1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_ire.h> 84 #include <inet/ip_rts.h> 85 #include <inet/optcom.h> 86 #include <inet/ip_ndp.h> 87 #include <inet/ip_listutils.h> 88 #include <netinet/igmp.h> 89 #include <netinet/ip_mroute.h> 90 #include <inet/ipp_common.h> 91 92 #include <net/pfkeyv2.h> 93 #include <inet/ipsec_info.h> 94 #include <inet/sadb.h> 95 #include <inet/ipsec_impl.h> 96 #include <sys/iphada.h> 97 #include <inet/tun.h> 98 #include <inet/ipdrop.h> 99 100 #include <sys/ethernet.h> 101 #include <net/if_types.h> 102 #include <sys/cpuvar.h> 103 104 #include <ipp/ipp.h> 105 #include <ipp/ipp_impl.h> 106 #include <ipp/ipgpc/ipgpc.h> 107 108 #include <sys/multidata.h> 109 #include <sys/pattr.h> 110 111 #include <inet/ipclassifier.h> 112 #include <inet/sctp_ip.h> 113 114 /* 115 * Values for squeue switch: 116 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 117 * IP_SQUEUE_ENTER: squeue_enter 118 * IP_SQUEUE_FILL: squeue_fill 119 */ 120 int ip_squeue_enter = 2; 121 squeue_func_t ip_input_proc; 122 /* 123 * IP statistics. 124 */ 125 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 126 127 typedef struct ip_stat { 128 kstat_named_t ipsec_fanout_proto; 129 kstat_named_t ip_udp_fannorm; 130 kstat_named_t ip_udp_fanmb; 131 kstat_named_t ip_udp_fanothers; 132 kstat_named_t ip_udp_fast_path; 133 kstat_named_t ip_udp_slow_path; 134 kstat_named_t ip_udp_input_err; 135 kstat_named_t ip_tcppullup; 136 kstat_named_t ip_tcpoptions; 137 kstat_named_t ip_multipkttcp; 138 kstat_named_t ip_tcp_fast_path; 139 kstat_named_t ip_tcp_slow_path; 140 kstat_named_t ip_tcp_input_error; 141 kstat_named_t ip_db_ref; 142 kstat_named_t ip_notaligned1; 143 kstat_named_t ip_notaligned2; 144 kstat_named_t ip_multimblk3; 145 kstat_named_t ip_multimblk4; 146 kstat_named_t ip_ipoptions; 147 kstat_named_t ip_classify_fail; 148 kstat_named_t ip_opt; 149 kstat_named_t ip_udp_rput_local; 150 kstat_named_t ipsec_proto_ahesp; 151 kstat_named_t ip_conn_flputbq; 152 kstat_named_t ip_conn_walk_drain; 153 kstat_named_t ip_out_sw_cksum; 154 kstat_named_t ip_in_sw_cksum; 155 kstat_named_t ip_trash_ire_reclaim_calls; 156 kstat_named_t ip_trash_ire_reclaim_success; 157 kstat_named_t ip_ire_arp_timer_expired; 158 kstat_named_t ip_ire_redirect_timer_expired; 159 kstat_named_t ip_ire_pmtu_timer_expired; 160 kstat_named_t ip_input_multi_squeue; 161 } ip_stat_t; 162 163 static ip_stat_t ip_statistics = { 164 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 165 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 166 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 167 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 168 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 169 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 170 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 171 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 172 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 173 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 174 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 175 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 176 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 177 { "ip_db_ref", KSTAT_DATA_UINT64 }, 178 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 179 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 180 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 181 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 182 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 183 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 184 { "ip_opt", KSTAT_DATA_UINT64 }, 185 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 186 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 187 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 188 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 189 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 190 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 191 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 192 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 193 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 194 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 195 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 196 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 197 }; 198 199 static kstat_t *ip_kstat; 200 201 #define TCP6 "tcp6" 202 #define TCP "tcp" 203 #define SCTP "sctp" 204 #define SCTP6 "sctp6" 205 206 major_t TCP6_MAJ; 207 major_t TCP_MAJ; 208 major_t SCTP_MAJ; 209 major_t SCTP6_MAJ; 210 211 int ip_poll_normal_ms = 100; 212 int ip_poll_normal_ticks = 0; 213 214 /* 215 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 216 */ 217 218 struct listptr_s { 219 mblk_t *lp_head; /* pointer to the head of the list */ 220 mblk_t *lp_tail; /* pointer to the tail of the list */ 221 }; 222 223 typedef struct listptr_s listptr_t; 224 225 /* 226 * Cluster specific hooks. These should be NULL when booted as a non-cluster 227 */ 228 229 /* 230 * Hook functions to enable cluster networking 231 * On non-clustered systems these vectors must always be NULL. 232 * 233 * Hook function to Check ip specified ip address is a shared ip address 234 * in the cluster 235 * 236 */ 237 int (*cl_inet_isclusterwide)(uint8_t protocol, 238 sa_family_t addr_family, uint8_t *laddrp) = NULL; 239 240 /* 241 * Hook function to generate cluster wide ip fragment identifier 242 */ 243 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 244 uint8_t *laddrp, uint8_t *faddrp) = NULL; 245 246 /* 247 * Synchronization notes: 248 * 249 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 250 * MT level protection given by STREAMS. IP uses a combination of its own 251 * internal serialization mechanism and standard Solaris locking techniques. 252 * The internal serialization is per phyint (no IPMP) or per IPMP group. 253 * This is used to serialize plumbing operations, IPMP operations, certain 254 * multicast operations, most set ioctls, igmp/mld timers etc. 255 * 256 * Plumbing is a long sequence of operations involving message 257 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 258 * involved in plumbing operations. A natural model is to serialize these 259 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 260 * parallel without any interference. But various set ioctls on hme0 are best 261 * serialized. However if the system uses IPMP, the operations are easier if 262 * they are serialized on a per IPMP group basis since IPMP operations 263 * happen across ill's of a group. Thus the lowest common denominator is to 264 * serialize most set ioctls, multicast join/leave operations, IPMP operations 265 * igmp/mld timer operations, and processing of DLPI control messages received 266 * from drivers on a per IPMP group basis. If the system does not employ 267 * IPMP the serialization is on a per phyint basis. This serialization is 268 * provided by the ipsq_t and primitives operating on this. Details can 269 * be found in ip_if.c above the core primitives operating on ipsq_t. 270 * 271 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 272 * Simiarly lookup of an ire by a thread also returns a refheld ire. 273 * In addition ipif's and ill's referenced by the ire are also indirectly 274 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 275 * the ipif's address or netmask change as long as an ipif is refheld 276 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 277 * address of an ipif has to go through the ipsq_t. This ensures that only 278 * 1 such exclusive operation proceeds at any time on the ipif. It then 279 * deletes all ires associated with this ipif, and waits for all refcnts 280 * associated with this ipif to come down to zero. The address is changed 281 * only after the ipif has been quiesced. Then the ipif is brought up again. 282 * More details are described above the comment in ip_sioctl_flags. 283 * 284 * Packet processing is based mostly on IREs and are fully multi-threaded 285 * using standard Solaris MT techniques. 286 * 287 * There are explicit locks in IP to handle: 288 * - The ip_g_head list maintained by mi_open_link() and friends. 289 * 290 * - The reassembly data structures (one lock per hash bucket) 291 * 292 * - conn_lock is meant to protect conn_t fields. The fields actually 293 * protected by conn_lock are documented in the conn_t definition. 294 * 295 * - ire_lock to protect some of the fields of the ire, IRE tables 296 * (one lock per hash bucket). Refer to ip_ire.c for details. 297 * 298 * - ndp_g_lock and nce_lock for protecting NCEs. 299 * 300 * - ill_lock protects fields of the ill and ipif. Details in ip.h 301 * 302 * - ill_g_lock: This is a global reader/writer lock. Protects the following 303 * * The AVL tree based global multi list of all ills. 304 * * The linked list of all ipifs of an ill 305 * * The <ill-ipsq> mapping 306 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 307 * * The illgroup list threaded by ill_group_next. 308 * * <ill-phyint> association 309 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 310 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 311 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 312 * will all have to hold the ill_g_lock as writer for the actual duration 313 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 314 * may be found in the IPMP section. 315 * 316 * - ill_lock: This is a per ill mutex. 317 * It protects some members of the ill and is documented below. 318 * It also protects the <ill-ipsq> mapping 319 * It also protects the illgroup list threaded by ill_group_next. 320 * It also protects the <ill-phyint> assoc. 321 * It also protects the list of ipifs hanging off the ill. 322 * 323 * - ipsq_lock: This is a per ipsq_t mutex lock. 324 * This protects all the other members of the ipsq struct except 325 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 326 * 327 * - illgrp_lock: This is a per ill_group mutex lock. 328 * The only thing it protects is the illgrp_ill_schednext member of ill_group 329 * which dictates which is the next ill in an ill_group that is to be chosen 330 * for sending outgoing packets, through creation of an IRE_CACHE that 331 * references this ill. 332 * 333 * - phyint_lock: This is a per phyint mutex lock. Protects just the 334 * phyint_flags 335 * 336 * - ip_g_nd_lock: This is a global reader/writer lock. 337 * Any call to nd_load to load a new parameter to the ND table must hold the 338 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 339 * as reader. 340 * 341 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 342 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 343 * uniqueness check also done atomically. 344 * 345 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 346 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 347 * as a writer when adding or deleting elements from these lists, and 348 * as a reader when walking these lists to send a SADB update to the 349 * IPsec capable ills. 350 * 351 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 352 * group list linked by ill_usesrc_grp_next. It also protects the 353 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 354 * group is being added or deleted. This lock is taken as a reader when 355 * walking the list/group(eg: to get the number of members in a usesrc group). 356 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 357 * field is changing state i.e from NULL to non-NULL or vice-versa. For 358 * example, it is not necessary to take this lock in the initial portion 359 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 360 * ip_sioctl_flags since the these operations are executed exclusively and 361 * that ensures that the "usesrc group state" cannot change. The "usesrc 362 * group state" change can happen only in the latter part of 363 * ip_sioctl_slifusesrc and in ill_delete. 364 * 365 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 366 * 367 * To change the <ill-phyint> association, the ill_g_lock must be held 368 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 369 * must be held. 370 * 371 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 372 * and the ill_lock of the ill in question must be held. 373 * 374 * To change the <ill-illgroup> association the ill_g_lock must be held as 375 * writer and the ill_lock of the ill in question must be held. 376 * 377 * To add or delete an ipif from the list of ipifs hanging off the ill, 378 * ill_g_lock (writer) and ill_lock must be held and the thread must be 379 * a writer on the associated ipsq,. 380 * 381 * To add or delete an ill to the system, the ill_g_lock must be held as 382 * writer and the thread must be a writer on the associated ipsq. 383 * 384 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 385 * must be a writer on the associated ipsq. 386 * 387 * Lock hierarchy 388 * 389 * Some lock hierarchy scenarios are listed below. 390 * 391 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 392 * ill_g_lock -> illgrp_lock -> ill_lock 393 * ill_g_lock -> ill_lock(s) -> phyint_lock 394 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 395 * ill_g_lock -> ip_addr_avail_lock 396 * conn_lock -> irb_lock -> ill_lock -> ire_lock 397 * ipsa_lock -> ill_g_lock -> ill_lock 398 * ill_g_lock -> ip_g_nd_lock 399 * irb_lock -> ill_lock -> ire_mrtun_lock 400 * irb_lock -> ill_lock -> ire_srcif_table_lock 401 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 402 * ipsec_capab_ills_lock -> ipsa_lock 403 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 404 * 405 * When more than 1 ill lock is needed to be held, all ill lock addresses 406 * are sorted on address and locked starting from highest addressed lock 407 * downward. 408 * 409 * IPSEC notes : 410 * 411 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 412 * in front of the actual packet. For outbound datagrams, the M_CTL 413 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 414 * information used by the IPSEC code for applying the right level of 415 * protection. The information initialized by IP in the ipsec_out_t 416 * is determined by the per-socket policy or global policy in the system. 417 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 418 * ipsec_info.h) which starts out with nothing in it. It gets filled 419 * with the right information if it goes through the AH/ESP code, which 420 * happens if the incoming packet is secure. The information initialized 421 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 422 * the policy requirements needed by per-socket policy or global policy 423 * is met or not. 424 * 425 * If there is both per-socket policy (set using setsockopt) and there 426 * is also global policy match for the 5 tuples of the socket, 427 * ipsec_override_policy() makes the decision of which one to use. 428 * 429 * For fully connected sockets i.e dst, src [addr, port] is known, 430 * conn_policy_cached is set indicating that policy has been cached. 431 * conn_in_enforce_policy may or may not be set depending on whether 432 * there is a global policy match or per-socket policy match. 433 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 434 * Once the right policy is set on the conn_t, policy cannot change for 435 * this socket. This makes life simpler for TCP (UDP ?) where 436 * re-transmissions go out with the same policy. For symmetry, policy 437 * is cached for fully connected UDP sockets also. Thus if policy is cached, 438 * it also implies that policy is latched i.e policy cannot change 439 * on these sockets. As we have the right policy on the conn, we don't 440 * have to lookup global policy for every outbound and inbound datagram 441 * and thus serving as an optimization. Note that a global policy change 442 * does not affect fully connected sockets if they have policy. If fully 443 * connected sockets did not have any policy associated with it, global 444 * policy change may affect them. 445 * 446 * IP Flow control notes: 447 * 448 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 449 * cannot be sent down to the driver by IP, because of a canput failure, IP 450 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 451 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 452 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 453 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 454 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 455 * the queued messages, and removes the conn from the drain list, if all 456 * messages were drained. It also qenables the next conn in the drain list to 457 * continue the drain process. 458 * 459 * In reality the drain list is not a single list, but a configurable number 460 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 461 * list. If the ip_wsrv of the next qenabled conn does not run, because the 462 * stream closes, ip_close takes responsibility to qenable the next conn in 463 * the drain list. The directly called ip_wput path always does a putq, if 464 * it cannot putnext. Thus synchronization problems are handled between 465 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 466 * functions that manipulate this drain list. Furthermore conn_drain_insert 467 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 468 * running on a queue at any time. conn_drain_tail can be simultaneously called 469 * from both ip_wsrv and ip_close. 470 * 471 * IPQOS notes: 472 * 473 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 474 * and IPQoS modules. IPPF includes hooks in IP at different control points 475 * (callout positions) which direct packets to IPQoS modules for policy 476 * processing. Policies, if present, are global. 477 * 478 * The callout positions are located in the following paths: 479 * o local_in (packets destined for this host) 480 * o local_out (packets orginating from this host ) 481 * o fwd_in (packets forwarded by this m/c - inbound) 482 * o fwd_out (packets forwarded by this m/c - outbound) 483 * Hooks at these callout points can be enabled/disabled using the ndd variable 484 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 485 * By default all the callout positions are enabled. 486 * 487 * Outbound (local_out) 488 * Hooks are placed in ip_wput_ire and ipsec_out_process. 489 * 490 * Inbound (local_in) 491 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 492 * TCP and UDP fanout routines. 493 * 494 * Forwarding (in and out) 495 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 496 * 497 * IP Policy Framework processing (IPPF processing) 498 * Policy processing for a packet is initiated by ip_process, which ascertains 499 * that the classifier (ipgpc) is loaded and configured, failing which the 500 * packet resumes normal processing in IP. If the clasifier is present, the 501 * packet is acted upon by one or more IPQoS modules (action instances), per 502 * filters configured in ipgpc and resumes normal IP processing thereafter. 503 * An action instance can drop a packet in course of its processing. 504 * 505 * A boolean variable, ip_policy, is used in all the fanout routines that can 506 * invoke ip_process for a packet. This variable indicates if the packet should 507 * to be sent for policy processing. The variable is set to B_TRUE by default, 508 * i.e. when the routines are invoked in the normal ip procesing path for a 509 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 510 * ip_policy is set to B_FALSE for all the routines called in these two 511 * functions because, in the former case, we don't process loopback traffic 512 * currently while in the latter, the packets have already been processed in 513 * icmp_inbound. 514 * 515 * Zones notes: 516 * 517 * The partitioning rules for networking are as follows: 518 * 1) Packets coming from a zone must have a source address belonging to that 519 * zone. 520 * 2) Packets coming from a zone can only be sent on a physical interface on 521 * which the zone has an IP address. 522 * 3) Between two zones on the same machine, packet delivery is only allowed if 523 * there's a matching route for the destination and zone in the forwarding 524 * table. 525 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 526 * different zones can bind to the same port with the wildcard address 527 * (INADDR_ANY). 528 * 529 * The granularity of interface partitioning is at the logical interface level. 530 * Therefore, every zone has its own IP addresses, and incoming packets can be 531 * attributed to a zone unambiguously. A logical interface is placed into a zone 532 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 533 * structure. Rule (1) is implemented by modifying the source address selection 534 * algorithm so that the list of eligible addresses is filtered based on the 535 * sending process zone. 536 * 537 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 538 * across all zones, depending on their type. Here is the break-up: 539 * 540 * IRE type Shared/exclusive 541 * -------- ---------------- 542 * IRE_BROADCAST Exclusive 543 * IRE_DEFAULT (default routes) Shared (*) 544 * IRE_LOCAL Exclusive 545 * IRE_LOOPBACK Exclusive 546 * IRE_PREFIX (net routes) Shared (*) 547 * IRE_CACHE Exclusive 548 * IRE_IF_NORESOLVER (interface routes) Exclusive 549 * IRE_IF_RESOLVER (interface routes) Exclusive 550 * IRE_HOST (host routes) Shared (*) 551 * 552 * (*) A zone can only use a default or off-subnet route if the gateway is 553 * directly reachable from the zone, that is, if the gateway's address matches 554 * one of the zone's logical interfaces. 555 * 556 * Multiple zones can share a common broadcast address; typically all zones 557 * share the 255.255.255.255 address. Incoming as well as locally originated 558 * broadcast packets must be dispatched to all the zones on the broadcast 559 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 560 * since some zones may not be on the 10.16.72/24 network. To handle this, each 561 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 562 * sent to every zone that has an IRE_BROADCAST entry for the destination 563 * address on the input ill, see conn_wantpacket(). 564 * 565 * Applications in different zones can join the same multicast group address. 566 * For IPv4, group memberships are per-logical interface, so they're already 567 * inherently part of a zone. For IPv6, group memberships are per-physical 568 * interface, so we distinguish IPv6 group memberships based on group address, 569 * interface and zoneid. In both cases, received multicast packets are sent to 570 * every zone for which a group membership entry exists. On IPv6 we need to 571 * check that the target zone still has an address on the receiving physical 572 * interface; it could have been removed since the application issued the 573 * IPV6_JOIN_GROUP. 574 */ 575 576 /* 577 * Squeue Fanout flags: 578 * 0: No fanout. 579 * 1: Fanout across all squeues 580 */ 581 boolean_t ip_squeue_fanout = 0; 582 583 /* 584 * Maximum dups allowed per packet. 585 */ 586 uint_t ip_max_frag_dups = 10; 587 588 #define IS_SIMPLE_IPH(ipha) \ 589 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 590 591 /* RFC1122 Conformance */ 592 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 593 594 #ifdef _BIG_ENDIAN 595 #define IP_HDR_CSUM_TTL_ADJUST 256 596 #define IP_TCP_CSUM_COMP IPPROTO_TCP 597 #define IP_UDP_CSUM_COMP IPPROTO_UDP 598 #else 599 #define IP_HDR_CSUM_TTL_ADJUST 1 600 #define IP_TCP_CSUM_COMP (IPPROTO_TCP << 8) 601 #define IP_UDP_CSUM_COMP (IPPROTO_UDP << 8) 602 #endif 603 604 #define TCP_CHECKSUM_OFFSET 16 605 #define UDP_CHECKSUM_OFFSET 6 606 607 #define ILL_MAX_NAMELEN LIFNAMSIZ 608 609 #define UDPH_SIZE 8 610 611 /* Leave room for ip_newroute to tack on the src and target addresses */ 612 #define OK_RESOLVER_MP(mp) \ 613 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 614 615 static ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 616 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 617 618 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 619 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 620 621 static void icmp_frag_needed(queue_t *, mblk_t *, int); 622 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 623 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 624 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *); 625 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 626 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 627 ill_t *, zoneid_t); 628 static void icmp_options_update(ipha_t *); 629 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 630 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 631 static mblk_t *icmp_pkt_err_ok(mblk_t *); 632 static void icmp_redirect(mblk_t *); 633 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 634 635 static void ip_arp_news(queue_t *, mblk_t *); 636 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 637 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 638 char *ip_dot_addr(ipaddr_t, char *); 639 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 640 int ip_close(queue_t *, int); 641 static char *ip_dot_saddr(uchar_t *, char *); 642 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, ill_t *, zoneid_t); 644 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 645 boolean_t, boolean_t, zoneid_t); 646 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 647 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 648 static void ip_lrput(queue_t *, mblk_t *); 649 ipaddr_t ip_massage_options(ipha_t *); 650 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 651 ipaddr_t ip_net_mask(ipaddr_t); 652 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 653 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 654 conn_t *, uint32_t); 655 static int ip_hdr_complete(ipha_t *, zoneid_t); 656 char *ip_nv_lookup(nv_t *, int); 657 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 658 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 659 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 660 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 661 size_t); 662 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 663 void ip_rput(queue_t *, mblk_t *); 664 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 665 void *dummy_arg); 666 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 667 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 668 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 669 ire_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 671 int ip_snmp_get(queue_t *, mblk_t *); 672 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 673 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 674 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 676 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 677 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 678 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 680 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 681 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 682 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 683 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 684 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 685 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 686 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 687 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 688 static void ip_snmp_get2_v4(ire_t *, listptr_t []); 689 static void ip_snmp_get2_v6_route(ire_t *, listptr_t *); 690 static int ip_snmp_get2_v6_media(nce_t *, listptr_t *); 691 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 692 static boolean_t ip_source_routed(ipha_t *); 693 static boolean_t ip_source_route_included(ipha_t *); 694 695 static void ip_unbind(queue_t *, mblk_t *); 696 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 697 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 698 static void ip_wput_local_options(ipha_t *); 699 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 700 zoneid_t); 701 702 static void conn_drain_init(void); 703 static void conn_drain_fini(void); 704 static void conn_drain_tail(conn_t *connp, boolean_t closing); 705 706 static void conn_walk_drain(void); 707 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 708 zoneid_t); 709 710 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 711 zoneid_t); 712 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 713 void *dummy_arg); 714 715 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 716 717 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 718 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 719 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 720 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 721 722 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 723 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 724 caddr_t, cred_t *); 725 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 726 caddr_t cp, cred_t *cr); 727 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 728 cred_t *); 729 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 730 caddr_t cp, cred_t *cr); 731 static int ip_fanout_set(queue_t *, mblk_t *, char *, caddr_t, 732 cred_t *); 733 static squeue_func_t ip_squeue_switch(int); 734 735 static void ip_kstat_init(void); 736 static void ip_kstat_fini(void); 737 static int ip_kstat_update(kstat_t *kp, int rw); 738 static void icmp_kstat_init(void); 739 static void icmp_kstat_fini(void); 740 static int icmp_kstat_update(kstat_t *kp, int rw); 741 742 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 743 744 static boolean_t ip_no_forward(ipha_t *, ill_t *); 745 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 746 747 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 748 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 749 750 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 751 752 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 753 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 754 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 755 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 756 757 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 758 uint_t ip_ire_default_index; /* Walking index used to mod in */ 759 760 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 761 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 762 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 763 764 /* How long, in seconds, we allow frags to hang around. */ 765 #define IP_FRAG_TIMEOUT 60 766 767 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 768 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 769 770 /* Protected by ip_mi_lock */ 771 static void *ip_g_head; /* Instance Data List Head */ 772 kmutex_t ip_mi_lock; /* Lock for list of instances */ 773 774 /* Only modified during _init and _fini thus no locking is needed. */ 775 caddr_t ip_g_nd; /* Named Dispatch List Head */ 776 777 778 static long ip_rput_pullups; 779 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 780 781 vmem_t *ip_minor_arena; 782 783 /* 784 * MIB-2 stuff for SNMP (both IP and ICMP) 785 */ 786 mib2_ip_t ip_mib; 787 mib2_icmp_t icmp_mib; 788 789 #ifdef DEBUG 790 uint32_t ipsechw_debug = 0; 791 #endif 792 793 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 794 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 795 796 uint_t loopback_packets = 0; 797 798 /* 799 * Multirouting/CGTP stuff 800 */ 801 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 802 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 803 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 804 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 805 hrtime_t ip_multirt_log_interval = 1000; 806 /* Time since last warning issued. */ 807 static hrtime_t multirt_bad_mtu_last_time = 0; 808 809 kmutex_t ip_trash_timer_lock; 810 krwlock_t ip_g_nd_lock; 811 812 /* 813 * XXX following really should only be in a header. Would need more 814 * header and .c clean up first. 815 */ 816 extern optdb_obj_t ip_opt_obj; 817 818 ulong_t ip_squeue_enter_unbound = 0; 819 820 /* 821 * Named Dispatch Parameter Table. 822 * All of these are alterable, within the min/max values given, at run time. 823 */ 824 static ipparam_t lcl_param_arr[] = { 825 /* min max value name */ 826 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 827 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 828 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 829 { 0, 1, 0, "ip_respond_to_timestamp"}, 830 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 831 { 0, 1, 1, "ip_send_redirects"}, 832 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 833 { 0, 10, 0, "ip_debug"}, 834 { 0, 10, 0, "ip_mrtdebug"}, 835 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 836 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 837 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 838 { 1, 255, 255, "ip_def_ttl" }, 839 { 0, 1, 0, "ip_forward_src_routed"}, 840 { 0, 256, 32, "ip_wroff_extra" }, 841 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 842 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 843 { 0, 1, 1, "ip_path_mtu_discovery" }, 844 { 0, 240, 30, "ip_ignore_delete_time" }, 845 { 0, 1, 0, "ip_ignore_redirect" }, 846 { 0, 1, 1, "ip_output_queue" }, 847 { 1, 254, 1, "ip_broadcast_ttl" }, 848 { 0, 99999, 100, "ip_icmp_err_interval" }, 849 { 1, 99999, 10, "ip_icmp_err_burst" }, 850 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 851 { 0, 1, 0, "ip_strict_dst_multihoming" }, 852 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 853 { 0, 1, 0, "ipsec_override_persocket_policy" }, 854 { 0, 1, 1, "icmp_accept_clear_messages" }, 855 { 0, 1, 1, "igmp_accept_clear_messages" }, 856 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 857 "ip_ndp_delay_first_probe_time"}, 858 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 859 "ip_ndp_max_unicast_solicit"}, 860 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 861 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 862 { 0, 1, 0, "ip6_forward_src_routed"}, 863 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 864 { 0, 1, 1, "ip6_send_redirects"}, 865 { 0, 1, 0, "ip6_ignore_redirect" }, 866 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 867 868 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 869 870 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 871 872 { 0, 1, 1, "pim_accept_clear_messages" }, 873 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 874 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 875 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 876 { 0, 15, 0, "ip_policy_mask" }, 877 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 878 { 0, 255, 1, "ip_multirt_ttl" }, 879 { 0, 1, 1, "ip_multidata_outbound" }, 880 #ifdef DEBUG 881 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 882 #endif 883 }; 884 885 ipparam_t *ip_param_arr = lcl_param_arr; 886 887 /* Extended NDP table */ 888 static ipndp_t lcl_ndp_arr[] = { 889 /* getf setf data name */ 890 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 891 "ip_forwarding" }, 892 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 893 "ip6_forwarding" }, 894 { ip_ill_report, NULL, NULL, 895 "ip_ill_status" }, 896 { ip_ipif_report, NULL, NULL, 897 "ip_ipif_status" }, 898 { ip_ire_report, NULL, NULL, 899 "ipv4_ire_status" }, 900 { ip_ire_report_mrtun, NULL, NULL, 901 "ipv4_mrtun_ire_status" }, 902 { ip_ire_report_srcif, NULL, NULL, 903 "ipv4_srcif_ire_status" }, 904 { ip_ire_report_v6, NULL, NULL, 905 "ipv6_ire_status" }, 906 { ip_conn_report, NULL, NULL, 907 "ip_conn_status" }, 908 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 909 "ip_rput_pullups" }, 910 { ndp_report, NULL, NULL, 911 "ip_ndp_cache_report" }, 912 { ip_srcid_report, NULL, NULL, 913 "ip_srcid_status" }, 914 { ip_param_generic_get, ip_squeue_profile_set, 915 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 916 { ip_param_generic_get, ip_squeue_bind_set, 917 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 918 { ip_param_generic_get, ip_input_proc_set, 919 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 920 { ip_param_generic_get, ip_fanout_set, 921 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 922 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 923 "ip_cgtp_filter" } 924 }; 925 926 /* 927 * ip_g_forward controls IP forwarding. It takes two values: 928 * 0: IP_FORWARD_NEVER Don't forward packets ever. 929 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 930 * 931 * RFC1122 says there must be a configuration switch to control forwarding, 932 * but that the default MUST be to not forward packets ever. Implicit 933 * control based on configuration of multiple interfaces MUST NOT be 934 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 935 * and, in fact, it was the default. That capability is now provided in the 936 * /etc/rc2.d/S69inet script. 937 */ 938 int ip_g_forward = IP_FORWARD_DEFAULT; 939 940 /* It also has an IPv6 counterpart. */ 941 942 int ipv6_forward = IP_FORWARD_DEFAULT; 943 944 /* Following line is external, and in ip.h. Normally marked with * *. */ 945 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 946 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 947 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 948 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 949 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 950 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 951 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 952 #define ip_debug ip_param_arr[7].ip_param_value /* */ 953 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 954 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 955 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 956 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 957 #define ip_def_ttl ip_param_arr[12].ip_param_value 958 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 959 #define ip_wroff_extra ip_param_arr[14].ip_param_value 960 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 961 #define ip_icmp_return ip_param_arr[16].ip_param_value 962 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 963 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 964 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 965 #define ip_output_queue ip_param_arr[20].ip_param_value 966 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 967 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 968 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 969 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 970 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 971 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 972 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 973 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 974 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 975 976 /* IPv6 configuration knobs */ 977 #define delay_first_probe_time ip_param_arr[30].ip_param_value 978 #define max_unicast_solicit ip_param_arr[31].ip_param_value 979 #define ipv6_def_hops ip_param_arr[32].ip_param_value 980 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 981 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 982 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 983 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 984 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 985 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 986 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 987 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 988 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 989 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 990 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 991 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 992 #define ip_policy_mask ip_param_arr[45].ip_param_value 993 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 994 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 995 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 996 #ifdef DEBUG 997 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 998 #else 999 #define ipv6_drop_inbound_icmpv6 0 1000 #endif 1001 1002 1003 /* 1004 * Table of IP ioctls encoding the various properties of the ioctl and 1005 * indexed based on the last byte of the ioctl command. Occasionally there 1006 * is a clash, and there is more than 1 ioctl with the same last byte. 1007 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1008 * ioctls are encoded in the misc table. An entry in the ndx table is 1009 * retrieved by indexing on the last byte of the ioctl command and comparing 1010 * the ioctl command with the value in the ndx table. In the event of a 1011 * mismatch the misc table is then searched sequentially for the desired 1012 * ioctl command. 1013 * 1014 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1015 */ 1016 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1017 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 1028 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1029 MISC_CMD, ip_siocaddrt, NULL }, 1030 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1031 MISC_CMD, ip_siocdelrt, NULL }, 1032 1033 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1034 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1035 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1036 IF_CMD, ip_sioctl_get_addr, NULL }, 1037 1038 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1039 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1040 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1041 IPI_GET_CMD | IPI_REPL, 1042 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1043 1044 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1045 IPI_PRIV | IPI_WR | IPI_REPL, 1046 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1047 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1048 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1049 IF_CMD, ip_sioctl_get_flags, NULL }, 1050 1051 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 1054 /* copyin size cannot be coded for SIOCGIFCONF */ 1055 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1056 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1057 1058 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1059 IF_CMD, ip_sioctl_mtu, NULL }, 1060 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1061 IF_CMD, ip_sioctl_get_mtu, NULL }, 1062 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1063 IPI_GET_CMD | IPI_REPL, 1064 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1065 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_brdaddr, NULL }, 1067 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1068 IPI_GET_CMD | IPI_REPL, 1069 IF_CMD, ip_sioctl_get_netmask, NULL }, 1070 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1071 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1072 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1073 IPI_GET_CMD | IPI_REPL, 1074 IF_CMD, ip_sioctl_get_metric, NULL }, 1075 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1076 IF_CMD, ip_sioctl_metric, NULL }, 1077 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 1079 /* See 166-168 below for extended SIOC*XARP ioctls */ 1080 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1081 MISC_CMD, ip_sioctl_arp, NULL }, 1082 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1083 MISC_CMD, ip_sioctl_arp, NULL }, 1084 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1085 MISC_CMD, ip_sioctl_arp, NULL }, 1086 1087 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1089 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1090 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 1109 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1110 MISC_CMD, if_unitsel, if_unitsel_restart }, 1111 1112 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 1131 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1132 IPI_PRIV | IPI_WR | IPI_MODOK, 1133 IF_CMD, ip_sioctl_sifname, NULL }, 1134 1135 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 1149 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1150 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1151 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1152 IF_CMD, ip_sioctl_get_muxid, NULL }, 1153 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1154 IPI_PRIV | IPI_WR | IPI_REPL, 1155 IF_CMD, ip_sioctl_muxid, NULL }, 1156 1157 /* Both if and lif variants share same func */ 1158 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1159 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1160 /* Both if and lif variants share same func */ 1161 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1162 IPI_PRIV | IPI_WR | IPI_REPL, 1163 IF_CMD, ip_sioctl_slifindex, NULL }, 1164 1165 /* copyin size cannot be coded for SIOCGIFCONF */ 1166 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1167 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1168 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 1186 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1187 IPI_PRIV | IPI_WR | IPI_REPL, 1188 LIF_CMD, ip_sioctl_removeif, 1189 ip_sioctl_removeif_restart }, 1190 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1191 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1192 LIF_CMD, ip_sioctl_addif, NULL }, 1193 #define SIOCLIFADDR_NDX 112 1194 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1195 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1196 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1197 IPI_GET_CMD | IPI_REPL, 1198 LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD | IPI_REPL, 1203 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1204 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1205 IPI_PRIV | IPI_WR | IPI_REPL, 1206 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1207 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1208 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1209 LIF_CMD, ip_sioctl_get_flags, NULL }, 1210 1211 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1213 1214 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1215 ip_sioctl_get_lifconf, NULL }, 1216 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1217 LIF_CMD, ip_sioctl_mtu, NULL }, 1218 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1219 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1220 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1221 IPI_GET_CMD | IPI_REPL, 1222 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1223 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1224 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1225 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1226 IPI_GET_CMD | IPI_REPL, 1227 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1228 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1229 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1230 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1231 IPI_GET_CMD | IPI_REPL, 1232 LIF_CMD, ip_sioctl_get_metric, NULL }, 1233 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1234 LIF_CMD, ip_sioctl_metric, NULL }, 1235 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1237 LIF_CMD, ip_sioctl_slifname, 1238 ip_sioctl_slifname_restart }, 1239 1240 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1241 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1242 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1243 IPI_GET_CMD | IPI_REPL, 1244 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1245 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1246 IPI_PRIV | IPI_WR | IPI_REPL, 1247 LIF_CMD, ip_sioctl_muxid, NULL }, 1248 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1249 IPI_GET_CMD | IPI_REPL, 1250 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1251 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1252 IPI_PRIV | IPI_WR | IPI_REPL, 1253 LIF_CMD, ip_sioctl_slifindex, 0 }, 1254 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_token, NULL }, 1256 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1257 IPI_GET_CMD | IPI_REPL, 1258 LIF_CMD, ip_sioctl_get_token, NULL }, 1259 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1260 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1261 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1262 IPI_GET_CMD | IPI_REPL, 1263 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1264 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1265 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1266 1267 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1268 IPI_GET_CMD | IPI_REPL, 1269 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1270 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1271 LIF_CMD, ip_siocdelndp_v6, NULL }, 1272 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1273 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1274 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1275 LIF_CMD, ip_siocsetndp_v6, NULL }, 1276 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1277 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1278 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1279 MISC_CMD, ip_sioctl_tonlink, NULL }, 1280 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1281 MISC_CMD, ip_sioctl_tmysite, NULL }, 1282 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1283 TUN_CMD, ip_sioctl_tunparam, NULL }, 1284 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1285 IPI_PRIV | IPI_WR, 1286 TUN_CMD, ip_sioctl_tunparam, NULL }, 1287 1288 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1289 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1290 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1291 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1292 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1293 1294 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1295 IPI_PRIV | IPI_WR | IPI_REPL, 1296 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1297 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1298 IPI_PRIV | IPI_WR | IPI_REPL, 1299 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1300 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1301 IPI_PRIV | IPI_WR, 1302 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1303 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1304 IPI_GET_CMD | IPI_REPL, 1305 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1306 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1307 IPI_GET_CMD | IPI_REPL, 1308 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1309 1310 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1311 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1312 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1313 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1314 1315 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1316 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1317 1318 /* These are handled in ip_sioctl_copyin_setup itself */ 1319 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1320 MISC_CMD, NULL, NULL }, 1321 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1322 MISC_CMD, NULL, NULL }, 1323 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1324 1325 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1326 ip_sioctl_get_lifconf, NULL }, 1327 1328 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1329 MISC_CMD, ip_sioctl_xarp, NULL }, 1330 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1331 MISC_CMD, ip_sioctl_xarp, NULL }, 1332 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1333 MISC_CMD, ip_sioctl_xarp, NULL }, 1334 1335 /* SIOCPOPSOCKFS is not handled by IP */ 1336 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1337 1338 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1339 IPI_GET_CMD | IPI_REPL, 1340 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1341 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1342 IPI_PRIV | IPI_WR | IPI_REPL, 1343 LIF_CMD, ip_sioctl_slifzone, 1344 ip_sioctl_slifzone_restart }, 1345 /* 172-174 are SCTP ioctls and not handled by IP */ 1346 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1347 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1348 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1349 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1350 IPI_GET_CMD, LIF_CMD, 1351 ip_sioctl_get_lifusesrc, 0 }, 1352 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1353 IPI_PRIV | IPI_WR, 1354 LIF_CMD, ip_sioctl_slifusesrc, 1355 NULL }, 1356 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1357 ip_sioctl_get_lifsrcof, NULL }, 1358 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1359 MISC_CMD, ip_sioctl_msfilter, NULL }, 1360 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1361 MISC_CMD, ip_sioctl_msfilter, NULL }, 1362 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1363 MISC_CMD, ip_sioctl_msfilter, NULL }, 1364 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1365 MISC_CMD, ip_sioctl_msfilter, NULL } 1366 }; 1367 1368 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1369 1370 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1371 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1372 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1373 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1374 TUN_CMD, ip_sioctl_tunparam, NULL }, 1375 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1376 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1377 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1378 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1379 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1380 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1381 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1382 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1383 MISC_CMD, mrt_ioctl}, 1384 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1385 MISC_CMD, mrt_ioctl}, 1386 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1387 MISC_CMD, mrt_ioctl} 1388 }; 1389 1390 int ip_misc_ioctl_count = 1391 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1392 1393 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1394 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1395 static int conn_drain_list_index; /* Next drain_list to be used */ 1396 int conn_drain_nthreads; /* Number of drainers reqd. */ 1397 /* Settable in /etc/system */ 1398 1399 /* Defined in ip_ire.c */ 1400 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1401 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1402 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1403 1404 static nv_t ire_nv_arr[] = { 1405 { IRE_BROADCAST, "BROADCAST" }, 1406 { IRE_LOCAL, "LOCAL" }, 1407 { IRE_LOOPBACK, "LOOPBACK" }, 1408 { IRE_CACHE, "CACHE" }, 1409 { IRE_DEFAULT, "DEFAULT" }, 1410 { IRE_PREFIX, "PREFIX" }, 1411 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1412 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1413 { IRE_HOST, "HOST" }, 1414 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1415 { 0 } 1416 }; 1417 1418 nv_t *ire_nv_tbl = ire_nv_arr; 1419 1420 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1421 extern krwlock_t ipsec_capab_ills_lock; 1422 1423 /* Packet dropper for IP IPsec processing failures */ 1424 ipdropper_t ip_dropper; 1425 1426 /* Simple ICMP IP Header Template */ 1427 static ipha_t icmp_ipha = { 1428 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1429 }; 1430 1431 struct module_info ip_mod_info = { 1432 5701, "ip", 1, INFPSZ, 65536, 1024 1433 }; 1434 1435 static struct qinit rinit = { 1436 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1437 &ip_mod_info 1438 }; 1439 1440 static struct qinit winit = { 1441 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1442 &ip_mod_info 1443 }; 1444 1445 static struct qinit lrinit = { 1446 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1447 &ip_mod_info 1448 }; 1449 1450 static struct qinit lwinit = { 1451 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1452 &ip_mod_info 1453 }; 1454 1455 struct streamtab ipinfo = { 1456 &rinit, &winit, &lrinit, &lwinit 1457 }; 1458 1459 #ifdef DEBUG 1460 static boolean_t skip_sctp_cksum = B_FALSE; 1461 #endif 1462 /* 1463 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1464 */ 1465 mblk_t * 1466 ip_copymsg(mblk_t *mp) 1467 { 1468 mblk_t *nmp; 1469 ipsec_info_t *in; 1470 1471 if (mp->b_datap->db_type != M_CTL) 1472 return (copymsg(mp)); 1473 1474 in = (ipsec_info_t *)mp->b_rptr; 1475 1476 /* 1477 * Note that M_CTL is also used for delivering ICMP error messages 1478 * upstream to transport layers. 1479 */ 1480 if (in->ipsec_info_type != IPSEC_OUT && 1481 in->ipsec_info_type != IPSEC_IN) 1482 return (copymsg(mp)); 1483 1484 nmp = copymsg(mp->b_cont); 1485 1486 if (in->ipsec_info_type == IPSEC_OUT) 1487 return (ipsec_out_tag(mp, nmp)); 1488 else 1489 return (ipsec_in_tag(mp, nmp)); 1490 } 1491 1492 /* Generate an ICMP fragmentation needed message. */ 1493 static void 1494 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1495 { 1496 icmph_t icmph; 1497 mblk_t *first_mp; 1498 boolean_t mctl_present; 1499 1500 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1501 1502 if (!(mp = icmp_pkt_err_ok(mp))) { 1503 if (mctl_present) 1504 freeb(first_mp); 1505 return; 1506 } 1507 1508 bzero(&icmph, sizeof (icmph_t)); 1509 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1510 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1511 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1512 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1513 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1514 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1515 } 1516 1517 /* 1518 * icmp_inbound deals with ICMP messages in the following ways. 1519 * 1520 * 1) It needs to send a reply back and possibly delivering it 1521 * to the "interested" upper clients. 1522 * 2) It needs to send it to the upper clients only. 1523 * 3) It needs to change some values in IP only. 1524 * 4) It needs to change some values in IP and upper layers e.g TCP. 1525 * 1526 * We need to accomodate icmp messages coming in clear until we get 1527 * everything secure from the wire. If icmp_accept_clear_messages 1528 * is zero we check with the global policy and act accordingly. If 1529 * it is non-zero, we accept the message without any checks. But 1530 * *this does not mean* that this will be delivered to the upper 1531 * clients. By accepting we might send replies back, change our MTU 1532 * value etc. but delivery to the ULP/clients depends on their policy 1533 * dispositions. 1534 * 1535 * We handle the above 4 cases in the context of IPSEC in the 1536 * following way : 1537 * 1538 * 1) Send the reply back in the same way as the request came in. 1539 * If it came in encrypted, it goes out encrypted. If it came in 1540 * clear, it goes out in clear. Thus, this will prevent chosen 1541 * plain text attack. 1542 * 2) The client may or may not expect things to come in secure. 1543 * If it comes in secure, the policy constraints are checked 1544 * before delivering it to the upper layers. If it comes in 1545 * clear, ipsec_inbound_accept_clear will decide whether to 1546 * accept this in clear or not. In both the cases, if the returned 1547 * message (IP header + 8 bytes) that caused the icmp message has 1548 * AH/ESP headers, it is sent up to AH/ESP for validation before 1549 * sending up. If there are only 8 bytes of returned message, then 1550 * upper client will not be notified. 1551 * 3) Check with global policy to see whether it matches the constaints. 1552 * But this will be done only if icmp_accept_messages_in_clear is 1553 * zero. 1554 * 4) If we need to change both in IP and ULP, then the decision taken 1555 * while affecting the values in IP and while delivering up to TCP 1556 * should be the same. 1557 * 1558 * There are two cases. 1559 * 1560 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1561 * failed), we will not deliver it to the ULP, even though they 1562 * are *willing* to accept in *clear*. This is fine as our global 1563 * disposition to icmp messages asks us reject the datagram. 1564 * 1565 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1566 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1567 * to deliver it to ULP (policy failed), it can lead to 1568 * consistency problems. The cases known at this time are 1569 * ICMP_DESTINATION_UNREACHABLE messages with following code 1570 * values : 1571 * 1572 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1573 * and Upper layer rejects. Then the communication will 1574 * come to a stop. This is solved by making similar decisions 1575 * at both levels. Currently, when we are unable to deliver 1576 * to the Upper Layer (due to policy failures) while IP has 1577 * adjusted ire_max_frag, the next outbound datagram would 1578 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1579 * will be with the right level of protection. Thus the right 1580 * value will be communicated even if we are not able to 1581 * communicate when we get from the wire initially. But this 1582 * assumes there would be at least one outbound datagram after 1583 * IP has adjusted its ire_max_frag value. To make things 1584 * simpler, we accept in clear after the validation of 1585 * AH/ESP headers. 1586 * 1587 * - Other ICMP ERRORS : We may not be able to deliver it to the 1588 * upper layer depending on the level of protection the upper 1589 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1590 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1591 * should be accepted in clear when the Upper layer expects secure. 1592 * Thus the communication may get aborted by some bad ICMP 1593 * packets. 1594 * 1595 * IPQoS Notes: 1596 * The only instance when a packet is sent for processing is when there 1597 * isn't an ICMP client and if we are interested in it. 1598 * If there is a client, IPPF processing will take place in the 1599 * ip_fanout_proto routine. 1600 * 1601 * Zones notes: 1602 * The packet is only processed in the context of the specified zone: typically 1603 * only this zone will reply to an echo request, and only interested clients in 1604 * this zone will receive a copy of the packet. This means that the caller must 1605 * call icmp_inbound() for each relevant zone. 1606 */ 1607 static void 1608 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1609 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1610 ill_t *recv_ill, zoneid_t zoneid) 1611 { 1612 icmph_t *icmph; 1613 ipha_t *ipha; 1614 int iph_hdr_length; 1615 int hdr_length; 1616 boolean_t interested; 1617 uint32_t ts; 1618 uchar_t *wptr; 1619 ipif_t *ipif; 1620 mblk_t *first_mp; 1621 ipsec_in_t *ii; 1622 ire_t *src_ire; 1623 boolean_t onlink; 1624 timestruc_t now; 1625 uint32_t ill_index; 1626 1627 ASSERT(ill != NULL); 1628 1629 first_mp = mp; 1630 if (mctl_present) { 1631 mp = first_mp->b_cont; 1632 ASSERT(mp != NULL); 1633 } 1634 1635 ipha = (ipha_t *)mp->b_rptr; 1636 if (icmp_accept_clear_messages == 0) { 1637 first_mp = ipsec_check_global_policy(first_mp, NULL, 1638 ipha, NULL, mctl_present); 1639 if (first_mp == NULL) 1640 return; 1641 } 1642 /* 1643 * We have accepted the ICMP message. It means that we will 1644 * respond to the packet if needed. It may not be delivered 1645 * to the upper client depending on the policy constraints 1646 * and the disposition in ipsec_inbound_accept_clear. 1647 */ 1648 1649 ASSERT(ill != NULL); 1650 1651 BUMP_MIB(&icmp_mib, icmpInMsgs); 1652 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1653 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1654 /* Last chance to get real. */ 1655 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1656 BUMP_MIB(&icmp_mib, icmpInErrors); 1657 freemsg(first_mp); 1658 return; 1659 } 1660 /* Refresh iph following the pullup. */ 1661 ipha = (ipha_t *)mp->b_rptr; 1662 } 1663 /* ICMP header checksum, including checksum field, should be zero. */ 1664 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1665 IP_CSUM(mp, iph_hdr_length, 0)) { 1666 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1667 freemsg(first_mp); 1668 return; 1669 } 1670 /* The IP header will always be a multiple of four bytes */ 1671 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1672 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1673 icmph->icmph_code)); 1674 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1675 /* We will set "interested" to "true" if we want a copy */ 1676 interested = B_FALSE; 1677 switch (icmph->icmph_type) { 1678 case ICMP_ECHO_REPLY: 1679 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1680 break; 1681 case ICMP_DEST_UNREACHABLE: 1682 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1683 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1684 interested = B_TRUE; /* Pass up to transport */ 1685 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1686 break; 1687 case ICMP_SOURCE_QUENCH: 1688 interested = B_TRUE; /* Pass up to transport */ 1689 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1690 break; 1691 case ICMP_REDIRECT: 1692 if (!ip_ignore_redirect) 1693 interested = B_TRUE; 1694 BUMP_MIB(&icmp_mib, icmpInRedirects); 1695 break; 1696 case ICMP_ECHO_REQUEST: 1697 /* 1698 * Whether to respond to echo requests that come in as IP 1699 * broadcasts or as IP multicast is subject to debate 1700 * (what isn't?). We aim to please, you pick it. 1701 * Default is do it. 1702 */ 1703 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1704 /* unicast: always respond */ 1705 interested = B_TRUE; 1706 } else if (CLASSD(ipha->ipha_dst)) { 1707 /* multicast: respond based on tunable */ 1708 interested = ip_g_resp_to_echo_mcast; 1709 } else if (broadcast) { 1710 /* broadcast: respond based on tunable */ 1711 interested = ip_g_resp_to_echo_bcast; 1712 } 1713 BUMP_MIB(&icmp_mib, icmpInEchos); 1714 break; 1715 case ICMP_ROUTER_ADVERTISEMENT: 1716 case ICMP_ROUTER_SOLICITATION: 1717 break; 1718 case ICMP_TIME_EXCEEDED: 1719 interested = B_TRUE; /* Pass up to transport */ 1720 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1721 break; 1722 case ICMP_PARAM_PROBLEM: 1723 interested = B_TRUE; /* Pass up to transport */ 1724 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1725 break; 1726 case ICMP_TIME_STAMP_REQUEST: 1727 /* Response to Time Stamp Requests is local policy. */ 1728 if (ip_g_resp_to_timestamp && 1729 /* So is whether to respond if it was an IP broadcast. */ 1730 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1731 int tstamp_len = 3 * sizeof (uint32_t); 1732 1733 if (wptr + tstamp_len > mp->b_wptr) { 1734 if (!pullupmsg(mp, wptr + tstamp_len - 1735 mp->b_rptr)) { 1736 BUMP_MIB(&ip_mib, ipInDiscards); 1737 freemsg(first_mp); 1738 return; 1739 } 1740 /* Refresh ipha following the pullup. */ 1741 ipha = (ipha_t *)mp->b_rptr; 1742 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1743 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1744 } 1745 interested = B_TRUE; 1746 } 1747 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1748 break; 1749 case ICMP_TIME_STAMP_REPLY: 1750 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1751 break; 1752 case ICMP_INFO_REQUEST: 1753 /* Per RFC 1122 3.2.2.7, ignore this. */ 1754 case ICMP_INFO_REPLY: 1755 break; 1756 case ICMP_ADDRESS_MASK_REQUEST: 1757 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1758 /* TODO m_pullup of complete header? */ 1759 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1760 interested = B_TRUE; 1761 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1762 break; 1763 case ICMP_ADDRESS_MASK_REPLY: 1764 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1765 break; 1766 default: 1767 interested = B_TRUE; /* Pass up to transport */ 1768 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1769 break; 1770 } 1771 /* See if there is an ICMP client. */ 1772 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1773 /* If there is an ICMP client and we want one too, copy it. */ 1774 mblk_t *first_mp1; 1775 1776 if (!interested) { 1777 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1778 ip_policy, recv_ill, zoneid); 1779 return; 1780 } 1781 first_mp1 = ip_copymsg(first_mp); 1782 if (first_mp1 != NULL) { 1783 ip_fanout_proto(q, first_mp1, ill, ipha, 1784 0, mctl_present, ip_policy, recv_ill, zoneid); 1785 } 1786 } else if (!interested) { 1787 freemsg(first_mp); 1788 return; 1789 } else { 1790 /* 1791 * Initiate policy processing for this packet if ip_policy 1792 * is true. 1793 */ 1794 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1795 ill_index = ill->ill_phyint->phyint_ifindex; 1796 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1797 if (mp == NULL) { 1798 if (mctl_present) { 1799 freeb(first_mp); 1800 } 1801 BUMP_MIB(&icmp_mib, icmpInErrors); 1802 return; 1803 } 1804 } 1805 } 1806 /* We want to do something with it. */ 1807 /* Check db_ref to make sure we can modify the packet. */ 1808 if (mp->b_datap->db_ref > 1) { 1809 mblk_t *first_mp1; 1810 1811 first_mp1 = ip_copymsg(first_mp); 1812 freemsg(first_mp); 1813 if (!first_mp1) { 1814 BUMP_MIB(&icmp_mib, icmpOutDrops); 1815 return; 1816 } 1817 first_mp = first_mp1; 1818 if (mctl_present) { 1819 mp = first_mp->b_cont; 1820 ASSERT(mp != NULL); 1821 } else { 1822 mp = first_mp; 1823 } 1824 ipha = (ipha_t *)mp->b_rptr; 1825 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1826 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1827 } 1828 switch (icmph->icmph_type) { 1829 case ICMP_ADDRESS_MASK_REQUEST: 1830 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1831 if (ipif == NULL) { 1832 freemsg(first_mp); 1833 return; 1834 } 1835 /* 1836 * outging interface must be IPv4 1837 */ 1838 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1839 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1840 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1841 ipif_refrele(ipif); 1842 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1843 break; 1844 case ICMP_ECHO_REQUEST: 1845 icmph->icmph_type = ICMP_ECHO_REPLY; 1846 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1847 break; 1848 case ICMP_TIME_STAMP_REQUEST: { 1849 uint32_t *tsp; 1850 1851 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1852 tsp = (uint32_t *)wptr; 1853 tsp++; /* Skip past 'originate time' */ 1854 /* Compute # of milliseconds since midnight */ 1855 gethrestime(&now); 1856 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1857 now.tv_nsec / (NANOSEC / MILLISEC); 1858 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1859 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1860 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1861 break; 1862 } 1863 default: 1864 ipha = (ipha_t *)&icmph[1]; 1865 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1866 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1867 BUMP_MIB(&ip_mib, ipInDiscards); 1868 freemsg(first_mp); 1869 return; 1870 } 1871 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1872 ipha = (ipha_t *)&icmph[1]; 1873 } 1874 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1875 BUMP_MIB(&ip_mib, ipInDiscards); 1876 freemsg(first_mp); 1877 return; 1878 } 1879 hdr_length = IPH_HDR_LENGTH(ipha); 1880 if (hdr_length < sizeof (ipha_t)) { 1881 BUMP_MIB(&ip_mib, ipInDiscards); 1882 freemsg(first_mp); 1883 return; 1884 } 1885 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1886 if (!pullupmsg(mp, 1887 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1888 BUMP_MIB(&ip_mib, ipInDiscards); 1889 freemsg(first_mp); 1890 return; 1891 } 1892 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1893 ipha = (ipha_t *)&icmph[1]; 1894 } 1895 switch (icmph->icmph_type) { 1896 case ICMP_REDIRECT: 1897 /* 1898 * As there is no upper client to deliver, we don't 1899 * need the first_mp any more. 1900 */ 1901 if (mctl_present) { 1902 freeb(first_mp); 1903 } 1904 icmp_redirect(mp); 1905 return; 1906 case ICMP_DEST_UNREACHABLE: 1907 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1908 if (!icmp_inbound_too_big(icmph, ipha)) { 1909 freemsg(first_mp); 1910 return; 1911 } 1912 } 1913 /* FALLTHRU */ 1914 default : 1915 /* 1916 * IPQoS notes: Since we have already done IPQoS 1917 * processing we don't want to do it again in 1918 * the fanout routines called by 1919 * icmp_inbound_error_fanout, hence the last 1920 * argument, ip_policy, is B_FALSE. 1921 */ 1922 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1923 ipha, iph_hdr_length, hdr_length, mctl_present, 1924 B_FALSE, recv_ill, zoneid); 1925 } 1926 return; 1927 } 1928 /* Send out an ICMP packet */ 1929 icmph->icmph_checksum = 0; 1930 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1931 if (broadcast || CLASSD(ipha->ipha_dst)) { 1932 ipif_t *ipif_chosen; 1933 /* 1934 * Make it look like it was directed to us, so we don't look 1935 * like a fool with a broadcast or multicast source address. 1936 */ 1937 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1938 /* 1939 * Make sure that we haven't grabbed an interface that's DOWN. 1940 */ 1941 if (ipif != NULL) { 1942 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1943 ipha->ipha_src, zoneid); 1944 if (ipif_chosen != NULL) { 1945 ipif_refrele(ipif); 1946 ipif = ipif_chosen; 1947 } 1948 } 1949 if (ipif == NULL) { 1950 ip0dbg(("icmp_inbound: " 1951 "No source for broadcast/multicast:\n" 1952 "\tsrc 0x%x dst 0x%x ill %p " 1953 "ipif_lcl_addr 0x%x\n", 1954 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1955 (void *)ill, 1956 ill->ill_ipif->ipif_lcl_addr)); 1957 freemsg(first_mp); 1958 return; 1959 } 1960 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1961 ipha->ipha_dst = ipif->ipif_src_addr; 1962 ipif_refrele(ipif); 1963 } 1964 /* Reset time to live. */ 1965 ipha->ipha_ttl = ip_def_ttl; 1966 { 1967 /* Swap source and destination addresses */ 1968 ipaddr_t tmp; 1969 1970 tmp = ipha->ipha_src; 1971 ipha->ipha_src = ipha->ipha_dst; 1972 ipha->ipha_dst = tmp; 1973 } 1974 ipha->ipha_ident = 0; 1975 if (!IS_SIMPLE_IPH(ipha)) 1976 icmp_options_update(ipha); 1977 1978 /* 1979 * ICMP echo replies should go out on the same interface 1980 * the request came on as probes used by in.mpathd for detecting 1981 * NIC failures are ECHO packets. We turn-off load spreading 1982 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1983 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1984 * function. This is in turn handled by ip_wput and ip_newroute 1985 * to make sure that the packet goes out on the interface it came 1986 * in on. If we don't turnoff load spreading, the packets might get 1987 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1988 * to go out and in.mpathd would wrongly detect a failure or 1989 * mis-detect a NIC failure for link failure. As load spreading 1990 * can happen only if ill_group is not NULL, we do only for 1991 * that case and this does not affect the normal case. 1992 * 1993 * We turn off load spreading only on echo packets that came from 1994 * on-link hosts. If the interface route has been deleted, this will 1995 * not be enforced as we can't do much. For off-link hosts, as the 1996 * default routes in IPv4 does not typically have an ire_ipif 1997 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 1998 * Moreover, expecting a default route through this interface may 1999 * not be correct. We use ipha_dst because of the swap above. 2000 */ 2001 onlink = B_FALSE; 2002 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2003 /* 2004 * First, we need to make sure that it is not one of our 2005 * local addresses. If we set onlink when it is one of 2006 * our local addresses, we will end up creating IRE_CACHES 2007 * for one of our local addresses. Then, we will never 2008 * accept packets for them afterwards. 2009 */ 2010 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2011 NULL, ALL_ZONES, MATCH_IRE_TYPE); 2012 if (src_ire == NULL) { 2013 ipif = ipif_get_next_ipif(NULL, ill); 2014 if (ipif == NULL) { 2015 BUMP_MIB(&ip_mib, ipInDiscards); 2016 freemsg(mp); 2017 return; 2018 } 2019 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2020 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2021 MATCH_IRE_ILL | MATCH_IRE_TYPE); 2022 ipif_refrele(ipif); 2023 if (src_ire != NULL) { 2024 onlink = B_TRUE; 2025 ire_refrele(src_ire); 2026 } 2027 } else { 2028 ire_refrele(src_ire); 2029 } 2030 } 2031 if (!mctl_present) { 2032 /* 2033 * This packet should go out the same way as it 2034 * came in i.e in clear. To make sure that global 2035 * policy will not be applied to this in ip_wput_ire, 2036 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2037 */ 2038 ASSERT(first_mp == mp); 2039 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2040 BUMP_MIB(&ip_mib, ipInDiscards); 2041 freemsg(mp); 2042 return; 2043 } 2044 ii = (ipsec_in_t *)first_mp->b_rptr; 2045 2046 /* This is not a secure packet */ 2047 ii->ipsec_in_secure = B_FALSE; 2048 if (onlink) { 2049 ii->ipsec_in_attach_if = B_TRUE; 2050 ii->ipsec_in_ill_index = 2051 ill->ill_phyint->phyint_ifindex; 2052 ii->ipsec_in_rill_index = 2053 recv_ill->ill_phyint->phyint_ifindex; 2054 } 2055 first_mp->b_cont = mp; 2056 } else if (onlink) { 2057 ii = (ipsec_in_t *)first_mp->b_rptr; 2058 ii->ipsec_in_attach_if = B_TRUE; 2059 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2060 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2061 } else { 2062 ii = (ipsec_in_t *)first_mp->b_rptr; 2063 } 2064 ii->ipsec_in_zoneid = zoneid; 2065 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2066 BUMP_MIB(&ip_mib, ipInDiscards); 2067 return; 2068 } 2069 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2070 put(WR(q), first_mp); 2071 } 2072 2073 /* Table from RFC 1191 */ 2074 static int icmp_frag_size_table[] = 2075 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2076 2077 /* 2078 * Process received ICMP Packet too big. 2079 * After updating any IRE it does the fanout to any matching transport streams. 2080 * Assumes the message has been pulled up till the IP header that caused 2081 * the error. 2082 * 2083 * Returns B_FALSE on failure and B_TRUE on success. 2084 */ 2085 static boolean_t 2086 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha) 2087 { 2088 ire_t *ire, *first_ire; 2089 int mtu; 2090 int hdr_length; 2091 2092 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2093 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2094 2095 hdr_length = IPH_HDR_LENGTH(ipha); 2096 2097 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, NULL, 2098 ALL_ZONES, MATCH_IRE_TYPE); 2099 2100 if (!first_ire) { 2101 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2102 ntohl(ipha->ipha_dst))); 2103 return (B_FALSE); 2104 } 2105 /* Drop if the original packet contained a source route */ 2106 if (ip_source_route_included(ipha)) { 2107 ire_refrele(first_ire); 2108 return (B_FALSE); 2109 } 2110 /* Check for MTU discovery advice as described in RFC 1191 */ 2111 mtu = ntohs(icmph->icmph_du_mtu); 2112 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2113 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2114 ire = ire->ire_next) { 2115 mutex_enter(&ire->ire_lock); 2116 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2117 /* Reduce the IRE max frag value as advised. */ 2118 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2119 ip1dbg(("Received mtu from router: %d\n", mtu)); 2120 } else { 2121 uint32_t length; 2122 int i; 2123 2124 /* 2125 * Use the table from RFC 1191 to figure out 2126 * the next "plateau" based on the length in 2127 * the original IP packet. 2128 */ 2129 length = ntohs(ipha->ipha_length); 2130 if (ire->ire_max_frag <= length && 2131 ire->ire_max_frag >= length - hdr_length) { 2132 /* 2133 * Handle broken BSD 4.2 systems that 2134 * return the wrong iph_length in ICMP 2135 * errors. 2136 */ 2137 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2138 length, ire->ire_max_frag)); 2139 length -= hdr_length; 2140 } 2141 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2142 if (length > icmp_frag_size_table[i]) 2143 break; 2144 } 2145 if (i == A_CNT(icmp_frag_size_table)) { 2146 /* Smaller than 68! */ 2147 ip1dbg(("Too big for packet size %d\n", 2148 length)); 2149 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2150 ire->ire_frag_flag = 0; 2151 } else { 2152 mtu = icmp_frag_size_table[i]; 2153 ip1dbg(("Calculated mtu %d, packet size %d, " 2154 "before %d", mtu, length, 2155 ire->ire_max_frag)); 2156 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2157 ip1dbg((", after %d\n", ire->ire_max_frag)); 2158 } 2159 /* Record the new max frag size for the ULP. */ 2160 icmph->icmph_du_zero = 0; 2161 icmph->icmph_du_mtu = 2162 htons((uint16_t)ire->ire_max_frag); 2163 } 2164 mutex_exit(&ire->ire_lock); 2165 } 2166 rw_exit(&first_ire->ire_bucket->irb_lock); 2167 ire_refrele(first_ire); 2168 return (B_TRUE); 2169 } 2170 2171 /* 2172 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2173 * calls this function. 2174 */ 2175 static mblk_t * 2176 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2177 { 2178 ipha_t *ipha; 2179 icmph_t *icmph; 2180 ipha_t *in_ipha; 2181 int length; 2182 2183 ASSERT(mp->b_datap->db_type == M_DATA); 2184 2185 /* 2186 * For Self-encapsulated packets, we added an extra IP header 2187 * without the options. Inner IP header is the one from which 2188 * the outer IP header was formed. Thus, we need to remove the 2189 * outer IP header. To do this, we pullup the whole message 2190 * and overlay whatever follows the outer IP header over the 2191 * outer IP header. 2192 */ 2193 2194 if (!pullupmsg(mp, -1)) { 2195 BUMP_MIB(&ip_mib, ipInDiscards); 2196 return (NULL); 2197 } 2198 2199 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2200 ipha = (ipha_t *)&icmph[1]; 2201 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2202 2203 /* 2204 * The length that we want to overlay is following the inner 2205 * IP header. Subtracting the IP header + icmp header + outer 2206 * IP header's length should give us the length that we want to 2207 * overlay. 2208 */ 2209 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2210 hdr_length; 2211 /* 2212 * Overlay whatever follows the inner header over the 2213 * outer header. 2214 */ 2215 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2216 2217 /* Set the wptr to account for the outer header */ 2218 mp->b_wptr -= hdr_length; 2219 return (mp); 2220 } 2221 2222 /* 2223 * Try to pass the ICMP message upstream in case the ULP cares. 2224 * 2225 * If the packet that caused the ICMP error is secure, we send 2226 * it to AH/ESP to make sure that the attached packet has a 2227 * valid association. ipha in the code below points to the 2228 * IP header of the packet that caused the error. 2229 * 2230 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2231 * in the context of IPSEC. Normally we tell the upper layer 2232 * whenever we send the ire (including ip_bind), the IPSEC header 2233 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2234 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2235 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2236 * same thing. As TCP has the IPSEC options size that needs to be 2237 * adjusted, we just pass the MTU unchanged. 2238 * 2239 * IFN could have been generated locally or by some router. 2240 * 2241 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2242 * This happens because IP adjusted its value of MTU on an 2243 * earlier IFN message and could not tell the upper layer, 2244 * the new adjusted value of MTU e.g. Packet was encrypted 2245 * or there was not enough information to fanout to upper 2246 * layers. Thus on the next outbound datagram, ip_wput_ire 2247 * generates the IFN, where IPSEC processing has *not* been 2248 * done. 2249 * 2250 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2251 * could have generated this. This happens because ire_max_frag 2252 * value in IP was set to a new value, while the IPSEC processing 2253 * was being done and after we made the fragmentation check in 2254 * ip_wput_ire. Thus on return from IPSEC processing, 2255 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2256 * and generates the IFN. As IPSEC processing is over, we fanout 2257 * to AH/ESP to remove the header. 2258 * 2259 * In both these cases, ipsec_in_loopback will be set indicating 2260 * that IFN was generated locally. 2261 * 2262 * ROUTER : IFN could be secure or non-secure. 2263 * 2264 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2265 * packet in error has AH/ESP headers to validate the AH/ESP 2266 * headers. AH/ESP will verify whether there is a valid SA or 2267 * not and send it back. We will fanout again if we have more 2268 * data in the packet. 2269 * 2270 * If the packet in error does not have AH/ESP, we handle it 2271 * like any other case. 2272 * 2273 * * NON_SECURE : If the packet in error has AH/ESP headers, 2274 * we attach a dummy ipsec_in and send it up to AH/ESP 2275 * for validation. AH/ESP will verify whether there is a 2276 * valid SA or not and send it back. We will fanout again if 2277 * we have more data in the packet. 2278 * 2279 * If the packet in error does not have AH/ESP, we handle it 2280 * like any other case. 2281 */ 2282 static void 2283 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2284 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2285 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2286 zoneid_t zoneid) 2287 { 2288 uint16_t *up; /* Pointer to ports in ULP header */ 2289 uint32_t ports; /* reversed ports for fanout */ 2290 ipha_t ripha; /* With reversed addresses */ 2291 mblk_t *first_mp; 2292 ipsec_in_t *ii; 2293 tcph_t *tcph; 2294 conn_t *connp; 2295 2296 first_mp = mp; 2297 if (mctl_present) { 2298 mp = first_mp->b_cont; 2299 ASSERT(mp != NULL); 2300 2301 ii = (ipsec_in_t *)first_mp->b_rptr; 2302 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2303 } else { 2304 ii = NULL; 2305 } 2306 2307 switch (ipha->ipha_protocol) { 2308 case IPPROTO_UDP: 2309 /* 2310 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2311 * transport header. 2312 */ 2313 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2314 mp->b_wptr) { 2315 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2316 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2317 BUMP_MIB(&ip_mib, ipInDiscards); 2318 goto drop_pkt; 2319 } 2320 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2321 ipha = (ipha_t *)&icmph[1]; 2322 } 2323 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2324 2325 /* 2326 * Attempt to find a client stream based on port. 2327 * Note that we do a reverse lookup since the header is 2328 * in the form we sent it out. 2329 * The ripha header is only used for the IP_UDP_MATCH and we 2330 * only set the src and dst addresses and protocol. 2331 */ 2332 ripha.ipha_src = ipha->ipha_dst; 2333 ripha.ipha_dst = ipha->ipha_src; 2334 ripha.ipha_protocol = ipha->ipha_protocol; 2335 ((uint16_t *)&ports)[0] = up[1]; 2336 ((uint16_t *)&ports)[1] = up[0]; 2337 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2338 ntohl(ipha->ipha_src), ntohs(up[0]), 2339 ntohl(ipha->ipha_dst), ntohs(up[1]), 2340 icmph->icmph_type, icmph->icmph_code)); 2341 2342 /* Have to change db_type after any pullupmsg */ 2343 DB_TYPE(mp) = M_CTL; 2344 2345 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2346 mctl_present, ip_policy, recv_ill, zoneid); 2347 return; 2348 2349 case IPPROTO_TCP: 2350 /* 2351 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2352 * transport header. 2353 */ 2354 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2355 mp->b_wptr) { 2356 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2357 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2358 BUMP_MIB(&ip_mib, ipInDiscards); 2359 goto drop_pkt; 2360 } 2361 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2362 ipha = (ipha_t *)&icmph[1]; 2363 } 2364 /* 2365 * Find a TCP client stream for this packet. 2366 * Note that we do a reverse lookup since the header is 2367 * in the form we sent it out. 2368 */ 2369 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2370 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2371 if (connp == NULL) { 2372 BUMP_MIB(&ip_mib, ipInDiscards); 2373 goto drop_pkt; 2374 } 2375 2376 /* Have to change db_type after any pullupmsg */ 2377 DB_TYPE(mp) = M_CTL; 2378 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2379 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2380 return; 2381 2382 case IPPROTO_SCTP: 2383 /* 2384 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2385 * transport header. 2386 */ 2387 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2388 mp->b_wptr) { 2389 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2390 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2391 BUMP_MIB(&ip_mib, ipInDiscards); 2392 goto drop_pkt; 2393 } 2394 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2395 ipha = (ipha_t *)&icmph[1]; 2396 } 2397 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2398 /* 2399 * Find a SCTP client stream for this packet. 2400 * Note that we do a reverse lookup since the header is 2401 * in the form we sent it out. 2402 * The ripha header is only used for the matching and we 2403 * only set the src and dst addresses, protocol, and version. 2404 */ 2405 ripha.ipha_src = ipha->ipha_dst; 2406 ripha.ipha_dst = ipha->ipha_src; 2407 ripha.ipha_protocol = ipha->ipha_protocol; 2408 ripha.ipha_version_and_hdr_length = 2409 ipha->ipha_version_and_hdr_length; 2410 ((uint16_t *)&ports)[0] = up[1]; 2411 ((uint16_t *)&ports)[1] = up[0]; 2412 2413 /* Have to change db_type after any pullupmsg */ 2414 DB_TYPE(mp) = M_CTL; 2415 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2416 mctl_present, ip_policy, 0, zoneid); 2417 return; 2418 2419 case IPPROTO_ESP: 2420 case IPPROTO_AH: { 2421 int ipsec_rc; 2422 2423 /* 2424 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2425 * We will re-use the IPSEC_IN if it is already present as 2426 * AH/ESP will not affect any fields in the IPSEC_IN for 2427 * ICMP errors. If there is no IPSEC_IN, allocate a new 2428 * one and attach it in the front. 2429 */ 2430 if (ii != NULL) { 2431 /* 2432 * ip_fanout_proto_again converts the ICMP errors 2433 * that come back from AH/ESP to M_DATA so that 2434 * if it is non-AH/ESP and we do a pullupmsg in 2435 * this function, it would work. Convert it back 2436 * to M_CTL before we send up as this is a ICMP 2437 * error. This could have been generated locally or 2438 * by some router. Validate the inner IPSEC 2439 * headers. 2440 * 2441 * NOTE : ill_index is used by ip_fanout_proto_again 2442 * to locate the ill. 2443 */ 2444 ASSERT(ill != NULL); 2445 ii->ipsec_in_ill_index = 2446 ill->ill_phyint->phyint_ifindex; 2447 ii->ipsec_in_rill_index = 2448 recv_ill->ill_phyint->phyint_ifindex; 2449 DB_TYPE(first_mp->b_cont) = M_CTL; 2450 } else { 2451 /* 2452 * IPSEC_IN is not present. We attach a ipsec_in 2453 * message and send up to IPSEC for validating 2454 * and removing the IPSEC headers. Clear 2455 * ipsec_in_secure so that when we return 2456 * from IPSEC, we don't mistakenly think that this 2457 * is a secure packet came from the network. 2458 * 2459 * NOTE : ill_index is used by ip_fanout_proto_again 2460 * to locate the ill. 2461 */ 2462 ASSERT(first_mp == mp); 2463 first_mp = ipsec_in_alloc(B_TRUE); 2464 if (first_mp == NULL) { 2465 freemsg(mp); 2466 BUMP_MIB(&ip_mib, ipInDiscards); 2467 return; 2468 } 2469 ii = (ipsec_in_t *)first_mp->b_rptr; 2470 2471 /* This is not a secure packet */ 2472 ii->ipsec_in_secure = B_FALSE; 2473 first_mp->b_cont = mp; 2474 DB_TYPE(mp) = M_CTL; 2475 ASSERT(ill != NULL); 2476 ii->ipsec_in_ill_index = 2477 ill->ill_phyint->phyint_ifindex; 2478 ii->ipsec_in_rill_index = 2479 recv_ill->ill_phyint->phyint_ifindex; 2480 } 2481 ip2dbg(("icmp_inbound_error: ipsec\n")); 2482 2483 if (!ipsec_loaded()) { 2484 ip_proto_not_sup(q, first_mp, 0, zoneid); 2485 return; 2486 } 2487 2488 if (ipha->ipha_protocol == IPPROTO_ESP) 2489 ipsec_rc = ipsecesp_icmp_error(first_mp); 2490 else 2491 ipsec_rc = ipsecah_icmp_error(first_mp); 2492 if (ipsec_rc == IPSEC_STATUS_FAILED) 2493 return; 2494 2495 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2496 return; 2497 } 2498 default: 2499 /* 2500 * The ripha header is only used for the lookup and we 2501 * only set the src and dst addresses and protocol. 2502 */ 2503 ripha.ipha_src = ipha->ipha_dst; 2504 ripha.ipha_dst = ipha->ipha_src; 2505 ripha.ipha_protocol = ipha->ipha_protocol; 2506 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2507 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2508 ntohl(ipha->ipha_dst), 2509 icmph->icmph_type, icmph->icmph_code)); 2510 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2511 ipha_t *in_ipha; 2512 2513 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2514 mp->b_wptr) { 2515 if (!pullupmsg(mp, (uchar_t *)ipha + 2516 hdr_length + sizeof (ipha_t) - 2517 mp->b_rptr)) { 2518 2519 BUMP_MIB(&ip_mib, ipInDiscards); 2520 goto drop_pkt; 2521 } 2522 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2523 ipha = (ipha_t *)&icmph[1]; 2524 } 2525 /* 2526 * Caller has verified that length has to be 2527 * at least the size of IP header. 2528 */ 2529 ASSERT(hdr_length >= sizeof (ipha_t)); 2530 /* 2531 * Check the sanity of the inner IP header like 2532 * we did for the outer header. 2533 */ 2534 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2535 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2536 BUMP_MIB(&ip_mib, ipInDiscards); 2537 goto drop_pkt; 2538 } 2539 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2540 BUMP_MIB(&ip_mib, ipInDiscards); 2541 goto drop_pkt; 2542 } 2543 /* Check for Self-encapsulated tunnels */ 2544 if (in_ipha->ipha_src == ipha->ipha_src && 2545 in_ipha->ipha_dst == ipha->ipha_dst) { 2546 2547 mp = icmp_inbound_self_encap_error(mp, 2548 iph_hdr_length, hdr_length); 2549 if (mp == NULL) 2550 goto drop_pkt; 2551 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2552 ipha = (ipha_t *)&icmph[1]; 2553 hdr_length = IPH_HDR_LENGTH(ipha); 2554 /* 2555 * The packet in error is self-encapsualted. 2556 * And we are finding it further encapsulated 2557 * which we could not have possibly generated. 2558 */ 2559 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2560 BUMP_MIB(&ip_mib, ipInDiscards); 2561 goto drop_pkt; 2562 } 2563 icmp_inbound_error_fanout(q, ill, first_mp, 2564 icmph, ipha, iph_hdr_length, hdr_length, 2565 mctl_present, ip_policy, recv_ill, zoneid); 2566 return; 2567 } 2568 } 2569 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2570 ipha->ipha_protocol == IPPROTO_IPV6) && 2571 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2572 ii != NULL && 2573 ii->ipsec_in_loopback && 2574 ii->ipsec_in_secure) { 2575 /* 2576 * For IP tunnels that get a looped-back 2577 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2578 * reported new MTU to take into account the IPsec 2579 * headers protecting this configured tunnel. 2580 * 2581 * This allows the tunnel module (tun.c) to blindly 2582 * accept the MTU reported in an ICMP "too big" 2583 * message. 2584 * 2585 * Non-looped back ICMP messages will just be 2586 * handled by the security protocols (if needed), 2587 * and the first subsequent packet will hit this 2588 * path. 2589 */ 2590 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2591 ipsec_in_extra_length(first_mp)); 2592 } 2593 /* Have to change db_type after any pullupmsg */ 2594 DB_TYPE(mp) = M_CTL; 2595 2596 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2597 ip_policy, recv_ill, zoneid); 2598 return; 2599 } 2600 /* NOTREACHED */ 2601 drop_pkt:; 2602 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2603 freemsg(first_mp); 2604 } 2605 2606 /* 2607 * Common IP options parser. 2608 * 2609 * Setup routine: fill in *optp with options-parsing state, then 2610 * tail-call ipoptp_next to return the first option. 2611 */ 2612 uint8_t 2613 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2614 { 2615 uint32_t totallen; /* total length of all options */ 2616 2617 totallen = ipha->ipha_version_and_hdr_length - 2618 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2619 totallen <<= 2; 2620 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2621 optp->ipoptp_end = optp->ipoptp_next + totallen; 2622 optp->ipoptp_flags = 0; 2623 return (ipoptp_next(optp)); 2624 } 2625 2626 /* 2627 * Common IP options parser: extract next option. 2628 */ 2629 uint8_t 2630 ipoptp_next(ipoptp_t *optp) 2631 { 2632 uint8_t *end = optp->ipoptp_end; 2633 uint8_t *cur = optp->ipoptp_next; 2634 uint8_t opt, len, pointer; 2635 2636 /* 2637 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2638 * has been corrupted. 2639 */ 2640 ASSERT(cur <= end); 2641 2642 if (cur == end) 2643 return (IPOPT_EOL); 2644 2645 opt = cur[IPOPT_OPTVAL]; 2646 2647 /* 2648 * Skip any NOP options. 2649 */ 2650 while (opt == IPOPT_NOP) { 2651 cur++; 2652 if (cur == end) 2653 return (IPOPT_EOL); 2654 opt = cur[IPOPT_OPTVAL]; 2655 } 2656 2657 if (opt == IPOPT_EOL) 2658 return (IPOPT_EOL); 2659 2660 /* 2661 * Option requiring a length. 2662 */ 2663 if ((cur + 1) >= end) { 2664 optp->ipoptp_flags |= IPOPTP_ERROR; 2665 return (IPOPT_EOL); 2666 } 2667 len = cur[IPOPT_OLEN]; 2668 if (len < 2) { 2669 optp->ipoptp_flags |= IPOPTP_ERROR; 2670 return (IPOPT_EOL); 2671 } 2672 optp->ipoptp_cur = cur; 2673 optp->ipoptp_len = len; 2674 optp->ipoptp_next = cur + len; 2675 if (cur + len > end) { 2676 optp->ipoptp_flags |= IPOPTP_ERROR; 2677 return (IPOPT_EOL); 2678 } 2679 2680 /* 2681 * For the options which require a pointer field, make sure 2682 * its there, and make sure it points to either something 2683 * inside this option, or the end of the option. 2684 */ 2685 switch (opt) { 2686 case IPOPT_RR: 2687 case IPOPT_TS: 2688 case IPOPT_LSRR: 2689 case IPOPT_SSRR: 2690 if (len <= IPOPT_OFFSET) { 2691 optp->ipoptp_flags |= IPOPTP_ERROR; 2692 return (opt); 2693 } 2694 pointer = cur[IPOPT_OFFSET]; 2695 if (pointer - 1 > len) { 2696 optp->ipoptp_flags |= IPOPTP_ERROR; 2697 return (opt); 2698 } 2699 break; 2700 } 2701 2702 /* 2703 * Sanity check the pointer field based on the type of the 2704 * option. 2705 */ 2706 switch (opt) { 2707 case IPOPT_RR: 2708 case IPOPT_SSRR: 2709 case IPOPT_LSRR: 2710 if (pointer < IPOPT_MINOFF_SR) 2711 optp->ipoptp_flags |= IPOPTP_ERROR; 2712 break; 2713 case IPOPT_TS: 2714 if (pointer < IPOPT_MINOFF_IT) 2715 optp->ipoptp_flags |= IPOPTP_ERROR; 2716 /* 2717 * Note that the Internet Timestamp option also 2718 * contains two four bit fields (the Overflow field, 2719 * and the Flag field), which follow the pointer 2720 * field. We don't need to check that these fields 2721 * fall within the length of the option because this 2722 * was implicitely done above. We've checked that the 2723 * pointer value is at least IPOPT_MINOFF_IT, and that 2724 * it falls within the option. Since IPOPT_MINOFF_IT > 2725 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2726 */ 2727 ASSERT(len > IPOPT_POS_OV_FLG); 2728 break; 2729 } 2730 2731 return (opt); 2732 } 2733 2734 /* 2735 * Update any record route or timestamp options to include this host. 2736 * Reverse any source route option. 2737 * This routine assumes that the options are well formed i.e. that they 2738 * have already been checked. 2739 */ 2740 static void 2741 icmp_options_update(ipha_t *ipha) 2742 { 2743 ipoptp_t opts; 2744 uchar_t *opt; 2745 uint8_t optval; 2746 ipaddr_t src; /* Our local address */ 2747 ipaddr_t dst; 2748 2749 ip2dbg(("icmp_options_update\n")); 2750 src = ipha->ipha_src; 2751 dst = ipha->ipha_dst; 2752 2753 for (optval = ipoptp_first(&opts, ipha); 2754 optval != IPOPT_EOL; 2755 optval = ipoptp_next(&opts)) { 2756 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2757 opt = opts.ipoptp_cur; 2758 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2759 optval, opts.ipoptp_len)); 2760 switch (optval) { 2761 int off1, off2; 2762 case IPOPT_SSRR: 2763 case IPOPT_LSRR: 2764 /* 2765 * Reverse the source route. The first entry 2766 * should be the next to last one in the current 2767 * source route (the last entry is our address). 2768 * The last entry should be the final destination. 2769 */ 2770 off1 = IPOPT_MINOFF_SR - 1; 2771 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2772 if (off2 < 0) { 2773 /* No entries in source route */ 2774 ip1dbg(( 2775 "icmp_options_update: bad src route\n")); 2776 break; 2777 } 2778 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2779 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2780 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2781 off2 -= IP_ADDR_LEN; 2782 2783 while (off1 < off2) { 2784 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2785 bcopy((char *)opt + off2, (char *)opt + off1, 2786 IP_ADDR_LEN); 2787 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2788 off1 += IP_ADDR_LEN; 2789 off2 -= IP_ADDR_LEN; 2790 } 2791 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2792 break; 2793 } 2794 } 2795 } 2796 2797 /* 2798 * Process received ICMP Redirect messages. 2799 */ 2800 /* ARGSUSED */ 2801 static void 2802 icmp_redirect(mblk_t *mp) 2803 { 2804 ipha_t *ipha; 2805 int iph_hdr_length; 2806 icmph_t *icmph; 2807 ipha_t *ipha_err; 2808 ire_t *ire; 2809 ire_t *prev_ire; 2810 ire_t *save_ire; 2811 ipaddr_t src, dst, gateway; 2812 iulp_t ulp_info = { 0 }; 2813 int error; 2814 2815 ipha = (ipha_t *)mp->b_rptr; 2816 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2817 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2818 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2819 BUMP_MIB(&icmp_mib, icmpInErrors); 2820 freemsg(mp); 2821 return; 2822 } 2823 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2824 ipha_err = (ipha_t *)&icmph[1]; 2825 src = ipha->ipha_src; 2826 dst = ipha_err->ipha_dst; 2827 gateway = icmph->icmph_rd_gateway; 2828 /* Make sure the new gateway is reachable somehow. */ 2829 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2830 ALL_ZONES, MATCH_IRE_TYPE); 2831 /* 2832 * Make sure we had a route for the dest in question and that 2833 * that route was pointing to the old gateway (the source of the 2834 * redirect packet.) 