xref: /titanic_41/usr/src/uts/common/inet/ip/ip_ftable.c (revision c6d6228cbba828ab5b2b6db6c280a44b2d841653)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file contains consumer routines of the IPv4 forwarding engine
28  */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #include <sys/dlpi.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 #include <sys/policy.h>
38 
39 #include <sys/systm.h>
40 #include <sys/strsun.h>
41 #include <sys/kmem.h>
42 #include <sys/param.h>
43 #include <sys/socket.h>
44 #include <sys/strsubr.h>
45 #include <sys/pattr.h>
46 #include <net/if.h>
47 #include <net/route.h>
48 #include <netinet/in.h>
49 #include <net/if_dl.h>
50 #include <netinet/ip6.h>
51 #include <netinet/icmp6.h>
52 
53 #include <inet/common.h>
54 #include <inet/mi.h>
55 #include <inet/mib2.h>
56 #include <inet/ip.h>
57 #include <inet/ip_impl.h>
58 #include <inet/ip6.h>
59 #include <inet/ip_ndp.h>
60 #include <inet/arp.h>
61 #include <inet/ip_if.h>
62 #include <inet/ip_ire.h>
63 #include <inet/ip_ftable.h>
64 #include <inet/ip_rts.h>
65 #include <inet/nd.h>
66 
67 #include <net/pfkeyv2.h>
68 #include <inet/ipsec_info.h>
69 #include <inet/sadb.h>
70 #include <inet/tcp.h>
71 #include <inet/ipclassifier.h>
72 #include <sys/zone.h>
73 #include <net/radix.h>
74 #include <sys/tsol/label.h>
75 #include <sys/tsol/tnet.h>
76 
77 #define	IS_DEFAULT_ROUTE(ire)	\
78 	(((ire)->ire_type & IRE_DEFAULT) || \
79 	    (((ire)->ire_type & IRE_INTERFACE) && ((ire)->ire_addr == 0)))
80 
81 /*
82  * structure for passing args between ire_ftable_lookup and ire_find_best_route
83  */
84 typedef struct ire_ftable_args_s {
85 	ipaddr_t	ift_addr;
86 	ipaddr_t	ift_mask;
87 	ipaddr_t	ift_gateway;
88 	int		ift_type;
89 	const ipif_t		*ift_ipif;
90 	zoneid_t	ift_zoneid;
91 	uint32_t	ift_ihandle;
92 	const ts_label_t	*ift_tsl;
93 	int		ift_flags;
94 	ire_t		*ift_best_ire;
95 } ire_ftable_args_t;
96 
97 static ire_t	*route_to_dst(const struct sockaddr *, zoneid_t, ip_stack_t *);
98 static ire_t   	*ire_round_robin(irb_t *, zoneid_t, ire_ftable_args_t *,
99     ip_stack_t *);
100 static void		ire_del_host_redir(ire_t *, char *);
101 static boolean_t	ire_find_best_route(struct radix_node *, void *);
102 static int	ip_send_align_hcksum_flags(mblk_t *, ill_t *);
103 static ire_t	*ire_ftable_lookup_simple(ipaddr_t,
104 	ire_t **, zoneid_t,  int, ip_stack_t *);
105 
106 /*
107  * Lookup a route in forwarding table. A specific lookup is indicated by
108  * passing the required parameters and indicating the match required in the
109  * flag field.
110  *
111  * Looking for default route can be done in three ways
112  * 1) pass mask as 0 and set MATCH_IRE_MASK in flags field
113  *    along with other matches.
114  * 2) pass type as IRE_DEFAULT and set MATCH_IRE_TYPE in flags
115  *    field along with other matches.
116  * 3) if the destination and mask are passed as zeros.
117  *
118  * A request to return a default route if no route
119  * is found, can be specified by setting MATCH_IRE_DEFAULT
120  * in flags.
121  *
122  * It does not support recursion more than one level. It
123  * will do recursive lookup only when the lookup maps to
124  * a prefix or default route and MATCH_IRE_RECURSIVE flag is passed.
125  *
126  * If the routing table is setup to allow more than one level
127  * of recursion, the cleaning up cache table will not work resulting
128  * in invalid routing.
129  *
130  * Supports IP_BOUND_IF by following the ipif/ill when recursing.
131  *
132  * NOTE : When this function returns NULL, pire has already been released.
133  *	  pire is valid only when this function successfully returns an
134  *	  ire.
135  */
136 ire_t *
137 ire_ftable_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
138     int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
139     uint32_t ihandle, const ts_label_t *tsl, int flags, ip_stack_t *ipst)
140 {
141 	ire_t *ire = NULL;
142 	ipaddr_t gw_addr;
143 	struct rt_sockaddr rdst, rmask;
144 	struct rt_entry *rt;
145 	ire_ftable_args_t margs;
146 	boolean_t found_incomplete = B_FALSE;
147 
148 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
149 
150 	/*
151 	 * When we return NULL from this function, we should make
152 	 * sure that *pire is NULL so that the callers will not
153 	 * wrongly REFRELE the pire.
154 	 */
155 	if (pire != NULL)
156 		*pire = NULL;
157 	/*
158 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
159 	 * MATCH_IRE_ILL is set.
160 	 */
161 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL)) && (ipif == NULL))
162 		return (NULL);
163 
164 	(void) memset(&rdst, 0, sizeof (rdst));
165 	rdst.rt_sin_len = sizeof (rdst);
166 	rdst.rt_sin_family = AF_INET;
167 	rdst.rt_sin_addr.s_addr = addr;
168 
169 	(void) memset(&rmask, 0, sizeof (rmask));
170 	rmask.rt_sin_len = sizeof (rmask);
171 	rmask.rt_sin_family = AF_INET;
172 	rmask.rt_sin_addr.s_addr = mask;
173 
174 	(void) memset(&margs, 0, sizeof (margs));
175 	margs.ift_addr = addr;
176 	margs.ift_mask = mask;
177 	margs.ift_gateway = gateway;
178 	margs.ift_type = type;
179 	margs.ift_ipif = ipif;
180 	margs.ift_zoneid = zoneid;
181 	margs.ift_ihandle = ihandle;
182 	margs.ift_tsl = tsl;
183 	margs.ift_flags = flags;
184 
185 	/*
186 	 * The flags argument passed to ire_ftable_lookup may cause the
187 	 * search to return, not the longest matching prefix, but the
188 	 * "best matching prefix", i.e., the longest prefix that also
189 	 * satisfies constraints imposed via the permutation of flags
190 	 * passed in. To achieve this, we invoke ire_match_args() on
191 	 * each matching leaf in the  radix tree. ire_match_args is
192 	 * invoked by the callback function ire_find_best_route()
193 	 * We hold the global tree lock in read mode when calling
194 	 * rn_match_args.Before dropping the global tree lock, ensure
195 	 * that the radix node can't be deleted by incrementing ire_refcnt.
196 	 */
197 	RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
198 	rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst,
199 	    ipst->ips_ip_ftable, ire_find_best_route, &margs);
200 	ire = margs.ift_best_ire;
201 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
202 
203 	if (rt == NULL) {
204 		return (NULL);
205 	} else {
206 		ASSERT(ire != NULL);
207 	}
208 
209 	DTRACE_PROBE2(ire__found, ire_ftable_args_t *, &margs, ire_t *, ire);
210 
211 	if (!IS_DEFAULT_ROUTE(ire))
212 		goto found_ire_held;
213 	/*
214 	 * If default route is found, see if default matching criteria
215 	 * are satisfied.
216 	 */
217 	if (flags & MATCH_IRE_MASK) {
218 		/*
219 		 * we were asked to match a 0 mask, and came back with
220 		 * a default route. Ok to return it.
221 		 */
222 		goto found_default_ire;
223 	}
224 	if ((flags & MATCH_IRE_TYPE) &&
225 	    (type & (IRE_DEFAULT | IRE_INTERFACE))) {
226 		/*
227 		 * we were asked to match a default ire type. Ok to return it.
228 		 */
229 		goto found_default_ire;
230 	}
231 	if (flags & MATCH_IRE_DEFAULT) {
232 		goto found_default_ire;
233 	}
234 	/*
235 	 * we found a default route, but default matching criteria
236 	 * are not specified and we are not explicitly looking for
237 	 * default.
238 	 */
239 	IRE_REFRELE(ire);
240 	return (NULL);
241 found_default_ire:
242 	/*
243 	 * round-robin only if we have more than one route in the bucket.
244 	 */
245 	if ((ire->ire_bucket->irb_ire_cnt > 1) &&
246 	    IS_DEFAULT_ROUTE(ire) &&
247 	    ((flags & (MATCH_IRE_DEFAULT | MATCH_IRE_MASK)) ==
248 	    MATCH_IRE_DEFAULT)) {
249 		ire_t *next_ire;
250 
251 		next_ire = ire_round_robin(ire->ire_bucket, zoneid, &margs,
252 		    ipst);
253 		IRE_REFRELE(ire);
254 		if (next_ire != NULL) {
255 			ire = next_ire;
256 		} else {
257 			/* no route */
258 			return (NULL);
259 		}
260 	}
261 found_ire_held:
262 	if ((flags & MATCH_IRE_RJ_BHOLE) &&
263 	    (ire->ire_flags & (RTF_BLACKHOLE | RTF_REJECT))) {
264 		return (ire);
265 	}
266 	/*
267 	 * At this point, IRE that was found must be an IRE_FORWARDTABLE
268 	 * type.  If this is a recursive lookup and an IRE_INTERFACE type was
269 	 * found, return that.  If it was some other IRE_FORWARDTABLE type of
270 	 * IRE (one of the prefix types), then it is necessary to fill in the
271 	 * parent IRE pointed to by pire, and then lookup the gateway address of
272 	 * the parent.  For backwards compatiblity, if this lookup returns an
273 	 * IRE other than a IRE_CACHETABLE or IRE_INTERFACE, then one more level
274 	 * of lookup is done.
275 	 */
276 	if (flags & MATCH_IRE_RECURSIVE) {
277 		ipif_t	*gw_ipif;
278 		int match_flags = MATCH_IRE_DSTONLY;
279 		ire_t *save_ire;
280 
281 		if (ire->ire_type & IRE_INTERFACE)
282 			return (ire);
283 		if (pire != NULL)
284 			*pire = ire;
285 		/*
286 		 * If we can't find an IRE_INTERFACE or the caller has not
287 		 * asked for pire, we need to REFRELE the save_ire.
288 		 */
289 		save_ire = ire;
290 
291 		if (ire->ire_ipif != NULL)
292 			match_flags |= MATCH_IRE_ILL;
293 
294 		/*
295 		 * ire_ftable_lookup may end up with an incomplete IRE_CACHE
296 		 * entry for the gateway (i.e., one for which the
297 		 * ire_nce->nce_state is not yet ND_REACHABLE). If the caller
298 		 * has specified MATCH_IRE_COMPLETE, such entries will not
299 		 * be returned; instead, we return the IF_RESOLVER ire.
300 		 */
301 		ire = ire_route_lookup(ire->ire_gateway_addr, 0, 0, 0,
302 		    ire->ire_ipif, NULL, zoneid, tsl, match_flags, ipst);
303 		DTRACE_PROBE2(ftable__route__lookup1, (ire_t *), ire,
304 		    (ire_t *), save_ire);
305 		if (ire == NULL ||
306 		    ((ire->ire_type & IRE_CACHE) && ire->ire_nce &&
307 		    ire->ire_nce->nce_state != ND_REACHABLE &&
308 		    (flags & MATCH_IRE_COMPLETE))) {
309 			/*
310 			 * Do not release the parent ire if MATCH_IRE_PARENT
311 			 * is set. Also return it via ire.
