1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/suntpi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 #include <sys/taskq.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <sys/mac.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <inet/iptun/iptun_impl.h> 101 #include <inet/ipdrop.h> 102 #include <inet/ip_netinfo.h> 103 #include <inet/ilb_ip.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/pattr.h> 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 #include <inet/rawip_impl.h> 119 #include <inet/rts_impl.h> 120 121 #include <sys/tsol/label.h> 122 #include <sys/tsol/tnet.h> 123 124 #include <sys/squeue_impl.h> 125 #include <inet/ip_arp.h> 126 127 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 139 /* 140 * Setable in /etc/system 141 */ 142 int ip_poll_normal_ms = 100; 143 int ip_poll_normal_ticks = 0; 144 int ip_modclose_ackwait_ms = 3000; 145 146 /* 147 * It would be nice to have these present only in DEBUG systems, but the 148 * current design of the global symbol checking logic requires them to be 149 * unconditionally present. 150 */ 151 uint_t ip_thread_data; /* TSD key for debug support */ 152 krwlock_t ip_thread_rwlock; 153 list_t ip_thread_list; 154 155 /* 156 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 157 */ 158 159 struct listptr_s { 160 mblk_t *lp_head; /* pointer to the head of the list */ 161 mblk_t *lp_tail; /* pointer to the tail of the list */ 162 }; 163 164 typedef struct listptr_s listptr_t; 165 166 /* 167 * This is used by ip_snmp_get_mib2_ip_route_media and 168 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 169 */ 170 typedef struct iproutedata_s { 171 uint_t ird_idx; 172 uint_t ird_flags; /* see below */ 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* Include ire_testhidden and IRE_IF_CLONE routes */ 179 #define IRD_REPORT_ALL 0x01 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, IPMP operations, most set ioctls, etc. 236 * 237 * Plumbing is a long sequence of operations involving message 238 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 239 * involved in plumbing operations. A natural model is to serialize these 240 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 241 * parallel without any interference. But various set ioctls on hme0 are best 242 * serialized, along with IPMP operations and processing of DLPI control 243 * messages received from drivers on a per phyint basis. This serialization is 244 * provided by the ipsq_t and primitives operating on this. Details can 245 * be found in ip_if.c above the core primitives operating on ipsq_t. 246 * 247 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 248 * Simiarly lookup of an ire by a thread also returns a refheld ire. 249 * In addition ipif's and ill's referenced by the ire are also indirectly 250 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 251 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 252 * address of an ipif has to go through the ipsq_t. This ensures that only 253 * one such exclusive operation proceeds at any time on the ipif. It then 254 * waits for all refcnts 255 * associated with this ipif to come down to zero. The address is changed 256 * only after the ipif has been quiesced. Then the ipif is brought up again. 257 * More details are described above the comment in ip_sioctl_flags. 258 * 259 * Packet processing is based mostly on IREs and are fully multi-threaded 260 * using standard Solaris MT techniques. 261 * 262 * There are explicit locks in IP to handle: 263 * - The ip_g_head list maintained by mi_open_link() and friends. 264 * 265 * - The reassembly data structures (one lock per hash bucket) 266 * 267 * - conn_lock is meant to protect conn_t fields. The fields actually 268 * protected by conn_lock are documented in the conn_t definition. 269 * 270 * - ire_lock to protect some of the fields of the ire, IRE tables 271 * (one lock per hash bucket). Refer to ip_ire.c for details. 272 * 273 * - ndp_g_lock and ncec_lock for protecting NCEs. 274 * 275 * - ill_lock protects fields of the ill and ipif. Details in ip.h 276 * 277 * - ill_g_lock: This is a global reader/writer lock. Protects the following 278 * * The AVL tree based global multi list of all ills. 279 * * The linked list of all ipifs of an ill 280 * * The <ipsq-xop> mapping 281 * * <ill-phyint> association 282 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 283 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 284 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 285 * writer for the actual duration of the insertion/deletion/change. 286 * 287 * - ill_lock: This is a per ill mutex. 288 * It protects some members of the ill_t struct; see ip.h for details. 289 * It also protects the <ill-phyint> assoc. 290 * It also protects the list of ipifs hanging off the ill. 291 * 292 * - ipsq_lock: This is a per ipsq_t mutex lock. 293 * This protects some members of the ipsq_t struct; see ip.h for details. 294 * It also protects the <ipsq-ipxop> mapping 295 * 296 * - ipx_lock: This is a per ipxop_t mutex lock. 297 * This protects some members of the ipxop_t struct; see ip.h for details. 298 * 299 * - phyint_lock: This is a per phyint mutex lock. Protects just the 300 * phyint_flags 301 * 302 * - ip_g_nd_lock: This is a global reader/writer lock. 303 * Any call to nd_load to load a new parameter to the ND table must hold the 304 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 305 * as reader. 306 * 307 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 308 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 309 * uniqueness check also done atomically. 310 * 311 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 312 * group list linked by ill_usesrc_grp_next. It also protects the 313 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 314 * group is being added or deleted. This lock is taken as a reader when 315 * walking the list/group(eg: to get the number of members in a usesrc group). 316 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 317 * field is changing state i.e from NULL to non-NULL or vice-versa. For 318 * example, it is not necessary to take this lock in the initial portion 319 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 320 * operations are executed exclusively and that ensures that the "usesrc 321 * group state" cannot change. The "usesrc group state" change can happen 322 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 323 * 324 * Changing <ill-phyint>, <ipsq-xop> assocications: 325 * 326 * To change the <ill-phyint> association, the ill_g_lock must be held 327 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 328 * must be held. 329 * 330 * To change the <ipsq-xop> association, the ill_g_lock must be held as 331 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 332 * This is only done when ills are added or removed from IPMP groups. 333 * 334 * To add or delete an ipif from the list of ipifs hanging off the ill, 335 * ill_g_lock (writer) and ill_lock must be held and the thread must be 336 * a writer on the associated ipsq. 337 * 338 * To add or delete an ill to the system, the ill_g_lock must be held as 339 * writer and the thread must be a writer on the associated ipsq. 340 * 341 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 342 * must be a writer on the associated ipsq. 343 * 344 * Lock hierarchy 345 * 346 * Some lock hierarchy scenarios are listed below. 347 * 348 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 349 * ill_g_lock -> ill_lock(s) -> phyint_lock 350 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 351 * ill_g_lock -> ip_addr_avail_lock 352 * conn_lock -> irb_lock -> ill_lock -> ire_lock 353 * ill_g_lock -> ip_g_nd_lock 354 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 355 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 356 * arl_lock -> ill_lock 357 * ips_ire_dep_lock -> irb_lock 358 * 359 * When more than 1 ill lock is needed to be held, all ill lock addresses 360 * are sorted on address and locked starting from highest addressed lock 361 * downward. 362 * 363 * Multicast scenarios 364 * ips_ill_g_lock -> ill_mcast_lock 365 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 367 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 368 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 369 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 370 * 371 * IPsec scenarios 372 * 373 * ipsa_lock -> ill_g_lock -> ill_lock 374 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 375 * 376 * Trusted Solaris scenarios 377 * 378 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 379 * igsa_lock -> gcdb_lock 380 * gcgrp_rwlock -> ire_lock 381 * gcgrp_rwlock -> gcdb_lock 382 * 383 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 384 * 385 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 386 * sq_lock -> conn_lock -> QLOCK(q) 387 * ill_lock -> ft_lock -> fe_lock 388 * 389 * Routing/forwarding table locking notes: 390 * 391 * Lock acquisition order: Radix tree lock, irb_lock. 392 * Requirements: 393 * i. Walker must not hold any locks during the walker callback. 394 * ii Walker must not see a truncated tree during the walk because of any node 395 * deletion. 396 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 397 * in many places in the code to walk the irb list. Thus even if all the 398 * ires in a bucket have been deleted, we still can't free the radix node 399 * until the ires have actually been inactive'd (freed). 400 * 401 * Tree traversal - Need to hold the global tree lock in read mode. 402 * Before dropping the global tree lock, need to either increment the ire_refcnt 403 * to ensure that the radix node can't be deleted. 404 * 405 * Tree add - Need to hold the global tree lock in write mode to add a 406 * radix node. To prevent the node from being deleted, increment the 407 * irb_refcnt, after the node is added to the tree. The ire itself is 408 * added later while holding the irb_lock, but not the tree lock. 409 * 410 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 411 * All associated ires must be inactive (i.e. freed), and irb_refcnt 412 * must be zero. 413 * 414 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 415 * global tree lock (read mode) for traversal. 416 * 417 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 418 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 419 * 420 * IPsec notes : 421 * 422 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 423 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 424 * ip_xmit_attr_t has the 425 * information used by the IPsec code for applying the right level of 426 * protection. The information initialized by IP in the ip_xmit_attr_t 427 * is determined by the per-socket policy or global policy in the system. 428 * For inbound datagrams, the ip_recv_attr_t 429 * starts out with nothing in it. It gets filled 430 * with the right information if it goes through the AH/ESP code, which 431 * happens if the incoming packet is secure. The information initialized 432 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 433 * the policy requirements needed by per-socket policy or global policy 434 * is met or not. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_policy_set once the destination is known. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition on the conn_wq 516 * of streams sockets, or the su_txqfull for non-streams sockets. 517 * connp->conn_direct_blocked will be set to indicate the blocked 518 * condition. 519 * 520 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 521 * A cookie is passed in the call to ill_flow_enable() that identifies the 522 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 523 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 524 * and goes through each conn in the drain list and calls conn_idl_remove 525 * for the conn to clear the qfull condition for the conn, as well as to 526 * remove the conn from the idl list. In addition, streams based sockets 527 * will have the conn_wq enabled, causing ip_wsrv to run for the 528 * conn. ip_wsrv drains the queued messages, and removes the conn from the 529 * drain list, if all messages were drained. It also notifies the 530 * conn_upcalls for the conn to signal that flow-control has opened up. 531 * 532 * In reality the drain list is not a single list, but a configurable number 533 * of lists. conn_walk_drain() in the IP module, notifies the conn_upcalls for 534 * each conn in the list. conn_drain_insert and conn_drain_tail are the only 535 * functions that manipulate this drain list. conn_drain_insert is called in 536 * from the protocol layer when conn_ip_output returns EWOULDBLOCK. 537 * (as opposed to from ip_wsrv context for STREAMS 538 * case -- see below). The synchronization between drain insertion and flow 539 * control wakeup is handled by using idl_txl->txl_lock. 540 * 541 * Flow control using STREAMS: 542 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 543 * is used. On the send side, if the packet cannot be sent down to the 544 * driver by IP, because of a canput failure, ip_xmit drops the packet 545 * and returns EWOULDBLOCK to the caller, who may then invoke 546 * ixa_check_drain_insert to insert the conn on the 0'th drain list. 547 * When ip_wsrv runs on the ill_wq because flow control has been relieved, the 548 * blocked conns in the * 0'th drain list is drained as with the 549 * non-STREAMS case. 550 * 551 * In both the STREAMS and non-STREAMS case, the sockfs upcall to set 552 * qfull is done when the conn is inserted into the drain list 553 * (conn_drain_insert()) and cleared when the conn is removed from the drain 554 * list (conn_idl_remove()). 555 * 556 * IPQOS notes: 557 * 558 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 559 * and IPQoS modules. IPPF includes hooks in IP at different control points 560 * (callout positions) which direct packets to IPQoS modules for policy 561 * processing. Policies, if present, are global. 562 * 563 * The callout positions are located in the following paths: 564 * o local_in (packets destined for this host) 565 * o local_out (packets orginating from this host ) 566 * o fwd_in (packets forwarded by this m/c - inbound) 567 * o fwd_out (packets forwarded by this m/c - outbound) 568 * Hooks at these callout points can be enabled/disabled using the ndd variable 569 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 570 * By default all the callout positions are enabled. 571 * 572 * Outbound (local_out) 573 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 574 * 575 * Inbound (local_in) 576 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 577 * 578 * Forwarding (in and out) 579 * Hooks are placed in ire_recv_forward_v4/v6. 580 * 581 * IP Policy Framework processing (IPPF processing) 582 * Policy processing for a packet is initiated by ip_process, which ascertains 583 * that the classifier (ipgpc) is loaded and configured, failing which the 584 * packet resumes normal processing in IP. If the clasifier is present, the 585 * packet is acted upon by one or more IPQoS modules (action instances), per 586 * filters configured in ipgpc and resumes normal IP processing thereafter. 587 * An action instance can drop a packet in course of its processing. 588 * 589 * Zones notes: 590 * 591 * The partitioning rules for networking are as follows: 592 * 1) Packets coming from a zone must have a source address belonging to that 593 * zone. 594 * 2) Packets coming from a zone can only be sent on a physical interface on 595 * which the zone has an IP address. 596 * 3) Between two zones on the same machine, packet delivery is only allowed if 597 * there's a matching route for the destination and zone in the forwarding 598 * table. 599 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 600 * different zones can bind to the same port with the wildcard address 601 * (INADDR_ANY). 602 * 603 * The granularity of interface partitioning is at the logical interface level. 604 * Therefore, every zone has its own IP addresses, and incoming packets can be 605 * attributed to a zone unambiguously. A logical interface is placed into a zone 606 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 607 * structure. Rule (1) is implemented by modifying the source address selection 608 * algorithm so that the list of eligible addresses is filtered based on the 609 * sending process zone. 610 * 611 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 612 * across all zones, depending on their type. Here is the break-up: 613 * 614 * IRE type Shared/exclusive 615 * -------- ---------------- 616 * IRE_BROADCAST Exclusive 617 * IRE_DEFAULT (default routes) Shared (*) 618 * IRE_LOCAL Exclusive (x) 619 * IRE_LOOPBACK Exclusive 620 * IRE_PREFIX (net routes) Shared (*) 621 * IRE_IF_NORESOLVER (interface routes) Exclusive 622 * IRE_IF_RESOLVER (interface routes) Exclusive 623 * IRE_IF_CLONE (interface routes) Exclusive 624 * IRE_HOST (host routes) Shared (*) 625 * 626 * (*) A zone can only use a default or off-subnet route if the gateway is 627 * directly reachable from the zone, that is, if the gateway's address matches 628 * one of the zone's logical interfaces. 629 * 630 * (x) IRE_LOCAL are handled a bit differently. 631 * When ip_restrict_interzone_loopback is set (the default), 632 * ire_route_recursive restricts loopback using an IRE_LOCAL 633 * between zone to the case when L2 would have conceptually looped the packet 634 * back, i.e. the loopback which is required since neither Ethernet drivers 635 * nor Ethernet hardware loops them back. This is the case when the normal 636 * routes (ignoring IREs with different zoneids) would send out the packet on 637 * the same ill as the ill with which is IRE_LOCAL is associated. 638 * 639 * Multiple zones can share a common broadcast address; typically all zones 640 * share the 255.255.255.255 address. Incoming as well as locally originated 641 * broadcast packets must be dispatched to all the zones on the broadcast 642 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 643 * since some zones may not be on the 10.16.72/24 network. To handle this, each 644 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 645 * sent to every zone that has an IRE_BROADCAST entry for the destination 646 * address on the input ill, see ip_input_broadcast(). 647 * 648 * Applications in different zones can join the same multicast group address. 649 * The same logic applies for multicast as for broadcast. ip_input_multicast 650 * dispatches packets to all zones that have members on the physical interface. 651 */ 652 653 /* 654 * Squeue Fanout flags: 655 * 0: No fanout. 656 * 1: Fanout across all squeues 657 */ 658 boolean_t ip_squeue_fanout = 0; 659 660 /* 661 * Maximum dups allowed per packet. 662 */ 663 uint_t ip_max_frag_dups = 10; 664 665 /* RFC 1122 Conformance */ 666 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 667 668 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 669 cred_t *credp, boolean_t isv6); 670 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 671 672 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 673 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 674 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 675 ip_recv_attr_t *); 676 static void icmp_options_update(ipha_t *); 677 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 678 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 679 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 680 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 681 ip_recv_attr_t *); 682 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 683 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 684 ip_recv_attr_t *); 685 686 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 687 char *ip_dot_addr(ipaddr_t, char *); 688 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 689 int ip_close(queue_t *, int); 690 static char *ip_dot_saddr(uchar_t *, char *); 691 static void ip_lrput(queue_t *, mblk_t *); 692 ipaddr_t ip_net_mask(ipaddr_t); 693 char *ip_nv_lookup(nv_t *, int); 694 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 695 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 696 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 697 ipndp_t *, size_t); 698 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 699 void ip_rput(queue_t *, mblk_t *); 700 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 701 void *dummy_arg); 702 int ip_snmp_get(queue_t *, mblk_t *, int); 703 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 704 mib2_ipIfStatsEntry_t *, ip_stack_t *); 705 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 706 ip_stack_t *); 707 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 708 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 709 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 710 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 711 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 712 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 713 ip_stack_t *ipst); 714 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 715 ip_stack_t *ipst); 716 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 717 ip_stack_t *ipst); 718 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 719 ip_stack_t *ipst); 720 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 721 ip_stack_t *ipst); 722 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 723 ip_stack_t *ipst); 724 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 725 ip_stack_t *ipst); 726 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 727 ip_stack_t *ipst); 728 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 729 ip_stack_t *ipst); 730 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 731 ip_stack_t *ipst); 732 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 733 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 734 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 735 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 736 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 737 738 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 739 mblk_t *); 740 741 static void conn_drain_init(ip_stack_t *); 742 static void conn_drain_fini(ip_stack_t *); 743 static void conn_drain_tail(conn_t *connp, boolean_t closing); 744 745 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 746 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 747 748 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 749 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 750 static void ip_stack_fini(netstackid_t stackid, void *arg); 751 752 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 753 754 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 755 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 756 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 757 const in6_addr_t *); 758 759 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 760 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 761 caddr_t, cred_t *); 762 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 763 caddr_t cp, cred_t *cr); 764 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 765 cred_t *); 766 static int ip_squeue_switch(int); 767 768 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 769 static void ip_kstat_fini(netstackid_t, kstat_t *); 770 static int ip_kstat_update(kstat_t *kp, int rw); 771 static void *icmp_kstat_init(netstackid_t); 772 static void icmp_kstat_fini(netstackid_t, kstat_t *); 773 static int icmp_kstat_update(kstat_t *kp, int rw); 774 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 775 static void ip_kstat2_fini(netstackid_t, kstat_t *); 776 777 static void ipobs_init(ip_stack_t *); 778 static void ipobs_fini(ip_stack_t *); 779 780 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 781 782 /* How long, in seconds, we allow frags to hang around. */ 783 #define IP_FRAG_TIMEOUT 15 784 #define IPV6_FRAG_TIMEOUT 60 785 786 static long ip_rput_pullups; 787 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 788 789 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 790 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 791 792 int ip_debug; 793 794 /* 795 * Multirouting/CGTP stuff 796 */ 797 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 798 799 /* 800 * Named Dispatch Parameter Table. 801 * All of these are alterable, within the min/max values given, at run time. 802 */ 803 static ipparam_t lcl_param_arr[] = { 804 /* min max value name */ 805 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 806 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 807 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 808 { 0, 1, 0, "ip_respond_to_timestamp"}, 809 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 810 { 0, 1, 1, "ip_send_redirects"}, 811 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 812 { 0, 10, 0, "ip_mrtdebug"}, 813 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 814 { 1, 8, 3, "ip_nce_reclaim_fraction" }, 815 { 1, 8, 3, "ip_dce_reclaim_fraction" }, 816 { 1, 255, 255, "ip_def_ttl" }, 817 { 0, 1, 0, "ip_forward_src_routed"}, 818 { 0, 256, 32, "ip_wroff_extra" }, 819 { 2, 999999999, 60*20, "ip_pathmtu_interval" }, /* In seconds */ 820 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 821 { 0, 1, 1, "ip_path_mtu_discovery" }, 822 { 68, 65535, 576, "ip_pmtu_min" }, 823 { 0, 1, 0, "ip_ignore_redirect" }, 824 { 0, 1, 0, "ip_arp_icmp_error" }, 825 { 1, 254, 1, "ip_broadcast_ttl" }, 826 { 0, 99999, 100, "ip_icmp_err_interval" }, 827 { 1, 99999, 10, "ip_icmp_err_burst" }, 828 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 829 /* 830 * See comments for ip_strict_src_multihoming for an explanation 831 * of the semantics of ip_strict_dst_multihoming 832 */ 833 { 0, 1, 0, "ip_strict_dst_multihoming" }, 834 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 835 { 0, 1, 0, "ipsec_override_persocket_policy" }, 836 { 0, 1, 1, "icmp_accept_clear_messages" }, 837 { 0, 1, 1, "igmp_accept_clear_messages" }, 838 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 839 "ip_ndp_delay_first_probe_time"}, 840 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 841 "ip_ndp_max_unicast_solicit"}, 842 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 843 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 844 { 0, 1, 0, "ip6_forward_src_routed"}, 845 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 846 { 0, 1, 1, "ip6_send_redirects"}, 847 { 0, 1, 0, "ip6_ignore_redirect" }, 848 /* 849 * See comments for ip6_strict_src_multihoming for an explanation 850 * of the semantics of ip6_strict_dst_multihoming 851 */ 852 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 853 854 { 0, 2, 2, "ip_src_check" }, 855 856 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 857 858 { 0, 1, 1, "pim_accept_clear_messages" }, 859 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 860 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 861 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 862 { 0, 15, 0, "ip_policy_mask" }, 863 { 0, 2, 2, "ip_ecmp_behavior" }, 864 { 0, 255, 1, "ip_multirt_ttl" }, 865 { 0, 3600, 60, "ip_ire_badcnt_lifetime" }, /* In seconds */ 866 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 867 { 0, 1000, 1, "ip_max_temp_defend" }, 868 /* 869 * when a conflict of an active address is detected, 870 * defend up to ip_max_defend times, within any 871 * ip_defend_interval span. 872 */ 873 { 0, 1000, 3, "ip_max_defend" }, 874 { 0, 999999, 30, "ip_defend_interval" }, 875 { 0, 3600000, 300000, "ip_dup_recovery" }, 876 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 877 { 0, 1, 1, "ip_lso_outbound" }, 878 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 879 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 880 #ifdef DEBUG 881 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 882 #else 883 { 0, 0, 0, "" }, 884 #endif 885 /* delay before sending first probe: */ 886 { 0, 20000, 1000, "arp_probe_delay" }, 887 { 0, 20000, 100, "arp_fastprobe_delay" }, 888 /* interval at which DAD probes are sent: */ 889 { 10, 20000, 1500, "arp_probe_interval" }, 890 { 10, 20000, 150, "arp_fastprobe_interval" }, 891 /* setting probe count to 0 will disable ARP probing for DAD. */ 892 { 0, 20, 3, "arp_probe_count" }, 893 { 0, 20, 3, "arp_fastprobe_count" }, 894 895 { 0, 3600000, 15000, "ipv4_dad_announce_interval"}, 896 { 0, 3600000, 15000, "ipv6_dad_announce_interval"}, 897 /* 898 * Rate limiting parameters for DAD defense used in 899 * ill_defend_rate_limit(): 900 * defend_rate : pkts/hour permitted 901 * defend_interval : time that can elapse before we send out a 902 * DAD defense. 903 * defend_period: denominator for defend_rate (in seconds). 904 */ 905 { 0, 3600000, 300000, "arp_defend_interval"}, 906 { 0, 20000, 100, "arp_defend_rate"}, 907 { 0, 3600000, 300000, "ndp_defend_interval"}, 908 { 0, 20000, 100, "ndp_defend_rate"}, 909 { 5, 86400, 3600, "arp_defend_period"}, 910 { 5, 86400, 3600, "ndp_defend_period"}, 911 { 0, 1, 1, "ipv4_icmp_return_pmtu" }, 912 { 0, 1, 1, "ipv6_icmp_return_pmtu" }, 913 /* 914 * publish count/interval values used to announce local addresses 915 * for IPv4, IPv6. 916 */ 917 { 1, 20, 5, "ip_arp_publish_count" }, 918 { 1000, 20000, 2000, "ip_arp_publish_interval" }, 919 /* 920 * The ip*strict_src_multihoming and ip*strict_dst_multihoming provide 921 * a range of choices for setting strong/weak/preferred end-system 922 * behavior. The semantics for setting these are: 923 * 924 * ip*_strict_dst_multihoming = 0 925 * weak end system model for managing ip destination addresses. 926 * A packet with IP dst D1 that's received on interface I1 will be 927 * accepted as long as D1 is one of the local addresses on 928 * the machine, even if D1 is not configured on I1. 929 * ip*strict_dst_multihioming = 1 930 * strong end system model for managing ip destination addresses. 931 * A packet with IP dst D1 that's received on interface I1 will be 932 * accepted if, and only if, D1 is configured on I1. 933 * 934 * ip*strict_src_multihoming = 0 935 * Source agnostic route selection for outgoing packets: the 936 * outgoing interface for a packet will be computed using 937 * default algorithms for route selection, where the route 938 * with the longest matching prefix is chosen for the output 939 * unless other route selection constraints are explicitly 940 * specified during routing table lookup. This may result 941 * in packet being sent out on interface I2 with source 942 * address S1, even though S1 is not a configured address on I2. 943 * ip*strict_src_multihoming = 1 944 * Preferred source aware route selection for outgoing packets: for 945 * a packet with source S2, destination D2, the route selection 946 * algorithm will first attempt to find a route for the destination 947 * that goes out through an interface where S2 is 948 * configured. If such a route cannot be found, then the 949 * best-matching route for D2 will be selected. 950 * ip*strict_src_multihoming = 2 951 * Source aware route selection for outgoing packets: a packet will 952 * be sent out on an interface I2 only if the src address S2 of the 953 * packet is a configured address on I2. In conjunction with 954 * the setting 'ip_strict_dst_multihoming == 1', this will result in 955 * the implementation of Strong ES as defined in Section 3.3.4.2 of 956 * RFC 1122 957 */ 958 { 0, 2, 0, "ip_strict_src_multihoming" }, 959 { 0, 2, 0, "ip6_strict_src_multihoming" } 960 }; 961 962 /* 963 * Extended NDP table 964 * The addresses for the first two are filled in to be ips_ip_g_forward 965 * and ips_ipv6_forward at init time. 966 */ 967 static ipndp_t lcl_ndp_arr[] = { 968 /* getf setf data name */ 969 #define IPNDP_IP_FORWARDING_OFFSET 0 970 { ip_param_generic_get, ip_forward_set, NULL, 971 "ip_forwarding" }, 972 #define IPNDP_IP6_FORWARDING_OFFSET 1 973 { ip_param_generic_get, ip_forward_set, NULL, 974 "ip6_forwarding" }, 975 { ip_param_generic_get, ip_input_proc_set, 976 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 977 { ip_param_generic_get, ip_int_set, 978 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 979 #define IPNDP_CGTP_FILTER_OFFSET 4 980 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 981 "ip_cgtp_filter" }, 982 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 983 "ip_debug" }, 984 }; 985 986 /* 987 * Table of IP ioctls encoding the various properties of the ioctl and 988 * indexed based on the last byte of the ioctl command. Occasionally there 989 * is a clash, and there is more than 1 ioctl with the same last byte. 990 * In such a case 1 ioctl is encoded in the ndx table and the remaining 991 * ioctls are encoded in the misc table. An entry in the ndx table is 992 * retrieved by indexing on the last byte of the ioctl command and comparing 993 * the ioctl command with the value in the ndx table. In the event of a 994 * mismatch the misc table is then searched sequentially for the desired 995 * ioctl command. 996 * 997 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 998 */ 999 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1000 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1001 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1002 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1003 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1004 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1005 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1006 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1007 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1008 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1009 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1010 1011 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1012 MISC_CMD, ip_siocaddrt, NULL }, 1013 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1014 MISC_CMD, ip_siocdelrt, NULL }, 1015 1016 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1017 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1018 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1019 IF_CMD, ip_sioctl_get_addr, NULL }, 1020 1021 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1022 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1023 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1024 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1025 1026 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1027 IPI_PRIV | IPI_WR, 1028 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1029 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1030 IPI_MODOK | IPI_GET_CMD, 1031 IF_CMD, ip_sioctl_get_flags, NULL }, 1032 1033 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* copyin size cannot be coded for SIOCGIFCONF */ 1037 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1038 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1039 1040 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1041 IF_CMD, ip_sioctl_mtu, NULL }, 1042 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1043 IF_CMD, ip_sioctl_get_mtu, NULL }, 1044 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1045 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1046 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1047 IF_CMD, ip_sioctl_brdaddr, NULL }, 1048 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1049 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1050 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1051 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1052 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1053 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1054 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1055 IF_CMD, ip_sioctl_metric, NULL }, 1056 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* See 166-168 below for extended SIOC*XARP ioctls */ 1059 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1060 ARP_CMD, ip_sioctl_arp, NULL }, 1061 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1062 ARP_CMD, ip_sioctl_arp, NULL }, 1063 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1064 ARP_CMD, ip_sioctl_arp, NULL }, 1065 1066 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 1088 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1089 MISC_CMD, if_unitsel, if_unitsel_restart }, 1090 1091 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 1110 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1111 IPI_PRIV | IPI_WR | IPI_MODOK, 1112 IF_CMD, ip_sioctl_sifname, NULL }, 1113 1114 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 1128 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1129 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1130 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1131 IF_CMD, ip_sioctl_get_muxid, NULL }, 1132 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1133 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1134 1135 /* Both if and lif variants share same func */ 1136 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1137 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1138 /* Both if and lif variants share same func */ 1139 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1140 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1141 1142 /* copyin size cannot be coded for SIOCGIFCONF */ 1143 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1144 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1145 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 1163 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1164 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1165 ip_sioctl_removeif_restart }, 1166 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1167 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1168 LIF_CMD, ip_sioctl_addif, NULL }, 1169 #define SIOCLIFADDR_NDX 112 1170 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1171 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1172 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1173 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1174 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1175 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1176 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1177 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1178 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1179 IPI_PRIV | IPI_WR, 1180 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1181 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1182 IPI_GET_CMD | IPI_MODOK, 1183 LIF_CMD, ip_sioctl_get_flags, NULL }, 1184 1185 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1189 ip_sioctl_get_lifconf, NULL }, 1190 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1191 LIF_CMD, ip_sioctl_mtu, NULL }, 1192 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1193 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1194 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1195 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1196 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1197 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1198 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1199 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1200 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1201 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1202 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1203 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1204 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_metric, NULL }, 1206 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1207 IPI_PRIV | IPI_WR | IPI_MODOK, 1208 LIF_CMD, ip_sioctl_slifname, 1209 ip_sioctl_slifname_restart }, 1210 1211 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1212 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1213 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1214 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1215 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1216 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1217 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1218 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1219 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1220 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1221 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1222 LIF_CMD, ip_sioctl_token, NULL }, 1223 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1224 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1225 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1227 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1228 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1229 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1231 1232 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1233 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1234 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1235 LIF_CMD, ip_siocdelndp_v6, NULL }, 1236 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1237 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1238 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1239 LIF_CMD, ip_siocsetndp_v6, NULL }, 1240 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1241 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1242 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1243 MISC_CMD, ip_sioctl_tonlink, NULL }, 1244 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1245 MISC_CMD, ip_sioctl_tmysite, NULL }, 1246 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1247 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1248 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1249 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1250 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1251 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1252 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1253 1254 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1255 1256 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1257 LIF_CMD, ip_sioctl_get_binding, NULL }, 1258 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1259 IPI_PRIV | IPI_WR, 1260 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1261 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1262 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1263 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1264 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1265 1266 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1267 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1268 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1269 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1270 1271 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1272 1273 /* These are handled in ip_sioctl_copyin_setup itself */ 1274 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1275 MISC_CMD, NULL, NULL }, 1276 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1277 MISC_CMD, NULL, NULL }, 1278 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1279 1280 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1281 ip_sioctl_get_lifconf, NULL }, 1282 1283 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1284 XARP_CMD, ip_sioctl_arp, NULL }, 1285 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1286 XARP_CMD, ip_sioctl_arp, NULL }, 1287 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1288 XARP_CMD, ip_sioctl_arp, NULL }, 1289 1290 /* SIOCPOPSOCKFS is not handled by IP */ 1291 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1292 1293 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1294 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1295 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1296 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1297 ip_sioctl_slifzone_restart }, 1298 /* 172-174 are SCTP ioctls and not handled by IP */ 1299 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1300 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1301 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1302 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1303 IPI_GET_CMD, LIF_CMD, 1304 ip_sioctl_get_lifusesrc, 0 }, 1305 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1306 IPI_PRIV | IPI_WR, 1307 LIF_CMD, ip_sioctl_slifusesrc, 1308 NULL }, 1309 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1310 ip_sioctl_get_lifsrcof, NULL }, 1311 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1312 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1313 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1314 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1315 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1316 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1317 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1318 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1319 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1320 /* SIOCSENABLESDP is handled by SDP */ 1321 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1322 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1323 /* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL }, 1324 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1325 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1326 ip_sioctl_ilb_cmd, NULL }, 1327 }; 1328 1329 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1330 1331 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1332 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1333 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1334 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1335 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1336 { ND_GET, 0, 0, 0, NULL, NULL }, 1337 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1338 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1339 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1340 MISC_CMD, mrt_ioctl}, 1341 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1342 MISC_CMD, mrt_ioctl}, 1343 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1344 MISC_CMD, mrt_ioctl} 1345 }; 1346 1347 int ip_misc_ioctl_count = 1348 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1349 1350 int conn_drain_nthreads; /* Number of drainers reqd. */ 1351 /* Settable in /etc/system */ 1352 /* Defined in ip_ire.c */ 1353 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1354 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1355 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1356 1357 static nv_t ire_nv_arr[] = { 1358 { IRE_BROADCAST, "BROADCAST" }, 1359 { IRE_LOCAL, "LOCAL" }, 1360 { IRE_LOOPBACK, "LOOPBACK" }, 1361 { IRE_DEFAULT, "DEFAULT" }, 1362 { IRE_PREFIX, "PREFIX" }, 1363 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1364 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1365 { IRE_IF_CLONE, "IF_CLONE" }, 1366 { IRE_HOST, "HOST" }, 1367 { IRE_MULTICAST, "MULTICAST" }, 1368 { IRE_NOROUTE, "NOROUTE" }, 1369 { 0 } 1370 }; 1371 1372 nv_t *ire_nv_tbl = ire_nv_arr; 1373 1374 /* Simple ICMP IP Header Template */ 1375 static ipha_t icmp_ipha = { 1376 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1377 }; 1378 1379 struct module_info ip_mod_info = { 1380 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1381 IP_MOD_LOWAT 1382 }; 1383 1384 /* 1385 * Duplicate static symbols within a module confuses mdb; so we avoid the 1386 * problem by making the symbols here distinct from those in udp.c. 1387 */ 1388 1389 /* 1390 * Entry points for IP as a device and as a module. 1391 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1392 */ 1393 static struct qinit iprinitv4 = { 1394 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1395 &ip_mod_info 1396 }; 1397 1398 struct qinit iprinitv6 = { 1399 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1400 &ip_mod_info 1401 }; 1402 1403 static struct qinit ipwinit = { 1404 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1405 &ip_mod_info 1406 }; 1407 1408 static struct qinit iplrinit = { 1409 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1410 &ip_mod_info 1411 }; 1412 1413 static struct qinit iplwinit = { 1414 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1415 &ip_mod_info 1416 }; 1417 1418 /* For AF_INET aka /dev/ip */ 1419 struct streamtab ipinfov4 = { 1420 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1421 }; 1422 1423 /* For AF_INET6 aka /dev/ip6 */ 1424 struct streamtab ipinfov6 = { 1425 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1426 }; 1427 1428 #ifdef DEBUG 1429 boolean_t skip_sctp_cksum = B_FALSE; 1430 #endif 1431 1432 /* 1433 * Generate an ICMP fragmentation needed message. 1434 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1435 * constructed by the caller. 1436 */ 1437 void 1438 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1439 { 1440 icmph_t icmph; 1441 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1442 1443 mp = icmp_pkt_err_ok(mp, ira); 1444 if (mp == NULL) 1445 return; 1446 1447 bzero(&icmph, sizeof (icmph_t)); 1448 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1449 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1450 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1451 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1452 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1453 1454 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1455 } 1456 1457 /* 1458 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1459 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1460 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1461 * Likewise, if the ICMP error is misformed (too short, etc), then it 1462 * returns NULL. The caller uses this to determine whether or not to send 1463 * to raw sockets. 1464 * 1465 * All error messages are passed to the matching transport stream. 1466 * 1467 * The following cases are handled by icmp_inbound: 1468 * 1) It needs to send a reply back and possibly delivering it 1469 * to the "interested" upper clients. 1470 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1471 * 3) It needs to change some values in IP only. 1472 * 4) It needs to change some values in IP and upper layers e.g TCP 1473 * by delivering an error to the upper layers. 1474 * 1475 * We handle the above three cases in the context of IPsec in the 1476 * following way : 1477 * 1478 * 1) Send the reply back in the same way as the request came in. 1479 * If it came in encrypted, it goes out encrypted. If it came in 1480 * clear, it goes out in clear. Thus, this will prevent chosen 1481 * plain text attack. 1482 * 2) The client may or may not expect things to come in secure. 1483 * If it comes in secure, the policy constraints are checked 1484 * before delivering it to the upper layers. If it comes in 1485 * clear, ipsec_inbound_accept_clear will decide whether to 1486 * accept this in clear or not. In both the cases, if the returned 1487 * message (IP header + 8 bytes) that caused the icmp message has 1488 * AH/ESP headers, it is sent up to AH/ESP for validation before 1489 * sending up. If there are only 8 bytes of returned message, then 1490 * upper client will not be notified. 1491 * 3) Check with global policy to see whether it matches the constaints. 1492 * But this will be done only if icmp_accept_messages_in_clear is 1493 * zero. 1494 * 4) If we need to change both in IP and ULP, then the decision taken 1495 * while affecting the values in IP and while delivering up to TCP 1496 * should be the same. 1497 * 1498 * There are two cases. 1499 * 1500 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1501 * failed), we will not deliver it to the ULP, even though they 1502 * are *willing* to accept in *clear*. This is fine as our global 1503 * disposition to icmp messages asks us reject the datagram. 1504 * 1505 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1506 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1507 * to deliver it to ULP (policy failed), it can lead to 1508 * consistency problems. The cases known at this time are 1509 * ICMP_DESTINATION_UNREACHABLE messages with following code 1510 * values : 1511 * 1512 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1513 * and Upper layer rejects. Then the communication will 1514 * come to a stop. This is solved by making similar decisions 1515 * at both levels. Currently, when we are unable to deliver 1516 * to the Upper Layer (due to policy failures) while IP has 1517 * adjusted dce_pmtu, the next outbound datagram would 1518 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1519 * will be with the right level of protection. Thus the right 1520 * value will be communicated even if we are not able to 1521 * communicate when we get from the wire initially. But this 1522 * assumes there would be at least one outbound datagram after 1523 * IP has adjusted its dce_pmtu value. To make things 1524 * simpler, we accept in clear after the validation of 1525 * AH/ESP headers. 1526 * 1527 * - Other ICMP ERRORS : We may not be able to deliver it to the 1528 * upper layer depending on the level of protection the upper 1529 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1530 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1531 * should be accepted in clear when the Upper layer expects secure. 1532 * Thus the communication may get aborted by some bad ICMP 1533 * packets. 1534 */ 1535 mblk_t * 1536 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1537 { 1538 icmph_t *icmph; 1539 ipha_t *ipha; /* Outer header */ 1540 int ip_hdr_length; /* Outer header length */ 1541 boolean_t interested; 1542 ipif_t *ipif; 1543 uint32_t ts; 1544 uint32_t *tsp; 1545 timestruc_t now; 1546 ill_t *ill = ira->ira_ill; 1547 ip_stack_t *ipst = ill->ill_ipst; 1548 zoneid_t zoneid = ira->ira_zoneid; 1549 int len_needed; 1550 mblk_t *mp_ret = NULL; 1551 1552 ipha = (ipha_t *)mp->b_rptr; 1553 1554 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1555 1556 ip_hdr_length = ira->ira_ip_hdr_length; 1557 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1558 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1559 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1560 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1561 freemsg(mp); 1562 return (NULL); 1563 } 1564 /* Last chance to get real. */ 1565 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1566 if (ipha == NULL) { 1567 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1568 freemsg(mp); 1569 return (NULL); 1570 } 1571 } 1572 1573 /* The IP header will always be a multiple of four bytes */ 1574 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1575 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1576 icmph->icmph_code)); 1577 1578 /* 1579 * We will set "interested" to "true" if we should pass a copy to 1580 * the transport or if we handle the packet locally. 1581 */ 1582 interested = B_FALSE; 1583 switch (icmph->icmph_type) { 1584 case ICMP_ECHO_REPLY: 1585 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1586 break; 1587 case ICMP_DEST_UNREACHABLE: 1588 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1589 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1590 interested = B_TRUE; /* Pass up to transport */ 1591 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1592 break; 1593 case ICMP_SOURCE_QUENCH: 1594 interested = B_TRUE; /* Pass up to transport */ 1595 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1596 break; 1597 case ICMP_REDIRECT: 1598 if (!ipst->ips_ip_ignore_redirect) 1599 interested = B_TRUE; 1600 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1601 break; 1602 case ICMP_ECHO_REQUEST: 1603 /* 1604 * Whether to respond to echo requests that come in as IP 1605 * broadcasts or as IP multicast is subject to debate 1606 * (what isn't?). We aim to please, you pick it. 1607 * Default is do it. 1608 */ 1609 if (ira->ira_flags & IRAF_MULTICAST) { 1610 /* multicast: respond based on tunable */ 1611 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1612 } else if (ira->ira_flags & IRAF_BROADCAST) { 1613 /* broadcast: respond based on tunable */ 1614 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1615 } else { 1616 /* unicast: always respond */ 1617 interested = B_TRUE; 1618 } 1619 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1620 if (!interested) { 1621 /* We never pass these to RAW sockets */ 1622 freemsg(mp); 1623 return (NULL); 1624 } 1625 1626 /* Check db_ref to make sure we can modify the packet. */ 1627 if (mp->b_datap->db_ref > 1) { 1628 mblk_t *mp1; 1629 1630 mp1 = copymsg(mp); 1631 freemsg(mp); 1632 if (!mp1) { 1633 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1634 return (NULL); 1635 } 1636 mp = mp1; 1637 ipha = (ipha_t *)mp->b_rptr; 1638 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1639 } 1640 icmph->icmph_type = ICMP_ECHO_REPLY; 1641 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1642 icmp_send_reply_v4(mp, ipha, icmph, ira); 1643 return (NULL); 1644 1645 case ICMP_ROUTER_ADVERTISEMENT: 1646 case ICMP_ROUTER_SOLICITATION: 1647 break; 1648 case ICMP_TIME_EXCEEDED: 1649 interested = B_TRUE; /* Pass up to transport */ 1650 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1651 break; 1652 case ICMP_PARAM_PROBLEM: 1653 interested = B_TRUE; /* Pass up to transport */ 1654 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1655 break; 1656 case ICMP_TIME_STAMP_REQUEST: 1657 /* Response to Time Stamp Requests is local policy. */ 1658 if (ipst->ips_ip_g_resp_to_timestamp) { 1659 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1660 interested = 1661 ipst->ips_ip_g_resp_to_timestamp_bcast; 1662 else 1663 interested = B_TRUE; 1664 } 1665 if (!interested) { 1666 /* We never pass these to RAW sockets */ 1667 freemsg(mp); 1668 return (NULL); 1669 } 1670 1671 /* Make sure we have enough of the packet */ 1672 len_needed = ip_hdr_length + ICMPH_SIZE + 1673 3 * sizeof (uint32_t); 1674 1675 if (mp->b_wptr - mp->b_rptr < len_needed) { 1676 ipha = ip_pullup(mp, len_needed, ira); 1677 if (ipha == NULL) { 1678 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1679 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1680 mp, ill); 1681 freemsg(mp); 1682 return (NULL); 1683 } 1684 /* Refresh following the pullup. */ 1685 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1686 } 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1688 /* Check db_ref to make sure we can modify the packet. */ 1689 if (mp->b_datap->db_ref > 1) { 1690 mblk_t *mp1; 1691 1692 mp1 = copymsg(mp); 1693 freemsg(mp); 1694 if (!mp1) { 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1696 return (NULL); 1697 } 1698 mp = mp1; 1699 ipha = (ipha_t *)mp->b_rptr; 1700 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1701 } 1702 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1703 tsp = (uint32_t *)&icmph[1]; 1704 tsp++; /* Skip past 'originate time' */ 1705 /* Compute # of milliseconds since midnight */ 1706 gethrestime(&now); 1707 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1708 now.tv_nsec / (NANOSEC / MILLISEC); 1709 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1710 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1711 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1712 icmp_send_reply_v4(mp, ipha, icmph, ira); 1713 return (NULL); 1714 1715 case ICMP_TIME_STAMP_REPLY: 1716 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1717 break; 1718 case ICMP_INFO_REQUEST: 1719 /* Per RFC 1122 3.2.2.7, ignore this. */ 1720 case ICMP_INFO_REPLY: 1721 break; 1722 case ICMP_ADDRESS_MASK_REQUEST: 1723 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1724 interested = 1725 ipst->ips_ip_respond_to_address_mask_broadcast; 1726 } else { 1727 interested = B_TRUE; 1728 } 1729 if (!interested) { 1730 /* We never pass these to RAW sockets */ 1731 freemsg(mp); 1732 return (NULL); 1733 } 1734 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1735 if (mp->b_wptr - mp->b_rptr < len_needed) { 1736 ipha = ip_pullup(mp, len_needed, ira); 1737 if (ipha == NULL) { 1738 BUMP_MIB(ill->ill_ip_mib, 1739 ipIfStatsInTruncatedPkts); 1740 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1741 ill); 1742 freemsg(mp); 1743 return (NULL); 1744 } 1745 /* Refresh following the pullup. */ 1746 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1747 } 1748 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1749 /* Check db_ref to make sure we can modify the packet. */ 1750 if (mp->b_datap->db_ref > 1) { 1751 mblk_t *mp1; 1752 1753 mp1 = copymsg(mp); 1754 freemsg(mp); 1755 if (!mp1) { 1756 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1757 return (NULL); 1758 } 1759 mp = mp1; 1760 ipha = (ipha_t *)mp->b_rptr; 1761 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1762 } 1763 /* 1764 * Need the ipif with the mask be the same as the source 1765 * address of the mask reply. For unicast we have a specific 1766 * ipif. For multicast/broadcast we only handle onlink 1767 * senders, and use the source address to pick an ipif. 1768 */ 1769 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1770 if (ipif == NULL) { 1771 /* Broadcast or multicast */ 1772 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1773 if (ipif == NULL) { 1774 freemsg(mp); 1775 return (NULL); 1776 } 1777 } 1778 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1779 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1780 ipif_refrele(ipif); 1781 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1782 icmp_send_reply_v4(mp, ipha, icmph, ira); 1783 return (NULL); 1784 1785 case ICMP_ADDRESS_MASK_REPLY: 1786 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1787 break; 1788 default: 1789 interested = B_TRUE; /* Pass up to transport */ 1790 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1791 break; 1792 } 1793 /* 1794 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1795 * if there isn't one. 1796 */ 1797 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1798 /* If there is an ICMP client and we want one too, copy it. */ 1799 1800 if (!interested) { 1801 /* Caller will deliver to RAW sockets */ 1802 return (mp); 1803 } 1804 mp_ret = copymsg(mp); 1805 if (mp_ret == NULL) { 1806 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1807 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1808 } 1809 } else if (!interested) { 1810 /* Neither we nor raw sockets are interested. Drop packet now */ 1811 freemsg(mp); 1812 return (NULL); 1813 } 1814 1815 /* 1816 * ICMP error or redirect packet. Make sure we have enough of 1817 * the header and that db_ref == 1 since we might end up modifying 1818 * the packet. 