xref: /titanic_41/usr/src/uts/common/inet/ip/ip6_if.c (revision 88f8b78a88cbdc6d8c1af5c3e54bc49d25095c98)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /*
27  * Copyright (c) 1990 Mentat Inc.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * This file contains the interface control functions for IPv6.
34  */
35 
36 #include <sys/types.h>
37 #include <sys/sysmacros.h>
38 #include <sys/stream.h>
39 #include <sys/dlpi.h>
40 #include <sys/stropts.h>
41 #include <sys/strlog.h>
42 #include <sys/ddi.h>
43 #include <sys/cmn_err.h>
44 #include <sys/kstat.h>
45 #include <sys/debug.h>
46 #include <sys/zone.h>
47 
48 #include <sys/systm.h>
49 #include <sys/param.h>
50 #include <sys/socket.h>
51 #define	_SUN_TPI_VERSION	2
52 #include <sys/tihdr.h>
53 #include <sys/isa_defs.h>
54 #include <net/if.h>
55 #include <net/if_types.h>
56 #include <net/if_dl.h>
57 #include <net/route.h>
58 #include <sys/sockio.h>
59 #include <netinet/in.h>
60 #include <netinet/igmp_var.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/in.h>
64 
65 #include <inet/common.h>
66 #include <inet/mi.h>
67 #include <inet/nd.h>
68 #include <inet/mib2.h>
69 #include <inet/arp.h>
70 #include <inet/ip.h>
71 #include <inet/ip6.h>
72 #include <inet/ip_multi.h>
73 #include <inet/ip_ire.h>
74 #include <inet/ip_rts.h>
75 #include <inet/ip_ndp.h>
76 #include <inet/ip_if.h>
77 #include <inet/ip6_asp.h>
78 #include <inet/tun.h>
79 #include <inet/ipclassifier.h>
80 #include <inet/sctp_ip.h>
81 
82 #include <netinet/igmp.h>
83 #include <netinet/ip_mroute.h>
84 
85 static in6_addr_t	ipv6_ll_template =
86 			{(uint32_t)V6_LINKLOCAL, 0x0, 0x0, 0x0};
87 
88 static ipif_t *
89 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst,
90     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error);
91 
92 /*
93  * ipif_lookup_group_v6
94  */
95 ipif_t *
96 ipif_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid)
97 {
98 	ire_t	*ire;
99 	ipif_t	*ipif;
100 
101 	ire = ire_lookup_multi_v6(group, zoneid);
102 	if (ire == NULL)
103 		return (NULL);
104 	ipif = ire->ire_ipif;
105 	ipif_refhold(ipif);
106 	ire_refrele(ire);
107 	return (ipif);
108 }
109 
110 /*
111  * ill_lookup_group_v6
112  */
113 ill_t *
114 ill_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid)
115 {
116 	ire_t	*ire;
117 	ill_t	*ill;
118 
119 	ire = ire_lookup_multi_v6(group, zoneid);
120 	if (ire == NULL)
121 		return (NULL);
122 	ill = ire->ire_ipif->ipif_ill;
123 	ill_refhold(ill);
124 	ire_refrele(ire);
125 	return (ill);
126 }
127 
128 /*
129  * Look for an ipif with the specified interface address and destination.
130  * The destination address is used only for matching point-to-point interfaces.
131  */
132 static ipif_t *
133 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst,
134     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error)
135 {
136 	ipif_t	*ipif;
137 	ill_t	*ill;
138 	ipsq_t	*ipsq;
139 	ill_walk_context_t ctx;
140 
141 	if (error != NULL)
142 		*error = 0;
143 
144 	/*
145 	 * First match all the point-to-point interfaces
146 	 * before looking at non-point-to-point interfaces.
147 	 * This is done to avoid returning non-point-to-point
148 	 * ipif instead of unnumbered point-to-point ipif.
149 	 */
150 	rw_enter(&ill_g_lock, RW_READER);
151 	ill = ILL_START_WALK_V6(&ctx);
152 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
153 		GRAB_CONN_LOCK(q);
154 		mutex_enter(&ill->ill_lock);
155 		for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) {
156 			/* Allow the ipif to be down */
157 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
158 			    (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
159 			    if_addr)) &&
160 			    (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
161 			    dst))) {
162 				if (IPIF_CAN_LOOKUP(ipif)) {
163 					ipif_refhold_locked(ipif);
164 					mutex_exit(&ill->ill_lock);
165 					RELEASE_CONN_LOCK(q);
166 					rw_exit(&ill_g_lock);
167 					return (ipif);
168 				} else if (IPIF_CAN_WAIT(ipif, q)) {
169 					ipsq = ill->ill_phyint->phyint_ipsq;
170 					mutex_enter(&ipsq->ipsq_lock);
171 					mutex_exit(&ill->ill_lock);
172 					rw_exit(&ill_g_lock);
173 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
174 						ill);
175 					mutex_exit(&ipsq->ipsq_lock);
176 					RELEASE_CONN_LOCK(q);
177 					*error = EINPROGRESS;
178 					return (NULL);
179 				}
180 			}
181 		}
182 		mutex_exit(&ill->ill_lock);
183 		RELEASE_CONN_LOCK(q);
184 	}
185 	rw_exit(&ill_g_lock);
186 	/* lookup the ipif based on interface address */
187 	ipif = ipif_lookup_addr_v6(if_addr, NULL, ALL_ZONES, q, mp, func,
188 	    error);
189 	ASSERT(ipif == NULL || ipif->ipif_isv6);
190 	return (ipif);
191 }
192 
193 /*
194  * Look for an ipif with the specified address. For point-point links
195  * we look for matches on either the destination address and the local
196  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
197  * is set.
198  * Matches on a specific ill if match_ill is set.
199  */
200 /* ARGSUSED */
201 ipif_t *
202 ipif_lookup_addr_v6(const in6_addr_t *addr, ill_t *match_ill, zoneid_t zoneid,
203     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error)
204 {
205 	ipif_t	*ipif;
206 	ill_t	*ill;
207 	boolean_t  ptp = B_FALSE;
208 	ipsq_t	*ipsq;
209 	ill_walk_context_t ctx;
210 
211 	if (error != NULL)
212 		*error = 0;
213 
214 	rw_enter(&ill_g_lock, RW_READER);
215 	/*
216 	 * Repeat twice, first based on local addresses and
217 	 * next time for pointopoint.
218 	 */
219 repeat:
220 	ill = ILL_START_WALK_V6(&ctx);
221 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
222 		if (match_ill != NULL && ill != match_ill) {
223 			continue;
224 		}
225 		GRAB_CONN_LOCK(q);
226 		mutex_enter(&ill->ill_lock);
227 		for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) {
228 			if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid)
229 				continue;
230 			/* Allow the ipif to be down */
231 			if ((!ptp && (IN6_ARE_ADDR_EQUAL(
232 			    &ipif->ipif_v6lcl_addr, addr) &&
233 			    (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
234 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
235 			    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
236 			    addr))) {
237 				if (IPIF_CAN_LOOKUP(ipif)) {
238 					ipif_refhold_locked(ipif);
239 					mutex_exit(&ill->ill_lock);
240 					RELEASE_CONN_LOCK(q);
241 					rw_exit(&ill_g_lock);
242 					return (ipif);
243 				} else if (IPIF_CAN_WAIT(ipif, q)) {
244 					ipsq = ill->ill_phyint->phyint_ipsq;
245 					mutex_enter(&ipsq->ipsq_lock);
246 					mutex_exit(&ill->ill_lock);
247 					rw_exit(&ill_g_lock);
248 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
249 						ill);
250 					mutex_exit(&ipsq->ipsq_lock);
251 					RELEASE_CONN_LOCK(q);
252 					*error = EINPROGRESS;
253 					return (NULL);
254 				}
255 			}
256 		}
257 		mutex_exit(&ill->ill_lock);
258 		RELEASE_CONN_LOCK(q);
259 	}
260 
261 	/* Repeat once more if needed */
262 	if (ptp) {
263 		rw_exit(&ill_g_lock);
264 		if (error != NULL)
265 			*error = ENXIO;
266 		return (NULL);
267 	}
268 	ptp = B_TRUE;
269 	goto repeat;
270 }
271 
272 /*
273  * Perform various checks to verify that an address would make sense as a local
274  * interface address.  This is currently only called when an attempt is made
275  * to set a local address.
276  *
277  * Does not allow a v4-mapped address, an address that equals the subnet
278  * anycast address, ... a multicast address, ...
279  */
280 boolean_t
281 ip_local_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask)
282 {
283 	in6_addr_t subnet;
284 
285 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
286 		return (B_TRUE);	/* Allow all zeros */
287 
288 	/*
289 	 * Don't allow all zeroes or host part, but allow
290 	 * all ones netmask.
291 	 */
292 	V6_MASK_COPY(*addr, *subnet_mask, subnet);
293 	if (IN6_IS_ADDR_V4MAPPED(addr) ||
294 	    (IN6_ARE_ADDR_EQUAL(addr, &subnet) &&
295 	    !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) ||
296 	    (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))) ||
297 	    IN6_IS_ADDR_MULTICAST(addr))
298 		return (B_FALSE);
299 
300 	return (B_TRUE);
301 }
302 
303 /*
304  * Perform various checks to verify that an address would make sense as a
305  * remote/subnet interface address.
306  */
307 boolean_t
308 ip_remote_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask)
309 {
310 	in6_addr_t subnet;
311 
312 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
313 		return (B_TRUE);	/* Allow all zeros */
314 
315 	V6_MASK_COPY(*addr, *subnet_mask, subnet);
316 	if (IN6_IS_ADDR_V4MAPPED(addr) ||
317 	    (IN6_ARE_ADDR_EQUAL(addr, &subnet) &&
318 	    !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) ||
319 	    IN6_IS_ADDR_MULTICAST(addr) ||
320 	    (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))))
321 		return (B_FALSE);
322 
323 	return (B_TRUE);
324 }
325 
326 /*
327  * ip_rt_add_v6 is called to add an IPv6 route to the forwarding table.
328  * ipif_arg is passed in to associate it with the correct interface
329  * (for link-local destinations and gateways).
330  */
331 /* ARGSUSED1 */
332 int
333 ip_rt_add_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask,
334     const in6_addr_t *gw_addr, const in6_addr_t *src_addr, int flags,
335     ipif_t *ipif_arg, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func)
336 {
337 	ire_t	*ire;
338 	ire_t	*gw_ire = NULL;
339 	ipif_t	*ipif;
340 	boolean_t ipif_refheld = B_FALSE;
341 	uint_t	type;
342 	int	match_flags = MATCH_IRE_TYPE;
343 	int	error;
344 
345 	if (ire_arg != NULL)
346 		*ire_arg = NULL;
347 
348 	/*
349 	 * Prevent routes with a zero gateway from being created (since
350 	 * interfaces can currently be plumbed and brought up with no assigned
351 	 * address).
352 	 */
353 	if (IN6_IS_ADDR_UNSPECIFIED(gw_addr))
354 		return (ENETUNREACH);
355 
356 	/*
357 	 * If this is the case of RTF_HOST being set, then we set the netmask
358 	 * to all ones (regardless if one was supplied).
359 	 */
360 	if (flags & RTF_HOST)
361 		mask = &ipv6_all_ones;
362 
363 	/*
364 	 * Get the ipif, if any, corresponding to the gw_addr
365 	 */
366 	ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, q, mp, func,
367 	    &error);
368 	if (ipif != NULL)
369 		ipif_refheld = B_TRUE;
370 	else if (error == EINPROGRESS) {
371 		ip1dbg(("ip_rt_add_v6: null and EINPROGRESS"));
372 		return (error);
373 	}
374 
375 	/*
376 	 * GateD will attempt to create routes with a loopback interface
377 	 * address as the gateway and with RTF_GATEWAY set.  We allow
378 	 * these routes to be added, but create them as interface routes
379 	 * since the gateway is an interface address.
380 	 */
381 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK))
382 		flags &= ~RTF_GATEWAY;
383 
384 	/*
385 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
386 	 * and the gateway address provided is one of the system's interface
387 	 * addresses.  By using the routing socket interface and supplying an
388 	 * RTA_IFP sockaddr with an interface index, an alternate method of
389 	 * specifying an interface route to be created is available which uses
390 	 * the interface index that specifies the outgoing interface rather than
391 	 * the address of an outgoing interface (which may not be able to
392 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
393 	 * flag, routes can be specified which not only specify the next-hop to
394 	 * be used when routing to a certain prefix, but also which outgoing
395 	 * interface should be used.
396 	 *
397 	 * Previously, interfaces would have unique addresses assigned to them
398 	 * and so the address assigned to a particular interface could be used
399 	 * to identify a particular interface.  One exception to this was the
400 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
401 	 *
402 	 * With the advent of IPv6 and its link-local addresses, this
403 	 * restriction was relaxed and interfaces could share addresses between
404 	 * themselves.  In fact, typically all of the link-local interfaces on
405 	 * an IPv6 node or router will have the same link-local address.  In
406 	 * order to differentiate between these interfaces, the use of an
407 	 * interface index is necessary and this index can be carried inside a
408 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
409 	 * of using the interface index, however, is that all of the ipif's that
410 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
411 	 * cannot be used to differentiate between ipif's (or logical
412 	 * interfaces) that belong to the same ill (physical interface).
413 	 *
414 	 * For example, in the following case involving IPv4 interfaces and
415 	 * logical interfaces
416 	 *
417 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
418 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
419 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
420 	 *
421 	 * the ipif's corresponding to each of these interface routes can be
422 	 * uniquely identified by the "gateway" (actually interface address).
423 	 *
424 	 * In this case involving multiple IPv6 default routes to a particular
425 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
426 	 * default route is of interest:
427 	 *
428 	 *	default		fe80::123:4567:89ab:cdef	U	if0
429 	 *	default		fe80::123:4567:89ab:cdef	U	if1
430 	 */
431 
432 	/* RTF_GATEWAY not set */
433 	if (!(flags & RTF_GATEWAY)) {
434 		queue_t	*stq;
435 
436 		/*
437 		 * As the interface index specified with the RTA_IFP sockaddr is
438 		 * the same for all ipif's off of an ill, the matching logic
439 		 * below uses MATCH_IRE_ILL if such an index was specified.
440 		 * This means that routes sharing the same prefix when added
441 		 * using a RTA_IFP sockaddr must have distinct interface
442 		 * indices (namely, they must be on distinct ill's).
