1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/dlpi.h> 30 #include <sys/stropts.h> 31 #include <sys/sysmacros.h> 32 #include <sys/strsubr.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #include <sys/zone.h> 36 #define _SUN_TPI_VERSION 2 37 #include <sys/tihdr.h> 38 #include <sys/xti_inet.h> 39 #include <sys/ddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <inet/iptun/iptun_impl.h> 100 #include <inet/ipdrop.h> 101 #include <inet/ip_netinfo.h> 102 #include <inet/ilb_ip.h> 103 104 #include <sys/ethernet.h> 105 #include <net/if_types.h> 106 #include <sys/cpuvar.h> 107 108 #include <ipp/ipp.h> 109 #include <ipp/ipp_impl.h> 110 #include <ipp/ipgpc/ipgpc.h> 111 112 #include <sys/pattr.h> 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/sctp/sctp_impl.h> 116 #include <inet/udp_impl.h> 117 #include <inet/rawip_impl.h> 118 #include <inet/rts_impl.h> 119 120 #include <sys/tsol/label.h> 121 #include <sys/tsol/tnet.h> 122 123 #include <sys/squeue_impl.h> 124 #include <inet/ip_arp.h> 125 126 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 131 * IP_SQUEUE_ENTER: SQ_PROCESS 132 * IP_SQUEUE_FILL: SQ_FILL 133 */ 134 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 135 136 int ip_squeue_flag; 137 138 /* 139 * Setable in /etc/system 140 */ 141 int ip_poll_normal_ms = 100; 142 int ip_poll_normal_ticks = 0; 143 int ip_modclose_ackwait_ms = 3000; 144 145 /* 146 * It would be nice to have these present only in DEBUG systems, but the 147 * current design of the global symbol checking logic requires them to be 148 * unconditionally present. 149 */ 150 uint_t ip_thread_data; /* TSD key for debug support */ 151 krwlock_t ip_thread_rwlock; 152 list_t ip_thread_list; 153 154 /* 155 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 156 */ 157 158 struct listptr_s { 159 mblk_t *lp_head; /* pointer to the head of the list */ 160 mblk_t *lp_tail; /* pointer to the tail of the list */ 161 }; 162 163 typedef struct listptr_s listptr_t; 164 165 /* 166 * This is used by ip_snmp_get_mib2_ip_route_media and 167 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 168 */ 169 typedef struct iproutedata_s { 170 uint_t ird_idx; 171 uint_t ird_flags; /* see below */ 172 listptr_t ird_route; /* ipRouteEntryTable */ 173 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 174 listptr_t ird_attrs; /* ipRouteAttributeTable */ 175 } iproutedata_t; 176 177 /* Include ire_testhidden and IRE_IF_CLONE routes */ 178 #define IRD_REPORT_ALL 0x01 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 199 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 200 void *args) = NULL; 201 202 /* 203 * Hook function to generate cluster wide SPI. 204 */ 205 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 206 void *) = NULL; 207 208 /* 209 * Hook function to verify if the SPI is already utlized. 210 */ 211 212 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 213 214 /* 215 * Hook function to delete the SPI from the cluster wide repository. 216 */ 217 218 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 219 220 /* 221 * Hook function to inform the cluster when packet received on an IDLE SA 222 */ 223 224 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 225 in6_addr_t, in6_addr_t, void *) = NULL; 226 227 /* 228 * Synchronization notes: 229 * 230 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 231 * MT level protection given by STREAMS. IP uses a combination of its own 232 * internal serialization mechanism and standard Solaris locking techniques. 233 * The internal serialization is per phyint. This is used to serialize 234 * plumbing operations, IPMP operations, most set ioctls, etc. 235 * 236 * Plumbing is a long sequence of operations involving message 237 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 238 * involved in plumbing operations. A natural model is to serialize these 239 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 240 * parallel without any interference. But various set ioctls on hme0 are best 241 * serialized, along with IPMP operations and processing of DLPI control 242 * messages received from drivers on a per phyint basis. This serialization is 243 * provided by the ipsq_t and primitives operating on this. Details can 244 * be found in ip_if.c above the core primitives operating on ipsq_t. 245 * 246 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 247 * Simiarly lookup of an ire by a thread also returns a refheld ire. 248 * In addition ipif's and ill's referenced by the ire are also indirectly 249 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 250 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 251 * address of an ipif has to go through the ipsq_t. This ensures that only 252 * one such exclusive operation proceeds at any time on the ipif. It then 253 * waits for all refcnts 254 * associated with this ipif to come down to zero. The address is changed 255 * only after the ipif has been quiesced. Then the ipif is brought up again. 256 * More details are described above the comment in ip_sioctl_flags. 257 * 258 * Packet processing is based mostly on IREs and are fully multi-threaded 259 * using standard Solaris MT techniques. 260 * 261 * There are explicit locks in IP to handle: 262 * - The ip_g_head list maintained by mi_open_link() and friends. 263 * 264 * - The reassembly data structures (one lock per hash bucket) 265 * 266 * - conn_lock is meant to protect conn_t fields. The fields actually 267 * protected by conn_lock are documented in the conn_t definition. 268 * 269 * - ire_lock to protect some of the fields of the ire, IRE tables 270 * (one lock per hash bucket). Refer to ip_ire.c for details. 271 * 272 * - ndp_g_lock and ncec_lock for protecting NCEs. 273 * 274 * - ill_lock protects fields of the ill and ipif. Details in ip.h 275 * 276 * - ill_g_lock: This is a global reader/writer lock. Protects the following 277 * * The AVL tree based global multi list of all ills. 278 * * The linked list of all ipifs of an ill 279 * * The <ipsq-xop> mapping 280 * * <ill-phyint> association 281 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 282 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 283 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 284 * writer for the actual duration of the insertion/deletion/change. 285 * 286 * - ill_lock: This is a per ill mutex. 287 * It protects some members of the ill_t struct; see ip.h for details. 288 * It also protects the <ill-phyint> assoc. 289 * It also protects the list of ipifs hanging off the ill. 290 * 291 * - ipsq_lock: This is a per ipsq_t mutex lock. 292 * This protects some members of the ipsq_t struct; see ip.h for details. 293 * It also protects the <ipsq-ipxop> mapping 294 * 295 * - ipx_lock: This is a per ipxop_t mutex lock. 296 * This protects some members of the ipxop_t struct; see ip.h for details. 297 * 298 * - phyint_lock: This is a per phyint mutex lock. Protects just the 299 * phyint_flags 300 * 301 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 302 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 303 * uniqueness check also done atomically. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 314 * operations are executed exclusively and that ensures that the "usesrc 315 * group state" cannot change. The "usesrc group state" change can happen 316 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ipsq-xop> assocications: 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ipsq-xop> association, the ill_g_lock must be held as 325 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 326 * This is only done when ills are added or removed from IPMP groups. 327 * 328 * To add or delete an ipif from the list of ipifs hanging off the ill, 329 * ill_g_lock (writer) and ill_lock must be held and the thread must be 330 * a writer on the associated ipsq. 331 * 332 * To add or delete an ill to the system, the ill_g_lock must be held as 333 * writer and the thread must be a writer on the associated ipsq. 334 * 335 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 336 * must be a writer on the associated ipsq. 337 * 338 * Lock hierarchy 339 * 340 * Some lock hierarchy scenarios are listed below. 341 * 342 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 343 * ill_g_lock -> ill_lock(s) -> phyint_lock 344 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 345 * ill_g_lock -> ip_addr_avail_lock 346 * conn_lock -> irb_lock -> ill_lock -> ire_lock 347 * ill_g_lock -> ip_g_nd_lock 348 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 350 * arl_lock -> ill_lock 351 * ips_ire_dep_lock -> irb_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * Multicast scenarios 358 * ips_ill_g_lock -> ill_mcast_lock 359 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 360 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 361 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 364 * 365 * IPsec scenarios 366 * 367 * ipsa_lock -> ill_g_lock -> ill_lock 368 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 369 * 370 * Trusted Solaris scenarios 371 * 372 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 373 * igsa_lock -> gcdb_lock 374 * gcgrp_rwlock -> ire_lock 375 * gcgrp_rwlock -> gcdb_lock 376 * 377 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 378 * 379 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 380 * sq_lock -> conn_lock -> QLOCK(q) 381 * ill_lock -> ft_lock -> fe_lock 382 * 383 * Routing/forwarding table locking notes: 384 * 385 * Lock acquisition order: Radix tree lock, irb_lock. 386 * Requirements: 387 * i. Walker must not hold any locks during the walker callback. 388 * ii Walker must not see a truncated tree during the walk because of any node 389 * deletion. 390 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 391 * in many places in the code to walk the irb list. Thus even if all the 392 * ires in a bucket have been deleted, we still can't free the radix node 393 * until the ires have actually been inactive'd (freed). 394 * 395 * Tree traversal - Need to hold the global tree lock in read mode. 396 * Before dropping the global tree lock, need to either increment the ire_refcnt 397 * to ensure that the radix node can't be deleted. 398 * 399 * Tree add - Need to hold the global tree lock in write mode to add a 400 * radix node. To prevent the node from being deleted, increment the 401 * irb_refcnt, after the node is added to the tree. The ire itself is 402 * added later while holding the irb_lock, but not the tree lock. 403 * 404 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 405 * All associated ires must be inactive (i.e. freed), and irb_refcnt 406 * must be zero. 407 * 408 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 409 * global tree lock (read mode) for traversal. 410 * 411 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 412 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 413 * 414 * IPsec notes : 415 * 416 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 417 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 418 * ip_xmit_attr_t has the 419 * information used by the IPsec code for applying the right level of 420 * protection. The information initialized by IP in the ip_xmit_attr_t 421 * is determined by the per-socket policy or global policy in the system. 422 * For inbound datagrams, the ip_recv_attr_t 423 * starts out with nothing in it. It gets filled 424 * with the right information if it goes through the AH/ESP code, which 425 * happens if the incoming packet is secure. The information initialized 426 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 427 * the policy requirements needed by per-socket policy or global policy 428 * is met or not. 429 * 430 * For fully connected sockets i.e dst, src [addr, port] is known, 431 * conn_policy_cached is set indicating that policy has been cached. 432 * conn_in_enforce_policy may or may not be set depending on whether 433 * there is a global policy match or per-socket policy match. 434 * Policy inheriting happpens in ip_policy_set once the destination is known. 435 * Once the right policy is set on the conn_t, policy cannot change for 436 * this socket. This makes life simpler for TCP (UDP ?) where 437 * re-transmissions go out with the same policy. For symmetry, policy 438 * is cached for fully connected UDP sockets also. Thus if policy is cached, 439 * it also implies that policy is latched i.e policy cannot change 440 * on these sockets. As we have the right policy on the conn, we don't 441 * have to lookup global policy for every outbound and inbound datagram 442 * and thus serving as an optimization. Note that a global policy change 443 * does not affect fully connected sockets if they have policy. If fully 444 * connected sockets did not have any policy associated with it, global 445 * policy change may affect them. 446 * 447 * IP Flow control notes: 448 * --------------------- 449 * Non-TCP streams are flow controlled by IP. The way this is accomplished 450 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 451 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 452 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 453 * functions. 454 * 455 * Per Tx ring udp flow control: 456 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 457 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 458 * 459 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 460 * To achieve best performance, outgoing traffic need to be fanned out among 461 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 462 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 463 * the address of connp as fanout hint to mac_tx(). Under flow controlled 464 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 465 * cookie points to a specific Tx ring that is blocked. The cookie is used to 466 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 467 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 468 * connp's. The drain list is not a single list but a configurable number of 469 * lists. 470 * 471 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 472 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 473 * which is equal to 128. This array in turn contains a pointer to idl_t[], 474 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 475 * list will point to the list of connp's that are flow controlled. 476 * 477 * --------------- ------- ------- ------- 478 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 479 * | --------------- ------- ------- ------- 480 * | --------------- ------- ------- ------- 481 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 482 * ---------------- | --------------- ------- ------- ------- 483 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 484 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * . . . . . 487 * | --------------- ------- ------- ------- 488 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 489 * --------------- ------- ------- ------- 490 * --------------- ------- ------- ------- 491 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 492 * | --------------- ------- ------- ------- 493 * | --------------- ------- ------- ------- 494 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 495 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 496 * ---------------- | . . . . 497 * | --------------- ------- ------- ------- 498 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 499 * --------------- ------- ------- ------- 500 * ..... 501 * ---------------- 502 * |idl_tx_list[n]|-> ... 503 * ---------------- 504 * 505 * When mac_tx() returns a cookie, the cookie is hashed into an index into 506 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 507 * to insert the conn onto. conn_drain_insert() asserts flow control for the 508 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 509 * Further, conn_blocked is set to indicate that the conn is blocked. 510 * 511 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 512 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 513 * is again hashed to locate the appropriate idl_tx_list, which is then 514 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 515 * the drain list and calls conn_drain_remove() to clear flow control (via 516 * calling su_txq_full() or clearing QFULL), and remove the conn from the 517 * drain list. 518 * 519 * Note that the drain list is not a single list but a (configurable) array of 520 * lists (8 elements by default). Synchronization between drain insertion and 521 * flow control wakeup is handled by using idl_txl->txl_lock, and only 522 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 523 * 524 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 525 * On the send side, if the packet cannot be sent down to the driver by IP 526 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 527 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 528 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 529 * control has been relieved, the blocked conns in the 0'th drain list are 530 * drained as in the non-STREAMS case. 531 * 532 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 533 * is done when the conn is inserted into the drain list (conn_drain_insert()) 534 * and cleared when the conn is removed from the it (conn_drain_remove()). 535 * 536 * IPQOS notes: 537 * 538 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 539 * and IPQoS modules. IPPF includes hooks in IP at different control points 540 * (callout positions) which direct packets to IPQoS modules for policy 541 * processing. Policies, if present, are global. 542 * 543 * The callout positions are located in the following paths: 544 * o local_in (packets destined for this host) 545 * o local_out (packets orginating from this host ) 546 * o fwd_in (packets forwarded by this m/c - inbound) 547 * o fwd_out (packets forwarded by this m/c - outbound) 548 * Hooks at these callout points can be enabled/disabled using the ndd variable 549 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 550 * By default all the callout positions are enabled. 551 * 552 * Outbound (local_out) 553 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 554 * 555 * Inbound (local_in) 556 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 557 * 558 * Forwarding (in and out) 559 * Hooks are placed in ire_recv_forward_v4/v6. 560 * 561 * IP Policy Framework processing (IPPF processing) 562 * Policy processing for a packet is initiated by ip_process, which ascertains 563 * that the classifier (ipgpc) is loaded and configured, failing which the 564 * packet resumes normal processing in IP. If the clasifier is present, the 565 * packet is acted upon by one or more IPQoS modules (action instances), per 566 * filters configured in ipgpc and resumes normal IP processing thereafter. 567 * An action instance can drop a packet in course of its processing. 568 * 569 * Zones notes: 570 * 571 * The partitioning rules for networking are as follows: 572 * 1) Packets coming from a zone must have a source address belonging to that 573 * zone. 574 * 2) Packets coming from a zone can only be sent on a physical interface on 575 * which the zone has an IP address. 576 * 3) Between two zones on the same machine, packet delivery is only allowed if 577 * there's a matching route for the destination and zone in the forwarding 578 * table. 579 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 580 * different zones can bind to the same port with the wildcard address 581 * (INADDR_ANY). 582 * 583 * The granularity of interface partitioning is at the logical interface level. 584 * Therefore, every zone has its own IP addresses, and incoming packets can be 585 * attributed to a zone unambiguously. A logical interface is placed into a zone 586 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 587 * structure. Rule (1) is implemented by modifying the source address selection 588 * algorithm so that the list of eligible addresses is filtered based on the 589 * sending process zone. 590 * 591 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 592 * across all zones, depending on their type. Here is the break-up: 593 * 594 * IRE type Shared/exclusive 595 * -------- ---------------- 596 * IRE_BROADCAST Exclusive 597 * IRE_DEFAULT (default routes) Shared (*) 598 * IRE_LOCAL Exclusive (x) 599 * IRE_LOOPBACK Exclusive 600 * IRE_PREFIX (net routes) Shared (*) 601 * IRE_IF_NORESOLVER (interface routes) Exclusive 602 * IRE_IF_RESOLVER (interface routes) Exclusive 603 * IRE_IF_CLONE (interface routes) Exclusive 604 * IRE_HOST (host routes) Shared (*) 605 * 606 * (*) A zone can only use a default or off-subnet route if the gateway is 607 * directly reachable from the zone, that is, if the gateway's address matches 608 * one of the zone's logical interfaces. 609 * 610 * (x) IRE_LOCAL are handled a bit differently. 611 * When ip_restrict_interzone_loopback is set (the default), 612 * ire_route_recursive restricts loopback using an IRE_LOCAL 613 * between zone to the case when L2 would have conceptually looped the packet 614 * back, i.e. the loopback which is required since neither Ethernet drivers 615 * nor Ethernet hardware loops them back. This is the case when the normal 616 * routes (ignoring IREs with different zoneids) would send out the packet on 617 * the same ill as the ill with which is IRE_LOCAL is associated. 618 * 619 * Multiple zones can share a common broadcast address; typically all zones 620 * share the 255.255.255.255 address. Incoming as well as locally originated 621 * broadcast packets must be dispatched to all the zones on the broadcast 622 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 623 * since some zones may not be on the 10.16.72/24 network. To handle this, each 624 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 625 * sent to every zone that has an IRE_BROADCAST entry for the destination 626 * address on the input ill, see ip_input_broadcast(). 627 * 628 * Applications in different zones can join the same multicast group address. 629 * The same logic applies for multicast as for broadcast. ip_input_multicast 630 * dispatches packets to all zones that have members on the physical interface. 631 */ 632 633 /* 634 * Squeue Fanout flags: 635 * 0: No fanout. 636 * 1: Fanout across all squeues 637 */ 638 boolean_t ip_squeue_fanout = 0; 639 640 /* 641 * Maximum dups allowed per packet. 642 */ 643 uint_t ip_max_frag_dups = 10; 644 645 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 646 cred_t *credp, boolean_t isv6); 647 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 648 649 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 650 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 651 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 652 ip_recv_attr_t *); 653 static void icmp_options_update(ipha_t *); 654 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 655 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 656 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 657 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 658 ip_recv_attr_t *); 659 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 660 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 663 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 664 char *ip_dot_addr(ipaddr_t, char *); 665 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 666 int ip_close(queue_t *, int); 667 static char *ip_dot_saddr(uchar_t *, char *); 668 static void ip_lrput(queue_t *, mblk_t *); 669 ipaddr_t ip_net_mask(ipaddr_t); 670 char *ip_nv_lookup(nv_t *, int); 671 void ip_rput(queue_t *, mblk_t *); 672 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 673 void *dummy_arg); 674 int ip_snmp_get(queue_t *, mblk_t *, int); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 707 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 708 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 709 710 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 711 mblk_t *); 712 713 static void conn_drain_init(ip_stack_t *); 714 static void conn_drain_fini(ip_stack_t *); 715 static void conn_drain(conn_t *connp, boolean_t closing); 716 717 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 718 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 719 720 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 721 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 722 static void ip_stack_fini(netstackid_t stackid, void *arg); 723 724 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 725 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 726 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 727 const in6_addr_t *); 728 729 static int ip_squeue_switch(int); 730 731 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 732 static void ip_kstat_fini(netstackid_t, kstat_t *); 733 static int ip_kstat_update(kstat_t *kp, int rw); 734 static void *icmp_kstat_init(netstackid_t); 735 static void icmp_kstat_fini(netstackid_t, kstat_t *); 736 static int icmp_kstat_update(kstat_t *kp, int rw); 737 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 738 static void ip_kstat2_fini(netstackid_t, kstat_t *); 739 740 static void ipobs_init(ip_stack_t *); 741 static void ipobs_fini(ip_stack_t *); 742 743 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 744 745 static long ip_rput_pullups; 746 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 747 748 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 749 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 750 751 int ip_debug; 752 753 /* 754 * Multirouting/CGTP stuff 755 */ 756 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 757 758 /* 759 * IP tunables related declarations. Definitions are in ip_tunables.c 760 */ 761 extern mod_prop_info_t ip_propinfo_tbl[]; 762 extern int ip_propinfo_count; 763 764 /* 765 * Table of IP ioctls encoding the various properties of the ioctl and 766 * indexed based on the last byte of the ioctl command. Occasionally there 767 * is a clash, and there is more than 1 ioctl with the same last byte. 768 * In such a case 1 ioctl is encoded in the ndx table and the remaining 769 * ioctls are encoded in the misc table. An entry in the ndx table is 770 * retrieved by indexing on the last byte of the ioctl command and comparing 771 * the ioctl command with the value in the ndx table. In the event of a 772 * mismatch the misc table is then searched sequentially for the desired 773 * ioctl command. 774 * 775 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 776 */ 777 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 778 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 779 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 780 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 781 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 782 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 783 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 789 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 790 MISC_CMD, ip_siocaddrt, NULL }, 791 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 792 MISC_CMD, ip_siocdelrt, NULL }, 793 794 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 795 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 796 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 797 IF_CMD, ip_sioctl_get_addr, NULL }, 798 799 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 800 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 801 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 802 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 803 804 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 805 IPI_PRIV | IPI_WR, 806 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 807 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 808 IPI_MODOK | IPI_GET_CMD, 809 IF_CMD, ip_sioctl_get_flags, NULL }, 810 811 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 812 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 813 814 /* copyin size cannot be coded for SIOCGIFCONF */ 815 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 816 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 817 818 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 819 IF_CMD, ip_sioctl_mtu, NULL }, 820 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 821 IF_CMD, ip_sioctl_get_mtu, NULL }, 822 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 823 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 824 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 825 IF_CMD, ip_sioctl_brdaddr, NULL }, 826 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 827 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 828 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 829 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 830 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 831 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 832 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 833 IF_CMD, ip_sioctl_metric, NULL }, 834 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 835 836 /* See 166-168 below for extended SIOC*XARP ioctls */ 837 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 838 ARP_CMD, ip_sioctl_arp, NULL }, 839 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 840 ARP_CMD, ip_sioctl_arp, NULL }, 841 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 842 ARP_CMD, ip_sioctl_arp, NULL }, 843 844 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 845 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 846 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 847 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 848 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 849 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 866 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 867 MISC_CMD, if_unitsel, if_unitsel_restart }, 868 869 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 872 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 873 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 874 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 888 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 889 IPI_PRIV | IPI_WR | IPI_MODOK, 890 IF_CMD, ip_sioctl_sifname, NULL }, 891 892 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 894 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 895 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 896 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 897 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 906 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 907 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 908 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 909 IF_CMD, ip_sioctl_get_muxid, NULL }, 910 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 911 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 912 913 /* Both if and lif variants share same func */ 914 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 915 IF_CMD, ip_sioctl_get_lifindex, NULL }, 916 /* Both if and lif variants share same func */ 917 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 918 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 919 920 /* copyin size cannot be coded for SIOCGIFCONF */ 921 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 922 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 923 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 924 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 925 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 926 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 927 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 928 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 941 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 942 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 943 ip_sioctl_removeif_restart }, 944 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 945 IPI_GET_CMD | IPI_PRIV | IPI_WR, 946 LIF_CMD, ip_sioctl_addif, NULL }, 947 #define SIOCLIFADDR_NDX 112 948 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 949 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 950 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 951 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 952 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 953 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 954 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 955 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 956 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 957 IPI_PRIV | IPI_WR, 958 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 959 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 960 IPI_GET_CMD | IPI_MODOK, 961 LIF_CMD, ip_sioctl_get_flags, NULL }, 962 963 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 967 ip_sioctl_get_lifconf, NULL }, 968 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 969 LIF_CMD, ip_sioctl_mtu, NULL }, 970 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 971 LIF_CMD, ip_sioctl_get_mtu, NULL }, 972 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 973 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 974 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 975 LIF_CMD, ip_sioctl_brdaddr, NULL }, 976 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 977 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 978 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 979 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 980 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 981 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 982 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 983 LIF_CMD, ip_sioctl_metric, NULL }, 984 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 985 IPI_PRIV | IPI_WR | IPI_MODOK, 986 LIF_CMD, ip_sioctl_slifname, 987 ip_sioctl_slifname_restart }, 988 989 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 990 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 991 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 992 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 993 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 994 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 995 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 996 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 997 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 998 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 999 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1000 LIF_CMD, ip_sioctl_token, NULL }, 1001 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1002 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1003 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1004 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1005 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1006 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1007 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1008 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1009 1010 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1011 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1012 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1013 LIF_CMD, ip_siocdelndp_v6, NULL }, 1014 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1015 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1016 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1017 LIF_CMD, ip_siocsetndp_v6, NULL }, 1018 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1019 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1020 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1021 MISC_CMD, ip_sioctl_tonlink, NULL }, 1022 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1023 MISC_CMD, ip_sioctl_tmysite, NULL }, 1024 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1027 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1028 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1029 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1030 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1031 1032 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 1034 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1035 LIF_CMD, ip_sioctl_get_binding, NULL }, 1036 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1037 IPI_PRIV | IPI_WR, 1038 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1039 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1040 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1041 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1042 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1043 1044 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1045 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 1049 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 1051 /* These are handled in ip_sioctl_copyin_setup itself */ 1052 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1053 MISC_CMD, NULL, NULL }, 1054 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1055 MISC_CMD, NULL, NULL }, 1056 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1057 1058 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1059 ip_sioctl_get_lifconf, NULL }, 1060 1061 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1062 XARP_CMD, ip_sioctl_arp, NULL }, 1063 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1064 XARP_CMD, ip_sioctl_arp, NULL }, 1065 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1066 XARP_CMD, ip_sioctl_arp, NULL }, 1067 1068 /* SIOCPOPSOCKFS is not handled by IP */ 1069 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1070 1071 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1072 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1073 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1074 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1075 ip_sioctl_slifzone_restart }, 1076 /* 172-174 are SCTP ioctls and not handled by IP */ 1077 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1081 IPI_GET_CMD, LIF_CMD, 1082 ip_sioctl_get_lifusesrc, 0 }, 1083 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1084 IPI_PRIV | IPI_WR, 1085 LIF_CMD, ip_sioctl_slifusesrc, 1086 NULL }, 1087 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1088 ip_sioctl_get_lifsrcof, NULL }, 1089 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1090 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1091 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1092 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1093 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1094 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1095 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1096 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1097 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* SIOCSENABLESDP is handled by SDP */ 1099 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1100 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1101 /* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL }, 1102 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1103 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1104 ip_sioctl_ilb_cmd, NULL }, 1105 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1106 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1107 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1108 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1109 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1110 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart } 1111 }; 1112 1113 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1114 1115 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1116 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1117 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1118 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1119 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1120 { ND_GET, 0, 0, 0, NULL, NULL }, 1121 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1122 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1123 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1124 MISC_CMD, mrt_ioctl}, 1125 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1126 MISC_CMD, mrt_ioctl}, 1127 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1128 MISC_CMD, mrt_ioctl} 1129 }; 1130 1131 int ip_misc_ioctl_count = 1132 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1133 1134 int conn_drain_nthreads; /* Number of drainers reqd. */ 1135 /* Settable in /etc/system */ 1136 /* Defined in ip_ire.c */ 1137 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1138 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1139 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1140 1141 static nv_t ire_nv_arr[] = { 1142 { IRE_BROADCAST, "BROADCAST" }, 1143 { IRE_LOCAL, "LOCAL" }, 1144 { IRE_LOOPBACK, "LOOPBACK" }, 1145 { IRE_DEFAULT, "DEFAULT" }, 1146 { IRE_PREFIX, "PREFIX" }, 1147 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1148 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1149 { IRE_IF_CLONE, "IF_CLONE" }, 1150 { IRE_HOST, "HOST" }, 1151 { IRE_MULTICAST, "MULTICAST" }, 1152 { IRE_NOROUTE, "NOROUTE" }, 1153 { 0 } 1154 }; 1155 1156 nv_t *ire_nv_tbl = ire_nv_arr; 1157 1158 /* Simple ICMP IP Header Template */ 1159 static ipha_t icmp_ipha = { 1160 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1161 }; 1162 1163 struct module_info ip_mod_info = { 1164 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1165 IP_MOD_LOWAT 1166 }; 1167 1168 /* 1169 * Duplicate static symbols within a module confuses mdb; so we avoid the 1170 * problem by making the symbols here distinct from those in udp.c. 1171 */ 1172 1173 /* 1174 * Entry points for IP as a device and as a module. 1175 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1176 */ 1177 static struct qinit iprinitv4 = { 1178 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1179 &ip_mod_info 1180 }; 1181 1182 struct qinit iprinitv6 = { 1183 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1184 &ip_mod_info 1185 }; 1186 1187 static struct qinit ipwinit = { 1188 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1189 &ip_mod_info 1190 }; 1191 1192 static struct qinit iplrinit = { 1193 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1194 &ip_mod_info 1195 }; 1196 1197 static struct qinit iplwinit = { 1198 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1199 &ip_mod_info 1200 }; 1201 1202 /* For AF_INET aka /dev/ip */ 1203 struct streamtab ipinfov4 = { 1204 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1205 }; 1206 1207 /* For AF_INET6 aka /dev/ip6 */ 1208 struct streamtab ipinfov6 = { 1209 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1210 }; 1211 1212 #ifdef DEBUG 1213 boolean_t skip_sctp_cksum = B_FALSE; 1214 #endif 1215 1216 /* 1217 * Generate an ICMP fragmentation needed message. 1218 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1219 * constructed by the caller. 1220 */ 1221 void 1222 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1223 { 1224 icmph_t icmph; 1225 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1226 1227 mp = icmp_pkt_err_ok(mp, ira); 1228 if (mp == NULL) 1229 return; 1230 1231 bzero(&icmph, sizeof (icmph_t)); 1232 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1233 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1234 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1235 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1237 1238 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1239 } 1240 1241 /* 1242 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1243 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1244 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1245 * Likewise, if the ICMP error is misformed (too short, etc), then it 1246 * returns NULL. The caller uses this to determine whether or not to send 1247 * to raw sockets. 1248 * 1249 * All error messages are passed to the matching transport stream. 1250 * 1251 * The following cases are handled by icmp_inbound: 1252 * 1) It needs to send a reply back and possibly delivering it 1253 * to the "interested" upper clients. 1254 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1255 * 3) It needs to change some values in IP only. 1256 * 4) It needs to change some values in IP and upper layers e.g TCP 1257 * by delivering an error to the upper layers. 1258 * 1259 * We handle the above three cases in the context of IPsec in the 1260 * following way : 1261 * 1262 * 1) Send the reply back in the same way as the request came in. 1263 * If it came in encrypted, it goes out encrypted. If it came in 1264 * clear, it goes out in clear. Thus, this will prevent chosen 1265 * plain text attack. 1266 * 2) The client may or may not expect things to come in secure. 1267 * If it comes in secure, the policy constraints are checked 1268 * before delivering it to the upper layers. If it comes in 1269 * clear, ipsec_inbound_accept_clear will decide whether to 1270 * accept this in clear or not. In both the cases, if the returned 1271 * message (IP header + 8 bytes) that caused the icmp message has 1272 * AH/ESP headers, it is sent up to AH/ESP for validation before 1273 * sending up. If there are only 8 bytes of returned message, then 1274 * upper client will not be notified. 1275 * 3) Check with global policy to see whether it matches the constaints. 1276 * But this will be done only if icmp_accept_messages_in_clear is 1277 * zero. 1278 * 4) If we need to change both in IP and ULP, then the decision taken 1279 * while affecting the values in IP and while delivering up to TCP 1280 * should be the same. 1281 * 1282 * There are two cases. 1283 * 1284 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1285 * failed), we will not deliver it to the ULP, even though they 1286 * are *willing* to accept in *clear*. This is fine as our global 1287 * disposition to icmp messages asks us reject the datagram. 1288 * 1289 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1290 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1291 * to deliver it to ULP (policy failed), it can lead to 1292 * consistency problems. The cases known at this time are 1293 * ICMP_DESTINATION_UNREACHABLE messages with following code 1294 * values : 1295 * 1296 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1297 * and Upper layer rejects. Then the communication will 1298 * come to a stop. This is solved by making similar decisions 1299 * at both levels. Currently, when we are unable to deliver 1300 * to the Upper Layer (due to policy failures) while IP has 1301 * adjusted dce_pmtu, the next outbound datagram would 1302 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1303 * will be with the right level of protection. Thus the right 1304 * value will be communicated even if we are not able to 1305 * communicate when we get from the wire initially. But this 1306 * assumes there would be at least one outbound datagram after 1307 * IP has adjusted its dce_pmtu value. To make things 1308 * simpler, we accept in clear after the validation of 1309 * AH/ESP headers. 1310 * 1311 * - Other ICMP ERRORS : We may not be able to deliver it to the 1312 * upper layer depending on the level of protection the upper 1313 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1314 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1315 * should be accepted in clear when the Upper layer expects secure. 1316 * Thus the communication may get aborted by some bad ICMP 1317 * packets. 1318 */ 1319 mblk_t * 1320 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1321 { 1322 icmph_t *icmph; 1323 ipha_t *ipha; /* Outer header */ 1324 int ip_hdr_length; /* Outer header length */ 1325 boolean_t interested; 1326 ipif_t *ipif; 1327 uint32_t ts; 1328 uint32_t *tsp; 1329 timestruc_t now; 1330 ill_t *ill = ira->ira_ill; 1331 ip_stack_t *ipst = ill->ill_ipst; 1332 zoneid_t zoneid = ira->ira_zoneid; 1333 int len_needed; 1334 mblk_t *mp_ret = NULL; 1335 1336 ipha = (ipha_t *)mp->b_rptr; 1337 1338 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1339 1340 ip_hdr_length = ira->ira_ip_hdr_length; 1341 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1342 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1343 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1344 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1345 freemsg(mp); 1346 return (NULL); 1347 } 1348 /* Last chance to get real. */ 1349 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1350 if (ipha == NULL) { 1351 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1352 freemsg(mp); 1353 return (NULL); 1354 } 1355 } 1356 1357 /* The IP header will always be a multiple of four bytes */ 1358 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1359 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1360 icmph->icmph_code)); 1361 1362 /* 1363 * We will set "interested" to "true" if we should pass a copy to 1364 * the transport or if we handle the packet locally. 1365 */ 1366 interested = B_FALSE; 1367 switch (icmph->icmph_type) { 1368 case ICMP_ECHO_REPLY: 1369 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1370 break; 1371 case ICMP_DEST_UNREACHABLE: 1372 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1373 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1374 interested = B_TRUE; /* Pass up to transport */ 1375 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1376 break; 1377 case ICMP_SOURCE_QUENCH: 1378 interested = B_TRUE; /* Pass up to transport */ 1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1380 break; 1381 case ICMP_REDIRECT: 1382 if (!ipst->ips_ip_ignore_redirect) 1383 interested = B_TRUE; 1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1385 break; 1386 case ICMP_ECHO_REQUEST: 1387 /* 1388 * Whether to respond to echo requests that come in as IP 1389 * broadcasts or as IP multicast is subject to debate 1390 * (what isn't?). We aim to please, you pick it. 1391 * Default is do it. 1392 */ 1393 if (ira->ira_flags & IRAF_MULTICAST) { 1394 /* multicast: respond based on tunable */ 1395 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1396 } else if (ira->ira_flags & IRAF_BROADCAST) { 1397 /* broadcast: respond based on tunable */ 1398 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1399 } else { 1400 /* unicast: always respond */ 1401 interested = B_TRUE; 1402 } 1403 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1404 if (!interested) { 1405 /* We never pass these to RAW sockets */ 1406 freemsg(mp); 1407 return (NULL); 1408 } 1409 1410 /* Check db_ref to make sure we can modify the packet. */ 1411 if (mp->b_datap->db_ref > 1) { 1412 mblk_t *mp1; 1413 1414 mp1 = copymsg(mp); 1415 freemsg(mp); 1416 if (!mp1) { 1417 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1418 return (NULL); 1419 } 1420 mp = mp1; 1421 ipha = (ipha_t *)mp->b_rptr; 1422 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1423 } 1424 icmph->icmph_type = ICMP_ECHO_REPLY; 1425 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1426 icmp_send_reply_v4(mp, ipha, icmph, ira); 1427 return (NULL); 1428 1429 case ICMP_ROUTER_ADVERTISEMENT: 1430 case ICMP_ROUTER_SOLICITATION: 1431 break; 1432 case ICMP_TIME_EXCEEDED: 1433 interested = B_TRUE; /* Pass up to transport */ 1434 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1435 break; 1436 case ICMP_PARAM_PROBLEM: 1437 interested = B_TRUE; /* Pass up to transport */ 1438 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1439 break; 1440 case ICMP_TIME_STAMP_REQUEST: 1441 /* Response to Time Stamp Requests is local policy. */ 1442 if (ipst->ips_ip_g_resp_to_timestamp) { 1443 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1444 interested = 1445 ipst->ips_ip_g_resp_to_timestamp_bcast; 1446 else 1447 interested = B_TRUE; 1448 } 1449 if (!interested) { 1450 /* We never pass these to RAW sockets */ 1451 freemsg(mp); 1452 return (NULL); 1453 } 1454 1455 /* Make sure we have enough of the packet */ 1456 len_needed = ip_hdr_length + ICMPH_SIZE + 1457 3 * sizeof (uint32_t); 1458 1459 if (mp->b_wptr - mp->b_rptr < len_needed) { 1460 ipha = ip_pullup(mp, len_needed, ira); 1461 if (ipha == NULL) { 1462 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1463 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1464 mp, ill); 1465 freemsg(mp); 1466 return (NULL); 1467 } 1468 /* Refresh following the pullup. */ 1469 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1470 } 1471 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1472 /* Check db_ref to make sure we can modify the packet. */ 1473 if (mp->b_datap->db_ref > 1) { 1474 mblk_t *mp1; 1475 1476 mp1 = copymsg(mp); 1477 freemsg(mp); 1478 if (!mp1) { 1479 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1480 return (NULL); 1481 } 1482 mp = mp1; 1483 ipha = (ipha_t *)mp->b_rptr; 1484 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1485 } 1486 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1487 tsp = (uint32_t *)&icmph[1]; 1488 tsp++; /* Skip past 'originate time' */ 1489 /* Compute # of milliseconds since midnight */ 1490 gethrestime(&now); 1491 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1492 now.tv_nsec / (NANOSEC / MILLISEC); 1493 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1494 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1495 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1496 icmp_send_reply_v4(mp, ipha, icmph, ira); 1497 return (NULL); 1498 1499 case ICMP_TIME_STAMP_REPLY: 1500 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1501 break; 1502 case ICMP_INFO_REQUEST: 1503 /* Per RFC 1122 3.2.2.7, ignore this. */ 1504 case ICMP_INFO_REPLY: 1505 break; 1506 case ICMP_ADDRESS_MASK_REQUEST: 1507 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1508 interested = 1509 ipst->ips_ip_respond_to_address_mask_broadcast; 1510 } else { 1511 interested = B_TRUE; 1512 } 1513 if (!interested) { 1514 /* We never pass these to RAW sockets */ 1515 freemsg(mp); 1516 return (NULL); 1517 } 1518 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1519 if (mp->b_wptr - mp->b_rptr < len_needed) { 1520 ipha = ip_pullup(mp, len_needed, ira); 1521 if (ipha == NULL) { 1522 BUMP_MIB(ill->ill_ip_mib, 1523 ipIfStatsInTruncatedPkts); 1524 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1525 ill); 1526 freemsg(mp); 1527 return (NULL); 1528 } 1529 /* Refresh following the pullup. */ 1530 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1531 } 1532 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1533 /* Check db_ref to make sure we can modify the packet. */ 1534 if (mp->b_datap->db_ref > 1) { 1535 mblk_t *mp1; 1536 1537 mp1 = copymsg(mp); 1538 freemsg(mp); 1539 if (!mp1) { 1540 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1541 return (NULL); 1542 } 1543 mp = mp1; 1544 ipha = (ipha_t *)mp->b_rptr; 1545 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1546 } 1547 /* 1548 * Need the ipif with the mask be the same as the source 1549 * address of the mask reply. For unicast we have a specific 1550 * ipif. For multicast/broadcast we only handle onlink 1551 * senders, and use the source address to pick an ipif. 1552 */ 1553 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1554 if (ipif == NULL) { 1555 /* Broadcast or multicast */ 1556 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1557 if (ipif == NULL) { 1558 freemsg(mp); 1559 return (NULL); 1560 } 1561 } 1562 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1563 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1564 ipif_refrele(ipif); 1565 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1566 icmp_send_reply_v4(mp, ipha, icmph, ira); 1567 return (NULL); 1568 1569 case ICMP_ADDRESS_MASK_REPLY: 1570 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1571 break; 1572 default: 1573 interested = B_TRUE; /* Pass up to transport */ 1574 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1575 break; 1576 } 1577 /* 1578 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1579 * if there isn't one. 1580 */ 1581 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1582 /* If there is an ICMP client and we want one too, copy it. */ 1583 1584 if (!interested) { 1585 /* Caller will deliver to RAW sockets */ 1586 return (mp); 1587 } 1588 mp_ret = copymsg(mp); 1589 if (mp_ret == NULL) { 1590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1591 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1592 } 1593 } else if (!interested) { 1594 /* Neither we nor raw sockets are interested. Drop packet now */ 1595 freemsg(mp); 1596 return (NULL); 1597 } 1598 1599 /* 1600 * ICMP error or redirect packet. Make sure we have enough of 1601 * the header and that db_ref == 1 since we might end up modifying 1602 * the packet. 1603 */ 1604 if (mp->b_cont != NULL) { 1605 if (ip_pullup(mp, -1, ira) == NULL) { 1606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1607 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1608 mp, ill); 1609 freemsg(mp); 1610 return (mp_ret); 1611 } 1612 } 1613 1614 if (mp->b_datap->db_ref > 1) { 1615 mblk_t *mp1; 1616 1617 mp1 = copymsg(mp); 1618 if (mp1 == NULL) { 1619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1620 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1621 freemsg(mp); 1622 return (mp_ret); 1623 } 1624 freemsg(mp); 1625 mp = mp1; 1626 } 1627 1628 /* 1629 * In case mp has changed, verify the message before any further 1630 * processes. 1631 */ 1632 ipha = (ipha_t *)mp->b_rptr; 1633 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1634 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1635 freemsg(mp); 1636 return (mp_ret); 1637 } 1638 1639 switch (icmph->icmph_type) { 1640 case ICMP_REDIRECT: 1641 icmp_redirect_v4(mp, ipha, icmph, ira); 1642 break; 1643 case ICMP_DEST_UNREACHABLE: 1644 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1645 /* Update DCE and adjust MTU is icmp header if needed */ 1646 icmp_inbound_too_big_v4(icmph, ira); 1647 } 1648 /* FALLTHRU */ 1649 default: 1650 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1651 break; 1652 } 1653 return (mp_ret); 1654 } 1655 1656 /* 1657 * Send an ICMP echo, timestamp or address mask reply. 1658 * The caller has already updated the payload part of the packet. 1659 * We handle the ICMP checksum, IP source address selection and feed 1660 * the packet into ip_output_simple. 1661 */ 1662 static void 1663 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1664 ip_recv_attr_t *ira) 1665 { 1666 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1667 ill_t *ill = ira->ira_ill; 1668 ip_stack_t *ipst = ill->ill_ipst; 1669 ip_xmit_attr_t ixas; 1670 1671 /* Send out an ICMP packet */ 1672 icmph->icmph_checksum = 0; 1673 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1674 /* Reset time to live. */ 1675 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1676 { 1677 /* Swap source and destination addresses */ 1678 ipaddr_t tmp; 1679 1680 tmp = ipha->ipha_src; 1681 ipha->ipha_src = ipha->ipha_dst; 1682 ipha->ipha_dst = tmp; 1683 } 1684 ipha->ipha_ident = 0; 1685 if (!IS_SIMPLE_IPH(ipha)) 1686 icmp_options_update(ipha); 1687 1688 bzero(&ixas, sizeof (ixas)); 1689 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1690 ixas.ixa_zoneid = ira->ira_zoneid; 1691 ixas.ixa_cred = kcred; 1692 ixas.ixa_cpid = NOPID; 1693 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1694 ixas.ixa_ifindex = 0; 1695 ixas.ixa_ipst = ipst; 1696 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1697 1698 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1699 /* 1700 * This packet should go out the same way as it 1701 * came in i.e in clear, independent of the IPsec policy 1702 * for transmitting packets. 1703 */ 1704 ixas.ixa_flags |= IXAF_NO_IPSEC; 1705 } else { 1706 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1707 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1708 /* Note: mp already consumed and ip_drop_packet done */ 1709 return; 1710 } 1711 } 1712 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1713 /* 1714 * Not one or our addresses (IRE_LOCALs), thus we let 1715 * ip_output_simple pick the source. 