1819 */ 1820 if (mp->b_cont != NULL) { 1821 if (ip_pullup(mp, -1, ira) == NULL) { 1822 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1823 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1824 mp, ill); 1825 freemsg(mp); 1826 return (mp_ret); 1827 } 1828 } 1829 1830 if (mp->b_datap->db_ref > 1) { 1831 mblk_t *mp1; 1832 1833 mp1 = copymsg(mp); 1834 if (mp1 == NULL) { 1835 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1836 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1837 freemsg(mp); 1838 return (mp_ret); 1839 } 1840 freemsg(mp); 1841 mp = mp1; 1842 } 1843 1844 /* 1845 * In case mp has changed, verify the message before any further 1846 * processes. 1847 */ 1848 ipha = (ipha_t *)mp->b_rptr; 1849 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1850 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1851 freemsg(mp); 1852 return (mp_ret); 1853 } 1854 1855 switch (icmph->icmph_type) { 1856 case ICMP_REDIRECT: 1857 icmp_redirect_v4(mp, ipha, icmph, ira); 1858 break; 1859 case ICMP_DEST_UNREACHABLE: 1860 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1861 /* Update DCE and adjust MTU is icmp header if needed */ 1862 icmp_inbound_too_big_v4(icmph, ira); 1863 } 1864 /* FALLTHRU */ 1865 default: 1866 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1867 break; 1868 } 1869 return (mp_ret); 1870 } 1871 1872 /* 1873 * Send an ICMP echo, timestamp or address mask reply. 1874 * The caller has already updated the payload part of the packet. 1875 * We handle the ICMP checksum, IP source address selection and feed 1876 * the packet into ip_output_simple. 1877 */ 1878 static void 1879 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1880 ip_recv_attr_t *ira) 1881 { 1882 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1883 ill_t *ill = ira->ira_ill; 1884 ip_stack_t *ipst = ill->ill_ipst; 1885 ip_xmit_attr_t ixas; 1886 1887 /* Send out an ICMP packet */ 1888 icmph->icmph_checksum = 0; 1889 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1890 /* Reset time to live. */ 1891 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1892 { 1893 /* Swap source and destination addresses */ 1894 ipaddr_t tmp; 1895 1896 tmp = ipha->ipha_src; 1897 ipha->ipha_src = ipha->ipha_dst; 1898 ipha->ipha_dst = tmp; 1899 } 1900 ipha->ipha_ident = 0; 1901 if (!IS_SIMPLE_IPH(ipha)) 1902 icmp_options_update(ipha); 1903 1904 bzero(&ixas, sizeof (ixas)); 1905 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1906 ixas.ixa_zoneid = ira->ira_zoneid; 1907 ixas.ixa_cred = kcred; 1908 ixas.ixa_cpid = NOPID; 1909 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1910 ixas.ixa_ifindex = 0; 1911 ixas.ixa_ipst = ipst; 1912 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1913 1914 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1915 /* 1916 * This packet should go out the same way as it 1917 * came in i.e in clear, independent of the IPsec policy 1918 * for transmitting packets. 1919 */ 1920 ixas.ixa_flags |= IXAF_NO_IPSEC; 1921 } else { 1922 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1923 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1924 /* Note: mp already consumed and ip_drop_packet done */ 1925 return; 1926 } 1927 } 1928 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1929 /* 1930 * Not one or our addresses (IRE_LOCALs), thus we let 1931 * ip_output_simple pick the source. 1932 */ 1933 ipha->ipha_src = INADDR_ANY; 1934 ixas.ixa_flags |= IXAF_SET_SOURCE; 1935 } 1936 /* Should we send with DF and use dce_pmtu? */ 1937 if (ipst->ips_ipv4_icmp_return_pmtu) { 1938 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1939 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1940 } 1941 1942 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1943 1944 (void) ip_output_simple(mp, &ixas); 1945 ixa_cleanup(&ixas); 1946 } 1947 1948 /* 1949 * Verify the ICMP messages for either for ICMP error or redirect packet. 1950 * The caller should have fully pulled up the message. If it's a redirect 1951 * packet, only basic checks on IP header will be done; otherwise, verify 1952 * the packet by looking at the included ULP header. 1953 * 1954 * Called before icmp_inbound_error_fanout_v4 is called. 1955 */ 1956 static boolean_t 1957 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1958 { 1959 ill_t *ill = ira->ira_ill; 1960 int hdr_length; 1961 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1962 conn_t *connp; 1963 ipha_t *ipha; /* Inner IP header */ 1964 1965 ipha = (ipha_t *)&icmph[1]; 1966 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1967 goto truncated; 1968 1969 hdr_length = IPH_HDR_LENGTH(ipha); 1970 1971 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1972 goto discard_pkt; 1973 1974 if (hdr_length < sizeof (ipha_t)) 1975 goto truncated; 1976 1977 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1978 goto truncated; 1979 1980 /* 1981 * Stop here for ICMP_REDIRECT. 1982 */ 1983 if (icmph->icmph_type == ICMP_REDIRECT) 1984 return (B_TRUE); 1985 1986 /* 1987 * ICMP errors only. 1988 */ 1989 switch (ipha->ipha_protocol) { 1990 case IPPROTO_UDP: 1991 /* 1992 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1993 * transport header. 1994 */ 1995 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1996 mp->b_wptr) 1997 goto truncated; 1998 break; 1999 case IPPROTO_TCP: { 2000 tcpha_t *tcpha; 2001 2002 /* 2003 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2004 * transport header. 2005 */ 2006 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2007 mp->b_wptr) 2008 goto truncated; 2009 2010 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2011 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2012 ipst); 2013 if (connp == NULL) 2014 goto discard_pkt; 2015 2016 if ((connp->conn_verifyicmp != NULL) && 2017 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 2018 CONN_DEC_REF(connp); 2019 goto discard_pkt; 2020 } 2021 CONN_DEC_REF(connp); 2022 break; 2023 } 2024 case IPPROTO_SCTP: 2025 /* 2026 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2027 * transport header. 2028 */ 2029 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2030 mp->b_wptr) 2031 goto truncated; 2032 break; 2033 case IPPROTO_ESP: 2034 case IPPROTO_AH: 2035 break; 2036 case IPPROTO_ENCAP: 2037 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2038 mp->b_wptr) 2039 goto truncated; 2040 break; 2041 default: 2042 break; 2043 } 2044 2045 return (B_TRUE); 2046 2047 discard_pkt: 2048 /* Bogus ICMP error. */ 2049 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2050 return (B_FALSE); 2051 2052 truncated: 2053 /* We pulled up everthing already. Must be truncated */ 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2055 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2056 return (B_FALSE); 2057 } 2058 2059 /* Table from RFC 1191 */ 2060 static int icmp_frag_size_table[] = 2061 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2062 2063 /* 2064 * Process received ICMP Packet too big. 2065 * Just handles the DCE create/update, including using the above table of 2066 * PMTU guesses. The caller is responsible for validating the packet before 2067 * passing it in and also to fanout the ICMP error to any matching transport 2068 * conns. Assumes the message has been fully pulled up and verified. 2069 * 2070 * Before getting here, the caller has called icmp_inbound_verify_v4() 2071 * that should have verified with ULP to prevent undoing the changes we're 2072 * going to make to DCE. For example, TCP might have verified that the packet 2073 * which generated error is in the send window. 2074 * 2075 * In some cases modified this MTU in the ICMP header packet; the caller 2076 * should pass to the matching ULP after this returns. 2077 */ 2078 static void 2079 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 2080 { 2081 dce_t *dce; 2082 int old_mtu; 2083 int mtu, orig_mtu; 2084 ipaddr_t dst; 2085 boolean_t disable_pmtud; 2086 ill_t *ill = ira->ira_ill; 2087 ip_stack_t *ipst = ill->ill_ipst; 2088 uint_t hdr_length; 2089 ipha_t *ipha; 2090 2091 /* Caller already pulled up everything. */ 2092 ipha = (ipha_t *)&icmph[1]; 2093 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2094 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2095 ASSERT(ill != NULL); 2096 2097 hdr_length = IPH_HDR_LENGTH(ipha); 2098 2099 /* 2100 * We handle path MTU for source routed packets since the DCE 2101 * is looked up using the final destination. 2102 */ 2103 dst = ip_get_dst(ipha); 2104 2105 dce = dce_lookup_and_add_v4(dst, ipst); 2106 if (dce == NULL) { 2107 /* Couldn't add a unique one - ENOMEM */ 2108 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 2109 ntohl(dst))); 2110 return; 2111 } 2112 2113 /* Check for MTU discovery advice as described in RFC 1191 */ 2114 mtu = ntohs(icmph->icmph_du_mtu); 2115 orig_mtu = mtu; 2116 disable_pmtud = B_FALSE; 2117 2118 mutex_enter(&dce->dce_lock); 2119 if (dce->dce_flags & DCEF_PMTU) 2120 old_mtu = dce->dce_pmtu; 2121 else 2122 old_mtu = ill->ill_mtu; 2123 2124 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2125 uint32_t length; 2126 int i; 2127 2128 /* 2129 * Use the table from RFC 1191 to figure out 2130 * the next "plateau" based on the length in 2131 * the original IP packet. 2132 */ 2133 length = ntohs(ipha->ipha_length); 2134 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 2135 uint32_t, length); 2136 if (old_mtu <= length && 2137 old_mtu >= length - hdr_length) { 2138 /* 2139 * Handle broken BSD 4.2 systems that 2140 * return the wrong ipha_length in ICMP 2141 * errors. 2142 */ 2143 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 2144 length, old_mtu)); 2145 length -= hdr_length; 2146 } 2147 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2148 if (length > icmp_frag_size_table[i]) 2149 break; 2150 } 2151 if (i == A_CNT(icmp_frag_size_table)) { 2152 /* Smaller than IP_MIN_MTU! */ 2153 ip1dbg(("Too big for packet size %d\n", 2154 length)); 2155 disable_pmtud = B_TRUE; 2156 mtu = ipst->ips_ip_pmtu_min; 2157 } else { 2158 mtu = icmp_frag_size_table[i]; 2159 ip1dbg(("Calculated mtu %d, packet size %d, " 2160 "before %d\n", mtu, length, old_mtu)); 2161 if (mtu < ipst->ips_ip_pmtu_min) { 2162 mtu = ipst->ips_ip_pmtu_min; 2163 disable_pmtud = B_TRUE; 2164 } 2165 } 2166 } 2167 if (disable_pmtud) 2168 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 2169 else 2170 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 2171 2172 dce->dce_pmtu = MIN(old_mtu, mtu); 2173 /* Prepare to send the new max frag size for the ULP. */ 2174 icmph->icmph_du_zero = 0; 2175 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 2176 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 2177 dce, int, orig_mtu, int, mtu); 2178 2179 /* We now have a PMTU for sure */ 2180 dce->dce_flags |= DCEF_PMTU; 2181 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 2182 mutex_exit(&dce->dce_lock); 2183 /* 2184 * After dropping the lock the new value is visible to everyone. 2185 * Then we bump the generation number so any cached values reinspect 2186 * the dce_t. 2187 */ 2188 dce_increment_generation(dce); 2189 dce_refrele(dce); 2190 } 2191 2192 /* 2193 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 2194 * calls this function. 2195 */ 2196 static mblk_t * 2197 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 2198 { 2199 int length; 2200 2201 ASSERT(mp->b_datap->db_type == M_DATA); 2202 2203 /* icmp_inbound_v4 has already pulled up the whole error packet */ 2204 ASSERT(mp->b_cont == NULL); 2205 2206 /* 2207 * The length that we want to overlay is the inner header 2208 * and what follows it. 2209 */ 2210 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2211 2212 /* 2213 * Overlay the inner header and whatever follows it over the 2214 * outer header. 2215 */ 2216 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2217 2218 /* Adjust for what we removed */ 2219 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2220 return (mp); 2221 } 2222 2223 /* 2224 * Try to pass the ICMP message upstream in case the ULP cares. 2225 * 2226 * If the packet that caused the ICMP error is secure, we send 2227 * it to AH/ESP to make sure that the attached packet has a 2228 * valid association. ipha in the code below points to the 2229 * IP header of the packet that caused the error. 2230 * 2231 * For IPsec cases, we let the next-layer-up (which has access to 2232 * cached policy on the conn_t, or can query the SPD directly) 2233 * subtract out any IPsec overhead if they must. We therefore make no 2234 * adjustments here for IPsec overhead. 2235 * 2236 * IFN could have been generated locally or by some router. 2237 * 2238 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2239 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2240 * This happens because IP adjusted its value of MTU on an 2241 * earlier IFN message and could not tell the upper layer, 2242 * the new adjusted value of MTU e.g. Packet was encrypted 2243 * or there was not enough information to fanout to upper 2244 * layers. Thus on the next outbound datagram, ire_send_wire 2245 * generates the IFN, where IPsec processing has *not* been 2246 * done. 2247 * 2248 * Note that we retain ixa_fragsize across IPsec thus once 2249 * we have picking ixa_fragsize and entered ipsec_out_process we do 2250 * no change the fragsize even if the path MTU changes before 2251 * we reach ip_output_post_ipsec. 2252 * 2253 * In the local case, IRAF_LOOPBACK will be set indicating 2254 * that IFN was generated locally. 2255 * 2256 * ROUTER : IFN could be secure or non-secure. 2257 * 2258 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2259 * packet in error has AH/ESP headers to validate the AH/ESP 2260 * headers. AH/ESP will verify whether there is a valid SA or 2261 * not and send it back. We will fanout again if we have more 2262 * data in the packet. 2263 * 2264 * If the packet in error does not have AH/ESP, we handle it 2265 * like any other case. 2266 * 2267 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2268 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2269 * valid SA or not and send it back. We will fanout again if 2270 * we have more data in the packet. 2271 * 2272 * If the packet in error does not have AH/ESP, we handle it 2273 * like any other case. 2274 * 2275 * The caller must have called icmp_inbound_verify_v4. 2276 */ 2277 static void 2278 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2279 { 2280 uint16_t *up; /* Pointer to ports in ULP header */ 2281 uint32_t ports; /* reversed ports for fanout */ 2282 ipha_t ripha; /* With reversed addresses */ 2283 ipha_t *ipha; /* Inner IP header */ 2284 uint_t hdr_length; /* Inner IP header length */ 2285 tcpha_t *tcpha; 2286 conn_t *connp; 2287 ill_t *ill = ira->ira_ill; 2288 ip_stack_t *ipst = ill->ill_ipst; 2289 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2290 ill_t *rill = ira->ira_rill; 2291 2292 /* Caller already pulled up everything. */ 2293 ipha = (ipha_t *)&icmph[1]; 2294 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2295 ASSERT(mp->b_cont == NULL); 2296 2297 hdr_length = IPH_HDR_LENGTH(ipha); 2298 ira->ira_protocol = ipha->ipha_protocol; 2299 2300 /* 2301 * We need a separate IP header with the source and destination 2302 * addresses reversed to do fanout/classification because the ipha in 2303 * the ICMP error is in the form we sent it out. 2304 */ 2305 ripha.ipha_src = ipha->ipha_dst; 2306 ripha.ipha_dst = ipha->ipha_src; 2307 ripha.ipha_protocol = ipha->ipha_protocol; 2308 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2309 2310 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2311 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2312 ntohl(ipha->ipha_dst), 2313 icmph->icmph_type, icmph->icmph_code)); 2314 2315 switch (ipha->ipha_protocol) { 2316 case IPPROTO_UDP: 2317 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2318 2319 /* Attempt to find a client stream based on port. */ 2320 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2321 ntohs(up[0]), ntohs(up[1]))); 2322 2323 /* Note that we send error to all matches. */ 2324 ira->ira_flags |= IRAF_ICMP_ERROR; 2325 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2326 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2327 return; 2328 2329 case IPPROTO_TCP: 2330 /* 2331 * Find a TCP client stream for this packet. 2332 * Note that we do a reverse lookup since the header is 2333 * in the form we sent it out. 2334 */ 2335 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2336 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2337 ipst); 2338 if (connp == NULL) 2339 goto discard_pkt; 2340 2341 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2342 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2343 mp = ipsec_check_inbound_policy(mp, connp, 2344 ipha, NULL, ira); 2345 if (mp == NULL) { 2346 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2347 /* Note that mp is NULL */ 2348 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2349 CONN_DEC_REF(connp); 2350 return; 2351 } 2352 } 2353 2354 ira->ira_flags |= IRAF_ICMP_ERROR; 2355 ira->ira_ill = ira->ira_rill = NULL; 2356 if (IPCL_IS_TCP(connp)) { 2357 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2358 connp->conn_recvicmp, connp, ira, SQ_FILL, 2359 SQTAG_TCP_INPUT_ICMP_ERR); 2360 } else { 2361 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2362 (connp->conn_recv)(connp, mp, NULL, ira); 2363 CONN_DEC_REF(connp); 2364 } 2365 ira->ira_ill = ill; 2366 ira->ira_rill = rill; 2367 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2368 return; 2369 2370 case IPPROTO_SCTP: 2371 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2372 /* Find a SCTP client stream for this packet. */ 2373 ((uint16_t *)&ports)[0] = up[1]; 2374 ((uint16_t *)&ports)[1] = up[0]; 2375 2376 ira->ira_flags |= IRAF_ICMP_ERROR; 2377 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2378 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2379 return; 2380 2381 case IPPROTO_ESP: 2382 case IPPROTO_AH: 2383 if (!ipsec_loaded(ipss)) { 2384 ip_proto_not_sup(mp, ira); 2385 return; 2386 } 2387 2388 if (ipha->ipha_protocol == IPPROTO_ESP) 2389 mp = ipsecesp_icmp_error(mp, ira); 2390 else 2391 mp = ipsecah_icmp_error(mp, ira); 2392 if (mp == NULL) 2393 return; 2394 2395 /* Just in case ipsec didn't preserve the NULL b_cont */ 2396 if (mp->b_cont != NULL) { 2397 if (!pullupmsg(mp, -1)) 2398 goto discard_pkt; 2399 } 2400 2401 /* 2402 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2403 * correct, but we don't use them any more here. 2404 * 2405 * If succesful, the mp has been modified to not include 2406 * the ESP/AH header so we can fanout to the ULP's icmp 2407 * error handler. 2408 */ 2409 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2410 goto truncated; 2411 2412 /* Verify the modified message before any further processes. */ 2413 ipha = (ipha_t *)mp->b_rptr; 2414 hdr_length = IPH_HDR_LENGTH(ipha); 2415 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2416 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2417 freemsg(mp); 2418 return; 2419 } 2420 2421 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2422 return; 2423 2424 case IPPROTO_ENCAP: { 2425 /* Look for self-encapsulated packets that caused an error */ 2426 ipha_t *in_ipha; 2427 2428 /* 2429 * Caller has verified that length has to be 2430 * at least the size of IP header. 2431 */ 2432 ASSERT(hdr_length >= sizeof (ipha_t)); 2433 /* 2434 * Check the sanity of the inner IP header like 2435 * we did for the outer header. 2436 */ 2437 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2438 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2439 goto discard_pkt; 2440 } 2441 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2442 goto discard_pkt; 2443 } 2444 /* Check for Self-encapsulated tunnels */ 2445 if (in_ipha->ipha_src == ipha->ipha_src && 2446 in_ipha->ipha_dst == ipha->ipha_dst) { 2447 2448 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2449 in_ipha); 2450 if (mp == NULL) 2451 goto discard_pkt; 2452 2453 /* 2454 * Just in case self_encap didn't preserve the NULL 2455 * b_cont 2456 */ 2457 if (mp->b_cont != NULL) { 2458 if (!pullupmsg(mp, -1)) 2459 goto discard_pkt; 2460 } 2461 /* 2462 * Note that ira_pktlen and ira_ip_hdr_length are no 2463 * longer correct, but we don't use them any more here. 2464 */ 2465 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2466 goto truncated; 2467 2468 /* 2469 * Verify the modified message before any further 2470 * processes. 2471 */ 2472 ipha = (ipha_t *)mp->b_rptr; 2473 hdr_length = IPH_HDR_LENGTH(ipha); 2474 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2475 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2476 freemsg(mp); 2477 return; 2478 } 2479 2480 /* 2481 * The packet in error is self-encapsualted. 2482 * And we are finding it further encapsulated 2483 * which we could not have possibly generated. 2484 */ 2485 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2486 goto discard_pkt; 2487 } 2488 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2489 return; 2490 } 2491 /* No self-encapsulated */ 2492 /* FALLTHRU */ 2493 } 2494 case IPPROTO_IPV6: 2495 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2496 &ripha.ipha_dst, ipst)) != NULL) { 2497 ira->ira_flags |= IRAF_ICMP_ERROR; 2498 connp->conn_recvicmp(connp, mp, NULL, ira); 2499 CONN_DEC_REF(connp); 2500 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2501 return; 2502 } 2503 /* 2504 * No IP tunnel is interested, fallthrough and see 2505 * if a raw socket will want it. 2506 */ 2507 /* FALLTHRU */ 2508 default: 2509 ira->ira_flags |= IRAF_ICMP_ERROR; 2510 ip_fanout_proto_v4(mp, &ripha, ira); 2511 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2512 return; 2513 } 2514 /* NOTREACHED */ 2515 discard_pkt: 2516 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2517 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2518 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2519 freemsg(mp); 2520 return; 2521 2522 truncated: 2523 /* We pulled up everthing already. Must be truncated */ 2524 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2525 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2526 freemsg(mp); 2527 } 2528 2529 /* 2530 * Common IP options parser. 2531 * 2532 * Setup routine: fill in *optp with options-parsing state, then 2533 * tail-call ipoptp_next to return the first option. 2534 */ 2535 uint8_t 2536 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2537 { 2538 uint32_t totallen; /* total length of all options */ 2539 2540 totallen = ipha->ipha_version_and_hdr_length - 2541 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2542 totallen <<= 2; 2543 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2544 optp->ipoptp_end = optp->ipoptp_next + totallen; 2545 optp->ipoptp_flags = 0; 2546 return (ipoptp_next(optp)); 2547 } 2548 2549 /* Like above but without an ipha_t */ 2550 uint8_t 2551 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2552 { 2553 optp->ipoptp_next = opt; 2554 optp->ipoptp_end = optp->ipoptp_next + totallen; 2555 optp->ipoptp_flags = 0; 2556 return (ipoptp_next(optp)); 2557 } 2558 2559 /* 2560 * Common IP options parser: extract next option. 2561 */ 2562 uint8_t 2563 ipoptp_next(ipoptp_t *optp) 2564 { 2565 uint8_t *end = optp->ipoptp_end; 2566 uint8_t *cur = optp->ipoptp_next; 2567 uint8_t opt, len, pointer; 2568 2569 /* 2570 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2571 * has been corrupted. 2572 */ 2573 ASSERT(cur <= end); 2574 2575 if (cur == end) 2576 return (IPOPT_EOL); 2577 2578 opt = cur[IPOPT_OPTVAL]; 2579 2580 /* 2581 * Skip any NOP options. 2582 */ 2583 while (opt == IPOPT_NOP) { 2584 cur++; 2585 if (cur == end) 2586 return (IPOPT_EOL); 2587 opt = cur[IPOPT_OPTVAL]; 2588 } 2589 2590 if (opt == IPOPT_EOL) 2591 return (IPOPT_EOL); 2592 2593 /* 2594 * Option requiring a length. 2595 */ 2596 if ((cur + 1) >= end) { 2597 optp->ipoptp_flags |= IPOPTP_ERROR; 2598 return (IPOPT_EOL); 2599 } 2600 len = cur[IPOPT_OLEN]; 2601 if (len < 2) { 2602 optp->ipoptp_flags |= IPOPTP_ERROR; 2603 return (IPOPT_EOL); 2604 } 2605 optp->ipoptp_cur = cur; 2606 optp->ipoptp_len = len; 2607 optp->ipoptp_next = cur + len; 2608 if (cur + len > end) { 2609 optp->ipoptp_flags |= IPOPTP_ERROR; 2610 return (IPOPT_EOL); 2611 } 2612 2613 /* 2614 * For the options which require a pointer field, make sure 2615 * its there, and make sure it points to either something 2616 * inside this option, or the end of the option. 2617 */ 2618 switch (opt) { 2619 case IPOPT_RR: 2620 case IPOPT_TS: 2621 case IPOPT_LSRR: 2622 case IPOPT_SSRR: 2623 if (len <= IPOPT_OFFSET) { 2624 optp->ipoptp_flags |= IPOPTP_ERROR; 2625 return (opt); 2626 } 2627 pointer = cur[IPOPT_OFFSET]; 2628 if (pointer - 1 > len) { 2629 optp->ipoptp_flags |= IPOPTP_ERROR; 2630 return (opt); 2631 } 2632 break; 2633 } 2634 2635 /* 2636 * Sanity check the pointer field based on the type of the 2637 * option. 2638 */ 2639 switch (opt) { 2640 case IPOPT_RR: 2641 case IPOPT_SSRR: 2642 case IPOPT_LSRR: 2643 if (pointer < IPOPT_MINOFF_SR) 2644 optp->ipoptp_flags |= IPOPTP_ERROR; 2645 break; 2646 case IPOPT_TS: 2647 if (pointer < IPOPT_MINOFF_IT) 2648 optp->ipoptp_flags |= IPOPTP_ERROR; 2649 /* 2650 * Note that the Internet Timestamp option also 2651 * contains two four bit fields (the Overflow field, 2652 * and the Flag field), which follow the pointer 2653 * field. We don't need to check that these fields 2654 * fall within the length of the option because this 2655 * was implicitely done above. We've checked that the 2656 * pointer value is at least IPOPT_MINOFF_IT, and that 2657 * it falls within the option. Since IPOPT_MINOFF_IT > 2658 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2659 */ 2660 ASSERT(len > IPOPT_POS_OV_FLG); 2661 break; 2662 } 2663 2664 return (opt); 2665 } 2666 2667 /* 2668 * Use the outgoing IP header to create an IP_OPTIONS option the way 2669 * it was passed down from the application. 2670 * 2671 * This is compatible with BSD in that it returns 2672 * the reverse source route with the final destination 2673 * as the last entry. The first 4 bytes of the option 2674 * will contain the final destination. 2675 */ 2676 int 2677 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2678 { 2679 ipoptp_t opts; 2680 uchar_t *opt; 2681 uint8_t optval; 2682 uint8_t optlen; 2683 uint32_t len = 0; 2684 uchar_t *buf1 = buf; 2685 uint32_t totallen; 2686 ipaddr_t dst; 2687 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2688 2689 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2690 return (0); 2691 2692 totallen = ipp->ipp_ipv4_options_len; 2693 if (totallen & 0x3) 2694 return (0); 2695 2696 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2697 len += IP_ADDR_LEN; 2698 bzero(buf1, IP_ADDR_LEN); 2699 2700 dst = connp->conn_faddr_v4; 2701 2702 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2703 optval != IPOPT_EOL; 2704 optval = ipoptp_next(&opts)) { 2705 int off; 2706 2707 opt = opts.ipoptp_cur; 2708 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2709 break; 2710 } 2711 optlen = opts.ipoptp_len; 2712 2713 switch (optval) { 2714 case IPOPT_SSRR: 2715 case IPOPT_LSRR: 2716 2717 /* 2718 * Insert destination as the first entry in the source 2719 * route and move down the entries on step. 2720 * The last entry gets placed at buf1. 2721 */ 2722 buf[IPOPT_OPTVAL] = optval; 2723 buf[IPOPT_OLEN] = optlen; 2724 buf[IPOPT_OFFSET] = optlen; 2725 2726 off = optlen - IP_ADDR_LEN; 2727 if (off < 0) { 2728 /* No entries in source route */ 2729 break; 2730 } 2731 /* Last entry in source route if not already set */ 2732 if (dst == INADDR_ANY) 2733 bcopy(opt + off, buf1, IP_ADDR_LEN); 2734 off -= IP_ADDR_LEN; 2735 2736 while (off > 0) { 2737 bcopy(opt + off, 2738 buf + off + IP_ADDR_LEN, 2739 IP_ADDR_LEN); 2740 off -= IP_ADDR_LEN; 2741 } 2742 /* ipha_dst into first slot */ 2743 bcopy(&dst, buf + off + IP_ADDR_LEN, 2744 IP_ADDR_LEN); 2745 buf += optlen; 2746 len += optlen; 2747 break; 2748 2749 default: 2750 bcopy(opt, buf, optlen); 2751 buf += optlen; 2752 len += optlen; 2753 break; 2754 } 2755 } 2756 done: 2757 /* Pad the resulting options */ 2758 while (len & 0x3) { 2759 *buf++ = IPOPT_EOL; 2760 len++; 2761 } 2762 return (len); 2763 } 2764 2765 /* 2766 * Update any record route or timestamp options to include this host. 2767 * Reverse any source route option. 2768 * This routine assumes that the options are well formed i.e. that they 2769 * have already been checked. 2770 */ 2771 static void 2772 icmp_options_update(ipha_t *ipha) 2773 { 2774 ipoptp_t opts; 2775 uchar_t *opt; 2776 uint8_t optval; 2777 ipaddr_t src; /* Our local address */ 2778 ipaddr_t dst; 2779 2780 ip2dbg(("icmp_options_update\n")); 2781 src = ipha->ipha_src; 2782 dst = ipha->ipha_dst; 2783 2784 for (optval = ipoptp_first(&opts, ipha); 2785 optval != IPOPT_EOL; 2786 optval = ipoptp_next(&opts)) { 2787 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2788 opt = opts.ipoptp_cur; 2789 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2790 optval, opts.ipoptp_len)); 2791 switch (optval) { 2792 int off1, off2; 2793 case IPOPT_SSRR: 2794 case IPOPT_LSRR: 2795 /* 2796 * Reverse the source route. The first entry 2797 * should be the next to last one in the current 2798 * source route (the last entry is our address). 2799 * The last entry should be the final destination. 2800 */ 2801 off1 = IPOPT_MINOFF_SR - 1; 2802 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2803 if (off2 < 0) { 2804 /* No entries in source route */ 2805 ip1dbg(( 2806 "icmp_options_update: bad src route\n")); 2807 break; 2808 } 2809 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2810 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2811 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2812 off2 -= IP_ADDR_LEN; 2813 2814 while (off1 < off2) { 2815 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2816 bcopy((char *)opt + off2, (char *)opt + off1, 2817 IP_ADDR_LEN); 2818 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2819 off1 += IP_ADDR_LEN; 2820 off2 -= IP_ADDR_LEN; 2821 } 2822 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2823 break; 2824 } 2825 } 2826 } 2827 2828 /* 2829 * Process received ICMP Redirect messages. 2830 * Assumes the caller has verified that the headers are in the pulled up mblk. 2831 * Consumes mp. 2832 */ 2833 static void 2834 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2835 { 2836 ire_t *ire, *nire; 2837 ire_t *prev_ire; 2838 ipaddr_t src, dst, gateway; 2839 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2840 ipha_t *inner_ipha; /* Inner IP header */ 2841 2842 /* Caller already pulled up everything. */ 2843 inner_ipha = (ipha_t *)&icmph[1]; 2844 src = ipha->ipha_src; 2845 dst = inner_ipha->ipha_dst; 2846 gateway = icmph->icmph_rd_gateway; 2847 /* Make sure the new gateway is reachable somehow. */ 2848 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2849 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2850 /* 2851 * Make sure we had a route for the dest in question and that 2852 * that route was pointing to the old gateway (the source of the 2853 * redirect packet.) 2854 * We do longest match and then compare ire_gateway_addr below. 2855 */ 2856 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2857 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2858 /* 2859 * Check that 2860 * the redirect was not from ourselves 2861 * the new gateway and the old gateway are directly reachable 2862 */ 2863 if (prev_ire == NULL || ire == NULL || 2864 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2865 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2866 !(ire->ire_type & IRE_IF_ALL) || 2867 prev_ire->ire_gateway_addr != src) { 2868 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2869 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2870 freemsg(mp); 2871 if (ire != NULL) 2872 ire_refrele(ire); 2873 if (prev_ire != NULL) 2874 ire_refrele(prev_ire); 2875 return; 2876 } 2877 2878 ire_refrele(prev_ire); 2879 ire_refrele(ire); 2880 2881 /* 2882 * TODO: more precise handling for cases 0, 2, 3, the latter two 2883 * require TOS routing 2884 */ 2885 switch (icmph->icmph_code) { 2886 case 0: 2887 case 1: 2888 /* TODO: TOS specificity for cases 2 and 3 */ 2889 case 2: 2890 case 3: 2891 break; 2892 default: 2893 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2894 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2895 freemsg(mp); 2896 return; 2897 } 2898 /* 2899 * Create a Route Association. This will allow us to remember that 2900 * someone we believe told us to use the particular gateway. 2901 */ 2902 ire = ire_create( 2903 (uchar_t *)&dst, /* dest addr */ 2904 (uchar_t *)&ip_g_all_ones, /* mask */ 2905 (uchar_t *)&gateway, /* gateway addr */ 2906 IRE_HOST, 2907 NULL, /* ill */ 2908 ALL_ZONES, 2909 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2910 NULL, /* tsol_gc_t */ 2911 ipst); 2912 2913 if (ire == NULL) { 2914 freemsg(mp); 2915 return; 2916 } 2917 nire = ire_add(ire); 2918 /* Check if it was a duplicate entry */ 2919 if (nire != NULL && nire != ire) { 2920 ASSERT(nire->ire_identical_ref > 1); 2921 ire_delete(nire); 2922 ire_refrele(nire); 2923 nire = NULL; 2924 } 2925 ire = nire; 2926 if (ire != NULL) { 2927 ire_refrele(ire); /* Held in ire_add */ 2928 2929 /* tell routing sockets that we received a redirect */ 2930 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2931 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2932 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2933 } 2934 2935 /* 2936 * Delete any existing IRE_HOST type redirect ires for this destination. 2937 * This together with the added IRE has the effect of 2938 * modifying an existing redirect. 2939 */ 2940 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2941 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2942 if (prev_ire != NULL) { 2943 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2944 ire_delete(prev_ire); 2945 ire_refrele(prev_ire); 2946 } 2947 2948 freemsg(mp); 2949 } 2950 2951 /* 2952 * Generate an ICMP parameter problem message. 2953 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2954 * constructed by the caller. 2955 */ 2956 static void 2957 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2958 { 2959 icmph_t icmph; 2960 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2961 2962 mp = icmp_pkt_err_ok(mp, ira); 2963 if (mp == NULL) 2964 return; 2965 2966 bzero(&icmph, sizeof (icmph_t)); 2967 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2968 icmph.icmph_pp_ptr = ptr; 2969 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2970 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2971 } 2972 2973 /* 2974 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2975 * the ICMP header pointed to by "stuff". (May be called as writer.) 2976 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2977 * an icmp error packet can be sent. 2978 * Assigns an appropriate source address to the packet. If ipha_dst is 2979 * one of our addresses use it for source. Otherwise let ip_output_simple 2980 * pick the source address. 2981 */ 2982 static void 2983 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2984 { 2985 ipaddr_t dst; 2986 icmph_t *icmph; 2987 ipha_t *ipha; 2988 uint_t len_needed; 2989 size_t msg_len; 2990 mblk_t *mp1; 2991 ipaddr_t src; 2992 ire_t *ire; 2993 ip_xmit_attr_t ixas; 2994 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2995 2996 ipha = (ipha_t *)mp->b_rptr; 2997 2998 bzero(&ixas, sizeof (ixas)); 2999 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 3000 ixas.ixa_zoneid = ira->ira_zoneid; 3001 ixas.ixa_ifindex = 0; 3002 ixas.ixa_ipst = ipst; 3003 ixas.ixa_cred = kcred; 3004 ixas.ixa_cpid = NOPID; 3005 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 3006 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 3007 3008 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 3009 /* 3010 * Apply IPsec based on how IPsec was applied to 3011 * the packet that had the error. 3012 * 3013 * If it was an outbound packet that caused the ICMP 3014 * error, then the caller will have setup the IRA 3015 * appropriately. 3016 */ 3017 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 3018 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3019 /* Note: mp already consumed and ip_drop_packet done */ 3020 return; 3021 } 3022 } else { 3023 /* 3024 * This is in clear. The icmp message we are building 3025 * here should go out in clear, independent of our policy. 3026 */ 3027 ixas.ixa_flags |= IXAF_NO_IPSEC; 3028 } 3029 3030 /* Remember our eventual destination */ 3031 dst = ipha->ipha_src; 3032 3033 /* 3034 * If the packet was for one of our unicast addresses, make 3035 * sure we respond with that as the source. Otherwise 3036 * have ip_output_simple pick the source address. 3037 */ 3038 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 3039 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 3040 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3041 if (ire != NULL) { 3042 ire_refrele(ire); 3043 src = ipha->ipha_dst; 3044 } else { 3045 src = INADDR_ANY; 3046 ixas.ixa_flags |= IXAF_SET_SOURCE; 3047 } 3048 3049 /* 3050 * Check if we can send back more then 8 bytes in addition to 3051 * the IP header. We try to send 64 bytes of data and the internal 3052 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3053 */ 3054 len_needed = IPH_HDR_LENGTH(ipha); 3055 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3056 ipha->ipha_protocol == IPPROTO_IPV6) { 3057 if (!pullupmsg(mp, -1)) { 3058 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3059 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 3060 freemsg(mp); 3061 return; 3062 } 3063 ipha = (ipha_t *)mp->b_rptr; 3064 3065 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3066 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3067 len_needed)); 3068 } else { 3069 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3070 3071 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3072 len_needed += ip_hdr_length_v6(mp, ip6h); 3073 } 3074 } 3075 len_needed += ipst->ips_ip_icmp_return; 3076 msg_len = msgdsize(mp); 3077 if (msg_len > len_needed) { 3078 (void) adjmsg(mp, len_needed - msg_len); 3079 msg_len = len_needed; 3080 } 3081 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 3082 if (mp1 == NULL) { 3083 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3084 freemsg(mp); 3085 return; 3086 } 3087 mp1->b_cont = mp; 3088 mp = mp1; 3089 3090 /* 3091 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 3092 * node generates be accepted in peace by all on-host destinations. 3093 * If we do NOT assume that all on-host destinations trust 3094 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3095 * (Look for IXAF_TRUSTED_ICMP). 3096 */ 3097 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 3098 3099 ipha = (ipha_t *)mp->b_rptr; 3100 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3101 *ipha = icmp_ipha; 3102 ipha->ipha_src = src; 3103 ipha->ipha_dst = dst; 3104 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3105 msg_len += sizeof (icmp_ipha) + len; 3106 if (msg_len > IP_MAXPACKET) { 3107 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3108 msg_len = IP_MAXPACKET; 3109 } 3110 ipha->ipha_length = htons((uint16_t)msg_len); 3111 icmph = (icmph_t *)&ipha[1]; 3112 bcopy(stuff, icmph, len); 3113 icmph->icmph_checksum = 0; 3114 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3115 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3116 3117 (void) ip_output_simple(mp, &ixas); 3118 ixa_cleanup(&ixas); 3119 } 3120 3121 /* 3122 * Determine if an ICMP error packet can be sent given the rate limit. 3123 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3124 * in milliseconds) and a burst size. Burst size number of packets can 3125 * be sent arbitrarely closely spaced. 3126 * The state is tracked using two variables to implement an approximate 3127 * token bucket filter: 3128 * icmp_pkt_err_last - lbolt value when the last burst started 3129 * icmp_pkt_err_sent - number of packets sent in current burst 3130 */ 3131 boolean_t 3132 icmp_err_rate_limit(ip_stack_t *ipst) 3133 { 3134 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 3135 uint_t refilled; /* Number of packets refilled in tbf since last */ 3136 /* Guard against changes by loading into local variable */ 3137 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3138 3139 if (err_interval == 0) 3140 return (B_FALSE); 3141 3142 if (ipst->ips_icmp_pkt_err_last > now) { 3143 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3144 ipst->ips_icmp_pkt_err_last = 0; 3145 ipst->ips_icmp_pkt_err_sent = 0; 3146 } 3147 /* 3148 * If we are in a burst update the token bucket filter. 3149 * Update the "last" time to be close to "now" but make sure 3150 * we don't loose precision. 3151 */ 3152 if (ipst->ips_icmp_pkt_err_sent != 0) { 3153 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3154 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3155 ipst->ips_icmp_pkt_err_sent = 0; 3156 } else { 3157 ipst->ips_icmp_pkt_err_sent -= refilled; 3158 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3159 } 3160 } 3161 if (ipst->ips_icmp_pkt_err_sent == 0) { 3162 /* Start of new burst */ 3163 ipst->ips_icmp_pkt_err_last = now; 3164 } 3165 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3166 ipst->ips_icmp_pkt_err_sent++; 3167 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3168 ipst->ips_icmp_pkt_err_sent)); 3169 return (B_FALSE); 3170 } 3171 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3172 return (B_TRUE); 3173 } 3174 3175 /* 3176 * Check if it is ok to send an IPv4 ICMP error packet in 3177 * response to the IPv4 packet in mp. 3178 * Free the message and return null if no 3179 * ICMP error packet should be sent. 3180 */ 3181 static mblk_t * 3182 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 3183 { 3184 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3185 icmph_t *icmph; 3186 ipha_t *ipha; 3187 uint_t len_needed; 3188 3189 if (!mp) 3190 return (NULL); 3191 ipha = (ipha_t *)mp->b_rptr; 3192 if (ip_csum_hdr(ipha)) { 3193 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3194 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 3195 freemsg(mp); 3196 return (NULL); 3197 } 3198 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 3199 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 3200 CLASSD(ipha->ipha_dst) || 3201 CLASSD(ipha->ipha_src) || 3202 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3203 /* Note: only errors to the fragment with offset 0 */ 3204 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3205 freemsg(mp); 3206 return (NULL); 3207 } 3208 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3209 /* 3210 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3211 * errors in response to any ICMP errors. 3212 */ 3213 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3214 if (mp->b_wptr - mp->b_rptr < len_needed) { 3215 if (!pullupmsg(mp, len_needed)) { 3216 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3217 freemsg(mp); 3218 return (NULL); 3219 } 3220 ipha = (ipha_t *)mp->b_rptr; 3221 } 3222 icmph = (icmph_t *) 3223 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3224 switch (icmph->icmph_type) { 3225 case ICMP_DEST_UNREACHABLE: 3226 case ICMP_SOURCE_QUENCH: 3227 case ICMP_TIME_EXCEEDED: 3228 case ICMP_PARAM_PROBLEM: 3229 case ICMP_REDIRECT: 3230 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3231 freemsg(mp); 3232 return (NULL); 3233 default: 3234 break; 3235 } 3236 } 3237 /* 3238 * If this is a labeled system, then check to see if we're allowed to 3239 * send a response to this particular sender. If not, then just drop. 3240 */ 3241 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3242 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3243 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3244 freemsg(mp); 3245 return (NULL); 3246 } 3247 if (icmp_err_rate_limit(ipst)) { 3248 /* 3249 * Only send ICMP error packets every so often. 3250 * This should be done on a per port/source basis, 3251 * but for now this will suffice. 3252 */ 3253 freemsg(mp); 3254 return (NULL); 3255 } 3256 return (mp); 3257 } 3258 3259 /* 3260 * Called when a packet was sent out the same link that it arrived on. 3261 * Check if it is ok to send a redirect and then send it. 3262 */ 3263 void 3264 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3265 ip_recv_attr_t *ira) 3266 { 3267 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3268 ipaddr_t src, nhop; 3269 mblk_t *mp1; 3270 ire_t *nhop_ire; 3271 3272 /* 3273 * Check the source address to see if it originated 3274 * on the same logical subnet it is going back out on. 3275 * If so, we should be able to send it a redirect. 3276 * Avoid sending a redirect if the destination 3277 * is directly connected (i.e., we matched an IRE_ONLINK), 3278 * or if the packet was source routed out this interface. 3279 * 3280 * We avoid sending a redirect if the 3281 * destination is directly connected 3282 * because it is possible that multiple 3283 * IP subnets may have been configured on 3284 * the link, and the source may not 3285 * be on the same subnet as ip destination, 3286 * even though they are on the same 3287 * physical link. 3288 */ 3289 if ((ire->ire_type & IRE_ONLINK) || 3290 ip_source_routed(ipha, ipst)) 3291 return; 3292 3293 nhop_ire = ire_nexthop(ire); 3294 if (nhop_ire == NULL) 3295 return; 3296 3297 nhop = nhop_ire->ire_addr; 3298 3299 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3300 ire_t *ire2; 3301 3302 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3303 mutex_enter(&nhop_ire->ire_lock); 3304 ire2 = nhop_ire->ire_dep_parent; 3305 if (ire2 != NULL) 3306 ire_refhold(ire2); 3307 mutex_exit(&nhop_ire->ire_lock); 3308 ire_refrele(nhop_ire); 3309 nhop_ire = ire2; 3310 } 3311 if (nhop_ire == NULL) 3312 return; 3313 3314 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3315 3316 src = ipha->ipha_src; 3317 3318 /* 3319 * We look at the interface ire for the nexthop, 3320 * to see if ipha_src is in the same subnet 3321 * as the nexthop. 3322 */ 3323 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3324 /* 3325 * The source is directly connected. 3326 */ 3327 mp1 = copymsg(mp); 3328 if (mp1 != NULL) { 3329 icmp_send_redirect(mp1, nhop, ira); 3330 } 3331 } 3332 ire_refrele(nhop_ire); 3333 } 3334 3335 /* 3336 * Generate an ICMP redirect message. 3337 */ 3338 static void 3339 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3340 { 3341 icmph_t icmph; 3342 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3343 3344 mp = icmp_pkt_err_ok(mp, ira); 3345 if (mp == NULL) 3346 return; 3347 3348 bzero(&icmph, sizeof (icmph_t)); 3349 icmph.icmph_type = ICMP_REDIRECT; 3350 icmph.icmph_code = 1; 3351 icmph.icmph_rd_gateway = gateway; 3352 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3353 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3354 } 3355 3356 /* 3357 * Generate an ICMP time exceeded message. 3358 */ 3359 void 3360 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3361 { 3362 icmph_t icmph; 3363 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3364 3365 mp = icmp_pkt_err_ok(mp, ira); 3366 if (mp == NULL) 3367 return; 3368 3369 bzero(&icmph, sizeof (icmph_t)); 3370 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3371 icmph.icmph_code = code; 3372 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3373 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3374 } 3375 3376 /* 3377 * Generate an ICMP unreachable message. 3378 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3379 * constructed by the caller. 3380 */ 3381 void 3382 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3383 { 3384 icmph_t icmph; 3385 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3386 3387 mp = icmp_pkt_err_ok(mp, ira); 3388 if (mp == NULL) 3389 return; 3390 3391 bzero(&icmph, sizeof (icmph_t)); 3392 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3393 icmph.icmph_code = code; 3394 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3395 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3396 } 3397 3398 /* 3399 * Latch in the IPsec state for a stream based the policy in the listener 3400 * and the actions in the ip_recv_attr_t. 3401 * Called directly from TCP and SCTP. 3402 */ 3403 boolean_t 3404 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3405 { 3406 ASSERT(lconnp->conn_policy != NULL); 3407 ASSERT(connp->conn_policy == NULL); 3408 3409 IPPH_REFHOLD(lconnp->conn_policy); 3410 connp->conn_policy = lconnp->conn_policy; 3411 3412 if (ira->ira_ipsec_action != NULL) { 3413 if (connp->conn_latch == NULL) { 3414 connp->conn_latch = iplatch_create(); 3415 if (connp->conn_latch == NULL) 3416 return (B_FALSE); 3417 } 3418 ipsec_latch_inbound(connp, ira); 3419 } 3420 return (B_TRUE); 3421 } 3422 3423 /* 3424 * Verify whether or not the IP address is a valid local address. 3425 * Could be a unicast, including one for a down interface. 3426 * If allow_mcbc then a multicast or broadcast address is also 3427 * acceptable. 3428 * 3429 * In the case of a broadcast/multicast address, however, the 3430 * upper protocol is expected to reset the src address 3431 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3432 * no packets are emitted with broadcast/multicast address as 3433 * source address (that violates hosts requirements RFC 1122) 3434 * The addresses valid for bind are: 3435 * (1) - INADDR_ANY (0) 3436 * (2) - IP address of an UP interface 3437 * (3) - IP address of a DOWN interface 3438 * (4) - valid local IP broadcast addresses. In this case 3439 * the conn will only receive packets destined to 3440 * the specified broadcast address. 3441 * (5) - a multicast address. In this case 3442 * the conn will only receive packets destined to 3443 * the specified multicast address. Note: the 3444 * application still has to issue an 3445 * IP_ADD_MEMBERSHIP socket option. 3446 * 3447 * In all the above cases, the bound address must be valid in the current zone. 3448 * When the address is loopback, multicast or broadcast, there might be many 3449 * matching IREs so bind has to look up based on the zone. 3450 */ 3451 ip_laddr_t 3452 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3453 ip_stack_t *ipst, boolean_t allow_mcbc) 3454 { 3455 ire_t *src_ire; 3456 3457 ASSERT(src_addr != INADDR_ANY); 3458 3459 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3460 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3461 3462 /* 3463 * If an address other than in6addr_any is requested, 3464 * we verify that it is a valid address for bind 3465 * Note: Following code is in if-else-if form for 3466 * readability compared to a condition check. 3467 */ 3468 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3469 /* 3470 * (2) Bind to address of local UP interface 3471 */ 3472 ire_refrele(src_ire); 3473 return (IPVL_UNICAST_UP); 3474 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3475 /* 3476 * (4) Bind to broadcast address 3477 */ 3478 ire_refrele(src_ire); 3479 if (allow_mcbc) 3480 return (IPVL_BCAST); 3481 else 3482 return (IPVL_BAD); 3483 } else if (CLASSD(src_addr)) { 3484 /* (5) bind to multicast address. */ 3485 if (src_ire != NULL) 3486 ire_refrele(src_ire); 3487 3488 if (allow_mcbc) 3489 return (IPVL_MCAST); 3490 else 3491 return (IPVL_BAD); 3492 } else { 3493 ipif_t *ipif; 3494 3495 /* 3496 * (3) Bind to address of local DOWN interface? 3497 * (ipif_lookup_addr() looks up all interfaces 3498 * but we do not get here for UP interfaces 3499 * - case (2) above) 3500 */ 3501 if (src_ire != NULL) 3502 ire_refrele(src_ire); 3503 3504 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3505 if (ipif == NULL) 3506 return (IPVL_BAD); 3507 3508 /* Not a useful source? */ 3509 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3510 ipif_refrele(ipif); 3511 return (IPVL_BAD); 3512 } 3513 ipif_refrele(ipif); 3514 return (IPVL_UNICAST_DOWN); 3515 } 3516 } 3517 3518 /* 3519 * Insert in the bind fanout for IPv4 and IPv6. 3520 * The caller should already have used ip_laddr_verify_v*() before calling 3521 * this. 3522 */ 3523 int 3524 ip_laddr_fanout_insert(conn_t *connp) 3525 { 3526 int error; 3527 3528 /* 3529 * Allow setting new policies. For example, disconnects result 3530 * in us being called. As we would have set conn_policy_cached 3531 * to B_TRUE before, we should set it to B_FALSE, so that policy 3532 * can change after the disconnect. 3533 */ 3534 connp->conn_policy_cached = B_FALSE; 3535 3536 error = ipcl_bind_insert(connp); 3537 if (error != 0) { 3538 if (connp->conn_anon_port) { 3539 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3540 connp->conn_mlp_type, connp->conn_proto, 3541 ntohs(connp->conn_lport), B_FALSE); 3542 } 3543 connp->conn_mlp_type = mlptSingle; 3544 } 3545 return (error); 3546 } 3547 3548 /* 3549 * Verify that both the source and destination addresses are valid. If 3550 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3551 * i.e. have no route to it. Protocols like TCP want to verify destination 3552 * reachability, while tunnels do not. 3553 * 3554 * Determine the route, the interface, and (optionally) the source address 3555 * to use to reach a given destination. 3556 * Note that we allow connect to broadcast and multicast addresses when 3557 * IPDF_ALLOW_MCBC is set. 3558 * first_hop and dst_addr are normally the same, but if source routing 3559 * they will differ; in that case the first_hop is what we'll use for the 3560 * routing lookup but the dce and label checks will be done on dst_addr, 3561 * 3562 * If uinfo is set, then we fill in the best available information 3563 * we have for the destination. This is based on (in priority order) any 3564 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3565 * ill_mtu. 3566 * 3567 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3568 * always do the label check on dst_addr. 3569 */ 3570 int 3571 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3572 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3573 { 3574 ire_t *ire = NULL; 3575 int error = 0; 3576 ipaddr_t setsrc; /* RTF_SETSRC */ 3577 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3578 ip_stack_t *ipst = ixa->ixa_ipst; 3579 dce_t *dce; 3580 uint_t pmtu; 3581 uint_t generation; 3582 nce_t *nce; 3583 ill_t *ill = NULL; 3584 boolean_t multirt = B_FALSE; 3585 3586 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3587 3588 /* 3589 * We never send to zero; the ULPs map it to the loopback address. 3590 * We can't allow it since we use zero to mean unitialized in some 3591 * places. 3592 */ 3593 ASSERT(dst_addr != INADDR_ANY); 3594 3595 if (is_system_labeled()) { 3596 ts_label_t *tsl = NULL; 3597 3598 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3599 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3600 if (error != 0) 3601 return (error); 3602 if (tsl != NULL) { 3603 /* Update the label */ 3604 ip_xmit_attr_replace_tsl(ixa, tsl); 3605 } 3606 } 3607 3608 setsrc = INADDR_ANY; 3609 /* 3610 * Select a route; For IPMP interfaces, we would only select 3611 * a "hidden" route (i.e., going through a specific under_ill) 3612 * if ixa_ifindex has been specified. 3613 */ 3614 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3615 &generation, &setsrc, &error, &multirt); 3616 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3617 if (error != 0) 3618 goto bad_addr; 3619 3620 /* 3621 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3622 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3623 * Otherwise the destination needn't be reachable. 3624 * 3625 * If we match on a reject or black hole, then we've got a 3626 * local failure. May as well fail out the connect() attempt, 3627 * since it's never going to succeed. 3628 */ 3629 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3630 /* 3631 * If we're verifying destination reachability, we always want 3632 * to complain here. 3633 * 3634 * If we're not verifying destination reachability but the 3635 * destination has a route, we still want to fail on the 3636 * temporary address and broadcast address tests. 3637 * 3638 * In both cases do we let the code continue so some reasonable 3639 * information is returned to the caller. That enables the 3640 * caller to use (and even cache) the IRE. conn_ip_ouput will 3641 * use the generation mismatch path to check for the unreachable 3642 * case thereby avoiding any specific check in the main path. 3643 */ 3644 ASSERT(generation == IRE_GENERATION_VERIFY); 3645 if (flags & IPDF_VERIFY_DST) { 3646 /* 3647 * Set errno but continue to set up ixa_ire to be 3648 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3649 * That allows callers to use ip_output to get an 3650 * ICMP error back. 3651 */ 3652 if (!(ire->ire_type & IRE_HOST)) 3653 error = ENETUNREACH; 3654 else 3655 error = EHOSTUNREACH; 3656 } 3657 } 3658 3659 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3660 !(flags & IPDF_ALLOW_MCBC)) { 3661 ire_refrele(ire); 3662 ire = ire_reject(ipst, B_FALSE); 3663 generation = IRE_GENERATION_VERIFY; 3664 error = ENETUNREACH; 3665 } 3666 3667 /* Cache things */ 3668 if (ixa->ixa_ire != NULL) 3669 ire_refrele_notr(ixa->ixa_ire); 3670 #ifdef DEBUG 3671 ire_refhold_notr(ire); 3672 ire_refrele(ire); 3673 #endif 3674 ixa->ixa_ire = ire; 3675 ixa->ixa_ire_generation = generation; 3676 3677 /* 3678 * For multicast with multirt we have a flag passed back from 3679 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3680 * possible multicast address. 3681 * We also need a flag for multicast since we can't check 3682 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3683 */ 3684 if (multirt) { 3685 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3686 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3687 } else { 3688 ixa->ixa_postfragfn = ire->ire_postfragfn; 3689 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3690 } 3691 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3692 /* Get an nce to cache. */ 3693 nce = ire_to_nce(ire, firsthop, NULL); 3694 if (nce == NULL) { 3695 /* Allocation failure? */ 3696 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3697 } else { 3698 if (ixa->ixa_nce != NULL) 3699 nce_refrele(ixa->ixa_nce); 3700 ixa->ixa_nce = nce; 3701 } 3702 } 3703 3704 /* 3705 * If the source address is a loopback address, the 3706 * destination had best be local or multicast. 3707 * If we are sending to an IRE_LOCAL using a loopback source then 3708 * it had better be the same zoneid. 3709 */ 3710 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3711 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3712 ire = NULL; /* Stored in ixa_ire */ 3713 error = EADDRNOTAVAIL; 3714 goto bad_addr; 3715 } 3716 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3717 ire = NULL; /* Stored in ixa_ire */ 3718 error = EADDRNOTAVAIL; 3719 goto bad_addr; 3720 } 3721 } 3722 if (ire->ire_type & IRE_BROADCAST) { 3723 /* 3724 * If the ULP didn't have a specified source, then we 3725 * make sure we reselect the source when sending 3726 * broadcasts out different interfaces. 3727 */ 3728 if (flags & IPDF_SELECT_SRC) 3729 ixa->ixa_flags |= IXAF_SET_SOURCE; 3730 else 3731 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3732 } 3733 3734 /* 3735 * Does the caller want us to pick a source address? 3736 */ 3737 if (flags & IPDF_SELECT_SRC) { 3738 ipaddr_t src_addr; 3739 3740 /* 3741 * We use use ire_nexthop_ill to avoid the under ipmp 3742 * interface for source address selection. Note that for ipmp 3743 * probe packets, ixa_ifindex would have been specified, and 3744 * the ip_select_route() invocation would have picked an ire 3745 * will ire_ill pointing at an under interface. 3746 */ 3747 ill = ire_nexthop_ill(ire); 3748 3749 /* If unreachable we have no ill but need some source */ 3750 if (ill == NULL) { 3751 src_addr = htonl(INADDR_LOOPBACK); 3752 /* Make sure we look for a better source address */ 3753 generation = SRC_GENERATION_VERIFY; 3754 } else { 3755 error = ip_select_source_v4(ill, setsrc, dst_addr, 3756 ixa->ixa_multicast_ifaddr, zoneid, 3757 ipst, &src_addr, &generation, NULL); 3758 if (error != 0) { 3759 ire = NULL; /* Stored in ixa_ire */ 3760 goto bad_addr; 3761 } 3762 } 3763 3764 /* 3765 * We allow the source address to to down. 3766 * However, we check that we don't use the loopback address 3767 * as a source when sending out on the wire. 3768 */ 3769 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3770 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3771 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3772 ire = NULL; /* Stored in ixa_ire */ 3773 error = EADDRNOTAVAIL; 3774 goto bad_addr; 3775 } 3776 3777 *src_addrp = src_addr; 3778 ixa->ixa_src_generation = generation; 3779 } 3780 3781 if (flags & IPDF_UNIQUE_DCE) { 3782 /* Fallback to the default dce if allocation fails */ 3783 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3784 if (dce != NULL) 3785 generation = dce->dce_generation; 3786 else 3787 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3788 } else { 3789 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3790 } 3791 ASSERT(dce != NULL); 3792 if (ixa->ixa_dce != NULL) 3793 dce_refrele_notr(ixa->ixa_dce); 3794 #ifdef DEBUG 3795 dce_refhold_notr(dce); 3796 dce_refrele(dce); 3797 #endif 3798 ixa->ixa_dce = dce; 3799 ixa->ixa_dce_generation = generation; 3800 3801 /* 3802 * Make sure we don't leave an unreachable ixa_nce in place 3803 * since ip_select_route is used when we unplumb i.e., remove 3804 * references on ixa_ire, ixa_nce, and ixa_dce. 3805 */ 3806 nce = ixa->ixa_nce; 3807 if (nce != NULL && nce->nce_is_condemned) { 3808 nce_refrele(nce); 3809 ixa->ixa_nce = NULL; 3810 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3811 } 3812 3813 /* 3814 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3815 * However, we can't do it for IPv4 multicast or broadcast. 