1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * Mobile-IP scenarios 357 * 358 * irb_lock -> ill_lock -> ire_mrtun_lock 359 * irb_lock -> ill_lock -> ire_srcif_table_lock 360 * 361 * IPsec scenarios 362 * 363 * ipsa_lock -> ill_g_lock -> ill_lock 364 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 365 * ipsec_capab_ills_lock -> ipsa_lock 366 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 367 * 368 * Trusted Solaris scenarios 369 * 370 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 371 * igsa_lock -> gcdb_lock 372 * gcgrp_rwlock -> ire_lock 373 * gcgrp_rwlock -> gcdb_lock 374 * 375 * 376 * Routing/forwarding table locking notes: 377 * 378 * Lock acquisition order: Radix tree lock, irb_lock. 379 * Requirements: 380 * i. Walker must not hold any locks during the walker callback. 381 * ii Walker must not see a truncated tree during the walk because of any node 382 * deletion. 383 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 384 * in many places in the code to walk the irb list. Thus even if all the 385 * ires in a bucket have been deleted, we still can't free the radix node 386 * until the ires have actually been inactive'd (freed). 387 * 388 * Tree traversal - Need to hold the global tree lock in read mode. 389 * Before dropping the global tree lock, need to either increment the ire_refcnt 390 * to ensure that the radix node can't be deleted. 391 * 392 * Tree add - Need to hold the global tree lock in write mode to add a 393 * radix node. To prevent the node from being deleted, increment the 394 * irb_refcnt, after the node is added to the tree. The ire itself is 395 * added later while holding the irb_lock, but not the tree lock. 396 * 397 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 398 * All associated ires must be inactive (i.e. freed), and irb_refcnt 399 * must be zero. 400 * 401 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 402 * global tree lock (read mode) for traversal. 403 * 404 * IPSEC notes : 405 * 406 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 407 * in front of the actual packet. For outbound datagrams, the M_CTL 408 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 409 * information used by the IPSEC code for applying the right level of 410 * protection. The information initialized by IP in the ipsec_out_t 411 * is determined by the per-socket policy or global policy in the system. 412 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 413 * ipsec_info.h) which starts out with nothing in it. It gets filled 414 * with the right information if it goes through the AH/ESP code, which 415 * happens if the incoming packet is secure. The information initialized 416 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 417 * the policy requirements needed by per-socket policy or global policy 418 * is met or not. 419 * 420 * If there is both per-socket policy (set using setsockopt) and there 421 * is also global policy match for the 5 tuples of the socket, 422 * ipsec_override_policy() makes the decision of which one to use. 423 * 424 * For fully connected sockets i.e dst, src [addr, port] is known, 425 * conn_policy_cached is set indicating that policy has been cached. 426 * conn_in_enforce_policy may or may not be set depending on whether 427 * there is a global policy match or per-socket policy match. 428 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 429 * Once the right policy is set on the conn_t, policy cannot change for 430 * this socket. This makes life simpler for TCP (UDP ?) where 431 * re-transmissions go out with the same policy. For symmetry, policy 432 * is cached for fully connected UDP sockets also. Thus if policy is cached, 433 * it also implies that policy is latched i.e policy cannot change 434 * on these sockets. As we have the right policy on the conn, we don't 435 * have to lookup global policy for every outbound and inbound datagram 436 * and thus serving as an optimization. Note that a global policy change 437 * does not affect fully connected sockets if they have policy. If fully 438 * connected sockets did not have any policy associated with it, global 439 * policy change may affect them. 440 * 441 * IP Flow control notes: 442 * 443 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 444 * cannot be sent down to the driver by IP, because of a canput failure, IP 445 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 446 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 447 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 448 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 449 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 450 * the queued messages, and removes the conn from the drain list, if all 451 * messages were drained. It also qenables the next conn in the drain list to 452 * continue the drain process. 453 * 454 * In reality the drain list is not a single list, but a configurable number 455 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 456 * list. If the ip_wsrv of the next qenabled conn does not run, because the 457 * stream closes, ip_close takes responsibility to qenable the next conn in 458 * the drain list. The directly called ip_wput path always does a putq, if 459 * it cannot putnext. Thus synchronization problems are handled between 460 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 461 * functions that manipulate this drain list. Furthermore conn_drain_insert 462 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 463 * running on a queue at any time. conn_drain_tail can be simultaneously called 464 * from both ip_wsrv and ip_close. 465 * 466 * IPQOS notes: 467 * 468 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 469 * and IPQoS modules. IPPF includes hooks in IP at different control points 470 * (callout positions) which direct packets to IPQoS modules for policy 471 * processing. Policies, if present, are global. 472 * 473 * The callout positions are located in the following paths: 474 * o local_in (packets destined for this host) 475 * o local_out (packets orginating from this host ) 476 * o fwd_in (packets forwarded by this m/c - inbound) 477 * o fwd_out (packets forwarded by this m/c - outbound) 478 * Hooks at these callout points can be enabled/disabled using the ndd variable 479 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 480 * By default all the callout positions are enabled. 481 * 482 * Outbound (local_out) 483 * Hooks are placed in ip_wput_ire and ipsec_out_process. 484 * 485 * Inbound (local_in) 486 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 487 * TCP and UDP fanout routines. 488 * 489 * Forwarding (in and out) 490 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 491 * 492 * IP Policy Framework processing (IPPF processing) 493 * Policy processing for a packet is initiated by ip_process, which ascertains 494 * that the classifier (ipgpc) is loaded and configured, failing which the 495 * packet resumes normal processing in IP. If the clasifier is present, the 496 * packet is acted upon by one or more IPQoS modules (action instances), per 497 * filters configured in ipgpc and resumes normal IP processing thereafter. 498 * An action instance can drop a packet in course of its processing. 499 * 500 * A boolean variable, ip_policy, is used in all the fanout routines that can 501 * invoke ip_process for a packet. This variable indicates if the packet should 502 * to be sent for policy processing. The variable is set to B_TRUE by default, 503 * i.e. when the routines are invoked in the normal ip procesing path for a 504 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 505 * ip_policy is set to B_FALSE for all the routines called in these two 506 * functions because, in the former case, we don't process loopback traffic 507 * currently while in the latter, the packets have already been processed in 508 * icmp_inbound. 509 * 510 * Zones notes: 511 * 512 * The partitioning rules for networking are as follows: 513 * 1) Packets coming from a zone must have a source address belonging to that 514 * zone. 515 * 2) Packets coming from a zone can only be sent on a physical interface on 516 * which the zone has an IP address. 517 * 3) Between two zones on the same machine, packet delivery is only allowed if 518 * there's a matching route for the destination and zone in the forwarding 519 * table. 520 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 521 * different zones can bind to the same port with the wildcard address 522 * (INADDR_ANY). 523 * 524 * The granularity of interface partitioning is at the logical interface level. 525 * Therefore, every zone has its own IP addresses, and incoming packets can be 526 * attributed to a zone unambiguously. A logical interface is placed into a zone 527 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 528 * structure. Rule (1) is implemented by modifying the source address selection 529 * algorithm so that the list of eligible addresses is filtered based on the 530 * sending process zone. 531 * 532 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 533 * across all zones, depending on their type. Here is the break-up: 534 * 535 * IRE type Shared/exclusive 536 * -------- ---------------- 537 * IRE_BROADCAST Exclusive 538 * IRE_DEFAULT (default routes) Shared (*) 539 * IRE_LOCAL Exclusive (x) 540 * IRE_LOOPBACK Exclusive 541 * IRE_PREFIX (net routes) Shared (*) 542 * IRE_CACHE Exclusive 543 * IRE_IF_NORESOLVER (interface routes) Exclusive 544 * IRE_IF_RESOLVER (interface routes) Exclusive 545 * IRE_HOST (host routes) Shared (*) 546 * 547 * (*) A zone can only use a default or off-subnet route if the gateway is 548 * directly reachable from the zone, that is, if the gateway's address matches 549 * one of the zone's logical interfaces. 550 * 551 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 552 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 553 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 554 * address of the zone itself (the destination). Since IRE_LOCAL is used 555 * for communication between zones, ip_wput_ire has special logic to set 556 * the right source address when sending using an IRE_LOCAL. 557 * 558 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 559 * ire_cache_lookup restricts loopback using an IRE_LOCAL 560 * between zone to the case when L2 would have conceptually looped the packet 561 * back, i.e. the loopback which is required since neither Ethernet drivers 562 * nor Ethernet hardware loops them back. This is the case when the normal 563 * routes (ignoring IREs with different zoneids) would send out the packet on 564 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 565 * associated. 566 * 567 * Multiple zones can share a common broadcast address; typically all zones 568 * share the 255.255.255.255 address. Incoming as well as locally originated 569 * broadcast packets must be dispatched to all the zones on the broadcast 570 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 571 * since some zones may not be on the 10.16.72/24 network. To handle this, each 572 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 573 * sent to every zone that has an IRE_BROADCAST entry for the destination 574 * address on the input ill, see conn_wantpacket(). 575 * 576 * Applications in different zones can join the same multicast group address. 577 * For IPv4, group memberships are per-logical interface, so they're already 578 * inherently part of a zone. For IPv6, group memberships are per-physical 579 * interface, so we distinguish IPv6 group memberships based on group address, 580 * interface and zoneid. In both cases, received multicast packets are sent to 581 * every zone for which a group membership entry exists. On IPv6 we need to 582 * check that the target zone still has an address on the receiving physical 583 * interface; it could have been removed since the application issued the 584 * IPV6_JOIN_GROUP. 585 */ 586 587 /* 588 * Squeue Fanout flags: 589 * 0: No fanout. 590 * 1: Fanout across all squeues 591 */ 592 boolean_t ip_squeue_fanout = 0; 593 594 /* 595 * Maximum dups allowed per packet. 596 */ 597 uint_t ip_max_frag_dups = 10; 598 599 #define IS_SIMPLE_IPH(ipha) \ 600 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 601 602 /* RFC1122 Conformance */ 603 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 604 605 #define ILL_MAX_NAMELEN LIFNAMSIZ 606 607 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 608 609 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 610 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 611 612 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 613 ip_stack_t *); 614 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 615 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 616 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 618 mblk_t *, int, ip_stack_t *); 619 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 620 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 621 ill_t *, zoneid_t); 622 static void icmp_options_update(ipha_t *); 623 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 624 ip_stack_t *); 625 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 626 zoneid_t zoneid, ip_stack_t *); 627 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 628 static void icmp_redirect(ill_t *, mblk_t *); 629 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 630 ip_stack_t *); 631 632 static void ip_arp_news(queue_t *, mblk_t *); 633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 634 ip_stack_t *); 635 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 636 char *ip_dot_addr(ipaddr_t, char *); 637 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 638 int ip_close(queue_t *, int); 639 static char *ip_dot_saddr(uchar_t *, char *); 640 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, ill_t *, zoneid_t); 642 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, zoneid_t); 644 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 645 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_lrput(queue_t *, mblk_t *); 647 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 648 ipaddr_t ip_net_mask(ipaddr_t); 649 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 650 zoneid_t, ip_stack_t *); 651 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 652 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 653 char *ip_nv_lookup(nv_t *, int); 654 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 655 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 656 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 657 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 658 ipndp_t *, size_t); 659 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 660 void ip_rput(queue_t *, mblk_t *); 661 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 662 void *dummy_arg); 663 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 664 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 665 ip_stack_t *); 666 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 667 ire_t *, ip_stack_t *); 668 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 669 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 671 ip_stack_t *); 672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 673 uint16_t *); 674 int ip_snmp_get(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 711 712 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 713 zoneid_t, ip_stack_t *); 714 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 715 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 716 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 717 zoneid_t, ip_stack_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain_tail(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *); 724 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 725 zoneid_t); 726 727 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 728 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 729 static void ip_stack_fini(netstackid_t stackid, void *arg); 730 731 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 732 zoneid_t); 733 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 734 void *dummy_arg); 735 736 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 737 738 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 739 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 740 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 741 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 742 743 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 744 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 745 caddr_t, cred_t *); 746 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 751 caddr_t cp, cred_t *cr); 752 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static squeue_func_t ip_squeue_switch(int); 757 758 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 759 static void ip_kstat_fini(netstackid_t, kstat_t *); 760 static int ip_kstat_update(kstat_t *kp, int rw); 761 static void *icmp_kstat_init(netstackid_t); 762 static void icmp_kstat_fini(netstackid_t, kstat_t *); 763 static int icmp_kstat_update(kstat_t *kp, int rw); 764 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 765 static void ip_kstat2_fini(netstackid_t, kstat_t *); 766 767 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 768 769 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 770 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 771 772 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 773 ipha_t *, ill_t *, boolean_t); 774 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 775 776 /* How long, in seconds, we allow frags to hang around. */ 777 #define IP_FRAG_TIMEOUT 60 778 779 /* 780 * Threshold which determines whether MDT should be used when 781 * generating IP fragments; payload size must be greater than 782 * this threshold for MDT to take place. 783 */ 784 #define IP_WPUT_FRAG_MDT_MIN 32768 785 786 /* Setable in /etc/system only */ 787 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 788 789 static long ip_rput_pullups; 790 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 791 792 vmem_t *ip_minor_arena; 793 794 int ip_debug; 795 796 #ifdef DEBUG 797 uint32_t ipsechw_debug = 0; 798 #endif 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 807 /* 808 * XXX following really should only be in a header. Would need more 809 * header and .c clean up first. 810 */ 811 extern optdb_obj_t ip_opt_obj; 812 813 ulong_t ip_squeue_enter_unbound = 0; 814 815 /* 816 * Named Dispatch Parameter Table. 817 * All of these are alterable, within the min/max values given, at run time. 818 */ 819 static ipparam_t lcl_param_arr[] = { 820 /* min max value name */ 821 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 822 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 823 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 824 { 0, 1, 0, "ip_respond_to_timestamp"}, 825 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 826 { 0, 1, 1, "ip_send_redirects"}, 827 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 828 { 0, 10, 0, "ip_debug"}, 829 { 0, 10, 0, "ip_mrtdebug"}, 830 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 831 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 832 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 833 { 1, 255, 255, "ip_def_ttl" }, 834 { 0, 1, 0, "ip_forward_src_routed"}, 835 { 0, 256, 32, "ip_wroff_extra" }, 836 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 837 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 838 { 0, 1, 1, "ip_path_mtu_discovery" }, 839 { 0, 240, 30, "ip_ignore_delete_time" }, 840 { 0, 1, 0, "ip_ignore_redirect" }, 841 { 0, 1, 1, "ip_output_queue" }, 842 { 1, 254, 1, "ip_broadcast_ttl" }, 843 { 0, 99999, 100, "ip_icmp_err_interval" }, 844 { 1, 99999, 10, "ip_icmp_err_burst" }, 845 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 846 { 0, 1, 0, "ip_strict_dst_multihoming" }, 847 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 848 { 0, 1, 0, "ipsec_override_persocket_policy" }, 849 { 0, 1, 1, "icmp_accept_clear_messages" }, 850 { 0, 1, 1, "igmp_accept_clear_messages" }, 851 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 852 "ip_ndp_delay_first_probe_time"}, 853 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 854 "ip_ndp_max_unicast_solicit"}, 855 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 856 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 857 { 0, 1, 0, "ip6_forward_src_routed"}, 858 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 859 { 0, 1, 1, "ip6_send_redirects"}, 860 { 0, 1, 0, "ip6_ignore_redirect" }, 861 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 862 863 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 864 865 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 866 867 { 0, 1, 1, "pim_accept_clear_messages" }, 868 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 869 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 870 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 871 { 0, 15, 0, "ip_policy_mask" }, 872 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 873 { 0, 255, 1, "ip_multirt_ttl" }, 874 { 0, 1, 1, "ip_multidata_outbound" }, 875 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 876 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 877 { 0, 1000, 1, "ip_max_temp_defend" }, 878 { 0, 1000, 3, "ip_max_defend" }, 879 { 0, 999999, 30, "ip_defend_interval" }, 880 { 0, 3600000, 300000, "ip_dup_recovery" }, 881 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 882 { 0, 1, 1, "ip_lso_outbound" }, 883 #ifdef DEBUG 884 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 885 #else 886 { 0, 0, 0, "" }, 887 #endif 888 }; 889 890 /* 891 * Extended NDP table 892 * The addresses for the first two are filled in to be ips_ip_g_forward 893 * and ips_ipv6_forward at init time. 894 */ 895 static ipndp_t lcl_ndp_arr[] = { 896 /* getf setf data name */ 897 #define IPNDP_IP_FORWARDING_OFFSET 0 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip_forwarding" }, 900 #define IPNDP_IP6_FORWARDING_OFFSET 1 901 { ip_param_generic_get, ip_forward_set, NULL, 902 "ip6_forwarding" }, 903 { ip_ill_report, NULL, NULL, 904 "ip_ill_status" }, 905 { ip_ipif_report, NULL, NULL, 906 "ip_ipif_status" }, 907 { ip_ire_report, NULL, NULL, 908 "ipv4_ire_status" }, 909 { ip_ire_report_mrtun, NULL, NULL, 910 "ipv4_mrtun_ire_status" }, 911 { ip_ire_report_srcif, NULL, NULL, 912 "ipv4_srcif_ire_status" }, 913 { ip_ire_report_v6, NULL, NULL, 914 "ipv6_ire_status" }, 915 { ip_conn_report, NULL, NULL, 916 "ip_conn_status" }, 917 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 918 "ip_rput_pullups" }, 919 { ndp_report, NULL, NULL, 920 "ip_ndp_cache_report" }, 921 { ip_srcid_report, NULL, NULL, 922 "ip_srcid_status" }, 923 { ip_param_generic_get, ip_squeue_profile_set, 924 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 925 { ip_param_generic_get, ip_squeue_bind_set, 926 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 927 { ip_param_generic_get, ip_input_proc_set, 928 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 929 { ip_param_generic_get, ip_int_set, 930 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 931 #define IPNDP_CGTP_FILTER_OFFSET 16 932 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 933 "ip_cgtp_filter" }, 934 { ip_param_generic_get, ip_int_set, 935 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 936 #define IPNDP_IPMP_HOOK_OFFSET 18 937 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 938 "ipmp_hook_emulation" }, 939 }; 940 941 /* 942 * Table of IP ioctls encoding the various properties of the ioctl and 943 * indexed based on the last byte of the ioctl command. Occasionally there 944 * is a clash, and there is more than 1 ioctl with the same last byte. 945 * In such a case 1 ioctl is encoded in the ndx table and the remaining 946 * ioctls are encoded in the misc table. An entry in the ndx table is 947 * retrieved by indexing on the last byte of the ioctl command and comparing 948 * the ioctl command with the value in the ndx table. In the event of a 949 * mismatch the misc table is then searched sequentially for the desired 950 * ioctl command. 951 * 952 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 953 */ 954 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 955 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 967 MISC_CMD, ip_siocaddrt, NULL }, 968 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 969 MISC_CMD, ip_siocdelrt, NULL }, 970 971 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 973 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 974 IF_CMD, ip_sioctl_get_addr, NULL }, 975 976 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 977 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 978 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 979 IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 981 982 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 983 IPI_PRIV | IPI_WR | IPI_REPL, 984 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 985 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 986 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_flags, NULL }, 988 989 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 990 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 991 992 /* copyin size cannot be coded for SIOCGIFCONF */ 993 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 994 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 995 996 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_mtu, NULL }, 998 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_mtu, NULL }, 1000 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1003 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1004 IF_CMD, ip_sioctl_brdaddr, NULL }, 1005 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1006 IPI_GET_CMD | IPI_REPL, 1007 IF_CMD, ip_sioctl_get_netmask, NULL }, 1008 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1009 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1010 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1011 IPI_GET_CMD | IPI_REPL, 1012 IF_CMD, ip_sioctl_get_metric, NULL }, 1013 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1014 IF_CMD, ip_sioctl_metric, NULL }, 1015 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 1017 /* See 166-168 below for extended SIOC*XARP ioctls */ 1018 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1019 MISC_CMD, ip_sioctl_arp, NULL }, 1020 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1021 MISC_CMD, ip_sioctl_arp, NULL }, 1022 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1023 MISC_CMD, ip_sioctl_arp, NULL }, 1024 1025 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 1047 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1048 MISC_CMD, if_unitsel, if_unitsel_restart }, 1049 1050 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 1069 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1070 IPI_PRIV | IPI_WR | IPI_MODOK, 1071 IF_CMD, ip_sioctl_sifname, NULL }, 1072 1073 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1088 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1089 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_muxid, NULL }, 1091 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_muxid, NULL }, 1094 1095 /* Both if and lif variants share same func */ 1096 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1098 /* Both if and lif variants share same func */ 1099 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1100 IPI_PRIV | IPI_WR | IPI_REPL, 1101 IF_CMD, ip_sioctl_slifindex, NULL }, 1102 1103 /* copyin size cannot be coded for SIOCGIFCONF */ 1104 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1105 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1106 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 1124 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1125 IPI_PRIV | IPI_WR | IPI_REPL, 1126 LIF_CMD, ip_sioctl_removeif, 1127 ip_sioctl_removeif_restart }, 1128 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1130 LIF_CMD, ip_sioctl_addif, NULL }, 1131 #define SIOCLIFADDR_NDX 112 1132 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1133 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1134 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_addr, NULL }, 1137 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1138 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1139 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1140 IPI_GET_CMD | IPI_REPL, 1141 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1142 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1143 IPI_PRIV | IPI_WR | IPI_REPL, 1144 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1145 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1146 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_flags, NULL }, 1148 1149 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 1152 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1153 ip_sioctl_get_lifconf, NULL }, 1154 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_mtu, NULL }, 1156 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1158 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1161 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1163 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1164 IPI_GET_CMD | IPI_REPL, 1165 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1166 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1168 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_metric, NULL }, 1171 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1172 LIF_CMD, ip_sioctl_metric, NULL }, 1173 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1175 LIF_CMD, ip_sioctl_slifname, 1176 ip_sioctl_slifname_restart }, 1177 1178 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1179 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1180 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1181 IPI_GET_CMD | IPI_REPL, 1182 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1183 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1184 IPI_PRIV | IPI_WR | IPI_REPL, 1185 LIF_CMD, ip_sioctl_muxid, NULL }, 1186 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1189 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1190 IPI_PRIV | IPI_WR | IPI_REPL, 1191 LIF_CMD, ip_sioctl_slifindex, 0 }, 1192 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_token, NULL }, 1194 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_token, NULL }, 1197 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1198 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1199 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1200 IPI_GET_CMD | IPI_REPL, 1201 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1202 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1203 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1204 1205 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1206 IPI_GET_CMD | IPI_REPL, 1207 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1208 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1209 LIF_CMD, ip_siocdelndp_v6, NULL }, 1210 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1211 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1212 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1213 LIF_CMD, ip_siocsetndp_v6, NULL }, 1214 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1215 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1216 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1217 MISC_CMD, ip_sioctl_tonlink, NULL }, 1218 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1219 MISC_CMD, ip_sioctl_tmysite, NULL }, 1220 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1221 TUN_CMD, ip_sioctl_tunparam, NULL }, 1222 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1223 IPI_PRIV | IPI_WR, 1224 TUN_CMD, ip_sioctl_tunparam, NULL }, 1225 1226 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1227 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1228 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1229 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1230 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1231 1232 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1235 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1238 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1239 IPI_PRIV | IPI_WR, 1240 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1241 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1242 IPI_GET_CMD | IPI_REPL, 1243 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1244 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1247 1248 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1249 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1250 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1251 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 1253 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1255 1256 /* These are handled in ip_sioctl_copyin_setup itself */ 1257 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1258 MISC_CMD, NULL, NULL }, 1259 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1260 MISC_CMD, NULL, NULL }, 1261 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1262 1263 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1264 ip_sioctl_get_lifconf, NULL }, 1265 1266 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1267 MISC_CMD, ip_sioctl_xarp, NULL }, 1268 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1269 MISC_CMD, ip_sioctl_xarp, NULL }, 1270 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1271 MISC_CMD, ip_sioctl_xarp, NULL }, 1272 1273 /* SIOCPOPSOCKFS is not handled by IP */ 1274 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1275 1276 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1279 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR | IPI_REPL, 1281 LIF_CMD, ip_sioctl_slifzone, 1282 ip_sioctl_slifzone_restart }, 1283 /* 172-174 are SCTP ioctls and not handled by IP */ 1284 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1285 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1286 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1287 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1288 IPI_GET_CMD, LIF_CMD, 1289 ip_sioctl_get_lifusesrc, 0 }, 1290 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1291 IPI_PRIV | IPI_WR, 1292 LIF_CMD, ip_sioctl_slifusesrc, 1293 NULL }, 1294 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1295 ip_sioctl_get_lifsrcof, NULL }, 1296 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1297 MISC_CMD, ip_sioctl_msfilter, NULL }, 1298 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1299 MISC_CMD, ip_sioctl_msfilter, NULL }, 1300 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1301 MISC_CMD, ip_sioctl_msfilter, NULL }, 1302 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1303 MISC_CMD, ip_sioctl_msfilter, NULL }, 1304 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1305 ip_sioctl_set_ipmpfailback, NULL } 1306 }; 1307 1308 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1309 1310 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1311 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1312 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1314 TUN_CMD, ip_sioctl_tunparam, NULL }, 1315 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1320 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1321 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1322 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1323 MISC_CMD, mrt_ioctl}, 1324 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1325 MISC_CMD, mrt_ioctl}, 1326 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1327 MISC_CMD, mrt_ioctl} 1328 }; 1329 1330 int ip_misc_ioctl_count = 1331 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1332 1333 int conn_drain_nthreads; /* Number of drainers reqd. */ 1334 /* Settable in /etc/system */ 1335 /* Defined in ip_ire.c */ 1336 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1337 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1338 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1339 1340 static nv_t ire_nv_arr[] = { 1341 { IRE_BROADCAST, "BROADCAST" }, 1342 { IRE_LOCAL, "LOCAL" }, 1343 { IRE_LOOPBACK, "LOOPBACK" }, 1344 { IRE_CACHE, "CACHE" }, 1345 { IRE_DEFAULT, "DEFAULT" }, 1346 { IRE_PREFIX, "PREFIX" }, 1347 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1348 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1349 { IRE_HOST, "HOST" }, 1350 { 0 } 1351 }; 1352 1353 nv_t *ire_nv_tbl = ire_nv_arr; 1354 1355 /* Defined in ip_netinfo.c */ 1356 extern ddi_taskq_t *eventq_queue_nic; 1357 1358 /* Simple ICMP IP Header Template */ 1359 static ipha_t icmp_ipha = { 1360 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1361 }; 1362 1363 struct module_info ip_mod_info = { 1364 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1365 }; 1366 1367 /* 1368 * Duplicate static symbols within a module confuses mdb; so we avoid the 1369 * problem by making the symbols here distinct from those in udp.c. 1370 */ 1371 1372 static struct qinit iprinit = { 1373 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 static struct qinit ipwinit = { 1378 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit iplrinit = { 1383 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 static struct qinit iplwinit = { 1388 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 struct streamtab ipinfo = { 1393 &iprinit, &ipwinit, &iplrinit, &iplwinit 1394 }; 1395 1396 #ifdef DEBUG 1397 static boolean_t skip_sctp_cksum = B_FALSE; 1398 #endif 1399 1400 /* 1401 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1402 * ip_rput_v6(), ip_output(), etc. If the message 1403 * block already has a M_CTL at the front of it, then simply set the zoneid 1404 * appropriately. 1405 */ 1406 mblk_t * 1407 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1408 { 1409 mblk_t *first_mp; 1410 ipsec_out_t *io; 1411 1412 ASSERT(zoneid != ALL_ZONES); 1413 if (mp->b_datap->db_type == M_CTL) { 1414 io = (ipsec_out_t *)mp->b_rptr; 1415 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1416 io->ipsec_out_zoneid = zoneid; 1417 return (mp); 1418 } 1419 1420 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1421 if (first_mp == NULL) 1422 return (NULL); 1423 io = (ipsec_out_t *)first_mp->b_rptr; 1424 /* This is not a secure packet */ 1425 io->ipsec_out_secure = B_FALSE; 1426 io->ipsec_out_zoneid = zoneid; 1427 first_mp->b_cont = mp; 1428 return (first_mp); 1429 } 1430 1431 /* 1432 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1433 */ 1434 mblk_t * 1435 ip_copymsg(mblk_t *mp) 1436 { 1437 mblk_t *nmp; 1438 ipsec_info_t *in; 1439 1440 if (mp->b_datap->db_type != M_CTL) 1441 return (copymsg(mp)); 1442 1443 in = (ipsec_info_t *)mp->b_rptr; 1444 1445 /* 1446 * Note that M_CTL is also used for delivering ICMP error messages 1447 * upstream to transport layers. 1448 */ 1449 if (in->ipsec_info_type != IPSEC_OUT && 1450 in->ipsec_info_type != IPSEC_IN) 1451 return (copymsg(mp)); 1452 1453 nmp = copymsg(mp->b_cont); 1454 1455 if (in->ipsec_info_type == IPSEC_OUT) { 1456 return (ipsec_out_tag(mp, nmp, 1457 ((ipsec_out_t *)in)->ipsec_out_ns)); 1458 } else { 1459 return (ipsec_in_tag(mp, nmp, 1460 ((ipsec_in_t *)in)->ipsec_in_ns)); 1461 } 1462 } 1463 1464 /* Generate an ICMP fragmentation needed message. */ 1465 static void 1466 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1467 ip_stack_t *ipst) 1468 { 1469 icmph_t icmph; 1470 mblk_t *first_mp; 1471 boolean_t mctl_present; 1472 1473 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1474 1475 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1476 if (mctl_present) 1477 freeb(first_mp); 1478 return; 1479 } 1480 1481 bzero(&icmph, sizeof (icmph_t)); 1482 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1483 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1484 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1487 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1488 ipst); 1489 } 1490 1491 /* 1492 * icmp_inbound deals with ICMP messages in the following ways. 1493 * 1494 * 1) It needs to send a reply back and possibly delivering it 1495 * to the "interested" upper clients. 1496 * 2) It needs to send it to the upper clients only. 1497 * 3) It needs to change some values in IP only. 1498 * 4) It needs to change some values in IP and upper layers e.g TCP. 1499 * 1500 * We need to accomodate icmp messages coming in clear until we get 1501 * everything secure from the wire. If icmp_accept_clear_messages 1502 * is zero we check with the global policy and act accordingly. If 1503 * it is non-zero, we accept the message without any checks. But 1504 * *this does not mean* that this will be delivered to the upper 1505 * clients. By accepting we might send replies back, change our MTU 1506 * value etc. but delivery to the ULP/clients depends on their policy 1507 * dispositions. 1508 * 1509 * We handle the above 4 cases in the context of IPSEC in the 1510 * following way : 1511 * 1512 * 1) Send the reply back in the same way as the request came in. 1513 * If it came in encrypted, it goes out encrypted. If it came in 1514 * clear, it goes out in clear. Thus, this will prevent chosen 1515 * plain text attack. 1516 * 2) The client may or may not expect things to come in secure. 1517 * If it comes in secure, the policy constraints are checked 1518 * before delivering it to the upper layers. If it comes in 1519 * clear, ipsec_inbound_accept_clear will decide whether to 1520 * accept this in clear or not. In both the cases, if the returned 1521 * message (IP header + 8 bytes) that caused the icmp message has 1522 * AH/ESP headers, it is sent up to AH/ESP for validation before 1523 * sending up. If there are only 8 bytes of returned message, then 1524 * upper client will not be notified. 1525 * 3) Check with global policy to see whether it matches the constaints. 1526 * But this will be done only if icmp_accept_messages_in_clear is 1527 * zero. 1528 * 4) If we need to change both in IP and ULP, then the decision taken 1529 * while affecting the values in IP and while delivering up to TCP 1530 * should be the same. 1531 * 1532 * There are two cases. 1533 * 1534 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1535 * failed), we will not deliver it to the ULP, even though they 1536 * are *willing* to accept in *clear*. This is fine as our global 1537 * disposition to icmp messages asks us reject the datagram. 1538 * 1539 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1540 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1541 * to deliver it to ULP (policy failed), it can lead to 1542 * consistency problems. The cases known at this time are 1543 * ICMP_DESTINATION_UNREACHABLE messages with following code 1544 * values : 1545 * 1546 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1547 * and Upper layer rejects. Then the communication will 1548 * come to a stop. This is solved by making similar decisions 1549 * at both levels. Currently, when we are unable to deliver 1550 * to the Upper Layer (due to policy failures) while IP has 1551 * adjusted ire_max_frag, the next outbound datagram would 1552 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1553 * will be with the right level of protection. Thus the right 1554 * value will be communicated even if we are not able to 1555 * communicate when we get from the wire initially. But this 1556 * assumes there would be at least one outbound datagram after 1557 * IP has adjusted its ire_max_frag value. To make things 1558 * simpler, we accept in clear after the validation of 1559 * AH/ESP headers. 1560 * 1561 * - Other ICMP ERRORS : We may not be able to deliver it to the 1562 * upper layer depending on the level of protection the upper 1563 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1564 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1565 * should be accepted in clear when the Upper layer expects secure. 1566 * Thus the communication may get aborted by some bad ICMP 1567 * packets. 1568 * 1569 * IPQoS Notes: 1570 * The only instance when a packet is sent for processing is when there 1571 * isn't an ICMP client and if we are interested in it. 1572 * If there is a client, IPPF processing will take place in the 1573 * ip_fanout_proto routine. 1574 * 1575 * Zones notes: 1576 * The packet is only processed in the context of the specified zone: typically 1577 * only this zone will reply to an echo request, and only interested clients in 1578 * this zone will receive a copy of the packet. This means that the caller must 1579 * call icmp_inbound() for each relevant zone. 1580 */ 1581 static void 1582 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1583 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1584 ill_t *recv_ill, zoneid_t zoneid) 1585 { 1586 icmph_t *icmph; 1587 ipha_t *ipha; 1588 int iph_hdr_length; 1589 int hdr_length; 1590 boolean_t interested; 1591 uint32_t ts; 1592 uchar_t *wptr; 1593 ipif_t *ipif; 1594 mblk_t *first_mp; 1595 ipsec_in_t *ii; 1596 ire_t *src_ire; 1597 boolean_t onlink; 1598 timestruc_t now; 1599 uint32_t ill_index; 1600 ip_stack_t *ipst; 1601 1602 ASSERT(ill != NULL); 1603 ipst = ill->ill_ipst; 1604 1605 first_mp = mp; 1606 if (mctl_present) { 1607 mp = first_mp->b_cont; 1608 ASSERT(mp != NULL); 1609 } 1610 1611 ipha = (ipha_t *)mp->b_rptr; 1612 if (ipst->ips_icmp_accept_clear_messages == 0) { 1613 first_mp = ipsec_check_global_policy(first_mp, NULL, 1614 ipha, NULL, mctl_present, ipst->ips_netstack); 1615 if (first_mp == NULL) 1616 return; 1617 } 1618 1619 /* 1620 * On a labeled system, we have to check whether the zone itself is 1621 * permitted to receive raw traffic. 1622 */ 1623 if (is_system_labeled()) { 1624 if (zoneid == ALL_ZONES) 1625 zoneid = tsol_packet_to_zoneid(mp); 1626 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1627 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1628 zoneid)); 1629 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1630 freemsg(first_mp); 1631 return; 1632 } 1633 } 1634 1635 /* 1636 * We have accepted the ICMP message. It means that we will 1637 * respond to the packet if needed. It may not be delivered 1638 * to the upper client depending on the policy constraints 1639 * and the disposition in ipsec_inbound_accept_clear. 1640 */ 1641 1642 ASSERT(ill != NULL); 1643 1644 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1645 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1646 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1647 /* Last chance to get real. */ 1648 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1649 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1650 freemsg(first_mp); 1651 return; 1652 } 1653 /* Refresh iph following the pullup. */ 1654 ipha = (ipha_t *)mp->b_rptr; 1655 } 1656 /* ICMP header checksum, including checksum field, should be zero. */ 1657 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1658 IP_CSUM(mp, iph_hdr_length, 0)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* The IP header will always be a multiple of four bytes */ 1664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1665 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1666 icmph->icmph_code)); 1667 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1668 /* We will set "interested" to "true" if we want a copy */ 1669 interested = B_FALSE; 1670 switch (icmph->icmph_type) { 1671 case ICMP_ECHO_REPLY: 1672 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1673 break; 1674 case ICMP_DEST_UNREACHABLE: 1675 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1677 interested = B_TRUE; /* Pass up to transport */ 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1679 break; 1680 case ICMP_SOURCE_QUENCH: 1681 interested = B_TRUE; /* Pass up to transport */ 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1683 break; 1684 case ICMP_REDIRECT: 1685 if (!ipst->ips_ip_ignore_redirect) 1686 interested = B_TRUE; 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1688 break; 1689 case ICMP_ECHO_REQUEST: 1690 /* 1691 * Whether to respond to echo requests that come in as IP 1692 * broadcasts or as IP multicast is subject to debate 1693 * (what isn't?). We aim to please, you pick it. 1694 * Default is do it. 1695 */ 1696 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1697 /* unicast: always respond */ 1698 interested = B_TRUE; 1699 } else if (CLASSD(ipha->ipha_dst)) { 1700 /* multicast: respond based on tunable */ 1701 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1702 } else if (broadcast) { 1703 /* broadcast: respond based on tunable */ 1704 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1705 } 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1707 break; 1708 case ICMP_ROUTER_ADVERTISEMENT: 1709 case ICMP_ROUTER_SOLICITATION: 1710 break; 1711 case ICMP_TIME_EXCEEDED: 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1714 break; 1715 case ICMP_PARAM_PROBLEM: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1718 break; 1719 case ICMP_TIME_STAMP_REQUEST: 1720 /* Response to Time Stamp Requests is local policy. */ 1721 if (ipst->ips_ip_g_resp_to_timestamp && 1722 /* So is whether to respond if it was an IP broadcast. */ 1723 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1724 int tstamp_len = 3 * sizeof (uint32_t); 1725 1726 if (wptr + tstamp_len > mp->b_wptr) { 1727 if (!pullupmsg(mp, wptr + tstamp_len - 1728 mp->b_rptr)) { 1729 BUMP_MIB(ill->ill_ip_mib, 1730 ipIfStatsInDiscards); 1731 freemsg(first_mp); 1732 return; 1733 } 1734 /* Refresh ipha following the pullup. */ 1735 ipha = (ipha_t *)mp->b_rptr; 1736 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1737 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1738 } 1739 interested = B_TRUE; 1740 } 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1742 break; 1743 case ICMP_TIME_STAMP_REPLY: 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1745 break; 1746 case ICMP_INFO_REQUEST: 1747 /* Per RFC 1122 3.2.2.7, ignore this. */ 1748 case ICMP_INFO_REPLY: 1749 break; 1750 case ICMP_ADDRESS_MASK_REQUEST: 1751 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1752 !broadcast) && 1753 /* TODO m_pullup of complete header? */ 1754 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1755 interested = B_TRUE; 1756 } 1757 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1758 break; 1759 case ICMP_ADDRESS_MASK_REPLY: 1760 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1761 break; 1762 default: 1763 interested = B_TRUE; /* Pass up to transport */ 1764 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1765 break; 1766 } 1767 /* See if there is an ICMP client. */ 1768 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1769 /* If there is an ICMP client and we want one too, copy it. */ 1770 mblk_t *first_mp1; 1771 1772 if (!interested) { 1773 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1774 ip_policy, recv_ill, zoneid); 1775 return; 1776 } 1777 first_mp1 = ip_copymsg(first_mp); 1778 if (first_mp1 != NULL) { 1779 ip_fanout_proto(q, first_mp1, ill, ipha, 1780 0, mctl_present, ip_policy, recv_ill, zoneid); 1781 } 1782 } else if (!interested) { 1783 freemsg(first_mp); 1784 return; 1785 } else { 1786 /* 1787 * Initiate policy processing for this packet if ip_policy 1788 * is true. 1789 */ 1790 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1791 ill_index = ill->ill_phyint->phyint_ifindex; 1792 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1793 if (mp == NULL) { 1794 if (mctl_present) { 1795 freeb(first_mp); 1796 } 1797 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1798 return; 1799 } 1800 } 1801 } 1802 /* We want to do something with it. */ 1803 /* Check db_ref to make sure we can modify the packet. */ 1804 if (mp->b_datap->db_ref > 1) { 1805 mblk_t *first_mp1; 1806 1807 first_mp1 = ip_copymsg(first_mp); 1808 freemsg(first_mp); 1809 if (!first_mp1) { 1810 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1811 return; 1812 } 1813 first_mp = first_mp1; 1814 if (mctl_present) { 1815 mp = first_mp->b_cont; 1816 ASSERT(mp != NULL); 1817 } else { 1818 mp = first_mp; 1819 } 1820 ipha = (ipha_t *)mp->b_rptr; 1821 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1822 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1823 } 1824 switch (icmph->icmph_type) { 1825 case ICMP_ADDRESS_MASK_REQUEST: 1826 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1827 if (ipif == NULL) { 1828 freemsg(first_mp); 1829 return; 1830 } 1831 /* 1832 * outging interface must be IPv4 1833 */ 1834 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1835 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1836 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1837 ipif_refrele(ipif); 1838 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1839 break; 1840 case ICMP_ECHO_REQUEST: 1841 icmph->icmph_type = ICMP_ECHO_REPLY; 1842 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1843 break; 1844 case ICMP_TIME_STAMP_REQUEST: { 1845 uint32_t *tsp; 1846 1847 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1848 tsp = (uint32_t *)wptr; 1849 tsp++; /* Skip past 'originate time' */ 1850 /* Compute # of milliseconds since midnight */ 1851 gethrestime(&now); 1852 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1853 now.tv_nsec / (NANOSEC / MILLISEC); 1854 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1855 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1856 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1857 break; 1858 } 1859 default: 1860 ipha = (ipha_t *)&icmph[1]; 1861 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1862 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1864 freemsg(first_mp); 1865 return; 1866 } 1867 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1868 ipha = (ipha_t *)&icmph[1]; 1869 } 1870 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1872 freemsg(first_mp); 1873 return; 1874 } 1875 hdr_length = IPH_HDR_LENGTH(ipha); 1876 if (hdr_length < sizeof (ipha_t)) { 1877 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1878 freemsg(first_mp); 1879 return; 1880 } 1881 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1882 if (!pullupmsg(mp, 1883 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1885 freemsg(first_mp); 1886 return; 1887 } 1888 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1889 ipha = (ipha_t *)&icmph[1]; 1890 } 1891 switch (icmph->icmph_type) { 1892 case ICMP_REDIRECT: 1893 /* 1894 * As there is no upper client to deliver, we don't 1895 * need the first_mp any more. 1896 */ 1897 if (mctl_present) { 1898 freeb(first_mp); 1899 } 1900 icmp_redirect(ill, mp); 1901 return; 1902 case ICMP_DEST_UNREACHABLE: 1903 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1904 if (!icmp_inbound_too_big(icmph, ipha, ill, 1905 zoneid, mp, iph_hdr_length, ipst)) { 1906 freemsg(first_mp); 1907 return; 1908 } 1909 /* 1910 * icmp_inbound_too_big() may alter mp. 1911 * Resynch ipha and icmph accordingly. 1912 */ 1913 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1914 ipha = (ipha_t *)&icmph[1]; 1915 } 1916 /* FALLTHRU */ 1917 default : 1918 /* 1919 * IPQoS notes: Since we have already done IPQoS 1920 * processing we don't want to do it again in 1921 * the fanout routines called by 1922 * icmp_inbound_error_fanout, hence the last 1923 * argument, ip_policy, is B_FALSE. 1924 */ 1925 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1926 ipha, iph_hdr_length, hdr_length, mctl_present, 1927 B_FALSE, recv_ill, zoneid); 1928 } 1929 return; 1930 } 1931 /* Send out an ICMP packet */ 1932 icmph->icmph_checksum = 0; 1933 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1934 if (broadcast || CLASSD(ipha->ipha_dst)) { 1935 ipif_t *ipif_chosen; 1936 /* 1937 * Make it look like it was directed to us, so we don't look 1938 * like a fool with a broadcast or multicast source address. 1939 */ 1940 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1941 /* 1942 * Make sure that we haven't grabbed an interface that's DOWN. 1943 */ 1944 if (ipif != NULL) { 1945 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1946 ipha->ipha_src, zoneid); 1947 if (ipif_chosen != NULL) { 1948 ipif_refrele(ipif); 1949 ipif = ipif_chosen; 1950 } 1951 } 1952 if (ipif == NULL) { 1953 ip0dbg(("icmp_inbound: " 1954 "No source for broadcast/multicast:\n" 1955 "\tsrc 0x%x dst 0x%x ill %p " 1956 "ipif_lcl_addr 0x%x\n", 1957 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1958 (void *)ill, 1959 ill->ill_ipif->ipif_lcl_addr)); 1960 freemsg(first_mp); 1961 return; 1962 } 1963 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1964 ipha->ipha_dst = ipif->ipif_src_addr; 1965 ipif_refrele(ipif); 1966 } 1967 /* Reset time to live. */ 1968 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1969 { 1970 /* Swap source and destination addresses */ 1971 ipaddr_t tmp; 1972 1973 tmp = ipha->ipha_src; 1974 ipha->ipha_src = ipha->ipha_dst; 1975 ipha->ipha_dst = tmp; 1976 } 1977 ipha->ipha_ident = 0; 1978 if (!IS_SIMPLE_IPH(ipha)) 1979 icmp_options_update(ipha); 1980 1981 /* 1982 * ICMP echo replies should go out on the same interface 1983 * the request came on as probes used by in.mpathd for detecting 1984 * NIC failures are ECHO packets. We turn-off load spreading 1985 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1986 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1987 * function. This is in turn handled by ip_wput and ip_newroute 1988 * to make sure that the packet goes out on the interface it came 1989 * in on. If we don't turnoff load spreading, the packets might get 1990 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1991 * to go out and in.mpathd would wrongly detect a failure or 1992 * mis-detect a NIC failure for link failure. As load spreading 1993 * can happen only if ill_group is not NULL, we do only for 1994 * that case and this does not affect the normal case. 1995 * 1996 * We turn off load spreading only on echo packets that came from 1997 * on-link hosts. If the interface route has been deleted, this will 1998 * not be enforced as we can't do much. For off-link hosts, as the 1999 * default routes in IPv4 does not typically have an ire_ipif 2000 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2001 * Moreover, expecting a default route through this interface may 2002 * not be correct. We use ipha_dst because of the swap above. 2003 */ 2004 onlink = B_FALSE; 2005 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2006 /* 2007 * First, we need to make sure that it is not one of our 2008 * local addresses. If we set onlink when it is one of 2009 * our local addresses, we will end up creating IRE_CACHES 2010 * for one of our local addresses. Then, we will never 2011 * accept packets for them afterwards. 2012 */ 2013 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2014 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2015 if (src_ire == NULL) { 2016 ipif = ipif_get_next_ipif(NULL, ill); 2017 if (ipif == NULL) { 2018 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2019 freemsg(mp); 2020 return; 2021 } 2022 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2023 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2024 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2025 ipif_refrele(ipif); 2026 if (src_ire != NULL) { 2027 onlink = B_TRUE; 2028 ire_refrele(src_ire); 2029 } 2030 } else { 2031 ire_refrele(src_ire); 2032 } 2033 } 2034 if (!mctl_present) { 2035 /* 2036 * This packet should go out the same way as it 2037 * came in i.e in clear. To make sure that global 2038 * policy will not be applied to this in ip_wput_ire, 2039 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2040 */ 2041 ASSERT(first_mp == mp); 2042 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2043 if (first_mp == NULL) { 2044 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2045 freemsg(mp); 2046 return; 2047 } 2048 ii = (ipsec_in_t *)first_mp->b_rptr; 2049 2050 /* This is not a secure packet */ 2051 ii->ipsec_in_secure = B_FALSE; 2052 if (onlink) { 2053 ii->ipsec_in_attach_if = B_TRUE; 2054 ii->ipsec_in_ill_index = 2055 ill->ill_phyint->phyint_ifindex; 2056 ii->ipsec_in_rill_index = 2057 recv_ill->ill_phyint->phyint_ifindex; 2058 } 2059 first_mp->b_cont = mp; 2060 } else if (onlink) { 2061 ii = (ipsec_in_t *)first_mp->b_rptr; 2062 ii->ipsec_in_attach_if = B_TRUE; 2063 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2064 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2065 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2066 } else { 2067 ii = (ipsec_in_t *)first_mp->b_rptr; 2068 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2069 } 2070 ii->ipsec_in_zoneid = zoneid; 2071 ASSERT(zoneid != ALL_ZONES); 2072 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2074 return; 2075 } 2076 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2077 put(WR(q), first_mp); 2078 } 2079 2080 static ipaddr_t 2081 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2082 { 2083 conn_t *connp; 2084 connf_t *connfp; 2085 ipaddr_t nexthop_addr = INADDR_ANY; 2086 int hdr_length = IPH_HDR_LENGTH(ipha); 2087 uint16_t *up; 2088 uint32_t ports; 2089 ip_stack_t *ipst = ill->ill_ipst; 2090 2091 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2092 switch (ipha->ipha_protocol) { 2093 case IPPROTO_TCP: 2094 { 2095 tcph_t *tcph; 2096 2097 /* do a reverse lookup */ 2098 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2099 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2100 TCPS_LISTEN, ipst); 2101 break; 2102 } 2103 case IPPROTO_UDP: 2104 { 2105 uint32_t dstport, srcport; 2106 2107 ((uint16_t *)&ports)[0] = up[1]; 2108 ((uint16_t *)&ports)[1] = up[0]; 2109 2110 /* Extract ports in net byte order */ 2111 dstport = htons(ntohl(ports) & 0xFFFF); 2112 srcport = htons(ntohl(ports) >> 16); 2113 2114 connfp = &ipst->ips_ipcl_udp_fanout[ 2115 IPCL_UDP_HASH(dstport, ipst)]; 2116 mutex_enter(&connfp->connf_lock); 2117 connp = connfp->connf_head; 2118 2119 /* do a reverse lookup */ 2120 while ((connp != NULL) && 2121 (!IPCL_UDP_MATCH(connp, dstport, 2122 ipha->ipha_src, srcport, ipha->ipha_dst) || 2123 !IPCL_ZONE_MATCH(connp, zoneid))) { 2124 connp = connp->conn_next; 2125 } 2126 if (connp != NULL) 2127 CONN_INC_REF(connp); 2128 mutex_exit(&connfp->connf_lock); 2129 break; 2130 } 2131 case IPPROTO_SCTP: 2132 { 2133 in6_addr_t map_src, map_dst; 2134 2135 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2136 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2137 ((uint16_t *)&ports)[0] = up[1]; 2138 ((uint16_t *)&ports)[1] = up[0]; 2139 2140 connp = sctp_find_conn(&map_src, &map_dst, ports, 2141 zoneid, ipst->ips_netstack->netstack_sctp); 2142 if (connp == NULL) { 2143 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2144 zoneid, ports, ipha, ipst); 2145 } else { 2146 CONN_INC_REF(connp); 2147 SCTP_REFRELE(CONN2SCTP(connp)); 2148 } 2149 break; 2150 } 2151 default: 2152 { 2153 ipha_t ripha; 2154 2155 ripha.ipha_src = ipha->ipha_dst; 2156 ripha.ipha_dst = ipha->ipha_src; 2157 ripha.ipha_protocol = ipha->ipha_protocol; 2158 2159 connfp = &ipst->ips_ipcl_proto_fanout[ 2160 ipha->ipha_protocol]; 2161 mutex_enter(&connfp->connf_lock); 2162 connp = connfp->connf_head; 2163 for (connp = connfp->connf_head; connp != NULL; 2164 connp = connp->conn_next) { 2165 if (IPCL_PROTO_MATCH(connp, 2166 ipha->ipha_protocol, &ripha, ill, 2167 0, zoneid)) { 2168 CONN_INC_REF(connp); 2169 break; 2170 } 2171 } 2172 mutex_exit(&connfp->connf_lock); 2173 } 2174 } 2175 if (connp != NULL) { 2176 if (connp->conn_nexthop_set) 2177 nexthop_addr = connp->conn_nexthop_v4; 2178 CONN_DEC_REF(connp); 2179 } 2180 return (nexthop_addr); 2181 } 2182 2183 /* Table from RFC 1191 */ 2184 static int icmp_frag_size_table[] = 2185 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2186 2187 /* 2188 * Process received ICMP Packet too big. 2189 * After updating any IRE it does the fanout to any matching transport streams. 2190 * Assumes the message has been pulled up till the IP header that caused 2191 * the error. 2192 * 2193 * Returns B_FALSE on failure and B_TRUE on success. 2194 */ 2195 static boolean_t 2196 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2197 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2198 ip_stack_t *ipst) 2199 { 2200 ire_t *ire, *first_ire; 2201 int mtu; 2202 int hdr_length; 2203 ipaddr_t nexthop_addr; 2204 2205 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2206 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2207 ASSERT(ill != NULL); 2208 2209 hdr_length = IPH_HDR_LENGTH(ipha); 2210 2211 /* Drop if the original packet contained a source route */ 2212 if (ip_source_route_included(ipha)) { 2213 return (B_FALSE); 2214 } 2215 /* 2216 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2217 * header. 2218 */ 2219 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2220 mp->b_wptr) { 2221 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2222 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2224 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2225 return (B_FALSE); 2226 } 2227 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2228 ipha = (ipha_t *)&icmph[1]; 2229 } 2230 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2231 if (nexthop_addr != INADDR_ANY) { 2232 /* nexthop set */ 2233 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2234 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2235 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2236 } else { 2237 /* nexthop not set */ 2238 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2239 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2240 } 2241 2242 if (!first_ire) { 2243 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2244 ntohl(ipha->ipha_dst))); 2245 return (B_FALSE); 2246 } 2247 /* Check for MTU discovery advice as described in RFC 1191 */ 2248 mtu = ntohs(icmph->icmph_du_mtu); 2249 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2250 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2251 ire = ire->ire_next) { 2252 /* 2253 * Look for the connection to which this ICMP message is 2254 * directed. If it has the IP_NEXTHOP option set, then the 2255 * search is limited to IREs with the MATCH_IRE_PRIVATE 2256 * option. Else the search is limited to regular IREs. 2257 */ 2258 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2259 (nexthop_addr != ire->ire_gateway_addr)) || 2260 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2261 (nexthop_addr != INADDR_ANY))) 2262 continue; 2263 2264 mutex_enter(&ire->ire_lock); 2265 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2266 /* Reduce the IRE max frag value as advised. */ 2267 ip1dbg(("Received mtu from router: %d (was %d)\n", 2268 mtu, ire->ire_max_frag)); 2269 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2270 } else { 2271 uint32_t length; 2272 int i; 2273 2274 /* 2275 * Use the table from RFC 1191 to figure out 2276 * the next "plateau" based on the length in 2277 * the original IP packet. 2278 */ 2279 length = ntohs(ipha->ipha_length); 2280 if (ire->ire_max_frag <= length && 2281 ire->ire_max_frag >= length - hdr_length) { 2282 /* 2283 * Handle broken BSD 4.2 systems that 2284 * return the wrong iph_length in ICMP 2285 * errors. 2286 */ 2287 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2288 length, ire->ire_max_frag)); 2289 length -= hdr_length; 2290 } 2291 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2292 if (length > icmp_frag_size_table[i]) 2293 break; 2294 } 2295 if (i == A_CNT(icmp_frag_size_table)) { 2296 /* Smaller than 68! */ 2297 ip1dbg(("Too big for packet size %d\n", 2298 length)); 2299 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2300 ire->ire_frag_flag = 0; 2301 } else { 2302 mtu = icmp_frag_size_table[i]; 2303 ip1dbg(("Calculated mtu %d, packet size %d, " 2304 "before %d", mtu, length, 2305 ire->ire_max_frag)); 2306 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2307 ip1dbg((", after %d\n", ire->ire_max_frag)); 2308 } 2309 /* Record the new max frag size for the ULP. */ 2310 icmph->icmph_du_zero = 0; 2311 icmph->icmph_du_mtu = 2312 htons((uint16_t)ire->ire_max_frag); 2313 } 2314 mutex_exit(&ire->ire_lock); 2315 } 2316 rw_exit(&first_ire->ire_bucket->irb_lock); 2317 ire_refrele(first_ire); 2318 return (B_TRUE); 2319 } 2320 2321 /* 2322 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2323 * calls this function. 2324 */ 2325 static mblk_t * 2326 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2327 { 2328 ipha_t *ipha; 2329 icmph_t *icmph; 2330 ipha_t *in_ipha; 2331 int length; 2332 2333 ASSERT(mp->b_datap->db_type == M_DATA); 2334 2335 /* 2336 * For Self-encapsulated packets, we added an extra IP header 2337 * without the options. Inner IP header is the one from which 2338 * the outer IP header was formed. Thus, we need to remove the 2339 * outer IP header. To do this, we pullup the whole message 2340 * and overlay whatever follows the outer IP header over the 2341 * outer IP header. 