1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/dlpi.h> 30 #include <sys/stropts.h> 31 #include <sys/sysmacros.h> 32 #include <sys/strsubr.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #include <sys/zone.h> 36 #define _SUN_TPI_VERSION 2 37 #include <sys/tihdr.h> 38 #include <sys/xti_inet.h> 39 #include <sys/ddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <inet/iptun/iptun_impl.h> 100 #include <inet/ipdrop.h> 101 #include <inet/ip_netinfo.h> 102 #include <inet/ilb_ip.h> 103 104 #include <sys/ethernet.h> 105 #include <net/if_types.h> 106 #include <sys/cpuvar.h> 107 108 #include <ipp/ipp.h> 109 #include <ipp/ipp_impl.h> 110 #include <ipp/ipgpc/ipgpc.h> 111 112 #include <sys/pattr.h> 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/sctp/sctp_impl.h> 116 #include <inet/udp_impl.h> 117 #include <inet/rawip_impl.h> 118 #include <inet/rts_impl.h> 119 120 #include <sys/tsol/label.h> 121 #include <sys/tsol/tnet.h> 122 123 #include <sys/squeue_impl.h> 124 #include <inet/ip_arp.h> 125 126 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 131 * IP_SQUEUE_ENTER: SQ_PROCESS 132 * IP_SQUEUE_FILL: SQ_FILL 133 */ 134 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 135 136 int ip_squeue_flag; 137 138 /* 139 * Setable in /etc/system 140 */ 141 int ip_poll_normal_ms = 100; 142 int ip_poll_normal_ticks = 0; 143 int ip_modclose_ackwait_ms = 3000; 144 145 /* 146 * It would be nice to have these present only in DEBUG systems, but the 147 * current design of the global symbol checking logic requires them to be 148 * unconditionally present. 149 */ 150 uint_t ip_thread_data; /* TSD key for debug support */ 151 krwlock_t ip_thread_rwlock; 152 list_t ip_thread_list; 153 154 /* 155 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 156 */ 157 158 struct listptr_s { 159 mblk_t *lp_head; /* pointer to the head of the list */ 160 mblk_t *lp_tail; /* pointer to the tail of the list */ 161 }; 162 163 typedef struct listptr_s listptr_t; 164 165 /* 166 * This is used by ip_snmp_get_mib2_ip_route_media and 167 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 168 */ 169 typedef struct iproutedata_s { 170 uint_t ird_idx; 171 uint_t ird_flags; /* see below */ 172 listptr_t ird_route; /* ipRouteEntryTable */ 173 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 174 listptr_t ird_attrs; /* ipRouteAttributeTable */ 175 } iproutedata_t; 176 177 /* Include ire_testhidden and IRE_IF_CLONE routes */ 178 #define IRD_REPORT_ALL 0x01 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 199 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 200 void *args) = NULL; 201 202 /* 203 * Hook function to generate cluster wide SPI. 204 */ 205 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 206 void *) = NULL; 207 208 /* 209 * Hook function to verify if the SPI is already utlized. 210 */ 211 212 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 213 214 /* 215 * Hook function to delete the SPI from the cluster wide repository. 216 */ 217 218 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 219 220 /* 221 * Hook function to inform the cluster when packet received on an IDLE SA 222 */ 223 224 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 225 in6_addr_t, in6_addr_t, void *) = NULL; 226 227 /* 228 * Synchronization notes: 229 * 230 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 231 * MT level protection given by STREAMS. IP uses a combination of its own 232 * internal serialization mechanism and standard Solaris locking techniques. 233 * The internal serialization is per phyint. This is used to serialize 234 * plumbing operations, IPMP operations, most set ioctls, etc. 235 * 236 * Plumbing is a long sequence of operations involving message 237 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 238 * involved in plumbing operations. A natural model is to serialize these 239 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 240 * parallel without any interference. But various set ioctls on hme0 are best 241 * serialized, along with IPMP operations and processing of DLPI control 242 * messages received from drivers on a per phyint basis. This serialization is 243 * provided by the ipsq_t and primitives operating on this. Details can 244 * be found in ip_if.c above the core primitives operating on ipsq_t. 245 * 246 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 247 * Simiarly lookup of an ire by a thread also returns a refheld ire. 248 * In addition ipif's and ill's referenced by the ire are also indirectly 249 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 250 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 251 * address of an ipif has to go through the ipsq_t. This ensures that only 252 * one such exclusive operation proceeds at any time on the ipif. It then 253 * waits for all refcnts 254 * associated with this ipif to come down to zero. The address is changed 255 * only after the ipif has been quiesced. Then the ipif is brought up again. 256 * More details are described above the comment in ip_sioctl_flags. 257 * 258 * Packet processing is based mostly on IREs and are fully multi-threaded 259 * using standard Solaris MT techniques. 260 * 261 * There are explicit locks in IP to handle: 262 * - The ip_g_head list maintained by mi_open_link() and friends. 263 * 264 * - The reassembly data structures (one lock per hash bucket) 265 * 266 * - conn_lock is meant to protect conn_t fields. The fields actually 267 * protected by conn_lock are documented in the conn_t definition. 268 * 269 * - ire_lock to protect some of the fields of the ire, IRE tables 270 * (one lock per hash bucket). Refer to ip_ire.c for details. 271 * 272 * - ndp_g_lock and ncec_lock for protecting NCEs. 273 * 274 * - ill_lock protects fields of the ill and ipif. Details in ip.h 275 * 276 * - ill_g_lock: This is a global reader/writer lock. Protects the following 277 * * The AVL tree based global multi list of all ills. 278 * * The linked list of all ipifs of an ill 279 * * The <ipsq-xop> mapping 280 * * <ill-phyint> association 281 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 282 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 283 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 284 * writer for the actual duration of the insertion/deletion/change. 285 * 286 * - ill_lock: This is a per ill mutex. 287 * It protects some members of the ill_t struct; see ip.h for details. 288 * It also protects the <ill-phyint> assoc. 289 * It also protects the list of ipifs hanging off the ill. 290 * 291 * - ipsq_lock: This is a per ipsq_t mutex lock. 292 * This protects some members of the ipsq_t struct; see ip.h for details. 293 * It also protects the <ipsq-ipxop> mapping 294 * 295 * - ipx_lock: This is a per ipxop_t mutex lock. 296 * This protects some members of the ipxop_t struct; see ip.h for details. 297 * 298 * - phyint_lock: This is a per phyint mutex lock. Protects just the 299 * phyint_flags 300 * 301 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 302 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 303 * uniqueness check also done atomically. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 314 * operations are executed exclusively and that ensures that the "usesrc 315 * group state" cannot change. The "usesrc group state" change can happen 316 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ipsq-xop> assocications: 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ipsq-xop> association, the ill_g_lock must be held as 325 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 326 * This is only done when ills are added or removed from IPMP groups. 327 * 328 * To add or delete an ipif from the list of ipifs hanging off the ill, 329 * ill_g_lock (writer) and ill_lock must be held and the thread must be 330 * a writer on the associated ipsq. 331 * 332 * To add or delete an ill to the system, the ill_g_lock must be held as 333 * writer and the thread must be a writer on the associated ipsq. 334 * 335 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 336 * must be a writer on the associated ipsq. 337 * 338 * Lock hierarchy 339 * 340 * Some lock hierarchy scenarios are listed below. 341 * 342 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 343 * ill_g_lock -> ill_lock(s) -> phyint_lock 344 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 345 * ill_g_lock -> ip_addr_avail_lock 346 * conn_lock -> irb_lock -> ill_lock -> ire_lock 347 * ill_g_lock -> ip_g_nd_lock 348 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 350 * arl_lock -> ill_lock 351 * ips_ire_dep_lock -> irb_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * Multicast scenarios 358 * ips_ill_g_lock -> ill_mcast_lock 359 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 360 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 361 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 364 * 365 * IPsec scenarios 366 * 367 * ipsa_lock -> ill_g_lock -> ill_lock 368 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 369 * 370 * Trusted Solaris scenarios 371 * 372 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 373 * igsa_lock -> gcdb_lock 374 * gcgrp_rwlock -> ire_lock 375 * gcgrp_rwlock -> gcdb_lock 376 * 377 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 378 * 379 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 380 * sq_lock -> conn_lock -> QLOCK(q) 381 * ill_lock -> ft_lock -> fe_lock 382 * 383 * Routing/forwarding table locking notes: 384 * 385 * Lock acquisition order: Radix tree lock, irb_lock. 386 * Requirements: 387 * i. Walker must not hold any locks during the walker callback. 388 * ii Walker must not see a truncated tree during the walk because of any node 389 * deletion. 390 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 391 * in many places in the code to walk the irb list. Thus even if all the 392 * ires in a bucket have been deleted, we still can't free the radix node 393 * until the ires have actually been inactive'd (freed). 394 * 395 * Tree traversal - Need to hold the global tree lock in read mode. 396 * Before dropping the global tree lock, need to either increment the ire_refcnt 397 * to ensure that the radix node can't be deleted. 398 * 399 * Tree add - Need to hold the global tree lock in write mode to add a 400 * radix node. To prevent the node from being deleted, increment the 401 * irb_refcnt, after the node is added to the tree. The ire itself is 402 * added later while holding the irb_lock, but not the tree lock. 403 * 404 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 405 * All associated ires must be inactive (i.e. freed), and irb_refcnt 406 * must be zero. 407 * 408 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 409 * global tree lock (read mode) for traversal. 410 * 411 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 412 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 413 * 414 * IPsec notes : 415 * 416 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 417 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 418 * ip_xmit_attr_t has the 419 * information used by the IPsec code for applying the right level of 420 * protection. The information initialized by IP in the ip_xmit_attr_t 421 * is determined by the per-socket policy or global policy in the system. 422 * For inbound datagrams, the ip_recv_attr_t 423 * starts out with nothing in it. It gets filled 424 * with the right information if it goes through the AH/ESP code, which 425 * happens if the incoming packet is secure. The information initialized 426 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 427 * the policy requirements needed by per-socket policy or global policy 428 * is met or not. 429 * 430 * For fully connected sockets i.e dst, src [addr, port] is known, 431 * conn_policy_cached is set indicating that policy has been cached. 432 * conn_in_enforce_policy may or may not be set depending on whether 433 * there is a global policy match or per-socket policy match. 434 * Policy inheriting happpens in ip_policy_set once the destination is known. 435 * Once the right policy is set on the conn_t, policy cannot change for 436 * this socket. This makes life simpler for TCP (UDP ?) where 437 * re-transmissions go out with the same policy. For symmetry, policy 438 * is cached for fully connected UDP sockets also. Thus if policy is cached, 439 * it also implies that policy is latched i.e policy cannot change 440 * on these sockets. As we have the right policy on the conn, we don't 441 * have to lookup global policy for every outbound and inbound datagram 442 * and thus serving as an optimization. Note that a global policy change 443 * does not affect fully connected sockets if they have policy. If fully 444 * connected sockets did not have any policy associated with it, global 445 * policy change may affect them. 446 * 447 * IP Flow control notes: 448 * --------------------- 449 * Non-TCP streams are flow controlled by IP. The way this is accomplished 450 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 451 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 452 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 453 * functions. 454 * 455 * Per Tx ring udp flow control: 456 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 457 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 458 * 459 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 460 * To achieve best performance, outgoing traffic need to be fanned out among 461 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 462 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 463 * the address of connp as fanout hint to mac_tx(). Under flow controlled 464 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 465 * cookie points to a specific Tx ring that is blocked. The cookie is used to 466 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 467 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 468 * connp's. The drain list is not a single list but a configurable number of 469 * lists. 470 * 471 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 472 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 473 * which is equal to 128. This array in turn contains a pointer to idl_t[], 474 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 475 * list will point to the list of connp's that are flow controlled. 476 * 477 * --------------- ------- ------- ------- 478 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 479 * | --------------- ------- ------- ------- 480 * | --------------- ------- ------- ------- 481 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 482 * ---------------- | --------------- ------- ------- ------- 483 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 484 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * . . . . . 487 * | --------------- ------- ------- ------- 488 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 489 * --------------- ------- ------- ------- 490 * --------------- ------- ------- ------- 491 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 492 * | --------------- ------- ------- ------- 493 * | --------------- ------- ------- ------- 494 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 495 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 496 * ---------------- | . . . . 497 * | --------------- ------- ------- ------- 498 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 499 * --------------- ------- ------- ------- 500 * ..... 501 * ---------------- 502 * |idl_tx_list[n]|-> ... 503 * ---------------- 504 * 505 * When mac_tx() returns a cookie, the cookie is hashed into an index into 506 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 507 * to insert the conn onto. conn_drain_insert() asserts flow control for the 508 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 509 * Further, conn_blocked is set to indicate that the conn is blocked. 510 * 511 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 512 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 513 * is again hashed to locate the appropriate idl_tx_list, which is then 514 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 515 * the drain list and calls conn_drain_remove() to clear flow control (via 516 * calling su_txq_full() or clearing QFULL), and remove the conn from the 517 * drain list. 518 * 519 * Note that the drain list is not a single list but a (configurable) array of 520 * lists (8 elements by default). Synchronization between drain insertion and 521 * flow control wakeup is handled by using idl_txl->txl_lock, and only 522 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 523 * 524 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 525 * On the send side, if the packet cannot be sent down to the driver by IP 526 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 527 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 528 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 529 * control has been relieved, the blocked conns in the 0'th drain list are 530 * drained as in the non-STREAMS case. 531 * 532 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 533 * is done when the conn is inserted into the drain list (conn_drain_insert()) 534 * and cleared when the conn is removed from the it (conn_drain_remove()). 535 * 536 * IPQOS notes: 537 * 538 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 539 * and IPQoS modules. IPPF includes hooks in IP at different control points 540 * (callout positions) which direct packets to IPQoS modules for policy 541 * processing. Policies, if present, are global. 542 * 543 * The callout positions are located in the following paths: 544 * o local_in (packets destined for this host) 545 * o local_out (packets orginating from this host ) 546 * o fwd_in (packets forwarded by this m/c - inbound) 547 * o fwd_out (packets forwarded by this m/c - outbound) 548 * Hooks at these callout points can be enabled/disabled using the ndd variable 549 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 550 * By default all the callout positions are enabled. 551 * 552 * Outbound (local_out) 553 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 554 * 555 * Inbound (local_in) 556 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 557 * 558 * Forwarding (in and out) 559 * Hooks are placed in ire_recv_forward_v4/v6. 560 * 561 * IP Policy Framework processing (IPPF processing) 562 * Policy processing for a packet is initiated by ip_process, which ascertains 563 * that the classifier (ipgpc) is loaded and configured, failing which the 564 * packet resumes normal processing in IP. If the clasifier is present, the 565 * packet is acted upon by one or more IPQoS modules (action instances), per 566 * filters configured in ipgpc and resumes normal IP processing thereafter. 567 * An action instance can drop a packet in course of its processing. 568 * 569 * Zones notes: 570 * 571 * The partitioning rules for networking are as follows: 572 * 1) Packets coming from a zone must have a source address belonging to that 573 * zone. 574 * 2) Packets coming from a zone can only be sent on a physical interface on 575 * which the zone has an IP address. 576 * 3) Between two zones on the same machine, packet delivery is only allowed if 577 * there's a matching route for the destination and zone in the forwarding 578 * table. 579 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 580 * different zones can bind to the same port with the wildcard address 581 * (INADDR_ANY). 582 * 583 * The granularity of interface partitioning is at the logical interface level. 584 * Therefore, every zone has its own IP addresses, and incoming packets can be 585 * attributed to a zone unambiguously. A logical interface is placed into a zone 586 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 587 * structure. Rule (1) is implemented by modifying the source address selection 588 * algorithm so that the list of eligible addresses is filtered based on the 589 * sending process zone. 590 * 591 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 592 * across all zones, depending on their type. Here is the break-up: 593 * 594 * IRE type Shared/exclusive 595 * -------- ---------------- 596 * IRE_BROADCAST Exclusive 597 * IRE_DEFAULT (default routes) Shared (*) 598 * IRE_LOCAL Exclusive (x) 599 * IRE_LOOPBACK Exclusive 600 * IRE_PREFIX (net routes) Shared (*) 601 * IRE_IF_NORESOLVER (interface routes) Exclusive 602 * IRE_IF_RESOLVER (interface routes) Exclusive 603 * IRE_IF_CLONE (interface routes) Exclusive 604 * IRE_HOST (host routes) Shared (*) 605 * 606 * (*) A zone can only use a default or off-subnet route if the gateway is 607 * directly reachable from the zone, that is, if the gateway's address matches 608 * one of the zone's logical interfaces. 609 * 610 * (x) IRE_LOCAL are handled a bit differently. 611 * When ip_restrict_interzone_loopback is set (the default), 612 * ire_route_recursive restricts loopback using an IRE_LOCAL 613 * between zone to the case when L2 would have conceptually looped the packet 614 * back, i.e. the loopback which is required since neither Ethernet drivers 615 * nor Ethernet hardware loops them back. This is the case when the normal 616 * routes (ignoring IREs with different zoneids) would send out the packet on 617 * the same ill as the ill with which is IRE_LOCAL is associated. 618 * 619 * Multiple zones can share a common broadcast address; typically all zones 620 * share the 255.255.255.255 address. Incoming as well as locally originated 621 * broadcast packets must be dispatched to all the zones on the broadcast 622 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 623 * since some zones may not be on the 10.16.72/24 network. To handle this, each 624 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 625 * sent to every zone that has an IRE_BROADCAST entry for the destination 626 * address on the input ill, see ip_input_broadcast(). 627 * 628 * Applications in different zones can join the same multicast group address. 629 * The same logic applies for multicast as for broadcast. ip_input_multicast 630 * dispatches packets to all zones that have members on the physical interface. 631 */ 632 633 /* 634 * Squeue Fanout flags: 635 * 0: No fanout. 636 * 1: Fanout across all squeues 637 */ 638 boolean_t ip_squeue_fanout = 0; 639 640 /* 641 * Maximum dups allowed per packet. 642 */ 643 uint_t ip_max_frag_dups = 10; 644 645 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 646 cred_t *credp, boolean_t isv6); 647 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 648 649 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 650 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 651 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 652 ip_recv_attr_t *); 653 static void icmp_options_update(ipha_t *); 654 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 655 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 656 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 657 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 658 ip_recv_attr_t *); 659 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 660 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 663 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 664 char *ip_dot_addr(ipaddr_t, char *); 665 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 666 int ip_close(queue_t *, int); 667 static char *ip_dot_saddr(uchar_t *, char *); 668 static void ip_lrput(queue_t *, mblk_t *); 669 ipaddr_t ip_net_mask(ipaddr_t); 670 char *ip_nv_lookup(nv_t *, int); 671 void ip_rput(queue_t *, mblk_t *); 672 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 673 void *dummy_arg); 674 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *, boolean_t); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 680 boolean_t); 681 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 686 ip_stack_t *ipst, boolean_t); 687 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 688 ip_stack_t *ipst, boolean_t); 689 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 704 ip_stack_t *ipst); 705 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 706 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 707 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 708 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 709 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 710 711 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 712 mblk_t *); 713 714 static void conn_drain_init(ip_stack_t *); 715 static void conn_drain_fini(ip_stack_t *); 716 static void conn_drain(conn_t *connp, boolean_t closing); 717 718 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 719 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 720 721 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 722 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 723 static void ip_stack_fini(netstackid_t stackid, void *arg); 724 725 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 726 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 727 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 728 const in6_addr_t *); 729 730 static int ip_squeue_switch(int); 731 732 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 733 static void ip_kstat_fini(netstackid_t, kstat_t *); 734 static int ip_kstat_update(kstat_t *kp, int rw); 735 static void *icmp_kstat_init(netstackid_t); 736 static void icmp_kstat_fini(netstackid_t, kstat_t *); 737 static int icmp_kstat_update(kstat_t *kp, int rw); 738 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 739 static void ip_kstat2_fini(netstackid_t, kstat_t *); 740 741 static void ipobs_init(ip_stack_t *); 742 static void ipobs_fini(ip_stack_t *); 743 744 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 745 746 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 747 748 static long ip_rput_pullups; 749 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 750 751 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 752 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 753 754 int ip_debug; 755 756 /* 757 * Multirouting/CGTP stuff 758 */ 759 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 760 761 /* 762 * IP tunables related declarations. Definitions are in ip_tunables.c 763 */ 764 extern mod_prop_info_t ip_propinfo_tbl[]; 765 extern int ip_propinfo_count; 766 767 /* 768 * Table of IP ioctls encoding the various properties of the ioctl and 769 * indexed based on the last byte of the ioctl command. Occasionally there 770 * is a clash, and there is more than 1 ioctl with the same last byte. 771 * In such a case 1 ioctl is encoded in the ndx table and the remaining 772 * ioctls are encoded in the misc table. An entry in the ndx table is 773 * retrieved by indexing on the last byte of the ioctl command and comparing 774 * the ioctl command with the value in the ndx table. In the event of a 775 * mismatch the misc table is then searched sequentially for the desired 776 * ioctl command. 777 * 778 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 779 */ 780 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 781 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 782 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 783 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 792 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 793 MISC_CMD, ip_siocaddrt, NULL }, 794 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 795 MISC_CMD, ip_siocdelrt, NULL }, 796 797 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 798 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 799 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 800 IF_CMD, ip_sioctl_get_addr, NULL }, 801 802 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 803 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 804 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 805 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 806 807 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 808 IPI_PRIV | IPI_WR, 809 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 810 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 811 IPI_MODOK | IPI_GET_CMD, 812 IF_CMD, ip_sioctl_get_flags, NULL }, 813 814 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 815 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 816 817 /* copyin size cannot be coded for SIOCGIFCONF */ 818 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 819 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 820 821 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 822 IF_CMD, ip_sioctl_mtu, NULL }, 823 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 824 IF_CMD, ip_sioctl_get_mtu, NULL }, 825 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 826 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 827 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 828 IF_CMD, ip_sioctl_brdaddr, NULL }, 829 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 830 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 831 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 832 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 833 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 834 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 835 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 836 IF_CMD, ip_sioctl_metric, NULL }, 837 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 838 839 /* See 166-168 below for extended SIOC*XARP ioctls */ 840 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 841 ARP_CMD, ip_sioctl_arp, NULL }, 842 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 843 ARP_CMD, ip_sioctl_arp, NULL }, 844 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 845 ARP_CMD, ip_sioctl_arp, NULL }, 846 847 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 848 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 849 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 869 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 870 MISC_CMD, if_unitsel, if_unitsel_restart }, 871 872 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 873 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 874 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 891 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 892 IPI_PRIV | IPI_WR | IPI_MODOK, 893 IF_CMD, ip_sioctl_sifname, NULL }, 894 895 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 896 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 897 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 909 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 910 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 911 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 912 IF_CMD, ip_sioctl_get_muxid, NULL }, 913 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 914 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 915 916 /* Both if and lif variants share same func */ 917 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 918 IF_CMD, ip_sioctl_get_lifindex, NULL }, 919 /* Both if and lif variants share same func */ 920 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 921 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 922 923 /* copyin size cannot be coded for SIOCGIFCONF */ 924 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 925 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 926 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 927 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 928 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 944 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 945 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 946 ip_sioctl_removeif_restart }, 947 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 948 IPI_GET_CMD | IPI_PRIV | IPI_WR, 949 LIF_CMD, ip_sioctl_addif, NULL }, 950 #define SIOCLIFADDR_NDX 112 951 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 952 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 953 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 954 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 955 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 956 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 957 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 958 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 959 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 960 IPI_PRIV | IPI_WR, 961 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 962 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 963 IPI_GET_CMD | IPI_MODOK, 964 LIF_CMD, ip_sioctl_get_flags, NULL }, 965 966 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 967 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 968 969 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 970 ip_sioctl_get_lifconf, NULL }, 971 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 972 LIF_CMD, ip_sioctl_mtu, NULL }, 973 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 974 LIF_CMD, ip_sioctl_get_mtu, NULL }, 975 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 976 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 977 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 978 LIF_CMD, ip_sioctl_brdaddr, NULL }, 979 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 980 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 981 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 982 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 983 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 984 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 985 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 986 LIF_CMD, ip_sioctl_metric, NULL }, 987 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 988 IPI_PRIV | IPI_WR | IPI_MODOK, 989 LIF_CMD, ip_sioctl_slifname, 990 ip_sioctl_slifname_restart }, 991 992 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 993 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 994 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 995 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 996 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 997 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 998 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 999 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1000 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1001 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1002 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1003 LIF_CMD, ip_sioctl_token, NULL }, 1004 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1005 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1006 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1007 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1008 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1009 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1010 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1011 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1012 1013 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1014 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1015 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1016 LIF_CMD, ip_siocdelndp_v6, NULL }, 1017 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1018 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1019 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1020 LIF_CMD, ip_siocsetndp_v6, NULL }, 1021 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1022 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1023 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1024 MISC_CMD, ip_sioctl_tonlink, NULL }, 1025 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1026 MISC_CMD, ip_sioctl_tmysite, NULL }, 1027 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1030 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1031 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1032 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1033 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1034 1035 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 1037 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1038 LIF_CMD, ip_sioctl_get_binding, NULL }, 1039 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1040 IPI_PRIV | IPI_WR, 1041 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1042 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1043 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1044 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1045 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1046 1047 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1048 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 1052 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 1054 /* These are handled in ip_sioctl_copyin_setup itself */ 1055 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1056 MISC_CMD, NULL, NULL }, 1057 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1058 MISC_CMD, NULL, NULL }, 1059 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1060 1061 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1062 ip_sioctl_get_lifconf, NULL }, 1063 1064 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1065 XARP_CMD, ip_sioctl_arp, NULL }, 1066 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1067 XARP_CMD, ip_sioctl_arp, NULL }, 1068 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1069 XARP_CMD, ip_sioctl_arp, NULL }, 1070 1071 /* SIOCPOPSOCKFS is not handled by IP */ 1072 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1073 1074 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1075 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1076 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1077 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1078 ip_sioctl_slifzone_restart }, 1079 /* 172-174 are SCTP ioctls and not handled by IP */ 1080 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1084 IPI_GET_CMD, LIF_CMD, 1085 ip_sioctl_get_lifusesrc, 0 }, 1086 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1087 IPI_PRIV | IPI_WR, 1088 LIF_CMD, ip_sioctl_slifusesrc, 1089 NULL }, 1090 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1091 ip_sioctl_get_lifsrcof, NULL }, 1092 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1093 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1094 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1095 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1096 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1097 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1098 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1099 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1100 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* SIOCSENABLESDP is handled by SDP */ 1102 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1103 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1104 /* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL }, 1105 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1106 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1107 ip_sioctl_ilb_cmd, NULL }, 1108 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1109 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1110 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1111 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1112 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1113 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart } 1114 }; 1115 1116 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1117 1118 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1119 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1120 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1121 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1122 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1123 { ND_GET, 0, 0, 0, NULL, NULL }, 1124 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1125 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1126 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1127 MISC_CMD, mrt_ioctl}, 1128 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1129 MISC_CMD, mrt_ioctl}, 1130 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1131 MISC_CMD, mrt_ioctl} 1132 }; 1133 1134 int ip_misc_ioctl_count = 1135 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1136 1137 int conn_drain_nthreads; /* Number of drainers reqd. */ 1138 /* Settable in /etc/system */ 1139 /* Defined in ip_ire.c */ 1140 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1141 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1142 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1143 1144 static nv_t ire_nv_arr[] = { 1145 { IRE_BROADCAST, "BROADCAST" }, 1146 { IRE_LOCAL, "LOCAL" }, 1147 { IRE_LOOPBACK, "LOOPBACK" }, 1148 { IRE_DEFAULT, "DEFAULT" }, 1149 { IRE_PREFIX, "PREFIX" }, 1150 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1151 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1152 { IRE_IF_CLONE, "IF_CLONE" }, 1153 { IRE_HOST, "HOST" }, 1154 { IRE_MULTICAST, "MULTICAST" }, 1155 { IRE_NOROUTE, "NOROUTE" }, 1156 { 0 } 1157 }; 1158 1159 nv_t *ire_nv_tbl = ire_nv_arr; 1160 1161 /* Simple ICMP IP Header Template */ 1162 static ipha_t icmp_ipha = { 1163 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1164 }; 1165 1166 struct module_info ip_mod_info = { 1167 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1168 IP_MOD_LOWAT 1169 }; 1170 1171 /* 1172 * Duplicate static symbols within a module confuses mdb; so we avoid the 1173 * problem by making the symbols here distinct from those in udp.c. 1174 */ 1175 1176 /* 1177 * Entry points for IP as a device and as a module. 1178 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1179 */ 1180 static struct qinit iprinitv4 = { 1181 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1182 &ip_mod_info 1183 }; 1184 1185 struct qinit iprinitv6 = { 1186 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1187 &ip_mod_info 1188 }; 1189 1190 static struct qinit ipwinit = { 1191 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1192 &ip_mod_info 1193 }; 1194 1195 static struct qinit iplrinit = { 1196 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1197 &ip_mod_info 1198 }; 1199 1200 static struct qinit iplwinit = { 1201 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1202 &ip_mod_info 1203 }; 1204 1205 /* For AF_INET aka /dev/ip */ 1206 struct streamtab ipinfov4 = { 1207 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1208 }; 1209 1210 /* For AF_INET6 aka /dev/ip6 */ 1211 struct streamtab ipinfov6 = { 1212 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1213 }; 1214 1215 #ifdef DEBUG 1216 boolean_t skip_sctp_cksum = B_FALSE; 1217 #endif 1218 1219 /* 1220 * Generate an ICMP fragmentation needed message. 1221 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1222 * constructed by the caller. 1223 */ 1224 void 1225 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1226 { 1227 icmph_t icmph; 1228 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1229 1230 mp = icmp_pkt_err_ok(mp, ira); 1231 if (mp == NULL) 1232 return; 1233 1234 bzero(&icmph, sizeof (icmph_t)); 1235 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1236 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1237 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1238 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1239 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1240 1241 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1242 } 1243 1244 /* 1245 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1246 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1247 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1248 * Likewise, if the ICMP error is misformed (too short, etc), then it 1249 * returns NULL. The caller uses this to determine whether or not to send 1250 * to raw sockets. 1251 * 1252 * All error messages are passed to the matching transport stream. 1253 * 1254 * The following cases are handled by icmp_inbound: 1255 * 1) It needs to send a reply back and possibly delivering it 1256 * to the "interested" upper clients. 1257 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1258 * 3) It needs to change some values in IP only. 1259 * 4) It needs to change some values in IP and upper layers e.g TCP 1260 * by delivering an error to the upper layers. 1261 * 1262 * We handle the above three cases in the context of IPsec in the 1263 * following way : 1264 * 1265 * 1) Send the reply back in the same way as the request came in. 1266 * If it came in encrypted, it goes out encrypted. If it came in 1267 * clear, it goes out in clear. Thus, this will prevent chosen 1268 * plain text attack. 1269 * 2) The client may or may not expect things to come in secure. 1270 * If it comes in secure, the policy constraints are checked 1271 * before delivering it to the upper layers. If it comes in 1272 * clear, ipsec_inbound_accept_clear will decide whether to 1273 * accept this in clear or not. In both the cases, if the returned 1274 * message (IP header + 8 bytes) that caused the icmp message has 1275 * AH/ESP headers, it is sent up to AH/ESP for validation before 1276 * sending up. If there are only 8 bytes of returned message, then 1277 * upper client will not be notified. 1278 * 3) Check with global policy to see whether it matches the constaints. 1279 * But this will be done only if icmp_accept_messages_in_clear is 1280 * zero. 1281 * 4) If we need to change both in IP and ULP, then the decision taken 1282 * while affecting the values in IP and while delivering up to TCP 1283 * should be the same. 1284 * 1285 * There are two cases. 1286 * 1287 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1288 * failed), we will not deliver it to the ULP, even though they 1289 * are *willing* to accept in *clear*. This is fine as our global 1290 * disposition to icmp messages asks us reject the datagram. 1291 * 1292 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1293 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1294 * to deliver it to ULP (policy failed), it can lead to 1295 * consistency problems. The cases known at this time are 1296 * ICMP_DESTINATION_UNREACHABLE messages with following code 1297 * values : 1298 * 1299 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1300 * and Upper layer rejects. Then the communication will 1301 * come to a stop. This is solved by making similar decisions 1302 * at both levels. Currently, when we are unable to deliver 1303 * to the Upper Layer (due to policy failures) while IP has 1304 * adjusted dce_pmtu, the next outbound datagram would 1305 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1306 * will be with the right level of protection. Thus the right 1307 * value will be communicated even if we are not able to 1308 * communicate when we get from the wire initially. But this 1309 * assumes there would be at least one outbound datagram after 1310 * IP has adjusted its dce_pmtu value. To make things 1311 * simpler, we accept in clear after the validation of 1312 * AH/ESP headers. 1313 * 1314 * - Other ICMP ERRORS : We may not be able to deliver it to the 1315 * upper layer depending on the level of protection the upper 1316 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1317 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1318 * should be accepted in clear when the Upper layer expects secure. 1319 * Thus the communication may get aborted by some bad ICMP 1320 * packets. 1321 */ 1322 mblk_t * 1323 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1324 { 1325 icmph_t *icmph; 1326 ipha_t *ipha; /* Outer header */ 1327 int ip_hdr_length; /* Outer header length */ 1328 boolean_t interested; 1329 ipif_t *ipif; 1330 uint32_t ts; 1331 uint32_t *tsp; 1332 timestruc_t now; 1333 ill_t *ill = ira->ira_ill; 1334 ip_stack_t *ipst = ill->ill_ipst; 1335 zoneid_t zoneid = ira->ira_zoneid; 1336 int len_needed; 1337 mblk_t *mp_ret = NULL; 1338 1339 ipha = (ipha_t *)mp->b_rptr; 1340 1341 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1342 1343 ip_hdr_length = ira->ira_ip_hdr_length; 1344 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1345 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1346 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1347 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1348 freemsg(mp); 1349 return (NULL); 1350 } 1351 /* Last chance to get real. */ 1352 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1353 if (ipha == NULL) { 1354 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1355 freemsg(mp); 1356 return (NULL); 1357 } 1358 } 1359 1360 /* The IP header will always be a multiple of four bytes */ 1361 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1362 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1363 icmph->icmph_code)); 1364 1365 /* 1366 * We will set "interested" to "true" if we should pass a copy to 1367 * the transport or if we handle the packet locally. 1368 */ 1369 interested = B_FALSE; 1370 switch (icmph->icmph_type) { 1371 case ICMP_ECHO_REPLY: 1372 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1373 break; 1374 case ICMP_DEST_UNREACHABLE: 1375 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1376 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1377 interested = B_TRUE; /* Pass up to transport */ 1378 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1379 break; 1380 case ICMP_SOURCE_QUENCH: 1381 interested = B_TRUE; /* Pass up to transport */ 1382 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1383 break; 1384 case ICMP_REDIRECT: 1385 if (!ipst->ips_ip_ignore_redirect) 1386 interested = B_TRUE; 1387 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1388 break; 1389 case ICMP_ECHO_REQUEST: 1390 /* 1391 * Whether to respond to echo requests that come in as IP 1392 * broadcasts or as IP multicast is subject to debate 1393 * (what isn't?). We aim to please, you pick it. 1394 * Default is do it. 1395 */ 1396 if (ira->ira_flags & IRAF_MULTICAST) { 1397 /* multicast: respond based on tunable */ 1398 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1399 } else if (ira->ira_flags & IRAF_BROADCAST) { 1400 /* broadcast: respond based on tunable */ 1401 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1402 } else { 1403 /* unicast: always respond */ 1404 interested = B_TRUE; 1405 } 1406 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1407 if (!interested) { 1408 /* We never pass these to RAW sockets */ 1409 freemsg(mp); 1410 return (NULL); 1411 } 1412 1413 /* Check db_ref to make sure we can modify the packet. */ 1414 if (mp->b_datap->db_ref > 1) { 1415 mblk_t *mp1; 1416 1417 mp1 = copymsg(mp); 1418 freemsg(mp); 1419 if (!mp1) { 1420 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1421 return (NULL); 1422 } 1423 mp = mp1; 1424 ipha = (ipha_t *)mp->b_rptr; 1425 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1426 } 1427 icmph->icmph_type = ICMP_ECHO_REPLY; 1428 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1429 icmp_send_reply_v4(mp, ipha, icmph, ira); 1430 return (NULL); 1431 1432 case ICMP_ROUTER_ADVERTISEMENT: 1433 case ICMP_ROUTER_SOLICITATION: 1434 break; 1435 case ICMP_TIME_EXCEEDED: 1436 interested = B_TRUE; /* Pass up to transport */ 1437 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1438 break; 1439 case ICMP_PARAM_PROBLEM: 1440 interested = B_TRUE; /* Pass up to transport */ 1441 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1442 break; 1443 case ICMP_TIME_STAMP_REQUEST: 1444 /* Response to Time Stamp Requests is local policy. */ 1445 if (ipst->ips_ip_g_resp_to_timestamp) { 1446 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1447 interested = 1448 ipst->ips_ip_g_resp_to_timestamp_bcast; 1449 else 1450 interested = B_TRUE; 1451 } 1452 if (!interested) { 1453 /* We never pass these to RAW sockets */ 1454 freemsg(mp); 1455 return (NULL); 1456 } 1457 1458 /* Make sure we have enough of the packet */ 1459 len_needed = ip_hdr_length + ICMPH_SIZE + 1460 3 * sizeof (uint32_t); 1461 1462 if (mp->b_wptr - mp->b_rptr < len_needed) { 1463 ipha = ip_pullup(mp, len_needed, ira); 1464 if (ipha == NULL) { 1465 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1466 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1467 mp, ill); 1468 freemsg(mp); 1469 return (NULL); 1470 } 1471 /* Refresh following the pullup. */ 1472 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1473 } 1474 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1475 /* Check db_ref to make sure we can modify the packet. */ 1476 if (mp->b_datap->db_ref > 1) { 1477 mblk_t *mp1; 1478 1479 mp1 = copymsg(mp); 1480 freemsg(mp); 1481 if (!mp1) { 1482 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1483 return (NULL); 1484 } 1485 mp = mp1; 1486 ipha = (ipha_t *)mp->b_rptr; 1487 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1488 } 1489 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1490 tsp = (uint32_t *)&icmph[1]; 1491 tsp++; /* Skip past 'originate time' */ 1492 /* Compute # of milliseconds since midnight */ 1493 gethrestime(&now); 1494 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1495 now.tv_nsec / (NANOSEC / MILLISEC); 1496 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1497 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1498 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1499 icmp_send_reply_v4(mp, ipha, icmph, ira); 1500 return (NULL); 1501 1502 case ICMP_TIME_STAMP_REPLY: 1503 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1504 break; 1505 case ICMP_INFO_REQUEST: 1506 /* Per RFC 1122 3.2.2.7, ignore this. */ 1507 case ICMP_INFO_REPLY: 1508 break; 1509 case ICMP_ADDRESS_MASK_REQUEST: 1510 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1511 interested = 1512 ipst->ips_ip_respond_to_address_mask_broadcast; 1513 } else { 1514 interested = B_TRUE; 1515 } 1516 if (!interested) { 1517 /* We never pass these to RAW sockets */ 1518 freemsg(mp); 1519 return (NULL); 1520 } 1521 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1522 if (mp->b_wptr - mp->b_rptr < len_needed) { 1523 ipha = ip_pullup(mp, len_needed, ira); 1524 if (ipha == NULL) { 1525 BUMP_MIB(ill->ill_ip_mib, 1526 ipIfStatsInTruncatedPkts); 1527 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1528 ill); 1529 freemsg(mp); 1530 return (NULL); 1531 } 1532 /* Refresh following the pullup. */ 1533 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1534 } 1535 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1536 /* Check db_ref to make sure we can modify the packet. */ 1537 if (mp->b_datap->db_ref > 1) { 1538 mblk_t *mp1; 1539 1540 mp1 = copymsg(mp); 1541 freemsg(mp); 1542 if (!mp1) { 1543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1544 return (NULL); 1545 } 1546 mp = mp1; 1547 ipha = (ipha_t *)mp->b_rptr; 1548 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1549 } 1550 /* 1551 * Need the ipif with the mask be the same as the source 1552 * address of the mask reply. For unicast we have a specific 1553 * ipif. For multicast/broadcast we only handle onlink 1554 * senders, and use the source address to pick an ipif. 1555 */ 1556 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1557 if (ipif == NULL) { 1558 /* Broadcast or multicast */ 1559 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1560 if (ipif == NULL) { 1561 freemsg(mp); 1562 return (NULL); 1563 } 1564 } 1565 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1566 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1567 ipif_refrele(ipif); 1568 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1569 icmp_send_reply_v4(mp, ipha, icmph, ira); 1570 return (NULL); 1571 1572 case ICMP_ADDRESS_MASK_REPLY: 1573 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1574 break; 1575 default: 1576 interested = B_TRUE; /* Pass up to transport */ 1577 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1578 break; 1579 } 1580 /* 1581 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1582 * if there isn't one. 1583 */ 1584 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1585 /* If there is an ICMP client and we want one too, copy it. */ 1586 1587 if (!interested) { 1588 /* Caller will deliver to RAW sockets */ 1589 return (mp); 1590 } 1591 mp_ret = copymsg(mp); 1592 if (mp_ret == NULL) { 1593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1594 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1595 } 1596 } else if (!interested) { 1597 /* Neither we nor raw sockets are interested. Drop packet now */ 1598 freemsg(mp); 1599 return (NULL); 1600 } 1601 1602 /* 1603 * ICMP error or redirect packet. Make sure we have enough of 1604 * the header and that db_ref == 1 since we might end up modifying 1605 * the packet. 1606 */ 1607 if (mp->b_cont != NULL) { 1608 if (ip_pullup(mp, -1, ira) == NULL) { 1609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1610 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1611 mp, ill); 1612 freemsg(mp); 1613 return (mp_ret); 1614 } 1615 } 1616 1617 if (mp->b_datap->db_ref > 1) { 1618 mblk_t *mp1; 1619 1620 mp1 = copymsg(mp); 1621 if (mp1 == NULL) { 1622 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1623 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1624 freemsg(mp); 1625 return (mp_ret); 1626 } 1627 freemsg(mp); 1628 mp = mp1; 1629 } 1630 1631 /* 1632 * In case mp has changed, verify the message before any further 1633 * processes. 1634 */ 1635 ipha = (ipha_t *)mp->b_rptr; 1636 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1637 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1638 freemsg(mp); 1639 return (mp_ret); 1640 } 1641 1642 switch (icmph->icmph_type) { 1643 case ICMP_REDIRECT: 1644 icmp_redirect_v4(mp, ipha, icmph, ira); 1645 break; 1646 case ICMP_DEST_UNREACHABLE: 1647 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1648 /* Update DCE and adjust MTU is icmp header if needed */ 1649 icmp_inbound_too_big_v4(icmph, ira); 1650 } 1651 /* FALLTHRU */ 1652 default: 1653 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1654 break; 1655 } 1656 return (mp_ret); 1657 } 1658 1659 /* 1660 * Send an ICMP echo, timestamp or address mask reply. 1661 * The caller has already updated the payload part of the packet. 1662 * We handle the ICMP checksum, IP source address selection and feed 1663 * the packet into ip_output_simple. 1664 */ 1665 static void 1666 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1667 ip_recv_attr_t *ira) 1668 { 1669 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1670 ill_t *ill = ira->ira_ill; 1671 ip_stack_t *ipst = ill->ill_ipst; 1672 ip_xmit_attr_t ixas; 1673 1674 /* Send out an ICMP packet */ 1675 icmph->icmph_checksum = 0; 1676 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1677 /* Reset time to live. */ 1678 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1679 { 1680 /* Swap source and destination addresses */ 1681 ipaddr_t tmp; 1682 1683 tmp = ipha->ipha_src; 1684 ipha->ipha_src = ipha->ipha_dst; 1685 ipha->ipha_dst = tmp; 1686 } 1687 ipha->ipha_ident = 0; 1688 if (!IS_SIMPLE_IPH(ipha)) 1689 icmp_options_update(ipha); 1690 1691 bzero(&ixas, sizeof (ixas)); 1692 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1693 ixas.ixa_zoneid = ira->ira_zoneid; 1694 ixas.ixa_cred = kcred; 1695 ixas.ixa_cpid = NOPID; 1696 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1697 ixas.ixa_ifindex = 0; 1698 ixas.ixa_ipst = ipst; 1699 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1700 1701 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1702 /* 1703 * This packet should go out the same way as it 1704 * came in i.e in clear, independent of the IPsec policy 1705 * for transmitting packets. 1706 */ 1707 ixas.ixa_flags |= IXAF_NO_IPSEC; 1708 } else { 1709 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1710 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1711 /* Note: mp already consumed and ip_drop_packet done */ 1712 return; 1713 } 1714 } 1715 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1716 /* 1717 * Not one or our addresses (IRE_LOCALs), thus we let 1718 * ip_output_simple pick the source. 1719 */ 1720 ipha->ipha_src = INADDR_ANY; 1721 ixas.ixa_flags |= IXAF_SET_SOURCE; 1722 } 1723 /* Should we send with DF and use dce_pmtu? */ 1724 if (ipst->ips_ipv4_icmp_return_pmtu) { 1725 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1726 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1727 } 1728 1729 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1730 1731 (void) ip_output_simple(mp, &ixas); 1732 ixa_cleanup(&ixas); 1733 } 1734 1735 /* 1736 * Verify the ICMP messages for either for ICMP error or redirect packet. 