1716 */ 1717 ipha->ipha_src = INADDR_ANY; 1718 ixas.ixa_flags |= IXAF_SET_SOURCE; 1719 } 1720 /* Should we send with DF and use dce_pmtu? */ 1721 if (ipst->ips_ipv4_icmp_return_pmtu) { 1722 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1723 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1724 } 1725 1726 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1727 1728 (void) ip_output_simple(mp, &ixas); 1729 ixa_cleanup(&ixas); 1730 } 1731 1732 /* 1733 * Verify the ICMP messages for either for ICMP error or redirect packet. 1734 * The caller should have fully pulled up the message. If it's a redirect 1735 * packet, only basic checks on IP header will be done; otherwise, verify 1736 * the packet by looking at the included ULP header. 1737 * 1738 * Called before icmp_inbound_error_fanout_v4 is called. 1739 */ 1740 static boolean_t 1741 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1742 { 1743 ill_t *ill = ira->ira_ill; 1744 int hdr_length; 1745 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1746 conn_t *connp; 1747 ipha_t *ipha; /* Inner IP header */ 1748 1749 ipha = (ipha_t *)&icmph[1]; 1750 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1751 goto truncated; 1752 1753 hdr_length = IPH_HDR_LENGTH(ipha); 1754 1755 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1756 goto discard_pkt; 1757 1758 if (hdr_length < sizeof (ipha_t)) 1759 goto truncated; 1760 1761 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1762 goto truncated; 1763 1764 /* 1765 * Stop here for ICMP_REDIRECT. 1766 */ 1767 if (icmph->icmph_type == ICMP_REDIRECT) 1768 return (B_TRUE); 1769 1770 /* 1771 * ICMP errors only. 1772 */ 1773 switch (ipha->ipha_protocol) { 1774 case IPPROTO_UDP: 1775 /* 1776 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1777 * transport header. 1778 */ 1779 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1780 mp->b_wptr) 1781 goto truncated; 1782 break; 1783 case IPPROTO_TCP: { 1784 tcpha_t *tcpha; 1785 1786 /* 1787 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1788 * transport header. 1789 */ 1790 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1791 mp->b_wptr) 1792 goto truncated; 1793 1794 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1795 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1796 ipst); 1797 if (connp == NULL) 1798 goto discard_pkt; 1799 1800 if ((connp->conn_verifyicmp != NULL) && 1801 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1802 CONN_DEC_REF(connp); 1803 goto discard_pkt; 1804 } 1805 CONN_DEC_REF(connp); 1806 break; 1807 } 1808 case IPPROTO_SCTP: 1809 /* 1810 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1811 * transport header. 1812 */ 1813 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1814 mp->b_wptr) 1815 goto truncated; 1816 break; 1817 case IPPROTO_ESP: 1818 case IPPROTO_AH: 1819 break; 1820 case IPPROTO_ENCAP: 1821 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1822 mp->b_wptr) 1823 goto truncated; 1824 break; 1825 default: 1826 break; 1827 } 1828 1829 return (B_TRUE); 1830 1831 discard_pkt: 1832 /* Bogus ICMP error. */ 1833 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1834 return (B_FALSE); 1835 1836 truncated: 1837 /* We pulled up everthing already. Must be truncated */ 1838 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1839 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1840 return (B_FALSE); 1841 } 1842 1843 /* Table from RFC 1191 */ 1844 static int icmp_frag_size_table[] = 1845 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1846 1847 /* 1848 * Process received ICMP Packet too big. 1849 * Just handles the DCE create/update, including using the above table of 1850 * PMTU guesses. The caller is responsible for validating the packet before 1851 * passing it in and also to fanout the ICMP error to any matching transport 1852 * conns. Assumes the message has been fully pulled up and verified. 1853 * 1854 * Before getting here, the caller has called icmp_inbound_verify_v4() 1855 * that should have verified with ULP to prevent undoing the changes we're 1856 * going to make to DCE. For example, TCP might have verified that the packet 1857 * which generated error is in the send window. 1858 * 1859 * In some cases modified this MTU in the ICMP header packet; the caller 1860 * should pass to the matching ULP after this returns. 1861 */ 1862 static void 1863 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1864 { 1865 dce_t *dce; 1866 int old_mtu; 1867 int mtu, orig_mtu; 1868 ipaddr_t dst; 1869 boolean_t disable_pmtud; 1870 ill_t *ill = ira->ira_ill; 1871 ip_stack_t *ipst = ill->ill_ipst; 1872 uint_t hdr_length; 1873 ipha_t *ipha; 1874 1875 /* Caller already pulled up everything. */ 1876 ipha = (ipha_t *)&icmph[1]; 1877 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1878 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1879 ASSERT(ill != NULL); 1880 1881 hdr_length = IPH_HDR_LENGTH(ipha); 1882 1883 /* 1884 * We handle path MTU for source routed packets since the DCE 1885 * is looked up using the final destination. 1886 */ 1887 dst = ip_get_dst(ipha); 1888 1889 dce = dce_lookup_and_add_v4(dst, ipst); 1890 if (dce == NULL) { 1891 /* Couldn't add a unique one - ENOMEM */ 1892 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1893 ntohl(dst))); 1894 return; 1895 } 1896 1897 /* Check for MTU discovery advice as described in RFC 1191 */ 1898 mtu = ntohs(icmph->icmph_du_mtu); 1899 orig_mtu = mtu; 1900 disable_pmtud = B_FALSE; 1901 1902 mutex_enter(&dce->dce_lock); 1903 if (dce->dce_flags & DCEF_PMTU) 1904 old_mtu = dce->dce_pmtu; 1905 else 1906 old_mtu = ill->ill_mtu; 1907 1908 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1909 uint32_t length; 1910 int i; 1911 1912 /* 1913 * Use the table from RFC 1191 to figure out 1914 * the next "plateau" based on the length in 1915 * the original IP packet. 1916 */ 1917 length = ntohs(ipha->ipha_length); 1918 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1919 uint32_t, length); 1920 if (old_mtu <= length && 1921 old_mtu >= length - hdr_length) { 1922 /* 1923 * Handle broken BSD 4.2 systems that 1924 * return the wrong ipha_length in ICMP 1925 * errors. 1926 */ 1927 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1928 length, old_mtu)); 1929 length -= hdr_length; 1930 } 1931 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1932 if (length > icmp_frag_size_table[i]) 1933 break; 1934 } 1935 if (i == A_CNT(icmp_frag_size_table)) { 1936 /* Smaller than IP_MIN_MTU! */ 1937 ip1dbg(("Too big for packet size %d\n", 1938 length)); 1939 disable_pmtud = B_TRUE; 1940 mtu = ipst->ips_ip_pmtu_min; 1941 } else { 1942 mtu = icmp_frag_size_table[i]; 1943 ip1dbg(("Calculated mtu %d, packet size %d, " 1944 "before %d\n", mtu, length, old_mtu)); 1945 if (mtu < ipst->ips_ip_pmtu_min) { 1946 mtu = ipst->ips_ip_pmtu_min; 1947 disable_pmtud = B_TRUE; 1948 } 1949 } 1950 } 1951 if (disable_pmtud) 1952 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1953 else 1954 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1955 1956 dce->dce_pmtu = MIN(old_mtu, mtu); 1957 /* Prepare to send the new max frag size for the ULP. */ 1958 icmph->icmph_du_zero = 0; 1959 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1960 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1961 dce, int, orig_mtu, int, mtu); 1962 1963 /* We now have a PMTU for sure */ 1964 dce->dce_flags |= DCEF_PMTU; 1965 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1966 mutex_exit(&dce->dce_lock); 1967 /* 1968 * After dropping the lock the new value is visible to everyone. 1969 * Then we bump the generation number so any cached values reinspect 1970 * the dce_t. 1971 */ 1972 dce_increment_generation(dce); 1973 dce_refrele(dce); 1974 } 1975 1976 /* 1977 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1978 * calls this function. 1979 */ 1980 static mblk_t * 1981 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1982 { 1983 int length; 1984 1985 ASSERT(mp->b_datap->db_type == M_DATA); 1986 1987 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1988 ASSERT(mp->b_cont == NULL); 1989 1990 /* 1991 * The length that we want to overlay is the inner header 1992 * and what follows it. 1993 */ 1994 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 1995 1996 /* 1997 * Overlay the inner header and whatever follows it over the 1998 * outer header. 1999 */ 2000 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2001 2002 /* Adjust for what we removed */ 2003 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2004 return (mp); 2005 } 2006 2007 /* 2008 * Try to pass the ICMP message upstream in case the ULP cares. 2009 * 2010 * If the packet that caused the ICMP error is secure, we send 2011 * it to AH/ESP to make sure that the attached packet has a 2012 * valid association. ipha in the code below points to the 2013 * IP header of the packet that caused the error. 2014 * 2015 * For IPsec cases, we let the next-layer-up (which has access to 2016 * cached policy on the conn_t, or can query the SPD directly) 2017 * subtract out any IPsec overhead if they must. We therefore make no 2018 * adjustments here for IPsec overhead. 2019 * 2020 * IFN could have been generated locally or by some router. 2021 * 2022 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2023 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2024 * This happens because IP adjusted its value of MTU on an 2025 * earlier IFN message and could not tell the upper layer, 2026 * the new adjusted value of MTU e.g. Packet was encrypted 2027 * or there was not enough information to fanout to upper 2028 * layers. Thus on the next outbound datagram, ire_send_wire 2029 * generates the IFN, where IPsec processing has *not* been 2030 * done. 2031 * 2032 * Note that we retain ixa_fragsize across IPsec thus once 2033 * we have picking ixa_fragsize and entered ipsec_out_process we do 2034 * no change the fragsize even if the path MTU changes before 2035 * we reach ip_output_post_ipsec. 2036 * 2037 * In the local case, IRAF_LOOPBACK will be set indicating 2038 * that IFN was generated locally. 2039 * 2040 * ROUTER : IFN could be secure or non-secure. 2041 * 2042 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2043 * packet in error has AH/ESP headers to validate the AH/ESP 2044 * headers. AH/ESP will verify whether there is a valid SA or 2045 * not and send it back. We will fanout again if we have more 2046 * data in the packet. 2047 * 2048 * If the packet in error does not have AH/ESP, we handle it 2049 * like any other case. 2050 * 2051 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2052 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2053 * valid SA or not and send it back. We will fanout again if 2054 * we have more data in the packet. 2055 * 2056 * If the packet in error does not have AH/ESP, we handle it 2057 * like any other case. 2058 * 2059 * The caller must have called icmp_inbound_verify_v4. 2060 */ 2061 static void 2062 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2063 { 2064 uint16_t *up; /* Pointer to ports in ULP header */ 2065 uint32_t ports; /* reversed ports for fanout */ 2066 ipha_t ripha; /* With reversed addresses */ 2067 ipha_t *ipha; /* Inner IP header */ 2068 uint_t hdr_length; /* Inner IP header length */ 2069 tcpha_t *tcpha; 2070 conn_t *connp; 2071 ill_t *ill = ira->ira_ill; 2072 ip_stack_t *ipst = ill->ill_ipst; 2073 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2074 ill_t *rill = ira->ira_rill; 2075 2076 /* Caller already pulled up everything. */ 2077 ipha = (ipha_t *)&icmph[1]; 2078 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2079 ASSERT(mp->b_cont == NULL); 2080 2081 hdr_length = IPH_HDR_LENGTH(ipha); 2082 ira->ira_protocol = ipha->ipha_protocol; 2083 2084 /* 2085 * We need a separate IP header with the source and destination 2086 * addresses reversed to do fanout/classification because the ipha in 2087 * the ICMP error is in the form we sent it out. 2088 */ 2089 ripha.ipha_src = ipha->ipha_dst; 2090 ripha.ipha_dst = ipha->ipha_src; 2091 ripha.ipha_protocol = ipha->ipha_protocol; 2092 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2093 2094 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2095 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2096 ntohl(ipha->ipha_dst), 2097 icmph->icmph_type, icmph->icmph_code)); 2098 2099 switch (ipha->ipha_protocol) { 2100 case IPPROTO_UDP: 2101 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2102 2103 /* Attempt to find a client stream based on port. */ 2104 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2105 ntohs(up[0]), ntohs(up[1]))); 2106 2107 /* Note that we send error to all matches. */ 2108 ira->ira_flags |= IRAF_ICMP_ERROR; 2109 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2110 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2111 return; 2112 2113 case IPPROTO_TCP: 2114 /* 2115 * Find a TCP client stream for this packet. 2116 * Note that we do a reverse lookup since the header is 2117 * in the form we sent it out. 2118 */ 2119 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2120 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2121 ipst); 2122 if (connp == NULL) 2123 goto discard_pkt; 2124 2125 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2126 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2127 mp = ipsec_check_inbound_policy(mp, connp, 2128 ipha, NULL, ira); 2129 if (mp == NULL) { 2130 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2131 /* Note that mp is NULL */ 2132 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2133 CONN_DEC_REF(connp); 2134 return; 2135 } 2136 } 2137 2138 ira->ira_flags |= IRAF_ICMP_ERROR; 2139 ira->ira_ill = ira->ira_rill = NULL; 2140 if (IPCL_IS_TCP(connp)) { 2141 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2142 connp->conn_recvicmp, connp, ira, SQ_FILL, 2143 SQTAG_TCP_INPUT_ICMP_ERR); 2144 } else { 2145 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2146 (connp->conn_recv)(connp, mp, NULL, ira); 2147 CONN_DEC_REF(connp); 2148 } 2149 ira->ira_ill = ill; 2150 ira->ira_rill = rill; 2151 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2152 return; 2153 2154 case IPPROTO_SCTP: 2155 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2156 /* Find a SCTP client stream for this packet. */ 2157 ((uint16_t *)&ports)[0] = up[1]; 2158 ((uint16_t *)&ports)[1] = up[0]; 2159 2160 ira->ira_flags |= IRAF_ICMP_ERROR; 2161 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2162 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2163 return; 2164 2165 case IPPROTO_ESP: 2166 case IPPROTO_AH: 2167 if (!ipsec_loaded(ipss)) { 2168 ip_proto_not_sup(mp, ira); 2169 return; 2170 } 2171 2172 if (ipha->ipha_protocol == IPPROTO_ESP) 2173 mp = ipsecesp_icmp_error(mp, ira); 2174 else 2175 mp = ipsecah_icmp_error(mp, ira); 2176 if (mp == NULL) 2177 return; 2178 2179 /* Just in case ipsec didn't preserve the NULL b_cont */ 2180 if (mp->b_cont != NULL) { 2181 if (!pullupmsg(mp, -1)) 2182 goto discard_pkt; 2183 } 2184 2185 /* 2186 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2187 * correct, but we don't use them any more here. 2188 * 2189 * If succesful, the mp has been modified to not include 2190 * the ESP/AH header so we can fanout to the ULP's icmp 2191 * error handler. 2192 */ 2193 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2194 goto truncated; 2195 2196 /* Verify the modified message before any further processes. */ 2197 ipha = (ipha_t *)mp->b_rptr; 2198 hdr_length = IPH_HDR_LENGTH(ipha); 2199 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2200 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2201 freemsg(mp); 2202 return; 2203 } 2204 2205 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2206 return; 2207 2208 case IPPROTO_ENCAP: { 2209 /* Look for self-encapsulated packets that caused an error */ 2210 ipha_t *in_ipha; 2211 2212 /* 2213 * Caller has verified that length has to be 2214 * at least the size of IP header. 2215 */ 2216 ASSERT(hdr_length >= sizeof (ipha_t)); 2217 /* 2218 * Check the sanity of the inner IP header like 2219 * we did for the outer header. 2220 */ 2221 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2222 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2223 goto discard_pkt; 2224 } 2225 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2226 goto discard_pkt; 2227 } 2228 /* Check for Self-encapsulated tunnels */ 2229 if (in_ipha->ipha_src == ipha->ipha_src && 2230 in_ipha->ipha_dst == ipha->ipha_dst) { 2231 2232 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2233 in_ipha); 2234 if (mp == NULL) 2235 goto discard_pkt; 2236 2237 /* 2238 * Just in case self_encap didn't preserve the NULL 2239 * b_cont 2240 */ 2241 if (mp->b_cont != NULL) { 2242 if (!pullupmsg(mp, -1)) 2243 goto discard_pkt; 2244 } 2245 /* 2246 * Note that ira_pktlen and ira_ip_hdr_length are no 2247 * longer correct, but we don't use them any more here. 2248 */ 2249 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2250 goto truncated; 2251 2252 /* 2253 * Verify the modified message before any further 2254 * processes. 2255 */ 2256 ipha = (ipha_t *)mp->b_rptr; 2257 hdr_length = IPH_HDR_LENGTH(ipha); 2258 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2259 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2260 freemsg(mp); 2261 return; 2262 } 2263 2264 /* 2265 * The packet in error is self-encapsualted. 2266 * And we are finding it further encapsulated 2267 * which we could not have possibly generated. 2268 */ 2269 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2270 goto discard_pkt; 2271 } 2272 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2273 return; 2274 } 2275 /* No self-encapsulated */ 2276 /* FALLTHRU */ 2277 } 2278 case IPPROTO_IPV6: 2279 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2280 &ripha.ipha_dst, ipst)) != NULL) { 2281 ira->ira_flags |= IRAF_ICMP_ERROR; 2282 connp->conn_recvicmp(connp, mp, NULL, ira); 2283 CONN_DEC_REF(connp); 2284 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2285 return; 2286 } 2287 /* 2288 * No IP tunnel is interested, fallthrough and see 2289 * if a raw socket will want it. 2290 */ 2291 /* FALLTHRU */ 2292 default: 2293 ira->ira_flags |= IRAF_ICMP_ERROR; 2294 ip_fanout_proto_v4(mp, &ripha, ira); 2295 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2296 return; 2297 } 2298 /* NOTREACHED */ 2299 discard_pkt: 2300 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2301 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2302 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2303 freemsg(mp); 2304 return; 2305 2306 truncated: 2307 /* We pulled up everthing already. Must be truncated */ 2308 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2309 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2310 freemsg(mp); 2311 } 2312 2313 /* 2314 * Common IP options parser. 2315 * 2316 * Setup routine: fill in *optp with options-parsing state, then 2317 * tail-call ipoptp_next to return the first option. 2318 */ 2319 uint8_t 2320 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2321 { 2322 uint32_t totallen; /* total length of all options */ 2323 2324 totallen = ipha->ipha_version_and_hdr_length - 2325 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2326 totallen <<= 2; 2327 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2328 optp->ipoptp_end = optp->ipoptp_next + totallen; 2329 optp->ipoptp_flags = 0; 2330 return (ipoptp_next(optp)); 2331 } 2332 2333 /* Like above but without an ipha_t */ 2334 uint8_t 2335 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2336 { 2337 optp->ipoptp_next = opt; 2338 optp->ipoptp_end = optp->ipoptp_next + totallen; 2339 optp->ipoptp_flags = 0; 2340 return (ipoptp_next(optp)); 2341 } 2342 2343 /* 2344 * Common IP options parser: extract next option. 2345 */ 2346 uint8_t 2347 ipoptp_next(ipoptp_t *optp) 2348 { 2349 uint8_t *end = optp->ipoptp_end; 2350 uint8_t *cur = optp->ipoptp_next; 2351 uint8_t opt, len, pointer; 2352 2353 /* 2354 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2355 * has been corrupted. 2356 */ 2357 ASSERT(cur <= end); 2358 2359 if (cur == end) 2360 return (IPOPT_EOL); 2361 2362 opt = cur[IPOPT_OPTVAL]; 2363 2364 /* 2365 * Skip any NOP options. 2366 */ 2367 while (opt == IPOPT_NOP) { 2368 cur++; 2369 if (cur == end) 2370 return (IPOPT_EOL); 2371 opt = cur[IPOPT_OPTVAL]; 2372 } 2373 2374 if (opt == IPOPT_EOL) 2375 return (IPOPT_EOL); 2376 2377 /* 2378 * Option requiring a length. 2379 */ 2380 if ((cur + 1) >= end) { 2381 optp->ipoptp_flags |= IPOPTP_ERROR; 2382 return (IPOPT_EOL); 2383 } 2384 len = cur[IPOPT_OLEN]; 2385 if (len < 2) { 2386 optp->ipoptp_flags |= IPOPTP_ERROR; 2387 return (IPOPT_EOL); 2388 } 2389 optp->ipoptp_cur = cur; 2390 optp->ipoptp_len = len; 2391 optp->ipoptp_next = cur + len; 2392 if (cur + len > end) { 2393 optp->ipoptp_flags |= IPOPTP_ERROR; 2394 return (IPOPT_EOL); 2395 } 2396 2397 /* 2398 * For the options which require a pointer field, make sure 2399 * its there, and make sure it points to either something 2400 * inside this option, or the end of the option. 2401 */ 2402 switch (opt) { 2403 case IPOPT_RR: 2404 case IPOPT_TS: 2405 case IPOPT_LSRR: 2406 case IPOPT_SSRR: 2407 if (len <= IPOPT_OFFSET) { 2408 optp->ipoptp_flags |= IPOPTP_ERROR; 2409 return (opt); 2410 } 2411 pointer = cur[IPOPT_OFFSET]; 2412 if (pointer - 1 > len) { 2413 optp->ipoptp_flags |= IPOPTP_ERROR; 2414 return (opt); 2415 } 2416 break; 2417 } 2418 2419 /* 2420 * Sanity check the pointer field based on the type of the 2421 * option. 2422 */ 2423 switch (opt) { 2424 case IPOPT_RR: 2425 case IPOPT_SSRR: 2426 case IPOPT_LSRR: 2427 if (pointer < IPOPT_MINOFF_SR) 2428 optp->ipoptp_flags |= IPOPTP_ERROR; 2429 break; 2430 case IPOPT_TS: 2431 if (pointer < IPOPT_MINOFF_IT) 2432 optp->ipoptp_flags |= IPOPTP_ERROR; 2433 /* 2434 * Note that the Internet Timestamp option also 2435 * contains two four bit fields (the Overflow field, 2436 * and the Flag field), which follow the pointer 2437 * field. We don't need to check that these fields 2438 * fall within the length of the option because this 2439 * was implicitely done above. We've checked that the 2440 * pointer value is at least IPOPT_MINOFF_IT, and that 2441 * it falls within the option. Since IPOPT_MINOFF_IT > 2442 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2443 */ 2444 ASSERT(len > IPOPT_POS_OV_FLG); 2445 break; 2446 } 2447 2448 return (opt); 2449 } 2450 2451 /* 2452 * Use the outgoing IP header to create an IP_OPTIONS option the way 2453 * it was passed down from the application. 2454 * 2455 * This is compatible with BSD in that it returns 2456 * the reverse source route with the final destination 2457 * as the last entry. The first 4 bytes of the option 2458 * will contain the final destination. 2459 */ 2460 int 2461 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2462 { 2463 ipoptp_t opts; 2464 uchar_t *opt; 2465 uint8_t optval; 2466 uint8_t optlen; 2467 uint32_t len = 0; 2468 uchar_t *buf1 = buf; 2469 uint32_t totallen; 2470 ipaddr_t dst; 2471 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2472 2473 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2474 return (0); 2475 2476 totallen = ipp->ipp_ipv4_options_len; 2477 if (totallen & 0x3) 2478 return (0); 2479 2480 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2481 len += IP_ADDR_LEN; 2482 bzero(buf1, IP_ADDR_LEN); 2483 2484 dst = connp->conn_faddr_v4; 2485 2486 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2487 optval != IPOPT_EOL; 2488 optval = ipoptp_next(&opts)) { 2489 int off; 2490 2491 opt = opts.ipoptp_cur; 2492 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2493 break; 2494 } 2495 optlen = opts.ipoptp_len; 2496 2497 switch (optval) { 2498 case IPOPT_SSRR: 2499 case IPOPT_LSRR: 2500 2501 /* 2502 * Insert destination as the first entry in the source 2503 * route and move down the entries on step. 2504 * The last entry gets placed at buf1. 2505 */ 2506 buf[IPOPT_OPTVAL] = optval; 2507 buf[IPOPT_OLEN] = optlen; 2508 buf[IPOPT_OFFSET] = optlen; 2509 2510 off = optlen - IP_ADDR_LEN; 2511 if (off < 0) { 2512 /* No entries in source route */ 2513 break; 2514 } 2515 /* Last entry in source route if not already set */ 2516 if (dst == INADDR_ANY) 2517 bcopy(opt + off, buf1, IP_ADDR_LEN); 2518 off -= IP_ADDR_LEN; 2519 2520 while (off > 0) { 2521 bcopy(opt + off, 2522 buf + off + IP_ADDR_LEN, 2523 IP_ADDR_LEN); 2524 off -= IP_ADDR_LEN; 2525 } 2526 /* ipha_dst into first slot */ 2527 bcopy(&dst, buf + off + IP_ADDR_LEN, 2528 IP_ADDR_LEN); 2529 buf += optlen; 2530 len += optlen; 2531 break; 2532 2533 default: 2534 bcopy(opt, buf, optlen); 2535 buf += optlen; 2536 len += optlen; 2537 break; 2538 } 2539 } 2540 done: 2541 /* Pad the resulting options */ 2542 while (len & 0x3) { 2543 *buf++ = IPOPT_EOL; 2544 len++; 2545 } 2546 return (len); 2547 } 2548 2549 /* 2550 * Update any record route or timestamp options to include this host. 2551 * Reverse any source route option. 2552 * This routine assumes that the options are well formed i.e. that they 2553 * have already been checked. 2554 */ 2555 static void 2556 icmp_options_update(ipha_t *ipha) 2557 { 2558 ipoptp_t opts; 2559 uchar_t *opt; 2560 uint8_t optval; 2561 ipaddr_t src; /* Our local address */ 2562 ipaddr_t dst; 2563 2564 ip2dbg(("icmp_options_update\n")); 2565 src = ipha->ipha_src; 2566 dst = ipha->ipha_dst; 2567 2568 for (optval = ipoptp_first(&opts, ipha); 2569 optval != IPOPT_EOL; 2570 optval = ipoptp_next(&opts)) { 2571 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2572 opt = opts.ipoptp_cur; 2573 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2574 optval, opts.ipoptp_len)); 2575 switch (optval) { 2576 int off1, off2; 2577 case IPOPT_SSRR: 2578 case IPOPT_LSRR: 2579 /* 2580 * Reverse the source route. The first entry 2581 * should be the next to last one in the current 2582 * source route (the last entry is our address). 2583 * The last entry should be the final destination. 2584 */ 2585 off1 = IPOPT_MINOFF_SR - 1; 2586 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2587 if (off2 < 0) { 2588 /* No entries in source route */ 2589 ip1dbg(( 2590 "icmp_options_update: bad src route\n")); 2591 break; 2592 } 2593 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2594 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2595 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2596 off2 -= IP_ADDR_LEN; 2597 2598 while (off1 < off2) { 2599 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2600 bcopy((char *)opt + off2, (char *)opt + off1, 2601 IP_ADDR_LEN); 2602 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2603 off1 += IP_ADDR_LEN; 2604 off2 -= IP_ADDR_LEN; 2605 } 2606 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2607 break; 2608 } 2609 } 2610 } 2611 2612 /* 2613 * Process received ICMP Redirect messages. 2614 * Assumes the caller has verified that the headers are in the pulled up mblk. 2615 * Consumes mp. 2616 */ 2617 static void 2618 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2619 { 2620 ire_t *ire, *nire; 2621 ire_t *prev_ire; 2622 ipaddr_t src, dst, gateway; 2623 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2624 ipha_t *inner_ipha; /* Inner IP header */ 2625 2626 /* Caller already pulled up everything. */ 2627 inner_ipha = (ipha_t *)&icmph[1]; 2628 src = ipha->ipha_src; 2629 dst = inner_ipha->ipha_dst; 2630 gateway = icmph->icmph_rd_gateway; 2631 /* Make sure the new gateway is reachable somehow. */ 2632 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2633 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2634 /* 2635 * Make sure we had a route for the dest in question and that 2636 * that route was pointing to the old gateway (the source of the 2637 * redirect packet.) 2638 * We do longest match and then compare ire_gateway_addr below. 2639 */ 2640 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2641 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2642 /* 2643 * Check that 2644 * the redirect was not from ourselves 2645 * the new gateway and the old gateway are directly reachable 2646 */ 2647 if (prev_ire == NULL || ire == NULL || 2648 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2649 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2650 !(ire->ire_type & IRE_IF_ALL) || 2651 prev_ire->ire_gateway_addr != src) { 2652 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2653 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2654 freemsg(mp); 2655 if (ire != NULL) 2656 ire_refrele(ire); 2657 if (prev_ire != NULL) 2658 ire_refrele(prev_ire); 2659 return; 2660 } 2661 2662 ire_refrele(prev_ire); 2663 ire_refrele(ire); 2664 2665 /* 2666 * TODO: more precise handling for cases 0, 2, 3, the latter two 2667 * require TOS routing 2668 */ 2669 switch (icmph->icmph_code) { 2670 case 0: 2671 case 1: 2672 /* TODO: TOS specificity for cases 2 and 3 */ 2673 case 2: 2674 case 3: 2675 break; 2676 default: 2677 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2678 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2679 freemsg(mp); 2680 return; 2681 } 2682 /* 2683 * Create a Route Association. This will allow us to remember that 2684 * someone we believe told us to use the particular gateway. 2685 */ 2686 ire = ire_create( 2687 (uchar_t *)&dst, /* dest addr */ 2688 (uchar_t *)&ip_g_all_ones, /* mask */ 2689 (uchar_t *)&gateway, /* gateway addr */ 2690 IRE_HOST, 2691 NULL, /* ill */ 2692 ALL_ZONES, 2693 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2694 NULL, /* tsol_gc_t */ 2695 ipst); 2696 2697 if (ire == NULL) { 2698 freemsg(mp); 2699 return; 2700 } 2701 nire = ire_add(ire); 2702 /* Check if it was a duplicate entry */ 2703 if (nire != NULL && nire != ire) { 2704 ASSERT(nire->ire_identical_ref > 1); 2705 ire_delete(nire); 2706 ire_refrele(nire); 2707 nire = NULL; 2708 } 2709 ire = nire; 2710 if (ire != NULL) { 2711 ire_refrele(ire); /* Held in ire_add */ 2712 2713 /* tell routing sockets that we received a redirect */ 2714 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2715 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2716 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2717 } 2718 2719 /* 2720 * Delete any existing IRE_HOST type redirect ires for this destination. 2721 * This together with the added IRE has the effect of 2722 * modifying an existing redirect. 2723 */ 2724 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2725 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2726 if (prev_ire != NULL) { 2727 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2728 ire_delete(prev_ire); 2729 ire_refrele(prev_ire); 2730 } 2731 2732 freemsg(mp); 2733 } 2734 2735 /* 2736 * Generate an ICMP parameter problem message. 2737 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2738 * constructed by the caller. 2739 */ 2740 static void 2741 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2742 { 2743 icmph_t icmph; 2744 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2745 2746 mp = icmp_pkt_err_ok(mp, ira); 2747 if (mp == NULL) 2748 return; 2749 2750 bzero(&icmph, sizeof (icmph_t)); 2751 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2752 icmph.icmph_pp_ptr = ptr; 2753 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2754 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2755 } 2756 2757 /* 2758 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2759 * the ICMP header pointed to by "stuff". (May be called as writer.) 2760 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2761 * an icmp error packet can be sent. 2762 * Assigns an appropriate source address to the packet. If ipha_dst is 2763 * one of our addresses use it for source. Otherwise let ip_output_simple 2764 * pick the source address. 2765 */ 2766 static void 2767 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2768 { 2769 ipaddr_t dst; 2770 icmph_t *icmph; 2771 ipha_t *ipha; 2772 uint_t len_needed; 2773 size_t msg_len; 2774 mblk_t *mp1; 2775 ipaddr_t src; 2776 ire_t *ire; 2777 ip_xmit_attr_t ixas; 2778 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2779 2780 ipha = (ipha_t *)mp->b_rptr; 2781 2782 bzero(&ixas, sizeof (ixas)); 2783 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2784 ixas.ixa_zoneid = ira->ira_zoneid; 2785 ixas.ixa_ifindex = 0; 2786 ixas.ixa_ipst = ipst; 2787 ixas.ixa_cred = kcred; 2788 ixas.ixa_cpid = NOPID; 2789 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2790 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2791 2792 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2793 /* 2794 * Apply IPsec based on how IPsec was applied to 2795 * the packet that had the error. 2796 * 2797 * If it was an outbound packet that caused the ICMP 2798 * error, then the caller will have setup the IRA 2799 * appropriately. 2800 */ 2801 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2802 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2803 /* Note: mp already consumed and ip_drop_packet done */ 2804 return; 2805 } 2806 } else { 2807 /* 2808 * This is in clear. The icmp message we are building 2809 * here should go out in clear, independent of our policy. 2810 */ 2811 ixas.ixa_flags |= IXAF_NO_IPSEC; 2812 } 2813 2814 /* Remember our eventual destination */ 2815 dst = ipha->ipha_src; 2816 2817 /* 2818 * If the packet was for one of our unicast addresses, make 2819 * sure we respond with that as the source. Otherwise 2820 * have ip_output_simple pick the source address. 2821 */ 2822 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2823 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2824 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2825 if (ire != NULL) { 2826 ire_refrele(ire); 2827 src = ipha->ipha_dst; 2828 } else { 2829 src = INADDR_ANY; 2830 ixas.ixa_flags |= IXAF_SET_SOURCE; 2831 } 2832 2833 /* 2834 * Check if we can send back more then 8 bytes in addition to 2835 * the IP header. We try to send 64 bytes of data and the internal 2836 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2837 */ 2838 len_needed = IPH_HDR_LENGTH(ipha); 2839 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2840 ipha->ipha_protocol == IPPROTO_IPV6) { 2841 if (!pullupmsg(mp, -1)) { 2842 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2843 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2844 freemsg(mp); 2845 return; 2846 } 2847 ipha = (ipha_t *)mp->b_rptr; 2848 2849 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2850 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2851 len_needed)); 2852 } else { 2853 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2854 2855 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2856 len_needed += ip_hdr_length_v6(mp, ip6h); 2857 } 2858 } 2859 len_needed += ipst->ips_ip_icmp_return; 2860 msg_len = msgdsize(mp); 2861 if (msg_len > len_needed) { 2862 (void) adjmsg(mp, len_needed - msg_len); 2863 msg_len = len_needed; 2864 } 2865 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2866 if (mp1 == NULL) { 2867 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2868 freemsg(mp); 2869 return; 2870 } 2871 mp1->b_cont = mp; 2872 mp = mp1; 2873 2874 /* 2875 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2876 * node generates be accepted in peace by all on-host destinations. 2877 * If we do NOT assume that all on-host destinations trust 2878 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2879 * (Look for IXAF_TRUSTED_ICMP). 2880 */ 2881 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2882 2883 ipha = (ipha_t *)mp->b_rptr; 2884 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2885 *ipha = icmp_ipha; 2886 ipha->ipha_src = src; 2887 ipha->ipha_dst = dst; 2888 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2889 msg_len += sizeof (icmp_ipha) + len; 2890 if (msg_len > IP_MAXPACKET) { 2891 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2892 msg_len = IP_MAXPACKET; 2893 } 2894 ipha->ipha_length = htons((uint16_t)msg_len); 2895 icmph = (icmph_t *)&ipha[1]; 2896 bcopy(stuff, icmph, len); 2897 icmph->icmph_checksum = 0; 2898 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2899 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2900 2901 (void) ip_output_simple(mp, &ixas); 2902 ixa_cleanup(&ixas); 2903 } 2904 2905 /* 2906 * Determine if an ICMP error packet can be sent given the rate limit. 2907 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2908 * in milliseconds) and a burst size. Burst size number of packets can 2909 * be sent arbitrarely closely spaced. 2910 * The state is tracked using two variables to implement an approximate 2911 * token bucket filter: 2912 * icmp_pkt_err_last - lbolt value when the last burst started 2913 * icmp_pkt_err_sent - number of packets sent in current burst 2914 */ 2915 boolean_t 2916 icmp_err_rate_limit(ip_stack_t *ipst) 2917 { 2918 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2919 uint_t refilled; /* Number of packets refilled in tbf since last */ 2920 /* Guard against changes by loading into local variable */ 2921 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2922 2923 if (err_interval == 0) 2924 return (B_FALSE); 2925 2926 if (ipst->ips_icmp_pkt_err_last > now) { 2927 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2928 ipst->ips_icmp_pkt_err_last = 0; 2929 ipst->ips_icmp_pkt_err_sent = 0; 2930 } 2931 /* 2932 * If we are in a burst update the token bucket filter. 2933 * Update the "last" time to be close to "now" but make sure 2934 * we don't loose precision. 2935 */ 2936 if (ipst->ips_icmp_pkt_err_sent != 0) { 2937 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2938 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2939 ipst->ips_icmp_pkt_err_sent = 0; 2940 } else { 2941 ipst->ips_icmp_pkt_err_sent -= refilled; 2942 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2943 } 2944 } 2945 if (ipst->ips_icmp_pkt_err_sent == 0) { 2946 /* Start of new burst */ 2947 ipst->ips_icmp_pkt_err_last = now; 2948 } 2949 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2950 ipst->ips_icmp_pkt_err_sent++; 2951 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2952 ipst->ips_icmp_pkt_err_sent)); 2953 return (B_FALSE); 2954 } 2955 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2956 return (B_TRUE); 2957 } 2958 2959 /* 2960 * Check if it is ok to send an IPv4 ICMP error packet in 2961 * response to the IPv4 packet in mp. 2962 * Free the message and return null if no 2963 * ICMP error packet should be sent. 2964 */ 2965 static mblk_t * 2966 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2967 { 2968 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2969 icmph_t *icmph; 2970 ipha_t *ipha; 2971 uint_t len_needed; 2972 2973 if (!mp) 2974 return (NULL); 2975 ipha = (ipha_t *)mp->b_rptr; 2976 if (ip_csum_hdr(ipha)) { 2977 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2978 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2979 freemsg(mp); 2980 return (NULL); 2981 } 2982 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2983 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2984 CLASSD(ipha->ipha_dst) || 2985 CLASSD(ipha->ipha_src) || 2986 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2987 /* Note: only errors to the fragment with offset 0 */ 2988 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2989 freemsg(mp); 2990 return (NULL); 2991 } 2992 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2993 /* 2994 * Check the ICMP type. RFC 1122 sez: don't send ICMP 2995 * errors in response to any ICMP errors. 2996 */ 2997 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 2998 if (mp->b_wptr - mp->b_rptr < len_needed) { 2999 if (!pullupmsg(mp, len_needed)) { 3000 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3001 freemsg(mp); 3002 return (NULL); 3003 } 3004 ipha = (ipha_t *)mp->b_rptr; 3005 } 3006 icmph = (icmph_t *) 3007 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3008 switch (icmph->icmph_type) { 3009 case ICMP_DEST_UNREACHABLE: 3010 case ICMP_SOURCE_QUENCH: 3011 case ICMP_TIME_EXCEEDED: 3012 case ICMP_PARAM_PROBLEM: 3013 case ICMP_REDIRECT: 3014 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3015 freemsg(mp); 3016 return (NULL); 3017 default: 3018 break; 3019 } 3020 } 3021 /* 3022 * If this is a labeled system, then check to see if we're allowed to 3023 * send a response to this particular sender. If not, then just drop. 3024 */ 3025 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3026 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3027 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3028 freemsg(mp); 3029 return (NULL); 3030 } 3031 if (icmp_err_rate_limit(ipst)) { 3032 /* 3033 * Only send ICMP error packets every so often. 3034 * This should be done on a per port/source basis, 3035 * but for now this will suffice. 3036 */ 3037 freemsg(mp); 3038 return (NULL); 3039 } 3040 return (mp); 3041 } 3042 3043 /* 3044 * Called when a packet was sent out the same link that it arrived on. 3045 * Check if it is ok to send a redirect and then send it. 3046 */ 3047 void 3048 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3049 ip_recv_attr_t *ira) 3050 { 3051 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3052 ipaddr_t src, nhop; 3053 mblk_t *mp1; 3054 ire_t *nhop_ire; 3055 3056 /* 3057 * Check the source address to see if it originated 3058 * on the same logical subnet it is going back out on. 3059 * If so, we should be able to send it a redirect. 3060 * Avoid sending a redirect if the destination 3061 * is directly connected (i.e., we matched an IRE_ONLINK), 3062 * or if the packet was source routed out this interface. 3063 * 3064 * We avoid sending a redirect if the 3065 * destination is directly connected 3066 * because it is possible that multiple 3067 * IP subnets may have been configured on 3068 * the link, and the source may not 3069 * be on the same subnet as ip destination, 3070 * even though they are on the same 3071 * physical link. 3072 */ 3073 if ((ire->ire_type & IRE_ONLINK) || 3074 ip_source_routed(ipha, ipst)) 3075 return; 3076 3077 nhop_ire = ire_nexthop(ire); 3078 if (nhop_ire == NULL) 3079 return; 3080 3081 nhop = nhop_ire->ire_addr; 3082 3083 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3084 ire_t *ire2; 3085 3086 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3087 mutex_enter(&nhop_ire->ire_lock); 3088 ire2 = nhop_ire->ire_dep_parent; 3089 if (ire2 != NULL) 3090 ire_refhold(ire2); 3091 mutex_exit(&nhop_ire->ire_lock); 3092 ire_refrele(nhop_ire); 3093 nhop_ire = ire2; 3094 } 3095 if (nhop_ire == NULL) 3096 return; 3097 3098 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3099 3100 src = ipha->ipha_src; 3101 3102 /* 3103 * We look at the interface ire for the nexthop, 3104 * to see if ipha_src is in the same subnet 3105 * as the nexthop. 3106 */ 3107 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3108 /* 3109 * The source is directly connected. 3110 */ 3111 mp1 = copymsg(mp); 3112 if (mp1 != NULL) { 3113 icmp_send_redirect(mp1, nhop, ira); 3114 } 3115 } 3116 ire_refrele(nhop_ire); 3117 } 3118 3119 /* 3120 * Generate an ICMP redirect message. 3121 */ 3122 static void 3123 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3124 { 3125 icmph_t icmph; 3126 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3127 3128 mp = icmp_pkt_err_ok(mp, ira); 3129 if (mp == NULL) 3130 return; 3131 3132 bzero(&icmph, sizeof (icmph_t)); 3133 icmph.icmph_type = ICMP_REDIRECT; 3134 icmph.icmph_code = 1; 3135 icmph.icmph_rd_gateway = gateway; 3136 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3137 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3138 } 3139 3140 /* 3141 * Generate an ICMP time exceeded message. 3142 */ 3143 void 3144 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3145 { 3146 icmph_t icmph; 3147 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3148 3149 mp = icmp_pkt_err_ok(mp, ira); 3150 if (mp == NULL) 3151 return; 3152 3153 bzero(&icmph, sizeof (icmph_t)); 3154 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3155 icmph.icmph_code = code; 3156 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3157 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3158 } 3159 3160 /* 3161 * Generate an ICMP unreachable message. 3162 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3163 * constructed by the caller. 3164 */ 3165 void 3166 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3167 { 3168 icmph_t icmph; 3169 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3170 3171 mp = icmp_pkt_err_ok(mp, ira); 3172 if (mp == NULL) 3173 return; 3174 3175 bzero(&icmph, sizeof (icmph_t)); 3176 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3177 icmph.icmph_code = code; 3178 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3179 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3180 } 3181 3182 /* 3183 * Latch in the IPsec state for a stream based the policy in the listener 3184 * and the actions in the ip_recv_attr_t. 3185 * Called directly from TCP and SCTP. 3186 */ 3187 boolean_t 3188 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3189 { 3190 ASSERT(lconnp->conn_policy != NULL); 3191 ASSERT(connp->conn_policy == NULL); 3192 3193 IPPH_REFHOLD(lconnp->conn_policy); 3194 connp->conn_policy = lconnp->conn_policy; 3195 3196 if (ira->ira_ipsec_action != NULL) { 3197 if (connp->conn_latch == NULL) { 3198 connp->conn_latch = iplatch_create(); 3199 if (connp->conn_latch == NULL) 3200 return (B_FALSE); 3201 } 3202 ipsec_latch_inbound(connp, ira); 3203 } 3204 return (B_TRUE); 3205 } 3206 3207 /* 3208 * Verify whether or not the IP address is a valid local address. 3209 * Could be a unicast, including one for a down interface. 3210 * If allow_mcbc then a multicast or broadcast address is also 3211 * acceptable. 3212 * 3213 * In the case of a broadcast/multicast address, however, the 3214 * upper protocol is expected to reset the src address 3215 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3216 * no packets are emitted with broadcast/multicast address as 3217 * source address (that violates hosts requirements RFC 1122) 3218 * The addresses valid for bind are: 3219 * (1) - INADDR_ANY (0) 3220 * (2) - IP address of an UP interface 3221 * (3) - IP address of a DOWN interface 3222 * (4) - valid local IP broadcast addresses. In this case 3223 * the conn will only receive packets destined to 3224 * the specified broadcast address. 3225 * (5) - a multicast address. In this case 3226 * the conn will only receive packets destined to 3227 * the specified multicast address. Note: the 3228 * application still has to issue an 3229 * IP_ADD_MEMBERSHIP socket option. 3230 * 3231 * In all the above cases, the bound address must be valid in the current zone. 3232 * When the address is loopback, multicast or broadcast, there might be many 3233 * matching IREs so bind has to look up based on the zone. 3234 */ 3235 ip_laddr_t 3236 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3237 ip_stack_t *ipst, boolean_t allow_mcbc) 3238 { 3239 ire_t *src_ire; 3240 3241 ASSERT(src_addr != INADDR_ANY); 3242 3243 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3244 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3245 3246 /* 3247 * If an address other than in6addr_any is requested, 3248 * we verify that it is a valid address for bind 3249 * Note: Following code is in if-else-if form for 3250 * readability compared to a condition check. 3251 */ 3252 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3253 /* 3254 * (2) Bind to address of local UP interface 3255 */ 3256 ire_refrele(src_ire); 3257 return (IPVL_UNICAST_UP); 3258 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3259 /* 3260 * (4) Bind to broadcast address 3261 */ 3262 ire_refrele(src_ire); 3263 if (allow_mcbc) 3264 return (IPVL_BCAST); 3265 else 3266 return (IPVL_BAD); 3267 } else if (CLASSD(src_addr)) { 3268 /* (5) bind to multicast address. */ 3269 if (src_ire != NULL) 3270 ire_refrele(src_ire); 3271 3272 if (allow_mcbc) 3273 return (IPVL_MCAST); 3274 else 3275 return (IPVL_BAD); 3276 } else { 3277 ipif_t *ipif; 3278 3279 /* 3280 * (3) Bind to address of local DOWN interface? 3281 * (ipif_lookup_addr() looks up all interfaces 3282 * but we do not get here for UP interfaces 3283 * - case (2) above) 3284 */ 3285 if (src_ire != NULL) 3286 ire_refrele(src_ire); 3287 3288 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3289 if (ipif == NULL) 3290 return (IPVL_BAD); 3291 3292 /* Not a useful source? */ 3293 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3294 ipif_refrele(ipif); 3295 return (IPVL_BAD); 3296 } 3297 ipif_refrele(ipif); 3298 return (IPVL_UNICAST_DOWN); 3299 } 3300 } 3301 3302 /* 3303 * Insert in the bind fanout for IPv4 and IPv6. 3304 * The caller should already have used ip_laddr_verify_v*() before calling 3305 * this. 3306 */ 3307 int 3308 ip_laddr_fanout_insert(conn_t *connp) 3309 { 3310 int error; 3311 3312 /* 3313 * Allow setting new policies. For example, disconnects result 3314 * in us being called. As we would have set conn_policy_cached 3315 * to B_TRUE before, we should set it to B_FALSE, so that policy 3316 * can change after the disconnect. 3317 */ 3318 connp->conn_policy_cached = B_FALSE; 3319 3320 error = ipcl_bind_insert(connp); 3321 if (error != 0) { 3322 if (connp->conn_anon_port) { 3323 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3324 connp->conn_mlp_type, connp->conn_proto, 3325 ntohs(connp->conn_lport), B_FALSE); 3326 } 3327 connp->conn_mlp_type = mlptSingle; 3328 } 3329 return (error); 3330 } 3331 3332 /* 3333 * Verify that both the source and destination addresses are valid. If 3334 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3335 * i.e. have no route to it. Protocols like TCP want to verify destination 3336 * reachability, while tunnels do not. 3337 * 3338 * Determine the route, the interface, and (optionally) the source address 3339 * to use to reach a given destination. 3340 * Note that we allow connect to broadcast and multicast addresses when 3341 * IPDF_ALLOW_MCBC is set. 3342 * first_hop and dst_addr are normally the same, but if source routing 3343 * they will differ; in that case the first_hop is what we'll use for the 3344 * routing lookup but the dce and label checks will be done on dst_addr, 3345 * 3346 * If uinfo is set, then we fill in the best available information 3347 * we have for the destination. This is based on (in priority order) any 3348 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3349 * ill_mtu. 3350 * 3351 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3352 * always do the label check on dst_addr. 3353 */ 3354 int 3355 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3356 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3357 { 3358 ire_t *ire = NULL; 3359 int error = 0; 3360 ipaddr_t setsrc; /* RTF_SETSRC */ 3361 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3362 ip_stack_t *ipst = ixa->ixa_ipst; 3363 dce_t *dce; 3364 uint_t pmtu; 3365 uint_t generation; 3366 nce_t *nce; 3367 ill_t *ill = NULL; 3368 boolean_t multirt = B_FALSE; 3369 3370 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3371 3372 /* 3373 * We never send to zero; the ULPs map it to the loopback address. 3374 * We can't allow it since we use zero to mean unitialized in some 3375 * places. 3376 */ 3377 ASSERT(dst_addr != INADDR_ANY); 3378 3379 if (is_system_labeled()) { 3380 ts_label_t *tsl = NULL; 3381 3382 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3383 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3384 if (error != 0) 3385 return (error); 3386 if (tsl != NULL) { 3387 /* Update the label */ 3388 ip_xmit_attr_replace_tsl(ixa, tsl); 3389 } 3390 } 3391 3392 setsrc = INADDR_ANY; 3393 /* 3394 * Select a route; For IPMP interfaces, we would only select 3395 * a "hidden" route (i.e., going through a specific under_ill) 3396 * if ixa_ifindex has been specified. 3397 */ 3398 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3399 &generation, &setsrc, &error, &multirt); 3400 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3401 if (error != 0) 3402 goto bad_addr; 3403 3404 /* 3405 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3406 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3407 * Otherwise the destination needn't be reachable. 3408 * 3409 * If we match on a reject or black hole, then we've got a 3410 * local failure. May as well fail out the connect() attempt, 3411 * since it's never going to succeed. 3412 */ 3413 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3414 /* 3415 * If we're verifying destination reachability, we always want 3416 * to complain here. 3417 * 3418 * If we're not verifying destination reachability but the 3419 * destination has a route, we still want to fail on the 3420 * temporary address and broadcast address tests. 3421 * 3422 * In both cases do we let the code continue so some reasonable 3423 * information is returned to the caller. That enables the 3424 * caller to use (and even cache) the IRE. conn_ip_ouput will 3425 * use the generation mismatch path to check for the unreachable 3426 * case thereby avoiding any specific check in the main path. 3427 */ 3428 ASSERT(generation == IRE_GENERATION_VERIFY); 3429 if (flags & IPDF_VERIFY_DST) { 3430 /* 3431 * Set errno but continue to set up ixa_ire to be 3432 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3433 * That allows callers to use ip_output to get an 3434 * ICMP error back. 3435 */ 3436 if (!(ire->ire_type & IRE_HOST)) 3437 error = ENETUNREACH; 3438 else 3439 error = EHOSTUNREACH; 3440 } 3441 } 3442 3443 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3444 !(flags & IPDF_ALLOW_MCBC)) { 3445 ire_refrele(ire); 3446 ire = ire_reject(ipst, B_FALSE); 3447 generation = IRE_GENERATION_VERIFY; 3448 error = ENETUNREACH; 3449 } 3450 3451 /* Cache things */ 3452 if (ixa->ixa_ire != NULL) 3453 ire_refrele_notr(ixa->ixa_ire); 3454 #ifdef DEBUG 3455 ire_refhold_notr(ire); 3456 ire_refrele(ire); 3457 #endif 3458 ixa->ixa_ire = ire; 3459 ixa->ixa_ire_generation = generation; 3460 3461 /* 3462 * For multicast with multirt we have a flag passed back from 3463 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3464 * possible multicast address. 3465 * We also need a flag for multicast since we can't check 3466 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3467 */ 3468 if (multirt) { 3469 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3470 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3471 } else { 3472 ixa->ixa_postfragfn = ire->ire_postfragfn; 3473 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3474 } 3475 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3476 /* Get an nce to cache. */ 3477 nce = ire_to_nce(ire, firsthop, NULL); 3478 if (nce == NULL) { 3479 /* Allocation failure? */ 3480 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3481 } else { 3482 if (ixa->ixa_nce != NULL) 3483 nce_refrele(ixa->ixa_nce); 3484 ixa->ixa_nce = nce; 3485 } 3486 } 3487 3488 /* 3489 * If the source address is a loopback address, the 3490 * destination had best be local or multicast. 3491 * If we are sending to an IRE_LOCAL using a loopback source then 3492 * it had better be the same zoneid. 3493 */ 3494 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3495 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3496 ire = NULL; /* Stored in ixa_ire */ 3497 error = EADDRNOTAVAIL; 3498 goto bad_addr; 3499 } 3500 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3501 ire = NULL; /* Stored in ixa_ire */ 3502 error = EADDRNOTAVAIL; 3503 goto bad_addr; 3504 } 3505 } 3506 if (ire->ire_type & IRE_BROADCAST) { 3507 /* 3508 * If the ULP didn't have a specified source, then we 3509 * make sure we reselect the source when sending 3510 * broadcasts out different interfaces. 3511 */ 3512 if (flags & IPDF_SELECT_SRC) 3513 ixa->ixa_flags |= IXAF_SET_SOURCE; 3514 else 3515 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3516 } 3517 3518 /* 3519 * Does the caller want us to pick a source address? 3520 */ 3521 if (flags & IPDF_SELECT_SRC) { 3522 ipaddr_t src_addr; 3523 3524 /* 3525 * We use use ire_nexthop_ill to avoid the under ipmp 3526 * interface for source address selection. Note that for ipmp 3527 * probe packets, ixa_ifindex would have been specified, and 3528 * the ip_select_route() invocation would have picked an ire 3529 * will ire_ill pointing at an under interface. 3530 */ 3531 ill = ire_nexthop_ill(ire); 3532 3533 /* If unreachable we have no ill but need some source */ 3534 if (ill == NULL) { 3535 src_addr = htonl(INADDR_LOOPBACK); 3536 /* Make sure we look for a better source address */ 3537 generation = SRC_GENERATION_VERIFY; 3538 } else { 3539 error = ip_select_source_v4(ill, setsrc, dst_addr, 3540 ixa->ixa_multicast_ifaddr, zoneid, 3541 ipst, &src_addr, &generation, NULL); 3542 if (error != 0) { 3543 ire = NULL; /* Stored in ixa_ire */ 3544 goto bad_addr; 3545 } 3546 } 3547 3548 /* 3549 * We allow the source address to to down. 3550 * However, we check that we don't use the loopback address 3551 * as a source when sending out on the wire. 3552 */ 3553 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3554 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3555 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3556 ire = NULL; /* Stored in ixa_ire */ 3557 error = EADDRNOTAVAIL; 3558 goto bad_addr; 3559 } 3560 3561 *src_addrp = src_addr; 3562 ixa->ixa_src_generation = generation; 3563 } 3564 3565 if (flags & IPDF_UNIQUE_DCE) { 3566 /* Fallback to the default dce if allocation fails */ 3567 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3568 if (dce != NULL) 3569 generation = dce->dce_generation; 3570 else 3571 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3572 } else { 3573 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3574 } 3575 ASSERT(dce != NULL); 3576 if (ixa->ixa_dce != NULL) 3577 dce_refrele_notr(ixa->ixa_dce); 3578 #ifdef DEBUG 3579 dce_refhold_notr(dce); 3580 dce_refrele(dce); 3581 #endif 3582 ixa->ixa_dce = dce; 3583 ixa->ixa_dce_generation = generation; 3584 3585 /* 3586 * Make sure we don't leave an unreachable ixa_nce in place 3587 * since ip_select_route is used when we unplumb i.e., remove 3588 * references on ixa_ire, ixa_nce, and ixa_dce. 3589 */ 3590 nce = ixa->ixa_nce; 3591 if (nce != NULL && nce->nce_is_condemned) { 3592 nce_refrele(nce); 3593 ixa->ixa_nce = NULL; 3594 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3595 } 3596 3597 /* 3598 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3599 * However, we can't do it for IPv4 multicast or broadcast. 3600 */ 3601 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3602 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3603 3604 /* 3605 * Set initial value for fragmentation limit. Either conn_ip_output 3606 * or ULP might updates it when there are routing changes. 3607 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3608 */ 3609 pmtu = ip_get_pmtu(ixa); 3610 ixa->ixa_fragsize = pmtu; 3611 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3612 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3613 ixa->ixa_pmtu = pmtu; 3614 3615 /* 3616 * Extract information useful for some transports. 3617 * First we look for DCE metrics. Then we take what we have in 3618 * the metrics in the route, where the offlink is used if we have 3619 * one. 3620 */ 3621 if (uinfo != NULL) { 3622 bzero(uinfo, sizeof (*uinfo)); 3623 3624 if (dce->dce_flags & DCEF_UINFO) 3625 *uinfo = dce->dce_uinfo; 3626 3627 rts_merge_metrics(uinfo, &ire->ire_metrics); 3628 3629 /* Allow ire_metrics to decrease the path MTU from above */ 3630 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3631 uinfo->iulp_mtu = pmtu; 3632 3633 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3634 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3635 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3636 } 3637 3638 if (ill != NULL) 3639 ill_refrele(ill); 3640 3641 return (error); 3642 3643 bad_addr: 3644 if (ire != NULL) 3645 ire_refrele(ire); 3646 3647 if (ill != NULL) 3648 ill_refrele(ill); 3649 3650 /* 3651 * Make sure we don't leave an unreachable ixa_nce in place 3652 * since ip_select_route is used when we unplumb i.e., remove 3653 * references on ixa_ire, ixa_nce, and ixa_dce. 3654 */ 3655 nce = ixa->ixa_nce; 3656 if (nce != NULL && nce->nce_is_condemned) { 3657 nce_refrele(nce); 3658 ixa->ixa_nce = NULL; 3659 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3660 } 3661 3662 return (error); 3663 } 3664 3665 3666 /* 3667 * Get the base MTU for the case when path MTU discovery is not used. 3668 * Takes the MTU of the IRE into account. 