3816 */ 3817 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3818 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3819 3820 /* 3821 * Set initial value for fragmentation limit. Either conn_ip_output 3822 * or ULP might updates it when there are routing changes. 3823 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3824 */ 3825 pmtu = ip_get_pmtu(ixa); 3826 ixa->ixa_fragsize = pmtu; 3827 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3828 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3829 ixa->ixa_pmtu = pmtu; 3830 3831 /* 3832 * Extract information useful for some transports. 3833 * First we look for DCE metrics. Then we take what we have in 3834 * the metrics in the route, where the offlink is used if we have 3835 * one. 3836 */ 3837 if (uinfo != NULL) { 3838 bzero(uinfo, sizeof (*uinfo)); 3839 3840 if (dce->dce_flags & DCEF_UINFO) 3841 *uinfo = dce->dce_uinfo; 3842 3843 rts_merge_metrics(uinfo, &ire->ire_metrics); 3844 3845 /* Allow ire_metrics to decrease the path MTU from above */ 3846 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3847 uinfo->iulp_mtu = pmtu; 3848 3849 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3850 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3851 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3852 } 3853 3854 if (ill != NULL) 3855 ill_refrele(ill); 3856 3857 return (error); 3858 3859 bad_addr: 3860 if (ire != NULL) 3861 ire_refrele(ire); 3862 3863 if (ill != NULL) 3864 ill_refrele(ill); 3865 3866 /* 3867 * Make sure we don't leave an unreachable ixa_nce in place 3868 * since ip_select_route is used when we unplumb i.e., remove 3869 * references on ixa_ire, ixa_nce, and ixa_dce. 3870 */ 3871 nce = ixa->ixa_nce; 3872 if (nce != NULL && nce->nce_is_condemned) { 3873 nce_refrele(nce); 3874 ixa->ixa_nce = NULL; 3875 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3876 } 3877 3878 return (error); 3879 } 3880 3881 3882 /* 3883 * Get the base MTU for the case when path MTU discovery is not used. 3884 * Takes the MTU of the IRE into account. 3885 */ 3886 uint_t 3887 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3888 { 3889 uint_t mtu = ill->ill_mtu; 3890 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3891 3892 if (iremtu != 0 && iremtu < mtu) 3893 mtu = iremtu; 3894 3895 return (mtu); 3896 } 3897 3898 /* 3899 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3900 * Assumes that ixa_ire, dce, and nce have already been set up. 3901 * 3902 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3903 * We avoid path MTU discovery if it is disabled with ndd. 3904 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3905 * 3906 * NOTE: We also used to turn it off for source routed packets. That 3907 * is no longer required since the dce is per final destination. 3908 */ 3909 uint_t 3910 ip_get_pmtu(ip_xmit_attr_t *ixa) 3911 { 3912 ip_stack_t *ipst = ixa->ixa_ipst; 3913 dce_t *dce; 3914 nce_t *nce; 3915 ire_t *ire; 3916 uint_t pmtu; 3917 3918 ire = ixa->ixa_ire; 3919 dce = ixa->ixa_dce; 3920 nce = ixa->ixa_nce; 3921 3922 /* 3923 * If path MTU discovery has been turned off by ndd, then we ignore 3924 * any dce_pmtu and for IPv4 we will not set DF. 3925 */ 3926 if (!ipst->ips_ip_path_mtu_discovery) 3927 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3928 3929 pmtu = IP_MAXPACKET; 3930 /* 3931 * Decide whether whether IPv4 sets DF 3932 * For IPv6 "no DF" means to use the 1280 mtu 3933 */ 3934 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3935 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3936 } else { 3937 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3938 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3939 pmtu = IPV6_MIN_MTU; 3940 } 3941 3942 /* Check if the PMTU is to old before we use it */ 3943 if ((dce->dce_flags & DCEF_PMTU) && 3944 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3945 ipst->ips_ip_pathmtu_interval) { 3946 /* 3947 * Older than 20 minutes. Drop the path MTU information. 3948 */ 3949 mutex_enter(&dce->dce_lock); 3950 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3951 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3952 mutex_exit(&dce->dce_lock); 3953 dce_increment_generation(dce); 3954 } 3955 3956 /* The metrics on the route can lower the path MTU */ 3957 if (ire->ire_metrics.iulp_mtu != 0 && 3958 ire->ire_metrics.iulp_mtu < pmtu) 3959 pmtu = ire->ire_metrics.iulp_mtu; 3960 3961 /* 3962 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3963 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3964 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3965 */ 3966 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3967 if (dce->dce_flags & DCEF_PMTU) { 3968 if (dce->dce_pmtu < pmtu) 3969 pmtu = dce->dce_pmtu; 3970 3971 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3972 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3973 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3974 } else { 3975 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3976 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3977 } 3978 } else { 3979 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3980 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3981 } 3982 } 3983 3984 /* 3985 * If we have an IRE_LOCAL we use the loopback mtu instead of 3986 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3987 * mtu as IRE_LOOPBACK. 3988 */ 3989 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3990 uint_t loopback_mtu; 3991 3992 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3993 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3994 3995 if (loopback_mtu < pmtu) 3996 pmtu = loopback_mtu; 3997 } else if (nce != NULL) { 3998 /* 3999 * Make sure we don't exceed the interface MTU. 4000 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 4001 * an ill. We'd use the above IP_MAXPACKET in that case just 4002 * to tell the transport something larger than zero. 4003 */ 4004 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 4005 pmtu = nce->nce_common->ncec_ill->ill_mtu; 4006 if (nce->nce_common->ncec_ill != nce->nce_ill && 4007 nce->nce_ill->ill_mtu < pmtu) { 4008 /* 4009 * for interfaces in an IPMP group, the mtu of 4010 * the nce_ill (under_ill) could be different 4011 * from the mtu of the ncec_ill, so we take the 4012 * min of the two. 4013 */ 4014 pmtu = nce->nce_ill->ill_mtu; 4015 } 4016 } 4017 4018 /* 4019 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 4020 * Only applies to IPv6. 4021 */ 4022 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 4023 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 4024 switch (ixa->ixa_use_min_mtu) { 4025 case IPV6_USE_MIN_MTU_MULTICAST: 4026 if (ire->ire_type & IRE_MULTICAST) 4027 pmtu = IPV6_MIN_MTU; 4028 break; 4029 case IPV6_USE_MIN_MTU_ALWAYS: 4030 pmtu = IPV6_MIN_MTU; 4031 break; 4032 case IPV6_USE_MIN_MTU_NEVER: 4033 break; 4034 } 4035 } else { 4036 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 4037 if (ire->ire_type & IRE_MULTICAST) 4038 pmtu = IPV6_MIN_MTU; 4039 } 4040 } 4041 4042 /* 4043 * After receiving an ICMPv6 "packet too big" message with a 4044 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 4045 * will insert a 8-byte fragment header in every packet. We compensate 4046 * for those cases by returning a smaller path MTU to the ULP. 4047 * 4048 * In the case of CGTP then ip_output will add a fragment header. 4049 * Make sure there is room for it by telling a smaller number 4050 * to the transport. 4051 * 4052 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 4053 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 4054 * which is the size of the packets it can send. 4055 */ 4056 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 4057 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 4058 (ire->ire_flags & RTF_MULTIRT) || 4059 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 4060 pmtu -= sizeof (ip6_frag_t); 4061 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 4062 } 4063 } 4064 4065 return (pmtu); 4066 } 4067 4068 /* 4069 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4070 * the final piece where we don't. Return a pointer to the first mblk in the 4071 * result, and update the pointer to the next mblk to chew on. If anything 4072 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4073 * NULL pointer. 4074 */ 4075 mblk_t * 4076 ip_carve_mp(mblk_t **mpp, ssize_t len) 4077 { 4078 mblk_t *mp0; 4079 mblk_t *mp1; 4080 mblk_t *mp2; 4081 4082 if (!len || !mpp || !(mp0 = *mpp)) 4083 return (NULL); 4084 /* If we aren't going to consume the first mblk, we need a dup. */ 4085 if (mp0->b_wptr - mp0->b_rptr > len) { 4086 mp1 = dupb(mp0); 4087 if (mp1) { 4088 /* Partition the data between the two mblks. */ 4089 mp1->b_wptr = mp1->b_rptr + len; 4090 mp0->b_rptr = mp1->b_wptr; 4091 /* 4092 * after adjustments if mblk not consumed is now 4093 * unaligned, try to align it. If this fails free 4094 * all messages and let upper layer recover. 4095 */ 4096 if (!OK_32PTR(mp0->b_rptr)) { 4097 if (!pullupmsg(mp0, -1)) { 4098 freemsg(mp0); 4099 freemsg(mp1); 4100 *mpp = NULL; 4101 return (NULL); 4102 } 4103 } 4104 } 4105 return (mp1); 4106 } 4107 /* Eat through as many mblks as we need to get len bytes. */ 4108 len -= mp0->b_wptr - mp0->b_rptr; 4109 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4110 if (mp2->b_wptr - mp2->b_rptr > len) { 4111 /* 4112 * We won't consume the entire last mblk. Like 4113 * above, dup and partition it. 4114 */ 4115 mp1->b_cont = dupb(mp2); 4116 mp1 = mp1->b_cont; 4117 if (!mp1) { 4118 /* 4119 * Trouble. Rather than go to a lot of 4120 * trouble to clean up, we free the messages. 4121 * This won't be any worse than losing it on 4122 * the wire. 4123 */ 4124 freemsg(mp0); 4125 freemsg(mp2); 4126 *mpp = NULL; 4127 return (NULL); 4128 } 4129 mp1->b_wptr = mp1->b_rptr + len; 4130 mp2->b_rptr = mp1->b_wptr; 4131 /* 4132 * after adjustments if mblk not consumed is now 4133 * unaligned, try to align it. If this fails free 4134 * all messages and let upper layer recover. 4135 */ 4136 if (!OK_32PTR(mp2->b_rptr)) { 4137 if (!pullupmsg(mp2, -1)) { 4138 freemsg(mp0); 4139 freemsg(mp2); 4140 *mpp = NULL; 4141 return (NULL); 4142 } 4143 } 4144 *mpp = mp2; 4145 return (mp0); 4146 } 4147 /* Decrement len by the amount we just got. */ 4148 len -= mp2->b_wptr - mp2->b_rptr; 4149 } 4150 /* 4151 * len should be reduced to zero now. If not our caller has 4152 * screwed up. 4153 */ 4154 if (len) { 4155 /* Shouldn't happen! */ 4156 freemsg(mp0); 4157 *mpp = NULL; 4158 return (NULL); 4159 } 4160 /* 4161 * We consumed up to exactly the end of an mblk. Detach the part 4162 * we are returning from the rest of the chain. 4163 */ 4164 mp1->b_cont = NULL; 4165 *mpp = mp2; 4166 return (mp0); 4167 } 4168 4169 /* The ill stream is being unplumbed. Called from ip_close */ 4170 int 4171 ip_modclose(ill_t *ill) 4172 { 4173 boolean_t success; 4174 ipsq_t *ipsq; 4175 ipif_t *ipif; 4176 queue_t *q = ill->ill_rq; 4177 ip_stack_t *ipst = ill->ill_ipst; 4178 int i; 4179 arl_ill_common_t *ai = ill->ill_common; 4180 4181 /* 4182 * The punlink prior to this may have initiated a capability 4183 * negotiation. But ipsq_enter will block until that finishes or 4184 * times out. 4185 */ 4186 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4187 4188 /* 4189 * Open/close/push/pop is guaranteed to be single threaded 4190 * per stream by STREAMS. FS guarantees that all references 4191 * from top are gone before close is called. So there can't 4192 * be another close thread that has set CONDEMNED on this ill. 4193 * and cause ipsq_enter to return failure. 4194 */ 4195 ASSERT(success); 4196 ipsq = ill->ill_phyint->phyint_ipsq; 4197 4198 /* 4199 * Mark it condemned. No new reference will be made to this ill. 4200 * Lookup functions will return an error. Threads that try to 4201 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4202 * that the refcnt will drop down to zero. 4203 */ 4204 mutex_enter(&ill->ill_lock); 4205 ill->ill_state_flags |= ILL_CONDEMNED; 4206 for (ipif = ill->ill_ipif; ipif != NULL; 4207 ipif = ipif->ipif_next) { 4208 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4209 } 4210 /* 4211 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4212 * returns error if ILL_CONDEMNED is set 4213 */ 4214 cv_broadcast(&ill->ill_cv); 4215 mutex_exit(&ill->ill_lock); 4216 4217 /* 4218 * Send all the deferred DLPI messages downstream which came in 4219 * during the small window right before ipsq_enter(). We do this 4220 * without waiting for the ACKs because all the ACKs for M_PROTO 4221 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4222 */ 4223 ill_dlpi_send_deferred(ill); 4224 4225 /* 4226 * Shut down fragmentation reassembly. 4227 * ill_frag_timer won't start a timer again. 4228 * Now cancel any existing timer 4229 */ 4230 (void) untimeout(ill->ill_frag_timer_id); 4231 (void) ill_frag_timeout(ill, 0); 4232 4233 /* 4234 * Call ill_delete to bring down the ipifs, ilms and ill on 4235 * this ill. Then wait for the refcnts to drop to zero. 4236 * ill_is_freeable checks whether the ill is really quiescent. 4237 * Then make sure that threads that are waiting to enter the 4238 * ipsq have seen the error returned by ipsq_enter and have 4239 * gone away. Then we call ill_delete_tail which does the 4240 * DL_UNBIND_REQ with the driver and then qprocsoff. 4241 */ 4242 ill_delete(ill); 4243 mutex_enter(&ill->ill_lock); 4244 while (!ill_is_freeable(ill)) 4245 cv_wait(&ill->ill_cv, &ill->ill_lock); 4246 4247 while (ill->ill_waiters) 4248 cv_wait(&ill->ill_cv, &ill->ill_lock); 4249 4250 mutex_exit(&ill->ill_lock); 4251 4252 /* 4253 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4254 * it held until the end of the function since the cleanup 4255 * below needs to be able to use the ip_stack_t. 4256 */ 4257 netstack_hold(ipst->ips_netstack); 4258 4259 /* qprocsoff is done via ill_delete_tail */ 4260 ill_delete_tail(ill); 4261 /* 4262 * synchronously wait for arp stream to unbind. After this, we 4263 * cannot get any data packets up from the driver. 4264 */ 4265 arp_unbind_complete(ill); 4266 ASSERT(ill->ill_ipst == NULL); 4267 4268 /* 4269 * Walk through all conns and qenable those that have queued data. 4270 * Close synchronization needs this to 4271 * be done to ensure that all upper layers blocked 4272 * due to flow control to the closing device 4273 * get unblocked. 4274 */ 4275 ip1dbg(("ip_wsrv: walking\n")); 4276 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4277 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4278 } 4279 4280 /* 4281 * ai can be null if this is an IPv6 ill, or if the IPv4 4282 * stream is being torn down before ARP was plumbed (e.g., 4283 * /sbin/ifconfig plumbing a stream twice, and encountering 4284 * an error 4285 */ 4286 if (ai != NULL) { 4287 ASSERT(!ill->ill_isv6); 4288 mutex_enter(&ai->ai_lock); 4289 ai->ai_ill = NULL; 4290 if (ai->ai_arl == NULL) { 4291 mutex_destroy(&ai->ai_lock); 4292 kmem_free(ai, sizeof (*ai)); 4293 } else { 4294 cv_signal(&ai->ai_ill_unplumb_done); 4295 mutex_exit(&ai->ai_lock); 4296 } 4297 } 4298 4299 mutex_enter(&ipst->ips_ip_mi_lock); 4300 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4301 mutex_exit(&ipst->ips_ip_mi_lock); 4302 4303 /* 4304 * credp could be null if the open didn't succeed and ip_modopen 4305 * itself calls ip_close. 4306 */ 4307 if (ill->ill_credp != NULL) 4308 crfree(ill->ill_credp); 4309 4310 mutex_destroy(&ill->ill_saved_ire_lock); 4311 mutex_destroy(&ill->ill_lock); 4312 rw_destroy(&ill->ill_mcast_lock); 4313 mutex_destroy(&ill->ill_mcast_serializer); 4314 list_destroy(&ill->ill_nce); 4315 4316 /* 4317 * Now we are done with the module close pieces that 4318 * need the netstack_t. 4319 */ 4320 netstack_rele(ipst->ips_netstack); 4321 4322 mi_close_free((IDP)ill); 4323 q->q_ptr = WR(q)->q_ptr = NULL; 4324 4325 ipsq_exit(ipsq); 4326 4327 return (0); 4328 } 4329 4330 /* 4331 * This is called as part of close() for IP, UDP, ICMP, and RTS 4332 * in order to quiesce the conn. 4333 */ 4334 void 4335 ip_quiesce_conn(conn_t *connp) 4336 { 4337 boolean_t drain_cleanup_reqd = B_FALSE; 4338 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4339 boolean_t ilg_cleanup_reqd = B_FALSE; 4340 ip_stack_t *ipst; 4341 4342 ASSERT(!IPCL_IS_TCP(connp)); 4343 ipst = connp->conn_netstack->netstack_ip; 4344 4345 /* 4346 * Mark the conn as closing, and this conn must not be 4347 * inserted in future into any list. Eg. conn_drain_insert(), 4348 * won't insert this conn into the conn_drain_list. 4349 * 4350 * conn_idl, and conn_ilg cannot get set henceforth. 4351 */ 4352 mutex_enter(&connp->conn_lock); 4353 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4354 connp->conn_state_flags |= CONN_CLOSING; 4355 if (connp->conn_idl != NULL) 4356 drain_cleanup_reqd = B_TRUE; 4357 if (connp->conn_oper_pending_ill != NULL) 4358 conn_ioctl_cleanup_reqd = B_TRUE; 4359 if (connp->conn_dhcpinit_ill != NULL) { 4360 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4361 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4362 ill_set_inputfn(connp->conn_dhcpinit_ill); 4363 connp->conn_dhcpinit_ill = NULL; 4364 } 4365 if (connp->conn_ilg != NULL) 4366 ilg_cleanup_reqd = B_TRUE; 4367 mutex_exit(&connp->conn_lock); 4368 4369 if (conn_ioctl_cleanup_reqd) 4370 conn_ioctl_cleanup(connp); 4371 4372 if (is_system_labeled() && connp->conn_anon_port) { 4373 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4374 connp->conn_mlp_type, connp->conn_proto, 4375 ntohs(connp->conn_lport), B_FALSE); 4376 connp->conn_anon_port = 0; 4377 } 4378 connp->conn_mlp_type = mlptSingle; 4379 4380 /* 4381 * Remove this conn from any fanout list it is on. 4382 * and then wait for any threads currently operating 4383 * on this endpoint to finish 4384 */ 4385 ipcl_hash_remove(connp); 4386 4387 /* 4388 * Remove this conn from the drain list, and do 4389 * any other cleanup that may be required. 4390 * (Only non-tcp conns may have a non-null conn_idl. 4391 * TCP conns are never flow controlled, and 4392 * conn_idl will be null) 4393 */ 4394 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4395 mutex_enter(&connp->conn_idl->idl_lock); 4396 conn_drain_tail(connp, B_TRUE); 4397 mutex_exit(&connp->conn_idl->idl_lock); 4398 } 4399 4400 if (connp == ipst->ips_ip_g_mrouter) 4401 (void) ip_mrouter_done(ipst); 4402 4403 if (ilg_cleanup_reqd) 4404 ilg_delete_all(connp); 4405 4406 /* 4407 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4408 * callers from write side can't be there now because close 4409 * is in progress. The only other caller is ipcl_walk 4410 * which checks for the condemned flag. 4411 */ 4412 mutex_enter(&connp->conn_lock); 4413 connp->conn_state_flags |= CONN_CONDEMNED; 4414 while (connp->conn_ref != 1) 4415 cv_wait(&connp->conn_cv, &connp->conn_lock); 4416 connp->conn_state_flags |= CONN_QUIESCED; 4417 mutex_exit(&connp->conn_lock); 4418 } 4419 4420 /* ARGSUSED */ 4421 int 4422 ip_close(queue_t *q, int flags) 4423 { 4424 conn_t *connp; 4425 4426 /* 4427 * Call the appropriate delete routine depending on whether this is 4428 * a module or device. 4429 */ 4430 if (WR(q)->q_next != NULL) { 4431 /* This is a module close */ 4432 return (ip_modclose((ill_t *)q->q_ptr)); 4433 } 4434 4435 connp = q->q_ptr; 4436 ip_quiesce_conn(connp); 4437 4438 qprocsoff(q); 4439 4440 /* 4441 * Now we are truly single threaded on this stream, and can 4442 * delete the things hanging off the connp, and finally the connp. 4443 * We removed this connp from the fanout list, it cannot be 4444 * accessed thru the fanouts, and we already waited for the 4445 * conn_ref to drop to 0. We are already in close, so 4446 * there cannot be any other thread from the top. qprocsoff 4447 * has completed, and service has completed or won't run in 4448 * future. 4449 */ 4450 ASSERT(connp->conn_ref == 1); 4451 4452 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4453 4454 connp->conn_ref--; 4455 ipcl_conn_destroy(connp); 4456 4457 q->q_ptr = WR(q)->q_ptr = NULL; 4458 return (0); 4459 } 4460 4461 /* 4462 * Wapper around putnext() so that ip_rts_request can merely use 4463 * conn_recv. 4464 */ 4465 /*ARGSUSED2*/ 4466 static void 4467 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4468 { 4469 conn_t *connp = (conn_t *)arg1; 4470 4471 putnext(connp->conn_rq, mp); 4472 } 4473 4474 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4475 /* ARGSUSED */ 4476 static void 4477 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4478 { 4479 freemsg(mp); 4480 } 4481 4482 /* 4483 * Called when the module is about to be unloaded 4484 */ 4485 void 4486 ip_ddi_destroy(void) 4487 { 4488 tnet_fini(); 4489 4490 icmp_ddi_g_destroy(); 4491 rts_ddi_g_destroy(); 4492 udp_ddi_g_destroy(); 4493 sctp_ddi_g_destroy(); 4494 tcp_ddi_g_destroy(); 4495 ilb_ddi_g_destroy(); 4496 dce_g_destroy(); 4497 ipsec_policy_g_destroy(); 4498 ipcl_g_destroy(); 4499 ip_net_g_destroy(); 4500 ip_ire_g_fini(); 4501 inet_minor_destroy(ip_minor_arena_sa); 4502 #if defined(_LP64) 4503 inet_minor_destroy(ip_minor_arena_la); 4504 #endif 4505 4506 #ifdef DEBUG 4507 list_destroy(&ip_thread_list); 4508 rw_destroy(&ip_thread_rwlock); 4509 tsd_destroy(&ip_thread_data); 4510 #endif 4511 4512 netstack_unregister(NS_IP); 4513 } 4514 4515 /* 4516 * First step in cleanup. 4517 */ 4518 /* ARGSUSED */ 4519 static void 4520 ip_stack_shutdown(netstackid_t stackid, void *arg) 4521 { 4522 ip_stack_t *ipst = (ip_stack_t *)arg; 4523 4524 #ifdef NS_DEBUG 4525 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4526 #endif 4527 4528 /* 4529 * Perform cleanup for special interfaces (loopback and IPMP). 4530 */ 4531 ip_interface_cleanup(ipst); 4532 4533 /* 4534 * The *_hook_shutdown()s start the process of notifying any 4535 * consumers that things are going away.... nothing is destroyed. 4536 */ 4537 ipv4_hook_shutdown(ipst); 4538 ipv6_hook_shutdown(ipst); 4539 arp_hook_shutdown(ipst); 4540 4541 mutex_enter(&ipst->ips_capab_taskq_lock); 4542 ipst->ips_capab_taskq_quit = B_TRUE; 4543 cv_signal(&ipst->ips_capab_taskq_cv); 4544 mutex_exit(&ipst->ips_capab_taskq_lock); 4545 } 4546 4547 /* 4548 * Free the IP stack instance. 4549 */ 4550 static void 4551 ip_stack_fini(netstackid_t stackid, void *arg) 4552 { 4553 ip_stack_t *ipst = (ip_stack_t *)arg; 4554 int ret; 4555 4556 #ifdef NS_DEBUG 4557 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4558 #endif 4559 /* 4560 * At this point, all of the notifications that the events and 4561 * protocols are going away have been run, meaning that we can 4562 * now set about starting to clean things up. 4563 */ 4564 ipobs_fini(ipst); 4565 ipv4_hook_destroy(ipst); 4566 ipv6_hook_destroy(ipst); 4567 arp_hook_destroy(ipst); 4568 ip_net_destroy(ipst); 4569 4570 mutex_destroy(&ipst->ips_capab_taskq_lock); 4571 cv_destroy(&ipst->ips_capab_taskq_cv); 4572 4573 ipmp_destroy(ipst); 4574 rw_destroy(&ipst->ips_srcid_lock); 4575 4576 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4577 ipst->ips_ip_mibkp = NULL; 4578 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4579 ipst->ips_icmp_mibkp = NULL; 4580 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4581 ipst->ips_ip_kstat = NULL; 4582 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4583 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4584 ipst->ips_ip6_kstat = NULL; 4585 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4586 4587 nd_free(&ipst->ips_ip_g_nd); 4588 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 4589 ipst->ips_param_arr = NULL; 4590 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 4591 ipst->ips_ndp_arr = NULL; 4592 4593 dce_stack_destroy(ipst); 4594 ip_mrouter_stack_destroy(ipst); 4595 4596 mutex_destroy(&ipst->ips_ip_mi_lock); 4597 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4598 rw_destroy(&ipst->ips_ip_g_nd_lock); 4599 4600 ret = untimeout(ipst->ips_igmp_timeout_id); 4601 if (ret == -1) { 4602 ASSERT(ipst->ips_igmp_timeout_id == 0); 4603 } else { 4604 ASSERT(ipst->ips_igmp_timeout_id != 0); 4605 ipst->ips_igmp_timeout_id = 0; 4606 } 4607 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4608 if (ret == -1) { 4609 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4610 } else { 4611 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4612 ipst->ips_igmp_slowtimeout_id = 0; 4613 } 4614 ret = untimeout(ipst->ips_mld_timeout_id); 4615 if (ret == -1) { 4616 ASSERT(ipst->ips_mld_timeout_id == 0); 4617 } else { 4618 ASSERT(ipst->ips_mld_timeout_id != 0); 4619 ipst->ips_mld_timeout_id = 0; 4620 } 4621 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4622 if (ret == -1) { 4623 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4624 } else { 4625 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4626 ipst->ips_mld_slowtimeout_id = 0; 4627 } 4628 4629 mutex_destroy(&ipst->ips_igmp_timer_lock); 4630 mutex_destroy(&ipst->ips_mld_timer_lock); 4631 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4632 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4633 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4634 rw_destroy(&ipst->ips_ill_g_lock); 4635 4636 ip_ire_fini(ipst); 4637 ip6_asp_free(ipst); 4638 conn_drain_fini(ipst); 4639 ipcl_destroy(ipst); 4640 4641 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4642 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4643 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4644 ipst->ips_ndp4 = NULL; 4645 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4646 ipst->ips_ndp6 = NULL; 4647 4648 if (ipst->ips_loopback_ksp != NULL) { 4649 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4650 ipst->ips_loopback_ksp = NULL; 4651 } 4652 4653 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4654 ipst->ips_phyint_g_list = NULL; 4655 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4656 ipst->ips_ill_g_heads = NULL; 4657 4658 ldi_ident_release(ipst->ips_ldi_ident); 4659 kmem_free(ipst, sizeof (*ipst)); 4660 } 4661 4662 /* 4663 * This function is called from the TSD destructor, and is used to debug 4664 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4665 * details. 4666 */ 4667 static void 4668 ip_thread_exit(void *phash) 4669 { 4670 th_hash_t *thh = phash; 4671 4672 rw_enter(&ip_thread_rwlock, RW_WRITER); 4673 list_remove(&ip_thread_list, thh); 4674 rw_exit(&ip_thread_rwlock); 4675 mod_hash_destroy_hash(thh->thh_hash); 4676 kmem_free(thh, sizeof (*thh)); 4677 } 4678 4679 /* 4680 * Called when the IP kernel module is loaded into the kernel 4681 */ 4682 void 4683 ip_ddi_init(void) 4684 { 4685 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4686 4687 /* 4688 * For IP and TCP the minor numbers should start from 2 since we have 4 4689 * initial devices: ip, ip6, tcp, tcp6. 4690 */ 4691 /* 4692 * If this is a 64-bit kernel, then create two separate arenas - 4693 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4694 * other for socket apps in the range 2^^18 through 2^^32-1. 4695 */ 4696 ip_minor_arena_la = NULL; 4697 ip_minor_arena_sa = NULL; 4698 #if defined(_LP64) 4699 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4700 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4701 cmn_err(CE_PANIC, 4702 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4703 } 4704 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4705 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4706 cmn_err(CE_PANIC, 4707 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4708 } 4709 #else 4710 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4711 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4712 cmn_err(CE_PANIC, 4713 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4714 } 4715 #endif 4716 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4717 4718 ipcl_g_init(); 4719 ip_ire_g_init(); 4720 ip_net_g_init(); 4721 4722 #ifdef DEBUG 4723 tsd_create(&ip_thread_data, ip_thread_exit); 4724 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4725 list_create(&ip_thread_list, sizeof (th_hash_t), 4726 offsetof(th_hash_t, thh_link)); 4727 #endif 4728 ipsec_policy_g_init(); 4729 tcp_ddi_g_init(); 4730 sctp_ddi_g_init(); 4731 dce_g_init(); 4732 4733 /* 4734 * We want to be informed each time a stack is created or 4735 * destroyed in the kernel, so we can maintain the 4736 * set of udp_stack_t's. 4737 */ 4738 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4739 ip_stack_fini); 4740 4741 tnet_init(); 4742 4743 udp_ddi_g_init(); 4744 rts_ddi_g_init(); 4745 icmp_ddi_g_init(); 4746 ilb_ddi_g_init(); 4747 } 4748 4749 /* 4750 * Initialize the IP stack instance. 4751 */ 4752 static void * 4753 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4754 { 4755 ip_stack_t *ipst; 4756 ipparam_t *pa; 4757 ipndp_t *na; 4758 major_t major; 4759 4760 #ifdef NS_DEBUG 4761 printf("ip_stack_init(stack %d)\n", stackid); 4762 #endif 4763 4764 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4765 ipst->ips_netstack = ns; 4766 4767 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4768 KM_SLEEP); 4769 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4770 KM_SLEEP); 4771 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4772 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4773 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4774 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4775 4776 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 4777 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4778 ipst->ips_igmp_deferred_next = INFINITY; 4779 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4780 ipst->ips_mld_deferred_next = INFINITY; 4781 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4782 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4783 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4784 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4785 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4786 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4787 4788 ipcl_init(ipst); 4789 ip_ire_init(ipst); 4790 ip6_asp_init(ipst); 4791 ipif_init(ipst); 4792 conn_drain_init(ipst); 4793 ip_mrouter_stack_init(ipst); 4794 dce_stack_init(ipst); 4795 4796 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 4797 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 4798 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 4799 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 4800 4801 ipst->ips_ip_multirt_log_interval = 1000; 4802 4803 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 4804 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 4805 ipst->ips_ill_index = 1; 4806 4807 ipst->ips_saved_ip_g_forward = -1; 4808 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4809 4810 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 4811 ipst->ips_param_arr = pa; 4812 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 4813 4814 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 4815 ipst->ips_ndp_arr = na; 4816 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 4817 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 4818 (caddr_t)&ipst->ips_ip_g_forward; 4819 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 4820 (caddr_t)&ipst->ips_ipv6_forward; 4821 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 4822 "ip_cgtp_filter") == 0); 4823 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 4824 (caddr_t)&ipst->ips_ip_cgtp_filter; 4825 4826 (void) ip_param_register(&ipst->ips_ip_g_nd, 4827 ipst->ips_param_arr, A_CNT(lcl_param_arr), 4828 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 4829 4830 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4831 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4832 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4833 ipst->ips_ip6_kstat = 4834 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4835 4836 ipst->ips_ip_src_id = 1; 4837 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4838 4839 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4840 4841 ip_net_init(ipst, ns); 4842 ipv4_hook_init(ipst); 4843 ipv6_hook_init(ipst); 4844 arp_hook_init(ipst); 4845 ipmp_init(ipst); 4846 ipobs_init(ipst); 4847 4848 /* 4849 * Create the taskq dispatcher thread and initialize related stuff. 4850 */ 4851 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4852 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4853 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4854 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4855 4856 major = mod_name_to_major(INET_NAME); 4857 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4858 return (ipst); 4859 } 4860 4861 /* 4862 * Allocate and initialize a DLPI template of the specified length. (May be 4863 * called as writer.) 4864 */ 4865 mblk_t * 4866 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4867 { 4868 mblk_t *mp; 4869 4870 mp = allocb(len, BPRI_MED); 4871 if (!mp) 4872 return (NULL); 4873 4874 /* 4875 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4876 * of which we don't seem to use) are sent with M_PCPROTO, and 4877 * that other DLPI are M_PROTO. 4878 */ 4879 if (prim == DL_INFO_REQ) { 4880 mp->b_datap->db_type = M_PCPROTO; 4881 } else { 4882 mp->b_datap->db_type = M_PROTO; 4883 } 4884 4885 mp->b_wptr = mp->b_rptr + len; 4886 bzero(mp->b_rptr, len); 4887 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4888 return (mp); 4889 } 4890 4891 /* 4892 * Allocate and initialize a DLPI notification. (May be called as writer.) 4893 */ 4894 mblk_t * 4895 ip_dlnotify_alloc(uint_t notification, uint_t data) 4896 { 4897 dl_notify_ind_t *notifyp; 4898 mblk_t *mp; 4899 4900 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4901 return (NULL); 4902 4903 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4904 notifyp->dl_notification = notification; 4905 notifyp->dl_data = data; 4906 return (mp); 4907 } 4908 4909 /* 4910 * Debug formatting routine. Returns a character string representation of the 4911 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4912 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4913 * 4914 * Once the ndd table-printing interfaces are removed, this can be changed to 4915 * standard dotted-decimal form. 4916 */ 4917 char * 4918 ip_dot_addr(ipaddr_t addr, char *buf) 4919 { 4920 uint8_t *ap = (uint8_t *)&addr; 4921 4922 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4923 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4924 return (buf); 4925 } 4926 4927 /* 4928 * Write the given MAC address as a printable string in the usual colon- 4929 * separated format. 4930 */ 4931 const char * 4932 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4933 { 4934 char *bp; 4935 4936 if (alen == 0 || buflen < 4) 4937 return ("?"); 4938 bp = buf; 4939 for (;;) { 4940 /* 4941 * If there are more MAC address bytes available, but we won't 4942 * have any room to print them, then add "..." to the string 4943 * instead. See below for the 'magic number' explanation. 4944 */ 4945 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4946 (void) strcpy(bp, "..."); 4947 break; 4948 } 4949 (void) sprintf(bp, "%02x", *addr++); 4950 bp += 2; 4951 if (--alen == 0) 4952 break; 4953 *bp++ = ':'; 4954 buflen -= 3; 4955 /* 4956 * At this point, based on the first 'if' statement above, 4957 * either alen == 1 and buflen >= 3, or alen > 1 and 4958 * buflen >= 4. The first case leaves room for the final "xx" 4959 * number and trailing NUL byte. The second leaves room for at 4960 * least "...". Thus the apparently 'magic' numbers chosen for 4961 * that statement. 4962 */ 4963 } 4964 return (buf); 4965 } 4966 4967 /* 4968 * Called when it is conceptually a ULP that would sent the packet 4969 * e.g., port unreachable and protocol unreachable. Check that the packet 4970 * would have passed the IPsec global policy before sending the error. 4971 * 4972 * Send an ICMP error after patching up the packet appropriately. 4973 * Uses ip_drop_input and bumps the appropriate MIB. 4974 */ 4975 void 4976 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4977 ip_recv_attr_t *ira) 4978 { 4979 ipha_t *ipha; 4980 boolean_t secure; 4981 ill_t *ill = ira->ira_ill; 4982 ip_stack_t *ipst = ill->ill_ipst; 4983 netstack_t *ns = ipst->ips_netstack; 4984 ipsec_stack_t *ipss = ns->netstack_ipsec; 4985 4986 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4987 4988 /* 4989 * We are generating an icmp error for some inbound packet. 4990 * Called from all ip_fanout_(udp, tcp, proto) functions. 4991 * Before we generate an error, check with global policy 4992 * to see whether this is allowed to enter the system. As 4993 * there is no "conn", we are checking with global policy. 4994 */ 4995 ipha = (ipha_t *)mp->b_rptr; 4996 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4997 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4998 if (mp == NULL) 4999 return; 5000 } 5001 5002 /* We never send errors for protocols that we do implement */ 5003 if (ira->ira_protocol == IPPROTO_ICMP || 5004 ira->ira_protocol == IPPROTO_IGMP) { 5005 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5006 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 5007 freemsg(mp); 5008 return; 5009 } 5010 /* 5011 * Have to correct checksum since 5012 * the packet might have been 5013 * fragmented and the reassembly code in ip_rput 5014 * does not restore the IP checksum. 5015 */ 5016 ipha->ipha_hdr_checksum = 0; 5017 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5018 5019 switch (icmp_type) { 5020 case ICMP_DEST_UNREACHABLE: 5021 switch (icmp_code) { 5022 case ICMP_PROTOCOL_UNREACHABLE: 5023 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 5024 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 5025 break; 5026 case ICMP_PORT_UNREACHABLE: 5027 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5028 ip_drop_input("ipIfStatsNoPorts", mp, ill); 5029 break; 5030 } 5031 5032 icmp_unreachable(mp, icmp_code, ira); 5033 break; 5034 default: 5035 #ifdef DEBUG 5036 panic("ip_fanout_send_icmp_v4: wrong type"); 5037 /*NOTREACHED*/ 5038 #else 5039 freemsg(mp); 5040 break; 5041 #endif 5042 } 5043 } 5044 5045 /* 5046 * Used to send an ICMP error message when a packet is received for 5047 * a protocol that is not supported. The mblk passed as argument 5048 * is consumed by this function. 5049 */ 5050 void 5051 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 5052 { 5053 ipha_t *ipha; 5054 5055 ipha = (ipha_t *)mp->b_rptr; 5056 if (ira->ira_flags & IRAF_IS_IPV4) { 5057 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 5058 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5059 ICMP_PROTOCOL_UNREACHABLE, ira); 5060 } else { 5061 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 5062 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 5063 ICMP6_PARAMPROB_NEXTHEADER, ira); 5064 } 5065 } 5066 5067 /* 5068 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 5069 * Handles IPv4 and IPv6. 5070 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5071 * Caller is responsible for dropping references to the conn. 5072 */ 5073 void 5074 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5075 ip_recv_attr_t *ira) 5076 { 5077 ill_t *ill = ira->ira_ill; 5078 ip_stack_t *ipst = ill->ill_ipst; 5079 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5080 boolean_t secure; 5081 uint_t protocol = ira->ira_protocol; 5082 iaflags_t iraflags = ira->ira_flags; 5083 queue_t *rq; 5084 5085 secure = iraflags & IRAF_IPSEC_SECURE; 5086 5087 rq = connp->conn_rq; 5088 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 5089 switch (protocol) { 5090 case IPPROTO_ICMPV6: 5091 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 5092 break; 5093 case IPPROTO_ICMP: 5094 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 5095 break; 5096 default: 5097 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 5098 break; 5099 } 5100 freemsg(mp); 5101 return; 5102 } 5103 5104 ASSERT(!(IPCL_IS_IPTUN(connp))); 5105 5106 if (((iraflags & IRAF_IS_IPV4) ? 5107 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5108 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5109 secure) { 5110 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5111 ip6h, ira); 5112 if (mp == NULL) { 5113 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5114 /* Note that mp is NULL */ 5115 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5116 return; 5117 } 5118 } 5119 5120 if (iraflags & IRAF_ICMP_ERROR) { 5121 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5122 } else { 5123 ill_t *rill = ira->ira_rill; 5124 5125 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5126 ira->ira_ill = ira->ira_rill = NULL; 5127 /* Send it upstream */ 5128 (connp->conn_recv)(connp, mp, NULL, ira); 5129 ira->ira_ill = ill; 5130 ira->ira_rill = rill; 5131 } 5132 } 5133 5134 /* 5135 * Handle protocols with which IP is less intimate. There 5136 * can be more than one stream bound to a particular 5137 * protocol. When this is the case, normally each one gets a copy 5138 * of any incoming packets. 5139 * 5140 * IPsec NOTE : 5141 * 5142 * Don't allow a secure packet going up a non-secure connection. 5143 * We don't allow this because 5144 * 5145 * 1) Reply might go out in clear which will be dropped at 5146 * the sending side. 5147 * 2) If the reply goes out in clear it will give the 5148 * adversary enough information for getting the key in 5149 * most of the cases. 5150 * 5151 * Moreover getting a secure packet when we expect clear 5152 * implies that SA's were added without checking for 5153 * policy on both ends. This should not happen once ISAKMP 5154 * is used to negotiate SAs as SAs will be added only after 5155 * verifying the policy. 5156 * 5157 * Zones notes: 5158 * Earlier in ip_input on a system with multiple shared-IP zones we 5159 * duplicate the multicast and broadcast packets and send them up 5160 * with each explicit zoneid that exists on that ill. 5161 * This means that here we can match the zoneid with SO_ALLZONES being special. 5162 */ 5163 void 5164 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5165 { 5166 mblk_t *mp1; 5167 ipaddr_t laddr; 5168 conn_t *connp, *first_connp, *next_connp; 5169 connf_t *connfp; 5170 ill_t *ill = ira->ira_ill; 5171 ip_stack_t *ipst = ill->ill_ipst; 5172 5173 laddr = ipha->ipha_dst; 5174 5175 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5176 mutex_enter(&connfp->connf_lock); 5177 connp = connfp->connf_head; 5178 for (connp = connfp->connf_head; connp != NULL; 5179 connp = connp->conn_next) { 5180 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5181 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5182 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5183 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5184 break; 5185 } 5186 } 5187 5188 if (connp == NULL) { 5189 /* 5190 * No one bound to these addresses. Is 5191 * there a client that wants all 5192 * unclaimed datagrams? 5193 */ 5194 mutex_exit(&connfp->connf_lock); 5195 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5196 ICMP_PROTOCOL_UNREACHABLE, ira); 5197 return; 5198 } 5199 5200 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5201 5202 CONN_INC_REF(connp); 5203 first_connp = connp; 5204 connp = connp->conn_next; 5205 5206 for (;;) { 5207 while (connp != NULL) { 5208 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5209 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5210 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5211 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5212 ira, connp))) 5213 break; 5214 connp = connp->conn_next; 5215 } 5216 5217 if (connp == NULL) { 5218 /* No more interested clients */ 5219 connp = first_connp; 5220 break; 5221 } 5222 if (((mp1 = dupmsg(mp)) == NULL) && 5223 ((mp1 = copymsg(mp)) == NULL)) { 5224 /* Memory allocation failed */ 5225 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5226 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5227 connp = first_connp; 5228 break; 5229 } 5230 5231 CONN_INC_REF(connp); 5232 mutex_exit(&connfp->connf_lock); 5233 5234 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5235 ira); 5236 5237 mutex_enter(&connfp->connf_lock); 5238 /* Follow the next pointer before releasing the conn. */ 5239 next_connp = connp->conn_next; 5240 CONN_DEC_REF(connp); 5241 connp = next_connp; 5242 } 5243 5244 /* Last one. Send it upstream. */ 5245 mutex_exit(&connfp->connf_lock); 5246 5247 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5248 5249 CONN_DEC_REF(connp); 5250 } 5251 5252 /* 5253 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5254 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5255 * is not consumed. 5256 * 5257 * One of three things can happen, all of which affect the passed-in mblk: 5258 * 5259 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5260 * 5261 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5262 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5263 * 5264 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5265 */ 5266 mblk_t * 5267 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5268 { 5269 int shift, plen, iph_len; 5270 ipha_t *ipha; 5271 udpha_t *udpha; 5272 uint32_t *spi; 5273 uint32_t esp_ports; 5274 uint8_t *orptr; 5275 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5276 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5277 5278 ipha = (ipha_t *)mp->b_rptr; 5279 iph_len = ira->ira_ip_hdr_length; 5280 plen = ira->ira_pktlen; 5281 5282 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5283 /* 5284 * Most likely a keepalive for the benefit of an intervening 5285 * NAT. These aren't for us, per se, so drop it. 5286 * 5287 * RFC 3947/8 doesn't say for sure what to do for 2-3 5288 * byte packets (keepalives are 1-byte), but we'll drop them 5289 * also. 5290 */ 5291 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5292 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5293 return (NULL); 5294 } 5295 5296 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5297 /* might as well pull it all up - it might be ESP. */ 5298 if (!pullupmsg(mp, -1)) { 5299 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5300 DROPPER(ipss, ipds_esp_nomem), 5301 &ipss->ipsec_dropper); 5302 return (NULL); 5303 } 5304 5305 ipha = (ipha_t *)mp->b_rptr; 5306 } 5307 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5308 if (*spi == 0) { 5309 /* UDP packet - remove 0-spi. */ 5310 shift = sizeof (uint32_t); 5311 } else { 5312 /* ESP-in-UDP packet - reduce to ESP. */ 5313 ipha->ipha_protocol = IPPROTO_ESP; 5314 shift = sizeof (udpha_t); 5315 } 5316 5317 /* Fix IP header */ 5318 ira->ira_pktlen = (plen - shift); 5319 ipha->ipha_length = htons(ira->ira_pktlen); 5320 ipha->ipha_hdr_checksum = 0; 5321 5322 orptr = mp->b_rptr; 5323 mp->b_rptr += shift; 5324 5325 udpha = (udpha_t *)(orptr + iph_len); 5326 if (*spi == 0) { 5327 ASSERT((uint8_t *)ipha == orptr); 5328 udpha->uha_length = htons(plen - shift - iph_len); 5329 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5330 esp_ports = 0; 5331 } else { 5332 esp_ports = *((uint32_t *)udpha); 5333 ASSERT(esp_ports != 0); 5334 } 5335 ovbcopy(orptr, orptr + shift, iph_len); 5336 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5337 ipha = (ipha_t *)(orptr + shift); 5338 5339 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5340 ira->ira_esp_udp_ports = esp_ports; 5341 ip_fanout_v4(mp, ipha, ira); 5342 return (NULL); 5343 } 5344 return (mp); 5345 } 5346 5347 /* 5348 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5349 * Handles IPv4 and IPv6. 5350 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5351 * Caller is responsible for dropping references to the conn. 5352 */ 5353 void 5354 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5355 ip_recv_attr_t *ira) 5356 { 5357 ill_t *ill = ira->ira_ill; 5358 ip_stack_t *ipst = ill->ill_ipst; 5359 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5360 boolean_t secure; 5361 iaflags_t iraflags = ira->ira_flags; 5362 5363 secure = iraflags & IRAF_IPSEC_SECURE; 5364 5365 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5366 !canputnext(connp->conn_rq)) { 5367 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5368 freemsg(mp); 5369 return; 5370 } 5371 5372 if (((iraflags & IRAF_IS_IPV4) ? 5373 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5374 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5375 secure) { 5376 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5377 ip6h, ira); 5378 if (mp == NULL) { 5379 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5380 /* Note that mp is NULL */ 5381 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5382 return; 5383 } 5384 } 5385 5386 /* 5387 * Since this code is not used for UDP unicast we don't need a NAT_T 5388 * check. Only ip_fanout_v4 has that check. 5389 */ 5390 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5391 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5392 } else { 5393 ill_t *rill = ira->ira_rill; 5394 5395 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5396 ira->ira_ill = ira->ira_rill = NULL; 5397 /* Send it upstream */ 5398 (connp->conn_recv)(connp, mp, NULL, ira); 5399 ira->ira_ill = ill; 5400 ira->ira_rill = rill; 5401 } 5402 } 5403 5404 /* 5405 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5406 * (Unicast fanout is handled in ip_input_v4.) 5407 * 5408 * If SO_REUSEADDR is set all multicast and broadcast packets 5409 * will be delivered to all conns bound to the same port. 5410 * 5411 * If there is at least one matching AF_INET receiver, then we will 5412 * ignore any AF_INET6 receivers. 5413 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5414 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5415 * packets. 5416 * 5417 * Zones notes: 5418 * Earlier in ip_input on a system with multiple shared-IP zones we 5419 * duplicate the multicast and broadcast packets and send them up 5420 * with each explicit zoneid that exists on that ill. 5421 * This means that here we can match the zoneid with SO_ALLZONES being special. 5422 */ 5423 void 5424 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5425 ip_recv_attr_t *ira) 5426 { 5427 ipaddr_t laddr; 5428 in6_addr_t v6faddr; 5429 conn_t *connp; 5430 connf_t *connfp; 5431 ipaddr_t faddr; 5432 ill_t *ill = ira->ira_ill; 5433 ip_stack_t *ipst = ill->ill_ipst; 5434 5435 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5436 5437 laddr = ipha->ipha_dst; 5438 faddr = ipha->ipha_src; 5439 5440 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5441 mutex_enter(&connfp->connf_lock); 5442 connp = connfp->connf_head; 5443 5444 /* 5445 * If SO_REUSEADDR has been set on the first we send the 5446 * packet to all clients that have joined the group and 5447 * match the port. 5448 */ 5449 while (connp != NULL) { 5450 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5451 conn_wantpacket(connp, ira, ipha) && 5452 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5453 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5454 break; 5455 connp = connp->conn_next; 5456 } 5457 5458 if (connp == NULL) 5459 goto notfound; 5460 5461 CONN_INC_REF(connp); 5462 5463 if (connp->conn_reuseaddr) { 5464 conn_t *first_connp = connp; 5465 conn_t *next_connp; 5466 mblk_t *mp1; 5467 5468 connp = connp->conn_next; 5469 for (;;) { 5470 while (connp != NULL) { 5471 if (IPCL_UDP_MATCH(connp, lport, laddr, 5472 fport, faddr) && 5473 conn_wantpacket(connp, ira, ipha) && 5474 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5475 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5476 ira, connp))) 5477 break; 5478 connp = connp->conn_next; 5479 } 5480 if (connp == NULL) { 5481 /* No more interested clients */ 5482 connp = first_connp; 5483 break; 5484 } 5485 if (((mp1 = dupmsg(mp)) == NULL) && 5486 ((mp1 = copymsg(mp)) == NULL)) { 5487 /* Memory allocation failed */ 5488 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5489 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5490 connp = first_connp; 5491 break; 5492 } 5493 CONN_INC_REF(connp); 5494 mutex_exit(&connfp->connf_lock); 5495 5496 IP_STAT(ipst, ip_udp_fanmb); 5497 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5498 NULL, ira); 5499 mutex_enter(&connfp->connf_lock); 5500 /* Follow the next pointer before releasing the conn */ 5501 next_connp = connp->conn_next; 5502 CONN_DEC_REF(connp); 5503 connp = next_connp; 5504 } 5505 } 5506 5507 /* Last one. Send it upstream. */ 5508 mutex_exit(&connfp->connf_lock); 5509 IP_STAT(ipst, ip_udp_fanmb); 5510 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5511 CONN_DEC_REF(connp); 5512 return; 5513 5514 notfound: 5515 mutex_exit(&connfp->connf_lock); 5516 /* 5517 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5518 * have already been matched above, since they live in the IPv4 5519 * fanout tables. This implies we only need to 5520 * check for IPv6 in6addr_any endpoints here. 5521 * Thus we compare using ipv6_all_zeros instead of the destination 5522 * address, except for the multicast group membership lookup which 5523 * uses the IPv4 destination. 5524 */ 5525 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5526 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5527 mutex_enter(&connfp->connf_lock); 5528 connp = connfp->connf_head; 5529 /* 5530 * IPv4 multicast packet being delivered to an AF_INET6 5531 * in6addr_any endpoint. 5532 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5533 * and not conn_wantpacket_v6() since any multicast membership is 5534 * for an IPv4-mapped multicast address. 5535 */ 5536 while (connp != NULL) { 5537 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5538 fport, v6faddr) && 5539 conn_wantpacket(connp, ira, ipha) && 5540 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5541 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5542 break; 5543 connp = connp->conn_next; 5544 } 5545 5546 if (connp == NULL) { 5547 /* 5548 * No one bound to this port. Is 5549 * there a client that wants all 5550 * unclaimed datagrams? 5551 */ 5552 mutex_exit(&connfp->connf_lock); 5553 5554 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5555 NULL) { 5556 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5557 ip_fanout_proto_v4(mp, ipha, ira); 5558 } else { 5559 /* 5560 * We used to attempt to send an icmp error here, but 5561 * since this is known to be a multicast packet 5562 * and we don't send icmp errors in response to 5563 * multicast, just drop the packet and give up sooner. 5564 */ 5565 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5566 freemsg(mp); 5567 } 5568 return; 5569 } 5570 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5571 5572 /* 5573 * If SO_REUSEADDR has been set on the first we send the 5574 * packet to all clients that have joined the group and 5575 * match the port. 5576 */ 5577 if (connp->conn_reuseaddr) { 5578 conn_t *first_connp = connp; 5579 conn_t *next_connp; 5580 mblk_t *mp1; 5581 5582 CONN_INC_REF(connp); 5583 connp = connp->conn_next; 5584 for (;;) { 5585 while (connp != NULL) { 5586 if (IPCL_UDP_MATCH_V6(connp, lport, 5587 ipv6_all_zeros, fport, v6faddr) && 5588 conn_wantpacket(connp, ira, ipha) && 5589 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5590 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5591 ira, connp))) 5592 break; 5593 connp = connp->conn_next; 5594 } 5595 if (connp == NULL) { 5596 /* No more interested clients */ 5597 connp = first_connp; 5598 break; 5599 } 5600 if (((mp1 = dupmsg(mp)) == NULL) && 5601 ((mp1 = copymsg(mp)) == NULL)) { 5602 /* Memory allocation failed */ 5603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5604 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5605 connp = first_connp; 5606 break; 5607 } 5608 CONN_INC_REF(connp); 5609 mutex_exit(&connfp->connf_lock); 5610 5611 IP_STAT(ipst, ip_udp_fanmb); 5612 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5613 NULL, ira); 5614 mutex_enter(&connfp->connf_lock); 5615 /* Follow the next pointer before releasing the conn */ 5616 next_connp = connp->conn_next; 5617 CONN_DEC_REF(connp); 5618 connp = next_connp; 5619 } 5620 } 5621 5622 /* Last one. Send it upstream. */ 5623 mutex_exit(&connfp->connf_lock); 5624 IP_STAT(ipst, ip_udp_fanmb); 5625 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5626 CONN_DEC_REF(connp); 5627 } 5628 5629 /* 5630 * Split an incoming packet's IPv4 options into the label and the other options. 5631 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5632 * clearing out any leftover label or options. 5633 * Otherwise it just makes ipp point into the packet. 5634 * 5635 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5636 */ 5637 int 5638 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5639 { 5640 uchar_t *opt; 5641 uint32_t totallen; 5642 uint32_t optval; 5643 uint32_t optlen; 5644 5645 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5646 ipp->ipp_hoplimit = ipha->ipha_ttl; 5647 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5648 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5649 5650 /* 5651 * Get length (in 4 byte octets) of IP header options. 5652 */ 5653 totallen = ipha->ipha_version_and_hdr_length - 5654 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5655 5656 if (totallen == 0) { 5657 if (!allocate) 5658 return (0); 5659 5660 /* Clear out anything from a previous packet */ 5661 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5662 kmem_free(ipp->ipp_ipv4_options, 5663 ipp->ipp_ipv4_options_len); 5664 ipp->ipp_ipv4_options = NULL; 5665 ipp->ipp_ipv4_options_len = 0; 5666 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5667 } 5668 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5669 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5670 ipp->ipp_label_v4 = NULL; 5671 ipp->ipp_label_len_v4 = 0; 5672 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5673 } 5674 return (0); 5675 } 5676 5677 totallen <<= 2; 5678 opt = (uchar_t *)&ipha[1]; 5679 if (!is_system_labeled()) { 5680 5681 copyall: 5682 if (!allocate) { 5683 if (totallen != 0) { 5684 ipp->ipp_ipv4_options = opt; 5685 ipp->ipp_ipv4_options_len = totallen; 5686 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5687 } 5688 return (0); 5689 } 5690 /* Just copy all of options */ 5691 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5692 if (totallen == ipp->ipp_ipv4_options_len) { 5693 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5694 return (0); 5695 } 5696 kmem_free(ipp->ipp_ipv4_options, 5697 ipp->ipp_ipv4_options_len); 5698 ipp->ipp_ipv4_options = NULL; 5699 ipp->ipp_ipv4_options_len = 0; 5700 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5701 } 5702 if (totallen == 0) 5703 return (0); 5704 5705 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5706 if (ipp->ipp_ipv4_options == NULL) 5707 return (ENOMEM); 5708 ipp->ipp_ipv4_options_len = totallen; 5709 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5710 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5711 return (0); 5712 } 5713 5714 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5715 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5716 ipp->ipp_label_v4 = NULL; 5717 ipp->ipp_label_len_v4 = 0; 5718 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5719 } 5720 5721 /* 5722 * Search for CIPSO option. 5723 * We assume CIPSO is first in options if it is present. 5724 * If it isn't, then ipp_opt_ipv4_options will not include the options 5725 * prior to the CIPSO option. 5726 */ 5727 while (totallen != 0) { 5728 switch (optval = opt[IPOPT_OPTVAL]) { 5729 case IPOPT_EOL: 5730 return (0); 5731 case IPOPT_NOP: 5732 optlen = 1; 5733 break; 5734 default: 5735 if (totallen <= IPOPT_OLEN) 5736 return (EINVAL); 5737 optlen = opt[IPOPT_OLEN]; 5738 if (optlen < 2) 5739 return (EINVAL); 5740 } 5741 if (optlen > totallen) 5742 return (EINVAL); 5743 5744 switch (optval) { 5745 case IPOPT_COMSEC: 5746 if (!allocate) { 5747 ipp->ipp_label_v4 = opt; 5748 ipp->ipp_label_len_v4 = optlen; 5749 ipp->ipp_fields |= IPPF_LABEL_V4; 5750 } else { 5751 ipp->ipp_label_v4 = kmem_alloc(optlen, 5752 KM_NOSLEEP); 5753 if (ipp->ipp_label_v4 == NULL) 5754 return (ENOMEM); 5755 ipp->ipp_label_len_v4 = optlen; 5756 ipp->ipp_fields |= IPPF_LABEL_V4; 5757 bcopy(opt, ipp->ipp_label_v4, optlen); 5758 } 5759 totallen -= optlen; 5760 opt += optlen; 5761 5762 /* Skip padding bytes until we get to a multiple of 4 */ 5763 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5764 totallen--; 5765 opt++; 5766 } 5767 /* Remaining as ipp_ipv4_options */ 5768 goto copyall; 5769 } 5770 totallen -= optlen; 5771 opt += optlen; 5772 } 5773 /* No CIPSO found; return everything as ipp_ipv4_options */ 5774 totallen = ipha->ipha_version_and_hdr_length - 5775 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5776 totallen <<= 2; 5777 opt = (uchar_t *)&ipha[1]; 5778 goto copyall; 5779 } 5780 5781 /* 5782 * Efficient versions of lookup for an IRE when we only 5783 * match the address. 5784 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5785 * Does not handle multicast addresses. 5786 */ 5787 uint_t 5788 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5789 { 5790 ire_t *ire; 5791 uint_t result; 5792 5793 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5794 ASSERT(ire != NULL); 5795 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5796 result = IRE_NOROUTE; 5797 else 5798 result = ire->ire_type; 5799 ire_refrele(ire); 5800 return (result); 5801 } 5802 5803 /* 5804 * Efficient versions of lookup for an IRE when we only 5805 * match the address. 