443 		 *
444 		 * On the other hand, since the gateway address will usually be
445 		 * different for each ipif on the system, the matching logic
446 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
447 		 * route.  This means that interface routes for the same prefix
448 		 * can be created if they belong to distinct ipif's and if a
449 		 * RTA_IFP sockaddr is not present.
450 		 */
451 		if (ipif_arg != NULL) {
452 			if (ipif_refheld) {
453 				ipif_refrele(ipif);
454 				ipif_refheld = B_FALSE;
455 			}
456 			ipif = ipif_arg;
457 			match_flags |= MATCH_IRE_ILL;
458 		} else {
459 			/*
460 			 * Check the ipif corresponding to the gw_addr
461 			 */
462 			if (ipif == NULL)
463 				return (ENETUNREACH);
464 			match_flags |= MATCH_IRE_IPIF;
465 		}
466 
467 		ASSERT(ipif != NULL);
468 		/*
469 		 * We check for an existing entry at this point.
470 		 */
471 		match_flags |= MATCH_IRE_MASK;
472 		ire = ire_ftable_lookup_v6(dst_addr, mask, 0, IRE_INTERFACE,
473 		    ipif, NULL, ALL_ZONES, 0, match_flags);
474 		if (ire != NULL) {
475 			ire_refrele(ire);
476 			if (ipif_refheld)
477 				ipif_refrele(ipif);
478 			return (EEXIST);
479 		}
480 
481 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
482 		    ? ipif->ipif_rq : ipif->ipif_wq;
483 
484 		/*
485 		 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or
486 		 * IRE_IF_RESOLVER with the modified address and netmask.
487 		 */
488 		ire = ire_create_v6(
489 		    dst_addr,
490 		    mask,
491 		    &ipif->ipif_v6src_addr,
492 		    NULL,
493 		    &ipif->ipif_mtu,
494 		    NULL,
495 		    NULL,
496 		    stq,
497 		    ipif->ipif_net_type,
498 		    ipif->ipif_resolver_mp,
499 		    ipif,
500 		    NULL,
501 		    0,
502 		    0,
503 		    flags,
504 		    &ire_uinfo_null);
505 		if (ire == NULL) {
506 			if (ipif_refheld)
507 				ipif_refrele(ipif);
508 			return (ENOMEM);
509 		}
510 
511 		/*
512 		 * Some software (for example, GateD and Sun Cluster) attempts
513 		 * to create (what amount to) IRE_PREFIX routes with the
514 		 * loopback address as the gateway.  This is primarily done to
515 		 * set up prefixes with the RTF_REJECT flag set (for example,
516 		 * when generating aggregate routes.)
517 		 *
518 		 * If the IRE type (as defined by ipif->ipif_net_type) is
519 		 * IRE_LOOPBACK, then we map the request into a
520 		 * IRE_IF_NORESOLVER.
521 		 *
522 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
523 		 * routine, but rather using ire_create_v6() directly.
524 		 */
525 		if (ipif->ipif_net_type == IRE_LOOPBACK)
526 			ire->ire_type = IRE_IF_NORESOLVER;
527 		error = ire_add(&ire, q, mp, func);
528 		if (error == 0)
529 			goto save_ire;
530 		/*
531 		 * In the result of failure, ire_add() will have already
532 		 * deleted the ire in question, so there is no need to
533 		 * do that here.
534 		 */
535 		if (ipif_refheld)
536 			ipif_refrele(ipif);
537 		return (error);
538 	}
539 	if (ipif_refheld) {
540 		ipif_refrele(ipif);
541 		ipif_refheld = B_FALSE;
542 	}
543 
544 	/*
545 	 * Get an interface IRE for the specified gateway.
546 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
547 	 * gateway, it is currently unreachable and we fail the request
548 	 * accordingly.
549 	 */
550 	ipif = ipif_arg;
551 	if (ipif_arg != NULL)
552 		match_flags |= MATCH_IRE_ILL;
553 	gw_ire = ire_ftable_lookup_v6(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg,
554 	    NULL, ALL_ZONES, 0, match_flags);
555 	if (gw_ire == NULL)
556 		return (ENETUNREACH);
557 
558 	/*
559 	 * We create one of three types of IREs as a result of this request
560 	 * based on the netmask.  A netmask of all ones (which is automatically
561 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
562 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
563 	 * created.  Otherwise, an IRE_PREFIX route is created for the
564 	 * destination prefix.
565 	 */
566 	if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones))
567 		type = IRE_HOST;
568 	else if (IN6_IS_ADDR_UNSPECIFIED(mask))
569 		type = IRE_DEFAULT;
570 	else
571 		type = IRE_PREFIX;
572 
573 	/* check for a duplicate entry */
574 	ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, ipif_arg,
575 	    NULL, ALL_ZONES, 0, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW);
576 	if (ire != NULL) {
577 		ire_refrele(gw_ire);
578 		ire_refrele(ire);
579 		return (EEXIST);
580 	}
581 
582 	/* Create the IRE. */
583 	ire = ire_create_v6(
584 	    dst_addr,				/* dest address */
585 	    mask,				/* mask */
586 	    /* src address assigned by the caller? */
587 	    (((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr)) ?
588 		src_addr : NULL),
589 	    gw_addr,				/* gateway address */
590 	    &gw_ire->ire_max_frag,
591 	    NULL,				/* no Fast Path header */
592 	    NULL,				/* no recv-from queue */
593 	    NULL,				/* no send-to queue */
594 	    (ushort_t)type,			/* IRE type */
595 	    NULL,
596 	    ipif_arg,
597 	    NULL,
598 	    0,
599 	    0,
600 	    flags,
601 	    &gw_ire->ire_uinfo);		/* Inherit ULP info from gw */
602 	if (ire == NULL) {
603 		ire_refrele(gw_ire);
604 		return (ENOMEM);
605 	}
606 
607 	/*
608 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
609 	 * SUN/OS socket stuff does but do we really want to allow ::0 ?
610 	 */
611 
612 	/* Add the new IRE. */
613 	error = ire_add(&ire, q, mp, func);
614 	/*
615 	 * In the result of failure, ire_add() will have already
616 	 * deleted the ire in question, so there is no need to
617 	 * do that here.
618 	 */
619 	if (error != 0) {
620 		ire_refrele(gw_ire);
621 		return (error);
622 	}
623 
624 	if (flags & RTF_MULTIRT) {
625 		/*
626 		 * Invoke the CGTP (multirouting) filtering module
627 		 * to add the dst address in the filtering database.
628 		 * Replicated inbound packets coming from that address
629 		 * will be filtered to discard the duplicates.
630 		 * It is not necessary to call the CGTP filter hook
631 		 * when the dst address is a multicast, because an
632 		 * IP source address cannot be a multicast.
633 		 */
634 		if ((ip_cgtp_filter_ops != NULL) &&
635 		    !IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))) {
636 			int res = ip_cgtp_filter_ops->cfo_add_dest_v6(
637 			    &ire->ire_addr_v6,
638 			    &ire->ire_gateway_addr_v6,
639 			    &ire->ire_src_addr_v6,
640 			    &gw_ire->ire_src_addr_v6);
641 			if (res != 0) {
642 				ire_refrele(gw_ire);
643 				ire_delete(ire);
644 				return (res);
645 			}
646 		}
647 	}
648 
649 save_ire:
650 	if (gw_ire != NULL) {
651 		ire_refrele(gw_ire);
652 	}
653 	if (ipif != NULL) {
654 		mblk_t	*save_mp;
655 
656 		/*
657 		 * Save enough information so that we can recreate the IRE if
658 		 * the interface goes down and then up.  The metrics associated
659 		 * with the route will be saved as well when rts_setmetrics() is
660 		 * called after the IRE has been created.  In the case where
661 		 * memory cannot be allocated, none of this information will be
662 		 * saved.
663 		 */
664 		save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
665 		if (save_mp != NULL) {
666 			ifrt_t	*ifrt;
667 
668 			save_mp->b_wptr += sizeof (ifrt_t);
669 			ifrt = (ifrt_t *)save_mp->b_rptr;
670 			bzero(ifrt, sizeof (ifrt_t));
671 			ifrt->ifrt_type = ire->ire_type;
672 			ifrt->ifrt_v6addr = ire->ire_addr_v6;
673 			mutex_enter(&ire->ire_lock);
674 			ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
675 			ifrt->ifrt_v6src_addr = ire->ire_src_addr_v6;
676 			mutex_exit(&ire->ire_lock);
677 			ifrt->ifrt_v6mask = ire->ire_mask_v6;
678 			ifrt->ifrt_flags = ire->ire_flags;
679 			ifrt->ifrt_max_frag = ire->ire_max_frag;
680 			mutex_enter(&ipif->ipif_saved_ire_lock);
681 			save_mp->b_cont = ipif->ipif_saved_ire_mp;
682 			ipif->ipif_saved_ire_mp = save_mp;
683 			ipif->ipif_saved_ire_cnt++;
684 			mutex_exit(&ipif->ipif_saved_ire_lock);
685 		}
686 	}
687 	if (ire_arg != NULL) {
688 		/*
689 		 * Store the ire that was successfully added into where ire_arg
690 		 * points to so that callers don't have to look it up
691 		 * themselves (but they are responsible for ire_refrele()ing
692 		 * the ire when they are finished with it).
693 		 */
694 		*ire_arg = ire;
695 	} else {
696 		ire_refrele(ire);		/* Held in ire_add */
697 	}
698 	if (ipif_refheld)
699 		ipif_refrele(ipif);
700 	return (0);
701 }
702 
703 /*
704  * ip_rt_delete_v6 is called to delete an IPv6 route.
705  * ipif_arg is passed in to associate it with the correct interface
706  * (for link-local destinations and gateways).
707  */
708 /* ARGSUSED4 */
709 int
710 ip_rt_delete_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask,
711     const in6_addr_t *gw_addr, uint_t rtm_addrs, int flags, ipif_t *ipif_arg,
712     queue_t *q, mblk_t *mp, ipsq_func_t func)
713 {
714 	ire_t	*ire = NULL;
715 	ipif_t	*ipif;
716 	uint_t	type;
717 	uint_t	match_flags = MATCH_IRE_TYPE;
718 	int	err = 0;
719 	boolean_t	ipif_refheld = B_FALSE;
720 
721 	/*
722 	 * If this is the case of RTF_HOST being set, then we set the netmask
723 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
724 	 */
725 	if (flags & RTF_HOST) {
726 		mask = &ipv6_all_ones;
727 		match_flags |= MATCH_IRE_MASK;
728 	} else if (rtm_addrs & RTA_NETMASK) {
729 		match_flags |= MATCH_IRE_MASK;
730 	}
731 
732 	/*
733 	 * Note that RTF_GATEWAY is never set on a delete, therefore
734 	 * we check if the gateway address is one of our interfaces first,
735 	 * and fall back on RTF_GATEWAY routes.
736 	 *
737 	 * This makes it possible to delete an original
738 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
739 	 *
740 	 * As the interface index specified with the RTA_IFP sockaddr is the
741 	 * same for all ipif's off of an ill, the matching logic below uses
742 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
743 	 * sharing the same prefix and interface index as the the route
744 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
745 	 * is specified in the request.
746 	 *
747 	 * On the other hand, since the gateway address will usually be
748 	 * different for each ipif on the system, the matching logic
749 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
750 	 * route.  This means that interface routes for the same prefix can be
751 	 * uniquely identified if they belong to distinct ipif's and if a
752 	 * RTA_IFP sockaddr is not present.
753 	 *
754 	 * For more detail on specifying routes by gateway address and by
755 	 * interface index, see the comments in ip_rt_add_v6().
756 	 */
757 	ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, q, mp, func, &err);
758 	if (ipif != NULL) {
759 		ipif_refheld = B_TRUE;
760 		if (ipif_arg != NULL) {
761 			ipif_refrele(ipif);
762 			ipif_refheld = B_FALSE;
763 			ipif = ipif_arg;
764 			match_flags |= MATCH_IRE_ILL;
765 		} else {
766 			match_flags |= MATCH_IRE_IPIF;
767 		}
768 
769 		if (ipif->ipif_ire_type == IRE_LOOPBACK)
770 			ire = ire_ctable_lookup_v6(dst_addr, 0, IRE_LOOPBACK,
771 			    ipif, ALL_ZONES, match_flags);
772 		if (ire == NULL)
773 			ire = ire_ftable_lookup_v6(dst_addr, mask, 0,
774 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
775 			    match_flags);
776 	} else if (err == EINPROGRESS) {
777 		return (err);
778 	} else {
779 		err = 0;
780 	}
781 	if (ire == NULL) {
782 		/*
783 		 * At this point, the gateway address is not one of our own
784 		 * addresses or a matching interface route was not found.  We
785 		 * set the IRE type to lookup based on whether
786 		 * this is a host route, a default route or just a prefix.
787 		 *
788 		 * If an ipif_arg was passed in, then the lookup is based on an
789 		 * interface index so MATCH_IRE_ILL is added to match_flags.
790 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
791 		 * set as the route being looked up is not a traditional
792 		 * interface route.
793 		 */
794 		match_flags &= ~MATCH_IRE_IPIF;
795 		match_flags |= MATCH_IRE_GW;
796 		if (ipif_arg != NULL)
797 			match_flags |= MATCH_IRE_ILL;
798 		if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones))
799 			type = IRE_HOST;
800 		else if (IN6_IS_ADDR_UNSPECIFIED(mask))
801 			type = IRE_DEFAULT;
802 		else
803 			type = IRE_PREFIX;
804 		ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type,
805 		    ipif_arg, NULL, ALL_ZONES, 0, match_flags);
806 		if (ire == NULL && type == IRE_HOST) {
807 			ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr,
808 			    IRE_HOST_REDIRECT, ipif_arg, NULL, ALL_ZONES, 0,
809 			    match_flags);
810 		}
811 	}
812 
813 	if (ipif_refheld) {
814 		ipif_refrele(ipif);
815 		ipif_refheld = B_FALSE;
816 	}
817 	if (ire == NULL)
818 		return (ESRCH);
819 
820 	if (ire->ire_flags & RTF_MULTIRT) {
821 		/*
822 		 * Invoke the CGTP (multirouting) filtering module
823 		 * to remove the dst address from the filtering database.
824 		 * Packets coming from that address will no longer be
825 		 * filtered to remove duplicates.