2342 */ 2343 2344 if (!pullupmsg(mp, -1)) 2345 return (NULL); 2346 2347 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2348 ipha = (ipha_t *)&icmph[1]; 2349 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2350 2351 /* 2352 * The length that we want to overlay is following the inner 2353 * IP header. Subtracting the IP header + icmp header + outer 2354 * IP header's length should give us the length that we want to 2355 * overlay. 2356 */ 2357 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2358 hdr_length; 2359 /* 2360 * Overlay whatever follows the inner header over the 2361 * outer header. 2362 */ 2363 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2364 2365 /* Set the wptr to account for the outer header */ 2366 mp->b_wptr -= hdr_length; 2367 return (mp); 2368 } 2369 2370 /* 2371 * Try to pass the ICMP message upstream in case the ULP cares. 2372 * 2373 * If the packet that caused the ICMP error is secure, we send 2374 * it to AH/ESP to make sure that the attached packet has a 2375 * valid association. ipha in the code below points to the 2376 * IP header of the packet that caused the error. 2377 * 2378 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2379 * in the context of IPSEC. Normally we tell the upper layer 2380 * whenever we send the ire (including ip_bind), the IPSEC header 2381 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2382 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2383 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2384 * same thing. As TCP has the IPSEC options size that needs to be 2385 * adjusted, we just pass the MTU unchanged. 2386 * 2387 * IFN could have been generated locally or by some router. 2388 * 2389 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2390 * This happens because IP adjusted its value of MTU on an 2391 * earlier IFN message and could not tell the upper layer, 2392 * the new adjusted value of MTU e.g. Packet was encrypted 2393 * or there was not enough information to fanout to upper 2394 * layers. Thus on the next outbound datagram, ip_wput_ire 2395 * generates the IFN, where IPSEC processing has *not* been 2396 * done. 2397 * 2398 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2399 * could have generated this. This happens because ire_max_frag 2400 * value in IP was set to a new value, while the IPSEC processing 2401 * was being done and after we made the fragmentation check in 2402 * ip_wput_ire. Thus on return from IPSEC processing, 2403 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2404 * and generates the IFN. As IPSEC processing is over, we fanout 2405 * to AH/ESP to remove the header. 2406 * 2407 * In both these cases, ipsec_in_loopback will be set indicating 2408 * that IFN was generated locally. 2409 * 2410 * ROUTER : IFN could be secure or non-secure. 2411 * 2412 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2413 * packet in error has AH/ESP headers to validate the AH/ESP 2414 * headers. AH/ESP will verify whether there is a valid SA or 2415 * not and send it back. We will fanout again if we have more 2416 * data in the packet. 2417 * 2418 * If the packet in error does not have AH/ESP, we handle it 2419 * like any other case. 2420 * 2421 * * NON_SECURE : If the packet in error has AH/ESP headers, 2422 * we attach a dummy ipsec_in and send it up to AH/ESP 2423 * for validation. AH/ESP will verify whether there is a 2424 * valid SA or not and send it back. We will fanout again if 2425 * we have more data in the packet. 2426 * 2427 * If the packet in error does not have AH/ESP, we handle it 2428 * like any other case. 2429 */ 2430 static void 2431 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2432 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2433 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2434 zoneid_t zoneid) 2435 { 2436 uint16_t *up; /* Pointer to ports in ULP header */ 2437 uint32_t ports; /* reversed ports for fanout */ 2438 ipha_t ripha; /* With reversed addresses */ 2439 mblk_t *first_mp; 2440 ipsec_in_t *ii; 2441 tcph_t *tcph; 2442 conn_t *connp; 2443 ip_stack_t *ipst; 2444 2445 ASSERT(ill != NULL); 2446 2447 ASSERT(recv_ill != NULL); 2448 ipst = recv_ill->ill_ipst; 2449 2450 first_mp = mp; 2451 if (mctl_present) { 2452 mp = first_mp->b_cont; 2453 ASSERT(mp != NULL); 2454 2455 ii = (ipsec_in_t *)first_mp->b_rptr; 2456 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2457 } else { 2458 ii = NULL; 2459 } 2460 2461 switch (ipha->ipha_protocol) { 2462 case IPPROTO_UDP: 2463 /* 2464 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2465 * transport header. 2466 */ 2467 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2468 mp->b_wptr) { 2469 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2470 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2471 goto discard_pkt; 2472 } 2473 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2474 ipha = (ipha_t *)&icmph[1]; 2475 } 2476 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2477 2478 /* 2479 * Attempt to find a client stream based on port. 2480 * Note that we do a reverse lookup since the header is 2481 * in the form we sent it out. 2482 * The ripha header is only used for the IP_UDP_MATCH and we 2483 * only set the src and dst addresses and protocol. 2484 */ 2485 ripha.ipha_src = ipha->ipha_dst; 2486 ripha.ipha_dst = ipha->ipha_src; 2487 ripha.ipha_protocol = ipha->ipha_protocol; 2488 ((uint16_t *)&ports)[0] = up[1]; 2489 ((uint16_t *)&ports)[1] = up[0]; 2490 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2491 ntohl(ipha->ipha_src), ntohs(up[0]), 2492 ntohl(ipha->ipha_dst), ntohs(up[1]), 2493 icmph->icmph_type, icmph->icmph_code)); 2494 2495 /* Have to change db_type after any pullupmsg */ 2496 DB_TYPE(mp) = M_CTL; 2497 2498 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2499 mctl_present, ip_policy, recv_ill, zoneid); 2500 return; 2501 2502 case IPPROTO_TCP: 2503 /* 2504 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2505 * transport header. 2506 */ 2507 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2508 mp->b_wptr) { 2509 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2510 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2511 goto discard_pkt; 2512 } 2513 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2514 ipha = (ipha_t *)&icmph[1]; 2515 } 2516 /* 2517 * Find a TCP client stream for this packet. 2518 * Note that we do a reverse lookup since the header is 2519 * in the form we sent it out. 2520 */ 2521 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2522 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2523 ipst); 2524 if (connp == NULL) 2525 goto discard_pkt; 2526 2527 /* Have to change db_type after any pullupmsg */ 2528 DB_TYPE(mp) = M_CTL; 2529 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2530 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2531 return; 2532 2533 case IPPROTO_SCTP: 2534 /* 2535 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2536 * transport header. 2537 */ 2538 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2539 mp->b_wptr) { 2540 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2541 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2542 goto discard_pkt; 2543 } 2544 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2545 ipha = (ipha_t *)&icmph[1]; 2546 } 2547 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2548 /* 2549 * Find a SCTP client stream for this packet. 2550 * Note that we do a reverse lookup since the header is 2551 * in the form we sent it out. 2552 * The ripha header is only used for the matching and we 2553 * only set the src and dst addresses, protocol, and version. 2554 */ 2555 ripha.ipha_src = ipha->ipha_dst; 2556 ripha.ipha_dst = ipha->ipha_src; 2557 ripha.ipha_protocol = ipha->ipha_protocol; 2558 ripha.ipha_version_and_hdr_length = 2559 ipha->ipha_version_and_hdr_length; 2560 ((uint16_t *)&ports)[0] = up[1]; 2561 ((uint16_t *)&ports)[1] = up[0]; 2562 2563 /* Have to change db_type after any pullupmsg */ 2564 DB_TYPE(mp) = M_CTL; 2565 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2566 mctl_present, ip_policy, zoneid); 2567 return; 2568 2569 case IPPROTO_ESP: 2570 case IPPROTO_AH: { 2571 int ipsec_rc; 2572 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2573 2574 /* 2575 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2576 * We will re-use the IPSEC_IN if it is already present as 2577 * AH/ESP will not affect any fields in the IPSEC_IN for 2578 * ICMP errors. If there is no IPSEC_IN, allocate a new 2579 * one and attach it in the front. 2580 */ 2581 if (ii != NULL) { 2582 /* 2583 * ip_fanout_proto_again converts the ICMP errors 2584 * that come back from AH/ESP to M_DATA so that 2585 * if it is non-AH/ESP and we do a pullupmsg in 2586 * this function, it would work. Convert it back 2587 * to M_CTL before we send up as this is a ICMP 2588 * error. This could have been generated locally or 2589 * by some router. Validate the inner IPSEC 2590 * headers. 2591 * 2592 * NOTE : ill_index is used by ip_fanout_proto_again 2593 * to locate the ill. 2594 */ 2595 ASSERT(ill != NULL); 2596 ii->ipsec_in_ill_index = 2597 ill->ill_phyint->phyint_ifindex; 2598 ii->ipsec_in_rill_index = 2599 recv_ill->ill_phyint->phyint_ifindex; 2600 DB_TYPE(first_mp->b_cont) = M_CTL; 2601 } else { 2602 /* 2603 * IPSEC_IN is not present. We attach a ipsec_in 2604 * message and send up to IPSEC for validating 2605 * and removing the IPSEC headers. Clear 2606 * ipsec_in_secure so that when we return 2607 * from IPSEC, we don't mistakenly think that this 2608 * is a secure packet came from the network. 2609 * 2610 * NOTE : ill_index is used by ip_fanout_proto_again 2611 * to locate the ill. 2612 */ 2613 ASSERT(first_mp == mp); 2614 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2615 if (first_mp == NULL) { 2616 freemsg(mp); 2617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2618 return; 2619 } 2620 ii = (ipsec_in_t *)first_mp->b_rptr; 2621 2622 /* This is not a secure packet */ 2623 ii->ipsec_in_secure = B_FALSE; 2624 first_mp->b_cont = mp; 2625 DB_TYPE(mp) = M_CTL; 2626 ASSERT(ill != NULL); 2627 ii->ipsec_in_ill_index = 2628 ill->ill_phyint->phyint_ifindex; 2629 ii->ipsec_in_rill_index = 2630 recv_ill->ill_phyint->phyint_ifindex; 2631 } 2632 ip2dbg(("icmp_inbound_error: ipsec\n")); 2633 2634 if (!ipsec_loaded(ipss)) { 2635 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2636 return; 2637 } 2638 2639 if (ipha->ipha_protocol == IPPROTO_ESP) 2640 ipsec_rc = ipsecesp_icmp_error(first_mp); 2641 else 2642 ipsec_rc = ipsecah_icmp_error(first_mp); 2643 if (ipsec_rc == IPSEC_STATUS_FAILED) 2644 return; 2645 2646 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2647 return; 2648 } 2649 default: 2650 /* 2651 * The ripha header is only used for the lookup and we 2652 * only set the src and dst addresses and protocol. 2653 */ 2654 ripha.ipha_src = ipha->ipha_dst; 2655 ripha.ipha_dst = ipha->ipha_src; 2656 ripha.ipha_protocol = ipha->ipha_protocol; 2657 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2658 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2659 ntohl(ipha->ipha_dst), 2660 icmph->icmph_type, icmph->icmph_code)); 2661 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2662 ipha_t *in_ipha; 2663 2664 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2665 mp->b_wptr) { 2666 if (!pullupmsg(mp, (uchar_t *)ipha + 2667 hdr_length + sizeof (ipha_t) - 2668 mp->b_rptr)) { 2669 goto discard_pkt; 2670 } 2671 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2672 ipha = (ipha_t *)&icmph[1]; 2673 } 2674 /* 2675 * Caller has verified that length has to be 2676 * at least the size of IP header. 2677 */ 2678 ASSERT(hdr_length >= sizeof (ipha_t)); 2679 /* 2680 * Check the sanity of the inner IP header like 2681 * we did for the outer header. 2682 */ 2683 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2684 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2685 goto discard_pkt; 2686 } 2687 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2688 goto discard_pkt; 2689 } 2690 /* Check for Self-encapsulated tunnels */ 2691 if (in_ipha->ipha_src == ipha->ipha_src && 2692 in_ipha->ipha_dst == ipha->ipha_dst) { 2693 2694 mp = icmp_inbound_self_encap_error(mp, 2695 iph_hdr_length, hdr_length); 2696 if (mp == NULL) 2697 goto discard_pkt; 2698 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2699 ipha = (ipha_t *)&icmph[1]; 2700 hdr_length = IPH_HDR_LENGTH(ipha); 2701 /* 2702 * The packet in error is self-encapsualted. 2703 * And we are finding it further encapsulated 2704 * which we could not have possibly generated. 2705 */ 2706 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2707 goto discard_pkt; 2708 } 2709 icmp_inbound_error_fanout(q, ill, first_mp, 2710 icmph, ipha, iph_hdr_length, hdr_length, 2711 mctl_present, ip_policy, recv_ill, zoneid); 2712 return; 2713 } 2714 } 2715 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2716 ipha->ipha_protocol == IPPROTO_IPV6) && 2717 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2718 ii != NULL && 2719 ii->ipsec_in_loopback && 2720 ii->ipsec_in_secure) { 2721 /* 2722 * For IP tunnels that get a looped-back 2723 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2724 * reported new MTU to take into account the IPsec 2725 * headers protecting this configured tunnel. 2726 * 2727 * This allows the tunnel module (tun.c) to blindly 2728 * accept the MTU reported in an ICMP "too big" 2729 * message. 2730 * 2731 * Non-looped back ICMP messages will just be 2732 * handled by the security protocols (if needed), 2733 * and the first subsequent packet will hit this 2734 * path. 2735 */ 2736 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2737 ipsec_in_extra_length(first_mp)); 2738 } 2739 /* Have to change db_type after any pullupmsg */ 2740 DB_TYPE(mp) = M_CTL; 2741 2742 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2743 ip_policy, recv_ill, zoneid); 2744 return; 2745 } 2746 /* NOTREACHED */ 2747 discard_pkt: 2748 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2749 drop_pkt:; 2750 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2751 freemsg(first_mp); 2752 } 2753 2754 /* 2755 * Common IP options parser. 2756 * 2757 * Setup routine: fill in *optp with options-parsing state, then 2758 * tail-call ipoptp_next to return the first option. 2759 */ 2760 uint8_t 2761 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2762 { 2763 uint32_t totallen; /* total length of all options */ 2764 2765 totallen = ipha->ipha_version_and_hdr_length - 2766 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2767 totallen <<= 2; 2768 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2769 optp->ipoptp_end = optp->ipoptp_next + totallen; 2770 optp->ipoptp_flags = 0; 2771 return (ipoptp_next(optp)); 2772 } 2773 2774 /* 2775 * Common IP options parser: extract next option. 2776 */ 2777 uint8_t 2778 ipoptp_next(ipoptp_t *optp) 2779 { 2780 uint8_t *end = optp->ipoptp_end; 2781 uint8_t *cur = optp->ipoptp_next; 2782 uint8_t opt, len, pointer; 2783 2784 /* 2785 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2786 * has been corrupted. 2787 */ 2788 ASSERT(cur <= end); 2789 2790 if (cur == end) 2791 return (IPOPT_EOL); 2792 2793 opt = cur[IPOPT_OPTVAL]; 2794 2795 /* 2796 * Skip any NOP options. 2797 */ 2798 while (opt == IPOPT_NOP) { 2799 cur++; 2800 if (cur == end) 2801 return (IPOPT_EOL); 2802 opt = cur[IPOPT_OPTVAL]; 2803 } 2804 2805 if (opt == IPOPT_EOL) 2806 return (IPOPT_EOL); 2807 2808 /* 2809 * Option requiring a length. 2810 */ 2811 if ((cur + 1) >= end) { 2812 optp->ipoptp_flags |= IPOPTP_ERROR; 2813 return (IPOPT_EOL); 2814 } 2815 len = cur[IPOPT_OLEN]; 2816 if (len < 2) { 2817 optp->ipoptp_flags |= IPOPTP_ERROR; 2818 return (IPOPT_EOL); 2819 } 2820 optp->ipoptp_cur = cur; 2821 optp->ipoptp_len = len; 2822 optp->ipoptp_next = cur + len; 2823 if (cur + len > end) { 2824 optp->ipoptp_flags |= IPOPTP_ERROR; 2825 return (IPOPT_EOL); 2826 } 2827 2828 /* 2829 * For the options which require a pointer field, make sure 2830 * its there, and make sure it points to either something 2831 * inside this option, or the end of the option. 2832 */ 2833 switch (opt) { 2834 case IPOPT_RR: 2835 case IPOPT_TS: 2836 case IPOPT_LSRR: 2837 case IPOPT_SSRR: 2838 if (len <= IPOPT_OFFSET) { 2839 optp->ipoptp_flags |= IPOPTP_ERROR; 2840 return (opt); 2841 } 2842 pointer = cur[IPOPT_OFFSET]; 2843 if (pointer - 1 > len) { 2844 optp->ipoptp_flags |= IPOPTP_ERROR; 2845 return (opt); 2846 } 2847 break; 2848 } 2849 2850 /* 2851 * Sanity check the pointer field based on the type of the 2852 * option. 2853 */ 2854 switch (opt) { 2855 case IPOPT_RR: 2856 case IPOPT_SSRR: 2857 case IPOPT_LSRR: 2858 if (pointer < IPOPT_MINOFF_SR) 2859 optp->ipoptp_flags |= IPOPTP_ERROR; 2860 break; 2861 case IPOPT_TS: 2862 if (pointer < IPOPT_MINOFF_IT) 2863 optp->ipoptp_flags |= IPOPTP_ERROR; 2864 /* 2865 * Note that the Internet Timestamp option also 2866 * contains two four bit fields (the Overflow field, 2867 * and the Flag field), which follow the pointer 2868 * field. We don't need to check that these fields 2869 * fall within the length of the option because this 2870 * was implicitely done above. We've checked that the 2871 * pointer value is at least IPOPT_MINOFF_IT, and that 2872 * it falls within the option. Since IPOPT_MINOFF_IT > 2873 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2874 */ 2875 ASSERT(len > IPOPT_POS_OV_FLG); 2876 break; 2877 } 2878 2879 return (opt); 2880 } 2881 2882 /* 2883 * Use the outgoing IP header to create an IP_OPTIONS option the way 2884 * it was passed down from the application. 2885 */ 2886 int 2887 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2888 { 2889 ipoptp_t opts; 2890 const uchar_t *opt; 2891 uint8_t optval; 2892 uint8_t optlen; 2893 uint32_t len = 0; 2894 uchar_t *buf1 = buf; 2895 2896 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2897 len += IP_ADDR_LEN; 2898 bzero(buf1, IP_ADDR_LEN); 2899 2900 /* 2901 * OK to cast away const here, as we don't store through the returned 2902 * opts.ipoptp_cur pointer. 2903 */ 2904 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2905 optval != IPOPT_EOL; 2906 optval = ipoptp_next(&opts)) { 2907 int off; 2908 2909 opt = opts.ipoptp_cur; 2910 optlen = opts.ipoptp_len; 2911 switch (optval) { 2912 case IPOPT_SSRR: 2913 case IPOPT_LSRR: 2914 2915 /* 2916 * Insert ipha_dst as the first entry in the source 2917 * route and move down the entries on step. 2918 * The last entry gets placed at buf1. 2919 */ 2920 buf[IPOPT_OPTVAL] = optval; 2921 buf[IPOPT_OLEN] = optlen; 2922 buf[IPOPT_OFFSET] = optlen; 2923 2924 off = optlen - IP_ADDR_LEN; 2925 if (off < 0) { 2926 /* No entries in source route */ 2927 break; 2928 } 2929 /* Last entry in source route */ 2930 bcopy(opt + off, buf1, IP_ADDR_LEN); 2931 off -= IP_ADDR_LEN; 2932 2933 while (off > 0) { 2934 bcopy(opt + off, 2935 buf + off + IP_ADDR_LEN, 2936 IP_ADDR_LEN); 2937 off -= IP_ADDR_LEN; 2938 } 2939 /* ipha_dst into first slot */ 2940 bcopy(&ipha->ipha_dst, 2941 buf + off + IP_ADDR_LEN, 2942 IP_ADDR_LEN); 2943 buf += optlen; 2944 len += optlen; 2945 break; 2946 2947 case IPOPT_COMSEC: 2948 case IPOPT_SECURITY: 2949 /* if passing up a label is not ok, then remove */ 2950 if (is_system_labeled()) 2951 break; 2952 /* FALLTHROUGH */ 2953 default: 2954 bcopy(opt, buf, optlen); 2955 buf += optlen; 2956 len += optlen; 2957 break; 2958 } 2959 } 2960 done: 2961 /* Pad the resulting options */ 2962 while (len & 0x3) { 2963 *buf++ = IPOPT_EOL; 2964 len++; 2965 } 2966 return (len); 2967 } 2968 2969 /* 2970 * Update any record route or timestamp options to include this host. 2971 * Reverse any source route option. 2972 * This routine assumes that the options are well formed i.e. that they 2973 * have already been checked. 2974 */ 2975 static void 2976 icmp_options_update(ipha_t *ipha) 2977 { 2978 ipoptp_t opts; 2979 uchar_t *opt; 2980 uint8_t optval; 2981 ipaddr_t src; /* Our local address */ 2982 ipaddr_t dst; 2983 2984 ip2dbg(("icmp_options_update\n")); 2985 src = ipha->ipha_src; 2986 dst = ipha->ipha_dst; 2987 2988 for (optval = ipoptp_first(&opts, ipha); 2989 optval != IPOPT_EOL; 2990 optval = ipoptp_next(&opts)) { 2991 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2992 opt = opts.ipoptp_cur; 2993 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2994 optval, opts.ipoptp_len)); 2995 switch (optval) { 2996 int off1, off2; 2997 case IPOPT_SSRR: 2998 case IPOPT_LSRR: 2999 /* 3000 * Reverse the source route. The first entry 3001 * should be the next to last one in the current 3002 * source route (the last entry is our address). 3003 * The last entry should be the final destination. 3004 */ 3005 off1 = IPOPT_MINOFF_SR - 1; 3006 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3007 if (off2 < 0) { 3008 /* No entries in source route */ 3009 ip1dbg(( 3010 "icmp_options_update: bad src route\n")); 3011 break; 3012 } 3013 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3014 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3015 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3016 off2 -= IP_ADDR_LEN; 3017 3018 while (off1 < off2) { 3019 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3020 bcopy((char *)opt + off2, (char *)opt + off1, 3021 IP_ADDR_LEN); 3022 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3023 off1 += IP_ADDR_LEN; 3024 off2 -= IP_ADDR_LEN; 3025 } 3026 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3027 break; 3028 } 3029 } 3030 } 3031 3032 /* 3033 * Process received ICMP Redirect messages. 3034 */ 3035 static void 3036 icmp_redirect(ill_t *ill, mblk_t *mp) 3037 { 3038 ipha_t *ipha; 3039 int iph_hdr_length; 3040 icmph_t *icmph; 3041 ipha_t *ipha_err; 3042 ire_t *ire; 3043 ire_t *prev_ire; 3044 ire_t *save_ire; 3045 ipaddr_t src, dst, gateway; 3046 iulp_t ulp_info = { 0 }; 3047 int error; 3048 ip_stack_t *ipst; 3049 3050 ASSERT(ill != NULL); 3051 ipst = ill->ill_ipst; 3052 3053 ipha = (ipha_t *)mp->b_rptr; 3054 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3055 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3056 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3057 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3058 freemsg(mp); 3059 return; 3060 } 3061 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3062 ipha_err = (ipha_t *)&icmph[1]; 3063 src = ipha->ipha_src; 3064 dst = ipha_err->ipha_dst; 3065 gateway = icmph->icmph_rd_gateway; 3066 /* Make sure the new gateway is reachable somehow. */ 3067 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3068 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3069 /* 3070 * Make sure we had a route for the dest in question and that 3071 * that route was pointing to the old gateway (the source of the 3072 * redirect packet.) 3073 */ 3074 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3075 NULL, MATCH_IRE_GW, ipst); 3076 /* 3077 * Check that 3078 * the redirect was not from ourselves 3079 * the new gateway and the old gateway are directly reachable 3080 */ 3081 if (!prev_ire || 3082 !ire || 3083 ire->ire_type == IRE_LOCAL) { 3084 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3085 freemsg(mp); 3086 if (ire != NULL) 3087 ire_refrele(ire); 3088 if (prev_ire != NULL) 3089 ire_refrele(prev_ire); 3090 return; 3091 } 3092 3093 /* 3094 * Should we use the old ULP info to create the new gateway? From 3095 * a user's perspective, we should inherit the info so that it 3096 * is a "smooth" transition. If we do not do that, then new 3097 * connections going thru the new gateway will have no route metrics, 3098 * which is counter-intuitive to user. From a network point of 3099 * view, this may or may not make sense even though the new gateway 3100 * is still directly connected to us so the route metrics should not 3101 * change much. 3102 * 3103 * But if the old ire_uinfo is not initialized, we do another 3104 * recursive lookup on the dest using the new gateway. There may 3105 * be a route to that. If so, use it to initialize the redirect 3106 * route. 3107 */ 3108 if (prev_ire->ire_uinfo.iulp_set) { 3109 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3110 } else { 3111 ire_t *tmp_ire; 3112 ire_t *sire; 3113 3114 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3115 ALL_ZONES, 0, NULL, 3116 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3117 ipst); 3118 if (sire != NULL) { 3119 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3120 /* 3121 * If sire != NULL, ire_ftable_lookup() should not 3122 * return a NULL value. 3123 */ 3124 ASSERT(tmp_ire != NULL); 3125 ire_refrele(tmp_ire); 3126 ire_refrele(sire); 3127 } else if (tmp_ire != NULL) { 3128 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3129 sizeof (iulp_t)); 3130 ire_refrele(tmp_ire); 3131 } 3132 } 3133 if (prev_ire->ire_type == IRE_CACHE) 3134 ire_delete(prev_ire); 3135 ire_refrele(prev_ire); 3136 /* 3137 * TODO: more precise handling for cases 0, 2, 3, the latter two 3138 * require TOS routing 3139 */ 3140 switch (icmph->icmph_code) { 3141 case 0: 3142 case 1: 3143 /* TODO: TOS specificity for cases 2 and 3 */ 3144 case 2: 3145 case 3: 3146 break; 3147 default: 3148 freemsg(mp); 3149 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3150 ire_refrele(ire); 3151 return; 3152 } 3153 /* 3154 * Create a Route Association. This will allow us to remember that 3155 * someone we believe told us to use the particular gateway. 3156 */ 3157 save_ire = ire; 3158 ire = ire_create( 3159 (uchar_t *)&dst, /* dest addr */ 3160 (uchar_t *)&ip_g_all_ones, /* mask */ 3161 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3162 (uchar_t *)&gateway, /* gateway addr */ 3163 NULL, /* no in_srcaddr */ 3164 &save_ire->ire_max_frag, /* max frag */ 3165 NULL, /* Fast Path header */ 3166 NULL, /* no rfq */ 3167 NULL, /* no stq */ 3168 IRE_HOST, 3169 NULL, 3170 NULL, 3171 NULL, 3172 0, 3173 0, 3174 0, 3175 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3176 &ulp_info, 3177 NULL, 3178 NULL, 3179 ipst); 3180 3181 if (ire == NULL) { 3182 freemsg(mp); 3183 ire_refrele(save_ire); 3184 return; 3185 } 3186 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3187 ire_refrele(save_ire); 3188 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3189 3190 if (error == 0) { 3191 ire_refrele(ire); /* Held in ire_add_v4 */ 3192 /* tell routing sockets that we received a redirect */ 3193 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3194 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3195 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3196 } 3197 3198 /* 3199 * Delete any existing IRE_HOST type redirect ires for this destination. 3200 * This together with the added IRE has the effect of 3201 * modifying an existing redirect. 3202 */ 3203 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3204 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3205 if (prev_ire != NULL) { 3206 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3207 ire_delete(prev_ire); 3208 ire_refrele(prev_ire); 3209 } 3210 3211 freemsg(mp); 3212 } 3213 3214 /* 3215 * Generate an ICMP parameter problem message. 3216 */ 3217 static void 3218 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3219 ip_stack_t *ipst) 3220 { 3221 icmph_t icmph; 3222 boolean_t mctl_present; 3223 mblk_t *first_mp; 3224 3225 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3226 3227 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3228 if (mctl_present) 3229 freeb(first_mp); 3230 return; 3231 } 3232 3233 bzero(&icmph, sizeof (icmph_t)); 3234 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3235 icmph.icmph_pp_ptr = ptr; 3236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3237 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3238 ipst); 3239 } 3240 3241 /* 3242 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3243 * the ICMP header pointed to by "stuff". (May be called as writer.) 3244 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3245 * an icmp error packet can be sent. 3246 * Assigns an appropriate source address to the packet. If ipha_dst is 3247 * one of our addresses use it for source. Otherwise pick a source based 3248 * on a route lookup back to ipha_src. 3249 * Note that ipha_src must be set here since the 3250 * packet is likely to arrive on an ill queue in ip_wput() which will 3251 * not set a source address. 3252 */ 3253 static void 3254 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3255 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3256 { 3257 ipaddr_t dst; 3258 icmph_t *icmph; 3259 ipha_t *ipha; 3260 uint_t len_needed; 3261 size_t msg_len; 3262 mblk_t *mp1; 3263 ipaddr_t src; 3264 ire_t *ire; 3265 mblk_t *ipsec_mp; 3266 ipsec_out_t *io = NULL; 3267 boolean_t xmit_if_on = B_FALSE; 3268 3269 if (mctl_present) { 3270 /* 3271 * If it is : 3272 * 3273 * 1) a IPSEC_OUT, then this is caused by outbound 3274 * datagram originating on this host. IPSEC processing 3275 * may or may not have been done. Refer to comments above 3276 * icmp_inbound_error_fanout for details. 3277 * 3278 * 2) a IPSEC_IN if we are generating a icmp_message 3279 * for an incoming datagram destined for us i.e called 3280 * from ip_fanout_send_icmp. 3281 */ 3282 ipsec_info_t *in; 3283 ipsec_mp = mp; 3284 mp = ipsec_mp->b_cont; 3285 3286 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3287 ipha = (ipha_t *)mp->b_rptr; 3288 3289 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3290 in->ipsec_info_type == IPSEC_IN); 3291 3292 if (in->ipsec_info_type == IPSEC_IN) { 3293 /* 3294 * Convert the IPSEC_IN to IPSEC_OUT. 3295 */ 3296 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3297 BUMP_MIB(&ipst->ips_ip_mib, 3298 ipIfStatsOutDiscards); 3299 return; 3300 } 3301 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3302 } else { 3303 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3304 io = (ipsec_out_t *)in; 3305 if (io->ipsec_out_xmit_if) 3306 xmit_if_on = B_TRUE; 3307 /* 3308 * Clear out ipsec_out_proc_begin, so we do a fresh 3309 * ire lookup. 3310 */ 3311 io->ipsec_out_proc_begin = B_FALSE; 3312 } 3313 ASSERT(zoneid == io->ipsec_out_zoneid); 3314 ASSERT(zoneid != ALL_ZONES); 3315 } else { 3316 /* 3317 * This is in clear. The icmp message we are building 3318 * here should go out in clear. 3319 * 3320 * Pardon the convolution of it all, but it's easier to 3321 * allocate a "use cleartext" IPSEC_IN message and convert 3322 * it than it is to allocate a new one. 3323 */ 3324 ipsec_in_t *ii; 3325 ASSERT(DB_TYPE(mp) == M_DATA); 3326 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3327 if (ipsec_mp == NULL) { 3328 freemsg(mp); 3329 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3330 return; 3331 } 3332 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3333 3334 /* This is not a secure packet */ 3335 ii->ipsec_in_secure = B_FALSE; 3336 /* 3337 * For trusted extensions using a shared IP address we can 3338 * send using any zoneid. 3339 */ 3340 if (zoneid == ALL_ZONES) 3341 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3342 else 3343 ii->ipsec_in_zoneid = zoneid; 3344 ipsec_mp->b_cont = mp; 3345 ipha = (ipha_t *)mp->b_rptr; 3346 /* 3347 * Convert the IPSEC_IN to IPSEC_OUT. 3348 */ 3349 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3350 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3351 return; 3352 } 3353 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3354 } 3355 3356 /* Remember our eventual destination */ 3357 dst = ipha->ipha_src; 3358 3359 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3360 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3361 if (ire != NULL && 3362 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3363 src = ipha->ipha_dst; 3364 } else if (!xmit_if_on) { 3365 if (ire != NULL) 3366 ire_refrele(ire); 3367 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3368 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3369 ipst); 3370 if (ire == NULL) { 3371 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3372 freemsg(ipsec_mp); 3373 return; 3374 } 3375 src = ire->ire_src_addr; 3376 } else { 3377 ipif_t *ipif = NULL; 3378 ill_t *ill; 3379 /* 3380 * This must be an ICMP error coming from 3381 * ip_mrtun_forward(). The src addr should 3382 * be equal to the IP-addr of the outgoing 3383 * interface. 3384 */ 3385 if (io == NULL) { 3386 /* This is not a IPSEC_OUT type control msg */ 3387 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3388 freemsg(ipsec_mp); 3389 return; 3390 } 3391 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3392 NULL, NULL, NULL, NULL, ipst); 3393 if (ill != NULL) { 3394 ipif = ipif_get_next_ipif(NULL, ill); 3395 ill_refrele(ill); 3396 } 3397 if (ipif == NULL) { 3398 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3399 freemsg(ipsec_mp); 3400 return; 3401 } 3402 src = ipif->ipif_src_addr; 3403 ipif_refrele(ipif); 3404 } 3405 3406 if (ire != NULL) 3407 ire_refrele(ire); 3408 3409 /* 3410 * Check if we can send back more then 8 bytes in addition 3411 * to the IP header. We will include as much as 64 bytes. 3412 */ 3413 len_needed = IPH_HDR_LENGTH(ipha); 3414 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3415 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3416 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3417 } 3418 len_needed += ipst->ips_ip_icmp_return; 3419 msg_len = msgdsize(mp); 3420 if (msg_len > len_needed) { 3421 (void) adjmsg(mp, len_needed - msg_len); 3422 msg_len = len_needed; 3423 } 3424 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3425 if (mp1 == NULL) { 3426 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3427 freemsg(ipsec_mp); 3428 return; 3429 } 3430 /* 3431 * On an unlabeled system, dblks don't necessarily have creds. 3432 */ 3433 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3434 if (DB_CRED(mp) != NULL) 3435 mblk_setcred(mp1, DB_CRED(mp)); 3436 mp1->b_cont = mp; 3437 mp = mp1; 3438 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3439 ipsec_mp->b_rptr == (uint8_t *)io && 3440 io->ipsec_out_type == IPSEC_OUT); 3441 ipsec_mp->b_cont = mp; 3442 3443 /* 3444 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3445 * node generates be accepted in peace by all on-host destinations. 3446 * If we do NOT assume that all on-host destinations trust 3447 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3448 * (Look for ipsec_out_icmp_loopback). 3449 */ 3450 io->ipsec_out_icmp_loopback = B_TRUE; 3451 3452 ipha = (ipha_t *)mp->b_rptr; 3453 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3454 *ipha = icmp_ipha; 3455 ipha->ipha_src = src; 3456 ipha->ipha_dst = dst; 3457 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3458 msg_len += sizeof (icmp_ipha) + len; 3459 if (msg_len > IP_MAXPACKET) { 3460 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3461 msg_len = IP_MAXPACKET; 3462 } 3463 ipha->ipha_length = htons((uint16_t)msg_len); 3464 icmph = (icmph_t *)&ipha[1]; 3465 bcopy(stuff, icmph, len); 3466 icmph->icmph_checksum = 0; 3467 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3468 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3469 put(q, ipsec_mp); 3470 } 3471 3472 /* 3473 * Determine if an ICMP error packet can be sent given the rate limit. 3474 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3475 * in milliseconds) and a burst size. Burst size number of packets can 3476 * be sent arbitrarely closely spaced. 3477 * The state is tracked using two variables to implement an approximate 3478 * token bucket filter: 3479 * icmp_pkt_err_last - lbolt value when the last burst started 3480 * icmp_pkt_err_sent - number of packets sent in current burst 3481 */ 3482 boolean_t 3483 icmp_err_rate_limit(ip_stack_t *ipst) 3484 { 3485 clock_t now = TICK_TO_MSEC(lbolt); 3486 uint_t refilled; /* Number of packets refilled in tbf since last */ 3487 /* Guard against changes by loading into local variable */ 3488 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3489 3490 if (err_interval == 0) 3491 return (B_FALSE); 3492 3493 if (ipst->ips_icmp_pkt_err_last > now) { 3494 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3495 ipst->ips_icmp_pkt_err_last = 0; 3496 ipst->ips_icmp_pkt_err_sent = 0; 3497 } 3498 /* 3499 * If we are in a burst update the token bucket filter. 3500 * Update the "last" time to be close to "now" but make sure 3501 * we don't loose precision. 3502 */ 3503 if (ipst->ips_icmp_pkt_err_sent != 0) { 3504 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3505 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3506 ipst->ips_icmp_pkt_err_sent = 0; 3507 } else { 3508 ipst->ips_icmp_pkt_err_sent -= refilled; 3509 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3510 } 3511 } 3512 if (ipst->ips_icmp_pkt_err_sent == 0) { 3513 /* Start of new burst */ 3514 ipst->ips_icmp_pkt_err_last = now; 3515 } 3516 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3517 ipst->ips_icmp_pkt_err_sent++; 3518 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3519 ipst->ips_icmp_pkt_err_sent)); 3520 return (B_FALSE); 3521 } 3522 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3523 return (B_TRUE); 3524 } 3525 3526 /* 3527 * Check if it is ok to send an IPv4 ICMP error packet in 3528 * response to the IPv4 packet in mp. 3529 * Free the message and return null if no 3530 * ICMP error packet should be sent. 3531 */ 3532 static mblk_t * 3533 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3534 { 3535 icmph_t *icmph; 3536 ipha_t *ipha; 3537 uint_t len_needed; 3538 ire_t *src_ire; 3539 ire_t *dst_ire; 3540 3541 if (!mp) 3542 return (NULL); 3543 ipha = (ipha_t *)mp->b_rptr; 3544 if (ip_csum_hdr(ipha)) { 3545 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3546 freemsg(mp); 3547 return (NULL); 3548 } 3549 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3550 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3551 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3552 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3553 if (src_ire != NULL || dst_ire != NULL || 3554 CLASSD(ipha->ipha_dst) || 3555 CLASSD(ipha->ipha_src) || 3556 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3557 /* Note: only errors to the fragment with offset 0 */ 3558 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3559 freemsg(mp); 3560 if (src_ire != NULL) 3561 ire_refrele(src_ire); 3562 if (dst_ire != NULL) 3563 ire_refrele(dst_ire); 3564 return (NULL); 3565 } 3566 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3567 /* 3568 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3569 * errors in response to any ICMP errors. 3570 */ 3571 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3572 if (mp->b_wptr - mp->b_rptr < len_needed) { 3573 if (!pullupmsg(mp, len_needed)) { 3574 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3575 freemsg(mp); 3576 return (NULL); 3577 } 3578 ipha = (ipha_t *)mp->b_rptr; 3579 } 3580 icmph = (icmph_t *) 3581 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3582 switch (icmph->icmph_type) { 3583 case ICMP_DEST_UNREACHABLE: 3584 case ICMP_SOURCE_QUENCH: 3585 case ICMP_TIME_EXCEEDED: 3586 case ICMP_PARAM_PROBLEM: 3587 case ICMP_REDIRECT: 3588 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3589 freemsg(mp); 3590 return (NULL); 3591 default: 3592 break; 3593 } 3594 } 3595 /* 3596 * If this is a labeled system, then check to see if we're allowed to 3597 * send a response to this particular sender. If not, then just drop. 3598 */ 3599 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3600 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3601 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3602 freemsg(mp); 3603 return (NULL); 3604 } 3605 if (icmp_err_rate_limit(ipst)) { 3606 /* 3607 * Only send ICMP error packets every so often. 3608 * This should be done on a per port/source basis, 3609 * but for now this will suffice. 3610 */ 3611 freemsg(mp); 3612 return (NULL); 3613 } 3614 return (mp); 3615 } 3616 3617 /* 3618 * Generate an ICMP redirect message. 3619 */ 3620 static void 3621 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3622 { 3623 icmph_t icmph; 3624 3625 /* 3626 * We are called from ip_rput where we could 3627 * not have attached an IPSEC_IN. 3628 */ 3629 ASSERT(mp->b_datap->db_type == M_DATA); 3630 3631 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3632 return; 3633 } 3634 3635 bzero(&icmph, sizeof (icmph_t)); 3636 icmph.icmph_type = ICMP_REDIRECT; 3637 icmph.icmph_code = 1; 3638 icmph.icmph_rd_gateway = gateway; 3639 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3640 /* Redirects sent by router, and router is global zone */ 3641 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3642 } 3643 3644 /* 3645 * Generate an ICMP time exceeded message. 3646 */ 3647 void 3648 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3649 ip_stack_t *ipst) 3650 { 3651 icmph_t icmph; 3652 boolean_t mctl_present; 3653 mblk_t *first_mp; 3654 3655 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3656 3657 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3658 if (mctl_present) 3659 freeb(first_mp); 3660 return; 3661 } 3662 3663 bzero(&icmph, sizeof (icmph_t)); 3664 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3665 icmph.icmph_code = code; 3666 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3667 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3668 ipst); 3669 } 3670 3671 /* 3672 * Generate an ICMP unreachable message. 3673 */ 3674 void 3675 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3676 ip_stack_t *ipst) 3677 { 3678 icmph_t icmph; 3679 mblk_t *first_mp; 3680 boolean_t mctl_present; 3681 3682 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3683 3684 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3685 if (mctl_present) 3686 freeb(first_mp); 3687 return; 3688 } 3689 3690 bzero(&icmph, sizeof (icmph_t)); 3691 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3692 icmph.icmph_code = code; 3693 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3694 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3695 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3696 zoneid, ipst); 3697 } 3698 3699 /* 3700 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3701 * duplicate. As long as someone else holds the address, the interface will 3702 * stay down. When that conflict goes away, the interface is brought back up. 3703 * This is done so that accidental shutdowns of addresses aren't made 3704 * permanent. Your server will recover from a failure. 3705 * 3706 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3707 * user space process (dhcpagent). 3708 * 3709 * Recovery completes if ARP reports that the address is now ours (via 3710 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3711 * 3712 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3713 */ 3714 static void 3715 ipif_dup_recovery(void *arg) 3716 { 3717 ipif_t *ipif = arg; 3718 ill_t *ill = ipif->ipif_ill; 3719 mblk_t *arp_add_mp; 3720 mblk_t *arp_del_mp; 3721 area_t *area; 3722 ip_stack_t *ipst = ill->ill_ipst; 3723 3724 ipif->ipif_recovery_id = 0; 3725 3726 /* 3727 * No lock needed for moving or condemned check, as this is just an 3728 * optimization. 3729 */ 3730 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3731 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3732 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3733 /* No reason to try to bring this address back. */ 3734 return; 3735 } 3736 3737 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3738 goto alloc_fail; 3739 3740 if (ipif->ipif_arp_del_mp == NULL) { 3741 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3742 goto alloc_fail; 3743 ipif->ipif_arp_del_mp = arp_del_mp; 3744 } 3745 3746 /* Setting the 'unverified' flag restarts DAD */ 3747 area = (area_t *)arp_add_mp->b_rptr; 3748 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3749 ACE_F_UNVERIFIED; 3750 putnext(ill->ill_rq, arp_add_mp); 3751 return; 3752 3753 alloc_fail: 3754 /* 3755 * On allocation failure, just restart the timer. Note that the ipif 3756 * is down here, so no other thread could be trying to start a recovery 3757 * timer. The ill_lock protects the condemned flag and the recovery 3758 * timer ID. 3759 */ 3760 freemsg(arp_add_mp); 3761 mutex_enter(&ill->ill_lock); 3762 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3763 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3764 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3765 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3766 } 3767 mutex_exit(&ill->ill_lock); 3768 } 3769 3770 /* 3771 * This is for exclusive changes due to ARP. Either tear down an interface due 3772 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3773 */ 3774 /* ARGSUSED */ 3775 static void 3776 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3777 { 3778 ill_t *ill = rq->q_ptr; 3779 arh_t *arh; 3780 ipaddr_t src; 3781 ipif_t *ipif; 3782 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3783 char hbuf[MAC_STR_LEN]; 3784 char sbuf[INET_ADDRSTRLEN]; 3785 const char *failtype; 3786 boolean_t bring_up; 3787 ip_stack_t *ipst = ill->ill_ipst; 3788 3789 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3790 case AR_CN_READY: 3791 failtype = NULL; 3792 bring_up = B_TRUE; 3793 break; 3794 case AR_CN_FAILED: 3795 failtype = "in use"; 3796 bring_up = B_FALSE; 3797 break; 3798 default: 3799 failtype = "claimed"; 3800 bring_up = B_FALSE; 3801 break; 3802 } 3803 3804 arh = (arh_t *)mp->b_cont->b_rptr; 3805 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3806 3807 /* Handle failures due to probes */ 3808 if (src == 0) { 3809 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3810 IP_ADDR_LEN); 3811 } 3812 3813 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3814 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3815 sizeof (hbuf)); 3816 (void) ip_dot_addr(src, sbuf); 3817 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3818 3819 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3820 ipif->ipif_lcl_addr != src) { 3821 continue; 3822 } 3823 3824 /* 3825 * If we failed on a recovery probe, then restart the timer to 3826 * try again later. 3827 */ 3828 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3829 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3830 ill->ill_net_type == IRE_IF_RESOLVER && 3831 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3832 ipst->ips_ip_dup_recovery > 0 && 3833 ipif->ipif_recovery_id == 0) { 3834 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3835 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3836 continue; 3837 } 3838 3839 /* 3840 * If what we're trying to do has already been done, then do 3841 * nothing. 3842 */ 3843 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3844 continue; 3845 3846 if (ipif->ipif_id != 0) { 3847 (void) snprintf(ibuf + ill->ill_name_length - 1, 3848 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3849 ipif->ipif_id); 3850 } 3851 if (failtype == NULL) { 3852 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3853 ibuf); 3854 } else { 3855 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3856 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3857 } 3858 3859 if (bring_up) { 3860 ASSERT(ill->ill_dl_up); 3861 /* 3862 * Free up the ARP delete message so we can allocate 3863 * a fresh one through the normal path. 3864 */ 3865 freemsg(ipif->ipif_arp_del_mp); 3866 ipif->ipif_arp_del_mp = NULL; 3867 if (ipif_resolver_up(ipif, Res_act_initial) != 3868 EINPROGRESS) { 3869 ipif->ipif_addr_ready = 1; 3870 (void) ipif_up_done(ipif); 3871 } 3872 continue; 3873 } 3874 3875 mutex_enter(&ill->ill_lock); 3876 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3877 ipif->ipif_flags |= IPIF_DUPLICATE; 3878 ill->ill_ipif_dup_count++; 3879 mutex_exit(&ill->ill_lock); 3880 /* 3881 * Already exclusive on the ill; no need to handle deferred 3882 * processing here. 3883 */ 3884 (void) ipif_down(ipif, NULL, NULL); 3885 ipif_down_tail(ipif); 3886 mutex_enter(&ill->ill_lock); 3887 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3888 ill->ill_net_type == IRE_IF_RESOLVER && 3889 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3890 ipst->ips_ip_dup_recovery > 0) { 3891 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3892 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3893 } 3894 mutex_exit(&ill->ill_lock); 3895 } 3896 freemsg(mp); 3897 } 3898 3899 /* ARGSUSED */ 3900 static void 3901 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3902 { 3903 ill_t *ill = rq->q_ptr; 3904 arh_t *arh; 3905 ipaddr_t src; 3906 ipif_t *ipif; 3907 3908 arh = (arh_t *)mp->b_cont->b_rptr; 3909 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3910 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3911 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3912 (void) ipif_resolver_up(ipif, Res_act_defend); 3913 } 3914 freemsg(mp); 3915 } 3916 3917 /* 3918 * News from ARP. ARP sends notification of interesting events down 3919 * to its clients using M_CTL messages with the interesting ARP packet 3920 * attached via b_cont. 3921 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3922 * queue as opposed to ARP sending the message to all the clients, i.e. all 3923 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3924 * table if a cache IRE is found to delete all the entries for the address in 3925 * the packet. 3926 */ 3927 static void 3928 ip_arp_news(queue_t *q, mblk_t *mp) 3929 { 3930 arcn_t *arcn; 3931 arh_t *arh; 3932 ire_t *ire = NULL; 3933 char hbuf[MAC_STR_LEN]; 3934 char sbuf[INET_ADDRSTRLEN]; 3935 ipaddr_t src; 3936 in6_addr_t v6src; 3937 boolean_t isv6 = B_FALSE; 3938 ipif_t *ipif; 3939 ill_t *ill; 3940 ip_stack_t *ipst; 3941 3942 if (CONN_Q(q)) { 3943 conn_t *connp = Q_TO_CONN(q); 3944 3945 ipst = connp->conn_netstack->netstack_ip; 3946 } else { 3947 ill_t *ill = (ill_t *)q->q_ptr; 3948 3949 ipst = ill->ill_ipst; 3950 } 3951 3952 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3953 if (q->q_next) { 3954 putnext(q, mp); 3955 } else 3956 freemsg(mp); 3957 return; 3958 } 3959 arh = (arh_t *)mp->b_cont->b_rptr; 3960 /* Is it one we are interested in? */ 3961 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3962 isv6 = B_TRUE; 3963 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3964 IPV6_ADDR_LEN); 3965 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3966 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3967 IP_ADDR_LEN); 3968 } else { 3969 freemsg(mp); 3970 return; 3971 } 3972 3973 ill = q->q_ptr; 3974 3975 arcn = (arcn_t *)mp->b_rptr; 3976 switch (arcn->arcn_code) { 3977 case AR_CN_BOGON: 3978 /* 3979 * Someone is sending ARP packets with a source protocol 3980 * address that we have published and for which we believe our 3981 * entry is authoritative and (when ill_arp_extend is set) 3982 * verified to be unique on the network. 3983 * 3984 * The ARP module internally handles the cases where the sender 3985 * is just probing (for DAD) and where the hardware address of 3986 * a non-authoritative entry has changed. Thus, these are the 3987 * real conflicts, and we have to do resolution. 3988 * 3989 * We back away quickly from the address if it's from DHCP or 3990 * otherwise temporary and hasn't been used recently (or at 3991 * all). We'd like to include "deprecated" addresses here as 3992 * well (as there's no real reason to defend something we're 3993 * discarding), but IPMP "reuses" this flag to mean something 3994 * other than the standard meaning. 3995 * 3996 * If the ARP module above is not extended (meaning that it 3997 * doesn't know how to defend the address), then we just log 3998 * the problem as we always did and continue on. It's not 3999 * right, but there's little else we can do, and those old ATM 4000 * users are going away anyway. 4001 */ 4002 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4003 hbuf, sizeof (hbuf)); 4004 (void) ip_dot_addr(src, sbuf); 4005 if (isv6) { 4006 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4007 ipst); 4008 } else { 4009 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4010 } 4011 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4012 uint32_t now; 4013 uint32_t maxage; 4014 clock_t lused; 4015 uint_t maxdefense; 4016 uint_t defs; 4017 4018 /* 4019 * First, figure out if this address hasn't been used 4020 * in a while. If it hasn't, then it's a better 4021 * candidate for abandoning. 4022 */ 4023 ipif = ire->ire_ipif; 4024 ASSERT(ipif != NULL); 4025 now = gethrestime_sec(); 4026 maxage = now - ire->ire_create_time; 4027 if (maxage > ipst->ips_ip_max_temp_idle) 4028 maxage = ipst->ips_ip_max_temp_idle; 4029 lused = drv_hztousec(ddi_get_lbolt() - 4030 ire->ire_last_used_time) / MICROSEC + 1; 4031 if (lused >= maxage && (ipif->ipif_flags & 4032 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4033 maxdefense = ipst->ips_ip_max_temp_defend; 4034 else 4035 maxdefense = ipst->ips_ip_max_defend; 4036 4037 /* 4038 * Now figure out how many times we've defended 4039 * ourselves. Ignore defenses that happened long in 4040 * the past. 4041 */ 4042 mutex_enter(&ire->ire_lock); 4043 if ((defs = ire->ire_defense_count) > 0 && 4044 now - ire->ire_defense_time > 4045 ipst->ips_ip_defend_interval) { 4046 ire->ire_defense_count = defs = 0; 4047 } 4048 ire->ire_defense_count++; 4049 ire->ire_defense_time = now; 4050 mutex_exit(&ire->ire_lock); 4051 ill_refhold(ill); 4052 ire_refrele(ire); 4053 4054 /* 4055 * If we've defended ourselves too many times already, 4056 * then give up and tear down the interface(s) using 4057 * this address. Otherwise, defend by sending out a 4058 * gratuitous ARP. 4059 */ 4060 if (defs >= maxdefense && ill->ill_arp_extend) { 4061 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4062 B_FALSE); 4063 } else { 4064 cmn_err(CE_WARN, 4065 "node %s is using our IP address %s on %s", 4066 hbuf, sbuf, ill->ill_name); 4067 /* 4068 * If this is an old (ATM) ARP module, then 4069 * don't try to defend the address. Remain 4070 * compatible with the old behavior. Defend 4071 * only with new ARP. 4072 */ 4073 if (ill->ill_arp_extend) { 4074 qwriter_ip(ill, q, mp, ip_arp_defend, 4075 NEW_OP, B_FALSE); 4076 } else { 4077 ill_refrele(ill); 4078 } 4079 } 4080 return; 4081 } 4082 cmn_err(CE_WARN, 4083 "proxy ARP problem? Node '%s' is using %s on %s", 4084 hbuf, sbuf, ill->ill_name); 4085 if (ire != NULL) 4086 ire_refrele(ire); 4087 break; 4088 case AR_CN_ANNOUNCE: 4089 if (isv6) { 4090 /* 4091 * For XRESOLV interfaces. 4092 * Delete the IRE cache entry and NCE for this 4093 * v6 address 4094 */ 4095 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4096 /* 4097 * If v6src is a non-zero, it's a router address 4098 * as below. Do the same sort of thing to clean 4099 * out off-net IRE_CACHE entries that go through 4100 * the router. 4101 */ 4102 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4103 ire_walk_v6(ire_delete_cache_gw_v6, 4104 (char *)&v6src, ALL_ZONES, ipst); 4105 } 4106 } else { 4107 nce_hw_map_t hwm; 4108 4109 /* 4110 * ARP gives us a copy of any packet where it thinks 4111 * the address has changed, so that we can update our 4112 * caches. We're responsible for caching known answers 4113 * in the current design. We check whether the 4114 * hardware address really has changed in all of our 4115 * entries that have cached this mapping, and if so, we 4116 * blow them away. This way we will immediately pick 4117 * up the rare case of a host changing hardware 4118 * address. 4119 */ 4120 if (src == 0) 4121 break; 4122 hwm.hwm_addr = src; 4123 hwm.hwm_hwlen = arh->arh_hlen; 4124 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4125 ndp_walk_common(ipst->ips_ndp4, NULL, 4126 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4127 } 4128 break; 4129 case AR_CN_READY: 4130 /* No external v6 resolver has a contract to use this */ 4131 if (isv6) 4132 break; 4133 /* If the link is down, we'll retry this later */ 4134 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4135 break; 4136 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4137 NULL, NULL, ipst); 4138 if (ipif != NULL) { 4139 /* 4140 * If this is a duplicate recovery, then we now need to 4141 * go exclusive to bring this thing back up. 4142 */ 4143 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4144 IPIF_DUPLICATE) { 4145 ipif_refrele(ipif); 4146 ill_refhold(ill); 4147 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4148 B_FALSE); 4149 return; 4150 } 4151 /* 4152 * If this is the first notice that this address is 4153 * ready, then let the user know now. 4154 */ 4155 if ((ipif->ipif_flags & IPIF_UP) && 4156 !ipif->ipif_addr_ready) { 4157 ipif_mask_reply(ipif); 4158 ip_rts_ifmsg(ipif); 4159 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4160 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4161 } 4162 ipif->ipif_addr_ready = 1; 4163 ipif_refrele(ipif); 4164 } 4165 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4166 if (ire != NULL) { 4167 ire->ire_defense_count = 0; 4168 ire_refrele(ire); 4169 } 4170 break; 4171 case AR_CN_FAILED: 4172 /* No external v6 resolver has a contract to use this */ 4173 if (isv6) 4174 break; 4175 ill_refhold(ill); 4176 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4177 return; 4178 } 4179 freemsg(mp); 4180 } 4181 4182 /* 4183 * Create a mblk suitable for carrying the interface index and/or source link 4184 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4185 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4186 * application. 4187 */ 4188 mblk_t * 4189 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4190 ip_stack_t *ipst) 4191 { 4192 mblk_t *mp; 4193 ip_pktinfo_t *pinfo; 4194 ipha_t *ipha; 4195 struct ether_header *pether; 4196 4197 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4198 if (mp == NULL) { 4199 ip1dbg(("ip_add_info: allocation failure.\n")); 4200 return (data_mp); 4201 } 4202 4203 ipha = (ipha_t *)data_mp->b_rptr; 4204 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4205 bzero(pinfo, sizeof (ip_pktinfo_t)); 4206 pinfo->ip_pkt_flags = (uchar_t)flags; 4207 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4208 4209 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4210 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4211 if (flags & IPF_RECVADDR) { 4212 ipif_t *ipif; 4213 ire_t *ire; 4214 4215 /* 4216 * Only valid for V4 4217 */ 4218 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4219 (IPV4_VERSION << 4)); 4220 4221 ipif = ipif_get_next_ipif(NULL, ill); 4222 if (ipif != NULL) { 4223 /* 4224 * Since a decision has already been made to deliver the 4225 * packet, there is no need to test for SECATTR and 4226 * ZONEONLY. 4227 */ 4228 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, ipif, 4229 zoneid, NULL, MATCH_IRE_ILL_GROUP, ipst); 4230 if (ire == NULL) { 4231 /* 4232 * packet must have come on a different 4233 * interface. 4234 * Since a decision has already been made to 4235 * deliver the packet, there is no need to test 4236 * for SECATTR and ZONEONLY. 4237 */ 4238 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, 4239 ipif, zoneid, NULL, NULL, ipst); 4240 } 4241 4242 if (ire == NULL) { 4243 /* 4244 * This is either a multicast packet or 4245 * the address has been removed since 4246 * the packet was received. 4247 * Return INADDR_ANY so that normal source 4248 * selection occurs for the response. 4249 */ 4250 4251 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4252 } else { 4253 ASSERT(ire->ire_type != IRE_CACHE); 4254 pinfo->ip_pkt_match_addr.s_addr = 4255 ire->ire_src_addr; 4256 ire_refrele(ire); 4257 } 4258 ipif_refrele(ipif); 4259 } else { 4260 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4261 } 4262 } 4263 4264 pether = (struct ether_header *)((char *)ipha 4265 - sizeof (struct ether_header)); 4266 /* 4267 * Make sure the interface is an ethernet type, since this option 4268 * is currently supported only on this type of interface. Also make 4269 * sure we are pointing correctly above db_base. 4270 */ 4271 4272 if ((flags & IPF_RECVSLLA) && 4273 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4274 (ill->ill_type == IFT_ETHER) && 4275 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4276 4277 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4278 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4279 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4280 } else { 4281 /* 4282 * Clear the bit. Indicate to upper layer that IP is not 4283 * sending this ancillary info. 4284 */ 4285 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4286 } 4287 4288 mp->b_datap->db_type = M_CTL; 4289 mp->b_wptr += sizeof (ip_pktinfo_t); 4290 mp->b_cont = data_mp; 4291 4292 return (mp); 4293 } 4294 4295 /* 4296 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4297 * part of the bind request. 4298 */ 4299 4300 boolean_t 4301 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4302 { 4303 ipsec_in_t *ii; 4304 4305 ASSERT(policy_mp != NULL); 4306 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4307 4308 ii = (ipsec_in_t *)policy_mp->b_rptr; 4309 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4310 4311 connp->conn_policy = ii->ipsec_in_policy; 4312 ii->ipsec_in_policy = NULL; 4313 4314 if (ii->ipsec_in_action != NULL) { 4315 if (connp->conn_latch == NULL) { 4316 connp->conn_latch = iplatch_create(); 4317 if (connp->conn_latch == NULL) 4318 return (B_FALSE); 4319 } 4320 ipsec_latch_inbound(connp->conn_latch, ii); 4321 } 4322 return (B_TRUE); 4323 } 4324 4325 /* 4326 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4327 * and to arrange for power-fanout assist. The ULP is identified by 4328 * adding a single byte at the end of the original bind message. 4329 * A ULP other than UDP or TCP that wishes to be recognized passes 4330 * down a bind with a zero length address. 4331 * 4332 * The binding works as follows: 4333 * - A zero byte address means just bind to the protocol. 4334 * - A four byte address is treated as a request to validate 4335 * that the address is a valid local address, appropriate for 4336 * an application to bind to. This does not affect any fanout 4337 * information in IP. 4338 * - A sizeof sin_t byte address is used to bind to only the local address 4339 * and port. 4340 * - A sizeof ipa_conn_t byte address contains complete fanout information 4341 * consisting of local and remote addresses and ports. In 4342 * this case, the addresses are both validated as appropriate 4343 * for this operation, and, if so, the information is retained 4344 * for use in the inbound fanout. 4345 * 4346 * The ULP (except in the zero-length bind) can append an 4347 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4348 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4349 * a copy of the source or destination IRE (source for local bind; 4350 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4351 * policy information contained should be copied on to the conn. 4352 * 4353 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4354 */ 4355 mblk_t * 4356 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4357 { 4358 ssize_t len; 4359 struct T_bind_req *tbr; 4360 sin_t *sin; 4361 ipa_conn_t *ac; 4362 uchar_t *ucp; 4363 mblk_t *mp1; 4364 boolean_t ire_requested; 4365 boolean_t ipsec_policy_set = B_FALSE; 4366 int error = 0; 4367 int protocol; 4368 ipa_conn_x_t *acx; 4369 4370 ASSERT(!connp->conn_af_isv6); 4371 connp->conn_pkt_isv6 = B_FALSE; 4372 4373 len = MBLKL(mp); 4374 if (len < (sizeof (*tbr) + 1)) { 4375 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4376 "ip_bind: bogus msg, len %ld", len); 4377 /* XXX: Need to return something better */ 4378 goto bad_addr; 4379 } 4380 /* Back up and extract the protocol identifier. */ 4381 mp->b_wptr--; 4382 protocol = *mp->b_wptr & 0xFF; 4383 tbr = (struct T_bind_req *)mp->b_rptr; 4384 /* Reset the message type in preparation for shipping it back. */ 4385 DB_TYPE(mp) = M_PCPROTO; 4386 4387 connp->conn_ulp = (uint8_t)protocol; 4388 4389 /* 4390 * Check for a zero length address. This is from a protocol that 4391 * wants to register to receive all packets of its type. 4392 */ 4393 if (tbr->ADDR_length == 0) { 4394 /* 4395 * These protocols are now intercepted in ip_bind_v6(). 4396 * Reject protocol-level binds here for now. 4397 * 4398 * For SCTP raw socket, ICMP sends down a bind with sin_t 4399 * so that the protocol type cannot be SCTP. 4400 */ 4401 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4402 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4403 goto bad_addr; 4404 } 4405 4406 /* 4407 * 4408 * The udp module never sends down a zero-length address, 4409 * and allowing this on a labeled system will break MLP 4410 * functionality. 4411 */ 4412 if (is_system_labeled() && protocol == IPPROTO_UDP) 4413 goto bad_addr; 4414 4415 if (connp->conn_mac_exempt) 4416 goto bad_addr; 4417 4418 /* No hash here really. The table is big enough. */ 4419 connp->conn_srcv6 = ipv6_all_zeros; 4420 4421 ipcl_proto_insert(connp, protocol); 4422 4423 tbr->PRIM_type = T_BIND_ACK; 4424 return (mp); 4425 } 4426 4427 /* Extract the address pointer from the message. */ 4428 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4429 tbr->ADDR_length); 4430 if (ucp == NULL) { 4431 ip1dbg(("ip_bind: no address\n")); 4432 goto bad_addr; 4433 } 4434 if (!OK_32PTR(ucp)) { 4435 ip1dbg(("ip_bind: unaligned address\n")); 4436 goto bad_addr; 4437 } 4438 /* 4439 * Check for trailing mps. 4440 */ 4441 4442 mp1 = mp->b_cont; 4443 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4444 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4445 4446 switch (tbr->ADDR_length) { 4447 default: 4448 ip1dbg(("ip_bind: bad address length %d\n", 4449 (int)tbr->ADDR_length)); 4450 goto bad_addr; 4451 4452 case IP_ADDR_LEN: 4453 /* Verification of local address only */ 4454 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4455 ire_requested, ipsec_policy_set, B_FALSE); 4456 break; 4457 4458 case sizeof (sin_t): 4459 sin = (sin_t *)ucp; 4460 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4461 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4462 break; 4463 4464 case sizeof (ipa_conn_t): 4465 ac = (ipa_conn_t *)ucp; 4466 /* For raw socket, the local port is not set. */ 4467 if (ac->ac_lport == 0) 4468 ac->ac_lport = connp->conn_lport; 4469 /* Always verify destination reachability. */ 4470 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4471 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4472 ipsec_policy_set, B_TRUE, B_TRUE); 4473 break; 4474 4475 case sizeof (ipa_conn_x_t): 4476 acx = (ipa_conn_x_t *)ucp; 4477 /* 4478 * Whether or not to verify destination reachability depends 4479 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4480 */ 4481 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4482 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4483 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4484 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4485 break; 4486 } 4487 if (error == EINPROGRESS) 4488 return (NULL); 4489 else if (error != 0) 4490 goto bad_addr; 4491 /* 4492 * Pass the IPSEC headers size in ire_ipsec_overhead. 4493 * We can't do this in ip_bind_insert_ire because the policy 4494 * may not have been inherited at that point in time and hence 4495 * conn_out_enforce_policy may not be set. 4496 */ 4497 mp1 = mp->b_cont; 4498 if (ire_requested && connp->conn_out_enforce_policy && 4499 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4500 ire_t *ire = (ire_t *)mp1->b_rptr; 4501 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4502 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4503 } 4504 4505 /* Send it home. */ 4506 mp->b_datap->db_type = M_PCPROTO; 4507 tbr->PRIM_type = T_BIND_ACK; 4508 return (mp); 4509 4510 bad_addr: 4511 /* 4512 * If error = -1 then we generate a TBADADDR - otherwise error is 4513 * a unix errno. 4514 */ 4515 if (error > 0) 4516 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4517 else 4518 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4519 return (mp); 4520 } 4521 4522 /* 4523 * Here address is verified to be a valid local address. 4524 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4525 * address is also considered a valid local address. 4526 * In the case of a broadcast/multicast address, however, the 4527 * upper protocol is expected to reset the src address 4528 * to 0 if it sees a IRE_BROADCAST type returned so that 4529 * no packets are emitted with broadcast/multicast address as 4530 * source address (that violates hosts requirements RFC1122) 4531 * The addresses valid for bind are: 4532 * (1) - INADDR_ANY (0) 4533 * (2) - IP address of an UP interface 4534 * (3) - IP address of a DOWN interface 4535 * (4) - valid local IP broadcast addresses. In this case 4536 * the conn will only receive packets destined to 4537 * the specified broadcast address. 4538 * (5) - a multicast address. In this case 4539 * the conn will only receive packets destined to 4540 * the specified multicast address. Note: the 4541 * application still has to issue an 4542 * IP_ADD_MEMBERSHIP socket option. 4543 * 4544 * On error, return -1 for TBADADDR otherwise pass the 4545 * errno with TSYSERR reply. 4546 * 4547 * In all the above cases, the bound address must be valid in the current zone. 4548 * When the address is loopback, multicast or broadcast, there might be many 4549 * matching IREs so bind has to look up based on the zone. 4550 * 4551 * Note: lport is in network byte order. 