1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 1990 Mentat Inc. 27 */ 28 29 /* 30 * This file contains routines that manipulate Internet Routing Entries (IREs). 31 */ 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/stropts.h> 35 #include <sys/ddi.h> 36 #include <sys/cmn_err.h> 37 38 #include <sys/systm.h> 39 #include <sys/param.h> 40 #include <sys/socket.h> 41 #include <net/if.h> 42 #include <net/route.h> 43 #include <netinet/in.h> 44 #include <net/if_dl.h> 45 #include <netinet/ip6.h> 46 #include <netinet/icmp6.h> 47 48 #include <inet/common.h> 49 #include <inet/mi.h> 50 #include <inet/ip.h> 51 #include <inet/ip6.h> 52 #include <inet/ip_ndp.h> 53 #include <inet/ip_if.h> 54 #include <inet/ip_ire.h> 55 #include <inet/ipclassifier.h> 56 #include <inet/nd.h> 57 #include <sys/kmem.h> 58 #include <sys/zone.h> 59 60 #include <sys/tsol/label.h> 61 #include <sys/tsol/tnet.h> 62 63 #define IS_DEFAULT_ROUTE_V6(ire) \ 64 (((ire)->ire_type & IRE_DEFAULT) || \ 65 (((ire)->ire_type & IRE_INTERFACE) && \ 66 (IN6_IS_ADDR_UNSPECIFIED(&(ire)->ire_addr_v6)))) 67 68 static ire_t ire_null; 69 70 static ire_t * 71 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask, 72 const in6_addr_t *gateway, int type, const ill_t *ill, 73 zoneid_t zoneid, const ts_label_t *tsl, int flags, 74 ip_stack_t *ipst); 75 76 /* 77 * Initialize the ire that is specific to IPv6 part and call 78 * ire_init_common to finish it. 79 * Returns zero or errno. 80 */ 81 int 82 ire_init_v6(ire_t *ire, const in6_addr_t *v6addr, const in6_addr_t *v6mask, 83 const in6_addr_t *v6gateway, ushort_t type, ill_t *ill, 84 zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst) 85 { 86 int error; 87 88 /* 89 * Reject IRE security attmakeribute creation/initialization 90 * if system is not running in Trusted mode. 91 */ 92 if (gc != NULL && !is_system_labeled()) 93 return (EINVAL); 94 95 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_alloced); 96 if (v6addr != NULL) 97 ire->ire_addr_v6 = *v6addr; 98 if (v6gateway != NULL) 99 ire->ire_gateway_addr_v6 = *v6gateway; 100 101 /* Make sure we don't have stray values in some fields */ 102 switch (type) { 103 case IRE_LOOPBACK: 104 ire->ire_gateway_addr_v6 = ire->ire_addr_v6; 105 /* FALLTHRU */ 106 case IRE_HOST: 107 case IRE_LOCAL: 108 case IRE_IF_CLONE: 109 ire->ire_mask_v6 = ipv6_all_ones; 110 ire->ire_masklen = IPV6_ABITS; 111 break; 112 case IRE_PREFIX: 113 case IRE_DEFAULT: 114 case IRE_IF_RESOLVER: 115 case IRE_IF_NORESOLVER: 116 if (v6mask != NULL) { 117 ire->ire_mask_v6 = *v6mask; 118 ire->ire_masklen = 119 ip_mask_to_plen_v6(&ire->ire_mask_v6); 120 } 121 break; 122 case IRE_MULTICAST: 123 case IRE_NOROUTE: 124 ASSERT(v6mask == NULL); 125 break; 126 default: 127 ASSERT(0); 128 return (EINVAL); 129 } 130 131 error = ire_init_common(ire, type, ill, zoneid, flags, IPV6_VERSION, 132 gc, ipst); 133 if (error != NULL) 134 return (error); 135 136 /* Determine which function pointers to use */ 137 ire->ire_postfragfn = ip_xmit; /* Common case */ 138 139 switch (ire->ire_type) { 140 case IRE_LOCAL: 141 ire->ire_sendfn = ire_send_local_v6; 142 ire->ire_recvfn = ire_recv_local_v6; 143 ASSERT(ire->ire_ill != NULL); 144 if (ire->ire_ill->ill_flags & ILLF_NOACCEPT) 145 ire->ire_recvfn = ire_recv_noaccept_v6; 146 break; 147 case IRE_LOOPBACK: 148 ire->ire_sendfn = ire_send_local_v6; 149 ire->ire_recvfn = ire_recv_loopback_v6; 150 break; 151 case IRE_MULTICAST: 152 ire->ire_postfragfn = ip_postfrag_loopcheck; 153 ire->ire_sendfn = ire_send_multicast_v6; 154 ire->ire_recvfn = ire_recv_multicast_v6; 155 break; 156 default: 157 /* 158 * For IRE_IF_ALL and IRE_OFFLINK we forward received 159 * packets by default. 160 */ 161 ire->ire_sendfn = ire_send_wire_v6; 162 ire->ire_recvfn = ire_recv_forward_v6; 163 break; 164 } 165 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 166 ire->ire_sendfn = ire_send_noroute_v6; 167 ire->ire_recvfn = ire_recv_noroute_v6; 168 } else if (ire->ire_flags & RTF_MULTIRT) { 169 ire->ire_postfragfn = ip_postfrag_multirt_v6; 170 ire->ire_sendfn = ire_send_multirt_v6; 171 ire->ire_recvfn = ire_recv_multirt_v6; 172 } 173 ire->ire_nce_capable = ire_determine_nce_capable(ire); 174 return (0); 175 } 176 177 /* 178 * ire_create_v6 is called to allocate and initialize a new IRE. 179 * 180 * NOTE : This is called as writer sometimes though not required 181 * by this function. 182 */ 183 /* ARGSUSED */ 184 ire_t * 185 ire_create_v6(const in6_addr_t *v6addr, const in6_addr_t *v6mask, 186 const in6_addr_t *v6gateway, ushort_t type, ill_t *ill, zoneid_t zoneid, 187 uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst) 188 { 189 ire_t *ire; 190 int error; 191 192 ASSERT(!IN6_IS_ADDR_V4MAPPED(v6addr)); 193 194 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 195 if (ire == NULL) { 196 DTRACE_PROBE(kmem__cache__alloc); 197 return (NULL); 198 } 199 *ire = ire_null; 200 201 error = ire_init_v6(ire, v6addr, v6mask, v6gateway, 202 type, ill, zoneid, flags, gc, ipst); 203 204 if (error != 0) { 205 DTRACE_PROBE2(ire__init__v6, ire_t *, ire, int, error); 206 kmem_cache_free(ire_cache, ire); 207 return (NULL); 208 } 209 return (ire); 210 } 211 212 /* 213 * Find the ill matching a multicast group. 214 * Allows different routes for multicast addresses 215 * in the unicast routing table (akin to FF::0/8 but could be more specific) 216 * which point at different interfaces. This is used when IPV6_MULTICAST_IF 217 * isn't specified (when sending) and when IPV6_JOIN_GROUP doesn't 218 * specify the interface to join on. 219 * 220 * Supports link-local addresses by using ire_route_recursive which follows 221 * the ill when recursing. 