826 		 */
827 		if (ip_cgtp_filter_ops != NULL) {
828 			err = ip_cgtp_filter_ops->cfo_del_dest_v6(
829 			    &ire->ire_addr_v6, &ire->ire_gateway_addr_v6);
830 		}
831 	}
832 
833 	ipif = ire->ire_ipif;
834 	if (ipif != NULL) {
835 		mblk_t		**mpp;
836 		mblk_t		*mp;
837 		ifrt_t		*ifrt;
838 		in6_addr_t	gw_addr_v6;
839 
840 		/* Remove from ipif_saved_ire_mp list if it is there */
841 		mutex_enter(&ire->ire_lock);
842 		gw_addr_v6 = ire->ire_gateway_addr_v6;
843 		mutex_exit(&ire->ire_lock);
844 		mutex_enter(&ipif->ipif_saved_ire_lock);
845 		for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
846 		    mpp = &(*mpp)->b_cont) {
847 			/*
848 			 * On a given ipif, the triple of address, gateway and
849 			 * mask is unique for each saved IRE (in the case of
850 			 * ordinary interface routes, the gateway address is
851 			 * all-zeroes).
852 			 */
853 			mp = *mpp;
854 			ifrt = (ifrt_t *)mp->b_rptr;
855 			if (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
856 			    &ire->ire_addr_v6) &&
857 			    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
858 			    &gw_addr_v6) &&
859 			    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
860 			    &ire->ire_mask_v6)) {
861 				*mpp = mp->b_cont;
862 				ipif->ipif_saved_ire_cnt--;
863 				freeb(mp);
864 				break;
865 			}
866 		}
867 		mutex_exit(&ipif->ipif_saved_ire_lock);
868 	}
869 	ire_delete(ire);
870 	ire_refrele(ire);
871 	return (err);
872 }
873 
874 /*
875  * Derive a token from the link layer address.
876  */
877 boolean_t
878 ill_setdefaulttoken(ill_t *ill)
879 {
880 	int 		i;
881 	in6_addr_t	v6addr, v6mask;
882 
883 	/*
884 	 * Though we execute on the ipsq, we need to hold the ill_lock
885 	 * to prevent readers from seeing partially updated values
886 	 * while we do the update.
887 	 */
888 	mutex_enter(&ill->ill_lock);
889 	if (!MEDIA_V6INTFID(ill->ill_media, ill->ill_phys_addr_length,
890 	    ill->ill_phys_addr, &v6addr)) {
891 		mutex_exit(&ill->ill_lock);
892 		return (B_FALSE);
893 	}
894 
895 	(void) ip_plen_to_mask_v6(IPV6_TOKEN_LEN, &v6mask);
896 
897 	for (i = 0; i < 4; i++)
898 		v6mask.s6_addr32[i] = v6mask.s6_addr32[i] ^
899 		    (uint32_t)0xffffffff;
900 
901 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
902 	ill->ill_token_length = IPV6_TOKEN_LEN;
903 	mutex_exit(&ill->ill_lock);
904 	return (B_TRUE);
905 }
906 
907 /*
908  * Create a link-local address from a token.
909  */
910 static void
911 ipif_get_linklocal(in6_addr_t *dest, const in6_addr_t *token)
912 {
913 	int i;
914 
915 	for (i = 0; i < 4; i++) {
916 		dest->s6_addr32[i] =
917 		    token->s6_addr32[i] | ipv6_ll_template.s6_addr32[i];
918 	}
919 }
920 
921 /*
922  * Set a nice default address for either automatic tunnels tsrc/96 or
923  * 6to4 tunnels 2002:<tsrc>::1/64
924  */
925 static void
926 ipif_set_tun_auto_addr(ipif_t *ipif, struct iftun_req *ta)
927 {
928 	sin6_t	sin6;
929 	sin_t	*sin;
930 	ill_t 	*ill = ipif->ipif_ill;
931 	tun_t *tp = (tun_t *)ill->ill_wq->q_next->q_ptr;
932 
933 	if (ta->ifta_saddr.ss_family != AF_INET ||
934 	    (ipif->ipif_flags & IPIF_UP) || !ipif->ipif_isv6 ||
935 	    (ta->ifta_flags & IFTUN_SRC) == 0)
936 		return;
937 
938 	/*
939 	 * Check the tunnel type by examining q_next->q_ptr
940 	 */
941 	if (tp->tun_flags & TUN_AUTOMATIC) {
942 		/* this is an automatic tunnel */
943 		(void) ip_plen_to_mask_v6(IPV6_ABITS - IP_ABITS,
944 		    &ipif->ipif_v6net_mask);
945 		bzero(&sin6, sizeof (sin6_t));
946 		sin = (sin_t *)&ta->ifta_saddr;
947 		V4_PART_OF_V6(sin6.sin6_addr) = sin->sin_addr.s_addr;
948 		sin6.sin6_family = AF_INET6;
949 		(void) ip_sioctl_addr(ipif, (sin_t *)&sin6,
950 		    NULL, NULL, NULL, NULL);
951 	} else if (tp->tun_flags & TUN_6TO4) {
952 		/* this is a 6to4 tunnel */
953 		(void) ip_plen_to_mask_v6(IPV6_PREFIX_LEN,
954 		    &ipif->ipif_v6net_mask);
955 		sin = (sin_t *)&ta->ifta_saddr;
956 		/* create a 6to4 address from the IPv4 tsrc */
957 		IN6_V4ADDR_TO_6TO4(&sin->sin_addr, &sin6.sin6_addr);
958 		sin6.sin6_family = AF_INET6;
959 		(void) ip_sioctl_addr(ipif, (sin_t *)&sin6,
960 		    NULL, NULL, NULL, NULL);
961 	} else {
962 		ip1dbg(("ipif_set_tun_auto_addr: Unknown tunnel type"));
963 		return;
964 	}
965 }
966 
967 /*
968  * Set link local for ipif_id 0 of a configured tunnel based on the
969  * tsrc or tdst parameter
970  * For tunnels over IPv4 use the IPv4 address prepended with 32 zeros as
971  * the token.
972  * For tunnels over IPv6 use the low-order 64 bits of the "inner" IPv6 address
973  * as the token for the "outer" link.
974  */
975 void
976 ipif_set_tun_llink(ill_t *ill, struct iftun_req *ta)
977 {
978 	ipif_t		*ipif;
979 	sin_t		*sin;
980 	in6_addr_t	*s6addr;
981 
982 	ASSERT(IAM_WRITER_ILL(ill));
983 
984 	/* The first ipif must be id zero. */
985 	ipif = ill->ill_ipif;
986 	ASSERT(ipif->ipif_id == 0);
987 
988 	/* no link local for automatic tunnels */
989 	if (!(ipif->ipif_flags & IPIF_POINTOPOINT)) {
990 		ipif_set_tun_auto_addr(ipif, ta);
991 		return;
992 	}
993 
994 	if ((ta->ifta_flags & IFTUN_DST) &&
995 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)) {
996 		sin6_t	sin6;
997 
998 		ASSERT(!(ipif->ipif_flags & IPIF_UP));
999 		bzero(&sin6, sizeof (sin6_t));
1000 		if ((ta->ifta_saddr.ss_family == AF_INET)) {
1001 			sin = (sin_t *)&ta->ifta_daddr;
1002 			V4_PART_OF_V6(sin6.sin6_addr) =
1003 			    sin->sin_addr.s_addr;
1004 		} else {
1005 			s6addr =
1006 			    &((sin6_t *)&ta->ifta_daddr)->sin6_addr;
1007 			sin6.sin6_addr.s6_addr32[3] = s6addr->s6_addr32[3];
1008 			sin6.sin6_addr.s6_addr32[2] = s6addr->s6_addr32[2];
1009 		}
1010 		ipif_get_linklocal(&ipif->ipif_v6pp_dst_addr,
1011 		    &sin6.sin6_addr);
1012 		ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
1013 	}
1014 	if ((ta->ifta_flags & IFTUN_SRC)) {
1015 		ASSERT(!(ipif->ipif_flags & IPIF_UP));
1016 
1017 		/* Set the token if it isn't already set */
1018 		if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) {
1019 			if ((ta->ifta_saddr.ss_family == AF_INET)) {
1020 				sin = (sin_t *)&ta->ifta_saddr;
1021 				V4_PART_OF_V6(ill->ill_token) =
1022 				    sin->sin_addr.s_addr;
1023 			} else {
1024 				s6addr =
1025 				    &((sin6_t *)&ta->ifta_saddr)->sin6_addr;
1026 				ill->ill_token.s6_addr32[3] =
1027 				    s6addr->s6_addr32[3];
1028 				ill->ill_token.s6_addr32[2] =
1029 				    s6addr->s6_addr32[2];
1030 			}
1031 			ill->ill_token_length = IPV6_TOKEN_LEN;
1032 		}
1033 		/*
1034 		 * Attempt to set the link local address if it isn't set.
1035 		 */
1036 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
1037 			(void) ipif_setlinklocal(ipif);
1038 	}
1039 }
1040 
1041 /*
1042  * Is it not possible to set the link local address?
1043  * The address can be set if the token is set, and the token
1044  * isn't too long.
1045  * Return B_TRUE if the address can't be set, or B_FALSE if it can.
1046  */
1047 boolean_t
1048 ipif_cant_setlinklocal(ipif_t *ipif)
1049 {
1050 	ill_t *ill = ipif->ipif_ill;
1051 
1052 	if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token) ||
1053 	    ill->ill_token_length > IPV6_ABITS - IPV6_LL_PREFIXLEN)
1054 		return (B_TRUE);
1055 
1056 	return (B_FALSE);
1057 }
1058 
1059 /*
1060  * Generate a link-local address from the token.
1061  * Return zero if the address was set, or non-zero if it couldn't be set.
1062  */
1063 int
1064 ipif_setlinklocal(ipif_t *ipif)
1065 {
1066 	ill_t *ill = ipif->ipif_ill;
1067 
1068 	ASSERT(IAM_WRITER_ILL(ill));
1069 
1070 	if (ipif_cant_setlinklocal(ipif))
1071 		return (-1);
1072 
1073 	ipif_get_linklocal(&ipif->ipif_v6lcl_addr, &ill->ill_token);
1074 	(void) ip_plen_to_mask_v6(IPV6_LL_PREFIXLEN, &ipif->ipif_v6net_mask);
1075 	V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
1076 	    ipif->ipif_v6subnet);
1077 
1078 	if (ipif->ipif_flags & IPIF_NOLOCAL) {
1079 		ipif->ipif_v6src_addr = ipv6_all_zeros;
1080 	} else {
1081 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
1082 	}
1083 	return (0);
1084 }
1085 
1086 /*
1087  * This function sets up the multicast mappings in NDP.
1088  * Unlike ARP, there are no mapping_mps here. We delete the
1089  * mapping nces and add a new one.
1090  *
1091  * Returns non-zero on error and 0 on success.
1092  */
1093 int
1094 ipif_ndp_setup_multicast(ipif_t *ipif, nce_t **ret_nce)
1095 {
1096 	ill_t		*ill = ipif->ipif_ill;
1097 	in6_addr_t	v6_mcast_addr = {(uint32_t)V6_MCAST, 0, 0, 0};
1098 	in6_addr_t	v6_mcast_mask = {(uint32_t)V6_MCAST, 0, 0, 0};
1099 	in6_addr_t	v6_extract_mask;
1100 	uchar_t		*phys_addr, *bphys_addr, *alloc_phys;
1101 	nce_t		*mnce = NULL;
1102 	int		err = 0;
1103 	phyint_t	*phyi = ill->ill_phyint;
1104 	uint32_t	hw_extract_start;
1105 	dl_unitdata_req_t *dlur;
1106 
1107 	if (ret_nce != NULL)
1108 		*ret_nce = NULL;
1109 	/*
1110 	 * Delete the mapping nce. Normally these should not exist
1111 	 * as a previous ipif_down -> ipif_ndp_down should have deleted
1112 	 * all the nces. But they can exist if ip_rput_dlpi_writer
1113 	 * calls this when PHYI_MULTI_BCAST is set.
1114 	 */
1115 	mnce = ndp_lookup(ill, &v6_mcast_addr, B_FALSE);
1116 	if (mnce != NULL) {
1117 		ndp_delete(mnce);
1118 		NCE_REFRELE(mnce);
1119 		mnce = NULL;
1120 	}
1121 
1122 	/*
1123 	 * Get media specific v6 mapping information. Note that
1124 	 * nd_lla_len can be 0 for tunnels.
1125 	 */
1126 	alloc_phys = kmem_alloc(ill->ill_nd_lla_len, KM_NOSLEEP);
1127 	if ((alloc_phys == NULL) && (ill->ill_nd_lla_len != 0))
1128 		return (ENOMEM);
1129 	/*
1130 	 * Determine the broadcast address.
1131 	 */
1132 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
1133 	if (ill->ill_sap_length < 0)
1134 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
1135 	else
1136 		bphys_addr = (uchar_t *)dlur +
1137 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
1138 
1139 	/*
1140 	 * Check PHYI_MULTI_BCAST and possible length of physical
1141 	 * address to determine if we use the mapping or the
1142 	 * broadcast address.
1143 	 */
1144 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
1145 	    (!MEDIA_V6MINFO(ill->ill_media, ill->ill_nd_lla_len,
1146 	    bphys_addr, alloc_phys, &hw_extract_start,
1147 	    &v6_extract_mask))) {
1148 		if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) {
1149 			kmem_free(alloc_phys, ill->ill_nd_lla_len);
1150 			return (E2BIG);
1151 		}
1152 		/* Use the link-layer broadcast address for MULTI_BCAST */
1153 		phys_addr = bphys_addr;
1154 		bzero(&v6_extract_mask, sizeof (v6_extract_mask));
1155 		hw_extract_start = ill->ill_nd_lla_len;
1156 	} else {
1157 		phys_addr = alloc_phys;
1158 	}
1159 	if ((ipif->ipif_flags & IPIF_BROADCAST) ||
1160 	    (ill->ill_flags & ILLF_MULTICAST) ||
1161 	    (phyi->phyint_flags & PHYI_MULTI_BCAST)) {
1162 		mutex_enter(&ndp_g_lock);
1163 		err = ndp_add(ill,
1164 		    phys_addr,
1165 		    &v6_mcast_addr,	/* v6 address */
1166 		    &v6_mcast_mask,	/* v6 mask */
1167 		    &v6_extract_mask,
1168 		    hw_extract_start,
1169 		    NCE_F_MAPPING | NCE_F_PERMANENT | NCE_F_NONUD,
1170 		    ND_REACHABLE,
1171 		    &mnce);
1172 		mutex_exit(&ndp_g_lock);
1173 		if (err == 0) {
1174 			if (ret_nce != NULL) {
1175 				*ret_nce = mnce;
1176 			} else {
1177 				NCE_REFRELE(mnce);
1178 			}
1179 		}
1180 	}
1181 	kmem_free(alloc_phys, ill->ill_nd_lla_len);
1182 	return (err);
1183 }
1184 
1185 /*
1186  * Get the resolver set up for a new interface address.  (Always called
1187  * as writer.)