4552 */ 4553 int 4554 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4555 boolean_t ire_requested, boolean_t ipsec_policy_set, 4556 boolean_t fanout_insert) 4557 { 4558 int error = 0; 4559 ire_t *src_ire; 4560 mblk_t *policy_mp; 4561 ipif_t *ipif; 4562 zoneid_t zoneid; 4563 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4564 4565 if (ipsec_policy_set) { 4566 policy_mp = mp->b_cont; 4567 } 4568 4569 /* 4570 * If it was previously connected, conn_fully_bound would have 4571 * been set. 4572 */ 4573 connp->conn_fully_bound = B_FALSE; 4574 4575 src_ire = NULL; 4576 ipif = NULL; 4577 4578 zoneid = IPCL_ZONEID(connp); 4579 4580 if (src_addr) { 4581 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4582 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4583 /* 4584 * If an address other than 0.0.0.0 is requested, 4585 * we verify that it is a valid address for bind 4586 * Note: Following code is in if-else-if form for 4587 * readability compared to a condition check. 4588 */ 4589 /* LINTED - statement has no consequent */ 4590 if (IRE_IS_LOCAL(src_ire)) { 4591 /* 4592 * (2) Bind to address of local UP interface 4593 */ 4594 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4595 /* 4596 * (4) Bind to broadcast address 4597 * Note: permitted only from transports that 4598 * request IRE 4599 */ 4600 if (!ire_requested) 4601 error = EADDRNOTAVAIL; 4602 } else { 4603 /* 4604 * (3) Bind to address of local DOWN interface 4605 * (ipif_lookup_addr() looks up all interfaces 4606 * but we do not get here for UP interfaces 4607 * - case (2) above) 4608 * We put the protocol byte back into the mblk 4609 * since we may come back via ip_wput_nondata() 4610 * later with this mblk if ipif_lookup_addr chooses 4611 * to defer processing. 4612 */ 4613 *mp->b_wptr++ = (char)connp->conn_ulp; 4614 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4615 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4616 &error, ipst)) != NULL) { 4617 ipif_refrele(ipif); 4618 } else if (error == EINPROGRESS) { 4619 if (src_ire != NULL) 4620 ire_refrele(src_ire); 4621 return (EINPROGRESS); 4622 } else if (CLASSD(src_addr)) { 4623 error = 0; 4624 if (src_ire != NULL) 4625 ire_refrele(src_ire); 4626 /* 4627 * (5) bind to multicast address. 4628 * Fake out the IRE returned to upper 4629 * layer to be a broadcast IRE. 4630 */ 4631 src_ire = ire_ctable_lookup( 4632 INADDR_BROADCAST, INADDR_ANY, 4633 IRE_BROADCAST, NULL, zoneid, NULL, 4634 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4635 ipst); 4636 if (src_ire == NULL || !ire_requested) 4637 error = EADDRNOTAVAIL; 4638 } else { 4639 /* 4640 * Not a valid address for bind 4641 */ 4642 error = EADDRNOTAVAIL; 4643 } 4644 /* 4645 * Just to keep it consistent with the processing in 4646 * ip_bind_v4() 4647 */ 4648 mp->b_wptr--; 4649 } 4650 if (error) { 4651 /* Red Alert! Attempting to be a bogon! */ 4652 ip1dbg(("ip_bind: bad src address 0x%x\n", 4653 ntohl(src_addr))); 4654 goto bad_addr; 4655 } 4656 } 4657 4658 /* 4659 * Allow setting new policies. For example, disconnects come 4660 * down as ipa_t bind. As we would have set conn_policy_cached 4661 * to B_TRUE before, we should set it to B_FALSE, so that policy 4662 * can change after the disconnect. 4663 */ 4664 connp->conn_policy_cached = B_FALSE; 4665 4666 /* 4667 * If not fanout_insert this was just an address verification 4668 */ 4669 if (fanout_insert) { 4670 /* 4671 * The addresses have been verified. Time to insert in 4672 * the correct fanout list. 4673 */ 4674 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4675 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4676 connp->conn_lport = lport; 4677 connp->conn_fport = 0; 4678 /* 4679 * Do we need to add a check to reject Multicast packets 4680 * 4681 * We need to make sure that the conn_recv is set to a non-null 4682 * value before we insert the conn into the classifier table. 4683 * This is to avoid a race with an incoming packet which does an 4684 * ipcl_classify(). 4685 */ 4686 if (*mp->b_wptr == IPPROTO_TCP) 4687 connp->conn_recv = tcp_conn_request; 4688 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4689 } 4690 4691 if (error == 0) { 4692 if (ire_requested) { 4693 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4694 error = -1; 4695 /* Falls through to bad_addr */ 4696 } 4697 } else if (ipsec_policy_set) { 4698 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4699 error = -1; 4700 /* Falls through to bad_addr */ 4701 } 4702 } 4703 } else if (connp->conn_ulp == IPPROTO_TCP) { 4704 connp->conn_recv = tcp_input; 4705 } 4706 bad_addr: 4707 if (error != 0) { 4708 if (connp->conn_anon_port) { 4709 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4710 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4711 B_FALSE); 4712 } 4713 connp->conn_mlp_type = mlptSingle; 4714 } 4715 if (src_ire != NULL) 4716 IRE_REFRELE(src_ire); 4717 if (ipsec_policy_set) { 4718 ASSERT(policy_mp == mp->b_cont); 4719 ASSERT(policy_mp != NULL); 4720 freeb(policy_mp); 4721 /* 4722 * As of now assume that nothing else accompanies 4723 * IPSEC_POLICY_SET. 4724 */ 4725 mp->b_cont = NULL; 4726 } 4727 return (error); 4728 } 4729 4730 /* 4731 * Verify that both the source and destination addresses 4732 * are valid. If verify_dst is false, then the destination address may be 4733 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4734 * destination reachability, while tunnels do not. 4735 * Note that we allow connect to broadcast and multicast 4736 * addresses when ire_requested is set. Thus the ULP 4737 * has to check for IRE_BROADCAST and multicast. 4738 * 4739 * Returns zero if ok. 4740 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4741 * (for use with TSYSERR reply). 4742 * 4743 * Note: lport and fport are in network byte order. 4744 */ 4745 int 4746 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4747 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4748 boolean_t ire_requested, boolean_t ipsec_policy_set, 4749 boolean_t fanout_insert, boolean_t verify_dst) 4750 { 4751 ire_t *src_ire; 4752 ire_t *dst_ire; 4753 int error = 0; 4754 int protocol; 4755 mblk_t *policy_mp; 4756 ire_t *sire = NULL; 4757 ire_t *md_dst_ire = NULL; 4758 ire_t *lso_dst_ire = NULL; 4759 ill_t *ill = NULL; 4760 zoneid_t zoneid; 4761 ipaddr_t src_addr = *src_addrp; 4762 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4763 4764 src_ire = dst_ire = NULL; 4765 protocol = *mp->b_wptr & 0xFF; 4766 4767 /* 4768 * If we never got a disconnect before, clear it now. 4769 */ 4770 connp->conn_fully_bound = B_FALSE; 4771 4772 if (ipsec_policy_set) { 4773 policy_mp = mp->b_cont; 4774 } 4775 4776 zoneid = IPCL_ZONEID(connp); 4777 4778 if (CLASSD(dst_addr)) { 4779 /* Pick up an IRE_BROADCAST */ 4780 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4781 NULL, zoneid, MBLK_GETLABEL(mp), 4782 (MATCH_IRE_RECURSIVE | 4783 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4784 MATCH_IRE_SECATTR), ipst); 4785 } else { 4786 /* 4787 * If conn_dontroute is set or if conn_nexthop_set is set, 4788 * and onlink ipif is not found set ENETUNREACH error. 4789 */ 4790 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4791 ipif_t *ipif; 4792 4793 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4794 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4795 if (ipif == NULL) { 4796 error = ENETUNREACH; 4797 goto bad_addr; 4798 } 4799 ipif_refrele(ipif); 4800 } 4801 4802 if (connp->conn_nexthop_set) { 4803 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4804 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4805 MATCH_IRE_SECATTR, ipst); 4806 } else { 4807 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4808 &sire, zoneid, MBLK_GETLABEL(mp), 4809 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4810 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4811 MATCH_IRE_SECATTR), ipst); 4812 } 4813 } 4814 /* 4815 * dst_ire can't be a broadcast when not ire_requested. 4816 * We also prevent ire's with src address INADDR_ANY to 4817 * be used, which are created temporarily for 4818 * sending out packets from endpoints that have 4819 * conn_unspec_src set. If verify_dst is true, the destination must be 4820 * reachable. If verify_dst is false, the destination needn't be 4821 * reachable. 4822 * 4823 * If we match on a reject or black hole, then we've got a 4824 * local failure. May as well fail out the connect() attempt, 4825 * since it's never going to succeed. 4826 */ 4827 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4828 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4829 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4830 /* 4831 * If we're verifying destination reachability, we always want 4832 * to complain here. 4833 * 4834 * If we're not verifying destination reachability but the 4835 * destination has a route, we still want to fail on the 4836 * temporary address and broadcast address tests. 4837 */ 4838 if (verify_dst || (dst_ire != NULL)) { 4839 if (ip_debug > 2) { 4840 pr_addr_dbg("ip_bind_connected: bad connected " 4841 "dst %s\n", AF_INET, &dst_addr); 4842 } 4843 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4844 error = ENETUNREACH; 4845 else 4846 error = EHOSTUNREACH; 4847 goto bad_addr; 4848 } 4849 } 4850 4851 /* 4852 * We now know that routing will allow us to reach the destination. 4853 * Check whether Trusted Solaris policy allows communication with this 4854 * host, and pretend that the destination is unreachable if not. 4855 * 4856 * This is never a problem for TCP, since that transport is known to 4857 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4858 * handling. If the remote is unreachable, it will be detected at that 4859 * point, so there's no reason to check it here. 4860 * 4861 * Note that for sendto (and other datagram-oriented friends), this 4862 * check is done as part of the data path label computation instead. 4863 * The check here is just to make non-TCP connect() report the right 4864 * error. 4865 */ 4866 if (dst_ire != NULL && is_system_labeled() && 4867 !IPCL_IS_TCP(connp) && 4868 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4869 connp->conn_mac_exempt, ipst) != 0) { 4870 error = EHOSTUNREACH; 4871 if (ip_debug > 2) { 4872 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4873 AF_INET, &dst_addr); 4874 } 4875 goto bad_addr; 4876 } 4877 4878 /* 4879 * If the app does a connect(), it means that it will most likely 4880 * send more than 1 packet to the destination. It makes sense 4881 * to clear the temporary flag. 4882 */ 4883 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4884 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4885 irb_t *irb = dst_ire->ire_bucket; 4886 4887 rw_enter(&irb->irb_lock, RW_WRITER); 4888 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4889 irb->irb_tmp_ire_cnt--; 4890 rw_exit(&irb->irb_lock); 4891 } 4892 4893 /* 4894 * See if we should notify ULP about LSO/MDT; we do this whether or not 4895 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4896 * eligibility tests for passive connects are handled separately 4897 * through tcp_adapt_ire(). We do this before the source address 4898 * selection, because dst_ire may change after a call to 4899 * ipif_select_source(). This is a best-effort check, as the 4900 * packet for this connection may not actually go through 4901 * dst_ire->ire_stq, and the exact IRE can only be known after 4902 * calling ip_newroute(). This is why we further check on the 4903 * IRE during LSO/Multidata packet transmission in 4904 * tcp_lsosend()/tcp_multisend(). 4905 */ 4906 if (!ipsec_policy_set && dst_ire != NULL && 4907 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4908 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4909 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4910 lso_dst_ire = dst_ire; 4911 IRE_REFHOLD(lso_dst_ire); 4912 } else if (ipst->ips_ip_multidata_outbound && 4913 ILL_MDT_CAPABLE(ill)) { 4914 md_dst_ire = dst_ire; 4915 IRE_REFHOLD(md_dst_ire); 4916 } 4917 } 4918 4919 if (dst_ire != NULL && 4920 dst_ire->ire_type == IRE_LOCAL && 4921 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4922 /* 4923 * If the IRE belongs to a different zone, look for a matching 4924 * route in the forwarding table and use the source address from 4925 * that route. 4926 */ 4927 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4928 zoneid, 0, NULL, 4929 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4930 MATCH_IRE_RJ_BHOLE, ipst); 4931 if (src_ire == NULL) { 4932 error = EHOSTUNREACH; 4933 goto bad_addr; 4934 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4935 if (!(src_ire->ire_type & IRE_HOST)) 4936 error = ENETUNREACH; 4937 else 4938 error = EHOSTUNREACH; 4939 goto bad_addr; 4940 } 4941 if (src_addr == INADDR_ANY) 4942 src_addr = src_ire->ire_src_addr; 4943 ire_refrele(src_ire); 4944 src_ire = NULL; 4945 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4946 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4947 src_addr = sire->ire_src_addr; 4948 ire_refrele(dst_ire); 4949 dst_ire = sire; 4950 sire = NULL; 4951 } else { 4952 /* 4953 * Pick a source address so that a proper inbound 4954 * load spreading would happen. 4955 */ 4956 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4957 ipif_t *src_ipif = NULL; 4958 ire_t *ipif_ire; 4959 4960 /* 4961 * Supply a local source address such that inbound 4962 * load spreading happens. 4963 * 4964 * Determine the best source address on this ill for 4965 * the destination. 4966 * 4967 * 1) For broadcast, we should return a broadcast ire 4968 * found above so that upper layers know that the 4969 * destination address is a broadcast address. 4970 * 4971 * 2) If this is part of a group, select a better 4972 * source address so that better inbound load 4973 * balancing happens. Do the same if the ipif 4974 * is DEPRECATED. 4975 * 4976 * 3) If the outgoing interface is part of a usesrc 4977 * group, then try selecting a source address from 4978 * the usesrc ILL. 4979 */ 4980 if ((dst_ire->ire_zoneid != zoneid && 4981 dst_ire->ire_zoneid != ALL_ZONES) || 4982 (!(dst_ire->ire_type & IRE_BROADCAST) && 4983 ((dst_ill->ill_group != NULL) || 4984 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4985 (dst_ill->ill_usesrc_ifindex != 0)))) { 4986 /* 4987 * If the destination is reachable via a 4988 * given gateway, the selected source address 4989 * should be in the same subnet as the gateway. 4990 * Otherwise, the destination is not reachable. 4991 * 4992 * If there are no interfaces on the same subnet 4993 * as the destination, ipif_select_source gives 4994 * first non-deprecated interface which might be 4995 * on a different subnet than the gateway. 4996 * This is not desirable. Hence pass the dst_ire 4997 * source address to ipif_select_source. 4998 * It is sure that the destination is reachable 4999 * with the dst_ire source address subnet. 5000 * So passing dst_ire source address to 5001 * ipif_select_source will make sure that the 5002 * selected source will be on the same subnet 5003 * as dst_ire source address. 5004 */ 5005 ipaddr_t saddr = 5006 dst_ire->ire_ipif->ipif_src_addr; 5007 src_ipif = ipif_select_source(dst_ill, 5008 saddr, zoneid); 5009 if (src_ipif != NULL) { 5010 if (IS_VNI(src_ipif->ipif_ill)) { 5011 /* 5012 * For VNI there is no 5013 * interface route 5014 */ 5015 src_addr = 5016 src_ipif->ipif_src_addr; 5017 } else { 5018 ipif_ire = 5019 ipif_to_ire(src_ipif); 5020 if (ipif_ire != NULL) { 5021 IRE_REFRELE(dst_ire); 5022 dst_ire = ipif_ire; 5023 } 5024 src_addr = 5025 dst_ire->ire_src_addr; 5026 } 5027 ipif_refrele(src_ipif); 5028 } else { 5029 src_addr = dst_ire->ire_src_addr; 5030 } 5031 } else { 5032 src_addr = dst_ire->ire_src_addr; 5033 } 5034 } 5035 } 5036 5037 /* 5038 * We do ire_route_lookup() here (and not 5039 * interface lookup as we assert that 5040 * src_addr should only come from an 5041 * UP interface for hard binding. 5042 */ 5043 ASSERT(src_ire == NULL); 5044 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5045 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5046 /* src_ire must be a local|loopback */ 5047 if (!IRE_IS_LOCAL(src_ire)) { 5048 if (ip_debug > 2) { 5049 pr_addr_dbg("ip_bind_connected: bad connected " 5050 "src %s\n", AF_INET, &src_addr); 5051 } 5052 error = EADDRNOTAVAIL; 5053 goto bad_addr; 5054 } 5055 5056 /* 5057 * If the source address is a loopback address, the 5058 * destination had best be local or multicast. 5059 * The transports that can't handle multicast will reject 5060 * those addresses. 5061 */ 5062 if (src_ire->ire_type == IRE_LOOPBACK && 5063 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5064 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5065 error = -1; 5066 goto bad_addr; 5067 } 5068 5069 /* 5070 * Allow setting new policies. For example, disconnects come 5071 * down as ipa_t bind. As we would have set conn_policy_cached 5072 * to B_TRUE before, we should set it to B_FALSE, so that policy 5073 * can change after the disconnect. 5074 */ 5075 connp->conn_policy_cached = B_FALSE; 5076 5077 /* 5078 * Set the conn addresses/ports immediately, so the IPsec policy calls 5079 * can handle their passed-in conn's. 5080 */ 5081 5082 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5083 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5084 connp->conn_lport = lport; 5085 connp->conn_fport = fport; 5086 *src_addrp = src_addr; 5087 5088 ASSERT(!(ipsec_policy_set && ire_requested)); 5089 if (ire_requested) { 5090 iulp_t *ulp_info = NULL; 5091 5092 /* 5093 * Note that sire will not be NULL if this is an off-link 5094 * connection and there is not cache for that dest yet. 5095 * 5096 * XXX Because of an existing bug, if there are multiple 5097 * default routes, the IRE returned now may not be the actual 5098 * default route used (default routes are chosen in a 5099 * round robin fashion). So if the metrics for different 5100 * default routes are different, we may return the wrong 5101 * metrics. This will not be a problem if the existing 5102 * bug is fixed. 5103 */ 5104 if (sire != NULL) { 5105 ulp_info = &(sire->ire_uinfo); 5106 } 5107 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5108 error = -1; 5109 goto bad_addr; 5110 } 5111 } else if (ipsec_policy_set) { 5112 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5113 error = -1; 5114 goto bad_addr; 5115 } 5116 } 5117 5118 /* 5119 * Cache IPsec policy in this conn. If we have per-socket policy, 5120 * we'll cache that. If we don't, we'll inherit global policy. 5121 * 5122 * We can't insert until the conn reflects the policy. Note that 5123 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5124 * connections where we don't have a policy. This is to prevent 5125 * global policy lookups in the inbound path. 5126 * 5127 * If we insert before we set conn_policy_cached, 5128 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5129 * because global policy cound be non-empty. We normally call 5130 * ipsec_check_policy() for conn_policy_cached connections only if 5131 * ipc_in_enforce_policy is set. But in this case, 5132 * conn_policy_cached can get set anytime since we made the 5133 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5134 * called, which will make the above assumption false. Thus, we 5135 * need to insert after we set conn_policy_cached. 5136 */ 5137 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5138 goto bad_addr; 5139 5140 if (fanout_insert) { 5141 /* 5142 * The addresses have been verified. Time to insert in 5143 * the correct fanout list. 5144 * We need to make sure that the conn_recv is set to a non-null 5145 * value before we insert into the classifier table to avoid a 5146 * race with an incoming packet which does an ipcl_classify(). 5147 */ 5148 if (protocol == IPPROTO_TCP) 5149 connp->conn_recv = tcp_input; 5150 error = ipcl_conn_insert(connp, protocol, src_addr, 5151 dst_addr, connp->conn_ports); 5152 } 5153 5154 if (error == 0) { 5155 connp->conn_fully_bound = B_TRUE; 5156 /* 5157 * Our initial checks for LSO/MDT have passed; the IRE is not 5158 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5159 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5160 * ip_xxinfo_return(), which performs further checks 5161 * against them and upon success, returns the LSO/MDT info 5162 * mblk which we will attach to the bind acknowledgment. 5163 */ 5164 if (lso_dst_ire != NULL) { 5165 mblk_t *lsoinfo_mp; 5166 5167 ASSERT(ill->ill_lso_capab != NULL); 5168 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5169 ill->ill_name, ill->ill_lso_capab)) != NULL) 5170 linkb(mp, lsoinfo_mp); 5171 } else if (md_dst_ire != NULL) { 5172 mblk_t *mdinfo_mp; 5173 5174 ASSERT(ill->ill_mdt_capab != NULL); 5175 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5176 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5177 linkb(mp, mdinfo_mp); 5178 } 5179 } 5180 bad_addr: 5181 if (ipsec_policy_set) { 5182 ASSERT(policy_mp == mp->b_cont); 5183 ASSERT(policy_mp != NULL); 5184 freeb(policy_mp); 5185 /* 5186 * As of now assume that nothing else accompanies 5187 * IPSEC_POLICY_SET. 5188 */ 5189 mp->b_cont = NULL; 5190 } 5191 if (src_ire != NULL) 5192 IRE_REFRELE(src_ire); 5193 if (dst_ire != NULL) 5194 IRE_REFRELE(dst_ire); 5195 if (sire != NULL) 5196 IRE_REFRELE(sire); 5197 if (md_dst_ire != NULL) 5198 IRE_REFRELE(md_dst_ire); 5199 if (lso_dst_ire != NULL) 5200 IRE_REFRELE(lso_dst_ire); 5201 return (error); 5202 } 5203 5204 /* 5205 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5206 * Prefers dst_ire over src_ire. 5207 */ 5208 static boolean_t 5209 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5210 { 5211 mblk_t *mp1; 5212 ire_t *ret_ire = NULL; 5213 5214 mp1 = mp->b_cont; 5215 ASSERT(mp1 != NULL); 5216 5217 if (ire != NULL) { 5218 /* 5219 * mp1 initialized above to IRE_DB_REQ_TYPE 5220 * appended mblk. Its <upper protocol>'s 5221 * job to make sure there is room. 5222 */ 5223 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5224 return (0); 5225 5226 mp1->b_datap->db_type = IRE_DB_TYPE; 5227 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5228 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5229 ret_ire = (ire_t *)mp1->b_rptr; 5230 /* 5231 * Pass the latest setting of the ip_path_mtu_discovery and 5232 * copy the ulp info if any. 5233 */ 5234 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5235 IPH_DF : 0; 5236 if (ulp_info != NULL) { 5237 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5238 sizeof (iulp_t)); 5239 } 5240 ret_ire->ire_mp = mp1; 5241 } else { 5242 /* 5243 * No IRE was found. Remove IRE mblk. 5244 */ 5245 mp->b_cont = mp1->b_cont; 5246 freeb(mp1); 5247 } 5248 5249 return (1); 5250 } 5251 5252 /* 5253 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5254 * the final piece where we don't. Return a pointer to the first mblk in the 5255 * result, and update the pointer to the next mblk to chew on. If anything 5256 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5257 * NULL pointer. 5258 */ 5259 mblk_t * 5260 ip_carve_mp(mblk_t **mpp, ssize_t len) 5261 { 5262 mblk_t *mp0; 5263 mblk_t *mp1; 5264 mblk_t *mp2; 5265 5266 if (!len || !mpp || !(mp0 = *mpp)) 5267 return (NULL); 5268 /* If we aren't going to consume the first mblk, we need a dup. */ 5269 if (mp0->b_wptr - mp0->b_rptr > len) { 5270 mp1 = dupb(mp0); 5271 if (mp1) { 5272 /* Partition the data between the two mblks. */ 5273 mp1->b_wptr = mp1->b_rptr + len; 5274 mp0->b_rptr = mp1->b_wptr; 5275 /* 5276 * after adjustments if mblk not consumed is now 5277 * unaligned, try to align it. If this fails free 5278 * all messages and let upper layer recover. 5279 */ 5280 if (!OK_32PTR(mp0->b_rptr)) { 5281 if (!pullupmsg(mp0, -1)) { 5282 freemsg(mp0); 5283 freemsg(mp1); 5284 *mpp = NULL; 5285 return (NULL); 5286 } 5287 } 5288 } 5289 return (mp1); 5290 } 5291 /* Eat through as many mblks as we need to get len bytes. */ 5292 len -= mp0->b_wptr - mp0->b_rptr; 5293 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5294 if (mp2->b_wptr - mp2->b_rptr > len) { 5295 /* 5296 * We won't consume the entire last mblk. Like 5297 * above, dup and partition it. 5298 */ 5299 mp1->b_cont = dupb(mp2); 5300 mp1 = mp1->b_cont; 5301 if (!mp1) { 5302 /* 5303 * Trouble. Rather than go to a lot of 5304 * trouble to clean up, we free the messages. 5305 * This won't be any worse than losing it on 5306 * the wire. 5307 */ 5308 freemsg(mp0); 5309 freemsg(mp2); 5310 *mpp = NULL; 5311 return (NULL); 5312 } 5313 mp1->b_wptr = mp1->b_rptr + len; 5314 mp2->b_rptr = mp1->b_wptr; 5315 /* 5316 * after adjustments if mblk not consumed is now 5317 * unaligned, try to align it. If this fails free 5318 * all messages and let upper layer recover. 5319 */ 5320 if (!OK_32PTR(mp2->b_rptr)) { 5321 if (!pullupmsg(mp2, -1)) { 5322 freemsg(mp0); 5323 freemsg(mp2); 5324 *mpp = NULL; 5325 return (NULL); 5326 } 5327 } 5328 *mpp = mp2; 5329 return (mp0); 5330 } 5331 /* Decrement len by the amount we just got. */ 5332 len -= mp2->b_wptr - mp2->b_rptr; 5333 } 5334 /* 5335 * len should be reduced to zero now. If not our caller has 5336 * screwed up. 5337 */ 5338 if (len) { 5339 /* Shouldn't happen! */ 5340 freemsg(mp0); 5341 *mpp = NULL; 5342 return (NULL); 5343 } 5344 /* 5345 * We consumed up to exactly the end of an mblk. Detach the part 5346 * we are returning from the rest of the chain. 5347 */ 5348 mp1->b_cont = NULL; 5349 *mpp = mp2; 5350 return (mp0); 5351 } 5352 5353 /* The ill stream is being unplumbed. Called from ip_close */ 5354 int 5355 ip_modclose(ill_t *ill) 5356 { 5357 boolean_t success; 5358 ipsq_t *ipsq; 5359 ipif_t *ipif; 5360 queue_t *q = ill->ill_rq; 5361 ip_stack_t *ipst = ill->ill_ipst; 5362 clock_t timeout; 5363 5364 /* 5365 * Wait for the ACKs of all deferred control messages to be processed. 5366 * In particular, we wait for a potential capability reset initiated 5367 * in ip_sioctl_plink() to complete before proceeding. 5368 * 5369 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5370 * in case the driver never replies. 5371 */ 5372 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5373 mutex_enter(&ill->ill_lock); 5374 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5375 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5376 /* Timeout */ 5377 break; 5378 } 5379 } 5380 mutex_exit(&ill->ill_lock); 5381 5382 /* 5383 * Forcibly enter the ipsq after some delay. This is to take 5384 * care of the case when some ioctl does not complete because 5385 * we sent a control message to the driver and it did not 5386 * send us a reply. We want to be able to at least unplumb 5387 * and replumb rather than force the user to reboot the system. 5388 */ 5389 success = ipsq_enter(ill, B_FALSE); 5390 5391 /* 5392 * Open/close/push/pop is guaranteed to be single threaded 5393 * per stream by STREAMS. FS guarantees that all references 5394 * from top are gone before close is called. So there can't 5395 * be another close thread that has set CONDEMNED on this ill. 5396 * and cause ipsq_enter to return failure. 5397 */ 5398 ASSERT(success); 5399 ipsq = ill->ill_phyint->phyint_ipsq; 5400 5401 /* 5402 * Mark it condemned. No new reference will be made to this ill. 5403 * Lookup functions will return an error. Threads that try to 5404 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5405 * that the refcnt will drop down to zero. 5406 */ 5407 mutex_enter(&ill->ill_lock); 5408 ill->ill_state_flags |= ILL_CONDEMNED; 5409 for (ipif = ill->ill_ipif; ipif != NULL; 5410 ipif = ipif->ipif_next) { 5411 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5412 } 5413 /* 5414 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5415 * returns error if ILL_CONDEMNED is set 5416 */ 5417 cv_broadcast(&ill->ill_cv); 5418 mutex_exit(&ill->ill_lock); 5419 5420 /* 5421 * Send all the deferred DLPI messages downstream which came in 5422 * during the small window right before ipsq_enter(). We do this 5423 * without waiting for the ACKs because all the ACKs for M_PROTO 5424 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5425 */ 5426 ill_dlpi_send_deferred(ill); 5427 5428 /* 5429 * Shut down fragmentation reassembly. 5430 * ill_frag_timer won't start a timer again. 5431 * Now cancel any existing timer 5432 */ 5433 (void) untimeout(ill->ill_frag_timer_id); 5434 (void) ill_frag_timeout(ill, 0); 5435 5436 /* 5437 * If MOVE was in progress, clear the 5438 * move_in_progress fields also. 5439 */ 5440 if (ill->ill_move_in_progress) { 5441 ILL_CLEAR_MOVE(ill); 5442 } 5443 5444 /* 5445 * Call ill_delete to bring down the ipifs, ilms and ill on 5446 * this ill. Then wait for the refcnts to drop to zero. 5447 * ill_is_quiescent checks whether the ill is really quiescent. 5448 * Then make sure that threads that are waiting to enter the 5449 * ipsq have seen the error returned by ipsq_enter and have 5450 * gone away. Then we call ill_delete_tail which does the 5451 * DL_UNBIND_REQ with the driver and then qprocsoff. 5452 */ 5453 ill_delete(ill); 5454 mutex_enter(&ill->ill_lock); 5455 while (!ill_is_quiescent(ill)) 5456 cv_wait(&ill->ill_cv, &ill->ill_lock); 5457 while (ill->ill_waiters) 5458 cv_wait(&ill->ill_cv, &ill->ill_lock); 5459 5460 mutex_exit(&ill->ill_lock); 5461 5462 /* 5463 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5464 * it held until the end of the function since the cleanup 5465 * below needs to be able to use the ip_stack_t. 5466 */ 5467 netstack_hold(ipst->ips_netstack); 5468 5469 /* qprocsoff is called in ill_delete_tail */ 5470 ill_delete_tail(ill); 5471 ASSERT(ill->ill_ipst == NULL); 5472 5473 /* 5474 * Walk through all upper (conn) streams and qenable 5475 * those that have queued data. 5476 * close synchronization needs this to 5477 * be done to ensure that all upper layers blocked 5478 * due to flow control to the closing device 5479 * get unblocked. 5480 */ 5481 ip1dbg(("ip_wsrv: walking\n")); 5482 conn_walk_drain(ipst); 5483 5484 mutex_enter(&ipst->ips_ip_mi_lock); 5485 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5486 mutex_exit(&ipst->ips_ip_mi_lock); 5487 5488 /* 5489 * credp could be null if the open didn't succeed and ip_modopen 5490 * itself calls ip_close. 5491 */ 5492 if (ill->ill_credp != NULL) 5493 crfree(ill->ill_credp); 5494 5495 mutex_enter(&ill->ill_lock); 5496 ill_nic_info_dispatch(ill); 5497 mutex_exit(&ill->ill_lock); 5498 5499 /* 5500 * Now we are done with the module close pieces that 5501 * need the netstack_t. 5502 */ 5503 netstack_rele(ipst->ips_netstack); 5504 5505 mi_close_free((IDP)ill); 5506 q->q_ptr = WR(q)->q_ptr = NULL; 5507 5508 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5509 5510 return (0); 5511 } 5512 5513 /* 5514 * This is called as part of close() for both IP and UDP 5515 * in order to quiesce the conn. 5516 */ 5517 void 5518 ip_quiesce_conn(conn_t *connp) 5519 { 5520 boolean_t drain_cleanup_reqd = B_FALSE; 5521 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5522 boolean_t ilg_cleanup_reqd = B_FALSE; 5523 ip_stack_t *ipst; 5524 5525 ASSERT(!IPCL_IS_TCP(connp)); 5526 ipst = connp->conn_netstack->netstack_ip; 5527 5528 /* 5529 * Mark the conn as closing, and this conn must not be 5530 * inserted in future into any list. Eg. conn_drain_insert(), 5531 * won't insert this conn into the conn_drain_list. 5532 * Similarly ill_pending_mp_add() will not add any mp to 5533 * the pending mp list, after this conn has started closing. 5534 * 5535 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5536 * cannot get set henceforth. 5537 */ 5538 mutex_enter(&connp->conn_lock); 5539 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5540 connp->conn_state_flags |= CONN_CLOSING; 5541 if (connp->conn_idl != NULL) 5542 drain_cleanup_reqd = B_TRUE; 5543 if (connp->conn_oper_pending_ill != NULL) 5544 conn_ioctl_cleanup_reqd = B_TRUE; 5545 if (connp->conn_ilg_inuse != 0) 5546 ilg_cleanup_reqd = B_TRUE; 5547 mutex_exit(&connp->conn_lock); 5548 5549 if (IPCL_IS_UDP(connp)) 5550 udp_quiesce_conn(connp); 5551 5552 if (conn_ioctl_cleanup_reqd) 5553 conn_ioctl_cleanup(connp); 5554 5555 if (is_system_labeled() && connp->conn_anon_port) { 5556 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5557 connp->conn_mlp_type, connp->conn_ulp, 5558 ntohs(connp->conn_lport), B_FALSE); 5559 connp->conn_anon_port = 0; 5560 } 5561 connp->conn_mlp_type = mlptSingle; 5562 5563 /* 5564 * Remove this conn from any fanout list it is on. 5565 * and then wait for any threads currently operating 5566 * on this endpoint to finish 5567 */ 5568 ipcl_hash_remove(connp); 5569 5570 /* 5571 * Remove this conn from the drain list, and do 5572 * any other cleanup that may be required. 5573 * (Only non-tcp streams may have a non-null conn_idl. 5574 * TCP streams are never flow controlled, and 5575 * conn_idl will be null) 5576 */ 5577 if (drain_cleanup_reqd) 5578 conn_drain_tail(connp, B_TRUE); 5579 5580 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5581 connp->conn_wq == ipst->ips_ip_g_mrouter) 5582 (void) ip_mrouter_done(NULL, ipst); 5583 5584 if (ilg_cleanup_reqd) 5585 ilg_delete_all(connp); 5586 5587 conn_delete_ire(connp, NULL); 5588 5589 /* 5590 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5591 * callers from write side can't be there now because close 5592 * is in progress. The only other caller is ipcl_walk 5593 * which checks for the condemned flag. 5594 */ 5595 mutex_enter(&connp->conn_lock); 5596 connp->conn_state_flags |= CONN_CONDEMNED; 5597 while (connp->conn_ref != 1) 5598 cv_wait(&connp->conn_cv, &connp->conn_lock); 5599 connp->conn_state_flags |= CONN_QUIESCED; 5600 mutex_exit(&connp->conn_lock); 5601 } 5602 5603 /* ARGSUSED */ 5604 int 5605 ip_close(queue_t *q, int flags) 5606 { 5607 conn_t *connp; 5608 5609 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5610 5611 /* 5612 * Call the appropriate delete routine depending on whether this is 5613 * a module or device. 5614 */ 5615 if (WR(q)->q_next != NULL) { 5616 /* This is a module close */ 5617 return (ip_modclose((ill_t *)q->q_ptr)); 5618 } 5619 5620 connp = q->q_ptr; 5621 ip_quiesce_conn(connp); 5622 5623 qprocsoff(q); 5624 5625 /* 5626 * Now we are truly single threaded on this stream, and can 5627 * delete the things hanging off the connp, and finally the connp. 5628 * We removed this connp from the fanout list, it cannot be 5629 * accessed thru the fanouts, and we already waited for the 5630 * conn_ref to drop to 0. We are already in close, so 5631 * there cannot be any other thread from the top. qprocsoff 5632 * has completed, and service has completed or won't run in 5633 * future. 5634 */ 5635 ASSERT(connp->conn_ref == 1); 5636 5637 /* 5638 * A conn which was previously marked as IPCL_UDP cannot 5639 * retain the flag because it would have been cleared by 5640 * udp_close(). 5641 */ 5642 ASSERT(!IPCL_IS_UDP(connp)); 5643 5644 if (connp->conn_latch != NULL) { 5645 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5646 connp->conn_latch = NULL; 5647 } 5648 if (connp->conn_policy != NULL) { 5649 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5650 connp->conn_policy = NULL; 5651 } 5652 if (connp->conn_ipsec_opt_mp != NULL) { 5653 freemsg(connp->conn_ipsec_opt_mp); 5654 connp->conn_ipsec_opt_mp = NULL; 5655 } 5656 5657 inet_minor_free(ip_minor_arena, connp->conn_dev); 5658 5659 connp->conn_ref--; 5660 ipcl_conn_destroy(connp); 5661 5662 q->q_ptr = WR(q)->q_ptr = NULL; 5663 return (0); 5664 } 5665 5666 int 5667 ip_snmpmod_close(queue_t *q) 5668 { 5669 conn_t *connp = Q_TO_CONN(q); 5670 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5671 5672 qprocsoff(q); 5673 5674 if (connp->conn_flags & IPCL_UDPMOD) 5675 udp_close_free(connp); 5676 5677 if (connp->conn_cred != NULL) { 5678 crfree(connp->conn_cred); 5679 connp->conn_cred = NULL; 5680 } 5681 CONN_DEC_REF(connp); 5682 q->q_ptr = WR(q)->q_ptr = NULL; 5683 return (0); 5684 } 5685 5686 /* 5687 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5688 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5689 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5690 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5691 * queues as we never enqueue messages there and we don't handle any ioctls. 5692 * Everything else is freed. 5693 */ 5694 void 5695 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5696 { 5697 conn_t *connp = q->q_ptr; 5698 pfi_t setfn; 5699 pfi_t getfn; 5700 5701 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5702 5703 switch (DB_TYPE(mp)) { 5704 case M_PROTO: 5705 case M_PCPROTO: 5706 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5707 ((((union T_primitives *)mp->b_rptr)->type == 5708 T_SVR4_OPTMGMT_REQ) || 5709 (((union T_primitives *)mp->b_rptr)->type == 5710 T_OPTMGMT_REQ))) { 5711 /* 5712 * This is the only TPI primitive supported. Its 5713 * handling does not require tcp_t, but it does require 5714 * conn_t to check permissions. 5715 */ 5716 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5717 5718 if (connp->conn_flags & IPCL_TCPMOD) { 5719 setfn = tcp_snmp_set; 5720 getfn = tcp_snmp_get; 5721 } else { 5722 setfn = udp_snmp_set; 5723 getfn = udp_snmp_get; 5724 } 5725 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5726 freemsg(mp); 5727 return; 5728 } 5729 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5730 != NULL) 5731 qreply(q, mp); 5732 break; 5733 case M_FLUSH: 5734 case M_IOCTL: 5735 putnext(q, mp); 5736 break; 5737 default: 5738 freemsg(mp); 5739 break; 5740 } 5741 } 5742 5743 /* Return the IP checksum for the IP header at "iph". */ 5744 uint16_t 5745 ip_csum_hdr(ipha_t *ipha) 5746 { 5747 uint16_t *uph; 5748 uint32_t sum; 5749 int opt_len; 5750 5751 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5752 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5753 uph = (uint16_t *)ipha; 5754 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5755 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5756 if (opt_len > 0) { 5757 do { 5758 sum += uph[10]; 5759 sum += uph[11]; 5760 uph += 2; 5761 } while (--opt_len); 5762 } 5763 sum = (sum & 0xFFFF) + (sum >> 16); 5764 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5765 if (sum == 0xffff) 5766 sum = 0; 5767 return ((uint16_t)sum); 5768 } 5769 5770 /* 5771 * Called when the module is about to be unloaded 5772 */ 5773 void 5774 ip_ddi_destroy(void) 5775 { 5776 tnet_fini(); 5777 5778 sctp_ddi_g_destroy(); 5779 tcp_ddi_g_destroy(); 5780 ipsec_policy_g_destroy(); 5781 ipcl_g_destroy(); 5782 ip_net_g_destroy(); 5783 ip_ire_g_fini(); 5784 inet_minor_destroy(ip_minor_arena); 5785 5786 netstack_unregister(NS_IP); 5787 } 5788 5789 /* 5790 * First step in cleanup. 5791 */ 5792 /* ARGSUSED */ 5793 static void 5794 ip_stack_shutdown(netstackid_t stackid, void *arg) 5795 { 5796 ip_stack_t *ipst = (ip_stack_t *)arg; 5797 5798 #ifdef NS_DEBUG 5799 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5800 #endif 5801 5802 /* Get rid of loopback interfaces and their IREs */ 5803 ip_loopback_cleanup(ipst); 5804 } 5805 5806 /* 5807 * Free the IP stack instance. 5808 */ 5809 static void 5810 ip_stack_fini(netstackid_t stackid, void *arg) 5811 { 5812 ip_stack_t *ipst = (ip_stack_t *)arg; 5813 int ret; 5814 5815 #ifdef NS_DEBUG 5816 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5817 #endif 5818 ipv4_hook_destroy(ipst); 5819 ipv6_hook_destroy(ipst); 5820 ip_net_destroy(ipst); 5821 5822 rw_destroy(&ipst->ips_srcid_lock); 5823 5824 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5825 ipst->ips_ip_mibkp = NULL; 5826 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5827 ipst->ips_icmp_mibkp = NULL; 5828 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5829 ipst->ips_ip_kstat = NULL; 5830 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5831 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5832 ipst->ips_ip6_kstat = NULL; 5833 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5834 5835 nd_free(&ipst->ips_ip_g_nd); 5836 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5837 ipst->ips_param_arr = NULL; 5838 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5839 ipst->ips_ndp_arr = NULL; 5840 5841 ip_mrouter_stack_destroy(ipst); 5842 5843 mutex_destroy(&ipst->ips_ip_mi_lock); 5844 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5845 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5846 rw_destroy(&ipst->ips_ip_g_nd_lock); 5847 5848 ret = untimeout(ipst->ips_igmp_timeout_id); 5849 if (ret == -1) { 5850 ASSERT(ipst->ips_igmp_timeout_id == 0); 5851 } else { 5852 ASSERT(ipst->ips_igmp_timeout_id != 0); 5853 ipst->ips_igmp_timeout_id = 0; 5854 } 5855 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5856 if (ret == -1) { 5857 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5858 } else { 5859 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5860 ipst->ips_igmp_slowtimeout_id = 0; 5861 } 5862 ret = untimeout(ipst->ips_mld_timeout_id); 5863 if (ret == -1) { 5864 ASSERT(ipst->ips_mld_timeout_id == 0); 5865 } else { 5866 ASSERT(ipst->ips_mld_timeout_id != 0); 5867 ipst->ips_mld_timeout_id = 0; 5868 } 5869 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5870 if (ret == -1) { 5871 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5872 } else { 5873 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5874 ipst->ips_mld_slowtimeout_id = 0; 5875 } 5876 ret = untimeout(ipst->ips_ip_ire_expire_id); 5877 if (ret == -1) { 5878 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5879 } else { 5880 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5881 ipst->ips_ip_ire_expire_id = 0; 5882 } 5883 5884 mutex_destroy(&ipst->ips_igmp_timer_lock); 5885 mutex_destroy(&ipst->ips_mld_timer_lock); 5886 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5887 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5888 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5889 rw_destroy(&ipst->ips_ill_g_lock); 5890 5891 ip_ire_fini(ipst); 5892 ip6_asp_free(ipst); 5893 conn_drain_fini(ipst); 5894 ipcl_destroy(ipst); 5895 5896 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5897 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5898 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5899 ipst->ips_ndp4 = NULL; 5900 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5901 ipst->ips_ndp6 = NULL; 5902 5903 if (ipst->ips_loopback_ksp != NULL) { 5904 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5905 ipst->ips_loopback_ksp = NULL; 5906 } 5907 5908 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5909 ipst->ips_phyint_g_list = NULL; 5910 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5911 ipst->ips_ill_g_heads = NULL; 5912 5913 kmem_free(ipst, sizeof (*ipst)); 5914 } 5915 5916 /* 5917 * Called when the IP kernel module is loaded into the kernel 5918 */ 5919 void 5920 ip_ddi_init(void) 5921 { 5922 TCP6_MAJ = ddi_name_to_major(TCP6); 5923 TCP_MAJ = ddi_name_to_major(TCP); 5924 SCTP_MAJ = ddi_name_to_major(SCTP); 5925 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5926 5927 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5928 5929 /* 5930 * For IP and TCP the minor numbers should start from 2 since we have 4 5931 * initial devices: ip, ip6, tcp, tcp6. 5932 */ 5933 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5934 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5935 cmn_err(CE_PANIC, 5936 "ip_ddi_init: ip_minor_arena creation failed\n"); 5937 } 5938 5939 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5940 5941 ipcl_g_init(); 5942 ip_ire_g_init(); 5943 ip_net_g_init(); 5944 5945 #ifdef ILL_DEBUG 5946 /* Default cleanup function */ 5947 ip_cleanup_func = ip_thread_exit; 5948 #endif 5949 5950 /* 5951 * We want to be informed each time a stack is created or 5952 * destroyed in the kernel, so we can maintain the 5953 * set of udp_stack_t's. 5954 */ 5955 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5956 ip_stack_fini); 5957 5958 ipsec_policy_g_init(); 5959 tcp_ddi_g_init(); 5960 sctp_ddi_g_init(); 5961 5962 tnet_init(); 5963 } 5964 5965 /* 5966 * Initialize the IP stack instance. 5967 */ 5968 static void * 5969 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5970 { 5971 ip_stack_t *ipst; 5972 ipparam_t *pa; 5973 ipndp_t *na; 5974 5975 #ifdef NS_DEBUG 5976 printf("ip_stack_init(stack %d)\n", stackid); 5977 #endif 5978 5979 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5980 ipst->ips_netstack = ns; 5981 5982 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5983 KM_SLEEP); 5984 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5985 KM_SLEEP); 5986 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5987 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5988 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5989 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5990 5991 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5992 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5993 ipst->ips_igmp_deferred_next = INFINITY; 5994 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5995 ipst->ips_mld_deferred_next = INFINITY; 5996 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5997 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5998 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5999 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6000 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6001 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6002 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6003 6004 ipcl_init(ipst); 6005 ip_ire_init(ipst); 6006 ip6_asp_init(ipst); 6007 ipif_init(ipst); 6008 conn_drain_init(ipst); 6009 ip_mrouter_stack_init(ipst); 6010 6011 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6012 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6013 6014 ipst->ips_ip_multirt_log_interval = 1000; 6015 6016 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6017 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6018 ipst->ips_ill_index = 1; 6019 6020 ipst->ips_saved_ip_g_forward = -1; 6021 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6022 6023 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6024 ipst->ips_param_arr = pa; 6025 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6026 6027 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6028 ipst->ips_ndp_arr = na; 6029 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6030 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6031 (caddr_t)&ipst->ips_ip_g_forward; 6032 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6033 (caddr_t)&ipst->ips_ipv6_forward; 6034 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6035 "ip_cgtp_filter") == 0); 6036 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6037 (caddr_t)&ip_cgtp_filter; 6038 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6039 "ipmp_hook_emulation") == 0); 6040 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6041 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6042 6043 (void) ip_param_register(&ipst->ips_ip_g_nd, 6044 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6045 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6046 6047 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6048 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6049 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6050 ipst->ips_ip6_kstat = 6051 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6052 6053 ipst->ips_ipmp_enable_failback = B_TRUE; 6054 6055 ipst->ips_ip_src_id = 1; 6056 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6057 6058 ip_net_init(ipst, ns); 6059 ipv4_hook_init(ipst); 6060 ipv6_hook_init(ipst); 6061 6062 return (ipst); 6063 } 6064 6065 /* 6066 * Allocate and initialize a DLPI template of the specified length. (May be 6067 * called as writer.) 6068 */ 6069 mblk_t * 6070 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6071 { 6072 mblk_t *mp; 6073 6074 mp = allocb(len, BPRI_MED); 6075 if (!mp) 6076 return (NULL); 6077 6078 /* 6079 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6080 * of which we don't seem to use) are sent with M_PCPROTO, and 6081 * that other DLPI are M_PROTO. 6082 */ 6083 if (prim == DL_INFO_REQ) { 6084 mp->b_datap->db_type = M_PCPROTO; 6085 } else { 6086 mp->b_datap->db_type = M_PROTO; 6087 } 6088 6089 mp->b_wptr = mp->b_rptr + len; 6090 bzero(mp->b_rptr, len); 6091 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6092 return (mp); 6093 } 6094 6095 const char * 6096 dlpi_prim_str(int prim) 6097 { 6098 switch (prim) { 6099 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6100 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6101 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6102 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6103 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6104 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6105 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6106 case DL_OK_ACK: return ("DL_OK_ACK"); 6107 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6108 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6109 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6110 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6111 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6112 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6113 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6114 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6115 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6116 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6117 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6118 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6119 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6120 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6121 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6122 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6123 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6124 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6125 default: return ("<unknown primitive>"); 6126 } 6127 } 6128 6129 const char * 6130 dlpi_err_str(int err) 6131 { 6132 switch (err) { 6133 case DL_ACCESS: return ("DL_ACCESS"); 6134 case DL_BADADDR: return ("DL_BADADDR"); 6135 case DL_BADCORR: return ("DL_BADCORR"); 6136 case DL_BADDATA: return ("DL_BADDATA"); 6137 case DL_BADPPA: return ("DL_BADPPA"); 6138 case DL_BADPRIM: return ("DL_BADPRIM"); 6139 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6140 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6141 case DL_BADSAP: return ("DL_BADSAP"); 6142 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6143 case DL_BOUND: return ("DL_BOUND"); 6144 case DL_INITFAILED: return ("DL_INITFAILED"); 6145 case DL_NOADDR: return ("DL_NOADDR"); 6146 case DL_NOTINIT: return ("DL_NOTINIT"); 6147 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6148 case DL_SYSERR: return ("DL_SYSERR"); 6149 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6150 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6151 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6152 case DL_TOOMANY: return ("DL_TOOMANY"); 6153 case DL_NOTENAB: return ("DL_NOTENAB"); 6154 case DL_BUSY: return ("DL_BUSY"); 6155 case DL_NOAUTO: return ("DL_NOAUTO"); 6156 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6157 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6158 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6159 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6160 case DL_PENDING: return ("DL_PENDING"); 6161 default: return ("<unknown error>"); 6162 } 6163 } 6164 6165 /* 6166 * Debug formatting routine. Returns a character string representation of the 6167 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6168 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6169 * 6170 * Once the ndd table-printing interfaces are removed, this can be changed to 6171 * standard dotted-decimal form. 6172 */ 6173 char * 6174 ip_dot_addr(ipaddr_t addr, char *buf) 6175 { 6176 uint8_t *ap = (uint8_t *)&addr; 6177 6178 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6179 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6180 return (buf); 6181 } 6182 6183 /* 6184 * Write the given MAC address as a printable string in the usual colon- 6185 * separated format. 6186 */ 6187 const char * 6188 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6189 { 6190 char *bp; 6191 6192 if (alen == 0 || buflen < 4) 6193 return ("?"); 6194 bp = buf; 6195 for (;;) { 6196 /* 6197 * If there are more MAC address bytes available, but we won't 6198 * have any room to print them, then add "..." to the string 6199 * instead. See below for the 'magic number' explanation. 6200 */ 6201 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6202 (void) strcpy(bp, "..."); 6203 break; 6204 } 6205 (void) sprintf(bp, "%02x", *addr++); 6206 bp += 2; 6207 if (--alen == 0) 6208 break; 6209 *bp++ = ':'; 6210 buflen -= 3; 6211 /* 6212 * At this point, based on the first 'if' statement above, 6213 * either alen == 1 and buflen >= 3, or alen > 1 and 6214 * buflen >= 4. The first case leaves room for the final "xx" 6215 * number and trailing NUL byte. The second leaves room for at 6216 * least "...". Thus the apparently 'magic' numbers chosen for 6217 * that statement. 6218 */ 6219 } 6220 return (buf); 6221 } 6222 6223 /* 6224 * Send an ICMP error after patching up the packet appropriately. Returns 6225 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6226 */ 6227 static boolean_t 6228 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6229 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6230 zoneid_t zoneid, ip_stack_t *ipst) 6231 { 6232 ipha_t *ipha; 6233 mblk_t *first_mp; 6234 boolean_t secure; 6235 unsigned char db_type; 6236 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6237 6238 first_mp = mp; 6239 if (mctl_present) { 6240 mp = mp->b_cont; 6241 secure = ipsec_in_is_secure(first_mp); 6242 ASSERT(mp != NULL); 6243 } else { 6244 /* 6245 * If this is an ICMP error being reported - which goes 6246 * up as M_CTLs, we need to convert them to M_DATA till 6247 * we finish checking with global policy because 6248 * ipsec_check_global_policy() assumes M_DATA as clear 6249 * and M_CTL as secure. 6250 */ 6251 db_type = DB_TYPE(mp); 6252 DB_TYPE(mp) = M_DATA; 6253 secure = B_FALSE; 6254 } 6255 /* 6256 * We are generating an icmp error for some inbound packet. 6257 * Called from all ip_fanout_(udp, tcp, proto) functions. 6258 * Before we generate an error, check with global policy 6259 * to see whether this is allowed to enter the system. As 6260 * there is no "conn", we are checking with global policy. 6261 */ 6262 ipha = (ipha_t *)mp->b_rptr; 6263 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6264 first_mp = ipsec_check_global_policy(first_mp, NULL, 6265 ipha, NULL, mctl_present, ipst->ips_netstack); 6266 if (first_mp == NULL) 6267 return (B_FALSE); 6268 } 6269 6270 if (!mctl_present) 6271 DB_TYPE(mp) = db_type; 6272 6273 if (flags & IP_FF_SEND_ICMP) { 6274 if (flags & IP_FF_HDR_COMPLETE) { 6275 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6276 freemsg(first_mp); 6277 return (B_TRUE); 6278 } 6279 } 6280 if (flags & IP_FF_CKSUM) { 6281 /* 6282 * Have to correct checksum since 6283 * the packet might have been 6284 * fragmented and the reassembly code in ip_rput 6285 * does not restore the IP checksum. 6286 */ 6287 ipha->ipha_hdr_checksum = 0; 6288 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6289 } 6290 switch (icmp_type) { 6291 case ICMP_DEST_UNREACHABLE: 6292 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6293 ipst); 6294 break; 6295 default: 6296 freemsg(first_mp); 6297 break; 6298 } 6299 } else { 6300 freemsg(first_mp); 6301 return (B_FALSE); 6302 } 6303 6304 return (B_TRUE); 6305 } 6306 6307 /* 6308 * Used to send an ICMP error message when a packet is received for 6309 * a protocol that is not supported. The mblk passed as argument 6310 * is consumed by this function. 6311 */ 6312 void 6313 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6314 ip_stack_t *ipst) 6315 { 6316 mblk_t *mp; 6317 ipha_t *ipha; 6318 ill_t *ill; 6319 ipsec_in_t *ii; 6320 6321 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6322 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6323 6324 mp = ipsec_mp->b_cont; 6325 ipsec_mp->b_cont = NULL; 6326 ipha = (ipha_t *)mp->b_rptr; 6327 /* Get ill from index in ipsec_in_t. */ 6328 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6329 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6330 ipst); 6331 if (ill != NULL) { 6332 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6333 if (ip_fanout_send_icmp(q, mp, flags, 6334 ICMP_DEST_UNREACHABLE, 6335 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6336 BUMP_MIB(ill->ill_ip_mib, 6337 ipIfStatsInUnknownProtos); 6338 } 6339 } else { 6340 if (ip_fanout_send_icmp_v6(q, mp, flags, 6341 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6342 0, B_FALSE, zoneid, ipst)) { 6343 BUMP_MIB(ill->ill_ip_mib, 6344 ipIfStatsInUnknownProtos); 6345 } 6346 } 6347 ill_refrele(ill); 6348 } else { /* re-link for the freemsg() below. */ 6349 ipsec_mp->b_cont = mp; 6350 } 6351 6352 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6353 freemsg(ipsec_mp); 6354 } 6355 6356 /* 6357 * See if the inbound datagram has had IPsec processing applied to it. 6358 */ 6359 boolean_t 6360 ipsec_in_is_secure(mblk_t *ipsec_mp) 6361 { 6362 ipsec_in_t *ii; 6363 6364 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6365 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6366 6367 if (ii->ipsec_in_loopback) { 6368 return (ii->ipsec_in_secure); 6369 } else { 6370 return (ii->ipsec_in_ah_sa != NULL || 6371 ii->ipsec_in_esp_sa != NULL || 6372 ii->ipsec_in_decaps); 6373 } 6374 } 6375 6376 /* 6377 * Handle protocols with which IP is less intimate. There 6378 * can be more than one stream bound to a particular 6379 * protocol. When this is the case, normally each one gets a copy 6380 * of any incoming packets. 6381 * 6382 * IPSEC NOTE : 6383 * 6384 * Don't allow a secure packet going up a non-secure connection. 6385 * We don't allow this because 6386 * 6387 * 1) Reply might go out in clear which will be dropped at 6388 * the sending side. 6389 * 2) If the reply goes out in clear it will give the 6390 * adversary enough information for getting the key in 6391 * most of the cases. 6392 * 6393 * Moreover getting a secure packet when we expect clear 6394 * implies that SA's were added without checking for 6395 * policy on both ends. This should not happen once ISAKMP 6396 * is used to negotiate SAs as SAs will be added only after 6397 * verifying the policy. 6398 * 6399 * NOTE : If the packet was tunneled and not multicast we only send 6400 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6401 * back to delivering packets to AF_INET6 raw sockets. 6402 * 6403 * IPQoS Notes: 6404 * Once we have determined the client, invoke IPPF processing. 6405 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6406 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6407 * ip_policy will be false. 6408 * 6409 * Zones notes: 6410 * Currently only applications in the global zone can create raw sockets for 6411 * protocols other than ICMP. So unlike the broadcast / multicast case of 6412 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6413 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6414 */ 6415 static void 6416 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6417 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6418 zoneid_t zoneid) 6419 { 6420 queue_t *rq; 6421 mblk_t *mp1, *first_mp1; 6422 uint_t protocol = ipha->ipha_protocol; 6423 ipaddr_t dst; 6424 boolean_t one_only; 6425 mblk_t *first_mp = mp; 6426 boolean_t secure; 6427 uint32_t ill_index; 6428 conn_t *connp, *first_connp, *next_connp; 6429 connf_t *connfp; 6430 boolean_t shared_addr; 6431 mib2_ipIfStatsEntry_t *mibptr; 6432 ip_stack_t *ipst = recv_ill->ill_ipst; 6433 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6434 6435 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6436 if (mctl_present) { 6437 mp = first_mp->b_cont; 6438 secure = ipsec_in_is_secure(first_mp); 6439 ASSERT(mp != NULL); 6440 } else { 6441 secure = B_FALSE; 6442 } 6443 dst = ipha->ipha_dst; 6444 /* 6445 * If the packet was tunneled and not multicast we only send to it 6446 * the first match. 6447 */ 6448 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6449 !CLASSD(dst)); 6450 6451 shared_addr = (zoneid == ALL_ZONES); 6452 if (shared_addr) { 6453 /* 6454 * We don't allow multilevel ports for raw IP, so no need to 6455 * check for that here. 6456 */ 6457 zoneid = tsol_packet_to_zoneid(mp); 6458 } 6459 6460 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6461 mutex_enter(&connfp->connf_lock); 6462 connp = connfp->connf_head; 6463 for (connp = connfp->connf_head; connp != NULL; 6464 connp = connp->conn_next) { 6465 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6466 zoneid) && 6467 (!is_system_labeled() || 6468 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6469 connp))) { 6470 break; 6471 } 6472 } 6473 6474 if (connp == NULL || connp->conn_upq == NULL) { 6475 /* 6476 * No one bound to these addresses. Is 6477 * there a client that wants all 6478 * unclaimed datagrams? 6479 */ 6480 mutex_exit(&connfp->connf_lock); 6481 /* 6482 * Check for IPPROTO_ENCAP... 6483 */ 6484 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6485 /* 6486 * If an IPsec mblk is here on a multicast 6487 * tunnel (using ip_mroute stuff), check policy here, 6488 * THEN ship off to ip_mroute_decap(). 6489 * 6490 * BTW, If I match a configured IP-in-IP 6491 * tunnel, this path will not be reached, and 6492 * ip_mroute_decap will never be called. 6493 */ 6494 first_mp = ipsec_check_global_policy(first_mp, connp, 6495 ipha, NULL, mctl_present, ipst->ips_netstack); 6496 if (first_mp != NULL) { 6497 if (mctl_present) 6498 freeb(first_mp); 6499 ip_mroute_decap(q, mp, ill); 6500 } /* Else we already freed everything! */ 6501 } else { 6502 /* 6503 * Otherwise send an ICMP protocol unreachable. 6504 */ 6505 if (ip_fanout_send_icmp(q, first_mp, flags, 6506 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6507 mctl_present, zoneid, ipst)) { 6508 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6509 } 6510 } 6511 return; 6512 } 6513 CONN_INC_REF(connp); 6514 first_connp = connp; 6515 6516 /* 6517 * Only send message to one tunnel driver by immediately 6518 * terminating the loop. 6519 */ 6520 connp = one_only ? NULL : connp->conn_next; 6521 6522 for (;;) { 6523 while (connp != NULL) { 6524 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6525 flags, zoneid) && 6526 (!is_system_labeled() || 6527 tsol_receive_local(mp, &dst, IPV4_VERSION, 6528 shared_addr, connp))) 6529 break; 6530 connp = connp->conn_next; 6531 } 6532 6533 /* 6534 * Copy the packet. 6535 */ 6536 if (connp == NULL || connp->conn_upq == NULL || 6537 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6538 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6539 /* 6540 * No more interested clients or memory 6541 * allocation failed 6542 */ 6543 connp = first_connp; 6544 break; 6545 } 6546 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6547 CONN_INC_REF(connp); 6548 mutex_exit(&connfp->connf_lock); 6549 rq = connp->conn_rq; 6550 if (!canputnext(rq)) { 6551 if (flags & IP_FF_RAWIP) { 6552 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6553 } else { 6554 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6555 } 6556 6557 freemsg(first_mp1); 6558 } else { 6559 /* 6560 * Don't enforce here if we're an actual tunnel - 6561 * let "tun" do it instead. 6562 */ 6563 if (!IPCL_IS_IPTUN(connp) && 6564 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6565 secure)) { 6566 first_mp1 = ipsec_check_inbound_policy 6567 (first_mp1, connp, ipha, NULL, 6568 mctl_present); 6569 } 6570 if (first_mp1 != NULL) { 6571 int in_flags = 0; 6572 /* 6573 * ip_fanout_proto also gets called from 6574 * icmp_inbound_error_fanout, in which case 6575 * the msg type is M_CTL. Don't add info 6576 * in this case for the time being. In future 6577 * when there is a need for knowing the 6578 * inbound iface index for ICMP error msgs, 6579 * then this can be changed. 6580 */ 6581 if (connp->conn_recvif) 6582 in_flags = IPF_RECVIF; 6583 /* 6584 * The ULP may support IP_RECVPKTINFO for both 6585 * IP v4 and v6 so pass the appropriate argument 6586 * based on conn IP version. 6587 */ 6588 if (connp->conn_ip_recvpktinfo) { 6589 if (connp->conn_af_isv6) { 6590 /* 6591 * V6 only needs index 6592 */ 6593 in_flags |= IPF_RECVIF; 6594 } else { 6595 /* 6596 * V4 needs index + 6597 * matching address. 6598 */ 6599 in_flags |= IPF_RECVADDR; 6600 } 6601 } 6602 if ((in_flags != 0) && 6603 (mp->b_datap->db_type != M_CTL)) { 6604 /* 6605 * the actual data will be 6606 * contained in b_cont upon 6607 * successful return of the 6608 * following call else 6609 * original mblk is returned 6610 */ 6611 ASSERT(recv_ill != NULL); 6612 mp1 = ip_add_info(mp1, recv_ill, 6613 in_flags, IPCL_ZONEID(connp), ipst); 6614 } 6615 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6616 if (mctl_present) 6617 freeb(first_mp1); 6618 putnext(rq, mp1); 6619 } 6620 } 6621 mutex_enter(&connfp->connf_lock); 6622 /* Follow the next pointer before releasing the conn. */ 6623 next_connp = connp->conn_next; 6624 CONN_DEC_REF(connp); 6625 connp = next_connp; 6626 } 6627 6628 /* Last one. Send it upstream. */ 6629 mutex_exit(&connfp->connf_lock); 6630 6631 /* 6632 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6633 * will be set to false. 6634 */ 6635 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6636 ill_index = ill->ill_phyint->phyint_ifindex; 6637 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6638 if (mp == NULL) { 6639 CONN_DEC_REF(connp); 6640 if (mctl_present) { 6641 freeb(first_mp); 6642 } 6643 return; 6644 } 6645 } 6646 6647 rq = connp->conn_rq; 6648 if (!canputnext(rq)) { 6649 if (flags & IP_FF_RAWIP) { 6650 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6651 } else { 6652 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6653 } 6654 6655 freemsg(first_mp); 6656 } else { 6657 if (IPCL_IS_IPTUN(connp)) { 6658 /* 6659 * Tunneled packet. We enforce policy in the tunnel 6660 * module itself. 6661 * 6662 * Send the WHOLE packet up (incl. IPSEC_IN) without 6663 * a policy check. 6664 */ 6665 putnext(rq, first_mp); 6666 CONN_DEC_REF(connp); 6667 return; 6668 } 6669 6670 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6671 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6672 ipha, NULL, mctl_present); 6673 } 6674 6675 if (first_mp != NULL) { 6676 int in_flags = 0; 6677 6678 /* 6679 * ip_fanout_proto also gets called 6680 * from icmp_inbound_error_fanout, in 6681 * which case the msg type is M_CTL. 6682 * Don't add info in this case for time 6683 * being. In future when there is a 6684 * need for knowing the inbound iface 6685 * index for ICMP error msgs, then this 6686 * can be changed 6687 */ 6688 if (connp->conn_recvif) 6689 in_flags = IPF_RECVIF; 6690 if (connp->conn_ip_recvpktinfo) { 6691 if (connp->conn_af_isv6) { 6692 /* 6693 * V6 only needs index 6694 */ 6695 in_flags |= IPF_RECVIF; 6696 } else { 6697 /* 6698 * V4 needs index + 6699 * matching address. 6700 */ 6701 in_flags |= IPF_RECVADDR; 6702 } 6703 } 6704 if ((in_flags != 0) && 6705 (mp->b_datap->db_type != M_CTL)) { 6706 6707 /* 6708 * the actual data will be contained in 6709 * b_cont upon successful return 6710 * of the following call else original 6711 * mblk is returned 6712 */ 6713 ASSERT(recv_ill != NULL); 6714 mp = ip_add_info(mp, recv_ill, 6715 in_flags, IPCL_ZONEID(connp), ipst); 6716 } 6717 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6718 putnext(rq, mp); 6719 if (mctl_present) 6720 freeb(first_mp); 6721 } 6722 } 6723 CONN_DEC_REF(connp); 6724 } 6725 6726 /* 6727 * Fanout for TCP packets 6728 * The caller puts <fport, lport> in the ports parameter. 6729 * 6730 * IPQoS Notes 6731 * Before sending it to the client, invoke IPPF processing. 6732 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6733 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6734 * ip_policy is false. 6735 */ 6736 static void 6737 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6738 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6739 { 6740 mblk_t *first_mp; 6741 boolean_t secure; 6742 uint32_t ill_index; 6743 int ip_hdr_len; 6744 tcph_t *tcph; 6745 boolean_t syn_present = B_FALSE; 6746 conn_t *connp; 6747 ip_stack_t *ipst = recv_ill->ill_ipst; 6748 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6749 6750 ASSERT(recv_ill != NULL); 6751 6752 first_mp = mp; 6753 if (mctl_present) { 6754 ASSERT(first_mp->b_datap->db_type == M_CTL); 6755 mp = first_mp->b_cont; 6756 secure = ipsec_in_is_secure(first_mp); 6757 ASSERT(mp != NULL); 6758 } else { 6759 secure = B_FALSE; 6760 } 6761 6762 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6763 6764 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6765 zoneid, ipst)) == NULL) { 6766 /* 6767 * No connected connection or listener. Send a 6768 * TH_RST via tcp_xmit_listeners_reset. 