5806 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5807 * Does not handle multicast addresses. 5808 */ 5809 uint_t 5810 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5811 { 5812 ire_t *ire; 5813 uint_t result; 5814 5815 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5816 ASSERT(ire != NULL); 5817 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5818 result = IRE_NOROUTE; 5819 else 5820 result = ire->ire_type; 5821 ire_refrele(ire); 5822 return (result); 5823 } 5824 5825 /* 5826 * Nobody should be sending 5827 * packets up this stream 5828 */ 5829 static void 5830 ip_lrput(queue_t *q, mblk_t *mp) 5831 { 5832 switch (mp->b_datap->db_type) { 5833 case M_FLUSH: 5834 /* Turn around */ 5835 if (*mp->b_rptr & FLUSHW) { 5836 *mp->b_rptr &= ~FLUSHR; 5837 qreply(q, mp); 5838 return; 5839 } 5840 break; 5841 } 5842 freemsg(mp); 5843 } 5844 5845 /* Nobody should be sending packets down this stream */ 5846 /* ARGSUSED */ 5847 void 5848 ip_lwput(queue_t *q, mblk_t *mp) 5849 { 5850 freemsg(mp); 5851 } 5852 5853 /* 5854 * Move the first hop in any source route to ipha_dst and remove that part of 5855 * the source route. Called by other protocols. Errors in option formatting 5856 * are ignored - will be handled by ip_output_options. Return the final 5857 * destination (either ipha_dst or the last entry in a source route.) 5858 */ 5859 ipaddr_t 5860 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5861 { 5862 ipoptp_t opts; 5863 uchar_t *opt; 5864 uint8_t optval; 5865 uint8_t optlen; 5866 ipaddr_t dst; 5867 int i; 5868 ip_stack_t *ipst = ns->netstack_ip; 5869 5870 ip2dbg(("ip_massage_options\n")); 5871 dst = ipha->ipha_dst; 5872 for (optval = ipoptp_first(&opts, ipha); 5873 optval != IPOPT_EOL; 5874 optval = ipoptp_next(&opts)) { 5875 opt = opts.ipoptp_cur; 5876 switch (optval) { 5877 uint8_t off; 5878 case IPOPT_SSRR: 5879 case IPOPT_LSRR: 5880 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5881 ip1dbg(("ip_massage_options: bad src route\n")); 5882 break; 5883 } 5884 optlen = opts.ipoptp_len; 5885 off = opt[IPOPT_OFFSET]; 5886 off--; 5887 redo_srr: 5888 if (optlen < IP_ADDR_LEN || 5889 off > optlen - IP_ADDR_LEN) { 5890 /* End of source route */ 5891 ip1dbg(("ip_massage_options: end of SR\n")); 5892 break; 5893 } 5894 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5895 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5896 ntohl(dst))); 5897 /* 5898 * Check if our address is present more than 5899 * once as consecutive hops in source route. 5900 * XXX verify per-interface ip_forwarding 5901 * for source route? 5902 */ 5903 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5904 off += IP_ADDR_LEN; 5905 goto redo_srr; 5906 } 5907 if (dst == htonl(INADDR_LOOPBACK)) { 5908 ip1dbg(("ip_massage_options: loopback addr in " 5909 "source route!\n")); 5910 break; 5911 } 5912 /* 5913 * Update ipha_dst to be the first hop and remove the 5914 * first hop from the source route (by overwriting 5915 * part of the option with NOP options). 5916 */ 5917 ipha->ipha_dst = dst; 5918 /* Put the last entry in dst */ 5919 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5920 3; 5921 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5922 5923 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5924 ntohl(dst))); 5925 /* Move down and overwrite */ 5926 opt[IP_ADDR_LEN] = opt[0]; 5927 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5928 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5929 for (i = 0; i < IP_ADDR_LEN; i++) 5930 opt[i] = IPOPT_NOP; 5931 break; 5932 } 5933 } 5934 return (dst); 5935 } 5936 5937 /* 5938 * Return the network mask 5939 * associated with the specified address. 5940 */ 5941 ipaddr_t 5942 ip_net_mask(ipaddr_t addr) 5943 { 5944 uchar_t *up = (uchar_t *)&addr; 5945 ipaddr_t mask = 0; 5946 uchar_t *maskp = (uchar_t *)&mask; 5947 5948 #if defined(__i386) || defined(__amd64) 5949 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5950 #endif 5951 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5952 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5953 #endif 5954 if (CLASSD(addr)) { 5955 maskp[0] = 0xF0; 5956 return (mask); 5957 } 5958 5959 /* We assume Class E default netmask to be 32 */ 5960 if (CLASSE(addr)) 5961 return (0xffffffffU); 5962 5963 if (addr == 0) 5964 return (0); 5965 maskp[0] = 0xFF; 5966 if ((up[0] & 0x80) == 0) 5967 return (mask); 5968 5969 maskp[1] = 0xFF; 5970 if ((up[0] & 0xC0) == 0x80) 5971 return (mask); 5972 5973 maskp[2] = 0xFF; 5974 if ((up[0] & 0xE0) == 0xC0) 5975 return (mask); 5976 5977 /* Otherwise return no mask */ 5978 return ((ipaddr_t)0); 5979 } 5980 5981 /* Name/Value Table Lookup Routine */ 5982 char * 5983 ip_nv_lookup(nv_t *nv, int value) 5984 { 5985 if (!nv) 5986 return (NULL); 5987 for (; nv->nv_name; nv++) { 5988 if (nv->nv_value == value) 5989 return (nv->nv_name); 5990 } 5991 return ("unknown"); 5992 } 5993 5994 static int 5995 ip_wait_for_info_ack(ill_t *ill) 5996 { 5997 int err; 5998 5999 mutex_enter(&ill->ill_lock); 6000 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 6001 /* 6002 * Return value of 0 indicates a pending signal. 6003 */ 6004 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 6005 if (err == 0) { 6006 mutex_exit(&ill->ill_lock); 6007 return (EINTR); 6008 } 6009 } 6010 mutex_exit(&ill->ill_lock); 6011 /* 6012 * ip_rput_other could have set an error in ill_error on 6013 * receipt of M_ERROR. 6014 */ 6015 return (ill->ill_error); 6016 } 6017 6018 /* 6019 * This is a module open, i.e. this is a control stream for access 6020 * to a DLPI device. We allocate an ill_t as the instance data in 6021 * this case. 6022 */ 6023 static int 6024 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 6025 { 6026 ill_t *ill; 6027 int err; 6028 zoneid_t zoneid; 6029 netstack_t *ns; 6030 ip_stack_t *ipst; 6031 6032 /* 6033 * Prevent unprivileged processes from pushing IP so that 6034 * they can't send raw IP. 6035 */ 6036 if (secpolicy_net_rawaccess(credp) != 0) 6037 return (EPERM); 6038 6039 ns = netstack_find_by_cred(credp); 6040 ASSERT(ns != NULL); 6041 ipst = ns->netstack_ip; 6042 ASSERT(ipst != NULL); 6043 6044 /* 6045 * For exclusive stacks we set the zoneid to zero 6046 * to make IP operate as if in the global zone. 6047 */ 6048 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6049 zoneid = GLOBAL_ZONEID; 6050 else 6051 zoneid = crgetzoneid(credp); 6052 6053 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 6054 q->q_ptr = WR(q)->q_ptr = ill; 6055 ill->ill_ipst = ipst; 6056 ill->ill_zoneid = zoneid; 6057 6058 /* 6059 * ill_init initializes the ill fields and then sends down 6060 * down a DL_INFO_REQ after calling qprocson. 6061 */ 6062 err = ill_init(q, ill); 6063 6064 if (err != 0) { 6065 mi_free(ill); 6066 netstack_rele(ipst->ips_netstack); 6067 q->q_ptr = NULL; 6068 WR(q)->q_ptr = NULL; 6069 return (err); 6070 } 6071 6072 /* 6073 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 6074 * 6075 * ill_init initializes the ipsq marking this thread as 6076 * writer 6077 */ 6078 ipsq_exit(ill->ill_phyint->phyint_ipsq); 6079 err = ip_wait_for_info_ack(ill); 6080 if (err == 0) 6081 ill->ill_credp = credp; 6082 else 6083 goto fail; 6084 6085 crhold(credp); 6086 6087 mutex_enter(&ipst->ips_ip_mi_lock); 6088 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 6089 sflag, credp); 6090 mutex_exit(&ipst->ips_ip_mi_lock); 6091 fail: 6092 if (err) { 6093 (void) ip_close(q, 0); 6094 return (err); 6095 } 6096 return (0); 6097 } 6098 6099 /* For /dev/ip aka AF_INET open */ 6100 int 6101 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 6102 { 6103 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 6104 } 6105 6106 /* For /dev/ip6 aka AF_INET6 open */ 6107 int 6108 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 6109 { 6110 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 6111 } 6112 6113 /* IP open routine. */ 6114 int 6115 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 6116 boolean_t isv6) 6117 { 6118 conn_t *connp; 6119 major_t maj; 6120 zoneid_t zoneid; 6121 netstack_t *ns; 6122 ip_stack_t *ipst; 6123 6124 /* Allow reopen. */ 6125 if (q->q_ptr != NULL) 6126 return (0); 6127 6128 if (sflag & MODOPEN) { 6129 /* This is a module open */ 6130 return (ip_modopen(q, devp, flag, sflag, credp)); 6131 } 6132 6133 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 6134 /* 6135 * Non streams based socket looking for a stream 6136 * to access IP 6137 */ 6138 return (ip_helper_stream_setup(q, devp, flag, sflag, 6139 credp, isv6)); 6140 } 6141 6142 ns = netstack_find_by_cred(credp); 6143 ASSERT(ns != NULL); 6144 ipst = ns->netstack_ip; 6145 ASSERT(ipst != NULL); 6146 6147 /* 6148 * For exclusive stacks we set the zoneid to zero 6149 * to make IP operate as if in the global zone. 6150 */ 6151 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6152 zoneid = GLOBAL_ZONEID; 6153 else 6154 zoneid = crgetzoneid(credp); 6155 6156 /* 6157 * We are opening as a device. This is an IP client stream, and we 6158 * allocate an conn_t as the instance data. 6159 */ 6160 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6161 6162 /* 6163 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6164 * done by netstack_find_by_cred() 6165 */ 6166 netstack_rele(ipst->ips_netstack); 6167 6168 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6169 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6170 connp->conn_ixa->ixa_zoneid = zoneid; 6171 connp->conn_zoneid = zoneid; 6172 6173 connp->conn_rq = q; 6174 q->q_ptr = WR(q)->q_ptr = connp; 6175 6176 /* Minor tells us which /dev entry was opened */ 6177 if (isv6) { 6178 connp->conn_family = AF_INET6; 6179 connp->conn_ipversion = IPV6_VERSION; 6180 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6181 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6182 } else { 6183 connp->conn_family = AF_INET; 6184 connp->conn_ipversion = IPV4_VERSION; 6185 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6186 } 6187 6188 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6189 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6190 connp->conn_minor_arena = ip_minor_arena_la; 6191 } else { 6192 /* 6193 * Either minor numbers in the large arena were exhausted 6194 * or a non socket application is doing the open. 6195 * Try to allocate from the small arena. 6196 */ 6197 if ((connp->conn_dev = 6198 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6199 /* CONN_DEC_REF takes care of netstack_rele() */ 6200 q->q_ptr = WR(q)->q_ptr = NULL; 6201 CONN_DEC_REF(connp); 6202 return (EBUSY); 6203 } 6204 connp->conn_minor_arena = ip_minor_arena_sa; 6205 } 6206 6207 maj = getemajor(*devp); 6208 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6209 6210 /* 6211 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6212 */ 6213 connp->conn_cred = credp; 6214 connp->conn_cpid = curproc->p_pid; 6215 /* Cache things in ixa without an extra refhold */ 6216 connp->conn_ixa->ixa_cred = connp->conn_cred; 6217 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6218 if (is_system_labeled()) 6219 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6220 6221 /* 6222 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6223 */ 6224 connp->conn_recv = ip_conn_input; 6225 connp->conn_recvicmp = ip_conn_input_icmp; 6226 6227 crhold(connp->conn_cred); 6228 6229 /* 6230 * If the caller has the process-wide flag set, then default to MAC 6231 * exempt mode. This allows read-down to unlabeled hosts. 6232 */ 6233 if (getpflags(NET_MAC_AWARE, credp) != 0) 6234 connp->conn_mac_mode = CONN_MAC_AWARE; 6235 6236 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6237 6238 connp->conn_rq = q; 6239 connp->conn_wq = WR(q); 6240 6241 /* Non-zero default values */ 6242 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6243 6244 /* 6245 * Make the conn globally visible to walkers 6246 */ 6247 ASSERT(connp->conn_ref == 1); 6248 mutex_enter(&connp->conn_lock); 6249 connp->conn_state_flags &= ~CONN_INCIPIENT; 6250 mutex_exit(&connp->conn_lock); 6251 6252 qprocson(q); 6253 6254 return (0); 6255 } 6256 6257 /* 6258 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6259 * all of them are copied to the conn_t. If the req is "zero", the policy is 6260 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6261 * fields. 6262 * We keep only the latest setting of the policy and thus policy setting 6263 * is not incremental/cumulative. 6264 * 6265 * Requests to set policies with multiple alternative actions will 6266 * go through a different API. 6267 */ 6268 int 6269 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6270 { 6271 uint_t ah_req = 0; 6272 uint_t esp_req = 0; 6273 uint_t se_req = 0; 6274 ipsec_act_t *actp = NULL; 6275 uint_t nact; 6276 ipsec_policy_head_t *ph; 6277 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6278 int error = 0; 6279 netstack_t *ns = connp->conn_netstack; 6280 ip_stack_t *ipst = ns->netstack_ip; 6281 ipsec_stack_t *ipss = ns->netstack_ipsec; 6282 6283 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6284 6285 /* 6286 * The IP_SEC_OPT option does not allow variable length parameters, 6287 * hence a request cannot be NULL. 6288 */ 6289 if (req == NULL) 6290 return (EINVAL); 6291 6292 ah_req = req->ipsr_ah_req; 6293 esp_req = req->ipsr_esp_req; 6294 se_req = req->ipsr_self_encap_req; 6295 6296 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6297 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6298 return (EINVAL); 6299 6300 /* 6301 * Are we dealing with a request to reset the policy (i.e. 6302 * zero requests). 6303 */ 6304 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6305 (esp_req & REQ_MASK) == 0 && 6306 (se_req & REQ_MASK) == 0); 6307 6308 if (!is_pol_reset) { 6309 /* 6310 * If we couldn't load IPsec, fail with "protocol 6311 * not supported". 6312 * IPsec may not have been loaded for a request with zero 6313 * policies, so we don't fail in this case. 6314 */ 6315 mutex_enter(&ipss->ipsec_loader_lock); 6316 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6317 mutex_exit(&ipss->ipsec_loader_lock); 6318 return (EPROTONOSUPPORT); 6319 } 6320 mutex_exit(&ipss->ipsec_loader_lock); 6321 6322 /* 6323 * Test for valid requests. Invalid algorithms 6324 * need to be tested by IPsec code because new 6325 * algorithms can be added dynamically. 6326 */ 6327 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6328 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6329 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6330 return (EINVAL); 6331 } 6332 6333 /* 6334 * Only privileged users can issue these 6335 * requests. 6336 */ 6337 if (((ah_req & IPSEC_PREF_NEVER) || 6338 (esp_req & IPSEC_PREF_NEVER) || 6339 (se_req & IPSEC_PREF_NEVER)) && 6340 secpolicy_ip_config(cr, B_FALSE) != 0) { 6341 return (EPERM); 6342 } 6343 6344 /* 6345 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6346 * are mutually exclusive. 6347 */ 6348 if (((ah_req & REQ_MASK) == REQ_MASK) || 6349 ((esp_req & REQ_MASK) == REQ_MASK) || 6350 ((se_req & REQ_MASK) == REQ_MASK)) { 6351 /* Both of them are set */ 6352 return (EINVAL); 6353 } 6354 } 6355 6356 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6357 6358 /* 6359 * If we have already cached policies in conn_connect(), don't 6360 * let them change now. We cache policies for connections 6361 * whose src,dst [addr, port] is known. 6362 */ 6363 if (connp->conn_policy_cached) { 6364 return (EINVAL); 6365 } 6366 6367 /* 6368 * We have a zero policies, reset the connection policy if already 6369 * set. This will cause the connection to inherit the 6370 * global policy, if any. 6371 */ 6372 if (is_pol_reset) { 6373 if (connp->conn_policy != NULL) { 6374 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6375 connp->conn_policy = NULL; 6376 } 6377 connp->conn_in_enforce_policy = B_FALSE; 6378 connp->conn_out_enforce_policy = B_FALSE; 6379 return (0); 6380 } 6381 6382 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6383 ipst->ips_netstack); 6384 if (ph == NULL) 6385 goto enomem; 6386 6387 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6388 if (actp == NULL) 6389 goto enomem; 6390 6391 /* 6392 * Always insert IPv4 policy entries, since they can also apply to 6393 * ipv6 sockets being used in ipv4-compat mode. 6394 */ 6395 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6396 IPSEC_TYPE_INBOUND, ns)) 6397 goto enomem; 6398 is_pol_inserted = B_TRUE; 6399 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6400 IPSEC_TYPE_OUTBOUND, ns)) 6401 goto enomem; 6402 6403 /* 6404 * We're looking at a v6 socket, also insert the v6-specific 6405 * entries. 6406 */ 6407 if (connp->conn_family == AF_INET6) { 6408 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6409 IPSEC_TYPE_INBOUND, ns)) 6410 goto enomem; 6411 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6412 IPSEC_TYPE_OUTBOUND, ns)) 6413 goto enomem; 6414 } 6415 6416 ipsec_actvec_free(actp, nact); 6417 6418 /* 6419 * If the requests need security, set enforce_policy. 6420 * If the requests are IPSEC_PREF_NEVER, one should 6421 * still set conn_out_enforce_policy so that ip_set_destination 6422 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6423 * for connections that we don't cache policy in at connect time, 6424 * if global policy matches in ip_output_attach_policy, we 6425 * don't wrongly inherit global policy. Similarly, we need 6426 * to set conn_in_enforce_policy also so that we don't verify 6427 * policy wrongly. 6428 */ 6429 if ((ah_req & REQ_MASK) != 0 || 6430 (esp_req & REQ_MASK) != 0 || 6431 (se_req & REQ_MASK) != 0) { 6432 connp->conn_in_enforce_policy = B_TRUE; 6433 connp->conn_out_enforce_policy = B_TRUE; 6434 } 6435 6436 return (error); 6437 #undef REQ_MASK 6438 6439 /* 6440 * Common memory-allocation-failure exit path. 6441 */ 6442 enomem: 6443 if (actp != NULL) 6444 ipsec_actvec_free(actp, nact); 6445 if (is_pol_inserted) 6446 ipsec_polhead_flush(ph, ns); 6447 return (ENOMEM); 6448 } 6449 6450 /* 6451 * Set socket options for joining and leaving multicast groups. 6452 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6453 * The caller has already check that the option name is consistent with 6454 * the address family of the socket. 6455 */ 6456 int 6457 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6458 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6459 { 6460 int *i1 = (int *)invalp; 6461 int error = 0; 6462 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6463 struct ip_mreq *v4_mreqp; 6464 struct ipv6_mreq *v6_mreqp; 6465 struct group_req *greqp; 6466 ire_t *ire; 6467 boolean_t done = B_FALSE; 6468 ipaddr_t ifaddr; 6469 in6_addr_t v6group; 6470 uint_t ifindex; 6471 boolean_t mcast_opt = B_TRUE; 6472 mcast_record_t fmode; 6473 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6474 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6475 6476 switch (name) { 6477 case IP_ADD_MEMBERSHIP: 6478 case IPV6_JOIN_GROUP: 6479 mcast_opt = B_FALSE; 6480 /* FALLTHRU */ 6481 case MCAST_JOIN_GROUP: 6482 fmode = MODE_IS_EXCLUDE; 6483 optfn = ip_opt_add_group; 6484 break; 6485 6486 case IP_DROP_MEMBERSHIP: 6487 case IPV6_LEAVE_GROUP: 6488 mcast_opt = B_FALSE; 6489 /* FALLTHRU */ 6490 case MCAST_LEAVE_GROUP: 6491 fmode = MODE_IS_INCLUDE; 6492 optfn = ip_opt_delete_group; 6493 break; 6494 default: 6495 ASSERT(0); 6496 } 6497 6498 if (mcast_opt) { 6499 struct sockaddr_in *sin; 6500 struct sockaddr_in6 *sin6; 6501 6502 greqp = (struct group_req *)i1; 6503 if (greqp->gr_group.ss_family == AF_INET) { 6504 sin = (struct sockaddr_in *)&(greqp->gr_group); 6505 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6506 } else { 6507 if (!inet6) 6508 return (EINVAL); /* Not on INET socket */ 6509 6510 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6511 v6group = sin6->sin6_addr; 6512 } 6513 ifaddr = INADDR_ANY; 6514 ifindex = greqp->gr_interface; 6515 } else if (inet6) { 6516 v6_mreqp = (struct ipv6_mreq *)i1; 6517 v6group = v6_mreqp->ipv6mr_multiaddr; 6518 ifaddr = INADDR_ANY; 6519 ifindex = v6_mreqp->ipv6mr_interface; 6520 } else { 6521 v4_mreqp = (struct ip_mreq *)i1; 6522 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6523 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6524 ifindex = 0; 6525 } 6526 6527 /* 6528 * In the multirouting case, we need to replicate 6529 * the request on all interfaces that will take part 6530 * in replication. We do so because multirouting is 6531 * reflective, thus we will probably receive multi- 6532 * casts on those interfaces. 6533 * The ip_multirt_apply_membership() succeeds if 6534 * the operation succeeds on at least one interface. 6535 */ 6536 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6537 ipaddr_t group; 6538 6539 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6540 6541 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6542 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6543 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6544 } else { 6545 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6546 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6547 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6548 } 6549 if (ire != NULL) { 6550 if (ire->ire_flags & RTF_MULTIRT) { 6551 error = ip_multirt_apply_membership(optfn, ire, connp, 6552 checkonly, &v6group, fmode, &ipv6_all_zeros); 6553 done = B_TRUE; 6554 } 6555 ire_refrele(ire); 6556 } 6557 6558 if (!done) { 6559 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6560 fmode, &ipv6_all_zeros); 6561 } 6562 return (error); 6563 } 6564 6565 /* 6566 * Set socket options for joining and leaving multicast groups 6567 * for specific sources. 6568 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6569 * The caller has already check that the option name is consistent with 6570 * the address family of the socket. 6571 */ 6572 int 6573 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6574 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6575 { 6576 int *i1 = (int *)invalp; 6577 int error = 0; 6578 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6579 struct ip_mreq_source *imreqp; 6580 struct group_source_req *gsreqp; 6581 in6_addr_t v6group, v6src; 6582 uint32_t ifindex; 6583 ipaddr_t ifaddr; 6584 boolean_t mcast_opt = B_TRUE; 6585 mcast_record_t fmode; 6586 ire_t *ire; 6587 boolean_t done = B_FALSE; 6588 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6589 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6590 6591 switch (name) { 6592 case IP_BLOCK_SOURCE: 6593 mcast_opt = B_FALSE; 6594 /* FALLTHRU */ 6595 case MCAST_BLOCK_SOURCE: 6596 fmode = MODE_IS_EXCLUDE; 6597 optfn = ip_opt_add_group; 6598 break; 6599 6600 case IP_UNBLOCK_SOURCE: 6601 mcast_opt = B_FALSE; 6602 /* FALLTHRU */ 6603 case MCAST_UNBLOCK_SOURCE: 6604 fmode = MODE_IS_EXCLUDE; 6605 optfn = ip_opt_delete_group; 6606 break; 6607 6608 case IP_ADD_SOURCE_MEMBERSHIP: 6609 mcast_opt = B_FALSE; 6610 /* FALLTHRU */ 6611 case MCAST_JOIN_SOURCE_GROUP: 6612 fmode = MODE_IS_INCLUDE; 6613 optfn = ip_opt_add_group; 6614 break; 6615 6616 case IP_DROP_SOURCE_MEMBERSHIP: 6617 mcast_opt = B_FALSE; 6618 /* FALLTHRU */ 6619 case MCAST_LEAVE_SOURCE_GROUP: 6620 fmode = MODE_IS_INCLUDE; 6621 optfn = ip_opt_delete_group; 6622 break; 6623 default: 6624 ASSERT(0); 6625 } 6626 6627 if (mcast_opt) { 6628 gsreqp = (struct group_source_req *)i1; 6629 ifindex = gsreqp->gsr_interface; 6630 if (gsreqp->gsr_group.ss_family == AF_INET) { 6631 struct sockaddr_in *s; 6632 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6633 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6634 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6635 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6636 } else { 6637 struct sockaddr_in6 *s6; 6638 6639 if (!inet6) 6640 return (EINVAL); /* Not on INET socket */ 6641 6642 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6643 v6group = s6->sin6_addr; 6644 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6645 v6src = s6->sin6_addr; 6646 } 6647 ifaddr = INADDR_ANY; 6648 } else { 6649 imreqp = (struct ip_mreq_source *)i1; 6650 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6651 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6652 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6653 ifindex = 0; 6654 } 6655 6656 /* 6657 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6658 */ 6659 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6660 v6src = ipv6_all_zeros; 6661 6662 /* 6663 * In the multirouting case, we need to replicate 6664 * the request as noted in the mcast cases above. 6665 */ 6666 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6667 ipaddr_t group; 6668 6669 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6670 6671 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6672 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6673 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6674 } else { 6675 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6676 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6677 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6678 } 6679 if (ire != NULL) { 6680 if (ire->ire_flags & RTF_MULTIRT) { 6681 error = ip_multirt_apply_membership(optfn, ire, connp, 6682 checkonly, &v6group, fmode, &v6src); 6683 done = B_TRUE; 6684 } 6685 ire_refrele(ire); 6686 } 6687 if (!done) { 6688 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6689 fmode, &v6src); 6690 } 6691 return (error); 6692 } 6693 6694 /* 6695 * Given a destination address and a pointer to where to put the information 6696 * this routine fills in the mtuinfo. 6697 * The socket must be connected. 6698 * For sctp conn_faddr is the primary address. 6699 */ 6700 int 6701 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6702 { 6703 uint32_t pmtu = IP_MAXPACKET; 6704 uint_t scopeid; 6705 6706 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6707 return (-1); 6708 6709 /* In case we never sent or called ip_set_destination_v4/v6 */ 6710 if (ixa->ixa_ire != NULL) 6711 pmtu = ip_get_pmtu(ixa); 6712 6713 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6714 scopeid = ixa->ixa_scopeid; 6715 else 6716 scopeid = 0; 6717 6718 bzero(mtuinfo, sizeof (*mtuinfo)); 6719 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6720 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6721 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6722 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6723 mtuinfo->ip6m_mtu = pmtu; 6724 6725 return (sizeof (struct ip6_mtuinfo)); 6726 } 6727 6728 /* Named Dispatch routine to get a current value out of our parameter table. */ 6729 /* ARGSUSED */ 6730 static int 6731 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 6732 { 6733 ipparam_t *ippa = (ipparam_t *)cp; 6734 6735 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 6736 return (0); 6737 } 6738 6739 /* ARGSUSED */ 6740 static int 6741 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 6742 { 6743 6744 (void) mi_mpprintf(mp, "%d", *(int *)cp); 6745 return (0); 6746 } 6747 6748 /* 6749 * Set ip{,6}_forwarding values. This means walking through all of the 6750 * ill's and toggling their forwarding values. 6751 */ 6752 /* ARGSUSED */ 6753 static int 6754 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 6755 { 6756 long new_value; 6757 int *forwarding_value = (int *)cp; 6758 ill_t *ill; 6759 boolean_t isv6; 6760 ill_walk_context_t ctx; 6761 ip_stack_t *ipst = CONNQ_TO_IPST(q); 6762 6763 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 6764 6765 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6766 new_value < 0 || new_value > 1) { 6767 return (EINVAL); 6768 } 6769 6770 *forwarding_value = new_value; 6771 6772 /* 6773 * Regardless of the current value of ip_forwarding, set all per-ill 6774 * values of ip_forwarding to the value being set. 6775 * 6776 * Bring all the ill's up to date with the new global value. 6777 */ 6778 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6779 6780 if (isv6) 6781 ill = ILL_START_WALK_V6(&ctx, ipst); 6782 else 6783 ill = ILL_START_WALK_V4(&ctx, ipst); 6784 6785 for (; ill != NULL; ill = ill_next(&ctx, ill)) 6786 (void) ill_forward_set(ill, new_value != 0); 6787 6788 rw_exit(&ipst->ips_ill_g_lock); 6789 return (0); 6790 } 6791 6792 /* 6793 * Walk through the param array specified registering each element with the 6794 * Named Dispatch handler. This is called only during init. So it is ok 6795 * not to acquire any locks 6796 */ 6797 static boolean_t 6798 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 6799 ipndp_t *ipnd, size_t ipnd_cnt) 6800 { 6801 for (; ippa_cnt-- > 0; ippa++) { 6802 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 6803 if (!nd_load(ndp, ippa->ip_param_name, 6804 ip_param_get, ip_param_set, (caddr_t)ippa)) { 6805 nd_free(ndp); 6806 return (B_FALSE); 6807 } 6808 } 6809 } 6810 6811 for (; ipnd_cnt-- > 0; ipnd++) { 6812 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 6813 if (!nd_load(ndp, ipnd->ip_ndp_name, 6814 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 6815 ipnd->ip_ndp_data)) { 6816 nd_free(ndp); 6817 return (B_FALSE); 6818 } 6819 } 6820 } 6821 6822 return (B_TRUE); 6823 } 6824 6825 /* 6826 * When the src multihoming is changed from weak to [strong, preferred] 6827 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6828 * and identify routes that were created by user-applications in the 6829 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6830 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6831 * is selected by finding an interface route for the gateway. 6832 */ 6833 /* ARGSUSED */ 6834 static void 6835 ip_ire_rebind_walker(ire_t *ire, void *notused) 6836 { 6837 if (!ire->ire_unbound || ire->ire_ill != NULL) 6838 return; 6839 ire_rebind(ire); 6840 ire_delete(ire); 6841 } 6842 6843 /* 6844 * When the src multihoming is changed from [strong, preferred] to weak, 6845 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6846 * set any entries that were created by user-applications in the unbound state 6847 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6848 */ 6849 /* ARGSUSED */ 6850 static void 6851 ip_ire_unbind_walker(ire_t *ire, void *notused) 6852 { 6853 ire_t *new_ire; 6854 6855 if (!ire->ire_unbound || ire->ire_ill == NULL) 6856 return; 6857 if (ire->ire_ipversion == IPV6_VERSION) { 6858 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6859 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6860 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6861 } else { 6862 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6863 (uchar_t *)&ire->ire_mask, 6864 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6865 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6866 } 6867 if (new_ire == NULL) 6868 return; 6869 new_ire->ire_unbound = B_TRUE; 6870 /* 6871 * The bound ire must first be deleted so that we don't return 6872 * the existing one on the attempt to add the unbound new_ire. 6873 */ 6874 ire_delete(ire); 6875 new_ire = ire_add(new_ire); 6876 if (new_ire != NULL) 6877 ire_refrele(new_ire); 6878 } 6879 6880 /* 6881 * When the settings of ip*_strict_src_multihoming tunables are changed, 6882 * all cached routes need to be recomputed. This recomputation needs to be 6883 * done when going from weaker to stronger modes so that the cached ire 6884 * for the connection does not violate the current ip*_strict_src_multihoming 6885 * setting. It also needs to be done when going from stronger to weaker modes, 6886 * so that we fall back to matching on the longest-matching-route (as opposed 6887 * to a shorter match that may have been selected in the strong mode 6888 * to satisfy src_multihoming settings). 6889 * 6890 * The cached ixa_ire entires for all conn_t entries are marked as 6891 * "verify" so that they will be recomputed for the next packet. 6892 */ 6893 static void 6894 conn_ire_revalidate(conn_t *connp, void *arg) 6895 { 6896 boolean_t isv6 = (boolean_t)arg; 6897 6898 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6899 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6900 return; 6901 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6902 } 6903 6904 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 6905 /* ARGSUSED */ 6906 static int 6907 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 6908 { 6909 long new_value; 6910 ipparam_t *ippa = (ipparam_t *)cp; 6911 ip_stack_t *ipst = CONNQ_TO_IPST(q); 6912 int strict_src4, strict_src6; 6913 6914 strict_src4 = ipst->ips_ip_strict_src_multihoming; 6915 strict_src6 = ipst->ips_ipv6_strict_src_multihoming; 6916 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6917 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 6918 return (EINVAL); 6919 } 6920 ippa->ip_param_value = new_value; 6921 if (ipst->ips_ip_strict_src_multihoming != strict_src4) { 6922 if (strict_src4 == 0) { 6923 ire_walk_v4(ip_ire_rebind_walker, NULL, ALL_ZONES, 6924 ipst); 6925 } else { 6926 ire_walk_v4(ip_ire_unbind_walker, NULL, ALL_ZONES, 6927 ipst); 6928 } 6929 ipcl_walk(conn_ire_revalidate, (void *)B_FALSE, ipst); 6930 } else if (ipst->ips_ipv6_strict_src_multihoming != strict_src6) { 6931 if (strict_src6 == 0) { 6932 ire_walk_v6(ip_ire_rebind_walker, NULL, ALL_ZONES, 6933 ipst); 6934 } else { 6935 ire_walk_v4(ip_ire_unbind_walker, NULL, ALL_ZONES, 6936 ipst); 6937 } 6938 ipcl_walk(conn_ire_revalidate, (void *)B_TRUE, ipst); 6939 } 6940 return (0); 6941 } 6942 6943 /* 6944 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6945 * When an ipf is passed here for the first time, if 6946 * we already have in-order fragments on the queue, we convert from the fast- 6947 * path reassembly scheme to the hard-case scheme. From then on, additional 6948 * fragments are reassembled here. We keep track of the start and end offsets 6949 * of each piece, and the number of holes in the chain. When the hole count 6950 * goes to zero, we are done! 6951 * 6952 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6953 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6954 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6955 * after the call to ip_reassemble(). 6956 */ 6957 int 6958 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6959 size_t msg_len) 6960 { 6961 uint_t end; 6962 mblk_t *next_mp; 6963 mblk_t *mp1; 6964 uint_t offset; 6965 boolean_t incr_dups = B_TRUE; 6966 boolean_t offset_zero_seen = B_FALSE; 6967 boolean_t pkt_boundary_checked = B_FALSE; 6968 6969 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6970 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6971 6972 /* Add in byte count */ 6973 ipf->ipf_count += msg_len; 6974 if (ipf->ipf_end) { 6975 /* 6976 * We were part way through in-order reassembly, but now there 6977 * is a hole. We walk through messages already queued, and 6978 * mark them for hard case reassembly. We know that up till 6979 * now they were in order starting from offset zero. 6980 */ 6981 offset = 0; 6982 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6983 IP_REASS_SET_START(mp1, offset); 6984 if (offset == 0) { 6985 ASSERT(ipf->ipf_nf_hdr_len != 0); 6986 offset = -ipf->ipf_nf_hdr_len; 6987 } 6988 offset += mp1->b_wptr - mp1->b_rptr; 6989 IP_REASS_SET_END(mp1, offset); 6990 } 6991 /* One hole at the end. */ 6992 ipf->ipf_hole_cnt = 1; 6993 /* Brand it as a hard case, forever. */ 6994 ipf->ipf_end = 0; 6995 } 6996 /* Walk through all the new pieces. */ 6997 do { 6998 end = start + (mp->b_wptr - mp->b_rptr); 6999 /* 7000 * If start is 0, decrease 'end' only for the first mblk of 7001 * the fragment. Otherwise 'end' can get wrong value in the 7002 * second pass of the loop if first mblk is exactly the 7003 * size of ipf_nf_hdr_len. 7004 */ 7005 if (start == 0 && !offset_zero_seen) { 7006 /* First segment */ 7007 ASSERT(ipf->ipf_nf_hdr_len != 0); 7008 end -= ipf->ipf_nf_hdr_len; 7009 offset_zero_seen = B_TRUE; 7010 } 7011 next_mp = mp->b_cont; 7012 /* 7013 * We are checking to see if there is any interesing data 7014 * to process. If there isn't and the mblk isn't the 7015 * one which carries the unfragmentable header then we 7016 * drop it. It's possible to have just the unfragmentable 7017 * header come through without any data. That needs to be 7018 * saved. 7019 * 7020 * If the assert at the top of this function holds then the 7021 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 7022 * is infrequently traveled enough that the test is left in 7023 * to protect against future code changes which break that 7024 * invariant. 7025 */ 7026 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 7027 /* Empty. Blast it. */ 7028 IP_REASS_SET_START(mp, 0); 7029 IP_REASS_SET_END(mp, 0); 7030 /* 7031 * If the ipf points to the mblk we are about to free, 7032 * update ipf to point to the next mblk (or NULL 7033 * if none). 7034 */ 7035 if (ipf->ipf_mp->b_cont == mp) 7036 ipf->ipf_mp->b_cont = next_mp; 7037 freeb(mp); 7038 continue; 7039 } 7040 mp->b_cont = NULL; 7041 IP_REASS_SET_START(mp, start); 7042 IP_REASS_SET_END(mp, end); 7043 if (!ipf->ipf_tail_mp) { 7044 ipf->ipf_tail_mp = mp; 7045 ipf->ipf_mp->b_cont = mp; 7046 if (start == 0 || !more) { 7047 ipf->ipf_hole_cnt = 1; 7048 /* 7049 * if the first fragment comes in more than one 7050 * mblk, this loop will be executed for each 7051 * mblk. Need to adjust hole count so exiting 7052 * this routine will leave hole count at 1. 7053 */ 7054 if (next_mp) 7055 ipf->ipf_hole_cnt++; 7056 } else 7057 ipf->ipf_hole_cnt = 2; 7058 continue; 7059 } else if (ipf->ipf_last_frag_seen && !more && 7060 !pkt_boundary_checked) { 7061 /* 7062 * We check datagram boundary only if this fragment 7063 * claims to be the last fragment and we have seen a 7064 * last fragment in the past too. We do this only 7065 * once for a given fragment. 7066 * 7067 * start cannot be 0 here as fragments with start=0 7068 * and MF=0 gets handled as a complete packet. These 7069 * fragments should not reach here. 7070 */ 7071 7072 if (start + msgdsize(mp) != 7073 IP_REASS_END(ipf->ipf_tail_mp)) { 7074 /* 7075 * We have two fragments both of which claim 7076 * to be the last fragment but gives conflicting 7077 * information about the whole datagram size. 7078 * Something fishy is going on. Drop the 7079 * fragment and free up the reassembly list. 7080 */ 7081 return (IP_REASS_FAILED); 7082 } 7083 7084 /* 7085 * We shouldn't come to this code block again for this 7086 * particular fragment. 7087 */ 7088 pkt_boundary_checked = B_TRUE; 7089 } 7090 7091 /* New stuff at or beyond tail? */ 7092 offset = IP_REASS_END(ipf->ipf_tail_mp); 7093 if (start >= offset) { 7094 if (ipf->ipf_last_frag_seen) { 7095 /* current fragment is beyond last fragment */ 7096 return (IP_REASS_FAILED); 7097 } 7098 /* Link it on end. */ 7099 ipf->ipf_tail_mp->b_cont = mp; 7100 ipf->ipf_tail_mp = mp; 7101 if (more) { 7102 if (start != offset) 7103 ipf->ipf_hole_cnt++; 7104 } else if (start == offset && next_mp == NULL) 7105 ipf->ipf_hole_cnt--; 7106 continue; 7107 } 7108 mp1 = ipf->ipf_mp->b_cont; 7109 offset = IP_REASS_START(mp1); 7110 /* New stuff at the front? */ 7111 if (start < offset) { 7112 if (start == 0) { 7113 if (end >= offset) { 7114 /* Nailed the hole at the begining. */ 7115 ipf->ipf_hole_cnt--; 7116 } 7117 } else if (end < offset) { 7118 /* 7119 * A hole, stuff, and a hole where there used 7120 * to be just a hole. 7121 */ 7122 ipf->ipf_hole_cnt++; 7123 } 7124 mp->b_cont = mp1; 7125 /* Check for overlap. */ 7126 while (end > offset) { 7127 if (end < IP_REASS_END(mp1)) { 7128 mp->b_wptr -= end - offset; 7129 IP_REASS_SET_END(mp, offset); 7130 BUMP_MIB(ill->ill_ip_mib, 7131 ipIfStatsReasmPartDups); 7132 break; 7133 } 7134 /* Did we cover another hole? */ 7135 if ((mp1->b_cont && 7136 IP_REASS_END(mp1) != 7137 IP_REASS_START(mp1->b_cont) && 7138 end >= IP_REASS_START(mp1->b_cont)) || 7139 (!ipf->ipf_last_frag_seen && !more)) { 7140 ipf->ipf_hole_cnt--; 7141 } 7142 /* Clip out mp1. */ 7143 if ((mp->b_cont = mp1->b_cont) == NULL) { 7144 /* 7145 * After clipping out mp1, this guy 7146 * is now hanging off the end. 7147 */ 7148 ipf->ipf_tail_mp = mp; 7149 } 7150 IP_REASS_SET_START(mp1, 0); 7151 IP_REASS_SET_END(mp1, 0); 7152 /* Subtract byte count */ 7153 ipf->ipf_count -= mp1->b_datap->db_lim - 7154 mp1->b_datap->db_base; 7155 freeb(mp1); 7156 BUMP_MIB(ill->ill_ip_mib, 7157 ipIfStatsReasmPartDups); 7158 mp1 = mp->b_cont; 7159 if (!mp1) 7160 break; 7161 offset = IP_REASS_START(mp1); 7162 } 7163 ipf->ipf_mp->b_cont = mp; 7164 continue; 7165 } 7166 /* 7167 * The new piece starts somewhere between the start of the head 7168 * and before the end of the tail. 7169 */ 7170 for (; mp1; mp1 = mp1->b_cont) { 7171 offset = IP_REASS_END(mp1); 7172 if (start < offset) { 7173 if (end <= offset) { 7174 /* Nothing new. */ 7175 IP_REASS_SET_START(mp, 0); 7176 IP_REASS_SET_END(mp, 0); 7177 /* Subtract byte count */ 7178 ipf->ipf_count -= mp->b_datap->db_lim - 7179 mp->b_datap->db_base; 7180 if (incr_dups) { 7181 ipf->ipf_num_dups++; 7182 incr_dups = B_FALSE; 7183 } 7184 freeb(mp); 7185 BUMP_MIB(ill->ill_ip_mib, 7186 ipIfStatsReasmDuplicates); 7187 break; 7188 } 7189 /* 7190 * Trim redundant stuff off beginning of new 7191 * piece. 7192 */ 7193 IP_REASS_SET_START(mp, offset); 7194 mp->b_rptr += offset - start; 7195 BUMP_MIB(ill->ill_ip_mib, 7196 ipIfStatsReasmPartDups); 7197 start = offset; 7198 if (!mp1->b_cont) { 7199 /* 7200 * After trimming, this guy is now 7201 * hanging off the end. 7202 */ 7203 mp1->b_cont = mp; 7204 ipf->ipf_tail_mp = mp; 7205 if (!more) { 7206 ipf->ipf_hole_cnt--; 7207 } 7208 break; 7209 } 7210 } 7211 if (start >= IP_REASS_START(mp1->b_cont)) 7212 continue; 7213 /* Fill a hole */ 7214 if (start > offset) 7215 ipf->ipf_hole_cnt++; 7216 mp->b_cont = mp1->b_cont; 7217 mp1->b_cont = mp; 7218 mp1 = mp->b_cont; 7219 offset = IP_REASS_START(mp1); 7220 if (end >= offset) { 7221 ipf->ipf_hole_cnt--; 7222 /* Check for overlap. */ 7223 while (end > offset) { 7224 if (end < IP_REASS_END(mp1)) { 7225 mp->b_wptr -= end - offset; 7226 IP_REASS_SET_END(mp, offset); 7227 /* 7228 * TODO we might bump 7229 * this up twice if there is 7230 * overlap at both ends. 7231 */ 7232 BUMP_MIB(ill->ill_ip_mib, 7233 ipIfStatsReasmPartDups); 7234 break; 7235 } 7236 /* Did we cover another hole? */ 7237 if ((mp1->b_cont && 7238 IP_REASS_END(mp1) 7239 != IP_REASS_START(mp1->b_cont) && 7240 end >= 7241 IP_REASS_START(mp1->b_cont)) || 7242 (!ipf->ipf_last_frag_seen && 7243 !more)) { 7244 ipf->ipf_hole_cnt--; 7245 } 7246 /* Clip out mp1. */ 7247 if ((mp->b_cont = mp1->b_cont) == 7248 NULL) { 7249 /* 7250 * After clipping out mp1, 7251 * this guy is now hanging 7252 * off the end. 7253 */ 7254 ipf->ipf_tail_mp = mp; 7255 } 7256 IP_REASS_SET_START(mp1, 0); 7257 IP_REASS_SET_END(mp1, 0); 7258 /* Subtract byte count */ 7259 ipf->ipf_count -= 7260 mp1->b_datap->db_lim - 7261 mp1->b_datap->db_base; 7262 freeb(mp1); 7263 BUMP_MIB(ill->ill_ip_mib, 7264 ipIfStatsReasmPartDups); 7265 mp1 = mp->b_cont; 7266 if (!mp1) 7267 break; 7268 offset = IP_REASS_START(mp1); 7269 } 7270 } 7271 break; 7272 } 7273 } while (start = end, mp = next_mp); 7274 7275 /* Fragment just processed could be the last one. Remember this fact */ 7276 if (!more) 7277 ipf->ipf_last_frag_seen = B_TRUE; 7278 7279 /* Still got holes? */ 7280 if (ipf->ipf_hole_cnt) 7281 return (IP_REASS_PARTIAL); 7282 /* Clean up overloaded fields to avoid upstream disasters. */ 7283 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 7284 IP_REASS_SET_START(mp1, 0); 7285 IP_REASS_SET_END(mp1, 0); 7286 } 7287 return (IP_REASS_COMPLETE); 7288 } 7289 7290 /* 7291 * Fragmentation reassembly. Each ILL has a hash table for 7292 * queuing packets undergoing reassembly for all IPIFs 7293 * associated with the ILL. The hash is based on the packet 7294 * IP ident field. The ILL frag hash table was allocated 7295 * as a timer block at the time the ILL was created. Whenever 7296 * there is anything on the reassembly queue, the timer will 7297 * be running. Returns the reassembled packet if reassembly completes. 7298 */ 7299 mblk_t * 7300 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7301 { 7302 uint32_t frag_offset_flags; 7303 mblk_t *t_mp; 7304 ipaddr_t dst; 7305 uint8_t proto = ipha->ipha_protocol; 7306 uint32_t sum_val; 7307 uint16_t sum_flags; 7308 ipf_t *ipf; 7309 ipf_t **ipfp; 7310 ipfb_t *ipfb; 7311 uint16_t ident; 7312 uint32_t offset; 7313 ipaddr_t src; 7314 uint_t hdr_length; 7315 uint32_t end; 7316 mblk_t *mp1; 7317 mblk_t *tail_mp; 7318 size_t count; 7319 size_t msg_len; 7320 uint8_t ecn_info = 0; 7321 uint32_t packet_size; 7322 boolean_t pruned = B_FALSE; 7323 ill_t *ill = ira->ira_ill; 7324 ip_stack_t *ipst = ill->ill_ipst; 7325 7326 /* 7327 * Drop the fragmented as early as possible, if 7328 * we don't have resource(s) to re-assemble. 7329 */ 7330 if (ipst->ips_ip_reass_queue_bytes == 0) { 7331 freemsg(mp); 7332 return (NULL); 7333 } 7334 7335 /* Check for fragmentation offset; return if there's none */ 7336 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7337 (IPH_MF | IPH_OFFSET)) == 0) 7338 return (mp); 7339 7340 /* 7341 * We utilize hardware computed checksum info only for UDP since 7342 * IP fragmentation is a normal occurrence for the protocol. In 7343 * addition, checksum offload support for IP fragments carrying 7344 * UDP payload is commonly implemented across network adapters. 7345 */ 7346 ASSERT(ira->ira_rill != NULL); 7347 if (proto == IPPROTO_UDP && dohwcksum && 7348 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7349 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7350 mblk_t *mp1 = mp->b_cont; 7351 int32_t len; 7352 7353 /* Record checksum information from the packet */ 7354 sum_val = (uint32_t)DB_CKSUM16(mp); 7355 sum_flags = DB_CKSUMFLAGS(mp); 7356 7357 /* IP payload offset from beginning of mblk */ 7358 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7359 7360 if ((sum_flags & HCK_PARTIALCKSUM) && 7361 (mp1 == NULL || mp1->b_cont == NULL) && 7362 offset >= DB_CKSUMSTART(mp) && 7363 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7364 uint32_t adj; 7365 /* 7366 * Partial checksum has been calculated by hardware 7367 * and attached to the packet; in addition, any 7368 * prepended extraneous data is even byte aligned. 7369 * If any such data exists, we adjust the checksum; 7370 * this would also handle any postpended data. 7371 */ 7372 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7373 mp, mp1, len, adj); 7374 7375 /* One's complement subtract extraneous checksum */ 7376 if (adj >= sum_val) 7377 sum_val = ~(adj - sum_val) & 0xFFFF; 7378 else 7379 sum_val -= adj; 7380 } 7381 } else { 7382 sum_val = 0; 7383 sum_flags = 0; 7384 } 7385 7386 /* Clear hardware checksumming flag */ 7387 DB_CKSUMFLAGS(mp) = 0; 7388 7389 ident = ipha->ipha_ident; 7390 offset = (frag_offset_flags << 3) & 0xFFFF; 7391 src = ipha->ipha_src; 7392 dst = ipha->ipha_dst; 7393 hdr_length = IPH_HDR_LENGTH(ipha); 7394 end = ntohs(ipha->ipha_length) - hdr_length; 7395 7396 /* If end == 0 then we have a packet with no data, so just free it */ 7397 if (end == 0) { 7398 freemsg(mp); 7399 return (NULL); 7400 } 7401 7402 /* Record the ECN field info. */ 7403 ecn_info = (ipha->ipha_type_of_service & 0x3); 7404 if (offset != 0) { 7405 /* 7406 * If this isn't the first piece, strip the header, and 7407 * add the offset to the end value. 7408 */ 7409 mp->b_rptr += hdr_length; 7410 end += offset; 7411 } 7412 7413 /* Handle vnic loopback of fragments */ 7414 if (mp->b_datap->db_ref > 2) 7415 msg_len = 0; 7416 else 7417 msg_len = MBLKSIZE(mp); 7418 7419 tail_mp = mp; 7420 while (tail_mp->b_cont != NULL) { 7421 tail_mp = tail_mp->b_cont; 7422 if (tail_mp->b_datap->db_ref <= 2) 7423 msg_len += MBLKSIZE(tail_mp); 7424 } 7425 7426 /* If the reassembly list for this ILL will get too big, prune it */ 7427 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7428 ipst->ips_ip_reass_queue_bytes) { 7429 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7430 uint_t, ill->ill_frag_count, 7431 uint_t, ipst->ips_ip_reass_queue_bytes); 7432 ill_frag_prune(ill, 7433 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7434 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7435 pruned = B_TRUE; 7436 } 7437 7438 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7439 mutex_enter(&ipfb->ipfb_lock); 7440 7441 ipfp = &ipfb->ipfb_ipf; 7442 /* Try to find an existing fragment queue for this packet. */ 7443 for (;;) { 7444 ipf = ipfp[0]; 7445 if (ipf != NULL) { 7446 /* 7447 * It has to match on ident and src/dst address. 7448 */ 7449 if (ipf->ipf_ident == ident && 7450 ipf->ipf_src == src && 7451 ipf->ipf_dst == dst && 7452 ipf->ipf_protocol == proto) { 7453 /* 7454 * If we have received too many 7455 * duplicate fragments for this packet 7456 * free it. 7457 */ 7458 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7459 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7460 freemsg(mp); 7461 mutex_exit(&ipfb->ipfb_lock); 7462 return (NULL); 7463 } 7464 /* Found it. */ 7465 break; 7466 } 7467 ipfp = &ipf->ipf_hash_next; 7468 continue; 7469 } 7470 7471 /* 7472 * If we pruned the list, do we want to store this new 7473 * fragment?. We apply an optimization here based on the 7474 * fact that most fragments will be received in order. 7475 * So if the offset of this incoming fragment is zero, 7476 * it is the first fragment of a new packet. We will 7477 * keep it. Otherwise drop the fragment, as we have 7478 * probably pruned the packet already (since the 7479 * packet cannot be found). 7480 */ 7481 if (pruned && offset != 0) { 7482 mutex_exit(&ipfb->ipfb_lock); 7483 freemsg(mp); 7484 return (NULL); 7485 } 7486 7487 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7488 /* 7489 * Too many fragmented packets in this hash 7490 * bucket. Free the oldest. 7491 */ 7492 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7493 } 7494 7495 /* New guy. Allocate a frag message. */ 7496 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7497 if (mp1 == NULL) { 7498 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7499 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7500 freemsg(mp); 7501 reass_done: 7502 mutex_exit(&ipfb->ipfb_lock); 7503 return (NULL); 7504 } 7505 7506 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7507 mp1->b_cont = mp; 7508 7509 /* Initialize the fragment header. */ 7510 ipf = (ipf_t *)mp1->b_rptr; 7511 ipf->ipf_mp = mp1; 7512 ipf->ipf_ptphn = ipfp; 7513 ipfp[0] = ipf; 7514 ipf->ipf_hash_next = NULL; 7515 ipf->ipf_ident = ident; 7516 ipf->ipf_protocol = proto; 7517 ipf->ipf_src = src; 7518 ipf->ipf_dst = dst; 7519 ipf->ipf_nf_hdr_len = 0; 7520 /* Record reassembly start time. */ 7521 ipf->ipf_timestamp = gethrestime_sec(); 7522 /* Record ipf generation and account for frag header */ 7523 ipf->ipf_gen = ill->ill_ipf_gen++; 7524 ipf->ipf_count = MBLKSIZE(mp1); 7525 ipf->ipf_last_frag_seen = B_FALSE; 7526 ipf->ipf_ecn = ecn_info; 7527 ipf->ipf_num_dups = 0; 7528 ipfb->ipfb_frag_pkts++; 7529 ipf->ipf_checksum = 0; 7530 ipf->ipf_checksum_flags = 0; 7531 7532 /* Store checksum value in fragment header */ 7533 if (sum_flags != 0) { 7534 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7535 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7536 ipf->ipf_checksum = sum_val; 7537 ipf->ipf_checksum_flags = sum_flags; 7538 } 7539 7540 /* 7541 * We handle reassembly two ways. In the easy case, 7542 * where all the fragments show up in order, we do 7543 * minimal bookkeeping, and just clip new pieces on 7544 * the end. If we ever see a hole, then we go off 7545 * to ip_reassemble which has to mark the pieces and 7546 * keep track of the number of holes, etc. Obviously, 7547 * the point of having both mechanisms is so we can 7548 * handle the easy case as efficiently as possible. 7549 */ 7550 if (offset == 0) { 7551 /* Easy case, in-order reassembly so far. */ 7552 ipf->ipf_count += msg_len; 7553 ipf->ipf_tail_mp = tail_mp; 7554 /* 7555 * Keep track of next expected offset in 7556 * ipf_end. 7557 */ 7558 ipf->ipf_end = end; 7559 ipf->ipf_nf_hdr_len = hdr_length; 7560 } else { 7561 /* Hard case, hole at the beginning. */ 7562 ipf->ipf_tail_mp = NULL; 7563 /* 7564 * ipf_end == 0 means that we have given up 7565 * on easy reassembly. 7566 */ 7567 ipf->ipf_end = 0; 7568 7569 /* Forget checksum offload from now on */ 7570 ipf->ipf_checksum_flags = 0; 7571 7572 /* 7573 * ipf_hole_cnt is set by ip_reassemble. 7574 * ipf_count is updated by ip_reassemble. 7575 * No need to check for return value here 7576 * as we don't expect reassembly to complete 7577 * or fail for the first fragment itself. 7578 */ 7579 (void) ip_reassemble(mp, ipf, 7580 (frag_offset_flags & IPH_OFFSET) << 3, 7581 (frag_offset_flags & IPH_MF), ill, msg_len); 7582 } 7583 /* Update per ipfb and ill byte counts */ 7584 ipfb->ipfb_count += ipf->ipf_count; 7585 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7586 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7587 /* If the frag timer wasn't already going, start it. */ 7588 mutex_enter(&ill->ill_lock); 7589 ill_frag_timer_start(ill); 7590 mutex_exit(&ill->ill_lock); 7591 goto reass_done; 7592 } 7593 7594 /* 7595 * If the packet's flag has changed (it could be coming up 7596 * from an interface different than the previous, therefore 7597 * possibly different checksum capability), then forget about 7598 * any stored checksum states. Otherwise add the value to 7599 * the existing one stored in the fragment header. 7600 */ 7601 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7602 sum_val += ipf->ipf_checksum; 7603 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7604 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7605 ipf->ipf_checksum = sum_val; 7606 } else if (ipf->ipf_checksum_flags != 0) { 7607 /* Forget checksum offload from now on */ 7608 ipf->ipf_checksum_flags = 0; 7609 } 7610 7611 /* 7612 * We have a new piece of a datagram which is already being 7613 * reassembled. Update the ECN info if all IP fragments 7614 * are ECN capable. If there is one which is not, clear 7615 * all the info. If there is at least one which has CE 7616 * code point, IP needs to report that up to transport. 7617 */ 7618 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7619 if (ecn_info == IPH_ECN_CE) 7620 ipf->ipf_ecn = IPH_ECN_CE; 7621 } else { 7622 ipf->ipf_ecn = IPH_ECN_NECT; 7623 } 7624 if (offset && ipf->ipf_end == offset) { 7625 /* The new fragment fits at the end */ 7626 ipf->ipf_tail_mp->b_cont = mp; 7627 /* Update the byte count */ 7628 ipf->ipf_count += msg_len; 7629 /* Update per ipfb and ill byte counts */ 7630 ipfb->ipfb_count += msg_len; 7631 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7632 atomic_add_32(&ill->ill_frag_count, msg_len); 7633 if (frag_offset_flags & IPH_MF) { 7634 /* More to come. */ 7635 ipf->ipf_end = end; 7636 ipf->ipf_tail_mp = tail_mp; 7637 goto reass_done; 7638 } 7639 } else { 7640 /* Go do the hard cases. */ 7641 int ret; 7642 7643 if (offset == 0) 7644 ipf->ipf_nf_hdr_len = hdr_length; 7645 7646 /* Save current byte count */ 7647 count = ipf->ipf_count; 7648 ret = ip_reassemble(mp, ipf, 7649 (frag_offset_flags & IPH_OFFSET) << 3, 7650 (frag_offset_flags & IPH_MF), ill, msg_len); 7651 /* Count of bytes added and subtracted (freeb()ed) */ 7652 count = ipf->ipf_count - count; 7653 if (count) { 7654 /* Update per ipfb and ill byte counts */ 7655 ipfb->ipfb_count += count; 7656 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7657 atomic_add_32(&ill->ill_frag_count, count); 7658 } 7659 if (ret == IP_REASS_PARTIAL) { 7660 goto reass_done; 7661 } else if (ret == IP_REASS_FAILED) { 7662 /* Reassembly failed. Free up all resources */ 7663 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7664 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7665 IP_REASS_SET_START(t_mp, 0); 7666 IP_REASS_SET_END(t_mp, 0); 7667 } 7668 freemsg(mp); 7669 goto reass_done; 7670 } 7671 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7672 } 7673 /* 7674 * We have completed reassembly. Unhook the frag header from 7675 * the reassembly list. 7676 * 7677 * Before we free the frag header, record the ECN info 7678 * to report back to the transport. 7679 */ 7680 ecn_info = ipf->ipf_ecn; 7681 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7682 ipfp = ipf->ipf_ptphn; 7683 7684 /* We need to supply these to caller */ 7685 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7686 sum_val = ipf->ipf_checksum; 7687 else 7688 sum_val = 0; 7689 7690 mp1 = ipf->ipf_mp; 7691 count = ipf->ipf_count; 7692 ipf = ipf->ipf_hash_next; 7693 if (ipf != NULL) 7694 ipf->ipf_ptphn = ipfp; 7695 ipfp[0] = ipf; 7696 atomic_add_32(&ill->ill_frag_count, -count); 7697 ASSERT(ipfb->ipfb_count >= count); 7698 ipfb->ipfb_count -= count; 7699 ipfb->ipfb_frag_pkts--; 7700 mutex_exit(&ipfb->ipfb_lock); 7701 /* Ditch the frag header. */ 7702 mp = mp1->b_cont; 7703 7704 freeb(mp1); 7705 7706 /* Restore original IP length in header. */ 7707 packet_size = (uint32_t)msgdsize(mp); 7708 if (packet_size > IP_MAXPACKET) { 7709 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7710 ip_drop_input("Reassembled packet too large", mp, ill); 7711 freemsg(mp); 7712 return (NULL); 7713 } 7714 7715 if (DB_REF(mp) > 1) { 7716 mblk_t *mp2 = copymsg(mp); 7717 7718 if (mp2 == NULL) { 7719 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7720 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7721 freemsg(mp); 7722 return (NULL); 7723 } 7724 freemsg(mp); 7725 mp = mp2; 7726 } 7727 ipha = (ipha_t *)mp->b_rptr; 7728 7729 ipha->ipha_length = htons((uint16_t)packet_size); 7730 /* We're now complete, zip the frag state */ 7731 ipha->ipha_fragment_offset_and_flags = 0; 7732 /* Record the ECN info. */ 7733 ipha->ipha_type_of_service &= 0xFC; 7734 ipha->ipha_type_of_service |= ecn_info; 7735 7736 /* Update the receive attributes */ 7737 ira->ira_pktlen = packet_size; 7738 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7739 7740 /* Reassembly is successful; set checksum information in packet */ 7741 DB_CKSUM16(mp) = (uint16_t)sum_val; 7742 DB_CKSUMFLAGS(mp) = sum_flags; 7743 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7744 7745 return (mp); 7746 } 7747 7748 /* 7749 * Pullup function that should be used for IP input in order to 7750 * ensure we do not loose the L2 source address; we need the l2 source 7751 * address for IP_RECVSLLA and for ndp_input. 7752 * 7753 * We return either NULL or b_rptr. 7754 */ 7755 void * 7756 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7757 { 7758 ill_t *ill = ira->ira_ill; 7759 7760 if (ip_rput_pullups++ == 0) { 7761 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7762 "ip_pullup: %s forced us to " 7763 " pullup pkt, hdr len %ld, hdr addr %p", 7764 ill->ill_name, len, (void *)mp->b_rptr); 7765 } 7766 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7767 ip_setl2src(mp, ira, ira->ira_rill); 7768 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7769 if (!pullupmsg(mp, len)) 7770 return (NULL); 7771 else 7772 return (mp->b_rptr); 7773 } 7774 7775 /* 7776 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7777 * When called from the ULP ira_rill will be NULL hence the caller has to 7778 * pass in the ill. 7779 */ 7780 /* ARGSUSED */ 7781 void 7782 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7783 { 7784 const uchar_t *addr; 7785 int alen; 7786 7787 if (ira->ira_flags & IRAF_L2SRC_SET) 7788 return; 7789 7790 ASSERT(ill != NULL); 7791 alen = ill->ill_phys_addr_length; 7792 ASSERT(alen <= sizeof (ira->ira_l2src)); 7793 if (ira->ira_mhip != NULL && 7794 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7795 bcopy(addr, ira->ira_l2src, alen); 7796 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7797 (addr = ill->ill_phys_addr) != NULL) { 7798 bcopy(addr, ira->ira_l2src, alen); 7799 } else { 7800 bzero(ira->ira_l2src, alen); 7801 } 7802 ira->ira_flags |= IRAF_L2SRC_SET; 7803 } 7804 7805 /* 7806 * check ip header length and align it. 7807 */ 7808 mblk_t * 7809 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7810 { 7811 ill_t *ill = ira->ira_ill; 7812 ssize_t len; 7813 7814 len = MBLKL(mp); 7815 7816 if (!OK_32PTR(mp->b_rptr)) 7817 IP_STAT(ill->ill_ipst, ip_notaligned); 7818 else 7819 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7820 7821 /* Guard against bogus device drivers */ 7822 if (len < 0) { 7823 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7824 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7825 freemsg(mp); 7826 return (NULL); 7827 } 7828 7829 if (len == 0) { 7830 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7831 mblk_t *mp1 = mp->b_cont; 7832 7833 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7834 ip_setl2src(mp, ira, ira->ira_rill); 7835 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7836 7837 freeb(mp); 7838 mp = mp1; 7839 if (mp == NULL) 7840 return (NULL); 7841 7842 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7843 return (mp); 7844 } 7845 if (ip_pullup(mp, min_size, ira) == NULL) { 7846 if (msgdsize(mp) < min_size) { 7847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7848 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7849 } else { 7850 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7851 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7852 } 7853 freemsg(mp); 7854 return (NULL); 7855 } 7856 return (mp); 7857 } 7858 7859 /* 7860 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7861 */ 7862 mblk_t * 7863 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7864 uint_t min_size, ip_recv_attr_t *ira) 7865 { 7866 ill_t *ill = ira->ira_ill; 7867 7868 /* 7869 * Make sure we have data length consistent 7870 * with the IP header. 