1188  */
1189 int
1190 ipif_ndp_up(ipif_t *ipif, const in6_addr_t *addr, boolean_t macaddr_change)
1191 {
1192 	ill_t		*ill = ipif->ipif_ill;
1193 	int		err = 0;
1194 	nce_t		*nce = NULL;
1195 	nce_t		*mnce = NULL;
1196 
1197 	ip1dbg(("ipif_ndp_up(%s:%u)\n",
1198 		ipif->ipif_ill->ill_name, ipif->ipif_id));
1199 
1200 	/*
1201 	 * ND not supported on XRESOLV interfaces. If ND support (multicast)
1202 	 * added later, take out this check.
1203 	 */
1204 	if (ill->ill_flags & ILLF_XRESOLV)
1205 		return (0);
1206 
1207 	if (IN6_IS_ADDR_UNSPECIFIED(addr) ||
1208 	    (!(ill->ill_net_type & IRE_INTERFACE)))
1209 		return (0);
1210 
1211 	/*
1212 	 * Need to setup multicast mapping only when the first
1213 	 * interface is coming UP.
1214 	 */
1215 	if (ill->ill_ipif_up_count == 0 &&
1216 	    (ill->ill_flags & ILLF_MULTICAST)) {
1217 		/*
1218 		 * We set the multicast before setting up the mapping for
1219 		 * local address because ipif_ndp_setup_multicast does
1220 		 * ndp_walk to delete nces which will delete the mapping
1221 		 * for local address also if we added the mapping for
1222 		 * local address first.
1223 		 */
1224 		err = ipif_ndp_setup_multicast(ipif, &mnce);
1225 		if (err != 0)
1226 			return (err);
1227 	}
1228 
1229 	if ((ipif->ipif_flags & (IPIF_UNNUMBERED|IPIF_NOLOCAL)) == 0) {
1230 		uint16_t	flags;
1231 		uchar_t	*hw_addr = NULL;
1232 
1233 		/* Permanent entries don't need NUD */
1234 		flags = NCE_F_PERMANENT;
1235 		flags |= NCE_F_NONUD;
1236 		if (ill->ill_flags & ILLF_ROUTER)
1237 			flags |= NCE_F_ISROUTER;
1238 
1239 		if (ipif->ipif_flags & IPIF_ANYCAST)
1240 			flags |= NCE_F_ANYCAST;
1241 
1242 		if (ill->ill_net_type == IRE_IF_RESOLVER) {
1243 			hw_addr = ill->ill_nd_lla;
1244 
1245 			if (ill->ill_move_in_progress || macaddr_change) {
1246 				/*
1247 				 * Addresses are failing over to this ill.
1248 				 * Don't wait for NUD to see this change.
1249 				 * Publish our new link-layer address.
1250 				 */
1251 				flags |= NCE_F_UNSOL_ADV;
1252 			}
1253 		}
1254 		err = ndp_lookup_then_add(ill,
1255 		    hw_addr,
1256 		    addr,
1257 		    &ipv6_all_ones,
1258 		    &ipv6_all_zeros,
1259 		    0,
1260 		    flags,
1261 		    ND_REACHABLE,
1262 		    &nce);
1263 		switch (err) {
1264 		case 0:
1265 			ip1dbg(("ipif_ndp_up: NCE created for %s\n",
1266 			    ill->ill_name));
1267 			break;
1268 		case EEXIST:
1269 			NCE_REFRELE(nce);
1270 			ip1dbg(("ipif_ndp_up: NCE already exists for %s\n",
1271 			    ill->ill_name));
1272 			if (mnce != NULL) {
1273 				ndp_delete(mnce);
1274 				NCE_REFRELE(mnce);
1275 			}
1276 			return (err);
1277 		default:
1278 			ip1dbg(("ipif_ndp_up: NCE creation failed %s\n",
1279 			    ill->ill_name));
1280 			if (mnce != NULL) {
1281 				ndp_delete(mnce);
1282 				NCE_REFRELE(mnce);
1283 			}
1284 			return (err);
1285 		}
1286 	}
1287 	if (nce != NULL)
1288 		NCE_REFRELE(nce);
1289 	if (mnce != NULL)
1290 		NCE_REFRELE(mnce);
1291 	return (0);
1292 }
1293 
1294 /* Remove all cache entries for this logical interface */
1295 void
1296 ipif_ndp_down(ipif_t *ipif)
1297 {
1298 	nce_t	*nce;
1299 
1300 	nce = ndp_lookup(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE);
1301 	if (nce != NULL) {
1302 		ndp_delete(nce);
1303 		NCE_REFRELE(nce);
1304 	}
1305 	/*
1306 	 * Remove mapping and all other nces dependent on this ill
1307 	 * when the last ipif is going away.
1308 	 */
1309 	if (ipif->ipif_ill->ill_ipif_up_count == 0) {
1310 		ndp_walk(ipif->ipif_ill, (pfi_t)ndp_delete_per_ill,
1311 		    (uchar_t *)ipif->ipif_ill);
1312 	}
1313 }
1314 
1315 /*
1316  * Used when an interface comes up to recreate any extra routes on this
1317  * interface.
1318  */
1319 static ire_t **
1320 ipif_recover_ire_v6(ipif_t *ipif)
1321 {
1322 	mblk_t	*mp;
1323 	ire_t   **ipif_saved_irep;
1324 	ire_t   **irep;
1325 
1326 	ip1dbg(("ipif_recover_ire_v6(%s:%u)", ipif->ipif_ill->ill_name,
1327 	    ipif->ipif_id));
1328 
1329 	ASSERT(ipif->ipif_isv6);
1330 
1331 	mutex_enter(&ipif->ipif_saved_ire_lock);
1332 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
1333 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
1334 	if (ipif_saved_irep == NULL) {
1335 		mutex_exit(&ipif->ipif_saved_ire_lock);
1336 		return (NULL);
1337 	}
1338 
1339 	irep = ipif_saved_irep;
1340 
1341 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
1342 		ire_t		*ire;
1343 		queue_t		*rfq;
1344 		queue_t		*stq;
1345 		ifrt_t		*ifrt;
1346 		in6_addr_t	*src_addr;
1347 		in6_addr_t	*gateway_addr;
1348 		mblk_t		*resolver_mp;
1349 		char		buf[INET6_ADDRSTRLEN];
1350 		ushort_t	type;
1351 
1352 		/*
1353 		 * When the ire was initially created and then added in
1354 		 * ip_rt_add_v6(), it was created either using
1355 		 * ipif->ipif_net_type in the case of a traditional interface
1356 		 * route, or as one of the IRE_OFFSUBNET types (with the
1357 		 * exception of IRE_HOST_REDIRECT which is created by
1358 		 * icmp_redirect_v6() and which we don't need to save or
1359 		 * recover).  In the case where ipif->ipif_net_type was
1360 		 * IRE_LOOPBACK, ip_rt_add_v6() will update the ire_type to
1361 		 * IRE_IF_NORESOLVER before calling ire_add_v6() to satisfy
1362 		 * software like GateD and Sun Cluster which creates routes
1363 		 * using the the loopback interface's address as a gateway.
1364 		 *
1365 		 * As ifrt->ifrt_type reflects the already updated ire_type and
1366 		 * since ire_create_v6() expects that IRE_IF_NORESOLVER will
1367 		 * have a valid ire_dlureq_mp field (which doesn't make sense
1368 		 * for a IRE_LOOPBACK), ire_create_v6() will be called in the
1369 		 * same way here as in ip_rt_add_v6(), namely using
1370 		 * ipif->ipif_net_type when the route looks like a traditional
1371 		 * interface route (where ifrt->ifrt_type & IRE_INTERFACE is
1372 		 * true) and otherwise using the saved ifrt->ifrt_type.  This
1373 		 * means that in the case where ipif->ipif_net_type is
1374 		 * IRE_LOOPBACK, the ire created by ire_create_v6() will be an
1375 		 * IRE_LOOPBACK, it will then be turned into an
1376 		 * IRE_IF_NORESOLVER and then added by ire_add_v6().
1377 		 */
1378 		ifrt = (ifrt_t *)mp->b_rptr;
1379 		if (ifrt->ifrt_type & IRE_INTERFACE) {
1380 			rfq = NULL;
1381 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
1382 			    ? ipif->ipif_rq : ipif->ipif_wq;
1383 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
1384 			    ? &ifrt->ifrt_v6src_addr
1385 			    : &ipif->ipif_v6src_addr;
1386 			gateway_addr = NULL;
1387 			resolver_mp = ipif->ipif_resolver_mp;
1388 			type = ipif->ipif_net_type;
1389 		} else {
1390 			rfq = NULL;
1391 			stq = NULL;
1392 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
1393 			    ? &ifrt->ifrt_v6src_addr : NULL;
1394 			gateway_addr = &ifrt->ifrt_v6gateway_addr;
1395 			resolver_mp = NULL;
1396 			type = ifrt->ifrt_type;
1397 		}
1398 
1399 		/*
1400 		 * Create a copy of the IRE with the saved address and netmask.
1401 		 */
1402 		ip1dbg(("ipif_recover_ire_v6: creating IRE %s (%d) for %s/%d\n",
1403 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
1404 		    inet_ntop(AF_INET6, &ifrt->ifrt_v6addr, buf, sizeof (buf)),
1405 		    ip_mask_to_plen_v6(&ifrt->ifrt_v6mask)));
1406 		ire = ire_create_v6(
1407 		    &ifrt->ifrt_v6addr,
1408 		    &ifrt->ifrt_v6mask,
1409 		    src_addr,
1410 		    gateway_addr,
1411 		    &ifrt->ifrt_max_frag,
1412 		    NULL,
1413 		    rfq,
1414 		    stq,
1415 		    type,
1416 		    resolver_mp,
1417 		    ipif,
1418 		    NULL,
1419 		    0,
1420 		    0,
1421 		    ifrt->ifrt_flags,
1422 		    &ifrt->ifrt_iulp_info);
1423 		if (ire == NULL) {
1424 			mutex_exit(&ipif->ipif_saved_ire_lock);
1425 			kmem_free(ipif_saved_irep,
1426 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
1427 			return (NULL);
1428 		}
1429 
1430 		/*
1431 		 * Some software (for example, GateD and Sun Cluster) attempts
1432 		 * to create (what amount to) IRE_PREFIX routes with the
1433 		 * loopback address as the gateway.  This is primarily done to
1434 		 * set up prefixes with the RTF_REJECT flag set (for example,
1435 		 * when generating aggregate routes.)
1436 		 *
1437 		 * If the IRE type (as defined by ipif->ipif_net_type) is
1438 		 * IRE_LOOPBACK, then we map the request into a
1439 		 * IRE_IF_NORESOLVER.
1440 		 */
1441 		if (ipif->ipif_net_type == IRE_LOOPBACK)
1442 			ire->ire_type = IRE_IF_NORESOLVER;
1443 		/*
1444 		 * ire held by ire_add, will be refreled' in ipif_up_done
1445 		 * towards the end
1446 		 */
1447 		(void) ire_add(&ire, NULL, NULL, NULL);
1448 		*irep = ire;
1449 		irep++;
1450 		ip1dbg(("ipif_recover_ire_v6: added ire %p\n", (void *)ire));
1451 	}
1452 	mutex_exit(&ipif->ipif_saved_ire_lock);
1453 	return (ipif_saved_irep);
1454 }
1455 
1456 /*
1457  * Return the scope of the given IPv6 address.  If the address is an
1458  * IPv4 mapped IPv6 address, return the scope of the corresponding
1459  * IPv4 address.
1460  */
1461 in6addr_scope_t
1462 ip_addr_scope_v6(const in6_addr_t *addr)
1463 {
1464 	static in6_addr_t ipv6loopback = IN6ADDR_LOOPBACK_INIT;
1465 
1466 	if (IN6_IS_ADDR_V4MAPPED(addr)) {
1467 		in_addr_t v4addr_h = ntohl(V4_PART_OF_V6((*addr)));
1468 		if ((v4addr_h >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
1469 		    (v4addr_h & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET)
1470 			return (IP6_SCOPE_LINKLOCAL);
1471 		if ((v4addr_h & IN_PRIVATE8_MASK) == IN_PRIVATE8_NET ||
1472 		    (v4addr_h & IN_PRIVATE12_MASK) == IN_PRIVATE12_NET ||
1473 		    (v4addr_h & IN_PRIVATE16_MASK) == IN_PRIVATE16_NET)
1474 			return (IP6_SCOPE_SITELOCAL);
1475 		return (IP6_SCOPE_GLOBAL);
1476 	}
1477 
1478 	if (IN6_IS_ADDR_MULTICAST(addr))
1479 		return (IN6_ADDR_MC_SCOPE(addr));
1480 
1481 	/* link-local and loopback addresses are of link-local scope */
1482 	if (IN6_IS_ADDR_LINKLOCAL(addr) ||
1483 	    IN6_ARE_ADDR_EQUAL(addr, &ipv6loopback))
1484 		return (IP6_SCOPE_LINKLOCAL);
1485 	if (IN6_IS_ADDR_SITELOCAL(addr))
1486 		return (IP6_SCOPE_SITELOCAL);
1487 	return (IP6_SCOPE_GLOBAL);
1488 }
1489 
1490 
1491 /*
1492  * Calculates the xor of a1 and a2, and stores the result in res.
