRU */ 14951 case SPLIT_NOT_NEEDED: 14952 /* 14953 * Keep it on the list. 14954 */ 14955 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14956 cur_ipsq->ipsq_phyint_list = phyint; 14957 break; 14958 case SPLIT_SUCCESS: 14959 break; 14960 default: 14961 ASSERT(0); 14962 } 14963 14964 phyint = next_phyint; 14965 } 14966 return (need_retry); 14967 } 14968 14969 /* 14970 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14971 * and return the ills in the list. This list will be 14972 * needed to unlock all the ills later on by the caller. 14973 * The <ill-ipsq> associations could change between the 14974 * lock and unlock. Hence the unlock can't traverse the 14975 * ipsq to get the list of ills. 14976 */ 14977 static int 14978 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14979 { 14980 int cnt = 0; 14981 phyint_t *phyint; 14982 ip_stack_t *ipst = ipsq->ipsq_ipst; 14983 14984 /* 14985 * The caller holds ill_g_lock to ensure that the ill memberships 14986 * of the ipsq don't change 14987 */ 14988 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14989 14990 phyint = ipsq->ipsq_phyint_list; 14991 while (phyint != NULL) { 14992 if (phyint->phyint_illv4 != NULL) { 14993 ASSERT(cnt < list_max); 14994 list[cnt++] = phyint->phyint_illv4; 14995 } 14996 if (phyint->phyint_illv6 != NULL) { 14997 ASSERT(cnt < list_max); 14998 list[cnt++] = phyint->phyint_illv6; 14999 } 15000 phyint = phyint->phyint_ipsq_next; 15001 } 15002 ill_lock_ills(list, cnt); 15003 return (cnt); 15004 } 15005 15006 void 15007 ill_lock_ills(ill_t **list, int cnt) 15008 { 15009 int i; 15010 15011 if (cnt > 1) { 15012 boolean_t try_again; 15013 do { 15014 try_again = B_FALSE; 15015 for (i = 0; i < cnt - 1; i++) { 15016 if (list[i] < list[i + 1]) { 15017 ill_t *tmp; 15018 15019 /* swap the elements */ 15020 tmp = list[i]; 15021 list[i] = list[i + 1]; 15022 list[i + 1] = tmp; 15023 try_again = B_TRUE; 15024 } 15025 } 15026 } while (try_again); 15027 } 15028 15029 for (i = 0; i < cnt; i++) { 15030 if (i == 0) { 15031 if (list[i] != NULL) 15032 mutex_enter(&list[i]->ill_lock); 15033 else 15034 return; 15035 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15036 mutex_enter(&list[i]->ill_lock); 15037 } 15038 } 15039 } 15040 15041 void 15042 ill_unlock_ills(ill_t **list, int cnt) 15043 { 15044 int i; 15045 15046 for (i = 0; i < cnt; i++) { 15047 if ((i == 0) && (list[i] != NULL)) { 15048 mutex_exit(&list[i]->ill_lock); 15049 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15050 mutex_exit(&list[i]->ill_lock); 15051 } 15052 } 15053 } 15054 15055 /* 15056 * Merge all the ills from 1 ipsq group into another ipsq group. 15057 * The source ipsq group is specified by the ipsq associated with 15058 * 'from_ill'. The destination ipsq group is specified by the ipsq 15059 * associated with 'to_ill' or 'groupname' respectively. 15060 * Note that ipsq itself does not have a reference count mechanism 15061 * and functions don't look up an ipsq and pass it around. Instead 15062 * functions pass around an ill or groupname, and the ipsq is looked 15063 * up from the ill or groupname and the required operation performed 15064 * atomically with the lookup on the ipsq. 15065 */ 15066 static int 15067 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 15068 queue_t *q) 15069 { 15070 ipsq_t *old_ipsq; 15071 ipsq_t *new_ipsq; 15072 ill_t **ill_list; 15073 int cnt; 15074 size_t ill_list_size; 15075 boolean_t became_writer_on_new_sq = B_FALSE; 15076 ip_stack_t *ipst = from_ill->ill_ipst; 15077 15078 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 15079 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 15080 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 15081 15082 /* 15083 * Need to hold ill_g_lock as writer and also the ill_lock to 15084 * change the <ill-ipsq> assoc of an ill. Need to hold the 15085 * ipsq_lock to prevent new messages from landing on an ipsq. 15086 */ 15087 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15088 15089 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 15090 if (groupname != NULL) 15091 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 15092 else { 15093 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 15094 } 15095 15096 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 15097 15098 /* 15099 * both groups are on the same ipsq. 15100 */ 15101 if (old_ipsq == new_ipsq) { 15102 rw_exit(&ipst->ips_ill_g_lock); 15103 return (0); 15104 } 15105 15106 cnt = old_ipsq->ipsq_refs << 1; 15107 ill_list_size = cnt * sizeof (ill_t *); 15108 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 15109 if (ill_list == NULL) { 15110 rw_exit(&ipst->ips_ill_g_lock); 15111 return (ENOMEM); 15112 } 15113 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 15114 15115 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 15116 mutex_enter(&new_ipsq->ipsq_lock); 15117 if ((new_ipsq->ipsq_writer == NULL && 15118 new_ipsq->ipsq_current_ipif == NULL) || 15119 (new_ipsq->ipsq_writer == curthread)) { 15120 new_ipsq->ipsq_writer = curthread; 15121 new_ipsq->ipsq_reentry_cnt++; 15122 became_writer_on_new_sq = B_TRUE; 15123 } 15124 15125 /* 15126 * We are holding ill_g_lock as writer and all the ill locks of 15127 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 15128 * message can land up on the old ipsq even though we don't hold the 15129 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 15130 */ 15131 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 15132 15133 /* 15134 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 15135 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 15136 * assocs. till we release the ill_g_lock, and hence it can't vanish. 15137 */ 15138 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 15139 15140 /* 15141 * Mark the new ipsq as needing a split since it is currently 15142 * being shared by more than 1 IPMP group. The split will 15143 * occur at the end of ipsq_exit 15144 */ 15145 new_ipsq->ipsq_split = B_TRUE; 15146 15147 /* Now release all the locks */ 15148 mutex_exit(&new_ipsq->ipsq_lock); 15149 ill_unlock_ills(ill_list, cnt); 15150 rw_exit(&ipst->ips_ill_g_lock); 15151 15152 kmem_free(ill_list, ill_list_size); 15153 15154 /* 15155 * If we succeeded in becoming writer on the new ipsq, then 15156 * drain the new ipsq and start processing all enqueued messages 15157 * including the current ioctl we are processing which is either 15158 * a set groupname or failover/failback. 15159 */ 15160 if (became_writer_on_new_sq) 15161 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 15162 15163 /* 15164 * syncq has been changed and all the messages have been moved. 15165 */ 15166 mutex_enter(&old_ipsq->ipsq_lock); 15167 old_ipsq->ipsq_current_ipif = NULL; 15168 old_ipsq->ipsq_current_ioctl = 0; 15169 mutex_exit(&old_ipsq->ipsq_lock); 15170 return (EINPROGRESS); 15171 } 15172 15173 /* 15174 * Delete and add the loopback copy and non-loopback copy of 15175 * the BROADCAST ire corresponding to ill and addr. Used to 15176 * group broadcast ires together when ill becomes part of 15177 * a group. 15178 * 15179 * This function is also called when ill is leaving the group 15180 * so that the ires belonging to the group gets re-grouped. 15181 */ 15182 static void 15183 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15184 { 15185 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15186 ire_t **ire_ptpn = &ire_head; 15187 ip_stack_t *ipst = ill->ill_ipst; 15188 15189 /* 15190 * The loopback and non-loopback IREs are inserted in the order in which 15191 * they're found, on the basis that they are correctly ordered (loopback 15192 * first). 15193 */ 15194 for (;;) { 15195 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15196 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15197 if (ire == NULL) 15198 break; 15199 15200 /* 15201 * we are passing in KM_SLEEP because it is not easy to 15202 * go back to a sane state in case of memory failure. 15203 */ 15204 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15205 ASSERT(nire != NULL); 15206 bzero(nire, sizeof (ire_t)); 15207 /* 15208 * Don't use ire_max_frag directly since we don't 15209 * hold on to 'ire' until we add the new ire 'nire' and 15210 * we don't want the new ire to have a dangling reference 15211 * to 'ire'. The ire_max_frag of a broadcast ire must 15212 * be in sync with the ipif_mtu of the associate ipif. 15213 * For eg. this happens as a result of SIOCSLIFNAME, 15214 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15215 * the driver. A change in ire_max_frag triggered as 15216 * as a result of path mtu discovery, or due to an 15217 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15218 * route change -mtu command does not apply to broadcast ires. 15219 * 15220 * XXX We need a recovery strategy here if ire_init fails 15221 */ 15222 if (ire_init(nire, 15223 (uchar_t *)&ire->ire_addr, 15224 (uchar_t *)&ire->ire_mask, 15225 (uchar_t *)&ire->ire_src_addr, 15226 (uchar_t *)&ire->ire_gateway_addr, 15227 (uchar_t *)&ire->ire_in_src_addr, 15228 ire->ire_stq == NULL ? &ip_loopback_mtu : 15229 &ire->ire_ipif->ipif_mtu, 15230 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 15231 ire->ire_rfq, 15232 ire->ire_stq, 15233 ire->ire_type, 15234 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 15235 ire->ire_ipif, 15236 ire->ire_in_ill, 15237 ire->ire_cmask, 15238 ire->ire_phandle, 15239 ire->ire_ihandle, 15240 ire->ire_flags, 15241 &ire->ire_uinfo, 15242 NULL, 15243 NULL, 15244 ipst) == NULL) { 15245 cmn_err(CE_PANIC, "ire_init() failed"); 15246 } 15247 ire_delete(ire); 15248 ire_refrele(ire); 15249 15250 /* 15251 * The newly created IREs are inserted at the tail of the list 15252 * starting with ire_head. As we've just allocated them no one 15253 * knows about them so it's safe. 15254 */ 15255 *ire_ptpn = nire; 15256 ire_ptpn = &nire->ire_next; 15257 } 15258 15259 for (nire = ire_head; nire != NULL; nire = nire_next) { 15260 int error; 15261 ire_t *oire; 15262 /* unlink the IRE from our list before calling ire_add() */ 15263 nire_next = nire->ire_next; 15264 nire->ire_next = NULL; 15265 15266 /* ire_add adds the ire at the right place in the list */ 15267 oire = nire; 15268 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15269 ASSERT(error == 0); 15270 ASSERT(oire == nire); 15271 ire_refrele(nire); /* Held in ire_add */ 15272 } 15273 } 15274 15275 /* 15276 * This function is usually called when an ill is inserted in 15277 * a group and all the ipifs are already UP. As all the ipifs 15278 * are already UP, the broadcast ires have already been created 15279 * and been inserted. But, ire_add_v4 would not have grouped properly. 15280 * We need to re-group for the benefit of ip_wput_ire which 15281 * expects BROADCAST ires to be grouped properly to avoid sending 15282 * more than one copy of the broadcast packet per group. 15283 * 15284 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15285 * because when ipif_up_done ends up calling this, ires have 15286 * already been added before illgrp_insert i.e before ill_group 15287 * has been initialized. 15288 */ 15289 static void 15290 ill_group_bcast_for_xmit(ill_t *ill) 15291 { 15292 ill_group_t *illgrp; 15293 ipif_t *ipif; 15294 ipaddr_t addr; 15295 ipaddr_t net_mask; 15296 ipaddr_t subnet_netmask; 15297 15298 illgrp = ill->ill_group; 15299 15300 /* 15301 * This function is called even when an ill is deleted from 15302 * the group. Hence, illgrp could be null. 15303 */ 15304 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15305 return; 15306 15307 /* 15308 * Delete all the BROADCAST ires matching this ill and add 15309 * them back. This time, ire_add_v4 should take care of 15310 * grouping them with others because ill is part of the 15311 * group. 15312 */ 15313 ill_bcast_delete_and_add(ill, 0); 15314 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15315 15316 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15317 15318 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15319 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15320 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15321 } else { 15322 net_mask = htonl(IN_CLASSA_NET); 15323 } 15324 addr = net_mask & ipif->ipif_subnet; 15325 ill_bcast_delete_and_add(ill, addr); 15326 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15327 15328 subnet_netmask = ipif->ipif_net_mask; 15329 addr = ipif->ipif_subnet; 15330 ill_bcast_delete_and_add(ill, addr); 15331 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15332 } 15333 } 15334 15335 /* 15336 * This function is called from illgrp_delete when ill is being deleted 15337 * from the group. 15338 * 15339 * As ill is not there in the group anymore, any address belonging 15340 * to this ill should be cleared of IRE_MARK_NORECV. 15341 */ 15342 static void 15343 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15344 { 15345 ire_t *ire; 15346 irb_t *irb; 15347 ip_stack_t *ipst = ill->ill_ipst; 15348 15349 ASSERT(ill->ill_group == NULL); 15350 15351 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15352 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15353 15354 if (ire != NULL) { 15355 /* 15356 * IPMP and plumbing operations are serialized on the ipsq, so 15357 * no one will insert or delete a broadcast ire under our feet. 15358 */ 15359 irb = ire->ire_bucket; 15360 rw_enter(&irb->irb_lock, RW_READER); 15361 ire_refrele(ire); 15362 15363 for (; ire != NULL; ire = ire->ire_next) { 15364 if (ire->ire_addr != addr) 15365 break; 15366 if (ire_to_ill(ire) != ill) 15367 continue; 15368 15369 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15370 ire->ire_marks &= ~IRE_MARK_NORECV; 15371 } 15372 rw_exit(&irb->irb_lock); 15373 } 15374 } 15375 15376 /* 15377 * This function must be called only after the broadcast ires 15378 * have been grouped together. For a given address addr, nominate 15379 * only one of the ires whose interface is not FAILED or OFFLINE. 15380 * 15381 * This is also called when an ipif goes down, so that we can nominate 15382 * a different ire with the same address for receiving. 15383 */ 15384 static void 15385 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15386 { 15387 irb_t *irb; 15388 ire_t *ire; 15389 ire_t *ire1; 15390 ire_t *save_ire; 15391 ire_t **irep = NULL; 15392 boolean_t first = B_TRUE; 15393 ire_t *clear_ire = NULL; 15394 ire_t *start_ire = NULL; 15395 ire_t *new_lb_ire; 15396 ire_t *new_nlb_ire; 15397 boolean_t new_lb_ire_used = B_FALSE; 15398 boolean_t new_nlb_ire_used = B_FALSE; 15399 uint64_t match_flags; 15400 uint64_t phyi_flags; 15401 boolean_t fallback = B_FALSE; 15402 15403 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15404 NULL, MATCH_IRE_TYPE, ipst); 15405 /* 15406 * We may not be able to find some ires if a previous 15407 * ire_create failed. This happens when an ipif goes 15408 * down and we are unable to create BROADCAST ires due 15409 * to memory failure. Thus, we have to check for NULL 15410 * below. This should handle the case for LOOPBACK, 15411 * POINTOPOINT and interfaces with some POINTOPOINT 15412 * logicals for which there are no BROADCAST ires. 15413 */ 15414 if (ire == NULL) 15415 return; 15416 /* 15417 * Currently IRE_BROADCASTS are deleted when an ipif 15418 * goes down which runs exclusively. Thus, setting 15419 * IRE_MARK_RCVD should not race with ire_delete marking 15420 * IRE_MARK_CONDEMNED. We grab the lock below just to 15421 * be consistent with other parts of the code that walks 15422 * a given bucket. 15423 */ 15424 save_ire = ire; 15425 irb = ire->ire_bucket; 15426 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15427 if (new_lb_ire == NULL) { 15428 ire_refrele(ire); 15429 return; 15430 } 15431 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15432 if (new_nlb_ire == NULL) { 15433 ire_refrele(ire); 15434 kmem_cache_free(ire_cache, new_lb_ire); 15435 return; 15436 } 15437 IRB_REFHOLD(irb); 15438 rw_enter(&irb->irb_lock, RW_WRITER); 15439 /* 15440 * Get to the first ire matching the address and the 15441 * group. If the address does not match we are done 15442 * as we could not find the IRE. If the address matches 15443 * we should get to the first one matching the group. 15444 */ 15445 while (ire != NULL) { 15446 if (ire->ire_addr != addr || 15447 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15448 break; 15449 } 15450 ire = ire->ire_next; 15451 } 15452 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15453 start_ire = ire; 15454 redo: 15455 while (ire != NULL && ire->ire_addr == addr && 15456 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15457 /* 15458 * The first ire for any address within a group 15459 * should always be the one with IRE_MARK_NORECV cleared 15460 * so that ip_wput_ire can avoid searching for one. 15461 * Note down the insertion point which will be used 15462 * later. 15463 */ 15464 if (first && (irep == NULL)) 15465 irep = ire->ire_ptpn; 15466 /* 15467 * PHYI_FAILED is set when the interface fails. 15468 * This interface might have become good, but the 15469 * daemon has not yet detected. We should still 15470 * not receive on this. PHYI_OFFLINE should never 15471 * be picked as this has been offlined and soon 15472 * be removed. 15473 */ 15474 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15475 if (phyi_flags & PHYI_OFFLINE) { 15476 ire->ire_marks |= IRE_MARK_NORECV; 15477 ire = ire->ire_next; 15478 continue; 15479 } 15480 if (phyi_flags & match_flags) { 15481 ire->ire_marks |= IRE_MARK_NORECV; 15482 ire = ire->ire_next; 15483 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15484 PHYI_INACTIVE) { 15485 fallback = B_TRUE; 15486 } 15487 continue; 15488 } 15489 if (first) { 15490 /* 15491 * We will move this to the front of the list later 15492 * on. 15493 */ 15494 clear_ire = ire; 15495 ire->ire_marks &= ~IRE_MARK_NORECV; 15496 } else { 15497 ire->ire_marks |= IRE_MARK_NORECV; 15498 } 15499 first = B_FALSE; 15500 ire = ire->ire_next; 15501 } 15502 /* 15503 * If we never nominated anybody, try nominating at least 15504 * an INACTIVE, if we found one. Do it only once though. 15505 */ 15506 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15507 fallback) { 15508 match_flags = PHYI_FAILED; 15509 ire = start_ire; 15510 irep = NULL; 15511 goto redo; 15512 } 15513 ire_refrele(save_ire); 15514 15515 /* 15516 * irep non-NULL indicates that we entered the while loop 15517 * above. If clear_ire is at the insertion point, we don't 15518 * have to do anything. clear_ire will be NULL if all the 15519 * interfaces are failed. 15520 * 15521 * We cannot unlink and reinsert the ire at the right place 15522 * in the list since there can be other walkers of this bucket. 15523 * Instead we delete and recreate the ire 15524 */ 15525 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15526 ire_t *clear_ire_stq = NULL; 15527 mblk_t *fp_mp = NULL, *res_mp = NULL; 15528 15529 bzero(new_lb_ire, sizeof (ire_t)); 15530 if (clear_ire->ire_nce != NULL) { 15531 fp_mp = clear_ire->ire_nce->nce_fp_mp; 15532 res_mp = clear_ire->ire_nce->nce_res_mp; 15533 } 15534 /* XXX We need a recovery strategy here. */ 15535 if (ire_init(new_lb_ire, 15536 (uchar_t *)&clear_ire->ire_addr, 15537 (uchar_t *)&clear_ire->ire_mask, 15538 (uchar_t *)&clear_ire->ire_src_addr, 15539 (uchar_t *)&clear_ire->ire_gateway_addr, 15540 (uchar_t *)&clear_ire->ire_in_src_addr, 15541 &clear_ire->ire_max_frag, 15542 fp_mp, 15543 clear_ire->ire_rfq, 15544 clear_ire->ire_stq, 15545 clear_ire->ire_type, 15546 res_mp, 15547 clear_ire->ire_ipif, 15548 clear_ire->ire_in_ill, 15549 clear_ire->ire_cmask, 15550 clear_ire->ire_phandle, 15551 clear_ire->ire_ihandle, 15552 clear_ire->ire_flags, 15553 &clear_ire->ire_uinfo, 15554 NULL, 15555 NULL, 15556 ipst) == NULL) 15557 cmn_err(CE_PANIC, "ire_init() failed"); 15558 if (clear_ire->ire_stq == NULL) { 15559 ire_t *ire_next = clear_ire->ire_next; 15560 if (ire_next != NULL && 15561 ire_next->ire_stq != NULL && 15562 ire_next->ire_addr == clear_ire->ire_addr && 15563 ire_next->ire_ipif->ipif_ill == 15564 clear_ire->ire_ipif->ipif_ill) { 15565 clear_ire_stq = ire_next; 15566 15567 bzero(new_nlb_ire, sizeof (ire_t)); 15568 if (clear_ire_stq->ire_nce != NULL) { 15569 fp_mp = 15570 clear_ire_stq->ire_nce->nce_fp_mp; 15571 res_mp = 15572 clear_ire_stq->ire_nce->nce_res_mp; 15573 } else { 15574 fp_mp = res_mp = NULL; 15575 } 15576 /* XXX We need a recovery strategy here. */ 15577 if (ire_init(new_nlb_ire, 15578 (uchar_t *)&clear_ire_stq->ire_addr, 15579 (uchar_t *)&clear_ire_stq->ire_mask, 15580 (uchar_t *)&clear_ire_stq->ire_src_addr, 15581 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15582 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15583 &clear_ire_stq->ire_max_frag, 15584 fp_mp, 15585 clear_ire_stq->ire_rfq, 15586 clear_ire_stq->ire_stq, 15587 clear_ire_stq->ire_type, 15588 res_mp, 15589 clear_ire_stq->ire_ipif, 15590 clear_ire_stq->ire_in_ill, 15591 clear_ire_stq->ire_cmask, 15592 clear_ire_stq->ire_phandle, 15593 clear_ire_stq->ire_ihandle, 15594 clear_ire_stq->ire_flags, 15595 &clear_ire_stq->ire_uinfo, 15596 NULL, 15597 NULL, 15598 ipst) == NULL) 15599 cmn_err(CE_PANIC, "ire_init() failed"); 15600 } 15601 } 15602 15603 /* 15604 * Delete the ire. We can't call ire_delete() since 15605 * we are holding the bucket lock. We can't release the 15606 * bucket lock since we can't allow irep to change. So just 15607 * mark it CONDEMNED. The IRB_REFRELE will delete the 15608 * ire from the list and do the refrele. 15609 */ 15610 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15611 irb->irb_marks |= IRB_MARK_CONDEMNED; 15612 15613 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15614 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15615 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15616 } 15617 15618 /* 15619 * Also take care of otherfields like ib/ob pkt count 15620 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15621 */ 15622 15623 /* Add the new ire's. Insert at *irep */ 15624 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15625 ire1 = *irep; 15626 if (ire1 != NULL) 15627 ire1->ire_ptpn = &new_lb_ire->ire_next; 15628 new_lb_ire->ire_next = ire1; 15629 /* Link the new one in. */ 15630 new_lb_ire->ire_ptpn = irep; 15631 membar_producer(); 15632 *irep = new_lb_ire; 15633 new_lb_ire_used = B_TRUE; 15634 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15635 new_lb_ire->ire_bucket->irb_ire_cnt++; 15636 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15637 15638 if (clear_ire_stq != NULL) { 15639 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15640 irep = &new_lb_ire->ire_next; 15641 /* Add the new ire. Insert at *irep */ 15642 ire1 = *irep; 15643 if (ire1 != NULL) 15644 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15645 new_nlb_ire->ire_next = ire1; 15646 /* Link the new one in. */ 15647 new_nlb_ire->ire_ptpn = irep; 15648 membar_producer(); 15649 *irep = new_nlb_ire; 15650 new_nlb_ire_used = B_TRUE; 15651 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15652 ire_stats_inserted); 15653 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15654 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15655 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15656 } 15657 } 15658 rw_exit(&irb->irb_lock); 15659 if (!new_lb_ire_used) 15660 kmem_cache_free(ire_cache, new_lb_ire); 15661 if (!new_nlb_ire_used) 15662 kmem_cache_free(ire_cache, new_nlb_ire); 15663 IRB_REFRELE(irb); 15664 } 15665 15666 /* 15667 * Whenever an ipif goes down we have to renominate a different 15668 * broadcast ire to receive. Whenever an ipif comes up, we need 15669 * to make sure that we have only one nominated to receive. 15670 */ 15671 static void 15672 ipif_renominate_bcast(ipif_t *ipif) 15673 { 15674 ill_t *ill = ipif->ipif_ill; 15675 ipaddr_t subnet_addr; 15676 ipaddr_t net_addr; 15677 ipaddr_t net_mask = 0; 15678 ipaddr_t subnet_netmask; 15679 ipaddr_t addr; 15680 ill_group_t *illgrp; 15681 ip_stack_t *ipst = ill->ill_ipst; 15682 15683 illgrp = ill->ill_group; 15684 /* 15685 * If this is the last ipif going down, it might take 15686 * the ill out of the group. In that case ipif_down -> 15687 * illgrp_delete takes care of doing the nomination. 15688 * ipif_down does not call for this case. 15689 */ 15690 ASSERT(illgrp != NULL); 15691 15692 /* There could not have been any ires associated with this */ 15693 if (ipif->ipif_subnet == 0) 15694 return; 15695 15696 ill_mark_bcast(illgrp, 0, ipst); 15697 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15698 15699 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15700 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15701 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15702 } else { 15703 net_mask = htonl(IN_CLASSA_NET); 15704 } 15705 addr = net_mask & ipif->ipif_subnet; 15706 ill_mark_bcast(illgrp, addr, ipst); 15707 15708 net_addr = ~net_mask | addr; 15709 ill_mark_bcast(illgrp, net_addr, ipst); 15710 15711 subnet_netmask = ipif->ipif_net_mask; 15712 addr = ipif->ipif_subnet; 15713 ill_mark_bcast(illgrp, addr, ipst); 15714 15715 subnet_addr = ~subnet_netmask | addr; 15716 ill_mark_bcast(illgrp, subnet_addr, ipst); 15717 } 15718 15719 /* 15720 * Whenever we form or delete ill groups, we need to nominate one set of 15721 * BROADCAST ires for receiving in the group. 15722 * 15723 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15724 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15725 * for ill_ipif_up_count to be non-zero. This is the only case where 15726 * ill_ipif_up_count is zero and we would still find the ires. 15727 * 15728 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15729 * ipif is UP and we just have to do the nomination. 15730 * 15731 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15732 * from the group. So, we have to do the nomination. 15733 * 15734 * Because of (3), there could be just one ill in the group. But we have 15735 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15736 * Thus, this function does not optimize when there is only one ill as 15737 * it is not correct for (3). 15738 */ 15739 static void 15740 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15741 { 15742 ill_t *ill; 15743 ipif_t *ipif; 15744 ipaddr_t subnet_addr; 15745 ipaddr_t prev_subnet_addr = 0; 15746 ipaddr_t net_addr; 15747 ipaddr_t prev_net_addr = 0; 15748 ipaddr_t net_mask = 0; 15749 ipaddr_t subnet_netmask; 15750 ipaddr_t addr; 15751 ip_stack_t *ipst; 15752 15753 /* 15754 * When the last memeber is leaving, there is nothing to 15755 * nominate. 15756 */ 15757 if (illgrp->illgrp_ill_count == 0) { 15758 ASSERT(illgrp->illgrp_ill == NULL); 15759 return; 15760 } 15761 15762 ill = illgrp->illgrp_ill; 15763 ASSERT(!ill->ill_isv6); 15764 ipst = ill->ill_ipst; 15765 /* 15766 * We assume that ires with same address and belonging to the 15767 * same group, has been grouped together. Nominating a *single* 15768 * ill in the group for sending and receiving broadcast is done 15769 * by making sure that the first BROADCAST ire (which will be 15770 * the one returned by ire_ctable_lookup for ip_rput and the 15771 * one that will be used in ip_wput_ire) will be the one that 15772 * will not have IRE_MARK_NORECV set. 15773 * 15774 * 1) ip_rput checks and discards packets received on ires marked 15775 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15776 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15777 * first ire in the group for every broadcast address in the group. 15778 * ip_rput will accept packets only on the first ire i.e only 15779 * one copy of the ill. 15780 * 15781 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15782 * packet for the whole group. It needs to send out on the ill 15783 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15784 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15785 * the copy echoed back on other port where the ire is not marked 15786 * with IRE_MARK_NORECV. 15787 * 15788 * Note that we just need to have the first IRE either loopback or 15789 * non-loopback (either of them may not exist if ire_create failed 15790 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15791 * always hit the first one and hence will always accept one copy. 15792 * 15793 * We have a broadcast ire per ill for all the unique prefixes 15794 * hosted on that ill. As we don't have a way of knowing the 15795 * unique prefixes on a given ill and hence in the whole group, 15796 * we just call ill_mark_bcast on all the prefixes that exist 15797 * in the group. For the common case of one prefix, the code 15798 * below optimizes by remebering the last address used for 15799 * markng. In the case of multiple prefixes, this will still 15800 * optimize depending the order of prefixes. 15801 * 15802 * The only unique address across the whole group is 0.0.0.0 and 15803 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15804 * the first ire in the bucket for receiving and disables the 15805 * others. 15806 */ 15807 ill_mark_bcast(illgrp, 0, ipst); 15808 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15809 for (; ill != NULL; ill = ill->ill_group_next) { 15810 15811 for (ipif = ill->ill_ipif; ipif != NULL; 15812 ipif = ipif->ipif_next) { 15813 15814 if (!(ipif->ipif_flags & IPIF_UP) || 15815 ipif->ipif_subnet == 0) { 15816 continue; 15817 } 15818 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15819 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15820 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15821 } else { 15822 net_mask = htonl(IN_CLASSA_NET); 15823 } 15824 addr = net_mask & ipif->ipif_subnet; 15825 if (prev_net_addr == 0 || prev_net_addr != addr) { 15826 ill_mark_bcast(illgrp, addr, ipst); 15827 net_addr = ~net_mask | addr; 15828 ill_mark_bcast(illgrp, net_addr, ipst); 15829 } 15830 prev_net_addr = addr; 15831 15832 subnet_netmask = ipif->ipif_net_mask; 15833 addr = ipif->ipif_subnet; 15834 if (prev_subnet_addr == 0 || 15835 prev_subnet_addr != addr) { 15836 ill_mark_bcast(illgrp, addr, ipst); 15837 subnet_addr = ~subnet_netmask | addr; 15838 ill_mark_bcast(illgrp, subnet_addr, ipst); 15839 } 15840 prev_subnet_addr = addr; 15841 } 15842 } 15843 } 15844 15845 /* 15846 * This function is called while forming ill groups. 15847 * 15848 * Currently, we handle only allmulti groups. We want to join 15849 * allmulti on only one of the ills in the groups. In future, 15850 * when we have link aggregation, we may have to join normal 15851 * multicast groups on multiple ills as switch does inbound load 15852 * balancing. Following are the functions that calls this 15853 * function : 15854 * 15855 * 1) ill_recover_multicast : Interface is coming back UP. 15856 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15857 * will call ill_recover_multicast to recover all the multicast 15858 * groups. We need to make sure that only one member is joined 15859 * in the ill group. 15860 * 15861 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15862 * Somebody is joining allmulti. We need to make sure that only one 15863 * member is joined in the group. 15864 * 15865 * 3) illgrp_insert : If allmulti has already joined, we need to make 15866 * sure that only one member is joined in the group. 15867 * 15868 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15869 * allmulti who we have nominated. We need to pick someother ill. 15870 * 15871 * 5) illgrp_delete : The ill we nominated is leaving the group, 15872 * we need to pick a new ill to join the group. 15873 * 15874 * For (1), (2), (5) - we just have to check whether there is 15875 * a good ill joined in the group. If we could not find any ills 15876 * joined the group, we should join. 15877 * 15878 * For (4), the one that was nominated to receive, left the group. 15879 * There could be nobody joined in the group when this function is 15880 * called. 15881 * 15882 * For (3) - we need to explicitly check whether there are multiple 15883 * ills joined in the group. 15884 * 15885 * For simplicity, we don't differentiate any of the above cases. We 15886 * just leave the group if it is joined on any of them and join on 15887 * the first good ill. 15888 */ 15889 int 15890 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15891 { 15892 ilm_t *ilm; 15893 ill_t *ill; 15894 ill_t *fallback_inactive_ill = NULL; 15895 ill_t *fallback_failed_ill = NULL; 15896 int ret = 0; 15897 15898 /* 15899 * Leave the allmulti on all the ills and start fresh. 15900 */ 15901 for (ill = illgrp->illgrp_ill; ill != NULL; 15902 ill = ill->ill_group_next) { 15903 if (ill->ill_join_allmulti) 15904 (void) ip_leave_allmulti(ill->ill_ipif); 15905 } 15906 15907 /* 15908 * Choose a good ill. Fallback to inactive or failed if 15909 * none available. We need to fallback to FAILED in the 15910 * case where we have 2 interfaces in a group - where 15911 * one of them is failed and another is a good one and 15912 * the good one (not marked inactive) is leaving the group. 15913 */ 15914 ret = 0; 15915 for (ill = illgrp->illgrp_ill; ill != NULL; 15916 ill = ill->ill_group_next) { 15917 /* Never pick an offline interface */ 15918 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15919 continue; 15920 15921 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15922 fallback_failed_ill = ill; 15923 continue; 15924 } 15925 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15926 fallback_inactive_ill = ill; 15927 continue; 15928 } 15929 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15930 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15931 ret = ip_join_allmulti(ill->ill_ipif); 15932 /* 15933 * ip_join_allmulti can fail because of memory 15934 * failures. So, make sure we join at least 15935 * on one ill. 15936 */ 15937 if (ill->ill_join_allmulti) 15938 return (0); 15939 } 15940 } 15941 } 15942 if (ret != 0) { 15943 /* 15944 * If we tried nominating above and failed to do so, 15945 * return error. We might have tried multiple times. 15946 * But, return the latest error. 15947 */ 15948 return (ret); 15949 } 15950 if ((ill = fallback_inactive_ill) != NULL) { 15951 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15952 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15953 ret = ip_join_allmulti(ill->ill_ipif); 15954 return (ret); 15955 } 15956 } 15957 } else if ((ill = fallback_failed_ill) != NULL) { 15958 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15959 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15960 ret = ip_join_allmulti(ill->ill_ipif); 15961 return (ret); 15962 } 15963 } 15964 } 15965 return (0); 15966 } 15967 15968 /* 15969 * This function is called from illgrp_delete after it is 15970 * deleted from the group to reschedule responsibilities 15971 * to a different ill. 15972 */ 15973 static void 15974 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15975 { 15976 ilm_t *ilm; 15977 ipif_t *ipif; 15978 ipaddr_t subnet_addr; 15979 ipaddr_t net_addr; 15980 ipaddr_t net_mask = 0; 15981 ipaddr_t subnet_netmask; 15982 ipaddr_t addr; 15983 ip_stack_t *ipst = ill->ill_ipst; 15984 15985 ASSERT(ill->ill_group == NULL); 15986 /* 15987 * Broadcast Responsibility: 15988 * 15989 * 1. If this ill has been nominated for receiving broadcast 15990 * packets, we need to find a new one. Before we find a new 15991 * one, we need to re-group the ires that are part of this new 15992 * group (assumed by ill_nominate_bcast_rcv). We do this by 15993 * calling ill_group_bcast_for_xmit(ill) which will do the right 15994 * thing for us. 15995 * 15996 * 2. If this ill was not nominated for receiving broadcast 15997 * packets, we need to clear the IRE_MARK_NORECV flag 15998 * so that we continue to send up broadcast packets. 15999 */ 16000 if (!ill->ill_isv6) { 16001 /* 16002 * Case 1 above : No optimization here. Just redo the 16003 * nomination. 16004 */ 16005 ill_group_bcast_for_xmit(ill); 16006 ill_nominate_bcast_rcv(illgrp); 16007 16008 /* 16009 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 16010 */ 16011 ill_clear_bcast_mark(ill, 0); 16012 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 16013 16014 for (ipif = ill->ill_ipif; ipif != NULL; 16015 ipif = ipif->ipif_next) { 16016 16017 if (!(ipif->ipif_flags & IPIF_UP) || 16018 ipif->ipif_subnet == 0) { 16019 continue; 16020 } 16021 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16022 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16023 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16024 } else { 16025 net_mask = htonl(IN_CLASSA_NET); 16026 } 16027 addr = net_mask & ipif->ipif_subnet; 16028 ill_clear_bcast_mark(ill, addr); 16029 16030 net_addr = ~net_mask | addr; 16031 ill_clear_bcast_mark(ill, net_addr); 16032 16033 subnet_netmask = ipif->ipif_net_mask; 16034 addr = ipif->ipif_subnet; 16035 ill_clear_bcast_mark(ill, addr); 16036 16037 subnet_addr = ~subnet_netmask | addr; 16038 ill_clear_bcast_mark(ill, subnet_addr); 16039 } 16040 } 16041 16042 /* 16043 * Multicast Responsibility. 16044 * 16045 * If we have joined allmulti on this one, find a new member 16046 * in the group to join allmulti. As this ill is already part 16047 * of allmulti, we don't have to join on this one. 16048 * 16049 * If we have not joined allmulti on this one, there is no 16050 * responsibility to handoff. But we need to take new 16051 * responsibility i.e, join allmulti on this one if we need 16052 * to. 16053 */ 16054 if (ill->ill_join_allmulti) { 16055 (void) ill_nominate_mcast_rcv(illgrp); 16056 } else { 16057 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16058 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16059 (void) ip_join_allmulti(ill->ill_ipif); 16060 break; 16061 } 16062 } 16063 } 16064 16065 /* 16066 * We intentionally do the flushing of IRE_CACHES only matching 16067 * on the ill and not on groups. Note that we are already deleted 16068 * from the group. 16069 * 16070 * This will make sure that all IRE_CACHES whose stq is pointing 16071 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 16072 * deleted and IRE_CACHES that are not pointing at this ill will 16073 * be left alone. 16074 */ 16075 if (ill->ill_isv6) { 16076 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16077 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16078 } else { 16079 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16080 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16081 } 16082 16083 /* 16084 * Some conn may have cached one of the IREs deleted above. By removing 16085 * the ire reference, we clean up the extra reference to the ill held in 16086 * ire->ire_stq. 16087 */ 16088 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 16089 16090 /* 16091 * Re-do source address selection for all the members in the 16092 * group, if they borrowed source address from one of the ipifs 16093 * in this ill. 16094 */ 16095 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16096 if (ill->ill_isv6) { 16097 ipif_update_other_ipifs_v6(ipif, illgrp); 16098 } else { 16099 ipif_update_other_ipifs(ipif, illgrp); 16100 } 16101 } 16102 } 16103 16104 /* 16105 * Delete the ill from the group. The caller makes sure that it is 16106 * in a group and it okay to delete from the group. So, we always 16107 * delete here. 16108 */ 16109 static void 16110 illgrp_delete(ill_t *ill) 16111 { 16112 ill_group_t *illgrp; 16113 ill_group_t *tmpg; 16114 ill_t *tmp_ill; 16115 ip_stack_t *ipst = ill->ill_ipst; 16116 16117 /* 16118 * Reset illgrp_ill_schednext if it was pointing at us. 16119 * We need to do this before we set ill_group to NULL. 16120 */ 16121 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16122 mutex_enter(&ill->ill_lock); 16123 16124 illgrp_reset_schednext(ill); 16125 16126 illgrp = ill->ill_group; 16127 16128 /* Delete the ill from illgrp. */ 16129 if (illgrp->illgrp_ill == ill) { 16130 illgrp->illgrp_ill = ill->ill_group_next; 16131 } else { 16132 tmp_ill = illgrp->illgrp_ill; 16133 while (tmp_ill->ill_group_next != ill) { 16134 tmp_ill = tmp_ill->ill_group_next; 16135 ASSERT(tmp_ill != NULL); 16136 } 16137 tmp_ill->ill_group_next = ill->ill_group_next; 16138 } 16139 ill->ill_group = NULL; 16140 ill->ill_group_next = NULL; 16141 16142 illgrp->illgrp_ill_count--; 16143 mutex_exit(&ill->ill_lock); 16144 rw_exit(&ipst->ips_ill_g_lock); 16145 16146 /* 16147 * As this ill is leaving the group, we need to hand off 16148 * the responsibilities to the other ills in the group, if 16149 * this ill had some responsibilities. 