1737 * The caller should have fully pulled up the message. If it's a redirect 1738 * packet, only basic checks on IP header will be done; otherwise, verify 1739 * the packet by looking at the included ULP header. 1740 * 1741 * Called before icmp_inbound_error_fanout_v4 is called. 1742 */ 1743 static boolean_t 1744 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1745 { 1746 ill_t *ill = ira->ira_ill; 1747 int hdr_length; 1748 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1749 conn_t *connp; 1750 ipha_t *ipha; /* Inner IP header */ 1751 1752 ipha = (ipha_t *)&icmph[1]; 1753 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1754 goto truncated; 1755 1756 hdr_length = IPH_HDR_LENGTH(ipha); 1757 1758 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1759 goto discard_pkt; 1760 1761 if (hdr_length < sizeof (ipha_t)) 1762 goto truncated; 1763 1764 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1765 goto truncated; 1766 1767 /* 1768 * Stop here for ICMP_REDIRECT. 1769 */ 1770 if (icmph->icmph_type == ICMP_REDIRECT) 1771 return (B_TRUE); 1772 1773 /* 1774 * ICMP errors only. 1775 */ 1776 switch (ipha->ipha_protocol) { 1777 case IPPROTO_UDP: 1778 /* 1779 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1780 * transport header. 1781 */ 1782 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1783 mp->b_wptr) 1784 goto truncated; 1785 break; 1786 case IPPROTO_TCP: { 1787 tcpha_t *tcpha; 1788 1789 /* 1790 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1791 * transport header. 1792 */ 1793 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1794 mp->b_wptr) 1795 goto truncated; 1796 1797 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1798 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1799 ipst); 1800 if (connp == NULL) 1801 goto discard_pkt; 1802 1803 if ((connp->conn_verifyicmp != NULL) && 1804 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1805 CONN_DEC_REF(connp); 1806 goto discard_pkt; 1807 } 1808 CONN_DEC_REF(connp); 1809 break; 1810 } 1811 case IPPROTO_SCTP: 1812 /* 1813 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1814 * transport header. 1815 */ 1816 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1817 mp->b_wptr) 1818 goto truncated; 1819 break; 1820 case IPPROTO_ESP: 1821 case IPPROTO_AH: 1822 break; 1823 case IPPROTO_ENCAP: 1824 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1825 mp->b_wptr) 1826 goto truncated; 1827 break; 1828 default: 1829 break; 1830 } 1831 1832 return (B_TRUE); 1833 1834 discard_pkt: 1835 /* Bogus ICMP error. */ 1836 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1837 return (B_FALSE); 1838 1839 truncated: 1840 /* We pulled up everthing already. Must be truncated */ 1841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1842 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1843 return (B_FALSE); 1844 } 1845 1846 /* Table from RFC 1191 */ 1847 static int icmp_frag_size_table[] = 1848 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1849 1850 /* 1851 * Process received ICMP Packet too big. 1852 * Just handles the DCE create/update, including using the above table of 1853 * PMTU guesses. The caller is responsible for validating the packet before 1854 * passing it in and also to fanout the ICMP error to any matching transport 1855 * conns. Assumes the message has been fully pulled up and verified. 1856 * 1857 * Before getting here, the caller has called icmp_inbound_verify_v4() 1858 * that should have verified with ULP to prevent undoing the changes we're 1859 * going to make to DCE. For example, TCP might have verified that the packet 1860 * which generated error is in the send window. 1861 * 1862 * In some cases modified this MTU in the ICMP header packet; the caller 1863 * should pass to the matching ULP after this returns. 1864 */ 1865 static void 1866 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1867 { 1868 dce_t *dce; 1869 int old_mtu; 1870 int mtu, orig_mtu; 1871 ipaddr_t dst; 1872 boolean_t disable_pmtud; 1873 ill_t *ill = ira->ira_ill; 1874 ip_stack_t *ipst = ill->ill_ipst; 1875 uint_t hdr_length; 1876 ipha_t *ipha; 1877 1878 /* Caller already pulled up everything. */ 1879 ipha = (ipha_t *)&icmph[1]; 1880 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1881 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1882 ASSERT(ill != NULL); 1883 1884 hdr_length = IPH_HDR_LENGTH(ipha); 1885 1886 /* 1887 * We handle path MTU for source routed packets since the DCE 1888 * is looked up using the final destination. 1889 */ 1890 dst = ip_get_dst(ipha); 1891 1892 dce = dce_lookup_and_add_v4(dst, ipst); 1893 if (dce == NULL) { 1894 /* Couldn't add a unique one - ENOMEM */ 1895 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1896 ntohl(dst))); 1897 return; 1898 } 1899 1900 /* Check for MTU discovery advice as described in RFC 1191 */ 1901 mtu = ntohs(icmph->icmph_du_mtu); 1902 orig_mtu = mtu; 1903 disable_pmtud = B_FALSE; 1904 1905 mutex_enter(&dce->dce_lock); 1906 if (dce->dce_flags & DCEF_PMTU) 1907 old_mtu = dce->dce_pmtu; 1908 else 1909 old_mtu = ill->ill_mtu; 1910 1911 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1912 uint32_t length; 1913 int i; 1914 1915 /* 1916 * Use the table from RFC 1191 to figure out 1917 * the next "plateau" based on the length in 1918 * the original IP packet. 1919 */ 1920 length = ntohs(ipha->ipha_length); 1921 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1922 uint32_t, length); 1923 if (old_mtu <= length && 1924 old_mtu >= length - hdr_length) { 1925 /* 1926 * Handle broken BSD 4.2 systems that 1927 * return the wrong ipha_length in ICMP 1928 * errors. 1929 */ 1930 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1931 length, old_mtu)); 1932 length -= hdr_length; 1933 } 1934 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1935 if (length > icmp_frag_size_table[i]) 1936 break; 1937 } 1938 if (i == A_CNT(icmp_frag_size_table)) { 1939 /* Smaller than IP_MIN_MTU! */ 1940 ip1dbg(("Too big for packet size %d\n", 1941 length)); 1942 disable_pmtud = B_TRUE; 1943 mtu = ipst->ips_ip_pmtu_min; 1944 } else { 1945 mtu = icmp_frag_size_table[i]; 1946 ip1dbg(("Calculated mtu %d, packet size %d, " 1947 "before %d\n", mtu, length, old_mtu)); 1948 if (mtu < ipst->ips_ip_pmtu_min) { 1949 mtu = ipst->ips_ip_pmtu_min; 1950 disable_pmtud = B_TRUE; 1951 } 1952 } 1953 } 1954 if (disable_pmtud) 1955 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1956 else 1957 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1958 1959 dce->dce_pmtu = MIN(old_mtu, mtu); 1960 /* Prepare to send the new max frag size for the ULP. */ 1961 icmph->icmph_du_zero = 0; 1962 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1963 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1964 dce, int, orig_mtu, int, mtu); 1965 1966 /* We now have a PMTU for sure */ 1967 dce->dce_flags |= DCEF_PMTU; 1968 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1969 mutex_exit(&dce->dce_lock); 1970 /* 1971 * After dropping the lock the new value is visible to everyone. 1972 * Then we bump the generation number so any cached values reinspect 1973 * the dce_t. 1974 */ 1975 dce_increment_generation(dce); 1976 dce_refrele(dce); 1977 } 1978 1979 /* 1980 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1981 * calls this function. 1982 */ 1983 static mblk_t * 1984 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1985 { 1986 int length; 1987 1988 ASSERT(mp->b_datap->db_type == M_DATA); 1989 1990 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1991 ASSERT(mp->b_cont == NULL); 1992 1993 /* 1994 * The length that we want to overlay is the inner header 1995 * and what follows it. 1996 */ 1997 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 1998 1999 /* 2000 * Overlay the inner header and whatever follows it over the 2001 * outer header. 2002 */ 2003 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2004 2005 /* Adjust for what we removed */ 2006 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2007 return (mp); 2008 } 2009 2010 /* 2011 * Try to pass the ICMP message upstream in case the ULP cares. 2012 * 2013 * If the packet that caused the ICMP error is secure, we send 2014 * it to AH/ESP to make sure that the attached packet has a 2015 * valid association. ipha in the code below points to the 2016 * IP header of the packet that caused the error. 2017 * 2018 * For IPsec cases, we let the next-layer-up (which has access to 2019 * cached policy on the conn_t, or can query the SPD directly) 2020 * subtract out any IPsec overhead if they must. We therefore make no 2021 * adjustments here for IPsec overhead. 2022 * 2023 * IFN could have been generated locally or by some router. 2024 * 2025 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2026 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2027 * This happens because IP adjusted its value of MTU on an 2028 * earlier IFN message and could not tell the upper layer, 2029 * the new adjusted value of MTU e.g. Packet was encrypted 2030 * or there was not enough information to fanout to upper 2031 * layers. Thus on the next outbound datagram, ire_send_wire 2032 * generates the IFN, where IPsec processing has *not* been 2033 * done. 2034 * 2035 * Note that we retain ixa_fragsize across IPsec thus once 2036 * we have picking ixa_fragsize and entered ipsec_out_process we do 2037 * no change the fragsize even if the path MTU changes before 2038 * we reach ip_output_post_ipsec. 2039 * 2040 * In the local case, IRAF_LOOPBACK will be set indicating 2041 * that IFN was generated locally. 2042 * 2043 * ROUTER : IFN could be secure or non-secure. 2044 * 2045 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2046 * packet in error has AH/ESP headers to validate the AH/ESP 2047 * headers. AH/ESP will verify whether there is a valid SA or 2048 * not and send it back. We will fanout again if we have more 2049 * data in the packet. 2050 * 2051 * If the packet in error does not have AH/ESP, we handle it 2052 * like any other case. 2053 * 2054 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2055 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2056 * valid SA or not and send it back. We will fanout again if 2057 * we have more data in the packet. 2058 * 2059 * If the packet in error does not have AH/ESP, we handle it 2060 * like any other case. 2061 * 2062 * The caller must have called icmp_inbound_verify_v4. 2063 */ 2064 static void 2065 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2066 { 2067 uint16_t *up; /* Pointer to ports in ULP header */ 2068 uint32_t ports; /* reversed ports for fanout */ 2069 ipha_t ripha; /* With reversed addresses */ 2070 ipha_t *ipha; /* Inner IP header */ 2071 uint_t hdr_length; /* Inner IP header length */ 2072 tcpha_t *tcpha; 2073 conn_t *connp; 2074 ill_t *ill = ira->ira_ill; 2075 ip_stack_t *ipst = ill->ill_ipst; 2076 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2077 ill_t *rill = ira->ira_rill; 2078 2079 /* Caller already pulled up everything. */ 2080 ipha = (ipha_t *)&icmph[1]; 2081 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2082 ASSERT(mp->b_cont == NULL); 2083 2084 hdr_length = IPH_HDR_LENGTH(ipha); 2085 ira->ira_protocol = ipha->ipha_protocol; 2086 2087 /* 2088 * We need a separate IP header with the source and destination 2089 * addresses reversed to do fanout/classification because the ipha in 2090 * the ICMP error is in the form we sent it out. 2091 */ 2092 ripha.ipha_src = ipha->ipha_dst; 2093 ripha.ipha_dst = ipha->ipha_src; 2094 ripha.ipha_protocol = ipha->ipha_protocol; 2095 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2096 2097 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2098 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2099 ntohl(ipha->ipha_dst), 2100 icmph->icmph_type, icmph->icmph_code)); 2101 2102 switch (ipha->ipha_protocol) { 2103 case IPPROTO_UDP: 2104 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2105 2106 /* Attempt to find a client stream based on port. */ 2107 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2108 ntohs(up[0]), ntohs(up[1]))); 2109 2110 /* Note that we send error to all matches. */ 2111 ira->ira_flags |= IRAF_ICMP_ERROR; 2112 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2113 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2114 return; 2115 2116 case IPPROTO_TCP: 2117 /* 2118 * Find a TCP client stream for this packet. 2119 * Note that we do a reverse lookup since the header is 2120 * in the form we sent it out. 2121 */ 2122 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2123 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2124 ipst); 2125 if (connp == NULL) 2126 goto discard_pkt; 2127 2128 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2129 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2130 mp = ipsec_check_inbound_policy(mp, connp, 2131 ipha, NULL, ira); 2132 if (mp == NULL) { 2133 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2134 /* Note that mp is NULL */ 2135 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2136 CONN_DEC_REF(connp); 2137 return; 2138 } 2139 } 2140 2141 ira->ira_flags |= IRAF_ICMP_ERROR; 2142 ira->ira_ill = ira->ira_rill = NULL; 2143 if (IPCL_IS_TCP(connp)) { 2144 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2145 connp->conn_recvicmp, connp, ira, SQ_FILL, 2146 SQTAG_TCP_INPUT_ICMP_ERR); 2147 } else { 2148 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2149 (connp->conn_recv)(connp, mp, NULL, ira); 2150 CONN_DEC_REF(connp); 2151 } 2152 ira->ira_ill = ill; 2153 ira->ira_rill = rill; 2154 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2155 return; 2156 2157 case IPPROTO_SCTP: 2158 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2159 /* Find a SCTP client stream for this packet. */ 2160 ((uint16_t *)&ports)[0] = up[1]; 2161 ((uint16_t *)&ports)[1] = up[0]; 2162 2163 ira->ira_flags |= IRAF_ICMP_ERROR; 2164 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2165 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2166 return; 2167 2168 case IPPROTO_ESP: 2169 case IPPROTO_AH: 2170 if (!ipsec_loaded(ipss)) { 2171 ip_proto_not_sup(mp, ira); 2172 return; 2173 } 2174 2175 if (ipha->ipha_protocol == IPPROTO_ESP) 2176 mp = ipsecesp_icmp_error(mp, ira); 2177 else 2178 mp = ipsecah_icmp_error(mp, ira); 2179 if (mp == NULL) 2180 return; 2181 2182 /* Just in case ipsec didn't preserve the NULL b_cont */ 2183 if (mp->b_cont != NULL) { 2184 if (!pullupmsg(mp, -1)) 2185 goto discard_pkt; 2186 } 2187 2188 /* 2189 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2190 * correct, but we don't use them any more here. 2191 * 2192 * If succesful, the mp has been modified to not include 2193 * the ESP/AH header so we can fanout to the ULP's icmp 2194 * error handler. 2195 */ 2196 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2197 goto truncated; 2198 2199 /* Verify the modified message before any further processes. */ 2200 ipha = (ipha_t *)mp->b_rptr; 2201 hdr_length = IPH_HDR_LENGTH(ipha); 2202 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2203 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2204 freemsg(mp); 2205 return; 2206 } 2207 2208 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2209 return; 2210 2211 case IPPROTO_ENCAP: { 2212 /* Look for self-encapsulated packets that caused an error */ 2213 ipha_t *in_ipha; 2214 2215 /* 2216 * Caller has verified that length has to be 2217 * at least the size of IP header. 2218 */ 2219 ASSERT(hdr_length >= sizeof (ipha_t)); 2220 /* 2221 * Check the sanity of the inner IP header like 2222 * we did for the outer header. 2223 */ 2224 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2225 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2226 goto discard_pkt; 2227 } 2228 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2229 goto discard_pkt; 2230 } 2231 /* Check for Self-encapsulated tunnels */ 2232 if (in_ipha->ipha_src == ipha->ipha_src && 2233 in_ipha->ipha_dst == ipha->ipha_dst) { 2234 2235 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2236 in_ipha); 2237 if (mp == NULL) 2238 goto discard_pkt; 2239 2240 /* 2241 * Just in case self_encap didn't preserve the NULL 2242 * b_cont 2243 */ 2244 if (mp->b_cont != NULL) { 2245 if (!pullupmsg(mp, -1)) 2246 goto discard_pkt; 2247 } 2248 /* 2249 * Note that ira_pktlen and ira_ip_hdr_length are no 2250 * longer correct, but we don't use them any more here. 2251 */ 2252 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2253 goto truncated; 2254 2255 /* 2256 * Verify the modified message before any further 2257 * processes. 2258 */ 2259 ipha = (ipha_t *)mp->b_rptr; 2260 hdr_length = IPH_HDR_LENGTH(ipha); 2261 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2262 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2263 freemsg(mp); 2264 return; 2265 } 2266 2267 /* 2268 * The packet in error is self-encapsualted. 2269 * And we are finding it further encapsulated 2270 * which we could not have possibly generated. 2271 */ 2272 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2273 goto discard_pkt; 2274 } 2275 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2276 return; 2277 } 2278 /* No self-encapsulated */ 2279 /* FALLTHRU */ 2280 } 2281 case IPPROTO_IPV6: 2282 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2283 &ripha.ipha_dst, ipst)) != NULL) { 2284 ira->ira_flags |= IRAF_ICMP_ERROR; 2285 connp->conn_recvicmp(connp, mp, NULL, ira); 2286 CONN_DEC_REF(connp); 2287 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2288 return; 2289 } 2290 /* 2291 * No IP tunnel is interested, fallthrough and see 2292 * if a raw socket will want it. 2293 */ 2294 /* FALLTHRU */ 2295 default: 2296 ira->ira_flags |= IRAF_ICMP_ERROR; 2297 ip_fanout_proto_v4(mp, &ripha, ira); 2298 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2299 return; 2300 } 2301 /* NOTREACHED */ 2302 discard_pkt: 2303 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2304 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2305 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2306 freemsg(mp); 2307 return; 2308 2309 truncated: 2310 /* We pulled up everthing already. Must be truncated */ 2311 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2312 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2313 freemsg(mp); 2314 } 2315 2316 /* 2317 * Common IP options parser. 2318 * 2319 * Setup routine: fill in *optp with options-parsing state, then 2320 * tail-call ipoptp_next to return the first option. 2321 */ 2322 uint8_t 2323 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2324 { 2325 uint32_t totallen; /* total length of all options */ 2326 2327 totallen = ipha->ipha_version_and_hdr_length - 2328 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2329 totallen <<= 2; 2330 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2331 optp->ipoptp_end = optp->ipoptp_next + totallen; 2332 optp->ipoptp_flags = 0; 2333 return (ipoptp_next(optp)); 2334 } 2335 2336 /* Like above but without an ipha_t */ 2337 uint8_t 2338 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2339 { 2340 optp->ipoptp_next = opt; 2341 optp->ipoptp_end = optp->ipoptp_next + totallen; 2342 optp->ipoptp_flags = 0; 2343 return (ipoptp_next(optp)); 2344 } 2345 2346 /* 2347 * Common IP options parser: extract next option. 2348 */ 2349 uint8_t 2350 ipoptp_next(ipoptp_t *optp) 2351 { 2352 uint8_t *end = optp->ipoptp_end; 2353 uint8_t *cur = optp->ipoptp_next; 2354 uint8_t opt, len, pointer; 2355 2356 /* 2357 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2358 * has been corrupted. 2359 */ 2360 ASSERT(cur <= end); 2361 2362 if (cur == end) 2363 return (IPOPT_EOL); 2364 2365 opt = cur[IPOPT_OPTVAL]; 2366 2367 /* 2368 * Skip any NOP options. 2369 */ 2370 while (opt == IPOPT_NOP) { 2371 cur++; 2372 if (cur == end) 2373 return (IPOPT_EOL); 2374 opt = cur[IPOPT_OPTVAL]; 2375 } 2376 2377 if (opt == IPOPT_EOL) 2378 return (IPOPT_EOL); 2379 2380 /* 2381 * Option requiring a length. 2382 */ 2383 if ((cur + 1) >= end) { 2384 optp->ipoptp_flags |= IPOPTP_ERROR; 2385 return (IPOPT_EOL); 2386 } 2387 len = cur[IPOPT_OLEN]; 2388 if (len < 2) { 2389 optp->ipoptp_flags |= IPOPTP_ERROR; 2390 return (IPOPT_EOL); 2391 } 2392 optp->ipoptp_cur = cur; 2393 optp->ipoptp_len = len; 2394 optp->ipoptp_next = cur + len; 2395 if (cur + len > end) { 2396 optp->ipoptp_flags |= IPOPTP_ERROR; 2397 return (IPOPT_EOL); 2398 } 2399 2400 /* 2401 * For the options which require a pointer field, make sure 2402 * its there, and make sure it points to either something 2403 * inside this option, or the end of the option. 2404 */ 2405 switch (opt) { 2406 case IPOPT_RR: 2407 case IPOPT_TS: 2408 case IPOPT_LSRR: 2409 case IPOPT_SSRR: 2410 if (len <= IPOPT_OFFSET) { 2411 optp->ipoptp_flags |= IPOPTP_ERROR; 2412 return (opt); 2413 } 2414 pointer = cur[IPOPT_OFFSET]; 2415 if (pointer - 1 > len) { 2416 optp->ipoptp_flags |= IPOPTP_ERROR; 2417 return (opt); 2418 } 2419 break; 2420 } 2421 2422 /* 2423 * Sanity check the pointer field based on the type of the 2424 * option. 2425 */ 2426 switch (opt) { 2427 case IPOPT_RR: 2428 case IPOPT_SSRR: 2429 case IPOPT_LSRR: 2430 if (pointer < IPOPT_MINOFF_SR) 2431 optp->ipoptp_flags |= IPOPTP_ERROR; 2432 break; 2433 case IPOPT_TS: 2434 if (pointer < IPOPT_MINOFF_IT) 2435 optp->ipoptp_flags |= IPOPTP_ERROR; 2436 /* 2437 * Note that the Internet Timestamp option also 2438 * contains two four bit fields (the Overflow field, 2439 * and the Flag field), which follow the pointer 2440 * field. We don't need to check that these fields 2441 * fall within the length of the option because this 2442 * was implicitely done above. We've checked that the 2443 * pointer value is at least IPOPT_MINOFF_IT, and that 2444 * it falls within the option. Since IPOPT_MINOFF_IT > 2445 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2446 */ 2447 ASSERT(len > IPOPT_POS_OV_FLG); 2448 break; 2449 } 2450 2451 return (opt); 2452 } 2453 2454 /* 2455 * Use the outgoing IP header to create an IP_OPTIONS option the way 2456 * it was passed down from the application. 2457 * 2458 * This is compatible with BSD in that it returns 2459 * the reverse source route with the final destination 2460 * as the last entry. The first 4 bytes of the option 2461 * will contain the final destination. 2462 */ 2463 int 2464 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2465 { 2466 ipoptp_t opts; 2467 uchar_t *opt; 2468 uint8_t optval; 2469 uint8_t optlen; 2470 uint32_t len = 0; 2471 uchar_t *buf1 = buf; 2472 uint32_t totallen; 2473 ipaddr_t dst; 2474 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2475 2476 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2477 return (0); 2478 2479 totallen = ipp->ipp_ipv4_options_len; 2480 if (totallen & 0x3) 2481 return (0); 2482 2483 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2484 len += IP_ADDR_LEN; 2485 bzero(buf1, IP_ADDR_LEN); 2486 2487 dst = connp->conn_faddr_v4; 2488 2489 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2490 optval != IPOPT_EOL; 2491 optval = ipoptp_next(&opts)) { 2492 int off; 2493 2494 opt = opts.ipoptp_cur; 2495 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2496 break; 2497 } 2498 optlen = opts.ipoptp_len; 2499 2500 switch (optval) { 2501 case IPOPT_SSRR: 2502 case IPOPT_LSRR: 2503 2504 /* 2505 * Insert destination as the first entry in the source 2506 * route and move down the entries on step. 2507 * The last entry gets placed at buf1. 2508 */ 2509 buf[IPOPT_OPTVAL] = optval; 2510 buf[IPOPT_OLEN] = optlen; 2511 buf[IPOPT_OFFSET] = optlen; 2512 2513 off = optlen - IP_ADDR_LEN; 2514 if (off < 0) { 2515 /* No entries in source route */ 2516 break; 2517 } 2518 /* Last entry in source route if not already set */ 2519 if (dst == INADDR_ANY) 2520 bcopy(opt + off, buf1, IP_ADDR_LEN); 2521 off -= IP_ADDR_LEN; 2522 2523 while (off > 0) { 2524 bcopy(opt + off, 2525 buf + off + IP_ADDR_LEN, 2526 IP_ADDR_LEN); 2527 off -= IP_ADDR_LEN; 2528 } 2529 /* ipha_dst into first slot */ 2530 bcopy(&dst, buf + off + IP_ADDR_LEN, 2531 IP_ADDR_LEN); 2532 buf += optlen; 2533 len += optlen; 2534 break; 2535 2536 default: 2537 bcopy(opt, buf, optlen); 2538 buf += optlen; 2539 len += optlen; 2540 break; 2541 } 2542 } 2543 done: 2544 /* Pad the resulting options */ 2545 while (len & 0x3) { 2546 *buf++ = IPOPT_EOL; 2547 len++; 2548 } 2549 return (len); 2550 } 2551 2552 /* 2553 * Update any record route or timestamp options to include this host. 2554 * Reverse any source route option. 2555 * This routine assumes that the options are well formed i.e. that they 2556 * have already been checked. 2557 */ 2558 static void 2559 icmp_options_update(ipha_t *ipha) 2560 { 2561 ipoptp_t opts; 2562 uchar_t *opt; 2563 uint8_t optval; 2564 ipaddr_t src; /* Our local address */ 2565 ipaddr_t dst; 2566 2567 ip2dbg(("icmp_options_update\n")); 2568 src = ipha->ipha_src; 2569 dst = ipha->ipha_dst; 2570 2571 for (optval = ipoptp_first(&opts, ipha); 2572 optval != IPOPT_EOL; 2573 optval = ipoptp_next(&opts)) { 2574 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2575 opt = opts.ipoptp_cur; 2576 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2577 optval, opts.ipoptp_len)); 2578 switch (optval) { 2579 int off1, off2; 2580 case IPOPT_SSRR: 2581 case IPOPT_LSRR: 2582 /* 2583 * Reverse the source route. The first entry 2584 * should be the next to last one in the current 2585 * source route (the last entry is our address). 2586 * The last entry should be the final destination. 2587 */ 2588 off1 = IPOPT_MINOFF_SR - 1; 2589 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2590 if (off2 < 0) { 2591 /* No entries in source route */ 2592 ip1dbg(( 2593 "icmp_options_update: bad src route\n")); 2594 break; 2595 } 2596 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2597 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2598 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2599 off2 -= IP_ADDR_LEN; 2600 2601 while (off1 < off2) { 2602 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2603 bcopy((char *)opt + off2, (char *)opt + off1, 2604 IP_ADDR_LEN); 2605 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2606 off1 += IP_ADDR_LEN; 2607 off2 -= IP_ADDR_LEN; 2608 } 2609 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2610 break; 2611 } 2612 } 2613 } 2614 2615 /* 2616 * Process received ICMP Redirect messages. 2617 * Assumes the caller has verified that the headers are in the pulled up mblk. 2618 * Consumes mp. 2619 */ 2620 static void 2621 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2622 { 2623 ire_t *ire, *nire; 2624 ire_t *prev_ire; 2625 ipaddr_t src, dst, gateway; 2626 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2627 ipha_t *inner_ipha; /* Inner IP header */ 2628 2629 /* Caller already pulled up everything. */ 2630 inner_ipha = (ipha_t *)&icmph[1]; 2631 src = ipha->ipha_src; 2632 dst = inner_ipha->ipha_dst; 2633 gateway = icmph->icmph_rd_gateway; 2634 /* Make sure the new gateway is reachable somehow. */ 2635 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2636 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2637 /* 2638 * Make sure we had a route for the dest in question and that 2639 * that route was pointing to the old gateway (the source of the 2640 * redirect packet.) 2641 * We do longest match and then compare ire_gateway_addr below. 2642 */ 2643 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2644 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2645 /* 2646 * Check that 2647 * the redirect was not from ourselves 2648 * the new gateway and the old gateway are directly reachable 2649 */ 2650 if (prev_ire == NULL || ire == NULL || 2651 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2652 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2653 !(ire->ire_type & IRE_IF_ALL) || 2654 prev_ire->ire_gateway_addr != src) { 2655 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2656 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2657 freemsg(mp); 2658 if (ire != NULL) 2659 ire_refrele(ire); 2660 if (prev_ire != NULL) 2661 ire_refrele(prev_ire); 2662 return; 2663 } 2664 2665 ire_refrele(prev_ire); 2666 ire_refrele(ire); 2667 2668 /* 2669 * TODO: more precise handling for cases 0, 2, 3, the latter two 2670 * require TOS routing 2671 */ 2672 switch (icmph->icmph_code) { 2673 case 0: 2674 case 1: 2675 /* TODO: TOS specificity for cases 2 and 3 */ 2676 case 2: 2677 case 3: 2678 break; 2679 default: 2680 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2681 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2682 freemsg(mp); 2683 return; 2684 } 2685 /* 2686 * Create a Route Association. This will allow us to remember that 2687 * someone we believe told us to use the particular gateway. 2688 */ 2689 ire = ire_create( 2690 (uchar_t *)&dst, /* dest addr */ 2691 (uchar_t *)&ip_g_all_ones, /* mask */ 2692 (uchar_t *)&gateway, /* gateway addr */ 2693 IRE_HOST, 2694 NULL, /* ill */ 2695 ALL_ZONES, 2696 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2697 NULL, /* tsol_gc_t */ 2698 ipst); 2699 2700 if (ire == NULL) { 2701 freemsg(mp); 2702 return; 2703 } 2704 nire = ire_add(ire); 2705 /* Check if it was a duplicate entry */ 2706 if (nire != NULL && nire != ire) { 2707 ASSERT(nire->ire_identical_ref > 1); 2708 ire_delete(nire); 2709 ire_refrele(nire); 2710 nire = NULL; 2711 } 2712 ire = nire; 2713 if (ire != NULL) { 2714 ire_refrele(ire); /* Held in ire_add */ 2715 2716 /* tell routing sockets that we received a redirect */ 2717 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2718 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2719 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2720 } 2721 2722 /* 2723 * Delete any existing IRE_HOST type redirect ires for this destination. 2724 * This together with the added IRE has the effect of 2725 * modifying an existing redirect. 2726 */ 2727 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2728 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2729 if (prev_ire != NULL) { 2730 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2731 ire_delete(prev_ire); 2732 ire_refrele(prev_ire); 2733 } 2734 2735 freemsg(mp); 2736 } 2737 2738 /* 2739 * Generate an ICMP parameter problem message. 2740 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2741 * constructed by the caller. 2742 */ 2743 static void 2744 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2745 { 2746 icmph_t icmph; 2747 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2748 2749 mp = icmp_pkt_err_ok(mp, ira); 2750 if (mp == NULL) 2751 return; 2752 2753 bzero(&icmph, sizeof (icmph_t)); 2754 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2755 icmph.icmph_pp_ptr = ptr; 2756 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2757 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2758 } 2759 2760 /* 2761 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2762 * the ICMP header pointed to by "stuff". (May be called as writer.) 2763 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2764 * an icmp error packet can be sent. 2765 * Assigns an appropriate source address to the packet. If ipha_dst is 2766 * one of our addresses use it for source. Otherwise let ip_output_simple 2767 * pick the source address. 2768 */ 2769 static void 2770 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2771 { 2772 ipaddr_t dst; 2773 icmph_t *icmph; 2774 ipha_t *ipha; 2775 uint_t len_needed; 2776 size_t msg_len; 2777 mblk_t *mp1; 2778 ipaddr_t src; 2779 ire_t *ire; 2780 ip_xmit_attr_t ixas; 2781 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2782 2783 ipha = (ipha_t *)mp->b_rptr; 2784 2785 bzero(&ixas, sizeof (ixas)); 2786 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2787 ixas.ixa_zoneid = ira->ira_zoneid; 2788 ixas.ixa_ifindex = 0; 2789 ixas.ixa_ipst = ipst; 2790 ixas.ixa_cred = kcred; 2791 ixas.ixa_cpid = NOPID; 2792 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2793 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2794 2795 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2796 /* 2797 * Apply IPsec based on how IPsec was applied to 2798 * the packet that had the error. 2799 * 2800 * If it was an outbound packet that caused the ICMP 2801 * error, then the caller will have setup the IRA 2802 * appropriately. 2803 */ 2804 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2805 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2806 /* Note: mp already consumed and ip_drop_packet done */ 2807 return; 2808 } 2809 } else { 2810 /* 2811 * This is in clear. The icmp message we are building 2812 * here should go out in clear, independent of our policy. 2813 */ 2814 ixas.ixa_flags |= IXAF_NO_IPSEC; 2815 } 2816 2817 /* Remember our eventual destination */ 2818 dst = ipha->ipha_src; 2819 2820 /* 2821 * If the packet was for one of our unicast addresses, make 2822 * sure we respond with that as the source. Otherwise 2823 * have ip_output_simple pick the source address. 2824 */ 2825 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2826 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2827 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2828 if (ire != NULL) { 2829 ire_refrele(ire); 2830 src = ipha->ipha_dst; 2831 } else { 2832 src = INADDR_ANY; 2833 ixas.ixa_flags |= IXAF_SET_SOURCE; 2834 } 2835 2836 /* 2837 * Check if we can send back more then 8 bytes in addition to 2838 * the IP header. We try to send 64 bytes of data and the internal 2839 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2840 */ 2841 len_needed = IPH_HDR_LENGTH(ipha); 2842 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2843 ipha->ipha_protocol == IPPROTO_IPV6) { 2844 if (!pullupmsg(mp, -1)) { 2845 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2846 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2847 freemsg(mp); 2848 return; 2849 } 2850 ipha = (ipha_t *)mp->b_rptr; 2851 2852 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2853 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2854 len_needed)); 2855 } else { 2856 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2857 2858 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2859 len_needed += ip_hdr_length_v6(mp, ip6h); 2860 } 2861 } 2862 len_needed += ipst->ips_ip_icmp_return; 2863 msg_len = msgdsize(mp); 2864 if (msg_len > len_needed) { 2865 (void) adjmsg(mp, len_needed - msg_len); 2866 msg_len = len_needed; 2867 } 2868 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2869 if (mp1 == NULL) { 2870 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2871 freemsg(mp); 2872 return; 2873 } 2874 mp1->b_cont = mp; 2875 mp = mp1; 2876 2877 /* 2878 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2879 * node generates be accepted in peace by all on-host destinations. 2880 * If we do NOT assume that all on-host destinations trust 2881 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2882 * (Look for IXAF_TRUSTED_ICMP). 2883 */ 2884 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2885 2886 ipha = (ipha_t *)mp->b_rptr; 2887 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2888 *ipha = icmp_ipha; 2889 ipha->ipha_src = src; 2890 ipha->ipha_dst = dst; 2891 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2892 msg_len += sizeof (icmp_ipha) + len; 2893 if (msg_len > IP_MAXPACKET) { 2894 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2895 msg_len = IP_MAXPACKET; 2896 } 2897 ipha->ipha_length = htons((uint16_t)msg_len); 2898 icmph = (icmph_t *)&ipha[1]; 2899 bcopy(stuff, icmph, len); 2900 icmph->icmph_checksum = 0; 2901 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2902 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2903 2904 (void) ip_output_simple(mp, &ixas); 2905 ixa_cleanup(&ixas); 2906 } 2907 2908 /* 2909 * Determine if an ICMP error packet can be sent given the rate limit. 2910 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2911 * in milliseconds) and a burst size. Burst size number of packets can 2912 * be sent arbitrarely closely spaced. 2913 * The state is tracked using two variables to implement an approximate 2914 * token bucket filter: 2915 * icmp_pkt_err_last - lbolt value when the last burst started 2916 * icmp_pkt_err_sent - number of packets sent in current burst 2917 */ 2918 boolean_t 2919 icmp_err_rate_limit(ip_stack_t *ipst) 2920 { 2921 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2922 uint_t refilled; /* Number of packets refilled in tbf since last */ 2923 /* Guard against changes by loading into local variable */ 2924 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2925 2926 if (err_interval == 0) 2927 return (B_FALSE); 2928 2929 if (ipst->ips_icmp_pkt_err_last > now) { 2930 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2931 ipst->ips_icmp_pkt_err_last = 0; 2932 ipst->ips_icmp_pkt_err_sent = 0; 2933 } 2934 /* 2935 * If we are in a burst update the token bucket filter. 2936 * Update the "last" time to be close to "now" but make sure 2937 * we don't loose precision. 2938 */ 2939 if (ipst->ips_icmp_pkt_err_sent != 0) { 2940 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2941 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2942 ipst->ips_icmp_pkt_err_sent = 0; 2943 } else { 2944 ipst->ips_icmp_pkt_err_sent -= refilled; 2945 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2946 } 2947 } 2948 if (ipst->ips_icmp_pkt_err_sent == 0) { 2949 /* Start of new burst */ 2950 ipst->ips_icmp_pkt_err_last = now; 2951 } 2952 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2953 ipst->ips_icmp_pkt_err_sent++; 2954 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2955 ipst->ips_icmp_pkt_err_sent)); 2956 return (B_FALSE); 2957 } 2958 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2959 return (B_TRUE); 2960 } 2961 2962 /* 2963 * Check if it is ok to send an IPv4 ICMP error packet in 2964 * response to the IPv4 packet in mp. 2965 * Free the message and return null if no 2966 * ICMP error packet should be sent. 2967 */ 2968 static mblk_t * 2969 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2970 { 2971 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2972 icmph_t *icmph; 2973 ipha_t *ipha; 2974 uint_t len_needed; 2975 2976 if (!mp) 2977 return (NULL); 2978 ipha = (ipha_t *)mp->b_rptr; 2979 if (ip_csum_hdr(ipha)) { 2980 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2981 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2982 freemsg(mp); 2983 return (NULL); 2984 } 2985 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2986 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2987 CLASSD(ipha->ipha_dst) || 2988 CLASSD(ipha->ipha_src) || 2989 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2990 /* Note: only errors to the fragment with offset 0 */ 2991 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2992 freemsg(mp); 2993 return (NULL); 2994 } 2995 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2996 /* 2997 * Check the ICMP type. RFC 1122 sez: don't send ICMP 2998 * errors in response to any ICMP errors. 2999 */ 3000 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3001 if (mp->b_wptr - mp->b_rptr < len_needed) { 3002 if (!pullupmsg(mp, len_needed)) { 3003 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3004 freemsg(mp); 3005 return (NULL); 3006 } 3007 ipha = (ipha_t *)mp->b_rptr; 3008 } 3009 icmph = (icmph_t *) 3010 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3011 switch (icmph->icmph_type) { 3012 case ICMP_DEST_UNREACHABLE: 3013 case ICMP_SOURCE_QUENCH: 3014 case ICMP_TIME_EXCEEDED: 3015 case ICMP_PARAM_PROBLEM: 3016 case ICMP_REDIRECT: 3017 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3018 freemsg(mp); 3019 return (NULL); 3020 default: 3021 break; 3022 } 3023 } 3024 /* 3025 * If this is a labeled system, then check to see if we're allowed to 3026 * send a response to this particular sender. If not, then just drop. 3027 */ 3028 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3029 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3030 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3031 freemsg(mp); 3032 return (NULL); 3033 } 3034 if (icmp_err_rate_limit(ipst)) { 3035 /* 3036 * Only send ICMP error packets every so often. 3037 * This should be done on a per port/source basis, 3038 * but for now this will suffice. 3039 */ 3040 freemsg(mp); 3041 return (NULL); 3042 } 3043 return (mp); 3044 } 3045 3046 /* 3047 * Called when a packet was sent out the same link that it arrived on. 3048 * Check if it is ok to send a redirect and then send it. 3049 */ 3050 void 3051 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3052 ip_recv_attr_t *ira) 3053 { 3054 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3055 ipaddr_t src, nhop; 3056 mblk_t *mp1; 3057 ire_t *nhop_ire; 3058 3059 /* 3060 * Check the source address to see if it originated 3061 * on the same logical subnet it is going back out on. 3062 * If so, we should be able to send it a redirect. 3063 * Avoid sending a redirect if the destination 3064 * is directly connected (i.e., we matched an IRE_ONLINK), 3065 * or if the packet was source routed out this interface. 3066 * 3067 * We avoid sending a redirect if the 3068 * destination is directly connected 3069 * because it is possible that multiple 3070 * IP subnets may have been configured on 3071 * the link, and the source may not 3072 * be on the same subnet as ip destination, 3073 * even though they are on the same 3074 * physical link. 3075 */ 3076 if ((ire->ire_type & IRE_ONLINK) || 3077 ip_source_routed(ipha, ipst)) 3078 return; 3079 3080 nhop_ire = ire_nexthop(ire); 3081 if (nhop_ire == NULL) 3082 return; 3083 3084 nhop = nhop_ire->ire_addr; 3085 3086 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3087 ire_t *ire2; 3088 3089 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3090 mutex_enter(&nhop_ire->ire_lock); 3091 ire2 = nhop_ire->ire_dep_parent; 3092 if (ire2 != NULL) 3093 ire_refhold(ire2); 3094 mutex_exit(&nhop_ire->ire_lock); 3095 ire_refrele(nhop_ire); 3096 nhop_ire = ire2; 3097 } 3098 if (nhop_ire == NULL) 3099 return; 3100 3101 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3102 3103 src = ipha->ipha_src; 3104 3105 /* 3106 * We look at the interface ire for the nexthop, 3107 * to see if ipha_src is in the same subnet 3108 * as the nexthop. 3109 */ 3110 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3111 /* 3112 * The source is directly connected. 3113 */ 3114 mp1 = copymsg(mp); 3115 if (mp1 != NULL) { 3116 icmp_send_redirect(mp1, nhop, ira); 3117 } 3118 } 3119 ire_refrele(nhop_ire); 3120 } 3121 3122 /* 3123 * Generate an ICMP redirect message. 3124 */ 3125 static void 3126 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3127 { 3128 icmph_t icmph; 3129 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3130 3131 mp = icmp_pkt_err_ok(mp, ira); 3132 if (mp == NULL) 3133 return; 3134 3135 bzero(&icmph, sizeof (icmph_t)); 3136 icmph.icmph_type = ICMP_REDIRECT; 3137 icmph.icmph_code = 1; 3138 icmph.icmph_rd_gateway = gateway; 3139 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3140 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3141 } 3142 3143 /* 3144 * Generate an ICMP time exceeded message. 3145 */ 3146 void 3147 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3148 { 3149 icmph_t icmph; 3150 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3151 3152 mp = icmp_pkt_err_ok(mp, ira); 3153 if (mp == NULL) 3154 return; 3155 3156 bzero(&icmph, sizeof (icmph_t)); 3157 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3158 icmph.icmph_code = code; 3159 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3160 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3161 } 3162 3163 /* 3164 * Generate an ICMP unreachable message. 3165 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3166 * constructed by the caller. 3167 */ 3168 void 3169 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3170 { 3171 icmph_t icmph; 3172 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3173 3174 mp = icmp_pkt_err_ok(mp, ira); 3175 if (mp == NULL) 3176 return; 3177 3178 bzero(&icmph, sizeof (icmph_t)); 3179 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3180 icmph.icmph_code = code; 3181 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3182 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3183 } 3184 3185 /* 3186 * Latch in the IPsec state for a stream based the policy in the listener 3187 * and the actions in the ip_recv_attr_t. 3188 * Called directly from TCP and SCTP. 3189 */ 3190 boolean_t 3191 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3192 { 3193 ASSERT(lconnp->conn_policy != NULL); 3194 ASSERT(connp->conn_policy == NULL); 3195 3196 IPPH_REFHOLD(lconnp->conn_policy); 3197 connp->conn_policy = lconnp->conn_policy; 3198 3199 if (ira->ira_ipsec_action != NULL) { 3200 if (connp->conn_latch == NULL) { 3201 connp->conn_latch = iplatch_create(); 3202 if (connp->conn_latch == NULL) 3203 return (B_FALSE); 3204 } 3205 ipsec_latch_inbound(connp, ira); 3206 } 3207 return (B_TRUE); 3208 } 3209 3210 /* 3211 * Verify whether or not the IP address is a valid local address. 3212 * Could be a unicast, including one for a down interface. 3213 * If allow_mcbc then a multicast or broadcast address is also 3214 * acceptable. 3215 * 3216 * In the case of a broadcast/multicast address, however, the 3217 * upper protocol is expected to reset the src address 3218 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3219 * no packets are emitted with broadcast/multicast address as 3220 * source address (that violates hosts requirements RFC 1122) 3221 * The addresses valid for bind are: 3222 * (1) - INADDR_ANY (0) 3223 * (2) - IP address of an UP interface 3224 * (3) - IP address of a DOWN interface 3225 * (4) - valid local IP broadcast addresses. In this case 3226 * the conn will only receive packets destined to 3227 * the specified broadcast address. 3228 * (5) - a multicast address. In this case 3229 * the conn will only receive packets destined to 3230 * the specified multicast address. Note: the 3231 * application still has to issue an 3232 * IP_ADD_MEMBERSHIP socket option. 3233 * 3234 * In all the above cases, the bound address must be valid in the current zone. 3235 * When the address is loopback, multicast or broadcast, there might be many 3236 * matching IREs so bind has to look up based on the zone. 3237 */ 3238 ip_laddr_t 3239 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3240 ip_stack_t *ipst, boolean_t allow_mcbc) 3241 { 3242 ire_t *src_ire; 3243 3244 ASSERT(src_addr != INADDR_ANY); 3245 3246 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3247 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3248 3249 /* 3250 * If an address other than in6addr_any is requested, 3251 * we verify that it is a valid address for bind 3252 * Note: Following code is in if-else-if form for 3253 * readability compared to a condition check. 3254 */ 3255 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3256 /* 3257 * (2) Bind to address of local UP interface 3258 */ 3259 ire_refrele(src_ire); 3260 return (IPVL_UNICAST_UP); 3261 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3262 /* 3263 * (4) Bind to broadcast address 3264 */ 3265 ire_refrele(src_ire); 3266 if (allow_mcbc) 3267 return (IPVL_BCAST); 3268 else 3269 return (IPVL_BAD); 3270 } else if (CLASSD(src_addr)) { 3271 /* (5) bind to multicast address. */ 3272 if (src_ire != NULL) 3273 ire_refrele(src_ire); 3274 3275 if (allow_mcbc) 3276 return (IPVL_MCAST); 3277 else 3278 return (IPVL_BAD); 3279 } else { 3280 ipif_t *ipif; 3281 3282 /* 3283 * (3) Bind to address of local DOWN interface? 3284 * (ipif_lookup_addr() looks up all interfaces 3285 * but we do not get here for UP interfaces 3286 * - case (2) above) 3287 */ 3288 if (src_ire != NULL) 3289 ire_refrele(src_ire); 3290 3291 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3292 if (ipif == NULL) 3293 return (IPVL_BAD); 3294 3295 /* Not a useful source? */ 3296 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3297 ipif_refrele(ipif); 3298 return (IPVL_BAD); 3299 } 3300 ipif_refrele(ipif); 3301 return (IPVL_UNICAST_DOWN); 3302 } 3303 } 3304 3305 /* 3306 * Insert in the bind fanout for IPv4 and IPv6. 3307 * The caller should already have used ip_laddr_verify_v*() before calling 3308 * this. 3309 */ 3310 int 3311 ip_laddr_fanout_insert(conn_t *connp) 3312 { 3313 int error; 3314 3315 /* 3316 * Allow setting new policies. For example, disconnects result 3317 * in us being called. As we would have set conn_policy_cached 3318 * to B_TRUE before, we should set it to B_FALSE, so that policy 3319 * can change after the disconnect. 3320 */ 3321 connp->conn_policy_cached = B_FALSE; 3322 3323 error = ipcl_bind_insert(connp); 3324 if (error != 0) { 3325 if (connp->conn_anon_port) { 3326 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3327 connp->conn_mlp_type, connp->conn_proto, 3328 ntohs(connp->conn_lport), B_FALSE); 3329 } 3330 connp->conn_mlp_type = mlptSingle; 3331 } 3332 return (error); 3333 } 3334 3335 /* 3336 * Verify that both the source and destination addresses are valid. If 3337 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3338 * i.e. have no route to it. Protocols like TCP want to verify destination 3339 * reachability, while tunnels do not. 3340 * 3341 * Determine the route, the interface, and (optionally) the source address 3342 * to use to reach a given destination. 3343 * Note that we allow connect to broadcast and multicast addresses when 3344 * IPDF_ALLOW_MCBC is set. 3345 * first_hop and dst_addr are normally the same, but if source routing 3346 * they will differ; in that case the first_hop is what we'll use for the 3347 * routing lookup but the dce and label checks will be done on dst_addr, 3348 * 3349 * If uinfo is set, then we fill in the best available information 3350 * we have for the destination. This is based on (in priority order) any 3351 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3352 * ill_mtu. 3353 * 3354 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3355 * always do the label check on dst_addr. 3356 */ 3357 int 3358 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3359 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3360 { 3361 ire_t *ire = NULL; 3362 int error = 0; 3363 ipaddr_t setsrc; /* RTF_SETSRC */ 3364 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3365 ip_stack_t *ipst = ixa->ixa_ipst; 3366 dce_t *dce; 3367 uint_t pmtu; 3368 uint_t generation; 3369 nce_t *nce; 3370 ill_t *ill = NULL; 3371 boolean_t multirt = B_FALSE; 3372 3373 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3374 3375 /* 3376 * We never send to zero; the ULPs map it to the loopback address. 3377 * We can't allow it since we use zero to mean unitialized in some 3378 * places. 3379 */ 3380 ASSERT(dst_addr != INADDR_ANY); 3381 3382 if (is_system_labeled()) { 3383 ts_label_t *tsl = NULL; 3384 3385 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3386 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3387 if (error != 0) 3388 return (error); 3389 if (tsl != NULL) { 3390 /* Update the label */ 3391 ip_xmit_attr_replace_tsl(ixa, tsl); 3392 } 3393 } 3394 3395 setsrc = INADDR_ANY; 3396 /* 3397 * Select a route; For IPMP interfaces, we would only select 3398 * a "hidden" route (i.e., going through a specific under_ill) 3399 * if ixa_ifindex has been specified. 3400 */ 3401 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3402 &generation, &setsrc, &error, &multirt); 3403 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3404 if (error != 0) 3405 goto bad_addr; 3406 3407 /* 3408 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3409 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3410 * Otherwise the destination needn't be reachable. 3411 * 3412 * If we match on a reject or black hole, then we've got a 3413 * local failure. May as well fail out the connect() attempt, 3414 * since it's never going to succeed. 3415 */ 3416 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3417 /* 3418 * If we're verifying destination reachability, we always want 3419 * to complain here. 3420 * 3421 * If we're not verifying destination reachability but the 3422 * destination has a route, we still want to fail on the 3423 * temporary address and broadcast address tests. 3424 * 3425 * In both cases do we let the code continue so some reasonable 3426 * information is returned to the caller. That enables the 3427 * caller to use (and even cache) the IRE. conn_ip_ouput will 3428 * use the generation mismatch path to check for the unreachable 3429 * case thereby avoiding any specific check in the main path. 3430 */ 3431 ASSERT(generation == IRE_GENERATION_VERIFY); 3432 if (flags & IPDF_VERIFY_DST) { 3433 /* 3434 * Set errno but continue to set up ixa_ire to be 3435 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3436 * That allows callers to use ip_output to get an 3437 * ICMP error back. 3438 */ 3439 if (!(ire->ire_type & IRE_HOST)) 3440 error = ENETUNREACH; 3441 else 3442 error = EHOSTUNREACH; 3443 } 3444 } 3445 3446 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3447 !(flags & IPDF_ALLOW_MCBC)) { 3448 ire_refrele(ire); 3449 ire = ire_reject(ipst, B_FALSE); 3450 generation = IRE_GENERATION_VERIFY; 3451 error = ENETUNREACH; 3452 } 3453 3454 /* Cache things */ 3455 if (ixa->ixa_ire != NULL) 3456 ire_refrele_notr(ixa->ixa_ire); 3457 #ifdef DEBUG 3458 ire_refhold_notr(ire); 3459 ire_refrele(ire); 3460 #endif 3461 ixa->ixa_ire = ire; 3462 ixa->ixa_ire_generation = generation; 3463 3464 /* 3465 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3466 * since some callers will send a packet to conn_ip_output() even if 3467 * there's an error. 3468 */ 3469 if (flags & IPDF_UNIQUE_DCE) { 3470 /* Fallback to the default dce if allocation fails */ 3471 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3472 if (dce != NULL) 3473 generation = dce->dce_generation; 3474 else 3475 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3476 } else { 3477 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3478 } 3479 ASSERT(dce != NULL); 3480 if (ixa->ixa_dce != NULL) 3481 dce_refrele_notr(ixa->ixa_dce); 3482 #ifdef DEBUG 3483 dce_refhold_notr(dce); 3484 dce_refrele(dce); 3485 #endif 3486 ixa->ixa_dce = dce; 3487 ixa->ixa_dce_generation = generation; 3488 3489 /* 3490 * For multicast with multirt we have a flag passed back from 3491 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3492 * possible multicast address. 3493 * We also need a flag for multicast since we can't check 3494 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3495 */ 3496 if (multirt) { 3497 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3498 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3499 } else { 3500 ixa->ixa_postfragfn = ire->ire_postfragfn; 3501 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3502 } 3503 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3504 /* Get an nce to cache. */ 3505 nce = ire_to_nce(ire, firsthop, NULL); 3506 if (nce == NULL) { 3507 /* Allocation failure? */ 3508 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3509 } else { 3510 if (ixa->ixa_nce != NULL) 3511 nce_refrele(ixa->ixa_nce); 3512 ixa->ixa_nce = nce; 3513 } 3514 } 3515 3516 /* 3517 * If the source address is a loopback address, the 3518 * destination had best be local or multicast. 3519 * If we are sending to an IRE_LOCAL using a loopback source then 3520 * it had better be the same zoneid. 3521 */ 3522 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3523 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3524 ire = NULL; /* Stored in ixa_ire */ 3525 error = EADDRNOTAVAIL; 3526 goto bad_addr; 3527 } 3528 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3529 ire = NULL; /* Stored in ixa_ire */ 3530 error = EADDRNOTAVAIL; 3531 goto bad_addr; 3532 } 3533 } 3534 if (ire->ire_type & IRE_BROADCAST) { 3535 /* 3536 * If the ULP didn't have a specified source, then we 3537 * make sure we reselect the source when sending 3538 * broadcasts out different interfaces. 3539 */ 3540 if (flags & IPDF_SELECT_SRC) 3541 ixa->ixa_flags |= IXAF_SET_SOURCE; 3542 else 3543 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3544 } 3545 3546 /* 3547 * Does the caller want us to pick a source address? 3548 */ 3549 if (flags & IPDF_SELECT_SRC) { 3550 ipaddr_t src_addr; 3551 3552 /* 3553 * We use use ire_nexthop_ill to avoid the under ipmp 3554 * interface for source address selection. Note that for ipmp 3555 * probe packets, ixa_ifindex would have been specified, and 3556 * the ip_select_route() invocation would have picked an ire 3557 * will ire_ill pointing at an under interface. 3558 */ 3559 ill = ire_nexthop_ill(ire); 3560 3561 /* If unreachable we have no ill but need some source */ 3562 if (ill == NULL) { 3563 src_addr = htonl(INADDR_LOOPBACK); 3564 /* Make sure we look for a better source address */ 3565 generation = SRC_GENERATION_VERIFY; 3566 } else { 3567 error = ip_select_source_v4(ill, setsrc, dst_addr, 3568 ixa->ixa_multicast_ifaddr, zoneid, 3569 ipst, &src_addr, &generation, NULL); 3570 if (error != 0) { 3571 ire = NULL; /* Stored in ixa_ire */ 3572 goto bad_addr; 3573 } 3574 } 3575 3576 /* 3577 * We allow the source address to to down. 3578 * However, we check that we don't use the loopback address 3579 * as a source when sending out on the wire. 3580 */ 3581 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3582 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3583 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3584 ire = NULL; /* Stored in ixa_ire */ 3585 error = EADDRNOTAVAIL; 3586 goto bad_addr; 3587 } 3588 3589 *src_addrp = src_addr; 3590 ixa->ixa_src_generation = generation; 3591 } 3592 3593 /* 3594 * Make sure we don't leave an unreachable ixa_nce in place 3595 * since ip_select_route is used when we unplumb i.e., remove 3596 * references on ixa_ire, ixa_nce, and ixa_dce. 3597 */ 3598 nce = ixa->ixa_nce; 3599 if (nce != NULL && nce->nce_is_condemned) { 3600 nce_refrele(nce); 3601 ixa->ixa_nce = NULL; 3602 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3603 } 3604 3605 /* 3606 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3607 * However, we can't do it for IPv4 multicast or broadcast. 3608 */ 3609 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3610 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3611 3612 /* 3613 * Set initial value for fragmentation limit. Either conn_ip_output 3614 * or ULP might updates it when there are routing changes. 3615 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3616 */ 3617 pmtu = ip_get_pmtu(ixa); 3618 ixa->ixa_fragsize = pmtu; 3619 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3620 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3621 ixa->ixa_pmtu = pmtu; 3622 3623 /* 3624 * Extract information useful for some transports. 3625 * First we look for DCE metrics. Then we take what we have in 3626 * the metrics in the route, where the offlink is used if we have 3627 * one. 3628 */ 3629 if (uinfo != NULL) { 3630 bzero(uinfo, sizeof (*uinfo)); 3631 3632 if (dce->dce_flags & DCEF_UINFO) 3633 *uinfo = dce->dce_uinfo; 3634 3635 rts_merge_metrics(uinfo, &ire->ire_metrics); 3636 3637 /* Allow ire_metrics to decrease the path MTU from above */ 3638 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3639 uinfo->iulp_mtu = pmtu; 3640 3641 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3642 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3643 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3644 } 3645 3646 if (ill != NULL) 3647 ill_refrele(ill); 3648 3649 return (error); 3650 3651 bad_addr: 3652 if (ire != NULL) 3653 ire_refrele(ire); 3654 3655 if (ill != NULL) 3656 ill_refrele(ill); 3657 3658 /* 3659 * Make sure we don't leave an unreachable ixa_nce in place 3660 * since ip_select_route is used when we unplumb i.e., remove 3661 * references on ixa_ire, ixa_nce, and ixa_dce. 3662 */ 3663 nce = ixa->ixa_nce; 3664 if (nce != NULL && nce->nce_is_condemned) { 3665 nce_refrele(nce); 3666 ixa->ixa_nce = NULL; 3667 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3668 } 3669 3670 return (error); 3671 } 3672 3673 3674 /* 3675 * Get the base MTU for the case when path MTU discovery is not used. 3676 * Takes the MTU of the IRE into account. 