6769 */ 6770 6771 /* Initiate IPPf processing, if needed. */ 6772 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6773 uint32_t ill_index; 6774 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6775 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6776 if (first_mp == NULL) 6777 return; 6778 } 6779 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6780 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6781 zoneid)); 6782 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6783 ipst->ips_netstack->netstack_tcp); 6784 return; 6785 } 6786 6787 /* 6788 * Allocate the SYN for the TCP connection here itself 6789 */ 6790 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6791 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6792 if (IPCL_IS_TCP(connp)) { 6793 squeue_t *sqp; 6794 6795 /* 6796 * For fused tcp loopback, assign the eager's 6797 * squeue to be that of the active connect's. 6798 * Note that we don't check for IP_FF_LOOPBACK 6799 * here since this routine gets called only 6800 * for loopback (unlike the IPv6 counterpart). 6801 */ 6802 ASSERT(Q_TO_CONN(q) != NULL); 6803 if (do_tcp_fusion && 6804 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6805 !secure && 6806 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6807 IPCL_IS_TCP(Q_TO_CONN(q))) { 6808 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6809 sqp = Q_TO_CONN(q)->conn_sqp; 6810 } else { 6811 sqp = IP_SQUEUE_GET(lbolt); 6812 } 6813 6814 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6815 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6816 syn_present = B_TRUE; 6817 } 6818 } 6819 6820 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6821 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6822 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6823 if ((flags & TH_RST) || (flags & TH_URG)) { 6824 CONN_DEC_REF(connp); 6825 freemsg(first_mp); 6826 return; 6827 } 6828 if (flags & TH_ACK) { 6829 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6830 ipst->ips_netstack->netstack_tcp); 6831 CONN_DEC_REF(connp); 6832 return; 6833 } 6834 6835 CONN_DEC_REF(connp); 6836 freemsg(first_mp); 6837 return; 6838 } 6839 6840 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6841 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6842 NULL, mctl_present); 6843 if (first_mp == NULL) { 6844 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6845 CONN_DEC_REF(connp); 6846 return; 6847 } 6848 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6849 ASSERT(syn_present); 6850 if (mctl_present) { 6851 ASSERT(first_mp != mp); 6852 first_mp->b_datap->db_struioflag |= 6853 STRUIO_POLICY; 6854 } else { 6855 ASSERT(first_mp == mp); 6856 mp->b_datap->db_struioflag &= 6857 ~STRUIO_EAGER; 6858 mp->b_datap->db_struioflag |= 6859 STRUIO_POLICY; 6860 } 6861 } else { 6862 /* 6863 * Discard first_mp early since we're dealing with a 6864 * fully-connected conn_t and tcp doesn't do policy in 6865 * this case. 6866 */ 6867 if (mctl_present) { 6868 freeb(first_mp); 6869 mctl_present = B_FALSE; 6870 } 6871 first_mp = mp; 6872 } 6873 } 6874 6875 /* 6876 * Initiate policy processing here if needed. If we get here from 6877 * icmp_inbound_error_fanout, ip_policy is false. 6878 */ 6879 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6880 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6881 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6882 if (mp == NULL) { 6883 CONN_DEC_REF(connp); 6884 if (mctl_present) 6885 freeb(first_mp); 6886 return; 6887 } else if (mctl_present) { 6888 ASSERT(first_mp != mp); 6889 first_mp->b_cont = mp; 6890 } else { 6891 first_mp = mp; 6892 } 6893 } 6894 6895 6896 6897 /* Handle socket options. */ 6898 if (!syn_present && 6899 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6900 /* Add header */ 6901 ASSERT(recv_ill != NULL); 6902 /* 6903 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6904 * IPF_RECVIF. 6905 */ 6906 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6907 ipst); 6908 if (mp == NULL) { 6909 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6910 CONN_DEC_REF(connp); 6911 if (mctl_present) 6912 freeb(first_mp); 6913 return; 6914 } else if (mctl_present) { 6915 /* 6916 * ip_add_info might return a new mp. 6917 */ 6918 ASSERT(first_mp != mp); 6919 first_mp->b_cont = mp; 6920 } else { 6921 first_mp = mp; 6922 } 6923 } 6924 6925 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6926 if (IPCL_IS_TCP(connp)) { 6927 (*ip_input_proc)(connp->conn_sqp, first_mp, 6928 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6929 } else { 6930 putnext(connp->conn_rq, first_mp); 6931 CONN_DEC_REF(connp); 6932 } 6933 } 6934 6935 /* 6936 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6937 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6938 * Caller is responsible for dropping references to the conn, and freeing 6939 * first_mp. 6940 * 6941 * IPQoS Notes 6942 * Before sending it to the client, invoke IPPF processing. Policy processing 6943 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6944 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6945 * ip_wput_local, ip_policy is false. 6946 */ 6947 static void 6948 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6949 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6950 boolean_t ip_policy) 6951 { 6952 boolean_t mctl_present = (first_mp != NULL); 6953 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6954 uint32_t ill_index; 6955 ip_stack_t *ipst = recv_ill->ill_ipst; 6956 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6957 6958 ASSERT(ill != NULL); 6959 6960 if (mctl_present) 6961 first_mp->b_cont = mp; 6962 else 6963 first_mp = mp; 6964 6965 if (CONN_UDP_FLOWCTLD(connp)) { 6966 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6967 freemsg(first_mp); 6968 return; 6969 } 6970 6971 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6972 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6973 NULL, mctl_present); 6974 if (first_mp == NULL) { 6975 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6976 return; /* Freed by ipsec_check_inbound_policy(). */ 6977 } 6978 } 6979 if (mctl_present) 6980 freeb(first_mp); 6981 6982 /* Handle options. */ 6983 if (connp->conn_recvif) 6984 in_flags = IPF_RECVIF; 6985 /* 6986 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 6987 * passed to ip_add_info is based on IP version of connp. 6988 */ 6989 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6990 if (connp->conn_af_isv6) { 6991 /* 6992 * V6 only needs index 6993 */ 6994 in_flags |= IPF_RECVIF; 6995 } else { 6996 /* 6997 * V4 needs index + matching address. 6998 */ 6999 in_flags |= IPF_RECVADDR; 7000 } 7001 } 7002 7003 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7004 in_flags |= IPF_RECVSLLA; 7005 7006 /* 7007 * Initiate IPPF processing here, if needed. Note first_mp won't be 7008 * freed if the packet is dropped. The caller will do so. 7009 */ 7010 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7011 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7012 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7013 if (mp == NULL) { 7014 return; 7015 } 7016 } 7017 if ((in_flags != 0) && 7018 (mp->b_datap->db_type != M_CTL)) { 7019 /* 7020 * The actual data will be contained in b_cont 7021 * upon successful return of the following call 7022 * else original mblk is returned 7023 */ 7024 ASSERT(recv_ill != NULL); 7025 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7026 ipst); 7027 } 7028 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7029 /* Send it upstream */ 7030 CONN_UDP_RECV(connp, mp); 7031 } 7032 7033 /* 7034 * Fanout for UDP packets. 7035 * The caller puts <fport, lport> in the ports parameter. 7036 * 7037 * If SO_REUSEADDR is set all multicast and broadcast packets 7038 * will be delivered to all streams bound to the same port. 7039 * 7040 * Zones notes: 7041 * Multicast and broadcast packets will be distributed to streams in all zones. 7042 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7043 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7044 * packets. To maintain this behavior with multiple zones, the conns are grouped 7045 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7046 * each zone. If unset, all the following conns in the same zone are skipped. 7047 */ 7048 static void 7049 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7050 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7051 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7052 { 7053 uint32_t dstport, srcport; 7054 ipaddr_t dst; 7055 mblk_t *first_mp; 7056 boolean_t secure; 7057 in6_addr_t v6src; 7058 conn_t *connp; 7059 connf_t *connfp; 7060 conn_t *first_connp; 7061 conn_t *next_connp; 7062 mblk_t *mp1, *first_mp1; 7063 ipaddr_t src; 7064 zoneid_t last_zoneid; 7065 boolean_t reuseaddr; 7066 boolean_t shared_addr; 7067 ip_stack_t *ipst; 7068 7069 ASSERT(recv_ill != NULL); 7070 ipst = recv_ill->ill_ipst; 7071 7072 first_mp = mp; 7073 if (mctl_present) { 7074 mp = first_mp->b_cont; 7075 first_mp->b_cont = NULL; 7076 secure = ipsec_in_is_secure(first_mp); 7077 ASSERT(mp != NULL); 7078 } else { 7079 first_mp = NULL; 7080 secure = B_FALSE; 7081 } 7082 7083 /* Extract ports in net byte order */ 7084 dstport = htons(ntohl(ports) & 0xFFFF); 7085 srcport = htons(ntohl(ports) >> 16); 7086 dst = ipha->ipha_dst; 7087 src = ipha->ipha_src; 7088 7089 shared_addr = (zoneid == ALL_ZONES); 7090 if (shared_addr) { 7091 /* 7092 * No need to handle exclusive-stack zones since ALL_ZONES 7093 * only applies to the shared stack. 7094 */ 7095 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7096 if (zoneid == ALL_ZONES) 7097 zoneid = tsol_packet_to_zoneid(mp); 7098 } 7099 7100 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7101 mutex_enter(&connfp->connf_lock); 7102 connp = connfp->connf_head; 7103 if (!broadcast && !CLASSD(dst)) { 7104 /* 7105 * Not broadcast or multicast. Send to the one (first) 7106 * client we find. No need to check conn_wantpacket() 7107 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7108 * IPv4 unicast packets. 7109 */ 7110 while ((connp != NULL) && 7111 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7112 !IPCL_ZONE_MATCH(connp, zoneid))) { 7113 connp = connp->conn_next; 7114 } 7115 7116 if (connp == NULL || connp->conn_upq == NULL) 7117 goto notfound; 7118 7119 if (is_system_labeled() && 7120 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7121 connp)) 7122 goto notfound; 7123 7124 CONN_INC_REF(connp); 7125 mutex_exit(&connfp->connf_lock); 7126 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7127 flags, recv_ill, ip_policy); 7128 IP_STAT(ipst, ip_udp_fannorm); 7129 CONN_DEC_REF(connp); 7130 return; 7131 } 7132 7133 /* 7134 * Broadcast and multicast case 7135 * 7136 * Need to check conn_wantpacket(). 7137 * If SO_REUSEADDR has been set on the first we send the 7138 * packet to all clients that have joined the group and 7139 * match the port. 7140 */ 7141 7142 while (connp != NULL) { 7143 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7144 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7145 (!is_system_labeled() || 7146 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7147 connp))) 7148 break; 7149 connp = connp->conn_next; 7150 } 7151 7152 if (connp == NULL || connp->conn_upq == NULL) 7153 goto notfound; 7154 7155 first_connp = connp; 7156 /* 7157 * When SO_REUSEADDR is not set, send the packet only to the first 7158 * matching connection in its zone by keeping track of the zoneid. 7159 */ 7160 reuseaddr = first_connp->conn_reuseaddr; 7161 last_zoneid = first_connp->conn_zoneid; 7162 7163 CONN_INC_REF(connp); 7164 connp = connp->conn_next; 7165 for (;;) { 7166 while (connp != NULL) { 7167 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7168 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7169 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7170 (!is_system_labeled() || 7171 tsol_receive_local(mp, &dst, IPV4_VERSION, 7172 shared_addr, connp))) 7173 break; 7174 connp = connp->conn_next; 7175 } 7176 /* 7177 * Just copy the data part alone. The mctl part is 7178 * needed just for verifying policy and it is never 7179 * sent up. 7180 */ 7181 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7182 ((mp1 = copymsg(mp)) == NULL))) { 7183 /* 7184 * No more interested clients or memory 7185 * allocation failed 7186 */ 7187 connp = first_connp; 7188 break; 7189 } 7190 if (connp->conn_zoneid != last_zoneid) { 7191 /* 7192 * Update the zoneid so that the packet isn't sent to 7193 * any more conns in the same zone unless SO_REUSEADDR 7194 * is set. 7195 */ 7196 reuseaddr = connp->conn_reuseaddr; 7197 last_zoneid = connp->conn_zoneid; 7198 } 7199 if (first_mp != NULL) { 7200 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7201 ipsec_info_type == IPSEC_IN); 7202 first_mp1 = ipsec_in_tag(first_mp, NULL, 7203 ipst->ips_netstack); 7204 if (first_mp1 == NULL) { 7205 freemsg(mp1); 7206 connp = first_connp; 7207 break; 7208 } 7209 } else { 7210 first_mp1 = NULL; 7211 } 7212 CONN_INC_REF(connp); 7213 mutex_exit(&connfp->connf_lock); 7214 /* 7215 * IPQoS notes: We don't send the packet for policy 7216 * processing here, will do it for the last one (below). 7217 * i.e. we do it per-packet now, but if we do policy 7218 * processing per-conn, then we would need to do it 7219 * here too. 7220 */ 7221 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7222 ipha, flags, recv_ill, B_FALSE); 7223 mutex_enter(&connfp->connf_lock); 7224 /* Follow the next pointer before releasing the conn. */ 7225 next_connp = connp->conn_next; 7226 IP_STAT(ipst, ip_udp_fanmb); 7227 CONN_DEC_REF(connp); 7228 connp = next_connp; 7229 } 7230 7231 /* Last one. Send it upstream. */ 7232 mutex_exit(&connfp->connf_lock); 7233 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7234 recv_ill, ip_policy); 7235 IP_STAT(ipst, ip_udp_fanmb); 7236 CONN_DEC_REF(connp); 7237 return; 7238 7239 notfound: 7240 7241 mutex_exit(&connfp->connf_lock); 7242 IP_STAT(ipst, ip_udp_fanothers); 7243 /* 7244 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7245 * have already been matched above, since they live in the IPv4 7246 * fanout tables. This implies we only need to 7247 * check for IPv6 in6addr_any endpoints here. 7248 * Thus we compare using ipv6_all_zeros instead of the destination 7249 * address, except for the multicast group membership lookup which 7250 * uses the IPv4 destination. 7251 */ 7252 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7253 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7254 mutex_enter(&connfp->connf_lock); 7255 connp = connfp->connf_head; 7256 if (!broadcast && !CLASSD(dst)) { 7257 while (connp != NULL) { 7258 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7259 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7260 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7261 !connp->conn_ipv6_v6only) 7262 break; 7263 connp = connp->conn_next; 7264 } 7265 7266 if (connp != NULL && is_system_labeled() && 7267 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7268 connp)) 7269 connp = NULL; 7270 7271 if (connp == NULL || connp->conn_upq == NULL) { 7272 /* 7273 * No one bound to this port. Is 7274 * there a client that wants all 7275 * unclaimed datagrams? 7276 */ 7277 mutex_exit(&connfp->connf_lock); 7278 7279 if (mctl_present) 7280 first_mp->b_cont = mp; 7281 else 7282 first_mp = mp; 7283 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7284 connf_head != NULL) { 7285 ip_fanout_proto(q, first_mp, ill, ipha, 7286 flags | IP_FF_RAWIP, mctl_present, 7287 ip_policy, recv_ill, zoneid); 7288 } else { 7289 if (ip_fanout_send_icmp(q, first_mp, flags, 7290 ICMP_DEST_UNREACHABLE, 7291 ICMP_PORT_UNREACHABLE, 7292 mctl_present, zoneid, ipst)) { 7293 BUMP_MIB(ill->ill_ip_mib, 7294 udpIfStatsNoPorts); 7295 } 7296 } 7297 return; 7298 } 7299 7300 CONN_INC_REF(connp); 7301 mutex_exit(&connfp->connf_lock); 7302 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7303 flags, recv_ill, ip_policy); 7304 CONN_DEC_REF(connp); 7305 return; 7306 } 7307 /* 7308 * IPv4 multicast packet being delivered to an AF_INET6 7309 * in6addr_any endpoint. 7310 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7311 * and not conn_wantpacket_v6() since any multicast membership is 7312 * for an IPv4-mapped multicast address. 7313 * The packet is sent to all clients in all zones that have joined the 7314 * group and match the port. 7315 */ 7316 while (connp != NULL) { 7317 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7318 srcport, v6src) && 7319 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7320 (!is_system_labeled() || 7321 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7322 connp))) 7323 break; 7324 connp = connp->conn_next; 7325 } 7326 7327 if (connp == NULL || connp->conn_upq == NULL) { 7328 /* 7329 * No one bound to this port. Is 7330 * there a client that wants all 7331 * unclaimed datagrams? 7332 */ 7333 mutex_exit(&connfp->connf_lock); 7334 7335 if (mctl_present) 7336 first_mp->b_cont = mp; 7337 else 7338 first_mp = mp; 7339 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7340 NULL) { 7341 ip_fanout_proto(q, first_mp, ill, ipha, 7342 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7343 recv_ill, zoneid); 7344 } else { 7345 /* 7346 * We used to attempt to send an icmp error here, but 7347 * since this is known to be a multicast packet 7348 * and we don't send icmp errors in response to 7349 * multicast, just drop the packet and give up sooner. 7350 */ 7351 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7352 freemsg(first_mp); 7353 } 7354 return; 7355 } 7356 7357 first_connp = connp; 7358 7359 CONN_INC_REF(connp); 7360 connp = connp->conn_next; 7361 for (;;) { 7362 while (connp != NULL) { 7363 if (IPCL_UDP_MATCH_V6(connp, dstport, 7364 ipv6_all_zeros, srcport, v6src) && 7365 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7366 (!is_system_labeled() || 7367 tsol_receive_local(mp, &dst, IPV4_VERSION, 7368 shared_addr, connp))) 7369 break; 7370 connp = connp->conn_next; 7371 } 7372 /* 7373 * Just copy the data part alone. The mctl part is 7374 * needed just for verifying policy and it is never 7375 * sent up. 7376 */ 7377 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7378 ((mp1 = copymsg(mp)) == NULL))) { 7379 /* 7380 * No more intested clients or memory 7381 * allocation failed 7382 */ 7383 connp = first_connp; 7384 break; 7385 } 7386 if (first_mp != NULL) { 7387 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7388 ipsec_info_type == IPSEC_IN); 7389 first_mp1 = ipsec_in_tag(first_mp, NULL, 7390 ipst->ips_netstack); 7391 if (first_mp1 == NULL) { 7392 freemsg(mp1); 7393 connp = first_connp; 7394 break; 7395 } 7396 } else { 7397 first_mp1 = NULL; 7398 } 7399 CONN_INC_REF(connp); 7400 mutex_exit(&connfp->connf_lock); 7401 /* 7402 * IPQoS notes: We don't send the packet for policy 7403 * processing here, will do it for the last one (below). 7404 * i.e. we do it per-packet now, but if we do policy 7405 * processing per-conn, then we would need to do it 7406 * here too. 7407 */ 7408 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7409 ipha, flags, recv_ill, B_FALSE); 7410 mutex_enter(&connfp->connf_lock); 7411 /* Follow the next pointer before releasing the conn. */ 7412 next_connp = connp->conn_next; 7413 CONN_DEC_REF(connp); 7414 connp = next_connp; 7415 } 7416 7417 /* Last one. Send it upstream. */ 7418 mutex_exit(&connfp->connf_lock); 7419 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7420 recv_ill, ip_policy); 7421 CONN_DEC_REF(connp); 7422 } 7423 7424 /* 7425 * Complete the ip_wput header so that it 7426 * is possible to generate ICMP 7427 * errors. 7428 */ 7429 int 7430 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7431 { 7432 ire_t *ire; 7433 7434 if (ipha->ipha_src == INADDR_ANY) { 7435 ire = ire_lookup_local(zoneid, ipst); 7436 if (ire == NULL) { 7437 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7438 return (1); 7439 } 7440 ipha->ipha_src = ire->ire_addr; 7441 ire_refrele(ire); 7442 } 7443 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7444 ipha->ipha_hdr_checksum = 0; 7445 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7446 return (0); 7447 } 7448 7449 /* 7450 * Nobody should be sending 7451 * packets up this stream 7452 */ 7453 static void 7454 ip_lrput(queue_t *q, mblk_t *mp) 7455 { 7456 mblk_t *mp1; 7457 7458 switch (mp->b_datap->db_type) { 7459 case M_FLUSH: 7460 /* Turn around */ 7461 if (*mp->b_rptr & FLUSHW) { 7462 *mp->b_rptr &= ~FLUSHR; 7463 qreply(q, mp); 7464 return; 7465 } 7466 break; 7467 } 7468 /* Could receive messages that passed through ar_rput */ 7469 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7470 mp1->b_prev = mp1->b_next = NULL; 7471 freemsg(mp); 7472 } 7473 7474 /* Nobody should be sending packets down this stream */ 7475 /* ARGSUSED */ 7476 void 7477 ip_lwput(queue_t *q, mblk_t *mp) 7478 { 7479 freemsg(mp); 7480 } 7481 7482 /* 7483 * Move the first hop in any source route to ipha_dst and remove that part of 7484 * the source route. Called by other protocols. Errors in option formatting 7485 * are ignored - will be handled by ip_wput_options Return the final 7486 * destination (either ipha_dst or the last entry in a source route.) 7487 */ 7488 ipaddr_t 7489 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7490 { 7491 ipoptp_t opts; 7492 uchar_t *opt; 7493 uint8_t optval; 7494 uint8_t optlen; 7495 ipaddr_t dst; 7496 int i; 7497 ire_t *ire; 7498 ip_stack_t *ipst = ns->netstack_ip; 7499 7500 ip2dbg(("ip_massage_options\n")); 7501 dst = ipha->ipha_dst; 7502 for (optval = ipoptp_first(&opts, ipha); 7503 optval != IPOPT_EOL; 7504 optval = ipoptp_next(&opts)) { 7505 opt = opts.ipoptp_cur; 7506 switch (optval) { 7507 uint8_t off; 7508 case IPOPT_SSRR: 7509 case IPOPT_LSRR: 7510 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7511 ip1dbg(("ip_massage_options: bad src route\n")); 7512 break; 7513 } 7514 optlen = opts.ipoptp_len; 7515 off = opt[IPOPT_OFFSET]; 7516 off--; 7517 redo_srr: 7518 if (optlen < IP_ADDR_LEN || 7519 off > optlen - IP_ADDR_LEN) { 7520 /* End of source route */ 7521 ip1dbg(("ip_massage_options: end of SR\n")); 7522 break; 7523 } 7524 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7525 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7526 ntohl(dst))); 7527 /* 7528 * Check if our address is present more than 7529 * once as consecutive hops in source route. 7530 * XXX verify per-interface ip_forwarding 7531 * for source route? 7532 */ 7533 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7534 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7535 if (ire != NULL) { 7536 ire_refrele(ire); 7537 off += IP_ADDR_LEN; 7538 goto redo_srr; 7539 } 7540 if (dst == htonl(INADDR_LOOPBACK)) { 7541 ip1dbg(("ip_massage_options: loopback addr in " 7542 "source route!\n")); 7543 break; 7544 } 7545 /* 7546 * Update ipha_dst to be the first hop and remove the 7547 * first hop from the source route (by overwriting 7548 * part of the option with NOP options). 7549 */ 7550 ipha->ipha_dst = dst; 7551 /* Put the last entry in dst */ 7552 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7553 3; 7554 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7555 7556 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7557 ntohl(dst))); 7558 /* Move down and overwrite */ 7559 opt[IP_ADDR_LEN] = opt[0]; 7560 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7561 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7562 for (i = 0; i < IP_ADDR_LEN; i++) 7563 opt[i] = IPOPT_NOP; 7564 break; 7565 } 7566 } 7567 return (dst); 7568 } 7569 7570 /* 7571 * This function's job is to forward data to the reverse tunnel (FA->HA) 7572 * after doing a few checks. It is assumed that the incoming interface 7573 * of the packet is always different than the outgoing interface and the 7574 * ire_type of the found ire has to be a non-resolver type. 7575 * 7576 * IPQoS notes 7577 * IP policy is invoked twice for a forwarded packet, once on the read side 7578 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7579 * enabled. 7580 */ 7581 static void 7582 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7583 { 7584 ipha_t *ipha; 7585 queue_t *q; 7586 uint32_t pkt_len; 7587 #define rptr ((uchar_t *)ipha) 7588 uint32_t sum; 7589 uint32_t max_frag; 7590 mblk_t *first_mp; 7591 uint32_t ill_index; 7592 ipxmit_state_t pktxmit_state; 7593 ill_t *out_ill; 7594 ip_stack_t *ipst = in_ill->ill_ipst; 7595 7596 ASSERT(ire != NULL); 7597 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7598 ASSERT(ire->ire_stq != NULL); 7599 7600 /* Initiate read side IPPF processing */ 7601 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 7602 ill_index = in_ill->ill_phyint->phyint_ifindex; 7603 ip_process(IPP_FWD_IN, &mp, ill_index); 7604 if (mp == NULL) { 7605 ip2dbg(("ip_mrtun_forward: inbound pkt " 7606 "dropped during IPPF processing\n")); 7607 return; 7608 } 7609 } 7610 7611 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7612 ILLF_ROUTER) == 0) || 7613 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7614 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7615 ip0dbg(("ip_mrtun_forward: Can't forward :" 7616 "forwarding is not turned on\n")); 7617 goto drop_pkt; 7618 } 7619 7620 /* 7621 * Don't forward if the interface is down 7622 */ 7623 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7624 goto discard_pkt; 7625 } 7626 7627 ipha = (ipha_t *)mp->b_rptr; 7628 pkt_len = ntohs(ipha->ipha_length); 7629 /* Adjust the checksum to reflect the ttl decrement. */ 7630 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7631 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7632 if (ipha->ipha_ttl-- <= 1) { 7633 if (ip_csum_hdr(ipha)) { 7634 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7635 goto drop_pkt; 7636 } 7637 q = ire->ire_stq; 7638 if ((first_mp = allocb(sizeof (ipsec_info_t), 7639 BPRI_HI)) == NULL) { 7640 goto discard_pkt; 7641 } 7642 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7643 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7644 /* Sent by forwarding path, and router is global zone */ 7645 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7646 GLOBAL_ZONEID, ipst); 7647 return; 7648 } 7649 7650 /* Get the ill_index of the ILL */ 7651 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7652 7653 /* 7654 * This location is chosen for the placement of the forwarding hook 7655 * because at this point we know that we have a path out for the 7656 * packet but haven't yet applied any logic (such as fragmenting) 7657 * that happen as part of transmitting the packet out. 7658 */ 7659 out_ill = ire->ire_ipif->ipif_ill; 7660 7661 DTRACE_PROBE4(ip4__forwarding__start, 7662 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7663 7664 FW_HOOKS(ipst->ips_ip4_forwarding_event, 7665 ipst->ips_ipv4firewall_forwarding, 7666 in_ill, out_ill, ipha, mp, mp, ipst); 7667 7668 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7669 7670 if (mp == NULL) 7671 return; 7672 pkt_len = ntohs(ipha->ipha_length); 7673 7674 /* 7675 * ip_mrtun_forward is only used by foreign agent to reverse 7676 * tunnel the incoming packet. So it does not do any option 7677 * processing for source routing. 7678 */ 7679 max_frag = ire->ire_max_frag; 7680 if (pkt_len > max_frag) { 7681 /* 7682 * It needs fragging on its way out. We haven't 7683 * verified the header checksum yet. Since we 7684 * are going to put a surely good checksum in the 7685 * outgoing header, we have to make sure that it 7686 * was good coming in. 7687 */ 7688 if (ip_csum_hdr(ipha)) { 7689 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7690 goto drop_pkt; 7691 } 7692 7693 /* Initiate write side IPPF processing */ 7694 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 7695 ip_process(IPP_FWD_OUT, &mp, ill_index); 7696 if (mp == NULL) { 7697 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7698 "dropped/deferred during ip policy "\ 7699 "processing\n")); 7700 return; 7701 } 7702 } 7703 if ((first_mp = allocb(sizeof (ipsec_info_t), 7704 BPRI_HI)) == NULL) { 7705 goto discard_pkt; 7706 } 7707 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7708 mp = first_mp; 7709 7710 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 7711 return; 7712 } 7713 7714 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7715 7716 ASSERT(ire->ire_ipif != NULL); 7717 7718 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7719 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7720 FW_HOOKS(ipst->ips_ip4_physical_out_event, 7721 ipst->ips_ipv4firewall_physical_out, 7722 NULL, out_ill, ipha, mp, mp, ipst); 7723 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7724 if (mp == NULL) 7725 return; 7726 7727 /* Now send the packet to the tunnel interface */ 7728 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7729 q = ire->ire_stq; 7730 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7731 if ((pktxmit_state == SEND_FAILED) || 7732 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7733 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7734 q->q_ptr)); 7735 } 7736 7737 return; 7738 discard_pkt: 7739 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7740 drop_pkt:; 7741 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7742 freemsg(mp); 7743 #undef rptr 7744 } 7745 7746 /* 7747 * Fills the ipsec_out_t data structure with appropriate fields and 7748 * prepends it to mp which contains the IP hdr + data that was meant 7749 * to be forwarded. Please note that ipsec_out_info data structure 7750 * is used here to communicate the outgoing ill path at ip_wput() 7751 * for the ICMP error packet. This has nothing to do with ipsec IP 7752 * security. ipsec_out_t is really used to pass the info to the module 7753 * IP where this information cannot be extracted from conn. 7754 * This functions is called by ip_mrtun_forward(). 7755 */ 7756 void 7757 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7758 { 7759 ipsec_out_t *io; 7760 7761 ASSERT(xmit_ill != NULL); 7762 first_mp->b_datap->db_type = M_CTL; 7763 first_mp->b_wptr += sizeof (ipsec_info_t); 7764 /* 7765 * This is to pass info to ip_wput in absence of conn. 7766 * ipsec_out_secure will be B_FALSE because of this. 7767 * Thus ipsec_out_secure being B_FALSE indicates that 7768 * this is not IPSEC security related information. 7769 */ 7770 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7771 io = (ipsec_out_t *)first_mp->b_rptr; 7772 io->ipsec_out_type = IPSEC_OUT; 7773 io->ipsec_out_len = sizeof (ipsec_out_t); 7774 first_mp->b_cont = mp; 7775 io->ipsec_out_ill_index = 7776 xmit_ill->ill_phyint->phyint_ifindex; 7777 io->ipsec_out_xmit_if = B_TRUE; 7778 io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack; 7779 } 7780 7781 /* 7782 * Return the network mask 7783 * associated with the specified address. 7784 */ 7785 ipaddr_t 7786 ip_net_mask(ipaddr_t addr) 7787 { 7788 uchar_t *up = (uchar_t *)&addr; 7789 ipaddr_t mask = 0; 7790 uchar_t *maskp = (uchar_t *)&mask; 7791 7792 #if defined(__i386) || defined(__amd64) 7793 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7794 #endif 7795 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7796 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7797 #endif 7798 if (CLASSD(addr)) { 7799 maskp[0] = 0xF0; 7800 return (mask); 7801 } 7802 if (addr == 0) 7803 return (0); 7804 maskp[0] = 0xFF; 7805 if ((up[0] & 0x80) == 0) 7806 return (mask); 7807 7808 maskp[1] = 0xFF; 7809 if ((up[0] & 0xC0) == 0x80) 7810 return (mask); 7811 7812 maskp[2] = 0xFF; 7813 if ((up[0] & 0xE0) == 0xC0) 7814 return (mask); 7815 7816 /* Must be experimental or multicast, indicate as much */ 7817 return ((ipaddr_t)0); 7818 } 7819 7820 /* 7821 * Select an ill for the packet by considering load spreading across 7822 * a different ill in the group if dst_ill is part of some group. 7823 */ 7824 ill_t * 7825 ip_newroute_get_dst_ill(ill_t *dst_ill) 7826 { 7827 ill_t *ill; 7828 7829 /* 7830 * We schedule irrespective of whether the source address is 7831 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7832 */ 7833 ill = illgrp_scheduler(dst_ill); 7834 if (ill == NULL) 7835 return (NULL); 7836 7837 /* 7838 * For groups with names ip_sioctl_groupname ensures that all 7839 * ills are of same type. For groups without names, ifgrp_insert 7840 * ensures this. 7841 */ 7842 ASSERT(dst_ill->ill_type == ill->ill_type); 7843 7844 return (ill); 7845 } 7846 7847 /* 7848 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7849 */ 7850 ill_t * 7851 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7852 ip_stack_t *ipst) 7853 { 7854 ill_t *ret_ill; 7855 7856 ASSERT(ifindex != 0); 7857 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7858 ipst); 7859 if (ret_ill == NULL || 7860 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7861 if (isv6) { 7862 if (ill != NULL) { 7863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7864 } else { 7865 BUMP_MIB(&ipst->ips_ip6_mib, 7866 ipIfStatsOutDiscards); 7867 } 7868 ip1dbg(("ip_grab_attach_ill (IPv6): " 7869 "bad ifindex %d.\n", ifindex)); 7870 } else { 7871 if (ill != NULL) { 7872 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7873 } else { 7874 BUMP_MIB(&ipst->ips_ip_mib, 7875 ipIfStatsOutDiscards); 7876 } 7877 ip1dbg(("ip_grab_attach_ill (IPv4): " 7878 "bad ifindex %d.\n", ifindex)); 7879 } 7880 if (ret_ill != NULL) 7881 ill_refrele(ret_ill); 7882 freemsg(first_mp); 7883 return (NULL); 7884 } 7885 7886 return (ret_ill); 7887 } 7888 7889 /* 7890 * IPv4 - 7891 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7892 * out a packet to a destination address for which we do not have specific 7893 * (or sufficient) routing information. 7894 * 7895 * NOTE : These are the scopes of some of the variables that point at IRE, 7896 * which needs to be followed while making any future modifications 7897 * to avoid memory leaks. 7898 * 7899 * - ire and sire are the entries looked up initially by 7900 * ire_ftable_lookup. 7901 * - ipif_ire is used to hold the interface ire associated with 7902 * the new cache ire. But it's scope is limited, so we always REFRELE 7903 * it before branching out to error paths. 7904 * - save_ire is initialized before ire_create, so that ire returned 7905 * by ire_create will not over-write the ire. We REFRELE save_ire 7906 * before breaking out of the switch. 7907 * 7908 * Thus on failures, we have to REFRELE only ire and sire, if they 7909 * are not NULL. 7910 */ 7911 void 7912 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7913 zoneid_t zoneid, ip_stack_t *ipst) 7914 { 7915 areq_t *areq; 7916 ipaddr_t gw = 0; 7917 ire_t *ire = NULL; 7918 mblk_t *res_mp; 7919 ipaddr_t *addrp; 7920 ipaddr_t nexthop_addr; 7921 ipif_t *src_ipif = NULL; 7922 ill_t *dst_ill = NULL; 7923 ipha_t *ipha; 7924 ire_t *sire = NULL; 7925 mblk_t *first_mp; 7926 ire_t *save_ire; 7927 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7928 ushort_t ire_marks = 0; 7929 boolean_t mctl_present; 7930 ipsec_out_t *io; 7931 mblk_t *saved_mp; 7932 ire_t *first_sire = NULL; 7933 mblk_t *copy_mp = NULL; 7934 mblk_t *xmit_mp = NULL; 7935 ipaddr_t save_dst; 7936 uint32_t multirt_flags = 7937 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7938 boolean_t multirt_is_resolvable; 7939 boolean_t multirt_resolve_next; 7940 boolean_t do_attach_ill = B_FALSE; 7941 boolean_t ip_nexthop = B_FALSE; 7942 tsol_ire_gw_secattr_t *attrp = NULL; 7943 tsol_gcgrp_t *gcgrp = NULL; 7944 tsol_gcgrp_addr_t ga; 7945 7946 if (ip_debug > 2) { 7947 /* ip1dbg */ 7948 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7949 } 7950 7951 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7952 if (mctl_present) { 7953 io = (ipsec_out_t *)first_mp->b_rptr; 7954 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7955 ASSERT(zoneid == io->ipsec_out_zoneid); 7956 ASSERT(zoneid != ALL_ZONES); 7957 } 7958 7959 ipha = (ipha_t *)mp->b_rptr; 7960 7961 /* All multicast lookups come through ip_newroute_ipif() */ 7962 if (CLASSD(dst)) { 7963 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7964 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7965 freemsg(first_mp); 7966 return; 7967 } 7968 7969 if (mctl_present && io->ipsec_out_attach_if) { 7970 /* ip_grab_attach_ill returns a held ill */ 7971 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7972 io->ipsec_out_ill_index, B_FALSE, ipst); 7973 7974 /* Failure case frees things for us. */ 7975 if (attach_ill == NULL) 7976 return; 7977 7978 /* 7979 * Check if we need an ire that will not be 7980 * looked up by anybody else i.e. HIDDEN. 7981 */ 7982 if (ill_is_probeonly(attach_ill)) 7983 ire_marks = IRE_MARK_HIDDEN; 7984 } 7985 if (mctl_present && io->ipsec_out_ip_nexthop) { 7986 ip_nexthop = B_TRUE; 7987 nexthop_addr = io->ipsec_out_nexthop_addr; 7988 } 7989 /* 7990 * If this IRE is created for forwarding or it is not for 7991 * traffic for congestion controlled protocols, mark it as temporary. 7992 */ 7993 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7994 ire_marks |= IRE_MARK_TEMPORARY; 7995 7996 /* 7997 * Get what we can from ire_ftable_lookup which will follow an IRE 7998 * chain until it gets the most specific information available. 7999 * For example, we know that there is no IRE_CACHE for this dest, 8000 * but there may be an IRE_OFFSUBNET which specifies a gateway. 8001 * ire_ftable_lookup will look up the gateway, etc. 8002 * Check if in_ill != NULL. If it is true, the packet must be 8003 * from an incoming interface where RTA_SRCIFP is set. 8004 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 8005 * to the destination, of equal netmask length in the forward table, 8006 * will be recursively explored. If no information is available 8007 * for the final gateway of that route, we force the returned ire 8008 * to be equal to sire using MATCH_IRE_PARENT. 8009 * At least, in this case we have a starting point (in the buckets) 8010 * to look for other routes to the destination in the forward table. 8011 * This is actually used only for multirouting, where a list 8012 * of routes has to be processed in sequence. 8013 * 8014 * In the process of coming up with the most specific information, 8015 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8016 * for the gateway (i.e., one for which the ire_nce->nce_state is 8017 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8018 * Two caveats when handling incomplete ire's in ip_newroute: 8019 * - we should be careful when accessing its ire_nce (specifically 8020 * the nce_res_mp) ast it might change underneath our feet, and, 8021 * - not all legacy code path callers are prepared to handle 8022 * incomplete ire's, so we should not create/add incomplete 8023 * ire_cache entries here. (See discussion about temporary solution 8024 * further below). 8025 * 8026 * In order to minimize packet dropping, and to preserve existing 8027 * behavior, we treat this case as if there were no IRE_CACHE for the 8028 * gateway, and instead use the IF_RESOLVER ire to send out 8029 * another request to ARP (this is achieved by passing the 8030 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8031 * arp response comes back in ip_wput_nondata, we will create 8032 * a per-dst ire_cache that has an ND_COMPLETE ire. 8033 * 8034 * Note that this is a temporary solution; the correct solution is 8035 * to create an incomplete per-dst ire_cache entry, and send the 8036 * packet out when the gw's nce is resolved. In order to achieve this, 8037 * all packet processing must have been completed prior to calling 8038 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8039 * to be modified to accomodate this solution. 8040 */ 8041 if (in_ill != NULL) { 8042 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 8043 in_ill, MATCH_IRE_TYPE); 8044 } else if (ip_nexthop) { 8045 /* 8046 * The first time we come here, we look for an IRE_INTERFACE 8047 * entry for the specified nexthop, set the dst to be the 8048 * nexthop address and create an IRE_CACHE entry for the 8049 * nexthop. The next time around, we are able to find an 8050 * IRE_CACHE entry for the nexthop, set the gateway to be the 8051 * nexthop address and create an IRE_CACHE entry for the 8052 * destination address via the specified nexthop. 8053 */ 8054 ire = ire_cache_lookup(nexthop_addr, zoneid, 8055 MBLK_GETLABEL(mp), ipst); 8056 if (ire != NULL) { 8057 gw = nexthop_addr; 8058 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8059 } else { 8060 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8061 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8062 MBLK_GETLABEL(mp), 8063 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8064 ipst); 8065 if (ire != NULL) { 8066 dst = nexthop_addr; 8067 } 8068 } 8069 } else if (attach_ill == NULL) { 8070 ire = ire_ftable_lookup(dst, 0, 0, 0, 8071 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8072 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8073 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8074 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8075 ipst); 8076 } else { 8077 /* 8078 * attach_ill is set only for communicating with 8079 * on-link hosts. So, don't look for DEFAULT. 8080 */ 8081 ipif_t *attach_ipif; 8082 8083 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8084 if (attach_ipif == NULL) { 8085 ill_refrele(attach_ill); 8086 goto icmp_err_ret; 8087 } 8088 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8089 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8090 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8091 MATCH_IRE_SECATTR, ipst); 8092 ipif_refrele(attach_ipif); 8093 } 8094 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8095 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8096 8097 /* 8098 * This loop is run only once in most cases. 8099 * We loop to resolve further routes only when the destination 8100 * can be reached through multiple RTF_MULTIRT-flagged ires. 8101 */ 8102 do { 8103 /* Clear the previous iteration's values */ 8104 if (src_ipif != NULL) { 8105 ipif_refrele(src_ipif); 8106 src_ipif = NULL; 8107 } 8108 if (dst_ill != NULL) { 8109 ill_refrele(dst_ill); 8110 dst_ill = NULL; 8111 } 8112 8113 multirt_resolve_next = B_FALSE; 8114 /* 8115 * We check if packets have to be multirouted. 8116 * In this case, given the current <ire, sire> couple, 8117 * we look for the next suitable <ire, sire>. 8118 * This check is done in ire_multirt_lookup(), 8119 * which applies various criteria to find the next route 8120 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8121 * unchanged if it detects it has not been tried yet. 8122 */ 8123 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8124 ip3dbg(("ip_newroute: starting next_resolution " 8125 "with first_mp %p, tag %d\n", 8126 (void *)first_mp, 8127 MULTIRT_DEBUG_TAGGED(first_mp))); 8128 8129 ASSERT(sire != NULL); 8130 multirt_is_resolvable = 8131 ire_multirt_lookup(&ire, &sire, multirt_flags, 8132 MBLK_GETLABEL(mp), ipst); 8133 8134 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8135 "ire %p, sire %p\n", 8136 multirt_is_resolvable, 8137 (void *)ire, (void *)sire)); 8138 8139 if (!multirt_is_resolvable) { 8140 /* 8141 * No more multirt route to resolve; give up 8142 * (all routes resolved or no more 8143 * resolvable routes). 8144 */ 8145 if (ire != NULL) { 8146 ire_refrele(ire); 8147 ire = NULL; 8148 } 8149 } else { 8150 ASSERT(sire != NULL); 8151 ASSERT(ire != NULL); 8152 /* 8153 * We simply use first_sire as a flag that 8154 * indicates if a resolvable multirt route 8155 * has already been found. 8156 * If it is not the case, we may have to send 8157 * an ICMP error to report that the 8158 * destination is unreachable. 8159 * We do not IRE_REFHOLD first_sire. 8160 */ 8161 if (first_sire == NULL) { 8162 first_sire = sire; 8163 } 8164 } 8165 } 8166 if (ire == NULL) { 8167 if (ip_debug > 3) { 8168 /* ip2dbg */ 8169 pr_addr_dbg("ip_newroute: " 8170 "can't resolve %s\n", AF_INET, &dst); 8171 } 8172 ip3dbg(("ip_newroute: " 8173 "ire %p, sire %p, first_sire %p\n", 8174 (void *)ire, (void *)sire, (void *)first_sire)); 8175 8176 if (sire != NULL) { 8177 ire_refrele(sire); 8178 sire = NULL; 8179 } 8180 8181 if (first_sire != NULL) { 8182 /* 8183 * At least one multirt route has been found 8184 * in the same call to ip_newroute(); 8185 * there is no need to report an ICMP error. 8186 * first_sire was not IRE_REFHOLDed. 8187 */ 8188 MULTIRT_DEBUG_UNTAG(first_mp); 8189 freemsg(first_mp); 8190 return; 8191 } 8192 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8193 RTA_DST, ipst); 8194 if (attach_ill != NULL) 8195 ill_refrele(attach_ill); 8196 goto icmp_err_ret; 8197 } 8198 8199 /* 8200 * When RTA_SRCIFP is used to add a route, then an interface 8201 * route is added in the source interface's routing table. 8202 * If the outgoing interface of this route is of type 8203 * IRE_IF_RESOLVER, then upon creation of the ire, 8204 * ire_nce->nce_res_mp is set to NULL. 8205 * Later, when this route is first used for forwarding 8206 * a packet, ip_newroute() is called 8207 * to resolve the hardware address of the outgoing ipif. 8208 * We do not come here for IRE_IF_NORESOLVER entries in the 8209 * source interface based table. We only come here if the 8210 * outgoing interface is a resolver interface and we don't 8211 * have the ire_nce->nce_res_mp information yet. 8212 * If in_ill is not null that means it is called from 8213 * ip_rput. 8214 */ 8215 8216 ASSERT(ire->ire_in_ill == NULL || 8217 (ire->ire_type == IRE_IF_RESOLVER && 8218 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8219 8220 /* 8221 * Verify that the returned IRE does not have either 8222 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8223 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8224 */ 8225 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8226 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8227 if (attach_ill != NULL) 8228 ill_refrele(attach_ill); 8229 goto icmp_err_ret; 8230 } 8231 /* 8232 * Increment the ire_ob_pkt_count field for ire if it is an 8233 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8234 * increment the same for the parent IRE, sire, if it is some 8235 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8236 */ 8237 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8238 UPDATE_OB_PKT_COUNT(ire); 8239 ire->ire_last_used_time = lbolt; 8240 } 8241 8242 if (sire != NULL) { 8243 gw = sire->ire_gateway_addr; 8244 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8245 IRE_INTERFACE)) == 0); 8246 UPDATE_OB_PKT_COUNT(sire); 8247 sire->ire_last_used_time = lbolt; 8248 } 8249 /* 8250 * We have a route to reach the destination. 8251 * 8252 * 1) If the interface is part of ill group, try to get a new 8253 * ill taking load spreading into account. 8254 * 8255 * 2) After selecting the ill, get a source address that 8256 * might create good inbound load spreading. 8257 * ipif_select_source does this for us. 8258 * 8259 * If the application specified the ill (ifindex), we still 8260 * load spread. Only if the packets needs to go out 8261 * specifically on a given ill e.g. binding to 8262 * IPIF_NOFAILOVER address, then we don't try to use a 8263 * different ill for load spreading. 8264 */ 8265 if (attach_ill == NULL) { 8266 /* 8267 * Don't perform outbound load spreading in the 8268 * case of an RTF_MULTIRT route, as we actually 8269 * typically want to replicate outgoing packets 8270 * through particular interfaces. 8271 */ 8272 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8273 dst_ill = ire->ire_ipif->ipif_ill; 8274 /* for uniformity */ 8275 ill_refhold(dst_ill); 8276 } else { 8277 /* 8278 * If we are here trying to create an IRE_CACHE 8279 * for an offlink destination and have the 8280 * IRE_CACHE for the next hop and the latter is 8281 * using virtual IP source address selection i.e 8282 * it's ire->ire_ipif is pointing to a virtual 8283 * network interface (vni) then 8284 * ip_newroute_get_dst_ll() will return the vni 8285 * interface as the dst_ill. Since the vni is 8286 * virtual i.e not associated with any physical 8287 * interface, it cannot be the dst_ill, hence 8288 * in such a case call ip_newroute_get_dst_ll() 8289 * with the stq_ill instead of the ire_ipif ILL. 8290 * The function returns a refheld ill. 8291 */ 8292 if ((ire->ire_type == IRE_CACHE) && 8293 IS_VNI(ire->ire_ipif->ipif_ill)) 8294 dst_ill = ip_newroute_get_dst_ill( 8295 ire->ire_stq->q_ptr); 8296 else 8297 dst_ill = ip_newroute_get_dst_ill( 8298 ire->ire_ipif->ipif_ill); 8299 } 8300 if (dst_ill == NULL) { 8301 if (ip_debug > 2) { 8302 pr_addr_dbg("ip_newroute: " 8303 "no dst ill for dst" 8304 " %s\n", AF_INET, &dst); 8305 } 8306 goto icmp_err_ret; 8307 } 8308 } else { 8309 dst_ill = ire->ire_ipif->ipif_ill; 8310 /* for uniformity */ 8311 ill_refhold(dst_ill); 8312 /* 8313 * We should have found a route matching ill as we 8314 * called ire_ftable_lookup with MATCH_IRE_ILL. 8315 * Rather than asserting, when there is a mismatch, 8316 * we just drop the packet. 8317 */ 8318 if (dst_ill != attach_ill) { 8319 ip0dbg(("ip_newroute: Packet dropped as " 8320 "IPIF_NOFAILOVER ill is %s, " 8321 "ire->ire_ipif->ipif_ill is %s\n", 8322 attach_ill->ill_name, 8323 dst_ill->ill_name)); 8324 ill_refrele(attach_ill); 8325 goto icmp_err_ret; 8326 } 8327 } 8328 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8329 if (attach_ill != NULL) { 8330 ill_refrele(attach_ill); 8331 attach_ill = NULL; 8332 do_attach_ill = B_TRUE; 8333 } 8334 ASSERT(dst_ill != NULL); 8335 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8336 8337 /* 8338 * Pick the best source address from dst_ill. 8339 * 8340 * 1) If it is part of a multipathing group, we would 8341 * like to spread the inbound packets across different 8342 * interfaces. ipif_select_source picks a random source 8343 * across the different ills in the group. 8344 * 8345 * 2) If it is not part of a multipathing group, we try 8346 * to pick the source address from the destination 8347 * route. Clustering assumes that when we have multiple 8348 * prefixes hosted on an interface, the prefix of the 8349 * source address matches the prefix of the destination 8350 * route. We do this only if the address is not 8351 * DEPRECATED. 8352 * 8353 * 3) If the conn is in a different zone than the ire, we 8354 * need to pick a source address from the right zone. 8355 * 8356 * NOTE : If we hit case (1) above, the prefix of the source 8357 * address picked may not match the prefix of the 8358 * destination routes prefix as ipif_select_source 8359 * does not look at "dst" while picking a source 8360 * address. 8361 * If we want the same behavior as (2), we will need 8362 * to change the behavior of ipif_select_source. 8363 */ 8364 ASSERT(src_ipif == NULL); 8365 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8366 /* 8367 * The RTF_SETSRC flag is set in the parent ire (sire). 8368 * Check that the ipif matching the requested source 8369 * address still exists. 8370 */ 8371 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8372 zoneid, NULL, NULL, NULL, NULL, ipst); 8373 } 8374 if (src_ipif == NULL) { 8375 ire_marks |= IRE_MARK_USESRC_CHECK; 8376 if ((dst_ill->ill_group != NULL) || 8377 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8378 (connp != NULL && ire->ire_zoneid != zoneid && 8379 ire->ire_zoneid != ALL_ZONES) || 8380 (dst_ill->ill_usesrc_ifindex != 0)) { 8381 /* 8382 * If the destination is reachable via a 8383 * given gateway, the selected source address 8384 * should be in the same subnet as the gateway. 8385 * Otherwise, the destination is not reachable. 8386 * 8387 * If there are no interfaces on the same subnet 8388 * as the destination, ipif_select_source gives 8389 * first non-deprecated interface which might be 8390 * on a different subnet than the gateway. 8391 * This is not desirable. Hence pass the dst_ire 8392 * source address to ipif_select_source. 8393 * It is sure that the destination is reachable 8394 * with the dst_ire source address subnet. 8395 * So passing dst_ire source address to 8396 * ipif_select_source will make sure that the 8397 * selected source will be on the same subnet 8398 * as dst_ire source address. 8399 */ 8400 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8401 src_ipif = ipif_select_source(dst_ill, saddr, 8402 zoneid); 8403 if (src_ipif == NULL) { 8404 if (ip_debug > 2) { 8405 pr_addr_dbg("ip_newroute: " 8406 "no src for dst %s ", 8407 AF_INET, &dst); 8408 printf("through interface %s\n", 8409 dst_ill->ill_name); 8410 } 8411 goto icmp_err_ret; 8412 } 8413 } else { 8414 src_ipif = ire->ire_ipif; 8415 ASSERT(src_ipif != NULL); 8416 /* hold src_ipif for uniformity */ 8417 ipif_refhold(src_ipif); 8418 } 8419 } 8420 8421 /* 8422 * Assign a source address while we have the conn. 8423 * We can't have ip_wput_ire pick a source address when the 8424 * packet returns from arp since we need to look at 8425 * conn_unspec_src and conn_zoneid, and we lose the conn when 8426 * going through arp. 8427 * 8428 * NOTE : ip_newroute_v6 does not have this piece of code as 8429 * it uses ip6i to store this information. 8430 */ 8431 if (ipha->ipha_src == INADDR_ANY && 8432 (connp == NULL || !connp->conn_unspec_src)) { 8433 ipha->ipha_src = src_ipif->ipif_src_addr; 8434 } 8435 if (ip_debug > 3) { 8436 /* ip2dbg */ 8437 pr_addr_dbg("ip_newroute: first hop %s\n", 8438 AF_INET, &gw); 8439 } 8440 ip2dbg(("\tire type %s (%d)\n", 8441 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8442 8443 /* 8444 * The TTL of multirouted packets is bounded by the 8445 * ip_multirt_ttl ndd variable. 8446 */ 8447 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8448 /* Force TTL of multirouted packets */ 8449 if ((ipst->ips_ip_multirt_ttl > 0) && 8450 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8451 ip2dbg(("ip_newroute: forcing multirt TTL " 8452 "to %d (was %d), dst 0x%08x\n", 8453 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8454 ntohl(sire->ire_addr))); 8455 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8456 } 8457 } 8458 /* 8459 * At this point in ip_newroute(), ire is either the 8460 * IRE_CACHE of the next-hop gateway for an off-subnet 8461 * destination or an IRE_INTERFACE type that should be used 8462 * to resolve an on-subnet destination or an on-subnet 8463 * next-hop gateway. 8464 * 8465 * In the IRE_CACHE case, we have the following : 8466 * 8467 * 1) src_ipif - used for getting a source address. 8468 * 8469 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8470 * means packets using this IRE_CACHE will go out on 8471 * dst_ill. 8472 * 8473 * 3) The IRE sire will point to the prefix that is the 8474 * longest matching route for the destination. These 8475 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8476 * 8477 * The newly created IRE_CACHE entry for the off-subnet 8478 * destination is tied to both the prefix route and the 8479 * interface route used to resolve the next-hop gateway 8480 * via the ire_phandle and ire_ihandle fields, 8481 * respectively. 8482 * 8483 * In the IRE_INTERFACE case, we have the following : 8484 * 8485 * 1) src_ipif - used for getting a source address. 8486 * 8487 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8488 * means packets using the IRE_CACHE that we will build 8489 * here will go out on dst_ill. 8490 * 8491 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8492 * to be created will only be tied to the IRE_INTERFACE 8493 * that was derived from the ire_ihandle field. 8494 * 8495 * If sire is non-NULL, it means the destination is 8496 * off-link and we will first create the IRE_CACHE for the 8497 * gateway. Next time through ip_newroute, we will create 8498 * the IRE_CACHE for the final destination as described 8499 * above. 8500 * 8501 * In both cases, after the current resolution has been 8502 * completed (or possibly initialised, in the IRE_INTERFACE 8503 * case), the loop may be re-entered to attempt the resolution 8504 * of another RTF_MULTIRT route. 8505 * 8506 * When an IRE_CACHE entry for the off-subnet destination is 8507 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8508 * for further processing in emission loops. 8509 */ 8510 save_ire = ire; 8511 switch (ire->ire_type) { 8512 case IRE_CACHE: { 8513 ire_t *ipif_ire; 8514 mblk_t *ire_fp_mp; 8515 8516 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8517 if (gw == 0) 8518 gw = ire->ire_gateway_addr; 8519 /* 8520 * We need 3 ire's to create a new cache ire for an 8521 * off-link destination from the cache ire of the 8522 * gateway. 8523 * 8524 * 1. The prefix ire 'sire' (Note that this does 8525 * not apply to the conn_nexthop_set case) 8526 * 2. The cache ire of the gateway 'ire' 8527 * 3. The interface ire 'ipif_ire' 8528 * 8529 * We have (1) and (2). We lookup (3) below. 8530 * 8531 * If there is no interface route to the gateway, 8532 * it is a race condition, where we found the cache 8533 * but the interface route has been deleted. 8534 */ 8535 if (ip_nexthop) { 8536 ipif_ire = ire_ihandle_lookup_onlink(ire); 8537 } else { 8538 ipif_ire = 8539 ire_ihandle_lookup_offlink(ire, sire); 8540 } 8541 if (ipif_ire == NULL) { 8542 ip1dbg(("ip_newroute: " 8543 "ire_ihandle_lookup_offlink failed\n")); 8544 goto icmp_err_ret; 8545 } 8546 /* 8547 * XXX We are using the same res_mp 8548 * (DL_UNITDATA_REQ) though the save_ire is not 8549 * pointing at the same ill. 8550 * This is incorrect. We need to send it up to the 8551 * resolver to get the right res_mp. For ethernets 8552 * this may be okay (ill_type == DL_ETHER). 8553 */ 8554 res_mp = save_ire->ire_nce->nce_res_mp; 8555 ire_fp_mp = NULL; 8556 8557 /* 8558 * Check cached gateway IRE for any security 8559 * attributes; if found, associate the gateway 8560 * credentials group to the destination IRE. 8561 */ 8562 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8563 mutex_enter(&attrp->igsa_lock); 8564 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8565 GCGRP_REFHOLD(gcgrp); 8566 mutex_exit(&attrp->igsa_lock); 8567 } 8568 8569 ire = ire_create( 8570 (uchar_t *)&dst, /* dest address */ 8571 (uchar_t *)&ip_g_all_ones, /* mask */ 8572 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8573 (uchar_t *)&gw, /* gateway address */ 8574 NULL, 8575 &save_ire->ire_max_frag, 8576 ire_fp_mp, /* Fast Path header */ 8577 dst_ill->ill_rq, /* recv-from queue */ 8578 dst_ill->ill_wq, /* send-to queue */ 8579 IRE_CACHE, /* IRE type */ 8580 res_mp, 8581 src_ipif, 8582 in_ill, /* incoming ill */ 8583 (sire != NULL) ? 8584 sire->ire_mask : 0, /* Parent mask */ 8585 (sire != NULL) ? 8586 sire->ire_phandle : 0, /* Parent handle */ 8587 ipif_ire->ire_ihandle, /* Interface handle */ 8588 (sire != NULL) ? (sire->ire_flags & 8589 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8590 (sire != NULL) ? 8591 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8592 NULL, 8593 gcgrp, 8594 ipst); 8595 8596 if (ire == NULL) { 8597 if (gcgrp != NULL) { 8598 GCGRP_REFRELE(gcgrp); 8599 gcgrp = NULL; 8600 } 8601 ire_refrele(ipif_ire); 8602 ire_refrele(save_ire); 8603 break; 8604 } 8605 8606 /* reference now held by IRE */ 8607 gcgrp = NULL; 8608 8609 ire->ire_marks |= ire_marks; 8610 8611 /* 8612 * Prevent sire and ipif_ire from getting deleted. 8613 * The newly created ire is tied to both of them via 8614 * the phandle and ihandle respectively. 8615 */ 8616 if (sire != NULL) { 8617 IRB_REFHOLD(sire->ire_bucket); 8618 /* Has it been removed already ? */ 8619 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8620 IRB_REFRELE(sire->ire_bucket); 8621 ire_refrele(ipif_ire); 8622 ire_refrele(save_ire); 8623 break; 8624 } 8625 } 8626 8627 IRB_REFHOLD(ipif_ire->ire_bucket); 8628 /* Has it been removed already ? */ 8629 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8630 IRB_REFRELE(ipif_ire->ire_bucket); 8631 if (sire != NULL) 8632 IRB_REFRELE(sire->ire_bucket); 8633 ire_refrele(ipif_ire); 8634 ire_refrele(save_ire); 8635 break; 8636 } 8637 8638 xmit_mp = first_mp; 8639 /* 8640 * In the case of multirouting, a copy 8641 * of the packet is done before its sending. 8642 * The copy is used to attempt another 8643 * route resolution, in a next loop. 8644 */ 8645 if (ire->ire_flags & RTF_MULTIRT) { 8646 copy_mp = copymsg(first_mp); 8647 if (copy_mp != NULL) { 8648 xmit_mp = copy_mp; 8649 MULTIRT_DEBUG_TAG(first_mp); 8650 } 8651 } 8652 ire_add_then_send(q, ire, xmit_mp); 8653 ire_refrele(save_ire); 8654 8655 /* Assert that sire is not deleted yet. */ 8656 if (sire != NULL) { 8657 ASSERT(sire->ire_ptpn != NULL); 8658 IRB_REFRELE(sire->ire_bucket); 8659 } 8660 8661 /* Assert that ipif_ire is not deleted yet. */ 8662 ASSERT(ipif_ire->ire_ptpn != NULL); 8663 IRB_REFRELE(ipif_ire->ire_bucket); 8664 ire_refrele(ipif_ire); 8665 8666 /* 8667 * If copy_mp is not NULL, multirouting was 8668 * requested. We loop to initiate a next 8669 * route resolution attempt, starting from sire. 8670 */ 8671 if (copy_mp != NULL) { 8672 /* 8673 * Search for the next unresolved 8674 * multirt route. 8675 */ 8676 copy_mp = NULL; 8677 ipif_ire = NULL; 8678 ire = NULL; 8679 multirt_resolve_next = B_TRUE; 8680 continue; 8681 } 8682 if (sire != NULL) 8683 ire_refrele(sire); 8684 ipif_refrele(src_ipif); 8685 ill_refrele(dst_ill); 8686 return; 8687 } 8688 case IRE_IF_NORESOLVER: { 8689 /* 8690 * We have what we need to build an IRE_CACHE. 8691 * 8692 * Create a new res_mp with the IP gateway address 8693 * in destination address in the DLPI hdr if the 8694 * physical length is exactly 4 bytes. 8695 */ 8696 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8697 uchar_t *addr; 8698 8699 if (gw) 8700 addr = (uchar_t *)&gw; 8701 else 8702 addr = (uchar_t *)&dst; 8703 8704 res_mp = ill_dlur_gen(addr, 8705 dst_ill->ill_phys_addr_length, 8706 dst_ill->ill_sap, 8707 dst_ill->ill_sap_length); 8708 8709 if (res_mp == NULL) { 8710 ip1dbg(("ip_newroute: res_mp NULL\n")); 8711 break; 8712 } 8713 } else if (dst_ill->ill_resolver_mp == NULL) { 8714 ip1dbg(("ip_newroute: dst_ill %p " 8715 "for IF_NORESOLV ire %p has " 8716 "no ill_resolver_mp\n", 8717 (void *)dst_ill, (void *)ire)); 8718 break; 8719 } else { 8720 res_mp = NULL; 8721 } 8722 8723 /* 8724 * TSol note: We are creating the ire cache for the 8725 * destination 'dst'. If 'dst' is offlink, going 8726 * through the first hop 'gw', the security attributes 8727 * of 'dst' must be set to point to the gateway 8728 * credentials of gateway 'gw'. If 'dst' is onlink, it 8729 * is possible that 'dst' is a potential gateway that is 8730 * referenced by some route that has some security 8731 * attributes. Thus in the former case, we need to do a 8732 * gcgrp_lookup of 'gw' while in the latter case we 8733 * need to do gcgrp_lookup of 'dst' itself. 8734 */ 8735 ga.ga_af = AF_INET; 8736 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8737 &ga.ga_addr); 8738 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8739 8740 ire = ire_create( 8741 (uchar_t *)&dst, /* dest address */ 8742 (uchar_t *)&ip_g_all_ones, /* mask */ 8743 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8744 (uchar_t *)&gw, /* gateway address */ 8745 NULL, 8746 &save_ire->ire_max_frag, 8747 NULL, /* Fast Path header */ 8748 dst_ill->ill_rq, /* recv-from queue */ 8749 dst_ill->ill_wq, /* send-to queue */ 8750 IRE_CACHE, 8751 res_mp, 8752 src_ipif, 8753 in_ill, /* Incoming ill */ 8754 save_ire->ire_mask, /* Parent mask */ 8755 (sire != NULL) ? /* Parent handle */ 8756 sire->ire_phandle : 0, 8757 save_ire->ire_ihandle, /* Interface handle */ 8758 (sire != NULL) ? sire->ire_flags & 8759 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8760 &(save_ire->ire_uinfo), 8761 NULL, 8762 gcgrp, 8763 ipst); 8764 8765 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8766 freeb(res_mp); 8767 8768 if (ire == NULL) { 8769 if (gcgrp != NULL) { 8770 GCGRP_REFRELE(gcgrp); 8771 gcgrp = NULL; 8772 } 8773 ire_refrele(save_ire); 8774 break; 8775 } 8776 8777 /* reference now held by IRE */ 8778 gcgrp = NULL; 8779 8780 ire->ire_marks |= ire_marks; 8781 8782 /* Prevent save_ire from getting deleted */ 8783 IRB_REFHOLD(save_ire->ire_bucket); 8784 /* Has it been removed already ? */ 8785 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8786 IRB_REFRELE(save_ire->ire_bucket); 8787 ire_refrele(save_ire); 8788 break; 8789 } 8790 8791 /* 8792 * In the case of multirouting, a copy 8793 * of the packet is made before it is sent. 8794 * The copy is used in the next 8795 * loop to attempt another resolution. 8796 */ 8797 xmit_mp = first_mp; 8798 if ((sire != NULL) && 8799 (sire->ire_flags & RTF_MULTIRT)) { 8800 copy_mp = copymsg(first_mp); 8801 if (copy_mp != NULL) { 8802 xmit_mp = copy_mp; 8803 MULTIRT_DEBUG_TAG(first_mp); 8804 } 8805 } 8806 ire_add_then_send(q, ire, xmit_mp); 8807 8808 /* Assert that it is not deleted yet. */ 8809 ASSERT(save_ire->ire_ptpn != NULL); 8810 IRB_REFRELE(save_ire->ire_bucket); 8811 ire_refrele(save_ire); 8812 8813 if (copy_mp != NULL) { 8814 /* 8815 * If we found a (no)resolver, we ignore any 8816 * trailing top priority IRE_CACHE in further 8817 * loops. This ensures that we do not omit any 8818 * (no)resolver. 8819 * This IRE_CACHE, if any, will be processed 8820 * by another thread entering ip_newroute(). 8821 * IRE_CACHE entries, if any, will be processed 8822 * by another thread entering ip_newroute(), 8823 * (upon resolver response, for instance). 8824 * This aims to force parallel multirt 8825 * resolutions as soon as a packet must be sent. 8826 * In the best case, after the tx of only one 8827 * packet, all reachable routes are resolved. 8828 * Otherwise, the resolution of all RTF_MULTIRT 8829 * routes would require several emissions. 8830 */ 8831 multirt_flags &= ~MULTIRT_CACHEGW; 8832 8833 /* 8834 * Search for the next unresolved multirt 8835 * route. 8836 */ 8837 copy_mp = NULL; 8838 save_ire = NULL; 8839 ire = NULL; 8840 multirt_resolve_next = B_TRUE; 8841 continue; 8842 } 8843 8844 /* 8845 * Don't need sire anymore 8846 */ 8847 if (sire != NULL) 8848 ire_refrele(sire); 8849 8850 ipif_refrele(src_ipif); 8851 ill_refrele(dst_ill); 8852 return; 8853 } 8854 case IRE_IF_RESOLVER: 8855 /* 8856 * We can't build an IRE_CACHE yet, but at least we 8857 * found a resolver that can help. 8858 */ 8859 res_mp = dst_ill->ill_resolver_mp; 8860 if (!OK_RESOLVER_MP(res_mp)) 8861 break; 8862 8863 /* 8864 * To be at this point in the code with a non-zero gw 8865 * means that dst is reachable through a gateway that 8866 * we have never resolved. By changing dst to the gw 8867 * addr we resolve the gateway first. 8868 * When ire_add_then_send() tries to put the IP dg 8869 * to dst, it will reenter ip_newroute() at which 8870 * time we will find the IRE_CACHE for the gw and 8871 * create another IRE_CACHE in case IRE_CACHE above. 8872 */ 8873 if (gw != INADDR_ANY) { 8874 /* 8875 * The source ipif that was determined above was 8876 * relative to the destination address, not the 8877 * gateway's. If src_ipif was not taken out of 8878 * the IRE_IF_RESOLVER entry, we'll need to call 8879 * ipif_select_source() again. 8880 */ 8881 if (src_ipif != ire->ire_ipif) { 8882 ipif_refrele(src_ipif); 8883 src_ipif = ipif_select_source(dst_ill, 8884 gw, zoneid); 8885 if (src_ipif == NULL) { 8886 if (ip_debug > 2) { 8887 pr_addr_dbg( 8888 "ip_newroute: no " 8889 "src for gw %s ", 8890 AF_INET, &gw); 8891 printf("through " 8892 "interface %s\n", 8893 dst_ill->ill_name); 8894 } 8895 goto icmp_err_ret; 8896 } 8897 } 8898 save_dst = dst; 8899 dst = gw; 8900 gw = INADDR_ANY; 8901 } 8902 8903 /* 8904 * We obtain a partial IRE_CACHE which we will pass 8905 * along with the resolver query. When the response 8906 * comes back it will be there ready for us to add. 8907 * The ire_max_frag is atomically set under the 8908 * irebucket lock in ire_add_v[46]. 8909 */ 8910 8911 ire = ire_create_mp( 8912 (uchar_t *)&dst, /* dest address */ 8913 (uchar_t *)&ip_g_all_ones, /* mask */ 8914 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8915 (uchar_t *)&gw, /* gateway address */ 8916 NULL, /* no in_src_addr */ 8917 NULL, /* ire_max_frag */ 8918 NULL, /* Fast Path header */ 8919 dst_ill->ill_rq, /* recv-from queue */ 8920 dst_ill->ill_wq, /* send-to queue */ 8921 IRE_CACHE, 8922 NULL, 8923 src_ipif, /* Interface ipif */ 8924 in_ill, /* Incoming ILL */ 8925 save_ire->ire_mask, /* Parent mask */ 8926 0, 8927 save_ire->ire_ihandle, /* Interface handle */ 8928 0, /* flags if any */ 8929 &(save_ire->ire_uinfo), 8930 NULL, 8931 NULL, 8932 ipst); 8933 8934 if (ire == NULL) { 8935 ire_refrele(save_ire); 8936 break; 8937 } 8938 8939 if ((sire != NULL) && 8940 (sire->ire_flags & RTF_MULTIRT)) { 8941 copy_mp = copymsg(first_mp); 8942 if (copy_mp != NULL) 8943 MULTIRT_DEBUG_TAG(copy_mp); 8944 } 8945 8946 ire->ire_marks |= ire_marks; 8947 8948 /* 8949 * Construct message chain for the resolver 8950 * of the form: 8951 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8952 * Packet could contain a IPSEC_OUT mp. 8953 * 8954 * NOTE : ire will be added later when the response 8955 * comes back from ARP. If the response does not 8956 * come back, ARP frees the packet. For this reason, 8957 * we can't REFHOLD the bucket of save_ire to prevent 8958 * deletions. We may not be able to REFRELE the bucket 8959 * if the response never comes back. Thus, before 8960 * adding the ire, ire_add_v4 will make sure that the 8961 * interface route does not get deleted. This is the 8962 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8963 * where we can always prevent deletions because of 8964 * the synchronous nature of adding IRES i.e 8965 * ire_add_then_send is called after creating the IRE. 8966 */ 8967 ASSERT(ire->ire_mp != NULL); 8968 ire->ire_mp->b_cont = first_mp; 8969 /* Have saved_mp handy, for cleanup if canput fails */ 8970 saved_mp = mp; 8971 mp = copyb(res_mp); 8972 if (mp == NULL) { 8973 /* Prepare for cleanup */ 8974 mp = saved_mp; /* pkt */ 8975 ire_delete(ire); /* ire_mp */ 8976 ire = NULL; 8977 ire_refrele(save_ire); 8978 if (copy_mp != NULL) { 8979 MULTIRT_DEBUG_UNTAG(copy_mp); 8980 freemsg(copy_mp); 8981 copy_mp = NULL; 8982 } 8983 break; 8984 } 8985 linkb(mp, ire->ire_mp); 8986 8987 /* 8988 * Fill in the source and dest addrs for the resolver. 