2835 */ 2836 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2837 MATCH_IRE_GW); 2838 /* 2839 * Check that 2840 * the redirect was not from ourselves 2841 * the new gateway and the old gateway are directly reachable 2842 */ 2843 if (!prev_ire || 2844 !ire || 2845 ire->ire_type == IRE_LOCAL) { 2846 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2847 freemsg(mp); 2848 if (ire != NULL) 2849 ire_refrele(ire); 2850 if (prev_ire != NULL) 2851 ire_refrele(prev_ire); 2852 return; 2853 } 2854 2855 /* 2856 * Should we use the old ULP info to create the new gateway? From 2857 * a user's perspective, we should inherit the info so that it 2858 * is a "smooth" transition. If we do not do that, then new 2859 * connections going thru the new gateway will have no route metrics, 2860 * which is counter-intuitive to user. From a network point of 2861 * view, this may or may not make sense even though the new gateway 2862 * is still directly connected to us so the route metrics should not 2863 * change much. 2864 * 2865 * But if the old ire_uinfo is not initialized, we do another 2866 * recursive lookup on the dest using the new gateway. There may 2867 * be a route to that. If so, use it to initialize the redirect 2868 * route. 2869 */ 2870 if (prev_ire->ire_uinfo.iulp_set) { 2871 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2872 } else { 2873 ire_t *tmp_ire; 2874 ire_t *sire; 2875 2876 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 2877 ALL_ZONES, 0, 2878 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 2879 if (sire != NULL) { 2880 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2881 /* 2882 * If sire != NULL, ire_ftable_lookup() should not 2883 * return a NULL value. 2884 */ 2885 ASSERT(tmp_ire != NULL); 2886 ire_refrele(tmp_ire); 2887 ire_refrele(sire); 2888 } else if (tmp_ire != NULL) { 2889 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 2890 sizeof (iulp_t)); 2891 ire_refrele(tmp_ire); 2892 } 2893 } 2894 if (prev_ire->ire_type == IRE_CACHE) 2895 ire_delete(prev_ire); 2896 ire_refrele(prev_ire); 2897 /* 2898 * TODO: more precise handling for cases 0, 2, 3, the latter two 2899 * require TOS routing 2900 */ 2901 switch (icmph->icmph_code) { 2902 case 0: 2903 case 1: 2904 /* TODO: TOS specificity for cases 2 and 3 */ 2905 case 2: 2906 case 3: 2907 break; 2908 default: 2909 freemsg(mp); 2910 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2911 ire_refrele(ire); 2912 return; 2913 } 2914 /* 2915 * Create a Route Association. This will allow us to remember that 2916 * someone we believe told us to use the particular gateway. 2917 */ 2918 save_ire = ire; 2919 ire = ire_create( 2920 (uchar_t *)&dst, /* dest addr */ 2921 (uchar_t *)&ip_g_all_ones, /* mask */ 2922 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 2923 (uchar_t *)&gateway, /* gateway addr */ 2924 NULL, /* no in_srcaddr */ 2925 &save_ire->ire_max_frag, /* max frag */ 2926 NULL, /* Fast Path header */ 2927 NULL, /* no rfq */ 2928 NULL, /* no stq */ 2929 IRE_HOST_REDIRECT, 2930 NULL, 2931 NULL, 2932 NULL, 2933 0, 2934 0, 2935 0, 2936 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2937 &ulp_info); 2938 2939 if (ire == NULL) { 2940 freemsg(mp); 2941 ire_refrele(save_ire); 2942 return; 2943 } 2944 error = ire_add(&ire, NULL, NULL, NULL); 2945 ire_refrele(save_ire); 2946 if (error == 0) { 2947 ire_refrele(ire); /* Held in ire_add_v4 */ 2948 /* tell routing sockets that we received a redirect */ 2949 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2950 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2951 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 2952 } 2953 2954 /* 2955 * Delete any existing IRE_HOST_REDIRECT for this destination. 2956 * This together with the added IRE has the effect of 2957 * modifying an existing redirect. 2958 */ 2959 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 2960 ALL_ZONES, 0, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 2961 if (prev_ire) { 2962 ire_delete(prev_ire); 2963 ire_refrele(prev_ire); 2964 } 2965 2966 freemsg(mp); 2967 } 2968 2969 /* 2970 * Generate an ICMP parameter problem message. 2971 */ 2972 static void 2973 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 2974 { 2975 icmph_t icmph; 2976 boolean_t mctl_present; 2977 mblk_t *first_mp; 2978 2979 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 2980 2981 if (!(mp = icmp_pkt_err_ok(mp))) { 2982 if (mctl_present) 2983 freeb(first_mp); 2984 return; 2985 } 2986 2987 bzero(&icmph, sizeof (icmph_t)); 2988 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2989 icmph.icmph_pp_ptr = ptr; 2990 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 2991 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 2992 } 2993 2994 /* 2995 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2996 * the ICMP header pointed to by "stuff". (May be called as writer.) 2997 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2998 * an icmp error packet can be sent. 2999 * Assigns an appropriate source address to the packet. If ipha_dst is 3000 * one of our addresses use it for source. Otherwise pick a source based 3001 * on a route lookup back to ipha_src. 3002 * Note that ipha_src must be set here since the 3003 * packet is likely to arrive on an ill queue in ip_wput() which will 3004 * not set a source address. 3005 */ 3006 static void 3007 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3008 boolean_t mctl_present) 3009 { 3010 ipaddr_t dst; 3011 icmph_t *icmph; 3012 ipha_t *ipha; 3013 uint_t len_needed; 3014 size_t msg_len; 3015 mblk_t *mp1; 3016 ipaddr_t src; 3017 ire_t *ire; 3018 mblk_t *ipsec_mp; 3019 ipsec_out_t *io = NULL; 3020 boolean_t xmit_if_on = B_FALSE; 3021 zoneid_t zoneid; 3022 3023 if (mctl_present) { 3024 /* 3025 * If it is : 3026 * 3027 * 1) a IPSEC_OUT, then this is caused by outbound 3028 * datagram originating on this host. IPSEC processing 3029 * may or may not have been done. Refer to comments above 3030 * icmp_inbound_error_fanout for details. 3031 * 3032 * 2) a IPSEC_IN if we are generating a icmp_message 3033 * for an incoming datagram destined for us i.e called 3034 * from ip_fanout_send_icmp. 3035 */ 3036 ipsec_info_t *in; 3037 ipsec_mp = mp; 3038 mp = ipsec_mp->b_cont; 3039 3040 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3041 ipha = (ipha_t *)mp->b_rptr; 3042 3043 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3044 in->ipsec_info_type == IPSEC_IN); 3045 3046 if (in->ipsec_info_type == IPSEC_IN) { 3047 /* 3048 * Convert the IPSEC_IN to IPSEC_OUT. 3049 */ 3050 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3051 BUMP_MIB(&ip_mib, ipOutDiscards); 3052 return; 3053 } 3054 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3055 } else { 3056 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3057 io = (ipsec_out_t *)in; 3058 if (io->ipsec_out_xmit_if) 3059 xmit_if_on = B_TRUE; 3060 /* 3061 * Clear out ipsec_out_proc_begin, so we do a fresh 3062 * ire lookup. 3063 */ 3064 io->ipsec_out_proc_begin = B_FALSE; 3065 } 3066 zoneid = io->ipsec_out_zoneid; 3067 ASSERT(zoneid != ALL_ZONES); 3068 } else { 3069 /* 3070 * This is in clear. The icmp message we are building 3071 * here should go out in clear. 3072 * 3073 * Pardon the convolution of it all, but it's easier to 3074 * allocate a "use cleartext" IPSEC_IN message and convert 3075 * it than it is to allocate a new one. 3076 */ 3077 ipsec_in_t *ii; 3078 ASSERT(DB_TYPE(mp) == M_DATA); 3079 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3080 freemsg(mp); 3081 BUMP_MIB(&ip_mib, ipOutDiscards); 3082 return; 3083 } 3084 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3085 3086 /* This is not a secure packet */ 3087 ii->ipsec_in_secure = B_FALSE; 3088 if (CONN_Q(q)) { 3089 zoneid = Q_TO_CONN(q)->conn_zoneid; 3090 } else { 3091 zoneid = GLOBAL_ZONEID; 3092 } 3093 ii->ipsec_in_zoneid = zoneid; 3094 ipsec_mp->b_cont = mp; 3095 ipha = (ipha_t *)mp->b_rptr; 3096 /* 3097 * Convert the IPSEC_IN to IPSEC_OUT. 3098 */ 3099 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3100 BUMP_MIB(&ip_mib, ipOutDiscards); 3101 return; 3102 } 3103 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3104 } 3105 3106 /* Remember our eventual destination */ 3107 dst = ipha->ipha_src; 3108 3109 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3110 NULL, NULL, zoneid, MATCH_IRE_TYPE); 3111 if (ire != NULL && ire->ire_zoneid == zoneid) { 3112 src = ipha->ipha_dst; 3113 } else if (!xmit_if_on) { 3114 if (ire != NULL) 3115 ire_refrele(ire); 3116 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, 3117 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3118 if (ire == NULL) { 3119 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3120 freemsg(ipsec_mp); 3121 return; 3122 } 3123 src = ire->ire_src_addr; 3124 } else { 3125 ipif_t *ipif = NULL; 3126 ill_t *ill; 3127 /* 3128 * This must be an ICMP error coming from 3129 * ip_mrtun_forward(). The src addr should 3130 * be equal to the IP-addr of the outgoing 3131 * interface. 3132 */ 3133 if (io == NULL) { 3134 /* This is not a IPSEC_OUT type control msg */ 3135 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3136 freemsg(ipsec_mp); 3137 return; 3138 } 3139 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3140 NULL, NULL, NULL, NULL); 3141 if (ill != NULL) { 3142 ipif = ipif_get_next_ipif(NULL, ill); 3143 ill_refrele(ill); 3144 } 3145 if (ipif == NULL) { 3146 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3147 freemsg(ipsec_mp); 3148 return; 3149 } 3150 src = ipif->ipif_src_addr; 3151 ipif_refrele(ipif); 3152 } 3153 3154 if (ire != NULL) 3155 ire_refrele(ire); 3156 3157 /* 3158 * Check if we can send back more then 8 bytes in addition 3159 * to the IP header. We will include as much as 64 bytes. 3160 */ 3161 len_needed = IPH_HDR_LENGTH(ipha) + ip_icmp_return; 3162 msg_len = msgdsize(mp); 3163 if (msg_len > len_needed) { 3164 (void) adjmsg(mp, len_needed - msg_len); 3165 msg_len = len_needed; 3166 } 3167 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3168 if (!mp1) { 3169 BUMP_MIB(&icmp_mib, icmpOutErrors); 3170 freemsg(ipsec_mp); 3171 return; 3172 } 3173 mp1->b_cont = mp; 3174 mp = mp1; 3175 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3176 ipsec_mp->b_rptr == (uint8_t *)io && 3177 io->ipsec_out_type == IPSEC_OUT); 3178 ipsec_mp->b_cont = mp; 3179 3180 /* 3181 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3182 * node generates be accepted in peace by all on-host destinations. 3183 * If we do NOT assume that all on-host destinations trust 3184 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3185 * (Look for ipsec_out_icmp_loopback). 3186 */ 3187 io->ipsec_out_icmp_loopback = B_TRUE; 3188 3189 ipha = (ipha_t *)mp->b_rptr; 3190 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3191 *ipha = icmp_ipha; 3192 ipha->ipha_src = src; 3193 ipha->ipha_dst = dst; 3194 ipha->ipha_ttl = ip_def_ttl; 3195 msg_len += sizeof (icmp_ipha) + len; 3196 if (msg_len > IP_MAXPACKET) { 3197 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3198 msg_len = IP_MAXPACKET; 3199 } 3200 ipha->ipha_length = htons((uint16_t)msg_len); 3201 icmph = (icmph_t *)&ipha[1]; 3202 bcopy(stuff, icmph, len); 3203 icmph->icmph_checksum = 0; 3204 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3205 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3206 put(q, ipsec_mp); 3207 } 3208 3209 /* 3210 * Determine if an ICMP error packet can be sent given the rate limit. 3211 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3212 * in milliseconds) and a burst size. Burst size number of packets can 3213 * be sent arbitrarely closely spaced. 3214 * The state is tracked using two variables to implement an approximate 3215 * token bucket filter: 3216 * icmp_pkt_err_last - lbolt value when the last burst started 3217 * icmp_pkt_err_sent - number of packets sent in current burst 3218 */ 3219 boolean_t 3220 icmp_err_rate_limit(void) 3221 { 3222 clock_t now = TICK_TO_MSEC(lbolt); 3223 uint_t refilled; /* Number of packets refilled in tbf since last */ 3224 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3225 3226 if (err_interval == 0) 3227 return (B_FALSE); 3228 3229 if (icmp_pkt_err_last > now) { 3230 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3231 icmp_pkt_err_last = 0; 3232 icmp_pkt_err_sent = 0; 3233 } 3234 /* 3235 * If we are in a burst update the token bucket filter. 3236 * Update the "last" time to be close to "now" but make sure 3237 * we don't loose precision. 3238 */ 3239 if (icmp_pkt_err_sent != 0) { 3240 refilled = (now - icmp_pkt_err_last)/err_interval; 3241 if (refilled > icmp_pkt_err_sent) { 3242 icmp_pkt_err_sent = 0; 3243 } else { 3244 icmp_pkt_err_sent -= refilled; 3245 icmp_pkt_err_last += refilled * err_interval; 3246 } 3247 } 3248 if (icmp_pkt_err_sent == 0) { 3249 /* Start of new burst */ 3250 icmp_pkt_err_last = now; 3251 } 3252 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3253 icmp_pkt_err_sent++; 3254 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3255 icmp_pkt_err_sent)); 3256 return (B_FALSE); 3257 } 3258 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3259 return (B_TRUE); 3260 } 3261 3262 /* 3263 * Check if it is ok to send an IPv4 ICMP error packet in 3264 * response to the IPv4 packet in mp. 3265 * Free the message and return null if no 3266 * ICMP error packet should be sent. 3267 */ 3268 static mblk_t * 3269 icmp_pkt_err_ok(mblk_t *mp) 3270 { 3271 icmph_t *icmph; 3272 ipha_t *ipha; 3273 uint_t len_needed; 3274 ire_t *src_ire; 3275 ire_t *dst_ire; 3276 3277 if (!mp) 3278 return (NULL); 3279 ipha = (ipha_t *)mp->b_rptr; 3280 if (ip_csum_hdr(ipha)) { 3281 BUMP_MIB(&ip_mib, ipInCksumErrs); 3282 freemsg(mp); 3283 return (NULL); 3284 } 3285 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3286 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3287 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3288 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3289 if (src_ire != NULL || dst_ire != NULL || 3290 CLASSD(ipha->ipha_dst) || 3291 CLASSD(ipha->ipha_src) || 3292 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3293 /* Note: only errors to the fragment with offset 0 */ 3294 BUMP_MIB(&icmp_mib, icmpOutDrops); 3295 freemsg(mp); 3296 if (src_ire != NULL) 3297 ire_refrele(src_ire); 3298 if (dst_ire != NULL) 3299 ire_refrele(dst_ire); 3300 return (NULL); 3301 } 3302 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3303 /* 3304 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3305 * errors in response to any ICMP errors. 3306 */ 3307 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3308 if (mp->b_wptr - mp->b_rptr < len_needed) { 3309 if (!pullupmsg(mp, len_needed)) { 3310 BUMP_MIB(&icmp_mib, icmpInErrors); 3311 freemsg(mp); 3312 return (NULL); 3313 } 3314 ipha = (ipha_t *)mp->b_rptr; 3315 } 3316 icmph = (icmph_t *) 3317 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3318 switch (icmph->icmph_type) { 3319 case ICMP_DEST_UNREACHABLE: 3320 case ICMP_SOURCE_QUENCH: 3321 case ICMP_TIME_EXCEEDED: 3322 case ICMP_PARAM_PROBLEM: 3323 case ICMP_REDIRECT: 3324 BUMP_MIB(&icmp_mib, icmpOutDrops); 3325 freemsg(mp); 3326 return (NULL); 3327 default: 3328 break; 3329 } 3330 } 3331 if (icmp_err_rate_limit()) { 3332 /* 3333 * Only send ICMP error packets every so often. 3334 * This should be done on a per port/source basis, 3335 * but for now this will suffice. 3336 */ 3337 freemsg(mp); 3338 return (NULL); 3339 } 3340 return (mp); 3341 } 3342 3343 /* 3344 * Generate an ICMP redirect message. 3345 */ 3346 static void 3347 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3348 { 3349 icmph_t icmph; 3350 3351 /* 3352 * We are called from ip_rput where we could 3353 * not have attached an IPSEC_IN. 3354 */ 3355 ASSERT(mp->b_datap->db_type == M_DATA); 3356 3357 if (!(mp = icmp_pkt_err_ok(mp))) { 3358 return; 3359 } 3360 3361 bzero(&icmph, sizeof (icmph_t)); 3362 icmph.icmph_type = ICMP_REDIRECT; 3363 icmph.icmph_code = 1; 3364 icmph.icmph_rd_gateway = gateway; 3365 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3366 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3367 } 3368 3369 /* 3370 * Generate an ICMP time exceeded message. 3371 */ 3372 void 3373 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3374 { 3375 icmph_t icmph; 3376 boolean_t mctl_present; 3377 mblk_t *first_mp; 3378 3379 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3380 3381 if (!(mp = icmp_pkt_err_ok(mp))) { 3382 if (mctl_present) 3383 freeb(first_mp); 3384 return; 3385 } 3386 3387 bzero(&icmph, sizeof (icmph_t)); 3388 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3389 icmph.icmph_code = code; 3390 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3391 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3392 } 3393 3394 /* 3395 * Generate an ICMP unreachable message. 3396 */ 3397 void 3398 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3399 { 3400 icmph_t icmph; 3401 mblk_t *first_mp; 3402 boolean_t mctl_present; 3403 3404 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3405 3406 if (!(mp = icmp_pkt_err_ok(mp))) { 3407 if (mctl_present) 3408 freeb(first_mp); 3409 return; 3410 } 3411 3412 bzero(&icmph, sizeof (icmph_t)); 3413 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3414 icmph.icmph_code = code; 3415 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3416 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3417 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3418 } 3419 3420 /* 3421 * News from ARP. ARP sends notification of interesting events down 3422 * to its clients using M_CTL messages with the interesting ARP packet 3423 * attached via b_cont. 3424 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3425 * queue as opposed to ARP sending the message to all the clients, i.e. all 3426 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3427 * table if a cache IRE is found to delete all the entries for the address in 3428 * the packet. 3429 */ 3430 static void 3431 ip_arp_news(queue_t *q, mblk_t *mp) 3432 { 3433 arcn_t *arcn; 3434 arh_t *arh; 3435 char *cp1; 3436 uchar_t *cp2; 3437 ire_t *ire = NULL; 3438 int i1; 3439 char hbuf[128]; 3440 char sbuf[16]; 3441 ipaddr_t src; 3442 in6_addr_t v6src; 3443 boolean_t isv6 = B_FALSE; 3444 3445 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3446 if (q->q_next) { 3447 putnext(q, mp); 3448 } else 3449 freemsg(mp); 3450 return; 3451 } 3452 arh = (arh_t *)mp->b_cont->b_rptr; 3453 /* Is it one we are interested in? */ 3454 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3455 isv6 = B_TRUE; 3456 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3457 IPV6_ADDR_LEN); 3458 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3459 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3460 IP_ADDR_LEN); 3461 } else { 3462 freemsg(mp); 3463 return; 3464 } 3465 3466 arcn = (arcn_t *)mp->b_rptr; 3467 switch (arcn->arcn_code) { 3468 case AR_CN_BOGON: 3469 /* 3470 * Someone is sending ARP packets with a source protocol 3471 * address which we have published. Either they are 3472 * pretending to be us, or we have been asked to proxy 3473 * for a machine that can do fine for itself, or two 3474 * different machines are providing proxy service for the 3475 * same protocol address, or something. We try and do 3476 * something appropriate here. 3477 */ 3478 cp2 = (uchar_t *)&arh[1]; 3479 cp1 = hbuf; 3480 *cp1 = '\0'; 3481 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3482 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3483 if (cp1 != hbuf) 3484 cp1[-1] = '\0'; 3485 (void) ip_dot_addr(src, sbuf); 3486 if (isv6) 3487 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES); 3488 else 3489 ire = ire_cache_lookup(src, ALL_ZONES); 3490 3491 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3492 cmn_err(CE_WARN, 3493 "IP: Hardware address '%s' trying" 3494 " to be our address %s!", 3495 hbuf, sbuf); 3496 } else { 3497 cmn_err(CE_WARN, 3498 "IP: Proxy ARP problem? " 3499 "Hardware address '%s' thinks it is %s", 3500 hbuf, sbuf); 3501 } 3502 if (ire != NULL) 3503 ire_refrele(ire); 3504 break; 3505 case AR_CN_ANNOUNCE: 3506 if (isv6) { 3507 /* 3508 * For XRESOLV interfaces. 3509 * Delete the IRE cache entry and NCE for this 3510 * v6 address 3511 */ 3512 ip_ire_clookup_and_delete_v6(&v6src); 3513 /* 3514 * If v6src is a non-zero, it's a router address 3515 * as below. Do the same sort of thing to clean 3516 * out off-net IRE_CACHE entries that go through 3517 * the router. 3518 */ 3519 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3520 ire_walk_v6(ire_delete_cache_gw_v6, 3521 (char *)&v6src, ALL_ZONES); 3522 } 3523 break; 3524 } 3525 /* 3526 * ARP gives us a copy of any broadcast packet with identical 3527 * sender and receiver protocol address, in 3528 * case we want to intuit something from it. Such a packet 3529 * usually means that a machine has just come up on the net. 3530 * If we have an IRE_CACHE, we blow it away. This way we will 3531 * immediately pick up the rare case of a host changing 3532 * hardware address. ip_ire_clookup_and_delete achieves this. 3533 * 3534 * The address in "src" may be an entry for a router. 3535 * (Default router, or non-default router.) If 3536 * that's true, then any off-net IRE_CACHE entries 3537 * that go through the router with address "src" 3538 * must be clobbered. Use ire_walk to achieve this 3539 * goal. 3540 * 3541 * It should be possible to determine if the address 3542 * in src is or is not for a router. This way, 3543 * the ire_walk() isn't called all of the time here. 3544 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3545 * as it would remove all IRE_CACHE entries for onlink 3546 * destinations. All onlink destinations have 3547 * ire_gateway_addr == 0. 3548 */ 3549 if ((ip_ire_clookup_and_delete(src, NULL) || 3550 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3551 0, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3552 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3553 ALL_ZONES); 3554 } 3555 /* From ire_ftable_lookup */ 3556 if (ire != NULL) 3557 ire_refrele(ire); 3558 break; 3559 default: 3560 if (ire != NULL) 3561 ire_refrele(ire); 3562 break; 3563 } 3564 freemsg(mp); 3565 } 3566 3567 /* 3568 * Create a mblk suitable for carrying the interface index and/or source link 3569 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3570 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3571 * application. 3572 */ 3573 mblk_t * 3574 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3575 { 3576 mblk_t *mp; 3577 in_pktinfo_t *pinfo; 3578 ipha_t *ipha; 3579 struct ether_header *pether; 3580 3581 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3582 if (mp == NULL) { 3583 ip1dbg(("ip_add_info: allocation failure.\n")); 3584 return (data_mp); 3585 } 3586 3587 ipha = (ipha_t *)data_mp->b_rptr; 3588 pinfo = (in_pktinfo_t *)mp->b_rptr; 3589 bzero(pinfo, sizeof (in_pktinfo_t)); 3590 pinfo->in_pkt_flags = (uchar_t)flags; 3591 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3592 3593 if (flags & IPF_RECVIF) 3594 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3595 3596 pether = (struct ether_header *)((char *)ipha 3597 - sizeof (struct ether_header)); 3598 /* 3599 * Make sure the interface is an ethernet type, since this option 3600 * is currently supported only on this type of interface. Also make 3601 * sure we are pointing correctly above db_base. 3602 */ 3603 3604 if ((flags & IPF_RECVSLLA) && 3605 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3606 (ill->ill_type == IFT_ETHER) && 3607 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3608 3609 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3610 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3611 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3612 } else { 3613 /* 3614 * Clear the bit. Indicate to upper layer that IP is not 3615 * sending this ancillary info. 3616 */ 3617 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3618 } 3619 3620 mp->b_datap->db_type = M_CTL; 3621 mp->b_wptr += sizeof (in_pktinfo_t); 3622 mp->b_cont = data_mp; 3623 3624 return (mp); 3625 } 3626 3627 /* 3628 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3629 * part of the bind request. 3630 */ 3631 3632 boolean_t 3633 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3634 { 3635 ipsec_in_t *ii; 3636 3637 ASSERT(policy_mp != NULL); 3638 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3639 3640 ii = (ipsec_in_t *)policy_mp->b_rptr; 3641 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3642 3643 connp->conn_policy = ii->ipsec_in_policy; 3644 ii->ipsec_in_policy = NULL; 3645 3646 if (ii->ipsec_in_action != NULL) { 3647 if (connp->conn_latch == NULL) { 3648 connp->conn_latch = iplatch_create(); 3649 if (connp->conn_latch == NULL) 3650 return (B_FALSE); 3651 } 3652 ipsec_latch_inbound(connp->conn_latch, ii); 3653 } 3654 return (B_TRUE); 3655 } 3656 3657 /* 3658 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3659 * and to arrange for power-fanout assist. The ULP is identified by 3660 * adding a single byte at the end of the original bind message. 3661 * A ULP other than UDP or TCP that wishes to be recognized passes 3662 * down a bind with a zero length address. 3663 * 3664 * The binding works as follows: 3665 * - A zero byte address means just bind to the protocol. 3666 * - A four byte address is treated as a request to validate 3667 * that the address is a valid local address, appropriate for 3668 * an application to bind to. This does not affect any fanout 3669 * information in IP. 3670 * - A sizeof sin_t byte address is used to bind to only the local address 3671 * and port. 3672 * - A sizeof ipa_conn_t byte address contains complete fanout information 3673 * consisting of local and remote addresses and ports. In 3674 * this case, the addresses are both validated as appropriate 3675 * for this operation, and, if so, the information is retained 3676 * for use in the inbound fanout. 3677 * 3678 * The ULP (except in the zero-length bind) can append an 3679 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 3680 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 3681 * a copy of the source or destination IRE (source for local bind; 3682 * destination for complete bind). IPSEC_POLICY_SET indicates that the 3683 * policy information contained should be copied on to the conn. 3684 * 3685 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 3686 */ 3687 mblk_t * 3688 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 3689 { 3690 ssize_t len; 3691 struct T_bind_req *tbr; 3692 sin_t *sin; 3693 ipa_conn_t *ac; 3694 uchar_t *ucp; 3695 mblk_t *mp1; 3696 boolean_t ire_requested; 3697 boolean_t ipsec_policy_set = B_FALSE; 3698 int error = 0; 3699 int protocol; 3700 ipa_conn_x_t *acx; 3701 3702 ASSERT(!connp->conn_af_isv6); 3703 connp->conn_pkt_isv6 = B_FALSE; 3704 3705 len = mp->b_wptr - mp->b_rptr; 3706 if (len < (sizeof (*tbr) + 1)) { 3707 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 3708 "ip_bind: bogus msg, len %ld", len); 3709 /* XXX: Need to return something better */ 3710 goto bad_addr; 3711 } 3712 /* Back up and extract the protocol identifier. */ 3713 mp->b_wptr--; 3714 protocol = *mp->b_wptr & 0xFF; 3715 tbr = (struct T_bind_req *)mp->b_rptr; 3716 /* Reset the message type in preparation for shipping it back. */ 3717 mp->b_datap->db_type = M_PCPROTO; 3718 3719 connp->conn_ulp = (uint8_t)protocol; 3720 3721 /* 3722 * Check for a zero length address. This is from a protocol that 3723 * wants to register to receive all packets of its type. 3724 */ 3725 if (tbr->ADDR_length == 0) { 3726 /* 3727 * These protocols are now intercepted in ip_bind_v6(). 3728 * Reject protocol-level binds here for now. 3729 * 3730 * For SCTP raw socket, ICMP sends down a bind with sin_t 3731 * so that the protocol type cannot be SCTP. 3732 */ 3733 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 3734 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 3735 goto bad_addr; 3736 } 3737 3738 /* No hash here really. The table is big enough. */ 3739 connp->conn_srcv6 = ipv6_all_zeros; 3740 3741 ipcl_proto_insert(connp, protocol); 3742 3743 tbr->PRIM_type = T_BIND_ACK; 3744 return (mp); 3745 } 3746 3747 /* Extract the address pointer from the message. */ 3748 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 3749 tbr->ADDR_length); 3750 if (ucp == NULL) { 3751 ip1dbg(("ip_bind: no address\n")); 3752 goto bad_addr; 3753 } 3754 if (!OK_32PTR(ucp)) { 3755 ip1dbg(("ip_bind: unaligned address\n")); 3756 goto bad_addr; 3757 } 3758 /* 3759 * Check for trailing mps. 3760 */ 3761 3762 mp1 = mp->b_cont; 3763 ire_requested = (mp1 && mp1->b_datap->db_type == IRE_DB_REQ_TYPE); 3764 ipsec_policy_set = (mp1 && mp1->b_datap->db_type == IPSEC_POLICY_SET); 3765 3766 switch (tbr->ADDR_length) { 3767 default: 3768 ip1dbg(("ip_bind: bad address length %d\n", 3769 (int)tbr->ADDR_length)); 3770 goto bad_addr; 3771 3772 case IP_ADDR_LEN: 3773 /* Verification of local address only */ 3774 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 3775 ire_requested, ipsec_policy_set, B_FALSE); 3776 break; 3777 3778 case sizeof (sin_t): 3779 sin = (sin_t *)ucp; 3780 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 3781 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 3782 if (protocol == IPPROTO_TCP) 3783 connp->conn_recv = tcp_conn_request; 3784 break; 3785 3786 case sizeof (ipa_conn_t): 3787 ac = (ipa_conn_t *)ucp; 3788 /* For raw socket, the local port is not set. */ 3789 if (ac->ac_lport == 0) 3790 ac->ac_lport = connp->conn_lport; 3791 /* Always verify destination reachability. */ 3792 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 3793 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 3794 ipsec_policy_set, B_TRUE, B_TRUE); 3795 if (protocol == IPPROTO_TCP) 3796 connp->conn_recv = tcp_input; 3797 break; 3798 3799 case sizeof (ipa_conn_x_t): 3800 acx = (ipa_conn_x_t *)ucp; 3801 /* 3802 * Whether or not to verify destination reachability depends 3803 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 3804 */ 3805 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 3806 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 3807 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 3808 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 3809 if (protocol == IPPROTO_TCP) 3810 connp->conn_recv = tcp_input; 3811 break; 3812 } 3813 if (error == EINPROGRESS) 3814 return (NULL); 3815 else if (error != 0) 3816 goto bad_addr; 3817 /* 3818 * Pass the IPSEC headers size in ire_ipsec_overhead. 3819 * We can't do this in ip_bind_insert_ire because the policy 3820 * may not have been inherited at that point in time and hence 3821 * conn_out_enforce_policy may not be set. 3822 */ 3823 mp1 = mp->b_cont; 3824 if (ire_requested && connp->conn_out_enforce_policy && 3825 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 3826 ire_t *ire = (ire_t *)mp1->b_rptr; 3827 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 3828 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 3829 } 3830 3831 /* Send it home. */ 3832 mp->b_datap->db_type = M_PCPROTO; 3833 tbr->PRIM_type = T_BIND_ACK; 3834 return (mp); 3835 3836 bad_addr: 3837 /* 3838 * If error = -1 then we generate a TBADADDR - otherwise error is 3839 * a unix errno. 3840 */ 3841 if (error > 0) 3842 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 3843 else 3844 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 3845 return (mp); 3846 } 3847 3848 /* 3849 * Here address is verified to be a valid local address. 3850 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 3851 * address is also considered a valid local address. 3852 * In the case of a broadcast/multicast address, however, the 3853 * upper protocol is expected to reset the src address 3854 * to 0 if it sees a IRE_BROADCAST type returned so that 3855 * no packets are emitted with broadcast/multicast address as 3856 * source address (that violates hosts requirements RFC1122) 3857 * The addresses valid for bind are: 3858 * (1) - INADDR_ANY (0) 3859 * (2) - IP address of an UP interface 3860 * (3) - IP address of a DOWN interface 3861 * (4) - valid local IP broadcast addresses. In this case 3862 * the conn will only receive packets destined to 3863 * the specified broadcast address. 3864 * (5) - a multicast address. In this case 3865 * the conn will only receive packets destined to 3866 * the specified multicast address. Note: the 3867 * application still has to issue an 3868 * IP_ADD_MEMBERSHIP socket option. 3869 * 3870 * On error, return -1 for TBADADDR otherwise pass the 3871 * errno with TSYSERR reply. 3872 * 3873 * In all the above cases, the bound address must be valid in the current zone. 3874 * When the address is loopback, multicast or broadcast, there might be many 3875 * matching IREs so bind has to look up based on the zone. 3876 */ 3877 int 3878 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 3879 boolean_t ire_requested, boolean_t ipsec_policy_set, 3880 boolean_t fanout_insert) 3881 { 3882 int error = 0; 3883 ire_t *src_ire; 3884 mblk_t *policy_mp; 3885 ipif_t *ipif; 3886 zoneid_t zoneid; 3887 3888 if (ipsec_policy_set) { 3889 policy_mp = mp->b_cont; 3890 } 3891 3892 /* 3893 * If it was previously connected, conn_fully_bound would have 3894 * been set. 3895 */ 3896 connp->conn_fully_bound = B_FALSE; 3897 3898 src_ire = NULL; 3899 ipif = NULL; 3900 3901 zoneid = connp->conn_zoneid; 3902 3903 if (src_addr) { 3904 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 3905 NULL, NULL, zoneid, MATCH_IRE_ZONEONLY); 3906 /* 3907 * If an address other than 0.0.0.0 is requested, 3908 * we verify that it is a valid address for bind 3909 * Note: Following code is in if-else-if form for 3910 * readability compared to a condition check. 3911 */ 3912 /* LINTED - statement has no consequent */ 3913 if (IRE_IS_LOCAL(src_ire)) { 3914 /* 3915 * (2) Bind to address of local UP interface 3916 */ 3917 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 3918 /* 3919 * (4) Bind to broadcast address 3920 * Note: permitted only from transports that 3921 * request IRE 3922 */ 3923 if (!ire_requested) 3924 error = EADDRNOTAVAIL; 3925 } else { 3926 /* 3927 * (3) Bind to address of local DOWN interface 3928 * (ipif_lookup_addr() looks up all interfaces 3929 * but we do not get here for UP interfaces 3930 * - case (2) above) 3931 * We put the protocol byte back into the mblk 3932 * since we may come back via ip_wput_nondata() 3933 * later with this mblk if ipif_lookup_addr chooses 3934 * to defer processing. 3935 */ 3936 *mp->b_wptr++ = (char)connp->conn_ulp; 3937 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 3938 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 3939 &error)) != NULL) { 3940 ipif_refrele(ipif); 3941 } else if (error == EINPROGRESS) { 3942 if (src_ire != NULL) 3943 ire_refrele(src_ire); 3944 return (EINPROGRESS); 3945 } else if (CLASSD(src_addr)) { 3946 error = 0; 3947 if (src_ire != NULL) 3948 ire_refrele(src_ire); 3949 /* 3950 * (5) bind to multicast address. 3951 * Fake out the IRE returned to upper 3952 * layer to be a broadcast IRE. 3953 */ 3954 src_ire = ire_ctable_lookup( 3955 INADDR_BROADCAST, INADDR_ANY, 3956 IRE_BROADCAST, NULL, zoneid, 3957 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 3958 if (src_ire == NULL || !ire_requested) 3959 error = EADDRNOTAVAIL; 3960 } else { 3961 /* 3962 * Not a valid address for bind 3963 */ 3964 error = EADDRNOTAVAIL; 3965 } 3966 /* 3967 * Just to keep it consistent with the processing in 3968 * ip_bind_v4() 3969 */ 3970 mp->b_wptr--; 3971 } 3972 if (error) { 3973 /* Red Alert! Attempting to be a bogon! */ 3974 ip1dbg(("ip_bind: bad src address 0x%x\n", 3975 ntohl(src_addr))); 3976 goto bad_addr; 3977 } 3978 } 3979 3980 /* 3981 * Allow setting new policies. For example, disconnects come 3982 * down as ipa_t bind. As we would have set conn_policy_cached 3983 * to B_TRUE before, we should set it to B_FALSE, so that policy 3984 * can change after the disconnect. 3985 */ 3986 connp->conn_policy_cached = B_FALSE; 3987 3988 /* 3989 * If not fanout_insert this was just an address verification 3990 */ 3991 if (fanout_insert) { 3992 /* 3993 * The addresses have been verified. Time to insert in 3994 * the correct fanout list. 3995 */ 3996 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 3997 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 3998 connp->conn_lport = lport; 3999 connp->conn_fport = 0; 4000 /* 4001 * Do we need to add a check to reject Multicast packets 4002 */ 4003 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4004 } 4005 done: 4006 if (error == 0) { 4007 if (ire_requested) { 4008 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4009 error = -1; 4010 /* Falls through to bad_addr */ 4011 } 4012 } else if (ipsec_policy_set) { 4013 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4014 error = -1; 4015 /* Falls through to bad_addr */ 4016 } 4017 } 4018 } 4019 bad_addr: 4020 if (src_ire != NULL) 4021 IRE_REFRELE(src_ire); 4022 if (ipsec_policy_set) { 4023 ASSERT(policy_mp == mp->b_cont); 4024 ASSERT(policy_mp != NULL); 4025 freeb(policy_mp); 4026 /* 4027 * As of now assume that nothing else accompanies 4028 * IPSEC_POLICY_SET. 4029 */ 4030 mp->b_cont = NULL; 4031 } 4032 return (error); 4033 } 4034 4035 /* 4036 * Verify that both the source and destination addresses 4037 * are valid. If verify_dst is false, then the destination address may be 4038 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4039 * destination reachability, while tunnels do not. 4040 * Note that we allow connect to broadcast and multicast 4041 * addresses when ire_requested is set. Thus the ULP 4042 * has to check for IRE_BROADCAST and multicast. 4043 * 4044 * Returns zero if ok. 4045 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4046 * (for use with TSYSERR reply). 4047 */ 4048 int 4049 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4050 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4051 boolean_t ire_requested, boolean_t ipsec_policy_set, 4052 boolean_t fanout_insert, boolean_t verify_dst) 4053 { 4054 ire_t *src_ire; 4055 ire_t *dst_ire; 4056 int error = 0; 4057 int protocol; 4058 mblk_t *policy_mp; 4059 ire_t *sire = NULL; 4060 ire_t *md_dst_ire = NULL; 4061 ill_t *md_ill = NULL; 4062 zoneid_t zoneid; 4063 ipaddr_t src_addr = *src_addrp; 4064 4065 src_ire = dst_ire = NULL; 4066 protocol = *mp->b_wptr & 0xFF; 4067 4068 /* 4069 * If we never got a disconnect before, clear it now. 4070 */ 4071 connp->conn_fully_bound = B_FALSE; 4072 4073 if (ipsec_policy_set) { 4074 policy_mp = mp->b_cont; 4075 } 4076 4077 zoneid = connp->conn_zoneid; 4078 4079 if (CLASSD(dst_addr)) { 4080 /* Pick up an IRE_BROADCAST */ 4081 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4082 NULL, zoneid, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4083 MATCH_IRE_RJ_BHOLE)); 4084 } else { 4085 /* 4086 * If conn_dontroute is set, and onlink ipif is not found 4087 * set ENETUNREACH error 4088 */ 4089 if (connp->conn_dontroute) { 4090 ipif_t *ipif; 4091 4092 ipif = ipif_lookup_onlink_addr(dst_addr, zoneid); 4093 if (ipif == NULL) { 4094 error = ENETUNREACH; 4095 goto bad_addr; 4096 } 4097 ipif_refrele(ipif); 4098 } 4099 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, &sire, 4100 zoneid, 4101 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4102 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE)); 4103 } 4104 /* 4105 * dst_ire can't be a broadcast when not ire_requested. 4106 * We also prevent ire's with src address INADDR_ANY to 4107 * be used, which are created temporarily for 4108 * sending out packets from endpoints that have 4109 * conn_unspec_src set. If verify_dst is true, the destination must be 4110 * reachable. If verify_dst is false, the destination needn't be 4111 * reachable. 4112 * 4113 * If we match on a reject or black hole, then we've got a 4114 * local failure. May as well fail out the connect() attempt, 4115 * since it's never going to succeed. 4116 */ 4117 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4118 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4119 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4120 /* 4121 * If we're verifying destination reachability, we always want 4122 * to complain here. 4123 * 4124 * If we're not verifying destination reachability but the 4125 * destination has a route, we still want to fail on the 4126 * temporary address and broadcast address tests. 4127 */ 4128 if (verify_dst || (dst_ire != NULL)) { 4129 if (ip_debug > 2) { 4130 pr_addr_dbg("ip_bind_connected: bad connected " 4131 "dst %s\n", AF_INET, &dst_addr); 4132 } 4133 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4134 error = ENETUNREACH; 4135 else 4136 error = EHOSTUNREACH; 4137 goto bad_addr; 4138 } 4139 } 4140 /* 4141 * If the app does a connect(), it means that it will most likely 4142 * send more than 1 packet to the destination. It makes sense 4143 * to clear the temporary flag. 4144 */ 4145 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4146 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4147 irb_t *irb = dst_ire->ire_bucket; 4148 4149 rw_enter(&irb->irb_lock, RW_WRITER); 4150 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4151 irb->irb_tmp_ire_cnt--; 4152 rw_exit(&irb->irb_lock); 4153 } 4154 4155 /* 4156 * See if we should notify ULP about MDT; we do this whether or not 4157 * ire_requested is TRUE, in order to handle active connects; MDT 4158 * eligibility tests for passive connects are handled separately 4159 * through tcp_adapt_ire(). We do this before the source address 4160 * selection, because dst_ire may change after a call to 4161 * ipif_select_source(). This is a best-effort check, as the 4162 * packet for this connection may not actually go through 4163 * dst_ire->ire_stq, and the exact IRE can only be known after 4164 * calling ip_newroute(). This is why we further check on the 4165 * IRE during Multidata packet transmission in tcp_multisend(). 4166 */ 4167 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4168 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4169 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4170 (md_ill->ill_capabilities & ILL_CAPAB_MDT)) { 4171 md_dst_ire = dst_ire; 4172 IRE_REFHOLD(md_dst_ire); 4173 } 4174 4175 if (dst_ire != NULL && 4176 dst_ire->ire_type == IRE_LOCAL && 4177 dst_ire->ire_zoneid != zoneid) { 4178 /* 4179 * If the IRE belongs to a different zone, look for a matching 4180 * route in the forwarding table and use the source address from 4181 * that route. 4182 */ 4183 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4184 zoneid, 0, 4185 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4186 MATCH_IRE_RJ_BHOLE); 4187 if (src_ire == NULL) { 4188 error = EHOSTUNREACH; 4189 goto bad_addr; 4190 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4191 if (!(src_ire->ire_type & IRE_HOST)) 4192 error = ENETUNREACH; 4193 else 4194 error = EHOSTUNREACH; 4195 goto bad_addr; 4196 } 4197 if (src_addr == INADDR_ANY) 4198 src_addr = src_ire->ire_src_addr; 4199 ire_refrele(src_ire); 4200 src_ire = NULL; 4201 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4202 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4203 src_addr = sire->ire_src_addr; 4204 ire_refrele(dst_ire); 4205 dst_ire = sire; 4206 sire = NULL; 4207 } else { 4208 /* 4209 * Pick a source address so that a proper inbound 4210 * load spreading would happen. 4211 */ 4212 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4213 ipif_t *src_ipif = NULL; 4214 ire_t *ipif_ire; 4215 4216 /* 4217 * Supply a local source address such that inbound 4218 * load spreading happens. 4219 * 4220 * Determine the best source address on this ill for 4221 * the destination. 4222 * 4223 * 1) For broadcast, we should return a broadcast ire 4224 * found above so that upper layers know that the 4225 * destination address is a broadcast address. 4226 * 4227 * 2) If this is part of a group, select a better 4228 * source address so that better inbound load 4229 * balancing happens. Do the same if the ipif 4230 * is DEPRECATED. 4231 * 4232 * 3) If the outgoing interface is part of a usesrc 4233 * group, then try selecting a source address from 4234 * the usesrc ILL. 4235 */ 4236 if (!(dst_ire->ire_type & IRE_BROADCAST) && 4237 ((dst_ill->ill_group != NULL) || 4238 (dst_ire->ire_ipif->ipif_flags & 4239 IPIF_DEPRECATED) || 4240 (dst_ill->ill_usesrc_ifindex != 0))) { 4241 src_ipif = ipif_select_source(dst_ill, 4242 dst_addr, zoneid); 4243 if (src_ipif != NULL) { 4244 if (IS_VNI(src_ipif->ipif_ill)) { 4245 /* 4246 * For VNI there is no 4247 * interface route 4248 */ 4249 src_addr = 4250 src_ipif->ipif_src_addr; 4251 } else { 4252 ipif_ire = 4253 ipif_to_ire(src_ipif); 4254 if (ipif_ire != NULL) { 4255 IRE_REFRELE(dst_ire); 4256 dst_ire = ipif_ire; 4257 } 4258 src_addr = 4259 dst_ire->ire_src_addr; 4260 } 4261 ipif_refrele(src_ipif); 4262 } else { 4263 src_addr = dst_ire->ire_src_addr; 4264 } 4265 } else { 4266 src_addr = dst_ire->ire_src_addr; 4267 } 4268 } 4269 } 4270 4271 /* 4272 * We do ire_route_lookup() here (and not 4273 * interface lookup as we assert that 4274 * src_addr should only come from an 4275 * UP interface for hard binding. 4276 */ 4277 ASSERT(src_ire == NULL); 4278 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4279 NULL, zoneid, MATCH_IRE_ZONEONLY); 4280 /* src_ire must be a local|loopback */ 4281 if (!IRE_IS_LOCAL(src_ire)) { 4282 if (ip_debug > 2) { 4283 pr_addr_dbg("ip_bind_connected: bad connected " 4284 "src %s\n", AF_INET, &src_addr); 4285 } 4286 error = EADDRNOTAVAIL; 4287 goto bad_addr; 4288 } 4289 4290 /* 4291 * If the source address is a loopback address, the 4292 * destination had best be local or multicast. 4293 * The transports that can't handle multicast will reject 4294 * those addresses. 4295 */ 4296 if (src_ire->ire_type == IRE_LOOPBACK && 4297 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4298 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4299 error = -1; 4300 goto bad_addr; 4301 } 4302 4303 /* 4304 * Allow setting new policies. For example, disconnects come 4305 * down as ipa_t bind. As we would have set conn_policy_cached 4306 * to B_TRUE before, we should set it to B_FALSE, so that policy 4307 * can change after the disconnect. 4308 */ 4309 connp->conn_policy_cached = B_FALSE; 4310 4311 /* 4312 * Set the conn addresses/ports immediately, so the IPsec policy calls 4313 * can handle their passed-in conn's. 4314 */ 4315 4316 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4317 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4318 connp->conn_lport = lport; 4319 connp->conn_fport = fport; 4320 *src_addrp = src_addr; 4321 4322 ASSERT(!(ipsec_policy_set && ire_requested)); 4323 if (ire_requested) { 4324 iulp_t *ulp_info = NULL; 4325 4326 /* 4327 * Note that sire will not be NULL if this is an off-link 4328 * connection and there is not cache for that dest yet. 4329 * 4330 * XXX Because of an existing bug, if there are multiple 4331 * default routes, the IRE returned now may not be the actual 4332 * default route used (default routes are chosen in a 4333 * round robin fashion). So if the metrics for different 4334 * default routes are different, we may return the wrong 4335 * metrics. This will not be a problem if the existing 4336 * bug is fixed. 4337 */ 4338 if (sire != NULL) { 4339 ulp_info = &(sire->ire_uinfo); 4340 } 4341 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4342 error = -1; 4343 goto bad_addr; 4344 } 4345 } else if (ipsec_policy_set) { 4346 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4347 error = -1; 4348 goto bad_addr; 4349 } 4350 } 4351 4352 /* 4353 * Cache IPsec policy in this conn. If we have per-socket policy, 4354 * we'll cache that. If we don't, we'll inherit global policy. 4355 * 4356 * We can't insert until the conn reflects the policy. Note that 4357 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4358 * connections where we don't have a policy. This is to prevent 4359 * global policy lookups in the inbound path. 4360 * 4361 * If we insert before we set conn_policy_cached, 4362 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4363 * because global policy cound be non-empty. We normally call 4364 * ipsec_check_policy() for conn_policy_cached connections only if 4365 * ipc_in_enforce_policy is set. But in this case, 4366 * conn_policy_cached can get set anytime since we made the 4367 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4368 * called, which will make the above assumption false. Thus, we 4369 * need to insert after we set conn_policy_cached. 4370 */ 4371 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4372 goto bad_addr; 4373 4374 if (fanout_insert) { 4375 /* 4376 * The addresses have been verified. Time to insert in 4377 * the correct fanout list. 4378 */ 4379 error = ipcl_conn_insert(connp, protocol, src_addr, 4380 dst_addr, connp->conn_ports); 4381 } 4382 4383 if (error == 0) { 4384 connp->conn_fully_bound = B_TRUE; 4385 /* 4386 * Our initial checks for MDT have passed; the IRE is not 4387 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4388 * be supporting MDT. Pass the IRE, IPC and ILL into 4389 * ip_mdinfo_return(), which performs further checks 4390 * against them and upon success, returns the MDT info 4391 * mblk which we will attach to the bind acknowledgment. 4392 */ 4393 if (md_dst_ire != NULL) { 4394 mblk_t *mdinfo_mp; 4395 4396 ASSERT(md_ill != NULL); 4397 ASSERT(md_ill->ill_mdt_capab != NULL); 4398 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4399 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4400 linkb(mp, mdinfo_mp); 4401 } 4402 } 4403 bad_addr: 4404 if (ipsec_policy_set) { 4405 ASSERT(policy_mp == mp->b_cont); 4406 ASSERT(policy_mp != NULL); 4407 freeb(policy_mp); 4408 /* 4409 * As of now assume that nothing else accompanies 4410 * IPSEC_POLICY_SET. 4411 */ 4412 mp->b_cont = NULL; 4413 } 4414 if (src_ire != NULL) 4415 IRE_REFRELE(src_ire); 4416 if (dst_ire != NULL) 4417 IRE_REFRELE(dst_ire); 4418 if (sire != NULL) 4419 IRE_REFRELE(sire); 4420 if (md_dst_ire != NULL) 4421 IRE_REFRELE(md_dst_ire); 4422 return (error); 4423 } 4424 4425 /* 4426 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4427 * Prefers dst_ire over src_ire. 4428 */ 4429 static boolean_t 4430 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4431 { 4432 mblk_t *mp1; 4433 ire_t *ret_ire = NULL; 4434 4435 mp1 = mp->b_cont; 4436 ASSERT(mp1 != NULL); 4437 4438 if (ire != NULL) { 4439 /* 4440 * mp1 initialized above to IRE_DB_REQ_TYPE 4441 * appended mblk. Its <upper protocol>'s 4442 * job to make sure there is room. 4443 */ 4444 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4445 return (0); 4446 4447 mp1->b_datap->db_type = IRE_DB_TYPE; 4448 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4449 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4450 ret_ire = (ire_t *)mp1->b_rptr; 4451 /* 4452 * Pass the latest setting of the ip_path_mtu_discovery and 4453 * copy the ulp info if any. 4454 */ 4455 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4456 IPH_DF : 0; 4457 if (ulp_info != NULL) { 4458 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4459 sizeof (iulp_t)); 4460 } 4461 ret_ire->ire_mp = mp1; 4462 } else { 4463 /* 4464 * No IRE was found. Remove IRE mblk. 4465 */ 4466 mp->b_cont = mp1->b_cont; 4467 freeb(mp1); 4468 } 4469 4470 return (1); 4471 } 4472 4473 /* 4474 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4475 * the final piece where we don't. Return a pointer to the first mblk in the 4476 * result, and update the pointer to the next mblk to chew on. If anything 4477 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4478 * NULL pointer. 4479 */ 4480 mblk_t * 4481 ip_carve_mp(mblk_t **mpp, ssize_t len) 4482 { 4483 mblk_t *mp0; 4484 mblk_t *mp1; 4485 mblk_t *mp2; 4486 4487 if (!len || !mpp || !(mp0 = *mpp)) 4488 return (NULL); 4489 /* If we aren't going to consume the first mblk, we need a dup. */ 4490 if (mp0->b_wptr - mp0->b_rptr > len) { 4491 mp1 = dupb(mp0); 4492 if (mp1) { 4493 /* Partition the data between the two mblks. */ 4494 mp1->b_wptr = mp1->b_rptr + len; 4495 mp0->b_rptr = mp1->b_wptr; 4496 /* 4497 * after adjustments if mblk not consumed is now 4498 * unaligned, try to align it. If this fails free 4499 * all messages and let upper layer recover. 4500 */ 4501 if (!OK_32PTR(mp0->b_rptr)) { 4502 if (!pullupmsg(mp0, -1)) { 4503 freemsg(mp0); 4504 freemsg(mp1); 4505 *mpp = NULL; 4506 return (NULL); 4507 } 4508 } 4509 } 4510 return (mp1); 4511 } 4512 /* Eat through as many mblks as we need to get len bytes. */ 4513 len -= mp0->b_wptr - mp0->b_rptr; 4514 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4515 if (mp2->b_wptr - mp2->b_rptr > len) { 4516 /* 4517 * We won't consume the entire last mblk. Like 4518 * above, dup and partition it. 4519 */ 4520 mp1->b_cont = dupb(mp2); 4521 mp1 = mp1->b_cont; 4522 if (!mp1) { 4523 /* 4524 * Trouble. Rather than go to a lot of 4525 * trouble to clean up, we free the messages. 4526 * This won't be any worse than losing it on 4527 * the wire. 4528 */ 4529 freemsg(mp0); 4530 freemsg(mp2); 4531 *mpp = NULL; 4532 return (NULL); 4533 } 4534 mp1->b_wptr = mp1->b_rptr + len; 4535 mp2->b_rptr = mp1->b_wptr; 4536 /* 4537 * after adjustments if mblk not consumed is now 4538 * unaligned, try to align it. If this fails free 4539 * all messages and let upper layer recover. 4540 */ 4541 if (!OK_32PTR(mp2->b_rptr)) { 4542 if (!pullupmsg(mp2, -1)) { 4543 freemsg(mp0); 4544 freemsg(mp2); 4545 *mpp = NULL; 4546 return (NULL); 4547 } 4548 } 4549 *mpp = mp2; 4550 return (mp0); 4551 } 4552 /* Decrement len by the amount we just got. */ 4553 len -= mp2->b_wptr - mp2->b_rptr; 4554 } 4555 /* 4556 * len should be reduced to zero now. If not our caller has 4557 * screwed up. 4558 */ 4559 if (len) { 4560 /* Shouldn't happen! */ 4561 freemsg(mp0); 4562 *mpp = NULL; 4563 return (NULL); 4564 } 4565 /* 4566 * We consumed up to exactly the end of an mblk. Detach the part 4567 * we are returning from the rest of the chain. 4568 */ 4569 mp1->b_cont = NULL; 4570 *mpp = mp2; 4571 return (mp0); 4572 } 4573 4574 /* The ill stream is being unplumbed. Called from ip_close */ 4575 int 4576 ip_modclose(ill_t *ill) 4577 { 4578 4579 boolean_t success; 4580 ipsq_t *ipsq; 4581 ipif_t *ipif; 4582 queue_t *q = ill->ill_rq; 4583 4584 /* 4585 * Forcibly enter the ipsq after some delay. This is to take 4586 * care of the case when some ioctl does not complete because 4587 * we sent a control message to the driver and it did not 4588 * send us a reply. We want to be able to at least unplumb 4589 * and replumb rather than force the user to reboot the system. 4590 */ 4591 success = ipsq_enter(ill, B_FALSE); 4592 4593 /* 4594 * Open/close/push/pop is guaranteed to be single threaded 4595 * per stream by STREAMS. FS guarantees that all references 4596 * from top are gone before close is called. So there can't 4597 * be another close thread that has set CONDEMNED on this ill. 4598 * and cause ipsq_enter to return failure. 4599 */ 4600 ASSERT(success); 4601 ipsq = ill->ill_phyint->phyint_ipsq; 4602 4603 /* 4604 * Mark it condemned. No new reference will be made to this ill. 4605 * Lookup functions will return an error. Threads that try to 4606 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4607 * that the refcnt will drop down to zero. 4608 */ 4609 mutex_enter(&ill->ill_lock); 4610 ill->ill_state_flags |= ILL_CONDEMNED; 4611 for (ipif = ill->ill_ipif; ipif != NULL; 4612 ipif = ipif->ipif_next) { 4613 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4614 } 4615 /* 4616 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4617 * returns error if ILL_CONDEMNED is set 4618 */ 4619 cv_broadcast(&ill->ill_cv); 4620 mutex_exit(&ill->ill_lock); 4621 4622 /* 4623 * Shut down fragmentation reassembly. 4624 * ill_frag_timer won't start a timer again. 4625 * Now cancel any existing timer 4626 */ 4627 (void) untimeout(ill->ill_frag_timer_id); 4628 (void) ill_frag_timeout(ill, 0); 4629 4630 /* 4631 * If MOVE was in progress, clear the 4632 * move_in_progress fields also. 4633 */ 4634 if (ill->ill_move_in_progress) { 4635 ILL_CLEAR_MOVE(ill); 4636 } 4637 4638 /* 4639 * Call ill_delete to bring down the ipifs, ilms and ill on 4640 * this ill. Then wait for the refcnts to drop to zero. 4641 * ill_is_quiescent checks whether the ill is really quiescent. 4642 * Then make sure that threads that are waiting to enter the 4643 * ipsq have seen the error returned by ipsq_enter and have 4644 * gone away. Then we call ill_delete_tail which does the 4645 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 4646 */ 4647 ill_delete(ill); 4648 mutex_enter(&ill->ill_lock); 4649 while (!ill_is_quiescent(ill)) 4650 cv_wait(&ill->ill_cv, &ill->ill_lock); 4651 while (ill->ill_waiters) 4652 cv_wait(&ill->ill_cv, &ill->ill_lock); 4653 4654 mutex_exit(&ill->ill_lock); 4655 4656 /* qprocsoff is called in ill_delete_tail */ 4657 ill_delete_tail(ill); 4658 4659 /* 4660 * Walk through all upper (conn) streams and qenable 4661 * those that have queued data. 4662 * close synchronization needs this to 4663 * be done to ensure that all upper layers blocked 4664 * due to flow control to the closing device 4665 * get unblocked. 4666 */ 4667 ip1dbg(("ip_wsrv: walking\n")); 4668 conn_walk_drain(); 4669 4670 mutex_enter(&ip_mi_lock); 4671 mi_close_unlink(&ip_g_head, (IDP)ill); 4672 mutex_exit(&ip_mi_lock); 4673 4674 /* 4675 * credp could be null if the open didn't succeed and ip_modopen 4676 * itself calls ip_close. 4677 */ 4678 if (ill->ill_credp != NULL) 4679 crfree(ill->ill_credp); 4680 4681 mi_close_free((IDP)ill); 4682 q->q_ptr = WR(q)->q_ptr = NULL; 4683 4684 ipsq_exit(ipsq, B_TRUE, B_TRUE); 4685 4686 return (0); 4687 } 4688 4689 /* 4690 * IP has been configured as _D_QNEXTLESS for the client side i.e the driver 4691 * instance. This implies that 4692 * 1. IP cannot access the read side q_next pointer directly - it must 4693 * use routines like putnext and canputnext. 4694 * 2. ip_close must ensure that all sources of messages being putnext upstream 4695 * are gone before qprocsoff is called. 4696 * 4697 * #2 is handled by having ip_close do the ipcl_hash_remove and wait for 4698 * conn_ref to drop to zero before calling qprocsoff. 4699 */ 4700 4701 /* ARGSUSED */ 4702 int 4703 ip_close(queue_t *q, int flags) 4704 { 4705 conn_t *connp; 4706 boolean_t drain_cleanup_reqd = B_FALSE; 4707 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4708 boolean_t ilg_cleanup_reqd = B_FALSE; 4709 4710 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 4711 4712 /* 4713 * Call the appropriate delete routine depending on whether this is 4714 * a module or device. 4715 */ 4716 if (WR(q)->q_next != NULL) { 4717 /* This is a module close */ 4718 return (ip_modclose((ill_t *)q->q_ptr)); 4719 } 4720 4721 connp = Q_TO_CONN(q); 4722 ASSERT(connp->conn_tcp == NULL); 4723 4724 /* 4725 * We are being closed as /dev/ip or /dev/ip6. 4726 * 4727 * Mark the conn as closing, and this conn must not be 4728 * inserted in future into any list. Eg. conn_drain_insert(), 4729 * won't insert this conn into the conn_drain_list. 4730 * Similarly ill_pending_mp_add() will not add any mp to 4731 * the pending mp list, after this conn has started closing. 4732 * 4733 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 4734 * cannot get set henceforth. 4735 */ 4736 mutex_enter(&connp->conn_lock); 4737 connp->conn_state_flags |= CONN_CLOSING; 4738 if (connp->conn_idl != NULL) 4739 drain_cleanup_reqd = B_TRUE; 4740 if (connp->conn_oper_pending_ill != NULL) 4741 conn_ioctl_cleanup_reqd = B_TRUE; 4742 if (connp->conn_ilg_inuse != 0) 4743 ilg_cleanup_reqd = B_TRUE; 4744 mutex_exit(&connp->conn_lock); 4745 4746 if (conn_ioctl_cleanup_reqd) 4747 conn_ioctl_cleanup(connp); 4748 4749 /* 4750 * Remove this conn from any fanout list it is on. 4751 * Then wait until the number of pending putnexts from 4752 * the fanout code drops to zero, before calling qprocsoff. 4753 * This is the guarantee a QNEXTLESS driver provides to 4754 * STREAMS, and is mentioned at the top of this function. 4755 */ 4756 4757 ipcl_hash_remove(connp); 4758 4759 /* 4760 * Remove this conn from the drain list, and do 4761 * any other cleanup that may be required. 4762 * (Only non-tcp streams may have a non-null conn_idl. 4763 * TCP streams are never flow controlled, and 4764 * conn_idl will be null) 4765 */ 4766 if (drain_cleanup_reqd) 4767 conn_drain_tail(connp, B_TRUE); 4768 4769 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 4770 (void) ip_mrouter_done(NULL); 4771 4772 if (ilg_cleanup_reqd) 4773 ilg_delete_all(connp); 4774 4775 conn_delete_ire(connp, NULL); 4776 4777 4778 /* 4779 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4780 * callers from write side can't be there now because close 4781 * is in progress. The only other caller is ipcl_walk 4782 * which checks for the condemned flag. 4783 */ 4784 mutex_enter(&connp->conn_lock); 4785 connp->conn_state_flags |= CONN_CONDEMNED; 4786 while (connp->conn_ref != 1) 4787 cv_wait(&connp->conn_cv, &connp->conn_lock); 4788 mutex_exit(&connp->conn_lock); 4789 4790 qprocsoff(q); 4791 4792 /* 4793 * Now we are truly single threaded on this stream, and can 4794 * delete the things hanging off the connp, and finally the connp. 4795 * We removed this connp from the fanout list, it cannot be 4796 * accessed thru the fanouts, and we already waited for the 4797 * conn_ref to drop to 0. We are already in close, so 4798 * there cannot be any other thread from the top. qprocsoff 4799 * has completed, and service has completed or won't run in 4800 * future. 4801 */ 4802 if (connp->conn_latch != NULL) { 4803 IPLATCH_REFRELE(connp->conn_latch); 4804 connp->conn_latch = NULL; 4805 } 4806 if (connp->conn_policy != NULL) { 4807 IPPH_REFRELE(connp->conn_policy); 4808 connp->conn_policy = NULL; 4809 } 4810 if (connp->conn_ipsec_opt_mp != NULL) { 4811 freemsg(connp->conn_ipsec_opt_mp); 4812 connp->conn_ipsec_opt_mp = NULL; 4813 } 4814 if (connp->conn_cred != NULL) { 4815 crfree(connp->conn_cred); 4816 connp->conn_cred = NULL; 4817 } 4818 4819 inet_minor_free(ip_minor_arena, connp->conn_dev); 4820 4821 connp->conn_ref--; 4822 ipcl_conn_destroy(connp); 4823 4824 q->q_ptr = WR(q)->q_ptr = NULL; 4825 return (0); 4826 } 4827 4828 /* Return the IP checksum for the IP header at "iph". */ 4829 uint16_t 4830 ip_csum_hdr(ipha_t *ipha) 4831 { 4832 uint16_t *uph; 4833 uint32_t sum; 4834 int opt_len; 4835 4836 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 4837 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 4838 uph = (uint16_t *)ipha; 4839 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 4840 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 4841 if (opt_len > 0) { 4842 do { 4843 sum += uph[10]; 4844 sum += uph[11]; 4845 uph += 2; 4846 } while (--opt_len); 4847 } 4848 sum = (sum & 0xFFFF) + (sum >> 16); 4849 sum = ~(sum + (sum >> 16)) & 0xFFFF; 4850 if (sum == 0xffff) 4851 sum = 0; 4852 return ((uint16_t)sum); 4853 } 4854 4855 void 4856 ip_ddi_destroy(void) 4857 { 4858 tcp_ddi_destroy(); 4859 sctp_ddi_destroy(); 4860 ipsec_loader_destroy(); 4861 ipsec_policy_destroy(); 4862 ipsec_kstat_destroy(); 4863 nd_free(&ip_g_nd); 4864 mutex_destroy(&igmp_timer_lock); 4865 mutex_destroy(&mld_timer_lock); 4866 mutex_destroy(&igmp_slowtimeout_lock); 4867 mutex_destroy(&mld_slowtimeout_lock); 4868 mutex_destroy(&ip_mi_lock); 4869 mutex_destroy(&rts_clients.connf_lock); 4870 ip_ire_fini(); 4871 ip6_asp_free(); 4872 conn_drain_fini(); 4873 ipcl_destroy(); 4874 inet_minor_destroy(ip_minor_arena); 4875 icmp_kstat_fini(); 4876 ip_kstat_fini(); 4877 rw_destroy(&ipsec_capab_ills_lock); 4878 rw_destroy(&ill_g_usesrc_lock); 4879 ip_drop_unregister(&ip_dropper); 4880 } 4881 4882 4883 void 4884 ip_ddi_init(void) 4885 { 4886 TCP6_MAJ = ddi_name_to_major(TCP6); 4887 TCP_MAJ = ddi_name_to_major(TCP); 4888 SCTP_MAJ = ddi_name_to_major(SCTP); 4889 SCTP6_MAJ = ddi_name_to_major(SCTP6); 4890 4891 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 4892 4893 /* IP's IPsec code calls the packet dropper */ 4894 ip_drop_register(&ip_dropper, "IP IPsec processing"); 4895 4896 if (!ip_g_nd) { 4897 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 4898 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 4899 nd_free(&ip_g_nd); 4900 } 4901 } 4902 4903 ipsec_loader_init(); 4904 ipsec_policy_init(); 4905 ipsec_kstat_init(); 4906 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 4907 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4908 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4909 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4910 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4911 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4912 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4913 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 4914 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 4915 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4916 4917 /* 4918 * For IP and TCP the minor numbers should start from 2 since we have 4 4919 * initial devices: ip, ip6, tcp, tcp6. 4920 */ 4921 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 4922 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 4923 cmn_err(CE_PANIC, 4924 "ip_ddi_init: ip_minor_arena creation failed\n"); 4925 } 4926 4927 ipcl_init(); 4928 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 4929 ip_ire_init(); 4930 ip6_asp_init(); 4931 ipif_init(); 4932 conn_drain_init(); 4933 tcp_ddi_init(); 4934 sctp_ddi_init(); 4935 4936 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4937 4938 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 4939 "net", KSTAT_TYPE_NAMED, 4940 sizeof (ip_statistics) / sizeof (kstat_named_t), 4941 KSTAT_FLAG_VIRTUAL)) != NULL) { 4942 ip_kstat->ks_data = &ip_statistics; 4943 kstat_install(ip_kstat); 4944 } 4945 ip_kstat_init(); 4946 ip6_kstat_init(); 4947 icmp_kstat_init(); 4948 4949 ipsec_loader_start(); 4950 } 4951 4952 /* 4953 * Allocate and initialize a DLPI template of the specified length. (May be 4954 * called as writer.) 4955 */ 4956 mblk_t * 4957 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4958 { 4959 mblk_t *mp; 4960 4961 mp = allocb(len, BPRI_MED); 4962 if (!mp) 4963 return (NULL); 4964 4965 /* 4966 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4967 * of which we don't seem to use) are sent with M_PCPROTO, and 4968 * that other DLPI are M_PROTO. 4969 */ 4970 if (prim == DL_INFO_REQ) { 4971 mp->b_datap->db_type = M_PCPROTO; 4972 } else { 4973 mp->b_datap->db_type = M_PROTO; 4974 } 4975 4976 mp->b_wptr = mp->b_rptr + len; 4977 bzero(mp->b_rptr, len); 4978 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4979 return (mp); 4980 } 4981 4982 const char * 4983 dlpi_prim_str(int prim) 4984 { 4985 switch (prim) { 4986 case DL_INFO_REQ: return ("DL_INFO_REQ"); 4987 case DL_INFO_ACK: return ("DL_INFO_ACK"); 4988 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 4989 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 4990 case DL_BIND_REQ: return ("DL_BIND_REQ"); 4991 case DL_BIND_ACK: return ("DL_BIND_ACK"); 4992 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 4993 case DL_OK_ACK: return ("DL_OK_ACK"); 4994 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 4995 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 4996 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 4997 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 4998 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 4999 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5000 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5001 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5002 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5003 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5004 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5005 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5006 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5007 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5008 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5009 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5010 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5011 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5012 default: return ("<unknown primitive>"); 5013 } 5014 } 5015 5016 const char * 5017 dlpi_err_str(int err) 5018 { 5019 switch (err) { 5020 case DL_ACCESS: return ("DL_ACCESS"); 5021 case DL_BADADDR: return ("DL_BADADDR"); 5022 case DL_BADCORR: return ("DL_BADCORR"); 5023 case DL_BADDATA: return ("DL_BADDATA"); 5024 case DL_BADPPA: return ("DL_BADPPA"); 5025 case DL_BADPRIM: return ("DL_BADPRIM"); 5026 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5027 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5028 case DL_BADSAP: return ("DL_BADSAP"); 5029 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5030 case DL_BOUND: return ("DL_BOUND"); 5031 case DL_INITFAILED: return ("DL_INITFAILED"); 5032 case DL_NOADDR: return ("DL_NOADDR"); 5033 case DL_NOTINIT: return ("DL_NOTINIT"); 5034 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5035 case DL_SYSERR: return ("DL_SYSERR"); 5036 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5037 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5038 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5039 case DL_TOOMANY: return ("DL_TOOMANY"); 5040 case DL_NOTENAB: return ("DL_NOTENAB"); 5041 case DL_BUSY: return ("DL_BUSY"); 5042 case DL_NOAUTO: return ("DL_NOAUTO"); 5043 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5044 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5045 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5046 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5047 case DL_PENDING: return ("DL_PENDING"); 5048 default: return ("<unknown error>"); 5049 } 5050 } 5051 5052 /* 5053 * Debug formatting routine. Returns a character string representation of the 5054 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5055 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5056 */ 5057 char * 5058 ip_dot_addr(ipaddr_t addr, char *buf) 5059 { 5060 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5061 } 5062 5063 /* 5064 * Debug formatting routine. Returns a character string representation of the 5065 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5066 * as a pointer. The "xxx" parts including left zero padding so the final 5067 * string will fit easily in tables. It would be nice to take a padding 5068 * length argument instead. 5069 */ 5070 static char * 5071 ip_dot_saddr(uchar_t *addr, char *buf) 5072 { 5073 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5074 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5075 return (buf); 5076 } 5077 5078 /* 5079 * Send an ICMP error after patching up the packet appropriately. Returns 5080 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5081 */ 5082 static int 5083 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5084 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5085 { 5086 ipha_t *ipha; 5087 mblk_t *first_mp; 5088 boolean_t secure; 5089 unsigned char db_type; 5090 5091 first_mp = mp; 5092 if (mctl_present) { 5093 mp = mp->b_cont; 5094 secure = ipsec_in_is_secure(first_mp); 5095 ASSERT(mp != NULL); 5096 } else { 5097 /* 5098 * If this is an ICMP error being reported - which goes 5099 * up as M_CTLs, we need to convert them to M_DATA till 5100 * we finish checking with global policy because 5101 * ipsec_check_global_policy() assumes M_DATA as clear 5102 * and M_CTL as secure. 5103 */ 5104 db_type = mp->b_datap->db_type; 5105 mp->b_datap->db_type = M_DATA; 5106 secure = B_FALSE; 5107 } 5108 /* 5109 * We are generating an icmp error for some inbound packet. 5110 * Called from all ip_fanout_(udp, tcp, proto) functions. 5111 * Before we generate an error, check with global policy 5112 * to see whether this is allowed to enter the system. As 5113 * there is no "conn", we are checking with global policy. 5114 */ 5115 ipha = (ipha_t *)mp->b_rptr; 5116 if (secure || ipsec_inbound_v4_policy_present) { 5117 first_mp = ipsec_check_global_policy(first_mp, NULL, 5118 ipha, NULL, mctl_present); 5119 if (first_mp == NULL) 5120 return (0); 5121 } 5122 5123 if (!mctl_present) 5124 mp->b_datap->db_type = db_type; 5125 5126 if (flags & IP_FF_SEND_ICMP) { 5127 if (flags & IP_FF_HDR_COMPLETE) { 5128 if (ip_hdr_complete(ipha, zoneid)) { 5129 freemsg(first_mp); 5130 return (1); 5131 } 5132 } 5133 if (flags & IP_FF_CKSUM) { 5134 /* 5135 * Have to correct checksum since 5136 * the packet might have been 5137 * fragmented and the reassembly code in ip_rput 5138 * does not restore the IP checksum. 5139 */ 5140 ipha->ipha_hdr_checksum = 0; 5141 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5142 } 5143 switch (icmp_type) { 5144 case ICMP_DEST_UNREACHABLE: 5145 icmp_unreachable(WR(q), first_mp, icmp_code); 5146 break; 5147 default: 5148 freemsg(first_mp); 5149 break; 5150 } 5151 } else { 5152 freemsg(first_mp); 5153 return (0); 5154 } 5155 5156 return (1); 5157 } 5158 5159 #ifdef DEBUG 5160 /* 5161 * Copy the header into the IPSEC_IN message. 5162 */ 5163 static void 5164 ipsec_inbound_debug_tag(mblk_t *ipsec_mp) 5165 { 5166 mblk_t *data_mp = ipsec_mp->b_cont; 5167 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5168 ipha_t *ipha; 5169 5170 if (ii->ipsec_in_type != IPSEC_IN) 5171 return; 5172 ASSERT(data_mp != NULL); 5173 5174 ipha = (ipha_t *)data_mp->b_rptr; 5175 bcopy(ipha, ii->ipsec_in_saved_hdr, 5176 (IPH_HDR_VERSION(ipha) == IP_VERSION) ? 5177 sizeof (ipha_t) : sizeof (ip6_t)); 5178 } 5179 #else 5180 #define ipsec_inbound_debug_tag(x) /* NOP */ 5181 #endif /* DEBUG */ 5182 5183 /* 5184 * Used to send an ICMP error message when a packet is received for 5185 * a protocol that is not supported. The mblk passed as argument 5186 * is consumed by this function. 5187 */ 5188 void 5189 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5190 { 5191 mblk_t *mp; 5192 ipha_t *ipha; 5193 ill_t *ill; 5194 ipsec_in_t *ii; 5195 5196 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5197 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5198 5199 mp = ipsec_mp->b_cont; 5200 ipsec_mp->b_cont = NULL; 5201 ipha = (ipha_t *)mp->b_rptr; 5202 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5203 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5204 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5205 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5206 } 5207 } else { 5208 /* Get ill from index in ipsec_in_t. */ 5209 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5210 B_TRUE, NULL, NULL, NULL, NULL); 5211 if (ill != NULL) { 5212 if (ip_fanout_send_icmp_v6(q, mp, flags, 5213 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5214 0, B_FALSE, zoneid)) { 5215 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5216 } 5217 5218 ill_refrele(ill); 5219 } else { /* re-link for the freemsg() below. */ 5220 ipsec_mp->b_cont = mp; 5221 } 5222 } 5223 5224 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5225 freemsg(ipsec_mp); 5226 } 5227 5228 /* 5229 * See if the inbound datagram has had IPsec processing applied to it. 5230 */ 5231 boolean_t 5232 ipsec_in_is_secure(mblk_t *ipsec_mp) 5233 { 5234 ipsec_in_t *ii; 5235 5236 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5237 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5238 5239 if (ii->ipsec_in_loopback) { 5240 return (ii->ipsec_in_secure); 5241 } else { 5242 return (ii->ipsec_in_ah_sa != NULL || 5243 ii->ipsec_in_esp_sa != NULL || 5244 ii->ipsec_in_decaps); 5245 } 5246 } 5247 5248 /* 5249 * Handle protocols with which IP is less intimate. There 5250 * can be more than one stream bound to a particular 5251 * protocol. When this is the case, normally each one gets a copy 5252 * of any incoming packets. 5253 * 5254 * IPSEC NOTE : 5255 * 5256 * Don't allow a secure packet going up a non-secure connection. 5257 * We don't allow this because 5258 * 5259 * 1) Reply might go out in clear which will be dropped at 5260 * the sending side. 5261 * 2) If the reply goes out in clear it will give the 5262 * adversary enough information for getting the key in 5263 * most of the cases. 5264 * 5265 * Moreover getting a secure packet when we expect clear 5266 * implies that SA's were added without checking for 5267 * policy on both ends. This should not happen once ISAKMP 5268 * is used to negotiate SAs as SAs will be added only after 5269 * verifying the policy. 5270 * 5271 * NOTE : If the packet was tunneled and not multicast we only send 5272 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5273 * back to delivering packets to AF_INET6 raw sockets. 5274 * 5275 * IPQoS Notes: 5276 * Once we have determined the client, invoke IPPF processing. 5277 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5278 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5279 * ip_policy will be false. 5280 * 5281 * Zones notes: 5282 * Currently only applications in the global zone can create raw sockets for 5283 * protocols other than ICMP. So unlike the broadcast / multicast case of 5284 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5285 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5286 */ 5287 static void 5288 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5289 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5290 zoneid_t zoneid) 5291 { 5292 queue_t *rq; 5293 mblk_t *mp1, *first_mp1; 5294 uint_t protocol = ipha->ipha_protocol; 5295 ipaddr_t dst; 5296 boolean_t one_only; 5297 mblk_t *first_mp = mp; 5298 boolean_t secure; 5299 uint32_t ill_index; 5300 conn_t *connp, *first_connp, *next_connp; 5301 connf_t *connfp; 5302 5303 if (mctl_present) { 5304 mp = first_mp->b_cont; 5305 secure = ipsec_in_is_secure(first_mp); 5306 ASSERT(mp != NULL); 5307 } else { 5308 secure = B_FALSE; 5309 } 5310 dst = ipha->ipha_dst; 5311 /* 5312 * If the packet was tunneled and not multicast we only send to it 5313 * the first match. 5314 */ 5315 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5316 !CLASSD(dst)); 5317 5318 connfp = &ipcl_proto_fanout[protocol]; 5319 mutex_enter(&connfp->connf_lock); 5320 connp = connfp->connf_head; 5321 for (connp = connfp->connf_head; connp != NULL; 5322 connp = connp->conn_next) { 5323 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, zoneid)) 5324 break; 5325 } 5326 5327 if (connp == NULL || connp->conn_upq == NULL) { 5328 /* 5329 * No one bound to these addresses. Is 5330 * there a client that wants all 5331 * unclaimed datagrams? 5332 */ 5333 mutex_exit(&connfp->connf_lock); 5334 /* 5335 * Check for IPPROTO_ENCAP... 5336 */ 5337 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5338 /* 5339 * XXX If an IPsec mblk is here on a multicast 5340 * tunnel (using ip_mroute stuff), what should 5341 * I do? 5342 * 5343 * For now, just free the IPsec mblk before 5344 * passing it up to the multicast routing 5345 * stuff. 5346 * 5347 * BTW, If I match a configured IP-in-IP 5348 * tunnel, ip_mroute_decap will never be 5349 * called. 5350 */ 5351 if (mp != first_mp) 5352 freeb(first_mp); 5353 ip_mroute_decap(q, mp); 5354 } else { 5355 /* 5356 * Otherwise send an ICMP protocol unreachable. 5357 */ 5358 if (ip_fanout_send_icmp(q, first_mp, flags, 5359 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5360 mctl_present, zoneid)) { 5361 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5362 } 5363 } 5364 return; 5365 } 5366 CONN_INC_REF(connp); 5367 first_connp = connp; 5368 5369 /* 5370 * Only send message to one tunnel driver by immediately 5371 * terminating the loop. 5372 */ 5373 connp = one_only ? NULL : connp->conn_next; 5374 5375 for (;;) { 5376 while (connp != NULL) { 5377 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5378 flags, zoneid)) 5379 break; 5380 connp = connp->conn_next; 5381 } 5382 5383 /* 5384 * Copy the packet. 5385 */ 5386 if (connp == NULL || connp->conn_upq == NULL || 5387 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5388 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5389 /* 5390 * No more interested clients or memory 5391 * allocation failed 5392 */ 5393 connp = first_connp; 5394 break; 5395 } 5396 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5397 CONN_INC_REF(connp); 5398 mutex_exit(&connfp->connf_lock); 5399 rq = connp->conn_rq; 5400 if (!canputnext(rq)) { 5401 if (flags & IP_FF_RAWIP) { 5402 BUMP_MIB(&ip_mib, rawipInOverflows); 5403 } else { 5404 BUMP_MIB(&icmp_mib, icmpInOverflows); 5405 } 5406 5407 freemsg(first_mp1); 5408 } else { 5409 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5410 first_mp1 = ipsec_check_inbound_policy 5411 (first_mp1, connp, ipha, NULL, 5412 mctl_present); 5413 } 5414 if (first_mp1 != NULL) { 5415 /* 5416 * ip_fanout_proto also gets called from 5417 * icmp_inbound_error_fanout, in which case 5418 * the msg type is M_CTL. Don't add info 5419 * in this case for the time being. In future 5420 * when there is a need for knowing the 5421 * inbound iface index for ICMP error msgs, 5422 * then this can be changed. 5423 */ 5424 if ((connp->conn_recvif != 0) && 5425 (mp->b_datap->db_type != M_CTL)) { 5426 /* 5427 * the actual data will be 5428 * contained in b_cont upon 5429 * successful return of the 5430 * following call else 5431 * original mblk is returned 5432 */ 5433 ASSERT(recv_ill != NULL); 5434 mp1 = ip_add_info(mp1, recv_ill, 5435 IPF_RECVIF); 5436 } 5437 BUMP_MIB(&ip_mib, ipInDelivers); 5438 if (mctl_present) 5439 freeb(first_mp1); 5440 putnext(rq, mp1); 5441 } 5442 } 5443 mutex_enter(&connfp->connf_lock); 5444 /* Follow the next pointer before releasing the conn. */ 5445 next_connp = connp->conn_next; 5446 CONN_DEC_REF(connp); 5447 connp = next_connp; 5448 } 5449 5450 /* Last one. Send it upstream. */ 5451 mutex_exit(&connfp->connf_lock); 5452 5453 /* 5454 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5455 * will be set to false. 5456 */ 5457 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5458 ill_index = ill->ill_phyint->phyint_ifindex; 5459 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5460 if (mp == NULL) { 5461 CONN_DEC_REF(connp); 5462 if (mctl_present) { 5463 freeb(first_mp); 5464 } 5465 return; 5466 } 5467 } 5468 5469 rq = connp->conn_rq; 5470 if (!canputnext(rq)) { 5471 if (flags & IP_FF_RAWIP) { 5472 BUMP_MIB(&ip_mib, rawipInOverflows); 5473 } else { 5474 BUMP_MIB(&icmp_mib, icmpInOverflows); 5475 } 5476 5477 freemsg(first_mp); 5478 } else { 5479 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5480 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5481 ipha, NULL, mctl_present); 5482 } 5483 if (first_mp != NULL) { 5484 /* 5485 * ip_fanout_proto also gets called 5486 * from icmp_inbound_error_fanout, in 5487 * which case the msg type is M_CTL. 5488 * Don't add info in this case for time 5489 * being. In future when there is a 5490 * need for knowing the inbound iface 5491 * index for ICMP error msgs, then this 5492 * can be changed 5493 */ 5494 if ((connp->conn_recvif != 0) && 5495 (mp->b_datap->db_type != M_CTL)) { 5496 /* 5497 * the actual data will be contained in 5498 * b_cont upon successful return 5499 * of the following call else original 5500 * mblk is returned 5501 */ 5502 ASSERT(recv_ill != NULL); 5503 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5504 } 5505 BUMP_MIB(&ip_mib, ipInDelivers); 5506 putnext(rq, mp); 5507 if (mctl_present) 5508 freeb(first_mp); 5509 } 5510 } 5511 CONN_DEC_REF(connp); 5512 } 5513 5514 /* 5515 * Fanout for TCP packets 5516 * The caller puts <fport, lport> in the ports parameter. 5517 * 5518 * IPQoS Notes 5519 * Before sending it to the client, invoke IPPF processing. 5520 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5521 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5522 * ip_policy is false. 5523 */ 5524 static void 5525 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 5526 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 5527 { 5528 mblk_t *first_mp; 5529 boolean_t secure; 5530 uint32_t ill_index; 5531 int ip_hdr_len; 5532 tcph_t *tcph; 5533 boolean_t syn_present = B_FALSE; 5534 conn_t *connp; 5535 5536 first_mp = mp; 5537 if (mctl_present) { 5538 ASSERT(first_mp->b_datap->db_type == M_CTL); 5539 mp = first_mp->b_cont; 5540 secure = ipsec_in_is_secure(first_mp); 5541 ASSERT(mp != NULL); 5542 } else { 5543 secure = B_FALSE; 5544 } 5545 5546 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 5547 5548 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 5549 NULL) { 5550 /* 5551 * No connected connection or listener. Send a 5552 * TH_RST via tcp_xmit_listeners_reset. 5553 */ 5554 5555 /* Initiate IPPf processing, if needed. */ 5556 if (IPP_ENABLED(IPP_LOCAL_IN)) { 5557 uint32_t ill_index; 5558 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5559 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 5560 if (first_mp == NULL) 5561 return; 5562 } 5563 BUMP_MIB(&ip_mib, ipInDelivers); 5564 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5565 return; 5566 } 5567 5568 /* 5569 * Allocate the SYN for the TCP connection here itself 5570 */ 5571 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5572 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 5573 if (IPCL_IS_TCP(connp)) { 5574 squeue_t *sqp; 5575 5576 /* 5577 * For fused tcp loopback, assign the eager's 5578 * squeue to be that of the active connect's. 5579 * Note that we don't check for IP_FF_LOOPBACK 5580 * here since this routine gets called only 5581 * for loopback (unlike the IPv6 counterpart). 5582 */ 5583 if (do_tcp_fusion && 5584 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 5585 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy) { 5586 ASSERT(Q_TO_CONN(q) != NULL); 5587 sqp = Q_TO_CONN(q)->conn_sqp; 5588 } else { 5589 sqp = IP_SQUEUE_GET(lbolt); 5590 } 5591 5592 mp->b_datap->db_struioflag |= STRUIO_EAGER; 5593 mp->b_datap->db_cksumstart = (intptr_t)sqp; 5594 syn_present = B_TRUE; 5595 } 5596 } 5597 5598 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 5599 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 5600 if ((flags & TH_RST) || (flags & TH_URG)) { 5601 CONN_DEC_REF(connp); 5602 freemsg(first_mp); 5603 return; 5604 } 5605 if (flags & TH_ACK) { 5606 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5607 CONN_DEC_REF(connp); 5608 return; 5609 } 5610 5611 CONN_DEC_REF(connp); 5612 freemsg(first_mp); 5613 return; 5614 } 5615 5616 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5617 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5618 NULL, mctl_present); 5619 if (first_mp == NULL) { 5620 CONN_DEC_REF(connp); 5621 return; 5622 } 5623 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 5624 ASSERT(syn_present); 5625 if (mctl_present) { 5626 ASSERT(first_mp != mp); 5627 first_mp->b_datap->db_struioflag |= 5628 STRUIO_POLICY; 5629 } else { 5630 ASSERT(first_mp == mp); 5631 mp->b_datap->db_struioflag &= 5632 ~STRUIO_EAGER; 5633 mp->b_datap->db_struioflag |= 5634 STRUIO_POLICY; 5635 } 5636 } else { 5637 /* 5638 * Discard first_mp early since we're dealing with a 5639 * fully-connected conn_t and tcp doesn't do policy in 5640 * this case. 5641 */ 5642 if (mctl_present) { 5643 freeb(first_mp); 5644 mctl_present = B_FALSE; 5645 } 5646 first_mp = mp; 5647 } 5648 } 5649 5650 /* 5651 * Initiate policy processing here if needed. If we get here from 5652 * icmp_inbound_error_fanout, ip_policy is false. 5653 */ 5654 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5655 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5656 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5657 if (mp == NULL) { 5658 CONN_DEC_REF(connp); 5659 if (mctl_present) 5660 freeb(first_mp); 5661 return; 5662 } else if (mctl_present) { 5663 ASSERT(first_mp != mp); 5664 first_mp->b_cont = mp; 5665 } else { 5666 first_mp = mp; 5667 } 5668 } 5669 5670 5671 5672 /* Handle IPv6 socket options. */ 5673 if (!syn_present && 5674 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 5675 /* Add header */ 5676 ASSERT(recv_ill != NULL); 5677 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5678 if (mp == NULL) { 5679 CONN_DEC_REF(connp); 5680 if (mctl_present) 5681 freeb(first_mp); 5682 return; 5683 } else if (mctl_present) { 5684 /* 5685 * ip_add_info might return a new mp. 5686 */ 5687 ASSERT(first_mp != mp); 5688 first_mp->b_cont = mp; 5689 } else { 5690 first_mp = mp; 5691 } 5692 } 5693 5694 BUMP_MIB(&ip_mib, ipInDelivers); 5695 if (IPCL_IS_TCP(connp)) { 5696 (*ip_input_proc)(connp->conn_sqp, first_mp, 5697 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 5698 } else { 5699 putnext(connp->conn_rq, first_mp); 5700 CONN_DEC_REF(connp); 5701 } 5702 } 5703 5704 /* 5705 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5706 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5707 * Caller is responsible for dropping references to the conn, and freeing 5708 * first_mp. 5709 * 5710 * IPQoS Notes 5711 * Before sending it to the client, invoke IPPF processing. Policy processing 5712 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 5713 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 5714 * ip_wput_local, ip_policy is false. 5715 */ 5716 static void 5717 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 5718 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 5719 boolean_t ip_policy) 5720 { 5721 queue_t *rq = connp->conn_rq; 5722 boolean_t mctl_present = (first_mp != NULL); 5723 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 5724 uint32_t ill_index; 5725 5726 if (mctl_present) 5727 first_mp->b_cont = mp; 5728 else 5729 first_mp = mp; 5730 5731 if (!canputnext(rq)) { 5732 BUMP_MIB(&ip_mib, udpInOverflows); 5733 freemsg(first_mp); 5734 return; 5735 } 5736 5737 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5738 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5739 NULL, mctl_present); 5740 if (first_mp == NULL) 5741 return; /* Freed by ipsec_check_inbound_policy(). */ 5742 } 5743 if (mctl_present) 5744 freeb(first_mp); 5745 5746 if (connp->conn_recvif) 5747 in_flags = IPF_RECVIF; 5748 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 5749 in_flags |= IPF_RECVSLLA; 5750 5751 /* Handle IPv6 options. */ 5752 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 5753 in_flags |= IPF_RECVIF; 5754 5755 /* 5756 * Initiate IPPF processing here, if needed. Note first_mp won't be 5757 * freed if the packet is dropped. The caller will do so. 5758 */ 5759 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5760 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5761 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5762 if (mp == NULL) { 5763 return; 5764 } 5765 } 5766 if ((in_flags != 0) && 5767 (mp->b_datap->db_type != M_CTL)) { 5768 /* 5769 * The actual data will be contained in b_cont 5770 * upon successful return of the following call 5771 * else original mblk is returned 5772 */ 5773 ASSERT(recv_ill != NULL); 5774 mp = ip_add_info(mp, recv_ill, in_flags); 5775 } 5776 BUMP_MIB(&ip_mib, ipInDelivers); 5777 putnext(rq, mp); 5778 } 5779 5780 /* 5781 * Fanout for UDP packets. 5782 * The caller puts <fport, lport> in the ports parameter. 5783 * 5784 * If SO_REUSEADDR is set all multicast and broadcast packets 5785 * will be delivered to all streams bound to the same port. 5786 * 5787 * Zones notes: 5788 * Multicast and broadcast packets will be distributed to streams in all zones. 5789 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5790 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5791 * packets. To maintain this behavior with multiple zones, the conns are grouped 5792 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 5793 * each zone. If unset, all the following conns in the same zone are skipped. 5794 */ 5795 static void 5796 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 5797 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 5798 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 5799 { 5800 uint32_t dstport, srcport; 5801 ipaddr_t dst; 5802 mblk_t *first_mp; 5803 boolean_t secure; 5804 in6_addr_t v6src; 5805 conn_t *connp; 5806 connf_t *connfp; 5807 conn_t *first_connp; 5808 conn_t *next_connp; 5809 mblk_t *mp1, *first_mp1; 5810 ipaddr_t src; 5811 zoneid_t last_zoneid; 5812 boolean_t reuseaddr; 5813 5814 first_mp = mp; 5815 if (mctl_present) { 5816 mp = first_mp->b_cont; 5817 first_mp->b_cont = NULL; 5818 secure = ipsec_in_is_secure(first_mp); 5819 ASSERT(mp != NULL); 5820 } else { 5821 first_mp = NULL; 5822 secure = B_FALSE; 5823 } 5824 5825 /* Extract ports in net byte order */ 5826 dstport = htons(ntohl(ports) & 0xFFFF); 5827 srcport = htons(ntohl(ports) >> 16); 5828 dst = ipha->ipha_dst; 5829 src = ipha->ipha_src; 5830 5831 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5832 mutex_enter(&connfp->connf_lock); 5833 connp = connfp->connf_head; 5834 if (!broadcast && !CLASSD(dst)) { 5835 /* 5836 * Not broadcast or multicast. Send to the one (first) 5837 * client we find. No need to check conn_wantpacket() 5838 * since IP_BOUND_IF/conn_incoming_ill does not apply to 5839 * IPv4 unicast packets. 5840 */ 5841 while ((connp != NULL) && 5842 (!IPCL_UDP_MATCH(connp, dstport, dst, 5843 srcport, src) || connp->conn_zoneid != zoneid)) { 5844 connp = connp->conn_next; 5845 } 5846 5847 if (connp == NULL || connp->conn_upq == NULL) 5848 goto notfound; 5849 CONN_INC_REF(connp); 5850 mutex_exit(&connfp->connf_lock); 5851 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 5852 recv_ill, ip_policy); 5853 IP_STAT(ip_udp_fannorm); 5854 CONN_DEC_REF(connp); 5855 return; 5856 } 5857 5858 /* 5859 * Broadcast and multicast case 5860 * 5861 * Need to check conn_wantpacket(). 5862 * If SO_REUSEADDR has been set on the first we send the 5863 * packet to all clients that have joined the group and 5864 * match the port. 5865 */ 5866 5867 while (connp != NULL) { 5868 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 5869 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 5870 break; 5871 connp = connp->conn_next; 5872 } 5873 5874 if (connp == NULL || connp->conn_upq == NULL) 5875 goto notfound; 5876 5877 first_connp = connp; 5878 /* 5879 * When SO_REUSEADDR is not set, send the packet only to the first 5880 * matching connection in its zone by keeping track of the zoneid. 5881 */ 5882 reuseaddr = first_connp->conn_reuseaddr; 5883 last_zoneid = first_connp->conn_zoneid; 5884 5885 CONN_INC_REF(connp); 5886 connp = connp->conn_next; 5887 for (;;) { 5888 while (connp != NULL) { 5889 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 5890 (reuseaddr || connp->conn_zoneid != last_zoneid) && 5891 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 5892 break; 5893 connp = connp->conn_next; 5894 } 5895 /* 5896 * Just copy the data part alone. The mctl part is 5897 * needed just for verifying policy and it is never 5898 * sent up. 5899 */ 5900 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 5901 ((mp1 = copymsg(mp)) == NULL))) { 5902 /* 5903 * No more interested clients or memory 5904 * allocation failed 5905 */ 5906 connp = first_connp; 5907 break; 5908 } 5909 if (connp->conn_zoneid != last_zoneid) { 5910 /* 5911 * Update the zoneid so that the packet isn't sent to 5912 * any more conns in the same zone unless SO_REUSEADDR 5913 * is set. 5914 */ 5915 reuseaddr = connp->conn_reuseaddr; 5916 last_zoneid = connp->conn_zoneid; 5917 } 5918 if (first_mp != NULL) { 5919 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 5920 ipsec_info_type == IPSEC_IN); 5921 first_mp1 = ipsec_in_tag(first_mp, NULL); 5922 if (first_mp1 == NULL) { 5923 freemsg(mp1); 5924 connp = first_connp; 5925 break; 5926 } 5927 } else { 5928 first_mp1 = NULL; 5929 } 5930 CONN_INC_REF(connp); 5931 mutex_exit(&connfp->connf_lock); 5932 /* 5933 * IPQoS notes: We don't send the packet for policy 5934 * processing here, will do it for the last one (below). 5935 * i.e. we do it per-packet now, but if we do policy 5936 * processing per-conn, then we would need to do it 5937 * here too. 5938 */ 5939 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 5940 ipha, flags, recv_ill, B_FALSE); 5941 mutex_enter(&connfp->connf_lock); 5942 /* Follow the next pointer before releasing the conn. */ 5943 next_connp = connp->conn_next; 5944 IP_STAT(ip_udp_fanmb); 5945 CONN_DEC_REF(connp); 5946 connp = next_connp; 5947 } 5948 5949 /* Last one. Send it upstream. */ 5950 mutex_exit(&connfp->connf_lock); 5951 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 5952 ip_policy); 5953 IP_STAT(ip_udp_fanmb); 5954 CONN_DEC_REF(connp); 5955 return; 5956 5957 notfound: 5958 5959 mutex_exit(&connfp->connf_lock); 5960 IP_STAT(ip_udp_fanothers); 5961 /* 5962 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 5963 * have already been matched above, since they live in the IPv4 5964 * fanout tables. This implies we only need to 5965 * check for IPv6 in6addr_any endpoints here. 5966 * Thus we compare using ipv6_all_zeros instead of the destination 5967 * address, except for the multicast group membership lookup which 5968 * uses the IPv4 destination. 5969 */ 5970 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 5971 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5972 mutex_enter(&connfp->connf_lock); 5973 connp = connfp->connf_head; 5974 if (!broadcast && !CLASSD(dst)) { 5975 while (connp != NULL) { 5976 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 5977 srcport, v6src) && connp->conn_zoneid == zoneid && 5978 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 5979 !connp->conn_ipv6_v6only) 5980 break; 5981 connp = connp->conn_next; 5982 } 5983 5984 if (connp == NULL || connp->conn_upq == NULL) { 5985 /* 5986 * No one bound to this port. Is 5987 * there a client that wants all 5988 * unclaimed datagrams? 5989 */ 5990 mutex_exit(&connfp->connf_lock); 5991 5992 if (mctl_present) 5993 first_mp->b_cont = mp; 5994 else 5995 first_mp = mp; 5996 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 5997 ip_fanout_proto(q, first_mp, ill, ipha, 5998 flags | IP_FF_RAWIP, mctl_present, 5999 ip_policy, recv_ill, zoneid); 6000 } else { 6001 if (ip_fanout_send_icmp(q, first_mp, flags, 6002 ICMP_DEST_UNREACHABLE, 6003 ICMP_PORT_UNREACHABLE, 6004 mctl_present, zoneid)) { 6005 BUMP_MIB(&ip_mib, udpNoPorts); 6006 } 6007 } 6008 return; 6009 } 6010 CONN_INC_REF(connp); 6011 mutex_exit(&connfp->connf_lock); 6012 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6013 recv_ill, ip_policy); 6014 CONN_DEC_REF(connp); 6015 return; 6016 } 6017 /* 6018 * IPv4 multicast packet being delivered to an AF_INET6 6019 * in6addr_any endpoint. 6020 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6021 * and not conn_wantpacket_v6() since any multicast membership is 6022 * for an IPv4-mapped multicast address. 6023 * The packet is sent to all clients in all zones that have joined the 6024 * group and match the port. 6025 */ 6026 while (connp != NULL) { 6027 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6028 srcport, v6src) && 6029 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6030 break; 6031 connp = connp->conn_next; 6032 } 6033 6034 if (connp == NULL || connp->conn_upq == NULL) { 6035 /* 6036 * No one bound to this port. Is 6037 * there a client that wants all 6038 * unclaimed datagrams? 6039 */ 6040 mutex_exit(&connfp->connf_lock); 6041 6042 if (mctl_present) 6043 first_mp->b_cont = mp; 6044 else 6045 first_mp = mp; 6046 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6047 ip_fanout_proto(q, first_mp, ill, ipha, 6048 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6049 recv_ill, zoneid); 6050 } else { 6051 /* 6052 * We used to attempt to send an icmp error here, but 6053 * since this is known to be a multicast packet 6054 * and we don't send icmp errors in response to 6055 * multicast, just drop the packet and give up sooner. 6056 */ 6057 BUMP_MIB(&ip_mib, udpNoPorts); 6058 freemsg(first_mp); 6059 } 6060 return; 6061 } 6062 6063 first_connp = connp; 6064 6065 CONN_INC_REF(connp); 6066 connp = connp->conn_next; 6067 for (;;) { 6068 while (connp != NULL) { 6069 if (IPCL_UDP_MATCH_V6(connp, dstport, 6070 ipv6_all_zeros, srcport, v6src) && 6071 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6072 break; 6073 connp = connp->conn_next; 6074 } 6075 /* 6076 * Just copy the data part alone. The mctl part is 6077 * needed just for verifying policy and it is never 6078 * sent up. 6079 */ 6080 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6081 ((mp1 = copymsg(mp)) == NULL))) { 6082 /* 6083 * No more intested clients or memory 6084 * allocation failed 6085 */ 6086 connp = first_connp; 6087 break; 6088 } 6089 if (first_mp != NULL) { 6090 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6091 ipsec_info_type == IPSEC_IN); 6092 first_mp1 = ipsec_in_tag(first_mp, NULL); 6093 if (first_mp1 == NULL) { 6094 freemsg(mp1); 6095 connp = first_connp; 6096 break; 6097 } 6098 } else { 6099 first_mp1 = NULL; 6100 } 6101 CONN_INC_REF(connp); 6102 mutex_exit(&connfp->connf_lock); 6103 /* 6104 * IPQoS notes: We don't send the packet for policy 6105 * processing here, will do it for the last one (below). 6106 * i.e. we do it per-packet now, but if we do policy 6107 * processing per-conn, then we would need to do it 6108 * here too. 6109 */ 6110 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6111 ipha, flags, recv_ill, B_FALSE); 6112 mutex_enter(&connfp->connf_lock); 6113 /* Follow the next pointer before releasing the conn. */ 6114 next_connp = connp->conn_next; 6115 CONN_DEC_REF(connp); 6116 connp = next_connp; 6117 } 6118 6119 /* Last one. Send it upstream. */ 6120 mutex_exit(&connfp->connf_lock); 6121 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6122 ip_policy); 6123 CONN_DEC_REF(connp); 6124 } 6125 6126 /* 6127 * Complete the ip_wput header so that it 6128 * is possible to generate ICMP 6129 * errors. 