1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 1990 Mentat Inc. 27 */ 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * This file contains the interface control functions for IPv6. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/sysmacros.h> 37 #include <sys/stream.h> 38 #include <sys/dlpi.h> 39 #include <sys/stropts.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/policy.h> 46 47 #include <sys/systm.h> 48 #include <sys/param.h> 49 #include <sys/socket.h> 50 #include <sys/isa_defs.h> 51 #include <net/if.h> 52 #include <net/if_dl.h> 53 #include <net/route.h> 54 #include <netinet/in.h> 55 #include <netinet/igmp_var.h> 56 #include <netinet/ip6.h> 57 #include <netinet/icmp6.h> 58 #include <netinet/in.h> 59 60 #include <inet/common.h> 61 #include <inet/nd.h> 62 #include <inet/mib2.h> 63 #include <inet/ip.h> 64 #include <inet/ip6.h> 65 #include <inet/ip_multi.h> 66 #include <inet/ip_ire.h> 67 #include <inet/ip_rts.h> 68 #include <inet/ip_ndp.h> 69 #include <inet/ip_if.h> 70 #include <inet/ip6_asp.h> 71 #include <inet/tun.h> 72 #include <inet/ipclassifier.h> 73 #include <inet/sctp_ip.h> 74 75 #include <sys/tsol/tndb.h> 76 #include <sys/tsol/tnet.h> 77 78 static in6_addr_t ipv6_ll_template = 79 {(uint32_t)V6_LINKLOCAL, 0x0, 0x0, 0x0}; 80 81 static ipif_t * 82 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst, 83 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst); 84 85 /* 86 * These two functions, ipif_lookup_group_v6() and ill_lookup_group_v6(), 87 * are called when an application does not specify an interface to be 88 * used for multicast traffic. It calls ire_lookup_multi_v6() to look 89 * for an interface route for the specified multicast group. Doing 90 * this allows the administrator to add prefix routes for multicast to 91 * indicate which interface to be used for multicast traffic in the above 92 * scenario. The route could be for all multicast (ff00::/8), for a single 93 * multicast group (a /128 route) or anything in between. If there is no 94 * such multicast route, we just find any multicast capable interface and 95 * return it. 96 */ 97 ipif_t * 98 ipif_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid, ip_stack_t *ipst) 99 { 100 ire_t *ire; 101 ipif_t *ipif; 102 103 ire = ire_lookup_multi_v6(group, zoneid, ipst); 104 if (ire != NULL) { 105 ipif = ire->ire_ipif; 106 ipif_refhold(ipif); 107 ire_refrele(ire); 108 return (ipif); 109 } 110 111 return (ipif_lookup_multicast(ipst, zoneid, B_TRUE)); 112 } 113 114 ill_t * 115 ill_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid, ip_stack_t *ipst) 116 { 117 ire_t *ire; 118 ill_t *ill; 119 ipif_t *ipif; 120 121 ire = ire_lookup_multi_v6(group, zoneid, ipst); 122 if (ire != NULL) { 123 ill = ire->ire_ipif->ipif_ill; 124 ill_refhold(ill); 125 ire_refrele(ire); 126 return (ill); 127 } 128 129 ipif = ipif_lookup_multicast(ipst, zoneid, B_TRUE); 130 if (ipif == NULL) 131 return (NULL); 132 133 ill = ipif->ipif_ill; 134 ill_refhold(ill); 135 ipif_refrele(ipif); 136 return (ill); 137 } 138 139 /* 140 * Look for an ipif with the specified interface address and destination. 141 * The destination address is used only for matching point-to-point interfaces. 142 */ 143 static ipif_t * 144 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst, 145 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 146 { 147 ipif_t *ipif; 148 ill_t *ill; 149 ipsq_t *ipsq; 150 ill_walk_context_t ctx; 151 152 if (error != NULL) 153 *error = 0; 154 155 /* 156 * First match all the point-to-point interfaces 157 * before looking at non-point-to-point interfaces. 158 * This is done to avoid returning non-point-to-point 159 * ipif instead of unnumbered point-to-point ipif. 160 */ 161 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 162 ill = ILL_START_WALK_V6(&ctx, ipst); 163 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 164 GRAB_CONN_LOCK(q); 165 mutex_enter(&ill->ill_lock); 166 for (ipif = ill->ill_ipif; ipif != NULL; 167 ipif = ipif->ipif_next) { 168 /* Allow the ipif to be down */ 169 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 170 (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 171 if_addr)) && 172 (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, 173 dst))) { 174 if (IPIF_CAN_LOOKUP(ipif)) { 175 ipif_refhold_locked(ipif); 176 mutex_exit(&ill->ill_lock); 177 RELEASE_CONN_LOCK(q); 178 rw_exit(&ipst->ips_ill_g_lock); 179 return (ipif); 180 } else if (IPIF_CAN_WAIT(ipif, q)) { 181 ipsq = ill->ill_phyint->phyint_ipsq; 182 mutex_enter(&ipsq->ipsq_lock); 183 mutex_exit(&ill->ill_lock); 184 rw_exit(&ipst->ips_ill_g_lock); 185 ipsq_enq(ipsq, q, mp, func, NEW_OP, 186 ill); 187 mutex_exit(&ipsq->ipsq_lock); 188 RELEASE_CONN_LOCK(q); 189 if (error != NULL) 190 *error = EINPROGRESS; 191 return (NULL); 192 } 193 } 194 } 195 mutex_exit(&ill->ill_lock); 196 RELEASE_CONN_LOCK(q); 197 } 198 rw_exit(&ipst->ips_ill_g_lock); 199 /* lookup the ipif based on interface address */ 200 ipif = ipif_lookup_addr_v6(if_addr, NULL, ALL_ZONES, q, mp, func, 201 error, ipst); 202 ASSERT(ipif == NULL || ipif->ipif_isv6); 203 return (ipif); 204 } 205 206 /* 207 * Look for an ipif with the specified address. For point-point links 208 * we look for matches on either the destination address and the local 209 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 210 * is set. 211 * Matches on a specific ill if match_ill is set. 212 */ 213 /* ARGSUSED */ 214 ipif_t * 215 ipif_lookup_addr_v6(const in6_addr_t *addr, ill_t *match_ill, zoneid_t zoneid, 216 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 217 { 218 ipif_t *ipif; 219 ill_t *ill; 220 boolean_t ptp = B_FALSE; 221 ipsq_t *ipsq; 222 ill_walk_context_t ctx; 223 224 if (error != NULL) 225 *error = 0; 226 227 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 228 /* 229 * Repeat twice, first based on local addresses and 230 * next time for pointopoint. 231 */ 232 repeat: 233 ill = ILL_START_WALK_V6(&ctx, ipst); 234 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 235 if (match_ill != NULL && ill != match_ill) { 236 continue; 237 } 238 GRAB_CONN_LOCK(q); 239 mutex_enter(&ill->ill_lock); 240 for (ipif = ill->ill_ipif; ipif != NULL; 241 ipif = ipif->ipif_next) { 242 if (zoneid != ALL_ZONES && 243 ipif->ipif_zoneid != zoneid && 244 ipif->ipif_zoneid != ALL_ZONES) 245 continue; 246 /* Allow the ipif to be down */ 247 if ((!ptp && (IN6_ARE_ADDR_EQUAL( 248 &ipif->ipif_v6lcl_addr, addr) && 249 (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 250 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 251 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, 252 addr))) { 253 if (IPIF_CAN_LOOKUP(ipif)) { 254 ipif_refhold_locked(ipif); 255 mutex_exit(&ill->ill_lock); 256 RELEASE_CONN_LOCK(q); 257 rw_exit(&ipst->ips_ill_g_lock); 258 return (ipif); 259 } else if (IPIF_CAN_WAIT(ipif, q)) { 260 ipsq = ill->ill_phyint->phyint_ipsq; 261 mutex_enter(&ipsq->ipsq_lock); 262 mutex_exit(&ill->ill_lock); 263 rw_exit(&ipst->ips_ill_g_lock); 264 ipsq_enq(ipsq, q, mp, func, NEW_OP, 265 ill); 266 mutex_exit(&ipsq->ipsq_lock); 267 RELEASE_CONN_LOCK(q); 268 if (error != NULL) 269 *error = EINPROGRESS; 270 return (NULL); 271 } 272 } 273 } 274 mutex_exit(&ill->ill_lock); 275 RELEASE_CONN_LOCK(q); 276 } 277 278 /* If we already did the ptp case, then we are done */ 279 if (ptp) { 280 rw_exit(&ipst->ips_ill_g_lock); 281 if (error != NULL) 282 *error = ENXIO; 283 return (NULL); 284 } 285 ptp = B_TRUE; 286 goto repeat; 287 } 288 289 /* 290 * Look for an ipif with the specified address. For point-point links 291 * we look for matches on either the destination address and the local 292 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 293 * is set. 294 * Matches on a specific ill if match_ill is set. 295 * Return the zoneid for the ipif. ALL_ZONES if none found. 296 */ 297 zoneid_t 298 ipif_lookup_addr_zoneid_v6(const in6_addr_t *addr, ill_t *match_ill, 299 ip_stack_t *ipst) 300 { 301 ipif_t *ipif; 302 ill_t *ill; 303 boolean_t ptp = B_FALSE; 304 ill_walk_context_t ctx; 305 zoneid_t zoneid; 306 307 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 308 /* 309 * Repeat twice, first based on local addresses and 310 * next time for pointopoint. 311 */ 312 repeat: 313 ill = ILL_START_WALK_V6(&ctx, ipst); 314 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 315 if (match_ill != NULL && ill != match_ill) { 316 continue; 317 } 318 mutex_enter(&ill->ill_lock); 319 for (ipif = ill->ill_ipif; ipif != NULL; 320 ipif = ipif->ipif_next) { 321 /* Allow the ipif to be down */ 322 if ((!ptp && (IN6_ARE_ADDR_EQUAL( 323 &ipif->ipif_v6lcl_addr, addr) && 324 (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 325 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 326 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, 327 addr)) && 328 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 329 zoneid = ipif->ipif_zoneid; 330 mutex_exit(&ill->ill_lock); 331 rw_exit(&ipst->ips_ill_g_lock); 332 /* 333 * If ipif_zoneid was ALL_ZONES then we have 334 * a trusted extensions shared IP address. 335 * In that case GLOBAL_ZONEID works to send. 336 */ 337 if (zoneid == ALL_ZONES) 338 zoneid = GLOBAL_ZONEID; 339 return (zoneid); 340 } 341 } 342 mutex_exit(&ill->ill_lock); 343 } 344 345 /* If we already did the ptp case, then we are done */ 346 if (ptp) { 347 rw_exit(&ipst->ips_ill_g_lock); 348 return (ALL_ZONES); 349 } 350 ptp = B_TRUE; 351 goto repeat; 352 } 353 354 /* 355 * Perform various checks to verify that an address would make sense as a local 356 * interface address. This is currently only called when an attempt is made 357 * to set a local address. 358 * 359 * Does not allow a v4-mapped address, an address that equals the subnet 360 * anycast address, ... a multicast address, ... 361 */ 362 boolean_t 363 ip_local_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask) 364 { 365 in6_addr_t subnet; 366 367 if (IN6_IS_ADDR_UNSPECIFIED(addr)) 368 return (B_TRUE); /* Allow all zeros */ 369 370 /* 371 * Don't allow all zeroes or host part, but allow 372 * all ones netmask. 373 */ 374 V6_MASK_COPY(*addr, *subnet_mask, subnet); 375 if (IN6_IS_ADDR_V4MAPPED(addr) || 376 (IN6_ARE_ADDR_EQUAL(addr, &subnet) && 377 !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) || 378 (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))) || 379 IN6_IS_ADDR_MULTICAST(addr)) 380 return (B_FALSE); 381 382 return (B_TRUE); 383 } 384 385 /* 386 * Perform various checks to verify that an address would make sense as a 387 * remote/subnet interface address. 388 */ 389 boolean_t 390 ip_remote_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask) 391 { 392 in6_addr_t subnet; 393 394 if (IN6_IS_ADDR_UNSPECIFIED(addr)) 395 return (B_TRUE); /* Allow all zeros */ 396 397 V6_MASK_COPY(*addr, *subnet_mask, subnet); 398 if (IN6_IS_ADDR_V4MAPPED(addr) || 399 (IN6_ARE_ADDR_EQUAL(addr, &subnet) && 400 !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) || 401 IN6_IS_ADDR_MULTICAST(addr) || 402 (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr))))) 403 return (B_FALSE); 404 405 return (B_TRUE); 406 } 407 408 /* 409 * ip_rt_add_v6 is called to add an IPv6 route to the forwarding table. 410 * ipif_arg is passed in to associate it with the correct interface 411 * (for link-local destinations and gateways). 412 */ 413 /* ARGSUSED1 */ 414 int 415 ip_rt_add_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask, 416 const in6_addr_t *gw_addr, const in6_addr_t *src_addr, int flags, 417 ipif_t *ipif_arg, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, 418 struct rtsa_s *sp, ip_stack_t *ipst) 419 { 420 ire_t *ire; 421 ire_t *gw_ire = NULL; 422 ipif_t *ipif; 423 boolean_t ipif_refheld = B_FALSE; 424 uint_t type; 425 int match_flags = MATCH_IRE_TYPE; 426 int error; 427 tsol_gc_t *gc = NULL; 428 tsol_gcgrp_t *gcgrp = NULL; 429 boolean_t gcgrp_xtraref = B_FALSE; 430 431 if (ire_arg != NULL) 432 *ire_arg = NULL; 433 434 /* 435 * Prevent routes with a zero gateway from being created (since 436 * interfaces can currently be plumbed and brought up with no assigned 437 * address). 438 */ 439 if (IN6_IS_ADDR_UNSPECIFIED(gw_addr)) 440 return (ENETUNREACH); 441 442 /* 443 * If this is the case of RTF_HOST being set, then we set the netmask 444 * to all ones (regardless if one was supplied). 445 */ 446 if (flags & RTF_HOST) 447 mask = &ipv6_all_ones; 448 449 /* 450 * Get the ipif, if any, corresponding to the gw_addr 451 */ 452 ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, q, mp, func, 453 &error, ipst); 454 if (ipif != NULL) 455 ipif_refheld = B_TRUE; 456 else if (error == EINPROGRESS) { 457 ip1dbg(("ip_rt_add_v6: null and EINPROGRESS")); 458 return (error); 459 } 460 461 /* 462 * GateD will attempt to create routes with a loopback interface 463 * address as the gateway and with RTF_GATEWAY set. We allow 464 * these routes to be added, but create them as interface routes 465 * since the gateway is an interface address. 