xref: /titanic_41/usr/src/uts/common/inet/ip/ip6_ire.c (revision 170affdd7228a2c069dff7e7ab890022ff6793d0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 1990 Mentat Inc.
27  */
28 
29 /*
30  * This file contains routines that manipulate Internet Routing Entries (IREs).
31  */
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/stropts.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 
38 #include <sys/systm.h>
39 #include <sys/param.h>
40 #include <sys/socket.h>
41 #include <net/if.h>
42 #include <net/route.h>
43 #include <netinet/in.h>
44 #include <net/if_dl.h>
45 #include <netinet/ip6.h>
46 #include <netinet/icmp6.h>
47 
48 #include <inet/common.h>
49 #include <inet/mi.h>
50 #include <inet/ip.h>
51 #include <inet/ip6.h>
52 #include <inet/ip_ndp.h>
53 #include <inet/ip_if.h>
54 #include <inet/ip_ire.h>
55 #include <inet/ipclassifier.h>
56 #include <inet/nd.h>
57 #include <inet/tunables.h>
58 #include <sys/kmem.h>
59 #include <sys/zone.h>
60 
61 #include <sys/tsol/label.h>
62 #include <sys/tsol/tnet.h>
63 
64 #define	IS_DEFAULT_ROUTE_V6(ire)	\
65 	(((ire)->ire_type & IRE_DEFAULT) || \
66 	    (((ire)->ire_type & IRE_INTERFACE) && \
67 	    (IN6_IS_ADDR_UNSPECIFIED(&(ire)->ire_addr_v6))))
68 
69 static	ire_t	ire_null;
70 
71 static ire_t *
72 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask,
73     const in6_addr_t *gateway, int type, const ill_t *ill,
74     zoneid_t zoneid, const ts_label_t *tsl, int flags,
75     ip_stack_t *ipst);
76 
77 /*
78  * Initialize the ire that is specific to IPv6 part and call
79  * ire_init_common to finish it.
80  * Returns zero or errno.
81  */
82 int
83 ire_init_v6(ire_t *ire, const in6_addr_t *v6addr, const in6_addr_t *v6mask,
84     const in6_addr_t *v6gateway, ushort_t type, ill_t *ill,
85     zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst)
86 {
87 	int error;
88 
89 	/*
90 	 * Reject IRE security attmakeribute creation/initialization
91 	 * if system is not running in Trusted mode.
92 	 */
93 	if (gc != NULL && !is_system_labeled())
94 		return (EINVAL);
95 
96 	BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_alloced);
97 	if (v6addr != NULL)
98 		ire->ire_addr_v6 = *v6addr;
99 	if (v6gateway != NULL)
100 		ire->ire_gateway_addr_v6 = *v6gateway;
101 
102 	/* Make sure we don't have stray values in some fields */
103 	switch (type) {
104 	case IRE_LOOPBACK:
105 	case IRE_HOST:
106 	case IRE_LOCAL:
107 	case IRE_IF_CLONE:
108 		ire->ire_mask_v6 = ipv6_all_ones;
109 		ire->ire_masklen = IPV6_ABITS;
110 		break;
111 	case IRE_PREFIX:
112 	case IRE_DEFAULT:
113 	case IRE_IF_RESOLVER:
114 	case IRE_IF_NORESOLVER:
115 		if (v6mask != NULL) {
116 			ire->ire_mask_v6 = *v6mask;
117 			ire->ire_masklen =
118 			    ip_mask_to_plen_v6(&ire->ire_mask_v6);
119 		}
120 		break;
121 	case IRE_MULTICAST:
122 	case IRE_NOROUTE:
123 		ASSERT(v6mask == NULL);
124 		break;
125 	default:
126 		ASSERT(0);
127 		return (EINVAL);
128 	}
129 
130 	error = ire_init_common(ire, type, ill, zoneid, flags, IPV6_VERSION,
131 	    gc, ipst);
132 	if (error != NULL)
133 		return (error);
134 
135 	/* Determine which function pointers to use */
136 	ire->ire_postfragfn = ip_xmit;		/* Common case */
137 
138 	switch (ire->ire_type) {
139 	case IRE_LOCAL:
140 		ire->ire_sendfn = ire_send_local_v6;
141 		ire->ire_recvfn = ire_recv_local_v6;
142 		ASSERT(ire->ire_ill != NULL);
143 		if (ire->ire_ill->ill_flags & ILLF_NOACCEPT)
144 			ire->ire_recvfn = ire_recv_noaccept_v6;
145 		break;
146 	case IRE_LOOPBACK:
147 		ire->ire_sendfn = ire_send_local_v6;
148 		ire->ire_recvfn = ire_recv_loopback_v6;
149 		break;
150 	case IRE_MULTICAST:
151 		ire->ire_postfragfn = ip_postfrag_loopcheck;
152 		ire->ire_sendfn = ire_send_multicast_v6;
153 		ire->ire_recvfn = ire_recv_multicast_v6;
154 		break;
155 	default:
156 		/*
157 		 * For IRE_IF_ALL and IRE_OFFLINK we forward received
158 		 * packets by default.
159 		 */
160 		ire->ire_sendfn = ire_send_wire_v6;
161 		ire->ire_recvfn = ire_recv_forward_v6;
162 		break;
163 	}
164 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
165 		ire->ire_sendfn = ire_send_noroute_v6;
166 		ire->ire_recvfn = ire_recv_noroute_v6;
167 	} else if (ire->ire_flags & RTF_MULTIRT) {
168 		ire->ire_postfragfn = ip_postfrag_multirt_v6;
169 		ire->ire_sendfn = ire_send_multirt_v6;
170 		ire->ire_recvfn = ire_recv_multirt_v6;
171 	}
172 	ire->ire_nce_capable = ire_determine_nce_capable(ire);
173 	return (0);
174 }
175 
176 /*
177  * ire_create_v6 is called to allocate and initialize a new IRE.
178  *
179  * NOTE : This is called as writer sometimes though not required
180  * by this function.
181  */
182 /* ARGSUSED */
183 ire_t *
184 ire_create_v6(const in6_addr_t *v6addr, const in6_addr_t *v6mask,
185     const in6_addr_t *v6gateway, ushort_t type, ill_t *ill, zoneid_t zoneid,
186     uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst)
187 {
188 	ire_t	*ire;
189 	int	error;
190 
191 	ASSERT(!IN6_IS_ADDR_V4MAPPED(v6addr));
192 
193 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
194 	if (ire == NULL) {
195 		DTRACE_PROBE(kmem__cache__alloc);
196 		return (NULL);
197 	}
198 	*ire = ire_null;
199 
200 	error = ire_init_v6(ire, v6addr, v6mask, v6gateway,
201 	    type, ill, zoneid, flags, gc, ipst);
202 
203 	if (error != 0) {
204 		DTRACE_PROBE2(ire__init__v6, ire_t *, ire, int, error);
205 		kmem_cache_free(ire_cache, ire);
206 		return (NULL);
207 	}
208 	return (ire);
209 }
210 
211 /*
212  * Find the ill matching a multicast group.
213  * Allows different routes for multicast addresses
214  * in the unicast routing table (akin to FF::0/8 but could be more specific)
215  * which point at different interfaces. This is used when IPV6_MULTICAST_IF
216  * isn't specified (when sending) and when IPV6_JOIN_GROUP doesn't
217  * specify the interface to join on.