3669 */ 3670 uint_t 3671 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3672 { 3673 uint_t mtu = ill->ill_mtu; 3674 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3675 3676 if (iremtu != 0 && iremtu < mtu) 3677 mtu = iremtu; 3678 3679 return (mtu); 3680 } 3681 3682 /* 3683 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3684 * Assumes that ixa_ire, dce, and nce have already been set up. 3685 * 3686 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3687 * We avoid path MTU discovery if it is disabled with ndd. 3688 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3689 * 3690 * NOTE: We also used to turn it off for source routed packets. That 3691 * is no longer required since the dce is per final destination. 3692 */ 3693 uint_t 3694 ip_get_pmtu(ip_xmit_attr_t *ixa) 3695 { 3696 ip_stack_t *ipst = ixa->ixa_ipst; 3697 dce_t *dce; 3698 nce_t *nce; 3699 ire_t *ire; 3700 uint_t pmtu; 3701 3702 ire = ixa->ixa_ire; 3703 dce = ixa->ixa_dce; 3704 nce = ixa->ixa_nce; 3705 3706 /* 3707 * If path MTU discovery has been turned off by ndd, then we ignore 3708 * any dce_pmtu and for IPv4 we will not set DF. 3709 */ 3710 if (!ipst->ips_ip_path_mtu_discovery) 3711 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3712 3713 pmtu = IP_MAXPACKET; 3714 /* 3715 * Decide whether whether IPv4 sets DF 3716 * For IPv6 "no DF" means to use the 1280 mtu 3717 */ 3718 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3719 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3720 } else { 3721 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3722 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3723 pmtu = IPV6_MIN_MTU; 3724 } 3725 3726 /* Check if the PMTU is to old before we use it */ 3727 if ((dce->dce_flags & DCEF_PMTU) && 3728 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3729 ipst->ips_ip_pathmtu_interval) { 3730 /* 3731 * Older than 20 minutes. Drop the path MTU information. 3732 */ 3733 mutex_enter(&dce->dce_lock); 3734 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3735 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3736 mutex_exit(&dce->dce_lock); 3737 dce_increment_generation(dce); 3738 } 3739 3740 /* The metrics on the route can lower the path MTU */ 3741 if (ire->ire_metrics.iulp_mtu != 0 && 3742 ire->ire_metrics.iulp_mtu < pmtu) 3743 pmtu = ire->ire_metrics.iulp_mtu; 3744 3745 /* 3746 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3747 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3748 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3749 */ 3750 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3751 if (dce->dce_flags & DCEF_PMTU) { 3752 if (dce->dce_pmtu < pmtu) 3753 pmtu = dce->dce_pmtu; 3754 3755 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3756 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3757 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3758 } else { 3759 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3760 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3761 } 3762 } else { 3763 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3764 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3765 } 3766 } 3767 3768 /* 3769 * If we have an IRE_LOCAL we use the loopback mtu instead of 3770 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3771 * mtu as IRE_LOOPBACK. 3772 */ 3773 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3774 uint_t loopback_mtu; 3775 3776 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3777 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3778 3779 if (loopback_mtu < pmtu) 3780 pmtu = loopback_mtu; 3781 } else if (nce != NULL) { 3782 /* 3783 * Make sure we don't exceed the interface MTU. 3784 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3785 * an ill. We'd use the above IP_MAXPACKET in that case just 3786 * to tell the transport something larger than zero. 3787 */ 3788 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3789 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3790 if (nce->nce_common->ncec_ill != nce->nce_ill && 3791 nce->nce_ill->ill_mtu < pmtu) { 3792 /* 3793 * for interfaces in an IPMP group, the mtu of 3794 * the nce_ill (under_ill) could be different 3795 * from the mtu of the ncec_ill, so we take the 3796 * min of the two. 3797 */ 3798 pmtu = nce->nce_ill->ill_mtu; 3799 } 3800 } 3801 3802 /* 3803 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3804 * Only applies to IPv6. 3805 */ 3806 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3807 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3808 switch (ixa->ixa_use_min_mtu) { 3809 case IPV6_USE_MIN_MTU_MULTICAST: 3810 if (ire->ire_type & IRE_MULTICAST) 3811 pmtu = IPV6_MIN_MTU; 3812 break; 3813 case IPV6_USE_MIN_MTU_ALWAYS: 3814 pmtu = IPV6_MIN_MTU; 3815 break; 3816 case IPV6_USE_MIN_MTU_NEVER: 3817 break; 3818 } 3819 } else { 3820 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3821 if (ire->ire_type & IRE_MULTICAST) 3822 pmtu = IPV6_MIN_MTU; 3823 } 3824 } 3825 3826 /* 3827 * After receiving an ICMPv6 "packet too big" message with a 3828 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3829 * will insert a 8-byte fragment header in every packet. We compensate 3830 * for those cases by returning a smaller path MTU to the ULP. 3831 * 3832 * In the case of CGTP then ip_output will add a fragment header. 3833 * Make sure there is room for it by telling a smaller number 3834 * to the transport. 3835 * 3836 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3837 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3838 * which is the size of the packets it can send. 3839 */ 3840 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3841 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3842 (ire->ire_flags & RTF_MULTIRT) || 3843 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3844 pmtu -= sizeof (ip6_frag_t); 3845 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3846 } 3847 } 3848 3849 return (pmtu); 3850 } 3851 3852 /* 3853 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3854 * the final piece where we don't. Return a pointer to the first mblk in the 3855 * result, and update the pointer to the next mblk to chew on. If anything 3856 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3857 * NULL pointer. 3858 */ 3859 mblk_t * 3860 ip_carve_mp(mblk_t **mpp, ssize_t len) 3861 { 3862 mblk_t *mp0; 3863 mblk_t *mp1; 3864 mblk_t *mp2; 3865 3866 if (!len || !mpp || !(mp0 = *mpp)) 3867 return (NULL); 3868 /* If we aren't going to consume the first mblk, we need a dup. */ 3869 if (mp0->b_wptr - mp0->b_rptr > len) { 3870 mp1 = dupb(mp0); 3871 if (mp1) { 3872 /* Partition the data between the two mblks. */ 3873 mp1->b_wptr = mp1->b_rptr + len; 3874 mp0->b_rptr = mp1->b_wptr; 3875 /* 3876 * after adjustments if mblk not consumed is now 3877 * unaligned, try to align it. If this fails free 3878 * all messages and let upper layer recover. 3879 */ 3880 if (!OK_32PTR(mp0->b_rptr)) { 3881 if (!pullupmsg(mp0, -1)) { 3882 freemsg(mp0); 3883 freemsg(mp1); 3884 *mpp = NULL; 3885 return (NULL); 3886 } 3887 } 3888 } 3889 return (mp1); 3890 } 3891 /* Eat through as many mblks as we need to get len bytes. */ 3892 len -= mp0->b_wptr - mp0->b_rptr; 3893 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3894 if (mp2->b_wptr - mp2->b_rptr > len) { 3895 /* 3896 * We won't consume the entire last mblk. Like 3897 * above, dup and partition it. 3898 */ 3899 mp1->b_cont = dupb(mp2); 3900 mp1 = mp1->b_cont; 3901 if (!mp1) { 3902 /* 3903 * Trouble. Rather than go to a lot of 3904 * trouble to clean up, we free the messages. 3905 * This won't be any worse than losing it on 3906 * the wire. 3907 */ 3908 freemsg(mp0); 3909 freemsg(mp2); 3910 *mpp = NULL; 3911 return (NULL); 3912 } 3913 mp1->b_wptr = mp1->b_rptr + len; 3914 mp2->b_rptr = mp1->b_wptr; 3915 /* 3916 * after adjustments if mblk not consumed is now 3917 * unaligned, try to align it. If this fails free 3918 * all messages and let upper layer recover. 3919 */ 3920 if (!OK_32PTR(mp2->b_rptr)) { 3921 if (!pullupmsg(mp2, -1)) { 3922 freemsg(mp0); 3923 freemsg(mp2); 3924 *mpp = NULL; 3925 return (NULL); 3926 } 3927 } 3928 *mpp = mp2; 3929 return (mp0); 3930 } 3931 /* Decrement len by the amount we just got. */ 3932 len -= mp2->b_wptr - mp2->b_rptr; 3933 } 3934 /* 3935 * len should be reduced to zero now. If not our caller has 3936 * screwed up. 3937 */ 3938 if (len) { 3939 /* Shouldn't happen! */ 3940 freemsg(mp0); 3941 *mpp = NULL; 3942 return (NULL); 3943 } 3944 /* 3945 * We consumed up to exactly the end of an mblk. Detach the part 3946 * we are returning from the rest of the chain. 3947 */ 3948 mp1->b_cont = NULL; 3949 *mpp = mp2; 3950 return (mp0); 3951 } 3952 3953 /* The ill stream is being unplumbed. Called from ip_close */ 3954 int 3955 ip_modclose(ill_t *ill) 3956 { 3957 boolean_t success; 3958 ipsq_t *ipsq; 3959 ipif_t *ipif; 3960 queue_t *q = ill->ill_rq; 3961 ip_stack_t *ipst = ill->ill_ipst; 3962 int i; 3963 arl_ill_common_t *ai = ill->ill_common; 3964 3965 /* 3966 * The punlink prior to this may have initiated a capability 3967 * negotiation. But ipsq_enter will block until that finishes or 3968 * times out. 3969 */ 3970 success = ipsq_enter(ill, B_FALSE, NEW_OP); 3971 3972 /* 3973 * Open/close/push/pop is guaranteed to be single threaded 3974 * per stream by STREAMS. FS guarantees that all references 3975 * from top are gone before close is called. So there can't 3976 * be another close thread that has set CONDEMNED on this ill. 3977 * and cause ipsq_enter to return failure. 3978 */ 3979 ASSERT(success); 3980 ipsq = ill->ill_phyint->phyint_ipsq; 3981 3982 /* 3983 * Mark it condemned. No new reference will be made to this ill. 3984 * Lookup functions will return an error. Threads that try to 3985 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 3986 * that the refcnt will drop down to zero. 3987 */ 3988 mutex_enter(&ill->ill_lock); 3989 ill->ill_state_flags |= ILL_CONDEMNED; 3990 for (ipif = ill->ill_ipif; ipif != NULL; 3991 ipif = ipif->ipif_next) { 3992 ipif->ipif_state_flags |= IPIF_CONDEMNED; 3993 } 3994 /* 3995 * Wake up anybody waiting to enter the ipsq. ipsq_enter 3996 * returns error if ILL_CONDEMNED is set 3997 */ 3998 cv_broadcast(&ill->ill_cv); 3999 mutex_exit(&ill->ill_lock); 4000 4001 /* 4002 * Send all the deferred DLPI messages downstream which came in 4003 * during the small window right before ipsq_enter(). We do this 4004 * without waiting for the ACKs because all the ACKs for M_PROTO 4005 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4006 */ 4007 ill_dlpi_send_deferred(ill); 4008 4009 /* 4010 * Shut down fragmentation reassembly. 4011 * ill_frag_timer won't start a timer again. 4012 * Now cancel any existing timer 4013 */ 4014 (void) untimeout(ill->ill_frag_timer_id); 4015 (void) ill_frag_timeout(ill, 0); 4016 4017 /* 4018 * Call ill_delete to bring down the ipifs, ilms and ill on 4019 * this ill. Then wait for the refcnts to drop to zero. 4020 * ill_is_freeable checks whether the ill is really quiescent. 4021 * Then make sure that threads that are waiting to enter the 4022 * ipsq have seen the error returned by ipsq_enter and have 4023 * gone away. Then we call ill_delete_tail which does the 4024 * DL_UNBIND_REQ with the driver and then qprocsoff. 4025 */ 4026 ill_delete(ill); 4027 mutex_enter(&ill->ill_lock); 4028 while (!ill_is_freeable(ill)) 4029 cv_wait(&ill->ill_cv, &ill->ill_lock); 4030 4031 while (ill->ill_waiters) 4032 cv_wait(&ill->ill_cv, &ill->ill_lock); 4033 4034 mutex_exit(&ill->ill_lock); 4035 4036 /* 4037 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4038 * it held until the end of the function since the cleanup 4039 * below needs to be able to use the ip_stack_t. 4040 */ 4041 netstack_hold(ipst->ips_netstack); 4042 4043 /* qprocsoff is done via ill_delete_tail */ 4044 ill_delete_tail(ill); 4045 /* 4046 * synchronously wait for arp stream to unbind. After this, we 4047 * cannot get any data packets up from the driver. 4048 */ 4049 arp_unbind_complete(ill); 4050 ASSERT(ill->ill_ipst == NULL); 4051 4052 /* 4053 * Walk through all conns and qenable those that have queued data. 4054 * Close synchronization needs this to 4055 * be done to ensure that all upper layers blocked 4056 * due to flow control to the closing device 4057 * get unblocked. 4058 */ 4059 ip1dbg(("ip_wsrv: walking\n")); 4060 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4061 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4062 } 4063 4064 /* 4065 * ai can be null if this is an IPv6 ill, or if the IPv4 4066 * stream is being torn down before ARP was plumbed (e.g., 4067 * /sbin/ifconfig plumbing a stream twice, and encountering 4068 * an error 4069 */ 4070 if (ai != NULL) { 4071 ASSERT(!ill->ill_isv6); 4072 mutex_enter(&ai->ai_lock); 4073 ai->ai_ill = NULL; 4074 if (ai->ai_arl == NULL) { 4075 mutex_destroy(&ai->ai_lock); 4076 kmem_free(ai, sizeof (*ai)); 4077 } else { 4078 cv_signal(&ai->ai_ill_unplumb_done); 4079 mutex_exit(&ai->ai_lock); 4080 } 4081 } 4082 4083 mutex_enter(&ipst->ips_ip_mi_lock); 4084 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4085 mutex_exit(&ipst->ips_ip_mi_lock); 4086 4087 /* 4088 * credp could be null if the open didn't succeed and ip_modopen 4089 * itself calls ip_close. 4090 */ 4091 if (ill->ill_credp != NULL) 4092 crfree(ill->ill_credp); 4093 4094 mutex_destroy(&ill->ill_saved_ire_lock); 4095 mutex_destroy(&ill->ill_lock); 4096 rw_destroy(&ill->ill_mcast_lock); 4097 mutex_destroy(&ill->ill_mcast_serializer); 4098 list_destroy(&ill->ill_nce); 4099 4100 /* 4101 * Now we are done with the module close pieces that 4102 * need the netstack_t. 4103 */ 4104 netstack_rele(ipst->ips_netstack); 4105 4106 mi_close_free((IDP)ill); 4107 q->q_ptr = WR(q)->q_ptr = NULL; 4108 4109 ipsq_exit(ipsq); 4110 4111 return (0); 4112 } 4113 4114 /* 4115 * This is called as part of close() for IP, UDP, ICMP, and RTS 4116 * in order to quiesce the conn. 4117 */ 4118 void 4119 ip_quiesce_conn(conn_t *connp) 4120 { 4121 boolean_t drain_cleanup_reqd = B_FALSE; 4122 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4123 boolean_t ilg_cleanup_reqd = B_FALSE; 4124 ip_stack_t *ipst; 4125 4126 ASSERT(!IPCL_IS_TCP(connp)); 4127 ipst = connp->conn_netstack->netstack_ip; 4128 4129 /* 4130 * Mark the conn as closing, and this conn must not be 4131 * inserted in future into any list. Eg. conn_drain_insert(), 4132 * won't insert this conn into the conn_drain_list. 4133 * 4134 * conn_idl, and conn_ilg cannot get set henceforth. 4135 */ 4136 mutex_enter(&connp->conn_lock); 4137 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4138 connp->conn_state_flags |= CONN_CLOSING; 4139 if (connp->conn_idl != NULL) 4140 drain_cleanup_reqd = B_TRUE; 4141 if (connp->conn_oper_pending_ill != NULL) 4142 conn_ioctl_cleanup_reqd = B_TRUE; 4143 if (connp->conn_dhcpinit_ill != NULL) { 4144 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4145 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4146 ill_set_inputfn(connp->conn_dhcpinit_ill); 4147 connp->conn_dhcpinit_ill = NULL; 4148 } 4149 if (connp->conn_ilg != NULL) 4150 ilg_cleanup_reqd = B_TRUE; 4151 mutex_exit(&connp->conn_lock); 4152 4153 if (conn_ioctl_cleanup_reqd) 4154 conn_ioctl_cleanup(connp); 4155 4156 if (is_system_labeled() && connp->conn_anon_port) { 4157 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4158 connp->conn_mlp_type, connp->conn_proto, 4159 ntohs(connp->conn_lport), B_FALSE); 4160 connp->conn_anon_port = 0; 4161 } 4162 connp->conn_mlp_type = mlptSingle; 4163 4164 /* 4165 * Remove this conn from any fanout list it is on. 4166 * and then wait for any threads currently operating 4167 * on this endpoint to finish 4168 */ 4169 ipcl_hash_remove(connp); 4170 4171 /* 4172 * Remove this conn from the drain list, and do any other cleanup that 4173 * may be required. (TCP conns are never flow controlled, and 4174 * conn_idl will be NULL.) 4175 */ 4176 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4177 idl_t *idl = connp->conn_idl; 4178 4179 mutex_enter(&idl->idl_lock); 4180 conn_drain(connp, B_TRUE); 4181 mutex_exit(&idl->idl_lock); 4182 } 4183 4184 if (connp == ipst->ips_ip_g_mrouter) 4185 (void) ip_mrouter_done(ipst); 4186 4187 if (ilg_cleanup_reqd) 4188 ilg_delete_all(connp); 4189 4190 /* 4191 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4192 * callers from write side can't be there now because close 4193 * is in progress. The only other caller is ipcl_walk 4194 * which checks for the condemned flag. 4195 */ 4196 mutex_enter(&connp->conn_lock); 4197 connp->conn_state_flags |= CONN_CONDEMNED; 4198 while (connp->conn_ref != 1) 4199 cv_wait(&connp->conn_cv, &connp->conn_lock); 4200 connp->conn_state_flags |= CONN_QUIESCED; 4201 mutex_exit(&connp->conn_lock); 4202 } 4203 4204 /* ARGSUSED */ 4205 int 4206 ip_close(queue_t *q, int flags) 4207 { 4208 conn_t *connp; 4209 4210 /* 4211 * Call the appropriate delete routine depending on whether this is 4212 * a module or device. 4213 */ 4214 if (WR(q)->q_next != NULL) { 4215 /* This is a module close */ 4216 return (ip_modclose((ill_t *)q->q_ptr)); 4217 } 4218 4219 connp = q->q_ptr; 4220 ip_quiesce_conn(connp); 4221 4222 qprocsoff(q); 4223 4224 /* 4225 * Now we are truly single threaded on this stream, and can 4226 * delete the things hanging off the connp, and finally the connp. 4227 * We removed this connp from the fanout list, it cannot be 4228 * accessed thru the fanouts, and we already waited for the 4229 * conn_ref to drop to 0. We are already in close, so 4230 * there cannot be any other thread from the top. qprocsoff 4231 * has completed, and service has completed or won't run in 4232 * future. 4233 */ 4234 ASSERT(connp->conn_ref == 1); 4235 4236 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4237 4238 connp->conn_ref--; 4239 ipcl_conn_destroy(connp); 4240 4241 q->q_ptr = WR(q)->q_ptr = NULL; 4242 return (0); 4243 } 4244 4245 /* 4246 * Wapper around putnext() so that ip_rts_request can merely use 4247 * conn_recv. 4248 */ 4249 /*ARGSUSED2*/ 4250 static void 4251 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4252 { 4253 conn_t *connp = (conn_t *)arg1; 4254 4255 putnext(connp->conn_rq, mp); 4256 } 4257 4258 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4259 /* ARGSUSED */ 4260 static void 4261 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4262 { 4263 freemsg(mp); 4264 } 4265 4266 /* 4267 * Called when the module is about to be unloaded 4268 */ 4269 void 4270 ip_ddi_destroy(void) 4271 { 4272 tnet_fini(); 4273 4274 icmp_ddi_g_destroy(); 4275 rts_ddi_g_destroy(); 4276 udp_ddi_g_destroy(); 4277 sctp_ddi_g_destroy(); 4278 tcp_ddi_g_destroy(); 4279 ilb_ddi_g_destroy(); 4280 dce_g_destroy(); 4281 ipsec_policy_g_destroy(); 4282 ipcl_g_destroy(); 4283 ip_net_g_destroy(); 4284 ip_ire_g_fini(); 4285 inet_minor_destroy(ip_minor_arena_sa); 4286 #if defined(_LP64) 4287 inet_minor_destroy(ip_minor_arena_la); 4288 #endif 4289 4290 #ifdef DEBUG 4291 list_destroy(&ip_thread_list); 4292 rw_destroy(&ip_thread_rwlock); 4293 tsd_destroy(&ip_thread_data); 4294 #endif 4295 4296 netstack_unregister(NS_IP); 4297 } 4298 4299 /* 4300 * First step in cleanup. 4301 */ 4302 /* ARGSUSED */ 4303 static void 4304 ip_stack_shutdown(netstackid_t stackid, void *arg) 4305 { 4306 ip_stack_t *ipst = (ip_stack_t *)arg; 4307 4308 #ifdef NS_DEBUG 4309 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4310 #endif 4311 4312 /* 4313 * Perform cleanup for special interfaces (loopback and IPMP). 4314 */ 4315 ip_interface_cleanup(ipst); 4316 4317 /* 4318 * The *_hook_shutdown()s start the process of notifying any 4319 * consumers that things are going away.... nothing is destroyed. 4320 */ 4321 ipv4_hook_shutdown(ipst); 4322 ipv6_hook_shutdown(ipst); 4323 arp_hook_shutdown(ipst); 4324 4325 mutex_enter(&ipst->ips_capab_taskq_lock); 4326 ipst->ips_capab_taskq_quit = B_TRUE; 4327 cv_signal(&ipst->ips_capab_taskq_cv); 4328 mutex_exit(&ipst->ips_capab_taskq_lock); 4329 } 4330 4331 /* 4332 * Free the IP stack instance. 4333 */ 4334 static void 4335 ip_stack_fini(netstackid_t stackid, void *arg) 4336 { 4337 ip_stack_t *ipst = (ip_stack_t *)arg; 4338 int ret; 4339 4340 #ifdef NS_DEBUG 4341 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4342 #endif 4343 /* 4344 * At this point, all of the notifications that the events and 4345 * protocols are going away have been run, meaning that we can 4346 * now set about starting to clean things up. 4347 */ 4348 ipobs_fini(ipst); 4349 ipv4_hook_destroy(ipst); 4350 ipv6_hook_destroy(ipst); 4351 arp_hook_destroy(ipst); 4352 ip_net_destroy(ipst); 4353 4354 mutex_destroy(&ipst->ips_capab_taskq_lock); 4355 cv_destroy(&ipst->ips_capab_taskq_cv); 4356 4357 ipmp_destroy(ipst); 4358 rw_destroy(&ipst->ips_srcid_lock); 4359 4360 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4361 ipst->ips_ip_mibkp = NULL; 4362 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4363 ipst->ips_icmp_mibkp = NULL; 4364 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4365 ipst->ips_ip_kstat = NULL; 4366 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4367 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4368 ipst->ips_ip6_kstat = NULL; 4369 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4370 4371 kmem_free(ipst->ips_propinfo_tbl, 4372 ip_propinfo_count * sizeof (mod_prop_info_t)); 4373 ipst->ips_propinfo_tbl = NULL; 4374 4375 dce_stack_destroy(ipst); 4376 ip_mrouter_stack_destroy(ipst); 4377 4378 mutex_destroy(&ipst->ips_ip_mi_lock); 4379 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4380 4381 ret = untimeout(ipst->ips_igmp_timeout_id); 4382 if (ret == -1) { 4383 ASSERT(ipst->ips_igmp_timeout_id == 0); 4384 } else { 4385 ASSERT(ipst->ips_igmp_timeout_id != 0); 4386 ipst->ips_igmp_timeout_id = 0; 4387 } 4388 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4389 if (ret == -1) { 4390 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4391 } else { 4392 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4393 ipst->ips_igmp_slowtimeout_id = 0; 4394 } 4395 ret = untimeout(ipst->ips_mld_timeout_id); 4396 if (ret == -1) { 4397 ASSERT(ipst->ips_mld_timeout_id == 0); 4398 } else { 4399 ASSERT(ipst->ips_mld_timeout_id != 0); 4400 ipst->ips_mld_timeout_id = 0; 4401 } 4402 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4403 if (ret == -1) { 4404 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4405 } else { 4406 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4407 ipst->ips_mld_slowtimeout_id = 0; 4408 } 4409 4410 mutex_destroy(&ipst->ips_igmp_timer_lock); 4411 mutex_destroy(&ipst->ips_mld_timer_lock); 4412 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4413 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4414 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4415 rw_destroy(&ipst->ips_ill_g_lock); 4416 4417 ip_ire_fini(ipst); 4418 ip6_asp_free(ipst); 4419 conn_drain_fini(ipst); 4420 ipcl_destroy(ipst); 4421 4422 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4423 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4424 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4425 ipst->ips_ndp4 = NULL; 4426 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4427 ipst->ips_ndp6 = NULL; 4428 4429 if (ipst->ips_loopback_ksp != NULL) { 4430 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4431 ipst->ips_loopback_ksp = NULL; 4432 } 4433 4434 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4435 ipst->ips_phyint_g_list = NULL; 4436 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4437 ipst->ips_ill_g_heads = NULL; 4438 4439 ldi_ident_release(ipst->ips_ldi_ident); 4440 kmem_free(ipst, sizeof (*ipst)); 4441 } 4442 4443 /* 4444 * This function is called from the TSD destructor, and is used to debug 4445 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4446 * details. 4447 */ 4448 static void 4449 ip_thread_exit(void *phash) 4450 { 4451 th_hash_t *thh = phash; 4452 4453 rw_enter(&ip_thread_rwlock, RW_WRITER); 4454 list_remove(&ip_thread_list, thh); 4455 rw_exit(&ip_thread_rwlock); 4456 mod_hash_destroy_hash(thh->thh_hash); 4457 kmem_free(thh, sizeof (*thh)); 4458 } 4459 4460 /* 4461 * Called when the IP kernel module is loaded into the kernel 4462 */ 4463 void 4464 ip_ddi_init(void) 4465 { 4466 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4467 4468 /* 4469 * For IP and TCP the minor numbers should start from 2 since we have 4 4470 * initial devices: ip, ip6, tcp, tcp6. 4471 */ 4472 /* 4473 * If this is a 64-bit kernel, then create two separate arenas - 4474 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4475 * other for socket apps in the range 2^^18 through 2^^32-1. 4476 */ 4477 ip_minor_arena_la = NULL; 4478 ip_minor_arena_sa = NULL; 4479 #if defined(_LP64) 4480 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4481 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4482 cmn_err(CE_PANIC, 4483 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4484 } 4485 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4486 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4487 cmn_err(CE_PANIC, 4488 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4489 } 4490 #else 4491 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4492 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4493 cmn_err(CE_PANIC, 4494 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4495 } 4496 #endif 4497 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4498 4499 ipcl_g_init(); 4500 ip_ire_g_init(); 4501 ip_net_g_init(); 4502 4503 #ifdef DEBUG 4504 tsd_create(&ip_thread_data, ip_thread_exit); 4505 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4506 list_create(&ip_thread_list, sizeof (th_hash_t), 4507 offsetof(th_hash_t, thh_link)); 4508 #endif 4509 ipsec_policy_g_init(); 4510 tcp_ddi_g_init(); 4511 sctp_ddi_g_init(); 4512 dce_g_init(); 4513 4514 /* 4515 * We want to be informed each time a stack is created or 4516 * destroyed in the kernel, so we can maintain the 4517 * set of udp_stack_t's. 4518 */ 4519 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4520 ip_stack_fini); 4521 4522 tnet_init(); 4523 4524 udp_ddi_g_init(); 4525 rts_ddi_g_init(); 4526 icmp_ddi_g_init(); 4527 ilb_ddi_g_init(); 4528 } 4529 4530 /* 4531 * Initialize the IP stack instance. 4532 */ 4533 static void * 4534 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4535 { 4536 ip_stack_t *ipst; 4537 size_t arrsz; 4538 major_t major; 4539 4540 #ifdef NS_DEBUG 4541 printf("ip_stack_init(stack %d)\n", stackid); 4542 #endif 4543 4544 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4545 ipst->ips_netstack = ns; 4546 4547 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4548 KM_SLEEP); 4549 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4550 KM_SLEEP); 4551 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4552 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4553 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4554 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4555 4556 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4557 ipst->ips_igmp_deferred_next = INFINITY; 4558 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4559 ipst->ips_mld_deferred_next = INFINITY; 4560 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4561 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4562 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4563 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4564 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4565 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4566 4567 ipcl_init(ipst); 4568 ip_ire_init(ipst); 4569 ip6_asp_init(ipst); 4570 ipif_init(ipst); 4571 conn_drain_init(ipst); 4572 ip_mrouter_stack_init(ipst); 4573 dce_stack_init(ipst); 4574 4575 ipst->ips_ip_multirt_log_interval = 1000; 4576 4577 ipst->ips_ill_index = 1; 4578 4579 ipst->ips_saved_ip_forwarding = -1; 4580 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4581 4582 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4583 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4584 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4585 4586 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4587 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4588 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4589 ipst->ips_ip6_kstat = 4590 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4591 4592 ipst->ips_ip_src_id = 1; 4593 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4594 4595 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4596 4597 ip_net_init(ipst, ns); 4598 ipv4_hook_init(ipst); 4599 ipv6_hook_init(ipst); 4600 arp_hook_init(ipst); 4601 ipmp_init(ipst); 4602 ipobs_init(ipst); 4603 4604 /* 4605 * Create the taskq dispatcher thread and initialize related stuff. 4606 */ 4607 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4608 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4609 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4610 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4611 4612 major = mod_name_to_major(INET_NAME); 4613 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4614 return (ipst); 4615 } 4616 4617 /* 4618 * Allocate and initialize a DLPI template of the specified length. (May be 4619 * called as writer.) 4620 */ 4621 mblk_t * 4622 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4623 { 4624 mblk_t *mp; 4625 4626 mp = allocb(len, BPRI_MED); 4627 if (!mp) 4628 return (NULL); 4629 4630 /* 4631 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4632 * of which we don't seem to use) are sent with M_PCPROTO, and 4633 * that other DLPI are M_PROTO. 4634 */ 4635 if (prim == DL_INFO_REQ) { 4636 mp->b_datap->db_type = M_PCPROTO; 4637 } else { 4638 mp->b_datap->db_type = M_PROTO; 4639 } 4640 4641 mp->b_wptr = mp->b_rptr + len; 4642 bzero(mp->b_rptr, len); 4643 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4644 return (mp); 4645 } 4646 4647 /* 4648 * Allocate and initialize a DLPI notification. (May be called as writer.) 4649 */ 4650 mblk_t * 4651 ip_dlnotify_alloc(uint_t notification, uint_t data) 4652 { 4653 dl_notify_ind_t *notifyp; 4654 mblk_t *mp; 4655 4656 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4657 return (NULL); 4658 4659 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4660 notifyp->dl_notification = notification; 4661 notifyp->dl_data = data; 4662 return (mp); 4663 } 4664 4665 /* 4666 * Debug formatting routine. Returns a character string representation of the 4667 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4668 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4669 * 4670 * Once the ndd table-printing interfaces are removed, this can be changed to 4671 * standard dotted-decimal form. 4672 */ 4673 char * 4674 ip_dot_addr(ipaddr_t addr, char *buf) 4675 { 4676 uint8_t *ap = (uint8_t *)&addr; 4677 4678 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4679 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4680 return (buf); 4681 } 4682 4683 /* 4684 * Write the given MAC address as a printable string in the usual colon- 4685 * separated format. 4686 */ 4687 const char * 4688 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4689 { 4690 char *bp; 4691 4692 if (alen == 0 || buflen < 4) 4693 return ("?"); 4694 bp = buf; 4695 for (;;) { 4696 /* 4697 * If there are more MAC address bytes available, but we won't 4698 * have any room to print them, then add "..." to the string 4699 * instead. See below for the 'magic number' explanation. 4700 */ 4701 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4702 (void) strcpy(bp, "..."); 4703 break; 4704 } 4705 (void) sprintf(bp, "%02x", *addr++); 4706 bp += 2; 4707 if (--alen == 0) 4708 break; 4709 *bp++ = ':'; 4710 buflen -= 3; 4711 /* 4712 * At this point, based on the first 'if' statement above, 4713 * either alen == 1 and buflen >= 3, or alen > 1 and 4714 * buflen >= 4. The first case leaves room for the final "xx" 4715 * number and trailing NUL byte. The second leaves room for at 4716 * least "...". Thus the apparently 'magic' numbers chosen for 4717 * that statement. 4718 */ 4719 } 4720 return (buf); 4721 } 4722 4723 /* 4724 * Called when it is conceptually a ULP that would sent the packet 4725 * e.g., port unreachable and protocol unreachable. Check that the packet 4726 * would have passed the IPsec global policy before sending the error. 4727 * 4728 * Send an ICMP error after patching up the packet appropriately. 4729 * Uses ip_drop_input and bumps the appropriate MIB. 4730 */ 4731 void 4732 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4733 ip_recv_attr_t *ira) 4734 { 4735 ipha_t *ipha; 4736 boolean_t secure; 4737 ill_t *ill = ira->ira_ill; 4738 ip_stack_t *ipst = ill->ill_ipst; 4739 netstack_t *ns = ipst->ips_netstack; 4740 ipsec_stack_t *ipss = ns->netstack_ipsec; 4741 4742 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4743 4744 /* 4745 * We are generating an icmp error for some inbound packet. 4746 * Called from all ip_fanout_(udp, tcp, proto) functions. 4747 * Before we generate an error, check with global policy 4748 * to see whether this is allowed to enter the system. As 4749 * there is no "conn", we are checking with global policy. 4750 */ 4751 ipha = (ipha_t *)mp->b_rptr; 4752 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4753 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4754 if (mp == NULL) 4755 return; 4756 } 4757 4758 /* We never send errors for protocols that we do implement */ 4759 if (ira->ira_protocol == IPPROTO_ICMP || 4760 ira->ira_protocol == IPPROTO_IGMP) { 4761 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4762 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4763 freemsg(mp); 4764 return; 4765 } 4766 /* 4767 * Have to correct checksum since 4768 * the packet might have been 4769 * fragmented and the reassembly code in ip_rput 4770 * does not restore the IP checksum. 4771 */ 4772 ipha->ipha_hdr_checksum = 0; 4773 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4774 4775 switch (icmp_type) { 4776 case ICMP_DEST_UNREACHABLE: 4777 switch (icmp_code) { 4778 case ICMP_PROTOCOL_UNREACHABLE: 4779 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4780 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4781 break; 4782 case ICMP_PORT_UNREACHABLE: 4783 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4784 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4785 break; 4786 } 4787 4788 icmp_unreachable(mp, icmp_code, ira); 4789 break; 4790 default: 4791 #ifdef DEBUG 4792 panic("ip_fanout_send_icmp_v4: wrong type"); 4793 /*NOTREACHED*/ 4794 #else 4795 freemsg(mp); 4796 break; 4797 #endif 4798 } 4799 } 4800 4801 /* 4802 * Used to send an ICMP error message when a packet is received for 4803 * a protocol that is not supported. The mblk passed as argument 4804 * is consumed by this function. 4805 */ 4806 void 4807 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4808 { 4809 ipha_t *ipha; 4810 4811 ipha = (ipha_t *)mp->b_rptr; 4812 if (ira->ira_flags & IRAF_IS_IPV4) { 4813 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4814 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4815 ICMP_PROTOCOL_UNREACHABLE, ira); 4816 } else { 4817 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4818 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4819 ICMP6_PARAMPROB_NEXTHEADER, ira); 4820 } 4821 } 4822 4823 /* 4824 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4825 * Handles IPv4 and IPv6. 4826 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4827 * Caller is responsible for dropping references to the conn. 4828 */ 4829 void 4830 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4831 ip_recv_attr_t *ira) 4832 { 4833 ill_t *ill = ira->ira_ill; 4834 ip_stack_t *ipst = ill->ill_ipst; 4835 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4836 boolean_t secure; 4837 uint_t protocol = ira->ira_protocol; 4838 iaflags_t iraflags = ira->ira_flags; 4839 queue_t *rq; 4840 4841 secure = iraflags & IRAF_IPSEC_SECURE; 4842 4843 rq = connp->conn_rq; 4844 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4845 switch (protocol) { 4846 case IPPROTO_ICMPV6: 4847 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4848 break; 4849 case IPPROTO_ICMP: 4850 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4851 break; 4852 default: 4853 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4854 break; 4855 } 4856 freemsg(mp); 4857 return; 4858 } 4859 4860 ASSERT(!(IPCL_IS_IPTUN(connp))); 4861 4862 if (((iraflags & IRAF_IS_IPV4) ? 4863 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4864 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4865 secure) { 4866 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4867 ip6h, ira); 4868 if (mp == NULL) { 4869 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4870 /* Note that mp is NULL */ 4871 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4872 return; 4873 } 4874 } 4875 4876 if (iraflags & IRAF_ICMP_ERROR) { 4877 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4878 } else { 4879 ill_t *rill = ira->ira_rill; 4880 4881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4882 ira->ira_ill = ira->ira_rill = NULL; 4883 /* Send it upstream */ 4884 (connp->conn_recv)(connp, mp, NULL, ira); 4885 ira->ira_ill = ill; 4886 ira->ira_rill = rill; 4887 } 4888 } 4889 4890 /* 4891 * Handle protocols with which IP is less intimate. There 4892 * can be more than one stream bound to a particular 4893 * protocol. When this is the case, normally each one gets a copy 4894 * of any incoming packets. 4895 * 4896 * IPsec NOTE : 4897 * 4898 * Don't allow a secure packet going up a non-secure connection. 4899 * We don't allow this because 4900 * 4901 * 1) Reply might go out in clear which will be dropped at 4902 * the sending side. 4903 * 2) If the reply goes out in clear it will give the 4904 * adversary enough information for getting the key in 4905 * most of the cases. 4906 * 4907 * Moreover getting a secure packet when we expect clear 4908 * implies that SA's were added without checking for 4909 * policy on both ends. This should not happen once ISAKMP 4910 * is used to negotiate SAs as SAs will be added only after 4911 * verifying the policy. 4912 * 4913 * Zones notes: 4914 * Earlier in ip_input on a system with multiple shared-IP zones we 4915 * duplicate the multicast and broadcast packets and send them up 4916 * with each explicit zoneid that exists on that ill. 4917 * This means that here we can match the zoneid with SO_ALLZONES being special. 4918 */ 4919 void 4920 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4921 { 4922 mblk_t *mp1; 4923 ipaddr_t laddr; 4924 conn_t *connp, *first_connp, *next_connp; 4925 connf_t *connfp; 4926 ill_t *ill = ira->ira_ill; 4927 ip_stack_t *ipst = ill->ill_ipst; 4928 4929 laddr = ipha->ipha_dst; 4930 4931 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 4932 mutex_enter(&connfp->connf_lock); 4933 connp = connfp->connf_head; 4934 for (connp = connfp->connf_head; connp != NULL; 4935 connp = connp->conn_next) { 4936 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4937 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4938 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4939 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 4940 break; 4941 } 4942 } 4943 4944 if (connp == NULL) { 4945 /* 4946 * No one bound to these addresses. Is 4947 * there a client that wants all 4948 * unclaimed datagrams? 4949 */ 4950 mutex_exit(&connfp->connf_lock); 4951 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4952 ICMP_PROTOCOL_UNREACHABLE, ira); 4953 return; 4954 } 4955 4956 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 4957 4958 CONN_INC_REF(connp); 4959 first_connp = connp; 4960 connp = connp->conn_next; 4961 4962 for (;;) { 4963 while (connp != NULL) { 4964 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4965 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4966 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4967 tsol_receive_local(mp, &laddr, IPV4_VERSION, 4968 ira, connp))) 4969 break; 4970 connp = connp->conn_next; 4971 } 4972 4973 if (connp == NULL) { 4974 /* No more interested clients */ 4975 connp = first_connp; 4976 break; 4977 } 4978 if (((mp1 = dupmsg(mp)) == NULL) && 4979 ((mp1 = copymsg(mp)) == NULL)) { 4980 /* Memory allocation failed */ 4981 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4982 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4983 connp = first_connp; 4984 break; 4985 } 4986 4987 CONN_INC_REF(connp); 4988 mutex_exit(&connfp->connf_lock); 4989 4990 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 4991 ira); 4992 4993 mutex_enter(&connfp->connf_lock); 4994 /* Follow the next pointer before releasing the conn. */ 4995 next_connp = connp->conn_next; 4996 CONN_DEC_REF(connp); 4997 connp = next_connp; 4998 } 4999 5000 /* Last one. Send it upstream. */ 5001 mutex_exit(&connfp->connf_lock); 5002 5003 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5004 5005 CONN_DEC_REF(connp); 5006 } 5007 5008 /* 5009 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5010 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5011 * is not consumed. 5012 * 5013 * One of three things can happen, all of which affect the passed-in mblk: 5014 * 5015 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5016 * 5017 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5018 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5019 * 5020 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5021 */ 5022 mblk_t * 5023 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5024 { 5025 int shift, plen, iph_len; 5026 ipha_t *ipha; 5027 udpha_t *udpha; 5028 uint32_t *spi; 5029 uint32_t esp_ports; 5030 uint8_t *orptr; 5031 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5032 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5033 5034 ipha = (ipha_t *)mp->b_rptr; 5035 iph_len = ira->ira_ip_hdr_length; 5036 plen = ira->ira_pktlen; 5037 5038 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5039 /* 5040 * Most likely a keepalive for the benefit of an intervening 5041 * NAT. These aren't for us, per se, so drop it. 5042 * 5043 * RFC 3947/8 doesn't say for sure what to do for 2-3 5044 * byte packets (keepalives are 1-byte), but we'll drop them 5045 * also. 5046 */ 5047 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5048 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5049 return (NULL); 5050 } 5051 5052 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5053 /* might as well pull it all up - it might be ESP. */ 5054 if (!pullupmsg(mp, -1)) { 5055 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5056 DROPPER(ipss, ipds_esp_nomem), 5057 &ipss->ipsec_dropper); 5058 return (NULL); 5059 } 5060 5061 ipha = (ipha_t *)mp->b_rptr; 5062 } 5063 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5064 if (*spi == 0) { 5065 /* UDP packet - remove 0-spi. */ 5066 shift = sizeof (uint32_t); 5067 } else { 5068 /* ESP-in-UDP packet - reduce to ESP. */ 5069 ipha->ipha_protocol = IPPROTO_ESP; 5070 shift = sizeof (udpha_t); 5071 } 5072 5073 /* Fix IP header */ 5074 ira->ira_pktlen = (plen - shift); 5075 ipha->ipha_length = htons(ira->ira_pktlen); 5076 ipha->ipha_hdr_checksum = 0; 5077 5078 orptr = mp->b_rptr; 5079 mp->b_rptr += shift; 5080 5081 udpha = (udpha_t *)(orptr + iph_len); 5082 if (*spi == 0) { 5083 ASSERT((uint8_t *)ipha == orptr); 5084 udpha->uha_length = htons(plen - shift - iph_len); 5085 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5086 esp_ports = 0; 5087 } else { 5088 esp_ports = *((uint32_t *)udpha); 5089 ASSERT(esp_ports != 0); 5090 } 5091 ovbcopy(orptr, orptr + shift, iph_len); 5092 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5093 ipha = (ipha_t *)(orptr + shift); 5094 5095 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5096 ira->ira_esp_udp_ports = esp_ports; 5097 ip_fanout_v4(mp, ipha, ira); 5098 return (NULL); 5099 } 5100 return (mp); 5101 } 5102 5103 /* 5104 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5105 * Handles IPv4 and IPv6. 5106 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5107 * Caller is responsible for dropping references to the conn. 5108 */ 5109 void 5110 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5111 ip_recv_attr_t *ira) 5112 { 5113 ill_t *ill = ira->ira_ill; 5114 ip_stack_t *ipst = ill->ill_ipst; 5115 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5116 boolean_t secure; 5117 iaflags_t iraflags = ira->ira_flags; 5118 5119 secure = iraflags & IRAF_IPSEC_SECURE; 5120 5121 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5122 !canputnext(connp->conn_rq)) { 5123 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5124 freemsg(mp); 5125 return; 5126 } 5127 5128 if (((iraflags & IRAF_IS_IPV4) ? 5129 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5130 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5131 secure) { 5132 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5133 ip6h, ira); 5134 if (mp == NULL) { 5135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5136 /* Note that mp is NULL */ 5137 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5138 return; 5139 } 5140 } 5141 5142 /* 5143 * Since this code is not used for UDP unicast we don't need a NAT_T 5144 * check. Only ip_fanout_v4 has that check. 5145 */ 5146 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5147 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5148 } else { 5149 ill_t *rill = ira->ira_rill; 5150 5151 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5152 ira->ira_ill = ira->ira_rill = NULL; 5153 /* Send it upstream */ 5154 (connp->conn_recv)(connp, mp, NULL, ira); 5155 ira->ira_ill = ill; 5156 ira->ira_rill = rill; 5157 } 5158 } 5159 5160 /* 5161 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5162 * (Unicast fanout is handled in ip_input_v4.) 5163 * 5164 * If SO_REUSEADDR is set all multicast and broadcast packets 5165 * will be delivered to all conns bound to the same port. 5166 * 5167 * If there is at least one matching AF_INET receiver, then we will 5168 * ignore any AF_INET6 receivers. 5169 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5170 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5171 * packets. 5172 * 5173 * Zones notes: 5174 * Earlier in ip_input on a system with multiple shared-IP zones we 5175 * duplicate the multicast and broadcast packets and send them up 5176 * with each explicit zoneid that exists on that ill. 5177 * This means that here we can match the zoneid with SO_ALLZONES being special. 5178 */ 5179 void 5180 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5181 ip_recv_attr_t *ira) 5182 { 5183 ipaddr_t laddr; 5184 in6_addr_t v6faddr; 5185 conn_t *connp; 5186 connf_t *connfp; 5187 ipaddr_t faddr; 5188 ill_t *ill = ira->ira_ill; 5189 ip_stack_t *ipst = ill->ill_ipst; 5190 5191 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5192 5193 laddr = ipha->ipha_dst; 5194 faddr = ipha->ipha_src; 5195 5196 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5197 mutex_enter(&connfp->connf_lock); 5198 connp = connfp->connf_head; 5199 5200 /* 5201 * If SO_REUSEADDR has been set on the first we send the 5202 * packet to all clients that have joined the group and 5203 * match the port. 5204 */ 5205 while (connp != NULL) { 5206 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5207 conn_wantpacket(connp, ira, ipha) && 5208 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5209 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5210 break; 5211 connp = connp->conn_next; 5212 } 5213 5214 if (connp == NULL) 5215 goto notfound; 5216 5217 CONN_INC_REF(connp); 5218 5219 if (connp->conn_reuseaddr) { 5220 conn_t *first_connp = connp; 5221 conn_t *next_connp; 5222 mblk_t *mp1; 5223 5224 connp = connp->conn_next; 5225 for (;;) { 5226 while (connp != NULL) { 5227 if (IPCL_UDP_MATCH(connp, lport, laddr, 5228 fport, faddr) && 5229 conn_wantpacket(connp, ira, ipha) && 5230 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5231 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5232 ira, connp))) 5233 break; 5234 connp = connp->conn_next; 5235 } 5236 if (connp == NULL) { 5237 /* No more interested clients */ 5238 connp = first_connp; 5239 break; 5240 } 5241 if (((mp1 = dupmsg(mp)) == NULL) && 5242 ((mp1 = copymsg(mp)) == NULL)) { 5243 /* Memory allocation failed */ 5244 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5245 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5246 connp = first_connp; 5247 break; 5248 } 5249 CONN_INC_REF(connp); 5250 mutex_exit(&connfp->connf_lock); 5251 5252 IP_STAT(ipst, ip_udp_fanmb); 5253 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5254 NULL, ira); 5255 mutex_enter(&connfp->connf_lock); 5256 /* Follow the next pointer before releasing the conn */ 5257 next_connp = connp->conn_next; 5258 CONN_DEC_REF(connp); 5259 connp = next_connp; 5260 } 5261 } 5262 5263 /* Last one. Send it upstream. */ 5264 mutex_exit(&connfp->connf_lock); 5265 IP_STAT(ipst, ip_udp_fanmb); 5266 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5267 CONN_DEC_REF(connp); 5268 return; 5269 5270 notfound: 5271 mutex_exit(&connfp->connf_lock); 5272 /* 5273 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5274 * have already been matched above, since they live in the IPv4 5275 * fanout tables. This implies we only need to 5276 * check for IPv6 in6addr_any endpoints here. 5277 * Thus we compare using ipv6_all_zeros instead of the destination 5278 * address, except for the multicast group membership lookup which 5279 * uses the IPv4 destination. 5280 */ 5281 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5282 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5283 mutex_enter(&connfp->connf_lock); 5284 connp = connfp->connf_head; 5285 /* 5286 * IPv4 multicast packet being delivered to an AF_INET6 5287 * in6addr_any endpoint. 5288 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5289 * and not conn_wantpacket_v6() since any multicast membership is 5290 * for an IPv4-mapped multicast address. 5291 */ 5292 while (connp != NULL) { 5293 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5294 fport, v6faddr) && 5295 conn_wantpacket(connp, ira, ipha) && 5296 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5297 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5298 break; 5299 connp = connp->conn_next; 5300 } 5301 5302 if (connp == NULL) { 5303 /* 5304 * No one bound to this port. Is 5305 * there a client that wants all 5306 * unclaimed datagrams? 5307 */ 5308 mutex_exit(&connfp->connf_lock); 5309 5310 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5311 NULL) { 5312 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5313 ip_fanout_proto_v4(mp, ipha, ira); 5314 } else { 5315 /* 5316 * We used to attempt to send an icmp error here, but 5317 * since this is known to be a multicast packet 5318 * and we don't send icmp errors in response to 5319 * multicast, just drop the packet and give up sooner. 5320 */ 5321 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5322 freemsg(mp); 5323 } 5324 return; 5325 } 5326 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5327 5328 /* 5329 * If SO_REUSEADDR has been set on the first we send the 5330 * packet to all clients that have joined the group and 5331 * match the port. 5332 */ 5333 if (connp->conn_reuseaddr) { 5334 conn_t *first_connp = connp; 5335 conn_t *next_connp; 5336 mblk_t *mp1; 5337 5338 CONN_INC_REF(connp); 5339 connp = connp->conn_next; 5340 for (;;) { 5341 while (connp != NULL) { 5342 if (IPCL_UDP_MATCH_V6(connp, lport, 5343 ipv6_all_zeros, fport, v6faddr) && 5344 conn_wantpacket(connp, ira, ipha) && 5345 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5346 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5347 ira, connp))) 5348 break; 5349 connp = connp->conn_next; 5350 } 5351 if (connp == NULL) { 5352 /* No more interested clients */ 5353 connp = first_connp; 5354 break; 5355 } 5356 if (((mp1 = dupmsg(mp)) == NULL) && 5357 ((mp1 = copymsg(mp)) == NULL)) { 5358 /* Memory allocation failed */ 5359 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5360 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5361 connp = first_connp; 5362 break; 5363 } 5364 CONN_INC_REF(connp); 5365 mutex_exit(&connfp->connf_lock); 5366 5367 IP_STAT(ipst, ip_udp_fanmb); 5368 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5369 NULL, ira); 5370 mutex_enter(&connfp->connf_lock); 5371 /* Follow the next pointer before releasing the conn */ 5372 next_connp = connp->conn_next; 5373 CONN_DEC_REF(connp); 5374 connp = next_connp; 5375 } 5376 } 5377 5378 /* Last one. Send it upstream. */ 5379 mutex_exit(&connfp->connf_lock); 5380 IP_STAT(ipst, ip_udp_fanmb); 5381 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5382 CONN_DEC_REF(connp); 5383 } 5384 5385 /* 5386 * Split an incoming packet's IPv4 options into the label and the other options. 5387 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5388 * clearing out any leftover label or options. 5389 * Otherwise it just makes ipp point into the packet. 5390 * 5391 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5392 */ 5393 int 5394 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5395 { 5396 uchar_t *opt; 5397 uint32_t totallen; 5398 uint32_t optval; 5399 uint32_t optlen; 5400 5401 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5402 ipp->ipp_hoplimit = ipha->ipha_ttl; 5403 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5404 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5405 5406 /* 5407 * Get length (in 4 byte octets) of IP header options. 5408 */ 5409 totallen = ipha->ipha_version_and_hdr_length - 5410 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5411 5412 if (totallen == 0) { 5413 if (!allocate) 5414 return (0); 5415 5416 /* Clear out anything from a previous packet */ 5417 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5418 kmem_free(ipp->ipp_ipv4_options, 5419 ipp->ipp_ipv4_options_len); 5420 ipp->ipp_ipv4_options = NULL; 5421 ipp->ipp_ipv4_options_len = 0; 5422 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5423 } 5424 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5425 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5426 ipp->ipp_label_v4 = NULL; 5427 ipp->ipp_label_len_v4 = 0; 5428 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5429 } 5430 return (0); 5431 } 5432 5433 totallen <<= 2; 5434 opt = (uchar_t *)&ipha[1]; 5435 if (!is_system_labeled()) { 5436 5437 copyall: 5438 if (!allocate) { 5439 if (totallen != 0) { 5440 ipp->ipp_ipv4_options = opt; 5441 ipp->ipp_ipv4_options_len = totallen; 5442 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5443 } 5444 return (0); 5445 } 5446 /* Just copy all of options */ 5447 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5448 if (totallen == ipp->ipp_ipv4_options_len) { 5449 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5450 return (0); 5451 } 5452 kmem_free(ipp->ipp_ipv4_options, 5453 ipp->ipp_ipv4_options_len); 5454 ipp->ipp_ipv4_options = NULL; 5455 ipp->ipp_ipv4_options_len = 0; 5456 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5457 } 5458 if (totallen == 0) 5459 return (0); 5460 5461 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5462 if (ipp->ipp_ipv4_options == NULL) 5463 return (ENOMEM); 5464 ipp->ipp_ipv4_options_len = totallen; 5465 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5466 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5467 return (0); 5468 } 5469 5470 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5471 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5472 ipp->ipp_label_v4 = NULL; 5473 ipp->ipp_label_len_v4 = 0; 5474 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5475 } 5476 5477 /* 5478 * Search for CIPSO option. 5479 * We assume CIPSO is first in options if it is present. 5480 * If it isn't, then ipp_opt_ipv4_options will not include the options 5481 * prior to the CIPSO option. 5482 */ 5483 while (totallen != 0) { 5484 switch (optval = opt[IPOPT_OPTVAL]) { 5485 case IPOPT_EOL: 5486 return (0); 5487 case IPOPT_NOP: 5488 optlen = 1; 5489 break; 5490 default: 5491 if (totallen <= IPOPT_OLEN) 5492 return (EINVAL); 5493 optlen = opt[IPOPT_OLEN]; 5494 if (optlen < 2) 5495 return (EINVAL); 5496 } 5497 if (optlen > totallen) 5498 return (EINVAL); 5499 5500 switch (optval) { 5501 case IPOPT_COMSEC: 5502 if (!allocate) { 5503 ipp->ipp_label_v4 = opt; 5504 ipp->ipp_label_len_v4 = optlen; 5505 ipp->ipp_fields |= IPPF_LABEL_V4; 5506 } else { 5507 ipp->ipp_label_v4 = kmem_alloc(optlen, 5508 KM_NOSLEEP); 5509 if (ipp->ipp_label_v4 == NULL) 5510 return (ENOMEM); 5511 ipp->ipp_label_len_v4 = optlen; 5512 ipp->ipp_fields |= IPPF_LABEL_V4; 5513 bcopy(opt, ipp->ipp_label_v4, optlen); 5514 } 5515 totallen -= optlen; 5516 opt += optlen; 5517 5518 /* Skip padding bytes until we get to a multiple of 4 */ 5519 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5520 totallen--; 5521 opt++; 5522 } 5523 /* Remaining as ipp_ipv4_options */ 5524 goto copyall; 5525 } 5526 totallen -= optlen; 5527 opt += optlen; 5528 } 5529 /* No CIPSO found; return everything as ipp_ipv4_options */ 5530 totallen = ipha->ipha_version_and_hdr_length - 5531 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5532 totallen <<= 2; 5533 opt = (uchar_t *)&ipha[1]; 5534 goto copyall; 5535 } 5536 5537 /* 5538 * Efficient versions of lookup for an IRE when we only 5539 * match the address. 5540 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5541 * Does not handle multicast addresses. 5542 */ 5543 uint_t 5544 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5545 { 5546 ire_t *ire; 5547 uint_t result; 5548 5549 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5550 ASSERT(ire != NULL); 5551 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5552 result = IRE_NOROUTE; 5553 else 5554 result = ire->ire_type; 5555 ire_refrele(ire); 5556 return (result); 5557 } 5558 5559 /* 5560 * Efficient versions of lookup for an IRE when we only 5561 * match the address. 5562 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5563 * Does not handle multicast addresses. 5564 */ 5565 uint_t 5566 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5567 { 5568 ire_t *ire; 5569 uint_t result; 5570 5571 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5572 ASSERT(ire != NULL); 5573 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5574 result = IRE_NOROUTE; 5575 else 5576 result = ire->ire_type; 5577 ire_refrele(ire); 5578 return (result); 5579 } 5580 5581 /* 5582 * Nobody should be sending 5583 * packets up this stream 5584 */ 5585 static void 5586 ip_lrput(queue_t *q, mblk_t *mp) 5587 { 5588 switch (mp->b_datap->db_type) { 5589 case M_FLUSH: 5590 /* Turn around */ 5591 if (*mp->b_rptr & FLUSHW) { 5592 *mp->b_rptr &= ~FLUSHR; 5593 qreply(q, mp); 5594 return; 5595 } 5596 break; 5597 } 5598 freemsg(mp); 5599 } 5600 5601 /* Nobody should be sending packets down this stream */ 5602 /* ARGSUSED */ 5603 void 5604 ip_lwput(queue_t *q, mblk_t *mp) 5605 { 5606 freemsg(mp); 5607 } 5608 5609 /* 5610 * Move the first hop in any source route to ipha_dst and remove that part of 5611 * the source route. Called by other protocols. Errors in option formatting 5612 * are ignored - will be handled by ip_output_options. Return the final 5613 * destination (either ipha_dst or the last entry in a source route.) 