466 */ 467 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 468 flags &= ~RTF_GATEWAY; 469 if (IN6_ARE_ADDR_EQUAL(gw_addr, &ipv6_loopback) && 470 IN6_ARE_ADDR_EQUAL(dst_addr, &ipv6_loopback) && 471 IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) { 472 ire = ire_ctable_lookup_v6(dst_addr, 0, IRE_LOOPBACK, 473 ipif, ALL_ZONES, NULL, match_flags, ipst); 474 if (ire != NULL) { 475 ire_refrele(ire); 476 if (ipif_refheld) 477 ipif_refrele(ipif); 478 return (EEXIST); 479 } 480 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 481 "for 0x%x\n", (void *)ipif, 482 ipif->ipif_ire_type, 483 ntohl(ipif->ipif_lcl_addr))); 484 ire = ire_create_v6( 485 dst_addr, 486 mask, 487 &ipif->ipif_v6src_addr, 488 NULL, 489 &ipif->ipif_mtu, 490 NULL, 491 NULL, 492 NULL, 493 ipif->ipif_net_type, 494 ipif, 495 NULL, 496 0, 497 0, 498 flags, 499 &ire_uinfo_null, 500 NULL, 501 NULL, 502 ipst); 503 if (ire == NULL) { 504 if (ipif_refheld) 505 ipif_refrele(ipif); 506 return (ENOMEM); 507 } 508 error = ire_add(&ire, q, mp, func, B_FALSE); 509 if (error == 0) 510 goto save_ire; 511 /* 512 * In the result of failure, ire_add() will have already 513 * deleted the ire in question, so there is no need to 514 * do that here. 515 */ 516 if (ipif_refheld) 517 ipif_refrele(ipif); 518 return (error); 519 } 520 } 521 522 /* 523 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 524 * and the gateway address provided is one of the system's interface 525 * addresses. By using the routing socket interface and supplying an 526 * RTA_IFP sockaddr with an interface index, an alternate method of 527 * specifying an interface route to be created is available which uses 528 * the interface index that specifies the outgoing interface rather than 529 * the address of an outgoing interface (which may not be able to 530 * uniquely identify an interface). When coupled with the RTF_GATEWAY 531 * flag, routes can be specified which not only specify the next-hop to 532 * be used when routing to a certain prefix, but also which outgoing 533 * interface should be used. 534 * 535 * Previously, interfaces would have unique addresses assigned to them 536 * and so the address assigned to a particular interface could be used 537 * to identify a particular interface. One exception to this was the 538 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 539 * 540 * With the advent of IPv6 and its link-local addresses, this 541 * restriction was relaxed and interfaces could share addresses between 542 * themselves. In fact, typically all of the link-local interfaces on 543 * an IPv6 node or router will have the same link-local address. In 544 * order to differentiate between these interfaces, the use of an 545 * interface index is necessary and this index can be carried inside a 546 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 547 * of using the interface index, however, is that all of the ipif's that 548 * are part of an ill have the same index and so the RTA_IFP sockaddr 549 * cannot be used to differentiate between ipif's (or logical 550 * interfaces) that belong to the same ill (physical interface). 551 * 552 * For example, in the following case involving IPv4 interfaces and 553 * logical interfaces 554 * 555 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 556 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 557 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 558 * 559 * the ipif's corresponding to each of these interface routes can be 560 * uniquely identified by the "gateway" (actually interface address). 561 * 562 * In this case involving multiple IPv6 default routes to a particular 563 * link-local gateway, the use of RTA_IFP is necessary to specify which 564 * default route is of interest: 565 * 566 * default fe80::123:4567:89ab:cdef U if0 567 * default fe80::123:4567:89ab:cdef U if1 568 */ 569 570 /* RTF_GATEWAY not set */ 571 if (!(flags & RTF_GATEWAY)) { 572 queue_t *stq; 573 574 if (sp != NULL) { 575 ip2dbg(("ip_rt_add_v6: gateway security attributes " 576 "cannot be set with interface route\n")); 577 if (ipif_refheld) 578 ipif_refrele(ipif); 579 return (EINVAL); 580 } 581 582 /* 583 * As the interface index specified with the RTA_IFP sockaddr is 584 * the same for all ipif's off of an ill, the matching logic 585 * below uses MATCH_IRE_ILL if such an index was specified. 586 * This means that routes sharing the same prefix when added 587 * using a RTA_IFP sockaddr must have distinct interface 588 * indices (namely, they must be on distinct ill's). 589 * 590 * On the other hand, since the gateway address will usually be 591 * different for each ipif on the system, the matching logic 592 * uses MATCH_IRE_IPIF in the case of a traditional interface 593 * route. This means that interface routes for the same prefix 594 * can be created if they belong to distinct ipif's and if a 595 * RTA_IFP sockaddr is not present. 596 */ 597 if (ipif_arg != NULL) { 598 if (ipif_refheld) { 599 ipif_refrele(ipif); 600 ipif_refheld = B_FALSE; 601 } 602 ipif = ipif_arg; 603 match_flags |= MATCH_IRE_ILL; 604 } else { 605 /* 606 * Check the ipif corresponding to the gw_addr 607 */ 608 if (ipif == NULL) 609 return (ENETUNREACH); 610 match_flags |= MATCH_IRE_IPIF; 611 } 612 613 ASSERT(ipif != NULL); 614 /* 615 * We check for an existing entry at this point. 616 */ 617 match_flags |= MATCH_IRE_MASK; 618 ire = ire_ftable_lookup_v6(dst_addr, mask, 0, IRE_INTERFACE, 619 ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 620 if (ire != NULL) { 621 ire_refrele(ire); 622 if (ipif_refheld) 623 ipif_refrele(ipif); 624 return (EEXIST); 625 } 626 627 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 628 ? ipif->ipif_rq : ipif->ipif_wq; 629 630 /* 631 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or 632 * IRE_IF_RESOLVER with the modified address and netmask. 633 */ 634 ire = ire_create_v6( 635 dst_addr, 636 mask, 637 &ipif->ipif_v6src_addr, 638 NULL, 639 &ipif->ipif_mtu, 640 NULL, 641 NULL, 642 stq, 643 ipif->ipif_net_type, 644 ipif, 645 NULL, 646 0, 647 0, 648 flags, 649 &ire_uinfo_null, 650 NULL, 651 NULL, 652 ipst); 653 if (ire == NULL) { 654 if (ipif_refheld) 655 ipif_refrele(ipif); 656 return (ENOMEM); 657 } 658 659 /* 660 * Some software (for example, GateD and Sun Cluster) attempts 661 * to create (what amount to) IRE_PREFIX routes with the 662 * loopback address as the gateway. This is primarily done to 663 * set up prefixes with the RTF_REJECT flag set (for example, 664 * when generating aggregate routes.) 665 * 666 * If the IRE type (as defined by ipif->ipif_net_type) is 667 * IRE_LOOPBACK, then we map the request into a 668 * IRE_IF_NORESOLVER. 669 * 670 * Needless to say, the real IRE_LOOPBACK is NOT created by this 671 * routine, but rather using ire_create_v6() directly. 672 */ 673 if (ipif->ipif_net_type == IRE_LOOPBACK) 674 ire->ire_type = IRE_IF_NORESOLVER; 675 error = ire_add(&ire, q, mp, func, B_FALSE); 676 if (error == 0) 677 goto save_ire; 678 /* 679 * In the result of failure, ire_add() will have already 680 * deleted the ire in question, so there is no need to 681 * do that here. 682 */ 683 if (ipif_refheld) 684 ipif_refrele(ipif); 685 return (error); 686 } 687 if (ipif_refheld) { 688 ipif_refrele(ipif); 689 ipif_refheld = B_FALSE; 690 } 691 692 /* 693 * Get an interface IRE for the specified gateway. 694 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 695 * gateway, it is currently unreachable and we fail the request 696 * accordingly. 697 */ 698 ipif = ipif_arg; 699 if (ipif_arg != NULL) 700 match_flags |= MATCH_IRE_ILL; 701 gw_ire = ire_ftable_lookup_v6(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, 702 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 703 if (gw_ire == NULL) 704 return (ENETUNREACH); 705 706 /* 707 * We create one of three types of IREs as a result of this request 708 * based on the netmask. A netmask of all ones (which is automatically 709 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 710 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 711 * created. Otherwise, an IRE_PREFIX route is created for the 712 * destination prefix. 713 */ 714 if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) 715 type = IRE_HOST; 716 else if (IN6_IS_ADDR_UNSPECIFIED(mask)) 717 type = IRE_DEFAULT; 718 else 719 type = IRE_PREFIX; 720 721 /* check for a duplicate entry */ 722 ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, ipif_arg, 723 NULL, ALL_ZONES, 0, NULL, 724 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 725 if (ire != NULL) { 726 ire_refrele(gw_ire); 727 ire_refrele(ire); 728 return (EEXIST); 729 } 730 731 /* Security attribute exists */ 732 if (sp != NULL) { 733 tsol_gcgrp_addr_t ga; 734 735 /* find or create the gateway credentials group */ 736 ga.ga_af = AF_INET6; 737 ga.ga_addr = *gw_addr; 738 739 /* we hold reference to it upon success */ 740 gcgrp = gcgrp_lookup(&ga, B_TRUE); 741 if (gcgrp == NULL) { 742 ire_refrele(gw_ire); 743 return (ENOMEM); 744 } 745 746 /* 747 * Create and add the security attribute to the group; a 748 * reference to the group is made upon allocating a new 749 * entry successfully. If it finds an already-existing 750 * entry for the security attribute in the group, it simply 751 * returns it and no new reference is made to the group. 752 */ 753 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 754 if (gc == NULL) { 755 /* release reference held by gcgrp_lookup */ 756 GCGRP_REFRELE(gcgrp); 757 ire_refrele(gw_ire); 758 return (ENOMEM); 759 } 760 } 761 762 /* Create the IRE. */ 763 ire = ire_create_v6( 764 dst_addr, /* dest address */ 765 mask, /* mask */ 766 /* src address assigned by the caller? */ 767 (((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr)) ? 768 src_addr : NULL), 769 gw_addr, /* gateway address */ 770 &gw_ire->ire_max_frag, 771 NULL, /* no src nce */ 772 NULL, /* no recv-from queue */ 773 NULL, /* no send-to queue */ 774 (ushort_t)type, /* IRE type */ 775 ipif_arg, 776 NULL, 777 0, 778 0, 779 flags, 780 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 781 gc, /* security attribute */ 782 NULL, 783 ipst); 784 785 /* 786 * The ire holds a reference to the 'gc' and the 'gc' holds a 787 * reference to the 'gcgrp'. We can now release the extra reference 788 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 789 */ 790 if (gcgrp_xtraref) 791 GCGRP_REFRELE(gcgrp); 792 if (ire == NULL) { 793 if (gc != NULL) 794 GC_REFRELE(gc); 795 ire_refrele(gw_ire); 796 return (ENOMEM); 797 } 798 799 /* 800 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 801 * SUN/OS socket stuff does but do we really want to allow ::0 ? 802 */ 803 804 /* Add the new IRE. */ 805 error = ire_add(&ire, q, mp, func, B_FALSE); 806 /* 807 * In the result of failure, ire_add() will have already 808 * deleted the ire in question, so there is no need to 809 * do that here. 810 */ 811 if (error != 0) { 812 ire_refrele(gw_ire); 813 return (error); 814 } 815 816 if (flags & RTF_MULTIRT) { 817 /* 818 * Invoke the CGTP (multirouting) filtering module 819 * to add the dst address in the filtering database. 820 * Replicated inbound packets coming from that address 821 * will be filtered to discard the duplicates. 822 * It is not necessary to call the CGTP filter hook 823 * when the dst address is a multicast, because an 824 * IP source address cannot be a multicast. 825 */ 826 if (ipst->ips_ip_cgtp_filter_ops != NULL && 827 !IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))) { 828 int res; 829 830 res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v6( 831 ipst->ips_netstack->netstack_stackid, 832 &ire->ire_addr_v6, 833 &ire->ire_gateway_addr_v6, 834 &ire->ire_src_addr_v6, 835 &gw_ire->ire_src_addr_v6); 836 if (res != 0) { 837 ire_refrele(gw_ire); 838 ire_delete(ire); 839 return (res); 840 } 841 } 842 } 843 844 /* 845 * Now that the prefix IRE entry has been created, delete any 846 * existing gateway IRE cache entries as well as any IRE caches 847 * using the gateway, and force them to be created through 848 * ip_newroute_v6. 849 */ 850 if (gc != NULL) { 851 ASSERT(gcgrp != NULL); 852 ire_clookup_delete_cache_gw_v6(gw_addr, ALL_ZONES, ipst); 853 } 854 855 save_ire: 856 if (gw_ire != NULL) { 857 ire_refrele(gw_ire); 858 } 859 if (ipif != NULL) { 860 mblk_t *save_mp; 861 862 /* 863 * Save enough information so that we can recreate the IRE if 864 * the interface goes down and then up. The metrics associated 865 * with the route will be saved as well when rts_setmetrics() is 866 * called after the IRE has been created. In the case where 867 * memory cannot be allocated, none of this information will be 868 * saved. 