312 			 */
313 			if (ire != NULL) {
314 				ire_refrele(ire);
315 				ire = NULL;
316 				found_incomplete = B_TRUE;
317 			}
318 			if (flags & MATCH_IRE_PARENT) {
319 				if (pire != NULL) {
320 					/*
321 					 * Need an extra REFHOLD, if the parent
322 					 * ire is returned via both ire and
323 					 * pire.
324 					 */
325 					IRE_REFHOLD(save_ire);
326 				}
327 				ire = save_ire;
328 			} else {
329 				ire_refrele(save_ire);
330 				if (pire != NULL)
331 					*pire = NULL;
332 			}
333 			if (!found_incomplete)
334 				return (ire);
335 		}
336 		if (ire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) {
337 			/*
338 			 * If the caller did not ask for pire, release
339 			 * it now.
340 			 */
341 			if (pire == NULL) {
342 				ire_refrele(save_ire);
343 			}
344 			return (ire);
345 		}
346 		match_flags |= MATCH_IRE_TYPE;
347 		gw_addr = ire->ire_gateway_addr;
348 		gw_ipif = ire->ire_ipif;
349 		ire_refrele(ire);
350 		ire = ire_route_lookup(gw_addr, 0, 0,
351 		    (found_incomplete? IRE_INTERFACE :
352 		    (IRE_CACHETABLE | IRE_INTERFACE)),
353 		    gw_ipif, NULL, zoneid, tsl, match_flags, ipst);
354 		DTRACE_PROBE2(ftable__route__lookup2, (ire_t *), ire,
355 		    (ire_t *), save_ire);
356 		if (ire == NULL ||
357 		    ((ire->ire_type & IRE_CACHE) && ire->ire_nce &&
358 		    ire->ire_nce->nce_state != ND_REACHABLE &&
359 		    (flags & MATCH_IRE_COMPLETE))) {
360 			/*
361 			 * Do not release the parent ire if MATCH_IRE_PARENT
362 			 * is set. Also return it via ire.
363 			 */
364 			if (ire != NULL) {
365 				ire_refrele(ire);
366 				ire = NULL;
367 			}
368 			if (flags & MATCH_IRE_PARENT) {
369 				if (pire != NULL) {
370 					/*
371 					 * Need an extra REFHOLD, if the
372 					 * parent ire is returned via both
373 					 * ire and pire.
374 					 */
375 					IRE_REFHOLD(save_ire);
376 				}
377 				ire = save_ire;
378 			} else {
379 				ire_refrele(save_ire);
380 				if (pire != NULL)
381 					*pire = NULL;
382 			}
383 			return (ire);
384 		} else if (pire == NULL) {
385 			/*
386 			 * If the caller did not ask for pire, release
387 			 * it now.
388 			 */
389 			ire_refrele(save_ire);
390 		}
391 		return (ire);
392 	}
393 	ASSERT(pire == NULL || *pire == NULL);
394 	return (ire);
395 }
396 
397 /*
398  * This function is called by
399  * ip_fast_forward->ire_forward_simple
400  * The optimizations of this function over ire_ftable_lookup are:
401  *	o removing unnecessary flag matching
402  *	o doing longest prefix match instead of overloading it further
403  *	  with the unnecessary "best_prefix_match"
404  *	o Does not do round robin of default route for every packet
405  *	o inlines code of ire_ctable_lookup to look for nexthop cache
406  *	  entry before calling ire_route_lookup
407  */
408 static ire_t *
409 ire_ftable_lookup_simple(ipaddr_t addr,
410     ire_t **pire, zoneid_t zoneid, int flags,
411     ip_stack_t *ipst)
412 {
413 	ire_t *ire = NULL;
414 	ire_t *tmp_ire = NULL;
415 	struct rt_sockaddr rdst;
416 	struct rt_entry *rt;
417 	irb_t *irb_ptr;
418 	ire_t *save_ire;
419 	int match_flags;
420 
421 	rdst.rt_sin_len = sizeof (rdst);
422 	rdst.rt_sin_family = AF_INET;
423 	rdst.rt_sin_addr.s_addr = addr;
424 
425 	/*
426 	 * This is basically inlining  a simpler version of ire_match_args
427 	 */
428 	RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
429 
430 	rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst,
431 	    ipst->ips_ip_ftable, NULL, NULL);
432 
433 	if (rt == NULL) {
434 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
435 		return (NULL);
436 	}
437 	irb_ptr = &rt->rt_irb;
438 	if (irb_ptr == NULL || irb_ptr->irb_ire_cnt == 0) {
439 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
440 		return (NULL);
441 	}
442 
443 	rw_enter(&irb_ptr->irb_lock, RW_READER);
444 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
445 		if (ire->ire_zoneid == zoneid)
446 			break;
447 	}
448 
449 	if (ire == NULL || (ire->ire_marks & IRE_MARK_CONDEMNED)) {
450 		rw_exit(&irb_ptr->irb_lock);
451 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
452 		return (NULL);
453 	}
454 	/* we have a ire that matches */
455 	if (ire != NULL)
456 		IRE_REFHOLD(ire);
457 	rw_exit(&irb_ptr->irb_lock);
458 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
459 
460 	if ((flags & MATCH_IRE_RJ_BHOLE) &&
461 	    (ire->ire_flags & (RTF_BLACKHOLE | RTF_REJECT))) {
462 		return (ire);
463 	}
464 	/*
465 	 * At this point, IRE that was found must be an IRE_FORWARDTABLE
466 	 * type.  If this is a recursive lookup and an IRE_INTERFACE type was
467 	 * found, return that.  If it was some other IRE_FORWARDTABLE type of
468 	 * IRE (one of the prefix types), then it is necessary to fill in the
469 	 * parent IRE pointed to by pire, and then lookup the gateway address of
470 	 * the parent.  For backwards compatiblity, if this lookup returns an
471 	 * IRE other than a IRE_CACHETABLE or IRE_INTERFACE, then one more level
472 	 * of lookup is done.
473 	 */
474 	match_flags = MATCH_IRE_DSTONLY;
475 
476 	if (ire->ire_type & IRE_INTERFACE)
477 		return (ire);
478 	*pire = ire;
479 	/*
480 	 * If we can't find an IRE_INTERFACE or the caller has not
481 	 * asked for pire, we need to REFRELE the save_ire.
482 	 */
483 	save_ire = ire;
484 
485 	/*
486 	 * Currently MATCH_IRE_ILL is never used with
487 	 * (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT) while
488 	 * sending out packets as MATCH_IRE_ILL is used only
489 	 * for communicating with on-link hosts. We can't assert
490 	 * that here as RTM_GET calls this function with
491 	 * MATCH_IRE_ILL | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE.
492 	 * We have already used the MATCH_IRE_ILL in determining
493 	 * the right prefix route at this point. To match the
494 	 * behavior of how we locate routes while sending out
495 	 * packets, we don't want to use MATCH_IRE_ILL below
496 	 * while locating the interface route.
497 	 *
498 	 * ire_ftable_lookup may end up with an incomplete IRE_CACHE
499 	 * entry for the gateway (i.e., one for which the
500 	 * ire_nce->nce_state is not yet ND_REACHABLE). If the caller
501 	 * has specified MATCH_IRE_COMPLETE, such entries will not
502 	 * be returned; instead, we return the IF_RESOLVER ire.
503 	 */
504 
505 	if (ire->ire_ipif == NULL) {
506 		tmp_ire = ire;
507 		/*
508 		 * Look to see if the nexthop entry is in the cachetable
509 		 */
510 		ire = ire_cache_lookup(ire->ire_gateway_addr, zoneid, NULL,
511 		    ipst);
512 		if (ire == NULL) {
513 			/* Try ire_route_lookup */
514 			ire = tmp_ire;
515 		} else {
516 			goto solved;
517 		}
518 	}
519 	if (ire->ire_ipif != NULL)
520 		match_flags |= MATCH_IRE_ILL;
521 
522 	ire = ire_route_lookup(ire->ire_gateway_addr, 0,
523 	    0, 0, ire->ire_ipif, NULL, zoneid, NULL, match_flags, ipst);
524 solved:
525 	DTRACE_PROBE2(ftable__route__lookup1, (ire_t *), ire,
526 	    (ire_t *), save_ire);
527 	if (ire == NULL) {
528 		/*
529 		 * Do not release the parent ire if MATCH_IRE_PARENT
530 		 * is set. Also return it via ire.
531 		 */
532 		ire_refrele(save_ire);
533 		*pire = NULL;
534 		return (ire);
535 	}
536 	if (ire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) {
537 		/*
538 		 * If the caller did not ask for pire, release
539 		 * it now.
540 		 */
541 		if (pire == NULL) {
542 			ire_refrele(save_ire);
543 		}
544 	}
545 	return (ire);
546 }
547 
548 /*
549  * Find an IRE_OFFSUBNET IRE entry for the multicast address 'group'
550  * that goes through 'ipif'. As a fallback, a route that goes through
551  * ipif->ipif_ill can be returned.
552  */
553 ire_t *
554 ipif_lookup_multi_ire(ipif_t *ipif, ipaddr_t group)
555 {
556 	ire_t	*ire;
557 	ire_t	*save_ire = NULL;
558 	ire_t   *gw_ire;
559 	irb_t   *irb;
560 	ipaddr_t gw_addr;
561 	int	match_flags = MATCH_IRE_TYPE | MATCH_IRE_ILL;
562 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
563 
564 	ASSERT(CLASSD(group));
565 
566 	ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, ALL_ZONES, 0,
567 	    NULL, MATCH_IRE_DEFAULT, ipst);
568 
569 	if (ire == NULL)
570 		return (NULL);
571 
572 	irb = ire->ire_bucket;
573 	ASSERT(irb);
574 
575 	IRB_REFHOLD(irb);
576 	ire_refrele(ire);
577 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
578 		if (ire->ire_addr != group ||
579 		    ipif->ipif_zoneid != ire->ire_zoneid &&
580 		    ire->ire_zoneid != ALL_ZONES) {
581 			continue;
582 		}
583 
584 		switch (ire->ire_type) {
585 		case IRE_DEFAULT:
586 		case IRE_PREFIX:
587 		case IRE_HOST:
588 			gw_addr = ire->ire_gateway_addr;
589 			gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
590 			    ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
591 
592 			if (gw_ire != NULL) {
593 				if (save_ire != NULL) {
594 					ire_refrele(save_ire);
595 				}
596 				IRE_REFHOLD(ire);
597 				if (gw_ire->ire_ipif == ipif) {
598 					ire_refrele(gw_ire);
599 
600 					IRB_REFRELE(irb);
601 					return (ire);
602 				}
603 				ire_refrele(gw_ire);
604 				save_ire = ire;
605 			}
606 			break;
607 		case IRE_IF_NORESOLVER:
608 		case IRE_IF_RESOLVER:
609 			if (ire->ire_ipif == ipif) {
610 				if (save_ire != NULL) {
611 					ire_refrele(save_ire);
612 				}
613 				IRE_REFHOLD(ire);
614 
615 				IRB_REFRELE(irb);
616 				return (ire);
617 			}
618 			break;
619 		}
620 	}
621 	IRB_REFRELE(irb);
622 
623 	return (save_ire);
624 }
625 
626 /*
627  * Find an IRE_INTERFACE for the multicast group.
628  * Allows different routes for multicast addresses
629  * in the unicast routing table (akin to 224.0.0.0 but could be more specific)
630  * which point at different interfaces. This is used when IP_MULTICAST_IF
631  * isn't specified (when sending) and when IP_ADD_MEMBERSHIP doesn't
632  * specify the interface to join on.