222 * 223 * To handle CGTP, since we don't have a separate IRE_MULTICAST for each group 224 * and the MULTIRT property can be different for different groups, we 225 * extract RTF_MULTIRT from the special unicast route added for a group 226 * with CGTP and pass that back in the multirtp argument. 227 * This is used in ip_set_destination etc to set ixa_postfragfn for multicast. 228 * We have a setsrcp argument for the same reason. 229 */ 230 ill_t * 231 ire_lookup_multi_ill_v6(const in6_addr_t *group, zoneid_t zoneid, 232 ip_stack_t *ipst, boolean_t *multirtp, in6_addr_t *setsrcp) 233 { 234 ire_t *ire; 235 ill_t *ill; 236 237 ire = ire_route_recursive_v6(group, 0, NULL, zoneid, NULL, 238 MATCH_IRE_DSTONLY, B_FALSE, 0, ipst, setsrcp, NULL, NULL); 239 ASSERT(ire != NULL); 240 241 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 242 ire_refrele(ire); 243 return (NULL); 244 } 245 246 if (multirtp != NULL) 247 *multirtp = (ire->ire_flags & RTF_MULTIRT) != 0; 248 249 ill = ire_nexthop_ill(ire); 250 ire_refrele(ire); 251 return (ill); 252 } 253 254 /* 255 * This function takes a mask and returns number of bits set in the 256 * mask (the represented prefix length). Assumes a contiguous mask. 257 */ 258 int 259 ip_mask_to_plen_v6(const in6_addr_t *v6mask) 260 { 261 int bits; 262 int plen = IPV6_ABITS; 263 int i; 264 265 for (i = 3; i >= 0; i--) { 266 if (v6mask->s6_addr32[i] == 0) { 267 plen -= 32; 268 continue; 269 } 270 bits = ffs(ntohl(v6mask->s6_addr32[i])) - 1; 271 if (bits == 0) 272 break; 273 plen -= bits; 274 } 275 276 return (plen); 277 } 278 279 /* 280 * Convert a prefix length to the mask for that prefix. 281 * Returns the argument bitmask. 282 */ 283 in6_addr_t * 284 ip_plen_to_mask_v6(uint_t plen, in6_addr_t *bitmask) 285 { 286 uint32_t *ptr; 287 288 if (plen < 0 || plen > IPV6_ABITS) 289 return (NULL); 290 *bitmask = ipv6_all_zeros; 291 if (plen == 0) 292 return (bitmask); 293 294 ptr = (uint32_t *)bitmask; 295 while (plen > 32) { 296 *ptr++ = 0xffffffffU; 297 plen -= 32; 298 } 299 *ptr = htonl(0xffffffffU << (32 - plen)); 300 return (bitmask); 301 } 302 303 /* 304 * Add a fully initialized IPv6 IRE to the forwarding table. 305 * This returns NULL on failure, or a held IRE on success. 306 * Normally the returned IRE is the same as the argument. But a different 307 * IRE will be returned if the added IRE is deemed identical to an existing 308 * one. In that case ire_identical_ref will be increased. 309 * The caller always needs to do an ire_refrele() on the returned IRE. 310 */ 311 ire_t * 312 ire_add_v6(ire_t *ire) 313 { 314 ire_t *ire1; 315 int mask_table_index; 316 irb_t *irb_ptr; 317 ire_t **irep; 318 int match_flags; 319 int error; 320 ip_stack_t *ipst = ire->ire_ipst; 321 322 ASSERT(ire->ire_ipversion == IPV6_VERSION); 323 324 /* Make sure the address is properly masked. */ 325 V6_MASK_COPY(ire->ire_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6); 326 327 mask_table_index = ip_mask_to_plen_v6(&ire->ire_mask_v6); 328 if ((ipst->ips_ip_forwarding_table_v6[mask_table_index]) == NULL) { 329 irb_t *ptr; 330 int i; 331 332 ptr = (irb_t *)mi_zalloc((ipst->ips_ip6_ftable_hash_size * 333 sizeof (irb_t))); 334 if (ptr == NULL) { 335 ire_delete(ire); 336 return (NULL); 337 } 338 for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) { 339 rw_init(&ptr[i].irb_lock, NULL, RW_DEFAULT, NULL); 340 } 341 mutex_enter(&ipst->ips_ire_ft_init_lock); 342 if (ipst->ips_ip_forwarding_table_v6[mask_table_index] == 343 NULL) { 344 ipst->ips_ip_forwarding_table_v6[mask_table_index] = 345 ptr; 346 mutex_exit(&ipst->ips_ire_ft_init_lock); 347 } else { 348 /* 349 * Some other thread won the race in 350 * initializing the forwarding table at the 351 * same index. 352 */ 353 mutex_exit(&ipst->ips_ire_ft_init_lock); 354 for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) { 355 rw_destroy(&ptr[i].irb_lock); 356 } 357 mi_free(ptr); 358 } 359 } 360 irb_ptr = &(ipst->ips_ip_forwarding_table_v6[mask_table_index][ 361 IRE_ADDR_MASK_HASH_V6(ire->ire_addr_v6, ire->ire_mask_v6, 362 ipst->ips_ip6_ftable_hash_size)]); 363 364 match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 365 if (ire->ire_ill != NULL) 366 match_flags |= MATCH_IRE_ILL; 367 /* 368 * Start the atomic add of the ire. Grab the bucket lock and the 369 * ill lock. Check for condemned. 370 */ 371 error = ire_atomic_start(irb_ptr, ire); 372 if (error != 0) { 373 ire_delete(ire); 374 return (NULL); 375 } 376 377 /* 378 * If we are creating a hidden IRE, make sure we search for 379 * hidden IREs when searching for duplicates below. 380 * Otherwise, we might find an IRE on some other interface 381 * that's not marked hidden. 382 */ 383 if (ire->ire_testhidden) 384 match_flags |= MATCH_IRE_TESTHIDDEN; 385 386 /* 387 * Atomically check for duplicate and insert in the table. 388 */ 389 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 390 if (IRE_IS_CONDEMNED(ire1)) 391 continue; 392 /* 393 * Here we need an exact match on zoneid, i.e., 394 * ire_match_args doesn't fit. 395 */ 396 if (ire1->ire_zoneid != ire->ire_zoneid) 397 continue; 398 399 if (ire1->ire_type != ire->ire_type) 400 continue; 401 402 /* 403 * Note: We do not allow multiple routes that differ only 404 * in the gateway security attributes; such routes are 405 * considered duplicates. 406 * To change that we explicitly have to treat them as 407 * different here. 408 */ 409 if (ire_match_args_v6(ire1, &ire->ire_addr_v6, 410 &ire->ire_mask_v6, &ire->ire_gateway_addr_v6, 411 ire->ire_type, ire->ire_ill, ire->ire_zoneid, NULL, 412 match_flags)) { 413 /* 414 * Return the old ire after doing a REFHOLD. 