6130 */ 6131 static int 6132 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6133 { 6134 ire_t *ire; 6135 6136 if (ipha->ipha_src == INADDR_ANY) { 6137 ire = ire_lookup_local(zoneid); 6138 if (ire == NULL) { 6139 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6140 return (1); 6141 } 6142 ipha->ipha_src = ire->ire_addr; 6143 ire_refrele(ire); 6144 } 6145 ipha->ipha_ttl = ip_def_ttl; 6146 ipha->ipha_hdr_checksum = 0; 6147 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6148 return (0); 6149 } 6150 6151 /* 6152 * Nobody should be sending 6153 * packets up this stream 6154 */ 6155 static void 6156 ip_lrput(queue_t *q, mblk_t *mp) 6157 { 6158 mblk_t *mp1; 6159 6160 switch (mp->b_datap->db_type) { 6161 case M_FLUSH: 6162 /* Turn around */ 6163 if (*mp->b_rptr & FLUSHW) { 6164 *mp->b_rptr &= ~FLUSHR; 6165 qreply(q, mp); 6166 return; 6167 } 6168 break; 6169 } 6170 /* Could receive messages that passed through ar_rput */ 6171 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6172 mp1->b_prev = mp1->b_next = NULL; 6173 freemsg(mp); 6174 } 6175 6176 /* Nobody should be sending packets down this stream */ 6177 /* ARGSUSED */ 6178 void 6179 ip_lwput(queue_t *q, mblk_t *mp) 6180 { 6181 freemsg(mp); 6182 } 6183 6184 /* 6185 * Move the first hop in any source route to ipha_dst and remove that part of 6186 * the source route. Called by other protocols. Errors in option formatting 6187 * are ignored - will be handled by ip_wput_options Return the final 6188 * destination (either ipha_dst or the last entry in a source route.) 6189 */ 6190 ipaddr_t 6191 ip_massage_options(ipha_t *ipha) 6192 { 6193 ipoptp_t opts; 6194 uchar_t *opt; 6195 uint8_t optval; 6196 uint8_t optlen; 6197 ipaddr_t dst; 6198 int i; 6199 ire_t *ire; 6200 6201 ip2dbg(("ip_massage_options\n")); 6202 dst = ipha->ipha_dst; 6203 for (optval = ipoptp_first(&opts, ipha); 6204 optval != IPOPT_EOL; 6205 optval = ipoptp_next(&opts)) { 6206 opt = opts.ipoptp_cur; 6207 switch (optval) { 6208 uint8_t off; 6209 case IPOPT_SSRR: 6210 case IPOPT_LSRR: 6211 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6212 ip1dbg(("ip_massage_options: bad src route\n")); 6213 break; 6214 } 6215 optlen = opts.ipoptp_len; 6216 off = opt[IPOPT_OFFSET]; 6217 off--; 6218 redo_srr: 6219 if (optlen < IP_ADDR_LEN || 6220 off > optlen - IP_ADDR_LEN) { 6221 /* End of source route */ 6222 ip1dbg(("ip_massage_options: end of SR\n")); 6223 break; 6224 } 6225 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6226 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6227 ntohl(dst))); 6228 /* 6229 * Check if our address is present more than 6230 * once as consecutive hops in source route. 6231 * XXX verify per-interface ip_forwarding 6232 * for source route? 6233 */ 6234 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6235 ALL_ZONES, MATCH_IRE_TYPE); 6236 if (ire != NULL) { 6237 ire_refrele(ire); 6238 off += IP_ADDR_LEN; 6239 goto redo_srr; 6240 } 6241 if (dst == htonl(INADDR_LOOPBACK)) { 6242 ip1dbg(("ip_massage_options: loopback addr in " 6243 "source route!\n")); 6244 break; 6245 } 6246 /* 6247 * Update ipha_dst to be the first hop and remove the 6248 * first hop from the source route (by overwriting 6249 * part of the option with NOP options). 6250 */ 6251 ipha->ipha_dst = dst; 6252 /* Put the last entry in dst */ 6253 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6254 3; 6255 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6256 6257 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6258 ntohl(dst))); 6259 /* Move down and overwrite */ 6260 opt[IP_ADDR_LEN] = opt[0]; 6261 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6262 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6263 for (i = 0; i < IP_ADDR_LEN; i++) 6264 opt[i] = IPOPT_NOP; 6265 break; 6266 } 6267 } 6268 return (dst); 6269 } 6270 6271 /* 6272 * This function's job is to forward data to the reverse tunnel (FA->HA) 6273 * after doing a few checks. It is assumed that the incoming interface 6274 * of the packet is always different than the outgoing interface and the 6275 * ire_type of the found ire has to be a non-resolver type. 6276 * 6277 * IPQoS notes 6278 * IP policy is invoked twice for a forwarded packet, once on the read side 6279 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6280 * enabled. 6281 */ 6282 static void 6283 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6284 { 6285 ipha_t *ipha; 6286 queue_t *q; 6287 uint32_t pkt_len; 6288 #define rptr ((uchar_t *)ipha) 6289 uint32_t sum; 6290 uint32_t max_frag; 6291 mblk_t *first_mp; 6292 uint32_t ill_index; 6293 6294 ASSERT(ire != NULL); 6295 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6296 ASSERT(ire->ire_stq != NULL); 6297 6298 /* Initiate read side IPPF processing */ 6299 if (IPP_ENABLED(IPP_FWD_IN)) { 6300 ill_index = in_ill->ill_phyint->phyint_ifindex; 6301 ip_process(IPP_FWD_IN, &mp, ill_index); 6302 if (mp == NULL) { 6303 ip2dbg(("ip_mrtun_forward: inbound pkt " 6304 "dropped during IPPF processing\n")); 6305 return; 6306 } 6307 } 6308 6309 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6310 ILLF_ROUTER) == 0) || 6311 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6312 BUMP_MIB(&ip_mib, ipForwProhibits); 6313 ip0dbg(("ip_mrtun_forward: Can't forward :" 6314 "forwarding is not turned on\n")); 6315 goto drop_pkt; 6316 } 6317 6318 /* 6319 * Don't forward if the interface is down 6320 */ 6321 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6322 BUMP_MIB(&ip_mib, ipInDiscards); 6323 goto drop_pkt; 6324 } 6325 6326 ipha = (ipha_t *)mp->b_rptr; 6327 pkt_len = ntohs(ipha->ipha_length); 6328 /* Adjust the checksum to reflect the ttl decrement. */ 6329 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6330 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6331 if (ipha->ipha_ttl-- <= 1) { 6332 if (ip_csum_hdr(ipha)) { 6333 BUMP_MIB(&ip_mib, ipInCksumErrs); 6334 goto drop_pkt; 6335 } 6336 q = ire->ire_stq; 6337 if ((first_mp = allocb(sizeof (ipsec_info_t), 6338 BPRI_HI)) == NULL) { 6339 goto drop_pkt; 6340 } 6341 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6342 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6343 6344 return; 6345 } 6346 6347 /* Get the ill_index of the ILL */ 6348 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6349 6350 /* 6351 * ip_mrtun_forward is only used by foreign agent to reverse 6352 * tunnel the incoming packet. So it does not do any option 6353 * processing for source routing. 6354 */ 6355 max_frag = ire->ire_max_frag; 6356 if (pkt_len > max_frag) { 6357 /* 6358 * It needs fragging on its way out. We haven't 6359 * verified the header checksum yet. Since we 6360 * are going to put a surely good checksum in the 6361 * outgoing header, we have to make sure that it 6362 * was good coming in. 6363 */ 6364 if (ip_csum_hdr(ipha)) { 6365 BUMP_MIB(&ip_mib, ipInCksumErrs); 6366 goto drop_pkt; 6367 } 6368 6369 /* Initiate write side IPPF processing */ 6370 if (IPP_ENABLED(IPP_FWD_OUT)) { 6371 ip_process(IPP_FWD_OUT, &mp, ill_index); 6372 if (mp == NULL) { 6373 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6374 "dropped/deferred during ip policy "\ 6375 "processing\n")); 6376 return; 6377 } 6378 } 6379 if ((first_mp = allocb(sizeof (ipsec_info_t), 6380 BPRI_HI)) == NULL) { 6381 goto drop_pkt; 6382 } 6383 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6384 mp = first_mp; 6385 6386 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6387 return; 6388 } 6389 6390 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6391 6392 ASSERT(ire->ire_ipif != NULL); 6393 6394 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6395 if (mp == NULL) { 6396 BUMP_MIB(&ip_mib, ipInDiscards); 6397 return; 6398 } 6399 6400 /* Now send the packet to the tunnel interface */ 6401 q = ire->ire_stq; 6402 UPDATE_IB_PKT_COUNT(ire); 6403 ire->ire_last_used_time = lbolt; 6404 BUMP_MIB(&ip_mib, ipForwDatagrams); 6405 putnext(q, mp); 6406 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6407 return; 6408 6409 drop_pkt:; 6410 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6411 freemsg(mp); 6412 #undef rptr 6413 } 6414 6415 /* 6416 * Fills the ipsec_out_t data structure with appropriate fields and 6417 * prepends it to mp which contains the IP hdr + data that was meant 6418 * to be forwarded. Please note that ipsec_out_info data structure 6419 * is used here to communicate the outgoing ill path at ip_wput() 6420 * for the ICMP error packet. This has nothing to do with ipsec IP 6421 * security. ipsec_out_t is really used to pass the info to the module 6422 * IP where this information cannot be extracted from conn. 6423 * This functions is called by ip_mrtun_forward(). 6424 */ 6425 void 6426 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6427 { 6428 ipsec_out_t *io; 6429 6430 ASSERT(xmit_ill != NULL); 6431 first_mp->b_datap->db_type = M_CTL; 6432 first_mp->b_wptr += sizeof (ipsec_info_t); 6433 /* 6434 * This is to pass info to ip_wput in absence of conn. 6435 * ipsec_out_secure will be B_FALSE because of this. 6436 * Thus ipsec_out_secure being B_FALSE indicates that 6437 * this is not IPSEC security related information. 6438 */ 6439 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6440 io = (ipsec_out_t *)first_mp->b_rptr; 6441 io->ipsec_out_type = IPSEC_OUT; 6442 io->ipsec_out_len = sizeof (ipsec_out_t); 6443 first_mp->b_cont = mp; 6444 io->ipsec_out_ill_index = 6445 xmit_ill->ill_phyint->phyint_ifindex; 6446 io->ipsec_out_xmit_if = B_TRUE; 6447 } 6448 6449 /* 6450 * Return the network mask 6451 * associated with the specified address. 6452 */ 6453 ipaddr_t 6454 ip_net_mask(ipaddr_t addr) 6455 { 6456 uchar_t *up = (uchar_t *)&addr; 6457 ipaddr_t mask = 0; 6458 uchar_t *maskp = (uchar_t *)&mask; 6459 6460 #if defined(__i386) || defined(__amd64) 6461 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 6462 #endif 6463 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 6464 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 6465 #endif 6466 if (CLASSD(addr)) { 6467 maskp[0] = 0xF0; 6468 return (mask); 6469 } 6470 if (addr == 0) 6471 return (0); 6472 maskp[0] = 0xFF; 6473 if ((up[0] & 0x80) == 0) 6474 return (mask); 6475 6476 maskp[1] = 0xFF; 6477 if ((up[0] & 0xC0) == 0x80) 6478 return (mask); 6479 6480 maskp[2] = 0xFF; 6481 if ((up[0] & 0xE0) == 0xC0) 6482 return (mask); 6483 6484 /* Must be experimental or multicast, indicate as much */ 6485 return ((ipaddr_t)0); 6486 } 6487 6488 /* 6489 * Select an ill for the packet by considering load spreading across 6490 * a different ill in the group if dst_ill is part of some group. 6491 */ 6492 static ill_t * 6493 ip_newroute_get_dst_ill(ill_t *dst_ill) 6494 { 6495 ill_t *ill; 6496 6497 /* 6498 * We schedule irrespective of whether the source address is 6499 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 6500 */ 6501 ill = illgrp_scheduler(dst_ill); 6502 if (ill == NULL) 6503 return (NULL); 6504 6505 /* 6506 * For groups with names ip_sioctl_groupname ensures that all 6507 * ills are of same type. For groups without names, ifgrp_insert 6508 * ensures this. 6509 */ 6510 ASSERT(dst_ill->ill_type == ill->ill_type); 6511 6512 return (ill); 6513 } 6514 6515 /* 6516 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 6517 */ 6518 ill_t * 6519 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 6520 { 6521 ill_t *ret_ill; 6522 6523 ASSERT(ifindex != 0); 6524 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 6525 if (ret_ill == NULL || 6526 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 6527 if (isv6) { 6528 if (ill != NULL) { 6529 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 6530 } else { 6531 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 6532 } 6533 ip1dbg(("ip_grab_attach_ill (IPv6): " 6534 "bad ifindex %d.\n", ifindex)); 6535 } else { 6536 BUMP_MIB(&ip_mib, ipOutDiscards); 6537 ip1dbg(("ip_grab_attach_ill (IPv4): " 6538 "bad ifindex %d.\n", ifindex)); 6539 } 6540 if (ret_ill != NULL) 6541 ill_refrele(ret_ill); 6542 freemsg(first_mp); 6543 return (NULL); 6544 } 6545 6546 return (ret_ill); 6547 } 6548 6549 /* 6550 * IPv4 - 6551 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 6552 * out a packet to a destination address for which we do not have specific 6553 * (or sufficient) routing information. 6554 * 6555 * NOTE : These are the scopes of some of the variables that point at IRE, 6556 * which needs to be followed while making any future modifications 6557 * to avoid memory leaks. 6558 * 6559 * - ire and sire are the entries looked up initially by 6560 * ire_ftable_lookup. 6561 * - ipif_ire is used to hold the interface ire associated with 6562 * the new cache ire. But it's scope is limited, so we always REFRELE 6563 * it before branching out to error paths. 6564 * - save_ire is initialized before ire_create, so that ire returned 6565 * by ire_create will not over-write the ire. We REFRELE save_ire 6566 * before breaking out of the switch. 6567 * 6568 * Thus on failures, we have to REFRELE only ire and sire, if they 6569 * are not NULL. 6570 */ 6571 void 6572 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 6573 { 6574 areq_t *areq; 6575 ipaddr_t gw = 0; 6576 ire_t *ire = NULL; 6577 mblk_t *res_mp; 6578 ipaddr_t *addrp; 6579 ipif_t *src_ipif = NULL; 6580 ill_t *dst_ill = NULL; 6581 ipha_t *ipha; 6582 ire_t *sire = NULL; 6583 mblk_t *first_mp; 6584 ire_t *save_ire; 6585 mblk_t *dlureq_mp; 6586 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 6587 ushort_t ire_marks = 0; 6588 boolean_t mctl_present; 6589 ipsec_out_t *io; 6590 mblk_t *saved_mp; 6591 ire_t *first_sire = NULL; 6592 mblk_t *copy_mp = NULL; 6593 mblk_t *xmit_mp = NULL; 6594 ipaddr_t save_dst; 6595 uint32_t multirt_flags = 6596 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 6597 boolean_t multirt_is_resolvable; 6598 boolean_t multirt_resolve_next; 6599 boolean_t do_attach_ill = B_FALSE; 6600 zoneid_t zoneid; 6601 6602 if (ip_debug > 2) { 6603 /* ip1dbg */ 6604 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 6605 } 6606 6607 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 6608 if (mctl_present) { 6609 io = (ipsec_out_t *)first_mp->b_rptr; 6610 zoneid = io->ipsec_out_zoneid; 6611 ASSERT(zoneid != ALL_ZONES); 6612 } else if (connp != NULL) { 6613 zoneid = connp->conn_zoneid; 6614 } else { 6615 zoneid = GLOBAL_ZONEID; 6616 } 6617 6618 ipha = (ipha_t *)mp->b_rptr; 6619 6620 /* All multicast lookups come through ip_newroute_ipif() */ 6621 if (CLASSD(dst)) { 6622 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 6623 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 6624 freemsg(first_mp); 6625 return; 6626 } 6627 6628 if (ip_loopback_src_or_dst(ipha, NULL)) { 6629 goto icmp_err_ret; 6630 } 6631 6632 if (mctl_present && io->ipsec_out_attach_if) { 6633 /* ip_grab_attach_ill returns a held ill */ 6634 attach_ill = ip_grab_attach_ill(NULL, first_mp, 6635 io->ipsec_out_ill_index, B_FALSE); 6636 6637 /* Failure case frees things for us. */ 6638 if (attach_ill == NULL) 6639 return; 6640 6641 /* 6642 * Check if we need an ire that will not be 6643 * looked up by anybody else i.e. HIDDEN. 6644 */ 6645 if (ill_is_probeonly(attach_ill)) 6646 ire_marks = IRE_MARK_HIDDEN; 6647 } 6648 /* 6649 * If this IRE is created for forwarding or it is not for 6650 * traffic for congestion controlled protocols, mark it as temporary. 6651 */ 6652 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 6653 ire_marks |= IRE_MARK_TEMPORARY; 6654 6655 /* 6656 * Get what we can from ire_ftable_lookup which will follow an IRE 6657 * chain until it gets the most specific information available. 6658 * For example, we know that there is no IRE_CACHE for this dest, 6659 * but there may be an IRE_OFFSUBNET which specifies a gateway. 6660 * ire_ftable_lookup will look up the gateway, etc. 6661 * Check if in_ill != NULL. If it is true, the packet must be 6662 * from an incoming interface where RTA_SRCIFP is set. 6663 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 6664 * to the destination, of equal netmask length in the forward table, 6665 * will be recursively explored. If no information is available 6666 * for the final gateway of that route, we force the returned ire 6667 * to be equal to sire using MATCH_IRE_PARENT. 6668 * At least, in this case we have a starting point (in the buckets) 6669 * to look for other routes to the destination in the forward table. 6670 * This is actually used only for multirouting, where a list 6671 * of routes has to be processed in sequence. 6672 */ 6673 if (in_ill != NULL) { 6674 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 6675 in_ill, MATCH_IRE_TYPE); 6676 } else if (attach_ill == NULL) { 6677 ire = ire_ftable_lookup(dst, 0, 0, 0, 6678 NULL, &sire, zoneid, 0, 6679 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 6680 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT); 6681 } else { 6682 /* 6683 * attach_ill is set only for communicating with 6684 * on-link hosts. So, don't look for DEFAULT. 6685 */ 6686 ipif_t *attach_ipif; 6687 6688 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 6689 if (attach_ipif == NULL) { 6690 ill_refrele(attach_ill); 6691 goto icmp_err_ret; 6692 } 6693 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 6694 &sire, zoneid, 0, 6695 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL); 6696 ipif_refrele(attach_ipif); 6697 } 6698 ip3dbg(("ip_newroute: ire_ftable_lookup() " 6699 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 6700 6701 /* 6702 * This loop is run only once in most cases. 6703 * We loop to resolve further routes only when the destination 6704 * can be reached through multiple RTF_MULTIRT-flagged ires. 6705 */ 6706 do { 6707 /* Clear the previous iteration's values */ 6708 if (src_ipif != NULL) { 6709 ipif_refrele(src_ipif); 6710 src_ipif = NULL; 6711 } 6712 if (dst_ill != NULL) { 6713 ill_refrele(dst_ill); 6714 dst_ill = NULL; 6715 } 6716 6717 multirt_resolve_next = B_FALSE; 6718 /* 6719 * We check if packets have to be multirouted. 6720 * In this case, given the current <ire, sire> couple, 6721 * we look for the next suitable <ire, sire>. 6722 * This check is done in ire_multirt_lookup(), 6723 * which applies various criteria to find the next route 6724 * to resolve. ire_multirt_lookup() leaves <ire, sire> 6725 * unchanged if it detects it has not been tried yet. 6726 */ 6727 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6728 ip3dbg(("ip_newroute: starting next_resolution " 6729 "with first_mp %p, tag %d\n", 6730 (void *)first_mp, 6731 MULTIRT_DEBUG_TAGGED(first_mp))); 6732 6733 ASSERT(sire != NULL); 6734 multirt_is_resolvable = 6735 ire_multirt_lookup(&ire, &sire, multirt_flags); 6736 6737 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 6738 "ire %p, sire %p\n", 6739 multirt_is_resolvable, 6740 (void *)ire, (void *)sire)); 6741 6742 if (!multirt_is_resolvable) { 6743 /* 6744 * No more multirt route to resolve; give up 6745 * (all routes resolved or no more 6746 * resolvable routes). 6747 */ 6748 if (ire != NULL) { 6749 ire_refrele(ire); 6750 ire = NULL; 6751 } 6752 } else { 6753 ASSERT(sire != NULL); 6754 ASSERT(ire != NULL); 6755 /* 6756 * We simply use first_sire as a flag that 6757 * indicates if a resolvable multirt route 6758 * has already been found. 6759 * If it is not the case, we may have to send 6760 * an ICMP error to report that the 6761 * destination is unreachable. 6762 * We do not IRE_REFHOLD first_sire. 6763 */ 6764 if (first_sire == NULL) { 6765 first_sire = sire; 6766 } 6767 } 6768 } 6769 if (ire == NULL) { 6770 if (ip_debug > 3) { 6771 /* ip2dbg */ 6772 pr_addr_dbg("ip_newroute: " 6773 "can't resolve %s\n", AF_INET, &dst); 6774 } 6775 ip3dbg(("ip_newroute: " 6776 "ire %p, sire %p, first_sire %p\n", 6777 (void *)ire, (void *)sire, (void *)first_sire)); 6778 6779 if (sire != NULL) { 6780 ire_refrele(sire); 6781 sire = NULL; 6782 } 6783 6784 if (first_sire != NULL) { 6785 /* 6786 * At least one multirt route has been found 6787 * in the same call to ip_newroute(); 6788 * there is no need to report an ICMP error. 6789 * first_sire was not IRE_REFHOLDed. 6790 */ 6791 MULTIRT_DEBUG_UNTAG(first_mp); 6792 freemsg(first_mp); 6793 return; 6794 } 6795 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 6796 RTA_DST); 6797 if (attach_ill != NULL) 6798 ill_refrele(attach_ill); 6799 goto icmp_err_ret; 6800 } 6801 6802 /* 6803 * When RTA_SRCIFP is used to add a route, then an interface 6804 * route is added in the source interface's routing table. 6805 * If the outgoing interface of this route is of type 6806 * IRE_IF_RESOLVER, then upon creation of the ire, 6807 * ire_dlureq_mp is set to NULL. Later, when this route is 6808 * first used for forwarding packet, ip_newroute() is called 6809 * to resolve the hardware address of the outgoing ipif. 6810 * We do not come here for IRE_IF_NORESOLVER entries in the 6811 * source interface based table. We only come here if the 6812 * outgoing interface is a resolver interface and we don't 6813 * have the ire_dlureq_mp information yet. 6814 * If in_ill is not null that means it is called from 6815 * ip_rput. 6816 */ 6817 6818 ASSERT(ire->ire_in_ill == NULL || 6819 (ire->ire_type == IRE_IF_RESOLVER && 6820 ire->ire_dlureq_mp == NULL)); 6821 6822 /* 6823 * Verify that the returned IRE does not have either 6824 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 6825 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 6826 */ 6827 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 6828 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 6829 if (attach_ill != NULL) 6830 ill_refrele(attach_ill); 6831 goto icmp_err_ret; 6832 } 6833 /* 6834 * Increment the ire_ob_pkt_count field for ire if it is an 6835 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 6836 * increment the same for the parent IRE, sire, if it is some 6837 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 6838 * and HOST_REDIRECT). 6839 */ 6840 if ((ire->ire_type & IRE_INTERFACE) != 0) { 6841 UPDATE_OB_PKT_COUNT(ire); 6842 ire->ire_last_used_time = lbolt; 6843 } 6844 6845 if (sire != NULL) { 6846 gw = sire->ire_gateway_addr; 6847 ASSERT((sire->ire_type & (IRE_CACHETABLE | 6848 IRE_INTERFACE)) == 0); 6849 UPDATE_OB_PKT_COUNT(sire); 6850 sire->ire_last_used_time = lbolt; 6851 } 6852 /* 6853 * We have a route to reach the destination. 6854 * 6855 * 1) If the interface is part of ill group, try to get a new 6856 * ill taking load spreading into account. 6857 * 6858 * 2) After selecting the ill, get a source address that 6859 * might create good inbound load spreading. 6860 * ipif_select_source does this for us. 6861 * 6862 * If the application specified the ill (ifindex), we still 6863 * load spread. Only if the packets needs to go out 6864 * specifically on a given ill e.g. binding to 6865 * IPIF_NOFAILOVER address, then we don't try to use a 6866 * different ill for load spreading. 6867 */ 6868 if (attach_ill == NULL) { 6869 /* 6870 * Don't perform outbound load spreading in the 6871 * case of an RTF_MULTIRT route, as we actually 6872 * typically want to replicate outgoing packets 6873 * through particular interfaces. 6874 */ 6875 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6876 dst_ill = ire->ire_ipif->ipif_ill; 6877 /* for uniformity */ 6878 ill_refhold(dst_ill); 6879 } else { 6880 /* 6881 * If we are here trying to create an IRE_CACHE 6882 * for an offlink destination and have the 6883 * IRE_CACHE for the next hop and the latter is 6884 * using virtual IP source address selection i.e 6885 * it's ire->ire_ipif is pointing to a virtual 6886 * network interface (vni) then 6887 * ip_newroute_get_dst_ll() will return the vni 6888 * interface as the dst_ill. Since the vni is 6889 * virtual i.e not associated with any physical 6890 * interface, it cannot be the dst_ill, hence 6891 * in such a case call ip_newroute_get_dst_ll() 6892 * with the stq_ill instead of the ire_ipif ILL. 6893 * The function returns a refheld ill. 6894 */ 6895 if ((ire->ire_type == IRE_CACHE) && 6896 IS_VNI(ire->ire_ipif->ipif_ill)) 6897 dst_ill = ip_newroute_get_dst_ill( 6898 ire->ire_stq->q_ptr); 6899 else 6900 dst_ill = ip_newroute_get_dst_ill( 6901 ire->ire_ipif->ipif_ill); 6902 } 6903 if (dst_ill == NULL) { 6904 if (ip_debug > 2) { 6905 pr_addr_dbg("ip_newroute: " 6906 "no dst ill for dst" 6907 " %s\n", AF_INET, &dst); 6908 } 6909 goto icmp_err_ret; 6910 } 6911 } else { 6912 dst_ill = ire->ire_ipif->ipif_ill; 6913 /* for uniformity */ 6914 ill_refhold(dst_ill); 6915 /* 6916 * We should have found a route matching ill as we 6917 * called ire_ftable_lookup with MATCH_IRE_ILL. 6918 * Rather than asserting, when there is a mismatch, 6919 * we just drop the packet. 6920 */ 6921 if (dst_ill != attach_ill) { 6922 ip0dbg(("ip_newroute: Packet dropped as " 6923 "IPIF_NOFAILOVER ill is %s, " 6924 "ire->ire_ipif->ipif_ill is %s\n", 6925 attach_ill->ill_name, 6926 dst_ill->ill_name)); 6927 ill_refrele(attach_ill); 6928 goto icmp_err_ret; 6929 } 6930 } 6931 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 6932 if (attach_ill != NULL) { 6933 ill_refrele(attach_ill); 6934 attach_ill = NULL; 6935 do_attach_ill = B_TRUE; 6936 } 6937 ASSERT(dst_ill != NULL); 6938 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 6939 6940 /* 6941 * Pick the best source address from dst_ill. 6942 * 6943 * 1) If it is part of a multipathing group, we would 6944 * like to spread the inbound packets across different 6945 * interfaces. ipif_select_source picks a random source 6946 * across the different ills in the group. 6947 * 6948 * 2) If it is not part of a multipathing group, we try 6949 * to pick the source address from the destination 6950 * route. Clustering assumes that when we have multiple 6951 * prefixes hosted on an interface, the prefix of the 6952 * source address matches the prefix of the destination 6953 * route. We do this only if the address is not 6954 * DEPRECATED. 6955 * 6956 * 3) If the conn is in a different zone than the ire, we 6957 * need to pick a source address from the right zone. 6958 * 6959 * NOTE : If we hit case (1) above, the prefix of the source 6960 * address picked may not match the prefix of the 6961 * destination routes prefix as ipif_select_source 6962 * does not look at "dst" while picking a source 6963 * address. 6964 * If we want the same behavior as (2), we will need 6965 * to change the behavior of ipif_select_source. 6966 */ 6967 ASSERT(src_ipif == NULL); 6968 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 6969 /* 6970 * The RTF_SETSRC flag is set in the parent ire (sire). 6971 * Check that the ipif matching the requested source 6972 * address still exists. 6973 */ 6974 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 6975 zoneid, NULL, NULL, NULL, NULL); 6976 } 6977 if (src_ipif == NULL) { 6978 ire_marks |= IRE_MARK_USESRC_CHECK; 6979 if ((dst_ill->ill_group != NULL) || 6980 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 6981 (connp != NULL && ire->ire_zoneid != zoneid) || 6982 (dst_ill->ill_usesrc_ifindex != 0)) { 6983 src_ipif = ipif_select_source(dst_ill, dst, 6984 zoneid); 6985 if (src_ipif == NULL) { 6986 if (ip_debug > 2) { 6987 pr_addr_dbg("ip_newroute: " 6988 "no src for dst %s ", 6989 AF_INET, &dst); 6990 printf("through interface %s\n", 6991 dst_ill->ill_name); 6992 } 6993 goto icmp_err_ret; 6994 } 6995 } else { 6996 src_ipif = ire->ire_ipif; 6997 ASSERT(src_ipif != NULL); 6998 /* hold src_ipif for uniformity */ 6999 ipif_refhold(src_ipif); 7000 } 7001 } 7002 7003 /* 7004 * Assign a source address while we have the conn. 7005 * We can't have ip_wput_ire pick a source address when the 7006 * packet returns from arp since we need to look at 7007 * conn_unspec_src and conn_zoneid, and we lose the conn when 7008 * going through arp. 7009 * 7010 * NOTE : ip_newroute_v6 does not have this piece of code as 7011 * it uses ip6i to store this information. 7012 */ 7013 if (ipha->ipha_src == INADDR_ANY && 7014 (connp == NULL || !connp->conn_unspec_src)) { 7015 ipha->ipha_src = src_ipif->ipif_src_addr; 7016 } 7017 if (ip_debug > 3) { 7018 /* ip2dbg */ 7019 pr_addr_dbg("ip_newroute: first hop %s\n", 7020 AF_INET, &gw); 7021 } 7022 ip2dbg(("\tire type %s (%d)\n", 7023 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7024 7025 /* 7026 * The TTL of multirouted packets is bounded by the 7027 * ip_multirt_ttl ndd variable. 7028 */ 7029 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7030 /* Force TTL of multirouted packets */ 7031 if ((ip_multirt_ttl > 0) && 7032 (ipha->ipha_ttl > ip_multirt_ttl)) { 7033 ip2dbg(("ip_newroute: forcing multirt TTL " 7034 "to %d (was %d), dst 0x%08x\n", 7035 ip_multirt_ttl, ipha->ipha_ttl, 7036 ntohl(sire->ire_addr))); 7037 ipha->ipha_ttl = ip_multirt_ttl; 7038 } 7039 } 7040 /* 7041 * At this point in ip_newroute(), ire is either the 7042 * IRE_CACHE of the next-hop gateway for an off-subnet 7043 * destination or an IRE_INTERFACE type that should be used 7044 * to resolve an on-subnet destination or an on-subnet 7045 * next-hop gateway. 7046 * 7047 * In the IRE_CACHE case, we have the following : 7048 * 7049 * 1) src_ipif - used for getting a source address. 7050 * 7051 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7052 * means packets using this IRE_CACHE will go out on 7053 * dst_ill. 7054 * 7055 * 3) The IRE sire will point to the prefix that is the 7056 * longest matching route for the destination. These 7057 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7058 * and IRE_HOST_REDIRECT. 7059 * 7060 * The newly created IRE_CACHE entry for the off-subnet 7061 * destination is tied to both the prefix route and the 7062 * interface route used to resolve the next-hop gateway 7063 * via the ire_phandle and ire_ihandle fields, 7064 * respectively. 7065 * 7066 * In the IRE_INTERFACE case, we have the following : 7067 * 7068 * 1) src_ipif - used for getting a source address. 7069 * 7070 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7071 * means packets using the IRE_CACHE that we will build 7072 * here will go out on dst_ill. 7073 * 7074 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7075 * to be created will only be tied to the IRE_INTERFACE 7076 * that was derived from the ire_ihandle field. 7077 * 7078 * If sire is non-NULL, it means the destination is 7079 * off-link and we will first create the IRE_CACHE for the 7080 * gateway. Next time through ip_newroute, we will create 7081 * the IRE_CACHE for the final destination as described 7082 * above. 7083 * 7084 * In both cases, after the current resolution has been 7085 * completed (or possibly initialised, in the IRE_INTERFACE 7086 * case), the loop may be re-entered to attempt the resolution 7087 * of another RTF_MULTIRT route. 7088 * 7089 * When an IRE_CACHE entry for the off-subnet destination is 7090 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7091 * for further processing in emission loops. 7092 */ 7093 save_ire = ire; 7094 switch (ire->ire_type) { 7095 case IRE_CACHE: { 7096 ire_t *ipif_ire; 7097 mblk_t *ire_fp_mp; 7098 7099 ASSERT(sire != NULL); 7100 if (gw == 0) 7101 gw = ire->ire_gateway_addr; 7102 /* 7103 * We need 3 ire's to create a new cache ire for an 7104 * off-link destination from the cache ire of the 7105 * gateway. 7106 * 7107 * 1. The prefix ire 'sire' 7108 * 2. The cache ire of the gateway 'ire' 7109 * 3. The interface ire 'ipif_ire' 7110 * 7111 * We have (1) and (2). We lookup (3) below. 7112 * 7113 * If there is no interface route to the gateway, 7114 * it is a race condition, where we found the cache 7115 * but the inteface route has been deleted. 7116 */ 7117 ipif_ire = ire_ihandle_lookup_offlink(ire, sire); 7118 if (ipif_ire == NULL) { 7119 ip1dbg(("ip_newroute: " 7120 "ire_ihandle_lookup_offlink failed\n")); 7121 goto icmp_err_ret; 7122 } 7123 /* 7124 * XXX We are using the same dlureq_mp 7125 * (DL_UNITDATA_REQ) though the save_ire is not 7126 * pointing at the same ill. 7127 * This is incorrect. We need to send it up to the 7128 * resolver to get the right dlureq_mp. For ethernets 7129 * this may be okay (ill_type == DL_ETHER). 7130 */ 7131 dlureq_mp = save_ire->ire_dlureq_mp; 7132 ire_fp_mp = NULL; 7133 /* 7134 * save_ire's ire_fp_mp can't change since it is 7135 * not an IRE_MIPRTUN or IRE_BROADCAST 7136 * LOCK_IRE_FP_MP does not do any useful work in 7137 * the case of IRE_CACHE. So we don't use it below. 7138 */ 7139 if (save_ire->ire_stq == dst_ill->ill_wq) 7140 ire_fp_mp = save_ire->ire_fp_mp; 7141 7142 ire = ire_create( 7143 (uchar_t *)&dst, /* dest address */ 7144 (uchar_t *)&ip_g_all_ones, /* mask */ 7145 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7146 (uchar_t *)&gw, /* gateway address */ 7147 NULL, 7148 &save_ire->ire_max_frag, 7149 ire_fp_mp, /* Fast Path header */ 7150 dst_ill->ill_rq, /* recv-from queue */ 7151 dst_ill->ill_wq, /* send-to queue */ 7152 IRE_CACHE, /* IRE type */ 7153 save_ire->ire_dlureq_mp, 7154 src_ipif, 7155 in_ill, /* incoming ill */ 7156 sire->ire_mask, /* Parent mask */ 7157 sire->ire_phandle, /* Parent handle */ 7158 ipif_ire->ire_ihandle, /* Interface handle */ 7159 sire->ire_flags & 7160 (RTF_SETSRC | RTF_MULTIRT), /* flags if any */ 7161 &(sire->ire_uinfo)); 7162 7163 if (ire == NULL) { 7164 ire_refrele(ipif_ire); 7165 ire_refrele(save_ire); 7166 break; 7167 } 7168 7169 ire->ire_marks |= ire_marks; 7170 7171 /* 7172 * Prevent sire and ipif_ire from getting deleted. 7173 * The newly created ire is tied to both of them via 7174 * the phandle and ihandle respectively. 7175 */ 7176 IRB_REFHOLD(sire->ire_bucket); 7177 /* Has it been removed already ? */ 7178 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7179 IRB_REFRELE(sire->ire_bucket); 7180 ire_refrele(ipif_ire); 7181 ire_refrele(save_ire); 7182 break; 7183 } 7184 7185 IRB_REFHOLD(ipif_ire->ire_bucket); 7186 /* Has it been removed already ? */ 7187 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7188 IRB_REFRELE(ipif_ire->ire_bucket); 7189 IRB_REFRELE(sire->ire_bucket); 7190 ire_refrele(ipif_ire); 7191 ire_refrele(save_ire); 7192 break; 7193 } 7194 7195 xmit_mp = first_mp; 7196 /* 7197 * In the case of multirouting, a copy 7198 * of the packet is done before its sending. 7199 * The copy is used to attempt another 7200 * route resolution, in a next loop. 7201 */ 7202 if (ire->ire_flags & RTF_MULTIRT) { 7203 copy_mp = copymsg(first_mp); 7204 if (copy_mp != NULL) { 7205 xmit_mp = copy_mp; 7206 MULTIRT_DEBUG_TAG(first_mp); 7207 } 7208 } 7209 ire_add_then_send(q, ire, xmit_mp); 7210 ire_refrele(save_ire); 7211 7212 /* Assert that sire is not deleted yet. */ 7213 ASSERT(sire->ire_ptpn != NULL); 7214 IRB_REFRELE(sire->ire_bucket); 7215 7216 /* Assert that ipif_ire is not deleted yet. */ 7217 ASSERT(ipif_ire->ire_ptpn != NULL); 7218 IRB_REFRELE(ipif_ire->ire_bucket); 7219 ire_refrele(ipif_ire); 7220 7221 /* 7222 * If copy_mp is not NULL, multirouting was 7223 * requested. We loop to initiate a next 7224 * route resolution attempt, starting from sire. 7225 */ 7226 if (copy_mp != NULL) { 7227 /* 7228 * Search for the next unresolved 7229 * multirt route. 7230 */ 7231 copy_mp = NULL; 7232 ipif_ire = NULL; 7233 ire = NULL; 7234 multirt_resolve_next = B_TRUE; 7235 continue; 7236 } 7237 7238 ire_refrele(sire); 7239 ipif_refrele(src_ipif); 7240 ill_refrele(dst_ill); 7241 return; 7242 } 7243 case IRE_IF_NORESOLVER: { 7244 /* 7245 * We have what we need to build an IRE_CACHE. 7246 * 7247 * Create a new dlureq_mp with the IP gateway address 7248 * in destination address in the DLPI hdr if the 7249 * physical length is exactly 4 bytes. 7250 */ 7251 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7252 uchar_t *addr; 7253 7254 if (gw) 7255 addr = (uchar_t *)&gw; 7256 else 7257 addr = (uchar_t *)&dst; 7258 7259 dlureq_mp = ill_dlur_gen(addr, 7260 dst_ill->ill_phys_addr_length, 7261 dst_ill->ill_sap, 7262 dst_ill->ill_sap_length); 7263 } else { 7264 dlureq_mp = ire->ire_dlureq_mp; 7265 } 7266 7267 if (dlureq_mp == NULL) { 7268 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7269 break; 7270 } 7271 7272 ire = ire_create( 7273 (uchar_t *)&dst, /* dest address */ 7274 (uchar_t *)&ip_g_all_ones, /* mask */ 7275 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7276 (uchar_t *)&gw, /* gateway address */ 7277 NULL, 7278 &save_ire->ire_max_frag, 7279 NULL, /* Fast Path header */ 7280 dst_ill->ill_rq, /* recv-from queue */ 7281 dst_ill->ill_wq, /* send-to queue */ 7282 IRE_CACHE, 7283 dlureq_mp, 7284 src_ipif, 7285 in_ill, /* Incoming ill */ 7286 save_ire->ire_mask, /* Parent mask */ 7287 (sire != NULL) ? /* Parent handle */ 7288 sire->ire_phandle : 0, 7289 save_ire->ire_ihandle, /* Interface handle */ 7290 (sire != NULL) ? sire->ire_flags & 7291 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7292 &(save_ire->ire_uinfo)); 7293 7294 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7295 freeb(dlureq_mp); 7296 7297 if (ire == NULL) { 7298 ire_refrele(save_ire); 7299 break; 7300 } 7301 7302 ire->ire_marks |= ire_marks; 7303 7304 /* Prevent save_ire from getting deleted */ 7305 IRB_REFHOLD(save_ire->ire_bucket); 7306 /* Has it been removed already ? */ 7307 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7308 IRB_REFRELE(save_ire->ire_bucket); 7309 ire_refrele(save_ire); 7310 break; 7311 } 7312 7313 /* 7314 * In the case of multirouting, a copy 7315 * of the packet is made before it is sent. 7316 * The copy is used in the next 7317 * loop to attempt another resolution. 7318 */ 7319 xmit_mp = first_mp; 7320 if ((sire != NULL) && 7321 (sire->ire_flags & RTF_MULTIRT)) { 7322 copy_mp = copymsg(first_mp); 7323 if (copy_mp != NULL) { 7324 xmit_mp = copy_mp; 7325 MULTIRT_DEBUG_TAG(first_mp); 7326 } 7327 } 7328 ire_add_then_send(q, ire, xmit_mp); 7329 7330 /* Assert that it is not deleted yet. */ 7331 ASSERT(save_ire->ire_ptpn != NULL); 7332 IRB_REFRELE(save_ire->ire_bucket); 7333 ire_refrele(save_ire); 7334 7335 if (copy_mp != NULL) { 7336 /* 7337 * If we found a (no)resolver, we ignore any 7338 * trailing top priority IRE_CACHE in further 7339 * loops. This ensures that we do not omit any 7340 * (no)resolver. 7341 * This IRE_CACHE, if any, will be processed 7342 * by another thread entering ip_newroute(). 7343 * IRE_CACHE entries, if any, will be processed 7344 * by another thread entering ip_newroute(), 7345 * (upon resolver response, for instance). 7346 * This aims to force parallel multirt 7347 * resolutions as soon as a packet must be sent. 7348 * In the best case, after the tx of only one 7349 * packet, all reachable routes are resolved. 7350 * Otherwise, the resolution of all RTF_MULTIRT 7351 * routes would require several emissions. 7352 */ 7353 multirt_flags &= ~MULTIRT_CACHEGW; 7354 7355 /* 7356 * Search for the next unresolved multirt 7357 * route. 7358 */ 7359 copy_mp = NULL; 7360 save_ire = NULL; 7361 ire = NULL; 7362 multirt_resolve_next = B_TRUE; 7363 continue; 7364 } 7365 7366 /* 7367 * Don't need sire anymore 7368 */ 7369 if (sire != NULL) 7370 ire_refrele(sire); 7371 7372 ipif_refrele(src_ipif); 7373 ill_refrele(dst_ill); 7374 return; 7375 } 7376 case IRE_IF_RESOLVER: 7377 /* 7378 * We can't build an IRE_CACHE yet, but at least we 7379 * found a resolver that can help. 7380 */ 7381 res_mp = dst_ill->ill_resolver_mp; 7382 if (!OK_RESOLVER_MP(res_mp)) 7383 break; 7384 /* 7385 * To be at this point in the code with a non-zero gw 7386 * means that dst is reachable through a gateway that 7387 * we have never resolved. By changing dst to the gw 7388 * addr we resolve the gateway first. 7389 * When ire_add_then_send() tries to put the IP dg 7390 * to dst, it will reenter ip_newroute() at which 7391 * time we will find the IRE_CACHE for the gw and 7392 * create another IRE_CACHE in case IRE_CACHE above. 7393 */ 7394 if (gw != INADDR_ANY) { 7395 /* 7396 * The source ipif that was determined above was 7397 * relative to the destination address, not the 7398 * gateway's. If src_ipif was not taken out of 7399 * the IRE_IF_RESOLVER entry, we'll need to call 7400 * ipif_select_source() again. 7401 */ 7402 if (src_ipif != ire->ire_ipif) { 7403 ipif_refrele(src_ipif); 7404 src_ipif = ipif_select_source(dst_ill, 7405 gw, zoneid); 7406 if (src_ipif == NULL) { 7407 if (ip_debug > 2) { 7408 pr_addr_dbg( 7409 "ip_newroute: no " 7410 "src for gw %s ", 7411 AF_INET, &gw); 7412 printf("through " 7413 "interface %s\n", 7414 dst_ill->ill_name); 7415 } 7416 goto icmp_err_ret; 7417 } 7418 } 7419 save_dst = dst; 7420 dst = gw; 7421 gw = INADDR_ANY; 7422 } 7423 /* 7424 * We obtain a partial IRE_CACHE which we will pass 7425 * along with the resolver query. When the response 7426 * comes back it will be there ready for us to add. 7427 * The ire_max_frag is atomically set under the 7428 * irebucket lock in ire_add_v[46]. 7429 */ 7430 ire = ire_create_mp( 7431 (uchar_t *)&dst, /* dest address */ 7432 (uchar_t *)&ip_g_all_ones, /* mask */ 7433 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7434 (uchar_t *)&gw, /* gateway address */ 7435 NULL, /* no in_src_addr */ 7436 NULL, /* ire_max_frag */ 7437 NULL, /* Fast Path header */ 7438 dst_ill->ill_rq, /* recv-from queue */ 7439 dst_ill->ill_wq, /* send-to queue */ 7440 IRE_CACHE, 7441 res_mp, 7442 src_ipif, /* Interface ipif */ 7443 in_ill, /* Incoming ILL */ 7444 save_ire->ire_mask, /* Parent mask */ 7445 0, 7446 save_ire->ire_ihandle, /* Interface handle */ 7447 0, /* flags if any */ 7448 &(save_ire->ire_uinfo)); 7449 7450 if (ire == NULL) { 7451 ire_refrele(save_ire); 7452 break; 7453 } 7454 7455 if ((sire != NULL) && 7456 (sire->ire_flags & RTF_MULTIRT)) { 7457 copy_mp = copymsg(first_mp); 7458 if (copy_mp != NULL) 7459 MULTIRT_DEBUG_TAG(copy_mp); 7460 } 7461 7462 ire->ire_marks |= ire_marks; 7463 7464 /* 7465 * Construct message chain for the resolver 7466 * of the form: 7467 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 7468 * Packet could contain a IPSEC_OUT mp. 7469 * 7470 * NOTE : ire will be added later when the response 7471 * comes back from ARP. If the response does not 7472 * come back, ARP frees the packet. For this reason, 7473 * we can't REFHOLD the bucket of save_ire to prevent 7474 * deletions. We may not be able to REFRELE the bucket 7475 * if the response never comes back. Thus, before 7476 * adding the ire, ire_add_v4 will make sure that the 7477 * interface route does not get deleted. This is the 7478 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 7479 * where we can always prevent deletions because of 7480 * the synchronous nature of adding IRES i.e 7481 * ire_add_then_send is called after creating the IRE. 7482 */ 7483 ASSERT(ire->ire_mp != NULL); 7484 ire->ire_mp->b_cont = first_mp; 7485 /* Have saved_mp handy, for cleanup if canput fails */ 7486 saved_mp = mp; 7487 mp = ire->ire_dlureq_mp; 7488 ASSERT(mp != NULL); 7489 ire->ire_dlureq_mp = NULL; 7490 linkb(mp, ire->ire_mp); 7491 7492 7493 /* 7494 * Fill in the source and dest addrs for the resolver. 7495 * NOTE: this depends on memory layouts imposed by 7496 * ill_init(). 7497 */ 7498 areq = (areq_t *)mp->b_rptr; 7499 addrp = (ipaddr_t *)((char *)areq + 7500 areq->areq_sender_addr_offset); 7501 if (do_attach_ill) { 7502 /* 7503 * This is bind to no failover case. 7504 * arp packet also must go out on attach_ill. 7505 */ 7506 ASSERT(ipha->ipha_src != NULL); 7507 *addrp = ipha->ipha_src; 7508 } else { 7509 *addrp = save_ire->ire_src_addr; 7510 } 7511 7512 ire_refrele(save_ire); 7513 addrp = (ipaddr_t *)((char *)areq + 7514 areq->areq_target_addr_offset); 7515 *addrp = dst; 7516 /* Up to the resolver. */ 7517 if (canputnext(dst_ill->ill_rq)) { 7518 putnext(dst_ill->ill_rq, mp); 7519 ire = NULL; 7520 if (copy_mp != NULL) { 7521 /* 7522 * If we found a resolver, we ignore 7523 * any trailing top priority IRE_CACHE 7524 * in the further loops. This ensures 7525 * that we do not omit any resolver. 7526 * IRE_CACHE entries, if any, will be 7527 * processed next time we enter 7528 * ip_newroute(). 7529 */ 7530 multirt_flags &= ~MULTIRT_CACHEGW; 7531 /* 7532 * Search for the next unresolved 7533 * multirt route. 7534 */ 7535 first_mp = copy_mp; 7536 copy_mp = NULL; 7537 /* Prepare the next resolution loop. */ 7538 mp = first_mp; 7539 EXTRACT_PKT_MP(mp, first_mp, 7540 mctl_present); 7541 if (mctl_present) 7542 io = (ipsec_out_t *) 7543 first_mp->b_rptr; 7544 ipha = (ipha_t *)mp->b_rptr; 7545 7546 ASSERT(sire != NULL); 7547 7548 dst = save_dst; 7549 multirt_resolve_next = B_TRUE; 7550 continue; 7551 } 7552 7553 if (sire != NULL) 7554 ire_refrele(sire); 7555 7556 /* 7557 * The response will come back in ip_wput 7558 * with db_type IRE_DB_TYPE. 7559 */ 7560 ipif_refrele(src_ipif); 7561 ill_refrele(dst_ill); 7562 return; 7563 } else { 7564 /* Prepare for cleanup */ 7565 ire->ire_dlureq_mp = mp; 7566 mp->b_cont = NULL; 7567 ire_delete(ire); 7568 mp = saved_mp; 7569 ire = NULL; 7570 if (copy_mp != NULL) { 7571 MULTIRT_DEBUG_UNTAG(copy_mp); 7572 freemsg(copy_mp); 7573 copy_mp = NULL; 7574 } 7575 break; 7576 } 7577 default: 7578 break; 7579 } 7580 } while (multirt_resolve_next); 7581 7582 ip1dbg(("ip_newroute: dropped\n")); 7583 /* Did this packet originate externally? */ 7584 if (mp->b_prev) { 7585 mp->b_next = NULL; 7586 mp->b_prev = NULL; 7587 BUMP_MIB(&ip_mib, ipInDiscards); 7588 } else { 7589 BUMP_MIB(&ip_mib, ipOutDiscards); 7590 } 7591 ASSERT(copy_mp == NULL); 7592 MULTIRT_DEBUG_UNTAG(first_mp); 7593 freemsg(first_mp); 7594 if (ire != NULL) 7595 ire_refrele(ire); 7596 if (sire != NULL) 7597 ire_refrele(sire); 7598 if (src_ipif != NULL) 7599 ipif_refrele(src_ipif); 7600 if (dst_ill != NULL) 7601 ill_refrele(dst_ill); 7602 return; 7603 7604 icmp_err_ret: 7605 ip1dbg(("ip_newroute: no route\n")); 7606 if (src_ipif != NULL) 7607 ipif_refrele(src_ipif); 7608 if (dst_ill != NULL) 7609 ill_refrele(dst_ill); 7610 if (sire != NULL) 7611 ire_refrele(sire); 7612 /* Did this packet originate externally? */ 7613 if (mp->b_prev) { 7614 mp->b_next = NULL; 7615 mp->b_prev = NULL; 7616 /* XXX ipInNoRoutes */ 7617 q = WR(q); 7618 } else { 7619 /* 7620 * Since ip_wput() isn't close to finished, we fill 7621 * in enough of the header for credible error reporting. 7622 */ 7623 if (ip_hdr_complete(ipha, zoneid)) { 7624 /* Failed */ 7625 MULTIRT_DEBUG_UNTAG(first_mp); 7626 freemsg(first_mp); 7627 if (ire != NULL) 7628 ire_refrele(ire); 7629 return; 7630 } 7631 } 7632 BUMP_MIB(&ip_mib, ipOutNoRoutes); 7633 7634 /* 7635 * At this point we will have ire only if RTF_BLACKHOLE 7636 * or RTF_REJECT flags are set on the IRE. It will not 7637 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 7638 */ 7639 if (ire != NULL) { 7640 if (ire->ire_flags & RTF_BLACKHOLE) { 7641 ire_refrele(ire); 7642 MULTIRT_DEBUG_UNTAG(first_mp); 7643 freemsg(first_mp); 7644 return; 7645 } 7646 ire_refrele(ire); 7647 } 7648 if (ip_source_routed(ipha)) { 7649 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 7650 return; 7651 } 7652 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 7653 } 7654 7655 /* 7656 * IPv4 - 7657 * ip_newroute_ipif is called by ip_wput_multicast and 7658 * ip_rput_forward_multicast whenever we need to send 7659 * out a packet to a destination address for which we do not have specific 7660 * routing information. It is used when the packet will be sent out 7661 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 7662 * socket option is set or icmp error message wants to go out on a particular 7663 * interface for a unicast packet. 7664 * 7665 * In most cases, the destination address is resolved thanks to the ipif 7666 * intrinsic resolver. However, there are some cases where the call to 7667 * ip_newroute_ipif must take into account the potential presence of 7668 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 7669 * that uses the interface. This is specified through flags, 7670 * which can be a combination of: 7671 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 7672 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 7673 * and flags. Additionally, the packet source address has to be set to 7674 * the specified address. The caller is thus expected to set this flag 7675 * if the packet has no specific source address yet. 7676 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 7677 * flag, the resulting ire will inherit the flag. All unresolved routes 7678 * to the destination must be explored in the same call to 7679 * ip_newroute_ipif(). 7680 */ 7681 static void 7682 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 7683 conn_t *connp, uint32_t flags) 7684 { 7685 areq_t *areq; 7686 ire_t *ire = NULL; 7687 mblk_t *res_mp; 7688 ipaddr_t *addrp; 7689 mblk_t *first_mp; 7690 ire_t *save_ire = NULL; 7691 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 7692 ipif_t *src_ipif = NULL; 7693 ushort_t ire_marks = 0; 7694 ill_t *dst_ill = NULL; 7695 boolean_t mctl_present; 7696 ipsec_out_t *io; 7697 ipha_t *ipha; 7698 int ihandle = 0; 7699 mblk_t *saved_mp; 7700 ire_t *fire = NULL; 7701 mblk_t *copy_mp = NULL; 7702 boolean_t multirt_resolve_next; 7703 ipaddr_t ipha_dst; 7704 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 7705 7706 /* 7707 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 7708 * here for uniformity 7709 */ 7710 ipif_refhold(ipif); 7711 7712 /* 7713 * This loop is run only once in most cases. 7714 * We loop to resolve further routes only when the destination 7715 * can be reached through multiple RTF_MULTIRT-flagged ires. 7716 */ 7717 do { 7718 if (dst_ill != NULL) { 7719 ill_refrele(dst_ill); 7720 dst_ill = NULL; 7721 } 7722 if (src_ipif != NULL) { 7723 ipif_refrele(src_ipif); 7724 src_ipif = NULL; 7725 } 7726 multirt_resolve_next = B_FALSE; 7727 7728 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 7729 ipif->ipif_ill->ill_name)); 7730 7731 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7732 if (mctl_present) 7733 io = (ipsec_out_t *)first_mp->b_rptr; 7734 7735 ipha = (ipha_t *)mp->b_rptr; 7736 7737 /* 7738 * Save the packet destination address, we may need it after 7739 * the packet has been consumed. 7740 */ 7741 ipha_dst = ipha->ipha_dst; 7742 7743 /* 7744 * If the interface is a pt-pt interface we look for an 7745 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 7746 * local_address and the pt-pt destination address. Otherwise 7747 * we just match the local address. 7748 * NOTE: dst could be different than ipha->ipha_dst in case 7749 * of sending igmp multicast packets over a point-to-point 7750 * connection. 7751 * Thus we must be careful enough to check ipha_dst to be a 7752 * multicast address, otherwise it will take xmit_if path for 7753 * multicast packets resulting into kernel stack overflow by 7754 * repeated calls to ip_newroute_ipif from ire_send(). 7755 */ 7756 if (CLASSD(ipha_dst) && 7757 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 7758 goto err_ret; 7759 } 7760 7761 /* 7762 * We check if an IRE_OFFSUBNET for the addr that goes through 7763 * ipif exists. We need it to determine if the RTF_SETSRC and/or 7764 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 7765 * propagate its flags to the new ire. 7766 */ 7767 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 7768 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 7769 ip2dbg(("ip_newroute_ipif: " 7770 "ipif_lookup_multi_ire(" 7771 "ipif %p, dst %08x) = fire %p\n", 7772 (void *)ipif, ntohl(dst), (void *)fire)); 7773 } 7774 7775 if (mctl_present && io->ipsec_out_attach_if) { 7776 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7777 io->ipsec_out_ill_index, B_FALSE); 7778 7779 /* Failure case frees things for us. */ 7780 if (attach_ill == NULL) { 7781 ipif_refrele(ipif); 7782 if (fire != NULL) 7783 ire_refrele(fire); 7784 return; 7785 } 7786 7787 /* 7788 * Check if we need an ire that will not be 7789 * looked up by anybody else i.e. HIDDEN. 7790 */ 7791 if (ill_is_probeonly(attach_ill)) { 7792 ire_marks = IRE_MARK_HIDDEN; 7793 } 7794 /* 7795 * ip_wput passes the right ipif for IPIF_NOFAILOVER 7796 * case. 7797 */ 7798 dst_ill = ipif->ipif_ill; 7799 /* attach_ill has been refheld by ip_grab_attach_ill */ 7800 ASSERT(dst_ill == attach_ill); 7801 } else { 7802 /* 7803 * If this is set by IP_XMIT_IF, then make sure that 7804 * ipif is pointing to the same ill as the IP_XMIT_IF 7805 * specified ill. 7806 */ 7807 ASSERT((connp == NULL) || 7808 (connp->conn_xmit_if_ill == NULL) || 7809 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 7810 /* 7811 * If the interface belongs to an interface group, 7812 * make sure the next possible interface in the group 7813 * is used. This encourages load spreading among 7814 * peers in an interface group. 7815 * Note: load spreading is disabled for RTF_MULTIRT 7816 * routes. 7817 */ 7818 if ((flags & RTF_MULTIRT) && (fire != NULL) && 7819 (fire->ire_flags & RTF_MULTIRT)) { 7820 /* 7821 * Don't perform outbound load spreading 7822 * in the case of an RTF_MULTIRT issued route, 7823 * we actually typically want to replicate 7824 * outgoing packets through particular 7825 * interfaces. 7826 */ 7827 dst_ill = ipif->ipif_ill; 7828 ill_refhold(dst_ill); 7829 } else { 7830 dst_ill = ip_newroute_get_dst_ill( 7831 ipif->ipif_ill); 7832 } 7833 if (dst_ill == NULL) { 7834 if (ip_debug > 2) { 7835 pr_addr_dbg("ip_newroute_ipif: " 7836 "no dst ill for dst %s\n", 7837 AF_INET, &dst); 7838 } 7839 goto err_ret; 7840 } 7841 } 7842 7843 /* 7844 * Pick a source address preferring non-deprecated ones. 7845 * Unlike ip_newroute, we don't do any source address 7846 * selection here since for multicast it really does not help 7847 * in inbound load spreading as in the unicast case. 7848 */ 7849 if ((flags & RTF_SETSRC) && (fire != NULL) && 7850 (fire->ire_flags & RTF_SETSRC)) { 7851 /* 7852 * As requested by flags, an IRE_OFFSUBNET was looked up 7853 * on that interface. This ire has RTF_SETSRC flag, so 7854 * the source address of the packet must be changed. 7855 * Check that the ipif matching the requested source 7856 * address still exists. 7857 */ 7858 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 7859 zoneid, NULL, NULL, NULL, NULL); 7860 } 7861 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 7862 (connp != NULL && ipif->ipif_zoneid != zoneid)) && 7863 (src_ipif == NULL)) { 7864 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 7865 if (src_ipif == NULL) { 7866 if (ip_debug > 2) { 7867 /* ip1dbg */ 7868 pr_addr_dbg("ip_newroute_ipif: " 7869 "no src for dst %s", 7870 AF_INET, &dst); 7871 } 7872 ip1dbg((" through interface %s\n", 7873 dst_ill->ill_name)); 7874 goto err_ret; 7875 } 7876 ipif_refrele(ipif); 7877 ipif = src_ipif; 7878 ipif_refhold(ipif); 7879 } 7880 if (src_ipif == NULL) { 7881 src_ipif = ipif; 7882 ipif_refhold(src_ipif); 7883 } 7884 7885 /* 7886 * Assign a source address while we have the conn. 7887 * We can't have ip_wput_ire pick a source address when the 7888 * packet returns from arp since conn_unspec_src might be set 7889 * and we loose the conn when going through arp. 7890 */ 7891 if (ipha->ipha_src == INADDR_ANY && 7892 (connp == NULL || !connp->conn_unspec_src)) { 7893 ipha->ipha_src = src_ipif->ipif_src_addr; 7894 } 7895 7896 /* 7897 * In case of IP_XMIT_IF, it is possible that the outgoing 7898 * interface does not have an interface ire. 7899 * Example: Thousands of mobileip PPP interfaces to mobile 7900 * nodes. We don't want to create interface ires because 7901 * packets from other mobile nodes must not take the route 7902 * via interface ires to the visiting mobile node without 7903 * going through the home agent, in absence of mobileip 7904 * route optimization. 7905 */ 7906 if (CLASSD(ipha_dst) && (connp == NULL || 7907 connp->conn_xmit_if_ill == NULL)) { 7908 /* ipif_to_ire returns an held ire */ 7909 ire = ipif_to_ire(ipif); 7910 if (ire == NULL) 7911 goto err_ret; 7912 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 7913 goto err_ret; 7914 /* 7915 * ihandle is needed when the ire is added to 7916 * cache table. 7917 */ 7918 save_ire = ire; 7919 ihandle = save_ire->ire_ihandle; 7920 7921 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 7922 "flags %04x\n", 7923 (void *)ire, (void *)ipif, flags)); 7924 if ((flags & RTF_MULTIRT) && (fire != NULL) && 7925 (fire->ire_flags & RTF_MULTIRT)) { 7926 /* 7927 * As requested by flags, an IRE_OFFSUBNET was 7928 * looked up on that interface. This ire has 7929 * RTF_MULTIRT flag, so the resolution loop will 7930 * be re-entered to resolve additional routes on 7931 * other interfaces. For that purpose, a copy of 7932 * the packet is performed at this point. 7933 */ 7934 fire->ire_last_used_time = lbolt; 7935 copy_mp = copymsg(first_mp); 7936 if (copy_mp) { 7937 MULTIRT_DEBUG_TAG(copy_mp); 7938 } 7939 } 7940 if ((flags & RTF_SETSRC) && (fire != NULL) && 7941 (fire->ire_flags & RTF_SETSRC)) { 7942 /* 7943 * As requested by flags, an IRE_OFFSUBET was 7944 * looked up on that interface. This ire has 7945 * RTF_SETSRC flag, so the source address of the 7946 * packet must be changed. 7947 */ 7948 ipha->ipha_src = fire->ire_src_addr; 7949 } 7950 } else { 7951 ASSERT((connp == NULL) || 7952 (connp->conn_xmit_if_ill != NULL) || 7953 (connp->conn_dontroute)); 7954 /* 7955 * The only ways we can come here are: 7956 * 1) IP_XMIT_IF socket option is set 7957 * 2) ICMP error message generated from 7958 * ip_mrtun_forward() routine and it needs 7959 * to go through the specified ill. 7960 * 3) SO_DONTROUTE socket option is set 7961 * In all cases, the new ire will not be added 7962 * into cache table. 7963 */ 7964 ire_marks |= IRE_MARK_NOADD; 7965 } 7966 7967 switch (ipif->ipif_net_type) { 7968 case IRE_IF_NORESOLVER: { 7969 /* We have what we need to build an IRE_CACHE. */ 7970 mblk_t *dlureq_mp; 7971 7972 /* 7973 * Create a new dlureq_mp with the 7974 * IP gateway address as destination address in the 7975 * DLPI hdr if the physical length is exactly 4 bytes. 7976 */ 7977 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7978 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 7979 dst_ill->ill_phys_addr_length, 7980 dst_ill->ill_sap, 7981 dst_ill->ill_sap_length); 7982 } else { 7983 /* use the value set in ip_ll_subnet_defaults */ 7984 dlureq_mp = ill_dlur_gen(NULL, 7985 dst_ill->ill_phys_addr_length, 7986 dst_ill->ill_sap, 7987 dst_ill->ill_sap_length); 7988 } 7989 7990 if (dlureq_mp == NULL) 7991 break; 7992 /* 7993 * The new ire inherits the IRE_OFFSUBNET flags 7994 * and source address, if this was requested. 7995 */ 7996 ire = ire_create( 7997 (uchar_t *)&dst, /* dest address */ 7998 (uchar_t *)&ip_g_all_ones, /* mask */ 7999 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8000 NULL, /* gateway address */ 8001 NULL, 8002 &ipif->ipif_mtu, 8003 NULL, /* Fast Path header */ 8004 dst_ill->ill_rq, /* recv-from queue */ 8005 dst_ill->ill_wq, /* send-to queue */ 8006 IRE_CACHE, 8007 dlureq_mp, 8008 src_ipif, 8009 NULL, 8010 (save_ire != NULL ? save_ire->ire_mask : 0), 8011 (fire != NULL) ? /* Parent handle */ 8012 fire->ire_phandle : 0, 8013 ihandle, /* Interface handle */ 8014 (fire != NULL) ? 8015 (fire->ire_flags & 8016 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8017 (save_ire == NULL ? &ire_uinfo_null : 8018 &save_ire->ire_uinfo)); 8019 8020 freeb(dlureq_mp); 8021 8022 if (ire == NULL) { 8023 if (save_ire != NULL) 8024 ire_refrele(save_ire); 8025 break; 8026 } 8027 8028 ire->ire_marks |= ire_marks; 8029 8030 /* Prevent save_ire from getting deleted */ 8031 if (save_ire != NULL) { 8032 IRB_REFHOLD(save_ire->ire_bucket); 8033 /* Has it been removed already ? */ 8034 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8035 IRB_REFRELE(save_ire->ire_bucket); 8036 ire_refrele(save_ire); 8037 break; 8038 } 8039 } 8040 8041 ire_add_then_send(q, ire, first_mp); 8042 8043 /* Assert that save_ire is not deleted yet. */ 8044 if (save_ire != NULL) { 8045 ASSERT(save_ire->ire_ptpn != NULL); 8046 IRB_REFRELE(save_ire->ire_bucket); 8047 ire_refrele(save_ire); 8048 save_ire = NULL; 8049 } 8050 if (fire != NULL) { 8051 ire_refrele(fire); 8052 fire = NULL; 8053 } 8054 8055 /* 8056 * the resolution loop is re-entered if this 8057 * was requested through flags and if we 8058 * actually are in a multirouting case. 8059 */ 8060 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8061 boolean_t need_resolve = 8062 ire_multirt_need_resolve(ipha_dst); 8063 if (!need_resolve) { 8064 MULTIRT_DEBUG_UNTAG(copy_mp); 8065 freemsg(copy_mp); 8066 copy_mp = NULL; 8067 } else { 8068 /* 8069 * ipif_lookup_group() calls 8070 * ire_lookup_multi() that uses 8071 * ire_ftable_lookup() to find 8072 * an IRE_INTERFACE for the group. 8073 * In the multirt case, 8074 * ire_lookup_multi() then invokes 8075 * ire_multirt_lookup() to find 8076 * the next resolvable ire. 8077 * As a result, we obtain an new 8078 * interface, derived from the 8079 * next ire. 8080 */ 8081 ipif_refrele(ipif); 8082 ipif = ipif_lookup_group(ipha_dst, 8083 zoneid); 8084 ip2dbg(("ip_newroute_ipif: " 8085 "multirt dst %08x, ipif %p\n", 8086 htonl(dst), (void *)ipif)); 8087 if (ipif != NULL) { 8088 mp = copy_mp; 8089 copy_mp = NULL; 8090 multirt_resolve_next = B_TRUE; 8091 continue; 8092 } else { 8093 freemsg(copy_mp); 8094 } 8095 } 8096 } 8097 if (ipif != NULL) 8098 ipif_refrele(ipif); 8099 ill_refrele(dst_ill); 8100 ipif_refrele(src_ipif); 8101 return; 8102 } 8103 case IRE_IF_RESOLVER: 8104 /* 8105 * We can't build an IRE_CACHE yet, but at least 8106 * we found a resolver that can help. 8107 */ 8108 res_mp = dst_ill->ill_resolver_mp; 8109 if (!OK_RESOLVER_MP(res_mp)) 8110 break; 8111 8112 /* 8113 * We obtain a partial IRE_CACHE which we will pass 8114 * along with the resolver query. When the response 8115 * comes back it will be there ready for us to add. 8116 * The new ire inherits the IRE_OFFSUBNET flags 8117 * and source address, if this was requested. 8118 * The ire_max_frag is atomically set under the 8119 * irebucket lock in ire_add_v[46]. Only in the 8120 * case of IRE_MARK_NOADD, we set it here itself. 8121 */ 8122 ire = ire_create_mp( 8123 (uchar_t *)&dst, /* dest address */ 8124 (uchar_t *)&ip_g_all_ones, /* mask */ 8125 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8126 NULL, /* gateway address */ 8127 NULL, /* no in_src_addr */ 8128 (ire_marks & IRE_MARK_NOADD) ? 8129 ipif->ipif_mtu : 0, /* max_frag */ 8130 NULL, /* Fast path header */ 8131 dst_ill->ill_rq, /* recv-from queue */ 8132 dst_ill->ill_wq, /* send-to queue */ 8133 IRE_CACHE, 8134 res_mp, 8135 src_ipif, 8136 NULL, 8137 (save_ire != NULL ? save_ire->ire_mask : 0), 8138 (fire != NULL) ? /* Parent handle */ 8139 fire->ire_phandle : 0, 8140 ihandle, /* Interface handle */ 8141 (fire != NULL) ? /* flags if any */ 8142 (fire->ire_flags & 8143 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8144 (save_ire == NULL ? &ire_uinfo_null : 8145 &save_ire->ire_uinfo)); 8146 8147 if (save_ire != NULL) { 8148 ire_refrele(save_ire); 8149 save_ire = NULL; 8150 } 8151 if (ire == NULL) 8152 break; 8153 8154 ire->ire_marks |= ire_marks; 8155 /* 8156 * Construct message chain for the resolver of the 8157 * form: 8158 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8159 * 8160 * NOTE : ire will be added later when the response 8161 * comes back from ARP. If the response does not 8162 * come back, ARP frees the packet. For this reason, 8163 * we can't REFHOLD the bucket of save_ire to prevent 8164 * deletions. We may not be able to REFRELE the 8165 * bucket if the response never comes back. 8166 * Thus, before adding the ire, ire_add_v4 will make 8167 * sure that the interface route does not get deleted. 8168 * This is the only case unlike ip_newroute_v6, 8169 * ip_newroute_ipif_v6 where we can always prevent 8170 * deletions because ire_add_then_send is called after 8171 * creating the IRE. 8172 * If IRE_MARK_NOADD is set, then ire_add_then_send 8173 * does not add this IRE into the IRE CACHE. 8174 */ 8175 ASSERT(ire->ire_mp != NULL); 8176 ire->ire_mp->b_cont = first_mp; 8177 /* Have saved_mp handy, for cleanup if canput fails */ 8178 saved_mp = mp; 8179 mp = ire->ire_dlureq_mp; 8180 ASSERT(mp != NULL); 8181 ire->ire_dlureq_mp = NULL; 8182 linkb(mp, ire->ire_mp); 8183 8184 /* 8185 * Fill in the source and dest addrs for the resolver. 8186 * NOTE: this depends on memory layouts imposed by 8187 * ill_init(). 8188 */ 8189 areq = (areq_t *)mp->b_rptr; 8190 addrp = (ipaddr_t *)((char *)areq + 8191 areq->areq_sender_addr_offset); 8192 *addrp = ire->ire_src_addr; 8193 addrp = (ipaddr_t *)((char *)areq + 8194 areq->areq_target_addr_offset); 8195 *addrp = dst; 8196 /* Up to the resolver. */ 8197 if (canputnext(dst_ill->ill_rq)) { 8198 putnext(dst_ill->ill_rq, mp); 8199 /* 8200 * The response will come back in ip_wput 8201 * with db_type IRE_DB_TYPE. 8202 */ 8203 } else { 8204 ire->ire_dlureq_mp = mp; 8205 mp->b_cont = NULL; 8206 ire_delete(ire); 8207 saved_mp->b_next = NULL; 8208 saved_mp->b_prev = NULL; 8209 freemsg(first_mp); 8210 ip2dbg(("ip_newroute_ipif: dropped\n")); 8211 } 8212 8213 if (fire != NULL) { 8214 ire_refrele(fire); 8215 fire = NULL; 8216 } 8217 8218 8219 /* 8220 * The resolution loop is re-entered if this was 8221 * requested through flags and we actually are 8222 * in a multirouting case. 8223 */ 8224 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8225 boolean_t need_resolve = 8226 ire_multirt_need_resolve(ipha_dst); 8227 if (!need_resolve) { 8228 MULTIRT_DEBUG_UNTAG(copy_mp); 8229 freemsg(copy_mp); 8230 copy_mp = NULL; 8231 } else { 8232 /* 8233 * ipif_lookup_group() calls 8234 * ire_lookup_multi() that uses 8235 * ire_ftable_lookup() to find 8236 * an IRE_INTERFACE for the group. 8237 * In the multirt case, 8238 * ire_lookup_multi() then invokes 8239 * ire_multirt_lookup() to find 8240 * the next resolvable ire. 8241 * As a result, we obtain an new 8242 * interface, derived from the 8243 * next ire. 8244 */ 8245 ipif_refrele(ipif); 8246 ipif = ipif_lookup_group(ipha_dst, 8247 zoneid); 8248 if (ipif != NULL) { 8249 mp = copy_mp; 8250 copy_mp = NULL; 8251 multirt_resolve_next = B_TRUE; 8252 continue; 8253 } else { 8254 freemsg(copy_mp); 8255 } 8256 } 8257 } 8258 if (ipif != NULL) 8259 ipif_refrele(ipif); 8260 ill_refrele(dst_ill); 8261 ipif_refrele(src_ipif); 8262 return; 8263 default: 8264 break; 8265 } 8266 } while (multirt_resolve_next); 8267 8268 err_ret: 8269 ip2dbg(("ip_newroute_ipif: dropped\n")); 8270 if (fire != NULL) 8271 ire_refrele(fire); 8272 ipif_refrele(ipif); 8273 /* Did this packet originate externally? */ 8274 if (dst_ill != NULL) 8275 ill_refrele(dst_ill); 8276 if (src_ipif != NULL) 8277 ipif_refrele(src_ipif); 8278 if (mp->b_prev || mp->b_next) { 8279 mp->b_next = NULL; 8280 mp->b_prev = NULL; 8281 } else { 8282 /* 8283 * Since ip_wput() isn't close to finished, we fill 8284 * in enough of the header for credible error reporting. 8285 */ 8286 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8287 /* Failed */ 8288 freemsg(first_mp); 8289 if (ire != NULL) 8290 ire_refrele(ire); 8291 return; 8292 } 8293 } 8294 /* 8295 * At this point we will have ire only if RTF_BLACKHOLE 8296 * or RTF_REJECT flags are set on the IRE. It will not 8297 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8298 */ 8299 if (ire != NULL) { 8300 if (ire->ire_flags & RTF_BLACKHOLE) { 8301 ire_refrele(ire); 8302 freemsg(first_mp); 8303 return; 8304 } 8305 ire_refrele(ire); 8306 } 8307 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8308 } 8309 8310 /* Name/Value Table Lookup Routine */ 8311 char * 8312 ip_nv_lookup(nv_t *nv, int value) 8313 { 8314 if (!nv) 8315 return (NULL); 8316 for (; nv->nv_name; nv++) { 8317 if (nv->nv_value == value) 8318 return (nv->nv_name); 8319 } 8320 return ("unknown"); 8321 } 8322 8323 /* 8324 * one day it can be patched to 1 from /etc/system for machines that have few 8325 * fast network interfaces feeding multiple cpus. 8326 */ 8327 int ill_stream_putlocks = 0; 8328 8329 /* 8330 * This is a module open, i.e. this is a control stream for access 8331 * to a DLPI device. We allocate an ill_t as the instance data in 8332 * this case. 8333 */ 8334 int 8335 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8336 { 8337 uint32_t mem_cnt; 8338 uint32_t cpu_cnt; 8339 uint32_t min_cnt; 8340 pgcnt_t mem_avail; 8341 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 8342 ill_t *ill; 8343 int err; 8344 8345 /* 8346 * Prevent unprivileged processes from pushing IP so that 8347 * they can't send raw IP. 8348 */ 8349 if (secpolicy_net_rawaccess(credp) != 0) 8350 return (EPERM); 8351 8352 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 8353 q->q_ptr = WR(q)->q_ptr = ill; 8354 8355 /* 8356 * ill_init initializes the ill fields and then sends down 8357 * down a DL_INFO_REQ after calling qprocson. 8358 */ 8359 err = ill_init(q, ill); 8360 if (err != 0) { 8361 mi_free(ill); 8362 q->q_ptr = NULL; 8363 WR(q)->q_ptr = NULL; 8364 return (err); 8365 } 8366 8367 /* ill_init initializes the ipsq marking this thread as writer */ 8368 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 8369 /* Wait for the DL_INFO_ACK */ 8370 mutex_enter(&ill->ill_lock); 8371 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 8372 /* 8373 * Return value of 0 indicates a pending signal. 8374 */ 8375 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 8376 if (err == 0) { 8377 mutex_exit(&ill->ill_lock); 8378 (void) ip_close(q, 0); 8379 return (EINTR); 8380 } 8381 } 8382 mutex_exit(&ill->ill_lock); 8383 8384 /* 8385 * ip_rput_other could have set an error in ill_error on 8386 * receipt of M_ERROR. 8387 */ 8388 8389 err = ill->ill_error; 8390 if (err != 0) { 8391 (void) ip_close(q, 0); 8392 return (err); 8393 } 8394 8395 /* 8396 * ip_ire_max_bucket_cnt is sized below based on the memory 8397 * size and the cpu speed of the machine. This is upper 8398 * bounded by the compile time value of ip_ire_max_bucket_cnt 8399 * and is lower bounded by the compile time value of 8400 * ip_ire_min_bucket_cnt. Similar logic applies to 8401 * ip6_ire_max_bucket_cnt. 8402 */ 8403 mem_avail = kmem_avail(); 8404 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8405 ip_cache_table_size / sizeof (ire_t); 8406 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 8407 8408 min_cnt = MIN(cpu_cnt, mem_cnt); 8409 if (min_cnt < ip_ire_min_bucket_cnt) 8410 min_cnt = ip_ire_min_bucket_cnt; 8411 if (ip_ire_max_bucket_cnt > min_cnt) { 8412 ip_ire_max_bucket_cnt = min_cnt; 8413 } 8414 8415 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8416 ip6_cache_table_size / sizeof (ire_t); 8417 min_cnt = MIN(cpu_cnt, mem_cnt); 8418 if (min_cnt < ip6_ire_min_bucket_cnt) 8419 min_cnt = ip6_ire_min_bucket_cnt; 8420 if (ip6_ire_max_bucket_cnt > min_cnt) { 8421 ip6_ire_max_bucket_cnt = min_cnt; 8422 } 8423 8424 ill->ill_credp = credp; 8425 crhold(credp); 8426 8427 mutex_enter(&ip_mi_lock); 8428 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 8429 mutex_exit(&ip_mi_lock); 8430 if (err) { 8431 (void) ip_close(q, 0); 8432 return (err); 8433 } 8434 return (0); 8435 } 8436 8437 /* IP open routine. */ 8438 int 8439 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8440 { 8441 conn_t *connp; 8442 major_t maj; 8443 8444 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 8445 8446 /* Allow reopen. */ 8447 if (q->q_ptr != NULL) 8448 return (0); 8449 8450 if (sflag & MODOPEN) { 8451 /* This is a module open */ 8452 return (ip_modopen(q, devp, flag, sflag, credp)); 8453 } 8454 8455 8456 /* 8457 * We are opening as a device. This is an IP client stream, and we 8458 * allocate an conn_t as the instance data. 8459 */ 8460 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 8461 connp->conn_upq = q; 8462 q->q_ptr = WR(q)->q_ptr = connp; 8463 8464 /* Minor tells us which /dev entry was opened */ 8465 if (geteminor(*devp) == IPV6_MINOR) { 8466 connp->conn_flags |= IPCL_ISV6; 8467 connp->conn_af_isv6 = B_TRUE; 8468 ip_setqinfo(q, geteminor(*devp), B_FALSE); 8469 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 8470 } else { 8471 connp->conn_af_isv6 = B_FALSE; 8472 connp->conn_pkt_isv6 = B_FALSE; 8473 } 8474 8475 8476 if ((connp->conn_dev = 8477 inet_minor_alloc(ip_minor_arena)) == 0) { 8478 q->q_ptr = WR(q)->q_ptr = NULL; 8479 CONN_DEC_REF(connp); 8480 return (EBUSY); 8481 } 8482 8483 maj = getemajor(*devp); 8484 *devp = makedevice(maj, (minor_t)connp->conn_dev); 8485 8486 /* 8487 * connp->conn_cred is crfree()ed in ip_close(). 8488 */ 8489 connp->conn_cred = credp; 8490 crhold(connp->conn_cred); 8491 8492 connp->conn_zoneid = getzoneid(); 8493 8494 /* 8495 * This should only happen for ndd, netstat, raw socket or other SCTP 8496 * administrative ops. In these cases, we just need a normal conn_t 8497 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 8498 * an error will be returned. 8499 */ 8500 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 8501 connp->conn_rq = q; 8502 connp->conn_wq = WR(q); 8503 } else { 8504 connp->conn_ulp = IPPROTO_SCTP; 8505 connp->conn_rq = connp->conn_wq = NULL; 8506 } 8507 /* Non-zero default values */ 8508 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 8509 8510 /* 8511 * Make the conn globally visible to walkers 8512 */ 8513 mutex_enter(&connp->conn_lock); 8514 connp->conn_state_flags &= ~CONN_INCIPIENT; 8515 mutex_exit(&connp->conn_lock); 8516 ASSERT(connp->conn_ref == 1); 8517 8518 qprocson(q); 8519 8520 return (0); 8521 } 8522 8523 /* 8524 * Change q_qinfo based on the value of isv6. 8525 * This can not called on an ill queue. 8526 * Note that there is no race since either q_qinfo works for conn queues - it 8527 * is just an optimization to enter the best wput routine directly. 8528 */ 8529 void 8530 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 8531 { 8532 ASSERT(q->q_flag & QREADR); 8533 ASSERT(WR(q)->q_next == NULL); 8534 ASSERT(q->q_ptr != NULL); 8535 8536 if (minor == IPV6_MINOR) { 8537 if (bump_mib) 8538 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 8539 q->q_qinfo = &rinit_ipv6; 8540 WR(q)->q_qinfo = &winit_ipv6; 8541 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 8542 } else { 8543 if (bump_mib) 8544 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 8545 q->q_qinfo = &rinit; 8546 WR(q)->q_qinfo = &winit; 8547 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 8548 } 8549 8550 } 8551 8552 /* 8553 * See if IPsec needs loading because of the options in mp. 8554 */ 8555 static boolean_t 8556 ipsec_opt_present(mblk_t *mp) 8557 { 8558 uint8_t *optcp, *next_optcp, *opt_endcp; 8559 struct opthdr *opt; 8560 struct T_opthdr *topt; 8561 int opthdr_len; 8562 t_uscalar_t optname, optlevel; 8563 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 8564 ipsec_req_t *ipsr; 8565 8566 /* 8567 * Walk through the mess, and find IP_SEC_OPT. If it's there, 8568 * return TRUE. 8569 */ 8570 8571 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 8572 opt_endcp = optcp + tor->OPT_length; 8573 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8574 opthdr_len = sizeof (struct T_opthdr); 8575 } else { /* O_OPTMGMT_REQ */ 8576 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 8577 opthdr_len = sizeof (struct opthdr); 8578 } 8579 for (; optcp < opt_endcp; optcp = next_optcp) { 8580 if (optcp + opthdr_len > opt_endcp) 8581 return (B_FALSE); /* Not enough option header. */ 8582 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8583 topt = (struct T_opthdr *)optcp; 8584 optlevel = topt->level; 8585 optname = topt->name; 8586 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 8587 } else { 8588 opt = (struct opthdr *)optcp; 8589 optlevel = opt->level; 8590 optname = opt->name; 8591 next_optcp = optcp + opthdr_len + 8592 _TPI_ALIGN_OPT(opt->len); 8593 } 8594 if ((next_optcp < optcp) || /* wraparound pointer space */ 8595 ((next_optcp >= opt_endcp) && /* last option bad len */ 8596 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 8597 return (B_FALSE); /* bad option buffer */ 8598 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 8599 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 8600 /* 8601 * Check to see if it's an all-bypass or all-zeroes 8602 * IPsec request. Don't bother loading IPsec if 8603 * the socket doesn't want to use it. (A good example 8604 * is a bypass request.) 8605 * 8606 * Basically, if any of the non-NEVER bits are set, 8607 * load IPsec. 8608 */ 8609 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 8610 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 8611 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 8612 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 8613 != 0) 8614 return (B_TRUE); 8615 } 8616 } 8617 return (B_FALSE); 8618 } 8619 8620 /* 8621 * If conn is is waiting for ipsec to finish loading, kick it. 8622 */ 8623 /* ARGSUSED */ 8624 static void 8625 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 8626 { 8627 t_scalar_t optreq_prim; 8628 mblk_t *mp; 8629 cred_t *cr; 8630 int err = 0; 8631 8632 /* 8633 * This function is called, after ipsec loading is complete. 8634 * Since IP checks exclusively and atomically (i.e it prevents 8635 * ipsec load from completing until ip_optcom_req completes) 8636 * whether ipsec load is complete, there cannot be a race with IP 8637 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 8638 */ 8639 mutex_enter(&connp->conn_lock); 8640 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 8641 ASSERT(connp->conn_ipsec_opt_mp != NULL); 8642 mp = connp->conn_ipsec_opt_mp; 8643 connp->conn_ipsec_opt_mp = NULL; 8644 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 8645 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 8646 mutex_exit(&connp->conn_lock); 8647 8648 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 8649 8650 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 8651 if (optreq_prim == T_OPTMGMT_REQ) { 8652 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8653 &ip_opt_obj); 8654 } else { 8655 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 8656 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8657 &ip_opt_obj); 8658 } 8659 if (err != EINPROGRESS) 8660 CONN_OPER_PENDING_DONE(connp); 8661 return; 8662 } 8663 mutex_exit(&connp->conn_lock); 8664 } 8665 8666 /* 8667 * Called from the ipsec_loader thread, outside any perimeter, to tell 8668 * ip qenable any of the queues waiting for the ipsec loader to 8669 * complete. 8670 * 8671 * Use ip_mi_lock to be safe here: all modifications of the mi lists 8672 * are done with this lock held, so it's guaranteed that none of the 8673 * links will change along the way. 8674 */ 8675 void 8676 ip_ipsec_load_complete() 8677 { 8678 ipcl_walk(conn_restart_ipsec_waiter, NULL); 8679 } 8680 8681 /* 8682 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 8683 * determines the grp on which it has to become exclusive, queues the mp 8684 * and sq draining restarts the optmgmt 8685 */ 8686 static boolean_t 8687 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 8688 { 8689 conn_t *connp; 8690 8691 /* 8692 * Take IPsec requests and treat them special. 8693 */ 8694 if (ipsec_opt_present(mp)) { 8695 /* First check if IPsec is loaded. */ 8696 mutex_enter(&ipsec_loader_lock); 8697 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 8698 mutex_exit(&ipsec_loader_lock); 8699 return (B_FALSE); 8700 } 8701 connp = Q_TO_CONN(q); 8702 mutex_enter(&connp->conn_lock); 8703 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 8704 8705 ASSERT(connp->conn_ipsec_opt_mp == NULL); 8706 connp->conn_ipsec_opt_mp = mp; 8707 mutex_exit(&connp->conn_lock); 8708 mutex_exit(&ipsec_loader_lock); 8709 8710 ipsec_loader_loadnow(); 8711 return (B_TRUE); 8712 } 8713 return (B_FALSE); 8714 } 8715 8716 /* 8717 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 8718 * all of them are copied to the conn_t. If the req is "zero", the policy is 8719 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 8720 * fields. 8721 * We keep only the latest setting of the policy and thus policy setting 8722 * is not incremental/cumulative. 8723 * 8724 * Requests to set policies with multiple alternative actions will 8725 * go through a different API. 8726 */ 8727 int 8728 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 8729 { 8730 uint_t ah_req = 0; 8731 uint_t esp_req = 0; 8732 uint_t se_req = 0; 8733 ipsec_selkey_t sel; 8734 ipsec_act_t *actp = NULL; 8735 uint_t nact; 8736 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 8737 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 8738 ipsec_policy_root_t *pr; 8739 ipsec_policy_head_t *ph; 8740 int fam; 8741 boolean_t is_pol_reset; 8742 int error = 0; 8743 8744 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 8745 8746 /* 8747 * The IP_SEC_OPT option does not allow variable length parameters, 8748 * hence a request cannot be NULL. 8749 */ 8750 if (req == NULL) 8751 return (EINVAL); 8752 8753 ah_req = req->ipsr_ah_req; 8754 esp_req = req->ipsr_esp_req; 8755 se_req = req->ipsr_self_encap_req; 8756 8757 /* 8758 * Are we dealing with a request to reset the policy (i.e. 8759 * zero requests). 8760 */ 8761 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 8762 (esp_req & REQ_MASK) == 0 && 8763 (se_req & REQ_MASK) == 0); 8764 8765 if (!is_pol_reset) { 8766 /* 8767 * If we couldn't load IPsec, fail with "protocol 8768 * not supported". 8769 * IPsec may not have been loaded for a request with zero 8770 * policies, so we don't fail in this case. 8771 */ 8772 mutex_enter(&ipsec_loader_lock); 8773 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 8774 mutex_exit(&ipsec_loader_lock); 8775 return (EPROTONOSUPPORT); 8776 } 8777 mutex_exit(&ipsec_loader_lock); 8778 8779 /* 8780 * Test for valid requests. Invalid algorithms 8781 * need to be tested by IPSEC code because new 8782 * algorithms can be added dynamically. 8783 */ 8784 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8785 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8786 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 8787 return (EINVAL); 8788 } 8789 8790 /* 8791 * Only privileged users can issue these 8792 * requests. 8793 */ 8794 if (((ah_req & IPSEC_PREF_NEVER) || 8795 (esp_req & IPSEC_PREF_NEVER) || 8796 (se_req & IPSEC_PREF_NEVER)) && 8797 secpolicy_net_config(cr, B_FALSE) != 0) { 8798 return (EPERM); 8799 } 8800 8801 /* 8802 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 8803 * are mutually exclusive. 8804 */ 8805 if (((ah_req & REQ_MASK) == REQ_MASK) || 8806 ((esp_req & REQ_MASK) == REQ_MASK) || 8807 ((se_req & REQ_MASK) == REQ_MASK)) { 8808 /* Both of them are set */ 8809 return (EINVAL); 8810 } 8811 } 8812 8813 mutex_enter(&connp->conn_lock); 8814 8815 /* 8816 * If we have already cached policies in ip_bind_connected*(), don't 8817 * let them change now. We cache policies for connections 8818 * whose src,dst [addr, port] is known. The exception to this is 8819 * tunnels. Tunnels are allowed to change policies after having 8820 * become fully bound. 8821 */ 8822 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 8823 mutex_exit(&connp->conn_lock); 8824 return (EINVAL); 8825 } 8826 8827 /* 8828 * We have a zero policies, reset the connection policy if already 8829 * set. This will cause the connection to inherit the 8830 * global policy, if any. 8831 */ 8832 if (is_pol_reset) { 8833 if (connp->conn_policy != NULL) { 8834 IPPH_REFRELE(connp->conn_policy); 8835 connp->conn_policy = NULL; 8836 } 8837 connp->conn_flags &= ~IPCL_CHECK_POLICY; 8838 connp->conn_in_enforce_policy = B_FALSE; 8839 connp->conn_out_enforce_policy = B_FALSE; 8840 mutex_exit(&connp->conn_lock); 8841 return (0); 8842 } 8843 8844 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 8845 if (ph == NULL) 8846 goto enomem; 8847 8848 ipsec_actvec_from_req(req, &actp, &nact); 8849 if (actp == NULL) 8850 goto enomem; 8851 8852 /* 8853 * Always allocate IPv4 policy entries, since they can also 8854 * apply to ipv6 sockets being used in ipv4-compat mode. 8855 */ 8856 bzero(&sel, sizeof (sel)); 8857 sel.ipsl_valid = IPSL_IPV4; 8858 8859 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 8860 if (pin4 == NULL) 8861 goto enomem; 8862 8863 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 8864 if (pout4 == NULL) 8865 goto enomem; 8866 8867 if (connp->conn_pkt_isv6) { 8868 /* 8869 * We're looking at a v6 socket, also allocate the 8870 * v6-specific entries... 8871 */ 8872 sel.ipsl_valid = IPSL_IPV6; 8873 pin6 = ipsec_policy_create(&sel, actp, nact, 8874 IPSEC_PRIO_SOCKET); 8875 if (pin6 == NULL) 8876 goto enomem; 8877 8878 pout6 = ipsec_policy_create(&sel, actp, nact, 8879 IPSEC_PRIO_SOCKET); 8880 if (pout6 == NULL) 8881 goto enomem; 8882 8883 /* 8884 * .. and file them away in the right place. 8885 */ 8886 fam = IPSEC_AF_V6; 8887 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 8888 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 8889 ipsec_insert_always(&ph->iph_rulebyid, pin6); 8890 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 8891 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 8892 ipsec_insert_always(&ph->iph_rulebyid, pout6); 8893 } 8894 8895 ipsec_actvec_free(actp, nact); 8896 8897 /* 8898 * File the v4 policies. 8899 */ 8900 fam = IPSEC_AF_V4; 8901 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 8902 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 8903 ipsec_insert_always(&ph->iph_rulebyid, pin4); 8904 8905 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 8906 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 8907 ipsec_insert_always(&ph->iph_rulebyid, pout4); 8908 8909 /* 8910 * If the requests need security, set enforce_policy. 8911 * If the requests are IPSEC_PREF_NEVER, one should 8912 * still set conn_out_enforce_policy so that an ipsec_out 8913 * gets attached in ip_wput. This is needed so that 8914 * for connections that we don't cache policy in ip_bind, 8915 * if global policy matches in ip_wput_attach_policy, we 8916 * don't wrongly inherit global policy. Similarly, we need 8917 * to set conn_in_enforce_policy also so that we don't verify 8918 * policy wrongly. 8919 */ 8920 if ((ah_req & REQ_MASK) != 0 || 8921 (esp_req & REQ_MASK) != 0 || 8922 (se_req & REQ_MASK) != 0) { 8923 connp->conn_in_enforce_policy = B_TRUE; 8924 connp->conn_out_enforce_policy = B_TRUE; 8925 connp->conn_flags |= IPCL_CHECK_POLICY; 8926 } 8927 8928 /* 8929 * Tunnels are allowed to set policy after having been fully bound. 8930 * If that's the case, cache policy here. 8931 */ 8932 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 8933 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 8934 8935 mutex_exit(&connp->conn_lock); 8936 return (error); 8937 #undef REQ_MASK 8938 8939 /* 8940 * Common memory-allocation-failure exit path. 8941 */ 8942 enomem: 8943 mutex_exit(&connp->conn_lock); 8944 if (actp != NULL) 8945 ipsec_actvec_free(actp, nact); 8946 if (pin4 != NULL) 8947 IPPOL_REFRELE(pin4); 8948 if (pout4 != NULL) 8949 IPPOL_REFRELE(pout4); 8950 if (pin6 != NULL) 8951 IPPOL_REFRELE(pin6); 8952 if (pout6 != NULL) 8953 IPPOL_REFRELE(pout6); 8954 return (ENOMEM); 8955 } 8956 8957 /* 8958 * Only for options that pass in an IP addr. Currently only V4 options 8959 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 8960 * So this function assumes level is IPPROTO_IP 8961 */ 8962 int 8963 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 8964 mblk_t *first_mp) 8965 { 8966 ipif_t *ipif = NULL; 8967 int error; 8968 ill_t *ill; 8969 8970 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 8971 8972 if (addr != INADDR_ANY || checkonly) { 8973 ASSERT(connp != NULL); 8974 ipif = ipif_lookup_addr(addr, NULL, connp->conn_zoneid, 8975 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, &error); 8976 if (ipif == NULL) { 8977 if (error == EINPROGRESS) 8978 return (error); 8979 else if (option == IP_MULTICAST_IF) 8980 return (EHOSTUNREACH); 8981 else 8982 return (EINVAL); 8983 } else if (checkonly) { 8984 if (option == IP_MULTICAST_IF) { 8985 ill = ipif->ipif_ill; 8986 /* not supported by the virtual network iface */ 8987 if (IS_VNI(ill)) { 8988 ipif_refrele(ipif); 8989 return (EINVAL); 8990 } 8991 } 8992 ipif_refrele(ipif); 8993 return (0); 8994 } 8995 ill = ipif->ipif_ill; 8996 mutex_enter(&connp->conn_lock); 8997 mutex_enter(&ill->ill_lock); 8998 if ((ill->ill_state_flags & ILL_CONDEMNED) || 8999 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9000 mutex_exit(&ill->ill_lock); 9001 mutex_exit(&connp->conn_lock); 9002 ipif_refrele(ipif); 9003 return (option == IP_MULTICAST_IF ? 9004 EHOSTUNREACH : EINVAL); 9005 } 9006 } else { 9007 mutex_enter(&connp->conn_lock); 9008 } 9009 9010 /* None of the options below are supported on the VNI */ 9011 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9012 mutex_exit(&ill->ill_lock); 9013 mutex_exit(&connp->conn_lock); 9014 ipif_refrele(ipif); 9015 return (EINVAL); 9016 } 9017 9018 switch (option) { 9019 case IP_DONTFAILOVER_IF: 9020 /* 9021 * This option is used by in.mpathd to ensure 9022 * that IPMP probe packets only go out on the 9023 * test interfaces. in.mpathd sets this option 9024 * on the non-failover interfaces. 9025 * For backward compatibility, this option 9026 * implicitly sets IP_MULTICAST_IF, as used 9027 * be done in bind(), so that ip_wput gets 9028 * this ipif to send mcast packets. 9029 */ 9030 if (ipif != NULL) { 9031 ASSERT(addr != INADDR_ANY); 9032 connp->conn_nofailover_ill = ipif->ipif_ill; 9033 connp->conn_multicast_ipif = ipif; 9034 } else { 9035 ASSERT(addr == INADDR_ANY); 9036 connp->conn_nofailover_ill = NULL; 9037 connp->conn_multicast_ipif = NULL; 9038 } 9039 break; 9040 9041 case IP_MULTICAST_IF: 9042 connp->conn_multicast_ipif = ipif; 9043 break; 9044 } 9045 9046 if (ipif != NULL) { 9047 mutex_exit(&ill->ill_lock); 9048 mutex_exit(&connp->conn_lock); 9049 ipif_refrele(ipif); 9050 return (0); 9051 } 9052 mutex_exit(&connp->conn_lock); 9053 /* We succeded in cleared the option */ 9054 return (0); 9055 } 9056 9057 /* 9058 * For options that pass in an ifindex specifying the ill. V6 options always 9059 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9060 */ 9061 int 9062 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9063 int level, int option, mblk_t *first_mp) 9064 { 9065 ill_t *ill = NULL; 9066 int error = 0; 9067 9068 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9069 if (ifindex != 0) { 9070 ASSERT(connp != NULL); 9071 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9072 first_mp, ip_restart_optmgmt, &error); 9073 if (ill != NULL) { 9074 if (checkonly) { 9075 /* not supported by the virtual network iface */ 9076 if (IS_VNI(ill)) { 9077 ill_refrele(ill); 9078 return (EINVAL); 9079 } 9080 ill_refrele(ill); 9081 return (0); 9082 } 9083 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9084 0, NULL)) { 9085 ill_refrele(ill); 9086 ill = NULL; 9087 mutex_enter(&connp->conn_lock); 9088 goto setit; 9089 } 9090 mutex_enter(&connp->conn_lock); 9091 mutex_enter(&ill->ill_lock); 9092 if (ill->ill_state_flags & ILL_CONDEMNED) { 9093 mutex_exit(&ill->ill_lock); 9094 mutex_exit(&connp->conn_lock); 9095 ill_refrele(ill); 9096 ill = NULL; 9097 mutex_enter(&connp->conn_lock); 9098 } 9099 goto setit; 9100 } else if (error == EINPROGRESS) { 9101 return (error); 9102 } else { 9103 error = 0; 9104 } 9105 } 9106 mutex_enter(&connp->conn_lock); 9107 setit: 9108 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9109 9110 /* 9111 * The options below assume that the ILL (if any) transmits and/or 9112 * receives traffic. Neither of which is true for the virtual network 9113 * interface, so fail setting these on a VNI. 9114 */ 9115 if (IS_VNI(ill)) { 9116 ASSERT(ill != NULL); 9117 mutex_exit(&ill->ill_lock); 9118 mutex_exit(&connp->conn_lock); 9119 ill_refrele(ill); 9120 return (EINVAL); 9121 } 9122 9123 if (level == IPPROTO_IP) { 9124 switch (option) { 9125 case IP_BOUND_IF: 9126 connp->conn_incoming_ill = ill; 9127 connp->conn_outgoing_ill = ill; 9128 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9129 0 : ifindex; 9130 break; 9131 9132 case IP_XMIT_IF: 9133 /* 9134 * Similar to IP_BOUND_IF, but this only 9135 * determines the outgoing interface for 9136 * unicast packets. Also no IRE_CACHE entry 9137 * is added for the destination of the 9138 * outgoing packets. This feature is needed 9139 * for mobile IP. 9140 */ 9141 connp->conn_xmit_if_ill = ill; 9142 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9143 0 : ifindex; 9144 break; 9145 9146 case IP_MULTICAST_IF: 9147 /* 9148 * This option is an internal special. The socket 9149 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9150 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9151 * specifies an ifindex and we try first on V6 ill's. 9152 * If we don't find one, we they try using on v4 ill's 9153 * intenally and we come here. 9154 */ 9155 if (!checkonly && ill != NULL) { 9156 ipif_t *ipif; 9157 ipif = ill->ill_ipif; 9158 9159 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9160 mutex_exit(&ill->ill_lock); 9161 mutex_exit(&connp->conn_lock); 9162 ill_refrele(ill); 9163 ill = NULL; 9164 mutex_enter(&connp->conn_lock); 9165 } else { 9166 connp->conn_multicast_ipif = ipif; 9167 } 9168 } 9169 break; 9170 } 9171 } else { 9172 switch (option) { 9173 case IPV6_BOUND_IF: 9174 connp->conn_incoming_ill = ill; 9175 connp->conn_outgoing_ill = ill; 9176 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9177 0 : ifindex; 9178 break; 9179 9180 case IPV6_BOUND_PIF: 9181 /* 9182 * Limit all transmit to this ill. 9183 * Unlike IPV6_BOUND_IF, using this option 9184 * prevents load spreading and failover from 9185 * happening when the interface is part of the 9186 * group. That's why we don't need to remember 9187 * the ifindex in orig_bound_ifindex as in 9188 * IPV6_BOUND_IF. 9189 */ 9190 connp->conn_outgoing_pill = ill; 9191 break; 9192 9193 case IPV6_DONTFAILOVER_IF: 9194 /* 9195 * This option is used by in.mpathd to ensure 9196 * that IPMP probe packets only go out on the 9197 * test interfaces. in.mpathd sets this option 9198 * on the non-failover interfaces. 9199 */ 9200 connp->conn_nofailover_ill = ill; 9201 /* 9202 * For backward compatibility, this option 9203 * implicitly sets ip_multicast_ill as used in 9204 * IP_MULTICAST_IF so that ip_wput gets 9205 * this ipif to send mcast packets. 9206 */ 9207 connp->conn_multicast_ill = ill; 9208 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9209 0 : ifindex; 9210 break; 9211 9212 case IPV6_MULTICAST_IF: 9213 /* 9214 * Set conn_multicast_ill to be the IPv6 ill. 9215 * Set conn_multicast_ipif to be an IPv4 ipif 9216 * for ifindex to make IPv4 mapped addresses 9217 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9218 * Even if no IPv6 ill exists for the ifindex 9219 * we need to check for an IPv4 ifindex in order 9220 * for this to work with mapped addresses. In that 9221 * case only set conn_multicast_ipif. 9222 */ 9223 if (!checkonly) { 9224 if (ifindex == 0) { 9225 connp->conn_multicast_ill = NULL; 9226 connp->conn_orig_multicast_ifindex = 0; 9227 connp->conn_multicast_ipif = NULL; 9228 } else if (ill != NULL) { 9229 connp->conn_multicast_ill = ill; 9230 connp->conn_orig_multicast_ifindex = 9231 ifindex; 9232 } 9233 } 9234 break; 9235 } 9236 } 9237 9238 if (ill != NULL) { 9239 mutex_exit(&ill->ill_lock); 9240 mutex_exit(&connp->conn_lock); 9241 ill_refrele(ill); 9242 return (0); 9243 } 9244 mutex_exit(&connp->conn_lock); 9245 /* 9246 * We succeeded in clearing the option (ifindex == 0) or failed to 9247 * locate the ill and could not set the option (ifindex != 0) 9248 */ 9249 return (ifindex == 0 ? 0 : EINVAL); 9250 } 9251 9252 /* This routine sets socket options. */ 9253 /* ARGSUSED */ 9254 int 9255 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9256 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9257 void *dummy, cred_t *cr, mblk_t *first_mp) 9258 { 9259 int *i1 = (int *)invalp; 9260 conn_t *connp = Q_TO_CONN(q); 9261 int error = 0; 9262 boolean_t checkonly; 9263 ire_t *ire; 9264 boolean_t found; 9265 9266 switch (optset_context) { 9267 9268 case SETFN_OPTCOM_CHECKONLY: 9269 checkonly = B_TRUE; 9270 /* 9271 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9272 * inlen != 0 implies value supplied and 9273 * we have to "pretend" to set it. 9274 * inlen == 0 implies that there is no 9275 * value part in T_CHECK request and just validation 9276 * done elsewhere should be enough, we just return here. 9277 */ 9278 if (inlen == 0) { 9279 *outlenp = 0; 9280 return (0); 9281 } 9282 break; 9283 case SETFN_OPTCOM_NEGOTIATE: 9284 case SETFN_UD_NEGOTIATE: 9285 case SETFN_CONN_NEGOTIATE: 9286 checkonly = B_FALSE; 9287 break; 9288 default: 9289 /* 9290 * We should never get here 9291 */ 9292 *outlenp = 0; 9293 return (EINVAL); 9294 } 9295 9296 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9297 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9298 9299 /* 9300 * For fixed length options, no sanity check 9301 * of passed in length is done. It is assumed *_optcom_req() 9302 * routines do the right thing. 9303 */ 9304 9305 switch (level) { 9306 case SOL_SOCKET: 9307 /* 9308 * conn_lock protects the bitfields, and is used to 9309 * set the fields atomically. 9310 */ 9311 switch (name) { 9312 case SO_BROADCAST: 9313 if (!checkonly) { 9314 /* TODO: use value someplace? */ 9315 mutex_enter(&connp->conn_lock); 9316 connp->conn_broadcast = *i1 ? 1 : 0; 9317 mutex_exit(&connp->conn_lock); 9318 } 9319 break; /* goto sizeof (int) option return */ 9320 case SO_USELOOPBACK: 9321 if (!checkonly) { 9322 /* TODO: use value someplace? */ 9323 mutex_enter(&connp->conn_lock); 9324 connp->conn_loopback = *i1 ? 1 : 0; 9325 mutex_exit(&connp->conn_lock); 9326 } 9327 break; /* goto sizeof (int) option return */ 9328 case SO_DONTROUTE: 9329 if (!checkonly) { 9330 mutex_enter(&connp->conn_lock); 9331 connp->conn_dontroute = *i1 ? 1 : 0; 9332 mutex_exit(&connp->conn_lock); 9333 } 9334 break; /* goto sizeof (int) option return */ 9335 case SO_REUSEADDR: 9336 if (!checkonly) { 9337 mutex_enter(&connp->conn_lock); 9338 connp->conn_reuseaddr = *i1 ? 1 : 0; 9339 mutex_exit(&connp->conn_lock); 9340 } 9341 break; /* goto sizeof (int) option return */ 9342 case SO_PROTOTYPE: 9343 if (!checkonly) { 9344 mutex_enter(&connp->conn_lock); 9345 connp->conn_proto = *i1; 9346 mutex_exit(&connp->conn_lock); 9347 } 9348 break; /* goto sizeof (int) option return */ 9349 default: 9350 /* 9351 * "soft" error (negative) 9352 * option not handled at this level 9353 * Note: Do not modify *outlenp 9354 */ 9355 return (-EINVAL); 9356 } 9357 break; 9358 case IPPROTO_IP: 9359 switch (name) { 9360 case IP_MULTICAST_IF: 9361 case IP_DONTFAILOVER_IF: { 9362 ipaddr_t addr = *i1; 9363 9364 error = ip_opt_set_ipif(connp, addr, checkonly, name, 9365 first_mp); 9366 if (error != 0) 9367 return (error); 9368 break; /* goto sizeof (int) option return */ 9369 } 9370 9371 case IP_MULTICAST_TTL: 9372 /* Recorded in transport above IP */ 9373 *outvalp = *invalp; 9374 *outlenp = sizeof (uchar_t); 9375 return (0); 9376 case IP_MULTICAST_LOOP: 9377 if (!checkonly) { 9378 mutex_enter(&connp->conn_lock); 9379 connp->conn_multicast_loop = *invalp ? 1 : 0; 9380 mutex_exit(&connp->conn_lock); 9381 } 9382 *outvalp = *invalp; 9383 *outlenp = sizeof (uchar_t); 9384 return (0); 9385 case IP_ADD_MEMBERSHIP: 9386 case MCAST_JOIN_GROUP: 9387 case IP_DROP_MEMBERSHIP: 9388 case MCAST_LEAVE_GROUP: { 9389 struct ip_mreq *mreqp; 9390 struct group_req *greqp; 9391 ire_t *ire; 9392 boolean_t done = B_FALSE; 9393 ipaddr_t group, ifaddr; 9394 struct sockaddr_in *sin; 9395 uint32_t *ifindexp; 9396 boolean_t mcast_opt = B_TRUE; 9397 mcast_record_t fmode; 9398 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9399 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9400 9401 switch (name) { 9402 case IP_ADD_MEMBERSHIP: 9403 mcast_opt = B_FALSE; 9404 /* FALLTHRU */ 9405 case MCAST_JOIN_GROUP: 9406 fmode = MODE_IS_EXCLUDE; 9407 optfn = ip_opt_add_group; 9408 break; 9409 9410 case IP_DROP_MEMBERSHIP: 9411 mcast_opt = B_FALSE; 9412 /* FALLTHRU */ 9413 case MCAST_LEAVE_GROUP: 9414 fmode = MODE_IS_INCLUDE; 9415 optfn = ip_opt_delete_group; 9416 break; 9417 } 9418 9419 if (mcast_opt) { 9420 greqp = (struct group_req *)i1; 9421 sin = (struct sockaddr_in *)&greqp->gr_group; 9422 if (sin->sin_family != AF_INET) { 9423 *outlenp = 0; 9424 return (ENOPROTOOPT); 9425 } 9426 group = (ipaddr_t)sin->sin_addr.s_addr; 9427 ifaddr = INADDR_ANY; 9428 ifindexp = &greqp->gr_interface; 9429 } else { 9430 mreqp = (struct ip_mreq *)i1; 9431 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 9432 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 9433 ifindexp = NULL; 9434 } 9435 9436 /* 9437 * In the multirouting case, we need to replicate 9438 * the request on all interfaces that will take part 9439 * in replication. We do so because multirouting is 9440 * reflective, thus we will probably receive multi- 9441 * casts on those interfaces. 9442 * The ip_multirt_apply_membership() succeeds if the 9443 * operation succeeds on at least one interface. 