16150 */ 16151 16152 ill_handoff_responsibility(ill, illgrp); 16153 16154 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16155 16156 if (illgrp->illgrp_ill_count == 0) { 16157 16158 ASSERT(illgrp->illgrp_ill == NULL); 16159 if (ill->ill_isv6) { 16160 if (illgrp == ipst->ips_illgrp_head_v6) { 16161 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 16162 } else { 16163 tmpg = ipst->ips_illgrp_head_v6; 16164 while (tmpg->illgrp_next != illgrp) { 16165 tmpg = tmpg->illgrp_next; 16166 ASSERT(tmpg != NULL); 16167 } 16168 tmpg->illgrp_next = illgrp->illgrp_next; 16169 } 16170 } else { 16171 if (illgrp == ipst->ips_illgrp_head_v4) { 16172 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 16173 } else { 16174 tmpg = ipst->ips_illgrp_head_v4; 16175 while (tmpg->illgrp_next != illgrp) { 16176 tmpg = tmpg->illgrp_next; 16177 ASSERT(tmpg != NULL); 16178 } 16179 tmpg->illgrp_next = illgrp->illgrp_next; 16180 } 16181 } 16182 mutex_destroy(&illgrp->illgrp_lock); 16183 mi_free(illgrp); 16184 } 16185 rw_exit(&ipst->ips_ill_g_lock); 16186 16187 /* 16188 * Even though the ill is out of the group its not necessary 16189 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16190 * We will split the ipsq when phyint_groupname is set to NULL. 16191 */ 16192 16193 /* 16194 * Send a routing sockets message if we are deleting from 16195 * groups with names. 16196 */ 16197 if (ill->ill_phyint->phyint_groupname_len != 0) 16198 ip_rts_ifmsg(ill->ill_ipif); 16199 } 16200 16201 /* 16202 * Re-do source address selection. This is normally called when 16203 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16204 * ipif comes up. 16205 */ 16206 void 16207 ill_update_source_selection(ill_t *ill) 16208 { 16209 ipif_t *ipif; 16210 16211 ASSERT(IAM_WRITER_ILL(ill)); 16212 16213 if (ill->ill_group != NULL) 16214 ill = ill->ill_group->illgrp_ill; 16215 16216 for (; ill != NULL; ill = ill->ill_group_next) { 16217 for (ipif = ill->ill_ipif; ipif != NULL; 16218 ipif = ipif->ipif_next) { 16219 if (ill->ill_isv6) 16220 ipif_recreate_interface_routes_v6(NULL, ipif); 16221 else 16222 ipif_recreate_interface_routes(NULL, ipif); 16223 } 16224 } 16225 } 16226 16227 /* 16228 * Insert ill in a group headed by illgrp_head. The caller can either 16229 * pass a groupname in which case we search for a group with the 16230 * same name to insert in or pass a group to insert in. This function 16231 * would only search groups with names. 16232 * 16233 * NOTE : The caller should make sure that there is at least one ipif 16234 * UP on this ill so that illgrp_scheduler can pick this ill 16235 * for outbound packets. If ill_ipif_up_count is zero, we have 16236 * already sent a DL_UNBIND to the driver and we don't want to 16237 * send anymore packets. We don't assert for ipif_up_count 16238 * to be greater than zero, because ipif_up_done wants to call 16239 * this function before bumping up the ipif_up_count. See 16240 * ipif_up_done() for details. 16241 */ 16242 int 16243 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16244 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16245 { 16246 ill_group_t *illgrp; 16247 ill_t *prev_ill; 16248 phyint_t *phyi; 16249 ip_stack_t *ipst = ill->ill_ipst; 16250 16251 ASSERT(ill->ill_group == NULL); 16252 16253 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16254 mutex_enter(&ill->ill_lock); 16255 16256 if (groupname != NULL) { 16257 /* 16258 * Look for a group with a matching groupname to insert. 16259 */ 16260 for (illgrp = *illgrp_head; illgrp != NULL; 16261 illgrp = illgrp->illgrp_next) { 16262 16263 ill_t *tmp_ill; 16264 16265 /* 16266 * If we have an ill_group_t in the list which has 16267 * no ill_t assigned then we must be in the process of 16268 * removing this group. We skip this as illgrp_delete() 16269 * will remove it from the list. 16270 */ 16271 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16272 ASSERT(illgrp->illgrp_ill_count == 0); 16273 continue; 16274 } 16275 16276 ASSERT(tmp_ill->ill_phyint != NULL); 16277 phyi = tmp_ill->ill_phyint; 16278 /* 16279 * Look at groups which has names only. 16280 */ 16281 if (phyi->phyint_groupname_len == 0) 16282 continue; 16283 /* 16284 * Names are stored in the phyint common to both 16285 * IPv4 and IPv6. 16286 */ 16287 if (mi_strcmp(phyi->phyint_groupname, 16288 groupname) == 0) { 16289 break; 16290 } 16291 } 16292 } else { 16293 /* 16294 * If the caller passes in a NULL "grp_to_insert", we 16295 * allocate one below and insert this singleton. 16296 */ 16297 illgrp = grp_to_insert; 16298 } 16299 16300 ill->ill_group_next = NULL; 16301 16302 if (illgrp == NULL) { 16303 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16304 if (illgrp == NULL) { 16305 return (ENOMEM); 16306 } 16307 illgrp->illgrp_next = *illgrp_head; 16308 *illgrp_head = illgrp; 16309 illgrp->illgrp_ill = ill; 16310 illgrp->illgrp_ill_count = 1; 16311 ill->ill_group = illgrp; 16312 /* 16313 * Used in illgrp_scheduler to protect multiple threads 16314 * from traversing the list. 16315 */ 16316 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16317 } else { 16318 ASSERT(ill->ill_net_type == 16319 illgrp->illgrp_ill->ill_net_type); 16320 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16321 16322 /* Insert ill at tail of this group */ 16323 prev_ill = illgrp->illgrp_ill; 16324 while (prev_ill->ill_group_next != NULL) 16325 prev_ill = prev_ill->ill_group_next; 16326 prev_ill->ill_group_next = ill; 16327 ill->ill_group = illgrp; 16328 illgrp->illgrp_ill_count++; 16329 /* 16330 * Inherit group properties. Currently only forwarding 16331 * is the property we try to keep the same with all the 16332 * ills. When there are more, we will abstract this into 16333 * a function. 16334 */ 16335 ill->ill_flags &= ~ILLF_ROUTER; 16336 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16337 } 16338 mutex_exit(&ill->ill_lock); 16339 rw_exit(&ipst->ips_ill_g_lock); 16340 16341 /* 16342 * 1) When ipif_up_done() calls this function, ipif_up_count 16343 * may be zero as it has not yet been bumped. But the ires 16344 * have already been added. So, we do the nomination here 16345 * itself. But, when ip_sioctl_groupname calls this, it checks 16346 * for ill_ipif_up_count != 0. Thus we don't check for 16347 * ill_ipif_up_count here while nominating broadcast ires for 16348 * receive. 16349 * 16350 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16351 * to group them properly as ire_add() has already happened 16352 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16353 * case, we need to do it here anyway. 16354 */ 16355 if (!ill->ill_isv6) { 16356 ill_group_bcast_for_xmit(ill); 16357 ill_nominate_bcast_rcv(illgrp); 16358 } 16359 16360 if (!ipif_is_coming_up) { 16361 /* 16362 * When ipif_up_done() calls this function, the multicast 16363 * groups have not been joined yet. So, there is no point in 16364 * nomination. ip_join_allmulti will handle groups when 16365 * ill_recover_multicast is called from ipif_up_done() later. 16366 */ 16367 (void) ill_nominate_mcast_rcv(illgrp); 16368 /* 16369 * ipif_up_done calls ill_update_source_selection 16370 * anyway. Moreover, we don't want to re-create 16371 * interface routes while ipif_up_done() still has reference 16372 * to them. Refer to ipif_up_done() for more details. 16373 */ 16374 ill_update_source_selection(ill); 16375 } 16376 16377 /* 16378 * Send a routing sockets message if we are inserting into 16379 * groups with names. 16380 */ 16381 if (groupname != NULL) 16382 ip_rts_ifmsg(ill->ill_ipif); 16383 return (0); 16384 } 16385 16386 /* 16387 * Return the first phyint matching the groupname. There could 16388 * be more than one when there are ill groups. 16389 * 16390 * Needs work: called only from ip_sioctl_groupname 16391 */ 16392 static phyint_t * 16393 phyint_lookup_group(char *groupname, ip_stack_t *ipst) 16394 { 16395 phyint_t *phyi; 16396 16397 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16398 /* 16399 * Group names are stored in the phyint - a common structure 16400 * to both IPv4 and IPv6. 16401 */ 16402 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16403 for (; phyi != NULL; 16404 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16405 phyi, AVL_AFTER)) { 16406 if (phyi->phyint_groupname_len == 0) 16407 continue; 16408 ASSERT(phyi->phyint_groupname != NULL); 16409 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16410 return (phyi); 16411 } 16412 return (NULL); 16413 } 16414 16415 16416 16417 /* 16418 * MT notes on creation and deletion of IPMP groups 16419 * 16420 * Creation and deletion of IPMP groups introduce the need to merge or 16421 * split the associated serialization objects i.e the ipsq's. Normally all 16422 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16423 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16424 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16425 * is a need to change the <ill-ipsq> association and we have to operate on both 16426 * the source and destination IPMP groups. For eg. attempting to set the 16427 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16428 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16429 * source or destination IPMP group are mapped to a single ipsq for executing 16430 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16431 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16432 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16433 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16434 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16435 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16436 * 16437 * In the above example the ioctl handling code locates the current ipsq of hme0 16438 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16439 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16440 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16441 * the destination ipsq. If the destination ipsq is not busy, it also enters 16442 * the destination ipsq exclusively. Now the actual groupname setting operation 16443 * can proceed. If the destination ipsq is busy, the operation is enqueued 16444 * on the destination (merged) ipsq and will be handled in the unwind from 16445 * ipsq_exit. 16446 * 16447 * To prevent other threads accessing the ill while the group name change is 16448 * in progres, we bring down the ipifs which also removes the ill from the 16449 * group. The group is changed in phyint and when the first ipif on the ill 16450 * is brought up, the ill is inserted into the right IPMP group by 16451 * illgrp_insert. 16452 */ 16453 /* ARGSUSED */ 16454 int 16455 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16456 ip_ioctl_cmd_t *ipip, void *ifreq) 16457 { 16458 int i; 16459 char *tmp; 16460 int namelen; 16461 ill_t *ill = ipif->ipif_ill; 16462 ill_t *ill_v4, *ill_v6; 16463 int err = 0; 16464 phyint_t *phyi; 16465 phyint_t *phyi_tmp; 16466 struct lifreq *lifr; 16467 mblk_t *mp1; 16468 char *groupname; 16469 ipsq_t *ipsq; 16470 ip_stack_t *ipst = ill->ill_ipst; 16471 16472 ASSERT(IAM_WRITER_IPIF(ipif)); 16473 16474 /* Existance verified in ip_wput_nondata */ 16475 mp1 = mp->b_cont->b_cont; 16476 lifr = (struct lifreq *)mp1->b_rptr; 16477 groupname = lifr->lifr_groupname; 16478 16479 if (ipif->ipif_id != 0) 16480 return (EINVAL); 16481 16482 phyi = ill->ill_phyint; 16483 ASSERT(phyi != NULL); 16484 16485 if (phyi->phyint_flags & PHYI_VIRTUAL) 16486 return (EINVAL); 16487 16488 tmp = groupname; 16489 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16490 ; 16491 16492 if (i == LIFNAMSIZ) { 16493 /* no null termination */ 16494 return (EINVAL); 16495 } 16496 16497 /* 16498 * Calculate the namelen exclusive of the null 16499 * termination character. 16500 */ 16501 namelen = tmp - groupname; 16502 16503 ill_v4 = phyi->phyint_illv4; 16504 ill_v6 = phyi->phyint_illv6; 16505 16506 /* 16507 * ILL cannot be part of a usesrc group and and IPMP group at the 16508 * same time. No need to grab the ill_g_usesrc_lock here, see 16509 * synchronization notes in ip.c 16510 */ 16511 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16512 return (EINVAL); 16513 } 16514 16515 /* 16516 * mark the ill as changing. 16517 * this should queue all new requests on the syncq. 16518 */ 16519 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16520 16521 if (ill_v4 != NULL) 16522 ill_v4->ill_state_flags |= ILL_CHANGING; 16523 if (ill_v6 != NULL) 16524 ill_v6->ill_state_flags |= ILL_CHANGING; 16525 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16526 16527 if (namelen == 0) { 16528 /* 16529 * Null string means remove this interface from the 16530 * existing group. 16531 */ 16532 if (phyi->phyint_groupname_len == 0) { 16533 /* 16534 * Never was in a group. 16535 */ 16536 err = 0; 16537 goto done; 16538 } 16539 16540 /* 16541 * IPv4 or IPv6 may be temporarily out of the group when all 16542 * the ipifs are down. Thus, we need to check for ill_group to 16543 * be non-NULL. 16544 */ 16545 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16546 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16547 mutex_enter(&ill_v4->ill_lock); 16548 if (!ill_is_quiescent(ill_v4)) { 16549 /* 16550 * ipsq_pending_mp_add will not fail since 16551 * connp is NULL 16552 */ 16553 (void) ipsq_pending_mp_add(NULL, 16554 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16555 mutex_exit(&ill_v4->ill_lock); 16556 err = EINPROGRESS; 16557 goto done; 16558 } 16559 mutex_exit(&ill_v4->ill_lock); 16560 } 16561 16562 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16563 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16564 mutex_enter(&ill_v6->ill_lock); 16565 if (!ill_is_quiescent(ill_v6)) { 16566 (void) ipsq_pending_mp_add(NULL, 16567 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16568 mutex_exit(&ill_v6->ill_lock); 16569 err = EINPROGRESS; 16570 goto done; 16571 } 16572 mutex_exit(&ill_v6->ill_lock); 16573 } 16574 16575 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16576 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16577 mutex_enter(&phyi->phyint_lock); 16578 ASSERT(phyi->phyint_groupname != NULL); 16579 mi_free(phyi->phyint_groupname); 16580 phyi->phyint_groupname = NULL; 16581 phyi->phyint_groupname_len = 0; 16582 mutex_exit(&phyi->phyint_lock); 16583 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16584 rw_exit(&ipst->ips_ill_g_lock); 16585 err = ill_up_ipifs(ill, q, mp); 16586 16587 /* 16588 * set the split flag so that the ipsq can be split 16589 */ 16590 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16591 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16592 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16593 16594 } else { 16595 if (phyi->phyint_groupname_len != 0) { 16596 ASSERT(phyi->phyint_groupname != NULL); 16597 /* Are we inserting in the same group ? */ 16598 if (mi_strcmp(groupname, 16599 phyi->phyint_groupname) == 0) { 16600 err = 0; 16601 goto done; 16602 } 16603 } 16604 16605 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16606 /* 16607 * Merge ipsq for the group's. 16608 * This check is here as multiple groups/ills might be 16609 * sharing the same ipsq. 16610 * If we have to merege than the operation is restarted 16611 * on the new ipsq. 16612 */ 16613 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16614 if (phyi->phyint_ipsq != ipsq) { 16615 rw_exit(&ipst->ips_ill_g_lock); 16616 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16617 goto done; 16618 } 16619 /* 16620 * Running exclusive on new ipsq. 16621 */ 16622 16623 ASSERT(ipsq != NULL); 16624 ASSERT(ipsq->ipsq_writer == curthread); 16625 16626 /* 16627 * Check whether the ill_type and ill_net_type matches before 16628 * we allocate any memory so that the cleanup is easier. 16629 * 16630 * We can't group dissimilar ones as we can't load spread 16631 * packets across the group because of potential link-level 16632 * header differences. 16633 */ 16634 phyi_tmp = phyint_lookup_group(groupname, ipst); 16635 if (phyi_tmp != NULL) { 16636 if ((ill_v4 != NULL && 16637 phyi_tmp->phyint_illv4 != NULL) && 16638 ((ill_v4->ill_net_type != 16639 phyi_tmp->phyint_illv4->ill_net_type) || 16640 (ill_v4->ill_type != 16641 phyi_tmp->phyint_illv4->ill_type))) { 16642 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16643 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16644 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16645 rw_exit(&ipst->ips_ill_g_lock); 16646 return (EINVAL); 16647 } 16648 if ((ill_v6 != NULL && 16649 phyi_tmp->phyint_illv6 != NULL) && 16650 ((ill_v6->ill_net_type != 16651 phyi_tmp->phyint_illv6->ill_net_type) || 16652 (ill_v6->ill_type != 16653 phyi_tmp->phyint_illv6->ill_type))) { 16654 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16655 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16656 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16657 rw_exit(&ipst->ips_ill_g_lock); 16658 return (EINVAL); 16659 } 16660 } 16661 16662 rw_exit(&ipst->ips_ill_g_lock); 16663 16664 /* 16665 * bring down all v4 ipifs. 16666 */ 16667 if (ill_v4 != NULL) { 16668 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16669 } 16670 16671 /* 16672 * bring down all v6 ipifs. 16673 */ 16674 if (ill_v6 != NULL) { 16675 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16676 } 16677 16678 /* 16679 * make sure all ipifs are down and there are no active 16680 * references. Call to ipsq_pending_mp_add will not fail 16681 * since connp is NULL. 16682 */ 16683 if (ill_v4 != NULL) { 16684 mutex_enter(&ill_v4->ill_lock); 16685 if (!ill_is_quiescent(ill_v4)) { 16686 (void) ipsq_pending_mp_add(NULL, 16687 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16688 mutex_exit(&ill_v4->ill_lock); 16689 err = EINPROGRESS; 16690 goto done; 16691 } 16692 mutex_exit(&ill_v4->ill_lock); 16693 } 16694 16695 if (ill_v6 != NULL) { 16696 mutex_enter(&ill_v6->ill_lock); 16697 if (!ill_is_quiescent(ill_v6)) { 16698 (void) ipsq_pending_mp_add(NULL, 16699 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16700 mutex_exit(&ill_v6->ill_lock); 16701 err = EINPROGRESS; 16702 goto done; 16703 } 16704 mutex_exit(&ill_v6->ill_lock); 16705 } 16706 16707 /* 16708 * allocate including space for null terminator 16709 * before we insert. 16710 */ 16711 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16712 if (tmp == NULL) 16713 return (ENOMEM); 16714 16715 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16716 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16717 mutex_enter(&phyi->phyint_lock); 16718 if (phyi->phyint_groupname_len != 0) { 16719 ASSERT(phyi->phyint_groupname != NULL); 16720 mi_free(phyi->phyint_groupname); 16721 } 16722 16723 /* 16724 * setup the new group name. 16725 */ 16726 phyi->phyint_groupname = tmp; 16727 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16728 phyi->phyint_groupname_len = namelen + 1; 16729 mutex_exit(&phyi->phyint_lock); 16730 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16731 rw_exit(&ipst->ips_ill_g_lock); 16732 16733 err = ill_up_ipifs(ill, q, mp); 16734 } 16735 16736 done: 16737 /* 16738 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16739 */ 16740 if (err != EINPROGRESS) { 16741 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16742 if (ill_v4 != NULL) 16743 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16744 if (ill_v6 != NULL) 16745 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16746 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16747 } 16748 return (err); 16749 } 16750 16751 /* ARGSUSED */ 16752 int 16753 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16754 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16755 { 16756 ill_t *ill; 16757 phyint_t *phyi; 16758 struct lifreq *lifr; 16759 mblk_t *mp1; 16760 16761 /* Existence verified in ip_wput_nondata */ 16762 mp1 = mp->b_cont->b_cont; 16763 lifr = (struct lifreq *)mp1->b_rptr; 16764 ill = ipif->ipif_ill; 16765 phyi = ill->ill_phyint; 16766 16767 lifr->lifr_groupname[0] = '\0'; 16768 /* 16769 * ill_group may be null if all the interfaces 16770 * are down. But still, the phyint should always 16771 * hold the name. 16772 */ 16773 if (phyi->phyint_groupname_len != 0) { 16774 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16775 phyi->phyint_groupname_len); 16776 } 16777 16778 return (0); 16779 } 16780 16781 16782 typedef struct conn_move_s { 16783 ill_t *cm_from_ill; 16784 ill_t *cm_to_ill; 16785 int cm_ifindex; 16786 } conn_move_t; 16787 16788 /* 16789 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16790 */ 16791 static void 16792 conn_move(conn_t *connp, caddr_t arg) 16793 { 16794 conn_move_t *connm; 16795 int ifindex; 16796 int i; 16797 ill_t *from_ill; 16798 ill_t *to_ill; 16799 ilg_t *ilg; 16800 ilm_t *ret_ilm; 16801 16802 connm = (conn_move_t *)arg; 16803 ifindex = connm->cm_ifindex; 16804 from_ill = connm->cm_from_ill; 16805 to_ill = connm->cm_to_ill; 16806 16807 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16808 16809 /* All multicast fields protected by conn_lock */ 16810 mutex_enter(&connp->conn_lock); 16811 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16812 if ((connp->conn_outgoing_ill == from_ill) && 16813 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16814 connp->conn_outgoing_ill = to_ill; 16815 connp->conn_incoming_ill = to_ill; 16816 } 16817 16818 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16819 16820 if ((connp->conn_multicast_ill == from_ill) && 16821 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16822 connp->conn_multicast_ill = connm->cm_to_ill; 16823 } 16824 16825 /* Change IP_XMIT_IF associations */ 16826 if ((connp->conn_xmit_if_ill == from_ill) && 16827 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16828 connp->conn_xmit_if_ill = to_ill; 16829 } 16830 /* 16831 * Change the ilg_ill to point to the new one. This assumes 16832 * ilm_move_v6 has moved the ilms to new_ill and the driver 16833 * has been told to receive packets on this interface. 16834 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16835 * But when doing a FAILOVER, it might fail with ENOMEM and so 16836 * some ilms may not have moved. We check to see whether 16837 * the ilms have moved to to_ill. We can't check on from_ill 16838 * as in the process of moving, we could have split an ilm 16839 * in to two - which has the same orig_ifindex and v6group. 16840 * 16841 * For IPv4, ilg_ipif moves implicitly. The code below really 16842 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16843 */ 16844 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16845 ilg = &connp->conn_ilg[i]; 16846 if ((ilg->ilg_ill == from_ill) && 16847 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16848 /* ifindex != 0 indicates failback */ 16849 if (ifindex != 0) { 16850 connp->conn_ilg[i].ilg_ill = to_ill; 16851 continue; 16852 } 16853 16854 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16855 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16856 connp->conn_zoneid); 16857 16858 if (ret_ilm != NULL) 16859 connp->conn_ilg[i].ilg_ill = to_ill; 16860 } 16861 } 16862 mutex_exit(&connp->conn_lock); 16863 } 16864 16865 static void 16866 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16867 { 16868 conn_move_t connm; 16869 ip_stack_t *ipst = from_ill->ill_ipst; 16870 16871 connm.cm_from_ill = from_ill; 16872 connm.cm_to_ill = to_ill; 16873 connm.cm_ifindex = ifindex; 16874 16875 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16876 } 16877 16878 /* 16879 * ilm has been moved from from_ill to to_ill. 16880 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16881 * appropriately. 16882 * 16883 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16884 * the code there de-references ipif_ill to get the ill to 16885 * send multicast requests. It does not work as ipif is on its 16886 * move and already moved when this function is called. 16887 * Thus, we need to use from_ill and to_ill send down multicast 16888 * requests. 16889 */ 16890 static void 16891 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16892 { 16893 ipif_t *ipif; 16894 ilm_t *ilm; 16895 16896 /* 16897 * See whether we need to send down DL_ENABMULTI_REQ on 16898 * to_ill as ilm has just been added. 16899 */ 16900 ASSERT(IAM_WRITER_ILL(to_ill)); 16901 ASSERT(IAM_WRITER_ILL(from_ill)); 16902 16903 ILM_WALKER_HOLD(to_ill); 16904 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16905 16906 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16907 continue; 16908 /* 16909 * no locks held, ill/ipif cannot dissappear as long 16910 * as we are writer. 16911 */ 16912 ipif = to_ill->ill_ipif; 16913 /* 16914 * No need to hold any lock as we are the writer and this 16915 * can only be changed by a writer. 16916 */ 16917 ilm->ilm_is_new = B_FALSE; 16918 16919 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16920 ipif->ipif_flags & IPIF_POINTOPOINT) { 16921 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16922 "resolver\n")); 16923 continue; /* Must be IRE_IF_NORESOLVER */ 16924 } 16925 16926 16927 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16928 ip1dbg(("ilm_send_multicast_reqs: " 16929 "to_ill MULTI_BCAST\n")); 16930 goto from; 16931 } 16932 16933 if (to_ill->ill_isv6) 16934 mld_joingroup(ilm); 16935 else 16936 igmp_joingroup(ilm); 16937 16938 if (to_ill->ill_ipif_up_count == 0) { 16939 /* 16940 * Nobody there. All multicast addresses will be 16941 * re-joined when we get the DL_BIND_ACK bringing the 16942 * interface up. 16943 */ 16944 ilm->ilm_notify_driver = B_FALSE; 16945 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16946 goto from; 16947 } 16948 16949 /* 16950 * For allmulti address, we want to join on only one interface. 16951 * Checking for ilm_numentries_v6 is not correct as you may 16952 * find an ilm with zero address on to_ill, but we may not 16953 * have nominated to_ill for receiving. Thus, if we have 16954 * nominated from_ill (ill_join_allmulti is set), nominate 16955 * only if to_ill is not already nominated (to_ill normally 16956 * should not have been nominated if "from_ill" has already 16957 * been nominated. As we don't prevent failovers from happening 16958 * across groups, we don't assert). 16959 */ 16960 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16961 /* 16962 * There is no need to hold ill locks as we are 16963 * writer on both ills and when ill_join_allmulti 16964 * is changed the thread is always a writer. 16965 */ 16966 if (from_ill->ill_join_allmulti && 16967 !to_ill->ill_join_allmulti) { 16968 (void) ip_join_allmulti(to_ill->ill_ipif); 16969 } 16970 } else if (ilm->ilm_notify_driver) { 16971 16972 /* 16973 * This is a newly moved ilm so we need to tell the 16974 * driver about the new group. There can be more than 16975 * one ilm's for the same group in the list each with a 16976 * different orig_ifindex. We have to inform the driver 16977 * once. In ilm_move_v[4,6] we only set the flag 16978 * ilm_notify_driver for the first ilm. 16979 */ 16980 16981 (void) ip_ll_send_enabmulti_req(to_ill, 16982 &ilm->ilm_v6addr); 16983 } 16984 16985 ilm->ilm_notify_driver = B_FALSE; 16986 16987 /* 16988 * See whether we need to send down DL_DISABMULTI_REQ on 16989 * from_ill as ilm has just been removed. 16990 */ 16991 from: 16992 ipif = from_ill->ill_ipif; 16993 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16994 ipif->ipif_flags & IPIF_POINTOPOINT) { 16995 ip1dbg(("ilm_send_multicast_reqs: " 16996 "from_ill not resolver\n")); 16997 continue; /* Must be IRE_IF_NORESOLVER */ 16998 } 16999 17000 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17001 ip1dbg(("ilm_send_multicast_reqs: " 17002 "from_ill MULTI_BCAST\n")); 17003 continue; 17004 } 17005 17006 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17007 if (from_ill->ill_join_allmulti) 17008 (void) ip_leave_allmulti(from_ill->ill_ipif); 17009 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 17010 (void) ip_ll_send_disabmulti_req(from_ill, 17011 &ilm->ilm_v6addr); 17012 } 17013 } 17014 ILM_WALKER_RELE(to_ill); 17015 } 17016 17017 /* 17018 * This function is called when all multicast memberships needs 17019 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 17020 * called only once unlike the IPv4 counterpart where it is called after 17021 * every logical interface is moved. The reason is due to multicast 17022 * memberships are joined using an interface address in IPv4 while in 17023 * IPv6, interface index is used. 17024 */ 17025 static void 17026 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 17027 { 17028 ilm_t *ilm; 17029 ilm_t *ilm_next; 17030 ilm_t *new_ilm; 17031 ilm_t **ilmp; 17032 int count; 17033 char buf[INET6_ADDRSTRLEN]; 17034 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 17035 ip_stack_t *ipst = from_ill->ill_ipst; 17036 17037 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17038 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17039 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17040 17041 if (ifindex == 0) { 17042 /* 17043 * Form the solicited node mcast address which is used later. 17044 */ 17045 ipif_t *ipif; 17046 17047 ipif = from_ill->ill_ipif; 17048 ASSERT(ipif->ipif_id == 0); 17049 17050 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 17051 } 17052 17053 ilmp = &from_ill->ill_ilm; 17054 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17055 ilm_next = ilm->ilm_next; 17056 17057 if (ilm->ilm_flags & ILM_DELETED) { 17058 ilmp = &ilm->ilm_next; 17059 continue; 17060 } 17061 17062 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 17063 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 17064 ASSERT(ilm->ilm_orig_ifindex != 0); 17065 if (ilm->ilm_orig_ifindex == ifindex) { 17066 /* 17067 * We are failing back multicast memberships. 17068 * If the same ilm exists in to_ill, it means somebody 17069 * has joined the same group there e.g. ff02::1 17070 * is joined within the kernel when the interfaces 17071 * came UP. 17072 */ 17073 ASSERT(ilm->ilm_ipif == NULL); 17074 if (new_ilm != NULL) { 17075 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17076 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17077 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17078 new_ilm->ilm_is_new = B_TRUE; 17079 } 17080 } else { 17081 /* 17082 * check if we can just move the ilm 17083 */ 17084 if (from_ill->ill_ilm_walker_cnt != 0) { 17085 /* 17086 * We have walkers we cannot move 17087 * the ilm, so allocate a new ilm, 17088 * this (old) ilm will be marked 17089 * ILM_DELETED at the end of the loop 17090 * and will be freed when the 17091 * last walker exits. 17092 */ 17093 new_ilm = (ilm_t *)mi_zalloc 17094 (sizeof (ilm_t)); 17095 if (new_ilm == NULL) { 17096 ip0dbg(("ilm_move_v6: " 17097 "FAILBACK of IPv6" 17098 " multicast address %s : " 17099 "from %s to" 17100 " %s failed : ENOMEM \n", 17101 inet_ntop(AF_INET6, 17102 &ilm->ilm_v6addr, buf, 17103 sizeof (buf)), 17104 from_ill->ill_name, 17105 to_ill->ill_name)); 17106 17107 ilmp = &ilm->ilm_next; 17108 continue; 17109 } 17110 *new_ilm = *ilm; 17111 /* 17112 * we don't want new_ilm linked to 17113 * ilm's filter list. 17114 */ 17115 new_ilm->ilm_filter = NULL; 17116 } else { 17117 /* 17118 * No walkers we can move the ilm. 17119 * lets take it out of the list. 17120 */ 17121 *ilmp = ilm->ilm_next; 17122 ilm->ilm_next = NULL; 17123 new_ilm = ilm; 17124 } 17125 17126 /* 17127 * if this is the first ilm for the group 17128 * set ilm_notify_driver so that we notify the 17129 * driver in ilm_send_multicast_reqs. 17130 */ 17131 if (ilm_lookup_ill_v6(to_ill, 17132 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17133 new_ilm->ilm_notify_driver = B_TRUE; 17134 17135 new_ilm->ilm_ill = to_ill; 17136 /* Add to the to_ill's list */ 17137 new_ilm->ilm_next = to_ill->ill_ilm; 17138 to_ill->ill_ilm = new_ilm; 17139 /* 17140 * set the flag so that mld_joingroup is 17141 * called in ilm_send_multicast_reqs(). 17142 */ 17143 new_ilm->ilm_is_new = B_TRUE; 17144 } 17145 goto bottom; 17146 } else if (ifindex != 0) { 17147 /* 17148 * If this is FAILBACK (ifindex != 0) and the ifindex 17149 * has not matched above, look at the next ilm. 17150 */ 17151 ilmp = &ilm->ilm_next; 17152 continue; 17153 } 17154 /* 17155 * If we are here, it means ifindex is 0. Failover 17156 * everything. 17157 * 17158 * We need to handle solicited node mcast address 17159 * and all_nodes mcast address differently as they 17160 * are joined witin the kenrel (ipif_multicast_up) 17161 * and potentially from the userland. We are called 17162 * after the ipifs of from_ill has been moved. 17163 * If we still find ilms on ill with solicited node 17164 * mcast address or all_nodes mcast address, it must 17165 * belong to the UP interface that has not moved e.g. 17166 * ipif_id 0 with the link local prefix does not move. 17167 * We join this on the new ill accounting for all the 17168 * userland memberships so that applications don't 17169 * see any failure. 17170 * 17171 * We need to make sure that we account only for the 17172 * solicited node and all node multicast addresses 17173 * that was brought UP on these. In the case of 17174 * a failover from A to B, we might have ilms belonging 17175 * to A (ilm_orig_ifindex pointing at A) on B accounting 17176 * for the membership from the userland. If we are failing 17177 * over from B to C now, we will find the ones belonging 17178 * to A on B. These don't account for the ill_ipif_up_count. 17179 * They just move from B to C. The check below on 17180 * ilm_orig_ifindex ensures that. 17181 */ 17182 if ((ilm->ilm_orig_ifindex == 17183 from_ill->ill_phyint->phyint_ifindex) && 17184 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17185 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17186 &ilm->ilm_v6addr))) { 17187 ASSERT(ilm->ilm_refcnt > 0); 17188 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17189 /* 17190 * For indentation reasons, we are not using a 17191 * "else" here. 17192 */ 17193 if (count == 0) { 17194 ilmp = &ilm->ilm_next; 17195 continue; 17196 } 17197 ilm->ilm_refcnt -= count; 17198 if (new_ilm != NULL) { 17199 /* 17200 * Can find one with the same 17201 * ilm_orig_ifindex, if we are failing 17202 * over to a STANDBY. This happens 17203 * when somebody wants to join a group 17204 * on a STANDBY interface and we 17205 * internally join on a different one. 17206 * If we had joined on from_ill then, a 17207 * failover now will find a new ilm 17208 * with this index. 17209 */ 17210 ip1dbg(("ilm_move_v6: FAILOVER, found" 17211 " new ilm on %s, group address %s\n", 17212 to_ill->ill_name, 17213 inet_ntop(AF_INET6, 17214 &ilm->ilm_v6addr, buf, 17215 sizeof (buf)))); 17216 new_ilm->ilm_refcnt += count; 17217 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17218 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17219 new_ilm->ilm_is_new = B_TRUE; 17220 } 17221 } else { 17222 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17223 if (new_ilm == NULL) { 17224 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17225 " multicast address %s : from %s to" 17226 " %s failed : ENOMEM \n", 17227 inet_ntop(AF_INET6, 17228 &ilm->ilm_v6addr, buf, 17229 sizeof (buf)), from_ill->ill_name, 17230 to_ill->ill_name)); 17231 ilmp = &ilm->ilm_next; 17232 continue; 17233 } 17234 *new_ilm = *ilm; 17235 new_ilm->ilm_filter = NULL; 17236 new_ilm->ilm_refcnt = count; 17237 new_ilm->ilm_timer = INFINITY; 17238 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17239 new_ilm->ilm_is_new = B_TRUE; 17240 /* 17241 * If the to_ill has not joined this 17242 * group we need to tell the driver in 17243 * ill_send_multicast_reqs. 17244 */ 17245 if (ilm_lookup_ill_v6(to_ill, 17246 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17247 new_ilm->ilm_notify_driver = B_TRUE; 17248 17249 new_ilm->ilm_ill = to_ill; 17250 /* Add to the to_ill's list */ 17251 new_ilm->ilm_next = to_ill->ill_ilm; 17252 to_ill->ill_ilm = new_ilm; 17253 ASSERT(new_ilm->ilm_ipif == NULL); 17254 } 17255 if (ilm->ilm_refcnt == 0) { 17256 goto bottom; 17257 } else { 17258 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17259 CLEAR_SLIST(new_ilm->ilm_filter); 17260 ilmp = &ilm->ilm_next; 17261 } 17262 continue; 17263 } else { 17264 /* 17265 * ifindex = 0 means, move everything pointing at 17266 * from_ill. We are doing this becuase ill has 17267 * either FAILED or became INACTIVE. 17268 * 17269 * As we would like to move things later back to 17270 * from_ill, we want to retain the identity of this 17271 * ilm. Thus, we don't blindly increment the reference 17272 * count on the ilms matching the address alone. We 17273 * need to match on the ilm_orig_index also. new_ilm 17274 * was obtained by matching ilm_orig_index also. 17275 */ 17276 if (new_ilm != NULL) { 17277 /* 17278 * This is possible only if a previous restore 17279 * was incomplete i.e restore to 17280 * ilm_orig_ifindex left some ilms because 17281 * of some failures. Thus when we are failing 17282 * again, we might find our old friends there. 17283 */ 17284 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17285 " on %s, group address %s\n", 17286 to_ill->ill_name, 17287 inet_ntop(AF_INET6, 17288 &ilm->ilm_v6addr, buf, 17289 sizeof (buf)))); 17290 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17291 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17292 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17293 new_ilm->ilm_is_new = B_TRUE; 17294 } 17295 } else { 17296 if (from_ill->ill_ilm_walker_cnt != 0) { 17297 new_ilm = (ilm_t *) 17298 mi_zalloc(sizeof (ilm_t)); 17299 if (new_ilm == NULL) { 17300 ip0dbg(("ilm_move_v6: " 17301 "FAILOVER of IPv6" 17302 " multicast address %s : " 17303 "from %s to" 17304 " %s failed : ENOMEM \n", 17305 inet_ntop(AF_INET6, 17306 &ilm->ilm_v6addr, buf, 17307 sizeof (buf)), 17308 from_ill->ill_name, 17309 to_ill->ill_name)); 17310 17311 ilmp = &ilm->ilm_next; 17312 continue; 17313 } 17314 *new_ilm = *ilm; 17315 new_ilm->ilm_filter = NULL; 17316 } else { 17317 *ilmp = ilm->ilm_next; 17318 new_ilm = ilm; 17319 } 17320 /* 17321 * If the to_ill has not joined this 17322 * group we need to tell the driver in 17323 * ill_send_multicast_reqs. 17324 */ 17325 if (ilm_lookup_ill_v6(to_ill, 17326 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17327 new_ilm->ilm_notify_driver = B_TRUE; 17328 17329 /* Add to the to_ill's list */ 17330 new_ilm->ilm_next = to_ill->ill_ilm; 17331 to_ill->ill_ilm = new_ilm; 17332 ASSERT(ilm->ilm_ipif == NULL); 17333 new_ilm->ilm_ill = to_ill; 17334 new_ilm->ilm_is_new = B_TRUE; 17335 } 17336 17337 } 17338 17339 bottom: 17340 /* 17341 * Revert multicast filter state to (EXCLUDE, NULL). 17342 * new_ilm->ilm_is_new should already be set if needed. 