218  *
219  * Supports link-local addresses by using ire_route_recursive which follows
220  * the ill when recursing.
221  *
222  * To handle CGTP, since we don't have a separate IRE_MULTICAST for each group
223  * and the MULTIRT property can be different for different groups, we
224  * extract RTF_MULTIRT from the special unicast route added for a group
225  * with CGTP and pass that back in the multirtp argument.
226  * This is used in ip_set_destination etc to set ixa_postfragfn for multicast.
227  * We have a setsrcp argument for the same reason.
228  */
229 ill_t *
230 ire_lookup_multi_ill_v6(const in6_addr_t *group, zoneid_t zoneid,
231     ip_stack_t *ipst, boolean_t *multirtp, in6_addr_t *setsrcp)
232 {
233 	ire_t	*ire;
234 	ill_t	*ill;
235 
236 	ire = ire_route_recursive_v6(group, 0, NULL, zoneid, NULL,
237 	    MATCH_IRE_DSTONLY, IRR_NONE, 0, ipst, setsrcp, NULL, NULL);
238 	ASSERT(ire != NULL);
239 
240 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
241 		ire_refrele(ire);
242 		return (NULL);
243 	}
244 
245 	if (multirtp != NULL)
246 		*multirtp = (ire->ire_flags & RTF_MULTIRT) != 0;
247 
248 	ill = ire_nexthop_ill(ire);
249 	ire_refrele(ire);
250 	return (ill);
251 }
252 
253 /*
254  * This function takes a mask and returns number of bits set in the
255  * mask (the represented prefix length).  Assumes a contiguous mask.
256  */
257 int
258 ip_mask_to_plen_v6(const in6_addr_t *v6mask)
259 {
260 	int		bits;
261 	int		plen = IPV6_ABITS;
262 	int		i;
263 
264 	for (i = 3; i >= 0; i--) {
265 		if (v6mask->s6_addr32[i] == 0) {
266 			plen -= 32;
267 			continue;
268 		}
269 		bits = ffs(ntohl(v6mask->s6_addr32[i])) - 1;
270 		if (bits == 0)
271 			break;
272 		plen -= bits;
273 	}
274 
275 	return (plen);
276 }
277 
278 /*
279  * Convert a prefix length to the mask for that prefix.
280  * Returns the argument bitmask.
281  */
282 in6_addr_t *
283 ip_plen_to_mask_v6(uint_t plen, in6_addr_t *bitmask)
284 {
285 	uint32_t *ptr;
286 
287 	if (plen < 0 || plen > IPV6_ABITS)
288 		return (NULL);
289 	*bitmask = ipv6_all_zeros;
290 	if (plen == 0)
291 		return (bitmask);
292 
293 	ptr = (uint32_t *)bitmask;
294 	while (plen > 32) {
295 		*ptr++ = 0xffffffffU;
296 		plen -= 32;
297 	}
298 	*ptr = htonl(0xffffffffU << (32 - plen));
299 	return (bitmask);
300 }
301 
302 /*
303  * Add a fully initialized IPv6 IRE to the forwarding table.
304  * This returns NULL on failure, or a held IRE on success.
305  * Normally the returned IRE is the same as the argument. But a different
306  * IRE will be returned if the added IRE is deemed identical to an existing
307  * one. In that case ire_identical_ref will be increased.
308  * The caller always needs to do an ire_refrele() on the returned IRE.
309  */
310 ire_t *
311 ire_add_v6(ire_t *ire)
312 {
313 	ire_t	*ire1;
314 	int	mask_table_index;
315 	irb_t	*irb_ptr;
316 	ire_t	**irep;
317 	int	match_flags;
318 	int	error;
319 	ip_stack_t	*ipst = ire->ire_ipst;
320 
321 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
322 
323 	/* Make sure the address is properly masked. */
324 	V6_MASK_COPY(ire->ire_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6);
325 
326 	mask_table_index = ip_mask_to_plen_v6(&ire->ire_mask_v6);
327 	if ((ipst->ips_ip_forwarding_table_v6[mask_table_index]) == NULL) {
328 		irb_t *ptr;
329 		int i;
330 
331 		ptr = (irb_t *)mi_zalloc((ipst->ips_ip6_ftable_hash_size *
332 		    sizeof (irb_t)));
333 		if (ptr == NULL) {
334 			ire_delete(ire);
335 			return (NULL);
336 		}
337 		for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) {
338 			rw_init(&ptr[i].irb_lock, NULL, RW_DEFAULT, NULL);
339 			ptr[i].irb_ipst = ipst;
340 		}
341 		mutex_enter(&ipst->ips_ire_ft_init_lock);
342 		if (ipst->ips_ip_forwarding_table_v6[mask_table_index] ==
343 		    NULL) {
344 			ipst->ips_ip_forwarding_table_v6[mask_table_index] =
345 			    ptr;
346 			mutex_exit(&ipst->ips_ire_ft_init_lock);
347 		} else {
348 			/*
349 			 * Some other thread won the race in
350 			 * initializing the forwarding table at the
351 			 * same index.
352 			 */
353 			mutex_exit(&ipst->ips_ire_ft_init_lock);
354 			for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) {
355 				rw_destroy(&ptr[i].irb_lock);
356 			}
357 			mi_free(ptr);
358 		}
359 	}
360 	irb_ptr = &(ipst->ips_ip_forwarding_table_v6[mask_table_index][
361 	    IRE_ADDR_MASK_HASH_V6(ire->ire_addr_v6, ire->ire_mask_v6,
362 	    ipst->ips_ip6_ftable_hash_size)]);
363 
364 	match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
365 	if (ire->ire_ill != NULL)
366 		match_flags |= MATCH_IRE_ILL;
367 	/*
368 	 * Start the atomic add of the ire. Grab the bucket lock and the
369 	 * ill lock. Check for condemned.
370 	 */
371 	error = ire_atomic_start(irb_ptr, ire);
372 	if (error != 0) {
373 		ire_delete(ire);
374 		return (NULL);
375 	}
376 
377 	/*
378 	 * If we are creating a hidden IRE, make sure we search for
379 	 * hidden IREs when searching for duplicates below.
380 	 * Otherwise, we might find an IRE on some other interface
381 	 * that's not marked hidden.
382 	 */
383 	if (ire->ire_testhidden)
384 		match_flags |= MATCH_IRE_TESTHIDDEN;
385 
386 	/*
387 	 * Atomically check for duplicate and insert in the table.
388 	 */
389 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
390 		if (IRE_IS_CONDEMNED(ire1))
391 			continue;
392 		/*
393 		 * Here we need an exact match on zoneid, i.e.,
394 		 * ire_match_args doesn't fit.
395 		 */
396 		if (ire1->ire_zoneid != ire->ire_zoneid)
397 			continue;
398 
399 		if (ire1->ire_type != ire->ire_type)
400 			continue;
401 
402 		/*
403 		 * Note: We do not allow multiple routes that differ only
404 		 * in the gateway security attributes; such routes are
405 		 * considered duplicates.
406 		 * To change that we explicitly have to treat them as
407 		 * different here.
408 		 */
409 		if (ire_match_args_v6(ire1, &ire->ire_addr_v6,
410 		    &ire->ire_mask_v6, &ire->ire_gateway_addr_v6,
411 		    ire->ire_type, ire->ire_ill, ire->ire_zoneid, NULL,
412 		    match_flags)) {
413 			/*
414 			 * Return the old ire after doing a REFHOLD.