9444 */ 9445 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 9446 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9447 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9448 if (ire != NULL) { 9449 if (ire->ire_flags & RTF_MULTIRT) { 9450 error = ip_multirt_apply_membership( 9451 optfn, ire, connp, checkonly, group, 9452 fmode, INADDR_ANY, first_mp); 9453 done = B_TRUE; 9454 } 9455 ire_refrele(ire); 9456 } 9457 if (!done) { 9458 error = optfn(connp, checkonly, group, ifaddr, 9459 ifindexp, fmode, INADDR_ANY, first_mp); 9460 } 9461 if (error) { 9462 /* 9463 * EINPROGRESS is a soft error, needs retry 9464 * so don't make *outlenp zero. 9465 */ 9466 if (error != EINPROGRESS) 9467 *outlenp = 0; 9468 return (error); 9469 } 9470 /* OK return - copy input buffer into output buffer */ 9471 if (invalp != outvalp) { 9472 /* don't trust bcopy for identical src/dst */ 9473 bcopy(invalp, outvalp, inlen); 9474 } 9475 *outlenp = inlen; 9476 return (0); 9477 } 9478 case IP_BLOCK_SOURCE: 9479 case IP_UNBLOCK_SOURCE: 9480 case IP_ADD_SOURCE_MEMBERSHIP: 9481 case IP_DROP_SOURCE_MEMBERSHIP: 9482 case MCAST_BLOCK_SOURCE: 9483 case MCAST_UNBLOCK_SOURCE: 9484 case MCAST_JOIN_SOURCE_GROUP: 9485 case MCAST_LEAVE_SOURCE_GROUP: { 9486 struct ip_mreq_source *imreqp; 9487 struct group_source_req *gsreqp; 9488 in_addr_t grp, src, ifaddr = INADDR_ANY; 9489 uint32_t ifindex = 0; 9490 mcast_record_t fmode; 9491 struct sockaddr_in *sin; 9492 ire_t *ire; 9493 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 9494 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9495 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9496 9497 switch (name) { 9498 case IP_BLOCK_SOURCE: 9499 mcast_opt = B_FALSE; 9500 /* FALLTHRU */ 9501 case MCAST_BLOCK_SOURCE: 9502 fmode = MODE_IS_EXCLUDE; 9503 optfn = ip_opt_add_group; 9504 break; 9505 9506 case IP_UNBLOCK_SOURCE: 9507 mcast_opt = B_FALSE; 9508 /* FALLTHRU */ 9509 case MCAST_UNBLOCK_SOURCE: 9510 fmode = MODE_IS_EXCLUDE; 9511 optfn = ip_opt_delete_group; 9512 break; 9513 9514 case IP_ADD_SOURCE_MEMBERSHIP: 9515 mcast_opt = B_FALSE; 9516 /* FALLTHRU */ 9517 case MCAST_JOIN_SOURCE_GROUP: 9518 fmode = MODE_IS_INCLUDE; 9519 optfn = ip_opt_add_group; 9520 break; 9521 9522 case IP_DROP_SOURCE_MEMBERSHIP: 9523 mcast_opt = B_FALSE; 9524 /* FALLTHRU */ 9525 case MCAST_LEAVE_SOURCE_GROUP: 9526 fmode = MODE_IS_INCLUDE; 9527 optfn = ip_opt_delete_group; 9528 break; 9529 } 9530 9531 if (mcast_opt) { 9532 gsreqp = (struct group_source_req *)i1; 9533 if (gsreqp->gsr_group.ss_family != AF_INET) { 9534 *outlenp = 0; 9535 return (ENOPROTOOPT); 9536 } 9537 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 9538 grp = (ipaddr_t)sin->sin_addr.s_addr; 9539 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 9540 src = (ipaddr_t)sin->sin_addr.s_addr; 9541 ifindex = gsreqp->gsr_interface; 9542 } else { 9543 imreqp = (struct ip_mreq_source *)i1; 9544 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 9545 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 9546 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 9547 } 9548 9549 /* 9550 * In the multirouting case, we need to replicate 9551 * the request as noted in the mcast cases above. 9552 */ 9553 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 9554 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9555 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9556 if (ire != NULL) { 9557 if (ire->ire_flags & RTF_MULTIRT) { 9558 error = ip_multirt_apply_membership( 9559 optfn, ire, connp, checkonly, grp, 9560 fmode, src, first_mp); 9561 done = B_TRUE; 9562 } 9563 ire_refrele(ire); 9564 } 9565 if (!done) { 9566 error = optfn(connp, checkonly, grp, ifaddr, 9567 &ifindex, fmode, src, first_mp); 9568 } 9569 if (error != 0) { 9570 /* 9571 * EINPROGRESS is a soft error, needs retry 9572 * so don't make *outlenp zero. 9573 */ 9574 if (error != EINPROGRESS) 9575 *outlenp = 0; 9576 return (error); 9577 } 9578 /* OK return - copy input buffer into output buffer */ 9579 if (invalp != outvalp) { 9580 bcopy(invalp, outvalp, inlen); 9581 } 9582 *outlenp = inlen; 9583 return (0); 9584 } 9585 case IP_SEC_OPT: 9586 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 9587 if (error != 0) { 9588 *outlenp = 0; 9589 return (error); 9590 } 9591 break; 9592 case IP_HDRINCL: 9593 case IP_OPTIONS: 9594 case T_IP_OPTIONS: 9595 case IP_TOS: 9596 case T_IP_TOS: 9597 case IP_TTL: 9598 case IP_RECVDSTADDR: 9599 case IP_RECVOPTS: 9600 /* OK return - copy input buffer into output buffer */ 9601 if (invalp != outvalp) { 9602 /* don't trust bcopy for identical src/dst */ 9603 bcopy(invalp, outvalp, inlen); 9604 } 9605 *outlenp = inlen; 9606 return (0); 9607 case IP_RECVIF: 9608 /* Retrieve the inbound interface index */ 9609 if (!checkonly) { 9610 mutex_enter(&connp->conn_lock); 9611 connp->conn_recvif = *i1 ? 1 : 0; 9612 mutex_exit(&connp->conn_lock); 9613 } 9614 break; /* goto sizeof (int) option return */ 9615 case IP_RECVSLLA: 9616 /* Retrieve the source link layer address */ 9617 if (!checkonly) { 9618 mutex_enter(&connp->conn_lock); 9619 connp->conn_recvslla = *i1 ? 1 : 0; 9620 mutex_exit(&connp->conn_lock); 9621 } 9622 break; /* goto sizeof (int) option return */ 9623 case MRT_INIT: 9624 case MRT_DONE: 9625 case MRT_ADD_VIF: 9626 case MRT_DEL_VIF: 9627 case MRT_ADD_MFC: 9628 case MRT_DEL_MFC: 9629 case MRT_ASSERT: 9630 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 9631 *outlenp = 0; 9632 return (error); 9633 } 9634 error = ip_mrouter_set((int)name, q, checkonly, 9635 (uchar_t *)invalp, inlen, first_mp); 9636 if (error) { 9637 *outlenp = 0; 9638 return (error); 9639 } 9640 /* OK return - copy input buffer into output buffer */ 9641 if (invalp != outvalp) { 9642 /* don't trust bcopy for identical src/dst */ 9643 bcopy(invalp, outvalp, inlen); 9644 } 9645 *outlenp = inlen; 9646 return (0); 9647 case IP_BOUND_IF: 9648 case IP_XMIT_IF: 9649 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9650 level, name, first_mp); 9651 if (error != 0) 9652 return (error); 9653 break; /* goto sizeof (int) option return */ 9654 9655 case IP_UNSPEC_SRC: 9656 /* Allow sending with a zero source address */ 9657 if (!checkonly) { 9658 mutex_enter(&connp->conn_lock); 9659 connp->conn_unspec_src = *i1 ? 1 : 0; 9660 mutex_exit(&connp->conn_lock); 9661 } 9662 break; /* goto sizeof (int) option return */ 9663 default: 9664 /* 9665 * "soft" error (negative) 9666 * option not handled at this level 9667 * Note: Do not modify *outlenp 9668 */ 9669 return (-EINVAL); 9670 } 9671 break; 9672 case IPPROTO_IPV6: 9673 switch (name) { 9674 case IPV6_BOUND_IF: 9675 case IPV6_BOUND_PIF: 9676 case IPV6_DONTFAILOVER_IF: 9677 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9678 level, name, first_mp); 9679 if (error != 0) 9680 return (error); 9681 break; /* goto sizeof (int) option return */ 9682 9683 case IPV6_MULTICAST_IF: 9684 /* 9685 * The only possible errors are EINPROGRESS and 9686 * EINVAL. EINPROGRESS will be restarted and is not 9687 * a hard error. We call this option on both V4 and V6 9688 * If both return EINVAL, then this call returns 9689 * EINVAL. If at least one of them succeeds we 9690 * return success. 9691 */ 9692 found = B_FALSE; 9693 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9694 level, name, first_mp); 9695 if (error == EINPROGRESS) 9696 return (error); 9697 if (error == 0) 9698 found = B_TRUE; 9699 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9700 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 9701 if (error == 0) 9702 found = B_TRUE; 9703 if (!found) 9704 return (error); 9705 break; /* goto sizeof (int) option return */ 9706 9707 case IPV6_MULTICAST_HOPS: 9708 /* Recorded in transport above IP */ 9709 break; /* goto sizeof (int) option return */ 9710 case IPV6_MULTICAST_LOOP: 9711 if (!checkonly) { 9712 mutex_enter(&connp->conn_lock); 9713 connp->conn_multicast_loop = *i1; 9714 mutex_exit(&connp->conn_lock); 9715 } 9716 break; /* goto sizeof (int) option return */ 9717 case IPV6_JOIN_GROUP: 9718 case MCAST_JOIN_GROUP: 9719 case IPV6_LEAVE_GROUP: 9720 case MCAST_LEAVE_GROUP: { 9721 struct ipv6_mreq *ip_mreqp; 9722 struct group_req *greqp; 9723 ire_t *ire; 9724 boolean_t done = B_FALSE; 9725 in6_addr_t groupv6; 9726 uint32_t ifindex; 9727 boolean_t mcast_opt = B_TRUE; 9728 mcast_record_t fmode; 9729 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9730 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9731 9732 switch (name) { 9733 case IPV6_JOIN_GROUP: 9734 mcast_opt = B_FALSE; 9735 /* FALLTHRU */ 9736 case MCAST_JOIN_GROUP: 9737 fmode = MODE_IS_EXCLUDE; 9738 optfn = ip_opt_add_group_v6; 9739 break; 9740 9741 case IPV6_LEAVE_GROUP: 9742 mcast_opt = B_FALSE; 9743 /* FALLTHRU */ 9744 case MCAST_LEAVE_GROUP: 9745 fmode = MODE_IS_INCLUDE; 9746 optfn = ip_opt_delete_group_v6; 9747 break; 9748 } 9749 9750 if (mcast_opt) { 9751 struct sockaddr_in *sin; 9752 struct sockaddr_in6 *sin6; 9753 greqp = (struct group_req *)i1; 9754 if (greqp->gr_group.ss_family == AF_INET) { 9755 sin = (struct sockaddr_in *) 9756 &(greqp->gr_group); 9757 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 9758 &groupv6); 9759 } else { 9760 sin6 = (struct sockaddr_in6 *) 9761 &(greqp->gr_group); 9762 groupv6 = sin6->sin6_addr; 9763 } 9764 ifindex = greqp->gr_interface; 9765 } else { 9766 ip_mreqp = (struct ipv6_mreq *)i1; 9767 groupv6 = ip_mreqp->ipv6mr_multiaddr; 9768 ifindex = ip_mreqp->ipv6mr_interface; 9769 } 9770 /* 9771 * In the multirouting case, we need to replicate 9772 * the request on all interfaces that will take part 9773 * in replication. We do so because multirouting is 9774 * reflective, thus we will probably receive multi- 9775 * casts on those interfaces. 9776 * The ip_multirt_apply_membership_v6() succeeds if 9777 * the operation succeeds on at least one interface. 9778 */ 9779 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 9780 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9781 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9782 if (ire != NULL) { 9783 if (ire->ire_flags & RTF_MULTIRT) { 9784 error = ip_multirt_apply_membership_v6( 9785 optfn, ire, connp, checkonly, 9786 &groupv6, fmode, &ipv6_all_zeros, 9787 first_mp); 9788 done = B_TRUE; 9789 } 9790 ire_refrele(ire); 9791 } 9792 if (!done) { 9793 error = optfn(connp, checkonly, &groupv6, 9794 ifindex, fmode, &ipv6_all_zeros, first_mp); 9795 } 9796 if (error) { 9797 /* 9798 * EINPROGRESS is a soft error, needs retry 9799 * so don't make *outlenp zero. 9800 */ 9801 if (error != EINPROGRESS) 9802 *outlenp = 0; 9803 return (error); 9804 } 9805 /* OK return - copy input buffer into output buffer */ 9806 if (invalp != outvalp) { 9807 /* don't trust bcopy for identical src/dst */ 9808 bcopy(invalp, outvalp, inlen); 9809 } 9810 *outlenp = inlen; 9811 return (0); 9812 } 9813 case MCAST_BLOCK_SOURCE: 9814 case MCAST_UNBLOCK_SOURCE: 9815 case MCAST_JOIN_SOURCE_GROUP: 9816 case MCAST_LEAVE_SOURCE_GROUP: { 9817 struct group_source_req *gsreqp; 9818 in6_addr_t v6grp, v6src; 9819 uint32_t ifindex; 9820 mcast_record_t fmode; 9821 ire_t *ire; 9822 boolean_t done = B_FALSE; 9823 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9824 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9825 9826 switch (name) { 9827 case MCAST_BLOCK_SOURCE: 9828 fmode = MODE_IS_EXCLUDE; 9829 optfn = ip_opt_add_group_v6; 9830 break; 9831 case MCAST_UNBLOCK_SOURCE: 9832 fmode = MODE_IS_EXCLUDE; 9833 optfn = ip_opt_delete_group_v6; 9834 break; 9835 case MCAST_JOIN_SOURCE_GROUP: 9836 fmode = MODE_IS_INCLUDE; 9837 optfn = ip_opt_add_group_v6; 9838 break; 9839 case MCAST_LEAVE_SOURCE_GROUP: 9840 fmode = MODE_IS_INCLUDE; 9841 optfn = ip_opt_delete_group_v6; 9842 break; 9843 } 9844 9845 gsreqp = (struct group_source_req *)i1; 9846 ifindex = gsreqp->gsr_interface; 9847 if (gsreqp->gsr_group.ss_family == AF_INET) { 9848 struct sockaddr_in *s; 9849 s = (struct sockaddr_in *)&gsreqp->gsr_group; 9850 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 9851 s = (struct sockaddr_in *)&gsreqp->gsr_source; 9852 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 9853 } else { 9854 struct sockaddr_in6 *s6; 9855 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 9856 v6grp = s6->sin6_addr; 9857 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 9858 v6src = s6->sin6_addr; 9859 } 9860 9861 /* 9862 * In the multirouting case, we need to replicate 9863 * the request as noted in the mcast cases above. 9864 */ 9865 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 9866 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9867 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9868 if (ire != NULL) { 9869 if (ire->ire_flags & RTF_MULTIRT) { 9870 error = ip_multirt_apply_membership_v6( 9871 optfn, ire, connp, checkonly, 9872 &v6grp, fmode, &v6src, first_mp); 9873 done = B_TRUE; 9874 } 9875 ire_refrele(ire); 9876 } 9877 if (!done) { 9878 error = optfn(connp, checkonly, &v6grp, 9879 ifindex, fmode, &v6src, first_mp); 9880 } 9881 if (error != 0) { 9882 /* 9883 * EINPROGRESS is a soft error, needs retry 9884 * so don't make *outlenp zero. 9885 */ 9886 if (error != EINPROGRESS) 9887 *outlenp = 0; 9888 return (error); 9889 } 9890 /* OK return - copy input buffer into output buffer */ 9891 if (invalp != outvalp) { 9892 bcopy(invalp, outvalp, inlen); 9893 } 9894 *outlenp = inlen; 9895 return (0); 9896 } 9897 case IPV6_UNICAST_HOPS: 9898 /* Recorded in transport above IP */ 9899 break; /* goto sizeof (int) option return */ 9900 case IPV6_UNSPEC_SRC: 9901 /* Allow sending with a zero source address */ 9902 if (!checkonly) { 9903 mutex_enter(&connp->conn_lock); 9904 connp->conn_unspec_src = *i1 ? 1 : 0; 9905 mutex_exit(&connp->conn_lock); 9906 } 9907 break; /* goto sizeof (int) option return */ 9908 case IPV6_RECVPKTINFO: 9909 if (!checkonly) { 9910 mutex_enter(&connp->conn_lock); 9911 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 9912 mutex_exit(&connp->conn_lock); 9913 } 9914 break; /* goto sizeof (int) option return */ 9915 case IPV6_RECVTCLASS: 9916 if (!checkonly) { 9917 if (*i1 < 0 || *i1 > 1) { 9918 return (EINVAL); 9919 } 9920 mutex_enter(&connp->conn_lock); 9921 connp->conn_ipv6_recvtclass = *i1; 9922 mutex_exit(&connp->conn_lock); 9923 } 9924 break; 9925 case IPV6_RECVPATHMTU: 9926 if (!checkonly) { 9927 if (*i1 < 0 || *i1 > 1) { 9928 return (EINVAL); 9929 } 9930 mutex_enter(&connp->conn_lock); 9931 connp->conn_ipv6_recvpathmtu = *i1; 9932 mutex_exit(&connp->conn_lock); 9933 } 9934 break; 9935 case IPV6_RECVHOPLIMIT: 9936 if (!checkonly) { 9937 mutex_enter(&connp->conn_lock); 9938 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 9939 mutex_exit(&connp->conn_lock); 9940 } 9941 break; /* goto sizeof (int) option return */ 9942 case IPV6_RECVHOPOPTS: 9943 if (!checkonly) { 9944 mutex_enter(&connp->conn_lock); 9945 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 9946 mutex_exit(&connp->conn_lock); 9947 } 9948 break; /* goto sizeof (int) option return */ 9949 case IPV6_RECVDSTOPTS: 9950 if (!checkonly) { 9951 mutex_enter(&connp->conn_lock); 9952 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 9953 mutex_exit(&connp->conn_lock); 9954 } 9955 break; /* goto sizeof (int) option return */ 9956 case IPV6_RECVRTHDR: 9957 if (!checkonly) { 9958 mutex_enter(&connp->conn_lock); 9959 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 9960 mutex_exit(&connp->conn_lock); 9961 } 9962 break; /* goto sizeof (int) option return */ 9963 case IPV6_RECVRTHDRDSTOPTS: 9964 if (!checkonly) { 9965 mutex_enter(&connp->conn_lock); 9966 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 9967 mutex_exit(&connp->conn_lock); 9968 } 9969 break; /* goto sizeof (int) option return */ 9970 case IPV6_PKTINFO: 9971 if (inlen == 0) 9972 return (-EINVAL); /* clearing option */ 9973 error = ip6_set_pktinfo(cr, connp, 9974 (struct in6_pktinfo *)invalp, first_mp); 9975 if (error != 0) 9976 *outlenp = 0; 9977 else 9978 *outlenp = inlen; 9979 return (error); 9980 case IPV6_NEXTHOP: { 9981 struct sockaddr_in6 *sin6; 9982 9983 /* Verify that the nexthop is reachable */ 9984 if (inlen == 0) 9985 return (-EINVAL); /* clearing option */ 9986 9987 sin6 = (struct sockaddr_in6 *)invalp; 9988 ire = ire_route_lookup_v6(&sin6->sin6_addr, 9989 0, 0, 0, NULL, NULL, connp->conn_zoneid, 9990 MATCH_IRE_DEFAULT); 9991 9992 if (ire == NULL) { 9993 *outlenp = 0; 9994 return (EHOSTUNREACH); 9995 } 9996 ire_refrele(ire); 9997 return (-EINVAL); 9998 } 9999 case IPV6_SEC_OPT: 10000 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10001 if (error != 0) { 10002 *outlenp = 0; 10003 return (error); 10004 } 10005 break; 10006 case IPV6_SRC_PREFERENCES: { 10007 /* 10008 * This is implemented strictly in the ip module 10009 * (here and in tcp_opt_*() to accomodate tcp 10010 * sockets). Modules above ip pass this option 10011 * down here since ip is the only one that needs to 10012 * be aware of source address preferences. 10013 * 10014 * This socket option only affects connected 10015 * sockets that haven't already bound to a specific 10016 * IPv6 address. In other words, sockets that 10017 * don't call bind() with an address other than the 10018 * unspecified address and that call connect(). 10019 * ip_bind_connected_v6() passes these preferences 10020 * to the ipif_select_source_v6() function. 10021 */ 10022 if (inlen != sizeof (uint32_t)) 10023 return (EINVAL); 10024 error = ip6_set_src_preferences(connp, 10025 *(uint32_t *)invalp); 10026 if (error != 0) { 10027 *outlenp = 0; 10028 return (error); 10029 } else { 10030 *outlenp = sizeof (uint32_t); 10031 } 10032 break; 10033 } 10034 case IPV6_V6ONLY: 10035 if (*i1 < 0 || *i1 > 1) { 10036 return (EINVAL); 10037 } 10038 mutex_enter(&connp->conn_lock); 10039 connp->conn_ipv6_v6only = *i1; 10040 mutex_exit(&connp->conn_lock); 10041 break; 10042 default: 10043 return (-EINVAL); 10044 } 10045 break; 10046 default: 10047 /* 10048 * "soft" error (negative) 10049 * option not handled at this level 10050 * Note: Do not modify *outlenp 10051 */ 10052 return (-EINVAL); 10053 } 10054 /* 10055 * Common case of return from an option that is sizeof (int) 10056 */ 10057 *(int *)outvalp = *i1; 10058 *outlenp = sizeof (int); 10059 return (0); 10060 } 10061 10062 /* 10063 * This routine gets default values of certain options whose default 10064 * values are maintained by protocol specific code 10065 */ 10066 /* ARGSUSED */ 10067 int 10068 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10069 { 10070 int *i1 = (int *)ptr; 10071 10072 switch (level) { 10073 case IPPROTO_IP: 10074 switch (name) { 10075 case IP_MULTICAST_TTL: 10076 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10077 return (sizeof (uchar_t)); 10078 case IP_MULTICAST_LOOP: 10079 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10080 return (sizeof (uchar_t)); 10081 default: 10082 return (-1); 10083 } 10084 case IPPROTO_IPV6: 10085 switch (name) { 10086 case IPV6_UNICAST_HOPS: 10087 *i1 = ipv6_def_hops; 10088 return (sizeof (int)); 10089 case IPV6_MULTICAST_HOPS: 10090 *i1 = IP_DEFAULT_MULTICAST_TTL; 10091 return (sizeof (int)); 10092 case IPV6_MULTICAST_LOOP: 10093 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10094 return (sizeof (int)); 10095 case IPV6_V6ONLY: 10096 *i1 = 1; 10097 return (sizeof (int)); 10098 default: 10099 return (-1); 10100 } 10101 default: 10102 return (-1); 10103 } 10104 /* NOTREACHED */ 10105 } 10106 10107 /* 10108 * Given a destination address and a pointer to where to put the information 10109 * this routine fills in the mtuinfo. 10110 */ 10111 int 10112 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10113 struct ip6_mtuinfo *mtuinfo) 10114 { 10115 ire_t *ire; 10116 10117 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10118 return (-1); 10119 10120 bzero(mtuinfo, sizeof (*mtuinfo)); 10121 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10122 mtuinfo->ip6m_addr.sin6_port = port; 10123 mtuinfo->ip6m_addr.sin6_addr = *in6; 10124 10125 ire = ire_cache_lookup_v6(in6, ALL_ZONES); 10126 if (ire != NULL) { 10127 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10128 ire_refrele(ire); 10129 } else { 10130 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10131 } 10132 return (sizeof (struct ip6_mtuinfo)); 10133 } 10134 10135 /* 10136 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10137 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10138 * isn't. This doesn't matter as the error checking is done properly for the 10139 * other MRT options coming in through ip_opt_set. 10140 */ 10141 int 10142 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10143 { 10144 conn_t *connp = Q_TO_CONN(q); 10145 ipsec_req_t *req = (ipsec_req_t *)ptr; 10146 10147 switch (level) { 10148 case IPPROTO_IP: 10149 switch (name) { 10150 case MRT_VERSION: 10151 case MRT_ASSERT: 10152 (void) ip_mrouter_get(name, q, ptr); 10153 return (sizeof (int)); 10154 case IP_SEC_OPT: 10155 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10156 default: 10157 break; 10158 } 10159 break; 10160 case IPPROTO_IPV6: 10161 switch (name) { 10162 case IPV6_SEC_OPT: 10163 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10164 case IPV6_SRC_PREFERENCES: { 10165 return (ip6_get_src_preferences(connp, 10166 (uint32_t *)ptr)); 10167 } 10168 case IPV6_V6ONLY: 10169 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10170 return (sizeof (int)); 10171 case IPV6_PATHMTU: 10172 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10173 (struct ip6_mtuinfo *)ptr)); 10174 default: 10175 break; 10176 } 10177 break; 10178 default: 10179 break; 10180 } 10181 return (-1); 10182 } 10183 10184 /* Named Dispatch routine to get a current value out of our parameter table. */ 10185 /* ARGSUSED */ 10186 static int 10187 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10188 { 10189 ipparam_t *ippa = (ipparam_t *)cp; 10190 10191 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10192 return (0); 10193 } 10194 10195 /* ARGSUSED */ 10196 static int 10197 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10198 { 10199 10200 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10201 return (0); 10202 } 10203 10204 /* 10205 * Set ip{,6}_forwarding values. This means walking through all of the 10206 * ill's and toggling their forwarding values. 10207 */ 10208 /* ARGSUSED */ 10209 static int 10210 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10211 { 10212 long new_value; 10213 int *forwarding_value = (int *)cp; 10214 ill_t *walker; 10215 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10216 ill_walk_context_t ctx; 10217 10218 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10219 new_value < 0 || new_value > 1) { 10220 return (EINVAL); 10221 } 10222 10223 *forwarding_value = new_value; 10224 10225 /* 10226 * Regardless of the current value of ip_forwarding, set all per-ill 10227 * values of ip_forwarding to the value being set. 10228 * 10229 * Bring all the ill's up to date with the new global value. 10230 */ 10231 rw_enter(&ill_g_lock, RW_READER); 10232 10233 if (isv6) 10234 walker = ILL_START_WALK_V6(&ctx); 10235 else 10236 walker = ILL_START_WALK_V4(&ctx); 10237 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10238 (void) ill_forward_set(q, mp, (new_value != 0), 10239 (caddr_t)walker); 10240 } 10241 rw_exit(&ill_g_lock); 10242 10243 return (0); 10244 } 10245 10246 /* 10247 * Walk through the param array specified registering each element with the 10248 * Named Dispatch handler. This is called only during init. So it is ok 10249 * not to acquire any locks 10250 */ 10251 static boolean_t 10252 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 10253 ipndp_t *ipnd, size_t ipnd_cnt) 10254 { 10255 for (; ippa_cnt-- > 0; ippa++) { 10256 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 10257 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 10258 ip_param_get, ip_param_set, (caddr_t)ippa)) { 10259 nd_free(&ip_g_nd); 10260 return (B_FALSE); 10261 } 10262 } 10263 } 10264 10265 for (; ipnd_cnt-- > 0; ipnd++) { 10266 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 10267 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 10268 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 10269 ipnd->ip_ndp_data)) { 10270 nd_free(&ip_g_nd); 10271 return (B_FALSE); 10272 } 10273 } 10274 } 10275 10276 return (B_TRUE); 10277 } 10278 10279 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 10280 /* ARGSUSED */ 10281 static int 10282 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10283 { 10284 long new_value; 10285 ipparam_t *ippa = (ipparam_t *)cp; 10286 10287 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10288 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 10289 return (EINVAL); 10290 } 10291 ippa->ip_param_value = new_value; 10292 return (0); 10293 } 10294 10295 /* 10296 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 10297 * When an ipf is passed here for the first time, if 10298 * we already have in-order fragments on the queue, we convert from the fast- 10299 * path reassembly scheme to the hard-case scheme. From then on, additional 10300 * fragments are reassembled here. We keep track of the start and end offsets 10301 * of each piece, and the number of holes in the chain. When the hole count 10302 * goes to zero, we are done! 10303 * 10304 * The ipf_count will be updated to account for any mblk(s) added (pointed to 10305 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 10306 * ipfb_count and ill_frag_count by the difference of ipf_count before and 10307 * after the call to ip_reassemble(). 10308 */ 10309 int 10310 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 10311 size_t msg_len) 10312 { 10313 uint_t end; 10314 mblk_t *next_mp; 10315 mblk_t *mp1; 10316 uint_t offset; 10317 boolean_t incr_dups = B_TRUE; 10318 boolean_t offset_zero_seen = B_FALSE; 10319 boolean_t pkt_boundary_checked = B_FALSE; 10320 10321 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 10322 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 10323 10324 /* Add in byte count */ 10325 ipf->ipf_count += msg_len; 10326 if (ipf->ipf_end) { 10327 /* 10328 * We were part way through in-order reassembly, but now there 10329 * is a hole. We walk through messages already queued, and 10330 * mark them for hard case reassembly. We know that up till 10331 * now they were in order starting from offset zero. 10332 */ 10333 offset = 0; 10334 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10335 IP_REASS_SET_START(mp1, offset); 10336 if (offset == 0) { 10337 ASSERT(ipf->ipf_nf_hdr_len != 0); 10338 offset = -ipf->ipf_nf_hdr_len; 10339 } 10340 offset += mp1->b_wptr - mp1->b_rptr; 10341 IP_REASS_SET_END(mp1, offset); 10342 } 10343 /* One hole at the end. */ 10344 ipf->ipf_hole_cnt = 1; 10345 /* Brand it as a hard case, forever. */ 10346 ipf->ipf_end = 0; 10347 } 10348 /* Walk through all the new pieces. */ 10349 do { 10350 end = start + (mp->b_wptr - mp->b_rptr); 10351 /* 10352 * If start is 0, decrease 'end' only for the first mblk of 10353 * the fragment. Otherwise 'end' can get wrong value in the 10354 * second pass of the loop if first mblk is exactly the 10355 * size of ipf_nf_hdr_len. 10356 */ 10357 if (start == 0 && !offset_zero_seen) { 10358 /* First segment */ 10359 ASSERT(ipf->ipf_nf_hdr_len != 0); 10360 end -= ipf->ipf_nf_hdr_len; 10361 offset_zero_seen = B_TRUE; 10362 } 10363 next_mp = mp->b_cont; 10364 /* 10365 * We are checking to see if there is any interesing data 10366 * to process. If there isn't and the mblk isn't the 10367 * one which carries the unfragmentable header then we 10368 * drop it. It's possible to have just the unfragmentable 10369 * header come through without any data. That needs to be 10370 * saved. 10371 * 10372 * If the assert at the top of this function holds then the 10373 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 10374 * is infrequently traveled enough that the test is left in 10375 * to protect against future code changes which break that 10376 * invariant. 10377 */ 10378 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 10379 /* Empty. Blast it. */ 10380 IP_REASS_SET_START(mp, 0); 10381 IP_REASS_SET_END(mp, 0); 10382 /* 10383 * If the ipf points to the mblk we are about to free, 10384 * update ipf to point to the next mblk (or NULL 10385 * if none). 10386 */ 10387 if (ipf->ipf_mp->b_cont == mp) 10388 ipf->ipf_mp->b_cont = next_mp; 10389 freeb(mp); 10390 continue; 10391 } 10392 mp->b_cont = NULL; 10393 IP_REASS_SET_START(mp, start); 10394 IP_REASS_SET_END(mp, end); 10395 if (!ipf->ipf_tail_mp) { 10396 ipf->ipf_tail_mp = mp; 10397 ipf->ipf_mp->b_cont = mp; 10398 if (start == 0 || !more) { 10399 ipf->ipf_hole_cnt = 1; 10400 /* 10401 * if the first fragment comes in more than one 10402 * mblk, this loop will be executed for each 10403 * mblk. Need to adjust hole count so exiting 10404 * this routine will leave hole count at 1. 10405 */ 10406 if (next_mp) 10407 ipf->ipf_hole_cnt++; 10408 } else 10409 ipf->ipf_hole_cnt = 2; 10410 continue; 10411 } else if (ipf->ipf_last_frag_seen && !more && 10412 !pkt_boundary_checked) { 10413 /* 10414 * We check datagram boundary only if this fragment 10415 * claims to be the last fragment and we have seen a 10416 * last fragment in the past too. We do this only 10417 * once for a given fragment. 10418 * 10419 * start cannot be 0 here as fragments with start=0 10420 * and MF=0 gets handled as a complete packet. These 10421 * fragments should not reach here. 10422 */ 10423 10424 if (start + msgdsize(mp) != 10425 IP_REASS_END(ipf->ipf_tail_mp)) { 10426 /* 10427 * We have two fragments both of which claim 10428 * to be the last fragment but gives conflicting 10429 * information about the whole datagram size. 10430 * Something fishy is going on. Drop the 10431 * fragment and free up the reassembly list. 10432 */ 10433 return (IP_REASS_FAILED); 10434 } 10435 10436 /* 10437 * We shouldn't come to this code block again for this 10438 * particular fragment. 10439 */ 10440 pkt_boundary_checked = B_TRUE; 10441 } 10442 10443 /* New stuff at or beyond tail? */ 10444 offset = IP_REASS_END(ipf->ipf_tail_mp); 10445 if (start >= offset) { 10446 if (ipf->ipf_last_frag_seen) { 10447 /* current fragment is beyond last fragment */ 10448 return (IP_REASS_FAILED); 10449 } 10450 /* Link it on end. */ 10451 ipf->ipf_tail_mp->b_cont = mp; 10452 ipf->ipf_tail_mp = mp; 10453 if (more) { 10454 if (start != offset) 10455 ipf->ipf_hole_cnt++; 10456 } else if (start == offset && next_mp == NULL) 10457 ipf->ipf_hole_cnt--; 10458 continue; 10459 } 10460 mp1 = ipf->ipf_mp->b_cont; 10461 offset = IP_REASS_START(mp1); 10462 /* New stuff at the front? */ 10463 if (start < offset) { 10464 if (start == 0) { 10465 if (end >= offset) { 10466 /* Nailed the hole at the begining. */ 10467 ipf->ipf_hole_cnt--; 10468 } 10469 } else if (end < offset) { 10470 /* 10471 * A hole, stuff, and a hole where there used 10472 * to be just a hole. 10473 */ 10474 ipf->ipf_hole_cnt++; 10475 } 10476 mp->b_cont = mp1; 10477 /* Check for overlap. */ 10478 while (end > offset) { 10479 if (end < IP_REASS_END(mp1)) { 10480 mp->b_wptr -= end - offset; 10481 IP_REASS_SET_END(mp, offset); 10482 if (ill->ill_isv6) { 10483 BUMP_MIB(ill->ill_ip6_mib, 10484 ipv6ReasmPartDups); 10485 } else { 10486 BUMP_MIB(&ip_mib, 10487 ipReasmPartDups); 10488 } 10489 break; 10490 } 10491 /* Did we cover another hole? */ 10492 if ((mp1->b_cont && 10493 IP_REASS_END(mp1) != 10494 IP_REASS_START(mp1->b_cont) && 10495 end >= IP_REASS_START(mp1->b_cont)) || 10496 (!ipf->ipf_last_frag_seen && !more)) { 10497 ipf->ipf_hole_cnt--; 10498 } 10499 /* Clip out mp1. */ 10500 if ((mp->b_cont = mp1->b_cont) == NULL) { 10501 /* 10502 * After clipping out mp1, this guy 10503 * is now hanging off the end. 10504 */ 10505 ipf->ipf_tail_mp = mp; 10506 } 10507 IP_REASS_SET_START(mp1, 0); 10508 IP_REASS_SET_END(mp1, 0); 10509 /* Subtract byte count */ 10510 ipf->ipf_count -= mp1->b_datap->db_lim - 10511 mp1->b_datap->db_base; 10512 freeb(mp1); 10513 if (ill->ill_isv6) { 10514 BUMP_MIB(ill->ill_ip6_mib, 10515 ipv6ReasmPartDups); 10516 } else { 10517 BUMP_MIB(&ip_mib, ipReasmPartDups); 10518 } 10519 mp1 = mp->b_cont; 10520 if (!mp1) 10521 break; 10522 offset = IP_REASS_START(mp1); 10523 } 10524 ipf->ipf_mp->b_cont = mp; 10525 continue; 10526 } 10527 /* 10528 * The new piece starts somewhere between the start of the head 10529 * and before the end of the tail. 10530 */ 10531 for (; mp1; mp1 = mp1->b_cont) { 10532 offset = IP_REASS_END(mp1); 10533 if (start < offset) { 10534 if (end <= offset) { 10535 /* Nothing new. */ 10536 IP_REASS_SET_START(mp, 0); 10537 IP_REASS_SET_END(mp, 0); 10538 /* Subtract byte count */ 10539 ipf->ipf_count -= mp->b_datap->db_lim - 10540 mp->b_datap->db_base; 10541 if (incr_dups) { 10542 ipf->ipf_num_dups++; 10543 incr_dups = B_FALSE; 10544 } 10545 freeb(mp); 10546 if (ill->ill_isv6) { 10547 BUMP_MIB(ill->ill_ip6_mib, 10548 ipv6ReasmDuplicates); 10549 } else { 10550 BUMP_MIB(&ip_mib, 10551 ipReasmDuplicates); 10552 } 10553 break; 10554 } 10555 /* 10556 * Trim redundant stuff off beginning of new 10557 * piece. 10558 */ 10559 IP_REASS_SET_START(mp, offset); 10560 mp->b_rptr += offset - start; 10561 if (ill->ill_isv6) { 10562 BUMP_MIB(ill->ill_ip6_mib, 10563 ipv6ReasmPartDups); 10564 } else { 10565 BUMP_MIB(&ip_mib, ipReasmPartDups); 10566 } 10567 start = offset; 10568 if (!mp1->b_cont) { 10569 /* 10570 * After trimming, this guy is now 10571 * hanging off the end. 10572 */ 10573 mp1->b_cont = mp; 10574 ipf->ipf_tail_mp = mp; 10575 if (!more) { 10576 ipf->ipf_hole_cnt--; 10577 } 10578 break; 10579 } 10580 } 10581 if (start >= IP_REASS_START(mp1->b_cont)) 10582 continue; 10583 /* Fill a hole */ 10584 if (start > offset) 10585 ipf->ipf_hole_cnt++; 10586 mp->b_cont = mp1->b_cont; 10587 mp1->b_cont = mp; 10588 mp1 = mp->b_cont; 10589 offset = IP_REASS_START(mp1); 10590 if (end >= offset) { 10591 ipf->ipf_hole_cnt--; 10592 /* Check for overlap. */ 10593 while (end > offset) { 10594 if (end < IP_REASS_END(mp1)) { 10595 mp->b_wptr -= end - offset; 10596 IP_REASS_SET_END(mp, offset); 10597 /* 10598 * TODO we might bump 10599 * this up twice if there is 10600 * overlap at both ends. 10601 */ 10602 if (ill->ill_isv6) { 10603 BUMP_MIB( 10604 ill->ill_ip6_mib, 10605 ipv6ReasmPartDups); 10606 } else { 10607 BUMP_MIB(&ip_mib, 10608 ipReasmPartDups); 10609 } 10610 break; 10611 } 10612 /* Did we cover another hole? */ 10613 if ((mp1->b_cont && 10614 IP_REASS_END(mp1) 10615 != IP_REASS_START(mp1->b_cont) && 10616 end >= 10617 IP_REASS_START(mp1->b_cont)) || 10618 (!ipf->ipf_last_frag_seen && 10619 !more)) { 10620 ipf->ipf_hole_cnt--; 10621 } 10622 /* Clip out mp1. */ 10623 if ((mp->b_cont = mp1->b_cont) == 10624 NULL) { 10625 /* 10626 * After clipping out mp1, 10627 * this guy is now hanging 10628 * off the end. 10629 */ 10630 ipf->ipf_tail_mp = mp; 10631 } 10632 IP_REASS_SET_START(mp1, 0); 10633 IP_REASS_SET_END(mp1, 0); 10634 /* Subtract byte count */ 10635 ipf->ipf_count -= 10636 mp1->b_datap->db_lim - 10637 mp1->b_datap->db_base; 10638 freeb(mp1); 10639 if (ill->ill_isv6) { 10640 BUMP_MIB(ill->ill_ip6_mib, 10641 ipv6ReasmPartDups); 10642 } else { 10643 BUMP_MIB(&ip_mib, 10644 ipReasmPartDups); 10645 } 10646 mp1 = mp->b_cont; 10647 if (!mp1) 10648 break; 10649 offset = IP_REASS_START(mp1); 10650 } 10651 } 10652 break; 10653 } 10654 } while (start = end, mp = next_mp); 10655 10656 /* Fragment just processed could be the last one. Remember this fact */ 10657 if (!more) 10658 ipf->ipf_last_frag_seen = B_TRUE; 10659 10660 /* Still got holes? */ 10661 if (ipf->ipf_hole_cnt) 10662 return (IP_REASS_PARTIAL); 10663 /* Clean up overloaded fields to avoid upstream disasters. */ 10664 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10665 IP_REASS_SET_START(mp1, 0); 10666 IP_REASS_SET_END(mp1, 0); 10667 } 10668 return (IP_REASS_COMPLETE); 10669 } 10670 10671 /* 10672 * ipsec processing for the fast path, used for input UDP Packets 10673 */ 10674 static boolean_t 10675 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 10676 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 10677 { 10678 uint32_t ill_index; 10679 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 10680 10681 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 10682 /* The ill_index of the incoming ILL */ 10683 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 10684 10685 /* pass packet up to the transport */ 10686 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 10687 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 10688 NULL, mctl_present); 10689 if (*first_mpp == NULL) { 10690 return (B_FALSE); 10691 } 10692 } 10693 10694 /* Initiate IPPF processing for fastpath UDP */ 10695 if (IPP_ENABLED(IPP_LOCAL_IN)) { 10696 ip_process(IPP_LOCAL_IN, mpp, ill_index); 10697 if (*mpp == NULL) { 10698 ip2dbg(("ip_input_ipsec_process: UDP pkt " 10699 "deferred/dropped during IPPF processing\n")); 10700 return (B_FALSE); 10701 } 10702 } 10703 /* 10704 * We make the checks as below since we are in the fast path 10705 * and want to minimize the number of checks if the IP_RECVIF and/or 10706 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 10707 */ 10708 if (connp->conn_recvif || connp->conn_recvslla || 10709 connp->conn_ipv6_recvpktinfo) { 10710 if (connp->conn_recvif || 10711 connp->conn_ipv6_recvpktinfo) { 10712 in_flags = IPF_RECVIF; 10713 } 10714 if (connp->conn_recvslla) { 10715 in_flags |= IPF_RECVSLLA; 10716 } 10717 /* 10718 * since in_flags are being set ill will be 10719 * referenced in ip_add_info, so it better not 10720 * be NULL. 10721 */ 10722 /* 10723 * the actual data will be contained in b_cont 10724 * upon successful return of the following call. 10725 * If the call fails then the original mblk is 10726 * returned. 10727 */ 10728 *mpp = ip_add_info(*mpp, ill, in_flags); 10729 } 10730 10731 return (B_TRUE); 10732 } 10733 10734 /* 10735 * Do fragmentation reassembly. 10736 * returns B_TRUE if successful else B_FALSE. 10737 * frees mp on failure. 10738 */ 10739 static boolean_t 10740 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha) 10741 { 10742 uint32_t frag_offset_flags; 10743 ill_t *ill = (ill_t *)q->q_ptr; 10744 mblk_t *mp = *mpp; 10745 mblk_t *t_mp; 10746 ipaddr_t dst; 10747 10748 /* 10749 * Drop the fragmented as early as possible, if 10750 * we don't have resource(s) to re-assemble. 10751 */ 10752 10753 if (ip_reass_queue_bytes == 0) { 10754 freemsg(mp); 10755 return (B_FALSE); 10756 } 10757 10758 dst = ipha->ipha_dst; 10759 10760 /* Clear hardware checksumming flag if set */ 10761 mp->b_datap->db_struioun.cksum.flags = 0; 10762 10763 /* Check for fragmentation offset. */ 10764 frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 10765 (IPH_MF | IPH_OFFSET); 10766 if (frag_offset_flags) { 10767 ipf_t *ipf; 10768 ipf_t **ipfp; 10769 ipfb_t *ipfb; 10770 uint16_t ident; 10771 uint32_t offset; 10772 ipaddr_t src; 10773 uint_t hdr_length; 10774 uint32_t end; 10775 uint8_t proto; 10776 mblk_t *mp1; 10777 mblk_t *tail_mp; 10778 size_t count; 10779 size_t msg_len; 10780 uint8_t ecn_info = 0; 10781 uint32_t packet_size; 10782 boolean_t pruned = B_FALSE; 10783 10784 ident = ipha->ipha_ident; 10785 offset = (frag_offset_flags << 3) & 0xFFFF; 10786 src = ipha->ipha_src; 10787 hdr_length = IPH_HDR_LENGTH(ipha); 10788 end = ntohs(ipha->ipha_length) - hdr_length; 10789 10790 /* 10791 * if end == 0 then we have a packet with no data, so just 10792 * free it. 10793 */ 10794 if (end == 0) { 10795 freemsg(mp); 10796 return (B_FALSE); 10797 } 10798 proto = ipha->ipha_protocol; 10799 10800 /* 10801 * Fragmentation reassembly. Each ILL has a hash table for 10802 * queuing packets undergoing reassembly for all IPIFs 10803 * associated with the ILL. The hash is based on the packet 10804 * IP ident field. The ILL frag hash table was allocated 10805 * as a timer block at the time the ILL was created. Whenever 10806 * there is anything on the reassembly queue, the timer will 10807 * be running. 10808 */ 10809 ASSERT(ill != NULL); 10810 10811 /* Record the ECN field info. */ 10812 ecn_info = (ipha->ipha_type_of_service & 0x3); 10813 if (offset != 0) { 10814 /* 10815 * If this isn't the first piece, strip the header, and 10816 * add the offset to the end value. 10817 */ 10818 mp->b_rptr += hdr_length; 10819 end += offset; 10820 } 10821 10822 msg_len = mp->b_datap->db_lim - mp->b_datap->db_base; 10823 tail_mp = mp; 10824 while (tail_mp->b_cont != NULL) { 10825 tail_mp = tail_mp->b_cont; 10826 msg_len += tail_mp->b_datap->db_lim - 10827 tail_mp->b_datap->db_base; 10828 } 10829 10830 /* 10831 * If the reassembly list for this ILL will get too big 10832 * prune it. 10833 */ 10834 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 10835 ip_reass_queue_bytes) { 10836 ill_frag_prune(ill, 10837 (ip_reass_queue_bytes < msg_len) ? 0 : 10838 (ip_reass_queue_bytes - msg_len)); 10839 pruned = B_TRUE; 10840 } 10841 10842 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 10843 mutex_enter(&ipfb->ipfb_lock); 10844 10845 ipfp = &ipfb->ipfb_ipf; 10846 /* Try to find an existing fragment queue for this packet. */ 10847 for (;;) { 10848 ipf = ipfp[0]; 10849 if (ipf != NULL) { 10850 /* 10851 * It has to match on ident and src/dst address. 10852 */ 10853 if (ipf->ipf_ident == ident && 10854 ipf->ipf_src == src && 10855 ipf->ipf_dst == dst && 10856 ipf->ipf_protocol == proto) { 10857 /* 10858 * If we have received too many 10859 * duplicate fragments for this packet 10860 * free it. 10861 */ 10862 if (ipf->ipf_num_dups > 10863 ip_max_frag_dups) { 10864 ill_frag_free_pkts(ill, ipfb, 10865 ipf, 1); 10866 freemsg(mp); 10867 mutex_exit(&ipfb->ipfb_lock); 10868 return (B_FALSE); 10869 } 10870 /* Found it. */ 10871 break; 10872 } 10873 ipfp = &ipf->ipf_hash_next; 10874 continue; 10875 } 10876 10877 /* 10878 * If we pruned the list, do we want to store this new 10879 * fragment?. We apply an optimization here based on the 10880 * fact that most fragments will be received in order. 10881 * So if the offset of this incoming fragment is zero, 10882 * it is the first fragment of a new packet. We will 10883 * keep it. Otherwise drop the fragment, as we have 10884 * probably pruned the packet already (since the 10885 * packet cannot be found). 10886 */ 10887 if (pruned && offset != 0) { 10888 mutex_exit(&ipfb->ipfb_lock); 10889 freemsg(mp); 10890 return (B_FALSE); 10891 } 10892 10893 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 10894 /* 10895 * Too many fragmented packets in this hash 10896 * bucket. Free the oldest. 10897 */ 10898 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 10899 1); 10900 } 10901 10902 /* New guy. Allocate a frag message. */ 10903 mp1 = allocb(sizeof (*ipf), BPRI_MED); 10904 if (mp1 == NULL) { 10905 BUMP_MIB(&ip_mib, ipInDiscards); 10906 freemsg(mp); 10907 reass_done: 10908 mutex_exit(&ipfb->ipfb_lock); 10909 return (B_FALSE); 10910 } 10911 10912 10913 BUMP_MIB(&ip_mib, ipReasmReqds); 10914 mp1->b_cont = mp; 10915 10916 /* Initialize the fragment header. */ 10917 ipf = (ipf_t *)mp1->b_rptr; 10918 ipf->ipf_mp = mp1; 10919 ipf->ipf_ptphn = ipfp; 10920 ipfp[0] = ipf; 10921 ipf->ipf_hash_next = NULL; 10922 ipf->ipf_ident = ident; 10923 ipf->ipf_protocol = proto; 10924 ipf->ipf_src = src; 10925 ipf->ipf_dst = dst; 10926 ipf->ipf_nf_hdr_len = 0; 10927 /* Record reassembly start time. */ 10928 ipf->ipf_timestamp = gethrestime_sec(); 10929 /* Record ipf generation and account for frag header */ 10930 ipf->ipf_gen = ill->ill_ipf_gen++; 10931 ipf->ipf_count = mp1->b_datap->db_lim - 10932 mp1->b_datap->db_base; 10933 ipf->ipf_last_frag_seen = B_FALSE; 10934 ipf->ipf_ecn = ecn_info; 10935 ipf->ipf_num_dups = 0; 10936 ipfb->ipfb_frag_pkts++; 10937 10938 /* 10939 * We handle reassembly two ways. In the easy case, 10940 * where all the fragments show up in order, we do 10941 * minimal bookkeeping, and just clip new pieces on 10942 * the end. If we ever see a hole, then we go off 10943 * to ip_reassemble which has to mark the pieces and 10944 * keep track of the number of holes, etc. Obviously, 10945 * the point of having both mechanisms is so we can 10946 * handle the easy case as efficiently as possible. 10947 */ 10948 if (offset == 0) { 10949 /* Easy case, in-order reassembly so far. */ 10950 ipf->ipf_count += msg_len; 10951 ipf->ipf_tail_mp = tail_mp; 10952 /* 10953 * Keep track of next expected offset in 10954 * ipf_end. 10955 */ 10956 ipf->ipf_end = end; 10957 ipf->ipf_nf_hdr_len = hdr_length; 10958 } else { 10959 /* Hard case, hole at the beginning. */ 10960 ipf->ipf_tail_mp = NULL; 10961 /* 10962 * ipf_end == 0 means that we have given up 10963 * on easy reassembly. 10964 */ 10965 ipf->ipf_end = 0; 10966 /* 10967 * ipf_hole_cnt is set by ip_reassemble. 10968 * ipf_count is updated by ip_reassemble. 10969 * No need to check for return value here 10970 * as we don't expect reassembly to complete 10971 * or fail for the first fragment itself. 10972 */ 10973 (void) ip_reassemble(mp, ipf, 10974 (frag_offset_flags & IPH_OFFSET) << 3, 10975 (frag_offset_flags & IPH_MF), ill, msg_len); 10976 } 10977 /* Update per ipfb and ill byte counts */ 10978 ipfb->ipfb_count += ipf->ipf_count; 10979 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 10980 ill->ill_frag_count += ipf->ipf_count; 10981 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 10982 /* If the frag timer wasn't already going, start it. */ 10983 mutex_enter(&ill->ill_lock); 10984 ill_frag_timer_start(ill); 10985 mutex_exit(&ill->ill_lock); 10986 goto reass_done; 10987 } 10988 10989 /* 10990 * We have a new piece of a datagram which is already being 10991 * reassembled. Update the ECN info if all IP fragments 10992 * are ECN capable. If there is one which is not, clear 10993 * all the info. If there is at least one which has CE 10994 * code point, IP needs to report that up to transport. 10995 */ 10996 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 10997 if (ecn_info == IPH_ECN_CE) 10998 ipf->ipf_ecn = IPH_ECN_CE; 10999 } else { 11000 ipf->ipf_ecn = IPH_ECN_NECT; 11001 } 11002 if (offset && ipf->ipf_end == offset) { 11003 /* The new fragment fits at the end */ 11004 ipf->ipf_tail_mp->b_cont = mp; 11005 /* Update the byte count */ 11006 ipf->ipf_count += msg_len; 11007 /* Update per ipfb and ill byte counts */ 11008 ipfb->ipfb_count += msg_len; 11009 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11010 ill->ill_frag_count += msg_len; 11011 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11012 if (frag_offset_flags & IPH_MF) { 11013 /* More to come. */ 11014 ipf->ipf_end = end; 11015 ipf->ipf_tail_mp = tail_mp; 11016 goto reass_done; 11017 } 11018 } else { 11019 /* Go do the hard cases. */ 11020 int ret; 11021 11022 if (offset == 0) 11023 ipf->ipf_nf_hdr_len = hdr_length; 11024 11025 /* Save current byte count */ 11026 count = ipf->ipf_count; 11027 ret = ip_reassemble(mp, ipf, 11028 (frag_offset_flags & IPH_OFFSET) << 3, 11029 (frag_offset_flags & IPH_MF), ill, msg_len); 11030 /* Count of bytes added and subtracted (freeb()ed) */ 11031 count = ipf->ipf_count - count; 11032 if (count) { 11033 /* Update per ipfb and ill byte counts */ 11034 ipfb->ipfb_count += count; 11035 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11036 ill->ill_frag_count += count; 11037 ASSERT(ill->ill_frag_count > 0); 11038 } 11039 if (ret == IP_REASS_PARTIAL) { 11040 goto reass_done; 11041 } else if (ret == IP_REASS_FAILED) { 11042 /* Reassembly failed. Free up all resources */ 11043 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11044 for (t_mp = mp; t_mp != NULL; 11045 t_mp = t_mp->b_cont) { 11046 IP_REASS_SET_START(t_mp, 0); 11047 IP_REASS_SET_END(t_mp, 0); 11048 } 11049 freemsg(mp); 11050 goto reass_done; 11051 } 11052 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11053 } 11054 /* 11055 * We have completed reassembly. Unhook the frag header from 11056 * the reassembly list. 11057 * 11058 * Before we free the frag header, record the ECN info 11059 * to report back to the transport. 11060 */ 11061 ecn_info = ipf->ipf_ecn; 11062 BUMP_MIB(&ip_mib, ipReasmOKs); 11063 ipfp = ipf->ipf_ptphn; 11064 mp1 = ipf->ipf_mp; 11065 count = ipf->ipf_count; 11066 ipf = ipf->ipf_hash_next; 11067 if (ipf) 11068 ipf->ipf_ptphn = ipfp; 11069 ipfp[0] = ipf; 11070 ill->ill_frag_count -= count; 11071 ASSERT(ipfb->ipfb_count >= count); 11072 ipfb->ipfb_count -= count; 11073 ipfb->ipfb_frag_pkts--; 11074 mutex_exit(&ipfb->ipfb_lock); 11075 /* Ditch the frag header. */ 11076 mp = mp1->b_cont; 11077 11078 freeb(mp1); 11079 11080 /* Restore original IP length in header. */ 11081 packet_size = (uint32_t)msgdsize(mp); 11082 if (packet_size > IP_MAXPACKET) { 11083 freemsg(mp); 11084 BUMP_MIB(&ip_mib, ipInHdrErrors); 11085 return (B_FALSE); 11086 } 11087 11088 if (mp->b_datap->db_ref > 1) { 11089 mblk_t *mp2; 11090 11091 mp2 = copymsg(mp); 11092 freemsg(mp); 11093 if (!mp2) { 11094 BUMP_MIB(&ip_mib, ipInDiscards); 11095 return (B_FALSE); 11096 } 11097 mp = mp2; 11098 } 11099 ipha = (ipha_t *)mp->b_rptr; 11100 11101 ipha->ipha_length = htons((uint16_t)packet_size); 11102 /* We're now complete, zip the frag state */ 11103 ipha->ipha_fragment_offset_and_flags = 0; 11104 /* Record the ECN info. */ 11105 ipha->ipha_type_of_service &= 0xFC; 11106 ipha->ipha_type_of_service |= ecn_info; 11107 *mpp = mp; 11108 11109 } 11110 return (B_TRUE); 11111 } 11112 11113 /* 11114 * Perform ip header check sum update local options. 11115 * return B_TRUE if all is well, else return B_FALSE and release 11116 * the mp. caller is responsible for decrementing ire ref cnt. 11117 */ 11118 static boolean_t 11119 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11120 { 11121 mblk_t *first_mp; 11122 boolean_t mctl_present; 11123 uint16_t sum; 11124 11125 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11126 /* 11127 * Don't do the checksum if it has gone through AH/ESP 11128 * processing. 11129 */ 11130 if (!mctl_present) { 11131 sum = ip_csum_hdr(ipha); 11132 if (sum != 0) { 11133 BUMP_MIB(&ip_mib, ipInCksumErrs); 11134 freemsg(first_mp); 11135 return (B_FALSE); 11136 } 11137 } 11138 11139 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11140 if (mctl_present) 11141 freeb(first_mp); 11142 return (B_FALSE); 11143 } 11144 11145 return (B_TRUE); 11146 } 11147 11148 /* 11149 * All udp packet are delivered to the local host via this routine. 11150 */ 11151 void 11152 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11153 ill_t *recv_ill) 11154 { 11155 uint32_t sum; 11156 uint32_t u1; 11157 uint32_t u2; 11158 boolean_t mctl_present; 11159 conn_t *connp; 11160 mblk_t *first_mp; 11161 mblk_t *mp1; 11162 dblk_t *dp; 11163 uint16_t *up; 11164 ill_t *ill = (ill_t *)q->q_ptr; 11165 uint32_t ports; 11166 boolean_t cksum_computed = B_FALSE; 11167 11168 #define rptr ((uchar_t *)ipha) 11169 11170 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11171 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11172 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11173 11174 /* 11175 * FAST PATH for udp packets 11176 */ 11177 11178 /* u1 is # words of IP options */ 11179 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11180 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11181 11182 /* IP options present */ 11183 if (u1) 11184 goto ipoptions; 11185 11186 #define IS_IPHDR_HWCKSUM(mctl_present, mp, ill) \ 11187 ((!mctl_present) && (mp->b_datap->db_struioun.cksum.flags & \ 11188 HCK_IPV4_HDRCKSUM) && (ill->ill_capabilities & \ 11189 ILL_CAPAB_HCKSUM) && dohwcksum) 11190 11191 /* Check the IP header checksum. */ 11192 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11193 /* Clear the IP header h/w cksum flag */ 11194 mp->b_datap->db_struioun.cksum.flags &= 11195 ~HCK_IPV4_HDRCKSUM; 11196 } else { 11197 #define uph ((uint16_t *)ipha) 11198 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 11199 uph[6] + uph[7] + uph[8] + uph[9]; 11200 #undef uph 11201 /* finish doing IP checksum */ 11202 sum = (sum & 0xFFFF) + (sum >> 16); 11203 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11204 /* 11205 * Don't verify header checksum if this packet is coming 11206 * back from AH/ESP as we already did it. 11207 */ 11208 if (!mctl_present && (sum && sum != 0xFFFF)) { 11209 BUMP_MIB(&ip_mib, ipInCksumErrs); 11210 freemsg(first_mp); 11211 return; 11212 } 11213 } 11214 11215 /* 11216 * Count for SNMP of inbound packets for ire. 11217 * if mctl is present this might be a secure packet and 11218 * has already been counted for in ip_proto_input(). 11219 */ 11220 if (!mctl_present) { 11221 UPDATE_IB_PKT_COUNT(ire); 11222 ire->ire_last_used_time = lbolt; 11223 } 11224 11225 /* packet part of fragmented IP packet? */ 11226 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11227 if (u1 & (IPH_MF | IPH_OFFSET)) { 11228 goto fragmented; 11229 } 11230 11231 /* u1 = IP header length (20 bytes) */ 11232 u1 = IP_SIMPLE_HDR_LENGTH; 11233 11234 /* packet does not contain complete IP & UDP headers */ 11235 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 11236 goto udppullup; 11237 /* up points to UDP header */ 11238 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 11239 #define iphs ((uint16_t *)ipha) 11240 11241 #define IP_CKSUM_RECV(len, u1, u2, mp, mp1, error, dp) { \ 11242 boolean_t doswcksum = B_TRUE; \ 11243 uint_t hcksumflags = 0; \ 11244 \ 11245 hcksumflags = dp->db_struioun.cksum.flags; \ 11246 \ 11247 /* Clear the hardware checksum flags; they have been consumed */\ 11248 dp->db_struioun.cksum.flags = 0; \ 11249 if (hcksumflags && (ill->ill_capabilities & ILL_CAPAB_HCKSUM) &&\ 11250 dohwcksum) { \ 11251 if (hcksumflags & HCK_FULLCKSUM) { \ 11252 /* \ 11253 * Full checksum has been computed by the \ 11254 * hardware and has been attached. \ 11255 */ \ 11256 doswcksum = B_FALSE; \ 11257 if (!(hcksumflags & HCK_FULLCKSUM_OK) && \ 11258 (dp->db_cksum16 != 0xffff)) { \ 11259 ipcsumdbg("full hwcksumerr\n", mp); \ 11260 goto error; \ 11261 } \ 11262 } else if ((hcksumflags & HCK_PARTIALCKSUM) && \ 11263 (((len = (IP_SIMPLE_HDR_LENGTH - dp->db_cksumstart))\ 11264 & 1) == 0)) { \ 11265 uint32_t tot_len = 0; \ 11266 \ 11267 doswcksum = B_FALSE; \ 11268 /* Partial checksum computed */ \ 11269 u1 += dp->db_cksum16; \ 11270 tot_len = mp->b_wptr - mp->b_rptr; \ 11271 if (!mp1) \ 11272 mp1 = mp; \ 11273 else \ 11274 tot_len += mp1->b_wptr - mp1->b_rptr; \ 11275 if (len > 0) { \ 11276 /* \ 11277 * Prepended extraneous data. Adjust \ 11278 * checksum. \ 11279 */ \ 11280 u2 = IP_BCSUM_PARTIAL((uchar_t *)(rptr +\ 11281 dp->db_cksumstart), (int32_t)len, \ 11282 0); \ 11283 } else \ 11284 u2 = 0; \ 11285 if ((len = (dp->db_cksumend - tot_len)) > 0) { \ 11286 /* \ 11287 * Postpended extraneous data. Adjust \ 11288 * checksum. \ 11289 */ \ 11290 uint32_t u3; \ 11291 \ 11292 u3 = IP_BCSUM_PARTIAL(mp1->b_wptr, \ 11293 (int32_t)len, 0); \ 11294 if ((uintptr_t)mp1->b_wptr & 1) \ 11295 /* \ 11296 * Postpended extraneous data \ 11297 * was odd byte aligned, so \ 11298 * swap resulting checksum \ 11299 * bytes. \ 11300 */ \ 11301 u2 += ((u3 << 8) & 0xffff) | \ 11302 (u3 >> 8); \ 11303 else \ 11304 u2 += u3; \ 11305 u2 = (u2 & 0xFFFF) + ((int)(u2) >> 16); \ 11306 } \ 11307 /* \ 11308 * One's complement subtract extraneous checksum\ 11309 */ \ 11310 if (u2 >= u1) \ 11311 u1 = ~(u2 - u1) & 0xFFFF; \ 11312 else \ 11313 u1 -= u2; \ 11314 u1 = (u1 & 0xFFFF) + ((int)u1 >> 16); \ 11315 if (~(u1) & 0xFFFF) { \ 11316 ipcsumdbg("partial hwcksumerr\n", mp); \ 11317 goto error; \ 11318 } \ 11319 } \ 11320 } \ 11321 if (doswcksum) { \ 11322 IP_STAT(ip_in_sw_cksum); \ 11323 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - \ 11324 (uchar_t *)ipha), u1)) != 0) { \ 11325 ipcsumdbg("swcksumerr\n", mp); \ 11326 goto error; \ 11327 } \ 11328 } \ 11329 } 11330 11331 dp = mp->b_datap; 11332 /* if udp hdr cksum != 0, then need to checksum udp packet */ 11333 if (up[3]) { 11334 cksum_computed = B_TRUE; 11335 /* multiple mblks of udp data? */ 11336 if ((mp1 = mp->b_cont) != NULL) { 11337 /* more than two? */ 11338 if (mp1->b_cont) 11339 goto multipktudp; 11340 } 11341 11342 /* Pseudo-header checksum */ 11343 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11344 iphs[9] + up[2]; 11345 if (!mctl_present) { 11346 ssize_t len = 0; 11347 11348 IP_CKSUM_RECV(len, u1, u2, mp, mp1, udpcksumerr, dp); 11349 } else { 11350 multipktudp: 11351 IP_STAT(ip_in_sw_cksum); 11352 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - 11353 (uchar_t *)ipha), u1)) != 0) { 11354 udpcksumerr: 11355 ip1dbg(("ip_udp_input: bad udp checksum\n")); 11356 BUMP_MIB(&ip_mib, udpInCksumErrs); 11357 freemsg(first_mp); 11358 return; 11359 } 11360 } 11361 } 11362 11363 /* broadcast IP packet? */ 11364 if (ire->ire_type == IRE_BROADCAST) 11365 goto udpslowpath; 11366 11367 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 11368 ire->ire_zoneid)) != NULL) { 11369 ASSERT(connp->conn_upq != NULL); 11370 IP_STAT(ip_udp_fast_path); 11371 11372 if (!canputnext(connp->conn_upq)) { 11373 freemsg(mp); 11374 BUMP_MIB(&ip_mib, udpInOverflows); 11375 } else { 11376 if (!mctl_present) { 11377 BUMP_MIB(&ip_mib, ipInDelivers); 11378 } 11379 /* 11380 * mp and first_mp can change. 11381 */ 11382 if (ip_udp_check(q, connp, recv_ill, 11383 ipha, &mp, &first_mp, mctl_present)) { 11384 putnext(connp->conn_upq, mp); 11385 } 11386 } 11387 /* 11388 * freeb() cannot deal with null mblk being passed 11389 * in and first_mp can be set to null in the call 11390 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 11391 */ 11392 if (mctl_present && first_mp != NULL) { 11393 freeb(first_mp); 11394 } 11395 CONN_DEC_REF(connp); 11396 return; 11397 } 11398 11399 /* 11400 * if we got here we know the packet is not fragmented and 11401 * has no options. The classifier could not find a conn_t and 11402 * most likely its an icmp packet so send it through slow path. 11403 */ 11404 11405 goto udpslowpath; 11406 11407 ipoptions: 11408 if (!ip_options_cksum(q, mp, ipha, ire)) { 11409 goto slow_done; 11410 } 11411 11412 UPDATE_IB_PKT_COUNT(ire); 11413 ire->ire_last_used_time = lbolt; 11414 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11415 if (u1 & (IPH_MF | IPH_OFFSET)) { 11416 fragmented: 11417 if (!ip_rput_fragment(q, &mp, ipha)) { 11418 goto slow_done; 11419 } 11420 /* 11421 * Make sure that first_mp points back to mp as 11422 * the mp we came in with could have changed in 11423 * ip_rput_fragment(). 11424 */ 11425 ASSERT(!mctl_present); 11426 ipha = (ipha_t *)mp->b_rptr; 11427 first_mp = mp; 11428 } 11429 11430 /* Now we have a complete datagram, destined for this machine. */ 11431 u1 = IPH_HDR_LENGTH(ipha); 11432 /* Pull up the UDP header, if necessary. */ 11433 if ((mp->b_wptr - mp->b_rptr) < (u1 + UDPH_SIZE)) { 11434 udppullup: 11435 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 11436 BUMP_MIB(&ip_mib, ipInDiscards); 11437 freemsg(first_mp); 11438 goto slow_done; 11439 } 11440 ipha = (ipha_t *)mp->b_rptr; 11441 } 11442 /* 11443 * Validate the checksum. This code is a bit funny looking 11444 * but may help out the compiler in this crucial spot. 11445 */ 11446 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 11447 if (!cksum_computed && up[3]) { 11448 IP_STAT(ip_in_sw_cksum); 11449 sum = IP_CSUM(mp, (int32_t)((uchar_t *)up - (uchar_t *)ipha), 11450 IP_UDP_CSUM_COMP + iphs[6] + 11451 iphs[7] + iphs[8] + 11452 iphs[9] + up[2]); 11453 if (sum != 0) { 11454 ip1dbg(("ip_udp_input: bad udp checksum\n")); 11455 BUMP_MIB(&ip_mib, udpInCksumErrs); 11456 freemsg(first_mp); 11457 goto slow_done; 11458 } 11459 } 11460 udpslowpath: 11461 11462 ports = *(uint32_t *)up; 11463 /* Clear hardware checksum flag */ 11464 mp->b_datap->db_struioun.cksum.flags = 0; 11465 ip_fanout_udp(q, first_mp, ill, ipha, ports, 11466 (ire->ire_type == IRE_BROADCAST), 11467 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 11468 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 11469 11470 slow_done: 11471 IP_STAT(ip_udp_slow_path); 11472 return; 11473 11474 #undef rptr 11475 } 11476 11477 /* ARGSUSED */ 11478 static mblk_t * 11479 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11480 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 11481 ill_rx_ring_t *ill_ring) 11482 { 11483 conn_t *connp; 11484 uint32_t sum; 11485 uint32_t u1; 11486 uint32_t u2; 11487 uint16_t *up; 11488 int offset; 11489 ssize_t len; 11490 mblk_t *mp1; 11491 dblk_t *dp; 11492 boolean_t syn_present = B_FALSE; 11493 tcph_t *tcph; 11494 uint_t ip_hdr_len; 11495 ill_t *ill = (ill_t *)q->q_ptr; 11496 zoneid_t zoneid = ire->ire_zoneid; 11497 11498 #define rptr ((uchar_t *)ipha) 11499 11500 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 11501 11502 /* 11503 * FAST PATH for tcp packets 11504 */ 11505 11506 /* u1 is # words of IP options */ 11507 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11508 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11509 11510 /* IP options present */ 11511 if (u1) { 11512 goto ipoptions; 11513 } else { 11514 /* Check the IP header checksum. */ 11515 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11516 /* Clear the IP header h/w cksum flag */ 11517 mp->b_datap->db_struioun.cksum.flags &= 11518 ~HCK_IPV4_HDRCKSUM; 11519 } else { 11520 #define uph ((uint16_t *)ipha) 11521 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11522 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11523 #undef uph 11524 /* finish doing IP checksum */ 11525 sum = (sum & 0xFFFF) + (sum >> 16); 11526 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11527 /* 11528 * Don't verify header checksum if this packet 11529 * is coming back from AH/ESP as we already did it. 11530 */ 11531 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11532 BUMP_MIB(&ip_mib, ipInCksumErrs); 11533 goto error; 11534 } 11535 } 11536 } 11537 11538 if (!mctl_present) { 11539 UPDATE_IB_PKT_COUNT(ire); 11540 ire->ire_last_used_time = lbolt; 11541 } 11542 11543 /* packet part of fragmented IP packet? */ 11544 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11545 if (u1 & (IPH_MF | IPH_OFFSET)) { 11546 goto fragmented; 11547 } 11548 11549 /* u1 = IP header length (20 bytes) */ 11550 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 11551 11552 /* does packet contain IP+TCP headers? */ 11553 len = mp->b_wptr - rptr; 11554 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 11555 IP_STAT(ip_tcppullup); 11556 goto tcppullup; 11557 } 11558 11559 /* TCP options present? */ 11560 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 11561 11562 /* 11563 * If options need to be pulled up, then goto tcpoptions. 11564 * otherwise we are still in the fast path 11565 */ 11566 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 11567 IP_STAT(ip_tcpoptions); 11568 goto tcpoptions; 11569 } 11570 11571 /* multiple mblks of tcp data? */ 11572 if ((mp1 = mp->b_cont) != NULL) { 11573 /* more then two? */ 11574 if (mp1->b_cont != NULL) { 11575 IP_STAT(ip_multipkttcp); 11576 goto multipkttcp; 11577 } 11578 len += mp1->b_wptr - mp1->b_rptr; 11579 } 11580 11581 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 11582 11583 /* part of pseudo checksum */ 11584 11585 /* TCP datagram length */ 11586 u1 = len - IP_SIMPLE_HDR_LENGTH; 11587 11588 #define iphs ((uint16_t *)ipha) 11589 11590 #ifdef _BIG_ENDIAN 11591 u1 += IPPROTO_TCP; 11592 #else 11593 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11594 #endif 11595 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11596 11597 11598 /* 11599 * If the packet has gone through AH/ESP, do the checksum here 11600 * itself. 11601 * 11602 * If it has not gone through IPSEC processing and not a duped 11603 * mblk, then look for driver checksummed mblk. We validate or 11604 * postpone the checksum to TCP for single copy checksum. 11605 * 11606 * Note that we only honor HW cksum in the fastpath. 11607 */ 11608 dp = mp->b_datap; 11609 if (!mctl_present) { 11610 IP_CKSUM_RECV(len, u1, u2, mp, mp1, tcpcksumerr, dp); 11611 } else { 11612 IP_STAT(ip_in_sw_cksum); 11613 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), 11614 u1)) != 0) { 11615 tcpcksumerr: 11616 BUMP_MIB(&ip_mib, tcpInErrs); 11617 ip1dbg(("ip_tcp_input: bad tcp checksum \n")); 11618 freemsg(first_mp); 11619 goto slow_done; 11620 } 11621 } 11622 11623 try_again: 11624 11625 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 11626 NULL) { 11627 /* Send the TH_RST */ 11628 goto no_conn; 11629 } 11630 11631 /* 11632 * TCP FAST PATH for AF_INET socket. 11633 * 11634 * TCP fast path to avoid extra work. An AF_INET socket type 11635 * does not have facility to receive extra information via 11636 * ip_process or ip_add_info. Also, when the connection was 11637 * established, we made a check if this connection is impacted 11638 * by any global IPSec policy or per connection policy (a 11639 * policy that comes in effect later will not apply to this 11640 * connection). Since all this can be determined at the 11641 * connection establishment time, a quick check of flags 11642 * can avoid extra work. 11643 */ 11644 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 11645 !IPP_ENABLED(IPP_LOCAL_IN)) { 11646 ASSERT(first_mp == mp); 11647 SET_SQUEUE(mp, tcp_rput_data, connp); 11648 return (mp); 11649 } 11650 11651 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 11652 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 11653 if (IPCL_IS_TCP(connp)) { 11654 mp->b_datap->db_struioflag |= STRUIO_EAGER; 11655 mp->b_datap->db_cksumstart = 11656 (intptr_t)ip_squeue_get(ill_ring); 11657 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 11658 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11659 SET_SQUEUE(mp, connp->conn_recv, connp); 11660 return (mp); 11661 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 11662 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11663 ip_squeue_enter_unbound++; 11664 SET_SQUEUE(mp, tcp_conn_request_unbound, 11665 connp); 11666 return (mp); 11667 } 11668 syn_present = B_TRUE; 11669 } 11670 11671 } 11672 11673 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 11674 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 11675 11676 /* No need to send this packet to TCP */ 11677 if ((flags & TH_RST) || (flags & TH_URG)) { 11678 CONN_DEC_REF(connp); 11679 freemsg(first_mp); 11680 return (NULL); 11681 } 11682 if (flags & TH_ACK) { 11683 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 11684 CONN_DEC_REF(connp); 11685 return (NULL); 11686 } 11687 11688 CONN_DEC_REF(connp); 11689 freemsg(first_mp); 11690 return (NULL); 11691 } 11692 11693 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11694 first_mp = ipsec_check_inbound_policy(first_mp, connp, 11695 ipha, NULL, mctl_present); 11696 if (first_mp == NULL) { 11697 CONN_DEC_REF(connp); 11698 return (NULL); 11699 } 11700 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 11701 ASSERT(syn_present); 11702 if (mctl_present) { 11703 ASSERT(first_mp != mp); 11704 first_mp->b_datap->db_struioflag |= 11705 STRUIO_POLICY; 11706 } else { 11707 ASSERT(first_mp == mp); 11708 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 11709 mp->b_datap->db_struioflag |= STRUIO_POLICY; 11710 } 11711 } else { 11712 /* 11713 * Discard first_mp early since we're dealing with a 11714 * fully-connected conn_t and tcp doesn't do policy in 11715 * this case. 11716 */ 11717 if (mctl_present) { 11718 freeb(first_mp); 11719 mctl_present = B_FALSE; 11720 } 11721 first_mp = mp; 11722 } 11723 } 11724 11725 /* Initiate IPPF processing for fastpath */ 11726 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11727 uint32_t ill_index; 11728 11729 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11730 ip_process(IPP_LOCAL_IN, &mp, ill_index); 11731 if (mp == NULL) { 11732 ip2dbg(("ip_input_ipsec_process: TCP pkt " 11733 "deferred/dropped during IPPF processing\n")); 11734 CONN_DEC_REF(connp); 11735 if (mctl_present) 11736 freeb(first_mp); 11737 return (NULL); 11738 } else if (mctl_present) { 11739 /* 11740 * ip_process might return a new mp. 11741 */ 11742 ASSERT(first_mp != mp); 11743 first_mp->b_cont = mp; 11744 } else { 11745 first_mp = mp; 11746 } 11747 11748 } 11749 11750 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 11751 mp = ip_add_info(mp, recv_ill, flags); 11752 if (mp == NULL) { 11753 CONN_DEC_REF(connp); 11754 if (mctl_present) 11755 freeb(first_mp); 11756 return (NULL); 11757 } else if (mctl_present) { 11758 /* 11759 * ip_add_info might return a new mp. 11760 */ 11761 ASSERT(first_mp != mp); 11762 first_mp->b_cont = mp; 11763 } else { 11764 first_mp = mp; 11765 } 11766 } 11767 11768 if (IPCL_IS_TCP(connp)) { 11769 SET_SQUEUE(first_mp, connp->conn_recv, connp); 11770 return (first_mp); 11771 } else { 11772 putnext(connp->conn_rq, first_mp); 11773 CONN_DEC_REF(connp); 11774 return (NULL); 11775 } 11776 11777 no_conn: 11778 /* Initiate IPPf processing, if needed. */ 11779 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11780 uint32_t ill_index; 11781 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11782 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 11783 if (first_mp == NULL) { 11784 return (NULL); 11785 } 11786 } 11787 BUMP_MIB(&ip_mib, ipInDelivers); 11788 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 11789 return (NULL); 11790 ipoptions: 11791 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 11792 goto slow_done; 11793 } 11794 11795 UPDATE_IB_PKT_COUNT(ire); 11796 ire->ire_last_used_time = lbolt; 11797 11798 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11799 if (u1 & (IPH_MF | IPH_OFFSET)) { 11800 fragmented: 11801 if (!ip_rput_fragment(q, &mp, ipha)) { 11802 if (mctl_present) 11803 freeb(first_mp); 11804 goto slow_done; 11805 } 11806 /* 11807 * Make sure that first_mp points back to mp as 11808 * the mp we came in with could have changed in 11809 * ip_rput_fragment(). 11810 */ 11811 ASSERT(!mctl_present); 11812 ipha = (ipha_t *)mp->b_rptr; 11813 first_mp = mp; 11814 } 11815 11816 tcp_slow: 11817 /* Now we have a complete datagram, destined for this machine. */ 11818 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 11819 11820 len = mp->b_wptr - mp->b_rptr; 11821 /* Pull up a minimal TCP header, if necessary. */ 11822 if (len < (u1 + 20)) { 11823 tcppullup: 11824 if (!pullupmsg(mp, u1 + 20)) { 11825 BUMP_MIB(&ip_mib, ipInDiscards); 11826 goto error; 11827 } 11828 ipha = (ipha_t *)mp->b_rptr; 11829 len = mp->b_wptr - mp->b_rptr; 11830 } 11831 11832 /* 11833 * Extract the offset field from the TCP header. As usual, we 11834 * try to help the compiler more than the reader. 11835 */ 11836 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 11837 if (offset != 5) { 11838 tcpoptions: 11839 if (offset < 5) { 11840 BUMP_MIB(&ip_mib, ipInDiscards); 11841 goto error; 11842 } 11843 /* 11844 * There must be TCP options. 11845 * Make sure we can grab them. 11846 */ 11847 offset <<= 2; 11848 offset += u1; 11849 if (len < offset) { 11850 if (!pullupmsg(mp, offset)) { 11851 BUMP_MIB(&ip_mib, ipInDiscards); 11852 goto error; 11853 } 11854 ipha = (ipha_t *)mp->b_rptr; 11855 len = mp->b_wptr - rptr; 11856 } 11857 } 11858 11859 /* Get the total packet length in len, including headers. */ 11860 if (mp->b_cont) { 11861 multipkttcp: 11862 len = msgdsize(mp); 11863 } 11864 11865 /* 11866 * Check the TCP checksum by pulling together the pseudo- 11867 * header checksum, and passing it to ip_csum to be added in 11868 * with the TCP datagram. 11869 * 11870 * Since we are not using the hwcksum if available we must 11871 * clear the flag. We may come here via tcppullup or tcpoptions. 11872 * If either of these fails along the way the mblk is freed. 11873 * If this logic ever changes and mblk is reused to say send 11874 * ICMP's back, then this flag may need to be cleared in 11875 * other places as well. 11876 */ 11877 mp->b_datap->db_struioun.cksum.flags = 0; 11878 11879 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 11880 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 11881 #ifdef _BIG_ENDIAN 11882 u1 += IPPROTO_TCP; 11883 #else 11884 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11885 #endif 11886 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11887 /* 11888 * Not M_DATA mblk or its a dup, so do the checksum now. 11889 */ 11890 IP_STAT(ip_in_sw_cksum); 11891 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1)) { 11892 BUMP_MIB(&ip_mib, tcpInErrs); 11893 goto error; 11894 } 11895 11896 IP_STAT(ip_tcp_slow_path); 11897 goto try_again; 11898 #undef iphs 11899 #undef rptr 11900 11901 error: 11902 freemsg(first_mp); 11903 slow_done: 11904 return (NULL); 11905 } 11906 11907 /* ARGSUSED */ 11908 static void 11909 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11910 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 11911 { 11912 conn_t *connp; 11913 uint32_t sum; 11914 uint32_t u1; 11915 ssize_t len; 11916 sctp_hdr_t *sctph; 11917 zoneid_t zoneid = ire->ire_zoneid; 11918 uint32_t pktsum; 11919 uint32_t calcsum; 11920 uint32_t ports; 11921 uint_t ipif_seqid; 11922 in6_addr_t map_src, map_dst; 11923 ill_t *ill = (ill_t *)q->q_ptr; 11924 11925 #define rptr ((uchar_t *)ipha) 11926 11927 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 11928 11929 /* u1 is # words of IP options */ 11930 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11931 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11932 11933 /* IP options present */ 11934 if (u1 > 0) { 11935 goto ipoptions; 11936 } else { 11937 /* Check the IP header checksum. */ 11938 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11939 /* 11940 * Since there is no SCTP h/w cksum support yet, just 11941 * clear the flag. 11942 */ 11943 mp->b_datap->db_struioun.cksum.flags = 0; 11944 } else { 11945 #define uph ((uint16_t *)ipha) 11946 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11947 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11948 #undef uph 11949 /* finish doing IP checksum */ 11950 sum = (sum & 0xFFFF) + (sum >> 16); 11951 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11952 /* 11953 * Don't verify header checksum if this packet 11954 * is coming back from AH/ESP as we already did it. 11955 */ 11956 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11957 BUMP_MIB(&ip_mib, ipInCksumErrs); 11958 goto error; 11959 } 11960 } 11961 } 11962 11963 /* 11964 * Don't verify header checksum if this packet is coming 11965 * back from AH/ESP as we already did it. 11966 */ 11967 if (!mctl_present) { 11968 UPDATE_IB_PKT_COUNT(ire); 11969 ire->ire_last_used_time = lbolt; 11970 } 11971 11972 /* packet part of fragmented IP packet? */ 11973 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11974 if (u1 & (IPH_MF | IPH_OFFSET)) 11975 goto fragmented; 11976 11977 /* u1 = IP header length (20 bytes) */ 11978 u1 = IP_SIMPLE_HDR_LENGTH; 11979 11980 find_sctp_client: 11981 /* Pullup if we don't have the sctp common header. */ 11982 len = MBLKL(mp); 11983 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 11984 if (mp->b_cont == NULL || 11985 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 11986 BUMP_MIB(&ip_mib, ipInDiscards); 11987 goto error; 11988 } 11989 ipha = (ipha_t *)mp->b_rptr; 11990 len = MBLKL(mp); 11991 } 11992 11993 sctph = (sctp_hdr_t *)(rptr + u1); 11994 #ifdef DEBUG 11995 if (!skip_sctp_cksum) { 11996 #endif 11997 pktsum = sctph->sh_chksum; 11998 sctph->sh_chksum = 0; 11999 calcsum = sctp_cksum(mp, u1); 12000 if (calcsum != pktsum) { 12001 BUMP_MIB(&sctp_mib, sctpChecksumError); 12002 goto error; 12003 } 12004 sctph->sh_chksum = pktsum; 12005 #ifdef DEBUG /* skip_sctp_cksum */ 12006 } 12007 #endif 12008 /* get the ports */ 12009 ports = *(uint32_t *)&sctph->sh_sport; 12010 12011 ipif_seqid = ire->ire_ipif->ipif_seqid; 12012 IRE_REFRELE(ire); 12013 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12014 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12015 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, ipif_seqid, 12016 zoneid)) == NULL) { 12017 /* Check for raw socket or OOTB handling */ 12018 goto no_conn; 12019 } 12020 12021 /* Found a client; up it goes */ 12022 BUMP_MIB(&ip_mib, ipInDelivers); 12023 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12024 return; 12025 12026 no_conn: 12027 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12028 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12029 return; 12030 12031 ipoptions: 12032 mp->b_datap->db_struioun.cksum.flags = 0; 12033 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12034 goto slow_done; 12035 12036 UPDATE_IB_PKT_COUNT(ire); 12037 ire->ire_last_used_time = lbolt; 12038 12039 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12040 if (u1 & (IPH_MF | IPH_OFFSET)) { 12041 fragmented: 12042 if (!ip_rput_fragment(q, &mp, ipha)) 12043 goto slow_done; 12044 /* 12045 * Make sure that first_mp points back to mp as 12046 * the mp we came in with could have changed in 12047 * ip_rput_fragment(). 12048 */ 12049 ASSERT(!mctl_present); 12050 ipha = (ipha_t *)mp->b_rptr; 12051 first_mp = mp; 12052 } 12053 12054 /* Now we have a complete datagram, destined for this machine. */ 12055 u1 = IPH_HDR_LENGTH(ipha); 12056 goto find_sctp_client; 12057 #undef iphs 12058 #undef rptr 12059 12060 error: 12061 freemsg(first_mp); 12062 slow_done: 12063 IRE_REFRELE(ire); 12064 } 12065 12066 #define VER_BITS 0xF0 12067 #define VERSION_6 0x60 12068 12069 static boolean_t 12070 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12071 ipaddr_t *dstp) 12072 { 12073 uint_t opt_len; 12074 ipha_t *ipha; 12075 ssize_t len; 12076 uint_t pkt_len; 12077 12078 IP_STAT(ip_ipoptions); 12079 ipha = *iphapp; 12080 12081 #define rptr ((uchar_t *)ipha) 12082 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12083 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12084 BUMP_MIB(&ip_mib, ipInIPv6); 12085 freemsg(mp); 12086 return (B_FALSE); 12087 } 12088 12089 /* multiple mblk or too short */ 12090 pkt_len = ntohs(ipha->ipha_length); 12091 12092 /* Get the number of words of IP options in the IP header. */ 12093 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12094 if (opt_len) { 12095 /* IP Options present! Validate and process. */ 12096 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12097 BUMP_MIB(&ip_mib, ipInHdrErrors); 12098 goto done; 12099 } 12100 /* 12101 * Recompute complete header length and make sure we 12102 * have access to all of it. 12103 */ 12104 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12105 if (len > (mp->b_wptr - rptr)) { 12106 if (len > pkt_len) { 12107 BUMP_MIB(&ip_mib, ipInHdrErrors); 12108 goto done; 12109 } 12110 if (!pullupmsg(mp, len)) { 12111 BUMP_MIB(&ip_mib, ipInDiscards); 12112 goto done; 12113 } 12114 ipha = (ipha_t *)mp->b_rptr; 12115 } 12116 /* 12117 * Go off to ip_rput_options which returns the next hop 12118 * destination address, which may have been affected 12119 * by source routing. 12120 */ 12121 IP_STAT(ip_opt); 12122 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12123 return (B_FALSE); 12124 } 12125 } 12126 *iphapp = ipha; 12127 return (B_TRUE); 12128 done: 12129 /* clear b_prev - used by ip_mroute_decap */ 12130 mp->b_prev = NULL; 12131 freemsg(mp); 12132 return (B_FALSE); 12133 #undef rptr 12134 } 12135 12136 /* 12137 * Deal with the fact that there is no ire for the destination. 12138 * The incoming ill (in_ill) is passed in to ip_newroute only 12139 * in the case of packets coming from mobile ip forward tunnel. 12140 * It must be null otherwise. 12141 */ 12142 static void 12143 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12144 ipaddr_t dst) 12145 { 12146 ipha_t *ipha; 12147 ill_t *ill; 12148 12149 ipha = (ipha_t *)mp->b_rptr; 12150 ill = (ill_t *)q->q_ptr; 12151 12152 ASSERT(ill != NULL); 12153 /* 12154 * No IRE for this destination, so it can't be for us. 12155 * Unless we are forwarding, drop the packet. 12156 * We have to let source routed packets through 12157 * since we don't yet know if they are 'ping -l' 12158 * packets i.e. if they will go out over the 12159 * same interface as they came in on. 12160 */ 12161 if (ll_multicast) { 12162 freemsg(mp); 12163 return; 12164 } 12165 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12166 BUMP_MIB(&ip_mib, ipForwProhibits); 12167 freemsg(mp); 12168 return; 12169 } 12170 12171 /* Check for Martian addresses */ 12172 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12173 freemsg(mp); 12174 return; 12175 } 12176 12177 /* Mark this packet as having originated externally */ 12178 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12179 12180 /* 12181 * Clear the indication that this may have a hardware checksum 12182 * as we are not using it 12183 */ 12184 mp->b_datap->db_struioun.cksum.flags = 0; 12185 12186 /* 12187 * Now hand the packet to ip_newroute. 12188 */ 12189 ip_newroute(q, mp, dst, in_ill, NULL); 12190 } 12191 12192 /* 12193 * check ip header length and align it. 12194 */ 12195 static boolean_t 12196 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12197 { 12198 ssize_t len; 12199 ill_t *ill; 12200 ipha_t *ipha; 12201 12202 len = MBLKL(mp); 12203 12204 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12205 if (!OK_32PTR(mp->b_rptr)) 12206 IP_STAT(ip_notaligned1); 12207 else 12208 IP_STAT(ip_notaligned2); 12209 /* Guard against bogus device drivers */ 12210 if (len < 0) { 12211 /* clear b_prev - used by ip_mroute_decap */ 12212 mp->b_prev = NULL; 12213 BUMP_MIB(&ip_mib, ipInHdrErrors); 12214 freemsg(mp); 12215 return (B_FALSE); 12216 } 12217 12218 if (ip_rput_pullups++ == 0) { 12219 ill = (ill_t *)q->q_ptr; 12220 ipha = (ipha_t *)mp->b_rptr; 12221 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12222 "ip_check_and_align_header: %s forced us to " 12223 " pullup pkt, hdr len %ld, hdr addr %p", 12224 ill->ill_name, len, ipha); 12225 } 12226 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12227 /* clear b_prev - used by ip_mroute_decap */ 12228 mp->b_prev = NULL; 12229 BUMP_MIB(&ip_mib, ipInDiscards); 12230 freemsg(mp); 12231 return (B_FALSE); 12232 } 12233 } 12234 return (B_TRUE); 12235 } 12236 12237 static boolean_t 12238 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12239 { 12240 ill_group_t *ill_group; 12241 ill_group_t *ire_group; 12242 queue_t *q; 12243 ill_t *ire_ill; 12244 uint_t ill_ifindex; 12245 12246 q = *qp; 12247 /* 12248 * We need to check to make sure the packet came in 12249 * on the queue associated with the destination IRE. 12250 * Note that for multicast packets and broadcast packets sent to 12251 * a broadcast address which is shared between multiple interfaces 12252 * we should not do this since we just got a random broadcast ire. 12253 */ 12254 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 12255 boolean_t check_multi = B_TRUE; 12256 12257 /* 12258 * This packet came in on an interface other than the 12259 * one associated with the destination address. 12260 * "Gateway" it to the appropriate interface here. 12261 * As long as the ills belong to the same group, 12262 * we don't consider them to arriving on the wrong 12263 * interface. Thus, when the switch is doing inbound 12264 * load spreading, we won't drop packets when we 12265 * are doing strict multihoming checks. Note, the 12266 * same holds true for 'usesrc groups' where the 12267 * destination address may belong to another interface 12268 * to allow multipathing to happen 12269 */ 12270 ill_group = ill->ill_group; 12271 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 12272 ill_ifindex = ill->ill_usesrc_ifindex; 12273 ire_group = ire_ill->ill_group; 12274 12275 /* 12276 * If it's part of the same IPMP group, or if it's a legal 12277 * address on the 'usesrc' interface, then bypass strict 12278 * checks. 12279 */ 12280 if (ill_group != NULL && ill_group == ire_group) { 12281 check_multi = B_FALSE; 12282 } else if (ill_ifindex != 0 && 12283 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 12284 check_multi = B_FALSE; 12285 } 12286 12287 if (check_multi && 12288 ip_strict_dst_multihoming && 12289 ((ill->ill_flags & 12290 ire->ire_ipif->ipif_ill->ill_flags & 12291 ILLF_ROUTER) == 0)) { 12292 /* Drop packet */ 12293 BUMP_MIB(&ip_mib, ipForwProhibits); 12294 freemsg(mp); 12295 ire_refrele(ire); 12296 return (B_TRUE); 12297 } 12298 12299 /* 12300 * Change the queue (for non-virtual destination network 12301 * interfaces) and ip_rput_local will be called with the right 12302 * queue 12303 */ 12304 q = ire->ire_rfq; 12305 } 12306 /* Must be broadcast. We'll take it. */ 12307 *qp = q; 12308 return (B_FALSE); 12309 } 12310 12311 static void 12312 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 12313 ill_t *ill, int ll_multicast) 12314 { 12315 ill_group_t *ill_group; 12316 ill_group_t *ire_group; 12317 queue_t *dev_q; 12318 12319 ASSERT(ire->ire_stq != NULL); 12320 if (ll_multicast != 0) 12321 goto drop_pkt; 12322 12323 if (ip_no_forward(ipha, ill)) 12324 goto drop_pkt; 12325 12326 ill_group = ill->ill_group; 12327 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 12328 /* 12329 * Check if we want to forward this one at this time. 12330 * We allow source routed packets on a host provided that 12331 * they go out the same interface or same interface group 12332 * as they came in on. 12333 * 12334 * XXX To be quicker, we may wish to not chase pointers to 12335 * get the ILLF_ROUTER flag and instead store the 12336 * forwarding policy in the ire. An unfortunate 12337 * side-effect of that would be requiring an ire flush 12338 * whenever the ILLF_ROUTER flag changes. 12339 */ 12340 if (((ill->ill_flags & 12341 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 12342 ILLF_ROUTER) == 0) && 12343 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 12344 (ill_group != NULL && ill_group == ire_group)))) { 12345 BUMP_MIB(&ip_mib, ipForwProhibits); 12346 if (ip_source_routed(ipha)) { 12347 q = WR(q); 12348 /* 12349 * Clear the indication that this may have 12350 * hardware checksum as we are not using it. 12351 */ 12352 mp->b_datap->db_struioun.cksum.flags = 0; 12353 icmp_unreachable(q, mp, 12354 ICMP_SOURCE_ROUTE_FAILED); 12355 ire_refrele(ire); 12356 return; 12357 } 12358 goto drop_pkt; 12359 } 12360 12361 /* Packet is being forwarded. Turning off hwcksum flag. */ 12362 mp->b_datap->db_struioun.cksum.flags = 0; 12363 if (ip_g_send_redirects) { 12364 /* 12365 * Check whether the incoming interface and outgoing 12366 * interface is part of the same group. If so, 12367 * send redirects. 12368 * 12369 * Check the source address to see if it originated 12370 * on the same logical subnet it is going back out on. 12371 * If so, we should be able to send it a redirect. 12372 * Avoid sending a redirect if the destination 12373 * is directly connected (gw_addr == 0), 12374 * or if the packet was source routed out this 12375 * interface. 12376 */ 12377 ipaddr_t src; 12378 mblk_t *mp1; 12379 ire_t *src_ire = NULL; 12380 12381 /* 12382 * Check whether ire_rfq and q are from the same ill 12383 * or if they are not same, they at least belong 12384 * to the same group. If so, send redirects. 12385 */ 12386 if ((ire->ire_rfq == q || 12387 (ill_group != NULL && ill_group == ire_group)) && 12388 (ire->ire_gateway_addr != 0) && 12389 !ip_source_routed(ipha)) { 12390 12391 src = ipha->ipha_src; 12392 src_ire = ire_ftable_lookup(src, 0, 0, 12393 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 12394 0, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 12395 12396 if (src_ire != NULL) { 12397 /* 12398 * The source is directly connected. 12399 * Just copy the ip header (which is 12400 * in the first mblk) 12401 */ 12402 mp1 = copyb(mp); 12403 if (mp1 != NULL) { 12404 icmp_send_redirect(WR(q), mp1, 12405 ire->ire_gateway_addr); 12406 } 12407 ire_refrele(src_ire); 12408 } 12409 } 12410 } 12411 12412 dev_q = ire->ire_stq->q_next; 12413 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 12414 BUMP_MIB(&ip_mib, ipInDiscards); 12415 freemsg(mp); 12416 ire_refrele(ire); 12417 return; 12418 } 12419 12420 ip_rput_forward(ire, ipha, mp, ill); 12421 IRE_REFRELE(ire); 12422 return; 12423 12424 drop_pkt: 12425 ire_refrele(ire); 12426 ip2dbg(("ip_rput_forward: drop pkt\n")); 12427 freemsg(mp); 12428 } 12429 12430 static boolean_t 12431 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 12432 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 12433 { 12434 queue_t *q; 12435 ire_t *ire; 12436 12437 q = *qp; 12438 ire = *irep; 12439 12440 /* 12441 * Clear the indication that this may have hardware 12442 * checksum as we are not using it. 12443 */ 12444 mp->b_datap->db_struioun.cksum.flags = 0; 12445 12446 /* 12447 * Directed broadcast forwarding: if the packet came in over a 12448 * different interface then it is routed out over we can forward it. 12449 */ 12450 if (ipha->ipha_protocol == IPPROTO_TCP) { 12451 ire_refrele(ire); 12452 freemsg(mp); 12453 BUMP_MIB(&ip_mib, ipInDiscards); 12454 return (B_TRUE); 12455 } 12456 /* 12457 * For multicast we have set dst to be INADDR_BROADCAST 12458 * for delivering to all STREAMS. IRE_MARK_NORECV is really 12459 * only for broadcast packets. 12460 */ 12461 if (!CLASSD(ipha->ipha_dst)) { 12462 ire_t *new_ire; 12463 ipif_t *ipif; 12464 /* 12465 * For ill groups, as the switch duplicates broadcasts 12466 * across all the ports, we need to filter out and 12467 * send up only one copy. There is one copy for every 12468 * broadcast address on each ill. Thus, we look for a 12469 * specific IRE on this ill and look at IRE_MARK_NORECV 12470 * later to see whether this ill is eligible to receive 12471 * them or not. ill_nominate_bcast_rcv() nominates only 12472 * one set of IREs for receiving. 12473 */ 12474 12475 ipif = ipif_get_next_ipif(NULL, ill); 12476 if (ipif == NULL) { 12477 ire_refrele(ire); 12478 freemsg(mp); 12479 BUMP_MIB(&ip_mib, ipInDiscards); 12480 return (B_TRUE); 12481 } 12482 new_ire = ire_ctable_lookup(dst, 0, 0, 12483 ipif, ALL_ZONES, MATCH_IRE_ILL); 12484 ipif_refrele(ipif); 12485 12486 if (new_ire != NULL) { 12487 if (new_ire->ire_marks & IRE_MARK_NORECV) { 12488 ire_refrele(ire); 12489 ire_refrele(new_ire); 12490 freemsg(mp); 12491 BUMP_MIB(&ip_mib, ipInDiscards); 12492 return (B_TRUE); 12493 } 12494 /* 12495 * In the special case of multirouted broadcast 12496 * packets, we unconditionally need to "gateway" 12497 * them to the appropriate interface here. 12498 * In the normal case, this cannot happen, because 12499 * there is no broadcast IRE tagged with the 12500 * RTF_MULTIRT flag. 12501 */ 12502 if (new_ire->ire_flags & RTF_MULTIRT) { 12503 ire_refrele(new_ire); 12504 if (ire->ire_rfq != NULL) { 12505 q = ire->ire_rfq; 12506 *qp = q; 12507 } 12508 } else { 12509 ire_refrele(ire); 12510 ire = new_ire; 12511 } 12512 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 12513 if (!ip_g_forward_directed_bcast) { 12514 /* 12515 * Free the message if 12516 * ip_g_forward_directed_bcast is turned 12517 * off for non-local broadcast. 12518 */ 12519 ire_refrele(ire); 12520 freemsg(mp); 12521 BUMP_MIB(&ip_mib, ipInDiscards); 12522 return (B_TRUE); 12523 } 12524 } else { 12525 /* 12526 * This CGTP packet successfully passed the 12527 * CGTP filter, but the related CGTP 12528 * broadcast IRE has not been found, 12529 * meaning that the redundant ipif is 12530 * probably down. However, if we discarded 12531 * this packet, its duplicate would be 12532 * filtered out by the CGTP filter so none 12533 * of them would get through. So we keep 12534 * going with this one. 12535 */ 12536 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 12537 if (ire->ire_rfq != NULL) { 12538 q = ire->ire_rfq; 12539 *qp = q; 12540 } 12541 } 12542 } 12543 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 12544 /* 12545 * Verify that there are not more then one 12546 * IRE_BROADCAST with this broadcast address which 12547 * has ire_stq set. 12548 * TODO: simplify, loop over all IRE's 12549 */ 12550 ire_t *ire1; 12551 int num_stq = 0; 12552 mblk_t *mp1; 12553 12554 /* Find the first one with ire_stq set */ 12555 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 12556 for (ire1 = ire; ire1 && 12557 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 12558 ire1 = ire1->ire_next) 12559 ; 12560 if (ire1) { 12561 ire_refrele(ire); 12562 ire = ire1; 12563 IRE_REFHOLD(ire); 12564 } 12565 12566 /* Check if there are additional ones with stq set */ 12567 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 12568 if (ire->ire_addr != ire1->ire_addr) 12569 break; 12570 if (ire1->ire_stq) { 12571 num_stq++; 12572 break; 12573 } 12574 } 12575 rw_exit(&ire->ire_bucket->irb_lock); 12576 if (num_stq == 1 && ire->ire_stq != NULL) { 12577 ip1dbg(("ip_rput_process_broadcast: directed " 12578 "broadcast to 0x%x\n", 12579 ntohl(ire->ire_addr))); 12580 mp1 = copymsg(mp); 12581 if (mp1) { 12582 switch (ipha->ipha_protocol) { 12583 case IPPROTO_UDP: 12584 ip_udp_input(q, mp1, ipha, ire, ill); 12585 break; 12586 default: 12587 ip_proto_input(q, mp1, ipha, ire, ill); 12588 break; 12589 } 12590 } 12591 /* 12592 * Adjust ttl to 2 (1+1 - the forward engine 12593 * will decrement it by one. 12594 */ 12595 if (ip_csum_hdr(ipha)) { 12596 BUMP_MIB(&ip_mib, ipInCksumErrs); 12597 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 12598 freemsg(mp); 12599 ire_refrele(ire); 12600 return (B_TRUE); 12601 } 12602 ipha->ipha_ttl = ip_broadcast_ttl + 1; 12603 ipha->ipha_hdr_checksum = 0; 12604 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 12605 ip_rput_process_forward(q, mp, ire, ipha, 12606 ill, ll_multicast); 12607 return (B_TRUE); 12608 } 12609 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 12610 ntohl(ire->ire_addr))); 12611 } 12612 12613 *irep = ire; 12614 return (B_FALSE); 12615 } 12616 12617 /* ARGSUSED */ 12618 static boolean_t 12619 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 12620 int *ll_multicast, ipaddr_t *dstp) 12621 { 12622 /* 12623 * Forward packets only if we have joined the allmulti 12624 * group on this interface. 12625 */ 12626 if (ip_g_mrouter && ill->ill_join_allmulti) { 12627 int retval; 12628 12629 /* 12630 * Clear the indication that this may have hardware 12631 * checksum as we are not using it. 12632 */ 12633 mp->b_datap->db_struioun.cksum.flags = 0; 12634 retval = ip_mforward(ill, ipha, mp); 12635 /* ip_mforward updates mib variables if needed */ 12636 /* clear b_prev - used by ip_mroute_decap */ 12637 mp->b_prev = NULL; 12638 12639 switch (retval) { 12640 case 0: 12641 /* 12642 * pkt is okay and arrived on phyint. 12643 * 12644 * If we are running as a multicast router 12645 * we need to see all IGMP and/or PIM packets. 12646 */ 12647 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 12648 (ipha->ipha_protocol == IPPROTO_PIM)) { 12649 goto done; 12650 } 12651 break; 12652 case -1: 12653 /* pkt is mal-formed, toss it */ 12654 goto drop_pkt; 12655 case 1: 12656 /* pkt is okay and arrived on a tunnel */ 12657 /* 12658 * If we are running a multicast router 12659 * we need to see all igmp packets. 12660 */ 12661 if (ipha->ipha_protocol == IPPROTO_IGMP) { 12662 *dstp = INADDR_BROADCAST; 12663 *ll_multicast = 1; 12664 return (B_FALSE); 12665 } 12666 12667 goto drop_pkt; 12668 } 12669 } 12670 12671 ILM_WALKER_HOLD(ill); 12672 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 12673 /* 12674 * This might just be caused by the fact that 12675 * multiple IP Multicast addresses map to the same 12676 * link layer multicast - no need to increment counter! 12677 */ 12678 ILM_WALKER_RELE(ill); 12679 freemsg(mp); 12680 return (B_TRUE); 12681 } 12682 ILM_WALKER_RELE(ill); 12683 done: 12684 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 12685 /* 12686 * This assumes the we deliver to all streams for multicast 12687 * and broadcast packets. 12688 */ 12689 *dstp = INADDR_BROADCAST; 12690 *ll_multicast = 1; 12691 return (B_FALSE); 12692 drop_pkt: 12693 ip2dbg(("ip_rput: drop pkt\n")); 12694 freemsg(mp); 12695 return (B_TRUE); 12696 } 12697 12698 static boolean_t 12699 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 12700 int *ll_multicast, mblk_t **mpp) 12701 { 12702 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 12703 boolean_t must_copy = B_FALSE; 12704 struct iocblk *iocp; 12705 ipha_t *ipha; 12706 12707 #define rptr ((uchar_t *)ipha) 12708 12709 first_mp = *first_mpp; 12710 mp = *mpp; 12711 12712 ASSERT(first_mp == mp); 12713 12714 /* 12715 * if db_ref > 1 then copymsg and free original. Packet may be 12716 * changed and do not want other entity who has a reference to this 12717 * message to trip over the changes. This is a blind change because 12718 * trying to catch all places that might change packet is too 12719 * difficult (since it may be a module above this one) 12720 * 12721 * This corresponds to the non-fast path case. We walk down the full 12722 * chain in this case, and check the db_ref count of all the dblks, 12723 * and do a copymsg if required. It is possible that the db_ref counts 12724 * of the data blocks in the mblk chain can be different. 12725 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 12726 * count of 1, followed by a M_DATA block with a ref count of 2, if 12727 * 'snoop' is running. 12728 */ 12729 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 12730 if (mp1->b_datap->db_ref > 1) { 12731 must_copy = B_TRUE; 12732 break; 12733 } 12734 } 12735 12736 if (must_copy) { 12737 mp1 = copymsg(mp); 12738 if (mp1 == NULL) { 12739 for (mp1 = mp; mp1 != NULL; 12740 mp1 = mp1->b_cont) { 12741 mp1->b_next = NULL; 12742 mp1->b_prev = NULL; 12743 } 12744 freemsg(mp); 12745 BUMP_MIB(&ip_mib, ipInDiscards); 12746 return (B_TRUE); 12747 } 12748 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 12749 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 12750 /* Copy b_next - used in M_BREAK messages */ 12751 to_mp->b_next = from_mp->b_next; 12752 from_mp->b_next = NULL; 12753 /* Copy b_prev - used by ip_mroute_decap */ 12754 to_mp->b_prev = from_mp->b_prev; 12755 from_mp->b_prev = NULL; 12756 } 12757 *first_mpp = first_mp = mp1; 12758 freemsg(mp); 12759 mp = mp1; 12760 *mpp = mp1; 12761 } 12762 12763 ipha = (ipha_t *)mp->b_rptr; 12764 12765 /* 12766 * previous code has a case for M_DATA. 12767 * We want to check how that happens. 12768 */ 12769 ASSERT(first_mp->b_datap->db_type != M_DATA); 12770 switch (first_mp->b_datap->db_type) { 12771 case M_PROTO: 12772 case M_PCPROTO: 12773 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 12774 DL_UNITDATA_IND) { 12775 /* Go handle anything other than data elsewhere. */ 12776 ip_rput_dlpi(q, mp); 12777 return (B_TRUE); 12778 } 12779 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 12780 /* Ditch the DLPI header. */ 12781 mp1 = mp->b_cont; 12782 ASSERT(first_mp == mp); 12783 *first_mpp = mp1; 12784 freeb(mp); 12785 *mpp = mp1; 12786 return (B_FALSE); 12787 case M_BREAK: 12788 /* 12789 * A packet arrives as M_BREAK following a cycle through 12790 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 12791 * This is an IP datagram sans lower level header. 12792 * M_BREAK are also used to pass back in multicast packets 12793 * that are encapsulated with a source route. 12794 */ 12795 /* Ditch the M_BREAK mblk */ 12796 mp1 = mp->b_cont; 12797 ASSERT(first_mp == mp); 12798 *first_mpp = mp1; 12799 freeb(mp); 12800 mp = mp1; 12801 mp->b_next = NULL; 12802 *mpp = mp; 12803 *ll_multicast = 0; 12804 return (B_FALSE); 12805 case M_IOCACK: 12806 ip1dbg(("got iocack ")); 12807 iocp = (struct iocblk *)mp->b_rptr; 12808 switch (iocp->ioc_cmd) { 12809 case DL_IOC_HDR_INFO: 12810 ill = (ill_t *)q->q_ptr; 12811 ill_fastpath_ack(ill, mp); 12812 return (B_TRUE); 12813 case SIOCSTUNPARAM: 12814 case OSIOCSTUNPARAM: 12815 /* Go through qwriter_ip */ 12816 break; 12817 case SIOCGTUNPARAM: 12818 case OSIOCGTUNPARAM: 12819 ip_rput_other(NULL, q, mp, NULL); 12820 return (B_TRUE); 12821 default: 12822 putnext(q, mp); 12823 return (B_TRUE); 12824 } 12825 /* FALLTHRU */ 12826 case M_ERROR: 12827 case M_HANGUP: 12828 /* 12829 * Since this is on the ill stream we unconditionally 12830 * bump up the refcount 12831 */ 12832 ill_refhold(ill); 12833 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 12834 B_FALSE); 12835 return (B_TRUE); 12836 case M_CTL: 12837 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 12838 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 12839 IPHADA_M_CTL)) { 12840 /* 12841 * It's an IPsec accelerated packet. 12842 * Make sure that the ill from which we received the 12843 * packet has enabled IPsec hardware acceleration. 12844 */ 12845 if (!(ill->ill_capabilities & 12846 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 12847 /* IPsec kstats: bean counter */ 12848 freemsg(mp); 12849 return (B_TRUE); 12850 } 12851 12852 /* 12853 * Make mp point to the mblk following the M_CTL, 12854 * then process according to type of mp. 12855 * After this processing, first_mp will point to 12856 * the data-attributes and mp to the pkt following 12857 * the M_CTL. 12858 */ 12859 mp = first_mp->b_cont; 12860 if (mp == NULL) { 12861 freemsg(first_mp); 12862 return (B_TRUE); 12863 } 12864 /* 12865 * A Hardware Accelerated packet can only be M_DATA 12866 * ESP or AH packet. 12867 */ 12868 if (mp->b_datap->db_type != M_DATA) { 12869 /* non-M_DATA IPsec accelerated packet */ 12870 IPSECHW_DEBUG(IPSECHW_PKT, 12871 ("non-M_DATA IPsec accelerated pkt\n")); 12872 freemsg(first_mp); 12873 return (B_TRUE); 12874 } 12875 ipha = (ipha_t *)mp->b_rptr; 12876 if (ipha->ipha_protocol != IPPROTO_AH && 12877 ipha->ipha_protocol != IPPROTO_ESP) { 12878 IPSECHW_DEBUG(IPSECHW_PKT, 12879 ("non-M_DATA IPsec accelerated pkt\n")); 12880 freemsg(first_mp); 12881 return (B_TRUE); 12882 } 12883 *mpp = mp; 12884 return (B_FALSE); 12885 } 12886 putnext(q, mp); 12887 return (B_TRUE); 12888 case M_FLUSH: 12889 if (*mp->b_rptr & FLUSHW) { 12890 *mp->b_rptr &= ~FLUSHR; 12891 qreply(q, mp); 12892 return (B_TRUE); 12893 } 12894 freemsg(mp); 12895 return (B_TRUE); 12896 case M_IOCNAK: 12897 ip1dbg(("got iocnak ")); 12898 iocp = (struct iocblk *)mp->b_rptr; 12899 switch (iocp->ioc_cmd) { 12900 case DL_IOC_HDR_INFO: 12901 case SIOCSTUNPARAM: 12902 case OSIOCSTUNPARAM: 12903 /* 12904 * Since this is on the ill stream we unconditionally 12905 * bump up the refcount 12906 */ 12907 ill_refhold(ill); 12908 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 12909 CUR_OP, B_FALSE); 12910 return (B_TRUE); 12911 case SIOCGTUNPARAM: 12912 case OSIOCGTUNPARAM: 12913 ip_rput_other(NULL, q, mp, NULL); 12914 return (B_TRUE); 12915 default: 12916 break; 12917 } 12918 /* FALLTHRU */ 12919 default: 12920 putnext(q, mp); 12921 return (B_TRUE); 12922 } 12923 } 12924 12925 /* Read side put procedure. Packets coming from the wire arrive here. */ 12926 void 12927 ip_rput(queue_t *q, mblk_t *mp) 12928 { 12929 ill_t *ill; 12930 12931 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 12932 12933 ill = (ill_t *)q->q_ptr; 12934 12935 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 12936 union DL_primitives *dl; 12937 12938 /* 12939 * Things are opening or closing. Only accept DLPI control 12940 * messages. In the open case, the ill->ill_ipif has not yet 12941 * been created. In the close case, things hanging off the 12942 * ill could have been freed already. In either case it 12943 * may not be safe to proceed further. 12944 */ 12945 12946 dl = (union DL_primitives *)mp->b_rptr; 12947 if ((mp->b_datap->db_type != M_PCPROTO) || 12948 (dl->dl_primitive == DL_UNITDATA_IND)) { 12949 /* 12950 * Also SIOC[GS]TUN* ioctls can come here. 12951 */ 12952 ip_ioctl_freemsg(mp); 12953 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 12954 "ip_input_end: q %p (%S)", q, "uninit"); 12955 return; 12956 } 12957 } 12958 12959 /* 12960 * if db_ref > 1 then copymsg and free original. Packet may be 12961 * changed and we do not want the other entity who has a reference to 12962 * this message to trip over the changes. This is a blind change because 12963 * trying to catch all places that might change the packet is too 12964 * difficult. 