633  *
634  * Supports IP_BOUND_IF by following the ipif/ill when recursing.
635  */
636 ire_t *
637 ire_lookup_multi(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
638 {
639 	ire_t	*ire;
640 	ipif_t	*ipif = NULL;
641 	int	match_flags = MATCH_IRE_TYPE;
642 	ipaddr_t gw_addr;
643 
644 	ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, zoneid,
645 	    0, NULL, MATCH_IRE_DEFAULT, ipst);
646 
647 	/* We search a resolvable ire in case of multirouting. */
648 	if ((ire != NULL) && (ire->ire_flags & RTF_MULTIRT)) {
649 		ire_t *cire = NULL;
650 		/*
651 		 * If the route is not resolvable, the looked up ire
652 		 * may be changed here. In that case, ire_multirt_lookup()
653 		 * IRE_REFRELE the original ire and change it.
654 		 */
655 		(void) ire_multirt_lookup(&cire, &ire, MULTIRT_CACHEGW, NULL,
656 		    NULL, ipst);
657 		if (cire != NULL)
658 			ire_refrele(cire);
659 	}
660 	if (ire == NULL)
661 		return (NULL);
662 	/*
663 	 * Make sure we follow ire_ipif.
664 	 *
665 	 * We need to determine the interface route through
666 	 * which the gateway will be reached.
667 	 */
668 	if (ire->ire_ipif != NULL) {
669 		ipif = ire->ire_ipif;
670 		match_flags |= MATCH_IRE_ILL;
671 	}
672 
673 	switch (ire->ire_type) {
674 	case IRE_DEFAULT:
675 	case IRE_PREFIX:
676 	case IRE_HOST:
677 		gw_addr = ire->ire_gateway_addr;
678 		ire_refrele(ire);
679 		ire = ire_ftable_lookup(gw_addr, 0, 0,
680 		    IRE_INTERFACE, ipif, NULL, zoneid, 0,
681 		    NULL, match_flags, ipst);
682 		return (ire);
683 	case IRE_IF_NORESOLVER:
684 	case IRE_IF_RESOLVER:
685 		return (ire);
686 	default:
687 		ire_refrele(ire);
688 		return (NULL);
689 	}
690 }
691 
692 /*
693  * Delete the passed in ire if the gateway addr matches
694  */
695 void
696 ire_del_host_redir(ire_t *ire, char *gateway)
697 {
698 	if ((ire->ire_flags & RTF_DYNAMIC) &&
699 	    (ire->ire_gateway_addr == *(ipaddr_t *)gateway))
700 		ire_delete(ire);
701 }
702 
703 /*
704  * Search for all HOST REDIRECT routes that are
705  * pointing at the specified gateway and
706  * delete them. This routine is called only
707  * when a default gateway is going away.
708  */
709 void
710 ire_delete_host_redirects(ipaddr_t gateway, ip_stack_t *ipst)
711 {
712 	struct rtfuncarg rtfarg;
713 
714 	(void) memset(&rtfarg, 0, sizeof (rtfarg));
715 	rtfarg.rt_func = ire_del_host_redir;
716 	rtfarg.rt_arg = (void *)&gateway;
717 	(void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable,
718 	    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
719 }
720 
721 struct ihandle_arg {
722 	uint32_t ihandle;
723 	ire_t	 *ire;
724 };
725 
726 static int
727 ire_ihandle_onlink_match(struct radix_node *rn, void *arg)
728 {
729 	struct rt_entry *rt;
730 	irb_t *irb;
731 	ire_t *ire;
732 	struct ihandle_arg *ih = arg;
733 
734 	rt = (struct rt_entry *)rn;
735 	ASSERT(rt != NULL);
736 	irb = &rt->rt_irb;
737 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
738 		if ((ire->ire_type & IRE_INTERFACE) &&
739 		    (ire->ire_ihandle == ih->ihandle)) {
740 			ih->ire = ire;
741 			IRE_REFHOLD(ire);
742 			return (1);
743 		}
744 	}
745 	return (0);
746 }
747 
748 /*
749  * Locate the interface ire that is tied to the cache ire 'cire' via
750  * cire->ire_ihandle.
751  *
752  * We are trying to create the cache ire for an onlink destn. or
753  * gateway in 'cire'. We are called from ire_add_v4() in the IRE_IF_RESOLVER
754  * case, after the ire has come back from ARP.
755  */
756 ire_t *
757 ire_ihandle_lookup_onlink(ire_t *cire)
758 {
759 	ire_t	*ire;
760 	int	match_flags;
761 	struct ihandle_arg ih;
762 	ip_stack_t *ipst;
763 
764 	ASSERT(cire != NULL);
765 	ipst = cire->ire_ipst;
766 
767 	/*
768 	 * We don't need to specify the zoneid to ire_ftable_lookup() below
769 	 * because the ihandle refers to an ipif which can be in only one zone.
770 	 */
771 	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
772 	/*
773 	 * We know that the mask of the interface ire equals cire->ire_cmask.
774 	 * (When ip_newroute() created 'cire' for an on-link destn. it set its
775 	 * cmask from the interface ire's mask)
776 	 */
777 	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
778 	    IRE_INTERFACE, NULL, NULL, ALL_ZONES, cire->ire_ihandle,
779 	    NULL, match_flags, ipst);
780 	if (ire != NULL)
781 		return (ire);
782 	/*
783 	 * If we didn't find an interface ire above, we can't declare failure.
784 	 * For backwards compatibility, we need to support prefix routes
785 	 * pointing to next hop gateways that are not on-link.
786 	 *
787 	 * In the resolver/noresolver case, ip_newroute() thinks it is creating
788 	 * the cache ire for an onlink destination in 'cire'. But 'cire' is
789 	 * not actually onlink, because ire_ftable_lookup() cheated it, by
790 	 * doing ire_route_lookup() twice and returning an interface ire.
791 	 *
792 	 * Eg. default	-	gw1			(line 1)
793 	 *	gw1	-	gw2			(line 2)
794 	 *	gw2	-	hme0			(line 3)
795 	 *
796 	 * In the above example, ip_newroute() tried to create the cache ire
797 	 * 'cire' for gw1, based on the interface route in line 3. The
798 	 * ire_ftable_lookup() above fails, because there is no interface route
799 	 * to reach gw1. (it is gw2). We fall thru below.
800 	 *
801 	 * Do a brute force search based on the ihandle in a subset of the
802 	 * forwarding tables, corresponding to cire->ire_cmask. Otherwise
803 	 * things become very complex, since we don't have 'pire' in this
804 	 * case. (Also note that this method is not possible in the offlink
805 	 * case because we don't know the mask)
806 	 */
807 	(void) memset(&ih, 0, sizeof (ih));
808 	ih.ihandle = cire->ire_ihandle;
809 	(void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable,
810 	    ire_ihandle_onlink_match, &ih, irb_refhold_rn, irb_refrele_rn);
811 	return (ih.ire);
812 }
813 
814 /*
815  * IRE iterator used by ire_ftable_lookup[_v6]() to process multiple default
816  * routes. Given a starting point in the hash list (ire_origin), walk the IREs
817  * in the bucket skipping default interface routes and deleted entries.
818  * Returns the next IRE (unheld), or NULL when we're back to the starting point.
819  * Assumes that the caller holds a reference on the IRE bucket.
820  */
821 ire_t *
822 ire_get_next_default_ire(ire_t *ire, ire_t *ire_origin)
823 {
824 	ASSERT(ire_origin->ire_bucket != NULL);
825 	ASSERT(ire != NULL);
826 
827 	do {
828 		ire = ire->ire_next;
829 		if (ire == NULL)
830 			ire = ire_origin->ire_bucket->irb_ire;
831 		if (ire == ire_origin)
832 			return (NULL);
833 	} while ((ire->ire_type & IRE_INTERFACE) ||
834 	    (ire->ire_marks & IRE_MARK_CONDEMNED));
835 	ASSERT(ire != NULL);
836 	return (ire);
837 }
838 
839 static ipif_t *
840 ire_forward_src_ipif(ipaddr_t dst, ire_t *sire, ire_t *ire,
841     int zoneid, ushort_t *marks)
842 {
843 	ipif_t *src_ipif;
844 	ill_t *ill = ire->ire_ipif->ipif_ill;
845 	ip_stack_t *ipst = ill->ill_ipst;
846 
847 	/*
848 	 * Pick the best source address from ill.
849 	 *
850 	 * 1) Try to pick the source address from the destination
851 	 *    route. Clustering assumes that when we have multiple
852 	 *    prefixes hosted on an interface, the prefix of the
853 	 *    source address matches the prefix of the destination
854 	 *    route. We do this only if the address is not
855 	 *    DEPRECATED.
856 	 *
857 	 * 2) If the conn is in a different zone than the ire, we
858 	 *    need to pick a source address from the right zone.
859 	 */
860 	if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) {
861 		/*
862 		 * The RTF_SETSRC flag is set in the parent ire (sire).
863 		 * Check that the ipif matching the requested source
864 		 * address still exists.
865 		 */
866 		src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL,
867 		    zoneid, NULL, NULL, NULL, NULL, ipst);
868 		return (src_ipif);
869 	}
870 	*marks |= IRE_MARK_USESRC_CHECK;
871 	if (IS_IPMP(ill) ||
872 	    (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) ||
873 	    (ill->ill_usesrc_ifindex != 0)) {
874 		src_ipif = ipif_select_source(ill, dst, zoneid);
875 	} else {
876 		src_ipif = ire->ire_ipif;
877 		ASSERT(src_ipif != NULL);
878 		/* hold src_ipif for uniformity */
879 		ipif_refhold(src_ipif);
880 	}
881 	return (src_ipif);
882 }
883 
884 /*
885  * This function is called by ip_rput_noire() and ip_fast_forward()
886  * to resolve the route of incoming packet that needs to be forwarded.
887  * If the ire of the nexthop is not already in the cachetable, this
888  * routine will insert it to the table, but won't trigger ARP resolution yet.
889  * Thus unlike ip_newroute, this function adds incomplete ires to
890  * the cachetable. ARP resolution for these ires are  delayed until
891  * after all of the packet processing is completed and its ready to
892  * be sent out on the wire, Eventually, the packet transmit routine
893  * ip_xmit_v4() attempts to send a packet  to the driver. If it finds
894  * that there is no link layer information, it will do the arp
895  * resolution and queue the packet in ire->ire_nce->nce_qd_mp and
896  * then send it out once the arp resolution is over
897  * (see ip_xmit_v4()->ire_arpresolve()). This scheme is similar to
898  * the model of BSD/SunOS 4
899  *
900  * In future, the insertion of incomplete ires in the cachetable should
901  * be implemented in hostpath as well, as doing so will greatly reduce
902  * the existing complexity for code paths that depend on the context of
903  * the sender (such as IPsec).
904  *
905  * Thus this scheme of adding incomplete ires in cachetable in forwarding
906  * path can be used as a template for simplifying the hostpath.