7871 */ 7872 if (mp->b_cont == NULL) { 7873 /* pkt_len is based on ipha_len, not the mblk length */ 7874 if (pkt_len < min_size) { 7875 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7876 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7877 freemsg(mp); 7878 return (NULL); 7879 } 7880 if (len < 0) { 7881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7882 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7883 freemsg(mp); 7884 return (NULL); 7885 } 7886 /* Drop any pad */ 7887 mp->b_wptr = rptr + pkt_len; 7888 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7889 ASSERT(pkt_len >= min_size); 7890 if (pkt_len < min_size) { 7891 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7892 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7893 freemsg(mp); 7894 return (NULL); 7895 } 7896 if (len < 0) { 7897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7898 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7899 freemsg(mp); 7900 return (NULL); 7901 } 7902 /* Drop any pad */ 7903 (void) adjmsg(mp, -len); 7904 /* 7905 * adjmsg may have freed an mblk from the chain, hence 7906 * invalidate any hw checksum here. This will force IP to 7907 * calculate the checksum in sw, but only for this packet. 7908 */ 7909 DB_CKSUMFLAGS(mp) = 0; 7910 IP_STAT(ill->ill_ipst, ip_multimblk); 7911 } 7912 return (mp); 7913 } 7914 7915 /* 7916 * Check that the IPv4 opt_len is consistent with the packet and pullup 7917 * the options. 7918 */ 7919 mblk_t * 7920 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7921 ip_recv_attr_t *ira) 7922 { 7923 ill_t *ill = ira->ira_ill; 7924 ssize_t len; 7925 7926 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7927 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7928 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7929 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7930 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7931 freemsg(mp); 7932 return (NULL); 7933 } 7934 7935 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7937 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7938 freemsg(mp); 7939 return (NULL); 7940 } 7941 /* 7942 * Recompute complete header length and make sure we 7943 * have access to all of it. 7944 */ 7945 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7946 if (len > (mp->b_wptr - mp->b_rptr)) { 7947 if (len > pkt_len) { 7948 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7949 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7950 freemsg(mp); 7951 return (NULL); 7952 } 7953 if (ip_pullup(mp, len, ira) == NULL) { 7954 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7955 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7956 freemsg(mp); 7957 return (NULL); 7958 } 7959 } 7960 return (mp); 7961 } 7962 7963 /* 7964 * Returns a new ire, or the same ire, or NULL. 7965 * If a different IRE is returned, then it is held; the caller 7966 * needs to release it. 7967 * In no case is there any hold/release on the ire argument. 7968 */ 7969 ire_t * 7970 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7971 { 7972 ire_t *new_ire; 7973 ill_t *ire_ill; 7974 uint_t ifindex; 7975 ip_stack_t *ipst = ill->ill_ipst; 7976 boolean_t strict_check = B_FALSE; 7977 7978 /* 7979 * IPMP common case: if IRE and ILL are in the same group, there's no 7980 * issue (e.g. packet received on an underlying interface matched an 7981 * IRE_LOCAL on its associated group interface). 7982 */ 7983 ASSERT(ire->ire_ill != NULL); 7984 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7985 return (ire); 7986 7987 /* 7988 * Do another ire lookup here, using the ingress ill, to see if the 7989 * interface is in a usesrc group. 7990 * As long as the ills belong to the same group, we don't consider 7991 * them to be arriving on the wrong interface. Thus, if the switch 7992 * is doing inbound load spreading, we won't drop packets when the 7993 * ip*_strict_dst_multihoming switch is on. 7994 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7995 * where the local address may not be unique. In this case we were 7996 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7997 * actually returned. The new lookup, which is more specific, should 7998 * only find the IRE_LOCAL associated with the ingress ill if one 7999 * exists. 8000 */ 8001 if (ire->ire_ipversion == IPV4_VERSION) { 8002 if (ipst->ips_ip_strict_dst_multihoming) 8003 strict_check = B_TRUE; 8004 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 8005 IRE_LOCAL, ill, ALL_ZONES, NULL, 8006 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 8007 } else { 8008 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 8009 if (ipst->ips_ipv6_strict_dst_multihoming) 8010 strict_check = B_TRUE; 8011 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 8012 IRE_LOCAL, ill, ALL_ZONES, NULL, 8013 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 8014 } 8015 /* 8016 * If the same ire that was returned in ip_input() is found then this 8017 * is an indication that usesrc groups are in use. The packet 8018 * arrived on a different ill in the group than the one associated with 8019 * the destination address. If a different ire was found then the same 8020 * IP address must be hosted on multiple ills. This is possible with 8021 * unnumbered point2point interfaces. We switch to use this new ire in 8022 * order to have accurate interface statistics. 8023 */ 8024 if (new_ire != NULL) { 8025 /* Note: held in one case but not the other? Caller handles */ 8026 if (new_ire != ire) 8027 return (new_ire); 8028 /* Unchanged */ 8029 ire_refrele(new_ire); 8030 return (ire); 8031 } 8032 8033 /* 8034 * Chase pointers once and store locally. 8035 */ 8036 ASSERT(ire->ire_ill != NULL); 8037 ire_ill = ire->ire_ill; 8038 ifindex = ill->ill_usesrc_ifindex; 8039 8040 /* 8041 * Check if it's a legal address on the 'usesrc' interface. 8042 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 8043 * can just check phyint_ifindex. 8044 */ 8045 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 8046 return (ire); 8047 } 8048 8049 /* 8050 * If the ip*_strict_dst_multihoming switch is on then we can 8051 * only accept this packet if the interface is marked as routing. 8052 */ 8053 if (!(strict_check)) 8054 return (ire); 8055 8056 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 8057 return (ire); 8058 } 8059 return (NULL); 8060 } 8061 8062 /* 8063 * This function is used to construct a mac_header_info_s from a 8064 * DL_UNITDATA_IND message. 8065 * The address fields in the mhi structure points into the message, 8066 * thus the caller can't use those fields after freeing the message. 8067 * 8068 * We determine whether the packet received is a non-unicast packet 8069 * and in doing so, determine whether or not it is broadcast vs multicast. 8070 * For it to be a broadcast packet, we must have the appropriate mblk_t 8071 * hanging off the ill_t. If this is either not present or doesn't match 8072 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 8073 * to be multicast. Thus NICs that have no broadcast address (or no 8074 * capability for one, such as point to point links) cannot return as 8075 * the packet being broadcast. 8076 */ 8077 void 8078 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 8079 { 8080 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 8081 mblk_t *bmp; 8082 uint_t extra_offset; 8083 8084 bzero(mhip, sizeof (struct mac_header_info_s)); 8085 8086 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 8087 8088 if (ill->ill_sap_length < 0) 8089 extra_offset = 0; 8090 else 8091 extra_offset = ill->ill_sap_length; 8092 8093 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 8094 extra_offset; 8095 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 8096 extra_offset; 8097 8098 if (!ind->dl_group_address) 8099 return; 8100 8101 /* Multicast or broadcast */ 8102 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 8103 8104 if (ind->dl_dest_addr_offset > sizeof (*ind) && 8105 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 8106 (bmp = ill->ill_bcast_mp) != NULL) { 8107 dl_unitdata_req_t *dlur; 8108 uint8_t *bphys_addr; 8109 8110 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 8111 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 8112 extra_offset; 8113 8114 if (bcmp(mhip->mhi_daddr, bphys_addr, 8115 ind->dl_dest_addr_length) == 0) 8116 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 8117 } 8118 } 8119 8120 /* 8121 * This function is used to construct a mac_header_info_s from a 8122 * M_DATA fastpath message from a DLPI driver. 8123 * The address fields in the mhi structure points into the message, 8124 * thus the caller can't use those fields after freeing the message. 8125 * 8126 * We determine whether the packet received is a non-unicast packet 8127 * and in doing so, determine whether or not it is broadcast vs multicast. 8128 * For it to be a broadcast packet, we must have the appropriate mblk_t 8129 * hanging off the ill_t. If this is either not present or doesn't match 8130 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 8131 * to be multicast. Thus NICs that have no broadcast address (or no 8132 * capability for one, such as point to point links) cannot return as 8133 * the packet being broadcast. 8134 */ 8135 void 8136 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 8137 { 8138 mblk_t *bmp; 8139 struct ether_header *pether; 8140 8141 bzero(mhip, sizeof (struct mac_header_info_s)); 8142 8143 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 8144 8145 pether = (struct ether_header *)((char *)mp->b_rptr 8146 - sizeof (struct ether_header)); 8147 8148 /* 8149 * Make sure the interface is an ethernet type, since we don't 8150 * know the header format for anything but Ethernet. Also make 8151 * sure we are pointing correctly above db_base. 8152 */ 8153 if (ill->ill_type != IFT_ETHER) 8154 return; 8155 8156 retry: 8157 if ((uchar_t *)pether < mp->b_datap->db_base) 8158 return; 8159 8160 /* Is there a VLAN tag? */ 8161 if (ill->ill_isv6) { 8162 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 8163 pether = (struct ether_header *)((char *)pether - 4); 8164 goto retry; 8165 } 8166 } else { 8167 if (pether->ether_type != htons(ETHERTYPE_IP)) { 8168 pether = (struct ether_header *)((char *)pether - 4); 8169 goto retry; 8170 } 8171 } 8172 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 8173 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 8174 8175 if (!(mhip->mhi_daddr[0] & 0x01)) 8176 return; 8177 8178 /* Multicast or broadcast */ 8179 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 8180 8181 if ((bmp = ill->ill_bcast_mp) != NULL) { 8182 dl_unitdata_req_t *dlur; 8183 uint8_t *bphys_addr; 8184 uint_t addrlen; 8185 8186 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 8187 addrlen = dlur->dl_dest_addr_length; 8188 if (ill->ill_sap_length < 0) { 8189 bphys_addr = (uchar_t *)dlur + 8190 dlur->dl_dest_addr_offset; 8191 addrlen += ill->ill_sap_length; 8192 } else { 8193 bphys_addr = (uchar_t *)dlur + 8194 dlur->dl_dest_addr_offset + 8195 ill->ill_sap_length; 8196 addrlen -= ill->ill_sap_length; 8197 } 8198 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 8199 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 8200 } 8201 } 8202 8203 /* 8204 * Handle anything but M_DATA messages 8205 * We see the DL_UNITDATA_IND which are part 8206 * of the data path, and also the other messages from the driver. 8207 */ 8208 void 8209 ip_rput_notdata(ill_t *ill, mblk_t *mp) 8210 { 8211 mblk_t *first_mp; 8212 struct iocblk *iocp; 8213 struct mac_header_info_s mhi; 8214 8215 switch (DB_TYPE(mp)) { 8216 case M_PROTO: 8217 case M_PCPROTO: { 8218 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 8219 DL_UNITDATA_IND) { 8220 /* Go handle anything other than data elsewhere. */ 8221 ip_rput_dlpi(ill, mp); 8222 return; 8223 } 8224 8225 first_mp = mp; 8226 mp = first_mp->b_cont; 8227 first_mp->b_cont = NULL; 8228 8229 if (mp == NULL) { 8230 freeb(first_mp); 8231 return; 8232 } 8233 ip_dlur_to_mhi(ill, first_mp, &mhi); 8234 if (ill->ill_isv6) 8235 ip_input_v6(ill, NULL, mp, &mhi); 8236 else 8237 ip_input(ill, NULL, mp, &mhi); 8238 8239 /* Ditch the DLPI header. */ 8240 freeb(first_mp); 8241 return; 8242 } 8243 case M_IOCACK: 8244 iocp = (struct iocblk *)mp->b_rptr; 8245 switch (iocp->ioc_cmd) { 8246 case DL_IOC_HDR_INFO: 8247 ill_fastpath_ack(ill, mp); 8248 return; 8249 default: 8250 putnext(ill->ill_rq, mp); 8251 return; 8252 } 8253 /* FALLTHRU */ 8254 case M_ERROR: 8255 case M_HANGUP: 8256 mutex_enter(&ill->ill_lock); 8257 if (ill->ill_state_flags & ILL_CONDEMNED) { 8258 mutex_exit(&ill->ill_lock); 8259 freemsg(mp); 8260 return; 8261 } 8262 ill_refhold_locked(ill); 8263 mutex_exit(&ill->ill_lock); 8264 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 8265 B_FALSE); 8266 return; 8267 case M_CTL: 8268 putnext(ill->ill_rq, mp); 8269 return; 8270 case M_IOCNAK: 8271 ip1dbg(("got iocnak ")); 8272 iocp = (struct iocblk *)mp->b_rptr; 8273 switch (iocp->ioc_cmd) { 8274 case DL_IOC_HDR_INFO: 8275 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 8276 return; 8277 default: 8278 break; 8279 } 8280 /* FALLTHRU */ 8281 default: 8282 putnext(ill->ill_rq, mp); 8283 return; 8284 } 8285 } 8286 8287 /* Read side put procedure. Packets coming from the wire arrive here. */ 8288 void 8289 ip_rput(queue_t *q, mblk_t *mp) 8290 { 8291 ill_t *ill; 8292 union DL_primitives *dl; 8293 8294 ill = (ill_t *)q->q_ptr; 8295 8296 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8297 /* 8298 * If things are opening or closing, only accept high-priority 8299 * DLPI messages. (On open ill->ill_ipif has not yet been 8300 * created; on close, things hanging off the ill may have been 8301 * freed already.) 8302 */ 8303 dl = (union DL_primitives *)mp->b_rptr; 8304 if (DB_TYPE(mp) != M_PCPROTO || 8305 dl->dl_primitive == DL_UNITDATA_IND) { 8306 inet_freemsg(mp); 8307 return; 8308 } 8309 } 8310 if (DB_TYPE(mp) == M_DATA) { 8311 struct mac_header_info_s mhi; 8312 8313 ip_mdata_to_mhi(ill, mp, &mhi); 8314 ip_input(ill, NULL, mp, &mhi); 8315 } else { 8316 ip_rput_notdata(ill, mp); 8317 } 8318 } 8319 8320 /* 8321 * Move the information to a copy. 8322 */ 8323 mblk_t * 8324 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8325 { 8326 mblk_t *mp1; 8327 ill_t *ill = ira->ira_ill; 8328 ip_stack_t *ipst = ill->ill_ipst; 8329 8330 IP_STAT(ipst, ip_db_ref); 8331 8332 /* Make sure we have ira_l2src before we loose the original mblk */ 8333 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8334 ip_setl2src(mp, ira, ira->ira_rill); 8335 8336 mp1 = copymsg(mp); 8337 if (mp1 == NULL) { 8338 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8339 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8340 freemsg(mp); 8341 return (NULL); 8342 } 8343 /* preserve the hardware checksum flags and data, if present */ 8344 if (DB_CKSUMFLAGS(mp) != 0) { 8345 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8346 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8347 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8348 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8349 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8350 } 8351 freemsg(mp); 8352 return (mp1); 8353 } 8354 8355 static void 8356 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8357 t_uscalar_t err) 8358 { 8359 if (dl_err == DL_SYSERR) { 8360 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8361 "%s: %s failed: DL_SYSERR (errno %u)\n", 8362 ill->ill_name, dl_primstr(prim), err); 8363 return; 8364 } 8365 8366 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8367 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8368 dl_errstr(dl_err)); 8369 } 8370 8371 /* 8372 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8373 * than DL_UNITDATA_IND messages. If we need to process this message 8374 * exclusively, we call qwriter_ip, in which case we also need to call 8375 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8376 */ 8377 void 8378 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8379 { 8380 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8381 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8382 queue_t *q = ill->ill_rq; 8383 t_uscalar_t prim = dloa->dl_primitive; 8384 t_uscalar_t reqprim = DL_PRIM_INVAL; 8385 8386 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8387 char *, dl_primstr(prim), ill_t *, ill); 8388 ip1dbg(("ip_rput_dlpi")); 8389 8390 /* 8391 * If we received an ACK but didn't send a request for it, then it 8392 * can't be part of any pending operation; discard up-front. 8393 */ 8394 switch (prim) { 8395 case DL_ERROR_ACK: 8396 reqprim = dlea->dl_error_primitive; 8397 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8398 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8399 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8400 dlea->dl_unix_errno)); 8401 break; 8402 case DL_OK_ACK: 8403 reqprim = dloa->dl_correct_primitive; 8404 break; 8405 case DL_INFO_ACK: 8406 reqprim = DL_INFO_REQ; 8407 break; 8408 case DL_BIND_ACK: 8409 reqprim = DL_BIND_REQ; 8410 break; 8411 case DL_PHYS_ADDR_ACK: 8412 reqprim = DL_PHYS_ADDR_REQ; 8413 break; 8414 case DL_NOTIFY_ACK: 8415 reqprim = DL_NOTIFY_REQ; 8416 break; 8417 case DL_CAPABILITY_ACK: 8418 reqprim = DL_CAPABILITY_REQ; 8419 break; 8420 } 8421 8422 if (prim != DL_NOTIFY_IND) { 8423 if (reqprim == DL_PRIM_INVAL || 8424 !ill_dlpi_pending(ill, reqprim)) { 8425 /* Not a DLPI message we support or expected */ 8426 freemsg(mp); 8427 return; 8428 } 8429 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8430 dl_primstr(reqprim))); 8431 } 8432 8433 switch (reqprim) { 8434 case DL_UNBIND_REQ: 8435 /* 8436 * NOTE: we mark the unbind as complete even if we got a 8437 * DL_ERROR_ACK, since there's not much else we can do. 8438 */ 8439 mutex_enter(&ill->ill_lock); 8440 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8441 cv_signal(&ill->ill_cv); 8442 mutex_exit(&ill->ill_lock); 8443 break; 8444 8445 case DL_ENABMULTI_REQ: 8446 if (prim == DL_OK_ACK) { 8447 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8448 ill->ill_dlpi_multicast_state = IDS_OK; 8449 } 8450 break; 8451 } 8452 8453 /* 8454 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8455 * need to become writer to continue to process it. Because an 8456 * exclusive operation doesn't complete until replies to all queued 8457 * DLPI messages have been received, we know we're in the middle of an 8458 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8459 * 8460 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8461 * Since this is on the ill stream we unconditionally bump up the 8462 * refcount without doing ILL_CAN_LOOKUP(). 8463 */ 8464 ill_refhold(ill); 8465 if (prim == DL_NOTIFY_IND) 8466 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8467 else 8468 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8469 } 8470 8471 /* 8472 * Handling of DLPI messages that require exclusive access to the ipsq. 8473 * 8474 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8475 * happen here. (along with mi_copy_done) 8476 */ 8477 /* ARGSUSED */ 8478 static void 8479 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8480 { 8481 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8482 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8483 int err = 0; 8484 ill_t *ill = (ill_t *)q->q_ptr; 8485 ipif_t *ipif = NULL; 8486 mblk_t *mp1 = NULL; 8487 conn_t *connp = NULL; 8488 t_uscalar_t paddrreq; 8489 mblk_t *mp_hw; 8490 boolean_t success; 8491 boolean_t ioctl_aborted = B_FALSE; 8492 boolean_t log = B_TRUE; 8493 8494 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8495 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8496 8497 ip1dbg(("ip_rput_dlpi_writer ..")); 8498 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8499 ASSERT(IAM_WRITER_ILL(ill)); 8500 8501 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8502 /* 8503 * The current ioctl could have been aborted by the user and a new 8504 * ioctl to bring up another ill could have started. We could still 8505 * get a response from the driver later. 8506 */ 8507 if (ipif != NULL && ipif->ipif_ill != ill) 8508 ioctl_aborted = B_TRUE; 8509 8510 switch (dloa->dl_primitive) { 8511 case DL_ERROR_ACK: 8512 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8513 dl_primstr(dlea->dl_error_primitive))); 8514 8515 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8516 char *, dl_primstr(dlea->dl_error_primitive), 8517 ill_t *, ill); 8518 8519 switch (dlea->dl_error_primitive) { 8520 case DL_DISABMULTI_REQ: 8521 ill_dlpi_done(ill, dlea->dl_error_primitive); 8522 break; 8523 case DL_PROMISCON_REQ: 8524 case DL_PROMISCOFF_REQ: 8525 case DL_UNBIND_REQ: 8526 case DL_ATTACH_REQ: 8527 case DL_INFO_REQ: 8528 ill_dlpi_done(ill, dlea->dl_error_primitive); 8529 break; 8530 case DL_NOTIFY_REQ: 8531 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8532 log = B_FALSE; 8533 break; 8534 case DL_PHYS_ADDR_REQ: 8535 /* 8536 * For IPv6 only, there are two additional 8537 * phys_addr_req's sent to the driver to get the 8538 * IPv6 token and lla. This allows IP to acquire 8539 * the hardware address format for a given interface 8540 * without having built in knowledge of the hardware 8541 * address. ill_phys_addr_pend keeps track of the last 8542 * DL_PAR sent so we know which response we are 8543 * dealing with. ill_dlpi_done will update 8544 * ill_phys_addr_pend when it sends the next req. 8545 * We don't complete the IOCTL until all three DL_PARs 8546 * have been attempted, so set *_len to 0 and break. 8547 */ 8548 paddrreq = ill->ill_phys_addr_pend; 8549 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8550 if (paddrreq == DL_IPV6_TOKEN) { 8551 ill->ill_token_length = 0; 8552 log = B_FALSE; 8553 break; 8554 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8555 ill->ill_nd_lla_len = 0; 8556 log = B_FALSE; 8557 break; 8558 } 8559 /* 8560 * Something went wrong with the DL_PHYS_ADDR_REQ. 8561 * We presumably have an IOCTL hanging out waiting 8562 * for completion. Find it and complete the IOCTL 8563 * with the error noted. 8564 * However, ill_dl_phys was called on an ill queue 8565 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8566 * set. But the ioctl is known to be pending on ill_wq. 8567 */ 8568 if (!ill->ill_ifname_pending) 8569 break; 8570 ill->ill_ifname_pending = 0; 8571 if (!ioctl_aborted) 8572 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8573 if (mp1 != NULL) { 8574 /* 8575 * This operation (SIOCSLIFNAME) must have 8576 * happened on the ill. Assert there is no conn 8577 */ 8578 ASSERT(connp == NULL); 8579 q = ill->ill_wq; 8580 } 8581 break; 8582 case DL_BIND_REQ: 8583 ill_dlpi_done(ill, DL_BIND_REQ); 8584 if (ill->ill_ifname_pending) 8585 break; 8586 /* 8587 * Something went wrong with the bind. We presumably 8588 * have an IOCTL hanging out waiting for completion. 8589 * Find it, take down the interface that was coming 8590 * up, and complete the IOCTL with the error noted. 8591 */ 8592 if (!ioctl_aborted) 8593 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8594 if (mp1 != NULL) { 8595 /* 8596 * This might be a result of a DL_NOTE_REPLUMB 8597 * notification. In that case, connp is NULL. 8598 */ 8599 if (connp != NULL) 8600 q = CONNP_TO_WQ(connp); 8601 8602 (void) ipif_down(ipif, NULL, NULL); 8603 /* error is set below the switch */ 8604 } 8605 break; 8606 case DL_ENABMULTI_REQ: 8607 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8608 8609 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8610 ill->ill_dlpi_multicast_state = IDS_FAILED; 8611 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8612 8613 printf("ip: joining multicasts failed (%d)" 8614 " on %s - will use link layer " 8615 "broadcasts for multicast\n", 8616 dlea->dl_errno, ill->ill_name); 8617 8618 /* 8619 * Set up for multi_bcast; We are the 8620 * writer, so ok to access ill->ill_ipif 8621 * without any lock. 8622 */ 8623 mutex_enter(&ill->ill_phyint->phyint_lock); 8624 ill->ill_phyint->phyint_flags |= 8625 PHYI_MULTI_BCAST; 8626 mutex_exit(&ill->ill_phyint->phyint_lock); 8627 8628 } 8629 freemsg(mp); /* Don't want to pass this up */ 8630 return; 8631 case DL_CAPABILITY_REQ: 8632 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8633 "DL_CAPABILITY REQ\n")); 8634 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8635 ill->ill_dlpi_capab_state = IDCS_FAILED; 8636 ill_capability_done(ill); 8637 freemsg(mp); 8638 return; 8639 } 8640 /* 8641 * Note the error for IOCTL completion (mp1 is set when 8642 * ready to complete ioctl). If ill_ifname_pending_err is 8643 * set, an error occured during plumbing (ill_ifname_pending), 8644 * so we want to report that error. 8645 * 8646 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8647 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8648 * expected to get errack'd if the driver doesn't support 8649 * these flags (e.g. ethernet). log will be set to B_FALSE 8650 * if these error conditions are encountered. 8651 */ 8652 if (mp1 != NULL) { 8653 if (ill->ill_ifname_pending_err != 0) { 8654 err = ill->ill_ifname_pending_err; 8655 ill->ill_ifname_pending_err = 0; 8656 } else { 8657 err = dlea->dl_unix_errno ? 8658 dlea->dl_unix_errno : ENXIO; 8659 } 8660 /* 8661 * If we're plumbing an interface and an error hasn't already 8662 * been saved, set ill_ifname_pending_err to the error passed 8663 * up. Ignore the error if log is B_FALSE (see comment above). 8664 */ 8665 } else if (log && ill->ill_ifname_pending && 8666 ill->ill_ifname_pending_err == 0) { 8667 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8668 dlea->dl_unix_errno : ENXIO; 8669 } 8670 8671 if (log) 8672 ip_dlpi_error(ill, dlea->dl_error_primitive, 8673 dlea->dl_errno, dlea->dl_unix_errno); 8674 break; 8675 case DL_CAPABILITY_ACK: 8676 ill_capability_ack(ill, mp); 8677 /* 8678 * The message has been handed off to ill_capability_ack 8679 * and must not be freed below 8680 */ 8681 mp = NULL; 8682 break; 8683 8684 case DL_INFO_ACK: 8685 /* Call a routine to handle this one. */ 8686 ill_dlpi_done(ill, DL_INFO_REQ); 8687 ip_ll_subnet_defaults(ill, mp); 8688 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8689 return; 8690 case DL_BIND_ACK: 8691 /* 8692 * We should have an IOCTL waiting on this unless 8693 * sent by ill_dl_phys, in which case just return 8694 */ 8695 ill_dlpi_done(ill, DL_BIND_REQ); 8696 if (ill->ill_ifname_pending) { 8697 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8698 ill_t *, ill, mblk_t *, mp); 8699 break; 8700 } 8701 if (!ioctl_aborted) 8702 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8703 if (mp1 == NULL) { 8704 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8705 break; 8706 } 8707 /* 8708 * mp1 was added by ill_dl_up(). if that is a result of 8709 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8710 */ 8711 if (connp != NULL) 8712 q = CONNP_TO_WQ(connp); 8713 /* 8714 * We are exclusive. So nothing can change even after 8715 * we get the pending mp. 8716 */ 8717 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8718 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8719 8720 mutex_enter(&ill->ill_lock); 8721 ill->ill_dl_up = 1; 8722 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8723 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8724 mutex_exit(&ill->ill_lock); 8725 8726 /* 8727 * Now bring up the resolver; when that is complete, we'll 8728 * create IREs. Note that we intentionally mirror what 8729 * ipif_up() would have done, because we got here by way of 8730 * ill_dl_up(), which stopped ipif_up()'s processing. 8731 */ 8732 if (ill->ill_isv6) { 8733 /* 8734 * v6 interfaces. 8735 * Unlike ARP which has to do another bind 8736 * and attach, once we get here we are 8737 * done with NDP 8738 */ 8739 (void) ipif_resolver_up(ipif, Res_act_initial); 8740 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8741 err = ipif_up_done_v6(ipif); 8742 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8743 /* 8744 * ARP and other v4 external resolvers. 8745 * Leave the pending mblk intact so that 8746 * the ioctl completes in ip_rput(). 8747 */ 8748 if (connp != NULL) 8749 mutex_enter(&connp->conn_lock); 8750 mutex_enter(&ill->ill_lock); 8751 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8752 mutex_exit(&ill->ill_lock); 8753 if (connp != NULL) 8754 mutex_exit(&connp->conn_lock); 8755 if (success) { 8756 err = ipif_resolver_up(ipif, Res_act_initial); 8757 if (err == EINPROGRESS) { 8758 freemsg(mp); 8759 return; 8760 } 8761 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8762 } else { 8763 /* The conn has started closing */ 8764 err = EINTR; 8765 } 8766 } else { 8767 /* 8768 * This one is complete. Reply to pending ioctl. 8769 */ 8770 (void) ipif_resolver_up(ipif, Res_act_initial); 8771 err = ipif_up_done(ipif); 8772 } 8773 8774 if ((err == 0) && (ill->ill_up_ipifs)) { 8775 err = ill_up_ipifs(ill, q, mp1); 8776 if (err == EINPROGRESS) { 8777 freemsg(mp); 8778 return; 8779 } 8780 } 8781 8782 /* 8783 * If we have a moved ipif to bring up, and everything has 8784 * succeeded to this point, bring it up on the IPMP ill. 8785 * Otherwise, leave it down -- the admin can try to bring it 8786 * up by hand if need be. 8787 */ 8788 if (ill->ill_move_ipif != NULL) { 8789 if (err != 0) { 8790 ill->ill_move_ipif = NULL; 8791 } else { 8792 ipif = ill->ill_move_ipif; 8793 ill->ill_move_ipif = NULL; 8794 err = ipif_up(ipif, q, mp1); 8795 if (err == EINPROGRESS) { 8796 freemsg(mp); 8797 return; 8798 } 8799 } 8800 } 8801 break; 8802 8803 case DL_NOTIFY_IND: { 8804 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8805 uint_t orig_mtu; 8806 8807 switch (notify->dl_notification) { 8808 case DL_NOTE_PHYS_ADDR: 8809 err = ill_set_phys_addr(ill, mp); 8810 break; 8811 8812 case DL_NOTE_REPLUMB: 8813 /* 8814 * Directly return after calling ill_replumb(). 8815 * Note that we should not free mp as it is reused 8816 * in the ill_replumb() function. 8817 */ 8818 err = ill_replumb(ill, mp); 8819 return; 8820 8821 case DL_NOTE_FASTPATH_FLUSH: 8822 nce_flush(ill, B_FALSE); 8823 break; 8824 8825 case DL_NOTE_SDU_SIZE: 8826 /* 8827 * The dce and fragmentation code can cope with 8828 * this changing while packets are being sent. 8829 * When packets are sent ip_output will discover 8830 * a change. 8831 * 8832 * Change the MTU size of the interface. 8833 */ 8834 mutex_enter(&ill->ill_lock); 8835 ill->ill_current_frag = (uint_t)notify->dl_data; 8836 if (ill->ill_current_frag > ill->ill_max_frag) 8837 ill->ill_max_frag = ill->ill_current_frag; 8838 8839 orig_mtu = ill->ill_mtu; 8840 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8841 ill->ill_mtu = ill->ill_current_frag; 8842 8843 /* 8844 * If ill_user_mtu was set (via 8845 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8846 */ 8847 if (ill->ill_user_mtu != 0 && 8848 ill->ill_user_mtu < ill->ill_mtu) 8849 ill->ill_mtu = ill->ill_user_mtu; 8850 8851 if (ill->ill_isv6) { 8852 if (ill->ill_mtu < IPV6_MIN_MTU) 8853 ill->ill_mtu = IPV6_MIN_MTU; 8854 } else { 8855 if (ill->ill_mtu < IP_MIN_MTU) 8856 ill->ill_mtu = IP_MIN_MTU; 8857 } 8858 } 8859 mutex_exit(&ill->ill_lock); 8860 /* 8861 * Make sure all dce_generation checks find out 8862 * that ill_mtu has changed. 8863 */ 8864 if (orig_mtu != ill->ill_mtu) { 8865 dce_increment_all_generations(ill->ill_isv6, 8866 ill->ill_ipst); 8867 } 8868 8869 /* 8870 * Refresh IPMP meta-interface MTU if necessary. 8871 */ 8872 if (IS_UNDER_IPMP(ill)) 8873 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8874 break; 8875 8876 case DL_NOTE_LINK_UP: 8877 case DL_NOTE_LINK_DOWN: { 8878 /* 8879 * We are writer. ill / phyint / ipsq assocs stable. 8880 * The RUNNING flag reflects the state of the link. 8881 */ 8882 phyint_t *phyint = ill->ill_phyint; 8883 uint64_t new_phyint_flags; 8884 boolean_t changed = B_FALSE; 8885 boolean_t went_up; 8886 8887 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8888 mutex_enter(&phyint->phyint_lock); 8889 8890 new_phyint_flags = went_up ? 8891 phyint->phyint_flags | PHYI_RUNNING : 8892 phyint->phyint_flags & ~PHYI_RUNNING; 8893 8894 if (IS_IPMP(ill)) { 8895 new_phyint_flags = went_up ? 8896 new_phyint_flags & ~PHYI_FAILED : 8897 new_phyint_flags | PHYI_FAILED; 8898 } 8899 8900 if (new_phyint_flags != phyint->phyint_flags) { 8901 phyint->phyint_flags = new_phyint_flags; 8902 changed = B_TRUE; 8903 } 8904 mutex_exit(&phyint->phyint_lock); 8905 /* 8906 * ill_restart_dad handles the DAD restart and routing 8907 * socket notification logic. 8908 */ 8909 if (changed) { 8910 ill_restart_dad(phyint->phyint_illv4, went_up); 8911 ill_restart_dad(phyint->phyint_illv6, went_up); 8912 } 8913 break; 8914 } 8915 case DL_NOTE_PROMISC_ON_PHYS: { 8916 phyint_t *phyint = ill->ill_phyint; 8917 8918 mutex_enter(&phyint->phyint_lock); 8919 phyint->phyint_flags |= PHYI_PROMISC; 8920 mutex_exit(&phyint->phyint_lock); 8921 break; 8922 } 8923 case DL_NOTE_PROMISC_OFF_PHYS: { 8924 phyint_t *phyint = ill->ill_phyint; 8925 8926 mutex_enter(&phyint->phyint_lock); 8927 phyint->phyint_flags &= ~PHYI_PROMISC; 8928 mutex_exit(&phyint->phyint_lock); 8929 break; 8930 } 8931 case DL_NOTE_CAPAB_RENEG: 8932 /* 8933 * Something changed on the driver side. 8934 * It wants us to renegotiate the capabilities 8935 * on this ill. One possible cause is the aggregation 8936 * interface under us where a port got added or 8937 * went away. 8938 * 8939 * If the capability negotiation is already done 8940 * or is in progress, reset the capabilities and 8941 * mark the ill's ill_capab_reneg to be B_TRUE, 8942 * so that when the ack comes back, we can start 8943 * the renegotiation process. 8944 * 8945 * Note that if ill_capab_reneg is already B_TRUE 8946 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8947 * the capability resetting request has been sent 8948 * and the renegotiation has not been started yet; 8949 * nothing needs to be done in this case. 8950 */ 8951 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8952 ill_capability_reset(ill, B_TRUE); 8953 ipsq_current_finish(ipsq); 8954 break; 8955 default: 8956 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8957 "type 0x%x for DL_NOTIFY_IND\n", 8958 notify->dl_notification)); 8959 break; 8960 } 8961 8962 /* 8963 * As this is an asynchronous operation, we 8964 * should not call ill_dlpi_done 8965 */ 8966 break; 8967 } 8968 case DL_NOTIFY_ACK: { 8969 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8970 8971 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8972 ill->ill_note_link = 1; 8973 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8974 break; 8975 } 8976 case DL_PHYS_ADDR_ACK: { 8977 /* 8978 * As part of plumbing the interface via SIOCSLIFNAME, 8979 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8980 * whose answers we receive here. As each answer is received, 8981 * we call ill_dlpi_done() to dispatch the next request as 8982 * we're processing the current one. Once all answers have 8983 * been received, we use ipsq_pending_mp_get() to dequeue the 8984 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8985 * is invoked from an ill queue, conn_oper_pending_ill is not 8986 * available, but we know the ioctl is pending on ill_wq.) 8987 */ 8988 uint_t paddrlen, paddroff; 8989 uint8_t *addr; 8990 8991 paddrreq = ill->ill_phys_addr_pend; 8992 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8993 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8994 addr = mp->b_rptr + paddroff; 8995 8996 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8997 if (paddrreq == DL_IPV6_TOKEN) { 8998 /* 8999 * bcopy to low-order bits of ill_token 9000 * 9001 * XXX Temporary hack - currently, all known tokens 9002 * are 64 bits, so I'll cheat for the moment. 9003 */ 9004 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 9005 ill->ill_token_length = paddrlen; 9006 break; 9007 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 9008 ASSERT(ill->ill_nd_lla_mp == NULL); 9009 ill_set_ndmp(ill, mp, paddroff, paddrlen); 9010 mp = NULL; 9011 break; 9012 } else if (paddrreq == DL_CURR_DEST_ADDR) { 9013 ASSERT(ill->ill_dest_addr_mp == NULL); 9014 ill->ill_dest_addr_mp = mp; 9015 ill->ill_dest_addr = addr; 9016 mp = NULL; 9017 if (ill->ill_isv6) { 9018 ill_setdesttoken(ill); 9019 ipif_setdestlinklocal(ill->ill_ipif); 9020 } 9021 break; 9022 } 9023 9024 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 9025 ASSERT(ill->ill_phys_addr_mp == NULL); 9026 if (!ill->ill_ifname_pending) 9027 break; 9028 ill->ill_ifname_pending = 0; 9029 if (!ioctl_aborted) 9030 mp1 = ipsq_pending_mp_get(ipsq, &connp); 9031 if (mp1 != NULL) { 9032 ASSERT(connp == NULL); 9033 q = ill->ill_wq; 9034 } 9035 /* 9036 * If any error acks received during the plumbing sequence, 9037 * ill_ifname_pending_err will be set. Break out and send up 9038 * the error to the pending ioctl. 9039 */ 9040 if (ill->ill_ifname_pending_err != 0) { 9041 err = ill->ill_ifname_pending_err; 9042 ill->ill_ifname_pending_err = 0; 9043 break; 9044 } 9045 9046 ill->ill_phys_addr_mp = mp; 9047 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 9048 mp = NULL; 9049 9050 /* 9051 * If paddrlen or ill_phys_addr_length is zero, the DLPI 9052 * provider doesn't support physical addresses. We check both 9053 * paddrlen and ill_phys_addr_length because sppp (PPP) does 9054 * not have physical addresses, but historically adversises a 9055 * physical address length of 0 in its DL_INFO_ACK, but 6 in 9056 * its DL_PHYS_ADDR_ACK. 9057 */ 9058 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 9059 ill->ill_phys_addr = NULL; 9060 } else if (paddrlen != ill->ill_phys_addr_length) { 9061 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 9062 paddrlen, ill->ill_phys_addr_length)); 9063 err = EINVAL; 9064 break; 9065 } 9066 9067 if (ill->ill_nd_lla_mp == NULL) { 9068 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 9069 err = ENOMEM; 9070 break; 9071 } 9072 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 9073 } 9074 9075 if (ill->ill_isv6) { 9076 ill_setdefaulttoken(ill); 9077 ipif_setlinklocal(ill->ill_ipif); 9078 } 9079 break; 9080 } 9081 case DL_OK_ACK: 9082 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 9083 dl_primstr((int)dloa->dl_correct_primitive), 9084 dloa->dl_correct_primitive)); 9085 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 9086 char *, dl_primstr(dloa->dl_correct_primitive), 9087 ill_t *, ill); 9088 9089 switch (dloa->dl_correct_primitive) { 9090 case DL_ENABMULTI_REQ: 9091 case DL_DISABMULTI_REQ: 9092 ill_dlpi_done(ill, dloa->dl_correct_primitive); 9093 break; 9094 case DL_PROMISCON_REQ: 9095 case DL_PROMISCOFF_REQ: 9096 case DL_UNBIND_REQ: 9097 case DL_ATTACH_REQ: 9098 ill_dlpi_done(ill, dloa->dl_correct_primitive); 9099 break; 9100 } 9101 break; 9102 default: 9103 break; 9104 } 9105 9106 freemsg(mp); 9107 if (mp1 == NULL) 9108 return; 9109 9110 /* 9111 * The operation must complete without EINPROGRESS since 9112 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 9113 * the operation will be stuck forever inside the IPSQ. 9114 */ 9115 ASSERT(err != EINPROGRESS); 9116 9117 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 9118 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 9119 ipif_t *, NULL); 9120 9121 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 9122 case 0: 9123 ipsq_current_finish(ipsq); 9124 break; 9125 9126 case SIOCSLIFNAME: 9127 case IF_UNITSEL: { 9128 ill_t *ill_other = ILL_OTHER(ill); 9129 9130 /* 9131 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 9132 * ill has a peer which is in an IPMP group, then place ill 9133 * into the same group. One catch: although ifconfig plumbs 9134 * the appropriate IPMP meta-interface prior to plumbing this 9135 * ill, it is possible for multiple ifconfig applications to 9136 * race (or for another application to adjust plumbing), in 9137 * which case the IPMP meta-interface we need will be missing. 9138 * If so, kick the phyint out of the group. 9139 */ 9140 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 9141 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 9142 ipmp_illgrp_t *illg; 9143 9144 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 9145 if (illg == NULL) 9146 ipmp_phyint_leave_grp(ill->ill_phyint); 9147 else 9148 ipmp_ill_join_illgrp(ill, illg); 9149 } 9150 9151 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 9152 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 9153 else 9154 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 9155 break; 9156 } 9157 case SIOCLIFADDIF: 9158 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 9159 break; 9160 9161 default: 9162 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 9163 break; 9164 } 9165 } 9166 9167 /* 9168 * ip_rput_other is called by ip_rput to handle messages modifying the global 9169 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 9170 */ 9171 /* ARGSUSED */ 9172 void 9173 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9174 { 9175 ill_t *ill = q->q_ptr; 9176 struct iocblk *iocp; 9177 9178 ip1dbg(("ip_rput_other ")); 9179 if (ipsq != NULL) { 9180 ASSERT(IAM_WRITER_IPSQ(ipsq)); 9181 ASSERT(ipsq->ipsq_xop == 9182 ill->ill_phyint->phyint_ipsq->ipsq_xop); 9183 } 9184 9185 switch (mp->b_datap->db_type) { 9186 case M_ERROR: 9187 case M_HANGUP: 9188 /* 9189 * The device has a problem. We force the ILL down. It can 9190 * be brought up again manually using SIOCSIFFLAGS (via 9191 * ifconfig or equivalent). 9192 */ 9193 ASSERT(ipsq != NULL); 9194 if (mp->b_rptr < mp->b_wptr) 9195 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 9196 if (ill->ill_error == 0) 9197 ill->ill_error = ENXIO; 9198 if (!ill_down_start(q, mp)) 9199 return; 9200 ipif_all_down_tail(ipsq, q, mp, NULL); 9201 break; 9202 case M_IOCNAK: { 9203 iocp = (struct iocblk *)mp->b_rptr; 9204 9205 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 9206 /* 9207 * If this was the first attempt, turn off the fastpath 9208 * probing. 9209 */ 9210 mutex_enter(&ill->ill_lock); 9211 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 9212 ill->ill_dlpi_fastpath_state = IDS_FAILED; 9213 mutex_exit(&ill->ill_lock); 9214 /* 9215 * don't flush the nce_t entries: we use them 9216 * as an index to the ncec itself. 9217 */ 9218 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 9219 ill->ill_name)); 9220 } else { 9221 mutex_exit(&ill->ill_lock); 9222 } 9223 freemsg(mp); 9224 break; 9225 } 9226 default: 9227 ASSERT(0); 9228 break; 9229 } 9230 } 9231 9232 /* 9233 * Update any source route, record route or timestamp options 9234 * When it fails it has consumed the message and BUMPed the MIB. 9235 */ 9236 boolean_t 9237 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 9238 ip_recv_attr_t *ira) 9239 { 9240 ipoptp_t opts; 9241 uchar_t *opt; 9242 uint8_t optval; 9243 uint8_t optlen; 9244 ipaddr_t dst; 9245 ipaddr_t ifaddr; 9246 uint32_t ts; 9247 timestruc_t now; 9248 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9249 9250 ip2dbg(("ip_forward_options\n")); 9251 dst = ipha->ipha_dst; 9252 for (optval = ipoptp_first(&opts, ipha); 9253 optval != IPOPT_EOL; 9254 optval = ipoptp_next(&opts)) { 9255 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9256 opt = opts.ipoptp_cur; 9257 optlen = opts.ipoptp_len; 9258 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9259 optval, opts.ipoptp_len)); 9260 switch (optval) { 9261 uint32_t off; 9262 case IPOPT_SSRR: 9263 case IPOPT_LSRR: 9264 /* Check if adminstratively disabled */ 9265 if (!ipst->ips_ip_forward_src_routed) { 9266 BUMP_MIB(dst_ill->ill_ip_mib, 9267 ipIfStatsForwProhibits); 9268 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9269 mp, dst_ill); 9270 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9271 ira); 9272 return (B_FALSE); 9273 } 9274 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9275 /* 9276 * Must be partial since ip_input_options 9277 * checked for strict. 9278 */ 9279 break; 9280 } 9281 off = opt[IPOPT_OFFSET]; 9282 off--; 9283 redo_srr: 9284 if (optlen < IP_ADDR_LEN || 9285 off > optlen - IP_ADDR_LEN) { 9286 /* End of source route */ 9287 ip1dbg(( 9288 "ip_forward_options: end of SR\n")); 9289 break; 9290 } 9291 /* Pick a reasonable address on the outbound if */ 9292 ASSERT(dst_ill != NULL); 9293 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9294 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9295 NULL) != 0) { 9296 /* No source! Shouldn't happen */ 9297 ifaddr = INADDR_ANY; 9298 } 9299 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9300 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9301 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9302 ntohl(dst))); 9303 9304 /* 9305 * Check if our address is present more than 9306 * once as consecutive hops in source route. 9307 */ 9308 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9309 off += IP_ADDR_LEN; 9310 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9311 goto redo_srr; 9312 } 9313 ipha->ipha_dst = dst; 9314 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9315 break; 9316 case IPOPT_RR: 9317 off = opt[IPOPT_OFFSET]; 9318 off--; 9319 if (optlen < IP_ADDR_LEN || 9320 off > optlen - IP_ADDR_LEN) { 9321 /* No more room - ignore */ 9322 ip1dbg(( 9323 "ip_forward_options: end of RR\n")); 9324 break; 9325 } 9326 /* Pick a reasonable address on the outbound if */ 9327 ASSERT(dst_ill != NULL); 9328 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9329 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9330 NULL) != 0) { 9331 /* No source! Shouldn't happen */ 9332 ifaddr = INADDR_ANY; 9333 } 9334 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9335 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9336 break; 9337 case IPOPT_TS: 9338 /* Insert timestamp if there is room */ 9339 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9340 case IPOPT_TS_TSONLY: 9341 off = IPOPT_TS_TIMELEN; 9342 break; 9343 case IPOPT_TS_PRESPEC: 9344 case IPOPT_TS_PRESPEC_RFC791: 9345 /* Verify that the address matched */ 9346 off = opt[IPOPT_OFFSET] - 1; 9347 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9348 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9349 /* Not for us */ 9350 break; 9351 } 9352 /* FALLTHRU */ 9353 case IPOPT_TS_TSANDADDR: 9354 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9355 break; 9356 default: 9357 /* 9358 * ip_*put_options should have already 9359 * dropped this packet. 9360 */ 9361 cmn_err(CE_PANIC, "ip_forward_options: " 9362 "unknown IT - bug in ip_input_options?\n"); 9363 return (B_TRUE); /* Keep "lint" happy */ 9364 } 9365 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9366 /* Increase overflow counter */ 9367 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9368 opt[IPOPT_POS_OV_FLG] = 9369 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9370 (off << 4)); 9371 break; 9372 } 9373 off = opt[IPOPT_OFFSET] - 1; 9374 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9375 case IPOPT_TS_PRESPEC: 9376 case IPOPT_TS_PRESPEC_RFC791: 9377 case IPOPT_TS_TSANDADDR: 9378 /* Pick a reasonable addr on the outbound if */ 9379 ASSERT(dst_ill != NULL); 9380 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9381 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9382 NULL, NULL) != 0) { 9383 /* No source! Shouldn't happen */ 9384 ifaddr = INADDR_ANY; 9385 } 9386 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9387 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9388 /* FALLTHRU */ 9389 case IPOPT_TS_TSONLY: 9390 off = opt[IPOPT_OFFSET] - 1; 9391 /* Compute # of milliseconds since midnight */ 9392 gethrestime(&now); 9393 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9394 now.tv_nsec / (NANOSEC / MILLISEC); 9395 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9396 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9397 break; 9398 } 9399 break; 9400 } 9401 } 9402 return (B_TRUE); 9403 } 9404 9405 /* 9406 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9407 * returns 'true' if there are still fragments left on the queue, in 9408 * which case we restart the timer. 9409 */ 9410 void 9411 ill_frag_timer(void *arg) 9412 { 9413 ill_t *ill = (ill_t *)arg; 9414 boolean_t frag_pending; 9415 ip_stack_t *ipst = ill->ill_ipst; 9416 time_t timeout; 9417 9418 mutex_enter(&ill->ill_lock); 9419 ASSERT(!ill->ill_fragtimer_executing); 9420 if (ill->ill_state_flags & ILL_CONDEMNED) { 9421 ill->ill_frag_timer_id = 0; 9422 mutex_exit(&ill->ill_lock); 9423 return; 9424 } 9425 ill->ill_fragtimer_executing = 1; 9426 mutex_exit(&ill->ill_lock); 9427 9428 if (ill->ill_isv6) 9429 timeout = ipst->ips_ipv6_frag_timeout; 9430 else 9431 timeout = ipst->ips_ip_g_frag_timeout; 9432 9433 frag_pending = ill_frag_timeout(ill, timeout); 9434 9435 /* 9436 * Restart the timer, if we have fragments pending or if someone 9437 * wanted us to be scheduled again. 9438 */ 9439 mutex_enter(&ill->ill_lock); 9440 ill->ill_fragtimer_executing = 0; 9441 ill->ill_frag_timer_id = 0; 9442 if (frag_pending || ill->ill_fragtimer_needrestart) 9443 ill_frag_timer_start(ill); 9444 mutex_exit(&ill->ill_lock); 9445 } 9446 9447 void 9448 ill_frag_timer_start(ill_t *ill) 9449 { 9450 ip_stack_t *ipst = ill->ill_ipst; 9451 clock_t timeo_ms; 9452 9453 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9454 9455 /* If the ill is closing or opening don't proceed */ 9456 if (ill->ill_state_flags & ILL_CONDEMNED) 9457 return; 9458 9459 if (ill->ill_fragtimer_executing) { 9460 /* 9461 * ill_frag_timer is currently executing. Just record the 9462 * the fact that we want the timer to be restarted. 9463 * ill_frag_timer will post a timeout before it returns, 9464 * ensuring it will be called again. 9465 */ 9466 ill->ill_fragtimer_needrestart = 1; 9467 return; 9468 } 9469 9470 if (ill->ill_frag_timer_id == 0) { 9471 if (ill->ill_isv6) 9472 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 9473 else 9474 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 9475 /* 9476 * The timer is neither running nor is the timeout handler 9477 * executing. Post a timeout so that ill_frag_timer will be 9478 * called 9479 */ 9480 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9481 MSEC_TO_TICK(timeo_ms >> 1)); 9482 ill->ill_fragtimer_needrestart = 0; 9483 } 9484 } 9485 9486 /* 9487 * Update any source route, record route or timestamp options. 9488 * Check that we are at end of strict source route. 9489 * The options have already been checked for sanity in ip_input_options(). 9490 */ 9491 boolean_t 9492 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9493 { 9494 ipoptp_t opts; 9495 uchar_t *opt; 9496 uint8_t optval; 9497 uint8_t optlen; 9498 ipaddr_t dst; 9499 ipaddr_t ifaddr; 9500 uint32_t ts; 9501 timestruc_t now; 9502 ill_t *ill = ira->ira_ill; 9503 ip_stack_t *ipst = ill->ill_ipst; 9504 9505 ip2dbg(("ip_input_local_options\n")); 9506 9507 for (optval = ipoptp_first(&opts, ipha); 9508 optval != IPOPT_EOL; 9509 optval = ipoptp_next(&opts)) { 9510 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9511 opt = opts.ipoptp_cur; 9512 optlen = opts.ipoptp_len; 9513 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9514 optval, optlen)); 9515 switch (optval) { 9516 uint32_t off; 9517 case IPOPT_SSRR: 9518 case IPOPT_LSRR: 9519 off = opt[IPOPT_OFFSET]; 9520 off--; 9521 if (optlen < IP_ADDR_LEN || 9522 off > optlen - IP_ADDR_LEN) { 9523 /* End of source route */ 9524 ip1dbg(("ip_input_local_options: end of SR\n")); 9525 break; 9526 } 9527 /* 9528 * This will only happen if two consecutive entries 9529 * in the source route contains our address or if 9530 * it is a packet with a loose source route which 9531 * reaches us before consuming the whole source route 9532 */ 9533 ip1dbg(("ip_input_local_options: not end of SR\n")); 9534 if (optval == IPOPT_SSRR) { 9535 goto bad_src_route; 9536 } 9537 /* 9538 * Hack: instead of dropping the packet truncate the 9539 * source route to what has been used by filling the 9540 * rest with IPOPT_NOP. 9541 */ 9542 opt[IPOPT_OLEN] = (uint8_t)off; 9543 while (off < optlen) { 9544 opt[off++] = IPOPT_NOP; 9545 } 9546 break; 9547 case IPOPT_RR: 9548 off = opt[IPOPT_OFFSET]; 9549 off--; 9550 if (optlen < IP_ADDR_LEN || 9551 off > optlen - IP_ADDR_LEN) { 9552 /* No more room - ignore */ 9553 ip1dbg(( 9554 "ip_input_local_options: end of RR\n")); 9555 break; 9556 } 9557 /* Pick a reasonable address on the outbound if */ 9558 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9559 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9560 NULL) != 0) { 9561 /* No source! Shouldn't happen */ 9562 ifaddr = INADDR_ANY; 9563 } 9564 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9565 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9566 break; 9567 case IPOPT_TS: 9568 /* Insert timestamp if there is romm */ 9569 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9570 case IPOPT_TS_TSONLY: 9571 off = IPOPT_TS_TIMELEN; 9572 break; 9573 case IPOPT_TS_PRESPEC: 9574 case IPOPT_TS_PRESPEC_RFC791: 9575 /* Verify that the address matched */ 9576 off = opt[IPOPT_OFFSET] - 1; 9577 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9578 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9579 /* Not for us */ 9580 break; 9581 } 9582 /* FALLTHRU */ 9583 case IPOPT_TS_TSANDADDR: 9584 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9585 break; 9586 default: 9587 /* 9588 * ip_*put_options should have already 9589 * dropped this packet. 9590 */ 9591 cmn_err(CE_PANIC, "ip_input_local_options: " 9592 "unknown IT - bug in ip_input_options?\n"); 9593 return (B_TRUE); /* Keep "lint" happy */ 9594 } 9595 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9596 /* Increase overflow counter */ 9597 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9598 opt[IPOPT_POS_OV_FLG] = 9599 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9600 (off << 4)); 9601 break; 9602 } 9603 off = opt[IPOPT_OFFSET] - 1; 9604 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9605 case IPOPT_TS_PRESPEC: 9606 case IPOPT_TS_PRESPEC_RFC791: 9607 case IPOPT_TS_TSANDADDR: 9608 /* Pick a reasonable addr on the outbound if */ 9609 if (ip_select_source_v4(ill, INADDR_ANY, 9610 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9611 &ifaddr, NULL, NULL) != 0) { 9612 /* No source! Shouldn't happen */ 9613 ifaddr = INADDR_ANY; 9614 } 9615 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9616 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9617 /* FALLTHRU */ 9618 case IPOPT_TS_TSONLY: 9619 off = opt[IPOPT_OFFSET] - 1; 9620 /* Compute # of milliseconds since midnight */ 9621 gethrestime(&now); 9622 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9623 now.tv_nsec / (NANOSEC / MILLISEC); 9624 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9625 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9626 break; 9627 } 9628 break; 9629 } 9630 } 9631 return (B_TRUE); 9632 9633 bad_src_route: 9634 /* make sure we clear any indication of a hardware checksum */ 9635 DB_CKSUMFLAGS(mp) = 0; 9636 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9637 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9638 return (B_FALSE); 9639 9640 } 9641 9642 /* 9643 * Process IP options in an inbound packet. Always returns the nexthop. 9644 * Normally this is the passed in nexthop, but if there is an option 9645 * that effects the nexthop (such as a source route) that will be returned. 9646 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9647 * and mp freed. 9648 */ 9649 ipaddr_t 9650 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9651 ip_recv_attr_t *ira, int *errorp) 9652 { 9653 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9654 ipoptp_t opts; 9655 uchar_t *opt; 9656 uint8_t optval; 9657 uint8_t optlen; 9658 intptr_t code = 0; 9659 ire_t *ire; 9660 9661 ip2dbg(("ip_input_options\n")); 9662 *errorp = 0; 9663 for (optval = ipoptp_first(&opts, ipha); 9664 optval != IPOPT_EOL; 9665 optval = ipoptp_next(&opts)) { 9666 opt = opts.ipoptp_cur; 9667 optlen = opts.ipoptp_len; 9668 ip2dbg(("ip_input_options: opt %d, len %d\n", 9669 optval, optlen)); 9670 /* 9671 * Note: we need to verify the checksum before we 9672 * modify anything thus this routine only extracts the next 9673 * hop dst from any source route. 9674 */ 9675 switch (optval) { 9676 uint32_t off; 9677 case IPOPT_SSRR: 9678 case IPOPT_LSRR: 9679 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9680 if (optval == IPOPT_SSRR) { 9681 ip1dbg(("ip_input_options: not next" 9682 " strict source route 0x%x\n", 9683 ntohl(dst))); 9684 code = (char *)&ipha->ipha_dst - 9685 (char *)ipha; 9686 goto param_prob; /* RouterReq's */ 9687 } 9688 ip2dbg(("ip_input_options: " 9689 "not next source route 0x%x\n", 9690 ntohl(dst))); 9691 break; 9692 } 9693 9694 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9695 ip1dbg(( 9696 "ip_input_options: bad option offset\n")); 9697 code = (char *)&opt[IPOPT_OLEN] - 9698 (char *)ipha; 9699 goto param_prob; 9700 } 9701 off = opt[IPOPT_OFFSET]; 9702 off--; 9703 redo_srr: 9704 if (optlen < IP_ADDR_LEN || 9705 off > optlen - IP_ADDR_LEN) { 9706 /* End of source route */ 9707 ip1dbg(("ip_input_options: end of SR\n")); 9708 break; 9709 } 9710 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9711 ip1dbg(("ip_input_options: next hop 0x%x\n", 9712 ntohl(dst))); 9713 9714 /* 9715 * Check if our address is present more than 9716 * once as consecutive hops in source route. 9717 * XXX verify per-interface ip_forwarding 9718 * for source route? 9719 */ 9720 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9721 off += IP_ADDR_LEN; 9722 goto redo_srr; 9723 } 9724 9725 if (dst == htonl(INADDR_LOOPBACK)) { 9726 ip1dbg(("ip_input_options: loopback addr in " 9727 "source route!\n")); 9728 goto bad_src_route; 9729 } 9730 /* 9731 * For strict: verify that dst is directly 9732 * reachable. 9733 */ 9734 if (optval == IPOPT_SSRR) { 9735 ire = ire_ftable_lookup_v4(dst, 0, 0, 9736 IRE_IF_ALL, NULL, ALL_ZONES, 9737 ira->ira_tsl, 9738 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9739 NULL); 9740 if (ire == NULL) { 9741 ip1dbg(("ip_input_options: SSRR not " 9742 "directly reachable: 0x%x\n", 9743 ntohl(dst))); 9744 goto bad_src_route; 9745 } 9746 ire_refrele(ire); 9747 } 9748 /* 9749 * Defer update of the offset and the record route 9750 * until the packet is forwarded. 9751 */ 9752 break; 9753 case IPOPT_RR: 9754 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9755 ip1dbg(( 9756 "ip_input_options: bad option offset\n")); 9757 code = (char *)&opt[IPOPT_OLEN] - 9758 (char *)ipha; 9759 goto param_prob; 9760 } 9761 break; 9762 case IPOPT_TS: 9763 /* 9764 * Verify that length >= 5 and that there is either 9765 * room for another timestamp or that the overflow 9766 * counter is not maxed out. 9767 */ 9768 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9769 if (optlen < IPOPT_MINLEN_IT) { 9770 goto param_prob; 9771 } 9772 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9773 ip1dbg(( 9774 "ip_input_options: bad option offset\n")); 9775 code = (char *)&opt[IPOPT_OFFSET] - 9776 (char *)ipha; 9777 goto param_prob; 9778 } 9779 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9780 case IPOPT_TS_TSONLY: 9781 off = IPOPT_TS_TIMELEN; 9782 break; 9783 case IPOPT_TS_TSANDADDR: 9784 case IPOPT_TS_PRESPEC: 9785 case IPOPT_TS_PRESPEC_RFC791: 9786 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9787 break; 9788 default: 9789 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9790 (char *)ipha; 9791 goto param_prob; 9792 } 9793 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9794 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9795 /* 9796 * No room and the overflow counter is 15 9797 * already. 9798 */ 9799 goto param_prob; 9800 } 9801 break; 9802 } 9803 } 9804 9805 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9806 return (dst); 9807 } 9808 9809 ip1dbg(("ip_input_options: error processing IP options.")); 9810 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9811 9812 param_prob: 9813 /* make sure we clear any indication of a hardware checksum */ 9814 DB_CKSUMFLAGS(mp) = 0; 9815 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9816 icmp_param_problem(mp, (uint8_t)code, ira); 9817 *errorp = -1; 9818 return (dst); 9819 9820 bad_src_route: 9821 /* make sure we clear any indication of a hardware checksum */ 9822 DB_CKSUMFLAGS(mp) = 0; 9823 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9824 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9825 *errorp = -1; 9826 return (dst); 9827 } 9828 9829 /* 9830 * IP & ICMP info in >=14 msg's ... 9831 * - ip fixed part (mib2_ip_t) 9832 * - icmp fixed part (mib2_icmp_t) 9833 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9834 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9835 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9836 * - ipRouteAttributeTable (ip 102) labeled routes 9837 * - ip multicast membership (ip_member_t) 9838 * - ip multicast source filtering (ip_grpsrc_t) 9839 * - igmp fixed part (struct igmpstat) 9840 * - multicast routing stats (struct mrtstat) 9841 * - multicast routing vifs (array of struct vifctl) 9842 * - multicast routing routes (array of struct mfcctl) 9843 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9844 * One per ill plus one generic 9845 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9846 * One per ill plus one generic 9847 * - ipv6RouteEntry all IPv6 IREs 9848 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9849 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9850 * - ipv6AddrEntry all IPv6 ipifs 9851 * - ipv6 multicast membership (ipv6_member_t) 9852 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9853 * 9854 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9855 * already filled in by the caller. 9856 * Return value of 0 indicates that no messages were sent and caller 9857 * should free mpctl. 9858 */ 9859 int 9860 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 9861 { 9862 ip_stack_t *ipst; 9863 sctp_stack_t *sctps; 9864 9865 if (q->q_next != NULL) { 9866 ipst = ILLQ_TO_IPST(q); 9867 } else { 9868 ipst = CONNQ_TO_IPST(q); 9869 } 9870 ASSERT(ipst != NULL); 9871 sctps = ipst->ips_netstack->netstack_sctp; 9872 9873 if (mpctl == NULL || mpctl->b_cont == NULL) { 9874 return (0); 9875 } 9876 9877 /* 9878 * For the purposes of the (broken) packet shell use 9879 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9880 * to make TCP and UDP appear first in the list of mib items. 