17343 */ 17344 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17345 CLEAR_SLIST(new_ilm->ilm_filter); 17346 /* 17347 * We allocated/got a new ilm, free the old one. 17348 */ 17349 if (new_ilm != ilm) { 17350 if (from_ill->ill_ilm_walker_cnt == 0) { 17351 *ilmp = ilm->ilm_next; 17352 ilm->ilm_next = NULL; 17353 FREE_SLIST(ilm->ilm_filter); 17354 FREE_SLIST(ilm->ilm_pendsrcs); 17355 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17356 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17357 mi_free((char *)ilm); 17358 } else { 17359 ilm->ilm_flags |= ILM_DELETED; 17360 from_ill->ill_ilm_cleanup_reqd = 1; 17361 ilmp = &ilm->ilm_next; 17362 } 17363 } 17364 } 17365 } 17366 17367 /* 17368 * Move all the multicast memberships to to_ill. Called when 17369 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17370 * different from IPv6 counterpart as multicast memberships are associated 17371 * with ills in IPv6. This function is called after every ipif is moved 17372 * unlike IPv6, where it is moved only once. 17373 */ 17374 static void 17375 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17376 { 17377 ilm_t *ilm; 17378 ilm_t *ilm_next; 17379 ilm_t *new_ilm; 17380 ilm_t **ilmp; 17381 ip_stack_t *ipst = from_ill->ill_ipst; 17382 17383 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17384 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17385 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17386 17387 ilmp = &from_ill->ill_ilm; 17388 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17389 ilm_next = ilm->ilm_next; 17390 17391 if (ilm->ilm_flags & ILM_DELETED) { 17392 ilmp = &ilm->ilm_next; 17393 continue; 17394 } 17395 17396 ASSERT(ilm->ilm_ipif != NULL); 17397 17398 if (ilm->ilm_ipif != ipif) { 17399 ilmp = &ilm->ilm_next; 17400 continue; 17401 } 17402 17403 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17404 htonl(INADDR_ALLHOSTS_GROUP)) { 17405 /* 17406 * We joined this in ipif_multicast_up 17407 * and we never did an ipif_multicast_down 17408 * for IPv4. If nobody else from the userland 17409 * has reference, we free the ilm, and later 17410 * when this ipif comes up on the new ill, 17411 * we will join this again. 17412 */ 17413 if (--ilm->ilm_refcnt == 0) 17414 goto delete_ilm; 17415 17416 new_ilm = ilm_lookup_ipif(ipif, 17417 V4_PART_OF_V6(ilm->ilm_v6addr)); 17418 if (new_ilm != NULL) { 17419 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17420 /* 17421 * We still need to deal with the from_ill. 17422 */ 17423 new_ilm->ilm_is_new = B_TRUE; 17424 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17425 CLEAR_SLIST(new_ilm->ilm_filter); 17426 goto delete_ilm; 17427 } 17428 /* 17429 * If we could not find one e.g. ipif is 17430 * still down on to_ill, we add this ilm 17431 * on ill_new to preserve the reference 17432 * count. 17433 */ 17434 } 17435 /* 17436 * When ipifs move, ilms always move with it 17437 * to the NEW ill. Thus we should never be 17438 * able to find ilm till we really move it here. 17439 */ 17440 ASSERT(ilm_lookup_ipif(ipif, 17441 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17442 17443 if (from_ill->ill_ilm_walker_cnt != 0) { 17444 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17445 if (new_ilm == NULL) { 17446 char buf[INET6_ADDRSTRLEN]; 17447 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17448 " multicast address %s : " 17449 "from %s to" 17450 " %s failed : ENOMEM \n", 17451 inet_ntop(AF_INET, 17452 &ilm->ilm_v6addr, buf, 17453 sizeof (buf)), 17454 from_ill->ill_name, 17455 to_ill->ill_name)); 17456 17457 ilmp = &ilm->ilm_next; 17458 continue; 17459 } 17460 *new_ilm = *ilm; 17461 /* We don't want new_ilm linked to ilm's filter list */ 17462 new_ilm->ilm_filter = NULL; 17463 } else { 17464 /* Remove from the list */ 17465 *ilmp = ilm->ilm_next; 17466 new_ilm = ilm; 17467 } 17468 17469 /* 17470 * If we have never joined this group on the to_ill 17471 * make sure we tell the driver. 17472 */ 17473 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17474 ALL_ZONES) == NULL) 17475 new_ilm->ilm_notify_driver = B_TRUE; 17476 17477 /* Add to the to_ill's list */ 17478 new_ilm->ilm_next = to_ill->ill_ilm; 17479 to_ill->ill_ilm = new_ilm; 17480 new_ilm->ilm_is_new = B_TRUE; 17481 17482 /* 17483 * Revert multicast filter state to (EXCLUDE, NULL) 17484 */ 17485 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17486 CLEAR_SLIST(new_ilm->ilm_filter); 17487 17488 /* 17489 * Delete only if we have allocated a new ilm. 17490 */ 17491 if (new_ilm != ilm) { 17492 delete_ilm: 17493 if (from_ill->ill_ilm_walker_cnt == 0) { 17494 /* Remove from the list */ 17495 *ilmp = ilm->ilm_next; 17496 ilm->ilm_next = NULL; 17497 FREE_SLIST(ilm->ilm_filter); 17498 FREE_SLIST(ilm->ilm_pendsrcs); 17499 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17500 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17501 mi_free((char *)ilm); 17502 } else { 17503 ilm->ilm_flags |= ILM_DELETED; 17504 from_ill->ill_ilm_cleanup_reqd = 1; 17505 ilmp = &ilm->ilm_next; 17506 } 17507 } 17508 } 17509 } 17510 17511 static uint_t 17512 ipif_get_id(ill_t *ill, uint_t id) 17513 { 17514 uint_t unit; 17515 ipif_t *tipif; 17516 boolean_t found = B_FALSE; 17517 ip_stack_t *ipst = ill->ill_ipst; 17518 17519 /* 17520 * During failback, we want to go back to the same id 17521 * instead of the smallest id so that the original 17522 * configuration is maintained. id is non-zero in that 17523 * case. 17524 */ 17525 if (id != 0) { 17526 /* 17527 * While failing back, if we still have an ipif with 17528 * MAX_ADDRS_PER_IF, it means this will be replaced 17529 * as soon as we return from this function. It was 17530 * to set to MAX_ADDRS_PER_IF by the caller so that 17531 * we can choose the smallest id. Thus we return zero 17532 * in that case ignoring the hint. 17533 */ 17534 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17535 return (0); 17536 for (tipif = ill->ill_ipif; tipif != NULL; 17537 tipif = tipif->ipif_next) { 17538 if (tipif->ipif_id == id) { 17539 found = B_TRUE; 17540 break; 17541 } 17542 } 17543 /* 17544 * If somebody already plumbed another logical 17545 * with the same id, we won't be able to find it. 17546 */ 17547 if (!found) 17548 return (id); 17549 } 17550 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17551 found = B_FALSE; 17552 for (tipif = ill->ill_ipif; tipif != NULL; 17553 tipif = tipif->ipif_next) { 17554 if (tipif->ipif_id == unit) { 17555 found = B_TRUE; 17556 break; 17557 } 17558 } 17559 if (!found) 17560 break; 17561 } 17562 return (unit); 17563 } 17564 17565 /* ARGSUSED */ 17566 static int 17567 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17568 ipif_t **rep_ipif_ptr) 17569 { 17570 ill_t *from_ill; 17571 ipif_t *rep_ipif; 17572 ipif_t **ipifp; 17573 uint_t unit; 17574 int err = 0; 17575 ipif_t *to_ipif; 17576 struct iocblk *iocp; 17577 boolean_t failback_cmd; 17578 boolean_t remove_ipif; 17579 int rc; 17580 ip_stack_t *ipst; 17581 17582 ASSERT(IAM_WRITER_ILL(to_ill)); 17583 ASSERT(IAM_WRITER_IPIF(ipif)); 17584 17585 iocp = (struct iocblk *)mp->b_rptr; 17586 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17587 remove_ipif = B_FALSE; 17588 17589 from_ill = ipif->ipif_ill; 17590 ipst = from_ill->ill_ipst; 17591 17592 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17593 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17594 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17595 17596 /* 17597 * Don't move LINK LOCAL addresses as they are tied to 17598 * physical interface. 17599 */ 17600 if (from_ill->ill_isv6 && 17601 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17602 ipif->ipif_was_up = B_FALSE; 17603 IPIF_UNMARK_MOVING(ipif); 17604 return (0); 17605 } 17606 17607 /* 17608 * We set the ipif_id to maximum so that the search for 17609 * ipif_id will pick the lowest number i.e 0 in the 17610 * following 2 cases : 17611 * 17612 * 1) We have a replacement ipif at the head of to_ill. 17613 * We can't remove it yet as we can exceed ip_addrs_per_if 17614 * on to_ill and hence the MOVE might fail. We want to 17615 * remove it only if we could move the ipif. Thus, by 17616 * setting it to the MAX value, we make the search in 17617 * ipif_get_id return the zeroth id. 17618 * 17619 * 2) When DR pulls out the NIC and re-plumbs the interface, 17620 * we might just have a zero address plumbed on the ipif 17621 * with zero id in the case of IPv4. We remove that while 17622 * doing the failback. We want to remove it only if we 17623 * could move the ipif. Thus, by setting it to the MAX 17624 * value, we make the search in ipif_get_id return the 17625 * zeroth id. 17626 * 17627 * Both (1) and (2) are done only when when we are moving 17628 * an ipif (either due to failover/failback) which originally 17629 * belonged to this interface i.e the ipif_orig_ifindex is 17630 * the same as to_ill's ifindex. This is needed so that 17631 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17632 * from B -> A (B is being removed from the group) and 17633 * FAILBACK from A -> B restores the original configuration. 17634 * Without the check for orig_ifindex, the second FAILOVER 17635 * could make the ipif belonging to B replace the A's zeroth 17636 * ipif and the subsequent failback re-creating the replacement 17637 * ipif again. 17638 * 17639 * NOTE : We created the replacement ipif when we did a 17640 * FAILOVER (See below). We could check for FAILBACK and 17641 * then look for replacement ipif to be removed. But we don't 17642 * want to do that because we wan't to allow the possibility 17643 * of a FAILOVER from A -> B (which creates the replacement ipif), 17644 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17645 * from B -> A. 17646 */ 17647 to_ipif = to_ill->ill_ipif; 17648 if ((to_ill->ill_phyint->phyint_ifindex == 17649 ipif->ipif_orig_ifindex) && 17650 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17651 ASSERT(to_ipif->ipif_id == 0); 17652 remove_ipif = B_TRUE; 17653 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17654 } 17655 /* 17656 * Find the lowest logical unit number on the to_ill. 17657 * If we are failing back, try to get the original id 17658 * rather than the lowest one so that the original 17659 * configuration is maintained. 17660 * 17661 * XXX need a better scheme for this. 17662 */ 17663 if (failback_cmd) { 17664 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17665 } else { 17666 unit = ipif_get_id(to_ill, 0); 17667 } 17668 17669 /* Reset back to zero in case we fail below */ 17670 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17671 to_ipif->ipif_id = 0; 17672 17673 if (unit == ipst->ips_ip_addrs_per_if) { 17674 ipif->ipif_was_up = B_FALSE; 17675 IPIF_UNMARK_MOVING(ipif); 17676 return (EINVAL); 17677 } 17678 17679 /* 17680 * ipif is ready to move from "from_ill" to "to_ill". 17681 * 17682 * 1) If we are moving ipif with id zero, create a 17683 * replacement ipif for this ipif on from_ill. If this fails 17684 * fail the MOVE operation. 17685 * 17686 * 2) Remove the replacement ipif on to_ill if any. 17687 * We could remove the replacement ipif when we are moving 17688 * the ipif with id zero. But what if somebody already 17689 * unplumbed it ? Thus we always remove it if it is present. 17690 * We want to do it only if we are sure we are going to 17691 * move the ipif to to_ill which is why there are no 17692 * returns due to error till ipif is linked to to_ill. 17693 * Note that the first ipif that we failback will always 17694 * be zero if it is present. 17695 */ 17696 if (ipif->ipif_id == 0) { 17697 ipaddr_t inaddr_any = INADDR_ANY; 17698 17699 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17700 if (rep_ipif == NULL) { 17701 ipif->ipif_was_up = B_FALSE; 17702 IPIF_UNMARK_MOVING(ipif); 17703 return (ENOMEM); 17704 } 17705 *rep_ipif = ipif_zero; 17706 /* 17707 * Before we put the ipif on the list, store the addresses 17708 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17709 * assumes so. This logic is not any different from what 17710 * ipif_allocate does. 17711 */ 17712 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17713 &rep_ipif->ipif_v6lcl_addr); 17714 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17715 &rep_ipif->ipif_v6src_addr); 17716 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17717 &rep_ipif->ipif_v6subnet); 17718 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17719 &rep_ipif->ipif_v6net_mask); 17720 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17721 &rep_ipif->ipif_v6brd_addr); 17722 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17723 &rep_ipif->ipif_v6pp_dst_addr); 17724 /* 17725 * We mark IPIF_NOFAILOVER so that this can never 17726 * move. 17727 */ 17728 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17729 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17730 rep_ipif->ipif_replace_zero = B_TRUE; 17731 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17732 MUTEX_DEFAULT, NULL); 17733 rep_ipif->ipif_id = 0; 17734 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17735 rep_ipif->ipif_ill = from_ill; 17736 rep_ipif->ipif_orig_ifindex = 17737 from_ill->ill_phyint->phyint_ifindex; 17738 /* Insert at head */ 17739 rep_ipif->ipif_next = from_ill->ill_ipif; 17740 from_ill->ill_ipif = rep_ipif; 17741 /* 17742 * We don't really care to let apps know about 17743 * this interface. 17744 */ 17745 } 17746 17747 if (remove_ipif) { 17748 /* 17749 * We set to a max value above for this case to get 17750 * id zero. ASSERT that we did get one. 17751 */ 17752 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17753 rep_ipif = to_ipif; 17754 to_ill->ill_ipif = rep_ipif->ipif_next; 17755 rep_ipif->ipif_next = NULL; 17756 /* 17757 * If some apps scanned and find this interface, 17758 * it is time to let them know, so that they can 17759 * delete it. 17760 */ 17761 17762 *rep_ipif_ptr = rep_ipif; 17763 } 17764 17765 /* Get it out of the ILL interface list. */ 17766 ipifp = &ipif->ipif_ill->ill_ipif; 17767 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17768 if (*ipifp == ipif) { 17769 *ipifp = ipif->ipif_next; 17770 break; 17771 } 17772 } 17773 17774 /* Assign the new ill */ 17775 ipif->ipif_ill = to_ill; 17776 ipif->ipif_id = unit; 17777 /* id has already been checked */ 17778 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17779 ASSERT(rc == 0); 17780 /* Let SCTP update its list */ 17781 sctp_move_ipif(ipif, from_ill, to_ill); 17782 /* 17783 * Handle the failover and failback of ipif_t between 17784 * ill_t that have differing maximum mtu values. 17785 */ 17786 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17787 if (ipif->ipif_saved_mtu == 0) { 17788 /* 17789 * As this ipif_t is moving to an ill_t 17790 * that has a lower ill_max_mtu, its 17791 * ipif_mtu needs to be saved so it can 17792 * be restored during failback or during 17793 * failover to an ill_t which has a 17794 * higher ill_max_mtu. 17795 */ 17796 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17797 ipif->ipif_mtu = to_ill->ill_max_mtu; 17798 } else { 17799 /* 17800 * The ipif_t is, once again, moving to 17801 * an ill_t that has a lower maximum mtu 17802 * value. 17803 */ 17804 ipif->ipif_mtu = to_ill->ill_max_mtu; 17805 } 17806 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17807 ipif->ipif_saved_mtu != 0) { 17808 /* 17809 * The mtu of this ipif_t had to be reduced 17810 * during an earlier failover; this is an 17811 * opportunity for it to be increased (either as 17812 * part of another failover or a failback). 17813 */ 17814 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17815 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17816 ipif->ipif_saved_mtu = 0; 17817 } else { 17818 ipif->ipif_mtu = to_ill->ill_max_mtu; 17819 } 17820 } 17821 17822 /* 17823 * We preserve all the other fields of the ipif including 17824 * ipif_saved_ire_mp. The routes that are saved here will 17825 * be recreated on the new interface and back on the old 17826 * interface when we move back. 17827 */ 17828 ASSERT(ipif->ipif_arp_del_mp == NULL); 17829 17830 return (err); 17831 } 17832 17833 static int 17834 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17835 int ifindex, ipif_t **rep_ipif_ptr) 17836 { 17837 ipif_t *mipif; 17838 ipif_t *ipif_next; 17839 int err; 17840 17841 /* 17842 * We don't really try to MOVE back things if some of the 17843 * operations fail. The daemon will take care of moving again 17844 * later on. 17845 */ 17846 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17847 ipif_next = mipif->ipif_next; 17848 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17849 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17850 17851 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17852 17853 /* 17854 * When the MOVE fails, it is the job of the 17855 * application to take care of this properly 17856 * i.e try again if it is ENOMEM. 17857 */ 17858 if (mipif->ipif_ill != from_ill) { 17859 /* 17860 * ipif has moved. 17861 * 17862 * Move the multicast memberships associated 17863 * with this ipif to the new ill. For IPv6, we 17864 * do it once after all the ipifs are moved 17865 * (in ill_move) as they are not associated 17866 * with ipifs. 17867 * 17868 * We need to move the ilms as the ipif has 17869 * already been moved to a new ill even 17870 * in the case of errors. Neither 17871 * ilm_free(ipif) will find the ilm 17872 * when somebody unplumbs this ipif nor 17873 * ilm_delete(ilm) will be able to find the 17874 * ilm, if we don't move now. 17875 */ 17876 if (!from_ill->ill_isv6) 17877 ilm_move_v4(from_ill, to_ill, mipif); 17878 } 17879 17880 if (err != 0) 17881 return (err); 17882 } 17883 } 17884 return (0); 17885 } 17886 17887 static int 17888 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17889 { 17890 int ifindex; 17891 int err; 17892 struct iocblk *iocp; 17893 ipif_t *ipif; 17894 ipif_t *rep_ipif_ptr = NULL; 17895 ipif_t *from_ipif = NULL; 17896 boolean_t check_rep_if = B_FALSE; 17897 ip_stack_t *ipst = from_ill->ill_ipst; 17898 17899 iocp = (struct iocblk *)mp->b_rptr; 17900 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17901 /* 17902 * Move everything pointing at from_ill to to_ill. 17903 * We acheive this by passing in 0 as ifindex. 17904 */ 17905 ifindex = 0; 17906 } else { 17907 /* 17908 * Move everything pointing at from_ill whose original 17909 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17910 * We acheive this by passing in ifindex rather than 0. 17911 * Multicast vifs, ilgs move implicitly because ipifs move. 17912 */ 17913 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17914 ifindex = to_ill->ill_phyint->phyint_ifindex; 17915 } 17916 17917 /* 17918 * Determine if there is at least one ipif that would move from 17919 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17920 * ipif (if it exists) on the to_ill would be consumed as a result of 17921 * the move, in which case we need to quiesce the replacement ipif also. 17922 */ 17923 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17924 from_ipif = from_ipif->ipif_next) { 17925 if (((ifindex == 0) || 17926 (ifindex == from_ipif->ipif_orig_ifindex)) && 17927 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17928 check_rep_if = B_TRUE; 17929 break; 17930 } 17931 } 17932 17933 17934 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17935 17936 GRAB_ILL_LOCKS(from_ill, to_ill); 17937 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17938 (void) ipsq_pending_mp_add(NULL, ipif, q, 17939 mp, ILL_MOVE_OK); 17940 RELEASE_ILL_LOCKS(from_ill, to_ill); 17941 return (EINPROGRESS); 17942 } 17943 17944 /* Check if the replacement ipif is quiescent to delete */ 17945 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17946 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17947 to_ill->ill_ipif->ipif_state_flags |= 17948 IPIF_MOVING | IPIF_CHANGING; 17949 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17950 (void) ipsq_pending_mp_add(NULL, ipif, q, 17951 mp, ILL_MOVE_OK); 17952 RELEASE_ILL_LOCKS(from_ill, to_ill); 17953 return (EINPROGRESS); 17954 } 17955 } 17956 RELEASE_ILL_LOCKS(from_ill, to_ill); 17957 17958 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17959 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17960 GRAB_ILL_LOCKS(from_ill, to_ill); 17961 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17962 17963 /* ilm_move is done inside ipif_move for IPv4 */ 17964 if (err == 0 && from_ill->ill_isv6) 17965 ilm_move_v6(from_ill, to_ill, ifindex); 17966 17967 RELEASE_ILL_LOCKS(from_ill, to_ill); 17968 rw_exit(&ipst->ips_ill_g_lock); 17969 17970 /* 17971 * send rts messages and multicast messages. 17972 */ 17973 if (rep_ipif_ptr != NULL) { 17974 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17975 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17976 rep_ipif_ptr->ipif_recovery_id = 0; 17977 } 17978 ip_rts_ifmsg(rep_ipif_ptr); 17979 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17980 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17981 mi_free(rep_ipif_ptr); 17982 } 17983 17984 conn_move_ill(from_ill, to_ill, ifindex); 17985 17986 return (err); 17987 } 17988 17989 /* 17990 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17991 * Also checks for the validity of the arguments. 17992 * Note: We are already exclusive inside the from group. 17993 * It is upto the caller to release refcnt on the to_ill's. 17994 */ 17995 static int 17996 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17997 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17998 { 17999 int dst_index; 18000 ipif_t *ipif_v4, *ipif_v6; 18001 struct lifreq *lifr; 18002 mblk_t *mp1; 18003 boolean_t exists; 18004 sin_t *sin; 18005 int err = 0; 18006 ip_stack_t *ipst; 18007 18008 if (CONN_Q(q)) 18009 ipst = CONNQ_TO_IPST(q); 18010 else 18011 ipst = ILLQ_TO_IPST(q); 18012 18013 18014 if ((mp1 = mp->b_cont) == NULL) 18015 return (EPROTO); 18016 18017 if ((mp1 = mp1->b_cont) == NULL) 18018 return (EPROTO); 18019 18020 lifr = (struct lifreq *)mp1->b_rptr; 18021 sin = (sin_t *)&lifr->lifr_addr; 18022 18023 /* 18024 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 18025 * specific operations. 18026 */ 18027 if (sin->sin_family != AF_UNSPEC) 18028 return (EINVAL); 18029 18030 /* 18031 * Get ipif with id 0. We are writer on the from ill. So we can pass 18032 * NULLs for the last 4 args and we know the lookup won't fail 18033 * with EINPROGRESS. 18034 */ 18035 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 18036 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 18037 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18038 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 18039 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 18040 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18041 18042 if (ipif_v4 == NULL && ipif_v6 == NULL) 18043 return (ENXIO); 18044 18045 if (ipif_v4 != NULL) { 18046 ASSERT(ipif_v4->ipif_refcnt != 0); 18047 if (ipif_v4->ipif_id != 0) { 18048 err = EINVAL; 18049 goto done; 18050 } 18051 18052 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 18053 *ill_from_v4 = ipif_v4->ipif_ill; 18054 } 18055 18056 if (ipif_v6 != NULL) { 18057 ASSERT(ipif_v6->ipif_refcnt != 0); 18058 if (ipif_v6->ipif_id != 0) { 18059 err = EINVAL; 18060 goto done; 18061 } 18062 18063 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 18064 *ill_from_v6 = ipif_v6->ipif_ill; 18065 } 18066 18067 err = 0; 18068 dst_index = lifr->lifr_movetoindex; 18069 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 18070 q, mp, ip_process_ioctl, &err, ipst); 18071 if (err != 0) { 18072 /* 18073 * There could be only v6. 18074 */ 18075 if (err != ENXIO) 18076 goto done; 18077 err = 0; 18078 } 18079 18080 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 18081 q, mp, ip_process_ioctl, &err, ipst); 18082 if (err != 0) { 18083 if (err != ENXIO) 18084 goto done; 18085 if (*ill_to_v4 == NULL) { 18086 err = ENXIO; 18087 goto done; 18088 } 18089 err = 0; 18090 } 18091 18092 /* 18093 * If we have something to MOVE i.e "from" not NULL, 18094 * "to" should be non-NULL. 18095 */ 18096 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 18097 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 18098 err = EINVAL; 18099 } 18100 18101 done: 18102 if (ipif_v4 != NULL) 18103 ipif_refrele(ipif_v4); 18104 if (ipif_v6 != NULL) 18105 ipif_refrele(ipif_v6); 18106 return (err); 18107 } 18108 18109 /* 18110 * FAILOVER and FAILBACK are modelled as MOVE operations. 18111 * 18112 * We don't check whether the MOVE is within the same group or 18113 * not, because this ioctl can be used as a generic mechanism 18114 * to failover from interface A to B, though things will function 18115 * only if they are really part of the same group. Moreover, 18116 * all ipifs may be down and hence temporarily out of the group. 18117 * 18118 * ipif's that need to be moved are first brought down; V4 ipifs are brought 18119 * down first and then V6. For each we wait for the ipif's to become quiescent. 18120 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 18121 * have been deleted and there are no active references. Once quiescent the 18122 * ipif's are moved and brought up on the new ill. 18123 * 18124 * Normally the source ill and destination ill belong to the same IPMP group 18125 * and hence the same ipsq_t. In the event they don't belong to the same 18126 * same group the two ipsq's are first merged into one ipsq - that of the 18127 * to_ill. The multicast memberships on the source and destination ill cannot 18128 * change during the move operation since multicast joins/leaves also have to 18129 * execute on the same ipsq and are hence serialized. 18130 */ 18131 /* ARGSUSED */ 18132 int 18133 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18134 ip_ioctl_cmd_t *ipip, void *ifreq) 18135 { 18136 ill_t *ill_to_v4 = NULL; 18137 ill_t *ill_to_v6 = NULL; 18138 ill_t *ill_from_v4 = NULL; 18139 ill_t *ill_from_v6 = NULL; 18140 int err = 0; 18141 18142 /* 18143 * setup from and to ill's, we can get EINPROGRESS only for 18144 * to_ill's. 18145 */ 18146 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18147 &ill_to_v4, &ill_to_v6); 18148 18149 if (err != 0) { 18150 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18151 goto done; 18152 } 18153 18154 /* 18155 * nothing to do. 18156 */ 18157 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18158 goto done; 18159 } 18160 18161 /* 18162 * nothing to do. 18163 */ 18164 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18165 goto done; 18166 } 18167 18168 /* 18169 * Mark the ill as changing. 18170 * ILL_CHANGING flag is cleared when the ipif's are brought up 18171 * in ill_up_ipifs in case of error they are cleared below. 18172 */ 18173 18174 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18175 if (ill_from_v4 != NULL) 18176 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18177 if (ill_from_v6 != NULL) 18178 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18179 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18180 18181 /* 18182 * Make sure that both src and dst are 18183 * in the same syncq group. If not make it happen. 18184 * We are not holding any locks because we are the writer 18185 * on the from_ipsq and we will hold locks in ill_merge_groups 18186 * to protect to_ipsq against changing. 18187 */ 18188 if (ill_from_v4 != NULL) { 18189 if (ill_from_v4->ill_phyint->phyint_ipsq != 18190 ill_to_v4->ill_phyint->phyint_ipsq) { 18191 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18192 NULL, mp, q); 18193 goto err_ret; 18194 18195 } 18196 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18197 } else { 18198 18199 if (ill_from_v6->ill_phyint->phyint_ipsq != 18200 ill_to_v6->ill_phyint->phyint_ipsq) { 18201 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18202 NULL, mp, q); 18203 goto err_ret; 18204 18205 } 18206 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18207 } 18208 18209 /* 18210 * Now that the ipsq's have been merged and we are the writer 18211 * lets mark to_ill as changing as well. 18212 */ 18213 18214 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18215 if (ill_to_v4 != NULL) 18216 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18217 if (ill_to_v6 != NULL) 18218 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18219 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18220 18221 /* 18222 * Its ok for us to proceed with the move even if 18223 * ill_pending_mp is non null on one of the from ill's as the reply 18224 * should not be looking at the ipif, it should only care about the 18225 * ill itself. 18226 */ 18227 18228 /* 18229 * lets move ipv4 first. 18230 */ 18231 if (ill_from_v4 != NULL) { 18232 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18233 ill_from_v4->ill_move_in_progress = B_TRUE; 18234 ill_to_v4->ill_move_in_progress = B_TRUE; 18235 ill_to_v4->ill_move_peer = ill_from_v4; 18236 ill_from_v4->ill_move_peer = ill_to_v4; 18237 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18238 } 18239 18240 /* 18241 * Now lets move ipv6. 18242 */ 18243 if (err == 0 && ill_from_v6 != NULL) { 18244 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18245 ill_from_v6->ill_move_in_progress = B_TRUE; 18246 ill_to_v6->ill_move_in_progress = B_TRUE; 18247 ill_to_v6->ill_move_peer = ill_from_v6; 18248 ill_from_v6->ill_move_peer = ill_to_v6; 18249 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18250 } 18251 18252 err_ret: 18253 /* 18254 * EINPROGRESS means we are waiting for the ipif's that need to be 18255 * moved to become quiescent. 18256 */ 18257 if (err == EINPROGRESS) { 18258 goto done; 18259 } 18260 18261 /* 18262 * if err is set ill_up_ipifs will not be called 18263 * lets clear the flags. 18264 */ 18265 18266 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18267 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18268 /* 18269 * Some of the clearing may be redundant. But it is simple 18270 * not making any extra checks. 18271 */ 18272 if (ill_from_v6 != NULL) { 18273 ill_from_v6->ill_move_in_progress = B_FALSE; 18274 ill_from_v6->ill_move_peer = NULL; 18275 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18276 } 18277 if (ill_from_v4 != NULL) { 18278 ill_from_v4->ill_move_in_progress = B_FALSE; 18279 ill_from_v4->ill_move_peer = NULL; 18280 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18281 } 18282 if (ill_to_v6 != NULL) { 18283 ill_to_v6->ill_move_in_progress = B_FALSE; 18284 ill_to_v6->ill_move_peer = NULL; 18285 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18286 } 18287 if (ill_to_v4 != NULL) { 18288 ill_to_v4->ill_move_in_progress = B_FALSE; 18289 ill_to_v4->ill_move_peer = NULL; 18290 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18291 } 18292 18293 /* 18294 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18295 * Do this always to maintain proper state i.e even in case of errors. 18296 * As phyint_inactive looks at both v4 and v6 interfaces, 18297 * we need not call on both v4 and v6 interfaces. 18298 */ 18299 if (ill_from_v4 != NULL) { 18300 if ((ill_from_v4->ill_phyint->phyint_flags & 18301 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18302 phyint_inactive(ill_from_v4->ill_phyint); 18303 } 18304 } else if (ill_from_v6 != NULL) { 18305 if ((ill_from_v6->ill_phyint->phyint_flags & 18306 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18307 phyint_inactive(ill_from_v6->ill_phyint); 18308 } 18309 } 18310 18311 if (ill_to_v4 != NULL) { 18312 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18313 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18314 } 18315 } else if (ill_to_v6 != NULL) { 18316 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18317 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18318 } 18319 } 18320 18321 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18322 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18323 18324 no_err: 18325 /* 18326 * lets bring the interfaces up on the to_ill. 18327 */ 18328 if (err == 0) { 18329 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18330 q, mp); 18331 } 18332 18333 if (err == 0) { 18334 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18335 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18336 18337 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18338 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18339 } 18340 done: 18341 18342 if (ill_to_v4 != NULL) { 18343 ill_refrele(ill_to_v4); 18344 } 18345 if (ill_to_v6 != NULL) { 18346 ill_refrele(ill_to_v6); 18347 } 18348 18349 return (err); 18350 } 18351 18352 static void 18353 ill_dl_down(ill_t *ill) 18354 { 18355 /* 18356 * The ill is down; unbind but stay attached since we're still 18357 * associated with a PPA. If we have negotiated DLPI capabilites 18358 * with the data link service provider (IDS_OK) then reset them. 18359 * The interval between unbinding and rebinding is potentially 18360 * unbounded hence we cannot assume things will be the same. 18361 * The DLPI capabilities will be probed again when the data link 18362 * is brought up. 18363 */ 18364 mblk_t *mp = ill->ill_unbind_mp; 18365 hook_nic_event_t *info; 18366 18367 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18368 18369 ill->ill_unbind_mp = NULL; 18370 if (mp != NULL) { 18371 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18372 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18373 ill->ill_name)); 18374 mutex_enter(&ill->ill_lock); 18375 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18376 mutex_exit(&ill->ill_lock); 18377 if (ill->ill_dlpi_capab_state == IDS_OK) 18378 ill_capability_reset(ill); 18379 ill_dlpi_send(ill, mp); 18380 } 18381 18382 /* 18383 * Toss all of our multicast memberships. We could keep them, but 18384 * then we'd have to do bookkeeping of any joins and leaves performed 18385 * by the application while the the interface is down (we can't just 18386 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18387 * on a downed interface). 18388 */ 18389 ill_leave_multicast(ill); 18390 18391 mutex_enter(&ill->ill_lock); 18392 18393 ill->ill_dl_up = 0; 18394 18395 if ((info = ill->ill_nic_event_info) != NULL) { 18396 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18397 info->hne_event, ill->ill_name)); 18398 if (info->hne_data != NULL) 18399 kmem_free(info->hne_data, info->hne_datalen); 18400 kmem_free(info, sizeof (hook_nic_event_t)); 18401 } 18402 18403 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18404 if (info != NULL) { 18405 ip_stack_t *ipst = ill->ill_ipst; 18406 18407 info->hne_nic = ill->ill_phyint->phyint_ifindex; 18408 info->hne_lif = 0; 18409 info->hne_event = NE_DOWN; 18410 info->hne_data = NULL; 18411 info->hne_datalen = 0; 18412 info->hne_family = ill->ill_isv6 ? 18413 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18414 } else 18415 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18416 "information for %s (ENOMEM)\n", ill->ill_name)); 18417 18418 ill->ill_nic_event_info = info; 18419 18420 mutex_exit(&ill->ill_lock); 18421 } 18422 18423 void 18424 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18425 { 18426 union DL_primitives *dlp; 18427 t_uscalar_t prim; 18428 18429 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18430 18431 dlp = (union DL_primitives *)mp->b_rptr; 18432 prim = dlp->dl_primitive; 18433 18434 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18435 dlpi_prim_str(prim), prim, ill->ill_name)); 18436 18437 switch (prim) { 18438 case DL_PHYS_ADDR_REQ: 18439 { 18440 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18441 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18442 break; 18443 } 18444 case DL_BIND_REQ: 18445 mutex_enter(&ill->ill_lock); 18446 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18447 mutex_exit(&ill->ill_lock); 18448 break; 18449 } 18450 18451 /* 18452 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18453 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18454 * we only wait for the ACK of the DL_UNBIND_REQ. 18455 */ 18456 mutex_enter(&ill->ill_lock); 18457 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18458 (prim == DL_UNBIND_REQ)) { 18459 ill->ill_dlpi_pending = prim; 18460 } 18461 mutex_exit(&ill->ill_lock); 18462 18463 /* 18464 * Some drivers send M_FLUSH up to IP as part of unbind 18465 * request. When this M_FLUSH is sent back to the driver, 18466 * this can go after we send the detach request if the 18467 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 18468 * to the M_FLUSH in ip_rput and locally generate another 18469 * M_FLUSH for the correctness. This will get freed in 18470 * ip_wput_nondata. 18471 */ 18472 if (prim == DL_UNBIND_REQ) 18473 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 18474 18475 putnext(ill->ill_wq, mp); 18476 } 18477 18478 /* 18479 * Send a DLPI control message to the driver but make sure there 18480 * is only one outstanding message. Uses ill_dlpi_pending to tell 18481 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18482 * when an ACK or a NAK is received to process the next queued message. 18483 * 18484 * We don't protect ill_dlpi_pending with any lock. This is okay as 18485 * every place where its accessed, ip is exclusive while accessing 18486 * ill_dlpi_pending except when this function is called from ill_init() 18487 */ 18488 void 18489 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18490 { 18491 mblk_t **mpp; 18492 18493 ASSERT(IAM_WRITER_ILL(ill)); 18494 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18495 18496 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18497 /* Must queue message. Tail insertion */ 18498 mpp = &ill->ill_dlpi_deferred; 18499 while (*mpp != NULL) 18500 mpp = &((*mpp)->b_next); 18501 18502 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18503 ill->ill_name)); 18504 18505 *mpp = mp; 18506 return; 18507 } 18508 18509 ill_dlpi_dispatch(ill, mp); 18510 } 18511 18512 /* 18513 * Called when an DLPI control message has been acked or nacked to 18514 * send down the next queued message (if any). 18515 */ 18516 void 18517 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18518 { 18519 mblk_t *mp; 18520 18521 ASSERT(IAM_WRITER_ILL(ill)); 18522 18523 ASSERT(prim != DL_PRIM_INVAL); 18524 if (ill->ill_dlpi_pending != prim) { 18525 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 18526 (void) mi_strlog(ill->ill_rq, 1, 18527 SL_CONSOLE|SL_ERROR|SL_TRACE, 18528 "ill_dlpi_done: unsolicited ack for %s from %s\n", 18529 dlpi_prim_str(prim), ill->ill_name); 18530 } else { 18531 (void) mi_strlog(ill->ill_rq, 1, 18532 SL_CONSOLE|SL_ERROR|SL_TRACE, 18533 "ill_dlpi_done: unexpected ack for %s from %s " 18534 "(expecting ack for %s)\n", 18535 dlpi_prim_str(prim), ill->ill_name, 18536 dlpi_prim_str(ill->ill_dlpi_pending)); 18537 } 18538 return; 18539 } 18540 18541 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18542 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18543 18544 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18545 mutex_enter(&ill->ill_lock); 18546 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18547 cv_signal(&ill->ill_cv); 18548 mutex_exit(&ill->ill_lock); 18549 return; 18550 } 18551 18552 ill->ill_dlpi_deferred = mp->b_next; 18553 mp->b_next = NULL; 18554 18555 ill_dlpi_dispatch(ill, mp); 18556 } 18557 18558 void 18559 conn_delete_ire(conn_t *connp, caddr_t arg) 18560 { 18561 ipif_t *ipif = (ipif_t *)arg; 18562 ire_t *ire; 18563 18564 /* 18565 * Look at the cached ires on conns which has pointers to ipifs. 18566 * We just call ire_refrele which clears up the reference 18567 * to ire. Called when a conn closes. Also called from ipif_free 18568 * to cleanup indirect references to the stale ipif via the cached ire. 18569 */ 18570 mutex_enter(&connp->conn_lock); 18571 ire = connp->conn_ire_cache; 18572 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18573 connp->conn_ire_cache = NULL; 18574 mutex_exit(&connp->conn_lock); 18575 IRE_REFRELE_NOTR(ire); 18576 return; 18577 } 18578 mutex_exit(&connp->conn_lock); 18579 18580 } 18581 18582 /* 18583 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18584 * of IREs. Those IREs may have been previously cached in the conn structure. 18585 * This ipcl_walk() walker function releases all references to such IREs based 18586 * on the condemned flag. 18587 */ 18588 /* ARGSUSED */ 18589 void 18590 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18591 { 18592 ire_t *ire; 18593 18594 mutex_enter(&connp->conn_lock); 18595 ire = connp->conn_ire_cache; 18596 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18597 connp->conn_ire_cache = NULL; 18598 mutex_exit(&connp->conn_lock); 18599 IRE_REFRELE_NOTR(ire); 18600 return; 18601 } 18602 mutex_exit(&connp->conn_lock); 18603 } 18604 18605 /* 18606 * Take down a specific interface, but don't lose any information about it. 18607 * Also delete interface from its interface group (ifgrp). 