907  */
908 
909 ire_t *
910 ire_forward(ipaddr_t dst, enum ire_forward_action *ret_action,
911     ire_t *supplied_ire, ire_t *supplied_sire, const struct ts_label_s *tsl,
912     ip_stack_t *ipst)
913 {
914 	ipaddr_t gw = 0;
915 	ire_t	*ire = NULL;
916 	ire_t   *sire = NULL, *save_ire;
917 	ill_t *dst_ill = NULL;
918 	int error;
919 	zoneid_t zoneid;
920 	ipif_t *src_ipif = NULL;
921 	mblk_t *res_mp;
922 	ushort_t ire_marks = 0;
923 	tsol_gcgrp_t *gcgrp = NULL;
924 	tsol_gcgrp_addr_t ga;
925 
926 	zoneid = GLOBAL_ZONEID;
927 
928 	if (supplied_ire != NULL) {
929 		/* We have arrived here from ipfil_sendpkt */
930 		ire = supplied_ire;
931 		sire = supplied_sire;
932 		goto create_irecache;
933 	}
934 
935 	ire = ire_ftable_lookup(dst, 0, 0, 0, NULL, &sire, zoneid, 0,
936 	    tsl, MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
937 	    MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT|MATCH_IRE_SECATTR, ipst);
938 
939 	if (ire == NULL) {
940 		ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, RTA_DST, ipst);
941 		goto icmp_err_ret;
942 	}
943 
944 	/*
945 	 * If we encounter CGTP, we should  have the caller use
946 	 * ip_newroute to resolve multirt instead of this function.
947 	 * CGTP specs explicitly state that it can't be used with routers.
948 	 * This essentially prevents insertion of incomplete RTF_MULTIRT
949 	 * ires in cachetable.
950 	 */
951 	if (ipst->ips_ip_cgtp_filter &&
952 	    ((ire->ire_flags & RTF_MULTIRT) ||
953 	    ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)))) {
954 		ip3dbg(("ire_forward: packet is to be multirouted- "
955 		    "handing it to ip_newroute\n"));
956 		if (sire != NULL)
957 			ire_refrele(sire);
958 		ire_refrele(ire);
959 		/*
960 		 * Inform caller about encountering of multirt so that
961 		 * ip_newroute() can be called.
962 		 */
963 		*ret_action = Forward_check_multirt;
964 		return (NULL);
965 	}
966 
967 	/*
968 	 * Verify that the returned IRE does not have either
969 	 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is
970 	 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER.
971 	 */
972 	if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) ||
973 	    (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) {
974 		ip3dbg(("ire 0x%p is not cache/resolver/noresolver\n",
975 		    (void *)ire));
976 		goto icmp_err_ret;
977 	}
978 
979 	/*
980 	 * If we already have a fully resolved IRE CACHE of the
981 	 * nexthop router, just hand over the cache entry
982 	 * and we are done.
983 	 */
984 
985 	if (ire->ire_type & IRE_CACHE) {
986 
987 		/*
988 		 * If we are using this ire cache entry as a
989 		 * gateway to forward packets, chances are we
990 		 * will be using it again. So turn off
991 		 * the temporary flag, thus reducing its
992 		 * chances of getting deleted frequently.
993 		 */
994 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
995 			irb_t *irb = ire->ire_bucket;
996 			rw_enter(&irb->irb_lock, RW_WRITER);
997 			/*
998 			 * We need to recheck for IRE_MARK_TEMPORARY after
999 			 * acquiring the lock in order to guarantee
1000 			 * irb_tmp_ire_cnt
1001 			 */
1002 			if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1003 				ire->ire_marks &= ~IRE_MARK_TEMPORARY;
1004 				irb->irb_tmp_ire_cnt--;
1005 			}
1006 			rw_exit(&irb->irb_lock);
1007 		}
1008 
1009 		if (sire != NULL) {
1010 			UPDATE_OB_PKT_COUNT(sire);
1011 			sire->ire_last_used_time = lbolt;
1012 			ire_refrele(sire);
1013 		}
1014 		*ret_action = Forward_ok;
1015 		return (ire);
1016 	}
1017 create_irecache:
1018 	/*
1019 	 * Increment the ire_ob_pkt_count field for ire if it is an
1020 	 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and
1021 	 * increment the same for the parent IRE, sire, if it is some
1022 	 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST).
1023 	 */
1024 	if ((ire->ire_type & IRE_INTERFACE) != 0) {
1025 		UPDATE_OB_PKT_COUNT(ire);
1026 		ire->ire_last_used_time = lbolt;
1027 	}
1028 
1029 	/*
1030 	 * sire must be either IRE_CACHETABLE OR IRE_INTERFACE type
1031 	 */
1032 	if (sire != NULL) {
1033 		gw = sire->ire_gateway_addr;
1034 		ASSERT((sire->ire_type &
1035 		    (IRE_CACHETABLE | IRE_INTERFACE)) == 0);
1036 		UPDATE_OB_PKT_COUNT(sire);
1037 		sire->ire_last_used_time = lbolt;
1038 	}
1039 
1040 	dst_ill = ire->ire_ipif->ipif_ill;
1041 	if (IS_IPMP(dst_ill))
1042 		dst_ill = ipmp_illgrp_hold_next_ill(dst_ill->ill_grp);
1043 	else
1044 		ill_refhold(dst_ill);
1045 
1046 	if (dst_ill == NULL) {
1047 		ip2dbg(("ire_forward no dst ill; ire 0x%p\n", (void *)ire));
1048 		goto icmp_err_ret;
1049 	}
1050 
1051 	ASSERT(src_ipif == NULL);
1052 	/* Now obtain the src_ipif */
1053 	src_ipif = ire_forward_src_ipif(dst, sire, ire, zoneid, &ire_marks);
1054 	if (src_ipif == NULL)
1055 		goto icmp_err_ret;
1056 
1057 	switch (ire->ire_type) {
1058 	case IRE_IF_NORESOLVER:
1059 		/* create ire_cache for ire_addr endpoint */
1060 		if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN &&
1061 		    dst_ill->ill_resolver_mp == NULL) {
1062 			ip1dbg(("ire_forward: dst_ill %p "
1063 			    "for IRE_IF_NORESOLVER ire %p has "
1064 			    "no ill_resolver_mp\n",
1065 			    (void *)dst_ill, (void *)ire));
1066 			goto icmp_err_ret;
1067 		}
1068 		/* FALLTHRU */
1069 	case IRE_IF_RESOLVER:
1070 		/*
1071 		 * We have the IRE_IF_RESOLVER of the nexthop gateway
1072 		 * and now need to build a IRE_CACHE for it.
1073 		 * In this case, we have the following :
1074 		 *
1075 		 * 1) src_ipif - used for getting a source address.
1076 		 *
1077 		 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This
1078 		 *    means packets using the IRE_CACHE that we will build
1079 		 *    here will go out on dst_ill.
1080 		 *
1081 		 * 3) sire may or may not be NULL. But, the IRE_CACHE that is
1082 		 *    to be created will only be tied to the IRE_INTERFACE
1083 		 *    that was derived from the ire_ihandle field.
1084 		 *
1085 		 *    If sire is non-NULL, it means the destination is
1086 		 *    off-link and we will first create the IRE_CACHE for the
1087 		 *    gateway.
1088 		 */
1089 		res_mp = dst_ill->ill_resolver_mp;
1090 		if (ire->ire_type == IRE_IF_RESOLVER &&
1091 		    (!OK_RESOLVER_MP(res_mp))) {
1092 			goto icmp_err_ret;
1093 		}
1094 		/*
1095 		 * To be at this point in the code with a non-zero gw
1096 		 * means that dst is reachable through a gateway that
1097 		 * we have never resolved.  By changing dst to the gw
1098 		 * addr we resolve the gateway first.
1099 		 */
1100 		if (gw != INADDR_ANY) {
1101 			/*
1102 			 * The source ipif that was determined above was
1103 			 * relative to the destination address, not the
1104 			 * gateway's. If src_ipif was not taken out of
1105 			 * the IRE_IF_RESOLVER entry, we'll need to call
1106 			 * ipif_select_source() again.
1107 			 */
1108 			if (src_ipif != ire->ire_ipif) {
1109 				ipif_refrele(src_ipif);
1110 				src_ipif = ipif_select_source(dst_ill,
1111 				    gw, zoneid);
1112 				if (src_ipif == NULL)
1113 					goto icmp_err_ret;
1114 			}
1115 			dst = gw;
1116 			gw = INADDR_ANY;
1117 		}
1118 		/*
1119 		 * dst has been set to the address of the nexthop.
1120 		 *
1121 		 * TSol note: get security attributes of the nexthop;
1122 		 * Note that the nexthop may either be a gateway, or the
1123 		 * packet destination itself; Detailed explanation of
1124 		 * issues involved is  provided in the  IRE_IF_NORESOLVER
1125 		 * logic in ip_newroute().
1126 		 */
1127 		ga.ga_af = AF_INET;
1128 		IN6_IPADDR_TO_V4MAPPED(dst, &ga.ga_addr);
1129 		gcgrp = gcgrp_lookup(&ga, B_FALSE);
1130 
1131 		if (ire->ire_type == IRE_IF_NORESOLVER)
1132 			dst = ire->ire_addr; /* ire_cache for tunnel endpoint */
1133 
1134 		save_ire = ire;
1135 		/*
1136 		 * create an incomplete IRE_CACHE.
1137 		 * An areq_mp will be generated in ire_arpresolve() for
1138 		 * RESOLVER interfaces.
1139 		 */
1140 		ire = ire_create(
1141 		    (uchar_t *)&dst,		/* dest address */
1142 		    (uchar_t *)&ip_g_all_ones,	/* mask */
1143 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
1144 		    (uchar_t *)&gw,		/* gateway address */
1145 		    (save_ire->ire_type == IRE_IF_RESOLVER ?  NULL:
1146 		    &save_ire->ire_max_frag),
1147 		    NULL,
1148 		    dst_ill->ill_rq,		/* recv-from queue */
1149 		    dst_ill->ill_wq,		/* send-to queue */
1150 		    IRE_CACHE,			/* IRE type */
1151 		    src_ipif,
1152 		    ire->ire_mask,		/* Parent mask */
1153 		    0,
1154 		    ire->ire_ihandle,	/* Interface handle */
1155 		    0,
1156 		    &(ire->ire_uinfo),
1157 		    NULL,
1158 		    gcgrp,
1159 		    ipst);
1160 		ip1dbg(("incomplete ire_cache 0x%p\n", (void *)ire));
1161 		if (ire != NULL) {
1162 			gcgrp = NULL; /* reference now held by IRE */
1163 			ire->ire_marks |= ire_marks;
1164 			/* add the incomplete ire: */
1165 			error = ire_add(&ire, NULL, NULL, NULL, B_TRUE);
1166 			if (error == 0 && ire != NULL) {
1167 				ire->ire_max_frag = save_ire->ire_max_frag;
1168 				ip1dbg(("setting max_frag to %d in ire 0x%p\n",
1169 				    ire->ire_max_frag, (void *)ire));
1170 			} else {
1171 				ire_refrele(save_ire);
1172 				goto icmp_err_ret;
1173 			}
1174 		} else {
1175 			if (gcgrp != NULL) {
1176 				GCGRP_REFRELE(gcgrp);
1177 				gcgrp = NULL;
1178 			}
1179 		}
1180 
1181 		ire_refrele(save_ire);
1182 		break;
1183 	default:
1184 		break;
1185 	}
1186 
1187 	*ret_action = Forward_ok;
1188 	if (sire != NULL)
1189 		ire_refrele(sire);
1190 	if (dst_ill != NULL)
1191 		ill_refrele(dst_ill);
1192 	if (src_ipif != NULL)
1193 		ipif_refrele(src_ipif);
1194 	return (ire);
1195 icmp_err_ret:
1196 	*ret_action = Forward_ret_icmp_err;
1197 	if (sire != NULL)
1198 		ire_refrele(sire);
1199 	if (dst_ill != NULL)
1200 		ill_refrele(dst_ill);
1201 	if (src_ipif != NULL)
1202 		ipif_refrele(src_ipif);
1203 	if (ire != NULL) {
1204 		if (ire->ire_flags & RTF_BLACKHOLE)
1205 			*ret_action = Forward_blackhole;
1206 		ire_refrele(ire);
1207 	}
1208 	return (NULL);
1209 }
1210 
1211 /*
1212  * Since caller is ip_fast_forward, there is no CGTP or Tsol test
1213  * Also we dont call ftable lookup with MATCH_IRE_PARENT
1214  */
1215 
1216 ire_t *
1217 ire_forward_simple(ipaddr_t dst, enum ire_forward_action *ret_action,
1218     ip_stack_t *ipst)
1219 {
1220 	ipaddr_t gw = 0;
1221 	ire_t	*ire = NULL;
1222 	ire_t   *sire = NULL, *save_ire;
1223 	ill_t *dst_ill = NULL;
1224 	int error;
1225 	zoneid_t zoneid = GLOBAL_ZONEID;
1226 	ipif_t *src_ipif = NULL;
1227 	mblk_t *res_mp;
1228 	ushort_t ire_marks = 0;
1229 
1230 	ire = ire_ftable_lookup_simple(dst, &sire, zoneid,
1231 	    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE, ipst);
1232 	if (ire == NULL) {
1233 		ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, RTA_DST, ipst);
1234 		goto icmp_err_ret;
1235 	}
1236 
1237 	/*
1238 	 * Verify that the returned IRE does not have either
1239 	 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is
1240 	 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER.