415 * As most of the callers continue to use the IRE 416 * after adding, we return a held ire. This will 417 * avoid a lookup in the caller again. If the callers 418 * don't want to use it, they need to do a REFRELE. 419 */ 420 ip1dbg(("found dup ire existing %p new %p", 421 (void *)ire1, (void *)ire)); 422 ire_refhold(ire1); 423 atomic_add_32(&ire1->ire_identical_ref, 1); 424 ire_atomic_end(irb_ptr, ire); 425 ire_delete(ire); 426 return (ire1); 427 } 428 } 429 430 /* 431 * Normally we do head insertion since most things do not care about 432 * the order of the IREs in the bucket. 433 * However, due to shared-IP zones (and restrict_interzone_loopback) 434 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same 435 * address. For that reason we do tail insertion for IRE_IF_CLONE. 436 */ 437 irep = (ire_t **)irb_ptr; 438 if (ire->ire_type & IRE_IF_CLONE) { 439 while ((ire1 = *irep) != NULL) 440 irep = &ire1->ire_next; 441 } 442 /* Insert at *irep */ 443 ire1 = *irep; 444 if (ire1 != NULL) 445 ire1->ire_ptpn = &ire->ire_next; 446 ire->ire_next = ire1; 447 /* Link the new one in. */ 448 ire->ire_ptpn = irep; 449 /* 450 * ire_walk routines de-reference ire_next without holding 451 * a lock. Before we point to the new ire, we want to make 452 * sure the store that sets the ire_next of the new ire 453 * reaches global visibility, so that ire_walk routines 454 * don't see a truncated list of ires i.e if the ire_next 455 * of the new ire gets set after we do "*irep = ire" due 456 * to re-ordering, the ire_walk thread will see a NULL 457 * once it accesses the ire_next of the new ire. 458 * membar_producer() makes sure that the following store 459 * happens *after* all of the above stores. 460 */ 461 membar_producer(); 462 *irep = ire; 463 ire->ire_bucket = irb_ptr; 464 /* 465 * We return a bumped up IRE above. Keep it symmetrical 466 * so that the callers will always have to release. This 467 * helps the callers of this function because they continue 468 * to use the IRE after adding and hence they don't have to 469 * lookup again after we return the IRE. 470 * 471 * NOTE : We don't have to use atomics as this is appearing 472 * in the list for the first time and no one else can bump 473 * up the reference count on this yet. 474 */ 475 ire_refhold_locked(ire); 476 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_inserted); 477 irb_ptr->irb_ire_cnt++; 478 479 if (ire->ire_ill != NULL) { 480 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), ire->ire_ill, 481 (char *), "ire", (void *), ire); 482 ire->ire_ill->ill_ire_cnt++; 483 ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */ 484 } 485 ire_atomic_end(irb_ptr, ire); 486 487 /* Make any caching of the IREs be notified or updated */ 488 ire_flush_cache_v6(ire, IRE_FLUSH_ADD); 489 490 return (ire); 491 } 492 493 /* 494 * Search for all HOST REDIRECT routes that are 495 * pointing at the specified gateway and 496 * delete them. This routine is called only 497 * when a default gateway is going away. 498 */ 499 static void 500 ire_delete_host_redirects_v6(const in6_addr_t *gateway, ip_stack_t *ipst) 501 { 502 irb_t *irb_ptr; 503 irb_t *irb; 504 ire_t *ire; 505 in6_addr_t gw_addr_v6; 506 int i; 507 508 /* get the hash table for HOST routes */ 509 irb_ptr = ipst->ips_ip_forwarding_table_v6[(IP6_MASK_TABLE_SIZE - 1)]; 510 if (irb_ptr == NULL) 511 return; 512 for (i = 0; (i < ipst->ips_ip6_ftable_hash_size); i++) { 513 irb = &irb_ptr[i]; 514 irb_refhold(irb); 515 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 516 if (!(ire->ire_flags & RTF_DYNAMIC)) 517 continue; 518 mutex_enter(&ire->ire_lock); 519 gw_addr_v6 = ire->ire_gateway_addr_v6; 520 mutex_exit(&ire->ire_lock); 521 if (IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) 522 ire_delete(ire); 523 } 524 irb_refrele(irb); 525 } 526 } 527 528 /* 529 * Delete the specified IRE. 530 * All calls should use ire_delete(). 531 * Sometimes called as writer though not required by this function. 532 * 533 * NOTE : This function is called only if the ire was added 534 * in the list. 535 */ 536 void 537 ire_delete_v6(ire_t *ire) 538 { 539 in6_addr_t gw_addr_v6; 540 ip_stack_t *ipst = ire->ire_ipst; 541 542 /* 543 * Make sure ire_generation increases from ire_flush_cache happen 544 * after any lookup/reader has read ire_generation. 545 * Since the rw_enter makes us wait until any lookup/reader has 546 * completed we can exit the lock immediately. 547 */ 548 rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER); 549 rw_exit(&ipst->ips_ip6_ire_head_lock); 550 551 ASSERT(ire->ire_refcnt >= 1); 552 ASSERT(ire->ire_ipversion == IPV6_VERSION); 553 554 ire_flush_cache_v6(ire, IRE_FLUSH_DELETE); 555 556 if (ire->ire_type == IRE_DEFAULT) { 557 /* 558 * when a default gateway is going away 559 * delete all the host redirects pointing at that 560 * gateway. 561 */ 562 mutex_enter(&ire->ire_lock); 563 gw_addr_v6 = ire->ire_gateway_addr_v6; 564 mutex_exit(&ire->ire_lock); 565 ire_delete_host_redirects_v6(&gw_addr_v6, ipst); 566 } 567 568 /* 569 * If we are deleting an IRE_INTERFACE then we make sure we also 570 * delete any IRE_IF_CLONE that has been created from it. 571 * Those are always in ire_dep_children. 572 */ 573 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != 0) 574 ire_dep_delete_if_clone(ire); 575 576 /* Remove from parent dependencies and child */ 577 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 578 if (ire->ire_dep_parent != NULL) { 579 ire_dep_remove(ire); 580 } 581 while (ire->ire_dep_children != NULL) 582 ire_dep_remove(ire->ire_dep_children); 583 rw_exit(&ipst->ips_ire_dep_lock); 584 } 585 586 /* 587 * When an IRE is added or deleted this routine is called to make sure 588 * any caching of IRE information is notified or updated. 