3677 */ 3678 uint_t 3679 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3680 { 3681 uint_t mtu = ill->ill_mtu; 3682 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3683 3684 if (iremtu != 0 && iremtu < mtu) 3685 mtu = iremtu; 3686 3687 return (mtu); 3688 } 3689 3690 /* 3691 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3692 * Assumes that ixa_ire, dce, and nce have already been set up. 3693 * 3694 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3695 * We avoid path MTU discovery if it is disabled with ndd. 3696 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3697 * 3698 * NOTE: We also used to turn it off for source routed packets. That 3699 * is no longer required since the dce is per final destination. 3700 */ 3701 uint_t 3702 ip_get_pmtu(ip_xmit_attr_t *ixa) 3703 { 3704 ip_stack_t *ipst = ixa->ixa_ipst; 3705 dce_t *dce; 3706 nce_t *nce; 3707 ire_t *ire; 3708 uint_t pmtu; 3709 3710 ire = ixa->ixa_ire; 3711 dce = ixa->ixa_dce; 3712 nce = ixa->ixa_nce; 3713 3714 /* 3715 * If path MTU discovery has been turned off by ndd, then we ignore 3716 * any dce_pmtu and for IPv4 we will not set DF. 3717 */ 3718 if (!ipst->ips_ip_path_mtu_discovery) 3719 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3720 3721 pmtu = IP_MAXPACKET; 3722 /* 3723 * Decide whether whether IPv4 sets DF 3724 * For IPv6 "no DF" means to use the 1280 mtu 3725 */ 3726 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3727 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3728 } else { 3729 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3730 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3731 pmtu = IPV6_MIN_MTU; 3732 } 3733 3734 /* Check if the PMTU is to old before we use it */ 3735 if ((dce->dce_flags & DCEF_PMTU) && 3736 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3737 ipst->ips_ip_pathmtu_interval) { 3738 /* 3739 * Older than 20 minutes. Drop the path MTU information. 3740 */ 3741 mutex_enter(&dce->dce_lock); 3742 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3743 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3744 mutex_exit(&dce->dce_lock); 3745 dce_increment_generation(dce); 3746 } 3747 3748 /* The metrics on the route can lower the path MTU */ 3749 if (ire->ire_metrics.iulp_mtu != 0 && 3750 ire->ire_metrics.iulp_mtu < pmtu) 3751 pmtu = ire->ire_metrics.iulp_mtu; 3752 3753 /* 3754 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3755 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3756 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3757 */ 3758 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3759 if (dce->dce_flags & DCEF_PMTU) { 3760 if (dce->dce_pmtu < pmtu) 3761 pmtu = dce->dce_pmtu; 3762 3763 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3764 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3765 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3766 } else { 3767 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3768 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3769 } 3770 } else { 3771 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3772 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3773 } 3774 } 3775 3776 /* 3777 * If we have an IRE_LOCAL we use the loopback mtu instead of 3778 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3779 * mtu as IRE_LOOPBACK. 3780 */ 3781 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3782 uint_t loopback_mtu; 3783 3784 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3785 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3786 3787 if (loopback_mtu < pmtu) 3788 pmtu = loopback_mtu; 3789 } else if (nce != NULL) { 3790 /* 3791 * Make sure we don't exceed the interface MTU. 3792 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3793 * an ill. We'd use the above IP_MAXPACKET in that case just 3794 * to tell the transport something larger than zero. 3795 */ 3796 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3797 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3798 if (nce->nce_common->ncec_ill != nce->nce_ill && 3799 nce->nce_ill->ill_mtu < pmtu) { 3800 /* 3801 * for interfaces in an IPMP group, the mtu of 3802 * the nce_ill (under_ill) could be different 3803 * from the mtu of the ncec_ill, so we take the 3804 * min of the two. 3805 */ 3806 pmtu = nce->nce_ill->ill_mtu; 3807 } 3808 } 3809 3810 /* 3811 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3812 * Only applies to IPv6. 3813 */ 3814 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3815 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3816 switch (ixa->ixa_use_min_mtu) { 3817 case IPV6_USE_MIN_MTU_MULTICAST: 3818 if (ire->ire_type & IRE_MULTICAST) 3819 pmtu = IPV6_MIN_MTU; 3820 break; 3821 case IPV6_USE_MIN_MTU_ALWAYS: 3822 pmtu = IPV6_MIN_MTU; 3823 break; 3824 case IPV6_USE_MIN_MTU_NEVER: 3825 break; 3826 } 3827 } else { 3828 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3829 if (ire->ire_type & IRE_MULTICAST) 3830 pmtu = IPV6_MIN_MTU; 3831 } 3832 } 3833 3834 /* 3835 * After receiving an ICMPv6 "packet too big" message with a 3836 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3837 * will insert a 8-byte fragment header in every packet. We compensate 3838 * for those cases by returning a smaller path MTU to the ULP. 3839 * 3840 * In the case of CGTP then ip_output will add a fragment header. 3841 * Make sure there is room for it by telling a smaller number 3842 * to the transport. 3843 * 3844 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3845 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3846 * which is the size of the packets it can send. 3847 */ 3848 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3849 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3850 (ire->ire_flags & RTF_MULTIRT) || 3851 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3852 pmtu -= sizeof (ip6_frag_t); 3853 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3854 } 3855 } 3856 3857 return (pmtu); 3858 } 3859 3860 /* 3861 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3862 * the final piece where we don't. Return a pointer to the first mblk in the 3863 * result, and update the pointer to the next mblk to chew on. If anything 3864 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3865 * NULL pointer. 3866 */ 3867 mblk_t * 3868 ip_carve_mp(mblk_t **mpp, ssize_t len) 3869 { 3870 mblk_t *mp0; 3871 mblk_t *mp1; 3872 mblk_t *mp2; 3873 3874 if (!len || !mpp || !(mp0 = *mpp)) 3875 return (NULL); 3876 /* If we aren't going to consume the first mblk, we need a dup. */ 3877 if (mp0->b_wptr - mp0->b_rptr > len) { 3878 mp1 = dupb(mp0); 3879 if (mp1) { 3880 /* Partition the data between the two mblks. */ 3881 mp1->b_wptr = mp1->b_rptr + len; 3882 mp0->b_rptr = mp1->b_wptr; 3883 /* 3884 * after adjustments if mblk not consumed is now 3885 * unaligned, try to align it. If this fails free 3886 * all messages and let upper layer recover. 3887 */ 3888 if (!OK_32PTR(mp0->b_rptr)) { 3889 if (!pullupmsg(mp0, -1)) { 3890 freemsg(mp0); 3891 freemsg(mp1); 3892 *mpp = NULL; 3893 return (NULL); 3894 } 3895 } 3896 } 3897 return (mp1); 3898 } 3899 /* Eat through as many mblks as we need to get len bytes. */ 3900 len -= mp0->b_wptr - mp0->b_rptr; 3901 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3902 if (mp2->b_wptr - mp2->b_rptr > len) { 3903 /* 3904 * We won't consume the entire last mblk. Like 3905 * above, dup and partition it. 3906 */ 3907 mp1->b_cont = dupb(mp2); 3908 mp1 = mp1->b_cont; 3909 if (!mp1) { 3910 /* 3911 * Trouble. Rather than go to a lot of 3912 * trouble to clean up, we free the messages. 3913 * This won't be any worse than losing it on 3914 * the wire. 3915 */ 3916 freemsg(mp0); 3917 freemsg(mp2); 3918 *mpp = NULL; 3919 return (NULL); 3920 } 3921 mp1->b_wptr = mp1->b_rptr + len; 3922 mp2->b_rptr = mp1->b_wptr; 3923 /* 3924 * after adjustments if mblk not consumed is now 3925 * unaligned, try to align it. If this fails free 3926 * all messages and let upper layer recover. 3927 */ 3928 if (!OK_32PTR(mp2->b_rptr)) { 3929 if (!pullupmsg(mp2, -1)) { 3930 freemsg(mp0); 3931 freemsg(mp2); 3932 *mpp = NULL; 3933 return (NULL); 3934 } 3935 } 3936 *mpp = mp2; 3937 return (mp0); 3938 } 3939 /* Decrement len by the amount we just got. */ 3940 len -= mp2->b_wptr - mp2->b_rptr; 3941 } 3942 /* 3943 * len should be reduced to zero now. If not our caller has 3944 * screwed up. 3945 */ 3946 if (len) { 3947 /* Shouldn't happen! */ 3948 freemsg(mp0); 3949 *mpp = NULL; 3950 return (NULL); 3951 } 3952 /* 3953 * We consumed up to exactly the end of an mblk. Detach the part 3954 * we are returning from the rest of the chain. 3955 */ 3956 mp1->b_cont = NULL; 3957 *mpp = mp2; 3958 return (mp0); 3959 } 3960 3961 /* The ill stream is being unplumbed. Called from ip_close */ 3962 int 3963 ip_modclose(ill_t *ill) 3964 { 3965 boolean_t success; 3966 ipsq_t *ipsq; 3967 ipif_t *ipif; 3968 queue_t *q = ill->ill_rq; 3969 ip_stack_t *ipst = ill->ill_ipst; 3970 int i; 3971 arl_ill_common_t *ai = ill->ill_common; 3972 3973 /* 3974 * The punlink prior to this may have initiated a capability 3975 * negotiation. But ipsq_enter will block until that finishes or 3976 * times out. 3977 */ 3978 success = ipsq_enter(ill, B_FALSE, NEW_OP); 3979 3980 /* 3981 * Open/close/push/pop is guaranteed to be single threaded 3982 * per stream by STREAMS. FS guarantees that all references 3983 * from top are gone before close is called. So there can't 3984 * be another close thread that has set CONDEMNED on this ill. 3985 * and cause ipsq_enter to return failure. 3986 */ 3987 ASSERT(success); 3988 ipsq = ill->ill_phyint->phyint_ipsq; 3989 3990 /* 3991 * Mark it condemned. No new reference will be made to this ill. 3992 * Lookup functions will return an error. Threads that try to 3993 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 3994 * that the refcnt will drop down to zero. 3995 */ 3996 mutex_enter(&ill->ill_lock); 3997 ill->ill_state_flags |= ILL_CONDEMNED; 3998 for (ipif = ill->ill_ipif; ipif != NULL; 3999 ipif = ipif->ipif_next) { 4000 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4001 } 4002 /* 4003 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4004 * returns error if ILL_CONDEMNED is set 4005 */ 4006 cv_broadcast(&ill->ill_cv); 4007 mutex_exit(&ill->ill_lock); 4008 4009 /* 4010 * Send all the deferred DLPI messages downstream which came in 4011 * during the small window right before ipsq_enter(). We do this 4012 * without waiting for the ACKs because all the ACKs for M_PROTO 4013 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4014 */ 4015 ill_dlpi_send_deferred(ill); 4016 4017 /* 4018 * Shut down fragmentation reassembly. 4019 * ill_frag_timer won't start a timer again. 4020 * Now cancel any existing timer 4021 */ 4022 (void) untimeout(ill->ill_frag_timer_id); 4023 (void) ill_frag_timeout(ill, 0); 4024 4025 /* 4026 * Call ill_delete to bring down the ipifs, ilms and ill on 4027 * this ill. Then wait for the refcnts to drop to zero. 4028 * ill_is_freeable checks whether the ill is really quiescent. 4029 * Then make sure that threads that are waiting to enter the 4030 * ipsq have seen the error returned by ipsq_enter and have 4031 * gone away. Then we call ill_delete_tail which does the 4032 * DL_UNBIND_REQ with the driver and then qprocsoff. 4033 */ 4034 ill_delete(ill); 4035 mutex_enter(&ill->ill_lock); 4036 while (!ill_is_freeable(ill)) 4037 cv_wait(&ill->ill_cv, &ill->ill_lock); 4038 4039 while (ill->ill_waiters) 4040 cv_wait(&ill->ill_cv, &ill->ill_lock); 4041 4042 mutex_exit(&ill->ill_lock); 4043 4044 /* 4045 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4046 * it held until the end of the function since the cleanup 4047 * below needs to be able to use the ip_stack_t. 4048 */ 4049 netstack_hold(ipst->ips_netstack); 4050 4051 /* qprocsoff is done via ill_delete_tail */ 4052 ill_delete_tail(ill); 4053 /* 4054 * synchronously wait for arp stream to unbind. After this, we 4055 * cannot get any data packets up from the driver. 4056 */ 4057 arp_unbind_complete(ill); 4058 ASSERT(ill->ill_ipst == NULL); 4059 4060 /* 4061 * Walk through all conns and qenable those that have queued data. 4062 * Close synchronization needs this to 4063 * be done to ensure that all upper layers blocked 4064 * due to flow control to the closing device 4065 * get unblocked. 4066 */ 4067 ip1dbg(("ip_wsrv: walking\n")); 4068 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4069 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4070 } 4071 4072 /* 4073 * ai can be null if this is an IPv6 ill, or if the IPv4 4074 * stream is being torn down before ARP was plumbed (e.g., 4075 * /sbin/ifconfig plumbing a stream twice, and encountering 4076 * an error 4077 */ 4078 if (ai != NULL) { 4079 ASSERT(!ill->ill_isv6); 4080 mutex_enter(&ai->ai_lock); 4081 ai->ai_ill = NULL; 4082 if (ai->ai_arl == NULL) { 4083 mutex_destroy(&ai->ai_lock); 4084 kmem_free(ai, sizeof (*ai)); 4085 } else { 4086 cv_signal(&ai->ai_ill_unplumb_done); 4087 mutex_exit(&ai->ai_lock); 4088 } 4089 } 4090 4091 mutex_enter(&ipst->ips_ip_mi_lock); 4092 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4093 mutex_exit(&ipst->ips_ip_mi_lock); 4094 4095 /* 4096 * credp could be null if the open didn't succeed and ip_modopen 4097 * itself calls ip_close. 4098 */ 4099 if (ill->ill_credp != NULL) 4100 crfree(ill->ill_credp); 4101 4102 mutex_destroy(&ill->ill_saved_ire_lock); 4103 mutex_destroy(&ill->ill_lock); 4104 rw_destroy(&ill->ill_mcast_lock); 4105 mutex_destroy(&ill->ill_mcast_serializer); 4106 list_destroy(&ill->ill_nce); 4107 4108 /* 4109 * Now we are done with the module close pieces that 4110 * need the netstack_t. 4111 */ 4112 netstack_rele(ipst->ips_netstack); 4113 4114 mi_close_free((IDP)ill); 4115 q->q_ptr = WR(q)->q_ptr = NULL; 4116 4117 ipsq_exit(ipsq); 4118 4119 return (0); 4120 } 4121 4122 /* 4123 * This is called as part of close() for IP, UDP, ICMP, and RTS 4124 * in order to quiesce the conn. 4125 */ 4126 void 4127 ip_quiesce_conn(conn_t *connp) 4128 { 4129 boolean_t drain_cleanup_reqd = B_FALSE; 4130 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4131 boolean_t ilg_cleanup_reqd = B_FALSE; 4132 ip_stack_t *ipst; 4133 4134 ASSERT(!IPCL_IS_TCP(connp)); 4135 ipst = connp->conn_netstack->netstack_ip; 4136 4137 /* 4138 * Mark the conn as closing, and this conn must not be 4139 * inserted in future into any list. Eg. conn_drain_insert(), 4140 * won't insert this conn into the conn_drain_list. 4141 * 4142 * conn_idl, and conn_ilg cannot get set henceforth. 4143 */ 4144 mutex_enter(&connp->conn_lock); 4145 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4146 connp->conn_state_flags |= CONN_CLOSING; 4147 if (connp->conn_idl != NULL) 4148 drain_cleanup_reqd = B_TRUE; 4149 if (connp->conn_oper_pending_ill != NULL) 4150 conn_ioctl_cleanup_reqd = B_TRUE; 4151 if (connp->conn_dhcpinit_ill != NULL) { 4152 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4153 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4154 ill_set_inputfn(connp->conn_dhcpinit_ill); 4155 connp->conn_dhcpinit_ill = NULL; 4156 } 4157 if (connp->conn_ilg != NULL) 4158 ilg_cleanup_reqd = B_TRUE; 4159 mutex_exit(&connp->conn_lock); 4160 4161 if (conn_ioctl_cleanup_reqd) 4162 conn_ioctl_cleanup(connp); 4163 4164 if (is_system_labeled() && connp->conn_anon_port) { 4165 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4166 connp->conn_mlp_type, connp->conn_proto, 4167 ntohs(connp->conn_lport), B_FALSE); 4168 connp->conn_anon_port = 0; 4169 } 4170 connp->conn_mlp_type = mlptSingle; 4171 4172 /* 4173 * Remove this conn from any fanout list it is on. 4174 * and then wait for any threads currently operating 4175 * on this endpoint to finish 4176 */ 4177 ipcl_hash_remove(connp); 4178 4179 /* 4180 * Remove this conn from the drain list, and do any other cleanup that 4181 * may be required. (TCP conns are never flow controlled, and 4182 * conn_idl will be NULL.) 4183 */ 4184 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4185 idl_t *idl = connp->conn_idl; 4186 4187 mutex_enter(&idl->idl_lock); 4188 conn_drain(connp, B_TRUE); 4189 mutex_exit(&idl->idl_lock); 4190 } 4191 4192 if (connp == ipst->ips_ip_g_mrouter) 4193 (void) ip_mrouter_done(ipst); 4194 4195 if (ilg_cleanup_reqd) 4196 ilg_delete_all(connp); 4197 4198 /* 4199 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4200 * callers from write side can't be there now because close 4201 * is in progress. The only other caller is ipcl_walk 4202 * which checks for the condemned flag. 4203 */ 4204 mutex_enter(&connp->conn_lock); 4205 connp->conn_state_flags |= CONN_CONDEMNED; 4206 while (connp->conn_ref != 1) 4207 cv_wait(&connp->conn_cv, &connp->conn_lock); 4208 connp->conn_state_flags |= CONN_QUIESCED; 4209 mutex_exit(&connp->conn_lock); 4210 } 4211 4212 /* ARGSUSED */ 4213 int 4214 ip_close(queue_t *q, int flags) 4215 { 4216 conn_t *connp; 4217 4218 /* 4219 * Call the appropriate delete routine depending on whether this is 4220 * a module or device. 4221 */ 4222 if (WR(q)->q_next != NULL) { 4223 /* This is a module close */ 4224 return (ip_modclose((ill_t *)q->q_ptr)); 4225 } 4226 4227 connp = q->q_ptr; 4228 ip_quiesce_conn(connp); 4229 4230 qprocsoff(q); 4231 4232 /* 4233 * Now we are truly single threaded on this stream, and can 4234 * delete the things hanging off the connp, and finally the connp. 4235 * We removed this connp from the fanout list, it cannot be 4236 * accessed thru the fanouts, and we already waited for the 4237 * conn_ref to drop to 0. We are already in close, so 4238 * there cannot be any other thread from the top. qprocsoff 4239 * has completed, and service has completed or won't run in 4240 * future. 4241 */ 4242 ASSERT(connp->conn_ref == 1); 4243 4244 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4245 4246 connp->conn_ref--; 4247 ipcl_conn_destroy(connp); 4248 4249 q->q_ptr = WR(q)->q_ptr = NULL; 4250 return (0); 4251 } 4252 4253 /* 4254 * Wapper around putnext() so that ip_rts_request can merely use 4255 * conn_recv. 4256 */ 4257 /*ARGSUSED2*/ 4258 static void 4259 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4260 { 4261 conn_t *connp = (conn_t *)arg1; 4262 4263 putnext(connp->conn_rq, mp); 4264 } 4265 4266 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4267 /* ARGSUSED */ 4268 static void 4269 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4270 { 4271 freemsg(mp); 4272 } 4273 4274 /* 4275 * Called when the module is about to be unloaded 4276 */ 4277 void 4278 ip_ddi_destroy(void) 4279 { 4280 /* This needs to be called before destroying any transports. */ 4281 mutex_enter(&cpu_lock); 4282 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4283 mutex_exit(&cpu_lock); 4284 4285 tnet_fini(); 4286 4287 icmp_ddi_g_destroy(); 4288 rts_ddi_g_destroy(); 4289 udp_ddi_g_destroy(); 4290 sctp_ddi_g_destroy(); 4291 tcp_ddi_g_destroy(); 4292 ilb_ddi_g_destroy(); 4293 dce_g_destroy(); 4294 ipsec_policy_g_destroy(); 4295 ipcl_g_destroy(); 4296 ip_net_g_destroy(); 4297 ip_ire_g_fini(); 4298 inet_minor_destroy(ip_minor_arena_sa); 4299 #if defined(_LP64) 4300 inet_minor_destroy(ip_minor_arena_la); 4301 #endif 4302 4303 #ifdef DEBUG 4304 list_destroy(&ip_thread_list); 4305 rw_destroy(&ip_thread_rwlock); 4306 tsd_destroy(&ip_thread_data); 4307 #endif 4308 4309 netstack_unregister(NS_IP); 4310 } 4311 4312 /* 4313 * First step in cleanup. 4314 */ 4315 /* ARGSUSED */ 4316 static void 4317 ip_stack_shutdown(netstackid_t stackid, void *arg) 4318 { 4319 ip_stack_t *ipst = (ip_stack_t *)arg; 4320 4321 #ifdef NS_DEBUG 4322 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4323 #endif 4324 4325 /* 4326 * Perform cleanup for special interfaces (loopback and IPMP). 4327 */ 4328 ip_interface_cleanup(ipst); 4329 4330 /* 4331 * The *_hook_shutdown()s start the process of notifying any 4332 * consumers that things are going away.... nothing is destroyed. 4333 */ 4334 ipv4_hook_shutdown(ipst); 4335 ipv6_hook_shutdown(ipst); 4336 arp_hook_shutdown(ipst); 4337 4338 mutex_enter(&ipst->ips_capab_taskq_lock); 4339 ipst->ips_capab_taskq_quit = B_TRUE; 4340 cv_signal(&ipst->ips_capab_taskq_cv); 4341 mutex_exit(&ipst->ips_capab_taskq_lock); 4342 } 4343 4344 /* 4345 * Free the IP stack instance. 4346 */ 4347 static void 4348 ip_stack_fini(netstackid_t stackid, void *arg) 4349 { 4350 ip_stack_t *ipst = (ip_stack_t *)arg; 4351 int ret; 4352 4353 #ifdef NS_DEBUG 4354 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4355 #endif 4356 /* 4357 * At this point, all of the notifications that the events and 4358 * protocols are going away have been run, meaning that we can 4359 * now set about starting to clean things up. 4360 */ 4361 ipobs_fini(ipst); 4362 ipv4_hook_destroy(ipst); 4363 ipv6_hook_destroy(ipst); 4364 arp_hook_destroy(ipst); 4365 ip_net_destroy(ipst); 4366 4367 ipmp_destroy(ipst); 4368 4369 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4370 ipst->ips_ip_mibkp = NULL; 4371 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4372 ipst->ips_icmp_mibkp = NULL; 4373 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4374 ipst->ips_ip_kstat = NULL; 4375 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4376 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4377 ipst->ips_ip6_kstat = NULL; 4378 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4379 4380 kmem_free(ipst->ips_propinfo_tbl, 4381 ip_propinfo_count * sizeof (mod_prop_info_t)); 4382 ipst->ips_propinfo_tbl = NULL; 4383 4384 dce_stack_destroy(ipst); 4385 ip_mrouter_stack_destroy(ipst); 4386 4387 ret = untimeout(ipst->ips_igmp_timeout_id); 4388 if (ret == -1) { 4389 ASSERT(ipst->ips_igmp_timeout_id == 0); 4390 } else { 4391 ASSERT(ipst->ips_igmp_timeout_id != 0); 4392 ipst->ips_igmp_timeout_id = 0; 4393 } 4394 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4395 if (ret == -1) { 4396 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4397 } else { 4398 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4399 ipst->ips_igmp_slowtimeout_id = 0; 4400 } 4401 ret = untimeout(ipst->ips_mld_timeout_id); 4402 if (ret == -1) { 4403 ASSERT(ipst->ips_mld_timeout_id == 0); 4404 } else { 4405 ASSERT(ipst->ips_mld_timeout_id != 0); 4406 ipst->ips_mld_timeout_id = 0; 4407 } 4408 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4409 if (ret == -1) { 4410 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4411 } else { 4412 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4413 ipst->ips_mld_slowtimeout_id = 0; 4414 } 4415 4416 ip_ire_fini(ipst); 4417 ip6_asp_free(ipst); 4418 conn_drain_fini(ipst); 4419 ipcl_destroy(ipst); 4420 4421 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4422 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4423 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4424 ipst->ips_ndp4 = NULL; 4425 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4426 ipst->ips_ndp6 = NULL; 4427 4428 if (ipst->ips_loopback_ksp != NULL) { 4429 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4430 ipst->ips_loopback_ksp = NULL; 4431 } 4432 4433 mutex_destroy(&ipst->ips_capab_taskq_lock); 4434 cv_destroy(&ipst->ips_capab_taskq_cv); 4435 4436 rw_destroy(&ipst->ips_srcid_lock); 4437 4438 mutex_destroy(&ipst->ips_ip_mi_lock); 4439 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4440 4441 mutex_destroy(&ipst->ips_igmp_timer_lock); 4442 mutex_destroy(&ipst->ips_mld_timer_lock); 4443 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4444 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4445 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4446 rw_destroy(&ipst->ips_ill_g_lock); 4447 4448 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4449 ipst->ips_phyint_g_list = NULL; 4450 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4451 ipst->ips_ill_g_heads = NULL; 4452 4453 ldi_ident_release(ipst->ips_ldi_ident); 4454 kmem_free(ipst, sizeof (*ipst)); 4455 } 4456 4457 /* 4458 * This function is called from the TSD destructor, and is used to debug 4459 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4460 * details. 4461 */ 4462 static void 4463 ip_thread_exit(void *phash) 4464 { 4465 th_hash_t *thh = phash; 4466 4467 rw_enter(&ip_thread_rwlock, RW_WRITER); 4468 list_remove(&ip_thread_list, thh); 4469 rw_exit(&ip_thread_rwlock); 4470 mod_hash_destroy_hash(thh->thh_hash); 4471 kmem_free(thh, sizeof (*thh)); 4472 } 4473 4474 /* 4475 * Called when the IP kernel module is loaded into the kernel 4476 */ 4477 void 4478 ip_ddi_init(void) 4479 { 4480 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4481 4482 /* 4483 * For IP and TCP the minor numbers should start from 2 since we have 4 4484 * initial devices: ip, ip6, tcp, tcp6. 4485 */ 4486 /* 4487 * If this is a 64-bit kernel, then create two separate arenas - 4488 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4489 * other for socket apps in the range 2^^18 through 2^^32-1. 4490 */ 4491 ip_minor_arena_la = NULL; 4492 ip_minor_arena_sa = NULL; 4493 #if defined(_LP64) 4494 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4495 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4496 cmn_err(CE_PANIC, 4497 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4498 } 4499 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4500 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4501 cmn_err(CE_PANIC, 4502 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4503 } 4504 #else 4505 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4506 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4507 cmn_err(CE_PANIC, 4508 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4509 } 4510 #endif 4511 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4512 4513 ipcl_g_init(); 4514 ip_ire_g_init(); 4515 ip_net_g_init(); 4516 4517 #ifdef DEBUG 4518 tsd_create(&ip_thread_data, ip_thread_exit); 4519 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4520 list_create(&ip_thread_list, sizeof (th_hash_t), 4521 offsetof(th_hash_t, thh_link)); 4522 #endif 4523 ipsec_policy_g_init(); 4524 tcp_ddi_g_init(); 4525 sctp_ddi_g_init(); 4526 dce_g_init(); 4527 4528 /* 4529 * We want to be informed each time a stack is created or 4530 * destroyed in the kernel, so we can maintain the 4531 * set of udp_stack_t's. 4532 */ 4533 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4534 ip_stack_fini); 4535 4536 tnet_init(); 4537 4538 udp_ddi_g_init(); 4539 rts_ddi_g_init(); 4540 icmp_ddi_g_init(); 4541 ilb_ddi_g_init(); 4542 4543 /* This needs to be called after all transports are initialized. */ 4544 mutex_enter(&cpu_lock); 4545 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4546 mutex_exit(&cpu_lock); 4547 } 4548 4549 /* 4550 * Initialize the IP stack instance. 4551 */ 4552 static void * 4553 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4554 { 4555 ip_stack_t *ipst; 4556 size_t arrsz; 4557 major_t major; 4558 4559 #ifdef NS_DEBUG 4560 printf("ip_stack_init(stack %d)\n", stackid); 4561 #endif 4562 4563 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4564 ipst->ips_netstack = ns; 4565 4566 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4567 KM_SLEEP); 4568 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4569 KM_SLEEP); 4570 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4571 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4572 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4573 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4574 4575 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4576 ipst->ips_igmp_deferred_next = INFINITY; 4577 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4578 ipst->ips_mld_deferred_next = INFINITY; 4579 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4580 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4581 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4582 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4583 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4584 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4585 4586 ipcl_init(ipst); 4587 ip_ire_init(ipst); 4588 ip6_asp_init(ipst); 4589 ipif_init(ipst); 4590 conn_drain_init(ipst); 4591 ip_mrouter_stack_init(ipst); 4592 dce_stack_init(ipst); 4593 4594 ipst->ips_ip_multirt_log_interval = 1000; 4595 4596 ipst->ips_ill_index = 1; 4597 4598 ipst->ips_saved_ip_forwarding = -1; 4599 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4600 4601 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4602 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4603 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4604 4605 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4606 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4607 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4608 ipst->ips_ip6_kstat = 4609 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4610 4611 ipst->ips_ip_src_id = 1; 4612 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4613 4614 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4615 4616 ip_net_init(ipst, ns); 4617 ipv4_hook_init(ipst); 4618 ipv6_hook_init(ipst); 4619 arp_hook_init(ipst); 4620 ipmp_init(ipst); 4621 ipobs_init(ipst); 4622 4623 /* 4624 * Create the taskq dispatcher thread and initialize related stuff. 4625 */ 4626 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4627 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4628 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4629 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4630 4631 major = mod_name_to_major(INET_NAME); 4632 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4633 return (ipst); 4634 } 4635 4636 /* 4637 * Allocate and initialize a DLPI template of the specified length. (May be 4638 * called as writer.) 4639 */ 4640 mblk_t * 4641 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4642 { 4643 mblk_t *mp; 4644 4645 mp = allocb(len, BPRI_MED); 4646 if (!mp) 4647 return (NULL); 4648 4649 /* 4650 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4651 * of which we don't seem to use) are sent with M_PCPROTO, and 4652 * that other DLPI are M_PROTO. 4653 */ 4654 if (prim == DL_INFO_REQ) { 4655 mp->b_datap->db_type = M_PCPROTO; 4656 } else { 4657 mp->b_datap->db_type = M_PROTO; 4658 } 4659 4660 mp->b_wptr = mp->b_rptr + len; 4661 bzero(mp->b_rptr, len); 4662 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4663 return (mp); 4664 } 4665 4666 /* 4667 * Allocate and initialize a DLPI notification. (May be called as writer.) 4668 */ 4669 mblk_t * 4670 ip_dlnotify_alloc(uint_t notification, uint_t data) 4671 { 4672 dl_notify_ind_t *notifyp; 4673 mblk_t *mp; 4674 4675 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4676 return (NULL); 4677 4678 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4679 notifyp->dl_notification = notification; 4680 notifyp->dl_data = data; 4681 return (mp); 4682 } 4683 4684 /* 4685 * Debug formatting routine. Returns a character string representation of the 4686 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4687 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4688 * 4689 * Once the ndd table-printing interfaces are removed, this can be changed to 4690 * standard dotted-decimal form. 4691 */ 4692 char * 4693 ip_dot_addr(ipaddr_t addr, char *buf) 4694 { 4695 uint8_t *ap = (uint8_t *)&addr; 4696 4697 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4698 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4699 return (buf); 4700 } 4701 4702 /* 4703 * Write the given MAC address as a printable string in the usual colon- 4704 * separated format. 4705 */ 4706 const char * 4707 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4708 { 4709 char *bp; 4710 4711 if (alen == 0 || buflen < 4) 4712 return ("?"); 4713 bp = buf; 4714 for (;;) { 4715 /* 4716 * If there are more MAC address bytes available, but we won't 4717 * have any room to print them, then add "..." to the string 4718 * instead. See below for the 'magic number' explanation. 4719 */ 4720 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4721 (void) strcpy(bp, "..."); 4722 break; 4723 } 4724 (void) sprintf(bp, "%02x", *addr++); 4725 bp += 2; 4726 if (--alen == 0) 4727 break; 4728 *bp++ = ':'; 4729 buflen -= 3; 4730 /* 4731 * At this point, based on the first 'if' statement above, 4732 * either alen == 1 and buflen >= 3, or alen > 1 and 4733 * buflen >= 4. The first case leaves room for the final "xx" 4734 * number and trailing NUL byte. The second leaves room for at 4735 * least "...". Thus the apparently 'magic' numbers chosen for 4736 * that statement. 4737 */ 4738 } 4739 return (buf); 4740 } 4741 4742 /* 4743 * Called when it is conceptually a ULP that would sent the packet 4744 * e.g., port unreachable and protocol unreachable. Check that the packet 4745 * would have passed the IPsec global policy before sending the error. 4746 * 4747 * Send an ICMP error after patching up the packet appropriately. 4748 * Uses ip_drop_input and bumps the appropriate MIB. 4749 */ 4750 void 4751 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4752 ip_recv_attr_t *ira) 4753 { 4754 ipha_t *ipha; 4755 boolean_t secure; 4756 ill_t *ill = ira->ira_ill; 4757 ip_stack_t *ipst = ill->ill_ipst; 4758 netstack_t *ns = ipst->ips_netstack; 4759 ipsec_stack_t *ipss = ns->netstack_ipsec; 4760 4761 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4762 4763 /* 4764 * We are generating an icmp error for some inbound packet. 4765 * Called from all ip_fanout_(udp, tcp, proto) functions. 4766 * Before we generate an error, check with global policy 4767 * to see whether this is allowed to enter the system. As 4768 * there is no "conn", we are checking with global policy. 4769 */ 4770 ipha = (ipha_t *)mp->b_rptr; 4771 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4772 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4773 if (mp == NULL) 4774 return; 4775 } 4776 4777 /* We never send errors for protocols that we do implement */ 4778 if (ira->ira_protocol == IPPROTO_ICMP || 4779 ira->ira_protocol == IPPROTO_IGMP) { 4780 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4781 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4782 freemsg(mp); 4783 return; 4784 } 4785 /* 4786 * Have to correct checksum since 4787 * the packet might have been 4788 * fragmented and the reassembly code in ip_rput 4789 * does not restore the IP checksum. 4790 */ 4791 ipha->ipha_hdr_checksum = 0; 4792 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4793 4794 switch (icmp_type) { 4795 case ICMP_DEST_UNREACHABLE: 4796 switch (icmp_code) { 4797 case ICMP_PROTOCOL_UNREACHABLE: 4798 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4799 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4800 break; 4801 case ICMP_PORT_UNREACHABLE: 4802 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4803 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4804 break; 4805 } 4806 4807 icmp_unreachable(mp, icmp_code, ira); 4808 break; 4809 default: 4810 #ifdef DEBUG 4811 panic("ip_fanout_send_icmp_v4: wrong type"); 4812 /*NOTREACHED*/ 4813 #else 4814 freemsg(mp); 4815 break; 4816 #endif 4817 } 4818 } 4819 4820 /* 4821 * Used to send an ICMP error message when a packet is received for 4822 * a protocol that is not supported. The mblk passed as argument 4823 * is consumed by this function. 4824 */ 4825 void 4826 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4827 { 4828 ipha_t *ipha; 4829 4830 ipha = (ipha_t *)mp->b_rptr; 4831 if (ira->ira_flags & IRAF_IS_IPV4) { 4832 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4833 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4834 ICMP_PROTOCOL_UNREACHABLE, ira); 4835 } else { 4836 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4837 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4838 ICMP6_PARAMPROB_NEXTHEADER, ira); 4839 } 4840 } 4841 4842 /* 4843 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4844 * Handles IPv4 and IPv6. 4845 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4846 * Caller is responsible for dropping references to the conn. 4847 */ 4848 void 4849 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4850 ip_recv_attr_t *ira) 4851 { 4852 ill_t *ill = ira->ira_ill; 4853 ip_stack_t *ipst = ill->ill_ipst; 4854 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4855 boolean_t secure; 4856 uint_t protocol = ira->ira_protocol; 4857 iaflags_t iraflags = ira->ira_flags; 4858 queue_t *rq; 4859 4860 secure = iraflags & IRAF_IPSEC_SECURE; 4861 4862 rq = connp->conn_rq; 4863 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4864 switch (protocol) { 4865 case IPPROTO_ICMPV6: 4866 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4867 break; 4868 case IPPROTO_ICMP: 4869 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4870 break; 4871 default: 4872 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4873 break; 4874 } 4875 freemsg(mp); 4876 return; 4877 } 4878 4879 ASSERT(!(IPCL_IS_IPTUN(connp))); 4880 4881 if (((iraflags & IRAF_IS_IPV4) ? 4882 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4883 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4884 secure) { 4885 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4886 ip6h, ira); 4887 if (mp == NULL) { 4888 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4889 /* Note that mp is NULL */ 4890 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4891 return; 4892 } 4893 } 4894 4895 if (iraflags & IRAF_ICMP_ERROR) { 4896 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4897 } else { 4898 ill_t *rill = ira->ira_rill; 4899 4900 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4901 ira->ira_ill = ira->ira_rill = NULL; 4902 /* Send it upstream */ 4903 (connp->conn_recv)(connp, mp, NULL, ira); 4904 ira->ira_ill = ill; 4905 ira->ira_rill = rill; 4906 } 4907 } 4908 4909 /* 4910 * Handle protocols with which IP is less intimate. There 4911 * can be more than one stream bound to a particular 4912 * protocol. When this is the case, normally each one gets a copy 4913 * of any incoming packets. 4914 * 4915 * IPsec NOTE : 4916 * 4917 * Don't allow a secure packet going up a non-secure connection. 4918 * We don't allow this because 4919 * 4920 * 1) Reply might go out in clear which will be dropped at 4921 * the sending side. 4922 * 2) If the reply goes out in clear it will give the 4923 * adversary enough information for getting the key in 4924 * most of the cases. 4925 * 4926 * Moreover getting a secure packet when we expect clear 4927 * implies that SA's were added without checking for 4928 * policy on both ends. This should not happen once ISAKMP 4929 * is used to negotiate SAs as SAs will be added only after 4930 * verifying the policy. 4931 * 4932 * Zones notes: 4933 * Earlier in ip_input on a system with multiple shared-IP zones we 4934 * duplicate the multicast and broadcast packets and send them up 4935 * with each explicit zoneid that exists on that ill. 4936 * This means that here we can match the zoneid with SO_ALLZONES being special. 4937 */ 4938 void 4939 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4940 { 4941 mblk_t *mp1; 4942 ipaddr_t laddr; 4943 conn_t *connp, *first_connp, *next_connp; 4944 connf_t *connfp; 4945 ill_t *ill = ira->ira_ill; 4946 ip_stack_t *ipst = ill->ill_ipst; 4947 4948 laddr = ipha->ipha_dst; 4949 4950 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 4951 mutex_enter(&connfp->connf_lock); 4952 connp = connfp->connf_head; 4953 for (connp = connfp->connf_head; connp != NULL; 4954 connp = connp->conn_next) { 4955 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4956 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4957 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4958 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 4959 break; 4960 } 4961 } 4962 4963 if (connp == NULL) { 4964 /* 4965 * No one bound to these addresses. Is 4966 * there a client that wants all 4967 * unclaimed datagrams? 4968 */ 4969 mutex_exit(&connfp->connf_lock); 4970 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4971 ICMP_PROTOCOL_UNREACHABLE, ira); 4972 return; 4973 } 4974 4975 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 4976 4977 CONN_INC_REF(connp); 4978 first_connp = connp; 4979 connp = connp->conn_next; 4980 4981 for (;;) { 4982 while (connp != NULL) { 4983 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4984 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4985 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4986 tsol_receive_local(mp, &laddr, IPV4_VERSION, 4987 ira, connp))) 4988 break; 4989 connp = connp->conn_next; 4990 } 4991 4992 if (connp == NULL) { 4993 /* No more interested clients */ 4994 connp = first_connp; 4995 break; 4996 } 4997 if (((mp1 = dupmsg(mp)) == NULL) && 4998 ((mp1 = copymsg(mp)) == NULL)) { 4999 /* Memory allocation failed */ 5000 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5001 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5002 connp = first_connp; 5003 break; 5004 } 5005 5006 CONN_INC_REF(connp); 5007 mutex_exit(&connfp->connf_lock); 5008 5009 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5010 ira); 5011 5012 mutex_enter(&connfp->connf_lock); 5013 /* Follow the next pointer before releasing the conn. */ 5014 next_connp = connp->conn_next; 5015 CONN_DEC_REF(connp); 5016 connp = next_connp; 5017 } 5018 5019 /* Last one. Send it upstream. */ 5020 mutex_exit(&connfp->connf_lock); 5021 5022 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5023 5024 CONN_DEC_REF(connp); 5025 } 5026 5027 /* 5028 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5029 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5030 * is not consumed. 5031 * 5032 * One of three things can happen, all of which affect the passed-in mblk: 5033 * 5034 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5035 * 5036 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5037 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5038 * 5039 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5040 */ 5041 mblk_t * 5042 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5043 { 5044 int shift, plen, iph_len; 5045 ipha_t *ipha; 5046 udpha_t *udpha; 5047 uint32_t *spi; 5048 uint32_t esp_ports; 5049 uint8_t *orptr; 5050 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5051 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5052 5053 ipha = (ipha_t *)mp->b_rptr; 5054 iph_len = ira->ira_ip_hdr_length; 5055 plen = ira->ira_pktlen; 5056 5057 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5058 /* 5059 * Most likely a keepalive for the benefit of an intervening 5060 * NAT. These aren't for us, per se, so drop it. 5061 * 5062 * RFC 3947/8 doesn't say for sure what to do for 2-3 5063 * byte packets (keepalives are 1-byte), but we'll drop them 5064 * also. 5065 */ 5066 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5067 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5068 return (NULL); 5069 } 5070 5071 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5072 /* might as well pull it all up - it might be ESP. */ 5073 if (!pullupmsg(mp, -1)) { 5074 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5075 DROPPER(ipss, ipds_esp_nomem), 5076 &ipss->ipsec_dropper); 5077 return (NULL); 5078 } 5079 5080 ipha = (ipha_t *)mp->b_rptr; 5081 } 5082 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5083 if (*spi == 0) { 5084 /* UDP packet - remove 0-spi. */ 5085 shift = sizeof (uint32_t); 5086 } else { 5087 /* ESP-in-UDP packet - reduce to ESP. */ 5088 ipha->ipha_protocol = IPPROTO_ESP; 5089 shift = sizeof (udpha_t); 5090 } 5091 5092 /* Fix IP header */ 5093 ira->ira_pktlen = (plen - shift); 5094 ipha->ipha_length = htons(ira->ira_pktlen); 5095 ipha->ipha_hdr_checksum = 0; 5096 5097 orptr = mp->b_rptr; 5098 mp->b_rptr += shift; 5099 5100 udpha = (udpha_t *)(orptr + iph_len); 5101 if (*spi == 0) { 5102 ASSERT((uint8_t *)ipha == orptr); 5103 udpha->uha_length = htons(plen - shift - iph_len); 5104 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5105 esp_ports = 0; 5106 } else { 5107 esp_ports = *((uint32_t *)udpha); 5108 ASSERT(esp_ports != 0); 5109 } 5110 ovbcopy(orptr, orptr + shift, iph_len); 5111 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5112 ipha = (ipha_t *)(orptr + shift); 5113 5114 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5115 ira->ira_esp_udp_ports = esp_ports; 5116 ip_fanout_v4(mp, ipha, ira); 5117 return (NULL); 5118 } 5119 return (mp); 5120 } 5121 5122 /* 5123 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5124 * Handles IPv4 and IPv6. 5125 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5126 * Caller is responsible for dropping references to the conn. 5127 */ 5128 void 5129 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5130 ip_recv_attr_t *ira) 5131 { 5132 ill_t *ill = ira->ira_ill; 5133 ip_stack_t *ipst = ill->ill_ipst; 5134 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5135 boolean_t secure; 5136 iaflags_t iraflags = ira->ira_flags; 5137 5138 secure = iraflags & IRAF_IPSEC_SECURE; 5139 5140 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5141 !canputnext(connp->conn_rq)) { 5142 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5143 freemsg(mp); 5144 return; 5145 } 5146 5147 if (((iraflags & IRAF_IS_IPV4) ? 5148 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5149 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5150 secure) { 5151 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5152 ip6h, ira); 5153 if (mp == NULL) { 5154 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5155 /* Note that mp is NULL */ 5156 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5157 return; 5158 } 5159 } 5160 5161 /* 5162 * Since this code is not used for UDP unicast we don't need a NAT_T 5163 * check. Only ip_fanout_v4 has that check. 5164 */ 5165 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5166 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5167 } else { 5168 ill_t *rill = ira->ira_rill; 5169 5170 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5171 ira->ira_ill = ira->ira_rill = NULL; 5172 /* Send it upstream */ 5173 (connp->conn_recv)(connp, mp, NULL, ira); 5174 ira->ira_ill = ill; 5175 ira->ira_rill = rill; 5176 } 5177 } 5178 5179 /* 5180 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5181 * (Unicast fanout is handled in ip_input_v4.) 5182 * 5183 * If SO_REUSEADDR is set all multicast and broadcast packets 5184 * will be delivered to all conns bound to the same port. 5185 * 5186 * If there is at least one matching AF_INET receiver, then we will 5187 * ignore any AF_INET6 receivers. 5188 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5189 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5190 * packets. 5191 * 5192 * Zones notes: 5193 * Earlier in ip_input on a system with multiple shared-IP zones we 5194 * duplicate the multicast and broadcast packets and send them up 5195 * with each explicit zoneid that exists on that ill. 5196 * This means that here we can match the zoneid with SO_ALLZONES being special. 5197 */ 5198 void 5199 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5200 ip_recv_attr_t *ira) 5201 { 5202 ipaddr_t laddr; 5203 in6_addr_t v6faddr; 5204 conn_t *connp; 5205 connf_t *connfp; 5206 ipaddr_t faddr; 5207 ill_t *ill = ira->ira_ill; 5208 ip_stack_t *ipst = ill->ill_ipst; 5209 5210 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5211 5212 laddr = ipha->ipha_dst; 5213 faddr = ipha->ipha_src; 5214 5215 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5216 mutex_enter(&connfp->connf_lock); 5217 connp = connfp->connf_head; 5218 5219 /* 5220 * If SO_REUSEADDR has been set on the first we send the 5221 * packet to all clients that have joined the group and 5222 * match the port. 5223 */ 5224 while (connp != NULL) { 5225 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5226 conn_wantpacket(connp, ira, ipha) && 5227 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5228 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5229 break; 5230 connp = connp->conn_next; 5231 } 5232 5233 if (connp == NULL) 5234 goto notfound; 5235 5236 CONN_INC_REF(connp); 5237 5238 if (connp->conn_reuseaddr) { 5239 conn_t *first_connp = connp; 5240 conn_t *next_connp; 5241 mblk_t *mp1; 5242 5243 connp = connp->conn_next; 5244 for (;;) { 5245 while (connp != NULL) { 5246 if (IPCL_UDP_MATCH(connp, lport, laddr, 5247 fport, faddr) && 5248 conn_wantpacket(connp, ira, ipha) && 5249 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5250 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5251 ira, connp))) 5252 break; 5253 connp = connp->conn_next; 5254 } 5255 if (connp == NULL) { 5256 /* No more interested clients */ 5257 connp = first_connp; 5258 break; 5259 } 5260 if (((mp1 = dupmsg(mp)) == NULL) && 5261 ((mp1 = copymsg(mp)) == NULL)) { 5262 /* Memory allocation failed */ 5263 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5264 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5265 connp = first_connp; 5266 break; 5267 } 5268 CONN_INC_REF(connp); 5269 mutex_exit(&connfp->connf_lock); 5270 5271 IP_STAT(ipst, ip_udp_fanmb); 5272 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5273 NULL, ira); 5274 mutex_enter(&connfp->connf_lock); 5275 /* Follow the next pointer before releasing the conn */ 5276 next_connp = connp->conn_next; 5277 CONN_DEC_REF(connp); 5278 connp = next_connp; 5279 } 5280 } 5281 5282 /* Last one. Send it upstream. */ 5283 mutex_exit(&connfp->connf_lock); 5284 IP_STAT(ipst, ip_udp_fanmb); 5285 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5286 CONN_DEC_REF(connp); 5287 return; 5288 5289 notfound: 5290 mutex_exit(&connfp->connf_lock); 5291 /* 5292 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5293 * have already been matched above, since they live in the IPv4 5294 * fanout tables. This implies we only need to 5295 * check for IPv6 in6addr_any endpoints here. 5296 * Thus we compare using ipv6_all_zeros instead of the destination 5297 * address, except for the multicast group membership lookup which 5298 * uses the IPv4 destination. 5299 */ 5300 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5301 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5302 mutex_enter(&connfp->connf_lock); 5303 connp = connfp->connf_head; 5304 /* 5305 * IPv4 multicast packet being delivered to an AF_INET6 5306 * in6addr_any endpoint. 5307 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5308 * and not conn_wantpacket_v6() since any multicast membership is 5309 * for an IPv4-mapped multicast address. 5310 */ 5311 while (connp != NULL) { 5312 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5313 fport, v6faddr) && 5314 conn_wantpacket(connp, ira, ipha) && 5315 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5316 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5317 break; 5318 connp = connp->conn_next; 5319 } 5320 5321 if (connp == NULL) { 5322 /* 5323 * No one bound to this port. Is 5324 * there a client that wants all 5325 * unclaimed datagrams? 5326 */ 5327 mutex_exit(&connfp->connf_lock); 5328 5329 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5330 NULL) { 5331 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5332 ip_fanout_proto_v4(mp, ipha, ira); 5333 } else { 5334 /* 5335 * We used to attempt to send an icmp error here, but 5336 * since this is known to be a multicast packet 5337 * and we don't send icmp errors in response to 5338 * multicast, just drop the packet and give up sooner. 5339 */ 5340 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5341 freemsg(mp); 5342 } 5343 return; 5344 } 5345 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5346 5347 /* 5348 * If SO_REUSEADDR has been set on the first we send the 5349 * packet to all clients that have joined the group and 5350 * match the port. 5351 */ 5352 if (connp->conn_reuseaddr) { 5353 conn_t *first_connp = connp; 5354 conn_t *next_connp; 5355 mblk_t *mp1; 5356 5357 CONN_INC_REF(connp); 5358 connp = connp->conn_next; 5359 for (;;) { 5360 while (connp != NULL) { 5361 if (IPCL_UDP_MATCH_V6(connp, lport, 5362 ipv6_all_zeros, fport, v6faddr) && 5363 conn_wantpacket(connp, ira, ipha) && 5364 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5365 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5366 ira, connp))) 5367 break; 5368 connp = connp->conn_next; 5369 } 5370 if (connp == NULL) { 5371 /* No more interested clients */ 5372 connp = first_connp; 5373 break; 5374 } 5375 if (((mp1 = dupmsg(mp)) == NULL) && 5376 ((mp1 = copymsg(mp)) == NULL)) { 5377 /* Memory allocation failed */ 5378 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5379 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5380 connp = first_connp; 5381 break; 5382 } 5383 CONN_INC_REF(connp); 5384 mutex_exit(&connfp->connf_lock); 5385 5386 IP_STAT(ipst, ip_udp_fanmb); 5387 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5388 NULL, ira); 5389 mutex_enter(&connfp->connf_lock); 5390 /* Follow the next pointer before releasing the conn */ 5391 next_connp = connp->conn_next; 5392 CONN_DEC_REF(connp); 5393 connp = next_connp; 5394 } 5395 } 5396 5397 /* Last one. Send it upstream. */ 5398 mutex_exit(&connfp->connf_lock); 5399 IP_STAT(ipst, ip_udp_fanmb); 5400 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5401 CONN_DEC_REF(connp); 5402 } 5403 5404 /* 5405 * Split an incoming packet's IPv4 options into the label and the other options. 5406 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5407 * clearing out any leftover label or options. 5408 * Otherwise it just makes ipp point into the packet. 5409 * 5410 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5411 */ 5412 int 5413 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5414 { 5415 uchar_t *opt; 5416 uint32_t totallen; 5417 uint32_t optval; 5418 uint32_t optlen; 5419 5420 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5421 ipp->ipp_hoplimit = ipha->ipha_ttl; 5422 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5423 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5424 5425 /* 5426 * Get length (in 4 byte octets) of IP header options. 5427 */ 5428 totallen = ipha->ipha_version_and_hdr_length - 5429 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5430 5431 if (totallen == 0) { 5432 if (!allocate) 5433 return (0); 5434 5435 /* Clear out anything from a previous packet */ 5436 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5437 kmem_free(ipp->ipp_ipv4_options, 5438 ipp->ipp_ipv4_options_len); 5439 ipp->ipp_ipv4_options = NULL; 5440 ipp->ipp_ipv4_options_len = 0; 5441 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5442 } 5443 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5444 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5445 ipp->ipp_label_v4 = NULL; 5446 ipp->ipp_label_len_v4 = 0; 5447 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5448 } 5449 return (0); 5450 } 5451 5452 totallen <<= 2; 5453 opt = (uchar_t *)&ipha[1]; 5454 if (!is_system_labeled()) { 5455 5456 copyall: 5457 if (!allocate) { 5458 if (totallen != 0) { 5459 ipp->ipp_ipv4_options = opt; 5460 ipp->ipp_ipv4_options_len = totallen; 5461 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5462 } 5463 return (0); 5464 } 5465 /* Just copy all of options */ 5466 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5467 if (totallen == ipp->ipp_ipv4_options_len) { 5468 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5469 return (0); 5470 } 5471 kmem_free(ipp->ipp_ipv4_options, 5472 ipp->ipp_ipv4_options_len); 5473 ipp->ipp_ipv4_options = NULL; 5474 ipp->ipp_ipv4_options_len = 0; 5475 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5476 } 5477 if (totallen == 0) 5478 return (0); 5479 5480 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5481 if (ipp->ipp_ipv4_options == NULL) 5482 return (ENOMEM); 5483 ipp->ipp_ipv4_options_len = totallen; 5484 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5485 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5486 return (0); 5487 } 5488 5489 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5490 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5491 ipp->ipp_label_v4 = NULL; 5492 ipp->ipp_label_len_v4 = 0; 5493 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5494 } 5495 5496 /* 5497 * Search for CIPSO option. 5498 * We assume CIPSO is first in options if it is present. 5499 * If it isn't, then ipp_opt_ipv4_options will not include the options 5500 * prior to the CIPSO option. 5501 */ 5502 while (totallen != 0) { 5503 switch (optval = opt[IPOPT_OPTVAL]) { 5504 case IPOPT_EOL: 5505 return (0); 5506 case IPOPT_NOP: 5507 optlen = 1; 5508 break; 5509 default: 5510 if (totallen <= IPOPT_OLEN) 5511 return (EINVAL); 5512 optlen = opt[IPOPT_OLEN]; 5513 if (optlen < 2) 5514 return (EINVAL); 5515 } 5516 if (optlen > totallen) 5517 return (EINVAL); 5518 5519 switch (optval) { 5520 case IPOPT_COMSEC: 5521 if (!allocate) { 5522 ipp->ipp_label_v4 = opt; 5523 ipp->ipp_label_len_v4 = optlen; 5524 ipp->ipp_fields |= IPPF_LABEL_V4; 5525 } else { 5526 ipp->ipp_label_v4 = kmem_alloc(optlen, 5527 KM_NOSLEEP); 5528 if (ipp->ipp_label_v4 == NULL) 5529 return (ENOMEM); 5530 ipp->ipp_label_len_v4 = optlen; 5531 ipp->ipp_fields |= IPPF_LABEL_V4; 5532 bcopy(opt, ipp->ipp_label_v4, optlen); 5533 } 5534 totallen -= optlen; 5535 opt += optlen; 5536 5537 /* Skip padding bytes until we get to a multiple of 4 */ 5538 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5539 totallen--; 5540 opt++; 5541 } 5542 /* Remaining as ipp_ipv4_options */ 5543 goto copyall; 5544 } 5545 totallen -= optlen; 5546 opt += optlen; 5547 } 5548 /* No CIPSO found; return everything as ipp_ipv4_options */ 5549 totallen = ipha->ipha_version_and_hdr_length - 5550 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5551 totallen <<= 2; 5552 opt = (uchar_t *)&ipha[1]; 5553 goto copyall; 5554 } 5555 5556 /* 5557 * Efficient versions of lookup for an IRE when we only 5558 * match the address. 5559 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5560 * Does not handle multicast addresses. 5561 */ 5562 uint_t 5563 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5564 { 5565 ire_t *ire; 5566 uint_t result; 5567 5568 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5569 ASSERT(ire != NULL); 5570 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5571 result = IRE_NOROUTE; 5572 else 5573 result = ire->ire_type; 5574 ire_refrele(ire); 5575 return (result); 5576 } 5577 5578 /* 5579 * Efficient versions of lookup for an IRE when we only 5580 * match the address. 5581 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5582 * Does not handle multicast addresses. 5583 */ 5584 uint_t 5585 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5586 { 5587 ire_t *ire; 5588 uint_t result; 5589 5590 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5591 ASSERT(ire != NULL); 5592 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5593 result = IRE_NOROUTE; 5594 else 5595 result = ire->ire_type; 5596 ire_refrele(ire); 5597 return (result); 5598 } 5599 5600 /* 5601 * Nobody should be sending 5602 * packets up this stream 5603 */ 5604 static void 5605 ip_lrput(queue_t *q, mblk_t *mp) 5606 { 5607 switch (mp->b_datap->db_type) { 5608 case M_FLUSH: 5609 /* Turn around */ 5610 if (*mp->b_rptr & FLUSHW) { 5611 *mp->b_rptr &= ~FLUSHR; 5612 qreply(q, mp); 5613 return; 5614 } 5615 break; 5616 } 5617 freemsg(mp); 5618 } 5619 5620 /* Nobody should be sending packets down this stream */ 5621 /* ARGSUSED */ 5622 void 5623 ip_lwput(queue_t *q, mblk_t *mp) 5624 { 5625 freemsg(mp); 5626 } 5627 5628 /* 5629 * Move the first hop in any source route to ipha_dst and remove that part of 5630 * the source route. Called by other protocols. Errors in option formatting 5631 * are ignored - will be handled by ip_output_options. Return the final 5632 * destination (either ipha_dst or the last entry in a source route.) 5633 */ 5634 ipaddr_t 5635 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5636 { 5637 ipoptp_t opts; 5638 uchar_t *opt; 5639 uint8_t optval; 5640 uint8_t optlen; 5641 ipaddr_t dst; 5642 int i; 5643 ip_stack_t *ipst = ns->netstack_ip; 5644 5645 ip2dbg(("ip_massage_options\n")); 5646 dst = ipha->ipha_dst; 5647 for (optval = ipoptp_first(&opts, ipha); 5648 optval != IPOPT_EOL; 5649 optval = ipoptp_next(&opts)) { 5650 opt = opts.ipoptp_cur; 5651 switch (optval) { 5652 uint8_t off; 5653 case IPOPT_SSRR: 5654 case IPOPT_LSRR: 5655 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5656 ip1dbg(("ip_massage_options: bad src route\n")); 5657 break; 5658 } 5659 optlen = opts.ipoptp_len; 5660 off = opt[IPOPT_OFFSET]; 5661 off--; 5662 redo_srr: 5663 if (optlen < IP_ADDR_LEN || 5664 off > optlen - IP_ADDR_LEN) { 5665 /* End of source route */ 5666 ip1dbg(("ip_massage_options: end of SR\n")); 5667 break; 5668 } 5669 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5670 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5671 ntohl(dst))); 5672 /* 5673 * Check if our address is present more than 5674 * once as consecutive hops in source route. 