5614 */ 5615 ipaddr_t 5616 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5617 { 5618 ipoptp_t opts; 5619 uchar_t *opt; 5620 uint8_t optval; 5621 uint8_t optlen; 5622 ipaddr_t dst; 5623 int i; 5624 ip_stack_t *ipst = ns->netstack_ip; 5625 5626 ip2dbg(("ip_massage_options\n")); 5627 dst = ipha->ipha_dst; 5628 for (optval = ipoptp_first(&opts, ipha); 5629 optval != IPOPT_EOL; 5630 optval = ipoptp_next(&opts)) { 5631 opt = opts.ipoptp_cur; 5632 switch (optval) { 5633 uint8_t off; 5634 case IPOPT_SSRR: 5635 case IPOPT_LSRR: 5636 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5637 ip1dbg(("ip_massage_options: bad src route\n")); 5638 break; 5639 } 5640 optlen = opts.ipoptp_len; 5641 off = opt[IPOPT_OFFSET]; 5642 off--; 5643 redo_srr: 5644 if (optlen < IP_ADDR_LEN || 5645 off > optlen - IP_ADDR_LEN) { 5646 /* End of source route */ 5647 ip1dbg(("ip_massage_options: end of SR\n")); 5648 break; 5649 } 5650 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5651 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5652 ntohl(dst))); 5653 /* 5654 * Check if our address is present more than 5655 * once as consecutive hops in source route. 5656 * XXX verify per-interface ip_forwarding 5657 * for source route? 5658 */ 5659 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5660 off += IP_ADDR_LEN; 5661 goto redo_srr; 5662 } 5663 if (dst == htonl(INADDR_LOOPBACK)) { 5664 ip1dbg(("ip_massage_options: loopback addr in " 5665 "source route!\n")); 5666 break; 5667 } 5668 /* 5669 * Update ipha_dst to be the first hop and remove the 5670 * first hop from the source route (by overwriting 5671 * part of the option with NOP options). 5672 */ 5673 ipha->ipha_dst = dst; 5674 /* Put the last entry in dst */ 5675 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5676 3; 5677 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5678 5679 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5680 ntohl(dst))); 5681 /* Move down and overwrite */ 5682 opt[IP_ADDR_LEN] = opt[0]; 5683 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5684 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5685 for (i = 0; i < IP_ADDR_LEN; i++) 5686 opt[i] = IPOPT_NOP; 5687 break; 5688 } 5689 } 5690 return (dst); 5691 } 5692 5693 /* 5694 * Return the network mask 5695 * associated with the specified address. 5696 */ 5697 ipaddr_t 5698 ip_net_mask(ipaddr_t addr) 5699 { 5700 uchar_t *up = (uchar_t *)&addr; 5701 ipaddr_t mask = 0; 5702 uchar_t *maskp = (uchar_t *)&mask; 5703 5704 #if defined(__i386) || defined(__amd64) 5705 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5706 #endif 5707 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5708 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5709 #endif 5710 if (CLASSD(addr)) { 5711 maskp[0] = 0xF0; 5712 return (mask); 5713 } 5714 5715 /* We assume Class E default netmask to be 32 */ 5716 if (CLASSE(addr)) 5717 return (0xffffffffU); 5718 5719 if (addr == 0) 5720 return (0); 5721 maskp[0] = 0xFF; 5722 if ((up[0] & 0x80) == 0) 5723 return (mask); 5724 5725 maskp[1] = 0xFF; 5726 if ((up[0] & 0xC0) == 0x80) 5727 return (mask); 5728 5729 maskp[2] = 0xFF; 5730 if ((up[0] & 0xE0) == 0xC0) 5731 return (mask); 5732 5733 /* Otherwise return no mask */ 5734 return ((ipaddr_t)0); 5735 } 5736 5737 /* Name/Value Table Lookup Routine */ 5738 char * 5739 ip_nv_lookup(nv_t *nv, int value) 5740 { 5741 if (!nv) 5742 return (NULL); 5743 for (; nv->nv_name; nv++) { 5744 if (nv->nv_value == value) 5745 return (nv->nv_name); 5746 } 5747 return ("unknown"); 5748 } 5749 5750 static int 5751 ip_wait_for_info_ack(ill_t *ill) 5752 { 5753 int err; 5754 5755 mutex_enter(&ill->ill_lock); 5756 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5757 /* 5758 * Return value of 0 indicates a pending signal. 5759 */ 5760 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5761 if (err == 0) { 5762 mutex_exit(&ill->ill_lock); 5763 return (EINTR); 5764 } 5765 } 5766 mutex_exit(&ill->ill_lock); 5767 /* 5768 * ip_rput_other could have set an error in ill_error on 5769 * receipt of M_ERROR. 5770 */ 5771 return (ill->ill_error); 5772 } 5773 5774 /* 5775 * This is a module open, i.e. this is a control stream for access 5776 * to a DLPI device. We allocate an ill_t as the instance data in 5777 * this case. 5778 */ 5779 static int 5780 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5781 { 5782 ill_t *ill; 5783 int err; 5784 zoneid_t zoneid; 5785 netstack_t *ns; 5786 ip_stack_t *ipst; 5787 5788 /* 5789 * Prevent unprivileged processes from pushing IP so that 5790 * they can't send raw IP. 5791 */ 5792 if (secpolicy_net_rawaccess(credp) != 0) 5793 return (EPERM); 5794 5795 ns = netstack_find_by_cred(credp); 5796 ASSERT(ns != NULL); 5797 ipst = ns->netstack_ip; 5798 ASSERT(ipst != NULL); 5799 5800 /* 5801 * For exclusive stacks we set the zoneid to zero 5802 * to make IP operate as if in the global zone. 5803 */ 5804 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5805 zoneid = GLOBAL_ZONEID; 5806 else 5807 zoneid = crgetzoneid(credp); 5808 5809 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5810 q->q_ptr = WR(q)->q_ptr = ill; 5811 ill->ill_ipst = ipst; 5812 ill->ill_zoneid = zoneid; 5813 5814 /* 5815 * ill_init initializes the ill fields and then sends down 5816 * down a DL_INFO_REQ after calling qprocson. 5817 */ 5818 err = ill_init(q, ill); 5819 5820 if (err != 0) { 5821 mi_free(ill); 5822 netstack_rele(ipst->ips_netstack); 5823 q->q_ptr = NULL; 5824 WR(q)->q_ptr = NULL; 5825 return (err); 5826 } 5827 5828 /* 5829 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5830 * 5831 * ill_init initializes the ipsq marking this thread as 5832 * writer 5833 */ 5834 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5835 err = ip_wait_for_info_ack(ill); 5836 if (err == 0) 5837 ill->ill_credp = credp; 5838 else 5839 goto fail; 5840 5841 crhold(credp); 5842 5843 mutex_enter(&ipst->ips_ip_mi_lock); 5844 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5845 sflag, credp); 5846 mutex_exit(&ipst->ips_ip_mi_lock); 5847 fail: 5848 if (err) { 5849 (void) ip_close(q, 0); 5850 return (err); 5851 } 5852 return (0); 5853 } 5854 5855 /* For /dev/ip aka AF_INET open */ 5856 int 5857 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5858 { 5859 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5860 } 5861 5862 /* For /dev/ip6 aka AF_INET6 open */ 5863 int 5864 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5865 { 5866 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5867 } 5868 5869 /* IP open routine. */ 5870 int 5871 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5872 boolean_t isv6) 5873 { 5874 conn_t *connp; 5875 major_t maj; 5876 zoneid_t zoneid; 5877 netstack_t *ns; 5878 ip_stack_t *ipst; 5879 5880 /* Allow reopen. */ 5881 if (q->q_ptr != NULL) 5882 return (0); 5883 5884 if (sflag & MODOPEN) { 5885 /* This is a module open */ 5886 return (ip_modopen(q, devp, flag, sflag, credp)); 5887 } 5888 5889 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5890 /* 5891 * Non streams based socket looking for a stream 5892 * to access IP 5893 */ 5894 return (ip_helper_stream_setup(q, devp, flag, sflag, 5895 credp, isv6)); 5896 } 5897 5898 ns = netstack_find_by_cred(credp); 5899 ASSERT(ns != NULL); 5900 ipst = ns->netstack_ip; 5901 ASSERT(ipst != NULL); 5902 5903 /* 5904 * For exclusive stacks we set the zoneid to zero 5905 * to make IP operate as if in the global zone. 5906 */ 5907 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5908 zoneid = GLOBAL_ZONEID; 5909 else 5910 zoneid = crgetzoneid(credp); 5911 5912 /* 5913 * We are opening as a device. This is an IP client stream, and we 5914 * allocate an conn_t as the instance data. 5915 */ 5916 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5917 5918 /* 5919 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5920 * done by netstack_find_by_cred() 5921 */ 5922 netstack_rele(ipst->ips_netstack); 5923 5924 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5925 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5926 connp->conn_ixa->ixa_zoneid = zoneid; 5927 connp->conn_zoneid = zoneid; 5928 5929 connp->conn_rq = q; 5930 q->q_ptr = WR(q)->q_ptr = connp; 5931 5932 /* Minor tells us which /dev entry was opened */ 5933 if (isv6) { 5934 connp->conn_family = AF_INET6; 5935 connp->conn_ipversion = IPV6_VERSION; 5936 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 5937 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 5938 } else { 5939 connp->conn_family = AF_INET; 5940 connp->conn_ipversion = IPV4_VERSION; 5941 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 5942 } 5943 5944 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 5945 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 5946 connp->conn_minor_arena = ip_minor_arena_la; 5947 } else { 5948 /* 5949 * Either minor numbers in the large arena were exhausted 5950 * or a non socket application is doing the open. 5951 * Try to allocate from the small arena. 5952 */ 5953 if ((connp->conn_dev = 5954 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 5955 /* CONN_DEC_REF takes care of netstack_rele() */ 5956 q->q_ptr = WR(q)->q_ptr = NULL; 5957 CONN_DEC_REF(connp); 5958 return (EBUSY); 5959 } 5960 connp->conn_minor_arena = ip_minor_arena_sa; 5961 } 5962 5963 maj = getemajor(*devp); 5964 *devp = makedevice(maj, (minor_t)connp->conn_dev); 5965 5966 /* 5967 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 5968 */ 5969 connp->conn_cred = credp; 5970 connp->conn_cpid = curproc->p_pid; 5971 /* Cache things in ixa without an extra refhold */ 5972 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 5973 connp->conn_ixa->ixa_cred = connp->conn_cred; 5974 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 5975 if (is_system_labeled()) 5976 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 5977 5978 /* 5979 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 5980 */ 5981 connp->conn_recv = ip_conn_input; 5982 connp->conn_recvicmp = ip_conn_input_icmp; 5983 5984 crhold(connp->conn_cred); 5985 5986 /* 5987 * If the caller has the process-wide flag set, then default to MAC 5988 * exempt mode. This allows read-down to unlabeled hosts. 5989 */ 5990 if (getpflags(NET_MAC_AWARE, credp) != 0) 5991 connp->conn_mac_mode = CONN_MAC_AWARE; 5992 5993 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 5994 5995 connp->conn_rq = q; 5996 connp->conn_wq = WR(q); 5997 5998 /* Non-zero default values */ 5999 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6000 6001 /* 6002 * Make the conn globally visible to walkers 6003 */ 6004 ASSERT(connp->conn_ref == 1); 6005 mutex_enter(&connp->conn_lock); 6006 connp->conn_state_flags &= ~CONN_INCIPIENT; 6007 mutex_exit(&connp->conn_lock); 6008 6009 qprocson(q); 6010 6011 return (0); 6012 } 6013 6014 /* 6015 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6016 * all of them are copied to the conn_t. If the req is "zero", the policy is 6017 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6018 * fields. 6019 * We keep only the latest setting of the policy and thus policy setting 6020 * is not incremental/cumulative. 6021 * 6022 * Requests to set policies with multiple alternative actions will 6023 * go through a different API. 6024 */ 6025 int 6026 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6027 { 6028 uint_t ah_req = 0; 6029 uint_t esp_req = 0; 6030 uint_t se_req = 0; 6031 ipsec_act_t *actp = NULL; 6032 uint_t nact; 6033 ipsec_policy_head_t *ph; 6034 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6035 int error = 0; 6036 netstack_t *ns = connp->conn_netstack; 6037 ip_stack_t *ipst = ns->netstack_ip; 6038 ipsec_stack_t *ipss = ns->netstack_ipsec; 6039 6040 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6041 6042 /* 6043 * The IP_SEC_OPT option does not allow variable length parameters, 6044 * hence a request cannot be NULL. 6045 */ 6046 if (req == NULL) 6047 return (EINVAL); 6048 6049 ah_req = req->ipsr_ah_req; 6050 esp_req = req->ipsr_esp_req; 6051 se_req = req->ipsr_self_encap_req; 6052 6053 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6054 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6055 return (EINVAL); 6056 6057 /* 6058 * Are we dealing with a request to reset the policy (i.e. 6059 * zero requests). 6060 */ 6061 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6062 (esp_req & REQ_MASK) == 0 && 6063 (se_req & REQ_MASK) == 0); 6064 6065 if (!is_pol_reset) { 6066 /* 6067 * If we couldn't load IPsec, fail with "protocol 6068 * not supported". 6069 * IPsec may not have been loaded for a request with zero 6070 * policies, so we don't fail in this case. 6071 */ 6072 mutex_enter(&ipss->ipsec_loader_lock); 6073 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6074 mutex_exit(&ipss->ipsec_loader_lock); 6075 return (EPROTONOSUPPORT); 6076 } 6077 mutex_exit(&ipss->ipsec_loader_lock); 6078 6079 /* 6080 * Test for valid requests. Invalid algorithms 6081 * need to be tested by IPsec code because new 6082 * algorithms can be added dynamically. 6083 */ 6084 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6085 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6086 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6087 return (EINVAL); 6088 } 6089 6090 /* 6091 * Only privileged users can issue these 6092 * requests. 6093 */ 6094 if (((ah_req & IPSEC_PREF_NEVER) || 6095 (esp_req & IPSEC_PREF_NEVER) || 6096 (se_req & IPSEC_PREF_NEVER)) && 6097 secpolicy_ip_config(cr, B_FALSE) != 0) { 6098 return (EPERM); 6099 } 6100 6101 /* 6102 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6103 * are mutually exclusive. 6104 */ 6105 if (((ah_req & REQ_MASK) == REQ_MASK) || 6106 ((esp_req & REQ_MASK) == REQ_MASK) || 6107 ((se_req & REQ_MASK) == REQ_MASK)) { 6108 /* Both of them are set */ 6109 return (EINVAL); 6110 } 6111 } 6112 6113 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6114 6115 /* 6116 * If we have already cached policies in conn_connect(), don't 6117 * let them change now. We cache policies for connections 6118 * whose src,dst [addr, port] is known. 6119 */ 6120 if (connp->conn_policy_cached) { 6121 return (EINVAL); 6122 } 6123 6124 /* 6125 * We have a zero policies, reset the connection policy if already 6126 * set. This will cause the connection to inherit the 6127 * global policy, if any. 6128 */ 6129 if (is_pol_reset) { 6130 if (connp->conn_policy != NULL) { 6131 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6132 connp->conn_policy = NULL; 6133 } 6134 connp->conn_in_enforce_policy = B_FALSE; 6135 connp->conn_out_enforce_policy = B_FALSE; 6136 return (0); 6137 } 6138 6139 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6140 ipst->ips_netstack); 6141 if (ph == NULL) 6142 goto enomem; 6143 6144 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6145 if (actp == NULL) 6146 goto enomem; 6147 6148 /* 6149 * Always insert IPv4 policy entries, since they can also apply to 6150 * ipv6 sockets being used in ipv4-compat mode. 6151 */ 6152 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6153 IPSEC_TYPE_INBOUND, ns)) 6154 goto enomem; 6155 is_pol_inserted = B_TRUE; 6156 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6157 IPSEC_TYPE_OUTBOUND, ns)) 6158 goto enomem; 6159 6160 /* 6161 * We're looking at a v6 socket, also insert the v6-specific 6162 * entries. 6163 */ 6164 if (connp->conn_family == AF_INET6) { 6165 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6166 IPSEC_TYPE_INBOUND, ns)) 6167 goto enomem; 6168 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6169 IPSEC_TYPE_OUTBOUND, ns)) 6170 goto enomem; 6171 } 6172 6173 ipsec_actvec_free(actp, nact); 6174 6175 /* 6176 * If the requests need security, set enforce_policy. 6177 * If the requests are IPSEC_PREF_NEVER, one should 6178 * still set conn_out_enforce_policy so that ip_set_destination 6179 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6180 * for connections that we don't cache policy in at connect time, 6181 * if global policy matches in ip_output_attach_policy, we 6182 * don't wrongly inherit global policy. Similarly, we need 6183 * to set conn_in_enforce_policy also so that we don't verify 6184 * policy wrongly. 6185 */ 6186 if ((ah_req & REQ_MASK) != 0 || 6187 (esp_req & REQ_MASK) != 0 || 6188 (se_req & REQ_MASK) != 0) { 6189 connp->conn_in_enforce_policy = B_TRUE; 6190 connp->conn_out_enforce_policy = B_TRUE; 6191 } 6192 6193 return (error); 6194 #undef REQ_MASK 6195 6196 /* 6197 * Common memory-allocation-failure exit path. 6198 */ 6199 enomem: 6200 if (actp != NULL) 6201 ipsec_actvec_free(actp, nact); 6202 if (is_pol_inserted) 6203 ipsec_polhead_flush(ph, ns); 6204 return (ENOMEM); 6205 } 6206 6207 /* 6208 * Set socket options for joining and leaving multicast groups. 6209 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6210 * The caller has already check that the option name is consistent with 6211 * the address family of the socket. 6212 */ 6213 int 6214 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6215 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6216 { 6217 int *i1 = (int *)invalp; 6218 int error = 0; 6219 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6220 struct ip_mreq *v4_mreqp; 6221 struct ipv6_mreq *v6_mreqp; 6222 struct group_req *greqp; 6223 ire_t *ire; 6224 boolean_t done = B_FALSE; 6225 ipaddr_t ifaddr; 6226 in6_addr_t v6group; 6227 uint_t ifindex; 6228 boolean_t mcast_opt = B_TRUE; 6229 mcast_record_t fmode; 6230 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6231 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6232 6233 switch (name) { 6234 case IP_ADD_MEMBERSHIP: 6235 case IPV6_JOIN_GROUP: 6236 mcast_opt = B_FALSE; 6237 /* FALLTHRU */ 6238 case MCAST_JOIN_GROUP: 6239 fmode = MODE_IS_EXCLUDE; 6240 optfn = ip_opt_add_group; 6241 break; 6242 6243 case IP_DROP_MEMBERSHIP: 6244 case IPV6_LEAVE_GROUP: 6245 mcast_opt = B_FALSE; 6246 /* FALLTHRU */ 6247 case MCAST_LEAVE_GROUP: 6248 fmode = MODE_IS_INCLUDE; 6249 optfn = ip_opt_delete_group; 6250 break; 6251 default: 6252 ASSERT(0); 6253 } 6254 6255 if (mcast_opt) { 6256 struct sockaddr_in *sin; 6257 struct sockaddr_in6 *sin6; 6258 6259 greqp = (struct group_req *)i1; 6260 if (greqp->gr_group.ss_family == AF_INET) { 6261 sin = (struct sockaddr_in *)&(greqp->gr_group); 6262 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6263 } else { 6264 if (!inet6) 6265 return (EINVAL); /* Not on INET socket */ 6266 6267 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6268 v6group = sin6->sin6_addr; 6269 } 6270 ifaddr = INADDR_ANY; 6271 ifindex = greqp->gr_interface; 6272 } else if (inet6) { 6273 v6_mreqp = (struct ipv6_mreq *)i1; 6274 v6group = v6_mreqp->ipv6mr_multiaddr; 6275 ifaddr = INADDR_ANY; 6276 ifindex = v6_mreqp->ipv6mr_interface; 6277 } else { 6278 v4_mreqp = (struct ip_mreq *)i1; 6279 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6280 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6281 ifindex = 0; 6282 } 6283 6284 /* 6285 * In the multirouting case, we need to replicate 6286 * the request on all interfaces that will take part 6287 * in replication. We do so because multirouting is 6288 * reflective, thus we will probably receive multi- 6289 * casts on those interfaces. 6290 * The ip_multirt_apply_membership() succeeds if 6291 * the operation succeeds on at least one interface. 6292 */ 6293 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6294 ipaddr_t group; 6295 6296 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6297 6298 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6299 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6300 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6301 } else { 6302 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6303 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6304 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6305 } 6306 if (ire != NULL) { 6307 if (ire->ire_flags & RTF_MULTIRT) { 6308 error = ip_multirt_apply_membership(optfn, ire, connp, 6309 checkonly, &v6group, fmode, &ipv6_all_zeros); 6310 done = B_TRUE; 6311 } 6312 ire_refrele(ire); 6313 } 6314 6315 if (!done) { 6316 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6317 fmode, &ipv6_all_zeros); 6318 } 6319 return (error); 6320 } 6321 6322 /* 6323 * Set socket options for joining and leaving multicast groups 6324 * for specific sources. 6325 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6326 * The caller has already check that the option name is consistent with 6327 * the address family of the socket. 6328 */ 6329 int 6330 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6331 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6332 { 6333 int *i1 = (int *)invalp; 6334 int error = 0; 6335 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6336 struct ip_mreq_source *imreqp; 6337 struct group_source_req *gsreqp; 6338 in6_addr_t v6group, v6src; 6339 uint32_t ifindex; 6340 ipaddr_t ifaddr; 6341 boolean_t mcast_opt = B_TRUE; 6342 mcast_record_t fmode; 6343 ire_t *ire; 6344 boolean_t done = B_FALSE; 6345 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6346 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6347 6348 switch (name) { 6349 case IP_BLOCK_SOURCE: 6350 mcast_opt = B_FALSE; 6351 /* FALLTHRU */ 6352 case MCAST_BLOCK_SOURCE: 6353 fmode = MODE_IS_EXCLUDE; 6354 optfn = ip_opt_add_group; 6355 break; 6356 6357 case IP_UNBLOCK_SOURCE: 6358 mcast_opt = B_FALSE; 6359 /* FALLTHRU */ 6360 case MCAST_UNBLOCK_SOURCE: 6361 fmode = MODE_IS_EXCLUDE; 6362 optfn = ip_opt_delete_group; 6363 break; 6364 6365 case IP_ADD_SOURCE_MEMBERSHIP: 6366 mcast_opt = B_FALSE; 6367 /* FALLTHRU */ 6368 case MCAST_JOIN_SOURCE_GROUP: 6369 fmode = MODE_IS_INCLUDE; 6370 optfn = ip_opt_add_group; 6371 break; 6372 6373 case IP_DROP_SOURCE_MEMBERSHIP: 6374 mcast_opt = B_FALSE; 6375 /* FALLTHRU */ 6376 case MCAST_LEAVE_SOURCE_GROUP: 6377 fmode = MODE_IS_INCLUDE; 6378 optfn = ip_opt_delete_group; 6379 break; 6380 default: 6381 ASSERT(0); 6382 } 6383 6384 if (mcast_opt) { 6385 gsreqp = (struct group_source_req *)i1; 6386 ifindex = gsreqp->gsr_interface; 6387 if (gsreqp->gsr_group.ss_family == AF_INET) { 6388 struct sockaddr_in *s; 6389 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6390 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6391 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6392 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6393 } else { 6394 struct sockaddr_in6 *s6; 6395 6396 if (!inet6) 6397 return (EINVAL); /* Not on INET socket */ 6398 6399 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6400 v6group = s6->sin6_addr; 6401 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6402 v6src = s6->sin6_addr; 6403 } 6404 ifaddr = INADDR_ANY; 6405 } else { 6406 imreqp = (struct ip_mreq_source *)i1; 6407 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6408 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6409 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6410 ifindex = 0; 6411 } 6412 6413 /* 6414 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6415 */ 6416 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6417 v6src = ipv6_all_zeros; 6418 6419 /* 6420 * In the multirouting case, we need to replicate 6421 * the request as noted in the mcast cases above. 6422 */ 6423 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6424 ipaddr_t group; 6425 6426 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6427 6428 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6429 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6430 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6431 } else { 6432 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6433 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6434 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6435 } 6436 if (ire != NULL) { 6437 if (ire->ire_flags & RTF_MULTIRT) { 6438 error = ip_multirt_apply_membership(optfn, ire, connp, 6439 checkonly, &v6group, fmode, &v6src); 6440 done = B_TRUE; 6441 } 6442 ire_refrele(ire); 6443 } 6444 if (!done) { 6445 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6446 fmode, &v6src); 6447 } 6448 return (error); 6449 } 6450 6451 /* 6452 * Given a destination address and a pointer to where to put the information 6453 * this routine fills in the mtuinfo. 6454 * The socket must be connected. 6455 * For sctp conn_faddr is the primary address. 6456 */ 6457 int 6458 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6459 { 6460 uint32_t pmtu = IP_MAXPACKET; 6461 uint_t scopeid; 6462 6463 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6464 return (-1); 6465 6466 /* In case we never sent or called ip_set_destination_v4/v6 */ 6467 if (ixa->ixa_ire != NULL) 6468 pmtu = ip_get_pmtu(ixa); 6469 6470 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6471 scopeid = ixa->ixa_scopeid; 6472 else 6473 scopeid = 0; 6474 6475 bzero(mtuinfo, sizeof (*mtuinfo)); 6476 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6477 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6478 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6479 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6480 mtuinfo->ip6m_mtu = pmtu; 6481 6482 return (sizeof (struct ip6_mtuinfo)); 6483 } 6484 6485 /* 6486 * When the src multihoming is changed from weak to [strong, preferred] 6487 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6488 * and identify routes that were created by user-applications in the 6489 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6490 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6491 * is selected by finding an interface route for the gateway. 6492 */ 6493 /* ARGSUSED */ 6494 void 6495 ip_ire_rebind_walker(ire_t *ire, void *notused) 6496 { 6497 if (!ire->ire_unbound || ire->ire_ill != NULL) 6498 return; 6499 ire_rebind(ire); 6500 ire_delete(ire); 6501 } 6502 6503 /* 6504 * When the src multihoming is changed from [strong, preferred] to weak, 6505 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6506 * set any entries that were created by user-applications in the unbound state 6507 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6508 */ 6509 /* ARGSUSED */ 6510 void 6511 ip_ire_unbind_walker(ire_t *ire, void *notused) 6512 { 6513 ire_t *new_ire; 6514 6515 if (!ire->ire_unbound || ire->ire_ill == NULL) 6516 return; 6517 if (ire->ire_ipversion == IPV6_VERSION) { 6518 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6519 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6520 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6521 } else { 6522 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6523 (uchar_t *)&ire->ire_mask, 6524 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6525 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6526 } 6527 if (new_ire == NULL) 6528 return; 6529 new_ire->ire_unbound = B_TRUE; 6530 /* 6531 * The bound ire must first be deleted so that we don't return 6532 * the existing one on the attempt to add the unbound new_ire. 6533 */ 6534 ire_delete(ire); 6535 new_ire = ire_add(new_ire); 6536 if (new_ire != NULL) 6537 ire_refrele(new_ire); 6538 } 6539 6540 /* 6541 * When the settings of ip*_strict_src_multihoming tunables are changed, 6542 * all cached routes need to be recomputed. This recomputation needs to be 6543 * done when going from weaker to stronger modes so that the cached ire 6544 * for the connection does not violate the current ip*_strict_src_multihoming 6545 * setting. It also needs to be done when going from stronger to weaker modes, 6546 * so that we fall back to matching on the longest-matching-route (as opposed 6547 * to a shorter match that may have been selected in the strong mode 6548 * to satisfy src_multihoming settings). 6549 * 6550 * The cached ixa_ire entires for all conn_t entries are marked as 6551 * "verify" so that they will be recomputed for the next packet. 6552 */ 6553 void 6554 conn_ire_revalidate(conn_t *connp, void *arg) 6555 { 6556 boolean_t isv6 = (boolean_t)arg; 6557 6558 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6559 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6560 return; 6561 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6562 } 6563 6564 /* 6565 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6566 * When an ipf is passed here for the first time, if 6567 * we already have in-order fragments on the queue, we convert from the fast- 6568 * path reassembly scheme to the hard-case scheme. From then on, additional 6569 * fragments are reassembled here. We keep track of the start and end offsets 6570 * of each piece, and the number of holes in the chain. When the hole count 6571 * goes to zero, we are done! 6572 * 6573 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6574 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6575 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6576 * after the call to ip_reassemble(). 6577 */ 6578 int 6579 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6580 size_t msg_len) 6581 { 6582 uint_t end; 6583 mblk_t *next_mp; 6584 mblk_t *mp1; 6585 uint_t offset; 6586 boolean_t incr_dups = B_TRUE; 6587 boolean_t offset_zero_seen = B_FALSE; 6588 boolean_t pkt_boundary_checked = B_FALSE; 6589 6590 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6591 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6592 6593 /* Add in byte count */ 6594 ipf->ipf_count += msg_len; 6595 if (ipf->ipf_end) { 6596 /* 6597 * We were part way through in-order reassembly, but now there 6598 * is a hole. We walk through messages already queued, and 6599 * mark them for hard case reassembly. We know that up till 6600 * now they were in order starting from offset zero. 6601 */ 6602 offset = 0; 6603 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6604 IP_REASS_SET_START(mp1, offset); 6605 if (offset == 0) { 6606 ASSERT(ipf->ipf_nf_hdr_len != 0); 6607 offset = -ipf->ipf_nf_hdr_len; 6608 } 6609 offset += mp1->b_wptr - mp1->b_rptr; 6610 IP_REASS_SET_END(mp1, offset); 6611 } 6612 /* One hole at the end. */ 6613 ipf->ipf_hole_cnt = 1; 6614 /* Brand it as a hard case, forever. */ 6615 ipf->ipf_end = 0; 6616 } 6617 /* Walk through all the new pieces. */ 6618 do { 6619 end = start + (mp->b_wptr - mp->b_rptr); 6620 /* 6621 * If start is 0, decrease 'end' only for the first mblk of 6622 * the fragment. Otherwise 'end' can get wrong value in the 6623 * second pass of the loop if first mblk is exactly the 6624 * size of ipf_nf_hdr_len. 6625 */ 6626 if (start == 0 && !offset_zero_seen) { 6627 /* First segment */ 6628 ASSERT(ipf->ipf_nf_hdr_len != 0); 6629 end -= ipf->ipf_nf_hdr_len; 6630 offset_zero_seen = B_TRUE; 6631 } 6632 next_mp = mp->b_cont; 6633 /* 6634 * We are checking to see if there is any interesing data 6635 * to process. If there isn't and the mblk isn't the 6636 * one which carries the unfragmentable header then we 6637 * drop it. It's possible to have just the unfragmentable 6638 * header come through without any data. That needs to be 6639 * saved. 6640 * 6641 * If the assert at the top of this function holds then the 6642 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6643 * is infrequently traveled enough that the test is left in 6644 * to protect against future code changes which break that 6645 * invariant. 6646 */ 6647 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6648 /* Empty. Blast it. */ 6649 IP_REASS_SET_START(mp, 0); 6650 IP_REASS_SET_END(mp, 0); 6651 /* 6652 * If the ipf points to the mblk we are about to free, 6653 * update ipf to point to the next mblk (or NULL 6654 * if none). 6655 */ 6656 if (ipf->ipf_mp->b_cont == mp) 6657 ipf->ipf_mp->b_cont = next_mp; 6658 freeb(mp); 6659 continue; 6660 } 6661 mp->b_cont = NULL; 6662 IP_REASS_SET_START(mp, start); 6663 IP_REASS_SET_END(mp, end); 6664 if (!ipf->ipf_tail_mp) { 6665 ipf->ipf_tail_mp = mp; 6666 ipf->ipf_mp->b_cont = mp; 6667 if (start == 0 || !more) { 6668 ipf->ipf_hole_cnt = 1; 6669 /* 6670 * if the first fragment comes in more than one 6671 * mblk, this loop will be executed for each 6672 * mblk. Need to adjust hole count so exiting 6673 * this routine will leave hole count at 1. 6674 */ 6675 if (next_mp) 6676 ipf->ipf_hole_cnt++; 6677 } else 6678 ipf->ipf_hole_cnt = 2; 6679 continue; 6680 } else if (ipf->ipf_last_frag_seen && !more && 6681 !pkt_boundary_checked) { 6682 /* 6683 * We check datagram boundary only if this fragment 6684 * claims to be the last fragment and we have seen a 6685 * last fragment in the past too. We do this only 6686 * once for a given fragment. 6687 * 6688 * start cannot be 0 here as fragments with start=0 6689 * and MF=0 gets handled as a complete packet. These 6690 * fragments should not reach here. 6691 */ 6692 6693 if (start + msgdsize(mp) != 6694 IP_REASS_END(ipf->ipf_tail_mp)) { 6695 /* 6696 * We have two fragments both of which claim 6697 * to be the last fragment but gives conflicting 6698 * information about the whole datagram size. 6699 * Something fishy is going on. Drop the 6700 * fragment and free up the reassembly list. 6701 */ 6702 return (IP_REASS_FAILED); 6703 } 6704 6705 /* 6706 * We shouldn't come to this code block again for this 6707 * particular fragment. 6708 */ 6709 pkt_boundary_checked = B_TRUE; 6710 } 6711 6712 /* New stuff at or beyond tail? */ 6713 offset = IP_REASS_END(ipf->ipf_tail_mp); 6714 if (start >= offset) { 6715 if (ipf->ipf_last_frag_seen) { 6716 /* current fragment is beyond last fragment */ 6717 return (IP_REASS_FAILED); 6718 } 6719 /* Link it on end. */ 6720 ipf->ipf_tail_mp->b_cont = mp; 6721 ipf->ipf_tail_mp = mp; 6722 if (more) { 6723 if (start != offset) 6724 ipf->ipf_hole_cnt++; 6725 } else if (start == offset && next_mp == NULL) 6726 ipf->ipf_hole_cnt--; 6727 continue; 6728 } 6729 mp1 = ipf->ipf_mp->b_cont; 6730 offset = IP_REASS_START(mp1); 6731 /* New stuff at the front? */ 6732 if (start < offset) { 6733 if (start == 0) { 6734 if (end >= offset) { 6735 /* Nailed the hole at the begining. */ 6736 ipf->ipf_hole_cnt--; 6737 } 6738 } else if (end < offset) { 6739 /* 6740 * A hole, stuff, and a hole where there used 6741 * to be just a hole. 6742 */ 6743 ipf->ipf_hole_cnt++; 6744 } 6745 mp->b_cont = mp1; 6746 /* Check for overlap. */ 6747 while (end > offset) { 6748 if (end < IP_REASS_END(mp1)) { 6749 mp->b_wptr -= end - offset; 6750 IP_REASS_SET_END(mp, offset); 6751 BUMP_MIB(ill->ill_ip_mib, 6752 ipIfStatsReasmPartDups); 6753 break; 6754 } 6755 /* Did we cover another hole? */ 6756 if ((mp1->b_cont && 6757 IP_REASS_END(mp1) != 6758 IP_REASS_START(mp1->b_cont) && 6759 end >= IP_REASS_START(mp1->b_cont)) || 6760 (!ipf->ipf_last_frag_seen && !more)) { 6761 ipf->ipf_hole_cnt--; 6762 } 6763 /* Clip out mp1. */ 6764 if ((mp->b_cont = mp1->b_cont) == NULL) { 6765 /* 6766 * After clipping out mp1, this guy 6767 * is now hanging off the end. 6768 */ 6769 ipf->ipf_tail_mp = mp; 6770 } 6771 IP_REASS_SET_START(mp1, 0); 6772 IP_REASS_SET_END(mp1, 0); 6773 /* Subtract byte count */ 6774 ipf->ipf_count -= mp1->b_datap->db_lim - 6775 mp1->b_datap->db_base; 6776 freeb(mp1); 6777 BUMP_MIB(ill->ill_ip_mib, 6778 ipIfStatsReasmPartDups); 6779 mp1 = mp->b_cont; 6780 if (!mp1) 6781 break; 6782 offset = IP_REASS_START(mp1); 6783 } 6784 ipf->ipf_mp->b_cont = mp; 6785 continue; 6786 } 6787 /* 6788 * The new piece starts somewhere between the start of the head 6789 * and before the end of the tail. 6790 */ 6791 for (; mp1; mp1 = mp1->b_cont) { 6792 offset = IP_REASS_END(mp1); 6793 if (start < offset) { 6794 if (end <= offset) { 6795 /* Nothing new. */ 6796 IP_REASS_SET_START(mp, 0); 6797 IP_REASS_SET_END(mp, 0); 6798 /* Subtract byte count */ 6799 ipf->ipf_count -= mp->b_datap->db_lim - 6800 mp->b_datap->db_base; 6801 if (incr_dups) { 6802 ipf->ipf_num_dups++; 6803 incr_dups = B_FALSE; 6804 } 6805 freeb(mp); 6806 BUMP_MIB(ill->ill_ip_mib, 6807 ipIfStatsReasmDuplicates); 6808 break; 6809 } 6810 /* 6811 * Trim redundant stuff off beginning of new 6812 * piece. 6813 */ 6814 IP_REASS_SET_START(mp, offset); 6815 mp->b_rptr += offset - start; 6816 BUMP_MIB(ill->ill_ip_mib, 6817 ipIfStatsReasmPartDups); 6818 start = offset; 6819 if (!mp1->b_cont) { 6820 /* 6821 * After trimming, this guy is now 6822 * hanging off the end. 6823 */ 6824 mp1->b_cont = mp; 6825 ipf->ipf_tail_mp = mp; 6826 if (!more) { 6827 ipf->ipf_hole_cnt--; 6828 } 6829 break; 6830 } 6831 } 6832 if (start >= IP_REASS_START(mp1->b_cont)) 6833 continue; 6834 /* Fill a hole */ 6835 if (start > offset) 6836 ipf->ipf_hole_cnt++; 6837 mp->b_cont = mp1->b_cont; 6838 mp1->b_cont = mp; 6839 mp1 = mp->b_cont; 6840 offset = IP_REASS_START(mp1); 6841 if (end >= offset) { 6842 ipf->ipf_hole_cnt--; 6843 /* Check for overlap. */ 6844 while (end > offset) { 6845 if (end < IP_REASS_END(mp1)) { 6846 mp->b_wptr -= end - offset; 6847 IP_REASS_SET_END(mp, offset); 6848 /* 6849 * TODO we might bump 6850 * this up twice if there is 6851 * overlap at both ends. 6852 */ 6853 BUMP_MIB(ill->ill_ip_mib, 6854 ipIfStatsReasmPartDups); 6855 break; 6856 } 6857 /* Did we cover another hole? */ 6858 if ((mp1->b_cont && 6859 IP_REASS_END(mp1) 6860 != IP_REASS_START(mp1->b_cont) && 6861 end >= 6862 IP_REASS_START(mp1->b_cont)) || 6863 (!ipf->ipf_last_frag_seen && 6864 !more)) { 6865 ipf->ipf_hole_cnt--; 6866 } 6867 /* Clip out mp1. */ 6868 if ((mp->b_cont = mp1->b_cont) == 6869 NULL) { 6870 /* 6871 * After clipping out mp1, 6872 * this guy is now hanging 6873 * off the end. 6874 */ 6875 ipf->ipf_tail_mp = mp; 6876 } 6877 IP_REASS_SET_START(mp1, 0); 6878 IP_REASS_SET_END(mp1, 0); 6879 /* Subtract byte count */ 6880 ipf->ipf_count -= 6881 mp1->b_datap->db_lim - 6882 mp1->b_datap->db_base; 6883 freeb(mp1); 6884 BUMP_MIB(ill->ill_ip_mib, 6885 ipIfStatsReasmPartDups); 6886 mp1 = mp->b_cont; 6887 if (!mp1) 6888 break; 6889 offset = IP_REASS_START(mp1); 6890 } 6891 } 6892 break; 6893 } 6894 } while (start = end, mp = next_mp); 6895 6896 /* Fragment just processed could be the last one. Remember this fact */ 6897 if (!more) 6898 ipf->ipf_last_frag_seen = B_TRUE; 6899 6900 /* Still got holes? */ 6901 if (ipf->ipf_hole_cnt) 6902 return (IP_REASS_PARTIAL); 6903 /* Clean up overloaded fields to avoid upstream disasters. */ 6904 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6905 IP_REASS_SET_START(mp1, 0); 6906 IP_REASS_SET_END(mp1, 0); 6907 } 6908 return (IP_REASS_COMPLETE); 6909 } 6910 6911 /* 6912 * Fragmentation reassembly. Each ILL has a hash table for 6913 * queuing packets undergoing reassembly for all IPIFs 6914 * associated with the ILL. The hash is based on the packet 6915 * IP ident field. The ILL frag hash table was allocated 6916 * as a timer block at the time the ILL was created. Whenever 6917 * there is anything on the reassembly queue, the timer will 6918 * be running. Returns the reassembled packet if reassembly completes. 6919 */ 6920 mblk_t * 6921 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6922 { 6923 uint32_t frag_offset_flags; 6924 mblk_t *t_mp; 6925 ipaddr_t dst; 6926 uint8_t proto = ipha->ipha_protocol; 6927 uint32_t sum_val; 6928 uint16_t sum_flags; 6929 ipf_t *ipf; 6930 ipf_t **ipfp; 6931 ipfb_t *ipfb; 6932 uint16_t ident; 6933 uint32_t offset; 6934 ipaddr_t src; 6935 uint_t hdr_length; 6936 uint32_t end; 6937 mblk_t *mp1; 6938 mblk_t *tail_mp; 6939 size_t count; 6940 size_t msg_len; 6941 uint8_t ecn_info = 0; 6942 uint32_t packet_size; 6943 boolean_t pruned = B_FALSE; 6944 ill_t *ill = ira->ira_ill; 6945 ip_stack_t *ipst = ill->ill_ipst; 6946 6947 /* 6948 * Drop the fragmented as early as possible, if 6949 * we don't have resource(s) to re-assemble. 6950 */ 6951 if (ipst->ips_ip_reass_queue_bytes == 0) { 6952 freemsg(mp); 6953 return (NULL); 6954 } 6955 6956 /* Check for fragmentation offset; return if there's none */ 6957 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 6958 (IPH_MF | IPH_OFFSET)) == 0) 6959 return (mp); 6960 6961 /* 6962 * We utilize hardware computed checksum info only for UDP since 6963 * IP fragmentation is a normal occurrence for the protocol. In 6964 * addition, checksum offload support for IP fragments carrying 6965 * UDP payload is commonly implemented across network adapters. 6966 */ 6967 ASSERT(ira->ira_rill != NULL); 6968 if (proto == IPPROTO_UDP && dohwcksum && 6969 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 6970 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 6971 mblk_t *mp1 = mp->b_cont; 6972 int32_t len; 6973 6974 /* Record checksum information from the packet */ 6975 sum_val = (uint32_t)DB_CKSUM16(mp); 6976 sum_flags = DB_CKSUMFLAGS(mp); 6977 6978 /* IP payload offset from beginning of mblk */ 6979 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 6980 6981 if ((sum_flags & HCK_PARTIALCKSUM) && 6982 (mp1 == NULL || mp1->b_cont == NULL) && 6983 offset >= DB_CKSUMSTART(mp) && 6984 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 6985 uint32_t adj; 6986 /* 6987 * Partial checksum has been calculated by hardware 6988 * and attached to the packet; in addition, any 6989 * prepended extraneous data is even byte aligned. 6990 * If any such data exists, we adjust the checksum; 6991 * this would also handle any postpended data. 6992 */ 6993 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 6994 mp, mp1, len, adj); 6995 6996 /* One's complement subtract extraneous checksum */ 6997 if (adj >= sum_val) 6998 sum_val = ~(adj - sum_val) & 0xFFFF; 6999 else 7000 sum_val -= adj; 7001 } 7002 } else { 7003 sum_val = 0; 7004 sum_flags = 0; 7005 } 7006 7007 /* Clear hardware checksumming flag */ 7008 DB_CKSUMFLAGS(mp) = 0; 7009 7010 ident = ipha->ipha_ident; 7011 offset = (frag_offset_flags << 3) & 0xFFFF; 7012 src = ipha->ipha_src; 7013 dst = ipha->ipha_dst; 7014 hdr_length = IPH_HDR_LENGTH(ipha); 7015 end = ntohs(ipha->ipha_length) - hdr_length; 7016 7017 /* If end == 0 then we have a packet with no data, so just free it */ 7018 if (end == 0) { 7019 freemsg(mp); 7020 return (NULL); 7021 } 7022 7023 /* Record the ECN field info. */ 7024 ecn_info = (ipha->ipha_type_of_service & 0x3); 7025 if (offset != 0) { 7026 /* 7027 * If this isn't the first piece, strip the header, and 7028 * add the offset to the end value. 7029 */ 7030 mp->b_rptr += hdr_length; 7031 end += offset; 7032 } 7033 7034 /* Handle vnic loopback of fragments */ 7035 if (mp->b_datap->db_ref > 2) 7036 msg_len = 0; 7037 else 7038 msg_len = MBLKSIZE(mp); 7039 7040 tail_mp = mp; 7041 while (tail_mp->b_cont != NULL) { 7042 tail_mp = tail_mp->b_cont; 7043 if (tail_mp->b_datap->db_ref <= 2) 7044 msg_len += MBLKSIZE(tail_mp); 7045 } 7046 7047 /* If the reassembly list for this ILL will get too big, prune it */ 7048 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7049 ipst->ips_ip_reass_queue_bytes) { 7050 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7051 uint_t, ill->ill_frag_count, 7052 uint_t, ipst->ips_ip_reass_queue_bytes); 7053 ill_frag_prune(ill, 7054 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7055 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7056 pruned = B_TRUE; 7057 } 7058 7059 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7060 mutex_enter(&ipfb->ipfb_lock); 7061 7062 ipfp = &ipfb->ipfb_ipf; 7063 /* Try to find an existing fragment queue for this packet. */ 7064 for (;;) { 7065 ipf = ipfp[0]; 7066 if (ipf != NULL) { 7067 /* 7068 * It has to match on ident and src/dst address. 7069 */ 7070 if (ipf->ipf_ident == ident && 7071 ipf->ipf_src == src && 7072 ipf->ipf_dst == dst && 7073 ipf->ipf_protocol == proto) { 7074 /* 7075 * If we have received too many 7076 * duplicate fragments for this packet 7077 * free it. 7078 */ 7079 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7080 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7081 freemsg(mp); 7082 mutex_exit(&ipfb->ipfb_lock); 7083 return (NULL); 7084 } 7085 /* Found it. */ 7086 break; 7087 } 7088 ipfp = &ipf->ipf_hash_next; 7089 continue; 7090 } 7091 7092 /* 7093 * If we pruned the list, do we want to store this new 7094 * fragment?. We apply an optimization here based on the 7095 * fact that most fragments will be received in order. 7096 * So if the offset of this incoming fragment is zero, 7097 * it is the first fragment of a new packet. We will 7098 * keep it. Otherwise drop the fragment, as we have 7099 * probably pruned the packet already (since the 7100 * packet cannot be found). 7101 */ 7102 if (pruned && offset != 0) { 7103 mutex_exit(&ipfb->ipfb_lock); 7104 freemsg(mp); 7105 return (NULL); 7106 } 7107 7108 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7109 /* 7110 * Too many fragmented packets in this hash 7111 * bucket. Free the oldest. 7112 */ 7113 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7114 } 7115 7116 /* New guy. Allocate a frag message. */ 7117 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7118 if (mp1 == NULL) { 7119 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7120 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7121 freemsg(mp); 7122 reass_done: 7123 mutex_exit(&ipfb->ipfb_lock); 7124 return (NULL); 7125 } 7126 7127 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7128 mp1->b_cont = mp; 7129 7130 /* Initialize the fragment header. */ 7131 ipf = (ipf_t *)mp1->b_rptr; 7132 ipf->ipf_mp = mp1; 7133 ipf->ipf_ptphn = ipfp; 7134 ipfp[0] = ipf; 7135 ipf->ipf_hash_next = NULL; 7136 ipf->ipf_ident = ident; 7137 ipf->ipf_protocol = proto; 7138 ipf->ipf_src = src; 7139 ipf->ipf_dst = dst; 7140 ipf->ipf_nf_hdr_len = 0; 7141 /* Record reassembly start time. */ 7142 ipf->ipf_timestamp = gethrestime_sec(); 7143 /* Record ipf generation and account for frag header */ 7144 ipf->ipf_gen = ill->ill_ipf_gen++; 7145 ipf->ipf_count = MBLKSIZE(mp1); 7146 ipf->ipf_last_frag_seen = B_FALSE; 7147 ipf->ipf_ecn = ecn_info; 7148 ipf->ipf_num_dups = 0; 7149 ipfb->ipfb_frag_pkts++; 7150 ipf->ipf_checksum = 0; 7151 ipf->ipf_checksum_flags = 0; 7152 7153 /* Store checksum value in fragment header */ 7154 if (sum_flags != 0) { 7155 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7156 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7157 ipf->ipf_checksum = sum_val; 7158 ipf->ipf_checksum_flags = sum_flags; 7159 } 7160 7161 /* 7162 * We handle reassembly two ways. In the easy case, 7163 * where all the fragments show up in order, we do 7164 * minimal bookkeeping, and just clip new pieces on 7165 * the end. If we ever see a hole, then we go off 7166 * to ip_reassemble which has to mark the pieces and 7167 * keep track of the number of holes, etc. Obviously, 7168 * the point of having both mechanisms is so we can 7169 * handle the easy case as efficiently as possible. 7170 */ 7171 if (offset == 0) { 7172 /* Easy case, in-order reassembly so far. */ 7173 ipf->ipf_count += msg_len; 7174 ipf->ipf_tail_mp = tail_mp; 7175 /* 7176 * Keep track of next expected offset in 7177 * ipf_end. 7178 */ 7179 ipf->ipf_end = end; 7180 ipf->ipf_nf_hdr_len = hdr_length; 7181 } else { 7182 /* Hard case, hole at the beginning. */ 7183 ipf->ipf_tail_mp = NULL; 7184 /* 7185 * ipf_end == 0 means that we have given up 7186 * on easy reassembly. 7187 */ 7188 ipf->ipf_end = 0; 7189 7190 /* Forget checksum offload from now on */ 7191 ipf->ipf_checksum_flags = 0; 7192 7193 /* 7194 * ipf_hole_cnt is set by ip_reassemble. 7195 * ipf_count is updated by ip_reassemble. 7196 * No need to check for return value here 7197 * as we don't expect reassembly to complete 7198 * or fail for the first fragment itself. 7199 */ 7200 (void) ip_reassemble(mp, ipf, 7201 (frag_offset_flags & IPH_OFFSET) << 3, 7202 (frag_offset_flags & IPH_MF), ill, msg_len); 7203 } 7204 /* Update per ipfb and ill byte counts */ 7205 ipfb->ipfb_count += ipf->ipf_count; 7206 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7207 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7208 /* If the frag timer wasn't already going, start it. */ 7209 mutex_enter(&ill->ill_lock); 7210 ill_frag_timer_start(ill); 7211 mutex_exit(&ill->ill_lock); 7212 goto reass_done; 7213 } 7214 7215 /* 7216 * If the packet's flag has changed (it could be coming up 7217 * from an interface different than the previous, therefore 7218 * possibly different checksum capability), then forget about 7219 * any stored checksum states. Otherwise add the value to 7220 * the existing one stored in the fragment header. 7221 */ 7222 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7223 sum_val += ipf->ipf_checksum; 7224 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7225 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7226 ipf->ipf_checksum = sum_val; 7227 } else if (ipf->ipf_checksum_flags != 0) { 7228 /* Forget checksum offload from now on */ 7229 ipf->ipf_checksum_flags = 0; 7230 } 7231 7232 /* 7233 * We have a new piece of a datagram which is already being 7234 * reassembled. Update the ECN info if all IP fragments 7235 * are ECN capable. If there is one which is not, clear 7236 * all the info. If there is at least one which has CE 7237 * code point, IP needs to report that up to transport. 7238 */ 7239 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7240 if (ecn_info == IPH_ECN_CE) 7241 ipf->ipf_ecn = IPH_ECN_CE; 7242 } else { 7243 ipf->ipf_ecn = IPH_ECN_NECT; 7244 } 7245 if (offset && ipf->ipf_end == offset) { 7246 /* The new fragment fits at the end */ 7247 ipf->ipf_tail_mp->b_cont = mp; 7248 /* Update the byte count */ 7249 ipf->ipf_count += msg_len; 7250 /* Update per ipfb and ill byte counts */ 7251 ipfb->ipfb_count += msg_len; 7252 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7253 atomic_add_32(&ill->ill_frag_count, msg_len); 7254 if (frag_offset_flags & IPH_MF) { 7255 /* More to come. */ 7256 ipf->ipf_end = end; 7257 ipf->ipf_tail_mp = tail_mp; 7258 goto reass_done; 7259 } 7260 } else { 7261 /* Go do the hard cases. */ 7262 int ret; 7263 7264 if (offset == 0) 7265 ipf->ipf_nf_hdr_len = hdr_length; 7266 7267 /* Save current byte count */ 7268 count = ipf->ipf_count; 7269 ret = ip_reassemble(mp, ipf, 7270 (frag_offset_flags & IPH_OFFSET) << 3, 7271 (frag_offset_flags & IPH_MF), ill, msg_len); 7272 /* Count of bytes added and subtracted (freeb()ed) */ 7273 count = ipf->ipf_count - count; 7274 if (count) { 7275 /* Update per ipfb and ill byte counts */ 7276 ipfb->ipfb_count += count; 7277 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7278 atomic_add_32(&ill->ill_frag_count, count); 7279 } 7280 if (ret == IP_REASS_PARTIAL) { 7281 goto reass_done; 7282 } else if (ret == IP_REASS_FAILED) { 7283 /* Reassembly failed. Free up all resources */ 7284 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7285 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7286 IP_REASS_SET_START(t_mp, 0); 7287 IP_REASS_SET_END(t_mp, 0); 7288 } 7289 freemsg(mp); 7290 goto reass_done; 7291 } 7292 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7293 } 7294 /* 7295 * We have completed reassembly. Unhook the frag header from 7296 * the reassembly list. 7297 * 7298 * Before we free the frag header, record the ECN info 7299 * to report back to the transport. 7300 */ 7301 ecn_info = ipf->ipf_ecn; 7302 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7303 ipfp = ipf->ipf_ptphn; 7304 7305 /* We need to supply these to caller */ 7306 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7307 sum_val = ipf->ipf_checksum; 7308 else 7309 sum_val = 0; 7310 7311 mp1 = ipf->ipf_mp; 7312 count = ipf->ipf_count; 7313 ipf = ipf->ipf_hash_next; 7314 if (ipf != NULL) 7315 ipf->ipf_ptphn = ipfp; 7316 ipfp[0] = ipf; 7317 atomic_add_32(&ill->ill_frag_count, -count); 7318 ASSERT(ipfb->ipfb_count >= count); 7319 ipfb->ipfb_count -= count; 7320 ipfb->ipfb_frag_pkts--; 7321 mutex_exit(&ipfb->ipfb_lock); 7322 /* Ditch the frag header. */ 7323 mp = mp1->b_cont; 7324 7325 freeb(mp1); 7326 7327 /* Restore original IP length in header. */ 7328 packet_size = (uint32_t)msgdsize(mp); 7329 if (packet_size > IP_MAXPACKET) { 7330 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7331 ip_drop_input("Reassembled packet too large", mp, ill); 7332 freemsg(mp); 7333 return (NULL); 7334 } 7335 7336 if (DB_REF(mp) > 1) { 7337 mblk_t *mp2 = copymsg(mp); 7338 7339 if (mp2 == NULL) { 7340 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7341 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7342 freemsg(mp); 7343 return (NULL); 7344 } 7345 freemsg(mp); 7346 mp = mp2; 7347 } 7348 ipha = (ipha_t *)mp->b_rptr; 7349 7350 ipha->ipha_length = htons((uint16_t)packet_size); 7351 /* We're now complete, zip the frag state */ 7352 ipha->ipha_fragment_offset_and_flags = 0; 7353 /* Record the ECN info. */ 7354 ipha->ipha_type_of_service &= 0xFC; 7355 ipha->ipha_type_of_service |= ecn_info; 7356 7357 /* Update the receive attributes */ 7358 ira->ira_pktlen = packet_size; 7359 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7360 7361 /* Reassembly is successful; set checksum information in packet */ 7362 DB_CKSUM16(mp) = (uint16_t)sum_val; 7363 DB_CKSUMFLAGS(mp) = sum_flags; 7364 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7365 7366 return (mp); 7367 } 7368 7369 /* 7370 * Pullup function that should be used for IP input in order to 7371 * ensure we do not loose the L2 source address; we need the l2 source 7372 * address for IP_RECVSLLA and for ndp_input. 7373 * 7374 * We return either NULL or b_rptr. 7375 */ 7376 void * 7377 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7378 { 7379 ill_t *ill = ira->ira_ill; 7380 7381 if (ip_rput_pullups++ == 0) { 7382 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7383 "ip_pullup: %s forced us to " 7384 " pullup pkt, hdr len %ld, hdr addr %p", 7385 ill->ill_name, len, (void *)mp->b_rptr); 7386 } 7387 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7388 ip_setl2src(mp, ira, ira->ira_rill); 7389 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7390 if (!pullupmsg(mp, len)) 7391 return (NULL); 7392 else 7393 return (mp->b_rptr); 7394 } 7395 7396 /* 7397 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7398 * When called from the ULP ira_rill will be NULL hence the caller has to 7399 * pass in the ill. 7400 */ 7401 /* ARGSUSED */ 7402 void 7403 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7404 { 7405 const uchar_t *addr; 7406 int alen; 7407 7408 if (ira->ira_flags & IRAF_L2SRC_SET) 7409 return; 7410 7411 ASSERT(ill != NULL); 7412 alen = ill->ill_phys_addr_length; 7413 ASSERT(alen <= sizeof (ira->ira_l2src)); 7414 if (ira->ira_mhip != NULL && 7415 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7416 bcopy(addr, ira->ira_l2src, alen); 7417 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7418 (addr = ill->ill_phys_addr) != NULL) { 7419 bcopy(addr, ira->ira_l2src, alen); 7420 } else { 7421 bzero(ira->ira_l2src, alen); 7422 } 7423 ira->ira_flags |= IRAF_L2SRC_SET; 7424 } 7425 7426 /* 7427 * check ip header length and align it. 7428 */ 7429 mblk_t * 7430 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7431 { 7432 ill_t *ill = ira->ira_ill; 7433 ssize_t len; 7434 7435 len = MBLKL(mp); 7436 7437 if (!OK_32PTR(mp->b_rptr)) 7438 IP_STAT(ill->ill_ipst, ip_notaligned); 7439 else 7440 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7441 7442 /* Guard against bogus device drivers */ 7443 if (len < 0) { 7444 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7445 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7446 freemsg(mp); 7447 return (NULL); 7448 } 7449 7450 if (len == 0) { 7451 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7452 mblk_t *mp1 = mp->b_cont; 7453 7454 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7455 ip_setl2src(mp, ira, ira->ira_rill); 7456 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7457 7458 freeb(mp); 7459 mp = mp1; 7460 if (mp == NULL) 7461 return (NULL); 7462 7463 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7464 return (mp); 7465 } 7466 if (ip_pullup(mp, min_size, ira) == NULL) { 7467 if (msgdsize(mp) < min_size) { 7468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7469 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7470 } else { 7471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7472 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7473 } 7474 freemsg(mp); 7475 return (NULL); 7476 } 7477 return (mp); 7478 } 7479 7480 /* 7481 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7482 */ 7483 mblk_t * 7484 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7485 uint_t min_size, ip_recv_attr_t *ira) 7486 { 7487 ill_t *ill = ira->ira_ill; 7488 7489 /* 7490 * Make sure we have data length consistent 7491 * with the IP header. 7492 */ 7493 if (mp->b_cont == NULL) { 7494 /* pkt_len is based on ipha_len, not the mblk length */ 7495 if (pkt_len < min_size) { 7496 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7497 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7498 freemsg(mp); 7499 return (NULL); 7500 } 7501 if (len < 0) { 7502 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7503 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7504 freemsg(mp); 7505 return (NULL); 7506 } 7507 /* Drop any pad */ 7508 mp->b_wptr = rptr + pkt_len; 7509 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7510 ASSERT(pkt_len >= min_size); 7511 if (pkt_len < min_size) { 7512 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7513 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7514 freemsg(mp); 7515 return (NULL); 7516 } 7517 if (len < 0) { 7518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7519 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7520 freemsg(mp); 7521 return (NULL); 7522 } 7523 /* Drop any pad */ 7524 (void) adjmsg(mp, -len); 7525 /* 7526 * adjmsg may have freed an mblk from the chain, hence 7527 * invalidate any hw checksum here. This will force IP to 7528 * calculate the checksum in sw, but only for this packet. 7529 */ 7530 DB_CKSUMFLAGS(mp) = 0; 7531 IP_STAT(ill->ill_ipst, ip_multimblk); 7532 } 7533 return (mp); 7534 } 7535 7536 /* 7537 * Check that the IPv4 opt_len is consistent with the packet and pullup 7538 * the options. 7539 */ 7540 mblk_t * 7541 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7542 ip_recv_attr_t *ira) 7543 { 7544 ill_t *ill = ira->ira_ill; 7545 ssize_t len; 7546 7547 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7548 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7550 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7551 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7552 freemsg(mp); 7553 return (NULL); 7554 } 7555 7556 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7557 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7558 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7559 freemsg(mp); 7560 return (NULL); 7561 } 7562 /* 7563 * Recompute complete header length and make sure we 7564 * have access to all of it. 7565 */ 7566 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7567 if (len > (mp->b_wptr - mp->b_rptr)) { 7568 if (len > pkt_len) { 7569 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7570 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7571 freemsg(mp); 7572 return (NULL); 7573 } 7574 if (ip_pullup(mp, len, ira) == NULL) { 7575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7576 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7577 freemsg(mp); 7578 return (NULL); 7579 } 7580 } 7581 return (mp); 7582 } 7583 7584 /* 7585 * Returns a new ire, or the same ire, or NULL. 7586 * If a different IRE is returned, then it is held; the caller 7587 * needs to release it. 7588 * In no case is there any hold/release on the ire argument. 7589 */ 7590 ire_t * 7591 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7592 { 7593 ire_t *new_ire; 7594 ill_t *ire_ill; 7595 uint_t ifindex; 7596 ip_stack_t *ipst = ill->ill_ipst; 7597 boolean_t strict_check = B_FALSE; 7598 7599 /* 7600 * IPMP common case: if IRE and ILL are in the same group, there's no 7601 * issue (e.g. packet received on an underlying interface matched an 7602 * IRE_LOCAL on its associated group interface). 7603 */ 7604 ASSERT(ire->ire_ill != NULL); 7605 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7606 return (ire); 7607 7608 /* 7609 * Do another ire lookup here, using the ingress ill, to see if the 7610 * interface is in a usesrc group. 