415 			 * As most of the callers continue to use the IRE
416 			 * after adding, we return a held ire. This will
417 			 * avoid a lookup in the caller again. If the callers
418 			 * don't want to use it, they need to do a REFRELE.
419 			 */
420 			ip1dbg(("found dup ire existing %p new %p",
421 			    (void *)ire1, (void *)ire));
422 			ire_refhold(ire1);
423 			atomic_add_32(&ire1->ire_identical_ref, 1);
424 			ire_atomic_end(irb_ptr, ire);
425 			ire_delete(ire);
426 			return (ire1);
427 		}
428 	}
429 
430 	/*
431 	 * Normally we do head insertion since most things do not care about
432 	 * the order of the IREs in the bucket.
433 	 * However, due to shared-IP zones (and restrict_interzone_loopback)
434 	 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same
435 	 * address. For that reason we do tail insertion for IRE_IF_CLONE.
436 	 */
437 	irep = (ire_t **)irb_ptr;
438 	if (ire->ire_type & IRE_IF_CLONE) {
439 		while ((ire1 = *irep) != NULL)
440 			irep = &ire1->ire_next;
441 	}
442 	/* Insert at *irep */
443 	ire1 = *irep;
444 	if (ire1 != NULL)
445 		ire1->ire_ptpn = &ire->ire_next;
446 	ire->ire_next = ire1;
447 	/* Link the new one in. */
448 	ire->ire_ptpn = irep;
449 	/*
450 	 * ire_walk routines de-reference ire_next without holding
451 	 * a lock. Before we point to the new ire, we want to make
452 	 * sure the store that sets the ire_next of the new ire
453 	 * reaches global visibility, so that ire_walk routines
454 	 * don't see a truncated list of ires i.e if the ire_next
455 	 * of the new ire gets set after we do "*irep = ire" due
456 	 * to re-ordering, the ire_walk thread will see a NULL
457 	 * once it accesses the ire_next of the new ire.
458 	 * membar_producer() makes sure that the following store
459 	 * happens *after* all of the above stores.
460 	 */
461 	membar_producer();
462 	*irep = ire;
463 	ire->ire_bucket = irb_ptr;
464 	/*
465 	 * We return a bumped up IRE above. Keep it symmetrical
466 	 * so that the callers will always have to release. This
467 	 * helps the callers of this function because they continue
468 	 * to use the IRE after adding and hence they don't have to
469 	 * lookup again after we return the IRE.
470 	 *
471 	 * NOTE : We don't have to use atomics as this is appearing
472 	 * in the list for the first time and no one else can bump
473 	 * up the reference count on this yet.
474 	 */
475 	ire_refhold_locked(ire);
476 	BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_inserted);
477 	irb_ptr->irb_ire_cnt++;
478 
479 	if (ire->ire_ill != NULL) {
480 		DTRACE_PROBE3(ill__incr__cnt, (ill_t *), ire->ire_ill,
481 		    (char *), "ire", (void *), ire);
482 		ire->ire_ill->ill_ire_cnt++;
483 		ASSERT(ire->ire_ill->ill_ire_cnt != 0);	/* Wraparound */
484 	}
485 	ire_atomic_end(irb_ptr, ire);
486 
487 	/* Make any caching of the IREs be notified or updated */
488 	ire_flush_cache_v6(ire, IRE_FLUSH_ADD);
489 
490 	return (ire);
491 }
492 
493 /*
494  * Search for all HOST REDIRECT routes that are
495  * pointing at the specified gateway and
496  * delete them. This routine is called only
497  * when a default gateway is going away.
498  */
499 static void
500 ire_delete_host_redirects_v6(const in6_addr_t *gateway, ip_stack_t *ipst)
501 {
502 	irb_t *irb_ptr;
503 	irb_t *irb;
504 	ire_t *ire;
505 	in6_addr_t gw_addr_v6;
506 	int i;
507 
508 	/* get the hash table for HOST routes */
509 	irb_ptr = ipst->ips_ip_forwarding_table_v6[(IP6_MASK_TABLE_SIZE - 1)];
510 	if (irb_ptr == NULL)
511 		return;
512 	for (i = 0; (i < ipst->ips_ip6_ftable_hash_size); i++) {
513 		irb = &irb_ptr[i];
514 		irb_refhold(irb);
515 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
516 			if (!(ire->ire_flags & RTF_DYNAMIC))
517 				continue;
518 			mutex_enter(&ire->ire_lock);
519 			gw_addr_v6 = ire->ire_gateway_addr_v6;
520 			mutex_exit(&ire->ire_lock);
521 			if (IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway))
522 				ire_delete(ire);
523 		}
524 		irb_refrele(irb);
525 	}
526 }
527 
528 /*
529  * Delete the specified IRE.
530  * All calls should use ire_delete().
531  * Sometimes called as writer though not required by this function.
532  *
533  * NOTE : This function is called only if the ire was added
534  * in the list.
535  */
536 void
537 ire_delete_v6(ire_t *ire)
538 {
539 	in6_addr_t gw_addr_v6;
540 	ip_stack_t	*ipst = ire->ire_ipst;
541 
542 	/*
543 	 * Make sure ire_generation increases from ire_flush_cache happen
544 	 * after any lookup/reader has read ire_generation.
545 	 * Since the rw_enter makes us wait until any lookup/reader has
546 	 * completed we can exit the lock immediately.
547 	 */
548 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER);
549 	rw_exit(&ipst->ips_ip6_ire_head_lock);
550 
551 	ASSERT(ire->ire_refcnt >= 1);
552 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
553 
554 	ire_flush_cache_v6(ire, IRE_FLUSH_DELETE);
555 
556 	if (ire->ire_type == IRE_DEFAULT) {
557 		/*
558 		 * when a default gateway is going away
559 		 * delete all the host redirects pointing at that
560 		 * gateway.
561 		 */
562 		mutex_enter(&ire->ire_lock);
563 		gw_addr_v6 = ire->ire_gateway_addr_v6;
564 		mutex_exit(&ire->ire_lock);
565 		ire_delete_host_redirects_v6(&gw_addr_v6, ipst);
566 	}
567 
568 	/*
569 	 * If we are deleting an IRE_INTERFACE then we make sure we also
570 	 * delete any IRE_IF_CLONE that has been created from it.
571 	 * Those are always in ire_dep_children.
572 	 */
573 	if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != 0)
574 		ire_dep_delete_if_clone(ire);
575 
576 	/* Remove from parent dependencies and child */
577 	rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
578 	if (ire->ire_dep_parent != NULL) {
579 		ire_dep_remove(ire);
580 	}
581 	while (ire->ire_dep_children != NULL)
582 		ire_dep_remove(ire->ire_dep_children);
583 	rw_exit(&ipst->ips_ire_dep_lock);
584 }
585 
586 /*
587  * When an IRE is added or deleted this routine is called to make sure
588  * any caching of IRE information is notified or updated.
589  *
590  * The flag argument indicates if the flush request is due to addition
591  * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE),
592  * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE).
593  */
594 void
595 ire_flush_cache_v6(ire_t *ire, int flag)
596 {
597 	ip_stack_t *ipst = ire->ire_ipst;
598 
599 	/*
600 	 * IRE_IF_CLONE ire's don't provide any new information
601 	 * than the parent from which they are cloned, so don't
602 	 * perturb the generation numbers.