1493  */
1494 static void
1495 ip_addr_xor_v6(const in6_addr_t *a1, const in6_addr_t *a2, in6_addr_t *res)
1496 {
1497 	int i;
1498 
1499 	for (i = 0; i < 4; i++)
1500 		res->s6_addr32[i] = a1->s6_addr32[i] ^ a2->s6_addr32[i];
1501 }
1502 
1503 #define	IPIF_VALID_IPV6_SOURCE(ipif) \
1504 	(((ipif)->ipif_flags & IPIF_UP) && \
1505 	!((ipif)->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)))
1506 
1507 /* source address candidate */
1508 typedef struct candidate {
1509 	ipif_t		*cand_ipif;
1510 	/* The properties of this candidate */
1511 	boolean_t	cand_isdst;
1512 	boolean_t	cand_isdst_set;
1513 	in6addr_scope_t	cand_scope;
1514 	boolean_t	cand_scope_set;
1515 	boolean_t	cand_isdeprecated;
1516 	boolean_t	cand_isdeprecated_set;
1517 	boolean_t	cand_ispreferred;
1518 	boolean_t	cand_ispreferred_set;
1519 	boolean_t	cand_matchedinterface;
1520 	boolean_t	cand_matchedinterface_set;
1521 	boolean_t	cand_matchedlabel;
1522 	boolean_t	cand_matchedlabel_set;
1523 	boolean_t	cand_istmp;
1524 	boolean_t	cand_istmp_set;
1525 	in6_addr_t	cand_xor;
1526 	boolean_t	cand_xor_set;
1527 } cand_t;
1528 #define	cand_srcaddr	cand_ipif->ipif_v6lcl_addr
1529 #define	cand_flags	cand_ipif->ipif_flags
1530 #define	cand_ill	cand_ipif->ipif_ill
1531 
1532 /* information about the destination for source address selection */
1533 typedef struct dstinfo {
1534 	const in6_addr_t	*dst_addr;
1535 	ill_t			*dst_ill;
1536 	boolean_t		dst_restrict_ill;
1537 	boolean_t		dst_prefer_src_tmp;
1538 	in6addr_scope_t		dst_scope;
1539 	char			*dst_label;
1540 } dstinfo_t;
1541 
1542 /*
1543  * The following functions are rules used to select a source address in
1544  * ipif_select_source_v6().  Each rule compares a current candidate (cc)
1545  * against the best candidate (bc).  Each rule has three possible outcomes;
1546  * the candidate is preferred over the best candidate (CAND_PREFER), the
1547  * candidate is not preferred over the best candidate (CAND_AVOID), or the
1548  * candidate is of equal value as the best candidate (CAND_TIE).
1549  *
1550  * These rules are part of a greater "Default Address Selection for IPv6"
1551  * sheme, which is standards based work coming out of the IETF ipv6 working
1552  * group.  The IETF document defines both IPv6 source address selection and
1553  * destination address ordering.  The rules defined here implement the IPv6
1554  * source address selection.  Destination address ordering is done by
1555  * libnsl, and uses a similar set of rules to implement the sorting.
1556  */
1557 typedef enum {CAND_AVOID, CAND_TIE, CAND_PREFER} rule_res_t;
1558 typedef	rule_res_t (*rulef_t)(cand_t *, cand_t *, const dstinfo_t *);
1559 
1560 /* Prefer an address if it is equal to the destination address. */
1561 static rule_res_t
1562 rule_isdst(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo)
1563 {
1564 	if (!bc->cand_isdst_set) {
1565 		bc->cand_isdst =
1566 		    IN6_ARE_ADDR_EQUAL(&bc->cand_srcaddr, dstinfo->dst_addr);
1567 		bc->cand_isdst_set = B_TRUE;
1568 	}
1569 
1570 	cc->cand_isdst =
1571 	    IN6_ARE_ADDR_EQUAL(&cc->cand_srcaddr, dstinfo->dst_addr);
1572 	cc->cand_isdst_set = B_TRUE;
1573 
1574 	if (cc->cand_isdst == bc->cand_isdst)
1575 		return (CAND_TIE);
1576 	else if (cc->cand_isdst)
1577 		return (CAND_PREFER);
1578 	else
1579 		return (CAND_AVOID);
1580 }
1581 
1582 /*
1583  * Prefer addresses that are of closest scope to the destination.  Always
1584  * prefer addresses that are of greater scope than the destination over
1585  * those that are of lesser scope than the destination.
1586  */
1587 static rule_res_t
1588 rule_scope(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo)
1589 {
1590 	if (!bc->cand_scope_set) {
1591 		bc->cand_scope = ip_addr_scope_v6(&bc->cand_srcaddr);
1592 		bc->cand_scope_set = B_TRUE;
1593 	}
1594 
1595 	cc->cand_scope = ip_addr_scope_v6(&cc->cand_srcaddr);
1596 	cc->cand_scope_set = B_TRUE;
1597 
1598 	if (cc->cand_scope < bc->cand_scope) {
1599 		if (cc->cand_scope < dstinfo->dst_scope)
1600 			return (CAND_AVOID);
1601 		else
1602 			return (CAND_PREFER);
1603 	} else if (bc->cand_scope < cc->cand_scope) {
1604 		if (bc->cand_scope < dstinfo->dst_scope)
1605 			return (CAND_PREFER);
1606 		else
1607 			return (CAND_AVOID);
1608 	} else {
1609 		return (CAND_TIE);
1610 	}
1611 }
1612 
1613 /*
1614  * Prefer non-deprecated source addresses.
1615  */
1616 /* ARGSUSED2 */
1617 static rule_res_t
1618 rule_deprecated(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo)
1619 {
1620 	if (!bc->cand_isdeprecated_set) {
1621 		bc->cand_isdeprecated =
1622 		    ((bc->cand_flags & IPIF_DEPRECATED) != 0);
1623 		bc->cand_isdeprecated_set = B_TRUE;
1624 	}
1625 
1626 	cc->cand_isdeprecated = ((cc->cand_flags & IPIF_DEPRECATED) != 0);
1627 	cc->cand_isdeprecated_set = B_TRUE;
1628 
1629 	if (bc->cand_isdeprecated == cc->cand_isdeprecated)
1630 		return (CAND_TIE);
1631 	else if (cc->cand_isdeprecated)
1632 		return (CAND_AVOID);
1633 	else
1634 		return (CAND_PREFER);
1635 }
1636 
1637 /*
1638  * Prefer source addresses that have the IPIF_PREFERRED flag set.  This
1639  * rule must be before rule_interface because the flag could be set on any
1640  * interface, not just the interface being used for outgoing packets (for
1641  * example, the IFF_PREFERRED could be set on an address assigned to the
1642  * loopback interface).
1643  */
1644 /* ARGSUSED2 */
1645 static rule_res_t
1646 rule_preferred(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo)
1647 {
1648 	if (!bc->cand_ispreferred_set) {
1649 		bc->cand_ispreferred = ((bc->cand_flags & IPIF_PREFERRED) != 0);
1650 		bc->cand_ispreferred_set = B_TRUE;
1651 	}
1652 
1653 	cc->cand_ispreferred = ((cc->cand_flags & IPIF_PREFERRED) != 0);
1654 	cc->cand_ispreferred_set = B_TRUE;
1655 
1656 	if (bc->cand_ispreferred == cc->cand_ispreferred)
1657 		return (CAND_TIE);
1658 	else if (cc->cand_ispreferred)
1659 		return (CAND_PREFER);
1660 	else
1661 		return (CAND_AVOID);
1662 }
1663 
1664 /*
1665  * Prefer source addresses that are assigned to the outgoing interface, or
1666  * to an interface that is in the same IPMP group as the outgoing
1667  * interface.
1668  */
1669 static rule_res_t
1670 rule_interface(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo)
1671 {
1672 	ill_t *dstill = dstinfo->dst_ill;
1673 
1674 	/*
1675 	 * If dstinfo->dst_restrict_ill is set, this rule is unnecessary
1676 	 * since we know all candidates will be on the same link.
1677 	 */
1678 	if (dstinfo->dst_restrict_ill)
1679 		return (CAND_TIE);
1680 
1681 	if (!bc->cand_matchedinterface_set) {
1682 		bc->cand_matchedinterface = (bc->cand_ill == dstill ||
1683 		    (dstill->ill_group != NULL &&
1684 		    dstill->ill_group == bc->cand_ill->ill_group));
1685 		bc->cand_matchedinterface_set = B_TRUE;
1686 	}
1687 
1688 	cc->cand_matchedinterface = (cc->cand_ill == dstill ||
1689 	    (dstill->ill_group != NULL &&
1690 		dstill->ill_group == cc->cand_ill->ill_group));
1691 	cc->cand_matchedinterface_set = B_TRUE;
1692 
1693 	if (bc->cand_matchedinterface == cc->cand_matchedinterface)
1694 		return (CAND_TIE);
1695 	else if (cc->cand_matchedinterface)
1696 		return (CAND_PREFER);
1697 	else
1698 		return (CAND_AVOID);
1699 }
1700 
1701 /*
1702  * Prefer source addresses whose label matches the destination's label.
1703  */
1704 static rule_res_t
1705 rule_label(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo)
1706 {
1707 	char *label;
1708 
1709 	if (!bc->cand_matchedlabel_set) {
1710 		label = ip6_asp_lookup(&bc->cand_srcaddr, NULL);
1711 		bc->cand_matchedlabel =
1712 		    ip6_asp_labelcmp(label, dstinfo->dst_label);
1713 		bc->cand_matchedlabel_set = B_TRUE;
1714 	}
1715 
1716 	label = ip6_asp_lookup(&cc->cand_srcaddr, NULL);
1717 	cc->cand_matchedlabel = ip6_asp_labelcmp(label, dstinfo->dst_label);
1718 	cc->cand_matchedlabel_set = B_TRUE;
1719 
1720 	if (bc->cand_matchedlabel == cc->cand_matchedlabel)
1721 		return (CAND_TIE);
1722 	else if (cc->cand_matchedlabel)
1723 		return (CAND_PREFER);
1724 	else
1725 		return (CAND_AVOID);
1726 }
1727 
1728 /*
1729  * Prefer public addresses over temporary ones.  An application can reverse
1730  * the logic of this rule and prefer temporary addresses by using the
1731  * IPV6_SRC_PREFERENCES socket option.
1732  */
1733 static rule_res_t
1734 rule_temporary(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo)
1735 {
1736 	if (!bc->cand_istmp_set) {
1737 		bc->cand_istmp = ((bc->cand_flags & IPIF_TEMPORARY) != 0);
1738 		bc->cand_istmp_set = B_TRUE;
1739 	}
1740 
1741 	cc->cand_istmp = ((cc->cand_flags & IPIF_TEMPORARY) != 0);
1742 	cc->cand_istmp_set = B_TRUE;
1743 
1744 	if (bc->cand_istmp == cc->cand_istmp)
1745 		return (CAND_TIE);
1746 
1747 	if (dstinfo->dst_prefer_src_tmp && cc->cand_istmp)
1748 		return (CAND_PREFER);
1749 	else if (!dstinfo->dst_prefer_src_tmp && !cc->cand_istmp)
1750 		return (CAND_PREFER);
1751 	else
1752 		return (CAND_AVOID);
1753 }
1754 
1755 /*
1756  * Prefer source addresses with longer matching prefix with the
1757  * destination.  Since this is the last rule, it must not produce a tie.
1758  * We do the longest matching prefix calculation and the tie break in one
1759  * calculation by doing an xor of both addresses with the destination, and
1760  * pick the address with the smallest xor value.  That way, we're both
1761  * picking the address with the longest matching prefix, and breaking the
1762  * tie if they happen to have both have equal mathing prefixes.
1763  */
1764 static rule_res_t
1765 rule_prefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo)
1766 {
1767 	int i;
1768 
1769 	if (!bc->cand_xor_set) {
1770 		ip_addr_xor_v6(&bc->cand_srcaddr,
1771 		    dstinfo->dst_addr, &bc->cand_xor);
1772 		bc->cand_xor_set = B_TRUE;
1773 	}
1774 
1775 	ip_addr_xor_v6(&cc->cand_srcaddr, dstinfo->dst_addr, &cc->cand_xor);
1776 	cc->cand_xor_set = B_TRUE;
1777 
1778 	for (i = 0; i < 4; i++) {
1779 		if (bc->cand_xor.s6_addr32[i] != cc->cand_xor.s6_addr32[i])
1780 			break;
1781 	}
1782 
1783 	if (cc->cand_xor.s6_addr32[i] < bc->cand_xor.s6_addr32[i])
1784 		return (CAND_PREFER);
1785 	else
1786 		return (CAND_AVOID);
1787 }
1788 
1789 /*
1790  * Determine the best source address given a destination address and a
1791  * destination ill.  If no suitable source address is found, it returns
1792  * NULL. If there is a usable address pointed to by the usesrc
1793  * (i.e ill_usesrc_ifindex != 0) then return that first since it is more
1794  * fine grained (i.e per interface)
1795  *
1796  * This implementation is based on the "Default Address Selection for IPv6"
1797  * specification produced by the IETF IPv6 working group.  It has been
1798  * implemented so that the list of addresses is only traversed once (the
1799  * specification's algorithm could traverse the list of addresses once for
1800  * every rule).
1801  *
1802  * The restrict_ill argument restricts the algorithm to chose a source
1803  * address that is assigned to the destination ill or an ill in the same
1804  * IPMP group as the destination ill.  This is used when the destination
1805  * address is a link-local or multicast address, and when
1806  * ipv6_strict_dst_multihoming is turned on.
1807  *
1808  * src_prefs is the caller's set of source address preferences.  If source
1809  * address selection is being called to determine the source address of a
1810  * connected socket (from ip_bind_connected_v6()), then the preferences are
1811  * taken from conn_src_preferences.  These preferences can be set on a
1812  * per-socket basis using the IPV6_SRC_PREFERENCES socket option.  The only
1813  * preference currently implemented is for rfc3041 temporary addresses.
1814  */
1815 ipif_t *
1816 ipif_select_source_v6(ill_t *dstill, const in6_addr_t *dst,
1817     boolean_t restrict_ill, uint32_t src_prefs, zoneid_t zoneid)
1818 {
1819 	dstinfo_t	dstinfo;
1820 	char		dstr[INET6_ADDRSTRLEN];
1821 	char		sstr[INET6_ADDRSTRLEN];
1822 	ipif_t		*ipif;
1823 	ill_t		*ill, *usesrc_ill = NULL;
1824 	ill_walk_context_t	ctx;
1825 	cand_t		best_c;	/* The best candidate */
1826 	cand_t		curr_c;	/* The current candidate */
1827 	uint_t		index;
1828 	boolean_t	first_candidate = B_TRUE;
1829 	rule_res_t	rule_result;
1830 	phyint_t	*phyi;
1831 
1832 	/*
1833 	 * The list of ordering rules.  They are applied in the order they
1834 	 * appear in the list.
1835 	 *
1836 	 * XXX rule_mipv6 will need to be implemented (the specification's
1837 	 * rules 4) if a mobile IPv6 node is ever implemented.
1838 	 */
1839 	rulef_t	rules[] = {
1840 		rule_isdst,
1841 		rule_scope,
1842 		rule_deprecated,
1843 		rule_preferred,
1844 		rule_interface,
1845 		rule_label,
1846 		rule_temporary,
1847 		rule_prefix,
1848 		NULL
1849 	};
1850 
1851 	ASSERT(dstill->ill_isv6);
1852 	ASSERT(!IN6_IS_ADDR_V4MAPPED(dst));
1853 
1854 	/*
1855 	 * Check if there is a usable src address pointed to by the
1856 	 * usesrc ifindex. This has higher precedence since it is
1857 	 * finer grained (i.e per interface) v/s being system wide.