12965 * 12966 * This corresponds to the fast path case, where we have a chain of 12967 * M_DATA mblks. We check the db_ref count of only the 1st data block 12968 * in the mblk chain. There doesn't seem to be a reason why a device 12969 * driver would send up data with varying db_ref counts in the mblk 12970 * chain. In any case the Fast path is a private interface, and our 12971 * drivers don't do such a thing. Given the above assumption, there is 12972 * no need to walk down the entire mblk chain (which could have a 12973 * potential performance problem) 12974 */ 12975 if (mp->b_datap->db_ref > 1) { 12976 mblk_t *mp1; 12977 boolean_t adjusted = B_FALSE; 12978 IP_STAT(ip_db_ref); 12979 12980 /* 12981 * The IP_RECVSLLA option depends on having the link layer 12982 * header. First check that: 12983 * a> the underlying device is of type ether, since this 12984 * option is currently supported only over ethernet. 12985 * b> there is enough room to copy over the link layer header. 12986 * 12987 * Once the checks are done, adjust rptr so that the link layer 12988 * header will be copied via copymsg. Note that, IFT_ETHER may 12989 * be returned by some non-ethernet drivers but in this case the 12990 * second check will fail. 12991 */ 12992 if (ill->ill_type == IFT_ETHER && 12993 (mp->b_rptr - mp->b_datap->db_base) >= 12994 sizeof (struct ether_header)) { 12995 mp->b_rptr -= sizeof (struct ether_header); 12996 adjusted = B_TRUE; 12997 } 12998 mp1 = copymsg(mp); 12999 if (mp1 == NULL) { 13000 /* Clear b_next - used in M_BREAK messages */ 13001 mp->b_next = NULL; 13002 /* clear b_prev - used by ip_mroute_decap */ 13003 mp->b_prev = NULL; 13004 freemsg(mp); 13005 BUMP_MIB(&ip_mib, ipInDiscards); 13006 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13007 "ip_rput_end: q %p (%S)", q, "copymsg"); 13008 return; 13009 } 13010 if (adjusted) { 13011 /* 13012 * Copy is done. Restore the pointer in the _new_ mblk 13013 */ 13014 mp1->b_rptr += sizeof (struct ether_header); 13015 } 13016 /* Copy b_next - used in M_BREAK messages */ 13017 mp1->b_next = mp->b_next; 13018 mp->b_next = NULL; 13019 /* Copy b_prev - used by ip_mroute_decap */ 13020 mp1->b_prev = mp->b_prev; 13021 mp->b_prev = NULL; 13022 freemsg(mp); 13023 mp = mp1; 13024 } 13025 13026 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13027 "ip_rput_end: q %p (%S)", q, "end"); 13028 13029 ip_input(ill, NULL, mp, 0); 13030 } 13031 13032 /* 13033 * Direct read side procedure capable of dealing with chains. GLDv3 based 13034 * drivers call this function directly with mblk chains while STREAMS 13035 * read side procedure ip_rput() calls this for single packet with ip_ring 13036 * set to NULL to process one packet at a time. 13037 * 13038 * The ill will always be valid if this function is called directly from 13039 * the driver. 13040 */ 13041 /*ARGSUSED*/ 13042 void 13043 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13044 { 13045 ipaddr_t dst; 13046 ire_t *ire; 13047 ipha_t *ipha; 13048 uint_t pkt_len; 13049 ssize_t len; 13050 uint_t opt_len; 13051 int ll_multicast; 13052 int cgtp_flt_pkt; 13053 queue_t *q = ill->ill_rq; 13054 squeue_t *curr_sqp = NULL; 13055 mblk_t *head = NULL; 13056 mblk_t *tail = NULL; 13057 mblk_t *first_mp; 13058 mblk_t *mp; 13059 int cnt = 0; 13060 13061 ASSERT(mp_chain != NULL); 13062 ASSERT(ill != NULL); 13063 13064 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13065 13066 #define rptr ((uchar_t *)ipha) 13067 13068 while (mp_chain != NULL) { 13069 first_mp = mp = mp_chain; 13070 mp_chain = mp_chain->b_next; 13071 mp->b_next = NULL; 13072 ll_multicast = 0; 13073 ire = NULL; 13074 13075 /* 13076 * ip_input fast path 13077 */ 13078 13079 /* mblk type is not M_DATA */ 13080 if (mp->b_datap->db_type != M_DATA) { 13081 if (ip_rput_process_notdata(q, &first_mp, ill, 13082 &ll_multicast, &mp)) 13083 continue; 13084 } 13085 13086 ASSERT(mp->b_datap->db_type == M_DATA); 13087 ASSERT(mp->b_datap->db_ref == 1); 13088 13089 /* 13090 * Invoke the CGTP (multirouting) filtering module to process 13091 * the incoming packet. Packets identified as duplicates 13092 * must be discarded. Filtering is active only if the 13093 * the ip_cgtp_filter ndd variable is non-zero. 13094 */ 13095 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13096 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13097 cgtp_flt_pkt = 13098 ip_cgtp_filter_ops->cfo_filter_fp(q, mp); 13099 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13100 freemsg(first_mp); 13101 continue; 13102 } 13103 } 13104 13105 ipha = (ipha_t *)mp->b_rptr; 13106 len = mp->b_wptr - rptr; 13107 13108 BUMP_MIB(&ip_mib, ipInReceives); 13109 13110 /* 13111 * IP header ptr not aligned? 13112 * OR IP header not complete in first mblk 13113 */ 13114 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13115 if (!ip_check_and_align_header(q, mp)) 13116 continue; 13117 ipha = (ipha_t *)mp->b_rptr; 13118 len = mp->b_wptr - rptr; 13119 } 13120 13121 /* multiple mblk or too short */ 13122 pkt_len = ntohs(ipha->ipha_length); 13123 len -= pkt_len; 13124 if (len != 0) { 13125 /* 13126 * Make sure we have data length consistent 13127 * with the IP header. 13128 */ 13129 if (mp->b_cont == NULL) { 13130 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13131 BUMP_MIB(&ip_mib, ipInHdrErrors); 13132 ip2dbg(("ip_input: drop pkt\n")); 13133 freemsg(mp); 13134 continue; 13135 } 13136 mp->b_wptr = rptr + pkt_len; 13137 } else if (len += msgdsize(mp->b_cont)) { 13138 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13139 BUMP_MIB(&ip_mib, ipInHdrErrors); 13140 ip2dbg(("ip_input: drop pkt\n")); 13141 freemsg(mp); 13142 continue; 13143 } 13144 (void) adjmsg(mp, -len); 13145 IP_STAT(ip_multimblk3); 13146 } 13147 } 13148 13149 if (ip_loopback_src_or_dst(ipha, ill)) { 13150 ip2dbg(("ip_input: drop pkt\n")); 13151 freemsg(mp); 13152 continue; 13153 } 13154 13155 opt_len = ipha->ipha_version_and_hdr_length - 13156 IP_SIMPLE_HDR_VERSION; 13157 /* IP version bad or there are IP options */ 13158 if (opt_len) { 13159 if (len != 0) 13160 IP_STAT(ip_multimblk4); 13161 else 13162 IP_STAT(ip_ipoptions); 13163 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13164 continue; 13165 } else { 13166 dst = ipha->ipha_dst; 13167 } 13168 13169 /* 13170 * If rsvpd is running, let RSVP daemon handle its processing 13171 * and forwarding of RSVP multicast/unicast packets. 13172 * If rsvpd is not running but mrouted is running, RSVP 13173 * multicast packets are forwarded as multicast traffic 13174 * and RSVP unicast packets are forwarded by unicast router. 13175 * If neither rsvpd nor mrouted is running, RSVP multicast 13176 * packets are not forwarded, but the unicast packets are 13177 * forwarded like unicast traffic. 13178 */ 13179 if (ipha->ipha_protocol == IPPROTO_RSVP && 13180 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13181 /* RSVP packet and rsvpd running. Treat as ours */ 13182 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13183 /* 13184 * This assumes that we deliver to all streams for 13185 * multicast and broadcast packets. 13186 * We have to force ll_multicast to 1 to handle the 13187 * M_DATA messages passed in from ip_mroute_decap. 13188 */ 13189 dst = INADDR_BROADCAST; 13190 ll_multicast = 1; 13191 } else if (CLASSD(dst)) { 13192 /* packet is multicast */ 13193 mp->b_next = NULL; 13194 if (ip_rput_process_multicast(q, mp, ill, ipha, 13195 &ll_multicast, &dst)) 13196 continue; 13197 } 13198 13199 13200 /* 13201 * Check if the packet is coming from the Mobile IP 13202 * forward tunnel interface 13203 */ 13204 if (ill->ill_srcif_refcnt > 0) { 13205 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13206 NULL, ill, MATCH_IRE_TYPE); 13207 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13208 ire->ire_ipif->ipif_net_type == 13209 IRE_IF_RESOLVER) { 13210 /* We need to resolve the link layer info */ 13211 ire_refrele(ire); 13212 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13213 ll_multicast, dst); 13214 continue; 13215 } 13216 } 13217 13218 if (ire == NULL) 13219 ire = ire_cache_lookup(dst, ALL_ZONES); 13220 13221 /* 13222 * If mipagent is running and reverse tunnel is created as per 13223 * mobile node request, then any packet coming through the 13224 * incoming interface from the mobile-node, should be reverse 13225 * tunneled to it's home agent except those that are destined 13226 * to foreign agent only. 13227 * This needs source address based ire lookup. The routing 13228 * entries for source address based lookup are only created by 13229 * mipagent program only when a reverse tunnel is created. 13230 * Reference : RFC2002, RFC2344 13231 */ 13232 if (ill->ill_mrtun_refcnt > 0) { 13233 ipaddr_t srcaddr; 13234 ire_t *tmp_ire; 13235 13236 tmp_ire = ire; /* Save, we might need it later */ 13237 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 13238 ire->ire_type != IRE_BROADCAST)) { 13239 srcaddr = ipha->ipha_src; 13240 ire = ire_mrtun_lookup(srcaddr, ill); 13241 if (ire != NULL) { 13242 /* 13243 * Should not be getting iphada packet 13244 * here. we should only get those for 13245 * IRE_LOCAL traffic, excluded above. 13246 * Fail-safe (drop packet) in the event 13247 * hardware is misbehaving. 13248 */ 13249 if (first_mp != mp) { 13250 /* IPsec KSTATS: beancount me */ 13251 freemsg(first_mp); 13252 } else { 13253 /* 13254 * This packet must be forwarded 13255 * to Reverse Tunnel 13256 */ 13257 ip_mrtun_forward(ire, ill, mp); 13258 } 13259 ire_refrele(ire); 13260 if (tmp_ire != NULL) 13261 ire_refrele(tmp_ire); 13262 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13263 "ip_input_end: q %p (%S)", 13264 q, "uninit"); 13265 continue; 13266 } 13267 } 13268 /* 13269 * If this packet is from a non-mobilenode or a 13270 * mobile-node which does not request reverse 13271 * tunnel service 13272 */ 13273 ire = tmp_ire; 13274 } 13275 13276 13277 /* 13278 * If we reach here that means the incoming packet satisfies 13279 * one of the following conditions: 13280 * - packet is from a mobile node which does not request 13281 * reverse tunnel 13282 * - packet is from a non-mobile node, which is the most 13283 * common case 13284 * - packet is from a reverse tunnel enabled mobile node 13285 * and destined to foreign agent only 13286 */ 13287 13288 if (ire == NULL) { 13289 /* 13290 * No IRE for this destination, so it can't be for us. 13291 * Unless we are forwarding, drop the packet. 13292 * We have to let source routed packets through 13293 * since we don't yet know if they are 'ping -l' 13294 * packets i.e. if they will go out over the 13295 * same interface as they came in on. 13296 */ 13297 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 13298 continue; 13299 } 13300 13301 /* broadcast? */ 13302 if (ire->ire_type == IRE_BROADCAST) { 13303 if (ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 13304 dst, cgtp_flt_pkt, ll_multicast)) { 13305 continue; 13306 } 13307 } else if (ire->ire_stq != NULL) { 13308 /* fowarding? */ 13309 ip_rput_process_forward(q, mp, ire, ipha, ill, 13310 ll_multicast); 13311 continue; 13312 } 13313 13314 /* packet not for us */ 13315 if (ire->ire_rfq != q) { 13316 if (ip_rput_notforus(&q, mp, ire, ill)) { 13317 continue; 13318 } 13319 } 13320 13321 switch (ipha->ipha_protocol) { 13322 case IPPROTO_TCP: 13323 ASSERT(first_mp == mp); 13324 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 13325 mp, 0, q, ip_ring)) != NULL) { 13326 if (curr_sqp == NULL) { 13327 curr_sqp = GET_SQUEUE(mp); 13328 ASSERT(cnt == 0); 13329 cnt++; 13330 head = tail = mp; 13331 } else if (curr_sqp == GET_SQUEUE(mp)) { 13332 ASSERT(tail != NULL); 13333 cnt++; 13334 tail->b_next = mp; 13335 tail = mp; 13336 } else { 13337 /* 13338 * A different squeue. Send the 13339 * chain for the previous squeue on 13340 * its way. This shouldn't happen 13341 * often unless interrupt binding 13342 * changes. 13343 */ 13344 IP_STAT(ip_input_multi_squeue); 13345 squeue_enter_chain(curr_sqp, head, 13346 tail, cnt, SQTAG_IP_INPUT); 13347 curr_sqp = GET_SQUEUE(mp); 13348 head = mp; 13349 tail = mp; 13350 cnt = 1; 13351 } 13352 } 13353 IRE_REFRELE(ire); 13354 continue; 13355 case IPPROTO_UDP: 13356 ASSERT(first_mp == mp); 13357 ip_udp_input(q, mp, ipha, ire, ill); 13358 IRE_REFRELE(ire); 13359 continue; 13360 case IPPROTO_SCTP: 13361 ASSERT(first_mp == mp); 13362 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 13363 q, dst); 13364 continue; 13365 default: 13366 ip_proto_input(q, first_mp, ipha, ire, ill); 13367 IRE_REFRELE(ire); 13368 continue; 13369 } 13370 } 13371 13372 if (head != NULL) 13373 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 13374 13375 /* 13376 * This code is there just to make netperf/ttcp look good. 13377 * 13378 * Its possible that after being in polling mode (and having cleared 13379 * the backlog), squeues have turned the interrupt frequency higher 13380 * to improve latency at the expense of more CPU utilization (less 13381 * packets per interrupts or more number of interrupts). Workloads 13382 * like ttcp/netperf do manage to tickle polling once in a while 13383 * but for the remaining time, stay in higher interrupt mode since 13384 * their packet arrival rate is pretty uniform and this shows up 13385 * as higher CPU utilization. Since people care about CPU utilization 13386 * while running netperf/ttcp, turn the interrupt frequency back to 13387 * normal/default if polling has not been used in ip_poll_normal_ticks. 13388 */ 13389 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 13390 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 13391 ip_ring->rr_poll_state &= ~ILL_POLLING; 13392 ip_ring->rr_blank(ip_ring->rr_handle, 13393 ip_ring->rr_normal_blank_time, 13394 ip_ring->rr_normal_pkt_cnt); 13395 } 13396 } 13397 13398 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13399 "ip_input_end: q %p (%S)", q, "end"); 13400 #undef rptr 13401 } 13402 13403 static void 13404 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 13405 t_uscalar_t err) 13406 { 13407 if (dl_err == DL_SYSERR) { 13408 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13409 "%s: %s failed: DL_SYSERR (errno %u)\n", 13410 ill->ill_name, dlpi_prim_str(prim), err); 13411 return; 13412 } 13413 13414 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13415 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 13416 dlpi_err_str(dl_err)); 13417 } 13418 13419 /* 13420 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 13421 * than DL_UNITDATA_IND messages. If we need to process this message 13422 * exclusively, we call qwriter_ip, in which case we also need to call 13423 * ill_refhold before that, since qwriter_ip does an ill_refrele. 13424 */ 13425 void 13426 ip_rput_dlpi(queue_t *q, mblk_t *mp) 13427 { 13428 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13429 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13430 ill_t *ill; 13431 13432 ip1dbg(("ip_rput_dlpi")); 13433 ill = (ill_t *)q->q_ptr; 13434 switch (dloa->dl_primitive) { 13435 case DL_ERROR_ACK: 13436 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 13437 "%s (0x%x), unix %u\n", ill->ill_name, 13438 dlpi_prim_str(dlea->dl_error_primitive), 13439 dlea->dl_error_primitive, 13440 dlpi_err_str(dlea->dl_errno), 13441 dlea->dl_errno, 13442 dlea->dl_unix_errno)); 13443 switch (dlea->dl_error_primitive) { 13444 case DL_NOTIFY_REQ: 13445 case DL_UNBIND_REQ: 13446 case DL_ATTACH_REQ: 13447 case DL_DETACH_REQ: 13448 case DL_INFO_REQ: 13449 case DL_BIND_REQ: 13450 case DL_ENABMULTI_REQ: 13451 case DL_PHYS_ADDR_REQ: 13452 case DL_CAPABILITY_REQ: 13453 case DL_CONTROL_REQ: 13454 /* 13455 * Refhold the ill to match qwriter_ip which does a 13456 * refrele. Since this is on the ill stream we 13457 * unconditionally bump up the refcount without 13458 * checking for ILL_CAN_LOOKUP 13459 */ 13460 ill_refhold(ill); 13461 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13462 CUR_OP, B_FALSE); 13463 return; 13464 case DL_DISABMULTI_REQ: 13465 freemsg(mp); /* Don't want to pass this up */ 13466 return; 13467 default: 13468 break; 13469 } 13470 ip_dlpi_error(ill, dlea->dl_error_primitive, 13471 dlea->dl_errno, dlea->dl_unix_errno); 13472 freemsg(mp); 13473 return; 13474 case DL_INFO_ACK: 13475 case DL_BIND_ACK: 13476 case DL_PHYS_ADDR_ACK: 13477 case DL_NOTIFY_ACK: 13478 case DL_CAPABILITY_ACK: 13479 case DL_CONTROL_ACK: 13480 /* 13481 * Refhold the ill to match qwriter_ip which does a refrele 13482 * Since this is on the ill stream we unconditionally 13483 * bump up the refcount without doing ILL_CAN_LOOKUP. 13484 */ 13485 ill_refhold(ill); 13486 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13487 CUR_OP, B_FALSE); 13488 return; 13489 case DL_NOTIFY_IND: 13490 ill_refhold(ill); 13491 /* 13492 * The DL_NOTIFY_IND is an asynchronous message that has no 13493 * relation to the current ioctl in progress (if any). Hence we 13494 * pass in NEW_OP in this case. 13495 */ 13496 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13497 NEW_OP, B_FALSE); 13498 return; 13499 case DL_OK_ACK: 13500 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 13501 dlpi_prim_str((int)dloa->dl_correct_primitive))); 13502 switch (dloa->dl_correct_primitive) { 13503 case DL_UNBIND_REQ: 13504 mutex_enter(&ill->ill_lock); 13505 ill->ill_state_flags |= ILL_DL_UNBIND_DONE; 13506 cv_signal(&ill->ill_cv); 13507 mutex_exit(&ill->ill_lock); 13508 /* FALLTHRU */ 13509 case DL_ATTACH_REQ: 13510 case DL_DETACH_REQ: 13511 /* 13512 * Refhold the ill to match qwriter_ip which does a 13513 * refrele. Since this is on the ill stream we 13514 * unconditionally bump up the refcount 13515 */ 13516 ill_refhold(ill); 13517 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13518 CUR_OP, B_FALSE); 13519 return; 13520 case DL_ENABMULTI_REQ: 13521 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13522 ill->ill_dlpi_multicast_state = IDMS_OK; 13523 break; 13524 13525 } 13526 break; 13527 default: 13528 break; 13529 } 13530 freemsg(mp); 13531 } 13532 13533 /* 13534 * This function is used to free a message that has gone through 13535 * mi_copyin processing which modifies the M_IOCTL mblk's b_next 13536 * and b_prev pointers. We use this function to set b_next/b_prev 13537 * to NULL and free them. 13538 */ 13539 void 13540 ip_ioctl_freemsg(mblk_t *mp) 13541 { 13542 mblk_t *bp = mp; 13543 13544 for (; bp != NULL; bp = bp->b_cont) { 13545 bp->b_prev = NULL; 13546 bp->b_next = NULL; 13547 } 13548 freemsg(mp); 13549 } 13550 13551 /* 13552 * Handling of DLPI messages that require exclusive access to the ipsq. 13553 * 13554 * Need to do ill_pending_mp_release on ioctl completion, which could 13555 * happen here. (along with mi_copy_done) 13556 */ 13557 /* ARGSUSED */ 13558 static void 13559 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 13560 { 13561 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13562 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13563 int err = 0; 13564 ill_t *ill; 13565 ipif_t *ipif = NULL; 13566 mblk_t *mp1 = NULL; 13567 conn_t *connp = NULL; 13568 t_uscalar_t physaddr_req; 13569 mblk_t *mp_hw; 13570 union DL_primitives *dlp; 13571 boolean_t success; 13572 boolean_t ioctl_aborted = B_FALSE; 13573 boolean_t log = B_TRUE; 13574 13575 ip1dbg(("ip_rput_dlpi_writer ..")); 13576 ill = (ill_t *)q->q_ptr; 13577 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 13578 13579 ASSERT(IAM_WRITER_ILL(ill)); 13580 13581 /* 13582 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 13583 * both are null or non-null. However we can assert that only 13584 * after grabbing the ipsq_lock. So we don't make any assertion 13585 * here and in other places in the code. 13586 */ 13587 ipif = ipsq->ipsq_pending_ipif; 13588 /* 13589 * The current ioctl could have been aborted by the user and a new 13590 * ioctl to bring up another ill could have started. We could still 13591 * get a response from the driver later. 13592 */ 13593 if (ipif != NULL && ipif->ipif_ill != ill) 13594 ioctl_aborted = B_TRUE; 13595 13596 switch (dloa->dl_primitive) { 13597 case DL_ERROR_ACK: 13598 switch (dlea->dl_error_primitive) { 13599 case DL_UNBIND_REQ: 13600 case DL_ATTACH_REQ: 13601 case DL_DETACH_REQ: 13602 case DL_INFO_REQ: 13603 ill_dlpi_done(ill, dlea->dl_error_primitive); 13604 break; 13605 case DL_NOTIFY_REQ: 13606 ill_dlpi_done(ill, DL_NOTIFY_REQ); 13607 log = B_FALSE; 13608 break; 13609 case DL_PHYS_ADDR_REQ: 13610 /* 13611 * For IPv6 only, there are two additional 13612 * phys_addr_req's sent to the driver to get the 13613 * IPv6 token and lla. This allows IP to acquire 13614 * the hardware address format for a given interface 13615 * without having built in knowledge of the hardware 13616 * address. ill_phys_addr_pend keeps track of the last 13617 * DL_PAR sent so we know which response we are 13618 * dealing with. ill_dlpi_done will update 13619 * ill_phys_addr_pend when it sends the next req. 13620 * We don't complete the IOCTL until all three DL_PARs 13621 * have been attempted, so set *_len to 0 and break. 13622 */ 13623 physaddr_req = ill->ill_phys_addr_pend; 13624 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 13625 if (physaddr_req == DL_IPV6_TOKEN) { 13626 ill->ill_token_length = 0; 13627 log = B_FALSE; 13628 break; 13629 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 13630 ill->ill_nd_lla_len = 0; 13631 log = B_FALSE; 13632 break; 13633 } 13634 /* 13635 * Something went wrong with the DL_PHYS_ADDR_REQ. 13636 * We presumably have an IOCTL hanging out waiting 13637 * for completion. Find it and complete the IOCTL 13638 * with the error noted. 13639 * However, ill_dl_phys was called on an ill queue 13640 * (from SIOCSLIFNAME), thus conn_pending_ill is not 13641 * set. But the ioctl is known to be pending on ill_wq. 13642 */ 13643 if (!ill->ill_ifname_pending) 13644 break; 13645 ill->ill_ifname_pending = 0; 13646 if (!ioctl_aborted) 13647 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13648 if (mp1 != NULL) { 13649 /* 13650 * This operation (SIOCSLIFNAME) must have 13651 * happened on the ill. Assert there is no conn 13652 */ 13653 ASSERT(connp == NULL); 13654 q = ill->ill_wq; 13655 } 13656 break; 13657 case DL_BIND_REQ: 13658 ill_dlpi_done(ill, DL_BIND_REQ); 13659 if (ill->ill_ifname_pending) 13660 break; 13661 /* 13662 * Something went wrong with the bind. We presumably 13663 * have an IOCTL hanging out waiting for completion. 13664 * Find it, take down the interface that was coming 13665 * up, and complete the IOCTL with the error noted. 13666 */ 13667 if (!ioctl_aborted) 13668 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13669 if (mp1 != NULL) { 13670 /* 13671 * This operation (SIOCSLIFFLAGS) must have 13672 * happened from a conn. 13673 */ 13674 ASSERT(connp != NULL); 13675 q = CONNP_TO_WQ(connp); 13676 if (ill->ill_move_in_progress) { 13677 ILL_CLEAR_MOVE(ill); 13678 } 13679 (void) ipif_down(ipif, NULL, NULL); 13680 /* error is set below the switch */ 13681 } 13682 break; 13683 case DL_ENABMULTI_REQ: 13684 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 13685 13686 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13687 ill->ill_dlpi_multicast_state = IDMS_FAILED; 13688 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 13689 ipif_t *ipif; 13690 13691 log = B_FALSE; 13692 printf("ip: joining multicasts failed (%d)" 13693 " on %s - will use link layer " 13694 "broadcasts for multicast\n", 13695 dlea->dl_errno, ill->ill_name); 13696 13697 /* 13698 * Set up the multicast mapping alone. 13699 * writer, so ok to access ill->ill_ipif 13700 * without any lock. 13701 */ 13702 ipif = ill->ill_ipif; 13703 mutex_enter(&ill->ill_phyint->phyint_lock); 13704 ill->ill_phyint->phyint_flags |= 13705 PHYI_MULTI_BCAST; 13706 mutex_exit(&ill->ill_phyint->phyint_lock); 13707 13708 if (!ill->ill_isv6) { 13709 (void) ipif_arp_setup_multicast(ipif, 13710 NULL); 13711 } else { 13712 (void) ipif_ndp_setup_multicast(ipif, 13713 NULL); 13714 } 13715 } 13716 freemsg(mp); /* Don't want to pass this up */ 13717 return; 13718 case DL_CAPABILITY_REQ: 13719 case DL_CONTROL_REQ: 13720 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 13721 "DL_CAPABILITY/CONTROL REQ\n")); 13722 ill_dlpi_done(ill, dlea->dl_error_primitive); 13723 ill->ill_capab_state = IDMS_FAILED; 13724 freemsg(mp); 13725 return; 13726 } 13727 /* 13728 * Note the error for IOCTL completion (mp1 is set when 13729 * ready to complete ioctl). If ill_ifname_pending_err is 13730 * set, an error occured during plumbing (ill_ifname_pending), 13731 * so we want to report that error. 13732 * 13733 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 13734 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 13735 * expected to get errack'd if the driver doesn't support 13736 * these flags (e.g. ethernet). log will be set to B_FALSE 13737 * if these error conditions are encountered. 13738 */ 13739 if (mp1 != NULL) { 13740 if (ill->ill_ifname_pending_err != 0) { 13741 err = ill->ill_ifname_pending_err; 13742 ill->ill_ifname_pending_err = 0; 13743 } else { 13744 err = dlea->dl_unix_errno ? 13745 dlea->dl_unix_errno : ENXIO; 13746 } 13747 /* 13748 * If we're plumbing an interface and an error hasn't already 13749 * been saved, set ill_ifname_pending_err to the error passed 13750 * up. Ignore the error if log is B_FALSE (see comment above). 13751 */ 13752 } else if (log && ill->ill_ifname_pending && 13753 ill->ill_ifname_pending_err == 0) { 13754 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 13755 dlea->dl_unix_errno : ENXIO; 13756 } 13757 13758 if (log) 13759 ip_dlpi_error(ill, dlea->dl_error_primitive, 13760 dlea->dl_errno, dlea->dl_unix_errno); 13761 break; 13762 case DL_CAPABILITY_ACK: { 13763 boolean_t reneg_flag = B_FALSE; 13764 /* Call a routine to handle this one. */ 13765 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 13766 /* 13767 * Check if the ACK is due to renegotiation case since we 13768 * will need to send a new CAPABILITY_REQ later. 13769 */ 13770 if (ill->ill_capab_state == IDMS_RENEG) { 13771 /* This is the ack for a renogiation case */ 13772 reneg_flag = B_TRUE; 13773 ill->ill_capab_state = IDMS_UNKNOWN; 13774 } 13775 ill_capability_ack(ill, mp); 13776 if (reneg_flag) 13777 ill_capability_probe(ill); 13778 break; 13779 } 13780 case DL_CONTROL_ACK: 13781 /* We treat all of these as "fire and forget" */ 13782 ill_dlpi_done(ill, DL_CONTROL_REQ); 13783 break; 13784 case DL_INFO_ACK: 13785 /* Call a routine to handle this one. */ 13786 ill_dlpi_done(ill, DL_INFO_REQ); 13787 ip_ll_subnet_defaults(ill, mp); 13788 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 13789 return; 13790 case DL_BIND_ACK: 13791 /* 13792 * We should have an IOCTL waiting on this unless 13793 * sent by ill_dl_phys, in which case just return 13794 */ 13795 ill_dlpi_done(ill, DL_BIND_REQ); 13796 if (ill->ill_ifname_pending) 13797 break; 13798 13799 if (!ioctl_aborted) 13800 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13801 if (mp1 == NULL) 13802 break; 13803 ASSERT(connp != NULL); 13804 q = CONNP_TO_WQ(connp); 13805 13806 /* 13807 * We are exclusive. So nothing can change even after 13808 * we get the pending mp. If need be we can put it back 13809 * and restart, as in calling ipif_arp_up() below. 13810 */ 13811 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 13812 13813 mutex_enter(&ill->ill_lock); 13814 ill->ill_dl_up = 1; 13815 mutex_exit(&ill->ill_lock); 13816 13817 /* 13818 * Now bring up the resolver, when that is 13819 * done we'll create IREs and we are done. 13820 */ 13821 if (ill->ill_isv6) { 13822 /* 13823 * v6 interfaces. 13824 * Unlike ARP which has to do another bind 13825 * and attach, once we get here we are 13826 * done withh NDP. Except in the case of 13827 * ILLF_XRESOLV, in which case we send an 13828 * AR_INTERFACE_UP to the external resolver. 13829 * If all goes well, the ioctl will complete 13830 * in ip_rput(). If there's an error, we 13831 * complete it here. 13832 */ 13833 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 13834 B_FALSE); 13835 if (err == 0) { 13836 if (ill->ill_flags & ILLF_XRESOLV) { 13837 mutex_enter(&connp->conn_lock); 13838 mutex_enter(&ill->ill_lock); 13839 success = ipsq_pending_mp_add( 13840 connp, ipif, q, mp1, 0); 13841 mutex_exit(&ill->ill_lock); 13842 mutex_exit(&connp->conn_lock); 13843 if (success) { 13844 err = ipif_resolver_up(ipif, 13845 B_FALSE); 13846 if (err == EINPROGRESS) { 13847 freemsg(mp); 13848 return; 13849 } 13850 ASSERT(err != 0); 13851 mp1 = ipsq_pending_mp_get(ipsq, 13852 &connp); 13853 ASSERT(mp1 != NULL); 13854 } else { 13855 /* conn has started closing */ 13856 err = EINTR; 13857 } 13858 } else { /* Non XRESOLV interface */ 13859 err = ipif_up_done_v6(ipif); 13860 } 13861 } 13862 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 13863 /* 13864 * ARP and other v4 external resolvers. 13865 * Leave the pending mblk intact so that 13866 * the ioctl completes in ip_rput(). 13867 */ 13868 mutex_enter(&connp->conn_lock); 13869 mutex_enter(&ill->ill_lock); 13870 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 13871 mutex_exit(&ill->ill_lock); 13872 mutex_exit(&connp->conn_lock); 13873 if (success) { 13874 err = ipif_resolver_up(ipif, B_FALSE); 13875 if (err == EINPROGRESS) { 13876 freemsg(mp); 13877 return; 13878 } 13879 ASSERT(err != 0); 13880 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13881 } else { 13882 /* The conn has started closing */ 13883 err = EINTR; 13884 } 13885 } else { 13886 /* 13887 * This one is complete. Reply to pending ioctl. 13888 */ 13889 err = ipif_up_done(ipif); 13890 } 13891 13892 if ((err == 0) && (ill->ill_up_ipifs)) { 13893 err = ill_up_ipifs(ill, q, mp1); 13894 if (err == EINPROGRESS) { 13895 freemsg(mp); 13896 return; 13897 } 13898 } 13899 13900 if (ill->ill_up_ipifs) { 13901 ill_group_cleanup(ill); 13902 } 13903 13904 break; 13905 case DL_NOTIFY_IND: { 13906 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 13907 ire_t *ire; 13908 boolean_t need_ire_walk_v4 = B_FALSE; 13909 boolean_t need_ire_walk_v6 = B_FALSE; 13910 13911 /* 13912 * Change the address everywhere we need to. 13913 * What we're getting here is a link-level addr or phys addr. 13914 * The new addr is at notify + notify->dl_addr_offset 13915 * The address length is notify->dl_addr_length; 13916 */ 13917 switch (notify->dl_notification) { 13918 case DL_NOTE_PHYS_ADDR: 13919 mp_hw = copyb(mp); 13920 if (mp_hw == NULL) { 13921 err = ENOMEM; 13922 break; 13923 } 13924 dlp = (union DL_primitives *)mp_hw->b_rptr; 13925 /* 13926 * We currently don't support changing 13927 * the token via DL_NOTIFY_IND. 13928 * When we do support it, we have to consider 13929 * what the implications are with respect to 13930 * the token and the link local address. 13931 */ 13932 mutex_enter(&ill->ill_lock); 13933 if (dlp->notify_ind.dl_data == 13934 DL_IPV6_LINK_LAYER_ADDR) { 13935 if (ill->ill_nd_lla_mp != NULL) 13936 freemsg(ill->ill_nd_lla_mp); 13937 ill->ill_nd_lla_mp = mp_hw; 13938 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 13939 dlp->notify_ind.dl_addr_offset; 13940 ill->ill_nd_lla_len = 13941 dlp->notify_ind.dl_addr_length - 13942 ABS(ill->ill_sap_length); 13943 mutex_exit(&ill->ill_lock); 13944 break; 13945 } else if (dlp->notify_ind.dl_data == 13946 DL_CURR_PHYS_ADDR) { 13947 if (ill->ill_phys_addr_mp != NULL) 13948 freemsg(ill->ill_phys_addr_mp); 13949 ill->ill_phys_addr_mp = mp_hw; 13950 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 13951 dlp->notify_ind.dl_addr_offset; 13952 ill->ill_phys_addr_length = 13953 dlp->notify_ind.dl_addr_length - 13954 ABS(ill->ill_sap_length); 13955 if (ill->ill_isv6 && 13956 !(ill->ill_flags & ILLF_XRESOLV)) { 13957 if (ill->ill_nd_lla_mp != NULL) 13958 freemsg(ill->ill_nd_lla_mp); 13959 ill->ill_nd_lla_mp = copyb(mp_hw); 13960 ill->ill_nd_lla = (uchar_t *) 13961 ill->ill_nd_lla_mp->b_rptr + 13962 dlp->notify_ind.dl_addr_offset; 13963 ill->ill_nd_lla_len = 13964 ill->ill_phys_addr_length; 13965 } 13966 } 13967 mutex_exit(&ill->ill_lock); 13968 /* 13969 * Send out gratuitous arp request for our new 13970 * hardware address. 13971 */ 13972 for (ipif = ill->ill_ipif; ipif != NULL; 13973 ipif = ipif->ipif_next) { 13974 if (!(ipif->ipif_flags & IPIF_UP)) 13975 continue; 13976 if (ill->ill_isv6) { 13977 ipif_ndp_down(ipif); 13978 /* 13979 * Set B_TRUE to enable 13980 * ipif_ndp_up() to send out 13981 * unsolicited advertisements. 13982 */ 13983 err = ipif_ndp_up(ipif, 13984 &ipif->ipif_v6lcl_addr, 13985 B_TRUE); 13986 if (err) { 13987 ip1dbg(( 13988 "ip_rput_dlpi_writer: " 13989 "Failed to update ndp " 13990 "err %d\n", err)); 13991 } 13992 } else { 13993 /* 13994 * IPv4 ARP case 13995 * 13996 * Set B_TRUE, as we only want 13997 * ipif_resolver_up to send an 13998 * AR_ENTRY_ADD request up to 13999 * ARP. 14000 */ 14001 err = ipif_resolver_up(ipif, 14002 B_TRUE); 14003 if (err) { 14004 ip1dbg(( 14005 "ip_rput_dlpi_writer: " 14006 "Failed to update arp " 14007 "err %d\n", err)); 14008 } 14009 } 14010 } 14011 /* 14012 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14013 * case so that all old fastpath information can be 14014 * purged from IRE caches. 14015 */ 14016 /* FALLTHRU */ 14017 case DL_NOTE_FASTPATH_FLUSH: 14018 /* 14019 * Any fastpath probe sent henceforth will get the 14020 * new fp mp. So we first delete any ires that are 14021 * waiting for the fastpath. Then walk all ires and 14022 * delete the ire or delete the fp mp. In the case of 14023 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14024 * recreate the ire's without going through a complex 14025 * ipif up/down dance. So we don't delete the ire 14026 * itself, but just the ire_fp_mp for these 2 ire's 14027 * In the case of the other ire's we delete the ire's 14028 * themselves. Access to ire_fp_mp is completely 14029 * protected by ire_lock for IRE_MIPRTUN and 14030 * IRE_BROADCAST. Deleting the ire is preferable in the 14031 * other cases for performance. 14032 */ 14033 if (ill->ill_isv6) { 14034 nce_fastpath_list_dispatch(ill, NULL, NULL); 14035 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14036 NULL); 14037 } else { 14038 ire_fastpath_list_dispatch(ill, NULL, NULL); 14039 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14040 IRE_CACHE | IRE_BROADCAST, 14041 ire_fastpath_flush, NULL, ill); 14042 mutex_enter(&ire_mrtun_lock); 14043 if (ire_mrtun_count != 0) { 14044 mutex_exit(&ire_mrtun_lock); 14045 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14046 IRE_MIPRTUN, ire_fastpath_flush, 14047 NULL, ill); 14048 } else { 14049 mutex_exit(&ire_mrtun_lock); 14050 } 14051 } 14052 break; 14053 case DL_NOTE_SDU_SIZE: 14054 /* 14055 * Change the MTU size of the interface, of all 14056 * attached ipif's, and of all relevant ire's. The 14057 * new value's a uint32_t at notify->dl_data. 14058 * Mtu change Vs. new ire creation - protocol below. 14059 * 14060 * a Mark the ipif as IPIF_CHANGING. 14061 * b Set the new mtu in the ipif. 14062 * c Change the ire_max_frag on all affected ires 14063 * d Unmark the IPIF_CHANGING 14064 * 14065 * To see how the protocol works, assume an interface 14066 * route is also being added simultaneously by 14067 * ip_rt_add and let 'ipif' be the ipif referenced by 14068 * the ire. If the ire is created before step a, 14069 * it will be cleaned up by step c. If the ire is 14070 * created after step d, it will see the new value of 14071 * ipif_mtu. Any attempt to create the ire between 14072 * steps a to d will fail because of the IPIF_CHANGING 14073 * flag. Note that ire_create() is passed a pointer to 14074 * the ipif_mtu, and not the value. During ire_add 14075 * under the bucket lock, the ire_max_frag of the 14076 * new ire being created is set from the ipif/ire from 14077 * which it is being derived. 14078 */ 14079 mutex_enter(&ill->ill_lock); 14080 ill->ill_max_frag = (uint_t)notify->dl_data; 14081 14082 /* 14083 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14084 * leave it alone 14085 */ 14086 if (ill->ill_mtu_userspecified) { 14087 mutex_exit(&ill->ill_lock); 14088 break; 14089 } 14090 ill->ill_max_mtu = ill->ill_max_frag; 14091 if (ill->ill_isv6) { 14092 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14093 ill->ill_max_mtu = IPV6_MIN_MTU; 14094 } else { 14095 if (ill->ill_max_mtu < IP_MIN_MTU) 14096 ill->ill_max_mtu = IP_MIN_MTU; 14097 } 14098 for (ipif = ill->ill_ipif; ipif != NULL; 14099 ipif = ipif->ipif_next) { 14100 /* 14101 * Don't override the mtu if the user 14102 * has explicitly set it. 14103 */ 14104 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14105 continue; 14106 ipif->ipif_mtu = (uint_t)notify->dl_data; 14107 if (ipif->ipif_isv6) 14108 ire = ipif_to_ire_v6(ipif); 14109 else 14110 ire = ipif_to_ire(ipif); 14111 if (ire != NULL) { 14112 ire->ire_max_frag = ipif->ipif_mtu; 14113 ire_refrele(ire); 14114 } 14115 if (ipif->ipif_flags & IPIF_UP) { 14116 if (ill->ill_isv6) 14117 need_ire_walk_v6 = B_TRUE; 14118 else 14119 need_ire_walk_v4 = B_TRUE; 14120 } 14121 } 14122 mutex_exit(&ill->ill_lock); 14123 if (need_ire_walk_v4) 14124 ire_walk_v4(ill_mtu_change, (char *)ill, 14125 ALL_ZONES); 14126 if (need_ire_walk_v6) 14127 ire_walk_v6(ill_mtu_change, (char *)ill, 14128 ALL_ZONES); 14129 break; 14130 case DL_NOTE_LINK_UP: 14131 case DL_NOTE_LINK_DOWN: { 14132 /* 14133 * We are writer. ill / phyint / ipsq assocs stable. 14134 * The RUNNING flag reflects the state of the link. 14135 */ 14136 phyint_t *phyint = ill->ill_phyint; 14137 uint64_t new_phyint_flags; 14138 boolean_t changed = B_FALSE; 14139 14140 mutex_enter(&phyint->phyint_lock); 14141 new_phyint_flags = 14142 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14143 phyint->phyint_flags | PHYI_RUNNING : 14144 phyint->phyint_flags & ~PHYI_RUNNING; 14145 if (new_phyint_flags != phyint->phyint_flags) { 14146 phyint->phyint_flags = new_phyint_flags; 14147 changed = B_TRUE; 14148 } 14149 mutex_exit(&phyint->phyint_lock); 14150 /* 14151 * If the flags have changed, send a message to 14152 * the routing socket. 14153 */ 14154 if (changed) { 14155 if (phyint->phyint_illv4 != NULL) { 14156 ip_rts_ifmsg( 14157 phyint->phyint_illv4->ill_ipif); 14158 } 14159 if (phyint->phyint_illv6 != NULL) { 14160 ip_rts_ifmsg( 14161 phyint->phyint_illv6->ill_ipif); 14162 } 14163 } 14164 break; 14165 } 14166 case DL_NOTE_PROMISC_ON_PHYS: 14167 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14168 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14169 mutex_enter(&ill->ill_lock); 14170 ill->ill_promisc_on_phys = B_TRUE; 14171 mutex_exit(&ill->ill_lock); 14172 break; 14173 case DL_NOTE_PROMISC_OFF_PHYS: 14174 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14175 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14176 mutex_enter(&ill->ill_lock); 14177 ill->ill_promisc_on_phys = B_FALSE; 14178 mutex_exit(&ill->ill_lock); 14179 break; 14180 case DL_NOTE_CAPAB_RENEG: 14181 /* 14182 * Something changed on the driver side. 14183 * It wants us to renegotiate the capabilities 14184 * on this ill. The most likely cause is the 14185 * aggregation interface under us where a 14186 * port got added or went away. 14187 * 14188 * We reset the capabilities and set the 14189 * state to IDMS_RENG so that when the ack 14190 * comes back, we can start the 14191 * renegotiation process. 14192 */ 14193 ill_capability_reset(ill); 14194 ill->ill_capab_state = IDMS_RENEG; 14195 break; 14196 default: 14197 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14198 "type 0x%x for DL_NOTIFY_IND\n", 14199 notify->dl_notification)); 14200 break; 14201 } 14202 14203 /* 14204 * As this is an asynchronous operation, we 14205 * should not call ill_dlpi_done 14206 */ 14207 break; 14208 } 14209 case DL_NOTIFY_ACK: 14210 /* 14211 * Don't really need to check for what notifications 14212 * are supported; we'll process what gets sent upstream, 14213 * and we know it'll be something we support changing 14214 * based on our DL_NOTIFY_REQ. 14215 */ 14216 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14217 break; 14218 case DL_PHYS_ADDR_ACK: { 14219 /* 14220 * We should have an IOCTL waiting on this when request 14221 * sent by ill_dl_phys. 14222 * However, ill_dl_phys was called on an ill queue (from 14223 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14224 * ioctl is known to be pending on ill_wq. 14225 * There are two additional phys_addr_req's sent to the 14226 * driver to get the token and lla. ill_phys_addr_pend 14227 * keeps track of the last one sent so we know which 14228 * response we are dealing with. ill_dlpi_done will 14229 * update ill_phys_addr_pend when it sends the next req. 14230 * We don't complete the IOCTL until all three DL_PARs 14231 * have been attempted. 14232 * 14233 * We don't need any lock to update ill_nd_lla* fields, 14234 * since the ill is not yet up, We grab the lock just 14235 * for uniformity with other code that accesses ill_nd_lla. 14236 */ 14237 physaddr_req = ill->ill_phys_addr_pend; 14238 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14239 if (physaddr_req == DL_IPV6_TOKEN || 14240 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14241 if (physaddr_req == DL_IPV6_TOKEN) { 14242 /* 14243 * bcopy to low-order bits of ill_token 14244 * 14245 * XXX Temporary hack - currently, 14246 * all known tokens are 64 bits, 14247 * so I'll cheat for the moment. 14248 */ 14249 dlp = (union DL_primitives *)mp->b_rptr; 14250 14251 mutex_enter(&ill->ill_lock); 14252 bcopy((uchar_t *)(mp->b_rptr + 14253 dlp->physaddr_ack.dl_addr_offset), 14254 (void *)&ill->ill_token.s6_addr32[2], 14255 dlp->physaddr_ack.dl_addr_length); 14256 ill->ill_token_length = 14257 dlp->physaddr_ack.dl_addr_length; 14258 mutex_exit(&ill->ill_lock); 14259 } else { 14260 ASSERT(ill->ill_nd_lla_mp == NULL); 14261 mp_hw = copyb(mp); 14262 if (mp_hw == NULL) { 14263 err = ENOMEM; 14264 break; 14265 } 14266 dlp = (union DL_primitives *)mp_hw->b_rptr; 14267 mutex_enter(&ill->ill_lock); 14268 ill->ill_nd_lla_mp = mp_hw; 14269 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14270 dlp->physaddr_ack.dl_addr_offset; 14271 ill->ill_nd_lla_len = 14272 dlp->physaddr_ack.dl_addr_length; 14273 mutex_exit(&ill->ill_lock); 14274 } 14275 break; 14276 } 14277 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 14278 ASSERT(ill->ill_phys_addr_mp == NULL); 14279 if (!ill->ill_ifname_pending) 14280 break; 14281 ill->ill_ifname_pending = 0; 14282 if (!ioctl_aborted) 14283 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14284 if (mp1 != NULL) { 14285 ASSERT(connp == NULL); 14286 q = ill->ill_wq; 14287 } 14288 /* 14289 * If any error acks received during the plumbing sequence, 14290 * ill_ifname_pending_err will be set. Break out and send up 14291 * the error to the pending ioctl. 14292 */ 14293 if (ill->ill_ifname_pending_err != 0) { 14294 err = ill->ill_ifname_pending_err; 14295 ill->ill_ifname_pending_err = 0; 14296 break; 14297 } 14298 /* 14299 * Get the interface token. If the zeroth interface 14300 * address is zero then set the address to the link local 14301 * address 14302 */ 14303 mp_hw = copyb(mp); 14304 if (mp_hw == NULL) { 14305 err = ENOMEM; 14306 break; 14307 } 14308 dlp = (union DL_primitives *)mp_hw->b_rptr; 14309 ill->ill_phys_addr_mp = mp_hw; 14310 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14311 dlp->physaddr_ack.dl_addr_offset; 14312 if (dlp->physaddr_ack.dl_addr_length == 0 || 14313 ill->ill_phys_addr_length == 0 || 14314 ill->ill_phys_addr_length == IP_ADDR_LEN) { 14315 /* 14316 * Compatibility: atun driver returns a length of 0. 14317 * ipdptp has an ill_phys_addr_length of zero(from 14318 * DL_BIND_ACK) but a non-zero length here. 14319 * ipd has an ill_phys_addr_length of 4(from 14320 * DL_BIND_ACK) but a non-zero length here. 14321 */ 14322 ill->ill_phys_addr = NULL; 14323 } else if (dlp->physaddr_ack.dl_addr_length != 14324 ill->ill_phys_addr_length) { 14325 ip0dbg(("DL_PHYS_ADDR_ACK: " 14326 "Address length mismatch %d %d\n", 14327 dlp->physaddr_ack.dl_addr_length, 14328 ill->ill_phys_addr_length)); 14329 err = EINVAL; 14330 break; 14331 } 14332 mutex_enter(&ill->ill_lock); 14333 if (ill->ill_nd_lla_mp == NULL) { 14334 ill->ill_nd_lla_mp = copyb(mp_hw); 14335 if (ill->ill_nd_lla_mp == NULL) { 14336 err = ENOMEM; 14337 mutex_exit(&ill->ill_lock); 14338 break; 14339 } 14340 ill->ill_nd_lla = 14341 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 14342 dlp->physaddr_ack.dl_addr_offset; 14343 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 14344 } 14345 mutex_exit(&ill->ill_lock); 14346 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 14347 (void) ill_setdefaulttoken(ill); 14348 14349 /* 14350 * If the ill zero interface has a zero address assign 14351 * it the proper link local address. 14352 */ 14353 ASSERT(ill->ill_ipif->ipif_id == 0); 14354 if (ipif != NULL && 14355 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14356 (void) ipif_setlinklocal(ipif); 14357 break; 14358 } 14359 case DL_OK_ACK: 14360 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 14361 dlpi_prim_str((int)dloa->dl_correct_primitive), 14362 dloa->dl_correct_primitive)); 14363 switch (dloa->dl_correct_primitive) { 14364 case DL_UNBIND_REQ: 14365 case DL_ATTACH_REQ: 14366 case DL_DETACH_REQ: 14367 ill_dlpi_done(ill, dloa->dl_correct_primitive); 14368 break; 14369 } 14370 break; 14371 default: 14372 break; 14373 } 14374 14375 freemsg(mp); 14376 if (mp1) { 14377 struct iocblk *iocp; 14378 int mode; 14379 14380 /* 14381 * Complete the waiting IOCTL. For SIOCLIFADDIF or 14382 * SIOCSLIFNAME do a copyout. 14383 */ 14384 iocp = (struct iocblk *)mp1->b_rptr; 14385 14386 if (iocp->ioc_cmd == SIOCLIFADDIF || 14387 iocp->ioc_cmd == SIOCSLIFNAME) 14388 mode = COPYOUT; 14389 else 14390 mode = NO_COPYOUT; 14391 /* 14392 * The ioctl must complete now without EINPROGRESS 14393 * since ipsq_pending_mp_get has removed the ioctl mblk 14394 * from ipsq_pending_mp. Otherwise the ioctl will be 14395 * stuck for ever in the ipsq. 14396 */ 14397 ASSERT(err != EINPROGRESS); 14398 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 14399 14400 } 14401 } 14402 14403 /* 14404 * ip_rput_other is called by ip_rput to handle messages modifying the global 14405 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 14406 */ 14407 /* ARGSUSED */ 14408 void 14409 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14410 { 14411 ill_t *ill; 14412 struct iocblk *iocp; 14413 mblk_t *mp1; 14414 conn_t *connp = NULL; 14415 14416 ip1dbg(("ip_rput_other ")); 14417 ill = (ill_t *)q->q_ptr; 14418 /* 14419 * This routine is not a writer in the case of SIOCGTUNPARAM 14420 * in which case ipsq is NULL. 14421 */ 14422 if (ipsq != NULL) { 14423 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14424 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14425 } 14426 14427 switch (mp->b_datap->db_type) { 14428 case M_ERROR: 14429 case M_HANGUP: 14430 /* 14431 * The device has a problem. We force the ILL down. It can 14432 * be brought up again manually using SIOCSIFFLAGS (via 14433 * ifconfig or equivalent). 14434 */ 14435 ASSERT(ipsq != NULL); 14436 if (mp->b_rptr < mp->b_wptr) 14437 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 14438 if (ill->ill_error == 0) 14439 ill->ill_error = ENXIO; 14440 if (!ill_down_start(q, mp)) 14441 return; 14442 ipif_all_down_tail(ipsq, q, mp, NULL); 14443 break; 14444 case M_IOCACK: 14445 iocp = (struct iocblk *)mp->b_rptr; 14446 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 14447 switch (iocp->ioc_cmd) { 14448 case SIOCSTUNPARAM: 14449 case OSIOCSTUNPARAM: 14450 ASSERT(ipsq != NULL); 14451 /* 14452 * Finish socket ioctl passed through to tun. 14453 * We should have an IOCTL waiting on this. 14454 */ 14455 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14456 if (ill->ill_isv6) { 14457 struct iftun_req *ta; 14458 14459 /* 14460 * if a source or destination is 14461 * being set, try and set the link 14462 * local address for the tunnel 14463 */ 14464 ta = (struct iftun_req *)mp->b_cont-> 14465 b_cont->b_rptr; 14466 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 14467 ipif_set_tun_llink(ill, ta); 14468 } 14469 14470 } 14471 if (mp1 != NULL) { 14472 /* 14473 * Now copy back the b_next/b_prev used by 14474 * mi code for the mi_copy* functions. 14475 * See ip_sioctl_tunparam() for the reason. 14476 * Also protect against missing b_cont. 14477 */ 14478 if (mp->b_cont != NULL) { 14479 mp->b_cont->b_next = 14480 mp1->b_cont->b_next; 14481 mp->b_cont->b_prev = 14482 mp1->b_cont->b_prev; 14483 } 14484 ip_ioctl_freemsg(mp1); 14485 ASSERT(ipsq->ipsq_current_ipif != NULL); 14486 ASSERT(connp != NULL); 14487 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14488 iocp->ioc_error, NO_COPYOUT, 14489 ipsq->ipsq_current_ipif, ipsq); 14490 } else { 14491 ASSERT(connp == NULL); 14492 putnext(q, mp); 14493 } 14494 break; 14495 case SIOCGTUNPARAM: 14496 case OSIOCGTUNPARAM: 14497 /* 14498 * This is really M_IOCDATA from the tunnel driver. 14499 * convert back and complete the ioctl. 14500 * We should have an IOCTL waiting on this. 14501 */ 14502 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 14503 if (mp1) { 14504 /* 14505 * Now copy back the b_next/b_prev used by 14506 * mi code for the mi_copy* functions. 14507 * See ip_sioctl_tunparam() for the reason. 14508 * Also protect against missing b_cont. 14509 */ 14510 if (mp->b_cont != NULL) { 14511 mp->b_cont->b_next = 14512 mp1->b_cont->b_next; 14513 mp->b_cont->b_prev = 14514 mp1->b_cont->b_prev; 14515 } 14516 ip_ioctl_freemsg(mp1); 14517 if (iocp->ioc_error == 0) 14518 mp->b_datap->db_type = M_IOCDATA; 14519 ASSERT(connp != NULL); 14520 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14521 iocp->ioc_error, COPYOUT, NULL, NULL); 14522 } else { 14523 ASSERT(connp == NULL); 14524 putnext(q, mp); 14525 } 14526 break; 14527 default: 14528 break; 14529 } 14530 break; 14531 case M_IOCNAK: 14532 iocp = (struct iocblk *)mp->b_rptr; 14533 14534 switch (iocp->ioc_cmd) { 14535 int mode; 14536 ipif_t *ipif; 14537 14538 case DL_IOC_HDR_INFO: 14539 /* 14540 * If this was the first attempt turn of the 14541 * fastpath probing. 14542 */ 14543 mutex_enter(&ill->ill_lock); 14544 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 14545 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 14546 mutex_exit(&ill->ill_lock); 14547 ill_fastpath_nack(ill); 14548 ip1dbg(("ip_rput: DLPI fastpath off on " 14549 "interface %s\n", 14550 ill->ill_name)); 14551 } else { 14552 mutex_exit(&ill->ill_lock); 14553 } 14554 freemsg(mp); 14555 break; 14556 case SIOCSTUNPARAM: 14557 case OSIOCSTUNPARAM: 14558 ASSERT(ipsq != NULL); 14559 /* 14560 * Finish socket ioctl passed through to tun 14561 * We should have an IOCTL waiting on this. 14562 */ 14563 /* FALLTHRU */ 14564 case SIOCGTUNPARAM: 14565 case OSIOCGTUNPARAM: 14566 /* 14567 * This is really M_IOCDATA from the tunnel driver. 14568 * convert back and complete the ioctl. 14569 * We should have an IOCTL waiting on this. 14570 */ 14571 if (iocp->ioc_cmd == SIOCGTUNPARAM || 14572 iocp->ioc_cmd == OSIOCGTUNPARAM) { 14573 mp1 = ill_pending_mp_get(ill, &connp, 14574 iocp->ioc_id); 14575 mode = COPYOUT; 14576 ipsq = NULL; 14577 ipif = NULL; 14578 } else { 14579 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14580 mode = NO_COPYOUT; 14581 ASSERT(ipsq->ipsq_current_ipif != NULL); 14582 ipif = ipsq->ipsq_current_ipif; 14583 } 14584 if (mp1 != NULL) { 14585 /* 14586 * Now copy back the b_next/b_prev used by 14587 * mi code for the mi_copy* functions. 14588 * See ip_sioctl_tunparam() for the reason. 14589 * Also protect against missing b_cont. 14590 */ 14591 if (mp->b_cont != NULL) { 14592 mp->b_cont->b_next = 14593 mp1->b_cont->b_next; 14594 mp->b_cont->b_prev = 14595 mp1->b_cont->b_prev; 14596 } 14597 ip_ioctl_freemsg(mp1); 14598 if (iocp->ioc_error == 0) 14599 iocp->ioc_error = EINVAL; 14600 ASSERT(connp != NULL); 14601 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14602 iocp->ioc_error, mode, ipif, ipsq); 14603 } else { 14604 ASSERT(connp == NULL); 14605 putnext(q, mp); 14606 } 14607 break; 14608 default: 14609 break; 14610 } 14611 default: 14612 break; 14613 } 14614 } 14615 14616 /* 14617 * NOTE : This function does not ire_refrele the ire argument passed in. 14618 * 14619 * IPQoS notes 14620 * IP policy is invoked twice for a forwarded packet, once on the read side 14621 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 14622 * enabled. An additional parameter, in_ill, has been added for this purpose. 14623 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 14624 * because ip_mroute drops this information. 14625 * 14626 */ 14627 void 14628 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 14629 { 14630 uint32_t pkt_len; 14631 queue_t *q; 14632 uint32_t sum; 14633 #define rptr ((uchar_t *)ipha) 14634 uint32_t max_frag; 14635 uint32_t ill_index; 14636 14637 /* Get the ill_index of the incoming ILL */ 14638 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 14639 14640 /* Initiate Read side IPPF processing */ 14641 if (IPP_ENABLED(IPP_FWD_IN)) { 14642 ip_process(IPP_FWD_IN, &mp, ill_index); 14643 if (mp == NULL) { 14644 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 14645 "during IPPF processing\n")); 14646 return; 14647 } 14648 } 14649 pkt_len = ntohs(ipha->ipha_length); 14650 14651 /* Adjust the checksum to reflect the ttl decrement. */ 14652 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14653 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14654 14655 if (ipha->ipha_ttl-- <= 1) { 14656 if (ip_csum_hdr(ipha)) { 14657 BUMP_MIB(&ip_mib, ipInCksumErrs); 14658 goto drop_pkt; 14659 } 14660 /* 14661 * Note: ire_stq this will be NULL for multicast 14662 * datagrams using the long path through arp (the IRE 14663 * is not an IRE_CACHE). This should not cause 14664 * problems since we don't generate ICMP errors for 14665 * multicast packets. 14666 */ 14667 q = ire->ire_stq; 14668 if (q) 14669 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 14670 else 14671 freemsg(mp); 14672 return; 14673 } 14674 14675 /* 14676 * Don't forward if the interface is down 14677 */ 14678 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 14679 BUMP_MIB(&ip_mib, ipInDiscards); 14680 goto drop_pkt; 14681 } 14682 14683 /* Get the ill_index of the outgoing ILL */ 14684 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 14685 14686 /* Check if there are options to update */ 14687 if (!IS_SIMPLE_IPH(ipha)) { 14688 if (ip_csum_hdr(ipha)) { 14689 BUMP_MIB(&ip_mib, ipInCksumErrs); 14690 goto drop_pkt; 14691 } 14692 if (ip_rput_forward_options(mp, ipha, ire)) { 14693 return; 14694 } 14695 14696 ipha->ipha_hdr_checksum = 0; 14697 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14698 } 14699 max_frag = ire->ire_max_frag; 14700 if (pkt_len > max_frag) { 14701 /* 14702 * It needs fragging on its way out. We haven't 14703 * verified the header checksum yet. Since we 14704 * are going to put a surely good checksum in the 14705 * outgoing header, we have to make sure that it 14706 * was good coming in. 14707 */ 14708 if (ip_csum_hdr(ipha)) { 14709 BUMP_MIB(&ip_mib, ipInCksumErrs); 14710 goto drop_pkt; 14711 } 14712 /* Initiate Write side IPPF processing */ 14713 if (IPP_ENABLED(IPP_FWD_OUT)) { 14714 ip_process(IPP_FWD_OUT, &mp, ill_index); 14715 if (mp == NULL) { 14716 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 14717 " during IPPF processing\n")); 14718 return; 14719 } 14720 } 14721 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 14722 return; 14723 } 14724 14725 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 14726 if (mp == NULL) { 14727 BUMP_MIB(&ip_mib, ipInDiscards); 14728 return; 14729 } 14730 14731 q = ire->ire_stq; 14732 UPDATE_IB_PKT_COUNT(ire); 14733 ire->ire_last_used_time = lbolt; 14734 BUMP_MIB(&ip_mib, ipForwDatagrams); 14735 putnext(q, mp); 14736 return; 14737 14738 drop_pkt:; 14739 ip1dbg(("ip_rput_forward: drop pkt\n")); 14740 freemsg(mp); 14741 #undef rptr 14742 } 14743 14744 void 14745 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 14746 { 14747 ire_t *ire; 14748 14749 ASSERT(!ipif->ipif_isv6); 14750 /* 14751 * Find an IRE which matches the destination and the outgoing 14752 * queue in the cache table. All we need is an IRE_CACHE which 14753 * is pointing at ipif->ipif_ill. If it is part of some ill group, 14754 * then it is enough to have some IRE_CACHE in the group. 14755 */ 14756 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14757 dst = ipif->ipif_pp_dst_addr; 14758 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, 14759 MATCH_IRE_ILL_GROUP); 14760 if (!ire) { 14761 /* 14762 * Mark this packet to make it be delivered to 14763 * ip_rput_forward after the new ire has been 14764 * created. 14765 */ 14766 mp->b_prev = NULL; 14767 mp->b_next = mp; 14768 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 14769 NULL, 0); 14770 } else { 14771 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 14772 IRE_REFRELE(ire); 14773 } 14774 } 14775 14776 /* Update any source route, record route or timestamp options */ 14777 static int 14778 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 14779 { 14780 ipoptp_t opts; 14781 uchar_t *opt; 14782 uint8_t optval; 14783 uint8_t optlen; 14784 ipaddr_t dst; 14785 uint32_t ts; 14786 ire_t *dst_ire = NULL; 14787 ire_t *tmp_ire = NULL; 14788 timestruc_t now; 14789 14790 ip2dbg(("ip_rput_forward_options\n")); 14791 dst = ipha->ipha_dst; 14792 for (optval = ipoptp_first(&opts, ipha); 14793 optval != IPOPT_EOL; 14794 optval = ipoptp_next(&opts)) { 14795 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 14796 opt = opts.ipoptp_cur; 14797 optlen = opts.ipoptp_len; 14798 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 14799 optval, opts.ipoptp_len)); 14800 switch (optval) { 14801 uint32_t off; 14802 case IPOPT_SSRR: 14803 case IPOPT_LSRR: 14804 /* Check if adminstratively disabled */ 14805 if (!ip_forward_src_routed) { 14806 BUMP_MIB(&ip_mib, ipForwProhibits); 14807 if (ire->ire_stq) 14808 icmp_unreachable(ire->ire_stq, mp, 14809 ICMP_SOURCE_ROUTE_FAILED); 14810 else { 14811 ip0dbg(("ip_rput_forward_options: " 14812 "unable to send unreach\n")); 14813 freemsg(mp); 14814 } 14815 return (-1); 14816 } 14817 14818 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 14819 NULL, ALL_ZONES, MATCH_IRE_TYPE); 14820 if (dst_ire == NULL) { 14821 /* 14822 * Must be partial since ip_rput_options 14823 * checked for strict. 14824 */ 14825 break; 14826 } 14827 off = opt[IPOPT_OFFSET]; 14828 off--; 14829 redo_srr: 14830 if (optlen < IP_ADDR_LEN || 14831 off > optlen - IP_ADDR_LEN) { 14832 /* End of source route */ 14833 ip1dbg(( 14834 "ip_rput_forward_options: end of SR\n")); 14835 ire_refrele(dst_ire); 14836 break; 14837 } 14838 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 14839 bcopy(&ire->ire_src_addr, (char *)opt + off, 14840 IP_ADDR_LEN); 14841 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 14842 ntohl(dst))); 14843 14844 /* 14845 * Check if our address is present more than 14846 * once as consecutive hops in source route. 14847 */ 14848 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 14849 NULL, ALL_ZONES, MATCH_IRE_TYPE); 14850 if (tmp_ire != NULL) { 14851 ire_refrele(tmp_ire); 14852 off += IP_ADDR_LEN; 14853 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14854 goto redo_srr; 14855 } 14856 ipha->ipha_dst = dst; 14857 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14858 ire_refrele(dst_ire); 14859 break; 14860 case IPOPT_RR: 14861 off = opt[IPOPT_OFFSET]; 14862 off--; 14863 if (optlen < IP_ADDR_LEN || 14864 off > optlen - IP_ADDR_LEN) { 14865 /* No more room - ignore */ 14866 ip1dbg(( 14867 "ip_rput_forward_options: end of RR\n")); 14868 break; 14869 } 14870 bcopy(&ire->ire_src_addr, (char *)opt + off, 14871 IP_ADDR_LEN); 14872 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14873 break; 14874 case IPOPT_TS: 14875 /* Insert timestamp if there is room */ 14876 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 14877 case IPOPT_TS_TSONLY: 14878 off = IPOPT_TS_TIMELEN; 14879 break; 14880 case IPOPT_TS_PRESPEC: 14881 case IPOPT_TS_PRESPEC_RFC791: 14882 /* Verify that the address matched */ 14883 off = opt[IPOPT_OFFSET] - 1; 14884 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 14885 dst_ire = ire_ctable_lookup(dst, 0, 14886 IRE_LOCAL, NULL, ALL_ZONES, MATCH_IRE_TYPE); 14887 if (dst_ire == NULL) { 14888 /* Not for us */ 14889 break; 14890 } 14891 ire_refrele(dst_ire); 14892 /* FALLTHRU */ 14893 case IPOPT_TS_TSANDADDR: 14894 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 14895 break; 14896 default: 14897 /* 14898 * ip_*put_options should have already 14899 * dropped this packet. 14900 */ 14901 cmn_err(CE_PANIC, "ip_rput_forward_options: " 14902 "unknown IT - bug in ip_rput_options?\n"); 14903 return (0); /* Keep "lint" happy */ 14904 } 14905 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 14906 /* Increase overflow counter */ 14907 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 14908 opt[IPOPT_POS_OV_FLG] = 14909 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 14910 (off << 4)); 14911 break; 14912 } 14913 off = opt[IPOPT_OFFSET] - 1; 14914 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 14915 case IPOPT_TS_PRESPEC: 14916 case IPOPT_TS_PRESPEC_RFC791: 14917 case IPOPT_TS_TSANDADDR: 14918 bcopy(&ire->ire_src_addr, 14919 (char *)opt + off, IP_ADDR_LEN); 14920 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14921 /* FALLTHRU */ 14922 case IPOPT_TS_TSONLY: 14923 off = opt[IPOPT_OFFSET] - 1; 14924 /* Compute # of milliseconds since midnight */ 14925 gethrestime(&now); 14926 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 14927 now.tv_nsec / (NANOSEC / MILLISEC); 14928 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 14929 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 14930 break; 14931 } 14932 break; 14933 } 14934 } 14935 return (0); 14936 } 14937 14938 /* 14939 * This is called after processing at least one of AH/ESP headers. 14940 * 14941 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 14942 * the actual, physical interface on which the packet was received, 14943 * but, when ip_strict_dst_multihoming is set to 1, could be the 14944 * interface which had the ipha_dst configured when the packet went 14945 * through ip_rput. The ill_index corresponding to the recv_ill 14946 * is saved in ipsec_in_rill_index 14947 */ 14948 void 14949 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 14950 { 14951 mblk_t *mp; 14952 ipaddr_t dst; 14953 in6_addr_t *v6dstp; 14954 ipha_t *ipha; 14955 ip6_t *ip6h; 14956 ipsec_in_t *ii; 14957 boolean_t ill_need_rele = B_FALSE; 14958 boolean_t rill_need_rele = B_FALSE; 14959 boolean_t ire_need_rele = B_FALSE; 14960 14961 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 14962 ASSERT(ii->ipsec_in_ill_index != 0); 14963 14964 mp = ipsec_mp->b_cont; 14965 ASSERT(mp != NULL); 14966 14967 14968 if (ill == NULL) { 14969 ASSERT(recv_ill == NULL); 14970 /* 14971 * We need to get the original queue on which ip_rput_local 14972 * or ip_rput_data_v6 was called. 14973 */ 14974 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 14975 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 14976 ill_need_rele = B_TRUE; 14977 14978 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 14979 recv_ill = ill_lookup_on_ifindex( 14980 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 14981 NULL, NULL, NULL, NULL); 14982 rill_need_rele = B_TRUE; 14983 } else { 14984 recv_ill = ill; 14985 } 14986 14987 if ((ill == NULL) || (recv_ill == NULL)) { 14988 ip0dbg(("ip_fanout_proto_again: interface " 14989 "disappeared\n")); 14990 if (ill != NULL) 14991 ill_refrele(ill); 14992 if (recv_ill != NULL) 14993 ill_refrele(recv_ill); 14994 freemsg(ipsec_mp); 14995 return; 14996 } 14997 } 14998 14999 ASSERT(ill != NULL && recv_ill != NULL); 15000 15001 if (mp->b_datap->db_type == M_CTL) { 15002 /* 15003 * AH/ESP is returning the ICMP message after 15004 * removing their headers. Fanout again till 15005 * it gets to the right protocol. 15006 */ 15007 if (ii->ipsec_in_v4) { 15008 icmph_t *icmph; 15009 int iph_hdr_length; 15010 int hdr_length; 15011 15012 ipha = (ipha_t *)mp->b_rptr; 15013 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15014 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15015 ipha = (ipha_t *)&icmph[1]; 15016 hdr_length = IPH_HDR_LENGTH(ipha); 15017 /* 15018 * icmp_inbound_error_fanout may need to do pullupmsg. 15019 * Reset the type to M_DATA. 15020 */ 15021 mp->b_datap->db_type = M_DATA; 15022 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15023 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15024 B_FALSE, ill, ii->ipsec_in_zoneid); 15025 } else { 15026 icmp6_t *icmp6; 15027 int hdr_length; 15028 15029 ip6h = (ip6_t *)mp->b_rptr; 15030 /* Don't call hdr_length_v6() unless you have to. */ 15031 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15032 hdr_length = ip_hdr_length_v6(mp, ip6h); 15033 else 15034 hdr_length = IPV6_HDR_LEN; 15035 15036 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15037 /* 15038 * icmp_inbound_error_fanout_v6 may need to do 15039 * pullupmsg. Reset the type to M_DATA. 15040 */ 15041 mp->b_datap->db_type = M_DATA; 15042 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15043 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15044 } 15045 if (ill_need_rele) 15046 ill_refrele(ill); 15047 if (rill_need_rele) 15048 ill_refrele(recv_ill); 15049 return; 15050 } 15051 15052 if (ii->ipsec_in_v4) { 15053 ipha = (ipha_t *)mp->b_rptr; 15054 dst = ipha->ipha_dst; 15055 if (CLASSD(dst)) { 15056 /* 15057 * Multicast has to be delivered to all streams. 15058 */ 15059 dst = INADDR_BROADCAST; 15060 } 15061 15062 if (ire == NULL) { 15063 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid); 15064 if (ire == NULL) { 15065 if (ill_need_rele) 15066 ill_refrele(ill); 15067 if (rill_need_rele) 15068 ill_refrele(recv_ill); 15069 ip1dbg(("ip_fanout_proto_again: " 15070 "IRE not found")); 15071 freemsg(ipsec_mp); 15072 return; 15073 } 15074 ire_need_rele = B_TRUE; 15075 } 15076 15077 switch (ipha->ipha_protocol) { 15078 case IPPROTO_UDP: 15079 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15080 recv_ill); 15081 if (ire_need_rele) 15082 ire_refrele(ire); 15083 break; 15084 case IPPROTO_TCP: 15085 if (!ire_need_rele) 15086 IRE_REFHOLD(ire); 15087 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15088 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15089 IRE_REFRELE(ire); 15090 if (mp != NULL) 15091 squeue_enter_chain(GET_SQUEUE(mp), mp, 15092 mp, 1, SQTAG_IP_PROTO_AGAIN); 15093 break; 15094 case IPPROTO_SCTP: 15095 if (!ire_need_rele) 15096 IRE_REFHOLD(ire); 15097 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15098 ipsec_mp, 0, ill->ill_rq, dst); 15099 break; 15100 default: 15101 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15102 recv_ill); 15103 if (ire_need_rele) 15104 ire_refrele(ire); 15105 break; 15106 } 15107 } else { 15108 uint32_t rput_flags = 0; 15109 15110 ip6h = (ip6_t *)mp->b_rptr; 15111 v6dstp = &ip6h->ip6_dst; 15112 /* 15113 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15114 * address. 15115 * 15116 * Currently, we don't store that state in the IPSEC_IN 15117 * message, and we may need to. 15118 */ 15119 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15120 IP6_IN_LLMCAST : 0); 15121 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15122 NULL); 15123 } 15124 if (ill_need_rele) 15125 ill_refrele(ill); 15126 if (rill_need_rele) 15127 ill_refrele(recv_ill); 15128 } 15129 15130 /* 15131 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15132 * returns 'true' if there are still fragments left on the queue, in 15133 * which case we restart the timer. 15134 */ 15135 void 15136 ill_frag_timer(void *arg) 15137 { 15138 ill_t *ill = (ill_t *)arg; 15139 boolean_t frag_pending; 15140 15141 mutex_enter(&ill->ill_lock); 15142 ASSERT(!ill->ill_fragtimer_executing); 15143 if (ill->ill_state_flags & ILL_CONDEMNED) { 15144 ill->ill_frag_timer_id = 0; 15145 mutex_exit(&ill->ill_lock); 15146 return; 15147 } 15148 ill->ill_fragtimer_executing = 1; 15149 mutex_exit(&ill->ill_lock); 15150 15151 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15152 15153 /* 15154 * Restart the timer, if we have fragments pending or if someone 15155 * wanted us to be scheduled again. 15156 */ 15157 mutex_enter(&ill->ill_lock); 15158 ill->ill_fragtimer_executing = 0; 15159 ill->ill_frag_timer_id = 0; 15160 if (frag_pending || ill->ill_fragtimer_needrestart) 15161 ill_frag_timer_start(ill); 15162 mutex_exit(&ill->ill_lock); 15163 } 15164 15165 void 15166 ill_frag_timer_start(ill_t *ill) 15167 { 15168 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15169 15170 /* If the ill is closing or opening don't proceed */ 15171 if (ill->ill_state_flags & ILL_CONDEMNED) 15172 return; 15173 15174 if (ill->ill_fragtimer_executing) { 15175 /* 15176 * ill_frag_timer is currently executing. Just record the 15177 * the fact that we want the timer to be restarted. 15178 * ill_frag_timer will post a timeout before it returns, 15179 * ensuring it will be called again. 15180 */ 15181 ill->ill_fragtimer_needrestart = 1; 15182 return; 15183 } 15184 15185 if (ill->ill_frag_timer_id == 0) { 15186 /* 15187 * The timer is neither running nor is the timeout handler 15188 * executing. Post a timeout so that ill_frag_timer will be 15189 * called 15190 */ 15191 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15192 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15193 ill->ill_fragtimer_needrestart = 0; 15194 } 15195 } 15196 15197 /* 15198 * This routine is needed for loopback when forwarding multicasts. 15199 * 15200 * IPQoS Notes: 15201 * IPPF processing is done in fanout routines. 15202 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15203 * processing for IPSec packets is done when it comes back in clear. 15204 * NOTE : The callers of this function need to do the ire_refrele for the 15205 * ire that is being passed in. 15206 */ 15207 void 15208 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15209 ill_t *recv_ill) 15210 { 15211 ill_t *ill = (ill_t *)q->q_ptr; 15212 uint32_t sum; 15213 uint32_t u1; 15214 uint32_t u2; 15215 int hdr_length; 15216 boolean_t mctl_present; 15217 mblk_t *first_mp = mp; 15218 mblk_t *hada_mp = NULL; 15219 ipha_t *inner_ipha; 15220 15221 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 15222 "ip_rput_locl_start: q %p", q); 15223 15224 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15225 15226 15227 #define rptr ((uchar_t *)ipha) 15228 #define iphs ((uint16_t *)ipha) 15229 15230 /* 15231 * no UDP or TCP packet should come here anymore. 15232 */ 15233 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 15234 (ipha->ipha_protocol != IPPROTO_UDP)); 15235 15236 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 15237 if (mctl_present && 15238 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 15239 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 15240 15241 /* 15242 * It's an IPsec accelerated packet. 15243 * Keep a pointer to the data attributes around until 15244 * we allocate the ipsec_info_t. 15245 */ 15246 IPSECHW_DEBUG(IPSECHW_PKT, 15247 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 15248 hada_mp = first_mp; 15249 hada_mp->b_cont = NULL; 15250 /* 15251 * Since it is accelerated, it comes directly from 15252 * the ill and the data attributes is followed by 15253 * the packet data. 15254 */ 15255 ASSERT(mp->b_datap->db_type != M_CTL); 15256 first_mp = mp; 15257 mctl_present = B_FALSE; 15258 } 15259 15260 /* 15261 * IF M_CTL is not present, then ipsec_in_is_secure 15262 * should return B_TRUE. There is a case where loopback 15263 * packets has an M_CTL in the front with all the 15264 * IPSEC options set to IPSEC_PREF_NEVER - which means 15265 * ipsec_in_is_secure will return B_FALSE. As loopback 15266 * packets never comes here, it is safe to ASSERT the 15267 * following. 15268 */ 15269 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 15270 15271 15272 /* u1 is # words of IP options */ 15273 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 15274 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 15275 15276 if (u1) { 15277 if (!ip_options_cksum(q, mp, ipha, ire)) { 15278 if (hada_mp != NULL) 15279 freemsg(hada_mp); 15280 return; 15281 } 15282 } else { 15283 /* Check the IP header checksum. */ 15284 #define uph ((uint16_t *)ipha) 15285 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 15286 uph[6] + uph[7] + uph[8] + uph[9]; 15287 #undef uph 15288 /* finish doing IP checksum */ 15289 sum = (sum & 0xFFFF) + (sum >> 16); 15290 sum = ~(sum + (sum >> 16)) & 0xFFFF; 15291 /* 15292 * Don't verify header checksum if this packet is coming 15293 * back from AH/ESP as we already did it. 15294 */ 15295 if (!mctl_present && (sum && sum != 0xFFFF)) { 15296 BUMP_MIB(&ip_mib, ipInCksumErrs); 15297 goto drop_pkt; 15298 } 15299 } 15300 15301 /* 15302 * Count for SNMP of inbound packets for ire. As ip_proto_input 15303 * might be called more than once for secure packets, count only 15304 * the first time. 15305 */ 15306 if (!mctl_present) { 15307 UPDATE_IB_PKT_COUNT(ire); 15308 ire->ire_last_used_time = lbolt; 15309 } 15310 15311 /* Check for fragmentation offset. */ 15312 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 15313 u1 = u2 & (IPH_MF | IPH_OFFSET); 15314 if (u1) { 15315 /* 15316 * We re-assemble fragments before we do the AH/ESP 15317 * processing. Thus, M_CTL should not be present 15318 * while we are re-assembling. 15319 */ 15320 ASSERT(!mctl_present); 15321 ASSERT(first_mp == mp); 15322 if (!ip_rput_fragment(q, &mp, ipha)) { 15323 return; 15324 } 15325 /* 15326 * Make sure that first_mp points back to mp as 15327 * the mp we came in with could have changed in 15328 * ip_rput_fragment(). 15329 */ 15330 ipha = (ipha_t *)mp->b_rptr; 15331 first_mp = mp; 15332 } 15333 15334 /* 15335 * Clear hardware checksumming flag as it is currently only 15336 * used by TCP and UDP. 15337 */ 15338 mp->b_datap->db_struioun.cksum.flags = 0; 15339 15340 /* Now we have a complete datagram, destined for this machine. */ 15341 u1 = IPH_HDR_LENGTH(ipha); 15342 switch (ipha->ipha_protocol) { 15343 case IPPROTO_ICMP: { 15344 ire_t *ire_zone; 15345 ilm_t *ilm; 15346 mblk_t *mp1; 15347 zoneid_t last_zoneid; 15348 15349 if (CLASSD(ipha->ipha_dst) && 15350 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 15351 ASSERT(ire->ire_type == IRE_BROADCAST); 15352 /* 15353 * In the multicast case, applications may have joined 15354 * the group from different zones, so we need to deliver 15355 * the packet to each of them. Loop through the 15356 * multicast memberships structures (ilm) on the receive 15357 * ill and send a copy of the packet up each matching 15358 * one. However, we don't do this for multicasts sent on 15359 * the loopback interface (PHYI_LOOPBACK flag set) as 15360 * they must stay in the sender's zone. 15361 * 15362 * ilm_add_v6() ensures that ilms in the same zone are 15363 * contiguous in the ill_ilm list. We use this property 15364 * to avoid sending duplicates needed when two 15365 * applications in the same zone join the same group on 15366 * different logical interfaces: we ignore the ilm if 15367 * its zoneid is the same as the last matching one. 15368 * In addition, the sending of the packet for 15369 * ire_zoneid is delayed until all of the other ilms 15370 * have been exhausted. 15371 */ 15372 last_zoneid = -1; 15373 ILM_WALKER_HOLD(recv_ill); 15374 for (ilm = recv_ill->ill_ilm; ilm != NULL; 15375 ilm = ilm->ilm_next) { 15376 if ((ilm->ilm_flags & ILM_DELETED) || 15377 ipha->ipha_dst != ilm->ilm_addr || 15378 ilm->ilm_zoneid == last_zoneid || 15379 ilm->ilm_zoneid == ire->ire_zoneid || 15380 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 15381 continue; 15382 mp1 = ip_copymsg(first_mp); 15383 if (mp1 == NULL) 15384 continue; 15385 icmp_inbound(q, mp1, B_TRUE, ill, 15386 0, sum, mctl_present, B_TRUE, 15387 recv_ill, ilm->ilm_zoneid); 15388 last_zoneid = ilm->ilm_zoneid; 15389 } 15390 ILM_WALKER_RELE(recv_ill); 15391 } else if (ire->ire_type == IRE_BROADCAST) { 15392 /* 15393 * In the broadcast case, there may be many zones 15394 * which need a copy of the packet delivered to them. 15395 * There is one IRE_BROADCAST per broadcast address 15396 * and per zone; we walk those using a helper function. 15397 * In addition, the sending of the packet for ire is 15398 * delayed until all of the other ires have been 15399 * processed. 15400 */ 15401 IRB_REFHOLD(ire->ire_bucket); 15402 ire_zone = NULL; 15403 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 15404 ire)) != NULL) { 15405 mp1 = ip_copymsg(first_mp); 15406 if (mp1 == NULL) 15407 continue; 15408 15409 UPDATE_IB_PKT_COUNT(ire_zone); 15410 ire_zone->ire_last_used_time = lbolt; 15411 icmp_inbound(q, mp1, B_TRUE, ill, 15412 0, sum, mctl_present, B_TRUE, 15413 recv_ill, ire_zone->ire_zoneid); 15414 } 15415 IRB_REFRELE(ire->ire_bucket); 15416 } 15417 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 15418 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 15419 ire->ire_zoneid); 15420 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15421 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 15422 return; 15423 } 15424 case IPPROTO_IGMP: 15425 /* 15426 * If we are not willing to accept IGMP packets in clear, 15427 * then check with global policy. 15428 */ 15429 if (igmp_accept_clear_messages == 0) { 15430 first_mp = ipsec_check_global_policy(first_mp, NULL, 15431 ipha, NULL, mctl_present); 15432 if (first_mp == NULL) 15433 return; 15434 } 15435 if (igmp_input(q, mp, ill)) { 15436 /* Bad packet - discarded by igmp_input */ 15437 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15438 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 15439 if (mctl_present) 15440 freeb(first_mp); 15441 return; 15442 } 15443 /* 15444 * igmp_input() may have pulled up the message so ipha needs to 15445 * be reinitialized. 15446 */ 15447 ipha = (ipha_t *)mp->b_rptr; 15448 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15449 /* No user-level listener for IGMP packets */ 15450 goto drop_pkt; 15451 } 15452 /* deliver to local raw users */ 15453 break; 15454 case IPPROTO_PIM: 15455 /* 15456 * If we are not willing to accept PIM packets in clear, 15457 * then check with global policy. 15458 */ 15459 if (pim_accept_clear_messages == 0) { 15460 first_mp = ipsec_check_global_policy(first_mp, NULL, 15461 ipha, NULL, mctl_present); 15462 if (first_mp == NULL) 15463 return; 15464 } 15465 if (pim_input(q, mp) != 0) { 15466 /* Bad packet - discarded by pim_input */ 15467 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15468 "ip_rput_locl_end: q %p (%S)", q, "pim"); 15469 if (mctl_present) 15470 freeb(first_mp); 15471 return; 15472 } 15473 15474 /* 15475 * pim_input() may have pulled up the message so ipha needs to 15476 * be reinitialized. 15477 */ 15478 ipha = (ipha_t *)mp->b_rptr; 15479 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15480 /* No user-level listener for PIM packets */ 15481 goto drop_pkt; 15482 } 15483 /* deliver to local raw users */ 15484 break; 15485 case IPPROTO_ENCAP: 15486 /* 15487 * Handle self-encapsulated packets (IP-in-IP where 15488 * the inner addresses == the outer addresses). 15489 */ 15490 hdr_length = IPH_HDR_LENGTH(ipha); 15491 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 15492 mp->b_wptr) { 15493 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 15494 sizeof (ipha_t) - mp->b_rptr)) { 15495 BUMP_MIB(&ip_mib, ipInDiscards); 15496 freemsg(first_mp); 15497 return; 15498 } 15499 ipha = (ipha_t *)mp->b_rptr; 15500 } 15501 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 15502 /* 15503 * Check the sanity of the inner IP header. 15504 */ 15505 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 15506 BUMP_MIB(&ip_mib, ipInDiscards); 15507 freemsg(first_mp); 15508 return; 15509 } 15510 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 15511 BUMP_MIB(&ip_mib, ipInDiscards); 15512 freemsg(first_mp); 15513 return; 15514 } 15515 if (inner_ipha->ipha_src == ipha->ipha_src && 15516 inner_ipha->ipha_dst == ipha->ipha_dst) { 15517 ipsec_in_t *ii; 15518 15519 /* 15520 * Self-encapsulated tunnel packet. Remove 15521 * the outer IP header and fanout again. 15522 * We also need to make sure that the inner 15523 * header is pulled up until options. 15524 */ 15525 mp->b_rptr = (uchar_t *)inner_ipha; 15526 ipha = inner_ipha; 15527 hdr_length = IPH_HDR_LENGTH(ipha); 15528 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 15529 if (!pullupmsg(mp, (uchar_t *)ipha + 15530 + hdr_length - mp->b_rptr)) { 15531 freemsg(first_mp); 15532 return; 15533 } 15534 ipha = (ipha_t *)mp->b_rptr; 15535 } 15536 if (!mctl_present) { 15537 ASSERT(first_mp == mp); 15538 /* 15539 * This means that somebody is sending 15540 * Self-encapsualted packets without AH/ESP. 15541 * If AH/ESP was present, we would have already 15542 * allocated the first_mp. 15543 */ 15544 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 15545 NULL) { 15546 ip1dbg(("ip_proto_input: IPSEC_IN " 15547 "allocation failure.\n")); 15548 BUMP_MIB(&ip_mib, ipInDiscards); 15549 freemsg(mp); 15550 return; 15551 } 15552 first_mp->b_cont = mp; 15553 } 15554 /* 15555 * We generally store the ill_index if we need to 15556 * do IPSEC processing as we lose the ill queue when 15557 * we come back. But in this case, we never should 15558 * have to store the ill_index here as it should have 15559 * been stored previously when we processed the 15560 * AH/ESP header in this routine or for non-ipsec 15561 * cases, we still have the queue. But for some bad 15562 * packets from the wire, we can get to IPSEC after 15563 * this and we better store the index for that case. 15564 */ 15565 ill = (ill_t *)q->q_ptr; 15566 ii = (ipsec_in_t *)first_mp->b_rptr; 15567 ii->ipsec_in_ill_index = 15568 ill->ill_phyint->phyint_ifindex; 15569 ii->ipsec_in_rill_index = 15570 recv_ill->ill_phyint->phyint_ifindex; 15571 if (ii->ipsec_in_decaps) { 15572 /* 15573 * This packet is self-encapsulated multiple 15574 * times. We don't want to recurse infinitely. 15575 * To keep it simple, drop the packet. 15576 */ 15577 BUMP_MIB(&ip_mib, ipInDiscards); 15578 freemsg(first_mp); 15579 return; 15580 } 15581 ii->ipsec_in_decaps = B_TRUE; 15582 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 15583 return; 15584 } 15585 break; 15586 case IPPROTO_AH: 15587 case IPPROTO_ESP: { 15588 /* 15589 * Fast path for AH/ESP. If this is the first time 15590 * we are sending a datagram to AH/ESP, allocate 15591 * a IPSEC_IN message and prepend it. Otherwise, 15592 * just fanout. 15593 */ 15594 15595 int ipsec_rc; 15596 ipsec_in_t *ii; 15597 15598 IP_STAT(ipsec_proto_ahesp); 15599 if (!mctl_present) { 15600 ASSERT(first_mp == mp); 15601 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 15602 ip1dbg(("ip_proto_input: IPSEC_IN " 15603 "allocation failure.\n")); 15604 freemsg(hada_mp); /* okay ifnull */ 15605 BUMP_MIB(&ip_mib, ipInDiscards); 15606 freemsg(mp); 15607 return; 15608 } 15609 /* 15610 * Store the ill_index so that when we come back 15611 * from IPSEC we ride on the same queue. 15612 */ 15613 ill = (ill_t *)q->q_ptr; 15614 ii = (ipsec_in_t *)first_mp->b_rptr; 15615 ii->ipsec_in_ill_index = 15616 ill->ill_phyint->phyint_ifindex; 15617 ii->ipsec_in_rill_index = 15618 recv_ill->ill_phyint->phyint_ifindex; 15619 first_mp->b_cont = mp; 15620 /* 15621 * Cache hardware acceleration info. 15622 */ 15623 if (hada_mp != NULL) { 15624 IPSECHW_DEBUG(IPSECHW_PKT, 15625 ("ip_rput_local: caching data attr.\n")); 15626 ii->ipsec_in_accelerated = B_TRUE; 15627 ii->ipsec_in_da = hada_mp; 15628 hada_mp = NULL; 15629 } 15630 } else { 15631 ii = (ipsec_in_t *)first_mp->b_rptr; 15632 } 15633 15634 if (!ipsec_loaded()) { 15635 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 15636 ire->ire_zoneid); 15637 return; 15638 } 15639 15640 /* select inbound SA and have IPsec process the pkt */ 15641 if (ipha->ipha_protocol == IPPROTO_ESP) { 15642 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 15643 if (esph == NULL) 15644 return; 15645 ASSERT(ii->ipsec_in_esp_sa != NULL); 15646 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 15647 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 15648 first_mp, esph); 15649 } else { 15650 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 15651 if (ah == NULL) 15652 return; 15653 ASSERT(ii->ipsec_in_ah_sa != NULL); 15654 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 15655 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 15656 first_mp, ah); 15657 } 15658 15659 switch (ipsec_rc) { 15660 case IPSEC_STATUS_SUCCESS: 15661 break; 15662 case IPSEC_STATUS_FAILED: 15663 BUMP_MIB(&ip_mib, ipInDiscards); 15664 /* FALLTHRU */ 15665 case IPSEC_STATUS_PENDING: 15666 return; 15667 } 15668 /* we're done with IPsec processing, send it up */ 15669 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 15670 return; 15671 } 15672 default: 15673 break; 15674 } 15675 /* 15676 * Handle protocols with which IP is less intimate. There 15677 * can be more than one stream bound to a particular 15678 * protocol. When this is the case, each one gets a copy 15679 * of any incoming packets. 15680 */ 15681 ip_fanout_proto(q, first_mp, ill, ipha, 15682 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 15683 B_TRUE, recv_ill, ire->ire_zoneid); 15684 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15685 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 15686 return; 15687 15688 drop_pkt: 15689 freemsg(first_mp); 15690 if (hada_mp != NULL) 15691 freeb(hada_mp); 15692 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15693 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 15694 #undef rptr 15695 #undef iphs 15696 15697 } 15698 15699 /* 15700 * Update any source route, record route or timestamp options. 15701 * Check that we are at end of strict source route. 15702 * The options have already been checked for sanity in ip_rput_options(). 15703 */ 15704 static boolean_t 15705 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 15706 { 15707 ipoptp_t opts; 15708 uchar_t *opt; 15709 uint8_t optval; 15710 uint8_t optlen; 15711 ipaddr_t dst; 15712 uint32_t ts; 15713 ire_t *dst_ire; 15714 timestruc_t now; 15715 15716 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15717 15718 ip2dbg(("ip_rput_local_options\n")); 15719 15720 for (optval = ipoptp_first(&opts, ipha); 15721 optval != IPOPT_EOL; 15722 optval = ipoptp_next(&opts)) { 15723 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15724 opt = opts.ipoptp_cur; 15725 optlen = opts.ipoptp_len; 15726 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 15727 optval, optlen)); 15728 switch (optval) { 15729 uint32_t off; 15730 case IPOPT_SSRR: 15731 case IPOPT_LSRR: 15732 off = opt[IPOPT_OFFSET]; 15733 off--; 15734 if (optlen < IP_ADDR_LEN || 15735 off > optlen - IP_ADDR_LEN) { 15736 /* End of source route */ 15737 ip1dbg(("ip_rput_local_options: end of SR\n")); 15738 break; 15739 } 15740 /* 15741 * This will only happen if two consecutive entries 15742 * in the source route contains our address or if 15743 * it is a packet with a loose source route which 15744 * reaches us before consuming the whole source route 15745 */ 15746 ip1dbg(("ip_rput_local_options: not end of SR\n")); 15747 if (optval == IPOPT_SSRR) { 15748 goto bad_src_route; 15749 } 15750 /* 15751 * Hack: instead of dropping the packet truncate the 15752 * source route to what has been used by filling the 15753 * rest with IPOPT_NOP. 15754 */ 15755 opt[IPOPT_OLEN] = (uint8_t)off; 15756 while (off < optlen) { 15757 opt[off++] = IPOPT_NOP; 15758 } 15759 break; 15760 case IPOPT_RR: 15761 off = opt[IPOPT_OFFSET]; 15762 off--; 15763 if (optlen < IP_ADDR_LEN || 15764 off > optlen - IP_ADDR_LEN) { 15765 /* No more room - ignore */ 15766 ip1dbg(( 15767 "ip_rput_local_options: end of RR\n")); 15768 break; 15769 } 15770 bcopy(&ire->ire_src_addr, (char *)opt + off, 15771 IP_ADDR_LEN); 15772 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15773 break; 15774 case IPOPT_TS: 15775 /* Insert timestamp if there is romm */ 15776 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15777 case IPOPT_TS_TSONLY: 15778 off = IPOPT_TS_TIMELEN; 15779 break; 15780 case IPOPT_TS_PRESPEC: 15781 case IPOPT_TS_PRESPEC_RFC791: 15782 /* Verify that the address matched */ 15783 off = opt[IPOPT_OFFSET] - 1; 15784 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15785 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15786 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15787 if (dst_ire == NULL) { 15788 /* Not for us */ 15789 break; 15790 } 15791 ire_refrele(dst_ire); 15792 /* FALLTHRU */ 15793 case IPOPT_TS_TSANDADDR: 15794 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15795 break; 15796 default: 15797 /* 15798 * ip_*put_options should have already 15799 * dropped this packet. 15800 */ 15801 cmn_err(CE_PANIC, "ip_rput_local_options: " 15802 "unknown IT - bug in ip_rput_options?\n"); 15803 return (B_TRUE); /* Keep "lint" happy */ 15804 } 15805 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15806 /* Increase overflow counter */ 15807 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15808 opt[IPOPT_POS_OV_FLG] = 15809 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15810 (off << 4)); 15811 break; 15812 } 15813 off = opt[IPOPT_OFFSET] - 1; 15814 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15815 case IPOPT_TS_PRESPEC: 15816 case IPOPT_TS_PRESPEC_RFC791: 15817 case IPOPT_TS_TSANDADDR: 15818 bcopy(&ire->ire_src_addr, (char *)opt + off, 15819 IP_ADDR_LEN); 15820 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15821 /* FALLTHRU */ 15822 case IPOPT_TS_TSONLY: 15823 off = opt[IPOPT_OFFSET] - 1; 15824 /* Compute # of milliseconds since midnight */ 15825 gethrestime(&now); 15826 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15827 now.tv_nsec / (NANOSEC / MILLISEC); 15828 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15829 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15830 break; 15831 } 15832 break; 15833 } 15834 } 15835 return (B_TRUE); 15836 15837 bad_src_route: 15838 q = WR(q); 15839 /* make sure we clear any indication of a hardware checksum */ 15840 mp->b_datap->db_struioun.cksum.flags = 0; 15841 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 15842 return (B_FALSE); 15843 15844 } 15845 15846 /* 15847 * Process IP options in an inbound packet. If an option affects the 15848 * effective destination address, return the next hop address via dstp. 15849 * Returns -1 if something fails in which case an ICMP error has been sent 15850 * and mp freed. 15851 */ 15852 static int 15853 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 15854 { 15855 ipoptp_t opts; 15856 uchar_t *opt; 15857 uint8_t optval; 15858 uint8_t optlen; 15859 ipaddr_t dst; 15860 intptr_t code = 0; 15861 ire_t *ire = NULL; 15862 15863 ip2dbg(("ip_rput_options\n")); 15864 dst = ipha->ipha_dst; 15865 for (optval = ipoptp_first(&opts, ipha); 15866 optval != IPOPT_EOL; 15867 optval = ipoptp_next(&opts)) { 15868 opt = opts.ipoptp_cur; 15869 optlen = opts.ipoptp_len; 15870 ip2dbg(("ip_rput_options: opt %d, len %d\n", 15871 optval, optlen)); 15872 /* 15873 * Note: we need to verify the checksum before we 15874 * modify anything thus this routine only extracts the next 15875 * hop dst from any source route. 15876 */ 15877 switch (optval) { 15878 uint32_t off; 15879 case IPOPT_SSRR: 15880 case IPOPT_LSRR: 15881 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 15882 ALL_ZONES, MATCH_IRE_TYPE); 15883 if (ire == NULL) { 15884 if (optval == IPOPT_SSRR) { 15885 ip1dbg(("ip_rput_options: not next" 15886 " strict source route 0x%x\n", 15887 ntohl(dst))); 15888 code = (char *)&ipha->ipha_dst - 15889 (char *)ipha; 15890 goto param_prob; /* RouterReq's */ 15891 } 15892 ip2dbg(("ip_rput_options: " 15893 "not next source route 0x%x\n", 15894 ntohl(dst))); 15895 break; 15896 } 15897 ire_refrele(ire); 15898 15899 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15900 ip1dbg(( 15901 "ip_rput_options: bad option offset\n")); 15902 code = (char *)&opt[IPOPT_OLEN] - 15903 (char *)ipha; 15904 goto param_prob; 15905 } 15906 off = opt[IPOPT_OFFSET]; 15907 off--; 15908 redo_srr: 15909 if (optlen < IP_ADDR_LEN || 15910 off > optlen - IP_ADDR_LEN) { 15911 /* End of source route */ 15912 ip1dbg(("ip_rput_options: end of SR\n")); 15913 break; 15914 } 15915 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15916 ip1dbg(("ip_rput_options: next hop 0x%x\n", 15917 ntohl(dst))); 15918 15919 /* 15920 * Check if our address is present more than 15921 * once as consecutive hops in source route. 15922 * XXX verify per-interface ip_forwarding 15923 * for source route? 15924 */ 15925 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 15926 ALL_ZONES, MATCH_IRE_TYPE); 15927 15928 if (ire != NULL) { 15929 ire_refrele(ire); 15930 off += IP_ADDR_LEN; 15931 goto redo_srr; 15932 } 15933 15934 if (dst == htonl(INADDR_LOOPBACK)) { 15935 ip1dbg(("ip_rput_options: loopback addr in " 15936 "source route!\n")); 15937 goto bad_src_route; 15938 } 15939 /* 15940 * For strict: verify that dst is directly 15941 * reachable. 15942 */ 15943 if (optval == IPOPT_SSRR) { 15944 ire = ire_ftable_lookup(dst, 0, 0, 15945 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 15946 MATCH_IRE_TYPE); 15947 if (ire == NULL) { 15948 ip1dbg(("ip_rput_options: SSRR not " 15949 "directly reachable: 0x%x\n", 15950 ntohl(dst))); 15951 goto bad_src_route; 15952 } 15953 ire_refrele(ire); 15954 } 15955 /* 15956 * Defer update of the offset and the record route 15957 * until the packet is forwarded. 15958 */ 15959 break; 15960 case IPOPT_RR: 15961 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15962 ip1dbg(( 15963 "ip_rput_options: bad option offset\n")); 15964 code = (char *)&opt[IPOPT_OLEN] - 15965 (char *)ipha; 15966 goto param_prob; 15967 } 15968 break; 15969 case IPOPT_TS: 15970 /* 15971 * Verify that length >= 5 and that there is either 15972 * room for another timestamp or that the overflow 15973 * counter is not maxed out. 15974 */ 15975 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 15976 if (optlen < IPOPT_MINLEN_IT) { 15977 goto param_prob; 15978 } 15979 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15980 ip1dbg(( 15981 "ip_rput_options: bad option offset\n")); 15982 code = (char *)&opt[IPOPT_OFFSET] - 15983 (char *)ipha; 15984 goto param_prob; 15985 } 15986 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15987 case IPOPT_TS_TSONLY: 15988 off = IPOPT_TS_TIMELEN; 15989 break; 15990 case IPOPT_TS_TSANDADDR: 15991 case IPOPT_TS_PRESPEC: 15992 case IPOPT_TS_PRESPEC_RFC791: 15993 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15994 break; 15995 default: 15996 code = (char *)&opt[IPOPT_POS_OV_FLG] - 15997 (char *)ipha; 15998 goto param_prob; 15999 } 16000 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16001 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16002 /* 16003 * No room and the overflow counter is 15 16004 * already. 16005 */ 16006 goto param_prob; 16007 } 16008 break; 16009 } 16010 } 16011 16012 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16013 *dstp = dst; 16014 return (0); 16015 } 16016 16017 ip1dbg(("ip_rput_options: error processing IP options.")); 16018 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16019 16020 param_prob: 16021 q = WR(q); 16022 /* make sure we clear any indication of a hardware checksum */ 16023 mp->b_datap->db_struioun.cksum.flags = 0; 16024 icmp_param_problem(q, mp, (uint8_t)code); 16025 return (-1); 16026 16027 bad_src_route: 16028 q = WR(q); 16029 /* make sure we clear any indication of a hardware checksum */ 16030 mp->b_datap->db_struioun.cksum.flags = 0; 16031 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16032 return (-1); 16033 } 16034 16035 /* 16036 * IP & ICMP info in >=14 msg's ... 16037 * - ip fixed part (mib2_ip_t) 16038 * - icmp fixed part (mib2_icmp_t) 16039 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16040 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16041 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16042 * - ip multicast membership (ip_member_t) 16043 * - ip multicast source filtering (ip_grpsrc_t) 16044 * - igmp fixed part (struct igmpstat) 16045 * - multicast routing stats (struct mrtstat) 16046 * - multicast routing vifs (array of struct vifctl) 16047 * - multicast routing routes (array of struct mfcctl) 16048 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16049 * One per ill plus one generic 16050 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16051 * One per ill plus one generic 16052 * - ipv6RouteEntry all IPv6 IREs 16053 * - ipv6NetToMediaEntry all Neighbor Cache entries 16054 * - ipv6AddrEntry all IPv6 ipifs 16055 * - ipv6 multicast membership (ipv6_member_t) 16056 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16057 * 16058 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16059 * already present. 16060 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part 16061 * already filled in by caller. 16062 * Return value of 0 indicates that no messages were sent and caller 16063 * should free mpctl. 16064 */ 16065 int 16066 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16067 { 16068 16069 if (mpctl == NULL || mpctl->b_cont == NULL) { 16070 return (0); 16071 } 16072 16073 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16074 return (1); 16075 } 16076 16077 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16078 return (1); 16079 } 16080 16081 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16082 return (1); 16083 } 16084 16085 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16086 return (1); 16087 } 16088 16089 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16090 return (1); 16091 } 16092 16093 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16094 return (1); 16095 } 16096 16097 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16098 return (1); 16099 } 16100 16101 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16102 return (1); 16103 } 16104 16105 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16106 return (1); 16107 } 16108 16109 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16110 return (1); 16111 } 16112 16113 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16114 return (1); 16115 } 16116 16117 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16118 return (1); 16119 } 16120 16121 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16122 return (1); 16123 } 16124 16125 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16126 return (1); 16127 } 16128 16129 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16130 return (1); 16131 } 16132 16133 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16134 return (1); 16135 } 16136 16137 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16138 return (1); 16139 } 16140 freemsg(mpctl); 16141 return (1); 16142 } 16143 16144 16145 /* Get global IPv4 statistics */ 16146 static mblk_t * 16147 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16148 { 16149 struct opthdr *optp; 16150 mblk_t *mp2ctl; 16151 16152 /* 16153 * make a copy of the original message 16154 */ 16155 mp2ctl = copymsg(mpctl); 16156 16157 /* fixed length IP structure... */ 16158 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16159 optp->level = MIB2_IP; 16160 optp->name = 0; 16161 SET_MIB(ip_mib.ipForwarding, 16162 (WE_ARE_FORWARDING ? 1 : 2)); 16163 SET_MIB(ip_mib.ipDefaultTTL, 16164 (uint32_t)ip_def_ttl); 16165 SET_MIB(ip_mib.ipReasmTimeout, 16166 ip_g_frag_timeout); 16167 SET_MIB(ip_mib.ipAddrEntrySize, 16168 sizeof (mib2_ipAddrEntry_t)); 16169 SET_MIB(ip_mib.ipRouteEntrySize, 16170 sizeof (mib2_ipRouteEntry_t)); 16171 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16172 sizeof (mib2_ipNetToMediaEntry_t)); 16173 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16174 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16175 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16176 (int)sizeof (ip_mib))) { 16177 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16178 (uint_t)sizeof (ip_mib))); 16179 } 16180 16181 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16182 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16183 (int)optp->level, (int)optp->name, (int)optp->len)); 16184 qreply(q, mpctl); 16185 return (mp2ctl); 16186 } 16187 16188 /* Global IPv4 ICMP statistics */ 16189 static mblk_t * 16190 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16191 { 16192 struct opthdr *optp; 16193 mblk_t *mp2ctl; 16194 16195 /* 16196 * Make a copy of the original message 16197 */ 16198 mp2ctl = copymsg(mpctl); 16199 16200 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16201 optp->level = MIB2_ICMP; 16202 optp->name = 0; 16203 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 16204 (int)sizeof (icmp_mib))) { 16205 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 16206 (uint_t)sizeof (icmp_mib))); 16207 } 16208 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16209 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 16210 (int)optp->level, (int)optp->name, (int)optp->len)); 16211 qreply(q, mpctl); 16212 return (mp2ctl); 16213 } 16214 16215 /* Global IPv4 IGMP statistics */ 16216 static mblk_t * 16217 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 16218 { 16219 struct opthdr *optp; 16220 mblk_t *mp2ctl; 16221 16222 /* 16223 * make a copy of the original message 16224 */ 16225 mp2ctl = copymsg(mpctl); 16226 16227 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16228 optp->level = EXPER_IGMP; 16229 optp->name = 0; 16230 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 16231 (int)sizeof (igmpstat))) { 16232 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 16233 (uint_t)sizeof (igmpstat))); 16234 } 16235 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16236 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 16237 (int)optp->level, (int)optp->name, (int)optp->len)); 16238 qreply(q, mpctl); 16239 return (mp2ctl); 16240 } 16241 16242 /* Global IPv4 Multicast Routing statistics */ 16243 static mblk_t * 16244 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 16245 { 16246 struct opthdr *optp; 16247 mblk_t *mp2ctl; 16248 16249 /* 16250 * make a copy of the original message 16251 */ 16252 mp2ctl = copymsg(mpctl); 16253 16254 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16255 optp->level = EXPER_DVMRP; 16256 optp->name = 0; 16257 if (!ip_mroute_stats(mpctl->b_cont)) { 16258 ip0dbg(("ip_mroute_stats: failed\n")); 16259 } 16260 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16261 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 16262 (int)optp->level, (int)optp->name, (int)optp->len)); 16263 qreply(q, mpctl); 16264 return (mp2ctl); 16265 } 16266 16267 /* IPv4 address information */ 16268 static mblk_t * 16269 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 16270 { 16271 struct opthdr *optp; 16272 mblk_t *mp2ctl; 16273 mblk_t *mp_tail = NULL; 16274 ill_t *ill; 16275 ipif_t *ipif; 16276 uint_t bitval; 16277 mib2_ipAddrEntry_t mae; 16278 zoneid_t zoneid; 16279 ill_walk_context_t ctx; 16280 16281 /* 16282 * make a copy of the original message 16283 */ 16284 mp2ctl = copymsg(mpctl); 16285 16286 /* ipAddrEntryTable */ 16287 16288 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16289 optp->level = MIB2_IP; 16290 optp->name = MIB2_IP_ADDR; 16291 zoneid = Q_TO_CONN(q)->conn_zoneid; 16292 16293 rw_enter(&ill_g_lock, RW_READER); 16294 ill = ILL_START_WALK_V4(&ctx); 16295 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16296 for (ipif = ill->ill_ipif; ipif != NULL; 16297 ipif = ipif->ipif_next) { 16298 if (ipif->ipif_zoneid != zoneid) 16299 continue; 16300 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16301 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16302 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16303 16304 (void) ipif_get_name(ipif, 16305 mae.ipAdEntIfIndex.o_bytes, 16306 OCTET_LENGTH); 16307 mae.ipAdEntIfIndex.o_length = 16308 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 16309 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 16310 mae.ipAdEntNetMask = ipif->ipif_net_mask; 16311 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 16312 mae.ipAdEntInfo.ae_subnet_len = 16313 ip_mask_to_plen(ipif->ipif_net_mask); 16314 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 16315 for (bitval = 1; 16316 bitval && 16317 !