589 * 590 * The flag argument indicates if the flush request is due to addition 591 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE), 592 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE). 593 */ 594 void 595 ire_flush_cache_v6(ire_t *ire, int flag) 596 { 597 ip_stack_t *ipst = ire->ire_ipst; 598 599 /* 600 * IRE_IF_CLONE ire's don't provide any new information 601 * than the parent from which they are cloned, so don't 602 * perturb the generation numbers. 603 */ 604 if (ire->ire_type & IRE_IF_CLONE) 605 return; 606 607 /* 608 * Ensure that an ire_add during a lookup serializes the updates of 609 * the generation numbers under ire_head_lock so that the lookup gets 610 * either the old ire and old generation number, or a new ire and new 611 * generation number. 612 */ 613 rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER); 614 615 /* 616 * If a route was just added, we need to notify everybody that 617 * has cached an IRE_NOROUTE since there might now be a better 618 * route for them. 619 */ 620 if (flag == IRE_FLUSH_ADD) { 621 ire_increment_generation(ipst->ips_ire_reject_v6); 622 ire_increment_generation(ipst->ips_ire_blackhole_v6); 623 } 624 625 /* Adding a default can't otherwise provide a better route */ 626 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) { 627 rw_exit(&ipst->ips_ip6_ire_head_lock); 628 return; 629 } 630 631 switch (flag) { 632 case IRE_FLUSH_DELETE: 633 case IRE_FLUSH_GWCHANGE: 634 /* 635 * Update ire_generation for all ire_dep_children chains 636 * starting with this IRE 637 */ 638 ire_dep_incr_generation(ire); 639 break; 640 case IRE_FLUSH_ADD: { 641 in6_addr_t addr; 642 in6_addr_t mask; 643 ip_stack_t *ipst = ire->ire_ipst; 644 uint_t masklen; 645 646 /* 647 * Find an IRE which is a shorter match than the ire to be added 648 * For any such IRE (which we repeat) we update the 649 * ire_generation the same way as in the delete case. 650 */ 651 addr = ire->ire_addr_v6; 652 mask = ire->ire_mask_v6; 653 masklen = ip_mask_to_plen_v6(&mask); 654 655 ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0, NULL, 656 ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst); 657 while (ire != NULL) { 658 /* We need to handle all in the same bucket */ 659 irb_increment_generation(ire->ire_bucket); 660 661 mask = ire->ire_mask_v6; 662 ASSERT(masklen > ip_mask_to_plen_v6(&mask)); 663 masklen = ip_mask_to_plen_v6(&mask); 664 ire_refrele(ire); 665 ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0, 666 NULL, ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst); 667 } 668 } 669 break; 670 } 671 rw_exit(&ipst->ips_ip6_ire_head_lock); 672 } 673 674 /* 675 * Matches the arguments passed with the values in the ire. 676 * 677 * Note: for match types that match using "ill" passed in, ill 678 * must be checked for non-NULL before calling this routine. 679 */ 680 boolean_t 681 ire_match_args_v6(ire_t *ire, const in6_addr_t *addr, const in6_addr_t *mask, 682 const in6_addr_t *gateway, int type, const ill_t *ill, zoneid_t zoneid, 683 const ts_label_t *tsl, int match_flags) 684 { 685 in6_addr_t masked_addr; 686 in6_addr_t gw_addr_v6; 687 ill_t *ire_ill = NULL, *dst_ill; 688 ip_stack_t *ipst = ire->ire_ipst; 689 690 ASSERT(ire->ire_ipversion == IPV6_VERSION); 691 ASSERT(addr != NULL); 692 ASSERT(mask != NULL); 693 ASSERT((!(match_flags & MATCH_IRE_GW)) || gateway != NULL); 694 ASSERT((!(match_flags & MATCH_IRE_ILL)) || 695 (ill != NULL && ill->ill_isv6)); 696 697 /* 698 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it 699 * is in fact hidden, to ensure the caller gets the right one. 700 */ 701 if (ire->ire_testhidden) { 702 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) 703 return (B_FALSE); 704 } 705 706 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 707 ire->ire_zoneid != ALL_ZONES) { 708 /* 709 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid 710 * does not match that of ire_zoneid, a failure to 711 * match is reported at this point. Otherwise, since some IREs 712 * that are available in the global zone can be used in local 713 * zones, additional checks need to be performed: 714 * 715 * IRE_LOOPBACK 716 * entries should never be matched in this situation. 717 * Each zone has its own IRE_LOOPBACK. 718 * 719 * IRE_LOCAL 720 * We allow them for any zoneid. ire_route_recursive 721 * does additional checks when 722 * ip_restrict_interzone_loopback is set. 723 * 724 * If ill_usesrc_ifindex is set 725 * Then we check if the zone has a valid source address 726 * on the usesrc ill. 727 * 728 * If ire_ill is set, then check that the zone has an ipif 729 * on that ill. 730 * 731 * Outside of this function (in ire_round_robin) we check 732 * that any IRE_OFFLINK has a gateway that reachable from the 733 * zone when we have multiple choices (ECMP). 734 */ 735 if (match_flags & MATCH_IRE_ZONEONLY) 736 return (B_FALSE); 737 if (ire->ire_type & IRE_LOOPBACK) 738 return (B_FALSE); 739 740 if (ire->ire_type & IRE_LOCAL) 741 goto matchit; 742 743 /* 744 * The normal case of IRE_ONLINK has a matching zoneid. 745 * Here we handle the case when shared-IP zones have been 746 * configured with IP addresses on vniN. In that case it 747 * is ok for traffic from a zone to use IRE_ONLINK routes 748 * if the ill has a usesrc pointing at vniN 749 * Applies to IRE_INTERFACE. 750 */ 751 dst_ill = ire->ire_ill; 752 if (ire->ire_type & IRE_ONLINK) { 753 uint_t ifindex; 754 755 /* 756 * Note there is no IRE_INTERFACE on vniN thus 757 * can't do an IRE lookup for a matching route. 