1241 	 */
1242 	if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) ||
1243 	    ((ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0)) {
1244 		ip3dbg(("ire 0x%p is not cache/resolver/noresolver\n",
1245 		    (void *)ire));
1246 		goto icmp_err_ret;
1247 	}
1248 
1249 	/*
1250 	 * If we already have a fully resolved IRE CACHE of the
1251 	 * nexthop router, just hand over the cache entry
1252 	 * and we are done.
1253 	 */
1254 	if (ire->ire_type & IRE_CACHE) {
1255 		/*
1256 		 * If we are using this ire cache entry as a
1257 		 * gateway to forward packets, chances are we
1258 		 * will be using it again. So turn off
1259 		 * the temporary flag, thus reducing its
1260 		 * chances of getting deleted frequently.
1261 		 */
1262 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1263 			irb_t *irb = ire->ire_bucket;
1264 			rw_enter(&irb->irb_lock, RW_WRITER);
1265 			ire->ire_marks &= ~IRE_MARK_TEMPORARY;
1266 			irb->irb_tmp_ire_cnt--;
1267 			rw_exit(&irb->irb_lock);
1268 		}
1269 
1270 		if (sire != NULL) {
1271 			UPDATE_OB_PKT_COUNT(sire);
1272 			ire_refrele(sire);
1273 		}
1274 		*ret_action = Forward_ok;
1275 		return (ire);
1276 	}
1277 	/*
1278 	 * Increment the ire_ob_pkt_count field for ire if it is an
1279 	 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and
1280 	 * increment the same for the parent IRE, sire, if it is some
1281 	 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST).
1282 	 */
1283 	if ((ire->ire_type & IRE_INTERFACE) != 0) {
1284 		UPDATE_OB_PKT_COUNT(ire);
1285 		ire->ire_last_used_time = lbolt;
1286 	}
1287 
1288 	/*
1289 	 * sire must be either IRE_CACHETABLE OR IRE_INTERFACE type
1290 	 */
1291 	if (sire != NULL) {
1292 		gw = sire->ire_gateway_addr;
1293 		ASSERT((sire->ire_type &
1294 		    (IRE_CACHETABLE | IRE_INTERFACE)) == 0);
1295 		UPDATE_OB_PKT_COUNT(sire);
1296 	}
1297 
1298 	dst_ill = ire->ire_ipif->ipif_ill;
1299 	if (IS_IPMP(dst_ill))
1300 		dst_ill = ipmp_illgrp_hold_next_ill(dst_ill->ill_grp);
1301 	else
1302 		ill_refhold(dst_ill);	/* for symmetry */
1303 
1304 	if (dst_ill == NULL) {
1305 		ip2dbg(("ire_forward_simple: no dst ill; ire 0x%p\n",
1306 		    (void *)ire));
1307 		goto icmp_err_ret;
1308 	}
1309 
1310 	ASSERT(src_ipif == NULL);
1311 	/* Now obtain the src_ipif */
1312 	src_ipif = ire_forward_src_ipif(dst, sire, ire, zoneid, &ire_marks);
1313 	if (src_ipif == NULL)
1314 		goto icmp_err_ret;
1315 
1316 	switch (ire->ire_type) {
1317 	case IRE_IF_NORESOLVER:
1318 		/* create ire_cache for ire_addr endpoint */
1319 	case IRE_IF_RESOLVER:
1320 		/*
1321 		 * We have the IRE_IF_RESOLVER of the nexthop gateway
1322 		 * and now need to build a IRE_CACHE for it.
1323 		 * In this case, we have the following :
1324 		 *
1325 		 * 1) src_ipif - used for getting a source address.
1326 		 *
1327 		 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This
1328 		 *    means packets using the IRE_CACHE that we will build
1329 		 *    here will go out on dst_ill.
1330 		 *
1331 		 * 3) sire may or may not be NULL. But, the IRE_CACHE that is
1332 		 *    to be created will only be tied to the IRE_INTERFACE
1333 		 *    that was derived from the ire_ihandle field.
1334 		 *
1335 		 *    If sire is non-NULL, it means the destination is
1336 		 *    off-link and we will first create the IRE_CACHE for the
1337 		 *    gateway.
1338 		 */
1339 		res_mp = dst_ill->ill_resolver_mp;
1340 		if (ire->ire_type == IRE_IF_RESOLVER &&
1341 		    (!OK_RESOLVER_MP(res_mp))) {
1342 			ire_refrele(ire);
1343 			ire = NULL;
1344 			goto out;
1345 		}
1346 		/*
1347 		 * To be at this point in the code with a non-zero gw
1348 		 * means that dst is reachable through a gateway that
1349 		 * we have never resolved.  By changing dst to the gw
1350 		 * addr we resolve the gateway first.
1351 		 */
1352 		if (gw != INADDR_ANY) {
1353 			/*
1354 			 * The source ipif that was determined above was
1355 			 * relative to the destination address, not the
1356 			 * gateway's. If src_ipif was not taken out of
1357 			 * the IRE_IF_RESOLVER entry, we'll need to call
1358 			 * ipif_select_source() again.
1359 			 */
1360 			if (src_ipif != ire->ire_ipif) {
1361 				ipif_refrele(src_ipif);
1362 				src_ipif = ipif_select_source(dst_ill,
1363 				    gw, zoneid);
1364 				if (src_ipif == NULL)
1365 					goto icmp_err_ret;
1366 			}
1367 			dst = gw;
1368 			gw = INADDR_ANY;
1369 		}
1370 
1371 		if (ire->ire_type == IRE_IF_NORESOLVER)
1372 			dst = ire->ire_addr; /* ire_cache for tunnel endpoint */
1373 
1374 		save_ire = ire;
1375 		/*
1376 		 * create an incomplete IRE_CACHE.
1377 		 * An areq_mp will be generated in ire_arpresolve() for
1378 		 * RESOLVER interfaces.
1379 		 */
1380 		ire = ire_create(
1381 		    (uchar_t *)&dst,		/* dest address */
1382 		    (uchar_t *)&ip_g_all_ones,	/* mask */
1383 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
1384 		    (uchar_t *)&gw,		/* gateway address */
1385 		    (save_ire->ire_type == IRE_IF_RESOLVER ?  NULL:
1386 		    &save_ire->ire_max_frag),
1387 		    NULL,
1388 		    dst_ill->ill_rq,		/* recv-from queue */
1389 		    dst_ill->ill_wq,		/* send-to queue */
1390 		    IRE_CACHE,			/* IRE type */
1391 		    src_ipif,
1392 		    ire->ire_mask,		/* Parent mask */
1393 		    0,
1394 		    ire->ire_ihandle,	/* Interface handle */
1395 		    0,
1396 		    &(ire->ire_uinfo),
1397 		    NULL,
1398 		    NULL,
1399 		    ipst);
1400 		ip1dbg(("incomplete ire_cache 0x%p\n", (void *)ire));
1401 		if (ire != NULL) {
1402 			ire->ire_marks |= ire_marks;
1403 			/* add the incomplete ire: */
1404 			error = ire_add(&ire, NULL, NULL, NULL, B_TRUE);
1405 			if (error == 0 && ire != NULL) {
1406 				ire->ire_max_frag = save_ire->ire_max_frag;
1407 				ip1dbg(("setting max_frag to %d in ire 0x%p\n",
1408 				    ire->ire_max_frag, (void *)ire));
1409 			} else {
1410 				ire_refrele(save_ire);
1411 				goto icmp_err_ret;
1412 			}
1413 		}
1414 
1415 		ire_refrele(save_ire);
1416 		break;
1417 	default:
1418 		break;
1419 	}
1420 
1421 out:
1422 	*ret_action = Forward_ok;
1423 	if (sire != NULL)
1424 		ire_refrele(sire);
1425 	if (dst_ill != NULL)
1426 		ill_refrele(dst_ill);
1427 	if (src_ipif != NULL)
1428 		ipif_refrele(src_ipif);
1429 	return (ire);
1430 icmp_err_ret:
1431 	*ret_action = Forward_ret_icmp_err;
1432 	if (src_ipif != NULL)
1433 		ipif_refrele(src_ipif);
1434 	if (dst_ill != NULL)
1435 		ill_refrele(dst_ill);
1436 	if (sire != NULL)
1437 		ire_refrele(sire);
1438 	if (ire != NULL) {
1439 		if (ire->ire_flags & RTF_BLACKHOLE)
1440 			*ret_action = Forward_blackhole;
1441 		ire_refrele(ire);
1442 	}
1443 	/* caller needs to send icmp error message */
1444 	return (NULL);
1445 
1446 }
1447 
1448 /*
1449  * Obtain the rt_entry and rt_irb for the route to be added to
1450  * the ips_ip_ftable.
1451  * First attempt to add a node to the radix tree via rn_addroute. If the
1452  * route already exists, return the bucket for the existing route.
1453  *
1454  * Locking notes: Need to hold the global radix tree lock in write mode to
1455  * add a radix node. To prevent the node from being deleted, ire_get_bucket()
1456  * returns with a ref'ed irb_t. The ire itself is added in ire_add_v4()
1457  * while holding the irb_lock, but not the radix tree lock.