18608 * (Always called as writer.) 18609 * This function goes through the down sequence even if the interface is 18610 * already down. There are 2 reasons. 18611 * a. Currently we permit interface routes that depend on down interfaces 18612 * to be added. This behaviour itself is questionable. However it appears 18613 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18614 * time. We go thru the cleanup in order to remove these routes. 18615 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18616 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18617 * down, but we need to cleanup i.e. do ill_dl_down and 18618 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18619 * 18620 * IP-MT notes: 18621 * 18622 * Model of reference to interfaces. 18623 * 18624 * The following members in ipif_t track references to the ipif. 18625 * int ipif_refcnt; Active reference count 18626 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18627 * The following members in ill_t track references to the ill. 18628 * int ill_refcnt; active refcnt 18629 * uint_t ill_ire_cnt; Number of ires referencing ill 18630 * uint_t ill_nce_cnt; Number of nces referencing ill 18631 * 18632 * Reference to an ipif or ill can be obtained in any of the following ways. 18633 * 18634 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18635 * Pointers to ipif / ill from other data structures viz ire and conn. 18636 * Implicit reference to the ipif / ill by holding a reference to the ire. 18637 * 18638 * The ipif/ill lookup functions return a reference held ipif / ill. 18639 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18640 * This is a purely dynamic reference count associated with threads holding 18641 * references to the ipif / ill. Pointers from other structures do not 18642 * count towards this reference count. 18643 * 18644 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18645 * ipif/ill. This is incremented whenever a new ire is created referencing the 18646 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18647 * actually added to the ire hash table. The count is decremented in 18648 * ire_inactive where the ire is destroyed. 18649 * 18650 * nce's reference ill's thru nce_ill and the count of nce's associated with 18651 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18652 * ndp_add() where the nce is actually added to the table. Similarly it is 18653 * decremented in ndp_inactive where the nce is destroyed. 18654 * 18655 * Flow of ioctls involving interface down/up 18656 * 18657 * The following is the sequence of an attempt to set some critical flags on an 18658 * up interface. 18659 * ip_sioctl_flags 18660 * ipif_down 18661 * wait for ipif to be quiescent 18662 * ipif_down_tail 18663 * ip_sioctl_flags_tail 18664 * 18665 * All set ioctls that involve down/up sequence would have a skeleton similar 18666 * to the above. All the *tail functions are called after the refcounts have 18667 * dropped to the appropriate values. 18668 * 18669 * The mechanism to quiesce an ipif is as follows. 18670 * 18671 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18672 * on the ipif. Callers either pass a flag requesting wait or the lookup 18673 * functions will return NULL. 18674 * 18675 * Delete all ires referencing this ipif 18676 * 18677 * Any thread attempting to do an ipif_refhold on an ipif that has been 18678 * obtained thru a cached pointer will first make sure that 18679 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18680 * increment the refcount. 18681 * 18682 * The above guarantees that the ipif refcount will eventually come down to 18683 * zero and the ipif will quiesce, once all threads that currently hold a 18684 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18685 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18686 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18687 * drop to zero. 18688 * 18689 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18690 * 18691 * Threads trying to lookup an ipif or ill can pass a flag requesting 18692 * wait and restart if the ipif / ill cannot be looked up currently. 18693 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18694 * failure if the ipif is currently undergoing an exclusive operation, and 18695 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18696 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18697 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18698 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18699 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18700 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18701 * until we release the ipsq_lock, even though the the ill/ipif state flags 18702 * can change after we drop the ill_lock. 18703 * 18704 * An attempt to send out a packet using an ipif that is currently 18705 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18706 * operation and restart it later when the exclusive condition on the ipif ends. 18707 * This is an example of not passing the wait flag to the lookup functions. For 18708 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18709 * out a multicast packet on that ipif will fail while the ipif is 18710 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18711 * currently IPIF_CHANGING will also fail. 18712 */ 18713 int 18714 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18715 { 18716 ill_t *ill = ipif->ipif_ill; 18717 phyint_t *phyi; 18718 conn_t *connp; 18719 boolean_t success; 18720 boolean_t ipif_was_up = B_FALSE; 18721 ip_stack_t *ipst = ill->ill_ipst; 18722 18723 ASSERT(IAM_WRITER_IPIF(ipif)); 18724 18725 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18726 18727 if (ipif->ipif_flags & IPIF_UP) { 18728 mutex_enter(&ill->ill_lock); 18729 ipif->ipif_flags &= ~IPIF_UP; 18730 ASSERT(ill->ill_ipif_up_count > 0); 18731 --ill->ill_ipif_up_count; 18732 mutex_exit(&ill->ill_lock); 18733 ipif_was_up = B_TRUE; 18734 /* Update status in SCTP's list */ 18735 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18736 } 18737 18738 /* 18739 * Blow away v6 memberships we established in ipif_multicast_up(); the 18740 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18741 * know not to rejoin when the interface is brought back up). 18742 */ 18743 if (ipif->ipif_isv6) 18744 ipif_multicast_down(ipif); 18745 /* 18746 * Remove from the mapping for __sin6_src_id. We insert only 18747 * when the address is not INADDR_ANY. As IPv4 addresses are 18748 * stored as mapped addresses, we need to check for mapped 18749 * INADDR_ANY also. 18750 */ 18751 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18752 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18753 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18754 int err; 18755 18756 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18757 ipif->ipif_zoneid, ipst); 18758 if (err != 0) { 18759 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18760 } 18761 } 18762 18763 /* 18764 * Before we delete the ill from the group (if any), we need 18765 * to make sure that we delete all the routes dependent on 18766 * this and also any ipifs dependent on this ipif for 18767 * source address. We need to do before we delete from 18768 * the group because 18769 * 18770 * 1) ipif_down_delete_ire de-references ill->ill_group. 18771 * 18772 * 2) ipif_update_other_ipifs needs to walk the whole group 18773 * for re-doing source address selection. Note that 18774 * ipif_select_source[_v6] called from 18775 * ipif_update_other_ipifs[_v6] will not pick this ipif 18776 * because we have already marked down here i.e cleared 18777 * IPIF_UP. 18778 */ 18779 if (ipif->ipif_isv6) { 18780 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18781 ipst); 18782 } else { 18783 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18784 ipst); 18785 } 18786 18787 /* 18788 * Need to add these also to be saved and restored when the 18789 * ipif is brought down and up 18790 */ 18791 mutex_enter(&ipst->ips_ire_mrtun_lock); 18792 if (ipst->ips_ire_mrtun_count != 0) { 18793 mutex_exit(&ipst->ips_ire_mrtun_lock); 18794 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18795 (char *)ipif, NULL, ipst); 18796 } else { 18797 mutex_exit(&ipst->ips_ire_mrtun_lock); 18798 } 18799 18800 mutex_enter(&ipst->ips_ire_srcif_table_lock); 18801 if (ipst->ips_ire_srcif_table_count > 0) { 18802 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18803 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif, 18804 ipst); 18805 } else { 18806 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18807 } 18808 18809 /* 18810 * Cleaning up the conn_ire_cache or conns must be done only after the 18811 * ires have been deleted above. Otherwise a thread could end up 18812 * caching an ire in a conn after we have finished the cleanup of the 18813 * conn. The caching is done after making sure that the ire is not yet 18814 * condemned. Also documented in the block comment above ip_output 18815 */ 18816 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18817 /* Also, delete the ires cached in SCTP */ 18818 sctp_ire_cache_flush(ipif); 18819 18820 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18821 nattymod_clean_ipif(ipif); 18822 18823 /* 18824 * Update any other ipifs which have used "our" local address as 18825 * a source address. This entails removing and recreating IRE_INTERFACE 18826 * entries for such ipifs. 18827 */ 18828 if (ipif->ipif_isv6) 18829 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18830 else 18831 ipif_update_other_ipifs(ipif, ill->ill_group); 18832 18833 if (ipif_was_up) { 18834 /* 18835 * Check whether it is last ipif to leave this group. 18836 * If this is the last ipif to leave, we should remove 18837 * this ill from the group as ipif_select_source will not 18838 * be able to find any useful ipifs if this ill is selected 18839 * for load balancing. 18840 * 18841 * For nameless groups, we should call ifgrp_delete if this 18842 * belongs to some group. As this ipif is going down, we may 18843 * need to reconstruct groups. 18844 */ 18845 phyi = ill->ill_phyint; 18846 /* 18847 * If the phyint_groupname_len is 0, it may or may not 18848 * be in the nameless group. If the phyint_groupname_len is 18849 * not 0, then this ill should be part of some group. 18850 * As we always insert this ill in the group if 18851 * phyint_groupname_len is not zero when the first ipif 18852 * comes up (in ipif_up_done), it should be in a group 18853 * when the namelen is not 0. 18854 * 18855 * NOTE : When we delete the ill from the group,it will 18856 * blow away all the IRE_CACHES pointing either at this ipif or 18857 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18858 * should be pointing at this ill. 18859 */ 18860 ASSERT(phyi->phyint_groupname_len == 0 || 18861 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18862 18863 if (phyi->phyint_groupname_len != 0) { 18864 if (ill->ill_ipif_up_count == 0) 18865 illgrp_delete(ill); 18866 } 18867 18868 /* 18869 * If we have deleted some of the broadcast ires associated 18870 * with this ipif, we need to re-nominate somebody else if 18871 * the ires that we deleted were the nominated ones. 18872 */ 18873 if (ill->ill_group != NULL && !ill->ill_isv6) 18874 ipif_renominate_bcast(ipif); 18875 } 18876 18877 /* 18878 * neighbor-discovery or arp entries for this interface. 18879 */ 18880 ipif_ndp_down(ipif); 18881 18882 /* 18883 * If mp is NULL the caller will wait for the appropriate refcnt. 18884 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18885 * and ill_delete -> ipif_free -> ipif_down 18886 */ 18887 if (mp == NULL) { 18888 ASSERT(q == NULL); 18889 return (0); 18890 } 18891 18892 if (CONN_Q(q)) { 18893 connp = Q_TO_CONN(q); 18894 mutex_enter(&connp->conn_lock); 18895 } else { 18896 connp = NULL; 18897 } 18898 mutex_enter(&ill->ill_lock); 18899 /* 18900 * Are there any ire's pointing to this ipif that are still active ? 18901 * If this is the last ipif going down, are there any ire's pointing 18902 * to this ill that are still active ? 18903 */ 18904 if (ipif_is_quiescent(ipif)) { 18905 mutex_exit(&ill->ill_lock); 18906 if (connp != NULL) 18907 mutex_exit(&connp->conn_lock); 18908 return (0); 18909 } 18910 18911 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18912 ill->ill_name, (void *)ill)); 18913 /* 18914 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18915 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18916 * which in turn is called by the last refrele on the ipif/ill/ire. 18917 */ 18918 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18919 if (!success) { 18920 /* The conn is closing. So just return */ 18921 ASSERT(connp != NULL); 18922 mutex_exit(&ill->ill_lock); 18923 mutex_exit(&connp->conn_lock); 18924 return (EINTR); 18925 } 18926 18927 mutex_exit(&ill->ill_lock); 18928 if (connp != NULL) 18929 mutex_exit(&connp->conn_lock); 18930 return (EINPROGRESS); 18931 } 18932 18933 void 18934 ipif_down_tail(ipif_t *ipif) 18935 { 18936 ill_t *ill = ipif->ipif_ill; 18937 18938 /* 18939 * Skip any loopback interface (null wq). 18940 * If this is the last logical interface on the ill 18941 * have ill_dl_down tell the driver we are gone (unbind) 18942 * Note that lun 0 can ipif_down even though 18943 * there are other logical units that are up. 18944 * This occurs e.g. when we change a "significant" IFF_ flag. 18945 */ 18946 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18947 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18948 ill->ill_dl_up) { 18949 ill_dl_down(ill); 18950 } 18951 ill->ill_logical_down = 0; 18952 18953 /* 18954 * Have to be after removing the routes in ipif_down_delete_ire. 18955 */ 18956 if (ipif->ipif_isv6) { 18957 if (ill->ill_flags & ILLF_XRESOLV) 18958 ipif_arp_down(ipif); 18959 } else { 18960 ipif_arp_down(ipif); 18961 } 18962 18963 ip_rts_ifmsg(ipif); 18964 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18965 } 18966 18967 /* 18968 * Bring interface logically down without bringing the physical interface 18969 * down e.g. when the netmask is changed. This avoids long lasting link 18970 * negotiations between an ethernet interface and a certain switches. 18971 */ 18972 static int 18973 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18974 { 18975 /* 18976 * The ill_logical_down flag is a transient flag. It is set here 18977 * and is cleared once the down has completed in ipif_down_tail. 18978 * This flag does not indicate whether the ill stream is in the 18979 * DL_BOUND state with the driver. Instead this flag is used by 18980 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18981 * the driver. The state of the ill stream i.e. whether it is 18982 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18983 */ 18984 ipif->ipif_ill->ill_logical_down = 1; 18985 return (ipif_down(ipif, q, mp)); 18986 } 18987 18988 /* 18989 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18990 * If the usesrc client ILL is already part of a usesrc group or not, 18991 * in either case a ire_stq with the matching usesrc client ILL will 18992 * locate the IRE's that need to be deleted. We want IREs to be created 18993 * with the new source address. 18994 */ 18995 static void 18996 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18997 { 18998 ill_t *ucill = (ill_t *)ill_arg; 18999 19000 ASSERT(IAM_WRITER_ILL(ucill)); 19001 19002 if (ire->ire_stq == NULL) 19003 return; 19004 19005 if ((ire->ire_type == IRE_CACHE) && 19006 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 19007 ire_delete(ire); 19008 } 19009 19010 /* 19011 * ire_walk routine to delete every IRE dependent on the interface 19012 * address that is going down. (Always called as writer.) 19013 * Works for both v4 and v6. 19014 * In addition for checking for ire_ipif matches it also checks for 19015 * IRE_CACHE entries which have the same source address as the 19016 * disappearing ipif since ipif_select_source might have picked 19017 * that source. Note that ipif_down/ipif_update_other_ipifs takes 19018 * care of any IRE_INTERFACE with the disappearing source address. 19019 */ 19020 static void 19021 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 19022 { 19023 ipif_t *ipif = (ipif_t *)ipif_arg; 19024 ill_t *ire_ill; 19025 ill_t *ipif_ill; 19026 19027 ASSERT(IAM_WRITER_IPIF(ipif)); 19028 if (ire->ire_ipif == NULL) 19029 return; 19030 19031 /* 19032 * For IPv4, we derive source addresses for an IRE from ipif's 19033 * belonging to the same IPMP group as the IRE's outgoing 19034 * interface. If an IRE's outgoing interface isn't in the 19035 * same IPMP group as a particular ipif, then that ipif 19036 * couldn't have been used as a source address for this IRE. 19037 * 19038 * For IPv6, source addresses are only restricted to the IPMP group 19039 * if the IRE is for a link-local address or a multicast address. 19040 * Otherwise, source addresses for an IRE can be chosen from 19041 * interfaces other than the the outgoing interface for that IRE. 19042 * 19043 * For source address selection details, see ipif_select_source() 19044 * and ipif_select_source_v6(). 19045 */ 19046 if (ire->ire_ipversion == IPV4_VERSION || 19047 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 19048 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 19049 ire_ill = ire->ire_ipif->ipif_ill; 19050 ipif_ill = ipif->ipif_ill; 19051 19052 if (ire_ill->ill_group != ipif_ill->ill_group) { 19053 return; 19054 } 19055 } 19056 19057 19058 if (ire->ire_ipif != ipif) { 19059 /* 19060 * Look for a matching source address. 19061 */ 19062 if (ire->ire_type != IRE_CACHE) 19063 return; 19064 if (ipif->ipif_flags & IPIF_NOLOCAL) 19065 return; 19066 19067 if (ire->ire_ipversion == IPV4_VERSION) { 19068 if (ire->ire_src_addr != ipif->ipif_src_addr) 19069 return; 19070 } else { 19071 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 19072 &ipif->ipif_v6lcl_addr)) 19073 return; 19074 } 19075 ire_delete(ire); 19076 return; 19077 } 19078 /* 19079 * ire_delete() will do an ire_flush_cache which will delete 19080 * all ire_ipif matches 19081 */ 19082 ire_delete(ire); 19083 } 19084 19085 /* 19086 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 19087 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 19088 * 2) when an interface is brought up or down (on that ill). 19089 * This ensures that the IRE_CACHE entries don't retain stale source 19090 * address selection results. 19091 */ 19092 void 19093 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 19094 { 19095 ill_t *ill = (ill_t *)ill_arg; 19096 ill_t *ipif_ill; 19097 19098 ASSERT(IAM_WRITER_ILL(ill)); 19099 /* 19100 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19101 * Hence this should be IRE_CACHE. 19102 */ 19103 ASSERT(ire->ire_type == IRE_CACHE); 19104 19105 /* 19106 * We are called for IRE_CACHES whose ire_ipif matches ill. 19107 * We are only interested in IRE_CACHES that has borrowed 19108 * the source address from ill_arg e.g. ipif_up_done[_v6] 19109 * for which we need to look at ire_ipif->ipif_ill match 19110 * with ill. 19111 */ 19112 ASSERT(ire->ire_ipif != NULL); 19113 ipif_ill = ire->ire_ipif->ipif_ill; 19114 if (ipif_ill == ill || (ill->ill_group != NULL && 19115 ipif_ill->ill_group == ill->ill_group)) { 19116 ire_delete(ire); 19117 } 19118 } 19119 19120 /* 19121 * Delete all the ire whose stq references ill_arg. 19122 */ 19123 static void 19124 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19125 { 19126 ill_t *ill = (ill_t *)ill_arg; 19127 ill_t *ire_ill; 19128 19129 ASSERT(IAM_WRITER_ILL(ill)); 19130 /* 19131 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19132 * Hence this should be IRE_CACHE. 19133 */ 19134 ASSERT(ire->ire_type == IRE_CACHE); 19135 19136 /* 19137 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19138 * matches ill. We are only interested in IRE_CACHES that 19139 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19140 * filtering here. 19141 */ 19142 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19143 19144 if (ire_ill == ill) 19145 ire_delete(ire); 19146 } 19147 19148 /* 19149 * This is called when an ill leaves the group. We want to delete 19150 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19151 * pointing at ill. 19152 */ 19153 static void 19154 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19155 { 19156 ill_t *ill = (ill_t *)ill_arg; 19157 19158 ASSERT(IAM_WRITER_ILL(ill)); 19159 ASSERT(ill->ill_group == NULL); 19160 /* 19161 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19162 * Hence this should be IRE_CACHE. 19163 */ 19164 ASSERT(ire->ire_type == IRE_CACHE); 19165 /* 19166 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19167 * matches ill. We are interested in both. 19168 */ 19169 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19170 (ire->ire_ipif->ipif_ill == ill)); 19171 19172 ire_delete(ire); 19173 } 19174 19175 /* 19176 * Initiate deallocate of an IPIF. Always called as writer. Called by 19177 * ill_delete or ip_sioctl_removeif. 19178 */ 19179 static void 19180 ipif_free(ipif_t *ipif) 19181 { 19182 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19183 19184 ASSERT(IAM_WRITER_IPIF(ipif)); 19185 19186 if (ipif->ipif_recovery_id != 0) 19187 (void) untimeout(ipif->ipif_recovery_id); 19188 ipif->ipif_recovery_id = 0; 19189 19190 /* Remove conn references */ 19191 reset_conn_ipif(ipif); 19192 19193 /* 19194 * Make sure we have valid net and subnet broadcast ire's for the 19195 * other ipif's which share them with this ipif. 19196 */ 19197 if (!ipif->ipif_isv6) 19198 ipif_check_bcast_ires(ipif); 19199 19200 /* 19201 * Take down the interface. We can be called either from ill_delete 19202 * or from ip_sioctl_removeif. 19203 */ 19204 (void) ipif_down(ipif, NULL, NULL); 19205 19206 /* 19207 * Now that the interface is down, there's no chance it can still 19208 * become a duplicate. Cancel any timer that may have been set while 19209 * tearing down. 19210 */ 19211 if (ipif->ipif_recovery_id != 0) 19212 (void) untimeout(ipif->ipif_recovery_id); 19213 ipif->ipif_recovery_id = 0; 19214 19215 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19216 /* Remove pointers to this ill in the multicast routing tables */ 19217 reset_mrt_vif_ipif(ipif); 19218 rw_exit(&ipst->ips_ill_g_lock); 19219 } 19220 19221 /* 19222 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19223 * also ill_move(). 19224 */ 19225 static void 19226 ipif_free_tail(ipif_t *ipif) 19227 { 19228 mblk_t *mp; 19229 ipif_t **ipifp; 19230 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19231 19232 /* 19233 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19234 */ 19235 mutex_enter(&ipif->ipif_saved_ire_lock); 19236 mp = ipif->ipif_saved_ire_mp; 19237 ipif->ipif_saved_ire_mp = NULL; 19238 mutex_exit(&ipif->ipif_saved_ire_lock); 19239 freemsg(mp); 19240 19241 /* 19242 * Need to hold both ill_g_lock and ill_lock while 19243 * inserting or removing an ipif from the linked list 19244 * of ipifs hanging off the ill. 19245 */ 19246 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19247 /* 19248 * Remove all multicast memberships on the interface now. 19249 * This removes IPv4 multicast memberships joined within 19250 * the kernel as ipif_down does not do ipif_multicast_down 19251 * for IPv4. IPv6 is not handled here as the multicast memberships 19252 * are based on ill and not on ipif. 19253 */ 19254 ilm_free(ipif); 19255 19256 /* 19257 * Since we held the ill_g_lock while doing the ilm_free above, 19258 * we can assert the ilms were really deleted and not just marked 19259 * ILM_DELETED. 19260 */ 19261 ASSERT(ilm_walk_ipif(ipif) == 0); 19262 19263 19264 IPIF_TRACE_CLEANUP(ipif); 19265 19266 /* Ask SCTP to take it out of it list */ 19267 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19268 19269 mutex_enter(&ipif->ipif_ill->ill_lock); 19270 /* Get it out of the ILL interface list. */ 19271 ipifp = &ipif->ipif_ill->ill_ipif; 19272 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 19273 if (*ipifp == ipif) { 19274 *ipifp = ipif->ipif_next; 19275 break; 19276 } 19277 } 19278 19279 mutex_exit(&ipif->ipif_ill->ill_lock); 19280 rw_exit(&ipst->ips_ill_g_lock); 19281 19282 mutex_destroy(&ipif->ipif_saved_ire_lock); 19283 19284 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19285 ASSERT(ipif->ipif_recovery_id == 0); 19286 19287 /* Free the memory. */ 19288 mi_free((char *)ipif); 19289 } 19290 19291 /* 19292 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19293 * "ill_name" otherwise. 19294 */ 19295 char * 19296 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19297 { 19298 char lbuf[32]; 19299 char *name; 19300 size_t name_len; 19301 19302 buf[0] = '\0'; 19303 if (!ipif) 19304 return (buf); 19305 name = ipif->ipif_ill->ill_name; 19306 name_len = ipif->ipif_ill->ill_name_length; 19307 if (ipif->ipif_id != 0) { 19308 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19309 ipif->ipif_id); 19310 name = lbuf; 19311 name_len = mi_strlen(name) + 1; 19312 } 19313 len -= 1; 19314 buf[len] = '\0'; 19315 len = MIN(len, name_len); 19316 bcopy(name, buf, len); 19317 return (buf); 19318 } 19319 19320 /* 19321 * Find an IPIF based on the name passed in. Names can be of the 19322 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19323 * The <phys> string can have forms like <dev><#> (e.g., le0), 19324 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19325 * When there is no colon, the implied unit id is zero. <phys> must 19326 * correspond to the name of an ILL. (May be called as writer.) 19327 */ 19328 static ipif_t * 19329 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19330 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19331 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19332 { 19333 char *cp; 19334 char *endp; 19335 long id; 19336 ill_t *ill; 19337 ipif_t *ipif; 19338 uint_t ire_type; 19339 boolean_t did_alloc = B_FALSE; 19340 ipsq_t *ipsq; 19341 19342 if (error != NULL) 19343 *error = 0; 19344 19345 /* 19346 * If the caller wants to us to create the ipif, make sure we have a 19347 * valid zoneid 19348 */ 19349 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19350 19351 if (namelen == 0) { 19352 if (error != NULL) 19353 *error = ENXIO; 19354 return (NULL); 19355 } 19356 19357 *exists = B_FALSE; 19358 /* Look for a colon in the name. */ 19359 endp = &name[namelen]; 19360 for (cp = endp; --cp > name; ) { 19361 if (*cp == IPIF_SEPARATOR_CHAR) 19362 break; 19363 } 19364 19365 if (*cp == IPIF_SEPARATOR_CHAR) { 19366 /* 19367 * Reject any non-decimal aliases for logical 19368 * interfaces. Aliases with leading zeroes 19369 * are also rejected as they introduce ambiguity 19370 * in the naming of the interfaces. 19371 * In order to confirm with existing semantics, 19372 * and to not break any programs/script relying 19373 * on that behaviour, if<0>:0 is considered to be 19374 * a valid interface. 19375 * 19376 * If alias has two or more digits and the first 19377 * is zero, fail. 19378 */ 19379 if (&cp[2] < endp && cp[1] == '0') 19380 return (NULL); 19381 } 19382 19383 if (cp <= name) { 19384 cp = endp; 19385 } else { 19386 *cp = '\0'; 19387 } 19388 19389 /* 19390 * Look up the ILL, based on the portion of the name 19391 * before the slash. ill_lookup_on_name returns a held ill. 19392 * Temporary to check whether ill exists already. If so 19393 * ill_lookup_on_name will clear it. 19394 */ 19395 ill = ill_lookup_on_name(name, do_alloc, isv6, 19396 q, mp, func, error, &did_alloc, ipst); 19397 if (cp != endp) 19398 *cp = IPIF_SEPARATOR_CHAR; 19399 if (ill == NULL) 19400 return (NULL); 19401 19402 /* Establish the unit number in the name. */ 19403 id = 0; 19404 if (cp < endp && *endp == '\0') { 19405 /* If there was a colon, the unit number follows. */ 19406 cp++; 19407 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19408 ill_refrele(ill); 19409 if (error != NULL) 19410 *error = ENXIO; 19411 return (NULL); 19412 } 19413 } 19414 19415 GRAB_CONN_LOCK(q); 19416 mutex_enter(&ill->ill_lock); 19417 /* Now see if there is an IPIF with this unit number. */ 19418 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19419 if (ipif->ipif_id == id) { 19420 if (zoneid != ALL_ZONES && 19421 zoneid != ipif->ipif_zoneid && 19422 ipif->ipif_zoneid != ALL_ZONES) { 19423 mutex_exit(&ill->ill_lock); 19424 RELEASE_CONN_LOCK(q); 19425 ill_refrele(ill); 19426 if (error != NULL) 19427 *error = ENXIO; 19428 return (NULL); 19429 } 19430 /* 19431 * The block comment at the start of ipif_down 19432 * explains the use of the macros used below 19433 */ 19434 if (IPIF_CAN_LOOKUP(ipif)) { 19435 ipif_refhold_locked(ipif); 19436 mutex_exit(&ill->ill_lock); 19437 if (!did_alloc) 19438 *exists = B_TRUE; 19439 /* 19440 * Drop locks before calling ill_refrele 19441 * since it can potentially call into 19442 * ipif_ill_refrele_tail which can end up 19443 * in trying to acquire any lock. 19444 */ 19445 RELEASE_CONN_LOCK(q); 19446 ill_refrele(ill); 19447 return (ipif); 19448 } else if (IPIF_CAN_WAIT(ipif, q)) { 19449 ipsq = ill->ill_phyint->phyint_ipsq; 19450 mutex_enter(&ipsq->ipsq_lock); 19451 mutex_exit(&ill->ill_lock); 19452 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19453 mutex_exit(&ipsq->ipsq_lock); 19454 RELEASE_CONN_LOCK(q); 19455 ill_refrele(ill); 19456 *error = EINPROGRESS; 19457 return (NULL); 19458 } 19459 } 19460 } 19461 RELEASE_CONN_LOCK(q); 19462 19463 if (!do_alloc) { 19464 mutex_exit(&ill->ill_lock); 19465 ill_refrele(ill); 19466 if (error != NULL) 19467 *error = ENXIO; 19468 return (NULL); 19469 } 19470 19471 /* 19472 * If none found, atomically allocate and return a new one. 19473 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19474 * to support "receive only" use of lo0:1 etc. as is still done 19475 * below as an initial guess. 19476 * However, this is now likely to be overriden later in ipif_up_done() 19477 * when we know for sure what address has been configured on the 19478 * interface, since we might have more than one loopback interface 19479 * with a loopback address, e.g. in the case of zones, and all the 19480 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19481 */ 19482 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19483 ire_type = IRE_LOOPBACK; 19484 else 19485 ire_type = IRE_LOCAL; 19486 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19487 if (ipif != NULL) 19488 ipif_refhold_locked(ipif); 19489 else if (error != NULL) 19490 *error = ENOMEM; 19491 mutex_exit(&ill->ill_lock); 19492 ill_refrele(ill); 19493 return (ipif); 19494 } 19495 19496 /* 19497 * This routine is called whenever a new address comes up on an ipif. If 19498 * we are configured to respond to address mask requests, then we are supposed 19499 * to broadcast an address mask reply at this time. This routine is also 19500 * called if we are already up, but a netmask change is made. This is legal 19501 * but might not make the system manager very popular. (May be called 19502 * as writer.) 19503 */ 19504 void 19505 ipif_mask_reply(ipif_t *ipif) 19506 { 19507 icmph_t *icmph; 19508 ipha_t *ipha; 19509 mblk_t *mp; 19510 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19511 19512 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19513 19514 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19515 return; 19516 19517 /* ICMP mask reply is IPv4 only */ 19518 ASSERT(!ipif->ipif_isv6); 19519 /* ICMP mask reply is not for a loopback interface */ 19520 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19521 19522 mp = allocb(REPLY_LEN, BPRI_HI); 19523 if (mp == NULL) 19524 return; 19525 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19526 19527 ipha = (ipha_t *)mp->b_rptr; 19528 bzero(ipha, REPLY_LEN); 19529 *ipha = icmp_ipha; 19530 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19531 ipha->ipha_src = ipif->ipif_src_addr; 19532 ipha->ipha_dst = ipif->ipif_brd_addr; 19533 ipha->ipha_length = htons(REPLY_LEN); 19534 ipha->ipha_ident = 0; 19535 19536 icmph = (icmph_t *)&ipha[1]; 19537 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19538 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19539 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19540 if (icmph->icmph_checksum == 0) 19541 icmph->icmph_checksum = 0xffff; 19542 19543 put(ipif->ipif_wq, mp); 19544 19545 #undef REPLY_LEN 19546 } 19547 19548 /* 19549 * When the mtu in the ipif changes, we call this routine through ire_walk 19550 * to update all the relevant IREs. 19551 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19552 */ 19553 static void 19554 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19555 { 19556 ipif_t *ipif = (ipif_t *)ipif_arg; 19557 19558 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19559 return; 19560 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19561 } 19562 19563 /* 19564 * When the mtu in the ill changes, we call this routine through ire_walk 19565 * to update all the relevant IREs. 19566 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19567 */ 19568 void 19569 ill_mtu_change(ire_t *ire, char *ill_arg) 19570 { 19571 ill_t *ill = (ill_t *)ill_arg; 19572 19573 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19574 return; 19575 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19576 } 19577 19578 /* 19579 * Join the ipif specific multicast groups. 19580 * Must be called after a mapping has been set up in the resolver. (Always 19581 * called as writer.) 19582 */ 19583 void 19584 ipif_multicast_up(ipif_t *ipif) 19585 { 19586 int err, index; 19587 ill_t *ill; 19588 19589 ASSERT(IAM_WRITER_IPIF(ipif)); 19590 19591 ill = ipif->ipif_ill; 19592 index = ill->ill_phyint->phyint_ifindex; 19593 19594 ip1dbg(("ipif_multicast_up\n")); 19595 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19596 return; 19597 19598 if (ipif->ipif_isv6) { 19599 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19600 return; 19601 19602 /* Join the all hosts multicast address */ 19603 ip1dbg(("ipif_multicast_up - addmulti\n")); 19604 /* 19605 * Passing B_TRUE means we have to join the multicast 19606 * membership on this interface even though this is 19607 * FAILED. If we join on a different one in the group, 19608 * we will not be able to delete the membership later 19609 * as we currently don't track where we join when we 19610 * join within the kernel unlike applications where 19611 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19612 * for more on this. 19613 */ 19614 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19615 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19616 if (err != 0) { 19617 ip0dbg(("ipif_multicast_up: " 19618 "all_hosts_mcast failed %d\n", 19619 err)); 19620 return; 19621 } 19622 /* 19623 * Enable multicast for the solicited node multicast address 19624 */ 19625 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19626 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19627 19628 ipv6_multi.s6_addr32[3] |= 19629 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19630 19631 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19632 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19633 NULL); 19634 if (err != 0) { 19635 ip0dbg(("ipif_multicast_up: solicited MC" 19636 " failed %d\n", err)); 19637 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19638 ill, ill->ill_phyint->phyint_ifindex, 19639 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19640 return; 19641 } 19642 } 19643 } else { 19644 if (ipif->ipif_lcl_addr == INADDR_ANY) 19645 return; 19646 19647 /* Join the all hosts multicast address */ 19648 ip1dbg(("ipif_multicast_up - addmulti\n")); 19649 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19650 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19651 if (err) { 19652 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19653 return; 19654 } 19655 } 19656 ipif->ipif_multicast_up = 1; 19657 } 19658 19659 /* 19660 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19661 * any explicit memberships are blown away in ill_leave_multicast() when the 19662 * ill is brought down. 19663 */ 19664 static void 19665 ipif_multicast_down(ipif_t *ipif) 19666 { 19667 int err; 19668 19669 ASSERT(IAM_WRITER_IPIF(ipif)); 19670 19671 ip1dbg(("ipif_multicast_down\n")); 19672 if (!ipif->ipif_multicast_up) 19673 return; 19674 19675 ASSERT(ipif->ipif_isv6); 19676 19677 ip1dbg(("ipif_multicast_down - delmulti\n")); 19678 19679 /* 19680 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19681 * we should look for ilms on this ill rather than the ones that have 19682 * been failed over here. They are here temporarily. As 19683 * ipif_multicast_up has joined on this ill, we should delete only 19684 * from this ill. 19685 */ 19686 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19687 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19688 B_TRUE, B_TRUE); 19689 if (err != 0) { 19690 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19691 err)); 19692 } 19693 /* 19694 * Disable multicast for the solicited node multicast address 19695 */ 19696 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19697 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19698 19699 ipv6_multi.s6_addr32[3] |= 19700 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19701 19702 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19703 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19704 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19705 19706 if (err != 0) { 19707 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19708 err)); 19709 } 19710 } 19711 19712 ipif->ipif_multicast_up = 0; 19713 } 19714 19715 /* 19716 * Used when an interface comes up to recreate any extra routes on this 19717 * interface. 19718 */ 19719 static ire_t ** 19720 ipif_recover_ire(ipif_t *ipif) 19721 { 19722 mblk_t *mp; 19723 ire_t **ipif_saved_irep; 19724 ire_t **irep; 19725 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19726 19727 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19728 ipif->ipif_id)); 19729 19730 mutex_enter(&ipif->ipif_saved_ire_lock); 19731 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19732 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19733 if (ipif_saved_irep == NULL) { 19734 mutex_exit(&ipif->ipif_saved_ire_lock); 19735 return (NULL); 19736 } 19737 19738 irep = ipif_saved_irep; 19739 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19740 ire_t *ire; 19741 queue_t *rfq; 19742 queue_t *stq; 19743 ifrt_t *ifrt; 19744 uchar_t *src_addr; 19745 uchar_t *gateway_addr; 19746 mblk_t *resolver_mp; 19747 ushort_t type; 19748 19749 /* 19750 * When the ire was initially created and then added in 19751 * ip_rt_add(), it was created either using ipif->ipif_net_type 19752 * in the case of a traditional interface route, or as one of 19753 * the IRE_OFFSUBNET types (with the exception of 19754 * IRE_HOST types ire which is created by icmp_redirect() and 19755 * which we don't need to save or recover). In the case where 19756 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19757 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19758 * to satisfy software like GateD and Sun Cluster which creates 19759 * routes using the the loopback interface's address as a 19760 * gateway. 