758 */ 759 ifindex = dst_ill->ill_usesrc_ifindex; 760 if (ifindex == 0) 761 return (B_FALSE); 762 763 /* 764 * If there is a usable source address in the 765 * zone, then it's ok to return this IRE_INTERFACE 766 */ 767 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 768 zoneid, ipst)) { 769 ip3dbg(("ire_match_args: no usrsrc for zone" 770 " dst_ill %p\n", (void *)dst_ill)); 771 return (B_FALSE); 772 } 773 } 774 /* 775 * For exampe, with 776 * route add 11.0.0.0 gw1 -ifp bge0 777 * route add 11.0.0.0 gw2 -ifp bge1 778 * this code would differentiate based on 779 * where the sending zone has addresses. 780 * Only if the zone has an address on bge0 can it use the first 781 * route. It isn't clear if this behavior is documented 782 * anywhere. 783 */ 784 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 785 ipif_t *tipif; 786 787 mutex_enter(&dst_ill->ill_lock); 788 for (tipif = dst_ill->ill_ipif; 789 tipif != NULL; tipif = tipif->ipif_next) { 790 if (!IPIF_IS_CONDEMNED(tipif) && 791 (tipif->ipif_flags & IPIF_UP) && 792 (tipif->ipif_zoneid == zoneid || 793 tipif->ipif_zoneid == ALL_ZONES)) 794 break; 795 } 796 mutex_exit(&dst_ill->ill_lock); 797 if (tipif == NULL) 798 return (B_FALSE); 799 } 800 } 801 802 matchit: 803 if (match_flags & MATCH_IRE_GW) { 804 mutex_enter(&ire->ire_lock); 805 gw_addr_v6 = ire->ire_gateway_addr_v6; 806 mutex_exit(&ire->ire_lock); 807 } 808 if (match_flags & MATCH_IRE_ILL) { 809 ire_ill = ire->ire_ill; 810 811 /* 812 * If asked to match an ill, we *must* match 813 * on the ire_ill for ipmp test addresses, or 814 * any of the ill in the group for data addresses. 815 * If we don't, we may as well fail. 816 * However, we need an exception for IRE_LOCALs to ensure 817 * we loopback packets even sent to test addresses on different 818 * interfaces in the group. 819 */ 820 if ((match_flags & MATCH_IRE_TESTHIDDEN) && 821 !(ire->ire_type & IRE_LOCAL)) { 822 if (ire->ire_ill != ill) 823 return (B_FALSE); 824 } else { 825 match_flags &= ~MATCH_IRE_TESTHIDDEN; 826 /* 827 * We know that ill is not NULL, but ire_ill could be 828 * NULL 829 */ 830 if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill)) 831 return (B_FALSE); 832 } 833 } 834 /* No ire_addr_v6 bits set past the mask */ 835 ASSERT(V6_MASK_EQ(ire->ire_addr_v6, ire->ire_mask_v6, 836 ire->ire_addr_v6)); 837 V6_MASK_COPY(*addr, *mask, masked_addr); 838 if (V6_MASK_EQ(*addr, *mask, ire->ire_addr_v6) && 839 ((!(match_flags & MATCH_IRE_GW)) || 840 IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) && 841 ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && 842 ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) && 843 ((!(match_flags & MATCH_IRE_MASK)) || 844 (IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, mask))) && 845 ((!(match_flags & MATCH_IRE_SECATTR)) || 846 (!is_system_labeled()) || 847 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 848 /* We found the matched IRE */ 849 return (B_TRUE); 850 } 851 return (B_FALSE); 852 } 853 854 /* 855 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified 856 * gateway address. If ill is non-NULL we also match on it. 857 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set. 858 */ 859 boolean_t 860 ire_gateway_ok_zone_v6(const in6_addr_t *gateway, zoneid_t zoneid, ill_t *ill, 861 const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held) 862 { 863 ire_t *ire; 864 uint_t match_flags; 865 866 if (lock_held) 867 ASSERT(RW_READ_HELD(&ipst->ips_ip6_ire_head_lock)); 868 else 869 rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER); 870 871 match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; 872 if (ill != NULL) 873 match_flags |= MATCH_IRE_ILL; 874 875 ire = ire_ftable_lookup_impl_v6(gateway, &ipv6_all_zeros, 876 &ipv6_all_zeros, IRE_INTERFACE, ill, zoneid, tsl, match_flags, 877 ipst); 878 879 if (!lock_held) 880 rw_exit(&ipst->ips_ip6_ire_head_lock); 881 if (ire != NULL) { 882 ire_refrele(ire); 883 return (B_TRUE); 884 } else { 885 return (B_FALSE); 886 } 887 } 888 889 /* 890 * Lookup a route in forwarding table. 891 * specific lookup is indicated by passing the 892 * required parameters and indicating the 893 * match required in flag field. 894 * 895 * Supports link-local addresses by following the ipif/ill when recursing. 896 */ 897 ire_t * 898 ire_ftable_lookup_v6(const in6_addr_t *addr, const in6_addr_t *mask, 899 const in6_addr_t *gateway, int type, const ill_t *ill, 900 zoneid_t zoneid, const ts_label_t *tsl, int flags, 901 uint32_t xmit_hint, ip_stack_t *ipst, uint_t *generationp) 902 { 903 ire_t *ire = NULL; 904 905 ASSERT(addr != NULL); 906 ASSERT((!(flags & MATCH_IRE_MASK)) || mask != NULL); 907 ASSERT((!(flags & MATCH_IRE_GW)) || gateway != NULL); 908 ASSERT(ill == NULL || ill->ill_isv6); 909 910 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr)); 911 912 /* 913 * ire_match_args_v6() will dereference ill if MATCH_IRE_ILL 914 * is set. 915 */ 916 if ((flags & (MATCH_IRE_ILL)) && (ill == NULL)) 917 return (NULL); 918 919 rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER); 920 ire = ire_ftable_lookup_impl_v6(addr, mask, gateway, type, ill, zoneid, 921 tsl, flags, ipst); 922 if (ire == NULL) { 923 rw_exit(&ipst->ips_ip6_ire_head_lock); 924 return (NULL); 925 } 926 927 /* 928 * round-robin only if we have more than one route in the bucket. 929 * ips_ip_ecmp_behavior controls when we do ECMP 930 * 2: always 931 * 1: for IRE_DEFAULT and /0 IRE_INTERFACE 932 * 0: never 933 * 934 * Note: if we found an IRE_IF_CLONE we won't look at the bucket with 935 * other ECMP IRE_INTERFACEs since the IRE_IF_CLONE is a /128 match 936 * and the IRE_INTERFACESs are likely to be shorter matches. 