8989 * NOTE: this depends on memory layouts imposed by 8990 * ill_init(). 8991 */ 8992 areq = (areq_t *)mp->b_rptr; 8993 addrp = (ipaddr_t *)((char *)areq + 8994 areq->areq_sender_addr_offset); 8995 if (do_attach_ill) { 8996 /* 8997 * This is bind to no failover case. 8998 * arp packet also must go out on attach_ill. 8999 */ 9000 ASSERT(ipha->ipha_src != NULL); 9001 *addrp = ipha->ipha_src; 9002 } else { 9003 *addrp = save_ire->ire_src_addr; 9004 } 9005 9006 ire_refrele(save_ire); 9007 addrp = (ipaddr_t *)((char *)areq + 9008 areq->areq_target_addr_offset); 9009 *addrp = dst; 9010 /* Up to the resolver. */ 9011 if (canputnext(dst_ill->ill_rq) && 9012 !(dst_ill->ill_arp_closing)) { 9013 putnext(dst_ill->ill_rq, mp); 9014 ire = NULL; 9015 if (copy_mp != NULL) { 9016 /* 9017 * If we found a resolver, we ignore 9018 * any trailing top priority IRE_CACHE 9019 * in the further loops. This ensures 9020 * that we do not omit any resolver. 9021 * IRE_CACHE entries, if any, will be 9022 * processed next time we enter 9023 * ip_newroute(). 9024 */ 9025 multirt_flags &= ~MULTIRT_CACHEGW; 9026 /* 9027 * Search for the next unresolved 9028 * multirt route. 9029 */ 9030 first_mp = copy_mp; 9031 copy_mp = NULL; 9032 /* Prepare the next resolution loop. */ 9033 mp = first_mp; 9034 EXTRACT_PKT_MP(mp, first_mp, 9035 mctl_present); 9036 if (mctl_present) 9037 io = (ipsec_out_t *) 9038 first_mp->b_rptr; 9039 ipha = (ipha_t *)mp->b_rptr; 9040 9041 ASSERT(sire != NULL); 9042 9043 dst = save_dst; 9044 multirt_resolve_next = B_TRUE; 9045 continue; 9046 } 9047 9048 if (sire != NULL) 9049 ire_refrele(sire); 9050 9051 /* 9052 * The response will come back in ip_wput 9053 * with db_type IRE_DB_TYPE. 9054 */ 9055 ipif_refrele(src_ipif); 9056 ill_refrele(dst_ill); 9057 return; 9058 } else { 9059 /* Prepare for cleanup */ 9060 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 9061 mp); 9062 mp->b_cont = NULL; 9063 freeb(mp); /* areq */ 9064 /* 9065 * this is an ire that is not added to the 9066 * cache. ire_freemblk will handle the release 9067 * of any resources associated with the ire. 9068 */ 9069 ire_delete(ire); /* ire_mp */ 9070 mp = saved_mp; /* pkt */ 9071 ire = NULL; 9072 if (copy_mp != NULL) { 9073 MULTIRT_DEBUG_UNTAG(copy_mp); 9074 freemsg(copy_mp); 9075 copy_mp = NULL; 9076 } 9077 break; 9078 } 9079 default: 9080 break; 9081 } 9082 } while (multirt_resolve_next); 9083 9084 ip1dbg(("ip_newroute: dropped\n")); 9085 /* Did this packet originate externally? */ 9086 if (mp->b_prev) { 9087 mp->b_next = NULL; 9088 mp->b_prev = NULL; 9089 if (in_ill != NULL) { 9090 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 9091 } else { 9092 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9093 } 9094 } else { 9095 if (dst_ill != NULL) { 9096 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 9097 } else { 9098 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 9099 } 9100 } 9101 ASSERT(copy_mp == NULL); 9102 MULTIRT_DEBUG_UNTAG(first_mp); 9103 freemsg(first_mp); 9104 if (ire != NULL) 9105 ire_refrele(ire); 9106 if (sire != NULL) 9107 ire_refrele(sire); 9108 if (src_ipif != NULL) 9109 ipif_refrele(src_ipif); 9110 if (dst_ill != NULL) 9111 ill_refrele(dst_ill); 9112 return; 9113 9114 icmp_err_ret: 9115 ip1dbg(("ip_newroute: no route\n")); 9116 if (src_ipif != NULL) 9117 ipif_refrele(src_ipif); 9118 if (dst_ill != NULL) 9119 ill_refrele(dst_ill); 9120 if (sire != NULL) 9121 ire_refrele(sire); 9122 /* Did this packet originate externally? */ 9123 if (mp->b_prev) { 9124 mp->b_next = NULL; 9125 mp->b_prev = NULL; 9126 if (in_ill != NULL) { 9127 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 9128 } else { 9129 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9130 } 9131 q = WR(q); 9132 } else { 9133 /* 9134 * There is no outgoing ill, so just increment the 9135 * system MIB. 9136 */ 9137 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9138 /* 9139 * Since ip_wput() isn't close to finished, we fill 9140 * in enough of the header for credible error reporting. 9141 */ 9142 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9143 /* Failed */ 9144 MULTIRT_DEBUG_UNTAG(first_mp); 9145 freemsg(first_mp); 9146 if (ire != NULL) 9147 ire_refrele(ire); 9148 return; 9149 } 9150 } 9151 9152 /* 9153 * At this point we will have ire only if RTF_BLACKHOLE 9154 * or RTF_REJECT flags are set on the IRE. It will not 9155 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9156 */ 9157 if (ire != NULL) { 9158 if (ire->ire_flags & RTF_BLACKHOLE) { 9159 ire_refrele(ire); 9160 MULTIRT_DEBUG_UNTAG(first_mp); 9161 freemsg(first_mp); 9162 return; 9163 } 9164 ire_refrele(ire); 9165 } 9166 if (ip_source_routed(ipha, ipst)) { 9167 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9168 zoneid, ipst); 9169 return; 9170 } 9171 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9172 } 9173 9174 ip_opt_info_t zero_info; 9175 9176 /* 9177 * IPv4 - 9178 * ip_newroute_ipif is called by ip_wput_multicast and 9179 * ip_rput_forward_multicast whenever we need to send 9180 * out a packet to a destination address for which we do not have specific 9181 * routing information. It is used when the packet will be sent out 9182 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9183 * socket option is set or icmp error message wants to go out on a particular 9184 * interface for a unicast packet. 9185 * 9186 * In most cases, the destination address is resolved thanks to the ipif 9187 * intrinsic resolver. However, there are some cases where the call to 9188 * ip_newroute_ipif must take into account the potential presence of 9189 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9190 * that uses the interface. This is specified through flags, 9191 * which can be a combination of: 9192 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9193 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9194 * and flags. Additionally, the packet source address has to be set to 9195 * the specified address. The caller is thus expected to set this flag 9196 * if the packet has no specific source address yet. 9197 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9198 * flag, the resulting ire will inherit the flag. All unresolved routes 9199 * to the destination must be explored in the same call to 9200 * ip_newroute_ipif(). 9201 */ 9202 static void 9203 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9204 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9205 { 9206 areq_t *areq; 9207 ire_t *ire = NULL; 9208 mblk_t *res_mp; 9209 ipaddr_t *addrp; 9210 mblk_t *first_mp; 9211 ire_t *save_ire = NULL; 9212 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9213 ipif_t *src_ipif = NULL; 9214 ushort_t ire_marks = 0; 9215 ill_t *dst_ill = NULL; 9216 boolean_t mctl_present; 9217 ipsec_out_t *io; 9218 ipha_t *ipha; 9219 int ihandle = 0; 9220 mblk_t *saved_mp; 9221 ire_t *fire = NULL; 9222 mblk_t *copy_mp = NULL; 9223 boolean_t multirt_resolve_next; 9224 ipaddr_t ipha_dst; 9225 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9226 9227 /* 9228 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9229 * here for uniformity 9230 */ 9231 ipif_refhold(ipif); 9232 9233 /* 9234 * This loop is run only once in most cases. 9235 * We loop to resolve further routes only when the destination 9236 * can be reached through multiple RTF_MULTIRT-flagged ires. 9237 */ 9238 do { 9239 if (dst_ill != NULL) { 9240 ill_refrele(dst_ill); 9241 dst_ill = NULL; 9242 } 9243 if (src_ipif != NULL) { 9244 ipif_refrele(src_ipif); 9245 src_ipif = NULL; 9246 } 9247 multirt_resolve_next = B_FALSE; 9248 9249 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9250 ipif->ipif_ill->ill_name)); 9251 9252 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9253 if (mctl_present) 9254 io = (ipsec_out_t *)first_mp->b_rptr; 9255 9256 ipha = (ipha_t *)mp->b_rptr; 9257 9258 /* 9259 * Save the packet destination address, we may need it after 9260 * the packet has been consumed. 9261 */ 9262 ipha_dst = ipha->ipha_dst; 9263 9264 /* 9265 * If the interface is a pt-pt interface we look for an 9266 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9267 * local_address and the pt-pt destination address. Otherwise 9268 * we just match the local address. 9269 * NOTE: dst could be different than ipha->ipha_dst in case 9270 * of sending igmp multicast packets over a point-to-point 9271 * connection. 9272 * Thus we must be careful enough to check ipha_dst to be a 9273 * multicast address, otherwise it will take xmit_if path for 9274 * multicast packets resulting into kernel stack overflow by 9275 * repeated calls to ip_newroute_ipif from ire_send(). 9276 */ 9277 if (CLASSD(ipha_dst) && 9278 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9279 goto err_ret; 9280 } 9281 9282 /* 9283 * We check if an IRE_OFFSUBNET for the addr that goes through 9284 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9285 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9286 * propagate its flags to the new ire. 9287 */ 9288 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9289 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9290 ip2dbg(("ip_newroute_ipif: " 9291 "ipif_lookup_multi_ire(" 9292 "ipif %p, dst %08x) = fire %p\n", 9293 (void *)ipif, ntohl(dst), (void *)fire)); 9294 } 9295 9296 if (mctl_present && io->ipsec_out_attach_if) { 9297 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9298 io->ipsec_out_ill_index, B_FALSE, ipst); 9299 9300 /* Failure case frees things for us. */ 9301 if (attach_ill == NULL) { 9302 ipif_refrele(ipif); 9303 if (fire != NULL) 9304 ire_refrele(fire); 9305 return; 9306 } 9307 9308 /* 9309 * Check if we need an ire that will not be 9310 * looked up by anybody else i.e. HIDDEN. 9311 */ 9312 if (ill_is_probeonly(attach_ill)) { 9313 ire_marks = IRE_MARK_HIDDEN; 9314 } 9315 /* 9316 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9317 * case. 9318 */ 9319 dst_ill = ipif->ipif_ill; 9320 /* attach_ill has been refheld by ip_grab_attach_ill */ 9321 ASSERT(dst_ill == attach_ill); 9322 } else { 9323 /* 9324 * If this is set by IP_XMIT_IF, then make sure that 9325 * ipif is pointing to the same ill as the IP_XMIT_IF 9326 * specified ill. 9327 */ 9328 ASSERT((connp == NULL) || 9329 (connp->conn_xmit_if_ill == NULL) || 9330 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9331 /* 9332 * If the interface belongs to an interface group, 9333 * make sure the next possible interface in the group 9334 * is used. This encourages load spreading among 9335 * peers in an interface group. 9336 * Note: load spreading is disabled for RTF_MULTIRT 9337 * routes. 9338 */ 9339 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9340 (fire->ire_flags & RTF_MULTIRT)) { 9341 /* 9342 * Don't perform outbound load spreading 9343 * in the case of an RTF_MULTIRT issued route, 9344 * we actually typically want to replicate 9345 * outgoing packets through particular 9346 * interfaces. 9347 */ 9348 dst_ill = ipif->ipif_ill; 9349 ill_refhold(dst_ill); 9350 } else { 9351 dst_ill = ip_newroute_get_dst_ill( 9352 ipif->ipif_ill); 9353 } 9354 if (dst_ill == NULL) { 9355 if (ip_debug > 2) { 9356 pr_addr_dbg("ip_newroute_ipif: " 9357 "no dst ill for dst %s\n", 9358 AF_INET, &dst); 9359 } 9360 goto err_ret; 9361 } 9362 } 9363 9364 /* 9365 * Pick a source address preferring non-deprecated ones. 9366 * Unlike ip_newroute, we don't do any source address 9367 * selection here since for multicast it really does not help 9368 * in inbound load spreading as in the unicast case. 9369 */ 9370 if ((flags & RTF_SETSRC) && (fire != NULL) && 9371 (fire->ire_flags & RTF_SETSRC)) { 9372 /* 9373 * As requested by flags, an IRE_OFFSUBNET was looked up 9374 * on that interface. This ire has RTF_SETSRC flag, so 9375 * the source address of the packet must be changed. 9376 * Check that the ipif matching the requested source 9377 * address still exists. 9378 */ 9379 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9380 zoneid, NULL, NULL, NULL, NULL, ipst); 9381 } 9382 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9383 (connp != NULL && ipif->ipif_zoneid != zoneid && 9384 ipif->ipif_zoneid != ALL_ZONES)) && 9385 (src_ipif == NULL)) { 9386 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9387 if (src_ipif == NULL) { 9388 if (ip_debug > 2) { 9389 /* ip1dbg */ 9390 pr_addr_dbg("ip_newroute_ipif: " 9391 "no src for dst %s", 9392 AF_INET, &dst); 9393 } 9394 ip1dbg((" through interface %s\n", 9395 dst_ill->ill_name)); 9396 goto err_ret; 9397 } 9398 ipif_refrele(ipif); 9399 ipif = src_ipif; 9400 ipif_refhold(ipif); 9401 } 9402 if (src_ipif == NULL) { 9403 src_ipif = ipif; 9404 ipif_refhold(src_ipif); 9405 } 9406 9407 /* 9408 * Assign a source address while we have the conn. 9409 * We can't have ip_wput_ire pick a source address when the 9410 * packet returns from arp since conn_unspec_src might be set 9411 * and we loose the conn when going through arp. 9412 */ 9413 if (ipha->ipha_src == INADDR_ANY && 9414 (connp == NULL || !connp->conn_unspec_src)) { 9415 ipha->ipha_src = src_ipif->ipif_src_addr; 9416 } 9417 9418 /* 9419 * In case of IP_XMIT_IF, it is possible that the outgoing 9420 * interface does not have an interface ire. 9421 * Example: Thousands of mobileip PPP interfaces to mobile 9422 * nodes. We don't want to create interface ires because 9423 * packets from other mobile nodes must not take the route 9424 * via interface ires to the visiting mobile node without 9425 * going through the home agent, in absence of mobileip 9426 * route optimization. 9427 */ 9428 if (CLASSD(ipha_dst) && (connp == NULL || 9429 connp->conn_xmit_if_ill == NULL) && 9430 infop->ip_opt_ill_index == 0) { 9431 /* ipif_to_ire returns an held ire */ 9432 ire = ipif_to_ire(ipif); 9433 if (ire == NULL) 9434 goto err_ret; 9435 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9436 goto err_ret; 9437 /* 9438 * ihandle is needed when the ire is added to 9439 * cache table. 9440 */ 9441 save_ire = ire; 9442 ihandle = save_ire->ire_ihandle; 9443 9444 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9445 "flags %04x\n", 9446 (void *)ire, (void *)ipif, flags)); 9447 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9448 (fire->ire_flags & RTF_MULTIRT)) { 9449 /* 9450 * As requested by flags, an IRE_OFFSUBNET was 9451 * looked up on that interface. This ire has 9452 * RTF_MULTIRT flag, so the resolution loop will 9453 * be re-entered to resolve additional routes on 9454 * other interfaces. For that purpose, a copy of 9455 * the packet is performed at this point. 9456 */ 9457 fire->ire_last_used_time = lbolt; 9458 copy_mp = copymsg(first_mp); 9459 if (copy_mp) { 9460 MULTIRT_DEBUG_TAG(copy_mp); 9461 } 9462 } 9463 if ((flags & RTF_SETSRC) && (fire != NULL) && 9464 (fire->ire_flags & RTF_SETSRC)) { 9465 /* 9466 * As requested by flags, an IRE_OFFSUBET was 9467 * looked up on that interface. This ire has 9468 * RTF_SETSRC flag, so the source address of the 9469 * packet must be changed. 9470 */ 9471 ipha->ipha_src = fire->ire_src_addr; 9472 } 9473 } else { 9474 ASSERT((connp == NULL) || 9475 (connp->conn_xmit_if_ill != NULL) || 9476 (connp->conn_dontroute) || 9477 infop->ip_opt_ill_index != 0); 9478 /* 9479 * The only ways we can come here are: 9480 * 1) IP_XMIT_IF socket option is set 9481 * 2) ICMP error message generated from 9482 * ip_mrtun_forward() routine and it needs 9483 * to go through the specified ill. 9484 * 3) SO_DONTROUTE socket option is set 9485 * 4) IP_PKTINFO option is passed in as ancillary data. 9486 * In all cases, the new ire will not be added 9487 * into cache table. 9488 */ 9489 ire_marks |= IRE_MARK_NOADD; 9490 } 9491 9492 switch (ipif->ipif_net_type) { 9493 case IRE_IF_NORESOLVER: { 9494 /* We have what we need to build an IRE_CACHE. */ 9495 mblk_t *res_mp; 9496 9497 /* 9498 * Create a new res_mp with the 9499 * IP gateway address as destination address in the 9500 * DLPI hdr if the physical length is exactly 4 bytes. 9501 */ 9502 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9503 res_mp = ill_dlur_gen((uchar_t *)&dst, 9504 dst_ill->ill_phys_addr_length, 9505 dst_ill->ill_sap, 9506 dst_ill->ill_sap_length); 9507 } else if (dst_ill->ill_resolver_mp == NULL) { 9508 ip1dbg(("ip_newroute: dst_ill %p " 9509 "for IF_NORESOLV ire %p has " 9510 "no ill_resolver_mp\n", 9511 (void *)dst_ill, (void *)ire)); 9512 break; 9513 } else { 9514 /* use the value set in ip_ll_subnet_defaults */ 9515 res_mp = ill_dlur_gen(NULL, 9516 dst_ill->ill_phys_addr_length, 9517 dst_ill->ill_sap, 9518 dst_ill->ill_sap_length); 9519 } 9520 9521 if (res_mp == NULL) 9522 break; 9523 /* 9524 * The new ire inherits the IRE_OFFSUBNET flags 9525 * and source address, if this was requested. 9526 */ 9527 ire = ire_create( 9528 (uchar_t *)&dst, /* dest address */ 9529 (uchar_t *)&ip_g_all_ones, /* mask */ 9530 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9531 NULL, /* gateway address */ 9532 NULL, 9533 &ipif->ipif_mtu, 9534 NULL, /* Fast Path header */ 9535 dst_ill->ill_rq, /* recv-from queue */ 9536 dst_ill->ill_wq, /* send-to queue */ 9537 IRE_CACHE, 9538 res_mp, 9539 src_ipif, 9540 NULL, 9541 (save_ire != NULL ? save_ire->ire_mask : 0), 9542 (fire != NULL) ? /* Parent handle */ 9543 fire->ire_phandle : 0, 9544 ihandle, /* Interface handle */ 9545 (fire != NULL) ? 9546 (fire->ire_flags & 9547 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9548 (save_ire == NULL ? &ire_uinfo_null : 9549 &save_ire->ire_uinfo), 9550 NULL, 9551 NULL, 9552 ipst); 9553 9554 freeb(res_mp); 9555 9556 if (ire == NULL) { 9557 if (save_ire != NULL) 9558 ire_refrele(save_ire); 9559 break; 9560 } 9561 9562 ire->ire_marks |= ire_marks; 9563 9564 /* 9565 * If IRE_MARK_NOADD is set then we need to convert 9566 * the max_fragp to a useable value now. This is 9567 * normally done in ire_add_v[46]. We also need to 9568 * associate the ire with an nce (normally would be 9569 * done in ip_wput_nondata()). 9570 * 9571 * Note that IRE_MARK_NOADD packets created here 9572 * do not have a non-null ire_mp pointer. The null 9573 * value of ire_bucket indicates that they were 9574 * never added. 9575 */ 9576 if (ire->ire_marks & IRE_MARK_NOADD) { 9577 uint_t max_frag; 9578 9579 max_frag = *ire->ire_max_fragp; 9580 ire->ire_max_fragp = NULL; 9581 ire->ire_max_frag = max_frag; 9582 9583 if ((ire->ire_nce = ndp_lookup_v4( 9584 ire_to_ill(ire), 9585 (ire->ire_gateway_addr != INADDR_ANY ? 9586 &ire->ire_gateway_addr : &ire->ire_addr), 9587 B_FALSE)) == NULL) { 9588 if (save_ire != NULL) 9589 ire_refrele(save_ire); 9590 break; 9591 } 9592 ASSERT(ire->ire_nce->nce_state == 9593 ND_REACHABLE); 9594 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9595 } 9596 9597 /* Prevent save_ire from getting deleted */ 9598 if (save_ire != NULL) { 9599 IRB_REFHOLD(save_ire->ire_bucket); 9600 /* Has it been removed already ? */ 9601 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9602 IRB_REFRELE(save_ire->ire_bucket); 9603 ire_refrele(save_ire); 9604 break; 9605 } 9606 } 9607 9608 ire_add_then_send(q, ire, first_mp); 9609 9610 /* Assert that save_ire is not deleted yet. */ 9611 if (save_ire != NULL) { 9612 ASSERT(save_ire->ire_ptpn != NULL); 9613 IRB_REFRELE(save_ire->ire_bucket); 9614 ire_refrele(save_ire); 9615 save_ire = NULL; 9616 } 9617 if (fire != NULL) { 9618 ire_refrele(fire); 9619 fire = NULL; 9620 } 9621 9622 /* 9623 * the resolution loop is re-entered if this 9624 * was requested through flags and if we 9625 * actually are in a multirouting case. 9626 */ 9627 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9628 boolean_t need_resolve = 9629 ire_multirt_need_resolve(ipha_dst, 9630 MBLK_GETLABEL(copy_mp), ipst); 9631 if (!need_resolve) { 9632 MULTIRT_DEBUG_UNTAG(copy_mp); 9633 freemsg(copy_mp); 9634 copy_mp = NULL; 9635 } else { 9636 /* 9637 * ipif_lookup_group() calls 9638 * ire_lookup_multi() that uses 9639 * ire_ftable_lookup() to find 9640 * an IRE_INTERFACE for the group. 9641 * In the multirt case, 9642 * ire_lookup_multi() then invokes 9643 * ire_multirt_lookup() to find 9644 * the next resolvable ire. 9645 * As a result, we obtain an new 9646 * interface, derived from the 9647 * next ire. 9648 */ 9649 ipif_refrele(ipif); 9650 ipif = ipif_lookup_group(ipha_dst, 9651 zoneid, ipst); 9652 ip2dbg(("ip_newroute_ipif: " 9653 "multirt dst %08x, ipif %p\n", 9654 htonl(dst), (void *)ipif)); 9655 if (ipif != NULL) { 9656 mp = copy_mp; 9657 copy_mp = NULL; 9658 multirt_resolve_next = B_TRUE; 9659 continue; 9660 } else { 9661 freemsg(copy_mp); 9662 } 9663 } 9664 } 9665 if (ipif != NULL) 9666 ipif_refrele(ipif); 9667 ill_refrele(dst_ill); 9668 ipif_refrele(src_ipif); 9669 return; 9670 } 9671 case IRE_IF_RESOLVER: 9672 /* 9673 * We can't build an IRE_CACHE yet, but at least 9674 * we found a resolver that can help. 9675 */ 9676 res_mp = dst_ill->ill_resolver_mp; 9677 if (!OK_RESOLVER_MP(res_mp)) 9678 break; 9679 9680 /* 9681 * We obtain a partial IRE_CACHE which we will pass 9682 * along with the resolver query. When the response 9683 * comes back it will be there ready for us to add. 9684 * The new ire inherits the IRE_OFFSUBNET flags 9685 * and source address, if this was requested. 9686 * The ire_max_frag is atomically set under the 9687 * irebucket lock in ire_add_v[46]. Only in the 9688 * case of IRE_MARK_NOADD, we set it here itself. 9689 */ 9690 ire = ire_create_mp( 9691 (uchar_t *)&dst, /* dest address */ 9692 (uchar_t *)&ip_g_all_ones, /* mask */ 9693 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9694 NULL, /* gateway address */ 9695 NULL, /* no in_src_addr */ 9696 (ire_marks & IRE_MARK_NOADD) ? 9697 ipif->ipif_mtu : 0, /* max_frag */ 9698 NULL, /* Fast path header */ 9699 dst_ill->ill_rq, /* recv-from queue */ 9700 dst_ill->ill_wq, /* send-to queue */ 9701 IRE_CACHE, 9702 NULL, /* let ire_nce_init figure res_mp out */ 9703 src_ipif, 9704 NULL, 9705 (save_ire != NULL ? save_ire->ire_mask : 0), 9706 (fire != NULL) ? /* Parent handle */ 9707 fire->ire_phandle : 0, 9708 ihandle, /* Interface handle */ 9709 (fire != NULL) ? /* flags if any */ 9710 (fire->ire_flags & 9711 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9712 (save_ire == NULL ? &ire_uinfo_null : 9713 &save_ire->ire_uinfo), 9714 NULL, 9715 NULL, 9716 ipst); 9717 9718 if (save_ire != NULL) { 9719 ire_refrele(save_ire); 9720 save_ire = NULL; 9721 } 9722 if (ire == NULL) 9723 break; 9724 9725 ire->ire_marks |= ire_marks; 9726 /* 9727 * Construct message chain for the resolver of the 9728 * form: 9729 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9730 * 9731 * NOTE : ire will be added later when the response 9732 * comes back from ARP. If the response does not 9733 * come back, ARP frees the packet. For this reason, 9734 * we can't REFHOLD the bucket of save_ire to prevent 9735 * deletions. We may not be able to REFRELE the 9736 * bucket if the response never comes back. 9737 * Thus, before adding the ire, ire_add_v4 will make 9738 * sure that the interface route does not get deleted. 9739 * This is the only case unlike ip_newroute_v6, 9740 * ip_newroute_ipif_v6 where we can always prevent 9741 * deletions because ire_add_then_send is called after 9742 * creating the IRE. 9743 * If IRE_MARK_NOADD is set, then ire_add_then_send 9744 * does not add this IRE into the IRE CACHE. 9745 */ 9746 ASSERT(ire->ire_mp != NULL); 9747 ire->ire_mp->b_cont = first_mp; 9748 /* Have saved_mp handy, for cleanup if canput fails */ 9749 saved_mp = mp; 9750 mp = copyb(res_mp); 9751 if (mp == NULL) { 9752 /* Prepare for cleanup */ 9753 mp = saved_mp; /* pkt */ 9754 ire_delete(ire); /* ire_mp */ 9755 ire = NULL; 9756 if (copy_mp != NULL) { 9757 MULTIRT_DEBUG_UNTAG(copy_mp); 9758 freemsg(copy_mp); 9759 copy_mp = NULL; 9760 } 9761 break; 9762 } 9763 linkb(mp, ire->ire_mp); 9764 9765 /* 9766 * Fill in the source and dest addrs for the resolver. 9767 * NOTE: this depends on memory layouts imposed by 9768 * ill_init(). 9769 */ 9770 areq = (areq_t *)mp->b_rptr; 9771 addrp = (ipaddr_t *)((char *)areq + 9772 areq->areq_sender_addr_offset); 9773 *addrp = ire->ire_src_addr; 9774 addrp = (ipaddr_t *)((char *)areq + 9775 areq->areq_target_addr_offset); 9776 *addrp = dst; 9777 /* Up to the resolver. */ 9778 if (canputnext(dst_ill->ill_rq) && 9779 !(dst_ill->ill_arp_closing)) { 9780 putnext(dst_ill->ill_rq, mp); 9781 /* 9782 * The response will come back in ip_wput 9783 * with db_type IRE_DB_TYPE. 9784 */ 9785 } else { 9786 mp->b_cont = NULL; 9787 freeb(mp); /* areq */ 9788 ire_delete(ire); /* ire_mp */ 9789 saved_mp->b_next = NULL; 9790 saved_mp->b_prev = NULL; 9791 freemsg(first_mp); /* pkt */ 9792 ip2dbg(("ip_newroute_ipif: dropped\n")); 9793 } 9794 9795 if (fire != NULL) { 9796 ire_refrele(fire); 9797 fire = NULL; 9798 } 9799 9800 9801 /* 9802 * The resolution loop is re-entered if this was 9803 * requested through flags and we actually are 9804 * in a multirouting case. 9805 */ 9806 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9807 boolean_t need_resolve = 9808 ire_multirt_need_resolve(ipha_dst, 9809 MBLK_GETLABEL(copy_mp), ipst); 9810 if (!need_resolve) { 9811 MULTIRT_DEBUG_UNTAG(copy_mp); 9812 freemsg(copy_mp); 9813 copy_mp = NULL; 9814 } else { 9815 /* 9816 * ipif_lookup_group() calls 9817 * ire_lookup_multi() that uses 9818 * ire_ftable_lookup() to find 9819 * an IRE_INTERFACE for the group. 9820 * In the multirt case, 9821 * ire_lookup_multi() then invokes 9822 * ire_multirt_lookup() to find 9823 * the next resolvable ire. 9824 * As a result, we obtain an new 9825 * interface, derived from the 9826 * next ire. 9827 */ 9828 ipif_refrele(ipif); 9829 ipif = ipif_lookup_group(ipha_dst, 9830 zoneid, ipst); 9831 if (ipif != NULL) { 9832 mp = copy_mp; 9833 copy_mp = NULL; 9834 multirt_resolve_next = B_TRUE; 9835 continue; 9836 } else { 9837 freemsg(copy_mp); 9838 } 9839 } 9840 } 9841 if (ipif != NULL) 9842 ipif_refrele(ipif); 9843 ill_refrele(dst_ill); 9844 ipif_refrele(src_ipif); 9845 return; 9846 default: 9847 break; 9848 } 9849 } while (multirt_resolve_next); 9850 9851 err_ret: 9852 ip2dbg(("ip_newroute_ipif: dropped\n")); 9853 if (fire != NULL) 9854 ire_refrele(fire); 9855 ipif_refrele(ipif); 9856 /* Did this packet originate externally? */ 9857 if (dst_ill != NULL) 9858 ill_refrele(dst_ill); 9859 if (src_ipif != NULL) 9860 ipif_refrele(src_ipif); 9861 if (mp->b_prev || mp->b_next) { 9862 mp->b_next = NULL; 9863 mp->b_prev = NULL; 9864 } else { 9865 /* 9866 * Since ip_wput() isn't close to finished, we fill 9867 * in enough of the header for credible error reporting. 9868 */ 9869 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9870 /* Failed */ 9871 freemsg(first_mp); 9872 if (ire != NULL) 9873 ire_refrele(ire); 9874 return; 9875 } 9876 } 9877 /* 9878 * At this point we will have ire only if RTF_BLACKHOLE 9879 * or RTF_REJECT flags are set on the IRE. It will not 9880 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9881 */ 9882 if (ire != NULL) { 9883 if (ire->ire_flags & RTF_BLACKHOLE) { 9884 ire_refrele(ire); 9885 freemsg(first_mp); 9886 return; 9887 } 9888 ire_refrele(ire); 9889 } 9890 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9891 } 9892 9893 /* Name/Value Table Lookup Routine */ 9894 char * 9895 ip_nv_lookup(nv_t *nv, int value) 9896 { 9897 if (!nv) 9898 return (NULL); 9899 for (; nv->nv_name; nv++) { 9900 if (nv->nv_value == value) 9901 return (nv->nv_name); 9902 } 9903 return ("unknown"); 9904 } 9905 9906 /* 9907 * This is a module open, i.e. this is a control stream for access 9908 * to a DLPI device. We allocate an ill_t as the instance data in 9909 * this case. 9910 */ 9911 int 9912 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9913 { 9914 ill_t *ill; 9915 int err; 9916 zoneid_t zoneid; 9917 netstack_t *ns; 9918 ip_stack_t *ipst; 9919 9920 /* 9921 * Prevent unprivileged processes from pushing IP so that 9922 * they can't send raw IP. 9923 */ 9924 if (secpolicy_net_rawaccess(credp) != 0) 9925 return (EPERM); 9926 9927 ns = netstack_find_by_cred(credp); 9928 ASSERT(ns != NULL); 9929 ipst = ns->netstack_ip; 9930 ASSERT(ipst != NULL); 9931 9932 /* 9933 * For exclusive stacks we set the zoneid to zero 9934 * to make IP operate as if in the global zone. 9935 */ 9936 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9937 zoneid = GLOBAL_ZONEID; 9938 else 9939 zoneid = crgetzoneid(credp); 9940 9941 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9942 q->q_ptr = WR(q)->q_ptr = ill; 9943 ill->ill_ipst = ipst; 9944 ill->ill_zoneid = zoneid; 9945 9946 /* 9947 * ill_init initializes the ill fields and then sends down 9948 * down a DL_INFO_REQ after calling qprocson. 9949 */ 9950 err = ill_init(q, ill); 9951 if (err != 0) { 9952 mi_free(ill); 9953 netstack_rele(ipst->ips_netstack); 9954 q->q_ptr = NULL; 9955 WR(q)->q_ptr = NULL; 9956 return (err); 9957 } 9958 9959 /* ill_init initializes the ipsq marking this thread as writer */ 9960 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9961 /* Wait for the DL_INFO_ACK */ 9962 mutex_enter(&ill->ill_lock); 9963 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9964 /* 9965 * Return value of 0 indicates a pending signal. 9966 */ 9967 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9968 if (err == 0) { 9969 mutex_exit(&ill->ill_lock); 9970 (void) ip_close(q, 0); 9971 return (EINTR); 9972 } 9973 } 9974 mutex_exit(&ill->ill_lock); 9975 9976 /* 9977 * ip_rput_other could have set an error in ill_error on 9978 * receipt of M_ERROR. 9979 */ 9980 9981 err = ill->ill_error; 9982 if (err != 0) { 9983 (void) ip_close(q, 0); 9984 return (err); 9985 } 9986 9987 ill->ill_credp = credp; 9988 crhold(credp); 9989 9990 mutex_enter(&ipst->ips_ip_mi_lock); 9991 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9992 credp); 9993 mutex_exit(&ipst->ips_ip_mi_lock); 9994 if (err) { 9995 (void) ip_close(q, 0); 9996 return (err); 9997 } 9998 return (0); 9999 } 10000 10001 /* IP open routine. */ 10002 int 10003 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 10004 { 10005 conn_t *connp; 10006 major_t maj; 10007 zoneid_t zoneid; 10008 netstack_t *ns; 10009 ip_stack_t *ipst; 10010 10011 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 10012 10013 /* Allow reopen. */ 10014 if (q->q_ptr != NULL) 10015 return (0); 10016 10017 if (sflag & MODOPEN) { 10018 /* This is a module open */ 10019 return (ip_modopen(q, devp, flag, sflag, credp)); 10020 } 10021 10022 ns = netstack_find_by_cred(credp); 10023 ASSERT(ns != NULL); 10024 ipst = ns->netstack_ip; 10025 ASSERT(ipst != NULL); 10026 10027 /* 10028 * For exclusive stacks we set the zoneid to zero 10029 * to make IP operate as if in the global zone. 10030 */ 10031 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 10032 zoneid = GLOBAL_ZONEID; 10033 else 10034 zoneid = crgetzoneid(credp); 10035 10036 /* 10037 * We are opening as a device. This is an IP client stream, and we 10038 * allocate an conn_t as the instance data. 10039 */ 10040 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 10041 10042 /* 10043 * ipcl_conn_create did a netstack_hold. Undo the hold that was 10044 * done by netstack_find_by_cred() 10045 */ 10046 netstack_rele(ipst->ips_netstack); 10047 10048 connp->conn_zoneid = zoneid; 10049 10050 connp->conn_upq = q; 10051 q->q_ptr = WR(q)->q_ptr = connp; 10052 10053 if (flag & SO_SOCKSTR) 10054 connp->conn_flags |= IPCL_SOCKET; 10055 10056 /* Minor tells us which /dev entry was opened */ 10057 if (geteminor(*devp) == IPV6_MINOR) { 10058 connp->conn_flags |= IPCL_ISV6; 10059 connp->conn_af_isv6 = B_TRUE; 10060 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 10061 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 10062 } else { 10063 connp->conn_af_isv6 = B_FALSE; 10064 connp->conn_pkt_isv6 = B_FALSE; 10065 } 10066 10067 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 10068 /* CONN_DEC_REF takes care of netstack_rele() */ 10069 q->q_ptr = WR(q)->q_ptr = NULL; 10070 CONN_DEC_REF(connp); 10071 return (EBUSY); 10072 } 10073 10074 maj = getemajor(*devp); 10075 *devp = makedevice(maj, (minor_t)connp->conn_dev); 10076 10077 /* 10078 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 10079 */ 10080 connp->conn_cred = credp; 10081 crhold(connp->conn_cred); 10082 10083 /* 10084 * If the caller has the process-wide flag set, then default to MAC 10085 * exempt mode. This allows read-down to unlabeled hosts. 10086 */ 10087 if (getpflags(NET_MAC_AWARE, credp) != 0) 10088 connp->conn_mac_exempt = B_TRUE; 10089 10090 /* 10091 * This should only happen for ndd, netstat, raw socket or other SCTP 10092 * administrative ops. In these cases, we just need a normal conn_t 10093 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 10094 * an error will be returned. 10095 */ 10096 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 10097 connp->conn_rq = q; 10098 connp->conn_wq = WR(q); 10099 } else { 10100 connp->conn_ulp = IPPROTO_SCTP; 10101 connp->conn_rq = connp->conn_wq = NULL; 10102 } 10103 /* Non-zero default values */ 10104 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 10105 10106 /* 10107 * Make the conn globally visible to walkers 10108 */ 10109 mutex_enter(&connp->conn_lock); 10110 connp->conn_state_flags &= ~CONN_INCIPIENT; 10111 mutex_exit(&connp->conn_lock); 10112 ASSERT(connp->conn_ref == 1); 10113 10114 qprocson(q); 10115 10116 return (0); 10117 } 10118 10119 /* 10120 * Change q_qinfo based on the value of isv6. 10121 * This can not called on an ill queue. 10122 * Note that there is no race since either q_qinfo works for conn queues - it 10123 * is just an optimization to enter the best wput routine directly. 10124 */ 10125 void 10126 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 10127 { 10128 ASSERT(q->q_flag & QREADR); 10129 ASSERT(WR(q)->q_next == NULL); 10130 ASSERT(q->q_ptr != NULL); 10131 10132 if (minor == IPV6_MINOR) { 10133 if (bump_mib) { 10134 BUMP_MIB(&ipst->ips_ip6_mib, 10135 ipIfStatsOutSwitchIPVersion); 10136 } 10137 q->q_qinfo = &rinit_ipv6; 10138 WR(q)->q_qinfo = &winit_ipv6; 10139 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 10140 } else { 10141 if (bump_mib) { 10142 BUMP_MIB(&ipst->ips_ip_mib, 10143 ipIfStatsOutSwitchIPVersion); 10144 } 10145 q->q_qinfo = &iprinit; 10146 WR(q)->q_qinfo = &ipwinit; 10147 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 10148 } 10149 10150 } 10151 10152 /* 10153 * See if IPsec needs loading because of the options in mp. 10154 */ 10155 static boolean_t 10156 ipsec_opt_present(mblk_t *mp) 10157 { 10158 uint8_t *optcp, *next_optcp, *opt_endcp; 10159 struct opthdr *opt; 10160 struct T_opthdr *topt; 10161 int opthdr_len; 10162 t_uscalar_t optname, optlevel; 10163 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10164 ipsec_req_t *ipsr; 10165 10166 /* 10167 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10168 * return TRUE. 10169 */ 10170 10171 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10172 opt_endcp = optcp + tor->OPT_length; 10173 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10174 opthdr_len = sizeof (struct T_opthdr); 10175 } else { /* O_OPTMGMT_REQ */ 10176 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10177 opthdr_len = sizeof (struct opthdr); 10178 } 10179 for (; optcp < opt_endcp; optcp = next_optcp) { 10180 if (optcp + opthdr_len > opt_endcp) 10181 return (B_FALSE); /* Not enough option header. */ 10182 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10183 topt = (struct T_opthdr *)optcp; 10184 optlevel = topt->level; 10185 optname = topt->name; 10186 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10187 } else { 10188 opt = (struct opthdr *)optcp; 10189 optlevel = opt->level; 10190 optname = opt->name; 10191 next_optcp = optcp + opthdr_len + 10192 _TPI_ALIGN_OPT(opt->len); 10193 } 10194 if ((next_optcp < optcp) || /* wraparound pointer space */ 10195 ((next_optcp >= opt_endcp) && /* last option bad len */ 10196 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10197 return (B_FALSE); /* bad option buffer */ 10198 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10199 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10200 /* 10201 * Check to see if it's an all-bypass or all-zeroes 10202 * IPsec request. Don't bother loading IPsec if 10203 * the socket doesn't want to use it. (A good example 10204 * is a bypass request.) 10205 * 10206 * Basically, if any of the non-NEVER bits are set, 10207 * load IPsec. 10208 */ 10209 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10210 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10211 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10212 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10213 != 0) 10214 return (B_TRUE); 10215 } 10216 } 10217 return (B_FALSE); 10218 } 10219 10220 /* 10221 * If conn is is waiting for ipsec to finish loading, kick it. 10222 */ 10223 /* ARGSUSED */ 10224 static void 10225 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10226 { 10227 t_scalar_t optreq_prim; 10228 mblk_t *mp; 10229 cred_t *cr; 10230 int err = 0; 10231 10232 /* 10233 * This function is called, after ipsec loading is complete. 10234 * Since IP checks exclusively and atomically (i.e it prevents 10235 * ipsec load from completing until ip_optcom_req completes) 10236 * whether ipsec load is complete, there cannot be a race with IP 10237 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10238 */ 10239 mutex_enter(&connp->conn_lock); 10240 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10241 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10242 mp = connp->conn_ipsec_opt_mp; 10243 connp->conn_ipsec_opt_mp = NULL; 10244 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10245 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10246 mutex_exit(&connp->conn_lock); 10247 10248 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10249 10250 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10251 if (optreq_prim == T_OPTMGMT_REQ) { 10252 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10253 &ip_opt_obj); 10254 } else { 10255 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10256 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10257 &ip_opt_obj); 10258 } 10259 if (err != EINPROGRESS) 10260 CONN_OPER_PENDING_DONE(connp); 10261 return; 10262 } 10263 mutex_exit(&connp->conn_lock); 10264 } 10265 10266 /* 10267 * Called from the ipsec_loader thread, outside any perimeter, to tell 10268 * ip qenable any of the queues waiting for the ipsec loader to 10269 * complete. 10270 */ 10271 void 10272 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10273 { 10274 netstack_t *ns = ipss->ipsec_netstack; 10275 10276 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10277 } 10278 10279 /* 10280 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10281 * determines the grp on which it has to become exclusive, queues the mp 10282 * and sq draining restarts the optmgmt 10283 */ 10284 static boolean_t 10285 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10286 { 10287 conn_t *connp = Q_TO_CONN(q); 10288 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10289 10290 /* 10291 * Take IPsec requests and treat them special. 10292 */ 10293 if (ipsec_opt_present(mp)) { 10294 /* First check if IPsec is loaded. */ 10295 mutex_enter(&ipss->ipsec_loader_lock); 10296 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10297 mutex_exit(&ipss->ipsec_loader_lock); 10298 return (B_FALSE); 10299 } 10300 mutex_enter(&connp->conn_lock); 10301 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10302 10303 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10304 connp->conn_ipsec_opt_mp = mp; 10305 mutex_exit(&connp->conn_lock); 10306 mutex_exit(&ipss->ipsec_loader_lock); 10307 10308 ipsec_loader_loadnow(ipss); 10309 return (B_TRUE); 10310 } 10311 return (B_FALSE); 10312 } 10313 10314 /* 10315 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10316 * all of them are copied to the conn_t. If the req is "zero", the policy is 10317 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10318 * fields. 10319 * We keep only the latest setting of the policy and thus policy setting 10320 * is not incremental/cumulative. 10321 * 10322 * Requests to set policies with multiple alternative actions will 10323 * go through a different API. 10324 */ 10325 int 10326 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10327 { 10328 uint_t ah_req = 0; 10329 uint_t esp_req = 0; 10330 uint_t se_req = 0; 10331 ipsec_selkey_t sel; 10332 ipsec_act_t *actp = NULL; 10333 uint_t nact; 10334 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10335 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10336 ipsec_policy_root_t *pr; 10337 ipsec_policy_head_t *ph; 10338 int fam; 10339 boolean_t is_pol_reset; 10340 int error = 0; 10341 netstack_t *ns = connp->conn_netstack; 10342 ip_stack_t *ipst = ns->netstack_ip; 10343 ipsec_stack_t *ipss = ns->netstack_ipsec; 10344 10345 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10346 10347 /* 10348 * The IP_SEC_OPT option does not allow variable length parameters, 10349 * hence a request cannot be NULL. 10350 */ 10351 if (req == NULL) 10352 return (EINVAL); 10353 10354 ah_req = req->ipsr_ah_req; 10355 esp_req = req->ipsr_esp_req; 10356 se_req = req->ipsr_self_encap_req; 10357 10358 /* 10359 * Are we dealing with a request to reset the policy (i.e. 10360 * zero requests). 10361 */ 10362 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10363 (esp_req & REQ_MASK) == 0 && 10364 (se_req & REQ_MASK) == 0); 10365 10366 if (!is_pol_reset) { 10367 /* 10368 * If we couldn't load IPsec, fail with "protocol 10369 * not supported". 10370 * IPsec may not have been loaded for a request with zero 10371 * policies, so we don't fail in this case. 10372 */ 10373 mutex_enter(&ipss->ipsec_loader_lock); 10374 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10375 mutex_exit(&ipss->ipsec_loader_lock); 10376 return (EPROTONOSUPPORT); 10377 } 10378 mutex_exit(&ipss->ipsec_loader_lock); 10379 10380 /* 10381 * Test for valid requests. Invalid algorithms 10382 * need to be tested by IPSEC code because new 10383 * algorithms can be added dynamically. 10384 */ 10385 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10386 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10387 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10388 return (EINVAL); 10389 } 10390 10391 /* 10392 * Only privileged users can issue these 10393 * requests. 10394 */ 10395 if (((ah_req & IPSEC_PREF_NEVER) || 10396 (esp_req & IPSEC_PREF_NEVER) || 10397 (se_req & IPSEC_PREF_NEVER)) && 10398 secpolicy_ip_config(cr, B_FALSE) != 0) { 10399 return (EPERM); 10400 } 10401 10402 /* 10403 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10404 * are mutually exclusive. 10405 */ 10406 if (((ah_req & REQ_MASK) == REQ_MASK) || 10407 ((esp_req & REQ_MASK) == REQ_MASK) || 10408 ((se_req & REQ_MASK) == REQ_MASK)) { 10409 /* Both of them are set */ 10410 return (EINVAL); 10411 } 10412 } 10413 10414 mutex_enter(&connp->conn_lock); 10415 10416 /* 10417 * If we have already cached policies in ip_bind_connected*(), don't 10418 * let them change now. We cache policies for connections 10419 * whose src,dst [addr, port] is known. 10420 */ 10421 if (connp->conn_policy_cached) { 10422 mutex_exit(&connp->conn_lock); 10423 return (EINVAL); 10424 } 10425 10426 /* 10427 * We have a zero policies, reset the connection policy if already 10428 * set. This will cause the connection to inherit the 10429 * global policy, if any. 10430 */ 10431 if (is_pol_reset) { 10432 if (connp->conn_policy != NULL) { 10433 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10434 connp->conn_policy = NULL; 10435 } 10436 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10437 connp->conn_in_enforce_policy = B_FALSE; 10438 connp->conn_out_enforce_policy = B_FALSE; 10439 mutex_exit(&connp->conn_lock); 10440 return (0); 10441 } 10442 10443 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10444 ipst->ips_netstack); 10445 if (ph == NULL) 10446 goto enomem; 10447 10448 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10449 if (actp == NULL) 10450 goto enomem; 10451 10452 /* 10453 * Always allocate IPv4 policy entries, since they can also 10454 * apply to ipv6 sockets being used in ipv4-compat mode. 10455 */ 10456 bzero(&sel, sizeof (sel)); 10457 sel.ipsl_valid = IPSL_IPV4; 10458 10459 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10460 ipst->ips_netstack); 10461 if (pin4 == NULL) 10462 goto enomem; 10463 10464 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10465 ipst->ips_netstack); 10466 if (pout4 == NULL) 10467 goto enomem; 10468 10469 if (connp->conn_pkt_isv6) { 10470 /* 10471 * We're looking at a v6 socket, also allocate the 10472 * v6-specific entries... 10473 */ 10474 sel.ipsl_valid = IPSL_IPV6; 10475 pin6 = ipsec_policy_create(&sel, actp, nact, 10476 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10477 if (pin6 == NULL) 10478 goto enomem; 10479 10480 pout6 = ipsec_policy_create(&sel, actp, nact, 10481 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10482 if (pout6 == NULL) 10483 goto enomem; 10484 10485 /* 10486 * .. and file them away in the right place. 10487 */ 10488 fam = IPSEC_AF_V6; 10489 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10490 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10491 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10492 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10493 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10494 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10495 } 10496 10497 ipsec_actvec_free(actp, nact); 10498 10499 /* 10500 * File the v4 policies. 10501 */ 10502 fam = IPSEC_AF_V4; 10503 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10504 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10505 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10506 10507 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10508 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10509 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10510 10511 /* 10512 * If the requests need security, set enforce_policy. 10513 * If the requests are IPSEC_PREF_NEVER, one should 10514 * still set conn_out_enforce_policy so that an ipsec_out 10515 * gets attached in ip_wput. This is needed so that 10516 * for connections that we don't cache policy in ip_bind, 10517 * if global policy matches in ip_wput_attach_policy, we 10518 * don't wrongly inherit global policy. Similarly, we need 10519 * to set conn_in_enforce_policy also so that we don't verify 10520 * policy wrongly. 10521 */ 10522 if ((ah_req & REQ_MASK) != 0 || 10523 (esp_req & REQ_MASK) != 0 || 10524 (se_req & REQ_MASK) != 0) { 10525 connp->conn_in_enforce_policy = B_TRUE; 10526 connp->conn_out_enforce_policy = B_TRUE; 10527 connp->conn_flags |= IPCL_CHECK_POLICY; 10528 } 10529 10530 mutex_exit(&connp->conn_lock); 10531 return (error); 10532 #undef REQ_MASK 10533 10534 /* 10535 * Common memory-allocation-failure exit path. 10536 */ 10537 enomem: 10538 mutex_exit(&connp->conn_lock); 10539 if (actp != NULL) 10540 ipsec_actvec_free(actp, nact); 10541 if (pin4 != NULL) 10542 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10543 if (pout4 != NULL) 10544 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10545 if (pin6 != NULL) 10546 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10547 if (pout6 != NULL) 10548 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10549 return (ENOMEM); 10550 } 10551 10552 /* 10553 * Only for options that pass in an IP addr. Currently only V4 options 10554 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10555 * So this function assumes level is IPPROTO_IP 10556 */ 10557 int 10558 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10559 mblk_t *first_mp) 10560 { 10561 ipif_t *ipif = NULL; 10562 int error; 10563 ill_t *ill; 10564 int zoneid; 10565 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10566 10567 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10568 10569 if (addr != INADDR_ANY || checkonly) { 10570 ASSERT(connp != NULL); 10571 zoneid = IPCL_ZONEID(connp); 10572 if (option == IP_NEXTHOP) { 10573 ipif = ipif_lookup_onlink_addr(addr, 10574 connp->conn_zoneid, ipst); 10575 } else { 10576 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10577 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10578 &error, ipst); 10579 } 10580 if (ipif == NULL) { 10581 if (error == EINPROGRESS) 10582 return (error); 10583 else if ((option == IP_MULTICAST_IF) || 10584 (option == IP_NEXTHOP)) 10585 return (EHOSTUNREACH); 10586 else 10587 return (EINVAL); 10588 } else if (checkonly) { 10589 if (option == IP_MULTICAST_IF) { 10590 ill = ipif->ipif_ill; 10591 /* not supported by the virtual network iface */ 10592 if (IS_VNI(ill)) { 10593 ipif_refrele(ipif); 10594 return (EINVAL); 10595 } 10596 } 10597 ipif_refrele(ipif); 10598 return (0); 10599 } 10600 ill = ipif->ipif_ill; 10601 mutex_enter(&connp->conn_lock); 10602 mutex_enter(&ill->ill_lock); 10603 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10604 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10605 mutex_exit(&ill->ill_lock); 10606 mutex_exit(&connp->conn_lock); 10607 ipif_refrele(ipif); 10608 return (option == IP_MULTICAST_IF ? 10609 EHOSTUNREACH : EINVAL); 10610 } 10611 } else { 10612 mutex_enter(&connp->conn_lock); 10613 } 10614 10615 /* None of the options below are supported on the VNI */ 10616 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10617 mutex_exit(&ill->ill_lock); 10618 mutex_exit(&connp->conn_lock); 10619 ipif_refrele(ipif); 10620 return (EINVAL); 10621 } 10622 10623 switch (option) { 10624 case IP_DONTFAILOVER_IF: 10625 /* 10626 * This option is used by in.mpathd to ensure 10627 * that IPMP probe packets only go out on the 10628 * test interfaces. in.mpathd sets this option 10629 * on the non-failover interfaces. 10630 * For backward compatibility, this option 10631 * implicitly sets IP_MULTICAST_IF, as used 10632 * be done in bind(), so that ip_wput gets 10633 * this ipif to send mcast packets. 10634 */ 10635 if (ipif != NULL) { 10636 ASSERT(addr != INADDR_ANY); 10637 connp->conn_nofailover_ill = ipif->ipif_ill; 10638 connp->conn_multicast_ipif = ipif; 10639 } else { 10640 ASSERT(addr == INADDR_ANY); 10641 connp->conn_nofailover_ill = NULL; 10642 connp->conn_multicast_ipif = NULL; 10643 } 10644 break; 10645 10646 case IP_MULTICAST_IF: 10647 connp->conn_multicast_ipif = ipif; 10648 break; 10649 case IP_NEXTHOP: 10650 connp->conn_nexthop_v4 = addr; 10651 connp->conn_nexthop_set = B_TRUE; 10652 break; 10653 } 10654 10655 if (ipif != NULL) { 10656 mutex_exit(&ill->ill_lock); 10657 mutex_exit(&connp->conn_lock); 10658 ipif_refrele(ipif); 10659 return (0); 10660 } 10661 mutex_exit(&connp->conn_lock); 10662 /* We succeded in cleared the option */ 10663 return (0); 10664 } 10665 10666 /* 10667 * For options that pass in an ifindex specifying the ill. V6 options always 10668 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10669 */ 10670 int 10671 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10672 int level, int option, mblk_t *first_mp) 10673 { 10674 ill_t *ill = NULL; 10675 int error = 0; 10676 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10677 10678 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10679 if (ifindex != 0) { 10680 ASSERT(connp != NULL); 10681 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10682 first_mp, ip_restart_optmgmt, &error, ipst); 10683 if (ill != NULL) { 10684 if (checkonly) { 10685 /* not supported by the virtual network iface */ 10686 if (IS_VNI(ill)) { 10687 ill_refrele(ill); 10688 return (EINVAL); 10689 } 10690 ill_refrele(ill); 10691 return (0); 10692 } 10693 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10694 0, NULL)) { 10695 ill_refrele(ill); 10696 ill = NULL; 10697 mutex_enter(&connp->conn_lock); 10698 goto setit; 10699 } 10700 mutex_enter(&connp->conn_lock); 10701 mutex_enter(&ill->ill_lock); 10702 if (ill->ill_state_flags & ILL_CONDEMNED) { 10703 mutex_exit(&ill->ill_lock); 10704 mutex_exit(&connp->conn_lock); 10705 ill_refrele(ill); 10706 ill = NULL; 10707 mutex_enter(&connp->conn_lock); 10708 } 10709 goto setit; 10710 } else if (error == EINPROGRESS) { 10711 return (error); 10712 } else { 10713 error = 0; 10714 } 10715 } 10716 mutex_enter(&connp->conn_lock); 10717 setit: 10718 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10719 10720 /* 10721 * The options below assume that the ILL (if any) transmits and/or 10722 * receives traffic. Neither of which is true for the virtual network 10723 * interface, so fail setting these on a VNI. 10724 */ 10725 if (IS_VNI(ill)) { 10726 ASSERT(ill != NULL); 10727 mutex_exit(&ill->ill_lock); 10728 mutex_exit(&connp->conn_lock); 10729 ill_refrele(ill); 10730 return (EINVAL); 10731 } 10732 10733 if (level == IPPROTO_IP) { 10734 switch (option) { 10735 case IP_BOUND_IF: 10736 connp->conn_incoming_ill = ill; 10737 connp->conn_outgoing_ill = ill; 10738 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10739 0 : ifindex; 10740 break; 10741 10742 case IP_XMIT_IF: 10743 /* 10744 * Similar to IP_BOUND_IF, but this only 10745 * determines the outgoing interface for 10746 * unicast packets. Also no IRE_CACHE entry 10747 * is added for the destination of the 10748 * outgoing packets. This feature is needed 10749 * for mobile IP. 10750 */ 10751 connp->conn_xmit_if_ill = ill; 10752 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10753 0 : ifindex; 10754 break; 10755 10756 case IP_MULTICAST_IF: 10757 /* 10758 * This option is an internal special. The socket 10759 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10760 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10761 * specifies an ifindex and we try first on V6 ill's. 10762 * If we don't find one, we they try using on v4 ill's 10763 * intenally and we come here. 10764 */ 10765 if (!checkonly && ill != NULL) { 10766 ipif_t *ipif; 10767 ipif = ill->ill_ipif; 10768 10769 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10770 mutex_exit(&ill->ill_lock); 10771 mutex_exit(&connp->conn_lock); 10772 ill_refrele(ill); 10773 ill = NULL; 10774 mutex_enter(&connp->conn_lock); 10775 } else { 10776 connp->conn_multicast_ipif = ipif; 10777 } 10778 } 10779 break; 10780 } 10781 } else { 10782 switch (option) { 10783 case IPV6_BOUND_IF: 10784 connp->conn_incoming_ill = ill; 10785 connp->conn_outgoing_ill = ill; 10786 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10787 0 : ifindex; 10788 break; 10789 10790 case IPV6_BOUND_PIF: 10791 /* 10792 * Limit all transmit to this ill. 10793 * Unlike IPV6_BOUND_IF, using this option 10794 * prevents load spreading and failover from 10795 * happening when the interface is part of the 10796 * group. That's why we don't need to remember 10797 * the ifindex in orig_bound_ifindex as in 10798 * IPV6_BOUND_IF. 10799 */ 10800 connp->conn_outgoing_pill = ill; 10801 break; 10802 10803 case IPV6_DONTFAILOVER_IF: 10804 /* 10805 * This option is used by in.mpathd to ensure 10806 * that IPMP probe packets only go out on the 10807 * test interfaces. in.mpathd sets this option 10808 * on the non-failover interfaces. 10809 */ 10810 connp->conn_nofailover_ill = ill; 10811 /* 10812 * For backward compatibility, this option 10813 * implicitly sets ip_multicast_ill as used in 10814 * IP_MULTICAST_IF so that ip_wput gets 10815 * this ipif to send mcast packets. 10816 */ 10817 connp->conn_multicast_ill = ill; 10818 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10819 0 : ifindex; 10820 break; 10821 10822 case IPV6_MULTICAST_IF: 10823 /* 10824 * Set conn_multicast_ill to be the IPv6 ill. 10825 * Set conn_multicast_ipif to be an IPv4 ipif 10826 * for ifindex to make IPv4 mapped addresses 10827 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10828 * Even if no IPv6 ill exists for the ifindex 10829 * we need to check for an IPv4 ifindex in order 10830 * for this to work with mapped addresses. In that 10831 * case only set conn_multicast_ipif. 10832 */ 10833 if (!checkonly) { 10834 if (ifindex == 0) { 10835 connp->conn_multicast_ill = NULL; 10836 connp->conn_orig_multicast_ifindex = 0; 10837 connp->conn_multicast_ipif = NULL; 10838 } else if (ill != NULL) { 10839 connp->conn_multicast_ill = ill; 10840 connp->conn_orig_multicast_ifindex = 10841 ifindex; 10842 } 10843 } 10844 break; 10845 } 10846 } 10847 10848 if (ill != NULL) { 10849 mutex_exit(&ill->ill_lock); 10850 mutex_exit(&connp->conn_lock); 10851 ill_refrele(ill); 10852 return (0); 10853 } 10854 mutex_exit(&connp->conn_lock); 10855 /* 10856 * We succeeded in clearing the option (ifindex == 0) or failed to 10857 * locate the ill and could not set the option (ifindex != 0) 10858 */ 10859 return (ifindex == 0 ? 0 : EINVAL); 10860 } 10861 10862 /* This routine sets socket options. */ 10863 /* ARGSUSED */ 10864 int 10865 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10866 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10867 void *dummy, cred_t *cr, mblk_t *first_mp) 10868 { 10869 int *i1 = (int *)invalp; 10870 conn_t *connp = Q_TO_CONN(q); 10871 int error = 0; 10872 boolean_t checkonly; 10873 ire_t *ire; 10874 boolean_t found; 10875 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10876 10877 switch (optset_context) { 10878 10879 case SETFN_OPTCOM_CHECKONLY: 10880 checkonly = B_TRUE; 10881 /* 10882 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10883 * inlen != 0 implies value supplied and 10884 * we have to "pretend" to set it. 10885 * inlen == 0 implies that there is no 10886 * value part in T_CHECK request and just validation 10887 * done elsewhere should be enough, we just return here. 10888 */ 10889 if (inlen == 0) { 10890 *outlenp = 0; 10891 return (0); 10892 } 10893 break; 10894 case SETFN_OPTCOM_NEGOTIATE: 10895 case SETFN_UD_NEGOTIATE: 10896 case SETFN_CONN_NEGOTIATE: 10897 checkonly = B_FALSE; 10898 break; 10899 default: 10900 /* 10901 * We should never get here 10902 */ 10903 *outlenp = 0; 10904 return (EINVAL); 10905 } 10906 10907 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10908 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10909 10910 /* 10911 * For fixed length options, no sanity check 10912 * of passed in length is done. It is assumed *_optcom_req() 10913 * routines do the right thing. 10914 */ 10915 10916 switch (level) { 10917 case SOL_SOCKET: 10918 /* 10919 * conn_lock protects the bitfields, and is used to 10920 * set the fields atomically. 10921 */ 10922 switch (name) { 10923 case SO_BROADCAST: 10924 if (!checkonly) { 10925 /* TODO: use value someplace? */ 10926 mutex_enter(&connp->conn_lock); 10927 connp->conn_broadcast = *i1 ? 1 : 0; 10928 mutex_exit(&connp->conn_lock); 10929 } 10930 break; /* goto sizeof (int) option return */ 10931 case SO_USELOOPBACK: 10932 if (!checkonly) { 10933 /* TODO: use value someplace? */ 10934 mutex_enter(&connp->conn_lock); 10935 connp->conn_loopback = *i1 ? 1 : 0; 10936 mutex_exit(&connp->conn_lock); 10937 } 10938 break; /* goto sizeof (int) option return */ 10939 case SO_DONTROUTE: 10940 if (!checkonly) { 10941 mutex_enter(&connp->conn_lock); 10942 connp->conn_dontroute = *i1 ? 1 : 0; 10943 mutex_exit(&connp->conn_lock); 10944 } 10945 break; /* goto sizeof (int) option return */ 10946 case SO_REUSEADDR: 10947 if (!checkonly) { 10948 mutex_enter(&connp->conn_lock); 10949 connp->conn_reuseaddr = *i1 ? 1 : 0; 10950 mutex_exit(&connp->conn_lock); 10951 } 10952 break; /* goto sizeof (int) option return */ 10953 case SO_PROTOTYPE: 10954 if (!checkonly) { 10955 mutex_enter(&connp->conn_lock); 10956 connp->conn_proto = *i1; 10957 mutex_exit(&connp->conn_lock); 10958 } 10959 break; /* goto sizeof (int) option return */ 10960 case SO_ALLZONES: 10961 if (!checkonly) { 10962 mutex_enter(&connp->conn_lock); 10963 if (IPCL_IS_BOUND(connp)) { 10964 mutex_exit(&connp->conn_lock); 10965 return (EINVAL); 10966 } 10967 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10968 mutex_exit(&connp->conn_lock); 10969 } 10970 break; /* goto sizeof (int) option return */ 10971 case SO_ANON_MLP: 10972 if (!checkonly) { 10973 mutex_enter(&connp->conn_lock); 10974 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10975 mutex_exit(&connp->conn_lock); 10976 } 10977 break; /* goto sizeof (int) option return */ 10978 case SO_MAC_EXEMPT: 10979 if (secpolicy_net_mac_aware(cr) != 0 || 10980 IPCL_IS_BOUND(connp)) 10981 return (EACCES); 10982 if (!checkonly) { 10983 mutex_enter(&connp->conn_lock); 10984 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10985 mutex_exit(&connp->conn_lock); 10986 } 10987 break; /* goto sizeof (int) option return */ 10988 default: 10989 /* 10990 * "soft" error (negative) 10991 * option not handled at this level 10992 * Note: Do not modify *outlenp 10993 */ 10994 return (-EINVAL); 10995 } 10996 break; 10997 case IPPROTO_IP: 10998 switch (name) { 10999 case IP_NEXTHOP: 11000 if (secpolicy_ip_config(cr, B_FALSE) != 0) 11001 return (EPERM); 11002 /* FALLTHRU */ 11003 case IP_MULTICAST_IF: 11004 case IP_DONTFAILOVER_IF: { 11005 ipaddr_t addr = *i1; 11006 11007 error = ip_opt_set_ipif(connp, addr, checkonly, name, 11008 first_mp); 11009 if (error != 0) 11010 return (error); 11011 break; /* goto sizeof (int) option return */ 11012 } 11013 11014 case IP_MULTICAST_TTL: 11015 /* Recorded in transport above IP */ 11016 *outvalp = *invalp; 11017 *outlenp = sizeof (uchar_t); 11018 return (0); 11019 case IP_MULTICAST_LOOP: 11020 if (!checkonly) { 11021 mutex_enter(&connp->conn_lock); 11022 connp->conn_multicast_loop = *invalp ? 1 : 0; 11023 mutex_exit(&connp->conn_lock); 11024 } 11025 *outvalp = *invalp; 11026 *outlenp = sizeof (uchar_t); 11027 return (0); 11028 case IP_ADD_MEMBERSHIP: 11029 case MCAST_JOIN_GROUP: 11030 case IP_DROP_MEMBERSHIP: 11031 case MCAST_LEAVE_GROUP: { 11032 struct ip_mreq *mreqp; 11033 struct group_req *greqp; 11034 ire_t *ire; 11035 boolean_t done = B_FALSE; 11036 ipaddr_t group, ifaddr; 11037 struct sockaddr_in *sin; 11038 uint32_t *ifindexp; 11039 boolean_t mcast_opt = B_TRUE; 11040 mcast_record_t fmode; 11041 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11042 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11043 11044 switch (name) { 11045 case IP_ADD_MEMBERSHIP: 11046 mcast_opt = B_FALSE; 11047 /* FALLTHRU */ 11048 case MCAST_JOIN_GROUP: 11049 fmode = MODE_IS_EXCLUDE; 11050 optfn = ip_opt_add_group; 11051 break; 11052 11053 case IP_DROP_MEMBERSHIP: 11054 mcast_opt = B_FALSE; 11055 /* FALLTHRU */ 11056 case MCAST_LEAVE_GROUP: 11057 fmode = MODE_IS_INCLUDE; 11058 optfn = ip_opt_delete_group; 11059 break; 11060 } 11061 11062 if (mcast_opt) { 11063 greqp = (struct group_req *)i1; 11064 sin = (struct sockaddr_in *)&greqp->gr_group; 11065 if (sin->sin_family != AF_INET) { 11066 *outlenp = 0; 11067 return (ENOPROTOOPT); 11068 } 11069 group = (ipaddr_t)sin->sin_addr.s_addr; 11070 ifaddr = INADDR_ANY; 11071 ifindexp = &greqp->gr_interface; 11072 } else { 11073 mreqp = (struct ip_mreq *)i1; 11074 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 11075 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 11076 ifindexp = NULL; 11077 } 11078 11079 /* 11080 * In the multirouting case, we need to replicate 11081 * the request on all interfaces that will take part 11082 * in replication. We do so because multirouting is 11083 * reflective, thus we will probably receive multi- 11084 * casts on those interfaces. 11085 * The ip_multirt_apply_membership() succeeds if the 11086 * operation succeeds on at least one interface. 11087 */ 11088 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 11089 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11090 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11091 if (ire != NULL) { 11092 if (ire->ire_flags & RTF_MULTIRT) { 11093 error = ip_multirt_apply_membership( 11094 optfn, ire, connp, checkonly, group, 11095 fmode, INADDR_ANY, first_mp); 11096 done = B_TRUE; 11097 } 11098 ire_refrele(ire); 11099 } 11100 if (!done) { 11101 error = optfn(connp, checkonly, group, ifaddr, 11102 ifindexp, fmode, INADDR_ANY, first_mp); 11103 } 11104 if (error) { 11105 /* 11106 * EINPROGRESS is a soft error, needs retry 11107 * so don't make *outlenp zero. 11108 */ 11109 if (error != EINPROGRESS) 11110 *outlenp = 0; 11111 return (error); 11112 } 11113 /* OK return - copy input buffer into output buffer */ 11114 if (invalp != outvalp) { 11115 /* don't trust bcopy for identical src/dst */ 11116 bcopy(invalp, outvalp, inlen); 11117 } 11118 *outlenp = inlen; 11119 return (0); 11120 } 11121 case IP_BLOCK_SOURCE: 11122 case IP_UNBLOCK_SOURCE: 11123 case IP_ADD_SOURCE_MEMBERSHIP: 11124 case IP_DROP_SOURCE_MEMBERSHIP: 11125 case MCAST_BLOCK_SOURCE: 11126 case MCAST_UNBLOCK_SOURCE: 11127 case MCAST_JOIN_SOURCE_GROUP: 11128 case MCAST_LEAVE_SOURCE_GROUP: { 11129 struct ip_mreq_source *imreqp; 11130 struct group_source_req *gsreqp; 11131 in_addr_t grp, src, ifaddr = INADDR_ANY; 11132 uint32_t ifindex = 0; 11133 mcast_record_t fmode; 11134 struct sockaddr_in *sin; 11135 ire_t *ire; 11136 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11137 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11138 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11139 11140 switch (name) { 11141 case IP_BLOCK_SOURCE: 11142 mcast_opt = B_FALSE; 11143 /* FALLTHRU */ 11144 case MCAST_BLOCK_SOURCE: 11145 fmode = MODE_IS_EXCLUDE; 11146 optfn = ip_opt_add_group; 11147 break; 11148 11149 case IP_UNBLOCK_SOURCE: 11150 mcast_opt = B_FALSE; 11151 /* FALLTHRU */ 11152 case MCAST_UNBLOCK_SOURCE: 11153 fmode = MODE_IS_EXCLUDE; 11154 optfn = ip_opt_delete_group; 11155 break; 11156 11157 case IP_ADD_SOURCE_MEMBERSHIP: 11158 mcast_opt = B_FALSE; 11159 /* FALLTHRU */ 11160 case MCAST_JOIN_SOURCE_GROUP: 11161 fmode = MODE_IS_INCLUDE; 11162 optfn = ip_opt_add_group; 11163 break; 11164 11165 case IP_DROP_SOURCE_MEMBERSHIP: 11166 mcast_opt = B_FALSE; 11167 /* FALLTHRU */ 11168 case MCAST_LEAVE_SOURCE_GROUP: 11169 fmode = MODE_IS_INCLUDE; 11170 optfn = ip_opt_delete_group; 11171 break; 11172 } 11173 11174 if (mcast_opt) { 11175 gsreqp = (struct group_source_req *)i1; 11176 if (gsreqp->gsr_group.ss_family != AF_INET) { 11177 *outlenp = 0; 11178 return (ENOPROTOOPT); 11179 } 11180 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11181 grp = (ipaddr_t)sin->sin_addr.s_addr; 11182 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11183 src = (ipaddr_t)sin->sin_addr.s_addr; 11184 ifindex = gsreqp->gsr_interface; 11185 } else { 11186 imreqp = (struct ip_mreq_source *)i1; 11187 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11188 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11189 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11190 } 11191 11192 /* 11193 * In the multirouting case, we need to replicate 11194 * the request as noted in the mcast cases above. 11195 */ 11196 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11197 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11198 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11199 if (ire != NULL) { 11200 if (ire->ire_flags & RTF_MULTIRT) { 11201 error = ip_multirt_apply_membership( 11202 optfn, ire, connp, checkonly, grp, 11203 fmode, src, first_mp); 11204 done = B_TRUE; 11205 } 11206 ire_refrele(ire); 11207 } 11208 if (!done) { 11209 error = optfn(connp, checkonly, grp, ifaddr, 11210 &ifindex, fmode, src, first_mp); 11211 } 11212 if (error != 0) { 11213 /* 11214 * EINPROGRESS is a soft error, needs retry 11215 * so don't make *outlenp zero. 11216 */ 11217 if (error != EINPROGRESS) 11218 *outlenp = 0; 11219 return (error); 11220 } 11221 /* OK return - copy input buffer into output buffer */ 11222 if (invalp != outvalp) { 11223 bcopy(invalp, outvalp, inlen); 11224 } 11225 *outlenp = inlen; 11226 return (0); 11227 } 11228 case IP_SEC_OPT: 11229 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11230 if (error != 0) { 11231 *outlenp = 0; 11232 return (error); 11233 } 11234 break; 11235 case IP_HDRINCL: 11236 case IP_OPTIONS: 11237 case T_IP_OPTIONS: 11238 case IP_TOS: 11239 case T_IP_TOS: 11240 case IP_TTL: 11241 case IP_RECVDSTADDR: 11242 case IP_RECVOPTS: 11243 /* OK return - copy input buffer into output buffer */ 11244 if (invalp != outvalp) { 11245 /* don't trust bcopy for identical src/dst */ 11246 bcopy(invalp, outvalp, inlen); 11247 } 11248 *outlenp = inlen; 11249 return (0); 11250 case IP_RECVIF: 11251 /* Retrieve the inbound interface index */ 11252 if (!checkonly) { 11253 mutex_enter(&connp->conn_lock); 11254 connp->conn_recvif = *i1 ? 