869 */ 870 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 871 if (save_mp != NULL) { 872 ifrt_t *ifrt; 873 874 save_mp->b_wptr += sizeof (ifrt_t); 875 ifrt = (ifrt_t *)save_mp->b_rptr; 876 bzero(ifrt, sizeof (ifrt_t)); 877 ifrt->ifrt_type = ire->ire_type; 878 ifrt->ifrt_v6addr = ire->ire_addr_v6; 879 mutex_enter(&ire->ire_lock); 880 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 881 ifrt->ifrt_v6src_addr = ire->ire_src_addr_v6; 882 mutex_exit(&ire->ire_lock); 883 ifrt->ifrt_v6mask = ire->ire_mask_v6; 884 ifrt->ifrt_flags = ire->ire_flags; 885 ifrt->ifrt_max_frag = ire->ire_max_frag; 886 mutex_enter(&ipif->ipif_saved_ire_lock); 887 save_mp->b_cont = ipif->ipif_saved_ire_mp; 888 ipif->ipif_saved_ire_mp = save_mp; 889 ipif->ipif_saved_ire_cnt++; 890 mutex_exit(&ipif->ipif_saved_ire_lock); 891 } 892 } 893 if (ire_arg != NULL) { 894 /* 895 * Store the ire that was successfully added into where ire_arg 896 * points to so that callers don't have to look it up 897 * themselves (but they are responsible for ire_refrele()ing 898 * the ire when they are finished with it). 899 */ 900 *ire_arg = ire; 901 } else { 902 ire_refrele(ire); /* Held in ire_add */ 903 } 904 if (ipif_refheld) 905 ipif_refrele(ipif); 906 return (0); 907 } 908 909 /* 910 * ip_rt_delete_v6 is called to delete an IPv6 route. 911 * ipif_arg is passed in to associate it with the correct interface 912 * (for link-local destinations and gateways). 913 */ 914 /* ARGSUSED4 */ 915 int 916 ip_rt_delete_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask, 917 const in6_addr_t *gw_addr, uint_t rtm_addrs, int flags, ipif_t *ipif_arg, 918 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 919 { 920 ire_t *ire = NULL; 921 ipif_t *ipif; 922 uint_t type; 923 uint_t match_flags = MATCH_IRE_TYPE; 924 int err = 0; 925 boolean_t ipif_refheld = B_FALSE; 926 927 /* 928 * If this is the case of RTF_HOST being set, then we set the netmask 929 * to all ones. Otherwise, we use the netmask if one was supplied. 930 */ 931 if (flags & RTF_HOST) { 932 mask = &ipv6_all_ones; 933 match_flags |= MATCH_IRE_MASK; 934 } else if (rtm_addrs & RTA_NETMASK) { 935 match_flags |= MATCH_IRE_MASK; 936 } 937 938 /* 939 * Note that RTF_GATEWAY is never set on a delete, therefore 940 * we check if the gateway address is one of our interfaces first, 941 * and fall back on RTF_GATEWAY routes. 942 * 943 * This makes it possible to delete an original 944 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 945 * 946 * As the interface index specified with the RTA_IFP sockaddr is the 947 * same for all ipif's off of an ill, the matching logic below uses 948 * MATCH_IRE_ILL if such an index was specified. This means a route 949 * sharing the same prefix and interface index as the the route 950 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 951 * is specified in the request. 952 * 953 * On the other hand, since the gateway address will usually be 954 * different for each ipif on the system, the matching logic 955 * uses MATCH_IRE_IPIF in the case of a traditional interface 956 * route. This means that interface routes for the same prefix can be 957 * uniquely identified if they belong to distinct ipif's and if a 958 * RTA_IFP sockaddr is not present. 959 * 960 * For more detail on specifying routes by gateway address and by 961 * interface index, see the comments in ip_rt_add_v6(). 962 */ 963 ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, q, mp, func, &err, 964 ipst); 965 if (ipif != NULL) { 966 ipif_refheld = B_TRUE; 967 if (ipif_arg != NULL) { 968 ipif_refrele(ipif); 969 ipif_refheld = B_FALSE; 970 ipif = ipif_arg; 971 match_flags |= MATCH_IRE_ILL; 972 } else { 973 match_flags |= MATCH_IRE_IPIF; 974 } 975 976 if (ipif->ipif_ire_type == IRE_LOOPBACK) 977 ire = ire_ctable_lookup_v6(dst_addr, 0, IRE_LOOPBACK, 978 ipif, ALL_ZONES, NULL, match_flags, ipst); 979 if (ire == NULL) 980 ire = ire_ftable_lookup_v6(dst_addr, mask, 0, 981 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 982 match_flags, ipst); 983 } else if (err == EINPROGRESS) { 984 return (err); 985 } else { 986 err = 0; 987 } 988 if (ire == NULL) { 989 /* 990 * At this point, the gateway address is not one of our own 991 * addresses or a matching interface route was not found. We 992 * set the IRE type to lookup based on whether 993 * this is a host route, a default route or just a prefix. 994 * 995 * If an ipif_arg was passed in, then the lookup is based on an 996 * interface index so MATCH_IRE_ILL is added to match_flags. 997 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 998 * set as the route being looked up is not a traditional 999 * interface route. 1000 */ 1001 match_flags &= ~MATCH_IRE_IPIF; 1002 match_flags |= MATCH_IRE_GW; 1003 if (ipif_arg != NULL) 1004 match_flags |= MATCH_IRE_ILL; 1005 if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) 1006 type = IRE_HOST; 1007 else if (IN6_IS_ADDR_UNSPECIFIED(mask)) 1008 type = IRE_DEFAULT; 1009 else 1010 type = IRE_PREFIX; 1011 ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, 1012 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 1013 } 1014 1015 if (ipif_refheld) { 1016 ipif_refrele(ipif); 1017 ipif_refheld = B_FALSE; 1018 } 1019 if (ire == NULL) 1020 return (ESRCH); 1021 1022 if (ire->ire_flags & RTF_MULTIRT) { 1023 /* 1024 * Invoke the CGTP (multirouting) filtering module 1025 * to remove the dst address from the filtering database. 1026 * Packets coming from that address will no longer be 1027 * filtered to remove duplicates. 1028 */ 1029 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 1030 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v6( 1031 ipst->ips_netstack->netstack_stackid, 1032 &ire->ire_addr_v6, &ire->ire_gateway_addr_v6); 1033 } 1034 } 1035 1036 ipif = ire->ire_ipif; 1037 if (ipif != NULL) { 1038 mblk_t **mpp; 1039 mblk_t *mp; 1040 ifrt_t *ifrt; 1041 in6_addr_t gw_addr_v6; 1042 1043 /* Remove from ipif_saved_ire_mp list if it is there */ 1044 mutex_enter(&ire->ire_lock); 1045 gw_addr_v6 = ire->ire_gateway_addr_v6; 1046 mutex_exit(&ire->ire_lock); 1047 mutex_enter(&ipif->ipif_saved_ire_lock); 1048 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 1049 mpp = &(*mpp)->b_cont) { 1050 /* 1051 * On a given ipif, the triple of address, gateway and 1052 * mask is unique for each saved IRE (in the case of 1053 * ordinary interface routes, the gateway address is 1054 * all-zeroes). 1055 */ 1056 mp = *mpp; 1057 ifrt = (ifrt_t *)mp->b_rptr; 1058 if (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 1059 &ire->ire_addr_v6) && 1060 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 1061 &gw_addr_v6) && 1062 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 1063 &ire->ire_mask_v6)) { 1064 *mpp = mp->b_cont; 1065 ipif->ipif_saved_ire_cnt--; 1066 freeb(mp); 1067 break; 1068 } 1069 } 1070 mutex_exit(&ipif->ipif_saved_ire_lock); 1071 } 1072 ire_delete(ire); 1073 ire_refrele(ire); 1074 return (err); 1075 } 1076 1077 /* 1078 * Derive a token from the link layer address. 1079 */ 1080 boolean_t 1081 ill_setdefaulttoken(ill_t *ill) 1082 { 1083 int i; 1084 in6_addr_t v6addr, v6mask; 1085 1086 if (!MEDIA_V6INTFID(ill->ill_media, ill->ill_phys_addr_length, 1087 ill->ill_phys_addr, &v6addr)) 1088 return (B_FALSE); 1089 1090 (void) ip_plen_to_mask_v6(IPV6_TOKEN_LEN, &v6mask); 1091 1092 for (i = 0; i < 4; i++) 1093 v6mask.s6_addr32[i] = v6mask.s6_addr32[i] ^ 1094 (uint32_t)0xffffffff; 1095 1096 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 1097 ill->ill_token_length = IPV6_TOKEN_LEN; 1098 return (B_TRUE); 1099 } 1100 1101 /* 1102 * Create a link-local address from a token. 1103 */ 1104 static void 1105 ipif_get_linklocal(in6_addr_t *dest, const in6_addr_t *token) 1106 { 1107 int i; 1108 1109 for (i = 0; i < 4; i++) { 1110 dest->s6_addr32[i] = 1111 token->s6_addr32[i] | ipv6_ll_template.s6_addr32[i]; 1112 } 1113 } 1114 1115 /* 1116 * Set a nice default address for either automatic tunnels tsrc/96 or 1117 * 6to4 tunnels 2002:<tsrc>::1/64 1118 */ 1119 static void 1120 ipif_set_tun_auto_addr(ipif_t *ipif, struct iftun_req *ta) 1121 { 1122 sin6_t sin6; 1123 sin_t *sin; 1124 ill_t *ill = ipif->ipif_ill; 1125 tun_t *tp = (tun_t *)ill->ill_wq->q_next->q_ptr; 1126 1127 if (ta->ifta_saddr.ss_family != AF_INET || 1128 (ipif->ipif_flags & IPIF_UP) || !ipif->ipif_isv6 || 1129 (ta->ifta_flags & IFTUN_SRC) == 0) 1130 return; 1131 1132 /* 1133 * Check the tunnel type by examining q_next->q_ptr 1134 */ 1135 if (tp->tun_flags & TUN_AUTOMATIC) { 1136 /* this is an automatic tunnel */ 1137 (void) ip_plen_to_mask_v6(IPV6_ABITS - IP_ABITS, 1138 &ipif->ipif_v6net_mask); 1139 bzero(&sin6, sizeof (sin6_t)); 1140 sin = (sin_t *)&ta->ifta_saddr; 1141 V4_PART_OF_V6(sin6.sin6_addr) = sin->sin_addr.s_addr; 1142 sin6.sin6_family = AF_INET6; 1143 (void) ip_sioctl_addr(ipif, (sin_t *)&sin6, 1144 NULL, NULL, NULL, NULL); 1145 } else if (tp->tun_flags & TUN_6TO4) { 1146 /* this is a 6to4 tunnel */ 1147 (void) ip_plen_to_mask_v6(IPV6_PREFIX_LEN, 1148 &ipif->ipif_v6net_mask); 1149 sin = (sin_t *)&ta->ifta_saddr; 1150 /* create a 6to4 address from the IPv4 tsrc */ 1151 IN6_V4ADDR_TO_6TO4(&sin->sin_addr, &sin6.sin6_addr); 1152 sin6.sin6_family = AF_INET6; 1153 (void) ip_sioctl_addr(ipif, (sin_t *)&sin6, 1154 NULL, NULL, NULL, NULL); 1155 } else { 1156 ip1dbg(("ipif_set_tun_auto_addr: Unknown tunnel type")); 1157 return; 1158 } 1159 } 1160 1161 /* 1162 * Set link local for ipif_id 0 of a configured tunnel based on the 1163 * tsrc or tdst parameter 1164 * For tunnels over IPv4 use the IPv4 address prepended with 32 zeros as 1165 * the token. 1166 * For tunnels over IPv6 use the low-order 64 bits of the "inner" IPv6 address 1167 * as the token for the "outer" link. 1168 */ 1169 void 1170 ipif_set_tun_llink(ill_t *ill, struct iftun_req *ta) 1171 { 1172 ipif_t *ipif; 1173 sin_t *sin; 1174 in6_addr_t *s6addr; 1175 1176 ASSERT(IAM_WRITER_ILL(ill)); 1177 1178 /* The first ipif must be id zero. */ 1179 ipif = ill->ill_ipif; 1180 ASSERT(ipif->ipif_id == 0); 1181 1182 /* no link local for automatic tunnels */ 1183 if (!(ipif->ipif_flags & IPIF_POINTOPOINT)) { 1184 ipif_set_tun_auto_addr(ipif, ta); 1185 return; 1186 } 1187 1188 if ((ta->ifta_flags & IFTUN_DST) && 1189 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)) { 1190 sin6_t sin6; 1191 1192 ASSERT(!(ipif->ipif_flags & IPIF_UP)); 1193 bzero(&sin6, sizeof (sin6_t)); 1194 if ((ta->ifta_saddr.ss_family == AF_INET)) { 1195 sin = (sin_t *)&ta->ifta_daddr; 1196 V4_PART_OF_V6(sin6.sin6_addr) = 1197 sin->sin_addr.s_addr; 1198 } else { 1199 s6addr = 1200 &((sin6_t *)&ta->ifta_daddr)->sin6_addr; 1201 sin6.sin6_addr.s6_addr32[3] = s6addr->s6_addr32[3]; 1202 sin6.sin6_addr.s6_addr32[2] = s6addr->s6_addr32[2]; 1203 } 1204 ipif_get_linklocal(&ipif->ipif_v6pp_dst_addr, 1205 &sin6.sin6_addr); 1206 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 1207 } 1208 if ((ta->ifta_flags & IFTUN_SRC)) { 1209 ASSERT(!(ipif->ipif_flags & IPIF_UP)); 1210 1211 /* Set the token if it isn't already set */ 1212 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) { 1213 if ((ta->ifta_saddr.ss_family == AF_INET)) { 1214 sin = (sin_t *)&ta->ifta_saddr; 1215 V4_PART_OF_V6(ill->ill_token) = 1216 sin->sin_addr.s_addr; 1217 } else { 1218 s6addr = 1219 &((sin6_t *)&ta->ifta_saddr)->sin6_addr; 1220 ill->ill_token.s6_addr32[3] = 1221 s6addr->s6_addr32[3]; 1222 ill->ill_token.s6_addr32[2] = 1223 s6addr->s6_addr32[2]; 1224 } 1225 ill->ill_token_length = IPV6_TOKEN_LEN; 1226 } 1227 /* 1228 * Attempt to set the link local address if it isn't set. 1229 */ 1230 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 1231 (void) ipif_setlinklocal(ipif); 1232 } 1233 } 1234 1235 /* 1236 * Is it not possible to set the link local address? 1237 * The address can be set if the token is set, and the token 1238 * isn't too long. 1239 * Return B_TRUE if the address can't be set, or B_FALSE if it can. 1240 */ 1241 boolean_t 1242 ipif_cant_setlinklocal(ipif_t *ipif) 1243 { 1244 ill_t *ill = ipif->ipif_ill; 1245 1246 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token) || 1247 ill->ill_token_length > IPV6_ABITS - IPV6_LL_PREFIXLEN) 1248 return (B_TRUE); 1249 1250 return (B_FALSE); 1251 } 1252 1253 /* 1254 * Generate a link-local address from the token. 1255 * Return zero if the address was set, or non-zero if it couldn't be set. 1256 */ 1257 int 1258 ipif_setlinklocal(ipif_t *ipif) 1259 { 1260 ill_t *ill = ipif->ipif_ill; 1261 in6_addr_t ov6addr; 1262 1263 ASSERT(IAM_WRITER_ILL(ill)); 1264 1265 if (ipif_cant_setlinklocal(ipif)) 1266 return (-1); 1267 1268 ov6addr = ipif->ipif_v6lcl_addr; 1269 ipif_get_linklocal(&ipif->ipif_v6lcl_addr, &ill->ill_token); 1270 sctp_update_ipif_addr(ipif, ov6addr); 1271 (void) ip_plen_to_mask_v6(IPV6_LL_PREFIXLEN, &ipif->ipif_v6net_mask); 1272 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 1273 ipif->ipif_v6subnet); 1274 1275 if (ipif->ipif_flags & IPIF_NOLOCAL) { 1276 ipif->ipif_v6src_addr = ipv6_all_zeros; 1277 } else { 1278 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 1279 } 1280 return (0); 1281 } 1282 1283 /* 1284 * This function sets up the multicast mappings in NDP. 1285 * Unlike ARP, there are no mapping_mps here. We delete the 1286 * mapping nces and add a new one. 1287 * 1288 * Returns non-zero on error and 0 on success. 