937 */ 938 if (ire->ire_bucket->irb_ire_cnt > 1 && !(flags & MATCH_IRE_GW)) { 939 if (ipst->ips_ip_ecmp_behavior == 2 || 940 (ipst->ips_ip_ecmp_behavior == 1 && 941 IS_DEFAULT_ROUTE_V6(ire))) { 942 ire_t *next_ire; 943 ire_ftable_args_t margs; 944 945 bzero(&margs, sizeof (margs)); 946 margs.ift_addr_v6 = *addr; 947 if (mask != NULL) 948 margs.ift_mask_v6 = *mask; 949 if (gateway != NULL) 950 margs.ift_gateway_v6 = *gateway; 951 margs.ift_type = type; 952 margs.ift_ill = ill; 953 margs.ift_zoneid = zoneid; 954 margs.ift_tsl = tsl; 955 margs.ift_flags = flags; 956 957 next_ire = ire_round_robin(ire->ire_bucket, &margs, 958 xmit_hint, ire, ipst); 959 if (next_ire == NULL) { 960 /* keep ire if next_ire is null */ 961 goto done; 962 } 963 ire_refrele(ire); 964 ire = next_ire; 965 } 966 } 967 968 done: 969 /* Return generation before dropping lock */ 970 if (generationp != NULL) 971 *generationp = ire->ire_generation; 972 973 rw_exit(&ipst->ips_ip6_ire_head_lock); 974 975 /* 976 * For shared-IP zones we need additional checks to what was 977 * done in ire_match_args to make sure IRE_LOCALs are handled. 978 * 979 * When ip_restrict_interzone_loopback is set, then 980 * we ensure that IRE_LOCAL are only used for loopback 981 * between zones when the logical "Ethernet" would 982 * have looped them back. That is, if in the absense of 983 * the IRE_LOCAL we would have sent to packet out the 984 * same ill. 985 */ 986 if ((ire->ire_type & IRE_LOCAL) && zoneid != ALL_ZONES && 987 ire->ire_zoneid != zoneid && ire->ire_zoneid != ALL_ZONES && 988 ipst->ips_ip_restrict_interzone_loopback) { 989 ire = ire_alt_local(ire, zoneid, tsl, ill, generationp); 990 ASSERT(ire != NULL); 991 } 992 993 return (ire); 994 } 995 996 /* 997 * Look up a single ire. The caller holds either the read or write lock. 998 */ 999 ire_t * 1000 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask, 1001 const in6_addr_t *gateway, int type, const ill_t *ill, 1002 zoneid_t zoneid, const ts_label_t *tsl, int flags, 1003 ip_stack_t *ipst) 1004 { 1005 irb_t *irb_ptr; 1006 ire_t *ire = NULL; 1007 int i; 1008 1009 ASSERT(RW_LOCK_HELD(&ipst->ips_ip6_ire_head_lock)); 1010 1011 /* 1012 * If the mask is known, the lookup 1013 * is simple, if the mask is not known 1014 * we need to search. 1015 */ 1016 if (flags & MATCH_IRE_MASK) { 1017 uint_t masklen; 1018 1019 masklen = ip_mask_to_plen_v6(mask); 1020 if (ipst->ips_ip_forwarding_table_v6[masklen] == NULL) { 1021 return (NULL); 1022 } 1023 irb_ptr = &(ipst->ips_ip_forwarding_table_v6[masklen][ 1024 IRE_ADDR_MASK_HASH_V6(*addr, *mask, 1025 ipst->ips_ip6_ftable_hash_size)]); 1026 rw_enter(&irb_ptr->irb_lock, RW_READER); 1027 for (ire = irb_ptr->irb_ire; ire != NULL; 1028 ire = ire->ire_next) { 1029 if (IRE_IS_CONDEMNED(ire)) 1030 continue; 1031 if (ire_match_args_v6(ire, addr, mask, gateway, type, 1032 ill, zoneid, tsl, flags)) 1033 goto found_ire; 1034 } 1035 rw_exit(&irb_ptr->irb_lock); 1036 } else { 1037 uint_t masklen; 1038 1039 /* 1040 * In this case we don't know the mask, we need to 1041 * search the table assuming different mask sizes. 1042 */ 1043 if (flags & MATCH_IRE_SHORTERMASK) { 1044 masklen = ip_mask_to_plen_v6(mask); 1045 if (masklen == 0) { 1046 /* Nothing shorter than zero */ 1047 return (NULL); 1048 } 1049 masklen--; 1050 } else { 1051 masklen = IP6_MASK_TABLE_SIZE - 1; 1052 } 1053 1054 for (i = masklen; i >= 0; i--) { 1055 in6_addr_t tmpmask; 1056 1057 if ((ipst->ips_ip_forwarding_table_v6[i]) == NULL) 1058 continue; 1059 (void) ip_plen_to_mask_v6(i, &tmpmask); 1060 irb_ptr = &ipst->ips_ip_forwarding_table_v6[i][ 1061 IRE_ADDR_MASK_HASH_V6(*addr, tmpmask, 1062 ipst->ips_ip6_ftable_hash_size)]; 1063 rw_enter(&irb_ptr->irb_lock, RW_READER); 1064 for (ire = irb_ptr->irb_ire; ire != NULL; 1065 ire = ire->ire_next) { 1066 if (IRE_IS_CONDEMNED(ire)) 1067 continue; 1068 if (ire_match_args_v6(ire, addr, 1069 &ire->ire_mask_v6, gateway, type, ill, 1070 zoneid, tsl, flags)) 1071 goto found_ire; 1072 } 1073 rw_exit(&irb_ptr->irb_lock); 1074 } 1075 } 1076 ASSERT(ire == NULL); 1077 ip1dbg(("ire_ftable_lookup_v6: returning NULL ire")); 1078 return (NULL); 1079 1080 found_ire: 1081 ire_refhold(ire); 1082 rw_exit(&irb_ptr->irb_lock); 1083 return (ire); 1084 } 1085 1086 1087 /* 1088 * This function is called by 1089 * ip_input/ire_route_recursive when doing a route lookup on only the 1090 * destination address. 1091 * 1092 * The optimizations of this function over ire_ftable_lookup are: 1093 * o removing unnecessary flag matching 1094 * o doing longest prefix match instead of overloading it further 1095 * with the unnecessary "best_prefix_match" 1096 * 1097 * If no route is found we return IRE_NOROUTE. 1098 */ 1099 ire_t * 1100 ire_ftable_lookup_simple_v6(const in6_addr_t *addr, uint32_t xmit_hint, 1101 ip_stack_t *ipst, uint_t *generationp) 1102 { 1103 ire_t *ire; 1104 1105 ire = ire_ftable_lookup_v6(addr, NULL, NULL, 0, NULL, ALL_ZONES, NULL, 1106 MATCH_IRE_DSTONLY, xmit_hint, ipst, generationp); 1107 if (ire == NULL) { 1108 ire = ire_reject(ipst, B_TRUE); 1109 if (generationp != NULL) 1110 *generationp = IRE_GENERATION_VERIFY; 1111 } 1112 /* ftable_lookup did round robin */ 1113 return (ire); 1114 } 1115 1116 ire_t * 1117 ip_select_route_v6(const in6_addr_t *dst, ip_xmit_attr_t *ixa, 1118 uint_t *generationp, in6_addr_t *setsrcp, int *errorp, boolean_t *multirtp) 1119 { 1120 ASSERT(!