7611 * As long as the ills belong to the same group, we don't consider 7612 * them to be arriving on the wrong interface. Thus, if the switch 7613 * is doing inbound load spreading, we won't drop packets when the 7614 * ip*_strict_dst_multihoming switch is on. 7615 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7616 * where the local address may not be unique. In this case we were 7617 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7618 * actually returned. The new lookup, which is more specific, should 7619 * only find the IRE_LOCAL associated with the ingress ill if one 7620 * exists. 7621 */ 7622 if (ire->ire_ipversion == IPV4_VERSION) { 7623 if (ipst->ips_ip_strict_dst_multihoming) 7624 strict_check = B_TRUE; 7625 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7626 IRE_LOCAL, ill, ALL_ZONES, NULL, 7627 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7628 } else { 7629 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7630 if (ipst->ips_ipv6_strict_dst_multihoming) 7631 strict_check = B_TRUE; 7632 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7633 IRE_LOCAL, ill, ALL_ZONES, NULL, 7634 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7635 } 7636 /* 7637 * If the same ire that was returned in ip_input() is found then this 7638 * is an indication that usesrc groups are in use. The packet 7639 * arrived on a different ill in the group than the one associated with 7640 * the destination address. If a different ire was found then the same 7641 * IP address must be hosted on multiple ills. This is possible with 7642 * unnumbered point2point interfaces. We switch to use this new ire in 7643 * order to have accurate interface statistics. 7644 */ 7645 if (new_ire != NULL) { 7646 /* Note: held in one case but not the other? Caller handles */ 7647 if (new_ire != ire) 7648 return (new_ire); 7649 /* Unchanged */ 7650 ire_refrele(new_ire); 7651 return (ire); 7652 } 7653 7654 /* 7655 * Chase pointers once and store locally. 7656 */ 7657 ASSERT(ire->ire_ill != NULL); 7658 ire_ill = ire->ire_ill; 7659 ifindex = ill->ill_usesrc_ifindex; 7660 7661 /* 7662 * Check if it's a legal address on the 'usesrc' interface. 7663 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7664 * can just check phyint_ifindex. 7665 */ 7666 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7667 return (ire); 7668 } 7669 7670 /* 7671 * If the ip*_strict_dst_multihoming switch is on then we can 7672 * only accept this packet if the interface is marked as routing. 7673 */ 7674 if (!(strict_check)) 7675 return (ire); 7676 7677 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7678 return (ire); 7679 } 7680 return (NULL); 7681 } 7682 7683 /* 7684 * This function is used to construct a mac_header_info_s from a 7685 * DL_UNITDATA_IND message. 7686 * The address fields in the mhi structure points into the message, 7687 * thus the caller can't use those fields after freeing the message. 7688 * 7689 * We determine whether the packet received is a non-unicast packet 7690 * and in doing so, determine whether or not it is broadcast vs multicast. 7691 * For it to be a broadcast packet, we must have the appropriate mblk_t 7692 * hanging off the ill_t. If this is either not present or doesn't match 7693 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7694 * to be multicast. Thus NICs that have no broadcast address (or no 7695 * capability for one, such as point to point links) cannot return as 7696 * the packet being broadcast. 7697 */ 7698 void 7699 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7700 { 7701 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7702 mblk_t *bmp; 7703 uint_t extra_offset; 7704 7705 bzero(mhip, sizeof (struct mac_header_info_s)); 7706 7707 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7708 7709 if (ill->ill_sap_length < 0) 7710 extra_offset = 0; 7711 else 7712 extra_offset = ill->ill_sap_length; 7713 7714 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7715 extra_offset; 7716 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7717 extra_offset; 7718 7719 if (!ind->dl_group_address) 7720 return; 7721 7722 /* Multicast or broadcast */ 7723 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7724 7725 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7726 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7727 (bmp = ill->ill_bcast_mp) != NULL) { 7728 dl_unitdata_req_t *dlur; 7729 uint8_t *bphys_addr; 7730 7731 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7732 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7733 extra_offset; 7734 7735 if (bcmp(mhip->mhi_daddr, bphys_addr, 7736 ind->dl_dest_addr_length) == 0) 7737 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7738 } 7739 } 7740 7741 /* 7742 * This function is used to construct a mac_header_info_s from a 7743 * M_DATA fastpath message from a DLPI driver. 7744 * The address fields in the mhi structure points into the message, 7745 * thus the caller can't use those fields after freeing the message. 7746 * 7747 * We determine whether the packet received is a non-unicast packet 7748 * and in doing so, determine whether or not it is broadcast vs multicast. 7749 * For it to be a broadcast packet, we must have the appropriate mblk_t 7750 * hanging off the ill_t. If this is either not present or doesn't match 7751 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7752 * to be multicast. Thus NICs that have no broadcast address (or no 7753 * capability for one, such as point to point links) cannot return as 7754 * the packet being broadcast. 7755 */ 7756 void 7757 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7758 { 7759 mblk_t *bmp; 7760 struct ether_header *pether; 7761 7762 bzero(mhip, sizeof (struct mac_header_info_s)); 7763 7764 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7765 7766 pether = (struct ether_header *)((char *)mp->b_rptr 7767 - sizeof (struct ether_header)); 7768 7769 /* 7770 * Make sure the interface is an ethernet type, since we don't 7771 * know the header format for anything but Ethernet. Also make 7772 * sure we are pointing correctly above db_base. 7773 */ 7774 if (ill->ill_type != IFT_ETHER) 7775 return; 7776 7777 retry: 7778 if ((uchar_t *)pether < mp->b_datap->db_base) 7779 return; 7780 7781 /* Is there a VLAN tag? */ 7782 if (ill->ill_isv6) { 7783 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7784 pether = (struct ether_header *)((char *)pether - 4); 7785 goto retry; 7786 } 7787 } else { 7788 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7789 pether = (struct ether_header *)((char *)pether - 4); 7790 goto retry; 7791 } 7792 } 7793 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7794 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7795 7796 if (!(mhip->mhi_daddr[0] & 0x01)) 7797 return; 7798 7799 /* Multicast or broadcast */ 7800 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7801 7802 if ((bmp = ill->ill_bcast_mp) != NULL) { 7803 dl_unitdata_req_t *dlur; 7804 uint8_t *bphys_addr; 7805 uint_t addrlen; 7806 7807 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7808 addrlen = dlur->dl_dest_addr_length; 7809 if (ill->ill_sap_length < 0) { 7810 bphys_addr = (uchar_t *)dlur + 7811 dlur->dl_dest_addr_offset; 7812 addrlen += ill->ill_sap_length; 7813 } else { 7814 bphys_addr = (uchar_t *)dlur + 7815 dlur->dl_dest_addr_offset + 7816 ill->ill_sap_length; 7817 addrlen -= ill->ill_sap_length; 7818 } 7819 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7820 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7821 } 7822 } 7823 7824 /* 7825 * Handle anything but M_DATA messages 7826 * We see the DL_UNITDATA_IND which are part 7827 * of the data path, and also the other messages from the driver. 7828 */ 7829 void 7830 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7831 { 7832 mblk_t *first_mp; 7833 struct iocblk *iocp; 7834 struct mac_header_info_s mhi; 7835 7836 switch (DB_TYPE(mp)) { 7837 case M_PROTO: 7838 case M_PCPROTO: { 7839 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7840 DL_UNITDATA_IND) { 7841 /* Go handle anything other than data elsewhere. */ 7842 ip_rput_dlpi(ill, mp); 7843 return; 7844 } 7845 7846 first_mp = mp; 7847 mp = first_mp->b_cont; 7848 first_mp->b_cont = NULL; 7849 7850 if (mp == NULL) { 7851 freeb(first_mp); 7852 return; 7853 } 7854 ip_dlur_to_mhi(ill, first_mp, &mhi); 7855 if (ill->ill_isv6) 7856 ip_input_v6(ill, NULL, mp, &mhi); 7857 else 7858 ip_input(ill, NULL, mp, &mhi); 7859 7860 /* Ditch the DLPI header. */ 7861 freeb(first_mp); 7862 return; 7863 } 7864 case M_IOCACK: 7865 iocp = (struct iocblk *)mp->b_rptr; 7866 switch (iocp->ioc_cmd) { 7867 case DL_IOC_HDR_INFO: 7868 ill_fastpath_ack(ill, mp); 7869 return; 7870 default: 7871 putnext(ill->ill_rq, mp); 7872 return; 7873 } 7874 /* FALLTHRU */ 7875 case M_ERROR: 7876 case M_HANGUP: 7877 mutex_enter(&ill->ill_lock); 7878 if (ill->ill_state_flags & ILL_CONDEMNED) { 7879 mutex_exit(&ill->ill_lock); 7880 freemsg(mp); 7881 return; 7882 } 7883 ill_refhold_locked(ill); 7884 mutex_exit(&ill->ill_lock); 7885 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7886 B_FALSE); 7887 return; 7888 case M_CTL: 7889 putnext(ill->ill_rq, mp); 7890 return; 7891 case M_IOCNAK: 7892 ip1dbg(("got iocnak ")); 7893 iocp = (struct iocblk *)mp->b_rptr; 7894 switch (iocp->ioc_cmd) { 7895 case DL_IOC_HDR_INFO: 7896 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7897 return; 7898 default: 7899 break; 7900 } 7901 /* FALLTHRU */ 7902 default: 7903 putnext(ill->ill_rq, mp); 7904 return; 7905 } 7906 } 7907 7908 /* Read side put procedure. Packets coming from the wire arrive here. */ 7909 void 7910 ip_rput(queue_t *q, mblk_t *mp) 7911 { 7912 ill_t *ill; 7913 union DL_primitives *dl; 7914 7915 ill = (ill_t *)q->q_ptr; 7916 7917 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7918 /* 7919 * If things are opening or closing, only accept high-priority 7920 * DLPI messages. (On open ill->ill_ipif has not yet been 7921 * created; on close, things hanging off the ill may have been 7922 * freed already.) 7923 */ 7924 dl = (union DL_primitives *)mp->b_rptr; 7925 if (DB_TYPE(mp) != M_PCPROTO || 7926 dl->dl_primitive == DL_UNITDATA_IND) { 7927 inet_freemsg(mp); 7928 return; 7929 } 7930 } 7931 if (DB_TYPE(mp) == M_DATA) { 7932 struct mac_header_info_s mhi; 7933 7934 ip_mdata_to_mhi(ill, mp, &mhi); 7935 ip_input(ill, NULL, mp, &mhi); 7936 } else { 7937 ip_rput_notdata(ill, mp); 7938 } 7939 } 7940 7941 /* 7942 * Move the information to a copy. 7943 */ 7944 mblk_t * 7945 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 7946 { 7947 mblk_t *mp1; 7948 ill_t *ill = ira->ira_ill; 7949 ip_stack_t *ipst = ill->ill_ipst; 7950 7951 IP_STAT(ipst, ip_db_ref); 7952 7953 /* Make sure we have ira_l2src before we loose the original mblk */ 7954 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7955 ip_setl2src(mp, ira, ira->ira_rill); 7956 7957 mp1 = copymsg(mp); 7958 if (mp1 == NULL) { 7959 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7960 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7961 freemsg(mp); 7962 return (NULL); 7963 } 7964 /* preserve the hardware checksum flags and data, if present */ 7965 if (DB_CKSUMFLAGS(mp) != 0) { 7966 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 7967 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 7968 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 7969 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 7970 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 7971 } 7972 freemsg(mp); 7973 return (mp1); 7974 } 7975 7976 static void 7977 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 7978 t_uscalar_t err) 7979 { 7980 if (dl_err == DL_SYSERR) { 7981 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 7982 "%s: %s failed: DL_SYSERR (errno %u)\n", 7983 ill->ill_name, dl_primstr(prim), err); 7984 return; 7985 } 7986 7987 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 7988 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 7989 dl_errstr(dl_err)); 7990 } 7991 7992 /* 7993 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 7994 * than DL_UNITDATA_IND messages. If we need to process this message 7995 * exclusively, we call qwriter_ip, in which case we also need to call 7996 * ill_refhold before that, since qwriter_ip does an ill_refrele. 7997 */ 7998 void 7999 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8000 { 8001 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8002 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8003 queue_t *q = ill->ill_rq; 8004 t_uscalar_t prim = dloa->dl_primitive; 8005 t_uscalar_t reqprim = DL_PRIM_INVAL; 8006 8007 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8008 char *, dl_primstr(prim), ill_t *, ill); 8009 ip1dbg(("ip_rput_dlpi")); 8010 8011 /* 8012 * If we received an ACK but didn't send a request for it, then it 8013 * can't be part of any pending operation; discard up-front. 8014 */ 8015 switch (prim) { 8016 case DL_ERROR_ACK: 8017 reqprim = dlea->dl_error_primitive; 8018 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8019 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8020 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8021 dlea->dl_unix_errno)); 8022 break; 8023 case DL_OK_ACK: 8024 reqprim = dloa->dl_correct_primitive; 8025 break; 8026 case DL_INFO_ACK: 8027 reqprim = DL_INFO_REQ; 8028 break; 8029 case DL_BIND_ACK: 8030 reqprim = DL_BIND_REQ; 8031 break; 8032 case DL_PHYS_ADDR_ACK: 8033 reqprim = DL_PHYS_ADDR_REQ; 8034 break; 8035 case DL_NOTIFY_ACK: 8036 reqprim = DL_NOTIFY_REQ; 8037 break; 8038 case DL_CAPABILITY_ACK: 8039 reqprim = DL_CAPABILITY_REQ; 8040 break; 8041 } 8042 8043 if (prim != DL_NOTIFY_IND) { 8044 if (reqprim == DL_PRIM_INVAL || 8045 !ill_dlpi_pending(ill, reqprim)) { 8046 /* Not a DLPI message we support or expected */ 8047 freemsg(mp); 8048 return; 8049 } 8050 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8051 dl_primstr(reqprim))); 8052 } 8053 8054 switch (reqprim) { 8055 case DL_UNBIND_REQ: 8056 /* 8057 * NOTE: we mark the unbind as complete even if we got a 8058 * DL_ERROR_ACK, since there's not much else we can do. 8059 */ 8060 mutex_enter(&ill->ill_lock); 8061 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8062 cv_signal(&ill->ill_cv); 8063 mutex_exit(&ill->ill_lock); 8064 break; 8065 8066 case DL_ENABMULTI_REQ: 8067 if (prim == DL_OK_ACK) { 8068 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8069 ill->ill_dlpi_multicast_state = IDS_OK; 8070 } 8071 break; 8072 } 8073 8074 /* 8075 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8076 * need to become writer to continue to process it. Because an 8077 * exclusive operation doesn't complete until replies to all queued 8078 * DLPI messages have been received, we know we're in the middle of an 8079 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8080 * 8081 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8082 * Since this is on the ill stream we unconditionally bump up the 8083 * refcount without doing ILL_CAN_LOOKUP(). 8084 */ 8085 ill_refhold(ill); 8086 if (prim == DL_NOTIFY_IND) 8087 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8088 else 8089 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8090 } 8091 8092 /* 8093 * Handling of DLPI messages that require exclusive access to the ipsq. 8094 * 8095 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8096 * happen here. (along with mi_copy_done) 8097 */ 8098 /* ARGSUSED */ 8099 static void 8100 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8101 { 8102 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8103 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8104 int err = 0; 8105 ill_t *ill = (ill_t *)q->q_ptr; 8106 ipif_t *ipif = NULL; 8107 mblk_t *mp1 = NULL; 8108 conn_t *connp = NULL; 8109 t_uscalar_t paddrreq; 8110 mblk_t *mp_hw; 8111 boolean_t success; 8112 boolean_t ioctl_aborted = B_FALSE; 8113 boolean_t log = B_TRUE; 8114 8115 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8116 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8117 8118 ip1dbg(("ip_rput_dlpi_writer ..")); 8119 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8120 ASSERT(IAM_WRITER_ILL(ill)); 8121 8122 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8123 /* 8124 * The current ioctl could have been aborted by the user and a new 8125 * ioctl to bring up another ill could have started. We could still 8126 * get a response from the driver later. 8127 */ 8128 if (ipif != NULL && ipif->ipif_ill != ill) 8129 ioctl_aborted = B_TRUE; 8130 8131 switch (dloa->dl_primitive) { 8132 case DL_ERROR_ACK: 8133 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8134 dl_primstr(dlea->dl_error_primitive))); 8135 8136 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8137 char *, dl_primstr(dlea->dl_error_primitive), 8138 ill_t *, ill); 8139 8140 switch (dlea->dl_error_primitive) { 8141 case DL_DISABMULTI_REQ: 8142 ill_dlpi_done(ill, dlea->dl_error_primitive); 8143 break; 8144 case DL_PROMISCON_REQ: 8145 case DL_PROMISCOFF_REQ: 8146 case DL_UNBIND_REQ: 8147 case DL_ATTACH_REQ: 8148 case DL_INFO_REQ: 8149 ill_dlpi_done(ill, dlea->dl_error_primitive); 8150 break; 8151 case DL_NOTIFY_REQ: 8152 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8153 log = B_FALSE; 8154 break; 8155 case DL_PHYS_ADDR_REQ: 8156 /* 8157 * For IPv6 only, there are two additional 8158 * phys_addr_req's sent to the driver to get the 8159 * IPv6 token and lla. This allows IP to acquire 8160 * the hardware address format for a given interface 8161 * without having built in knowledge of the hardware 8162 * address. ill_phys_addr_pend keeps track of the last 8163 * DL_PAR sent so we know which response we are 8164 * dealing with. ill_dlpi_done will update 8165 * ill_phys_addr_pend when it sends the next req. 8166 * We don't complete the IOCTL until all three DL_PARs 8167 * have been attempted, so set *_len to 0 and break. 8168 */ 8169 paddrreq = ill->ill_phys_addr_pend; 8170 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8171 if (paddrreq == DL_IPV6_TOKEN) { 8172 ill->ill_token_length = 0; 8173 log = B_FALSE; 8174 break; 8175 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8176 ill->ill_nd_lla_len = 0; 8177 log = B_FALSE; 8178 break; 8179 } 8180 /* 8181 * Something went wrong with the DL_PHYS_ADDR_REQ. 8182 * We presumably have an IOCTL hanging out waiting 8183 * for completion. Find it and complete the IOCTL 8184 * with the error noted. 8185 * However, ill_dl_phys was called on an ill queue 8186 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8187 * set. But the ioctl is known to be pending on ill_wq. 8188 */ 8189 if (!ill->ill_ifname_pending) 8190 break; 8191 ill->ill_ifname_pending = 0; 8192 if (!ioctl_aborted) 8193 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8194 if (mp1 != NULL) { 8195 /* 8196 * This operation (SIOCSLIFNAME) must have 8197 * happened on the ill. Assert there is no conn 8198 */ 8199 ASSERT(connp == NULL); 8200 q = ill->ill_wq; 8201 } 8202 break; 8203 case DL_BIND_REQ: 8204 ill_dlpi_done(ill, DL_BIND_REQ); 8205 if (ill->ill_ifname_pending) 8206 break; 8207 /* 8208 * Something went wrong with the bind. We presumably 8209 * have an IOCTL hanging out waiting for completion. 8210 * Find it, take down the interface that was coming 8211 * up, and complete the IOCTL with the error noted. 8212 */ 8213 if (!ioctl_aborted) 8214 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8215 if (mp1 != NULL) { 8216 /* 8217 * This might be a result of a DL_NOTE_REPLUMB 8218 * notification. In that case, connp is NULL. 8219 */ 8220 if (connp != NULL) 8221 q = CONNP_TO_WQ(connp); 8222 8223 (void) ipif_down(ipif, NULL, NULL); 8224 /* error is set below the switch */ 8225 } 8226 break; 8227 case DL_ENABMULTI_REQ: 8228 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8229 8230 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8231 ill->ill_dlpi_multicast_state = IDS_FAILED; 8232 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8233 8234 printf("ip: joining multicasts failed (%d)" 8235 " on %s - will use link layer " 8236 "broadcasts for multicast\n", 8237 dlea->dl_errno, ill->ill_name); 8238 8239 /* 8240 * Set up for multi_bcast; We are the 8241 * writer, so ok to access ill->ill_ipif 8242 * without any lock. 8243 */ 8244 mutex_enter(&ill->ill_phyint->phyint_lock); 8245 ill->ill_phyint->phyint_flags |= 8246 PHYI_MULTI_BCAST; 8247 mutex_exit(&ill->ill_phyint->phyint_lock); 8248 8249 } 8250 freemsg(mp); /* Don't want to pass this up */ 8251 return; 8252 case DL_CAPABILITY_REQ: 8253 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8254 "DL_CAPABILITY REQ\n")); 8255 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8256 ill->ill_dlpi_capab_state = IDCS_FAILED; 8257 ill_capability_done(ill); 8258 freemsg(mp); 8259 return; 8260 } 8261 /* 8262 * Note the error for IOCTL completion (mp1 is set when 8263 * ready to complete ioctl). If ill_ifname_pending_err is 8264 * set, an error occured during plumbing (ill_ifname_pending), 8265 * so we want to report that error. 8266 * 8267 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8268 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8269 * expected to get errack'd if the driver doesn't support 8270 * these flags (e.g. ethernet). log will be set to B_FALSE 8271 * if these error conditions are encountered. 8272 */ 8273 if (mp1 != NULL) { 8274 if (ill->ill_ifname_pending_err != 0) { 8275 err = ill->ill_ifname_pending_err; 8276 ill->ill_ifname_pending_err = 0; 8277 } else { 8278 err = dlea->dl_unix_errno ? 8279 dlea->dl_unix_errno : ENXIO; 8280 } 8281 /* 8282 * If we're plumbing an interface and an error hasn't already 8283 * been saved, set ill_ifname_pending_err to the error passed 8284 * up. Ignore the error if log is B_FALSE (see comment above). 8285 */ 8286 } else if (log && ill->ill_ifname_pending && 8287 ill->ill_ifname_pending_err == 0) { 8288 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8289 dlea->dl_unix_errno : ENXIO; 8290 } 8291 8292 if (log) 8293 ip_dlpi_error(ill, dlea->dl_error_primitive, 8294 dlea->dl_errno, dlea->dl_unix_errno); 8295 break; 8296 case DL_CAPABILITY_ACK: 8297 ill_capability_ack(ill, mp); 8298 /* 8299 * The message has been handed off to ill_capability_ack 8300 * and must not be freed below 8301 */ 8302 mp = NULL; 8303 break; 8304 8305 case DL_INFO_ACK: 8306 /* Call a routine to handle this one. */ 8307 ill_dlpi_done(ill, DL_INFO_REQ); 8308 ip_ll_subnet_defaults(ill, mp); 8309 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8310 return; 8311 case DL_BIND_ACK: 8312 /* 8313 * We should have an IOCTL waiting on this unless 8314 * sent by ill_dl_phys, in which case just return 8315 */ 8316 ill_dlpi_done(ill, DL_BIND_REQ); 8317 if (ill->ill_ifname_pending) { 8318 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8319 ill_t *, ill, mblk_t *, mp); 8320 break; 8321 } 8322 if (!ioctl_aborted) 8323 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8324 if (mp1 == NULL) { 8325 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8326 break; 8327 } 8328 /* 8329 * mp1 was added by ill_dl_up(). if that is a result of 8330 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8331 */ 8332 if (connp != NULL) 8333 q = CONNP_TO_WQ(connp); 8334 /* 8335 * We are exclusive. So nothing can change even after 8336 * we get the pending mp. 8337 */ 8338 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8339 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8340 8341 mutex_enter(&ill->ill_lock); 8342 ill->ill_dl_up = 1; 8343 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8344 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8345 mutex_exit(&ill->ill_lock); 8346 8347 /* 8348 * Now bring up the resolver; when that is complete, we'll 8349 * create IREs. Note that we intentionally mirror what 8350 * ipif_up() would have done, because we got here by way of 8351 * ill_dl_up(), which stopped ipif_up()'s processing. 8352 */ 8353 if (ill->ill_isv6) { 8354 /* 8355 * v6 interfaces. 8356 * Unlike ARP which has to do another bind 8357 * and attach, once we get here we are 8358 * done with NDP 8359 */ 8360 (void) ipif_resolver_up(ipif, Res_act_initial); 8361 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8362 err = ipif_up_done_v6(ipif); 8363 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8364 /* 8365 * ARP and other v4 external resolvers. 8366 * Leave the pending mblk intact so that 8367 * the ioctl completes in ip_rput(). 8368 */ 8369 if (connp != NULL) 8370 mutex_enter(&connp->conn_lock); 8371 mutex_enter(&ill->ill_lock); 8372 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8373 mutex_exit(&ill->ill_lock); 8374 if (connp != NULL) 8375 mutex_exit(&connp->conn_lock); 8376 if (success) { 8377 err = ipif_resolver_up(ipif, Res_act_initial); 8378 if (err == EINPROGRESS) { 8379 freemsg(mp); 8380 return; 8381 } 8382 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8383 } else { 8384 /* The conn has started closing */ 8385 err = EINTR; 8386 } 8387 } else { 8388 /* 8389 * This one is complete. Reply to pending ioctl. 8390 */ 8391 (void) ipif_resolver_up(ipif, Res_act_initial); 8392 err = ipif_up_done(ipif); 8393 } 8394 8395 if ((err == 0) && (ill->ill_up_ipifs)) { 8396 err = ill_up_ipifs(ill, q, mp1); 8397 if (err == EINPROGRESS) { 8398 freemsg(mp); 8399 return; 8400 } 8401 } 8402 8403 /* 8404 * If we have a moved ipif to bring up, and everything has 8405 * succeeded to this point, bring it up on the IPMP ill. 8406 * Otherwise, leave it down -- the admin can try to bring it 8407 * up by hand if need be. 8408 */ 8409 if (ill->ill_move_ipif != NULL) { 8410 if (err != 0) { 8411 ill->ill_move_ipif = NULL; 8412 } else { 8413 ipif = ill->ill_move_ipif; 8414 ill->ill_move_ipif = NULL; 8415 err = ipif_up(ipif, q, mp1); 8416 if (err == EINPROGRESS) { 8417 freemsg(mp); 8418 return; 8419 } 8420 } 8421 } 8422 break; 8423 8424 case DL_NOTIFY_IND: { 8425 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8426 uint_t orig_mtu; 8427 8428 switch (notify->dl_notification) { 8429 case DL_NOTE_PHYS_ADDR: 8430 err = ill_set_phys_addr(ill, mp); 8431 break; 8432 8433 case DL_NOTE_REPLUMB: 8434 /* 8435 * Directly return after calling ill_replumb(). 8436 * Note that we should not free mp as it is reused 8437 * in the ill_replumb() function. 8438 */ 8439 err = ill_replumb(ill, mp); 8440 return; 8441 8442 case DL_NOTE_FASTPATH_FLUSH: 8443 nce_flush(ill, B_FALSE); 8444 break; 8445 8446 case DL_NOTE_SDU_SIZE: 8447 /* 8448 * The dce and fragmentation code can cope with 8449 * this changing while packets are being sent. 8450 * When packets are sent ip_output will discover 8451 * a change. 8452 * 8453 * Change the MTU size of the interface. 8454 */ 8455 mutex_enter(&ill->ill_lock); 8456 ill->ill_current_frag = (uint_t)notify->dl_data; 8457 if (ill->ill_current_frag > ill->ill_max_frag) 8458 ill->ill_max_frag = ill->ill_current_frag; 8459 8460 orig_mtu = ill->ill_mtu; 8461 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8462 ill->ill_mtu = ill->ill_current_frag; 8463 8464 /* 8465 * If ill_user_mtu was set (via 8466 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8467 */ 8468 if (ill->ill_user_mtu != 0 && 8469 ill->ill_user_mtu < ill->ill_mtu) 8470 ill->ill_mtu = ill->ill_user_mtu; 8471 8472 if (ill->ill_isv6) { 8473 if (ill->ill_mtu < IPV6_MIN_MTU) 8474 ill->ill_mtu = IPV6_MIN_MTU; 8475 } else { 8476 if (ill->ill_mtu < IP_MIN_MTU) 8477 ill->ill_mtu = IP_MIN_MTU; 8478 } 8479 } 8480 mutex_exit(&ill->ill_lock); 8481 /* 8482 * Make sure all dce_generation checks find out 8483 * that ill_mtu has changed. 8484 */ 8485 if (orig_mtu != ill->ill_mtu) { 8486 dce_increment_all_generations(ill->ill_isv6, 8487 ill->ill_ipst); 8488 } 8489 8490 /* 8491 * Refresh IPMP meta-interface MTU if necessary. 8492 */ 8493 if (IS_UNDER_IPMP(ill)) 8494 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8495 break; 8496 8497 case DL_NOTE_LINK_UP: 8498 case DL_NOTE_LINK_DOWN: { 8499 /* 8500 * We are writer. ill / phyint / ipsq assocs stable. 8501 * The RUNNING flag reflects the state of the link. 8502 */ 8503 phyint_t *phyint = ill->ill_phyint; 8504 uint64_t new_phyint_flags; 8505 boolean_t changed = B_FALSE; 8506 boolean_t went_up; 8507 8508 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8509 mutex_enter(&phyint->phyint_lock); 8510 8511 new_phyint_flags = went_up ? 8512 phyint->phyint_flags | PHYI_RUNNING : 8513 phyint->phyint_flags & ~PHYI_RUNNING; 8514 8515 if (IS_IPMP(ill)) { 8516 new_phyint_flags = went_up ? 8517 new_phyint_flags & ~PHYI_FAILED : 8518 new_phyint_flags | PHYI_FAILED; 8519 } 8520 8521 if (new_phyint_flags != phyint->phyint_flags) { 8522 phyint->phyint_flags = new_phyint_flags; 8523 changed = B_TRUE; 8524 } 8525 mutex_exit(&phyint->phyint_lock); 8526 /* 8527 * ill_restart_dad handles the DAD restart and routing 8528 * socket notification logic. 8529 */ 8530 if (changed) { 8531 ill_restart_dad(phyint->phyint_illv4, went_up); 8532 ill_restart_dad(phyint->phyint_illv6, went_up); 8533 } 8534 break; 8535 } 8536 case DL_NOTE_PROMISC_ON_PHYS: { 8537 phyint_t *phyint = ill->ill_phyint; 8538 8539 mutex_enter(&phyint->phyint_lock); 8540 phyint->phyint_flags |= PHYI_PROMISC; 8541 mutex_exit(&phyint->phyint_lock); 8542 break; 8543 } 8544 case DL_NOTE_PROMISC_OFF_PHYS: { 8545 phyint_t *phyint = ill->ill_phyint; 8546 8547 mutex_enter(&phyint->phyint_lock); 8548 phyint->phyint_flags &= ~PHYI_PROMISC; 8549 mutex_exit(&phyint->phyint_lock); 8550 break; 8551 } 8552 case DL_NOTE_CAPAB_RENEG: 8553 /* 8554 * Something changed on the driver side. 8555 * It wants us to renegotiate the capabilities 8556 * on this ill. One possible cause is the aggregation 8557 * interface under us where a port got added or 8558 * went away. 8559 * 8560 * If the capability negotiation is already done 8561 * or is in progress, reset the capabilities and 8562 * mark the ill's ill_capab_reneg to be B_TRUE, 8563 * so that when the ack comes back, we can start 8564 * the renegotiation process. 8565 * 8566 * Note that if ill_capab_reneg is already B_TRUE 8567 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8568 * the capability resetting request has been sent 8569 * and the renegotiation has not been started yet; 8570 * nothing needs to be done in this case. 8571 */ 8572 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8573 ill_capability_reset(ill, B_TRUE); 8574 ipsq_current_finish(ipsq); 8575 break; 8576 default: 8577 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8578 "type 0x%x for DL_NOTIFY_IND\n", 8579 notify->dl_notification)); 8580 break; 8581 } 8582 8583 /* 8584 * As this is an asynchronous operation, we 8585 * should not call ill_dlpi_done 8586 */ 8587 break; 8588 } 8589 case DL_NOTIFY_ACK: { 8590 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8591 8592 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8593 ill->ill_note_link = 1; 8594 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8595 break; 8596 } 8597 case DL_PHYS_ADDR_ACK: { 8598 /* 8599 * As part of plumbing the interface via SIOCSLIFNAME, 8600 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8601 * whose answers we receive here. As each answer is received, 8602 * we call ill_dlpi_done() to dispatch the next request as 8603 * we're processing the current one. Once all answers have 8604 * been received, we use ipsq_pending_mp_get() to dequeue the 8605 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8606 * is invoked from an ill queue, conn_oper_pending_ill is not 8607 * available, but we know the ioctl is pending on ill_wq.) 8608 */ 8609 uint_t paddrlen, paddroff; 8610 uint8_t *addr; 8611 8612 paddrreq = ill->ill_phys_addr_pend; 8613 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8614 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8615 addr = mp->b_rptr + paddroff; 8616 8617 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8618 if (paddrreq == DL_IPV6_TOKEN) { 8619 /* 8620 * bcopy to low-order bits of ill_token 8621 * 8622 * XXX Temporary hack - currently, all known tokens 8623 * are 64 bits, so I'll cheat for the moment. 8624 */ 8625 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8626 ill->ill_token_length = paddrlen; 8627 break; 8628 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8629 ASSERT(ill->ill_nd_lla_mp == NULL); 8630 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8631 mp = NULL; 8632 break; 8633 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8634 ASSERT(ill->ill_dest_addr_mp == NULL); 8635 ill->ill_dest_addr_mp = mp; 8636 ill->ill_dest_addr = addr; 8637 mp = NULL; 8638 if (ill->ill_isv6) { 8639 ill_setdesttoken(ill); 8640 ipif_setdestlinklocal(ill->ill_ipif); 8641 } 8642 break; 8643 } 8644 8645 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8646 ASSERT(ill->ill_phys_addr_mp == NULL); 8647 if (!ill->ill_ifname_pending) 8648 break; 8649 ill->ill_ifname_pending = 0; 8650 if (!ioctl_aborted) 8651 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8652 if (mp1 != NULL) { 8653 ASSERT(connp == NULL); 8654 q = ill->ill_wq; 8655 } 8656 /* 8657 * If any error acks received during the plumbing sequence, 8658 * ill_ifname_pending_err will be set. Break out and send up 8659 * the error to the pending ioctl. 8660 */ 8661 if (ill->ill_ifname_pending_err != 0) { 8662 err = ill->ill_ifname_pending_err; 8663 ill->ill_ifname_pending_err = 0; 8664 break; 8665 } 8666 8667 ill->ill_phys_addr_mp = mp; 8668 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8669 mp = NULL; 8670 8671 /* 8672 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8673 * provider doesn't support physical addresses. We check both 8674 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8675 * not have physical addresses, but historically adversises a 8676 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8677 * its DL_PHYS_ADDR_ACK. 8678 */ 8679 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8680 ill->ill_phys_addr = NULL; 8681 } else if (paddrlen != ill->ill_phys_addr_length) { 8682 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8683 paddrlen, ill->ill_phys_addr_length)); 8684 err = EINVAL; 8685 break; 8686 } 8687 8688 if (ill->ill_nd_lla_mp == NULL) { 8689 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8690 err = ENOMEM; 8691 break; 8692 } 8693 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8694 } 8695 8696 if (ill->ill_isv6) { 8697 ill_setdefaulttoken(ill); 8698 ipif_setlinklocal(ill->ill_ipif); 8699 } 8700 break; 8701 } 8702 case DL_OK_ACK: 8703 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8704 dl_primstr((int)dloa->dl_correct_primitive), 8705 dloa->dl_correct_primitive)); 8706 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8707 char *, dl_primstr(dloa->dl_correct_primitive), 8708 ill_t *, ill); 8709 8710 switch (dloa->dl_correct_primitive) { 8711 case DL_ENABMULTI_REQ: 8712 case DL_DISABMULTI_REQ: 8713 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8714 break; 8715 case DL_PROMISCON_REQ: 8716 case DL_PROMISCOFF_REQ: 8717 case DL_UNBIND_REQ: 8718 case DL_ATTACH_REQ: 8719 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8720 break; 8721 } 8722 break; 8723 default: 8724 break; 8725 } 8726 8727 freemsg(mp); 8728 if (mp1 == NULL) 8729 return; 8730 8731 /* 8732 * The operation must complete without EINPROGRESS since 8733 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8734 * the operation will be stuck forever inside the IPSQ. 8735 */ 8736 ASSERT(err != EINPROGRESS); 8737 8738 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8739 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8740 ipif_t *, NULL); 8741 8742 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8743 case 0: 8744 ipsq_current_finish(ipsq); 8745 break; 8746 8747 case SIOCSLIFNAME: 8748 case IF_UNITSEL: { 8749 ill_t *ill_other = ILL_OTHER(ill); 8750 8751 /* 8752 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8753 * ill has a peer which is in an IPMP group, then place ill 8754 * into the same group. One catch: although ifconfig plumbs 8755 * the appropriate IPMP meta-interface prior to plumbing this 8756 * ill, it is possible for multiple ifconfig applications to 8757 * race (or for another application to adjust plumbing), in 8758 * which case the IPMP meta-interface we need will be missing. 8759 * If so, kick the phyint out of the group. 8760 */ 8761 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8762 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8763 ipmp_illgrp_t *illg; 8764 8765 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8766 if (illg == NULL) 8767 ipmp_phyint_leave_grp(ill->ill_phyint); 8768 else 8769 ipmp_ill_join_illgrp(ill, illg); 8770 } 8771 8772 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8773 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8774 else 8775 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8776 break; 8777 } 8778 case SIOCLIFADDIF: 8779 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8780 break; 8781 8782 default: 8783 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8784 break; 8785 } 8786 } 8787 8788 /* 8789 * ip_rput_other is called by ip_rput to handle messages modifying the global 8790 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8791 */ 8792 /* ARGSUSED */ 8793 void 8794 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8795 { 8796 ill_t *ill = q->q_ptr; 8797 struct iocblk *iocp; 8798 8799 ip1dbg(("ip_rput_other ")); 8800 if (ipsq != NULL) { 8801 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8802 ASSERT(ipsq->ipsq_xop == 8803 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8804 } 8805 8806 switch (mp->b_datap->db_type) { 8807 case M_ERROR: 8808 case M_HANGUP: 8809 /* 8810 * The device has a problem. We force the ILL down. It can 8811 * be brought up again manually using SIOCSIFFLAGS (via 8812 * ifconfig or equivalent). 8813 */ 8814 ASSERT(ipsq != NULL); 8815 if (mp->b_rptr < mp->b_wptr) 8816 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8817 if (ill->ill_error == 0) 8818 ill->ill_error = ENXIO; 8819 if (!ill_down_start(q, mp)) 8820 return; 8821 ipif_all_down_tail(ipsq, q, mp, NULL); 8822 break; 8823 case M_IOCNAK: { 8824 iocp = (struct iocblk *)mp->b_rptr; 8825 8826 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8827 /* 8828 * If this was the first attempt, turn off the fastpath 8829 * probing. 8830 */ 8831 mutex_enter(&ill->ill_lock); 8832 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8833 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8834 mutex_exit(&ill->ill_lock); 8835 /* 8836 * don't flush the nce_t entries: we use them 8837 * as an index to the ncec itself. 8838 */ 8839 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8840 ill->ill_name)); 8841 } else { 8842 mutex_exit(&ill->ill_lock); 8843 } 8844 freemsg(mp); 8845 break; 8846 } 8847 default: 8848 ASSERT(0); 8849 break; 8850 } 8851 } 8852 8853 /* 8854 * Update any source route, record route or timestamp options 8855 * When it fails it has consumed the message and BUMPed the MIB. 8856 */ 8857 boolean_t 8858 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8859 ip_recv_attr_t *ira) 8860 { 8861 ipoptp_t opts; 8862 uchar_t *opt; 8863 uint8_t optval; 8864 uint8_t optlen; 8865 ipaddr_t dst; 8866 ipaddr_t ifaddr; 8867 uint32_t ts; 8868 timestruc_t now; 8869 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8870 8871 ip2dbg(("ip_forward_options\n")); 8872 dst = ipha->ipha_dst; 8873 for (optval = ipoptp_first(&opts, ipha); 8874 optval != IPOPT_EOL; 8875 optval = ipoptp_next(&opts)) { 8876 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8877 opt = opts.ipoptp_cur; 8878 optlen = opts.ipoptp_len; 8879 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8880 optval, opts.ipoptp_len)); 8881 switch (optval) { 8882 uint32_t off; 8883 case IPOPT_SSRR: 8884 case IPOPT_LSRR: 8885 /* Check if adminstratively disabled */ 8886 if (!ipst->ips_ip_forward_src_routed) { 8887 BUMP_MIB(dst_ill->ill_ip_mib, 8888 ipIfStatsForwProhibits); 8889 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8890 mp, dst_ill); 8891 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8892 ira); 8893 return (B_FALSE); 8894 } 8895 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8896 /* 8897 * Must be partial since ip_input_options 8898 * checked for strict. 8899 */ 8900 break; 8901 } 8902 off = opt[IPOPT_OFFSET]; 8903 off--; 8904 redo_srr: 8905 if (optlen < IP_ADDR_LEN || 8906 off > optlen - IP_ADDR_LEN) { 8907 /* End of source route */ 8908 ip1dbg(( 8909 "ip_forward_options: end of SR\n")); 8910 break; 8911 } 8912 /* Pick a reasonable address on the outbound if */ 8913 ASSERT(dst_ill != NULL); 8914 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8915 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8916 NULL) != 0) { 8917 /* No source! Shouldn't happen */ 8918 ifaddr = INADDR_ANY; 8919 } 8920 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8921 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8922 ip1dbg(("ip_forward_options: next hop 0x%x\n", 8923 ntohl(dst))); 8924 8925 /* 8926 * Check if our address is present more than 8927 * once as consecutive hops in source route. 8928 */ 8929 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 8930 off += IP_ADDR_LEN; 8931 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8932 goto redo_srr; 8933 } 8934 ipha->ipha_dst = dst; 8935 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8936 break; 8937 case IPOPT_RR: 8938 off = opt[IPOPT_OFFSET]; 8939 off--; 8940 if (optlen < IP_ADDR_LEN || 8941 off > optlen - IP_ADDR_LEN) { 8942 /* No more room - ignore */ 8943 ip1dbg(( 8944 "ip_forward_options: end of RR\n")); 8945 break; 8946 } 8947 /* Pick a reasonable address on the outbound if */ 8948 ASSERT(dst_ill != NULL); 8949 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8950 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8951 NULL) != 0) { 8952 /* No source! Shouldn't happen */ 8953 ifaddr = INADDR_ANY; 8954 } 8955 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8956 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8957 break; 8958 case IPOPT_TS: 8959 /* Insert timestamp if there is room */ 8960 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 8961 case IPOPT_TS_TSONLY: 8962 off = IPOPT_TS_TIMELEN; 8963 break; 8964 case IPOPT_TS_PRESPEC: 8965 case IPOPT_TS_PRESPEC_RFC791: 8966 /* Verify that the address matched */ 8967 off = opt[IPOPT_OFFSET] - 1; 8968 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8969 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8970 /* Not for us */ 8971 break; 8972 } 8973 /* FALLTHRU */ 8974 case IPOPT_TS_TSANDADDR: 8975 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 8976 break; 8977 default: 8978 /* 8979 * ip_*put_options should have already 8980 * dropped this packet. 8981 */ 8982 cmn_err(CE_PANIC, "ip_forward_options: " 8983 "unknown IT - bug in ip_input_options?\n"); 8984 return (B_TRUE); /* Keep "lint" happy */ 8985 } 8986 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 8987 /* Increase overflow counter */ 8988 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 8989 opt[IPOPT_POS_OV_FLG] = 8990 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 8991 (off << 4)); 8992 break; 8993 } 8994 off = opt[IPOPT_OFFSET] - 1; 8995 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 8996 case IPOPT_TS_PRESPEC: 8997 case IPOPT_TS_PRESPEC_RFC791: 8998 case IPOPT_TS_TSANDADDR: 8999 /* Pick a reasonable addr on the outbound if */ 9000 ASSERT(dst_ill != NULL); 9001 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9002 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9003 NULL, NULL) != 0) { 9004 /* No source! Shouldn't happen */ 9005 ifaddr = INADDR_ANY; 9006 } 9007 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9008 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9009 /* FALLTHRU */ 9010 case IPOPT_TS_TSONLY: 9011 off = opt[IPOPT_OFFSET] - 1; 9012 /* Compute # of milliseconds since midnight */ 9013 gethrestime(&now); 9014 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9015 now.tv_nsec / (NANOSEC / MILLISEC); 9016 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9017 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9018 break; 9019 } 9020 break; 9021 } 9022 } 9023 return (B_TRUE); 9024 } 9025 9026 /* 9027 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9028 * returns 'true' if there are still fragments left on the queue, in 9029 * which case we restart the timer. 9030 */ 9031 void 9032 ill_frag_timer(void *arg) 9033 { 9034 ill_t *ill = (ill_t *)arg; 9035 boolean_t frag_pending; 9036 ip_stack_t *ipst = ill->ill_ipst; 9037 time_t timeout; 9038 9039 mutex_enter(&ill->ill_lock); 9040 ASSERT(!ill->ill_fragtimer_executing); 9041 if (ill->ill_state_flags & ILL_CONDEMNED) { 9042 ill->ill_frag_timer_id = 0; 9043 mutex_exit(&ill->ill_lock); 9044 return; 9045 } 9046 ill->ill_fragtimer_executing = 1; 9047 mutex_exit(&ill->ill_lock); 9048 9049 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9050 ipst->ips_ip_reassembly_timeout); 9051 9052 frag_pending = ill_frag_timeout(ill, timeout); 9053 9054 /* 9055 * Restart the timer, if we have fragments pending or if someone 9056 * wanted us to be scheduled again. 9057 */ 9058 mutex_enter(&ill->ill_lock); 9059 ill->ill_fragtimer_executing = 0; 9060 ill->ill_frag_timer_id = 0; 9061 if (frag_pending || ill->ill_fragtimer_needrestart) 9062 ill_frag_timer_start(ill); 9063 mutex_exit(&ill->ill_lock); 9064 } 9065 9066 void 9067 ill_frag_timer_start(ill_t *ill) 9068 { 9069 ip_stack_t *ipst = ill->ill_ipst; 9070 clock_t timeo_ms; 9071 9072 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9073 9074 /* If the ill is closing or opening don't proceed */ 9075 if (ill->ill_state_flags & ILL_CONDEMNED) 9076 return; 9077 9078 if (ill->ill_fragtimer_executing) { 9079 /* 9080 * ill_frag_timer is currently executing. Just record the 9081 * the fact that we want the timer to be restarted. 9082 * ill_frag_timer will post a timeout before it returns, 9083 * ensuring it will be called again. 9084 */ 9085 ill->ill_fragtimer_needrestart = 1; 9086 return; 9087 } 9088 9089 if (ill->ill_frag_timer_id == 0) { 9090 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9091 ipst->ips_ip_reassembly_timeout) * SECONDS; 9092 9093 /* 9094 * The timer is neither running nor is the timeout handler 9095 * executing. Post a timeout so that ill_frag_timer will be 9096 * called 9097 */ 9098 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9099 MSEC_TO_TICK(timeo_ms >> 1)); 9100 ill->ill_fragtimer_needrestart = 0; 9101 } 9102 } 9103 9104 /* 9105 * Update any source route, record route or timestamp options. 9106 * Check that we are at end of strict source route. 9107 * The options have already been checked for sanity in ip_input_options(). 9108 */ 9109 boolean_t 9110 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9111 { 9112 ipoptp_t opts; 9113 uchar_t *opt; 9114 uint8_t optval; 9115 uint8_t optlen; 9116 ipaddr_t dst; 9117 ipaddr_t ifaddr; 9118 uint32_t ts; 9119 timestruc_t now; 9120 ill_t *ill = ira->ira_ill; 9121 ip_stack_t *ipst = ill->ill_ipst; 9122 9123 ip2dbg(("ip_input_local_options\n")); 9124 9125 for (optval = ipoptp_first(&opts, ipha); 9126 optval != IPOPT_EOL; 9127 optval = ipoptp_next(&opts)) { 9128 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9129 opt = opts.ipoptp_cur; 9130 optlen = opts.ipoptp_len; 9131 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9132 optval, optlen)); 9133 switch (optval) { 9134 uint32_t off; 9135 case IPOPT_SSRR: 9136 case IPOPT_LSRR: 9137 off = opt[IPOPT_OFFSET]; 9138 off--; 9139 if (optlen < IP_ADDR_LEN || 9140 off > optlen - IP_ADDR_LEN) { 9141 /* End of source route */ 9142 ip1dbg(("ip_input_local_options: end of SR\n")); 9143 break; 9144 } 9145 /* 9146 * This will only happen if two consecutive entries 9147 * in the source route contains our address or if 9148 * it is a packet with a loose source route which 9149 * reaches us before consuming the whole source route 9150 */ 9151 ip1dbg(("ip_input_local_options: not end of SR\n")); 9152 if (optval == IPOPT_SSRR) { 9153 goto bad_src_route; 9154 } 9155 /* 9156 * Hack: instead of dropping the packet truncate the 9157 * source route to what has been used by filling the 9158 * rest with IPOPT_NOP. 9159 */ 9160 opt[IPOPT_OLEN] = (uint8_t)off; 9161 while (off < optlen) { 9162 opt[off++] = IPOPT_NOP; 9163 } 9164 break; 9165 case IPOPT_RR: 9166 off = opt[IPOPT_OFFSET]; 9167 off--; 9168 if (optlen < IP_ADDR_LEN || 9169 off > optlen - IP_ADDR_LEN) { 9170 /* No more room - ignore */ 9171 ip1dbg(( 9172 "ip_input_local_options: end of RR\n")); 9173 break; 9174 } 9175 /* Pick a reasonable address on the outbound if */ 9176 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9177 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9178 NULL) != 0) { 9179 /* No source! Shouldn't happen */ 9180 ifaddr = INADDR_ANY; 9181 } 9182 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9183 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9184 break; 9185 case IPOPT_TS: 9186 /* Insert timestamp if there is romm */ 9187 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9188 case IPOPT_TS_TSONLY: 9189 off = IPOPT_TS_TIMELEN; 9190 break; 9191 case IPOPT_TS_PRESPEC: 9192 case IPOPT_TS_PRESPEC_RFC791: 9193 /* Verify that the address matched */ 9194 off = opt[IPOPT_OFFSET] - 1; 9195 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9196 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9197 /* Not for us */ 9198 break; 9199 } 9200 /* FALLTHRU */ 9201 case IPOPT_TS_TSANDADDR: 9202 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9203 break; 9204 default: 9205 /* 9206 * ip_*put_options should have already 9207 * dropped this packet. 9208 */ 9209 cmn_err(CE_PANIC, "ip_input_local_options: " 9210 "unknown IT - bug in ip_input_options?\n"); 9211 return (B_TRUE); /* Keep "lint" happy */ 9212 } 9213 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9214 /* Increase overflow counter */ 9215 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9216 opt[IPOPT_POS_OV_FLG] = 9217 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9218 (off << 4)); 9219 break; 9220 } 9221 off = opt[IPOPT_OFFSET] - 1; 9222 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9223 case IPOPT_TS_PRESPEC: 9224 case IPOPT_TS_PRESPEC_RFC791: 9225 case IPOPT_TS_TSANDADDR: 9226 /* Pick a reasonable addr on the outbound if */ 9227 if (ip_select_source_v4(ill, INADDR_ANY, 9228 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9229 &ifaddr, NULL, NULL) != 0) { 9230 /* No source! Shouldn't happen */ 9231 ifaddr = INADDR_ANY; 9232 } 9233 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9234 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9235 /* FALLTHRU */ 9236 case IPOPT_TS_TSONLY: 9237 off = opt[IPOPT_OFFSET] - 1; 9238 /* Compute # of milliseconds since midnight */ 9239 gethrestime(&now); 9240 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9241 now.tv_nsec / (NANOSEC / MILLISEC); 9242 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9243 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9244 break; 9245 } 9246 break; 9247 } 9248 } 9249 return (B_TRUE); 9250 9251 bad_src_route: 9252 /* make sure we clear any indication of a hardware checksum */ 9253 DB_CKSUMFLAGS(mp) = 0; 9254 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9255 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9256 return (B_FALSE); 9257 9258 } 9259 9260 /* 9261 * Process IP options in an inbound packet. Always returns the nexthop. 9262 * Normally this is the passed in nexthop, but if there is an option 9263 * that effects the nexthop (such as a source route) that will be returned. 9264 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9265 * and mp freed. 9266 */ 9267 ipaddr_t 9268 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9269 ip_recv_attr_t *ira, int *errorp) 9270 { 9271 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9272 ipoptp_t opts; 9273 uchar_t *opt; 9274 uint8_t optval; 9275 uint8_t optlen; 9276 intptr_t code = 0; 9277 ire_t *ire; 9278 9279 ip2dbg(("ip_input_options\n")); 9280 *errorp = 0; 9281 for (optval = ipoptp_first(&opts, ipha); 9282 optval != IPOPT_EOL; 9283 optval = ipoptp_next(&opts)) { 9284 opt = opts.ipoptp_cur; 9285 optlen = opts.ipoptp_len; 9286 ip2dbg(("ip_input_options: opt %d, len %d\n", 9287 optval, optlen)); 9288 /* 9289 * Note: we need to verify the checksum before we 9290 * modify anything thus this routine only extracts the next 9291 * hop dst from any source route. 9292 */ 9293 switch (optval) { 9294 uint32_t off; 9295 case IPOPT_SSRR: 9296 case IPOPT_LSRR: 9297 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9298 if (optval == IPOPT_SSRR) { 9299 ip1dbg(("ip_input_options: not next" 9300 " strict source route 0x%x\n", 9301 ntohl(dst))); 9302 code = (char *)&ipha->ipha_dst - 9303 (char *)ipha; 9304 goto param_prob; /* RouterReq's */ 9305 } 9306 ip2dbg(("ip_input_options: " 9307 "not next source route 0x%x\n", 9308 ntohl(dst))); 9309 break; 9310 } 9311 9312 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9313 ip1dbg(( 9314 "ip_input_options: bad option offset\n")); 9315 code = (char *)&opt[IPOPT_OLEN] - 9316 (char *)ipha; 9317 goto param_prob; 9318 } 9319 off = opt[IPOPT_OFFSET]; 9320 off--; 9321 redo_srr: 9322 if (optlen < IP_ADDR_LEN || 9323 off > optlen - IP_ADDR_LEN) { 9324 /* End of source route */ 9325 ip1dbg(("ip_input_options: end of SR\n")); 9326 break; 9327 } 9328 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9329 ip1dbg(("ip_input_options: next hop 0x%x\n", 9330 ntohl(dst))); 9331 9332 /* 9333 * Check if our address is present more than 9334 * once as consecutive hops in source route. 9335 * XXX verify per-interface ip_forwarding 9336 * for source route? 9337 */ 9338 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9339 off += IP_ADDR_LEN; 9340 goto redo_srr; 9341 } 9342 9343 if (dst == htonl(INADDR_LOOPBACK)) { 9344 ip1dbg(("ip_input_options: loopback addr in " 9345 "source route!\n")); 9346 goto bad_src_route; 9347 } 9348 /* 9349 * For strict: verify that dst is directly 9350 * reachable. 9351 */ 9352 if (optval == IPOPT_SSRR) { 9353 ire = ire_ftable_lookup_v4(dst, 0, 0, 9354 IRE_IF_ALL, NULL, ALL_ZONES, 9355 ira->ira_tsl, 9356 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9357 NULL); 9358 if (ire == NULL) { 9359 ip1dbg(("ip_input_options: SSRR not " 9360 "directly reachable: 0x%x\n", 9361 ntohl(dst))); 9362 goto bad_src_route; 9363 } 9364 ire_refrele(ire); 9365 } 9366 /* 9367 * Defer update of the offset and the record route 9368 * until the packet is forwarded. 9369 */ 9370 break; 9371 case IPOPT_RR: 9372 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9373 ip1dbg(( 9374 "ip_input_options: bad option offset\n")); 9375 code = (char *)&opt[IPOPT_OLEN] - 9376 (char *)ipha; 9377 goto param_prob; 9378 } 9379 break; 9380 case IPOPT_TS: 9381 /* 9382 * Verify that length >= 5 and that there is either 9383 * room for another timestamp or that the overflow 9384 * counter is not maxed out. 9385 */ 9386 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9387 if (optlen < IPOPT_MINLEN_IT) { 9388 goto param_prob; 9389 } 9390 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9391 ip1dbg(( 9392 "ip_input_options: bad option offset\n")); 9393 code = (char *)&opt[IPOPT_OFFSET] - 9394 (char *)ipha; 9395 goto param_prob; 9396 } 9397 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9398 case IPOPT_TS_TSONLY: 9399 off = IPOPT_TS_TIMELEN; 9400 break; 9401 case IPOPT_TS_TSANDADDR: 9402 case IPOPT_TS_PRESPEC: 9403 case IPOPT_TS_PRESPEC_RFC791: 9404 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9405 break; 9406 default: 9407 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9408 (char *)ipha; 9409 goto param_prob; 9410 } 9411 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9412 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9413 /* 9414 * No room and the overflow counter is 15 9415 * already. 9416 */ 9417 goto param_prob; 9418 } 9419 break; 9420 } 9421 } 9422 9423 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9424 return (dst); 9425 } 9426 9427 ip1dbg(("ip_input_options: error processing IP options.")); 9428 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9429 9430 param_prob: 9431 /* make sure we clear any indication of a hardware checksum */ 9432 DB_CKSUMFLAGS(mp) = 0; 9433 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9434 icmp_param_problem(mp, (uint8_t)code, ira); 9435 *errorp = -1; 9436 return (dst); 9437 9438 bad_src_route: 9439 /* make sure we clear any indication of a hardware checksum */ 9440 DB_CKSUMFLAGS(mp) = 0; 9441 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9442 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9443 *errorp = -1; 9444 return (dst); 9445 } 9446 9447 /* 9448 * IP & ICMP info in >=14 msg's ... 9449 * - ip fixed part (mib2_ip_t) 9450 * - icmp fixed part (mib2_icmp_t) 9451 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9452 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9453 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9454 * - ipRouteAttributeTable (ip 102) labeled routes 9455 * - ip multicast membership (ip_member_t) 9456 * - ip multicast source filtering (ip_grpsrc_t) 9457 * - igmp fixed part (struct igmpstat) 9458 * - multicast routing stats (struct mrtstat) 9459 * - multicast routing vifs (array of struct vifctl) 9460 * - multicast routing routes (array of struct mfcctl) 9461 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9462 * One per ill plus one generic 9463 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9464 * One per ill plus one generic 9465 * - ipv6RouteEntry all IPv6 IREs 9466 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9467 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9468 * - ipv6AddrEntry all IPv6 ipifs 9469 * - ipv6 multicast membership (ipv6_member_t) 9470 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9471 * 9472 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9473 * already filled in by the caller. 9474 * Return value of 0 indicates that no messages were sent and caller 9475 * should free mpctl. 9476 */ 9477 int 9478 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 9479 { 9480 ip_stack_t *ipst; 9481 sctp_stack_t *sctps; 9482 9483 if (q->q_next != NULL) { 9484 ipst = ILLQ_TO_IPST(q); 9485 } else { 9486 ipst = CONNQ_TO_IPST(q); 9487 } 9488 ASSERT(ipst != NULL); 9489 sctps = ipst->ips_netstack->netstack_sctp; 9490 9491 if (mpctl == NULL || mpctl->b_cont == NULL) { 9492 return (0); 9493 } 9494 9495 /* 9496 * For the purposes of the (broken) packet shell use 9497 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9498 * to make TCP and UDP appear first in the list of mib items. 9499 * TBD: We could expand this and use it in netstat so that 9500 * the kernel doesn't have to produce large tables (connections, 9501 * routes, etc) when netstat only wants the statistics or a particular 9502 * table. 