9881 * TBD: We could expand this and use it in netstat so that 9882 * the kernel doesn't have to produce large tables (connections, 9883 * routes, etc) when netstat only wants the statistics or a particular 9884 * table. 9885 */ 9886 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9887 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9888 return (1); 9889 } 9890 } 9891 9892 if (level != MIB2_TCP) { 9893 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 9894 return (1); 9895 } 9896 } 9897 9898 if (level != MIB2_UDP) { 9899 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 9900 return (1); 9901 } 9902 } 9903 9904 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9905 ipst)) == NULL) { 9906 return (1); 9907 } 9908 9909 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 9910 return (1); 9911 } 9912 9913 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9914 return (1); 9915 } 9916 9917 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9918 return (1); 9919 } 9920 9921 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9922 return (1); 9923 } 9924 9925 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9926 return (1); 9927 } 9928 9929 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 9930 return (1); 9931 } 9932 9933 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 9934 return (1); 9935 } 9936 9937 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9938 return (1); 9939 } 9940 9941 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9942 return (1); 9943 } 9944 9945 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9946 return (1); 9947 } 9948 9949 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9950 return (1); 9951 } 9952 9953 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9954 return (1); 9955 } 9956 9957 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9958 return (1); 9959 } 9960 9961 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9962 if (mpctl == NULL) 9963 return (1); 9964 9965 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9966 if (mpctl == NULL) 9967 return (1); 9968 9969 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9970 return (1); 9971 } 9972 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9973 return (1); 9974 } 9975 freemsg(mpctl); 9976 return (1); 9977 } 9978 9979 /* Get global (legacy) IPv4 statistics */ 9980 static mblk_t * 9981 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9982 ip_stack_t *ipst) 9983 { 9984 mib2_ip_t old_ip_mib; 9985 struct opthdr *optp; 9986 mblk_t *mp2ctl; 9987 9988 /* 9989 * make a copy of the original message 9990 */ 9991 mp2ctl = copymsg(mpctl); 9992 9993 /* fixed length IP structure... */ 9994 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9995 optp->level = MIB2_IP; 9996 optp->name = 0; 9997 SET_MIB(old_ip_mib.ipForwarding, 9998 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9999 SET_MIB(old_ip_mib.ipDefaultTTL, 10000 (uint32_t)ipst->ips_ip_def_ttl); 10001 SET_MIB(old_ip_mib.ipReasmTimeout, 10002 ipst->ips_ip_g_frag_timeout); 10003 SET_MIB(old_ip_mib.ipAddrEntrySize, 10004 sizeof (mib2_ipAddrEntry_t)); 10005 SET_MIB(old_ip_mib.ipRouteEntrySize, 10006 sizeof (mib2_ipRouteEntry_t)); 10007 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 10008 sizeof (mib2_ipNetToMediaEntry_t)); 10009 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 10010 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 10011 SET_MIB(old_ip_mib.ipRouteAttributeSize, 10012 sizeof (mib2_ipAttributeEntry_t)); 10013 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 10014 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 10015 10016 /* 10017 * Grab the statistics from the new IP MIB 10018 */ 10019 SET_MIB(old_ip_mib.ipInReceives, 10020 (uint32_t)ipmib->ipIfStatsHCInReceives); 10021 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 10022 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 10023 SET_MIB(old_ip_mib.ipForwDatagrams, 10024 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 10025 SET_MIB(old_ip_mib.ipInUnknownProtos, 10026 ipmib->ipIfStatsInUnknownProtos); 10027 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 10028 SET_MIB(old_ip_mib.ipInDelivers, 10029 (uint32_t)ipmib->ipIfStatsHCInDelivers); 10030 SET_MIB(old_ip_mib.ipOutRequests, 10031 (uint32_t)ipmib->ipIfStatsHCOutRequests); 10032 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 10033 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 10034 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 10035 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 10036 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 10037 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 10038 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 10039 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 10040 10041 /* ipRoutingDiscards is not being used */ 10042 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 10043 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 10044 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 10045 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 10046 SET_MIB(old_ip_mib.ipReasmDuplicates, 10047 ipmib->ipIfStatsReasmDuplicates); 10048 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 10049 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 10050 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 10051 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 10052 SET_MIB(old_ip_mib.rawipInOverflows, 10053 ipmib->rawipIfStatsInOverflows); 10054 10055 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 10056 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 10057 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 10058 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 10059 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 10060 ipmib->ipIfStatsOutSwitchIPVersion); 10061 10062 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 10063 (int)sizeof (old_ip_mib))) { 10064 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 10065 (uint_t)sizeof (old_ip_mib))); 10066 } 10067 10068 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10069 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 10070 (int)optp->level, (int)optp->name, (int)optp->len)); 10071 qreply(q, mpctl); 10072 return (mp2ctl); 10073 } 10074 10075 /* Per interface IPv4 statistics */ 10076 static mblk_t * 10077 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10078 { 10079 struct opthdr *optp; 10080 mblk_t *mp2ctl; 10081 ill_t *ill; 10082 ill_walk_context_t ctx; 10083 mblk_t *mp_tail = NULL; 10084 mib2_ipIfStatsEntry_t global_ip_mib; 10085 10086 /* 10087 * Make a copy of the original message 10088 */ 10089 mp2ctl = copymsg(mpctl); 10090 10091 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10092 optp->level = MIB2_IP; 10093 optp->name = MIB2_IP_TRAFFIC_STATS; 10094 /* Include "unknown interface" ip_mib */ 10095 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 10096 ipst->ips_ip_mib.ipIfStatsIfIndex = 10097 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10098 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 10099 (ipst->ips_ip_g_forward ? 1 : 2)); 10100 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 10101 (uint32_t)ipst->ips_ip_def_ttl); 10102 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 10103 sizeof (mib2_ipIfStatsEntry_t)); 10104 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 10105 sizeof (mib2_ipAddrEntry_t)); 10106 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 10107 sizeof (mib2_ipRouteEntry_t)); 10108 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 10109 sizeof (mib2_ipNetToMediaEntry_t)); 10110 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 10111 sizeof (ip_member_t)); 10112 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 10113 sizeof (ip_grpsrc_t)); 10114 10115 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10116 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 10117 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 10118 "failed to allocate %u bytes\n", 10119 (uint_t)sizeof (ipst->ips_ip_mib))); 10120 } 10121 10122 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 10123 10124 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10125 ill = ILL_START_WALK_V4(&ctx, ipst); 10126 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10127 ill->ill_ip_mib->ipIfStatsIfIndex = 10128 ill->ill_phyint->phyint_ifindex; 10129 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10130 (ipst->ips_ip_g_forward ? 1 : 2)); 10131 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 10132 (uint32_t)ipst->ips_ip_def_ttl); 10133 10134 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 10135 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10136 (char *)ill->ill_ip_mib, 10137 (int)sizeof (*ill->ill_ip_mib))) { 10138 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 10139 "failed to allocate %u bytes\n", 10140 (uint_t)sizeof (*ill->ill_ip_mib))); 10141 } 10142 } 10143 rw_exit(&ipst->ips_ill_g_lock); 10144 10145 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10146 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 10147 "level %d, name %d, len %d\n", 10148 (int)optp->level, (int)optp->name, (int)optp->len)); 10149 qreply(q, mpctl); 10150 10151 if (mp2ctl == NULL) 10152 return (NULL); 10153 10154 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 10155 } 10156 10157 /* Global IPv4 ICMP statistics */ 10158 static mblk_t * 10159 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10160 { 10161 struct opthdr *optp; 10162 mblk_t *mp2ctl; 10163 10164 /* 10165 * Make a copy of the original message 10166 */ 10167 mp2ctl = copymsg(mpctl); 10168 10169 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10170 optp->level = MIB2_ICMP; 10171 optp->name = 0; 10172 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 10173 (int)sizeof (ipst->ips_icmp_mib))) { 10174 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 10175 (uint_t)sizeof (ipst->ips_icmp_mib))); 10176 } 10177 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10178 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 10179 (int)optp->level, (int)optp->name, (int)optp->len)); 10180 qreply(q, mpctl); 10181 return (mp2ctl); 10182 } 10183 10184 /* Global IPv4 IGMP statistics */ 10185 static mblk_t * 10186 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10187 { 10188 struct opthdr *optp; 10189 mblk_t *mp2ctl; 10190 10191 /* 10192 * make a copy of the original message 10193 */ 10194 mp2ctl = copymsg(mpctl); 10195 10196 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10197 optp->level = EXPER_IGMP; 10198 optp->name = 0; 10199 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 10200 (int)sizeof (ipst->ips_igmpstat))) { 10201 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 10202 (uint_t)sizeof (ipst->ips_igmpstat))); 10203 } 10204 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10205 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 10206 (int)optp->level, (int)optp->name, (int)optp->len)); 10207 qreply(q, mpctl); 10208 return (mp2ctl); 10209 } 10210 10211 /* Global IPv4 Multicast Routing statistics */ 10212 static mblk_t * 10213 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10214 { 10215 struct opthdr *optp; 10216 mblk_t *mp2ctl; 10217 10218 /* 10219 * make a copy of the original message 10220 */ 10221 mp2ctl = copymsg(mpctl); 10222 10223 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10224 optp->level = EXPER_DVMRP; 10225 optp->name = 0; 10226 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 10227 ip0dbg(("ip_mroute_stats: failed\n")); 10228 } 10229 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10230 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 10231 (int)optp->level, (int)optp->name, (int)optp->len)); 10232 qreply(q, mpctl); 10233 return (mp2ctl); 10234 } 10235 10236 /* IPv4 address information */ 10237 static mblk_t * 10238 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10239 { 10240 struct opthdr *optp; 10241 mblk_t *mp2ctl; 10242 mblk_t *mp_tail = NULL; 10243 ill_t *ill; 10244 ipif_t *ipif; 10245 uint_t bitval; 10246 mib2_ipAddrEntry_t mae; 10247 zoneid_t zoneid; 10248 ill_walk_context_t ctx; 10249 10250 /* 10251 * make a copy of the original message 10252 */ 10253 mp2ctl = copymsg(mpctl); 10254 10255 /* ipAddrEntryTable */ 10256 10257 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10258 optp->level = MIB2_IP; 10259 optp->name = MIB2_IP_ADDR; 10260 zoneid = Q_TO_CONN(q)->conn_zoneid; 10261 10262 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10263 ill = ILL_START_WALK_V4(&ctx, ipst); 10264 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10265 for (ipif = ill->ill_ipif; ipif != NULL; 10266 ipif = ipif->ipif_next) { 10267 if (ipif->ipif_zoneid != zoneid && 10268 ipif->ipif_zoneid != ALL_ZONES) 10269 continue; 10270 /* Sum of count from dead IRE_LO* and our current */ 10271 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10272 if (ipif->ipif_ire_local != NULL) { 10273 mae.ipAdEntInfo.ae_ibcnt += 10274 ipif->ipif_ire_local->ire_ib_pkt_count; 10275 } 10276 mae.ipAdEntInfo.ae_obcnt = 0; 10277 mae.ipAdEntInfo.ae_focnt = 0; 10278 10279 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10280 OCTET_LENGTH); 10281 mae.ipAdEntIfIndex.o_length = 10282 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10283 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10284 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10285 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10286 mae.ipAdEntInfo.ae_subnet_len = 10287 ip_mask_to_plen(ipif->ipif_net_mask); 10288 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10289 for (bitval = 1; 10290 bitval && 10291 !(bitval & ipif->ipif_brd_addr); 10292 bitval <<= 1) 10293 noop; 10294 mae.ipAdEntBcastAddr = bitval; 10295 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10296 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10297 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 10298 mae.ipAdEntInfo.ae_broadcast_addr = 10299 ipif->ipif_brd_addr; 10300 mae.ipAdEntInfo.ae_pp_dst_addr = 10301 ipif->ipif_pp_dst_addr; 10302 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10303 ill->ill_flags | ill->ill_phyint->phyint_flags; 10304 mae.ipAdEntRetransmitTime = 10305 ill->ill_reachable_retrans_time; 10306 10307 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10308 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 10309 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10310 "allocate %u bytes\n", 10311 (uint_t)sizeof (mib2_ipAddrEntry_t))); 10312 } 10313 } 10314 } 10315 rw_exit(&ipst->ips_ill_g_lock); 10316 10317 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10318 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10319 (int)optp->level, (int)optp->name, (int)optp->len)); 10320 qreply(q, mpctl); 10321 return (mp2ctl); 10322 } 10323 10324 /* IPv6 address information */ 10325 static mblk_t * 10326 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10327 { 10328 struct opthdr *optp; 10329 mblk_t *mp2ctl; 10330 mblk_t *mp_tail = NULL; 10331 ill_t *ill; 10332 ipif_t *ipif; 10333 mib2_ipv6AddrEntry_t mae6; 10334 zoneid_t zoneid; 10335 ill_walk_context_t ctx; 10336 10337 /* 10338 * make a copy of the original message 10339 */ 10340 mp2ctl = copymsg(mpctl); 10341 10342 /* ipv6AddrEntryTable */ 10343 10344 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10345 optp->level = MIB2_IP6; 10346 optp->name = MIB2_IP6_ADDR; 10347 zoneid = Q_TO_CONN(q)->conn_zoneid; 10348 10349 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10350 ill = ILL_START_WALK_V6(&ctx, ipst); 10351 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10352 for (ipif = ill->ill_ipif; ipif != NULL; 10353 ipif = ipif->ipif_next) { 10354 if (ipif->ipif_zoneid != zoneid && 10355 ipif->ipif_zoneid != ALL_ZONES) 10356 continue; 10357 /* Sum of count from dead IRE_LO* and our current */ 10358 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10359 if (ipif->ipif_ire_local != NULL) { 10360 mae6.ipv6AddrInfo.ae_ibcnt += 10361 ipif->ipif_ire_local->ire_ib_pkt_count; 10362 } 10363 mae6.ipv6AddrInfo.ae_obcnt = 0; 10364 mae6.ipv6AddrInfo.ae_focnt = 0; 10365 10366 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10367 OCTET_LENGTH); 10368 mae6.ipv6AddrIfIndex.o_length = 10369 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10370 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10371 mae6.ipv6AddrPfxLength = 10372 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10373 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10374 mae6.ipv6AddrInfo.ae_subnet_len = 10375 mae6.ipv6AddrPfxLength; 10376 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10377 10378 /* Type: stateless(1), stateful(2), unknown(3) */ 10379 if (ipif->ipif_flags & IPIF_ADDRCONF) 10380 mae6.ipv6AddrType = 1; 10381 else 10382 mae6.ipv6AddrType = 2; 10383 /* Anycast: true(1), false(2) */ 10384 if (ipif->ipif_flags & IPIF_ANYCAST) 10385 mae6.ipv6AddrAnycastFlag = 1; 10386 else 10387 mae6.ipv6AddrAnycastFlag = 2; 10388 10389 /* 10390 * Address status: preferred(1), deprecated(2), 10391 * invalid(3), inaccessible(4), unknown(5) 10392 */ 10393 if (ipif->ipif_flags & IPIF_NOLOCAL) 10394 mae6.ipv6AddrStatus = 3; 10395 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10396 mae6.ipv6AddrStatus = 2; 10397 else 10398 mae6.ipv6AddrStatus = 1; 10399 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10400 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 10401 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10402 ipif->ipif_v6pp_dst_addr; 10403 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10404 ill->ill_flags | ill->ill_phyint->phyint_flags; 10405 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10406 mae6.ipv6AddrIdentifier = ill->ill_token; 10407 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10408 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10409 mae6.ipv6AddrRetransmitTime = 10410 ill->ill_reachable_retrans_time; 10411 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10412 (char *)&mae6, 10413 (int)sizeof (mib2_ipv6AddrEntry_t))) { 10414 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10415 "allocate %u bytes\n", 10416 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 10417 } 10418 } 10419 } 10420 rw_exit(&ipst->ips_ill_g_lock); 10421 10422 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10423 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10424 (int)optp->level, (int)optp->name, (int)optp->len)); 10425 qreply(q, mpctl); 10426 return (mp2ctl); 10427 } 10428 10429 /* IPv4 multicast group membership. */ 10430 static mblk_t * 10431 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10432 { 10433 struct opthdr *optp; 10434 mblk_t *mp2ctl; 10435 ill_t *ill; 10436 ipif_t *ipif; 10437 ilm_t *ilm; 10438 ip_member_t ipm; 10439 mblk_t *mp_tail = NULL; 10440 ill_walk_context_t ctx; 10441 zoneid_t zoneid; 10442 10443 /* 10444 * make a copy of the original message 10445 */ 10446 mp2ctl = copymsg(mpctl); 10447 zoneid = Q_TO_CONN(q)->conn_zoneid; 10448 10449 /* ipGroupMember table */ 10450 optp = (struct opthdr *)&mpctl->b_rptr[ 10451 sizeof (struct T_optmgmt_ack)]; 10452 optp->level = MIB2_IP; 10453 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10454 10455 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10456 ill = ILL_START_WALK_V4(&ctx, ipst); 10457 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10458 /* Make sure the ill isn't going away. */ 10459 if (!ill_check_and_refhold(ill)) 10460 continue; 10461 rw_exit(&ipst->ips_ill_g_lock); 10462 rw_enter(&ill->ill_mcast_lock, RW_READER); 10463 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10464 if (ilm->ilm_zoneid != zoneid && 10465 ilm->ilm_zoneid != ALL_ZONES) 10466 continue; 10467 10468 /* Is there an ipif for ilm_ifaddr? */ 10469 for (ipif = ill->ill_ipif; ipif != NULL; 10470 ipif = ipif->ipif_next) { 10471 if (!IPIF_IS_CONDEMNED(ipif) && 10472 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10473 ilm->ilm_ifaddr != INADDR_ANY) 10474 break; 10475 } 10476 if (ipif != NULL) { 10477 ipif_get_name(ipif, 10478 ipm.ipGroupMemberIfIndex.o_bytes, 10479 OCTET_LENGTH); 10480 } else { 10481 ill_get_name(ill, 10482 ipm.ipGroupMemberIfIndex.o_bytes, 10483 OCTET_LENGTH); 10484 } 10485 ipm.ipGroupMemberIfIndex.o_length = 10486 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10487 10488 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10489 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10490 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10491 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10492 (char *)&ipm, (int)sizeof (ipm))) { 10493 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10494 "failed to allocate %u bytes\n", 10495 (uint_t)sizeof (ipm))); 10496 } 10497 } 10498 rw_exit(&ill->ill_mcast_lock); 10499 ill_refrele(ill); 10500 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10501 } 10502 rw_exit(&ipst->ips_ill_g_lock); 10503 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10504 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10505 (int)optp->level, (int)optp->name, (int)optp->len)); 10506 qreply(q, mpctl); 10507 return (mp2ctl); 10508 } 10509 10510 /* IPv6 multicast group membership. */ 10511 static mblk_t * 10512 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10513 { 10514 struct opthdr *optp; 10515 mblk_t *mp2ctl; 10516 ill_t *ill; 10517 ilm_t *ilm; 10518 ipv6_member_t ipm6; 10519 mblk_t *mp_tail = NULL; 10520 ill_walk_context_t ctx; 10521 zoneid_t zoneid; 10522 10523 /* 10524 * make a copy of the original message 10525 */ 10526 mp2ctl = copymsg(mpctl); 10527 zoneid = Q_TO_CONN(q)->conn_zoneid; 10528 10529 /* ip6GroupMember table */ 10530 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10531 optp->level = MIB2_IP6; 10532 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10533 10534 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10535 ill = ILL_START_WALK_V6(&ctx, ipst); 10536 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10537 /* Make sure the ill isn't going away. */ 10538 if (!ill_check_and_refhold(ill)) 10539 continue; 10540 rw_exit(&ipst->ips_ill_g_lock); 10541 /* 10542 * Normally we don't have any members on under IPMP interfaces. 10543 * We report them as a debugging aid. 10544 */ 10545 rw_enter(&ill->ill_mcast_lock, RW_READER); 10546 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10547 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10548 if (ilm->ilm_zoneid != zoneid && 10549 ilm->ilm_zoneid != ALL_ZONES) 10550 continue; /* not this zone */ 10551 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10552 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10553 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10554 if (!snmp_append_data2(mpctl->b_cont, 10555 &mp_tail, 10556 (char *)&ipm6, (int)sizeof (ipm6))) { 10557 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10558 "failed to allocate %u bytes\n", 10559 (uint_t)sizeof (ipm6))); 10560 } 10561 } 10562 rw_exit(&ill->ill_mcast_lock); 10563 ill_refrele(ill); 10564 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10565 } 10566 rw_exit(&ipst->ips_ill_g_lock); 10567 10568 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10569 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10570 (int)optp->level, (int)optp->name, (int)optp->len)); 10571 qreply(q, mpctl); 10572 return (mp2ctl); 10573 } 10574 10575 /* IP multicast filtered sources */ 10576 static mblk_t * 10577 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10578 { 10579 struct opthdr *optp; 10580 mblk_t *mp2ctl; 10581 ill_t *ill; 10582 ipif_t *ipif; 10583 ilm_t *ilm; 10584 ip_grpsrc_t ips; 10585 mblk_t *mp_tail = NULL; 10586 ill_walk_context_t ctx; 10587 zoneid_t zoneid; 10588 int i; 10589 slist_t *sl; 10590 10591 /* 10592 * make a copy of the original message 10593 */ 10594 mp2ctl = copymsg(mpctl); 10595 zoneid = Q_TO_CONN(q)->conn_zoneid; 10596 10597 /* ipGroupSource table */ 10598 optp = (struct opthdr *)&mpctl->b_rptr[ 10599 sizeof (struct T_optmgmt_ack)]; 10600 optp->level = MIB2_IP; 10601 optp->name = EXPER_IP_GROUP_SOURCES; 10602 10603 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10604 ill = ILL_START_WALK_V4(&ctx, ipst); 10605 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10606 /* Make sure the ill isn't going away. */ 10607 if (!ill_check_and_refhold(ill)) 10608 continue; 10609 rw_exit(&ipst->ips_ill_g_lock); 10610 rw_enter(&ill->ill_mcast_lock, RW_READER); 10611 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10612 sl = ilm->ilm_filter; 10613 if (ilm->ilm_zoneid != zoneid && 10614 ilm->ilm_zoneid != ALL_ZONES) 10615 continue; 10616 if (SLIST_IS_EMPTY(sl)) 10617 continue; 10618 10619 /* Is there an ipif for ilm_ifaddr? */ 10620 for (ipif = ill->ill_ipif; ipif != NULL; 10621 ipif = ipif->ipif_next) { 10622 if (!IPIF_IS_CONDEMNED(ipif) && 10623 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10624 ilm->ilm_ifaddr != INADDR_ANY) 10625 break; 10626 } 10627 if (ipif != NULL) { 10628 ipif_get_name(ipif, 10629 ips.ipGroupSourceIfIndex.o_bytes, 10630 OCTET_LENGTH); 10631 } else { 10632 ill_get_name(ill, 10633 ips.ipGroupSourceIfIndex.o_bytes, 10634 OCTET_LENGTH); 10635 } 10636 ips.ipGroupSourceIfIndex.o_length = 10637 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10638 10639 ips.ipGroupSourceGroup = ilm->ilm_addr; 10640 for (i = 0; i < sl->sl_numsrc; i++) { 10641 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10642 continue; 10643 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10644 ips.ipGroupSourceAddress); 10645 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10646 (char *)&ips, (int)sizeof (ips)) == 0) { 10647 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10648 " failed to allocate %u bytes\n", 10649 (uint_t)sizeof (ips))); 10650 } 10651 } 10652 } 10653 rw_exit(&ill->ill_mcast_lock); 10654 ill_refrele(ill); 10655 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10656 } 10657 rw_exit(&ipst->ips_ill_g_lock); 10658 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10659 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10660 (int)optp->level, (int)optp->name, (int)optp->len)); 10661 qreply(q, mpctl); 10662 return (mp2ctl); 10663 } 10664 10665 /* IPv6 multicast filtered sources. */ 10666 static mblk_t * 10667 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10668 { 10669 struct opthdr *optp; 10670 mblk_t *mp2ctl; 10671 ill_t *ill; 10672 ilm_t *ilm; 10673 ipv6_grpsrc_t ips6; 10674 mblk_t *mp_tail = NULL; 10675 ill_walk_context_t ctx; 10676 zoneid_t zoneid; 10677 int i; 10678 slist_t *sl; 10679 10680 /* 10681 * make a copy of the original message 10682 */ 10683 mp2ctl = copymsg(mpctl); 10684 zoneid = Q_TO_CONN(q)->conn_zoneid; 10685 10686 /* ip6GroupMember table */ 10687 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10688 optp->level = MIB2_IP6; 10689 optp->name = EXPER_IP6_GROUP_SOURCES; 10690 10691 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10692 ill = ILL_START_WALK_V6(&ctx, ipst); 10693 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10694 /* Make sure the ill isn't going away. */ 10695 if (!ill_check_and_refhold(ill)) 10696 continue; 10697 rw_exit(&ipst->ips_ill_g_lock); 10698 /* 10699 * Normally we don't have any members on under IPMP interfaces. 10700 * We report them as a debugging aid. 10701 */ 10702 rw_enter(&ill->ill_mcast_lock, RW_READER); 10703 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10704 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10705 sl = ilm->ilm_filter; 10706 if (ilm->ilm_zoneid != zoneid && 10707 ilm->ilm_zoneid != ALL_ZONES) 10708 continue; 10709 if (SLIST_IS_EMPTY(sl)) 10710 continue; 10711 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10712 for (i = 0; i < sl->sl_numsrc; i++) { 10713 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10714 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10715 (char *)&ips6, (int)sizeof (ips6))) { 10716 ip1dbg(("ip_snmp_get_mib2_ip6_" 10717 "group_src: failed to allocate " 10718 "%u bytes\n", 10719 (uint_t)sizeof (ips6))); 10720 } 10721 } 10722 } 10723 rw_exit(&ill->ill_mcast_lock); 10724 ill_refrele(ill); 10725 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10726 } 10727 rw_exit(&ipst->ips_ill_g_lock); 10728 10729 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10730 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10731 (int)optp->level, (int)optp->name, (int)optp->len)); 10732 qreply(q, mpctl); 10733 return (mp2ctl); 10734 } 10735 10736 /* Multicast routing virtual interface table. */ 10737 static mblk_t * 10738 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10739 { 10740 struct opthdr *optp; 10741 mblk_t *mp2ctl; 10742 10743 /* 10744 * make a copy of the original message 10745 */ 10746 mp2ctl = copymsg(mpctl); 10747 10748 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10749 optp->level = EXPER_DVMRP; 10750 optp->name = EXPER_DVMRP_VIF; 10751 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10752 ip0dbg(("ip_mroute_vif: failed\n")); 10753 } 10754 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10755 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10756 (int)optp->level, (int)optp->name, (int)optp->len)); 10757 qreply(q, mpctl); 10758 return (mp2ctl); 10759 } 10760 10761 /* Multicast routing table. */ 10762 static mblk_t * 10763 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10764 { 10765 struct opthdr *optp; 10766 mblk_t *mp2ctl; 10767 10768 /* 10769 * make a copy of the original message 10770 */ 10771 mp2ctl = copymsg(mpctl); 10772 10773 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10774 optp->level = EXPER_DVMRP; 10775 optp->name = EXPER_DVMRP_MRT; 10776 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10777 ip0dbg(("ip_mroute_mrt: failed\n")); 10778 } 10779 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10780 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10781 (int)optp->level, (int)optp->name, (int)optp->len)); 10782 qreply(q, mpctl); 10783 return (mp2ctl); 10784 } 10785 10786 /* 10787 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10788 * in one IRE walk. 10789 */ 10790 static mblk_t * 10791 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10792 ip_stack_t *ipst) 10793 { 10794 struct opthdr *optp; 10795 mblk_t *mp2ctl; /* Returned */ 10796 mblk_t *mp3ctl; /* nettomedia */ 10797 mblk_t *mp4ctl; /* routeattrs */ 10798 iproutedata_t ird; 10799 zoneid_t zoneid; 10800 10801 /* 10802 * make copies of the original message 10803 * - mp2ctl is returned unchanged to the caller for his use 10804 * - mpctl is sent upstream as ipRouteEntryTable 10805 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10806 * - mp4ctl is sent upstream as ipRouteAttributeTable 10807 */ 10808 mp2ctl = copymsg(mpctl); 10809 mp3ctl = copymsg(mpctl); 10810 mp4ctl = copymsg(mpctl); 10811 if (mp3ctl == NULL || mp4ctl == NULL) { 10812 freemsg(mp4ctl); 10813 freemsg(mp3ctl); 10814 freemsg(mp2ctl); 10815 freemsg(mpctl); 10816 return (NULL); 10817 } 10818 10819 bzero(&ird, sizeof (ird)); 10820 10821 ird.ird_route.lp_head = mpctl->b_cont; 10822 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10823 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10824 /* 10825 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10826 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10827 * intended a temporary solution until a proper MIB API is provided 10828 * that provides complete filtering/caller-opt-in. 10829 */ 10830 if (level == EXPER_IP_AND_ALL_IRES) 10831 ird.ird_flags |= IRD_REPORT_ALL; 10832 10833 zoneid = Q_TO_CONN(q)->conn_zoneid; 10834 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10835 10836 /* ipRouteEntryTable in mpctl */ 10837 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10838 optp->level = MIB2_IP; 10839 optp->name = MIB2_IP_ROUTE; 10840 optp->len = msgdsize(ird.ird_route.lp_head); 10841 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10842 (int)optp->level, (int)optp->name, (int)optp->len)); 10843 qreply(q, mpctl); 10844 10845 /* ipNetToMediaEntryTable in mp3ctl */ 10846 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10847 10848 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10849 optp->level = MIB2_IP; 10850 optp->name = MIB2_IP_MEDIA; 10851 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10852 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10853 (int)optp->level, (int)optp->name, (int)optp->len)); 10854 qreply(q, mp3ctl); 10855 10856 /* ipRouteAttributeTable in mp4ctl */ 10857 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10858 optp->level = MIB2_IP; 10859 optp->name = EXPER_IP_RTATTR; 10860 optp->len = msgdsize(ird.ird_attrs.lp_head); 10861 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10862 (int)optp->level, (int)optp->name, (int)optp->len)); 10863 if (optp->len == 0) 10864 freemsg(mp4ctl); 10865 else 10866 qreply(q, mp4ctl); 10867 10868 return (mp2ctl); 10869 } 10870 10871 /* 10872 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10873 * ipv6NetToMediaEntryTable in an NDP walk. 10874 */ 10875 static mblk_t * 10876 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10877 ip_stack_t *ipst) 10878 { 10879 struct opthdr *optp; 10880 mblk_t *mp2ctl; /* Returned */ 10881 mblk_t *mp3ctl; /* nettomedia */ 10882 mblk_t *mp4ctl; /* routeattrs */ 10883 iproutedata_t ird; 10884 zoneid_t zoneid; 10885 10886 /* 10887 * make copies of the original message 10888 * - mp2ctl is returned unchanged to the caller for his use 10889 * - mpctl is sent upstream as ipv6RouteEntryTable 10890 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10891 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10892 */ 10893 mp2ctl = copymsg(mpctl); 10894 mp3ctl = copymsg(mpctl); 10895 mp4ctl = copymsg(mpctl); 10896 if (mp3ctl == NULL || mp4ctl == NULL) { 10897 freemsg(mp4ctl); 10898 freemsg(mp3ctl); 10899 freemsg(mp2ctl); 10900 freemsg(mpctl); 10901 return (NULL); 10902 } 10903 10904 bzero(&ird, sizeof (ird)); 10905 10906 ird.ird_route.lp_head = mpctl->b_cont; 10907 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10908 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10909 /* 10910 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10911 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10912 * intended a temporary solution until a proper MIB API is provided 10913 * that provides complete filtering/caller-opt-in. 10914 */ 10915 if (level == EXPER_IP_AND_ALL_IRES) 10916 ird.ird_flags |= IRD_REPORT_ALL; 10917 10918 zoneid = Q_TO_CONN(q)->conn_zoneid; 10919 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10920 10921 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10922 optp->level = MIB2_IP6; 10923 optp->name = MIB2_IP6_ROUTE; 10924 optp->len = msgdsize(ird.ird_route.lp_head); 10925 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10926 (int)optp->level, (int)optp->name, (int)optp->len)); 10927 qreply(q, mpctl); 10928 10929 /* ipv6NetToMediaEntryTable in mp3ctl */ 10930 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10931 10932 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10933 optp->level = MIB2_IP6; 10934 optp->name = MIB2_IP6_MEDIA; 10935 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10936 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10937 (int)optp->level, (int)optp->name, (int)optp->len)); 10938 qreply(q, mp3ctl); 10939 10940 /* ipv6RouteAttributeTable in mp4ctl */ 10941 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10942 optp->level = MIB2_IP6; 10943 optp->name = EXPER_IP_RTATTR; 10944 optp->len = msgdsize(ird.ird_attrs.lp_head); 10945 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10946 (int)optp->level, (int)optp->name, (int)optp->len)); 10947 if (optp->len == 0) 10948 freemsg(mp4ctl); 10949 else 10950 qreply(q, mp4ctl); 10951 10952 return (mp2ctl); 10953 } 10954 10955 /* 10956 * IPv6 mib: One per ill 10957 */ 10958 static mblk_t * 10959 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10960 { 10961 struct opthdr *optp; 10962 mblk_t *mp2ctl; 10963 ill_t *ill; 10964 ill_walk_context_t ctx; 10965 mblk_t *mp_tail = NULL; 10966 10967 /* 10968 * Make a copy of the original message 10969 */ 10970 mp2ctl = copymsg(mpctl); 10971 10972 /* fixed length IPv6 structure ... */ 10973 10974 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10975 optp->level = MIB2_IP6; 10976 optp->name = 0; 10977 /* Include "unknown interface" ip6_mib */ 10978 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10979 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10980 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10981 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10982 ipst->ips_ipv6_forward ? 1 : 2); 10983 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10984 ipst->ips_ipv6_def_hops); 10985 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10986 sizeof (mib2_ipIfStatsEntry_t)); 10987 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10988 sizeof (mib2_ipv6AddrEntry_t)); 10989 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10990 sizeof (mib2_ipv6RouteEntry_t)); 10991 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10992 sizeof (mib2_ipv6NetToMediaEntry_t)); 10993 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10994 sizeof (ipv6_member_t)); 10995 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10996 sizeof (ipv6_grpsrc_t)); 10997 10998 /* 10999 * Synchronize 64- and 32-bit counters 11000 */ 11001 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 11002 ipIfStatsHCInReceives); 11003 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 11004 ipIfStatsHCInDelivers); 11005 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 11006 ipIfStatsHCOutRequests); 11007 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 11008 ipIfStatsHCOutForwDatagrams); 11009 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 11010 ipIfStatsHCOutMcastPkts); 11011 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 11012 ipIfStatsHCInMcastPkts); 11013 11014 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 11015 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 11016 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 11017 (uint_t)sizeof (ipst->ips_ip6_mib))); 11018 } 11019 11020 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11021 ill = ILL_START_WALK_V6(&ctx, ipst); 11022 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11023 ill->ill_ip_mib->ipIfStatsIfIndex = 11024 ill->ill_phyint->phyint_ifindex; 11025 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 11026 ipst->ips_ipv6_forward ? 1 : 2); 11027 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 11028 ill->ill_max_hops); 11029 11030 /* 11031 * Synchronize 64- and 32-bit counters 11032 */ 11033 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 11034 ipIfStatsHCInReceives); 11035 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 11036 ipIfStatsHCInDelivers); 11037 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 11038 ipIfStatsHCOutRequests); 11039 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 11040 ipIfStatsHCOutForwDatagrams); 11041 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 11042 ipIfStatsHCOutMcastPkts); 11043 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 11044 ipIfStatsHCInMcastPkts); 11045 11046 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 11047 (char *)ill->ill_ip_mib, 11048 (int)sizeof (*ill->ill_ip_mib))) { 11049 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 11050 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 11051 } 11052 } 11053 rw_exit(&ipst->ips_ill_g_lock); 11054 11055 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 11056 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 11057 (int)optp->level, (int)optp->name, (int)optp->len)); 11058 qreply(q, mpctl); 11059 return (mp2ctl); 11060 } 11061 11062 /* 11063 * ICMPv6 mib: One per ill 11064 */ 11065 static mblk_t * 11066 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 11067 { 11068 struct opthdr *optp; 11069 mblk_t *mp2ctl; 11070 ill_t *ill; 11071 ill_walk_context_t ctx; 11072 mblk_t *mp_tail = NULL; 11073 /* 11074 * Make a copy of the original message 11075 */ 11076 mp2ctl = copymsg(mpctl); 11077 11078 /* fixed length ICMPv6 structure ... */ 11079 11080 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 11081 optp->level = MIB2_ICMP6; 11082 optp->name = 0; 11083 /* Include "unknown interface" icmp6_mib */ 11084 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 11085 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 11086 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 11087 sizeof (mib2_ipv6IfIcmpEntry_t); 11088 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 11089 (char *)&ipst->ips_icmp6_mib, 11090 (int)sizeof (ipst->ips_icmp6_mib))) { 11091 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 11092 (uint_t)sizeof (ipst->ips_icmp6_mib))); 11093 } 11094 11095 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11096 ill = ILL_START_WALK_V6(&ctx, ipst); 11097 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11098 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 11099 ill->ill_phyint->phyint_ifindex; 11100 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 11101 (char *)ill->ill_icmp6_mib, 11102 (int)sizeof (*ill->ill_icmp6_mib))) { 11103 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 11104 "%u bytes\n", 11105 (uint_t)sizeof (*ill->ill_icmp6_mib))); 11106 } 11107 } 11108 rw_exit(&ipst->ips_ill_g_lock); 11109 11110 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 11111 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 11112 (int)optp->level, (int)optp->name, (int)optp->len)); 11113 qreply(q, mpctl); 11114 return (mp2ctl); 11115 } 11116 11117 /* 11118 * ire_walk routine to create both ipRouteEntryTable and 11119 * ipRouteAttributeTable in one IRE walk 11120 */ 11121 static void 11122 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 11123 { 11124 ill_t *ill; 11125 mib2_ipRouteEntry_t *re; 11126 mib2_ipAttributeEntry_t iaes; 11127 tsol_ire_gw_secattr_t *attrp; 11128 tsol_gc_t *gc = NULL; 11129 tsol_gcgrp_t *gcgrp = NULL; 11130 ip_stack_t *ipst = ire->ire_ipst; 11131 11132 ASSERT(ire->ire_ipversion == IPV4_VERSION); 11133 11134 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11135 if (ire->ire_testhidden) 11136 return; 11137 if (ire->ire_type & IRE_IF_CLONE) 11138 return; 11139 } 11140 11141 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11142 return; 11143 11144 if ((attrp = ire->ire_gw_secattr) != NULL) { 11145 mutex_enter(&attrp->igsa_lock); 11146 if ((gc = attrp->igsa_gc) != NULL) { 11147 gcgrp = gc->gc_grp; 11148 ASSERT(gcgrp != NULL); 11149 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11150 } 11151 mutex_exit(&attrp->igsa_lock); 11152 } 11153 /* 11154 * Return all IRE types for route table... let caller pick and choose 11155 */ 11156 re->ipRouteDest = ire->ire_addr; 11157 ill = ire->ire_ill; 11158 re->ipRouteIfIndex.o_length = 0; 11159 if (ill != NULL) { 11160 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 11161 re->ipRouteIfIndex.o_length = 11162 mi_strlen(re->ipRouteIfIndex.o_bytes); 11163 } 11164 re->ipRouteMetric1 = -1; 11165 re->ipRouteMetric2 = -1; 11166 re->ipRouteMetric3 = -1; 11167 re->ipRouteMetric4 = -1; 11168 11169 re->ipRouteNextHop = ire->ire_gateway_addr; 11170 /* indirect(4), direct(3), or invalid(2) */ 11171 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11172 re->ipRouteType = 2; 11173 else if (ire->ire_type & IRE_ONLINK) 11174 re->ipRouteType = 3; 11175 else 11176 re->ipRouteType = 4; 11177 11178 re->ipRouteProto = -1; 11179 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 11180 re->ipRouteMask = ire->ire_mask; 11181 re->ipRouteMetric5 = -1; 11182 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11183 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 11184 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11185 11186 re->ipRouteInfo.re_frag_flag = 0; 11187 re->ipRouteInfo.re_rtt = 0; 11188 re->ipRouteInfo.re_src_addr = 0; 11189 re->ipRouteInfo.re_ref = ire->ire_refcnt; 11190 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11191 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11192 re->ipRouteInfo.re_flags = ire->ire_flags; 11193 11194 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11195 if (ire->ire_type & IRE_INTERFACE) { 11196 ire_t *child; 11197 11198 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11199 child = ire->ire_dep_children; 11200 while (child != NULL) { 11201 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 11202 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11203 child = child->ire_dep_sib_next; 11204 } 11205 rw_exit(&ipst->ips_ire_dep_lock); 11206 } 11207 11208 if (ire->ire_flags & RTF_DYNAMIC) { 11209 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11210 } else { 11211 re->ipRouteInfo.re_ire_type = ire->ire_type; 11212 } 11213 11214 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11215 (char *)re, (int)sizeof (*re))) { 11216 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11217 (uint_t)sizeof (*re))); 11218 } 11219 11220 if (gc != NULL) { 11221 iaes.iae_routeidx = ird->ird_idx; 11222 iaes.iae_doi = gc->gc_db->gcdb_doi; 11223 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11224 11225 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11226 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11227 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11228 "bytes\n", (uint_t)sizeof (iaes))); 11229 } 11230 } 11231 11232 /* bump route index for next pass */ 11233 ird->ird_idx++; 11234 11235 kmem_free(re, sizeof (*re)); 11236 if (gcgrp != NULL) 11237 rw_exit(&gcgrp->gcgrp_rwlock); 11238 } 11239 11240 /* 11241 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11242 */ 11243 static void 11244 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11245 { 11246 ill_t *ill; 11247 mib2_ipv6RouteEntry_t *re; 11248 mib2_ipAttributeEntry_t iaes; 11249 tsol_ire_gw_secattr_t *attrp; 11250 tsol_gc_t *gc = NULL; 11251 tsol_gcgrp_t *gcgrp = NULL; 11252 ip_stack_t *ipst = ire->ire_ipst; 11253 11254 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11255 11256 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11257 if (ire->ire_testhidden) 11258 return; 11259 if (ire->ire_type & IRE_IF_CLONE) 11260 return; 11261 } 11262 11263 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11264 return; 11265 11266 if ((attrp = ire->ire_gw_secattr) != NULL) { 11267 mutex_enter(&attrp->igsa_lock); 11268 if ((gc = attrp->igsa_gc) != NULL) { 11269 gcgrp = gc->gc_grp; 11270 ASSERT(gcgrp != NULL); 11271 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11272 } 11273 mutex_exit(&attrp->igsa_lock); 11274 } 11275 /* 11276 * Return all IRE types for route table... let caller pick and choose 11277 */ 11278 re->ipv6RouteDest = ire->ire_addr_v6; 11279 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11280 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11281 re->ipv6RouteIfIndex.o_length = 0; 11282 ill = ire->ire_ill; 11283 if (ill != NULL) { 11284 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11285 re->ipv6RouteIfIndex.o_length = 11286 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11287 } 11288 11289 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11290 11291 mutex_enter(&ire->ire_lock); 11292 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11293 mutex_exit(&ire->ire_lock); 11294 11295 /* remote(4), local(3), or discard(2) */ 11296 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11297 re->ipv6RouteType = 2; 11298 else if (ire->ire_type & IRE_ONLINK) 11299 re->ipv6RouteType = 3; 11300 else 11301 re->ipv6RouteType = 4; 11302 11303 re->ipv6RouteProtocol = -1; 11304 re->ipv6RoutePolicy = 0; 11305 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11306 re->ipv6RouteNextHopRDI = 0; 11307 re->ipv6RouteWeight = 0; 11308 re->ipv6RouteMetric = 0; 11309 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11310 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11311 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11312 11313 re->ipv6RouteInfo.re_frag_flag = 0; 11314 re->ipv6RouteInfo.re_rtt = 0; 11315 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11316 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11317 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11318 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11319 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11320 11321 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11322 if (ire->ire_type & IRE_INTERFACE) { 11323 ire_t *child; 11324 11325 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11326 child = ire->ire_dep_children; 11327 while (child != NULL) { 11328 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11329 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11330 child = child->ire_dep_sib_next; 11331 } 11332 rw_exit(&ipst->ips_ire_dep_lock); 11333 } 11334 if (ire->ire_flags & RTF_DYNAMIC) { 11335 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11336 } else { 11337 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11338 } 11339 11340 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11341 (char *)re, (int)sizeof (*re))) { 11342 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11343 (uint_t)sizeof (*re))); 11344 } 11345 11346 if (gc != NULL) { 11347 iaes.iae_routeidx = ird->ird_idx; 11348 iaes.iae_doi = gc->gc_db->gcdb_doi; 11349 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11350 11351 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11352 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11353 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11354 "bytes\n", (uint_t)sizeof (iaes))); 11355 } 11356 } 11357 11358 /* bump route index for next pass */ 11359 ird->ird_idx++; 11360 11361 kmem_free(re, sizeof (*re)); 11362 if (gcgrp != NULL) 11363 rw_exit(&gcgrp->gcgrp_rwlock); 11364 } 11365 11366 /* 11367 * ncec_walk routine to create ipv6NetToMediaEntryTable 11368 */ 11369 static int 11370 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11371 { 11372 ill_t *ill; 11373 mib2_ipv6NetToMediaEntry_t ntme; 11374 11375 ill = ncec->ncec_ill; 11376 /* skip arpce entries, and loopback ncec entries */ 11377 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11378 return (0); 11379 /* 11380 * Neighbor cache entry attached to IRE with on-link 11381 * destination. 11382 * We report all IPMP groups on ncec_ill which is normally the upper. 11383 */ 11384 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11385 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11386 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11387 if (ncec->ncec_lladdr != NULL) { 11388 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11389 ntme.ipv6NetToMediaPhysAddress.o_length); 11390 } 11391 /* 11392 * Note: Returns ND_* states. Should be: 11393 * reachable(1), stale(2), delay(3), probe(4), 11394 * invalid(5), unknown(6) 11395 */ 11396 ntme.ipv6NetToMediaState = ncec->ncec_state; 11397 ntme.ipv6NetToMediaLastUpdated = 0; 11398 11399 /* other(1), dynamic(2), static(3), local(4) */ 11400 if (NCE_MYADDR(ncec)) { 11401 ntme.ipv6NetToMediaType = 4; 11402 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11403 ntme.ipv6NetToMediaType = 1; /* proxy */ 11404 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11405 ntme.ipv6NetToMediaType = 3; 11406 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11407 ntme.ipv6NetToMediaType = 1; 11408 } else { 11409 ntme.ipv6NetToMediaType = 2; 11410 } 11411 11412 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11413 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11414 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11415 (uint_t)sizeof (ntme))); 11416 } 11417 return (0); 11418 } 11419 11420 int 11421 nce2ace(ncec_t *ncec) 11422 { 11423 int flags = 0; 11424 11425 if (NCE_ISREACHABLE(ncec)) 11426 flags |= ACE_F_RESOLVED; 11427 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11428 flags |= ACE_F_AUTHORITY; 11429 if (ncec->ncec_flags & NCE_F_PUBLISH) 11430 flags |= ACE_F_PUBLISH; 11431 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11432 flags |= ACE_F_PERMANENT; 11433 if (NCE_MYADDR(ncec)) 11434 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11435 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11436 flags |= ACE_F_UNVERIFIED; 11437 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11438 flags |= ACE_F_AUTHORITY; 11439 if (ncec->ncec_flags & NCE_F_DELAYED) 11440 flags |= ACE_F_DELAYED; 11441 return (flags); 11442 } 11443 11444 /* 11445 * ncec_walk routine to create ipNetToMediaEntryTable 11446 */ 11447 static int 11448 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11449 { 11450 ill_t *ill; 11451 mib2_ipNetToMediaEntry_t ntme; 11452 const char *name = "unknown"; 11453 ipaddr_t ncec_addr; 11454 11455 ill = ncec->ncec_ill; 11456 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11457 ill->ill_net_type == IRE_LOOPBACK) 11458 return (0); 11459 11460 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11461 name = ill->ill_name; 11462 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11463 if (NCE_MYADDR(ncec)) { 11464 ntme.ipNetToMediaType = 4; 11465 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11466 ntme.ipNetToMediaType = 1; 11467 } else { 11468 ntme.ipNetToMediaType = 3; 11469 } 11470 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11471 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11472 ntme.ipNetToMediaIfIndex.o_length); 11473 11474 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11475 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11476 11477 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11478 ncec_addr = INADDR_BROADCAST; 11479 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11480 sizeof (ncec_addr)); 11481 /* 11482 * map all the flags to the ACE counterpart. 11483 */ 11484 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11485 11486 ntme.ipNetToMediaPhysAddress.o_length = 11487 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11488 11489 if (!NCE_ISREACHABLE(ncec)) 11490 ntme.ipNetToMediaPhysAddress.o_length = 0; 11491 else { 11492 if (ncec->ncec_lladdr != NULL) { 11493 bcopy(ncec->ncec_lladdr, 11494 ntme.ipNetToMediaPhysAddress.o_bytes, 11495 ntme.ipNetToMediaPhysAddress.o_length); 11496 } 11497 } 11498 11499 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11500 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11501 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11502 (uint_t)sizeof (ntme))); 11503 } 11504 return (0); 11505 } 11506 11507 /* 11508 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11509 */ 11510 /* ARGSUSED */ 11511 int 11512 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11513 { 11514 switch (level) { 11515 case MIB2_IP: 11516 case MIB2_ICMP: 11517 switch (name) { 11518 default: 11519 break; 11520 } 11521 return (1); 11522 default: 11523 return (1); 11524 } 11525 } 11526 11527 /* 11528 * When there exists both a 64- and 32-bit counter of a particular type 11529 * (i.e., InReceives), only the 64-bit counters are added. 11530 */ 11531 void 11532 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11533 { 11534 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11535 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11536 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11537 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11538 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11539 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11540 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11541 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11542 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11543 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11544 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11545 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11546 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11547 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11548 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11549 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11550 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11551 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11552 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11553 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11554 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11555 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11556 o2->ipIfStatsInWrongIPVersion); 11557 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11558 o2->ipIfStatsInWrongIPVersion); 11559 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11560 o2->ipIfStatsOutSwitchIPVersion); 11561 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11562 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11563 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11564 o2->ipIfStatsHCInForwDatagrams); 11565 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11566 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11567 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11568 o2->ipIfStatsHCOutForwDatagrams); 11569 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11570 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11571 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11572 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11573 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11574 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11575 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11576 o2->ipIfStatsHCOutMcastOctets); 11577 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11578 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11579 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11580 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11581 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11582 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11583 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11584 } 11585 11586 void 11587 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11588 { 11589 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11590 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11591 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11592 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11593 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11594 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11595 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11596 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11597 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11598 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11599 o2->ipv6IfIcmpInRouterSolicits); 11600 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11601 o2->ipv6IfIcmpInRouterAdvertisements); 11602 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11603 o2->ipv6IfIcmpInNeighborSolicits); 11604 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11605 o2->ipv6IfIcmpInNeighborAdvertisements); 11606 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11607 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11608 o2->ipv6IfIcmpInGroupMembQueries); 11609 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11610 o2->ipv6IfIcmpInGroupMembResponses); 11611 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11612 o2->ipv6IfIcmpInGroupMembReductions); 11613 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11614 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11615 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11616 o2->ipv6IfIcmpOutDestUnreachs); 11617 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11618 o2->ipv6IfIcmpOutAdminProhibs); 11619 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11620 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11621 o2->ipv6IfIcmpOutParmProblems); 11622 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11623 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11624 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11625 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11626 o2->ipv6IfIcmpOutRouterSolicits); 11627 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11628 o2->ipv6IfIcmpOutRouterAdvertisements); 11629 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11630 o2->ipv6IfIcmpOutNeighborSolicits); 11631 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11632 o2->ipv6IfIcmpOutNeighborAdvertisements); 11633 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11634 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11635 o2->ipv6IfIcmpOutGroupMembQueries); 11636 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11637 o2->ipv6IfIcmpOutGroupMembResponses); 11638 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11639 o2->ipv6IfIcmpOutGroupMembReductions); 11640 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11641 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11642 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11643 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11644 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11645 o2->ipv6IfIcmpInBadNeighborSolicitations); 11646 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11647 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11648 o2->ipv6IfIcmpInGroupMembTotal); 11649 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11650 o2->ipv6IfIcmpInGroupMembBadQueries); 11651 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11652 o2->ipv6IfIcmpInGroupMembBadReports); 11653 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11654 o2->ipv6IfIcmpInGroupMembOurReports); 11655 } 11656 11657 /* 11658 * Called before the options are updated to check if this packet will 11659 * be source routed from here. 11660 * This routine assumes that the options are well formed i.e. that they 11661 * have already been checked. 