1289 */ 1290 int 1291 ipif_ndp_setup_multicast(ipif_t *ipif, nce_t **ret_nce) 1292 { 1293 ill_t *ill = ipif->ipif_ill; 1294 in6_addr_t v6_mcast_addr = {(uint32_t)V6_MCAST, 0, 0, 0}; 1295 in6_addr_t v6_mcast_mask = {(uint32_t)V6_MCAST, 0, 0, 0}; 1296 in6_addr_t v6_extract_mask; 1297 uchar_t *phys_addr, *bphys_addr, *alloc_phys; 1298 nce_t *mnce = NULL; 1299 int err = 0; 1300 phyint_t *phyi = ill->ill_phyint; 1301 uint32_t hw_extract_start; 1302 dl_unitdata_req_t *dlur; 1303 ip_stack_t *ipst = ill->ill_ipst; 1304 1305 if (ret_nce != NULL) 1306 *ret_nce = NULL; 1307 /* 1308 * Delete the mapping nce. Normally these should not exist 1309 * as a previous ipif_down -> ipif_ndp_down should have deleted 1310 * all the nces. But they can exist if ip_rput_dlpi_writer 1311 * calls this when PHYI_MULTI_BCAST is set. 1312 */ 1313 mnce = ndp_lookup_v6(ill, &v6_mcast_addr, B_FALSE); 1314 if (mnce != NULL) { 1315 ndp_delete(mnce); 1316 NCE_REFRELE(mnce); 1317 mnce = NULL; 1318 } 1319 1320 /* 1321 * Get media specific v6 mapping information. Note that 1322 * nd_lla_len can be 0 for tunnels. 1323 */ 1324 alloc_phys = kmem_alloc(ill->ill_nd_lla_len, KM_NOSLEEP); 1325 if ((alloc_phys == NULL) && (ill->ill_nd_lla_len != 0)) 1326 return (ENOMEM); 1327 /* 1328 * Determine the broadcast address. 1329 */ 1330 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 1331 if (ill->ill_sap_length < 0) 1332 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 1333 else 1334 bphys_addr = (uchar_t *)dlur + 1335 dlur->dl_dest_addr_offset + ill->ill_sap_length; 1336 1337 /* 1338 * Check PHYI_MULTI_BCAST and possible length of physical 1339 * address to determine if we use the mapping or the 1340 * broadcast address. 1341 */ 1342 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 1343 (!MEDIA_V6MINFO(ill->ill_media, ill->ill_nd_lla_len, 1344 bphys_addr, alloc_phys, &hw_extract_start, 1345 &v6_extract_mask))) { 1346 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) { 1347 kmem_free(alloc_phys, ill->ill_nd_lla_len); 1348 return (E2BIG); 1349 } 1350 /* Use the link-layer broadcast address for MULTI_BCAST */ 1351 phys_addr = bphys_addr; 1352 bzero(&v6_extract_mask, sizeof (v6_extract_mask)); 1353 hw_extract_start = ill->ill_nd_lla_len; 1354 } else { 1355 phys_addr = alloc_phys; 1356 } 1357 if ((ipif->ipif_flags & IPIF_BROADCAST) || 1358 (ill->ill_flags & ILLF_MULTICAST) || 1359 (phyi->phyint_flags & PHYI_MULTI_BCAST)) { 1360 mutex_enter(&ipst->ips_ndp6->ndp_g_lock); 1361 err = ndp_add_v6(ill, 1362 phys_addr, 1363 &v6_mcast_addr, /* v6 address */ 1364 &v6_mcast_mask, /* v6 mask */ 1365 &v6_extract_mask, 1366 hw_extract_start, 1367 NCE_F_MAPPING | NCE_F_PERMANENT | NCE_F_NONUD, 1368 ND_REACHABLE, 1369 &mnce); 1370 mutex_exit(&ipst->ips_ndp6->ndp_g_lock); 1371 if (err == 0) { 1372 if (ret_nce != NULL) { 1373 *ret_nce = mnce; 1374 } else { 1375 NCE_REFRELE(mnce); 1376 } 1377 } 1378 } 1379 kmem_free(alloc_phys, ill->ill_nd_lla_len); 1380 return (err); 1381 } 1382 1383 /* 1384 * Get the resolver set up for a new ipif. (Always called as writer.) 1385 */ 1386 int 1387 ipif_ndp_up(ipif_t *ipif) 1388 { 1389 ill_t *ill = ipif->ipif_ill; 1390 int err = 0; 1391 nce_t *nce = NULL; 1392 nce_t *mnce = NULL; 1393 1394 ip1dbg(("ipif_ndp_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 1395 1396 /* 1397 * ND not supported on XRESOLV interfaces. If ND support (multicast) 1398 * added later, take out this check. 1399 */ 1400 if ((ill->ill_flags & ILLF_XRESOLV) || 1401 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) || 1402 (!(ill->ill_net_type & IRE_INTERFACE))) { 1403 ipif->ipif_addr_ready = 1; 1404 return (0); 1405 } 1406 1407 /* 1408 * Need to setup multicast mapping only when the first 1409 * interface is coming UP. 1410 */ 1411 if (ill->ill_ipif_up_count == 0 && 1412 (ill->ill_flags & ILLF_MULTICAST)) { 1413 /* 1414 * We set the multicast before setting up the mapping for 1415 * local address because ipif_ndp_setup_multicast does 1416 * ndp_walk to delete nces which will delete the mapping 1417 * for local address also if we added the mapping for 1418 * local address first. 1419 */ 1420 err = ipif_ndp_setup_multicast(ipif, &mnce); 1421 if (err != 0) 1422 return (err); 1423 } 1424 1425 if ((ipif->ipif_flags & (IPIF_UNNUMBERED|IPIF_NOLOCAL)) == 0) { 1426 uint16_t flags; 1427 uchar_t *hw_addr = NULL; 1428 1429 /* Permanent entries don't need NUD */ 1430 flags = NCE_F_PERMANENT | NCE_F_NONUD; 1431 if (ill->ill_flags & ILLF_ROUTER) 1432 flags |= NCE_F_ISROUTER; 1433 1434 if (ipif->ipif_flags & IPIF_ANYCAST) 1435 flags |= NCE_F_ANYCAST; 1436 1437 if (ill->ill_net_type == IRE_IF_RESOLVER) { 1438 hw_addr = ill->ill_nd_lla; 1439 1440 if (ill->ill_move_in_progress) { 1441 /* 1442 * Addresses are failing over to this ill. 1443 * Don't wait for NUD to see this change. 1444 * Publish our new link-layer address. 1445 */ 1446 flags |= NCE_F_UNSOL_ADV; 1447 } 1448 } 1449 err = ndp_lookup_then_add_v6(ill, 1450 hw_addr, 1451 &ipif->ipif_v6lcl_addr, 1452 &ipv6_all_ones, 1453 &ipv6_all_zeros, 1454 0, 1455 flags, 1456 ND_PROBE, /* Causes Duplicate Address Detection to run */ 1457 &nce); 1458 switch (err) { 1459 case 0: 1460 ip1dbg(("ipif_ndp_up: NCE created for %s\n", 1461 ill->ill_name)); 1462 ipif->ipif_addr_ready = 1; 1463 break; 1464 case EINPROGRESS: 1465 ip1dbg(("ipif_ndp_up: running DAD now for %s\n", 1466 ill->ill_name)); 1467 break; 1468 case EEXIST: 1469 NCE_REFRELE(nce); 1470 ip1dbg(("ipif_ndp_up: NCE already exists for %s\n", 1471 ill->ill_name)); 1472 if (mnce != NULL) { 1473 ndp_delete(mnce); 1474 NCE_REFRELE(mnce); 1475 } 1476 return (err); 1477 default: 1478 ip1dbg(("ipif_ndp_up: NCE creation failed %s\n", 1479 ill->ill_name)); 1480 if (mnce != NULL) { 1481 ndp_delete(mnce); 1482 NCE_REFRELE(mnce); 1483 } 1484 return (err); 1485 } 1486 } else { 1487 /* No local NCE for this entry */ 1488 ipif->ipif_addr_ready = 1; 1489 } 1490 if (nce != NULL) 1491 NCE_REFRELE(nce); 1492 if (mnce != NULL) 1493 NCE_REFRELE(mnce); 1494 return (0); 1495 } 1496 1497 /* Remove all cache entries for this logical interface */ 1498 void 1499 ipif_ndp_down(ipif_t *ipif) 1500 { 1501 nce_t *nce; 1502 1503 if (ipif->ipif_isv6) { 1504 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, 1505 B_FALSE); 1506 if (nce != NULL) { 1507 ndp_delete(nce); 1508 NCE_REFRELE(nce); 1509 } 1510 } 1511 /* 1512 * Remove mapping and all other nces dependent on this ill 1513 * when the last ipif is going away. 1514 */ 1515 if (ipif->ipif_ill->ill_ipif_up_count == 0) { 1516 ndp_walk(ipif->ipif_ill, (pfi_t)ndp_delete_per_ill, 1517 (uchar_t *)ipif->ipif_ill, ipif->ipif_ill->ill_ipst); 1518 } 1519 } 1520 1521 /* 1522 * Used when an interface comes up to recreate any extra routes on this 1523 * interface. 1524 */ 1525 static ire_t ** 1526 ipif_recover_ire_v6(ipif_t *ipif) 1527 { 1528 mblk_t *mp; 1529 ire_t **ipif_saved_irep; 1530 ire_t **irep; 1531 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1532 1533 ip1dbg(("ipif_recover_ire_v6(%s:%u)", ipif->ipif_ill->ill_name, 1534 ipif->ipif_id)); 1535 1536 ASSERT(ipif->ipif_isv6); 1537 1538 mutex_enter(&ipif->ipif_saved_ire_lock); 1539 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 1540 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 1541 if (ipif_saved_irep == NULL) { 1542 mutex_exit(&ipif->ipif_saved_ire_lock); 1543 return (NULL); 1544 } 1545 1546 irep = ipif_saved_irep; 1547 1548 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 1549 ire_t *ire; 1550 queue_t *rfq; 1551 queue_t *stq; 1552 ifrt_t *ifrt; 1553 in6_addr_t *src_addr; 1554 in6_addr_t *gateway_addr; 1555 char buf[INET6_ADDRSTRLEN]; 1556 ushort_t type; 1557 1558 /* 1559 * When the ire was initially created and then added in 1560 * ip_rt_add_v6(), it was created either using 1561 * ipif->ipif_net_type in the case of a traditional interface 1562 * route, or as one of the IRE_OFFSUBNET types (with the 1563 * exception of IRE_HOST type redirect ire which is created by 1564 * icmp_redirect_v6() and which we don't need to save or 1565 * recover). In the case where ipif->ipif_net_type was 1566 * IRE_LOOPBACK, ip_rt_add_v6() will update the ire_type to 1567 * IRE_IF_NORESOLVER before calling ire_add_v6() to satisfy 1568 * software like GateD and Sun Cluster which creates routes 1569 * using the the loopback interface's address as a gateway. 1570 * 1571 * As ifrt->ifrt_type reflects the already updated ire_type, 1572 * ire_create_v6() will be called in the same way here as in 1573 * ip_rt_add_v6(), namely using ipif->ipif_net_type when the 1574 * route looks like a traditional interface route (where 1575 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise 1576 * using the saved ifrt->ifrt_type. This means that in 1577 * the case where ipif->ipif_net_type is IRE_LOOPBACK, 1578 * the ire created by ire_create_v6() will be an IRE_LOOPBACK, 1579 * it will then be turned into an IRE_IF_NORESOLVER and then 1580 * added by ire_add_v6(). 1581 */ 1582 ifrt = (ifrt_t *)mp->b_rptr; 1583 if (ifrt->ifrt_type & IRE_INTERFACE) { 1584 rfq = NULL; 1585 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 1586 ? ipif->ipif_rq : ipif->ipif_wq; 1587 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 1588 ? &ifrt->ifrt_v6src_addr 1589 : &ipif->ipif_v6src_addr; 1590 gateway_addr = NULL; 1591 type = ipif->ipif_net_type; 1592 } else { 1593 rfq = NULL; 1594 stq = NULL; 1595 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 1596 ? &ifrt->ifrt_v6src_addr : NULL; 1597 gateway_addr = &ifrt->ifrt_v6gateway_addr; 1598 type = ifrt->ifrt_type; 1599 } 1600 1601 /* 1602 * Create a copy of the IRE with the saved address and netmask. 1603 */ 1604 ip1dbg(("ipif_recover_ire_v6: creating IRE %s (%d) for %s/%d\n", 1605 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 1606 inet_ntop(AF_INET6, &ifrt->ifrt_v6addr, buf, sizeof (buf)), 1607 ip_mask_to_plen_v6(&ifrt->ifrt_v6mask))); 1608 ire = ire_create_v6( 1609 &ifrt->ifrt_v6addr, 1610 &ifrt->ifrt_v6mask, 1611 src_addr, 1612 gateway_addr, 1613 &ifrt->ifrt_max_frag, 1614 NULL, 1615 rfq, 1616 stq, 1617 type, 1618 ipif, 1619 NULL, 1620 0, 1621 0, 1622 ifrt->ifrt_flags, 1623 &ifrt->ifrt_iulp_info, 1624 NULL, 1625 NULL, 1626 ipst); 1627 if (ire == NULL) { 1628 mutex_exit(&ipif->ipif_saved_ire_lock); 1629 kmem_free(ipif_saved_irep, 1630 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 1631 return (NULL); 1632 } 1633 1634 /* 1635 * Some software (for example, GateD and Sun Cluster) attempts 1636 * to create (what amount to) IRE_PREFIX routes with the 1637 * loopback address as the gateway. This is primarily done to 1638 * set up prefixes with the RTF_REJECT flag set (for example, 1639 * when generating aggregate routes.) 1640 * 1641 * If the IRE type (as defined by ipif->ipif_net_type) is 1642 * IRE_LOOPBACK, then we map the request into a 1643 * IRE_IF_NORESOLVER. 1644 */ 1645 if (ipif->ipif_net_type == IRE_LOOPBACK) 1646 ire->ire_type = IRE_IF_NORESOLVER; 1647 /* 1648 * ire held by ire_add, will be refreled' in ipif_up_done 1649 * towards the end 1650 */ 1651 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1652 *irep = ire; 1653 irep++; 1654 ip1dbg(("ipif_recover_ire_v6: added ire %p\n", (void *)ire)); 1655 } 1656 mutex_exit(&ipif->ipif_saved_ire_lock); 1657 return (ipif_saved_irep); 1658 } 1659 1660 /* 1661 * Return the scope of the given IPv6 address. If the address is an 1662 * IPv4 mapped IPv6 address, return the scope of the corresponding 1663 * IPv4 address. 1664 */ 1665 in6addr_scope_t 1666 ip_addr_scope_v6(const in6_addr_t *addr) 1667 { 1668 static in6_addr_t ipv6loopback = IN6ADDR_LOOPBACK_INIT; 1669 1670 if (IN6_IS_ADDR_V4MAPPED(addr)) { 1671 in_addr_t v4addr_h = ntohl(V4_PART_OF_V6((*addr))); 1672 if ((v4addr_h >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 1673 (v4addr_h & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET) 1674 return (IP6_SCOPE_LINKLOCAL); 1675 if ((v4addr_h & IN_PRIVATE8_MASK) == IN_PRIVATE8_NET || 1676 (v4addr_h & IN_PRIVATE12_MASK) == IN_PRIVATE12_NET || 1677 (v4addr_h & IN_PRIVATE16_MASK) == IN_PRIVATE16_NET) 1678 return (IP6_SCOPE_SITELOCAL); 1679 return (IP6_SCOPE_GLOBAL); 1680 } 1681 1682 if (IN6_IS_ADDR_MULTICAST(addr)) 1683 return (IN6_ADDR_MC_SCOPE(addr)); 1684 1685 /* link-local and loopback addresses are of link-local scope */ 1686 if (IN6_IS_ADDR_LINKLOCAL(addr) || 1687 IN6_ARE_ADDR_EQUAL(addr, &ipv6loopback)) 1688 return (IP6_SCOPE_LINKLOCAL); 1689 if (IN6_IS_ADDR_SITELOCAL(addr)) 1690 return (IP6_SCOPE_SITELOCAL); 1691 return (IP6_SCOPE_GLOBAL); 1692 } 1693 1694 1695 /* 1696 * Returns the length of the common prefix of a1 and a2, as per 1697 * CommonPrefixLen() defined in RFC 3484. 