603 	 */
604 	if (ire->ire_type & IRE_IF_CLONE)
605 		return;
606 
607 	/*
608 	 * Ensure that an ire_add during a lookup serializes the updates of
609 	 * the generation numbers under ire_head_lock so that the lookup gets
610 	 * either the old ire and old generation number, or a new ire and new
611 	 * generation number.
612 	 */
613 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER);
614 
615 	/*
616 	 * If a route was just added, we need to notify everybody that
617 	 * has cached an IRE_NOROUTE since there might now be a better
618 	 * route for them.
619 	 */
620 	if (flag == IRE_FLUSH_ADD) {
621 		ire_increment_generation(ipst->ips_ire_reject_v6);
622 		ire_increment_generation(ipst->ips_ire_blackhole_v6);
623 	}
624 
625 	/* Adding a default can't otherwise provide a better route */
626 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) {
627 		rw_exit(&ipst->ips_ip6_ire_head_lock);
628 		return;
629 	}
630 
631 	switch (flag) {
632 	case IRE_FLUSH_DELETE:
633 	case IRE_FLUSH_GWCHANGE:
634 		/*
635 		 * Update ire_generation for all ire_dep_children chains
636 		 * starting with this IRE
637 		 */
638 		ire_dep_incr_generation(ire);
639 		break;
640 	case IRE_FLUSH_ADD: {
641 		in6_addr_t	addr;
642 		in6_addr_t	mask;
643 		ip_stack_t	*ipst = ire->ire_ipst;
644 		uint_t		masklen;
645 
646 		/*
647 		 * Find an IRE which is a shorter match than the ire to be added
648 		 * For any such IRE (which we repeat) we update the
649 		 * ire_generation the same way as in the delete case.
650 		 */
651 		addr = ire->ire_addr_v6;
652 		mask = ire->ire_mask_v6;
653 		masklen = ip_mask_to_plen_v6(&mask);
654 
655 		ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0, NULL,
656 		    ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst);
657 		while (ire != NULL) {
658 			/* We need to handle all in the same bucket */
659 			irb_increment_generation(ire->ire_bucket);
660 
661 			mask = ire->ire_mask_v6;
662 			ASSERT(masklen > ip_mask_to_plen_v6(&mask));
663 			masklen = ip_mask_to_plen_v6(&mask);
664 			ire_refrele(ire);
665 			ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0,
666 			    NULL, ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst);
667 		}
668 		}
669 		break;
670 	}
671 	rw_exit(&ipst->ips_ip6_ire_head_lock);
672 }
673 
674 /*
675  * Matches the arguments passed with the values in the ire.
676  *
677  * Note: for match types that match using "ill" passed in, ill
678  * must be checked for non-NULL before calling this routine.
679  */
680 boolean_t
681 ire_match_args_v6(ire_t *ire, const in6_addr_t *addr, const in6_addr_t *mask,
682     const in6_addr_t *gateway, int type, const ill_t *ill, zoneid_t zoneid,
683     const ts_label_t *tsl, int match_flags)
684 {
685 	in6_addr_t masked_addr;
686 	in6_addr_t gw_addr_v6;
687 	ill_t *ire_ill = NULL, *dst_ill;
688 	ip_stack_t *ipst = ire->ire_ipst;
689 
690 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
691 	ASSERT(addr != NULL);
692 	ASSERT(mask != NULL);
693 	ASSERT((!(match_flags & MATCH_IRE_GW)) || gateway != NULL);
694 	ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL))) ||
695 	    (ill != NULL && ill->ill_isv6));
696 
697 	/*
698 	 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it
699 	 * is in fact hidden, to ensure the caller gets the right one.
700 	 */
701 	if (ire->ire_testhidden) {
702 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))
703 			return (B_FALSE);
704 	}
705 
706 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
707 	    ire->ire_zoneid != ALL_ZONES) {
708 		/*
709 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid
710 		 * does not match that of ire_zoneid, a failure to
711 		 * match is reported at this point. Otherwise, since some IREs
712 		 * that are available in the global zone can be used in local
713 		 * zones, additional checks need to be performed:
714 		 *
715 		 * IRE_LOOPBACK
716 		 *	entries should never be matched in this situation.
717 		 *	Each zone has its own IRE_LOOPBACK.
718 		 *
719 		 * IRE_LOCAL
720 		 *	We allow them for any zoneid. ire_route_recursive
721 		 *	does additional checks when
722 		 *	ip_restrict_interzone_loopback is set.
723 		 *
724 		 * If ill_usesrc_ifindex is set
725 		 *	Then we check if the zone has a valid source address
726 		 *	on the usesrc ill.
727 		 *
728 		 * If ire_ill is set, then check that the zone has an ipif
729 		 *	on that ill.
730 		 *
731 		 * Outside of this function (in ire_round_robin) we check
732 		 * that any IRE_OFFLINK has a gateway that reachable from the
733 		 * zone when we have multiple choices (ECMP).
734 		 */
735 		if (match_flags & MATCH_IRE_ZONEONLY)
736 			return (B_FALSE);
737 		if (ire->ire_type & IRE_LOOPBACK)
738 			return (B_FALSE);
739 
740 		if (ire->ire_type & IRE_LOCAL)
741 			goto matchit;
742 
743 		/*
744 		 * The normal case of IRE_ONLINK has a matching zoneid.
745 		 * Here we handle the case when shared-IP zones have been
746 		 * configured with IP addresses on vniN. In that case it
747 		 * is ok for traffic from a zone to use IRE_ONLINK routes
748 		 * if the ill has a usesrc pointing at vniN
749 		 * Applies to IRE_INTERFACE.
750 		 */
751 		dst_ill = ire->ire_ill;
752 		if (ire->ire_type & IRE_ONLINK) {
753 			uint_t	ifindex;
754 
755 			/*
756 			 * Note there is no IRE_INTERFACE on vniN thus
757 			 * can't do an IRE lookup for a matching route.
758 			 */
759 			ifindex = dst_ill->ill_usesrc_ifindex;
760 			if (ifindex == 0)
761 				return (B_FALSE);
762 
763 			/*
764 			 * If there is a usable source address in the
765 			 * zone, then it's ok to return this IRE_INTERFACE
766 			 */
767 			if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
768 			    zoneid, ipst)) {
769 				ip3dbg(("ire_match_args: no usrsrc for zone"
770 				    " dst_ill %p\n", (void *)dst_ill));
771 				return (B_FALSE);
772 			}
773 		}
774 		/*
775 		 * For example, with
776 		 * route add 11.0.0.0 gw1 -ifp bge0
777 		 * route add 11.0.0.0 gw2 -ifp bge1
778 		 * this code would differentiate based on
779 		 * where the sending zone has addresses.
780 		 * Only if the zone has an address on bge0 can it use the first
781 		 * route. It isn't clear if this behavior is documented
782 		 * anywhere.