19761 * 19762 * As ifrt->ifrt_type reflects the already updated ire_type and 19763 * since ire_create() expects that IRE_IF_NORESOLVER will have 19764 * a valid nce_res_mp field (which doesn't make sense for a 19765 * IRE_LOOPBACK), ire_create() will be called in the same way 19766 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19767 * the route looks like a traditional interface route (where 19768 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19769 * the saved ifrt->ifrt_type. This means that in the case where 19770 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19771 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19772 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19773 */ 19774 ifrt = (ifrt_t *)mp->b_rptr; 19775 if (ifrt->ifrt_type & IRE_INTERFACE) { 19776 rfq = NULL; 19777 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19778 ? ipif->ipif_rq : ipif->ipif_wq; 19779 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19780 ? (uint8_t *)&ifrt->ifrt_src_addr 19781 : (uint8_t *)&ipif->ipif_src_addr; 19782 gateway_addr = NULL; 19783 resolver_mp = ipif->ipif_resolver_mp; 19784 type = ipif->ipif_net_type; 19785 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19786 /* Recover multiroute broadcast IRE. */ 19787 rfq = ipif->ipif_rq; 19788 stq = ipif->ipif_wq; 19789 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19790 ? (uint8_t *)&ifrt->ifrt_src_addr 19791 : (uint8_t *)&ipif->ipif_src_addr; 19792 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19793 resolver_mp = ipif->ipif_bcast_mp; 19794 type = ifrt->ifrt_type; 19795 } else { 19796 rfq = NULL; 19797 stq = NULL; 19798 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19799 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19800 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19801 resolver_mp = NULL; 19802 type = ifrt->ifrt_type; 19803 } 19804 19805 /* 19806 * Create a copy of the IRE with the saved address and netmask. 19807 */ 19808 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19809 "0x%x/0x%x\n", 19810 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19811 ntohl(ifrt->ifrt_addr), 19812 ntohl(ifrt->ifrt_mask))); 19813 ire = ire_create( 19814 (uint8_t *)&ifrt->ifrt_addr, 19815 (uint8_t *)&ifrt->ifrt_mask, 19816 src_addr, 19817 gateway_addr, 19818 NULL, 19819 &ifrt->ifrt_max_frag, 19820 NULL, 19821 rfq, 19822 stq, 19823 type, 19824 resolver_mp, 19825 ipif, 19826 NULL, 19827 0, 19828 0, 19829 0, 19830 ifrt->ifrt_flags, 19831 &ifrt->ifrt_iulp_info, 19832 NULL, 19833 NULL, 19834 ipst); 19835 19836 if (ire == NULL) { 19837 mutex_exit(&ipif->ipif_saved_ire_lock); 19838 kmem_free(ipif_saved_irep, 19839 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19840 return (NULL); 19841 } 19842 19843 /* 19844 * Some software (for example, GateD and Sun Cluster) attempts 19845 * to create (what amount to) IRE_PREFIX routes with the 19846 * loopback address as the gateway. This is primarily done to 19847 * set up prefixes with the RTF_REJECT flag set (for example, 19848 * when generating aggregate routes.) 19849 * 19850 * If the IRE type (as defined by ipif->ipif_net_type) is 19851 * IRE_LOOPBACK, then we map the request into a 19852 * IRE_IF_NORESOLVER. 19853 */ 19854 if (ipif->ipif_net_type == IRE_LOOPBACK) 19855 ire->ire_type = IRE_IF_NORESOLVER; 19856 /* 19857 * ire held by ire_add, will be refreled' towards the 19858 * the end of ipif_up_done 19859 */ 19860 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19861 *irep = ire; 19862 irep++; 19863 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19864 } 19865 mutex_exit(&ipif->ipif_saved_ire_lock); 19866 return (ipif_saved_irep); 19867 } 19868 19869 /* 19870 * Used to set the netmask and broadcast address to default values when the 19871 * interface is brought up. (Always called as writer.) 19872 */ 19873 static void 19874 ipif_set_default(ipif_t *ipif) 19875 { 19876 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19877 19878 if (!ipif->ipif_isv6) { 19879 /* 19880 * Interface holds an IPv4 address. Default 19881 * mask is the natural netmask. 19882 */ 19883 if (!ipif->ipif_net_mask) { 19884 ipaddr_t v4mask; 19885 19886 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19887 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19888 } 19889 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19890 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19891 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19892 } else { 19893 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19894 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19895 } 19896 /* 19897 * NOTE: SunOS 4.X does this even if the broadcast address 19898 * has been already set thus we do the same here. 19899 */ 19900 if (ipif->ipif_flags & IPIF_BROADCAST) { 19901 ipaddr_t v4addr; 19902 19903 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19904 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19905 } 19906 } else { 19907 /* 19908 * Interface holds an IPv6-only address. Default 19909 * mask is all-ones. 19910 */ 19911 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19912 ipif->ipif_v6net_mask = ipv6_all_ones; 19913 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19914 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19915 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19916 } else { 19917 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19918 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19919 } 19920 } 19921 } 19922 19923 /* 19924 * Return 0 if this address can be used as local address without causing 19925 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19926 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19927 * Special checks are needed to allow the same IPv6 link-local address 19928 * on different ills. 19929 * TODO: allowing the same site-local address on different ill's. 19930 */ 19931 int 19932 ip_addr_availability_check(ipif_t *new_ipif) 19933 { 19934 in6_addr_t our_v6addr; 19935 ill_t *ill; 19936 ipif_t *ipif; 19937 ill_walk_context_t ctx; 19938 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19939 19940 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19941 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19942 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19943 19944 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19945 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19946 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19947 return (0); 19948 19949 our_v6addr = new_ipif->ipif_v6lcl_addr; 19950 19951 if (new_ipif->ipif_isv6) 19952 ill = ILL_START_WALK_V6(&ctx, ipst); 19953 else 19954 ill = ILL_START_WALK_V4(&ctx, ipst); 19955 19956 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19957 for (ipif = ill->ill_ipif; ipif != NULL; 19958 ipif = ipif->ipif_next) { 19959 if ((ipif == new_ipif) || 19960 !(ipif->ipif_flags & IPIF_UP) || 19961 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19962 continue; 19963 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19964 &our_v6addr)) { 19965 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19966 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19967 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19968 ipif->ipif_flags |= IPIF_UNNUMBERED; 19969 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19970 new_ipif->ipif_ill != ill) 19971 continue; 19972 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19973 new_ipif->ipif_ill != ill) 19974 continue; 19975 else if (new_ipif->ipif_zoneid != 19976 ipif->ipif_zoneid && 19977 ipif->ipif_zoneid != ALL_ZONES && 19978 (ill->ill_phyint->phyint_flags & 19979 PHYI_LOOPBACK)) 19980 continue; 19981 else if (new_ipif->ipif_ill == ill) 19982 return (EADDRINUSE); 19983 else 19984 return (EADDRNOTAVAIL); 19985 } 19986 } 19987 } 19988 19989 return (0); 19990 } 19991 19992 /* 19993 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19994 * IREs for the ipif. 19995 * When the routine returns EINPROGRESS then mp has been consumed and 19996 * the ioctl will be acked from ip_rput_dlpi. 19997 */ 19998 static int 19999 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 20000 { 20001 ill_t *ill = ipif->ipif_ill; 20002 boolean_t isv6 = ipif->ipif_isv6; 20003 int err = 0; 20004 boolean_t success; 20005 20006 ASSERT(IAM_WRITER_IPIF(ipif)); 20007 20008 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 20009 20010 /* Shouldn't get here if it is already up. */ 20011 if (ipif->ipif_flags & IPIF_UP) 20012 return (EALREADY); 20013 20014 /* Skip arp/ndp for any loopback interface. */ 20015 if (ill->ill_wq != NULL) { 20016 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 20017 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 20018 20019 if (!ill->ill_dl_up) { 20020 /* 20021 * ill_dl_up is not yet set. i.e. we are yet to 20022 * DL_BIND with the driver and this is the first 20023 * logical interface on the ill to become "up". 20024 * Tell the driver to get going (via DL_BIND_REQ). 20025 * Note that changing "significant" IFF_ flags 20026 * address/netmask etc cause a down/up dance, but 20027 * does not cause an unbind (DL_UNBIND) with the driver 20028 */ 20029 return (ill_dl_up(ill, ipif, mp, q)); 20030 } 20031 20032 /* 20033 * ipif_resolver_up may end up sending an 20034 * AR_INTERFACE_UP message to ARP, which would, in 20035 * turn send a DLPI message to the driver. ioctls are 20036 * serialized and so we cannot send more than one 20037 * interface up message at a time. If ipif_resolver_up 20038 * does send an interface up message to ARP, we get 20039 * EINPROGRESS and we will complete in ip_arp_done. 20040 */ 20041 20042 ASSERT(connp != NULL || !CONN_Q(q)); 20043 ASSERT(ipsq->ipsq_pending_mp == NULL); 20044 if (connp != NULL) 20045 mutex_enter(&connp->conn_lock); 20046 mutex_enter(&ill->ill_lock); 20047 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20048 mutex_exit(&ill->ill_lock); 20049 if (connp != NULL) 20050 mutex_exit(&connp->conn_lock); 20051 if (!success) 20052 return (EINTR); 20053 20054 /* 20055 * Crank up IPv6 neighbor discovery 20056 * Unlike ARP, this should complete when 20057 * ipif_ndp_up returns. However, for 20058 * ILLF_XRESOLV interfaces we also send a 20059 * AR_INTERFACE_UP to the external resolver. 20060 * That ioctl will complete in ip_rput. 20061 */ 20062 if (isv6) { 20063 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 20064 if (err != 0) { 20065 if (err != EINPROGRESS) 20066 mp = ipsq_pending_mp_get(ipsq, &connp); 20067 return (err); 20068 } 20069 } 20070 /* Now, ARP */ 20071 err = ipif_resolver_up(ipif, Res_act_initial); 20072 if (err == EINPROGRESS) { 20073 /* We will complete it in ip_arp_done */ 20074 return (err); 20075 } 20076 mp = ipsq_pending_mp_get(ipsq, &connp); 20077 ASSERT(mp != NULL); 20078 if (err != 0) 20079 return (err); 20080 } else { 20081 /* 20082 * Interfaces without underlying hardware don't do duplicate 20083 * address detection. 20084 */ 20085 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 20086 ipif->ipif_addr_ready = 1; 20087 } 20088 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 20089 } 20090 20091 /* 20092 * Perform a bind for the physical device. 20093 * When the routine returns EINPROGRESS then mp has been consumed and 20094 * the ioctl will be acked from ip_rput_dlpi. 20095 * Allocate an unbind message and save it until ipif_down. 20096 */ 20097 static int 20098 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 20099 { 20100 mblk_t *areq_mp = NULL; 20101 mblk_t *bind_mp = NULL; 20102 mblk_t *unbind_mp = NULL; 20103 conn_t *connp; 20104 boolean_t success; 20105 20106 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 20107 ASSERT(IAM_WRITER_ILL(ill)); 20108 20109 ASSERT(mp != NULL); 20110 20111 /* Create a resolver cookie for ARP */ 20112 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 20113 areq_t *areq; 20114 uint16_t sap_addr; 20115 20116 areq_mp = ill_arp_alloc(ill, 20117 (uchar_t *)&ip_areq_template, 0); 20118 if (areq_mp == NULL) { 20119 return (ENOMEM); 20120 } 20121 freemsg(ill->ill_resolver_mp); 20122 ill->ill_resolver_mp = areq_mp; 20123 areq = (areq_t *)areq_mp->b_rptr; 20124 sap_addr = ill->ill_sap; 20125 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20126 /* 20127 * Wait till we call ill_pending_mp_add to determine 20128 * the success before we free the ill_resolver_mp and 20129 * attach areq_mp in it's place. 20130 */ 20131 } 20132 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20133 DL_BIND_REQ); 20134 if (bind_mp == NULL) 20135 goto bad; 20136 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20137 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20138 20139 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20140 if (unbind_mp == NULL) 20141 goto bad; 20142 20143 /* 20144 * Record state needed to complete this operation when the 20145 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20146 */ 20147 ASSERT(WR(q)->q_next == NULL); 20148 connp = Q_TO_CONN(q); 20149 20150 mutex_enter(&connp->conn_lock); 20151 mutex_enter(&ipif->ipif_ill->ill_lock); 20152 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20153 mutex_exit(&ipif->ipif_ill->ill_lock); 20154 mutex_exit(&connp->conn_lock); 20155 if (!success) 20156 goto bad; 20157 20158 /* 20159 * Save the unbind message for ill_dl_down(); it will be consumed when 20160 * the interface goes down. 20161 */ 20162 ASSERT(ill->ill_unbind_mp == NULL); 20163 ill->ill_unbind_mp = unbind_mp; 20164 20165 ill_dlpi_send(ill, bind_mp); 20166 /* Send down link-layer capabilities probe if not already done. */ 20167 ill_capability_probe(ill); 20168 20169 /* 20170 * Sysid used to rely on the fact that netboots set domainname 20171 * and the like. Now that miniroot boots aren't strictly netboots 20172 * and miniroot network configuration is driven from userland 20173 * these things still need to be set. This situation can be detected 20174 * by comparing the interface being configured here to the one 20175 * dhcack was set to reference by the boot loader. Once sysid is 20176 * converted to use dhcp_ipc_getinfo() this call can go away. 20177 */ 20178 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20179 (strcmp(ill->ill_name, dhcack) == 0) && 20180 (strlen(srpc_domain) == 0)) { 20181 if (dhcpinit() != 0) 20182 cmn_err(CE_WARN, "no cached dhcp response"); 20183 } 20184 20185 /* 20186 * This operation will complete in ip_rput_dlpi with either 20187 * a DL_BIND_ACK or DL_ERROR_ACK. 20188 */ 20189 return (EINPROGRESS); 20190 bad: 20191 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20192 /* 20193 * We don't have to check for possible removal from illgrp 20194 * as we have not yet inserted in illgrp. For groups 20195 * without names, this ipif is still not UP and hence 20196 * this could not have possibly had any influence in forming 20197 * groups. 20198 */ 20199 20200 freemsg(bind_mp); 20201 freemsg(unbind_mp); 20202 return (ENOMEM); 20203 } 20204 20205 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20206 20207 /* 20208 * DLPI and ARP is up. 20209 * Create all the IREs associated with an interface bring up multicast. 20210 * Set the interface flag and finish other initialization 20211 * that potentially had to be differed to after DL_BIND_ACK. 20212 */ 20213 int 20214 ipif_up_done(ipif_t *ipif) 20215 { 20216 ire_t *ire_array[20]; 20217 ire_t **irep = ire_array; 20218 ire_t **irep1; 20219 ipaddr_t net_mask = 0; 20220 ipaddr_t subnet_mask, route_mask; 20221 ill_t *ill = ipif->ipif_ill; 20222 queue_t *stq; 20223 ipif_t *src_ipif; 20224 ipif_t *tmp_ipif; 20225 boolean_t flush_ire_cache = B_TRUE; 20226 int err = 0; 20227 phyint_t *phyi; 20228 ire_t **ipif_saved_irep = NULL; 20229 int ipif_saved_ire_cnt; 20230 int cnt; 20231 boolean_t src_ipif_held = B_FALSE; 20232 boolean_t ire_added = B_FALSE; 20233 boolean_t loopback = B_FALSE; 20234 ip_stack_t *ipst = ill->ill_ipst; 20235 20236 ip1dbg(("ipif_up_done(%s:%u)\n", 20237 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20238 /* Check if this is a loopback interface */ 20239 if (ipif->ipif_ill->ill_wq == NULL) 20240 loopback = B_TRUE; 20241 20242 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20243 /* 20244 * If all other interfaces for this ill are down or DEPRECATED, 20245 * or otherwise unsuitable for source address selection, remove 20246 * any IRE_CACHE entries for this ill to make sure source 20247 * address selection gets to take this new ipif into account. 20248 * No need to hold ill_lock while traversing the ipif list since 20249 * we are writer 20250 */ 20251 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20252 tmp_ipif = tmp_ipif->ipif_next) { 20253 if (((tmp_ipif->ipif_flags & 20254 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20255 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20256 (tmp_ipif == ipif)) 20257 continue; 20258 /* first useable pre-existing interface */ 20259 flush_ire_cache = B_FALSE; 20260 break; 20261 } 20262 if (flush_ire_cache) 20263 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20264 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20265 20266 /* 20267 * Figure out which way the send-to queue should go. Only 20268 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20269 * should show up here. 20270 */ 20271 switch (ill->ill_net_type) { 20272 case IRE_IF_RESOLVER: 20273 stq = ill->ill_rq; 20274 break; 20275 case IRE_IF_NORESOLVER: 20276 case IRE_LOOPBACK: 20277 stq = ill->ill_wq; 20278 break; 20279 default: 20280 return (EINVAL); 20281 } 20282 20283 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 20284 /* 20285 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20286 * ipif_lookup_on_name(), but in the case of zones we can have 20287 * several loopback addresses on lo0. So all the interfaces with 20288 * loopback addresses need to be marked IRE_LOOPBACK. 20289 */ 20290 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20291 htonl(INADDR_LOOPBACK)) 20292 ipif->ipif_ire_type = IRE_LOOPBACK; 20293 else 20294 ipif->ipif_ire_type = IRE_LOCAL; 20295 } 20296 20297 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20298 /* 20299 * Can't use our source address. Select a different 20300 * source address for the IRE_INTERFACE and IRE_LOCAL 20301 */ 20302 src_ipif = ipif_select_source(ipif->ipif_ill, 20303 ipif->ipif_subnet, ipif->ipif_zoneid); 20304 if (src_ipif == NULL) 20305 src_ipif = ipif; /* Last resort */ 20306 else 20307 src_ipif_held = B_TRUE; 20308 } else { 20309 src_ipif = ipif; 20310 } 20311 20312 /* Create all the IREs associated with this interface */ 20313 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20314 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20315 20316 /* 20317 * If we're on a labeled system then make sure that zone- 20318 * private addresses have proper remote host database entries. 20319 */ 20320 if (is_system_labeled() && 20321 ipif->ipif_ire_type != IRE_LOOPBACK && 20322 !tsol_check_interface_address(ipif)) 20323 return (EINVAL); 20324 20325 /* Register the source address for __sin6_src_id */ 20326 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20327 ipif->ipif_zoneid, ipst); 20328 if (err != 0) { 20329 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20330 return (err); 20331 } 20332 20333 /* If the interface address is set, create the local IRE. */ 20334 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20335 (void *)ipif, 20336 ipif->ipif_ire_type, 20337 ntohl(ipif->ipif_lcl_addr))); 20338 *irep++ = ire_create( 20339 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20340 (uchar_t *)&ip_g_all_ones, /* mask */ 20341 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20342 NULL, /* no gateway */ 20343 NULL, 20344 &ip_loopback_mtuplus, /* max frag size */ 20345 NULL, 20346 ipif->ipif_rq, /* recv-from queue */ 20347 NULL, /* no send-to queue */ 20348 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20349 NULL, 20350 ipif, 20351 NULL, 20352 0, 20353 0, 20354 0, 20355 (ipif->ipif_flags & IPIF_PRIVATE) ? 20356 RTF_PRIVATE : 0, 20357 &ire_uinfo_null, 20358 NULL, 20359 NULL, 20360 ipst); 20361 } else { 20362 ip1dbg(( 20363 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20364 ipif->ipif_ire_type, 20365 ntohl(ipif->ipif_lcl_addr), 20366 (uint_t)ipif->ipif_flags)); 20367 } 20368 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20369 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20370 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20371 } else { 20372 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20373 } 20374 20375 subnet_mask = ipif->ipif_net_mask; 20376 20377 /* 20378 * If mask was not specified, use natural netmask of 20379 * interface address. Also, store this mask back into the 20380 * ipif struct. 20381 */ 20382 if (subnet_mask == 0) { 20383 subnet_mask = net_mask; 20384 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20385 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20386 ipif->ipif_v6subnet); 20387 } 20388 20389 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20390 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20391 ipif->ipif_subnet != INADDR_ANY) { 20392 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20393 20394 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20395 route_mask = IP_HOST_MASK; 20396 } else { 20397 route_mask = subnet_mask; 20398 } 20399 20400 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20401 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20402 (void *)ipif, (void *)ill, 20403 ill->ill_net_type, 20404 ntohl(ipif->ipif_subnet))); 20405 *irep++ = ire_create( 20406 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20407 (uchar_t *)&route_mask, /* mask */ 20408 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20409 NULL, /* no gateway */ 20410 NULL, 20411 &ipif->ipif_mtu, /* max frag */ 20412 NULL, 20413 NULL, /* no recv queue */ 20414 stq, /* send-to queue */ 20415 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20416 ill->ill_resolver_mp, /* xmit header */ 20417 ipif, 20418 NULL, 20419 0, 20420 0, 20421 0, 20422 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20423 &ire_uinfo_null, 20424 NULL, 20425 NULL, 20426 ipst); 20427 } 20428 20429 /* 20430 * If the interface address is set, create the broadcast IREs. 20431 * 20432 * ire_create_bcast checks if the proposed new IRE matches 20433 * any existing IRE's with the same physical interface (ILL). 20434 * This should get rid of duplicates. 20435 * ire_create_bcast also check IPIF_NOXMIT and does not create 20436 * any broadcast ires. 20437 */ 20438 if ((ipif->ipif_subnet != INADDR_ANY) && 20439 (ipif->ipif_flags & IPIF_BROADCAST)) { 20440 ipaddr_t addr; 20441 20442 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 20443 irep = ire_check_and_create_bcast(ipif, 0, irep, 20444 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20445 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 20446 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20447 20448 /* 20449 * For backward compatibility, we need to create net 20450 * broadcast ire's based on the old "IP address class 20451 * system." The reason is that some old machines only 20452 * respond to these class derived net broadcast. 20453 * 20454 * But we should not create these net broadcast ire's if 20455 * the subnet_mask is shorter than the IP address class based 20456 * derived netmask. Otherwise, we may create a net 20457 * broadcast address which is the same as an IP address 20458 * on the subnet. Then TCP will refuse to talk to that 20459 * address. 20460 * 20461 * Nor do we need IRE_BROADCAST ire's for the interface 20462 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 20463 * interface is already created. Creating these broadcast 20464 * ire's will only create confusion as the "addr" is going 20465 * to be same as that of the IP address of the interface. 20466 */ 20467 if (net_mask < subnet_mask) { 20468 addr = net_mask & ipif->ipif_subnet; 20469 irep = ire_check_and_create_bcast(ipif, addr, irep, 20470 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20471 irep = ire_check_and_create_bcast(ipif, 20472 ~net_mask | addr, irep, 20473 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20474 } 20475 20476 if (subnet_mask != 0xFFFFFFFF) { 20477 addr = ipif->ipif_subnet; 20478 irep = ire_check_and_create_bcast(ipif, addr, irep, 20479 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20480 irep = ire_check_and_create_bcast(ipif, 20481 ~subnet_mask|addr, irep, 20482 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20483 } 20484 } 20485 20486 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20487 20488 /* If an earlier ire_create failed, get out now */ 20489 for (irep1 = irep; irep1 > ire_array; ) { 20490 irep1--; 20491 if (*irep1 == NULL) { 20492 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20493 err = ENOMEM; 20494 goto bad; 20495 } 20496 } 20497 20498 /* 20499 * Need to atomically check for ip_addr_availablity_check 20500 * under ip_addr_avail_lock, and if it fails got bad, and remove 20501 * from group also.The ill_g_lock is grabbed as reader 20502 * just to make sure no new ills or new ipifs are being added 20503 * to the system while we are checking the uniqueness of addresses. 20504 */ 20505 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20506 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20507 /* Mark it up, and increment counters. */ 20508 ipif->ipif_flags |= IPIF_UP; 20509 ill->ill_ipif_up_count++; 20510 err = ip_addr_availability_check(ipif); 20511 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20512 rw_exit(&ipst->ips_ill_g_lock); 20513 20514 if (err != 0) { 20515 /* 20516 * Our address may already be up on the same ill. In this case, 20517 * the ARP entry for our ipif replaced the one for the other 20518 * ipif. So we don't want to delete it (otherwise the other ipif 20519 * would be unable to send packets). 20520 * ip_addr_availability_check() identifies this case for us and 20521 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20522 * which is the expected error code. 20523 */ 20524 if (err == EADDRINUSE) { 20525 freemsg(ipif->ipif_arp_del_mp); 20526 ipif->ipif_arp_del_mp = NULL; 20527 err = EADDRNOTAVAIL; 20528 } 20529 ill->ill_ipif_up_count--; 20530 ipif->ipif_flags &= ~IPIF_UP; 20531 goto bad; 20532 } 20533 20534 /* 20535 * Add in all newly created IREs. ire_create_bcast() has 20536 * already checked for duplicates of the IRE_BROADCAST type. 20537 * We want to add before we call ifgrp_insert which wants 20538 * to know whether IRE_IF_RESOLVER exists or not. 20539 * 20540 * NOTE : We refrele the ire though we may branch to "bad" 20541 * later on where we do ire_delete. This is okay 20542 * because nobody can delete it as we are running 20543 * exclusively. 20544 */ 20545 for (irep1 = irep; irep1 > ire_array; ) { 20546 irep1--; 20547 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20548 /* 20549 * refheld by ire_add. refele towards the end of the func 20550 */ 20551 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20552 } 20553 ire_added = B_TRUE; 20554 /* 20555 * Form groups if possible. 20556 * 20557 * If we are supposed to be in a ill_group with a name, insert it 20558 * now as we know that at least one ipif is UP. Otherwise form 20559 * nameless groups. 20560 * 20561 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20562 * this ipif into the appropriate interface group, or create a 20563 * new one. If this is already in a nameless group, we try to form 20564 * a bigger group looking at other ills potentially sharing this 20565 * ipif's prefix. 20566 */ 20567 phyi = ill->ill_phyint; 20568 if (phyi->phyint_groupname_len != 0) { 20569 ASSERT(phyi->phyint_groupname != NULL); 20570 if (ill->ill_ipif_up_count == 1) { 20571 ASSERT(ill->ill_group == NULL); 20572 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20573 phyi->phyint_groupname, NULL, B_TRUE); 20574 if (err != 0) { 20575 ip1dbg(("ipif_up_done: illgrp allocation " 20576 "failed, error %d\n", err)); 20577 goto bad; 20578 } 20579 } 20580 ASSERT(ill->ill_group != NULL); 20581 } 20582 20583 /* 20584 * When this is part of group, we need to make sure that 20585 * any broadcast ires created because of this ipif coming 20586 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20587 * so that we don't receive duplicate broadcast packets. 20588 */ 20589 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20590 ipif_renominate_bcast(ipif); 20591 20592 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20593 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20594 ipif_saved_irep = ipif_recover_ire(ipif); 20595 20596 if (!loopback) { 20597 /* 20598 * If the broadcast address has been set, make sure it makes 20599 * sense based on the interface address. 20600 * Only match on ill since we are sharing broadcast addresses. 20601 */ 20602 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20603 (ipif->ipif_flags & IPIF_BROADCAST)) { 20604 ire_t *ire; 20605 20606 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20607 IRE_BROADCAST, ipif, ALL_ZONES, 20608 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20609 20610 if (ire == NULL) { 20611 /* 20612 * If there isn't a matching broadcast IRE, 20613 * revert to the default for this netmask. 20614 */ 20615 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20616 mutex_enter(&ipif->ipif_ill->ill_lock); 20617 ipif_set_default(ipif); 20618 mutex_exit(&ipif->ipif_ill->ill_lock); 20619 } else { 20620 ire_refrele(ire); 20621 } 20622 } 20623 20624 } 20625 20626 /* This is the first interface on this ill */ 20627 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20628 /* 20629 * Need to recover all multicast memberships in the driver. 20630 * This had to be deferred until we had attached. 20631 */ 20632 ill_recover_multicast(ill); 20633 } 20634 /* Join the allhosts multicast address */ 20635 ipif_multicast_up(ipif); 20636 20637 if (!loopback) { 20638 /* 20639 * See whether anybody else would benefit from the 20640 * new ipif that we added. We call this always rather 20641 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20642 * ipif is for the benefit of illgrp_insert (done above) 20643 * which does not do source address selection as it does 20644 * not want to re-create interface routes that we are 20645 * having reference to it here. 20646 */ 20647 ill_update_source_selection(ill); 20648 } 20649 20650 for (irep1 = irep; irep1 > ire_array; ) { 20651 irep1--; 20652 if (*irep1 != NULL) { 20653 /* was held in ire_add */ 20654 ire_refrele(*irep1); 20655 } 20656 } 20657 20658 cnt = ipif_saved_ire_cnt; 20659 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20660 if (*irep1 != NULL) { 20661 /* was held in ire_add */ 20662 ire_refrele(*irep1); 20663 } 20664 } 20665 20666 if (!loopback && ipif->ipif_addr_ready) { 20667 /* Broadcast an address mask reply. */ 20668 ipif_mask_reply(ipif); 20669 } 20670 if (ipif_saved_irep != NULL) { 20671 kmem_free(ipif_saved_irep, 20672 ipif_saved_ire_cnt * sizeof (ire_t *)); 20673 } 20674 if (src_ipif_held) 20675 ipif_refrele(src_ipif); 20676 20677 /* 20678 * This had to be deferred until we had bound. Tell routing sockets and 20679 * others that this interface is up if it looks like the address has 20680 * been validated. Otherwise, if it isn't ready yet, wait for 20681 * duplicate address detection to do its thing. 20682 */ 20683 if (ipif->ipif_addr_ready) { 20684 ip_rts_ifmsg(ipif); 20685 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20686 /* Let SCTP update the status for this ipif */ 20687 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20688 } 20689 return (0); 20690 20691 bad: 20692 ip1dbg(("ipif_up_done: FAILED \n")); 20693 /* 20694 * We don't have to bother removing from ill groups because 20695 * 20696 * 1) For groups with names, we insert only when the first ipif 20697 * comes up. In that case if it fails, it will not be in any 20698 * group. So, we need not try to remove for that case. 20699 * 20700 * 2) For groups without names, either we tried to insert ipif_ill 20701 * in a group as singleton or found some other group to become 20702 * a bigger group. For the former, if it fails we don't have 20703 * anything to do as ipif_ill is not in the group and for the 20704 * latter, there are no failures in illgrp_insert/illgrp_delete 20705 * (ENOMEM can't occur for this. Check ifgrp_insert). 20706 */ 20707 while (irep > ire_array) { 20708 irep--; 20709 if (*irep != NULL) { 20710 ire_delete(*irep); 20711 if (ire_added) 20712 ire_refrele(*irep); 20713 } 20714 } 20715 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20716 20717 if (ipif_saved_irep != NULL) { 20718 kmem_free(ipif_saved_irep, 20719 ipif_saved_ire_cnt * sizeof (ire_t *)); 20720 } 20721 if (src_ipif_held) 20722 ipif_refrele(src_ipif); 20723 20724 ipif_arp_down(ipif); 20725 return (err); 20726 } 20727 20728 /* 20729 * Turn off the ARP with the ILLF_NOARP flag. 20730 */ 20731 static int 20732 ill_arp_off(ill_t *ill) 20733 { 20734 mblk_t *arp_off_mp = NULL; 20735 mblk_t *arp_on_mp = NULL; 20736 20737 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20738 20739 ASSERT(IAM_WRITER_ILL(ill)); 20740 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20741 20742 /* 20743 * If the on message is still around we've already done 20744 * an arp_off without doing an arp_on thus there is no 20745 * work needed. 20746 */ 20747 if (ill->ill_arp_on_mp != NULL) 20748 return (0); 20749 20750 /* 20751 * Allocate an ARP on message (to be saved) and an ARP off message 20752 */ 20753 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20754 if (!arp_off_mp) 20755 return (ENOMEM); 20756 20757 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20758 if (!arp_on_mp) 20759 goto failed; 20760 20761 ASSERT(ill->ill_arp_on_mp == NULL); 20762 ill->ill_arp_on_mp = arp_on_mp; 20763 20764 /* Send an AR_INTERFACE_OFF request */ 20765 putnext(ill->ill_rq, arp_off_mp); 20766 return (0); 20767 failed: 20768 20769 if (arp_off_mp) 20770 freemsg(arp_off_mp); 20771 return (ENOMEM); 20772 } 20773 20774 /* 20775 * Turn on ARP by turning off the ILLF_NOARP flag. 20776 */ 20777 static int 20778 ill_arp_on(ill_t *ill) 20779 { 20780 mblk_t *mp; 20781 20782 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20783 20784 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20785 20786 ASSERT(IAM_WRITER_ILL(ill)); 20787 /* 20788 * Send an AR_INTERFACE_ON request if we have already done 20789 * an arp_off (which allocated the message). 20790 */ 20791 if (ill->ill_arp_on_mp != NULL) { 20792 mp = ill->ill_arp_on_mp; 20793 ill->ill_arp_on_mp = NULL; 20794 putnext(ill->ill_rq, mp); 20795 } 20796 return (0); 20797 } 20798 20799 /* 20800 * Called after either deleting ill from the group or when setting 20801 * FAILED or STANDBY on the interface. 20802 */ 20803 static void 20804 illgrp_reset_schednext(ill_t *ill) 20805 { 20806 ill_group_t *illgrp; 20807 ill_t *save_ill; 20808 20809 ASSERT(IAM_WRITER_ILL(ill)); 20810 /* 20811 * When called from illgrp_delete, ill_group will be non-NULL. 20812 * But when called from ip_sioctl_flags, it could be NULL if 20813 * somebody is setting FAILED/INACTIVE on some interface which 20814 * is not part of a group. 20815 */ 20816 illgrp = ill->ill_group; 20817 if (illgrp == NULL) 20818 return; 20819 if (illgrp->illgrp_ill_schednext != ill) 20820 return; 20821 20822 illgrp->illgrp_ill_schednext = NULL; 20823 save_ill = ill; 20824 /* 20825 * Choose a good ill to be the next one for 20826 * outbound traffic. As the flags FAILED/STANDBY is 20827 * not yet marked when called from ip_sioctl_flags, 20828 * we check for ill separately. 20829 */ 20830 for (ill = illgrp->illgrp_ill; ill != NULL; 20831 ill = ill->ill_group_next) { 20832 if ((ill != save_ill) && 20833 !(ill->ill_phyint->phyint_flags & 20834 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20835 illgrp->illgrp_ill_schednext = ill; 20836 return; 20837 } 20838 } 20839 } 20840 20841 /* 20842 * Given an ill, find the next ill in the group to be scheduled. 20843 * (This should be called by ip_newroute() before ire_create().) 20844 * The passed in ill may be pulled out of the group, after we have picked 20845 * up a different outgoing ill from the same group. However ire add will 20846 * atomically check this. 20847 */ 20848 ill_t * 20849 illgrp_scheduler(ill_t *ill) 20850 { 20851 ill_t *retill; 20852 ill_group_t *illgrp; 20853 int illcnt; 20854 int i; 20855 uint64_t flags; 20856 ip_stack_t *ipst = ill->ill_ipst; 20857 20858 /* 20859 * We don't use a lock to check for the ill_group. If this ill 20860 * is currently being inserted we may end up just returning this 20861 * ill itself. That is ok. 20862 */ 20863 if (ill->ill_group == NULL) { 20864 ill_refhold(ill); 20865 return (ill); 20866 } 20867 20868 /* 20869 * Grab the ill_g_lock as reader to make sure we are dealing with 20870 * a set of stable ills. No ill can be added or deleted or change 20871 * group while we hold the reader lock. 20872 */ 20873 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20874 if ((illgrp = ill->ill_group) == NULL) { 20875 rw_exit(&ipst->ips_ill_g_lock); 20876 ill_refhold(ill); 20877 return (ill); 20878 } 20879 20880 illcnt = illgrp->illgrp_ill_count; 20881 mutex_enter(&illgrp->illgrp_lock); 20882 retill = illgrp->illgrp_ill_schednext; 20883 20884 if (retill == NULL) 20885 retill = illgrp->illgrp_ill; 20886 20887 /* 20888 * We do a circular search beginning at illgrp_ill_schednext 20889 * or illgrp_ill. We don't check the flags against the ill lock 20890 * since it can change anytime. The ire creation will be atomic 20891 * and will fail if the ill is FAILED or OFFLINE. 20892 */ 20893 for (i = 0; i < illcnt; i++) { 20894 flags = retill->ill_phyint->phyint_flags; 20895 20896 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20897 ILL_CAN_LOOKUP(retill)) { 20898 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20899 ill_refhold(retill); 20900 break; 20901 } 20902 retill = retill->ill_group_next; 20903 if (retill == NULL) 20904 retill = illgrp->illgrp_ill; 20905 } 20906 mutex_exit(&illgrp->illgrp_lock); 20907 rw_exit(&ipst->ips_ill_g_lock); 20908 20909 return (i == illcnt ? NULL : retill); 20910 } 20911 20912 /* 20913 * Checks for availbility of a usable source address (if there is one) when the 20914 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20915 * this selection is done regardless of the destination. 20916 */ 20917 boolean_t 20918 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20919 { 20920 uint_t ifindex; 20921 ipif_t *ipif = NULL; 20922 ill_t *uill; 20923 boolean_t isv6; 20924 ip_stack_t *ipst = ill->ill_ipst; 20925 20926 ASSERT(ill != NULL); 20927 20928 isv6 = ill->ill_isv6; 20929 ifindex = ill->ill_usesrc_ifindex; 20930 if (ifindex != 0) { 20931 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20932 NULL, ipst); 20933 if (uill == NULL) 20934 return (NULL); 20935 mutex_enter(&uill->ill_lock); 20936 for (ipif = uill->ill_ipif; ipif != NULL; 20937 ipif = ipif->ipif_next) { 20938 if (!IPIF_CAN_LOOKUP(ipif)) 20939 continue; 20940 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20941 continue; 20942 if (!(ipif->ipif_flags & IPIF_UP)) 20943 continue; 20944 if (ipif->ipif_zoneid != zoneid) 20945 continue; 20946 if ((isv6 && 20947 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20948 (ipif->ipif_lcl_addr == INADDR_ANY)) 20949 continue; 20950 mutex_exit(&uill->ill_lock); 20951 ill_refrele(uill); 20952 return (B_TRUE); 20953 } 20954 mutex_exit(&uill->ill_lock); 20955 ill_refrele(uill); 20956 } 20957 return (B_FALSE); 20958 } 20959 20960 /* 20961 * Determine the best source address given a destination address and an ill. 20962 * Prefers non-deprecated over deprecated but will return a deprecated 20963 * address if there is no other choice. If there is a usable source address 20964 * on the interface pointed to by ill_usesrc_ifindex then that is given 20965 * first preference. 20966 * 20967 * Returns NULL if there is no suitable source address for the ill. 20968 * This only occurs when there is no valid source address for the ill. 20969 */ 20970 ipif_t * 20971 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20972 { 20973 ipif_t *ipif; 20974 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20975 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20976 int index = 0; 20977 boolean_t wrapped = B_FALSE; 20978 boolean_t same_subnet_only = B_FALSE; 20979 boolean_t ipif_same_found, ipif_other_found; 20980 boolean_t specific_found; 20981 ill_t *till, *usill = NULL; 20982 tsol_tpc_t *src_rhtp, *dst_rhtp; 20983 ip_stack_t *ipst = ill->ill_ipst; 20984 20985 if (ill->ill_usesrc_ifindex != 0) { 20986 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20987 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20988 if (usill != NULL) 20989 ill = usill; /* Select source from usesrc ILL */ 20990 else 20991 return (NULL); 20992 } 20993 20994 /* 20995 * If we're dealing with an unlabeled destination on a labeled system, 20996 * make sure that we ignore source addresses that are incompatible with 20997 * the destination's default label. That destination's default label 20998 * must dominate the minimum label on the source address. 