1458  */
1459 irb_t *
1460 ire_get_bucket(ire_t *ire)
1461 {
1462 	struct radix_node *rn;
1463 	struct rt_entry *rt;
1464 	struct rt_sockaddr rmask, rdst;
1465 	irb_t *irb = NULL;
1466 	ip_stack_t *ipst = ire->ire_ipst;
1467 
1468 	ASSERT(ipst->ips_ip_ftable != NULL);
1469 
1470 	/* first try to see if route exists (based on rtalloc1) */
1471 	(void) memset(&rdst, 0, sizeof (rdst));
1472 	rdst.rt_sin_len = sizeof (rdst);
1473 	rdst.rt_sin_family = AF_INET;
1474 	rdst.rt_sin_addr.s_addr = ire->ire_addr;
1475 
1476 	(void) memset(&rmask, 0, sizeof (rmask));
1477 	rmask.rt_sin_len = sizeof (rmask);
1478 	rmask.rt_sin_family = AF_INET;
1479 	rmask.rt_sin_addr.s_addr = ire->ire_mask;
1480 
1481 	/*
1482 	 * add the route. based on BSD's rtrequest1(RTM_ADD)
1483 	 */
1484 	R_Malloc(rt, rt_entry_cache,  sizeof (*rt));
1485 	/* kmem_alloc failed */
1486 	if (rt == NULL)
1487 		return (NULL);
1488 
1489 	(void) memset(rt, 0, sizeof (*rt));
1490 	rt->rt_nodes->rn_key = (char *)&rt->rt_dst;
1491 	rt->rt_dst = rdst;
1492 	irb = &rt->rt_irb;
1493 	irb->irb_marks |= IRB_MARK_FTABLE; /* dynamically allocated/freed */
1494 	irb->irb_ipst = ipst;
1495 	rw_init(&irb->irb_lock, NULL, RW_DEFAULT, NULL);
1496 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
1497 	rn = ipst->ips_ip_ftable->rnh_addaddr(&rt->rt_dst, &rmask,
1498 	    ipst->ips_ip_ftable, (struct radix_node *)rt);
1499 	if (rn == NULL) {
1500 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1501 		Free(rt, rt_entry_cache);
1502 		rt = NULL;
1503 		irb = NULL;
1504 		RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
1505 		rn = ipst->ips_ip_ftable->rnh_lookup(&rdst, &rmask,
1506 		    ipst->ips_ip_ftable);
1507 		if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) {
1508 			/* found a non-root match */
1509 			rt = (struct rt_entry *)rn;
1510 		}
1511 	}
1512 	if (rt != NULL) {
1513 		irb = &rt->rt_irb;
1514 		IRB_REFHOLD(irb);
1515 	}
1516 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1517 	return (irb);
1518 }
1519 
1520 /*
1521  * This function is used when the caller wants to know the outbound
1522  * interface for a packet given only the address.
1523  * If this is a offlink IP address and there are multiple
1524  * routes to this destination, this routine will utilise the
1525  * first route it finds to IP address
1526  * Return values:
1527  * 	0	- FAILURE
1528  *	nonzero	- ifindex
1529  */
1530 uint_t
1531 ifindex_lookup(const struct sockaddr *ipaddr, zoneid_t zoneid)
1532 {
1533 	uint_t ifindex = 0;
1534 	ire_t *ire;
1535 	ill_t *ill;
1536 	netstack_t *ns;
1537 	ip_stack_t *ipst;
1538 
1539 	if (zoneid == ALL_ZONES)
1540 		ns = netstack_find_by_zoneid(GLOBAL_ZONEID);
1541 	else
1542 		ns = netstack_find_by_zoneid(zoneid);
1543 	ASSERT(ns != NULL);
1544 
1545 	/*
1546 	 * For exclusive stacks we set the zoneid to zero
1547 	 * since IP uses the global zoneid in the exclusive stacks.
1548 	 */
1549 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
1550 		zoneid = GLOBAL_ZONEID;
1551 	ipst = ns->netstack_ip;
1552 
1553 	ASSERT(ipaddr->sa_family == AF_INET || ipaddr->sa_family == AF_INET6);
1554 
1555 	if ((ire =  route_to_dst(ipaddr, zoneid, ipst)) != NULL) {
1556 		ill = ire_to_ill(ire);
1557 		if (ill != NULL)
1558 			ifindex = ill->ill_phyint->phyint_ifindex;
1559 		ire_refrele(ire);
1560 	}
1561 	netstack_rele(ns);
1562 	return (ifindex);
1563 }
1564 
1565 /*
1566  * Routine to find the route to a destination. If a ifindex is supplied
1567  * it tries to match the the route to the corresponding ipif for the ifindex
1568  */
1569 static	ire_t *
1570 route_to_dst(const struct sockaddr *dst_addr, zoneid_t zoneid, ip_stack_t *ipst)
1571 {
1572 	ire_t *ire = NULL;
1573 	int match_flags;
1574 
1575 	match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT |
1576 	    MATCH_IRE_RECURSIVE | MATCH_IRE_RJ_BHOLE);
1577 
1578 	/* XXX pass NULL tsl for now */
1579 
1580 	if (dst_addr->sa_family == AF_INET) {
1581 		ire = ire_route_lookup(
1582 		    ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr,
1583 		    0, 0, 0, NULL, NULL, zoneid, NULL, match_flags, ipst);
1584 	} else {
1585 		ire = ire_route_lookup_v6(
1586 		    &((struct sockaddr_in6 *)dst_addr)->sin6_addr,
1587 		    0, 0, 0, NULL, NULL, zoneid, NULL, match_flags, ipst);
1588 	}
1589 	return (ire);
1590 }
1591 
1592 /*
1593  * This routine is called by IP Filter to send a packet out on the wire
1594  * to a specified V4 dst (which may be onlink or offlink). The ifindex may or
1595  * may not be 0. A non-null ifindex indicates IP Filter has stipulated
1596  * an outgoing interface and requires the nexthop to be on that interface.
1597  * IP WILL NOT DO the following to the data packet before sending it out:
1598  *	a. manipulate ttl
1599  *	b. ipsec work
1600  *	c. fragmentation
1601  *
1602  * If the packet has been prepared for hardware checksum then it will be
1603  * passed off to ip_send_align_cksum() to check that the flags set on the
1604  * packet are in alignment with the capabilities of the new outgoing NIC.
1605  *
1606  * Return values:
1607  *	0:		IP was able to send of the data pkt
1608  *	ECOMM:		Could not send packet
1609  *	ENONET		No route to dst. It is up to the caller
1610  *			to send icmp unreachable error message,
1611  *	EINPROGRESS	The macaddr of the onlink dst or that
1612  *			of the offlink dst's nexthop needs to get
1613  *			resolved before packet can be sent to dst.
1614  *			Thus transmission is not guaranteed.
1615  *
1616  */
1617 
1618 int
1619 ipfil_sendpkt(const struct sockaddr *dst_addr, mblk_t *mp, uint_t ifindex,
1620     zoneid_t zoneid)
1621 {
1622 	ire_t *ire = NULL, *sire = NULL;
1623 	ire_t *ire_cache = NULL;
1624 	int value;
1625 	int match_flags;
1626 	ipaddr_t dst;
1627 	netstack_t *ns;
1628 	ip_stack_t *ipst;
1629 	enum ire_forward_action ret_action;
1630 
1631 	ASSERT(mp != NULL);
1632 
1633 	if (zoneid == ALL_ZONES)
1634 		ns = netstack_find_by_zoneid(GLOBAL_ZONEID);
1635 	else
1636 		ns = netstack_find_by_zoneid(zoneid);
1637 	ASSERT(ns != NULL);
1638 
1639 	/*
1640 	 * For exclusive stacks we set the zoneid to zero
1641 	 * since IP uses the global zoneid in the exclusive stacks.
1642 	 */
1643 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
1644 		zoneid = GLOBAL_ZONEID;
1645 	ipst = ns->netstack_ip;
1646 
1647 	ASSERT(dst_addr->sa_family == AF_INET ||
1648 	    dst_addr->sa_family == AF_INET6);
1649 
1650 	if (dst_addr->sa_family == AF_INET) {
1651 		dst = ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr;
1652 	} else {
1653 		/*
1654 		 * We dont have support for V6 yet. It will be provided
1655 		 * once RFE  6399103  has been delivered.
1656 		 * Until then, for V6 dsts, IP Filter will not call
1657 		 * this function. Instead the netinfo framework provides
1658 		 * its own code path, in ip_inject_impl(), to achieve
1659 		 * what it needs to do, for the time being.
1660 		 */
1661 		ip1dbg(("ipfil_sendpkt: no V6 support \n"));
1662 		value = ECOMM;
1663 		freemsg(mp);
1664 		goto discard;
1665 	}
1666 
1667 	/*
1668 	 * Lets get the ire. We might get the ire cache entry,
1669 	 * or the ire,sire pair needed to create the cache entry.
1670 	 * XXX pass NULL tsl for now.
1671 	 */
1672 
1673 	if (ifindex == 0) {
1674 		/* There is no supplied index. So use the FIB info */
1675 
1676 		match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT |
1677 		    MATCH_IRE_RECURSIVE | MATCH_IRE_RJ_BHOLE);
1678 		ire = ire_route_lookup(dst,
1679 		    0, 0, 0, NULL, &sire, zoneid, msg_getlabel(mp),
1680 		    match_flags, ipst);
1681 	} else {
1682 		ipif_t *supplied_ipif;
1683 		ill_t *ill;
1684 
1685 		match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT |
1686 		    MATCH_IRE_RECURSIVE| MATCH_IRE_RJ_BHOLE|
1687 		    MATCH_IRE_SECATTR | MATCH_IRE_ILL);
1688 
1689 		/*
1690 		 * If supplied ifindex is non-null, the only valid
1691 		 * nexthop is one off of the interface corresponding
1692 		 * to the specified ifindex.
1693 		 */
1694 		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
1695 		    NULL, NULL, NULL, NULL, ipst);
1696 		if (ill == NULL) {
1697 			ip1dbg(("ipfil_sendpkt: Could not find"
1698 			    " route to dst\n"));
1699 			value = ECOMM;
1700 			freemsg(mp);
1701 			goto discard;
1702 		}
1703 
1704 		supplied_ipif = ipif_get_next_ipif(NULL, ill);
1705 		ire = ire_route_lookup(dst, 0, 0, 0, supplied_ipif,
1706 		    &sire, zoneid, msg_getlabel(mp), match_flags, ipst);
1707 		if (supplied_ipif != NULL)
1708 			ipif_refrele(supplied_ipif);
1709 		ill_refrele(ill);
1710 	}
1711 
1712 	/*
1713 	 * Verify that the returned IRE is non-null and does
1714 	 * not have either the RTF_REJECT or RTF_BLACKHOLE
1715 	 * flags set and that the IRE is  either an IRE_CACHE,
1716 	 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER.
1717 	 */
1718 	if (ire == NULL ||
1719 	    ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) ||
1720 	    (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0)) {
1721 		/*
1722 		 * Either ire could not be found or we got
1723 		 * an invalid one
1724 		 */
1725 		ip1dbg(("ipfil_sendpkt: Could not find route to dst\n"));
1726 		value = ENONET;
1727 		freemsg(mp);
1728 		goto discard;
1729 	}
1730 
1731 	/* IP Filter and CGTP dont mix. So bail out if CGTP is on */
1732 	if (ipst->ips_ip_cgtp_filter &&
1733 	    ((ire->ire_flags & RTF_MULTIRT) ||
1734 	    ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)))) {
1735 		ip1dbg(("ipfil_sendpkt: IPFilter does not work with CGTP\n"));
1736 		value = ECOMM;
1737 		freemsg(mp);
1738 		goto discard;
1739 	}
1740 
1741 	ASSERT(ire->ire_type != IRE_CACHE || ire->ire_nce != NULL);
1742 
1743 	/*
1744 	 * If needed, we will create the ire cache entry for the
1745 	 * nexthop, resolve its link-layer address and then send
1746 	 * the packet out without ttl or IPSec processing.