783 		 */
784 		if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
785 			ipif_t	*tipif;
786 
787 			mutex_enter(&dst_ill->ill_lock);
788 			for (tipif = dst_ill->ill_ipif;
789 			    tipif != NULL; tipif = tipif->ipif_next) {
790 				if (!IPIF_IS_CONDEMNED(tipif) &&
791 				    (tipif->ipif_flags & IPIF_UP) &&
792 				    (tipif->ipif_zoneid == zoneid ||
793 				    tipif->ipif_zoneid == ALL_ZONES))
794 					break;
795 			}
796 			mutex_exit(&dst_ill->ill_lock);
797 			if (tipif == NULL)
798 				return (B_FALSE);
799 		}
800 	}
801 
802 matchit:
803 	ire_ill = ire->ire_ill;
804 	if (match_flags & MATCH_IRE_GW) {
805 		mutex_enter(&ire->ire_lock);
806 		gw_addr_v6 = ire->ire_gateway_addr_v6;
807 		mutex_exit(&ire->ire_lock);
808 	}
809 	if (match_flags & MATCH_IRE_ILL) {
810 
811 		/*
812 		 * If asked to match an ill, we *must* match
813 		 * on the ire_ill for ipmp test addresses, or
814 		 * any of the ill in the group for data addresses.
815 		 * If we don't, we may as well fail.
816 		 * However, we need an exception for IRE_LOCALs to ensure
817 		 * we loopback packets even sent to test addresses on different
818 		 * interfaces in the group.
819 		 */
820 		if ((match_flags & MATCH_IRE_TESTHIDDEN) &&
821 		    !(ire->ire_type & IRE_LOCAL)) {
822 			if (ire->ire_ill != ill)
823 				return (B_FALSE);
824 		} else  {
825 			match_flags &= ~MATCH_IRE_TESTHIDDEN;
826 			/*
827 			 * We know that ill is not NULL, but ire_ill could be
828 			 * NULL
829 			 */
830 			if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill))
831 				return (B_FALSE);
832 		}
833 	}
834 	if (match_flags & MATCH_IRE_SRC_ILL) {
835 		if (ire_ill == NULL)
836 			return (B_FALSE);
837 		if (!IS_ON_SAME_LAN(ill, ire_ill)) {
838 			if (ire_ill->ill_usesrc_ifindex == 0 ||
839 			    (ire_ill->ill_usesrc_ifindex !=
840 			    ill->ill_phyint->phyint_ifindex))
841 				return (B_FALSE);
842 		}
843 	}
844 
845 	/* No ire_addr_v6 bits set past the mask */
846 	ASSERT(V6_MASK_EQ(ire->ire_addr_v6, ire->ire_mask_v6,
847 	    ire->ire_addr_v6));
848 	V6_MASK_COPY(*addr, *mask, masked_addr);
849 	if (V6_MASK_EQ(*addr, *mask, ire->ire_addr_v6) &&
850 	    ((!(match_flags & MATCH_IRE_GW)) ||
851 	    IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) &&
852 	    ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) &&
853 	    ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) &&
854 	    ((!(match_flags & MATCH_IRE_MASK)) ||
855 	    (IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, mask))) &&
856 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
857 	    (!is_system_labeled()) ||
858 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
859 		/* We found the matched IRE */
860 		return (B_TRUE);
861 	}
862 	return (B_FALSE);
863 }
864 
865 /*
866  * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified
867  * gateway address. If ill is non-NULL we also match on it.
868  * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set.
869  */
870 boolean_t
871 ire_gateway_ok_zone_v6(const in6_addr_t *gateway, zoneid_t zoneid, ill_t *ill,
872     const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held)
873 {
874 	ire_t	*ire;
875 	uint_t	match_flags;
876 
877 	if (lock_held)
878 		ASSERT(RW_READ_HELD(&ipst->ips_ip6_ire_head_lock));
879 	else
880 		rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
881 
882 	match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR;
883 	if (ill != NULL)
884 		match_flags |= MATCH_IRE_ILL;
885 
886 	ire = ire_ftable_lookup_impl_v6(gateway, &ipv6_all_zeros,
887 	    &ipv6_all_zeros, IRE_INTERFACE, ill, zoneid, tsl, match_flags,
888 	    ipst);
889 
890 	if (!lock_held)
891 		rw_exit(&ipst->ips_ip6_ire_head_lock);
892 	if (ire != NULL) {
893 		ire_refrele(ire);
894 		return (B_TRUE);
895 	} else {
896 		return (B_FALSE);
897 	}
898 }
899 
900 /*
901  * Lookup a route in forwarding table.
902  * specific lookup is indicated by passing the
903  * required parameters and indicating the
904  * match required in flag field.
905  *
906  * Supports link-local addresses by following the ipif/ill when recursing.
907  */
908 ire_t *
909 ire_ftable_lookup_v6(const in6_addr_t *addr, const in6_addr_t *mask,
910     const in6_addr_t *gateway, int type, const ill_t *ill,
911     zoneid_t zoneid, const ts_label_t *tsl, int flags,
912     uint32_t xmit_hint, ip_stack_t *ipst, uint_t *generationp)
913 {
914 	ire_t *ire = NULL;
915 
916 	ASSERT(addr != NULL);
917 	ASSERT((!(flags & MATCH_IRE_MASK)) || mask != NULL);
918 	ASSERT((!(flags & MATCH_IRE_GW)) || gateway != NULL);
919 	ASSERT(ill == NULL || ill->ill_isv6);
920 
921 	ASSERT(!IN6_IS_ADDR_V4MAPPED(addr));
922 
923 	/*
924 	 * ire_match_args_v6() will dereference ill if MATCH_IRE_ILL
925 	 * or MATCH_IRE_SRC_ILL is set.
926 	 */
927 	if ((flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL)) && (ill == NULL))
928 		return (NULL);
929 
930 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
931 	ire = ire_ftable_lookup_impl_v6(addr, mask, gateway, type, ill, zoneid,
932 	    tsl, flags, ipst);
933 	if (ire == NULL) {
934 		rw_exit(&ipst->ips_ip6_ire_head_lock);
935 		return (NULL);
936 	}
937 
938 	/*
939 	 * round-robin only if we have more than one route in the bucket.
940 	 * ips_ip_ecmp_behavior controls when we do ECMP
941 	 *	2:	always
942 	 *	1:	for IRE_DEFAULT and /0 IRE_INTERFACE
943 	 *	0:	never
944 	 *
945 	 * Note: if we found an IRE_IF_CLONE we won't look at the bucket with
946 	 * other ECMP IRE_INTERFACEs since the IRE_IF_CLONE is a /128 match
947 	 * and the IRE_INTERFACESs are likely to be shorter matches.
948 	 */
949 	if (ire->ire_bucket->irb_ire_cnt > 1 && !(flags & MATCH_IRE_GW)) {
950 		if (ipst->ips_ip_ecmp_behavior == 2 ||
951 		    (ipst->ips_ip_ecmp_behavior == 1 &&
952 		    IS_DEFAULT_ROUTE_V6(ire))) {
953 			ire_t	*next_ire;
954 			ire_ftable_args_t margs;
955 
956 			bzero(&margs, sizeof (margs));
957 			margs.ift_addr_v6 = *addr;
958 			if (mask != NULL)
959 				margs.ift_mask_v6 = *mask;
960 			if (gateway != NULL)
961 				margs.ift_gateway_v6 = *gateway;
962 			margs.ift_type = type;
963 			margs.ift_ill = ill;
964 			margs.ift_zoneid = zoneid;
965 			margs.ift_tsl = tsl;
966 			margs.ift_flags = flags;
967 
968 			next_ire = ire_round_robin(ire->ire_bucket, &margs,
969 			    xmit_hint, ire, ipst);
970 			if (next_ire == NULL) {
971 				/* keep ire if next_ire is null */
972 				goto done;
973 			}
974 			ire_refrele(ire);
975 			ire = next_ire;
976 		}
977 	}
978 
979 done:
980 	/* Return generation before dropping lock */
981 	if (generationp != NULL)
982 		*generationp = ire->ire_generation;
983 
984 	rw_exit(&ipst->ips_ip6_ire_head_lock);
985 
986 	/*
987 	 * For shared-IP zones we need additional checks to what was
988 	 * done in ire_match_args to make sure IRE_LOCALs are handled.