5675 * XXX verify per-interface ip_forwarding 5676 * for source route? 5677 */ 5678 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5679 off += IP_ADDR_LEN; 5680 goto redo_srr; 5681 } 5682 if (dst == htonl(INADDR_LOOPBACK)) { 5683 ip1dbg(("ip_massage_options: loopback addr in " 5684 "source route!\n")); 5685 break; 5686 } 5687 /* 5688 * Update ipha_dst to be the first hop and remove the 5689 * first hop from the source route (by overwriting 5690 * part of the option with NOP options). 5691 */ 5692 ipha->ipha_dst = dst; 5693 /* Put the last entry in dst */ 5694 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5695 3; 5696 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5697 5698 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5699 ntohl(dst))); 5700 /* Move down and overwrite */ 5701 opt[IP_ADDR_LEN] = opt[0]; 5702 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5703 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5704 for (i = 0; i < IP_ADDR_LEN; i++) 5705 opt[i] = IPOPT_NOP; 5706 break; 5707 } 5708 } 5709 return (dst); 5710 } 5711 5712 /* 5713 * Return the network mask 5714 * associated with the specified address. 5715 */ 5716 ipaddr_t 5717 ip_net_mask(ipaddr_t addr) 5718 { 5719 uchar_t *up = (uchar_t *)&addr; 5720 ipaddr_t mask = 0; 5721 uchar_t *maskp = (uchar_t *)&mask; 5722 5723 #if defined(__i386) || defined(__amd64) 5724 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5725 #endif 5726 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5727 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5728 #endif 5729 if (CLASSD(addr)) { 5730 maskp[0] = 0xF0; 5731 return (mask); 5732 } 5733 5734 /* We assume Class E default netmask to be 32 */ 5735 if (CLASSE(addr)) 5736 return (0xffffffffU); 5737 5738 if (addr == 0) 5739 return (0); 5740 maskp[0] = 0xFF; 5741 if ((up[0] & 0x80) == 0) 5742 return (mask); 5743 5744 maskp[1] = 0xFF; 5745 if ((up[0] & 0xC0) == 0x80) 5746 return (mask); 5747 5748 maskp[2] = 0xFF; 5749 if ((up[0] & 0xE0) == 0xC0) 5750 return (mask); 5751 5752 /* Otherwise return no mask */ 5753 return ((ipaddr_t)0); 5754 } 5755 5756 /* Name/Value Table Lookup Routine */ 5757 char * 5758 ip_nv_lookup(nv_t *nv, int value) 5759 { 5760 if (!nv) 5761 return (NULL); 5762 for (; nv->nv_name; nv++) { 5763 if (nv->nv_value == value) 5764 return (nv->nv_name); 5765 } 5766 return ("unknown"); 5767 } 5768 5769 static int 5770 ip_wait_for_info_ack(ill_t *ill) 5771 { 5772 int err; 5773 5774 mutex_enter(&ill->ill_lock); 5775 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5776 /* 5777 * Return value of 0 indicates a pending signal. 5778 */ 5779 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5780 if (err == 0) { 5781 mutex_exit(&ill->ill_lock); 5782 return (EINTR); 5783 } 5784 } 5785 mutex_exit(&ill->ill_lock); 5786 /* 5787 * ip_rput_other could have set an error in ill_error on 5788 * receipt of M_ERROR. 5789 */ 5790 return (ill->ill_error); 5791 } 5792 5793 /* 5794 * This is a module open, i.e. this is a control stream for access 5795 * to a DLPI device. We allocate an ill_t as the instance data in 5796 * this case. 5797 */ 5798 static int 5799 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5800 { 5801 ill_t *ill; 5802 int err; 5803 zoneid_t zoneid; 5804 netstack_t *ns; 5805 ip_stack_t *ipst; 5806 5807 /* 5808 * Prevent unprivileged processes from pushing IP so that 5809 * they can't send raw IP. 5810 */ 5811 if (secpolicy_net_rawaccess(credp) != 0) 5812 return (EPERM); 5813 5814 ns = netstack_find_by_cred(credp); 5815 ASSERT(ns != NULL); 5816 ipst = ns->netstack_ip; 5817 ASSERT(ipst != NULL); 5818 5819 /* 5820 * For exclusive stacks we set the zoneid to zero 5821 * to make IP operate as if in the global zone. 5822 */ 5823 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5824 zoneid = GLOBAL_ZONEID; 5825 else 5826 zoneid = crgetzoneid(credp); 5827 5828 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5829 q->q_ptr = WR(q)->q_ptr = ill; 5830 ill->ill_ipst = ipst; 5831 ill->ill_zoneid = zoneid; 5832 5833 /* 5834 * ill_init initializes the ill fields and then sends down 5835 * down a DL_INFO_REQ after calling qprocson. 5836 */ 5837 err = ill_init(q, ill); 5838 5839 if (err != 0) { 5840 mi_free(ill); 5841 netstack_rele(ipst->ips_netstack); 5842 q->q_ptr = NULL; 5843 WR(q)->q_ptr = NULL; 5844 return (err); 5845 } 5846 5847 /* 5848 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5849 * 5850 * ill_init initializes the ipsq marking this thread as 5851 * writer 5852 */ 5853 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5854 err = ip_wait_for_info_ack(ill); 5855 if (err == 0) 5856 ill->ill_credp = credp; 5857 else 5858 goto fail; 5859 5860 crhold(credp); 5861 5862 mutex_enter(&ipst->ips_ip_mi_lock); 5863 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5864 sflag, credp); 5865 mutex_exit(&ipst->ips_ip_mi_lock); 5866 fail: 5867 if (err) { 5868 (void) ip_close(q, 0); 5869 return (err); 5870 } 5871 return (0); 5872 } 5873 5874 /* For /dev/ip aka AF_INET open */ 5875 int 5876 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5877 { 5878 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5879 } 5880 5881 /* For /dev/ip6 aka AF_INET6 open */ 5882 int 5883 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5884 { 5885 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5886 } 5887 5888 /* IP open routine. */ 5889 int 5890 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5891 boolean_t isv6) 5892 { 5893 conn_t *connp; 5894 major_t maj; 5895 zoneid_t zoneid; 5896 netstack_t *ns; 5897 ip_stack_t *ipst; 5898 5899 /* Allow reopen. */ 5900 if (q->q_ptr != NULL) 5901 return (0); 5902 5903 if (sflag & MODOPEN) { 5904 /* This is a module open */ 5905 return (ip_modopen(q, devp, flag, sflag, credp)); 5906 } 5907 5908 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5909 /* 5910 * Non streams based socket looking for a stream 5911 * to access IP 5912 */ 5913 return (ip_helper_stream_setup(q, devp, flag, sflag, 5914 credp, isv6)); 5915 } 5916 5917 ns = netstack_find_by_cred(credp); 5918 ASSERT(ns != NULL); 5919 ipst = ns->netstack_ip; 5920 ASSERT(ipst != NULL); 5921 5922 /* 5923 * For exclusive stacks we set the zoneid to zero 5924 * to make IP operate as if in the global zone. 5925 */ 5926 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5927 zoneid = GLOBAL_ZONEID; 5928 else 5929 zoneid = crgetzoneid(credp); 5930 5931 /* 5932 * We are opening as a device. This is an IP client stream, and we 5933 * allocate an conn_t as the instance data. 5934 */ 5935 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5936 5937 /* 5938 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5939 * done by netstack_find_by_cred() 5940 */ 5941 netstack_rele(ipst->ips_netstack); 5942 5943 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5944 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5945 connp->conn_ixa->ixa_zoneid = zoneid; 5946 connp->conn_zoneid = zoneid; 5947 5948 connp->conn_rq = q; 5949 q->q_ptr = WR(q)->q_ptr = connp; 5950 5951 /* Minor tells us which /dev entry was opened */ 5952 if (isv6) { 5953 connp->conn_family = AF_INET6; 5954 connp->conn_ipversion = IPV6_VERSION; 5955 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 5956 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 5957 } else { 5958 connp->conn_family = AF_INET; 5959 connp->conn_ipversion = IPV4_VERSION; 5960 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 5961 } 5962 5963 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 5964 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 5965 connp->conn_minor_arena = ip_minor_arena_la; 5966 } else { 5967 /* 5968 * Either minor numbers in the large arena were exhausted 5969 * or a non socket application is doing the open. 5970 * Try to allocate from the small arena. 5971 */ 5972 if ((connp->conn_dev = 5973 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 5974 /* CONN_DEC_REF takes care of netstack_rele() */ 5975 q->q_ptr = WR(q)->q_ptr = NULL; 5976 CONN_DEC_REF(connp); 5977 return (EBUSY); 5978 } 5979 connp->conn_minor_arena = ip_minor_arena_sa; 5980 } 5981 5982 maj = getemajor(*devp); 5983 *devp = makedevice(maj, (minor_t)connp->conn_dev); 5984 5985 /* 5986 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 5987 */ 5988 connp->conn_cred = credp; 5989 connp->conn_cpid = curproc->p_pid; 5990 /* Cache things in ixa without an extra refhold */ 5991 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 5992 connp->conn_ixa->ixa_cred = connp->conn_cred; 5993 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 5994 if (is_system_labeled()) 5995 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 5996 5997 /* 5998 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 5999 */ 6000 connp->conn_recv = ip_conn_input; 6001 connp->conn_recvicmp = ip_conn_input_icmp; 6002 6003 crhold(connp->conn_cred); 6004 6005 /* 6006 * If the caller has the process-wide flag set, then default to MAC 6007 * exempt mode. This allows read-down to unlabeled hosts. 6008 */ 6009 if (getpflags(NET_MAC_AWARE, credp) != 0) 6010 connp->conn_mac_mode = CONN_MAC_AWARE; 6011 6012 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6013 6014 connp->conn_rq = q; 6015 connp->conn_wq = WR(q); 6016 6017 /* Non-zero default values */ 6018 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6019 6020 /* 6021 * Make the conn globally visible to walkers 6022 */ 6023 ASSERT(connp->conn_ref == 1); 6024 mutex_enter(&connp->conn_lock); 6025 connp->conn_state_flags &= ~CONN_INCIPIENT; 6026 mutex_exit(&connp->conn_lock); 6027 6028 qprocson(q); 6029 6030 return (0); 6031 } 6032 6033 /* 6034 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6035 * all of them are copied to the conn_t. If the req is "zero", the policy is 6036 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6037 * fields. 6038 * We keep only the latest setting of the policy and thus policy setting 6039 * is not incremental/cumulative. 6040 * 6041 * Requests to set policies with multiple alternative actions will 6042 * go through a different API. 6043 */ 6044 int 6045 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6046 { 6047 uint_t ah_req = 0; 6048 uint_t esp_req = 0; 6049 uint_t se_req = 0; 6050 ipsec_act_t *actp = NULL; 6051 uint_t nact; 6052 ipsec_policy_head_t *ph; 6053 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6054 int error = 0; 6055 netstack_t *ns = connp->conn_netstack; 6056 ip_stack_t *ipst = ns->netstack_ip; 6057 ipsec_stack_t *ipss = ns->netstack_ipsec; 6058 6059 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6060 6061 /* 6062 * The IP_SEC_OPT option does not allow variable length parameters, 6063 * hence a request cannot be NULL. 6064 */ 6065 if (req == NULL) 6066 return (EINVAL); 6067 6068 ah_req = req->ipsr_ah_req; 6069 esp_req = req->ipsr_esp_req; 6070 se_req = req->ipsr_self_encap_req; 6071 6072 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6073 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6074 return (EINVAL); 6075 6076 /* 6077 * Are we dealing with a request to reset the policy (i.e. 6078 * zero requests). 6079 */ 6080 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6081 (esp_req & REQ_MASK) == 0 && 6082 (se_req & REQ_MASK) == 0); 6083 6084 if (!is_pol_reset) { 6085 /* 6086 * If we couldn't load IPsec, fail with "protocol 6087 * not supported". 6088 * IPsec may not have been loaded for a request with zero 6089 * policies, so we don't fail in this case. 6090 */ 6091 mutex_enter(&ipss->ipsec_loader_lock); 6092 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6093 mutex_exit(&ipss->ipsec_loader_lock); 6094 return (EPROTONOSUPPORT); 6095 } 6096 mutex_exit(&ipss->ipsec_loader_lock); 6097 6098 /* 6099 * Test for valid requests. Invalid algorithms 6100 * need to be tested by IPsec code because new 6101 * algorithms can be added dynamically. 6102 */ 6103 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6104 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6105 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6106 return (EINVAL); 6107 } 6108 6109 /* 6110 * Only privileged users can issue these 6111 * requests. 6112 */ 6113 if (((ah_req & IPSEC_PREF_NEVER) || 6114 (esp_req & IPSEC_PREF_NEVER) || 6115 (se_req & IPSEC_PREF_NEVER)) && 6116 secpolicy_ip_config(cr, B_FALSE) != 0) { 6117 return (EPERM); 6118 } 6119 6120 /* 6121 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6122 * are mutually exclusive. 6123 */ 6124 if (((ah_req & REQ_MASK) == REQ_MASK) || 6125 ((esp_req & REQ_MASK) == REQ_MASK) || 6126 ((se_req & REQ_MASK) == REQ_MASK)) { 6127 /* Both of them are set */ 6128 return (EINVAL); 6129 } 6130 } 6131 6132 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6133 6134 /* 6135 * If we have already cached policies in conn_connect(), don't 6136 * let them change now. We cache policies for connections 6137 * whose src,dst [addr, port] is known. 6138 */ 6139 if (connp->conn_policy_cached) { 6140 return (EINVAL); 6141 } 6142 6143 /* 6144 * We have a zero policies, reset the connection policy if already 6145 * set. This will cause the connection to inherit the 6146 * global policy, if any. 6147 */ 6148 if (is_pol_reset) { 6149 if (connp->conn_policy != NULL) { 6150 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6151 connp->conn_policy = NULL; 6152 } 6153 connp->conn_in_enforce_policy = B_FALSE; 6154 connp->conn_out_enforce_policy = B_FALSE; 6155 return (0); 6156 } 6157 6158 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6159 ipst->ips_netstack); 6160 if (ph == NULL) 6161 goto enomem; 6162 6163 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6164 if (actp == NULL) 6165 goto enomem; 6166 6167 /* 6168 * Always insert IPv4 policy entries, since they can also apply to 6169 * ipv6 sockets being used in ipv4-compat mode. 6170 */ 6171 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6172 IPSEC_TYPE_INBOUND, ns)) 6173 goto enomem; 6174 is_pol_inserted = B_TRUE; 6175 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6176 IPSEC_TYPE_OUTBOUND, ns)) 6177 goto enomem; 6178 6179 /* 6180 * We're looking at a v6 socket, also insert the v6-specific 6181 * entries. 6182 */ 6183 if (connp->conn_family == AF_INET6) { 6184 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6185 IPSEC_TYPE_INBOUND, ns)) 6186 goto enomem; 6187 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6188 IPSEC_TYPE_OUTBOUND, ns)) 6189 goto enomem; 6190 } 6191 6192 ipsec_actvec_free(actp, nact); 6193 6194 /* 6195 * If the requests need security, set enforce_policy. 6196 * If the requests are IPSEC_PREF_NEVER, one should 6197 * still set conn_out_enforce_policy so that ip_set_destination 6198 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6199 * for connections that we don't cache policy in at connect time, 6200 * if global policy matches in ip_output_attach_policy, we 6201 * don't wrongly inherit global policy. Similarly, we need 6202 * to set conn_in_enforce_policy also so that we don't verify 6203 * policy wrongly. 6204 */ 6205 if ((ah_req & REQ_MASK) != 0 || 6206 (esp_req & REQ_MASK) != 0 || 6207 (se_req & REQ_MASK) != 0) { 6208 connp->conn_in_enforce_policy = B_TRUE; 6209 connp->conn_out_enforce_policy = B_TRUE; 6210 } 6211 6212 return (error); 6213 #undef REQ_MASK 6214 6215 /* 6216 * Common memory-allocation-failure exit path. 6217 */ 6218 enomem: 6219 if (actp != NULL) 6220 ipsec_actvec_free(actp, nact); 6221 if (is_pol_inserted) 6222 ipsec_polhead_flush(ph, ns); 6223 return (ENOMEM); 6224 } 6225 6226 /* 6227 * Set socket options for joining and leaving multicast groups. 6228 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6229 * The caller has already check that the option name is consistent with 6230 * the address family of the socket. 6231 */ 6232 int 6233 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6234 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6235 { 6236 int *i1 = (int *)invalp; 6237 int error = 0; 6238 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6239 struct ip_mreq *v4_mreqp; 6240 struct ipv6_mreq *v6_mreqp; 6241 struct group_req *greqp; 6242 ire_t *ire; 6243 boolean_t done = B_FALSE; 6244 ipaddr_t ifaddr; 6245 in6_addr_t v6group; 6246 uint_t ifindex; 6247 boolean_t mcast_opt = B_TRUE; 6248 mcast_record_t fmode; 6249 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6250 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6251 6252 switch (name) { 6253 case IP_ADD_MEMBERSHIP: 6254 case IPV6_JOIN_GROUP: 6255 mcast_opt = B_FALSE; 6256 /* FALLTHRU */ 6257 case MCAST_JOIN_GROUP: 6258 fmode = MODE_IS_EXCLUDE; 6259 optfn = ip_opt_add_group; 6260 break; 6261 6262 case IP_DROP_MEMBERSHIP: 6263 case IPV6_LEAVE_GROUP: 6264 mcast_opt = B_FALSE; 6265 /* FALLTHRU */ 6266 case MCAST_LEAVE_GROUP: 6267 fmode = MODE_IS_INCLUDE; 6268 optfn = ip_opt_delete_group; 6269 break; 6270 default: 6271 ASSERT(0); 6272 } 6273 6274 if (mcast_opt) { 6275 struct sockaddr_in *sin; 6276 struct sockaddr_in6 *sin6; 6277 6278 greqp = (struct group_req *)i1; 6279 if (greqp->gr_group.ss_family == AF_INET) { 6280 sin = (struct sockaddr_in *)&(greqp->gr_group); 6281 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6282 } else { 6283 if (!inet6) 6284 return (EINVAL); /* Not on INET socket */ 6285 6286 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6287 v6group = sin6->sin6_addr; 6288 } 6289 ifaddr = INADDR_ANY; 6290 ifindex = greqp->gr_interface; 6291 } else if (inet6) { 6292 v6_mreqp = (struct ipv6_mreq *)i1; 6293 v6group = v6_mreqp->ipv6mr_multiaddr; 6294 ifaddr = INADDR_ANY; 6295 ifindex = v6_mreqp->ipv6mr_interface; 6296 } else { 6297 v4_mreqp = (struct ip_mreq *)i1; 6298 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6299 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6300 ifindex = 0; 6301 } 6302 6303 /* 6304 * In the multirouting case, we need to replicate 6305 * the request on all interfaces that will take part 6306 * in replication. We do so because multirouting is 6307 * reflective, thus we will probably receive multi- 6308 * casts on those interfaces. 6309 * The ip_multirt_apply_membership() succeeds if 6310 * the operation succeeds on at least one interface. 6311 */ 6312 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6313 ipaddr_t group; 6314 6315 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6316 6317 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6318 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6319 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6320 } else { 6321 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6322 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6323 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6324 } 6325 if (ire != NULL) { 6326 if (ire->ire_flags & RTF_MULTIRT) { 6327 error = ip_multirt_apply_membership(optfn, ire, connp, 6328 checkonly, &v6group, fmode, &ipv6_all_zeros); 6329 done = B_TRUE; 6330 } 6331 ire_refrele(ire); 6332 } 6333 6334 if (!done) { 6335 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6336 fmode, &ipv6_all_zeros); 6337 } 6338 return (error); 6339 } 6340 6341 /* 6342 * Set socket options for joining and leaving multicast groups 6343 * for specific sources. 6344 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6345 * The caller has already check that the option name is consistent with 6346 * the address family of the socket. 6347 */ 6348 int 6349 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6350 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6351 { 6352 int *i1 = (int *)invalp; 6353 int error = 0; 6354 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6355 struct ip_mreq_source *imreqp; 6356 struct group_source_req *gsreqp; 6357 in6_addr_t v6group, v6src; 6358 uint32_t ifindex; 6359 ipaddr_t ifaddr; 6360 boolean_t mcast_opt = B_TRUE; 6361 mcast_record_t fmode; 6362 ire_t *ire; 6363 boolean_t done = B_FALSE; 6364 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6365 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6366 6367 switch (name) { 6368 case IP_BLOCK_SOURCE: 6369 mcast_opt = B_FALSE; 6370 /* FALLTHRU */ 6371 case MCAST_BLOCK_SOURCE: 6372 fmode = MODE_IS_EXCLUDE; 6373 optfn = ip_opt_add_group; 6374 break; 6375 6376 case IP_UNBLOCK_SOURCE: 6377 mcast_opt = B_FALSE; 6378 /* FALLTHRU */ 6379 case MCAST_UNBLOCK_SOURCE: 6380 fmode = MODE_IS_EXCLUDE; 6381 optfn = ip_opt_delete_group; 6382 break; 6383 6384 case IP_ADD_SOURCE_MEMBERSHIP: 6385 mcast_opt = B_FALSE; 6386 /* FALLTHRU */ 6387 case MCAST_JOIN_SOURCE_GROUP: 6388 fmode = MODE_IS_INCLUDE; 6389 optfn = ip_opt_add_group; 6390 break; 6391 6392 case IP_DROP_SOURCE_MEMBERSHIP: 6393 mcast_opt = B_FALSE; 6394 /* FALLTHRU */ 6395 case MCAST_LEAVE_SOURCE_GROUP: 6396 fmode = MODE_IS_INCLUDE; 6397 optfn = ip_opt_delete_group; 6398 break; 6399 default: 6400 ASSERT(0); 6401 } 6402 6403 if (mcast_opt) { 6404 gsreqp = (struct group_source_req *)i1; 6405 ifindex = gsreqp->gsr_interface; 6406 if (gsreqp->gsr_group.ss_family == AF_INET) { 6407 struct sockaddr_in *s; 6408 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6409 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6410 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6411 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6412 } else { 6413 struct sockaddr_in6 *s6; 6414 6415 if (!inet6) 6416 return (EINVAL); /* Not on INET socket */ 6417 6418 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6419 v6group = s6->sin6_addr; 6420 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6421 v6src = s6->sin6_addr; 6422 } 6423 ifaddr = INADDR_ANY; 6424 } else { 6425 imreqp = (struct ip_mreq_source *)i1; 6426 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6427 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6428 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6429 ifindex = 0; 6430 } 6431 6432 /* 6433 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6434 */ 6435 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6436 v6src = ipv6_all_zeros; 6437 6438 /* 6439 * In the multirouting case, we need to replicate 6440 * the request as noted in the mcast cases above. 6441 */ 6442 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6443 ipaddr_t group; 6444 6445 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6446 6447 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6448 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6449 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6450 } else { 6451 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6452 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6453 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6454 } 6455 if (ire != NULL) { 6456 if (ire->ire_flags & RTF_MULTIRT) { 6457 error = ip_multirt_apply_membership(optfn, ire, connp, 6458 checkonly, &v6group, fmode, &v6src); 6459 done = B_TRUE; 6460 } 6461 ire_refrele(ire); 6462 } 6463 if (!done) { 6464 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6465 fmode, &v6src); 6466 } 6467 return (error); 6468 } 6469 6470 /* 6471 * Given a destination address and a pointer to where to put the information 6472 * this routine fills in the mtuinfo. 6473 * The socket must be connected. 6474 * For sctp conn_faddr is the primary address. 6475 */ 6476 int 6477 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6478 { 6479 uint32_t pmtu = IP_MAXPACKET; 6480 uint_t scopeid; 6481 6482 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6483 return (-1); 6484 6485 /* In case we never sent or called ip_set_destination_v4/v6 */ 6486 if (ixa->ixa_ire != NULL) 6487 pmtu = ip_get_pmtu(ixa); 6488 6489 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6490 scopeid = ixa->ixa_scopeid; 6491 else 6492 scopeid = 0; 6493 6494 bzero(mtuinfo, sizeof (*mtuinfo)); 6495 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6496 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6497 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6498 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6499 mtuinfo->ip6m_mtu = pmtu; 6500 6501 return (sizeof (struct ip6_mtuinfo)); 6502 } 6503 6504 /* 6505 * When the src multihoming is changed from weak to [strong, preferred] 6506 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6507 * and identify routes that were created by user-applications in the 6508 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6509 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6510 * is selected by finding an interface route for the gateway. 6511 */ 6512 /* ARGSUSED */ 6513 void 6514 ip_ire_rebind_walker(ire_t *ire, void *notused) 6515 { 6516 if (!ire->ire_unbound || ire->ire_ill != NULL) 6517 return; 6518 ire_rebind(ire); 6519 ire_delete(ire); 6520 } 6521 6522 /* 6523 * When the src multihoming is changed from [strong, preferred] to weak, 6524 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6525 * set any entries that were created by user-applications in the unbound state 6526 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6527 */ 6528 /* ARGSUSED */ 6529 void 6530 ip_ire_unbind_walker(ire_t *ire, void *notused) 6531 { 6532 ire_t *new_ire; 6533 6534 if (!ire->ire_unbound || ire->ire_ill == NULL) 6535 return; 6536 if (ire->ire_ipversion == IPV6_VERSION) { 6537 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6538 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6539 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6540 } else { 6541 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6542 (uchar_t *)&ire->ire_mask, 6543 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6544 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6545 } 6546 if (new_ire == NULL) 6547 return; 6548 new_ire->ire_unbound = B_TRUE; 6549 /* 6550 * The bound ire must first be deleted so that we don't return 6551 * the existing one on the attempt to add the unbound new_ire. 6552 */ 6553 ire_delete(ire); 6554 new_ire = ire_add(new_ire); 6555 if (new_ire != NULL) 6556 ire_refrele(new_ire); 6557 } 6558 6559 /* 6560 * When the settings of ip*_strict_src_multihoming tunables are changed, 6561 * all cached routes need to be recomputed. This recomputation needs to be 6562 * done when going from weaker to stronger modes so that the cached ire 6563 * for the connection does not violate the current ip*_strict_src_multihoming 6564 * setting. It also needs to be done when going from stronger to weaker modes, 6565 * so that we fall back to matching on the longest-matching-route (as opposed 6566 * to a shorter match that may have been selected in the strong mode 6567 * to satisfy src_multihoming settings). 6568 * 6569 * The cached ixa_ire entires for all conn_t entries are marked as 6570 * "verify" so that they will be recomputed for the next packet. 6571 */ 6572 void 6573 conn_ire_revalidate(conn_t *connp, void *arg) 6574 { 6575 boolean_t isv6 = (boolean_t)arg; 6576 6577 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6578 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6579 return; 6580 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6581 } 6582 6583 /* 6584 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6585 * When an ipf is passed here for the first time, if 6586 * we already have in-order fragments on the queue, we convert from the fast- 6587 * path reassembly scheme to the hard-case scheme. From then on, additional 6588 * fragments are reassembled here. We keep track of the start and end offsets 6589 * of each piece, and the number of holes in the chain. When the hole count 6590 * goes to zero, we are done! 6591 * 6592 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6593 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6594 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6595 * after the call to ip_reassemble(). 6596 */ 6597 int 6598 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6599 size_t msg_len) 6600 { 6601 uint_t end; 6602 mblk_t *next_mp; 6603 mblk_t *mp1; 6604 uint_t offset; 6605 boolean_t incr_dups = B_TRUE; 6606 boolean_t offset_zero_seen = B_FALSE; 6607 boolean_t pkt_boundary_checked = B_FALSE; 6608 6609 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6610 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6611 6612 /* Add in byte count */ 6613 ipf->ipf_count += msg_len; 6614 if (ipf->ipf_end) { 6615 /* 6616 * We were part way through in-order reassembly, but now there 6617 * is a hole. We walk through messages already queued, and 6618 * mark them for hard case reassembly. We know that up till 6619 * now they were in order starting from offset zero. 6620 */ 6621 offset = 0; 6622 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6623 IP_REASS_SET_START(mp1, offset); 6624 if (offset == 0) { 6625 ASSERT(ipf->ipf_nf_hdr_len != 0); 6626 offset = -ipf->ipf_nf_hdr_len; 6627 } 6628 offset += mp1->b_wptr - mp1->b_rptr; 6629 IP_REASS_SET_END(mp1, offset); 6630 } 6631 /* One hole at the end. */ 6632 ipf->ipf_hole_cnt = 1; 6633 /* Brand it as a hard case, forever. */ 6634 ipf->ipf_end = 0; 6635 } 6636 /* Walk through all the new pieces. */ 6637 do { 6638 end = start + (mp->b_wptr - mp->b_rptr); 6639 /* 6640 * If start is 0, decrease 'end' only for the first mblk of 6641 * the fragment. Otherwise 'end' can get wrong value in the 6642 * second pass of the loop if first mblk is exactly the 6643 * size of ipf_nf_hdr_len. 6644 */ 6645 if (start == 0 && !offset_zero_seen) { 6646 /* First segment */ 6647 ASSERT(ipf->ipf_nf_hdr_len != 0); 6648 end -= ipf->ipf_nf_hdr_len; 6649 offset_zero_seen = B_TRUE; 6650 } 6651 next_mp = mp->b_cont; 6652 /* 6653 * We are checking to see if there is any interesing data 6654 * to process. If there isn't and the mblk isn't the 6655 * one which carries the unfragmentable header then we 6656 * drop it. It's possible to have just the unfragmentable 6657 * header come through without any data. That needs to be 6658 * saved. 6659 * 6660 * If the assert at the top of this function holds then the 6661 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6662 * is infrequently traveled enough that the test is left in 6663 * to protect against future code changes which break that 6664 * invariant. 6665 */ 6666 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6667 /* Empty. Blast it. */ 6668 IP_REASS_SET_START(mp, 0); 6669 IP_REASS_SET_END(mp, 0); 6670 /* 6671 * If the ipf points to the mblk we are about to free, 6672 * update ipf to point to the next mblk (or NULL 6673 * if none). 6674 */ 6675 if (ipf->ipf_mp->b_cont == mp) 6676 ipf->ipf_mp->b_cont = next_mp; 6677 freeb(mp); 6678 continue; 6679 } 6680 mp->b_cont = NULL; 6681 IP_REASS_SET_START(mp, start); 6682 IP_REASS_SET_END(mp, end); 6683 if (!ipf->ipf_tail_mp) { 6684 ipf->ipf_tail_mp = mp; 6685 ipf->ipf_mp->b_cont = mp; 6686 if (start == 0 || !more) { 6687 ipf->ipf_hole_cnt = 1; 6688 /* 6689 * if the first fragment comes in more than one 6690 * mblk, this loop will be executed for each 6691 * mblk. Need to adjust hole count so exiting 6692 * this routine will leave hole count at 1. 6693 */ 6694 if (next_mp) 6695 ipf->ipf_hole_cnt++; 6696 } else 6697 ipf->ipf_hole_cnt = 2; 6698 continue; 6699 } else if (ipf->ipf_last_frag_seen && !more && 6700 !pkt_boundary_checked) { 6701 /* 6702 * We check datagram boundary only if this fragment 6703 * claims to be the last fragment and we have seen a 6704 * last fragment in the past too. We do this only 6705 * once for a given fragment. 6706 * 6707 * start cannot be 0 here as fragments with start=0 6708 * and MF=0 gets handled as a complete packet. These 6709 * fragments should not reach here. 6710 */ 6711 6712 if (start + msgdsize(mp) != 6713 IP_REASS_END(ipf->ipf_tail_mp)) { 6714 /* 6715 * We have two fragments both of which claim 6716 * to be the last fragment but gives conflicting 6717 * information about the whole datagram size. 6718 * Something fishy is going on. Drop the 6719 * fragment and free up the reassembly list. 6720 */ 6721 return (IP_REASS_FAILED); 6722 } 6723 6724 /* 6725 * We shouldn't come to this code block again for this 6726 * particular fragment. 6727 */ 6728 pkt_boundary_checked = B_TRUE; 6729 } 6730 6731 /* New stuff at or beyond tail? */ 6732 offset = IP_REASS_END(ipf->ipf_tail_mp); 6733 if (start >= offset) { 6734 if (ipf->ipf_last_frag_seen) { 6735 /* current fragment is beyond last fragment */ 6736 return (IP_REASS_FAILED); 6737 } 6738 /* Link it on end. */ 6739 ipf->ipf_tail_mp->b_cont = mp; 6740 ipf->ipf_tail_mp = mp; 6741 if (more) { 6742 if (start != offset) 6743 ipf->ipf_hole_cnt++; 6744 } else if (start == offset && next_mp == NULL) 6745 ipf->ipf_hole_cnt--; 6746 continue; 6747 } 6748 mp1 = ipf->ipf_mp->b_cont; 6749 offset = IP_REASS_START(mp1); 6750 /* New stuff at the front? */ 6751 if (start < offset) { 6752 if (start == 0) { 6753 if (end >= offset) { 6754 /* Nailed the hole at the begining. */ 6755 ipf->ipf_hole_cnt--; 6756 } 6757 } else if (end < offset) { 6758 /* 6759 * A hole, stuff, and a hole where there used 6760 * to be just a hole. 6761 */ 6762 ipf->ipf_hole_cnt++; 6763 } 6764 mp->b_cont = mp1; 6765 /* Check for overlap. */ 6766 while (end > offset) { 6767 if (end < IP_REASS_END(mp1)) { 6768 mp->b_wptr -= end - offset; 6769 IP_REASS_SET_END(mp, offset); 6770 BUMP_MIB(ill->ill_ip_mib, 6771 ipIfStatsReasmPartDups); 6772 break; 6773 } 6774 /* Did we cover another hole? */ 6775 if ((mp1->b_cont && 6776 IP_REASS_END(mp1) != 6777 IP_REASS_START(mp1->b_cont) && 6778 end >= IP_REASS_START(mp1->b_cont)) || 6779 (!ipf->ipf_last_frag_seen && !more)) { 6780 ipf->ipf_hole_cnt--; 6781 } 6782 /* Clip out mp1. */ 6783 if ((mp->b_cont = mp1->b_cont) == NULL) { 6784 /* 6785 * After clipping out mp1, this guy 6786 * is now hanging off the end. 6787 */ 6788 ipf->ipf_tail_mp = mp; 6789 } 6790 IP_REASS_SET_START(mp1, 0); 6791 IP_REASS_SET_END(mp1, 0); 6792 /* Subtract byte count */ 6793 ipf->ipf_count -= mp1->b_datap->db_lim - 6794 mp1->b_datap->db_base; 6795 freeb(mp1); 6796 BUMP_MIB(ill->ill_ip_mib, 6797 ipIfStatsReasmPartDups); 6798 mp1 = mp->b_cont; 6799 if (!mp1) 6800 break; 6801 offset = IP_REASS_START(mp1); 6802 } 6803 ipf->ipf_mp->b_cont = mp; 6804 continue; 6805 } 6806 /* 6807 * The new piece starts somewhere between the start of the head 6808 * and before the end of the tail. 6809 */ 6810 for (; mp1; mp1 = mp1->b_cont) { 6811 offset = IP_REASS_END(mp1); 6812 if (start < offset) { 6813 if (end <= offset) { 6814 /* Nothing new. */ 6815 IP_REASS_SET_START(mp, 0); 6816 IP_REASS_SET_END(mp, 0); 6817 /* Subtract byte count */ 6818 ipf->ipf_count -= mp->b_datap->db_lim - 6819 mp->b_datap->db_base; 6820 if (incr_dups) { 6821 ipf->ipf_num_dups++; 6822 incr_dups = B_FALSE; 6823 } 6824 freeb(mp); 6825 BUMP_MIB(ill->ill_ip_mib, 6826 ipIfStatsReasmDuplicates); 6827 break; 6828 } 6829 /* 6830 * Trim redundant stuff off beginning of new 6831 * piece. 6832 */ 6833 IP_REASS_SET_START(mp, offset); 6834 mp->b_rptr += offset - start; 6835 BUMP_MIB(ill->ill_ip_mib, 6836 ipIfStatsReasmPartDups); 6837 start = offset; 6838 if (!mp1->b_cont) { 6839 /* 6840 * After trimming, this guy is now 6841 * hanging off the end. 6842 */ 6843 mp1->b_cont = mp; 6844 ipf->ipf_tail_mp = mp; 6845 if (!more) { 6846 ipf->ipf_hole_cnt--; 6847 } 6848 break; 6849 } 6850 } 6851 if (start >= IP_REASS_START(mp1->b_cont)) 6852 continue; 6853 /* Fill a hole */ 6854 if (start > offset) 6855 ipf->ipf_hole_cnt++; 6856 mp->b_cont = mp1->b_cont; 6857 mp1->b_cont = mp; 6858 mp1 = mp->b_cont; 6859 offset = IP_REASS_START(mp1); 6860 if (end >= offset) { 6861 ipf->ipf_hole_cnt--; 6862 /* Check for overlap. */ 6863 while (end > offset) { 6864 if (end < IP_REASS_END(mp1)) { 6865 mp->b_wptr -= end - offset; 6866 IP_REASS_SET_END(mp, offset); 6867 /* 6868 * TODO we might bump 6869 * this up twice if there is 6870 * overlap at both ends. 6871 */ 6872 BUMP_MIB(ill->ill_ip_mib, 6873 ipIfStatsReasmPartDups); 6874 break; 6875 } 6876 /* Did we cover another hole? */ 6877 if ((mp1->b_cont && 6878 IP_REASS_END(mp1) 6879 != IP_REASS_START(mp1->b_cont) && 6880 end >= 6881 IP_REASS_START(mp1->b_cont)) || 6882 (!ipf->ipf_last_frag_seen && 6883 !more)) { 6884 ipf->ipf_hole_cnt--; 6885 } 6886 /* Clip out mp1. */ 6887 if ((mp->b_cont = mp1->b_cont) == 6888 NULL) { 6889 /* 6890 * After clipping out mp1, 6891 * this guy is now hanging 6892 * off the end. 6893 */ 6894 ipf->ipf_tail_mp = mp; 6895 } 6896 IP_REASS_SET_START(mp1, 0); 6897 IP_REASS_SET_END(mp1, 0); 6898 /* Subtract byte count */ 6899 ipf->ipf_count -= 6900 mp1->b_datap->db_lim - 6901 mp1->b_datap->db_base; 6902 freeb(mp1); 6903 BUMP_MIB(ill->ill_ip_mib, 6904 ipIfStatsReasmPartDups); 6905 mp1 = mp->b_cont; 6906 if (!mp1) 6907 break; 6908 offset = IP_REASS_START(mp1); 6909 } 6910 } 6911 break; 6912 } 6913 } while (start = end, mp = next_mp); 6914 6915 /* Fragment just processed could be the last one. Remember this fact */ 6916 if (!more) 6917 ipf->ipf_last_frag_seen = B_TRUE; 6918 6919 /* Still got holes? */ 6920 if (ipf->ipf_hole_cnt) 6921 return (IP_REASS_PARTIAL); 6922 /* Clean up overloaded fields to avoid upstream disasters. */ 6923 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6924 IP_REASS_SET_START(mp1, 0); 6925 IP_REASS_SET_END(mp1, 0); 6926 } 6927 return (IP_REASS_COMPLETE); 6928 } 6929 6930 /* 6931 * Fragmentation reassembly. Each ILL has a hash table for 6932 * queuing packets undergoing reassembly for all IPIFs 6933 * associated with the ILL. The hash is based on the packet 6934 * IP ident field. The ILL frag hash table was allocated 6935 * as a timer block at the time the ILL was created. Whenever 6936 * there is anything on the reassembly queue, the timer will 6937 * be running. Returns the reassembled packet if reassembly completes. 6938 */ 6939 mblk_t * 6940 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6941 { 6942 uint32_t frag_offset_flags; 6943 mblk_t *t_mp; 6944 ipaddr_t dst; 6945 uint8_t proto = ipha->ipha_protocol; 6946 uint32_t sum_val; 6947 uint16_t sum_flags; 6948 ipf_t *ipf; 6949 ipf_t **ipfp; 6950 ipfb_t *ipfb; 6951 uint16_t ident; 6952 uint32_t offset; 6953 ipaddr_t src; 6954 uint_t hdr_length; 6955 uint32_t end; 6956 mblk_t *mp1; 6957 mblk_t *tail_mp; 6958 size_t count; 6959 size_t msg_len; 6960 uint8_t ecn_info = 0; 6961 uint32_t packet_size; 6962 boolean_t pruned = B_FALSE; 6963 ill_t *ill = ira->ira_ill; 6964 ip_stack_t *ipst = ill->ill_ipst; 6965 6966 /* 6967 * Drop the fragmented as early as possible, if 6968 * we don't have resource(s) to re-assemble. 6969 */ 6970 if (ipst->ips_ip_reass_queue_bytes == 0) { 6971 freemsg(mp); 6972 return (NULL); 6973 } 6974 6975 /* Check for fragmentation offset; return if there's none */ 6976 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 6977 (IPH_MF | IPH_OFFSET)) == 0) 6978 return (mp); 6979 6980 /* 6981 * We utilize hardware computed checksum info only for UDP since 6982 * IP fragmentation is a normal occurrence for the protocol. In 6983 * addition, checksum offload support for IP fragments carrying 6984 * UDP payload is commonly implemented across network adapters. 6985 */ 6986 ASSERT(ira->ira_rill != NULL); 6987 if (proto == IPPROTO_UDP && dohwcksum && 6988 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 6989 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 6990 mblk_t *mp1 = mp->b_cont; 6991 int32_t len; 6992 6993 /* Record checksum information from the packet */ 6994 sum_val = (uint32_t)DB_CKSUM16(mp); 6995 sum_flags = DB_CKSUMFLAGS(mp); 6996 6997 /* IP payload offset from beginning of mblk */ 6998 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 6999 7000 if ((sum_flags & HCK_PARTIALCKSUM) && 7001 (mp1 == NULL || mp1->b_cont == NULL) && 7002 offset >= DB_CKSUMSTART(mp) && 7003 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7004 uint32_t adj; 7005 /* 7006 * Partial checksum has been calculated by hardware 7007 * and attached to the packet; in addition, any 7008 * prepended extraneous data is even byte aligned. 7009 * If any such data exists, we adjust the checksum; 7010 * this would also handle any postpended data. 7011 */ 7012 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7013 mp, mp1, len, adj); 7014 7015 /* One's complement subtract extraneous checksum */ 7016 if (adj >= sum_val) 7017 sum_val = ~(adj - sum_val) & 0xFFFF; 7018 else 7019 sum_val -= adj; 7020 } 7021 } else { 7022 sum_val = 0; 7023 sum_flags = 0; 7024 } 7025 7026 /* Clear hardware checksumming flag */ 7027 DB_CKSUMFLAGS(mp) = 0; 7028 7029 ident = ipha->ipha_ident; 7030 offset = (frag_offset_flags << 3) & 0xFFFF; 7031 src = ipha->ipha_src; 7032 dst = ipha->ipha_dst; 7033 hdr_length = IPH_HDR_LENGTH(ipha); 7034 end = ntohs(ipha->ipha_length) - hdr_length; 7035 7036 /* If end == 0 then we have a packet with no data, so just free it */ 7037 if (end == 0) { 7038 freemsg(mp); 7039 return (NULL); 7040 } 7041 7042 /* Record the ECN field info. */ 7043 ecn_info = (ipha->ipha_type_of_service & 0x3); 7044 if (offset != 0) { 7045 /* 7046 * If this isn't the first piece, strip the header, and 7047 * add the offset to the end value. 7048 */ 7049 mp->b_rptr += hdr_length; 7050 end += offset; 7051 } 7052 7053 /* Handle vnic loopback of fragments */ 7054 if (mp->b_datap->db_ref > 2) 7055 msg_len = 0; 7056 else 7057 msg_len = MBLKSIZE(mp); 7058 7059 tail_mp = mp; 7060 while (tail_mp->b_cont != NULL) { 7061 tail_mp = tail_mp->b_cont; 7062 if (tail_mp->b_datap->db_ref <= 2) 7063 msg_len += MBLKSIZE(tail_mp); 7064 } 7065 7066 /* If the reassembly list for this ILL will get too big, prune it */ 7067 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7068 ipst->ips_ip_reass_queue_bytes) { 7069 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7070 uint_t, ill->ill_frag_count, 7071 uint_t, ipst->ips_ip_reass_queue_bytes); 7072 ill_frag_prune(ill, 7073 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7074 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7075 pruned = B_TRUE; 7076 } 7077 7078 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7079 mutex_enter(&ipfb->ipfb_lock); 7080 7081 ipfp = &ipfb->ipfb_ipf; 7082 /* Try to find an existing fragment queue for this packet. */ 7083 for (;;) { 7084 ipf = ipfp[0]; 7085 if (ipf != NULL) { 7086 /* 7087 * It has to match on ident and src/dst address. 7088 */ 7089 if (ipf->ipf_ident == ident && 7090 ipf->ipf_src == src && 7091 ipf->ipf_dst == dst && 7092 ipf->ipf_protocol == proto) { 7093 /* 7094 * If we have received too many 7095 * duplicate fragments for this packet 7096 * free it. 7097 */ 7098 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7099 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7100 freemsg(mp); 7101 mutex_exit(&ipfb->ipfb_lock); 7102 return (NULL); 7103 } 7104 /* Found it. */ 7105 break; 7106 } 7107 ipfp = &ipf->ipf_hash_next; 7108 continue; 7109 } 7110 7111 /* 7112 * If we pruned the list, do we want to store this new 7113 * fragment?. We apply an optimization here based on the 7114 * fact that most fragments will be received in order. 7115 * So if the offset of this incoming fragment is zero, 7116 * it is the first fragment of a new packet. We will 7117 * keep it. Otherwise drop the fragment, as we have 7118 * probably pruned the packet already (since the 7119 * packet cannot be found). 7120 */ 7121 if (pruned && offset != 0) { 7122 mutex_exit(&ipfb->ipfb_lock); 7123 freemsg(mp); 7124 return (NULL); 7125 } 7126 7127 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7128 /* 7129 * Too many fragmented packets in this hash 7130 * bucket. Free the oldest. 7131 */ 7132 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7133 } 7134 7135 /* New guy. Allocate a frag message. */ 7136 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7137 if (mp1 == NULL) { 7138 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7139 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7140 freemsg(mp); 7141 reass_done: 7142 mutex_exit(&ipfb->ipfb_lock); 7143 return (NULL); 7144 } 7145 7146 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7147 mp1->b_cont = mp; 7148 7149 /* Initialize the fragment header. */ 7150 ipf = (ipf_t *)mp1->b_rptr; 7151 ipf->ipf_mp = mp1; 7152 ipf->ipf_ptphn = ipfp; 7153 ipfp[0] = ipf; 7154 ipf->ipf_hash_next = NULL; 7155 ipf->ipf_ident = ident; 7156 ipf->ipf_protocol = proto; 7157 ipf->ipf_src = src; 7158 ipf->ipf_dst = dst; 7159 ipf->ipf_nf_hdr_len = 0; 7160 /* Record reassembly start time. */ 7161 ipf->ipf_timestamp = gethrestime_sec(); 7162 /* Record ipf generation and account for frag header */ 7163 ipf->ipf_gen = ill->ill_ipf_gen++; 7164 ipf->ipf_count = MBLKSIZE(mp1); 7165 ipf->ipf_last_frag_seen = B_FALSE; 7166 ipf->ipf_ecn = ecn_info; 7167 ipf->ipf_num_dups = 0; 7168 ipfb->ipfb_frag_pkts++; 7169 ipf->ipf_checksum = 0; 7170 ipf->ipf_checksum_flags = 0; 7171 7172 /* Store checksum value in fragment header */ 7173 if (sum_flags != 0) { 7174 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7175 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7176 ipf->ipf_checksum = sum_val; 7177 ipf->ipf_checksum_flags = sum_flags; 7178 } 7179 7180 /* 7181 * We handle reassembly two ways. In the easy case, 7182 * where all the fragments show up in order, we do 7183 * minimal bookkeeping, and just clip new pieces on 7184 * the end. If we ever see a hole, then we go off 7185 * to ip_reassemble which has to mark the pieces and 7186 * keep track of the number of holes, etc. Obviously, 7187 * the point of having both mechanisms is so we can 7188 * handle the easy case as efficiently as possible. 7189 */ 7190 if (offset == 0) { 7191 /* Easy case, in-order reassembly so far. */ 7192 ipf->ipf_count += msg_len; 7193 ipf->ipf_tail_mp = tail_mp; 7194 /* 7195 * Keep track of next expected offset in 7196 * ipf_end. 7197 */ 7198 ipf->ipf_end = end; 7199 ipf->ipf_nf_hdr_len = hdr_length; 7200 } else { 7201 /* Hard case, hole at the beginning. */ 7202 ipf->ipf_tail_mp = NULL; 7203 /* 7204 * ipf_end == 0 means that we have given up 7205 * on easy reassembly. 7206 */ 7207 ipf->ipf_end = 0; 7208 7209 /* Forget checksum offload from now on */ 7210 ipf->ipf_checksum_flags = 0; 7211 7212 /* 7213 * ipf_hole_cnt is set by ip_reassemble. 7214 * ipf_count is updated by ip_reassemble. 7215 * No need to check for return value here 7216 * as we don't expect reassembly to complete 7217 * or fail for the first fragment itself. 7218 */ 7219 (void) ip_reassemble(mp, ipf, 7220 (frag_offset_flags & IPH_OFFSET) << 3, 7221 (frag_offset_flags & IPH_MF), ill, msg_len); 7222 } 7223 /* Update per ipfb and ill byte counts */ 7224 ipfb->ipfb_count += ipf->ipf_count; 7225 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7226 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7227 /* If the frag timer wasn't already going, start it. */ 7228 mutex_enter(&ill->ill_lock); 7229 ill_frag_timer_start(ill); 7230 mutex_exit(&ill->ill_lock); 7231 goto reass_done; 7232 } 7233 7234 /* 7235 * If the packet's flag has changed (it could be coming up 7236 * from an interface different than the previous, therefore 7237 * possibly different checksum capability), then forget about 7238 * any stored checksum states. Otherwise add the value to 7239 * the existing one stored in the fragment header. 7240 */ 7241 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7242 sum_val += ipf->ipf_checksum; 7243 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7244 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7245 ipf->ipf_checksum = sum_val; 7246 } else if (ipf->ipf_checksum_flags != 0) { 7247 /* Forget checksum offload from now on */ 7248 ipf->ipf_checksum_flags = 0; 7249 } 7250 7251 /* 7252 * We have a new piece of a datagram which is already being 7253 * reassembled. Update the ECN info if all IP fragments 7254 * are ECN capable. If there is one which is not, clear 7255 * all the info. If there is at least one which has CE 7256 * code point, IP needs to report that up to transport. 7257 */ 7258 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7259 if (ecn_info == IPH_ECN_CE) 7260 ipf->ipf_ecn = IPH_ECN_CE; 7261 } else { 7262 ipf->ipf_ecn = IPH_ECN_NECT; 7263 } 7264 if (offset && ipf->ipf_end == offset) { 7265 /* The new fragment fits at the end */ 7266 ipf->ipf_tail_mp->b_cont = mp; 7267 /* Update the byte count */ 7268 ipf->ipf_count += msg_len; 7269 /* Update per ipfb and ill byte counts */ 7270 ipfb->ipfb_count += msg_len; 7271 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7272 atomic_add_32(&ill->ill_frag_count, msg_len); 7273 if (frag_offset_flags & IPH_MF) { 7274 /* More to come. */ 7275 ipf->ipf_end = end; 7276 ipf->ipf_tail_mp = tail_mp; 7277 goto reass_done; 7278 } 7279 } else { 7280 /* Go do the hard cases. */ 7281 int ret; 7282 7283 if (offset == 0) 7284 ipf->ipf_nf_hdr_len = hdr_length; 7285 7286 /* Save current byte count */ 7287 count = ipf->ipf_count; 7288 ret = ip_reassemble(mp, ipf, 7289 (frag_offset_flags & IPH_OFFSET) << 3, 7290 (frag_offset_flags & IPH_MF), ill, msg_len); 7291 /* Count of bytes added and subtracted (freeb()ed) */ 7292 count = ipf->ipf_count - count; 7293 if (count) { 7294 /* Update per ipfb and ill byte counts */ 7295 ipfb->ipfb_count += count; 7296 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7297 atomic_add_32(&ill->ill_frag_count, count); 7298 } 7299 if (ret == IP_REASS_PARTIAL) { 7300 goto reass_done; 7301 } else if (ret == IP_REASS_FAILED) { 7302 /* Reassembly failed. Free up all resources */ 7303 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7304 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7305 IP_REASS_SET_START(t_mp, 0); 7306 IP_REASS_SET_END(t_mp, 0); 7307 } 7308 freemsg(mp); 7309 goto reass_done; 7310 } 7311 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7312 } 7313 /* 7314 * We have completed reassembly. Unhook the frag header from 7315 * the reassembly list. 7316 * 7317 * Before we free the frag header, record the ECN info 7318 * to report back to the transport. 7319 */ 7320 ecn_info = ipf->ipf_ecn; 7321 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7322 ipfp = ipf->ipf_ptphn; 7323 7324 /* We need to supply these to caller */ 7325 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7326 sum_val = ipf->ipf_checksum; 7327 else 7328 sum_val = 0; 7329 7330 mp1 = ipf->ipf_mp; 7331 count = ipf->ipf_count; 7332 ipf = ipf->ipf_hash_next; 7333 if (ipf != NULL) 7334 ipf->ipf_ptphn = ipfp; 7335 ipfp[0] = ipf; 7336 atomic_add_32(&ill->ill_frag_count, -count); 7337 ASSERT(ipfb->ipfb_count >= count); 7338 ipfb->ipfb_count -= count; 7339 ipfb->ipfb_frag_pkts--; 7340 mutex_exit(&ipfb->ipfb_lock); 7341 /* Ditch the frag header. */ 7342 mp = mp1->b_cont; 7343 7344 freeb(mp1); 7345 7346 /* Restore original IP length in header. */ 7347 packet_size = (uint32_t)msgdsize(mp); 7348 if (packet_size > IP_MAXPACKET) { 7349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7350 ip_drop_input("Reassembled packet too large", mp, ill); 7351 freemsg(mp); 7352 return (NULL); 7353 } 7354 7355 if (DB_REF(mp) > 1) { 7356 mblk_t *mp2 = copymsg(mp); 7357 7358 if (mp2 == NULL) { 7359 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7360 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7361 freemsg(mp); 7362 return (NULL); 7363 } 7364 freemsg(mp); 7365 mp = mp2; 7366 } 7367 ipha = (ipha_t *)mp->b_rptr; 7368 7369 ipha->ipha_length = htons((uint16_t)packet_size); 7370 /* We're now complete, zip the frag state */ 7371 ipha->ipha_fragment_offset_and_flags = 0; 7372 /* Record the ECN info. */ 7373 ipha->ipha_type_of_service &= 0xFC; 7374 ipha->ipha_type_of_service |= ecn_info; 7375 7376 /* Update the receive attributes */ 7377 ira->ira_pktlen = packet_size; 7378 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7379 7380 /* Reassembly is successful; set checksum information in packet */ 7381 DB_CKSUM16(mp) = (uint16_t)sum_val; 7382 DB_CKSUMFLAGS(mp) = sum_flags; 7383 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7384 7385 return (mp); 7386 } 7387 7388 /* 7389 * Pullup function that should be used for IP input in order to 7390 * ensure we do not loose the L2 source address; we need the l2 source 7391 * address for IP_RECVSLLA and for ndp_input. 7392 * 7393 * We return either NULL or b_rptr. 7394 */ 7395 void * 7396 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7397 { 7398 ill_t *ill = ira->ira_ill; 7399 7400 if (ip_rput_pullups++ == 0) { 7401 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7402 "ip_pullup: %s forced us to " 7403 " pullup pkt, hdr len %ld, hdr addr %p", 7404 ill->ill_name, len, (void *)mp->b_rptr); 7405 } 7406 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7407 ip_setl2src(mp, ira, ira->ira_rill); 7408 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7409 if (!pullupmsg(mp, len)) 7410 return (NULL); 7411 else 7412 return (mp->b_rptr); 7413 } 7414 7415 /* 7416 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7417 * When called from the ULP ira_rill will be NULL hence the caller has to 7418 * pass in the ill. 7419 */ 7420 /* ARGSUSED */ 7421 void 7422 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7423 { 7424 const uchar_t *addr; 7425 int alen; 7426 7427 if (ira->ira_flags & IRAF_L2SRC_SET) 7428 return; 7429 7430 ASSERT(ill != NULL); 7431 alen = ill->ill_phys_addr_length; 7432 ASSERT(alen <= sizeof (ira->ira_l2src)); 7433 if (ira->ira_mhip != NULL && 7434 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7435 bcopy(addr, ira->ira_l2src, alen); 7436 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7437 (addr = ill->ill_phys_addr) != NULL) { 7438 bcopy(addr, ira->ira_l2src, alen); 7439 } else { 7440 bzero(ira->ira_l2src, alen); 7441 } 7442 ira->ira_flags |= IRAF_L2SRC_SET; 7443 } 7444 7445 /* 7446 * check ip header length and align it. 7447 */ 7448 mblk_t * 7449 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7450 { 7451 ill_t *ill = ira->ira_ill; 7452 ssize_t len; 7453 7454 len = MBLKL(mp); 7455 7456 if (!OK_32PTR(mp->b_rptr)) 7457 IP_STAT(ill->ill_ipst, ip_notaligned); 7458 else 7459 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7460 7461 /* Guard against bogus device drivers */ 7462 if (len < 0) { 7463 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7464 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7465 freemsg(mp); 7466 return (NULL); 7467 } 7468 7469 if (len == 0) { 7470 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7471 mblk_t *mp1 = mp->b_cont; 7472 7473 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7474 ip_setl2src(mp, ira, ira->ira_rill); 7475 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7476 7477 freeb(mp); 7478 mp = mp1; 7479 if (mp == NULL) 7480 return (NULL); 7481 7482 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7483 return (mp); 7484 } 7485 if (ip_pullup(mp, min_size, ira) == NULL) { 7486 if (msgdsize(mp) < min_size) { 7487 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7488 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7489 } else { 7490 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7491 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7492 } 7493 freemsg(mp); 7494 return (NULL); 7495 } 7496 return (mp); 7497 } 7498 7499 /* 7500 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7501 */ 7502 mblk_t * 7503 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7504 uint_t min_size, ip_recv_attr_t *ira) 7505 { 7506 ill_t *ill = ira->ira_ill; 7507 7508 /* 7509 * Make sure we have data length consistent 7510 * with the IP header. 7511 */ 7512 if (mp->b_cont == NULL) { 7513 /* pkt_len is based on ipha_len, not the mblk length */ 7514 if (pkt_len < min_size) { 7515 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7516 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7517 freemsg(mp); 7518 return (NULL); 7519 } 7520 if (len < 0) { 7521 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7522 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7523 freemsg(mp); 7524 return (NULL); 7525 } 7526 /* Drop any pad */ 7527 mp->b_wptr = rptr + pkt_len; 7528 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7529 ASSERT(pkt_len >= min_size); 7530 if (pkt_len < min_size) { 7531 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7532 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7533 freemsg(mp); 7534 return (NULL); 7535 } 7536 if (len < 0) { 7537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7538 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7539 freemsg(mp); 7540 return (NULL); 7541 } 7542 /* Drop any pad */ 7543 (void) adjmsg(mp, -len); 7544 /* 7545 * adjmsg may have freed an mblk from the chain, hence 7546 * invalidate any hw checksum here. This will force IP to 7547 * calculate the checksum in sw, but only for this packet. 7548 */ 7549 DB_CKSUMFLAGS(mp) = 0; 7550 IP_STAT(ill->ill_ipst, ip_multimblk); 7551 } 7552 return (mp); 7553 } 7554 7555 /* 7556 * Check that the IPv4 opt_len is consistent with the packet and pullup 7557 * the options. 7558 */ 7559 mblk_t * 7560 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7561 ip_recv_attr_t *ira) 7562 { 7563 ill_t *ill = ira->ira_ill; 7564 ssize_t len; 7565 7566 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7567 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7569 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7570 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7571 freemsg(mp); 7572 return (NULL); 7573 } 7574 7575 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7577 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7578 freemsg(mp); 7579 return (NULL); 7580 } 7581 /* 7582 * Recompute complete header length and make sure we 7583 * have access to all of it. 7584 */ 7585 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7586 if (len > (mp->b_wptr - mp->b_rptr)) { 7587 if (len > pkt_len) { 7588 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7589 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7590 freemsg(mp); 7591 return (NULL); 7592 } 7593 if (ip_pullup(mp, len, ira) == NULL) { 7594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7595 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7596 freemsg(mp); 7597 return (NULL); 7598 } 7599 } 7600 return (mp); 7601 } 7602 7603 /* 7604 * Returns a new ire, or the same ire, or NULL. 7605 * If a different IRE is returned, then it is held; the caller 7606 * needs to release it. 7607 * In no case is there any hold/release on the ire argument. 7608 */ 7609 ire_t * 7610 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7611 { 7612 ire_t *new_ire; 7613 ill_t *ire_ill; 7614 uint_t ifindex; 7615 ip_stack_t *ipst = ill->ill_ipst; 7616 boolean_t strict_check = B_FALSE; 7617 7618 /* 7619 * IPMP common case: if IRE and ILL are in the same group, there's no 7620 * issue (e.g. packet received on an underlying interface matched an 7621 * IRE_LOCAL on its associated group interface). 7622 */ 7623 ASSERT(ire->ire_ill != NULL); 7624 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7625 return (ire); 7626 7627 /* 7628 * Do another ire lookup here, using the ingress ill, to see if the 7629 * interface is in a usesrc group. 7630 * As long as the ills belong to the same group, we don't consider 7631 * them to be arriving on the wrong interface. Thus, if the switch 7632 * is doing inbound load spreading, we won't drop packets when the 7633 * ip*_strict_dst_multihoming switch is on. 7634 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7635 * where the local address may not be unique. In this case we were 7636 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7637 * actually returned. The new lookup, which is more specific, should 7638 * only find the IRE_LOCAL associated with the ingress ill if one 7639 * exists. 7640 */ 7641 if (ire->ire_ipversion == IPV4_VERSION) { 7642 if (ipst->ips_ip_strict_dst_multihoming) 7643 strict_check = B_TRUE; 7644 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7645 IRE_LOCAL, ill, ALL_ZONES, NULL, 7646 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7647 } else { 7648 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7649 if (ipst->ips_ipv6_strict_dst_multihoming) 7650 strict_check = B_TRUE; 7651 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7652 IRE_LOCAL, ill, ALL_ZONES, NULL, 7653 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7654 } 7655 /* 7656 * If the same ire that was returned in ip_input() is found then this 7657 * is an indication that usesrc groups are in use. The packet 7658 * arrived on a different ill in the group than the one associated with 7659 * the destination address. If a different ire was found then the same 7660 * IP address must be hosted on multiple ills. This is possible with 7661 * unnumbered point2point interfaces. We switch to use this new ire in 7662 * order to have accurate interface statistics. 