9503 */ 9504 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9505 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9506 return (1); 9507 } 9508 } 9509 9510 if (level != MIB2_TCP) { 9511 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 9512 return (1); 9513 } 9514 } 9515 9516 if (level != MIB2_UDP) { 9517 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 9518 return (1); 9519 } 9520 } 9521 9522 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9523 ipst)) == NULL) { 9524 return (1); 9525 } 9526 9527 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 9528 return (1); 9529 } 9530 9531 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9532 return (1); 9533 } 9534 9535 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9536 return (1); 9537 } 9538 9539 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9540 return (1); 9541 } 9542 9543 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9544 return (1); 9545 } 9546 9547 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 9548 return (1); 9549 } 9550 9551 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 9552 return (1); 9553 } 9554 9555 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9556 return (1); 9557 } 9558 9559 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9560 return (1); 9561 } 9562 9563 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9564 return (1); 9565 } 9566 9567 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9568 return (1); 9569 } 9570 9571 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9572 return (1); 9573 } 9574 9575 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9576 return (1); 9577 } 9578 9579 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9580 if (mpctl == NULL) 9581 return (1); 9582 9583 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9584 if (mpctl == NULL) 9585 return (1); 9586 9587 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9588 return (1); 9589 } 9590 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9591 return (1); 9592 } 9593 freemsg(mpctl); 9594 return (1); 9595 } 9596 9597 /* Get global (legacy) IPv4 statistics */ 9598 static mblk_t * 9599 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9600 ip_stack_t *ipst) 9601 { 9602 mib2_ip_t old_ip_mib; 9603 struct opthdr *optp; 9604 mblk_t *mp2ctl; 9605 9606 /* 9607 * make a copy of the original message 9608 */ 9609 mp2ctl = copymsg(mpctl); 9610 9611 /* fixed length IP structure... */ 9612 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9613 optp->level = MIB2_IP; 9614 optp->name = 0; 9615 SET_MIB(old_ip_mib.ipForwarding, 9616 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9617 SET_MIB(old_ip_mib.ipDefaultTTL, 9618 (uint32_t)ipst->ips_ip_def_ttl); 9619 SET_MIB(old_ip_mib.ipReasmTimeout, 9620 ipst->ips_ip_reassembly_timeout); 9621 SET_MIB(old_ip_mib.ipAddrEntrySize, 9622 sizeof (mib2_ipAddrEntry_t)); 9623 SET_MIB(old_ip_mib.ipRouteEntrySize, 9624 sizeof (mib2_ipRouteEntry_t)); 9625 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9626 sizeof (mib2_ipNetToMediaEntry_t)); 9627 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9628 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9629 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9630 sizeof (mib2_ipAttributeEntry_t)); 9631 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9632 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9633 9634 /* 9635 * Grab the statistics from the new IP MIB 9636 */ 9637 SET_MIB(old_ip_mib.ipInReceives, 9638 (uint32_t)ipmib->ipIfStatsHCInReceives); 9639 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9640 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9641 SET_MIB(old_ip_mib.ipForwDatagrams, 9642 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9643 SET_MIB(old_ip_mib.ipInUnknownProtos, 9644 ipmib->ipIfStatsInUnknownProtos); 9645 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9646 SET_MIB(old_ip_mib.ipInDelivers, 9647 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9648 SET_MIB(old_ip_mib.ipOutRequests, 9649 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9650 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9651 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9652 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9653 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9654 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9655 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9656 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9657 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9658 9659 /* ipRoutingDiscards is not being used */ 9660 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9661 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9662 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9663 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9664 SET_MIB(old_ip_mib.ipReasmDuplicates, 9665 ipmib->ipIfStatsReasmDuplicates); 9666 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9667 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9668 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9669 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9670 SET_MIB(old_ip_mib.rawipInOverflows, 9671 ipmib->rawipIfStatsInOverflows); 9672 9673 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9674 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9675 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9676 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9677 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9678 ipmib->ipIfStatsOutSwitchIPVersion); 9679 9680 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9681 (int)sizeof (old_ip_mib))) { 9682 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9683 (uint_t)sizeof (old_ip_mib))); 9684 } 9685 9686 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9687 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9688 (int)optp->level, (int)optp->name, (int)optp->len)); 9689 qreply(q, mpctl); 9690 return (mp2ctl); 9691 } 9692 9693 /* Per interface IPv4 statistics */ 9694 static mblk_t * 9695 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9696 { 9697 struct opthdr *optp; 9698 mblk_t *mp2ctl; 9699 ill_t *ill; 9700 ill_walk_context_t ctx; 9701 mblk_t *mp_tail = NULL; 9702 mib2_ipIfStatsEntry_t global_ip_mib; 9703 9704 /* 9705 * Make a copy of the original message 9706 */ 9707 mp2ctl = copymsg(mpctl); 9708 9709 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9710 optp->level = MIB2_IP; 9711 optp->name = MIB2_IP_TRAFFIC_STATS; 9712 /* Include "unknown interface" ip_mib */ 9713 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9714 ipst->ips_ip_mib.ipIfStatsIfIndex = 9715 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9716 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9717 (ipst->ips_ip_forwarding ? 1 : 2)); 9718 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9719 (uint32_t)ipst->ips_ip_def_ttl); 9720 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9721 sizeof (mib2_ipIfStatsEntry_t)); 9722 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9723 sizeof (mib2_ipAddrEntry_t)); 9724 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9725 sizeof (mib2_ipRouteEntry_t)); 9726 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9727 sizeof (mib2_ipNetToMediaEntry_t)); 9728 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9729 sizeof (ip_member_t)); 9730 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9731 sizeof (ip_grpsrc_t)); 9732 9733 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9734 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 9735 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9736 "failed to allocate %u bytes\n", 9737 (uint_t)sizeof (ipst->ips_ip_mib))); 9738 } 9739 9740 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9741 9742 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9743 ill = ILL_START_WALK_V4(&ctx, ipst); 9744 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9745 ill->ill_ip_mib->ipIfStatsIfIndex = 9746 ill->ill_phyint->phyint_ifindex; 9747 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9748 (ipst->ips_ip_forwarding ? 1 : 2)); 9749 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9750 (uint32_t)ipst->ips_ip_def_ttl); 9751 9752 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9753 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9754 (char *)ill->ill_ip_mib, 9755 (int)sizeof (*ill->ill_ip_mib))) { 9756 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9757 "failed to allocate %u bytes\n", 9758 (uint_t)sizeof (*ill->ill_ip_mib))); 9759 } 9760 } 9761 rw_exit(&ipst->ips_ill_g_lock); 9762 9763 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9764 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9765 "level %d, name %d, len %d\n", 9766 (int)optp->level, (int)optp->name, (int)optp->len)); 9767 qreply(q, mpctl); 9768 9769 if (mp2ctl == NULL) 9770 return (NULL); 9771 9772 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 9773 } 9774 9775 /* Global IPv4 ICMP statistics */ 9776 static mblk_t * 9777 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9778 { 9779 struct opthdr *optp; 9780 mblk_t *mp2ctl; 9781 9782 /* 9783 * Make a copy of the original message 9784 */ 9785 mp2ctl = copymsg(mpctl); 9786 9787 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9788 optp->level = MIB2_ICMP; 9789 optp->name = 0; 9790 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9791 (int)sizeof (ipst->ips_icmp_mib))) { 9792 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9793 (uint_t)sizeof (ipst->ips_icmp_mib))); 9794 } 9795 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9796 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9797 (int)optp->level, (int)optp->name, (int)optp->len)); 9798 qreply(q, mpctl); 9799 return (mp2ctl); 9800 } 9801 9802 /* Global IPv4 IGMP statistics */ 9803 static mblk_t * 9804 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9805 { 9806 struct opthdr *optp; 9807 mblk_t *mp2ctl; 9808 9809 /* 9810 * make a copy of the original message 9811 */ 9812 mp2ctl = copymsg(mpctl); 9813 9814 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9815 optp->level = EXPER_IGMP; 9816 optp->name = 0; 9817 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9818 (int)sizeof (ipst->ips_igmpstat))) { 9819 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9820 (uint_t)sizeof (ipst->ips_igmpstat))); 9821 } 9822 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9823 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9824 (int)optp->level, (int)optp->name, (int)optp->len)); 9825 qreply(q, mpctl); 9826 return (mp2ctl); 9827 } 9828 9829 /* Global IPv4 Multicast Routing statistics */ 9830 static mblk_t * 9831 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9832 { 9833 struct opthdr *optp; 9834 mblk_t *mp2ctl; 9835 9836 /* 9837 * make a copy of the original message 9838 */ 9839 mp2ctl = copymsg(mpctl); 9840 9841 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9842 optp->level = EXPER_DVMRP; 9843 optp->name = 0; 9844 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9845 ip0dbg(("ip_mroute_stats: failed\n")); 9846 } 9847 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9848 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9849 (int)optp->level, (int)optp->name, (int)optp->len)); 9850 qreply(q, mpctl); 9851 return (mp2ctl); 9852 } 9853 9854 /* IPv4 address information */ 9855 static mblk_t * 9856 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9857 { 9858 struct opthdr *optp; 9859 mblk_t *mp2ctl; 9860 mblk_t *mp_tail = NULL; 9861 ill_t *ill; 9862 ipif_t *ipif; 9863 uint_t bitval; 9864 mib2_ipAddrEntry_t mae; 9865 zoneid_t zoneid; 9866 ill_walk_context_t ctx; 9867 9868 /* 9869 * make a copy of the original message 9870 */ 9871 mp2ctl = copymsg(mpctl); 9872 9873 /* ipAddrEntryTable */ 9874 9875 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9876 optp->level = MIB2_IP; 9877 optp->name = MIB2_IP_ADDR; 9878 zoneid = Q_TO_CONN(q)->conn_zoneid; 9879 9880 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9881 ill = ILL_START_WALK_V4(&ctx, ipst); 9882 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9883 for (ipif = ill->ill_ipif; ipif != NULL; 9884 ipif = ipif->ipif_next) { 9885 if (ipif->ipif_zoneid != zoneid && 9886 ipif->ipif_zoneid != ALL_ZONES) 9887 continue; 9888 /* Sum of count from dead IRE_LO* and our current */ 9889 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9890 if (ipif->ipif_ire_local != NULL) { 9891 mae.ipAdEntInfo.ae_ibcnt += 9892 ipif->ipif_ire_local->ire_ib_pkt_count; 9893 } 9894 mae.ipAdEntInfo.ae_obcnt = 0; 9895 mae.ipAdEntInfo.ae_focnt = 0; 9896 9897 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 9898 OCTET_LENGTH); 9899 mae.ipAdEntIfIndex.o_length = 9900 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 9901 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 9902 mae.ipAdEntNetMask = ipif->ipif_net_mask; 9903 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 9904 mae.ipAdEntInfo.ae_subnet_len = 9905 ip_mask_to_plen(ipif->ipif_net_mask); 9906 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 9907 for (bitval = 1; 9908 bitval && 9909 !(bitval & ipif->ipif_brd_addr); 9910 bitval <<= 1) 9911 noop; 9912 mae.ipAdEntBcastAddr = bitval; 9913 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 9914 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 9915 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 9916 mae.ipAdEntInfo.ae_broadcast_addr = 9917 ipif->ipif_brd_addr; 9918 mae.ipAdEntInfo.ae_pp_dst_addr = 9919 ipif->ipif_pp_dst_addr; 9920 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 9921 ill->ill_flags | ill->ill_phyint->phyint_flags; 9922 mae.ipAdEntRetransmitTime = 9923 ill->ill_reachable_retrans_time; 9924 9925 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9926 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 9927 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 9928 "allocate %u bytes\n", 9929 (uint_t)sizeof (mib2_ipAddrEntry_t))); 9930 } 9931 } 9932 } 9933 rw_exit(&ipst->ips_ill_g_lock); 9934 9935 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9936 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 9937 (int)optp->level, (int)optp->name, (int)optp->len)); 9938 qreply(q, mpctl); 9939 return (mp2ctl); 9940 } 9941 9942 /* IPv6 address information */ 9943 static mblk_t * 9944 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9945 { 9946 struct opthdr *optp; 9947 mblk_t *mp2ctl; 9948 mblk_t *mp_tail = NULL; 9949 ill_t *ill; 9950 ipif_t *ipif; 9951 mib2_ipv6AddrEntry_t mae6; 9952 zoneid_t zoneid; 9953 ill_walk_context_t ctx; 9954 9955 /* 9956 * make a copy of the original message 9957 */ 9958 mp2ctl = copymsg(mpctl); 9959 9960 /* ipv6AddrEntryTable */ 9961 9962 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9963 optp->level = MIB2_IP6; 9964 optp->name = MIB2_IP6_ADDR; 9965 zoneid = Q_TO_CONN(q)->conn_zoneid; 9966 9967 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9968 ill = ILL_START_WALK_V6(&ctx, ipst); 9969 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9970 for (ipif = ill->ill_ipif; ipif != NULL; 9971 ipif = ipif->ipif_next) { 9972 if (ipif->ipif_zoneid != zoneid && 9973 ipif->ipif_zoneid != ALL_ZONES) 9974 continue; 9975 /* Sum of count from dead IRE_LO* and our current */ 9976 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9977 if (ipif->ipif_ire_local != NULL) { 9978 mae6.ipv6AddrInfo.ae_ibcnt += 9979 ipif->ipif_ire_local->ire_ib_pkt_count; 9980 } 9981 mae6.ipv6AddrInfo.ae_obcnt = 0; 9982 mae6.ipv6AddrInfo.ae_focnt = 0; 9983 9984 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 9985 OCTET_LENGTH); 9986 mae6.ipv6AddrIfIndex.o_length = 9987 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 9988 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 9989 mae6.ipv6AddrPfxLength = 9990 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9991 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 9992 mae6.ipv6AddrInfo.ae_subnet_len = 9993 mae6.ipv6AddrPfxLength; 9994 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 9995 9996 /* Type: stateless(1), stateful(2), unknown(3) */ 9997 if (ipif->ipif_flags & IPIF_ADDRCONF) 9998 mae6.ipv6AddrType = 1; 9999 else 10000 mae6.ipv6AddrType = 2; 10001 /* Anycast: true(1), false(2) */ 10002 if (ipif->ipif_flags & IPIF_ANYCAST) 10003 mae6.ipv6AddrAnycastFlag = 1; 10004 else 10005 mae6.ipv6AddrAnycastFlag = 2; 10006 10007 /* 10008 * Address status: preferred(1), deprecated(2), 10009 * invalid(3), inaccessible(4), unknown(5) 10010 */ 10011 if (ipif->ipif_flags & IPIF_NOLOCAL) 10012 mae6.ipv6AddrStatus = 3; 10013 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10014 mae6.ipv6AddrStatus = 2; 10015 else 10016 mae6.ipv6AddrStatus = 1; 10017 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10018 mae6.ipv6AddrInfo.ae_metric = 10019 ipif->ipif_ill->ill_metric; 10020 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10021 ipif->ipif_v6pp_dst_addr; 10022 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10023 ill->ill_flags | ill->ill_phyint->phyint_flags; 10024 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10025 mae6.ipv6AddrIdentifier = ill->ill_token; 10026 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10027 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10028 mae6.ipv6AddrRetransmitTime = 10029 ill->ill_reachable_retrans_time; 10030 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10031 (char *)&mae6, 10032 (int)sizeof (mib2_ipv6AddrEntry_t))) { 10033 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10034 "allocate %u bytes\n", 10035 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 10036 } 10037 } 10038 } 10039 rw_exit(&ipst->ips_ill_g_lock); 10040 10041 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10042 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10043 (int)optp->level, (int)optp->name, (int)optp->len)); 10044 qreply(q, mpctl); 10045 return (mp2ctl); 10046 } 10047 10048 /* IPv4 multicast group membership. */ 10049 static mblk_t * 10050 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10051 { 10052 struct opthdr *optp; 10053 mblk_t *mp2ctl; 10054 ill_t *ill; 10055 ipif_t *ipif; 10056 ilm_t *ilm; 10057 ip_member_t ipm; 10058 mblk_t *mp_tail = NULL; 10059 ill_walk_context_t ctx; 10060 zoneid_t zoneid; 10061 10062 /* 10063 * make a copy of the original message 10064 */ 10065 mp2ctl = copymsg(mpctl); 10066 zoneid = Q_TO_CONN(q)->conn_zoneid; 10067 10068 /* ipGroupMember table */ 10069 optp = (struct opthdr *)&mpctl->b_rptr[ 10070 sizeof (struct T_optmgmt_ack)]; 10071 optp->level = MIB2_IP; 10072 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10073 10074 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10075 ill = ILL_START_WALK_V4(&ctx, ipst); 10076 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10077 /* Make sure the ill isn't going away. */ 10078 if (!ill_check_and_refhold(ill)) 10079 continue; 10080 rw_exit(&ipst->ips_ill_g_lock); 10081 rw_enter(&ill->ill_mcast_lock, RW_READER); 10082 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10083 if (ilm->ilm_zoneid != zoneid && 10084 ilm->ilm_zoneid != ALL_ZONES) 10085 continue; 10086 10087 /* Is there an ipif for ilm_ifaddr? */ 10088 for (ipif = ill->ill_ipif; ipif != NULL; 10089 ipif = ipif->ipif_next) { 10090 if (!IPIF_IS_CONDEMNED(ipif) && 10091 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10092 ilm->ilm_ifaddr != INADDR_ANY) 10093 break; 10094 } 10095 if (ipif != NULL) { 10096 ipif_get_name(ipif, 10097 ipm.ipGroupMemberIfIndex.o_bytes, 10098 OCTET_LENGTH); 10099 } else { 10100 ill_get_name(ill, 10101 ipm.ipGroupMemberIfIndex.o_bytes, 10102 OCTET_LENGTH); 10103 } 10104 ipm.ipGroupMemberIfIndex.o_length = 10105 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10106 10107 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10108 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10109 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10110 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10111 (char *)&ipm, (int)sizeof (ipm))) { 10112 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10113 "failed to allocate %u bytes\n", 10114 (uint_t)sizeof (ipm))); 10115 } 10116 } 10117 rw_exit(&ill->ill_mcast_lock); 10118 ill_refrele(ill); 10119 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10120 } 10121 rw_exit(&ipst->ips_ill_g_lock); 10122 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10123 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10124 (int)optp->level, (int)optp->name, (int)optp->len)); 10125 qreply(q, mpctl); 10126 return (mp2ctl); 10127 } 10128 10129 /* IPv6 multicast group membership. */ 10130 static mblk_t * 10131 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10132 { 10133 struct opthdr *optp; 10134 mblk_t *mp2ctl; 10135 ill_t *ill; 10136 ilm_t *ilm; 10137 ipv6_member_t ipm6; 10138 mblk_t *mp_tail = NULL; 10139 ill_walk_context_t ctx; 10140 zoneid_t zoneid; 10141 10142 /* 10143 * make a copy of the original message 10144 */ 10145 mp2ctl = copymsg(mpctl); 10146 zoneid = Q_TO_CONN(q)->conn_zoneid; 10147 10148 /* ip6GroupMember table */ 10149 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10150 optp->level = MIB2_IP6; 10151 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10152 10153 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10154 ill = ILL_START_WALK_V6(&ctx, ipst); 10155 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10156 /* Make sure the ill isn't going away. */ 10157 if (!ill_check_and_refhold(ill)) 10158 continue; 10159 rw_exit(&ipst->ips_ill_g_lock); 10160 /* 10161 * Normally we don't have any members on under IPMP interfaces. 10162 * We report them as a debugging aid. 10163 */ 10164 rw_enter(&ill->ill_mcast_lock, RW_READER); 10165 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10166 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10167 if (ilm->ilm_zoneid != zoneid && 10168 ilm->ilm_zoneid != ALL_ZONES) 10169 continue; /* not this zone */ 10170 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10171 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10172 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10173 if (!snmp_append_data2(mpctl->b_cont, 10174 &mp_tail, 10175 (char *)&ipm6, (int)sizeof (ipm6))) { 10176 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10177 "failed to allocate %u bytes\n", 10178 (uint_t)sizeof (ipm6))); 10179 } 10180 } 10181 rw_exit(&ill->ill_mcast_lock); 10182 ill_refrele(ill); 10183 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10184 } 10185 rw_exit(&ipst->ips_ill_g_lock); 10186 10187 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10188 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10189 (int)optp->level, (int)optp->name, (int)optp->len)); 10190 qreply(q, mpctl); 10191 return (mp2ctl); 10192 } 10193 10194 /* IP multicast filtered sources */ 10195 static mblk_t * 10196 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10197 { 10198 struct opthdr *optp; 10199 mblk_t *mp2ctl; 10200 ill_t *ill; 10201 ipif_t *ipif; 10202 ilm_t *ilm; 10203 ip_grpsrc_t ips; 10204 mblk_t *mp_tail = NULL; 10205 ill_walk_context_t ctx; 10206 zoneid_t zoneid; 10207 int i; 10208 slist_t *sl; 10209 10210 /* 10211 * make a copy of the original message 10212 */ 10213 mp2ctl = copymsg(mpctl); 10214 zoneid = Q_TO_CONN(q)->conn_zoneid; 10215 10216 /* ipGroupSource table */ 10217 optp = (struct opthdr *)&mpctl->b_rptr[ 10218 sizeof (struct T_optmgmt_ack)]; 10219 optp->level = MIB2_IP; 10220 optp->name = EXPER_IP_GROUP_SOURCES; 10221 10222 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10223 ill = ILL_START_WALK_V4(&ctx, ipst); 10224 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10225 /* Make sure the ill isn't going away. */ 10226 if (!ill_check_and_refhold(ill)) 10227 continue; 10228 rw_exit(&ipst->ips_ill_g_lock); 10229 rw_enter(&ill->ill_mcast_lock, RW_READER); 10230 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10231 sl = ilm->ilm_filter; 10232 if (ilm->ilm_zoneid != zoneid && 10233 ilm->ilm_zoneid != ALL_ZONES) 10234 continue; 10235 if (SLIST_IS_EMPTY(sl)) 10236 continue; 10237 10238 /* Is there an ipif for ilm_ifaddr? */ 10239 for (ipif = ill->ill_ipif; ipif != NULL; 10240 ipif = ipif->ipif_next) { 10241 if (!IPIF_IS_CONDEMNED(ipif) && 10242 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10243 ilm->ilm_ifaddr != INADDR_ANY) 10244 break; 10245 } 10246 if (ipif != NULL) { 10247 ipif_get_name(ipif, 10248 ips.ipGroupSourceIfIndex.o_bytes, 10249 OCTET_LENGTH); 10250 } else { 10251 ill_get_name(ill, 10252 ips.ipGroupSourceIfIndex.o_bytes, 10253 OCTET_LENGTH); 10254 } 10255 ips.ipGroupSourceIfIndex.o_length = 10256 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10257 10258 ips.ipGroupSourceGroup = ilm->ilm_addr; 10259 for (i = 0; i < sl->sl_numsrc; i++) { 10260 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10261 continue; 10262 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10263 ips.ipGroupSourceAddress); 10264 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10265 (char *)&ips, (int)sizeof (ips)) == 0) { 10266 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10267 " failed to allocate %u bytes\n", 10268 (uint_t)sizeof (ips))); 10269 } 10270 } 10271 } 10272 rw_exit(&ill->ill_mcast_lock); 10273 ill_refrele(ill); 10274 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10275 } 10276 rw_exit(&ipst->ips_ill_g_lock); 10277 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10278 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10279 (int)optp->level, (int)optp->name, (int)optp->len)); 10280 qreply(q, mpctl); 10281 return (mp2ctl); 10282 } 10283 10284 /* IPv6 multicast filtered sources. */ 10285 static mblk_t * 10286 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10287 { 10288 struct opthdr *optp; 10289 mblk_t *mp2ctl; 10290 ill_t *ill; 10291 ilm_t *ilm; 10292 ipv6_grpsrc_t ips6; 10293 mblk_t *mp_tail = NULL; 10294 ill_walk_context_t ctx; 10295 zoneid_t zoneid; 10296 int i; 10297 slist_t *sl; 10298 10299 /* 10300 * make a copy of the original message 10301 */ 10302 mp2ctl = copymsg(mpctl); 10303 zoneid = Q_TO_CONN(q)->conn_zoneid; 10304 10305 /* ip6GroupMember table */ 10306 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10307 optp->level = MIB2_IP6; 10308 optp->name = EXPER_IP6_GROUP_SOURCES; 10309 10310 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10311 ill = ILL_START_WALK_V6(&ctx, ipst); 10312 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10313 /* Make sure the ill isn't going away. */ 10314 if (!ill_check_and_refhold(ill)) 10315 continue; 10316 rw_exit(&ipst->ips_ill_g_lock); 10317 /* 10318 * Normally we don't have any members on under IPMP interfaces. 10319 * We report them as a debugging aid. 10320 */ 10321 rw_enter(&ill->ill_mcast_lock, RW_READER); 10322 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10323 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10324 sl = ilm->ilm_filter; 10325 if (ilm->ilm_zoneid != zoneid && 10326 ilm->ilm_zoneid != ALL_ZONES) 10327 continue; 10328 if (SLIST_IS_EMPTY(sl)) 10329 continue; 10330 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10331 for (i = 0; i < sl->sl_numsrc; i++) { 10332 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10333 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10334 (char *)&ips6, (int)sizeof (ips6))) { 10335 ip1dbg(("ip_snmp_get_mib2_ip6_" 10336 "group_src: failed to allocate " 10337 "%u bytes\n", 10338 (uint_t)sizeof (ips6))); 10339 } 10340 } 10341 } 10342 rw_exit(&ill->ill_mcast_lock); 10343 ill_refrele(ill); 10344 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10345 } 10346 rw_exit(&ipst->ips_ill_g_lock); 10347 10348 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10349 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10350 (int)optp->level, (int)optp->name, (int)optp->len)); 10351 qreply(q, mpctl); 10352 return (mp2ctl); 10353 } 10354 10355 /* Multicast routing virtual interface table. */ 10356 static mblk_t * 10357 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10358 { 10359 struct opthdr *optp; 10360 mblk_t *mp2ctl; 10361 10362 /* 10363 * make a copy of the original message 10364 */ 10365 mp2ctl = copymsg(mpctl); 10366 10367 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10368 optp->level = EXPER_DVMRP; 10369 optp->name = EXPER_DVMRP_VIF; 10370 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10371 ip0dbg(("ip_mroute_vif: failed\n")); 10372 } 10373 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10374 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10375 (int)optp->level, (int)optp->name, (int)optp->len)); 10376 qreply(q, mpctl); 10377 return (mp2ctl); 10378 } 10379 10380 /* Multicast routing table. */ 10381 static mblk_t * 10382 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10383 { 10384 struct opthdr *optp; 10385 mblk_t *mp2ctl; 10386 10387 /* 10388 * make a copy of the original message 10389 */ 10390 mp2ctl = copymsg(mpctl); 10391 10392 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10393 optp->level = EXPER_DVMRP; 10394 optp->name = EXPER_DVMRP_MRT; 10395 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10396 ip0dbg(("ip_mroute_mrt: failed\n")); 10397 } 10398 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10399 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10400 (int)optp->level, (int)optp->name, (int)optp->len)); 10401 qreply(q, mpctl); 10402 return (mp2ctl); 10403 } 10404 10405 /* 10406 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10407 * in one IRE walk. 10408 */ 10409 static mblk_t * 10410 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10411 ip_stack_t *ipst) 10412 { 10413 struct opthdr *optp; 10414 mblk_t *mp2ctl; /* Returned */ 10415 mblk_t *mp3ctl; /* nettomedia */ 10416 mblk_t *mp4ctl; /* routeattrs */ 10417 iproutedata_t ird; 10418 zoneid_t zoneid; 10419 10420 /* 10421 * make copies of the original message 10422 * - mp2ctl is returned unchanged to the caller for his use 10423 * - mpctl is sent upstream as ipRouteEntryTable 10424 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10425 * - mp4ctl is sent upstream as ipRouteAttributeTable 10426 */ 10427 mp2ctl = copymsg(mpctl); 10428 mp3ctl = copymsg(mpctl); 10429 mp4ctl = copymsg(mpctl); 10430 if (mp3ctl == NULL || mp4ctl == NULL) { 10431 freemsg(mp4ctl); 10432 freemsg(mp3ctl); 10433 freemsg(mp2ctl); 10434 freemsg(mpctl); 10435 return (NULL); 10436 } 10437 10438 bzero(&ird, sizeof (ird)); 10439 10440 ird.ird_route.lp_head = mpctl->b_cont; 10441 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10442 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10443 /* 10444 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10445 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10446 * intended a temporary solution until a proper MIB API is provided 10447 * that provides complete filtering/caller-opt-in. 10448 */ 10449 if (level == EXPER_IP_AND_ALL_IRES) 10450 ird.ird_flags |= IRD_REPORT_ALL; 10451 10452 zoneid = Q_TO_CONN(q)->conn_zoneid; 10453 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10454 10455 /* ipRouteEntryTable in mpctl */ 10456 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10457 optp->level = MIB2_IP; 10458 optp->name = MIB2_IP_ROUTE; 10459 optp->len = msgdsize(ird.ird_route.lp_head); 10460 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10461 (int)optp->level, (int)optp->name, (int)optp->len)); 10462 qreply(q, mpctl); 10463 10464 /* ipNetToMediaEntryTable in mp3ctl */ 10465 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10466 10467 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10468 optp->level = MIB2_IP; 10469 optp->name = MIB2_IP_MEDIA; 10470 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10471 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10472 (int)optp->level, (int)optp->name, (int)optp->len)); 10473 qreply(q, mp3ctl); 10474 10475 /* ipRouteAttributeTable in mp4ctl */ 10476 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10477 optp->level = MIB2_IP; 10478 optp->name = EXPER_IP_RTATTR; 10479 optp->len = msgdsize(ird.ird_attrs.lp_head); 10480 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10481 (int)optp->level, (int)optp->name, (int)optp->len)); 10482 if (optp->len == 0) 10483 freemsg(mp4ctl); 10484 else 10485 qreply(q, mp4ctl); 10486 10487 return (mp2ctl); 10488 } 10489 10490 /* 10491 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10492 * ipv6NetToMediaEntryTable in an NDP walk. 10493 */ 10494 static mblk_t * 10495 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10496 ip_stack_t *ipst) 10497 { 10498 struct opthdr *optp; 10499 mblk_t *mp2ctl; /* Returned */ 10500 mblk_t *mp3ctl; /* nettomedia */ 10501 mblk_t *mp4ctl; /* routeattrs */ 10502 iproutedata_t ird; 10503 zoneid_t zoneid; 10504 10505 /* 10506 * make copies of the original message 10507 * - mp2ctl is returned unchanged to the caller for his use 10508 * - mpctl is sent upstream as ipv6RouteEntryTable 10509 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10510 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10511 */ 10512 mp2ctl = copymsg(mpctl); 10513 mp3ctl = copymsg(mpctl); 10514 mp4ctl = copymsg(mpctl); 10515 if (mp3ctl == NULL || mp4ctl == NULL) { 10516 freemsg(mp4ctl); 10517 freemsg(mp3ctl); 10518 freemsg(mp2ctl); 10519 freemsg(mpctl); 10520 return (NULL); 10521 } 10522 10523 bzero(&ird, sizeof (ird)); 10524 10525 ird.ird_route.lp_head = mpctl->b_cont; 10526 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10527 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10528 /* 10529 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10530 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10531 * intended a temporary solution until a proper MIB API is provided 10532 * that provides complete filtering/caller-opt-in. 10533 */ 10534 if (level == EXPER_IP_AND_ALL_IRES) 10535 ird.ird_flags |= IRD_REPORT_ALL; 10536 10537 zoneid = Q_TO_CONN(q)->conn_zoneid; 10538 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10539 10540 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10541 optp->level = MIB2_IP6; 10542 optp->name = MIB2_IP6_ROUTE; 10543 optp->len = msgdsize(ird.ird_route.lp_head); 10544 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10545 (int)optp->level, (int)optp->name, (int)optp->len)); 10546 qreply(q, mpctl); 10547 10548 /* ipv6NetToMediaEntryTable in mp3ctl */ 10549 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10550 10551 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10552 optp->level = MIB2_IP6; 10553 optp->name = MIB2_IP6_MEDIA; 10554 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10555 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10556 (int)optp->level, (int)optp->name, (int)optp->len)); 10557 qreply(q, mp3ctl); 10558 10559 /* ipv6RouteAttributeTable in mp4ctl */ 10560 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10561 optp->level = MIB2_IP6; 10562 optp->name = EXPER_IP_RTATTR; 10563 optp->len = msgdsize(ird.ird_attrs.lp_head); 10564 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10565 (int)optp->level, (int)optp->name, (int)optp->len)); 10566 if (optp->len == 0) 10567 freemsg(mp4ctl); 10568 else 10569 qreply(q, mp4ctl); 10570 10571 return (mp2ctl); 10572 } 10573 10574 /* 10575 * IPv6 mib: One per ill 10576 */ 10577 static mblk_t * 10578 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10579 { 10580 struct opthdr *optp; 10581 mblk_t *mp2ctl; 10582 ill_t *ill; 10583 ill_walk_context_t ctx; 10584 mblk_t *mp_tail = NULL; 10585 10586 /* 10587 * Make a copy of the original message 10588 */ 10589 mp2ctl = copymsg(mpctl); 10590 10591 /* fixed length IPv6 structure ... */ 10592 10593 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10594 optp->level = MIB2_IP6; 10595 optp->name = 0; 10596 /* Include "unknown interface" ip6_mib */ 10597 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10598 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10599 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10600 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10601 ipst->ips_ipv6_forwarding ? 1 : 2); 10602 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10603 ipst->ips_ipv6_def_hops); 10604 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10605 sizeof (mib2_ipIfStatsEntry_t)); 10606 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10607 sizeof (mib2_ipv6AddrEntry_t)); 10608 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10609 sizeof (mib2_ipv6RouteEntry_t)); 10610 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10611 sizeof (mib2_ipv6NetToMediaEntry_t)); 10612 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10613 sizeof (ipv6_member_t)); 10614 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10615 sizeof (ipv6_grpsrc_t)); 10616 10617 /* 10618 * Synchronize 64- and 32-bit counters 10619 */ 10620 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10621 ipIfStatsHCInReceives); 10622 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10623 ipIfStatsHCInDelivers); 10624 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10625 ipIfStatsHCOutRequests); 10626 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10627 ipIfStatsHCOutForwDatagrams); 10628 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10629 ipIfStatsHCOutMcastPkts); 10630 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10631 ipIfStatsHCInMcastPkts); 10632 10633 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10634 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 10635 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10636 (uint_t)sizeof (ipst->ips_ip6_mib))); 10637 } 10638 10639 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10640 ill = ILL_START_WALK_V6(&ctx, ipst); 10641 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10642 ill->ill_ip_mib->ipIfStatsIfIndex = 10643 ill->ill_phyint->phyint_ifindex; 10644 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10645 ipst->ips_ipv6_forwarding ? 1 : 2); 10646 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10647 ill->ill_max_hops); 10648 10649 /* 10650 * Synchronize 64- and 32-bit counters 10651 */ 10652 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10653 ipIfStatsHCInReceives); 10654 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10655 ipIfStatsHCInDelivers); 10656 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10657 ipIfStatsHCOutRequests); 10658 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10659 ipIfStatsHCOutForwDatagrams); 10660 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10661 ipIfStatsHCOutMcastPkts); 10662 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10663 ipIfStatsHCInMcastPkts); 10664 10665 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10666 (char *)ill->ill_ip_mib, 10667 (int)sizeof (*ill->ill_ip_mib))) { 10668 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10669 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 10670 } 10671 } 10672 rw_exit(&ipst->ips_ill_g_lock); 10673 10674 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10675 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10676 (int)optp->level, (int)optp->name, (int)optp->len)); 10677 qreply(q, mpctl); 10678 return (mp2ctl); 10679 } 10680 10681 /* 10682 * ICMPv6 mib: One per ill 10683 */ 10684 static mblk_t * 10685 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10686 { 10687 struct opthdr *optp; 10688 mblk_t *mp2ctl; 10689 ill_t *ill; 10690 ill_walk_context_t ctx; 10691 mblk_t *mp_tail = NULL; 10692 /* 10693 * Make a copy of the original message 10694 */ 10695 mp2ctl = copymsg(mpctl); 10696 10697 /* fixed length ICMPv6 structure ... */ 10698 10699 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10700 optp->level = MIB2_ICMP6; 10701 optp->name = 0; 10702 /* Include "unknown interface" icmp6_mib */ 10703 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10704 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10705 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10706 sizeof (mib2_ipv6IfIcmpEntry_t); 10707 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10708 (char *)&ipst->ips_icmp6_mib, 10709 (int)sizeof (ipst->ips_icmp6_mib))) { 10710 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10711 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10712 } 10713 10714 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10715 ill = ILL_START_WALK_V6(&ctx, ipst); 10716 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10717 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10718 ill->ill_phyint->phyint_ifindex; 10719 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10720 (char *)ill->ill_icmp6_mib, 10721 (int)sizeof (*ill->ill_icmp6_mib))) { 10722 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10723 "%u bytes\n", 10724 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10725 } 10726 } 10727 rw_exit(&ipst->ips_ill_g_lock); 10728 10729 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10730 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10731 (int)optp->level, (int)optp->name, (int)optp->len)); 10732 qreply(q, mpctl); 10733 return (mp2ctl); 10734 } 10735 10736 /* 10737 * ire_walk routine to create both ipRouteEntryTable and 10738 * ipRouteAttributeTable in one IRE walk 10739 */ 10740 static void 10741 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10742 { 10743 ill_t *ill; 10744 mib2_ipRouteEntry_t *re; 10745 mib2_ipAttributeEntry_t iaes; 10746 tsol_ire_gw_secattr_t *attrp; 10747 tsol_gc_t *gc = NULL; 10748 tsol_gcgrp_t *gcgrp = NULL; 10749 ip_stack_t *ipst = ire->ire_ipst; 10750 10751 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10752 10753 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10754 if (ire->ire_testhidden) 10755 return; 10756 if (ire->ire_type & IRE_IF_CLONE) 10757 return; 10758 } 10759 10760 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10761 return; 10762 10763 if ((attrp = ire->ire_gw_secattr) != NULL) { 10764 mutex_enter(&attrp->igsa_lock); 10765 if ((gc = attrp->igsa_gc) != NULL) { 10766 gcgrp = gc->gc_grp; 10767 ASSERT(gcgrp != NULL); 10768 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10769 } 10770 mutex_exit(&attrp->igsa_lock); 10771 } 10772 /* 10773 * Return all IRE types for route table... let caller pick and choose 10774 */ 10775 re->ipRouteDest = ire->ire_addr; 10776 ill = ire->ire_ill; 10777 re->ipRouteIfIndex.o_length = 0; 10778 if (ill != NULL) { 10779 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10780 re->ipRouteIfIndex.o_length = 10781 mi_strlen(re->ipRouteIfIndex.o_bytes); 10782 } 10783 re->ipRouteMetric1 = -1; 10784 re->ipRouteMetric2 = -1; 10785 re->ipRouteMetric3 = -1; 10786 re->ipRouteMetric4 = -1; 10787 10788 re->ipRouteNextHop = ire->ire_gateway_addr; 10789 /* indirect(4), direct(3), or invalid(2) */ 10790 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10791 re->ipRouteType = 2; 10792 else if (ire->ire_type & IRE_ONLINK) 10793 re->ipRouteType = 3; 10794 else 10795 re->ipRouteType = 4; 10796 10797 re->ipRouteProto = -1; 10798 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10799 re->ipRouteMask = ire->ire_mask; 10800 re->ipRouteMetric5 = -1; 10801 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10802 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10803 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10804 10805 re->ipRouteInfo.re_frag_flag = 0; 10806 re->ipRouteInfo.re_rtt = 0; 10807 re->ipRouteInfo.re_src_addr = 0; 10808 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10809 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10810 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10811 re->ipRouteInfo.re_flags = ire->ire_flags; 10812 10813 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10814 if (ire->ire_type & IRE_INTERFACE) { 10815 ire_t *child; 10816 10817 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10818 child = ire->ire_dep_children; 10819 while (child != NULL) { 10820 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10821 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10822 child = child->ire_dep_sib_next; 10823 } 10824 rw_exit(&ipst->ips_ire_dep_lock); 10825 } 10826 10827 if (ire->ire_flags & RTF_DYNAMIC) { 10828 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10829 } else { 10830 re->ipRouteInfo.re_ire_type = ire->ire_type; 10831 } 10832 10833 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10834 (char *)re, (int)sizeof (*re))) { 10835 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10836 (uint_t)sizeof (*re))); 10837 } 10838 10839 if (gc != NULL) { 10840 iaes.iae_routeidx = ird->ird_idx; 10841 iaes.iae_doi = gc->gc_db->gcdb_doi; 10842 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10843 10844 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10845 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10846 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 10847 "bytes\n", (uint_t)sizeof (iaes))); 10848 } 10849 } 10850 10851 /* bump route index for next pass */ 10852 ird->ird_idx++; 10853 10854 kmem_free(re, sizeof (*re)); 10855 if (gcgrp != NULL) 10856 rw_exit(&gcgrp->gcgrp_rwlock); 10857 } 10858 10859 /* 10860 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 10861 */ 10862 static void 10863 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 10864 { 10865 ill_t *ill; 10866 mib2_ipv6RouteEntry_t *re; 10867 mib2_ipAttributeEntry_t iaes; 10868 tsol_ire_gw_secattr_t *attrp; 10869 tsol_gc_t *gc = NULL; 10870 tsol_gcgrp_t *gcgrp = NULL; 10871 ip_stack_t *ipst = ire->ire_ipst; 10872 10873 ASSERT(ire->ire_ipversion == IPV6_VERSION); 10874 10875 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10876 if (ire->ire_testhidden) 10877 return; 10878 if (ire->ire_type & IRE_IF_CLONE) 10879 return; 10880 } 10881 10882 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10883 return; 10884 10885 if ((attrp = ire->ire_gw_secattr) != NULL) { 10886 mutex_enter(&attrp->igsa_lock); 10887 if ((gc = attrp->igsa_gc) != NULL) { 10888 gcgrp = gc->gc_grp; 10889 ASSERT(gcgrp != NULL); 10890 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10891 } 10892 mutex_exit(&attrp->igsa_lock); 10893 } 10894 /* 10895 * Return all IRE types for route table... let caller pick and choose 10896 */ 10897 re->ipv6RouteDest = ire->ire_addr_v6; 10898 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 10899 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 10900 re->ipv6RouteIfIndex.o_length = 0; 10901 ill = ire->ire_ill; 10902 if (ill != NULL) { 10903 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 10904 re->ipv6RouteIfIndex.o_length = 10905 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 10906 } 10907 10908 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 10909 10910 mutex_enter(&ire->ire_lock); 10911 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 10912 mutex_exit(&ire->ire_lock); 10913 10914 /* remote(4), local(3), or discard(2) */ 10915 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10916 re->ipv6RouteType = 2; 10917 else if (ire->ire_type & IRE_ONLINK) 10918 re->ipv6RouteType = 3; 10919 else 10920 re->ipv6RouteType = 4; 10921 10922 re->ipv6RouteProtocol = -1; 10923 re->ipv6RoutePolicy = 0; 10924 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 10925 re->ipv6RouteNextHopRDI = 0; 10926 re->ipv6RouteWeight = 0; 10927 re->ipv6RouteMetric = 0; 10928 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10929 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 10930 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10931 10932 re->ipv6RouteInfo.re_frag_flag = 0; 10933 re->ipv6RouteInfo.re_rtt = 0; 10934 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 10935 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10936 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10937 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 10938 re->ipv6RouteInfo.re_flags = ire->ire_flags; 10939 10940 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10941 if (ire->ire_type & IRE_INTERFACE) { 10942 ire_t *child; 10943 10944 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10945 child = ire->ire_dep_children; 10946 while (child != NULL) { 10947 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 10948 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10949 child = child->ire_dep_sib_next; 10950 } 10951 rw_exit(&ipst->ips_ire_dep_lock); 10952 } 10953 if (ire->ire_flags & RTF_DYNAMIC) { 10954 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10955 } else { 10956 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 10957 } 10958 10959 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10960 (char *)re, (int)sizeof (*re))) { 10961 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 10962 (uint_t)sizeof (*re))); 10963 } 10964 10965 if (gc != NULL) { 10966 iaes.iae_routeidx = ird->ird_idx; 10967 iaes.iae_doi = gc->gc_db->gcdb_doi; 10968 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10969 10970 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10971 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10972 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 10973 "bytes\n", (uint_t)sizeof (iaes))); 10974 } 10975 } 10976 10977 /* bump route index for next pass */ 10978 ird->ird_idx++; 10979 10980 kmem_free(re, sizeof (*re)); 10981 if (gcgrp != NULL) 10982 rw_exit(&gcgrp->gcgrp_rwlock); 10983 } 10984 10985 /* 10986 * ncec_walk routine to create ipv6NetToMediaEntryTable 10987 */ 10988 static int 10989 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 10990 { 10991 ill_t *ill; 10992 mib2_ipv6NetToMediaEntry_t ntme; 10993 10994 ill = ncec->ncec_ill; 10995 /* skip arpce entries, and loopback ncec entries */ 10996 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 10997 return (0); 10998 /* 10999 * Neighbor cache entry attached to IRE with on-link 11000 * destination. 11001 * We report all IPMP groups on ncec_ill which is normally the upper. 11002 */ 11003 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11004 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11005 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11006 if (ncec->ncec_lladdr != NULL) { 11007 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11008 ntme.ipv6NetToMediaPhysAddress.o_length); 11009 } 11010 /* 11011 * Note: Returns ND_* states. Should be: 11012 * reachable(1), stale(2), delay(3), probe(4), 11013 * invalid(5), unknown(6) 11014 */ 11015 ntme.ipv6NetToMediaState = ncec->ncec_state; 11016 ntme.ipv6NetToMediaLastUpdated = 0; 11017 11018 /* other(1), dynamic(2), static(3), local(4) */ 11019 if (NCE_MYADDR(ncec)) { 11020 ntme.ipv6NetToMediaType = 4; 11021 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11022 ntme.ipv6NetToMediaType = 1; /* proxy */ 11023 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11024 ntme.ipv6NetToMediaType = 3; 11025 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11026 ntme.ipv6NetToMediaType = 1; 11027 } else { 11028 ntme.ipv6NetToMediaType = 2; 11029 } 11030 11031 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11032 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11033 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11034 (uint_t)sizeof (ntme))); 11035 } 11036 return (0); 11037 } 11038 11039 int 11040 nce2ace(ncec_t *ncec) 11041 { 11042 int flags = 0; 11043 11044 if (NCE_ISREACHABLE(ncec)) 11045 flags |= ACE_F_RESOLVED; 11046 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11047 flags |= ACE_F_AUTHORITY; 11048 if (ncec->ncec_flags & NCE_F_PUBLISH) 11049 flags |= ACE_F_PUBLISH; 11050 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11051 flags |= ACE_F_PERMANENT; 11052 if (NCE_MYADDR(ncec)) 11053 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11054 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11055 flags |= ACE_F_UNVERIFIED; 11056 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11057 flags |= ACE_F_AUTHORITY; 11058 if (ncec->ncec_flags & NCE_F_DELAYED) 11059 flags |= ACE_F_DELAYED; 11060 return (flags); 11061 } 11062 11063 /* 11064 * ncec_walk routine to create ipNetToMediaEntryTable 11065 */ 11066 static int 11067 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11068 { 11069 ill_t *ill; 11070 mib2_ipNetToMediaEntry_t ntme; 11071 const char *name = "unknown"; 11072 ipaddr_t ncec_addr; 11073 11074 ill = ncec->ncec_ill; 11075 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11076 ill->ill_net_type == IRE_LOOPBACK) 11077 return (0); 11078 11079 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11080 name = ill->ill_name; 11081 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11082 if (NCE_MYADDR(ncec)) { 11083 ntme.ipNetToMediaType = 4; 11084 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11085 ntme.ipNetToMediaType = 1; 11086 } else { 11087 ntme.ipNetToMediaType = 3; 11088 } 11089 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11090 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11091 ntme.ipNetToMediaIfIndex.o_length); 11092 11093 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11094 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11095 11096 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11097 ncec_addr = INADDR_BROADCAST; 11098 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11099 sizeof (ncec_addr)); 11100 /* 11101 * map all the flags to the ACE counterpart. 11102 */ 11103 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11104 11105 ntme.ipNetToMediaPhysAddress.o_length = 11106 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11107 11108 if (!NCE_ISREACHABLE(ncec)) 11109 ntme.ipNetToMediaPhysAddress.o_length = 0; 11110 else { 11111 if (ncec->ncec_lladdr != NULL) { 11112 bcopy(ncec->ncec_lladdr, 11113 ntme.ipNetToMediaPhysAddress.o_bytes, 11114 ntme.ipNetToMediaPhysAddress.o_length); 11115 } 11116 } 11117 11118 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11119 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11120 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11121 (uint_t)sizeof (ntme))); 11122 } 11123 return (0); 11124 } 11125 11126 /* 11127 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11128 */ 11129 /* ARGSUSED */ 11130 int 11131 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11132 { 11133 switch (level) { 11134 case MIB2_IP: 11135 case MIB2_ICMP: 11136 switch (name) { 11137 default: 11138 break; 11139 } 11140 return (1); 11141 default: 11142 return (1); 11143 } 11144 } 11145 11146 /* 11147 * When there exists both a 64- and 32-bit counter of a particular type 11148 * (i.e., InReceives), only the 64-bit counters are added. 11149 */ 11150 void 11151 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11152 { 11153 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11154 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11155 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11156 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11157 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11158 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11159 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11160 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11161 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11162 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11163 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11164 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11165 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11166 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11167 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11168 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11169 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11170 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11171 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11172 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11173 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11174 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11175 o2->ipIfStatsInWrongIPVersion); 11176 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11177 o2->ipIfStatsInWrongIPVersion); 11178 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11179 o2->ipIfStatsOutSwitchIPVersion); 11180 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11181 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11182 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11183 o2->ipIfStatsHCInForwDatagrams); 11184 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11185 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11186 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11187 o2->ipIfStatsHCOutForwDatagrams); 11188 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11189 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11190 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11191 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11192 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11193 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11194 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11195 o2->ipIfStatsHCOutMcastOctets); 11196 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11197 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11198 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11199 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11200 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11201 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11202 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11203 } 11204 11205 void 11206 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11207 { 11208 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11209 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11210 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11211 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11212 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11213 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11214 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11215 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11216 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11217 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11218 o2->ipv6IfIcmpInRouterSolicits); 11219 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11220 o2->ipv6IfIcmpInRouterAdvertisements); 11221 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11222 o2->ipv6IfIcmpInNeighborSolicits); 11223 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11224 o2->ipv6IfIcmpInNeighborAdvertisements); 11225 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11226 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11227 o2->ipv6IfIcmpInGroupMembQueries); 11228 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11229 o2->ipv6IfIcmpInGroupMembResponses); 11230 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11231 o2->ipv6IfIcmpInGroupMembReductions); 11232 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11233 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11234 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11235 o2->ipv6IfIcmpOutDestUnreachs); 11236 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11237 o2->ipv6IfIcmpOutAdminProhibs); 11238 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11239 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11240 o2->ipv6IfIcmpOutParmProblems); 11241 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11242 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11243 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11244 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11245 o2->ipv6IfIcmpOutRouterSolicits); 11246 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11247 o2->ipv6IfIcmpOutRouterAdvertisements); 11248 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11249 o2->ipv6IfIcmpOutNeighborSolicits); 11250 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11251 o2->ipv6IfIcmpOutNeighborAdvertisements); 11252 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11253 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11254 o2->ipv6IfIcmpOutGroupMembQueries); 11255 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11256 o2->ipv6IfIcmpOutGroupMembResponses); 11257 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11258 o2->ipv6IfIcmpOutGroupMembReductions); 11259 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11260 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11261 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11262 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11263 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11264 o2->ipv6IfIcmpInBadNeighborSolicitations); 11265 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11266 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11267 o2->ipv6IfIcmpInGroupMembTotal); 11268 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11269 o2->ipv6IfIcmpInGroupMembBadQueries); 11270 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11271 o2->ipv6IfIcmpInGroupMembBadReports); 11272 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11273 o2->ipv6IfIcmpInGroupMembOurReports); 11274 } 11275 11276 /* 11277 * Called before the options are updated to check if this packet will 11278 * be source routed from here. 11279 * This routine assumes that the options are well formed i.e. that they 11280 * have already been checked. 