1858 	 */
1859 	if (dstill->ill_usesrc_ifindex != 0) {
1860 		if ((usesrc_ill =
1861 		    ill_lookup_on_ifindex(dstill->ill_usesrc_ifindex, B_TRUE,
1862 		    NULL, NULL, NULL, NULL)) != NULL) {
1863 			dstinfo.dst_ill = usesrc_ill;
1864 		} else {
1865 			return (NULL);
1866 		}
1867 	} else {
1868 		dstinfo.dst_ill = dstill;
1869 	}
1870 
1871 	dstinfo.dst_addr = dst;
1872 	dstinfo.dst_scope = ip_addr_scope_v6(dst);
1873 	dstinfo.dst_label = ip6_asp_lookup(dst, NULL);
1874 	dstinfo.dst_prefer_src_tmp = ((src_prefs & IPV6_PREFER_SRC_TMP) != 0);
1875 
1876 	rw_enter(&ill_g_lock, RW_READER);
1877 	/*
1878 	 * Section three of the I-D states that for multicast and
1879 	 * link-local destinations, the candidate set must be restricted to
1880 	 * an interface that is on the same link as the outgoing interface.
1881 	 * Also, when ipv6_strict_dst_multihoming is turned on, always
1882 	 * restrict the source address to the destination link as doing
1883 	 * otherwise will almost certainly cause problems.
1884 	 */
1885 	if (IN6_IS_ADDR_LINKLOCAL(dst) || IN6_IS_ADDR_MULTICAST(dst) ||
1886 	    ipv6_strict_dst_multihoming || usesrc_ill != NULL)
1887 		dstinfo.dst_restrict_ill = B_TRUE;
1888 	else
1889 		dstinfo.dst_restrict_ill = restrict_ill;
1890 
1891 	bzero(&best_c, sizeof (cand_t));
1892 
1893 	/*
1894 	 * Take a pass through the list of IPv6 interfaces to chose the
1895 	 * best possible source address.  If restrict_ill is true, we only
1896 	 * iterate through the ill's that are in the same IPMP group as the
1897 	 * destination's outgoing ill.  If restrict_ill is false, we walk
1898 	 * the entire list of IPv6 ill's.
1899 	 */
1900 	if (dstinfo.dst_restrict_ill) {
1901 		if (dstinfo.dst_ill->ill_group != NULL) {
1902 			/*
1903 			 * Try to avoid FAILED/OFFLINE ills. Global and
1904 			 * site local addresses will failover and are not
1905 			 * an issue even if we select them. (i.e. this is
1906 			 * a race where we hit this path before in.mpathd
1907 			 * moves them. But link local addresses don't move.
1908 			 * This creates a problem for NUD. If NUD ends up
1909 			 * (nce_xmit) using the src addr from a failed
1910 			 * interface NUD will fail and end up deleting the nce
1911 			 * This will cause performance issues where ires
1912 			 * are frequently created and deleted every few secs.
1913 			 */
1914 			for (ill = dstinfo.dst_ill->ill_group->illgrp_ill;
1915 			    ill != NULL; ill = ill->ill_group_next) {
1916 				phyi = ill->ill_phyint;
1917 				if (!(phyi->phyint_flags &
1918 				    (PHYI_OFFLINE | PHYI_FAILED)))
1919 					break;
1920 			}
1921 			if (ill == NULL)
1922 				ill = dstinfo.dst_ill->ill_group->illgrp_ill;
1923 		} else {
1924 			ill = dstinfo.dst_ill;
1925 		}
1926 	} else {
1927 		ill = ILL_START_WALK_V6(&ctx);
1928 	}
1929 
1930 	while (ill != NULL) {
1931 		ASSERT(ill->ill_isv6);
1932 
1933 		for (ipif = ill->ill_ipif; ipif != NULL;
1934 		    ipif = ipif->ipif_next) {
1935 
1936 			if (!IPIF_VALID_IPV6_SOURCE(ipif))
1937 				continue;
1938 
1939 			if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid)
1940 				continue;
1941 
1942 			if (first_candidate) {
1943 				/*
1944 				 * This is first valid address in the list.
1945 				 * It is automatically the best candidate
1946 				 * so far.
1947 				 */
1948 				best_c.cand_ipif = ipif;
1949 				first_candidate = B_FALSE;
1950 				continue;
1951 			}
1952 
1953 			bzero(&curr_c, sizeof (cand_t));
1954 			curr_c.cand_ipif = ipif;
1955 
1956 			/*
1957 			 * Compare this current candidate (curr_c) with the
1958 			 * best candidate (best_c) by applying the
1959 			 * comparison rules in order until one breaks the
1960 			 * tie.
1961 			 */
1962 			for (index = 0; rules[index] != NULL; index++) {
1963 				/* Apply a comparison rule. */
1964 				rule_result =
1965 				    (rules[index])(&best_c, &curr_c, &dstinfo);
1966 				if (rule_result == CAND_AVOID) {
1967 					/*
1968 					 * The best candidate is still the
1969 					 * best candidate.  Forget about
1970 					 * this current candidate and go on
1971 					 * to the next one.
1972 					 */
1973 					break;
1974 				} else if (rule_result == CAND_PREFER) {
1975 					/*
1976 					 * This candidate is prefered.  It
1977 					 * becomes the best candidate so
1978 					 * far.  Go on to the next address.
1979 					 */
1980 					best_c = curr_c;
1981 					break;
1982 				}
1983 				/* We have a tie, apply the next rule. */
1984 			}
1985 
1986 			/*
1987 			 * The last rule must be a tie breaker rule and
1988 			 * must never produce a tie.  At this point, the
1989 			 * candidate should have either been rejected, or
1990 			 * have been prefered as the best candidate so far.
1991 			 */
1992 			ASSERT(rule_result != CAND_TIE);
1993 		}
1994 
1995 		/*
1996 		 * We may be walking the linked-list of ill's in an
1997 		 * IPMP group or traversing the IPv6 ill avl tree. If it is a
1998 		 * usesrc ILL then it can't be part of IPMP group and we
1999 		 * will exit the while loop.
2000 		 */
2001 		if (dstinfo.dst_restrict_ill)
2002 			ill = ill->ill_group_next;
2003 		else
2004 			ill = ill_next(&ctx, ill);
2005 	}
2006 
2007 	ipif = best_c.cand_ipif;
2008 	ip1dbg(("ipif_select_source_v6(%s, %s) -> %s\n",
2009 	    dstinfo.dst_ill->ill_name,
2010 	    inet_ntop(AF_INET6, dstinfo.dst_addr, dstr, sizeof (dstr)),
2011 	    (ipif == NULL ? "NULL" :
2012 	    inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, sstr, sizeof (sstr)))));
2013 
2014 	if (usesrc_ill != NULL)
2015 		ill_refrele(usesrc_ill);
2016 
2017 	if (ipif == NULL) {
2018 		rw_exit(&ill_g_lock);
2019 		return (NULL);
2020 	}
2021 
2022 	mutex_enter(&ipif->ipif_ill->ill_lock);
2023 	if (IPIF_CAN_LOOKUP(ipif)) {
2024 		ipif_refhold_locked(ipif);
2025 		mutex_exit(&ipif->ipif_ill->ill_lock);
2026 		rw_exit(&ill_g_lock);
2027 		return (ipif);
2028 	}
2029 	mutex_exit(&ipif->ipif_ill->ill_lock);
2030 	rw_exit(&ill_g_lock);
2031 	ip1dbg(("ipif_select_source_v6 cannot lookup ipif %p"
2032 	    " returning null \n", (void *)ipif));
2033 
2034 	return (NULL);
2035 }
2036 
2037 /*
2038  * If old_ipif is not NULL, see if ipif was derived from old
2039  * ipif and if so, recreate the interface route by re-doing
2040  * source address selection. This happens when ipif_down ->
2041  * ipif_update_other_ipifs calls us.
2042  *
2043  * If old_ipif is NULL, just redo the source address selection
2044  * if needed. This happens when illgrp_insert or ipif_up_done_v6
2045  * calls us.
2046  */
2047 void
2048 ipif_recreate_interface_routes_v6(ipif_t *old_ipif, ipif_t *ipif)
2049 {
2050 	ire_t *ire;
2051 	ire_t *ipif_ire;
2052 	queue_t *stq;
2053 	ill_t *ill;
2054 	ipif_t *nipif = NULL;
2055 	boolean_t nipif_refheld = B_FALSE;
2056 	boolean_t ip6_asp_table_held = B_FALSE;
2057 
2058 	ill = ipif->ipif_ill;
2059 
2060 	if (!(ipif->ipif_flags &
2061 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
2062 		/*
2063 		 * Can't possibly have borrowed the source
2064 		 * from old_ipif.
2065 		 */
2066 		return;
2067 	}
2068 
2069 	/*
2070 	 * Is there any work to be done? No work if the address
2071 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
2072 	 * ipif_select_source_v6() does not borrow addresses from
2073 	 * NOLOCAL and ANYCAST interfaces).
2074 	 */
2075 	if ((old_ipif != NULL) &&
2076 	    ((IN6_IS_ADDR_UNSPECIFIED(&old_ipif->ipif_v6lcl_addr)) ||
2077 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
2078 	    (old_ipif->ipif_flags &
2079 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
2080 		return;
2081 	}
2082 
2083 	/*
2084 	 * Perform the same checks as when creating the
2085 	 * IRE_INTERFACE in ipif_up_done_v6.
2086 	 */
2087 	if (!(ipif->ipif_flags & IPIF_UP))
2088 		return;
2089 
2090 	if ((ipif->ipif_flags & IPIF_NOXMIT))
2091 		return;
2092 
2093 	if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) &&
2094 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
2095 		return;
2096 
2097 	/*
2098 	 * We know that ipif uses some other source for its
2099 	 * IRE_INTERFACE. Is it using the source of this
2100 	 * old_ipif?
2101 	 */
2102 	ipif_ire = ipif_to_ire_v6(ipif);
2103 	if (ipif_ire == NULL)
2104 		return;
2105 
2106 	if (old_ipif != NULL &&
2107 	    !IN6_ARE_ADDR_EQUAL(&old_ipif->ipif_v6lcl_addr,
2108 	    &ipif_ire->ire_src_addr_v6)) {
2109 		ire_refrele(ipif_ire);
2110 		return;
2111 	}
2112 
2113 	if (ip_debug > 2) {
2114 		/* ip1dbg */
2115 		pr_addr_dbg("ipif_recreate_interface_routes_v6: deleting IRE"
2116 		    " for src %s\n", AF_INET6, &ipif_ire->ire_src_addr_v6);
2117 	}
2118 
2119 	stq = ipif_ire->ire_stq;
2120 
2121 	/*
2122 	 * Can't use our source address. Select a different source address
2123 	 * for the IRE_INTERFACE.  We restrict interface route source
2124 	 * address selection to ipif's assigned to the same link as the
2125 	 * interface.
2126 	 */
2127 	if (ip6_asp_can_lookup()) {
2128 		ip6_asp_table_held = B_TRUE;
2129 		nipif = ipif_select_source_v6(ill, &ipif->ipif_v6subnet,
2130 		    B_TRUE, IPV6_PREFER_SRC_DEFAULT, ipif->ipif_zoneid);
2131 	}
2132 	if (nipif == NULL) {
2133 		/* Last resort - all ipif's have IPIF_NOLOCAL */
2134 		nipif = ipif;
2135 	} else {
2136 		nipif_refheld = B_TRUE;
2137 	}
2138 
2139 	ire = ire_create_v6(
2140 	    &ipif->ipif_v6subnet,	/* dest pref */
2141 	    &ipif->ipif_v6net_mask,	/* mask */
2142 	    &nipif->ipif_v6src_addr,	/* src addr */
2143 	    NULL,			/* no gateway */
2144 	    &ipif->ipif_mtu,		/* max frag */
2145 	    NULL,			/* no Fast path header */
2146 	    NULL,			/* no recv from queue */
2147 	    stq,			/* send-to queue */
2148 	    ill->ill_net_type,		/* IF_[NO]RESOLVER */
2149 	    ill->ill_resolver_mp,	/* xmit header */
2150 	    ipif,
2151 	    NULL,
2152 	    0,
2153 	    0,
2154 	    0,
2155 	    &ire_uinfo_null);
2156 
2157 	if (ire != NULL) {
2158 		ire_t *ret_ire;
2159 		int   error;
2160 
2161 		/*
2162 		 * We don't need ipif_ire anymore. We need to delete
2163 		 * before we add so that ire_add does not detect
2164 		 * duplicates.
2165 		 */
2166 		ire_delete(ipif_ire);
2167 		ret_ire = ire;
2168 		error = ire_add(&ret_ire, NULL, NULL, NULL);
2169 		ASSERT(error == 0);
2170 		ASSERT(ret_ire == ire);
2171 		if (ret_ire != NULL) {
2172 			/* Held in ire_add */
2173 			ire_refrele(ret_ire);
2174 		}
2175 	}
2176 	/*
2177 	 * Either we are falling through from above or could not
2178 	 * allocate a replacement.
2179 	 */
2180 	ire_refrele(ipif_ire);
2181 	if (ip6_asp_table_held)
2182 		ip6_asp_table_refrele();
2183 	if (nipif_refheld)
2184 		ipif_refrele(nipif);
2185 }
2186 
2187 /*
2188  * This old_ipif is going away.
2189  *
2190  * Determine if any other ipif's are using our address as
2191  * ipif_v6lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
2192  * IPIF_DEPRECATED).
2193  * Find the IRE_INTERFACE for such ipif's and recreate them
2194  * to use an different source address following the rules in
2195  * ipif_up_done_v6.
2196  *
2197  * This function takes an illgrp as an argument so that illgrp_delete
2198  * can call this to update source address even after deleting the
2199  * old_ipif->ipif_ill from the ill group.
2200  */
2201 void
2202 ipif_update_other_ipifs_v6(ipif_t *old_ipif, ill_group_t *illgrp)
2203 {
2204 	ipif_t	*ipif;
2205 	ill_t	*ill;
2206 	char	buf[INET6_ADDRSTRLEN];
2207 
2208 	ASSERT(IAM_WRITER_IPIF(old_ipif));
2209 
2210 	ill = old_ipif->ipif_ill;
2211 
2212 	ip1dbg(("ipif_update_other_ipifs_v6(%s, %s)\n",
2213 	    ill->ill_name,
2214 	    inet_ntop(AF_INET6, &old_ipif->ipif_v6lcl_addr,
2215 	    buf, sizeof (buf))));
2216 
2217 	/*
2218 	 * If this part of a group, look at all ills as ipif_select_source
2219 	 * borrows a source address across all the ills in the group.