1698 */ 1699 static int 1700 ip_common_prefix_v6(const in6_addr_t *a1, const in6_addr_t *a2) 1701 { 1702 int i; 1703 uint32_t a1val, a2val, mask; 1704 1705 for (i = 0; i < 4; i++) { 1706 if ((a1val = a1->s6_addr32[i]) != (a2val = a2->s6_addr32[i])) { 1707 a1val ^= a2val; 1708 i *= 32; 1709 mask = 0x80000000u; 1710 while (!(a1val & mask)) { 1711 mask >>= 1; 1712 i++; 1713 } 1714 return (i); 1715 } 1716 } 1717 return (IPV6_ABITS); 1718 } 1719 1720 #define IPIF_VALID_IPV6_SOURCE(ipif) \ 1721 (((ipif)->ipif_flags & IPIF_UP) && \ 1722 !((ipif)->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) && \ 1723 (ipif)->ipif_addr_ready) 1724 1725 /* source address candidate */ 1726 typedef struct candidate { 1727 ipif_t *cand_ipif; 1728 /* The properties of this candidate */ 1729 boolean_t cand_isdst; 1730 boolean_t cand_isdst_set; 1731 in6addr_scope_t cand_scope; 1732 boolean_t cand_scope_set; 1733 boolean_t cand_isdeprecated; 1734 boolean_t cand_isdeprecated_set; 1735 boolean_t cand_ispreferred; 1736 boolean_t cand_ispreferred_set; 1737 boolean_t cand_matchedinterface; 1738 boolean_t cand_matchedinterface_set; 1739 boolean_t cand_matchedlabel; 1740 boolean_t cand_matchedlabel_set; 1741 boolean_t cand_istmp; 1742 boolean_t cand_istmp_set; 1743 int cand_common_pref; 1744 boolean_t cand_common_pref_set; 1745 boolean_t cand_pref_eq; 1746 boolean_t cand_pref_eq_set; 1747 int cand_pref_len; 1748 boolean_t cand_pref_len_set; 1749 } cand_t; 1750 #define cand_srcaddr cand_ipif->ipif_v6lcl_addr 1751 #define cand_mask cand_ipif->ipif_v6net_mask 1752 #define cand_flags cand_ipif->ipif_flags 1753 #define cand_ill cand_ipif->ipif_ill 1754 #define cand_zoneid cand_ipif->ipif_zoneid 1755 1756 /* information about the destination for source address selection */ 1757 typedef struct dstinfo { 1758 const in6_addr_t *dst_addr; 1759 ill_t *dst_ill; 1760 uint_t dst_restrict_ill; 1761 boolean_t dst_prefer_src_tmp; 1762 in6addr_scope_t dst_scope; 1763 char *dst_label; 1764 } dstinfo_t; 1765 1766 /* 1767 * The following functions are rules used to select a source address in 1768 * ipif_select_source_v6(). Each rule compares a current candidate (cc) 1769 * against the best candidate (bc). Each rule has three possible outcomes; 1770 * the candidate is preferred over the best candidate (CAND_PREFER), the 1771 * candidate is not preferred over the best candidate (CAND_AVOID), or the 1772 * candidate is of equal value as the best candidate (CAND_TIE). 1773 * 1774 * These rules are part of a greater "Default Address Selection for IPv6" 1775 * sheme, which is standards based work coming out of the IETF ipv6 working 1776 * group. The IETF document defines both IPv6 source address selection and 1777 * destination address ordering. The rules defined here implement the IPv6 1778 * source address selection. Destination address ordering is done by 1779 * libnsl, and uses a similar set of rules to implement the sorting. 1780 * 1781 * Most of the rules are defined by the RFC and are not typically altered. The 1782 * last rule, number 8, has language that allows for local preferences. In the 1783 * scheme below, this means that new Solaris rules should normally go between 1784 * rule_ifprefix and rule_prefix. 1785 */ 1786 typedef enum {CAND_AVOID, CAND_TIE, CAND_PREFER} rule_res_t; 1787 typedef rule_res_t (*rulef_t)(cand_t *, cand_t *, const dstinfo_t *, 1788 ip_stack_t *); 1789 1790 /* Prefer an address if it is equal to the destination address. */ 1791 /* ARGSUSED3 */ 1792 static rule_res_t 1793 rule_isdst(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) 1794 { 1795 if (!bc->cand_isdst_set) { 1796 bc->cand_isdst = 1797 IN6_ARE_ADDR_EQUAL(&bc->cand_srcaddr, dstinfo->dst_addr); 1798 bc->cand_isdst_set = B_TRUE; 1799 } 1800 1801 cc->cand_isdst = 1802 IN6_ARE_ADDR_EQUAL(&cc->cand_srcaddr, dstinfo->dst_addr); 1803 cc->cand_isdst_set = B_TRUE; 1804 1805 if (cc->cand_isdst == bc->cand_isdst) 1806 return (CAND_TIE); 1807 else if (cc->cand_isdst) 1808 return (CAND_PREFER); 1809 else 1810 return (CAND_AVOID); 1811 } 1812 1813 /* 1814 * Prefer addresses that are of closest scope to the destination. Always 1815 * prefer addresses that are of greater scope than the destination over 1816 * those that are of lesser scope than the destination. 1817 */ 1818 /* ARGSUSED3 */ 1819 static rule_res_t 1820 rule_scope(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) 1821 { 1822 if (!bc->cand_scope_set) { 1823 bc->cand_scope = ip_addr_scope_v6(&bc->cand_srcaddr); 1824 bc->cand_scope_set = B_TRUE; 1825 } 1826 1827 cc->cand_scope = ip_addr_scope_v6(&cc->cand_srcaddr); 1828 cc->cand_scope_set = B_TRUE; 1829 1830 if (cc->cand_scope < bc->cand_scope) { 1831 if (cc->cand_scope < dstinfo->dst_scope) 1832 return (CAND_AVOID); 1833 else 1834 return (CAND_PREFER); 1835 } else if (bc->cand_scope < cc->cand_scope) { 1836 if (bc->cand_scope < dstinfo->dst_scope) 1837 return (CAND_PREFER); 1838 else 1839 return (CAND_AVOID); 1840 } else { 1841 return (CAND_TIE); 1842 } 1843 } 1844 1845 /* 1846 * Prefer non-deprecated source addresses. 1847 */ 1848 /* ARGSUSED2 */ 1849 static rule_res_t 1850 rule_deprecated(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1851 ip_stack_t *ipst) 1852 { 1853 if (!bc->cand_isdeprecated_set) { 1854 bc->cand_isdeprecated = 1855 ((bc->cand_flags & IPIF_DEPRECATED) != 0); 1856 bc->cand_isdeprecated_set = B_TRUE; 1857 } 1858 1859 cc->cand_isdeprecated = ((cc->cand_flags & IPIF_DEPRECATED) != 0); 1860 cc->cand_isdeprecated_set = B_TRUE; 1861 1862 if (bc->cand_isdeprecated == cc->cand_isdeprecated) 1863 return (CAND_TIE); 1864 else if (cc->cand_isdeprecated) 1865 return (CAND_AVOID); 1866 else 1867 return (CAND_PREFER); 1868 } 1869 1870 /* 1871 * Prefer source addresses that have the IPIF_PREFERRED flag set. This 1872 * rule must be before rule_interface because the flag could be set on any 1873 * interface, not just the interface being used for outgoing packets (for 1874 * example, the IFF_PREFERRED could be set on an address assigned to the 1875 * loopback interface). 1876 */ 1877 /* ARGSUSED2 */ 1878 static rule_res_t 1879 rule_preferred(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1880 ip_stack_t *ipst) 1881 { 1882 if (!bc->cand_ispreferred_set) { 1883 bc->cand_ispreferred = ((bc->cand_flags & IPIF_PREFERRED) != 0); 1884 bc->cand_ispreferred_set = B_TRUE; 1885 } 1886 1887 cc->cand_ispreferred = ((cc->cand_flags & IPIF_PREFERRED) != 0); 1888 cc->cand_ispreferred_set = B_TRUE; 1889 1890 if (bc->cand_ispreferred == cc->cand_ispreferred) 1891 return (CAND_TIE); 1892 else if (cc->cand_ispreferred) 1893 return (CAND_PREFER); 1894 else 1895 return (CAND_AVOID); 1896 } 1897 1898 /* 1899 * Prefer source addresses that are assigned to the outgoing interface, or 1900 * to an interface that is in the same IPMP group as the outgoing 1901 * interface. 1902 */ 1903 /* ARGSUSED3 */ 1904 static rule_res_t 1905 rule_interface(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1906 ip_stack_t *ipst) 1907 { 1908 ill_t *dstill = dstinfo->dst_ill; 1909 1910 /* 1911 * If dstinfo->dst_restrict_ill is set, this rule is unnecessary 1912 * since we know all candidates will be on the same link. 1913 */ 1914 if (dstinfo->dst_restrict_ill) 1915 return (CAND_TIE); 1916 1917 if (!bc->cand_matchedinterface_set) { 1918 bc->cand_matchedinterface = (bc->cand_ill == dstill || 1919 (dstill->ill_group != NULL && 1920 dstill->ill_group == bc->cand_ill->ill_group)); 1921 bc->cand_matchedinterface_set = B_TRUE; 1922 } 1923 1924 cc->cand_matchedinterface = (cc->cand_ill == dstill || 1925 (dstill->ill_group != NULL && 1926 dstill->ill_group == cc->cand_ill->ill_group)); 1927 cc->cand_matchedinterface_set = B_TRUE; 1928 1929 if (bc->cand_matchedinterface == cc->cand_matchedinterface) 1930 return (CAND_TIE); 1931 else if (cc->cand_matchedinterface) 1932 return (CAND_PREFER); 1933 else 1934 return (CAND_AVOID); 1935 } 1936 1937 /* 1938 * Prefer source addresses whose label matches the destination's label. 1939 */ 1940 static rule_res_t 1941 rule_label(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) 1942 { 1943 char *label; 1944 1945 if (!bc->cand_matchedlabel_set) { 1946 label = ip6_asp_lookup(&bc->cand_srcaddr, NULL, ipst); 1947 bc->cand_matchedlabel = 1948 ip6_asp_labelcmp(label, dstinfo->dst_label); 1949 bc->cand_matchedlabel_set = B_TRUE; 1950 } 1951 1952 label = ip6_asp_lookup(&cc->cand_srcaddr, NULL, ipst); 1953 cc->cand_matchedlabel = ip6_asp_labelcmp(label, dstinfo->dst_label); 1954 cc->cand_matchedlabel_set = B_TRUE; 1955 1956 if (bc->cand_matchedlabel == cc->cand_matchedlabel) 1957 return (CAND_TIE); 1958 else if (cc->cand_matchedlabel) 1959 return (CAND_PREFER); 1960 else 1961 return (CAND_AVOID); 1962 } 1963 1964 /* 1965 * Prefer public addresses over temporary ones. An application can reverse 1966 * the logic of this rule and prefer temporary addresses by using the 1967 * IPV6_SRC_PREFERENCES socket option. 1968 */ 1969 /* ARGSUSED3 */ 1970 static rule_res_t 1971 rule_temporary(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1972 ip_stack_t *ipst) 1973 { 1974 if (!bc->cand_istmp_set) { 1975 bc->cand_istmp = ((bc->cand_flags & IPIF_TEMPORARY) != 0); 1976 bc->cand_istmp_set = B_TRUE; 1977 } 1978 1979 cc->cand_istmp = ((cc->cand_flags & IPIF_TEMPORARY) != 0); 1980 cc->cand_istmp_set = B_TRUE; 1981 1982 if (bc->cand_istmp == cc->cand_istmp) 1983 return (CAND_TIE); 1984 1985 if (dstinfo->dst_prefer_src_tmp && cc->cand_istmp) 1986 return (CAND_PREFER); 1987 else if (!dstinfo->dst_prefer_src_tmp && !cc->cand_istmp) 1988 return (CAND_PREFER); 1989 else 1990 return (CAND_AVOID); 1991 } 1992 1993 /* 1994 * Prefer source addresses with longer matching prefix with the destination 1995 * under the interface mask. This gets us on the same subnet before applying 1996 * any Solaris-specific rules. 1997 */ 1998 /* ARGSUSED3 */ 1999 static rule_res_t 2000 rule_ifprefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 2001 ip_stack_t *ipst) 2002 { 2003 if (!bc->cand_pref_eq_set) { 2004 bc->cand_pref_eq = V6_MASK_EQ_2(bc->cand_srcaddr, 2005 bc->cand_mask, *dstinfo->dst_addr); 2006 bc->cand_pref_eq_set = B_TRUE; 2007 } 2008 2009 cc->cand_pref_eq = V6_MASK_EQ_2(cc->cand_srcaddr, cc->cand_mask, 2010 *dstinfo->dst_addr); 2011 cc->cand_pref_eq_set = B_TRUE; 2012 2013 if (bc->cand_pref_eq) { 2014 if (cc->cand_pref_eq) { 2015 if (!bc->cand_pref_len_set) { 2016 bc->cand_pref_len = 2017 ip_mask_to_plen_v6(&bc->cand_mask); 2018 bc->cand_pref_len_set = B_TRUE; 2019 } 2020 cc->cand_pref_len = ip_mask_to_plen_v6(&cc->cand_mask); 2021 cc->cand_pref_len_set = B_TRUE; 2022 if (bc->cand_pref_len == cc->cand_pref_len) 2023 return (CAND_TIE); 2024 else if (bc->cand_pref_len > cc->cand_pref_len) 2025 return (CAND_AVOID); 2026 else 2027 return (CAND_PREFER); 2028 } else { 2029 return (CAND_AVOID); 2030 } 2031 } else { 2032 if (cc->cand_pref_eq) 2033 return (CAND_PREFER); 2034 else 2035 return (CAND_TIE); 2036 } 2037 } 2038 2039 /* 2040 * Prefer to use zone-specific addresses when possible instead of all-zones 2041 * addresses. 2042 */ 2043 /* ARGSUSED2 */ 2044 static rule_res_t 2045 rule_zone_specific(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 2046 ip_stack_t *ipst) 2047 { 2048 if ((bc->cand_zoneid == ALL_ZONES) == 2049 (cc->cand_zoneid == ALL_ZONES)) 2050 return (CAND_TIE); 2051 else if (cc->cand_zoneid == ALL_ZONES) 2052 return (CAND_AVOID); 2053 else 2054 return (CAND_PREFER); 2055 } 2056 2057 /* 2058 * Prefer to use DHCPv6 (first) and static addresses (second) when possible 2059 * instead of statelessly autoconfigured addresses. 2060 * 2061 * This is done after trying all other preferences (and before the final tie 2062 * breaker) so that, if all else is equal, we select addresses configured by 2063 * DHCPv6 over other addresses. We presume that DHCPv6 addresses, unlike 2064 * stateless autoconfigured addresses, are deliberately configured by an 2065 * administrator, and thus are correctly set up in DNS and network packet 2066 * filters. 2067 */ 2068 /* ARGSUSED2 */ 2069 static rule_res_t 2070 rule_addr_type(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 2071 ip_stack_t *ipst) 2072 { 2073 #define ATYPE(x) \ 2074 ((x) & IPIF_DHCPRUNNING) ? 1 : ((x) & IPIF_ADDRCONF) ? 3 : 2 2075 int bcval = ATYPE(bc->cand_flags); 2076 int ccval = ATYPE(cc->cand_flags); 2077 #undef ATYPE 2078 2079 if (bcval == ccval) 2080 return (CAND_TIE); 2081 else if (ccval < bcval) 2082 return (CAND_PREFER); 2083 else 2084 return (CAND_AVOID); 2085 } 2086 2087 /* 2088 * Prefer source addresses with longer matching prefix with the destination. 2089 * We do the longest matching prefix calculation by doing an xor of both 2090 * addresses with the destination, and pick the address with the longest string 2091 * of leading zeros, as per CommonPrefixLen() defined in RFC 3484. 