989 	 *
990 	 * When ip_restrict_interzone_loopback is set, then
991 	 * we ensure that IRE_LOCAL are only used for loopback
992 	 * between zones when the logical "Ethernet" would
993 	 * have looped them back. That is, if in the absense of
994 	 * the IRE_LOCAL we would have sent to packet out the
995 	 * same ill.
996 	 */
997 	if ((ire->ire_type & IRE_LOCAL) && zoneid != ALL_ZONES &&
998 	    ire->ire_zoneid != zoneid && ire->ire_zoneid != ALL_ZONES &&
999 	    ipst->ips_ip_restrict_interzone_loopback) {
1000 		ire = ire_alt_local(ire, zoneid, tsl, ill, generationp);
1001 		ASSERT(ire != NULL);
1002 	}
1003 
1004 	return (ire);
1005 }
1006 
1007 /*
1008  * Look up a single ire. The caller holds either the read or write lock.
1009  */
1010 ire_t *
1011 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask,
1012     const in6_addr_t *gateway, int type, const ill_t *ill,
1013     zoneid_t zoneid, const ts_label_t *tsl, int flags,
1014     ip_stack_t *ipst)
1015 {
1016 	irb_t *irb_ptr;
1017 	ire_t *ire = NULL;
1018 	int i;
1019 
1020 	ASSERT(RW_LOCK_HELD(&ipst->ips_ip6_ire_head_lock));
1021 
1022 	/*
1023 	 * If the mask is known, the lookup
1024 	 * is simple, if the mask is not known
1025 	 * we need to search.
1026 	 */
1027 	if (flags & MATCH_IRE_MASK) {
1028 		uint_t masklen;
1029 
1030 		masklen = ip_mask_to_plen_v6(mask);
1031 		if (ipst->ips_ip_forwarding_table_v6[masklen] == NULL) {
1032 			return (NULL);
1033 		}
1034 		irb_ptr = &(ipst->ips_ip_forwarding_table_v6[masklen][
1035 		    IRE_ADDR_MASK_HASH_V6(*addr, *mask,
1036 		    ipst->ips_ip6_ftable_hash_size)]);
1037 		rw_enter(&irb_ptr->irb_lock, RW_READER);
1038 		for (ire = irb_ptr->irb_ire; ire != NULL;
1039 		    ire = ire->ire_next) {
1040 			if (IRE_IS_CONDEMNED(ire))
1041 				continue;
1042 			if (ire_match_args_v6(ire, addr, mask, gateway, type,
1043 			    ill, zoneid, tsl, flags))
1044 				goto found_ire;
1045 		}
1046 		rw_exit(&irb_ptr->irb_lock);
1047 	} else {
1048 		uint_t masklen;
1049 
1050 		/*
1051 		 * In this case we don't know the mask, we need to
1052 		 * search the table assuming different mask sizes.
1053 		 */
1054 		if (flags & MATCH_IRE_SHORTERMASK) {
1055 			masklen = ip_mask_to_plen_v6(mask);
1056 			if (masklen == 0) {
1057 				/* Nothing shorter than zero */
1058 				return (NULL);
1059 			}
1060 			masklen--;
1061 		} else {
1062 			masklen = IP6_MASK_TABLE_SIZE - 1;
1063 		}
1064 
1065 		for (i = masklen; i >= 0; i--) {
1066 			in6_addr_t tmpmask;
1067 
1068 			if ((ipst->ips_ip_forwarding_table_v6[i]) == NULL)
1069 				continue;
1070 			(void) ip_plen_to_mask_v6(i, &tmpmask);
1071 			irb_ptr = &ipst->ips_ip_forwarding_table_v6[i][
1072 			    IRE_ADDR_MASK_HASH_V6(*addr, tmpmask,
1073 			    ipst->ips_ip6_ftable_hash_size)];
1074 			rw_enter(&irb_ptr->irb_lock, RW_READER);
1075 			for (ire = irb_ptr->irb_ire; ire != NULL;
1076 			    ire = ire->ire_next) {
1077 				if (IRE_IS_CONDEMNED(ire))
1078 					continue;
1079 				if (ire_match_args_v6(ire, addr,
1080 				    &ire->ire_mask_v6, gateway, type, ill,
1081 				    zoneid, tsl, flags))
1082 					goto found_ire;
1083 			}
1084 			rw_exit(&irb_ptr->irb_lock);
1085 		}
1086 	}
1087 	ASSERT(ire == NULL);
1088 	ip1dbg(("ire_ftable_lookup_v6: returning NULL ire"));
1089 	return (NULL);
1090 
1091 found_ire:
1092 	ire_refhold(ire);
1093 	rw_exit(&irb_ptr->irb_lock);
1094 	return (ire);
1095 }
1096 
1097 
1098 /*
1099  * This function is called by
1100  * ip_input/ire_route_recursive when doing a route lookup on only the
1101  * destination address.
1102  *
1103  * The optimizations of this function over ire_ftable_lookup are:
1104  *	o removing unnecessary flag matching
1105  *	o doing longest prefix match instead of overloading it further
1106  *	  with the unnecessary "best_prefix_match"
1107  *
1108  * If no route is found we return IRE_NOROUTE.
1109  */
1110 ire_t *
1111 ire_ftable_lookup_simple_v6(const in6_addr_t *addr, uint32_t xmit_hint,
1112     ip_stack_t *ipst, uint_t *generationp)
1113 {
1114 	ire_t	*ire;
1115 
1116 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, 0, NULL, ALL_ZONES, NULL,
1117 	    MATCH_IRE_DSTONLY, xmit_hint, ipst, generationp);
1118 	if (ire == NULL) {
1119 		ire = ire_reject(ipst, B_TRUE);
1120 		if (generationp != NULL)
1121 			*generationp = IRE_GENERATION_VERIFY;
1122 	}
1123 	/* ftable_lookup did round robin */
1124 	return (ire);
1125 }
1126 
1127 ire_t *
1128 ip_select_route_v6(const in6_addr_t *dst, const in6_addr_t src,
1129     ip_xmit_attr_t *ixa, uint_t *generationp, in6_addr_t *setsrcp,
1130     int *errorp, boolean_t *multirtp)
1131 {
1132 	ASSERT(!(ixa->ixa_flags & IXAF_IS_IPV4));
1133 
1134 	return (ip_select_route(dst, src, ixa, generationp, setsrcp, errorp,
1135 	    multirtp));
1136 }
1137 
1138 /*
1139  * Recursively look for a route to the destination. Can also match on
1140  * the zoneid, ill, and label. Used for the data paths. See also
1141  * ire_route_recursive_dstonly.
1142  *
1143  * If IRR_ALLOCATE is not set then we will only inspect the existing IREs; never
1144  * create an IRE_IF_CLONE. This is used on the receive side when we are not
1145  * forwarding.
1146  * If IRR_INCOMPLETE is set then we return the IRE even if we can't correctly
1147  * resolve the gateway.