11281 */ 11282 boolean_t 11283 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11284 { 11285 ipoptp_t opts; 11286 uchar_t *opt; 11287 uint8_t optval; 11288 uint8_t optlen; 11289 ipaddr_t dst; 11290 11291 if (IS_SIMPLE_IPH(ipha)) { 11292 ip2dbg(("not source routed\n")); 11293 return (B_FALSE); 11294 } 11295 dst = ipha->ipha_dst; 11296 for (optval = ipoptp_first(&opts, ipha); 11297 optval != IPOPT_EOL; 11298 optval = ipoptp_next(&opts)) { 11299 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11300 opt = opts.ipoptp_cur; 11301 optlen = opts.ipoptp_len; 11302 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11303 optval, optlen)); 11304 switch (optval) { 11305 uint32_t off; 11306 case IPOPT_SSRR: 11307 case IPOPT_LSRR: 11308 /* 11309 * If dst is one of our addresses and there are some 11310 * entries left in the source route return (true). 11311 */ 11312 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11313 ip2dbg(("ip_source_routed: not next" 11314 " source route 0x%x\n", 11315 ntohl(dst))); 11316 return (B_FALSE); 11317 } 11318 off = opt[IPOPT_OFFSET]; 11319 off--; 11320 if (optlen < IP_ADDR_LEN || 11321 off > optlen - IP_ADDR_LEN) { 11322 /* End of source route */ 11323 ip1dbg(("ip_source_routed: end of SR\n")); 11324 return (B_FALSE); 11325 } 11326 return (B_TRUE); 11327 } 11328 } 11329 ip2dbg(("not source routed\n")); 11330 return (B_FALSE); 11331 } 11332 11333 /* 11334 * ip_unbind is called by the transports to remove a conn from 11335 * the fanout table. 11336 */ 11337 void 11338 ip_unbind(conn_t *connp) 11339 { 11340 11341 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11342 11343 if (is_system_labeled() && connp->conn_anon_port) { 11344 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11345 connp->conn_mlp_type, connp->conn_proto, 11346 ntohs(connp->conn_lport), B_FALSE); 11347 connp->conn_anon_port = 0; 11348 } 11349 connp->conn_mlp_type = mlptSingle; 11350 11351 ipcl_hash_remove(connp); 11352 } 11353 11354 /* 11355 * Used for deciding the MSS size for the upper layer. Thus 11356 * we need to check the outbound policy values in the conn. 11357 */ 11358 int 11359 conn_ipsec_length(conn_t *connp) 11360 { 11361 ipsec_latch_t *ipl; 11362 11363 ipl = connp->conn_latch; 11364 if (ipl == NULL) 11365 return (0); 11366 11367 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11368 return (0); 11369 11370 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11371 } 11372 11373 /* 11374 * Returns an estimate of the IPsec headers size. This is used if 11375 * we don't want to call into IPsec to get the exact size. 11376 */ 11377 int 11378 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11379 { 11380 ipsec_action_t *a; 11381 11382 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11383 return (0); 11384 11385 a = ixa->ixa_ipsec_action; 11386 if (a == NULL) { 11387 ASSERT(ixa->ixa_ipsec_policy != NULL); 11388 a = ixa->ixa_ipsec_policy->ipsp_act; 11389 } 11390 ASSERT(a != NULL); 11391 11392 return (a->ipa_ovhd); 11393 } 11394 11395 /* 11396 * If there are any source route options, return the true final 11397 * destination. Otherwise, return the destination. 11398 */ 11399 ipaddr_t 11400 ip_get_dst(ipha_t *ipha) 11401 { 11402 ipoptp_t opts; 11403 uchar_t *opt; 11404 uint8_t optval; 11405 uint8_t optlen; 11406 ipaddr_t dst; 11407 uint32_t off; 11408 11409 dst = ipha->ipha_dst; 11410 11411 if (IS_SIMPLE_IPH(ipha)) 11412 return (dst); 11413 11414 for (optval = ipoptp_first(&opts, ipha); 11415 optval != IPOPT_EOL; 11416 optval = ipoptp_next(&opts)) { 11417 opt = opts.ipoptp_cur; 11418 optlen = opts.ipoptp_len; 11419 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11420 switch (optval) { 11421 case IPOPT_SSRR: 11422 case IPOPT_LSRR: 11423 off = opt[IPOPT_OFFSET]; 11424 /* 11425 * If one of the conditions is true, it means 11426 * end of options and dst already has the right 11427 * value. 11428 */ 11429 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11430 off = optlen - IP_ADDR_LEN; 11431 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11432 } 11433 return (dst); 11434 default: 11435 break; 11436 } 11437 } 11438 11439 return (dst); 11440 } 11441 11442 /* 11443 * Outbound IP fragmentation routine. 11444 * Assumes the caller has checked whether or not fragmentation should 11445 * be allowed. Here we copy the DF bit from the header to all the generated 11446 * fragments. 11447 */ 11448 int 11449 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11450 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11451 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11452 { 11453 int i1; 11454 int hdr_len; 11455 mblk_t *hdr_mp; 11456 ipha_t *ipha; 11457 int ip_data_end; 11458 int len; 11459 mblk_t *mp = mp_orig; 11460 int offset; 11461 ill_t *ill = nce->nce_ill; 11462 ip_stack_t *ipst = ill->ill_ipst; 11463 mblk_t *carve_mp; 11464 uint32_t frag_flag; 11465 uint_t priority = mp->b_band; 11466 int error = 0; 11467 11468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11469 11470 if (pkt_len != msgdsize(mp)) { 11471 ip0dbg(("Packet length mismatch: %d, %ld\n", 11472 pkt_len, msgdsize(mp))); 11473 freemsg(mp); 11474 return (EINVAL); 11475 } 11476 11477 if (max_frag == 0) { 11478 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11479 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11480 ip_drop_output("FragFails: zero max_frag", mp, ill); 11481 freemsg(mp); 11482 return (EINVAL); 11483 } 11484 11485 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11486 ipha = (ipha_t *)mp->b_rptr; 11487 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11488 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11489 11490 /* 11491 * Establish the starting offset. May not be zero if we are fragging 11492 * a fragment that is being forwarded. 11493 */ 11494 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11495 11496 /* TODO why is this test needed? */ 11497 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11498 /* TODO: notify ulp somehow */ 11499 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11500 ip_drop_output("FragFails: bad starting offset", mp, ill); 11501 freemsg(mp); 11502 return (EINVAL); 11503 } 11504 11505 hdr_len = IPH_HDR_LENGTH(ipha); 11506 ipha->ipha_hdr_checksum = 0; 11507 11508 /* 11509 * Establish the number of bytes maximum per frag, after putting 11510 * in the header. 11511 */ 11512 len = (max_frag - hdr_len) & ~7; 11513 11514 /* Get a copy of the header for the trailing frags */ 11515 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11516 mp); 11517 if (hdr_mp == NULL) { 11518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11519 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11520 freemsg(mp); 11521 return (ENOBUFS); 11522 } 11523 11524 /* Store the starting offset, with the MoreFrags flag. */ 11525 i1 = offset | IPH_MF | frag_flag; 11526 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11527 11528 /* Establish the ending byte offset, based on the starting offset. */ 11529 offset <<= 3; 11530 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11531 11532 /* Store the length of the first fragment in the IP header. */ 11533 i1 = len + hdr_len; 11534 ASSERT(i1 <= IP_MAXPACKET); 11535 ipha->ipha_length = htons((uint16_t)i1); 11536 11537 /* 11538 * Compute the IP header checksum for the first frag. We have to 11539 * watch out that we stop at the end of the header. 11540 */ 11541 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11542 11543 /* 11544 * Now carve off the first frag. Note that this will include the 11545 * original IP header. 11546 */ 11547 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11548 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11549 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11550 freeb(hdr_mp); 11551 freemsg(mp_orig); 11552 return (ENOBUFS); 11553 } 11554 11555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11556 11557 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11558 ixa_cookie); 11559 if (error != 0 && error != EWOULDBLOCK) { 11560 /* No point in sending the other fragments */ 11561 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11562 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11563 freeb(hdr_mp); 11564 freemsg(mp_orig); 11565 return (error); 11566 } 11567 11568 /* No need to redo state machine in loop */ 11569 ixaflags &= ~IXAF_REACH_CONF; 11570 11571 /* Advance the offset to the second frag starting point. */ 11572 offset += len; 11573 /* 11574 * Update hdr_len from the copied header - there might be less options 11575 * in the later fragments. 11576 */ 11577 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11578 /* Loop until done. */ 11579 for (;;) { 11580 uint16_t offset_and_flags; 11581 uint16_t ip_len; 11582 11583 if (ip_data_end - offset > len) { 11584 /* 11585 * Carve off the appropriate amount from the original 11586 * datagram. 11587 */ 11588 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11589 mp = NULL; 11590 break; 11591 } 11592 /* 11593 * More frags after this one. Get another copy 11594 * of the header. 11595 */ 11596 if (carve_mp->b_datap->db_ref == 1 && 11597 hdr_mp->b_wptr - hdr_mp->b_rptr < 11598 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11599 /* Inline IP header */ 11600 carve_mp->b_rptr -= hdr_mp->b_wptr - 11601 hdr_mp->b_rptr; 11602 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11603 hdr_mp->b_wptr - hdr_mp->b_rptr); 11604 mp = carve_mp; 11605 } else { 11606 if (!(mp = copyb(hdr_mp))) { 11607 freemsg(carve_mp); 11608 break; 11609 } 11610 /* Get priority marking, if any. */ 11611 mp->b_band = priority; 11612 mp->b_cont = carve_mp; 11613 } 11614 ipha = (ipha_t *)mp->b_rptr; 11615 offset_and_flags = IPH_MF; 11616 } else { 11617 /* 11618 * Last frag. Consume the header. Set len to 11619 * the length of this last piece. 11620 */ 11621 len = ip_data_end - offset; 11622 11623 /* 11624 * Carve off the appropriate amount from the original 11625 * datagram. 11626 */ 11627 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11628 mp = NULL; 11629 break; 11630 } 11631 if (carve_mp->b_datap->db_ref == 1 && 11632 hdr_mp->b_wptr - hdr_mp->b_rptr < 11633 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11634 /* Inline IP header */ 11635 carve_mp->b_rptr -= hdr_mp->b_wptr - 11636 hdr_mp->b_rptr; 11637 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11638 hdr_mp->b_wptr - hdr_mp->b_rptr); 11639 mp = carve_mp; 11640 freeb(hdr_mp); 11641 hdr_mp = mp; 11642 } else { 11643 mp = hdr_mp; 11644 /* Get priority marking, if any. */ 11645 mp->b_band = priority; 11646 mp->b_cont = carve_mp; 11647 } 11648 ipha = (ipha_t *)mp->b_rptr; 11649 /* A frag of a frag might have IPH_MF non-zero */ 11650 offset_and_flags = 11651 ntohs(ipha->ipha_fragment_offset_and_flags) & 11652 IPH_MF; 11653 } 11654 offset_and_flags |= (uint16_t)(offset >> 3); 11655 offset_and_flags |= (uint16_t)frag_flag; 11656 /* Store the offset and flags in the IP header. */ 11657 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11658 11659 /* Store the length in the IP header. */ 11660 ip_len = (uint16_t)(len + hdr_len); 11661 ipha->ipha_length = htons(ip_len); 11662 11663 /* 11664 * Set the IP header checksum. Note that mp is just 11665 * the header, so this is easy to pass to ip_csum. 11666 */ 11667 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11668 11669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11670 11671 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11672 nolzid, ixa_cookie); 11673 /* All done if we just consumed the hdr_mp. */ 11674 if (mp == hdr_mp) { 11675 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11676 return (error); 11677 } 11678 if (error != 0 && error != EWOULDBLOCK) { 11679 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11680 mblk_t *, hdr_mp); 11681 /* No point in sending the other fragments */ 11682 break; 11683 } 11684 11685 /* Otherwise, advance and loop. */ 11686 offset += len; 11687 } 11688 /* Clean up following allocation failure. */ 11689 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11690 ip_drop_output("FragFails: loop ended", NULL, ill); 11691 if (mp != hdr_mp) 11692 freeb(hdr_mp); 11693 if (mp != mp_orig) 11694 freemsg(mp_orig); 11695 return (error); 11696 } 11697 11698 /* 11699 * Copy the header plus those options which have the copy bit set 11700 */ 11701 static mblk_t * 11702 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11703 mblk_t *src) 11704 { 11705 mblk_t *mp; 11706 uchar_t *up; 11707 11708 /* 11709 * Quick check if we need to look for options without the copy bit 11710 * set 11711 */ 11712 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11713 if (!mp) 11714 return (mp); 11715 mp->b_rptr += ipst->ips_ip_wroff_extra; 11716 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11717 bcopy(rptr, mp->b_rptr, hdr_len); 11718 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11719 return (mp); 11720 } 11721 up = mp->b_rptr; 11722 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11723 up += IP_SIMPLE_HDR_LENGTH; 11724 rptr += IP_SIMPLE_HDR_LENGTH; 11725 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11726 while (hdr_len > 0) { 11727 uint32_t optval; 11728 uint32_t optlen; 11729 11730 optval = *rptr; 11731 if (optval == IPOPT_EOL) 11732 break; 11733 if (optval == IPOPT_NOP) 11734 optlen = 1; 11735 else 11736 optlen = rptr[1]; 11737 if (optval & IPOPT_COPY) { 11738 bcopy(rptr, up, optlen); 11739 up += optlen; 11740 } 11741 rptr += optlen; 11742 hdr_len -= optlen; 11743 } 11744 /* 11745 * Make sure that we drop an even number of words by filling 11746 * with EOL to the next word boundary. 11747 */ 11748 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11749 hdr_len & 0x3; hdr_len++) 11750 *up++ = IPOPT_EOL; 11751 mp->b_wptr = up; 11752 /* Update header length */ 11753 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11754 return (mp); 11755 } 11756 11757 /* 11758 * Update any source route, record route, or timestamp options when 11759 * sending a packet back to ourselves. 11760 * Check that we are at end of strict source route. 11761 * The options have been sanity checked by ip_output_options(). 11762 */ 11763 void 11764 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11765 { 11766 ipoptp_t opts; 11767 uchar_t *opt; 11768 uint8_t optval; 11769 uint8_t optlen; 11770 ipaddr_t dst; 11771 uint32_t ts; 11772 timestruc_t now; 11773 11774 for (optval = ipoptp_first(&opts, ipha); 11775 optval != IPOPT_EOL; 11776 optval = ipoptp_next(&opts)) { 11777 opt = opts.ipoptp_cur; 11778 optlen = opts.ipoptp_len; 11779 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11780 switch (optval) { 11781 uint32_t off; 11782 case IPOPT_SSRR: 11783 case IPOPT_LSRR: 11784 off = opt[IPOPT_OFFSET]; 11785 off--; 11786 if (optlen < IP_ADDR_LEN || 11787 off > optlen - IP_ADDR_LEN) { 11788 /* End of source route */ 11789 break; 11790 } 11791 /* 11792 * This will only happen if two consecutive entries 11793 * in the source route contains our address or if 11794 * it is a packet with a loose source route which 11795 * reaches us before consuming the whole source route 11796 */ 11797 11798 if (optval == IPOPT_SSRR) { 11799 return; 11800 } 11801 /* 11802 * Hack: instead of dropping the packet truncate the 11803 * source route to what has been used by filling the 11804 * rest with IPOPT_NOP. 11805 */ 11806 opt[IPOPT_OLEN] = (uint8_t)off; 11807 while (off < optlen) { 11808 opt[off++] = IPOPT_NOP; 11809 } 11810 break; 11811 case IPOPT_RR: 11812 off = opt[IPOPT_OFFSET]; 11813 off--; 11814 if (optlen < IP_ADDR_LEN || 11815 off > optlen - IP_ADDR_LEN) { 11816 /* No more room - ignore */ 11817 ip1dbg(( 11818 "ip_output_local_options: end of RR\n")); 11819 break; 11820 } 11821 dst = htonl(INADDR_LOOPBACK); 11822 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11823 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11824 break; 11825 case IPOPT_TS: 11826 /* Insert timestamp if there is romm */ 11827 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11828 case IPOPT_TS_TSONLY: 11829 off = IPOPT_TS_TIMELEN; 11830 break; 11831 case IPOPT_TS_PRESPEC: 11832 case IPOPT_TS_PRESPEC_RFC791: 11833 /* Verify that the address matched */ 11834 off = opt[IPOPT_OFFSET] - 1; 11835 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11836 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11837 /* Not for us */ 11838 break; 11839 } 11840 /* FALLTHRU */ 11841 case IPOPT_TS_TSANDADDR: 11842 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11843 break; 11844 default: 11845 /* 11846 * ip_*put_options should have already 11847 * dropped this packet. 11848 */ 11849 cmn_err(CE_PANIC, "ip_output_local_options: " 11850 "unknown IT - bug in ip_output_options?\n"); 11851 return; /* Keep "lint" happy */ 11852 } 11853 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 11854 /* Increase overflow counter */ 11855 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 11856 opt[IPOPT_POS_OV_FLG] = (uint8_t) 11857 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 11858 (off << 4); 11859 break; 11860 } 11861 off = opt[IPOPT_OFFSET] - 1; 11862 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11863 case IPOPT_TS_PRESPEC: 11864 case IPOPT_TS_PRESPEC_RFC791: 11865 case IPOPT_TS_TSANDADDR: 11866 dst = htonl(INADDR_LOOPBACK); 11867 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11868 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11869 /* FALLTHRU */ 11870 case IPOPT_TS_TSONLY: 11871 off = opt[IPOPT_OFFSET] - 1; 11872 /* Compute # of milliseconds since midnight */ 11873 gethrestime(&now); 11874 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 11875 now.tv_nsec / (NANOSEC / MILLISEC); 11876 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 11877 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 11878 break; 11879 } 11880 break; 11881 } 11882 } 11883 } 11884 11885 /* 11886 * Prepend an M_DATA fastpath header, and if none present prepend a 11887 * DL_UNITDATA_REQ. Frees the mblk on failure. 11888 * 11889 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 11890 * If there is a change to them, the nce will be deleted (condemned) and 11891 * a new nce_t will be created when packets are sent. Thus we need no locks 11892 * to access those fields. 11893 * 11894 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 11895 * we place b_band in dl_priority.dl_max. 11896 */ 11897 static mblk_t * 11898 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 11899 { 11900 uint_t hlen; 11901 mblk_t *mp1; 11902 uint_t priority; 11903 uchar_t *rptr; 11904 11905 rptr = mp->b_rptr; 11906 11907 ASSERT(DB_TYPE(mp) == M_DATA); 11908 priority = mp->b_band; 11909 11910 ASSERT(nce != NULL); 11911 if ((mp1 = nce->nce_fp_mp) != NULL) { 11912 hlen = MBLKL(mp1); 11913 /* 11914 * Check if we have enough room to prepend fastpath 11915 * header 11916 */ 11917 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 11918 rptr -= hlen; 11919 bcopy(mp1->b_rptr, rptr, hlen); 11920 /* 11921 * Set the b_rptr to the start of the link layer 11922 * header 11923 */ 11924 mp->b_rptr = rptr; 11925 return (mp); 11926 } 11927 mp1 = copyb(mp1); 11928 if (mp1 == NULL) { 11929 ill_t *ill = nce->nce_ill; 11930 11931 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 11932 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 11933 freemsg(mp); 11934 return (NULL); 11935 } 11936 mp1->b_band = priority; 11937 mp1->b_cont = mp; 11938 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 11939 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 11940 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 11941 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 11942 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 11943 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 11944 /* 11945 * XXX disable ICK_VALID and compute checksum 11946 * here; can happen if nce_fp_mp changes and 11947 * it can't be copied now due to insufficient 11948 * space. (unlikely, fp mp can change, but it 11949 * does not increase in length) 11950 */ 11951 return (mp1); 11952 } 11953 mp1 = copyb(nce->nce_dlur_mp); 11954 11955 if (mp1 == NULL) { 11956 ill_t *ill = nce->nce_ill; 11957 11958 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 11959 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 11960 freemsg(mp); 11961 return (NULL); 11962 } 11963 mp1->b_cont = mp; 11964 if (priority != 0) { 11965 mp1->b_band = priority; 11966 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 11967 priority; 11968 } 11969 return (mp1); 11970 #undef rptr 11971 } 11972 11973 /* 11974 * Finish the outbound IPsec processing. This function is called from 11975 * ipsec_out_process() if the IPsec packet was processed 11976 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 11977 * asynchronously. 11978 * 11979 * This is common to IPv4 and IPv6. 11980 */ 11981 int 11982 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 11983 { 11984 iaflags_t ixaflags = ixa->ixa_flags; 11985 uint_t pktlen; 11986 11987 11988 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 11989 if (ixaflags & IXAF_IS_IPV4) { 11990 ipha_t *ipha = (ipha_t *)mp->b_rptr; 11991 11992 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11993 pktlen = ntohs(ipha->ipha_length); 11994 } else { 11995 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 11996 11997 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 11998 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 11999 } 12000 12001 /* 12002 * We release any hard reference on the SAs here to make 12003 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12004 * on the SAs. 12005 * If in the future we want the hard latching of the SAs in the 12006 * ip_xmit_attr_t then we should remove this. 12007 */ 12008 if (ixa->ixa_ipsec_esp_sa != NULL) { 12009 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12010 ixa->ixa_ipsec_esp_sa = NULL; 12011 } 12012 if (ixa->ixa_ipsec_ah_sa != NULL) { 12013 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12014 ixa->ixa_ipsec_ah_sa = NULL; 12015 } 12016 12017 /* Do we need to fragment? */ 12018 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12019 pktlen > ixa->ixa_fragsize) { 12020 if (ixaflags & IXAF_IS_IPV4) { 12021 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12022 /* 12023 * We check for the DF case in ipsec_out_process 12024 * hence this only handles the non-DF case. 12025 */ 12026 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12027 pktlen, ixa->ixa_fragsize, 12028 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12029 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12030 &ixa->ixa_cookie)); 12031 } else { 12032 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12033 if (mp == NULL) { 12034 /* MIB and ip_drop_output already done */ 12035 return (ENOMEM); 12036 } 12037 pktlen += sizeof (ip6_frag_t); 12038 if (pktlen > ixa->ixa_fragsize) { 12039 return (ip_fragment_v6(mp, ixa->ixa_nce, 12040 ixa->ixa_flags, pktlen, 12041 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12042 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12043 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12044 } 12045 } 12046 } 12047 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12048 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12049 ixa->ixa_no_loop_zoneid, NULL)); 12050 } 12051 12052 /* 12053 * Finish the inbound IPsec processing. This function is called from 12054 * ipsec_out_process() if the IPsec packet was processed 12055 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12056 * asynchronously. 12057 * 12058 * This is common to IPv4 and IPv6. 12059 */ 12060 void 12061 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12062 { 12063 iaflags_t iraflags = ira->ira_flags; 12064 12065 /* Length might have changed */ 12066 if (iraflags & IRAF_IS_IPV4) { 12067 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12068 12069 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12070 ira->ira_pktlen = ntohs(ipha->ipha_length); 12071 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12072 ira->ira_protocol = ipha->ipha_protocol; 12073 12074 ip_fanout_v4(mp, ipha, ira); 12075 } else { 12076 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12077 uint8_t *nexthdrp; 12078 12079 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12080 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12081 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12082 &nexthdrp)) { 12083 /* Malformed packet */ 12084 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12085 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12086 freemsg(mp); 12087 return; 12088 } 12089 ira->ira_protocol = *nexthdrp; 12090 ip_fanout_v6(mp, ip6h, ira); 12091 } 12092 } 12093 12094 /* 12095 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12096 * 12097 * If this function returns B_TRUE, the requested SA's have been filled 12098 * into the ixa_ipsec_*_sa pointers. 12099 * 12100 * If the function returns B_FALSE, the packet has been "consumed", most 12101 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12102 * 12103 * The SA references created by the protocol-specific "select" 12104 * function will be released in ip_output_post_ipsec. 12105 */ 12106 static boolean_t 12107 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12108 { 12109 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12110 ipsec_policy_t *pp; 12111 ipsec_action_t *ap; 12112 12113 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12114 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12115 (ixa->ixa_ipsec_action != NULL)); 12116 12117 ap = ixa->ixa_ipsec_action; 12118 if (ap == NULL) { 12119 pp = ixa->ixa_ipsec_policy; 12120 ASSERT(pp != NULL); 12121 ap = pp->ipsp_act; 12122 ASSERT(ap != NULL); 12123 } 12124 12125 /* 12126 * We have an action. now, let's select SA's. 12127 * A side effect of setting ixa_ipsec_*_sa is that it will 12128 * be cached in the conn_t. 12129 */ 12130 if (ap->ipa_want_esp) { 12131 if (ixa->ixa_ipsec_esp_sa == NULL) { 12132 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12133 IPPROTO_ESP); 12134 } 12135 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12136 } 12137 12138 if (ap->ipa_want_ah) { 12139 if (ixa->ixa_ipsec_ah_sa == NULL) { 12140 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12141 IPPROTO_AH); 12142 } 12143 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12144 /* 12145 * The ESP and AH processing order needs to be preserved 12146 * when both protocols are required (ESP should be applied 12147 * before AH for an outbound packet). Force an ESP ACQUIRE 12148 * when both ESP and AH are required, and an AH ACQUIRE 12149 * is needed. 12150 */ 12151 if (ap->ipa_want_esp && need_ah_acquire) 12152 need_esp_acquire = B_TRUE; 12153 } 12154 12155 /* 12156 * Send an ACQUIRE (extended, regular, or both) if we need one. 12157 * Release SAs that got referenced, but will not be used until we 12158 * acquire _all_ of the SAs we need. 12159 */ 12160 if (need_ah_acquire || need_esp_acquire) { 12161 if (ixa->ixa_ipsec_ah_sa != NULL) { 12162 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12163 ixa->ixa_ipsec_ah_sa = NULL; 12164 } 12165 if (ixa->ixa_ipsec_esp_sa != NULL) { 12166 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12167 ixa->ixa_ipsec_esp_sa = NULL; 12168 } 12169 12170 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12171 return (B_FALSE); 12172 } 12173 12174 return (B_TRUE); 12175 } 12176 12177 /* 12178 * Handle IPsec output processing. 12179 * This function is only entered once for a given packet. 12180 * We try to do things synchronously, but if we need to have user-level 12181 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12182 * will be completed 12183 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12184 * - when asynchronous ESP is done it will do AH 12185 * 12186 * In all cases we come back in ip_output_post_ipsec() to fragment and 12187 * send out the packet. 12188 */ 12189 int 12190 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12191 { 12192 ill_t *ill = ixa->ixa_nce->nce_ill; 12193 ip_stack_t *ipst = ixa->ixa_ipst; 12194 ipsec_stack_t *ipss; 12195 ipsec_policy_t *pp; 12196 ipsec_action_t *ap; 12197 12198 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12199 12200 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12201 (ixa->ixa_ipsec_action != NULL)); 12202 12203 ipss = ipst->ips_netstack->netstack_ipsec; 12204 if (!ipsec_loaded(ipss)) { 12205 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12206 ip_drop_packet(mp, B_TRUE, ill, 12207 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12208 &ipss->ipsec_dropper); 12209 return (ENOTSUP); 12210 } 12211 12212 ap = ixa->ixa_ipsec_action; 12213 if (ap == NULL) { 12214 pp = ixa->ixa_ipsec_policy; 12215 ASSERT(pp != NULL); 12216 ap = pp->ipsp_act; 12217 ASSERT(ap != NULL); 12218 } 12219 12220 /* Handle explicit drop action and bypass. */ 12221 switch (ap->ipa_act.ipa_type) { 12222 case IPSEC_ACT_DISCARD: 12223 case IPSEC_ACT_REJECT: 12224 ip_drop_packet(mp, B_FALSE, ill, 12225 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12226 return (EHOSTUNREACH); /* IPsec policy failure */ 12227 case IPSEC_ACT_BYPASS: 12228 return (ip_output_post_ipsec(mp, ixa)); 12229 } 12230 12231 /* 12232 * The order of processing is first insert a IP header if needed. 12233 * Then insert the ESP header and then the AH header. 12234 */ 12235 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12236 /* 12237 * First get the outer IP header before sending 12238 * it to ESP. 12239 */ 12240 ipha_t *oipha, *iipha; 12241 mblk_t *outer_mp, *inner_mp; 12242 12243 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12244 (void) mi_strlog(ill->ill_rq, 0, 12245 SL_ERROR|SL_TRACE|SL_CONSOLE, 12246 "ipsec_out_process: " 12247 "Self-Encapsulation failed: Out of memory\n"); 12248 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12249 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12250 freemsg(mp); 12251 return (ENOBUFS); 12252 } 12253 inner_mp = mp; 12254 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12255 oipha = (ipha_t *)outer_mp->b_rptr; 12256 iipha = (ipha_t *)inner_mp->b_rptr; 12257 *oipha = *iipha; 12258 outer_mp->b_wptr += sizeof (ipha_t); 12259 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12260 sizeof (ipha_t)); 12261 oipha->ipha_protocol = IPPROTO_ENCAP; 12262 oipha->ipha_version_and_hdr_length = 12263 IP_SIMPLE_HDR_VERSION; 12264 oipha->ipha_hdr_checksum = 0; 12265 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12266 outer_mp->b_cont = inner_mp; 12267 mp = outer_mp; 12268 12269 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12270 } 12271 12272 /* If we need to wait for a SA then we can't return any errno */ 12273 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12274 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12275 !ipsec_out_select_sa(mp, ixa)) 12276 return (0); 12277 12278 /* 12279 * By now, we know what SA's to use. Toss over to ESP & AH 12280 * to do the heavy lifting. 12281 */ 12282 if (ap->ipa_want_esp) { 12283 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12284 12285 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12286 if (mp == NULL) { 12287 /* 12288 * Either it failed or is pending. In the former case 12289 * ipIfStatsInDiscards was increased. 12290 */ 12291 return (0); 12292 } 12293 } 12294 12295 if (ap->ipa_want_ah) { 12296 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12297 12298 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12299 if (mp == NULL) { 12300 /* 12301 * Either it failed or is pending. In the former case 12302 * ipIfStatsInDiscards was increased. 12303 */ 12304 return (0); 12305 } 12306 } 12307 /* 12308 * We are done with IPsec processing. Send it over 12309 * the wire. 12310 */ 12311 return (ip_output_post_ipsec(mp, ixa)); 12312 } 12313 12314 /* 12315 * ioctls that go through a down/up sequence may need to wait for the down 12316 * to complete. This involves waiting for the ire and ipif refcnts to go down 12317 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12318 */ 12319 /* ARGSUSED */ 12320 void 12321 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12322 { 12323 struct iocblk *iocp; 12324 mblk_t *mp1; 12325 ip_ioctl_cmd_t *ipip; 12326 int err; 12327 sin_t *sin; 12328 struct lifreq *lifr; 12329 struct ifreq *ifr; 12330 12331 iocp = (struct iocblk *)mp->b_rptr; 12332 ASSERT(ipsq != NULL); 12333 /* Existence of mp1 verified in ip_wput_nondata */ 12334 mp1 = mp->b_cont->b_cont; 12335 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12336 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12337 /* 12338 * Special case where ipx_current_ipif is not set: 12339 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12340 * We are here as were not able to complete the operation in 12341 * ipif_set_values because we could not become exclusive on 12342 * the new ipsq. 12343 */ 12344 ill_t *ill = q->q_ptr; 12345 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12346 } 12347 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12348 12349 if (ipip->ipi_cmd_type == IF_CMD) { 12350 /* This a old style SIOC[GS]IF* command */ 12351 ifr = (struct ifreq *)mp1->b_rptr; 12352 sin = (sin_t *)&ifr->ifr_addr; 12353 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12354 /* This a new style SIOC[GS]LIF* command */ 12355 lifr = (struct lifreq *)mp1->b_rptr; 12356 sin = (sin_t *)&lifr->lifr_addr; 12357 } else { 12358 sin = NULL; 12359 } 12360 12361 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12362 q, mp, ipip, mp1->b_rptr); 12363 12364 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12365 int, ipip->ipi_cmd, 12366 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12367 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12368 12369 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12370 } 12371 12372 /* 12373 * ioctl processing 12374 * 12375 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12376 * the ioctl command in the ioctl tables, determines the copyin data size 12377 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12378 * 12379 * ioctl processing then continues when the M_IOCDATA makes its way down to 12380 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12381 * associated 'conn' is refheld till the end of the ioctl and the general 12382 * ioctl processing function ip_process_ioctl() is called to extract the 12383 * arguments and process the ioctl. To simplify extraction, ioctl commands 12384 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12385 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12386 * is used to extract the ioctl's arguments. 12387 * 12388 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12389 * so goes thru the serialization primitive ipsq_try_enter. Then the 12390 * appropriate function to handle the ioctl is called based on the entry in 12391 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12392 * which also refreleases the 'conn' that was refheld at the start of the 12393 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12394 * 12395 * Many exclusive ioctls go thru an internal down up sequence as part of 12396 * the operation. For example an attempt to change the IP address of an 12397 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12398 * does all the cleanup such as deleting all ires that use this address. 12399 * Then we need to wait till all references to the interface go away. 12400 */ 12401 void 12402 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12403 { 12404 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12405 ip_ioctl_cmd_t *ipip = arg; 12406 ip_extract_func_t *extract_funcp; 12407 cmd_info_t ci; 12408 int err; 12409 boolean_t entered_ipsq = B_FALSE; 12410 12411 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12412 12413 if (ipip == NULL) 12414 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12415 12416 /* 12417 * SIOCLIFADDIF needs to go thru a special path since the 12418 * ill may not exist yet. This happens in the case of lo0 12419 * which is created using this ioctl. 12420 */ 12421 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12422 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12423 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12424 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12425 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12426 return; 12427 } 12428 12429 ci.ci_ipif = NULL; 12430 switch (ipip->ipi_cmd_type) { 12431 case MISC_CMD: 12432 case MSFILT_CMD: 12433 /* 12434 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12435 */ 12436 if (ipip->ipi_cmd == IF_UNITSEL) { 12437 /* ioctl comes down the ill */ 12438 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12439 ipif_refhold(ci.ci_ipif); 12440 } 12441 err = 0; 12442 ci.ci_sin = NULL; 12443 ci.ci_sin6 = NULL; 12444 ci.ci_lifr = NULL; 12445 extract_funcp = NULL; 12446 break; 12447 12448 case IF_CMD: 12449 case LIF_CMD: 12450 extract_funcp = ip_extract_lifreq; 12451 break; 12452 12453 case ARP_CMD: 12454 case XARP_CMD: 12455 extract_funcp = ip_extract_arpreq; 12456 break; 12457 12458 default: 12459 ASSERT(0); 12460 } 12461 12462 if (extract_funcp != NULL) { 12463 err = (*extract_funcp)(q, mp, ipip, &ci); 12464 if (err != 0) { 12465 DTRACE_PROBE4(ipif__ioctl, 12466 char *, "ip_process_ioctl finish err", 12467 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12468 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12469 return; 12470 } 12471 12472 /* 12473 * All of the extraction functions return a refheld ipif. 12474 */ 12475 ASSERT(ci.ci_ipif != NULL); 12476 } 12477 12478 if (!(ipip->ipi_flags & IPI_WR)) { 12479 /* 12480 * A return value of EINPROGRESS means the ioctl is 12481 * either queued and waiting for some reason or has 12482 * already completed. 12483 */ 12484 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12485 ci.ci_lifr); 12486 if (ci.ci_ipif != NULL) { 12487 DTRACE_PROBE4(ipif__ioctl, 12488 char *, "ip_process_ioctl finish RD", 12489 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12490 ipif_t *, ci.ci_ipif); 12491 ipif_refrele(ci.ci_ipif); 12492 } else { 12493 DTRACE_PROBE4(ipif__ioctl, 12494 char *, "ip_process_ioctl finish RD", 12495 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12496 } 12497 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12498 return; 12499 } 12500 12501 ASSERT(ci.ci_ipif != NULL); 12502 12503 /* 12504 * If ipsq is non-NULL, we are already being called exclusively 12505 */ 12506 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12507 if (ipsq == NULL) { 12508 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12509 NEW_OP, B_TRUE); 12510 if (ipsq == NULL) { 12511 ipif_refrele(ci.ci_ipif); 12512 return; 12513 } 12514 entered_ipsq = B_TRUE; 12515 } 12516 /* 12517 * Release the ipif so that ipif_down and friends that wait for 12518 * references to go away are not misled about the current ipif_refcnt 12519 * values. We are writer so we can access the ipif even after releasing 12520 * the ipif. 12521 */ 12522 ipif_refrele(ci.ci_ipif); 12523 12524 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12525 12526 /* 12527 * A return value of EINPROGRESS means the ioctl is 12528 * either queued and waiting for some reason or has 12529 * already completed. 12530 */ 12531 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12532 12533 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12534 int, ipip->ipi_cmd, 12535 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12536 ipif_t *, ci.ci_ipif); 12537 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12538 12539 if (entered_ipsq) 12540 ipsq_exit(ipsq); 12541 } 12542 12543 /* 12544 * Complete the ioctl. Typically ioctls use the mi package and need to 12545 * do mi_copyout/mi_copy_done. 12546 */ 12547 void 12548 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12549 { 12550 conn_t *connp = NULL; 12551 12552 if (err == EINPROGRESS) 12553 return; 12554 12555 if (CONN_Q(q)) { 12556 connp = Q_TO_CONN(q); 12557 ASSERT(connp->conn_ref >= 2); 12558 } 12559 12560 switch (mode) { 12561 case COPYOUT: 12562 if (err == 0) 12563 mi_copyout(q, mp); 12564 else 12565 mi_copy_done(q, mp, err); 12566 break; 12567 12568 case NO_COPYOUT: 12569 mi_copy_done(q, mp, err); 12570 break; 12571 12572 default: 12573 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12574 break; 12575 } 12576 12577 /* 12578 * The conn refhold and ioctlref placed on the conn at the start of the 12579 * ioctl are released here. 12580 */ 12581 if (connp != NULL) { 12582 CONN_DEC_IOCTLREF(connp); 12583 CONN_OPER_PENDING_DONE(connp); 12584 } 12585 12586 if (ipsq != NULL) 12587 ipsq_current_finish(ipsq); 12588 } 12589 12590 /* Handles all non data messages */ 12591 void 12592 ip_wput_nondata(queue_t *q, mblk_t *mp) 12593 { 12594 mblk_t *mp1; 12595 struct iocblk *iocp; 12596 ip_ioctl_cmd_t *ipip; 12597 conn_t *connp; 12598 cred_t *cr; 12599 char *proto_str; 12600 12601 if (CONN_Q(q)) 12602 connp = Q_TO_CONN(q); 12603 else 12604 connp = NULL; 12605 12606 switch (DB_TYPE(mp)) { 12607 case M_IOCTL: 12608 /* 12609 * IOCTL processing begins in ip_sioctl_copyin_setup which 12610 * will arrange to copy in associated control structures. 12611 */ 12612 ip_sioctl_copyin_setup(q, mp); 12613 return; 12614 case M_IOCDATA: 12615 /* 12616 * Ensure that this is associated with one of our trans- 12617 * parent ioctls. If it's not ours, discard it if we're 12618 * running as a driver, or pass it on if we're a module. 12619 */ 12620 iocp = (struct iocblk *)mp->b_rptr; 12621 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12622 if (ipip == NULL) { 12623 if (q->q_next == NULL) { 12624 goto nak; 12625 } else { 12626 putnext(q, mp); 12627 } 12628 return; 12629 } 12630 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12631 /* 12632 * The ioctl is one we recognise, but is not consumed 12633 * by IP as a module and we are a module, so we drop 12634 */ 12635 goto nak; 12636 } 12637 12638 /* IOCTL continuation following copyin or copyout. */ 12639 if (mi_copy_state(q, mp, NULL) == -1) { 12640 /* 12641 * The copy operation failed. mi_copy_state already 12642 * cleaned up, so we're out of here. 12643 */ 12644 return; 12645 } 12646 /* 12647 * If we just completed a copy in, we become writer and 12648 * continue processing in ip_sioctl_copyin_done. If it 12649 * was a copy out, we call mi_copyout again. If there is 12650 * nothing more to copy out, it will complete the IOCTL. 12651 */ 12652 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12653 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12654 mi_copy_done(q, mp, EPROTO); 12655 return; 12656 } 12657 /* 12658 * Check for cases that need more copying. A return 12659 * value of 0 means a second copyin has been started, 12660 * so we return; a return value of 1 means no more 12661 * copying is needed, so we continue. 12662 */ 12663 if (ipip->ipi_cmd_type == MSFILT_CMD && 12664 MI_COPY_COUNT(mp) == 1) { 12665 if (ip_copyin_msfilter(q, mp) == 0) 12666 return; 12667 } 12668 /* 12669 * Refhold the conn, till the ioctl completes. This is 12670 * needed in case the ioctl ends up in the pending mp 12671 * list. Every mp in the ipx_pending_mp list must have 12672 * a refhold on the conn to resume processing. The 12673 * refhold is released when the ioctl completes 12674 * (whether normally or abnormally). An ioctlref is also 12675 * placed on the conn to prevent TCP from removing the 12676 * queue needed to send the ioctl reply back. 12677 * In all cases ip_ioctl_finish is called to finish 12678 * the ioctl and release the refholds. 12679 */ 12680 if (connp != NULL) { 12681 /* This is not a reentry */ 12682 CONN_INC_REF(connp); 12683 CONN_INC_IOCTLREF(connp); 12684 } else { 12685 if (!(ipip->ipi_flags & IPI_MODOK)) { 12686 mi_copy_done(q, mp, EINVAL); 12687 return; 12688 } 12689 } 12690 12691 ip_process_ioctl(NULL, q, mp, ipip); 12692 12693 } else { 12694 mi_copyout(q, mp); 12695 } 12696 return; 12697 12698 case M_IOCNAK: 12699 /* 12700 * The only way we could get here is if a resolver didn't like 12701 * an IOCTL we sent it. This shouldn't happen. 12702 */ 12703 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12704 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12705 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12706 freemsg(mp); 12707 return; 12708 case M_IOCACK: 12709 /* /dev/ip shouldn't see this */ 12710 goto nak; 12711 case M_FLUSH: 12712 if (*mp->b_rptr & FLUSHW) 12713 flushq(q, FLUSHALL); 12714 if (q->q_next) { 12715 putnext(q, mp); 12716 return; 12717 } 12718 if (*mp->b_rptr & FLUSHR) { 12719 *mp->b_rptr &= ~FLUSHW; 12720 qreply(q, mp); 12721 return; 12722 } 12723 freemsg(mp); 12724 return; 12725 case M_CTL: 12726 break; 12727 case M_PROTO: 12728 case M_PCPROTO: 12729 /* 12730 * The only PROTO messages we expect are SNMP-related. 12731 */ 12732 switch (((union T_primitives *)mp->b_rptr)->type) { 12733 case T_SVR4_OPTMGMT_REQ: 12734 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12735 "flags %x\n", 12736 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12737 12738 if (connp == NULL) { 12739 proto_str = "T_SVR4_OPTMGMT_REQ"; 12740 goto protonak; 12741 } 12742 12743 /* 12744 * All Solaris components should pass a db_credp 12745 * for this TPI message, hence we ASSERT. 12746 * But in case there is some other M_PROTO that looks 12747 * like a TPI message sent by some other kernel 12748 * component, we check and return an error. 12749 */ 12750 cr = msg_getcred(mp, NULL); 12751 ASSERT(cr != NULL); 12752 if (cr == NULL) { 12753 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12754 if (mp != NULL) 12755 qreply(q, mp); 12756 return; 12757 } 12758 12759 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12760 proto_str = "Bad SNMPCOM request?"; 12761 goto protonak; 12762 } 12763 return; 12764 default: 12765 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12766 (int)*(uint_t *)mp->b_rptr)); 12767 freemsg(mp); 12768 return; 12769 } 12770 default: 12771 break; 12772 } 12773 if (q->q_next) { 12774 putnext(q, mp); 12775 } else 12776 freemsg(mp); 12777 return; 12778 12779 nak: 12780 iocp->ioc_error = EINVAL; 12781 mp->b_datap->db_type = M_IOCNAK; 12782 iocp->ioc_count = 0; 12783 qreply(q, mp); 12784 return; 12785 12786 protonak: 12787 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12788 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12789 qreply(q, mp); 12790 } 12791 12792 /* 12793 * Process IP options in an outbound packet. Verify that the nexthop in a 12794 * strict source route is onlink. 12795 * Returns non-zero if something fails in which case an ICMP error has been 12796 * sent and mp freed. 12797 * 12798 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12799 */ 12800 int 12801 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12802 { 12803 ipoptp_t opts; 12804 uchar_t *opt; 12805 uint8_t optval; 12806 uint8_t optlen; 12807 ipaddr_t dst; 12808 intptr_t code = 0; 12809 ire_t *ire; 12810 ip_stack_t *ipst = ixa->ixa_ipst; 12811 ip_recv_attr_t iras; 12812 12813 ip2dbg(("ip_output_options\n")); 12814 12815 dst = ipha->ipha_dst; 12816 for (optval = ipoptp_first(&opts, ipha); 12817 optval != IPOPT_EOL; 12818 optval = ipoptp_next(&opts)) { 12819 opt = opts.ipoptp_cur; 12820 optlen = opts.ipoptp_len; 12821 ip2dbg(("ip_output_options: opt %d, len %d\n", 12822 optval, optlen)); 12823 switch (optval) { 12824 uint32_t off; 12825 case IPOPT_SSRR: 12826 case IPOPT_LSRR: 12827 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12828 ip1dbg(( 12829 "ip_output_options: bad option offset\n")); 12830 code = (char *)&opt[IPOPT_OLEN] - 12831 (char *)ipha; 12832 goto param_prob; 12833 } 12834 off = opt[IPOPT_OFFSET]; 12835 ip1dbg(("ip_output_options: next hop 0x%x\n", 12836 ntohl(dst))); 12837 /* 12838 * For strict: verify that dst is directly 12839 * reachable. 12840 */ 12841 if (optval == IPOPT_SSRR) { 12842 ire = ire_ftable_lookup_v4(dst, 0, 0, 12843 IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl, 12844 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12845 NULL); 12846 if (ire == NULL) { 12847 ip1dbg(("ip_output_options: SSRR not" 12848 " directly reachable: 0x%x\n", 12849 ntohl(dst))); 12850 goto bad_src_route; 12851 } 12852 ire_refrele(ire); 12853 } 12854 break; 12855 case IPOPT_RR: 12856 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12857 ip1dbg(( 12858 "ip_output_options: bad option offset\n")); 12859 code = (char *)&opt[IPOPT_OLEN] - 12860 (char *)ipha; 12861 goto param_prob; 12862 } 12863 break; 12864 case IPOPT_TS: 12865 /* 12866 * Verify that length >=5 and that there is either 12867 * room for another timestamp or that the overflow 12868 * counter is not maxed out. 12869 */ 12870 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 12871 if (optlen < IPOPT_MINLEN_IT) { 12872 goto param_prob; 12873 } 12874 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12875 ip1dbg(( 12876 "ip_output_options: bad option offset\n")); 12877 code = (char *)&opt[IPOPT_OFFSET] - 12878 (char *)ipha; 12879 goto param_prob; 12880 } 12881 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12882 case IPOPT_TS_TSONLY: 12883 off = IPOPT_TS_TIMELEN; 12884 break; 12885 case IPOPT_TS_TSANDADDR: 12886 case IPOPT_TS_PRESPEC: 12887 case IPOPT_TS_PRESPEC_RFC791: 12888 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12889 break; 12890 default: 12891 code = (char *)&opt[IPOPT_POS_OV_FLG] - 12892 (char *)ipha; 12893 goto param_prob; 12894 } 12895 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 12896 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 12897 /* 12898 * No room and the overflow counter is 15 12899 * already. 12900 */ 12901 goto param_prob; 12902 } 12903 break; 12904 } 12905 } 12906 12907 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 12908 return (0); 12909 12910 ip1dbg(("ip_output_options: error processing IP options.")); 12911 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 12912 12913 param_prob: 12914 bzero(&iras, sizeof (iras)); 12915 iras.ira_ill = iras.ira_rill = ill; 12916 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12917 iras.ira_rifindex = iras.ira_ruifindex; 12918 iras.ira_flags = IRAF_IS_IPV4; 12919 12920 ip_drop_output("ip_output_options", mp, ill); 12921 icmp_param_problem(mp, (uint8_t)code, &iras); 12922 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12923 return (-1); 12924 12925 bad_src_route: 12926 bzero(&iras, sizeof (iras)); 12927 iras.ira_ill = iras.ira_rill = ill; 12928 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12929 iras.ira_rifindex = iras.ira_ruifindex; 12930 iras.ira_flags = IRAF_IS_IPV4; 12931 12932 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 12933 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 12934 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12935 return (-1); 12936 } 12937 12938 /* 12939 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 12940 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 12941 * thru /etc/system. 12942 */ 12943 #define CONN_MAXDRAINCNT 64 12944 12945 static void 12946 conn_drain_init(ip_stack_t *ipst) 12947 { 12948 int i, j; 12949 idl_tx_list_t *itl_tx; 12950 12951 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 12952 12953 if ((ipst->ips_conn_drain_list_cnt == 0) || 12954 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 12955 /* 12956 * Default value of the number of drainers is the 12957 * number of cpus, subject to maximum of 8 drainers. 12958 */ 12959 if (boot_max_ncpus != -1) 12960 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 12961 else 12962 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 12963 } 12964 12965 ipst->ips_idl_tx_list = 12966 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 12967 for (i = 0; i < TX_FANOUT_SIZE; i++) { 12968 itl_tx = &ipst->ips_idl_tx_list[i]; 12969 itl_tx->txl_drain_list = 12970 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 12971 sizeof (idl_t), KM_SLEEP); 12972 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 12973 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 12974 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 12975 MUTEX_DEFAULT, NULL); 12976 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 12977 } 12978 } 12979 } 12980 12981 static void 12982 conn_drain_fini(ip_stack_t *ipst) 12983 { 12984 int i; 12985 idl_tx_list_t *itl_tx; 12986 12987 for (i = 0; i < TX_FANOUT_SIZE; i++) { 12988 itl_tx = &ipst->ips_idl_tx_list[i]; 12989 kmem_free(itl_tx->txl_drain_list, 12990 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 12991 } 12992 kmem_free(ipst->ips_idl_tx_list, 12993 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 12994 ipst->ips_idl_tx_list = NULL; 12995 } 12996 12997 /* 12998 * Flow control has blocked us from proceeding. Insert the given conn in one 12999 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13000 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13001 * will call conn_walk_drain(). See the flow control notes at the top of this 13002 * file for more details. 13003 */ 13004 void 13005 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13006 { 13007 idl_t *idl = tx_list->txl_drain_list; 13008 uint_t index; 13009 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13010 13011 mutex_enter(&connp->conn_lock); 13012 if (connp->conn_state_flags & CONN_CLOSING) { 13013 /* 13014 * The conn is closing as a result of which CONN_CLOSING 13015 * is set. Return. 13016 */ 13017 mutex_exit(&connp->conn_lock); 13018 return; 13019 } else if (connp->conn_idl == NULL) { 13020 /* 13021 * Assign the next drain list round robin. We dont' use 13022 * a lock, and thus it may not be strictly round robin. 13023 * Atomicity of load/stores is enough to make sure that 13024 * conn_drain_list_index is always within bounds. 13025 */ 13026 index = tx_list->txl_drain_index; 13027 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13028 connp->conn_idl = &tx_list->txl_drain_list[index]; 13029 index++; 13030 if (index == ipst->ips_conn_drain_list_cnt) 13031 index = 0; 13032 tx_list->txl_drain_index = index; 13033 } else { 13034 ASSERT(connp->conn_idl->idl_itl == tx_list); 13035 } 13036 mutex_exit(&connp->conn_lock); 13037 13038 idl = connp->conn_idl; 13039 mutex_enter(&idl->idl_lock); 13040 if ((connp->conn_drain_prev != NULL) || 13041 (connp->conn_state_flags & CONN_CLOSING)) { 13042 /* 13043 * The conn is either already in the drain list or closing. 13044 * (We needed to check for CONN_CLOSING again since close can 13045 * sneak in between dropping conn_lock and acquiring idl_lock.) 13046 */ 13047 mutex_exit(&idl->idl_lock); 13048 return; 13049 } 13050 13051 /* 13052 * The conn is not in the drain list. Insert it at the 13053 * tail of the drain list. The drain list is circular 13054 * and doubly linked. idl_conn points to the 1st element 13055 * in the list. 13056 */ 13057 if (idl->idl_conn == NULL) { 13058 idl->idl_conn = connp; 13059 connp->conn_drain_next = connp; 13060 connp->conn_drain_prev = connp; 13061 } else { 13062 conn_t *head = idl->idl_conn; 13063 13064 connp->conn_drain_next = head; 13065 connp->conn_drain_prev = head->conn_drain_prev; 13066 head->conn_drain_prev->conn_drain_next = connp; 13067 head->conn_drain_prev = connp; 13068 } 13069 /* 13070 * For non streams based sockets assert flow control. 13071 */ 13072 conn_setqfull(connp, NULL); 13073 mutex_exit(&idl->idl_lock); 13074 } 13075 13076 static void 13077 conn_drain_remove(conn_t *connp) 13078 { 13079 idl_t *idl = connp->conn_idl; 13080 13081 if (idl != NULL) { 13082 /* 13083 * Remove ourself from the drain list. 13084 */ 13085 if (connp->conn_drain_next == connp) { 13086 /* Singleton in the list */ 13087 ASSERT(connp->conn_drain_prev == connp); 13088 idl->idl_conn = NULL; 13089 } else { 13090 connp->conn_drain_prev->conn_drain_next = 13091 connp->conn_drain_next; 13092 connp->conn_drain_next->conn_drain_prev = 13093 connp->conn_drain_prev; 13094 if (idl->idl_conn == connp) 13095 idl->idl_conn = connp->conn_drain_next; 13096 } 13097 13098 /* 13099 * NOTE: because conn_idl is associated with a specific drain 13100 * list which in turn is tied to the index the TX ring 13101 * (txl_cookie) hashes to, and because the TX ring can change 13102 * over the lifetime of the conn_t, we must clear conn_idl so 13103 * a subsequent conn_drain_insert() will set conn_idl again 13104 * based on the latest txl_cookie. 13105 */ 13106 connp->conn_idl = NULL; 13107 } 13108 connp->conn_drain_next = NULL; 13109 connp->conn_drain_prev = NULL; 13110 13111 conn_clrqfull(connp, NULL); 13112 /* 13113 * For streams based sockets open up flow control. 13114 */ 13115 if (!IPCL_IS_NONSTR(connp)) 13116 enableok(connp->conn_wq); 13117 } 13118 13119 /* 13120 * This conn is closing, and we are called from ip_close. OR 13121 * this conn is draining because flow-control on the ill has been relieved. 13122 * 13123 * We must also need to remove conn's on this idl from the list, and also 13124 * inform the sockfs upcalls about the change in flow-control. 13125 */ 13126 static void 13127 conn_drain(conn_t *connp, boolean_t closing) 13128 { 13129 idl_t *idl; 13130 conn_t *next_connp; 13131 13132 /* 13133 * connp->conn_idl is stable at this point, and no lock is needed 13134 * to check it. If we are called from ip_close, close has already 13135 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13136 * called us only because conn_idl is non-null. If we are called thru 13137 * service, conn_idl could be null, but it cannot change because 13138 * service is single-threaded per queue, and there cannot be another 13139 * instance of service trying to call conn_drain_insert on this conn 13140 * now. 13141 */ 13142 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13143 13144 /* 13145 * If the conn doesn't exist or is not on a drain list, bail. 13146 */ 13147 if (connp == NULL || connp->conn_idl == NULL || 13148 connp->conn_drain_prev == NULL) { 13149 return; 13150 } 13151 13152 idl = connp->conn_idl; 13153 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13154 13155 if (!closing) { 13156 next_connp = connp->conn_drain_next; 13157 while (next_connp != connp) { 13158 conn_t *delconnp = next_connp; 13159 13160 next_connp = next_connp->conn_drain_next; 13161 conn_drain_remove(delconnp); 13162 } 13163 ASSERT(connp->conn_drain_next == idl->idl_conn); 13164 } 13165 conn_drain_remove(connp); 13166 } 13167 13168 /* 13169 * Write service routine. Shared perimeter entry point. 13170 * The device queue's messages has fallen below the low water mark and STREAMS 13171 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13172 * each waiting conn. 13173 */ 13174 void 13175 ip_wsrv(queue_t *q) 13176 { 13177 ill_t *ill; 13178 13179 ill = (ill_t *)q->q_ptr; 13180 if (ill->ill_state_flags == 0) { 13181 ip_stack_t *ipst = ill->ill_ipst; 13182 13183 /* 13184 * The device flow control has opened up. 13185 * Walk through conn drain lists and qenable the 13186 * first conn in each list. This makes sense only 13187 * if the stream is fully plumbed and setup. 13188 * Hence the ill_state_flags check above. 13189 */ 13190 ip1dbg(("ip_wsrv: walking\n")); 13191 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13192 enableok(ill->ill_wq); 13193 } 13194 } 13195 13196 /* 13197 * Callback to disable flow control in IP. 13198 * 13199 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13200 * is enabled. 13201 * 13202 * When MAC_TX() is not able to send any more packets, dld sets its queue 13203 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13204 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13205 * function and wakes up corresponding mac worker threads, which in turn 13206 * calls this callback function, and disables flow control. 