7663 */ 7664 if (new_ire != NULL) { 7665 /* Note: held in one case but not the other? Caller handles */ 7666 if (new_ire != ire) 7667 return (new_ire); 7668 /* Unchanged */ 7669 ire_refrele(new_ire); 7670 return (ire); 7671 } 7672 7673 /* 7674 * Chase pointers once and store locally. 7675 */ 7676 ASSERT(ire->ire_ill != NULL); 7677 ire_ill = ire->ire_ill; 7678 ifindex = ill->ill_usesrc_ifindex; 7679 7680 /* 7681 * Check if it's a legal address on the 'usesrc' interface. 7682 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7683 * can just check phyint_ifindex. 7684 */ 7685 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7686 return (ire); 7687 } 7688 7689 /* 7690 * If the ip*_strict_dst_multihoming switch is on then we can 7691 * only accept this packet if the interface is marked as routing. 7692 */ 7693 if (!(strict_check)) 7694 return (ire); 7695 7696 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7697 return (ire); 7698 } 7699 return (NULL); 7700 } 7701 7702 /* 7703 * This function is used to construct a mac_header_info_s from a 7704 * DL_UNITDATA_IND message. 7705 * The address fields in the mhi structure points into the message, 7706 * thus the caller can't use those fields after freeing the message. 7707 * 7708 * We determine whether the packet received is a non-unicast packet 7709 * and in doing so, determine whether or not it is broadcast vs multicast. 7710 * For it to be a broadcast packet, we must have the appropriate mblk_t 7711 * hanging off the ill_t. If this is either not present or doesn't match 7712 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7713 * to be multicast. Thus NICs that have no broadcast address (or no 7714 * capability for one, such as point to point links) cannot return as 7715 * the packet being broadcast. 7716 */ 7717 void 7718 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7719 { 7720 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7721 mblk_t *bmp; 7722 uint_t extra_offset; 7723 7724 bzero(mhip, sizeof (struct mac_header_info_s)); 7725 7726 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7727 7728 if (ill->ill_sap_length < 0) 7729 extra_offset = 0; 7730 else 7731 extra_offset = ill->ill_sap_length; 7732 7733 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7734 extra_offset; 7735 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7736 extra_offset; 7737 7738 if (!ind->dl_group_address) 7739 return; 7740 7741 /* Multicast or broadcast */ 7742 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7743 7744 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7745 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7746 (bmp = ill->ill_bcast_mp) != NULL) { 7747 dl_unitdata_req_t *dlur; 7748 uint8_t *bphys_addr; 7749 7750 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7751 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7752 extra_offset; 7753 7754 if (bcmp(mhip->mhi_daddr, bphys_addr, 7755 ind->dl_dest_addr_length) == 0) 7756 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7757 } 7758 } 7759 7760 /* 7761 * This function is used to construct a mac_header_info_s from a 7762 * M_DATA fastpath message from a DLPI driver. 7763 * The address fields in the mhi structure points into the message, 7764 * thus the caller can't use those fields after freeing the message. 7765 * 7766 * We determine whether the packet received is a non-unicast packet 7767 * and in doing so, determine whether or not it is broadcast vs multicast. 7768 * For it to be a broadcast packet, we must have the appropriate mblk_t 7769 * hanging off the ill_t. If this is either not present or doesn't match 7770 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7771 * to be multicast. Thus NICs that have no broadcast address (or no 7772 * capability for one, such as point to point links) cannot return as 7773 * the packet being broadcast. 7774 */ 7775 void 7776 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7777 { 7778 mblk_t *bmp; 7779 struct ether_header *pether; 7780 7781 bzero(mhip, sizeof (struct mac_header_info_s)); 7782 7783 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7784 7785 pether = (struct ether_header *)((char *)mp->b_rptr 7786 - sizeof (struct ether_header)); 7787 7788 /* 7789 * Make sure the interface is an ethernet type, since we don't 7790 * know the header format for anything but Ethernet. Also make 7791 * sure we are pointing correctly above db_base. 7792 */ 7793 if (ill->ill_type != IFT_ETHER) 7794 return; 7795 7796 retry: 7797 if ((uchar_t *)pether < mp->b_datap->db_base) 7798 return; 7799 7800 /* Is there a VLAN tag? */ 7801 if (ill->ill_isv6) { 7802 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7803 pether = (struct ether_header *)((char *)pether - 4); 7804 goto retry; 7805 } 7806 } else { 7807 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7808 pether = (struct ether_header *)((char *)pether - 4); 7809 goto retry; 7810 } 7811 } 7812 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7813 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7814 7815 if (!(mhip->mhi_daddr[0] & 0x01)) 7816 return; 7817 7818 /* Multicast or broadcast */ 7819 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7820 7821 if ((bmp = ill->ill_bcast_mp) != NULL) { 7822 dl_unitdata_req_t *dlur; 7823 uint8_t *bphys_addr; 7824 uint_t addrlen; 7825 7826 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7827 addrlen = dlur->dl_dest_addr_length; 7828 if (ill->ill_sap_length < 0) { 7829 bphys_addr = (uchar_t *)dlur + 7830 dlur->dl_dest_addr_offset; 7831 addrlen += ill->ill_sap_length; 7832 } else { 7833 bphys_addr = (uchar_t *)dlur + 7834 dlur->dl_dest_addr_offset + 7835 ill->ill_sap_length; 7836 addrlen -= ill->ill_sap_length; 7837 } 7838 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7839 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7840 } 7841 } 7842 7843 /* 7844 * Handle anything but M_DATA messages 7845 * We see the DL_UNITDATA_IND which are part 7846 * of the data path, and also the other messages from the driver. 7847 */ 7848 void 7849 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7850 { 7851 mblk_t *first_mp; 7852 struct iocblk *iocp; 7853 struct mac_header_info_s mhi; 7854 7855 switch (DB_TYPE(mp)) { 7856 case M_PROTO: 7857 case M_PCPROTO: { 7858 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7859 DL_UNITDATA_IND) { 7860 /* Go handle anything other than data elsewhere. */ 7861 ip_rput_dlpi(ill, mp); 7862 return; 7863 } 7864 7865 first_mp = mp; 7866 mp = first_mp->b_cont; 7867 first_mp->b_cont = NULL; 7868 7869 if (mp == NULL) { 7870 freeb(first_mp); 7871 return; 7872 } 7873 ip_dlur_to_mhi(ill, first_mp, &mhi); 7874 if (ill->ill_isv6) 7875 ip_input_v6(ill, NULL, mp, &mhi); 7876 else 7877 ip_input(ill, NULL, mp, &mhi); 7878 7879 /* Ditch the DLPI header. */ 7880 freeb(first_mp); 7881 return; 7882 } 7883 case M_IOCACK: 7884 iocp = (struct iocblk *)mp->b_rptr; 7885 switch (iocp->ioc_cmd) { 7886 case DL_IOC_HDR_INFO: 7887 ill_fastpath_ack(ill, mp); 7888 return; 7889 default: 7890 putnext(ill->ill_rq, mp); 7891 return; 7892 } 7893 /* FALLTHRU */ 7894 case M_ERROR: 7895 case M_HANGUP: 7896 mutex_enter(&ill->ill_lock); 7897 if (ill->ill_state_flags & ILL_CONDEMNED) { 7898 mutex_exit(&ill->ill_lock); 7899 freemsg(mp); 7900 return; 7901 } 7902 ill_refhold_locked(ill); 7903 mutex_exit(&ill->ill_lock); 7904 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7905 B_FALSE); 7906 return; 7907 case M_CTL: 7908 putnext(ill->ill_rq, mp); 7909 return; 7910 case M_IOCNAK: 7911 ip1dbg(("got iocnak ")); 7912 iocp = (struct iocblk *)mp->b_rptr; 7913 switch (iocp->ioc_cmd) { 7914 case DL_IOC_HDR_INFO: 7915 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7916 return; 7917 default: 7918 break; 7919 } 7920 /* FALLTHRU */ 7921 default: 7922 putnext(ill->ill_rq, mp); 7923 return; 7924 } 7925 } 7926 7927 /* Read side put procedure. Packets coming from the wire arrive here. */ 7928 void 7929 ip_rput(queue_t *q, mblk_t *mp) 7930 { 7931 ill_t *ill; 7932 union DL_primitives *dl; 7933 7934 ill = (ill_t *)q->q_ptr; 7935 7936 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7937 /* 7938 * If things are opening or closing, only accept high-priority 7939 * DLPI messages. (On open ill->ill_ipif has not yet been 7940 * created; on close, things hanging off the ill may have been 7941 * freed already.) 7942 */ 7943 dl = (union DL_primitives *)mp->b_rptr; 7944 if (DB_TYPE(mp) != M_PCPROTO || 7945 dl->dl_primitive == DL_UNITDATA_IND) { 7946 inet_freemsg(mp); 7947 return; 7948 } 7949 } 7950 if (DB_TYPE(mp) == M_DATA) { 7951 struct mac_header_info_s mhi; 7952 7953 ip_mdata_to_mhi(ill, mp, &mhi); 7954 ip_input(ill, NULL, mp, &mhi); 7955 } else { 7956 ip_rput_notdata(ill, mp); 7957 } 7958 } 7959 7960 /* 7961 * Move the information to a copy. 7962 */ 7963 mblk_t * 7964 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 7965 { 7966 mblk_t *mp1; 7967 ill_t *ill = ira->ira_ill; 7968 ip_stack_t *ipst = ill->ill_ipst; 7969 7970 IP_STAT(ipst, ip_db_ref); 7971 7972 /* Make sure we have ira_l2src before we loose the original mblk */ 7973 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7974 ip_setl2src(mp, ira, ira->ira_rill); 7975 7976 mp1 = copymsg(mp); 7977 if (mp1 == NULL) { 7978 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7979 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7980 freemsg(mp); 7981 return (NULL); 7982 } 7983 /* preserve the hardware checksum flags and data, if present */ 7984 if (DB_CKSUMFLAGS(mp) != 0) { 7985 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 7986 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 7987 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 7988 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 7989 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 7990 } 7991 freemsg(mp); 7992 return (mp1); 7993 } 7994 7995 static void 7996 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 7997 t_uscalar_t err) 7998 { 7999 if (dl_err == DL_SYSERR) { 8000 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8001 "%s: %s failed: DL_SYSERR (errno %u)\n", 8002 ill->ill_name, dl_primstr(prim), err); 8003 return; 8004 } 8005 8006 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8007 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8008 dl_errstr(dl_err)); 8009 } 8010 8011 /* 8012 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8013 * than DL_UNITDATA_IND messages. If we need to process this message 8014 * exclusively, we call qwriter_ip, in which case we also need to call 8015 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8016 */ 8017 void 8018 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8019 { 8020 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8021 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8022 queue_t *q = ill->ill_rq; 8023 t_uscalar_t prim = dloa->dl_primitive; 8024 t_uscalar_t reqprim = DL_PRIM_INVAL; 8025 8026 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8027 char *, dl_primstr(prim), ill_t *, ill); 8028 ip1dbg(("ip_rput_dlpi")); 8029 8030 /* 8031 * If we received an ACK but didn't send a request for it, then it 8032 * can't be part of any pending operation; discard up-front. 8033 */ 8034 switch (prim) { 8035 case DL_ERROR_ACK: 8036 reqprim = dlea->dl_error_primitive; 8037 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8038 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8039 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8040 dlea->dl_unix_errno)); 8041 break; 8042 case DL_OK_ACK: 8043 reqprim = dloa->dl_correct_primitive; 8044 break; 8045 case DL_INFO_ACK: 8046 reqprim = DL_INFO_REQ; 8047 break; 8048 case DL_BIND_ACK: 8049 reqprim = DL_BIND_REQ; 8050 break; 8051 case DL_PHYS_ADDR_ACK: 8052 reqprim = DL_PHYS_ADDR_REQ; 8053 break; 8054 case DL_NOTIFY_ACK: 8055 reqprim = DL_NOTIFY_REQ; 8056 break; 8057 case DL_CAPABILITY_ACK: 8058 reqprim = DL_CAPABILITY_REQ; 8059 break; 8060 } 8061 8062 if (prim != DL_NOTIFY_IND) { 8063 if (reqprim == DL_PRIM_INVAL || 8064 !ill_dlpi_pending(ill, reqprim)) { 8065 /* Not a DLPI message we support or expected */ 8066 freemsg(mp); 8067 return; 8068 } 8069 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8070 dl_primstr(reqprim))); 8071 } 8072 8073 switch (reqprim) { 8074 case DL_UNBIND_REQ: 8075 /* 8076 * NOTE: we mark the unbind as complete even if we got a 8077 * DL_ERROR_ACK, since there's not much else we can do. 8078 */ 8079 mutex_enter(&ill->ill_lock); 8080 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8081 cv_signal(&ill->ill_cv); 8082 mutex_exit(&ill->ill_lock); 8083 break; 8084 8085 case DL_ENABMULTI_REQ: 8086 if (prim == DL_OK_ACK) { 8087 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8088 ill->ill_dlpi_multicast_state = IDS_OK; 8089 } 8090 break; 8091 } 8092 8093 /* 8094 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8095 * need to become writer to continue to process it. Because an 8096 * exclusive operation doesn't complete until replies to all queued 8097 * DLPI messages have been received, we know we're in the middle of an 8098 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8099 * 8100 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8101 * Since this is on the ill stream we unconditionally bump up the 8102 * refcount without doing ILL_CAN_LOOKUP(). 8103 */ 8104 ill_refhold(ill); 8105 if (prim == DL_NOTIFY_IND) 8106 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8107 else 8108 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8109 } 8110 8111 /* 8112 * Handling of DLPI messages that require exclusive access to the ipsq. 8113 * 8114 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8115 * happen here. (along with mi_copy_done) 8116 */ 8117 /* ARGSUSED */ 8118 static void 8119 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8120 { 8121 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8122 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8123 int err = 0; 8124 ill_t *ill = (ill_t *)q->q_ptr; 8125 ipif_t *ipif = NULL; 8126 mblk_t *mp1 = NULL; 8127 conn_t *connp = NULL; 8128 t_uscalar_t paddrreq; 8129 mblk_t *mp_hw; 8130 boolean_t success; 8131 boolean_t ioctl_aborted = B_FALSE; 8132 boolean_t log = B_TRUE; 8133 8134 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8135 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8136 8137 ip1dbg(("ip_rput_dlpi_writer ..")); 8138 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8139 ASSERT(IAM_WRITER_ILL(ill)); 8140 8141 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8142 /* 8143 * The current ioctl could have been aborted by the user and a new 8144 * ioctl to bring up another ill could have started. We could still 8145 * get a response from the driver later. 8146 */ 8147 if (ipif != NULL && ipif->ipif_ill != ill) 8148 ioctl_aborted = B_TRUE; 8149 8150 switch (dloa->dl_primitive) { 8151 case DL_ERROR_ACK: 8152 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8153 dl_primstr(dlea->dl_error_primitive))); 8154 8155 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8156 char *, dl_primstr(dlea->dl_error_primitive), 8157 ill_t *, ill); 8158 8159 switch (dlea->dl_error_primitive) { 8160 case DL_DISABMULTI_REQ: 8161 ill_dlpi_done(ill, dlea->dl_error_primitive); 8162 break; 8163 case DL_PROMISCON_REQ: 8164 case DL_PROMISCOFF_REQ: 8165 case DL_UNBIND_REQ: 8166 case DL_ATTACH_REQ: 8167 case DL_INFO_REQ: 8168 ill_dlpi_done(ill, dlea->dl_error_primitive); 8169 break; 8170 case DL_NOTIFY_REQ: 8171 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8172 log = B_FALSE; 8173 break; 8174 case DL_PHYS_ADDR_REQ: 8175 /* 8176 * For IPv6 only, there are two additional 8177 * phys_addr_req's sent to the driver to get the 8178 * IPv6 token and lla. This allows IP to acquire 8179 * the hardware address format for a given interface 8180 * without having built in knowledge of the hardware 8181 * address. ill_phys_addr_pend keeps track of the last 8182 * DL_PAR sent so we know which response we are 8183 * dealing with. ill_dlpi_done will update 8184 * ill_phys_addr_pend when it sends the next req. 8185 * We don't complete the IOCTL until all three DL_PARs 8186 * have been attempted, so set *_len to 0 and break. 8187 */ 8188 paddrreq = ill->ill_phys_addr_pend; 8189 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8190 if (paddrreq == DL_IPV6_TOKEN) { 8191 ill->ill_token_length = 0; 8192 log = B_FALSE; 8193 break; 8194 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8195 ill->ill_nd_lla_len = 0; 8196 log = B_FALSE; 8197 break; 8198 } 8199 /* 8200 * Something went wrong with the DL_PHYS_ADDR_REQ. 8201 * We presumably have an IOCTL hanging out waiting 8202 * for completion. Find it and complete the IOCTL 8203 * with the error noted. 8204 * However, ill_dl_phys was called on an ill queue 8205 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8206 * set. But the ioctl is known to be pending on ill_wq. 8207 */ 8208 if (!ill->ill_ifname_pending) 8209 break; 8210 ill->ill_ifname_pending = 0; 8211 if (!ioctl_aborted) 8212 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8213 if (mp1 != NULL) { 8214 /* 8215 * This operation (SIOCSLIFNAME) must have 8216 * happened on the ill. Assert there is no conn 8217 */ 8218 ASSERT(connp == NULL); 8219 q = ill->ill_wq; 8220 } 8221 break; 8222 case DL_BIND_REQ: 8223 ill_dlpi_done(ill, DL_BIND_REQ); 8224 if (ill->ill_ifname_pending) 8225 break; 8226 mutex_enter(&ill->ill_lock); 8227 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8228 mutex_exit(&ill->ill_lock); 8229 /* 8230 * Something went wrong with the bind. We presumably 8231 * have an IOCTL hanging out waiting for completion. 8232 * Find it, take down the interface that was coming 8233 * up, and complete the IOCTL with the error noted. 8234 */ 8235 if (!ioctl_aborted) 8236 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8237 if (mp1 != NULL) { 8238 /* 8239 * This might be a result of a DL_NOTE_REPLUMB 8240 * notification. In that case, connp is NULL. 8241 */ 8242 if (connp != NULL) 8243 q = CONNP_TO_WQ(connp); 8244 8245 (void) ipif_down(ipif, NULL, NULL); 8246 /* error is set below the switch */ 8247 } 8248 break; 8249 case DL_ENABMULTI_REQ: 8250 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8251 8252 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8253 ill->ill_dlpi_multicast_state = IDS_FAILED; 8254 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8255 8256 printf("ip: joining multicasts failed (%d)" 8257 " on %s - will use link layer " 8258 "broadcasts for multicast\n", 8259 dlea->dl_errno, ill->ill_name); 8260 8261 /* 8262 * Set up for multi_bcast; We are the 8263 * writer, so ok to access ill->ill_ipif 8264 * without any lock. 8265 */ 8266 mutex_enter(&ill->ill_phyint->phyint_lock); 8267 ill->ill_phyint->phyint_flags |= 8268 PHYI_MULTI_BCAST; 8269 mutex_exit(&ill->ill_phyint->phyint_lock); 8270 8271 } 8272 freemsg(mp); /* Don't want to pass this up */ 8273 return; 8274 case DL_CAPABILITY_REQ: 8275 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8276 "DL_CAPABILITY REQ\n")); 8277 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8278 ill->ill_dlpi_capab_state = IDCS_FAILED; 8279 ill_capability_done(ill); 8280 freemsg(mp); 8281 return; 8282 } 8283 /* 8284 * Note the error for IOCTL completion (mp1 is set when 8285 * ready to complete ioctl). If ill_ifname_pending_err is 8286 * set, an error occured during plumbing (ill_ifname_pending), 8287 * so we want to report that error. 8288 * 8289 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8290 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8291 * expected to get errack'd if the driver doesn't support 8292 * these flags (e.g. ethernet). log will be set to B_FALSE 8293 * if these error conditions are encountered. 8294 */ 8295 if (mp1 != NULL) { 8296 if (ill->ill_ifname_pending_err != 0) { 8297 err = ill->ill_ifname_pending_err; 8298 ill->ill_ifname_pending_err = 0; 8299 } else { 8300 err = dlea->dl_unix_errno ? 8301 dlea->dl_unix_errno : ENXIO; 8302 } 8303 /* 8304 * If we're plumbing an interface and an error hasn't already 8305 * been saved, set ill_ifname_pending_err to the error passed 8306 * up. Ignore the error if log is B_FALSE (see comment above). 8307 */ 8308 } else if (log && ill->ill_ifname_pending && 8309 ill->ill_ifname_pending_err == 0) { 8310 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8311 dlea->dl_unix_errno : ENXIO; 8312 } 8313 8314 if (log) 8315 ip_dlpi_error(ill, dlea->dl_error_primitive, 8316 dlea->dl_errno, dlea->dl_unix_errno); 8317 break; 8318 case DL_CAPABILITY_ACK: 8319 ill_capability_ack(ill, mp); 8320 /* 8321 * The message has been handed off to ill_capability_ack 8322 * and must not be freed below 8323 */ 8324 mp = NULL; 8325 break; 8326 8327 case DL_INFO_ACK: 8328 /* Call a routine to handle this one. */ 8329 ill_dlpi_done(ill, DL_INFO_REQ); 8330 ip_ll_subnet_defaults(ill, mp); 8331 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8332 return; 8333 case DL_BIND_ACK: 8334 /* 8335 * We should have an IOCTL waiting on this unless 8336 * sent by ill_dl_phys, in which case just return 8337 */ 8338 ill_dlpi_done(ill, DL_BIND_REQ); 8339 8340 if (ill->ill_ifname_pending) { 8341 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8342 ill_t *, ill, mblk_t *, mp); 8343 break; 8344 } 8345 mutex_enter(&ill->ill_lock); 8346 ill->ill_dl_up = 1; 8347 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8348 mutex_exit(&ill->ill_lock); 8349 8350 if (!ioctl_aborted) 8351 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8352 if (mp1 == NULL) { 8353 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8354 break; 8355 } 8356 /* 8357 * mp1 was added by ill_dl_up(). if that is a result of 8358 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8359 */ 8360 if (connp != NULL) 8361 q = CONNP_TO_WQ(connp); 8362 /* 8363 * We are exclusive. So nothing can change even after 8364 * we get the pending mp. 8365 */ 8366 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8367 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8368 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8369 8370 /* 8371 * Now bring up the resolver; when that is complete, we'll 8372 * create IREs. Note that we intentionally mirror what 8373 * ipif_up() would have done, because we got here by way of 8374 * ill_dl_up(), which stopped ipif_up()'s processing. 8375 */ 8376 if (ill->ill_isv6) { 8377 /* 8378 * v6 interfaces. 8379 * Unlike ARP which has to do another bind 8380 * and attach, once we get here we are 8381 * done with NDP 8382 */ 8383 (void) ipif_resolver_up(ipif, Res_act_initial); 8384 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8385 err = ipif_up_done_v6(ipif); 8386 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8387 /* 8388 * ARP and other v4 external resolvers. 8389 * Leave the pending mblk intact so that 8390 * the ioctl completes in ip_rput(). 8391 */ 8392 if (connp != NULL) 8393 mutex_enter(&connp->conn_lock); 8394 mutex_enter(&ill->ill_lock); 8395 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8396 mutex_exit(&ill->ill_lock); 8397 if (connp != NULL) 8398 mutex_exit(&connp->conn_lock); 8399 if (success) { 8400 err = ipif_resolver_up(ipif, Res_act_initial); 8401 if (err == EINPROGRESS) { 8402 freemsg(mp); 8403 return; 8404 } 8405 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8406 } else { 8407 /* The conn has started closing */ 8408 err = EINTR; 8409 } 8410 } else { 8411 /* 8412 * This one is complete. Reply to pending ioctl. 8413 */ 8414 (void) ipif_resolver_up(ipif, Res_act_initial); 8415 err = ipif_up_done(ipif); 8416 } 8417 8418 if ((err == 0) && (ill->ill_up_ipifs)) { 8419 err = ill_up_ipifs(ill, q, mp1); 8420 if (err == EINPROGRESS) { 8421 freemsg(mp); 8422 return; 8423 } 8424 } 8425 8426 /* 8427 * If we have a moved ipif to bring up, and everything has 8428 * succeeded to this point, bring it up on the IPMP ill. 8429 * Otherwise, leave it down -- the admin can try to bring it 8430 * up by hand if need be. 8431 */ 8432 if (ill->ill_move_ipif != NULL) { 8433 if (err != 0) { 8434 ill->ill_move_ipif = NULL; 8435 } else { 8436 ipif = ill->ill_move_ipif; 8437 ill->ill_move_ipif = NULL; 8438 err = ipif_up(ipif, q, mp1); 8439 if (err == EINPROGRESS) { 8440 freemsg(mp); 8441 return; 8442 } 8443 } 8444 } 8445 break; 8446 8447 case DL_NOTIFY_IND: { 8448 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8449 uint_t orig_mtu; 8450 8451 switch (notify->dl_notification) { 8452 case DL_NOTE_PHYS_ADDR: 8453 err = ill_set_phys_addr(ill, mp); 8454 break; 8455 8456 case DL_NOTE_REPLUMB: 8457 /* 8458 * Directly return after calling ill_replumb(). 8459 * Note that we should not free mp as it is reused 8460 * in the ill_replumb() function. 8461 */ 8462 err = ill_replumb(ill, mp); 8463 return; 8464 8465 case DL_NOTE_FASTPATH_FLUSH: 8466 nce_flush(ill, B_FALSE); 8467 break; 8468 8469 case DL_NOTE_SDU_SIZE: 8470 /* 8471 * The dce and fragmentation code can cope with 8472 * this changing while packets are being sent. 8473 * When packets are sent ip_output will discover 8474 * a change. 8475 * 8476 * Change the MTU size of the interface. 8477 */ 8478 mutex_enter(&ill->ill_lock); 8479 ill->ill_current_frag = (uint_t)notify->dl_data; 8480 if (ill->ill_current_frag > ill->ill_max_frag) 8481 ill->ill_max_frag = ill->ill_current_frag; 8482 8483 orig_mtu = ill->ill_mtu; 8484 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8485 ill->ill_mtu = ill->ill_current_frag; 8486 8487 /* 8488 * If ill_user_mtu was set (via 8489 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8490 */ 8491 if (ill->ill_user_mtu != 0 && 8492 ill->ill_user_mtu < ill->ill_mtu) 8493 ill->ill_mtu = ill->ill_user_mtu; 8494 8495 if (ill->ill_isv6) { 8496 if (ill->ill_mtu < IPV6_MIN_MTU) 8497 ill->ill_mtu = IPV6_MIN_MTU; 8498 } else { 8499 if (ill->ill_mtu < IP_MIN_MTU) 8500 ill->ill_mtu = IP_MIN_MTU; 8501 } 8502 } 8503 mutex_exit(&ill->ill_lock); 8504 /* 8505 * Make sure all dce_generation checks find out 8506 * that ill_mtu has changed. 8507 */ 8508 if (orig_mtu != ill->ill_mtu) { 8509 dce_increment_all_generations(ill->ill_isv6, 8510 ill->ill_ipst); 8511 } 8512 8513 /* 8514 * Refresh IPMP meta-interface MTU if necessary. 8515 */ 8516 if (IS_UNDER_IPMP(ill)) 8517 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8518 break; 8519 8520 case DL_NOTE_LINK_UP: 8521 case DL_NOTE_LINK_DOWN: { 8522 /* 8523 * We are writer. ill / phyint / ipsq assocs stable. 8524 * The RUNNING flag reflects the state of the link. 8525 */ 8526 phyint_t *phyint = ill->ill_phyint; 8527 uint64_t new_phyint_flags; 8528 boolean_t changed = B_FALSE; 8529 boolean_t went_up; 8530 8531 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8532 mutex_enter(&phyint->phyint_lock); 8533 8534 new_phyint_flags = went_up ? 8535 phyint->phyint_flags | PHYI_RUNNING : 8536 phyint->phyint_flags & ~PHYI_RUNNING; 8537 8538 if (IS_IPMP(ill)) { 8539 new_phyint_flags = went_up ? 8540 new_phyint_flags & ~PHYI_FAILED : 8541 new_phyint_flags | PHYI_FAILED; 8542 } 8543 8544 if (new_phyint_flags != phyint->phyint_flags) { 8545 phyint->phyint_flags = new_phyint_flags; 8546 changed = B_TRUE; 8547 } 8548 mutex_exit(&phyint->phyint_lock); 8549 /* 8550 * ill_restart_dad handles the DAD restart and routing 8551 * socket notification logic. 8552 */ 8553 if (changed) { 8554 ill_restart_dad(phyint->phyint_illv4, went_up); 8555 ill_restart_dad(phyint->phyint_illv6, went_up); 8556 } 8557 break; 8558 } 8559 case DL_NOTE_PROMISC_ON_PHYS: { 8560 phyint_t *phyint = ill->ill_phyint; 8561 8562 mutex_enter(&phyint->phyint_lock); 8563 phyint->phyint_flags |= PHYI_PROMISC; 8564 mutex_exit(&phyint->phyint_lock); 8565 break; 8566 } 8567 case DL_NOTE_PROMISC_OFF_PHYS: { 8568 phyint_t *phyint = ill->ill_phyint; 8569 8570 mutex_enter(&phyint->phyint_lock); 8571 phyint->phyint_flags &= ~PHYI_PROMISC; 8572 mutex_exit(&phyint->phyint_lock); 8573 break; 8574 } 8575 case DL_NOTE_CAPAB_RENEG: 8576 /* 8577 * Something changed on the driver side. 8578 * It wants us to renegotiate the capabilities 8579 * on this ill. One possible cause is the aggregation 8580 * interface under us where a port got added or 8581 * went away. 8582 * 8583 * If the capability negotiation is already done 8584 * or is in progress, reset the capabilities and 8585 * mark the ill's ill_capab_reneg to be B_TRUE, 8586 * so that when the ack comes back, we can start 8587 * the renegotiation process. 8588 * 8589 * Note that if ill_capab_reneg is already B_TRUE 8590 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8591 * the capability resetting request has been sent 8592 * and the renegotiation has not been started yet; 8593 * nothing needs to be done in this case. 8594 */ 8595 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8596 ill_capability_reset(ill, B_TRUE); 8597 ipsq_current_finish(ipsq); 8598 break; 8599 8600 case DL_NOTE_ALLOWED_IPS: 8601 ill_set_allowed_ips(ill, mp); 8602 break; 8603 default: 8604 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8605 "type 0x%x for DL_NOTIFY_IND\n", 8606 notify->dl_notification)); 8607 break; 8608 } 8609 8610 /* 8611 * As this is an asynchronous operation, we 8612 * should not call ill_dlpi_done 8613 */ 8614 break; 8615 } 8616 case DL_NOTIFY_ACK: { 8617 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8618 8619 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8620 ill->ill_note_link = 1; 8621 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8622 break; 8623 } 8624 case DL_PHYS_ADDR_ACK: { 8625 /* 8626 * As part of plumbing the interface via SIOCSLIFNAME, 8627 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8628 * whose answers we receive here. As each answer is received, 8629 * we call ill_dlpi_done() to dispatch the next request as 8630 * we're processing the current one. Once all answers have 8631 * been received, we use ipsq_pending_mp_get() to dequeue the 8632 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8633 * is invoked from an ill queue, conn_oper_pending_ill is not 8634 * available, but we know the ioctl is pending on ill_wq.) 8635 */ 8636 uint_t paddrlen, paddroff; 8637 uint8_t *addr; 8638 8639 paddrreq = ill->ill_phys_addr_pend; 8640 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8641 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8642 addr = mp->b_rptr + paddroff; 8643 8644 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8645 if (paddrreq == DL_IPV6_TOKEN) { 8646 /* 8647 * bcopy to low-order bits of ill_token 8648 * 8649 * XXX Temporary hack - currently, all known tokens 8650 * are 64 bits, so I'll cheat for the moment. 8651 */ 8652 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8653 ill->ill_token_length = paddrlen; 8654 break; 8655 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8656 ASSERT(ill->ill_nd_lla_mp == NULL); 8657 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8658 mp = NULL; 8659 break; 8660 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8661 ASSERT(ill->ill_dest_addr_mp == NULL); 8662 ill->ill_dest_addr_mp = mp; 8663 ill->ill_dest_addr = addr; 8664 mp = NULL; 8665 if (ill->ill_isv6) { 8666 ill_setdesttoken(ill); 8667 ipif_setdestlinklocal(ill->ill_ipif); 8668 } 8669 break; 8670 } 8671 8672 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8673 ASSERT(ill->ill_phys_addr_mp == NULL); 8674 if (!ill->ill_ifname_pending) 8675 break; 8676 ill->ill_ifname_pending = 0; 8677 if (!ioctl_aborted) 8678 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8679 if (mp1 != NULL) { 8680 ASSERT(connp == NULL); 8681 q = ill->ill_wq; 8682 } 8683 /* 8684 * If any error acks received during the plumbing sequence, 8685 * ill_ifname_pending_err will be set. Break out and send up 8686 * the error to the pending ioctl. 8687 */ 8688 if (ill->ill_ifname_pending_err != 0) { 8689 err = ill->ill_ifname_pending_err; 8690 ill->ill_ifname_pending_err = 0; 8691 break; 8692 } 8693 8694 ill->ill_phys_addr_mp = mp; 8695 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8696 mp = NULL; 8697 8698 /* 8699 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8700 * provider doesn't support physical addresses. We check both 8701 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8702 * not have physical addresses, but historically adversises a 8703 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8704 * its DL_PHYS_ADDR_ACK. 8705 */ 8706 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8707 ill->ill_phys_addr = NULL; 8708 } else if (paddrlen != ill->ill_phys_addr_length) { 8709 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8710 paddrlen, ill->ill_phys_addr_length)); 8711 err = EINVAL; 8712 break; 8713 } 8714 8715 if (ill->ill_nd_lla_mp == NULL) { 8716 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8717 err = ENOMEM; 8718 break; 8719 } 8720 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8721 } 8722 8723 if (ill->ill_isv6) { 8724 ill_setdefaulttoken(ill); 8725 ipif_setlinklocal(ill->ill_ipif); 8726 } 8727 break; 8728 } 8729 case DL_OK_ACK: 8730 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8731 dl_primstr((int)dloa->dl_correct_primitive), 8732 dloa->dl_correct_primitive)); 8733 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8734 char *, dl_primstr(dloa->dl_correct_primitive), 8735 ill_t *, ill); 8736 8737 switch (dloa->dl_correct_primitive) { 8738 case DL_ENABMULTI_REQ: 8739 case DL_DISABMULTI_REQ: 8740 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8741 break; 8742 case DL_PROMISCON_REQ: 8743 case DL_PROMISCOFF_REQ: 8744 case DL_UNBIND_REQ: 8745 case DL_ATTACH_REQ: 8746 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8747 break; 8748 } 8749 break; 8750 default: 8751 break; 8752 } 8753 8754 freemsg(mp); 8755 if (mp1 == NULL) 8756 return; 8757 8758 /* 8759 * The operation must complete without EINPROGRESS since 8760 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8761 * the operation will be stuck forever inside the IPSQ. 8762 */ 8763 ASSERT(err != EINPROGRESS); 8764 8765 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8766 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8767 ipif_t *, NULL); 8768 8769 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8770 case 0: 8771 ipsq_current_finish(ipsq); 8772 break; 8773 8774 case SIOCSLIFNAME: 8775 case IF_UNITSEL: { 8776 ill_t *ill_other = ILL_OTHER(ill); 8777 8778 /* 8779 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8780 * ill has a peer which is in an IPMP group, then place ill 8781 * into the same group. One catch: although ifconfig plumbs 8782 * the appropriate IPMP meta-interface prior to plumbing this 8783 * ill, it is possible for multiple ifconfig applications to 8784 * race (or for another application to adjust plumbing), in 8785 * which case the IPMP meta-interface we need will be missing. 8786 * If so, kick the phyint out of the group. 8787 */ 8788 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8789 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8790 ipmp_illgrp_t *illg; 8791 8792 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8793 if (illg == NULL) 8794 ipmp_phyint_leave_grp(ill->ill_phyint); 8795 else 8796 ipmp_ill_join_illgrp(ill, illg); 8797 } 8798 8799 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8800 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8801 else 8802 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8803 break; 8804 } 8805 case SIOCLIFADDIF: 8806 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8807 break; 8808 8809 default: 8810 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8811 break; 8812 } 8813 } 8814 8815 /* 8816 * ip_rput_other is called by ip_rput to handle messages modifying the global 8817 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8818 */ 8819 /* ARGSUSED */ 8820 void 8821 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8822 { 8823 ill_t *ill = q->q_ptr; 8824 struct iocblk *iocp; 8825 8826 ip1dbg(("ip_rput_other ")); 8827 if (ipsq != NULL) { 8828 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8829 ASSERT(ipsq->ipsq_xop == 8830 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8831 } 8832 8833 switch (mp->b_datap->db_type) { 8834 case M_ERROR: 8835 case M_HANGUP: 8836 /* 8837 * The device has a problem. We force the ILL down. It can 8838 * be brought up again manually using SIOCSIFFLAGS (via 8839 * ifconfig or equivalent). 8840 */ 8841 ASSERT(ipsq != NULL); 8842 if (mp->b_rptr < mp->b_wptr) 8843 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8844 if (ill->ill_error == 0) 8845 ill->ill_error = ENXIO; 8846 if (!ill_down_start(q, mp)) 8847 return; 8848 ipif_all_down_tail(ipsq, q, mp, NULL); 8849 break; 8850 case M_IOCNAK: { 8851 iocp = (struct iocblk *)mp->b_rptr; 8852 8853 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8854 /* 8855 * If this was the first attempt, turn off the fastpath 8856 * probing. 8857 */ 8858 mutex_enter(&ill->ill_lock); 8859 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8860 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8861 mutex_exit(&ill->ill_lock); 8862 /* 8863 * don't flush the nce_t entries: we use them 8864 * as an index to the ncec itself. 8865 */ 8866 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8867 ill->ill_name)); 8868 } else { 8869 mutex_exit(&ill->ill_lock); 8870 } 8871 freemsg(mp); 8872 break; 8873 } 8874 default: 8875 ASSERT(0); 8876 break; 8877 } 8878 } 8879 8880 /* 8881 * Update any source route, record route or timestamp options 8882 * When it fails it has consumed the message and BUMPed the MIB. 8883 */ 8884 boolean_t 8885 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8886 ip_recv_attr_t *ira) 8887 { 8888 ipoptp_t opts; 8889 uchar_t *opt; 8890 uint8_t optval; 8891 uint8_t optlen; 8892 ipaddr_t dst; 8893 ipaddr_t ifaddr; 8894 uint32_t ts; 8895 timestruc_t now; 8896 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8897 8898 ip2dbg(("ip_forward_options\n")); 8899 dst = ipha->ipha_dst; 8900 for (optval = ipoptp_first(&opts, ipha); 8901 optval != IPOPT_EOL; 8902 optval = ipoptp_next(&opts)) { 8903 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8904 opt = opts.ipoptp_cur; 8905 optlen = opts.ipoptp_len; 8906 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8907 optval, opts.ipoptp_len)); 8908 switch (optval) { 8909 uint32_t off; 8910 case IPOPT_SSRR: 8911 case IPOPT_LSRR: 8912 /* Check if adminstratively disabled */ 8913 if (!ipst->ips_ip_forward_src_routed) { 8914 BUMP_MIB(dst_ill->ill_ip_mib, 8915 ipIfStatsForwProhibits); 8916 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8917 mp, dst_ill); 8918 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8919 ira); 8920 return (B_FALSE); 8921 } 8922 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8923 /* 8924 * Must be partial since ip_input_options 8925 * checked for strict. 8926 */ 8927 break; 8928 } 8929 off = opt[IPOPT_OFFSET]; 8930 off--; 8931 redo_srr: 8932 if (optlen < IP_ADDR_LEN || 8933 off > optlen - IP_ADDR_LEN) { 8934 /* End of source route */ 8935 ip1dbg(( 8936 "ip_forward_options: end of SR\n")); 8937 break; 8938 } 8939 /* Pick a reasonable address on the outbound if */ 8940 ASSERT(dst_ill != NULL); 8941 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8942 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8943 NULL) != 0) { 8944 /* No source! Shouldn't happen */ 8945 ifaddr = INADDR_ANY; 8946 } 8947 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8948 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8949 ip1dbg(("ip_forward_options: next hop 0x%x\n", 8950 ntohl(dst))); 8951 8952 /* 8953 * Check if our address is present more than 8954 * once as consecutive hops in source route. 8955 */ 8956 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 8957 off += IP_ADDR_LEN; 8958 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8959 goto redo_srr; 8960 } 8961 ipha->ipha_dst = dst; 8962 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8963 break; 8964 case IPOPT_RR: 8965 off = opt[IPOPT_OFFSET]; 8966 off--; 8967 if (optlen < IP_ADDR_LEN || 8968 off > optlen - IP_ADDR_LEN) { 8969 /* No more room - ignore */ 8970 ip1dbg(( 8971 "ip_forward_options: end of RR\n")); 8972 break; 8973 } 8974 /* Pick a reasonable address on the outbound if */ 8975 ASSERT(dst_ill != NULL); 8976 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8977 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8978 NULL) != 0) { 8979 /* No source! Shouldn't happen */ 8980 ifaddr = INADDR_ANY; 8981 } 8982 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8983 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8984 break; 8985 case IPOPT_TS: 8986 /* Insert timestamp if there is room */ 8987 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 8988 case IPOPT_TS_TSONLY: 8989 off = IPOPT_TS_TIMELEN; 8990 break; 8991 case IPOPT_TS_PRESPEC: 8992 case IPOPT_TS_PRESPEC_RFC791: 8993 /* Verify that the address matched */ 8994 off = opt[IPOPT_OFFSET] - 1; 8995 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8996 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8997 /* Not for us */ 8998 break; 8999 } 9000 /* FALLTHRU */ 9001 case IPOPT_TS_TSANDADDR: 9002 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9003 break; 9004 default: 9005 /* 9006 * ip_*put_options should have already 9007 * dropped this packet. 9008 */ 9009 cmn_err(CE_PANIC, "ip_forward_options: " 9010 "unknown IT - bug in ip_input_options?\n"); 9011 return (B_TRUE); /* Keep "lint" happy */ 9012 } 9013 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9014 /* Increase overflow counter */ 9015 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9016 opt[IPOPT_POS_OV_FLG] = 9017 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9018 (off << 4)); 9019 break; 9020 } 9021 off = opt[IPOPT_OFFSET] - 1; 9022 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9023 case IPOPT_TS_PRESPEC: 9024 case IPOPT_TS_PRESPEC_RFC791: 9025 case IPOPT_TS_TSANDADDR: 9026 /* Pick a reasonable addr on the outbound if */ 9027 ASSERT(dst_ill != NULL); 9028 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9029 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9030 NULL, NULL) != 0) { 9031 /* No source! Shouldn't happen */ 9032 ifaddr = INADDR_ANY; 9033 } 9034 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9035 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9036 /* FALLTHRU */ 9037 case IPOPT_TS_TSONLY: 9038 off = opt[IPOPT_OFFSET] - 1; 9039 /* Compute # of milliseconds since midnight */ 9040 gethrestime(&now); 9041 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9042 now.tv_nsec / (NANOSEC / MILLISEC); 9043 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9044 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9045 break; 9046 } 9047 break; 9048 } 9049 } 9050 return (B_TRUE); 9051 } 9052 9053 /* 9054 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9055 * returns 'true' if there are still fragments left on the queue, in 9056 * which case we restart the timer. 9057 */ 9058 void 9059 ill_frag_timer(void *arg) 9060 { 9061 ill_t *ill = (ill_t *)arg; 9062 boolean_t frag_pending; 9063 ip_stack_t *ipst = ill->ill_ipst; 9064 time_t timeout; 9065 9066 mutex_enter(&ill->ill_lock); 9067 ASSERT(!ill->ill_fragtimer_executing); 9068 if (ill->ill_state_flags & ILL_CONDEMNED) { 9069 ill->ill_frag_timer_id = 0; 9070 mutex_exit(&ill->ill_lock); 9071 return; 9072 } 9073 ill->ill_fragtimer_executing = 1; 9074 mutex_exit(&ill->ill_lock); 9075 9076 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9077 ipst->ips_ip_reassembly_timeout); 9078 9079 frag_pending = ill_frag_timeout(ill, timeout); 9080 9081 /* 9082 * Restart the timer, if we have fragments pending or if someone 9083 * wanted us to be scheduled again. 9084 */ 9085 mutex_enter(&ill->ill_lock); 9086 ill->ill_fragtimer_executing = 0; 9087 ill->ill_frag_timer_id = 0; 9088 if (frag_pending || ill->ill_fragtimer_needrestart) 9089 ill_frag_timer_start(ill); 9090 mutex_exit(&ill->ill_lock); 9091 } 9092 9093 void 9094 ill_frag_timer_start(ill_t *ill) 9095 { 9096 ip_stack_t *ipst = ill->ill_ipst; 9097 clock_t timeo_ms; 9098 9099 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9100 9101 /* If the ill is closing or opening don't proceed */ 9102 if (ill->ill_state_flags & ILL_CONDEMNED) 9103 return; 9104 9105 if (ill->ill_fragtimer_executing) { 9106 /* 9107 * ill_frag_timer is currently executing. Just record the 9108 * the fact that we want the timer to be restarted. 9109 * ill_frag_timer will post a timeout before it returns, 9110 * ensuring it will be called again. 9111 */ 9112 ill->ill_fragtimer_needrestart = 1; 9113 return; 9114 } 9115 9116 if (ill->ill_frag_timer_id == 0) { 9117 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9118 ipst->ips_ip_reassembly_timeout) * SECONDS; 9119 9120 /* 9121 * The timer is neither running nor is the timeout handler 9122 * executing. Post a timeout so that ill_frag_timer will be 9123 * called 9124 */ 9125 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9126 MSEC_TO_TICK(timeo_ms >> 1)); 9127 ill->ill_fragtimer_needrestart = 0; 9128 } 9129 } 9130 9131 /* 9132 * Update any source route, record route or timestamp options. 9133 * Check that we are at end of strict source route. 9134 * The options have already been checked for sanity in ip_input_options(). 9135 */ 9136 boolean_t 9137 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9138 { 9139 ipoptp_t opts; 9140 uchar_t *opt; 9141 uint8_t optval; 9142 uint8_t optlen; 9143 ipaddr_t dst; 9144 ipaddr_t ifaddr; 9145 uint32_t ts; 9146 timestruc_t now; 9147 ill_t *ill = ira->ira_ill; 9148 ip_stack_t *ipst = ill->ill_ipst; 9149 9150 ip2dbg(("ip_input_local_options\n")); 9151 9152 for (optval = ipoptp_first(&opts, ipha); 9153 optval != IPOPT_EOL; 9154 optval = ipoptp_next(&opts)) { 9155 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9156 opt = opts.ipoptp_cur; 9157 optlen = opts.ipoptp_len; 9158 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9159 optval, optlen)); 9160 switch (optval) { 9161 uint32_t off; 9162 case IPOPT_SSRR: 9163 case IPOPT_LSRR: 9164 off = opt[IPOPT_OFFSET]; 9165 off--; 9166 if (optlen < IP_ADDR_LEN || 9167 off > optlen - IP_ADDR_LEN) { 9168 /* End of source route */ 9169 ip1dbg(("ip_input_local_options: end of SR\n")); 9170 break; 9171 } 9172 /* 9173 * This will only happen if two consecutive entries 9174 * in the source route contains our address or if 9175 * it is a packet with a loose source route which 9176 * reaches us before consuming the whole source route 9177 */ 9178 ip1dbg(("ip_input_local_options: not end of SR\n")); 9179 if (optval == IPOPT_SSRR) { 9180 goto bad_src_route; 9181 } 9182 /* 9183 * Hack: instead of dropping the packet truncate the 9184 * source route to what has been used by filling the 9185 * rest with IPOPT_NOP. 9186 */ 9187 opt[IPOPT_OLEN] = (uint8_t)off; 9188 while (off < optlen) { 9189 opt[off++] = IPOPT_NOP; 9190 } 9191 break; 9192 case IPOPT_RR: 9193 off = opt[IPOPT_OFFSET]; 9194 off--; 9195 if (optlen < IP_ADDR_LEN || 9196 off > optlen - IP_ADDR_LEN) { 9197 /* No more room - ignore */ 9198 ip1dbg(( 9199 "ip_input_local_options: end of RR\n")); 9200 break; 9201 } 9202 /* Pick a reasonable address on the outbound if */ 9203 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9204 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9205 NULL) != 0) { 9206 /* No source! Shouldn't happen */ 9207 ifaddr = INADDR_ANY; 9208 } 9209 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9210 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9211 break; 9212 case IPOPT_TS: 9213 /* Insert timestamp if there is romm */ 9214 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9215 case IPOPT_TS_TSONLY: 9216 off = IPOPT_TS_TIMELEN; 9217 break; 9218 case IPOPT_TS_PRESPEC: 9219 case IPOPT_TS_PRESPEC_RFC791: 9220 /* Verify that the address matched */ 9221 off = opt[IPOPT_OFFSET] - 1; 9222 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9223 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9224 /* Not for us */ 9225 break; 9226 } 9227 /* FALLTHRU */ 9228 case IPOPT_TS_TSANDADDR: 9229 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9230 break; 9231 default: 9232 /* 9233 * ip_*put_options should have already 9234 * dropped this packet. 9235 */ 9236 cmn_err(CE_PANIC, "ip_input_local_options: " 9237 "unknown IT - bug in ip_input_options?\n"); 9238 return (B_TRUE); /* Keep "lint" happy */ 9239 } 9240 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9241 /* Increase overflow counter */ 9242 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9243 opt[IPOPT_POS_OV_FLG] = 9244 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9245 (off << 4)); 9246 break; 9247 } 9248 off = opt[IPOPT_OFFSET] - 1; 9249 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9250 case IPOPT_TS_PRESPEC: 9251 case IPOPT_TS_PRESPEC_RFC791: 9252 case IPOPT_TS_TSANDADDR: 9253 /* Pick a reasonable addr on the outbound if */ 9254 if (ip_select_source_v4(ill, INADDR_ANY, 9255 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9256 &ifaddr, NULL, NULL) != 0) { 9257 /* No source! Shouldn't happen */ 9258 ifaddr = INADDR_ANY; 9259 } 9260 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9261 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9262 /* FALLTHRU */ 9263 case IPOPT_TS_TSONLY: 9264 off = opt[IPOPT_OFFSET] - 1; 9265 /* Compute # of milliseconds since midnight */ 9266 gethrestime(&now); 9267 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9268 now.tv_nsec / (NANOSEC / MILLISEC); 9269 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9270 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9271 break; 9272 } 9273 break; 9274 } 9275 } 9276 return (B_TRUE); 9277 9278 bad_src_route: 9279 /* make sure we clear any indication of a hardware checksum */ 9280 DB_CKSUMFLAGS(mp) = 0; 9281 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9282 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9283 return (B_FALSE); 9284 9285 } 9286 9287 /* 9288 * Process IP options in an inbound packet. Always returns the nexthop. 9289 * Normally this is the passed in nexthop, but if there is an option 9290 * that effects the nexthop (such as a source route) that will be returned. 9291 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9292 * and mp freed. 9293 */ 9294 ipaddr_t 9295 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9296 ip_recv_attr_t *ira, int *errorp) 9297 { 9298 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9299 ipoptp_t opts; 9300 uchar_t *opt; 9301 uint8_t optval; 9302 uint8_t optlen; 9303 intptr_t code = 0; 9304 ire_t *ire; 9305 9306 ip2dbg(("ip_input_options\n")); 9307 *errorp = 0; 9308 for (optval = ipoptp_first(&opts, ipha); 9309 optval != IPOPT_EOL; 9310 optval = ipoptp_next(&opts)) { 9311 opt = opts.ipoptp_cur; 9312 optlen = opts.ipoptp_len; 9313 ip2dbg(("ip_input_options: opt %d, len %d\n", 9314 optval, optlen)); 9315 /* 9316 * Note: we need to verify the checksum before we 9317 * modify anything thus this routine only extracts the next 9318 * hop dst from any source route. 9319 */ 9320 switch (optval) { 9321 uint32_t off; 9322 case IPOPT_SSRR: 9323 case IPOPT_LSRR: 9324 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9325 if (optval == IPOPT_SSRR) { 9326 ip1dbg(("ip_input_options: not next" 9327 " strict source route 0x%x\n", 9328 ntohl(dst))); 9329 code = (char *)&ipha->ipha_dst - 9330 (char *)ipha; 9331 goto param_prob; /* RouterReq's */ 9332 } 9333 ip2dbg(("ip_input_options: " 9334 "not next source route 0x%x\n", 9335 ntohl(dst))); 9336 break; 9337 } 9338 9339 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9340 ip1dbg(( 9341 "ip_input_options: bad option offset\n")); 9342 code = (char *)&opt[IPOPT_OLEN] - 9343 (char *)ipha; 9344 goto param_prob; 9345 } 9346 off = opt[IPOPT_OFFSET]; 9347 off--; 9348 redo_srr: 9349 if (optlen < IP_ADDR_LEN || 9350 off > optlen - IP_ADDR_LEN) { 9351 /* End of source route */ 9352 ip1dbg(("ip_input_options: end of SR\n")); 9353 break; 9354 } 9355 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9356 ip1dbg(("ip_input_options: next hop 0x%x\n", 9357 ntohl(dst))); 9358 9359 /* 9360 * Check if our address is present more than 9361 * once as consecutive hops in source route. 9362 * XXX verify per-interface ip_forwarding 9363 * for source route? 9364 */ 9365 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9366 off += IP_ADDR_LEN; 9367 goto redo_srr; 9368 } 9369 9370 if (dst == htonl(INADDR_LOOPBACK)) { 9371 ip1dbg(("ip_input_options: loopback addr in " 9372 "source route!\n")); 9373 goto bad_src_route; 9374 } 9375 /* 9376 * For strict: verify that dst is directly 9377 * reachable. 9378 */ 9379 if (optval == IPOPT_SSRR) { 9380 ire = ire_ftable_lookup_v4(dst, 0, 0, 9381 IRE_IF_ALL, NULL, ALL_ZONES, 9382 ira->ira_tsl, 9383 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9384 NULL); 9385 if (ire == NULL) { 9386 ip1dbg(("ip_input_options: SSRR not " 9387 "directly reachable: 0x%x\n", 9388 ntohl(dst))); 9389 goto bad_src_route; 9390 } 9391 ire_refrele(ire); 9392 } 9393 /* 9394 * Defer update of the offset and the record route 9395 * until the packet is forwarded. 9396 */ 9397 break; 9398 case IPOPT_RR: 9399 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9400 ip1dbg(( 9401 "ip_input_options: bad option offset\n")); 9402 code = (char *)&opt[IPOPT_OLEN] - 9403 (char *)ipha; 9404 goto param_prob; 9405 } 9406 break; 9407 case IPOPT_TS: 9408 /* 9409 * Verify that length >= 5 and that there is either 9410 * room for another timestamp or that the overflow 9411 * counter is not maxed out. 9412 */ 9413 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9414 if (optlen < IPOPT_MINLEN_IT) { 9415 goto param_prob; 9416 } 9417 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9418 ip1dbg(( 9419 "ip_input_options: bad option offset\n")); 9420 code = (char *)&opt[IPOPT_OFFSET] - 9421 (char *)ipha; 9422 goto param_prob; 9423 } 9424 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9425 case IPOPT_TS_TSONLY: 9426 off = IPOPT_TS_TIMELEN; 9427 break; 9428 case IPOPT_TS_TSANDADDR: 9429 case IPOPT_TS_PRESPEC: 9430 case IPOPT_TS_PRESPEC_RFC791: 9431 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9432 break; 9433 default: 9434 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9435 (char *)ipha; 9436 goto param_prob; 9437 } 9438 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9439 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9440 /* 9441 * No room and the overflow counter is 15 9442 * already. 9443 */ 9444 goto param_prob; 9445 } 9446 break; 9447 } 9448 } 9449 9450 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9451 return (dst); 9452 } 9453 9454 ip1dbg(("ip_input_options: error processing IP options.")); 9455 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9456 9457 param_prob: 9458 /* make sure we clear any indication of a hardware checksum */ 9459 DB_CKSUMFLAGS(mp) = 0; 9460 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9461 icmp_param_problem(mp, (uint8_t)code, ira); 9462 *errorp = -1; 9463 return (dst); 9464 9465 bad_src_route: 9466 /* make sure we clear any indication of a hardware checksum */ 9467 DB_CKSUMFLAGS(mp) = 0; 9468 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9469 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9470 *errorp = -1; 9471 return (dst); 9472 } 9473 9474 /* 9475 * IP & ICMP info in >=14 msg's ... 9476 * - ip fixed part (mib2_ip_t) 9477 * - icmp fixed part (mib2_icmp_t) 9478 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9479 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9480 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9481 * - ipRouteAttributeTable (ip 102) labeled routes 9482 * - ip multicast membership (ip_member_t) 9483 * - ip multicast source filtering (ip_grpsrc_t) 9484 * - igmp fixed part (struct igmpstat) 9485 * - multicast routing stats (struct mrtstat) 9486 * - multicast routing vifs (array of struct vifctl) 9487 * - multicast routing routes (array of struct mfcctl) 9488 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9489 * One per ill plus one generic 9490 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9491 * One per ill plus one generic 9492 * - ipv6RouteEntry all IPv6 IREs 9493 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9494 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9495 * - ipv6AddrEntry all IPv6 ipifs 9496 * - ipv6 multicast membership (ipv6_member_t) 9497 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9498 * 9499 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9500 * already filled in by the caller. 9501 * If legacy_req is true then MIB structures needs to be truncated to their 9502 * legacy sizes before being returned. 9503 * Return value of 0 indicates that no messages were sent and caller 9504 * should free mpctl. 9505 */ 9506 int 9507 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9508 { 9509 ip_stack_t *ipst; 9510 sctp_stack_t *sctps; 9511 9512 if (q->q_next != NULL) { 9513 ipst = ILLQ_TO_IPST(q); 9514 } else { 9515 ipst = CONNQ_TO_IPST(q); 9516 } 9517 ASSERT(ipst != NULL); 9518 sctps = ipst->ips_netstack->netstack_sctp; 9519 9520 if (mpctl == NULL || mpctl->b_cont == NULL) { 9521 return (0); 9522 } 9523 9524 /* 9525 * For the purposes of the (broken) packet shell use 9526 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9527 * to make TCP and UDP appear first in the list of mib items. 9528 * TBD: We could expand this and use it in netstat so that 9529 * the kernel doesn't have to produce large tables (connections, 9530 * routes, etc) when netstat only wants the statistics or a particular 9531 * table. 