(bitval & ipif->ipif_brd_addr); 16318 bitval <<= 1) 16319 noop; 16320 mae.ipAdEntBcastAddr = bitval; 16321 mae.ipAdEntReasmMaxSize = 65535; 16322 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 16323 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 16324 mae.ipAdEntInfo.ae_broadcast_addr = 16325 ipif->ipif_brd_addr; 16326 mae.ipAdEntInfo.ae_pp_dst_addr = 16327 ipif->ipif_pp_dst_addr; 16328 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 16329 ill->ill_flags | ill->ill_phyint->phyint_flags; 16330 16331 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16332 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 16333 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 16334 "allocate %u bytes\n", 16335 (uint_t)sizeof (mib2_ipAddrEntry_t))); 16336 } 16337 } 16338 } 16339 rw_exit(&ill_g_lock); 16340 16341 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16342 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 16343 (int)optp->level, (int)optp->name, (int)optp->len)); 16344 qreply(q, mpctl); 16345 return (mp2ctl); 16346 } 16347 16348 /* IPv6 address information */ 16349 static mblk_t * 16350 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 16351 { 16352 struct opthdr *optp; 16353 mblk_t *mp2ctl; 16354 mblk_t *mp_tail = NULL; 16355 ill_t *ill; 16356 ipif_t *ipif; 16357 mib2_ipv6AddrEntry_t mae6; 16358 zoneid_t zoneid; 16359 ill_walk_context_t ctx; 16360 16361 /* 16362 * make a copy of the original message 16363 */ 16364 mp2ctl = copymsg(mpctl); 16365 16366 /* ipv6AddrEntryTable */ 16367 16368 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16369 optp->level = MIB2_IP6; 16370 optp->name = MIB2_IP6_ADDR; 16371 zoneid = Q_TO_CONN(q)->conn_zoneid; 16372 16373 rw_enter(&ill_g_lock, RW_READER); 16374 ill = ILL_START_WALK_V6(&ctx); 16375 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16376 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 16377 if (ipif->ipif_zoneid != zoneid) 16378 continue; 16379 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16380 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16381 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16382 16383 (void) ipif_get_name(ipif, 16384 mae6.ipv6AddrIfIndex.o_bytes, 16385 OCTET_LENGTH); 16386 mae6.ipv6AddrIfIndex.o_length = 16387 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 16388 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 16389 mae6.ipv6AddrPfxLength = 16390 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 16391 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 16392 mae6.ipv6AddrInfo.ae_subnet_len = 16393 mae6.ipv6AddrPfxLength; 16394 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 16395 16396 /* Type: stateless(1), stateful(2), unknown(3) */ 16397 if (ipif->ipif_flags & IPIF_ADDRCONF) 16398 mae6.ipv6AddrType = 1; 16399 else 16400 mae6.ipv6AddrType = 2; 16401 /* Anycast: true(1), false(2) */ 16402 if (ipif->ipif_flags & IPIF_ANYCAST) 16403 mae6.ipv6AddrAnycastFlag = 1; 16404 else 16405 mae6.ipv6AddrAnycastFlag = 2; 16406 16407 /* 16408 * Address status: preferred(1), deprecated(2), 16409 * invalid(3), inaccessible(4), unknown(5) 16410 */ 16411 if (ipif->ipif_flags & IPIF_NOLOCAL) 16412 mae6.ipv6AddrStatus = 3; 16413 else if (ipif->ipif_flags & IPIF_DEPRECATED) 16414 mae6.ipv6AddrStatus = 2; 16415 else 16416 mae6.ipv6AddrStatus = 1; 16417 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 16418 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 16419 mae6.ipv6AddrInfo.ae_pp_dst_addr = 16420 ipif->ipif_v6pp_dst_addr; 16421 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 16422 ill->ill_flags | ill->ill_phyint->phyint_flags; 16423 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16424 (char *)&mae6, 16425 (int)sizeof (mib2_ipv6AddrEntry_t))) { 16426 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 16427 "allocate %u bytes\n", 16428 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 16429 } 16430 } 16431 } 16432 rw_exit(&ill_g_lock); 16433 16434 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16435 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 16436 (int)optp->level, (int)optp->name, (int)optp->len)); 16437 qreply(q, mpctl); 16438 return (mp2ctl); 16439 } 16440 16441 /* IPv4 multicast group membership. */ 16442 static mblk_t * 16443 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 16444 { 16445 struct opthdr *optp; 16446 mblk_t *mp2ctl; 16447 ill_t *ill; 16448 ipif_t *ipif; 16449 ilm_t *ilm; 16450 ip_member_t ipm; 16451 mblk_t *mp_tail = NULL; 16452 ill_walk_context_t ctx; 16453 zoneid_t zoneid; 16454 16455 /* 16456 * make a copy of the original message 16457 */ 16458 mp2ctl = copymsg(mpctl); 16459 zoneid = Q_TO_CONN(q)->conn_zoneid; 16460 16461 /* ipGroupMember table */ 16462 optp = (struct opthdr *)&mpctl->b_rptr[ 16463 sizeof (struct T_optmgmt_ack)]; 16464 optp->level = MIB2_IP; 16465 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 16466 16467 rw_enter(&ill_g_lock, RW_READER); 16468 ill = ILL_START_WALK_V4(&ctx); 16469 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16470 ILM_WALKER_HOLD(ill); 16471 for (ipif = ill->ill_ipif; ipif != NULL; 16472 ipif = ipif->ipif_next) { 16473 if (ipif->ipif_zoneid != zoneid) 16474 continue; /* not this zone */ 16475 (void) ipif_get_name(ipif, 16476 ipm.ipGroupMemberIfIndex.o_bytes, 16477 OCTET_LENGTH); 16478 ipm.ipGroupMemberIfIndex.o_length = 16479 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 16480 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16481 ASSERT(ilm->ilm_ipif != NULL); 16482 ASSERT(ilm->ilm_ill == NULL); 16483 if (ilm->ilm_ipif != ipif) 16484 continue; 16485 ipm.ipGroupMemberAddress = ilm->ilm_addr; 16486 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 16487 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 16488 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16489 (char *)&ipm, (int)sizeof (ipm))) { 16490 ip1dbg(("ip_snmp_get_mib2_ip_group: " 16491 "failed to allocate %u bytes\n", 16492 (uint_t)sizeof (ipm))); 16493 } 16494 } 16495 } 16496 ILM_WALKER_RELE(ill); 16497 } 16498 rw_exit(&ill_g_lock); 16499 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16500 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16501 (int)optp->level, (int)optp->name, (int)optp->len)); 16502 qreply(q, mpctl); 16503 return (mp2ctl); 16504 } 16505 16506 /* IPv6 multicast group membership. */ 16507 static mblk_t * 16508 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 16509 { 16510 struct opthdr *optp; 16511 mblk_t *mp2ctl; 16512 ill_t *ill; 16513 ilm_t *ilm; 16514 ipv6_member_t ipm6; 16515 mblk_t *mp_tail = NULL; 16516 ill_walk_context_t ctx; 16517 zoneid_t zoneid; 16518 16519 /* 16520 * make a copy of the original message 16521 */ 16522 mp2ctl = copymsg(mpctl); 16523 zoneid = Q_TO_CONN(q)->conn_zoneid; 16524 16525 /* ip6GroupMember table */ 16526 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16527 optp->level = MIB2_IP6; 16528 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 16529 16530 rw_enter(&ill_g_lock, RW_READER); 16531 ill = ILL_START_WALK_V6(&ctx); 16532 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16533 ILM_WALKER_HOLD(ill); 16534 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 16535 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16536 ASSERT(ilm->ilm_ipif == NULL); 16537 ASSERT(ilm->ilm_ill != NULL); 16538 if (ilm->ilm_zoneid != zoneid) 16539 continue; /* not this zone */ 16540 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 16541 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 16542 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 16543 if (!snmp_append_data2(mpctl->b_cont, 16544 &mp_tail, 16545 (char *)&ipm6, (int)sizeof (ipm6))) { 16546 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 16547 "failed to allocate %u bytes\n", 16548 (uint_t)sizeof (ipm6))); 16549 } 16550 } 16551 ILM_WALKER_RELE(ill); 16552 } 16553 rw_exit(&ill_g_lock); 16554 16555 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16556 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16557 (int)optp->level, (int)optp->name, (int)optp->len)); 16558 qreply(q, mpctl); 16559 return (mp2ctl); 16560 } 16561 16562 /* IP multicast filtered sources */ 16563 static mblk_t * 16564 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 16565 { 16566 struct opthdr *optp; 16567 mblk_t *mp2ctl; 16568 ill_t *ill; 16569 ipif_t *ipif; 16570 ilm_t *ilm; 16571 ip_grpsrc_t ips; 16572 mblk_t *mp_tail = NULL; 16573 ill_walk_context_t ctx; 16574 zoneid_t zoneid; 16575 int i; 16576 slist_t *sl; 16577 16578 /* 16579 * make a copy of the original message 16580 */ 16581 mp2ctl = copymsg(mpctl); 16582 zoneid = Q_TO_CONN(q)->conn_zoneid; 16583 16584 /* ipGroupSource table */ 16585 optp = (struct opthdr *)&mpctl->b_rptr[ 16586 sizeof (struct T_optmgmt_ack)]; 16587 optp->level = MIB2_IP; 16588 optp->name = EXPER_IP_GROUP_SOURCES; 16589 16590 rw_enter(&ill_g_lock, RW_READER); 16591 ill = ILL_START_WALK_V4(&ctx); 16592 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16593 ILM_WALKER_HOLD(ill); 16594 for (ipif = ill->ill_ipif; ipif != NULL; 16595 ipif = ipif->ipif_next) { 16596 if (ipif->ipif_zoneid != zoneid) 16597 continue; /* not this zone */ 16598 (void) ipif_get_name(ipif, 16599 ips.ipGroupSourceIfIndex.o_bytes, 16600 OCTET_LENGTH); 16601 ips.ipGroupSourceIfIndex.o_length = 16602 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 16603 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16604 ASSERT(ilm->ilm_ipif != NULL); 16605 ASSERT(ilm->ilm_ill == NULL); 16606 sl = ilm->ilm_filter; 16607 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 16608 continue; 16609 ips.ipGroupSourceGroup = ilm->ilm_addr; 16610 for (i = 0; i < sl->sl_numsrc; i++) { 16611 if (!IN6_IS_ADDR_V4MAPPED( 16612 &sl->sl_addr[i])) 16613 continue; 16614 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 16615 ips.ipGroupSourceAddress); 16616 if (snmp_append_data2(mpctl->b_cont, 16617 &mp_tail, (char *)&ips, 16618 (int)sizeof (ips)) == 0) { 16619 ip1dbg(("ip_snmp_get_mib2_" 16620 "ip_group_src: failed to " 16621 "allocate %u bytes\n", 16622 (uint_t)sizeof (ips))); 16623 } 16624 } 16625 } 16626 } 16627 ILM_WALKER_RELE(ill); 16628 } 16629 rw_exit(&ill_g_lock); 16630 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16631 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16632 (int)optp->level, (int)optp->name, (int)optp->len)); 16633 qreply(q, mpctl); 16634 return (mp2ctl); 16635 } 16636 16637 /* IPv6 multicast filtered sources. */ 16638 static mblk_t * 16639 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 16640 { 16641 struct opthdr *optp; 16642 mblk_t *mp2ctl; 16643 ill_t *ill; 16644 ilm_t *ilm; 16645 ipv6_grpsrc_t ips6; 16646 mblk_t *mp_tail = NULL; 16647 ill_walk_context_t ctx; 16648 zoneid_t zoneid; 16649 int i; 16650 slist_t *sl; 16651 16652 /* 16653 * make a copy of the original message 16654 */ 16655 mp2ctl = copymsg(mpctl); 16656 zoneid = Q_TO_CONN(q)->conn_zoneid; 16657 16658 /* ip6GroupMember table */ 16659 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16660 optp->level = MIB2_IP6; 16661 optp->name = EXPER_IP6_GROUP_SOURCES; 16662 16663 rw_enter(&ill_g_lock, RW_READER); 16664 ill = ILL_START_WALK_V6(&ctx); 16665 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16666 ILM_WALKER_HOLD(ill); 16667 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 16668 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16669 ASSERT(ilm->ilm_ipif == NULL); 16670 ASSERT(ilm->ilm_ill != NULL); 16671 sl = ilm->ilm_filter; 16672 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 16673 continue; 16674 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 16675 for (i = 0; i < sl->sl_numsrc; i++) { 16676 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 16677 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16678 (char *)&ips6, (int)sizeof (ips6))) { 16679 ip1dbg(("ip_snmp_get_mib2_ip6_" 16680 "group_src: failed to allocate " 16681 "%u bytes\n", 16682 (uint_t)sizeof (ips6))); 16683 } 16684 } 16685 } 16686 ILM_WALKER_RELE(ill); 16687 } 16688 rw_exit(&ill_g_lock); 16689 16690 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16691 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16692 (int)optp->level, (int)optp->name, (int)optp->len)); 16693 qreply(q, mpctl); 16694 return (mp2ctl); 16695 } 16696 16697 /* Multicast routing virtual interface table. */ 16698 static mblk_t * 16699 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 16700 { 16701 struct opthdr *optp; 16702 mblk_t *mp2ctl; 16703 16704 /* 16705 * make a copy of the original message 16706 */ 16707 mp2ctl = copymsg(mpctl); 16708 16709 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16710 optp->level = EXPER_DVMRP; 16711 optp->name = EXPER_DVMRP_VIF; 16712 if (!ip_mroute_vif(mpctl->b_cont)) { 16713 ip0dbg(("ip_mroute_vif: failed\n")); 16714 } 16715 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16716 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 16717 (int)optp->level, (int)optp->name, (int)optp->len)); 16718 qreply(q, mpctl); 16719 return (mp2ctl); 16720 } 16721 16722 /* Multicast routing table. */ 16723 static mblk_t * 16724 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 16725 { 16726 struct opthdr *optp; 16727 mblk_t *mp2ctl; 16728 16729 /* 16730 * make a copy of the original message 16731 */ 16732 mp2ctl = copymsg(mpctl); 16733 16734 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16735 optp->level = EXPER_DVMRP; 16736 optp->name = EXPER_DVMRP_MRT; 16737 if (!ip_mroute_mrt(mpctl->b_cont)) { 16738 ip0dbg(("ip_mroute_mrt: failed\n")); 16739 } 16740 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16741 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 16742 (int)optp->level, (int)optp->name, (int)optp->len)); 16743 qreply(q, mpctl); 16744 return (mp2ctl); 16745 } 16746 16747 /* 16748 * Return both ipRouteEntryTable, and ipNetToMediaEntryTable 16749 * in one IRE walk. 16750 */ 16751 static mblk_t * 16752 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 16753 { 16754 struct opthdr *optp; 16755 mblk_t *mp2ctl; /* Returned */ 16756 mblk_t *mp3ctl; /* nettomedia */ 16757 /* 16758 * We need two listptrs, for ipRouteEntryTable and 16759 * ipNetToMediaEntryTable to pass to ip_snmp_get2_v4() 16760 */ 16761 listptr_t re_ntme_v4[2]; 16762 zoneid_t zoneid; 16763 16764 /* 16765 * make a copy of the original message 16766 */ 16767 mp2ctl = copymsg(mpctl); 16768 mp3ctl = copymsg(mpctl); 16769 if (mp3ctl == NULL) { 16770 freemsg(mp2ctl); 16771 freemsg(mpctl); 16772 return (NULL); 16773 } 16774 16775 re_ntme_v4[0].lp_head = mpctl->b_cont; /* ipRouteEntryTable */ 16776 re_ntme_v4[1].lp_head = mp3ctl->b_cont; /* ipNetToMediaEntryTable */ 16777 /* 16778 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16779 * proper values when called. 16780 */ 16781 re_ntme_v4[0].lp_tail = NULL; 16782 re_ntme_v4[1].lp_tail = NULL; 16783 16784 zoneid = Q_TO_CONN(q)->conn_zoneid; 16785 ire_walk_v4(ip_snmp_get2_v4, (char *)re_ntme_v4, zoneid); 16786 if (zoneid == GLOBAL_ZONEID) { 16787 /* 16788 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 16789 * the sys_net_config privilege, it can only run in the global 16790 * zone, so we don't display these IREs in the other zones. 16791 */ 16792 ire_walk_srcif_table_v4(ip_snmp_get2_v4, (char *)re_ntme_v4); 16793 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, (char *)re_ntme_v4, 16794 NULL); 16795 } 16796 16797 /* ipRouteEntryTable in mpctl */ 16798 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16799 optp->level = MIB2_IP; 16800 optp->name = MIB2_IP_ROUTE; 16801 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[0].lp_head); 16802 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16803 (int)optp->level, (int)optp->name, (int)optp->len)); 16804 qreply(q, mpctl); 16805 16806 /* ipNetToMediaEntryTable in mp3ctl */ 16807 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16808 optp->level = MIB2_IP; 16809 optp->name = MIB2_IP_MEDIA; 16810 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[1].lp_head); 16811 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16812 (int)optp->level, (int)optp->name, (int)optp->len)); 16813 qreply(q, mp3ctl); 16814 return (mp2ctl); 16815 } 16816 16817 /* 16818 * Return both ipv6RouteEntryTable, and ipv6NetToMediaEntryTable 16819 * in one IRE walk. 16820 */ 16821 static mblk_t * 16822 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 16823 { 16824 struct opthdr *optp; 16825 mblk_t *mp2ctl; /* Returned */ 16826 mblk_t *mp3ctl; /* nettomedia */ 16827 listptr_t re_ntme_v6; 16828 zoneid_t zoneid; 16829 16830 /* 16831 * make a copy of the original message 16832 */ 16833 mp2ctl = copymsg(mpctl); 16834 mp3ctl = copymsg(mpctl); 16835 if (mp3ctl == NULL) { 16836 freemsg(mp2ctl); 16837 freemsg(mpctl); 16838 return (NULL); 16839 } 16840 16841 /* 16842 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16843 * proper values when called. ipv6RouteEntryTable in is placed 16844 * in mpctl. 16845 */ 16846 re_ntme_v6.lp_head = mpctl->b_cont; /* ip6RouteEntryTable */ 16847 re_ntme_v6.lp_tail = NULL; 16848 zoneid = Q_TO_CONN(q)->conn_zoneid; 16849 ire_walk_v6(ip_snmp_get2_v6_route, (char *)&re_ntme_v6, zoneid); 16850 16851 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16852 optp->level = MIB2_IP6; 16853 optp->name = MIB2_IP6_ROUTE; 16854 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 16855 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 16856 (int)optp->level, (int)optp->name, (int)optp->len)); 16857 qreply(q, mpctl); 16858 16859 /* ipv6NetToMediaEntryTable in mp3ctl */ 16860 re_ntme_v6.lp_head = mp3ctl->b_cont; /* ip6NetToMediaEntryTable */ 16861 re_ntme_v6.lp_tail = NULL; 16862 ndp_walk(NULL, ip_snmp_get2_v6_media, (uchar_t *)&re_ntme_v6); 16863 16864 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16865 optp->level = MIB2_IP6; 16866 optp->name = MIB2_IP6_MEDIA; 16867 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 16868 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 16869 (int)optp->level, (int)optp->name, (int)optp->len)); 16870 qreply(q, mp3ctl); 16871 return (mp2ctl); 16872 } 16873 16874 /* 16875 * ICMPv6 mib: One per ill 16876 */ 16877 static mblk_t * 16878 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 16879 { 16880 struct opthdr *optp; 16881 mblk_t *mp2ctl; 16882 ill_t *ill; 16883 ill_walk_context_t ctx; 16884 mblk_t *mp_tail = NULL; 16885 16886 /* 16887 * Make a copy of the original message 16888 */ 16889 mp2ctl = copymsg(mpctl); 16890 16891 /* fixed length IPv6 structure ... */ 16892 16893 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16894 optp->level = MIB2_IP6; 16895 optp->name = 0; 16896 /* Include "unknown interface" ip6_mib */ 16897 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 16898 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 16899 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 16900 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 16901 sizeof (mib2_ipv6IfStatsEntry_t)); 16902 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 16903 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 16904 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 16905 sizeof (mib2_ipv6NetToMediaEntry_t)); 16906 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 16907 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 16908 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 16909 (int)sizeof (ip6_mib))) { 16910 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 16911 (uint_t)sizeof (ip6_mib))); 16912 } 16913 16914 rw_enter(&ill_g_lock, RW_READER); 16915 ill = ILL_START_WALK_V6(&ctx); 16916 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16917 ill->ill_ip6_mib->ipv6IfIndex = 16918 ill->ill_phyint->phyint_ifindex; 16919 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 16920 ipv6_forward ? 1 : 2); 16921 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 16922 ill->ill_max_hops); 16923 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 16924 sizeof (mib2_ipv6IfStatsEntry_t)); 16925 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 16926 sizeof (mib2_ipv6AddrEntry_t)); 16927 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 16928 sizeof (mib2_ipv6RouteEntry_t)); 16929 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 16930 sizeof (mib2_ipv6NetToMediaEntry_t)); 16931 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 16932 sizeof (ipv6_member_t)); 16933 16934 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16935 (char *)ill->ill_ip6_mib, 16936 (int)sizeof (*ill->ill_ip6_mib))) { 16937 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 16938 "%u bytes\n", 16939 (uint_t)sizeof (*ill->ill_ip6_mib))); 16940 } 16941 } 16942 rw_exit(&ill_g_lock); 16943 16944 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16945 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 16946 (int)optp->level, (int)optp->name, (int)optp->len)); 16947 qreply(q, mpctl); 16948 return (mp2ctl); 16949 } 16950 16951 /* 16952 * ICMPv6 mib: One per ill 16953 */ 16954 static mblk_t * 16955 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 16956 { 16957 struct opthdr *optp; 16958 mblk_t *mp2ctl; 16959 ill_t *ill; 16960 ill_walk_context_t ctx; 16961 mblk_t *mp_tail = NULL; 16962 /* 16963 * Make a copy of the original message 16964 */ 16965 mp2ctl = copymsg(mpctl); 16966 16967 /* fixed length ICMPv6 structure ... */ 16968 16969 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16970 optp->level = MIB2_ICMP6; 16971 optp->name = 0; 16972 /* Include "unknown interface" icmp6_mib */ 16973 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 16974 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 16975 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 16976 (int)sizeof (icmp6_mib))) { 16977 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 16978 (uint_t)sizeof (icmp6_mib))); 16979 } 16980 16981 rw_enter(&ill_g_lock, RW_READER); 16982 ill = ILL_START_WALK_V6(&ctx); 16983 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16984 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16985 ill->ill_phyint->phyint_ifindex; 16986 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 16987 sizeof (mib2_ipv6IfIcmpEntry_t); 16988 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16989 (char *)ill->ill_icmp6_mib, 16990 (int)sizeof (*ill->ill_icmp6_mib))) { 16991 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 16992 "%u bytes\n", 16993 (uint_t)sizeof (*ill->ill_icmp6_mib))); 16994 } 16995 } 16996 rw_exit(&ill_g_lock); 16997 16998 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16999 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17000 (int)optp->level, (int)optp->name, (int)optp->len)); 17001 qreply(q, mpctl); 17002 return (mp2ctl); 17003 } 17004 17005 /* 17006 * ire_walk routine to create both ipRouteEntryTable and 17007 * ipNetToMediaEntryTable in one IRE walk 17008 */ 17009 static void 17010 ip_snmp_get2_v4(ire_t *ire, listptr_t re_ntme[]) 17011 { 17012 ill_t *ill; 17013 ipif_t *ipif; 17014 mblk_t *llmp; 17015 dl_unitdata_req_t *dlup; 17016 mib2_ipRouteEntry_t re; 17017 mib2_ipNetToMediaEntry_t ntme; 17018 ipaddr_t gw_addr; 17019 17020 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17021 17022 /* 17023 * Return all IRE types for route table... let caller pick and choose 17024 */ 17025 re.ipRouteDest = ire->ire_addr; 17026 ipif = ire->ire_ipif; 17027 re.ipRouteIfIndex.o_length = 0; 17028 if (ire->ire_type == IRE_CACHE) { 17029 ill = (ill_t *)ire->ire_stq->q_ptr; 17030 re.ipRouteIfIndex.o_length = 17031 ill->ill_name_length == 0 ? 0 : 17032 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17033 bcopy(ill->ill_name, re.ipRouteIfIndex.o_bytes, 17034 re.ipRouteIfIndex.o_length); 17035 } else if (ipif != NULL) { 17036 (void) ipif_get_name(ipif, re.ipRouteIfIndex.o_bytes, 17037 OCTET_LENGTH); 17038 re.ipRouteIfIndex.o_length = 17039 mi_strlen(re.ipRouteIfIndex.o_bytes); 17040 } 17041 re.ipRouteMetric1 = -1; 17042 re.ipRouteMetric2 = -1; 17043 re.ipRouteMetric3 = -1; 17044 re.ipRouteMetric4 = -1; 17045 17046 gw_addr = ire->ire_gateway_addr; 17047 17048 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17049 re.ipRouteNextHop = ire->ire_src_addr; 17050 else 17051 re.ipRouteNextHop = gw_addr; 17052 /* indirect(4), direct(3), or invalid(2) */ 17053 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17054 re.ipRouteType = 2; 17055 else 17056 re.ipRouteType = (gw_addr != 0) ? 4 : 3; 17057 re.ipRouteProto = -1; 17058 re.ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17059 re.ipRouteMask = ire->ire_mask; 17060 re.ipRouteMetric5 = -1; 17061 re.ipRouteInfo.re_max_frag = ire->ire_max_frag; 17062 re.ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17063 re.ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17064 llmp = ire->ire_dlureq_mp; 17065 re.ipRouteInfo.re_ref = ire->ire_refcnt; 17066 re.ipRouteInfo.re_src_addr = ire->ire_src_addr; 17067 re.ipRouteInfo.re_ire_type = ire->ire_type; 17068 re.ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17069 re.ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17070 re.ipRouteInfo.re_flags = ire->ire_flags; 17071 re.ipRouteInfo.re_in_ill.o_length = 0; 17072 if (ire->ire_in_ill != NULL) { 17073 re.ipRouteInfo.re_in_ill.o_length = 17074 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17075 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17076 bcopy(ire->ire_in_ill->ill_name, 17077 re.ipRouteInfo.re_in_ill.o_bytes, 17078 re.ipRouteInfo.re_in_ill.o_length); 17079 } 17080 re.ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17081 if (!snmp_append_data2(re_ntme[0].lp_head, &(re_ntme[0].lp_tail), 17082 (char *)&re, (int)sizeof (re))) { 17083 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17084 (uint_t)sizeof (re))); 17085 } 17086 17087 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17088 return; 17089 /* 17090 * only IRE_CACHE entries that are for a directly connected subnet 17091 * get appended to net -> phys addr table 17092 * (others in arp) 17093 */ 17094 ntme.ipNetToMediaIfIndex.o_length = 0; 17095 ill = ire_to_ill(ire); 17096 ASSERT(ill != NULL); 17097 ntme.ipNetToMediaIfIndex.o_length = 17098 ill->ill_name_length == 0 ? 0 : 17099 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17100 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17101 ntme.ipNetToMediaIfIndex.o_length); 17102 17103 ntme.ipNetToMediaPhysAddress.o_length = 0; 17104 if (llmp) { 17105 uchar_t *addr; 17106 17107 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 17108 /* Remove sap from address */ 17109 if (ill->ill_sap_length < 0) 17110 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 17111 else 17112 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 17113 ill->ill_sap_length; 17114 17115 ntme.ipNetToMediaPhysAddress.o_length = 17116 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 17117 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 17118 ntme.ipNetToMediaPhysAddress.o_length); 17119 } 17120 ntme.ipNetToMediaNetAddress = ire->ire_addr; 17121 /* assume dynamic (may be changed in arp) */ 17122 ntme.ipNetToMediaType = 3; 17123 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 17124 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 17125 ntme.ipNetToMediaInfo.ntm_mask.o_length); 17126 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 17127 if (!snmp_append_data2(re_ntme[1].lp_head, &(re_ntme[1].lp_tail), 17128 (char *)&ntme, (int)sizeof (ntme))) { 17129 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17130 (uint_t)sizeof (ntme))); 17131 } 17132 } 17133 17134 /* 17135 * ire_walk routine to create ipv6RouteEntryTable. 17136 */ 17137 static void 17138 ip_snmp_get2_v6_route(ire_t *ire, listptr_t *re_ntme) 17139 { 17140 ill_t *ill; 17141 ipif_t *ipif; 17142 mib2_ipv6RouteEntry_t re; 17143 in6_addr_t gw_addr_v6; 17144 17145 ASSERT(ire->ire_ipversion == IPV6_VERSION); 17146 17147 /* 17148 * Return all IRE types for route table... let caller pick and choose 17149 */ 17150 re.ipv6RouteDest = ire->ire_addr_v6; 17151 re.ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 17152 re.ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 17153 re.ipv6RouteIfIndex.o_length = 0; 17154 ipif = ire->ire_ipif; 17155 if (ire->ire_type == IRE_CACHE) { 17156 ill = (ill_t *)ire->ire_stq->q_ptr; 17157 re.ipv6RouteIfIndex.o_length = 17158 ill->ill_name_length == 0 ? 0 : 17159 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17160 bcopy(ill->ill_name, re.ipv6RouteIfIndex.o_bytes, 17161 re.ipv6RouteIfIndex.o_length); 17162 } else if (ipif != NULL) { 17163 (void) ipif_get_name(ipif, re.ipv6RouteIfIndex.o_bytes, 17164 OCTET_LENGTH); 17165 re.ipv6RouteIfIndex.o_length = 17166 mi_strlen(re.ipv6RouteIfIndex.o_bytes); 17167 } 17168 17169 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 17170 17171 mutex_enter(&ire->ire_lock); 17172 gw_addr_v6 = ire->ire_gateway_addr_v6; 17173 mutex_exit(&ire->ire_lock); 17174 17175 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 17176 re.ipv6RouteNextHop = ire->ire_src_addr_v6; 17177 else 17178 re.ipv6RouteNextHop = gw_addr_v6; 17179 17180 /* remote(4), local(3), or discard(2) */ 17181 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17182 re.ipv6RouteType = 2; 17183 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 17184 re.ipv6RouteType = 3; 17185 else 17186 re.ipv6RouteType = 4; 17187 17188 re.ipv6RouteProtocol = -1; 17189 re.ipv6RoutePolicy = 0; 17190 re.ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 17191 re.ipv6RouteNextHopRDI = 0; 17192 re.ipv6RouteWeight = 0; 17193 re.ipv6RouteMetric = 0; 17194 re.ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 17195 re.ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 17196 re.ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17197 re.ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 17198 re.ipv6RouteInfo.re_ire_type = ire->ire_type; 17199 re.ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17200 re.ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17201 re.ipv6RouteInfo.re_ref = ire->ire_refcnt; 17202 re.ipv6RouteInfo.re_flags = ire->ire_flags; 17203 17204 if (!snmp_append_data2(re_ntme->lp_head, &(re_ntme->lp_tail), 17205 (char *)&re, (int)sizeof (re))) { 17206 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 17207 (uint_t)sizeof (re))); 17208 } 17209 } 17210 17211 /* 17212 * ndp_walk routine to create ipv6NetToMediaEntryTable 17213 */ 17214 static int 17215 ip_snmp_get2_v6_media(nce_t *nce, listptr_t *re_ntme) 17216 { 17217 ill_t *ill; 17218 mib2_ipv6NetToMediaEntry_t ntme; 17219 dl_unitdata_req_t *dl; 17220 17221 ill = nce->nce_ill; 17222 ASSERT(ill->ill_isv6); 17223 17224 /* 17225 * Neighbor cache entry attached to IRE with on-link 17226 * destination. 17227 */ 17228 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 17229 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 17230 if ((ill->ill_flags & ILLF_XRESOLV) && 17231 (nce->nce_res_mp != NULL)) { 17232 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 17233 ntme.ipv6NetToMediaPhysAddress.o_length = 17234 dl->dl_dest_addr_length; 17235 } else { 17236 ntme.ipv6NetToMediaPhysAddress.o_length = 17237 ill->ill_phys_addr_length; 17238 } 17239 if (nce->nce_res_mp != NULL) { 17240 bcopy((char *)nce->nce_res_mp->b_rptr + 17241 NCE_LL_ADDR_OFFSET(ill), 17242 ntme.ipv6NetToMediaPhysAddress.o_bytes, 17243 ntme.ipv6NetToMediaPhysAddress.o_length); 17244 } else { 17245 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 17246 ill->ill_phys_addr_length); 17247 } 17248 /* 17249 * Note: Returns ND_* states. Should be: 17250 * reachable(1), stale(2), delay(3), probe(4), 17251 * invalid(5), unknown(6) 17252 */ 17253 ntme.ipv6NetToMediaState = nce->nce_state; 17254 ntme.ipv6NetToMediaLastUpdated = 0; 17255 17256 /* other(1), dynamic(2), static(3), local(4) */ 17257 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 17258 ntme.ipv6NetToMediaType = 4; 17259 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 17260 ntme.ipv6NetToMediaType = 1; 17261 } else { 17262 ntme.ipv6NetToMediaType = 2; 17263 } 17264 17265 if (!snmp_append_data2(re_ntme->lp_head, 17266 &(re_ntme->lp_tail), (char *)&ntme, (int)sizeof (ntme))) { 17267 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 17268 (uint_t)sizeof (ntme))); 17269 } 17270 return (0); 17271 } 17272 17273 /* 17274 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 17275 */ 17276 /* ARGSUSED */ 17277 int 17278 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 17279 { 17280 switch (level) { 17281 case MIB2_IP: 17282 case MIB2_ICMP: 17283 switch (name) { 17284 default: 17285 break; 17286 } 17287 return (1); 17288 default: 17289 return (1); 17290 } 17291 } 17292 17293 /* 17294 * Called before the options are updated to check if this packet will 17295 * be source routed from here. 17296 * This routine assumes that the options are well formed i.e. that they 17297 * have already been checked. 17298 */ 17299 static boolean_t 17300 ip_source_routed(ipha_t *ipha) 17301 { 17302 ipoptp_t opts; 17303 uchar_t *opt; 17304 uint8_t optval; 17305 uint8_t optlen; 17306 ipaddr_t dst; 17307 ire_t *ire; 17308 17309 if (IS_SIMPLE_IPH(ipha)) { 17310 ip2dbg(("not source routed\n")); 17311 return (B_FALSE); 17312 } 17313 dst = ipha->ipha_dst; 17314 for (optval = ipoptp_first(&opts, ipha); 17315 optval != IPOPT_EOL; 17316 optval = ipoptp_next(&opts)) { 17317 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17318 opt = opts.ipoptp_cur; 17319 optlen = opts.ipoptp_len; 17320 ip2dbg(("ip_source_routed: opt %d, len %d\n", 17321 optval, optlen)); 17322 switch (optval) { 17323 uint32_t off; 17324 case IPOPT_SSRR: 17325 case IPOPT_LSRR: 17326 /* 17327 * If dst is one of our addresses and there are some 17328 * entries left in the source route return (true). 17329 */ 17330 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17331 ALL_ZONES, MATCH_IRE_TYPE); 17332 if (ire == NULL) { 17333 ip2dbg(("ip_source_routed: not next" 17334 " source route 0x%x\n", 17335 ntohl(dst))); 17336 return (B_FALSE); 17337 } 17338 ire_refrele(ire); 17339 off = opt[IPOPT_OFFSET]; 17340 off--; 17341 if (optlen < IP_ADDR_LEN || 17342 off > optlen - IP_ADDR_LEN) { 17343 /* End of source route */ 17344 ip1dbg(("ip_source_routed: end of SR\n")); 17345 return (B_FALSE); 17346 } 17347 return (B_TRUE); 17348 } 17349 } 17350 ip2dbg(("not source routed\n")); 17351 return (B_FALSE); 17352 } 17353 17354 /* 17355 * Check if the packet contains any source route. 17356 */ 17357 static boolean_t 17358 ip_source_route_included(ipha_t *ipha) 17359 { 17360 ipoptp_t opts; 17361 uint8_t optval; 17362 17363 if (IS_SIMPLE_IPH(ipha)) 17364 return (B_FALSE); 17365 for (optval = ipoptp_first(&opts, ipha); 17366 optval != IPOPT_EOL; 17367 optval = ipoptp_next(&opts)) { 17368 switch (optval) { 17369 case IPOPT_SSRR: 17370 case IPOPT_LSRR: 17371 return (B_TRUE); 17372 } 17373 } 17374 return (B_FALSE); 17375 } 17376 17377 /* 17378 * Called when the IRE expiration timer fires. 17379 */ 17380 /* ARGSUSED */ 17381 void 17382 ip_trash_timer_expire(void *args) 17383 { 17384 int flush_flag = 0; 17385 17386 /* 17387 * ip_ire_expire_id is protected by ip_trash_timer_lock. 17388 * This lock makes sure that a new invocation of this function 17389 * that occurs due to an almost immediate timer firing will not 17390 * progress beyond this point until the current invocation is done 17391 */ 17392 mutex_enter(&ip_trash_timer_lock); 17393 ip_ire_expire_id = 0; 17394 mutex_exit(&ip_trash_timer_lock); 17395 17396 /* Periodic timer */ 17397 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 17398 /* 17399 * Remove all IRE_CACHE entries since they might 17400 * contain arp information. 17401 */ 17402 flush_flag |= FLUSH_ARP_TIME; 17403 ip_ire_arp_time_elapsed = 0; 17404 IP_STAT(ip_ire_arp_timer_expired); 17405 } 17406 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 17407 /* Remove all redirects */ 17408 flush_flag |= FLUSH_REDIRECT_TIME; 17409 ip_ire_rd_time_elapsed = 0; 17410 IP_STAT(ip_ire_redirect_timer_expired); 17411 } 17412 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 17413 /* Increase path mtu */ 17414 flush_flag |= FLUSH_MTU_TIME; 17415 ip_ire_pmtu_time_elapsed = 0; 17416 IP_STAT(ip_ire_pmtu_timer_expired); 17417 } 17418 if (flush_flag != 0) { 17419 /* Walk all IPv4 IRE's and update them */ 17420 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 17421 ALL_ZONES); 17422 } 17423 if (flush_flag & FLUSH_MTU_TIME) { 17424 /* 17425 * Walk all IPv6 IRE's and update them 17426 * Note that ARP and redirect timers are not 17427 * needed since NUD handles stale entries. 17428 */ 17429 flush_flag = FLUSH_MTU_TIME; 17430 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 17431 ALL_ZONES); 17432 } 17433 17434 ip_ire_arp_time_elapsed += ip_timer_interval; 17435 ip_ire_rd_time_elapsed += ip_timer_interval; 17436 ip_ire_pmtu_time_elapsed += ip_timer_interval; 17437 17438 /* 17439 * Hold the lock to serialize timeout calls and prevent 17440 * stale values in ip_ire_expire_id. Otherwise it is possible 17441 * for the timer to fire and a new invocation of this function 17442 * to start before the return value of timeout has been stored 17443 * in ip_ire_expire_id by the current invocation. 17444 */ 17445 mutex_enter(&ip_trash_timer_lock); 17446 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 17447 MSEC_TO_TICK(ip_timer_interval)); 17448 mutex_exit(&ip_trash_timer_lock); 17449 } 17450 17451 /* 17452 * Called by the memory allocator subsystem directly, when the system 17453 * is running low on memory. 17454 */ 17455 /* ARGSUSED */ 17456 void 17457 ip_trash_ire_reclaim(void *args) 17458 { 17459 ire_cache_count_t icc; 17460 ire_cache_reclaim_t icr; 17461 ncc_cache_count_t ncc; 17462 nce_cache_reclaim_t ncr; 17463 uint_t delete_cnt; 17464 /* 17465 * Memory reclaim call back. 17466 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 17467 * Then, with a target of freeing 1/Nth of IRE_CACHE 17468 * entries, determine what fraction to free for 17469 * each category of IRE_CACHE entries giving absolute priority 17470 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 17471 * entry will be freed unless all offlink entries are freed). 17472 */ 17473 icc.icc_total = 0; 17474 icc.icc_unused = 0; 17475 icc.icc_offlink = 0; 17476 icc.icc_pmtu = 0; 17477 icc.icc_onlink = 0; 17478 ire_walk(ire_cache_count, (char *)&icc); 17479 17480 /* 17481 * Free NCEs for IPv6 like the onlink ires. 17482 */ 17483 ncc.ncc_total = 0; 17484 ncc.ncc_host = 0; 17485 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 17486 17487 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 17488 icc.icc_pmtu + icc.icc_onlink); 17489 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 17490 IP_STAT(ip_trash_ire_reclaim_calls); 17491 if (delete_cnt == 0) 17492 return; 17493 IP_STAT(ip_trash_ire_reclaim_success); 17494 /* Always delete all unused offlink entries */ 17495 icr.icr_unused = 1; 17496 if (delete_cnt <= icc.icc_unused) { 17497 /* 17498 * Only need to free unused entries. In other words, 17499 * there are enough unused entries to free to meet our 17500 * target number of freed ire cache entries. 17501 */ 17502 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 17503 ncr.ncr_host = 0; 17504 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 17505 /* 17506 * Only need to free unused entries, plus a fraction of offlink 17507 * entries. It follows from the first if statement that 17508 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 17509 */ 17510 delete_cnt -= icc.icc_unused; 17511 /* Round up # deleted by truncating fraction */ 17512 icr.icr_offlink = icc.icc_offlink / delete_cnt; 17513 icr.icr_pmtu = icr.icr_onlink = 0; 17514 ncr.ncr_host = 0; 17515 } else if (delete_cnt <= 17516 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 17517 /* 17518 * Free all unused and offlink entries, plus a fraction of 17519 * pmtu entries. It follows from the previous if statement 17520 * that icc_pmtu is non-zero, and that 17521 * delete_cnt != icc_unused + icc_offlink. 17522 */ 17523 icr.icr_offlink = 1; 17524 delete_cnt -= icc.icc_unused + icc.icc_offlink; 17525 /* Round up # deleted by truncating fraction */ 17526 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 17527 icr.icr_onlink = 0; 17528 ncr.ncr_host = 0; 17529 } else { 17530 /* 17531 * Free all unused, offlink, and pmtu entries, plus a fraction 17532 * of onlink entries. If we're here, then we know that 17533 * icc_onlink is non-zero, and that 17534 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 17535 */ 17536 icr.icr_offlink = icr.icr_pmtu = 1; 17537 delete_cnt -= icc.icc_unused + icc.icc_offlink + 17538 icc.icc_pmtu; 17539 /* Round up # deleted by truncating fraction */ 17540 icr.icr_onlink = icc.icc_onlink / delete_cnt; 17541 /* Using the same delete fraction as for onlink IREs */ 17542 ncr.ncr_host = ncc.ncc_host / delete_cnt; 17543 } 17544 #ifdef DEBUG 17545 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 17546 "fractions %d/%d/%d/%d\n", 17547 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 17548 icc.icc_unused, icc.icc_offlink, 17549 icc.icc_pmtu, icc.icc_onlink, 17550 icr.icr_unused, icr.icr_offlink, 17551 icr.icr_pmtu, icr.icr_onlink)); 17552 #endif 17553 ire_walk(ire_cache_reclaim, (char *)&icr); 17554 if (ncr.ncr_host != 0) 17555 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 17556 (uchar_t *)&ncr); 17557 #ifdef DEBUG 17558 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 17559 icc.icc_pmtu = 0; icc.icc_onlink = 0; 17560 ire_walk(ire_cache_count, (char *)&icc); 17561 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 17562 icc.icc_total, icc.icc_unused, icc.icc_offlink, 17563 icc.icc_pmtu, icc.icc_onlink)); 17564 #endif 17565 } 17566 17567 /* 17568 * ip_unbind is called when a copy of an unbind request is received from the 17569 * upper level protocol. We remove this conn from any fanout hash list it is 17570 * on, and zero out the bind information. No reply is expected up above. 17571 */ 17572 static void 17573 ip_unbind(queue_t *q, mblk_t *mp) 17574 { 17575 conn_t *connp = Q_TO_CONN(q); 17576 17577 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 17578 17579 ipcl_hash_remove(connp); 17580 17581 ASSERT(mp->b_cont == NULL); 17582 /* 17583 * Convert mp into a T_OK_ACK 17584 */ 17585 mp = mi_tpi_ok_ack_alloc(mp); 17586 17587 /* 17588 * should not happen in practice... T_OK_ACK is smaller than the 17589 * original message. 17590 */ 17591 if (mp == NULL) 17592 return; 17593 17594 /* 17595 * Don't bzero the ports if its TCP since TCP still needs the 17596 * lport to remove it from its own bind hash. TCP will do the 17597 * cleanup. 17598 */ 17599 if (!IPCL_IS_TCP(connp)) 17600 bzero(&connp->u_port, sizeof (connp->u_port)); 17601 17602 qreply(q, mp); 17603 } 17604 17605 /* 17606 * Write side put procedure. Outbound data, IOCTLs, responses from 17607 * resolvers, etc, come down through here. 17608 */ 17609 void 17610 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 17611 { 17612 conn_t *connp = NULL; 17613 queue_t *q = (queue_t *)arg2; 17614 ipha_t *ipha; 17615 #define rptr ((uchar_t *)ipha) 17616 ire_t *ire = NULL; 17617 ire_t *sctp_ire = NULL; 17618 uint32_t v_hlen_tos_len; 17619 ipaddr_t dst; 17620 mblk_t *first_mp = NULL; 17621 boolean_t mctl_present; 17622 ipsec_out_t *io; 17623 int match_flags; 17624 ill_t *attach_ill = NULL; 17625 /* Bind to IPIF_NOFAILOVER ill etc. */ 17626 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 17627 ipif_t *dst_ipif; 17628 boolean_t multirt_need_resolve = B_FALSE; 17629 mblk_t *copy_mp = NULL; 17630 int err; 17631 zoneid_t zoneid; 17632 boolean_t need_decref = B_FALSE; 17633 boolean_t ignore_dontroute = B_FALSE; 17634 17635 #ifdef _BIG_ENDIAN 17636 #define V_HLEN (v_hlen_tos_len >> 24) 17637 #else 17638 #define V_HLEN (v_hlen_tos_len & 0xFF) 17639 #endif 17640 17641 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 17642 "ip_wput_start: q %p", q); 17643 17644 /* 17645 * ip_wput fast path 17646 */ 17647 17648 /* is packet from ARP ? */ 17649 if (q->q_next != NULL) 17650 goto qnext; 17651 17652 connp = (conn_t *)arg; 17653 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 17654 17655 /* is queue flow controlled? */ 17656 if ((q->q_first != NULL || connp->conn_draining) && 17657 (caller == IP_WPUT)) { 17658 goto doputq; 17659 } 17660 17661 /* Multidata transmit? */ 17662 if (DB_TYPE(mp) == M_MULTIDATA) { 17663 /* 17664 * We should never get here, since all Multidata messages 17665 * originating from tcp should have been directed over to 17666 * tcp_multisend() in the first place. 17667 */ 17668 BUMP_MIB(&ip_mib, ipOutDiscards); 17669 freemsg(mp); 17670 return; 17671 } else if (DB_TYPE(mp) != M_DATA) 17672 goto notdata; 17673 if (mp->b_flag & MSGHASREF) { 17674 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 17675 mp->b_flag &= ~MSGHASREF; 17676 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 17677 need_decref = B_TRUE; 17678 } 17679 ipha = (ipha_t *)mp->b_rptr; 17680 17681 /* is IP header non-aligned or mblk smaller than basic IP header */ 17682 #ifndef SAFETY_BEFORE_SPEED 17683 if (!OK_32PTR(rptr) || 17684 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 17685 goto hdrtoosmall; 17686 #endif 17687 17688 /* 17689 * If there is a policy, try to attach an ipsec_out in 17690 * the front. At the end, first_mp either points to a 17691 * M_DATA message or IPSEC_OUT message linked to a 17692 * M_DATA message. We have to do it now as we might 17693 * lose the "conn" if we go through ip_newroute. 17694 */ 17695 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 17696 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 17697 ipha->ipha_protocol)) == NULL)) { 17698 if (need_decref) 17699 CONN_DEC_REF(connp); 17700 return; 17701 } else { 17702 ASSERT(mp->b_datap->db_type == M_CTL); 17703 first_mp = mp; 17704 mp = mp->b_cont; 17705 mctl_present = B_TRUE; 17706 } 17707 } else { 17708 first_mp = mp; 17709 mctl_present = B_FALSE; 17710 } 17711 17712 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 17713 17714 /* is wrong version or IP options present */ 17715 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 17716 goto version_hdrlen_check; 17717 dst = ipha->ipha_dst; 17718 17719 if (connp->conn_nofailover_ill != NULL) { 17720 attach_ill = conn_get_held_ill(connp, 17721 &connp->conn_nofailover_ill, &err); 17722 if (err == ILL_LOOKUP_FAILED) { 17723 if (need_decref) 17724 CONN_DEC_REF(connp); 17725 freemsg(first_mp); 17726 return; 17727 } 17728 } 17729 17730 /* is packet multicast? */ 17731 if (CLASSD(dst)) 17732 goto multicast; 17733 17734 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL)) { 17735 /* 17736 * If the destination is a broadcast or a loopback 17737 * address, both SO_DONTROUTE and IP_XMIT_IF go 17738 * through the standard path. But in the case of local 17739 * destination only SO_DONTROUTE goes through the 17740 * standard path not IP_XMIT_IF. 17741 */ 17742 ire = ire_cache_lookup(dst, zoneid); 17743 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 17744 (ire->ire_type != IRE_LOOPBACK))) { 17745 17746 if ((connp->conn_dontroute) && (ire != NULL) && 17747 (ire->ire_type == IRE_LOCAL)) 17748 goto standard_path; 17749 17750 if (ire != NULL) { 17751 ire_refrele(ire); 17752 /* No more access to ire */ 17753 ire = NULL; 17754 } 17755 /* 17756 * bypass routing checks and go directly to 17757 * interface. 17758 */ 17759 if (connp->conn_dontroute) 17760 goto dontroute; 17761 17762 /* 17763 * If IP_XMIT_IF socket option is set, 17764 * then we allow unicast and multicast 17765 * packets to go through the ill. It is 17766 * quite possible that the destination 17767 * is not in the ire cache table and we 17768 * do not want to go to ip_newroute() 17769 * instead we call ip_newroute_ipif. 17770 */ 17771 xmit_ill = conn_get_held_ill(connp, 17772 &connp->conn_xmit_if_ill, &err); 17773 if (err == ILL_LOOKUP_FAILED) { 17774 if (attach_ill != NULL) 17775 ill_refrele(attach_ill); 17776 if (need_decref) 17777 CONN_DEC_REF(connp); 17778 freemsg(first_mp); 17779 return; 17780 } 17781 goto send_from_ill; 17782 } 17783 standard_path: 17784 /* Must be a broadcast, a loopback or a local ire */ 17785 if (ire != NULL) { 17786 ire_refrele(ire); 17787 /* No more access to ire */ 17788 ire = NULL; 17789 } 17790 } 17791 17792 if (attach_ill != NULL) 17793 goto send_from_ill; 17794 17795 /* 17796 * We cache IRE_CACHEs to avoid lookups. We don't do 17797 * this for the tcp global queue and listen end point 17798 * as it does not really have a real destination to 17799 * talk to. This is also true for SCTP. 17800 */ 17801 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 17802 !connp->conn_fully_bound) { 17803 ire = ire_cache_lookup(dst, zoneid); 17804 if (ire == NULL) 17805 goto noirefound; 17806 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 17807 "ip_wput_end: q %p (%S)", q, "end"); 17808 17809 /* 17810 * Check if the ire has the RTF_MULTIRT flag, inherited 17811 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 17812 */ 17813 if (ire->ire_flags & RTF_MULTIRT) { 17814 17815 /* 17816 * Force the TTL of multirouted packets if required. 17817 * The TTL of such packets is bounded by the 17818 * ip_multirt_ttl ndd variable. 17819 */ 17820 if ((ip_multirt_ttl > 0) && 17821 (ipha->ipha_ttl > ip_multirt_ttl)) { 17822 ip2dbg(("ip_wput: forcing multirt TTL to %d " 17823 "(was %d), dst 0x%08x\n", 17824 ip_multirt_ttl, ipha->ipha_ttl, 17825 ntohl(ire->ire_addr))); 17826 ipha->ipha_ttl = ip_multirt_ttl; 17827 } 17828 /* 17829 * We look at this point if there are pending 17830 * unresolved routes. ire_multirt_resolvable() 17831 * checks in O(n) that all IRE_OFFSUBNET ire 17832 * entries for the packet's destination and 17833 * flagged RTF_MULTIRT are currently resolved. 17834 * If some remain unresolved, we make a copy 17835 * of the current message. It will be used 17836 * to initiate additional route resolutions. 17837 */ 17838 multirt_need_resolve = 17839 ire_multirt_need_resolve(ire->ire_addr); 17840 ip2dbg(("ip_wput[TCP]: ire %p, " 17841 "multirt_need_resolve %d, first_mp %p\n", 17842 (void *)ire, multirt_need_resolve, 17843 (void *)first_mp)); 17844 if (multirt_need_resolve) { 17845 copy_mp = copymsg(first_mp); 17846 if (copy_mp != NULL) { 17847 MULTIRT_DEBUG_TAG(copy_mp); 17848 } 17849 } 17850 } 17851 17852 ip_wput_ire(q, first_mp, ire, connp, caller); 17853 17854 /* 17855 * Try to resolve another multiroute if 17856 * ire_multirt_need_resolve() deemed it necessary. 17857 */ 17858 if (copy_mp != NULL) { 17859 ip_newroute(q, copy_mp, dst, NULL, connp); 17860 } 17861 if (need_decref) 17862 CONN_DEC_REF(connp); 17863 return; 17864 } 17865 17866 /* 17867 * Access to conn_ire_cache. (protected by conn_lock) 17868 * 17869 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 17870 * the ire bucket lock here to check for CONDEMNED as it is okay to 17871 * send a packet or two with the IRE_CACHE that is going away. 17872 * Access to the ire requires an ire refhold on the ire prior to 17873 * its use since an interface unplumb thread may delete the cached 17874 * ire and release the refhold at any time. 17875 * 17876 * Caching an ire in the conn_ire_cache 17877 * 17878 * o Caching an ire pointer in the conn requires a strict check for 17879 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 17880 * ires before cleaning up the conns. So the caching of an ire pointer 17881 * in the conn is done after making sure under the bucket lock that the 17882 * ire has not yet been marked CONDEMNED. Otherwise we will end up 17883 * caching an ire after the unplumb thread has cleaned up the conn. 17884 * If the conn does not send a packet subsequently the unplumb thread 17885 * will be hanging waiting for the ire count to drop to zero. 17886 * 17887 * o We also need to atomically test for a null conn_ire_cache and 17888 * set the conn_ire_cache under the the protection of the conn_lock 17889 * to avoid races among concurrent threads trying to simultaneously 17890 * cache an ire in the conn_ire_cache. 17891 */ 17892 mutex_enter(&connp->conn_lock); 17893 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 17894 17895 if (ire != NULL && ire->ire_addr == dst && 17896 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17897 17898 IRE_REFHOLD(ire); 17899 mutex_exit(&connp->conn_lock); 17900 17901 } else { 17902 boolean_t cached = B_FALSE; 17903 connp->conn_ire_cache = NULL; 17904 mutex_exit(&connp->conn_lock); 17905 /* Release the old ire */ 17906 if (ire != NULL && sctp_ire == NULL) 17907 IRE_REFRELE_NOTR(ire); 17908 17909 ire = (ire_t *)ire_cache_lookup(dst, zoneid); 17910 if (ire == NULL) 17911 goto noirefound; 17912 IRE_REFHOLD_NOTR(ire); 17913 17914 mutex_enter(&connp->conn_lock); 17915 if (!(connp->conn_state_flags & CONN_CLOSING) && 17916 connp->conn_ire_cache == NULL) { 17917 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 17918 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17919 connp->conn_ire_cache = ire; 17920 cached = B_TRUE; 17921 } 17922 rw_exit(&ire->ire_bucket->irb_lock); 17923 } 17924 mutex_exit(&connp->conn_lock); 17925 17926 /* 17927 * We can continue to use the ire but since it was 17928 * not cached, we should drop the extra reference. 17929 */ 17930 if (!cached) 17931 IRE_REFRELE_NOTR(ire); 17932 } 17933 17934 17935 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 17936 "ip_wput_end: q %p (%S)", q, "end"); 17937 17938 /* 17939 * Check if the ire has the RTF_MULTIRT flag, inherited 17940 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 17941 */ 17942 if (ire->ire_flags & RTF_MULTIRT) { 17943 17944 /* 17945 * Force the TTL of multirouted packets if required. 17946 * The TTL of such packets is bounded by the 17947 * ip_multirt_ttl ndd variable. 17948 */ 17949 if ((ip_multirt_ttl > 0) && 17950 (ipha->ipha_ttl > ip_multirt_ttl)) { 17951 ip2dbg(("ip_wput: forcing multirt TTL to %d " 17952 "(was %d), dst 0x%08x\n", 17953 ip_multirt_ttl, ipha->ipha_ttl, 17954 ntohl(ire->ire_addr))); 17955 ipha->ipha_ttl = ip_multirt_ttl; 17956 } 17957 17958 /* 17959 * At this point, we check to see if there are any pending 17960 * unresolved routes. ire_multirt_resolvable() 17961 * checks in O(n) that all IRE_OFFSUBNET ire 17962 * entries for the packet's destination and 17963 * flagged RTF_MULTIRT are currently resolved. 17964 * If some remain unresolved, we make a copy 17965 * of the current message. It will be used 17966 * to initiate additional route resolutions. 17967 */ 17968 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 17969 ip2dbg(("ip_wput[not TCP]: ire %p, " 17970 "multirt_need_resolve %d, first_mp %p\n", 17971 (void *)ire, multirt_need_resolve, (void *)first_mp)); 17972 if (multirt_need_resolve) { 17973 copy_mp = copymsg(first_mp); 17974 if (copy_mp != NULL) { 17975 MULTIRT_DEBUG_TAG(copy_mp); 17976 } 17977 } 17978 } 17979 17980 ip_wput_ire(q, first_mp, ire, connp, caller); 17981 17982 /* 17983 * Try to resolve another multiroute if 17984 * ire_multirt_resolvable() deemed it necessary 17985 */ 17986 if (copy_mp != NULL) { 17987 ip_newroute(q, copy_mp, dst, NULL, connp); 17988 } 17989 if (need_decref) 17990 CONN_DEC_REF(connp); 17991 return; 17992 17993 doputq: 17994 ASSERT(!need_decref); 17995 (void) putq(q, mp); 17996 return; 17997 17998 qnext: 17999 /* 18000 * Upper Level Protocols pass down complete IP datagrams 18001 * as M_DATA messages. Everything else is a sideshow. 18002 * 18003 * 1) We could be re-entering ip_wput because of ip_neworute 18004 * in which case we could have a IPSEC_OUT message. We 18005 * need to pass through ip_wput like other datagrams and 18006 * hence cannot branch to ip_wput_nondata. 18007 * 18008 * 2) ARP, AH, ESP, and other clients who are on the module 18009 * instance of IP stream, give us something to deal with. 18010 * We will handle AH and ESP here and rest in ip_wput_nondata. 18011 * 18012 * 3) ICMP replies also could come here. 18013 */ 18014 if (DB_TYPE(mp) != M_DATA) { 18015 notdata: 18016 if (DB_TYPE(mp) == M_CTL) { 18017 /* 18018 * M_CTL messages are used by ARP, AH and ESP to 18019 * communicate with IP. We deal with IPSEC_IN and 18020 * IPSEC_OUT here. ip_wput_nondata handles other 18021 * cases. 18022 */ 18023 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 18024 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 18025 first_mp = mp->b_cont; 18026 first_mp->b_flag &= ~MSGHASREF; 18027 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18028 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 18029 CONN_DEC_REF(connp); 18030 connp = NULL; 18031 } 18032 if (ii->ipsec_info_type == IPSEC_IN) { 18033 /* 18034 * Either this message goes back to 18035 * IPSEC for further processing or to 18036 * ULP after policy checks. 18037 */ 18038 ip_fanout_proto_again(mp, NULL, NULL, NULL); 18039 return; 18040 } else if (ii->ipsec_info_type == IPSEC_OUT) { 18041 io = (ipsec_out_t *)ii; 18042 if (io->ipsec_out_proc_begin) { 18043 /* 18044 * IPSEC processing has already started. 18045 * Complete it. 18046 * IPQoS notes: We don't care what is 18047 * in ipsec_out_ill_index since this 18048 * won't be processed for IPQoS policies 18049 * in ipsec_out_process. 18050 */ 18051 ipsec_out_process(q, mp, NULL, 18052 io->ipsec_out_ill_index); 18053 return; 18054 } else { 18055 connp = (q->q_next != NULL) ? 18056 NULL : Q_TO_CONN(q); 18057 first_mp = mp; 18058 mp = mp->b_cont; 18059 mctl_present = B_TRUE; 18060 } 18061 zoneid = io->ipsec_out_zoneid; 18062 ASSERT(zoneid != ALL_ZONES); 18063 } else if (ii->ipsec_info_type == IPSEC_CTL) { 18064 /* 18065 * It's an IPsec control message requesting 18066 * an SADB update to be sent to the IPsec 18067 * hardware acceleration capable ills. 18068 */ 18069 ipsec_ctl_t *ipsec_ctl = 18070 (ipsec_ctl_t *)mp->b_rptr; 18071 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 18072 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 18073 mblk_t *cmp = mp->b_cont; 18074 18075 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 18076 ASSERT(cmp != NULL); 18077 18078 freeb(mp); 18079 ill_ipsec_capab_send_all(satype, cmp, sa); 18080 return; 18081 } else { 18082 /* 18083 * This must be ARP. 18084 */ 18085 ip_wput_nondata(NULL, q, mp, NULL); 18086 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18087 "ip_wput_end: q %p (%S)", q, "nondata"); 18088 return; 18089 } 18090 } else { 18091 /* 18092 * This must be non-(ARP/AH/ESP) messages. 18093 */ 18094 ASSERT(!need_decref); 18095 ip_wput_nondata(NULL, q, mp, NULL); 18096 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18097 "ip_wput_end: q %p (%S)", q, "nondata"); 18098 return; 18099 } 18100 } else { 18101 first_mp = mp; 18102 mctl_present = B_FALSE; 18103 } 18104 18105 ASSERT(first_mp != NULL); 18106 /* 18107 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 18108 * to make sure that this packet goes out on the same interface it 18109 * came in. We handle that here. 18110 */ 18111 if (mctl_present) { 18112 uint_t ifindex; 18113 18114 io = (ipsec_out_t *)first_mp->b_rptr; 18115 if (io->ipsec_out_attach_if || 18116 io->ipsec_out_xmit_if) { 18117 ill_t *ill; 18118 18119 ASSERT(io->ipsec_out_ill_index != 0); 18120 ifindex = io->ipsec_out_ill_index; 18121 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 18122 NULL, NULL, NULL, NULL); 18123 /* 18124 * ipsec_out_xmit_if bit is used to tell 18125 * ip_wput to use the ill to send outgoing data 18126 * as we have no conn when data comes from ICMP 18127 * error msg routines. Currently this feature is 18128 * only used by ip_mrtun_forward routine. 18129 */ 18130 if (io->ipsec_out_xmit_if) { 18131 xmit_ill = ill; 18132 if (xmit_ill == NULL) { 18133 ip1dbg(("ip_wput: bad ifindex for" 18134 "xmit_ill %d\n", ifindex)); 18135 freemsg(first_mp); 18136 BUMP_MIB(&ip_mib, ipOutDiscards); 18137 ASSERT(!need_decref); 18138 return; 18139 } 18140 /* Free up the ipsec_out_t mblk */ 18141 ASSERT(first_mp->b_cont == mp); 18142 first_mp->b_cont = NULL; 18143 freeb(first_mp); 18144 /* Just send the IP header+ICMP+data */ 18145 first_mp = mp; 18146 ipha = (ipha_t *)mp->b_rptr; 18147 dst = ipha->ipha_dst; 18148 goto send_from_ill; 18149 18150 } else { 18151 attach_ill = ill; 18152 } 18153 18154 if (attach_ill == NULL) { 18155 ASSERT(xmit_ill == NULL); 18156 ip1dbg(("ip_wput : bad ifindex for " 18157 "(BIND TO IPIF_NOFAILOVER) %d\n", ifindex)); 18158 freemsg(first_mp); 18159 BUMP_MIB(&ip_mib, ipOutDiscards); 18160 ASSERT(!need_decref); 18161 return; 18162 } 18163 } 18164 } 18165 18166 ASSERT(xmit_ill == NULL); 18167 18168 /* We have a complete IP datagram heading outbound. */ 18169 ipha = (ipha_t *)mp->b_rptr; 18170 18171 #ifndef SPEED_BEFORE_SAFETY 18172 /* 18173 * Make sure we have a full-word aligned message and that at least 18174 * a simple IP header is accessible in the first message. If not, 18175 * try a pullup. 18176 */ 18177 if (!OK_32PTR(rptr) || 18178 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 18179 hdrtoosmall: 18180 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 18181 BUMP_MIB(&ip_mib, ipOutDiscards); 18182 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18183 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 18184 if (first_mp == NULL) 18185 first_mp = mp; 18186 goto drop_pkt; 18187 } 18188 ipha = (ipha_t *)mp->b_rptr; 18189 if (first_mp == NULL) { 18190 ASSERT(attach_ill == NULL && xmit_ill == NULL); 18191 /* 18192 * If we got here because of "goto hdrtoosmall" 18193 * We need to attach a IPSEC_OUT. 18194 */ 18195 if (connp->conn_out_enforce_policy) { 18196 if (((mp = ipsec_attach_ipsec_out(mp, connp, 18197 NULL, ipha->ipha_protocol)) == NULL)) { 18198 if (need_decref) 18199 CONN_DEC_REF(connp); 18200 return; 18201 } else { 18202 ASSERT(mp->b_datap->db_type == M_CTL); 18203 first_mp = mp; 18204 mp = mp->b_cont; 18205 mctl_present = B_TRUE; 18206 } 18207 } else { 18208 first_mp = mp; 18209 mctl_present = B_FALSE; 18210 } 18211 } 18212 } 18213 #endif 18214 18215 /* Most of the code below is written for speed, not readability */ 18216 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18217 18218 /* 18219 * If ip_newroute() fails, we're going to need a full 18220 * header for the icmp wraparound. 18221 */ 18222 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 18223 uint_t v_hlen; 18224 version_hdrlen_check: 18225 ASSERT(first_mp != NULL); 18226 v_hlen = V_HLEN; 18227 /* 18228 * siphon off IPv6 packets coming down from transport 18229 * layer modules here. 18230 * Note: high-order bit carries NUD reachability confirmation 18231 */ 18232 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 18233 /* 18234 * XXX implement a IPv4 and IPv6 packet counter per 18235 * conn and switch when ratio exceeds e.g. 10:1 18236 */ 18237 #ifdef notyet 18238 if (q->q_next == NULL) /* Avoid ill queue */ 18239 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 18240 #endif 18241 BUMP_MIB(&ip_mib, ipOutIPv6); 18242 ASSERT(xmit_ill == NULL); 18243 if (attach_ill != NULL) 18244 ill_refrele(attach_ill); 18245 if (need_decref) 18246 mp->b_flag |= MSGHASREF; 18247 (void) ip_output_v6(connp, first_mp, q, caller); 18248 return; 18249 } 18250 18251 if ((v_hlen >> 4) != IP_VERSION) { 18252 BUMP_MIB(&ip_mib, ipOutDiscards); 18253 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18254 "ip_wput_end: q %p (%S)", q, "badvers"); 18255 goto drop_pkt; 18256 } 18257 /* 18258 * Is the header length at least 20 bytes? 18259 * 18260 * Are there enough bytes accessible in the header? If 18261 * not, try a pullup. 18262 */ 18263 v_hlen &= 0xF; 18264 v_hlen <<= 2; 18265 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 18266 BUMP_MIB(&ip_mib, ipOutDiscards); 18267 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18268 "ip_wput_end: q %p (%S)", q, "badlen"); 18269 goto drop_pkt; 18270 } 18271 if (v_hlen > (mp->b_wptr - rptr)) { 18272 if (!pullupmsg(mp, v_hlen)) { 18273 BUMP_MIB(&ip_mib, ipOutDiscards); 18274 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18275 "ip_wput_end: q %p (%S)", q, "badpullup2"); 18276 goto drop_pkt; 18277 } 18278 ipha = (ipha_t *)mp->b_rptr; 18279 } 18280 /* 18281 * Move first entry from any source route into ipha_dst and 18282 * verify the options 18283 */ 18284 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 18285 ASSERT(xmit_ill == NULL); 18286 if (attach_ill != NULL) 18287 ill_refrele(attach_ill); 18288 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18289 "ip_wput_end: q %p (%S)", q, "badopts"); 18290 if (need_decref) 18291 CONN_DEC_REF(connp); 18292 return; 18293 } 18294 } 18295 dst = ipha->ipha_dst; 18296 18297 /* 18298 * Try to get an IRE_CACHE for the destination address. If we can't, 18299 * we have to run the packet through ip_newroute which will take 18300 * the appropriate action to arrange for an IRE_CACHE, such as querying 18301 * a resolver, or assigning a default gateway, etc. 18302 */ 18303 if (CLASSD(dst)) { 18304 ipif_t *ipif; 18305 uint32_t setsrc = 0; 18306 18307 multicast: 18308 ASSERT(first_mp != NULL); 18309 ASSERT(xmit_ill == NULL); 18310 ip2dbg(("ip_wput: CLASSD\n")); 18311 if (connp == NULL) { 18312 /* 18313 * Use the first good ipif on the ill. 18314 * XXX Should this ever happen? (Appears 18315 * to show up with just ppp and no ethernet due 18316 * to in.rdisc.) 18317 * However, ire_send should be able to 18318 * call ip_wput_ire directly. 18319 * 18320 * XXX Also, this can happen for ICMP and other packets 18321 * with multicast source addresses. Perhaps we should 18322 * fix things so that we drop the packet in question, 18323 * but for now, just run with it. 18324 */ 18325 ill_t *ill = (ill_t *)q->q_ptr; 18326 18327 /* 18328 * Don't honor attach_if for this case. If ill 18329 * is part of the group, ipif could belong to 18330 * any ill and we cannot maintain attach_ill 18331 * and ipif_ill same anymore and the assert 18332 * below would fail. 18333 */ 18334 if (mctl_present) { 18335 io->ipsec_out_ill_index = 0; 18336 io->ipsec_out_attach_if = B_FALSE; 18337 ASSERT(attach_ill != NULL); 18338 ill_refrele(attach_ill); 18339 attach_ill = NULL; 18340 } 18341 18342 ASSERT(attach_ill == NULL); 18343 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 18344 if (ipif == NULL) { 18345 if (need_decref) 18346 CONN_DEC_REF(connp); 18347 freemsg(first_mp); 18348 return; 18349 } 18350 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 18351 ntohl(dst), ill->ill_name)); 18352 } else { 18353 /* 18354 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 18355 * IP_XMIT_IF is honoured. 18356 * Block comment above this function explains the 18357 * locking mechanism used here 18358 */ 18359 xmit_ill = conn_get_held_ill(connp, 18360 &connp->conn_xmit_if_ill, &err); 18361 if (err == ILL_LOOKUP_FAILED) { 18362 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 18363 goto drop_pkt; 18364 } 18365 if (xmit_ill == NULL) { 18366 ipif = conn_get_held_ipif(connp, 18367 &connp->conn_multicast_ipif, &err); 18368 if (err == IPIF_LOOKUP_FAILED) { 18369 ip1dbg(("ip_wput: No ipif for " 18370 "multicast\n")); 18371 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18372 goto drop_pkt; 18373 } 18374 } 18375 if (xmit_ill != NULL) { 18376 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18377 if (ipif == NULL) { 18378 ip1dbg(("ip_wput: No ipif for " 18379 "IP_XMIT_IF\n")); 18380 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18381 goto drop_pkt; 18382 } 18383 } else if (ipif == NULL || ipif->ipif_isv6) { 18384 /* 18385 * We must do this ipif determination here 18386 * else we could pass through ip_newroute 18387 * and come back here without the conn context. 18388 * 18389 * Note: we do late binding i.e. we bind to 18390 * the interface when the first packet is sent. 18391 * For performance reasons we do not rebind on 18392 * each packet but keep the binding until the 18393 * next IP_MULTICAST_IF option. 18394 * 18395 * conn_multicast_{ipif,ill} are shared between 18396 * IPv4 and IPv6 and AF_INET6 sockets can 18397 * send both IPv4 and IPv6 packets. Hence 18398 * we have to check that "isv6" matches above. 18399 */ 18400 if (ipif != NULL) 18401 ipif_refrele(ipif); 18402 ipif = ipif_lookup_group(dst, zoneid); 18403 if (ipif == NULL) { 18404 ip1dbg(("ip_wput: No ipif for " 18405 "multicast\n")); 18406 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18407 goto drop_pkt; 18408 } 18409 err = conn_set_held_ipif(connp, 18410 &connp->conn_multicast_ipif, ipif); 18411 if (err == IPIF_LOOKUP_FAILED) { 18412 ipif_refrele(ipif); 18413 ip1dbg(("ip_wput: No ipif for " 18414 "multicast\n")); 18415 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18416 goto drop_pkt; 18417 } 18418 } 18419 } 18420 ASSERT(!ipif->ipif_isv6); 18421 /* 18422 * As we may lose the conn by the time we reach ip_wput_ire, 18423 * we copy conn_multicast_loop and conn_dontroute on to an 18424 * ipsec_out. In case if this datagram goes out secure, 18425 * we need the ill_index also. Copy that also into the 18426 * ipsec_out. 18427 */ 18428 if (mctl_present) { 18429 io = (ipsec_out_t *)first_mp->b_rptr; 18430 ASSERT(first_mp->b_datap->db_type == M_CTL); 18431 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18432 } else { 18433 ASSERT(mp == first_mp); 18434 if ((first_mp = allocb(sizeof (ipsec_info_t), 18435 BPRI_HI)) == NULL) { 18436 ipif_refrele(ipif); 18437 first_mp = mp; 18438 goto drop_pkt; 18439 } 18440 first_mp->b_datap->db_type = M_CTL; 18441 first_mp->b_wptr += sizeof (ipsec_info_t); 18442 /* ipsec_out_secure is B_FALSE now */ 18443 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 18444 io = (ipsec_out_t *)first_mp->b_rptr; 18445 io->ipsec_out_type = IPSEC_OUT; 18446 io->ipsec_out_len = sizeof (ipsec_out_t); 18447 io->ipsec_out_use_global_policy = B_TRUE; 18448 first_mp->b_cont = mp; 18449 mctl_present = B_TRUE; 18450 } 18451 if (attach_ill != NULL) { 18452 ASSERT(attach_ill == ipif->ipif_ill); 18453 match_flags = MATCH_IRE_ILL; 18454 18455 /* 18456 * Check if we need an ire that will not be 18457 * looked up by anybody else i.e. HIDDEN. 18458 */ 18459 if (ill_is_probeonly(attach_ill)) { 18460 match_flags |= MATCH_IRE_MARK_HIDDEN; 18461 } 18462 io->ipsec_out_ill_index = 18463 attach_ill->ill_phyint->phyint_ifindex; 18464 io->ipsec_out_attach_if = B_TRUE; 18465 } else { 18466 match_flags = MATCH_IRE_ILL_GROUP; 18467 io->ipsec_out_ill_index = 18468 ipif->ipif_ill->ill_phyint->phyint_ifindex; 18469 } 18470 if (connp != NULL) { 18471 io->ipsec_out_multicast_loop = 18472 connp->conn_multicast_loop; 18473 io->ipsec_out_dontroute = connp->conn_dontroute; 18474 io->ipsec_out_zoneid = connp->conn_zoneid; 18475 } 18476 /* 18477 * If the application uses IP_MULTICAST_IF with 18478 * different logical addresses of the same ILL, we 18479 * need to make sure that the soruce address of 18480 * the packet matches the logical IP address used 18481 * in the option. We do it by initializing ipha_src 18482 * here. This should keep IPSEC also happy as 18483 * when we return from IPSEC processing, we don't 18484 * have to worry about getting the right address on 18485 * the packet. Thus it is sufficient to look for 18486 * IRE_CACHE using MATCH_IRE_ILL rathen than 18487 * MATCH_IRE_IPIF. 18488 * 18489 * NOTE : We need to do it for non-secure case also as 18490 * this might go out secure if there is a global policy 18491 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 18492 * address, the source should be initialized already and 18493 * hence we won't be initializing here. 18494 * 18495 * As we do not have the ire yet, it is possible that 18496 * we set the source address here and then later discover 18497 * that the ire implies the source address to be assigned 18498 * through the RTF_SETSRC flag. 18499 * In that case, the setsrc variable will remind us 18500 * that overwritting the source address by the one 18501 * of the RTF_SETSRC-flagged ire is allowed. 18502 */ 18503 if (ipha->ipha_src == INADDR_ANY && 18504 (connp == NULL || !connp->conn_unspec_src)) { 18505 ipha->ipha_src = ipif->ipif_src_addr; 18506 setsrc = RTF_SETSRC; 18507 } 18508 /* 18509 * Find an IRE which matches the destination and the outgoing 18510 * queue (i.e. the outgoing interface.) 18511 * For loopback use a unicast IP address for 18512 * the ire lookup. 18513 */ 18514 if (ipif->ipif_ill->ill_phyint->phyint_flags & 18515 PHYI_LOOPBACK) { 18516 dst = ipif->ipif_lcl_addr; 18517 } 18518 /* 18519 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 18520 * We don't need to lookup ire in ctable as the packet 18521 * needs to be sent to the destination through the specified 18522 * ill irrespective of ires in the cache table. 18523 */ 18524 ire = NULL; 18525 if (xmit_ill == NULL) { 18526 ire = ire_ctable_lookup(dst, 0, 0, ipif, 18527 zoneid, match_flags); 18528 } 18529 18530 /* 18531 * refrele attach_ill as its not needed anymore. 18532 */ 18533 if (attach_ill != NULL) { 18534 ill_refrele(attach_ill); 18535 attach_ill = NULL; 18536 } 18537 18538 if (ire == NULL) { 18539 /* 18540 * Multicast loopback and multicast forwarding is 18541 * done in ip_wput_ire. 18542 * 18543 * Mark this packet to make it be delivered to 18544 * ip_wput_ire after the new ire has been 18545 * created. 18546 * 18547 * The call to ip_newroute_ipif takes into account 18548 * the setsrc reminder. In any case, we take care 18549 * of the RTF_MULTIRT flag. 18550 */ 18551 mp->b_prev = mp->b_next = NULL; 18552 if (xmit_ill == NULL || 18553 xmit_ill->ill_ipif_up_count > 0) { 18554 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 18555 setsrc | RTF_MULTIRT); 18556 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18557 "ip_wput_end: q %p (%S)", q, "noire"); 18558 } else { 18559 freemsg(first_mp); 18560 } 18561 ipif_refrele(ipif); 18562 if (xmit_ill != NULL) 18563 ill_refrele(xmit_ill); 18564 if (need_decref) 18565 CONN_DEC_REF(connp); 18566 return; 18567 } 18568 18569 ipif_refrele(ipif); 18570 ipif = NULL; 18571 ASSERT(xmit_ill == NULL); 18572 18573 /* 18574 * Honor the RTF_SETSRC flag for multicast packets, 18575 * if allowed by the setsrc reminder. 18576 */ 18577 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 18578 ipha->ipha_src = ire->ire_src_addr; 18579 } 18580 18581 /* 18582 * Unconditionally force the TTL to 1 for 18583 * multirouted multicast packets: 18584 * multirouted multicast should not cross 18585 * multicast routers. 18586 */ 18587 if (ire->ire_flags & RTF_MULTIRT) { 18588 if (ipha->ipha_ttl > 1) { 18589 ip2dbg(("ip_wput: forcing multicast " 18590 "multirt TTL to 1 (was %d), dst 0x%08x\n", 18591 ipha->ipha_ttl, ntohl(ire->ire_addr))); 18592 ipha->ipha_ttl = 1; 18593 } 18594 } 18595 } else { 18596 ire = ire_cache_lookup(dst, zoneid); 18597 if ((ire != NULL) && (ire->ire_type & 18598 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 18599 ignore_dontroute = B_TRUE; 18600 } 18601 if (ire != NULL) { 18602 ire_refrele(ire); 18603 ire = NULL; 18604 } 18605 /* 18606 * Guard against coming in from arp in which case conn is NULL. 18607 * Also guard against non M_DATA with dontroute set but 18608 * destined to local, loopback or broadcast addresses. 18609 */ 18610 if (connp != NULL && connp->conn_dontroute && 18611 !ignore_dontroute) { 18612 dontroute: 18613 /* 18614 * Set TTL to 1 if SO_DONTROUTE is set to prevent 18615 * routing protocols from seeing false direct 18616 * connectivity. 18617 */ 18618 ipha->ipha_ttl = 1; 18619 /* 18620 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 18621 * along with SO_DONTROUTE, higher precedence is 18622 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 18623 */ 18624 if (connp->conn_xmit_if_ill == NULL) { 18625 /* If suitable ipif not found, drop packet */ 18626 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 18627 if (dst_ipif == NULL) { 18628 ip1dbg(("ip_wput: no route for " 18629 "dst using SO_DONTROUTE\n")); 18630 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18631 mp->b_prev = mp->b_next = NULL; 18632 if (first_mp == NULL) 18633 first_mp = mp; 18634 goto drop_pkt; 18635 } else { 18636 /* 18637 * If suitable ipif has been found, set 18638 * xmit_ill to the corresponding 18639 * ipif_ill because we'll be following 18640 * the IP_XMIT_IF logic. 18641 */ 18642 ASSERT(xmit_ill == NULL); 18643 xmit_ill = dst_ipif->ipif_ill; 18644 mutex_enter(&xmit_ill->ill_lock); 18645 if (!ILL_CAN_LOOKUP(xmit_ill)) { 18646 mutex_exit(&xmit_ill->ill_lock); 18647 xmit_ill = NULL; 18648 ipif_refrele(dst_ipif); 18649 ip1dbg(("ip_wput: no route for" 18650 " dst using" 18651 " SO_DONTROUTE\n")); 18652 BUMP_MIB(&ip_mib, 18653 ipOutNoRoutes); 18654 mp->b_prev = mp->b_next = NULL; 18655 if (first_mp == NULL) 18656 first_mp = mp; 18657 goto drop_pkt; 18658 } 18659 ill_refhold_locked(xmit_ill); 18660 mutex_exit(&xmit_ill->ill_lock); 18661 ipif_refrele(dst_ipif); 18662 } 18663 } 18664 18665 } 18666 /* 18667 * If we are bound to IPIF_NOFAILOVER address, look for 18668 * an IRE_CACHE matching the ill. 18669 */ 18670 send_from_ill: 18671 if (attach_ill != NULL) { 18672 ipif_t *attach_ipif; 18673 18674 match_flags = MATCH_IRE_ILL; 18675 18676 /* 18677 * Check if we need an ire that will not be 18678 * looked up by anybody else i.e. HIDDEN. 18679 */ 18680 if (ill_is_probeonly(attach_ill)) { 18681 match_flags |= MATCH_IRE_MARK_HIDDEN; 18682 } 18683 18684 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 18685 if (attach_ipif == NULL) { 18686 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 18687 goto drop_pkt; 18688 } 18689 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 18690 zoneid, match_flags); 18691 ipif_refrele(attach_ipif); 18692 } else if (xmit_ill != NULL || (connp != NULL && 18693 connp->conn_xmit_if_ill != NULL)) { 18694 /* 18695 * Mark this packet as originated locally 18696 */ 18697 mp->b_prev = mp->b_next = NULL; 18698 /* 18699 * xmit_ill could be NULL if SO_DONTROUTE 18700 * is also set. 18701 */ 18702 if (xmit_ill == NULL) { 18703 xmit_ill = conn_get_held_ill(connp, 18704 &connp->conn_xmit_if_ill, &err); 18705 if (err == ILL_LOOKUP_FAILED) { 18706 if (need_decref) 18707 CONN_DEC_REF(connp); 18708 freemsg(first_mp); 18709 return; 18710 } 18711 if (xmit_ill == NULL) { 18712 if (connp->conn_dontroute) 18713 goto dontroute; 18714 goto send_from_ill; 18715 } 18716 } 18717 /* 18718 * could be SO_DONTROUTE case also. 18719 * check at least one interface is UP as 18720 * spcified by this ILL, and then call 18721 * ip_newroute_ipif() 18722 */ 18723 if (xmit_ill->ill_ipif_up_count > 0) { 18724 ipif_t *ipif; 18725 18726 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18727 if (ipif != NULL) { 18728 ip_newroute_ipif(q, first_mp, ipif, 18729 dst, connp, 0); 18730 ipif_refrele(ipif); 18731 ip1dbg(("ip_wput: ip_unicast_if\n")); 18732 } 18733 } else { 18734 freemsg(first_mp); 18735 } 18736 ill_refrele(xmit_ill); 18737 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18738 "ip_wput_end: q %p (%S)", q, "unicast_if"); 18739 if (need_decref) 18740 CONN_DEC_REF(connp); 18741 return; 18742 } else { 18743 ire = ire_cache_lookup(dst, zoneid); 18744 } 18745 if (!ire) { 18746 /* 18747 * Make sure we don't load spread if this 18748 * is IPIF_NOFAILOVER case. 18749 */ 18750 if (attach_ill != NULL) { 18751 if (mctl_present) { 18752 io = (ipsec_out_t *)first_mp->b_rptr; 18753 ASSERT(first_mp->b_datap->db_type == 18754 M_CTL); 18755 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18756 } else { 18757 ASSERT(mp == first_mp); 18758 first_mp = allocb( 18759 sizeof (ipsec_info_t), BPRI_HI); 18760 if (first_mp == NULL) { 18761 first_mp = mp; 18762 goto drop_pkt; 18763 } 18764 first_mp->b_datap->db_type = M_CTL; 18765 first_mp->b_wptr += 18766 sizeof (ipsec_info_t); 18767 /* ipsec_out_secure is B_FALSE now */ 18768 bzero(first_mp->b_rptr, 18769 sizeof (ipsec_info_t)); 18770 io = (ipsec_out_t *)first_mp->b_rptr; 18771 io->ipsec_out_type = IPSEC_OUT; 18772 io->ipsec_out_len = 18773 sizeof (ipsec_out_t); 18774 io->ipsec_out_use_global_policy = 18775 B_TRUE; 18776 first_mp->b_cont = mp; 18777 mctl_present = B_TRUE; 18778 } 18779 io->ipsec_out_ill_index = attach_ill-> 18780 ill_phyint->phyint_ifindex; 18781 io->ipsec_out_attach_if = B_TRUE; 18782 } 18783 noirefound: 18784 /* 18785 * Mark this packet as having originated on 18786 * this machine. This will be noted in 18787 * ire_add_then_send, which needs to know 18788 * whether to run it back through ip_wput or 18789 * ip_rput following successful resolution. 18790 */ 18791 mp->b_prev = NULL; 18792 mp->b_next = NULL; 18793 ip_newroute(q, first_mp, dst, NULL, connp); 18794 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18795 "ip_wput_end: q %p (%S)", q, "newroute"); 18796 if (attach_ill != NULL) 18797 ill_refrele(attach_ill); 18798 if (xmit_ill != NULL) 18799 ill_refrele(xmit_ill); 18800 if (need_decref) 18801 CONN_DEC_REF(connp); 18802 return; 18803 } 18804 } 18805 18806 /* We now know where we are going with it. */ 18807 18808 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18809 "ip_wput_end: q %p (%S)", q, "end"); 18810 18811 /* 18812 * Check if the ire has the RTF_MULTIRT flag, inherited 18813 * from an IRE_OFFSUBNET ire entry in ip_newroute. 18814 */ 18815 if (ire->ire_flags & RTF_MULTIRT) { 18816 /* 18817 * Force the TTL of multirouted packets if required. 18818 * The TTL of such packets is bounded by the 18819 * ip_multirt_ttl ndd variable. 18820 */ 18821 if ((ip_multirt_ttl > 0) && 18822 (ipha->ipha_ttl > ip_multirt_ttl)) { 18823 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18824 "(was %d), dst 0x%08x\n", 18825 ip_multirt_ttl, ipha->ipha_ttl, 18826 ntohl(ire->ire_addr))); 18827 ipha->ipha_ttl = ip_multirt_ttl; 18828 } 18829 /* 18830 * At this point, we check to see if there are any pending 18831 * unresolved routes. ire_multirt_resolvable() 18832 * checks in O(n) that all IRE_OFFSUBNET ire 18833 * entries for the packet's destination and 18834 * flagged RTF_MULTIRT are currently resolved. 18835 * If some remain unresolved, we make a copy 18836 * of the current message. It will be used 18837 * to initiate additional route resolutions. 18838 */ 18839 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 18840 ip2dbg(("ip_wput[noirefound]: ire %p, " 18841 "multirt_need_resolve %d, first_mp %p\n", 18842 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18843 if (multirt_need_resolve) { 18844 copy_mp = copymsg(first_mp); 18845 if (copy_mp != NULL) { 18846 MULTIRT_DEBUG_TAG(copy_mp); 18847 } 18848 } 18849 } 18850 18851 ip_wput_ire(q, first_mp, ire, connp, caller); 18852 /* 18853 * Try to resolve another multiroute if 18854 * ire_multirt_resolvable() deemed it necessary. 18855 * At this point, we need to distinguish 18856 * multicasts from other packets. For multicasts, 18857 * we call ip_newroute_ipif() and request that both 18858 * multirouting and setsrc flags are checked. 18859 */ 18860 if (copy_mp != NULL) { 18861 if (CLASSD(dst)) { 18862 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 18863 if (ipif) { 18864 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 18865 RTF_SETSRC | RTF_MULTIRT); 18866 ipif_refrele(ipif); 18867 } else { 18868 MULTIRT_DEBUG_UNTAG(copy_mp); 18869 freemsg(copy_mp); 18870 copy_mp = NULL; 18871 } 18872 } else { 18873 ip_newroute(q, copy_mp, dst, NULL, connp); 18874 } 18875 } 18876 if (attach_ill != NULL) 18877 ill_refrele(attach_ill); 18878 if (xmit_ill != NULL) 18879 ill_refrele(xmit_ill); 18880 if (need_decref) 18881 CONN_DEC_REF(connp); 18882 return; 18883 18884 drop_pkt: 18885 ip1dbg(("ip_wput: dropped packet\n")); 18886 if (ire != NULL) 18887 ire_refrele(ire); 18888 if (need_decref) 18889 CONN_DEC_REF(connp); 18890 freemsg(first_mp); 18891 if (attach_ill != NULL) 18892 ill_refrele(attach_ill); 18893 if (xmit_ill != NULL) 18894 ill_refrele(xmit_ill); 18895 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18896 "ip_wput_end: q %p (%S)", q, "droppkt"); 18897 } 18898 18899 void 18900 ip_wput(queue_t *q, mblk_t *mp) 18901 { 18902 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 18903 } 18904 18905 /* 18906 * 18907 * The following rules must be observed when accessing any ipif or ill 18908 * that has been cached in the conn. Typically conn_nofailover_ill, 18909 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 18910 * 18911 * Access: The ipif or ill pointed to from the conn can be accessed under 18912 * the protection of the conn_lock or after it has been refheld under the 18913 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 18914 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 18915 * The reason for this is that a concurrent unplumb could actually be 18916 * cleaning up these cached pointers by walking the conns and might have 18917 * finished cleaning up the conn in question. The macros check that an 18918 * unplumb has not yet started on the ipif or ill. 18919 * 18920 * Caching: An ipif or ill pointer may be cached in the conn only after 18921 * making sure that an unplumb has not started. So the caching is done 18922 * while holding both the conn_lock and the ill_lock and after using the 18923 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 18924 * flag before starting the cleanup of conns. 18925 * 18926 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 18927 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 18928 * or a reference to the ipif or a reference to an ire that references the 18929 * ipif. An ipif does not change its ill except for failover/failback. Since 18930 * failover/failback happens only after bringing down the ipif and making sure 18931 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 18932 * the above holds. 18933 */ 18934 static ipif_t * 18935 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 18936 { 18937 ipif_t *ipif; 18938 ill_t *ill; 18939 18940 *err = 0; 18941 rw_enter(&ill_g_lock, RW_READER); 18942 mutex_enter(&connp->conn_lock); 18943 ipif = *ipifp; 18944 if (ipif != NULL) { 18945 ill = ipif->ipif_ill; 18946 mutex_enter(&ill->ill_lock); 18947 if (IPIF_CAN_LOOKUP(ipif)) { 18948 ipif_refhold_locked(ipif); 18949 mutex_exit(&ill->ill_lock); 18950 mutex_exit(&connp->conn_lock); 18951 rw_exit(&ill_g_lock); 18952 return (ipif); 18953 } else { 18954 *err = IPIF_LOOKUP_FAILED; 18955 } 18956 mutex_exit(&ill->ill_lock); 18957 } 18958 mutex_exit(&connp->conn_lock); 18959 rw_exit(&ill_g_lock); 18960 return (NULL); 18961 } 18962 18963 ill_t * 18964 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 18965 { 18966 ill_t *ill; 18967 18968 *err = 0; 18969 mutex_enter(&connp->conn_lock); 18970 ill = *illp; 18971 if (ill != NULL) { 18972 mutex_enter(&ill->ill_lock); 18973 if (ILL_CAN_LOOKUP(ill)) { 18974 ill_refhold_locked(ill); 18975 mutex_exit(&ill->ill_lock); 18976 mutex_exit(&connp->conn_lock); 18977 return (ill); 18978 } else { 18979 *err = ILL_LOOKUP_FAILED; 18980 } 18981 mutex_exit(&ill->ill_lock); 18982 } 18983 mutex_exit(&connp->conn_lock); 18984 return (NULL); 18985 } 18986 18987 static int 18988 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 18989 { 18990 ill_t *ill; 18991 18992 ill = ipif->ipif_ill; 18993 mutex_enter(&connp->conn_lock); 18994 mutex_enter(&ill->ill_lock); 18995 if (IPIF_CAN_LOOKUP(ipif)) { 18996 *ipifp = ipif; 18997 mutex_exit(&ill->ill_lock); 18998 mutex_exit(&connp->conn_lock); 18999 return (0); 19000 } 19001 mutex_exit(&ill->ill_lock); 19002 mutex_exit(&connp->conn_lock); 19003 return (IPIF_LOOKUP_FAILED); 19004 } 19005 19006 /* 19007 * This is called if the outbound datagram needs fragmentation. 19008 * 19009 * NOTE : This function does not ire_refrele the ire argument passed in. 19010 */ 19011 static void 19012 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 19013 { 19014 ipha_t *ipha; 19015 mblk_t *mp; 19016 uint32_t v_hlen_tos_len; 19017 uint32_t max_frag; 19018 uint32_t frag_flag; 19019 boolean_t dont_use; 19020 19021 if (ipsec_mp->b_datap->db_type == M_CTL) { 19022 mp = ipsec_mp->b_cont; 19023 } else { 19024 mp = ipsec_mp; 19025 } 19026 19027 ipha = (ipha_t *)mp->b_rptr; 19028 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19029 19030 #ifdef _BIG_ENDIAN 19031 #define V_HLEN (v_hlen_tos_len >> 24) 19032 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19033 #else 19034 #define V_HLEN (v_hlen_tos_len & 0xFF) 19035 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19036 #endif 19037 19038 #ifndef SPEED_BEFORE_SAFETY 19039 /* 19040 * Check that ipha_length is consistent with 19041 * the mblk length 19042 */ 19043 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 19044 ip0dbg(("Packet length mismatch: %d, %ld\n", 19045 LENGTH, msgdsize(mp))); 19046 freemsg(ipsec_mp); 19047 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 19048 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 19049 "packet length mismatch"); 19050 return; 19051 } 19052 #endif 19053 /* 19054 * Don't use frag_flag if pre-built packet or source 19055 * routed or if multicast (since multicast packets do not solicit 19056 * ICMP "packet too big" messages). Get the values of 19057 * max_frag and frag_flag atomically by acquiring the 19058 * ire_lock. 19059 */ 19060 mutex_enter(&ire->ire_lock); 19061 max_frag = ire->ire_max_frag; 19062 frag_flag = ire->ire_frag_flag; 19063 mutex_exit(&ire->ire_lock); 19064 19065 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 19066 (V_HLEN != IP_SIMPLE_HDR_VERSION && 19067 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 19068 19069 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 19070 (dont_use ? 0 : frag_flag)); 19071 } 19072 19073 /* 19074 * Used for deciding the MSS size for the upper layer. Thus 19075 * we need to check the outbound policy values in the conn. 19076 */ 19077 int 19078 conn_ipsec_length(conn_t *connp) 19079 { 19080 ipsec_latch_t *ipl; 19081 19082 ipl = connp->conn_latch; 19083 if (ipl == NULL) 19084 return (0); 19085 19086 if (ipl->ipl_out_policy == NULL) 19087 return (0); 19088 19089 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 19090 } 19091 19092 /* 19093 * Returns an estimate of the IPSEC headers size. This is used if 19094 * we don't want to call into IPSEC to get the exact size. 19095 */ 19096 int 19097 ipsec_out_extra_length(mblk_t *ipsec_mp) 19098 { 19099 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 19100 ipsec_action_t *a; 19101 19102 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19103 if (!io->ipsec_out_secure) 19104 return (0); 19105 19106 a = io->ipsec_out_act; 19107 19108 if (a == NULL) { 19109 ASSERT(io->ipsec_out_policy != NULL); 19110 a = io->ipsec_out_policy->ipsp_act; 19111 } 19112 ASSERT(a != NULL); 19113 19114 return (a->ipa_ovhd); 19115 } 19116 19117 /* 19118 * Returns an estimate of the IPSEC headers size. This is used if 19119 * we don't want to call into IPSEC to get the exact size. 19120 */ 19121 int 19122 ipsec_in_extra_length(mblk_t *ipsec_mp) 19123 { 19124 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 19125 ipsec_action_t *a; 19126 19127 ASSERT(ii->ipsec_in_type == IPSEC_IN); 19128 19129 a = ii->ipsec_in_action; 19130 return (a == NULL ? 0 : a->ipa_ovhd); 19131 } 19132 19133 /* 19134 * If there are any source route options, return the true final 19135 * destination. Otherwise, return the destination. 19136 */ 19137 ipaddr_t 19138 ip_get_dst(ipha_t *ipha) 19139 { 19140 ipoptp_t opts; 19141 uchar_t *opt; 19142 uint8_t optval; 19143 uint8_t optlen; 19144 ipaddr_t dst; 19145 uint32_t off; 19146 19147 dst = ipha->ipha_dst; 19148 19149 if (IS_SIMPLE_IPH(ipha)) 19150 return (dst); 19151 19152 for (optval = ipoptp_first(&opts, ipha); 19153 optval != IPOPT_EOL; 19154 optval = ipoptp_next(&opts)) { 19155 opt = opts.ipoptp_cur; 19156 optlen = opts.ipoptp_len; 19157 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19158 switch (optval) { 19159 case IPOPT_SSRR: 19160 case IPOPT_LSRR: 19161 off = opt[IPOPT_OFFSET]; 19162 /* 19163 * If one of the conditions is true, it means 19164 * end of options and dst already has the right 19165 * value. 19166 */ 19167 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 19168 off = optlen - IP_ADDR_LEN; 19169 bcopy(&opt[off], &dst, IP_ADDR_LEN); 19170 } 19171 return (dst); 19172 default: 19173 break; 19174 } 19175 } 19176 19177 return (dst); 19178 } 19179 19180 mblk_t * 19181 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 19182 conn_t *connp, boolean_t unspec_src) 19183 { 19184 ipsec_out_t *io; 19185 mblk_t *first_mp; 19186 boolean_t policy_present; 19187 19188 first_mp = mp; 19189 if (mp->b_datap->db_type == M_CTL) { 19190 io = (ipsec_out_t *)first_mp->b_rptr; 19191 /* 19192 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 19193 * 19194 * 1) There is per-socket policy (including cached global 19195 * policy). 19196 * 2) There is no per-socket policy, but it is 19197 * a multicast packet that needs to go out 19198 * on a specific interface. This is the case 19199 * where (ip_wput and ip_wput_multicast) attaches 19200 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 19201 * 19202 * In case (2) we check with global policy to 19203 * see if there is a match and set the ill_index 19204 * appropriately so that we can lookup the ire 19205 * properly in ip_wput_ipsec_out. 19206 */ 19207 19208 /* 19209 * ipsec_out_use_global_policy is set to B_FALSE 19210 * in ipsec_in_to_out(). Refer to that function for 19211 * details. 19212 */ 19213 if ((io->ipsec_out_latch == NULL) && 19214 (io->ipsec_out_use_global_policy)) { 19215 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 19216 ire, connp, unspec_src)); 19217 } 19218 if (!io->ipsec_out_secure) { 19219 /* 19220 * If this is not a secure packet, drop 19221 * the IPSEC_OUT mp and treat it as a clear 19222 * packet. This happens when we are sending 19223 * a ICMP reply back to a clear packet. See 19224 * ipsec_in_to_out() for details. 19225 */ 19226 mp = first_mp->b_cont; 19227 freeb(first_mp); 19228 } 19229 return (mp); 19230 } 19231 /* 19232 * See whether we need to attach a global policy here. We 19233 * don't depend on the conn (as it could be null) for deciding 19234 * what policy this datagram should go through because it 19235 * should have happened in ip_wput if there was some 19236 * policy. This normally happens for connections which are not 19237 * fully bound preventing us from caching policies in 19238 * ip_bind. Packets coming from the TCP listener/global queue 19239 * - which are non-hard_bound - could also be affected by 19240 * applying policy here. 19241 * 19242 * If this packet is coming from tcp global queue or listener, 19243 * we will be applying policy here. This may not be *right* 19244 * if these packets are coming from the detached connection as 19245 * it could have gone in clear before. This happens only if a 19246 * TCP connection started when there is no policy and somebody 19247 * added policy before it became detached. Thus packets of the 19248 * detached connection could go out secure and the other end 19249 * would drop it because it will be expecting in clear. The 19250 * converse is not true i.e if somebody starts a TCP 19251 * connection and deletes the policy, all the packets will 19252 * still go out with the policy that existed before deleting 19253 * because ip_unbind sends up policy information which is used 19254 * by TCP on subsequent ip_wputs. The right solution is to fix 19255 * TCP to attach a dummy IPSEC_OUT and set 19256 * ipsec_out_use_global_policy to B_FALSE. As this might 19257 * affect performance for normal cases, we are not doing it. 19258 * Thus, set policy before starting any TCP connections. 19259 * 19260 * NOTE - We might apply policy even for a hard bound connection 19261 * - for which we cached policy in ip_bind - if somebody added 19262 * global policy after we inherited the policy in ip_bind. 19263 * This means that the packets that were going out in clear 19264 * previously would start going secure and hence get dropped 19265 * on the other side. To fix this, TCP attaches a dummy 19266 * ipsec_out and make sure that we don't apply global policy. 19267 */ 19268 if (ipha != NULL) 19269 policy_present = ipsec_outbound_v4_policy_present; 19270 else 19271 policy_present = ipsec_outbound_v6_policy_present; 19272 if (!policy_present) 19273 return (mp); 19274 19275 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 19276 } 19277 19278 ire_t * 19279 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 19280 { 19281 ipaddr_t addr; 19282 ire_t *save_ire; 19283 irb_t *irb; 19284 ill_group_t *illgrp; 19285 int err; 19286 19287 save_ire = ire; 19288 addr = ire->ire_addr; 19289 19290 ASSERT(ire->ire_type == IRE_BROADCAST); 19291 19292 illgrp = connp->conn_outgoing_ill->ill_group; 19293 if (illgrp == NULL) { 19294 *conn_outgoing_ill = conn_get_held_ill(connp, 19295 &connp->conn_outgoing_ill, &err); 19296 if (err == ILL_LOOKUP_FAILED) { 19297 ire_refrele(save_ire); 19298 return (NULL); 19299 } 19300 return (save_ire); 19301 } 19302 /* 19303 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 19304 * If it is part of the group, we need to send on the ire 19305 * that has been cleared of IRE_MARK_NORECV and that belongs 19306 * to this group. This is okay as IP_BOUND_IF really means 19307 * any ill in the group. We depend on the fact that the 19308 * first ire in the group is always cleared of IRE_MARK_NORECV 19309 * if such an ire exists. This is possible only if you have 19310 * at least one ill in the group that has not failed. 19311 * 19312 * First get to the ire that matches the address and group. 19313 * 19314 * We don't look for an ire with a matching zoneid because a given zone 19315 * won't always have broadcast ires on all ills in the group. 19316 */ 19317 irb = ire->ire_bucket; 19318 rw_enter(&irb->irb_lock, RW_READER); 19319 if (ire->ire_marks & IRE_MARK_NORECV) { 19320 /* 19321 * If the current zone only has an ire broadcast for this 19322 * address marked NORECV, the ire we want is ahead in the 19323 * bucket, so we look it up deliberately ignoring the zoneid. 19324 */ 19325 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 19326 if (ire->ire_addr != addr) 19327 continue; 19328 /* skip over deleted ires */ 19329 if (ire->ire_marks & IRE_MARK_CONDEMNED) 19330 continue; 19331 } 19332 } 19333 while (ire != NULL) { 19334 /* 19335 * If a new interface is coming up, we could end up 19336 * seeing the loopback ire and the non-loopback ire 19337 * may not have been added yet. So check for ire_stq 19338 */ 19339 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 19340 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 19341 break; 19342 } 19343 ire = ire->ire_next; 19344 } 19345 if (ire != NULL && ire->ire_addr == addr && 19346 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 19347 IRE_REFHOLD(ire); 19348 rw_exit(&irb->irb_lock); 19349 ire_refrele(save_ire); 19350 *conn_outgoing_ill = ire_to_ill(ire); 19351 /* 19352 * Refhold the ill to make the conn_outgoing_ill 19353 * independent of the ire. ip_wput_ire goes in a loop 19354 * and may refrele the ire. Since we have an ire at this 19355 * point we don't need to use ILL_CAN_LOOKUP on the ill. 19356 */ 19357 ill_refhold(*conn_outgoing_ill); 19358 return (ire); 19359 } 19360 rw_exit(&irb->irb_lock); 19361 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 19362 /* 19363 * If we can't find a suitable ire, return the original ire. 19364 */ 19365 return (save_ire); 19366 } 19367 19368 /* 19369 * This function does the ire_refrele of the ire passed in as the 19370 * argument. As this function looks up more ires i.e broadcast ires, 19371 * it needs to REFRELE them. Currently, for simplicity we don't 19372 * differentiate the one passed in and looked up here. We always 19373 * REFRELE. 19374 * IPQoS Notes: 19375 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 19376 * IPSec packets are done in ipsec_out_process. 