(ixa->ixa_flags & IXAF_IS_IPV4)); 1121 1122 return (ip_select_route(dst, ixa, generationp, setsrcp, errorp, 1123 multirtp)); 1124 } 1125 1126 /* 1127 * Recursively look for a route to the destination. Can also match on 1128 * the zoneid, ill, and label. Used for the data paths. See also 1129 * ire_route_recursive_dstonly. 1130 * 1131 * If ill is set this means we will match it by adding MATCH_IRE_ILL. 1132 * 1133 * If allocate is not set then we will only inspect the existing IREs; never 1134 * create an IRE_IF_CLONE. This is used on the receive side when we are not 1135 * forwarding. 1136 * 1137 * Note that this function never returns NULL. It returns an IRE_NOROUTE 1138 * instead. 1139 * 1140 * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it 1141 * is an error. 1142 * Allow at most one RTF_INDIRECT. 1143 */ 1144 ire_t * 1145 ire_route_recursive_impl_v6(ire_t *ire, 1146 const in6_addr_t *nexthop, uint_t ire_type, const ill_t *ill_arg, 1147 zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args, 1148 boolean_t allocate, uint32_t xmit_hint, ip_stack_t *ipst, 1149 in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp) 1150 { 1151 int i, j; 1152 in6_addr_t v6nexthop = *nexthop; 1153 ire_t *ires[MAX_IRE_RECURSION]; 1154 uint_t generation; 1155 uint_t generations[MAX_IRE_RECURSION]; 1156 boolean_t need_refrele = B_FALSE; 1157 boolean_t invalidate = B_FALSE; 1158 int prefs[MAX_IRE_RECURSION]; 1159 ill_t *ill = NULL; 1160 1161 if (setsrcp != NULL) 1162 ASSERT(IN6_IS_ADDR_UNSPECIFIED(setsrcp)); 1163 if (gwattrp != NULL) 1164 ASSERT(*gwattrp == NULL); 1165 1166 if (ill_arg != NULL) 1167 match_args |= MATCH_IRE_ILL; 1168 1169 /* 1170 * We iterate up to three times to resolve a route, even though 1171 * we have four slots in the array. The extra slot is for an 1172 * IRE_IF_CLONE we might need to create. 1173 */ 1174 i = 0; 1175 while (i < MAX_IRE_RECURSION - 1) { 1176 /* ire_ftable_lookup handles round-robin/ECMP */ 1177 if (ire == NULL) { 1178 ire = ire_ftable_lookup_v6(&v6nexthop, 0, 0, ire_type, 1179 (ill_arg != NULL ? ill_arg : ill), zoneid, tsl, 1180 match_args, xmit_hint, ipst, &generation); 1181 } else { 1182 /* Caller passed it; extra hold since we will rele */ 1183 ire_refhold(ire); 1184 if (generationp != NULL) 1185 generation = *generationp; 1186 else 1187 generation = IRE_GENERATION_VERIFY; 1188 } 1189 1190 if (ire == NULL) 1191 ire = ire_reject(ipst, B_TRUE); 1192 1193 /* Need to return the ire with RTF_REJECT|BLACKHOLE */ 1194 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 1195 goto error; 1196 1197 ASSERT(!(ire->ire_type & IRE_MULTICAST)); /* Not in ftable */ 1198 1199 if (i != 0) { 1200 prefs[i] = ire_pref(ire); 1201 /* 1202 * Don't allow anything unusual past the first 1203 * iteration. 1204 */ 1205 if ((ire->ire_type & 1206 (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) || 1207 prefs[i] <= prefs[i-1]) { 1208 ire_refrele(ire); 1209 ire = ire_reject(ipst, B_TRUE); 1210 goto error; 1211 } 1212 } 1213 /* We have a usable IRE */ 1214 ires[i] = ire; 1215 generations[i] = generation; 1216 i++; 1217 1218 /* The first RTF_SETSRC address is passed back if setsrcp */ 1219 if ((ire->ire_flags & RTF_SETSRC) && 1220 setsrcp != NULL && IN6_IS_ADDR_UNSPECIFIED(setsrcp)) { 1221 ASSERT(!IN6_IS_ADDR_UNSPECIFIED( 1222 &ire->ire_setsrc_addr_v6)); 1223 *setsrcp = ire->ire_setsrc_addr_v6; 1224 } 1225 1226 /* The first ire_gw_secattr is passed back if gwattrp */ 1227 if (ire->ire_gw_secattr != NULL && 1228 gwattrp != NULL && *gwattrp == NULL) 1229 *gwattrp = ire->ire_gw_secattr; 1230 1231 /* 1232 * Check if we have a short-cut pointer to an IRE for this 1233 * destination, and that the cached dependency isn't stale. 1234 * In that case we've rejoined an existing tree towards a 1235 * parent, thus we don't need to continue the loop to 1236 * discover the rest of the tree. 1237 */ 1238 mutex_enter(&ire->ire_lock); 1239 if (ire->ire_dep_parent != NULL && 1240 ire->ire_dep_parent->ire_generation == 1241 ire->ire_dep_parent_generation) { 1242 mutex_exit(&ire->ire_lock); 1243 ire = NULL; 1244 goto done; 1245 } 1246 mutex_exit(&ire->ire_lock); 1247 1248 /* 1249 * If this type should have an ire_nce_cache (even if it 1250 * doesn't yet have one) then we are done. Includes 1251 * IRE_INTERFACE with a full 128 bit mask. 1252 */ 1253 if (ire->ire_nce_capable) { 1254 ire = NULL; 1255 goto done; 1256 } 1257 ASSERT(!(ire->ire_type & IRE_IF_CLONE)); 1258 /* 1259 * For an IRE_INTERFACE we create an IRE_IF_CLONE for this 1260 * particular destination 1261 */ 1262 if (ire->ire_type & IRE_INTERFACE) { 1263 ire_t *clone; 1264 1265 ASSERT(ire->ire_masklen != IPV6_ABITS); 1266 1267 /* 1268 * In the case of ip_input and ILLF_FORWARDING not 1269 * being set, and in the case of RTM_GET, 1270 * there is no point in allocating 1271 * an IRE_IF_CLONE. We return the IRE_INTERFACE. 1272 * Note that !allocate can result in a ire_dep_parent 1273 * which is IRE_IF_* without an IRE_IF_CLONE. 1274 * We recover from that when we need to send packets 1275 * by ensuring that the generations become 1276 * IRE_GENERATION_VERIFY in this case. 1277 */ 1278 if (!allocate) { 1279 invalidate = B_TRUE; 1280 ire = NULL; 1281 goto done; 1282 } 1283 1284 clone = ire_create_if_clone(ire, &v6nexthop, 1285 &generation); 1286 if (clone == NULL) { 1287 /* 1288 * Temporary failure - no memory. 1289 * Don't want caller to cache IRE_NOROUTE. 1290 */ 1291 invalidate = B_TRUE; 1292 ire = ire_blackhole(ipst, B_TRUE); 1293 goto error; 1294 } 1295 /* 1296 * Make clone next to last entry and the 1297 * IRE_INTERFACE the last in the dependency 1298 * chain since the clone depends on the 1299 * IRE_INTERFACE. 