9532 */ 9533 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9534 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9535 return (1); 9536 } 9537 } 9538 9539 if (level != MIB2_TCP) { 9540 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9541 return (1); 9542 } 9543 } 9544 9545 if (level != MIB2_UDP) { 9546 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9547 return (1); 9548 } 9549 } 9550 9551 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9552 ipst, legacy_req)) == NULL) { 9553 return (1); 9554 } 9555 9556 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9557 legacy_req)) == NULL) { 9558 return (1); 9559 } 9560 9561 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9562 return (1); 9563 } 9564 9565 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9566 return (1); 9567 } 9568 9569 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9570 return (1); 9571 } 9572 9573 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9574 return (1); 9575 } 9576 9577 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9578 legacy_req)) == NULL) { 9579 return (1); 9580 } 9581 9582 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9583 legacy_req)) == NULL) { 9584 return (1); 9585 } 9586 9587 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9588 return (1); 9589 } 9590 9591 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9592 return (1); 9593 } 9594 9595 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9596 return (1); 9597 } 9598 9599 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9600 return (1); 9601 } 9602 9603 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9604 return (1); 9605 } 9606 9607 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9608 return (1); 9609 } 9610 9611 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9612 if (mpctl == NULL) 9613 return (1); 9614 9615 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9616 if (mpctl == NULL) 9617 return (1); 9618 9619 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9620 return (1); 9621 } 9622 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9623 return (1); 9624 } 9625 freemsg(mpctl); 9626 return (1); 9627 } 9628 9629 /* Get global (legacy) IPv4 statistics */ 9630 static mblk_t * 9631 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9632 ip_stack_t *ipst, boolean_t legacy_req) 9633 { 9634 mib2_ip_t old_ip_mib; 9635 struct opthdr *optp; 9636 mblk_t *mp2ctl; 9637 mib2_ipAddrEntry_t mae; 9638 9639 /* 9640 * make a copy of the original message 9641 */ 9642 mp2ctl = copymsg(mpctl); 9643 9644 /* fixed length IP structure... */ 9645 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9646 optp->level = MIB2_IP; 9647 optp->name = 0; 9648 SET_MIB(old_ip_mib.ipForwarding, 9649 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9650 SET_MIB(old_ip_mib.ipDefaultTTL, 9651 (uint32_t)ipst->ips_ip_def_ttl); 9652 SET_MIB(old_ip_mib.ipReasmTimeout, 9653 ipst->ips_ip_reassembly_timeout); 9654 SET_MIB(old_ip_mib.ipAddrEntrySize, 9655 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9656 sizeof (mib2_ipAddrEntry_t)); 9657 SET_MIB(old_ip_mib.ipRouteEntrySize, 9658 sizeof (mib2_ipRouteEntry_t)); 9659 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9660 sizeof (mib2_ipNetToMediaEntry_t)); 9661 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9662 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9663 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9664 sizeof (mib2_ipAttributeEntry_t)); 9665 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9666 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9667 9668 /* 9669 * Grab the statistics from the new IP MIB 9670 */ 9671 SET_MIB(old_ip_mib.ipInReceives, 9672 (uint32_t)ipmib->ipIfStatsHCInReceives); 9673 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9674 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9675 SET_MIB(old_ip_mib.ipForwDatagrams, 9676 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9677 SET_MIB(old_ip_mib.ipInUnknownProtos, 9678 ipmib->ipIfStatsInUnknownProtos); 9679 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9680 SET_MIB(old_ip_mib.ipInDelivers, 9681 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9682 SET_MIB(old_ip_mib.ipOutRequests, 9683 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9684 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9685 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9686 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9687 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9688 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9689 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9690 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9691 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9692 9693 /* ipRoutingDiscards is not being used */ 9694 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9695 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9696 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9697 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9698 SET_MIB(old_ip_mib.ipReasmDuplicates, 9699 ipmib->ipIfStatsReasmDuplicates); 9700 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9701 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9702 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9703 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9704 SET_MIB(old_ip_mib.rawipInOverflows, 9705 ipmib->rawipIfStatsInOverflows); 9706 9707 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9708 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9709 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9710 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9711 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9712 ipmib->ipIfStatsOutSwitchIPVersion); 9713 9714 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9715 (int)sizeof (old_ip_mib))) { 9716 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9717 (uint_t)sizeof (old_ip_mib))); 9718 } 9719 9720 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9721 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9722 (int)optp->level, (int)optp->name, (int)optp->len)); 9723 qreply(q, mpctl); 9724 return (mp2ctl); 9725 } 9726 9727 /* Per interface IPv4 statistics */ 9728 static mblk_t * 9729 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9730 boolean_t legacy_req) 9731 { 9732 struct opthdr *optp; 9733 mblk_t *mp2ctl; 9734 ill_t *ill; 9735 ill_walk_context_t ctx; 9736 mblk_t *mp_tail = NULL; 9737 mib2_ipIfStatsEntry_t global_ip_mib; 9738 mib2_ipAddrEntry_t mae; 9739 9740 /* 9741 * Make a copy of the original message 9742 */ 9743 mp2ctl = copymsg(mpctl); 9744 9745 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9746 optp->level = MIB2_IP; 9747 optp->name = MIB2_IP_TRAFFIC_STATS; 9748 /* Include "unknown interface" ip_mib */ 9749 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9750 ipst->ips_ip_mib.ipIfStatsIfIndex = 9751 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9752 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9753 (ipst->ips_ip_forwarding ? 1 : 2)); 9754 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9755 (uint32_t)ipst->ips_ip_def_ttl); 9756 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9757 sizeof (mib2_ipIfStatsEntry_t)); 9758 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9759 sizeof (mib2_ipAddrEntry_t)); 9760 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9761 sizeof (mib2_ipRouteEntry_t)); 9762 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9763 sizeof (mib2_ipNetToMediaEntry_t)); 9764 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9765 sizeof (ip_member_t)); 9766 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9767 sizeof (ip_grpsrc_t)); 9768 9769 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9770 9771 if (legacy_req) { 9772 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9773 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9774 } 9775 9776 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9777 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9778 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9779 "failed to allocate %u bytes\n", 9780 (uint_t)sizeof (global_ip_mib))); 9781 } 9782 9783 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9784 ill = ILL_START_WALK_V4(&ctx, ipst); 9785 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9786 ill->ill_ip_mib->ipIfStatsIfIndex = 9787 ill->ill_phyint->phyint_ifindex; 9788 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9789 (ipst->ips_ip_forwarding ? 1 : 2)); 9790 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9791 (uint32_t)ipst->ips_ip_def_ttl); 9792 9793 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9794 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9795 (char *)ill->ill_ip_mib, 9796 (int)sizeof (*ill->ill_ip_mib))) { 9797 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9798 "failed to allocate %u bytes\n", 9799 (uint_t)sizeof (*ill->ill_ip_mib))); 9800 } 9801 } 9802 rw_exit(&ipst->ips_ill_g_lock); 9803 9804 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9805 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9806 "level %d, name %d, len %d\n", 9807 (int)optp->level, (int)optp->name, (int)optp->len)); 9808 qreply(q, mpctl); 9809 9810 if (mp2ctl == NULL) 9811 return (NULL); 9812 9813 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9814 legacy_req)); 9815 } 9816 9817 /* Global IPv4 ICMP statistics */ 9818 static mblk_t * 9819 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9820 { 9821 struct opthdr *optp; 9822 mblk_t *mp2ctl; 9823 9824 /* 9825 * Make a copy of the original message 9826 */ 9827 mp2ctl = copymsg(mpctl); 9828 9829 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9830 optp->level = MIB2_ICMP; 9831 optp->name = 0; 9832 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9833 (int)sizeof (ipst->ips_icmp_mib))) { 9834 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9835 (uint_t)sizeof (ipst->ips_icmp_mib))); 9836 } 9837 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9838 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9839 (int)optp->level, (int)optp->name, (int)optp->len)); 9840 qreply(q, mpctl); 9841 return (mp2ctl); 9842 } 9843 9844 /* Global IPv4 IGMP statistics */ 9845 static mblk_t * 9846 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9847 { 9848 struct opthdr *optp; 9849 mblk_t *mp2ctl; 9850 9851 /* 9852 * make a copy of the original message 9853 */ 9854 mp2ctl = copymsg(mpctl); 9855 9856 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9857 optp->level = EXPER_IGMP; 9858 optp->name = 0; 9859 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9860 (int)sizeof (ipst->ips_igmpstat))) { 9861 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9862 (uint_t)sizeof (ipst->ips_igmpstat))); 9863 } 9864 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9865 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9866 (int)optp->level, (int)optp->name, (int)optp->len)); 9867 qreply(q, mpctl); 9868 return (mp2ctl); 9869 } 9870 9871 /* Global IPv4 Multicast Routing statistics */ 9872 static mblk_t * 9873 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9874 { 9875 struct opthdr *optp; 9876 mblk_t *mp2ctl; 9877 9878 /* 9879 * make a copy of the original message 9880 */ 9881 mp2ctl = copymsg(mpctl); 9882 9883 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9884 optp->level = EXPER_DVMRP; 9885 optp->name = 0; 9886 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9887 ip0dbg(("ip_mroute_stats: failed\n")); 9888 } 9889 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9890 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9891 (int)optp->level, (int)optp->name, (int)optp->len)); 9892 qreply(q, mpctl); 9893 return (mp2ctl); 9894 } 9895 9896 /* IPv4 address information */ 9897 static mblk_t * 9898 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9899 boolean_t legacy_req) 9900 { 9901 struct opthdr *optp; 9902 mblk_t *mp2ctl; 9903 mblk_t *mp_tail = NULL; 9904 ill_t *ill; 9905 ipif_t *ipif; 9906 uint_t bitval; 9907 mib2_ipAddrEntry_t mae; 9908 size_t mae_size; 9909 zoneid_t zoneid; 9910 ill_walk_context_t ctx; 9911 9912 /* 9913 * make a copy of the original message 9914 */ 9915 mp2ctl = copymsg(mpctl); 9916 9917 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9918 sizeof (mib2_ipAddrEntry_t); 9919 9920 /* ipAddrEntryTable */ 9921 9922 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9923 optp->level = MIB2_IP; 9924 optp->name = MIB2_IP_ADDR; 9925 zoneid = Q_TO_CONN(q)->conn_zoneid; 9926 9927 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9928 ill = ILL_START_WALK_V4(&ctx, ipst); 9929 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9930 for (ipif = ill->ill_ipif; ipif != NULL; 9931 ipif = ipif->ipif_next) { 9932 if (ipif->ipif_zoneid != zoneid && 9933 ipif->ipif_zoneid != ALL_ZONES) 9934 continue; 9935 /* Sum of count from dead IRE_LO* and our current */ 9936 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9937 if (ipif->ipif_ire_local != NULL) { 9938 mae.ipAdEntInfo.ae_ibcnt += 9939 ipif->ipif_ire_local->ire_ib_pkt_count; 9940 } 9941 mae.ipAdEntInfo.ae_obcnt = 0; 9942 mae.ipAdEntInfo.ae_focnt = 0; 9943 9944 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 9945 OCTET_LENGTH); 9946 mae.ipAdEntIfIndex.o_length = 9947 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 9948 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 9949 mae.ipAdEntNetMask = ipif->ipif_net_mask; 9950 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 9951 mae.ipAdEntInfo.ae_subnet_len = 9952 ip_mask_to_plen(ipif->ipif_net_mask); 9953 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 9954 for (bitval = 1; 9955 bitval && 9956 !(bitval & ipif->ipif_brd_addr); 9957 bitval <<= 1) 9958 noop; 9959 mae.ipAdEntBcastAddr = bitval; 9960 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 9961 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 9962 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 9963 mae.ipAdEntInfo.ae_broadcast_addr = 9964 ipif->ipif_brd_addr; 9965 mae.ipAdEntInfo.ae_pp_dst_addr = 9966 ipif->ipif_pp_dst_addr; 9967 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 9968 ill->ill_flags | ill->ill_phyint->phyint_flags; 9969 mae.ipAdEntRetransmitTime = 9970 ill->ill_reachable_retrans_time; 9971 9972 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9973 (char *)&mae, (int)mae_size)) { 9974 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 9975 "allocate %u bytes\n", (uint_t)mae_size)); 9976 } 9977 } 9978 } 9979 rw_exit(&ipst->ips_ill_g_lock); 9980 9981 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9982 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 9983 (int)optp->level, (int)optp->name, (int)optp->len)); 9984 qreply(q, mpctl); 9985 return (mp2ctl); 9986 } 9987 9988 /* IPv6 address information */ 9989 static mblk_t * 9990 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9991 boolean_t legacy_req) 9992 { 9993 struct opthdr *optp; 9994 mblk_t *mp2ctl; 9995 mblk_t *mp_tail = NULL; 9996 ill_t *ill; 9997 ipif_t *ipif; 9998 mib2_ipv6AddrEntry_t mae6; 9999 size_t mae6_size; 10000 zoneid_t zoneid; 10001 ill_walk_context_t ctx; 10002 10003 /* 10004 * make a copy of the original message 10005 */ 10006 mp2ctl = copymsg(mpctl); 10007 10008 mae6_size = (legacy_req) ? 10009 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10010 sizeof (mib2_ipv6AddrEntry_t); 10011 10012 /* ipv6AddrEntryTable */ 10013 10014 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10015 optp->level = MIB2_IP6; 10016 optp->name = MIB2_IP6_ADDR; 10017 zoneid = Q_TO_CONN(q)->conn_zoneid; 10018 10019 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10020 ill = ILL_START_WALK_V6(&ctx, ipst); 10021 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10022 for (ipif = ill->ill_ipif; ipif != NULL; 10023 ipif = ipif->ipif_next) { 10024 if (ipif->ipif_zoneid != zoneid && 10025 ipif->ipif_zoneid != ALL_ZONES) 10026 continue; 10027 /* Sum of count from dead IRE_LO* and our current */ 10028 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10029 if (ipif->ipif_ire_local != NULL) { 10030 mae6.ipv6AddrInfo.ae_ibcnt += 10031 ipif->ipif_ire_local->ire_ib_pkt_count; 10032 } 10033 mae6.ipv6AddrInfo.ae_obcnt = 0; 10034 mae6.ipv6AddrInfo.ae_focnt = 0; 10035 10036 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10037 OCTET_LENGTH); 10038 mae6.ipv6AddrIfIndex.o_length = 10039 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10040 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10041 mae6.ipv6AddrPfxLength = 10042 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10043 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10044 mae6.ipv6AddrInfo.ae_subnet_len = 10045 mae6.ipv6AddrPfxLength; 10046 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10047 10048 /* Type: stateless(1), stateful(2), unknown(3) */ 10049 if (ipif->ipif_flags & IPIF_ADDRCONF) 10050 mae6.ipv6AddrType = 1; 10051 else 10052 mae6.ipv6AddrType = 2; 10053 /* Anycast: true(1), false(2) */ 10054 if (ipif->ipif_flags & IPIF_ANYCAST) 10055 mae6.ipv6AddrAnycastFlag = 1; 10056 else 10057 mae6.ipv6AddrAnycastFlag = 2; 10058 10059 /* 10060 * Address status: preferred(1), deprecated(2), 10061 * invalid(3), inaccessible(4), unknown(5) 10062 */ 10063 if (ipif->ipif_flags & IPIF_NOLOCAL) 10064 mae6.ipv6AddrStatus = 3; 10065 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10066 mae6.ipv6AddrStatus = 2; 10067 else 10068 mae6.ipv6AddrStatus = 1; 10069 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10070 mae6.ipv6AddrInfo.ae_metric = 10071 ipif->ipif_ill->ill_metric; 10072 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10073 ipif->ipif_v6pp_dst_addr; 10074 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10075 ill->ill_flags | ill->ill_phyint->phyint_flags; 10076 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10077 mae6.ipv6AddrIdentifier = ill->ill_token; 10078 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10079 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10080 mae6.ipv6AddrRetransmitTime = 10081 ill->ill_reachable_retrans_time; 10082 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10083 (char *)&mae6, (int)mae6_size)) { 10084 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10085 "allocate %u bytes\n", 10086 (uint_t)mae6_size)); 10087 } 10088 } 10089 } 10090 rw_exit(&ipst->ips_ill_g_lock); 10091 10092 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10093 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10094 (int)optp->level, (int)optp->name, (int)optp->len)); 10095 qreply(q, mpctl); 10096 return (mp2ctl); 10097 } 10098 10099 /* IPv4 multicast group membership. */ 10100 static mblk_t * 10101 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10102 { 10103 struct opthdr *optp; 10104 mblk_t *mp2ctl; 10105 ill_t *ill; 10106 ipif_t *ipif; 10107 ilm_t *ilm; 10108 ip_member_t ipm; 10109 mblk_t *mp_tail = NULL; 10110 ill_walk_context_t ctx; 10111 zoneid_t zoneid; 10112 10113 /* 10114 * make a copy of the original message 10115 */ 10116 mp2ctl = copymsg(mpctl); 10117 zoneid = Q_TO_CONN(q)->conn_zoneid; 10118 10119 /* ipGroupMember table */ 10120 optp = (struct opthdr *)&mpctl->b_rptr[ 10121 sizeof (struct T_optmgmt_ack)]; 10122 optp->level = MIB2_IP; 10123 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10124 10125 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10126 ill = ILL_START_WALK_V4(&ctx, ipst); 10127 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10128 /* Make sure the ill isn't going away. */ 10129 if (!ill_check_and_refhold(ill)) 10130 continue; 10131 rw_exit(&ipst->ips_ill_g_lock); 10132 rw_enter(&ill->ill_mcast_lock, RW_READER); 10133 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10134 if (ilm->ilm_zoneid != zoneid && 10135 ilm->ilm_zoneid != ALL_ZONES) 10136 continue; 10137 10138 /* Is there an ipif for ilm_ifaddr? */ 10139 for (ipif = ill->ill_ipif; ipif != NULL; 10140 ipif = ipif->ipif_next) { 10141 if (!IPIF_IS_CONDEMNED(ipif) && 10142 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10143 ilm->ilm_ifaddr != INADDR_ANY) 10144 break; 10145 } 10146 if (ipif != NULL) { 10147 ipif_get_name(ipif, 10148 ipm.ipGroupMemberIfIndex.o_bytes, 10149 OCTET_LENGTH); 10150 } else { 10151 ill_get_name(ill, 10152 ipm.ipGroupMemberIfIndex.o_bytes, 10153 OCTET_LENGTH); 10154 } 10155 ipm.ipGroupMemberIfIndex.o_length = 10156 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10157 10158 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10159 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10160 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10161 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10162 (char *)&ipm, (int)sizeof (ipm))) { 10163 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10164 "failed to allocate %u bytes\n", 10165 (uint_t)sizeof (ipm))); 10166 } 10167 } 10168 rw_exit(&ill->ill_mcast_lock); 10169 ill_refrele(ill); 10170 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10171 } 10172 rw_exit(&ipst->ips_ill_g_lock); 10173 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10174 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10175 (int)optp->level, (int)optp->name, (int)optp->len)); 10176 qreply(q, mpctl); 10177 return (mp2ctl); 10178 } 10179 10180 /* IPv6 multicast group membership. */ 10181 static mblk_t * 10182 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10183 { 10184 struct opthdr *optp; 10185 mblk_t *mp2ctl; 10186 ill_t *ill; 10187 ilm_t *ilm; 10188 ipv6_member_t ipm6; 10189 mblk_t *mp_tail = NULL; 10190 ill_walk_context_t ctx; 10191 zoneid_t zoneid; 10192 10193 /* 10194 * make a copy of the original message 10195 */ 10196 mp2ctl = copymsg(mpctl); 10197 zoneid = Q_TO_CONN(q)->conn_zoneid; 10198 10199 /* ip6GroupMember table */ 10200 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10201 optp->level = MIB2_IP6; 10202 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10203 10204 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10205 ill = ILL_START_WALK_V6(&ctx, ipst); 10206 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10207 /* Make sure the ill isn't going away. */ 10208 if (!ill_check_and_refhold(ill)) 10209 continue; 10210 rw_exit(&ipst->ips_ill_g_lock); 10211 /* 10212 * Normally we don't have any members on under IPMP interfaces. 10213 * We report them as a debugging aid. 10214 */ 10215 rw_enter(&ill->ill_mcast_lock, RW_READER); 10216 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10217 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10218 if (ilm->ilm_zoneid != zoneid && 10219 ilm->ilm_zoneid != ALL_ZONES) 10220 continue; /* not this zone */ 10221 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10222 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10223 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10224 if (!snmp_append_data2(mpctl->b_cont, 10225 &mp_tail, 10226 (char *)&ipm6, (int)sizeof (ipm6))) { 10227 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10228 "failed to allocate %u bytes\n", 10229 (uint_t)sizeof (ipm6))); 10230 } 10231 } 10232 rw_exit(&ill->ill_mcast_lock); 10233 ill_refrele(ill); 10234 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10235 } 10236 rw_exit(&ipst->ips_ill_g_lock); 10237 10238 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10239 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10240 (int)optp->level, (int)optp->name, (int)optp->len)); 10241 qreply(q, mpctl); 10242 return (mp2ctl); 10243 } 10244 10245 /* IP multicast filtered sources */ 10246 static mblk_t * 10247 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10248 { 10249 struct opthdr *optp; 10250 mblk_t *mp2ctl; 10251 ill_t *ill; 10252 ipif_t *ipif; 10253 ilm_t *ilm; 10254 ip_grpsrc_t ips; 10255 mblk_t *mp_tail = NULL; 10256 ill_walk_context_t ctx; 10257 zoneid_t zoneid; 10258 int i; 10259 slist_t *sl; 10260 10261 /* 10262 * make a copy of the original message 10263 */ 10264 mp2ctl = copymsg(mpctl); 10265 zoneid = Q_TO_CONN(q)->conn_zoneid; 10266 10267 /* ipGroupSource table */ 10268 optp = (struct opthdr *)&mpctl->b_rptr[ 10269 sizeof (struct T_optmgmt_ack)]; 10270 optp->level = MIB2_IP; 10271 optp->name = EXPER_IP_GROUP_SOURCES; 10272 10273 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10274 ill = ILL_START_WALK_V4(&ctx, ipst); 10275 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10276 /* Make sure the ill isn't going away. */ 10277 if (!ill_check_and_refhold(ill)) 10278 continue; 10279 rw_exit(&ipst->ips_ill_g_lock); 10280 rw_enter(&ill->ill_mcast_lock, RW_READER); 10281 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10282 sl = ilm->ilm_filter; 10283 if (ilm->ilm_zoneid != zoneid && 10284 ilm->ilm_zoneid != ALL_ZONES) 10285 continue; 10286 if (SLIST_IS_EMPTY(sl)) 10287 continue; 10288 10289 /* Is there an ipif for ilm_ifaddr? */ 10290 for (ipif = ill->ill_ipif; ipif != NULL; 10291 ipif = ipif->ipif_next) { 10292 if (!IPIF_IS_CONDEMNED(ipif) && 10293 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10294 ilm->ilm_ifaddr != INADDR_ANY) 10295 break; 10296 } 10297 if (ipif != NULL) { 10298 ipif_get_name(ipif, 10299 ips.ipGroupSourceIfIndex.o_bytes, 10300 OCTET_LENGTH); 10301 } else { 10302 ill_get_name(ill, 10303 ips.ipGroupSourceIfIndex.o_bytes, 10304 OCTET_LENGTH); 10305 } 10306 ips.ipGroupSourceIfIndex.o_length = 10307 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10308 10309 ips.ipGroupSourceGroup = ilm->ilm_addr; 10310 for (i = 0; i < sl->sl_numsrc; i++) { 10311 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10312 continue; 10313 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10314 ips.ipGroupSourceAddress); 10315 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10316 (char *)&ips, (int)sizeof (ips)) == 0) { 10317 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10318 " failed to allocate %u bytes\n", 10319 (uint_t)sizeof (ips))); 10320 } 10321 } 10322 } 10323 rw_exit(&ill->ill_mcast_lock); 10324 ill_refrele(ill); 10325 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10326 } 10327 rw_exit(&ipst->ips_ill_g_lock); 10328 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10329 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10330 (int)optp->level, (int)optp->name, (int)optp->len)); 10331 qreply(q, mpctl); 10332 return (mp2ctl); 10333 } 10334 10335 /* IPv6 multicast filtered sources. */ 10336 static mblk_t * 10337 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10338 { 10339 struct opthdr *optp; 10340 mblk_t *mp2ctl; 10341 ill_t *ill; 10342 ilm_t *ilm; 10343 ipv6_grpsrc_t ips6; 10344 mblk_t *mp_tail = NULL; 10345 ill_walk_context_t ctx; 10346 zoneid_t zoneid; 10347 int i; 10348 slist_t *sl; 10349 10350 /* 10351 * make a copy of the original message 10352 */ 10353 mp2ctl = copymsg(mpctl); 10354 zoneid = Q_TO_CONN(q)->conn_zoneid; 10355 10356 /* ip6GroupMember table */ 10357 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10358 optp->level = MIB2_IP6; 10359 optp->name = EXPER_IP6_GROUP_SOURCES; 10360 10361 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10362 ill = ILL_START_WALK_V6(&ctx, ipst); 10363 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10364 /* Make sure the ill isn't going away. */ 10365 if (!ill_check_and_refhold(ill)) 10366 continue; 10367 rw_exit(&ipst->ips_ill_g_lock); 10368 /* 10369 * Normally we don't have any members on under IPMP interfaces. 10370 * We report them as a debugging aid. 10371 */ 10372 rw_enter(&ill->ill_mcast_lock, RW_READER); 10373 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10374 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10375 sl = ilm->ilm_filter; 10376 if (ilm->ilm_zoneid != zoneid && 10377 ilm->ilm_zoneid != ALL_ZONES) 10378 continue; 10379 if (SLIST_IS_EMPTY(sl)) 10380 continue; 10381 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10382 for (i = 0; i < sl->sl_numsrc; i++) { 10383 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10384 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10385 (char *)&ips6, (int)sizeof (ips6))) { 10386 ip1dbg(("ip_snmp_get_mib2_ip6_" 10387 "group_src: failed to allocate " 10388 "%u bytes\n", 10389 (uint_t)sizeof (ips6))); 10390 } 10391 } 10392 } 10393 rw_exit(&ill->ill_mcast_lock); 10394 ill_refrele(ill); 10395 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10396 } 10397 rw_exit(&ipst->ips_ill_g_lock); 10398 10399 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10400 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10401 (int)optp->level, (int)optp->name, (int)optp->len)); 10402 qreply(q, mpctl); 10403 return (mp2ctl); 10404 } 10405 10406 /* Multicast routing virtual interface table. */ 10407 static mblk_t * 10408 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10409 { 10410 struct opthdr *optp; 10411 mblk_t *mp2ctl; 10412 10413 /* 10414 * make a copy of the original message 10415 */ 10416 mp2ctl = copymsg(mpctl); 10417 10418 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10419 optp->level = EXPER_DVMRP; 10420 optp->name = EXPER_DVMRP_VIF; 10421 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10422 ip0dbg(("ip_mroute_vif: failed\n")); 10423 } 10424 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10425 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10426 (int)optp->level, (int)optp->name, (int)optp->len)); 10427 qreply(q, mpctl); 10428 return (mp2ctl); 10429 } 10430 10431 /* Multicast routing table. */ 10432 static mblk_t * 10433 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10434 { 10435 struct opthdr *optp; 10436 mblk_t *mp2ctl; 10437 10438 /* 10439 * make a copy of the original message 10440 */ 10441 mp2ctl = copymsg(mpctl); 10442 10443 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10444 optp->level = EXPER_DVMRP; 10445 optp->name = EXPER_DVMRP_MRT; 10446 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10447 ip0dbg(("ip_mroute_mrt: failed\n")); 10448 } 10449 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10450 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10451 (int)optp->level, (int)optp->name, (int)optp->len)); 10452 qreply(q, mpctl); 10453 return (mp2ctl); 10454 } 10455 10456 /* 10457 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10458 * in one IRE walk. 10459 */ 10460 static mblk_t * 10461 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10462 ip_stack_t *ipst) 10463 { 10464 struct opthdr *optp; 10465 mblk_t *mp2ctl; /* Returned */ 10466 mblk_t *mp3ctl; /* nettomedia */ 10467 mblk_t *mp4ctl; /* routeattrs */ 10468 iproutedata_t ird; 10469 zoneid_t zoneid; 10470 10471 /* 10472 * make copies of the original message 10473 * - mp2ctl is returned unchanged to the caller for his use 10474 * - mpctl is sent upstream as ipRouteEntryTable 10475 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10476 * - mp4ctl is sent upstream as ipRouteAttributeTable 10477 */ 10478 mp2ctl = copymsg(mpctl); 10479 mp3ctl = copymsg(mpctl); 10480 mp4ctl = copymsg(mpctl); 10481 if (mp3ctl == NULL || mp4ctl == NULL) { 10482 freemsg(mp4ctl); 10483 freemsg(mp3ctl); 10484 freemsg(mp2ctl); 10485 freemsg(mpctl); 10486 return (NULL); 10487 } 10488 10489 bzero(&ird, sizeof (ird)); 10490 10491 ird.ird_route.lp_head = mpctl->b_cont; 10492 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10493 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10494 /* 10495 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10496 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10497 * intended a temporary solution until a proper MIB API is provided 10498 * that provides complete filtering/caller-opt-in. 10499 */ 10500 if (level == EXPER_IP_AND_ALL_IRES) 10501 ird.ird_flags |= IRD_REPORT_ALL; 10502 10503 zoneid = Q_TO_CONN(q)->conn_zoneid; 10504 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10505 10506 /* ipRouteEntryTable in mpctl */ 10507 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10508 optp->level = MIB2_IP; 10509 optp->name = MIB2_IP_ROUTE; 10510 optp->len = msgdsize(ird.ird_route.lp_head); 10511 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10512 (int)optp->level, (int)optp->name, (int)optp->len)); 10513 qreply(q, mpctl); 10514 10515 /* ipNetToMediaEntryTable in mp3ctl */ 10516 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10517 10518 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10519 optp->level = MIB2_IP; 10520 optp->name = MIB2_IP_MEDIA; 10521 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10522 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10523 (int)optp->level, (int)optp->name, (int)optp->len)); 10524 qreply(q, mp3ctl); 10525 10526 /* ipRouteAttributeTable in mp4ctl */ 10527 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10528 optp->level = MIB2_IP; 10529 optp->name = EXPER_IP_RTATTR; 10530 optp->len = msgdsize(ird.ird_attrs.lp_head); 10531 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10532 (int)optp->level, (int)optp->name, (int)optp->len)); 10533 if (optp->len == 0) 10534 freemsg(mp4ctl); 10535 else 10536 qreply(q, mp4ctl); 10537 10538 return (mp2ctl); 10539 } 10540 10541 /* 10542 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10543 * ipv6NetToMediaEntryTable in an NDP walk. 10544 */ 10545 static mblk_t * 10546 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10547 ip_stack_t *ipst) 10548 { 10549 struct opthdr *optp; 10550 mblk_t *mp2ctl; /* Returned */ 10551 mblk_t *mp3ctl; /* nettomedia */ 10552 mblk_t *mp4ctl; /* routeattrs */ 10553 iproutedata_t ird; 10554 zoneid_t zoneid; 10555 10556 /* 10557 * make copies of the original message 10558 * - mp2ctl is returned unchanged to the caller for his use 10559 * - mpctl is sent upstream as ipv6RouteEntryTable 10560 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10561 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10562 */ 10563 mp2ctl = copymsg(mpctl); 10564 mp3ctl = copymsg(mpctl); 10565 mp4ctl = copymsg(mpctl); 10566 if (mp3ctl == NULL || mp4ctl == NULL) { 10567 freemsg(mp4ctl); 10568 freemsg(mp3ctl); 10569 freemsg(mp2ctl); 10570 freemsg(mpctl); 10571 return (NULL); 10572 } 10573 10574 bzero(&ird, sizeof (ird)); 10575 10576 ird.ird_route.lp_head = mpctl->b_cont; 10577 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10578 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10579 /* 10580 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10581 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10582 * intended a temporary solution until a proper MIB API is provided 10583 * that provides complete filtering/caller-opt-in. 10584 */ 10585 if (level == EXPER_IP_AND_ALL_IRES) 10586 ird.ird_flags |= IRD_REPORT_ALL; 10587 10588 zoneid = Q_TO_CONN(q)->conn_zoneid; 10589 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10590 10591 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10592 optp->level = MIB2_IP6; 10593 optp->name = MIB2_IP6_ROUTE; 10594 optp->len = msgdsize(ird.ird_route.lp_head); 10595 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10596 (int)optp->level, (int)optp->name, (int)optp->len)); 10597 qreply(q, mpctl); 10598 10599 /* ipv6NetToMediaEntryTable in mp3ctl */ 10600 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10601 10602 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10603 optp->level = MIB2_IP6; 10604 optp->name = MIB2_IP6_MEDIA; 10605 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10606 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10607 (int)optp->level, (int)optp->name, (int)optp->len)); 10608 qreply(q, mp3ctl); 10609 10610 /* ipv6RouteAttributeTable in mp4ctl */ 10611 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10612 optp->level = MIB2_IP6; 10613 optp->name = EXPER_IP_RTATTR; 10614 optp->len = msgdsize(ird.ird_attrs.lp_head); 10615 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10616 (int)optp->level, (int)optp->name, (int)optp->len)); 10617 if (optp->len == 0) 10618 freemsg(mp4ctl); 10619 else 10620 qreply(q, mp4ctl); 10621 10622 return (mp2ctl); 10623 } 10624 10625 /* 10626 * IPv6 mib: One per ill 10627 */ 10628 static mblk_t * 10629 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10630 boolean_t legacy_req) 10631 { 10632 struct opthdr *optp; 10633 mblk_t *mp2ctl; 10634 ill_t *ill; 10635 ill_walk_context_t ctx; 10636 mblk_t *mp_tail = NULL; 10637 mib2_ipv6AddrEntry_t mae6; 10638 mib2_ipIfStatsEntry_t *ise; 10639 size_t ise_size, iae_size; 10640 10641 /* 10642 * Make a copy of the original message 10643 */ 10644 mp2ctl = copymsg(mpctl); 10645 10646 /* fixed length IPv6 structure ... */ 10647 10648 if (legacy_req) { 10649 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10650 mib2_ipIfStatsEntry_t); 10651 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10652 } else { 10653 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10654 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10655 } 10656 10657 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10658 optp->level = MIB2_IP6; 10659 optp->name = 0; 10660 /* Include "unknown interface" ip6_mib */ 10661 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10662 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10663 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10664 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10665 ipst->ips_ipv6_forwarding ? 1 : 2); 10666 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10667 ipst->ips_ipv6_def_hops); 10668 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10669 sizeof (mib2_ipIfStatsEntry_t)); 10670 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10671 sizeof (mib2_ipv6AddrEntry_t)); 10672 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10673 sizeof (mib2_ipv6RouteEntry_t)); 10674 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10675 sizeof (mib2_ipv6NetToMediaEntry_t)); 10676 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10677 sizeof (ipv6_member_t)); 10678 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10679 sizeof (ipv6_grpsrc_t)); 10680 10681 /* 10682 * Synchronize 64- and 32-bit counters 10683 */ 10684 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10685 ipIfStatsHCInReceives); 10686 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10687 ipIfStatsHCInDelivers); 10688 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10689 ipIfStatsHCOutRequests); 10690 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10691 ipIfStatsHCOutForwDatagrams); 10692 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10693 ipIfStatsHCOutMcastPkts); 10694 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10695 ipIfStatsHCInMcastPkts); 10696 10697 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10698 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10699 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10700 (uint_t)ise_size)); 10701 } else if (legacy_req) { 10702 /* Adjust the EntrySize fields for legacy requests. */ 10703 ise = 10704 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10705 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10706 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10707 } 10708 10709 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10710 ill = ILL_START_WALK_V6(&ctx, ipst); 10711 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10712 ill->ill_ip_mib->ipIfStatsIfIndex = 10713 ill->ill_phyint->phyint_ifindex; 10714 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10715 ipst->ips_ipv6_forwarding ? 1 : 2); 10716 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10717 ill->ill_max_hops); 10718 10719 /* 10720 * Synchronize 64- and 32-bit counters 10721 */ 10722 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10723 ipIfStatsHCInReceives); 10724 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10725 ipIfStatsHCInDelivers); 10726 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10727 ipIfStatsHCOutRequests); 10728 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10729 ipIfStatsHCOutForwDatagrams); 10730 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10731 ipIfStatsHCOutMcastPkts); 10732 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10733 ipIfStatsHCInMcastPkts); 10734 10735 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10736 (char *)ill->ill_ip_mib, (int)ise_size)) { 10737 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10738 "%u bytes\n", (uint_t)ise_size)); 10739 } else if (legacy_req) { 10740 /* Adjust the EntrySize fields for legacy requests. */ 10741 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10742 (int)ise_size); 10743 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10744 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10745 } 10746 } 10747 rw_exit(&ipst->ips_ill_g_lock); 10748 10749 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10750 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10751 (int)optp->level, (int)optp->name, (int)optp->len)); 10752 qreply(q, mpctl); 10753 return (mp2ctl); 10754 } 10755 10756 /* 10757 * ICMPv6 mib: One per ill 10758 */ 10759 static mblk_t * 10760 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10761 { 10762 struct opthdr *optp; 10763 mblk_t *mp2ctl; 10764 ill_t *ill; 10765 ill_walk_context_t ctx; 10766 mblk_t *mp_tail = NULL; 10767 /* 10768 * Make a copy of the original message 10769 */ 10770 mp2ctl = copymsg(mpctl); 10771 10772 /* fixed length ICMPv6 structure ... */ 10773 10774 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10775 optp->level = MIB2_ICMP6; 10776 optp->name = 0; 10777 /* Include "unknown interface" icmp6_mib */ 10778 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10779 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10780 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10781 sizeof (mib2_ipv6IfIcmpEntry_t); 10782 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10783 (char *)&ipst->ips_icmp6_mib, 10784 (int)sizeof (ipst->ips_icmp6_mib))) { 10785 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10786 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10787 } 10788 10789 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10790 ill = ILL_START_WALK_V6(&ctx, ipst); 10791 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10792 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10793 ill->ill_phyint->phyint_ifindex; 10794 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10795 (char *)ill->ill_icmp6_mib, 10796 (int)sizeof (*ill->ill_icmp6_mib))) { 10797 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10798 "%u bytes\n", 10799 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10800 } 10801 } 10802 rw_exit(&ipst->ips_ill_g_lock); 10803 10804 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10805 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10806 (int)optp->level, (int)optp->name, (int)optp->len)); 10807 qreply(q, mpctl); 10808 return (mp2ctl); 10809 } 10810 10811 /* 10812 * ire_walk routine to create both ipRouteEntryTable and 10813 * ipRouteAttributeTable in one IRE walk 10814 */ 10815 static void 10816 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10817 { 10818 ill_t *ill; 10819 mib2_ipRouteEntry_t *re; 10820 mib2_ipAttributeEntry_t iaes; 10821 tsol_ire_gw_secattr_t *attrp; 10822 tsol_gc_t *gc = NULL; 10823 tsol_gcgrp_t *gcgrp = NULL; 10824 ip_stack_t *ipst = ire->ire_ipst; 10825 10826 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10827 10828 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10829 if (ire->ire_testhidden) 10830 return; 10831 if (ire->ire_type & IRE_IF_CLONE) 10832 return; 10833 } 10834 10835 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10836 return; 10837 10838 if ((attrp = ire->ire_gw_secattr) != NULL) { 10839 mutex_enter(&attrp->igsa_lock); 10840 if ((gc = attrp->igsa_gc) != NULL) { 10841 gcgrp = gc->gc_grp; 10842 ASSERT(gcgrp != NULL); 10843 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10844 } 10845 mutex_exit(&attrp->igsa_lock); 10846 } 10847 /* 10848 * Return all IRE types for route table... let caller pick and choose 10849 */ 10850 re->ipRouteDest = ire->ire_addr; 10851 ill = ire->ire_ill; 10852 re->ipRouteIfIndex.o_length = 0; 10853 if (ill != NULL) { 10854 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10855 re->ipRouteIfIndex.o_length = 10856 mi_strlen(re->ipRouteIfIndex.o_bytes); 10857 } 10858 re->ipRouteMetric1 = -1; 10859 re->ipRouteMetric2 = -1; 10860 re->ipRouteMetric3 = -1; 10861 re->ipRouteMetric4 = -1; 10862 10863 re->ipRouteNextHop = ire->ire_gateway_addr; 10864 /* indirect(4), direct(3), or invalid(2) */ 10865 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10866 re->ipRouteType = 2; 10867 else if (ire->ire_type & IRE_ONLINK) 10868 re->ipRouteType = 3; 10869 else 10870 re->ipRouteType = 4; 10871 10872 re->ipRouteProto = -1; 10873 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10874 re->ipRouteMask = ire->ire_mask; 10875 re->ipRouteMetric5 = -1; 10876 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10877 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10878 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10879 10880 re->ipRouteInfo.re_frag_flag = 0; 10881 re->ipRouteInfo.re_rtt = 0; 10882 re->ipRouteInfo.re_src_addr = 0; 10883 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10884 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10885 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10886 re->ipRouteInfo.re_flags = ire->ire_flags; 10887 10888 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10889 if (ire->ire_type & IRE_INTERFACE) { 10890 ire_t *child; 10891 10892 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10893 child = ire->ire_dep_children; 10894 while (child != NULL) { 10895 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10896 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10897 child = child->ire_dep_sib_next; 10898 } 10899 rw_exit(&ipst->ips_ire_dep_lock); 10900 } 10901 10902 if (ire->ire_flags & RTF_DYNAMIC) { 10903 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10904 } else { 10905 re->ipRouteInfo.re_ire_type = ire->ire_type; 10906 } 10907 10908 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10909 (char *)re, (int)sizeof (*re))) { 10910 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10911 (uint_t)sizeof (*re))); 10912 } 10913 10914 if (gc != NULL) { 10915 iaes.iae_routeidx = ird->ird_idx; 10916 iaes.iae_doi = gc->gc_db->gcdb_doi; 10917 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10918 10919 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10920 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10921 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 10922 "bytes\n", (uint_t)sizeof (iaes))); 10923 } 10924 } 10925 10926 /* bump route index for next pass */ 10927 ird->ird_idx++; 10928 10929 kmem_free(re, sizeof (*re)); 10930 if (gcgrp != NULL) 10931 rw_exit(&gcgrp->gcgrp_rwlock); 10932 } 10933 10934 /* 10935 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 10936 */ 10937 static void 10938 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 10939 { 10940 ill_t *ill; 10941 mib2_ipv6RouteEntry_t *re; 10942 mib2_ipAttributeEntry_t iaes; 10943 tsol_ire_gw_secattr_t *attrp; 10944 tsol_gc_t *gc = NULL; 10945 tsol_gcgrp_t *gcgrp = NULL; 10946 ip_stack_t *ipst = ire->ire_ipst; 10947 10948 ASSERT(ire->ire_ipversion == IPV6_VERSION); 10949 10950 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10951 if (ire->ire_testhidden) 10952 return; 10953 if (ire->ire_type & IRE_IF_CLONE) 10954 return; 10955 } 10956 10957 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10958 return; 10959 10960 if ((attrp = ire->ire_gw_secattr) != NULL) { 10961 mutex_enter(&attrp->igsa_lock); 10962 if ((gc = attrp->igsa_gc) != NULL) { 10963 gcgrp = gc->gc_grp; 10964 ASSERT(gcgrp != NULL); 10965 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10966 } 10967 mutex_exit(&attrp->igsa_lock); 10968 } 10969 /* 10970 * Return all IRE types for route table... let caller pick and choose 10971 */ 10972 re->ipv6RouteDest = ire->ire_addr_v6; 10973 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 10974 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 10975 re->ipv6RouteIfIndex.o_length = 0; 10976 ill = ire->ire_ill; 10977 if (ill != NULL) { 10978 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 10979 re->ipv6RouteIfIndex.o_length = 10980 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 10981 } 10982 10983 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 10984 10985 mutex_enter(&ire->ire_lock); 10986 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 10987 mutex_exit(&ire->ire_lock); 10988 10989 /* remote(4), local(3), or discard(2) */ 10990 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10991 re->ipv6RouteType = 2; 10992 else if (ire->ire_type & IRE_ONLINK) 10993 re->ipv6RouteType = 3; 10994 else 10995 re->ipv6RouteType = 4; 10996 10997 re->ipv6RouteProtocol = -1; 10998 re->ipv6RoutePolicy = 0; 10999 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11000 re->ipv6RouteNextHopRDI = 0; 11001 re->ipv6RouteWeight = 0; 11002 re->ipv6RouteMetric = 0; 11003 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11004 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11005 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11006 11007 re->ipv6RouteInfo.re_frag_flag = 0; 11008 re->ipv6RouteInfo.re_rtt = 0; 11009 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11010 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11011 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11012 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11013 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11014 11015 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11016 if (ire->ire_type & IRE_INTERFACE) { 11017 ire_t *child; 11018 11019 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11020 child = ire->ire_dep_children; 11021 while (child != NULL) { 11022 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11023 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11024 child = child->ire_dep_sib_next; 11025 } 11026 rw_exit(&ipst->ips_ire_dep_lock); 11027 } 11028 if (ire->ire_flags & RTF_DYNAMIC) { 11029 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11030 } else { 11031 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11032 } 11033 11034 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11035 (char *)re, (int)sizeof (*re))) { 11036 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11037 (uint_t)sizeof (*re))); 11038 } 11039 11040 if (gc != NULL) { 11041 iaes.iae_routeidx = ird->ird_idx; 11042 iaes.iae_doi = gc->gc_db->gcdb_doi; 11043 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11044 11045 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11046 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11047 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11048 "bytes\n", (uint_t)sizeof (iaes))); 11049 } 11050 } 11051 11052 /* bump route index for next pass */ 11053 ird->ird_idx++; 11054 11055 kmem_free(re, sizeof (*re)); 11056 if (gcgrp != NULL) 11057 rw_exit(&gcgrp->gcgrp_rwlock); 11058 } 11059 11060 /* 11061 * ncec_walk routine to create ipv6NetToMediaEntryTable 11062 */ 11063 static int 11064 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11065 { 11066 ill_t *ill; 11067 mib2_ipv6NetToMediaEntry_t ntme; 11068 11069 ill = ncec->ncec_ill; 11070 /* skip arpce entries, and loopback ncec entries */ 11071 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11072 return (0); 11073 /* 11074 * Neighbor cache entry attached to IRE with on-link 11075 * destination. 11076 * We report all IPMP groups on ncec_ill which is normally the upper. 11077 */ 11078 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11079 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11080 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11081 if (ncec->ncec_lladdr != NULL) { 11082 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11083 ntme.ipv6NetToMediaPhysAddress.o_length); 11084 } 11085 /* 11086 * Note: Returns ND_* states. Should be: 11087 * reachable(1), stale(2), delay(3), probe(4), 11088 * invalid(5), unknown(6) 11089 */ 11090 ntme.ipv6NetToMediaState = ncec->ncec_state; 11091 ntme.ipv6NetToMediaLastUpdated = 0; 11092 11093 /* other(1), dynamic(2), static(3), local(4) */ 11094 if (NCE_MYADDR(ncec)) { 11095 ntme.ipv6NetToMediaType = 4; 11096 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11097 ntme.ipv6NetToMediaType = 1; /* proxy */ 11098 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11099 ntme.ipv6NetToMediaType = 3; 11100 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11101 ntme.ipv6NetToMediaType = 1; 11102 } else { 11103 ntme.ipv6NetToMediaType = 2; 11104 } 11105 11106 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11107 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11108 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11109 (uint_t)sizeof (ntme))); 11110 } 11111 return (0); 11112 } 11113 11114 int 11115 nce2ace(ncec_t *ncec) 11116 { 11117 int flags = 0; 11118 11119 if (NCE_ISREACHABLE(ncec)) 11120 flags |= ACE_F_RESOLVED; 11121 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11122 flags |= ACE_F_AUTHORITY; 11123 if (ncec->ncec_flags & NCE_F_PUBLISH) 11124 flags |= ACE_F_PUBLISH; 11125 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11126 flags |= ACE_F_PERMANENT; 11127 if (NCE_MYADDR(ncec)) 11128 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11129 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11130 flags |= ACE_F_UNVERIFIED; 11131 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11132 flags |= ACE_F_AUTHORITY; 11133 if (ncec->ncec_flags & NCE_F_DELAYED) 11134 flags |= ACE_F_DELAYED; 11135 return (flags); 11136 } 11137 11138 /* 11139 * ncec_walk routine to create ipNetToMediaEntryTable 11140 */ 11141 static int 11142 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11143 { 11144 ill_t *ill; 11145 mib2_ipNetToMediaEntry_t ntme; 11146 const char *name = "unknown"; 11147 ipaddr_t ncec_addr; 11148 11149 ill = ncec->ncec_ill; 11150 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11151 ill->ill_net_type == IRE_LOOPBACK) 11152 return (0); 11153 11154 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11155 name = ill->ill_name; 11156 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11157 if (NCE_MYADDR(ncec)) { 11158 ntme.ipNetToMediaType = 4; 11159 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11160 ntme.ipNetToMediaType = 1; 11161 } else { 11162 ntme.ipNetToMediaType = 3; 11163 } 11164 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11165 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11166 ntme.ipNetToMediaIfIndex.o_length); 11167 11168 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11169 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11170 11171 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11172 ncec_addr = INADDR_BROADCAST; 11173 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11174 sizeof (ncec_addr)); 11175 /* 11176 * map all the flags to the ACE counterpart. 11177 */ 11178 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11179 11180 ntme.ipNetToMediaPhysAddress.o_length = 11181 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11182 11183 if (!NCE_ISREACHABLE(ncec)) 11184 ntme.ipNetToMediaPhysAddress.o_length = 0; 11185 else { 11186 if (ncec->ncec_lladdr != NULL) { 11187 bcopy(ncec->ncec_lladdr, 11188 ntme.ipNetToMediaPhysAddress.o_bytes, 11189 ntme.ipNetToMediaPhysAddress.o_length); 11190 } 11191 } 11192 11193 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11194 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11195 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11196 (uint_t)sizeof (ntme))); 11197 } 11198 return (0); 11199 } 11200 11201 /* 11202 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11203 */ 11204 /* ARGSUSED */ 11205 int 11206 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11207 { 11208 switch (level) { 11209 case MIB2_IP: 11210 case MIB2_ICMP: 11211 switch (name) { 11212 default: 11213 break; 11214 } 11215 return (1); 11216 default: 11217 return (1); 11218 } 11219 } 11220 11221 /* 11222 * When there exists both a 64- and 32-bit counter of a particular type 11223 * (i.e., InReceives), only the 64-bit counters are added. 11224 */ 11225 void 11226 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11227 { 11228 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11229 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11230 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11231 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11232 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11233 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11234 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11235 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11236 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11237 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11238 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11239 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11240 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11241 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11242 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11243 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11244 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11245 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11246 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11247 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11248 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11249 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11250 o2->ipIfStatsInWrongIPVersion); 11251 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11252 o2->ipIfStatsInWrongIPVersion); 11253 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11254 o2->ipIfStatsOutSwitchIPVersion); 11255 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11256 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11257 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11258 o2->ipIfStatsHCInForwDatagrams); 11259 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11260 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11261 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11262 o2->ipIfStatsHCOutForwDatagrams); 11263 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11264 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11265 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11266 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11267 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11268 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11269 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11270 o2->ipIfStatsHCOutMcastOctets); 11271 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11272 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11273 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11274 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11275 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11276 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11277 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11278 } 11279 11280 void 11281 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11282 { 11283 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11284 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11285 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11286 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11287 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11288 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11289 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11290 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11291 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11292 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11293 o2->ipv6IfIcmpInRouterSolicits); 11294 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11295 o2->ipv6IfIcmpInRouterAdvertisements); 11296 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11297 o2->ipv6IfIcmpInNeighborSolicits); 11298 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11299 o2->ipv6IfIcmpInNeighborAdvertisements); 11300 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11301 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11302 o2->ipv6IfIcmpInGroupMembQueries); 11303 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11304 o2->ipv6IfIcmpInGroupMembResponses); 11305 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11306 o2->ipv6IfIcmpInGroupMembReductions); 11307 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11308 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11309 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11310 o2->ipv6IfIcmpOutDestUnreachs); 11311 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11312 o2->ipv6IfIcmpOutAdminProhibs); 11313 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11314 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11315 o2->ipv6IfIcmpOutParmProblems); 11316 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11317 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11318 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11319 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11320 o2->ipv6IfIcmpOutRouterSolicits); 11321 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11322 o2->ipv6IfIcmpOutRouterAdvertisements); 11323 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11324 o2->ipv6IfIcmpOutNeighborSolicits); 11325 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11326 o2->ipv6IfIcmpOutNeighborAdvertisements); 11327 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11328 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11329 o2->ipv6IfIcmpOutGroupMembQueries); 11330 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11331 o2->ipv6IfIcmpOutGroupMembResponses); 11332 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11333 o2->ipv6IfIcmpOutGroupMembReductions); 11334 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11335 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11336 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11337 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11338 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11339 o2->ipv6IfIcmpInBadNeighborSolicitations); 11340 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11341 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11342 o2->ipv6IfIcmpInGroupMembTotal); 11343 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11344 o2->ipv6IfIcmpInGroupMembBadQueries); 11345 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11346 o2->ipv6IfIcmpInGroupMembBadReports); 11347 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11348 o2->ipv6IfIcmpInGroupMembOurReports); 11349 } 11350 11351 /* 11352 * Called before the options are updated to check if this packet will 11353 * be source routed from here. 11354 * This routine assumes that the options are well formed i.e. that they 11355 * have already been checked. 