13207 */ 13208 void 13209 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13210 { 13211 ill_t *ill = (ill_t *)arg; 13212 ip_stack_t *ipst = ill->ill_ipst; 13213 idl_tx_list_t *idl_txl; 13214 13215 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13216 mutex_enter(&idl_txl->txl_lock); 13217 /* add code to to set a flag to indicate idl_txl is enabled */ 13218 conn_walk_drain(ipst, idl_txl); 13219 mutex_exit(&idl_txl->txl_lock); 13220 } 13221 13222 /* 13223 * Flow control has been relieved and STREAMS has backenabled us; drain 13224 * all the conn lists on `tx_list'. 13225 */ 13226 static void 13227 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13228 { 13229 int i; 13230 idl_t *idl; 13231 13232 IP_STAT(ipst, ip_conn_walk_drain); 13233 13234 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13235 idl = &tx_list->txl_drain_list[i]; 13236 mutex_enter(&idl->idl_lock); 13237 conn_drain(idl->idl_conn, B_FALSE); 13238 mutex_exit(&idl->idl_lock); 13239 } 13240 } 13241 13242 /* 13243 * Determine if the ill and multicast aspects of that packets 13244 * "matches" the conn. 13245 */ 13246 boolean_t 13247 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13248 { 13249 ill_t *ill = ira->ira_rill; 13250 zoneid_t zoneid = ira->ira_zoneid; 13251 uint_t in_ifindex; 13252 ipaddr_t dst, src; 13253 13254 dst = ipha->ipha_dst; 13255 src = ipha->ipha_src; 13256 13257 /* 13258 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13259 * unicast, broadcast and multicast reception to 13260 * conn_incoming_ifindex. 13261 * conn_wantpacket is called for unicast, broadcast and 13262 * multicast packets. 13263 */ 13264 in_ifindex = connp->conn_incoming_ifindex; 13265 13266 /* mpathd can bind to the under IPMP interface, which we allow */ 13267 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13268 if (!IS_UNDER_IPMP(ill)) 13269 return (B_FALSE); 13270 13271 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13272 return (B_FALSE); 13273 } 13274 13275 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13276 return (B_FALSE); 13277 13278 if (!(ira->ira_flags & IRAF_MULTICAST)) 13279 return (B_TRUE); 13280 13281 if (connp->conn_multi_router) { 13282 /* multicast packet and multicast router socket: send up */ 13283 return (B_TRUE); 13284 } 13285 13286 if (ipha->ipha_protocol == IPPROTO_PIM || 13287 ipha->ipha_protocol == IPPROTO_RSVP) 13288 return (B_TRUE); 13289 13290 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13291 } 13292 13293 void 13294 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13295 { 13296 if (IPCL_IS_NONSTR(connp)) { 13297 (*connp->conn_upcalls->su_txq_full) 13298 (connp->conn_upper_handle, B_TRUE); 13299 if (flow_stopped != NULL) 13300 *flow_stopped = B_TRUE; 13301 } else { 13302 queue_t *q = connp->conn_wq; 13303 13304 ASSERT(q != NULL); 13305 if (!(q->q_flag & QFULL)) { 13306 mutex_enter(QLOCK(q)); 13307 if (!(q->q_flag & QFULL)) { 13308 /* still need to set QFULL */ 13309 q->q_flag |= QFULL; 13310 /* set flow_stopped to true under QLOCK */ 13311 if (flow_stopped != NULL) 13312 *flow_stopped = B_TRUE; 13313 mutex_exit(QLOCK(q)); 13314 } else { 13315 /* flow_stopped is left unchanged */ 13316 mutex_exit(QLOCK(q)); 13317 } 13318 } 13319 } 13320 } 13321 13322 void 13323 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13324 { 13325 if (IPCL_IS_NONSTR(connp)) { 13326 (*connp->conn_upcalls->su_txq_full) 13327 (connp->conn_upper_handle, B_FALSE); 13328 if (flow_stopped != NULL) 13329 *flow_stopped = B_FALSE; 13330 } else { 13331 queue_t *q = connp->conn_wq; 13332 13333 ASSERT(q != NULL); 13334 if (q->q_flag & QFULL) { 13335 mutex_enter(QLOCK(q)); 13336 if (q->q_flag & QFULL) { 13337 q->q_flag &= ~QFULL; 13338 /* set flow_stopped to false under QLOCK */ 13339 if (flow_stopped != NULL) 13340 *flow_stopped = B_FALSE; 13341 mutex_exit(QLOCK(q)); 13342 if (q->q_flag & QWANTW) 13343 qbackenable(q, 0); 13344 } else { 13345 /* flow_stopped is left unchanged */ 13346 mutex_exit(QLOCK(q)); 13347 } 13348 } 13349 } 13350 13351 mutex_enter(&connp->conn_lock); 13352 connp->conn_blocked = B_FALSE; 13353 mutex_exit(&connp->conn_lock); 13354 } 13355 13356 /* 13357 * Return the length in bytes of the IPv4 headers (base header, label, and 13358 * other IP options) that will be needed based on the 13359 * ip_pkt_t structure passed by the caller. 13360 * 13361 * The returned length does not include the length of the upper level 13362 * protocol (ULP) header. 13363 * The caller needs to check that the length doesn't exceed the max for IPv4. 13364 */ 13365 int 13366 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13367 { 13368 int len; 13369 13370 len = IP_SIMPLE_HDR_LENGTH; 13371 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13372 ASSERT(ipp->ipp_label_len_v4 != 0); 13373 /* We need to round up here */ 13374 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13375 } 13376 13377 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13378 ASSERT(ipp->ipp_ipv4_options_len != 0); 13379 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13380 len += ipp->ipp_ipv4_options_len; 13381 } 13382 return (len); 13383 } 13384 13385 /* 13386 * All-purpose routine to build an IPv4 header with options based 13387 * on the abstract ip_pkt_t. 13388 * 13389 * The caller has to set the source and destination address as well as 13390 * ipha_length. The caller has to massage any source route and compensate 13391 * for the ULP pseudo-header checksum due to the source route. 13392 */ 13393 void 13394 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13395 uint8_t protocol) 13396 { 13397 ipha_t *ipha = (ipha_t *)buf; 13398 uint8_t *cp; 13399 13400 /* Initialize IPv4 header */ 13401 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13402 ipha->ipha_length = 0; /* Caller will set later */ 13403 ipha->ipha_ident = 0; 13404 ipha->ipha_fragment_offset_and_flags = 0; 13405 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13406 ipha->ipha_protocol = protocol; 13407 ipha->ipha_hdr_checksum = 0; 13408 13409 if ((ipp->ipp_fields & IPPF_ADDR) && 13410 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13411 ipha->ipha_src = ipp->ipp_addr_v4; 13412 13413 cp = (uint8_t *)&ipha[1]; 13414 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13415 ASSERT(ipp->ipp_label_len_v4 != 0); 13416 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13417 cp += ipp->ipp_label_len_v4; 13418 /* We need to round up here */ 13419 while ((uintptr_t)cp & 0x3) { 13420 *cp++ = IPOPT_NOP; 13421 } 13422 } 13423 13424 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13425 ASSERT(ipp->ipp_ipv4_options_len != 0); 13426 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13427 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13428 cp += ipp->ipp_ipv4_options_len; 13429 } 13430 ipha->ipha_version_and_hdr_length = 13431 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13432 13433 ASSERT((int)(cp - buf) == buf_len); 13434 } 13435 13436 /* Allocate the private structure */ 13437 static int 13438 ip_priv_alloc(void **bufp) 13439 { 13440 void *buf; 13441 13442 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13443 return (ENOMEM); 13444 13445 *bufp = buf; 13446 return (0); 13447 } 13448 13449 /* Function to delete the private structure */ 13450 void 13451 ip_priv_free(void *buf) 13452 { 13453 ASSERT(buf != NULL); 13454 kmem_free(buf, sizeof (ip_priv_t)); 13455 } 13456 13457 /* 13458 * The entry point for IPPF processing. 13459 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13460 * routine just returns. 13461 * 13462 * When called, ip_process generates an ipp_packet_t structure 13463 * which holds the state information for this packet and invokes the 13464 * the classifier (via ipp_packet_process). The classification, depending on 13465 * configured filters, results in a list of actions for this packet. Invoking 13466 * an action may cause the packet to be dropped, in which case we return NULL. 13467 * proc indicates the callout position for 13468 * this packet and ill is the interface this packet arrived on or will leave 13469 * on (inbound and outbound resp.). 13470 * 13471 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13472 * on the ill corrsponding to the destination IP address. 13473 */ 13474 mblk_t * 13475 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13476 { 13477 ip_priv_t *priv; 13478 ipp_action_id_t aid; 13479 int rc = 0; 13480 ipp_packet_t *pp; 13481 13482 /* If the classifier is not loaded, return */ 13483 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13484 return (mp); 13485 } 13486 13487 ASSERT(mp != NULL); 13488 13489 /* Allocate the packet structure */ 13490 rc = ipp_packet_alloc(&pp, "ip", aid); 13491 if (rc != 0) 13492 goto drop; 13493 13494 /* Allocate the private structure */ 13495 rc = ip_priv_alloc((void **)&priv); 13496 if (rc != 0) { 13497 ipp_packet_free(pp); 13498 goto drop; 13499 } 13500 priv->proc = proc; 13501 priv->ill_index = ill_get_upper_ifindex(rill); 13502 13503 ipp_packet_set_private(pp, priv, ip_priv_free); 13504 ipp_packet_set_data(pp, mp); 13505 13506 /* Invoke the classifier */ 13507 rc = ipp_packet_process(&pp); 13508 if (pp != NULL) { 13509 mp = ipp_packet_get_data(pp); 13510 ipp_packet_free(pp); 13511 if (rc != 0) 13512 goto drop; 13513 return (mp); 13514 } else { 13515 /* No mp to trace in ip_drop_input/ip_drop_output */ 13516 mp = NULL; 13517 } 13518 drop: 13519 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13520 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13521 ip_drop_input("ip_process", mp, ill); 13522 } else { 13523 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13524 ip_drop_output("ip_process", mp, ill); 13525 } 13526 freemsg(mp); 13527 return (NULL); 13528 } 13529 13530 /* 13531 * Propagate a multicast group membership operation (add/drop) on 13532 * all the interfaces crossed by the related multirt routes. 13533 * The call is considered successful if the operation succeeds 13534 * on at least one interface. 13535 * 13536 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13537 * multicast addresses with the ire argument being the first one. 13538 * We walk the bucket to find all the of those. 13539 * 13540 * Common to IPv4 and IPv6. 13541 */ 13542 static int 13543 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13544 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13545 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13546 mcast_record_t fmode, const in6_addr_t *v6src) 13547 { 13548 ire_t *ire_gw; 13549 irb_t *irb; 13550 int ifindex; 13551 int error = 0; 13552 int result; 13553 ip_stack_t *ipst = ire->ire_ipst; 13554 ipaddr_t group; 13555 boolean_t isv6; 13556 int match_flags; 13557 13558 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13559 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13560 isv6 = B_FALSE; 13561 } else { 13562 isv6 = B_TRUE; 13563 } 13564 13565 irb = ire->ire_bucket; 13566 ASSERT(irb != NULL); 13567 13568 result = 0; 13569 irb_refhold(irb); 13570 for (; ire != NULL; ire = ire->ire_next) { 13571 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13572 continue; 13573 13574 /* We handle -ifp routes by matching on the ill if set */ 13575 match_flags = MATCH_IRE_TYPE; 13576 if (ire->ire_ill != NULL) 13577 match_flags |= MATCH_IRE_ILL; 13578 13579 if (isv6) { 13580 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13581 continue; 13582 13583 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13584 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13585 match_flags, 0, ipst, NULL); 13586 } else { 13587 if (ire->ire_addr != group) 13588 continue; 13589 13590 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13591 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13592 match_flags, 0, ipst, NULL); 13593 } 13594 /* No interface route exists for the gateway; skip this ire. */ 13595 if (ire_gw == NULL) 13596 continue; 13597 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13598 ire_refrele(ire_gw); 13599 continue; 13600 } 13601 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13602 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13603 13604 /* 13605 * The operation is considered a success if 13606 * it succeeds at least once on any one interface. 13607 */ 13608 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13609 fmode, v6src); 13610 if (error == 0) 13611 result = CGTP_MCAST_SUCCESS; 13612 13613 ire_refrele(ire_gw); 13614 } 13615 irb_refrele(irb); 13616 /* 13617 * Consider the call as successful if we succeeded on at least 13618 * one interface. Otherwise, return the last encountered error. 13619 */ 13620 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13621 } 13622 13623 /* 13624 * Return the expected CGTP hooks version number. 13625 */ 13626 int 13627 ip_cgtp_filter_supported(void) 13628 { 13629 return (ip_cgtp_filter_rev); 13630 } 13631 13632 /* 13633 * CGTP hooks can be registered by invoking this function. 13634 * Checks that the version number matches. 13635 */ 13636 int 13637 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13638 { 13639 netstack_t *ns; 13640 ip_stack_t *ipst; 13641 13642 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13643 return (ENOTSUP); 13644 13645 ns = netstack_find_by_stackid(stackid); 13646 if (ns == NULL) 13647 return (EINVAL); 13648 ipst = ns->netstack_ip; 13649 ASSERT(ipst != NULL); 13650 13651 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13652 netstack_rele(ns); 13653 return (EALREADY); 13654 } 13655 13656 ipst->ips_ip_cgtp_filter_ops = ops; 13657 13658 ill_set_inputfn_all(ipst); 13659 13660 netstack_rele(ns); 13661 return (0); 13662 } 13663 13664 /* 13665 * CGTP hooks can be unregistered by invoking this function. 13666 * Returns ENXIO if there was no registration. 13667 * Returns EBUSY if the ndd variable has not been turned off. 13668 */ 13669 int 13670 ip_cgtp_filter_unregister(netstackid_t stackid) 13671 { 13672 netstack_t *ns; 13673 ip_stack_t *ipst; 13674 13675 ns = netstack_find_by_stackid(stackid); 13676 if (ns == NULL) 13677 return (EINVAL); 13678 ipst = ns->netstack_ip; 13679 ASSERT(ipst != NULL); 13680 13681 if (ipst->ips_ip_cgtp_filter) { 13682 netstack_rele(ns); 13683 return (EBUSY); 13684 } 13685 13686 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13687 netstack_rele(ns); 13688 return (ENXIO); 13689 } 13690 ipst->ips_ip_cgtp_filter_ops = NULL; 13691 13692 ill_set_inputfn_all(ipst); 13693 13694 netstack_rele(ns); 13695 return (0); 13696 } 13697 13698 /* 13699 * Check whether there is a CGTP filter registration. 13700 * Returns non-zero if there is a registration, otherwise returns zero. 13701 * Note: returns zero if bad stackid. 13702 */ 13703 int 13704 ip_cgtp_filter_is_registered(netstackid_t stackid) 13705 { 13706 netstack_t *ns; 13707 ip_stack_t *ipst; 13708 int ret; 13709 13710 ns = netstack_find_by_stackid(stackid); 13711 if (ns == NULL) 13712 return (0); 13713 ipst = ns->netstack_ip; 13714 ASSERT(ipst != NULL); 13715 13716 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13717 ret = 1; 13718 else 13719 ret = 0; 13720 13721 netstack_rele(ns); 13722 return (ret); 13723 } 13724 13725 static int 13726 ip_squeue_switch(int val) 13727 { 13728 int rval; 13729 13730 switch (val) { 13731 case IP_SQUEUE_ENTER_NODRAIN: 13732 rval = SQ_NODRAIN; 13733 break; 13734 case IP_SQUEUE_ENTER: 13735 rval = SQ_PROCESS; 13736 break; 13737 case IP_SQUEUE_FILL: 13738 default: 13739 rval = SQ_FILL; 13740 break; 13741 } 13742 return (rval); 13743 } 13744 13745 static void * 13746 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13747 { 13748 kstat_t *ksp; 13749 13750 ip_stat_t template = { 13751 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13752 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13753 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13754 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13755 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13756 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13757 { "ip_opt", KSTAT_DATA_UINT64 }, 13758 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13759 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13760 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13761 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13762 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13763 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13764 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13765 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13766 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13767 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13768 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13769 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13770 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13771 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13772 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13773 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13774 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13775 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13776 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13777 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13778 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13779 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13780 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13781 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13782 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13783 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13784 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13785 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13786 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13787 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13788 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13789 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13790 }; 13791 13792 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13793 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13794 KSTAT_FLAG_VIRTUAL, stackid); 13795 13796 if (ksp == NULL) 13797 return (NULL); 13798 13799 bcopy(&template, ip_statisticsp, sizeof (template)); 13800 ksp->ks_data = (void *)ip_statisticsp; 13801 ksp->ks_private = (void *)(uintptr_t)stackid; 13802 13803 kstat_install(ksp); 13804 return (ksp); 13805 } 13806 13807 static void 13808 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13809 { 13810 if (ksp != NULL) { 13811 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13812 kstat_delete_netstack(ksp, stackid); 13813 } 13814 } 13815 13816 static void * 13817 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13818 { 13819 kstat_t *ksp; 13820 13821 ip_named_kstat_t template = { 13822 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13823 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13824 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13825 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13826 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13827 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13828 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13829 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13830 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13831 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13832 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13833 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13834 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13835 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13836 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13837 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13838 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13839 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13840 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13841 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13842 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13843 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13844 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13845 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13846 { "noPorts", KSTAT_DATA_UINT32, 0 }, 13847 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 13848 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 13849 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 13850 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 13851 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 13852 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 13853 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 13854 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 13855 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 13856 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 13857 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 13858 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 13859 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 13860 }; 13861 13862 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 13863 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 13864 if (ksp == NULL || ksp->ks_data == NULL) 13865 return (NULL); 13866 13867 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 13868 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 13869 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13870 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 13871 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 13872 13873 template.netToMediaEntrySize.value.i32 = 13874 sizeof (mib2_ipNetToMediaEntry_t); 13875 13876 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 13877 13878 bcopy(&template, ksp->ks_data, sizeof (template)); 13879 ksp->ks_update = ip_kstat_update; 13880 ksp->ks_private = (void *)(uintptr_t)stackid; 13881 13882 kstat_install(ksp); 13883 return (ksp); 13884 } 13885 13886 static void 13887 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 13888 { 13889 if (ksp != NULL) { 13890 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13891 kstat_delete_netstack(ksp, stackid); 13892 } 13893 } 13894 13895 static int 13896 ip_kstat_update(kstat_t *kp, int rw) 13897 { 13898 ip_named_kstat_t *ipkp; 13899 mib2_ipIfStatsEntry_t ipmib; 13900 ill_walk_context_t ctx; 13901 ill_t *ill; 13902 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 13903 netstack_t *ns; 13904 ip_stack_t *ipst; 13905 13906 if (kp == NULL || kp->ks_data == NULL) 13907 return (EIO); 13908 13909 if (rw == KSTAT_WRITE) 13910 return (EACCES); 13911 13912 ns = netstack_find_by_stackid(stackid); 13913 if (ns == NULL) 13914 return (-1); 13915 ipst = ns->netstack_ip; 13916 if (ipst == NULL) { 13917 netstack_rele(ns); 13918 return (-1); 13919 } 13920 ipkp = (ip_named_kstat_t *)kp->ks_data; 13921 13922 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 13923 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13924 ill = ILL_START_WALK_V4(&ctx, ipst); 13925 for (; ill != NULL; ill = ill_next(&ctx, ill)) 13926 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 13927 rw_exit(&ipst->ips_ill_g_lock); 13928 13929 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 13930 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 13931 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 13932 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 13933 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 13934 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 13935 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 13936 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 13937 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 13938 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 13939 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 13940 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 13941 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13942 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 13943 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 13944 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 13945 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 13946 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 13947 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 13948 13949 ipkp->routingDiscards.value.ui32 = 0; 13950 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 13951 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 13952 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 13953 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 13954 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 13955 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 13956 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 13957 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 13958 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 13959 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 13960 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 13961 13962 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 13963 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 13964 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 13965 13966 netstack_rele(ns); 13967 13968 return (0); 13969 } 13970 13971 static void * 13972 icmp_kstat_init(netstackid_t stackid) 13973 { 13974 kstat_t *ksp; 13975 13976 icmp_named_kstat_t template = { 13977 { "inMsgs", KSTAT_DATA_UINT32 }, 13978 { "inErrors", KSTAT_DATA_UINT32 }, 13979 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 13980 { "inTimeExcds", KSTAT_DATA_UINT32 }, 13981 { "inParmProbs", KSTAT_DATA_UINT32 }, 13982 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 13983 { "inRedirects", KSTAT_DATA_UINT32 }, 13984 { "inEchos", KSTAT_DATA_UINT32 }, 13985 { "inEchoReps", KSTAT_DATA_UINT32 }, 13986 { "inTimestamps", KSTAT_DATA_UINT32 }, 13987 { "inTimestampReps", KSTAT_DATA_UINT32 }, 13988 { "inAddrMasks", KSTAT_DATA_UINT32 }, 13989 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 13990 { "outMsgs", KSTAT_DATA_UINT32 }, 13991 { "outErrors", KSTAT_DATA_UINT32 }, 13992 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 13993 { "outTimeExcds", KSTAT_DATA_UINT32 }, 13994 { "outParmProbs", KSTAT_DATA_UINT32 }, 13995 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 13996 { "outRedirects", KSTAT_DATA_UINT32 }, 13997 { "outEchos", KSTAT_DATA_UINT32 }, 13998 { "outEchoReps", KSTAT_DATA_UINT32 }, 13999 { "outTimestamps", KSTAT_DATA_UINT32 }, 14000 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14001 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14002 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14003 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14004 { "inUnknowns", KSTAT_DATA_UINT32 }, 14005 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14006 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14007 { "outDrops", KSTAT_DATA_UINT32 }, 14008 { "inOverFlows", KSTAT_DATA_UINT32 }, 14009 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14010 }; 14011 14012 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14013 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14014 if (ksp == NULL || ksp->ks_data == NULL) 14015 return (NULL); 14016 14017 bcopy(&template, ksp->ks_data, sizeof (template)); 14018 14019 ksp->ks_update = icmp_kstat_update; 14020 ksp->ks_private = (void *)(uintptr_t)stackid; 14021 14022 kstat_install(ksp); 14023 return (ksp); 14024 } 14025 14026 static void 14027 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14028 { 14029 if (ksp != NULL) { 14030 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14031 kstat_delete_netstack(ksp, stackid); 14032 } 14033 } 14034 14035 static int 14036 icmp_kstat_update(kstat_t *kp, int rw) 14037 { 14038 icmp_named_kstat_t *icmpkp; 14039 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14040 netstack_t *ns; 14041 ip_stack_t *ipst; 14042 14043 if ((kp == NULL) || (kp->ks_data == NULL)) 14044 return (EIO); 14045 14046 if (rw == KSTAT_WRITE) 14047 return (EACCES); 14048 14049 ns = netstack_find_by_stackid(stackid); 14050 if (ns == NULL) 14051 return (-1); 14052 ipst = ns->netstack_ip; 14053 if (ipst == NULL) { 14054 netstack_rele(ns); 14055 return (-1); 14056 } 14057 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14058 14059 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14060 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14061 icmpkp->inDestUnreachs.value.ui32 = 14062 ipst->ips_icmp_mib.icmpInDestUnreachs; 14063 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14064 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14065 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14066 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14067 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14068 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14069 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14070 icmpkp->inTimestampReps.value.ui32 = 14071 ipst->ips_icmp_mib.icmpInTimestampReps; 14072 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14073 icmpkp->inAddrMaskReps.value.ui32 = 14074 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14075 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14076 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14077 icmpkp->outDestUnreachs.value.ui32 = 14078 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14079 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14080 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14081 icmpkp->outSrcQuenchs.value.ui32 = 14082 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14083 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14084 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14085 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14086 icmpkp->outTimestamps.value.ui32 = 14087 ipst->ips_icmp_mib.icmpOutTimestamps; 14088 icmpkp->outTimestampReps.value.ui32 = 14089 ipst->ips_icmp_mib.icmpOutTimestampReps; 14090 icmpkp->outAddrMasks.value.ui32 = 14091 ipst->ips_icmp_mib.icmpOutAddrMasks; 14092 icmpkp->outAddrMaskReps.value.ui32 = 14093 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14094 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14095 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14096 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14097 icmpkp->outFragNeeded.value.ui32 = 14098 ipst->ips_icmp_mib.icmpOutFragNeeded; 14099 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14100 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14101 icmpkp->inBadRedirects.value.ui32 = 14102 ipst->ips_icmp_mib.icmpInBadRedirects; 14103 14104 netstack_rele(ns); 14105 return (0); 14106 } 14107 14108 /* 14109 * This is the fanout function for raw socket opened for SCTP. Note 14110 * that it is called after SCTP checks that there is no socket which 14111 * wants a packet. Then before SCTP handles this out of the blue packet, 14112 * this function is called to see if there is any raw socket for SCTP. 14113 * If there is and it is bound to the correct address, the packet will 14114 * be sent to that socket. Note that only one raw socket can be bound to 14115 * a port. This is assured in ipcl_sctp_hash_insert(); 14116 */ 14117 void 14118 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14119 ip_recv_attr_t *ira) 14120 { 14121 conn_t *connp; 14122 queue_t *rq; 14123 boolean_t secure; 14124 ill_t *ill = ira->ira_ill; 14125 ip_stack_t *ipst = ill->ill_ipst; 14126 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14127 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14128 iaflags_t iraflags = ira->ira_flags; 14129 ill_t *rill = ira->ira_rill; 14130 14131 secure = iraflags & IRAF_IPSEC_SECURE; 14132 14133 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14134 ira, ipst); 14135 if (connp == NULL) { 14136 /* 14137 * Although raw sctp is not summed, OOB chunks must be. 14138 * Drop the packet here if the sctp checksum failed. 14139 */ 14140 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14141 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 14142 freemsg(mp); 14143 return; 14144 } 14145 ira->ira_ill = ira->ira_rill = NULL; 14146 sctp_ootb_input(mp, ira, ipst); 14147 ira->ira_ill = ill; 14148 ira->ira_rill = rill; 14149 return; 14150 } 14151 rq = connp->conn_rq; 14152 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14153 CONN_DEC_REF(connp); 14154 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14155 freemsg(mp); 14156 return; 14157 } 14158 if (((iraflags & IRAF_IS_IPV4) ? 14159 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14160 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14161 secure) { 14162 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14163 ip6h, ira); 14164 if (mp == NULL) { 14165 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14166 /* Note that mp is NULL */ 14167 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14168 CONN_DEC_REF(connp); 14169 return; 14170 } 14171 } 14172 14173 if (iraflags & IRAF_ICMP_ERROR) { 14174 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14175 } else { 14176 ill_t *rill = ira->ira_rill; 14177 14178 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14179 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14180 ira->ira_ill = ira->ira_rill = NULL; 14181 (connp->conn_recv)(connp, mp, NULL, ira); 14182 ira->ira_ill = ill; 14183 ira->ira_rill = rill; 14184 } 14185 CONN_DEC_REF(connp); 14186 } 14187 14188 /* 14189 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14190 * header before the ip payload. 14191 */ 14192 static void 14193 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14194 { 14195 int len = (mp->b_wptr - mp->b_rptr); 14196 mblk_t *ip_mp; 14197 14198 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14199 if (is_fp_mp || len != fp_mp_len) { 14200 if (len > fp_mp_len) { 14201 /* 14202 * fastpath header and ip header in the first mblk 14203 */ 14204 mp->b_rptr += fp_mp_len; 14205 } else { 14206 /* 14207 * ip_xmit_attach_llhdr had to prepend an mblk to 14208 * attach the fastpath header before ip header. 14209 */ 14210 ip_mp = mp->b_cont; 14211 freeb(mp); 14212 mp = ip_mp; 14213 mp->b_rptr += (fp_mp_len - len); 14214 } 14215 } else { 14216 ip_mp = mp->b_cont; 14217 freeb(mp); 14218 mp = ip_mp; 14219 } 14220 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14221 freemsg(mp); 14222 } 14223 14224 /* 14225 * Normal post fragmentation function. 14226 * 14227 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14228 * using the same state machine. 14229 * 14230 * We return an error on failure. In particular we return EWOULDBLOCK 14231 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14232 * (currently by canputnext failure resulting in backenabling from GLD.) 14233 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14234 * indication that they can flow control until ip_wsrv() tells then to restart. 14235 * 14236 * If the nce passed by caller is incomplete, this function 14237 * queues the packet and if necessary, sends ARP request and bails. 14238 * If the Neighbor Cache passed is fully resolved, we simply prepend 14239 * the link-layer header to the packet, do ipsec hw acceleration 14240 * work if necessary, and send the packet out on the wire. 14241 */ 14242 /* ARGSUSED6 */ 14243 int 14244 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14245 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14246 { 14247 queue_t *wq; 14248 ill_t *ill = nce->nce_ill; 14249 ip_stack_t *ipst = ill->ill_ipst; 14250 uint64_t delta; 14251 boolean_t isv6 = ill->ill_isv6; 14252 boolean_t fp_mp; 14253 ncec_t *ncec = nce->nce_common; 14254 int64_t now = LBOLT_FASTPATH64; 14255 boolean_t is_probe; 14256 14257 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14258 14259 ASSERT(mp != NULL); 14260 ASSERT(mp->b_datap->db_type == M_DATA); 14261 ASSERT(pkt_len == msgdsize(mp)); 14262 14263 /* 14264 * If we have already been here and are coming back after ARP/ND. 14265 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14266 * in that case since they have seen the packet when it came here 14267 * the first time. 14268 */ 14269 if (ixaflags & IXAF_NO_TRACE) 14270 goto sendit; 14271 14272 if (ixaflags & IXAF_IS_IPV4) { 14273 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14274 14275 ASSERT(!isv6); 14276 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14277 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14278 !(ixaflags & IXAF_NO_PFHOOK)) { 14279 int error; 14280 14281 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14282 ipst->ips_ipv4firewall_physical_out, 14283 NULL, ill, ipha, mp, mp, 0, ipst, error); 14284 DTRACE_PROBE1(ip4__physical__out__end, 14285 mblk_t *, mp); 14286 if (mp == NULL) 14287 return (error); 14288 14289 /* The length could have changed */ 14290 pkt_len = msgdsize(mp); 14291 } 14292 if (ipst->ips_ip4_observe.he_interested) { 14293 /* 14294 * Note that for TX the zoneid is the sending 14295 * zone, whether or not MLP is in play. 14296 * Since the szone argument is the IP zoneid (i.e., 14297 * zero for exclusive-IP zones) and ipobs wants 14298 * the system zoneid, we map it here. 14299 */ 14300 szone = IP_REAL_ZONEID(szone, ipst); 14301 14302 /* 14303 * On the outbound path the destination zone will be 14304 * unknown as we're sending this packet out on the 14305 * wire. 14306 */ 14307 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14308 ill, ipst); 14309 } 14310 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14311 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14312 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14313 } else { 14314 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14315 14316 ASSERT(isv6); 14317 ASSERT(pkt_len == 14318 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14319 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14320 !(ixaflags & IXAF_NO_PFHOOK)) { 14321 int error; 14322 14323 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14324 ipst->ips_ipv6firewall_physical_out, 14325 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14326 DTRACE_PROBE1(ip6__physical__out__end, 14327 mblk_t *, mp); 14328 if (mp == NULL) 14329 return (error); 14330 14331 /* The length could have changed */ 14332 pkt_len = msgdsize(mp); 14333 } 14334 if (ipst->ips_ip6_observe.he_interested) { 14335 /* See above */ 14336 szone = IP_REAL_ZONEID(szone, ipst); 14337 14338 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14339 ill, ipst); 14340 } 14341 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14342 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14343 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14344 } 14345 14346 sendit: 14347 /* 14348 * We check the state without a lock because the state can never 14349 * move "backwards" to initial or incomplete. 14350 */ 14351 switch (ncec->ncec_state) { 14352 case ND_REACHABLE: 14353 case ND_STALE: 14354 case ND_DELAY: 14355 case ND_PROBE: 14356 mp = ip_xmit_attach_llhdr(mp, nce); 14357 if (mp == NULL) { 14358 /* 14359 * ip_xmit_attach_llhdr has increased 14360 * ipIfStatsOutDiscards and called ip_drop_output() 14361 */ 14362 return (ENOBUFS); 14363 } 14364 /* 14365 * check if nce_fastpath completed and we tagged on a 14366 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14367 */ 14368 fp_mp = (mp->b_datap->db_type == M_DATA); 14369 14370 if (fp_mp && 14371 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14372 ill_dld_direct_t *idd; 14373 14374 idd = &ill->ill_dld_capab->idc_direct; 14375 /* 14376 * Send the packet directly to DLD, where it 14377 * may be queued depending on the availability 14378 * of transmit resources at the media layer. 14379 * Return value should be taken into 14380 * account and flow control the TCP. 14381 */ 14382 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14383 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14384 pkt_len); 14385 14386 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14387 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14388 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14389 } else { 14390 uintptr_t cookie; 14391 14392 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14393 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14394 if (ixacookie != NULL) 14395 *ixacookie = cookie; 14396 return (EWOULDBLOCK); 14397 } 14398 } 14399 } else { 14400 wq = ill->ill_wq; 14401 14402 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14403 !canputnext(wq)) { 14404 if (ixacookie != NULL) 14405 *ixacookie = 0; 14406 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14407 nce->nce_fp_mp != NULL ? 14408 MBLKL(nce->nce_fp_mp) : 0); 14409 return (EWOULDBLOCK); 14410 } 14411 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14412 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14413 pkt_len); 14414 putnext(wq, mp); 14415 } 14416 14417 /* 14418 * The rest of this function implements Neighbor Unreachability 14419 * detection. Determine if the ncec is eligible for NUD. 14420 */ 14421 if (ncec->ncec_flags & NCE_F_NONUD) 14422 return (0); 14423 14424 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14425 14426 /* 14427 * Check for upper layer advice 14428 */ 14429 if (ixaflags & IXAF_REACH_CONF) { 14430 timeout_id_t tid; 14431 14432 /* 14433 * It should be o.k. to check the state without 14434 * a lock here, at most we lose an advice. 14435 */ 14436 ncec->ncec_last = TICK_TO_MSEC(now); 14437 if (ncec->ncec_state != ND_REACHABLE) { 14438 mutex_enter(&ncec->ncec_lock); 14439 ncec->ncec_state = ND_REACHABLE; 14440 tid = ncec->ncec_timeout_id; 14441 ncec->ncec_timeout_id = 0; 14442 mutex_exit(&ncec->ncec_lock); 14443 (void) untimeout(tid); 14444 if (ip_debug > 2) { 14445 /* ip1dbg */ 14446 pr_addr_dbg("ip_xmit: state" 14447 " for %s changed to" 14448 " REACHABLE\n", AF_INET6, 14449 &ncec->ncec_addr); 14450 } 14451 } 14452 return (0); 14453 } 14454 14455 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14456 ip1dbg(("ip_xmit: delta = %" PRId64 14457 " ill_reachable_time = %d \n", delta, 14458 ill->ill_reachable_time)); 14459 if (delta > (uint64_t)ill->ill_reachable_time) { 14460 mutex_enter(&ncec->ncec_lock); 14461 switch (ncec->ncec_state) { 14462 case ND_REACHABLE: 14463 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14464 /* FALLTHROUGH */ 14465 case ND_STALE: 14466 /* 14467 * ND_REACHABLE is identical to 14468 * ND_STALE in this specific case. If 14469 * reachable time has expired for this 14470 * neighbor (delta is greater than 14471 * reachable time), conceptually, the 14472 * neighbor cache is no longer in 14473 * REACHABLE state, but already in 14474 * STALE state. So the correct 14475 * transition here is to ND_DELAY. 14476 */ 14477 ncec->ncec_state = ND_DELAY; 14478 mutex_exit(&ncec->ncec_lock); 14479 nce_restart_timer(ncec, 14480 ipst->ips_delay_first_probe_time); 14481 if (ip_debug > 3) { 14482 /* ip2dbg */ 14483 pr_addr_dbg("ip_xmit: state" 14484 " for %s changed to" 14485 " DELAY\n", AF_INET6, 14486 &ncec->ncec_addr); 14487 } 14488 break; 14489 case ND_DELAY: 14490 case ND_PROBE: 14491 mutex_exit(&ncec->ncec_lock); 14492 /* Timers have already started */ 14493 break; 14494 case ND_UNREACHABLE: 14495 /* 14496 * nce_timer has detected that this ncec 14497 * is unreachable and initiated deleting 14498 * this ncec. 14499 * This is a harmless race where we found the 14500 * ncec before it was deleted and have 14501 * just sent out a packet using this 14502 * unreachable ncec. 14503 */ 14504 mutex_exit(&ncec->ncec_lock); 14505 break; 14506 default: 14507 ASSERT(0); 14508 mutex_exit(&ncec->ncec_lock); 14509 } 14510 } 14511 return (0); 14512 14513 case ND_INCOMPLETE: 14514 /* 14515 * the state could have changed since we didn't hold the lock. 14516 * Re-verify state under lock. 14517 */ 14518 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14519 mutex_enter(&ncec->ncec_lock); 14520 if (NCE_ISREACHABLE(ncec)) { 14521 mutex_exit(&ncec->ncec_lock); 14522 goto sendit; 14523 } 14524 /* queue the packet */ 14525 nce_queue_mp(ncec, mp, is_probe); 14526 mutex_exit(&ncec->ncec_lock); 14527 DTRACE_PROBE2(ip__xmit__incomplete, 14528 (ncec_t *), ncec, (mblk_t *), mp); 14529 return (0); 14530 14531 case ND_INITIAL: 14532 /* 14533 * State could have changed since we didn't hold the lock, so 14534 * re-verify state. 14535 */ 14536 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14537 mutex_enter(&ncec->ncec_lock); 14538 if (NCE_ISREACHABLE(ncec)) { 14539 mutex_exit(&ncec->ncec_lock); 14540 goto sendit; 14541 } 14542 nce_queue_mp(ncec, mp, is_probe); 14543 if (ncec->ncec_state == ND_INITIAL) { 14544 ncec->ncec_state = ND_INCOMPLETE; 14545 mutex_exit(&ncec->ncec_lock); 14546 /* 14547 * figure out the source we want to use 14548 * and resolve it. 14549 */ 14550 ip_ndp_resolve(ncec); 14551 } else { 14552 mutex_exit(&ncec->ncec_lock); 14553 } 14554 return (0); 14555 14556 case ND_UNREACHABLE: 14557 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14558 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14559 mp, ill); 14560 freemsg(mp); 14561 return (0); 14562 14563 default: 14564 ASSERT(0); 14565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14566 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14567 mp, ill); 14568 freemsg(mp); 14569 return (ENETUNREACH); 14570 } 14571 } 14572 14573 /* 14574 * Return B_TRUE if the buffers differ in length or content. 14575 * This is used for comparing extension header buffers. 14576 * Note that an extension header would be declared different 14577 * even if all that changed was the next header value in that header i.e. 14578 * what really changed is the next extension header. 14579 */ 14580 boolean_t 14581 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14582 uint_t blen) 14583 { 14584 if (!b_valid) 14585 blen = 0; 14586 14587 if (alen != blen) 14588 return (B_TRUE); 14589 if (alen == 0) 14590 return (B_FALSE); /* Both zero length */ 14591 return (bcmp(abuf, bbuf, alen)); 14592 } 14593 14594 /* 14595 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14596 * Return B_FALSE if memory allocation fails - don't change any state! 14597 */ 14598 boolean_t 14599 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14600 const void *src, uint_t srclen) 14601 { 14602 void *dst; 14603 14604 if (!src_valid) 14605 srclen = 0; 14606 14607 ASSERT(*dstlenp == 0); 14608 if (src != NULL && srclen != 0) { 14609 dst = mi_alloc(srclen, BPRI_MED); 14610 if (dst == NULL) 14611 return (B_FALSE); 14612 } else { 14613 dst = NULL; 14614 } 14615 if (*dstp != NULL) 14616 mi_free(*dstp); 14617 *dstp = dst; 14618 *dstlenp = dst == NULL ? 0 : srclen; 14619 return (B_TRUE); 14620 } 14621 14622 /* 14623 * Replace what is in *dst, *dstlen with the source. 14624 * Assumes ip_allocbuf has already been called. 14625 */ 14626 void 14627 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14628 const void *src, uint_t srclen) 14629 { 14630 if (!src_valid) 14631 srclen = 0; 14632 14633 ASSERT(*dstlenp == srclen); 14634 if (src != NULL && srclen != 0) 14635 bcopy(src, *dstp, srclen); 14636 } 14637 14638 /* 14639 * Free the storage pointed to by the members of an ip_pkt_t. 14640 */ 14641 void 14642 ip_pkt_free(ip_pkt_t *ipp) 14643 { 14644 uint_t fields = ipp->ipp_fields; 14645 14646 if (fields & IPPF_HOPOPTS) { 14647 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14648 ipp->ipp_hopopts = NULL; 14649 ipp->ipp_hopoptslen = 0; 14650 } 14651 if (fields & IPPF_RTHDRDSTOPTS) { 14652 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14653 ipp->ipp_rthdrdstopts = NULL; 14654 ipp->ipp_rthdrdstoptslen = 0; 14655 } 14656 if (fields & IPPF_DSTOPTS) { 14657 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14658 ipp->ipp_dstopts = NULL; 14659 ipp->ipp_dstoptslen = 0; 14660 } 14661 if (fields & IPPF_RTHDR) { 14662 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14663 ipp->ipp_rthdr = NULL; 14664 ipp->ipp_rthdrlen = 0; 14665 } 14666 if (fields & IPPF_IPV4_OPTIONS) { 14667 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14668 ipp->ipp_ipv4_options = NULL; 14669 ipp->ipp_ipv4_options_len = 0; 14670 } 14671 if (fields & IPPF_LABEL_V4) { 14672 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14673 ipp->ipp_label_v4 = NULL; 14674 ipp->ipp_label_len_v4 = 0; 14675 } 14676 if (fields & IPPF_LABEL_V6) { 14677 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14678 ipp->ipp_label_v6 = NULL; 14679 ipp->ipp_label_len_v6 = 0; 14680 } 14681 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14682 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14683 } 14684 14685 /* 14686 * Copy from src to dst and allocate as needed. 14687 * Returns zero or ENOMEM. 14688 * 14689 * The caller must initialize dst to zero. 14690 */ 14691 int 14692 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14693 { 14694 uint_t fields = src->ipp_fields; 14695 14696 /* Start with fields that don't require memory allocation */ 14697 dst->ipp_fields = fields & 14698 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14699 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14700 14701 dst->ipp_addr = src->ipp_addr; 14702 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14703 dst->ipp_hoplimit = src->ipp_hoplimit; 14704 dst->ipp_tclass = src->ipp_tclass; 14705 dst->ipp_type_of_service = src->ipp_type_of_service; 14706 14707 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14708 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14709 return (0); 14710 14711 if (fields & IPPF_HOPOPTS) { 14712 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14713 if (dst->ipp_hopopts == NULL) { 14714 ip_pkt_free(dst); 14715 return (ENOMEM); 14716 } 14717 dst->ipp_fields |= IPPF_HOPOPTS; 14718 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14719 src->ipp_hopoptslen); 14720 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14721 } 14722 if (fields & IPPF_RTHDRDSTOPTS) { 14723 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14724 kmflag); 14725 if (dst->ipp_rthdrdstopts == NULL) { 14726 ip_pkt_free(dst); 14727 return (ENOMEM); 14728 } 14729 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14730 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14731 src->ipp_rthdrdstoptslen); 14732 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14733 } 14734 if (fields & IPPF_DSTOPTS) { 14735 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14736 if (dst->ipp_dstopts == NULL) { 14737 ip_pkt_free(dst); 14738 return (ENOMEM); 14739 } 14740 dst->ipp_fields |= IPPF_DSTOPTS; 14741 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14742 src->ipp_dstoptslen); 14743 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14744 } 14745 if (fields & IPPF_RTHDR) { 14746 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14747 if (dst->ipp_rthdr == NULL) { 14748 ip_pkt_free(dst); 14749 return (ENOMEM); 14750 } 14751 dst->ipp_fields |= IPPF_RTHDR; 14752 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14753 src->ipp_rthdrlen); 14754 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14755 } 14756 if (fields & IPPF_IPV4_OPTIONS) { 14757 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14758 kmflag); 14759 if (dst->ipp_ipv4_options == NULL) { 14760 ip_pkt_free(dst); 14761 return (ENOMEM); 14762 } 14763 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14764 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14765 src->ipp_ipv4_options_len); 14766 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14767 } 14768 if (fields & IPPF_LABEL_V4) { 14769 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14770 if (dst->ipp_label_v4 == NULL) { 14771 ip_pkt_free(dst); 14772 return (ENOMEM); 14773 } 14774 dst->ipp_fields |= IPPF_LABEL_V4; 14775 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14776 src->ipp_label_len_v4); 14777 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14778 } 14779 if (fields & IPPF_LABEL_V6) { 14780 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14781 if (dst->ipp_label_v6 == NULL) { 14782 ip_pkt_free(dst); 14783 return (ENOMEM); 14784 } 14785 dst->ipp_fields |= IPPF_LABEL_V6; 14786 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14787 src->ipp_label_len_v6); 14788 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14789 } 14790 if (fields & IPPF_FRAGHDR) { 14791 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14792 if (dst->ipp_fraghdr == NULL) { 14793 ip_pkt_free(dst); 14794 return (ENOMEM); 14795 } 14796 dst->ipp_fields |= IPPF_FRAGHDR; 14797 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14798 src->ipp_fraghdrlen); 14799 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14800 } 14801 return (0); 14802 } 14803 14804 /* 14805 * Returns INADDR_ANY if no source route 14806 */ 14807 ipaddr_t 14808 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14809 { 14810 ipaddr_t nexthop = INADDR_ANY; 14811 ipoptp_t opts; 14812 uchar_t *opt; 14813 uint8_t optval; 14814 uint8_t optlen; 14815 uint32_t totallen; 14816 14817 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14818 return (INADDR_ANY); 14819 14820 totallen = ipp->ipp_ipv4_options_len; 14821 if (totallen & 0x3) 14822 return (INADDR_ANY); 14823 14824 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14825 optval != IPOPT_EOL; 14826 optval = ipoptp_next(&opts)) { 14827 opt = opts.ipoptp_cur; 14828 switch (optval) { 14829 uint8_t off; 14830 case IPOPT_SSRR: 14831 case IPOPT_LSRR: 14832 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14833 break; 14834 } 14835 optlen = opts.ipoptp_len; 14836 off = opt[IPOPT_OFFSET]; 14837 off--; 14838 if (optlen < IP_ADDR_LEN || 14839 off > optlen - IP_ADDR_LEN) { 14840 /* End of source route */ 14841 break; 14842 } 14843 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14844 if (nexthop == htonl(INADDR_LOOPBACK)) { 14845 /* Ignore */ 14846 nexthop = INADDR_ANY; 14847 break; 14848 } 14849 break; 14850 } 14851 } 14852 return (nexthop); 14853 } 14854 14855 /* 14856 * Reverse a source route. 14857 */ 14858 void 14859 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 14860 { 14861 ipaddr_t tmp; 14862 ipoptp_t opts; 14863 uchar_t *opt; 14864 uint8_t optval; 14865 uint32_t totallen; 14866 14867 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14868 return; 14869 14870 totallen = ipp->ipp_ipv4_options_len; 14871 if (totallen & 0x3) 14872 return; 14873 14874 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14875 optval != IPOPT_EOL; 14876 optval = ipoptp_next(&opts)) { 14877 uint8_t off1, off2; 14878 14879 opt = opts.ipoptp_cur; 14880 switch (optval) { 14881 case IPOPT_SSRR: 14882 case IPOPT_LSRR: 14883 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14884 break; 14885 } 14886 off1 = IPOPT_MINOFF_SR - 1; 14887 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 14888 while (off2 > off1) { 14889 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 14890 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 14891 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 14892 off2 -= IP_ADDR_LEN; 14893 off1 += IP_ADDR_LEN; 14894 } 14895 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 14896 break; 14897 } 14898 } 14899 } 14900 14901 /* 14902 * Returns NULL if no routing header 14903 */ 14904 in6_addr_t * 14905 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 14906 { 14907 in6_addr_t *nexthop = NULL; 14908 ip6_rthdr0_t *rthdr; 14909 14910 if (!(ipp->ipp_fields & IPPF_RTHDR)) 14911 return (NULL); 14912 14913 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 14914 if (rthdr->ip6r0_segleft == 0) 14915 return (NULL); 14916 14917 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 14918 return (nexthop); 14919 } 14920 14921 zoneid_t 14922 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 14923 zoneid_t lookup_zoneid) 14924 { 14925 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 14926 ire_t *ire; 14927 int ire_flags = MATCH_IRE_TYPE; 14928 zoneid_t zoneid = ALL_ZONES; 14929 14930 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 14931 return (ALL_ZONES); 14932 14933 if (lookup_zoneid != ALL_ZONES) 14934 ire_flags |= MATCH_IRE_ZONEONLY; 14935 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 14936 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 14937 if (ire != NULL) { 14938 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 14939 ire_refrele(ire); 14940 } 14941 return (zoneid); 14942 } 14943 14944 zoneid_t 14945 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 14946 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 14947 { 14948 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 14949 ire_t *ire; 14950 int ire_flags = MATCH_IRE_TYPE; 14951 zoneid_t zoneid = ALL_ZONES; 14952 14953 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 14954 return (ALL_ZONES); 14955 14956 if (IN6_IS_ADDR_LINKLOCAL(addr)) 14957 ire_flags |= MATCH_IRE_ILL; 14958 14959 if (lookup_zoneid != ALL_ZONES) 14960 ire_flags |= MATCH_IRE_ZONEONLY; 14961 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 14962 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 14963 if (ire != NULL) { 14964 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 14965 ire_refrele(ire); 14966 } 14967 return (zoneid); 14968 } 14969 14970 /* 14971 * IP obserability hook support functions. 14972 */ 14973 static void 14974 ipobs_init(ip_stack_t *ipst) 14975 { 14976 netid_t id; 14977 14978 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 14979 14980 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 14981 VERIFY(ipst->ips_ip4_observe_pr != NULL); 14982 14983 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 14984 VERIFY(ipst->ips_ip6_observe_pr != NULL); 14985 } 14986 14987 static void 14988 ipobs_fini(ip_stack_t *ipst) 14989 { 14990 14991 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 14992 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 14993 } 14994 14995 /* 14996 * hook_pkt_observe_t is composed in network byte order so that the 14997 * entire mblk_t chain handed into hook_run can be used as-is. 14998 * The caveat is that use of the fields, such as the zone fields, 14999 * requires conversion into host byte order first. 15000 */ 15001 void 15002 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15003 const ill_t *ill, ip_stack_t *ipst) 15004 { 15005 hook_pkt_observe_t *hdr; 15006 uint64_t grifindex; 15007 mblk_t *imp; 15008 15009 imp = allocb(sizeof (*hdr), BPRI_HI); 15010 if (imp == NULL) 15011 return; 15012 15013 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15014 /* 15015 * b_wptr is set to make the apparent size of the data in the mblk_t 15016 * to exclude the pointers at the end of hook_pkt_observer_t. 15017 */ 15018 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15019 imp->b_cont = mp; 15020 15021 ASSERT(DB_TYPE(mp) == M_DATA); 15022 15023 if (IS_UNDER_IPMP(ill)) 15024 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15025 else 15026 grifindex = 0; 15027 15028 hdr->hpo_version = 1; 15029 hdr->hpo_htype = htons(htype); 15030 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15031 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15032 hdr->hpo_grifindex = htonl(grifindex); 15033 hdr->hpo_zsrc = htonl(zsrc); 15034 hdr->hpo_zdst = htonl(zdst); 15035 hdr->hpo_pkt = imp; 15036 hdr->hpo_ctx = ipst->ips_netstack; 15037 15038 if (ill->ill_isv6) { 15039 hdr->hpo_family = AF_INET6; 15040 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15041 ipst->ips_ipv6observing, (hook_data_t)hdr); 15042 } else { 15043 hdr->hpo_family = AF_INET; 15044 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15045 ipst->ips_ipv4observing, (hook_data_t)hdr); 15046 } 15047 15048 imp->b_cont = NULL; 15049 freemsg(imp); 15050 } 15051 15052 /* 15053 * Utility routine that checks if `v4srcp' is a valid address on underlying 15054 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15055 * associated with `v4srcp' on success. NOTE: if this is not called from 15056 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15057 * group during or after this lookup. 15058 */ 15059 boolean_t 15060 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15061 { 15062 ipif_t *ipif; 15063 15064 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15065 if (ipif != NULL) { 15066 if (ipifp != NULL) 15067 *ipifp = ipif; 15068 else 15069 ipif_refrele(ipif); 15070 return (B_TRUE); 15071 } 15072 15073 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15074 *v4srcp)); 15075 return (B_FALSE); 15076 } 15077