20999 */ 21000 dst_rhtp = NULL; 21001 if (is_system_labeled()) { 21002 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 21003 if (dst_rhtp == NULL) 21004 return (NULL); 21005 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 21006 TPC_RELE(dst_rhtp); 21007 dst_rhtp = NULL; 21008 } 21009 } 21010 21011 /* 21012 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 21013 * can be deleted. But an ipif/ill can get CONDEMNED any time. 21014 * After selecting the right ipif, under ill_lock make sure ipif is 21015 * not condemned, and increment refcnt. If ipif is CONDEMNED, 21016 * we retry. Inside the loop we still need to check for CONDEMNED, 21017 * but not under a lock. 21018 */ 21019 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21020 21021 retry: 21022 till = ill; 21023 ipif_arr[0] = NULL; 21024 21025 if (till->ill_group != NULL) 21026 till = till->ill_group->illgrp_ill; 21027 21028 /* 21029 * Choose one good source address from each ill across the group. 21030 * If possible choose a source address in the same subnet as 21031 * the destination address. 21032 * 21033 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 21034 * This is okay because of the following. 21035 * 21036 * If PHYI_FAILED is set and we still have non-deprecated 21037 * addresses, it means the addresses have not yet been 21038 * failed over to a different interface. We potentially 21039 * select them to create IRE_CACHES, which will be later 21040 * flushed when the addresses move over. 21041 * 21042 * If PHYI_INACTIVE is set and we still have non-deprecated 21043 * addresses, it means either the user has configured them 21044 * or PHYI_INACTIVE has not been cleared after the addresses 21045 * been moved over. For the former, in.mpathd does a failover 21046 * when the interface becomes INACTIVE and hence we should 21047 * not find them. Once INACTIVE is set, we don't allow them 21048 * to create logical interfaces anymore. For the latter, a 21049 * flush will happen when INACTIVE is cleared which will 21050 * flush the IRE_CACHES. 21051 * 21052 * If PHYI_OFFLINE is set, all the addresses will be failed 21053 * over soon. We potentially select them to create IRE_CACHEs, 21054 * which will be later flushed when the addresses move over. 21055 * 21056 * NOTE : As ipif_select_source is called to borrow source address 21057 * for an ipif that is part of a group, source address selection 21058 * will be re-done whenever the group changes i.e either an 21059 * insertion/deletion in the group. 21060 * 21061 * Fill ipif_arr[] with source addresses, using these rules: 21062 * 21063 * 1. At most one source address from a given ill ends up 21064 * in ipif_arr[] -- that is, at most one of the ipif's 21065 * associated with a given ill ends up in ipif_arr[]. 21066 * 21067 * 2. If there is at least one non-deprecated ipif in the 21068 * IPMP group with a source address on the same subnet as 21069 * our destination, then fill ipif_arr[] only with 21070 * source addresses on the same subnet as our destination. 21071 * Note that because of (1), only the first 21072 * non-deprecated ipif found with a source address 21073 * matching the destination ends up in ipif_arr[]. 21074 * 21075 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 21076 * addresses not in the same subnet as our destination. 21077 * Again, because of (1), only the first off-subnet source 21078 * address will be chosen. 21079 * 21080 * 4. If there are no non-deprecated ipifs, then just use 21081 * the source address associated with the last deprecated 21082 * one we find that happens to be on the same subnet, 21083 * otherwise the first one not in the same subnet. 21084 */ 21085 specific_found = B_FALSE; 21086 for (; till != NULL; till = till->ill_group_next) { 21087 ipif_same_found = B_FALSE; 21088 ipif_other_found = B_FALSE; 21089 for (ipif = till->ill_ipif; ipif != NULL; 21090 ipif = ipif->ipif_next) { 21091 if (!IPIF_CAN_LOOKUP(ipif)) 21092 continue; 21093 /* Always skip NOLOCAL and ANYCAST interfaces */ 21094 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21095 continue; 21096 if (!(ipif->ipif_flags & IPIF_UP) || 21097 !ipif->ipif_addr_ready) 21098 continue; 21099 if (ipif->ipif_zoneid != zoneid && 21100 ipif->ipif_zoneid != ALL_ZONES) 21101 continue; 21102 /* 21103 * Interfaces with 0.0.0.0 address are allowed to be UP, 21104 * but are not valid as source addresses. 21105 */ 21106 if (ipif->ipif_lcl_addr == INADDR_ANY) 21107 continue; 21108 21109 /* 21110 * Check compatibility of local address for 21111 * destination's default label if we're on a labeled 21112 * system. Incompatible addresses can't be used at 21113 * all. 21114 */ 21115 if (dst_rhtp != NULL) { 21116 boolean_t incompat; 21117 21118 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 21119 IPV4_VERSION, B_FALSE); 21120 if (src_rhtp == NULL) 21121 continue; 21122 incompat = 21123 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 21124 src_rhtp->tpc_tp.tp_doi != 21125 dst_rhtp->tpc_tp.tp_doi || 21126 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 21127 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 21128 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 21129 src_rhtp->tpc_tp.tp_sl_set_cipso)); 21130 TPC_RELE(src_rhtp); 21131 if (incompat) 21132 continue; 21133 } 21134 21135 /* 21136 * We prefer not to use all all-zones addresses, if we 21137 * can avoid it, as they pose problems with unlabeled 21138 * destinations. 21139 */ 21140 if (ipif->ipif_zoneid != ALL_ZONES) { 21141 if (!specific_found && 21142 (!same_subnet_only || 21143 (ipif->ipif_net_mask & dst) == 21144 ipif->ipif_subnet)) { 21145 index = 0; 21146 specific_found = B_TRUE; 21147 ipif_other_found = B_FALSE; 21148 } 21149 } else { 21150 if (specific_found) 21151 continue; 21152 } 21153 if (ipif->ipif_flags & IPIF_DEPRECATED) { 21154 if (ipif_dep == NULL || 21155 (ipif->ipif_net_mask & dst) == 21156 ipif->ipif_subnet) 21157 ipif_dep = ipif; 21158 continue; 21159 } 21160 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 21161 /* found a source address in the same subnet */ 21162 if (!same_subnet_only) { 21163 same_subnet_only = B_TRUE; 21164 index = 0; 21165 } 21166 ipif_same_found = B_TRUE; 21167 } else { 21168 if (same_subnet_only || ipif_other_found) 21169 continue; 21170 ipif_other_found = B_TRUE; 21171 } 21172 ipif_arr[index++] = ipif; 21173 if (index == MAX_IPIF_SELECT_SOURCE) { 21174 wrapped = B_TRUE; 21175 index = 0; 21176 } 21177 if (ipif_same_found) 21178 break; 21179 } 21180 } 21181 21182 if (ipif_arr[0] == NULL) { 21183 ipif = ipif_dep; 21184 } else { 21185 if (wrapped) 21186 index = MAX_IPIF_SELECT_SOURCE; 21187 ipif = ipif_arr[ipif_rand(ipst) % index]; 21188 ASSERT(ipif != NULL); 21189 } 21190 21191 if (ipif != NULL) { 21192 mutex_enter(&ipif->ipif_ill->ill_lock); 21193 if (!IPIF_CAN_LOOKUP(ipif)) { 21194 mutex_exit(&ipif->ipif_ill->ill_lock); 21195 goto retry; 21196 } 21197 ipif_refhold_locked(ipif); 21198 mutex_exit(&ipif->ipif_ill->ill_lock); 21199 } 21200 21201 rw_exit(&ipst->ips_ill_g_lock); 21202 if (usill != NULL) 21203 ill_refrele(usill); 21204 if (dst_rhtp != NULL) 21205 TPC_RELE(dst_rhtp); 21206 21207 #ifdef DEBUG 21208 if (ipif == NULL) { 21209 char buf1[INET6_ADDRSTRLEN]; 21210 21211 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21212 ill->ill_name, 21213 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21214 } else { 21215 char buf1[INET6_ADDRSTRLEN]; 21216 char buf2[INET6_ADDRSTRLEN]; 21217 21218 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21219 ipif->ipif_ill->ill_name, 21220 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21221 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21222 buf2, sizeof (buf2)))); 21223 } 21224 #endif /* DEBUG */ 21225 return (ipif); 21226 } 21227 21228 21229 /* 21230 * If old_ipif is not NULL, see if ipif was derived from old 21231 * ipif and if so, recreate the interface route by re-doing 21232 * source address selection. This happens when ipif_down -> 21233 * ipif_update_other_ipifs calls us. 21234 * 21235 * If old_ipif is NULL, just redo the source address selection 21236 * if needed. This happens when illgrp_insert or ipif_up_done 21237 * calls us. 21238 */ 21239 static void 21240 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21241 { 21242 ire_t *ire; 21243 ire_t *ipif_ire; 21244 queue_t *stq; 21245 ipif_t *nipif; 21246 ill_t *ill; 21247 boolean_t need_rele = B_FALSE; 21248 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21249 21250 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21251 ASSERT(IAM_WRITER_IPIF(ipif)); 21252 21253 ill = ipif->ipif_ill; 21254 if (!(ipif->ipif_flags & 21255 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21256 /* 21257 * Can't possibly have borrowed the source 21258 * from old_ipif. 21259 */ 21260 return; 21261 } 21262 21263 /* 21264 * Is there any work to be done? No work if the address 21265 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21266 * ipif_select_source() does not borrow addresses from 21267 * NOLOCAL and ANYCAST interfaces). 21268 */ 21269 if ((old_ipif != NULL) && 21270 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21271 (old_ipif->ipif_ill->ill_wq == NULL) || 21272 (old_ipif->ipif_flags & 21273 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21274 return; 21275 } 21276 21277 /* 21278 * Perform the same checks as when creating the 21279 * IRE_INTERFACE in ipif_up_done. 21280 */ 21281 if (!(ipif->ipif_flags & IPIF_UP)) 21282 return; 21283 21284 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21285 (ipif->ipif_subnet == INADDR_ANY)) 21286 return; 21287 21288 ipif_ire = ipif_to_ire(ipif); 21289 if (ipif_ire == NULL) 21290 return; 21291 21292 /* 21293 * We know that ipif uses some other source for its 21294 * IRE_INTERFACE. Is it using the source of this 21295 * old_ipif? 21296 */ 21297 if (old_ipif != NULL && 21298 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21299 ire_refrele(ipif_ire); 21300 return; 21301 } 21302 if (ip_debug > 2) { 21303 /* ip1dbg */ 21304 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21305 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21306 } 21307 21308 stq = ipif_ire->ire_stq; 21309 21310 /* 21311 * Can't use our source address. Select a different 21312 * source address for the IRE_INTERFACE. 21313 */ 21314 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21315 if (nipif == NULL) { 21316 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21317 nipif = ipif; 21318 } else { 21319 need_rele = B_TRUE; 21320 } 21321 21322 ire = ire_create( 21323 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21324 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21325 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21326 NULL, /* no gateway */ 21327 NULL, 21328 &ipif->ipif_mtu, /* max frag */ 21329 NULL, /* fast path header */ 21330 NULL, /* no recv from queue */ 21331 stq, /* send-to queue */ 21332 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21333 ill->ill_resolver_mp, /* xmit header */ 21334 ipif, 21335 NULL, 21336 0, 21337 0, 21338 0, 21339 0, 21340 &ire_uinfo_null, 21341 NULL, 21342 NULL, 21343 ipst); 21344 21345 if (ire != NULL) { 21346 ire_t *ret_ire; 21347 int error; 21348 21349 /* 21350 * We don't need ipif_ire anymore. We need to delete 21351 * before we add so that ire_add does not detect 21352 * duplicates. 21353 */ 21354 ire_delete(ipif_ire); 21355 ret_ire = ire; 21356 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21357 ASSERT(error == 0); 21358 ASSERT(ire == ret_ire); 21359 /* Held in ire_add */ 21360 ire_refrele(ret_ire); 21361 } 21362 /* 21363 * Either we are falling through from above or could not 21364 * allocate a replacement. 21365 */ 21366 ire_refrele(ipif_ire); 21367 if (need_rele) 21368 ipif_refrele(nipif); 21369 } 21370 21371 /* 21372 * This old_ipif is going away. 21373 * 21374 * Determine if any other ipif's is using our address as 21375 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21376 * IPIF_DEPRECATED). 21377 * Find the IRE_INTERFACE for such ipifs and recreate them 21378 * to use an different source address following the rules in 21379 * ipif_up_done. 21380 * 21381 * This function takes an illgrp as an argument so that illgrp_delete 21382 * can call this to update source address even after deleting the 21383 * old_ipif->ipif_ill from the ill group. 21384 */ 21385 static void 21386 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21387 { 21388 ipif_t *ipif; 21389 ill_t *ill; 21390 char buf[INET6_ADDRSTRLEN]; 21391 21392 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21393 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21394 21395 ill = old_ipif->ipif_ill; 21396 21397 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21398 ill->ill_name, 21399 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21400 buf, sizeof (buf)))); 21401 /* 21402 * If this part of a group, look at all ills as ipif_select_source 21403 * borrows source address across all the ills in the group. 21404 */ 21405 if (illgrp != NULL) 21406 ill = illgrp->illgrp_ill; 21407 21408 for (; ill != NULL; ill = ill->ill_group_next) { 21409 for (ipif = ill->ill_ipif; ipif != NULL; 21410 ipif = ipif->ipif_next) { 21411 21412 if (ipif == old_ipif) 21413 continue; 21414 21415 ipif_recreate_interface_routes(old_ipif, ipif); 21416 } 21417 } 21418 } 21419 21420 /* ARGSUSED */ 21421 int 21422 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21423 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21424 { 21425 /* 21426 * ill_phyint_reinit merged the v4 and v6 into a single 21427 * ipsq. Could also have become part of a ipmp group in the 21428 * process, and we might not have been able to complete the 21429 * operation in ipif_set_values, if we could not become 21430 * exclusive. If so restart it here. 21431 */ 21432 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21433 } 21434 21435 21436 /* 21437 * Can operate on either a module or a driver queue. 21438 * Returns an error if not a module queue. 21439 */ 21440 /* ARGSUSED */ 21441 int 21442 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21443 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21444 { 21445 queue_t *q1 = q; 21446 char *cp; 21447 char interf_name[LIFNAMSIZ]; 21448 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21449 21450 if (q->q_next == NULL) { 21451 ip1dbg(( 21452 "if_unitsel: IF_UNITSEL: no q_next\n")); 21453 return (EINVAL); 21454 } 21455 21456 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21457 return (EALREADY); 21458 21459 do { 21460 q1 = q1->q_next; 21461 } while (q1->q_next); 21462 cp = q1->q_qinfo->qi_minfo->mi_idname; 21463 (void) sprintf(interf_name, "%s%d", cp, ppa); 21464 21465 /* 21466 * Here we are not going to delay the ioack until after 21467 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21468 * original ioctl message before sending the requests. 21469 */ 21470 return (ipif_set_values(q, mp, interf_name, &ppa)); 21471 } 21472 21473 /* ARGSUSED */ 21474 int 21475 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21476 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21477 { 21478 return (ENXIO); 21479 } 21480 21481 /* 21482 * Net and subnet broadcast ire's are now specific to the particular 21483 * physical interface (ill) and not to any one locigal interface (ipif). 21484 * However, if a particular logical interface is being taken down, it's 21485 * associated ire's will be taken down as well. Hence, when we go to 21486 * take down or change the local address, broadcast address or netmask 21487 * of a specific logical interface, we must check to make sure that we 21488 * have valid net and subnet broadcast ire's for the other logical 21489 * interfaces which may have been shared with the logical interface 21490 * being brought down or changed. 21491 * 21492 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 21493 * is tied to the first interface coming UP. If that ipif is going down, 21494 * we need to recreate them on the next valid ipif. 21495 * 21496 * Note: assume that the ipif passed in is still up so that it's IRE 21497 * entries are still valid. 21498 */ 21499 static void 21500 ipif_check_bcast_ires(ipif_t *test_ipif) 21501 { 21502 ipif_t *ipif; 21503 ire_t *test_subnet_ire, *test_net_ire; 21504 ire_t *test_allzero_ire, *test_allone_ire; 21505 ire_t *ire_array[12]; 21506 ire_t **irep = &ire_array[0]; 21507 ire_t **irep1; 21508 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 21509 ipaddr_t test_net_addr, test_subnet_addr; 21510 ipaddr_t test_net_mask, test_subnet_mask; 21511 boolean_t need_net_bcast_ire = B_FALSE; 21512 boolean_t need_subnet_bcast_ire = B_FALSE; 21513 boolean_t allzero_bcast_ire_created = B_FALSE; 21514 boolean_t allone_bcast_ire_created = B_FALSE; 21515 boolean_t net_bcast_ire_created = B_FALSE; 21516 boolean_t subnet_bcast_ire_created = B_FALSE; 21517 21518 ipif_t *backup_ipif_net = (ipif_t *)NULL; 21519 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 21520 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 21521 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 21522 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 21523 ip_stack_t *ipst = test_ipif->ipif_ill->ill_ipst; 21524 21525 ASSERT(!test_ipif->ipif_isv6); 21526 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21527 21528 /* 21529 * No broadcast IREs for the LOOPBACK interface 21530 * or others such as point to point and IPIF_NOXMIT. 21531 */ 21532 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21533 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21534 return; 21535 21536 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 21537 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21538 ipst); 21539 21540 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 21541 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21542 ipst); 21543 21544 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21545 test_subnet_mask = test_ipif->ipif_net_mask; 21546 21547 /* 21548 * If no net mask set, assume the default based on net class. 21549 */ 21550 if (test_subnet_mask == 0) 21551 test_subnet_mask = test_net_mask; 21552 21553 /* 21554 * Check if there is a network broadcast ire associated with this ipif 21555 */ 21556 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21557 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21558 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21559 ipst); 21560 21561 /* 21562 * Check if there is a subnet broadcast IRE associated with this ipif 21563 */ 21564 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21565 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21566 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21567 ipst); 21568 21569 /* 21570 * No broadcast ire's associated with this ipif. 21571 */ 21572 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21573 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21574 return; 21575 } 21576 21577 /* 21578 * We have established which bcast ires have to be replaced. 21579 * Next we try to locate ipifs that match there ires. 21580 * The rules are simple: If we find an ipif that matches on the subnet 21581 * address it will also match on the net address, the allzeros and 21582 * allones address. Any ipif that matches only on the net address will 21583 * also match the allzeros and allones addresses. 21584 * The other criterion is the ipif_flags. We look for non-deprecated 21585 * (and non-anycast and non-nolocal) ipifs as the best choice. 21586 * ipifs with check_flags matching (deprecated, etc) are used only 21587 * if good ipifs are not available. While looping, we save existing 21588 * deprecated ipifs as backup_ipif. 21589 * We loop through all the ipifs for this ill looking for ipifs 21590 * whose broadcast addr match the ipif passed in, but do not have 21591 * their own broadcast ires. For creating 0.0.0.0 and 21592 * 255.255.255.255 we just need an ipif on this ill to create. 21593 */ 21594 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21595 ipif = ipif->ipif_next) { 21596 21597 ASSERT(!ipif->ipif_isv6); 21598 /* 21599 * Already checked the ipif passed in. 21600 */ 21601 if (ipif == test_ipif) { 21602 continue; 21603 } 21604 21605 /* 21606 * We only need to recreate broadcast ires if another ipif in 21607 * the same zone uses them. The new ires must be created in the 21608 * same zone. 21609 */ 21610 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21611 continue; 21612 } 21613 21614 /* 21615 * Only interested in logical interfaces with valid local 21616 * addresses or with the ability to broadcast. 21617 */ 21618 if ((ipif->ipif_subnet == 0) || 21619 !(ipif->ipif_flags & IPIF_BROADCAST) || 21620 (ipif->ipif_flags & IPIF_NOXMIT) || 21621 !(ipif->ipif_flags & IPIF_UP)) { 21622 continue; 21623 } 21624 /* 21625 * Check if there is a net broadcast ire for this 21626 * net address. If it turns out that the ipif we are 21627 * about to take down owns this ire, we must make a 21628 * new one because it is potentially going away. 21629 */ 21630 if (test_net_ire && (!net_bcast_ire_created)) { 21631 net_mask = ip_net_mask(ipif->ipif_subnet); 21632 net_addr = net_mask & ipif->ipif_subnet; 21633 if (net_addr == test_net_addr) { 21634 need_net_bcast_ire = B_TRUE; 21635 /* 21636 * Use DEPRECATED ipif only if no good 21637 * ires are available. subnet_addr is 21638 * a better match than net_addr. 21639 */ 21640 if ((ipif->ipif_flags & check_flags) && 21641 (backup_ipif_net == NULL)) { 21642 backup_ipif_net = ipif; 21643 } 21644 } 21645 } 21646 /* 21647 * Check if there is a subnet broadcast ire for this 21648 * net address. If it turns out that the ipif we are 21649 * about to take down owns this ire, we must make a 21650 * new one because it is potentially going away. 21651 */ 21652 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21653 subnet_mask = ipif->ipif_net_mask; 21654 subnet_addr = ipif->ipif_subnet; 21655 if (subnet_addr == test_subnet_addr) { 21656 need_subnet_bcast_ire = B_TRUE; 21657 if ((ipif->ipif_flags & check_flags) && 21658 (backup_ipif_subnet == NULL)) { 21659 backup_ipif_subnet = ipif; 21660 } 21661 } 21662 } 21663 21664 21665 /* Short circuit here if this ipif is deprecated */ 21666 if (ipif->ipif_flags & check_flags) { 21667 if ((test_allzero_ire != NULL) && 21668 (!allzero_bcast_ire_created) && 21669 (backup_ipif_allzeros == NULL)) { 21670 backup_ipif_allzeros = ipif; 21671 } 21672 if ((test_allone_ire != NULL) && 21673 (!allone_bcast_ire_created) && 21674 (backup_ipif_allones == NULL)) { 21675 backup_ipif_allones = ipif; 21676 } 21677 continue; 21678 } 21679 21680 /* 21681 * Found an ipif which has the same broadcast ire as the 21682 * ipif passed in and the ipif passed in "owns" the ire. 21683 * Create new broadcast ire's for this broadcast addr. 21684 */ 21685 if (need_net_bcast_ire && !net_bcast_ire_created) { 21686 irep = ire_create_bcast(ipif, net_addr, irep); 21687 irep = ire_create_bcast(ipif, 21688 ~net_mask | net_addr, irep); 21689 net_bcast_ire_created = B_TRUE; 21690 } 21691 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21692 irep = ire_create_bcast(ipif, subnet_addr, irep); 21693 irep = ire_create_bcast(ipif, 21694 ~subnet_mask | subnet_addr, irep); 21695 subnet_bcast_ire_created = B_TRUE; 21696 } 21697 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21698 irep = ire_create_bcast(ipif, 0, irep); 21699 allzero_bcast_ire_created = B_TRUE; 21700 } 21701 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21702 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21703 allone_bcast_ire_created = B_TRUE; 21704 } 21705 /* 21706 * Once we have created all the appropriate ires, we 21707 * just break out of this loop to add what we have created. 21708 * This has been indented similar to ire_match_args for 21709 * readability. 21710 */ 21711 if (((test_net_ire == NULL) || 21712 (net_bcast_ire_created)) && 21713 ((test_subnet_ire == NULL) || 21714 (subnet_bcast_ire_created)) && 21715 ((test_allzero_ire == NULL) || 21716 (allzero_bcast_ire_created)) && 21717 ((test_allone_ire == NULL) || 21718 (allone_bcast_ire_created))) { 21719 break; 21720 } 21721 } 21722 21723 /* 21724 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21725 * exist. 6 pairs of bcast ires are needed. 21726 * Note - the old ires are deleted in ipif_down. 21727 */ 21728 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21729 ipif = backup_ipif_net; 21730 irep = ire_create_bcast(ipif, net_addr, irep); 21731 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21732 net_bcast_ire_created = B_TRUE; 21733 } 21734 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21735 backup_ipif_subnet) { 21736 ipif = backup_ipif_subnet; 21737 irep = ire_create_bcast(ipif, subnet_addr, irep); 21738 irep = ire_create_bcast(ipif, 21739 ~subnet_mask | subnet_addr, irep); 21740 subnet_bcast_ire_created = B_TRUE; 21741 } 21742 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21743 backup_ipif_allzeros) { 21744 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21745 allzero_bcast_ire_created = B_TRUE; 21746 } 21747 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21748 backup_ipif_allones) { 21749 irep = ire_create_bcast(backup_ipif_allones, 21750 INADDR_BROADCAST, irep); 21751 allone_bcast_ire_created = B_TRUE; 21752 } 21753 21754 /* 21755 * If we can't create all of them, don't add any of them. 21756 * Code in ip_wput_ire and ire_to_ill assumes that we 21757 * always have a non-loopback copy and loopback copy 21758 * for a given address. 21759 */ 21760 for (irep1 = irep; irep1 > ire_array; ) { 21761 irep1--; 21762 if (*irep1 == NULL) { 21763 ip0dbg(("ipif_check_bcast_ires: can't create " 21764 "IRE_BROADCAST, memory allocation failure\n")); 21765 while (irep > ire_array) { 21766 irep--; 21767 if (*irep != NULL) 21768 ire_delete(*irep); 21769 } 21770 goto bad; 21771 } 21772 } 21773 for (irep1 = irep; irep1 > ire_array; ) { 21774 int error; 21775 21776 irep1--; 21777 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21778 if (error == 0) { 21779 ire_refrele(*irep1); /* Held in ire_add */ 21780 } 21781 } 21782 bad: 21783 if (test_allzero_ire != NULL) 21784 ire_refrele(test_allzero_ire); 21785 if (test_allone_ire != NULL) 21786 ire_refrele(test_allone_ire); 21787 if (test_net_ire != NULL) 21788 ire_refrele(test_net_ire); 21789 if (test_subnet_ire != NULL) 21790 ire_refrele(test_subnet_ire); 21791 } 21792 21793 /* 21794 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21795 * from lifr_flags and the name from lifr_name. 21796 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21797 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21798 * Returns EINPROGRESS when mp has been consumed by queueing it on 21799 * ill_pending_mp and the ioctl will complete in ip_rput. 21800 * 21801 * Can operate on either a module or a driver queue. 21802 * Returns an error if not a module queue. 21803 */ 21804 /* ARGSUSED */ 21805 int 21806 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21807 ip_ioctl_cmd_t *ipip, void *if_req) 21808 { 21809 int err; 21810 ill_t *ill; 21811 struct lifreq *lifr = (struct lifreq *)if_req; 21812 21813 ASSERT(ipif != NULL); 21814 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21815 21816 if (q->q_next == NULL) { 21817 ip1dbg(( 21818 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21819 return (EINVAL); 21820 } 21821 21822 ill = (ill_t *)q->q_ptr; 21823 /* 21824 * If we are not writer on 'q' then this interface exists already 21825 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21826 * So return EALREADY 21827 */ 21828 if (ill != ipif->ipif_ill) 21829 return (EALREADY); 21830 21831 if (ill->ill_name[0] != '\0') 21832 return (EALREADY); 21833 21834 /* 21835 * Set all the flags. Allows all kinds of override. Provide some 21836 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21837 * unless there is either multicast/broadcast support in the driver 21838 * or it is a pt-pt link. 21839 */ 21840 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21841 /* Meaningless to IP thus don't allow them to be set. */ 21842 ip1dbg(("ip_setname: EINVAL 1\n")); 21843 return (EINVAL); 21844 } 21845 /* 21846 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21847 * ill_bcast_addr_length info. 21848 */ 21849 if (!ill->ill_needs_attach && 21850 ((lifr->lifr_flags & IFF_MULTICAST) && 21851 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21852 ill->ill_bcast_addr_length == 0)) { 21853 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21854 ip1dbg(("ip_setname: EINVAL 2\n")); 21855 return (EINVAL); 21856 } 21857 if ((lifr->lifr_flags & IFF_BROADCAST) && 21858 ((lifr->lifr_flags & IFF_IPV6) || 21859 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21860 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21861 ip1dbg(("ip_setname: EINVAL 3\n")); 21862 return (EINVAL); 21863 } 21864 if (lifr->lifr_flags & IFF_UP) { 21865 /* Can only be set with SIOCSLIFFLAGS */ 21866 ip1dbg(("ip_setname: EINVAL 4\n")); 21867 return (EINVAL); 21868 } 21869 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21870 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21871 ip1dbg(("ip_setname: EINVAL 5\n")); 21872 return (EINVAL); 21873 } 21874 /* 21875 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21876 */ 21877 if ((lifr->lifr_flags & IFF_XRESOLV) && 21878 !(lifr->lifr_flags & IFF_IPV6) && 21879 !(ipif->ipif_isv6)) { 21880 ip1dbg(("ip_setname: EINVAL 6\n")); 21881 return (EINVAL); 21882 } 21883 21884 /* 21885 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21886 * we have all the flags here. So, we assign rather than we OR. 21887 * We can't OR the flags here because we don't want to set 21888 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21889 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21890 * on lifr_flags value here. 21891 */ 21892 /* 21893 * This ill has not been inserted into the global list. 21894 * So we are still single threaded and don't need any lock 21895 */ 21896 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21897 ~IFF_DUPLICATE; 21898 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21899 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21900 21901 /* We started off as V4. */ 21902 if (ill->ill_flags & ILLF_IPV6) { 21903 ill->ill_phyint->phyint_illv6 = ill; 21904 ill->ill_phyint->phyint_illv4 = NULL; 21905 } 21906 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21907 return (err); 21908 } 21909 21910 /* ARGSUSED */ 21911 int 21912 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21913 ip_ioctl_cmd_t *ipip, void *if_req) 21914 { 21915 /* 21916 * ill_phyint_reinit merged the v4 and v6 into a single 21917 * ipsq. Could also have become part of a ipmp group in the 21918 * process, and we might not have been able to complete the 21919 * slifname in ipif_set_values, if we could not become 21920 * exclusive. If so restart it here 21921 */ 21922 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21923 } 21924 21925 /* 21926 * Return a pointer to the ipif which matches the index, IP version type and 21927 * zoneid. 21928 */ 21929 ipif_t * 21930 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21931 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21932 { 21933 ill_t *ill; 21934 ipsq_t *ipsq; 21935 phyint_t *phyi; 21936 ipif_t *ipif; 21937 21938 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21939 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21940 21941 if (err != NULL) 21942 *err = 0; 21943 21944 /* 21945 * Indexes are stored in the phyint - a common structure 21946 * to both IPv4 and IPv6. 21947 */ 21948 21949 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21950 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 21951 (void *) &index, NULL); 21952 if (phyi != NULL) { 21953 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21954 if (ill == NULL) { 21955 rw_exit(&ipst->ips_ill_g_lock); 21956 if (err != NULL) 21957 *err = ENXIO; 21958 return (NULL); 21959 } 21960 GRAB_CONN_LOCK(q); 21961 mutex_enter(&ill->ill_lock); 21962 if (ILL_CAN_LOOKUP(ill)) { 21963 for (ipif = ill->ill_ipif; ipif != NULL; 21964 ipif = ipif->ipif_next) { 21965 if (IPIF_CAN_LOOKUP(ipif) && 21966 (zoneid == ALL_ZONES || 21967 zoneid == ipif->ipif_zoneid || 21968 ipif->ipif_zoneid == ALL_ZONES)) { 21969 ipif_refhold_locked(ipif); 21970 mutex_exit(&ill->ill_lock); 21971 RELEASE_CONN_LOCK(q); 21972 rw_exit(&ipst->ips_ill_g_lock); 21973 return (ipif); 21974 } 21975 } 21976 } else if (ILL_CAN_WAIT(ill, q)) { 21977 ipsq = ill->ill_phyint->phyint_ipsq; 21978 mutex_enter(&ipsq->ipsq_lock); 21979 rw_exit(&ipst->ips_ill_g_lock); 21980 mutex_exit(&ill->ill_lock); 21981 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21982 mutex_exit(&ipsq->ipsq_lock); 21983 RELEASE_CONN_LOCK(q); 21984 *err = EINPROGRESS; 21985 return (NULL); 21986 } 21987 mutex_exit(&ill->ill_lock); 21988 RELEASE_CONN_LOCK(q); 21989 } 21990 rw_exit(&ipst->ips_ill_g_lock); 21991 if (err != NULL) 21992 *err = ENXIO; 21993 return (NULL); 21994 } 21995 21996 typedef struct conn_change_s { 21997 uint_t cc_old_ifindex; 21998 uint_t cc_new_ifindex; 21999 } conn_change_t; 22000 22001 /* 22002 * ipcl_walk function for changing interface index. 22003 */ 22004 static void 22005 conn_change_ifindex(conn_t *connp, caddr_t arg) 22006 { 22007 conn_change_t *connc; 22008 uint_t old_ifindex; 22009 uint_t new_ifindex; 22010 int i; 22011 ilg_t *ilg; 22012 22013 connc = (conn_change_t *)arg; 22014 old_ifindex = connc->cc_old_ifindex; 22015 new_ifindex = connc->cc_new_ifindex; 22016 22017 if (connp->conn_orig_bound_ifindex == old_ifindex) 22018 connp->conn_orig_bound_ifindex = new_ifindex; 22019 22020 if (connp->conn_orig_multicast_ifindex == old_ifindex) 22021 connp->conn_orig_multicast_ifindex = new_ifindex; 22022 22023 if (connp->conn_orig_xmit_ifindex == old_ifindex) 22024 connp->conn_orig_xmit_ifindex = new_ifindex; 22025 22026 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 22027 ilg = &connp->conn_ilg[i]; 22028 if (ilg->ilg_orig_ifindex == old_ifindex) 22029 ilg->ilg_orig_ifindex = new_ifindex; 22030 } 22031 } 22032 22033 /* 22034 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 22035 * to new_index if it matches the old_index. 22036 * 22037 * Failovers typically happen within a group of ills. But somebody 22038 * can remove an ill from the group after a failover happened. If 22039 * we are setting the ifindex after this, we potentially need to 22040 * look at all the ills rather than just the ones in the group. 22041 * We cut down the work by looking at matching ill_net_types 22042 * and ill_types as we could not possibly grouped them together. 22043 */ 22044 static void 22045 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 22046 { 22047 ill_t *ill; 22048 ipif_t *ipif; 22049 uint_t old_ifindex; 22050 uint_t new_ifindex; 22051 ilm_t *ilm; 22052 ill_walk_context_t ctx; 22053 ip_stack_t *ipst = ill_orig->ill_ipst; 22054 22055 old_ifindex = connc->cc_old_ifindex; 22056 new_ifindex = connc->cc_new_ifindex; 22057 22058 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22059 ill = ILL_START_WALK_ALL(&ctx, ipst); 22060 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22061 if ((ill_orig->ill_net_type != ill->ill_net_type) || 22062 (ill_orig->ill_type != ill->ill_type)) { 22063 continue; 22064 } 22065 for (ipif = ill->ill_ipif; ipif != NULL; 22066 ipif = ipif->ipif_next) { 22067 if (ipif->ipif_orig_ifindex == old_ifindex) 22068 ipif->ipif_orig_ifindex = new_ifindex; 22069 } 22070 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 22071 if (ilm->ilm_orig_ifindex == old_ifindex) 22072 ilm->ilm_orig_ifindex = new_ifindex; 22073 } 22074 } 22075 rw_exit(&ipst->ips_ill_g_lock); 22076 } 22077 22078 /* 22079 * We first need to ensure that the new index is unique, and 22080 * then carry the change across both v4 and v6 ill representation 22081 * of the physical interface. 22082 */ 22083 /* ARGSUSED */ 22084 int 22085 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22086 ip_ioctl_cmd_t *ipip, void *ifreq) 22087 { 22088 ill_t *ill; 22089 ill_t *ill_other; 22090 phyint_t *phyi; 22091 int old_index; 22092 conn_change_t connc; 22093 struct ifreq *ifr = (struct ifreq *)ifreq; 22094 struct lifreq *lifr = (struct lifreq *)ifreq; 22095 uint_t index; 22096 ill_t *ill_v4; 22097 ill_t *ill_v6; 22098 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22099 22100 if (ipip->ipi_cmd_type == IF_CMD) 22101 index = ifr->ifr_index; 22102 else 22103 index = lifr->lifr_index; 22104 22105 /* 22106 * Only allow on physical interface. Also, index zero is illegal. 22107 * 22108 * Need to check for PHYI_FAILED and PHYI_INACTIVE 22109 * 22110 * 1) If PHYI_FAILED is set, a failover could have happened which 22111 * implies a possible failback might have to happen. As failback 22112 * depends on the old index, we should fail setting the index. 22113 * 22114 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 22115 * any addresses or multicast memberships are failed over to 22116 * a non-STANDBY interface. As failback depends on the old 22117 * index, we should fail setting the index for this case also. 22118 * 22119 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 22120 * Be consistent with PHYI_FAILED and fail the ioctl. 22121 */ 22122 ill = ipif->ipif_ill; 22123 phyi = ill->ill_phyint; 22124 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 22125 ipif->ipif_id != 0 || index == 0) { 22126 return (EINVAL); 22127 } 22128 old_index = phyi->phyint_ifindex; 22129 22130 /* If the index is not changing, no work to do */ 22131 if (old_index == index) 22132 return (0); 22133 22134 /* 22135 * Use ill_lookup_on_ifindex to determine if the 22136 * new index is unused and if so allow the change. 22137 */ 22138 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 22139 ipst); 22140 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 22141 ipst); 22142 if (ill_v6 != NULL || ill_v4 != NULL) { 22143 if (ill_v4 != NULL) 22144 ill_refrele(ill_v4); 22145 if (ill_v6 != NULL) 22146 ill_refrele(ill_v6); 22147 return (EBUSY); 22148 } 22149 22150 /* 22151 * The new index is unused. Set it in the phyint. 22152 * Locate the other ill so that we can send a routing 22153 * sockets message. 22154 */ 22155 if (ill->ill_isv6) { 22156 ill_other = phyi->phyint_illv4; 22157 } else { 22158 ill_other = phyi->phyint_illv6; 22159 } 22160 22161 phyi->phyint_ifindex = index; 22162 22163 connc.cc_old_ifindex = old_index; 22164 connc.cc_new_ifindex = index; 22165 ip_change_ifindex(ill, &connc); 22166 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 22167 22168 /* Send the routing sockets message */ 22169 ip_rts_ifmsg(ipif); 22170 if (ill_other != NULL) 22171 ip_rts_ifmsg(ill_other->ill_ipif); 22172 22173 return (0); 22174 } 22175 22176 /* ARGSUSED */ 22177 int 22178 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22179 ip_ioctl_cmd_t *ipip, void *ifreq) 22180 { 22181 struct ifreq *ifr = (struct ifreq *)ifreq; 22182 struct lifreq *lifr = (struct lifreq *)ifreq; 22183 22184 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 22185 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22186 /* Get the interface index */ 22187 if (ipip->ipi_cmd_type == IF_CMD) { 22188 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22189 } else { 22190 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22191 } 22192 return (0); 22193 } 22194 22195 /* ARGSUSED */ 22196 int 22197 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22198 ip_ioctl_cmd_t *ipip, void *ifreq) 22199 { 22200 struct lifreq *lifr = (struct lifreq *)ifreq; 22201 22202 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 22203 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22204 /* Get the interface zone */ 22205 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22206 lifr->lifr_zoneid = ipif->ipif_zoneid; 22207 return (0); 22208 } 22209 22210 /* 22211 * Set the zoneid of an interface. 