11356 */ 11357 boolean_t 11358 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11359 { 11360 ipoptp_t opts; 11361 uchar_t *opt; 11362 uint8_t optval; 11363 uint8_t optlen; 11364 ipaddr_t dst; 11365 11366 if (IS_SIMPLE_IPH(ipha)) { 11367 ip2dbg(("not source routed\n")); 11368 return (B_FALSE); 11369 } 11370 dst = ipha->ipha_dst; 11371 for (optval = ipoptp_first(&opts, ipha); 11372 optval != IPOPT_EOL; 11373 optval = ipoptp_next(&opts)) { 11374 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11375 opt = opts.ipoptp_cur; 11376 optlen = opts.ipoptp_len; 11377 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11378 optval, optlen)); 11379 switch (optval) { 11380 uint32_t off; 11381 case IPOPT_SSRR: 11382 case IPOPT_LSRR: 11383 /* 11384 * If dst is one of our addresses and there are some 11385 * entries left in the source route return (true). 11386 */ 11387 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11388 ip2dbg(("ip_source_routed: not next" 11389 " source route 0x%x\n", 11390 ntohl(dst))); 11391 return (B_FALSE); 11392 } 11393 off = opt[IPOPT_OFFSET]; 11394 off--; 11395 if (optlen < IP_ADDR_LEN || 11396 off > optlen - IP_ADDR_LEN) { 11397 /* End of source route */ 11398 ip1dbg(("ip_source_routed: end of SR\n")); 11399 return (B_FALSE); 11400 } 11401 return (B_TRUE); 11402 } 11403 } 11404 ip2dbg(("not source routed\n")); 11405 return (B_FALSE); 11406 } 11407 11408 /* 11409 * ip_unbind is called by the transports to remove a conn from 11410 * the fanout table. 11411 */ 11412 void 11413 ip_unbind(conn_t *connp) 11414 { 11415 11416 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11417 11418 if (is_system_labeled() && connp->conn_anon_port) { 11419 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11420 connp->conn_mlp_type, connp->conn_proto, 11421 ntohs(connp->conn_lport), B_FALSE); 11422 connp->conn_anon_port = 0; 11423 } 11424 connp->conn_mlp_type = mlptSingle; 11425 11426 ipcl_hash_remove(connp); 11427 } 11428 11429 /* 11430 * Used for deciding the MSS size for the upper layer. Thus 11431 * we need to check the outbound policy values in the conn. 11432 */ 11433 int 11434 conn_ipsec_length(conn_t *connp) 11435 { 11436 ipsec_latch_t *ipl; 11437 11438 ipl = connp->conn_latch; 11439 if (ipl == NULL) 11440 return (0); 11441 11442 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11443 return (0); 11444 11445 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11446 } 11447 11448 /* 11449 * Returns an estimate of the IPsec headers size. This is used if 11450 * we don't want to call into IPsec to get the exact size. 11451 */ 11452 int 11453 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11454 { 11455 ipsec_action_t *a; 11456 11457 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11458 return (0); 11459 11460 a = ixa->ixa_ipsec_action; 11461 if (a == NULL) { 11462 ASSERT(ixa->ixa_ipsec_policy != NULL); 11463 a = ixa->ixa_ipsec_policy->ipsp_act; 11464 } 11465 ASSERT(a != NULL); 11466 11467 return (a->ipa_ovhd); 11468 } 11469 11470 /* 11471 * If there are any source route options, return the true final 11472 * destination. Otherwise, return the destination. 11473 */ 11474 ipaddr_t 11475 ip_get_dst(ipha_t *ipha) 11476 { 11477 ipoptp_t opts; 11478 uchar_t *opt; 11479 uint8_t optval; 11480 uint8_t optlen; 11481 ipaddr_t dst; 11482 uint32_t off; 11483 11484 dst = ipha->ipha_dst; 11485 11486 if (IS_SIMPLE_IPH(ipha)) 11487 return (dst); 11488 11489 for (optval = ipoptp_first(&opts, ipha); 11490 optval != IPOPT_EOL; 11491 optval = ipoptp_next(&opts)) { 11492 opt = opts.ipoptp_cur; 11493 optlen = opts.ipoptp_len; 11494 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11495 switch (optval) { 11496 case IPOPT_SSRR: 11497 case IPOPT_LSRR: 11498 off = opt[IPOPT_OFFSET]; 11499 /* 11500 * If one of the conditions is true, it means 11501 * end of options and dst already has the right 11502 * value. 11503 */ 11504 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11505 off = optlen - IP_ADDR_LEN; 11506 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11507 } 11508 return (dst); 11509 default: 11510 break; 11511 } 11512 } 11513 11514 return (dst); 11515 } 11516 11517 /* 11518 * Outbound IP fragmentation routine. 11519 * Assumes the caller has checked whether or not fragmentation should 11520 * be allowed. Here we copy the DF bit from the header to all the generated 11521 * fragments. 11522 */ 11523 int 11524 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11525 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11526 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11527 { 11528 int i1; 11529 int hdr_len; 11530 mblk_t *hdr_mp; 11531 ipha_t *ipha; 11532 int ip_data_end; 11533 int len; 11534 mblk_t *mp = mp_orig; 11535 int offset; 11536 ill_t *ill = nce->nce_ill; 11537 ip_stack_t *ipst = ill->ill_ipst; 11538 mblk_t *carve_mp; 11539 uint32_t frag_flag; 11540 uint_t priority = mp->b_band; 11541 int error = 0; 11542 11543 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11544 11545 if (pkt_len != msgdsize(mp)) { 11546 ip0dbg(("Packet length mismatch: %d, %ld\n", 11547 pkt_len, msgdsize(mp))); 11548 freemsg(mp); 11549 return (EINVAL); 11550 } 11551 11552 if (max_frag == 0) { 11553 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11555 ip_drop_output("FragFails: zero max_frag", mp, ill); 11556 freemsg(mp); 11557 return (EINVAL); 11558 } 11559 11560 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11561 ipha = (ipha_t *)mp->b_rptr; 11562 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11563 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11564 11565 /* 11566 * Establish the starting offset. May not be zero if we are fragging 11567 * a fragment that is being forwarded. 11568 */ 11569 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11570 11571 /* TODO why is this test needed? */ 11572 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11573 /* TODO: notify ulp somehow */ 11574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11575 ip_drop_output("FragFails: bad starting offset", mp, ill); 11576 freemsg(mp); 11577 return (EINVAL); 11578 } 11579 11580 hdr_len = IPH_HDR_LENGTH(ipha); 11581 ipha->ipha_hdr_checksum = 0; 11582 11583 /* 11584 * Establish the number of bytes maximum per frag, after putting 11585 * in the header. 11586 */ 11587 len = (max_frag - hdr_len) & ~7; 11588 11589 /* Get a copy of the header for the trailing frags */ 11590 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11591 mp); 11592 if (hdr_mp == NULL) { 11593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11594 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11595 freemsg(mp); 11596 return (ENOBUFS); 11597 } 11598 11599 /* Store the starting offset, with the MoreFrags flag. */ 11600 i1 = offset | IPH_MF | frag_flag; 11601 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11602 11603 /* Establish the ending byte offset, based on the starting offset. */ 11604 offset <<= 3; 11605 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11606 11607 /* Store the length of the first fragment in the IP header. */ 11608 i1 = len + hdr_len; 11609 ASSERT(i1 <= IP_MAXPACKET); 11610 ipha->ipha_length = htons((uint16_t)i1); 11611 11612 /* 11613 * Compute the IP header checksum for the first frag. We have to 11614 * watch out that we stop at the end of the header. 11615 */ 11616 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11617 11618 /* 11619 * Now carve off the first frag. Note that this will include the 11620 * original IP header. 11621 */ 11622 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11623 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11624 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11625 freeb(hdr_mp); 11626 freemsg(mp_orig); 11627 return (ENOBUFS); 11628 } 11629 11630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11631 11632 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11633 ixa_cookie); 11634 if (error != 0 && error != EWOULDBLOCK) { 11635 /* No point in sending the other fragments */ 11636 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11637 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11638 freeb(hdr_mp); 11639 freemsg(mp_orig); 11640 return (error); 11641 } 11642 11643 /* No need to redo state machine in loop */ 11644 ixaflags &= ~IXAF_REACH_CONF; 11645 11646 /* Advance the offset to the second frag starting point. */ 11647 offset += len; 11648 /* 11649 * Update hdr_len from the copied header - there might be less options 11650 * in the later fragments. 11651 */ 11652 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11653 /* Loop until done. */ 11654 for (;;) { 11655 uint16_t offset_and_flags; 11656 uint16_t ip_len; 11657 11658 if (ip_data_end - offset > len) { 11659 /* 11660 * Carve off the appropriate amount from the original 11661 * datagram. 11662 */ 11663 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11664 mp = NULL; 11665 break; 11666 } 11667 /* 11668 * More frags after this one. Get another copy 11669 * of the header. 11670 */ 11671 if (carve_mp->b_datap->db_ref == 1 && 11672 hdr_mp->b_wptr - hdr_mp->b_rptr < 11673 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11674 /* Inline IP header */ 11675 carve_mp->b_rptr -= hdr_mp->b_wptr - 11676 hdr_mp->b_rptr; 11677 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11678 hdr_mp->b_wptr - hdr_mp->b_rptr); 11679 mp = carve_mp; 11680 } else { 11681 if (!(mp = copyb(hdr_mp))) { 11682 freemsg(carve_mp); 11683 break; 11684 } 11685 /* Get priority marking, if any. */ 11686 mp->b_band = priority; 11687 mp->b_cont = carve_mp; 11688 } 11689 ipha = (ipha_t *)mp->b_rptr; 11690 offset_and_flags = IPH_MF; 11691 } else { 11692 /* 11693 * Last frag. Consume the header. Set len to 11694 * the length of this last piece. 11695 */ 11696 len = ip_data_end - offset; 11697 11698 /* 11699 * Carve off the appropriate amount from the original 11700 * datagram. 11701 */ 11702 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11703 mp = NULL; 11704 break; 11705 } 11706 if (carve_mp->b_datap->db_ref == 1 && 11707 hdr_mp->b_wptr - hdr_mp->b_rptr < 11708 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11709 /* Inline IP header */ 11710 carve_mp->b_rptr -= hdr_mp->b_wptr - 11711 hdr_mp->b_rptr; 11712 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11713 hdr_mp->b_wptr - hdr_mp->b_rptr); 11714 mp = carve_mp; 11715 freeb(hdr_mp); 11716 hdr_mp = mp; 11717 } else { 11718 mp = hdr_mp; 11719 /* Get priority marking, if any. */ 11720 mp->b_band = priority; 11721 mp->b_cont = carve_mp; 11722 } 11723 ipha = (ipha_t *)mp->b_rptr; 11724 /* A frag of a frag might have IPH_MF non-zero */ 11725 offset_and_flags = 11726 ntohs(ipha->ipha_fragment_offset_and_flags) & 11727 IPH_MF; 11728 } 11729 offset_and_flags |= (uint16_t)(offset >> 3); 11730 offset_and_flags |= (uint16_t)frag_flag; 11731 /* Store the offset and flags in the IP header. */ 11732 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11733 11734 /* Store the length in the IP header. */ 11735 ip_len = (uint16_t)(len + hdr_len); 11736 ipha->ipha_length = htons(ip_len); 11737 11738 /* 11739 * Set the IP header checksum. Note that mp is just 11740 * the header, so this is easy to pass to ip_csum. 11741 */ 11742 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11743 11744 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11745 11746 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11747 nolzid, ixa_cookie); 11748 /* All done if we just consumed the hdr_mp. */ 11749 if (mp == hdr_mp) { 11750 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11751 return (error); 11752 } 11753 if (error != 0 && error != EWOULDBLOCK) { 11754 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11755 mblk_t *, hdr_mp); 11756 /* No point in sending the other fragments */ 11757 break; 11758 } 11759 11760 /* Otherwise, advance and loop. */ 11761 offset += len; 11762 } 11763 /* Clean up following allocation failure. */ 11764 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11765 ip_drop_output("FragFails: loop ended", NULL, ill); 11766 if (mp != hdr_mp) 11767 freeb(hdr_mp); 11768 if (mp != mp_orig) 11769 freemsg(mp_orig); 11770 return (error); 11771 } 11772 11773 /* 11774 * Copy the header plus those options which have the copy bit set 11775 */ 11776 static mblk_t * 11777 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11778 mblk_t *src) 11779 { 11780 mblk_t *mp; 11781 uchar_t *up; 11782 11783 /* 11784 * Quick check if we need to look for options without the copy bit 11785 * set 11786 */ 11787 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11788 if (!mp) 11789 return (mp); 11790 mp->b_rptr += ipst->ips_ip_wroff_extra; 11791 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11792 bcopy(rptr, mp->b_rptr, hdr_len); 11793 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11794 return (mp); 11795 } 11796 up = mp->b_rptr; 11797 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11798 up += IP_SIMPLE_HDR_LENGTH; 11799 rptr += IP_SIMPLE_HDR_LENGTH; 11800 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11801 while (hdr_len > 0) { 11802 uint32_t optval; 11803 uint32_t optlen; 11804 11805 optval = *rptr; 11806 if (optval == IPOPT_EOL) 11807 break; 11808 if (optval == IPOPT_NOP) 11809 optlen = 1; 11810 else 11811 optlen = rptr[1]; 11812 if (optval & IPOPT_COPY) { 11813 bcopy(rptr, up, optlen); 11814 up += optlen; 11815 } 11816 rptr += optlen; 11817 hdr_len -= optlen; 11818 } 11819 /* 11820 * Make sure that we drop an even number of words by filling 11821 * with EOL to the next word boundary. 11822 */ 11823 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11824 hdr_len & 0x3; hdr_len++) 11825 *up++ = IPOPT_EOL; 11826 mp->b_wptr = up; 11827 /* Update header length */ 11828 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11829 return (mp); 11830 } 11831 11832 /* 11833 * Update any source route, record route, or timestamp options when 11834 * sending a packet back to ourselves. 11835 * Check that we are at end of strict source route. 11836 * The options have been sanity checked by ip_output_options(). 11837 */ 11838 void 11839 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11840 { 11841 ipoptp_t opts; 11842 uchar_t *opt; 11843 uint8_t optval; 11844 uint8_t optlen; 11845 ipaddr_t dst; 11846 uint32_t ts; 11847 timestruc_t now; 11848 11849 for (optval = ipoptp_first(&opts, ipha); 11850 optval != IPOPT_EOL; 11851 optval = ipoptp_next(&opts)) { 11852 opt = opts.ipoptp_cur; 11853 optlen = opts.ipoptp_len; 11854 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11855 switch (optval) { 11856 uint32_t off; 11857 case IPOPT_SSRR: 11858 case IPOPT_LSRR: 11859 off = opt[IPOPT_OFFSET]; 11860 off--; 11861 if (optlen < IP_ADDR_LEN || 11862 off > optlen - IP_ADDR_LEN) { 11863 /* End of source route */ 11864 break; 11865 } 11866 /* 11867 * This will only happen if two consecutive entries 11868 * in the source route contains our address or if 11869 * it is a packet with a loose source route which 11870 * reaches us before consuming the whole source route 11871 */ 11872 11873 if (optval == IPOPT_SSRR) { 11874 return; 11875 } 11876 /* 11877 * Hack: instead of dropping the packet truncate the 11878 * source route to what has been used by filling the 11879 * rest with IPOPT_NOP. 11880 */ 11881 opt[IPOPT_OLEN] = (uint8_t)off; 11882 while (off < optlen) { 11883 opt[off++] = IPOPT_NOP; 11884 } 11885 break; 11886 case IPOPT_RR: 11887 off = opt[IPOPT_OFFSET]; 11888 off--; 11889 if (optlen < IP_ADDR_LEN || 11890 off > optlen - IP_ADDR_LEN) { 11891 /* No more room - ignore */ 11892 ip1dbg(( 11893 "ip_output_local_options: end of RR\n")); 11894 break; 11895 } 11896 dst = htonl(INADDR_LOOPBACK); 11897 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11898 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11899 break; 11900 case IPOPT_TS: 11901 /* Insert timestamp if there is romm */ 11902 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11903 case IPOPT_TS_TSONLY: 11904 off = IPOPT_TS_TIMELEN; 11905 break; 11906 case IPOPT_TS_PRESPEC: 11907 case IPOPT_TS_PRESPEC_RFC791: 11908 /* Verify that the address matched */ 11909 off = opt[IPOPT_OFFSET] - 1; 11910 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11911 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11912 /* Not for us */ 11913 break; 11914 } 11915 /* FALLTHRU */ 11916 case IPOPT_TS_TSANDADDR: 11917 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11918 break; 11919 default: 11920 /* 11921 * ip_*put_options should have already 11922 * dropped this packet. 11923 */ 11924 cmn_err(CE_PANIC, "ip_output_local_options: " 11925 "unknown IT - bug in ip_output_options?\n"); 11926 return; /* Keep "lint" happy */ 11927 } 11928 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 11929 /* Increase overflow counter */ 11930 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 11931 opt[IPOPT_POS_OV_FLG] = (uint8_t) 11932 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 11933 (off << 4); 11934 break; 11935 } 11936 off = opt[IPOPT_OFFSET] - 1; 11937 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11938 case IPOPT_TS_PRESPEC: 11939 case IPOPT_TS_PRESPEC_RFC791: 11940 case IPOPT_TS_TSANDADDR: 11941 dst = htonl(INADDR_LOOPBACK); 11942 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11943 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11944 /* FALLTHRU */ 11945 case IPOPT_TS_TSONLY: 11946 off = opt[IPOPT_OFFSET] - 1; 11947 /* Compute # of milliseconds since midnight */ 11948 gethrestime(&now); 11949 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 11950 now.tv_nsec / (NANOSEC / MILLISEC); 11951 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 11952 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 11953 break; 11954 } 11955 break; 11956 } 11957 } 11958 } 11959 11960 /* 11961 * Prepend an M_DATA fastpath header, and if none present prepend a 11962 * DL_UNITDATA_REQ. Frees the mblk on failure. 11963 * 11964 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 11965 * If there is a change to them, the nce will be deleted (condemned) and 11966 * a new nce_t will be created when packets are sent. Thus we need no locks 11967 * to access those fields. 11968 * 11969 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 11970 * we place b_band in dl_priority.dl_max. 11971 */ 11972 static mblk_t * 11973 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 11974 { 11975 uint_t hlen; 11976 mblk_t *mp1; 11977 uint_t priority; 11978 uchar_t *rptr; 11979 11980 rptr = mp->b_rptr; 11981 11982 ASSERT(DB_TYPE(mp) == M_DATA); 11983 priority = mp->b_band; 11984 11985 ASSERT(nce != NULL); 11986 if ((mp1 = nce->nce_fp_mp) != NULL) { 11987 hlen = MBLKL(mp1); 11988 /* 11989 * Check if we have enough room to prepend fastpath 11990 * header 11991 */ 11992 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 11993 rptr -= hlen; 11994 bcopy(mp1->b_rptr, rptr, hlen); 11995 /* 11996 * Set the b_rptr to the start of the link layer 11997 * header 11998 */ 11999 mp->b_rptr = rptr; 12000 return (mp); 12001 } 12002 mp1 = copyb(mp1); 12003 if (mp1 == NULL) { 12004 ill_t *ill = nce->nce_ill; 12005 12006 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12007 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12008 freemsg(mp); 12009 return (NULL); 12010 } 12011 mp1->b_band = priority; 12012 mp1->b_cont = mp; 12013 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12014 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12015 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12016 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12017 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12018 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12019 /* 12020 * XXX disable ICK_VALID and compute checksum 12021 * here; can happen if nce_fp_mp changes and 12022 * it can't be copied now due to insufficient 12023 * space. (unlikely, fp mp can change, but it 12024 * does not increase in length) 12025 */ 12026 return (mp1); 12027 } 12028 mp1 = copyb(nce->nce_dlur_mp); 12029 12030 if (mp1 == NULL) { 12031 ill_t *ill = nce->nce_ill; 12032 12033 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12034 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12035 freemsg(mp); 12036 return (NULL); 12037 } 12038 mp1->b_cont = mp; 12039 if (priority != 0) { 12040 mp1->b_band = priority; 12041 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12042 priority; 12043 } 12044 return (mp1); 12045 #undef rptr 12046 } 12047 12048 /* 12049 * Finish the outbound IPsec processing. This function is called from 12050 * ipsec_out_process() if the IPsec packet was processed 12051 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12052 * asynchronously. 12053 * 12054 * This is common to IPv4 and IPv6. 12055 */ 12056 int 12057 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12058 { 12059 iaflags_t ixaflags = ixa->ixa_flags; 12060 uint_t pktlen; 12061 12062 12063 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12064 if (ixaflags & IXAF_IS_IPV4) { 12065 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12066 12067 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12068 pktlen = ntohs(ipha->ipha_length); 12069 } else { 12070 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12071 12072 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12073 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12074 } 12075 12076 /* 12077 * We release any hard reference on the SAs here to make 12078 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12079 * on the SAs. 12080 * If in the future we want the hard latching of the SAs in the 12081 * ip_xmit_attr_t then we should remove this. 12082 */ 12083 if (ixa->ixa_ipsec_esp_sa != NULL) { 12084 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12085 ixa->ixa_ipsec_esp_sa = NULL; 12086 } 12087 if (ixa->ixa_ipsec_ah_sa != NULL) { 12088 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12089 ixa->ixa_ipsec_ah_sa = NULL; 12090 } 12091 12092 /* Do we need to fragment? */ 12093 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12094 pktlen > ixa->ixa_fragsize) { 12095 if (ixaflags & IXAF_IS_IPV4) { 12096 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12097 /* 12098 * We check for the DF case in ipsec_out_process 12099 * hence this only handles the non-DF case. 12100 */ 12101 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12102 pktlen, ixa->ixa_fragsize, 12103 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12104 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12105 &ixa->ixa_cookie)); 12106 } else { 12107 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12108 if (mp == NULL) { 12109 /* MIB and ip_drop_output already done */ 12110 return (ENOMEM); 12111 } 12112 pktlen += sizeof (ip6_frag_t); 12113 if (pktlen > ixa->ixa_fragsize) { 12114 return (ip_fragment_v6(mp, ixa->ixa_nce, 12115 ixa->ixa_flags, pktlen, 12116 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12117 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12118 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12119 } 12120 } 12121 } 12122 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12123 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12124 ixa->ixa_no_loop_zoneid, NULL)); 12125 } 12126 12127 /* 12128 * Finish the inbound IPsec processing. This function is called from 12129 * ipsec_out_process() if the IPsec packet was processed 12130 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12131 * asynchronously. 12132 * 12133 * This is common to IPv4 and IPv6. 12134 */ 12135 void 12136 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12137 { 12138 iaflags_t iraflags = ira->ira_flags; 12139 12140 /* Length might have changed */ 12141 if (iraflags & IRAF_IS_IPV4) { 12142 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12143 12144 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12145 ira->ira_pktlen = ntohs(ipha->ipha_length); 12146 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12147 ira->ira_protocol = ipha->ipha_protocol; 12148 12149 ip_fanout_v4(mp, ipha, ira); 12150 } else { 12151 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12152 uint8_t *nexthdrp; 12153 12154 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12155 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12156 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12157 &nexthdrp)) { 12158 /* Malformed packet */ 12159 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12160 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12161 freemsg(mp); 12162 return; 12163 } 12164 ira->ira_protocol = *nexthdrp; 12165 ip_fanout_v6(mp, ip6h, ira); 12166 } 12167 } 12168 12169 /* 12170 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12171 * 12172 * If this function returns B_TRUE, the requested SA's have been filled 12173 * into the ixa_ipsec_*_sa pointers. 12174 * 12175 * If the function returns B_FALSE, the packet has been "consumed", most 12176 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12177 * 12178 * The SA references created by the protocol-specific "select" 12179 * function will be released in ip_output_post_ipsec. 12180 */ 12181 static boolean_t 12182 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12183 { 12184 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12185 ipsec_policy_t *pp; 12186 ipsec_action_t *ap; 12187 12188 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12189 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12190 (ixa->ixa_ipsec_action != NULL)); 12191 12192 ap = ixa->ixa_ipsec_action; 12193 if (ap == NULL) { 12194 pp = ixa->ixa_ipsec_policy; 12195 ASSERT(pp != NULL); 12196 ap = pp->ipsp_act; 12197 ASSERT(ap != NULL); 12198 } 12199 12200 /* 12201 * We have an action. now, let's select SA's. 12202 * A side effect of setting ixa_ipsec_*_sa is that it will 12203 * be cached in the conn_t. 12204 */ 12205 if (ap->ipa_want_esp) { 12206 if (ixa->ixa_ipsec_esp_sa == NULL) { 12207 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12208 IPPROTO_ESP); 12209 } 12210 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12211 } 12212 12213 if (ap->ipa_want_ah) { 12214 if (ixa->ixa_ipsec_ah_sa == NULL) { 12215 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12216 IPPROTO_AH); 12217 } 12218 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12219 /* 12220 * The ESP and AH processing order needs to be preserved 12221 * when both protocols are required (ESP should be applied 12222 * before AH for an outbound packet). Force an ESP ACQUIRE 12223 * when both ESP and AH are required, and an AH ACQUIRE 12224 * is needed. 12225 */ 12226 if (ap->ipa_want_esp && need_ah_acquire) 12227 need_esp_acquire = B_TRUE; 12228 } 12229 12230 /* 12231 * Send an ACQUIRE (extended, regular, or both) if we need one. 12232 * Release SAs that got referenced, but will not be used until we 12233 * acquire _all_ of the SAs we need. 12234 */ 12235 if (need_ah_acquire || need_esp_acquire) { 12236 if (ixa->ixa_ipsec_ah_sa != NULL) { 12237 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12238 ixa->ixa_ipsec_ah_sa = NULL; 12239 } 12240 if (ixa->ixa_ipsec_esp_sa != NULL) { 12241 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12242 ixa->ixa_ipsec_esp_sa = NULL; 12243 } 12244 12245 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12246 return (B_FALSE); 12247 } 12248 12249 return (B_TRUE); 12250 } 12251 12252 /* 12253 * Handle IPsec output processing. 12254 * This function is only entered once for a given packet. 12255 * We try to do things synchronously, but if we need to have user-level 12256 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12257 * will be completed 12258 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12259 * - when asynchronous ESP is done it will do AH 12260 * 12261 * In all cases we come back in ip_output_post_ipsec() to fragment and 12262 * send out the packet. 12263 */ 12264 int 12265 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12266 { 12267 ill_t *ill = ixa->ixa_nce->nce_ill; 12268 ip_stack_t *ipst = ixa->ixa_ipst; 12269 ipsec_stack_t *ipss; 12270 ipsec_policy_t *pp; 12271 ipsec_action_t *ap; 12272 12273 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12274 12275 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12276 (ixa->ixa_ipsec_action != NULL)); 12277 12278 ipss = ipst->ips_netstack->netstack_ipsec; 12279 if (!ipsec_loaded(ipss)) { 12280 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12281 ip_drop_packet(mp, B_TRUE, ill, 12282 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12283 &ipss->ipsec_dropper); 12284 return (ENOTSUP); 12285 } 12286 12287 ap = ixa->ixa_ipsec_action; 12288 if (ap == NULL) { 12289 pp = ixa->ixa_ipsec_policy; 12290 ASSERT(pp != NULL); 12291 ap = pp->ipsp_act; 12292 ASSERT(ap != NULL); 12293 } 12294 12295 /* Handle explicit drop action and bypass. */ 12296 switch (ap->ipa_act.ipa_type) { 12297 case IPSEC_ACT_DISCARD: 12298 case IPSEC_ACT_REJECT: 12299 ip_drop_packet(mp, B_FALSE, ill, 12300 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12301 return (EHOSTUNREACH); /* IPsec policy failure */ 12302 case IPSEC_ACT_BYPASS: 12303 return (ip_output_post_ipsec(mp, ixa)); 12304 } 12305 12306 /* 12307 * The order of processing is first insert a IP header if needed. 12308 * Then insert the ESP header and then the AH header. 12309 */ 12310 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12311 /* 12312 * First get the outer IP header before sending 12313 * it to ESP. 12314 */ 12315 ipha_t *oipha, *iipha; 12316 mblk_t *outer_mp, *inner_mp; 12317 12318 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12319 (void) mi_strlog(ill->ill_rq, 0, 12320 SL_ERROR|SL_TRACE|SL_CONSOLE, 12321 "ipsec_out_process: " 12322 "Self-Encapsulation failed: Out of memory\n"); 12323 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12324 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12325 freemsg(mp); 12326 return (ENOBUFS); 12327 } 12328 inner_mp = mp; 12329 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12330 oipha = (ipha_t *)outer_mp->b_rptr; 12331 iipha = (ipha_t *)inner_mp->b_rptr; 12332 *oipha = *iipha; 12333 outer_mp->b_wptr += sizeof (ipha_t); 12334 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12335 sizeof (ipha_t)); 12336 oipha->ipha_protocol = IPPROTO_ENCAP; 12337 oipha->ipha_version_and_hdr_length = 12338 IP_SIMPLE_HDR_VERSION; 12339 oipha->ipha_hdr_checksum = 0; 12340 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12341 outer_mp->b_cont = inner_mp; 12342 mp = outer_mp; 12343 12344 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12345 } 12346 12347 /* If we need to wait for a SA then we can't return any errno */ 12348 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12349 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12350 !ipsec_out_select_sa(mp, ixa)) 12351 return (0); 12352 12353 /* 12354 * By now, we know what SA's to use. Toss over to ESP & AH 12355 * to do the heavy lifting. 12356 */ 12357 if (ap->ipa_want_esp) { 12358 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12359 12360 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12361 if (mp == NULL) { 12362 /* 12363 * Either it failed or is pending. In the former case 12364 * ipIfStatsInDiscards was increased. 12365 */ 12366 return (0); 12367 } 12368 } 12369 12370 if (ap->ipa_want_ah) { 12371 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12372 12373 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12374 if (mp == NULL) { 12375 /* 12376 * Either it failed or is pending. In the former case 12377 * ipIfStatsInDiscards was increased. 12378 */ 12379 return (0); 12380 } 12381 } 12382 /* 12383 * We are done with IPsec processing. Send it over 12384 * the wire. 12385 */ 12386 return (ip_output_post_ipsec(mp, ixa)); 12387 } 12388 12389 /* 12390 * ioctls that go through a down/up sequence may need to wait for the down 12391 * to complete. This involves waiting for the ire and ipif refcnts to go down 12392 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12393 */ 12394 /* ARGSUSED */ 12395 void 12396 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12397 { 12398 struct iocblk *iocp; 12399 mblk_t *mp1; 12400 ip_ioctl_cmd_t *ipip; 12401 int err; 12402 sin_t *sin; 12403 struct lifreq *lifr; 12404 struct ifreq *ifr; 12405 12406 iocp = (struct iocblk *)mp->b_rptr; 12407 ASSERT(ipsq != NULL); 12408 /* Existence of mp1 verified in ip_wput_nondata */ 12409 mp1 = mp->b_cont->b_cont; 12410 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12411 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12412 /* 12413 * Special case where ipx_current_ipif is not set: 12414 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12415 * We are here as were not able to complete the operation in 12416 * ipif_set_values because we could not become exclusive on 12417 * the new ipsq. 12418 */ 12419 ill_t *ill = q->q_ptr; 12420 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12421 } 12422 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12423 12424 if (ipip->ipi_cmd_type == IF_CMD) { 12425 /* This a old style SIOC[GS]IF* command */ 12426 ifr = (struct ifreq *)mp1->b_rptr; 12427 sin = (sin_t *)&ifr->ifr_addr; 12428 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12429 /* This a new style SIOC[GS]LIF* command */ 12430 lifr = (struct lifreq *)mp1->b_rptr; 12431 sin = (sin_t *)&lifr->lifr_addr; 12432 } else { 12433 sin = NULL; 12434 } 12435 12436 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12437 q, mp, ipip, mp1->b_rptr); 12438 12439 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12440 int, ipip->ipi_cmd, 12441 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12442 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12443 12444 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12445 } 12446 12447 /* 12448 * ioctl processing 12449 * 12450 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12451 * the ioctl command in the ioctl tables, determines the copyin data size 12452 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12453 * 12454 * ioctl processing then continues when the M_IOCDATA makes its way down to 12455 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12456 * associated 'conn' is refheld till the end of the ioctl and the general 12457 * ioctl processing function ip_process_ioctl() is called to extract the 12458 * arguments and process the ioctl. To simplify extraction, ioctl commands 12459 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12460 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12461 * is used to extract the ioctl's arguments. 12462 * 12463 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12464 * so goes thru the serialization primitive ipsq_try_enter. Then the 12465 * appropriate function to handle the ioctl is called based on the entry in 12466 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12467 * which also refreleases the 'conn' that was refheld at the start of the 12468 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12469 * 12470 * Many exclusive ioctls go thru an internal down up sequence as part of 12471 * the operation. For example an attempt to change the IP address of an 12472 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12473 * does all the cleanup such as deleting all ires that use this address. 12474 * Then we need to wait till all references to the interface go away. 12475 */ 12476 void 12477 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12478 { 12479 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12480 ip_ioctl_cmd_t *ipip = arg; 12481 ip_extract_func_t *extract_funcp; 12482 cmd_info_t ci; 12483 int err; 12484 boolean_t entered_ipsq = B_FALSE; 12485 12486 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12487 12488 if (ipip == NULL) 12489 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12490 12491 /* 12492 * SIOCLIFADDIF needs to go thru a special path since the 12493 * ill may not exist yet. This happens in the case of lo0 12494 * which is created using this ioctl. 12495 */ 12496 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12497 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12498 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12499 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12500 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12501 return; 12502 } 12503 12504 ci.ci_ipif = NULL; 12505 switch (ipip->ipi_cmd_type) { 12506 case MISC_CMD: 12507 case MSFILT_CMD: 12508 /* 12509 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12510 */ 12511 if (ipip->ipi_cmd == IF_UNITSEL) { 12512 /* ioctl comes down the ill */ 12513 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12514 ipif_refhold(ci.ci_ipif); 12515 } 12516 err = 0; 12517 ci.ci_sin = NULL; 12518 ci.ci_sin6 = NULL; 12519 ci.ci_lifr = NULL; 12520 extract_funcp = NULL; 12521 break; 12522 12523 case IF_CMD: 12524 case LIF_CMD: 12525 extract_funcp = ip_extract_lifreq; 12526 break; 12527 12528 case ARP_CMD: 12529 case XARP_CMD: 12530 extract_funcp = ip_extract_arpreq; 12531 break; 12532 12533 default: 12534 ASSERT(0); 12535 } 12536 12537 if (extract_funcp != NULL) { 12538 err = (*extract_funcp)(q, mp, ipip, &ci); 12539 if (err != 0) { 12540 DTRACE_PROBE4(ipif__ioctl, 12541 char *, "ip_process_ioctl finish err", 12542 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12543 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12544 return; 12545 } 12546 12547 /* 12548 * All of the extraction functions return a refheld ipif. 12549 */ 12550 ASSERT(ci.ci_ipif != NULL); 12551 } 12552 12553 if (!(ipip->ipi_flags & IPI_WR)) { 12554 /* 12555 * A return value of EINPROGRESS means the ioctl is 12556 * either queued and waiting for some reason or has 12557 * already completed. 12558 */ 12559 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12560 ci.ci_lifr); 12561 if (ci.ci_ipif != NULL) { 12562 DTRACE_PROBE4(ipif__ioctl, 12563 char *, "ip_process_ioctl finish RD", 12564 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12565 ipif_t *, ci.ci_ipif); 12566 ipif_refrele(ci.ci_ipif); 12567 } else { 12568 DTRACE_PROBE4(ipif__ioctl, 12569 char *, "ip_process_ioctl finish RD", 12570 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12571 } 12572 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12573 return; 12574 } 12575 12576 ASSERT(ci.ci_ipif != NULL); 12577 12578 /* 12579 * If ipsq is non-NULL, we are already being called exclusively 12580 */ 12581 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12582 if (ipsq == NULL) { 12583 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12584 NEW_OP, B_TRUE); 12585 if (ipsq == NULL) { 12586 ipif_refrele(ci.ci_ipif); 12587 return; 12588 } 12589 entered_ipsq = B_TRUE; 12590 } 12591 /* 12592 * Release the ipif so that ipif_down and friends that wait for 12593 * references to go away are not misled about the current ipif_refcnt 12594 * values. We are writer so we can access the ipif even after releasing 12595 * the ipif. 12596 */ 12597 ipif_refrele(ci.ci_ipif); 12598 12599 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12600 12601 /* 12602 * A return value of EINPROGRESS means the ioctl is 12603 * either queued and waiting for some reason or has 12604 * already completed. 12605 */ 12606 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12607 12608 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12609 int, ipip->ipi_cmd, 12610 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12611 ipif_t *, ci.ci_ipif); 12612 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12613 12614 if (entered_ipsq) 12615 ipsq_exit(ipsq); 12616 } 12617 12618 /* 12619 * Complete the ioctl. Typically ioctls use the mi package and need to 12620 * do mi_copyout/mi_copy_done. 12621 */ 12622 void 12623 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12624 { 12625 conn_t *connp = NULL; 12626 12627 if (err == EINPROGRESS) 12628 return; 12629 12630 if (CONN_Q(q)) { 12631 connp = Q_TO_CONN(q); 12632 ASSERT(connp->conn_ref >= 2); 12633 } 12634 12635 switch (mode) { 12636 case COPYOUT: 12637 if (err == 0) 12638 mi_copyout(q, mp); 12639 else 12640 mi_copy_done(q, mp, err); 12641 break; 12642 12643 case NO_COPYOUT: 12644 mi_copy_done(q, mp, err); 12645 break; 12646 12647 default: 12648 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12649 break; 12650 } 12651 12652 /* 12653 * The conn refhold and ioctlref placed on the conn at the start of the 12654 * ioctl are released here. 12655 */ 12656 if (connp != NULL) { 12657 CONN_DEC_IOCTLREF(connp); 12658 CONN_OPER_PENDING_DONE(connp); 12659 } 12660 12661 if (ipsq != NULL) 12662 ipsq_current_finish(ipsq); 12663 } 12664 12665 /* Handles all non data messages */ 12666 void 12667 ip_wput_nondata(queue_t *q, mblk_t *mp) 12668 { 12669 mblk_t *mp1; 12670 struct iocblk *iocp; 12671 ip_ioctl_cmd_t *ipip; 12672 conn_t *connp; 12673 cred_t *cr; 12674 char *proto_str; 12675 12676 if (CONN_Q(q)) 12677 connp = Q_TO_CONN(q); 12678 else 12679 connp = NULL; 12680 12681 switch (DB_TYPE(mp)) { 12682 case M_IOCTL: 12683 /* 12684 * IOCTL processing begins in ip_sioctl_copyin_setup which 12685 * will arrange to copy in associated control structures. 12686 */ 12687 ip_sioctl_copyin_setup(q, mp); 12688 return; 12689 case M_IOCDATA: 12690 /* 12691 * Ensure that this is associated with one of our trans- 12692 * parent ioctls. If it's not ours, discard it if we're 12693 * running as a driver, or pass it on if we're a module. 12694 */ 12695 iocp = (struct iocblk *)mp->b_rptr; 12696 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12697 if (ipip == NULL) { 12698 if (q->q_next == NULL) { 12699 goto nak; 12700 } else { 12701 putnext(q, mp); 12702 } 12703 return; 12704 } 12705 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12706 /* 12707 * The ioctl is one we recognise, but is not consumed 12708 * by IP as a module and we are a module, so we drop 12709 */ 12710 goto nak; 12711 } 12712 12713 /* IOCTL continuation following copyin or copyout. */ 12714 if (mi_copy_state(q, mp, NULL) == -1) { 12715 /* 12716 * The copy operation failed. mi_copy_state already 12717 * cleaned up, so we're out of here. 12718 */ 12719 return; 12720 } 12721 /* 12722 * If we just completed a copy in, we become writer and 12723 * continue processing in ip_sioctl_copyin_done. If it 12724 * was a copy out, we call mi_copyout again. If there is 12725 * nothing more to copy out, it will complete the IOCTL. 12726 */ 12727 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12728 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12729 mi_copy_done(q, mp, EPROTO); 12730 return; 12731 } 12732 /* 12733 * Check for cases that need more copying. A return 12734 * value of 0 means a second copyin has been started, 12735 * so we return; a return value of 1 means no more 12736 * copying is needed, so we continue. 12737 */ 12738 if (ipip->ipi_cmd_type == MSFILT_CMD && 12739 MI_COPY_COUNT(mp) == 1) { 12740 if (ip_copyin_msfilter(q, mp) == 0) 12741 return; 12742 } 12743 /* 12744 * Refhold the conn, till the ioctl completes. This is 12745 * needed in case the ioctl ends up in the pending mp 12746 * list. Every mp in the ipx_pending_mp list must have 12747 * a refhold on the conn to resume processing. The 12748 * refhold is released when the ioctl completes 12749 * (whether normally or abnormally). An ioctlref is also 12750 * placed on the conn to prevent TCP from removing the 12751 * queue needed to send the ioctl reply back. 12752 * In all cases ip_ioctl_finish is called to finish 12753 * the ioctl and release the refholds. 12754 */ 12755 if (connp != NULL) { 12756 /* This is not a reentry */ 12757 CONN_INC_REF(connp); 12758 CONN_INC_IOCTLREF(connp); 12759 } else { 12760 if (!(ipip->ipi_flags & IPI_MODOK)) { 12761 mi_copy_done(q, mp, EINVAL); 12762 return; 12763 } 12764 } 12765 12766 ip_process_ioctl(NULL, q, mp, ipip); 12767 12768 } else { 12769 mi_copyout(q, mp); 12770 } 12771 return; 12772 12773 case M_IOCNAK: 12774 /* 12775 * The only way we could get here is if a resolver didn't like 12776 * an IOCTL we sent it. This shouldn't happen. 12777 */ 12778 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12779 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12780 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12781 freemsg(mp); 12782 return; 12783 case M_IOCACK: 12784 /* /dev/ip shouldn't see this */ 12785 goto nak; 12786 case M_FLUSH: 12787 if (*mp->b_rptr & FLUSHW) 12788 flushq(q, FLUSHALL); 12789 if (q->q_next) { 12790 putnext(q, mp); 12791 return; 12792 } 12793 if (*mp->b_rptr & FLUSHR) { 12794 *mp->b_rptr &= ~FLUSHW; 12795 qreply(q, mp); 12796 return; 12797 } 12798 freemsg(mp); 12799 return; 12800 case M_CTL: 12801 break; 12802 case M_PROTO: 12803 case M_PCPROTO: 12804 /* 12805 * The only PROTO messages we expect are SNMP-related. 12806 */ 12807 switch (((union T_primitives *)mp->b_rptr)->type) { 12808 case T_SVR4_OPTMGMT_REQ: 12809 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12810 "flags %x\n", 12811 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12812 12813 if (connp == NULL) { 12814 proto_str = "T_SVR4_OPTMGMT_REQ"; 12815 goto protonak; 12816 } 12817 12818 /* 12819 * All Solaris components should pass a db_credp 12820 * for this TPI message, hence we ASSERT. 12821 * But in case there is some other M_PROTO that looks 12822 * like a TPI message sent by some other kernel 12823 * component, we check and return an error. 12824 */ 12825 cr = msg_getcred(mp, NULL); 12826 ASSERT(cr != NULL); 12827 if (cr == NULL) { 12828 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12829 if (mp != NULL) 12830 qreply(q, mp); 12831 return; 12832 } 12833 12834 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12835 proto_str = "Bad SNMPCOM request?"; 12836 goto protonak; 12837 } 12838 return; 12839 default: 12840 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12841 (int)*(uint_t *)mp->b_rptr)); 12842 freemsg(mp); 12843 return; 12844 } 12845 default: 12846 break; 12847 } 12848 if (q->q_next) { 12849 putnext(q, mp); 12850 } else 12851 freemsg(mp); 12852 return; 12853 12854 nak: 12855 iocp->ioc_error = EINVAL; 12856 mp->b_datap->db_type = M_IOCNAK; 12857 iocp->ioc_count = 0; 12858 qreply(q, mp); 12859 return; 12860 12861 protonak: 12862 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12863 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12864 qreply(q, mp); 12865 } 12866 12867 /* 12868 * Process IP options in an outbound packet. Verify that the nexthop in a 12869 * strict source route is onlink. 12870 * Returns non-zero if something fails in which case an ICMP error has been 12871 * sent and mp freed. 12872 * 12873 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12874 */ 12875 int 12876 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12877 { 12878 ipoptp_t opts; 12879 uchar_t *opt; 12880 uint8_t optval; 12881 uint8_t optlen; 12882 ipaddr_t dst; 12883 intptr_t code = 0; 12884 ire_t *ire; 12885 ip_stack_t *ipst = ixa->ixa_ipst; 12886 ip_recv_attr_t iras; 12887 12888 ip2dbg(("ip_output_options\n")); 12889 12890 dst = ipha->ipha_dst; 12891 for (optval = ipoptp_first(&opts, ipha); 12892 optval != IPOPT_EOL; 12893 optval = ipoptp_next(&opts)) { 12894 opt = opts.ipoptp_cur; 12895 optlen = opts.ipoptp_len; 12896 ip2dbg(("ip_output_options: opt %d, len %d\n", 12897 optval, optlen)); 12898 switch (optval) { 12899 uint32_t off; 12900 case IPOPT_SSRR: 12901 case IPOPT_LSRR: 12902 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12903 ip1dbg(( 12904 "ip_output_options: bad option offset\n")); 12905 code = (char *)&opt[IPOPT_OLEN] - 12906 (char *)ipha; 12907 goto param_prob; 12908 } 12909 off = opt[IPOPT_OFFSET]; 12910 ip1dbg(("ip_output_options: next hop 0x%x\n", 12911 ntohl(dst))); 12912 /* 12913 * For strict: verify that dst is directly 12914 * reachable. 12915 */ 12916 if (optval == IPOPT_SSRR) { 12917 ire = ire_ftable_lookup_v4(dst, 0, 0, 12918 IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl, 12919 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12920 NULL); 12921 if (ire == NULL) { 12922 ip1dbg(("ip_output_options: SSRR not" 12923 " directly reachable: 0x%x\n", 12924 ntohl(dst))); 12925 goto bad_src_route; 12926 } 12927 ire_refrele(ire); 12928 } 12929 break; 12930 case IPOPT_RR: 12931 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12932 ip1dbg(( 12933 "ip_output_options: bad option offset\n")); 12934 code = (char *)&opt[IPOPT_OLEN] - 12935 (char *)ipha; 12936 goto param_prob; 12937 } 12938 break; 12939 case IPOPT_TS: 12940 /* 12941 * Verify that length >=5 and that there is either 12942 * room for another timestamp or that the overflow 12943 * counter is not maxed out. 12944 */ 12945 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 12946 if (optlen < IPOPT_MINLEN_IT) { 12947 goto param_prob; 12948 } 12949 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12950 ip1dbg(( 12951 "ip_output_options: bad option offset\n")); 12952 code = (char *)&opt[IPOPT_OFFSET] - 12953 (char *)ipha; 12954 goto param_prob; 12955 } 12956 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12957 case IPOPT_TS_TSONLY: 12958 off = IPOPT_TS_TIMELEN; 12959 break; 12960 case IPOPT_TS_TSANDADDR: 12961 case IPOPT_TS_PRESPEC: 12962 case IPOPT_TS_PRESPEC_RFC791: 12963 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12964 break; 12965 default: 12966 code = (char *)&opt[IPOPT_POS_OV_FLG] - 12967 (char *)ipha; 12968 goto param_prob; 12969 } 12970 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 12971 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 12972 /* 12973 * No room and the overflow counter is 15 12974 * already. 12975 */ 12976 goto param_prob; 12977 } 12978 break; 12979 } 12980 } 12981 12982 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 12983 return (0); 12984 12985 ip1dbg(("ip_output_options: error processing IP options.")); 12986 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 12987 12988 param_prob: 12989 bzero(&iras, sizeof (iras)); 12990 iras.ira_ill = iras.ira_rill = ill; 12991 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12992 iras.ira_rifindex = iras.ira_ruifindex; 12993 iras.ira_flags = IRAF_IS_IPV4; 12994 12995 ip_drop_output("ip_output_options", mp, ill); 12996 icmp_param_problem(mp, (uint8_t)code, &iras); 12997 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12998 return (-1); 12999 13000 bad_src_route: 13001 bzero(&iras, sizeof (iras)); 13002 iras.ira_ill = iras.ira_rill = ill; 13003 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13004 iras.ira_rifindex = iras.ira_ruifindex; 13005 iras.ira_flags = IRAF_IS_IPV4; 13006 13007 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13008 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13009 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13010 return (-1); 13011 } 13012 13013 /* 13014 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13015 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13016 * thru /etc/system. 13017 */ 13018 #define CONN_MAXDRAINCNT 64 13019 13020 static void 13021 conn_drain_init(ip_stack_t *ipst) 13022 { 13023 int i, j; 13024 idl_tx_list_t *itl_tx; 13025 13026 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13027 13028 if ((ipst->ips_conn_drain_list_cnt == 0) || 13029 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13030 /* 13031 * Default value of the number of drainers is the 13032 * number of cpus, subject to maximum of 8 drainers. 13033 */ 13034 if (boot_max_ncpus != -1) 13035 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13036 else 13037 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13038 } 13039 13040 ipst->ips_idl_tx_list = 13041 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13042 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13043 itl_tx = &ipst->ips_idl_tx_list[i]; 13044 itl_tx->txl_drain_list = 13045 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13046 sizeof (idl_t), KM_SLEEP); 13047 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13048 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13049 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13050 MUTEX_DEFAULT, NULL); 13051 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13052 } 13053 } 13054 } 13055 13056 static void 13057 conn_drain_fini(ip_stack_t *ipst) 13058 { 13059 int i; 13060 idl_tx_list_t *itl_tx; 13061 13062 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13063 itl_tx = &ipst->ips_idl_tx_list[i]; 13064 kmem_free(itl_tx->txl_drain_list, 13065 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13066 } 13067 kmem_free(ipst->ips_idl_tx_list, 13068 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13069 ipst->ips_idl_tx_list = NULL; 13070 } 13071 13072 /* 13073 * Flow control has blocked us from proceeding. Insert the given conn in one 13074 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13075 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13076 * will call conn_walk_drain(). See the flow control notes at the top of this 13077 * file for more details. 13078 */ 13079 void 13080 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13081 { 13082 idl_t *idl = tx_list->txl_drain_list; 13083 uint_t index; 13084 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13085 13086 mutex_enter(&connp->conn_lock); 13087 if (connp->conn_state_flags & CONN_CLOSING) { 13088 /* 13089 * The conn is closing as a result of which CONN_CLOSING 13090 * is set. Return. 13091 */ 13092 mutex_exit(&connp->conn_lock); 13093 return; 13094 } else if (connp->conn_idl == NULL) { 13095 /* 13096 * Assign the next drain list round robin. We dont' use 13097 * a lock, and thus it may not be strictly round robin. 13098 * Atomicity of load/stores is enough to make sure that 13099 * conn_drain_list_index is always within bounds. 13100 */ 13101 index = tx_list->txl_drain_index; 13102 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13103 connp->conn_idl = &tx_list->txl_drain_list[index]; 13104 index++; 13105 if (index == ipst->ips_conn_drain_list_cnt) 13106 index = 0; 13107 tx_list->txl_drain_index = index; 13108 } else { 13109 ASSERT(connp->conn_idl->idl_itl == tx_list); 13110 } 13111 mutex_exit(&connp->conn_lock); 13112 13113 idl = connp->conn_idl; 13114 mutex_enter(&idl->idl_lock); 13115 if ((connp->conn_drain_prev != NULL) || 13116 (connp->conn_state_flags & CONN_CLOSING)) { 13117 /* 13118 * The conn is either already in the drain list or closing. 13119 * (We needed to check for CONN_CLOSING again since close can 13120 * sneak in between dropping conn_lock and acquiring idl_lock.) 13121 */ 13122 mutex_exit(&idl->idl_lock); 13123 return; 13124 } 13125 13126 /* 13127 * The conn is not in the drain list. Insert it at the 13128 * tail of the drain list. The drain list is circular 13129 * and doubly linked. idl_conn points to the 1st element 13130 * in the list. 13131 */ 13132 if (idl->idl_conn == NULL) { 13133 idl->idl_conn = connp; 13134 connp->conn_drain_next = connp; 13135 connp->conn_drain_prev = connp; 13136 } else { 13137 conn_t *head = idl->idl_conn; 13138 13139 connp->conn_drain_next = head; 13140 connp->conn_drain_prev = head->conn_drain_prev; 13141 head->conn_drain_prev->conn_drain_next = connp; 13142 head->conn_drain_prev = connp; 13143 } 13144 /* 13145 * For non streams based sockets assert flow control. 13146 */ 13147 conn_setqfull(connp, NULL); 13148 mutex_exit(&idl->idl_lock); 13149 } 13150 13151 static void 13152 conn_drain_remove(conn_t *connp) 13153 { 13154 idl_t *idl = connp->conn_idl; 13155 13156 if (idl != NULL) { 13157 /* 13158 * Remove ourself from the drain list. 13159 */ 13160 if (connp->conn_drain_next == connp) { 13161 /* Singleton in the list */ 13162 ASSERT(connp->conn_drain_prev == connp); 13163 idl->idl_conn = NULL; 13164 } else { 13165 connp->conn_drain_prev->conn_drain_next = 13166 connp->conn_drain_next; 13167 connp->conn_drain_next->conn_drain_prev = 13168 connp->conn_drain_prev; 13169 if (idl->idl_conn == connp) 13170 idl->idl_conn = connp->conn_drain_next; 13171 } 13172 13173 /* 13174 * NOTE: because conn_idl is associated with a specific drain 13175 * list which in turn is tied to the index the TX ring 13176 * (txl_cookie) hashes to, and because the TX ring can change 13177 * over the lifetime of the conn_t, we must clear conn_idl so 13178 * a subsequent conn_drain_insert() will set conn_idl again 13179 * based on the latest txl_cookie. 13180 */ 13181 connp->conn_idl = NULL; 13182 } 13183 connp->conn_drain_next = NULL; 13184 connp->conn_drain_prev = NULL; 13185 13186 conn_clrqfull(connp, NULL); 13187 /* 13188 * For streams based sockets open up flow control. 13189 */ 13190 if (!IPCL_IS_NONSTR(connp)) 13191 enableok(connp->conn_wq); 13192 } 13193 13194 /* 13195 * This conn is closing, and we are called from ip_close. OR 13196 * this conn is draining because flow-control on the ill has been relieved. 13197 * 13198 * We must also need to remove conn's on this idl from the list, and also 13199 * inform the sockfs upcalls about the change in flow-control. 13200 */ 13201 static void 13202 conn_drain(conn_t *connp, boolean_t closing) 13203 { 13204 idl_t *idl; 13205 conn_t *next_connp; 13206 13207 /* 13208 * connp->conn_idl is stable at this point, and no lock is needed 13209 * to check it. If we are called from ip_close, close has already 13210 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13211 * called us only because conn_idl is non-null. If we are called thru 13212 * service, conn_idl could be null, but it cannot change because 13213 * service is single-threaded per queue, and there cannot be another 13214 * instance of service trying to call conn_drain_insert on this conn 13215 * now. 13216 */ 13217 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13218 13219 /* 13220 * If the conn doesn't exist or is not on a drain list, bail. 13221 */ 13222 if (connp == NULL || connp->conn_idl == NULL || 13223 connp->conn_drain_prev == NULL) { 13224 return; 13225 } 13226 13227 idl = connp->conn_idl; 13228 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13229 13230 if (!closing) { 13231 next_connp = connp->conn_drain_next; 13232 while (next_connp != connp) { 13233 conn_t *delconnp = next_connp; 13234 13235 next_connp = next_connp->conn_drain_next; 13236 conn_drain_remove(delconnp); 13237 } 13238 ASSERT(connp->conn_drain_next == idl->idl_conn); 13239 } 13240 conn_drain_remove(connp); 13241 } 13242 13243 /* 13244 * Write service routine. Shared perimeter entry point. 13245 * The device queue's messages has fallen below the low water mark and STREAMS 13246 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13247 * each waiting conn. 13248 */ 13249 void 13250 ip_wsrv(queue_t *q) 13251 { 13252 ill_t *ill; 13253 13254 ill = (ill_t *)q->q_ptr; 13255 if (ill->ill_state_flags == 0) { 13256 ip_stack_t *ipst = ill->ill_ipst; 13257 13258 /* 13259 * The device flow control has opened up. 13260 * Walk through conn drain lists and qenable the 13261 * first conn in each list. This makes sense only 13262 * if the stream is fully plumbed and setup. 13263 * Hence the ill_state_flags check above. 13264 */ 13265 ip1dbg(("ip_wsrv: walking\n")); 13266 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13267 enableok(ill->ill_wq); 13268 } 13269 } 13270 13271 /* 13272 * Callback to disable flow control in IP. 13273 * 13274 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13275 * is enabled. 13276 * 13277 * When MAC_TX() is not able to send any more packets, dld sets its queue 13278 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13279 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13280 * function and wakes up corresponding mac worker threads, which in turn 13281 * calls this callback function, and disables flow control. 13282 */ 13283 void 13284 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13285 { 13286 ill_t *ill = (ill_t *)arg; 13287 ip_stack_t *ipst = ill->ill_ipst; 13288 idl_tx_list_t *idl_txl; 13289 13290 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13291 mutex_enter(&idl_txl->txl_lock); 13292 /* add code to to set a flag to indicate idl_txl is enabled */ 13293 conn_walk_drain(ipst, idl_txl); 13294 mutex_exit(&idl_txl->txl_lock); 13295 } 13296 13297 /* 13298 * Flow control has been relieved and STREAMS has backenabled us; drain 13299 * all the conn lists on `tx_list'. 