1747 	 */
1748 	switch (ire->ire_type) {
1749 	case IRE_CACHE:
1750 		if (sire != NULL) {
1751 			UPDATE_OB_PKT_COUNT(sire);
1752 			sire->ire_last_used_time = lbolt;
1753 			ire_refrele(sire);
1754 		}
1755 		ire_cache = ire;
1756 		break;
1757 	case IRE_IF_NORESOLVER:
1758 	case IRE_IF_RESOLVER:
1759 		/*
1760 		 * Call ire_forward(). This function
1761 		 * will, create the ire cache entry of the
1762 		 * the nexthop and adds this incomplete ire
1763 		 * to the ire cache table
1764 		 */
1765 		ire_cache = ire_forward(dst, &ret_action, ire, sire,
1766 		    msg_getlabel(mp), ipst);
1767 		if (ire_cache == NULL) {
1768 			ip1dbg(("ipfil_sendpkt: failed to create the"
1769 			    " ire cache entry \n"));
1770 			value = ENONET;
1771 			freemsg(mp);
1772 			sire = NULL;
1773 			ire = NULL;
1774 			goto discard;
1775 		}
1776 		break;
1777 	}
1778 
1779 	if (DB_CKSUMFLAGS(mp)) {
1780 		if (ip_send_align_hcksum_flags(mp, ire_to_ill(ire_cache)))
1781 			goto cleanup;
1782 	}
1783 
1784 	/*
1785 	 * Now that we have the ire cache entry of the nexthop, call
1786 	 * ip_xmit_v4() to trigger mac addr resolution
1787 	 * if necessary and send it once ready.
1788 	 */
1789 
1790 	value = ip_xmit_v4(mp, ire_cache, NULL, B_FALSE, NULL);
1791 cleanup:
1792 	ire_refrele(ire_cache);
1793 	/*
1794 	 * At this point, the reference for these have already been
1795 	 * released within ire_forward() and/or ip_xmit_v4(). So we set
1796 	 * them to NULL to make sure we dont drop the references
1797 	 * again in case ip_xmit_v4() returns with either SEND_FAILED
1798 	 * or LLHDR_RESLV_FAILED
1799 	 */
1800 	sire = NULL;
1801 	ire = NULL;
1802 
1803 	switch (value) {
1804 	case SEND_FAILED:
1805 		ip1dbg(("ipfil_sendpkt: Send failed\n"));
1806 		value = ECOMM;
1807 		break;
1808 	case LLHDR_RESLV_FAILED:
1809 		ip1dbg(("ipfil_sendpkt: Link-layer resolution"
1810 		    "  failed\n"));
1811 		value = ECOMM;
1812 		break;
1813 	case LOOKUP_IN_PROGRESS:
1814 		netstack_rele(ns);
1815 		return (EINPROGRESS);
1816 	case SEND_PASSED:
1817 		netstack_rele(ns);
1818 		return (0);
1819 	}
1820 discard:
1821 	if (dst_addr->sa_family == AF_INET) {
1822 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
1823 	} else {
1824 		BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
1825 	}
1826 	if (ire != NULL)
1827 		ire_refrele(ire);
1828 	if (sire != NULL)
1829 		ire_refrele(sire);
1830 	netstack_rele(ns);
1831 	return (value);
1832 }
1833 
1834 
1835 /*
1836  * We don't check for dohwcksum in here because it should be being used
1837  * elsewhere to control what flags are being set on the mblk.  That is,
1838  * if DB_CKSUMFLAGS() is non-zero then we assume dohwcksum to be true
1839  * for this packet.
1840  *
1841  * This function assumes that it is *only* being called for TCP or UDP
1842  * packets and nothing else.
1843  */
1844 static int
1845 ip_send_align_hcksum_flags(mblk_t *mp, ill_t *ill)
1846 {
1847 	int illhckflags;
1848 	int mbhckflags;
1849 	uint16_t *up;
1850 	uint32_t cksum;
1851 	ipha_t *ipha;
1852 	ip6_t *ip6;
1853 	int proto;
1854 	int ipversion;
1855 	int length;
1856 	int start;
1857 	ip6_pkt_t ipp;
1858 
1859 	mbhckflags = DB_CKSUMFLAGS(mp);
1860 	ASSERT(mbhckflags != 0);
1861 	ASSERT(mp->b_datap->db_type == M_DATA);
1862 	/*
1863 	 * Since this function only knows how to manage the hardware checksum
1864 	 * issue, reject and packets that have flags set on the aside from
1865 	 * checksum related attributes as we cannot necessarily safely map
1866 	 * that packet onto the new NIC.  Packets that can be potentially
1867 	 * dropped here include those marked for LSO.
1868 	 */
1869 	if ((mbhckflags &
1870 	    ~(HCK_FULLCKSUM|HCK_PARTIALCKSUM|HCK_IPV4_HDRCKSUM)) != 0) {
1871 		DTRACE_PROBE2(pbr__incapable, (mblk_t *), mp, (ill_t *), ill);
1872 		freemsg(mp);
1873 		return (-1);
1874 	}
1875 
1876 	ipha = (ipha_t *)mp->b_rptr;
1877 
1878 	/*
1879 	 * Find out what the new NIC is capable of, if anything, and
1880 	 * only allow it to be used with M_DATA mblks being sent out.
1881 	 */
1882 	if (ILL_HCKSUM_CAPABLE(ill)) {
1883 		illhckflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
1884 	} else {
1885 		/*
1886 		 * No capabilities, so turn off everything.
1887 		 */
1888 		illhckflags = 0;
1889 		(void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0, 0, 0);
1890 		mp->b_datap->db_struioflag &= ~STRUIO_IP;
1891 	}
1892 
1893 	DTRACE_PROBE4(pbr__info__a, (mblk_t *), mp, (ill_t *), ill,
1894 	    uint32_t, illhckflags, uint32_t, mbhckflags);
1895 	/*
1896 	 * This block of code that looks for the position of the TCP/UDP
1897 	 * checksum is early in this function because we need to know
1898 	 * what needs to be blanked out for the hardware checksum case.
1899 	 *
1900 	 * That we're in this function implies that the packet is either
1901 	 * TCP or UDP on Solaris, so checks are made for one protocol and
1902 	 * if that fails, the other is therefore implied.
1903 	 */
1904 	ipversion = IPH_HDR_VERSION(ipha);
1905 
1906 	if (ipversion == IPV4_VERSION) {
1907 		proto = ipha->ipha_protocol;
1908 		if (proto == IPPROTO_TCP) {
1909 			up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
1910 		} else {
1911 			up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
1912 		}
1913 	} else {
1914 		uint8_t lasthdr;
1915 
1916 		/*
1917 		 * Nothing I've seen indicates that IPv6 checksum'ing
1918 		 * precludes the presence of extension headers, so we
1919 		 * can't just look at the next header value in the IPv6
1920 		 * packet header to see if it is TCP/UDP.
1921 		 */
1922 		ip6 = (ip6_t *)ipha;
1923 		(void) memset(&ipp, 0, sizeof (ipp));
1924 		start = ip_find_hdr_v6(mp, ip6, &ipp, &lasthdr);
1925 		proto = lasthdr;
1926 
1927 		if (proto == IPPROTO_TCP) {
1928 			up = IPH_TCPH_CHECKSUMP(ipha, start);
1929 		} else {
1930 			up = IPH_UDPH_CHECKSUMP(ipha, start);
1931 		}
1932 	}
1933 
1934 	/*
1935 	 * The first case here is easiest:
1936 	 * mblk hasn't asked for full checksum, but the card supports it.
1937 	 *
1938 	 * In addition, check for IPv4 header capability.  Note that only
1939 	 * the mblk flag is checked and not ipversion.
1940 	 */
1941 	if ((((illhckflags & HCKSUM_INET_FULL_V4) && (ipversion == 4)) ||
1942 	    (((illhckflags & HCKSUM_INET_FULL_V6) && (ipversion == 6)))) &&
1943 	    ((mbhckflags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) != 0)) {
1944 		int newflags = HCK_FULLCKSUM;
1945 
1946 		if ((mbhckflags & HCK_IPV4_HDRCKSUM) != 0) {
1947 			if ((illhckflags & HCKSUM_IPHDRCKSUM) != 0) {
1948 				newflags |= HCK_IPV4_HDRCKSUM;
1949 			} else {
1950 				/*
1951 				 * Rather than call a function, just inline
1952 				 * the computation of the basic IPv4 header.
1953 				 */
1954 				cksum = (ipha->ipha_dst >> 16) +
1955 				    (ipha->ipha_dst & 0xFFFF) +
1956 				    (ipha->ipha_src >> 16) +
1957 				    (ipha->ipha_src & 0xFFFF);
1958 				IP_HDR_CKSUM(ipha, cksum,
1959 				    ((uint32_t *)ipha)[0],
1960 				    ((uint16_t *)ipha)[4]);
1961 			}
1962 		}
1963 
1964 		*up = 0;
1965 		(void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0,
1966 		    newflags, 0);
1967 		return (0);
1968 	}
1969 
1970 	DTRACE_PROBE2(pbr__info__b, int, ipversion, int, proto);
1971 
1972 	/*
1973 	 * Start calculating the pseudo checksum over the IP packet header.
1974 	 * Although the final pseudo checksum used by TCP/UDP consists of
1975 	 * more than just the address fields, we can use the result of
1976 	 * adding those together a little bit further down for IPv4.
1977 	 */
1978 	if (ipversion == IPV4_VERSION) {
1979 		cksum = (ipha->ipha_dst >> 16) + (ipha->ipha_dst & 0xFFFF) +
1980 		    (ipha->ipha_src >> 16) + (ipha->ipha_src & 0xFFFF);
1981 		start = IP_SIMPLE_HDR_LENGTH;
1982 		length = ntohs(ipha->ipha_length);
1983 		DTRACE_PROBE3(pbr__info__e, uint32_t, ipha->ipha_src,
1984 		    uint32_t, ipha->ipha_dst, int, cksum);
1985 	} else {
1986 		uint16_t *pseudo;
1987 
1988 		pseudo = (uint16_t *)&ip6->ip6_src;
1989 
1990 		/* calculate pseudo-header checksum */
1991 		cksum = pseudo[0] + pseudo[1] + pseudo[2] + pseudo[3] +
1992 		    pseudo[4] + pseudo[5] + pseudo[6] + pseudo[7] +
1993 		    pseudo[8] + pseudo[9] + pseudo[10] + pseudo[11] +
1994 		    pseudo[12] + pseudo[13] + pseudo[14] + pseudo[15];
1995 
1996 		length = ntohs(ip6->ip6_plen) + sizeof (ip6_t);
1997 	}
1998 
1999 	/* Fold the initial sum */
2000 	cksum = (cksum & 0xffff) + (cksum >> 16);
2001 
2002 	/*
2003 	 * If the packet was asking for an IPv4 header checksum to be
2004 	 * calculated but the interface doesn't support that, fill it in
2005 	 * using our pseudo checksum as a starting point.
2006 	 */
2007 	if (((mbhckflags & HCK_IPV4_HDRCKSUM) != 0) &&
2008 	    ((illhckflags & HCKSUM_IPHDRCKSUM) == 0)) {
2009 		/*
2010 		 * IP_HDR_CKSUM uses the 2rd arg to the macro in a destructive
2011 		 * way so pass in a copy of the checksum calculated thus far.
2012 		 */
2013 		uint32_t ipsum = cksum;
2014 
2015 		DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
2016 
2017 		IP_HDR_CKSUM(ipha, ipsum, ((uint32_t *)ipha)[0],
2018 		    ((uint16_t *)ipha)[4]);
2019 	}
2020 
2021 	DTRACE_PROBE3(pbr__info__c, int, start, int, length, int, cksum);
2022 
2023 	if (proto == IPPROTO_TCP) {
2024 		cksum += IP_TCP_CSUM_COMP;
2025 	} else {
2026 		cksum += IP_UDP_CSUM_COMP;
2027 	}
2028 	cksum += htons(length - start);
2029 	cksum = (cksum & 0xffff) + (cksum >> 16);
2030 
2031 	/*
2032 	 * For TCP/UDP, we either want to setup the packet for partial
2033 	 * checksum or we want to do it all ourselves because the NIC
2034 	 * offers no support for either partial or full checksum.