2092 */ 2093 /* ARGSUSED3 */ 2094 static rule_res_t 2095 rule_prefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) 2096 { 2097 if (!bc->cand_common_pref_set) { 2098 bc->cand_common_pref = ip_common_prefix_v6(&bc->cand_srcaddr, 2099 dstinfo->dst_addr); 2100 bc->cand_common_pref_set = B_TRUE; 2101 } 2102 2103 cc->cand_common_pref = ip_common_prefix_v6(&cc->cand_srcaddr, 2104 dstinfo->dst_addr); 2105 cc->cand_common_pref_set = B_TRUE; 2106 2107 if (bc->cand_common_pref == cc->cand_common_pref) 2108 return (CAND_TIE); 2109 else if (bc->cand_common_pref > cc->cand_common_pref) 2110 return (CAND_AVOID); 2111 else 2112 return (CAND_PREFER); 2113 } 2114 2115 /* 2116 * Last rule: we must pick something, so just prefer the current best 2117 * candidate. 2118 */ 2119 /* ARGSUSED */ 2120 static rule_res_t 2121 rule_must_be_last(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 2122 ip_stack_t *ipst) 2123 { 2124 return (CAND_AVOID); 2125 } 2126 2127 /* 2128 * Determine the best source address given a destination address and a 2129 * destination ill. If no suitable source address is found, it returns 2130 * NULL. If there is a usable address pointed to by the usesrc 2131 * (i.e ill_usesrc_ifindex != 0) then return that first since it is more 2132 * fine grained (i.e per interface) 2133 * 2134 * This implementation is based on the "Default Address Selection for IPv6" 2135 * specification produced by the IETF IPv6 working group. It has been 2136 * implemented so that the list of addresses is only traversed once (the 2137 * specification's algorithm could traverse the list of addresses once for 2138 * every rule). 2139 * 2140 * The restrict_ill argument restricts the algorithm to chose a source 2141 * address that is assigned to the destination ill or an ill in the same 2142 * IPMP group as the destination ill. This is used when the destination 2143 * address is a link-local or multicast address, and when 2144 * ipv6_strict_dst_multihoming is turned on. 2145 * 2146 * src_prefs is the caller's set of source address preferences. If source 2147 * address selection is being called to determine the source address of a 2148 * connected socket (from ip_bind_connected_v6()), then the preferences are 2149 * taken from conn_src_preferences. These preferences can be set on a 2150 * per-socket basis using the IPV6_SRC_PREFERENCES socket option. The only 2151 * preference currently implemented is for rfc3041 temporary addresses. 2152 */ 2153 ipif_t * 2154 ipif_select_source_v6(ill_t *dstill, const in6_addr_t *dst, 2155 uint_t restrict_ill, uint32_t src_prefs, zoneid_t zoneid) 2156 { 2157 dstinfo_t dstinfo; 2158 char dstr[INET6_ADDRSTRLEN]; 2159 char sstr[INET6_ADDRSTRLEN]; 2160 ipif_t *ipif; 2161 ill_t *ill, *usesrc_ill = NULL; 2162 ill_walk_context_t ctx; 2163 cand_t best_c; /* The best candidate */ 2164 cand_t curr_c; /* The current candidate */ 2165 uint_t index; 2166 boolean_t first_candidate = B_TRUE; 2167 rule_res_t rule_result; 2168 tsol_tpc_t *src_rhtp, *dst_rhtp; 2169 ip_stack_t *ipst = dstill->ill_ipst; 2170 2171 /* 2172 * The list of ordering rules. They are applied in the order they 2173 * appear in the list. 2174 * 2175 * Solaris doesn't currently support Mobile IPv6, so there's no 2176 * rule_mipv6 corresponding to rule 4 in the specification. 2177 */ 2178 rulef_t rules[] = { 2179 rule_isdst, 2180 rule_scope, 2181 rule_deprecated, 2182 rule_preferred, 2183 rule_interface, 2184 rule_label, 2185 rule_temporary, 2186 rule_ifprefix, /* local rules after this */ 2187 rule_zone_specific, 2188 rule_addr_type, 2189 rule_prefix, /* local rules before this */ 2190 rule_must_be_last, /* must always be last */ 2191 NULL 2192 }; 2193 2194 ASSERT(dstill->ill_isv6); 2195 ASSERT(!IN6_IS_ADDR_V4MAPPED(dst)); 2196 2197 /* 2198 * Check if there is a usable src address pointed to by the 2199 * usesrc ifindex. This has higher precedence since it is 2200 * finer grained (i.e per interface) v/s being system wide. 2201 */ 2202 if (dstill->ill_usesrc_ifindex != 0) { 2203 if ((usesrc_ill = 2204 ill_lookup_on_ifindex(dstill->ill_usesrc_ifindex, B_TRUE, 2205 NULL, NULL, NULL, NULL, ipst)) != NULL) { 2206 dstinfo.dst_ill = usesrc_ill; 2207 } else { 2208 return (NULL); 2209 } 2210 } else { 2211 dstinfo.dst_ill = dstill; 2212 } 2213 2214 /* 2215 * If we're dealing with an unlabeled destination on a labeled system, 2216 * make sure that we ignore source addresses that are incompatible with 2217 * the destination's default label. That destination's default label 2218 * must dominate the minimum label on the source address. 2219 * 2220 * (Note that this has to do with Trusted Solaris. It's not related to 2221 * the labels described by ip6_asp_lookup.) 2222 */ 2223 dst_rhtp = NULL; 2224 if (is_system_labeled()) { 2225 dst_rhtp = find_tpc(dst, IPV6_VERSION, B_FALSE); 2226 if (dst_rhtp == NULL) 2227 return (NULL); 2228 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 2229 TPC_RELE(dst_rhtp); 2230 dst_rhtp = NULL; 2231 } 2232 } 2233 2234 dstinfo.dst_addr = dst; 2235 dstinfo.dst_scope = ip_addr_scope_v6(dst); 2236 dstinfo.dst_label = ip6_asp_lookup(dst, NULL, ipst); 2237 dstinfo.dst_prefer_src_tmp = ((src_prefs & IPV6_PREFER_SRC_TMP) != 0); 2238 2239 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2240 /* 2241 * Section three of the I-D states that for multicast and 2242 * link-local destinations, the candidate set must be restricted to 2243 * an interface that is on the same link as the outgoing interface. 2244 * Also, when ipv6_strict_dst_multihoming is turned on, always 2245 * restrict the source address to the destination link as doing 2246 * otherwise will almost certainly cause problems. 2247 */ 2248 if (IN6_IS_ADDR_LINKLOCAL(dst) || IN6_IS_ADDR_MULTICAST(dst) || 2249 ipst->ips_ipv6_strict_dst_multihoming || usesrc_ill != NULL) { 2250 if (restrict_ill == RESTRICT_TO_NONE) 2251 dstinfo.dst_restrict_ill = RESTRICT_TO_GROUP; 2252 else 2253 dstinfo.dst_restrict_ill = restrict_ill; 2254 } else { 2255 dstinfo.dst_restrict_ill = restrict_ill; 2256 } 2257 2258 bzero(&best_c, sizeof (cand_t)); 2259 2260 /* 2261 * Take a pass through the list of IPv6 interfaces to chose the 2262 * best possible source address. If restrict_ill is true, we only 2263 * iterate through the ill's that are in the same IPMP group as the 2264 * destination's outgoing ill. If restrict_ill is false, we walk 2265 * the entire list of IPv6 ill's. 2266 */ 2267 if (dstinfo.dst_restrict_ill != RESTRICT_TO_NONE) { 2268 if (dstinfo.dst_ill->ill_group != NULL && 2269 dstinfo.dst_restrict_ill == RESTRICT_TO_GROUP) { 2270 ill = dstinfo.dst_ill->ill_group->illgrp_ill; 2271 } else { 2272 ill = dstinfo.dst_ill; 2273 } 2274 } else { 2275 ill = ILL_START_WALK_V6(&ctx, ipst); 2276 } 2277 2278 while (ill != NULL) { 2279 ASSERT(ill->ill_isv6); 2280 2281 /* 2282 * Avoid FAILED/OFFLINE ills. 2283 * Global and site local addresses will failover and 2284 * will be available on the new ill. 2285 * But link local addresses don't move. 2286 */ 2287 if (dstinfo.dst_restrict_ill != RESTRICT_TO_ILL && 2288 ill->ill_phyint->phyint_flags & 2289 (PHYI_OFFLINE | PHYI_FAILED)) 2290 goto next_ill; 2291 2292 for (ipif = ill->ill_ipif; ipif != NULL; 2293 ipif = ipif->ipif_next) { 2294 2295 if (!IPIF_VALID_IPV6_SOURCE(ipif)) 2296 continue; 2297 2298 if (zoneid != ALL_ZONES && 2299 ipif->ipif_zoneid != zoneid && 2300 ipif->ipif_zoneid != ALL_ZONES) 2301 continue; 2302 2303 /* 2304 * Check compatibility of local address for 2305 * destination's default label if we're on a labeled 2306 * system. Incompatible addresses can't be used at 2307 * all and must be skipped over. 2308 */ 2309 if (dst_rhtp != NULL) { 2310 boolean_t incompat; 2311 2312 src_rhtp = find_tpc(&ipif->ipif_v6lcl_addr, 2313 IPV6_VERSION, B_FALSE); 2314 if (src_rhtp == NULL) 2315 continue; 2316 incompat = 2317 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 2318 src_rhtp->tpc_tp.tp_doi != 2319 dst_rhtp->tpc_tp.tp_doi || 2320 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 2321 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 2322 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 2323 src_rhtp->tpc_tp.tp_sl_set_cipso)); 2324 TPC_RELE(src_rhtp); 2325 if (incompat) 2326 continue; 2327 } 2328 2329 if (first_candidate) { 2330 /* 2331 * This is first valid address in the list. 2332 * It is automatically the best candidate 2333 * so far. 2334 */ 2335 best_c.cand_ipif = ipif; 2336 first_candidate = B_FALSE; 2337 continue; 2338 } 2339 2340 bzero(&curr_c, sizeof (cand_t)); 2341 curr_c.cand_ipif = ipif; 2342 2343 /* 2344 * Compare this current candidate (curr_c) with the 2345 * best candidate (best_c) by applying the 2346 * comparison rules in order until one breaks the 2347 * tie. 2348 */ 2349 for (index = 0; rules[index] != NULL; index++) { 2350 /* Apply a comparison rule. */ 2351 rule_result = 2352 (rules[index])(&best_c, &curr_c, &dstinfo, 2353 ipst); 2354 if (rule_result == CAND_AVOID) { 2355 /* 2356 * The best candidate is still the 2357 * best candidate. Forget about 2358 * this current candidate and go on 2359 * to the next one. 2360 */ 2361 break; 2362 } else if (rule_result == CAND_PREFER) { 2363 /* 2364 * This candidate is prefered. It 2365 * becomes the best candidate so 2366 * far. Go on to the next address. 2367 */ 2368 best_c = curr_c; 2369 break; 2370 } 2371 /* We have a tie, apply the next rule. */ 2372 } 2373 2374 /* 2375 * The last rule must be a tie breaker rule and 2376 * must never produce a tie. At this point, the 2377 * candidate should have either been rejected, or 2378 * have been prefered as the best candidate so far. 2379 */ 2380 ASSERT(rule_result != CAND_TIE); 2381 } 2382 2383 /* 2384 * We may be walking the linked-list of ill's in an 2385 * IPMP group or traversing the IPv6 ill avl tree. If it is a 2386 * usesrc ILL then it can't be part of IPMP group and we 2387 * will exit the while loop. 2388 */ 2389 next_ill: 2390 if (dstinfo.dst_restrict_ill == RESTRICT_TO_ILL) 2391 ill = NULL; 2392 else if (dstinfo.dst_restrict_ill == RESTRICT_TO_GROUP) 2393 ill = ill->ill_group_next; 2394 else 2395 ill = ill_next(&ctx, ill); 2396 } 2397 2398 ipif = best_c.cand_ipif; 2399 ip1dbg(("ipif_select_source_v6(%s, %s) -> %s\n", 2400 dstinfo.dst_ill->ill_name, 2401 inet_ntop(AF_INET6, dstinfo.dst_addr, dstr, sizeof (dstr)), 2402 (ipif == NULL ? "NULL" : 2403 inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, sstr, sizeof (sstr))))); 2404 2405 if (usesrc_ill != NULL) 2406 ill_refrele(usesrc_ill); 2407 2408 if (dst_rhtp != NULL) 2409 TPC_RELE(dst_rhtp); 2410 2411 if (ipif == NULL) { 2412 rw_exit(&ipst->ips_ill_g_lock); 2413 return (NULL); 2414 } 2415 2416 mutex_enter(&ipif->ipif_ill->ill_lock); 2417 if (IPIF_CAN_LOOKUP(ipif)) { 2418 ipif_refhold_locked(ipif); 2419 mutex_exit(&ipif->ipif_ill->ill_lock); 2420 rw_exit(&ipst->ips_ill_g_lock); 2421 return (ipif); 2422 } 2423 mutex_exit(&ipif->ipif_ill->ill_lock); 2424 rw_exit(&ipst->ips_ill_g_lock); 2425 ip1dbg(("ipif_select_source_v6 cannot lookup ipif %p" 2426 " returning null \n", (void *)ipif)); 2427 2428 return (NULL); 2429 } 2430 2431 /* 2432 * If old_ipif is not NULL, see if ipif was derived from old 2433 * ipif and if so, recreate the interface route by re-doing 2434 * source address selection. This happens when ipif_down -> 2435 * ipif_update_other_ipifs calls us. 2436 * 2437 * If old_ipif is NULL, just redo the source address selection 2438 * if needed. This happens when illgrp_insert or ipif_up_done_v6 2439 * calls us. 2440 */ 2441 void 2442 ipif_recreate_interface_routes_v6(ipif_t *old_ipif, ipif_t *ipif) 2443 { 2444 ire_t *ire; 2445 ire_t *ipif_ire; 2446 queue_t *stq; 2447 ill_t *ill; 2448 ipif_t *nipif = NULL; 2449 boolean_t nipif_refheld = B_FALSE; 2450 boolean_t ip6_asp_table_held = B_FALSE; 2451 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 2452 2453 ill = ipif->ipif_ill; 2454 2455 if (!(ipif->ipif_flags & 2456 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 2457 /* 2458 * Can't possibly have borrowed the source 2459 * from old_ipif. 2460 */ 2461 return; 2462 } 2463 2464 /* 2465 * Is there any work to be done? No work if the address 2466 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 2467 * ipif_select_source_v6() does not borrow addresses from 2468 * NOLOCAL and ANYCAST interfaces). 2469 */ 2470 if ((old_ipif != NULL) && 2471 ((IN6_IS_ADDR_UNSPECIFIED(&old_ipif->ipif_v6lcl_addr)) || 2472 (old_ipif->ipif_ill->ill_wq == NULL) || 2473 (old_ipif->ipif_flags & 2474 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 2475 return; 2476 } 2477 2478 /* 2479 * Perform the same checks as when creating the 2480 * IRE_INTERFACE in ipif_up_done_v6. 2481 */ 2482 if (!