1148  *
1149  * Note that this function never returns NULL. It returns an IRE_NOROUTE
1150  * instead.
1151  *
1152  * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1153  * is an error.
1154  * Allow at most one RTF_INDIRECT.
1155  */
1156 ire_t *
1157 ire_route_recursive_impl_v6(ire_t *ire,
1158     const in6_addr_t *nexthop, uint_t ire_type, const ill_t *ill_arg,
1159     zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1160     uint_t irr_flags, uint32_t xmit_hint, ip_stack_t *ipst,
1161     in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1162 {
1163 	int		i, j;
1164 	in6_addr_t	v6nexthop = *nexthop;
1165 	ire_t		*ires[MAX_IRE_RECURSION];
1166 	uint_t		generation;
1167 	uint_t		generations[MAX_IRE_RECURSION];
1168 	boolean_t	need_refrele = B_FALSE;
1169 	boolean_t	invalidate = B_FALSE;
1170 	int		prefs[MAX_IRE_RECURSION];
1171 	ill_t		*ill = NULL;
1172 
1173 	if (setsrcp != NULL)
1174 		ASSERT(IN6_IS_ADDR_UNSPECIFIED(setsrcp));
1175 	if (gwattrp != NULL)
1176 		ASSERT(*gwattrp == NULL);
1177 
1178 	/*
1179 	 * We iterate up to three times to resolve a route, even though
1180 	 * we have four slots in the array. The extra slot is for an
1181 	 * IRE_IF_CLONE we might need to create.
1182 	 */
1183 	i = 0;
1184 	while (i < MAX_IRE_RECURSION - 1) {
1185 		/* ire_ftable_lookup handles round-robin/ECMP */
1186 		if (ire == NULL) {
1187 			ire = ire_ftable_lookup_v6(&v6nexthop, 0, 0, ire_type,
1188 			    (ill != NULL ? ill : ill_arg), zoneid, tsl,
1189 			    match_args, xmit_hint, ipst, &generation);
1190 		} else {
1191 			/* Caller passed it; extra hold since we will rele */
1192 			ire_refhold(ire);
1193 			if (generationp != NULL)
1194 				generation = *generationp;
1195 			else
1196 				generation = IRE_GENERATION_VERIFY;
1197 		}
1198 
1199 		if (ire == NULL)
1200 			ire = ire_reject(ipst, B_TRUE);
1201 
1202 		/* Need to return the ire with RTF_REJECT|BLACKHOLE */
1203 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
1204 			goto error;
1205 
1206 		ASSERT(!(ire->ire_type & IRE_MULTICAST)); /* Not in ftable */
1207 
1208 		if (i != 0) {
1209 			prefs[i] = ire_pref(ire);
1210 			/*
1211 			 * Don't allow anything unusual past the first
1212 			 * iteration.
1213 			 */
1214 			if ((ire->ire_type &
1215 			    (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) ||
1216 			    prefs[i] <= prefs[i-1]) {
1217 				ire_refrele(ire);
1218 				if (irr_flags & IRR_INCOMPLETE) {
1219 					ire = ires[0];
1220 					ire_refhold(ire);
1221 				} else {
1222 					ire = ire_reject(ipst, B_TRUE);
1223 				}
1224 				goto error;
1225 			}
1226 		}
1227 		/* We have a usable IRE */
1228 		ires[i] = ire;
1229 		generations[i] = generation;
1230 		i++;
1231 
1232 		/* The first RTF_SETSRC address is passed back if setsrcp */
1233 		if ((ire->ire_flags & RTF_SETSRC) &&
1234 		    setsrcp != NULL && IN6_IS_ADDR_UNSPECIFIED(setsrcp)) {
1235 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(
1236 			    &ire->ire_setsrc_addr_v6));
1237 			*setsrcp = ire->ire_setsrc_addr_v6;
1238 		}
1239 
1240 		/* The first ire_gw_secattr is passed back if gwattrp */
1241 		if (ire->ire_gw_secattr != NULL &&
1242 		    gwattrp != NULL && *gwattrp == NULL)
1243 			*gwattrp = ire->ire_gw_secattr;
1244 
1245 		/*
1246 		 * Check if we have a short-cut pointer to an IRE for this
1247 		 * destination, and that the cached dependency isn't stale.
1248 		 * In that case we've rejoined an existing tree towards a
1249 		 * parent, thus we don't need to continue the loop to
1250 		 * discover the rest of the tree.
1251 		 */
1252 		mutex_enter(&ire->ire_lock);
1253 		if (ire->ire_dep_parent != NULL &&
1254 		    ire->ire_dep_parent->ire_generation ==
1255 		    ire->ire_dep_parent_generation) {
1256 			mutex_exit(&ire->ire_lock);
1257 			ire = NULL;
1258 			goto done;
1259 		}
1260 		mutex_exit(&ire->ire_lock);
1261 
1262 		/*
1263 		 * If this type should have an ire_nce_cache (even if it
1264 		 * doesn't yet have one) then we are done. Includes
1265 		 * IRE_INTERFACE with a full 128 bit mask.
1266 		 */
1267 		if (ire->ire_nce_capable) {
1268 			ire = NULL;
1269 			goto done;
1270 		}
1271 		ASSERT(!(ire->ire_type & IRE_IF_CLONE));
1272 		/*
1273 		 * For an IRE_INTERFACE we create an IRE_IF_CLONE for this
1274 		 * particular destination
1275 		 */
1276 		if (ire->ire_type & IRE_INTERFACE) {
1277 			ire_t		*clone;
1278 
1279 			ASSERT(ire->ire_masklen != IPV6_ABITS);
1280 
1281 			/*
1282 			 * In the case of ip_input and ILLF_FORWARDING not
1283 			 * being set, and in the case of RTM_GET, there is
1284 			 * no point in allocating an IRE_IF_CLONE. We return
1285 			 * the IRE_INTERFACE. Note that !IRR_ALLOCATE can
1286 			 * result in a ire_dep_parent which is IRE_IF_*
1287 			 * without an IRE_IF_CLONE.
1288 			 * We recover from that when we need to send packets
1289 			 * by ensuring that the generations become
1290 			 * IRE_GENERATION_VERIFY in this case.
1291 			 */
1292 			if (!(irr_flags & IRR_ALLOCATE)) {
1293 				invalidate = B_TRUE;
1294 				ire = NULL;
1295 				goto done;
1296 			}
1297 
1298 			clone = ire_create_if_clone(ire, &v6nexthop,
1299 			    &generation);
1300 			if (clone == NULL) {
1301 				/*
1302 				 * Temporary failure - no memory.
1303 				 * Don't want caller to cache IRE_NOROUTE.
1304 				 */
1305 				invalidate = B_TRUE;
1306 				ire = ire_blackhole(ipst, B_TRUE);
1307 				goto error;
1308 			}
1309 			/*
1310 			 * Make clone next to last entry and the
1311 			 * IRE_INTERFACE the last in the dependency
1312 			 * chain since the clone depends on the
1313 			 * IRE_INTERFACE.
1314 			 */
1315 			ASSERT(i >= 1);
1316 			ASSERT(i < MAX_IRE_RECURSION);
1317 
1318 			ires[i] = ires[i-1];
1319 			generations[i] = generations[i-1];
1320 			ires[i-1] = clone;
1321 			generations[i-1] = generation;
1322 			i++;
1323 
1324 			ire = NULL;
1325 			goto done;
1326 		}
1327 
1328 		/*
1329 		 * We only match on the type and optionally ILL when
1330 		 * recursing. The type match is used by some callers
1331 		 * to exclude certain types (such as IRE_IF_CLONE or
1332 		 * IRE_LOCAL|IRE_LOOPBACK).