22212 */ 22213 /* ARGSUSED */ 22214 int 22215 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22216 ip_ioctl_cmd_t *ipip, void *ifreq) 22217 { 22218 struct lifreq *lifr = (struct lifreq *)ifreq; 22219 int err = 0; 22220 boolean_t need_up = B_FALSE; 22221 zone_t *zptr; 22222 zone_status_t status; 22223 zoneid_t zoneid; 22224 22225 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22226 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22227 if (!is_system_labeled()) 22228 return (ENOTSUP); 22229 zoneid = GLOBAL_ZONEID; 22230 } 22231 22232 /* cannot assign instance zero to a non-global zone */ 22233 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22234 return (ENOTSUP); 22235 22236 /* 22237 * Cannot assign to a zone that doesn't exist or is shutting down. In 22238 * the event of a race with the zone shutdown processing, since IP 22239 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22240 * interface will be cleaned up even if the zone is shut down 22241 * immediately after the status check. If the interface can't be brought 22242 * down right away, and the zone is shut down before the restart 22243 * function is called, we resolve the possible races by rechecking the 22244 * zone status in the restart function. 22245 */ 22246 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22247 return (EINVAL); 22248 status = zone_status_get(zptr); 22249 zone_rele(zptr); 22250 22251 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22252 return (EINVAL); 22253 22254 if (ipif->ipif_flags & IPIF_UP) { 22255 /* 22256 * If the interface is already marked up, 22257 * we call ipif_down which will take care 22258 * of ditching any IREs that have been set 22259 * up based on the old interface address. 22260 */ 22261 err = ipif_logical_down(ipif, q, mp); 22262 if (err == EINPROGRESS) 22263 return (err); 22264 ipif_down_tail(ipif); 22265 need_up = B_TRUE; 22266 } 22267 22268 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22269 return (err); 22270 } 22271 22272 static int 22273 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22274 queue_t *q, mblk_t *mp, boolean_t need_up) 22275 { 22276 int err = 0; 22277 ip_stack_t *ipst; 22278 22279 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22280 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22281 22282 if (CONN_Q(q)) 22283 ipst = CONNQ_TO_IPST(q); 22284 else 22285 ipst = ILLQ_TO_IPST(q); 22286 22287 /* 22288 * For exclusive stacks we don't allow a different zoneid than 22289 * global. 22290 */ 22291 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22292 zoneid != GLOBAL_ZONEID) 22293 return (EINVAL); 22294 22295 /* Set the new zone id. */ 22296 ipif->ipif_zoneid = zoneid; 22297 22298 /* Update sctp list */ 22299 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22300 22301 if (need_up) { 22302 /* 22303 * Now bring the interface back up. If this 22304 * is the only IPIF for the ILL, ipif_up 22305 * will have to re-bind to the device, so 22306 * we may get back EINPROGRESS, in which 22307 * case, this IOCTL will get completed in 22308 * ip_rput_dlpi when we see the DL_BIND_ACK. 22309 */ 22310 err = ipif_up(ipif, q, mp); 22311 } 22312 return (err); 22313 } 22314 22315 /* ARGSUSED */ 22316 int 22317 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22318 ip_ioctl_cmd_t *ipip, void *if_req) 22319 { 22320 struct lifreq *lifr = (struct lifreq *)if_req; 22321 zoneid_t zoneid; 22322 zone_t *zptr; 22323 zone_status_t status; 22324 22325 ASSERT(ipif->ipif_id != 0); 22326 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22327 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22328 zoneid = GLOBAL_ZONEID; 22329 22330 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22331 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22332 22333 /* 22334 * We recheck the zone status to resolve the following race condition: 22335 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22336 * 2) hme0:1 is up and can't be brought down right away; 22337 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22338 * 3) zone "myzone" is halted; the zone status switches to 22339 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22340 * the interfaces to remove - hme0:1 is not returned because it's not 22341 * yet in "myzone", so it won't be removed; 22342 * 4) the restart function for SIOCSLIFZONE is called; without the 22343 * status check here, we would have hme0:1 in "myzone" after it's been 22344 * destroyed. 22345 * Note that if the status check fails, we need to bring the interface 22346 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22347 * ipif_up_done[_v6](). 22348 */ 22349 status = ZONE_IS_UNINITIALIZED; 22350 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22351 status = zone_status_get(zptr); 22352 zone_rele(zptr); 22353 } 22354 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22355 if (ipif->ipif_isv6) { 22356 (void) ipif_up_done_v6(ipif); 22357 } else { 22358 (void) ipif_up_done(ipif); 22359 } 22360 return (EINVAL); 22361 } 22362 22363 ipif_down_tail(ipif); 22364 22365 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22366 B_TRUE)); 22367 } 22368 22369 /* ARGSUSED */ 22370 int 22371 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22372 ip_ioctl_cmd_t *ipip, void *ifreq) 22373 { 22374 struct lifreq *lifr = ifreq; 22375 22376 ASSERT(q->q_next == NULL); 22377 ASSERT(CONN_Q(q)); 22378 22379 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22380 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22381 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22382 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22383 22384 return (0); 22385 } 22386 22387 22388 /* Find the previous ILL in this usesrc group */ 22389 static ill_t * 22390 ill_prev_usesrc(ill_t *uill) 22391 { 22392 ill_t *ill; 22393 22394 for (ill = uill->ill_usesrc_grp_next; 22395 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22396 ill = ill->ill_usesrc_grp_next) 22397 /* do nothing */; 22398 return (ill); 22399 } 22400 22401 /* 22402 * Release all members of the usesrc group. This routine is called 22403 * from ill_delete when the interface being unplumbed is the 22404 * group head. 22405 */ 22406 static void 22407 ill_disband_usesrc_group(ill_t *uill) 22408 { 22409 ill_t *next_ill, *tmp_ill; 22410 ip_stack_t *ipst = uill->ill_ipst; 22411 22412 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22413 next_ill = uill->ill_usesrc_grp_next; 22414 22415 do { 22416 ASSERT(next_ill != NULL); 22417 tmp_ill = next_ill->ill_usesrc_grp_next; 22418 ASSERT(tmp_ill != NULL); 22419 next_ill->ill_usesrc_grp_next = NULL; 22420 next_ill->ill_usesrc_ifindex = 0; 22421 next_ill = tmp_ill; 22422 } while (next_ill->ill_usesrc_ifindex != 0); 22423 uill->ill_usesrc_grp_next = NULL; 22424 } 22425 22426 /* 22427 * Remove the client usesrc ILL from the list and relink to a new list 22428 */ 22429 int 22430 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22431 { 22432 ill_t *ill, *tmp_ill; 22433 ip_stack_t *ipst = ucill->ill_ipst; 22434 22435 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22436 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22437 22438 /* 22439 * Check if the usesrc client ILL passed in is not already 22440 * in use as a usesrc ILL i.e one whose source address is 22441 * in use OR a usesrc ILL is not already in use as a usesrc 22442 * client ILL 22443 */ 22444 if ((ucill->ill_usesrc_ifindex == 0) || 22445 (uill->ill_usesrc_ifindex != 0)) { 22446 return (-1); 22447 } 22448 22449 ill = ill_prev_usesrc(ucill); 22450 ASSERT(ill->ill_usesrc_grp_next != NULL); 22451 22452 /* Remove from the current list */ 22453 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22454 /* Only two elements in the list */ 22455 ASSERT(ill->ill_usesrc_ifindex == 0); 22456 ill->ill_usesrc_grp_next = NULL; 22457 } else { 22458 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22459 } 22460 22461 if (ifindex == 0) { 22462 ucill->ill_usesrc_ifindex = 0; 22463 ucill->ill_usesrc_grp_next = NULL; 22464 return (0); 22465 } 22466 22467 ucill->ill_usesrc_ifindex = ifindex; 22468 tmp_ill = uill->ill_usesrc_grp_next; 22469 uill->ill_usesrc_grp_next = ucill; 22470 ucill->ill_usesrc_grp_next = 22471 (tmp_ill != NULL) ? tmp_ill : uill; 22472 return (0); 22473 } 22474 22475 /* 22476 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22477 * ip.c for locking details. 22478 */ 22479 /* ARGSUSED */ 22480 int 22481 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22482 ip_ioctl_cmd_t *ipip, void *ifreq) 22483 { 22484 struct lifreq *lifr = (struct lifreq *)ifreq; 22485 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22486 ill_flag_changed = B_FALSE; 22487 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22488 int err = 0, ret; 22489 uint_t ifindex; 22490 phyint_t *us_phyint, *us_cli_phyint; 22491 ipsq_t *ipsq = NULL; 22492 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22493 22494 ASSERT(IAM_WRITER_IPIF(ipif)); 22495 ASSERT(q->q_next == NULL); 22496 ASSERT(CONN_Q(q)); 22497 22498 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22499 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22500 22501 ASSERT(us_cli_phyint != NULL); 22502 22503 /* 22504 * If the client ILL is being used for IPMP, abort. 22505 * Note, this can be done before ipsq_try_enter since we are already 22506 * exclusive on this ILL 22507 */ 22508 if ((us_cli_phyint->phyint_groupname != NULL) || 22509 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22510 return (EINVAL); 22511 } 22512 22513 ifindex = lifr->lifr_index; 22514 if (ifindex == 0) { 22515 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22516 /* non usesrc group interface, nothing to reset */ 22517 return (0); 22518 } 22519 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22520 /* valid reset request */ 22521 reset_flg = B_TRUE; 22522 } 22523 22524 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22525 ip_process_ioctl, &err, ipst); 22526 22527 if (usesrc_ill == NULL) { 22528 return (err); 22529 } 22530 22531 /* 22532 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22533 * group nor can either of the interfaces be used for standy. So 22534 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22535 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22536 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22537 * We are already exlusive on this ipsq i.e ipsq corresponding to 22538 * the usesrc_cli_ill 22539 */ 22540 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22541 NEW_OP, B_TRUE); 22542 if (ipsq == NULL) { 22543 err = EINPROGRESS; 22544 /* Operation enqueued on the ipsq of the usesrc ILL */ 22545 goto done; 22546 } 22547 22548 /* Check if the usesrc_ill is used for IPMP */ 22549 us_phyint = usesrc_ill->ill_phyint; 22550 if ((us_phyint->phyint_groupname != NULL) || 22551 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22552 err = EINVAL; 22553 goto done; 22554 } 22555 22556 /* 22557 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22558 * already a client then return EINVAL 22559 */ 22560 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22561 err = EINVAL; 22562 goto done; 22563 } 22564 22565 /* 22566 * If the ill_usesrc_ifindex field is already set to what it needs to 22567 * be then this is a duplicate operation. 22568 */ 22569 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22570 err = 0; 22571 goto done; 22572 } 22573 22574 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22575 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22576 usesrc_ill->ill_isv6)); 22577 22578 /* 22579 * The next step ensures that no new ires will be created referencing 22580 * the client ill, until the ILL_CHANGING flag is cleared. Then 22581 * we go through an ire walk deleting all ire caches that reference 22582 * the client ill. New ires referencing the client ill that are added 22583 * to the ire table before the ILL_CHANGING flag is set, will be 22584 * cleaned up by the ire walk below. Attempt to add new ires referencing 22585 * the client ill while the ILL_CHANGING flag is set will be failed 22586 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22587 * checks (under the ill_g_usesrc_lock) that the ire being added 22588 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22589 * belong to the same usesrc group. 22590 */ 22591 mutex_enter(&usesrc_cli_ill->ill_lock); 22592 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22593 mutex_exit(&usesrc_cli_ill->ill_lock); 22594 ill_flag_changed = B_TRUE; 22595 22596 if (ipif->ipif_isv6) 22597 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22598 ALL_ZONES, ipst); 22599 else 22600 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22601 ALL_ZONES, ipst); 22602 22603 /* 22604 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22605 * and the ill_usesrc_ifindex fields 22606 */ 22607 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22608 22609 if (reset_flg) { 22610 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22611 if (ret != 0) { 22612 err = EINVAL; 22613 } 22614 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22615 goto done; 22616 } 22617 22618 /* 22619 * Four possibilities to consider: 22620 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22621 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22622 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22623 * 4. Both are part of their respective usesrc groups 22624 */ 22625 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22626 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22627 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22628 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22629 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22630 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22631 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22632 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22633 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22634 /* Insert at head of list */ 22635 usesrc_cli_ill->ill_usesrc_grp_next = 22636 usesrc_ill->ill_usesrc_grp_next; 22637 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22638 } else { 22639 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22640 ifindex); 22641 if (ret != 0) 22642 err = EINVAL; 22643 } 22644 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22645 22646 done: 22647 if (ill_flag_changed) { 22648 mutex_enter(&usesrc_cli_ill->ill_lock); 22649 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22650 mutex_exit(&usesrc_cli_ill->ill_lock); 22651 } 22652 if (ipsq != NULL) 22653 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22654 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22655 ill_refrele(usesrc_ill); 22656 return (err); 22657 } 22658 22659 /* 22660 * comparison function used by avl. 22661 */ 22662 static int 22663 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22664 { 22665 22666 uint_t index; 22667 22668 ASSERT(phyip != NULL && index_ptr != NULL); 22669 22670 index = *((uint_t *)index_ptr); 22671 /* 22672 * let the phyint with the lowest index be on top. 22673 */ 22674 if (((phyint_t *)phyip)->phyint_ifindex < index) 22675 return (1); 22676 if (((phyint_t *)phyip)->phyint_ifindex > index) 22677 return (-1); 22678 return (0); 22679 } 22680 22681 /* 22682 * comparison function used by avl. 22683 */ 22684 static int 22685 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22686 { 22687 ill_t *ill; 22688 int res = 0; 22689 22690 ASSERT(phyip != NULL && name_ptr != NULL); 22691 22692 if (((phyint_t *)phyip)->phyint_illv4) 22693 ill = ((phyint_t *)phyip)->phyint_illv4; 22694 else 22695 ill = ((phyint_t *)phyip)->phyint_illv6; 22696 ASSERT(ill != NULL); 22697 22698 res = strcmp(ill->ill_name, (char *)name_ptr); 22699 if (res > 0) 22700 return (1); 22701 else if (res < 0) 22702 return (-1); 22703 return (0); 22704 } 22705 /* 22706 * This function is called from ill_delete when the ill is being 22707 * unplumbed. We remove the reference from the phyint and we also 22708 * free the phyint when there are no more references to it. 22709 */ 22710 static void 22711 ill_phyint_free(ill_t *ill) 22712 { 22713 phyint_t *phyi; 22714 phyint_t *next_phyint; 22715 ipsq_t *cur_ipsq; 22716 ip_stack_t *ipst = ill->ill_ipst; 22717 22718 ASSERT(ill->ill_phyint != NULL); 22719 22720 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22721 phyi = ill->ill_phyint; 22722 ill->ill_phyint = NULL; 22723 /* 22724 * ill_init allocates a phyint always to store the copy 22725 * of flags relevant to phyint. At that point in time, we could 22726 * not assign the name and hence phyint_illv4/v6 could not be 22727 * initialized. Later in ipif_set_values, we assign the name to 22728 * the ill, at which point in time we assign phyint_illv4/v6. 22729 * Thus we don't rely on phyint_illv6 to be initialized always. 22730 */ 22731 if (ill->ill_flags & ILLF_IPV6) { 22732 phyi->phyint_illv6 = NULL; 22733 } else { 22734 phyi->phyint_illv4 = NULL; 22735 } 22736 /* 22737 * ipif_down removes it from the group when the last ipif goes 22738 * down. 22739 */ 22740 ASSERT(ill->ill_group == NULL); 22741 22742 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22743 return; 22744 22745 /* 22746 * Make sure this phyint was put in the list. 22747 */ 22748 if (phyi->phyint_ifindex > 0) { 22749 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22750 phyi); 22751 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22752 phyi); 22753 } 22754 /* 22755 * remove phyint from the ipsq list. 22756 */ 22757 cur_ipsq = phyi->phyint_ipsq; 22758 if (phyi == cur_ipsq->ipsq_phyint_list) { 22759 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22760 } else { 22761 next_phyint = cur_ipsq->ipsq_phyint_list; 22762 while (next_phyint != NULL) { 22763 if (next_phyint->phyint_ipsq_next == phyi) { 22764 next_phyint->phyint_ipsq_next = 22765 phyi->phyint_ipsq_next; 22766 break; 22767 } 22768 next_phyint = next_phyint->phyint_ipsq_next; 22769 } 22770 ASSERT(next_phyint != NULL); 22771 } 22772 IPSQ_DEC_REF(cur_ipsq, ipst); 22773 22774 if (phyi->phyint_groupname_len != 0) { 22775 ASSERT(phyi->phyint_groupname != NULL); 22776 mi_free(phyi->phyint_groupname); 22777 } 22778 mi_free(phyi); 22779 } 22780 22781 /* 22782 * Attach the ill to the phyint structure which can be shared by both 22783 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22784 * function is called from ipif_set_values and ill_lookup_on_name (for 22785 * loopback) where we know the name of the ill. We lookup the ill and if 22786 * there is one present already with the name use that phyint. Otherwise 22787 * reuse the one allocated by ill_init. 22788 */ 22789 static void 22790 ill_phyint_reinit(ill_t *ill) 22791 { 22792 boolean_t isv6 = ill->ill_isv6; 22793 phyint_t *phyi_old; 22794 phyint_t *phyi; 22795 avl_index_t where = 0; 22796 ill_t *ill_other = NULL; 22797 ipsq_t *ipsq; 22798 ip_stack_t *ipst = ill->ill_ipst; 22799 22800 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22801 22802 phyi_old = ill->ill_phyint; 22803 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22804 phyi_old->phyint_illv6 == NULL)); 22805 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22806 phyi_old->phyint_illv4 == NULL)); 22807 ASSERT(phyi_old->phyint_ifindex == 0); 22808 22809 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22810 ill->ill_name, &where); 22811 22812 /* 22813 * 1. We grabbed the ill_g_lock before inserting this ill into 22814 * the global list of ills. So no other thread could have located 22815 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22816 * 2. Now locate the other protocol instance of this ill. 22817 * 3. Now grab both ill locks in the right order, and the phyint lock of 22818 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22819 * of neither ill can change. 22820 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22821 * other ill. 22822 * 5. Release all locks. 22823 */ 22824 22825 /* 22826 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22827 * we are initializing IPv4. 22828 */ 22829 if (phyi != NULL) { 22830 ill_other = (isv6) ? phyi->phyint_illv4 : 22831 phyi->phyint_illv6; 22832 ASSERT(ill_other->ill_phyint != NULL); 22833 ASSERT((isv6 && !ill_other->ill_isv6) || 22834 (!isv6 && ill_other->ill_isv6)); 22835 GRAB_ILL_LOCKS(ill, ill_other); 22836 /* 22837 * We are potentially throwing away phyint_flags which 22838 * could be different from the one that we obtain from 22839 * ill_other->ill_phyint. But it is okay as we are assuming 22840 * that the state maintained within IP is correct. 22841 */ 22842 mutex_enter(&phyi->phyint_lock); 22843 if (isv6) { 22844 ASSERT(phyi->phyint_illv6 == NULL); 22845 phyi->phyint_illv6 = ill; 22846 } else { 22847 ASSERT(phyi->phyint_illv4 == NULL); 22848 phyi->phyint_illv4 = ill; 22849 } 22850 /* 22851 * This is a new ill, currently undergoing SLIFNAME 22852 * So we could not have joined an IPMP group until now. 22853 */ 22854 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22855 phyi_old->phyint_groupname == NULL); 22856 22857 /* 22858 * This phyi_old is going away. Decref ipsq_refs and 22859 * assert it is zero. The ipsq itself will be freed in 22860 * ipsq_exit 22861 */ 22862 ipsq = phyi_old->phyint_ipsq; 22863 IPSQ_DEC_REF(ipsq, ipst); 22864 ASSERT(ipsq->ipsq_refs == 0); 22865 /* Get the singleton phyint out of the ipsq list */ 22866 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22867 ipsq->ipsq_phyint_list = NULL; 22868 phyi_old->phyint_illv4 = NULL; 22869 phyi_old->phyint_illv6 = NULL; 22870 mi_free(phyi_old); 22871 } else { 22872 mutex_enter(&ill->ill_lock); 22873 /* 22874 * We don't need to acquire any lock, since 22875 * the ill is not yet visible globally and we 22876 * have not yet released the ill_g_lock. 22877 */ 22878 phyi = phyi_old; 22879 mutex_enter(&phyi->phyint_lock); 22880 /* XXX We need a recovery strategy here. */ 22881 if (!phyint_assign_ifindex(phyi, ipst)) 22882 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22883 22884 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22885 (void *)phyi, where); 22886 22887 (void) avl_find(&ipst->ips_phyint_g_list-> 22888 phyint_list_avl_by_index, 22889 &phyi->phyint_ifindex, &where); 22890 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22891 (void *)phyi, where); 22892 } 22893 22894 /* 22895 * Reassigning ill_phyint automatically reassigns the ipsq also. 22896 * pending mp is not affected because that is per ill basis. 22897 */ 22898 ill->ill_phyint = phyi; 22899 22900 /* 22901 * Keep the index on ipif_orig_index to be used by FAILOVER. 22902 * We do this here as when the first ipif was allocated, 22903 * ipif_allocate does not know the right interface index. 22904 */ 22905 22906 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22907 /* 22908 * Now that the phyint's ifindex has been assigned, complete the 22909 * remaining 22910 */ 22911 22912 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22913 if (ill->ill_isv6) { 22914 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22915 ill->ill_phyint->phyint_ifindex; 22916 } 22917 22918 /* 22919 * Generate an event within the hooks framework to indicate that 22920 * a new interface has just been added to IP. For this event to 22921 * be generated, the network interface must, at least, have an 22922 * ifindex assigned to it. 22923 * 22924 * This needs to be run inside the ill_g_lock perimeter to ensure 22925 * that the ordering of delivered events to listeners matches the 22926 * order of them in the kernel. 22927 * 22928 * This function could be called from ill_lookup_on_name. In that case 22929 * the interface is loopback "lo", which will not generate a NIC event. 22930 */ 22931 if (ill->ill_name_length <= 2 || 22932 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22933 hook_nic_event_t *info; 22934 if ((info = ill->ill_nic_event_info) != NULL) { 22935 ip2dbg(("ill_phyint_reinit: unexpected nic event %d " 22936 "attached for %s\n", info->hne_event, 22937 ill->ill_name)); 22938 if (info->hne_data != NULL) 22939 kmem_free(info->hne_data, info->hne_datalen); 22940 kmem_free(info, sizeof (hook_nic_event_t)); 22941 } 22942 22943 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22944 if (info != NULL) { 22945 info->hne_nic = ill->ill_phyint->phyint_ifindex; 22946 info->hne_lif = 0; 22947 info->hne_event = NE_PLUMB; 22948 info->hne_family = ill->ill_isv6 ? 22949 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 22950 info->hne_data = kmem_alloc(ill->ill_name_length, 22951 KM_NOSLEEP); 22952 if (info->hne_data != NULL) { 22953 info->hne_datalen = ill->ill_name_length; 22954 bcopy(ill->ill_name, info->hne_data, 22955 info->hne_datalen); 22956 } else { 22957 ip2dbg(("ill_phyint_reinit: could not attach " 22958 "ill_name information for PLUMB nic event " 22959 "of %s (ENOMEM)\n", ill->ill_name)); 22960 kmem_free(info, sizeof (hook_nic_event_t)); 22961 } 22962 } else 22963 ip2dbg(("ill_phyint_reinit: could not attach PLUMB nic " 22964 "event information for %s (ENOMEM)\n", 22965 ill->ill_name)); 22966 22967 ill->ill_nic_event_info = info; 22968 } 22969 22970 RELEASE_ILL_LOCKS(ill, ill_other); 22971 mutex_exit(&phyi->phyint_lock); 22972 } 22973 22974 /* 22975 * Notify any downstream modules of the name of this interface. 22976 * An M_IOCTL is used even though we don't expect a successful reply. 22977 * Any reply message from the driver (presumably an M_IOCNAK) will 22978 * eventually get discarded somewhere upstream. The message format is 22979 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22980 * to IP. 22981 */ 22982 static void 22983 ip_ifname_notify(ill_t *ill, queue_t *q) 22984 { 22985 mblk_t *mp1, *mp2; 22986 struct iocblk *iocp; 22987 struct lifreq *lifr; 22988 22989 mp1 = mkiocb(SIOCSLIFNAME); 22990 if (mp1 == NULL) 22991 return; 22992 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22993 if (mp2 == NULL) { 22994 freeb(mp1); 22995 return; 22996 } 22997 22998 mp1->b_cont = mp2; 22999 iocp = (struct iocblk *)mp1->b_rptr; 23000 iocp->ioc_count = sizeof (struct lifreq); 23001 23002 lifr = (struct lifreq *)mp2->b_rptr; 23003 mp2->b_wptr += sizeof (struct lifreq); 23004 bzero(lifr, sizeof (struct lifreq)); 23005 23006 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 23007 lifr->lifr_ppa = ill->ill_ppa; 23008 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 23009 23010 putnext(q, mp1); 23011 } 23012 23013 static int 23014 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 23015 { 23016 int err; 23017 ip_stack_t *ipst = ill->ill_ipst; 23018 23019 /* Set the obsolete NDD per-interface forwarding name. */ 23020 err = ill_set_ndd_name(ill); 23021 if (err != 0) { 23022 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 23023 err); 23024 } 23025 23026 /* Tell downstream modules where they are. */ 23027 ip_ifname_notify(ill, q); 23028 23029 /* 23030 * ill_dl_phys returns EINPROGRESS in the usual case. 23031 * Error cases are ENOMEM ... 23032 */ 23033 err = ill_dl_phys(ill, ipif, mp, q); 23034 23035 /* 23036 * If there is no IRE expiration timer running, get one started. 23037 * igmp and mld timers will be triggered by the first multicast 23038 */ 23039 if (ipst->ips_ip_ire_expire_id == 0) { 23040 /* 23041 * acquire the lock and check again. 23042 */ 23043 mutex_enter(&ipst->ips_ip_trash_timer_lock); 23044 if (ipst->ips_ip_ire_expire_id == 0) { 23045 ipst->ips_ip_ire_expire_id = timeout( 23046 ip_trash_timer_expire, ipst, 23047 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 23048 } 23049 mutex_exit(&ipst->ips_ip_trash_timer_lock); 23050 } 23051 23052 if (ill->ill_isv6) { 23053 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 23054 if (ipst->ips_mld_slowtimeout_id == 0) { 23055 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 23056 (void *)ipst, 23057 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23058 } 23059 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 23060 } else { 23061 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 23062 if (ipst->ips_igmp_slowtimeout_id == 0) { 23063 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 23064 (void *)ipst, 23065 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23066 } 23067 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 23068 } 23069 23070 return (err); 23071 } 23072 23073 /* 23074 * Common routine for ppa and ifname setting. Should be called exclusive. 23075 * 23076 * Returns EINPROGRESS when mp has been consumed by queueing it on 23077 * ill_pending_mp and the ioctl will complete in ip_rput. 23078 * 23079 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 23080 * the new name and new ppa in lifr_name and lifr_ppa respectively. 23081 * For SLIFNAME, we pass these values back to the userland. 23082 */ 23083 static int 23084 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 23085 { 23086 ill_t *ill; 23087 ipif_t *ipif; 23088 ipsq_t *ipsq; 23089 char *ppa_ptr; 23090 char *old_ptr; 23091 char old_char; 23092 int error; 23093 ip_stack_t *ipst; 23094 23095 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 23096 ASSERT(q->q_next != NULL); 23097 ASSERT(interf_name != NULL); 23098 23099 ill = (ill_t *)q->q_ptr; 23100 ipst = ill->ill_ipst; 23101 23102 ASSERT(ill->ill_ipst != NULL); 23103 ASSERT(ill->ill_name[0] == '\0'); 23104 ASSERT(IAM_WRITER_ILL(ill)); 23105 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 23106 ASSERT(ill->ill_ppa == UINT_MAX); 23107 23108 /* The ppa is sent down by ifconfig or is chosen */ 23109 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 23110 return (EINVAL); 23111 } 23112 23113 /* 23114 * make sure ppa passed in is same as ppa in the name. 23115 * This check is not made when ppa == UINT_MAX in that case ppa 23116 * in the name could be anything. System will choose a ppa and 23117 * update new_ppa_ptr and inter_name to contain the choosen ppa. 23118 */ 23119 if (*new_ppa_ptr != UINT_MAX) { 23120 /* stoi changes the pointer */ 23121 old_ptr = ppa_ptr; 23122 /* 23123 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 23124 * (they don't have an externally visible ppa). We assign one 23125 * here so that we can manage the interface. Note that in 23126 * the past this value was always 0 for DLPI 1 drivers. 23127 */ 23128 if (*new_ppa_ptr == 0) 23129 *new_ppa_ptr = stoi(&old_ptr); 23130 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 23131 return (EINVAL); 23132 } 23133 /* 23134 * terminate string before ppa 23135 * save char at that location. 23136 */ 23137 old_char = ppa_ptr[0]; 23138 ppa_ptr[0] = '\0'; 23139 23140 ill->ill_ppa = *new_ppa_ptr; 23141 /* 23142 * Finish as much work now as possible before calling ill_glist_insert 23143 * which makes the ill globally visible and also merges it with the 23144 * other protocol instance of this phyint. The remaining work is 23145 * done after entering the ipsq which may happen sometime later. 23146 * ill_set_ndd_name occurs after the ill has been made globally visible. 23147 */ 23148 ipif = ill->ill_ipif; 23149 23150 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 23151 ipif_assign_seqid(ipif); 23152 23153 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 23154 ill->ill_flags |= ILLF_IPV4; 23155 23156 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 23157 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 23158 23159 if (ill->ill_flags & ILLF_IPV6) { 23160 23161 ill->ill_isv6 = B_TRUE; 23162 if (ill->ill_rq != NULL) { 23163 ill->ill_rq->q_qinfo = &rinit_ipv6; 23164 ill->ill_wq->q_qinfo = &winit_ipv6; 23165 } 23166 23167 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23168 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23169 ipif->ipif_v6src_addr = ipv6_all_zeros; 23170 ipif->ipif_v6subnet = ipv6_all_zeros; 23171 ipif->ipif_v6net_mask = ipv6_all_zeros; 23172 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23173 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23174 /* 23175 * point-to-point or Non-mulicast capable 23176 * interfaces won't do NUD unless explicitly 23177 * configured to do so. 23178 */ 23179 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23180 !(ill->ill_flags & ILLF_MULTICAST)) { 23181 ill->ill_flags |= ILLF_NONUD; 23182 } 23183 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23184 if (ill->ill_flags & ILLF_NOARP) { 23185 /* 23186 * Note: xresolv interfaces will eventually need 23187 * NOARP set here as well, but that will require 23188 * those external resolvers to have some 23189 * knowledge of that flag and act appropriately. 23190 * Not to be changed at present. 23191 */ 23192 ill->ill_flags &= ~ILLF_NOARP; 23193 } 23194 /* 23195 * Set the ILLF_ROUTER flag according to the global 23196 * IPv6 forwarding policy. 23197 */ 23198 if (ipst->ips_ipv6_forward != 0) 23199 ill->ill_flags |= ILLF_ROUTER; 23200 } else if (ill->ill_flags & ILLF_IPV4) { 23201 ill->ill_isv6 = B_FALSE; 23202 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23203 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23204 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23205 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23206 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23207 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23208 /* 23209 * Set the ILLF_ROUTER flag according to the global 23210 * IPv4 forwarding policy. 23211 */ 23212 if (ipst->ips_ip_g_forward != 0) 23213 ill->ill_flags |= ILLF_ROUTER; 23214 } 23215 23216 ASSERT(ill->ill_phyint != NULL); 23217 23218 /* 23219 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23220 * be completed in ill_glist_insert -> ill_phyint_reinit 23221 */ 23222 if (!ill_allocate_mibs(ill)) 23223 return (ENOMEM); 23224 23225 /* 23226 * Pick a default sap until we get the DL_INFO_ACK back from 23227 * the driver. 23228 */ 23229 if (ill->ill_sap == 0) { 23230 if (ill->ill_isv6) 23231 ill->ill_sap = IP6_DL_SAP; 23232 else 23233 ill->ill_sap = IP_DL_SAP; 23234 } 23235 23236 ill->ill_ifname_pending = 1; 23237 ill->ill_ifname_pending_err = 0; 23238 23239 ill_refhold(ill); 23240 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23241 if ((error = ill_glist_insert(ill, interf_name, 23242 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23243 ill->ill_ppa = UINT_MAX; 23244 ill->ill_name[0] = '\0'; 23245 /* 23246 * undo null termination done above. 23247 */ 23248 ppa_ptr[0] = old_char; 23249 rw_exit(&ipst->ips_ill_g_lock); 23250 ill_refrele(ill); 23251 return (error); 23252 } 23253 23254 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23255 23256 /* 23257 * When we return the buffer pointed to by interf_name should contain 23258 * the same name as in ill_name. 23259 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23260 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23261 * so copy full name and update the ppa ptr. 23262 * When ppa passed in != UINT_MAX all values are correct just undo 23263 * null termination, this saves a bcopy. 23264 */ 23265 if (*new_ppa_ptr == UINT_MAX) { 23266 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23267 *new_ppa_ptr = ill->ill_ppa; 23268 } else { 23269 /* 23270 * undo null termination done above. 23271 */ 23272 ppa_ptr[0] = old_char; 23273 } 23274 23275 /* Let SCTP know about this ILL */ 23276 sctp_update_ill(ill, SCTP_ILL_INSERT); 23277 23278 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23279 B_TRUE); 23280 23281 rw_exit(&ipst->ips_ill_g_lock); 23282 ill_refrele(ill); 23283 if (ipsq == NULL) 23284 return (EINPROGRESS); 23285 23286 /* 23287 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23288 */ 23289 if (ipsq->ipsq_current_ipif == NULL) 23290 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23291 else 23292 ASSERT(ipsq->ipsq_current_ipif == ipif); 23293 23294 error = ipif_set_values_tail(ill, ipif, mp, q); 23295 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23296 if (error != 0 && error != EINPROGRESS) { 23297 /* 23298 * restore previous values 23299 */ 23300 ill->ill_isv6 = B_FALSE; 23301 } 23302 return (error); 23303 } 23304 23305 23306 void 23307 ipif_init(ip_stack_t *ipst) 23308 { 23309 hrtime_t hrt; 23310 int i; 23311 23312 /* 23313 * Can't call drv_getparm here as it is too early in the boot. 23314 * As we use ipif_src_random just for picking a different 23315 * source address everytime, this need not be really random. 23316 */ 23317 hrt = gethrtime(); 23318 ipst->ips_ipif_src_random = 23319 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23320 23321 for (i = 0; i < MAX_G_HEADS; i++) { 23322 ipst->ips_ill_g_heads[i].ill_g_list_head = 23323 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23324 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23325 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23326 } 23327 23328 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23329 ill_phyint_compare_index, 23330 sizeof (phyint_t), 23331 offsetof(struct phyint, phyint_avl_by_index)); 23332 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23333 ill_phyint_compare_name, 23334 sizeof (phyint_t), 23335 offsetof(struct phyint, phyint_avl_by_name)); 23336 } 23337 23338 /* 23339 * This is called by ip_rt_add when src_addr value is other than zero. 23340 * src_addr signifies the source address of the incoming packet. For 23341 * reverse tunnel route we need to create a source addr based routing 23342 * table. This routine creates ip_mrtun_table if it's empty and then 23343 * it adds the route entry hashed by source address. It verifies that 23344 * the outgoing interface is always a non-resolver interface (tunnel). 23345 */ 23346 int 23347 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 23348 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, 23349 ip_stack_t *ipst) 23350 { 23351 ire_t *ire; 23352 ire_t *save_ire; 23353 ipif_t *ipif; 23354 ill_t *in_ill = NULL; 23355 ill_t *out_ill; 23356 queue_t *stq; 23357 mblk_t *dlureq_mp; 23358 int error; 23359 23360 if (ire_arg != NULL) 23361 *ire_arg = NULL; 23362 ASSERT(in_src_addr != INADDR_ANY); 23363 23364 ipif = ipif_arg; 23365 if (ipif != NULL) { 23366 out_ill = ipif->ipif_ill; 23367 } else { 23368 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23369 return (EINVAL); 23370 } 23371 23372 if (src_ipif == NULL) { 23373 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23374 return (EINVAL); 23375 } 23376 in_ill = src_ipif->ipif_ill; 23377 23378 /* 23379 * Check for duplicates. We don't need to 23380 * match out_ill, because the uniqueness of 23381 * a route is only dependent on src_addr and 23382 * in_ill. 23383 */ 23384 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23385 if (ire != NULL) { 23386 ire_refrele(ire); 23387 return (EEXIST); 23388 } 23389 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23390 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23391 ipif->ipif_net_type)); 23392 return (EINVAL); 23393 } 23394 23395 stq = ipif->ipif_wq; 23396 ASSERT(stq != NULL); 23397 23398 /* 23399 * The outgoing interface must be non-resolver 23400 * interface. 