2220 	 */
2221 	if (illgrp != NULL)
2222 		ill = illgrp->illgrp_ill;
2223 
2224 	/* Don't need a lock since this is a writer */
2225 	for (; ill != NULL; ill = ill->ill_group_next) {
2226 		for (ipif = ill->ill_ipif; ipif != NULL;
2227 		    ipif = ipif->ipif_next) {
2228 
2229 			if (ipif == old_ipif)
2230 				continue;
2231 
2232 			ipif_recreate_interface_routes_v6(old_ipif, ipif);
2233 		}
2234 	}
2235 }
2236 
2237 /*
2238  * Perform an attach and bind to get phys addr plus info_req for
2239  * the physical device.
2240  * q and mp represents an ioctl which will be queued waiting for
2241  * completion of the DLPI message exchange.
2242  * MUST be called on an ill queue. Can not set conn_pending_ill for that
2243  * reason thus the DL_PHYS_ADDR_ACK code does not assume ill_pending_q.
2244  *
2245  * Returns EINPROGRESS when mp has been consumed by queueing it on
2246  * ill_pending_mp and the ioctl will complete in ip_rput.
2247  */
2248 int
2249 ill_dl_phys(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
2250 {
2251 	mblk_t	*v6token_mp = NULL;
2252 	mblk_t	*v6lla_mp = NULL;
2253 	mblk_t	*phys_mp = NULL;
2254 	mblk_t	*info_mp = NULL;
2255 	mblk_t	*attach_mp = NULL;
2256 	mblk_t	*detach_mp = NULL;
2257 	mblk_t	*bind_mp = NULL;
2258 	mblk_t	*unbind_mp = NULL;
2259 	mblk_t	*notify_mp = NULL;
2260 
2261 	ip1dbg(("ill_dl_phys(%s:%u)\n", ill->ill_name, ipif->ipif_id));
2262 	ASSERT(ill->ill_dlpi_style_set);
2263 	ASSERT(WR(q)->q_next != NULL);
2264 
2265 	if (ill->ill_isv6) {
2266 		v6token_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2267 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2268 		if (v6token_mp == NULL)
2269 			goto bad;
2270 		((dl_phys_addr_req_t *)v6token_mp->b_rptr)->dl_addr_type =
2271 		    DL_IPV6_TOKEN;
2272 
2273 		v6lla_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2274 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2275 		if (v6lla_mp == NULL)
2276 			goto bad;
2277 		((dl_phys_addr_req_t *)v6lla_mp->b_rptr)->dl_addr_type =
2278 		    DL_IPV6_LINK_LAYER_ADDR;
2279 	}
2280 
2281 	/*
2282 	 * Allocate a DL_NOTIFY_REQ and set the notifications we want.
2283 	 */
2284 	notify_mp = ip_dlpi_alloc(sizeof (dl_notify_req_t) + sizeof (long),
2285 	    DL_NOTIFY_REQ);
2286 	if (notify_mp == NULL)
2287 		goto bad;
2288 	((dl_notify_req_t *)notify_mp->b_rptr)->dl_notifications =
2289 	    (DL_NOTE_PHYS_ADDR | DL_NOTE_SDU_SIZE | DL_NOTE_FASTPATH_FLUSH |
2290 	    DL_NOTE_LINK_UP | DL_NOTE_LINK_DOWN | DL_NOTE_CAPAB_RENEG);
2291 
2292 	phys_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2293 	    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2294 	if (phys_mp == NULL)
2295 		goto bad;
2296 	((dl_phys_addr_req_t *)phys_mp->b_rptr)->dl_addr_type =
2297 	    DL_CURR_PHYS_ADDR;
2298 
2299 	info_mp = ip_dlpi_alloc(
2300 	    sizeof (dl_info_req_t) + sizeof (dl_info_ack_t),
2301 	    DL_INFO_REQ);
2302 	if (info_mp == NULL)
2303 		goto bad;
2304 
2305 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
2306 	    DL_BIND_REQ);
2307 	if (bind_mp == NULL)
2308 		goto bad;
2309 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
2310 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
2311 
2312 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
2313 	if (unbind_mp == NULL)
2314 		goto bad;
2315 
2316 	/* If we need to attach/detach, pre-alloc and initialize the mblks */
2317 	if (ill->ill_needs_attach) {
2318 		attach_mp = ip_dlpi_alloc(sizeof (dl_attach_req_t),
2319 		    DL_ATTACH_REQ);
2320 		if (attach_mp == NULL)
2321 			goto bad;
2322 		((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = ill->ill_ppa;
2323 
2324 		detach_mp = ip_dlpi_alloc(sizeof (dl_detach_req_t),
2325 		    DL_DETACH_REQ);
2326 		if (detach_mp == NULL)
2327 			goto bad;
2328 	}
2329 
2330 	/*
2331 	 * Here we are going to delay the ioctl ack until after
2332 	 * ACKs from DL_PHYS_ADDR_REQ. So need to save the
2333 	 * original ioctl message before sending the requests
2334 	 */
2335 	mutex_enter(&ill->ill_lock);
2336 	/* ipsq_pending_mp_add won't fail since we pass in a NULL connp */
2337 	(void) ipsq_pending_mp_add(NULL, ipif, ill->ill_wq, mp, 0);
2338 	/*
2339 	 * Set ill_phys_addr_pend to zero. It will be set to the addr_type of
2340 	 * the DL_PHYS_ADDR_REQ in ill_dlpi_send() and ill_dlpi_done(). It will
2341 	 * be used to track which DL_PHYS_ADDR_REQ is being ACK'd/NAK'd.
2342 	 */
2343 	ill->ill_phys_addr_pend = 0;
2344 	mutex_exit(&ill->ill_lock);
2345 
2346 	if (attach_mp != NULL) {
2347 		ip1dbg(("ill_dl_phys: attach\n"));
2348 		ill_dlpi_send(ill, attach_mp);
2349 	}
2350 	ill_dlpi_send(ill, bind_mp);
2351 	ill_dlpi_send(ill, info_mp);
2352 	if (ill->ill_isv6) {
2353 		ill_dlpi_send(ill, v6token_mp);
2354 		ill_dlpi_send(ill, v6lla_mp);
2355 	}
2356 	ill_dlpi_send(ill, phys_mp);
2357 	ill_dlpi_send(ill, notify_mp);
2358 	ill_dlpi_send(ill, unbind_mp);
2359 
2360 	/*
2361 	 * Save the DL_DETACH_REQ (if there is one) for use in ill_delete().
2362 	 */
2363 	ASSERT(ill->ill_detach_mp == NULL);
2364 	ill->ill_detach_mp = detach_mp;
2365 
2366 	/*
2367 	 * This operation will complete in ip_rput_dlpi_writer with either
2368 	 * a DL_PHYS_ADDR_ACK or DL_ERROR_ACK.
2369 	 */
2370 	return (EINPROGRESS);
2371 bad:
2372 	if (v6token_mp != NULL)
2373 		freemsg(v6token_mp);
2374 	if (v6lla_mp != NULL)
2375 		freemsg(v6lla_mp);
2376 	if (phys_mp != NULL)
2377 		freemsg(phys_mp);
2378 	if (info_mp != NULL)
2379 		freemsg(info_mp);
2380 	if (attach_mp != NULL)
2381 		freemsg(attach_mp);
2382 	if (detach_mp != NULL)
2383 		freemsg(detach_mp);
2384 	if (bind_mp != NULL)
2385 		freemsg(bind_mp);
2386 	if (unbind_mp != NULL)
2387 		freemsg(unbind_mp);
2388 	if (notify_mp != NULL)
2389 		freemsg(notify_mp);
2390 	return (ENOMEM);
2391 }
2392 
2393 uint_t ip_loopback_mtu_v6plus = IP_LOOPBACK_MTU + IPV6_HDR_LEN + 20;
2394 
2395 /*
2396  * DLPI is up.
2397  * Create all the IREs associated with an interface bring up multicast.
2398  * Set the interface flag and finish other initialization
2399  * that potentially had to be differed to after DL_BIND_ACK.
2400  */
2401 int
2402 ipif_up_done_v6(ipif_t *ipif)
2403 {
2404 	ire_t	*ire_array[20];
2405 	ire_t	**irep = ire_array;
2406 	ire_t	**irep1;
2407 	ill_t	*ill = ipif->ipif_ill;
2408 	queue_t	*stq;
2409 	in6_addr_t	v6addr;
2410 	in6_addr_t	route_mask;
2411 	ipif_t	 *src_ipif = NULL;
2412 	ipif_t   *tmp_ipif;
2413 	boolean_t	flush_ire_cache = B_TRUE;
2414 	int	err;
2415 	char	buf[INET6_ADDRSTRLEN];
2416 	phyint_t *phyi;
2417 	ire_t	**ipif_saved_irep = NULL;
2418 	int ipif_saved_ire_cnt;
2419 	int cnt;
2420 	boolean_t src_ipif_held = B_FALSE;
2421 	boolean_t ire_added = B_FALSE;
2422 	boolean_t loopback = B_FALSE;
2423 	boolean_t ip6_asp_table_held = B_FALSE;
2424 
2425 	ip1dbg(("ipif_up_done_v6(%s:%u)\n",
2426 		ipif->ipif_ill->ill_name, ipif->ipif_id));
2427 
2428 	/* Check if this is a loopback interface */
2429 	if (ipif->ipif_ill->ill_wq == NULL)
2430 		loopback = B_TRUE;
2431 
2432 	ASSERT(ipif->ipif_isv6);
2433 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
2434 
2435 	/*
2436 	 * If all other interfaces for this ill are down or DEPRECATED,
2437 	 * or otherwise unsuitable for source address selection, remove
2438 	 * any IRE_CACHE entries for this ill to make sure source
2439 	 * address selection gets to take this new ipif into account.
2440 	 * No need to hold ill_lock while traversing the ipif list since
2441 	 * we are writer
2442 	 */
2443 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
2444 		tmp_ipif = tmp_ipif->ipif_next) {
2445 		if (((tmp_ipif->ipif_flags &
2446 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
2447 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
2448 		    (tmp_ipif == ipif))
2449 			continue;
2450 		/* first useable pre-existing interface */
2451 		flush_ire_cache = B_FALSE;
2452 		break;
2453 	}
2454 	if (flush_ire_cache)
2455 		ire_walk_ill_v6(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE,
2456 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
2457 
2458 	/*
2459 	 * Figure out which way the send-to queue should go.  Only
2460 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER should show up here.
2461 	 */
2462 	switch (ill->ill_net_type) {
2463 	case IRE_IF_RESOLVER:
2464 		stq = ill->ill_rq;
2465 		break;
2466 	case IRE_IF_NORESOLVER:
2467 	case IRE_LOOPBACK:
2468 		stq = ill->ill_wq;
2469 		break;
2470 	default:
2471 		return (EINVAL);
2472 	}
2473 
2474 	if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) {
2475 		/*
2476 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
2477 		 * ipif_lookup_on_name(), but in the case of zones we can have
2478 		 * several loopback addresses on lo0. So all the interfaces with
2479 		 * loopback addresses need to be marked IRE_LOOPBACK.
2480 		 */
2481 		if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &ipv6_loopback))
2482 			ipif->ipif_ire_type = IRE_LOOPBACK;
2483 		else
2484 			ipif->ipif_ire_type = IRE_LOCAL;
2485 	}
2486 
2487 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) {
2488 		/*
2489 		 * Can't use our source address. Select a different
2490 		 * source address for the IRE_INTERFACE and IRE_LOCAL
2491 		 */
2492 		if (ip6_asp_can_lookup()) {
2493 			ip6_asp_table_held = B_TRUE;
2494 			src_ipif = ipif_select_source_v6(ipif->ipif_ill,
2495 			    &ipif->ipif_v6subnet, B_FALSE,
2496 			    IPV6_PREFER_SRC_DEFAULT, ipif->ipif_zoneid);
2497 		}
2498 		if (src_ipif == NULL)
2499 			src_ipif = ipif;	/* Last resort */
2500 		else
2501 			src_ipif_held = B_TRUE;
2502 	} else {
2503 		src_ipif = ipif;
2504 	}
2505 
2506 	if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
2507 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
2508 		/* Register the source address for __sin6_src_id */
2509 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
2510 		    ipif->ipif_zoneid);
2511 		if (err != 0) {
2512 			ip0dbg(("ipif_up_done_v6: srcid_insert %d\n", err));
2513 			if (src_ipif_held)
2514 				ipif_refrele(src_ipif);
2515 			if (ip6_asp_table_held)
2516 				ip6_asp_table_refrele();
2517 			return (err);
2518 		}
2519 		/*
2520 		 * If the interface address is set, create the LOCAL
2521 		 * or LOOPBACK IRE.
2522 		 */
2523 		ip1dbg(("ipif_up_done_v6: creating IRE %d for %s\n",
2524 		    ipif->ipif_ire_type,
2525 		    inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr,
2526 		    buf, sizeof (buf))));
2527 
2528 		*irep++ = ire_create_v6(
2529 		    &ipif->ipif_v6lcl_addr,		/* dest address */
2530 		    &ipv6_all_ones,			/* mask */
2531 		    &src_ipif->ipif_v6src_addr,		/* source address */
2532 		    NULL,				/* no gateway */
2533 		    &ip_loopback_mtu_v6plus,		/* max frag size */
2534 		    NULL,
2535 		    ipif->ipif_rq,			/* recv-from queue */
2536 		    NULL,				/* no send-to queue */
2537 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
2538 		    NULL,
2539 		    ipif,				/* interface */
2540 		    NULL,
2541 		    0,
2542 		    0,
2543 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
2544 		    &ire_uinfo_null);
2545 	}
2546 
2547 	/*
2548 	 * Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate.
2549 	 * Note that atun interfaces have an all-zero ipif_v6subnet.
2550 	 * Thus we allow a zero subnet as long as the mask is non-zero.