1 : 0; 11255 mutex_exit(&connp->conn_lock); 11256 } 11257 break; /* goto sizeof (int) option return */ 11258 case IP_RECVPKTINFO: 11259 if (!checkonly) { 11260 mutex_enter(&connp->conn_lock); 11261 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11262 mutex_exit(&connp->conn_lock); 11263 } 11264 break; /* goto sizeof (int) option return */ 11265 case IP_RECVSLLA: 11266 /* Retrieve the source link layer address */ 11267 if (!checkonly) { 11268 mutex_enter(&connp->conn_lock); 11269 connp->conn_recvslla = *i1 ? 1 : 0; 11270 mutex_exit(&connp->conn_lock); 11271 } 11272 break; /* goto sizeof (int) option return */ 11273 case MRT_INIT: 11274 case MRT_DONE: 11275 case MRT_ADD_VIF: 11276 case MRT_DEL_VIF: 11277 case MRT_ADD_MFC: 11278 case MRT_DEL_MFC: 11279 case MRT_ASSERT: 11280 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11281 *outlenp = 0; 11282 return (error); 11283 } 11284 error = ip_mrouter_set((int)name, q, checkonly, 11285 (uchar_t *)invalp, inlen, first_mp); 11286 if (error) { 11287 *outlenp = 0; 11288 return (error); 11289 } 11290 /* OK return - copy input buffer into output buffer */ 11291 if (invalp != outvalp) { 11292 /* don't trust bcopy for identical src/dst */ 11293 bcopy(invalp, outvalp, inlen); 11294 } 11295 *outlenp = inlen; 11296 return (0); 11297 case IP_BOUND_IF: 11298 case IP_XMIT_IF: 11299 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11300 level, name, first_mp); 11301 if (error != 0) 11302 return (error); 11303 break; /* goto sizeof (int) option return */ 11304 11305 case IP_UNSPEC_SRC: 11306 /* Allow sending with a zero source address */ 11307 if (!checkonly) { 11308 mutex_enter(&connp->conn_lock); 11309 connp->conn_unspec_src = *i1 ? 1 : 0; 11310 mutex_exit(&connp->conn_lock); 11311 } 11312 break; /* goto sizeof (int) option return */ 11313 default: 11314 /* 11315 * "soft" error (negative) 11316 * option not handled at this level 11317 * Note: Do not modify *outlenp 11318 */ 11319 return (-EINVAL); 11320 } 11321 break; 11322 case IPPROTO_IPV6: 11323 switch (name) { 11324 case IPV6_BOUND_IF: 11325 case IPV6_BOUND_PIF: 11326 case IPV6_DONTFAILOVER_IF: 11327 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11328 level, name, first_mp); 11329 if (error != 0) 11330 return (error); 11331 break; /* goto sizeof (int) option return */ 11332 11333 case IPV6_MULTICAST_IF: 11334 /* 11335 * The only possible errors are EINPROGRESS and 11336 * EINVAL. EINPROGRESS will be restarted and is not 11337 * a hard error. We call this option on both V4 and V6 11338 * If both return EINVAL, then this call returns 11339 * EINVAL. If at least one of them succeeds we 11340 * return success. 11341 */ 11342 found = B_FALSE; 11343 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11344 level, name, first_mp); 11345 if (error == EINPROGRESS) 11346 return (error); 11347 if (error == 0) 11348 found = B_TRUE; 11349 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11350 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11351 if (error == 0) 11352 found = B_TRUE; 11353 if (!found) 11354 return (error); 11355 break; /* goto sizeof (int) option return */ 11356 11357 case IPV6_MULTICAST_HOPS: 11358 /* Recorded in transport above IP */ 11359 break; /* goto sizeof (int) option return */ 11360 case IPV6_MULTICAST_LOOP: 11361 if (!checkonly) { 11362 mutex_enter(&connp->conn_lock); 11363 connp->conn_multicast_loop = *i1; 11364 mutex_exit(&connp->conn_lock); 11365 } 11366 break; /* goto sizeof (int) option return */ 11367 case IPV6_JOIN_GROUP: 11368 case MCAST_JOIN_GROUP: 11369 case IPV6_LEAVE_GROUP: 11370 case MCAST_LEAVE_GROUP: { 11371 struct ipv6_mreq *ip_mreqp; 11372 struct group_req *greqp; 11373 ire_t *ire; 11374 boolean_t done = B_FALSE; 11375 in6_addr_t groupv6; 11376 uint32_t ifindex; 11377 boolean_t mcast_opt = B_TRUE; 11378 mcast_record_t fmode; 11379 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11380 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11381 11382 switch (name) { 11383 case IPV6_JOIN_GROUP: 11384 mcast_opt = B_FALSE; 11385 /* FALLTHRU */ 11386 case MCAST_JOIN_GROUP: 11387 fmode = MODE_IS_EXCLUDE; 11388 optfn = ip_opt_add_group_v6; 11389 break; 11390 11391 case IPV6_LEAVE_GROUP: 11392 mcast_opt = B_FALSE; 11393 /* FALLTHRU */ 11394 case MCAST_LEAVE_GROUP: 11395 fmode = MODE_IS_INCLUDE; 11396 optfn = ip_opt_delete_group_v6; 11397 break; 11398 } 11399 11400 if (mcast_opt) { 11401 struct sockaddr_in *sin; 11402 struct sockaddr_in6 *sin6; 11403 greqp = (struct group_req *)i1; 11404 if (greqp->gr_group.ss_family == AF_INET) { 11405 sin = (struct sockaddr_in *) 11406 &(greqp->gr_group); 11407 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11408 &groupv6); 11409 } else { 11410 sin6 = (struct sockaddr_in6 *) 11411 &(greqp->gr_group); 11412 groupv6 = sin6->sin6_addr; 11413 } 11414 ifindex = greqp->gr_interface; 11415 } else { 11416 ip_mreqp = (struct ipv6_mreq *)i1; 11417 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11418 ifindex = ip_mreqp->ipv6mr_interface; 11419 } 11420 /* 11421 * In the multirouting case, we need to replicate 11422 * the request on all interfaces that will take part 11423 * in replication. We do so because multirouting is 11424 * reflective, thus we will probably receive multi- 11425 * casts on those interfaces. 11426 * The ip_multirt_apply_membership_v6() succeeds if 11427 * the operation succeeds on at least one interface. 11428 */ 11429 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11430 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11431 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11432 if (ire != NULL) { 11433 if (ire->ire_flags & RTF_MULTIRT) { 11434 error = ip_multirt_apply_membership_v6( 11435 optfn, ire, connp, checkonly, 11436 &groupv6, fmode, &ipv6_all_zeros, 11437 first_mp); 11438 done = B_TRUE; 11439 } 11440 ire_refrele(ire); 11441 } 11442 if (!done) { 11443 error = optfn(connp, checkonly, &groupv6, 11444 ifindex, fmode, &ipv6_all_zeros, first_mp); 11445 } 11446 if (error) { 11447 /* 11448 * EINPROGRESS is a soft error, needs retry 11449 * so don't make *outlenp zero. 11450 */ 11451 if (error != EINPROGRESS) 11452 *outlenp = 0; 11453 return (error); 11454 } 11455 /* OK return - copy input buffer into output buffer */ 11456 if (invalp != outvalp) { 11457 /* don't trust bcopy for identical src/dst */ 11458 bcopy(invalp, outvalp, inlen); 11459 } 11460 *outlenp = inlen; 11461 return (0); 11462 } 11463 case MCAST_BLOCK_SOURCE: 11464 case MCAST_UNBLOCK_SOURCE: 11465 case MCAST_JOIN_SOURCE_GROUP: 11466 case MCAST_LEAVE_SOURCE_GROUP: { 11467 struct group_source_req *gsreqp; 11468 in6_addr_t v6grp, v6src; 11469 uint32_t ifindex; 11470 mcast_record_t fmode; 11471 ire_t *ire; 11472 boolean_t done = B_FALSE; 11473 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11474 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11475 11476 switch (name) { 11477 case MCAST_BLOCK_SOURCE: 11478 fmode = MODE_IS_EXCLUDE; 11479 optfn = ip_opt_add_group_v6; 11480 break; 11481 case MCAST_UNBLOCK_SOURCE: 11482 fmode = MODE_IS_EXCLUDE; 11483 optfn = ip_opt_delete_group_v6; 11484 break; 11485 case MCAST_JOIN_SOURCE_GROUP: 11486 fmode = MODE_IS_INCLUDE; 11487 optfn = ip_opt_add_group_v6; 11488 break; 11489 case MCAST_LEAVE_SOURCE_GROUP: 11490 fmode = MODE_IS_INCLUDE; 11491 optfn = ip_opt_delete_group_v6; 11492 break; 11493 } 11494 11495 gsreqp = (struct group_source_req *)i1; 11496 ifindex = gsreqp->gsr_interface; 11497 if (gsreqp->gsr_group.ss_family == AF_INET) { 11498 struct sockaddr_in *s; 11499 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11500 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11501 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11502 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11503 } else { 11504 struct sockaddr_in6 *s6; 11505 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11506 v6grp = s6->sin6_addr; 11507 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11508 v6src = s6->sin6_addr; 11509 } 11510 11511 /* 11512 * In the multirouting case, we need to replicate 11513 * the request as noted in the mcast cases above. 11514 */ 11515 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11516 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11517 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11518 if (ire != NULL) { 11519 if (ire->ire_flags & RTF_MULTIRT) { 11520 error = ip_multirt_apply_membership_v6( 11521 optfn, ire, connp, checkonly, 11522 &v6grp, fmode, &v6src, first_mp); 11523 done = B_TRUE; 11524 } 11525 ire_refrele(ire); 11526 } 11527 if (!done) { 11528 error = optfn(connp, checkonly, &v6grp, 11529 ifindex, fmode, &v6src, first_mp); 11530 } 11531 if (error != 0) { 11532 /* 11533 * EINPROGRESS is a soft error, needs retry 11534 * so don't make *outlenp zero. 11535 */ 11536 if (error != EINPROGRESS) 11537 *outlenp = 0; 11538 return (error); 11539 } 11540 /* OK return - copy input buffer into output buffer */ 11541 if (invalp != outvalp) { 11542 bcopy(invalp, outvalp, inlen); 11543 } 11544 *outlenp = inlen; 11545 return (0); 11546 } 11547 case IPV6_UNICAST_HOPS: 11548 /* Recorded in transport above IP */ 11549 break; /* goto sizeof (int) option return */ 11550 case IPV6_UNSPEC_SRC: 11551 /* Allow sending with a zero source address */ 11552 if (!checkonly) { 11553 mutex_enter(&connp->conn_lock); 11554 connp->conn_unspec_src = *i1 ? 1 : 0; 11555 mutex_exit(&connp->conn_lock); 11556 } 11557 break; /* goto sizeof (int) option return */ 11558 case IPV6_RECVPKTINFO: 11559 if (!checkonly) { 11560 mutex_enter(&connp->conn_lock); 11561 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11562 mutex_exit(&connp->conn_lock); 11563 } 11564 break; /* goto sizeof (int) option return */ 11565 case IPV6_RECVTCLASS: 11566 if (!checkonly) { 11567 if (*i1 < 0 || *i1 > 1) { 11568 return (EINVAL); 11569 } 11570 mutex_enter(&connp->conn_lock); 11571 connp->conn_ipv6_recvtclass = *i1; 11572 mutex_exit(&connp->conn_lock); 11573 } 11574 break; 11575 case IPV6_RECVPATHMTU: 11576 if (!checkonly) { 11577 if (*i1 < 0 || *i1 > 1) { 11578 return (EINVAL); 11579 } 11580 mutex_enter(&connp->conn_lock); 11581 connp->conn_ipv6_recvpathmtu = *i1; 11582 mutex_exit(&connp->conn_lock); 11583 } 11584 break; 11585 case IPV6_RECVHOPLIMIT: 11586 if (!checkonly) { 11587 mutex_enter(&connp->conn_lock); 11588 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11589 mutex_exit(&connp->conn_lock); 11590 } 11591 break; /* goto sizeof (int) option return */ 11592 case IPV6_RECVHOPOPTS: 11593 if (!checkonly) { 11594 mutex_enter(&connp->conn_lock); 11595 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11596 mutex_exit(&connp->conn_lock); 11597 } 11598 break; /* goto sizeof (int) option return */ 11599 case IPV6_RECVDSTOPTS: 11600 if (!checkonly) { 11601 mutex_enter(&connp->conn_lock); 11602 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11603 mutex_exit(&connp->conn_lock); 11604 } 11605 break; /* goto sizeof (int) option return */ 11606 case IPV6_RECVRTHDR: 11607 if (!checkonly) { 11608 mutex_enter(&connp->conn_lock); 11609 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11610 mutex_exit(&connp->conn_lock); 11611 } 11612 break; /* goto sizeof (int) option return */ 11613 case IPV6_RECVRTHDRDSTOPTS: 11614 if (!checkonly) { 11615 mutex_enter(&connp->conn_lock); 11616 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11617 mutex_exit(&connp->conn_lock); 11618 } 11619 break; /* goto sizeof (int) option return */ 11620 case IPV6_PKTINFO: 11621 if (inlen == 0) 11622 return (-EINVAL); /* clearing option */ 11623 error = ip6_set_pktinfo(cr, connp, 11624 (struct in6_pktinfo *)invalp, first_mp); 11625 if (error != 0) 11626 *outlenp = 0; 11627 else 11628 *outlenp = inlen; 11629 return (error); 11630 case IPV6_NEXTHOP: { 11631 struct sockaddr_in6 *sin6; 11632 11633 /* Verify that the nexthop is reachable */ 11634 if (inlen == 0) 11635 return (-EINVAL); /* clearing option */ 11636 11637 sin6 = (struct sockaddr_in6 *)invalp; 11638 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11639 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11640 NULL, MATCH_IRE_DEFAULT, ipst); 11641 11642 if (ire == NULL) { 11643 *outlenp = 0; 11644 return (EHOSTUNREACH); 11645 } 11646 ire_refrele(ire); 11647 return (-EINVAL); 11648 } 11649 case IPV6_SEC_OPT: 11650 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11651 if (error != 0) { 11652 *outlenp = 0; 11653 return (error); 11654 } 11655 break; 11656 case IPV6_SRC_PREFERENCES: { 11657 /* 11658 * This is implemented strictly in the ip module 11659 * (here and in tcp_opt_*() to accomodate tcp 11660 * sockets). Modules above ip pass this option 11661 * down here since ip is the only one that needs to 11662 * be aware of source address preferences. 11663 * 11664 * This socket option only affects connected 11665 * sockets that haven't already bound to a specific 11666 * IPv6 address. In other words, sockets that 11667 * don't call bind() with an address other than the 11668 * unspecified address and that call connect(). 11669 * ip_bind_connected_v6() passes these preferences 11670 * to the ipif_select_source_v6() function. 11671 */ 11672 if (inlen != sizeof (uint32_t)) 11673 return (EINVAL); 11674 error = ip6_set_src_preferences(connp, 11675 *(uint32_t *)invalp); 11676 if (error != 0) { 11677 *outlenp = 0; 11678 return (error); 11679 } else { 11680 *outlenp = sizeof (uint32_t); 11681 } 11682 break; 11683 } 11684 case IPV6_V6ONLY: 11685 if (*i1 < 0 || *i1 > 1) { 11686 return (EINVAL); 11687 } 11688 mutex_enter(&connp->conn_lock); 11689 connp->conn_ipv6_v6only = *i1; 11690 mutex_exit(&connp->conn_lock); 11691 break; 11692 default: 11693 return (-EINVAL); 11694 } 11695 break; 11696 default: 11697 /* 11698 * "soft" error (negative) 11699 * option not handled at this level 11700 * Note: Do not modify *outlenp 11701 */ 11702 return (-EINVAL); 11703 } 11704 /* 11705 * Common case of return from an option that is sizeof (int) 11706 */ 11707 *(int *)outvalp = *i1; 11708 *outlenp = sizeof (int); 11709 return (0); 11710 } 11711 11712 /* 11713 * This routine gets default values of certain options whose default 11714 * values are maintained by protocol specific code 11715 */ 11716 /* ARGSUSED */ 11717 int 11718 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11719 { 11720 int *i1 = (int *)ptr; 11721 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11722 11723 switch (level) { 11724 case IPPROTO_IP: 11725 switch (name) { 11726 case IP_MULTICAST_TTL: 11727 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11728 return (sizeof (uchar_t)); 11729 case IP_MULTICAST_LOOP: 11730 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11731 return (sizeof (uchar_t)); 11732 default: 11733 return (-1); 11734 } 11735 case IPPROTO_IPV6: 11736 switch (name) { 11737 case IPV6_UNICAST_HOPS: 11738 *i1 = ipst->ips_ipv6_def_hops; 11739 return (sizeof (int)); 11740 case IPV6_MULTICAST_HOPS: 11741 *i1 = IP_DEFAULT_MULTICAST_TTL; 11742 return (sizeof (int)); 11743 case IPV6_MULTICAST_LOOP: 11744 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11745 return (sizeof (int)); 11746 case IPV6_V6ONLY: 11747 *i1 = 1; 11748 return (sizeof (int)); 11749 default: 11750 return (-1); 11751 } 11752 default: 11753 return (-1); 11754 } 11755 /* NOTREACHED */ 11756 } 11757 11758 /* 11759 * Given a destination address and a pointer to where to put the information 11760 * this routine fills in the mtuinfo. 11761 */ 11762 int 11763 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11764 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11765 { 11766 ire_t *ire; 11767 ip_stack_t *ipst = ns->netstack_ip; 11768 11769 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11770 return (-1); 11771 11772 bzero(mtuinfo, sizeof (*mtuinfo)); 11773 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11774 mtuinfo->ip6m_addr.sin6_port = port; 11775 mtuinfo->ip6m_addr.sin6_addr = *in6; 11776 11777 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11778 if (ire != NULL) { 11779 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11780 ire_refrele(ire); 11781 } else { 11782 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11783 } 11784 return (sizeof (struct ip6_mtuinfo)); 11785 } 11786 11787 /* 11788 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11789 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11790 * isn't. This doesn't matter as the error checking is done properly for the 11791 * other MRT options coming in through ip_opt_set. 11792 */ 11793 int 11794 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11795 { 11796 conn_t *connp = Q_TO_CONN(q); 11797 ipsec_req_t *req = (ipsec_req_t *)ptr; 11798 11799 switch (level) { 11800 case IPPROTO_IP: 11801 switch (name) { 11802 case MRT_VERSION: 11803 case MRT_ASSERT: 11804 (void) ip_mrouter_get(name, q, ptr); 11805 return (sizeof (int)); 11806 case IP_SEC_OPT: 11807 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11808 case IP_NEXTHOP: 11809 if (connp->conn_nexthop_set) { 11810 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11811 return (sizeof (ipaddr_t)); 11812 } else 11813 return (0); 11814 case IP_RECVPKTINFO: 11815 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11816 return (sizeof (int)); 11817 default: 11818 break; 11819 } 11820 break; 11821 case IPPROTO_IPV6: 11822 switch (name) { 11823 case IPV6_SEC_OPT: 11824 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11825 case IPV6_SRC_PREFERENCES: { 11826 return (ip6_get_src_preferences(connp, 11827 (uint32_t *)ptr)); 11828 } 11829 case IPV6_V6ONLY: 11830 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11831 return (sizeof (int)); 11832 case IPV6_PATHMTU: 11833 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11834 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11835 default: 11836 break; 11837 } 11838 break; 11839 default: 11840 break; 11841 } 11842 return (-1); 11843 } 11844 11845 /* Named Dispatch routine to get a current value out of our parameter table. */ 11846 /* ARGSUSED */ 11847 static int 11848 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11849 { 11850 ipparam_t *ippa = (ipparam_t *)cp; 11851 11852 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11853 return (0); 11854 } 11855 11856 /* ARGSUSED */ 11857 static int 11858 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11859 { 11860 11861 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11862 return (0); 11863 } 11864 11865 /* 11866 * Set ip{,6}_forwarding values. This means walking through all of the 11867 * ill's and toggling their forwarding values. 11868 */ 11869 /* ARGSUSED */ 11870 static int 11871 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11872 { 11873 long new_value; 11874 int *forwarding_value = (int *)cp; 11875 ill_t *ill; 11876 boolean_t isv6; 11877 ill_walk_context_t ctx; 11878 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11879 11880 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11881 11882 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11883 new_value < 0 || new_value > 1) { 11884 return (EINVAL); 11885 } 11886 11887 *forwarding_value = new_value; 11888 11889 /* 11890 * Regardless of the current value of ip_forwarding, set all per-ill 11891 * values of ip_forwarding to the value being set. 11892 * 11893 * Bring all the ill's up to date with the new global value. 11894 */ 11895 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11896 11897 if (isv6) 11898 ill = ILL_START_WALK_V6(&ctx, ipst); 11899 else 11900 ill = ILL_START_WALK_V4(&ctx, ipst); 11901 11902 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11903 (void) ill_forward_set(ill, new_value != 0); 11904 11905 rw_exit(&ipst->ips_ill_g_lock); 11906 return (0); 11907 } 11908 11909 /* 11910 * Walk through the param array specified registering each element with the 11911 * Named Dispatch handler. This is called only during init. So it is ok 11912 * not to acquire any locks 11913 */ 11914 static boolean_t 11915 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11916 ipndp_t *ipnd, size_t ipnd_cnt) 11917 { 11918 for (; ippa_cnt-- > 0; ippa++) { 11919 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11920 if (!nd_load(ndp, ippa->ip_param_name, 11921 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11922 nd_free(ndp); 11923 return (B_FALSE); 11924 } 11925 } 11926 } 11927 11928 for (; ipnd_cnt-- > 0; ipnd++) { 11929 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11930 if (!nd_load(ndp, ipnd->ip_ndp_name, 11931 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11932 ipnd->ip_ndp_data)) { 11933 nd_free(ndp); 11934 return (B_FALSE); 11935 } 11936 } 11937 } 11938 11939 return (B_TRUE); 11940 } 11941 11942 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11943 /* ARGSUSED */ 11944 static int 11945 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11946 { 11947 long new_value; 11948 ipparam_t *ippa = (ipparam_t *)cp; 11949 11950 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11951 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11952 return (EINVAL); 11953 } 11954 ippa->ip_param_value = new_value; 11955 return (0); 11956 } 11957 11958 /* 11959 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11960 * When an ipf is passed here for the first time, if 11961 * we already have in-order fragments on the queue, we convert from the fast- 11962 * path reassembly scheme to the hard-case scheme. From then on, additional 11963 * fragments are reassembled here. We keep track of the start and end offsets 11964 * of each piece, and the number of holes in the chain. When the hole count 11965 * goes to zero, we are done! 11966 * 11967 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11968 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11969 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11970 * after the call to ip_reassemble(). 11971 */ 11972 int 11973 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11974 size_t msg_len) 11975 { 11976 uint_t end; 11977 mblk_t *next_mp; 11978 mblk_t *mp1; 11979 uint_t offset; 11980 boolean_t incr_dups = B_TRUE; 11981 boolean_t offset_zero_seen = B_FALSE; 11982 boolean_t pkt_boundary_checked = B_FALSE; 11983 11984 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11985 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11986 11987 /* Add in byte count */ 11988 ipf->ipf_count += msg_len; 11989 if (ipf->ipf_end) { 11990 /* 11991 * We were part way through in-order reassembly, but now there 11992 * is a hole. We walk through messages already queued, and 11993 * mark them for hard case reassembly. We know that up till 11994 * now they were in order starting from offset zero. 11995 */ 11996 offset = 0; 11997 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11998 IP_REASS_SET_START(mp1, offset); 11999 if (offset == 0) { 12000 ASSERT(ipf->ipf_nf_hdr_len != 0); 12001 offset = -ipf->ipf_nf_hdr_len; 12002 } 12003 offset += mp1->b_wptr - mp1->b_rptr; 12004 IP_REASS_SET_END(mp1, offset); 12005 } 12006 /* One hole at the end. */ 12007 ipf->ipf_hole_cnt = 1; 12008 /* Brand it as a hard case, forever. */ 12009 ipf->ipf_end = 0; 12010 } 12011 /* Walk through all the new pieces. */ 12012 do { 12013 end = start + (mp->b_wptr - mp->b_rptr); 12014 /* 12015 * If start is 0, decrease 'end' only for the first mblk of 12016 * the fragment. Otherwise 'end' can get wrong value in the 12017 * second pass of the loop if first mblk is exactly the 12018 * size of ipf_nf_hdr_len. 12019 */ 12020 if (start == 0 && !offset_zero_seen) { 12021 /* First segment */ 12022 ASSERT(ipf->ipf_nf_hdr_len != 0); 12023 end -= ipf->ipf_nf_hdr_len; 12024 offset_zero_seen = B_TRUE; 12025 } 12026 next_mp = mp->b_cont; 12027 /* 12028 * We are checking to see if there is any interesing data 12029 * to process. If there isn't and the mblk isn't the 12030 * one which carries the unfragmentable header then we 12031 * drop it. It's possible to have just the unfragmentable 12032 * header come through without any data. That needs to be 12033 * saved. 12034 * 12035 * If the assert at the top of this function holds then the 12036 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 12037 * is infrequently traveled enough that the test is left in 12038 * to protect against future code changes which break that 12039 * invariant. 12040 */ 12041 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 12042 /* Empty. Blast it. */ 12043 IP_REASS_SET_START(mp, 0); 12044 IP_REASS_SET_END(mp, 0); 12045 /* 12046 * If the ipf points to the mblk we are about to free, 12047 * update ipf to point to the next mblk (or NULL 12048 * if none). 12049 */ 12050 if (ipf->ipf_mp->b_cont == mp) 12051 ipf->ipf_mp->b_cont = next_mp; 12052 freeb(mp); 12053 continue; 12054 } 12055 mp->b_cont = NULL; 12056 IP_REASS_SET_START(mp, start); 12057 IP_REASS_SET_END(mp, end); 12058 if (!ipf->ipf_tail_mp) { 12059 ipf->ipf_tail_mp = mp; 12060 ipf->ipf_mp->b_cont = mp; 12061 if (start == 0 || !more) { 12062 ipf->ipf_hole_cnt = 1; 12063 /* 12064 * if the first fragment comes in more than one 12065 * mblk, this loop will be executed for each 12066 * mblk. Need to adjust hole count so exiting 12067 * this routine will leave hole count at 1. 12068 */ 12069 if (next_mp) 12070 ipf->ipf_hole_cnt++; 12071 } else 12072 ipf->ipf_hole_cnt = 2; 12073 continue; 12074 } else if (ipf->ipf_last_frag_seen && !more && 12075 !pkt_boundary_checked) { 12076 /* 12077 * We check datagram boundary only if this fragment 12078 * claims to be the last fragment and we have seen a 12079 * last fragment in the past too. We do this only 12080 * once for a given fragment. 12081 * 12082 * start cannot be 0 here as fragments with start=0 12083 * and MF=0 gets handled as a complete packet. These 12084 * fragments should not reach here. 12085 */ 12086 12087 if (start + msgdsize(mp) != 12088 IP_REASS_END(ipf->ipf_tail_mp)) { 12089 /* 12090 * We have two fragments both of which claim 12091 * to be the last fragment but gives conflicting 12092 * information about the whole datagram size. 12093 * Something fishy is going on. Drop the 12094 * fragment and free up the reassembly list. 12095 */ 12096 return (IP_REASS_FAILED); 12097 } 12098 12099 /* 12100 * We shouldn't come to this code block again for this 12101 * particular fragment. 12102 */ 12103 pkt_boundary_checked = B_TRUE; 12104 } 12105 12106 /* New stuff at or beyond tail? */ 12107 offset = IP_REASS_END(ipf->ipf_tail_mp); 12108 if (start >= offset) { 12109 if (ipf->ipf_last_frag_seen) { 12110 /* current fragment is beyond last fragment */ 12111 return (IP_REASS_FAILED); 12112 } 12113 /* Link it on end. */ 12114 ipf->ipf_tail_mp->b_cont = mp; 12115 ipf->ipf_tail_mp = mp; 12116 if (more) { 12117 if (start != offset) 12118 ipf->ipf_hole_cnt++; 12119 } else if (start == offset && next_mp == NULL) 12120 ipf->ipf_hole_cnt--; 12121 continue; 12122 } 12123 mp1 = ipf->ipf_mp->b_cont; 12124 offset = IP_REASS_START(mp1); 12125 /* New stuff at the front? */ 12126 if (start < offset) { 12127 if (start == 0) { 12128 if (end >= offset) { 12129 /* Nailed the hole at the begining. */ 12130 ipf->ipf_hole_cnt--; 12131 } 12132 } else if (end < offset) { 12133 /* 12134 * A hole, stuff, and a hole where there used 12135 * to be just a hole. 12136 */ 12137 ipf->ipf_hole_cnt++; 12138 } 12139 mp->b_cont = mp1; 12140 /* Check for overlap. */ 12141 while (end > offset) { 12142 if (end < IP_REASS_END(mp1)) { 12143 mp->b_wptr -= end - offset; 12144 IP_REASS_SET_END(mp, offset); 12145 BUMP_MIB(ill->ill_ip_mib, 12146 ipIfStatsReasmPartDups); 12147 break; 12148 } 12149 /* Did we cover another hole? */ 12150 if ((mp1->b_cont && 12151 IP_REASS_END(mp1) != 12152 IP_REASS_START(mp1->b_cont) && 12153 end >= IP_REASS_START(mp1->b_cont)) || 12154 (!ipf->ipf_last_frag_seen && !more)) { 12155 ipf->ipf_hole_cnt--; 12156 } 12157 /* Clip out mp1. */ 12158 if ((mp->b_cont = mp1->b_cont) == NULL) { 12159 /* 12160 * After clipping out mp1, this guy 12161 * is now hanging off the end. 12162 */ 12163 ipf->ipf_tail_mp = mp; 12164 } 12165 IP_REASS_SET_START(mp1, 0); 12166 IP_REASS_SET_END(mp1, 0); 12167 /* Subtract byte count */ 12168 ipf->ipf_count -= mp1->b_datap->db_lim - 12169 mp1->b_datap->db_base; 12170 freeb(mp1); 12171 BUMP_MIB(ill->ill_ip_mib, 12172 ipIfStatsReasmPartDups); 12173 mp1 = mp->b_cont; 12174 if (!mp1) 12175 break; 12176 offset = IP_REASS_START(mp1); 12177 } 12178 ipf->ipf_mp->b_cont = mp; 12179 continue; 12180 } 12181 /* 12182 * The new piece starts somewhere between the start of the head 12183 * and before the end of the tail. 12184 */ 12185 for (; mp1; mp1 = mp1->b_cont) { 12186 offset = IP_REASS_END(mp1); 12187 if (start < offset) { 12188 if (end <= offset) { 12189 /* Nothing new. */ 12190 IP_REASS_SET_START(mp, 0); 12191 IP_REASS_SET_END(mp, 0); 12192 /* Subtract byte count */ 12193 ipf->ipf_count -= mp->b_datap->db_lim - 12194 mp->b_datap->db_base; 12195 if (incr_dups) { 12196 ipf->ipf_num_dups++; 12197 incr_dups = B_FALSE; 12198 } 12199 freeb(mp); 12200 BUMP_MIB(ill->ill_ip_mib, 12201 ipIfStatsReasmDuplicates); 12202 break; 12203 } 12204 /* 12205 * Trim redundant stuff off beginning of new 12206 * piece. 12207 */ 12208 IP_REASS_SET_START(mp, offset); 12209 mp->b_rptr += offset - start; 12210 BUMP_MIB(ill->ill_ip_mib, 12211 ipIfStatsReasmPartDups); 12212 start = offset; 12213 if (!mp1->b_cont) { 12214 /* 12215 * After trimming, this guy is now 12216 * hanging off the end. 12217 */ 12218 mp1->b_cont = mp; 12219 ipf->ipf_tail_mp = mp; 12220 if (!more) { 12221 ipf->ipf_hole_cnt--; 12222 } 12223 break; 12224 } 12225 } 12226 if (start >= IP_REASS_START(mp1->b_cont)) 12227 continue; 12228 /* Fill a hole */ 12229 if (start > offset) 12230 ipf->ipf_hole_cnt++; 12231 mp->b_cont = mp1->b_cont; 12232 mp1->b_cont = mp; 12233 mp1 = mp->b_cont; 12234 offset = IP_REASS_START(mp1); 12235 if (end >= offset) { 12236 ipf->ipf_hole_cnt--; 12237 /* Check for overlap. */ 12238 while (end > offset) { 12239 if (end < IP_REASS_END(mp1)) { 12240 mp->b_wptr -= end - offset; 12241 IP_REASS_SET_END(mp, offset); 12242 /* 12243 * TODO we might bump 12244 * this up twice if there is 12245 * overlap at both ends. 12246 */ 12247 BUMP_MIB(ill->ill_ip_mib, 12248 ipIfStatsReasmPartDups); 12249 break; 12250 } 12251 /* Did we cover another hole? */ 12252 if ((mp1->b_cont && 12253 IP_REASS_END(mp1) 12254 != IP_REASS_START(mp1->b_cont) && 12255 end >= 12256 IP_REASS_START(mp1->b_cont)) || 12257 (!ipf->ipf_last_frag_seen && 12258 !more)) { 12259 ipf->ipf_hole_cnt--; 12260 } 12261 /* Clip out mp1. */ 12262 if ((mp->b_cont = mp1->b_cont) == 12263 NULL) { 12264 /* 12265 * After clipping out mp1, 12266 * this guy is now hanging 12267 * off the end. 12268 */ 12269 ipf->ipf_tail_mp = mp; 12270 } 12271 IP_REASS_SET_START(mp1, 0); 12272 IP_REASS_SET_END(mp1, 0); 12273 /* Subtract byte count */ 12274 ipf->ipf_count -= 12275 mp1->b_datap->db_lim - 12276 mp1->b_datap->db_base; 12277 freeb(mp1); 12278 BUMP_MIB(ill->ill_ip_mib, 12279 ipIfStatsReasmPartDups); 12280 mp1 = mp->b_cont; 12281 if (!mp1) 12282 break; 12283 offset = IP_REASS_START(mp1); 12284 } 12285 } 12286 break; 12287 } 12288 } while (start = end, mp = next_mp); 12289 12290 /* Fragment just processed could be the last one. Remember this fact */ 12291 if (!more) 12292 ipf->ipf_last_frag_seen = B_TRUE; 12293 12294 /* Still got holes? */ 12295 if (ipf->ipf_hole_cnt) 12296 return (IP_REASS_PARTIAL); 12297 /* Clean up overloaded fields to avoid upstream disasters. */ 12298 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12299 IP_REASS_SET_START(mp1, 0); 12300 IP_REASS_SET_END(mp1, 0); 12301 } 12302 return (IP_REASS_COMPLETE); 12303 } 12304 12305 /* 12306 * ipsec processing for the fast path, used for input UDP Packets 12307 */ 12308 static boolean_t 12309 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12310 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12311 { 12312 uint32_t ill_index; 12313 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12314 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12315 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12316 12317 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12318 /* The ill_index of the incoming ILL */ 12319 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12320 12321 /* pass packet up to the transport */ 12322 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12323 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12324 NULL, mctl_present); 12325 if (*first_mpp == NULL) { 12326 return (B_FALSE); 12327 } 12328 } 12329 12330 /* Initiate IPPF processing for fastpath UDP */ 12331 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12332 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12333 if (*mpp == NULL) { 12334 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12335 "deferred/dropped during IPPF processing\n")); 12336 return (B_FALSE); 12337 } 12338 } 12339 /* 12340 * We make the checks as below since we are in the fast path 12341 * and want to minimize the number of checks if the IP_RECVIF and/or 12342 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12343 */ 12344 if (connp->conn_recvif || connp->conn_recvslla || 12345 connp->conn_ip_recvpktinfo) { 12346 if (connp->conn_recvif) { 12347 in_flags = IPF_RECVIF; 12348 } 12349 /* 12350 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12351 * so the flag passed to ip_add_info is based on IP version 12352 * of connp. 12353 */ 12354 if (connp->conn_ip_recvpktinfo) { 12355 if (connp->conn_af_isv6) { 12356 /* 12357 * V6 only needs index 12358 */ 12359 in_flags |= IPF_RECVIF; 12360 } else { 12361 /* 12362 * V4 needs index + matching address. 12363 */ 12364 in_flags |= IPF_RECVADDR; 12365 } 12366 } 12367 if (connp->conn_recvslla) { 12368 in_flags |= IPF_RECVSLLA; 12369 } 12370 /* 12371 * since in_flags are being set ill will be 12372 * referenced in ip_add_info, so it better not 12373 * be NULL. 12374 */ 12375 /* 12376 * the actual data will be contained in b_cont 12377 * upon successful return of the following call. 12378 * If the call fails then the original mblk is 12379 * returned. 12380 */ 12381 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12382 ipst); 12383 } 12384 12385 return (B_TRUE); 12386 } 12387 12388 /* 12389 * Fragmentation reassembly. Each ILL has a hash table for 12390 * queuing packets undergoing reassembly for all IPIFs 12391 * associated with the ILL. The hash is based on the packet 12392 * IP ident field. The ILL frag hash table was allocated 12393 * as a timer block at the time the ILL was created. Whenever 12394 * there is anything on the reassembly queue, the timer will 12395 * be running. Returns B_TRUE if successful else B_FALSE; 12396 * frees mp on failure. 12397 */ 12398 static boolean_t 12399 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12400 uint32_t *cksum_val, uint16_t *cksum_flags) 12401 { 12402 uint32_t frag_offset_flags; 12403 ill_t *ill = (ill_t *)q->q_ptr; 12404 mblk_t *mp = *mpp; 12405 mblk_t *t_mp; 12406 ipaddr_t dst; 12407 uint8_t proto = ipha->ipha_protocol; 12408 uint32_t sum_val; 12409 uint16_t sum_flags; 12410 ipf_t *ipf; 12411 ipf_t **ipfp; 12412 ipfb_t *ipfb; 12413 uint16_t ident; 12414 uint32_t offset; 12415 ipaddr_t src; 12416 uint_t hdr_length; 12417 uint32_t end; 12418 mblk_t *mp1; 12419 mblk_t *tail_mp; 12420 size_t count; 12421 size_t msg_len; 12422 uint8_t ecn_info = 0; 12423 uint32_t packet_size; 12424 boolean_t pruned = B_FALSE; 12425 ip_stack_t *ipst = ill->ill_ipst; 12426 12427 if (cksum_val != NULL) 12428 *cksum_val = 0; 12429 if (cksum_flags != NULL) 12430 *cksum_flags = 0; 12431 12432 /* 12433 * Drop the fragmented as early as possible, if 12434 * we don't have resource(s) to re-assemble. 12435 */ 12436 if (ipst->ips_ip_reass_queue_bytes == 0) { 12437 freemsg(mp); 12438 return (B_FALSE); 12439 } 12440 12441 /* Check for fragmentation offset; return if there's none */ 12442 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12443 (IPH_MF | IPH_OFFSET)) == 0) 12444 return (B_TRUE); 12445 12446 /* 12447 * We utilize hardware computed checksum info only for UDP since 12448 * IP fragmentation is a normal occurence for the protocol. In 12449 * addition, checksum offload support for IP fragments carrying 12450 * UDP payload is commonly implemented across network adapters. 12451 */ 12452 ASSERT(ill != NULL); 12453 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12454 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12455 mblk_t *mp1 = mp->b_cont; 12456 int32_t len; 12457 12458 /* Record checksum information from the packet */ 12459 sum_val = (uint32_t)DB_CKSUM16(mp); 12460 sum_flags = DB_CKSUMFLAGS(mp); 12461 12462 /* IP payload offset from beginning of mblk */ 12463 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12464 12465 if ((sum_flags & HCK_PARTIALCKSUM) && 12466 (mp1 == NULL || mp1->b_cont == NULL) && 12467 offset >= DB_CKSUMSTART(mp) && 12468 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12469 uint32_t adj; 12470 /* 12471 * Partial checksum has been calculated by hardware 12472 * and attached to the packet; in addition, any 12473 * prepended extraneous data is even byte aligned. 12474 * If any such data exists, we adjust the checksum; 12475 * this would also handle any postpended data. 12476 */ 12477 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12478 mp, mp1, len, adj); 12479 12480 /* One's complement subtract extraneous checksum */ 12481 if (adj >= sum_val) 12482 sum_val = ~(adj - sum_val) & 0xFFFF; 12483 else 12484 sum_val -= adj; 12485 } 12486 } else { 12487 sum_val = 0; 12488 sum_flags = 0; 12489 } 12490 12491 /* Clear hardware checksumming flag */ 12492 DB_CKSUMFLAGS(mp) = 0; 12493 12494 ident = ipha->ipha_ident; 12495 offset = (frag_offset_flags << 3) & 0xFFFF; 12496 src = ipha->ipha_src; 12497 dst = ipha->ipha_dst; 12498 hdr_length = IPH_HDR_LENGTH(ipha); 12499 end = ntohs(ipha->ipha_length) - hdr_length; 12500 12501 /* If end == 0 then we have a packet with no data, so just free it */ 12502 if (end == 0) { 12503 freemsg(mp); 12504 return (B_FALSE); 12505 } 12506 12507 /* Record the ECN field info. */ 12508 ecn_info = (ipha->ipha_type_of_service & 0x3); 12509 if (offset != 0) { 12510 /* 12511 * If this isn't the first piece, strip the header, and 12512 * add the offset to the end value. 12513 */ 12514 mp->b_rptr += hdr_length; 12515 end += offset; 12516 } 12517 12518 msg_len = MBLKSIZE(mp); 12519 tail_mp = mp; 12520 while (tail_mp->b_cont != NULL) { 12521 tail_mp = tail_mp->b_cont; 12522 msg_len += MBLKSIZE(tail_mp); 12523 } 12524 12525 /* If the reassembly list for this ILL will get too big, prune it */ 12526 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12527 ipst->ips_ip_reass_queue_bytes) { 12528 ill_frag_prune(ill, 12529 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12530 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12531 pruned = B_TRUE; 12532 } 12533 12534 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12535 mutex_enter(&ipfb->ipfb_lock); 12536 12537 ipfp = &ipfb->ipfb_ipf; 12538 /* Try to find an existing fragment queue for this packet. */ 12539 for (;;) { 12540 ipf = ipfp[0]; 12541 if (ipf != NULL) { 12542 /* 12543 * It has to match on ident and src/dst address. 12544 */ 12545 if (ipf->ipf_ident == ident && 12546 ipf->ipf_src == src && 12547 ipf->ipf_dst == dst && 12548 ipf->ipf_protocol == proto) { 12549 /* 12550 * If we have received too many 12551 * duplicate fragments for this packet 12552 * free it. 12553 */ 12554 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12555 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12556 freemsg(mp); 12557 mutex_exit(&ipfb->ipfb_lock); 12558 return (B_FALSE); 12559 } 12560 /* Found it. */ 12561 break; 12562 } 12563 ipfp = &ipf->ipf_hash_next; 12564 continue; 12565 } 12566 12567 /* 12568 * If we pruned the list, do we want to store this new 12569 * fragment?. We apply an optimization here based on the 12570 * fact that most fragments will be received in order. 12571 * So if the offset of this incoming fragment is zero, 12572 * it is the first fragment of a new packet. We will 12573 * keep it. Otherwise drop the fragment, as we have 12574 * probably pruned the packet already (since the 12575 * packet cannot be found). 12576 */ 12577 if (pruned && offset != 0) { 12578 mutex_exit(&ipfb->ipfb_lock); 12579 freemsg(mp); 12580 return (B_FALSE); 12581 } 12582 12583 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12584 /* 12585 * Too many fragmented packets in this hash 12586 * bucket. Free the oldest. 12587 */ 12588 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12589 } 12590 12591 /* New guy. Allocate a frag message. */ 12592 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12593 if (mp1 == NULL) { 12594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12595 freemsg(mp); 12596 reass_done: 12597 mutex_exit(&ipfb->ipfb_lock); 12598 return (B_FALSE); 12599 } 12600 12601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12602 mp1->b_cont = mp; 12603 12604 /* Initialize the fragment header. */ 12605 ipf = (ipf_t *)mp1->b_rptr; 12606 ipf->ipf_mp = mp1; 12607 ipf->ipf_ptphn = ipfp; 12608 ipfp[0] = ipf; 12609 ipf->ipf_hash_next = NULL; 12610 ipf->ipf_ident = ident; 12611 ipf->ipf_protocol = proto; 12612 ipf->ipf_src = src; 12613 ipf->ipf_dst = dst; 12614 ipf->ipf_nf_hdr_len = 0; 12615 /* Record reassembly start time. */ 12616 ipf->ipf_timestamp = gethrestime_sec(); 12617 /* Record ipf generation and account for frag header */ 12618 ipf->ipf_gen = ill->ill_ipf_gen++; 12619 ipf->ipf_count = MBLKSIZE(mp1); 12620 ipf->ipf_last_frag_seen = B_FALSE; 12621 ipf->ipf_ecn = ecn_info; 12622 ipf->ipf_num_dups = 0; 12623 ipfb->ipfb_frag_pkts++; 12624 ipf->ipf_checksum = 0; 12625 ipf->ipf_checksum_flags = 0; 12626 12627 /* Store checksum value in fragment header */ 12628 if (sum_flags != 0) { 12629 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12630 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12631 ipf->ipf_checksum = sum_val; 12632 ipf->ipf_checksum_flags = sum_flags; 12633 } 12634 12635 /* 12636 * We handle reassembly two ways. In the easy case, 12637 * where all the fragments show up in order, we do 12638 * minimal bookkeeping, and just clip new pieces on 12639 * the end. If we ever see a hole, then we go off 12640 * to ip_reassemble which has to mark the pieces and 12641 * keep track of the number of holes, etc. Obviously, 12642 * the point of having both mechanisms is so we can 12643 * handle the easy case as efficiently as possible. 12644 */ 12645 if (offset == 0) { 12646 /* Easy case, in-order reassembly so far. */ 12647 ipf->ipf_count += msg_len; 12648 ipf->ipf_tail_mp = tail_mp; 12649 /* 12650 * Keep track of next expected offset in 12651 * ipf_end. 12652 */ 12653 ipf->ipf_end = end; 12654 ipf->ipf_nf_hdr_len = hdr_length; 12655 } else { 12656 /* Hard case, hole at the beginning. */ 12657 ipf->ipf_tail_mp = NULL; 12658 /* 12659 * ipf_end == 0 means that we have given up 12660 * on easy reassembly. 12661 */ 12662 ipf->ipf_end = 0; 12663 12664 /* Forget checksum offload from now on */ 12665 ipf->ipf_checksum_flags = 0; 12666 12667 /* 12668 * ipf_hole_cnt is set by ip_reassemble. 12669 * ipf_count is updated by ip_reassemble. 12670 * No need to check for return value here 12671 * as we don't expect reassembly to complete 12672 * or fail for the first fragment itself. 12673 */ 12674 (void) ip_reassemble(mp, ipf, 12675 (frag_offset_flags & IPH_OFFSET) << 3, 12676 (frag_offset_flags & IPH_MF), ill, msg_len); 12677 } 12678 /* Update per ipfb and ill byte counts */ 12679 ipfb->ipfb_count += ipf->ipf_count; 12680 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12681 ill->ill_frag_count += ipf->ipf_count; 12682 /* If the frag timer wasn't already going, start it. */ 12683 mutex_enter(&ill->ill_lock); 12684 ill_frag_timer_start(ill); 12685 mutex_exit(&ill->ill_lock); 12686 goto reass_done; 12687 } 12688 12689 /* 12690 * If the packet's flag has changed (it could be coming up 12691 * from an interface different than the previous, therefore 12692 * possibly different checksum capability), then forget about 12693 * any stored checksum states. Otherwise add the value to 12694 * the existing one stored in the fragment header. 12695 */ 12696 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12697 sum_val += ipf->ipf_checksum; 12698 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12699 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12700 ipf->ipf_checksum = sum_val; 12701 } else if (ipf->ipf_checksum_flags != 0) { 12702 /* Forget checksum offload from now on */ 12703 ipf->ipf_checksum_flags = 0; 12704 } 12705 12706 /* 12707 * We have a new piece of a datagram which is already being 12708 * reassembled. Update the ECN info if all IP fragments 12709 * are ECN capable. If there is one which is not, clear 12710 * all the info. If there is at least one which has CE 12711 * code point, IP needs to report that up to transport. 12712 */ 12713 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12714 if (ecn_info == IPH_ECN_CE) 12715 ipf->ipf_ecn = IPH_ECN_CE; 12716 } else { 12717 ipf->ipf_ecn = IPH_ECN_NECT; 12718 } 12719 if (offset && ipf->ipf_end == offset) { 12720 /* The new fragment fits at the end */ 12721 ipf->ipf_tail_mp->b_cont = mp; 12722 /* Update the byte count */ 12723 ipf->ipf_count += msg_len; 12724 /* Update per ipfb and ill byte counts */ 12725 ipfb->ipfb_count += msg_len; 12726 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12727 ill->ill_frag_count += msg_len; 12728 if (frag_offset_flags & IPH_MF) { 12729 /* More to come. */ 12730 ipf->ipf_end = end; 12731 ipf->ipf_tail_mp = tail_mp; 12732 goto reass_done; 12733 } 12734 } else { 12735 /* Go do the hard cases. */ 12736 int ret; 12737 12738 if (offset == 0) 12739 ipf->ipf_nf_hdr_len = hdr_length; 12740 12741 /* Save current byte count */ 12742 count = ipf->ipf_count; 12743 ret = ip_reassemble(mp, ipf, 12744 (frag_offset_flags & IPH_OFFSET) << 3, 12745 (frag_offset_flags & IPH_MF), ill, msg_len); 12746 /* Count of bytes added and subtracted (freeb()ed) */ 12747 count = ipf->ipf_count - count; 12748 if (count) { 12749 /* Update per ipfb and ill byte counts */ 12750 ipfb->ipfb_count += count; 12751 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12752 ill->ill_frag_count += count; 12753 } 12754 if (ret == IP_REASS_PARTIAL) { 12755 goto reass_done; 12756 } else if (ret == IP_REASS_FAILED) { 12757 /* Reassembly failed. Free up all resources */ 12758 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12759 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12760 IP_REASS_SET_START(t_mp, 0); 12761 IP_REASS_SET_END(t_mp, 0); 12762 } 12763 freemsg(mp); 12764 goto reass_done; 12765 } 12766 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12767 } 12768 /* 12769 * We have completed reassembly. Unhook the frag header from 12770 * the reassembly list. 12771 * 12772 * Before we free the frag header, record the ECN info 12773 * to report back to the transport. 12774 */ 12775 ecn_info = ipf->ipf_ecn; 12776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12777 ipfp = ipf->ipf_ptphn; 12778 12779 /* We need to supply these to caller */ 12780 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12781 sum_val = ipf->ipf_checksum; 12782 else 12783 sum_val = 0; 12784 12785 mp1 = ipf->ipf_mp; 12786 count = ipf->ipf_count; 12787 ipf = ipf->ipf_hash_next; 12788 if (ipf != NULL) 12789 ipf->ipf_ptphn = ipfp; 12790 ipfp[0] = ipf; 12791 ill->ill_frag_count -= count; 12792 ASSERT(ipfb->ipfb_count >= count); 12793 ipfb->ipfb_count -= count; 12794 ipfb->ipfb_frag_pkts--; 12795 mutex_exit(&ipfb->ipfb_lock); 12796 /* Ditch the frag header. */ 12797 mp = mp1->b_cont; 12798 12799 freeb(mp1); 12800 12801 /* Restore original IP length in header. */ 12802 packet_size = (uint32_t)msgdsize(mp); 12803 if (packet_size > IP_MAXPACKET) { 12804 freemsg(mp); 12805 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12806 return (B_FALSE); 12807 } 12808 12809 if (DB_REF(mp) > 1) { 12810 mblk_t *mp2 = copymsg(mp); 12811 12812 freemsg(mp); 12813 if (mp2 == NULL) { 12814 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12815 return (B_FALSE); 12816 } 12817 mp = mp2; 12818 } 12819 ipha = (ipha_t *)mp->b_rptr; 12820 12821 ipha->ipha_length = htons((uint16_t)packet_size); 12822 /* We're now complete, zip the frag state */ 12823 ipha->ipha_fragment_offset_and_flags = 0; 12824 /* Record the ECN info. */ 12825 ipha->ipha_type_of_service &= 0xFC; 12826 ipha->ipha_type_of_service |= ecn_info; 12827 *mpp = mp; 12828 12829 /* Reassembly is successful; return checksum information if needed */ 12830 if (cksum_val != NULL) 12831 *cksum_val = sum_val; 12832 if (cksum_flags != NULL) 12833 *cksum_flags = sum_flags; 12834 12835 return (B_TRUE); 12836 } 12837 12838 /* 12839 * Perform ip header check sum update local options. 12840 * return B_TRUE if all is well, else return B_FALSE and release 12841 * the mp. caller is responsible for decrementing ire ref cnt. 12842 */ 12843 static boolean_t 12844 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12845 ip_stack_t *ipst) 12846 { 12847 mblk_t *first_mp; 12848 boolean_t mctl_present; 12849 uint16_t sum; 12850 12851 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12852 /* 12853 * Don't do the checksum if it has gone through AH/ESP 12854 * processing. 12855 */ 12856 if (!mctl_present) { 12857 sum = ip_csum_hdr(ipha); 12858 if (sum != 0) { 12859 if (ill != NULL) { 12860 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12861 } else { 12862 BUMP_MIB(&ipst->ips_ip_mib, 12863 ipIfStatsInCksumErrs); 12864 } 12865 freemsg(first_mp); 12866 return (B_FALSE); 12867 } 12868 } 12869 12870 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12871 if (mctl_present) 12872 freeb(first_mp); 12873 return (B_FALSE); 12874 } 12875 12876 return (B_TRUE); 12877 } 12878 12879 /* 12880 * All udp packet are delivered to the local host via this routine. 12881 */ 12882 void 12883 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12884 ill_t *recv_ill) 12885 { 12886 uint32_t sum; 12887 uint32_t u1; 12888 boolean_t mctl_present; 12889 conn_t *connp; 12890 mblk_t *first_mp; 12891 uint16_t *up; 12892 ill_t *ill = (ill_t *)q->q_ptr; 12893 uint16_t reass_hck_flags = 0; 12894 ip_stack_t *ipst; 12895 12896 ASSERT(recv_ill != NULL); 12897 ipst = recv_ill->ill_ipst; 12898 12899 #define rptr ((uchar_t *)ipha) 12900 12901 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12902 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12903 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12904 ASSERT(ill != NULL); 12905 12906 /* 12907 * FAST PATH for udp packets 12908 */ 12909 12910 /* u1 is # words of IP options */ 12911 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12912 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12913 12914 /* IP options present */ 12915 if (u1 != 0) 12916 goto ipoptions; 12917 12918 /* Check the IP header checksum. */ 12919 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12920 /* Clear the IP header h/w cksum flag */ 12921 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12922 } else { 12923 #define uph ((uint16_t *)ipha) 12924 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12925 uph[6] + uph[7] + uph[8] + uph[9]; 12926 #undef uph 12927 /* finish doing IP checksum */ 12928 sum = (sum & 0xFFFF) + (sum >> 16); 12929 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12930 /* 12931 * Don't verify header checksum if this packet is coming 12932 * back from AH/ESP as we already did it. 12933 */ 12934 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12935 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12936 freemsg(first_mp); 12937 return; 12938 } 12939 } 12940 12941 /* 12942 * Count for SNMP of inbound packets for ire. 12943 * if mctl is present this might be a secure packet and 12944 * has already been counted for in ip_proto_input(). 12945 */ 12946 if (!mctl_present) { 12947 UPDATE_IB_PKT_COUNT(ire); 12948 ire->ire_last_used_time = lbolt; 12949 } 12950 12951 /* packet part of fragmented IP packet? */ 12952 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12953 if (u1 & (IPH_MF | IPH_OFFSET)) { 12954 goto fragmented; 12955 } 12956 12957 /* u1 = IP header length (20 bytes) */ 12958 u1 = IP_SIMPLE_HDR_LENGTH; 12959 12960 /* packet does not contain complete IP & UDP headers */ 12961 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12962 goto udppullup; 12963 12964 /* up points to UDP header */ 12965 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12966 #define iphs ((uint16_t *)ipha) 12967 12968 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12969 if (up[3] != 0) { 12970 mblk_t *mp1 = mp->b_cont; 12971 boolean_t cksum_err; 12972 uint16_t hck_flags = 0; 12973 12974 /* Pseudo-header checksum */ 12975 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12976 iphs[9] + up[2]; 12977 12978 /* 12979 * Revert to software checksum calculation if the interface 12980 * isn't capable of checksum offload or if IPsec is present. 12981 */ 12982 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12983 hck_flags = DB_CKSUMFLAGS(mp); 12984 12985 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12986 IP_STAT(ipst, ip_in_sw_cksum); 12987 12988 IP_CKSUM_RECV(hck_flags, u1, 12989 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12990 (int32_t)((uchar_t *)up - rptr), 12991 mp, mp1, cksum_err); 12992 12993 if (cksum_err) { 12994 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12995 if (hck_flags & HCK_FULLCKSUM) 12996 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12997 else if (hck_flags & HCK_PARTIALCKSUM) 12998 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12999 else 13000 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13001 13002 freemsg(first_mp); 13003 return; 13004 } 13005 } 13006 13007 /* Non-fragmented broadcast or multicast packet? */ 13008 if (ire->ire_type == IRE_BROADCAST) 13009 goto udpslowpath; 13010 13011 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 13012 ire->ire_zoneid, ipst)) != NULL) { 13013 ASSERT(connp->conn_upq != NULL); 13014 IP_STAT(ipst, ip_udp_fast_path); 13015 13016 if (CONN_UDP_FLOWCTLD(connp)) { 13017 freemsg(mp); 13018 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 13019 } else { 13020 if (!mctl_present) { 13021 BUMP_MIB(ill->ill_ip_mib, 13022 ipIfStatsHCInDelivers); 13023 } 13024 /* 13025 * mp and first_mp can change. 13026 */ 13027 if (ip_udp_check(q, connp, recv_ill, 13028 ipha, &mp, &first_mp, mctl_present)) { 13029 /* Send it upstream */ 13030 CONN_UDP_RECV(connp, mp); 13031 } 13032 } 13033 /* 13034 * freeb() cannot deal with null mblk being passed 13035 * in and first_mp can be set to null in the call 13036 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 13037 */ 13038 if (mctl_present && first_mp != NULL) { 13039 freeb(first_mp); 13040 } 13041 CONN_DEC_REF(connp); 13042 return; 13043 } 13044 13045 /* 13046 * if we got here we know the packet is not fragmented and 13047 * has no options. The classifier could not find a conn_t and 13048 * most likely its an icmp packet so send it through slow path. 13049 */ 13050 13051 goto udpslowpath; 13052 13053 ipoptions: 13054 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 13055 goto slow_done; 13056 } 13057 13058 UPDATE_IB_PKT_COUNT(ire); 13059 ire->ire_last_used_time = lbolt; 13060 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13061 if (u1 & (IPH_MF | IPH_OFFSET)) { 13062 fragmented: 13063 /* 13064 * "sum" and "reass_hck_flags" are non-zero if the 13065 * reassembled packet has a valid hardware computed 13066 * checksum information associated with it. 13067 */ 13068 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 13069 goto slow_done; 13070 /* 13071 * Make sure that first_mp points back to mp as 13072 * the mp we came in with could have changed in 13073 * ip_rput_fragment(). 13074 */ 13075 ASSERT(!mctl_present); 13076 ipha = (ipha_t *)mp->b_rptr; 13077 first_mp = mp; 13078 } 13079 13080 /* Now we have a complete datagram, destined for this machine. */ 13081 u1 = IPH_HDR_LENGTH(ipha); 13082 /* Pull up the UDP header, if necessary. */ 13083 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 13084 udppullup: 13085 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 13086 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13087 freemsg(first_mp); 13088 goto slow_done; 13089 } 13090 ipha = (ipha_t *)mp->b_rptr; 13091 } 13092 13093 /* 13094 * Validate the checksum for the reassembled packet; for the 13095 * pullup case we calculate the payload checksum in software. 13096 */ 13097 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 13098 if (up[3] != 0) { 13099 boolean_t cksum_err; 13100 13101 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13102 IP_STAT(ipst, ip_in_sw_cksum); 13103 13104 IP_CKSUM_RECV_REASS(reass_hck_flags, 13105 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 13106 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13107 iphs[9] + up[2], sum, cksum_err); 13108 13109 if (cksum_err) { 13110 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13111 13112 if (reass_hck_flags & HCK_FULLCKSUM) 13113 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13114 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13115 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13116 else 13117 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13118 13119 freemsg(first_mp); 13120 goto slow_done; 13121 } 13122 } 13123 udpslowpath: 13124 13125 /* Clear hardware checksum flag to be safe */ 13126 DB_CKSUMFLAGS(mp) = 0; 13127 13128 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13129 (ire->ire_type == IRE_BROADCAST), 13130 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13131 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13132 13133 slow_done: 13134 IP_STAT(ipst, ip_udp_slow_path); 13135 return; 13136 13137 #undef iphs 13138 #undef rptr 13139 } 13140 13141 /* ARGSUSED */ 13142 static mblk_t * 13143 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13144 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13145 ill_rx_ring_t *ill_ring) 13146 { 13147 conn_t *connp; 13148 uint32_t sum; 13149 uint32_t u1; 13150 uint16_t *up; 13151 int offset; 13152 ssize_t len; 13153 mblk_t *mp1; 13154 boolean_t syn_present = B_FALSE; 13155 tcph_t *tcph; 13156 uint_t ip_hdr_len; 13157 ill_t *ill = (ill_t *)q->q_ptr; 13158 zoneid_t zoneid = ire->ire_zoneid; 13159 boolean_t cksum_err; 13160 uint16_t hck_flags = 0; 13161 ip_stack_t *ipst = recv_ill->ill_ipst; 13162 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13163 13164 #define rptr ((uchar_t *)ipha) 13165 13166 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13167 ASSERT(ill != NULL); 13168 13169 /* 13170 * FAST PATH for tcp packets 13171 */ 13172 13173 /* u1 is # words of IP options */ 13174 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13175 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13176 13177 /* IP options present */ 13178 if (u1) { 13179 goto ipoptions; 13180 } else { 13181 /* Check the IP header checksum. */ 13182 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13183 /* Clear the IP header h/w cksum flag */ 13184 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13185 } else { 13186 #define uph ((uint16_t *)ipha) 13187 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13188 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13189 #undef uph 13190 /* finish doing IP checksum */ 13191 sum = (sum & 0xFFFF) + (sum >> 16); 13192 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13193 /* 13194 * Don't verify header checksum if this packet 13195 * is coming back from AH/ESP as we already did it. 13196 */ 13197 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13198 BUMP_MIB(ill->ill_ip_mib, 13199 ipIfStatsInCksumErrs); 13200 goto error; 13201 } 13202 } 13203 } 13204 13205 if (!mctl_present) { 13206 UPDATE_IB_PKT_COUNT(ire); 13207 ire->ire_last_used_time = lbolt; 13208 } 13209 13210 /* packet part of fragmented IP packet? */ 13211 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13212 if (u1 & (IPH_MF | IPH_OFFSET)) { 13213 goto fragmented; 13214 } 13215 13216 /* u1 = IP header length (20 bytes) */ 13217 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13218 13219 /* does packet contain IP+TCP headers? */ 13220 len = mp->b_wptr - rptr; 13221 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13222 IP_STAT(ipst, ip_tcppullup); 13223 goto tcppullup; 13224 } 13225 13226 /* TCP options present? */ 13227 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13228 13229 /* 13230 * If options need to be pulled up, then goto tcpoptions. 13231 * otherwise we are still in the fast path 13232 */ 13233 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13234 IP_STAT(ipst, ip_tcpoptions); 13235 goto tcpoptions; 13236 } 13237 13238 /* multiple mblks of tcp data? */ 13239 if ((mp1 = mp->b_cont) != NULL) { 13240 /* more then two? */ 13241 if (mp1->b_cont != NULL) { 13242 IP_STAT(ipst, ip_multipkttcp); 13243 goto multipkttcp; 13244 } 13245 len += mp1->b_wptr - mp1->b_rptr; 13246 } 13247 13248 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13249 13250 /* part of pseudo checksum */ 13251 13252 /* TCP datagram length */ 13253 u1 = len - IP_SIMPLE_HDR_LENGTH; 13254 13255 #define iphs ((uint16_t *)ipha) 13256 13257 #ifdef _BIG_ENDIAN 13258 u1 += IPPROTO_TCP; 13259 #else 13260 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13261 #endif 13262 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13263 13264 /* 13265 * Revert to software checksum calculation if the interface 13266 * isn't capable of checksum offload or if IPsec is present. 13267 */ 13268 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13269 hck_flags = DB_CKSUMFLAGS(mp); 13270 13271 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13272 IP_STAT(ipst, ip_in_sw_cksum); 13273 13274 IP_CKSUM_RECV(hck_flags, u1, 13275 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13276 (int32_t)((uchar_t *)up - rptr), 13277 mp, mp1, cksum_err); 13278 13279 if (cksum_err) { 13280 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13281 13282 if (hck_flags & HCK_FULLCKSUM) 13283 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13284 else if (hck_flags & HCK_PARTIALCKSUM) 13285 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13286 else 13287 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13288 13289 goto error; 13290 } 13291 13292 try_again: 13293 13294 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13295 zoneid, ipst)) == NULL) { 13296 /* Send the TH_RST */ 13297 goto no_conn; 13298 } 13299 13300 /* 13301 * TCP FAST PATH for AF_INET socket. 13302 * 13303 * TCP fast path to avoid extra work. An AF_INET socket type 13304 * does not have facility to receive extra information via 13305 * ip_process or ip_add_info. Also, when the connection was 13306 * established, we made a check if this connection is impacted 13307 * by any global IPSec policy or per connection policy (a 13308 * policy that comes in effect later will not apply to this 13309 * connection). Since all this can be determined at the 13310 * connection establishment time, a quick check of flags 13311 * can avoid extra work. 13312 */ 13313 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13314 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13315 ASSERT(first_mp == mp); 13316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13317 SET_SQUEUE(mp, tcp_rput_data, connp); 13318 return (mp); 13319 } 13320 13321 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13322 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13323 if (IPCL_IS_TCP(connp)) { 13324 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13325 DB_CKSUMSTART(mp) = 13326 (intptr_t)ip_squeue_get(ill_ring); 13327 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13328 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13329 BUMP_MIB(ill->ill_ip_mib, 13330 ipIfStatsHCInDelivers); 13331 SET_SQUEUE(mp, connp->conn_recv, connp); 13332 return (mp); 13333 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13334 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13335 BUMP_MIB(ill->ill_ip_mib, 13336 ipIfStatsHCInDelivers); 13337 ip_squeue_enter_unbound++; 13338 SET_SQUEUE(mp, tcp_conn_request_unbound, 13339 connp); 13340 return (mp); 13341 } 13342 syn_present = B_TRUE; 13343 } 13344 13345 } 13346 13347 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13348 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13349 13350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13351 /* No need to send this packet to TCP */ 13352 if ((flags & TH_RST) || (flags & TH_URG)) { 13353 CONN_DEC_REF(connp); 13354 freemsg(first_mp); 13355 return (NULL); 13356 } 13357 if (flags & TH_ACK) { 13358 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13359 ipst->ips_netstack->netstack_tcp); 13360 CONN_DEC_REF(connp); 13361 return (NULL); 13362 } 13363 13364 CONN_DEC_REF(connp); 13365 freemsg(first_mp); 13366 return (NULL); 13367 } 13368 13369 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13370 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13371 ipha, NULL, mctl_present); 13372 if (first_mp == NULL) { 13373 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13374 CONN_DEC_REF(connp); 13375 return (NULL); 13376 } 13377 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13378 ASSERT(syn_present); 13379 if (mctl_present) { 13380 ASSERT(first_mp != mp); 13381 first_mp->b_datap->db_struioflag |= 13382 STRUIO_POLICY; 13383 } else { 13384 ASSERT(first_mp == mp); 13385 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13386 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13387 } 13388 } else { 13389 /* 13390 * Discard first_mp early since we're dealing with a 13391 * fully-connected conn_t and tcp doesn't do policy in 13392 * this case. 13393 */ 13394 if (mctl_present) { 13395 freeb(first_mp); 13396 mctl_present = B_FALSE; 13397 } 13398 first_mp = mp; 13399 } 13400 } 13401 13402 /* Initiate IPPF processing for fastpath */ 13403 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13404 uint32_t ill_index; 13405 13406 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13407 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13408 if (mp == NULL) { 13409 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13410 "deferred/dropped during IPPF processing\n")); 13411 CONN_DEC_REF(connp); 13412 if (mctl_present) 13413 freeb(first_mp); 13414 return (NULL); 13415 } else if (mctl_present) { 13416 /* 13417 * ip_process might return a new mp. 13418 */ 13419 ASSERT(first_mp != mp); 13420 first_mp->b_cont = mp; 13421 } else { 13422 first_mp = mp; 13423 } 13424 13425 } 13426 13427 if (!syn_present && connp->conn_ip_recvpktinfo) { 13428 /* 13429 * TCP does not support IP_RECVPKTINFO for v4 so lets 13430 * make sure IPF_RECVIF is passed to ip_add_info. 13431 */ 13432 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13433 IPCL_ZONEID(connp), ipst); 13434 if (mp == NULL) { 13435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13436 CONN_DEC_REF(connp); 13437 if (mctl_present) 13438 freeb(first_mp); 13439 return (NULL); 13440 } else if (mctl_present) { 13441 /* 13442 * ip_add_info might return a new mp. 13443 */ 13444 ASSERT(first_mp != mp); 13445 first_mp->b_cont = mp; 13446 } else { 13447 first_mp = mp; 13448 } 13449 } 13450 13451 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13452 if (IPCL_IS_TCP(connp)) { 13453 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13454 return (first_mp); 13455 } else { 13456 putnext(connp->conn_rq, first_mp); 13457 CONN_DEC_REF(connp); 13458 return (NULL); 13459 } 13460 13461 no_conn: 13462 /* Initiate IPPf processing, if needed. */ 13463 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13464 uint32_t ill_index; 13465 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13466 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13467 if (first_mp == NULL) { 13468 return (NULL); 13469 } 13470 } 13471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13472 13473 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13474 ipst->ips_netstack->netstack_tcp); 13475 return (NULL); 13476 ipoptions: 13477 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13478 goto slow_done; 13479 } 13480 13481 UPDATE_IB_PKT_COUNT(ire); 13482 ire->ire_last_used_time = lbolt; 13483 13484 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13485 if (u1 & (IPH_MF | IPH_OFFSET)) { 13486 fragmented: 13487 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13488 if (mctl_present) 13489 freeb(first_mp); 13490 goto slow_done; 13491 } 13492 /* 13493 * Make sure that first_mp points back to mp as 13494 * the mp we came in with could have changed in 13495 * ip_rput_fragment(). 13496 */ 13497 ASSERT(!mctl_present); 13498 ipha = (ipha_t *)mp->b_rptr; 13499 first_mp = mp; 13500 } 13501 13502 /* Now we have a complete datagram, destined for this machine. */ 13503 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13504 13505 len = mp->b_wptr - mp->b_rptr; 13506 /* Pull up a minimal TCP header, if necessary. */ 13507 if (len < (u1 + 20)) { 13508 tcppullup: 13509 if (!pullupmsg(mp, u1 + 20)) { 13510 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13511 goto error; 13512 } 13513 ipha = (ipha_t *)mp->b_rptr; 13514 len = mp->b_wptr - mp->b_rptr; 13515 } 13516 13517 /* 13518 * Extract the offset field from the TCP header. As usual, we 13519 * try to help the compiler more than the reader. 