23401 */ 23402 dlureq_mp = ill_dlur_gen(NULL, 23403 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23404 out_ill->ill_sap_length); 23405 23406 if (dlureq_mp == NULL) { 23407 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23408 return (ENOMEM); 23409 } 23410 23411 /* Create the IRE. */ 23412 23413 ire = ire_create( 23414 NULL, /* Zero dst addr */ 23415 NULL, /* Zero mask */ 23416 NULL, /* Zero gateway addr */ 23417 NULL, /* Zero ipif_src addr */ 23418 (uint8_t *)&in_src_addr, /* in_src-addr */ 23419 &ipif->ipif_mtu, 23420 NULL, 23421 NULL, /* rfq */ 23422 stq, 23423 IRE_MIPRTUN, 23424 dlureq_mp, 23425 ipif, 23426 in_ill, 23427 0, 23428 0, 23429 0, 23430 flags, 23431 &ire_uinfo_null, 23432 NULL, 23433 NULL, 23434 ipst); 23435 23436 if (ire == NULL) { 23437 freeb(dlureq_mp); 23438 return (ENOMEM); 23439 } 23440 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23441 ire->ire_type)); 23442 save_ire = ire; 23443 ASSERT(save_ire != NULL); 23444 error = ire_add_mrtun(&ire, q, mp, func); 23445 /* 23446 * If ire_add_mrtun() failed, the ire passed in was freed 23447 * so there is no need to do so here. 23448 */ 23449 if (error != 0) { 23450 return (error); 23451 } 23452 23453 /* Duplicate check */ 23454 if (ire != save_ire) { 23455 /* route already exists by now */ 23456 ire_refrele(ire); 23457 return (EEXIST); 23458 } 23459 23460 if (ire_arg != NULL) { 23461 /* 23462 * Store the ire that was just added. the caller 23463 * ip_rts_request responsible for doing ire_refrele() 23464 * on it. 23465 */ 23466 *ire_arg = ire; 23467 } else { 23468 ire_refrele(ire); /* held in ire_add_mrtun */ 23469 } 23470 23471 return (0); 23472 } 23473 23474 /* 23475 * It is called by ip_rt_delete() only when mipagent requests to delete 23476 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23477 */ 23478 23479 int 23480 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23481 { 23482 ire_t *ire = NULL; 23483 23484 if (in_src_addr == INADDR_ANY) 23485 return (EINVAL); 23486 if (src_ipif == NULL) 23487 return (EINVAL); 23488 23489 /* search if this route exists in the ip_mrtun_table */ 23490 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23491 if (ire == NULL) { 23492 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23493 return (ESRCH); 23494 } 23495 ire_delete(ire); 23496 ire_refrele(ire); 23497 return (0); 23498 } 23499 23500 /* 23501 * Lookup the ipif corresponding to the onlink destination address. For 23502 * point-to-point interfaces, it matches with remote endpoint destination 23503 * address. For point-to-multipoint interfaces it only tries to match the 23504 * destination with the interface's subnet address. The longest, most specific 23505 * match is found to take care of such rare network configurations like - 23506 * le0: 129.146.1.1/16 23507 * le1: 129.146.2.2/24 23508 * It is used only by SO_DONTROUTE at the moment. 23509 */ 23510 ipif_t * 23511 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23512 { 23513 ipif_t *ipif, *best_ipif; 23514 ill_t *ill; 23515 ill_walk_context_t ctx; 23516 23517 ASSERT(zoneid != ALL_ZONES); 23518 best_ipif = NULL; 23519 23520 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23521 ill = ILL_START_WALK_V4(&ctx, ipst); 23522 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23523 mutex_enter(&ill->ill_lock); 23524 for (ipif = ill->ill_ipif; ipif != NULL; 23525 ipif = ipif->ipif_next) { 23526 if (!IPIF_CAN_LOOKUP(ipif)) 23527 continue; 23528 if (ipif->ipif_zoneid != zoneid && 23529 ipif->ipif_zoneid != ALL_ZONES) 23530 continue; 23531 /* 23532 * Point-to-point case. Look for exact match with 23533 * destination address. 23534 */ 23535 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23536 if (ipif->ipif_pp_dst_addr == addr) { 23537 ipif_refhold_locked(ipif); 23538 mutex_exit(&ill->ill_lock); 23539 rw_exit(&ipst->ips_ill_g_lock); 23540 if (best_ipif != NULL) 23541 ipif_refrele(best_ipif); 23542 return (ipif); 23543 } 23544 } else if (ipif->ipif_subnet == (addr & 23545 ipif->ipif_net_mask)) { 23546 /* 23547 * Point-to-multipoint case. Looping through to 23548 * find the most specific match. If there are 23549 * multiple best match ipif's then prefer ipif's 23550 * that are UP. If there is only one best match 23551 * ipif and it is DOWN we must still return it. 23552 */ 23553 if ((best_ipif == NULL) || 23554 (ipif->ipif_net_mask > 23555 best_ipif->ipif_net_mask) || 23556 ((ipif->ipif_net_mask == 23557 best_ipif->ipif_net_mask) && 23558 ((ipif->ipif_flags & IPIF_UP) && 23559 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23560 ipif_refhold_locked(ipif); 23561 mutex_exit(&ill->ill_lock); 23562 rw_exit(&ipst->ips_ill_g_lock); 23563 if (best_ipif != NULL) 23564 ipif_refrele(best_ipif); 23565 best_ipif = ipif; 23566 rw_enter(&ipst->ips_ill_g_lock, 23567 RW_READER); 23568 mutex_enter(&ill->ill_lock); 23569 } 23570 } 23571 } 23572 mutex_exit(&ill->ill_lock); 23573 } 23574 rw_exit(&ipst->ips_ill_g_lock); 23575 return (best_ipif); 23576 } 23577 23578 23579 /* 23580 * Save enough information so that we can recreate the IRE if 23581 * the interface goes down and then up. 23582 */ 23583 static void 23584 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23585 { 23586 mblk_t *save_mp; 23587 23588 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23589 if (save_mp != NULL) { 23590 ifrt_t *ifrt; 23591 23592 save_mp->b_wptr += sizeof (ifrt_t); 23593 ifrt = (ifrt_t *)save_mp->b_rptr; 23594 bzero(ifrt, sizeof (ifrt_t)); 23595 ifrt->ifrt_type = ire->ire_type; 23596 ifrt->ifrt_addr = ire->ire_addr; 23597 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23598 ifrt->ifrt_src_addr = ire->ire_src_addr; 23599 ifrt->ifrt_mask = ire->ire_mask; 23600 ifrt->ifrt_flags = ire->ire_flags; 23601 ifrt->ifrt_max_frag = ire->ire_max_frag; 23602 mutex_enter(&ipif->ipif_saved_ire_lock); 23603 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23604 ipif->ipif_saved_ire_mp = save_mp; 23605 ipif->ipif_saved_ire_cnt++; 23606 mutex_exit(&ipif->ipif_saved_ire_lock); 23607 } 23608 } 23609 23610 23611 static void 23612 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23613 { 23614 mblk_t **mpp; 23615 mblk_t *mp; 23616 ifrt_t *ifrt; 23617 23618 /* Remove from ipif_saved_ire_mp list if it is there */ 23619 mutex_enter(&ipif->ipif_saved_ire_lock); 23620 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23621 mpp = &(*mpp)->b_cont) { 23622 /* 23623 * On a given ipif, the triple of address, gateway and 23624 * mask is unique for each saved IRE (in the case of 23625 * ordinary interface routes, the gateway address is 23626 * all-zeroes). 23627 */ 23628 mp = *mpp; 23629 ifrt = (ifrt_t *)mp->b_rptr; 23630 if (ifrt->ifrt_addr == ire->ire_addr && 23631 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23632 ifrt->ifrt_mask == ire->ire_mask) { 23633 *mpp = mp->b_cont; 23634 ipif->ipif_saved_ire_cnt--; 23635 freeb(mp); 23636 break; 23637 } 23638 } 23639 mutex_exit(&ipif->ipif_saved_ire_lock); 23640 } 23641 23642 23643 /* 23644 * IP multirouting broadcast routes handling 23645 * Append CGTP broadcast IREs to regular ones created 23646 * at ifconfig time. 23647 */ 23648 static void 23649 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23650 { 23651 ire_t *ire_prim; 23652 23653 ASSERT(ire != NULL); 23654 ASSERT(ire_dst != NULL); 23655 23656 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23657 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23658 if (ire_prim != NULL) { 23659 /* 23660 * We are in the special case of broadcasts for 23661 * CGTP. We add an IRE_BROADCAST that holds 23662 * the RTF_MULTIRT flag, the destination 23663 * address of ire_dst and the low level 23664 * info of ire_prim. In other words, CGTP 23665 * broadcast is added to the redundant ipif. 23666 */ 23667 ipif_t *ipif_prim; 23668 ire_t *bcast_ire; 23669 23670 ipif_prim = ire_prim->ire_ipif; 23671 23672 ip2dbg(("ip_cgtp_filter_bcast_add: " 23673 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23674 (void *)ire_dst, (void *)ire_prim, 23675 (void *)ipif_prim)); 23676 23677 bcast_ire = ire_create( 23678 (uchar_t *)&ire->ire_addr, 23679 (uchar_t *)&ip_g_all_ones, 23680 (uchar_t *)&ire_dst->ire_src_addr, 23681 (uchar_t *)&ire->ire_gateway_addr, 23682 NULL, 23683 &ipif_prim->ipif_mtu, 23684 NULL, 23685 ipif_prim->ipif_rq, 23686 ipif_prim->ipif_wq, 23687 IRE_BROADCAST, 23688 ipif_prim->ipif_bcast_mp, 23689 ipif_prim, 23690 NULL, 23691 0, 23692 0, 23693 0, 23694 ire->ire_flags, 23695 &ire_uinfo_null, 23696 NULL, 23697 NULL, 23698 ipst); 23699 23700 if (bcast_ire != NULL) { 23701 23702 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23703 B_FALSE) == 0) { 23704 ip2dbg(("ip_cgtp_filter_bcast_add: " 23705 "added bcast_ire %p\n", 23706 (void *)bcast_ire)); 23707 23708 ipif_save_ire(bcast_ire->ire_ipif, 23709 bcast_ire); 23710 ire_refrele(bcast_ire); 23711 } 23712 } 23713 ire_refrele(ire_prim); 23714 } 23715 } 23716 23717 23718 /* 23719 * IP multirouting broadcast routes handling 23720 * Remove the broadcast ire 23721 */ 23722 static void 23723 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23724 { 23725 ire_t *ire_dst; 23726 23727 ASSERT(ire != NULL); 23728 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23729 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23730 if (ire_dst != NULL) { 23731 ire_t *ire_prim; 23732 23733 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23734 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23735 if (ire_prim != NULL) { 23736 ipif_t *ipif_prim; 23737 ire_t *bcast_ire; 23738 23739 ipif_prim = ire_prim->ire_ipif; 23740 23741 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23742 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23743 (void *)ire_dst, (void *)ire_prim, 23744 (void *)ipif_prim)); 23745 23746 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23747 ire->ire_gateway_addr, 23748 IRE_BROADCAST, 23749 ipif_prim, ALL_ZONES, 23750 NULL, 23751 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23752 MATCH_IRE_MASK, ipst); 23753 23754 if (bcast_ire != NULL) { 23755 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23756 "looked up bcast_ire %p\n", 23757 (void *)bcast_ire)); 23758 ipif_remove_ire(bcast_ire->ire_ipif, 23759 bcast_ire); 23760 ire_delete(bcast_ire); 23761 } 23762 ire_refrele(ire_prim); 23763 } 23764 ire_refrele(ire_dst); 23765 } 23766 } 23767 23768 /* 23769 * IPsec hardware acceleration capabilities related functions. 23770 */ 23771 23772 /* 23773 * Free a per-ill IPsec capabilities structure. 23774 */ 23775 static void 23776 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23777 { 23778 if (capab->auth_hw_algs != NULL) 23779 kmem_free(capab->auth_hw_algs, capab->algs_size); 23780 if (capab->encr_hw_algs != NULL) 23781 kmem_free(capab->encr_hw_algs, capab->algs_size); 23782 if (capab->encr_algparm != NULL) 23783 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23784 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23785 } 23786 23787 /* 23788 * Allocate a new per-ill IPsec capabilities structure. This structure 23789 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23790 * an array which specifies, for each algorithm, whether this algorithm 23791 * is supported by the ill or not. 23792 */ 23793 static ill_ipsec_capab_t * 23794 ill_ipsec_capab_alloc(void) 23795 { 23796 ill_ipsec_capab_t *capab; 23797 uint_t nelems; 23798 23799 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23800 if (capab == NULL) 23801 return (NULL); 23802 23803 /* we need one bit per algorithm */ 23804 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23805 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23806 23807 /* allocate memory to store algorithm flags */ 23808 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23809 if (capab->encr_hw_algs == NULL) 23810 goto nomem; 23811 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23812 if (capab->auth_hw_algs == NULL) 23813 goto nomem; 23814 /* 23815 * Leave encr_algparm NULL for now since we won't need it half 23816 * the time 23817 */ 23818 return (capab); 23819 23820 nomem: 23821 ill_ipsec_capab_free(capab); 23822 return (NULL); 23823 } 23824 23825 /* 23826 * Resize capability array. Since we're exclusive, this is OK. 23827 */ 23828 static boolean_t 23829 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23830 { 23831 ipsec_capab_algparm_t *nalp, *oalp; 23832 uint32_t olen, nlen; 23833 23834 oalp = capab->encr_algparm; 23835 olen = capab->encr_algparm_size; 23836 23837 if (oalp != NULL) { 23838 if (algid < capab->encr_algparm_end) 23839 return (B_TRUE); 23840 } 23841 23842 nlen = (algid + 1) * sizeof (*nalp); 23843 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23844 if (nalp == NULL) 23845 return (B_FALSE); 23846 23847 if (oalp != NULL) { 23848 bcopy(oalp, nalp, olen); 23849 kmem_free(oalp, olen); 23850 } 23851 capab->encr_algparm = nalp; 23852 capab->encr_algparm_size = nlen; 23853 capab->encr_algparm_end = algid + 1; 23854 23855 return (B_TRUE); 23856 } 23857 23858 /* 23859 * Compare the capabilities of the specified ill with the protocol 23860 * and algorithms specified by the SA passed as argument. 23861 * If they match, returns B_TRUE, B_FALSE if they do not match. 23862 * 23863 * The ill can be passed as a pointer to it, or by specifying its index 23864 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23865 * 23866 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23867 * packet is eligible for hardware acceleration, and by 23868 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23869 * to a particular ill. 23870 */ 23871 boolean_t 23872 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23873 ipsa_t *sa, netstack_t *ns) 23874 { 23875 boolean_t sa_isv6; 23876 uint_t algid; 23877 struct ill_ipsec_capab_s *cpp; 23878 boolean_t need_refrele = B_FALSE; 23879 ip_stack_t *ipst = ns->netstack_ip; 23880 23881 if (ill == NULL) { 23882 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23883 NULL, NULL, NULL, ipst); 23884 if (ill == NULL) { 23885 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23886 return (B_FALSE); 23887 } 23888 need_refrele = B_TRUE; 23889 } 23890 23891 /* 23892 * Use the address length specified by the SA to determine 23893 * if it corresponds to a IPv6 address, and fail the matching 23894 * if the isv6 flag passed as argument does not match. 23895 * Note: this check is used for SADB capability checking before 23896 * sending SA information to an ill. 23897 */ 23898 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23899 if (sa_isv6 != ill_isv6) 23900 /* protocol mismatch */ 23901 goto done; 23902 23903 /* 23904 * Check if the ill supports the protocol, algorithm(s) and 23905 * key size(s) specified by the SA, and get the pointers to 23906 * the algorithms supported by the ill. 23907 */ 23908 switch (sa->ipsa_type) { 23909 23910 case SADB_SATYPE_ESP: 23911 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23912 /* ill does not support ESP acceleration */ 23913 goto done; 23914 cpp = ill->ill_ipsec_capab_esp; 23915 algid = sa->ipsa_auth_alg; 23916 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23917 goto done; 23918 algid = sa->ipsa_encr_alg; 23919 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23920 goto done; 23921 if (algid < cpp->encr_algparm_end) { 23922 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23923 if (sa->ipsa_encrkeybits < alp->minkeylen) 23924 goto done; 23925 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23926 goto done; 23927 } 23928 break; 23929 23930 case SADB_SATYPE_AH: 23931 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23932 /* ill does not support AH acceleration */ 23933 goto done; 23934 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23935 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23936 goto done; 23937 break; 23938 } 23939 23940 if (need_refrele) 23941 ill_refrele(ill); 23942 return (B_TRUE); 23943 done: 23944 if (need_refrele) 23945 ill_refrele(ill); 23946 return (B_FALSE); 23947 } 23948 23949 23950 /* 23951 * Add a new ill to the list of IPsec capable ills. 23952 * Called from ill_capability_ipsec_ack() when an ACK was received 23953 * indicating that IPsec hardware processing was enabled for an ill. 23954 * 23955 * ill must point to the ill for which acceleration was enabled. 23956 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23957 */ 23958 static void 23959 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23960 { 23961 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23962 uint_t sa_type; 23963 uint_t ipproto; 23964 ip_stack_t *ipst = ill->ill_ipst; 23965 23966 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23967 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23968 23969 switch (dl_cap) { 23970 case DL_CAPAB_IPSEC_AH: 23971 sa_type = SADB_SATYPE_AH; 23972 ills = &ipst->ips_ipsec_capab_ills_ah; 23973 ipproto = IPPROTO_AH; 23974 break; 23975 case DL_CAPAB_IPSEC_ESP: 23976 sa_type = SADB_SATYPE_ESP; 23977 ills = &ipst->ips_ipsec_capab_ills_esp; 23978 ipproto = IPPROTO_ESP; 23979 break; 23980 } 23981 23982 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23983 23984 /* 23985 * Add ill index to list of hardware accelerators. If 23986 * already in list, do nothing. 23987 */ 23988 for (cur_ill = *ills; cur_ill != NULL && 23989 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23990 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23991 ; 23992 23993 if (cur_ill == NULL) { 23994 /* if this is a new entry for this ill */ 23995 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23996 if (new_ill == NULL) { 23997 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23998 return; 23999 } 24000 24001 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 24002 new_ill->ill_isv6 = ill->ill_isv6; 24003 new_ill->next = *ills; 24004 *ills = new_ill; 24005 } else if (!sadb_resync) { 24006 /* not resync'ing SADB and an entry exists for this ill */ 24007 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24008 return; 24009 } 24010 24011 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24012 24013 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 24014 /* 24015 * IPsec module for protocol loaded, initiate dump 24016 * of the SADB to this ill. 24017 */ 24018 sadb_ill_download(ill, sa_type); 24019 } 24020 24021 /* 24022 * Remove an ill from the list of IPsec capable ills. 24023 */ 24024 static void 24025 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 24026 { 24027 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 24028 ip_stack_t *ipst = ill->ill_ipst; 24029 24030 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 24031 dl_cap == DL_CAPAB_IPSEC_ESP); 24032 24033 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 24034 &ipst->ips_ipsec_capab_ills_esp; 24035 24036 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24037 24038 prev_ill = NULL; 24039 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 24040 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 24041 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 24042 ; 24043 if (cur_ill == NULL) { 24044 /* entry not found */ 24045 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24046 return; 24047 } 24048 if (prev_ill == NULL) { 24049 /* entry at front of list */ 24050 *ills = NULL; 24051 } else { 24052 prev_ill->next = cur_ill->next; 24053 } 24054 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 24055 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24056 } 24057 24058 24059 /* 24060 * Handling of DL_CONTROL_REQ messages that must be sent down to 24061 * an ill while having exclusive access. 24062 */ 24063 /* ARGSUSED */ 24064 static void 24065 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24066 { 24067 ill_t *ill = (ill_t *)q->q_ptr; 24068 24069 ill_dlpi_send(ill, mp); 24070 } 24071 24072 24073 /* 24074 * Called by SADB to send a DL_CONTROL_REQ message to every ill 24075 * supporting the specified IPsec protocol acceleration. 24076 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 24077 * We free the mblk and, if sa is non-null, release the held referece. 24078 */ 24079 void 24080 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 24081 netstack_t *ns) 24082 { 24083 ipsec_capab_ill_t *ici, *cur_ici; 24084 ill_t *ill; 24085 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 24086 ip_stack_t *ipst = ns->netstack_ip; 24087 24088 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 24089 ipst->ips_ipsec_capab_ills_esp; 24090 24091 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 24092 24093 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 24094 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 24095 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 24096 24097 /* 24098 * Handle the case where the ill goes away while the SADB is 24099 * attempting to send messages. If it's going away, it's 24100 * nuking its shadow SADB, so we don't care.. 24101 */ 24102 24103 if (ill == NULL) 24104 continue; 24105 24106 if (sa != NULL) { 24107 /* 24108 * Make sure capabilities match before 24109 * sending SA to ill. 24110 */ 24111 if (!ipsec_capab_match(ill, cur_ici->ill_index, 24112 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 24113 ill_refrele(ill); 24114 continue; 24115 } 24116 24117 mutex_enter(&sa->ipsa_lock); 24118 sa->ipsa_flags |= IPSA_F_HW; 24119 mutex_exit(&sa->ipsa_lock); 24120 } 24121 24122 /* 24123 * Copy template message, and add it to the front 24124 * of the mblk ship list. We want to avoid holding 24125 * the ipsec_capab_ills_lock while sending the 24126 * message to the ills. 24127 * 24128 * The b_next and b_prev are temporarily used 24129 * to build a list of mblks to be sent down, and to 24130 * save the ill to which they must be sent. 24131 */ 24132 nmp = copymsg(mp); 24133 if (nmp == NULL) { 24134 ill_refrele(ill); 24135 continue; 24136 } 24137 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 24138 nmp->b_next = mp_ship_list; 24139 mp_ship_list = nmp; 24140 nmp->b_prev = (mblk_t *)ill; 24141 } 24142 24143 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24144 24145 nmp = mp_ship_list; 24146 while (nmp != NULL) { 24147 /* restore the mblk to a sane state */ 24148 next_mp = nmp->b_next; 24149 nmp->b_next = NULL; 24150 ill = (ill_t *)nmp->b_prev; 24151 nmp->b_prev = NULL; 24152 24153 /* 24154 * Ship the mblk to the ill, must be exclusive. Keep the 24155 * reference to the ill as qwriter_ip() does a ill_referele(). 24156 */ 24157 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 24158 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 24159 24160 nmp = next_mp; 24161 } 24162 24163 if (sa != NULL) 24164 IPSA_REFRELE(sa); 24165 freemsg(mp); 24166 } 24167 24168 24169 /* 24170 * Derive an interface id from the link layer address. 24171 * Knows about IEEE 802 and IEEE EUI-64 mappings. 24172 */ 24173 static boolean_t 24174 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24175 { 24176 char *addr; 24177 24178 if (phys_length != ETHERADDRL) 24179 return (B_FALSE); 24180 24181 /* Form EUI-64 like address */ 24182 addr = (char *)&v6addr->s6_addr32[2]; 24183 bcopy((char *)phys_addr, addr, 3); 24184 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 24185 addr[3] = (char)0xff; 24186 addr[4] = (char)0xfe; 24187 bcopy((char *)phys_addr + 3, addr + 5, 3); 24188 return (B_TRUE); 24189 } 24190 24191 /* ARGSUSED */ 24192 static boolean_t 24193 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24194 { 24195 return (B_FALSE); 24196 } 24197 24198 /* ARGSUSED */ 24199 static boolean_t 24200 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24201 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24202 { 24203 /* 24204 * Multicast address mappings used over Ethernet/802.X. 24205 * This address is used as a base for mappings. 24206 */ 24207 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 24208 0x00, 0x00, 0x00}; 24209 24210 /* 24211 * Extract low order 32 bits from IPv6 multicast address. 24212 * Or that into the link layer address, starting from the 24213 * second byte. 24214 */ 24215 *hw_start = 2; 24216 v6_extract_mask->s6_addr32[0] = 0; 24217 v6_extract_mask->s6_addr32[1] = 0; 24218 v6_extract_mask->s6_addr32[2] = 0; 24219 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24220 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 24221 return (B_TRUE); 24222 } 24223 24224 /* 24225 * Indicate by return value whether multicast is supported. If not, 24226 * this code should not touch/change any parameters. 24227 */ 24228 /* ARGSUSED */ 24229 static boolean_t 24230 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24231 uint32_t *hw_start, ipaddr_t *extract_mask) 24232 { 24233 /* 24234 * Multicast address mappings used over Ethernet/802.X. 24235 * This address is used as a base for mappings. 24236 */ 24237 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 24238 0x00, 0x00, 0x00 }; 24239 24240 if (phys_length != ETHERADDRL) 24241 return (B_FALSE); 24242 24243 *extract_mask = htonl(0x007fffff); 24244 *hw_start = 2; 24245 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 24246 return (B_TRUE); 24247 } 24248 24249 /* 24250 * Derive IPoIB interface id from the link layer address. 24251 */ 24252 static boolean_t 24253 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24254 { 24255 char *addr; 24256 24257 if (phys_length != 20) 24258 return (B_FALSE); 24259 addr = (char *)&v6addr->s6_addr32[2]; 24260 bcopy(phys_addr + 12, addr, 8); 24261 /* 24262 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 24263 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 24264 * rules. In these cases, the IBA considers these GUIDs to be in 24265 * "Modified EUI-64" format, and thus toggling the u/l bit is not 24266 * required; vendors are required not to assign global EUI-64's 24267 * that differ only in u/l bit values, thus guaranteeing uniqueness 24268 * of the interface identifier. Whether the GUID is in modified 24269 * or proper EUI-64 format, the ipv6 identifier must have the u/l 24270 * bit set to 1. 24271 */ 24272 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 24273 return (B_TRUE); 24274 } 24275 24276 /* 24277 * Note on mapping from multicast IP addresses to IPoIB multicast link 24278 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24279 * The format of an IPoIB multicast address is: 24280 * 24281 * 4 byte QPN Scope Sign. Pkey 24282 * +--------------------------------------------+ 24283 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24284 * +--------------------------------------------+ 24285 * 24286 * The Scope and Pkey components are properties of the IBA port and 24287 * network interface. They can be ascertained from the broadcast address. 24288 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24289 */ 24290 24291 static boolean_t 24292 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24293 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24294 { 24295 /* 24296 * Base IPoIB IPv6 multicast address used for mappings. 24297 * Does not contain the IBA scope/Pkey values. 24298 */ 24299 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24300 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24301 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24302 24303 /* 24304 * Extract low order 80 bits from IPv6 multicast address. 24305 * Or that into the link layer address, starting from the 24306 * sixth byte. 24307 */ 24308 *hw_start = 6; 24309 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24310 24311 /* 24312 * Now fill in the IBA scope/Pkey values from the broadcast address. 24313 */ 24314 *(maddr + 5) = *(bphys_addr + 5); 24315 *(maddr + 8) = *(bphys_addr + 8); 24316 *(maddr + 9) = *(bphys_addr + 9); 24317 24318 v6_extract_mask->s6_addr32[0] = 0; 24319 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24320 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24321 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24322 return (B_TRUE); 24323 } 24324 24325 static boolean_t 24326 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24327 uint32_t *hw_start, ipaddr_t *extract_mask) 24328 { 24329 /* 24330 * Base IPoIB IPv4 multicast address used for mappings. 24331 * Does not contain the IBA scope/Pkey values. 24332 */ 24333 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24334 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24335 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24336 24337 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24338 return (B_FALSE); 24339 24340 /* 24341 * Extract low order 28 bits from IPv4 multicast address. 24342 * Or that into the link layer address, starting from the 24343 * sixteenth byte. 24344 */ 24345 *extract_mask = htonl(0x0fffffff); 24346 *hw_start = 16; 24347 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24348 24349 /* 24350 * Now fill in the IBA scope/Pkey values from the broadcast address. 24351 */ 24352 *(maddr + 5) = *(bphys_addr + 5); 24353 *(maddr + 8) = *(bphys_addr + 8); 24354 *(maddr + 9) = *(bphys_addr + 9); 24355 return (B_TRUE); 24356 } 24357 24358 /* 24359 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24360 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24361 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24362 * the link-local address is preferred. 24363 */ 24364 boolean_t 24365 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24366 { 24367 ipif_t *ipif; 24368 ipif_t *maybe_ipif = NULL; 24369 24370 mutex_enter(&ill->ill_lock); 24371 if (ill->ill_state_flags & ILL_CONDEMNED) { 24372 mutex_exit(&ill->ill_lock); 24373 if (ipifp != NULL) 24374 *ipifp = NULL; 24375 return (B_FALSE); 24376 } 24377 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24378 if (!IPIF_CAN_LOOKUP(ipif)) 24379 continue; 24380 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24381 ipif->ipif_zoneid != ALL_ZONES) 24382 continue; 24383 if ((ipif->ipif_flags & flags) != flags) 24384 continue; 24385 24386 if (ipifp == NULL) { 24387 mutex_exit(&ill->ill_lock); 24388 ASSERT(maybe_ipif == NULL); 24389 return (B_TRUE); 24390 } 24391 if (!ill->ill_isv6 || 24392 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24393 ipif_refhold_locked(ipif); 24394 mutex_exit(&ill->ill_lock); 24395 *ipifp = ipif; 24396 return (B_TRUE); 24397 } 24398 if (maybe_ipif == NULL) 24399 maybe_ipif = ipif; 24400 } 24401 if (ipifp != NULL) { 24402 if (maybe_ipif != NULL) 24403 ipif_refhold_locked(maybe_ipif); 24404 *ipifp = maybe_ipif; 24405 } 24406 mutex_exit(&ill->ill_lock); 24407 return (maybe_ipif != NULL); 24408 } 24409 24410 /* 24411 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24412 */ 24413 boolean_t 24414 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24415 { 24416 ill_t *illg; 24417 ip_stack_t *ipst = ill->ill_ipst; 24418 24419 /* 24420 * We look at the passed-in ill first without grabbing ill_g_lock. 24421 */ 24422 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24423 return (B_TRUE); 24424 } 24425 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24426 if (ill->ill_group == NULL) { 24427 /* ill not in a group */ 24428 rw_exit(&ipst->ips_ill_g_lock); 24429 return (B_FALSE); 24430 } 24431 24432 /* 24433 * There's no ipif in the zone on ill, however ill is part of an IPMP 24434 * group. We need to look for an ipif in the zone on all the ills in the 24435 * group. 24436 */ 24437 illg = ill->ill_group->illgrp_ill; 24438 do { 24439 /* 24440 * We don't call ipif_lookup_zoneid() on ill as we already know 24441 * that it's not there. 24442 */ 24443 if (illg != ill && 24444 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24445 break; 24446 } 24447 } while ((illg = illg->ill_group_next) != NULL); 24448 rw_exit(&ipst->ips_ill_g_lock); 24449 return (illg != NULL); 24450 } 24451 24452 /* 24453 * Check if this ill is only being used to send ICMP probes for IPMP 24454 */ 24455 boolean_t 24456 ill_is_probeonly(ill_t *ill) 24457 { 24458 /* 24459 * Check if the interface is FAILED, or INACTIVE 24460 */ 24461 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24462 return (B_TRUE); 24463 24464 return (B_FALSE); 24465 } 24466 24467 /* 24468 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24469 * If a pointer to an ipif_t is returned then the caller will need to do 24470 * an ill_refrele(). 24471 */ 24472 ipif_t * 24473 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24474 ip_stack_t *ipst) 24475 { 24476 ipif_t *ipif; 24477 ill_t *ill; 24478 24479 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24480 ipst); 24481 24482 if (ill == NULL) 24483 return (NULL); 24484 24485 mutex_enter(&ill->ill_lock); 24486 if (ill->ill_state_flags & ILL_CONDEMNED) { 24487 mutex_exit(&ill->ill_lock); 24488 ill_refrele(ill); 24489 return (NULL); 24490 } 24491 24492 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24493 if (!IPIF_CAN_LOOKUP(ipif)) 24494 continue; 24495 if (lifidx == ipif->ipif_id) { 24496 ipif_refhold_locked(ipif); 24497 break; 24498 } 24499 } 24500 24501 mutex_exit(&ill->ill_lock); 24502 ill_refrele(ill); 24503 return (ipif); 24504 } 24505 24506 /* 24507 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24508 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24509 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24510 * for details. 24511 */ 24512 void 24513 ill_fastpath_flush(ill_t *ill) 24514 { 24515 ip_stack_t *ipst = ill->ill_ipst; 24516 24517 nce_fastpath_list_dispatch(ill, NULL, NULL); 24518 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24519 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24520 } 24521 24522 /* 24523 * Set the physical address information for `ill' to the contents of the 24524 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24525 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24526 * EINPROGRESS will be returned. 24527 */ 24528 int 24529 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24530 { 24531 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24532 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24533 24534 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24535 24536 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24537 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24538 /* Changing DL_IPV6_TOKEN is not yet supported */ 24539 return (0); 24540 } 24541 24542 /* 24543 * We need to store up to two copies of `mp' in `ill'. Due to the 24544 * design of ipsq_pending_mp_add(), we can't pass them as separate 24545 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24546 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24547 */ 24548 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24549 freemsg(mp); 24550 return (ENOMEM); 24551 } 24552 24553 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24554 24555 /* 24556 * If we can quiesce the ill, then set the address. If not, then 24557 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24558 */ 24559 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24560 mutex_enter(&ill->ill_lock); 24561 if (!ill_is_quiescent(ill)) { 24562 /* call cannot fail since `conn_t *' argument is NULL */ 24563 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24564 mp, ILL_DOWN); 24565 mutex_exit(&ill->ill_lock); 24566 return (EINPROGRESS); 24567 } 24568 mutex_exit(&ill->ill_lock); 24569 24570 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24571 return (0); 24572 } 24573 24574 /* 24575 * Once the ill associated with `q' has quiesced, set its physical address 24576 * information to the values in `addrmp'. Note that two copies of `addrmp' 24577 * are passed (linked by b_cont), since we sometimes need to save two distinct 24578 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24579 * failure (we'll free the other copy if it's not needed). Since the ill_t 24580 * is quiesced, we know any stale IREs with the old address information have 24581 * already been removed, so we don't need to call ill_fastpath_flush(). 24582 */ 24583 /* ARGSUSED */ 24584 static void 24585 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24586 { 24587 ill_t *ill = q->q_ptr; 24588 mblk_t *addrmp2 = unlinkb(addrmp); 24589 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24590 uint_t addrlen, addroff; 24591 24592 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24593 mutex_enter(&ill->ill_lock); 24594 ASSERT(ill_is_quiescent(ill)); 24595 mutex_exit(&ill->ill_lock); 24596 24597 addroff = dlindp->dl_addr_offset; 24598 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24599 24600 switch (dlindp->dl_data) { 24601 case DL_IPV6_LINK_LAYER_ADDR: 24602 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24603 freemsg(addrmp2); 24604 break; 24605 24606 case DL_CURR_PHYS_ADDR: 24607 freemsg(ill->ill_phys_addr_mp); 24608 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24609 ill->ill_phys_addr_mp = addrmp; 24610 ill->ill_phys_addr_length = addrlen; 24611 24612 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24613 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24614 else 24615 freemsg(addrmp2); 24616 break; 24617 default: 24618 ASSERT(0); 24619 } 24620 24621 /* 24622 * If there are ipifs to bring up, ill_up_ipifs() will return nonzero, 24623 * and ipsq_current_finish() will be called by ip_rput_dlpi_writer() 24624 * or ip_arp_done() when the last ipif is brought up. 24625 */ 24626 if (ill_up_ipifs(ill, q, addrmp) == 0) 24627 ipsq_current_finish(ipsq); 24628 } 24629 24630 /* 24631 * Helper routine for setting the ill_nd_lla fields. 24632 */ 24633 void 24634 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24635 { 24636 freemsg(ill->ill_nd_lla_mp); 24637 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24638 ill->ill_nd_lla_mp = ndmp; 24639 ill->ill_nd_lla_len = addrlen; 24640 } 24641 24642 24643 24644 major_t IP_MAJ; 24645 #define IP "ip" 24646 24647 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24648 #define UDPDEV "/devices/pseudo/udp@0:udp" 24649 24650 /* 24651 * Issue REMOVEIF ioctls to have the loopback interfaces 24652 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24653 * the former going away when the user-level processes in the zone 24654 * are killed * and the latter are cleaned up by the stream head 24655 * str_stack_shutdown callback that undoes all I_PLINKs. 24656 */ 24657 void 24658 ip_loopback_cleanup(ip_stack_t *ipst) 24659 { 24660 int error; 24661 ldi_handle_t lh = NULL; 24662 ldi_ident_t li = NULL; 24663 int rval; 24664 cred_t *cr; 24665 struct strioctl iocb; 24666 struct lifreq lifreq; 24667 24668 IP_MAJ = ddi_name_to_major(IP); 24669 24670 #ifdef NS_DEBUG 24671 (void) printf("ip_loopback_cleanup() stackid %d\n", 24672 ipst->ips_netstack->netstack_stackid); 24673 #endif 24674 24675 bzero(&lifreq, sizeof (lifreq)); 24676 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24677 24678 error = ldi_ident_from_major(IP_MAJ, &li); 24679 if (error) { 24680 #ifdef DEBUG 24681 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24682 error); 24683 #endif 24684 return; 24685 } 24686 24687 cr = zone_get_kcred(netstackid_to_zoneid( 24688 ipst->ips_netstack->netstack_stackid)); 24689 ASSERT(cr != NULL); 24690 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24691 if (error) { 24692 #ifdef DEBUG 24693 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24694 error); 24695 #endif 24696 goto out; 24697 } 24698 iocb.ic_cmd = SIOCLIFREMOVEIF; 24699 iocb.ic_timout = 15; 24700 iocb.ic_len = sizeof (lifreq); 24701 iocb.ic_dp = (char *)&lifreq; 24702 24703 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24704 /* LINTED - statement has no consequent */ 24705 if (error) { 24706 #ifdef NS_DEBUG 24707 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24708 "UDP6 error %d\n", error); 24709 #endif 24710 } 24711 (void) ldi_close(lh, FREAD|FWRITE, cr); 24712 lh = NULL; 24713 24714 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24715 if (error) { 24716 #ifdef NS_DEBUG 24717 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24718 error); 24719 #endif 24720 goto out; 24721 } 24722 24723 iocb.ic_cmd = SIOCLIFREMOVEIF; 24724 iocb.ic_timout = 15; 24725 iocb.ic_len = sizeof (lifreq); 24726 iocb.ic_dp = (char *)&lifreq; 24727 24728 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24729 /* LINTED - statement has no consequent */ 24730 if (error) { 24731 #ifdef NS_DEBUG 24732 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24733 "UDP error %d\n", error); 24734 #endif 24735 } 24736 (void) ldi_close(lh, FREAD|FWRITE, cr); 24737 lh = NULL; 24738 24739 out: 24740 /* Close layered handles */ 24741 if (lh) 24742 (void) ldi_close(lh, FREAD|FWRITE, cr); 24743 if (li) 24744 ldi_ident_release(li); 24745 24746 crfree(cr); 24747 } 24748