2551 	 */
2552 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
2553 	    !(IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) &&
2554 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))) {
2555 		/* ipif_v6subnet is ipif_v6pp_dst_addr for pt-pt */
2556 		v6addr = ipif->ipif_v6subnet;
2557 
2558 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
2559 			route_mask = ipv6_all_ones;
2560 		} else {
2561 			route_mask = ipif->ipif_v6net_mask;
2562 		}
2563 
2564 		ip1dbg(("ipif_up_done_v6: creating if IRE %d for %s\n",
2565 		    ill->ill_net_type,
2566 		    inet_ntop(AF_INET6, &v6addr, buf, sizeof (buf))));
2567 
2568 		*irep++ = ire_create_v6(
2569 		    &v6addr,			/* dest pref */
2570 		    &route_mask,		/* mask */
2571 		    &src_ipif->ipif_v6src_addr,	/* src addr */
2572 		    NULL,			/* no gateway */
2573 		    &ipif->ipif_mtu,		/* max frag */
2574 		    NULL,			/* no Fast path header */
2575 		    NULL,			/* no recv from queue */
2576 		    stq,			/* send-to queue */
2577 		    ill->ill_net_type,		/* IF_[NO]RESOLVER */
2578 		    ill->ill_resolver_mp,	/* xmit header */
2579 		    ipif,
2580 		    NULL,
2581 		    0,
2582 		    0,
2583 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
2584 		    &ire_uinfo_null);
2585 	}
2586 
2587 	/*
2588 	 * Setup 2002::/16 route, if this interface is a 6to4 tunnel
2589 	 */
2590 	if (IN6_IS_ADDR_6TO4(&ipif->ipif_v6lcl_addr) &&
2591 	    (ill->ill_is_6to4tun)) {
2592 		/*
2593 		 * Destination address is 2002::/16
2594 		 */
2595 #ifdef	_BIG_ENDIAN
2596 		const in6_addr_t prefix_addr = { 0x20020000U, 0, 0, 0 };
2597 		const in6_addr_t prefix_mask = { 0xffff0000U, 0, 0, 0 };
2598 #else
2599 		const in6_addr_t prefix_addr = { 0x00000220U, 0, 0, 0 };
2600 		const in6_addr_t prefix_mask = { 0x0000ffffU, 0, 0, 0 };
2601 #endif /* _BIG_ENDIAN */
2602 		char	buf2[INET6_ADDRSTRLEN];
2603 		ire_t *isdup;
2604 		in6_addr_t *first_addr = &ill->ill_ipif->ipif_v6lcl_addr;
2605 
2606 		/*
2607 		 * check to see if this route has already been added for
2608 		 * this tunnel interface.
2609 		 */
2610 		isdup = ire_ftable_lookup_v6(first_addr, &prefix_mask, 0,
2611 		    IRE_IF_NORESOLVER, ill->ill_ipif, NULL, ALL_ZONES, 0,
2612 		    (MATCH_IRE_SRC | MATCH_IRE_MASK));
2613 
2614 		if (isdup == NULL) {
2615 			ip1dbg(("ipif_up_done_v6: creating if IRE %d for %s",
2616 			    IRE_IF_NORESOLVER, inet_ntop(AF_INET6, &v6addr,
2617 				buf2, sizeof (buf2))));
2618 
2619 			*irep++ = ire_create_v6(
2620 			    &prefix_addr,		/* 2002:: */
2621 			    &prefix_mask,		/* ffff:: */
2622 			    &ipif->ipif_v6lcl_addr, 	/* src addr */
2623 			    NULL, 			/* gateway */
2624 			    &ipif->ipif_mtu, 		/* max_frag */
2625 			    NULL, 			/* no Fast Path hdr */
2626 			    NULL, 			/* no rfq */
2627 			    ill->ill_wq, 		/* stq */
2628 			    IRE_IF_NORESOLVER,		/* type */
2629 			    ill->ill_resolver_mp,	/* dlureq_mp */
2630 			    ipif,			/* interface */
2631 			    NULL,			/* v6cmask */
2632 			    0,
2633 			    0,
2634 			    RTF_UP,
2635 			    &ire_uinfo_null);
2636 		} else {
2637 			ire_refrele(isdup);
2638 		}
2639 	}
2640 
2641 	/* If an earlier ire_create failed, get out now */
2642 	for (irep1 = irep; irep1 > ire_array; ) {
2643 		irep1--;
2644 		if (*irep1 == NULL) {
2645 			ip1dbg(("ipif_up_done_v6: NULL ire found in"
2646 			    " ire_array\n"));
2647 			err = ENOMEM;
2648 			goto bad;
2649 		}
2650 	}
2651 
2652 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
2653 
2654 	/*
2655 	 * Need to atomically check for ip_addr_availablity_check
2656 	 * now under ill_g_lock, and if it fails got bad, and remove
2657 	 * from group also
2658 	 */
2659 	rw_enter(&ill_g_lock, RW_READER);
2660 	mutex_enter(&ip_addr_avail_lock);
2661 	ill->ill_ipif_up_count++;
2662 	ipif->ipif_flags |= IPIF_UP;
2663 	err = ip_addr_availability_check(ipif);
2664 	mutex_exit(&ip_addr_avail_lock);
2665 	rw_exit(&ill_g_lock);
2666 
2667 	if (err != 0) {
2668 		/*
2669 		 * Our address may already be up on the same ill. In this case,
2670 		 * the external resolver entry for our ipif replaced the one for
2671 		 * the other ipif. So we don't want to delete it (otherwise the
2672 		 * other ipif would be unable to send packets).
2673 		 * ip_addr_availability_check() identifies this case for us and
2674 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
2675 		 * which is the expected error code.
2676 		 */
2677 		if (err == EADDRINUSE) {
2678 			if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) {
2679 				freemsg(ipif->ipif_arp_del_mp);
2680 				ipif->ipif_arp_del_mp = NULL;
2681 			}
2682 			err = EADDRNOTAVAIL;
2683 		}
2684 		ill->ill_ipif_up_count--;
2685 		ipif->ipif_flags &= ~IPIF_UP;
2686 		goto bad;
2687 	}
2688 
2689 	/*
2690 	 * Add in all newly created IREs. We want to add before
2691 	 * we call ifgrp_insert which wants to know whether
2692 	 * IRE_IF_RESOLVER exists or not.
2693 	 *
2694 	 * NOTE : We refrele the ire though we may branch to "bad"
2695 	 *	  later on where we do ire_delete. This is okay
2696 	 *	  because nobody can delete it as we are running
2697 	 *	  exclusively.
2698 	 */
2699 	for (irep1 = irep; irep1 > ire_array; ) {
2700 		irep1--;
2701 		/* Shouldn't be adding any bcast ire's */
2702 		ASSERT((*irep1)->ire_type != IRE_BROADCAST);
2703 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
2704 		/*
2705 		 * refheld by ire_add. refele towards the end of the func
2706 		 */
2707 		(void) ire_add(irep1, NULL, NULL, NULL);
2708 	}
2709 	if (ip6_asp_table_held) {
2710 		ip6_asp_table_refrele();
2711 		ip6_asp_table_held = B_FALSE;
2712 	}
2713 	ire_added = B_TRUE;
2714 
2715 	/*
2716 	 * Form groups if possible.
2717 	 *
2718 	 * If we are supposed to be in a ill_group with a name, insert it
2719 	 * now as we know that at least one ipif is UP. Otherwise form
2720 	 * nameless groups.
2721 	 *
2722 	 * If ip_enable_group_ifs is set and ipif address is not ::0, insert
2723 	 * this ipif into the appropriate interface group, or create a
2724 	 * new one. If this is already in a nameless group, we try to form
2725 	 * a bigger group looking at other ills potentially sharing this
2726 	 * ipif's prefix.
2727 	 */
2728 	phyi = ill->ill_phyint;
2729 	if (phyi->phyint_groupname_len != 0) {
2730 		ASSERT(phyi->phyint_groupname != NULL);
2731 		if (ill->ill_ipif_up_count == 1) {
2732 			ASSERT(ill->ill_group == NULL);
2733 			err = illgrp_insert(&illgrp_head_v6, ill,
2734 			    phyi->phyint_groupname, NULL, B_TRUE);
2735 			if (err != 0) {
2736 				ip1dbg(("ipif_up_done_v6: illgrp allocation "
2737 				    "failed, error %d\n", err));
2738 				goto bad;
2739 			}
2740 		}
2741 		ASSERT(ill->ill_group != NULL);
2742 	}
2743 
2744 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
2745 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
2746 	ipif_saved_irep = ipif_recover_ire_v6(ipif);
2747 
2748 	if (ipif->ipif_ipif_up_count == 1 && !loopback) {
2749 		/*
2750 		 * Need to recover all multicast memberships in the driver.
2751 		 * This had to be deferred until we had attached.
2752 		 */
2753 		ill_recover_multicast(ill);
2754 	}
2755 	/* Join the allhosts multicast address and the solicited node MC */
2756 	ipif_multicast_up(ipif);
2757 
2758 	if (!loopback) {
2759 		/*
2760 		 * See whether anybody else would benefit from the
2761 		 * new ipif that we added. We call this always rather
2762 		 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST
2763 		 * ipif for the benefit of illgrp_insert (done above)
2764 		 * which does not do source address selection as it does
2765 		 * not want to re-create interface routes that we are
2766 		 * having reference to it here.
2767 		 */
2768 		ill_update_source_selection(ill);
2769 	}
2770 
2771 	for (irep1 = irep; irep1 > ire_array; ) {
2772 		irep1--;
2773 		if (*irep1 != NULL) {
2774 			/* was held in ire_add */
2775 			ire_refrele(*irep1);
2776 		}
2777 	}
2778 
2779 	cnt = ipif_saved_ire_cnt;
2780 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
2781 		if (*irep1 != NULL) {
2782 			/* was held in ire_add */
2783 			ire_refrele(*irep1);
2784 		}
2785 	}
2786 
2787 
2788 	ip_rts_ifmsg(ipif);
2789 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
2790 	if (ipif_saved_irep != NULL) {
2791 		kmem_free(ipif_saved_irep,
2792 		    ipif_saved_ire_cnt * sizeof (ire_t *));
2793 	}
2794 
2795 	if (src_ipif_held)
2796 		ipif_refrele(src_ipif);
2797 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
2798 	return (0);
2799 
2800 bad:
2801 	if (ip6_asp_table_held)
2802 		ip6_asp_table_refrele();
2803 	/*
2804 	 * We don't have to bother removing from ill groups because
2805 	 *
2806 	 * 1) For groups with names, we insert only when the first ipif
2807 	 *    comes up. In that case if it fails, it will not be in any
2808 	 *    group. So, we need not try to remove for that case.
2809 	 *
2810 	 * 2) For groups without names, either we tried to insert ipif_ill
2811 	 *    in a group as singleton or found some other group to become
2812 	 *    a bigger group. For the former, if it fails we don't have
2813 	 *    anything to do as ipif_ill is not in the group and for the
2814 	 *    latter, there are no failures in illgrp_insert/illgrp_delete
2815 	 *    (ENOMEM can't occur for this. Check ifgrp_insert).
2816 	 */
2817 
2818 	while (irep > ire_array) {
2819 		irep--;
2820 		if (*irep != NULL) {
2821 			ire_delete(*irep);
2822 			if (ire_added)
2823 				ire_refrele(*irep);
2824 		}
2825 
2826 	}
2827 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid);
2828 
2829 	if (ipif_saved_irep != NULL) {
2830 		kmem_free(ipif_saved_irep,
2831 		    ipif_saved_ire_cnt * sizeof (ire_t *));
2832 	}
2833 	if (src_ipif_held)
2834 		ipif_refrele(src_ipif);
2835 
2836 	ipif_ndp_down(ipif);
2837 	if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV)
2838 		ipif_arp_down(ipif);
2839 
2840 	return (err);
2841 }
2842 
2843 /*
2844  * Delete an ND entry and the corresponding IRE_CACHE entry if it exists.
2845  */
2846 /* ARGSUSED */
2847 int
2848 ip_siocdelndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2849     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2850 {
2851 	in6_addr_t	addr;
2852 	sin6_t		*sin6;
2853 	nce_t		*nce;
2854 	struct lifreq	*lifr;
2855 	lif_nd_req_t	*lnr;
2856 	mblk_t	*mp1;
2857 
2858 	mp1 = mp->b_cont->b_cont;
2859 	lifr = (struct lifreq *)mp1->b_rptr;
2860 	lnr = &lifr->lifr_nd;
2861 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2862 	if (ipif->ipif_id != 0)
2863 		return (EINVAL);
2864 
2865 	if (!ipif->ipif_isv6)
2866 		return (EINVAL);
2867 
2868 	if (lnr->lnr_addr.ss_family != AF_INET6)
2869 		return (EAFNOSUPPORT);
2870 
2871 	sin6 = (sin6_t *)&lnr->lnr_addr;
2872 	addr = sin6->sin6_addr;
2873 	nce = ndp_lookup(ipif->ipif_ill, &addr, B_FALSE);
2874 	if (nce == NULL)
2875 		return (ESRCH);
2876 	ndp_delete(nce);
2877 	NCE_REFRELE(nce);
2878 	return (0);
2879 }
2880 
2881 /*
2882  * Return nbr cache info.
2883  */
2884 /* ARGSUSED */
2885 int
2886 ip_siocqueryndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2887     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2888 {
2889 	ill_t		*ill = ipif->ipif_ill;
2890 	struct lifreq	*lifr;
2891 	lif_nd_req_t	*lnr;
2892 
2893 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2894 	lnr = &lifr->lifr_nd;
2895 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2896 	if (ipif->ipif_id != 0)
2897 		return (EINVAL);
2898 
2899 	if (!ipif->ipif_isv6)
2900 		return (EINVAL);
2901 
2902 	if (lnr->lnr_addr.ss_family != AF_INET6)
2903 		return (EAFNOSUPPORT);
2904 
2905 	if (ill->ill_phys_addr_length > sizeof (lnr->lnr_hdw_addr))
2906 		return (EINVAL);
2907 
2908 	return (ndp_query(ill, lnr));
2909 }
2910 
2911 /*
2912  * Perform an update of the nd entry for the specified address.
2913  */
2914 /* ARGSUSED */
2915 int
2916 ip_siocsetndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2917     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2918 {
2919 	ill_t		*ill = ipif->ipif_ill;
2920 	struct	lifreq	*lifr;
2921 	lif_nd_req_t	*lnr;
2922 
2923 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2924 	lnr = &lifr->lifr_nd;
2925 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2926 	if (ipif->ipif_id != 0)
2927 		return (EINVAL);
2928 
2929 	if (!ipif->ipif_isv6)
2930 		return (EINVAL);
2931 
2932 	if (lnr->lnr_addr.ss_family != AF_INET6)
2933 		return (EAFNOSUPPORT);
2934 
2935 	return (ndp_sioc_update(ill, lnr));
2936 }
2937