19377 * 19378 */ 19379 void 19380 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 19381 { 19382 ipha_t *ipha; 19383 #define rptr ((uchar_t *)ipha) 19384 mblk_t *mp1; 19385 queue_t *stq; 19386 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 19387 uint32_t v_hlen_tos_len; 19388 uint32_t ttl_protocol; 19389 ipaddr_t src; 19390 ipaddr_t dst; 19391 uint32_t cksum; 19392 ipaddr_t orig_src; 19393 ire_t *ire1; 19394 mblk_t *next_mp; 19395 uint_t hlen; 19396 uint16_t *up; 19397 uint32_t max_frag = ire->ire_max_frag; 19398 ill_t *ill = ire_to_ill(ire); 19399 int clusterwide; 19400 uint16_t ip_hdr_included; /* IP header included by ULP? */ 19401 int ipsec_len; 19402 mblk_t *first_mp; 19403 ipsec_out_t *io; 19404 boolean_t conn_dontroute; /* conn value for multicast */ 19405 boolean_t conn_multicast_loop; /* conn value for multicast */ 19406 boolean_t multicast_forward; /* Should we forward ? */ 19407 boolean_t unspec_src; 19408 ill_t *conn_outgoing_ill = NULL; 19409 ill_t *ire_ill; 19410 ill_t *ire1_ill; 19411 uint32_t ill_index = 0; 19412 boolean_t multirt_send = B_FALSE; 19413 int err; 19414 zoneid_t zoneid; 19415 boolean_t iphdrhwcksum = B_FALSE; 19416 19417 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 19418 "ip_wput_ire_start: q %p", q); 19419 19420 multicast_forward = B_FALSE; 19421 unspec_src = (connp != NULL && connp->conn_unspec_src); 19422 19423 if (ire->ire_flags & RTF_MULTIRT) { 19424 /* 19425 * Multirouting case. The bucket where ire is stored 19426 * probably holds other RTF_MULTIRT flagged ire 19427 * to the destination. In this call to ip_wput_ire, 19428 * we attempt to send the packet through all 19429 * those ires. Thus, we first ensure that ire is the 19430 * first RTF_MULTIRT ire in the bucket, 19431 * before walking the ire list. 19432 */ 19433 ire_t *first_ire; 19434 irb_t *irb = ire->ire_bucket; 19435 ASSERT(irb != NULL); 19436 19437 /* Make sure we do not omit any multiroute ire. */ 19438 IRB_REFHOLD(irb); 19439 for (first_ire = irb->irb_ire; 19440 first_ire != NULL; 19441 first_ire = first_ire->ire_next) { 19442 if ((first_ire->ire_flags & RTF_MULTIRT) && 19443 (first_ire->ire_addr == ire->ire_addr) && 19444 !(first_ire->ire_marks & 19445 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 19446 break; 19447 } 19448 19449 if ((first_ire != NULL) && (first_ire != ire)) { 19450 IRE_REFHOLD(first_ire); 19451 ire_refrele(ire); 19452 ire = first_ire; 19453 ill = ire_to_ill(ire); 19454 } 19455 IRB_REFRELE(irb); 19456 } 19457 19458 /* 19459 * conn_outgoing_ill is used only in the broadcast loop. 19460 * for performance we don't grab the mutexs in the fastpath 19461 */ 19462 if ((connp != NULL) && 19463 (connp->conn_xmit_if_ill == NULL) && 19464 (ire->ire_type == IRE_BROADCAST) && 19465 ((connp->conn_nofailover_ill != NULL) || 19466 (connp->conn_outgoing_ill != NULL))) { 19467 /* 19468 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 19469 * option. So, see if this endpoint is bound to a 19470 * IPIF_NOFAILOVER address. If so, honor it. This implies 19471 * that if the interface is failed, we will still send 19472 * the packet on the same ill which is what we want. 19473 */ 19474 conn_outgoing_ill = conn_get_held_ill(connp, 19475 &connp->conn_nofailover_ill, &err); 19476 if (err == ILL_LOOKUP_FAILED) { 19477 ire_refrele(ire); 19478 freemsg(mp); 19479 return; 19480 } 19481 if (conn_outgoing_ill == NULL) { 19482 /* 19483 * Choose a good ill in the group to send the 19484 * packets on. 19485 */ 19486 ire = conn_set_outgoing_ill(connp, ire, 19487 &conn_outgoing_ill); 19488 if (ire == NULL) { 19489 freemsg(mp); 19490 return; 19491 } 19492 } 19493 } 19494 19495 if (mp->b_datap->db_type != M_CTL) { 19496 ipha = (ipha_t *)mp->b_rptr; 19497 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 19498 } else { 19499 io = (ipsec_out_t *)mp->b_rptr; 19500 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19501 zoneid = io->ipsec_out_zoneid; 19502 ASSERT(zoneid != ALL_ZONES); 19503 ipha = (ipha_t *)mp->b_cont->b_rptr; 19504 dst = ipha->ipha_dst; 19505 /* 19506 * For the multicast case, ipsec_out carries conn_dontroute and 19507 * conn_multicast_loop as conn may not be available here. We 19508 * need this for multicast loopback and forwarding which is done 19509 * later in the code. 19510 */ 19511 if (CLASSD(dst)) { 19512 conn_dontroute = io->ipsec_out_dontroute; 19513 conn_multicast_loop = io->ipsec_out_multicast_loop; 19514 /* 19515 * If conn_dontroute is not set or conn_multicast_loop 19516 * is set, we need to do forwarding/loopback. For 19517 * datagrams from ip_wput_multicast, conn_dontroute is 19518 * set to B_TRUE and conn_multicast_loop is set to 19519 * B_FALSE so that we neither do forwarding nor 19520 * loopback. 19521 */ 19522 if (!conn_dontroute || conn_multicast_loop) 19523 multicast_forward = B_TRUE; 19524 } 19525 } 19526 19527 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid) { 19528 /* 19529 * When a zone sends a packet to another zone, we try to deliver 19530 * the packet under the same conditions as if the destination 19531 * was a real node on the network. To do so, we look for a 19532 * matching route in the forwarding table. 19533 * RTF_REJECT and RTF_BLACKHOLE are handled just like 19534 * ip_newroute() does. 19535 */ 19536 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 19537 NULL, NULL, zoneid, 0, (MATCH_IRE_RECURSIVE | 19538 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 19539 if (src_ire != NULL && 19540 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 19541 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 19542 ipha->ipha_src = src_ire->ire_src_addr; 19543 ire_refrele(src_ire); 19544 } else { 19545 ire_refrele(ire); 19546 if (conn_outgoing_ill != NULL) 19547 ill_refrele(conn_outgoing_ill); 19548 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19549 if (src_ire != NULL) { 19550 if (src_ire->ire_flags & RTF_BLACKHOLE) { 19551 ire_refrele(src_ire); 19552 freemsg(mp); 19553 return; 19554 } 19555 ire_refrele(src_ire); 19556 } 19557 if (ip_hdr_complete(ipha, zoneid)) { 19558 /* Failed */ 19559 freemsg(mp); 19560 return; 19561 } 19562 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 19563 return; 19564 } 19565 } 19566 19567 if (mp->b_datap->db_type == M_CTL || 19568 ipsec_outbound_v4_policy_present) { 19569 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 19570 unspec_src); 19571 if (mp == NULL) { 19572 ire_refrele(ire); 19573 if (conn_outgoing_ill != NULL) 19574 ill_refrele(conn_outgoing_ill); 19575 return; 19576 } 19577 } 19578 19579 first_mp = mp; 19580 ipsec_len = 0; 19581 19582 if (first_mp->b_datap->db_type == M_CTL) { 19583 io = (ipsec_out_t *)first_mp->b_rptr; 19584 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19585 mp = first_mp->b_cont; 19586 ipsec_len = ipsec_out_extra_length(first_mp); 19587 ASSERT(ipsec_len >= 0); 19588 zoneid = io->ipsec_out_zoneid; 19589 ASSERT(zoneid != ALL_ZONES); 19590 19591 /* 19592 * Drop M_CTL here if IPsec processing is not needed. 19593 * (Non-IPsec use of M_CTL extracted any information it 19594 * needed above). 19595 */ 19596 if (ipsec_len == 0) { 19597 freeb(first_mp); 19598 first_mp = mp; 19599 } 19600 } 19601 19602 /* 19603 * Fast path for ip_wput_ire 19604 */ 19605 19606 ipha = (ipha_t *)mp->b_rptr; 19607 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19608 dst = ipha->ipha_dst; 19609 19610 /* 19611 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 19612 * if the socket is a SOCK_RAW type. The transport checksum should 19613 * be provided in the pre-built packet, so we don't need to compute it. 19614 * Also, other application set flags, like DF, should not be altered. 19615 * Other transport MUST pass down zero. 19616 */ 19617 ip_hdr_included = ipha->ipha_ident; 19618 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19619 19620 if (CLASSD(dst)) { 19621 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 19622 ntohl(dst), 19623 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 19624 ntohl(ire->ire_addr))); 19625 } 19626 19627 /* Macros to extract header fields from data already in registers */ 19628 #ifdef _BIG_ENDIAN 19629 #define V_HLEN (v_hlen_tos_len >> 24) 19630 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19631 #define PROTO (ttl_protocol & 0xFF) 19632 #else 19633 #define V_HLEN (v_hlen_tos_len & 0xFF) 19634 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19635 #define PROTO (ttl_protocol >> 8) 19636 #endif 19637 19638 19639 orig_src = src = ipha->ipha_src; 19640 /* (The loop back to "another" is explained down below.) */ 19641 another:; 19642 /* 19643 * Assign an ident value for this packet. We assign idents on 19644 * a per destination basis out of the IRE. There could be 19645 * other threads targeting the same destination, so we have to 19646 * arrange for a atomic increment. Note that we use a 32-bit 19647 * atomic add because it has better performance than its 19648 * 16-bit sibling. 19649 * 19650 * If running in cluster mode and if the source address 19651 * belongs to a replicated service then vector through 19652 * cl_inet_ipident vector to allocate ip identifier 19653 * NOTE: This is a contract private interface with the 19654 * clustering group. 19655 */ 19656 clusterwide = 0; 19657 if (cl_inet_ipident) { 19658 ASSERT(cl_inet_isclusterwide); 19659 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19660 AF_INET, (uint8_t *)(uintptr_t)src)) { 19661 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 19662 AF_INET, (uint8_t *)(uintptr_t)src, 19663 (uint8_t *)(uintptr_t)dst); 19664 clusterwide = 1; 19665 } 19666 } 19667 if (!clusterwide) { 19668 ipha->ipha_ident = 19669 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19670 } 19671 19672 #ifndef _BIG_ENDIAN 19673 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19674 #endif 19675 19676 /* 19677 * Set source address unless sent on an ill or conn_unspec_src is set. 19678 * This is needed to obey conn_unspec_src when packets go through 19679 * ip_newroute + arp. 19680 * Assumes ip_newroute{,_multi} sets the source address as well. 19681 */ 19682 if (src == INADDR_ANY && !unspec_src) { 19683 /* 19684 * Assign the appropriate source address from the IRE if none 19685 * was specified. 19686 */ 19687 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19688 19689 /* 19690 * With IP multipathing, broadcast packets are sent on the ire 19691 * that has been cleared of IRE_MARK_NORECV and that belongs to 19692 * the group. However, this ire might not be in the same zone so 19693 * we can't always use its source address. We look for a 19694 * broadcast ire in the same group and in the right zone. 19695 */ 19696 if (ire->ire_type == IRE_BROADCAST && 19697 ire->ire_zoneid != zoneid) { 19698 ire_t *src_ire = ire_ctable_lookup(dst, 0, 19699 IRE_BROADCAST, ire->ire_ipif, zoneid, 19700 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 19701 if (src_ire != NULL) { 19702 src = src_ire->ire_src_addr; 19703 ire_refrele(src_ire); 19704 } else { 19705 ire_refrele(ire); 19706 if (conn_outgoing_ill != NULL) 19707 ill_refrele(conn_outgoing_ill); 19708 freemsg(first_mp); 19709 BUMP_MIB(&ip_mib, ipOutDiscards); 19710 return; 19711 } 19712 } else { 19713 src = ire->ire_src_addr; 19714 } 19715 19716 if (connp == NULL) { 19717 ip1dbg(("ip_wput_ire: no connp and no src " 19718 "address for dst 0x%x, using src 0x%x\n", 19719 ntohl(dst), 19720 ntohl(src))); 19721 } 19722 ipha->ipha_src = src; 19723 } 19724 stq = ire->ire_stq; 19725 19726 /* 19727 * We only allow ire chains for broadcasts since there will 19728 * be multiple IRE_CACHE entries for the same multicast 19729 * address (one per ipif). 19730 */ 19731 next_mp = NULL; 19732 19733 /* broadcast packet */ 19734 if (ire->ire_type == IRE_BROADCAST) 19735 goto broadcast; 19736 19737 /* loopback ? */ 19738 if (stq == NULL) 19739 goto nullstq; 19740 19741 /* The ill_index for outbound ILL */ 19742 ill_index = Q_TO_INDEX(stq); 19743 19744 BUMP_MIB(&ip_mib, ipOutRequests); 19745 ttl_protocol = ((uint16_t *)ipha)[4]; 19746 19747 /* pseudo checksum (do it in parts for IP header checksum) */ 19748 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19749 19750 #define FRAGMENT_NEEDED(mtu, size) \ 19751 (((mtu) < (unsigned int)(size)) ? B_TRUE : B_FALSE) 19752 19753 #define IS_FASTPATH(ire, bp) \ 19754 ((ire)->ire_fp_mp != NULL && \ 19755 (MBLKHEAD((bp)) >= (MBLKL((ire)->ire_fp_mp)))) \ 19756 19757 #define IPH_UDPH_CHECKSUMP(ipha, hlen) \ 19758 ((uint16_t *)(((uchar_t *)ipha)+(hlen + UDP_CHECKSUM_OFFSET))) 19759 #define IPH_TCPH_CHECKSUMP(ipha, hlen) \ 19760 ((uint16_t *)(((uchar_t *)ipha)+(hlen+TCP_CHECKSUM_OFFSET))) 19761 19762 #define IP_CKSUM_XMIT(ill, ire, mp, up, proto, hlen, max_frag, \ 19763 ipsec_len) { \ 19764 uint32_t sum; \ 19765 uint32_t xmit_capab = HCKSUM_INET_FULL_V4 | \ 19766 HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM; \ 19767 boolean_t cksum_offload = B_FALSE; \ 19768 \ 19769 /* \ 19770 * The ire fp mp can change due to the arrival of a \ 19771 * DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST \ 19772 * and IRE_MIPRTUN. Hence the ire_fp_mp has to be accessed \ 19773 * only under the ire_lock in such cases. \ 19774 */ \ 19775 LOCK_IRE_FP_MP(ire); \ 19776 if ((ill) && (ill->ill_capabilities & ILL_CAPAB_HCKSUM) && \ 19777 (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19778 xmit_capab) && (!FRAGMENT_NEEDED(max_frag, \ 19779 (LENGTH + ipsec_len))) && (!(ire->ire_flags & \ 19780 RTF_MULTIRT)) && (ipsec_len == 0) && \ 19781 IS_FASTPATH((ire), (mp)) && (dohwcksum)) { \ 19782 /* \ 19783 * Underlying interface supports hardware checksumming. \ 19784 * So postpone the checksum to the interface driver \ 19785 */ \ 19786 \ 19787 if ((hlen) == IP_SIMPLE_HDR_LENGTH) { \ 19788 if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19789 HCKSUM_IPHDRCKSUM) { \ 19790 mp->b_datap->db_struioun.cksum.flags |= \ 19791 HCK_IPV4_HDRCKSUM; \ 19792 /* seed the cksum field to 0 */ \ 19793 ipha->ipha_hdr_checksum = 0; \ 19794 iphdrhwcksum = B_TRUE; \ 19795 } \ 19796 /* \ 19797 * If underlying h/w supports full h/w checksumming \ 19798 * and no IP options are present, then offload \ 19799 * full checksumming to the hardware. \ 19800 * \ 19801 * If h/w can do partial checksumming then offload \ 19802 * unless the startpoint offset, including mac-header, \ 19803 * is too big for the interface to some of our \ 19804 * hardware (CE and ERI) which have 6 bit fields. \ 19805 * Sigh. \ 19806 * Unhappily we don't have the mac-header size here \ 19807 * so punt for any options. \ 19808 */ \ 19809 if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19810 HCKSUM_INET_FULL_V4) { \ 19811 UNLOCK_IRE_FP_MP(ire); \ 19812 /* Seed the checksum field to 0 */ \ 19813 *up = 0; \ 19814 mp->b_datap->db_struioun.cksum.flags |= \ 19815 HCK_FULLCKSUM; \ 19816 cksum_offload = B_TRUE; \ 19817 } else if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19818 HCKSUM_INET_PARTIAL) { \ 19819 UNLOCK_IRE_FP_MP(ire); \ 19820 sum = *up + cksum + proto; \ 19821 sum = (sum & 0xFFFF) + (sum >> 16); \ 19822 *up = (sum & 0xFFFF) + (sum >> 16); \ 19823 /* \ 19824 * All offsets are relative to the beginning \ 19825 * of the IP header. \ 19826 */ \ 19827 mp->b_datap->db_cksumstart = hlen; \ 19828 mp->b_datap->db_cksumstuff = \ 19829 (PROTO == IPPROTO_UDP) ? \ 19830 (hlen) + UDP_CHECKSUM_OFFSET : \ 19831 (hlen) + TCP_CHECKSUM_OFFSET; \ 19832 mp->b_datap->db_cksumend = ipha->ipha_length; \ 19833 mp->b_datap->db_struioun.cksum.flags |= \ 19834 HCK_PARTIALCKSUM; \ 19835 cksum_offload = B_TRUE; \ 19836 } \ 19837 } \ 19838 } \ 19839 if (!cksum_offload) { \ 19840 UNLOCK_IRE_FP_MP(ire); \ 19841 IP_STAT(ip_out_sw_cksum); \ 19842 (sum) = IP_CSUM((mp), (hlen), cksum + proto); \ 19843 *(up) = (uint16_t)((sum) ? (sum) : ~(sum)); \ 19844 } \ 19845 } 19846 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 19847 queue_t *dev_q = stq->q_next; 19848 19849 /* flow controlled */ 19850 if ((dev_q->q_next || dev_q->q_first) && 19851 !canput(dev_q)) 19852 goto blocked; 19853 if ((PROTO == IPPROTO_UDP) && 19854 (ip_hdr_included != IP_HDR_INCLUDED)) { 19855 hlen = (V_HLEN & 0xF) << 2; 19856 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 19857 if (*up) { 19858 IP_CKSUM_XMIT(ill, ire, mp, up, 19859 IP_UDP_CSUM_COMP, hlen, max_frag, 19860 ipsec_len); 19861 } 19862 } 19863 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 19864 hlen = (V_HLEN & 0xF) << 2; 19865 if (PROTO == IPPROTO_TCP) { 19866 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 19867 /* 19868 * The packet header is processed once and for all, even 19869 * in the multirouting case. We disable hardware 19870 * checksum if the packet is multirouted, as it will be 19871 * replicated via several interfaces, and not all of 19872 * them may have this capability. 19873 */ 19874 IP_CKSUM_XMIT(ill, ire, mp, up, 19875 IP_TCP_CSUM_COMP, hlen, max_frag, ipsec_len); 19876 } else { 19877 sctp_hdr_t *sctph; 19878 19879 ASSERT(PROTO == IPPROTO_SCTP); 19880 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 19881 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 19882 /* 19883 * Zero out the checksum field to ensure proper 19884 * checksum calculation. 19885 */ 19886 sctph->sh_chksum = 0; 19887 #ifdef DEBUG 19888 if (!skip_sctp_cksum) 19889 #endif 19890 sctph->sh_chksum = sctp_cksum(mp, hlen); 19891 } 19892 } 19893 19894 /* 19895 * If this is a multicast packet and originated from ip_wput 19896 * we need to do loopback and forwarding checks. If it comes 19897 * from ip_wput_multicast, we SHOULD not do this. 19898 */ 19899 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 19900 19901 /* checksum */ 19902 cksum += ttl_protocol; 19903 19904 /* fragment the packet */ 19905 if (FRAGMENT_NEEDED(max_frag, (LENGTH + ipsec_len))) 19906 goto fragmentit; 19907 /* 19908 * Don't use frag_flag if packet is pre-built or source 19909 * routed or if multicast (since multicast packets do 19910 * not solicit ICMP "packet too big" messages). 19911 */ 19912 if ((ip_hdr_included != IP_HDR_INCLUDED) && 19913 (V_HLEN == IP_SIMPLE_HDR_VERSION || 19914 !ip_source_route_included(ipha)) && 19915 !CLASSD(ipha->ipha_dst)) 19916 ipha->ipha_fragment_offset_and_flags |= 19917 htons(ire->ire_frag_flag); 19918 19919 if (!iphdrhwcksum) { 19920 /* checksum */ 19921 cksum += ipha->ipha_ident; 19922 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 19923 cksum += ipha->ipha_fragment_offset_and_flags; 19924 19925 /* IP options present */ 19926 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 19927 if (hlen) 19928 goto checksumoptions; 19929 19930 /* calculate hdr checksum */ 19931 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 19932 cksum = ~(cksum + (cksum >> 16)); 19933 ipha->ipha_hdr_checksum = (uint16_t)cksum; 19934 } 19935 if (ipsec_len != 0) { 19936 /* 19937 * We will do the rest of the processing after 19938 * we come back from IPSEC in ip_wput_ipsec_out(). 19939 */ 19940 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 19941 19942 io = (ipsec_out_t *)first_mp->b_rptr; 19943 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 19944 ill_phyint->phyint_ifindex; 19945 19946 ipsec_out_process(q, first_mp, ire, ill_index); 19947 ire_refrele(ire); 19948 if (conn_outgoing_ill != NULL) 19949 ill_refrele(conn_outgoing_ill); 19950 return; 19951 } 19952 19953 /* 19954 * In most cases, the emission loop below is entered only 19955 * once. Only in the case where the ire holds the 19956 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 19957 * flagged ires in the bucket, and send the packet 19958 * through all crossed RTF_MULTIRT routes. 19959 */ 19960 if (ire->ire_flags & RTF_MULTIRT) { 19961 multirt_send = B_TRUE; 19962 } 19963 do { 19964 if (multirt_send) { 19965 irb_t *irb; 19966 /* 19967 * We are in a multiple send case, need to get 19968 * the next ire and make a duplicate of the packet. 19969 * ire1 holds here the next ire to process in the 19970 * bucket. If multirouting is expected, 19971 * any non-RTF_MULTIRT ire that has the 19972 * right destination address is ignored. 19973 */ 19974 irb = ire->ire_bucket; 19975 ASSERT(irb != NULL); 19976 19977 IRB_REFHOLD(irb); 19978 for (ire1 = ire->ire_next; 19979 ire1 != NULL; 19980 ire1 = ire1->ire_next) { 19981 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 19982 continue; 19983 if (ire1->ire_addr != ire->ire_addr) 19984 continue; 19985 if (ire1->ire_marks & 19986 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 19987 continue; 19988 19989 /* Got one */ 19990 IRE_REFHOLD(ire1); 19991 break; 19992 } 19993 IRB_REFRELE(irb); 19994 19995 if (ire1 != NULL) { 19996 next_mp = copyb(mp); 19997 if ((next_mp == NULL) || 19998 ((mp->b_cont != NULL) && 19999 ((next_mp->b_cont = 20000 dupmsg(mp->b_cont)) == NULL))) { 20001 freemsg(next_mp); 20002 next_mp = NULL; 20003 ire_refrele(ire1); 20004 ire1 = NULL; 20005 } 20006 } 20007 20008 /* Last multiroute ire; don't loop anymore. */ 20009 if (ire1 == NULL) { 20010 multirt_send = B_FALSE; 20011 } 20012 } 20013 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 20014 if (mp == NULL) { 20015 BUMP_MIB(&ip_mib, ipOutDiscards); 20016 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 20017 "during IPPF processing\n")); 20018 ire_refrele(ire); 20019 if (next_mp != NULL) { 20020 freemsg(next_mp); 20021 ire_refrele(ire1); 20022 } 20023 if (conn_outgoing_ill != NULL) 20024 ill_refrele(conn_outgoing_ill); 20025 return; 20026 } 20027 UPDATE_OB_PKT_COUNT(ire); 20028 ire->ire_last_used_time = lbolt; 20029 20030 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20031 "ip_wput_ire_end: q %p (%S)", 20032 q, "last copy out"); 20033 putnext(stq, mp); 20034 IRE_REFRELE(ire); 20035 20036 if (multirt_send) { 20037 ASSERT(ire1); 20038 /* 20039 * Proceed with the next RTF_MULTIRT ire, 20040 * Also set up the send-to queue accordingly. 20041 */ 20042 ire = ire1; 20043 ire1 = NULL; 20044 stq = ire->ire_stq; 20045 mp = next_mp; 20046 next_mp = NULL; 20047 ipha = (ipha_t *)mp->b_rptr; 20048 ill_index = Q_TO_INDEX(stq); 20049 } 20050 } while (multirt_send); 20051 if (conn_outgoing_ill != NULL) 20052 ill_refrele(conn_outgoing_ill); 20053 return; 20054 20055 /* 20056 * ire->ire_type == IRE_BROADCAST (minimize diffs) 20057 */ 20058 broadcast: 20059 { 20060 /* 20061 * Avoid broadcast storms by setting the ttl to 1 20062 * for broadcasts. This parameter can be set 20063 * via ndd, so make sure that for the SO_DONTROUTE 20064 * case that ipha_ttl is always set to 1. 20065 * In the event that we are replying to incoming 20066 * ICMP packets, conn could be NULL. 20067 */ 20068 if ((connp != NULL) && connp->conn_dontroute) 20069 ipha->ipha_ttl = 1; 20070 else 20071 ipha->ipha_ttl = ip_broadcast_ttl; 20072 20073 /* 20074 * Note that we are not doing a IRB_REFHOLD here. 20075 * Actually we don't care if the list changes i.e 20076 * if somebody deletes an IRE from the list while 20077 * we drop the lock, the next time we come around 20078 * ire_next will be NULL and hence we won't send 20079 * out multiple copies which is fine. 20080 */ 20081 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20082 ire1 = ire->ire_next; 20083 if (conn_outgoing_ill != NULL) { 20084 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 20085 ASSERT(ire1 == ire->ire_next); 20086 if (ire1 != NULL && ire1->ire_addr == dst) { 20087 ire_refrele(ire); 20088 ire = ire1; 20089 IRE_REFHOLD(ire); 20090 ire1 = ire->ire_next; 20091 continue; 20092 } 20093 rw_exit(&ire->ire_bucket->irb_lock); 20094 /* Did not find a matching ill */ 20095 ip1dbg(("ip_wput_ire: broadcast with no " 20096 "matching IP_BOUND_IF ill %s\n", 20097 conn_outgoing_ill->ill_name)); 20098 freemsg(first_mp); 20099 if (ire != NULL) 20100 ire_refrele(ire); 20101 ill_refrele(conn_outgoing_ill); 20102 return; 20103 } 20104 } else if (ire1 != NULL && ire1->ire_addr == dst) { 20105 /* 20106 * If the next IRE has the same address and is not one 20107 * of the two copies that we need to send, try to see 20108 * whether this copy should be sent at all. This 20109 * assumes that we insert loopbacks first and then 20110 * non-loopbacks. This is acheived by inserting the 20111 * loopback always before non-loopback. 20112 * This is used to send a single copy of a broadcast 20113 * packet out all physical interfaces that have an 20114 * matching IRE_BROADCAST while also looping 20115 * back one copy (to ip_wput_local) for each 20116 * matching physical interface. However, we avoid 20117 * sending packets out different logical that match by 20118 * having ipif_up/ipif_down supress duplicate 20119 * IRE_BROADCASTS. 20120 * 20121 * This feature is currently used to get broadcasts 20122 * sent to multiple interfaces, when the broadcast 20123 * address being used applies to multiple interfaces. 20124 * For example, a whole net broadcast will be 20125 * replicated on every connected subnet of 20126 * the target net. 20127 * 20128 * Each zone has its own set of IRE_BROADCASTs, so that 20129 * we're able to distribute inbound packets to multiple 20130 * zones who share a broadcast address. We avoid looping 20131 * back outbound packets in different zones but on the 20132 * same ill, as the application would see duplicates. 20133 * 20134 * If the interfaces are part of the same group, 20135 * we would want to send only one copy out for 20136 * whole group. 20137 * 20138 * This logic assumes that ire_add_v4() groups the 20139 * IRE_BROADCAST entries so that those with the same 20140 * ire_addr and ill_group are kept together. 20141 */ 20142 ire_ill = ire->ire_ipif->ipif_ill; 20143 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 20144 if (ire_ill->ill_group != NULL && 20145 (ire->ire_marks & IRE_MARK_NORECV)) { 20146 /* 20147 * If the current zone only has an ire 20148 * broadcast for this address marked 20149 * NORECV, the ire we want is ahead in 20150 * the bucket, so we look it up 20151 * deliberately ignoring the zoneid. 20152 */ 20153 for (ire1 = ire->ire_bucket->irb_ire; 20154 ire1 != NULL; 20155 ire1 = ire1->ire_next) { 20156 ire1_ill = 20157 ire1->ire_ipif->ipif_ill; 20158 if (ire1->ire_addr != dst) 20159 continue; 20160 /* skip over the current ire */ 20161 if (ire1 == ire) 20162 continue; 20163 /* skip over deleted ires */ 20164 if (ire1->ire_marks & 20165 IRE_MARK_CONDEMNED) 20166 continue; 20167 /* 20168 * non-loopback ire in our 20169 * group: use it for the next 20170 * pass in the loop 20171 */ 20172 if (ire1->ire_stq != NULL && 20173 ire1_ill->ill_group == 20174 ire_ill->ill_group) 20175 break; 20176 } 20177 } 20178 } else { 20179 while (ire1 != NULL && ire1->ire_addr == dst) { 20180 ire1_ill = ire1->ire_ipif->ipif_ill; 20181 /* 20182 * We can have two broadcast ires on the 20183 * same ill in different zones; here 20184 * we'll send a copy of the packet on 20185 * each ill and the fanout code will 20186 * call conn_wantpacket() to check that 20187 * the zone has the broadcast address 20188 * configured on the ill. If the two 20189 * ires are in the same group we only 20190 * send one copy up. 20191 */ 20192 if (ire1_ill != ire_ill && 20193 (ire1_ill->ill_group == NULL || 20194 ire_ill->ill_group == NULL || 20195 ire1_ill->ill_group != 20196 ire_ill->ill_group)) { 20197 break; 20198 } 20199 ire1 = ire1->ire_next; 20200 } 20201 } 20202 } 20203 ASSERT(multirt_send == B_FALSE); 20204 if (ire1 != NULL && ire1->ire_addr == dst) { 20205 if ((ire->ire_flags & RTF_MULTIRT) && 20206 (ire1->ire_flags & RTF_MULTIRT)) { 20207 /* 20208 * We are in the multirouting case. 20209 * The message must be sent at least 20210 * on both ires. These ires have been 20211 * inserted AFTER the standard ones 20212 * in ip_rt_add(). There are thus no 20213 * other ire entries for the destination 20214 * address in the rest of the bucket 20215 * that do not have the RTF_MULTIRT 20216 * flag. We don't process a copy 20217 * of the message here. This will be 20218 * done in the final sending loop. 20219 */ 20220 multirt_send = B_TRUE; 20221 } else { 20222 next_mp = ip_copymsg(first_mp); 20223 if (next_mp != NULL) 20224 IRE_REFHOLD(ire1); 20225 } 20226 } 20227 rw_exit(&ire->ire_bucket->irb_lock); 20228 } 20229 20230 if (stq) { 20231 /* 20232 * A non-NULL send-to queue means this packet is going 20233 * out of this machine. 20234 */ 20235 20236 BUMP_MIB(&ip_mib, ipOutRequests); 20237 ttl_protocol = ((uint16_t *)ipha)[4]; 20238 /* 20239 * We accumulate the pseudo header checksum in cksum. 20240 * This is pretty hairy code, so watch close. One 20241 * thing to keep in mind is that UDP and TCP have 20242 * stored their respective datagram lengths in their 20243 * checksum fields. This lines things up real nice. 20244 */ 20245 cksum = (dst >> 16) + (dst & 0xFFFF) + 20246 (src >> 16) + (src & 0xFFFF); 20247 /* 20248 * We assume the udp checksum field contains the 20249 * length, so to compute the pseudo header checksum, 20250 * all we need is the protocol number and src/dst. 20251 */ 20252 /* Provide the checksums for UDP and TCP. */ 20253 if ((PROTO == IPPROTO_TCP) && 20254 (ip_hdr_included != IP_HDR_INCLUDED)) { 20255 /* hlen gets the number of uchar_ts in the IP header */ 20256 hlen = (V_HLEN & 0xF) << 2; 20257 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20258 IP_STAT(ip_out_sw_cksum); 20259 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 20260 } else if (PROTO == IPPROTO_SCTP && 20261 (ip_hdr_included != IP_HDR_INCLUDED)) { 20262 sctp_hdr_t *sctph; 20263 20264 hlen = (V_HLEN & 0xF) << 2; 20265 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20266 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20267 sctph->sh_chksum = 0; 20268 #ifdef DEBUG 20269 if (!skip_sctp_cksum) 20270 #endif 20271 sctph->sh_chksum = sctp_cksum(mp, hlen); 20272 } else { 20273 queue_t *dev_q = stq->q_next; 20274 20275 if ((dev_q->q_next || dev_q->q_first) && 20276 !canput(dev_q)) { 20277 blocked: 20278 ipha->ipha_ident = ip_hdr_included; 20279 /* 20280 * If we don't have a conn to apply 20281 * backpressure, free the message. 20282 * In the ire_send path, we don't know 20283 * the position to requeue the packet. Rather 20284 * than reorder packets, we just drop this 20285 * packet. 20286 */ 20287 if (ip_output_queue && connp != NULL && 20288 caller != IRE_SEND) { 20289 if (caller == IP_WSRV) { 20290 connp->conn_did_putbq = 1; 20291 (void) putbq(connp->conn_wq, 20292 first_mp); 20293 conn_drain_insert(connp); 20294 /* 20295 * This is the service thread, 20296 * and the queue is already 20297 * noenabled. The check for 20298 * canput and the putbq is not 20299 * atomic. So we need to check 20300 * again. 20301 */ 20302 if (canput(stq->q_next)) 20303 connp->conn_did_putbq 20304 = 0; 20305 IP_STAT(ip_conn_flputbq); 20306 } else { 20307 /* 20308 * We are not the service proc. 20309 * ip_wsrv will be scheduled or 20310 * is already running. 20311 */ 20312 (void) putq(connp->conn_wq, 20313 first_mp); 20314 } 20315 } else { 20316 BUMP_MIB(&ip_mib, ipOutDiscards); 20317 freemsg(first_mp); 20318 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20319 "ip_wput_ire_end: q %p (%S)", 20320 q, "discard"); 20321 } 20322 ire_refrele(ire); 20323 if (next_mp) { 20324 ire_refrele(ire1); 20325 freemsg(next_mp); 20326 } 20327 if (conn_outgoing_ill != NULL) 20328 ill_refrele(conn_outgoing_ill); 20329 return; 20330 } 20331 if ((PROTO == IPPROTO_UDP) && 20332 (ip_hdr_included != IP_HDR_INCLUDED)) { 20333 /* 20334 * hlen gets the number of uchar_ts in the 20335 * IP header 20336 */ 20337 hlen = (V_HLEN & 0xF) << 2; 20338 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20339 if (*up) { 20340 uint_t sum; 20341 20342 /* 20343 * NOTE: watch out for compiler high 20344 * bits 20345 */ 20346 IP_STAT(ip_out_sw_cksum); 20347 sum = IP_CSUM(mp, hlen, 20348 cksum + IP_UDP_CSUM_COMP); 20349 *up = (uint16_t)(sum ? sum : ~sum); 20350 } 20351 } 20352 } 20353 /* 20354 * Need to do this even when fragmenting. The local 20355 * loopback can be done without computing checksums 20356 * but forwarding out other interface must be done 20357 * after the IP checksum (and ULP checksums) have been 20358 * computed. 20359 * 20360 * NOTE : multicast_forward is set only if this packet 20361 * originated from ip_wput. For packets originating from 20362 * ip_wput_multicast, it is not set. 20363 */ 20364 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 20365 multi_loopback: 20366 ip2dbg(("ip_wput: multicast, loop %d\n", 20367 conn_multicast_loop)); 20368 20369 /* Forget header checksum offload */ 20370 mp->b_datap->db_struioun.cksum.flags &= 20371 ~HCK_IPV4_HDRCKSUM; 20372 iphdrhwcksum = B_FALSE; 20373 20374 /* 20375 * Local loopback of multicasts? Check the 20376 * ill. 20377 * 20378 * Note that the loopback function will not come 20379 * in through ip_rput - it will only do the 20380 * client fanout thus we need to do an mforward 20381 * as well. The is different from the BSD 20382 * logic. 20383 */ 20384 if (ill != NULL) { 20385 ilm_t *ilm; 20386 20387 ILM_WALKER_HOLD(ill); 20388 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 20389 ALL_ZONES); 20390 ILM_WALKER_RELE(ill); 20391 if (ilm != NULL) { 20392 /* 20393 * Pass along the virtual output q. 20394 * ip_wput_local() will distribute the 20395 * packet to all the matching zones, 20396 * except the sending zone when 20397 * IP_MULTICAST_LOOP is false. 20398 */ 20399 ip_multicast_loopback(q, ill, first_mp, 20400 conn_multicast_loop ? 0 : 20401 IP_FF_NO_MCAST_LOOP, zoneid); 20402 } 20403 } 20404 if (ipha->ipha_ttl == 0) { 20405 /* 20406 * 0 => only to this host i.e. we are 20407 * done. We are also done if this was the 20408 * loopback interface since it is sufficient 20409 * to loopback one copy of a multicast packet. 20410 */ 20411 freemsg(first_mp); 20412 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20413 "ip_wput_ire_end: q %p (%S)", 20414 q, "loopback"); 20415 ire_refrele(ire); 20416 if (conn_outgoing_ill != NULL) 20417 ill_refrele(conn_outgoing_ill); 20418 return; 20419 } 20420 /* 20421 * ILLF_MULTICAST is checked in ip_newroute 20422 * i.e. we don't need to check it here since 20423 * all IRE_CACHEs come from ip_newroute. 20424 * For multicast traffic, SO_DONTROUTE is interpreted 20425 * to mean only send the packet out the interface 20426 * (optionally specified with IP_MULTICAST_IF) 20427 * and do not forward it out additional interfaces. 20428 * RSVP and the rsvp daemon is an example of a 20429 * protocol and user level process that 20430 * handles it's own routing. Hence, it uses the 20431 * SO_DONTROUTE option to accomplish this. 20432 */ 20433 20434 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 20435 /* Unconditionally redo the checksum */ 20436 ipha->ipha_hdr_checksum = 0; 20437 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 20438 20439 /* 20440 * If this needs to go out secure, we need 20441 * to wait till we finish the IPSEC 20442 * processing. 20443 */ 20444 if (ipsec_len == 0 && 20445 ip_mforward(ill, ipha, mp)) { 20446 freemsg(first_mp); 20447 ip1dbg(("ip_wput: mforward failed\n")); 20448 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20449 "ip_wput_ire_end: q %p (%S)", 20450 q, "mforward failed"); 20451 ire_refrele(ire); 20452 if (conn_outgoing_ill != NULL) 20453 ill_refrele(conn_outgoing_ill); 20454 return; 20455 } 20456 } 20457 } 20458 max_frag = ire->ire_max_frag; 20459 cksum += ttl_protocol; 20460 if (!FRAGMENT_NEEDED(max_frag, (LENGTH + ipsec_len))) { 20461 /* No fragmentation required for this one. */ 20462 /* Complete the IP header checksum. */ 20463 cksum += ipha->ipha_ident; 20464 /* 20465 * Don't use frag_flag if packet is pre-built or source 20466 * routed or if multicast (since multicast packets do 20467 * not solicit ICMP "packet too big" messages). 20468 */ 20469 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20470 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20471 !ip_source_route_included(ipha)) && 20472 !CLASSD(ipha->ipha_dst)) 20473 ipha->ipha_fragment_offset_and_flags |= 20474 htons(ire->ire_frag_flag); 20475 20476 cksum += (v_hlen_tos_len >> 16)+ 20477 (v_hlen_tos_len & 0xFFFF); 20478 cksum += ipha->ipha_fragment_offset_and_flags; 20479 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20480 if (hlen) { 20481 checksumoptions: 20482 /* 20483 * Account for the IP Options in the IP 20484 * header checksum. 20485 */ 20486 up = (uint16_t *)(rptr+IP_SIMPLE_HDR_LENGTH); 20487 do { 20488 cksum += up[0]; 20489 cksum += up[1]; 20490 up += 2; 20491 } while (--hlen); 20492 } 20493 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20494 cksum = ~(cksum + (cksum >> 16)); 20495 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20496 if (ipsec_len != 0) { 20497 ipsec_out_process(q, first_mp, ire, ill_index); 20498 if (!next_mp) { 20499 ire_refrele(ire); 20500 if (conn_outgoing_ill != NULL) 20501 ill_refrele(conn_outgoing_ill); 20502 return; 20503 } 20504 goto next; 20505 } 20506 20507 /* 20508 * multirt_send has already been handled 20509 * for broadcast, but not yet for multicast 20510 * or IP options. 20511 */ 20512 if (next_mp == NULL) { 20513 if (ire->ire_flags & RTF_MULTIRT) { 20514 multirt_send = B_TRUE; 20515 } 20516 } 20517 20518 /* 20519 * In most cases, the emission loop below is 20520 * entered only once. Only in the case where 20521 * the ire holds the RTF_MULTIRT flag, do we loop 20522 * to process all RTF_MULTIRT ires in the bucket, 20523 * and send the packet through all crossed 20524 * RTF_MULTIRT routes. 20525 */ 20526 do { 20527 if (multirt_send) { 20528 irb_t *irb; 20529 20530 irb = ire->ire_bucket; 20531 ASSERT(irb != NULL); 20532 /* 20533 * We are in a multiple send case, 20534 * need to get the next IRE and make 20535 * a duplicate of the packet. 20536 */ 20537 IRB_REFHOLD(irb); 20538 for (ire1 = ire->ire_next; 20539 ire1 != NULL; 20540 ire1 = ire1->ire_next) { 20541 if (!(ire1->ire_flags & 20542 RTF_MULTIRT)) 20543 continue; 20544 if (ire1->ire_addr != 20545 ire->ire_addr) 20546 continue; 20547 if (ire1->ire_marks & 20548 (IRE_MARK_CONDEMNED| 20549 IRE_MARK_HIDDEN)) 20550 continue; 20551 20552 /* Got one */ 20553 IRE_REFHOLD(ire1); 20554 break; 20555 } 20556 IRB_REFRELE(irb); 20557 20558 if (ire1 != NULL) { 20559 next_mp = copyb(mp); 20560 if ((next_mp == NULL) || 20561 ((mp->b_cont != NULL) && 20562 ((next_mp->b_cont = 20563 dupmsg(mp->b_cont)) 20564 == NULL))) { 20565 freemsg(next_mp); 20566 next_mp = NULL; 20567 ire_refrele(ire1); 20568 ire1 = NULL; 20569 } 20570 } 20571 20572 /* 20573 * Last multiroute ire; don't loop 20574 * anymore. The emission is over 20575 * and next_mp is NULL. 20576 */ 20577 if (ire1 == NULL) { 20578 multirt_send = B_FALSE; 20579 } 20580 } 20581 20582 noprepend: 20583 ASSERT(ipsec_len == 0); 20584 mp1 = ip_wput_attach_llhdr(mp, ire, 20585 IPP_LOCAL_OUT, ill_index); 20586 if (mp1 == NULL) { 20587 BUMP_MIB(&ip_mib, ipOutDiscards); 20588 if (next_mp) { 20589 freemsg(next_mp); 20590 ire_refrele(ire1); 20591 } 20592 ire_refrele(ire); 20593 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20594 "ip_wput_ire_end: q %p (%S)", 20595 q, "discard MDATA"); 20596 if (conn_outgoing_ill != NULL) 20597 ill_refrele(conn_outgoing_ill); 20598 return; 20599 } 20600 UPDATE_OB_PKT_COUNT(ire); 20601 ire->ire_last_used_time = lbolt; 20602 20603 if (multirt_send) { 20604 /* 20605 * We are in a multiple send case, 20606 * need to re-enter the sending loop 20607 * using the next ire. 20608 */ 20609 putnext(stq, mp1); 20610 ire_refrele(ire); 20611 ire = ire1; 20612 stq = ire->ire_stq; 20613 mp = next_mp; 20614 next_mp = NULL; 20615 ipha = (ipha_t *)mp->b_rptr; 20616 ill_index = Q_TO_INDEX(stq); 20617 } 20618 } while (multirt_send); 20619 20620 if (!next_mp) { 20621 /* 20622 * Last copy going out (the ultra-common 20623 * case). Note that we intentionally replicate 20624 * the putnext rather than calling it before 20625 * the next_mp check in hopes of a little 20626 * tail-call action out of the compiler. 20627 */ 20628 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20629 "ip_wput_ire_end: q %p (%S)", 20630 q, "last copy out(1)"); 20631 putnext(stq, mp1); 20632 ire_refrele(ire); 20633 if (conn_outgoing_ill != NULL) 20634 ill_refrele(conn_outgoing_ill); 20635 return; 20636 } 20637 /* More copies going out below. */ 20638 putnext(stq, mp1); 20639 } else { 20640 int offset; 20641 fragmentit: 20642 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 20643 /* 20644 * If this would generate a icmp_frag_needed message, 20645 * we need to handle it before we do the IPSEC 20646 * processing. Otherwise, we need to strip the IPSEC 20647 * headers before we send up the message to the ULPs 20648 * which becomes messy and difficult. 20649 */ 20650 if (ipsec_len != 0) { 20651 if ((max_frag < (unsigned int)(LENGTH + 20652 ipsec_len)) && (offset & IPH_DF)) { 20653 20654 BUMP_MIB(&ip_mib, ipFragFails); 20655 ipha->ipha_hdr_checksum = 0; 20656 ipha->ipha_hdr_checksum = 20657 (uint16_t)ip_csum_hdr(ipha); 20658 icmp_frag_needed(ire->ire_stq, first_mp, 20659 max_frag); 20660 if (!next_mp) { 20661 ire_refrele(ire); 20662 if (conn_outgoing_ill != NULL) { 20663 ill_refrele( 20664 conn_outgoing_ill); 20665 } 20666 return; 20667 } 20668 } else { 20669 /* 20670 * This won't cause a icmp_frag_needed 20671 * message. to be gnerated. Send it on 20672 * the wire. Note that this could still 20673 * cause fragmentation and all we 20674 * do is the generation of the message 20675 * to the ULP if needed before IPSEC. 20676 */ 20677 if (!next_mp) { 20678 ipsec_out_process(q, first_mp, 20679 ire, ill_index); 20680 TRACE_2(TR_FAC_IP, 20681 TR_IP_WPUT_IRE_END, 20682 "ip_wput_ire_end: q %p " 20683 "(%S)", q, 20684 "last ipsec_out_process"); 20685 ire_refrele(ire); 20686 if (conn_outgoing_ill != NULL) { 20687 ill_refrele( 20688 conn_outgoing_ill); 20689 } 20690 return; 20691 } 20692 ipsec_out_process(q, first_mp, 20693 ire, ill_index); 20694 } 20695 } else { 20696 /* Initiate IPPF processing */ 20697 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20698 ip_process(IPP_LOCAL_OUT, &mp, 20699 ill_index); 20700 if (mp == NULL) { 20701 BUMP_MIB(&ip_mib, 20702 ipOutDiscards); 20703 if (next_mp != NULL) { 20704 freemsg(next_mp); 20705 ire_refrele(ire1); 20706 } 20707 ire_refrele(ire); 20708 TRACE_2(TR_FAC_IP, 20709 TR_IP_WPUT_IRE_END, 20710 "ip_wput_ire: q %p (%S)", 20711 q, "discard MDATA"); 20712 if (conn_outgoing_ill != NULL) { 20713 ill_refrele( 20714 conn_outgoing_ill); 20715 } 20716 return; 20717 } 20718 } 20719 if (!next_mp) { 20720 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20721 "ip_wput_ire_end: q %p (%S)", 20722 q, "last fragmentation"); 20723 ip_wput_ire_fragmentit(mp, ire); 20724 ire_refrele(ire); 20725 if (conn_outgoing_ill != NULL) 20726 ill_refrele(conn_outgoing_ill); 20727 return; 20728 } 20729 ip_wput_ire_fragmentit(mp, ire); 20730 } 20731 } 20732 } else { 20733 nullstq: 20734 /* A NULL stq means the destination address is local. */ 20735 UPDATE_OB_PKT_COUNT(ire); 20736 ire->ire_last_used_time = lbolt; 20737 ASSERT(ire->ire_ipif != NULL); 20738 if (!next_mp) { 20739 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20740 "ip_wput_ire_end: q %p (%S)", 20741 q, "local address"); 20742 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 20743 first_mp, ire, 0, ire->ire_zoneid); 20744 ire_refrele(ire); 20745 if (conn_outgoing_ill != NULL) 20746 ill_refrele(conn_outgoing_ill); 20747 return; 20748 } 20749 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 20750 ire, 0, ire->ire_zoneid); 20751 } 20752 next: 20753 /* 20754 * More copies going out to additional interfaces. 20755 * ire1 has already been held. We don't need the 20756 * "ire" anymore. 20757 */ 20758 ire_refrele(ire); 20759 ire = ire1; 20760 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 20761 mp = next_mp; 20762 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20763 ill = ire_to_ill(ire); 20764 first_mp = mp; 20765 if (ipsec_len != 0) { 20766 ASSERT(first_mp->b_datap->db_type == M_CTL); 20767 mp = mp->b_cont; 20768 } 20769 dst = ire->ire_addr; 20770 ipha = (ipha_t *)mp->b_rptr; 20771 /* 20772 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 20773 * Restore ipha_ident "no checksum" flag. 20774 */ 20775 src = orig_src; 20776 ipha->ipha_ident = ip_hdr_included; 20777 goto another; 20778 20779 #undef rptr 20780 #undef Q_TO_INDEX 20781 } 20782 20783 /* 20784 * Routine to allocate a message that is used to notify the ULP about MDT. 20785 * The caller may provide a pointer to the link-layer MDT capabilities, 20786 * or NULL if MDT is to be disabled on the stream. 20787 */ 20788 mblk_t * 20789 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 20790 { 20791 mblk_t *mp; 20792 ip_mdt_info_t *mdti; 20793 ill_mdt_capab_t *idst; 20794 20795 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 20796 DB_TYPE(mp) = M_CTL; 20797 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 20798 mdti = (ip_mdt_info_t *)mp->b_rptr; 20799 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 20800 idst = &(mdti->mdt_capab); 20801 20802 /* 20803 * If the caller provides us with the capability, copy 20804 * it over into our notification message; otherwise 20805 * we zero out the capability portion. 20806 */ 20807 if (isrc != NULL) 20808 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 20809 else 20810 bzero((caddr_t)idst, sizeof (*idst)); 20811 } 20812 return (mp); 20813 } 20814 20815 /* 20816 * Routine which determines whether MDT can be enabled on the destination 20817 * IRE and IPC combination, and if so, allocates and returns the MDT 20818 * notification mblk that may be used by ULP. We also check if we need to 20819 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 20820 * MDT usage in the past have been lifted. This gets called during IP 20821 * and ULP binding. 20822 */ 20823 mblk_t * 20824 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 20825 ill_mdt_capab_t *mdt_cap) 20826 { 20827 mblk_t *mp; 20828 boolean_t rc = B_FALSE; 20829 20830 ASSERT(dst_ire != NULL); 20831 ASSERT(connp != NULL); 20832 ASSERT(mdt_cap != NULL); 20833 20834 /* 20835 * Currently, we only support simple TCP/{IPv4,IPv6} with 20836 * Multidata, which is handled in tcp_multisend(). This 20837 * is the reason why we do all these checks here, to ensure 20838 * that we don't enable Multidata for the cases which we 20839 * can't handle at the moment. 20840 */ 20841 do { 20842 /* Only do TCP at the moment */ 20843 if (connp->conn_ulp != IPPROTO_TCP) 20844 break; 20845 20846 /* 20847 * IPSEC outbound policy present? Note that we get here 20848 * after calling ipsec_conn_cache_policy() where the global 20849 * policy checking is performed. conn_latch will be 20850 * non-NULL as long as there's a policy defined, 20851 * i.e. conn_out_enforce_policy may be NULL in such case 20852 * when the connection is non-secure, and hence we check 20853 * further if the latch refers to an outbound policy. 20854 */ 20855 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 20856 break; 20857 20858 /* CGTP (multiroute) is enabled? */ 20859 if (dst_ire->ire_flags & RTF_MULTIRT) 20860 break; 20861 20862 /* Outbound IPQoS enabled? */ 20863 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20864 /* 20865 * In this case, we disable MDT for this and all 20866 * future connections going over the interface. 20867 */ 20868 mdt_cap->ill_mdt_on = 0; 20869 break; 20870 } 20871 20872 /* socket option(s) present? */ 20873 if (!CONN_IS_MD_FASTPATH(connp)) 20874 break; 20875 20876 rc = B_TRUE; 20877 /* CONSTCOND */ 20878 } while (0); 20879 20880 /* Remember the result */ 20881 connp->conn_mdt_ok = rc; 20882 20883 if (!rc) 20884 return (NULL); 20885 else if (!mdt_cap->ill_mdt_on) { 20886 /* 20887 * If MDT has been previously turned off in the past, and we 20888 * currently can do MDT (due to IPQoS policy removal, etc.) 20889 * then enable it for this interface. 20890 */ 20891 mdt_cap->ill_mdt_on = 1; 20892 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 20893 "interface %s\n", ill_name)); 20894 } 20895 20896 /* Allocate the MDT info mblk */ 20897 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 20898 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 20899 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 20900 return (NULL); 20901 } 20902 return (mp); 20903 } 20904 20905 /* 20906 * Create destination address attribute, and fill it with the physical 20907 * destination address and SAP taken from the template DL_UNITDATA_REQ 20908 * message block. 20909 */ 20910 boolean_t 20911 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 20912 { 20913 dl_unitdata_req_t *dlurp; 20914 pattr_t *pa; 20915 pattrinfo_t pa_info; 20916 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 20917 uint_t das_len, das_off; 20918 20919 ASSERT(dlmp != NULL); 20920 20921 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 20922 das_len = dlurp->dl_dest_addr_length; 20923 das_off = dlurp->dl_dest_addr_offset; 20924 20925 pa_info.type = PATTR_DSTADDRSAP; 20926 pa_info.len = sizeof (**das) + das_len - 1; 20927 20928 /* create and associate the attribute */ 20929 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20930 if (pa != NULL) { 20931 ASSERT(*das != NULL); 20932 (*das)->addr_is_group = 0; 20933 (*das)->addr_len = (uint8_t)das_len; 20934 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 20935 } 20936 20937 return (pa != NULL); 20938 } 20939 20940 /* 20941 * Create hardware checksum attribute and fill it with the values passed. 20942 */ 20943 boolean_t 20944 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 20945 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 20946 { 20947 pattr_t *pa; 20948 pattrinfo_t pa_info; 20949 20950 ASSERT(mmd != NULL); 20951 20952 pa_info.type = PATTR_HCKSUM; 20953 pa_info.len = sizeof (pattr_hcksum_t); 20954 20955 /* create and associate the attribute */ 20956 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20957 if (pa != NULL) { 20958 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 20959 20960 hck->hcksum_start_offset = start_offset; 20961 hck->hcksum_stuff_offset = stuff_offset; 20962 hck->hcksum_end_offset = end_offset; 20963 hck->hcksum_flags = flags; 20964 } 20965 return (pa != NULL); 20966 } 20967 20968 /* 20969 * Create zerocopy attribute and fill it with the specified flags 20970 */ 20971 boolean_t 20972 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 20973 { 20974 pattr_t *pa; 20975 pattrinfo_t pa_info; 20976 20977 ASSERT(mmd != NULL); 20978 pa_info.type = PATTR_ZCOPY; 20979 pa_info.len = sizeof (pattr_zcopy_t); 20980 20981 /* create and associate the attribute */ 20982 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20983 if (pa != NULL) { 20984 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 20985 20986 zcopy->zcopy_flags = flags; 20987 } 20988 return (pa != NULL); 20989 } 20990 20991 /* 20992 * Outbound IP fragmentation routine. 20993 * 20994 * NOTE : This routine does not ire_refrele the ire that is passed in 20995 * as the argument. 20996 */ 20997 static void 20998 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 20999 uint32_t frag_flag) 21000 { 21001 int i1; 21002 mblk_t *ll_hdr_mp; 21003 int ll_hdr_len; 21004 int hdr_len; 21005 mblk_t *hdr_mp; 21006 ipha_t *ipha; 21007 int ip_data_end; 21008 int len; 21009 mblk_t *mp = mp_orig; 21010 int offset; 21011 queue_t *q; 21012 uint32_t v_hlen_tos_len; 21013 mblk_t *first_mp; 21014 boolean_t mctl_present; 21015 mblk_t *xmit_mp; 21016 mblk_t *carve_mp; 21017 ire_t *ire1 = NULL; 21018 ire_t *save_ire = NULL; 21019 mblk_t *next_mp = NULL; 21020 boolean_t last_frag = B_FALSE; 21021 boolean_t multirt_send = B_FALSE; 21022 ire_t *first_ire = NULL; 21023 irb_t *irb = NULL; 21024 21025 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 21026 "ip_wput_frag_start:"); 21027 21028 if (mp->b_datap->db_type == M_CTL) { 21029 first_mp = mp; 21030 mp_orig = mp = mp->b_cont; 21031 mctl_present = B_TRUE; 21032 } else { 21033 first_mp = mp; 21034 mctl_present = B_FALSE; 21035 } 21036 21037 ipha = (ipha_t *)mp->b_rptr; 21038 21039 /* 21040 * If the Don't Fragment flag is on, generate an ICMP destination 21041 * unreachable, fragmentation needed. 21042 */ 21043 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21044 if (offset & IPH_DF) { 21045 BUMP_MIB(&ip_mib, ipFragFails); 21046 /* 21047 * Need to compute hdr checksum if called from ip_wput_ire. 21048 * Note that ip_rput_forward verifies the checksum before 21049 * calling this routine so in that case this is a noop. 21050 */ 21051 ipha->ipha_hdr_checksum = 0; 21052 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21053 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 21054 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21055 "ip_wput_frag_end:(%S)", 21056 "don't fragment"); 21057 return; 21058 } 21059 if (mctl_present) 21060 freeb(first_mp); 21061 /* 21062 * Establish the starting offset. May not be zero if we are fragging 21063 * a fragment that is being forwarded. 21064 */ 21065 offset = offset & IPH_OFFSET; 21066 21067 /* TODO why is this test needed? */ 21068 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21069 if (((max_frag - LENGTH) & ~7) < 8) { 21070 /* TODO: notify ulp somehow */ 21071 BUMP_MIB(&ip_mib, ipFragFails); 21072 freemsg(mp); 21073 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21074 "ip_wput_frag_end:(%S)", 21075 "len < 8"); 21076 return; 21077 } 21078 21079 hdr_len = (V_HLEN & 0xF) << 2; 21080 ipha->ipha_hdr_checksum = 0; 21081 21082 /* Get a copy of the header for the trailing frags */ 21083 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 21084 if (!hdr_mp) { 21085 BUMP_MIB(&ip_mib, ipOutDiscards); 21086 freemsg(mp); 21087 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21088 "ip_wput_frag_end:(%S)", 21089 "couldn't copy hdr"); 21090 return; 21091 } 21092 21093 /* Store the starting offset, with the MoreFrags flag. */ 21094 i1 = offset | IPH_MF | frag_flag; 21095 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 21096 21097 /* Establish the ending byte offset, based on the starting offset. */ 21098 offset <<= 3; 21099 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 21100 21101 /* 21102 * Establish the number of bytes maximum per frag, after putting 21103 * in the header. 21104 */ 21105 len = (max_frag - hdr_len) & ~7; 21106 21107 /* Store the length of the first fragment in the IP header. */ 21108 i1 = len + hdr_len; 21109 ASSERT(i1 <= IP_MAXPACKET); 21110 ipha->ipha_length = htons((uint16_t)i1); 21111 21112 /* 21113 * Compute the IP header checksum for the first frag. We have to 21114 * watch out that we stop at the end of the header. 21115 */ 21116 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21117 21118 /* 21119 * Now carve off the first frag. Note that this will include the 21120 * original IP header. 21121 */ 21122 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 21123 BUMP_MIB(&ip_mib, ipOutDiscards); 21124 freeb(hdr_mp); 21125 freemsg(mp_orig); 21126 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21127 "ip_wput_frag_end:(%S)", 21128 "couldn't carve first"); 21129 return; 21130 } 21131 21132 /* 21133 * Multirouting case. Each fragment is replicated 21134 * via all non-condemned RTF_MULTIRT routes 21135 * currently resolved. 21136 * We ensure that first_ire is the first RTF_MULTIRT 21137 * ire in the bucket. 21138 */ 21139 if (ire->ire_flags & RTF_MULTIRT) { 21140 irb = ire->ire_bucket; 21141 ASSERT(irb != NULL); 21142 21143 multirt_send = B_TRUE; 21144 21145 /* Make sure we do not omit any multiroute ire. */ 21146 IRB_REFHOLD(irb); 21147 for (first_ire = irb->irb_ire; 21148 first_ire != NULL; 21149 first_ire = first_ire->ire_next) { 21150 if ((first_ire->ire_flags & RTF_MULTIRT) && 21151 (first_ire->ire_addr == ire->ire_addr) && 21152 !(first_ire->ire_marks & 21153 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21154 break; 21155 } 21156 21157 if (first_ire != NULL) { 21158 if (first_ire != ire) { 21159 IRE_REFHOLD(first_ire); 21160 /* 21161 * Do not release the ire passed in 21162 * as the argument. 21163 */ 21164 ire = first_ire; 21165 } else { 21166 first_ire = NULL; 21167 } 21168 } 21169 IRB_REFRELE(irb); 21170 21171 /* 21172 * Save the first ire; we will need to restore it 21173 * for the trailing frags. 21174 * We REFHOLD save_ire, as each iterated ire will be 21175 * REFRELEd. 21176 */ 21177 save_ire = ire; 21178 IRE_REFHOLD(save_ire); 21179 } 21180 21181 /* 21182 * First fragment emission loop. 21183 * In most cases, the emission loop below is entered only 21184 * once. Only in the case where the ire holds the RTF_MULTIRT 21185 * flag, do we loop to process all RTF_MULTIRT ires in the 21186 * bucket, and send the fragment through all crossed 21187 * RTF_MULTIRT routes. 21188 */ 21189 do { 21190 if (ire->ire_flags & RTF_MULTIRT) { 21191 /* 21192 * We are in a multiple send case, need to get 21193 * the next ire and make a copy of the packet. 21194 * ire1 holds here the next ire to process in the 21195 * bucket. If multirouting is expected, 21196 * any non-RTF_MULTIRT ire that has the 21197 * right destination address is ignored. 21198 * 21199 * We have to take into account the MTU of 21200 * each walked ire. max_frag is set by the 21201 * the caller and generally refers to 21202 * the primary ire entry. Here we ensure that 21203 * no route with a lower MTU will be used, as 21204 * fragments are carved once for all ires, 21205 * then replicated. 21206 */ 21207 ASSERT(irb != NULL); 21208 IRB_REFHOLD(irb); 21209 for (ire1 = ire->ire_next; 21210 ire1 != NULL; 21211 ire1 = ire1->ire_next) { 21212 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21213 continue; 21214 if (ire1->ire_addr != ire->ire_addr) 21215 continue; 21216 if (ire1->ire_marks & 21217 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21218 continue; 21219 /* 21220 * Ensure we do not exceed the MTU 21221 * of the next route. 21222 */ 21223 if (ire1->ire_max_frag < max_frag) { 21224 ip_multirt_bad_mtu(ire1, max_frag); 21225 continue; 21226 } 21227 21228 /* Got one. */ 21229 IRE_REFHOLD(ire1); 21230 break; 21231 } 21232 IRB_REFRELE(irb); 21233 21234 if (ire1 != NULL) { 21235 next_mp = copyb(mp); 21236 if ((next_mp == NULL) || 21237 ((mp->b_cont != NULL) && 21238 ((next_mp->b_cont = 21239 dupmsg(mp->b_cont)) == NULL))) { 21240 freemsg(next_mp); 21241 next_mp = NULL; 21242 ire_refrele(ire1); 21243 ire1 = NULL; 21244 } 21245 } 21246 21247 /* Last multiroute ire; don't loop anymore. */ 21248 if (ire1 == NULL) { 21249 multirt_send = B_FALSE; 21250 } 21251 } 21252 21253 ll_hdr_len = 0; 21254 LOCK_IRE_FP_MP(ire); 21255 ll_hdr_mp = ire->ire_fp_mp; 21256 if (ll_hdr_mp != NULL) { 21257 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21258 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 21259 } else { 21260 ll_hdr_mp = ire->ire_dlureq_mp; 21261 } 21262 21263 /* If there is a transmit header, get a copy for this frag. */ 21264 /* 21265 * TODO: should check db_ref before calling ip_carve_mp since 21266 * it might give us a dup. 21267 */ 21268 if (!ll_hdr_mp) { 21269 /* No xmit header. */ 21270 xmit_mp = mp; 21271 } else if (mp->b_datap->db_ref == 1 && 21272 ll_hdr_len != 0 && 21273 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21274 /* M_DATA fastpath */ 21275 mp->b_rptr -= ll_hdr_len; 21276 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 21277 xmit_mp = mp; 21278 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 21279 UNLOCK_IRE_FP_MP(ire); 21280 BUMP_MIB(&ip_mib, ipOutDiscards); 21281 freeb(hdr_mp); 21282 freemsg(mp); 21283 freemsg(mp_orig); 21284 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21285 "ip_wput_frag_end:(%S)", 21286 "discard"); 21287 21288 if (multirt_send) { 21289 ASSERT(ire1); 21290 ASSERT(next_mp); 21291 21292 freemsg(next_mp); 21293 ire_refrele(ire1); 21294 } 21295 if (save_ire != NULL) 21296 IRE_REFRELE(save_ire); 21297 21298 if (first_ire != NULL) 21299 ire_refrele(first_ire); 21300 return; 21301 } else { 21302 xmit_mp->b_cont = mp; 21303 /* Get priority marking, if any. */ 21304 if (DB_TYPE(xmit_mp) == M_DATA) 21305 xmit_mp->b_band = mp->b_band; 21306 } 21307 UNLOCK_IRE_FP_MP(ire); 21308 q = ire->ire_stq; 21309 BUMP_MIB(&ip_mib, ipFragCreates); 21310 putnext(q, xmit_mp); 21311 if (pkt_type != OB_PKT) { 21312 /* 21313 * Update the packet count of trailing 21314 * RTF_MULTIRT ires. 21315 */ 21316 UPDATE_OB_PKT_COUNT(ire); 21317 } 21318 21319 if (multirt_send) { 21320 /* 21321 * We are in a multiple send case; look for 21322 * the next ire and re-enter the loop. 21323 */ 21324 ASSERT(ire1); 21325 ASSERT(next_mp); 21326 /* REFRELE the current ire before looping */ 21327 ire_refrele(ire); 21328 ire = ire1; 21329 ire1 = NULL; 21330 mp = next_mp; 21331 next_mp = NULL; 21332 } 21333 } while (multirt_send); 21334 21335 ASSERT(ire1 == NULL); 21336 21337 /* Restore the original ire; we need it for the trailing frags */ 21338 if (save_ire != NULL) { 21339 /* REFRELE the last iterated ire */ 21340 ire_refrele(ire); 21341 /* save_ire has been REFHOLDed */ 21342 ire = save_ire; 21343 save_ire = NULL; 21344 q = ire->ire_stq; 21345 } 21346 21347 if (pkt_type == OB_PKT) { 21348 UPDATE_OB_PKT_COUNT(ire); 21349 } else { 21350 UPDATE_IB_PKT_COUNT(ire); 21351 } 21352 21353 /* Advance the offset to the second frag starting point. */ 21354 offset += len; 21355 /* 21356 * Update hdr_len from the copied header - there might be less options 21357 * in the later fragments. 21358 */ 21359 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 21360 /* Loop until done. */ 21361 for (;;) { 21362 uint16_t offset_and_flags; 21363 uint16_t ip_len; 21364 21365 if (ip_data_end - offset > len) { 21366 /* 21367 * Carve off the appropriate amount from the original 21368 * datagram. 21369 */ 21370 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21371 mp = NULL; 21372 break; 21373 } 21374 /* 21375 * More frags after this one. Get another copy 21376 * of the header. 21377 */ 21378 if (carve_mp->b_datap->db_ref == 1 && 21379 hdr_mp->b_wptr - hdr_mp->b_rptr < 21380 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21381 /* Inline IP header */ 21382 carve_mp->b_rptr -= hdr_mp->b_wptr - 21383 hdr_mp->b_rptr; 21384 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21385 hdr_mp->b_wptr - hdr_mp->b_rptr); 21386 mp = carve_mp; 21387 } else { 21388 if (!(mp = copyb(hdr_mp))) { 21389 freemsg(carve_mp); 21390 break; 21391 } 21392 /* Get priority marking, if any. */ 21393 mp->b_band = carve_mp->b_band; 21394 mp->b_cont = carve_mp; 21395 } 21396 ipha = (ipha_t *)mp->b_rptr; 21397 offset_and_flags = IPH_MF; 21398 } else { 21399 /* 21400 * Last frag. Consume the header. Set len to 21401 * the length of this last piece. 21402 */ 21403 len = ip_data_end - offset; 21404 21405 /* 21406 * Carve off the appropriate amount from the original 21407 * datagram. 21408 */ 21409 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21410 mp = NULL; 21411 break; 21412 } 21413 if (carve_mp->b_datap->db_ref == 1 && 21414 hdr_mp->b_wptr - hdr_mp->b_rptr < 21415 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21416 /* Inline IP header */ 21417 carve_mp->b_rptr -= hdr_mp->b_wptr - 21418 hdr_mp->b_rptr; 21419 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21420 hdr_mp->b_wptr - hdr_mp->b_rptr); 21421 mp = carve_mp; 21422 freeb(hdr_mp); 21423 hdr_mp = mp; 21424 } else { 21425 mp = hdr_mp; 21426 /* Get priority marking, if any. */ 21427 mp->b_band = carve_mp->b_band; 21428 mp->b_cont = carve_mp; 21429 } 21430 ipha = (ipha_t *)mp->b_rptr; 21431 /* A frag of a frag might have IPH_MF non-zero */ 21432 offset_and_flags = 21433 ntohs(ipha->ipha_fragment_offset_and_flags) & 21434 IPH_MF; 21435 } 21436 offset_and_flags |= (uint16_t)(offset >> 3); 21437 offset_and_flags |= (uint16_t)frag_flag; 21438 /* Store the offset and flags in the IP header. */ 21439 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21440 21441 /* Store the length in the IP header. */ 21442 ip_len = (uint16_t)(len + hdr_len); 21443 ipha->ipha_length = htons(ip_len); 21444 21445 /* 21446 * Set the IP header checksum. Note that mp is just 21447 * the header, so this is easy to pass to ip_csum. 21448 */ 21449 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21450 21451 /* Attach a transmit header, if any, and ship it. */ 21452 if (pkt_type == OB_PKT) { 21453 UPDATE_OB_PKT_COUNT(ire); 21454 } else { 21455 UPDATE_IB_PKT_COUNT(ire); 21456 } 21457 21458 if (ire->ire_flags & RTF_MULTIRT) { 21459 irb = ire->ire_bucket; 21460 ASSERT(irb != NULL); 21461 21462 multirt_send = B_TRUE; 21463 21464 /* 21465 * Save the original ire; we will need to restore it 21466 * for the tailing frags. 21467 */ 21468 save_ire = ire; 21469 IRE_REFHOLD(save_ire); 21470 } 21471 /* 21472 * Emission loop for this fragment, similar 21473 * to what is done for the first fragment. 21474 */ 21475 do { 21476 if (multirt_send) { 21477 /* 21478 * We are in a multiple send case, need to get 21479 * the next ire and make a copy of the packet. 21480 */ 21481 ASSERT(irb != NULL); 21482 IRB_REFHOLD(irb); 21483 for (ire1 = ire->ire_next; 21484 ire1 != NULL; 21485 ire1 = ire1->ire_next) { 21486 if (!(ire1->ire_flags & RTF_MULTIRT)) 21487 continue; 21488 if (ire1->ire_addr != ire->ire_addr) 21489 continue; 21490 if (ire1->ire_marks & 21491 (IRE_MARK_CONDEMNED| 21492 IRE_MARK_HIDDEN)) 21493 continue; 21494 /* 21495 * Ensure we do not exceed the MTU 21496 * of the next route. 21497 */ 21498 if (ire1->ire_max_frag < max_frag) { 21499 ip_multirt_bad_mtu(ire1, 21500 max_frag); 21501 continue; 21502 } 21503 21504 /* Got one. */ 21505 IRE_REFHOLD(ire1); 21506 break; 21507 } 21508 IRB_REFRELE(irb); 21509 21510 if (ire1 != NULL) { 21511 next_mp = copyb(mp); 21512 if ((next_mp == NULL) || 21513 ((mp->b_cont != NULL) && 21514 ((next_mp->b_cont = 21515 dupmsg(mp->b_cont)) == NULL))) { 21516 freemsg(next_mp); 21517 next_mp = NULL; 21518 ire_refrele(ire1); 21519 ire1 = NULL; 21520 } 21521 } 21522 21523 /* Last multiroute ire; don't loop anymore. */ 21524 if (ire1 == NULL) { 21525 multirt_send = B_FALSE; 21526 } 21527 } 21528 21529 /* Update transmit header */ 21530 ll_hdr_len = 0; 21531 LOCK_IRE_FP_MP(ire); 21532 ll_hdr_mp = ire->ire_fp_mp; 21533 if (ll_hdr_mp != NULL) { 21534 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21535 ll_hdr_len = MBLKL(ll_hdr_mp); 21536 } else { 21537 ll_hdr_mp = ire->ire_dlureq_mp; 21538 } 21539 21540 if (!ll_hdr_mp) { 21541 xmit_mp = mp; 21542 } else if (mp->b_datap->db_ref == 1 && 21543 ll_hdr_len != 0 && 21544 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21545 /* M_DATA fastpath */ 21546 mp->b_rptr -= ll_hdr_len; 21547 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 21548 ll_hdr_len); 21549 xmit_mp = mp; 21550 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 21551 xmit_mp->b_cont = mp; 21552 /* Get priority marking, if any. */ 21553 if (DB_TYPE(xmit_mp) == M_DATA) 21554 xmit_mp->b_band = mp->b_band; 21555 } else { 21556 /* 21557 * Exit both the replication and 21558 * fragmentation loops. 21559 */ 21560 UNLOCK_IRE_FP_MP(ire); 21561 goto drop_pkt; 21562 } 21563 UNLOCK_IRE_FP_MP(ire); 21564 BUMP_MIB(&ip_mib, ipFragCreates); 21565 putnext(q, xmit_mp); 21566 21567 if (pkt_type != OB_PKT) { 21568 /* 21569 * Update the packet count of trailing 21570 * RTF_MULTIRT ires. 21571 */ 21572 UPDATE_OB_PKT_COUNT(ire); 21573 } 21574 21575 /* All done if we just consumed the hdr_mp. */ 21576 if (mp == hdr_mp) { 21577 last_frag = B_TRUE; 21578 } 21579 21580 if (multirt_send) { 21581 /* 21582 * We are in a multiple send case; look for 21583 * the next ire and re-enter the loop. 21584 */ 21585 ASSERT(ire1); 21586 ASSERT(next_mp); 21587 /* REFRELE the current ire before looping */ 21588 ire_refrele(ire); 21589 ire = ire1; 21590 ire1 = NULL; 21591 q = ire->ire_stq; 21592 mp = next_mp; 21593 next_mp = NULL; 21594 } 21595 } while (multirt_send); 21596 /* 21597 * Restore the original ire; we need it for the 21598 * trailing frags 21599 */ 21600 if (save_ire != NULL) { 21601 ASSERT(ire1 == NULL); 21602 /* REFRELE the last iterated ire */ 21603 ire_refrele(ire); 21604 /* save_ire has been REFHOLDed */ 21605 ire = save_ire; 21606 q = ire->ire_stq; 21607 save_ire = NULL; 21608 } 21609 21610 if (last_frag) { 21611 BUMP_MIB(&ip_mib, ipFragOKs); 21612 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21613 "ip_wput_frag_end:(%S)", 21614 "consumed hdr_mp"); 21615 21616 if (first_ire != NULL) 21617 ire_refrele(first_ire); 21618 return; 21619 } 21620 /* Otherwise, advance and loop. */ 21621 offset += len; 21622 } 21623 21624 drop_pkt: 21625 /* Clean up following allocation failure. */ 21626 BUMP_MIB(&ip_mib, ipOutDiscards); 21627 freemsg(mp); 21628 if (mp != hdr_mp) 21629 freeb(hdr_mp); 21630 if (mp != mp_orig) 21631 freemsg(mp_orig); 21632 21633 if (save_ire != NULL) 21634 IRE_REFRELE(save_ire); 21635 if (first_ire != NULL) 21636 ire_refrele(first_ire); 21637 21638 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21639 "ip_wput_frag_end:(%S)", 21640 "end--alloc failure"); 21641 } 21642 21643 /* 21644 * Copy the header plus those options which have the copy bit set 21645 */ 21646 static mblk_t * 21647 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 21648 { 21649 mblk_t *mp; 21650 uchar_t *up; 21651 21652 /* 21653 * Quick check if we need to look for options without the copy bit 21654 * set 21655 */ 21656 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 21657 if (!mp) 21658 return (mp); 21659 mp->b_rptr += ip_wroff_extra; 21660 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 21661 bcopy(rptr, mp->b_rptr, hdr_len); 21662 mp->b_wptr += hdr_len + ip_wroff_extra; 21663 return (mp); 21664 } 21665 up = mp->b_rptr; 21666 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 21667 up += IP_SIMPLE_HDR_LENGTH; 21668 rptr += IP_SIMPLE_HDR_LENGTH; 21669 hdr_len -= IP_SIMPLE_HDR_LENGTH; 21670 while (hdr_len > 0) { 21671 uint32_t optval; 21672 uint32_t optlen; 21673 21674 optval = *rptr; 21675 if (optval == IPOPT_EOL) 21676 break; 21677 if (optval == IPOPT_NOP) 21678 optlen = 1; 21679 else 21680 optlen = rptr[1]; 21681 if (optval & IPOPT_COPY) { 21682 bcopy(rptr, up, optlen); 21683 up += optlen; 21684 } 21685 rptr += optlen; 21686 hdr_len -= optlen; 21687 } 21688 /* 21689 * Make sure that we drop an even number of words by filling 21690 * with EOL to the next word boundary. 21691 */ 21692 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 21693 hdr_len & 0x3; hdr_len++) 21694 *up++ = IPOPT_EOL; 21695 mp->b_wptr = up; 21696 /* Update header length */ 21697 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 21698 return (mp); 21699 } 21700 21701 /* 21702 * Delivery to local recipients including fanout to multiple recipients. 21703 * Does not do checksumming of UDP/TCP. 21704 * Note: q should be the read side queue for either the ill or conn. 21705 * Note: rq should be the read side q for the lower (ill) stream. 21706 * We don't send packets to IPPF processing, thus the last argument 21707 * to all the fanout calls are B_FALSE. 21708 */ 21709 void 21710 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 21711 int fanout_flags, zoneid_t zoneid) 21712 { 21713 uint32_t protocol; 21714 mblk_t *first_mp; 21715 boolean_t mctl_present; 21716 int ire_type; 21717 #define rptr ((uchar_t *)ipha) 21718 21719 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 21720 "ip_wput_local_start: q %p", q); 21721 21722 if (ire != NULL) { 21723 ire_type = ire->ire_type; 21724 } else { 21725 /* 21726 * Only ip_multicast_loopback() calls us with a NULL ire. If the 21727 * packet is not multicast, we can't tell the ire type. 21728 */ 21729 ASSERT(CLASSD(ipha->ipha_dst)); 21730 ire_type = IRE_BROADCAST; 21731 } 21732 21733 first_mp = mp; 21734 if (first_mp->b_datap->db_type == M_CTL) { 21735 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 21736 if (!io->ipsec_out_secure) { 21737 /* 21738 * This ipsec_out_t was allocated in ip_wput 21739 * for multicast packets to store the ill_index. 21740 * As this is being delivered locally, we don't 21741 * need this anymore. 21742 */ 21743 mp = first_mp->b_cont; 21744 freeb(first_mp); 21745 first_mp = mp; 21746 mctl_present = B_FALSE; 21747 } else { 21748 mctl_present = B_TRUE; 21749 mp = first_mp->b_cont; 21750 ASSERT(mp != NULL); 21751 ipsec_out_to_in(first_mp); 21752 } 21753 } else { 21754 mctl_present = B_FALSE; 21755 } 21756 21757 loopback_packets++; 21758 21759 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 21760 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 21761 if (!IS_SIMPLE_IPH(ipha)) { 21762 ip_wput_local_options(ipha); 21763 } 21764 21765 protocol = ipha->ipha_protocol; 21766 switch (protocol) { 21767 case IPPROTO_ICMP: { 21768 ire_t *ire_zone; 21769 ilm_t *ilm; 21770 mblk_t *mp1; 21771 zoneid_t last_zoneid; 21772 21773 if (CLASSD(ipha->ipha_dst) && 21774 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 21775 ASSERT(ire_type == IRE_BROADCAST); 21776 /* 21777 * In the multicast case, applications may have joined 21778 * the group from different zones, so we need to deliver 21779 * the packet to each of them. Loop through the 21780 * multicast memberships structures (ilm) on the receive 21781 * ill and send a copy of the packet up each matching 21782 * one. However, we don't do this for multicasts sent on 21783 * the loopback interface (PHYI_LOOPBACK flag set) as 21784 * they must stay in the sender's zone. 21785 * 21786 * ilm_add_v6() ensures that ilms in the same zone are 21787 * contiguous in the ill_ilm list. We use this property 21788 * to avoid sending duplicates needed when two 21789 * applications in the same zone join the same group on 21790 * different logical interfaces: we ignore the ilm if 21791 * its zoneid is the same as the last matching one. 21792 * In addition, the sending of the packet for 21793 * ire_zoneid is delayed until all of the other ilms 21794 * have been exhausted. 21795 */ 21796 last_zoneid = -1; 21797 ILM_WALKER_HOLD(ill); 21798 for (ilm = ill->ill_ilm; ilm != NULL; 21799 ilm = ilm->ilm_next) { 21800 if ((ilm->ilm_flags & ILM_DELETED) || 21801 ipha->ipha_dst != ilm->ilm_addr || 21802 ilm->ilm_zoneid == last_zoneid || 21803 ilm->ilm_zoneid == zoneid || 21804 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 21805 continue; 21806 mp1 = ip_copymsg(first_mp); 21807 if (mp1 == NULL) 21808 continue; 21809 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 21810 mctl_present, B_FALSE, ill, 21811 ilm->ilm_zoneid); 21812 last_zoneid = ilm->ilm_zoneid; 21813 } 21814 ILM_WALKER_RELE(ill); 21815 /* 21816 * Loopback case: the sending endpoint has 21817 * IP_MULTICAST_LOOP disabled, therefore we don't 21818 * dispatch the multicast packet to the sending zone. 21819 */ 21820 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 21821 freemsg(first_mp); 21822 return; 21823 } 21824 } else if (ire_type == IRE_BROADCAST) { 21825 /* 21826 * In the broadcast case, there may be many zones 21827 * which need a copy of the packet delivered to them. 21828 * There is one IRE_BROADCAST per broadcast address 21829 * and per zone; we walk those using a helper function. 21830 * In addition, the sending of the packet for zoneid is 21831 * delayed until all of the other ires have been 21832 * processed. 21833 */ 21834 IRB_REFHOLD(ire->ire_bucket); 21835 ire_zone = NULL; 21836 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 21837 ire)) != NULL) { 21838 mp1 = ip_copymsg(first_mp); 21839 if (mp1 == NULL) 21840 continue; 21841 21842 UPDATE_IB_PKT_COUNT(ire_zone); 21843 ire_zone->ire_last_used_time = lbolt; 21844 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 21845 mctl_present, B_FALSE, ill, 21846 ire_zone->ire_zoneid); 21847 } 21848 IRB_REFRELE(ire->ire_bucket); 21849 } 21850 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 21851 0, mctl_present, B_FALSE, ill, zoneid); 21852 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21853 "ip_wput_local_end: q %p (%S)", 21854 q, "icmp"); 21855 return; 21856 } 21857 case IPPROTO_IGMP: 21858 if (igmp_input(q, mp, ill)) { 21859 /* Bad packet - discarded by igmp_input */ 21860 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21861 "ip_wput_local_end: q %p (%S)", 21862 q, "igmp_input--bad packet"); 21863 if (mctl_present) 21864 freeb(first_mp); 21865 return; 21866 } 21867 /* 21868 * igmp_input() may have pulled up the message so ipha needs to 21869 * be reinitialized. 21870 */ 21871 ipha = (ipha_t *)mp->b_rptr; 21872 /* deliver to local raw users */ 21873 break; 21874 case IPPROTO_ENCAP: 21875 /* 21876 * This case is covered by either ip_fanout_proto, or by 21877 * the above security processing for self-tunneled packets. 21878 */ 21879 break; 21880 case IPPROTO_UDP: { 21881 uint16_t *up; 21882 uint32_t ports; 21883 21884 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 21885 UDP_PORTS_OFFSET); 21886 /* Force a 'valid' checksum. */ 21887 up[3] = 0; 21888 21889 ports = *(uint32_t *)up; 21890 ip_fanout_udp(q, first_mp, ill, ipha, ports, 21891 (ire_type == IRE_BROADCAST), 21892 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21893 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 21894 ill, zoneid); 21895 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21896 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 21897 return; 21898 } 21899 case IPPROTO_TCP: { 21900 21901 /* 21902 * For TCP, discard broadcast packets. 21903 */ 21904 if ((ushort_t)ire_type == IRE_BROADCAST) { 21905 freemsg(first_mp); 21906 BUMP_MIB(&ip_mib, ipInDiscards); 21907 return; 21908 } 21909 21910 if (mp->b_datap->db_type == M_DATA) { 21911 /* 21912 * M_DATA mblk, so init mblk (chain) for no struio(). 21913 */ 21914 mblk_t *mp1 = mp; 21915 21916 do 21917 mp1->b_datap->db_struioflag = 0; 21918 while ((mp1 = mp1->b_cont) != NULL); 21919 } 21920 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 21921 <= mp->b_wptr); 21922 ip_fanout_tcp(q, first_mp, ill, ipha, 21923 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21924 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 21925 mctl_present, B_FALSE, zoneid); 21926 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21927 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 21928 return; 21929 } 21930 case IPPROTO_SCTP: 21931 { 21932 uint32_t ports; 21933 21934 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 21935 ip_fanout_sctp(first_mp, ill, ipha, ports, 21936 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21937 IP_FF_IP6INFO, 21938 mctl_present, B_FALSE, 0, zoneid); 21939 return; 21940 } 21941 21942 default: 21943 break; 21944 } 21945 /* 21946 * Find a client for some other protocol. We give 21947 * copies to multiple clients, if more than one is 21948 * bound. 21949 */ 21950 ip_fanout_proto(q, first_mp, ill, ipha, 21951 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 21952 mctl_present, B_FALSE, ill, zoneid); 21953 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21954 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 21955 #undef rptr 21956 } 21957 21958 /* 21959 * Update any source route, record route, or timestamp options. 21960 * Check that we are at end of strict source route. 21961 * The options have been sanity checked by ip_wput_options(). 21962 */ 21963 static void 21964 ip_wput_local_options(ipha_t *ipha) 21965 { 21966 ipoptp_t opts; 21967 uchar_t *opt; 21968 uint8_t optval; 21969 uint8_t optlen; 21970 ipaddr_t dst; 21971 uint32_t ts; 21972 ire_t *ire; 21973 timestruc_t now; 21974 21975 ip2dbg(("ip_wput_local_options\n")); 21976 for (optval = ipoptp_first(&opts, ipha); 21977 optval != IPOPT_EOL; 21978 optval = ipoptp_next(&opts)) { 21979 opt = opts.ipoptp_cur; 21980 optlen = opts.ipoptp_len; 21981 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21982 switch (optval) { 21983 uint32_t off; 21984 case IPOPT_SSRR: 21985 case IPOPT_LSRR: 21986 off = opt[IPOPT_OFFSET]; 21987 off--; 21988 if (optlen < IP_ADDR_LEN || 21989 off > optlen - IP_ADDR_LEN) { 21990 /* End of source route */ 21991 break; 21992 } 21993 /* 21994 * This will only happen if two consecutive entries 21995 * in the source route contains our address or if 21996 * it is a packet with a loose source route which 21997 * reaches us before consuming the whole source route 21998 */ 21999 ip1dbg(("ip_wput_local_options: not end of SR\n")); 22000 if (optval == IPOPT_SSRR) { 22001 return; 22002 } 22003 /* 22004 * Hack: instead of dropping the packet truncate the 22005 * source route to what has been used by filling the 22006 * rest with IPOPT_NOP. 22007 */ 22008 opt[IPOPT_OLEN] = (uint8_t)off; 22009 while (off < optlen) { 22010 opt[off++] = IPOPT_NOP; 22011 } 22012 break; 22013 case IPOPT_RR: 22014 off = opt[IPOPT_OFFSET]; 22015 off--; 22016 if (optlen < IP_ADDR_LEN || 22017 off > optlen - IP_ADDR_LEN) { 22018 /* No more room - ignore */ 22019 ip1dbg(( 22020 "ip_wput_forward_options: end of RR\n")); 22021 break; 22022 } 22023 dst = htonl(INADDR_LOOPBACK); 22024 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22025 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22026 break; 22027 case IPOPT_TS: 22028 /* Insert timestamp if there is romm */ 22029 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22030 case IPOPT_TS_TSONLY: 22031 off = IPOPT_TS_TIMELEN; 22032 break; 22033 case IPOPT_TS_PRESPEC: 22034 case IPOPT_TS_PRESPEC_RFC791: 22035 /* Verify that the address matched */ 22036 off = opt[IPOPT_OFFSET] - 1; 22037 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 22038 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 22039 NULL, ALL_ZONES, MATCH_IRE_TYPE); 22040 if (ire == NULL) { 22041 /* Not for us */ 22042 break; 22043 } 22044 ire_refrele(ire); 22045 /* FALLTHRU */ 22046 case IPOPT_TS_TSANDADDR: 22047 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 22048 break; 22049 default: 22050 /* 22051 * ip_*put_options should have already 22052 * dropped this packet. 22053 */ 22054 cmn_err(CE_PANIC, "ip_wput_local_options: " 22055 "unknown IT - bug in ip_wput_options?\n"); 22056 return; /* Keep "lint" happy */ 22057 } 22058 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 22059 /* Increase overflow counter */ 22060 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 22061 opt[IPOPT_POS_OV_FLG] = (uint8_t) 22062 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 22063 (off << 4); 22064 break; 22065 } 22066 off = opt[IPOPT_OFFSET] - 1; 22067 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22068 case IPOPT_TS_PRESPEC: 22069 case IPOPT_TS_PRESPEC_RFC791: 22070 case IPOPT_TS_TSANDADDR: 22071 dst = htonl(INADDR_LOOPBACK); 22072 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22073 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22074 /* FALLTHRU */ 22075 case IPOPT_TS_TSONLY: 22076 off = opt[IPOPT_OFFSET] - 1; 22077 /* Compute # of milliseconds since midnight */ 22078 gethrestime(&now); 22079 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 22080 now.tv_nsec / (NANOSEC / MILLISEC); 22081 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 22082 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 22083 break; 22084 } 22085 break; 22086 } 22087 } 22088 } 22089 22090 /* 22091 * Send out a multicast packet on interface ipif. 22092 * The sender does not have an conn. 22093 * Caller verifies that this isn't a PHYI_LOOPBACK. 22094 */ 22095 void 22096 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 22097 { 22098 ipha_t *ipha; 22099 ire_t *ire; 22100 ipaddr_t dst; 22101 mblk_t *first_mp; 22102 22103 /* igmp_sendpkt always allocates a ipsec_out_t */ 22104 ASSERT(mp->b_datap->db_type == M_CTL); 22105 ASSERT(!ipif->ipif_isv6); 22106 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 22107 22108 first_mp = mp; 22109 mp = first_mp->b_cont; 22110 ASSERT(mp->b_datap->db_type == M_DATA); 22111 ipha = (ipha_t *)mp->b_rptr; 22112 22113 /* 22114 * Find an IRE which matches the destination and the outgoing 22115 * queue (i.e. the outgoing interface.) 22116 */ 22117 if (ipif->ipif_flags & IPIF_POINTOPOINT) 22118 dst = ipif->ipif_pp_dst_addr; 22119 else 22120 dst = ipha->ipha_dst; 22121 /* 22122 * The source address has already been initialized by the 22123 * caller and hence matching on ILL (MATCH_IRE_ILL) would 22124 * be sufficient rather than MATCH_IRE_IPIF. 22125 * 22126 * This function is used for sending IGMP packets. We need 22127 * to make sure that we send the packet out of the interface 22128 * (ipif->ipif_ill) where we joined the group. This is to 22129 * prevent from switches doing IGMP snooping to send us multicast 22130 * packets for a given group on the interface we have joined. 22131 * If we can't find an ire, igmp_sendpkt has already initialized 22132 * ipsec_out_attach_if so that this will not be load spread in 22133 * ip_newroute_ipif. 22134 */ 22135 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MATCH_IRE_ILL); 22136 if (!ire) { 22137 /* 22138 * Mark this packet to make it be delivered to 22139 * ip_wput_ire after the new ire has been 22140 * created. 22141 */ 22142 mp->b_prev = NULL; 22143 mp->b_next = NULL; 22144 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 22145 return; 22146 } 22147 22148 /* 22149 * Honor the RTF_SETSRC flag; this is the only case 22150 * where we force this addr whatever the current src addr is, 22151 * because this address is set by igmp_sendpkt(), and 22152 * cannot be specified by any user. 22153 */ 22154 if (ire->ire_flags & RTF_SETSRC) { 22155 ipha->ipha_src = ire->ire_src_addr; 22156 } 22157 22158 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 22159 } 22160 22161 /* 22162 * NOTE : This function does not ire_refrele the ire argument passed in. 22163 * 22164 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 22165 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 22166 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 22167 * the ire_lock to access the ire_fp_mp in this case. 22168 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 22169 * prepending a fastpath message IPQoS processing must precede it, we also set 22170 * the b_band of the fastpath message to that of the mblk returned by IPQoS 22171 * (IPQoS might have set the b_band for CoS marking). 22172 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 22173 * must follow it so that IPQoS can mark the dl_priority field for CoS 22174 * marking, if needed. 22175 */ 22176 static mblk_t * 22177 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 22178 { 22179 uint_t hlen; 22180 ipha_t *ipha; 22181 mblk_t *mp1; 22182 boolean_t qos_done = B_FALSE; 22183 uchar_t *ll_hdr; 22184 22185 #define rptr ((uchar_t *)ipha) 22186 22187 ipha = (ipha_t *)mp->b_rptr; 22188 hlen = 0; 22189 LOCK_IRE_FP_MP(ire); 22190 if ((mp1 = ire->ire_fp_mp) != NULL) { 22191 ASSERT(DB_TYPE(mp1) == M_DATA); 22192 /* Initiate IPPF processing */ 22193 if ((proc != 0) && IPP_ENABLED(proc)) { 22194 UNLOCK_IRE_FP_MP(ire); 22195 ip_process(proc, &mp, ill_index); 22196 if (mp == NULL) 22197 return (NULL); 22198 22199 ipha = (ipha_t *)mp->b_rptr; 22200 LOCK_IRE_FP_MP(ire); 22201 if ((mp1 = ire->ire_fp_mp) == NULL) { 22202 qos_done = B_TRUE; 22203 goto no_fp_mp; 22204 } 22205 ASSERT(DB_TYPE(mp1) == M_DATA); 22206 } 22207 hlen = MBLKL(mp1); 22208 /* 22209 * Check if we have enough room to prepend fastpath 22210 * header 22211 */ 22212 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 22213 ll_hdr = rptr - hlen; 22214 bcopy(mp1->b_rptr, ll_hdr, hlen); 22215 /* XXX ipha is not aligned here */ 22216 ipha = (ipha_t *)(rptr - hlen); 22217 /* 22218 * Set the b_rptr to the start of the link layer 22219 * header 22220 */ 22221 mp->b_rptr = rptr; 22222 mp1 = mp; 22223 } else { 22224 mp1 = copyb(mp1); 22225 if (mp1 == NULL) 22226 goto unlock_err; 22227 mp1->b_band = mp->b_band; 22228 mp1->b_cont = mp; 22229 /* 22230 * XXX disable ICK_VALID and compute checksum 22231 * here; can happen if ire_fp_mp changes and 22232 * it can't be copied now due to insufficient 22233 * space. (unlikely, fp mp can change, but it 22234 * does not increase in length) 22235 */ 22236 } 22237 UNLOCK_IRE_FP_MP(ire); 22238 } else { 22239 no_fp_mp: 22240 mp1 = copyb(ire->ire_dlureq_mp); 22241 if (mp1 == NULL) { 22242 unlock_err: 22243 UNLOCK_IRE_FP_MP(ire); 22244 freemsg(mp); 22245 return (NULL); 22246 } 22247 UNLOCK_IRE_FP_MP(ire); 22248 mp1->b_cont = mp; 22249 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 22250 ip_process(proc, &mp1, ill_index); 22251 if (mp1 == NULL) 22252 return (NULL); 22253 } 22254 } 22255 return (mp1); 22256 #undef rptr 22257 } 22258 22259 /* 22260 * Finish the outbound IPsec processing for an IPv6 packet. This function 22261 * is called from ipsec_out_process() if the IPsec packet was processed 22262 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22263 * asynchronously. 22264 */ 22265 void 22266 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 22267 ire_t *ire_arg) 22268 { 22269 in6_addr_t *v6dstp; 22270 ire_t *ire; 22271 mblk_t *mp; 22272 uint_t ill_index; 22273 ipsec_out_t *io; 22274 boolean_t attach_if, hwaccel; 22275 uint32_t flags = IP6_NO_IPPOLICY; 22276 int match_flags; 22277 zoneid_t zoneid; 22278 boolean_t ill_need_rele = B_FALSE; 22279 boolean_t ire_need_rele = B_FALSE; 22280 22281 mp = ipsec_mp->b_cont; 22282 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22283 ill_index = io->ipsec_out_ill_index; 22284 if (io->ipsec_out_reachable) { 22285 flags |= IPV6_REACHABILITY_CONFIRMATION; 22286 } 22287 attach_if = io->ipsec_out_attach_if; 22288 hwaccel = io->ipsec_out_accelerated; 22289 zoneid = io->ipsec_out_zoneid; 22290 ASSERT(zoneid != ALL_ZONES); 22291 match_flags = MATCH_IRE_ILL_GROUP; 22292 /* Multicast addresses should have non-zero ill_index. */ 22293 v6dstp = &ip6h->ip6_dst; 22294 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 22295 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 22296 ASSERT(!attach_if || ill_index != 0); 22297 if (ill_index != 0) { 22298 if (ill == NULL) { 22299 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 22300 B_TRUE); 22301 22302 /* Failure case frees things for us. */ 22303 if (ill == NULL) 22304 return; 22305 22306 ill_need_rele = B_TRUE; 22307 } 22308 /* 22309 * If this packet needs to go out on a particular interface 22310 * honor it. 22311 */ 22312 if (attach_if) { 22313 match_flags = MATCH_IRE_ILL; 22314 22315 /* 22316 * Check if we need an ire that will not be 22317 * looked up by anybody else i.e. HIDDEN. 22318 */ 22319 if (ill_is_probeonly(ill)) { 22320 match_flags |= MATCH_IRE_MARK_HIDDEN; 22321 } 22322 } 22323 } 22324 ASSERT(mp != NULL); 22325 22326 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 22327 boolean_t unspec_src; 22328 ipif_t *ipif; 22329 22330 /* 22331 * Use the ill_index to get the right ill. 22332 */ 22333 unspec_src = io->ipsec_out_unspec_src; 22334 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22335 if (ipif == NULL) { 22336 if (ill_need_rele) 22337 ill_refrele(ill); 22338 freemsg(ipsec_mp); 22339 return; 22340 } 22341 22342 if (ire_arg != NULL) { 22343 ire = ire_arg; 22344 } else { 22345 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22346 zoneid, match_flags); 22347 ire_need_rele = B_TRUE; 22348 } 22349 if (ire != NULL) { 22350 ipif_refrele(ipif); 22351 /* 22352 * XXX Do the multicast forwarding now, as the IPSEC 22353 * processing has been done. 22354 */ 22355 goto send; 22356 } 22357 22358 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 22359 mp->b_prev = NULL; 22360 mp->b_next = NULL; 22361 22362 /* 22363 * If the IPsec packet was processed asynchronously, 22364 * drop it now. 22365 */ 22366 if (q == NULL) { 22367 if (ill_need_rele) 22368 ill_refrele(ill); 22369 freemsg(ipsec_mp); 22370 return; 22371 } 22372 22373 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 22374 unspec_src, zoneid); 22375 ipif_refrele(ipif); 22376 } else { 22377 if (attach_if) { 22378 ipif_t *ipif; 22379 22380 ipif = ipif_get_next_ipif(NULL, ill); 22381 if (ipif == NULL) { 22382 if (ill_need_rele) 22383 ill_refrele(ill); 22384 freemsg(ipsec_mp); 22385 return; 22386 } 22387 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22388 zoneid, match_flags); 22389 ire_need_rele = B_TRUE; 22390 ipif_refrele(ipif); 22391 } else { 22392 if (ire_arg != NULL) { 22393 ire = ire_arg; 22394 } else { 22395 ire = ire_cache_lookup_v6(v6dstp, zoneid); 22396 ire_need_rele = B_TRUE; 22397 } 22398 } 22399 if (ire != NULL) 22400 goto send; 22401 /* 22402 * ire disappeared underneath. 22403 * 22404 * What we need to do here is the ip_newroute 22405 * logic to get the ire without doing the IPSEC 22406 * processing. Follow the same old path. But this 22407 * time, ip_wput or ire_add_then_send will call us 22408 * directly as all the IPSEC operations are done. 22409 */ 22410 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 22411 mp->b_prev = NULL; 22412 mp->b_next = NULL; 22413 22414 /* 22415 * If the IPsec packet was processed asynchronously, 22416 * drop it now. 22417 */ 22418 if (q == NULL) { 22419 if (ill_need_rele) 22420 ill_refrele(ill); 22421 freemsg(ipsec_mp); 22422 return; 22423 } 22424 22425 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 22426 zoneid); 22427 } 22428 if (ill != NULL && ill_need_rele) 22429 ill_refrele(ill); 22430 return; 22431 send: 22432 if (ill != NULL && ill_need_rele) 22433 ill_refrele(ill); 22434 22435 /* Local delivery */ 22436 if (ire->ire_stq == NULL) { 22437 ASSERT(q != NULL); 22438 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 22439 ire, 0); 22440 if (ire_need_rele) 22441 ire_refrele(ire); 22442 return; 22443 } 22444 /* 22445 * Everything is done. Send it out on the wire. 22446 * We force the insertion of a fragment header using the 22447 * IPH_FRAG_HDR flag in two cases: 22448 * - after reception of an ICMPv6 "packet too big" message 22449 * with a MTU < 1280 (cf. RFC 2460 section 5) 22450 * - for multirouted IPv6 packets, so that the receiver can 22451 * discard duplicates according to their fragment identifier 22452 */ 22453 /* XXX fix flow control problems. */ 22454 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 22455 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 22456 if (hwaccel) { 22457 /* 22458 * hardware acceleration does not handle these 22459 * "slow path" cases. 22460 */ 22461 /* IPsec KSTATS: should bump bean counter here. */ 22462 if (ire_need_rele) 22463 ire_refrele(ire); 22464 freemsg(ipsec_mp); 22465 return; 22466 } 22467 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 22468 (mp->b_cont ? msgdsize(mp) : 22469 mp->b_wptr - (uchar_t *)ip6h)) { 22470 /* IPsec KSTATS: should bump bean counter here. */ 22471 ip0dbg(("Packet length mismatch: %d, %ld\n", 22472 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 22473 msgdsize(mp))); 22474 if (ire_need_rele) 22475 ire_refrele(ire); 22476 freemsg(ipsec_mp); 22477 return; 22478 } 22479 ASSERT(mp->b_prev == NULL); 22480 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 22481 ntohs(ip6h->ip6_plen) + 22482 IPV6_HDR_LEN, ire->ire_max_frag)); 22483 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 22484 ire->ire_max_frag); 22485 } else { 22486 UPDATE_OB_PKT_COUNT(ire); 22487 ire->ire_last_used_time = lbolt; 22488 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 22489 } 22490 if (ire_need_rele) 22491 ire_refrele(ire); 22492 freeb(ipsec_mp); 22493 } 22494 22495 void 22496 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 22497 { 22498 mblk_t *hada_mp; /* attributes M_CTL mblk */ 22499 da_ipsec_t *hada; /* data attributes */ 22500 ill_t *ill = (ill_t *)q->q_ptr; 22501 22502 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 22503 22504 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 22505 /* IPsec KSTATS: Bump lose counter here! */ 22506 freemsg(mp); 22507 return; 22508 } 22509 22510 /* 22511 * It's an IPsec packet that must be 22512 * accelerated by the Provider, and the 22513 * outbound ill is IPsec acceleration capable. 22514 * Prepends the mblk with an IPHADA_M_CTL, and ship it 22515 * to the ill. 22516 * IPsec KSTATS: should bump packet counter here. 22517 */ 22518 22519 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 22520 if (hada_mp == NULL) { 22521 /* IPsec KSTATS: should bump packet counter here. */ 22522 freemsg(mp); 22523 return; 22524 } 22525 22526 hada_mp->b_datap->db_type = M_CTL; 22527 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 22528 hada_mp->b_cont = mp; 22529 22530 hada = (da_ipsec_t *)hada_mp->b_rptr; 22531 bzero(hada, sizeof (da_ipsec_t)); 22532 hada->da_type = IPHADA_M_CTL; 22533 22534 putnext(q, hada_mp); 22535 } 22536 22537 /* 22538 * Finish the outbound IPsec processing. This function is called from 22539 * ipsec_out_process() if the IPsec packet was processed 22540 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22541 * asynchronously. 22542 */ 22543 void 22544 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 22545 ire_t *ire_arg) 22546 { 22547 uint32_t v_hlen_tos_len; 22548 ipaddr_t dst; 22549 ipif_t *ipif = NULL; 22550 ire_t *ire; 22551 ire_t *ire1 = NULL; 22552 mblk_t *next_mp = NULL; 22553 uint32_t max_frag; 22554 boolean_t multirt_send = B_FALSE; 22555 mblk_t *mp; 22556 mblk_t *mp1; 22557 uint_t ill_index; 22558 ipsec_out_t *io; 22559 boolean_t attach_if; 22560 int match_flags, offset; 22561 irb_t *irb = NULL; 22562 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 22563 zoneid_t zoneid; 22564 uint32_t cksum; 22565 uint16_t *up; 22566 /* Hack until the UDP merge into IP happens. */ 22567 extern boolean_t udp_compute_checksum(void); 22568 #ifdef _BIG_ENDIAN 22569 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22570 #else 22571 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22572 #endif 22573 22574 mp = ipsec_mp->b_cont; 22575 ASSERT(mp != NULL); 22576 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22577 dst = ipha->ipha_dst; 22578 22579 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22580 ill_index = io->ipsec_out_ill_index; 22581 attach_if = io->ipsec_out_attach_if; 22582 zoneid = io->ipsec_out_zoneid; 22583 ASSERT(zoneid != ALL_ZONES); 22584 match_flags = MATCH_IRE_ILL_GROUP; 22585 if (ill_index != 0) { 22586 if (ill == NULL) { 22587 ill = ip_grab_attach_ill(NULL, ipsec_mp, 22588 ill_index, B_FALSE); 22589 22590 /* Failure case frees things for us. */ 22591 if (ill == NULL) 22592 return; 22593 22594 ill_need_rele = B_TRUE; 22595 } 22596 /* 22597 * If this packet needs to go out on a particular interface 22598 * honor it. 22599 */ 22600 if (attach_if) { 22601 match_flags = MATCH_IRE_ILL; 22602 22603 /* 22604 * Check if we need an ire that will not be 22605 * looked up by anybody else i.e. HIDDEN. 22606 */ 22607 if (ill_is_probeonly(ill)) { 22608 match_flags |= MATCH_IRE_MARK_HIDDEN; 22609 } 22610 } 22611 } 22612 22613 if (CLASSD(dst)) { 22614 boolean_t conn_dontroute; 22615 /* 22616 * Use the ill_index to get the right ipif. 22617 */ 22618 conn_dontroute = io->ipsec_out_dontroute; 22619 if (ill_index == 0) 22620 ipif = ipif_lookup_group(dst, zoneid); 22621 else 22622 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22623 if (ipif == NULL) { 22624 ip1dbg(("ip_wput_ipsec_out: No ipif for" 22625 " multicast\n")); 22626 BUMP_MIB(&ip_mib, ipOutNoRoutes); 22627 freemsg(ipsec_mp); 22628 goto done; 22629 } 22630 /* 22631 * ipha_src has already been intialized with the 22632 * value of the ipif in ip_wput. All we need now is 22633 * an ire to send this downstream. 22634 */ 22635 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, match_flags); 22636 if (ire != NULL) { 22637 ill_t *ill1; 22638 /* 22639 * Do the multicast forwarding now, as the IPSEC 22640 * processing has been done. 22641 */ 22642 if (ip_g_mrouter && !conn_dontroute && 22643 (ill1 = ire_to_ill(ire))) { 22644 if (ip_mforward(ill1, ipha, mp)) { 22645 freemsg(ipsec_mp); 22646 ip1dbg(("ip_wput_ipsec_out: mforward " 22647 "failed\n")); 22648 ire_refrele(ire); 22649 goto done; 22650 } 22651 } 22652 goto send; 22653 } 22654 22655 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 22656 mp->b_prev = NULL; 22657 mp->b_next = NULL; 22658 22659 /* 22660 * If the IPsec packet was processed asynchronously, 22661 * drop it now. 22662 */ 22663 if (q == NULL) { 22664 freemsg(ipsec_mp); 22665 goto done; 22666 } 22667 22668 /* 22669 * We may be using a wrong ipif to create the ire. 22670 * But it is okay as the source address is assigned 22671 * for the packet already. Next outbound packet would 22672 * create the IRE with the right IPIF in ip_wput. 22673 * 22674 * Also handle RTF_MULTIRT routes. 22675 */ 22676 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 22677 } else { 22678 if (attach_if) { 22679 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 22680 zoneid, match_flags); 22681 } else { 22682 if (ire_arg != NULL) { 22683 ire = ire_arg; 22684 ire_need_rele = B_FALSE; 22685 } else { 22686 ire = ire_cache_lookup(dst, zoneid); 22687 } 22688 } 22689 if (ire != NULL) { 22690 goto send; 22691 } 22692 22693 /* 22694 * ire disappeared underneath. 22695 * 22696 * What we need to do here is the ip_newroute 22697 * logic to get the ire without doing the IPSEC 22698 * processing. Follow the same old path. But this 22699 * time, ip_wput or ire_add_then_put will call us 22700 * directly as all the IPSEC operations are done. 22701 */ 22702 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 22703 mp->b_prev = NULL; 22704 mp->b_next = NULL; 22705 22706 /* 22707 * If the IPsec packet was processed asynchronously, 22708 * drop it now. 22709 */ 22710 if (q == NULL) { 22711 freemsg(ipsec_mp); 22712 goto done; 22713 } 22714 22715 /* 22716 * Since we're going through ip_newroute() again, we 22717 * need to make sure we don't: 22718 * 22719 * 1.) Trigger the ASSERT() with the ipha_ident 22720 * overloading. 22721 * 2.) Redo transport-layer checksumming, since we've 22722 * already done all that to get this far. 22723 * 22724 * The easiest way not do either of the above is to set 22725 * the ipha_ident field to IP_HDR_INCLUDED. 22726 */ 22727 ipha->ipha_ident = IP_HDR_INCLUDED; 22728 ip_newroute(q, ipsec_mp, dst, NULL, 22729 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 22730 } 22731 goto done; 22732 send: 22733 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 22734 /* 22735 * ESP NAT-Traversal packet. 