13300 */ 13301 static void 13302 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13303 { 13304 int i; 13305 idl_t *idl; 13306 13307 IP_STAT(ipst, ip_conn_walk_drain); 13308 13309 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13310 idl = &tx_list->txl_drain_list[i]; 13311 mutex_enter(&idl->idl_lock); 13312 conn_drain(idl->idl_conn, B_FALSE); 13313 mutex_exit(&idl->idl_lock); 13314 } 13315 } 13316 13317 /* 13318 * Determine if the ill and multicast aspects of that packets 13319 * "matches" the conn. 13320 */ 13321 boolean_t 13322 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13323 { 13324 ill_t *ill = ira->ira_rill; 13325 zoneid_t zoneid = ira->ira_zoneid; 13326 uint_t in_ifindex; 13327 ipaddr_t dst, src; 13328 13329 dst = ipha->ipha_dst; 13330 src = ipha->ipha_src; 13331 13332 /* 13333 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13334 * unicast, broadcast and multicast reception to 13335 * conn_incoming_ifindex. 13336 * conn_wantpacket is called for unicast, broadcast and 13337 * multicast packets. 13338 */ 13339 in_ifindex = connp->conn_incoming_ifindex; 13340 13341 /* mpathd can bind to the under IPMP interface, which we allow */ 13342 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13343 if (!IS_UNDER_IPMP(ill)) 13344 return (B_FALSE); 13345 13346 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13347 return (B_FALSE); 13348 } 13349 13350 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13351 return (B_FALSE); 13352 13353 if (!(ira->ira_flags & IRAF_MULTICAST)) 13354 return (B_TRUE); 13355 13356 if (connp->conn_multi_router) { 13357 /* multicast packet and multicast router socket: send up */ 13358 return (B_TRUE); 13359 } 13360 13361 if (ipha->ipha_protocol == IPPROTO_PIM || 13362 ipha->ipha_protocol == IPPROTO_RSVP) 13363 return (B_TRUE); 13364 13365 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13366 } 13367 13368 void 13369 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13370 { 13371 if (IPCL_IS_NONSTR(connp)) { 13372 (*connp->conn_upcalls->su_txq_full) 13373 (connp->conn_upper_handle, B_TRUE); 13374 if (flow_stopped != NULL) 13375 *flow_stopped = B_TRUE; 13376 } else { 13377 queue_t *q = connp->conn_wq; 13378 13379 ASSERT(q != NULL); 13380 if (!(q->q_flag & QFULL)) { 13381 mutex_enter(QLOCK(q)); 13382 if (!(q->q_flag & QFULL)) { 13383 /* still need to set QFULL */ 13384 q->q_flag |= QFULL; 13385 /* set flow_stopped to true under QLOCK */ 13386 if (flow_stopped != NULL) 13387 *flow_stopped = B_TRUE; 13388 mutex_exit(QLOCK(q)); 13389 } else { 13390 /* flow_stopped is left unchanged */ 13391 mutex_exit(QLOCK(q)); 13392 } 13393 } 13394 } 13395 } 13396 13397 void 13398 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13399 { 13400 if (IPCL_IS_NONSTR(connp)) { 13401 (*connp->conn_upcalls->su_txq_full) 13402 (connp->conn_upper_handle, B_FALSE); 13403 if (flow_stopped != NULL) 13404 *flow_stopped = B_FALSE; 13405 } else { 13406 queue_t *q = connp->conn_wq; 13407 13408 ASSERT(q != NULL); 13409 if (q->q_flag & QFULL) { 13410 mutex_enter(QLOCK(q)); 13411 if (q->q_flag & QFULL) { 13412 q->q_flag &= ~QFULL; 13413 /* set flow_stopped to false under QLOCK */ 13414 if (flow_stopped != NULL) 13415 *flow_stopped = B_FALSE; 13416 mutex_exit(QLOCK(q)); 13417 if (q->q_flag & QWANTW) 13418 qbackenable(q, 0); 13419 } else { 13420 /* flow_stopped is left unchanged */ 13421 mutex_exit(QLOCK(q)); 13422 } 13423 } 13424 } 13425 13426 mutex_enter(&connp->conn_lock); 13427 connp->conn_blocked = B_FALSE; 13428 mutex_exit(&connp->conn_lock); 13429 } 13430 13431 /* 13432 * Return the length in bytes of the IPv4 headers (base header, label, and 13433 * other IP options) that will be needed based on the 13434 * ip_pkt_t structure passed by the caller. 13435 * 13436 * The returned length does not include the length of the upper level 13437 * protocol (ULP) header. 13438 * The caller needs to check that the length doesn't exceed the max for IPv4. 13439 */ 13440 int 13441 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13442 { 13443 int len; 13444 13445 len = IP_SIMPLE_HDR_LENGTH; 13446 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13447 ASSERT(ipp->ipp_label_len_v4 != 0); 13448 /* We need to round up here */ 13449 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13450 } 13451 13452 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13453 ASSERT(ipp->ipp_ipv4_options_len != 0); 13454 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13455 len += ipp->ipp_ipv4_options_len; 13456 } 13457 return (len); 13458 } 13459 13460 /* 13461 * All-purpose routine to build an IPv4 header with options based 13462 * on the abstract ip_pkt_t. 13463 * 13464 * The caller has to set the source and destination address as well as 13465 * ipha_length. The caller has to massage any source route and compensate 13466 * for the ULP pseudo-header checksum due to the source route. 13467 */ 13468 void 13469 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13470 uint8_t protocol) 13471 { 13472 ipha_t *ipha = (ipha_t *)buf; 13473 uint8_t *cp; 13474 13475 /* Initialize IPv4 header */ 13476 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13477 ipha->ipha_length = 0; /* Caller will set later */ 13478 ipha->ipha_ident = 0; 13479 ipha->ipha_fragment_offset_and_flags = 0; 13480 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13481 ipha->ipha_protocol = protocol; 13482 ipha->ipha_hdr_checksum = 0; 13483 13484 if ((ipp->ipp_fields & IPPF_ADDR) && 13485 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13486 ipha->ipha_src = ipp->ipp_addr_v4; 13487 13488 cp = (uint8_t *)&ipha[1]; 13489 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13490 ASSERT(ipp->ipp_label_len_v4 != 0); 13491 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13492 cp += ipp->ipp_label_len_v4; 13493 /* We need to round up here */ 13494 while ((uintptr_t)cp & 0x3) { 13495 *cp++ = IPOPT_NOP; 13496 } 13497 } 13498 13499 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13500 ASSERT(ipp->ipp_ipv4_options_len != 0); 13501 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13502 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13503 cp += ipp->ipp_ipv4_options_len; 13504 } 13505 ipha->ipha_version_and_hdr_length = 13506 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13507 13508 ASSERT((int)(cp - buf) == buf_len); 13509 } 13510 13511 /* Allocate the private structure */ 13512 static int 13513 ip_priv_alloc(void **bufp) 13514 { 13515 void *buf; 13516 13517 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13518 return (ENOMEM); 13519 13520 *bufp = buf; 13521 return (0); 13522 } 13523 13524 /* Function to delete the private structure */ 13525 void 13526 ip_priv_free(void *buf) 13527 { 13528 ASSERT(buf != NULL); 13529 kmem_free(buf, sizeof (ip_priv_t)); 13530 } 13531 13532 /* 13533 * The entry point for IPPF processing. 13534 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13535 * routine just returns. 13536 * 13537 * When called, ip_process generates an ipp_packet_t structure 13538 * which holds the state information for this packet and invokes the 13539 * the classifier (via ipp_packet_process). The classification, depending on 13540 * configured filters, results in a list of actions for this packet. Invoking 13541 * an action may cause the packet to be dropped, in which case we return NULL. 13542 * proc indicates the callout position for 13543 * this packet and ill is the interface this packet arrived on or will leave 13544 * on (inbound and outbound resp.). 13545 * 13546 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13547 * on the ill corrsponding to the destination IP address. 13548 */ 13549 mblk_t * 13550 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13551 { 13552 ip_priv_t *priv; 13553 ipp_action_id_t aid; 13554 int rc = 0; 13555 ipp_packet_t *pp; 13556 13557 /* If the classifier is not loaded, return */ 13558 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13559 return (mp); 13560 } 13561 13562 ASSERT(mp != NULL); 13563 13564 /* Allocate the packet structure */ 13565 rc = ipp_packet_alloc(&pp, "ip", aid); 13566 if (rc != 0) 13567 goto drop; 13568 13569 /* Allocate the private structure */ 13570 rc = ip_priv_alloc((void **)&priv); 13571 if (rc != 0) { 13572 ipp_packet_free(pp); 13573 goto drop; 13574 } 13575 priv->proc = proc; 13576 priv->ill_index = ill_get_upper_ifindex(rill); 13577 13578 ipp_packet_set_private(pp, priv, ip_priv_free); 13579 ipp_packet_set_data(pp, mp); 13580 13581 /* Invoke the classifier */ 13582 rc = ipp_packet_process(&pp); 13583 if (pp != NULL) { 13584 mp = ipp_packet_get_data(pp); 13585 ipp_packet_free(pp); 13586 if (rc != 0) 13587 goto drop; 13588 return (mp); 13589 } else { 13590 /* No mp to trace in ip_drop_input/ip_drop_output */ 13591 mp = NULL; 13592 } 13593 drop: 13594 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13596 ip_drop_input("ip_process", mp, ill); 13597 } else { 13598 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13599 ip_drop_output("ip_process", mp, ill); 13600 } 13601 freemsg(mp); 13602 return (NULL); 13603 } 13604 13605 /* 13606 * Propagate a multicast group membership operation (add/drop) on 13607 * all the interfaces crossed by the related multirt routes. 13608 * The call is considered successful if the operation succeeds 13609 * on at least one interface. 13610 * 13611 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13612 * multicast addresses with the ire argument being the first one. 13613 * We walk the bucket to find all the of those. 13614 * 13615 * Common to IPv4 and IPv6. 13616 */ 13617 static int 13618 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13619 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13620 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13621 mcast_record_t fmode, const in6_addr_t *v6src) 13622 { 13623 ire_t *ire_gw; 13624 irb_t *irb; 13625 int ifindex; 13626 int error = 0; 13627 int result; 13628 ip_stack_t *ipst = ire->ire_ipst; 13629 ipaddr_t group; 13630 boolean_t isv6; 13631 int match_flags; 13632 13633 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13634 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13635 isv6 = B_FALSE; 13636 } else { 13637 isv6 = B_TRUE; 13638 } 13639 13640 irb = ire->ire_bucket; 13641 ASSERT(irb != NULL); 13642 13643 result = 0; 13644 irb_refhold(irb); 13645 for (; ire != NULL; ire = ire->ire_next) { 13646 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13647 continue; 13648 13649 /* We handle -ifp routes by matching on the ill if set */ 13650 match_flags = MATCH_IRE_TYPE; 13651 if (ire->ire_ill != NULL) 13652 match_flags |= MATCH_IRE_ILL; 13653 13654 if (isv6) { 13655 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13656 continue; 13657 13658 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13659 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13660 match_flags, 0, ipst, NULL); 13661 } else { 13662 if (ire->ire_addr != group) 13663 continue; 13664 13665 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13666 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13667 match_flags, 0, ipst, NULL); 13668 } 13669 /* No interface route exists for the gateway; skip this ire. */ 13670 if (ire_gw == NULL) 13671 continue; 13672 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13673 ire_refrele(ire_gw); 13674 continue; 13675 } 13676 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13677 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13678 13679 /* 13680 * The operation is considered a success if 13681 * it succeeds at least once on any one interface. 13682 */ 13683 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13684 fmode, v6src); 13685 if (error == 0) 13686 result = CGTP_MCAST_SUCCESS; 13687 13688 ire_refrele(ire_gw); 13689 } 13690 irb_refrele(irb); 13691 /* 13692 * Consider the call as successful if we succeeded on at least 13693 * one interface. Otherwise, return the last encountered error. 13694 */ 13695 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13696 } 13697 13698 /* 13699 * Return the expected CGTP hooks version number. 13700 */ 13701 int 13702 ip_cgtp_filter_supported(void) 13703 { 13704 return (ip_cgtp_filter_rev); 13705 } 13706 13707 /* 13708 * CGTP hooks can be registered by invoking this function. 13709 * Checks that the version number matches. 13710 */ 13711 int 13712 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13713 { 13714 netstack_t *ns; 13715 ip_stack_t *ipst; 13716 13717 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13718 return (ENOTSUP); 13719 13720 ns = netstack_find_by_stackid(stackid); 13721 if (ns == NULL) 13722 return (EINVAL); 13723 ipst = ns->netstack_ip; 13724 ASSERT(ipst != NULL); 13725 13726 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13727 netstack_rele(ns); 13728 return (EALREADY); 13729 } 13730 13731 ipst->ips_ip_cgtp_filter_ops = ops; 13732 13733 ill_set_inputfn_all(ipst); 13734 13735 netstack_rele(ns); 13736 return (0); 13737 } 13738 13739 /* 13740 * CGTP hooks can be unregistered by invoking this function. 13741 * Returns ENXIO if there was no registration. 13742 * Returns EBUSY if the ndd variable has not been turned off. 13743 */ 13744 int 13745 ip_cgtp_filter_unregister(netstackid_t stackid) 13746 { 13747 netstack_t *ns; 13748 ip_stack_t *ipst; 13749 13750 ns = netstack_find_by_stackid(stackid); 13751 if (ns == NULL) 13752 return (EINVAL); 13753 ipst = ns->netstack_ip; 13754 ASSERT(ipst != NULL); 13755 13756 if (ipst->ips_ip_cgtp_filter) { 13757 netstack_rele(ns); 13758 return (EBUSY); 13759 } 13760 13761 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13762 netstack_rele(ns); 13763 return (ENXIO); 13764 } 13765 ipst->ips_ip_cgtp_filter_ops = NULL; 13766 13767 ill_set_inputfn_all(ipst); 13768 13769 netstack_rele(ns); 13770 return (0); 13771 } 13772 13773 /* 13774 * Check whether there is a CGTP filter registration. 13775 * Returns non-zero if there is a registration, otherwise returns zero. 13776 * Note: returns zero if bad stackid. 13777 */ 13778 int 13779 ip_cgtp_filter_is_registered(netstackid_t stackid) 13780 { 13781 netstack_t *ns; 13782 ip_stack_t *ipst; 13783 int ret; 13784 13785 ns = netstack_find_by_stackid(stackid); 13786 if (ns == NULL) 13787 return (0); 13788 ipst = ns->netstack_ip; 13789 ASSERT(ipst != NULL); 13790 13791 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13792 ret = 1; 13793 else 13794 ret = 0; 13795 13796 netstack_rele(ns); 13797 return (ret); 13798 } 13799 13800 static int 13801 ip_squeue_switch(int val) 13802 { 13803 int rval; 13804 13805 switch (val) { 13806 case IP_SQUEUE_ENTER_NODRAIN: 13807 rval = SQ_NODRAIN; 13808 break; 13809 case IP_SQUEUE_ENTER: 13810 rval = SQ_PROCESS; 13811 break; 13812 case IP_SQUEUE_FILL: 13813 default: 13814 rval = SQ_FILL; 13815 break; 13816 } 13817 return (rval); 13818 } 13819 13820 static void * 13821 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13822 { 13823 kstat_t *ksp; 13824 13825 ip_stat_t template = { 13826 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13827 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13828 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13829 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13830 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13831 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13832 { "ip_opt", KSTAT_DATA_UINT64 }, 13833 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13834 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13835 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13836 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13837 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13838 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13839 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13840 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13841 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13842 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13843 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13844 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13845 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13846 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13847 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13848 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13849 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13850 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13851 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13852 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13853 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13854 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13855 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13856 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13857 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13858 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13859 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13860 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13861 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13862 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13863 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13864 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13865 }; 13866 13867 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13868 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13869 KSTAT_FLAG_VIRTUAL, stackid); 13870 13871 if (ksp == NULL) 13872 return (NULL); 13873 13874 bcopy(&template, ip_statisticsp, sizeof (template)); 13875 ksp->ks_data = (void *)ip_statisticsp; 13876 ksp->ks_private = (void *)(uintptr_t)stackid; 13877 13878 kstat_install(ksp); 13879 return (ksp); 13880 } 13881 13882 static void 13883 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13884 { 13885 if (ksp != NULL) { 13886 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13887 kstat_delete_netstack(ksp, stackid); 13888 } 13889 } 13890 13891 static void * 13892 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13893 { 13894 kstat_t *ksp; 13895 13896 ip_named_kstat_t template = { 13897 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13898 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13899 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13900 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13901 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13902 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13903 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13904 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13905 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13906 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13907 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13908 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13909 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13910 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13911 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13912 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13913 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13914 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13915 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13916 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13917 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13918 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13919 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13920 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13921 { "noPorts", KSTAT_DATA_UINT32, 0 }, 13922 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 13923 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 13924 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 13925 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 13926 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 13927 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 13928 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 13929 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 13930 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 13931 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 13932 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 13933 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 13934 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 13935 }; 13936 13937 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 13938 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 13939 if (ksp == NULL || ksp->ks_data == NULL) 13940 return (NULL); 13941 13942 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 13943 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 13944 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13945 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 13946 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 13947 13948 template.netToMediaEntrySize.value.i32 = 13949 sizeof (mib2_ipNetToMediaEntry_t); 13950 13951 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 13952 13953 bcopy(&template, ksp->ks_data, sizeof (template)); 13954 ksp->ks_update = ip_kstat_update; 13955 ksp->ks_private = (void *)(uintptr_t)stackid; 13956 13957 kstat_install(ksp); 13958 return (ksp); 13959 } 13960 13961 static void 13962 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 13963 { 13964 if (ksp != NULL) { 13965 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13966 kstat_delete_netstack(ksp, stackid); 13967 } 13968 } 13969 13970 static int 13971 ip_kstat_update(kstat_t *kp, int rw) 13972 { 13973 ip_named_kstat_t *ipkp; 13974 mib2_ipIfStatsEntry_t ipmib; 13975 ill_walk_context_t ctx; 13976 ill_t *ill; 13977 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 13978 netstack_t *ns; 13979 ip_stack_t *ipst; 13980 13981 if (kp == NULL || kp->ks_data == NULL) 13982 return (EIO); 13983 13984 if (rw == KSTAT_WRITE) 13985 return (EACCES); 13986 13987 ns = netstack_find_by_stackid(stackid); 13988 if (ns == NULL) 13989 return (-1); 13990 ipst = ns->netstack_ip; 13991 if (ipst == NULL) { 13992 netstack_rele(ns); 13993 return (-1); 13994 } 13995 ipkp = (ip_named_kstat_t *)kp->ks_data; 13996 13997 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 13998 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13999 ill = ILL_START_WALK_V4(&ctx, ipst); 14000 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14001 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14002 rw_exit(&ipst->ips_ill_g_lock); 14003 14004 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14005 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14006 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14007 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14008 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14009 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14010 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14011 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14012 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14013 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14014 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14015 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14016 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14017 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14018 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14019 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14020 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14021 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14022 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14023 14024 ipkp->routingDiscards.value.ui32 = 0; 14025 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14026 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14027 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14028 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14029 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14030 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14031 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14032 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14033 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14034 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14035 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14036 14037 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14038 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14039 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14040 14041 netstack_rele(ns); 14042 14043 return (0); 14044 } 14045 14046 static void * 14047 icmp_kstat_init(netstackid_t stackid) 14048 { 14049 kstat_t *ksp; 14050 14051 icmp_named_kstat_t template = { 14052 { "inMsgs", KSTAT_DATA_UINT32 }, 14053 { "inErrors", KSTAT_DATA_UINT32 }, 14054 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14055 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14056 { "inParmProbs", KSTAT_DATA_UINT32 }, 14057 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14058 { "inRedirects", KSTAT_DATA_UINT32 }, 14059 { "inEchos", KSTAT_DATA_UINT32 }, 14060 { "inEchoReps", KSTAT_DATA_UINT32 }, 14061 { "inTimestamps", KSTAT_DATA_UINT32 }, 14062 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14063 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14064 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14065 { "outMsgs", KSTAT_DATA_UINT32 }, 14066 { "outErrors", KSTAT_DATA_UINT32 }, 14067 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14068 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14069 { "outParmProbs", KSTAT_DATA_UINT32 }, 14070 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14071 { "outRedirects", KSTAT_DATA_UINT32 }, 14072 { "outEchos", KSTAT_DATA_UINT32 }, 14073 { "outEchoReps", KSTAT_DATA_UINT32 }, 14074 { "outTimestamps", KSTAT_DATA_UINT32 }, 14075 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14076 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14077 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14078 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14079 { "inUnknowns", KSTAT_DATA_UINT32 }, 14080 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14081 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14082 { "outDrops", KSTAT_DATA_UINT32 }, 14083 { "inOverFlows", KSTAT_DATA_UINT32 }, 14084 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14085 }; 14086 14087 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14088 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14089 if (ksp == NULL || ksp->ks_data == NULL) 14090 return (NULL); 14091 14092 bcopy(&template, ksp->ks_data, sizeof (template)); 14093 14094 ksp->ks_update = icmp_kstat_update; 14095 ksp->ks_private = (void *)(uintptr_t)stackid; 14096 14097 kstat_install(ksp); 14098 return (ksp); 14099 } 14100 14101 static void 14102 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14103 { 14104 if (ksp != NULL) { 14105 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14106 kstat_delete_netstack(ksp, stackid); 14107 } 14108 } 14109 14110 static int 14111 icmp_kstat_update(kstat_t *kp, int rw) 14112 { 14113 icmp_named_kstat_t *icmpkp; 14114 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14115 netstack_t *ns; 14116 ip_stack_t *ipst; 14117 14118 if ((kp == NULL) || (kp->ks_data == NULL)) 14119 return (EIO); 14120 14121 if (rw == KSTAT_WRITE) 14122 return (EACCES); 14123 14124 ns = netstack_find_by_stackid(stackid); 14125 if (ns == NULL) 14126 return (-1); 14127 ipst = ns->netstack_ip; 14128 if (ipst == NULL) { 14129 netstack_rele(ns); 14130 return (-1); 14131 } 14132 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14133 14134 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14135 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14136 icmpkp->inDestUnreachs.value.ui32 = 14137 ipst->ips_icmp_mib.icmpInDestUnreachs; 14138 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14139 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14140 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14141 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14142 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14143 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14144 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14145 icmpkp->inTimestampReps.value.ui32 = 14146 ipst->ips_icmp_mib.icmpInTimestampReps; 14147 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14148 icmpkp->inAddrMaskReps.value.ui32 = 14149 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14150 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14151 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14152 icmpkp->outDestUnreachs.value.ui32 = 14153 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14154 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14155 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14156 icmpkp->outSrcQuenchs.value.ui32 = 14157 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14158 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14159 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14160 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14161 icmpkp->outTimestamps.value.ui32 = 14162 ipst->ips_icmp_mib.icmpOutTimestamps; 14163 icmpkp->outTimestampReps.value.ui32 = 14164 ipst->ips_icmp_mib.icmpOutTimestampReps; 14165 icmpkp->outAddrMasks.value.ui32 = 14166 ipst->ips_icmp_mib.icmpOutAddrMasks; 14167 icmpkp->outAddrMaskReps.value.ui32 = 14168 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14169 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14170 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14171 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14172 icmpkp->outFragNeeded.value.ui32 = 14173 ipst->ips_icmp_mib.icmpOutFragNeeded; 14174 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14175 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14176 icmpkp->inBadRedirects.value.ui32 = 14177 ipst->ips_icmp_mib.icmpInBadRedirects; 14178 14179 netstack_rele(ns); 14180 return (0); 14181 } 14182 14183 /* 14184 * This is the fanout function for raw socket opened for SCTP. Note 14185 * that it is called after SCTP checks that there is no socket which 14186 * wants a packet. Then before SCTP handles this out of the blue packet, 14187 * this function is called to see if there is any raw socket for SCTP. 14188 * If there is and it is bound to the correct address, the packet will 14189 * be sent to that socket. Note that only one raw socket can be bound to 14190 * a port. This is assured in ipcl_sctp_hash_insert(); 14191 */ 14192 void 14193 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14194 ip_recv_attr_t *ira) 14195 { 14196 conn_t *connp; 14197 queue_t *rq; 14198 boolean_t secure; 14199 ill_t *ill = ira->ira_ill; 14200 ip_stack_t *ipst = ill->ill_ipst; 14201 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14202 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14203 iaflags_t iraflags = ira->ira_flags; 14204 ill_t *rill = ira->ira_rill; 14205 14206 secure = iraflags & IRAF_IPSEC_SECURE; 14207 14208 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14209 ira, ipst); 14210 if (connp == NULL) { 14211 /* 14212 * Although raw sctp is not summed, OOB chunks must be. 14213 * Drop the packet here if the sctp checksum failed. 14214 */ 14215 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14216 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14217 freemsg(mp); 14218 return; 14219 } 14220 ira->ira_ill = ira->ira_rill = NULL; 14221 sctp_ootb_input(mp, ira, ipst); 14222 ira->ira_ill = ill; 14223 ira->ira_rill = rill; 14224 return; 14225 } 14226 rq = connp->conn_rq; 14227 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14228 CONN_DEC_REF(connp); 14229 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14230 freemsg(mp); 14231 return; 14232 } 14233 if (((iraflags & IRAF_IS_IPV4) ? 14234 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14235 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14236 secure) { 14237 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14238 ip6h, ira); 14239 if (mp == NULL) { 14240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14241 /* Note that mp is NULL */ 14242 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14243 CONN_DEC_REF(connp); 14244 return; 14245 } 14246 } 14247 14248 if (iraflags & IRAF_ICMP_ERROR) { 14249 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14250 } else { 14251 ill_t *rill = ira->ira_rill; 14252 14253 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14254 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14255 ira->ira_ill = ira->ira_rill = NULL; 14256 (connp->conn_recv)(connp, mp, NULL, ira); 14257 ira->ira_ill = ill; 14258 ira->ira_rill = rill; 14259 } 14260 CONN_DEC_REF(connp); 14261 } 14262 14263 /* 14264 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14265 * header before the ip payload. 14266 */ 14267 static void 14268 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14269 { 14270 int len = (mp->b_wptr - mp->b_rptr); 14271 mblk_t *ip_mp; 14272 14273 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14274 if (is_fp_mp || len != fp_mp_len) { 14275 if (len > fp_mp_len) { 14276 /* 14277 * fastpath header and ip header in the first mblk 14278 */ 14279 mp->b_rptr += fp_mp_len; 14280 } else { 14281 /* 14282 * ip_xmit_attach_llhdr had to prepend an mblk to 14283 * attach the fastpath header before ip header. 14284 */ 14285 ip_mp = mp->b_cont; 14286 freeb(mp); 14287 mp = ip_mp; 14288 mp->b_rptr += (fp_mp_len - len); 14289 } 14290 } else { 14291 ip_mp = mp->b_cont; 14292 freeb(mp); 14293 mp = ip_mp; 14294 } 14295 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14296 freemsg(mp); 14297 } 14298 14299 /* 14300 * Normal post fragmentation function. 14301 * 14302 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14303 * using the same state machine. 14304 * 14305 * We return an error on failure. In particular we return EWOULDBLOCK 14306 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14307 * (currently by canputnext failure resulting in backenabling from GLD.) 14308 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14309 * indication that they can flow control until ip_wsrv() tells then to restart. 14310 * 14311 * If the nce passed by caller is incomplete, this function 14312 * queues the packet and if necessary, sends ARP request and bails. 14313 * If the Neighbor Cache passed is fully resolved, we simply prepend 14314 * the link-layer header to the packet, do ipsec hw acceleration 14315 * work if necessary, and send the packet out on the wire. 14316 */ 14317 /* ARGSUSED6 */ 14318 int 14319 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14320 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14321 { 14322 queue_t *wq; 14323 ill_t *ill = nce->nce_ill; 14324 ip_stack_t *ipst = ill->ill_ipst; 14325 uint64_t delta; 14326 boolean_t isv6 = ill->ill_isv6; 14327 boolean_t fp_mp; 14328 ncec_t *ncec = nce->nce_common; 14329 int64_t now = LBOLT_FASTPATH64; 14330 boolean_t is_probe; 14331 14332 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14333 14334 ASSERT(mp != NULL); 14335 ASSERT(mp->b_datap->db_type == M_DATA); 14336 ASSERT(pkt_len == msgdsize(mp)); 14337 14338 /* 14339 * If we have already been here and are coming back after ARP/ND. 14340 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14341 * in that case since they have seen the packet when it came here 14342 * the first time. 14343 */ 14344 if (ixaflags & IXAF_NO_TRACE) 14345 goto sendit; 14346 14347 if (ixaflags & IXAF_IS_IPV4) { 14348 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14349 14350 ASSERT(!isv6); 14351 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14352 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14353 !(ixaflags & IXAF_NO_PFHOOK)) { 14354 int error; 14355 14356 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14357 ipst->ips_ipv4firewall_physical_out, 14358 NULL, ill, ipha, mp, mp, 0, ipst, error); 14359 DTRACE_PROBE1(ip4__physical__out__end, 14360 mblk_t *, mp); 14361 if (mp == NULL) 14362 return (error); 14363 14364 /* The length could have changed */ 14365 pkt_len = msgdsize(mp); 14366 } 14367 if (ipst->ips_ip4_observe.he_interested) { 14368 /* 14369 * Note that for TX the zoneid is the sending 14370 * zone, whether or not MLP is in play. 14371 * Since the szone argument is the IP zoneid (i.e., 14372 * zero for exclusive-IP zones) and ipobs wants 14373 * the system zoneid, we map it here. 14374 */ 14375 szone = IP_REAL_ZONEID(szone, ipst); 14376 14377 /* 14378 * On the outbound path the destination zone will be 14379 * unknown as we're sending this packet out on the 14380 * wire. 14381 */ 14382 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14383 ill, ipst); 14384 } 14385 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14386 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14387 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14388 } else { 14389 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14390 14391 ASSERT(isv6); 14392 ASSERT(pkt_len == 14393 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14394 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14395 !(ixaflags & IXAF_NO_PFHOOK)) { 14396 int error; 14397 14398 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14399 ipst->ips_ipv6firewall_physical_out, 14400 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14401 DTRACE_PROBE1(ip6__physical__out__end, 14402 mblk_t *, mp); 14403 if (mp == NULL) 14404 return (error); 14405 14406 /* The length could have changed */ 14407 pkt_len = msgdsize(mp); 14408 } 14409 if (ipst->ips_ip6_observe.he_interested) { 14410 /* See above */ 14411 szone = IP_REAL_ZONEID(szone, ipst); 14412 14413 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14414 ill, ipst); 14415 } 14416 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14417 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14418 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14419 } 14420 14421 sendit: 14422 /* 14423 * We check the state without a lock because the state can never 14424 * move "backwards" to initial or incomplete. 14425 */ 14426 switch (ncec->ncec_state) { 14427 case ND_REACHABLE: 14428 case ND_STALE: 14429 case ND_DELAY: 14430 case ND_PROBE: 14431 mp = ip_xmit_attach_llhdr(mp, nce); 14432 if (mp == NULL) { 14433 /* 14434 * ip_xmit_attach_llhdr has increased 14435 * ipIfStatsOutDiscards and called ip_drop_output() 14436 */ 14437 return (ENOBUFS); 14438 } 14439 /* 14440 * check if nce_fastpath completed and we tagged on a 14441 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14442 */ 14443 fp_mp = (mp->b_datap->db_type == M_DATA); 14444 14445 if (fp_mp && 14446 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14447 ill_dld_direct_t *idd; 14448 14449 idd = &ill->ill_dld_capab->idc_direct; 14450 /* 14451 * Send the packet directly to DLD, where it 14452 * may be queued depending on the availability 14453 * of transmit resources at the media layer. 14454 * Return value should be taken into 14455 * account and flow control the TCP. 14456 */ 14457 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14458 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14459 pkt_len); 14460 14461 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14462 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14463 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14464 } else { 14465 uintptr_t cookie; 14466 14467 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14468 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14469 if (ixacookie != NULL) 14470 *ixacookie = cookie; 14471 return (EWOULDBLOCK); 14472 } 14473 } 14474 } else { 14475 wq = ill->ill_wq; 14476 14477 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14478 !canputnext(wq)) { 14479 if (ixacookie != NULL) 14480 *ixacookie = 0; 14481 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14482 nce->nce_fp_mp != NULL ? 14483 MBLKL(nce->nce_fp_mp) : 0); 14484 return (EWOULDBLOCK); 14485 } 14486 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14487 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14488 pkt_len); 14489 putnext(wq, mp); 14490 } 14491 14492 /* 14493 * The rest of this function implements Neighbor Unreachability 14494 * detection. Determine if the ncec is eligible for NUD. 14495 */ 14496 if (ncec->ncec_flags & NCE_F_NONUD) 14497 return (0); 14498 14499 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14500 14501 /* 14502 * Check for upper layer advice 14503 */ 14504 if (ixaflags & IXAF_REACH_CONF) { 14505 timeout_id_t tid; 14506 14507 /* 14508 * It should be o.k. to check the state without 14509 * a lock here, at most we lose an advice. 14510 */ 14511 ncec->ncec_last = TICK_TO_MSEC(now); 14512 if (ncec->ncec_state != ND_REACHABLE) { 14513 mutex_enter(&ncec->ncec_lock); 14514 ncec->ncec_state = ND_REACHABLE; 14515 tid = ncec->ncec_timeout_id; 14516 ncec->ncec_timeout_id = 0; 14517 mutex_exit(&ncec->ncec_lock); 14518 (void) untimeout(tid); 14519 if (ip_debug > 2) { 14520 /* ip1dbg */ 14521 pr_addr_dbg("ip_xmit: state" 14522 " for %s changed to" 14523 " REACHABLE\n", AF_INET6, 14524 &ncec->ncec_addr); 14525 } 14526 } 14527 return (0); 14528 } 14529 14530 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14531 ip1dbg(("ip_xmit: delta = %" PRId64 14532 " ill_reachable_time = %d \n", delta, 14533 ill->ill_reachable_time)); 14534 if (delta > (uint64_t)ill->ill_reachable_time) { 14535 mutex_enter(&ncec->ncec_lock); 14536 switch (ncec->ncec_state) { 14537 case ND_REACHABLE: 14538 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14539 /* FALLTHROUGH */ 14540 case ND_STALE: 14541 /* 14542 * ND_REACHABLE is identical to 14543 * ND_STALE in this specific case. If 14544 * reachable time has expired for this 14545 * neighbor (delta is greater than 14546 * reachable time), conceptually, the 14547 * neighbor cache is no longer in 14548 * REACHABLE state, but already in 14549 * STALE state. So the correct 14550 * transition here is to ND_DELAY. 14551 */ 14552 ncec->ncec_state = ND_DELAY; 14553 mutex_exit(&ncec->ncec_lock); 14554 nce_restart_timer(ncec, 14555 ipst->ips_delay_first_probe_time); 14556 if (ip_debug > 3) { 14557 /* ip2dbg */ 14558 pr_addr_dbg("ip_xmit: state" 14559 " for %s changed to" 14560 " DELAY\n", AF_INET6, 14561 &ncec->ncec_addr); 14562 } 14563 break; 14564 case ND_DELAY: 14565 case ND_PROBE: 14566 mutex_exit(&ncec->ncec_lock); 14567 /* Timers have already started */ 14568 break; 14569 case ND_UNREACHABLE: 14570 /* 14571 * nce_timer has detected that this ncec 14572 * is unreachable and initiated deleting 14573 * this ncec. 14574 * This is a harmless race where we found the 14575 * ncec before it was deleted and have 14576 * just sent out a packet using this 14577 * unreachable ncec. 14578 */ 14579 mutex_exit(&ncec->ncec_lock); 14580 break; 14581 default: 14582 ASSERT(0); 14583 mutex_exit(&ncec->ncec_lock); 14584 } 14585 } 14586 return (0); 14587 14588 case ND_INCOMPLETE: 14589 /* 14590 * the state could have changed since we didn't hold the lock. 14591 * Re-verify state under lock. 14592 */ 14593 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14594 mutex_enter(&ncec->ncec_lock); 14595 if (NCE_ISREACHABLE(ncec)) { 14596 mutex_exit(&ncec->ncec_lock); 14597 goto sendit; 14598 } 14599 /* queue the packet */ 14600 nce_queue_mp(ncec, mp, is_probe); 14601 mutex_exit(&ncec->ncec_lock); 14602 DTRACE_PROBE2(ip__xmit__incomplete, 14603 (ncec_t *), ncec, (mblk_t *), mp); 14604 return (0); 14605 14606 case ND_INITIAL: 14607 /* 14608 * State could have changed since we didn't hold the lock, so 14609 * re-verify state. 14610 */ 14611 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14612 mutex_enter(&ncec->ncec_lock); 14613 if (NCE_ISREACHABLE(ncec)) { 14614 mutex_exit(&ncec->ncec_lock); 14615 goto sendit; 14616 } 14617 nce_queue_mp(ncec, mp, is_probe); 14618 if (ncec->ncec_state == ND_INITIAL) { 14619 ncec->ncec_state = ND_INCOMPLETE; 14620 mutex_exit(&ncec->ncec_lock); 14621 /* 14622 * figure out the source we want to use 14623 * and resolve it. 14624 */ 14625 ip_ndp_resolve(ncec); 14626 } else { 14627 mutex_exit(&ncec->ncec_lock); 14628 } 14629 return (0); 14630 14631 case ND_UNREACHABLE: 14632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14633 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14634 mp, ill); 14635 freemsg(mp); 14636 return (0); 14637 14638 default: 14639 ASSERT(0); 14640 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14641 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14642 mp, ill); 14643 freemsg(mp); 14644 return (ENETUNREACH); 14645 } 14646 } 14647 14648 /* 14649 * Return B_TRUE if the buffers differ in length or content. 14650 * This is used for comparing extension header buffers. 14651 * Note that an extension header would be declared different 14652 * even if all that changed was the next header value in that header i.e. 14653 * what really changed is the next extension header. 14654 */ 14655 boolean_t 14656 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14657 uint_t blen) 14658 { 14659 if (!b_valid) 14660 blen = 0; 14661 14662 if (alen != blen) 14663 return (B_TRUE); 14664 if (alen == 0) 14665 return (B_FALSE); /* Both zero length */ 14666 return (bcmp(abuf, bbuf, alen)); 14667 } 14668 14669 /* 14670 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14671 * Return B_FALSE if memory allocation fails - don't change any state! 14672 */ 14673 boolean_t 14674 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14675 const void *src, uint_t srclen) 14676 { 14677 void *dst; 14678 14679 if (!src_valid) 14680 srclen = 0; 14681 14682 ASSERT(*dstlenp == 0); 14683 if (src != NULL && srclen != 0) { 14684 dst = mi_alloc(srclen, BPRI_MED); 14685 if (dst == NULL) 14686 return (B_FALSE); 14687 } else { 14688 dst = NULL; 14689 } 14690 if (*dstp != NULL) 14691 mi_free(*dstp); 14692 *dstp = dst; 14693 *dstlenp = dst == NULL ? 0 : srclen; 14694 return (B_TRUE); 14695 } 14696 14697 /* 14698 * Replace what is in *dst, *dstlen with the source. 14699 * Assumes ip_allocbuf has already been called. 14700 */ 14701 void 14702 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14703 const void *src, uint_t srclen) 14704 { 14705 if (!src_valid) 14706 srclen = 0; 14707 14708 ASSERT(*dstlenp == srclen); 14709 if (src != NULL && srclen != 0) 14710 bcopy(src, *dstp, srclen); 14711 } 14712 14713 /* 14714 * Free the storage pointed to by the members of an ip_pkt_t. 14715 */ 14716 void 14717 ip_pkt_free(ip_pkt_t *ipp) 14718 { 14719 uint_t fields = ipp->ipp_fields; 14720 14721 if (fields & IPPF_HOPOPTS) { 14722 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14723 ipp->ipp_hopopts = NULL; 14724 ipp->ipp_hopoptslen = 0; 14725 } 14726 if (fields & IPPF_RTHDRDSTOPTS) { 14727 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14728 ipp->ipp_rthdrdstopts = NULL; 14729 ipp->ipp_rthdrdstoptslen = 0; 14730 } 14731 if (fields & IPPF_DSTOPTS) { 14732 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14733 ipp->ipp_dstopts = NULL; 14734 ipp->ipp_dstoptslen = 0; 14735 } 14736 if (fields & IPPF_RTHDR) { 14737 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14738 ipp->ipp_rthdr = NULL; 14739 ipp->ipp_rthdrlen = 0; 14740 } 14741 if (fields & IPPF_IPV4_OPTIONS) { 14742 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14743 ipp->ipp_ipv4_options = NULL; 14744 ipp->ipp_ipv4_options_len = 0; 14745 } 14746 if (fields & IPPF_LABEL_V4) { 14747 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14748 ipp->ipp_label_v4 = NULL; 14749 ipp->ipp_label_len_v4 = 0; 14750 } 14751 if (fields & IPPF_LABEL_V6) { 14752 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14753 ipp->ipp_label_v6 = NULL; 14754 ipp->ipp_label_len_v6 = 0; 14755 } 14756 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14757 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14758 } 14759 14760 /* 14761 * Copy from src to dst and allocate as needed. 14762 * Returns zero or ENOMEM. 14763 * 14764 * The caller must initialize dst to zero. 14765 */ 14766 int 14767 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14768 { 14769 uint_t fields = src->ipp_fields; 14770 14771 /* Start with fields that don't require memory allocation */ 14772 dst->ipp_fields = fields & 14773 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14774 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14775 14776 dst->ipp_addr = src->ipp_addr; 14777 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14778 dst->ipp_hoplimit = src->ipp_hoplimit; 14779 dst->ipp_tclass = src->ipp_tclass; 14780 dst->ipp_type_of_service = src->ipp_type_of_service; 14781 14782 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14783 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14784 return (0); 14785 14786 if (fields & IPPF_HOPOPTS) { 14787 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14788 if (dst->ipp_hopopts == NULL) { 14789 ip_pkt_free(dst); 14790 return (ENOMEM); 14791 } 14792 dst->ipp_fields |= IPPF_HOPOPTS; 14793 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14794 src->ipp_hopoptslen); 14795 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14796 } 14797 if (fields & IPPF_RTHDRDSTOPTS) { 14798 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14799 kmflag); 14800 if (dst->ipp_rthdrdstopts == NULL) { 14801 ip_pkt_free(dst); 14802 return (ENOMEM); 14803 } 14804 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14805 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14806 src->ipp_rthdrdstoptslen); 14807 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14808 } 14809 if (fields & IPPF_DSTOPTS) { 14810 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14811 if (dst->ipp_dstopts == NULL) { 14812 ip_pkt_free(dst); 14813 return (ENOMEM); 14814 } 14815 dst->ipp_fields |= IPPF_DSTOPTS; 14816 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14817 src->ipp_dstoptslen); 14818 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14819 } 14820 if (fields & IPPF_RTHDR) { 14821 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14822 if (dst->ipp_rthdr == NULL) { 14823 ip_pkt_free(dst); 14824 return (ENOMEM); 14825 } 14826 dst->ipp_fields |= IPPF_RTHDR; 14827 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14828 src->ipp_rthdrlen); 14829 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14830 } 14831 if (fields & IPPF_IPV4_OPTIONS) { 14832 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14833 kmflag); 14834 if (dst->ipp_ipv4_options == NULL) { 14835 ip_pkt_free(dst); 14836 return (ENOMEM); 14837 } 14838 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14839 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14840 src->ipp_ipv4_options_len); 14841 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14842 } 14843 if (fields & IPPF_LABEL_V4) { 14844 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14845 if (dst->ipp_label_v4 == NULL) { 14846 ip_pkt_free(dst); 14847 return (ENOMEM); 14848 } 14849 dst->ipp_fields |= IPPF_LABEL_V4; 14850 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14851 src->ipp_label_len_v4); 14852 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14853 } 14854 if (fields & IPPF_LABEL_V6) { 14855 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14856 if (dst->ipp_label_v6 == NULL) { 14857 ip_pkt_free(dst); 14858 return (ENOMEM); 14859 } 14860 dst->ipp_fields |= IPPF_LABEL_V6; 14861 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14862 src->ipp_label_len_v6); 14863 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14864 } 14865 if (fields & IPPF_FRAGHDR) { 14866 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14867 if (dst->ipp_fraghdr == NULL) { 14868 ip_pkt_free(dst); 14869 return (ENOMEM); 14870 } 14871 dst->ipp_fields |= IPPF_FRAGHDR; 14872 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14873 src->ipp_fraghdrlen); 14874 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14875 } 14876 return (0); 14877 } 14878 14879 /* 14880 * Returns INADDR_ANY if no source route 14881 */ 14882 ipaddr_t 14883 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14884 { 14885 ipaddr_t nexthop = INADDR_ANY; 14886 ipoptp_t opts; 14887 uchar_t *opt; 14888 uint8_t optval; 14889 uint8_t optlen; 14890 uint32_t totallen; 14891 14892 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14893 return (INADDR_ANY); 14894 14895 totallen = ipp->ipp_ipv4_options_len; 14896 if (totallen & 0x3) 14897 return (INADDR_ANY); 14898 14899 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14900 optval != IPOPT_EOL; 14901 optval = ipoptp_next(&opts)) { 14902 opt = opts.ipoptp_cur; 14903 switch (optval) { 14904 uint8_t off; 14905 case IPOPT_SSRR: 14906 case IPOPT_LSRR: 14907 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14908 break; 14909 } 14910 optlen = opts.ipoptp_len; 14911 off = opt[IPOPT_OFFSET]; 14912 off--; 14913 if (optlen < IP_ADDR_LEN || 14914 off > optlen - IP_ADDR_LEN) { 14915 /* End of source route */ 14916 break; 14917 } 14918 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14919 if (nexthop == htonl(INADDR_LOOPBACK)) { 14920 /* Ignore */ 14921 nexthop = INADDR_ANY; 14922 break; 14923 } 14924 break; 14925 } 14926 } 14927 return (nexthop); 14928 } 14929 14930 /* 14931 * Reverse a source route. 14932 */ 14933 void 14934 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 14935 { 14936 ipaddr_t tmp; 14937 ipoptp_t opts; 14938 uchar_t *opt; 14939 uint8_t optval; 14940 uint32_t totallen; 14941 14942 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14943 return; 14944 14945 totallen = ipp->ipp_ipv4_options_len; 14946 if (totallen & 0x3) 14947 return; 14948 14949 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14950 optval != IPOPT_EOL; 14951 optval = ipoptp_next(&opts)) { 14952 uint8_t off1, off2; 14953 14954 opt = opts.ipoptp_cur; 14955 switch (optval) { 14956 case IPOPT_SSRR: 14957 case IPOPT_LSRR: 14958 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14959 break; 14960 } 14961 off1 = IPOPT_MINOFF_SR - 1; 14962 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 14963 while (off2 > off1) { 14964 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 14965 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 14966 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 14967 off2 -= IP_ADDR_LEN; 14968 off1 += IP_ADDR_LEN; 14969 } 14970 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 14971 break; 14972 } 14973 } 14974 } 14975 14976 /* 14977 * Returns NULL if no routing header 14978 */ 14979 in6_addr_t * 14980 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 14981 { 14982 in6_addr_t *nexthop = NULL; 14983 ip6_rthdr0_t *rthdr; 14984 14985 if (!(ipp->ipp_fields & IPPF_RTHDR)) 14986 return (NULL); 14987 14988 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 14989 if (rthdr->ip6r0_segleft == 0) 14990 return (NULL); 14991 14992 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 14993 return (nexthop); 14994 } 14995 14996 zoneid_t 14997 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 14998 zoneid_t lookup_zoneid) 14999 { 15000 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15001 ire_t *ire; 15002 int ire_flags = MATCH_IRE_TYPE; 15003 zoneid_t zoneid = ALL_ZONES; 15004 15005 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15006 return (ALL_ZONES); 15007 15008 if (lookup_zoneid != ALL_ZONES) 15009 ire_flags |= MATCH_IRE_ZONEONLY; 15010 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15011 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15012 if (ire != NULL) { 15013 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15014 ire_refrele(ire); 15015 } 15016 return (zoneid); 15017 } 15018 15019 zoneid_t 15020 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15021 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15022 { 15023 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15024 ire_t *ire; 15025 int ire_flags = MATCH_IRE_TYPE; 15026 zoneid_t zoneid = ALL_ZONES; 15027 15028 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15029 return (ALL_ZONES); 15030 15031 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15032 ire_flags |= MATCH_IRE_ILL; 15033 15034 if (lookup_zoneid != ALL_ZONES) 15035 ire_flags |= MATCH_IRE_ZONEONLY; 15036 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15037 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15038 if (ire != NULL) { 15039 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15040 ire_refrele(ire); 15041 } 15042 return (zoneid); 15043 } 15044 15045 /* 15046 * IP obserability hook support functions. 15047 */ 15048 static void 15049 ipobs_init(ip_stack_t *ipst) 15050 { 15051 netid_t id; 15052 15053 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15054 15055 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15056 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15057 15058 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15059 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15060 } 15061 15062 static void 15063 ipobs_fini(ip_stack_t *ipst) 15064 { 15065 15066 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15067 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15068 } 15069 15070 /* 15071 * hook_pkt_observe_t is composed in network byte order so that the 15072 * entire mblk_t chain handed into hook_run can be used as-is. 15073 * The caveat is that use of the fields, such as the zone fields, 15074 * requires conversion into host byte order first. 15075 */ 15076 void 15077 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15078 const ill_t *ill, ip_stack_t *ipst) 15079 { 15080 hook_pkt_observe_t *hdr; 15081 uint64_t grifindex; 15082 mblk_t *imp; 15083 15084 imp = allocb(sizeof (*hdr), BPRI_HI); 15085 if (imp == NULL) 15086 return; 15087 15088 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15089 /* 15090 * b_wptr is set to make the apparent size of the data in the mblk_t 15091 * to exclude the pointers at the end of hook_pkt_observer_t. 15092 */ 15093 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15094 imp->b_cont = mp; 15095 15096 ASSERT(DB_TYPE(mp) == M_DATA); 15097 15098 if (IS_UNDER_IPMP(ill)) 15099 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15100 else 15101 grifindex = 0; 15102 15103 hdr->hpo_version = 1; 15104 hdr->hpo_htype = htons(htype); 15105 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15106 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15107 hdr->hpo_grifindex = htonl(grifindex); 15108 hdr->hpo_zsrc = htonl(zsrc); 15109 hdr->hpo_zdst = htonl(zdst); 15110 hdr->hpo_pkt = imp; 15111 hdr->hpo_ctx = ipst->ips_netstack; 15112 15113 if (ill->ill_isv6) { 15114 hdr->hpo_family = AF_INET6; 15115 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15116 ipst->ips_ipv6observing, (hook_data_t)hdr); 15117 } else { 15118 hdr->hpo_family = AF_INET; 15119 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15120 ipst->ips_ipv4observing, (hook_data_t)hdr); 15121 } 15122 15123 imp->b_cont = NULL; 15124 freemsg(imp); 15125 } 15126 15127 /* 15128 * Utility routine that checks if `v4srcp' is a valid address on underlying 15129 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15130 * associated with `v4srcp' on success. NOTE: if this is not called from 15131 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15132 * group during or after this lookup. 15133 */ 15134 boolean_t 15135 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15136 { 15137 ipif_t *ipif; 15138 15139 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15140 if (ipif != NULL) { 15141 if (ipifp != NULL) 15142 *ipifp = ipif; 15143 else 15144 ipif_refrele(ipif); 15145 return (B_TRUE); 15146 } 15147 15148 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15149 *v4srcp)); 15150 return (B_FALSE); 15151 } 15152 15153 /* 15154 * Transport protocol call back function for CPU state change. 15155 */ 15156 /* ARGSUSED */ 15157 static int 15158 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15159 { 15160 processorid_t cpu_seqid; 15161 netstack_handle_t nh; 15162 netstack_t *ns; 15163 15164 ASSERT(MUTEX_HELD(&cpu_lock)); 15165 cpu_seqid = cpu[id]->cpu_seqid; 15166 15167 switch (what) { 15168 case CPU_CONFIG: 15169 case CPU_ON: 15170 case CPU_INIT: 15171 case CPU_CPUPART_IN: 15172 netstack_next_init(&nh); 15173 while ((ns = netstack_next(&nh)) != NULL) { 15174 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15175 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15176 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15177 netstack_rele(ns); 15178 } 15179 netstack_next_fini(&nh); 15180 break; 15181 case CPU_UNCONFIG: 15182 case CPU_OFF: 15183 case CPU_CPUPART_OUT: 15184 /* 15185 * Nothing to do. We don't remove the per CPU stats from 15186 * the IP stack even when the CPU goes offline. 15187 */ 15188 break; 15189 default: 15190 break; 15191 } 15192 return (0); 15193 } 15194