2035 	 */
2036 	if ((illhckflags & HCKSUM_INET_PARTIAL) != 0) {
2037 		/*
2038 		 * The only case we care about here is if the mblk was
2039 		 * previously set for full checksum offload.  If it was
2040 		 * marked for partial (and the NIC does partial), then
2041 		 * we have nothing to do.  Similarly if the packet was
2042 		 * not set for partial or full, we do nothing as this
2043 		 * is cheaper than more work to set something up.
2044 		 */
2045 		if ((mbhckflags & HCK_FULLCKSUM) != 0) {
2046 			uint32_t offset;
2047 
2048 			if (proto == IPPROTO_TCP) {
2049 				offset = TCP_CHECKSUM_OFFSET;
2050 			} else {
2051 				offset = UDP_CHECKSUM_OFFSET;
2052 			}
2053 			*up = cksum;
2054 
2055 			DTRACE_PROBE3(pbr__info__f, int, length - start, int,
2056 			    cksum, int, offset);
2057 
2058 			(void) hcksum_assoc(mp, NULL, NULL, start,
2059 			    start + offset, length, 0,
2060 			    DB_CKSUMFLAGS(mp) | HCK_PARTIALCKSUM, 0);
2061 		}
2062 
2063 	} else if (mbhckflags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) {
2064 		DB_CKSUMFLAGS(mp) &= ~(HCK_PARTIALCKSUM|HCK_FULLCKSUM);
2065 
2066 		*up = 0;
2067 		*up = IP_CSUM(mp, start, cksum);
2068 	}
2069 
2070 	DTRACE_PROBE4(pbr__info__d, (mblk_t *), mp, (ipha_t *), ipha,
2071 	    (uint16_t *), up, int, cksum);
2072 	return (0);
2073 }
2074 
2075 /*
2076  * callback function provided by ire_ftable_lookup when calling
2077  * rn_match_args(). Invoke ire_match_args on each matching leaf node in
2078  * the radix tree.
2079  */
2080 boolean_t
2081 ire_find_best_route(struct radix_node *rn, void *arg)
2082 {
2083 	struct rt_entry *rt = (struct rt_entry *)rn;
2084 	irb_t *irb_ptr;
2085 	ire_t *ire;
2086 	ire_ftable_args_t *margs = arg;
2087 	ipaddr_t match_mask;
2088 
2089 	ASSERT(rt != NULL);
2090 
2091 	irb_ptr = &rt->rt_irb;
2092 
2093 	if (irb_ptr->irb_ire_cnt == 0)
2094 		return (B_FALSE);
2095 
2096 	rw_enter(&irb_ptr->irb_lock, RW_READER);
2097 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
2098 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
2099 			continue;
2100 		if (margs->ift_flags & MATCH_IRE_MASK)
2101 			match_mask = margs->ift_mask;
2102 		else
2103 			match_mask = ire->ire_mask;
2104 
2105 		if (ire_match_args(ire, margs->ift_addr, match_mask,
2106 		    margs->ift_gateway, margs->ift_type, margs->ift_ipif,
2107 		    margs->ift_zoneid, margs->ift_ihandle, margs->ift_tsl,
2108 		    margs->ift_flags, NULL)) {
2109 			IRE_REFHOLD(ire);
2110 			rw_exit(&irb_ptr->irb_lock);
2111 			margs->ift_best_ire = ire;
2112 			return (B_TRUE);
2113 		}
2114 	}
2115 	rw_exit(&irb_ptr->irb_lock);
2116 	return (B_FALSE);
2117 }
2118 
2119 /*
2120  * ftable irb_t structures are dynamically allocated, and we need to
2121  * check if the irb_t (and associated ftable tree attachment) needs to
2122  * be cleaned up when the irb_refcnt goes to 0. The conditions that need
2123  * be verified are:
2124  * - no other walkers of the irebucket, i.e., quiescent irb_refcnt,
2125  * - no other threads holding references to ire's in the bucket,
2126  *   i.e., irb_nire == 0
2127  * - no active ire's in the bucket, i.e., irb_ire_cnt == 0
2128  * - need to hold the global tree lock and irb_lock in write mode.
2129  */
2130 void
2131 irb_refrele_ftable(irb_t *irb)
2132 {
2133 	for (;;) {
2134 		rw_enter(&irb->irb_lock, RW_WRITER);
2135 		ASSERT(irb->irb_refcnt != 0);
2136 		if (irb->irb_refcnt != 1) {
2137 			/*
2138 			 * Someone has a reference to this radix node
2139 			 * or there is some bucket walker.
2140 			 */
2141 			irb->irb_refcnt--;
2142 			rw_exit(&irb->irb_lock);
2143 			return;
2144 		} else {
2145 			/*
2146 			 * There is no other walker, nor is there any
2147 			 * other thread that holds a direct ref to this
2148 			 * radix node. Do the clean up if needed. Call
2149 			 * to ire_unlink will clear the IRB_MARK_CONDEMNED flag
2150 			 */
2151 			if (irb->irb_marks & IRB_MARK_CONDEMNED)  {
2152 				ire_t *ire_list;
2153 
2154 				ire_list = ire_unlink(irb);
2155 				rw_exit(&irb->irb_lock);
2156 
2157 				if (ire_list != NULL)
2158 					ire_cleanup(ire_list);
2159 				/*
2160 				 * more CONDEMNED entries could have
2161 				 * been added while we dropped the lock,
2162 				 * so we have to re-check.
2163 				 */
2164 				continue;
2165 			}
2166 
2167 			/*
2168 			 * Now check if there are still any ires
2169 			 * associated with this radix node.
2170 			 */
2171 			if (irb->irb_nire != 0) {
2172 				/*
2173 				 * someone is still holding on
2174 				 * to ires in this bucket
2175 				 */
2176 				irb->irb_refcnt--;
2177 				rw_exit(&irb->irb_lock);
2178 				return;
2179 			} else {
2180 				/*
2181 				 * Everything is clear. Zero walkers,
2182 				 * Zero threads with a ref to this
2183 				 * radix node, Zero ires associated with
2184 				 * this radix node. Due to lock order,
2185 				 * check the above conditions again
2186 				 * after grabbing all locks in the right order
2187 				 */
2188 				rw_exit(&irb->irb_lock);
2189 				if (irb_inactive(irb))
2190 					return;
2191 				/*
2192 				 * irb_inactive could not free the irb.
2193 				 * See if there are any walkers, if not
2194 				 * try to clean up again.
2195 				 */
2196 			}
2197 		}
2198 	}
2199 }
2200 
2201 /*
2202  * IRE iterator used by ire_ftable_lookup() to process multiple default
2203  * routes. Given a starting point in the hash list (ire_origin), walk the IREs
2204  * in the bucket skipping default interface routes and deleted entries.
2205  * Returns the next IRE (unheld), or NULL when we're back to the starting point.
2206  * Assumes that the caller holds a reference on the IRE bucket.
2207  *
2208  * In the absence of good IRE_DEFAULT routes, this function will return
2209  * the first IRE_INTERFACE route found (if any).
2210  */
2211 ire_t *
2212 ire_round_robin(irb_t *irb_ptr, zoneid_t zoneid, ire_ftable_args_t *margs,
2213 	ip_stack_t *ipst)
2214 {
2215 	ire_t	*ire_origin;
2216 	ire_t	*ire, *maybe_ire = NULL;
2217 
2218 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
2219 	ire_origin = irb_ptr->irb_rr_origin;
2220 	if (ire_origin != NULL) {
2221 		ire_origin = ire_origin->ire_next;
2222 		IRE_FIND_NEXT_ORIGIN(ire_origin);
2223 	}
2224 
2225 	if (ire_origin == NULL) {
2226 		/*
2227 		 * first time through routine, or we dropped off the end
2228 		 * of list.
2229 		 */
2230 		ire_origin = irb_ptr->irb_ire;
2231 		IRE_FIND_NEXT_ORIGIN(ire_origin);
2232 	}
2233 	irb_ptr->irb_rr_origin = ire_origin;
2234 	IRB_REFHOLD_LOCKED(irb_ptr);
2235 	rw_exit(&irb_ptr->irb_lock);
2236 
2237 	DTRACE_PROBE2(ire__rr__origin, (irb_t *), irb_ptr,
2238 	    (ire_t *), ire_origin);
2239 
2240 	/*
2241 	 * Round-robin the routers list looking for a route that
2242 	 * matches the passed in parameters.
2243 	 * We start with the ire we found above and we walk the hash
2244 	 * list until we're back where we started. It doesn't matter if
2245 	 * routes are added or deleted by other threads - we know this
2246 	 * ire will stay in the list because we hold a reference on the
2247 	 * ire bucket.
2248 	 */
2249 	ire = ire_origin;
2250 	while (ire != NULL) {
2251 		int match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR;
2252 		ire_t *rire;
2253 
2254 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
2255 			goto next_ire;
2256 
2257 		if (!ire_match_args(ire, margs->ift_addr, (ipaddr_t)0,
2258 		    margs->ift_gateway, margs->ift_type, margs->ift_ipif,
2259 		    margs->ift_zoneid, margs->ift_ihandle, margs->ift_tsl,
2260 		    margs->ift_flags, NULL))
2261 			goto next_ire;
2262 
2263 		if (ire->ire_type & IRE_INTERFACE) {
2264 			/*
2265 			 * keep looking to see if there is a non-interface
2266 			 * default ire, but save this one as a last resort.
2267 			 */
2268 			if (maybe_ire == NULL)
2269 				maybe_ire = ire;
2270 			goto next_ire;
2271 		}
2272 
2273 		if (zoneid == ALL_ZONES) {
2274 			IRE_REFHOLD(ire);
2275 			IRB_REFRELE(irb_ptr);
2276 			return (ire);
2277 		}
2278 		/*
2279 		 * When we're in a non-global zone, we're only
2280 		 * interested in routers that are
2281 		 * reachable through ipifs within our zone.
2282 		 */
2283 		if (ire->ire_ipif != NULL)
2284 			match_flags |= MATCH_IRE_ILL;
2285 
2286 		rire = ire_route_lookup(ire->ire_gateway_addr, 0, 0,
2287 		    IRE_INTERFACE, ire->ire_ipif, NULL, zoneid, margs->ift_tsl,
2288 		    match_flags, ipst);
2289 		if (rire != NULL) {
2290 			ire_refrele(rire);
2291 			IRE_REFHOLD(ire);
2292 			IRB_REFRELE(irb_ptr);
2293 			return (ire);
2294 		}
2295 next_ire:
2296 		ire = (ire->ire_next ?  ire->ire_next : irb_ptr->irb_ire);
2297 		if (ire == ire_origin)
2298 			break;
2299 	}
2300 	if (maybe_ire != NULL)
2301 		IRE_REFHOLD(maybe_ire);
2302 	IRB_REFRELE(irb_ptr);
2303 	return (maybe_ire);
2304 }
2305 
2306 void
2307 irb_refhold_rn(struct radix_node *rn)
2308 {
2309 	if ((rn->rn_flags & RNF_ROOT) == 0)
2310 		IRB_REFHOLD(&((rt_t *)(rn))->rt_irb);
2311 }
2312 
2313 void
2314 irb_refrele_rn(struct radix_node *rn)
2315 {
2316 	if ((rn->rn_flags & RNF_ROOT) == 0)
2317 		irb_refrele_ftable(&((rt_t *)(rn))->rt_irb);
2318 }
2319