1333 		 *
1334 		 * In the MATCH_IRE_SRC_ILL case, ill_arg may be the 'srcof'
1335 		 * ire->ire_ill, and we want to find the IRE_INTERFACE for
1336 		 * ire_ill, so we set ill to the ire_ill
1337 		 */
1338 		match_args &= MATCH_IRE_TYPE;
1339 		v6nexthop = ire->ire_gateway_addr_v6;
1340 		if (ill == NULL && ire->ire_ill != NULL) {
1341 			ill = ire->ire_ill;
1342 			need_refrele = B_TRUE;
1343 			ill_refhold(ill);
1344 			match_args |= MATCH_IRE_ILL;
1345 		}
1346 		/*
1347 		 * We set the prefs[i] value above if i > 0. We've already
1348 		 * done i++ so i is one in the case of the first time around.
1349 		 */
1350 		if (i == 1)
1351 			prefs[0] = ire_pref(ire);
1352 		ire = NULL;
1353 	}
1354 	ASSERT(ire == NULL);
1355 	ire = ire_reject(ipst, B_TRUE);
1356 
1357 error:
1358 	ASSERT(ire != NULL);
1359 	if (need_refrele)
1360 		ill_refrele(ill);
1361 
1362 	/*
1363 	 * In the case of MULTIRT we want to try a different IRE the next
1364 	 * time. We let the next packet retry in that case.
1365 	 */
1366 	if (i > 0 && (ires[0]->ire_flags & RTF_MULTIRT))
1367 		(void) ire_no_good(ires[0]);
1368 
1369 cleanup:
1370 	/* cleanup ires[i] */
1371 	ire_dep_unbuild(ires, i);
1372 	for (j = 0; j < i; j++)
1373 		ire_refrele(ires[j]);
1374 
1375 	ASSERT((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
1376 	    (irr_flags & IRR_INCOMPLETE));
1377 	/*
1378 	 * Use IRE_GENERATION_VERIFY to ensure that ip_output will redo the
1379 	 * ip_select_route since the reject or lack of memory might be gone.
1380 	 */
1381 	if (generationp != NULL)
1382 		*generationp = IRE_GENERATION_VERIFY;
1383 	return (ire);
1384 
1385 done:
1386 	ASSERT(ire == NULL);
1387 	if (need_refrele)
1388 		ill_refrele(ill);
1389 
1390 	/* Build dependencies */
1391 	if (i > 1 && !ire_dep_build(ires, generations, i)) {
1392 		/* Something in chain was condemned; tear it apart */
1393 		ire = ire_blackhole(ipst, B_TRUE);
1394 		goto cleanup;
1395 	}
1396 
1397 	/*
1398 	 * Release all refholds except the one for ires[0] that we
1399 	 * will return to the caller.
1400 	 */
1401 	for (j = 1; j < i; j++)
1402 		ire_refrele(ires[j]);
1403 
1404 	if (invalidate) {
1405 		/*
1406 		 * Since we needed to allocate but couldn't we need to make
1407 		 * sure that the dependency chain is rebuilt the next time.
1408 		 */
1409 		ire_dep_invalidate_generations(ires[0]);
1410 		generation = IRE_GENERATION_VERIFY;
1411 	} else {
1412 		/*
1413 		 * IREs can have been added or deleted while we did the
1414 		 * recursive lookup and we can't catch those until we've built
1415 		 * the dependencies. We verify the stored
1416 		 * ire_dep_parent_generation to catch any such changes and
1417 		 * return IRE_GENERATION_VERIFY (which will cause
1418 		 * ip_select_route to be called again so we can redo the
1419 		 * recursive lookup next time we send a packet.
1420 		 */
1421 		if (ires[0]->ire_dep_parent == NULL)
1422 			generation = ires[0]->ire_generation;
1423 		else
1424 			generation = ire_dep_validate_generations(ires[0]);
1425 		if (generations[0] != ires[0]->ire_generation) {
1426 			/* Something changed at the top */
1427 			generation = IRE_GENERATION_VERIFY;
1428 		}
1429 	}
1430 	if (generationp != NULL)
1431 		*generationp = generation;
1432 
1433 	return (ires[0]);
1434 }
1435 
1436 ire_t *
1437 ire_route_recursive_v6(const in6_addr_t *nexthop, uint_t ire_type,
1438     const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1439     uint_t irr_flags, uint32_t xmit_hint, ip_stack_t *ipst,
1440     in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1441 {
1442 	return (ire_route_recursive_impl_v6(NULL, nexthop, ire_type, ill,
1443 	    zoneid, tsl, match_args, irr_flags, xmit_hint, ipst, setsrcp,
1444 	    gwattrp, generationp));
1445 }
1446 
1447 /*
1448  * Recursively look for a route to the destination.
1449  * We only handle a destination match here, yet we have the same arguments
1450  * as the full match to allow function pointers to select between the two.
1451  *
1452  * Note that this function never returns NULL. It returns an IRE_NOROUTE
1453  * instead.
1454  *
1455  * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1456  * is an error.
1457  * Allow at most one RTF_INDIRECT.
1458  */
1459 ire_t *
1460 ire_route_recursive_dstonly_v6(const in6_addr_t *nexthop, uint_t irr_flags,
1461     uint32_t xmit_hint, ip_stack_t *ipst)
1462 {
1463 	ire_t	*ire;
1464 	ire_t	*ire1;
1465 	uint_t	generation;
1466 
1467 	/* ire_ftable_lookup handles round-robin/ECMP */
1468 	ire = ire_ftable_lookup_simple_v6(nexthop, xmit_hint, ipst,
1469 	    &generation);
1470 	ASSERT(ire != NULL);
1471 
1472 	/*
1473 	 * If this type should have an ire_nce_cache (even if it
1474 	 * doesn't yet have one) then we are done. Includes
1475 	 * IRE_INTERFACE with a full 128 bit mask.
1476 	 */
1477 	if (ire->ire_nce_capable)
1478 		return (ire);
1479 
1480 	/*
1481 	 * If the IRE has a current cached parent we know that the whole
1482 	 * parent chain is current, hence we don't need to discover and
1483 	 * build any dependencies by doing a recursive lookup.
1484 	 */
1485 	mutex_enter(&ire->ire_lock);
1486 	if (ire->ire_dep_parent != NULL &&
1487 	    ire->ire_dep_parent->ire_generation ==
1488 	    ire->ire_dep_parent_generation) {
1489 		mutex_exit(&ire->ire_lock);
1490 		return (ire);
1491 	}
1492 	mutex_exit(&ire->ire_lock);
1493 
1494 	/*
1495 	 * Fallback to loop in the normal code starting with the ire
1496 	 * we found. Normally this would return the same ire.
1497 	 */
1498 	ire1 = ire_route_recursive_impl_v6(ire, nexthop, 0, NULL, ALL_ZONES,
1499 	    NULL, MATCH_IRE_DSTONLY, irr_flags, xmit_hint, ipst, NULL, NULL,
1500 	    &generation);
1501 	ire_refrele(ire);
1502 	return (ire1);
1503 }
1504