11662 */ 11663 boolean_t 11664 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11665 { 11666 ipoptp_t opts; 11667 uchar_t *opt; 11668 uint8_t optval; 11669 uint8_t optlen; 11670 ipaddr_t dst; 11671 11672 if (IS_SIMPLE_IPH(ipha)) { 11673 ip2dbg(("not source routed\n")); 11674 return (B_FALSE); 11675 } 11676 dst = ipha->ipha_dst; 11677 for (optval = ipoptp_first(&opts, ipha); 11678 optval != IPOPT_EOL; 11679 optval = ipoptp_next(&opts)) { 11680 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11681 opt = opts.ipoptp_cur; 11682 optlen = opts.ipoptp_len; 11683 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11684 optval, optlen)); 11685 switch (optval) { 11686 uint32_t off; 11687 case IPOPT_SSRR: 11688 case IPOPT_LSRR: 11689 /* 11690 * If dst is one of our addresses and there are some 11691 * entries left in the source route return (true). 11692 */ 11693 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11694 ip2dbg(("ip_source_routed: not next" 11695 " source route 0x%x\n", 11696 ntohl(dst))); 11697 return (B_FALSE); 11698 } 11699 off = opt[IPOPT_OFFSET]; 11700 off--; 11701 if (optlen < IP_ADDR_LEN || 11702 off > optlen - IP_ADDR_LEN) { 11703 /* End of source route */ 11704 ip1dbg(("ip_source_routed: end of SR\n")); 11705 return (B_FALSE); 11706 } 11707 return (B_TRUE); 11708 } 11709 } 11710 ip2dbg(("not source routed\n")); 11711 return (B_FALSE); 11712 } 11713 11714 /* 11715 * ip_unbind is called by the transports to remove a conn from 11716 * the fanout table. 11717 */ 11718 void 11719 ip_unbind(conn_t *connp) 11720 { 11721 11722 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11723 11724 if (is_system_labeled() && connp->conn_anon_port) { 11725 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11726 connp->conn_mlp_type, connp->conn_proto, 11727 ntohs(connp->conn_lport), B_FALSE); 11728 connp->conn_anon_port = 0; 11729 } 11730 connp->conn_mlp_type = mlptSingle; 11731 11732 ipcl_hash_remove(connp); 11733 } 11734 11735 /* 11736 * Used for deciding the MSS size for the upper layer. Thus 11737 * we need to check the outbound policy values in the conn. 11738 */ 11739 int 11740 conn_ipsec_length(conn_t *connp) 11741 { 11742 ipsec_latch_t *ipl; 11743 11744 ipl = connp->conn_latch; 11745 if (ipl == NULL) 11746 return (0); 11747 11748 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11749 return (0); 11750 11751 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11752 } 11753 11754 /* 11755 * Returns an estimate of the IPsec headers size. This is used if 11756 * we don't want to call into IPsec to get the exact size. 11757 */ 11758 int 11759 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11760 { 11761 ipsec_action_t *a; 11762 11763 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11764 return (0); 11765 11766 a = ixa->ixa_ipsec_action; 11767 if (a == NULL) { 11768 ASSERT(ixa->ixa_ipsec_policy != NULL); 11769 a = ixa->ixa_ipsec_policy->ipsp_act; 11770 } 11771 ASSERT(a != NULL); 11772 11773 return (a->ipa_ovhd); 11774 } 11775 11776 /* 11777 * If there are any source route options, return the true final 11778 * destination. Otherwise, return the destination. 11779 */ 11780 ipaddr_t 11781 ip_get_dst(ipha_t *ipha) 11782 { 11783 ipoptp_t opts; 11784 uchar_t *opt; 11785 uint8_t optval; 11786 uint8_t optlen; 11787 ipaddr_t dst; 11788 uint32_t off; 11789 11790 dst = ipha->ipha_dst; 11791 11792 if (IS_SIMPLE_IPH(ipha)) 11793 return (dst); 11794 11795 for (optval = ipoptp_first(&opts, ipha); 11796 optval != IPOPT_EOL; 11797 optval = ipoptp_next(&opts)) { 11798 opt = opts.ipoptp_cur; 11799 optlen = opts.ipoptp_len; 11800 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11801 switch (optval) { 11802 case IPOPT_SSRR: 11803 case IPOPT_LSRR: 11804 off = opt[IPOPT_OFFSET]; 11805 /* 11806 * If one of the conditions is true, it means 11807 * end of options and dst already has the right 11808 * value. 11809 */ 11810 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11811 off = optlen - IP_ADDR_LEN; 11812 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11813 } 11814 return (dst); 11815 default: 11816 break; 11817 } 11818 } 11819 11820 return (dst); 11821 } 11822 11823 /* 11824 * Outbound IP fragmentation routine. 11825 * Assumes the caller has checked whether or not fragmentation should 11826 * be allowed. Here we copy the DF bit from the header to all the generated 11827 * fragments. 11828 */ 11829 int 11830 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11831 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11832 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11833 { 11834 int i1; 11835 int hdr_len; 11836 mblk_t *hdr_mp; 11837 ipha_t *ipha; 11838 int ip_data_end; 11839 int len; 11840 mblk_t *mp = mp_orig; 11841 int offset; 11842 ill_t *ill = nce->nce_ill; 11843 ip_stack_t *ipst = ill->ill_ipst; 11844 mblk_t *carve_mp; 11845 uint32_t frag_flag; 11846 uint_t priority = mp->b_band; 11847 int error = 0; 11848 11849 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11850 11851 if (pkt_len != msgdsize(mp)) { 11852 ip0dbg(("Packet length mismatch: %d, %ld\n", 11853 pkt_len, msgdsize(mp))); 11854 freemsg(mp); 11855 return (EINVAL); 11856 } 11857 11858 if (max_frag == 0) { 11859 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11860 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11861 ip_drop_output("FragFails: zero max_frag", mp, ill); 11862 freemsg(mp); 11863 return (EINVAL); 11864 } 11865 11866 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11867 ipha = (ipha_t *)mp->b_rptr; 11868 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11869 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11870 11871 /* 11872 * Establish the starting offset. May not be zero if we are fragging 11873 * a fragment that is being forwarded. 11874 */ 11875 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11876 11877 /* TODO why is this test needed? */ 11878 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11879 /* TODO: notify ulp somehow */ 11880 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11881 ip_drop_output("FragFails: bad starting offset", mp, ill); 11882 freemsg(mp); 11883 return (EINVAL); 11884 } 11885 11886 hdr_len = IPH_HDR_LENGTH(ipha); 11887 ipha->ipha_hdr_checksum = 0; 11888 11889 /* 11890 * Establish the number of bytes maximum per frag, after putting 11891 * in the header. 11892 */ 11893 len = (max_frag - hdr_len) & ~7; 11894 11895 /* Get a copy of the header for the trailing frags */ 11896 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11897 mp); 11898 if (hdr_mp == NULL) { 11899 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11900 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11901 freemsg(mp); 11902 return (ENOBUFS); 11903 } 11904 11905 /* Store the starting offset, with the MoreFrags flag. */ 11906 i1 = offset | IPH_MF | frag_flag; 11907 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11908 11909 /* Establish the ending byte offset, based on the starting offset. */ 11910 offset <<= 3; 11911 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11912 11913 /* Store the length of the first fragment in the IP header. */ 11914 i1 = len + hdr_len; 11915 ASSERT(i1 <= IP_MAXPACKET); 11916 ipha->ipha_length = htons((uint16_t)i1); 11917 11918 /* 11919 * Compute the IP header checksum for the first frag. We have to 11920 * watch out that we stop at the end of the header. 11921 */ 11922 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11923 11924 /* 11925 * Now carve off the first frag. Note that this will include the 11926 * original IP header. 11927 */ 11928 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11929 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11930 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11931 freeb(hdr_mp); 11932 freemsg(mp_orig); 11933 return (ENOBUFS); 11934 } 11935 11936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11937 11938 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11939 ixa_cookie); 11940 if (error != 0 && error != EWOULDBLOCK) { 11941 /* No point in sending the other fragments */ 11942 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11943 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11944 freeb(hdr_mp); 11945 freemsg(mp_orig); 11946 return (error); 11947 } 11948 11949 /* No need to redo state machine in loop */ 11950 ixaflags &= ~IXAF_REACH_CONF; 11951 11952 /* Advance the offset to the second frag starting point. */ 11953 offset += len; 11954 /* 11955 * Update hdr_len from the copied header - there might be less options 11956 * in the later fragments. 11957 */ 11958 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11959 /* Loop until done. */ 11960 for (;;) { 11961 uint16_t offset_and_flags; 11962 uint16_t ip_len; 11963 11964 if (ip_data_end - offset > len) { 11965 /* 11966 * Carve off the appropriate amount from the original 11967 * datagram. 11968 */ 11969 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11970 mp = NULL; 11971 break; 11972 } 11973 /* 11974 * More frags after this one. Get another copy 11975 * of the header. 11976 */ 11977 if (carve_mp->b_datap->db_ref == 1 && 11978 hdr_mp->b_wptr - hdr_mp->b_rptr < 11979 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11980 /* Inline IP header */ 11981 carve_mp->b_rptr -= hdr_mp->b_wptr - 11982 hdr_mp->b_rptr; 11983 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11984 hdr_mp->b_wptr - hdr_mp->b_rptr); 11985 mp = carve_mp; 11986 } else { 11987 if (!(mp = copyb(hdr_mp))) { 11988 freemsg(carve_mp); 11989 break; 11990 } 11991 /* Get priority marking, if any. */ 11992 mp->b_band = priority; 11993 mp->b_cont = carve_mp; 11994 } 11995 ipha = (ipha_t *)mp->b_rptr; 11996 offset_and_flags = IPH_MF; 11997 } else { 11998 /* 11999 * Last frag. Consume the header. Set len to 12000 * the length of this last piece. 12001 */ 12002 len = ip_data_end - offset; 12003 12004 /* 12005 * Carve off the appropriate amount from the original 12006 * datagram. 12007 */ 12008 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 12009 mp = NULL; 12010 break; 12011 } 12012 if (carve_mp->b_datap->db_ref == 1 && 12013 hdr_mp->b_wptr - hdr_mp->b_rptr < 12014 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 12015 /* Inline IP header */ 12016 carve_mp->b_rptr -= hdr_mp->b_wptr - 12017 hdr_mp->b_rptr; 12018 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 12019 hdr_mp->b_wptr - hdr_mp->b_rptr); 12020 mp = carve_mp; 12021 freeb(hdr_mp); 12022 hdr_mp = mp; 12023 } else { 12024 mp = hdr_mp; 12025 /* Get priority marking, if any. */ 12026 mp->b_band = priority; 12027 mp->b_cont = carve_mp; 12028 } 12029 ipha = (ipha_t *)mp->b_rptr; 12030 /* A frag of a frag might have IPH_MF non-zero */ 12031 offset_and_flags = 12032 ntohs(ipha->ipha_fragment_offset_and_flags) & 12033 IPH_MF; 12034 } 12035 offset_and_flags |= (uint16_t)(offset >> 3); 12036 offset_and_flags |= (uint16_t)frag_flag; 12037 /* Store the offset and flags in the IP header. */ 12038 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 12039 12040 /* Store the length in the IP header. */ 12041 ip_len = (uint16_t)(len + hdr_len); 12042 ipha->ipha_length = htons(ip_len); 12043 12044 /* 12045 * Set the IP header checksum. Note that mp is just 12046 * the header, so this is easy to pass to ip_csum. 12047 */ 12048 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 12049 12050 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 12051 12052 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 12053 nolzid, ixa_cookie); 12054 /* All done if we just consumed the hdr_mp. */ 12055 if (mp == hdr_mp) { 12056 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 12057 return (error); 12058 } 12059 if (error != 0 && error != EWOULDBLOCK) { 12060 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 12061 mblk_t *, hdr_mp); 12062 /* No point in sending the other fragments */ 12063 break; 12064 } 12065 12066 /* Otherwise, advance and loop. */ 12067 offset += len; 12068 } 12069 /* Clean up following allocation failure. */ 12070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 12071 ip_drop_output("FragFails: loop ended", NULL, ill); 12072 if (mp != hdr_mp) 12073 freeb(hdr_mp); 12074 if (mp != mp_orig) 12075 freemsg(mp_orig); 12076 return (error); 12077 } 12078 12079 /* 12080 * Copy the header plus those options which have the copy bit set 12081 */ 12082 static mblk_t * 12083 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 12084 mblk_t *src) 12085 { 12086 mblk_t *mp; 12087 uchar_t *up; 12088 12089 /* 12090 * Quick check if we need to look for options without the copy bit 12091 * set 12092 */ 12093 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 12094 if (!mp) 12095 return (mp); 12096 mp->b_rptr += ipst->ips_ip_wroff_extra; 12097 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 12098 bcopy(rptr, mp->b_rptr, hdr_len); 12099 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 12100 return (mp); 12101 } 12102 up = mp->b_rptr; 12103 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 12104 up += IP_SIMPLE_HDR_LENGTH; 12105 rptr += IP_SIMPLE_HDR_LENGTH; 12106 hdr_len -= IP_SIMPLE_HDR_LENGTH; 12107 while (hdr_len > 0) { 12108 uint32_t optval; 12109 uint32_t optlen; 12110 12111 optval = *rptr; 12112 if (optval == IPOPT_EOL) 12113 break; 12114 if (optval == IPOPT_NOP) 12115 optlen = 1; 12116 else 12117 optlen = rptr[1]; 12118 if (optval & IPOPT_COPY) { 12119 bcopy(rptr, up, optlen); 12120 up += optlen; 12121 } 12122 rptr += optlen; 12123 hdr_len -= optlen; 12124 } 12125 /* 12126 * Make sure that we drop an even number of words by filling 12127 * with EOL to the next word boundary. 12128 */ 12129 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 12130 hdr_len & 0x3; hdr_len++) 12131 *up++ = IPOPT_EOL; 12132 mp->b_wptr = up; 12133 /* Update header length */ 12134 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 12135 return (mp); 12136 } 12137 12138 /* 12139 * Update any source route, record route, or timestamp options when 12140 * sending a packet back to ourselves. 12141 * Check that we are at end of strict source route. 12142 * The options have been sanity checked by ip_output_options(). 12143 */ 12144 void 12145 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 12146 { 12147 ipoptp_t opts; 12148 uchar_t *opt; 12149 uint8_t optval; 12150 uint8_t optlen; 12151 ipaddr_t dst; 12152 uint32_t ts; 12153 timestruc_t now; 12154 12155 for (optval = ipoptp_first(&opts, ipha); 12156 optval != IPOPT_EOL; 12157 optval = ipoptp_next(&opts)) { 12158 opt = opts.ipoptp_cur; 12159 optlen = opts.ipoptp_len; 12160 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 12161 switch (optval) { 12162 uint32_t off; 12163 case IPOPT_SSRR: 12164 case IPOPT_LSRR: 12165 off = opt[IPOPT_OFFSET]; 12166 off--; 12167 if (optlen < IP_ADDR_LEN || 12168 off > optlen - IP_ADDR_LEN) { 12169 /* End of source route */ 12170 break; 12171 } 12172 /* 12173 * This will only happen if two consecutive entries 12174 * in the source route contains our address or if 12175 * it is a packet with a loose source route which 12176 * reaches us before consuming the whole source route 12177 */ 12178 12179 if (optval == IPOPT_SSRR) { 12180 return; 12181 } 12182 /* 12183 * Hack: instead of dropping the packet truncate the 12184 * source route to what has been used by filling the 12185 * rest with IPOPT_NOP. 12186 */ 12187 opt[IPOPT_OLEN] = (uint8_t)off; 12188 while (off < optlen) { 12189 opt[off++] = IPOPT_NOP; 12190 } 12191 break; 12192 case IPOPT_RR: 12193 off = opt[IPOPT_OFFSET]; 12194 off--; 12195 if (optlen < IP_ADDR_LEN || 12196 off > optlen - IP_ADDR_LEN) { 12197 /* No more room - ignore */ 12198 ip1dbg(( 12199 "ip_output_local_options: end of RR\n")); 12200 break; 12201 } 12202 dst = htonl(INADDR_LOOPBACK); 12203 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12204 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12205 break; 12206 case IPOPT_TS: 12207 /* Insert timestamp if there is romm */ 12208 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12209 case IPOPT_TS_TSONLY: 12210 off = IPOPT_TS_TIMELEN; 12211 break; 12212 case IPOPT_TS_PRESPEC: 12213 case IPOPT_TS_PRESPEC_RFC791: 12214 /* Verify that the address matched */ 12215 off = opt[IPOPT_OFFSET] - 1; 12216 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12217 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12218 /* Not for us */ 12219 break; 12220 } 12221 /* FALLTHRU */ 12222 case IPOPT_TS_TSANDADDR: 12223 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12224 break; 12225 default: 12226 /* 12227 * ip_*put_options should have already 12228 * dropped this packet. 12229 */ 12230 cmn_err(CE_PANIC, "ip_output_local_options: " 12231 "unknown IT - bug in ip_output_options?\n"); 12232 return; /* Keep "lint" happy */ 12233 } 12234 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12235 /* Increase overflow counter */ 12236 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12237 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12238 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12239 (off << 4); 12240 break; 12241 } 12242 off = opt[IPOPT_OFFSET] - 1; 12243 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12244 case IPOPT_TS_PRESPEC: 12245 case IPOPT_TS_PRESPEC_RFC791: 12246 case IPOPT_TS_TSANDADDR: 12247 dst = htonl(INADDR_LOOPBACK); 12248 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12249 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12250 /* FALLTHRU */ 12251 case IPOPT_TS_TSONLY: 12252 off = opt[IPOPT_OFFSET] - 1; 12253 /* Compute # of milliseconds since midnight */ 12254 gethrestime(&now); 12255 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12256 now.tv_nsec / (NANOSEC / MILLISEC); 12257 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12258 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12259 break; 12260 } 12261 break; 12262 } 12263 } 12264 } 12265 12266 /* 12267 * Prepend an M_DATA fastpath header, and if none present prepend a 12268 * DL_UNITDATA_REQ. Frees the mblk on failure. 12269 * 12270 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12271 * If there is a change to them, the nce will be deleted (condemned) and 12272 * a new nce_t will be created when packets are sent. Thus we need no locks 12273 * to access those fields. 12274 * 12275 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12276 * we place b_band in dl_priority.dl_max. 12277 */ 12278 static mblk_t * 12279 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12280 { 12281 uint_t hlen; 12282 mblk_t *mp1; 12283 uint_t priority; 12284 uchar_t *rptr; 12285 12286 rptr = mp->b_rptr; 12287 12288 ASSERT(DB_TYPE(mp) == M_DATA); 12289 priority = mp->b_band; 12290 12291 ASSERT(nce != NULL); 12292 if ((mp1 = nce->nce_fp_mp) != NULL) { 12293 hlen = MBLKL(mp1); 12294 /* 12295 * Check if we have enough room to prepend fastpath 12296 * header 12297 */ 12298 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12299 rptr -= hlen; 12300 bcopy(mp1->b_rptr, rptr, hlen); 12301 /* 12302 * Set the b_rptr to the start of the link layer 12303 * header 12304 */ 12305 mp->b_rptr = rptr; 12306 return (mp); 12307 } 12308 mp1 = copyb(mp1); 12309 if (mp1 == NULL) { 12310 ill_t *ill = nce->nce_ill; 12311 12312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12313 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12314 freemsg(mp); 12315 return (NULL); 12316 } 12317 mp1->b_band = priority; 12318 mp1->b_cont = mp; 12319 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12320 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12321 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12322 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12323 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12324 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12325 /* 12326 * XXX disable ICK_VALID and compute checksum 12327 * here; can happen if nce_fp_mp changes and 12328 * it can't be copied now due to insufficient 12329 * space. (unlikely, fp mp can change, but it 12330 * does not increase in length) 12331 */ 12332 return (mp1); 12333 } 12334 mp1 = copyb(nce->nce_dlur_mp); 12335 12336 if (mp1 == NULL) { 12337 ill_t *ill = nce->nce_ill; 12338 12339 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12340 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12341 freemsg(mp); 12342 return (NULL); 12343 } 12344 mp1->b_cont = mp; 12345 if (priority != 0) { 12346 mp1->b_band = priority; 12347 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12348 priority; 12349 } 12350 return (mp1); 12351 #undef rptr 12352 } 12353 12354 /* 12355 * Finish the outbound IPsec processing. This function is called from 12356 * ipsec_out_process() if the IPsec packet was processed 12357 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12358 * asynchronously. 12359 * 12360 * This is common to IPv4 and IPv6. 12361 */ 12362 int 12363 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12364 { 12365 iaflags_t ixaflags = ixa->ixa_flags; 12366 uint_t pktlen; 12367 12368 12369 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12370 if (ixaflags & IXAF_IS_IPV4) { 12371 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12372 12373 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12374 pktlen = ntohs(ipha->ipha_length); 12375 } else { 12376 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12377 12378 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12379 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12380 } 12381 12382 /* 12383 * We release any hard reference on the SAs here to make 12384 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12385 * on the SAs. 12386 * If in the future we want the hard latching of the SAs in the 12387 * ip_xmit_attr_t then we should remove this. 12388 */ 12389 if (ixa->ixa_ipsec_esp_sa != NULL) { 12390 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12391 ixa->ixa_ipsec_esp_sa = NULL; 12392 } 12393 if (ixa->ixa_ipsec_ah_sa != NULL) { 12394 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12395 ixa->ixa_ipsec_ah_sa = NULL; 12396 } 12397 12398 /* Do we need to fragment? */ 12399 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12400 pktlen > ixa->ixa_fragsize) { 12401 if (ixaflags & IXAF_IS_IPV4) { 12402 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12403 /* 12404 * We check for the DF case in ipsec_out_process 12405 * hence this only handles the non-DF case. 12406 */ 12407 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12408 pktlen, ixa->ixa_fragsize, 12409 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12410 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12411 &ixa->ixa_cookie)); 12412 } else { 12413 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12414 if (mp == NULL) { 12415 /* MIB and ip_drop_output already done */ 12416 return (ENOMEM); 12417 } 12418 pktlen += sizeof (ip6_frag_t); 12419 if (pktlen > ixa->ixa_fragsize) { 12420 return (ip_fragment_v6(mp, ixa->ixa_nce, 12421 ixa->ixa_flags, pktlen, 12422 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12423 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12424 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12425 } 12426 } 12427 } 12428 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12429 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12430 ixa->ixa_no_loop_zoneid, NULL)); 12431 } 12432 12433 /* 12434 * Finish the inbound IPsec processing. This function is called from 12435 * ipsec_out_process() if the IPsec packet was processed 12436 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12437 * asynchronously. 12438 * 12439 * This is common to IPv4 and IPv6. 12440 */ 12441 void 12442 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12443 { 12444 iaflags_t iraflags = ira->ira_flags; 12445 12446 /* Length might have changed */ 12447 if (iraflags & IRAF_IS_IPV4) { 12448 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12449 12450 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12451 ira->ira_pktlen = ntohs(ipha->ipha_length); 12452 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12453 ira->ira_protocol = ipha->ipha_protocol; 12454 12455 ip_fanout_v4(mp, ipha, ira); 12456 } else { 12457 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12458 uint8_t *nexthdrp; 12459 12460 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12461 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12462 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12463 &nexthdrp)) { 12464 /* Malformed packet */ 12465 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12466 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12467 freemsg(mp); 12468 return; 12469 } 12470 ira->ira_protocol = *nexthdrp; 12471 ip_fanout_v6(mp, ip6h, ira); 12472 } 12473 } 12474 12475 /* 12476 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12477 * 12478 * If this function returns B_TRUE, the requested SA's have been filled 12479 * into the ixa_ipsec_*_sa pointers. 12480 * 12481 * If the function returns B_FALSE, the packet has been "consumed", most 12482 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12483 * 12484 * The SA references created by the protocol-specific "select" 12485 * function will be released in ip_output_post_ipsec. 12486 */ 12487 static boolean_t 12488 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12489 { 12490 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12491 ipsec_policy_t *pp; 12492 ipsec_action_t *ap; 12493 12494 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12495 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12496 (ixa->ixa_ipsec_action != NULL)); 12497 12498 ap = ixa->ixa_ipsec_action; 12499 if (ap == NULL) { 12500 pp = ixa->ixa_ipsec_policy; 12501 ASSERT(pp != NULL); 12502 ap = pp->ipsp_act; 12503 ASSERT(ap != NULL); 12504 } 12505 12506 /* 12507 * We have an action. now, let's select SA's. 12508 * A side effect of setting ixa_ipsec_*_sa is that it will 12509 * be cached in the conn_t. 12510 */ 12511 if (ap->ipa_want_esp) { 12512 if (ixa->ixa_ipsec_esp_sa == NULL) { 12513 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12514 IPPROTO_ESP); 12515 } 12516 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12517 } 12518 12519 if (ap->ipa_want_ah) { 12520 if (ixa->ixa_ipsec_ah_sa == NULL) { 12521 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12522 IPPROTO_AH); 12523 } 12524 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12525 /* 12526 * The ESP and AH processing order needs to be preserved 12527 * when both protocols are required (ESP should be applied 12528 * before AH for an outbound packet). Force an ESP ACQUIRE 12529 * when both ESP and AH are required, and an AH ACQUIRE 12530 * is needed. 12531 */ 12532 if (ap->ipa_want_esp && need_ah_acquire) 12533 need_esp_acquire = B_TRUE; 12534 } 12535 12536 /* 12537 * Send an ACQUIRE (extended, regular, or both) if we need one. 12538 * Release SAs that got referenced, but will not be used until we 12539 * acquire _all_ of the SAs we need. 12540 */ 12541 if (need_ah_acquire || need_esp_acquire) { 12542 if (ixa->ixa_ipsec_ah_sa != NULL) { 12543 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12544 ixa->ixa_ipsec_ah_sa = NULL; 12545 } 12546 if (ixa->ixa_ipsec_esp_sa != NULL) { 12547 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12548 ixa->ixa_ipsec_esp_sa = NULL; 12549 } 12550 12551 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12552 return (B_FALSE); 12553 } 12554 12555 return (B_TRUE); 12556 } 12557 12558 /* 12559 * Handle IPsec output processing. 12560 * This function is only entered once for a given packet. 12561 * We try to do things synchronously, but if we need to have user-level 12562 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12563 * will be completed 12564 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12565 * - when asynchronous ESP is done it will do AH 12566 * 12567 * In all cases we come back in ip_output_post_ipsec() to fragment and 12568 * send out the packet. 12569 */ 12570 int 12571 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12572 { 12573 ill_t *ill = ixa->ixa_nce->nce_ill; 12574 ip_stack_t *ipst = ixa->ixa_ipst; 12575 ipsec_stack_t *ipss; 12576 ipsec_policy_t *pp; 12577 ipsec_action_t *ap; 12578 12579 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12580 12581 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12582 (ixa->ixa_ipsec_action != NULL)); 12583 12584 ipss = ipst->ips_netstack->netstack_ipsec; 12585 if (!ipsec_loaded(ipss)) { 12586 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12587 ip_drop_packet(mp, B_TRUE, ill, 12588 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12589 &ipss->ipsec_dropper); 12590 return (ENOTSUP); 12591 } 12592 12593 ap = ixa->ixa_ipsec_action; 12594 if (ap == NULL) { 12595 pp = ixa->ixa_ipsec_policy; 12596 ASSERT(pp != NULL); 12597 ap = pp->ipsp_act; 12598 ASSERT(ap != NULL); 12599 } 12600 12601 /* Handle explicit drop action and bypass. */ 12602 switch (ap->ipa_act.ipa_type) { 12603 case IPSEC_ACT_DISCARD: 12604 case IPSEC_ACT_REJECT: 12605 ip_drop_packet(mp, B_FALSE, ill, 12606 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12607 return (EHOSTUNREACH); /* IPsec policy failure */ 12608 case IPSEC_ACT_BYPASS: 12609 return (ip_output_post_ipsec(mp, ixa)); 12610 } 12611 12612 /* 12613 * The order of processing is first insert a IP header if needed. 12614 * Then insert the ESP header and then the AH header. 12615 */ 12616 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12617 /* 12618 * First get the outer IP header before sending 12619 * it to ESP. 12620 */ 12621 ipha_t *oipha, *iipha; 12622 mblk_t *outer_mp, *inner_mp; 12623 12624 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12625 (void) mi_strlog(ill->ill_rq, 0, 12626 SL_ERROR|SL_TRACE|SL_CONSOLE, 12627 "ipsec_out_process: " 12628 "Self-Encapsulation failed: Out of memory\n"); 12629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12630 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12631 freemsg(mp); 12632 return (ENOBUFS); 12633 } 12634 inner_mp = mp; 12635 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12636 oipha = (ipha_t *)outer_mp->b_rptr; 12637 iipha = (ipha_t *)inner_mp->b_rptr; 12638 *oipha = *iipha; 12639 outer_mp->b_wptr += sizeof (ipha_t); 12640 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12641 sizeof (ipha_t)); 12642 oipha->ipha_protocol = IPPROTO_ENCAP; 12643 oipha->ipha_version_and_hdr_length = 12644 IP_SIMPLE_HDR_VERSION; 12645 oipha->ipha_hdr_checksum = 0; 12646 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12647 outer_mp->b_cont = inner_mp; 12648 mp = outer_mp; 12649 12650 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12651 } 12652 12653 /* If we need to wait for a SA then we can't return any errno */ 12654 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12655 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12656 !ipsec_out_select_sa(mp, ixa)) 12657 return (0); 12658 12659 /* 12660 * By now, we know what SA's to use. Toss over to ESP & AH 12661 * to do the heavy lifting. 12662 */ 12663 if (ap->ipa_want_esp) { 12664 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12665 12666 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12667 if (mp == NULL) { 12668 /* 12669 * Either it failed or is pending. In the former case 12670 * ipIfStatsInDiscards was increased. 12671 */ 12672 return (0); 12673 } 12674 } 12675 12676 if (ap->ipa_want_ah) { 12677 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12678 12679 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12680 if (mp == NULL) { 12681 /* 12682 * Either it failed or is pending. In the former case 12683 * ipIfStatsInDiscards was increased. 12684 */ 12685 return (0); 12686 } 12687 } 12688 /* 12689 * We are done with IPsec processing. Send it over 12690 * the wire. 12691 */ 12692 return (ip_output_post_ipsec(mp, ixa)); 12693 } 12694 12695 /* 12696 * ioctls that go through a down/up sequence may need to wait for the down 12697 * to complete. This involves waiting for the ire and ipif refcnts to go down 12698 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12699 */ 12700 /* ARGSUSED */ 12701 void 12702 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12703 { 12704 struct iocblk *iocp; 12705 mblk_t *mp1; 12706 ip_ioctl_cmd_t *ipip; 12707 int err; 12708 sin_t *sin; 12709 struct lifreq *lifr; 12710 struct ifreq *ifr; 12711 12712 iocp = (struct iocblk *)mp->b_rptr; 12713 ASSERT(ipsq != NULL); 12714 /* Existence of mp1 verified in ip_wput_nondata */ 12715 mp1 = mp->b_cont->b_cont; 12716 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12717 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12718 /* 12719 * Special case where ipx_current_ipif is not set: 12720 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12721 * We are here as were not able to complete the operation in 12722 * ipif_set_values because we could not become exclusive on 12723 * the new ipsq. 12724 */ 12725 ill_t *ill = q->q_ptr; 12726 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12727 } 12728 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12729 12730 if (ipip->ipi_cmd_type == IF_CMD) { 12731 /* This a old style SIOC[GS]IF* command */ 12732 ifr = (struct ifreq *)mp1->b_rptr; 12733 sin = (sin_t *)&ifr->ifr_addr; 12734 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12735 /* This a new style SIOC[GS]LIF* command */ 12736 lifr = (struct lifreq *)mp1->b_rptr; 12737 sin = (sin_t *)&lifr->lifr_addr; 12738 } else { 12739 sin = NULL; 12740 } 12741 12742 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12743 q, mp, ipip, mp1->b_rptr); 12744 12745 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12746 int, ipip->ipi_cmd, 12747 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12748 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12749 12750 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12751 } 12752 12753 /* 12754 * ioctl processing 12755 * 12756 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12757 * the ioctl command in the ioctl tables, determines the copyin data size 12758 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12759 * 12760 * ioctl processing then continues when the M_IOCDATA makes its way down to 12761 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12762 * associated 'conn' is refheld till the end of the ioctl and the general 12763 * ioctl processing function ip_process_ioctl() is called to extract the 12764 * arguments and process the ioctl. To simplify extraction, ioctl commands 12765 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12766 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12767 * is used to extract the ioctl's arguments. 12768 * 12769 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12770 * so goes thru the serialization primitive ipsq_try_enter. Then the 12771 * appropriate function to handle the ioctl is called based on the entry in 12772 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12773 * which also refreleases the 'conn' that was refheld at the start of the 12774 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12775 * 12776 * Many exclusive ioctls go thru an internal down up sequence as part of 12777 * the operation. For example an attempt to change the IP address of an 12778 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12779 * does all the cleanup such as deleting all ires that use this address. 12780 * Then we need to wait till all references to the interface go away. 12781 */ 12782 void 12783 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12784 { 12785 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12786 ip_ioctl_cmd_t *ipip = arg; 12787 ip_extract_func_t *extract_funcp; 12788 cmd_info_t ci; 12789 int err; 12790 boolean_t entered_ipsq = B_FALSE; 12791 12792 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12793 12794 if (ipip == NULL) 12795 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12796 12797 /* 12798 * SIOCLIFADDIF needs to go thru a special path since the 12799 * ill may not exist yet. This happens in the case of lo0 12800 * which is created using this ioctl. 12801 */ 12802 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12803 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12804 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12805 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12806 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12807 return; 12808 } 12809 12810 ci.ci_ipif = NULL; 12811 switch (ipip->ipi_cmd_type) { 12812 case MISC_CMD: 12813 case MSFILT_CMD: 12814 /* 12815 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12816 */ 12817 if (ipip->ipi_cmd == IF_UNITSEL) { 12818 /* ioctl comes down the ill */ 12819 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12820 ipif_refhold(ci.ci_ipif); 12821 } 12822 err = 0; 12823 ci.ci_sin = NULL; 12824 ci.ci_sin6 = NULL; 12825 ci.ci_lifr = NULL; 12826 extract_funcp = NULL; 12827 break; 12828 12829 case IF_CMD: 12830 case LIF_CMD: 12831 extract_funcp = ip_extract_lifreq; 12832 break; 12833 12834 case ARP_CMD: 12835 case XARP_CMD: 12836 extract_funcp = ip_extract_arpreq; 12837 break; 12838 12839 default: 12840 ASSERT(0); 12841 } 12842 12843 if (extract_funcp != NULL) { 12844 err = (*extract_funcp)(q, mp, ipip, &ci); 12845 if (err != 0) { 12846 DTRACE_PROBE4(ipif__ioctl, 12847 char *, "ip_process_ioctl finish err", 12848 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12849 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12850 return; 12851 } 12852 12853 /* 12854 * All of the extraction functions return a refheld ipif. 12855 */ 12856 ASSERT(ci.ci_ipif != NULL); 12857 } 12858 12859 if (!(ipip->ipi_flags & IPI_WR)) { 12860 /* 12861 * A return value of EINPROGRESS means the ioctl is 12862 * either queued and waiting for some reason or has 12863 * already completed. 12864 */ 12865 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12866 ci.ci_lifr); 12867 if (ci.ci_ipif != NULL) { 12868 DTRACE_PROBE4(ipif__ioctl, 12869 char *, "ip_process_ioctl finish RD", 12870 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12871 ipif_t *, ci.ci_ipif); 12872 ipif_refrele(ci.ci_ipif); 12873 } else { 12874 DTRACE_PROBE4(ipif__ioctl, 12875 char *, "ip_process_ioctl finish RD", 12876 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12877 } 12878 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12879 return; 12880 } 12881 12882 ASSERT(ci.ci_ipif != NULL); 12883 12884 /* 12885 * If ipsq is non-NULL, we are already being called exclusively 12886 */ 12887 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12888 if (ipsq == NULL) { 12889 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12890 NEW_OP, B_TRUE); 12891 if (ipsq == NULL) { 12892 ipif_refrele(ci.ci_ipif); 12893 return; 12894 } 12895 entered_ipsq = B_TRUE; 12896 } 12897 /* 12898 * Release the ipif so that ipif_down and friends that wait for 12899 * references to go away are not misled about the current ipif_refcnt 12900 * values. We are writer so we can access the ipif even after releasing 12901 * the ipif. 12902 */ 12903 ipif_refrele(ci.ci_ipif); 12904 12905 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12906 12907 /* 12908 * A return value of EINPROGRESS means the ioctl is 12909 * either queued and waiting for some reason or has 12910 * already completed. 12911 */ 12912 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12913 12914 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12915 int, ipip->ipi_cmd, 12916 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12917 ipif_t *, ci.ci_ipif); 12918 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12919 12920 if (entered_ipsq) 12921 ipsq_exit(ipsq); 12922 } 12923 12924 /* 12925 * Complete the ioctl. Typically ioctls use the mi package and need to 12926 * do mi_copyout/mi_copy_done. 12927 */ 12928 void 12929 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12930 { 12931 conn_t *connp = NULL; 12932 12933 if (err == EINPROGRESS) 12934 return; 12935 12936 if (CONN_Q(q)) { 12937 connp = Q_TO_CONN(q); 12938 ASSERT(connp->conn_ref >= 2); 12939 } 12940 12941 switch (mode) { 12942 case COPYOUT: 12943 if (err == 0) 12944 mi_copyout(q, mp); 12945 else 12946 mi_copy_done(q, mp, err); 12947 break; 12948 12949 case NO_COPYOUT: 12950 mi_copy_done(q, mp, err); 12951 break; 12952 12953 default: 12954 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12955 break; 12956 } 12957 12958 /* 12959 * The conn refhold and ioctlref placed on the conn at the start of the 12960 * ioctl are released here. 12961 */ 12962 if (connp != NULL) { 12963 CONN_DEC_IOCTLREF(connp); 12964 CONN_OPER_PENDING_DONE(connp); 12965 } 12966 12967 if (ipsq != NULL) 12968 ipsq_current_finish(ipsq); 12969 } 12970 12971 /* Handles all non data messages */ 12972 void 12973 ip_wput_nondata(queue_t *q, mblk_t *mp) 12974 { 12975 mblk_t *mp1; 12976 struct iocblk *iocp; 12977 ip_ioctl_cmd_t *ipip; 12978 conn_t *connp; 12979 cred_t *cr; 12980 char *proto_str; 12981 12982 if (CONN_Q(q)) 12983 connp = Q_TO_CONN(q); 12984 else 12985 connp = NULL; 12986 12987 switch (DB_TYPE(mp)) { 12988 case M_IOCTL: 12989 /* 12990 * IOCTL processing begins in ip_sioctl_copyin_setup which 12991 * will arrange to copy in associated control structures. 12992 */ 12993 ip_sioctl_copyin_setup(q, mp); 12994 return; 12995 case M_IOCDATA: 12996 /* 12997 * Ensure that this is associated with one of our trans- 12998 * parent ioctls. If it's not ours, discard it if we're 12999 * running as a driver, or pass it on if we're a module. 13000 */ 13001 iocp = (struct iocblk *)mp->b_rptr; 13002 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 13003 if (ipip == NULL) { 13004 if (q->q_next == NULL) { 13005 goto nak; 13006 } else { 13007 putnext(q, mp); 13008 } 13009 return; 13010 } 13011 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 13012 /* 13013 * The ioctl is one we recognise, but is not consumed 13014 * by IP as a module and we are a module, so we drop 13015 */ 13016 goto nak; 13017 } 13018 13019 /* IOCTL continuation following copyin or copyout. */ 13020 if (mi_copy_state(q, mp, NULL) == -1) { 13021 /* 13022 * The copy operation failed. mi_copy_state already 13023 * cleaned up, so we're out of here. 13024 */ 13025 return; 13026 } 13027 /* 13028 * If we just completed a copy in, we become writer and 13029 * continue processing in ip_sioctl_copyin_done. If it 13030 * was a copy out, we call mi_copyout again. If there is 13031 * nothing more to copy out, it will complete the IOCTL. 13032 */ 13033 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 13034 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 13035 mi_copy_done(q, mp, EPROTO); 13036 return; 13037 } 13038 /* 13039 * Check for cases that need more copying. A return 13040 * value of 0 means a second copyin has been started, 13041 * so we return; a return value of 1 means no more 13042 * copying is needed, so we continue. 13043 */ 13044 if (ipip->ipi_cmd_type == MSFILT_CMD && 13045 MI_COPY_COUNT(mp) == 1) { 13046 if (ip_copyin_msfilter(q, mp) == 0) 13047 return; 13048 } 13049 /* 13050 * Refhold the conn, till the ioctl completes. This is 13051 * needed in case the ioctl ends up in the pending mp 13052 * list. Every mp in the ipx_pending_mp list must have 13053 * a refhold on the conn to resume processing. The 13054 * refhold is released when the ioctl completes 13055 * (whether normally or abnormally). An ioctlref is also 13056 * placed on the conn to prevent TCP from removing the 13057 * queue needed to send the ioctl reply back. 13058 * In all cases ip_ioctl_finish is called to finish 13059 * the ioctl and release the refholds. 13060 */ 13061 if (connp != NULL) { 13062 /* This is not a reentry */ 13063 CONN_INC_REF(connp); 13064 CONN_INC_IOCTLREF(connp); 13065 } else { 13066 if (!(ipip->ipi_flags & IPI_MODOK)) { 13067 mi_copy_done(q, mp, EINVAL); 13068 return; 13069 } 13070 } 13071 13072 ip_process_ioctl(NULL, q, mp, ipip); 13073 13074 } else { 13075 mi_copyout(q, mp); 13076 } 13077 return; 13078 13079 case M_IOCNAK: 13080 /* 13081 * The only way we could get here is if a resolver didn't like 13082 * an IOCTL we sent it. This shouldn't happen. 13083 */ 13084 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13085 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 13086 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 13087 freemsg(mp); 13088 return; 13089 case M_IOCACK: 13090 /* /dev/ip shouldn't see this */ 13091 goto nak; 13092 case M_FLUSH: 13093 if (*mp->b_rptr & FLUSHW) 13094 flushq(q, FLUSHALL); 13095 if (q->q_next) { 13096 putnext(q, mp); 13097 return; 13098 } 13099 if (*mp->b_rptr & FLUSHR) { 13100 *mp->b_rptr &= ~FLUSHW; 13101 qreply(q, mp); 13102 return; 13103 } 13104 freemsg(mp); 13105 return; 13106 case M_CTL: 13107 break; 13108 case M_PROTO: 13109 case M_PCPROTO: 13110 /* 13111 * The only PROTO messages we expect are SNMP-related. 13112 */ 13113 switch (((union T_primitives *)mp->b_rptr)->type) { 13114 case T_SVR4_OPTMGMT_REQ: 13115 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 13116 "flags %x\n", 13117 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 13118 13119 if (connp == NULL) { 13120 proto_str = "T_SVR4_OPTMGMT_REQ"; 13121 goto protonak; 13122 } 13123 13124 /* 13125 * All Solaris components should pass a db_credp 13126 * for this TPI message, hence we ASSERT. 13127 * But in case there is some other M_PROTO that looks 13128 * like a TPI message sent by some other kernel 13129 * component, we check and return an error. 13130 */ 13131 cr = msg_getcred(mp, NULL); 13132 ASSERT(cr != NULL); 13133 if (cr == NULL) { 13134 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 13135 if (mp != NULL) 13136 qreply(q, mp); 13137 return; 13138 } 13139 13140 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 13141 proto_str = "Bad SNMPCOM request?"; 13142 goto protonak; 13143 } 13144 return; 13145 default: 13146 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 13147 (int)*(uint_t *)mp->b_rptr)); 13148 freemsg(mp); 13149 return; 13150 } 13151 default: 13152 break; 13153 } 13154 if (q->q_next) { 13155 putnext(q, mp); 13156 } else 13157 freemsg(mp); 13158 return; 13159 13160 nak: 13161 iocp->ioc_error = EINVAL; 13162 mp->b_datap->db_type = M_IOCNAK; 13163 iocp->ioc_count = 0; 13164 qreply(q, mp); 13165 return; 13166 13167 protonak: 13168 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 13169 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 13170 qreply(q, mp); 13171 } 13172 13173 /* 13174 * Process IP options in an outbound packet. Verify that the nexthop in a 13175 * strict source route is onlink. 13176 * Returns non-zero if something fails in which case an ICMP error has been 13177 * sent and mp freed. 13178 * 13179 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 13180 */ 13181 int 13182 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 13183 { 13184 ipoptp_t opts; 13185 uchar_t *opt; 13186 uint8_t optval; 13187 uint8_t optlen; 13188 ipaddr_t dst; 13189 intptr_t code = 0; 13190 ire_t *ire; 13191 ip_stack_t *ipst = ixa->ixa_ipst; 13192 ip_recv_attr_t iras; 13193 13194 ip2dbg(("ip_output_options\n")); 13195 13196 dst = ipha->ipha_dst; 13197 for (optval = ipoptp_first(&opts, ipha); 13198 optval != IPOPT_EOL; 13199 optval = ipoptp_next(&opts)) { 13200 opt = opts.ipoptp_cur; 13201 optlen = opts.ipoptp_len; 13202 ip2dbg(("ip_output_options: opt %d, len %d\n", 13203 optval, optlen)); 13204 switch (optval) { 13205 uint32_t off; 13206 case IPOPT_SSRR: 13207 case IPOPT_LSRR: 13208 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13209 ip1dbg(( 13210 "ip_output_options: bad option offset\n")); 13211 code = (char *)&opt[IPOPT_OLEN] - 13212 (char *)ipha; 13213 goto param_prob; 13214 } 13215 off = opt[IPOPT_OFFSET]; 13216 ip1dbg(("ip_output_options: next hop 0x%x\n", 13217 ntohl(dst))); 13218 /* 13219 * For strict: verify that dst is directly 13220 * reachable. 13221 */ 13222 if (optval == IPOPT_SSRR) { 13223 ire = ire_ftable_lookup_v4(dst, 0, 0, 13224 IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl, 13225 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13226 NULL); 13227 if (ire == NULL) { 13228 ip1dbg(("ip_output_options: SSRR not" 13229 " directly reachable: 0x%x\n", 13230 ntohl(dst))); 13231 goto bad_src_route; 13232 } 13233 ire_refrele(ire); 13234 } 13235 break; 13236 case IPOPT_RR: 13237 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13238 ip1dbg(( 13239 "ip_output_options: bad option offset\n")); 13240 code = (char *)&opt[IPOPT_OLEN] - 13241 (char *)ipha; 13242 goto param_prob; 13243 } 13244 break; 13245 case IPOPT_TS: 13246 /* 13247 * Verify that length >=5 and that there is either 13248 * room for another timestamp or that the overflow 13249 * counter is not maxed out. 13250 */ 13251 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13252 if (optlen < IPOPT_MINLEN_IT) { 13253 goto param_prob; 13254 } 13255 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13256 ip1dbg(( 13257 "ip_output_options: bad option offset\n")); 13258 code = (char *)&opt[IPOPT_OFFSET] - 13259 (char *)ipha; 13260 goto param_prob; 13261 } 13262 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13263 case IPOPT_TS_TSONLY: 13264 off = IPOPT_TS_TIMELEN; 13265 break; 13266 case IPOPT_TS_TSANDADDR: 13267 case IPOPT_TS_PRESPEC: 13268 case IPOPT_TS_PRESPEC_RFC791: 13269 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13270 break; 13271 default: 13272 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13273 (char *)ipha; 13274 goto param_prob; 13275 } 13276 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13277 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13278 /* 13279 * No room and the overflow counter is 15 13280 * already. 13281 */ 13282 goto param_prob; 13283 } 13284 break; 13285 } 13286 } 13287 13288 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13289 return (0); 13290 13291 ip1dbg(("ip_output_options: error processing IP options.")); 13292 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13293 13294 param_prob: 13295 bzero(&iras, sizeof (iras)); 13296 iras.ira_ill = iras.ira_rill = ill; 13297 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13298 iras.ira_rifindex = iras.ira_ruifindex; 13299 iras.ira_flags = IRAF_IS_IPV4; 13300 13301 ip_drop_output("ip_output_options", mp, ill); 13302 icmp_param_problem(mp, (uint8_t)code, &iras); 13303 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13304 return (-1); 13305 13306 bad_src_route: 13307 bzero(&iras, sizeof (iras)); 13308 iras.ira_ill = iras.ira_rill = ill; 13309 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13310 iras.ira_rifindex = iras.ira_ruifindex; 13311 iras.ira_flags = IRAF_IS_IPV4; 13312 13313 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13314 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13315 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13316 return (-1); 13317 } 13318 13319 /* 13320 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13321 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13322 * thru /etc/system. 13323 */ 13324 #define CONN_MAXDRAINCNT 64 13325 13326 static void 13327 conn_drain_init(ip_stack_t *ipst) 13328 { 13329 int i, j; 13330 idl_tx_list_t *itl_tx; 13331 13332 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13333 13334 if ((ipst->ips_conn_drain_list_cnt == 0) || 13335 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13336 /* 13337 * Default value of the number of drainers is the 13338 * number of cpus, subject to maximum of 8 drainers. 13339 */ 13340 if (boot_max_ncpus != -1) 13341 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13342 else 13343 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13344 } 13345 13346 ipst->ips_idl_tx_list = 13347 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13348 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13349 itl_tx = &ipst->ips_idl_tx_list[i]; 13350 itl_tx->txl_drain_list = 13351 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13352 sizeof (idl_t), KM_SLEEP); 13353 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13354 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13355 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13356 MUTEX_DEFAULT, NULL); 13357 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13358 } 13359 } 13360 } 13361 13362 static void 13363 conn_drain_fini(ip_stack_t *ipst) 13364 { 13365 int i; 13366 idl_tx_list_t *itl_tx; 13367 13368 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13369 itl_tx = &ipst->ips_idl_tx_list[i]; 13370 kmem_free(itl_tx->txl_drain_list, 13371 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13372 } 13373 kmem_free(ipst->ips_idl_tx_list, 13374 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13375 ipst->ips_idl_tx_list = NULL; 13376 } 13377 13378 /* 13379 * Note: For an overview of how flowcontrol is handled in IP please see the 13380 * IP Flowcontrol notes at the top of this file. 13381 * 13382 * Flow control has blocked us from proceeding. Insert the given conn in one 13383 * of the conn drain lists. These conn wq's will be qenabled later on when 13384 * STREAMS flow control does a backenable. conn_walk_drain will enable 13385 * the first conn in each of these drain lists. Each of these qenabled conns 13386 * in turn enables the next in the list, after it runs, or when it closes, 13387 * thus sustaining the drain process. 13388 */ 13389 void 13390 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13391 { 13392 idl_t *idl = tx_list->txl_drain_list; 13393 uint_t index; 13394 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13395 13396 mutex_enter(&connp->conn_lock); 13397 if (connp->conn_state_flags & CONN_CLOSING) { 13398 /* 13399 * The conn is closing as a result of which CONN_CLOSING 13400 * is set. Return. 13401 */ 13402 mutex_exit(&connp->conn_lock); 13403 return; 13404 } else if (connp->conn_idl == NULL) { 13405 /* 13406 * Assign the next drain list round robin. We dont' use 13407 * a lock, and thus it may not be strictly round robin. 13408 * Atomicity of load/stores is enough to make sure that 13409 * conn_drain_list_index is always within bounds. 13410 */ 13411 index = tx_list->txl_drain_index; 13412 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13413 connp->conn_idl = &tx_list->txl_drain_list[index]; 13414 index++; 13415 if (index == ipst->ips_conn_drain_list_cnt) 13416 index = 0; 13417 tx_list->txl_drain_index = index; 13418 } 13419 mutex_exit(&connp->conn_lock); 13420 13421 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 13422 if ((connp->conn_drain_prev != NULL) || 13423 (connp->conn_state_flags & CONN_CLOSING)) { 13424 /* 13425 * The conn is already in the drain list, OR 13426 * the conn is closing. We need to check again for 13427 * the closing case again since close can happen 13428 * after we drop the conn_lock, and before we 13429 * acquire the CONN_DRAIN_LIST_LOCK. 13430 */ 13431 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 13432 return; 13433 } else { 13434 idl = connp->conn_idl; 13435 } 13436 13437 /* 13438 * The conn is not in the drain list. Insert it at the 13439 * tail of the drain list. The drain list is circular 13440 * and doubly linked. idl_conn points to the 1st element 13441 * in the list. 13442 */ 13443 if (idl->idl_conn == NULL) { 13444 idl->idl_conn = connp; 13445 connp->conn_drain_next = connp; 13446 connp->conn_drain_prev = connp; 13447 } else { 13448 conn_t *head = idl->idl_conn; 13449 13450 connp->conn_drain_next = head; 13451 connp->conn_drain_prev = head->conn_drain_prev; 13452 head->conn_drain_prev->conn_drain_next = connp; 13453 head->conn_drain_prev = connp; 13454 } 13455 /* 13456 * For non streams based sockets assert flow control. 13457 */ 13458 conn_setqfull(connp, NULL); 13459 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 13460 } 13461 13462 static void 13463 conn_idl_remove(conn_t *connp) 13464 { 13465 idl_t *idl = connp->conn_idl; 13466 13467 if (idl != NULL) { 13468 /* 13469 * Remove ourself from the drain list, if we did not do 13470 * a putq, or if the conn is closing. 13471 * Note: It is possible that q->q_first is non-null. It means 13472 * that these messages landed after we did a enableok() in 13473 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 13474 * service them. 13475 */ 13476 if (connp->conn_drain_next == connp) { 13477 /* Singleton in the list */ 13478 ASSERT(connp->conn_drain_prev == connp); 13479 idl->idl_conn = NULL; 13480 } else { 13481 connp->conn_drain_prev->conn_drain_next = 13482 connp->conn_drain_next; 13483 connp->conn_drain_next->conn_drain_prev = 13484 connp->conn_drain_prev; 13485 if (idl->idl_conn == connp) 13486 idl->idl_conn = connp->conn_drain_next; 13487 } 13488 } 13489 connp->conn_drain_next = NULL; 13490 connp->conn_drain_prev = NULL; 13491 13492 conn_clrqfull(connp, NULL); 13493 /* 13494 * For streams based sockets open up flow control. 13495 */ 13496 if (!IPCL_IS_NONSTR(connp)) 13497 enableok(connp->conn_wq); 13498 } 13499 13500 /* 13501 * This conn is closing, and we are called from ip_close. OR 13502 * this conn is draining because flow-control on the ill has been relieved. 13503 * 13504 * We must also need to remove conn's on this idl from the list, and also 13505 * inform the sockfs upcalls about the change in flow-control. 13506 */ 13507 static void 13508 conn_drain_tail(conn_t *connp, boolean_t closing) 13509 { 13510 idl_t *idl; 13511 conn_t *next_connp; 13512 13513 /* 13514 * connp->conn_idl is stable at this point, and no lock is needed 13515 * to check it. If we are called from ip_close, close has already 13516 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13517 * called us only because conn_idl is non-null. If we are called thru 13518 * service, conn_idl could be null, but it cannot change because 13519 * service is single-threaded per queue, and there cannot be another 13520 * instance of service trying to call conn_drain_insert on this conn 13521 * now. 13522 */ 13523 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13524 13525 /* 13526 * If connp->conn_idl is null, the conn has not been inserted into any 13527 * drain list even once since creation of the conn. Just return. 13528 */ 13529 if (connp == NULL || connp->conn_idl == NULL) 13530 return; 13531 13532 if (connp->conn_drain_prev == NULL) { 13533 /* This conn is currently not in the drain list. */ 13534 return; 13535 } 13536 idl = connp->conn_idl; 13537 if (!closing) { 13538 /* 13539 * This conn is the current drainer. If this is the last conn 13540 * in the drain list, we need to do more checks, in the 'if' 13541 * below. Otherwwise we need to just qenable the next conn, 13542 * to sustain the draining, and is handled in the 'else' 13543 * below. 13544 */ 13545 next_connp = connp->conn_drain_next; 13546 while (next_connp != connp) { 13547 conn_t *delconnp = next_connp; 13548 13549 next_connp = next_connp->conn_drain_next; 13550 conn_idl_remove(delconnp); 13551 } 13552 ASSERT(connp->conn_drain_next == idl->idl_conn); 13553 } 13554 conn_idl_remove(connp); 13555 13556 } 13557 13558 /* 13559 * Write service routine. Shared perimeter entry point. 13560 * The device queue's messages has fallen below the low water mark and STREAMS 13561 * has backenabled the ill_wq. Send sockfs notification about flow-control onx 13562 * each waiting conn. 13563 */ 13564 void 13565 ip_wsrv(queue_t *q) 13566 { 13567 ill_t *ill; 13568 13569 ill = (ill_t *)q->q_ptr; 13570 if (ill->ill_state_flags == 0) { 13571 ip_stack_t *ipst = ill->ill_ipst; 13572 13573 /* 13574 * The device flow control has opened up. 13575 * Walk through conn drain lists and qenable the 13576 * first conn in each list. This makes sense only 13577 * if the stream is fully plumbed and setup. 13578 * Hence the ill_state_flags check above. 13579 */ 13580 ip1dbg(("ip_wsrv: walking\n")); 13581 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13582 enableok(ill->ill_wq); 13583 } 13584 } 13585 13586 /* 13587 * Callback to disable flow control in IP. 13588 * 13589 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13590 * is enabled. 13591 * 13592 * When MAC_TX() is not able to send any more packets, dld sets its queue 13593 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13594 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13595 * function and wakes up corresponding mac worker threads, which in turn 13596 * calls this callback function, and disables flow control. 13597 */ 13598 void 13599 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13600 { 13601 ill_t *ill = (ill_t *)arg; 13602 ip_stack_t *ipst = ill->ill_ipst; 13603 idl_tx_list_t *idl_txl; 13604 13605 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13606 mutex_enter(&idl_txl->txl_lock); 13607 /* add code to to set a flag to indicate idl_txl is enabled */ 13608 conn_walk_drain(ipst, idl_txl); 13609 mutex_exit(&idl_txl->txl_lock); 13610 } 13611 13612 /* 13613 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 13614 * of conns that need to be drained, check if drain is already in progress. 13615 * If so set the idl_repeat bit, indicating that the last conn in the list 13616 * needs to reinitiate the drain once again, for the list. If drain is not 13617 * in progress for the list, initiate the draining, by qenabling the 1st 13618 * conn in the list. The drain is self-sustaining, each qenabled conn will 13619 * in turn qenable the next conn, when it is done/blocked/closing. 13620 */ 13621 static void 13622 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13623 { 13624 int i; 13625 idl_t *idl; 13626 13627 IP_STAT(ipst, ip_conn_walk_drain); 13628 13629 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13630 idl = &tx_list->txl_drain_list[i]; 13631 mutex_enter(&idl->idl_lock); 13632 conn_drain_tail(idl->idl_conn, B_FALSE); 13633 mutex_exit(&idl->idl_lock); 13634 } 13635 } 13636 13637 /* 13638 * Determine if the ill and multicast aspects of that packets 13639 * "matches" the conn. 13640 */ 13641 boolean_t 13642 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13643 { 13644 ill_t *ill = ira->ira_rill; 13645 zoneid_t zoneid = ira->ira_zoneid; 13646 uint_t in_ifindex; 13647 ipaddr_t dst, src; 13648 13649 dst = ipha->ipha_dst; 13650 src = ipha->ipha_src; 13651 13652 /* 13653 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13654 * unicast, broadcast and multicast reception to 13655 * conn_incoming_ifindex. 