1300 */ 1301 ASSERT(i >= 1); 1302 ASSERT(i < MAX_IRE_RECURSION); 1303 1304 ires[i] = ires[i-1]; 1305 generations[i] = generations[i-1]; 1306 ires[i-1] = clone; 1307 generations[i-1] = generation; 1308 i++; 1309 1310 ire = NULL; 1311 goto done; 1312 } 1313 1314 /* 1315 * We only match on the type and optionally ILL when 1316 * recursing. The type match is used by some callers 1317 * to exclude certain types (such as IRE_IF_CLONE or 1318 * IRE_LOCAL|IRE_LOOPBACK). 1319 */ 1320 match_args &= MATCH_IRE_TYPE; 1321 v6nexthop = ire->ire_gateway_addr_v6; 1322 if (ill == NULL && ire->ire_ill != NULL) { 1323 ill = ire->ire_ill; 1324 need_refrele = B_TRUE; 1325 ill_refhold(ill); 1326 match_args |= MATCH_IRE_ILL; 1327 } 1328 /* 1329 * We set the prefs[i] value above if i > 0. We've already 1330 * done i++ so i is one in the case of the first time around. 1331 */ 1332 if (i == 1) 1333 prefs[0] = ire_pref(ire); 1334 ire = NULL; 1335 } 1336 ASSERT(ire == NULL); 1337 ire = ire_reject(ipst, B_TRUE); 1338 1339 error: 1340 ASSERT(ire != NULL); 1341 if (need_refrele) 1342 ill_refrele(ill); 1343 1344 /* 1345 * In the case of MULTIRT we want to try a different IRE the next 1346 * time. We let the next packet retry in that case. 1347 */ 1348 if (i > 0 && (ires[0]->ire_flags & RTF_MULTIRT)) 1349 (void) ire_no_good(ires[0]); 1350 1351 cleanup: 1352 /* cleanup ires[i] */ 1353 ire_dep_unbuild(ires, i); 1354 for (j = 0; j < i; j++) 1355 ire_refrele(ires[j]); 1356 1357 ASSERT(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)); 1358 /* 1359 * Use IRE_GENERATION_VERIFY to ensure that ip_output will redo the 1360 * ip_select_route since the reject or lack of memory might be gone. 1361 */ 1362 if (generationp != NULL) 1363 *generationp = IRE_GENERATION_VERIFY; 1364 return (ire); 1365 1366 done: 1367 ASSERT(ire == NULL); 1368 if (need_refrele) 1369 ill_refrele(ill); 1370 1371 /* Build dependencies */ 1372 if (i > 1 && !ire_dep_build(ires, generations, i)) { 1373 /* Something in chain was condemned; tear it apart */ 1374 ire = ire_blackhole(ipst, B_TRUE); 1375 goto cleanup; 1376 } 1377 1378 /* 1379 * Release all refholds except the one for ires[0] that we 1380 * will return to the caller. 1381 */ 1382 for (j = 1; j < i; j++) 1383 ire_refrele(ires[j]); 1384 1385 if (invalidate) { 1386 /* 1387 * Since we needed to allocate but couldn't we need to make 1388 * sure that the dependency chain is rebuilt the next time. 1389 */ 1390 ire_dep_invalidate_generations(ires[0]); 1391 generation = IRE_GENERATION_VERIFY; 1392 } else { 1393 /* 1394 * IREs can have been added or deleted while we did the 1395 * recursive lookup and we can't catch those until we've built 1396 * the dependencies. We verify the stored 1397 * ire_dep_parent_generation to catch any such changes and 1398 * return IRE_GENERATION_VERIFY (which will cause 1399 * ip_select_route to be called again so we can redo the 1400 * recursive lookup next time we send a packet. 1401 */ 1402 if (ires[0]->ire_dep_parent == NULL) 1403 generation = ires[0]->ire_generation; 1404 else 1405 generation = ire_dep_validate_generations(ires[0]); 1406 if (generations[0] != ires[0]->ire_generation) { 1407 /* Something changed at the top */ 1408 generation = IRE_GENERATION_VERIFY; 1409 } 1410 } 1411 if (generationp != NULL) 1412 *generationp = generation; 1413 1414 return (ires[0]); 1415 } 1416 1417 ire_t * 1418 ire_route_recursive_v6(const in6_addr_t *nexthop, uint_t ire_type, 1419 const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args, 1420 boolean_t allocate, uint32_t xmit_hint, ip_stack_t *ipst, 1421 in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp) 1422 { 1423 return (ire_route_recursive_impl_v6(NULL, nexthop, ire_type, ill, 1424 zoneid, tsl, match_args, allocate, xmit_hint, ipst, setsrcp, 1425 gwattrp, generationp)); 1426 } 1427 1428 /* 1429 * Recursively look for a route to the destination. 1430 * We only handle a destination match here, yet we have the same arguments 1431 * as the full match to allow function pointers to select between the two. 1432 * 1433 * Note that this function never returns NULL. It returns an IRE_NOROUTE 1434 * instead. 1435 * 1436 * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it 1437 * is an error. 1438 * Allow at most one RTF_INDIRECT. 1439 */ 1440 ire_t * 1441 ire_route_recursive_dstonly_v6(const in6_addr_t *nexthop, boolean_t allocate, 1442 uint32_t xmit_hint, ip_stack_t *ipst) 1443 { 1444 ire_t *ire; 1445 ire_t *ire1; 1446 uint_t generation; 1447 1448 /* ire_ftable_lookup handles round-robin/ECMP */ 1449 ire = ire_ftable_lookup_simple_v6(nexthop, xmit_hint, ipst, 1450 &generation); 1451 ASSERT(ire != NULL); 1452 1453 /* 1454 * If this type should have an ire_nce_cache (even if it 1455 * doesn't yet have one) then we are done. Includes 1456 * IRE_INTERFACE with a full 128 bit mask. 1457 */ 1458 if (ire->ire_nce_capable) 1459 return (ire); 1460 1461 /* 1462 * If the IRE has a current cached parent we know that the whole 1463 * parent chain is current, hence we don't need to discover and 1464 * build any dependencies by doing a recursive lookup. 1465 */ 1466 mutex_enter(&ire->ire_lock); 1467 if (ire->ire_dep_parent != NULL && 1468 ire->ire_dep_parent->ire_generation == 1469 ire->ire_dep_parent_generation) { 1470 mutex_exit(&ire->ire_lock); 1471 return (ire); 1472 } 1473 mutex_exit(&ire->ire_lock); 1474 1475 /* 1476 * Fallback to loop in the normal code starting with the ire 1477 * we found. Normally this would return the same ire. 1478 */ 1479 ire1 = ire_route_recursive_impl_v6(ire, nexthop, 0, NULL, ALL_ZONES, 1480 NULL, MATCH_IRE_DSTONLY, allocate, xmit_hint, ipst, NULL, NULL, 1481 &generation); 1482 ire_refrele(ire); 1483 return (ire1); 1484 } 1485