13520 */ 13521 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13522 if (offset != 5) { 13523 tcpoptions: 13524 if (offset < 5) { 13525 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13526 goto error; 13527 } 13528 /* 13529 * There must be TCP options. 13530 * Make sure we can grab them. 13531 */ 13532 offset <<= 2; 13533 offset += u1; 13534 if (len < offset) { 13535 if (!pullupmsg(mp, offset)) { 13536 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13537 goto error; 13538 } 13539 ipha = (ipha_t *)mp->b_rptr; 13540 len = mp->b_wptr - rptr; 13541 } 13542 } 13543 13544 /* Get the total packet length in len, including headers. */ 13545 if (mp->b_cont) { 13546 multipkttcp: 13547 len = msgdsize(mp); 13548 } 13549 13550 /* 13551 * Check the TCP checksum by pulling together the pseudo- 13552 * header checksum, and passing it to ip_csum to be added in 13553 * with the TCP datagram. 13554 * 13555 * Since we are not using the hwcksum if available we must 13556 * clear the flag. We may come here via tcppullup or tcpoptions. 13557 * If either of these fails along the way the mblk is freed. 13558 * If this logic ever changes and mblk is reused to say send 13559 * ICMP's back, then this flag may need to be cleared in 13560 * other places as well. 13561 */ 13562 DB_CKSUMFLAGS(mp) = 0; 13563 13564 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13565 13566 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13567 #ifdef _BIG_ENDIAN 13568 u1 += IPPROTO_TCP; 13569 #else 13570 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13571 #endif 13572 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13573 /* 13574 * Not M_DATA mblk or its a dup, so do the checksum now. 13575 */ 13576 IP_STAT(ipst, ip_in_sw_cksum); 13577 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13578 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13579 goto error; 13580 } 13581 13582 IP_STAT(ipst, ip_tcp_slow_path); 13583 goto try_again; 13584 #undef iphs 13585 #undef rptr 13586 13587 error: 13588 freemsg(first_mp); 13589 slow_done: 13590 return (NULL); 13591 } 13592 13593 /* ARGSUSED */ 13594 static void 13595 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13596 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13597 { 13598 conn_t *connp; 13599 uint32_t sum; 13600 uint32_t u1; 13601 ssize_t len; 13602 sctp_hdr_t *sctph; 13603 zoneid_t zoneid = ire->ire_zoneid; 13604 uint32_t pktsum; 13605 uint32_t calcsum; 13606 uint32_t ports; 13607 in6_addr_t map_src, map_dst; 13608 ill_t *ill = (ill_t *)q->q_ptr; 13609 ip_stack_t *ipst; 13610 sctp_stack_t *sctps; 13611 13612 ASSERT(recv_ill != NULL); 13613 ipst = recv_ill->ill_ipst; 13614 sctps = ipst->ips_netstack->netstack_sctp; 13615 13616 #define rptr ((uchar_t *)ipha) 13617 13618 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13619 ASSERT(ill != NULL); 13620 13621 /* u1 is # words of IP options */ 13622 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13623 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13624 13625 /* IP options present */ 13626 if (u1 > 0) { 13627 goto ipoptions; 13628 } else { 13629 /* Check the IP header checksum. */ 13630 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13631 #define uph ((uint16_t *)ipha) 13632 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13633 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13634 #undef uph 13635 /* finish doing IP checksum */ 13636 sum = (sum & 0xFFFF) + (sum >> 16); 13637 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13638 /* 13639 * Don't verify header checksum if this packet 13640 * is coming back from AH/ESP as we already did it. 13641 */ 13642 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13643 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13644 goto error; 13645 } 13646 } 13647 /* 13648 * Since there is no SCTP h/w cksum support yet, just 13649 * clear the flag. 13650 */ 13651 DB_CKSUMFLAGS(mp) = 0; 13652 } 13653 13654 /* 13655 * Don't verify header checksum if this packet is coming 13656 * back from AH/ESP as we already did it. 13657 */ 13658 if (!mctl_present) { 13659 UPDATE_IB_PKT_COUNT(ire); 13660 ire->ire_last_used_time = lbolt; 13661 } 13662 13663 /* packet part of fragmented IP packet? */ 13664 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13665 if (u1 & (IPH_MF | IPH_OFFSET)) 13666 goto fragmented; 13667 13668 /* u1 = IP header length (20 bytes) */ 13669 u1 = IP_SIMPLE_HDR_LENGTH; 13670 13671 find_sctp_client: 13672 /* Pullup if we don't have the sctp common header. */ 13673 len = MBLKL(mp); 13674 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13675 if (mp->b_cont == NULL || 13676 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13677 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13678 goto error; 13679 } 13680 ipha = (ipha_t *)mp->b_rptr; 13681 len = MBLKL(mp); 13682 } 13683 13684 sctph = (sctp_hdr_t *)(rptr + u1); 13685 #ifdef DEBUG 13686 if (!skip_sctp_cksum) { 13687 #endif 13688 pktsum = sctph->sh_chksum; 13689 sctph->sh_chksum = 0; 13690 calcsum = sctp_cksum(mp, u1); 13691 if (calcsum != pktsum) { 13692 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13693 goto error; 13694 } 13695 sctph->sh_chksum = pktsum; 13696 #ifdef DEBUG /* skip_sctp_cksum */ 13697 } 13698 #endif 13699 /* get the ports */ 13700 ports = *(uint32_t *)&sctph->sh_sport; 13701 13702 IRE_REFRELE(ire); 13703 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13704 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13705 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13706 sctps)) == NULL) { 13707 /* Check for raw socket or OOTB handling */ 13708 goto no_conn; 13709 } 13710 13711 /* Found a client; up it goes */ 13712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13713 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13714 return; 13715 13716 no_conn: 13717 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13718 ports, mctl_present, flags, B_TRUE, zoneid); 13719 return; 13720 13721 ipoptions: 13722 DB_CKSUMFLAGS(mp) = 0; 13723 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13724 goto slow_done; 13725 13726 UPDATE_IB_PKT_COUNT(ire); 13727 ire->ire_last_used_time = lbolt; 13728 13729 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13730 if (u1 & (IPH_MF | IPH_OFFSET)) { 13731 fragmented: 13732 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13733 goto slow_done; 13734 /* 13735 * Make sure that first_mp points back to mp as 13736 * the mp we came in with could have changed in 13737 * ip_rput_fragment(). 13738 */ 13739 ASSERT(!mctl_present); 13740 ipha = (ipha_t *)mp->b_rptr; 13741 first_mp = mp; 13742 } 13743 13744 /* Now we have a complete datagram, destined for this machine. */ 13745 u1 = IPH_HDR_LENGTH(ipha); 13746 goto find_sctp_client; 13747 #undef iphs 13748 #undef rptr 13749 13750 error: 13751 freemsg(first_mp); 13752 slow_done: 13753 IRE_REFRELE(ire); 13754 } 13755 13756 #define VER_BITS 0xF0 13757 #define VERSION_6 0x60 13758 13759 static boolean_t 13760 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13761 ipaddr_t *dstp, ip_stack_t *ipst) 13762 { 13763 uint_t opt_len; 13764 ipha_t *ipha; 13765 ssize_t len; 13766 uint_t pkt_len; 13767 13768 ASSERT(ill != NULL); 13769 IP_STAT(ipst, ip_ipoptions); 13770 ipha = *iphapp; 13771 13772 #define rptr ((uchar_t *)ipha) 13773 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13774 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13775 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13776 freemsg(mp); 13777 return (B_FALSE); 13778 } 13779 13780 /* multiple mblk or too short */ 13781 pkt_len = ntohs(ipha->ipha_length); 13782 13783 /* Get the number of words of IP options in the IP header. */ 13784 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13785 if (opt_len) { 13786 /* IP Options present! Validate and process. */ 13787 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13788 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13789 goto done; 13790 } 13791 /* 13792 * Recompute complete header length and make sure we 13793 * have access to all of it. 13794 */ 13795 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13796 if (len > (mp->b_wptr - rptr)) { 13797 if (len > pkt_len) { 13798 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13799 goto done; 13800 } 13801 if (!pullupmsg(mp, len)) { 13802 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13803 goto done; 13804 } 13805 ipha = (ipha_t *)mp->b_rptr; 13806 } 13807 /* 13808 * Go off to ip_rput_options which returns the next hop 13809 * destination address, which may have been affected 13810 * by source routing. 13811 */ 13812 IP_STAT(ipst, ip_opt); 13813 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13814 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13815 return (B_FALSE); 13816 } 13817 } 13818 *iphapp = ipha; 13819 return (B_TRUE); 13820 done: 13821 /* clear b_prev - used by ip_mroute_decap */ 13822 mp->b_prev = NULL; 13823 freemsg(mp); 13824 return (B_FALSE); 13825 #undef rptr 13826 } 13827 13828 /* 13829 * Deal with the fact that there is no ire for the destination. 13830 * The incoming ill (in_ill) is passed in to ip_newroute only 13831 * in the case of packets coming from mobile ip forward tunnel. 13832 * It must be null otherwise. 13833 */ 13834 static ire_t * 13835 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13836 ipaddr_t dst) 13837 { 13838 ipha_t *ipha; 13839 ill_t *ill; 13840 ire_t *ire; 13841 boolean_t check_multirt = B_FALSE; 13842 ip_stack_t *ipst; 13843 13844 ipha = (ipha_t *)mp->b_rptr; 13845 ill = (ill_t *)q->q_ptr; 13846 13847 ASSERT(ill != NULL); 13848 ipst = ill->ill_ipst; 13849 13850 /* 13851 * No IRE for this destination, so it can't be for us. 13852 * Unless we are forwarding, drop the packet. 13853 * We have to let source routed packets through 13854 * since we don't yet know if they are 'ping -l' 13855 * packets i.e. if they will go out over the 13856 * same interface as they came in on. 13857 */ 13858 if (ll_multicast) { 13859 freemsg(mp); 13860 return (NULL); 13861 } 13862 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13864 freemsg(mp); 13865 return (NULL); 13866 } 13867 13868 /* 13869 * Mark this packet as having originated externally. 13870 * 13871 * For non-forwarding code path, ire_send later double 13872 * checks this interface to see if it is still exists 13873 * post-ARP resolution. 13874 * 13875 * Also, IPQOS uses this to differentiate between 13876 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13877 * QOS packet processing in ip_wput_attach_llhdr(). 13878 * The QoS module can mark the b_band for a fastpath message 13879 * or the dl_priority field in a unitdata_req header for 13880 * CoS marking. This info can only be found in 13881 * ip_wput_attach_llhdr(). 13882 */ 13883 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13884 /* 13885 * Clear the indication that this may have a hardware checksum 13886 * as we are not using it 13887 */ 13888 DB_CKSUMFLAGS(mp) = 0; 13889 13890 if (in_ill != NULL) { 13891 /* 13892 * Now hand the packet to ip_newroute. 13893 */ 13894 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13895 return (NULL); 13896 } 13897 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13898 MBLK_GETLABEL(mp), ipst); 13899 13900 if (ire == NULL && check_multirt) { 13901 /* Let ip_newroute handle CGTP */ 13902 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13903 return (NULL); 13904 } 13905 13906 if (ire != NULL) 13907 return (ire); 13908 13909 mp->b_prev = mp->b_next = 0; 13910 /* send icmp unreachable */ 13911 q = WR(q); 13912 /* Sent by forwarding path, and router is global zone */ 13913 if (ip_source_routed(ipha, ipst)) { 13914 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13915 GLOBAL_ZONEID, ipst); 13916 } else { 13917 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13918 ipst); 13919 } 13920 13921 return (NULL); 13922 13923 } 13924 13925 /* 13926 * check ip header length and align it. 13927 */ 13928 static boolean_t 13929 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13930 { 13931 ssize_t len; 13932 ill_t *ill; 13933 ipha_t *ipha; 13934 13935 len = MBLKL(mp); 13936 13937 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13938 ill = (ill_t *)q->q_ptr; 13939 13940 if (!OK_32PTR(mp->b_rptr)) 13941 IP_STAT(ipst, ip_notaligned1); 13942 else 13943 IP_STAT(ipst, ip_notaligned2); 13944 /* Guard against bogus device drivers */ 13945 if (len < 0) { 13946 /* clear b_prev - used by ip_mroute_decap */ 13947 mp->b_prev = NULL; 13948 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13949 freemsg(mp); 13950 return (B_FALSE); 13951 } 13952 13953 if (ip_rput_pullups++ == 0) { 13954 ipha = (ipha_t *)mp->b_rptr; 13955 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13956 "ip_check_and_align_header: %s forced us to " 13957 " pullup pkt, hdr len %ld, hdr addr %p", 13958 ill->ill_name, len, ipha); 13959 } 13960 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13961 /* clear b_prev - used by ip_mroute_decap */ 13962 mp->b_prev = NULL; 13963 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13964 freemsg(mp); 13965 return (B_FALSE); 13966 } 13967 } 13968 return (B_TRUE); 13969 } 13970 13971 ire_t * 13972 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13973 { 13974 ire_t *new_ire; 13975 ill_t *ire_ill; 13976 uint_t ifindex; 13977 ip_stack_t *ipst = ill->ill_ipst; 13978 boolean_t strict_check = B_FALSE; 13979 13980 /* 13981 * This packet came in on an interface other than the one associated 13982 * with the first ire we found for the destination address. We do 13983 * another ire lookup here, using the ingress ill, to see if the 13984 * interface is in an interface group. 13985 * As long as the ills belong to the same group, we don't consider 13986 * them to be arriving on the wrong interface. Thus, if the switch 13987 * is doing inbound load spreading, we won't drop packets when the 13988 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13989 * for 'usesrc groups' where the destination address may belong to 13990 * another interface to allow multipathing to happen. 13991 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13992 * where the local address may not be unique. In this case we were 13993 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13994 * actually returned. The new lookup, which is more specific, should 13995 * only find the IRE_LOCAL associated with the ingress ill if one 13996 * exists. 13997 */ 13998 13999 if (ire->ire_ipversion == IPV4_VERSION) { 14000 if (ipst->ips_ip_strict_dst_multihoming) 14001 strict_check = B_TRUE; 14002 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 14003 ill->ill_ipif, ALL_ZONES, NULL, 14004 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14005 } else { 14006 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 14007 if (ipst->ips_ipv6_strict_dst_multihoming) 14008 strict_check = B_TRUE; 14009 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 14010 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 14011 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14012 } 14013 /* 14014 * If the same ire that was returned in ip_input() is found then this 14015 * is an indication that interface groups are in use. The packet 14016 * arrived on a different ill in the group than the one associated with 14017 * the destination address. If a different ire was found then the same 14018 * IP address must be hosted on multiple ills. This is possible with 14019 * unnumbered point2point interfaces. We switch to use this new ire in 14020 * order to have accurate interface statistics. 14021 */ 14022 if (new_ire != NULL) { 14023 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 14024 ire_refrele(ire); 14025 ire = new_ire; 14026 } else { 14027 ire_refrele(new_ire); 14028 } 14029 return (ire); 14030 } else if ((ire->ire_rfq == NULL) && 14031 (ire->ire_ipversion == IPV4_VERSION)) { 14032 /* 14033 * The best match could have been the original ire which 14034 * was created against an IRE_LOCAL on lo0. In the IPv4 case 14035 * the strict multihoming checks are irrelevant as we consider 14036 * local addresses hosted on lo0 to be interface agnostic. We 14037 * only expect a null ire_rfq on IREs which are associated with 14038 * lo0 hence we can return now. 14039 */ 14040 return (ire); 14041 } 14042 14043 /* 14044 * Chase pointers once and store locally. 14045 */ 14046 ire_ill = (ire->ire_rfq == NULL) ? NULL : 14047 (ill_t *)(ire->ire_rfq->q_ptr); 14048 ifindex = ill->ill_usesrc_ifindex; 14049 14050 /* 14051 * Check if it's a legal address on the 'usesrc' interface. 14052 */ 14053 if ((ifindex != 0) && (ire_ill != NULL) && 14054 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 14055 return (ire); 14056 } 14057 14058 /* 14059 * If the ip*_strict_dst_multihoming switch is on then we can 14060 * only accept this packet if the interface is marked as routing. 14061 */ 14062 if (!(strict_check)) 14063 return (ire); 14064 14065 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 14066 ILLF_ROUTER) != 0) { 14067 return (ire); 14068 } 14069 14070 ire_refrele(ire); 14071 return (NULL); 14072 } 14073 14074 ire_t * 14075 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 14076 { 14077 ipha_t *ipha; 14078 ipaddr_t ip_dst, ip_src; 14079 ire_t *src_ire = NULL; 14080 ill_t *stq_ill; 14081 uint_t hlen; 14082 uint_t pkt_len; 14083 uint32_t sum; 14084 queue_t *dev_q; 14085 boolean_t check_multirt = B_FALSE; 14086 ip_stack_t *ipst = ill->ill_ipst; 14087 14088 ipha = (ipha_t *)mp->b_rptr; 14089 14090 /* 14091 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14092 * The loopback address check for both src and dst has already 14093 * been checked in ip_input 14094 */ 14095 ip_dst = ntohl(dst); 14096 ip_src = ntohl(ipha->ipha_src); 14097 14098 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 14099 IN_CLASSD(ip_src)) { 14100 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14101 goto drop; 14102 } 14103 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14104 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14105 14106 if (src_ire != NULL) { 14107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14108 goto drop; 14109 } 14110 14111 14112 /* No ire cache of nexthop. So first create one */ 14113 if (ire == NULL) { 14114 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 14115 /* 14116 * We only come to ip_fast_forward if ip_cgtp_filter is 14117 * is not set. So upon return from ire_forward 14118 * check_multirt should remain as false. 14119 */ 14120 ASSERT(!check_multirt); 14121 if (ire == NULL) { 14122 /* An attempt was made to forward the packet */ 14123 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14124 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14125 mp->b_prev = mp->b_next = 0; 14126 /* send icmp unreachable */ 14127 /* Sent by forwarding path, and router is global zone */ 14128 if (ip_source_routed(ipha, ipst)) { 14129 icmp_unreachable(ill->ill_wq, mp, 14130 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 14131 ipst); 14132 } else { 14133 icmp_unreachable(ill->ill_wq, mp, 14134 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 14135 ipst); 14136 } 14137 return (ire); 14138 } 14139 } 14140 14141 /* 14142 * Forwarding fastpath exception case: 14143 * If either of the follwoing case is true, we take 14144 * the slowpath 14145 * o forwarding is not enabled 14146 * o incoming and outgoing interface are the same, or the same 14147 * IPMP group 14148 * o corresponding ire is in incomplete state 14149 * o packet needs fragmentation 14150 * 14151 * The codeflow from here on is thus: 14152 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14153 */ 14154 pkt_len = ntohs(ipha->ipha_length); 14155 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14156 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14157 !(ill->ill_flags & ILLF_ROUTER) || 14158 (ill == stq_ill) || 14159 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14160 (ire->ire_nce == NULL) || 14161 (ire->ire_nce->nce_state != ND_REACHABLE) || 14162 (pkt_len > ire->ire_max_frag) || 14163 ipha->ipha_ttl <= 1) { 14164 ip_rput_process_forward(ill->ill_rq, mp, ire, 14165 ipha, ill, B_FALSE); 14166 return (ire); 14167 } 14168 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14169 14170 DTRACE_PROBE4(ip4__forwarding__start, 14171 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14172 14173 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14174 ipst->ips_ipv4firewall_forwarding, 14175 ill, stq_ill, ipha, mp, mp, ipst); 14176 14177 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14178 14179 if (mp == NULL) 14180 goto drop; 14181 14182 mp->b_datap->db_struioun.cksum.flags = 0; 14183 /* Adjust the checksum to reflect the ttl decrement. */ 14184 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14185 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14186 ipha->ipha_ttl--; 14187 14188 dev_q = ire->ire_stq->q_next; 14189 if ((dev_q->q_next != NULL || 14190 dev_q->q_first != NULL) && !canput(dev_q)) { 14191 goto indiscard; 14192 } 14193 14194 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14195 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14196 14197 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14198 mblk_t *mpip = mp; 14199 14200 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14201 if (mp != NULL) { 14202 DTRACE_PROBE4(ip4__physical__out__start, 14203 ill_t *, NULL, ill_t *, stq_ill, 14204 ipha_t *, ipha, mblk_t *, mp); 14205 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14206 ipst->ips_ipv4firewall_physical_out, 14207 NULL, stq_ill, ipha, mp, mpip, ipst); 14208 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14209 mp); 14210 if (mp == NULL) 14211 goto drop; 14212 14213 UPDATE_IB_PKT_COUNT(ire); 14214 ire->ire_last_used_time = lbolt; 14215 BUMP_MIB(stq_ill->ill_ip_mib, 14216 ipIfStatsHCOutForwDatagrams); 14217 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14218 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14219 pkt_len); 14220 putnext(ire->ire_stq, mp); 14221 return (ire); 14222 } 14223 } 14224 14225 indiscard: 14226 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14227 drop: 14228 if (mp != NULL) 14229 freemsg(mp); 14230 if (src_ire != NULL) 14231 ire_refrele(src_ire); 14232 return (ire); 14233 14234 } 14235 14236 /* 14237 * This function is called in the forwarding slowpath, when 14238 * either the ire lacks the link-layer address, or the packet needs 14239 * further processing(eg. fragmentation), before transmission. 14240 */ 14241 14242 static void 14243 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14244 ill_t *ill, boolean_t ll_multicast) 14245 { 14246 ill_group_t *ill_group; 14247 ill_group_t *ire_group; 14248 queue_t *dev_q; 14249 ire_t *src_ire; 14250 ip_stack_t *ipst = ill->ill_ipst; 14251 14252 ASSERT(ire->ire_stq != NULL); 14253 14254 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14255 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14256 14257 if (ll_multicast != 0) { 14258 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14259 goto drop_pkt; 14260 } 14261 14262 /* 14263 * check if ipha_src is a broadcast address. Note that this 14264 * check is redundant when we get here from ip_fast_forward() 14265 * which has already done this check. However, since we can 14266 * also get here from ip_rput_process_broadcast() or, for 14267 * for the slow path through ip_fast_forward(), we perform 14268 * the check again for code-reusability 14269 */ 14270 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14271 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14272 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14273 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14274 if (src_ire != NULL) 14275 ire_refrele(src_ire); 14276 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14277 ip2dbg(("ip_rput_process_forward: Received packet with" 14278 " bad src/dst address on %s\n", ill->ill_name)); 14279 goto drop_pkt; 14280 } 14281 14282 ill_group = ill->ill_group; 14283 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14284 /* 14285 * Check if we want to forward this one at this time. 14286 * We allow source routed packets on a host provided that 14287 * they go out the same interface or same interface group 14288 * as they came in on. 14289 * 14290 * XXX To be quicker, we may wish to not chase pointers to 14291 * get the ILLF_ROUTER flag and instead store the 14292 * forwarding policy in the ire. An unfortunate 14293 * side-effect of that would be requiring an ire flush 14294 * whenever the ILLF_ROUTER flag changes. 14295 */ 14296 if (((ill->ill_flags & 14297 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14298 ILLF_ROUTER) == 0) && 14299 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14300 (ill_group != NULL && ill_group == ire_group)))) { 14301 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14302 if (ip_source_routed(ipha, ipst)) { 14303 q = WR(q); 14304 /* 14305 * Clear the indication that this may have 14306 * hardware checksum as we are not using it. 14307 */ 14308 DB_CKSUMFLAGS(mp) = 0; 14309 /* Sent by forwarding path, and router is global zone */ 14310 icmp_unreachable(q, mp, 14311 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14312 return; 14313 } 14314 goto drop_pkt; 14315 } 14316 14317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14318 14319 /* Packet is being forwarded. Turning off hwcksum flag. */ 14320 DB_CKSUMFLAGS(mp) = 0; 14321 if (ipst->ips_ip_g_send_redirects) { 14322 /* 14323 * Check whether the incoming interface and outgoing 14324 * interface is part of the same group. If so, 14325 * send redirects. 14326 * 14327 * Check the source address to see if it originated 14328 * on the same logical subnet it is going back out on. 14329 * If so, we should be able to send it a redirect. 14330 * Avoid sending a redirect if the destination 14331 * is directly connected (i.e., ipha_dst is the same 14332 * as ire_gateway_addr or the ire_addr of the 14333 * nexthop IRE_CACHE ), or if the packet was source 14334 * routed out this interface. 14335 */ 14336 ipaddr_t src, nhop; 14337 mblk_t *mp1; 14338 ire_t *nhop_ire = NULL; 14339 14340 /* 14341 * Check whether ire_rfq and q are from the same ill 14342 * or if they are not same, they at least belong 14343 * to the same group. If so, send redirects. 14344 */ 14345 if ((ire->ire_rfq == q || 14346 (ill_group != NULL && ill_group == ire_group)) && 14347 !ip_source_routed(ipha, ipst)) { 14348 14349 nhop = (ire->ire_gateway_addr != 0 ? 14350 ire->ire_gateway_addr : ire->ire_addr); 14351 14352 if (ipha->ipha_dst == nhop) { 14353 /* 14354 * We avoid sending a redirect if the 14355 * destination is directly connected 14356 * because it is possible that multiple 14357 * IP subnets may have been configured on 14358 * the link, and the source may not 14359 * be on the same subnet as ip destination, 14360 * even though they are on the same 14361 * physical link. 14362 */ 14363 goto sendit; 14364 } 14365 14366 src = ipha->ipha_src; 14367 14368 /* 14369 * We look up the interface ire for the nexthop, 14370 * to see if ipha_src is in the same subnet 14371 * as the nexthop. 14372 * 14373 * Note that, if, in the future, IRE_CACHE entries 14374 * are obsoleted, this lookup will not be needed, 14375 * as the ire passed to this function will be the 14376 * same as the nhop_ire computed below. 14377 */ 14378 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14379 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14380 0, NULL, MATCH_IRE_TYPE, ipst); 14381 14382 if (nhop_ire != NULL) { 14383 if ((src & nhop_ire->ire_mask) == 14384 (nhop & nhop_ire->ire_mask)) { 14385 /* 14386 * The source is directly connected. 14387 * Just copy the ip header (which is 14388 * in the first mblk) 14389 */ 14390 mp1 = copyb(mp); 14391 if (mp1 != NULL) { 14392 icmp_send_redirect(WR(q), mp1, 14393 nhop, ipst); 14394 } 14395 } 14396 ire_refrele(nhop_ire); 14397 } 14398 } 14399 } 14400 sendit: 14401 dev_q = ire->ire_stq->q_next; 14402 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14403 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14404 freemsg(mp); 14405 return; 14406 } 14407 14408 ip_rput_forward(ire, ipha, mp, ill); 14409 return; 14410 14411 drop_pkt: 14412 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14413 freemsg(mp); 14414 } 14415 14416 ire_t * 14417 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14418 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14419 { 14420 queue_t *q; 14421 uint16_t hcksumflags; 14422 ip_stack_t *ipst = ill->ill_ipst; 14423 14424 q = *qp; 14425 14426 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14427 14428 /* 14429 * Clear the indication that this may have hardware 14430 * checksum as we are not using it for forwarding. 14431 */ 14432 hcksumflags = DB_CKSUMFLAGS(mp); 14433 DB_CKSUMFLAGS(mp) = 0; 14434 14435 /* 14436 * Directed broadcast forwarding: if the packet came in over a 14437 * different interface then it is routed out over we can forward it. 14438 */ 14439 if (ipha->ipha_protocol == IPPROTO_TCP) { 14440 ire_refrele(ire); 14441 freemsg(mp); 14442 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14443 return (NULL); 14444 } 14445 /* 14446 * For multicast we have set dst to be INADDR_BROADCAST 14447 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14448 * only for broadcast packets. 14449 */ 14450 if (!CLASSD(ipha->ipha_dst)) { 14451 ire_t *new_ire; 14452 ipif_t *ipif; 14453 /* 14454 * For ill groups, as the switch duplicates broadcasts 14455 * across all the ports, we need to filter out and 14456 * send up only one copy. There is one copy for every 14457 * broadcast address on each ill. Thus, we look for a 14458 * specific IRE on this ill and look at IRE_MARK_NORECV 14459 * later to see whether this ill is eligible to receive 14460 * them or not. ill_nominate_bcast_rcv() nominates only 14461 * one set of IREs for receiving. 14462 */ 14463 14464 ipif = ipif_get_next_ipif(NULL, ill); 14465 if (ipif == NULL) { 14466 ire_refrele(ire); 14467 freemsg(mp); 14468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14469 return (NULL); 14470 } 14471 new_ire = ire_ctable_lookup(dst, 0, 0, 14472 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14473 ipif_refrele(ipif); 14474 14475 if (new_ire != NULL) { 14476 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14477 ire_refrele(ire); 14478 ire_refrele(new_ire); 14479 freemsg(mp); 14480 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14481 return (NULL); 14482 } 14483 /* 14484 * In the special case of multirouted broadcast 14485 * packets, we unconditionally need to "gateway" 14486 * them to the appropriate interface here. 14487 * In the normal case, this cannot happen, because 14488 * there is no broadcast IRE tagged with the 14489 * RTF_MULTIRT flag. 14490 */ 14491 if (new_ire->ire_flags & RTF_MULTIRT) { 14492 ire_refrele(new_ire); 14493 if (ire->ire_rfq != NULL) { 14494 q = ire->ire_rfq; 14495 *qp = q; 14496 } 14497 } else { 14498 ire_refrele(ire); 14499 ire = new_ire; 14500 } 14501 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14502 if (!ipst->ips_ip_g_forward_directed_bcast) { 14503 /* 14504 * Free the message if 14505 * ip_g_forward_directed_bcast is turned 14506 * off for non-local broadcast. 14507 */ 14508 ire_refrele(ire); 14509 freemsg(mp); 14510 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14511 return (NULL); 14512 } 14513 } else { 14514 /* 14515 * This CGTP packet successfully passed the 14516 * CGTP filter, but the related CGTP 14517 * broadcast IRE has not been found, 14518 * meaning that the redundant ipif is 14519 * probably down. However, if we discarded 14520 * this packet, its duplicate would be 14521 * filtered out by the CGTP filter so none 14522 * of them would get through. So we keep 14523 * going with this one. 14524 */ 14525 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14526 if (ire->ire_rfq != NULL) { 14527 q = ire->ire_rfq; 14528 *qp = q; 14529 } 14530 } 14531 } 14532 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14533 /* 14534 * Verify that there are not more then one 14535 * IRE_BROADCAST with this broadcast address which 14536 * has ire_stq set. 14537 * TODO: simplify, loop over all IRE's 14538 */ 14539 ire_t *ire1; 14540 int num_stq = 0; 14541 mblk_t *mp1; 14542 14543 /* Find the first one with ire_stq set */ 14544 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14545 for (ire1 = ire; ire1 && 14546 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14547 ire1 = ire1->ire_next) 14548 ; 14549 if (ire1) { 14550 ire_refrele(ire); 14551 ire = ire1; 14552 IRE_REFHOLD(ire); 14553 } 14554 14555 /* Check if there are additional ones with stq set */ 14556 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14557 if (ire->ire_addr != ire1->ire_addr) 14558 break; 14559 if (ire1->ire_stq) { 14560 num_stq++; 14561 break; 14562 } 14563 } 14564 rw_exit(&ire->ire_bucket->irb_lock); 14565 if (num_stq == 1 && ire->ire_stq != NULL) { 14566 ip1dbg(("ip_rput_process_broadcast: directed " 14567 "broadcast to 0x%x\n", 14568 ntohl(ire->ire_addr))); 14569 mp1 = copymsg(mp); 14570 if (mp1) { 14571 switch (ipha->ipha_protocol) { 14572 case IPPROTO_UDP: 14573 ip_udp_input(q, mp1, ipha, ire, ill); 14574 break; 14575 default: 14576 ip_proto_input(q, mp1, ipha, ire, ill); 14577 break; 14578 } 14579 } 14580 /* 14581 * Adjust ttl to 2 (1+1 - the forward engine 14582 * will decrement it by one. 14583 */ 14584 if (ip_csum_hdr(ipha)) { 14585 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14586 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14587 freemsg(mp); 14588 ire_refrele(ire); 14589 return (NULL); 14590 } 14591 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14592 ipha->ipha_hdr_checksum = 0; 14593 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14594 ip_rput_process_forward(q, mp, ire, ipha, 14595 ill, ll_multicast); 14596 ire_refrele(ire); 14597 return (NULL); 14598 } 14599 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14600 ntohl(ire->ire_addr))); 14601 } 14602 14603 14604 /* Restore any hardware checksum flags */ 14605 DB_CKSUMFLAGS(mp) = hcksumflags; 14606 return (ire); 14607 } 14608 14609 /* ARGSUSED */ 14610 static boolean_t 14611 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14612 int *ll_multicast, ipaddr_t *dstp) 14613 { 14614 ip_stack_t *ipst = ill->ill_ipst; 14615 14616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14617 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14618 ntohs(ipha->ipha_length)); 14619 14620 /* 14621 * Forward packets only if we have joined the allmulti 14622 * group on this interface. 14623 */ 14624 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14625 int retval; 14626 14627 /* 14628 * Clear the indication that this may have hardware 14629 * checksum as we are not using it. 14630 */ 14631 DB_CKSUMFLAGS(mp) = 0; 14632 retval = ip_mforward(ill, ipha, mp); 14633 /* ip_mforward updates mib variables if needed */ 14634 /* clear b_prev - used by ip_mroute_decap */ 14635 mp->b_prev = NULL; 14636 14637 switch (retval) { 14638 case 0: 14639 /* 14640 * pkt is okay and arrived on phyint. 14641 * 14642 * If we are running as a multicast router 14643 * we need to see all IGMP and/or PIM packets. 14644 */ 14645 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14646 (ipha->ipha_protocol == IPPROTO_PIM)) { 14647 goto done; 14648 } 14649 break; 14650 case -1: 14651 /* pkt is mal-formed, toss it */ 14652 goto drop_pkt; 14653 case 1: 14654 /* pkt is okay and arrived on a tunnel */ 14655 /* 14656 * If we are running a multicast router 14657 * we need to see all igmp packets. 14658 */ 14659 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14660 *dstp = INADDR_BROADCAST; 14661 *ll_multicast = 1; 14662 return (B_FALSE); 14663 } 14664 14665 goto drop_pkt; 14666 } 14667 } 14668 14669 ILM_WALKER_HOLD(ill); 14670 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14671 /* 14672 * This might just be caused by the fact that 14673 * multiple IP Multicast addresses map to the same 14674 * link layer multicast - no need to increment counter! 14675 */ 14676 ILM_WALKER_RELE(ill); 14677 freemsg(mp); 14678 return (B_TRUE); 14679 } 14680 ILM_WALKER_RELE(ill); 14681 done: 14682 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14683 /* 14684 * This assumes the we deliver to all streams for multicast 14685 * and broadcast packets. 14686 */ 14687 *dstp = INADDR_BROADCAST; 14688 *ll_multicast = 1; 14689 return (B_FALSE); 14690 drop_pkt: 14691 ip2dbg(("ip_rput: drop pkt\n")); 14692 freemsg(mp); 14693 return (B_TRUE); 14694 } 14695 14696 static boolean_t 14697 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14698 int *ll_multicast, mblk_t **mpp) 14699 { 14700 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14701 boolean_t must_copy = B_FALSE; 14702 struct iocblk *iocp; 14703 ipha_t *ipha; 14704 ip_stack_t *ipst = ill->ill_ipst; 14705 14706 #define rptr ((uchar_t *)ipha) 14707 14708 first_mp = *first_mpp; 14709 mp = *mpp; 14710 14711 ASSERT(first_mp == mp); 14712 14713 /* 14714 * if db_ref > 1 then copymsg and free original. Packet may be 14715 * changed and do not want other entity who has a reference to this 14716 * message to trip over the changes. This is a blind change because 14717 * trying to catch all places that might change packet is too 14718 * difficult (since it may be a module above this one) 14719 * 14720 * This corresponds to the non-fast path case. We walk down the full 14721 * chain in this case, and check the db_ref count of all the dblks, 14722 * and do a copymsg if required. It is possible that the db_ref counts 14723 * of the data blocks in the mblk chain can be different. 14724 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14725 * count of 1, followed by a M_DATA block with a ref count of 2, if 14726 * 'snoop' is running. 14727 */ 14728 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14729 if (mp1->b_datap->db_ref > 1) { 14730 must_copy = B_TRUE; 14731 break; 14732 } 14733 } 14734 14735 if (must_copy) { 14736 mp1 = copymsg(mp); 14737 if (mp1 == NULL) { 14738 for (mp1 = mp; mp1 != NULL; 14739 mp1 = mp1->b_cont) { 14740 mp1->b_next = NULL; 14741 mp1->b_prev = NULL; 14742 } 14743 freemsg(mp); 14744 if (ill != NULL) { 14745 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14746 } else { 14747 BUMP_MIB(&ipst->ips_ip_mib, 14748 ipIfStatsInDiscards); 14749 } 14750 return (B_TRUE); 14751 } 14752 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14753 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14754 /* Copy b_prev - used by ip_mroute_decap */ 14755 to_mp->b_prev = from_mp->b_prev; 14756 from_mp->b_prev = NULL; 14757 } 14758 *first_mpp = first_mp = mp1; 14759 freemsg(mp); 14760 mp = mp1; 14761 *mpp = mp1; 14762 } 14763 14764 ipha = (ipha_t *)mp->b_rptr; 14765 14766 /* 14767 * previous code has a case for M_DATA. 14768 * We want to check how that happens. 14769 */ 14770 ASSERT(first_mp->b_datap->db_type != M_DATA); 14771 switch (first_mp->b_datap->db_type) { 14772 case M_PROTO: 14773 case M_PCPROTO: 14774 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14775 DL_UNITDATA_IND) { 14776 /* Go handle anything other than data elsewhere. */ 14777 ip_rput_dlpi(q, mp); 14778 return (B_TRUE); 14779 } 14780 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14781 /* Ditch the DLPI header. */ 14782 mp1 = mp->b_cont; 14783 ASSERT(first_mp == mp); 14784 *first_mpp = mp1; 14785 freeb(mp); 14786 *mpp = mp1; 14787 return (B_FALSE); 14788 case M_IOCACK: 14789 ip1dbg(("got iocack ")); 14790 iocp = (struct iocblk *)mp->b_rptr; 14791 switch (iocp->ioc_cmd) { 14792 case DL_IOC_HDR_INFO: 14793 ill = (ill_t *)q->q_ptr; 14794 ill_fastpath_ack(ill, mp); 14795 return (B_TRUE); 14796 case SIOCSTUNPARAM: 14797 case OSIOCSTUNPARAM: 14798 /* Go through qwriter_ip */ 14799 break; 14800 case SIOCGTUNPARAM: 14801 case OSIOCGTUNPARAM: 14802 ip_rput_other(NULL, q, mp, NULL); 14803 return (B_TRUE); 14804 default: 14805 putnext(q, mp); 14806 return (B_TRUE); 14807 } 14808 /* FALLTHRU */ 14809 case M_ERROR: 14810 case M_HANGUP: 14811 /* 14812 * Since this is on the ill stream we unconditionally 14813 * bump up the refcount 14814 */ 14815 ill_refhold(ill); 14816 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14817 return (B_TRUE); 14818 case M_CTL: 14819 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14820 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14821 IPHADA_M_CTL)) { 14822 /* 14823 * It's an IPsec accelerated packet. 14824 * Make sure that the ill from which we received the 14825 * packet has enabled IPsec hardware acceleration. 14826 */ 14827 if (!(ill->ill_capabilities & 14828 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14829 /* IPsec kstats: bean counter */ 14830 freemsg(mp); 14831 return (B_TRUE); 14832 } 14833 14834 /* 14835 * Make mp point to the mblk following the M_CTL, 14836 * then process according to type of mp. 14837 * After this processing, first_mp will point to 14838 * the data-attributes and mp to the pkt following 14839 * the M_CTL. 14840 */ 14841 mp = first_mp->b_cont; 14842 if (mp == NULL) { 14843 freemsg(first_mp); 14844 return (B_TRUE); 14845 } 14846 /* 14847 * A Hardware Accelerated packet can only be M_DATA 14848 * ESP or AH packet. 14849 */ 14850 if (mp->b_datap->db_type != M_DATA) { 14851 /* non-M_DATA IPsec accelerated packet */ 14852 IPSECHW_DEBUG(IPSECHW_PKT, 14853 ("non-M_DATA IPsec accelerated pkt\n")); 14854 freemsg(first_mp); 14855 return (B_TRUE); 14856 } 14857 ipha = (ipha_t *)mp->b_rptr; 14858 if (ipha->ipha_protocol != IPPROTO_AH && 14859 ipha->ipha_protocol != IPPROTO_ESP) { 14860 IPSECHW_DEBUG(IPSECHW_PKT, 14861 ("non-M_DATA IPsec accelerated pkt\n")); 14862 freemsg(first_mp); 14863 return (B_TRUE); 14864 } 14865 *mpp = mp; 14866 return (B_FALSE); 14867 } 14868 putnext(q, mp); 14869 return (B_TRUE); 14870 case M_IOCNAK: 14871 ip1dbg(("got iocnak ")); 14872 iocp = (struct iocblk *)mp->b_rptr; 14873 switch (iocp->ioc_cmd) { 14874 case SIOCSTUNPARAM: 14875 case OSIOCSTUNPARAM: 14876 /* 14877 * Since this is on the ill stream we unconditionally 14878 * bump up the refcount 14879 */ 14880 ill_refhold(ill); 14881 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14882 return (B_TRUE); 14883 case DL_IOC_HDR_INFO: 14884 case SIOCGTUNPARAM: 14885 case OSIOCGTUNPARAM: 14886 ip_rput_other(NULL, q, mp, NULL); 14887 return (B_TRUE); 14888 default: 14889 break; 14890 } 14891 /* FALLTHRU */ 14892 default: 14893 putnext(q, mp); 14894 return (B_TRUE); 14895 } 14896 } 14897 14898 /* Read side put procedure. Packets coming from the wire arrive here. */ 14899 void 14900 ip_rput(queue_t *q, mblk_t *mp) 14901 { 14902 ill_t *ill = (ill_t *)q->q_ptr; 14903 ip_stack_t *ipst = ill->ill_ipst; 14904 union DL_primitives *dl; 14905 14906 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14907 14908 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14909 /* 14910 * If things are opening or closing, only accept high-priority 14911 * DLPI messages. (On open ill->ill_ipif has not yet been 14912 * created; on close, things hanging off the ill may have been 14913 * freed already.) 14914 */ 14915 dl = (union DL_primitives *)mp->b_rptr; 14916 if (DB_TYPE(mp) != M_PCPROTO || 14917 dl->dl_primitive == DL_UNITDATA_IND) { 14918 /* 14919 * SIOC[GS]TUNPARAM ioctls can come here. 14920 */ 14921 inet_freemsg(mp); 14922 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14923 "ip_rput_end: q %p (%S)", q, "uninit"); 14924 return; 14925 } 14926 } 14927 14928 /* 14929 * if db_ref > 1 then copymsg and free original. Packet may be 14930 * changed and we do not want the other entity who has a reference to 14931 * this message to trip over the changes. This is a blind change because 14932 * trying to catch all places that might change the packet is too 14933 * difficult. 14934 * 14935 * This corresponds to the fast path case, where we have a chain of 14936 * M_DATA mblks. We check the db_ref count of only the 1st data block 14937 * in the mblk chain. There doesn't seem to be a reason why a device 14938 * driver would send up data with varying db_ref counts in the mblk 14939 * chain. In any case the Fast path is a private interface, and our 14940 * drivers don't do such a thing. Given the above assumption, there is 14941 * no need to walk down the entire mblk chain (which could have a 14942 * potential performance problem) 14943 */ 14944 if (mp->b_datap->db_ref > 1) { 14945 mblk_t *mp1; 14946 boolean_t adjusted = B_FALSE; 14947 IP_STAT(ipst, ip_db_ref); 14948 14949 /* 14950 * The IP_RECVSLLA option depends on having the link layer 14951 * header. First check that: 14952 * a> the underlying device is of type ether, since this 14953 * option is currently supported only over ethernet. 14954 * b> there is enough room to copy over the link layer header. 14955 * 14956 * Once the checks are done, adjust rptr so that the link layer 14957 * header will be copied via copymsg. Note that, IFT_ETHER may 14958 * be returned by some non-ethernet drivers but in this case the 14959 * second check will fail. 14960 */ 14961 if (ill->ill_type == IFT_ETHER && 14962 (mp->b_rptr - mp->b_datap->db_base) >= 14963 sizeof (struct ether_header)) { 14964 mp->b_rptr -= sizeof (struct ether_header); 14965 adjusted = B_TRUE; 14966 } 14967 mp1 = copymsg(mp); 14968 if (mp1 == NULL) { 14969 mp->b_next = NULL; 14970 /* clear b_prev - used by ip_mroute_decap */ 14971 mp->b_prev = NULL; 14972 freemsg(mp); 14973 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14974 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14975 "ip_rput_end: q %p (%S)", q, "copymsg"); 14976 return; 14977 } 14978 if (adjusted) { 14979 /* 14980 * Copy is done. Restore the pointer in the _new_ mblk 14981 */ 14982 mp1->b_rptr += sizeof (struct ether_header); 14983 } 14984 /* Copy b_prev - used by ip_mroute_decap */ 14985 mp1->b_prev = mp->b_prev; 14986 mp->b_prev = NULL; 14987 freemsg(mp); 14988 mp = mp1; 14989 } 14990 14991 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14992 "ip_rput_end: q %p (%S)", q, "end"); 14993 14994 ip_input(ill, NULL, mp, NULL); 14995 } 14996 14997 /* 14998 * Direct read side procedure capable of dealing with chains. GLDv3 based 14999 * drivers call this function directly with mblk chains while STREAMS 15000 * read side procedure ip_rput() calls this for single packet with ip_ring 15001 * set to NULL to process one packet at a time. 15002 * 15003 * The ill will always be valid if this function is called directly from 15004 * the driver. 15005 * 15006 * If ip_input() is called from GLDv3: 15007 * 15008 * - This must be a non-VLAN IP stream. 15009 * - 'mp' is either an untagged or a special priority-tagged packet. 15010 * - Any VLAN tag that was in the MAC header has been stripped. 15011 * 15012 * If the IP header in packet is not 32-bit aligned, every message in the 15013 * chain will be aligned before further operations. This is required on SPARC 15014 * platform. 15015 */ 15016 /* ARGSUSED */ 15017 void 15018 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 15019 struct mac_header_info_s *mhip) 15020 { 15021 ipaddr_t dst = NULL; 15022 ipaddr_t prev_dst; 15023 ire_t *ire = NULL; 15024 ipha_t *ipha; 15025 uint_t pkt_len; 15026 ssize_t len; 15027 uint_t opt_len; 15028 int ll_multicast; 15029 int cgtp_flt_pkt; 15030 queue_t *q = ill->ill_rq; 15031 squeue_t *curr_sqp = NULL; 15032 mblk_t *head = NULL; 15033 mblk_t *tail = NULL; 15034 mblk_t *first_mp; 15035 mblk_t *mp; 15036 mblk_t *dmp; 15037 int cnt = 0; 15038 ip_stack_t *ipst = ill->ill_ipst; 15039 15040 ASSERT(mp_chain != NULL); 15041 ASSERT(ill != NULL); 15042 15043 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15044 15045 #define rptr ((uchar_t *)ipha) 15046 15047 while (mp_chain != NULL) { 15048 first_mp = mp = mp_chain; 15049 mp_chain = mp_chain->b_next; 15050 mp->b_next = NULL; 15051 ll_multicast = 0; 15052 15053 /* 15054 * We do ire caching from one iteration to 15055 * another. In the event the packet chain contains 15056 * all packets from the same dst, this caching saves 15057 * an ire_cache_lookup for each of the succeeding 15058 * packets in a packet chain. 15059 */ 15060 prev_dst = dst; 15061 15062 /* 15063 * Check and align the IP header. 15064 */ 15065 if (DB_TYPE(mp) == M_DATA) { 15066 dmp = mp; 15067 } else if (DB_TYPE(mp) == M_PROTO && 15068 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15069 dmp = mp->b_cont; 15070 } else { 15071 dmp = NULL; 15072 } 15073 if (dmp != NULL) { 15074 /* 15075 * IP header ptr not aligned? 15076 * OR IP header not complete in first mblk 15077 */ 15078 if (!OK_32PTR(dmp->b_rptr) || 15079 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15080 if (!ip_check_and_align_header(q, dmp, ipst)) 15081 continue; 15082 } 15083 } 15084 15085 /* 15086 * ip_input fast path 15087 */ 15088 15089 /* mblk type is not M_DATA */ 15090 if (DB_TYPE(mp) != M_DATA) { 15091 if (ip_rput_process_notdata(q, &first_mp, ill, 15092 &ll_multicast, &mp)) 15093 continue; 15094 } 15095 15096 /* Make sure its an M_DATA and that its aligned */ 15097 ASSERT(DB_TYPE(mp) == M_DATA); 15098 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15099 15100 ipha = (ipha_t *)mp->b_rptr; 15101 len = mp->b_wptr - rptr; 15102 pkt_len = ntohs(ipha->ipha_length); 15103 15104 /* 15105 * We must count all incoming packets, even if they end 15106 * up being dropped later on. 15107 */ 15108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15109 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15110 15111 /* multiple mblk or too short */ 15112 len -= pkt_len; 15113 if (len != 0) { 15114 /* 15115 * Make sure we have data length consistent 15116 * with the IP header. 15117 */ 15118 if (mp->b_cont == NULL) { 15119 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15120 BUMP_MIB(ill->ill_ip_mib, 15121 ipIfStatsInHdrErrors); 15122 ip2dbg(("ip_input: drop pkt\n")); 15123 freemsg(mp); 15124 continue; 15125 } 15126 mp->b_wptr = rptr + pkt_len; 15127 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15128 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15129 BUMP_MIB(ill->ill_ip_mib, 15130 ipIfStatsInHdrErrors); 15131 ip2dbg(("ip_input: drop pkt\n")); 15132 freemsg(mp); 15133 continue; 15134 } 15135 (void) adjmsg(mp, -len); 15136 IP_STAT(ipst, ip_multimblk3); 15137 } 15138 } 15139 15140 /* Obtain the dst of the current packet */ 15141 dst = ipha->ipha_dst; 15142 15143 if (IP_LOOPBACK_ADDR(dst) || 15144 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15145 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15146 cmn_err(CE_CONT, "dst %X src %X\n", 15147 dst, ipha->ipha_src); 15148 freemsg(mp); 15149 continue; 15150 } 15151 15152 /* 15153 * The event for packets being received from a 'physical' 15154 * interface is placed after validation of the source and/or 15155 * destination address as being local so that packets can be 15156 * redirected to loopback addresses using ipnat. 15157 */ 15158 DTRACE_PROBE4(ip4__physical__in__start, 15159 ill_t *, ill, ill_t *, NULL, 15160 ipha_t *, ipha, mblk_t *, first_mp); 15161 15162 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15163 ipst->ips_ipv4firewall_physical_in, 15164 ill, NULL, ipha, first_mp, mp, ipst); 15165 15166 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15167 15168 if (first_mp == NULL) { 15169 continue; 15170 } 15171 dst = ipha->ipha_dst; 15172 15173 /* 15174 * Attach any necessary label information to 15175 * this packet 15176 */ 15177 if (is_system_labeled() && 15178 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15179 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15180 freemsg(mp); 15181 continue; 15182 } 15183 15184 /* 15185 * Reuse the cached ire only if the ipha_dst of the previous 15186 * packet is the same as the current packet AND it is not 15187 * INADDR_ANY. 15188 */ 15189 if (!(dst == prev_dst && dst != INADDR_ANY) && 15190 (ire != NULL)) { 15191 ire_refrele(ire); 15192 ire = NULL; 15193 } 15194 opt_len = ipha->ipha_version_and_hdr_length - 15195 IP_SIMPLE_HDR_VERSION; 15196 15197 /* 15198 * Check to see if we can take the fastpath. 15199 * That is possible if the following conditions are met 15200 * o Tsol disabled 15201 * o CGTP disabled 15202 * o ipp_action_count is 0 15203 * o Mobile IP not running 15204 * o no options in the packet 15205 * o not a RSVP packet 15206 * o not a multicast packet 15207 */ 15208 if (!is_system_labeled() && 15209 !ip_cgtp_filter && ipp_action_count == 0 && 15210 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 15211 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15212 !ll_multicast && !CLASSD(dst)) { 15213 if (ire == NULL) 15214 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15215 ipst); 15216 15217 /* incoming packet is for forwarding */ 15218 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15219 ire = ip_fast_forward(ire, dst, ill, mp); 15220 continue; 15221 } 15222 /* incoming packet is for local consumption */ 15223 if (ire->ire_type & IRE_LOCAL) 15224 goto local; 15225 } 15226 15227 /* 15228 * Disable ire caching for anything more complex 15229 * than the simple fast path case we checked for above. 15230 */ 15231 if (ire != NULL) { 15232 ire_refrele(ire); 15233 ire = NULL; 15234 } 15235 15236 /* Full-blown slow path */ 15237 if (opt_len != 0) { 15238 if (len != 0) 15239 IP_STAT(ipst, ip_multimblk4); 15240 else 15241 IP_STAT(ipst, ip_ipoptions); 15242 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15243 &dst, ipst)) 15244 continue; 15245 } 15246 15247 /* 15248 * Invoke the CGTP (multirouting) filtering module to process 15249 * the incoming packet. Packets identified as duplicates 15250 * must be discarded. Filtering is active only if the 15251 * the ip_cgtp_filter ndd variable is non-zero. 15252 * 15253 * Only applies to the shared stack since the filter_ops 15254 * do not carry an ip_stack_t or zoneid. 15255 */ 15256 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15257 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 15258 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 15259 cgtp_flt_pkt = 15260 ip_cgtp_filter_ops->cfo_filter(q, mp); 15261 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15262 freemsg(first_mp); 15263 continue; 15264 } 15265 } 15266 15267 /* 15268 * If rsvpd is running, let RSVP daemon handle its processing 15269 * and forwarding of RSVP multicast/unicast packets. 15270 * If rsvpd is not running but mrouted is running, RSVP 15271 * multicast packets are forwarded as multicast traffic 15272 * and RSVP unicast packets are forwarded by unicast router. 15273 * If neither rsvpd nor mrouted is running, RSVP multicast 15274 * packets are not forwarded, but the unicast packets are 15275 * forwarded like unicast traffic. 15276 */ 15277 if (ipha->ipha_protocol == IPPROTO_RSVP && 15278 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15279 NULL) { 15280 /* RSVP packet and rsvpd running. Treat as ours */ 15281 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15282 /* 15283 * This assumes that we deliver to all streams for 15284 * multicast and broadcast packets. 15285 * We have to force ll_multicast to 1 to handle the 15286 * M_DATA messages passed in from ip_mroute_decap. 15287 */ 15288 dst = INADDR_BROADCAST; 15289 ll_multicast = 1; 15290 } else if (CLASSD(dst)) { 15291 /* packet is multicast */ 15292 mp->b_next = NULL; 15293 if (ip_rput_process_multicast(q, mp, ill, ipha, 15294 &ll_multicast, &dst)) 15295 continue; 15296 } 15297 15298 15299 /* 15300 * Check if the packet is coming from the Mobile IP 15301 * forward tunnel interface 15302 */ 15303 if (ill->ill_srcif_refcnt > 0) { 15304 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15305 NULL, ill, MATCH_IRE_TYPE); 15306 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15307 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15308 15309 /* We need to resolve the link layer info */ 15310 ire_refrele(ire); 15311 ire = NULL; 15312 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15313 ll_multicast, dst); 15314 continue; 15315 } 15316 } 15317 15318 if (ire == NULL) { 15319 ire = ire_cache_lookup(dst, ALL_ZONES, 15320 MBLK_GETLABEL(mp), ipst); 15321 } 15322 15323 /* 15324 * If mipagent is running and reverse tunnel is created as per 15325 * mobile node request, then any packet coming through the 15326 * incoming interface from the mobile-node, should be reverse 15327 * tunneled to it's home agent except those that are destined 15328 * to foreign agent only. 15329 * This needs source address based ire lookup. The routing 15330 * entries for source address based lookup are only created by 15331 * mipagent program only when a reverse tunnel is created. 15332 * Reference : RFC2002, RFC2344 15333 */ 15334 if (ill->ill_mrtun_refcnt > 0) { 15335 ipaddr_t srcaddr; 15336 ire_t *tmp_ire; 15337 15338 tmp_ire = ire; /* Save, we might need it later */ 15339 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15340 ire->ire_type != IRE_BROADCAST)) { 15341 srcaddr = ipha->ipha_src; 15342 ire = ire_mrtun_lookup(srcaddr, ill); 15343 if (ire != NULL) { 15344 /* 15345 * Should not be getting iphada packet 15346 * here. we should only get those for 15347 * IRE_LOCAL traffic, excluded above. 15348 * Fail-safe (drop packet) in the event 15349 * hardware is misbehaving. 15350 */ 15351 if (first_mp != mp) { 15352 /* IPsec KSTATS: beancount me */ 15353 freemsg(first_mp); 15354 } else { 15355 /* 15356 * This packet must be forwarded 15357 * to Reverse Tunnel 15358 */ 15359 ip_mrtun_forward(ire, ill, mp); 15360 } 15361 ire_refrele(ire); 15362 ire = NULL; 15363 if (tmp_ire != NULL) { 15364 ire_refrele(tmp_ire); 15365 tmp_ire = NULL; 15366 } 15367 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15368 "ip_input_end: q %p (%S)", 15369 q, "uninit"); 15370 continue; 15371 } 15372 } 15373 /* 15374 * If this packet is from a non-mobilenode or a 15375 * mobile-node which does not request reverse 15376 * tunnel service 15377 */ 15378 ire = tmp_ire; 15379 } 15380 15381 15382 /* 15383 * If we reach here that means the incoming packet satisfies 15384 * one of the following conditions: 15385 * - packet is from a mobile node which does not request 15386 * reverse tunnel 15387 * - packet is from a non-mobile node, which is the most 15388 * common case 15389 * - packet is from a reverse tunnel enabled mobile node 15390 * and destined to foreign agent only 15391 */ 15392 15393 if (ire == NULL) { 15394 /* 15395 * No IRE for this destination, so it can't be for us. 15396 * Unless we are forwarding, drop the packet. 15397 * We have to let source routed packets through 15398 * since we don't yet know if they are 'ping -l' 15399 * packets i.e. if they will go out over the 15400 * same interface as they came in on. 15401 */ 15402 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15403 if (ire == NULL) 15404 continue; 15405 } 15406 15407 /* 15408 * Broadcast IRE may indicate either broadcast or 15409 * multicast packet 15410 */ 15411 if (ire->ire_type == IRE_BROADCAST) { 15412 /* 15413 * Skip broadcast checks if packet is UDP multicast; 15414 * we'd rather not enter ip_rput_process_broadcast() 15415 * unless the packet is broadcast for real, since 15416 * that routine is a no-op for multicast. 15417 */ 15418 if (ipha->ipha_protocol != IPPROTO_UDP || 15419 !CLASSD(ipha->ipha_dst)) { 15420 ire = ip_rput_process_broadcast(&q, mp, 15421 ire, ipha, ill, dst, cgtp_flt_pkt, 15422 ll_multicast); 15423 if (ire == NULL) 15424 continue; 15425 } 15426 } else if (ire->ire_stq != NULL) { 15427 /* fowarding? */ 15428 ip_rput_process_forward(q, mp, ire, ipha, ill, 15429 ll_multicast); 15430 /* ip_rput_process_forward consumed the packet */ 15431 continue; 15432 } 15433 15434 local: 15435 /* 15436 * If the queue in the ire is different to the ingress queue 15437 * then we need to check to see if we can accept the packet. 15438 * Note that for multicast packets and broadcast packets sent 15439 * to a broadcast address which is shared between multiple 15440 * interfaces we should not do this since we just got a random 15441 * broadcast ire. 15442 */ 15443 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15444 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15445 ill)) == NULL) { 15446 /* Drop packet */ 15447 BUMP_MIB(ill->ill_ip_mib, 15448 ipIfStatsForwProhibits); 15449 freemsg(mp); 15450 continue; 15451 } 15452 if (ire->ire_rfq != NULL) 15453 q = ire->ire_rfq; 15454 } 15455 15456 switch (ipha->ipha_protocol) { 15457 case IPPROTO_TCP: 15458 ASSERT(first_mp == mp); 15459 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15460 mp, 0, q, ip_ring)) != NULL) { 15461 if (curr_sqp == NULL) { 15462 curr_sqp = GET_SQUEUE(mp); 15463 ASSERT(cnt == 0); 15464 cnt++; 15465 head = tail = mp; 15466 } else if (curr_sqp == GET_SQUEUE(mp)) { 15467 ASSERT(tail != NULL); 15468 cnt++; 15469 tail->b_next = mp; 15470 tail = mp; 15471 } else { 15472 /* 15473 * A different squeue. Send the 15474 * chain for the previous squeue on 15475 * its way. This shouldn't happen 15476 * often unless interrupt binding 15477 * changes. 15478 */ 15479 IP_STAT(ipst, ip_input_multi_squeue); 15480 squeue_enter_chain(curr_sqp, head, 15481 tail, cnt, SQTAG_IP_INPUT); 15482 curr_sqp = GET_SQUEUE(mp); 15483 head = mp; 15484 tail = mp; 15485 cnt = 1; 15486 } 15487 } 15488 continue; 15489 case IPPROTO_UDP: 15490 ASSERT(first_mp == mp); 15491 ip_udp_input(q, mp, ipha, ire, ill); 15492 continue; 15493 case IPPROTO_SCTP: 15494 ASSERT(first_mp == mp); 15495 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15496 q, dst); 15497 /* ire has been released by ip_sctp_input */ 15498 ire = NULL; 15499 continue; 15500 default: 15501 ip_proto_input(q, first_mp, ipha, ire, ill); 15502 continue; 15503 } 15504 } 15505 15506 if (ire != NULL) 15507 ire_refrele(ire); 15508 15509 if (head != NULL) 15510 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15511 15512 /* 15513 * This code is there just to make netperf/ttcp look good. 15514 * 15515 * Its possible that after being in polling mode (and having cleared 15516 * the backlog), squeues have turned the interrupt frequency higher 15517 * to improve latency at the expense of more CPU utilization (less 15518 * packets per interrupts or more number of interrupts). Workloads 15519 * like ttcp/netperf do manage to tickle polling once in a while 15520 * but for the remaining time, stay in higher interrupt mode since 15521 * their packet arrival rate is pretty uniform and this shows up 15522 * as higher CPU utilization. Since people care about CPU utilization 15523 * while running netperf/ttcp, turn the interrupt frequency back to 15524 * normal/default if polling has not been used in ip_poll_normal_ticks. 15525 */ 15526 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15527 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15528 ip_ring->rr_poll_state &= ~ILL_POLLING; 15529 ip_ring->rr_blank(ip_ring->rr_handle, 15530 ip_ring->rr_normal_blank_time, 15531 ip_ring->rr_normal_pkt_cnt); 15532 } 15533 } 15534 15535 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15536 "ip_input_end: q %p (%S)", q, "end"); 15537 #undef rptr 15538 } 15539 15540 static void 15541 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15542 t_uscalar_t err) 15543 { 15544 if (dl_err == DL_SYSERR) { 15545 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15546 "%s: %s failed: DL_SYSERR (errno %u)\n", 15547 ill->ill_name, dlpi_prim_str(prim), err); 15548 return; 15549 } 15550 15551 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15552 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15553 dlpi_err_str(dl_err)); 15554 } 15555 15556 /* 15557 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15558 * than DL_UNITDATA_IND messages. If we need to process this message 15559 * exclusively, we call qwriter_ip, in which case we also need to call 15560 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15561 */ 15562 void 15563 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15564 { 15565 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15566 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15567 ill_t *ill = (ill_t *)q->q_ptr; 15568 boolean_t pending; 15569 15570 ip1dbg(("ip_rput_dlpi")); 15571 if (dloa->dl_primitive == DL_ERROR_ACK) { 15572 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15573 "%s (0x%x), unix %u\n", ill->ill_name, 15574 dlpi_prim_str(dlea->dl_error_primitive), 15575 dlea->dl_error_primitive, 15576 dlpi_err_str(dlea->dl_errno), 15577 dlea->dl_errno, 15578 dlea->dl_unix_errno)); 15579 } 15580 15581 /* 15582 * If we received an ACK but didn't send a request for it, then it 15583 * can't be part of any pending operation; discard up-front. 15584 */ 15585 switch (dloa->dl_primitive) { 15586 case DL_NOTIFY_IND: 15587 pending = B_TRUE; 15588 break; 15589 case DL_ERROR_ACK: 15590 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15591 break; 15592 case DL_OK_ACK: 15593 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15594 break; 15595 case DL_INFO_ACK: 15596 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15597 break; 15598 case DL_BIND_ACK: 15599 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15600 break; 15601 case DL_PHYS_ADDR_ACK: 15602 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15603 break; 15604 case DL_NOTIFY_ACK: 15605 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15606 break; 15607 case DL_CONTROL_ACK: 15608 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15609 break; 15610 case DL_CAPABILITY_ACK: 15611 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15612 break; 15613 default: 15614 /* Not a DLPI message we support or were expecting */ 15615 freemsg(mp); 15616 return; 15617 } 15618 15619 if (!pending) { 15620 freemsg(mp); 15621 return; 15622 } 15623 15624 switch (dloa->dl_primitive) { 15625 case DL_ERROR_ACK: 15626 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15627 mutex_enter(&ill->ill_lock); 15628 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15629 cv_signal(&ill->ill_cv); 15630 mutex_exit(&ill->ill_lock); 15631 } 15632 break; 15633 15634 case DL_OK_ACK: 15635 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15636 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15637 switch (dloa->dl_correct_primitive) { 15638 case DL_UNBIND_REQ: 15639 mutex_enter(&ill->ill_lock); 15640 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15641 cv_signal(&ill->ill_cv); 15642 mutex_exit(&ill->ill_lock); 15643 break; 15644 15645 case DL_ENABMULTI_REQ: 15646 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15647 ill->ill_dlpi_multicast_state = IDS_OK; 15648 break; 15649 } 15650 break; 15651 default: 15652 break; 15653 } 15654 15655 /* 15656 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15657 * and we need to become writer to continue to process it. If it's not 15658 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15659 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15660 * some work as part of the current exclusive operation that actually 15661 * is not part of it -- which is wrong, but better than the 15662 * alternative of deadlock (if NEW_OP is always used). Someday, we 15663 * should track which DLPI requests have ACKs that we wait on 15664 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15665 * 15666 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15667 * Since this is on the ill stream we unconditionally bump up the 15668 * refcount without doing ILL_CAN_LOOKUP(). 15669 */ 15670 ill_refhold(ill); 15671 if (dloa->dl_primitive == DL_NOTIFY_IND) 15672 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15673 else 15674 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15675 } 15676 15677 /* 15678 * Handling of DLPI messages that require exclusive access to the ipsq. 15679 * 15680 * Need to do ill_pending_mp_release on ioctl completion, which could 15681 * happen here. (along with mi_copy_done) 15682 */ 15683 /* ARGSUSED */ 15684 static void 15685 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15686 { 15687 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15688 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15689 int err = 0; 15690 ill_t *ill; 15691 ipif_t *ipif = NULL; 15692 mblk_t *mp1 = NULL; 15693 conn_t *connp = NULL; 15694 t_uscalar_t paddrreq; 15695 mblk_t *mp_hw; 15696 boolean_t success; 15697 boolean_t ioctl_aborted = B_FALSE; 15698 boolean_t log = B_TRUE; 15699 hook_nic_event_t *info; 15700 ip_stack_t *ipst; 15701 15702 ip1dbg(("ip_rput_dlpi_writer ..")); 15703 ill = (ill_t *)q->q_ptr; 15704 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15705 15706 ASSERT(IAM_WRITER_ILL(ill)); 15707 15708 ipst = ill->ill_ipst; 15709 15710 /* 15711 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15712 * both are null or non-null. However we can assert that only 15713 * after grabbing the ipsq_lock. So we don't make any assertion 15714 * here and in other places in the code. 15715 */ 15716 ipif = ipsq->ipsq_pending_ipif; 15717 /* 15718 * The current ioctl could have been aborted by the user and a new 15719 * ioctl to bring up another ill could have started. We could still 15720 * get a response from the driver later. 