(ipif->ipif_flags & IPIF_UP)) 2483 return; 2484 2485 if ((ipif->ipif_flags & IPIF_NOXMIT)) 2486 return; 2487 2488 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) && 2489 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 2490 return; 2491 2492 /* 2493 * We know that ipif uses some other source for its 2494 * IRE_INTERFACE. Is it using the source of this 2495 * old_ipif? 2496 */ 2497 ipif_ire = ipif_to_ire_v6(ipif); 2498 if (ipif_ire == NULL) 2499 return; 2500 2501 if (old_ipif != NULL && 2502 !IN6_ARE_ADDR_EQUAL(&old_ipif->ipif_v6lcl_addr, 2503 &ipif_ire->ire_src_addr_v6)) { 2504 ire_refrele(ipif_ire); 2505 return; 2506 } 2507 2508 if (ip_debug > 2) { 2509 /* ip1dbg */ 2510 pr_addr_dbg("ipif_recreate_interface_routes_v6: deleting IRE" 2511 " for src %s\n", AF_INET6, &ipif_ire->ire_src_addr_v6); 2512 } 2513 2514 stq = ipif_ire->ire_stq; 2515 2516 /* 2517 * Can't use our source address. Select a different source address 2518 * for the IRE_INTERFACE. We restrict interface route source 2519 * address selection to ipif's assigned to the same link as the 2520 * interface. 2521 */ 2522 if (ip6_asp_can_lookup(ipst)) { 2523 ip6_asp_table_held = B_TRUE; 2524 nipif = ipif_select_source_v6(ill, &ipif->ipif_v6subnet, 2525 RESTRICT_TO_GROUP, IPV6_PREFER_SRC_DEFAULT, 2526 ipif->ipif_zoneid); 2527 } 2528 if (nipif == NULL) { 2529 /* Last resort - all ipif's have IPIF_NOLOCAL */ 2530 nipif = ipif; 2531 } else { 2532 nipif_refheld = B_TRUE; 2533 } 2534 2535 ire = ire_create_v6( 2536 &ipif->ipif_v6subnet, /* dest pref */ 2537 &ipif->ipif_v6net_mask, /* mask */ 2538 &nipif->ipif_v6src_addr, /* src addr */ 2539 NULL, /* no gateway */ 2540 &ipif->ipif_mtu, /* max frag */ 2541 NULL, /* no src nce */ 2542 NULL, /* no recv from queue */ 2543 stq, /* send-to queue */ 2544 ill->ill_net_type, /* IF_[NO]RESOLVER */ 2545 ipif, 2546 NULL, 2547 0, 2548 0, 2549 0, 2550 &ire_uinfo_null, 2551 NULL, 2552 NULL, 2553 ipst); 2554 2555 if (ire != NULL) { 2556 ire_t *ret_ire; 2557 int error; 2558 2559 /* 2560 * We don't need ipif_ire anymore. We need to delete 2561 * before we add so that ire_add does not detect 2562 * duplicates. 2563 */ 2564 ire_delete(ipif_ire); 2565 ret_ire = ire; 2566 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 2567 ASSERT(error == 0); 2568 ASSERT(ret_ire == ire); 2569 if (ret_ire != NULL) { 2570 /* Held in ire_add */ 2571 ire_refrele(ret_ire); 2572 } 2573 } 2574 /* 2575 * Either we are falling through from above or could not 2576 * allocate a replacement. 2577 */ 2578 ire_refrele(ipif_ire); 2579 if (ip6_asp_table_held) 2580 ip6_asp_table_refrele(ipst); 2581 if (nipif_refheld) 2582 ipif_refrele(nipif); 2583 } 2584 2585 /* 2586 * This old_ipif is going away. 2587 * 2588 * Determine if any other ipif's are using our address as 2589 * ipif_v6lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 2590 * IPIF_DEPRECATED). 2591 * Find the IRE_INTERFACE for such ipif's and recreate them 2592 * to use an different source address following the rules in 2593 * ipif_up_done_v6. 2594 * 2595 * This function takes an illgrp as an argument so that illgrp_delete 2596 * can call this to update source address even after deleting the 2597 * old_ipif->ipif_ill from the ill group. 2598 */ 2599 void 2600 ipif_update_other_ipifs_v6(ipif_t *old_ipif, ill_group_t *illgrp) 2601 { 2602 ipif_t *ipif; 2603 ill_t *ill; 2604 char buf[INET6_ADDRSTRLEN]; 2605 2606 ASSERT(IAM_WRITER_IPIF(old_ipif)); 2607 2608 ill = old_ipif->ipif_ill; 2609 2610 ip1dbg(("ipif_update_other_ipifs_v6(%s, %s)\n", 2611 ill->ill_name, 2612 inet_ntop(AF_INET6, &old_ipif->ipif_v6lcl_addr, 2613 buf, sizeof (buf)))); 2614 2615 /* 2616 * If this part of a group, look at all ills as ipif_select_source 2617 * borrows a source address across all the ills in the group. 2618 */ 2619 if (illgrp != NULL) 2620 ill = illgrp->illgrp_ill; 2621 2622 /* Don't need a lock since this is a writer */ 2623 for (; ill != NULL; ill = ill->ill_group_next) { 2624 for (ipif = ill->ill_ipif; ipif != NULL; 2625 ipif = ipif->ipif_next) { 2626 2627 if (ipif == old_ipif) 2628 continue; 2629 2630 ipif_recreate_interface_routes_v6(old_ipif, ipif); 2631 } 2632 } 2633 } 2634 2635 /* 2636 * Perform an attach and bind to get phys addr plus info_req for 2637 * the physical device. 2638 * q and mp represents an ioctl which will be queued waiting for 2639 * completion of the DLPI message exchange. 2640 * MUST be called on an ill queue. Can not set conn_pending_ill for that 2641 * reason thus the DL_PHYS_ADDR_ACK code does not assume ill_pending_q. 2642 * 2643 * Returns EINPROGRESS when mp has been consumed by queueing it on 2644 * ill_pending_mp and the ioctl will complete in ip_rput. 2645 */ 2646 int 2647 ill_dl_phys(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 2648 { 2649 mblk_t *v6token_mp = NULL; 2650 mblk_t *v6lla_mp = NULL; 2651 mblk_t *phys_mp = NULL; 2652 mblk_t *info_mp = NULL; 2653 mblk_t *attach_mp = NULL; 2654 mblk_t *bind_mp = NULL; 2655 mblk_t *unbind_mp = NULL; 2656 mblk_t *notify_mp = NULL; 2657 2658 ip1dbg(("ill_dl_phys(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 2659 ASSERT(ill->ill_dlpi_style_set); 2660 ASSERT(WR(q)->q_next != NULL); 2661 2662 if (ill->ill_isv6) { 2663 v6token_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + 2664 sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); 2665 if (v6token_mp == NULL) 2666 goto bad; 2667 ((dl_phys_addr_req_t *)v6token_mp->b_rptr)->dl_addr_type = 2668 DL_IPV6_TOKEN; 2669 2670 v6lla_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + 2671 sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); 2672 if (v6lla_mp == NULL) 2673 goto bad; 2674 ((dl_phys_addr_req_t *)v6lla_mp->b_rptr)->dl_addr_type = 2675 DL_IPV6_LINK_LAYER_ADDR; 2676 } 2677 2678 /* 2679 * Allocate a DL_NOTIFY_REQ and set the notifications we want. 2680 */ 2681 notify_mp = ip_dlpi_alloc(sizeof (dl_notify_req_t) + sizeof (long), 2682 DL_NOTIFY_REQ); 2683 if (notify_mp == NULL) 2684 goto bad; 2685 ((dl_notify_req_t *)notify_mp->b_rptr)->dl_notifications = 2686 (DL_NOTE_PHYS_ADDR | DL_NOTE_SDU_SIZE | DL_NOTE_FASTPATH_FLUSH | 2687 DL_NOTE_LINK_UP | DL_NOTE_LINK_DOWN | DL_NOTE_CAPAB_RENEG); 2688 2689 phys_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + 2690 sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); 2691 if (phys_mp == NULL) 2692 goto bad; 2693 ((dl_phys_addr_req_t *)phys_mp->b_rptr)->dl_addr_type = 2694 DL_CURR_PHYS_ADDR; 2695 2696 info_mp = ip_dlpi_alloc( 2697 sizeof (dl_info_req_t) + sizeof (dl_info_ack_t), 2698 DL_INFO_REQ); 2699 if (info_mp == NULL) 2700 goto bad; 2701 2702 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 2703 DL_BIND_REQ); 2704 if (bind_mp == NULL) 2705 goto bad; 2706 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 2707 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 2708 2709 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 2710 if (unbind_mp == NULL) 2711 goto bad; 2712 2713 /* If we need to attach, pre-alloc and initialize the mblk */ 2714 if (ill->ill_needs_attach) { 2715 attach_mp = ip_dlpi_alloc(sizeof (dl_attach_req_t), 2716 DL_ATTACH_REQ); 2717 if (attach_mp == NULL) 2718 goto bad; 2719 ((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = ill->ill_ppa; 2720 } 2721 2722 /* 2723 * Here we are going to delay the ioctl ack until after 2724 * ACKs from DL_PHYS_ADDR_REQ. So need to save the 2725 * original ioctl message before sending the requests 2726 */ 2727 mutex_enter(&ill->ill_lock); 2728 /* ipsq_pending_mp_add won't fail since we pass in a NULL connp */ 2729 (void) ipsq_pending_mp_add(NULL, ipif, ill->ill_wq, mp, 0); 2730 /* 2731 * Set ill_phys_addr_pend to zero. It will be set to the addr_type of 2732 * the DL_PHYS_ADDR_REQ in ill_dlpi_send() and ill_dlpi_done(). It will 2733 * be used to track which DL_PHYS_ADDR_REQ is being ACK'd/NAK'd. 2734 */ 2735 ill->ill_phys_addr_pend = 0; 2736 mutex_exit(&ill->ill_lock); 2737 2738 if (attach_mp != NULL) { 2739 ip1dbg(("ill_dl_phys: attach\n")); 2740 ill_dlpi_send(ill, attach_mp); 2741 } 2742 ill_dlpi_send(ill, bind_mp); 2743 ill_dlpi_send(ill, info_mp); 2744 if (ill->ill_isv6) { 2745 ill_dlpi_send(ill, v6token_mp); 2746 ill_dlpi_send(ill, v6lla_mp); 2747 } 2748 ill_dlpi_send(ill, phys_mp); 2749 ill_dlpi_send(ill, notify_mp); 2750 ill_dlpi_send(ill, unbind_mp); 2751 2752 /* 2753 * This operation will complete in ip_rput_dlpi_writer with either 2754 * a DL_PHYS_ADDR_ACK or DL_ERROR_ACK. 2755 */ 2756 return (EINPROGRESS); 2757 bad: 2758 freemsg(v6token_mp); 2759 freemsg(v6lla_mp); 2760 freemsg(phys_mp); 2761 freemsg(info_mp); 2762 freemsg(attach_mp); 2763 freemsg(bind_mp); 2764 freemsg(unbind_mp); 2765 freemsg(notify_mp); 2766 return (ENOMEM); 2767 } 2768 2769 uint_t ip_loopback_mtu_v6plus = IP_LOOPBACK_MTU + IPV6_HDR_LEN + 20; 2770 2771 /* 2772 * DLPI is up. 2773 * Create all the IREs associated with an interface bring up multicast. 2774 * Set the interface flag and finish other initialization 2775 * that potentially had to be differed to after DL_BIND_ACK. 2776 */ 2777 int 2778 ipif_up_done_v6(ipif_t *ipif) 2779 { 2780 ire_t *ire_array[20]; 2781 ire_t **irep = ire_array; 2782 ire_t **irep1; 2783 ill_t *ill = ipif->ipif_ill; 2784 queue_t *stq; 2785 in6_addr_t v6addr; 2786 in6_addr_t route_mask; 2787 ipif_t *src_ipif = NULL; 2788 ipif_t *tmp_ipif; 2789 boolean_t flush_ire_cache = B_TRUE; 2790 int err; 2791 char buf[INET6_ADDRSTRLEN]; 2792 phyint_t *phyi; 2793 ire_t **ipif_saved_irep = NULL; 2794 int ipif_saved_ire_cnt; 2795 int cnt; 2796 boolean_t src_ipif_held = B_FALSE; 2797 boolean_t ire_added = B_FALSE; 2798 boolean_t loopback = B_FALSE; 2799 boolean_t ip6_asp_table_held = B_FALSE; 2800 ip_stack_t *ipst = ill->ill_ipst; 2801 2802 ip1dbg(("ipif_up_done_v6(%s:%u)\n", 2803 ipif->ipif_ill->ill_name, ipif->ipif_id)); 2804 2805 /* Check if this is a loopback interface */ 2806 if (ipif->ipif_ill->ill_wq == NULL) 2807 loopback = B_TRUE; 2808 2809 ASSERT(ipif->ipif_isv6); 2810 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 2811 2812 /* 2813 * If all other interfaces for this ill are down or DEPRECATED, 2814 * or otherwise unsuitable for source address selection, remove 2815 * any IRE_CACHE entries for this ill to make sure source 2816 * address selection gets to take this new ipif into account. 2817 * No need to hold ill_lock while traversing the ipif list since 2818 * we are writer 2819 */ 2820 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 2821 tmp_ipif = tmp_ipif->ipif_next) { 2822 if (((tmp_ipif->ipif_flags & 2823 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 2824 !(tmp_ipif->ipif_flags & IPIF_UP)) || 2825 (tmp_ipif == ipif)) 2826 continue; 2827 /* first useable pre-existing interface */ 2828 flush_ire_cache = B_FALSE; 2829 break; 2830 } 2831 if (flush_ire_cache) 2832 ire_walk_ill_v6(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 2833 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 2834 2835 /* 2836 * Figure out which way the send-to queue should go. Only 2837 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER should show up here. 2838 */ 2839 switch (ill->ill_net_type) { 2840 case IRE_IF_RESOLVER: 2841 stq = ill->ill_rq; 2842 break; 2843 case IRE_IF_NORESOLVER: 2844 case IRE_LOOPBACK: 2845 stq = ill->ill_wq; 2846 break; 2847 default: 2848 return (EINVAL); 2849 } 2850 2851 if (IS_LOOPBACK(ill)) { 2852 /* 2853 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 2854 * ipif_lookup_on_name(), but in the case of zones we can have 2855 * several loopback addresses on lo0. So all the interfaces with 2856 * loopback addresses need to be marked IRE_LOOPBACK. 2857 */ 2858 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &ipv6_loopback)) 2859 ipif->ipif_ire_type = IRE_LOOPBACK; 2860 else 2861 ipif->ipif_ire_type = IRE_LOCAL; 2862 } 2863 2864 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 2865 /* 2866 * Can't use our source address. Select a different 2867 * source address for the IRE_INTERFACE and IRE_LOCAL 2868 */ 2869 if (ip6_asp_can_lookup(ipst)) { 2870 ip6_asp_table_held = B_TRUE; 2871 src_ipif = ipif_select_source_v6(ipif->ipif_ill, 2872 &ipif->ipif_v6subnet, RESTRICT_TO_NONE, 2873 IPV6_PREFER_SRC_DEFAULT, ipif->ipif_zoneid); 2874 } 2875 if (src_ipif == NULL) 2876 src_ipif = ipif; /* Last resort */ 2877 else 2878 src_ipif_held = B_TRUE; 2879 } else { 2880 src_ipif = ipif; 2881 } 2882 2883 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 2884 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 2885 2886 /* 2887 * If we're on a labeled system then make sure that zone- 2888 * private addresses have proper remote host database entries. 