13656 * conn_wantpacket is called for unicast, broadcast and 13657 * multicast packets. 13658 */ 13659 in_ifindex = connp->conn_incoming_ifindex; 13660 13661 /* mpathd can bind to the under IPMP interface, which we allow */ 13662 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13663 if (!IS_UNDER_IPMP(ill)) 13664 return (B_FALSE); 13665 13666 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13667 return (B_FALSE); 13668 } 13669 13670 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13671 return (B_FALSE); 13672 13673 if (!(ira->ira_flags & IRAF_MULTICAST)) 13674 return (B_TRUE); 13675 13676 if (connp->conn_multi_router) { 13677 /* multicast packet and multicast router socket: send up */ 13678 return (B_TRUE); 13679 } 13680 13681 if (ipha->ipha_protocol == IPPROTO_PIM || 13682 ipha->ipha_protocol == IPPROTO_RSVP) 13683 return (B_TRUE); 13684 13685 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13686 } 13687 13688 void 13689 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13690 { 13691 if (IPCL_IS_NONSTR(connp)) { 13692 (*connp->conn_upcalls->su_txq_full) 13693 (connp->conn_upper_handle, B_TRUE); 13694 if (flow_stopped != NULL) 13695 *flow_stopped = B_TRUE; 13696 } else { 13697 queue_t *q = connp->conn_wq; 13698 13699 ASSERT(q != NULL); 13700 if (!(q->q_flag & QFULL)) { 13701 mutex_enter(QLOCK(q)); 13702 if (!(q->q_flag & QFULL)) { 13703 /* still need to set QFULL */ 13704 q->q_flag |= QFULL; 13705 /* set flow_stopped to true under QLOCK */ 13706 if (flow_stopped != NULL) 13707 *flow_stopped = B_TRUE; 13708 mutex_exit(QLOCK(q)); 13709 } else { 13710 /* flow_stopped is left unchanged */ 13711 mutex_exit(QLOCK(q)); 13712 } 13713 } 13714 } 13715 } 13716 13717 void 13718 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13719 { 13720 if (IPCL_IS_NONSTR(connp)) { 13721 (*connp->conn_upcalls->su_txq_full) 13722 (connp->conn_upper_handle, B_FALSE); 13723 if (flow_stopped != NULL) 13724 *flow_stopped = B_FALSE; 13725 } else { 13726 queue_t *q = connp->conn_wq; 13727 13728 ASSERT(q != NULL); 13729 if (q->q_flag & QFULL) { 13730 mutex_enter(QLOCK(q)); 13731 if (q->q_flag & QFULL) { 13732 q->q_flag &= ~QFULL; 13733 /* set flow_stopped to false under QLOCK */ 13734 if (flow_stopped != NULL) 13735 *flow_stopped = B_FALSE; 13736 mutex_exit(QLOCK(q)); 13737 if (q->q_flag & QWANTW) 13738 qbackenable(q, 0); 13739 } else { 13740 /* flow_stopped is left unchanged */ 13741 mutex_exit(QLOCK(q)); 13742 } 13743 } 13744 } 13745 connp->conn_direct_blocked = B_FALSE; 13746 } 13747 13748 /* 13749 * Return the length in bytes of the IPv4 headers (base header, label, and 13750 * other IP options) that will be needed based on the 13751 * ip_pkt_t structure passed by the caller. 13752 * 13753 * The returned length does not include the length of the upper level 13754 * protocol (ULP) header. 13755 * The caller needs to check that the length doesn't exceed the max for IPv4. 13756 */ 13757 int 13758 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13759 { 13760 int len; 13761 13762 len = IP_SIMPLE_HDR_LENGTH; 13763 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13764 ASSERT(ipp->ipp_label_len_v4 != 0); 13765 /* We need to round up here */ 13766 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13767 } 13768 13769 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13770 ASSERT(ipp->ipp_ipv4_options_len != 0); 13771 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13772 len += ipp->ipp_ipv4_options_len; 13773 } 13774 return (len); 13775 } 13776 13777 /* 13778 * All-purpose routine to build an IPv4 header with options based 13779 * on the abstract ip_pkt_t. 13780 * 13781 * The caller has to set the source and destination address as well as 13782 * ipha_length. The caller has to massage any source route and compensate 13783 * for the ULP pseudo-header checksum due to the source route. 13784 */ 13785 void 13786 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13787 uint8_t protocol) 13788 { 13789 ipha_t *ipha = (ipha_t *)buf; 13790 uint8_t *cp; 13791 13792 /* Initialize IPv4 header */ 13793 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13794 ipha->ipha_length = 0; /* Caller will set later */ 13795 ipha->ipha_ident = 0; 13796 ipha->ipha_fragment_offset_and_flags = 0; 13797 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13798 ipha->ipha_protocol = protocol; 13799 ipha->ipha_hdr_checksum = 0; 13800 13801 if ((ipp->ipp_fields & IPPF_ADDR) && 13802 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13803 ipha->ipha_src = ipp->ipp_addr_v4; 13804 13805 cp = (uint8_t *)&ipha[1]; 13806 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13807 ASSERT(ipp->ipp_label_len_v4 != 0); 13808 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13809 cp += ipp->ipp_label_len_v4; 13810 /* We need to round up here */ 13811 while ((uintptr_t)cp & 0x3) { 13812 *cp++ = IPOPT_NOP; 13813 } 13814 } 13815 13816 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13817 ASSERT(ipp->ipp_ipv4_options_len != 0); 13818 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13819 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13820 cp += ipp->ipp_ipv4_options_len; 13821 } 13822 ipha->ipha_version_and_hdr_length = 13823 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13824 13825 ASSERT((int)(cp - buf) == buf_len); 13826 } 13827 13828 /* Allocate the private structure */ 13829 static int 13830 ip_priv_alloc(void **bufp) 13831 { 13832 void *buf; 13833 13834 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13835 return (ENOMEM); 13836 13837 *bufp = buf; 13838 return (0); 13839 } 13840 13841 /* Function to delete the private structure */ 13842 void 13843 ip_priv_free(void *buf) 13844 { 13845 ASSERT(buf != NULL); 13846 kmem_free(buf, sizeof (ip_priv_t)); 13847 } 13848 13849 /* 13850 * The entry point for IPPF processing. 13851 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13852 * routine just returns. 13853 * 13854 * When called, ip_process generates an ipp_packet_t structure 13855 * which holds the state information for this packet and invokes the 13856 * the classifier (via ipp_packet_process). The classification, depending on 13857 * configured filters, results in a list of actions for this packet. Invoking 13858 * an action may cause the packet to be dropped, in which case we return NULL. 13859 * proc indicates the callout position for 13860 * this packet and ill is the interface this packet arrived on or will leave 13861 * on (inbound and outbound resp.). 13862 * 13863 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13864 * on the ill corrsponding to the destination IP address. 13865 */ 13866 mblk_t * 13867 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13868 { 13869 ip_priv_t *priv; 13870 ipp_action_id_t aid; 13871 int rc = 0; 13872 ipp_packet_t *pp; 13873 13874 /* If the classifier is not loaded, return */ 13875 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13876 return (mp); 13877 } 13878 13879 ASSERT(mp != NULL); 13880 13881 /* Allocate the packet structure */ 13882 rc = ipp_packet_alloc(&pp, "ip", aid); 13883 if (rc != 0) 13884 goto drop; 13885 13886 /* Allocate the private structure */ 13887 rc = ip_priv_alloc((void **)&priv); 13888 if (rc != 0) { 13889 ipp_packet_free(pp); 13890 goto drop; 13891 } 13892 priv->proc = proc; 13893 priv->ill_index = ill_get_upper_ifindex(rill); 13894 13895 ipp_packet_set_private(pp, priv, ip_priv_free); 13896 ipp_packet_set_data(pp, mp); 13897 13898 /* Invoke the classifier */ 13899 rc = ipp_packet_process(&pp); 13900 if (pp != NULL) { 13901 mp = ipp_packet_get_data(pp); 13902 ipp_packet_free(pp); 13903 if (rc != 0) 13904 goto drop; 13905 return (mp); 13906 } else { 13907 /* No mp to trace in ip_drop_input/ip_drop_output */ 13908 mp = NULL; 13909 } 13910 drop: 13911 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13912 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13913 ip_drop_input("ip_process", mp, ill); 13914 } else { 13915 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13916 ip_drop_output("ip_process", mp, ill); 13917 } 13918 freemsg(mp); 13919 return (NULL); 13920 } 13921 13922 /* 13923 * Propagate a multicast group membership operation (add/drop) on 13924 * all the interfaces crossed by the related multirt routes. 13925 * The call is considered successful if the operation succeeds 13926 * on at least one interface. 13927 * 13928 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13929 * multicast addresses with the ire argument being the first one. 13930 * We walk the bucket to find all the of those. 13931 * 13932 * Common to IPv4 and IPv6. 13933 */ 13934 static int 13935 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13936 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13937 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13938 mcast_record_t fmode, const in6_addr_t *v6src) 13939 { 13940 ire_t *ire_gw; 13941 irb_t *irb; 13942 int ifindex; 13943 int error = 0; 13944 int result; 13945 ip_stack_t *ipst = ire->ire_ipst; 13946 ipaddr_t group; 13947 boolean_t isv6; 13948 int match_flags; 13949 13950 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13951 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13952 isv6 = B_FALSE; 13953 } else { 13954 isv6 = B_TRUE; 13955 } 13956 13957 irb = ire->ire_bucket; 13958 ASSERT(irb != NULL); 13959 13960 result = 0; 13961 irb_refhold(irb); 13962 for (; ire != NULL; ire = ire->ire_next) { 13963 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13964 continue; 13965 13966 /* We handle -ifp routes by matching on the ill if set */ 13967 match_flags = MATCH_IRE_TYPE; 13968 if (ire->ire_ill != NULL) 13969 match_flags |= MATCH_IRE_ILL; 13970 13971 if (isv6) { 13972 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13973 continue; 13974 13975 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13976 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13977 match_flags, 0, ipst, NULL); 13978 } else { 13979 if (ire->ire_addr != group) 13980 continue; 13981 13982 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13983 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13984 match_flags, 0, ipst, NULL); 13985 } 13986 /* No interface route exists for the gateway; skip this ire. */ 13987 if (ire_gw == NULL) 13988 continue; 13989 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13990 ire_refrele(ire_gw); 13991 continue; 13992 } 13993 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13994 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13995 13996 /* 13997 * The operation is considered a success if 13998 * it succeeds at least once on any one interface. 13999 */ 14000 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 14001 fmode, v6src); 14002 if (error == 0) 14003 result = CGTP_MCAST_SUCCESS; 14004 14005 ire_refrele(ire_gw); 14006 } 14007 irb_refrele(irb); 14008 /* 14009 * Consider the call as successful if we succeeded on at least 14010 * one interface. Otherwise, return the last encountered error. 14011 */ 14012 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 14013 } 14014 14015 /* 14016 * Get the CGTP (multirouting) filtering status. 14017 * If 0, the CGTP hooks are transparent. 14018 */ 14019 /* ARGSUSED */ 14020 static int 14021 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 14022 { 14023 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 14024 14025 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 14026 return (0); 14027 } 14028 14029 /* 14030 * Set the CGTP (multirouting) filtering status. 14031 * If the status is changed from active to transparent 14032 * or from transparent to active, forward the new status 14033 * to the filtering module (if loaded). 14034 */ 14035 /* ARGSUSED */ 14036 static int 14037 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 14038 cred_t *ioc_cr) 14039 { 14040 long new_value; 14041 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 14042 ip_stack_t *ipst = CONNQ_TO_IPST(q); 14043 14044 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 14045 return (EPERM); 14046 14047 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 14048 new_value < 0 || new_value > 1) { 14049 return (EINVAL); 14050 } 14051 14052 if ((!*ip_cgtp_filter_value) && new_value) { 14053 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 14054 ipst->ips_ip_cgtp_filter_ops == NULL ? 14055 " (module not loaded)" : ""); 14056 } 14057 if (*ip_cgtp_filter_value && (!new_value)) { 14058 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 14059 ipst->ips_ip_cgtp_filter_ops == NULL ? 14060 " (module not loaded)" : ""); 14061 } 14062 14063 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 14064 int res; 14065 netstackid_t stackid; 14066 14067 stackid = ipst->ips_netstack->netstack_stackid; 14068 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 14069 new_value); 14070 if (res) 14071 return (res); 14072 } 14073 14074 *ip_cgtp_filter_value = (boolean_t)new_value; 14075 14076 ill_set_inputfn_all(ipst); 14077 return (0); 14078 } 14079 14080 /* 14081 * Return the expected CGTP hooks version number. 14082 */ 14083 int 14084 ip_cgtp_filter_supported(void) 14085 { 14086 return (ip_cgtp_filter_rev); 14087 } 14088 14089 /* 14090 * CGTP hooks can be registered by invoking this function. 14091 * Checks that the version number matches. 14092 */ 14093 int 14094 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 14095 { 14096 netstack_t *ns; 14097 ip_stack_t *ipst; 14098 14099 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 14100 return (ENOTSUP); 14101 14102 ns = netstack_find_by_stackid(stackid); 14103 if (ns == NULL) 14104 return (EINVAL); 14105 ipst = ns->netstack_ip; 14106 ASSERT(ipst != NULL); 14107 14108 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 14109 netstack_rele(ns); 14110 return (EALREADY); 14111 } 14112 14113 ipst->ips_ip_cgtp_filter_ops = ops; 14114 14115 ill_set_inputfn_all(ipst); 14116 14117 netstack_rele(ns); 14118 return (0); 14119 } 14120 14121 /* 14122 * CGTP hooks can be unregistered by invoking this function. 14123 * Returns ENXIO if there was no registration. 14124 * Returns EBUSY if the ndd variable has not been turned off. 14125 */ 14126 int 14127 ip_cgtp_filter_unregister(netstackid_t stackid) 14128 { 14129 netstack_t *ns; 14130 ip_stack_t *ipst; 14131 14132 ns = netstack_find_by_stackid(stackid); 14133 if (ns == NULL) 14134 return (EINVAL); 14135 ipst = ns->netstack_ip; 14136 ASSERT(ipst != NULL); 14137 14138 if (ipst->ips_ip_cgtp_filter) { 14139 netstack_rele(ns); 14140 return (EBUSY); 14141 } 14142 14143 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 14144 netstack_rele(ns); 14145 return (ENXIO); 14146 } 14147 ipst->ips_ip_cgtp_filter_ops = NULL; 14148 14149 ill_set_inputfn_all(ipst); 14150 14151 netstack_rele(ns); 14152 return (0); 14153 } 14154 14155 /* 14156 * Check whether there is a CGTP filter registration. 14157 * Returns non-zero if there is a registration, otherwise returns zero. 14158 * Note: returns zero if bad stackid. 14159 */ 14160 int 14161 ip_cgtp_filter_is_registered(netstackid_t stackid) 14162 { 14163 netstack_t *ns; 14164 ip_stack_t *ipst; 14165 int ret; 14166 14167 ns = netstack_find_by_stackid(stackid); 14168 if (ns == NULL) 14169 return (0); 14170 ipst = ns->netstack_ip; 14171 ASSERT(ipst != NULL); 14172 14173 if (ipst->ips_ip_cgtp_filter_ops != NULL) 14174 ret = 1; 14175 else 14176 ret = 0; 14177 14178 netstack_rele(ns); 14179 return (ret); 14180 } 14181 14182 static int 14183 ip_squeue_switch(int val) 14184 { 14185 int rval; 14186 14187 switch (val) { 14188 case IP_SQUEUE_ENTER_NODRAIN: 14189 rval = SQ_NODRAIN; 14190 break; 14191 case IP_SQUEUE_ENTER: 14192 rval = SQ_PROCESS; 14193 break; 14194 case IP_SQUEUE_FILL: 14195 default: 14196 rval = SQ_FILL; 14197 break; 14198 } 14199 return (rval); 14200 } 14201 14202 /* ARGSUSED */ 14203 static int 14204 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 14205 caddr_t addr, cred_t *cr) 14206 { 14207 int *v = (int *)addr; 14208 long new_value; 14209 14210 if (secpolicy_net_config(cr, B_FALSE) != 0) 14211 return (EPERM); 14212 14213 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 14214 return (EINVAL); 14215 14216 ip_squeue_flag = ip_squeue_switch(new_value); 14217 *v = new_value; 14218 return (0); 14219 } 14220 14221 /* 14222 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 14223 * ip_debug. 14224 */ 14225 /* ARGSUSED */ 14226 static int 14227 ip_int_set(queue_t *q, mblk_t *mp, char *value, 14228 caddr_t addr, cred_t *cr) 14229 { 14230 int *v = (int *)addr; 14231 long new_value; 14232 14233 if (secpolicy_net_config(cr, B_FALSE) != 0) 14234 return (EPERM); 14235 14236 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 14237 return (EINVAL); 14238 14239 *v = new_value; 14240 return (0); 14241 } 14242 14243 static void * 14244 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 14245 { 14246 kstat_t *ksp; 14247 14248 ip_stat_t template = { 14249 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 14250 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 14251 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 14252 { "ip_db_ref", KSTAT_DATA_UINT64 }, 14253 { "ip_notaligned", KSTAT_DATA_UINT64 }, 14254 { "ip_multimblk", KSTAT_DATA_UINT64 }, 14255 { "ip_opt", KSTAT_DATA_UINT64 }, 14256 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 14257 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 14258 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 14259 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 14260 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 14261 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 14262 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 14263 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 14264 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 14265 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 14266 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 14267 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 14268 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 14269 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 14270 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 14271 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 14272 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 14273 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 14274 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 14275 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 14276 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 14277 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 14278 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 14279 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 14280 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 14281 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 14282 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 14283 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 14284 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 14285 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 14286 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 14287 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 14288 }; 14289 14290 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 14291 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 14292 KSTAT_FLAG_VIRTUAL, stackid); 14293 14294 if (ksp == NULL) 14295 return (NULL); 14296 14297 bcopy(&template, ip_statisticsp, sizeof (template)); 14298 ksp->ks_data = (void *)ip_statisticsp; 14299 ksp->ks_private = (void *)(uintptr_t)stackid; 14300 14301 kstat_install(ksp); 14302 return (ksp); 14303 } 14304 14305 static void 14306 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 14307 { 14308 if (ksp != NULL) { 14309 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14310 kstat_delete_netstack(ksp, stackid); 14311 } 14312 } 14313 14314 static void * 14315 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 14316 { 14317 kstat_t *ksp; 14318 14319 ip_named_kstat_t template = { 14320 { "forwarding", KSTAT_DATA_UINT32, 0 }, 14321 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 14322 { "inReceives", KSTAT_DATA_UINT64, 0 }, 14323 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 14324 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14325 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14326 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14327 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14328 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14329 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14330 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14331 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14332 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14333 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14334 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14335 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14336 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14337 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14338 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14339 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14340 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14341 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14342 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14343 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14344 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14345 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14346 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14347 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14348 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14349 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14350 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14351 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14352 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14353 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14354 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14355 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14356 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14357 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14358 }; 14359 14360 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14361 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14362 if (ksp == NULL || ksp->ks_data == NULL) 14363 return (NULL); 14364 14365 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14366 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14367 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 14368 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14369 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14370 14371 template.netToMediaEntrySize.value.i32 = 14372 sizeof (mib2_ipNetToMediaEntry_t); 14373 14374 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14375 14376 bcopy(&template, ksp->ks_data, sizeof (template)); 14377 ksp->ks_update = ip_kstat_update; 14378 ksp->ks_private = (void *)(uintptr_t)stackid; 14379 14380 kstat_install(ksp); 14381 return (ksp); 14382 } 14383 14384 static void 14385 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14386 { 14387 if (ksp != NULL) { 14388 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14389 kstat_delete_netstack(ksp, stackid); 14390 } 14391 } 14392 14393 static int 14394 ip_kstat_update(kstat_t *kp, int rw) 14395 { 14396 ip_named_kstat_t *ipkp; 14397 mib2_ipIfStatsEntry_t ipmib; 14398 ill_walk_context_t ctx; 14399 ill_t *ill; 14400 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14401 netstack_t *ns; 14402 ip_stack_t *ipst; 14403 14404 if (kp == NULL || kp->ks_data == NULL) 14405 return (EIO); 14406 14407 if (rw == KSTAT_WRITE) 14408 return (EACCES); 14409 14410 ns = netstack_find_by_stackid(stackid); 14411 if (ns == NULL) 14412 return (-1); 14413 ipst = ns->netstack_ip; 14414 if (ipst == NULL) { 14415 netstack_rele(ns); 14416 return (-1); 14417 } 14418 ipkp = (ip_named_kstat_t *)kp->ks_data; 14419 14420 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14421 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14422 ill = ILL_START_WALK_V4(&ctx, ipst); 14423 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14424 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14425 rw_exit(&ipst->ips_ill_g_lock); 14426 14427 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14428 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14429 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14430 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14431 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14432 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14433 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14434 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14435 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14436 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14437 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14438 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14439 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 14440 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14441 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14442 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14443 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14444 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14445 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14446 14447 ipkp->routingDiscards.value.ui32 = 0; 14448 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14449 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14450 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14451 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14452 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14453 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14454 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14455 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14456 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14457 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14458 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14459 14460 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14461 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14462 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14463 14464 netstack_rele(ns); 14465 14466 return (0); 14467 } 14468 14469 static void * 14470 icmp_kstat_init(netstackid_t stackid) 14471 { 14472 kstat_t *ksp; 14473 14474 icmp_named_kstat_t template = { 14475 { "inMsgs", KSTAT_DATA_UINT32 }, 14476 { "inErrors", KSTAT_DATA_UINT32 }, 14477 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14478 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14479 { "inParmProbs", KSTAT_DATA_UINT32 }, 14480 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14481 { "inRedirects", KSTAT_DATA_UINT32 }, 14482 { "inEchos", KSTAT_DATA_UINT32 }, 14483 { "inEchoReps", KSTAT_DATA_UINT32 }, 14484 { "inTimestamps", KSTAT_DATA_UINT32 }, 14485 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14486 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14487 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14488 { "outMsgs", KSTAT_DATA_UINT32 }, 14489 { "outErrors", KSTAT_DATA_UINT32 }, 14490 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14491 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14492 { "outParmProbs", KSTAT_DATA_UINT32 }, 14493 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14494 { "outRedirects", KSTAT_DATA_UINT32 }, 14495 { "outEchos", KSTAT_DATA_UINT32 }, 14496 { "outEchoReps", KSTAT_DATA_UINT32 }, 14497 { "outTimestamps", KSTAT_DATA_UINT32 }, 14498 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14499 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14500 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14501 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14502 { "inUnknowns", KSTAT_DATA_UINT32 }, 14503 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14504 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14505 { "outDrops", KSTAT_DATA_UINT32 }, 14506 { "inOverFlows", KSTAT_DATA_UINT32 }, 14507 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14508 }; 14509 14510 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14511 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14512 if (ksp == NULL || ksp->ks_data == NULL) 14513 return (NULL); 14514 14515 bcopy(&template, ksp->ks_data, sizeof (template)); 14516 14517 ksp->ks_update = icmp_kstat_update; 14518 ksp->ks_private = (void *)(uintptr_t)stackid; 14519 14520 kstat_install(ksp); 14521 return (ksp); 14522 } 14523 14524 static void 14525 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14526 { 14527 if (ksp != NULL) { 14528 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14529 kstat_delete_netstack(ksp, stackid); 14530 } 14531 } 14532 14533 static int 14534 icmp_kstat_update(kstat_t *kp, int rw) 14535 { 14536 icmp_named_kstat_t *icmpkp; 14537 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14538 netstack_t *ns; 14539 ip_stack_t *ipst; 14540 14541 if ((kp == NULL) || (kp->ks_data == NULL)) 14542 return (EIO); 14543 14544 if (rw == KSTAT_WRITE) 14545 return (EACCES); 14546 14547 ns = netstack_find_by_stackid(stackid); 14548 if (ns == NULL) 14549 return (-1); 14550 ipst = ns->netstack_ip; 14551 if (ipst == NULL) { 14552 netstack_rele(ns); 14553 return (-1); 14554 } 14555 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14556 14557 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14558 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14559 icmpkp->inDestUnreachs.value.ui32 = 14560 ipst->ips_icmp_mib.icmpInDestUnreachs; 14561 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14562 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14563 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14564 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14565 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14566 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14567 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14568 icmpkp->inTimestampReps.value.ui32 = 14569 ipst->ips_icmp_mib.icmpInTimestampReps; 14570 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14571 icmpkp->inAddrMaskReps.value.ui32 = 14572 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14573 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14574 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14575 icmpkp->outDestUnreachs.value.ui32 = 14576 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14577 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14578 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14579 icmpkp->outSrcQuenchs.value.ui32 = 14580 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14581 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14582 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14583 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14584 icmpkp->outTimestamps.value.ui32 = 14585 ipst->ips_icmp_mib.icmpOutTimestamps; 14586 icmpkp->outTimestampReps.value.ui32 = 14587 ipst->ips_icmp_mib.icmpOutTimestampReps; 14588 icmpkp->outAddrMasks.value.ui32 = 14589 ipst->ips_icmp_mib.icmpOutAddrMasks; 14590 icmpkp->outAddrMaskReps.value.ui32 = 14591 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14592 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14593 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14594 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14595 icmpkp->outFragNeeded.value.ui32 = 14596 ipst->ips_icmp_mib.icmpOutFragNeeded; 14597 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14598 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14599 icmpkp->inBadRedirects.value.ui32 = 14600 ipst->ips_icmp_mib.icmpInBadRedirects; 14601 14602 netstack_rele(ns); 14603 return (0); 14604 } 14605 14606 /* 14607 * This is the fanout function for raw socket opened for SCTP. Note 14608 * that it is called after SCTP checks that there is no socket which 14609 * wants a packet. Then before SCTP handles this out of the blue packet, 14610 * this function is called to see if there is any raw socket for SCTP. 14611 * If there is and it is bound to the correct address, the packet will 14612 * be sent to that socket. Note that only one raw socket can be bound to 14613 * a port. This is assured in ipcl_sctp_hash_insert(); 14614 */ 14615 void 14616 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14617 ip_recv_attr_t *ira) 14618 { 14619 conn_t *connp; 14620 queue_t *rq; 14621 boolean_t secure; 14622 ill_t *ill = ira->ira_ill; 14623 ip_stack_t *ipst = ill->ill_ipst; 14624 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14625 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14626 iaflags_t iraflags = ira->ira_flags; 14627 ill_t *rill = ira->ira_rill; 14628 14629 secure = iraflags & IRAF_IPSEC_SECURE; 14630 14631 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14632 ira, ipst); 14633 if (connp == NULL) { 14634 /* 14635 * Although raw sctp is not summed, OOB chunks must be. 14636 * Drop the packet here if the sctp checksum failed. 14637 */ 14638 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14639 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 14640 freemsg(mp); 14641 return; 14642 } 14643 ira->ira_ill = ira->ira_rill = NULL; 14644 sctp_ootb_input(mp, ira, ipst); 14645 ira->ira_ill = ill; 14646 ira->ira_rill = rill; 14647 return; 14648 } 14649 rq = connp->conn_rq; 14650 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14651 CONN_DEC_REF(connp); 14652 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14653 freemsg(mp); 14654 return; 14655 } 14656 if (((iraflags & IRAF_IS_IPV4) ? 14657 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14658 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14659 secure) { 14660 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14661 ip6h, ira); 14662 if (mp == NULL) { 14663 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14664 /* Note that mp is NULL */ 14665 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14666 CONN_DEC_REF(connp); 14667 return; 14668 } 14669 } 14670 14671 if (iraflags & IRAF_ICMP_ERROR) { 14672 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14673 } else { 14674 ill_t *rill = ira->ira_rill; 14675 14676 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14677 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14678 ira->ira_ill = ira->ira_rill = NULL; 14679 (connp->conn_recv)(connp, mp, NULL, ira); 14680 ira->ira_ill = ill; 14681 ira->ira_rill = rill; 14682 } 14683 CONN_DEC_REF(connp); 14684 } 14685 14686 /* 14687 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14688 * header before the ip payload. 14689 */ 14690 static void 14691 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14692 { 14693 int len = (mp->b_wptr - mp->b_rptr); 14694 mblk_t *ip_mp; 14695 14696 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14697 if (is_fp_mp || len != fp_mp_len) { 14698 if (len > fp_mp_len) { 14699 /* 14700 * fastpath header and ip header in the first mblk 14701 */ 14702 mp->b_rptr += fp_mp_len; 14703 } else { 14704 /* 14705 * ip_xmit_attach_llhdr had to prepend an mblk to 14706 * attach the fastpath header before ip header. 14707 */ 14708 ip_mp = mp->b_cont; 14709 freeb(mp); 14710 mp = ip_mp; 14711 mp->b_rptr += (fp_mp_len - len); 14712 } 14713 } else { 14714 ip_mp = mp->b_cont; 14715 freeb(mp); 14716 mp = ip_mp; 14717 } 14718 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14719 freemsg(mp); 14720 } 14721 14722 /* 14723 * Normal post fragmentation function. 14724 * 14725 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14726 * using the same state machine. 14727 * 14728 * We return an error on failure. In particular we return EWOULDBLOCK 14729 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14730 * (currently by canputnext failure resulting in backenabling from GLD.) 14731 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14732 * indication that they can flow control until ip_wsrv() tells then to restart. 14733 * 14734 * If the nce passed by caller is incomplete, this function 14735 * queues the packet and if necessary, sends ARP request and bails. 14736 * If the Neighbor Cache passed is fully resolved, we simply prepend 14737 * the link-layer header to the packet, do ipsec hw acceleration 14738 * work if necessary, and send the packet out on the wire. 14739 */ 14740 /* ARGSUSED6 */ 14741 int 14742 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14743 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14744 { 14745 queue_t *wq; 14746 ill_t *ill = nce->nce_ill; 14747 ip_stack_t *ipst = ill->ill_ipst; 14748 uint64_t delta; 14749 boolean_t isv6 = ill->ill_isv6; 14750 boolean_t fp_mp; 14751 ncec_t *ncec = nce->nce_common; 14752 int64_t now = LBOLT_FASTPATH64; 14753 boolean_t is_probe; 14754 14755 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14756 14757 ASSERT(mp != NULL); 14758 ASSERT(mp->b_datap->db_type == M_DATA); 14759 ASSERT(pkt_len == msgdsize(mp)); 14760 14761 /* 14762 * If we have already been here and are coming back after ARP/ND. 14763 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14764 * in that case since they have seen the packet when it came here 14765 * the first time. 14766 */ 14767 if (ixaflags & IXAF_NO_TRACE) 14768 goto sendit; 14769 14770 if (ixaflags & IXAF_IS_IPV4) { 14771 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14772 14773 ASSERT(!isv6); 14774 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14775 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14776 !(ixaflags & IXAF_NO_PFHOOK)) { 14777 int error; 14778 14779 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14780 ipst->ips_ipv4firewall_physical_out, 14781 NULL, ill, ipha, mp, mp, 0, ipst, error); 14782 DTRACE_PROBE1(ip4__physical__out__end, 14783 mblk_t *, mp); 14784 if (mp == NULL) 14785 return (error); 14786 14787 /* The length could have changed */ 14788 pkt_len = msgdsize(mp); 14789 } 14790 if (ipst->ips_ip4_observe.he_interested) { 14791 /* 14792 * Note that for TX the zoneid is the sending 14793 * zone, whether or not MLP is in play. 14794 * Since the szone argument is the IP zoneid (i.e., 14795 * zero for exclusive-IP zones) and ipobs wants 14796 * the system zoneid, we map it here. 14797 */ 14798 szone = IP_REAL_ZONEID(szone, ipst); 14799 14800 /* 14801 * On the outbound path the destination zone will be 14802 * unknown as we're sending this packet out on the 14803 * wire. 14804 */ 14805 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14806 ill, ipst); 14807 } 14808 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14809 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14810 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14811 } else { 14812 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14813 14814 ASSERT(isv6); 14815 ASSERT(pkt_len == 14816 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14817 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14818 !(ixaflags & IXAF_NO_PFHOOK)) { 14819 int error; 14820 14821 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14822 ipst->ips_ipv6firewall_physical_out, 14823 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14824 DTRACE_PROBE1(ip6__physical__out__end, 14825 mblk_t *, mp); 14826 if (mp == NULL) 14827 return (error); 14828 14829 /* The length could have changed */ 14830 pkt_len = msgdsize(mp); 14831 } 14832 if (ipst->ips_ip6_observe.he_interested) { 14833 /* See above */ 14834 szone = IP_REAL_ZONEID(szone, ipst); 14835 14836 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14837 ill, ipst); 14838 } 14839 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14840 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14841 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14842 } 14843 14844 sendit: 14845 /* 14846 * We check the state without a lock because the state can never 14847 * move "backwards" to initial or incomplete. 14848 */ 14849 switch (ncec->ncec_state) { 14850 case ND_REACHABLE: 14851 case ND_STALE: 14852 case ND_DELAY: 14853 case ND_PROBE: 14854 mp = ip_xmit_attach_llhdr(mp, nce); 14855 if (mp == NULL) { 14856 /* 14857 * ip_xmit_attach_llhdr has increased 14858 * ipIfStatsOutDiscards and called ip_drop_output() 14859 */ 14860 return (ENOBUFS); 14861 } 14862 /* 14863 * check if nce_fastpath completed and we tagged on a 14864 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14865 */ 14866 fp_mp = (mp->b_datap->db_type == M_DATA); 14867 14868 if (fp_mp && 14869 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14870 ill_dld_direct_t *idd; 14871 14872 idd = &ill->ill_dld_capab->idc_direct; 14873 /* 14874 * Send the packet directly to DLD, where it 14875 * may be queued depending on the availability 14876 * of transmit resources at the media layer. 14877 * Return value should be taken into 14878 * account and flow control the TCP. 14879 */ 14880 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14881 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14882 pkt_len); 14883 14884 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14885 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14886 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14887 } else { 14888 uintptr_t cookie; 14889 14890 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14891 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14892 if (ixacookie != NULL) 14893 *ixacookie = cookie; 14894 return (EWOULDBLOCK); 14895 } 14896 } 14897 } else { 14898 wq = ill->ill_wq; 14899 14900 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14901 !canputnext(wq)) { 14902 if (ixacookie != NULL) 14903 *ixacookie = 0; 14904 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14905 nce->nce_fp_mp != NULL ? 14906 MBLKL(nce->nce_fp_mp) : 0); 14907 return (EWOULDBLOCK); 14908 } 14909 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14910 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14911 pkt_len); 14912 putnext(wq, mp); 14913 } 14914 14915 /* 14916 * The rest of this function implements Neighbor Unreachability 14917 * detection. Determine if the ncec is eligible for NUD. 14918 */ 14919 if (ncec->ncec_flags & NCE_F_NONUD) 14920 return (0); 14921 14922 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14923 14924 /* 14925 * Check for upper layer advice 14926 */ 14927 if (ixaflags & IXAF_REACH_CONF) { 14928 timeout_id_t tid; 14929 14930 /* 14931 * It should be o.k. to check the state without 14932 * a lock here, at most we lose an advice. 14933 */ 14934 ncec->ncec_last = TICK_TO_MSEC(now); 14935 if (ncec->ncec_state != ND_REACHABLE) { 14936 mutex_enter(&ncec->ncec_lock); 14937 ncec->ncec_state = ND_REACHABLE; 14938 tid = ncec->ncec_timeout_id; 14939 ncec->ncec_timeout_id = 0; 14940 mutex_exit(&ncec->ncec_lock); 14941 (void) untimeout(tid); 14942 if (ip_debug > 2) { 14943 /* ip1dbg */ 14944 pr_addr_dbg("ip_xmit: state" 14945 " for %s changed to" 14946 " REACHABLE\n", AF_INET6, 14947 &ncec->ncec_addr); 14948 } 14949 } 14950 return (0); 14951 } 14952 14953 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14954 ip1dbg(("ip_xmit: delta = %" PRId64 14955 " ill_reachable_time = %d \n", delta, 14956 ill->ill_reachable_time)); 14957 if (delta > (uint64_t)ill->ill_reachable_time) { 14958 mutex_enter(&ncec->ncec_lock); 14959 switch (ncec->ncec_state) { 14960 case ND_REACHABLE: 14961 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14962 /* FALLTHROUGH */ 14963 case ND_STALE: 14964 /* 14965 * ND_REACHABLE is identical to 14966 * ND_STALE in this specific case. If 14967 * reachable time has expired for this 14968 * neighbor (delta is greater than 14969 * reachable time), conceptually, the 14970 * neighbor cache is no longer in 14971 * REACHABLE state, but already in 14972 * STALE state. So the correct 14973 * transition here is to ND_DELAY. 14974 */ 14975 ncec->ncec_state = ND_DELAY; 14976 mutex_exit(&ncec->ncec_lock); 14977 nce_restart_timer(ncec, 14978 ipst->ips_delay_first_probe_time); 14979 if (ip_debug > 3) { 14980 /* ip2dbg */ 14981 pr_addr_dbg("ip_xmit: state" 14982 " for %s changed to" 14983 " DELAY\n", AF_INET6, 14984 &ncec->ncec_addr); 14985 } 14986 break; 14987 case ND_DELAY: 14988 case ND_PROBE: 14989 mutex_exit(&ncec->ncec_lock); 14990 /* Timers have already started */ 14991 break; 14992 case ND_UNREACHABLE: 14993 /* 14994 * nce_timer has detected that this ncec 14995 * is unreachable and initiated deleting 14996 * this ncec. 14997 * This is a harmless race where we found the 14998 * ncec before it was deleted and have 14999 * just sent out a packet using this 15000 * unreachable ncec. 15001 */ 15002 mutex_exit(&ncec->ncec_lock); 15003 break; 15004 default: 15005 ASSERT(0); 15006 mutex_exit(&ncec->ncec_lock); 15007 } 15008 } 15009 return (0); 15010 15011 case ND_INCOMPLETE: 15012 /* 15013 * the state could have changed since we didn't hold the lock. 15014 * Re-verify state under lock. 15015 */ 15016 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 15017 mutex_enter(&ncec->ncec_lock); 15018 if (NCE_ISREACHABLE(ncec)) { 15019 mutex_exit(&ncec->ncec_lock); 15020 goto sendit; 15021 } 15022 /* queue the packet */ 15023 nce_queue_mp(ncec, mp, is_probe); 15024 mutex_exit(&ncec->ncec_lock); 15025 DTRACE_PROBE2(ip__xmit__incomplete, 15026 (ncec_t *), ncec, (mblk_t *), mp); 15027 return (0); 15028 15029 case ND_INITIAL: 15030 /* 15031 * State could have changed since we didn't hold the lock, so 15032 * re-verify state. 15033 */ 15034 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 15035 mutex_enter(&ncec->ncec_lock); 15036 if (NCE_ISREACHABLE(ncec)) { 15037 mutex_exit(&ncec->ncec_lock); 15038 goto sendit; 15039 } 15040 nce_queue_mp(ncec, mp, is_probe); 15041 if (ncec->ncec_state == ND_INITIAL) { 15042 ncec->ncec_state = ND_INCOMPLETE; 15043 mutex_exit(&ncec->ncec_lock); 15044 /* 15045 * figure out the source we want to use 15046 * and resolve it. 15047 */ 15048 ip_ndp_resolve(ncec); 15049 } else { 15050 mutex_exit(&ncec->ncec_lock); 15051 } 15052 return (0); 15053 15054 case ND_UNREACHABLE: 15055 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 15056 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 15057 mp, ill); 15058 freemsg(mp); 15059 return (0); 15060 15061 default: 15062 ASSERT(0); 15063 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 15064 ip_drop_output("ipIfStatsOutDiscards - ND_other", 15065 mp, ill); 15066 freemsg(mp); 15067 return (ENETUNREACH); 15068 } 15069 } 15070 15071 /* 15072 * Return B_TRUE if the buffers differ in length or content. 15073 * This is used for comparing extension header buffers. 15074 * Note that an extension header would be declared different 15075 * even if all that changed was the next header value in that header i.e. 15076 * what really changed is the next extension header. 15077 */ 15078 boolean_t 15079 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 15080 uint_t blen) 15081 { 15082 if (!b_valid) 15083 blen = 0; 15084 15085 if (alen != blen) 15086 return (B_TRUE); 15087 if (alen == 0) 15088 return (B_FALSE); /* Both zero length */ 15089 return (bcmp(abuf, bbuf, alen)); 15090 } 15091 15092 /* 15093 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 15094 * Return B_FALSE if memory allocation fails - don't change any state! 15095 */ 15096 boolean_t 15097 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 15098 const void *src, uint_t srclen) 15099 { 15100 void *dst; 15101 15102 if (!src_valid) 15103 srclen = 0; 15104 15105 ASSERT(*dstlenp == 0); 15106 if (src != NULL && srclen != 0) { 15107 dst = mi_alloc(srclen, BPRI_MED); 15108 if (dst == NULL) 15109 return (B_FALSE); 15110 } else { 15111 dst = NULL; 15112 } 15113 if (*dstp != NULL) 15114 mi_free(*dstp); 15115 *dstp = dst; 15116 *dstlenp = dst == NULL ? 0 : srclen; 15117 return (B_TRUE); 15118 } 15119 15120 /* 15121 * Replace what is in *dst, *dstlen with the source. 15122 * Assumes ip_allocbuf has already been called. 15123 */ 15124 void 15125 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 15126 const void *src, uint_t srclen) 15127 { 15128 if (!src_valid) 15129 srclen = 0; 15130 15131 ASSERT(*dstlenp == srclen); 15132 if (src != NULL && srclen != 0) 15133 bcopy(src, *dstp, srclen); 15134 } 15135 15136 /* 15137 * Free the storage pointed to by the members of an ip_pkt_t. 15138 */ 15139 void 15140 ip_pkt_free(ip_pkt_t *ipp) 15141 { 15142 uint_t fields = ipp->ipp_fields; 15143 15144 if (fields & IPPF_HOPOPTS) { 15145 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15146 ipp->ipp_hopopts = NULL; 15147 ipp->ipp_hopoptslen = 0; 15148 } 15149 if (fields & IPPF_RTHDRDSTOPTS) { 15150 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 15151 ipp->ipp_rthdrdstopts = NULL; 15152 ipp->ipp_rthdrdstoptslen = 0; 15153 } 15154 if (fields & IPPF_DSTOPTS) { 15155 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15156 ipp->ipp_dstopts = NULL; 15157 ipp->ipp_dstoptslen = 0; 15158 } 15159 if (fields & IPPF_RTHDR) { 15160 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15161 ipp->ipp_rthdr = NULL; 15162 ipp->ipp_rthdrlen = 0; 15163 } 15164 if (fields & IPPF_IPV4_OPTIONS) { 15165 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 15166 ipp->ipp_ipv4_options = NULL; 15167 ipp->ipp_ipv4_options_len = 0; 15168 } 15169 if (fields & IPPF_LABEL_V4) { 15170 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 15171 ipp->ipp_label_v4 = NULL; 15172 ipp->ipp_label_len_v4 = 0; 15173 } 15174 if (fields & IPPF_LABEL_V6) { 15175 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 15176 ipp->ipp_label_v6 = NULL; 15177 ipp->ipp_label_len_v6 = 0; 15178 } 15179 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 15180 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 15181 } 15182 15183 /* 15184 * Copy from src to dst and allocate as needed. 15185 * Returns zero or ENOMEM. 15186 * 15187 * The caller must initialize dst to zero. 15188 */ 15189 int 15190 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 15191 { 15192 uint_t fields = src->ipp_fields; 15193 15194 /* Start with fields that don't require memory allocation */ 15195 dst->ipp_fields = fields & 15196 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 15197 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 15198 15199 dst->ipp_addr = src->ipp_addr; 15200 dst->ipp_unicast_hops = src->ipp_unicast_hops; 15201 dst->ipp_hoplimit = src->ipp_hoplimit; 15202 dst->ipp_tclass = src->ipp_tclass; 15203 dst->ipp_type_of_service = src->ipp_type_of_service; 15204 15205 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 15206 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 15207 return (0); 15208 15209 if (fields & IPPF_HOPOPTS) { 15210 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 15211 if (dst->ipp_hopopts == NULL) { 15212 ip_pkt_free(dst); 15213 return (ENOMEM); 15214 } 15215 dst->ipp_fields |= IPPF_HOPOPTS; 15216 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 15217 src->ipp_hopoptslen); 15218 dst->ipp_hopoptslen = src->ipp_hopoptslen; 15219 } 15220 if (fields & IPPF_RTHDRDSTOPTS) { 15221 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 15222 kmflag); 15223 if (dst->ipp_rthdrdstopts == NULL) { 15224 ip_pkt_free(dst); 15225 return (ENOMEM); 15226 } 15227 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 15228 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 15229 src->ipp_rthdrdstoptslen); 15230 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 15231 } 15232 if (fields & IPPF_DSTOPTS) { 15233 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 15234 if (dst->ipp_dstopts == NULL) { 15235 ip_pkt_free(dst); 15236 return (ENOMEM); 15237 } 15238 dst->ipp_fields |= IPPF_DSTOPTS; 15239 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 15240 src->ipp_dstoptslen); 15241 dst->ipp_dstoptslen = src->ipp_dstoptslen; 15242 } 15243 if (fields & IPPF_RTHDR) { 15244 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 15245 if (dst->ipp_rthdr == NULL) { 15246 ip_pkt_free(dst); 15247 return (ENOMEM); 15248 } 15249 dst->ipp_fields |= IPPF_RTHDR; 15250 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 15251 src->ipp_rthdrlen); 15252 dst->ipp_rthdrlen = src->ipp_rthdrlen; 15253 } 15254 if (fields & IPPF_IPV4_OPTIONS) { 15255 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 15256 kmflag); 15257 if (dst->ipp_ipv4_options == NULL) { 15258 ip_pkt_free(dst); 15259 return (ENOMEM); 15260 } 15261 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 15262 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 15263 src->ipp_ipv4_options_len); 15264 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 15265 } 15266 if (fields & IPPF_LABEL_V4) { 15267 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 15268 if (dst->ipp_label_v4 == NULL) { 15269 ip_pkt_free(dst); 15270 return (ENOMEM); 15271 } 15272 dst->ipp_fields |= IPPF_LABEL_V4; 15273 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 15274 src->ipp_label_len_v4); 15275 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 15276 } 15277 if (fields & IPPF_LABEL_V6) { 15278 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 15279 if (dst->ipp_label_v6 == NULL) { 15280 ip_pkt_free(dst); 15281 return (ENOMEM); 15282 } 15283 dst->ipp_fields |= IPPF_LABEL_V6; 15284 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 15285 src->ipp_label_len_v6); 15286 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 15287 } 15288 if (fields & IPPF_FRAGHDR) { 15289 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 15290 if (dst->ipp_fraghdr == NULL) { 15291 ip_pkt_free(dst); 15292 return (ENOMEM); 15293 } 15294 dst->ipp_fields |= IPPF_FRAGHDR; 15295 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 15296 src->ipp_fraghdrlen); 15297 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 15298 } 15299 return (0); 15300 } 15301 15302 /* 15303 * Returns INADDR_ANY if no source route 15304 */ 15305 ipaddr_t 15306 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 15307 { 15308 ipaddr_t nexthop = INADDR_ANY; 15309 ipoptp_t opts; 15310 uchar_t *opt; 15311 uint8_t optval; 15312 uint8_t optlen; 15313 uint32_t totallen; 15314 15315 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15316 return (INADDR_ANY); 15317 15318 totallen = ipp->ipp_ipv4_options_len; 15319 if (totallen & 0x3) 15320 return (INADDR_ANY); 15321 15322 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15323 optval != IPOPT_EOL; 15324 optval = ipoptp_next(&opts)) { 15325 opt = opts.ipoptp_cur; 15326 switch (optval) { 15327 uint8_t off; 15328 case IPOPT_SSRR: 15329 case IPOPT_LSRR: 15330 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15331 break; 15332 } 15333 optlen = opts.ipoptp_len; 15334 off = opt[IPOPT_OFFSET]; 15335 off--; 15336 if (optlen < IP_ADDR_LEN || 15337 off > optlen - IP_ADDR_LEN) { 15338 /* End of source route */ 15339 break; 15340 } 15341 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15342 if (nexthop == htonl(INADDR_LOOPBACK)) { 15343 /* Ignore */ 15344 nexthop = INADDR_ANY; 15345 break; 15346 } 15347 break; 15348 } 15349 } 15350 return (nexthop); 15351 } 15352 15353 /* 15354 * Reverse a source route. 15355 */ 15356 void 15357 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15358 { 15359 ipaddr_t tmp; 15360 ipoptp_t opts; 15361 uchar_t *opt; 15362 uint8_t optval; 15363 uint32_t totallen; 15364 15365 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15366 return; 15367 15368 totallen = ipp->ipp_ipv4_options_len; 15369 if (totallen & 0x3) 15370 return; 15371 15372 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15373 optval != IPOPT_EOL; 15374 optval = ipoptp_next(&opts)) { 15375 uint8_t off1, off2; 15376 15377 opt = opts.ipoptp_cur; 15378 switch (optval) { 15379 case IPOPT_SSRR: 15380 case IPOPT_LSRR: 15381 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15382 break; 15383 } 15384 off1 = IPOPT_MINOFF_SR - 1; 15385 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15386 while (off2 > off1) { 15387 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15388 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15389 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15390 off2 -= IP_ADDR_LEN; 15391 off1 += IP_ADDR_LEN; 15392 } 15393 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15394 break; 15395 } 15396 } 15397 } 15398 15399 /* 15400 * Returns NULL if no routing header 15401 */ 15402 in6_addr_t * 15403 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15404 { 15405 in6_addr_t *nexthop = NULL; 15406 ip6_rthdr0_t *rthdr; 15407 15408 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15409 return (NULL); 15410 15411 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15412 if (rthdr->ip6r0_segleft == 0) 15413 return (NULL); 15414 15415 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15416 return (nexthop); 15417 } 15418 15419 zoneid_t 15420 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15421 zoneid_t lookup_zoneid) 15422 { 15423 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15424 ire_t *ire; 15425 int ire_flags = MATCH_IRE_TYPE; 15426 zoneid_t zoneid = ALL_ZONES; 15427 15428 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15429 return (ALL_ZONES); 15430 15431 if (lookup_zoneid != ALL_ZONES) 15432 ire_flags |= MATCH_IRE_ZONEONLY; 15433 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15434 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15435 if (ire != NULL) { 15436 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15437 ire_refrele(ire); 15438 } 15439 return (zoneid); 15440 } 15441 15442 zoneid_t 15443 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15444 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15445 { 15446 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15447 ire_t *ire; 15448 int ire_flags = MATCH_IRE_TYPE; 15449 zoneid_t zoneid = ALL_ZONES; 15450 15451 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15452 return (ALL_ZONES); 15453 15454 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15455 ire_flags |= MATCH_IRE_ILL; 15456 15457 if (lookup_zoneid != ALL_ZONES) 15458 ire_flags |= MATCH_IRE_ZONEONLY; 15459 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15460 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15461 if (ire != NULL) { 15462 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15463 ire_refrele(ire); 15464 } 15465 return (zoneid); 15466 } 15467 15468 /* 15469 * IP obserability hook support functions. 15470 */ 15471 static void 15472 ipobs_init(ip_stack_t *ipst) 15473 { 15474 netid_t id; 15475 15476 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15477 15478 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15479 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15480 15481 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15482 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15483 } 15484 15485 static void 15486 ipobs_fini(ip_stack_t *ipst) 15487 { 15488 15489 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15490 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15491 } 15492 15493 /* 15494 * hook_pkt_observe_t is composed in network byte order so that the 15495 * entire mblk_t chain handed into hook_run can be used as-is. 15496 * The caveat is that use of the fields, such as the zone fields, 15497 * requires conversion into host byte order first. 15498 */ 15499 void 15500 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15501 const ill_t *ill, ip_stack_t *ipst) 15502 { 15503 hook_pkt_observe_t *hdr; 15504 uint64_t grifindex; 15505 mblk_t *imp; 15506 15507 imp = allocb(sizeof (*hdr), BPRI_HI); 15508 if (imp == NULL) 15509 return; 15510 15511 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15512 /* 15513 * b_wptr is set to make the apparent size of the data in the mblk_t 15514 * to exclude the pointers at the end of hook_pkt_observer_t. 15515 */ 15516 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15517 imp->b_cont = mp; 15518 15519 ASSERT(DB_TYPE(mp) == M_DATA); 15520 15521 if (IS_UNDER_IPMP(ill)) 15522 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15523 else 15524 grifindex = 0; 15525 15526 hdr->hpo_version = 1; 15527 hdr->hpo_htype = htons(htype); 15528 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15529 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15530 hdr->hpo_grifindex = htonl(grifindex); 15531 hdr->hpo_zsrc = htonl(zsrc); 15532 hdr->hpo_zdst = htonl(zdst); 15533 hdr->hpo_pkt = imp; 15534 hdr->hpo_ctx = ipst->ips_netstack; 15535 15536 if (ill->ill_isv6) { 15537 hdr->hpo_family = AF_INET6; 15538 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15539 ipst->ips_ipv6observing, (hook_data_t)hdr); 15540 } else { 15541 hdr->hpo_family = AF_INET; 15542 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15543 ipst->ips_ipv4observing, (hook_data_t)hdr); 15544 } 15545 15546 imp->b_cont = NULL; 15547 freemsg(imp); 15548 } 15549 15550 /* 15551 * Utility routine that checks if `v4srcp' is a valid address on underlying 15552 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15553 * associated with `v4srcp' on success. NOTE: if this is not called from 15554 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15555 * group during or after this lookup. 15556 */ 15557 boolean_t 15558 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15559 { 15560 ipif_t *ipif; 15561 15562 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15563 if (ipif != NULL) { 15564 if (ipifp != NULL) 15565 *ipifp = ipif; 15566 else 15567 ipif_refrele(ipif); 15568 return (B_TRUE); 15569 } 15570 15571 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15572 *v4srcp)); 15573 return (B_FALSE); 15574 } 15575