22736 * 22737 * Just do software checksum for now. 22738 */ 22739 22740 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 22741 IP_STAT(ip_out_sw_cksum); 22742 #define iphs ((uint16_t *)ipha) 22743 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 22744 iphs[9] + ntohs(htons(ipha->ipha_length) - 22745 IP_SIMPLE_HDR_LENGTH); 22746 #undef iphs 22747 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 22748 cksum = 0xFFFF; 22749 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 22750 if (mp1->b_wptr - mp1->b_rptr >= 22751 offset + sizeof (uint16_t)) { 22752 up = (uint16_t *)(mp1->b_rptr + offset); 22753 *up = cksum; 22754 break; /* out of for loop */ 22755 } else { 22756 offset -= (mp->b_wptr - mp->b_rptr); 22757 } 22758 } /* Otherwise, just keep the all-zero checksum. */ 22759 22760 if (ire->ire_stq == NULL) { 22761 /* 22762 * Loopbacks go through ip_wput_local except for one case. 22763 * We come here if we generate a icmp_frag_needed message 22764 * after IPSEC processing is over. When this function calls 22765 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 22766 * icmp_frag_needed. The message generated comes back here 22767 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 22768 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 22769 * source address as it is usually set in ip_wput_ire. As 22770 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 22771 * and we end up here. We can't enter ip_wput_ire once the 22772 * IPSEC processing is over and hence we need to do it here. 22773 */ 22774 ASSERT(q != NULL); 22775 UPDATE_OB_PKT_COUNT(ire); 22776 ire->ire_last_used_time = lbolt; 22777 if (ipha->ipha_src == 0) 22778 ipha->ipha_src = ire->ire_src_addr; 22779 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 22780 ire, 0, zoneid); 22781 if (ire_need_rele) 22782 ire_refrele(ire); 22783 goto done; 22784 } 22785 22786 if (ire->ire_max_frag < (unsigned int)LENGTH) { 22787 /* 22788 * We are through with IPSEC processing. 22789 * Fragment this and send it on the wire. 22790 */ 22791 if (io->ipsec_out_accelerated) { 22792 /* 22793 * The packet has been accelerated but must 22794 * be fragmented. This should not happen 22795 * since AH and ESP must not accelerate 22796 * packets that need fragmentation, however 22797 * the configuration could have changed 22798 * since the AH or ESP processing. 22799 * Drop packet. 22800 * IPsec KSTATS: bump bean counter here. 22801 */ 22802 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 22803 "fragmented accelerated packet!\n")); 22804 freemsg(ipsec_mp); 22805 } else { 22806 ip_wput_ire_fragmentit(ipsec_mp, ire); 22807 } 22808 if (ire_need_rele) 22809 ire_refrele(ire); 22810 goto done; 22811 } 22812 22813 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 22814 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 22815 (void *)ire->ire_ipif, (void *)ipif)); 22816 22817 /* 22818 * Multiroute the secured packet, unless IPsec really 22819 * requires the packet to go out only through a particular 22820 * interface. 22821 */ 22822 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 22823 ire_t *first_ire; 22824 irb = ire->ire_bucket; 22825 ASSERT(irb != NULL); 22826 /* 22827 * This ire has been looked up as the one that 22828 * goes through the given ipif; 22829 * make sure we do not omit any other multiroute ire 22830 * that may be present in the bucket before this one. 22831 */ 22832 IRB_REFHOLD(irb); 22833 for (first_ire = irb->irb_ire; 22834 first_ire != NULL; 22835 first_ire = first_ire->ire_next) { 22836 if ((first_ire->ire_flags & RTF_MULTIRT) && 22837 (first_ire->ire_addr == ire->ire_addr) && 22838 !(first_ire->ire_marks & 22839 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22840 break; 22841 } 22842 22843 if ((first_ire != NULL) && (first_ire != ire)) { 22844 /* 22845 * Don't change the ire if the packet must 22846 * be fragmented if sent via this new one. 22847 */ 22848 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 22849 IRE_REFHOLD(first_ire); 22850 if (ire_need_rele) 22851 ire_refrele(ire); 22852 else 22853 ire_need_rele = B_TRUE; 22854 ire = first_ire; 22855 } 22856 } 22857 IRB_REFRELE(irb); 22858 22859 multirt_send = B_TRUE; 22860 max_frag = ire->ire_max_frag; 22861 } else { 22862 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 22863 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 22864 "flag, attach_if %d\n", attach_if)); 22865 } 22866 } 22867 22868 /* 22869 * In most cases, the emission loop below is entered only once. 22870 * Only in the case where the ire holds the RTF_MULTIRT 22871 * flag, we loop to process all RTF_MULTIRT ires in the 22872 * bucket, and send the packet through all crossed 22873 * RTF_MULTIRT routes. 22874 */ 22875 do { 22876 if (multirt_send) { 22877 /* 22878 * ire1 holds here the next ire to process in the 22879 * bucket. If multirouting is expected, 22880 * any non-RTF_MULTIRT ire that has the 22881 * right destination address is ignored. 22882 */ 22883 ASSERT(irb != NULL); 22884 IRB_REFHOLD(irb); 22885 for (ire1 = ire->ire_next; 22886 ire1 != NULL; 22887 ire1 = ire1->ire_next) { 22888 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22889 continue; 22890 if (ire1->ire_addr != ire->ire_addr) 22891 continue; 22892 if (ire1->ire_marks & 22893 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22894 continue; 22895 /* No loopback here */ 22896 if (ire1->ire_stq == NULL) 22897 continue; 22898 /* 22899 * Ensure we do not exceed the MTU 22900 * of the next route. 22901 */ 22902 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 22903 ip_multirt_bad_mtu(ire1, max_frag); 22904 continue; 22905 } 22906 22907 IRE_REFHOLD(ire1); 22908 break; 22909 } 22910 IRB_REFRELE(irb); 22911 if (ire1 != NULL) { 22912 /* 22913 * We are in a multiple send case, need to 22914 * make a copy of the packet. 22915 */ 22916 next_mp = copymsg(ipsec_mp); 22917 if (next_mp == NULL) { 22918 ire_refrele(ire1); 22919 ire1 = NULL; 22920 } 22921 } 22922 } 22923 22924 /* Everything is done. Send it out on the wire */ 22925 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 22926 if (mp1 == NULL) { 22927 BUMP_MIB(&ip_mib, ipOutDiscards); 22928 freemsg(ipsec_mp); 22929 if (ire_need_rele) 22930 ire_refrele(ire); 22931 if (ire1 != NULL) { 22932 ire_refrele(ire1); 22933 freemsg(next_mp); 22934 } 22935 goto done; 22936 } 22937 UPDATE_OB_PKT_COUNT(ire); 22938 ire->ire_last_used_time = lbolt; 22939 if (!io->ipsec_out_accelerated) { 22940 putnext(ire->ire_stq, mp1); 22941 } else { 22942 /* 22943 * Safety Pup says: make sure this is going to 22944 * the right interface! 22945 */ 22946 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 22947 int ifindex = ill1->ill_phyint->phyint_ifindex; 22948 22949 if (ifindex != io->ipsec_out_capab_ill_index) { 22950 /* IPsec kstats: bump lose counter */ 22951 freemsg(mp1); 22952 } else { 22953 ipsec_hw_putnext(ire->ire_stq, mp1); 22954 } 22955 } 22956 22957 freeb(ipsec_mp); 22958 if (ire_need_rele) 22959 ire_refrele(ire); 22960 22961 if (ire1 != NULL) { 22962 ire = ire1; 22963 ire_need_rele = B_TRUE; 22964 ASSERT(next_mp); 22965 ipsec_mp = next_mp; 22966 mp = ipsec_mp->b_cont; 22967 ire1 = NULL; 22968 next_mp = NULL; 22969 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22970 } else { 22971 multirt_send = B_FALSE; 22972 } 22973 } while (multirt_send); 22974 done: 22975 if (ill != NULL && ill_need_rele) 22976 ill_refrele(ill); 22977 if (ipif != NULL) 22978 ipif_refrele(ipif); 22979 } 22980 22981 /* 22982 * Get the ill corresponding to the specified ire, and compare its 22983 * capabilities with the protocol and algorithms specified by the 22984 * the SA obtained from ipsec_out. If they match, annotate the 22985 * ipsec_out structure to indicate that the packet needs acceleration. 22986 * 22987 * 22988 * A packet is eligible for outbound hardware acceleration if the 22989 * following conditions are satisfied: 22990 * 22991 * 1. the packet will not be fragmented 22992 * 2. the provider supports the algorithm 22993 * 3. there is no pending control message being exchanged 22994 * 4. snoop is not attached 22995 * 5. the destination address is not a broadcast or multicast address. 22996 * 22997 * Rationale: 22998 * - Hardware drivers do not support fragmentation with 22999 * the current interface. 23000 * - snoop, multicast, and broadcast may result in exposure of 23001 * a cleartext datagram. 23002 * We check all five of these conditions here. 23003 * 23004 * XXX would like to nuke "ire_t *" parameter here; problem is that 23005 * IRE is only way to figure out if a v4 address is a broadcast and 23006 * thus ineligible for acceleration... 23007 */ 23008 static void 23009 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 23010 { 23011 ipsec_out_t *io; 23012 mblk_t *data_mp; 23013 uint_t plen, overhead; 23014 23015 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 23016 return; 23017 23018 if (ill == NULL) 23019 return; 23020 23021 /* 23022 * Destination address is a broadcast or multicast. Punt. 23023 */ 23024 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 23025 IRE_LOCAL))) 23026 return; 23027 23028 data_mp = ipsec_mp->b_cont; 23029 23030 if (ill->ill_isv6) { 23031 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 23032 23033 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 23034 return; 23035 23036 plen = ip6h->ip6_plen; 23037 } else { 23038 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 23039 23040 if (CLASSD(ipha->ipha_dst)) 23041 return; 23042 23043 plen = ipha->ipha_length; 23044 } 23045 /* 23046 * Is there a pending DLPI control message being exchanged 23047 * between IP/IPsec and the DLS Provider? If there is, it 23048 * could be a SADB update, and the state of the DLS Provider 23049 * SADB might not be in sync with the SADB maintained by 23050 * IPsec. To avoid dropping packets or using the wrong keying 23051 * material, we do not accelerate this packet. 23052 */ 23053 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 23054 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23055 "ill_dlpi_pending! don't accelerate packet\n")); 23056 return; 23057 } 23058 23059 /* 23060 * Is the Provider in promiscous mode? If it does, we don't 23061 * accelerate the packet since it will bounce back up to the 23062 * listeners in the clear. 23063 */ 23064 if (ill->ill_promisc_on_phys) { 23065 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23066 "ill in promiscous mode, don't accelerate packet\n")); 23067 return; 23068 } 23069 23070 /* 23071 * Will the packet require fragmentation? 23072 */ 23073 23074 /* 23075 * IPsec ESP note: this is a pessimistic estimate, but the same 23076 * as is used elsewhere. 23077 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 23078 * + 2-byte trailer 23079 */ 23080 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 23081 IPSEC_BASE_ESP_HDR_SIZE(sa); 23082 23083 if ((plen + overhead) > ill->ill_max_mtu) 23084 return; 23085 23086 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23087 23088 /* 23089 * Can the ill accelerate this IPsec protocol and algorithm 23090 * specified by the SA? 23091 */ 23092 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 23093 ill->ill_isv6, sa)) { 23094 return; 23095 } 23096 23097 /* 23098 * Tell AH or ESP that the outbound ill is capable of 23099 * accelerating this packet. 23100 */ 23101 io->ipsec_out_is_capab_ill = B_TRUE; 23102 } 23103 23104 /* 23105 * Select which AH & ESP SA's to use (if any) for the outbound packet. 23106 * 23107 * If this function returns B_TRUE, the requested SA's have been filled 23108 * into the ipsec_out_*_sa pointers. 23109 * 23110 * If the function returns B_FALSE, the packet has been "consumed", most 23111 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 23112 * 23113 * The SA references created by the protocol-specific "select" 23114 * function will be released when the ipsec_mp is freed, thanks to the 23115 * ipsec_out_free destructor -- see spd.c. 23116 */ 23117 static boolean_t 23118 ipsec_out_select_sa(mblk_t *ipsec_mp) 23119 { 23120 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 23121 ipsec_out_t *io; 23122 ipsec_policy_t *pp; 23123 ipsec_action_t *ap; 23124 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23125 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23126 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23127 23128 if (!io->ipsec_out_secure) { 23129 /* 23130 * We came here by mistake. 23131 * Don't bother with ipsec processing 23132 * We should "discourage" this path in the future. 23133 */ 23134 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23135 return (B_FALSE); 23136 } 23137 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23138 ASSERT((io->ipsec_out_policy != NULL) || 23139 (io->ipsec_out_act != NULL)); 23140 23141 ASSERT(io->ipsec_out_failed == B_FALSE); 23142 23143 /* 23144 * IPSEC processing has started. 23145 */ 23146 io->ipsec_out_proc_begin = B_TRUE; 23147 ap = io->ipsec_out_act; 23148 if (ap == NULL) { 23149 pp = io->ipsec_out_policy; 23150 ASSERT(pp != NULL); 23151 ap = pp->ipsp_act; 23152 ASSERT(ap != NULL); 23153 } 23154 23155 /* 23156 * We have an action. now, let's select SA's. 23157 * (In the future, we can cache this in the conn_t..) 23158 */ 23159 if (ap->ipa_want_esp) { 23160 if (io->ipsec_out_esp_sa == NULL) { 23161 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 23162 IPPROTO_ESP); 23163 } 23164 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 23165 } 23166 23167 if (ap->ipa_want_ah) { 23168 if (io->ipsec_out_ah_sa == NULL) { 23169 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 23170 IPPROTO_AH); 23171 } 23172 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 23173 /* 23174 * The ESP and AH processing order needs to be preserved 23175 * when both protocols are required (ESP should be applied 23176 * before AH for an outbound packet). Force an ESP ACQUIRE 23177 * when both ESP and AH are required, and an AH ACQUIRE 23178 * is needed. 23179 */ 23180 if (ap->ipa_want_esp && need_ah_acquire) 23181 need_esp_acquire = B_TRUE; 23182 } 23183 23184 /* 23185 * Send an ACQUIRE (extended, regular, or both) if we need one. 23186 * Release SAs that got referenced, but will not be used until we 23187 * acquire _all_ of the SAs we need. 23188 */ 23189 if (need_ah_acquire || need_esp_acquire) { 23190 if (io->ipsec_out_ah_sa != NULL) { 23191 IPSA_REFRELE(io->ipsec_out_ah_sa); 23192 io->ipsec_out_ah_sa = NULL; 23193 } 23194 if (io->ipsec_out_esp_sa != NULL) { 23195 IPSA_REFRELE(io->ipsec_out_esp_sa); 23196 io->ipsec_out_esp_sa = NULL; 23197 } 23198 23199 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 23200 return (B_FALSE); 23201 } 23202 23203 return (B_TRUE); 23204 } 23205 23206 /* 23207 * Process an IPSEC_OUT message and see what you can 23208 * do with it. 23209 * IPQoS Notes: 23210 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 23211 * IPSec. 23212 * XXX would like to nuke ire_t. 23213 * XXX ill_index better be "real" 23214 */ 23215 void 23216 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 23217 { 23218 ipsec_out_t *io; 23219 ipsec_policy_t *pp; 23220 ipsec_action_t *ap; 23221 ipha_t *ipha; 23222 ip6_t *ip6h; 23223 mblk_t *mp; 23224 ill_t *ill; 23225 zoneid_t zoneid; 23226 ipsec_status_t ipsec_rc; 23227 boolean_t ill_need_rele = B_FALSE; 23228 23229 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23230 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23231 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23232 mp = ipsec_mp->b_cont; 23233 23234 /* 23235 * Initiate IPPF processing. We do it here to account for packets 23236 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 23237 * We can check for ipsec_out_proc_begin even for such packets, as 23238 * they will always be false (asserted below). 23239 */ 23240 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 23241 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 23242 io->ipsec_out_ill_index : ill_index); 23243 if (mp == NULL) { 23244 ip2dbg(("ipsec_out_process: packet dropped "\ 23245 "during IPPF processing\n")); 23246 freeb(ipsec_mp); 23247 BUMP_MIB(&ip_mib, ipOutDiscards); 23248 return; 23249 } 23250 } 23251 23252 if (!io->ipsec_out_secure) { 23253 /* 23254 * We came here by mistake. 23255 * Don't bother with ipsec processing 23256 * Should "discourage" this path in the future. 23257 */ 23258 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23259 goto done; 23260 } 23261 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23262 ASSERT((io->ipsec_out_policy != NULL) || 23263 (io->ipsec_out_act != NULL)); 23264 ASSERT(io->ipsec_out_failed == B_FALSE); 23265 23266 if (!ipsec_loaded()) { 23267 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 23268 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23269 BUMP_MIB(&ip_mib, ipOutDiscards); 23270 } else { 23271 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 23272 } 23273 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 23274 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 23275 return; 23276 } 23277 23278 /* 23279 * IPSEC processing has started. 23280 */ 23281 io->ipsec_out_proc_begin = B_TRUE; 23282 ap = io->ipsec_out_act; 23283 if (ap == NULL) { 23284 pp = io->ipsec_out_policy; 23285 ASSERT(pp != NULL); 23286 ap = pp->ipsp_act; 23287 ASSERT(ap != NULL); 23288 } 23289 23290 /* 23291 * Save the outbound ill index. When the packet comes back 23292 * from IPsec, we make sure the ill hasn't changed or disappeared 23293 * before sending it the accelerated packet. 23294 */ 23295 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 23296 int ifindex; 23297 ill = ire_to_ill(ire); 23298 ifindex = ill->ill_phyint->phyint_ifindex; 23299 io->ipsec_out_capab_ill_index = ifindex; 23300 } 23301 23302 /* 23303 * The order of processing is first insert a IP header if needed. 23304 * Then insert the ESP header and then the AH header. 23305 */ 23306 if ((io->ipsec_out_se_done == B_FALSE) && 23307 (ap->ipa_want_se)) { 23308 /* 23309 * First get the outer IP header before sending 23310 * it to ESP. 23311 */ 23312 ipha_t *oipha, *iipha; 23313 mblk_t *outer_mp, *inner_mp; 23314 23315 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 23316 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 23317 "ipsec_out_process: " 23318 "Self-Encapsulation failed: Out of memory\n"); 23319 freemsg(ipsec_mp); 23320 BUMP_MIB(&ip_mib, ipOutDiscards); 23321 return; 23322 } 23323 inner_mp = ipsec_mp->b_cont; 23324 ASSERT(inner_mp->b_datap->db_type == M_DATA); 23325 oipha = (ipha_t *)outer_mp->b_rptr; 23326 iipha = (ipha_t *)inner_mp->b_rptr; 23327 *oipha = *iipha; 23328 outer_mp->b_wptr += sizeof (ipha_t); 23329 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 23330 sizeof (ipha_t)); 23331 oipha->ipha_protocol = IPPROTO_ENCAP; 23332 oipha->ipha_version_and_hdr_length = 23333 IP_SIMPLE_HDR_VERSION; 23334 oipha->ipha_hdr_checksum = 0; 23335 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 23336 outer_mp->b_cont = inner_mp; 23337 ipsec_mp->b_cont = outer_mp; 23338 23339 io->ipsec_out_se_done = B_TRUE; 23340 io->ipsec_out_encaps = B_TRUE; 23341 } 23342 23343 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 23344 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 23345 !ipsec_out_select_sa(ipsec_mp)) 23346 return; 23347 23348 /* 23349 * By now, we know what SA's to use. Toss over to ESP & AH 23350 * to do the heavy lifting. 23351 */ 23352 zoneid = io->ipsec_out_zoneid; 23353 ASSERT(zoneid != ALL_ZONES); 23354 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 23355 ASSERT(io->ipsec_out_esp_sa != NULL); 23356 io->ipsec_out_esp_done = B_TRUE; 23357 /* 23358 * Note that since hw accel can only apply one transform, 23359 * not two, we skip hw accel for ESP if we also have AH 23360 * This is an design limitation of the interface 23361 * which should be revisited. 23362 */ 23363 ASSERT(ire != NULL); 23364 if (io->ipsec_out_ah_sa == NULL) { 23365 ill = (ill_t *)ire->ire_stq->q_ptr; 23366 ipsec_out_is_accelerated(ipsec_mp, 23367 io->ipsec_out_esp_sa, ill, ire); 23368 } 23369 23370 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 23371 switch (ipsec_rc) { 23372 case IPSEC_STATUS_SUCCESS: 23373 break; 23374 case IPSEC_STATUS_FAILED: 23375 BUMP_MIB(&ip_mib, ipOutDiscards); 23376 /* FALLTHRU */ 23377 case IPSEC_STATUS_PENDING: 23378 return; 23379 } 23380 } 23381 23382 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 23383 ASSERT(io->ipsec_out_ah_sa != NULL); 23384 io->ipsec_out_ah_done = B_TRUE; 23385 if (ire == NULL) { 23386 int idx = io->ipsec_out_capab_ill_index; 23387 ill = ill_lookup_on_ifindex(idx, B_FALSE, 23388 NULL, NULL, NULL, NULL); 23389 ill_need_rele = B_TRUE; 23390 } else { 23391 ill = (ill_t *)ire->ire_stq->q_ptr; 23392 } 23393 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 23394 ire); 23395 23396 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 23397 switch (ipsec_rc) { 23398 case IPSEC_STATUS_SUCCESS: 23399 break; 23400 case IPSEC_STATUS_FAILED: 23401 BUMP_MIB(&ip_mib, ipOutDiscards); 23402 /* FALLTHRU */ 23403 case IPSEC_STATUS_PENDING: 23404 if (ill != NULL && ill_need_rele) 23405 ill_refrele(ill); 23406 return; 23407 } 23408 } 23409 /* 23410 * We are done with IPSEC processing. Send it over 23411 * the wire. 23412 */ 23413 done: 23414 mp = ipsec_mp->b_cont; 23415 ipha = (ipha_t *)mp->b_rptr; 23416 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23417 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 23418 } else { 23419 ip6h = (ip6_t *)ipha; 23420 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 23421 } 23422 if (ill != NULL && ill_need_rele) 23423 ill_refrele(ill); 23424 } 23425 23426 /* ARGSUSED */ 23427 void 23428 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 23429 { 23430 opt_restart_t *or; 23431 int err; 23432 conn_t *connp; 23433 23434 ASSERT(CONN_Q(q)); 23435 connp = Q_TO_CONN(q); 23436 23437 ASSERT(first_mp->b_datap->db_type == M_CTL); 23438 or = (opt_restart_t *)first_mp->b_rptr; 23439 /* 23440 * We don't need to pass any credentials here since this is just 23441 * a restart. The credentials are passed in when svr4_optcom_req 23442 * is called the first time (from ip_wput_nondata). 23443 */ 23444 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 23445 err = svr4_optcom_req(q, first_mp, NULL, 23446 &ip_opt_obj); 23447 } else { 23448 ASSERT(or->or_type == T_OPTMGMT_REQ); 23449 err = tpi_optcom_req(q, first_mp, NULL, 23450 &ip_opt_obj); 23451 } 23452 if (err != EINPROGRESS) { 23453 /* operation is done */ 23454 CONN_OPER_PENDING_DONE(connp); 23455 } 23456 } 23457 23458 /* 23459 * ioctls that go through a down/up sequence may need to wait for the down 23460 * to complete. This involves waiting for the ire and ipif refcnts to go down 23461 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 23462 */ 23463 /* ARGSUSED */ 23464 void 23465 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23466 { 23467 struct iocblk *iocp; 23468 mblk_t *mp1; 23469 ipif_t *ipif; 23470 ip_ioctl_cmd_t *ipip; 23471 int err; 23472 sin_t *sin; 23473 struct lifreq *lifr; 23474 struct ifreq *ifr; 23475 23476 iocp = (struct iocblk *)mp->b_rptr; 23477 ASSERT(ipsq != NULL); 23478 /* Existence of mp1 verified in ip_wput_nondata */ 23479 mp1 = mp->b_cont->b_cont; 23480 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23481 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 23482 ill_t *ill; 23483 /* 23484 * Special case where ipsq_current_ipif may not be set. 23485 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 23486 * ill could also have become part of a ipmp group in the 23487 * process, we are here as were not able to complete the 23488 * operation in ipif_set_values because we could not become 23489 * exclusive on the new ipsq, In such a case ipsq_current_ipif 23490 * will not be set so we need to set it. 23491 */ 23492 ill = (ill_t *)q->q_ptr; 23493 ipsq->ipsq_current_ipif = ill->ill_ipif; 23494 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 23495 } 23496 23497 ipif = ipsq->ipsq_current_ipif; 23498 ASSERT(ipif != NULL); 23499 if (ipip->ipi_cmd_type == IF_CMD) { 23500 /* This a old style SIOC[GS]IF* command */ 23501 ifr = (struct ifreq *)mp1->b_rptr; 23502 sin = (sin_t *)&ifr->ifr_addr; 23503 } else if (ipip->ipi_cmd_type == LIF_CMD) { 23504 /* This a new style SIOC[GS]LIF* command */ 23505 lifr = (struct lifreq *)mp1->b_rptr; 23506 sin = (sin_t *)&lifr->lifr_addr; 23507 } else { 23508 sin = NULL; 23509 } 23510 23511 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 23512 (void *)mp1->b_rptr); 23513 23514 /* SIOCLIFREMOVEIF could have removed the ipif */ 23515 ip_ioctl_finish(q, mp, err, 23516 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23517 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 23518 } 23519 23520 /* 23521 * ioctl processing 23522 * 23523 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 23524 * the ioctl command in the ioctl tables and determines the copyin data size 23525 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 23526 * size. 23527 * 23528 * ioctl processing then continues when the M_IOCDATA makes its way down. 23529 * Now the ioctl is looked up again in the ioctl table, and its properties are 23530 * extracted. The associated 'conn' is then refheld till the end of the ioctl 23531 * and the general ioctl processing function ip_process_ioctl is called. 23532 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 23533 * so goes thru the serialization primitive ipsq_try_enter. Then the 23534 * appropriate function to handle the ioctl is called based on the entry in 23535 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 23536 * which also refreleases the 'conn' that was refheld at the start of the 23537 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 23538 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 23539 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 23540 * 23541 * Many exclusive ioctls go thru an internal down up sequence as part of 23542 * the operation. For example an attempt to change the IP address of an 23543 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 23544 * does all the cleanup such as deleting all ires that use this address. 23545 * Then we need to wait till all references to the interface go away. 23546 */ 23547 void 23548 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23549 { 23550 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 23551 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 23552 cmd_info_t ci; 23553 int err; 23554 boolean_t entered_ipsq = B_FALSE; 23555 23556 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 23557 23558 if (ipip == NULL) 23559 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23560 23561 /* 23562 * SIOCLIFADDIF needs to go thru a special path since the 23563 * ill may not exist yet. This happens in the case of lo0 23564 * which is created using this ioctl. 23565 */ 23566 if (ipip->ipi_cmd == SIOCLIFADDIF) { 23567 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 23568 ip_ioctl_finish(q, mp, err, 23569 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23570 NULL, NULL); 23571 return; 23572 } 23573 23574 ci.ci_ipif = NULL; 23575 switch (ipip->ipi_cmd_type) { 23576 case IF_CMD: 23577 case LIF_CMD: 23578 /* 23579 * ioctls that pass in a [l]ifreq appear here. 23580 * ip_extract_lifreq_cmn returns a refheld ipif in 23581 * ci.ci_ipif 23582 */ 23583 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 23584 ipip->ipi_flags, &ci, ip_process_ioctl); 23585 if (err != 0) { 23586 ip_ioctl_finish(q, mp, err, 23587 ipip->ipi_flags & IPI_GET_CMD ? 23588 COPYOUT : NO_COPYOUT, NULL, NULL); 23589 return; 23590 } 23591 ASSERT(ci.ci_ipif != NULL); 23592 break; 23593 23594 case TUN_CMD: 23595 /* 23596 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 23597 * a refheld ipif in ci.ci_ipif 23598 */ 23599 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 23600 if (err != 0) { 23601 ip_ioctl_finish(q, mp, err, 23602 ipip->ipi_flags & IPI_GET_CMD ? 23603 COPYOUT : NO_COPYOUT, NULL, NULL); 23604 return; 23605 } 23606 ASSERT(ci.ci_ipif != NULL); 23607 break; 23608 23609 case MISC_CMD: 23610 /* 23611 * ioctls that neither pass in [l]ifreq or iftun_req come here 23612 * For eg. SIOCGLIFCONF will appear here. 23613 */ 23614 switch (ipip->ipi_cmd) { 23615 case IF_UNITSEL: 23616 /* ioctl comes down the ill */ 23617 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 23618 ipif_refhold(ci.ci_ipif); 23619 break; 23620 case SIOCGMSFILTER: 23621 case SIOCSMSFILTER: 23622 case SIOCGIPMSFILTER: 23623 case SIOCSIPMSFILTER: 23624 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 23625 ip_process_ioctl); 23626 if (err != 0) { 23627 ip_ioctl_finish(q, mp, err, 23628 ipip->ipi_flags & IPI_GET_CMD ? 23629 COPYOUT : NO_COPYOUT, NULL, NULL); 23630 return; 23631 } 23632 break; 23633 } 23634 err = 0; 23635 ci.ci_sin = NULL; 23636 ci.ci_sin6 = NULL; 23637 ci.ci_lifr = NULL; 23638 break; 23639 } 23640 23641 /* 23642 * If ipsq is non-null, we are already being called exclusively 23643 */ 23644 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 23645 if (!(ipip->ipi_flags & IPI_WR)) { 23646 /* 23647 * A return value of EINPROGRESS means the ioctl is 23648 * either queued and waiting for some reason or has 23649 * already completed. 23650 */ 23651 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 23652 ci.ci_lifr); 23653 if (ci.ci_ipif != NULL) 23654 ipif_refrele(ci.ci_ipif); 23655 ip_ioctl_finish(q, mp, err, 23656 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23657 NULL, NULL); 23658 return; 23659 } 23660 23661 ASSERT(ci.ci_ipif != NULL); 23662 23663 if (ipsq == NULL) { 23664 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 23665 ip_process_ioctl, NEW_OP, B_TRUE); 23666 entered_ipsq = B_TRUE; 23667 } 23668 /* 23669 * Release the ipif so that ipif_down and friends that wait for 23670 * references to go away are not misled about the current ipif_refcnt 23671 * values. We are writer so we can access the ipif even after releasing 23672 * the ipif. 23673 */ 23674 ipif_refrele(ci.ci_ipif); 23675 if (ipsq == NULL) 23676 return; 23677 23678 mutex_enter(&ipsq->ipsq_lock); 23679 ASSERT(ipsq->ipsq_current_ipif == NULL); 23680 ipsq->ipsq_current_ipif = ci.ci_ipif; 23681 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 23682 mutex_exit(&ipsq->ipsq_lock); 23683 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 23684 /* 23685 * For most set ioctls that come here, this serves as a single point 23686 * where we set the IPIF_CHANGING flag. This ensures that there won't 23687 * be any new references to the ipif. This helps functions that go 23688 * through this path and end up trying to wait for the refcnts 23689 * associated with the ipif to go down to zero. Some exceptions are 23690 * Failover, Failback, and Groupname commands that operate on more than 23691 * just the ci.ci_ipif. These commands internally determine the 23692 * set of ipif's they operate on and set and clear the IPIF_CHANGING 23693 * flags on that set. Another exception is the Removeif command that 23694 * sets the IPIF_CONDEMNED flag internally after identifying the right 23695 * ipif to operate on. 23696 */ 23697 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 23698 ipip->ipi_cmd != SIOCLIFFAILOVER && 23699 ipip->ipi_cmd != SIOCLIFFAILBACK && 23700 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 23701 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 23702 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 23703 23704 /* 23705 * A return value of EINPROGRESS means the ioctl is 23706 * either queued and waiting for some reason or has 23707 * already completed. 23708 */ 23709 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 23710 ci.ci_lifr); 23711 23712 /* SIOCLIFREMOVEIF could have removed the ipif */ 23713 ip_ioctl_finish(q, mp, err, 23714 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23715 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 23716 23717 if (entered_ipsq) 23718 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23719 } 23720 23721 /* 23722 * Complete the ioctl. Typically ioctls use the mi package and need to 23723 * do mi_copyout/mi_copy_done. 23724 */ 23725 void 23726 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 23727 ipif_t *ipif, ipsq_t *ipsq) 23728 { 23729 conn_t *connp = NULL; 23730 23731 if (err == EINPROGRESS) 23732 return; 23733 23734 if (CONN_Q(q)) { 23735 connp = Q_TO_CONN(q); 23736 ASSERT(connp->conn_ref >= 2); 23737 } 23738 23739 switch (mode) { 23740 case COPYOUT: 23741 if (err == 0) 23742 mi_copyout(q, mp); 23743 else 23744 mi_copy_done(q, mp, err); 23745 break; 23746 23747 case NO_COPYOUT: 23748 mi_copy_done(q, mp, err); 23749 break; 23750 23751 default: 23752 /* An ioctl aborted through a conn close would take this path */ 23753 break; 23754 } 23755 23756 /* 23757 * The refhold placed at the start of the ioctl is released here. 23758 */ 23759 if (connp != NULL) 23760 CONN_OPER_PENDING_DONE(connp); 23761 23762 /* 23763 * If the ioctl were an exclusive ioctl it would have set 23764 * IPIF_CHANGING at the start of the ioctl which is undone here. 23765 */ 23766 if (ipif != NULL) { 23767 mutex_enter(&(ipif)->ipif_ill->ill_lock); 23768 ipif->ipif_state_flags &= ~IPIF_CHANGING; 23769 mutex_exit(&(ipif)->ipif_ill->ill_lock); 23770 } 23771 23772 /* 23773 * Clear the current ipif in the ipsq at the completion of the ioctl. 23774 * Note that a non-null ipsq_current_ipif prevents new ioctls from 23775 * entering the ipsq 23776 */ 23777 if (ipsq != NULL) { 23778 mutex_enter(&ipsq->ipsq_lock); 23779 ipsq->ipsq_current_ipif = NULL; 23780 mutex_exit(&ipsq->ipsq_lock); 23781 } 23782 } 23783 23784 /* 23785 * This is called from ip_wput_nondata to resume a deferred TCP bind. 23786 */ 23787 /* ARGSUSED */ 23788 void 23789 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 23790 { 23791 conn_t *connp = (conn_t *)arg; 23792 tcp_t *tcp; 23793 23794 ASSERT(connp != NULL && connp->conn_tcp != NULL); 23795 tcp = connp->conn_tcp; 23796 23797 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 23798 freemsg(mp); 23799 else 23800 tcp_rput_other(tcp, mp); 23801 CONN_OPER_PENDING_DONE(connp); 23802 23803 } 23804 23805 /* Called from ip_wput for all non data messages */ 23806 /* ARGSUSED */ 23807 void 23808 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23809 { 23810 mblk_t *mp1; 23811 ire_t *ire; 23812 ill_t *ill; 23813 struct iocblk *iocp; 23814 ip_ioctl_cmd_t *ipip; 23815 cred_t *cr; 23816 conn_t *connp = NULL; 23817 int cmd, err; 23818 23819 if (CONN_Q(q)) 23820 connp = Q_TO_CONN(q); 23821 23822 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 23823 23824 /* Check if it is a queue to /dev/sctp. */ 23825 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 23826 connp->conn_rq == NULL) { 23827 sctp_wput(q, mp); 23828 return; 23829 } 23830 23831 switch (DB_TYPE(mp)) { 23832 case M_IOCTL: 23833 /* 23834 * IOCTL processing begins in ip_sioctl_copyin_setup which 23835 * will arrange to copy in associated control structures. 23836 */ 23837 ip_sioctl_copyin_setup(q, mp); 23838 return; 23839 case M_IOCDATA: 23840 /* 23841 * Ensure that this is associated with one of our trans- 23842 * parent ioctls. If it's not ours, discard it if we're 23843 * running as a driver, or pass it on if we're a module. 23844 */ 23845 iocp = (struct iocblk *)mp->b_rptr; 23846 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23847 if (ipip == NULL) { 23848 if (q->q_next == NULL) { 23849 goto nak; 23850 } else { 23851 putnext(q, mp); 23852 } 23853 return; 23854 } else if ((q->q_next != NULL) && 23855 !(ipip->ipi_flags & IPI_MODOK)) { 23856 /* 23857 * the ioctl is one we recognise, but is not 23858 * consumed by IP as a module, pass M_IOCDATA 23859 * for processing downstream, but only for 23860 * common Streams ioctls. 23861 */ 23862 if (ipip->ipi_flags & IPI_PASS_DOWN) { 23863 putnext(q, mp); 23864 return; 23865 } else { 23866 goto nak; 23867 } 23868 } 23869 23870 /* IOCTL continuation following copyin or copyout. */ 23871 if (mi_copy_state(q, mp, NULL) == -1) { 23872 /* 23873 * The copy operation failed. mi_copy_state already 23874 * cleaned up, so we're out of here. 23875 */ 23876 return; 23877 } 23878 /* 23879 * If we just completed a copy in, we become writer and 23880 * continue processing in ip_sioctl_copyin_done. If it 23881 * was a copy out, we call mi_copyout again. If there is 23882 * nothing more to copy out, it will complete the IOCTL. 23883 */ 23884 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 23885 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 23886 mi_copy_done(q, mp, EPROTO); 23887 return; 23888 } 23889 /* 23890 * Check for cases that need more copying. A return 23891 * value of 0 means a second copyin has been started, 23892 * so we return; a return value of 1 means no more 23893 * copying is needed, so we continue. 23894 */ 23895 cmd = iocp->ioc_cmd; 23896 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 23897 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 23898 MI_COPY_COUNT(mp) == 1) { 23899 if (ip_copyin_msfilter(q, mp) == 0) 23900 return; 23901 } 23902 /* 23903 * Refhold the conn, till the ioctl completes. This is 23904 * needed in case the ioctl ends up in the pending mp 23905 * list. Every mp in the ill_pending_mp list and 23906 * the ipsq_pending_mp must have a refhold on the conn 23907 * to resume processing. The refhold is released when 23908 * the ioctl completes. (normally or abnormally) 23909 * In all cases ip_ioctl_finish is called to finish 23910 * the ioctl. 23911 */ 23912 if (connp != NULL) { 23913 /* This is not a reentry */ 23914 ASSERT(ipsq == NULL); 23915 CONN_INC_REF(connp); 23916 } else { 23917 if (!(ipip->ipi_flags & IPI_MODOK)) { 23918 mi_copy_done(q, mp, EINVAL); 23919 return; 23920 } 23921 } 23922 23923 ip_process_ioctl(ipsq, q, mp, ipip); 23924 23925 } else { 23926 mi_copyout(q, mp); 23927 } 23928 return; 23929 nak: 23930 iocp->ioc_error = EINVAL; 23931 mp->b_datap->db_type = M_IOCNAK; 23932 iocp->ioc_count = 0; 23933 qreply(q, mp); 23934 return; 23935 23936 case M_IOCNAK: 23937 /* 23938 * The only way we could get here is if a resolver didn't like 23939 * an IOCTL we sent it. This shouldn't happen. 23940 */ 23941 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 23942 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 23943 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 23944 freemsg(mp); 23945 return; 23946 case M_IOCACK: 23947 /* Finish socket ioctls passed through to ARP. */ 23948 ip_sioctl_iocack(q, mp); 23949 return; 23950 case M_FLUSH: 23951 if (*mp->b_rptr & FLUSHW) 23952 flushq(q, FLUSHALL); 23953 if (q->q_next) { 23954 /* 23955 * M_FLUSH is sent up to IP by some drivers during 23956 * unbind. ip_rput has already replied to it. We are 23957 * here for the M_FLUSH that we originated in IP 23958 * before sending the unbind request to the driver. 23959 * Just free it as we don't queue packets in IP 23960 * on the write side of the device instance. 23961 */ 23962 freemsg(mp); 23963 return; 23964 } 23965 if (*mp->b_rptr & FLUSHR) { 23966 *mp->b_rptr &= ~FLUSHW; 23967 qreply(q, mp); 23968 return; 23969 } 23970 freemsg(mp); 23971 return; 23972 case IRE_DB_REQ_TYPE: 23973 /* An Upper Level Protocol wants a copy of an IRE. */ 23974 ip_ire_req(q, mp); 23975 return; 23976 case M_CTL: 23977 /* M_CTL messages are used by ARP to tell us things. */ 23978 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 23979 break; 23980 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 23981 case AR_ENTRY_SQUERY: 23982 ip_wput_ctl(q, mp); 23983 return; 23984 case AR_CLIENT_NOTIFY: 23985 ip_arp_news(q, mp); 23986 return; 23987 case AR_DLPIOP_DONE: 23988 ASSERT(q->q_next != NULL); 23989 ill = (ill_t *)q->q_ptr; 23990 /* qwriter_ip releases the refhold */ 23991 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 23992 ill_refhold(ill); 23993 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 23994 CUR_OP, B_FALSE); 23995 return; 23996 case AR_ARP_CLOSING: 23997 /* 23998 * ARP (above us) is closing. If no ARP bringup is 23999 * currently pending, ack the message so that ARP 24000 * can complete its close. Also mark ill_arp_closing 24001 * so that new ARP bringups will fail. If any 24002 * ARP bringup is currently in progress, we will 24003 * ack this when the current ARP bringup completes. 24004 */ 24005 ASSERT(q->q_next != NULL); 24006 ill = (ill_t *)q->q_ptr; 24007 mutex_enter(&ill->ill_lock); 24008 ill->ill_arp_closing = 1; 24009 if (!ill->ill_arp_bringup_pending) { 24010 mutex_exit(&ill->ill_lock); 24011 qreply(q, mp); 24012 } else { 24013 mutex_exit(&ill->ill_lock); 24014 freemsg(mp); 24015 } 24016 return; 24017 default: 24018 break; 24019 } 24020 break; 24021 case M_PROTO: 24022 case M_PCPROTO: 24023 /* 24024 * The only PROTO messages we expect are ULP binds and 24025 * copies of option negotiation acknowledgements. 24026 */ 24027 switch (((union T_primitives *)mp->b_rptr)->type) { 24028 case O_T_BIND_REQ: 24029 case T_BIND_REQ: { 24030 /* Request can get queued in bind */ 24031 ASSERT(connp != NULL); 24032 /* Don't increment refcnt if this is a re-entry */ 24033 if (ipsq == NULL) 24034 CONN_INC_REF(connp); 24035 mp = connp->conn_af_isv6 ? 24036 ip_bind_v6(q, mp, connp, NULL) : 24037 ip_bind_v4(q, mp, connp); 24038 if (mp != NULL) { 24039 tcp_t *tcp; 24040 24041 tcp = connp->conn_tcp; 24042 if (tcp != NULL) { 24043 if (ipsq == NULL) { 24044 tcp_rput_other(tcp, mp); 24045 } else { 24046 CONN_INC_REF(connp); 24047 squeue_fill(connp->conn_sqp, mp, 24048 ip_resume_tcp_bind, 24049 connp, SQTAG_TCP_RPUTOTHER); 24050 return; 24051 } 24052 } else { 24053 qreply(q, mp); 24054 } 24055 CONN_OPER_PENDING_DONE(connp); 24056 } 24057 return; 24058 } 24059 case T_SVR4_OPTMGMT_REQ: 24060 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 24061 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 24062 24063 ASSERT(connp != NULL); 24064 if (!snmpcom_req(q, mp, ip_snmp_set, 24065 ip_snmp_get, cr)) { 24066 /* 24067 * Call svr4_optcom_req so that it can 24068 * generate the ack. We don't come here 24069 * if this operation is being restarted. 24070 * ip_restart_optmgmt will drop the conn ref. 24071 * In the case of ipsec option after the ipsec 24072 * load is complete conn_restart_ipsec_waiter 24073 * drops the conn ref. 24074 */ 24075 ASSERT(ipsq == NULL); 24076 CONN_INC_REF(connp); 24077 if (ip_check_for_ipsec_opt(q, mp)) 24078 return; 24079 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 24080 if (err != EINPROGRESS) { 24081 /* Operation is done */ 24082 CONN_OPER_PENDING_DONE(connp); 24083 } 24084 } 24085 return; 24086 case T_OPTMGMT_REQ: 24087 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 24088 /* 24089 * Note: No snmpcom_req support through new 24090 * T_OPTMGMT_REQ. 24091 * Call tpi_optcom_req so that it can 24092 * generate the ack. 24093 */ 24094 ASSERT(connp != NULL); 24095 ASSERT(ipsq == NULL); 24096 /* 24097 * We don't come here for restart. ip_restart_optmgmt 24098 * will drop the conn ref. In the case of ipsec option 24099 * after the ipsec load is complete 24100 * conn_restart_ipsec_waiter drops the conn ref. 24101 */ 24102 CONN_INC_REF(connp); 24103 if (ip_check_for_ipsec_opt(q, mp)) 24104 return; 24105 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 24106 if (err != EINPROGRESS) { 24107 /* Operation is done */ 24108 CONN_OPER_PENDING_DONE(connp); 24109 } 24110 return; 24111 case T_UNBIND_REQ: 24112 ip_unbind(q, mp); 24113 return; 24114 default: 24115 /* 24116 * Have to drop any DLPI messages coming down from 24117 * arp (such as an info_req which would cause ip 24118 * to receive an extra info_ack if it was passed 24119 * through. 24120 */ 24121 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 24122 (int)*(uint_t *)mp->b_rptr)); 24123 freemsg(mp); 24124 return; 24125 } 24126 /* NOTREACHED */ 24127 case IRE_DB_TYPE: { 24128 nce_t *nce; 24129 ill_t *ill; 24130 in6_addr_t gw_addr_v6; 24131 24132 24133 /* 24134 * This is a response back from a resolver. It 24135 * consists of a message chain containing: 24136 * IRE_MBLK-->LL_HDR_MBLK->pkt 24137 * The IRE_MBLK is the one we allocated in ip_newroute. 24138 * The LL_HDR_MBLK is the DLPI header to use to get 24139 * the attached packet, and subsequent ones for the 24140 * same destination, transmitted. 24141 */ 24142 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 24143 break; 24144 /* 24145 * First, check to make sure the resolution succeeded. 24146 * If it failed, the second mblk will be empty. 24147 * If it is, free the chain, dropping the packet. 24148 * (We must ire_delete the ire; that frees the ire mblk) 24149 * We're doing this now to support PVCs for ATM; it's 24150 * a partial xresolv implementation. When we fully implement 24151 * xresolv interfaces, instead of freeing everything here 24152 * we'll initiate neighbor discovery. 24153 * 24154 * For v4 (ARP and other external resolvers) the resolver 24155 * frees the message, so no check is needed. This check 24156 * is required, though, for a full xresolve implementation. 24157 * Including this code here now both shows how external 24158 * resolvers can NACK a resolution request using an 24159 * existing design that has no specific provisions for NACKs, 24160 * and also takes into account that the current non-ARP 24161 * external resolver has been coded to use this method of 24162 * NACKing for all IPv6 (xresolv) cases, 24163 * whether our xresolv implementation is complete or not. 24164 * 24165 */ 24166 ire = (ire_t *)mp->b_rptr; 24167 ill = ire_to_ill(ire); 24168 mp1 = mp->b_cont; /* dl_unitdata_req */ 24169 if (mp1->b_rptr == mp1->b_wptr) { 24170 if (ire->ire_ipversion == IPV6_VERSION) { 24171 /* 24172 * XRESOLV interface. 24173 */ 24174 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24175 mutex_enter(&ire->ire_lock); 24176 gw_addr_v6 = ire->ire_gateway_addr_v6; 24177 mutex_exit(&ire->ire_lock); 24178 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24179 nce = ndp_lookup(ill, 24180 &ire->ire_addr_v6, B_FALSE); 24181 } else { 24182 nce = ndp_lookup(ill, &gw_addr_v6, 24183 B_FALSE); 24184 } 24185 if (nce != NULL) { 24186 nce_resolv_failed(nce); 24187 ndp_delete(nce); 24188 NCE_REFRELE(nce); 24189 } 24190 } 24191 mp->b_cont = NULL; 24192 freemsg(mp1); /* frees the pkt as well */ 24193 ire_delete((ire_t *)mp->b_rptr); 24194 return; 24195 } 24196 /* 24197 * Split them into IRE_MBLK and pkt and feed it into 24198 * ire_add_then_send. Then in ire_add_then_send 24199 * the IRE will be added, and then the packet will be 24200 * run back through ip_wput. This time it will make 24201 * it to the wire. 24202 */ 24203 mp->b_cont = NULL; 24204 mp = mp1->b_cont; /* now, mp points to pkt */ 24205 mp1->b_cont = NULL; 24206 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 24207 if (ire->ire_ipversion == IPV6_VERSION) { 24208 /* 24209 * XRESOLV interface. Find the nce and put a copy 24210 * of the dl_unitdata_req in nce_res_mp 24211 */ 24212 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24213 mutex_enter(&ire->ire_lock); 24214 gw_addr_v6 = ire->ire_gateway_addr_v6; 24215 mutex_exit(&ire->ire_lock); 24216 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24217 nce = ndp_lookup(ill, &ire->ire_addr_v6, 24218 B_FALSE); 24219 } else { 24220 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 24221 } 24222 if (nce != NULL) { 24223 /* 24224 * We have to protect nce_res_mp here 24225 * from being accessed by other threads 24226 * while we change the mblk pointer. 24227 * Other functions will also lock the nce when 24228 * accessing nce_res_mp. 24229 * 24230 * The reason we change the mblk pointer 24231 * here rather than copying the resolved address 24232 * into the template is that, unlike with 24233 * ethernet, we have no guarantee that the 24234 * resolved address length will be 24235 * smaller than or equal to the lla length 24236 * with which the template was allocated, 24237 * (for ethernet, they're equal) 24238 * so we have to use the actual resolved 24239 * address mblk - which holds the real 24240 * dl_unitdata_req with the resolved address. 24241 * 24242 * Doing this is the same behavior as was 24243 * previously used in the v4 ARP case. 24244 */ 24245 mutex_enter(&nce->nce_lock); 24246 if (nce->nce_res_mp != NULL) 24247 freemsg(nce->nce_res_mp); 24248 nce->nce_res_mp = mp1; 24249 mutex_exit(&nce->nce_lock); 24250 /* 24251 * We do a fastpath probe here because 24252 * we have resolved the address without 24253 * using Neighbor Discovery. 24254 * In the non-XRESOLV v6 case, the fastpath 24255 * probe is done right after neighbor 24256 * discovery completes. 24257 */ 24258 if (nce->nce_res_mp != NULL) { 24259 int res; 24260 nce_fastpath_list_add(nce); 24261 res = ill_fastpath_probe(ill, 24262 nce->nce_res_mp); 24263 if (res != 0 && res != EAGAIN) 24264 nce_fastpath_list_delete(nce); 24265 } 24266 24267 ire_add_then_send(q, ire, mp); 24268 /* 24269 * Now we have to clean out any packets 24270 * that may have been queued on the nce 24271 * while it was waiting for address resolution 24272 * to complete. 24273 */ 24274 mutex_enter(&nce->nce_lock); 24275 mp1 = nce->nce_qd_mp; 24276 nce->nce_qd_mp = NULL; 24277 mutex_exit(&nce->nce_lock); 24278 while (mp1 != NULL) { 24279 mblk_t *nxt_mp; 24280 queue_t *fwdq = NULL; 24281 ill_t *inbound_ill; 24282 uint_t ifindex; 24283 24284 nxt_mp = mp1->b_next; 24285 mp1->b_next = NULL; 24286 /* 24287 * Retrieve ifindex stored in 24288 * ip_rput_data_v6() 24289 */ 24290 ifindex = 24291 (uint_t)(uintptr_t)mp1->b_prev; 24292 inbound_ill = 24293 ill_lookup_on_ifindex(ifindex, 24294 B_TRUE, NULL, NULL, NULL, 24295 NULL); 24296 mp1->b_prev = NULL; 24297 if (inbound_ill != NULL) 24298 fwdq = inbound_ill->ill_rq; 24299 24300 if (fwdq != NULL) { 24301 put(fwdq, mp1); 24302 ill_refrele(inbound_ill); 24303 } else 24304 put(WR(ill->ill_rq), mp1); 24305 mp1 = nxt_mp; 24306 } 24307 NCE_REFRELE(nce); 24308 } else { /* nce is NULL; clean up */ 24309 ire_delete(ire); 24310 freemsg(mp); 24311 freemsg(mp1); 24312 return; 24313 } 24314 } else { 24315 ire->ire_dlureq_mp = mp1; 24316 ire_add_then_send(q, ire, mp); 24317 } 24318 return; /* All is well, the packet has been sent. */ 24319 } 24320 default: 24321 break; 24322 } 24323 if (q->q_next) { 24324 putnext(q, mp); 24325 } else 24326 freemsg(mp); 24327 } 24328 24329 /* 24330 * Process IP options in an outbound packet. Modify the destination if there 24331 * is a source route option. 24332 * Returns non-zero if something fails in which case an ICMP error has been 24333 * sent and mp freed. 24334 */ 24335 static int 24336 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 24337 boolean_t mctl_present, zoneid_t zoneid) 24338 { 24339 ipoptp_t opts; 24340 uchar_t *opt; 24341 uint8_t optval; 24342 uint8_t optlen; 24343 ipaddr_t dst; 24344 intptr_t code = 0; 24345 mblk_t *mp; 24346 ire_t *ire = NULL; 24347 24348 ip2dbg(("ip_wput_options\n")); 24349 mp = ipsec_mp; 24350 if (mctl_present) { 24351 mp = ipsec_mp->b_cont; 24352 } 24353 24354 dst = ipha->ipha_dst; 24355 for (optval = ipoptp_first(&opts, ipha); 24356 optval != IPOPT_EOL; 24357 optval = ipoptp_next(&opts)) { 24358 opt = opts.ipoptp_cur; 24359 optlen = opts.ipoptp_len; 24360 ip2dbg(("ip_wput_options: opt %d, len %d\n", 24361 optval, optlen)); 24362 switch (optval) { 24363 uint32_t off; 24364 case IPOPT_SSRR: 24365 case IPOPT_LSRR: 24366 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24367 ip1dbg(( 24368 "ip_wput_options: bad option offset\n")); 24369 code = (char *)&opt[IPOPT_OLEN] - 24370 (char *)ipha; 24371 goto param_prob; 24372 } 24373 off = opt[IPOPT_OFFSET]; 24374 ip1dbg(("ip_wput_options: next hop 0x%x\n", 24375 ntohl(dst))); 24376 /* 24377 * For strict: verify that dst is directly 24378 * reachable. 24379 */ 24380 if (optval == IPOPT_SSRR) { 24381 ire = ire_ftable_lookup(dst, 0, 0, 24382 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 24383 MATCH_IRE_TYPE); 24384 if (ire == NULL) { 24385 ip1dbg(("ip_wput_options: SSRR not" 24386 " directly reachable: 0x%x\n", 24387 ntohl(dst))); 24388 goto bad_src_route; 24389 } 24390 ire_refrele(ire); 24391 } 24392 break; 24393 case IPOPT_RR: 24394 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24395 ip1dbg(( 24396 "ip_wput_options: bad option offset\n")); 24397 code = (char *)&opt[IPOPT_OLEN] - 24398 (char *)ipha; 24399 goto param_prob; 24400 } 24401 break; 24402 case IPOPT_TS: 24403 /* 24404 * Verify that length >=5 and that there is either 24405 * room for another timestamp or that the overflow 24406 * counter is not maxed out. 24407 */ 24408 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 24409 if (optlen < IPOPT_MINLEN_IT) { 24410 goto param_prob; 24411 } 24412 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24413 ip1dbg(( 24414 "ip_wput_options: bad option offset\n")); 24415 code = (char *)&opt[IPOPT_OFFSET] - 24416 (char *)ipha; 24417 goto param_prob; 24418 } 24419 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24420 case IPOPT_TS_TSONLY: 24421 off = IPOPT_TS_TIMELEN; 24422 break; 24423 case IPOPT_TS_TSANDADDR: 24424 case IPOPT_TS_PRESPEC: 24425 case IPOPT_TS_PRESPEC_RFC791: 24426 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24427 break; 24428 default: 24429 code = (char *)&opt[IPOPT_POS_OV_FLG] - 24430 (char *)ipha; 24431 goto param_prob; 24432 } 24433 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 24434 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 24435 /* 24436 * No room and the overflow counter is 15 24437 * already. 24438 */ 24439 goto param_prob; 24440 } 24441 break; 24442 } 24443 } 24444 24445 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 24446 return (0); 24447 24448 ip1dbg(("ip_wput_options: error processing IP options.")); 24449 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 24450 24451 param_prob: 24452 /* 24453 * Since ip_wput() isn't close to finished, we fill 24454 * in enough of the header for credible error reporting. 24455 */ 24456 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24457 /* Failed */ 24458 freemsg(ipsec_mp); 24459 return (-1); 24460 } 24461 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 24462 return (-1); 24463 24464 bad_src_route: 24465 /* 24466 * Since ip_wput() isn't close to finished, we fill 24467 * in enough of the header for credible error reporting. 24468 */ 24469 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24470 /* Failed */ 24471 freemsg(ipsec_mp); 24472 return (-1); 24473 } 24474 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 24475 return (-1); 24476 } 24477 24478 /* 24479 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 24480 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 24481 * thru /etc/system. 24482 */ 24483 #define CONN_MAXDRAINCNT 64 24484 24485 static void 24486 conn_drain_init(void) 24487 { 24488 int i; 24489 24490 conn_drain_list_cnt = conn_drain_nthreads; 24491 24492 if ((conn_drain_list_cnt == 0) || 24493 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 24494 /* 24495 * Default value of the number of drainers is the 24496 * number of cpus, subject to maximum of 8 drainers. 24497 */ 24498 if (boot_max_ncpus != -1) 24499 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 24500 else 24501 conn_drain_list_cnt = MIN(max_ncpus, 8); 24502 } 24503 24504 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 24505 KM_SLEEP); 24506 24507 for (i = 0; i < conn_drain_list_cnt; i++) { 24508 mutex_init(&conn_drain_list[i].idl_lock, NULL, 24509 MUTEX_DEFAULT, NULL); 24510 } 24511 } 24512 24513 static void 24514 conn_drain_fini(void) 24515 { 24516 int i; 24517 24518 for (i = 0; i < conn_drain_list_cnt; i++) 24519 mutex_destroy(&conn_drain_list[i].idl_lock); 24520 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 24521 conn_drain_list = NULL; 24522 } 24523 24524 /* 24525 * Note: For an overview of how flowcontrol is handled in IP please see the 24526 * IP Flowcontrol notes at the top of this file. 24527 * 24528 * Flow control has blocked us from proceeding. Insert the given conn in one 24529 * of the conn drain lists. These conn wq's will be qenabled later on when 24530 * STREAMS flow control does a backenable. conn_walk_drain will enable 24531 * the first conn in each of these drain lists. Each of these qenabled conns 24532 * in turn enables the next in the list, after it runs, or when it closes, 24533 * thus sustaining the drain process. 24534 * 24535 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 24536 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 24537 * running at any time, on a given conn, since there can be only 1 service proc 24538 * running on a queue at any time. 24539 */ 24540 void 24541 conn_drain_insert(conn_t *connp) 24542 { 24543 idl_t *idl; 24544 uint_t index; 24545 24546 mutex_enter(&connp->conn_lock); 24547 if (connp->conn_state_flags & CONN_CLOSING) { 24548 /* 24549 * The conn is closing as a result of which CONN_CLOSING 24550 * is set. Return. 24551 */ 24552 mutex_exit(&connp->conn_lock); 24553 return; 24554 } else if (connp->conn_idl == NULL) { 24555 /* 24556 * Assign the next drain list round robin. We dont' use 24557 * a lock, and thus it may not be strictly round robin. 24558 * Atomicity of load/stores is enough to make sure that 24559 * conn_drain_list_index is always within bounds. 24560 */ 24561 index = conn_drain_list_index; 24562 ASSERT(index < conn_drain_list_cnt); 24563 connp->conn_idl = &conn_drain_list[index]; 24564 index++; 24565 if (index == conn_drain_list_cnt) 24566 index = 0; 24567 conn_drain_list_index = index; 24568 } 24569 mutex_exit(&connp->conn_lock); 24570 24571 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 24572 if ((connp->conn_drain_prev != NULL) || 24573 (connp->conn_state_flags & CONN_CLOSING)) { 24574 /* 24575 * The conn is already in the drain list, OR 24576 * the conn is closing. We need to check again for 24577 * the closing case again since close can happen 24578 * after we drop the conn_lock, and before we 24579 * acquire the CONN_DRAIN_LIST_LOCK. 24580 */ 24581 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24582 return; 24583 } else { 24584 idl = connp->conn_idl; 24585 } 24586 24587 /* 24588 * The conn is not in the drain list. Insert it at the 24589 * tail of the drain list. The drain list is circular 24590 * and doubly linked. idl_conn points to the 1st element 24591 * in the list. 24592 */ 24593 if (idl->idl_conn == NULL) { 24594 idl->idl_conn = connp; 24595 connp->conn_drain_next = connp; 24596 connp->conn_drain_prev = connp; 24597 } else { 24598 conn_t *head = idl->idl_conn; 24599 24600 connp->conn_drain_next = head; 24601 connp->conn_drain_prev = head->conn_drain_prev; 24602 head->conn_drain_prev->conn_drain_next = connp; 24603 head->conn_drain_prev = connp; 24604 } 24605 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24606 } 24607 24608 /* 24609 * This conn is closing, and we are called from ip_close. OR 24610 * This conn has been serviced by ip_wsrv, and we need to do the tail 24611 * processing. 24612 * If this conn is part of the drain list, we may need to sustain the drain 24613 * process by qenabling the next conn in the drain list. We may also need to 24614 * remove this conn from the list, if it is done. 24615 */ 24616 static void 24617 conn_drain_tail(conn_t *connp, boolean_t closing) 24618 { 24619 idl_t *idl; 24620 24621 /* 24622 * connp->conn_idl is stable at this point, and no lock is needed 24623 * to check it. If we are called from ip_close, close has already 24624 * set CONN_CLOSING, thus freezing the value of conn_idl, and 24625 * called us only because conn_idl is non-null. If we are called thru 24626 * service, conn_idl could be null, but it cannot change because 24627 * service is single-threaded per queue, and there cannot be another 24628 * instance of service trying to call conn_drain_insert on this conn 24629 * now. 24630 */ 24631 ASSERT(!closing || (connp->conn_idl != NULL)); 24632 24633 /* 24634 * If connp->conn_idl is null, the conn has not been inserted into any 24635 * drain list even once since creation of the conn. Just return. 24636 */ 24637 if (connp->conn_idl == NULL) 24638 return; 24639 24640 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 24641 24642 if (connp->conn_drain_prev == NULL) { 24643 /* This conn is currently not in the drain list. */ 24644 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24645 return; 24646 } 24647 idl = connp->conn_idl; 24648 if (idl->idl_conn_draining == connp) { 24649 /* 24650 * This conn is the current drainer. If this is the last conn 24651 * in the drain list, we need to do more checks, in the 'if' 24652 * below. Otherwwise we need to just qenable the next conn, 24653 * to sustain the draining, and is handled in the 'else' 24654 * below. 24655 */ 24656 if (connp->conn_drain_next == idl->idl_conn) { 24657 /* 24658 * This conn is the last in this list. This round 24659 * of draining is complete. If idl_repeat is set, 24660 * it means another flow enabling has happened from 24661 * the driver/streams and we need to another round 24662 * of draining. 24663 * If there are more than 2 conns in the drain list, 24664 * do a left rotate by 1, so that all conns except the 24665 * conn at the head move towards the head by 1, and the 24666 * the conn at the head goes to the tail. This attempts 24667 * a more even share for all queues that are being 24668 * drained. 24669 */ 24670 if ((connp->conn_drain_next != connp) && 24671 (idl->idl_conn->conn_drain_next != connp)) { 24672 idl->idl_conn = idl->idl_conn->conn_drain_next; 24673 } 24674 if (idl->idl_repeat) { 24675 qenable(idl->idl_conn->conn_wq); 24676 idl->idl_conn_draining = idl->idl_conn; 24677 idl->idl_repeat = 0; 24678 } else { 24679 idl->idl_conn_draining = NULL; 24680 } 24681 } else { 24682 /* 24683 * If the next queue that we are now qenable'ing, 24684 * is closing, it will remove itself from this list 24685 * and qenable the subsequent queue in ip_close(). 24686 * Serialization is acheived thru idl_lock. 24687 */ 24688 qenable(connp->conn_drain_next->conn_wq); 24689 idl->idl_conn_draining = connp->conn_drain_next; 24690 } 24691 } 24692 if (!connp->conn_did_putbq || closing) { 24693 /* 24694 * Remove ourself from the drain list, if we did not do 24695 * a putbq, or if the conn is closing. 24696 * Note: It is possible that q->q_first is non-null. It means 24697 * that these messages landed after we did a enableok() in 24698 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 24699 * service them. 24700 */ 24701 if (connp->conn_drain_next == connp) { 24702 /* Singleton in the list */ 24703 ASSERT(connp->conn_drain_prev == connp); 24704 idl->idl_conn = NULL; 24705 idl->idl_conn_draining = NULL; 24706 } else { 24707 connp->conn_drain_prev->conn_drain_next = 24708 connp->conn_drain_next; 24709 connp->conn_drain_next->conn_drain_prev = 24710 connp->conn_drain_prev; 24711 if (idl->idl_conn == connp) 24712 idl->idl_conn = connp->conn_drain_next; 24713 ASSERT(idl->idl_conn_draining != connp); 24714 24715 } 24716 connp->conn_drain_next = NULL; 24717 connp->conn_drain_prev = NULL; 24718 } 24719 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24720 } 24721 24722 /* 24723 * Write service routine. Shared perimeter entry point. 24724 * ip_wsrv can be called in any of the following ways. 24725 * 1. The device queue's messages has fallen below the low water mark 24726 * and STREAMS has backenabled the ill_wq. We walk thru all the 24727 * the drain lists and backenable the first conn in each list. 24728 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 24729 * qenabled non-tcp upper layers. We start dequeing messages and call 24730 * ip_wput for each message. 24731 */ 24732 24733 void 24734 ip_wsrv(queue_t *q) 24735 { 24736 conn_t *connp; 24737 ill_t *ill; 24738 mblk_t *mp; 24739 24740 if (q->q_next) { 24741 ill = (ill_t *)q->q_ptr; 24742 if (ill->ill_state_flags == 0) { 24743 /* 24744 * The device flow control has opened up. 24745 * Walk through conn drain lists and qenable the 24746 * first conn in each list. This makes sense only 24747 * if the stream is fully plumbed and setup. 24748 * Hence the if check above. 24749 */ 24750 ip1dbg(("ip_wsrv: walking\n")); 24751 conn_walk_drain(); 24752 } 24753 return; 24754 } 24755 24756 connp = Q_TO_CONN(q); 24757 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 24758 24759 /* 24760 * 1. Set conn_draining flag to signal that service is active. 24761 * 24762 * 2. ip_output determines whether it has been called from service, 24763 * based on the last parameter. If it is IP_WSRV it concludes it 24764 * has been called from service. 24765 * 24766 * 3. Message ordering is preserved by the following logic. 24767 * i. A directly called ip_output (i.e. not thru service) will queue 24768 * the message at the tail, if conn_draining is set (i.e. service 24769 * is running) or if q->q_first is non-null. 24770 * 24771 * ii. If ip_output is called from service, and if ip_output cannot 24772 * putnext due to flow control, it does a putbq. 24773 * 24774 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 24775 * (causing an infinite loop). 24776 */ 24777 ASSERT(!connp->conn_did_putbq); 24778 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 24779 connp->conn_draining = 1; 24780 noenable(q); 24781 while ((mp = getq(q)) != NULL) { 24782 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 24783 if (connp->conn_did_putbq) { 24784 /* ip_wput did a putbq */ 24785 break; 24786 } 24787 } 24788 /* 24789 * At this point, a thread coming down from top, calling 24790 * ip_wput, may end up queueing the message. We have not yet 24791 * enabled the queue, so ip_wsrv won't be called again. 24792 * To avoid this race, check q->q_first again (in the loop) 24793 * If the other thread queued the message before we call 24794 * enableok(), we will catch it in the q->q_first check. 24795 * If the other thread queues the message after we call 24796 * enableok(), ip_wsrv will be called again by STREAMS. 24797 */ 24798 connp->conn_draining = 0; 24799 enableok(q); 24800 } 24801 24802 /* Enable the next conn for draining */ 24803 conn_drain_tail(connp, B_FALSE); 24804 24805 connp->conn_did_putbq = 0; 24806 } 24807 24808 /* 24809 * Walk the list of all conn's calling the function provided with the 24810 * specified argument for each. Note that this only walks conn's that 24811 * have been bound. 24812 * Applies to both IPv4 and IPv6. 24813 */ 24814 static void 24815 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 24816 { 24817 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 24818 func, arg, zoneid); 24819 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 24820 func, arg, zoneid); 24821 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 24822 func, arg, zoneid); 24823 conn_walk_fanout_table(ipcl_proto_fanout, 24824 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 24825 conn_walk_fanout_table(ipcl_proto_fanout_v6, 24826 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 24827 } 24828 24829 /* 24830 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 24831 * of conns that need to be drained, check if drain is already in progress. 24832 * If so set the idl_repeat bit, indicating that the last conn in the list 24833 * needs to reinitiate the drain once again, for the list. If drain is not 24834 * in progress for the list, initiate the draining, by qenabling the 1st 24835 * conn in the list. The drain is self-sustaining, each qenabled conn will 24836 * in turn qenable the next conn, when it is done/blocked/closing. 24837 */ 24838 static void 24839 conn_walk_drain(void) 24840 { 24841 int i; 24842 idl_t *idl; 24843 24844 IP_STAT(ip_conn_walk_drain); 24845 24846 for (i = 0; i < conn_drain_list_cnt; i++) { 24847 idl = &conn_drain_list[i]; 24848 mutex_enter(&idl->idl_lock); 24849 if (idl->idl_conn == NULL) { 24850 mutex_exit(&idl->idl_lock); 24851 continue; 24852 } 24853 /* 24854 * If this list is not being drained currently by 24855 * an ip_wsrv thread, start the process. 24856 */ 24857 if (idl->idl_conn_draining == NULL) { 24858 ASSERT(idl->idl_repeat == 0); 24859 qenable(idl->idl_conn->conn_wq); 24860 idl->idl_conn_draining = idl->idl_conn; 24861 } else { 24862 idl->idl_repeat = 1; 24863 } 24864 mutex_exit(&idl->idl_lock); 24865 } 24866 } 24867 24868 /* 24869 * Walk an conn hash table of `count' buckets, calling func for each entry. 24870 */ 24871 static void 24872 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 24873 zoneid_t zoneid) 24874 { 24875 conn_t *connp; 24876 24877 while (count-- > 0) { 24878 mutex_enter(&connfp->connf_lock); 24879 for (connp = connfp->connf_head; connp != NULL; 24880 connp = connp->conn_next) { 24881 if (zoneid == GLOBAL_ZONEID || 24882 zoneid == connp->conn_zoneid) { 24883 CONN_INC_REF(connp); 24884 mutex_exit(&connfp->connf_lock); 24885 (*func)(connp, arg); 24886 mutex_enter(&connfp->connf_lock); 24887 CONN_DEC_REF(connp); 24888 } 24889 } 24890 mutex_exit(&connfp->connf_lock); 24891 connfp++; 24892 } 24893 } 24894 24895 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 24896 static void 24897 conn_report1(conn_t *connp, void *mp) 24898 { 24899 char buf1[INET6_ADDRSTRLEN]; 24900 char buf2[INET6_ADDRSTRLEN]; 24901 uint_t print_len, buf_len; 24902 24903 ASSERT(connp != NULL); 24904 24905 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 24906 if (buf_len <= 0) 24907 return; 24908 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 24909 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 24910 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 24911 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 24912 "%5d %s/%05d %s/%05d\n", 24913 (void *)connp, (void *)CONNP_TO_RQ(connp), 24914 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 24915 buf1, connp->conn_lport, 24916 buf2, connp->conn_fport); 24917 if (print_len < buf_len) { 24918 ((mblk_t *)mp)->b_wptr += print_len; 24919 } else { 24920 ((mblk_t *)mp)->b_wptr += buf_len; 24921 } 24922 } 24923 24924 /* 24925 * Named Dispatch routine to produce a formatted report on all conns 24926 * that are listed in one of the fanout tables. 24927 * This report is accessed by using the ndd utility to "get" ND variable 24928 * "ip_conn_status". 24929 */ 24930 /* ARGSUSED */ 24931 static int 24932 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 24933 { 24934 (void) mi_mpprintf(mp, 24935 "CONN " MI_COL_HDRPAD_STR 24936 "rfq " MI_COL_HDRPAD_STR 24937 "stq " MI_COL_HDRPAD_STR 24938 " zone local remote"); 24939 24940 /* 24941 * Because of the ndd constraint, at most we can have 64K buffer 24942 * to put in all conn info. So to be more efficient, just 24943 * allocate a 64K buffer here, assuming we need that large buffer. 24944 * This should be OK as only privileged processes can do ndd /dev/ip. 24945 */ 24946 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 24947 /* The following may work even if we cannot get a large buf. */ 24948 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 24949 return (0); 24950 } 24951 24952 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 24953 return (0); 24954 } 24955 24956 /* 24957 * Determine if the ill and multicast aspects of that packets 24958 * "matches" the conn. 24959 */ 24960 boolean_t 24961 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 24962 zoneid_t zoneid) 24963 { 24964 ill_t *in_ill; 24965 boolean_t found; 24966 ipif_t *ipif; 24967 ire_t *ire; 24968 ipaddr_t dst, src; 24969 24970 dst = ipha->ipha_dst; 24971 src = ipha->ipha_src; 24972 24973 /* 24974 * conn_incoming_ill is set by IP_BOUND_IF which limits 24975 * unicast, broadcast and multicast reception to 24976 * conn_incoming_ill. conn_wantpacket itself is called 24977 * only for BROADCAST and multicast. 24978 * 24979 * 1) ip_rput supresses duplicate broadcasts if the ill 24980 * is part of a group. Hence, we should be receiving 24981 * just one copy of broadcast for the whole group. 24982 * Thus, if it is part of the group the packet could 24983 * come on any ill of the group and hence we need a 24984 * match on the group. Otherwise, match on ill should 24985 * be sufficient. 24986 * 24987 * 2) ip_rput does not suppress duplicate multicast packets. 24988 * If there are two interfaces in a ill group and we have 24989 * 2 applications (conns) joined a multicast group G on 24990 * both the interfaces, ilm_lookup_ill filter in ip_rput 24991 * will give us two packets because we join G on both the 24992 * interfaces rather than nominating just one interface 24993 * for receiving multicast like broadcast above. So, 24994 * we have to call ilg_lookup_ill to filter out duplicate 24995 * copies, if ill is part of a group. 24996 */ 24997 in_ill = connp->conn_incoming_ill; 24998 if (in_ill != NULL) { 24999 if (in_ill->ill_group == NULL) { 25000 if (in_ill != ill) 25001 return (B_FALSE); 25002 } else if (in_ill->ill_group != ill->ill_group) { 25003 return (B_FALSE); 25004 } 25005 } 25006 25007 if (!CLASSD(dst)) { 25008 if (connp->conn_zoneid == zoneid) 25009 return (B_TRUE); 25010 /* 25011 * The conn is in a different zone; we need to check that this 25012 * broadcast address is configured in the application's zone and 25013 * on one ill in the group. 25014 */ 25015 ipif = ipif_get_next_ipif(NULL, ill); 25016 if (ipif == NULL) 25017 return (B_FALSE); 25018 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 25019 connp->conn_zoneid, (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 25020 ipif_refrele(ipif); 25021 if (ire != NULL) { 25022 ire_refrele(ire); 25023 return (B_TRUE); 25024 } else { 25025 return (B_FALSE); 25026 } 25027 } 25028 25029 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 25030 connp->conn_zoneid == zoneid) { 25031 /* 25032 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 25033 * disabled, therefore we don't dispatch the multicast packet to 25034 * the sending zone. 25035 */ 25036 return (B_FALSE); 25037 } 25038 25039 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 25040 connp->conn_zoneid != zoneid) { 25041 /* 25042 * Multicast packet on the loopback interface: we only match 25043 * conns who joined the group in the specified zone. 25044 */ 25045 return (B_FALSE); 25046 } 25047 25048 if (connp->conn_multi_router) { 25049 /* multicast packet and multicast router socket: send up */ 25050 return (B_TRUE); 25051 } 25052 25053 mutex_enter(&connp->conn_lock); 25054 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 25055 mutex_exit(&connp->conn_lock); 25056 return (found); 25057 } 25058 25059 /* 25060 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 25061 */ 25062 /* ARGSUSED */ 25063 static void 25064 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 25065 { 25066 ill_t *ill = (ill_t *)q->q_ptr; 25067 mblk_t *mp1, *mp2; 25068 ipif_t *ipif; 25069 int err = 0; 25070 conn_t *connp = NULL; 25071 ipsq_t *ipsq; 25072 arc_t *arc; 25073 25074 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 25075 25076 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 25077 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 25078 25079 ASSERT(IAM_WRITER_ILL(ill)); 25080 mp2 = mp->b_cont; 25081 mp->b_cont = NULL; 25082 25083 /* 25084 * We have now received the arp bringup completion message 25085 * from ARP. Mark the arp bringup as done. Also if the arp 25086 * stream has already started closing, send up the AR_ARP_CLOSING 25087 * ack now since ARP is waiting in close for this ack. 25088 */ 25089 mutex_enter(&ill->ill_lock); 25090 ill->ill_arp_bringup_pending = 0; 25091 if (ill->ill_arp_closing) { 25092 mutex_exit(&ill->ill_lock); 25093 /* Let's reuse the mp for sending the ack */ 25094 arc = (arc_t *)mp->b_rptr; 25095 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 25096 arc->arc_cmd = AR_ARP_CLOSING; 25097 qreply(q, mp); 25098 } else { 25099 mutex_exit(&ill->ill_lock); 25100 freeb(mp); 25101 } 25102 25103 /* We should have an IOCTL waiting on this. */ 25104 ipsq = ill->ill_phyint->phyint_ipsq; 25105 ipif = ipsq->ipsq_pending_ipif; 25106 mp1 = ipsq_pending_mp_get(ipsq, &connp); 25107 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 25108 if (mp1 == NULL) { 25109 /* bringup was aborted by the user */ 25110 freemsg(mp2); 25111 return; 25112 } 25113 ASSERT(connp != NULL); 25114 q = CONNP_TO_WQ(connp); 25115 /* 25116 * If the DL_BIND_REQ fails, it is noted 25117 * in arc_name_offset. 25118 */ 25119 err = *((int *)mp2->b_rptr); 25120 if (err == 0) { 25121 if (ipif->ipif_isv6) { 25122 if ((err = ipif_up_done_v6(ipif)) != 0) 25123 ip0dbg(("ip_arp_done: init failed\n")); 25124 } else { 25125 if ((err = ipif_up_done(ipif)) != 0) 25126 ip0dbg(("ip_arp_done: init failed\n")); 25127 } 25128 } else { 25129 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 25130 } 25131 25132 freemsg(mp2); 25133 25134 if ((err == 0) && (ill->ill_up_ipifs)) { 25135 err = ill_up_ipifs(ill, q, mp1); 25136 if (err == EINPROGRESS) 25137 return; 25138 } 25139 25140 if (ill->ill_up_ipifs) { 25141 ill_group_cleanup(ill); 25142 } 25143 25144 /* 25145 * The ioctl must complete now without EINPROGRESS 25146 * since ipsq_pending_mp_get has removed the ioctl mblk 25147 * from ipsq_pending_mp. Otherwise the ioctl will be 25148 * stuck for ever in the ipsq. 25149 */ 25150 ASSERT(err != EINPROGRESS); 25151 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 25152 } 25153 25154 /* Allocate the private structure */ 25155 static int 25156 ip_priv_alloc(void **bufp) 25157 { 25158 void *buf; 25159 25160 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 25161 return (ENOMEM); 25162 25163 *bufp = buf; 25164 return (0); 25165 } 25166 25167 /* Function to delete the private structure */ 25168 void 25169 ip_priv_free(void *buf) 25170 { 25171 ASSERT(buf != NULL); 25172 kmem_free(buf, sizeof (ip_priv_t)); 25173 } 25174 25175 /* 25176 * The entry point for IPPF processing. 25177 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 25178 * routine just returns. 25179 * 25180 * When called, ip_process generates an ipp_packet_t structure 25181 * which holds the state information for this packet and invokes the 25182 * the classifier (via ipp_packet_process). The classification, depending on 25183 * configured filters, results in a list of actions for this packet. Invoking 25184 * an action may cause the packet to be dropped, in which case the resulting 25185 * mblk (*mpp) is NULL. proc indicates the callout position for 25186 * this packet and ill_index is the interface this packet on or will leave 25187 * on (inbound and outbound resp.). 25188 */ 25189 void 25190 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 25191 { 25192 mblk_t *mp; 25193 ip_priv_t *priv; 25194 ipp_action_id_t aid; 25195 int rc = 0; 25196 ipp_packet_t *pp; 25197 #define IP_CLASS "ip" 25198 25199 /* If the classifier is not loaded, return */ 25200 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 25201 return; 25202 } 25203 25204 mp = *mpp; 25205 ASSERT(mp != NULL); 25206 25207 /* Allocate the packet structure */ 25208 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 25209 if (rc != 0) { 25210 *mpp = NULL; 25211 freemsg(mp); 25212 return; 25213 } 25214 25215 /* Allocate the private structure */ 25216 rc = ip_priv_alloc((void **)&priv); 25217 if (rc != 0) { 25218 *mpp = NULL; 25219 freemsg(mp); 25220 ipp_packet_free(pp); 25221 return; 25222 } 25223 priv->proc = proc; 25224 priv->ill_index = ill_index; 25225 ipp_packet_set_private(pp, priv, ip_priv_free); 25226 ipp_packet_set_data(pp, mp); 25227 25228 /* Invoke the classifier */ 25229 rc = ipp_packet_process(&pp); 25230 if (pp != NULL) { 25231 mp = ipp_packet_get_data(pp); 25232 ipp_packet_free(pp); 25233 if (rc != 0) { 25234 freemsg(mp); 25235 *mpp = NULL; 25236 } 25237 } else { 25238 *mpp = NULL; 25239 } 25240 #undef IP_CLASS 25241 } 25242 25243 /* 25244 * Propagate a multicast group membership operation (add/drop) on 25245 * all the interfaces crossed by the related multirt routes. 25246 * The call is considered successful if the operation succeeds 25247 * on at least one interface. 25248 */ 25249 static int 25250 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 25251 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 25252 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 25253 mblk_t *first_mp) 25254 { 25255 ire_t *ire_gw; 25256 irb_t *irb; 25257 int error = 0; 25258 opt_restart_t *or; 25259 25260 irb = ire->ire_bucket; 25261 ASSERT(irb != NULL); 25262 25263 ASSERT(DB_TYPE(first_mp) == M_CTL); 25264 25265 or = (opt_restart_t *)first_mp->b_rptr; 25266 IRB_REFHOLD(irb); 25267 for (; ire != NULL; ire = ire->ire_next) { 25268 if ((ire->ire_flags & RTF_MULTIRT) == 0) 25269 continue; 25270 if (ire->ire_addr != group) 25271 continue; 25272 25273 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 25274 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25275 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 25276 /* No resolver exists for the gateway; skip this ire. */ 25277 if (ire_gw == NULL) 25278 continue; 25279 25280 /* 25281 * This function can return EINPROGRESS. If so the operation 25282 * will be restarted from ip_restart_optmgmt which will 25283 * call ip_opt_set and option processing will restart for 25284 * this option. So we may end up calling 'fn' more than once. 25285 * This requires that 'fn' is idempotent except for the 25286 * return value. The operation is considered a success if 25287 * it succeeds at least once on any one interface. 25288 */ 25289 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 25290 NULL, fmode, src, first_mp); 25291 if (error == 0) 25292 or->or_private = CGTP_MCAST_SUCCESS; 25293 25294 if (ip_debug > 0) { 25295 ulong_t off; 25296 char *ksym; 25297 ksym = kobj_getsymname((uintptr_t)fn, &off); 25298 ip2dbg(("ip_multirt_apply_membership: " 25299 "called %s, multirt group 0x%08x via itf 0x%08x, " 25300 "error %d [success %u]\n", 25301 ksym ? ksym : "?", 25302 ntohl(group), ntohl(ire_gw->ire_src_addr), 25303 error, or->or_private)); 25304 } 25305 25306 ire_refrele(ire_gw); 25307 if (error == EINPROGRESS) { 25308 IRB_REFRELE(irb); 25309 return (error); 25310 } 25311 } 25312 IRB_REFRELE(irb); 25313 /* 25314 * Consider the call as successful if we succeeded on at least 25315 * one interface. Otherwise, return the last encountered error. 25316 */ 25317 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 25318 } 25319 25320 25321 /* 25322 * Issue a warning regarding a route crossing an interface with an 25323 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 25324 * amount of time is logged. 25325 */ 25326 static void 25327 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 25328 { 25329 hrtime_t current = gethrtime(); 25330 char buf[16]; 25331 25332 /* Convert interval in ms to hrtime in ns */ 25333 if (multirt_bad_mtu_last_time + 25334 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 25335 current) { 25336 cmn_err(CE_WARN, "ip: ignoring multiroute " 25337 "to %s, incorrect MTU %u (expected %u)\n", 25338 ip_dot_addr(ire->ire_addr, buf), 25339 ire->ire_max_frag, max_frag); 25340 25341 multirt_bad_mtu_last_time = current; 25342 } 25343 } 25344 25345 25346 /* 25347 * Get the CGTP (multirouting) filtering status. 25348 * If 0, the CGTP hooks are transparent. 25349 */ 25350 /* ARGSUSED */ 25351 static int 25352 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 25353 { 25354 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25355 25356 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 25357 return (0); 25358 } 25359 25360 25361 /* 25362 * Set the CGTP (multirouting) filtering status. 25363 * If the status is changed from active to transparent 25364 * or from transparent to active, forward the new status 25365 * to the filtering module (if loaded). 25366 */ 25367 /* ARGSUSED */ 25368 static int 25369 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 25370 cred_t *ioc_cr) 25371 { 25372 long new_value; 25373 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25374 25375 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 25376 new_value < 0 || new_value > 1) { 25377 return (EINVAL); 25378 } 25379 25380 /* 25381 * Do not enable CGTP filtering - thus preventing the hooks 25382 * from being invoked - if the version number of the 25383 * filtering module hooks does not match. 25384 */ 25385 if ((ip_cgtp_filter_ops != NULL) && 25386 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 25387 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 25388 "(module hooks version %d, expecting %d)\n", 25389 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 25390 return (ENOTSUP); 25391 } 25392 25393 if ((!*ip_cgtp_filter_value) && new_value) { 25394 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 25395 ip_cgtp_filter_ops == NULL ? 25396 " (module not loaded)" : ""); 25397 } 25398 if (*ip_cgtp_filter_value && (!new_value)) { 25399 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 25400 ip_cgtp_filter_ops == NULL ? 25401 " (module not loaded)" : ""); 25402 } 25403 25404 if (ip_cgtp_filter_ops != NULL) { 25405 int res; 25406 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 25407 return (res); 25408 } 25409 } 25410 25411 *ip_cgtp_filter_value = (boolean_t)new_value; 25412 25413 return (0); 25414 } 25415 25416 25417 /* 25418 * Return the expected CGTP hooks version number. 25419 */ 25420 int 25421 ip_cgtp_filter_supported(void) 25422 { 25423 return (ip_cgtp_filter_rev); 25424 } 25425 25426 25427 /* 25428 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 25429 * or by invoking this function. In the first case, the version number 25430 * of the registered structure is checked at hooks activation time 25431 * in ip_cgtp_filter_set(). 25432 */ 25433 int 25434 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 25435 { 25436 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 25437 return (ENOTSUP); 25438 25439 ip_cgtp_filter_ops = ops; 25440 return (0); 25441 } 25442 25443 static squeue_func_t 25444 ip_squeue_switch(int val) 25445 { 25446 squeue_func_t rval = squeue_fill; 25447 25448 switch (val) { 25449 case IP_SQUEUE_ENTER_NODRAIN: 25450 rval = squeue_enter_nodrain; 25451 break; 25452 case IP_SQUEUE_ENTER: 25453 rval = squeue_enter; 25454 break; 25455 default: 25456 break; 25457 } 25458 return (rval); 25459 } 25460 25461 /* ARGSUSED */ 25462 static int 25463 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 25464 caddr_t addr, cred_t *cr) 25465 { 25466 int *v = (int *)addr; 25467 long new_value; 25468 25469 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25470 return (EINVAL); 25471 25472 ip_input_proc = ip_squeue_switch(new_value); 25473 *v = new_value; 25474 return (0); 25475 } 25476 25477 /* ARGSUSED */ 25478 static int 25479 ip_fanout_set(queue_t *q, mblk_t *mp, char *value, 25480 caddr_t addr, cred_t *cr) 25481 { 25482 int *v = (int *)addr; 25483 long new_value; 25484 25485 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25486 return (EINVAL); 25487 25488 *v = new_value; 25489 return (0); 25490 } 25491 25492 25493 static void 25494 ip_kstat_init(void) 25495 { 25496 ip_named_kstat_t template = { 25497 { "forwarding", KSTAT_DATA_UINT32, 0 }, 25498 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 25499 { "inReceives", KSTAT_DATA_UINT32, 0 }, 25500 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 25501 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 25502 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 25503 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 25504 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 25505 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 25506 { "outRequests", KSTAT_DATA_UINT32, 0 }, 25507 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 25508 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 25509 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 25510 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 25511 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 25512 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 25513 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 25514 { "fragFails", KSTAT_DATA_UINT32, 0 }, 25515 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 25516 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 25517 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 25518 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 25519 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 25520 { "inErrs", KSTAT_DATA_UINT32, 0 }, 25521 { "noPorts", KSTAT_DATA_UINT32, 0 }, 25522 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 25523 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 25524 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 25525 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 25526 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 25527 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 25528 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 25529 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 25530 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 25531 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 25532 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 25533 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 25534 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 25535 }; 25536 25537 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 25538 NUM_OF_FIELDS(ip_named_kstat_t), 25539 0); 25540 if (!ip_mibkp) 25541 return; 25542 25543 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 25544 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 25545 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 25546 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 25547 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 25548 25549 template.netToMediaEntrySize.value.i32 = 25550 sizeof (mib2_ipNetToMediaEntry_t); 25551 25552 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 25553 25554 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 25555 25556 ip_mibkp->ks_update = ip_kstat_update; 25557 25558 kstat_install(ip_mibkp); 25559 } 25560 25561 static void 25562 ip_kstat_fini(void) 25563 { 25564 25565 if (ip_mibkp != NULL) { 25566 kstat_delete(ip_mibkp); 25567 ip_mibkp = NULL; 25568 } 25569 } 25570 25571 static int 25572 ip_kstat_update(kstat_t *kp, int rw) 25573 { 25574 ip_named_kstat_t *ipkp; 25575 25576 if (!kp || !kp->ks_data) 25577 return (EIO); 25578 25579 if (rw == KSTAT_WRITE) 25580 return (EACCES); 25581 25582 ipkp = (ip_named_kstat_t *)kp->ks_data; 25583 25584 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 25585 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 25586 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 25587 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 25588 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 25589 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 25590 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 25591 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 25592 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 25593 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 25594 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 25595 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 25596 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 25597 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 25598 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 25599 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 25600 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 25601 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 25602 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 25603 25604 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 25605 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 25606 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 25607 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 25608 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 25609 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 25610 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 25611 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 25612 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 25613 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 25614 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 25615 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 25616 25617 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 25618 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 25619 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 25620 25621 return (0); 25622 } 25623 25624 static void 25625 icmp_kstat_init(void) 25626 { 25627 icmp_named_kstat_t template = { 25628 { "inMsgs", KSTAT_DATA_UINT32 }, 25629 { "inErrors", KSTAT_DATA_UINT32 }, 25630 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 25631 { "inTimeExcds", KSTAT_DATA_UINT32 }, 25632 { "inParmProbs", KSTAT_DATA_UINT32 }, 25633 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 25634 { "inRedirects", KSTAT_DATA_UINT32 }, 25635 { "inEchos", KSTAT_DATA_UINT32 }, 25636 { "inEchoReps", KSTAT_DATA_UINT32 }, 25637 { "inTimestamps", KSTAT_DATA_UINT32 }, 25638 { "inTimestampReps", KSTAT_DATA_UINT32 }, 25639 { "inAddrMasks", KSTAT_DATA_UINT32 }, 25640 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 25641 { "outMsgs", KSTAT_DATA_UINT32 }, 25642 { "outErrors", KSTAT_DATA_UINT32 }, 25643 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 25644 { "outTimeExcds", KSTAT_DATA_UINT32 }, 25645 { "outParmProbs", KSTAT_DATA_UINT32 }, 25646 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 25647 { "outRedirects", KSTAT_DATA_UINT32 }, 25648 { "outEchos", KSTAT_DATA_UINT32 }, 25649 { "outEchoReps", KSTAT_DATA_UINT32 }, 25650 { "outTimestamps", KSTAT_DATA_UINT32 }, 25651 { "outTimestampReps", KSTAT_DATA_UINT32 }, 25652 { "outAddrMasks", KSTAT_DATA_UINT32 }, 25653 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 25654 { "inChksumErrs", KSTAT_DATA_UINT32 }, 25655 { "inUnknowns", KSTAT_DATA_UINT32 }, 25656 { "inFragNeeded", KSTAT_DATA_UINT32 }, 25657 { "outFragNeeded", KSTAT_DATA_UINT32 }, 25658 { "outDrops", KSTAT_DATA_UINT32 }, 25659 { "inOverFlows", KSTAT_DATA_UINT32 }, 25660 { "inBadRedirects", KSTAT_DATA_UINT32 }, 25661 }; 25662 25663 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 25664 NUM_OF_FIELDS(icmp_named_kstat_t), 25665 0); 25666 if (icmp_mibkp == NULL) 25667 return; 25668 25669 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 25670 25671 icmp_mibkp->ks_update = icmp_kstat_update; 25672 25673 kstat_install(icmp_mibkp); 25674 } 25675 25676 static void 25677 icmp_kstat_fini(void) 25678 { 25679 25680 if (icmp_mibkp != NULL) { 25681 kstat_delete(icmp_mibkp); 25682 icmp_mibkp = NULL; 25683 } 25684 } 25685 25686 static int 25687 icmp_kstat_update(kstat_t *kp, int rw) 25688 { 25689 icmp_named_kstat_t *icmpkp; 25690 25691 if ((kp == NULL) || (kp->ks_data == NULL)) 25692 return (EIO); 25693 25694 if (rw == KSTAT_WRITE) 25695 return (EACCES); 25696 25697 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 25698 25699 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 25700 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 25701 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 25702 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 25703 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 25704 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 25705 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 25706 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 25707 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 25708 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 25709 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 25710 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 25711 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 25712 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 25713 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 25714 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 25715 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 25716 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 25717 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 25718 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 25719 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 25720 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 25721 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 25722 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 25723 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 25724 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 25725 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 25726 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 25727 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 25728 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 25729 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 25730 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 25731 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 25732 25733 return (0); 25734 } 25735 25736 /* 25737 * This is the fanout function for raw socket opened for SCTP. Note 25738 * that it is called after SCTP checks that there is no socket which 25739 * wants a packet. Then before SCTP handles this out of the blue packet, 25740 * this function is called to see if there is any raw socket for SCTP. 25741 * If there is and it is bound to the correct address, the packet will 25742 * be sent to that socket. Note that only one raw socket can be bound to 25743 * a port. This is assured in ipcl_sctp_hash_insert(); 25744 */ 25745 void 25746 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 25747 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 25748 uint_t ipif_seqid, zoneid_t zoneid) 25749 { 25750 conn_t *connp; 25751 queue_t *rq; 25752 mblk_t *first_mp; 25753 boolean_t secure; 25754 ip6_t *ip6h; 25755 25756 first_mp = mp; 25757 if (mctl_present) { 25758 mp = first_mp->b_cont; 25759 secure = ipsec_in_is_secure(first_mp); 25760 ASSERT(mp != NULL); 25761 } else { 25762 secure = B_FALSE; 25763 } 25764 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 25765 25766 connp = ipcl_classify_raw(IPPROTO_SCTP, zoneid, ports, ipha); 25767 if (connp == NULL) { 25768 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 25769 mctl_present); 25770 return; 25771 } 25772 rq = connp->conn_rq; 25773 if (!canputnext(rq)) { 25774 CONN_DEC_REF(connp); 25775 BUMP_MIB(&ip_mib, rawipInOverflows); 25776 freemsg(first_mp); 25777 return; 25778 } 25779 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 25780 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 25781 first_mp = ipsec_check_inbound_policy(first_mp, connp, 25782 (isv4 ? ipha : NULL), ip6h, mctl_present); 25783 if (first_mp == NULL) { 25784 CONN_DEC_REF(connp); 25785 return; 25786 } 25787 } 25788 /* 25789 * We probably should not send M_CTL message up to 25790 * raw socket. 25791 */ 25792 if (mctl_present) 25793 freeb(first_mp); 25794 25795 /* Initiate IPPF processing here if needed. */ 25796 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 25797 (!isv4 && IP6_IN_IPP(flags))) { 25798 ip_process(IPP_LOCAL_IN, &mp, 25799 recv_ill->ill_phyint->phyint_ifindex); 25800 if (mp == NULL) { 25801 CONN_DEC_REF(connp); 25802 return; 25803 } 25804 } 25805 25806 if (connp->conn_recvif || connp->conn_recvslla || 25807 ((connp->conn_ipv6_recvpktinfo || 25808 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 25809 (flags & IP_FF_IP6INFO))) { 25810 int in_flags = 0; 25811 25812 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 25813 in_flags = IPF_RECVIF; 25814 } 25815 if (connp->conn_recvslla) { 25816 in_flags |= IPF_RECVSLLA; 25817 } 25818 if (isv4) { 25819 mp = ip_add_info(mp, recv_ill, in_flags); 25820 } else { 25821 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 25822 if (mp == NULL) { 25823 CONN_DEC_REF(connp); 25824 return; 25825 } 25826 } 25827 } 25828 25829 BUMP_MIB(&ip_mib, ipInDelivers); 25830 /* 25831 * We are sending the IPSEC_IN message also up. Refer 25832 * to comments above this function. 25833 */ 25834 putnext(rq, mp); 25835 CONN_DEC_REF(connp); 25836 } 25837 25838 /* 25839 * Martian Address Filtering [RFC 1812, Section 5.3.7] 25840 */ 25841 static boolean_t 25842 ip_no_forward(ipha_t *ipha, ill_t *ill) 25843 { 25844 ipaddr_t ip_src, ip_dst; 25845 ire_t *src_ire = NULL; 25846 25847 ip_src = ntohl(ipha->ipha_src); 25848 ip_dst = ntohl(ipha->ipha_dst); 25849 25850 if (ip_dst == INADDR_ANY) 25851 goto dont_forward; 25852 25853 if (IN_CLASSD(ip_src)) 25854 goto dont_forward; 25855 25856 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 25857 goto dont_forward; 25858 25859 if (IN_BADCLASS(ip_dst)) 25860 goto dont_forward; 25861 25862 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 25863 ALL_ZONES, MATCH_IRE_TYPE); 25864 if (src_ire != NULL) { 25865 ire_refrele(src_ire); 25866 goto dont_forward; 25867 } 25868 25869 return (B_FALSE); 25870 25871 dont_forward: 25872 if (ip_debug > 2) { 25873 printf("ip_no_forward: dropping packet received on %s\n", 25874 ill->ill_name); 25875 pr_addr_dbg("ip_no_forward: from src %s\n", 25876 AF_INET, &ipha->ipha_src); 25877 pr_addr_dbg("ip_no_forward: to dst %s\n", 25878 AF_INET, &ipha->ipha_dst); 25879 } 25880 BUMP_MIB(&ip_mib, ipForwProhibits); 25881 return (B_TRUE); 25882 } 25883 25884 static boolean_t 25885 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 25886 { 25887 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 25888 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 25889 if (ip_debug > 2) { 25890 if (ill != NULL) { 25891 printf("ip_loopback_src_or_dst: " 25892 "dropping packet received on %s\n", 25893 ill->ill_name); 25894 } else { 25895 printf("ip_loopback_src_or_dst: " 25896 "dropping packet\n"); 25897 } 25898 25899 pr_addr_dbg( 25900 "ip_loopback_src_or_dst: from src %s\n", 25901 AF_INET, &ipha->ipha_src); 25902 pr_addr_dbg( 25903 "ip_loopback_src_or_dst: to dst %s\n", 25904 AF_INET, &ipha->ipha_dst); 25905 } 25906 25907 BUMP_MIB(&ip_mib, ipInAddrErrors); 25908 return (B_TRUE); 25909 } 25910 return (B_FALSE); 25911 } 25912