2889 */ 2890 if (is_system_labeled() && 2891 ipif->ipif_ire_type != IRE_LOOPBACK) { 2892 if (ip6opt_ls == 0) { 2893 cmn_err(CE_WARN, "IPv6 not enabled " 2894 "via /etc/system"); 2895 return (EINVAL); 2896 } 2897 if (!tsol_check_interface_address(ipif)) 2898 return (EINVAL); 2899 } 2900 2901 /* Register the source address for __sin6_src_id */ 2902 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 2903 ipif->ipif_zoneid, ipst); 2904 if (err != 0) { 2905 ip0dbg(("ipif_up_done_v6: srcid_insert %d\n", err)); 2906 if (src_ipif_held) 2907 ipif_refrele(src_ipif); 2908 if (ip6_asp_table_held) 2909 ip6_asp_table_refrele(ipst); 2910 return (err); 2911 } 2912 /* 2913 * If the interface address is set, create the LOCAL 2914 * or LOOPBACK IRE. 2915 */ 2916 ip1dbg(("ipif_up_done_v6: creating IRE %d for %s\n", 2917 ipif->ipif_ire_type, 2918 inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, 2919 buf, sizeof (buf)))); 2920 2921 *irep++ = ire_create_v6( 2922 &ipif->ipif_v6lcl_addr, /* dest address */ 2923 &ipv6_all_ones, /* mask */ 2924 &src_ipif->ipif_v6src_addr, /* source address */ 2925 NULL, /* no gateway */ 2926 &ip_loopback_mtu_v6plus, /* max frag size */ 2927 NULL, 2928 ipif->ipif_rq, /* recv-from queue */ 2929 NULL, /* no send-to queue */ 2930 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 2931 ipif, /* interface */ 2932 NULL, 2933 0, 2934 0, 2935 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 2936 &ire_uinfo_null, 2937 NULL, 2938 NULL, 2939 ipst); 2940 } 2941 2942 /* 2943 * Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. 2944 * Note that atun interfaces have an all-zero ipif_v6subnet. 2945 * Thus we allow a zero subnet as long as the mask is non-zero. 2946 */ 2947 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 2948 !(IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) && 2949 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))) { 2950 /* ipif_v6subnet is ipif_v6pp_dst_addr for pt-pt */ 2951 v6addr = ipif->ipif_v6subnet; 2952 2953 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 2954 route_mask = ipv6_all_ones; 2955 } else { 2956 route_mask = ipif->ipif_v6net_mask; 2957 } 2958 2959 ip1dbg(("ipif_up_done_v6: creating if IRE %d for %s\n", 2960 ill->ill_net_type, 2961 inet_ntop(AF_INET6, &v6addr, buf, sizeof (buf)))); 2962 2963 *irep++ = ire_create_v6( 2964 &v6addr, /* dest pref */ 2965 &route_mask, /* mask */ 2966 &src_ipif->ipif_v6src_addr, /* src addr */ 2967 NULL, /* no gateway */ 2968 &ipif->ipif_mtu, /* max frag */ 2969 NULL, /* no src nce */ 2970 NULL, /* no recv from queue */ 2971 stq, /* send-to queue */ 2972 ill->ill_net_type, /* IF_[NO]RESOLVER */ 2973 ipif, 2974 NULL, 2975 0, 2976 0, 2977 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 2978 &ire_uinfo_null, 2979 NULL, 2980 NULL, 2981 ipst); 2982 } 2983 2984 /* 2985 * Setup 2002::/16 route, if this interface is a 6to4 tunnel 2986 */ 2987 if (IN6_IS_ADDR_6TO4(&ipif->ipif_v6lcl_addr) && 2988 (ill->ill_is_6to4tun)) { 2989 /* 2990 * Destination address is 2002::/16 2991 */ 2992 #ifdef _BIG_ENDIAN 2993 const in6_addr_t prefix_addr = { 0x20020000U, 0, 0, 0 }; 2994 const in6_addr_t prefix_mask = { 0xffff0000U, 0, 0, 0 }; 2995 #else 2996 const in6_addr_t prefix_addr = { 0x00000220U, 0, 0, 0 }; 2997 const in6_addr_t prefix_mask = { 0x0000ffffU, 0, 0, 0 }; 2998 #endif /* _BIG_ENDIAN */ 2999 char buf2[INET6_ADDRSTRLEN]; 3000 ire_t *isdup; 3001 in6_addr_t *first_addr = &ill->ill_ipif->ipif_v6lcl_addr; 3002 3003 /* 3004 * check to see if this route has already been added for 3005 * this tunnel interface. 3006 */ 3007 isdup = ire_ftable_lookup_v6(first_addr, &prefix_mask, 0, 3008 IRE_IF_NORESOLVER, ill->ill_ipif, NULL, ALL_ZONES, 0, NULL, 3009 (MATCH_IRE_SRC | MATCH_IRE_MASK), ipst); 3010 3011 if (isdup == NULL) { 3012 ip1dbg(("ipif_up_done_v6: creating if IRE %d for %s", 3013 IRE_IF_NORESOLVER, inet_ntop(AF_INET6, &v6addr, 3014 buf2, sizeof (buf2)))); 3015 3016 *irep++ = ire_create_v6( 3017 &prefix_addr, /* 2002:: */ 3018 &prefix_mask, /* ffff:: */ 3019 &ipif->ipif_v6lcl_addr, /* src addr */ 3020 NULL, /* gateway */ 3021 &ipif->ipif_mtu, /* max_frag */ 3022 NULL, /* no src nce */ 3023 NULL, /* no rfq */ 3024 ill->ill_wq, /* stq */ 3025 IRE_IF_NORESOLVER, /* type */ 3026 ipif, /* interface */ 3027 NULL, /* v6cmask */ 3028 0, 3029 0, 3030 RTF_UP, 3031 &ire_uinfo_null, 3032 NULL, 3033 NULL, 3034 ipst); 3035 } else { 3036 ire_refrele(isdup); 3037 } 3038 } 3039 3040 /* If an earlier ire_create failed, get out now */ 3041 for (irep1 = irep; irep1 > ire_array; ) { 3042 irep1--; 3043 if (*irep1 == NULL) { 3044 ip1dbg(("ipif_up_done_v6: NULL ire found in" 3045 " ire_array\n")); 3046 err = ENOMEM; 3047 goto bad; 3048 } 3049 } 3050 3051 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 3052 3053 /* 3054 * Need to atomically check for ip_addr_availablity_check 3055 * now under ill_g_lock, and if it fails got bad, and remove 3056 * from group also 3057 */ 3058 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3059 mutex_enter(&ipst->ips_ip_addr_avail_lock); 3060 ill->ill_ipif_up_count++; 3061 ipif->ipif_flags |= IPIF_UP; 3062 err = ip_addr_availability_check(ipif); 3063 mutex_exit(&ipst->ips_ip_addr_avail_lock); 3064 rw_exit(&ipst->ips_ill_g_lock); 3065 3066 if (err != 0) { 3067 /* 3068 * Our address may already be up on the same ill. In this case, 3069 * the external resolver entry for our ipif replaced the one for 3070 * the other ipif. So we don't want to delete it (otherwise the 3071 * other ipif would be unable to send packets). 3072 * ip_addr_availability_check() identifies this case for us and 3073 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 3074 * which is the expected error code. 3075 */ 3076 if (err == EADDRINUSE) { 3077 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) { 3078 freemsg(ipif->ipif_arp_del_mp); 3079 ipif->ipif_arp_del_mp = NULL; 3080 } 3081 err = EADDRNOTAVAIL; 3082 } 3083 ill->ill_ipif_up_count--; 3084 ipif->ipif_flags &= ~IPIF_UP; 3085 goto bad; 3086 } 3087 3088 /* 3089 * Add in all newly created IREs. We want to add before 3090 * we call ifgrp_insert which wants to know whether 3091 * IRE_IF_RESOLVER exists or not. 3092 * 3093 * NOTE : We refrele the ire though we may branch to "bad" 3094 * later on where we do ire_delete. This is okay 3095 * because nobody can delete it as we are running 3096 * exclusively. 3097 */ 3098 for (irep1 = irep; irep1 > ire_array; ) { 3099 irep1--; 3100 /* Shouldn't be adding any bcast ire's */ 3101 ASSERT((*irep1)->ire_type != IRE_BROADCAST); 3102 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 3103 /* 3104 * refheld by ire_add. refele towards the end of the func 3105 */ 3106 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 3107 } 3108 if (ip6_asp_table_held) { 3109 ip6_asp_table_refrele(ipst); 3110 ip6_asp_table_held = B_FALSE; 3111 } 3112 ire_added = B_TRUE; 3113 3114 /* 3115 * Form groups if possible. 3116 * 3117 * If we are supposed to be in a ill_group with a name, insert it 3118 * now as we know that at least one ipif is UP. Otherwise form 3119 * nameless groups. 3120 * 3121 * If ip_enable_group_ifs is set and ipif address is not ::0, insert 3122 * this ipif into the appropriate interface group, or create a 3123 * new one. If this is already in a nameless group, we try to form 3124 * a bigger group looking at other ills potentially sharing this 3125 * ipif's prefix. 3126 */ 3127 phyi = ill->ill_phyint; 3128 if (phyi->phyint_groupname_len != 0) { 3129 ASSERT(phyi->phyint_groupname != NULL); 3130 if (ill->ill_ipif_up_count == 1) { 3131 ASSERT(ill->ill_group == NULL); 3132 err = illgrp_insert(&ipst->ips_illgrp_head_v6, ill, 3133 phyi->phyint_groupname, NULL, B_TRUE); 3134 if (err != 0) { 3135 ip1dbg(("ipif_up_done_v6: illgrp allocation " 3136 "failed, error %d\n", err)); 3137 goto bad; 3138 } 3139 } 3140 ASSERT(ill->ill_group != NULL); 3141 } 3142 3143 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 3144 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 3145 ipif_saved_irep = ipif_recover_ire_v6(ipif); 3146 3147 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 3148 /* 3149 * Need to recover all multicast memberships in the driver. 3150 * This had to be deferred until we had attached. 3151 */ 3152 ill_recover_multicast(ill); 3153 } 3154 /* Join the allhosts multicast address and the solicited node MC */ 3155 ipif_multicast_up(ipif); 3156 3157 if (!loopback) { 3158 /* 3159 * See whether anybody else would benefit from the 3160 * new ipif that we added. We call this always rather 3161 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 3162 * ipif for the benefit of illgrp_insert (done above) 3163 * which does not do source address selection as it does 3164 * not want to re-create interface routes that we are 3165 * having reference to it here. 3166 */ 3167 ill_update_source_selection(ill); 3168 } 3169 3170 for (irep1 = irep; irep1 > ire_array; ) { 3171 irep1--; 3172 if (*irep1 != NULL) { 3173 /* was held in ire_add */ 3174 ire_refrele(*irep1); 3175 } 3176 } 3177 3178 cnt = ipif_saved_ire_cnt; 3179 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 3180 if (*irep1 != NULL) { 3181 /* was held in ire_add */ 3182 ire_refrele(*irep1); 3183 } 3184 } 3185 3186 if (ipif->ipif_addr_ready) { 3187 ip_rts_ifmsg(ipif); 3188 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 3189 sctp_update_ipif(ipif, SCTP_IPIF_UP); 3190 } 3191 3192 if (ipif_saved_irep != NULL) { 3193 kmem_free(ipif_saved_irep, 3194 ipif_saved_ire_cnt * sizeof (ire_t *)); 3195 } 3196 3197 if (src_ipif_held) 3198 ipif_refrele(src_ipif); 3199 return (0); 3200 3201 bad: 3202 if (ip6_asp_table_held) 3203 ip6_asp_table_refrele(ipst); 3204 /* 3205 * We don't have to bother removing from ill groups because 3206 * 3207 * 1) For groups with names, we insert only when the first ipif 3208 * comes up. In that case if it fails, it will not be in any 3209 * group. So, we need not try to remove for that case. 3210 * 3211 * 2) For groups without names, either we tried to insert ipif_ill 3212 * in a group as singleton or found some other group to become 3213 * a bigger group. For the former, if it fails we don't have 3214 * anything to do as ipif_ill is not in the group and for the 3215 * latter, there are no failures in illgrp_insert/illgrp_delete 3216 * (ENOMEM can't occur for this. Check ifgrp_insert). 3217 */ 3218 3219 while (irep > ire_array) { 3220 irep--; 3221 if (*irep != NULL) { 3222 ire_delete(*irep); 3223 if (ire_added) 3224 ire_refrele(*irep); 3225 } 3226 3227 } 3228 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 3229 3230 if (ipif_saved_irep != NULL) { 3231 kmem_free(ipif_saved_irep, 3232 ipif_saved_ire_cnt * sizeof (ire_t *)); 3233 } 3234 if (src_ipif_held) 3235 ipif_refrele(src_ipif); 3236 3237 ipif_ndp_down(ipif); 3238 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) 3239 ipif_arp_down(ipif); 3240 3241 return (err); 3242 } 3243 3244 /* 3245 * Delete an ND entry and the corresponding IRE_CACHE entry if it exists. 3246 */ 3247 /* ARGSUSED */ 3248 int 3249 ip_siocdelndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 3250 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 3251 { 3252 in6_addr_t addr; 3253 sin6_t *sin6; 3254 nce_t *nce; 3255 struct lifreq *lifr; 3256 lif_nd_req_t *lnr; 3257 mblk_t *mp1; 3258 3259 mp1 = mp->b_cont->b_cont; 3260 lifr = (struct lifreq *)mp1->b_rptr; 3261 lnr = &lifr->lifr_nd; 3262 /* Only allow for logical unit zero i.e. not on "le0:17" */ 3263 if (ipif->ipif_id != 0) 3264 return (EINVAL); 3265 3266 if (!ipif->ipif_isv6) 3267 return (EINVAL); 3268 3269 if (lnr->lnr_addr.ss_family != AF_INET6) 3270 return (EAFNOSUPPORT); 3271 3272 sin6 = (sin6_t *)&lnr->lnr_addr; 3273 addr = sin6->sin6_addr; 3274 nce = ndp_lookup_v6(ipif->ipif_ill, &addr, B_FALSE); 3275 if (nce == NULL) 3276 return (ESRCH); 3277 ndp_delete(nce); 3278 NCE_REFRELE(nce); 3279 return (0); 3280 } 3281 3282 /* 3283 * Return nbr cache info. 3284 */ 3285 /* ARGSUSED */ 3286 int 3287 ip_siocqueryndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 3288 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 3289 { 3290 ill_t *ill = ipif->ipif_ill; 3291 struct lifreq *lifr; 3292 lif_nd_req_t *lnr; 3293 3294 lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr; 3295 lnr = &lifr->lifr_nd; 3296 /* Only allow for logical unit zero i.e. not on "le0:17" */ 3297 if (ipif->ipif_id != 0) 3298 return (EINVAL); 3299 3300 if (!ipif->ipif_isv6) 3301 return (EINVAL); 3302 3303 if (lnr->lnr_addr.ss_family != AF_INET6) 3304 return (EAFNOSUPPORT); 3305 3306 if (ill->ill_phys_addr_length > sizeof (lnr->lnr_hdw_addr)) 3307 return (EINVAL); 3308 3309 return (ndp_query(ill, lnr)); 3310 } 3311 3312 /* 3313 * Perform an update of the nd entry for the specified address. 3314 */ 3315 /* ARGSUSED */ 3316 int 3317 ip_siocsetndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 3318 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 3319 { 3320 ill_t *ill = ipif->ipif_ill; 3321 struct lifreq *lifr; 3322 lif_nd_req_t *lnr; 3323 3324 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 3325 3326 lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr; 3327 lnr = &lifr->lifr_nd; 3328 /* Only allow for logical unit zero i.e. not on "le0:17" */ 3329 if (ipif->ipif_id != 0) 3330 return (EINVAL); 3331 3332 if (!ipif->ipif_isv6) 3333 return (EINVAL); 3334 3335 if (lnr->lnr_addr.ss_family != AF_INET6) 3336 return (EAFNOSUPPORT); 3337 3338 return (ndp_sioc_update(ill, lnr)); 3339 } 3340