15721 */ 15722 if (ipif != NULL && ipif->ipif_ill != ill) 15723 ioctl_aborted = B_TRUE; 15724 15725 switch (dloa->dl_primitive) { 15726 case DL_ERROR_ACK: 15727 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15728 dlpi_prim_str(dlea->dl_error_primitive))); 15729 15730 switch (dlea->dl_error_primitive) { 15731 case DL_PROMISCON_REQ: 15732 case DL_PROMISCOFF_REQ: 15733 case DL_DISABMULTI_REQ: 15734 case DL_UNBIND_REQ: 15735 case DL_ATTACH_REQ: 15736 case DL_INFO_REQ: 15737 ill_dlpi_done(ill, dlea->dl_error_primitive); 15738 break; 15739 case DL_NOTIFY_REQ: 15740 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15741 log = B_FALSE; 15742 break; 15743 case DL_PHYS_ADDR_REQ: 15744 /* 15745 * For IPv6 only, there are two additional 15746 * phys_addr_req's sent to the driver to get the 15747 * IPv6 token and lla. This allows IP to acquire 15748 * the hardware address format for a given interface 15749 * without having built in knowledge of the hardware 15750 * address. ill_phys_addr_pend keeps track of the last 15751 * DL_PAR sent so we know which response we are 15752 * dealing with. ill_dlpi_done will update 15753 * ill_phys_addr_pend when it sends the next req. 15754 * We don't complete the IOCTL until all three DL_PARs 15755 * have been attempted, so set *_len to 0 and break. 15756 */ 15757 paddrreq = ill->ill_phys_addr_pend; 15758 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15759 if (paddrreq == DL_IPV6_TOKEN) { 15760 ill->ill_token_length = 0; 15761 log = B_FALSE; 15762 break; 15763 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15764 ill->ill_nd_lla_len = 0; 15765 log = B_FALSE; 15766 break; 15767 } 15768 /* 15769 * Something went wrong with the DL_PHYS_ADDR_REQ. 15770 * We presumably have an IOCTL hanging out waiting 15771 * for completion. Find it and complete the IOCTL 15772 * with the error noted. 15773 * However, ill_dl_phys was called on an ill queue 15774 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15775 * set. But the ioctl is known to be pending on ill_wq. 15776 */ 15777 if (!ill->ill_ifname_pending) 15778 break; 15779 ill->ill_ifname_pending = 0; 15780 if (!ioctl_aborted) 15781 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15782 if (mp1 != NULL) { 15783 /* 15784 * This operation (SIOCSLIFNAME) must have 15785 * happened on the ill. Assert there is no conn 15786 */ 15787 ASSERT(connp == NULL); 15788 q = ill->ill_wq; 15789 } 15790 break; 15791 case DL_BIND_REQ: 15792 ill_dlpi_done(ill, DL_BIND_REQ); 15793 if (ill->ill_ifname_pending) 15794 break; 15795 /* 15796 * Something went wrong with the bind. We presumably 15797 * have an IOCTL hanging out waiting for completion. 15798 * Find it, take down the interface that was coming 15799 * up, and complete the IOCTL with the error noted. 15800 */ 15801 if (!ioctl_aborted) 15802 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15803 if (mp1 != NULL) { 15804 /* 15805 * This operation (SIOCSLIFFLAGS) must have 15806 * happened from a conn. 15807 */ 15808 ASSERT(connp != NULL); 15809 q = CONNP_TO_WQ(connp); 15810 if (ill->ill_move_in_progress) { 15811 ILL_CLEAR_MOVE(ill); 15812 } 15813 (void) ipif_down(ipif, NULL, NULL); 15814 /* error is set below the switch */ 15815 } 15816 break; 15817 case DL_ENABMULTI_REQ: 15818 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15819 15820 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15821 ill->ill_dlpi_multicast_state = IDS_FAILED; 15822 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15823 ipif_t *ipif; 15824 15825 printf("ip: joining multicasts failed (%d)" 15826 " on %s - will use link layer " 15827 "broadcasts for multicast\n", 15828 dlea->dl_errno, ill->ill_name); 15829 15830 /* 15831 * Set up the multicast mapping alone. 15832 * writer, so ok to access ill->ill_ipif 15833 * without any lock. 15834 */ 15835 ipif = ill->ill_ipif; 15836 mutex_enter(&ill->ill_phyint->phyint_lock); 15837 ill->ill_phyint->phyint_flags |= 15838 PHYI_MULTI_BCAST; 15839 mutex_exit(&ill->ill_phyint->phyint_lock); 15840 15841 if (!ill->ill_isv6) { 15842 (void) ipif_arp_setup_multicast(ipif, 15843 NULL); 15844 } else { 15845 (void) ipif_ndp_setup_multicast(ipif, 15846 NULL); 15847 } 15848 } 15849 freemsg(mp); /* Don't want to pass this up */ 15850 return; 15851 15852 case DL_CAPABILITY_REQ: 15853 case DL_CONTROL_REQ: 15854 ill_dlpi_done(ill, dlea->dl_error_primitive); 15855 ill->ill_dlpi_capab_state = IDS_FAILED; 15856 freemsg(mp); 15857 return; 15858 } 15859 /* 15860 * Note the error for IOCTL completion (mp1 is set when 15861 * ready to complete ioctl). If ill_ifname_pending_err is 15862 * set, an error occured during plumbing (ill_ifname_pending), 15863 * so we want to report that error. 15864 * 15865 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15866 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15867 * expected to get errack'd if the driver doesn't support 15868 * these flags (e.g. ethernet). log will be set to B_FALSE 15869 * if these error conditions are encountered. 15870 */ 15871 if (mp1 != NULL) { 15872 if (ill->ill_ifname_pending_err != 0) { 15873 err = ill->ill_ifname_pending_err; 15874 ill->ill_ifname_pending_err = 0; 15875 } else { 15876 err = dlea->dl_unix_errno ? 15877 dlea->dl_unix_errno : ENXIO; 15878 } 15879 /* 15880 * If we're plumbing an interface and an error hasn't already 15881 * been saved, set ill_ifname_pending_err to the error passed 15882 * up. Ignore the error if log is B_FALSE (see comment above). 15883 */ 15884 } else if (log && ill->ill_ifname_pending && 15885 ill->ill_ifname_pending_err == 0) { 15886 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15887 dlea->dl_unix_errno : ENXIO; 15888 } 15889 15890 if (log) 15891 ip_dlpi_error(ill, dlea->dl_error_primitive, 15892 dlea->dl_errno, dlea->dl_unix_errno); 15893 break; 15894 case DL_CAPABILITY_ACK: { 15895 boolean_t reneg_flag = B_FALSE; 15896 /* Call a routine to handle this one. */ 15897 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15898 /* 15899 * Check if the ACK is due to renegotiation case since we 15900 * will need to send a new CAPABILITY_REQ later. 15901 */ 15902 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15903 /* This is the ack for a renogiation case */ 15904 reneg_flag = B_TRUE; 15905 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15906 } 15907 ill_capability_ack(ill, mp); 15908 if (reneg_flag) 15909 ill_capability_probe(ill); 15910 break; 15911 } 15912 case DL_CONTROL_ACK: 15913 /* We treat all of these as "fire and forget" */ 15914 ill_dlpi_done(ill, DL_CONTROL_REQ); 15915 break; 15916 case DL_INFO_ACK: 15917 /* Call a routine to handle this one. */ 15918 ill_dlpi_done(ill, DL_INFO_REQ); 15919 ip_ll_subnet_defaults(ill, mp); 15920 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15921 return; 15922 case DL_BIND_ACK: 15923 /* 15924 * We should have an IOCTL waiting on this unless 15925 * sent by ill_dl_phys, in which case just return 15926 */ 15927 ill_dlpi_done(ill, DL_BIND_REQ); 15928 if (ill->ill_ifname_pending) 15929 break; 15930 15931 if (!ioctl_aborted) 15932 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15933 if (mp1 == NULL) 15934 break; 15935 /* 15936 * Because mp1 was added by ill_dl_up(), and it always 15937 * passes a valid connp, connp must be valid here. 15938 */ 15939 ASSERT(connp != NULL); 15940 q = CONNP_TO_WQ(connp); 15941 15942 /* 15943 * We are exclusive. So nothing can change even after 15944 * we get the pending mp. If need be we can put it back 15945 * and restart, as in calling ipif_arp_up() below. 15946 */ 15947 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15948 15949 mutex_enter(&ill->ill_lock); 15950 15951 ill->ill_dl_up = 1; 15952 15953 if ((info = ill->ill_nic_event_info) != NULL) { 15954 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15955 "attached for %s\n", info->hne_event, 15956 ill->ill_name)); 15957 if (info->hne_data != NULL) 15958 kmem_free(info->hne_data, info->hne_datalen); 15959 kmem_free(info, sizeof (hook_nic_event_t)); 15960 } 15961 15962 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15963 if (info != NULL) { 15964 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15965 info->hne_lif = 0; 15966 info->hne_event = NE_UP; 15967 info->hne_data = NULL; 15968 info->hne_datalen = 0; 15969 info->hne_family = ill->ill_isv6 ? 15970 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15971 } else 15972 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15973 "event information for %s (ENOMEM)\n", 15974 ill->ill_name)); 15975 15976 ill->ill_nic_event_info = info; 15977 15978 mutex_exit(&ill->ill_lock); 15979 15980 /* 15981 * Now bring up the resolver; when that is complete, we'll 15982 * create IREs. Note that we intentionally mirror what 15983 * ipif_up() would have done, because we got here by way of 15984 * ill_dl_up(), which stopped ipif_up()'s processing. 15985 */ 15986 if (ill->ill_isv6) { 15987 /* 15988 * v6 interfaces. 15989 * Unlike ARP which has to do another bind 15990 * and attach, once we get here we are 15991 * done with NDP. Except in the case of 15992 * ILLF_XRESOLV, in which case we send an 15993 * AR_INTERFACE_UP to the external resolver. 15994 * If all goes well, the ioctl will complete 15995 * in ip_rput(). If there's an error, we 15996 * complete it here. 15997 */ 15998 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 15999 if (err == 0) { 16000 if (ill->ill_flags & ILLF_XRESOLV) { 16001 mutex_enter(&connp->conn_lock); 16002 mutex_enter(&ill->ill_lock); 16003 success = ipsq_pending_mp_add( 16004 connp, ipif, q, mp1, 0); 16005 mutex_exit(&ill->ill_lock); 16006 mutex_exit(&connp->conn_lock); 16007 if (success) { 16008 err = ipif_resolver_up(ipif, 16009 Res_act_initial); 16010 if (err == EINPROGRESS) { 16011 freemsg(mp); 16012 return; 16013 } 16014 ASSERT(err != 0); 16015 mp1 = ipsq_pending_mp_get(ipsq, 16016 &connp); 16017 ASSERT(mp1 != NULL); 16018 } else { 16019 /* conn has started closing */ 16020 err = EINTR; 16021 } 16022 } else { /* Non XRESOLV interface */ 16023 (void) ipif_resolver_up(ipif, 16024 Res_act_initial); 16025 err = ipif_up_done_v6(ipif); 16026 } 16027 } 16028 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16029 /* 16030 * ARP and other v4 external resolvers. 16031 * Leave the pending mblk intact so that 16032 * the ioctl completes in ip_rput(). 16033 */ 16034 mutex_enter(&connp->conn_lock); 16035 mutex_enter(&ill->ill_lock); 16036 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16037 mutex_exit(&ill->ill_lock); 16038 mutex_exit(&connp->conn_lock); 16039 if (success) { 16040 err = ipif_resolver_up(ipif, Res_act_initial); 16041 if (err == EINPROGRESS) { 16042 freemsg(mp); 16043 return; 16044 } 16045 ASSERT(err != 0); 16046 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16047 } else { 16048 /* The conn has started closing */ 16049 err = EINTR; 16050 } 16051 } else { 16052 /* 16053 * This one is complete. Reply to pending ioctl. 16054 */ 16055 (void) ipif_resolver_up(ipif, Res_act_initial); 16056 err = ipif_up_done(ipif); 16057 } 16058 16059 if ((err == 0) && (ill->ill_up_ipifs)) { 16060 err = ill_up_ipifs(ill, q, mp1); 16061 if (err == EINPROGRESS) { 16062 freemsg(mp); 16063 return; 16064 } 16065 } 16066 16067 if (ill->ill_up_ipifs) { 16068 ill_group_cleanup(ill); 16069 } 16070 16071 break; 16072 case DL_NOTIFY_IND: { 16073 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16074 ire_t *ire; 16075 boolean_t need_ire_walk_v4 = B_FALSE; 16076 boolean_t need_ire_walk_v6 = B_FALSE; 16077 16078 switch (notify->dl_notification) { 16079 case DL_NOTE_PHYS_ADDR: 16080 err = ill_set_phys_addr(ill, mp); 16081 break; 16082 16083 case DL_NOTE_FASTPATH_FLUSH: 16084 ill_fastpath_flush(ill); 16085 break; 16086 16087 case DL_NOTE_SDU_SIZE: 16088 /* 16089 * Change the MTU size of the interface, of all 16090 * attached ipif's, and of all relevant ire's. The 16091 * new value's a uint32_t at notify->dl_data. 16092 * Mtu change Vs. new ire creation - protocol below. 16093 * 16094 * a Mark the ipif as IPIF_CHANGING. 16095 * b Set the new mtu in the ipif. 16096 * c Change the ire_max_frag on all affected ires 16097 * d Unmark the IPIF_CHANGING 16098 * 16099 * To see how the protocol works, assume an interface 16100 * route is also being added simultaneously by 16101 * ip_rt_add and let 'ipif' be the ipif referenced by 16102 * the ire. If the ire is created before step a, 16103 * it will be cleaned up by step c. If the ire is 16104 * created after step d, it will see the new value of 16105 * ipif_mtu. Any attempt to create the ire between 16106 * steps a to d will fail because of the IPIF_CHANGING 16107 * flag. Note that ire_create() is passed a pointer to 16108 * the ipif_mtu, and not the value. During ire_add 16109 * under the bucket lock, the ire_max_frag of the 16110 * new ire being created is set from the ipif/ire from 16111 * which it is being derived. 16112 */ 16113 mutex_enter(&ill->ill_lock); 16114 ill->ill_max_frag = (uint_t)notify->dl_data; 16115 16116 /* 16117 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16118 * leave it alone 16119 */ 16120 if (ill->ill_mtu_userspecified) { 16121 mutex_exit(&ill->ill_lock); 16122 break; 16123 } 16124 ill->ill_max_mtu = ill->ill_max_frag; 16125 if (ill->ill_isv6) { 16126 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16127 ill->ill_max_mtu = IPV6_MIN_MTU; 16128 } else { 16129 if (ill->ill_max_mtu < IP_MIN_MTU) 16130 ill->ill_max_mtu = IP_MIN_MTU; 16131 } 16132 for (ipif = ill->ill_ipif; ipif != NULL; 16133 ipif = ipif->ipif_next) { 16134 /* 16135 * Don't override the mtu if the user 16136 * has explicitly set it. 16137 */ 16138 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16139 continue; 16140 ipif->ipif_mtu = (uint_t)notify->dl_data; 16141 if (ipif->ipif_isv6) 16142 ire = ipif_to_ire_v6(ipif); 16143 else 16144 ire = ipif_to_ire(ipif); 16145 if (ire != NULL) { 16146 ire->ire_max_frag = ipif->ipif_mtu; 16147 ire_refrele(ire); 16148 } 16149 if (ipif->ipif_flags & IPIF_UP) { 16150 if (ill->ill_isv6) 16151 need_ire_walk_v6 = B_TRUE; 16152 else 16153 need_ire_walk_v4 = B_TRUE; 16154 } 16155 } 16156 mutex_exit(&ill->ill_lock); 16157 if (need_ire_walk_v4) 16158 ire_walk_v4(ill_mtu_change, (char *)ill, 16159 ALL_ZONES, ipst); 16160 if (need_ire_walk_v6) 16161 ire_walk_v6(ill_mtu_change, (char *)ill, 16162 ALL_ZONES, ipst); 16163 break; 16164 case DL_NOTE_LINK_UP: 16165 case DL_NOTE_LINK_DOWN: { 16166 /* 16167 * We are writer. ill / phyint / ipsq assocs stable. 16168 * The RUNNING flag reflects the state of the link. 16169 */ 16170 phyint_t *phyint = ill->ill_phyint; 16171 uint64_t new_phyint_flags; 16172 boolean_t changed = B_FALSE; 16173 boolean_t went_up; 16174 16175 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16176 mutex_enter(&phyint->phyint_lock); 16177 new_phyint_flags = went_up ? 16178 phyint->phyint_flags | PHYI_RUNNING : 16179 phyint->phyint_flags & ~PHYI_RUNNING; 16180 if (new_phyint_flags != phyint->phyint_flags) { 16181 phyint->phyint_flags = new_phyint_flags; 16182 changed = B_TRUE; 16183 } 16184 mutex_exit(&phyint->phyint_lock); 16185 /* 16186 * ill_restart_dad handles the DAD restart and routing 16187 * socket notification logic. 16188 */ 16189 if (changed) { 16190 ill_restart_dad(phyint->phyint_illv4, went_up); 16191 ill_restart_dad(phyint->phyint_illv6, went_up); 16192 } 16193 break; 16194 } 16195 case DL_NOTE_PROMISC_ON_PHYS: 16196 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16197 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16198 mutex_enter(&ill->ill_lock); 16199 ill->ill_promisc_on_phys = B_TRUE; 16200 mutex_exit(&ill->ill_lock); 16201 break; 16202 case DL_NOTE_PROMISC_OFF_PHYS: 16203 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16204 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16205 mutex_enter(&ill->ill_lock); 16206 ill->ill_promisc_on_phys = B_FALSE; 16207 mutex_exit(&ill->ill_lock); 16208 break; 16209 case DL_NOTE_CAPAB_RENEG: 16210 /* 16211 * Something changed on the driver side. 16212 * It wants us to renegotiate the capabilities 16213 * on this ill. The most likely cause is the 16214 * aggregation interface under us where a 16215 * port got added or went away. 16216 * 16217 * We reset the capabilities and set the 16218 * state to IDS_RENG so that when the ack 16219 * comes back, we can start the 16220 * renegotiation process. 16221 */ 16222 ill_capability_reset(ill); 16223 ill->ill_dlpi_capab_state = IDS_RENEG; 16224 break; 16225 default: 16226 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16227 "type 0x%x for DL_NOTIFY_IND\n", 16228 notify->dl_notification)); 16229 break; 16230 } 16231 16232 /* 16233 * As this is an asynchronous operation, we 16234 * should not call ill_dlpi_done 16235 */ 16236 break; 16237 } 16238 case DL_NOTIFY_ACK: { 16239 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16240 16241 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16242 ill->ill_note_link = 1; 16243 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16244 break; 16245 } 16246 case DL_PHYS_ADDR_ACK: { 16247 /* 16248 * As part of plumbing the interface via SIOCSLIFNAME, 16249 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16250 * whose answers we receive here. As each answer is received, 16251 * we call ill_dlpi_done() to dispatch the next request as 16252 * we're processing the current one. Once all answers have 16253 * been received, we use ipsq_pending_mp_get() to dequeue the 16254 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16255 * is invoked from an ill queue, conn_oper_pending_ill is not 16256 * available, but we know the ioctl is pending on ill_wq.) 16257 */ 16258 uint_t paddrlen, paddroff; 16259 16260 paddrreq = ill->ill_phys_addr_pend; 16261 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16262 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16263 16264 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16265 if (paddrreq == DL_IPV6_TOKEN) { 16266 /* 16267 * bcopy to low-order bits of ill_token 16268 * 16269 * XXX Temporary hack - currently, all known tokens 16270 * are 64 bits, so I'll cheat for the moment. 16271 */ 16272 bcopy(mp->b_rptr + paddroff, 16273 &ill->ill_token.s6_addr32[2], paddrlen); 16274 ill->ill_token_length = paddrlen; 16275 break; 16276 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16277 ASSERT(ill->ill_nd_lla_mp == NULL); 16278 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16279 mp = NULL; 16280 break; 16281 } 16282 16283 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16284 ASSERT(ill->ill_phys_addr_mp == NULL); 16285 if (!ill->ill_ifname_pending) 16286 break; 16287 ill->ill_ifname_pending = 0; 16288 if (!ioctl_aborted) 16289 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16290 if (mp1 != NULL) { 16291 ASSERT(connp == NULL); 16292 q = ill->ill_wq; 16293 } 16294 /* 16295 * If any error acks received during the plumbing sequence, 16296 * ill_ifname_pending_err will be set. Break out and send up 16297 * the error to the pending ioctl. 16298 */ 16299 if (ill->ill_ifname_pending_err != 0) { 16300 err = ill->ill_ifname_pending_err; 16301 ill->ill_ifname_pending_err = 0; 16302 break; 16303 } 16304 16305 ill->ill_phys_addr_mp = mp; 16306 ill->ill_phys_addr = mp->b_rptr + paddroff; 16307 mp = NULL; 16308 16309 /* 16310 * If paddrlen is zero, the DLPI provider doesn't support 16311 * physical addresses. The other two tests were historical 16312 * workarounds for bugs in our former PPP implementation, but 16313 * now other things have grown dependencies on them -- e.g., 16314 * the tun module specifies a dl_addr_length of zero in its 16315 * DL_BIND_ACK, but then specifies an incorrect value in its 16316 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16317 * but only after careful testing ensures that all dependent 16318 * broken DLPI providers have been fixed. 16319 */ 16320 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16321 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16322 ill->ill_phys_addr = NULL; 16323 } else if (paddrlen != ill->ill_phys_addr_length) { 16324 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16325 paddrlen, ill->ill_phys_addr_length)); 16326 err = EINVAL; 16327 break; 16328 } 16329 16330 if (ill->ill_nd_lla_mp == NULL) { 16331 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16332 err = ENOMEM; 16333 break; 16334 } 16335 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16336 } 16337 16338 /* 16339 * Set the interface token. If the zeroth interface address 16340 * is unspecified, then set it to the link local address. 16341 */ 16342 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16343 (void) ill_setdefaulttoken(ill); 16344 16345 ASSERT(ill->ill_ipif->ipif_id == 0); 16346 if (ipif != NULL && 16347 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16348 (void) ipif_setlinklocal(ipif); 16349 } 16350 break; 16351 } 16352 case DL_OK_ACK: 16353 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16354 dlpi_prim_str((int)dloa->dl_correct_primitive), 16355 dloa->dl_correct_primitive)); 16356 switch (dloa->dl_correct_primitive) { 16357 case DL_PROMISCON_REQ: 16358 case DL_PROMISCOFF_REQ: 16359 case DL_ENABMULTI_REQ: 16360 case DL_DISABMULTI_REQ: 16361 case DL_UNBIND_REQ: 16362 case DL_ATTACH_REQ: 16363 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16364 break; 16365 } 16366 break; 16367 default: 16368 break; 16369 } 16370 16371 freemsg(mp); 16372 if (mp1 != NULL) { 16373 /* 16374 * The operation must complete without EINPROGRESS 16375 * since ipsq_pending_mp_get() has removed the mblk 16376 * from ipsq_pending_mp. Otherwise, the operation 16377 * will be stuck forever in the ipsq. 16378 */ 16379 ASSERT(err != EINPROGRESS); 16380 16381 switch (ipsq->ipsq_current_ioctl) { 16382 case 0: 16383 ipsq_current_finish(ipsq); 16384 break; 16385 16386 case SIOCLIFADDIF: 16387 case SIOCSLIFNAME: 16388 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16389 break; 16390 16391 default: 16392 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16393 break; 16394 } 16395 } 16396 } 16397 16398 /* 16399 * ip_rput_other is called by ip_rput to handle messages modifying the global 16400 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16401 */ 16402 /* ARGSUSED */ 16403 void 16404 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16405 { 16406 ill_t *ill; 16407 struct iocblk *iocp; 16408 mblk_t *mp1; 16409 conn_t *connp = NULL; 16410 16411 ip1dbg(("ip_rput_other ")); 16412 ill = (ill_t *)q->q_ptr; 16413 /* 16414 * This routine is not a writer in the case of SIOCGTUNPARAM 16415 * in which case ipsq is NULL. 16416 */ 16417 if (ipsq != NULL) { 16418 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16419 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16420 } 16421 16422 switch (mp->b_datap->db_type) { 16423 case M_ERROR: 16424 case M_HANGUP: 16425 /* 16426 * The device has a problem. We force the ILL down. It can 16427 * be brought up again manually using SIOCSIFFLAGS (via 16428 * ifconfig or equivalent). 16429 */ 16430 ASSERT(ipsq != NULL); 16431 if (mp->b_rptr < mp->b_wptr) 16432 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16433 if (ill->ill_error == 0) 16434 ill->ill_error = ENXIO; 16435 if (!ill_down_start(q, mp)) 16436 return; 16437 ipif_all_down_tail(ipsq, q, mp, NULL); 16438 break; 16439 case M_IOCACK: 16440 iocp = (struct iocblk *)mp->b_rptr; 16441 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16442 switch (iocp->ioc_cmd) { 16443 case SIOCSTUNPARAM: 16444 case OSIOCSTUNPARAM: 16445 ASSERT(ipsq != NULL); 16446 /* 16447 * Finish socket ioctl passed through to tun. 16448 * We should have an IOCTL waiting on this. 16449 */ 16450 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16451 if (ill->ill_isv6) { 16452 struct iftun_req *ta; 16453 16454 /* 16455 * if a source or destination is 16456 * being set, try and set the link 16457 * local address for the tunnel 16458 */ 16459 ta = (struct iftun_req *)mp->b_cont-> 16460 b_cont->b_rptr; 16461 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16462 ipif_set_tun_llink(ill, ta); 16463 } 16464 16465 } 16466 if (mp1 != NULL) { 16467 /* 16468 * Now copy back the b_next/b_prev used by 16469 * mi code for the mi_copy* functions. 16470 * See ip_sioctl_tunparam() for the reason. 16471 * Also protect against missing b_cont. 16472 */ 16473 if (mp->b_cont != NULL) { 16474 mp->b_cont->b_next = 16475 mp1->b_cont->b_next; 16476 mp->b_cont->b_prev = 16477 mp1->b_cont->b_prev; 16478 } 16479 inet_freemsg(mp1); 16480 ASSERT(connp != NULL); 16481 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16482 iocp->ioc_error, NO_COPYOUT, ipsq); 16483 } else { 16484 ASSERT(connp == NULL); 16485 putnext(q, mp); 16486 } 16487 break; 16488 case SIOCGTUNPARAM: 16489 case OSIOCGTUNPARAM: 16490 /* 16491 * This is really M_IOCDATA from the tunnel driver. 16492 * convert back and complete the ioctl. 16493 * We should have an IOCTL waiting on this. 16494 */ 16495 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16496 if (mp1) { 16497 /* 16498 * Now copy back the b_next/b_prev used by 16499 * mi code for the mi_copy* functions. 16500 * See ip_sioctl_tunparam() for the reason. 16501 * Also protect against missing b_cont. 16502 */ 16503 if (mp->b_cont != NULL) { 16504 mp->b_cont->b_next = 16505 mp1->b_cont->b_next; 16506 mp->b_cont->b_prev = 16507 mp1->b_cont->b_prev; 16508 } 16509 inet_freemsg(mp1); 16510 if (iocp->ioc_error == 0) 16511 mp->b_datap->db_type = M_IOCDATA; 16512 ASSERT(connp != NULL); 16513 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16514 iocp->ioc_error, COPYOUT, NULL); 16515 } else { 16516 ASSERT(connp == NULL); 16517 putnext(q, mp); 16518 } 16519 break; 16520 default: 16521 break; 16522 } 16523 break; 16524 case M_IOCNAK: 16525 iocp = (struct iocblk *)mp->b_rptr; 16526 16527 switch (iocp->ioc_cmd) { 16528 int mode; 16529 16530 case DL_IOC_HDR_INFO: 16531 /* 16532 * If this was the first attempt turn of the 16533 * fastpath probing. 16534 */ 16535 mutex_enter(&ill->ill_lock); 16536 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16537 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16538 mutex_exit(&ill->ill_lock); 16539 ill_fastpath_nack(ill); 16540 ip1dbg(("ip_rput: DLPI fastpath off on " 16541 "interface %s\n", 16542 ill->ill_name)); 16543 } else { 16544 mutex_exit(&ill->ill_lock); 16545 } 16546 freemsg(mp); 16547 break; 16548 case SIOCSTUNPARAM: 16549 case OSIOCSTUNPARAM: 16550 ASSERT(ipsq != NULL); 16551 /* 16552 * Finish socket ioctl passed through to tun 16553 * We should have an IOCTL waiting on this. 16554 */ 16555 /* FALLTHRU */ 16556 case SIOCGTUNPARAM: 16557 case OSIOCGTUNPARAM: 16558 /* 16559 * This is really M_IOCDATA from the tunnel driver. 16560 * convert back and complete the ioctl. 16561 * We should have an IOCTL waiting on this. 16562 */ 16563 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16564 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16565 mp1 = ill_pending_mp_get(ill, &connp, 16566 iocp->ioc_id); 16567 mode = COPYOUT; 16568 ipsq = NULL; 16569 } else { 16570 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16571 mode = NO_COPYOUT; 16572 } 16573 if (mp1 != NULL) { 16574 /* 16575 * Now copy back the b_next/b_prev used by 16576 * mi code for the mi_copy* functions. 16577 * See ip_sioctl_tunparam() for the reason. 16578 * Also protect against missing b_cont. 16579 */ 16580 if (mp->b_cont != NULL) { 16581 mp->b_cont->b_next = 16582 mp1->b_cont->b_next; 16583 mp->b_cont->b_prev = 16584 mp1->b_cont->b_prev; 16585 } 16586 inet_freemsg(mp1); 16587 if (iocp->ioc_error == 0) 16588 iocp->ioc_error = EINVAL; 16589 ASSERT(connp != NULL); 16590 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16591 iocp->ioc_error, mode, ipsq); 16592 } else { 16593 ASSERT(connp == NULL); 16594 putnext(q, mp); 16595 } 16596 break; 16597 default: 16598 break; 16599 } 16600 default: 16601 break; 16602 } 16603 } 16604 16605 /* 16606 * NOTE : This function does not ire_refrele the ire argument passed in. 16607 * 16608 * IPQoS notes 16609 * IP policy is invoked twice for a forwarded packet, once on the read side 16610 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16611 * enabled. An additional parameter, in_ill, has been added for this purpose. 16612 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16613 * because ip_mroute drops this information. 16614 * 16615 */ 16616 void 16617 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16618 { 16619 uint32_t pkt_len; 16620 queue_t *q; 16621 uint32_t sum; 16622 #define rptr ((uchar_t *)ipha) 16623 uint32_t max_frag; 16624 uint32_t ill_index; 16625 ill_t *out_ill; 16626 mib2_ipIfStatsEntry_t *mibptr; 16627 ip_stack_t *ipst = in_ill->ill_ipst; 16628 16629 /* Get the ill_index of the incoming ILL */ 16630 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16631 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16632 16633 /* Initiate Read side IPPF processing */ 16634 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16635 ip_process(IPP_FWD_IN, &mp, ill_index); 16636 if (mp == NULL) { 16637 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16638 "during IPPF processing\n")); 16639 return; 16640 } 16641 } 16642 16643 pkt_len = ntohs(ipha->ipha_length); 16644 16645 /* Adjust the checksum to reflect the ttl decrement. */ 16646 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16647 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16648 16649 if (ipha->ipha_ttl-- <= 1) { 16650 if (ip_csum_hdr(ipha)) { 16651 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16652 goto drop_pkt; 16653 } 16654 /* 16655 * Note: ire_stq this will be NULL for multicast 16656 * datagrams using the long path through arp (the IRE 16657 * is not an IRE_CACHE). This should not cause 16658 * problems since we don't generate ICMP errors for 16659 * multicast packets. 16660 */ 16661 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16662 q = ire->ire_stq; 16663 if (q != NULL) { 16664 /* Sent by forwarding path, and router is global zone */ 16665 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16666 GLOBAL_ZONEID, ipst); 16667 } else 16668 freemsg(mp); 16669 return; 16670 } 16671 16672 /* 16673 * Don't forward if the interface is down 16674 */ 16675 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16676 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16677 ip2dbg(("ip_rput_forward:interface is down\n")); 16678 goto drop_pkt; 16679 } 16680 16681 /* Get the ill_index of the outgoing ILL */ 16682 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16683 16684 out_ill = ire->ire_ipif->ipif_ill; 16685 16686 DTRACE_PROBE4(ip4__forwarding__start, 16687 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16688 16689 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16690 ipst->ips_ipv4firewall_forwarding, 16691 in_ill, out_ill, ipha, mp, mp, ipst); 16692 16693 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16694 16695 if (mp == NULL) 16696 return; 16697 pkt_len = ntohs(ipha->ipha_length); 16698 16699 if (is_system_labeled()) { 16700 mblk_t *mp1; 16701 16702 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16703 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16704 goto drop_pkt; 16705 } 16706 /* Size may have changed */ 16707 mp = mp1; 16708 ipha = (ipha_t *)mp->b_rptr; 16709 pkt_len = ntohs(ipha->ipha_length); 16710 } 16711 16712 /* Check if there are options to update */ 16713 if (!IS_SIMPLE_IPH(ipha)) { 16714 if (ip_csum_hdr(ipha)) { 16715 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16716 goto drop_pkt; 16717 } 16718 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16719 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16720 return; 16721 } 16722 16723 ipha->ipha_hdr_checksum = 0; 16724 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16725 } 16726 max_frag = ire->ire_max_frag; 16727 if (pkt_len > max_frag) { 16728 /* 16729 * It needs fragging on its way out. We haven't 16730 * verified the header checksum yet. Since we 16731 * are going to put a surely good checksum in the 16732 * outgoing header, we have to make sure that it 16733 * was good coming in. 16734 */ 16735 if (ip_csum_hdr(ipha)) { 16736 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16737 goto drop_pkt; 16738 } 16739 /* Initiate Write side IPPF processing */ 16740 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16741 ip_process(IPP_FWD_OUT, &mp, ill_index); 16742 if (mp == NULL) { 16743 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16744 " during IPPF processing\n")); 16745 return; 16746 } 16747 } 16748 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16749 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16750 return; 16751 } 16752 16753 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16754 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16755 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16756 ipst->ips_ipv4firewall_physical_out, 16757 NULL, out_ill, ipha, mp, mp, ipst); 16758 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16759 if (mp == NULL) 16760 return; 16761 16762 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16763 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16764 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16765 /* ip_xmit_v4 always consumes the packet */ 16766 return; 16767 16768 drop_pkt:; 16769 ip1dbg(("ip_rput_forward: drop pkt\n")); 16770 freemsg(mp); 16771 #undef rptr 16772 } 16773 16774 void 16775 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16776 { 16777 ire_t *ire; 16778 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16779 16780 ASSERT(!ipif->ipif_isv6); 16781 /* 16782 * Find an IRE which matches the destination and the outgoing 16783 * queue in the cache table. All we need is an IRE_CACHE which 16784 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16785 * then it is enough to have some IRE_CACHE in the group. 16786 */ 16787 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16788 dst = ipif->ipif_pp_dst_addr; 16789 16790 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16791 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16792 if (ire == NULL) { 16793 /* 16794 * Mark this packet to make it be delivered to 16795 * ip_rput_forward after the new ire has been 16796 * created. 16797 */ 16798 mp->b_prev = NULL; 16799 mp->b_next = mp; 16800 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16801 NULL, 0, GLOBAL_ZONEID, &zero_info); 16802 } else { 16803 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16804 IRE_REFRELE(ire); 16805 } 16806 } 16807 16808 /* Update any source route, record route or timestamp options */ 16809 static int 16810 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16811 { 16812 ipoptp_t opts; 16813 uchar_t *opt; 16814 uint8_t optval; 16815 uint8_t optlen; 16816 ipaddr_t dst; 16817 uint32_t ts; 16818 ire_t *dst_ire = NULL; 16819 ire_t *tmp_ire = NULL; 16820 timestruc_t now; 16821 16822 ip2dbg(("ip_rput_forward_options\n")); 16823 dst = ipha->ipha_dst; 16824 for (optval = ipoptp_first(&opts, ipha); 16825 optval != IPOPT_EOL; 16826 optval = ipoptp_next(&opts)) { 16827 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16828 opt = opts.ipoptp_cur; 16829 optlen = opts.ipoptp_len; 16830 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16831 optval, opts.ipoptp_len)); 16832 switch (optval) { 16833 uint32_t off; 16834 case IPOPT_SSRR: 16835 case IPOPT_LSRR: 16836 /* Check if adminstratively disabled */ 16837 if (!ipst->ips_ip_forward_src_routed) { 16838 if (ire->ire_stq != NULL) { 16839 /* 16840 * Sent by forwarding path, and router 16841 * is global zone 16842 */ 16843 icmp_unreachable(ire->ire_stq, mp, 16844 ICMP_SOURCE_ROUTE_FAILED, 16845 GLOBAL_ZONEID, ipst); 16846 } else { 16847 ip0dbg(("ip_rput_forward_options: " 16848 "unable to send unreach\n")); 16849 freemsg(mp); 16850 } 16851 return (-1); 16852 } 16853 16854 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16855 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16856 if (dst_ire == NULL) { 16857 /* 16858 * Must be partial since ip_rput_options 16859 * checked for strict. 16860 */ 16861 break; 16862 } 16863 off = opt[IPOPT_OFFSET]; 16864 off--; 16865 redo_srr: 16866 if (optlen < IP_ADDR_LEN || 16867 off > optlen - IP_ADDR_LEN) { 16868 /* End of source route */ 16869 ip1dbg(( 16870 "ip_rput_forward_options: end of SR\n")); 16871 ire_refrele(dst_ire); 16872 break; 16873 } 16874 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16875 bcopy(&ire->ire_src_addr, (char *)opt + off, 16876 IP_ADDR_LEN); 16877 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16878 ntohl(dst))); 16879 16880 /* 16881 * Check if our address is present more than 16882 * once as consecutive hops in source route. 16883 */ 16884 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16885 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16886 if (tmp_ire != NULL) { 16887 ire_refrele(tmp_ire); 16888 off += IP_ADDR_LEN; 16889 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16890 goto redo_srr; 16891 } 16892 ipha->ipha_dst = dst; 16893 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16894 ire_refrele(dst_ire); 16895 break; 16896 case IPOPT_RR: 16897 off = opt[IPOPT_OFFSET]; 16898 off--; 16899 if (optlen < IP_ADDR_LEN || 16900 off > optlen - IP_ADDR_LEN) { 16901 /* No more room - ignore */ 16902 ip1dbg(( 16903 "ip_rput_forward_options: end of RR\n")); 16904 break; 16905 } 16906 bcopy(&ire->ire_src_addr, (char *)opt + off, 16907 IP_ADDR_LEN); 16908 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16909 break; 16910 case IPOPT_TS: 16911 /* Insert timestamp if there is room */ 16912 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16913 case IPOPT_TS_TSONLY: 16914 off = IPOPT_TS_TIMELEN; 16915 break; 16916 case IPOPT_TS_PRESPEC: 16917 case IPOPT_TS_PRESPEC_RFC791: 16918 /* Verify that the address matched */ 16919 off = opt[IPOPT_OFFSET] - 1; 16920 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16921 dst_ire = ire_ctable_lookup(dst, 0, 16922 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16923 MATCH_IRE_TYPE, ipst); 16924 if (dst_ire == NULL) { 16925 /* Not for us */ 16926 break; 16927 } 16928 ire_refrele(dst_ire); 16929 /* FALLTHRU */ 16930 case IPOPT_TS_TSANDADDR: 16931 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16932 break; 16933 default: 16934 /* 16935 * ip_*put_options should have already 16936 * dropped this packet. 16937 */ 16938 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16939 "unknown IT - bug in ip_rput_options?\n"); 16940 return (0); /* Keep "lint" happy */ 16941 } 16942 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16943 /* Increase overflow counter */ 16944 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16945 opt[IPOPT_POS_OV_FLG] = 16946 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16947 (off << 4)); 16948 break; 16949 } 16950 off = opt[IPOPT_OFFSET] - 1; 16951 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16952 case IPOPT_TS_PRESPEC: 16953 case IPOPT_TS_PRESPEC_RFC791: 16954 case IPOPT_TS_TSANDADDR: 16955 bcopy(&ire->ire_src_addr, 16956 (char *)opt + off, IP_ADDR_LEN); 16957 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16958 /* FALLTHRU */ 16959 case IPOPT_TS_TSONLY: 16960 off = opt[IPOPT_OFFSET] - 1; 16961 /* Compute # of milliseconds since midnight */ 16962 gethrestime(&now); 16963 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16964 now.tv_nsec / (NANOSEC / MILLISEC); 16965 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16966 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16967 break; 16968 } 16969 break; 16970 } 16971 } 16972 return (0); 16973 } 16974 16975 /* 16976 * This is called after processing at least one of AH/ESP headers. 16977 * 16978 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16979 * the actual, physical interface on which the packet was received, 16980 * but, when ip_strict_dst_multihoming is set to 1, could be the 16981 * interface which had the ipha_dst configured when the packet went 16982 * through ip_rput. The ill_index corresponding to the recv_ill 16983 * is saved in ipsec_in_rill_index 16984 * 16985 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16986 * cannot assume "ire" points to valid data for any IPv6 cases. 16987 */ 16988 void 16989 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16990 { 16991 mblk_t *mp; 16992 ipaddr_t dst; 16993 in6_addr_t *v6dstp; 16994 ipha_t *ipha; 16995 ip6_t *ip6h; 16996 ipsec_in_t *ii; 16997 boolean_t ill_need_rele = B_FALSE; 16998 boolean_t rill_need_rele = B_FALSE; 16999 boolean_t ire_need_rele = B_FALSE; 17000 netstack_t *ns; 17001 ip_stack_t *ipst; 17002 17003 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17004 ASSERT(ii->ipsec_in_ill_index != 0); 17005 ns = ii->ipsec_in_ns; 17006 ASSERT(ii->ipsec_in_ns != NULL); 17007 ipst = ns->netstack_ip; 17008 17009 mp = ipsec_mp->b_cont; 17010 ASSERT(mp != NULL); 17011 17012 17013 if (ill == NULL) { 17014 ASSERT(recv_ill == NULL); 17015 /* 17016 * We need to get the original queue on which ip_rput_local 17017 * or ip_rput_data_v6 was called. 17018 */ 17019 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17020 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17021 ill_need_rele = B_TRUE; 17022 17023 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17024 recv_ill = ill_lookup_on_ifindex( 17025 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17026 NULL, NULL, NULL, NULL, ipst); 17027 rill_need_rele = B_TRUE; 17028 } else { 17029 recv_ill = ill; 17030 } 17031 17032 if ((ill == NULL) || (recv_ill == NULL)) { 17033 ip0dbg(("ip_fanout_proto_again: interface " 17034 "disappeared\n")); 17035 if (ill != NULL) 17036 ill_refrele(ill); 17037 if (recv_ill != NULL) 17038 ill_refrele(recv_ill); 17039 freemsg(ipsec_mp); 17040 return; 17041 } 17042 } 17043 17044 ASSERT(ill != NULL && recv_ill != NULL); 17045 17046 if (mp->b_datap->db_type == M_CTL) { 17047 /* 17048 * AH/ESP is returning the ICMP message after 17049 * removing their headers. Fanout again till 17050 * it gets to the right protocol. 17051 */ 17052 if (ii->ipsec_in_v4) { 17053 icmph_t *icmph; 17054 int iph_hdr_length; 17055 int hdr_length; 17056 17057 ipha = (ipha_t *)mp->b_rptr; 17058 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17059 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17060 ipha = (ipha_t *)&icmph[1]; 17061 hdr_length = IPH_HDR_LENGTH(ipha); 17062 /* 17063 * icmp_inbound_error_fanout may need to do pullupmsg. 17064 * Reset the type to M_DATA. 17065 */ 17066 mp->b_datap->db_type = M_DATA; 17067 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17068 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17069 B_FALSE, ill, ii->ipsec_in_zoneid); 17070 } else { 17071 icmp6_t *icmp6; 17072 int hdr_length; 17073 17074 ip6h = (ip6_t *)mp->b_rptr; 17075 /* Don't call hdr_length_v6() unless you have to. */ 17076 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17077 hdr_length = ip_hdr_length_v6(mp, ip6h); 17078 else 17079 hdr_length = IPV6_HDR_LEN; 17080 17081 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17082 /* 17083 * icmp_inbound_error_fanout_v6 may need to do 17084 * pullupmsg. Reset the type to M_DATA. 17085 */ 17086 mp->b_datap->db_type = M_DATA; 17087 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17088 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17089 } 17090 if (ill_need_rele) 17091 ill_refrele(ill); 17092 if (rill_need_rele) 17093 ill_refrele(recv_ill); 17094 return; 17095 } 17096 17097 if (ii->ipsec_in_v4) { 17098 ipha = (ipha_t *)mp->b_rptr; 17099 dst = ipha->ipha_dst; 17100 if (CLASSD(dst)) { 17101 /* 17102 * Multicast has to be delivered to all streams. 17103 */ 17104 dst = INADDR_BROADCAST; 17105 } 17106 17107 if (ire == NULL) { 17108 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17109 MBLK_GETLABEL(mp), ipst); 17110 if (ire == NULL) { 17111 if (ill_need_rele) 17112 ill_refrele(ill); 17113 if (rill_need_rele) 17114 ill_refrele(recv_ill); 17115 ip1dbg(("ip_fanout_proto_again: " 17116 "IRE not found")); 17117 freemsg(ipsec_mp); 17118 return; 17119 } 17120 ire_need_rele = B_TRUE; 17121 } 17122 17123 switch (ipha->ipha_protocol) { 17124 case IPPROTO_UDP: 17125 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17126 recv_ill); 17127 if (ire_need_rele) 17128 ire_refrele(ire); 17129 break; 17130 case IPPROTO_TCP: 17131 if (!ire_need_rele) 17132 IRE_REFHOLD(ire); 17133 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17134 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17135 IRE_REFRELE(ire); 17136 if (mp != NULL) 17137 squeue_enter_chain(GET_SQUEUE(mp), mp, 17138 mp, 1, SQTAG_IP_PROTO_AGAIN); 17139 break; 17140 case IPPROTO_SCTP: 17141 if (!ire_need_rele) 17142 IRE_REFHOLD(ire); 17143 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17144 ipsec_mp, 0, ill->ill_rq, dst); 17145 break; 17146 default: 17147 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17148 recv_ill); 17149 if (ire_need_rele) 17150 ire_refrele(ire); 17151 break; 17152 } 17153 } else { 17154 uint32_t rput_flags = 0; 17155 17156 ip6h = (ip6_t *)mp->b_rptr; 17157 v6dstp = &ip6h->ip6_dst; 17158 /* 17159 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17160 * address. 17161 * 17162 * Currently, we don't store that state in the IPSEC_IN 17163 * message, and we may need to. 17164 */ 17165 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17166 IP6_IN_LLMCAST : 0); 17167 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17168 NULL, NULL); 17169 } 17170 if (ill_need_rele) 17171 ill_refrele(ill); 17172 if (rill_need_rele) 17173 ill_refrele(recv_ill); 17174 } 17175 17176 /* 17177 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17178 * returns 'true' if there are still fragments left on the queue, in 17179 * which case we restart the timer. 17180 */ 17181 void 17182 ill_frag_timer(void *arg) 17183 { 17184 ill_t *ill = (ill_t *)arg; 17185 boolean_t frag_pending; 17186 ip_stack_t *ipst = ill->ill_ipst; 17187 17188 mutex_enter(&ill->ill_lock); 17189 ASSERT(!ill->ill_fragtimer_executing); 17190 if (ill->ill_state_flags & ILL_CONDEMNED) { 17191 ill->ill_frag_timer_id = 0; 17192 mutex_exit(&ill->ill_lock); 17193 return; 17194 } 17195 ill->ill_fragtimer_executing = 1; 17196 mutex_exit(&ill->ill_lock); 17197 17198 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17199 17200 /* 17201 * Restart the timer, if we have fragments pending or if someone 17202 * wanted us to be scheduled again. 17203 */ 17204 mutex_enter(&ill->ill_lock); 17205 ill->ill_fragtimer_executing = 0; 17206 ill->ill_frag_timer_id = 0; 17207 if (frag_pending || ill->ill_fragtimer_needrestart) 17208 ill_frag_timer_start(ill); 17209 mutex_exit(&ill->ill_lock); 17210 } 17211 17212 void 17213 ill_frag_timer_start(ill_t *ill) 17214 { 17215 ip_stack_t *ipst = ill->ill_ipst; 17216 17217 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17218 17219 /* If the ill is closing or opening don't proceed */ 17220 if (ill->ill_state_flags & ILL_CONDEMNED) 17221 return; 17222 17223 if (ill->ill_fragtimer_executing) { 17224 /* 17225 * ill_frag_timer is currently executing. Just record the 17226 * the fact that we want the timer to be restarted. 17227 * ill_frag_timer will post a timeout before it returns, 17228 * ensuring it will be called again. 17229 */ 17230 ill->ill_fragtimer_needrestart = 1; 17231 return; 17232 } 17233 17234 if (ill->ill_frag_timer_id == 0) { 17235 /* 17236 * The timer is neither running nor is the timeout handler 17237 * executing. Post a timeout so that ill_frag_timer will be 17238 * called 17239 */ 17240 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17241 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17242 ill->ill_fragtimer_needrestart = 0; 17243 } 17244 } 17245 17246 /* 17247 * This routine is needed for loopback when forwarding multicasts. 17248 * 17249 * IPQoS Notes: 17250 * IPPF processing is done in fanout routines. 17251 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17252 * processing for IPSec packets is done when it comes back in clear. 17253 * NOTE : The callers of this function need to do the ire_refrele for the 17254 * ire that is being passed in. 17255 */ 17256 void 17257 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17258 ill_t *recv_ill) 17259 { 17260 ill_t *ill = (ill_t *)q->q_ptr; 17261 uint32_t sum; 17262 uint32_t u1; 17263 uint32_t u2; 17264 int hdr_length; 17265 boolean_t mctl_present; 17266 mblk_t *first_mp = mp; 17267 mblk_t *hada_mp = NULL; 17268 ipha_t *inner_ipha; 17269 ip_stack_t *ipst; 17270 17271 ASSERT(recv_ill != NULL); 17272 ipst = recv_ill->ill_ipst; 17273 17274 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17275 "ip_rput_locl_start: q %p", q); 17276 17277 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17278 ASSERT(ill != NULL); 17279 17280 17281 #define rptr ((uchar_t *)ipha) 17282 #define iphs ((uint16_t *)ipha) 17283 17284 /* 17285 * no UDP or TCP packet should come here anymore. 17286 */ 17287 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17288 (ipha->ipha_protocol != IPPROTO_UDP)); 17289 17290 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17291 if (mctl_present && 17292 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17293 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17294 17295 /* 17296 * It's an IPsec accelerated packet. 17297 * Keep a pointer to the data attributes around until 17298 * we allocate the ipsec_info_t. 17299 */ 17300 IPSECHW_DEBUG(IPSECHW_PKT, 17301 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17302 hada_mp = first_mp; 17303 hada_mp->b_cont = NULL; 17304 /* 17305 * Since it is accelerated, it comes directly from 17306 * the ill and the data attributes is followed by 17307 * the packet data. 17308 */ 17309 ASSERT(mp->b_datap->db_type != M_CTL); 17310 first_mp = mp; 17311 mctl_present = B_FALSE; 17312 } 17313 17314 /* 17315 * IF M_CTL is not present, then ipsec_in_is_secure 17316 * should return B_TRUE. There is a case where loopback 17317 * packets has an M_CTL in the front with all the 17318 * IPSEC options set to IPSEC_PREF_NEVER - which means 17319 * ipsec_in_is_secure will return B_FALSE. As loopback 17320 * packets never comes here, it is safe to ASSERT the 17321 * following. 17322 */ 17323 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17324 17325 17326 /* u1 is # words of IP options */ 17327 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17328 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17329 17330 if (u1) { 17331 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17332 if (hada_mp != NULL) 17333 freemsg(hada_mp); 17334 return; 17335 } 17336 } else { 17337 /* Check the IP header checksum. */ 17338 #define uph ((uint16_t *)ipha) 17339 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17340 uph[6] + uph[7] + uph[8] + uph[9]; 17341 #undef uph 17342 /* finish doing IP checksum */ 17343 sum = (sum & 0xFFFF) + (sum >> 16); 17344 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17345 /* 17346 * Don't verify header checksum if this packet is coming 17347 * back from AH/ESP as we already did it. 17348 */ 17349 if (!mctl_present && (sum && sum != 0xFFFF)) { 17350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17351 goto drop_pkt; 17352 } 17353 } 17354 17355 /* 17356 * Count for SNMP of inbound packets for ire. As ip_proto_input 17357 * might be called more than once for secure packets, count only 17358 * the first time. 17359 */ 17360 if (!mctl_present) { 17361 UPDATE_IB_PKT_COUNT(ire); 17362 ire->ire_last_used_time = lbolt; 17363 } 17364 17365 /* Check for fragmentation offset. */ 17366 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17367 u1 = u2 & (IPH_MF | IPH_OFFSET); 17368 if (u1) { 17369 /* 17370 * We re-assemble fragments before we do the AH/ESP 17371 * processing. Thus, M_CTL should not be present 17372 * while we are re-assembling. 17373 */ 17374 ASSERT(!mctl_present); 17375 ASSERT(first_mp == mp); 17376 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17377 return; 17378 } 17379 /* 17380 * Make sure that first_mp points back to mp as 17381 * the mp we came in with could have changed in 17382 * ip_rput_fragment(). 17383 */ 17384 ipha = (ipha_t *)mp->b_rptr; 17385 first_mp = mp; 17386 } 17387 17388 /* 17389 * Clear hardware checksumming flag as it is currently only 17390 * used by TCP and UDP. 17391 */ 17392 DB_CKSUMFLAGS(mp) = 0; 17393 17394 /* Now we have a complete datagram, destined for this machine. */ 17395 u1 = IPH_HDR_LENGTH(ipha); 17396 switch (ipha->ipha_protocol) { 17397 case IPPROTO_ICMP: { 17398 ire_t *ire_zone; 17399 ilm_t *ilm; 17400 mblk_t *mp1; 17401 zoneid_t last_zoneid; 17402 17403 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17404 ASSERT(ire->ire_type == IRE_BROADCAST); 17405 /* 17406 * In the multicast case, applications may have joined 17407 * the group from different zones, so we need to deliver 17408 * the packet to each of them. Loop through the 17409 * multicast memberships structures (ilm) on the receive 17410 * ill and send a copy of the packet up each matching 17411 * one. However, we don't do this for multicasts sent on 17412 * the loopback interface (PHYI_LOOPBACK flag set) as 17413 * they must stay in the sender's zone. 17414 * 17415 * ilm_add_v6() ensures that ilms in the same zone are 17416 * contiguous in the ill_ilm list. We use this property 17417 * to avoid sending duplicates needed when two 17418 * applications in the same zone join the same group on 17419 * different logical interfaces: we ignore the ilm if 17420 * its zoneid is the same as the last matching one. 17421 * In addition, the sending of the packet for 17422 * ire_zoneid is delayed until all of the other ilms 17423 * have been exhausted. 17424 */ 17425 last_zoneid = -1; 17426 ILM_WALKER_HOLD(recv_ill); 17427 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17428 ilm = ilm->ilm_next) { 17429 if ((ilm->ilm_flags & ILM_DELETED) || 17430 ipha->ipha_dst != ilm->ilm_addr || 17431 ilm->ilm_zoneid == last_zoneid || 17432 ilm->ilm_zoneid == ire->ire_zoneid || 17433 ilm->ilm_zoneid == ALL_ZONES || 17434 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17435 continue; 17436 mp1 = ip_copymsg(first_mp); 17437 if (mp1 == NULL) 17438 continue; 17439 icmp_inbound(q, mp1, B_TRUE, ill, 17440 0, sum, mctl_present, B_TRUE, 17441 recv_ill, ilm->ilm_zoneid); 17442 last_zoneid = ilm->ilm_zoneid; 17443 } 17444 ILM_WALKER_RELE(recv_ill); 17445 } else if (ire->ire_type == IRE_BROADCAST) { 17446 /* 17447 * In the broadcast case, there may be many zones 17448 * which need a copy of the packet delivered to them. 17449 * There is one IRE_BROADCAST per broadcast address 17450 * and per zone; we walk those using a helper function. 17451 * In addition, the sending of the packet for ire is 17452 * delayed until all of the other ires have been 17453 * processed. 17454 */ 17455 IRB_REFHOLD(ire->ire_bucket); 17456 ire_zone = NULL; 17457 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17458 ire)) != NULL) { 17459 mp1 = ip_copymsg(first_mp); 17460 if (mp1 == NULL) 17461 continue; 17462 17463 UPDATE_IB_PKT_COUNT(ire_zone); 17464 ire_zone->ire_last_used_time = lbolt; 17465 icmp_inbound(q, mp1, B_TRUE, ill, 17466 0, sum, mctl_present, B_TRUE, 17467 recv_ill, ire_zone->ire_zoneid); 17468 } 17469 IRB_REFRELE(ire->ire_bucket); 17470 } 17471 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17472 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17473 ire->ire_zoneid); 17474 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17475 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17476 return; 17477 } 17478 case IPPROTO_IGMP: 17479 /* 17480 * If we are not willing to accept IGMP packets in clear, 17481 * then check with global policy. 17482 */ 17483 if (ipst->ips_igmp_accept_clear_messages == 0) { 17484 first_mp = ipsec_check_global_policy(first_mp, NULL, 17485 ipha, NULL, mctl_present, ipst->ips_netstack); 17486 if (first_mp == NULL) 17487 return; 17488 } 17489 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17490 freemsg(first_mp); 17491 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17492 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17493 return; 17494 } 17495 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17496 /* Bad packet - discarded by igmp_input */ 17497 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17498 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17499 if (mctl_present) 17500 freeb(first_mp); 17501 return; 17502 } 17503 /* 17504 * igmp_input() may have returned the pulled up message. 17505 * So first_mp and ipha need to be reinitialized. 17506 */ 17507 ipha = (ipha_t *)mp->b_rptr; 17508 if (mctl_present) 17509 first_mp->b_cont = mp; 17510 else 17511 first_mp = mp; 17512 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17513 connf_head != NULL) { 17514 /* No user-level listener for IGMP packets */ 17515 goto drop_pkt; 17516 } 17517 /* deliver to local raw users */ 17518 break; 17519 case IPPROTO_PIM: 17520 /* 17521 * If we are not willing to accept PIM packets in clear, 17522 * then check with global policy. 17523 */ 17524 if (ipst->ips_pim_accept_clear_messages == 0) { 17525 first_mp = ipsec_check_global_policy(first_mp, NULL, 17526 ipha, NULL, mctl_present, ipst->ips_netstack); 17527 if (first_mp == NULL) 17528 return; 17529 } 17530 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17531 freemsg(first_mp); 17532 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17533 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17534 return; 17535 } 17536 if (pim_input(q, mp, ill) != 0) { 17537 /* Bad packet - discarded by pim_input */ 17538 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17539 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17540 if (mctl_present) 17541 freeb(first_mp); 17542 return; 17543 } 17544 17545 /* 17546 * pim_input() may have pulled up the message so ipha needs to 17547 * be reinitialized. 17548 */ 17549 ipha = (ipha_t *)mp->b_rptr; 17550 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17551 connf_head != NULL) { 17552 /* No user-level listener for PIM packets */ 17553 goto drop_pkt; 17554 } 17555 /* deliver to local raw users */ 17556 break; 17557 case IPPROTO_ENCAP: 17558 /* 17559 * Handle self-encapsulated packets (IP-in-IP where 17560 * the inner addresses == the outer addresses). 17561 */ 17562 hdr_length = IPH_HDR_LENGTH(ipha); 17563 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17564 mp->b_wptr) { 17565 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17566 sizeof (ipha_t) - mp->b_rptr)) { 17567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17568 freemsg(first_mp); 17569 return; 17570 } 17571 ipha = (ipha_t *)mp->b_rptr; 17572 } 17573 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17574 /* 17575 * Check the sanity of the inner IP header. 17576 */ 17577 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17578 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17579 freemsg(first_mp); 17580 return; 17581 } 17582 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17584 freemsg(first_mp); 17585 return; 17586 } 17587 if (inner_ipha->ipha_src == ipha->ipha_src && 17588 inner_ipha->ipha_dst == ipha->ipha_dst) { 17589 ipsec_in_t *ii; 17590 17591 /* 17592 * Self-encapsulated tunnel packet. Remove 17593 * the outer IP header and fanout again. 17594 * We also need to make sure that the inner 17595 * header is pulled up until options. 17596 */ 17597 mp->b_rptr = (uchar_t *)inner_ipha; 17598 ipha = inner_ipha; 17599 hdr_length = IPH_HDR_LENGTH(ipha); 17600 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17601 if (!pullupmsg(mp, (uchar_t *)ipha + 17602 + hdr_length - mp->b_rptr)) { 17603 freemsg(first_mp); 17604 return; 17605 } 17606 ipha = (ipha_t *)mp->b_rptr; 17607 } 17608 if (!mctl_present) { 17609 ASSERT(first_mp == mp); 17610 /* 17611 * This means that somebody is sending 17612 * Self-encapsualted packets without AH/ESP. 17613 * If AH/ESP was present, we would have already 17614 * allocated the first_mp. 17615 */ 17616 first_mp = ipsec_in_alloc(B_TRUE, 17617 ipst->ips_netstack); 17618 if (first_mp == NULL) { 17619 ip1dbg(("ip_proto_input: IPSEC_IN " 17620 "allocation failure.\n")); 17621 BUMP_MIB(ill->ill_ip_mib, 17622 ipIfStatsInDiscards); 17623 freemsg(mp); 17624 return; 17625 } 17626 first_mp->b_cont = mp; 17627 } 17628 /* 17629 * We generally store the ill_index if we need to 17630 * do IPSEC processing as we lose the ill queue when 17631 * we come back. But in this case, we never should 17632 * have to store the ill_index here as it should have 17633 * been stored previously when we processed the 17634 * AH/ESP header in this routine or for non-ipsec 17635 * cases, we still have the queue. But for some bad 17636 * packets from the wire, we can get to IPSEC after 17637 * this and we better store the index for that case. 17638 */ 17639 ill = (ill_t *)q->q_ptr; 17640 ii = (ipsec_in_t *)first_mp->b_rptr; 17641 ii->ipsec_in_ill_index = 17642 ill->ill_phyint->phyint_ifindex; 17643 ii->ipsec_in_rill_index = 17644 recv_ill->ill_phyint->phyint_ifindex; 17645 if (ii->ipsec_in_decaps) { 17646 /* 17647 * This packet is self-encapsulated multiple 17648 * times. We don't want to recurse infinitely. 17649 * To keep it simple, drop the packet. 17650 */ 17651 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17652 freemsg(first_mp); 17653 return; 17654 } 17655 ii->ipsec_in_decaps = B_TRUE; 17656 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17657 ire); 17658 return; 17659 } 17660 break; 17661 case IPPROTO_AH: 17662 case IPPROTO_ESP: { 17663 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17664 17665 /* 17666 * Fast path for AH/ESP. If this is the first time 17667 * we are sending a datagram to AH/ESP, allocate 17668 * a IPSEC_IN message and prepend it. Otherwise, 17669 * just fanout. 17670 */ 17671 17672 int ipsec_rc; 17673 ipsec_in_t *ii; 17674 netstack_t *ns = ipst->ips_netstack; 17675 17676 IP_STAT(ipst, ipsec_proto_ahesp); 17677 if (!mctl_present) { 17678 ASSERT(first_mp == mp); 17679 first_mp = ipsec_in_alloc(B_TRUE, ns); 17680 if (first_mp == NULL) { 17681 ip1dbg(("ip_proto_input: IPSEC_IN " 17682 "allocation failure.\n")); 17683 freemsg(hada_mp); /* okay ifnull */ 17684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17685 freemsg(mp); 17686 return; 17687 } 17688 /* 17689 * Store the ill_index so that when we come back 17690 * from IPSEC we ride on the same queue. 17691 */ 17692 ill = (ill_t *)q->q_ptr; 17693 ii = (ipsec_in_t *)first_mp->b_rptr; 17694 ii->ipsec_in_ill_index = 17695 ill->ill_phyint->phyint_ifindex; 17696 ii->ipsec_in_rill_index = 17697 recv_ill->ill_phyint->phyint_ifindex; 17698 first_mp->b_cont = mp; 17699 /* 17700 * Cache hardware acceleration info. 17701 */ 17702 if (hada_mp != NULL) { 17703 IPSECHW_DEBUG(IPSECHW_PKT, 17704 ("ip_rput_local: caching data attr.\n")); 17705 ii->ipsec_in_accelerated = B_TRUE; 17706 ii->ipsec_in_da = hada_mp; 17707 hada_mp = NULL; 17708 } 17709 } else { 17710 ii = (ipsec_in_t *)first_mp->b_rptr; 17711 } 17712 17713 if (!ipsec_loaded(ipss)) { 17714 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17715 ire->ire_zoneid, ipst); 17716 return; 17717 } 17718 17719 ns = ipst->ips_netstack; 17720 /* select inbound SA and have IPsec process the pkt */ 17721 if (ipha->ipha_protocol == IPPROTO_ESP) { 17722 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17723 if (esph == NULL) 17724 return; 17725 ASSERT(ii->ipsec_in_esp_sa != NULL); 17726 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17727 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17728 first_mp, esph); 17729 } else { 17730 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17731 if (ah == NULL) 17732 return; 17733 ASSERT(ii->ipsec_in_ah_sa != NULL); 17734 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17735 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17736 first_mp, ah); 17737 } 17738 17739 switch (ipsec_rc) { 17740 case IPSEC_STATUS_SUCCESS: 17741 break; 17742 case IPSEC_STATUS_FAILED: 17743 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17744 /* FALLTHRU */ 17745 case IPSEC_STATUS_PENDING: 17746 return; 17747 } 17748 /* we're done with IPsec processing, send it up */ 17749 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17750 return; 17751 } 17752 default: 17753 break; 17754 } 17755 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17756 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17757 ire->ire_zoneid)); 17758 goto drop_pkt; 17759 } 17760 /* 17761 * Handle protocols with which IP is less intimate. There 17762 * can be more than one stream bound to a particular 17763 * protocol. When this is the case, each one gets a copy 17764 * of any incoming packets. 17765 */ 17766 ip_fanout_proto(q, first_mp, ill, ipha, 17767 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17768 B_TRUE, recv_ill, ire->ire_zoneid); 17769 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17770 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17771 return; 17772 17773 drop_pkt: 17774 freemsg(first_mp); 17775 if (hada_mp != NULL) 17776 freeb(hada_mp); 17777 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17778 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17779 #undef rptr 17780 #undef iphs 17781 17782 } 17783 17784 /* 17785 * Update any source route, record route or timestamp options. 17786 * Check that we are at end of strict source route. 17787 * The options have already been checked for sanity in ip_rput_options(). 17788 */ 17789 static boolean_t 17790 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17791 ip_stack_t *ipst) 17792 { 17793 ipoptp_t opts; 17794 uchar_t *opt; 17795 uint8_t optval; 17796 uint8_t optlen; 17797 ipaddr_t dst; 17798 uint32_t ts; 17799 ire_t *dst_ire; 17800 timestruc_t now; 17801 zoneid_t zoneid; 17802 ill_t *ill; 17803 17804 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17805 17806 ip2dbg(("ip_rput_local_options\n")); 17807 17808 for (optval = ipoptp_first(&opts, ipha); 17809 optval != IPOPT_EOL; 17810 optval = ipoptp_next(&opts)) { 17811 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17812 opt = opts.ipoptp_cur; 17813 optlen = opts.ipoptp_len; 17814 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17815 optval, optlen)); 17816 switch (optval) { 17817 uint32_t off; 17818 case IPOPT_SSRR: 17819 case IPOPT_LSRR: 17820 off = opt[IPOPT_OFFSET]; 17821 off--; 17822 if (optlen < IP_ADDR_LEN || 17823 off > optlen - IP_ADDR_LEN) { 17824 /* End of source route */ 17825 ip1dbg(("ip_rput_local_options: end of SR\n")); 17826 break; 17827 } 17828 /* 17829 * This will only happen if two consecutive entries 17830 * in the source route contains our address or if 17831 * it is a packet with a loose source route which 17832 * reaches us before consuming the whole source route 17833 */ 17834 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17835 if (optval == IPOPT_SSRR) { 17836 goto bad_src_route; 17837 } 17838 /* 17839 * Hack: instead of dropping the packet truncate the 17840 * source route to what has been used by filling the 17841 * rest with IPOPT_NOP. 17842 */ 17843 opt[IPOPT_OLEN] = (uint8_t)off; 17844 while (off < optlen) { 17845 opt[off++] = IPOPT_NOP; 17846 } 17847 break; 17848 case IPOPT_RR: 17849 off = opt[IPOPT_OFFSET]; 17850 off--; 17851 if (optlen < IP_ADDR_LEN || 17852 off > optlen - IP_ADDR_LEN) { 17853 /* No more room - ignore */ 17854 ip1dbg(( 17855 "ip_rput_local_options: end of RR\n")); 17856 break; 17857 } 17858 bcopy(&ire->ire_src_addr, (char *)opt + off, 17859 IP_ADDR_LEN); 17860 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17861 break; 17862 case IPOPT_TS: 17863 /* Insert timestamp if there is romm */ 17864 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17865 case IPOPT_TS_TSONLY: 17866 off = IPOPT_TS_TIMELEN; 17867 break; 17868 case IPOPT_TS_PRESPEC: 17869 case IPOPT_TS_PRESPEC_RFC791: 17870 /* Verify that the address matched */ 17871 off = opt[IPOPT_OFFSET] - 1; 17872 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17873 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17874 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17875 ipst); 17876 if (dst_ire == NULL) { 17877 /* Not for us */ 17878 break; 17879 } 17880 ire_refrele(dst_ire); 17881 /* FALLTHRU */ 17882 case IPOPT_TS_TSANDADDR: 17883 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17884 break; 17885 default: 17886 /* 17887 * ip_*put_options should have already 17888 * dropped this packet. 17889 */ 17890 cmn_err(CE_PANIC, "ip_rput_local_options: " 17891 "unknown IT - bug in ip_rput_options?\n"); 17892 return (B_TRUE); /* Keep "lint" happy */ 17893 } 17894 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17895 /* Increase overflow counter */ 17896 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17897 opt[IPOPT_POS_OV_FLG] = 17898 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17899 (off << 4)); 17900 break; 17901 } 17902 off = opt[IPOPT_OFFSET] - 1; 17903 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17904 case IPOPT_TS_PRESPEC: 17905 case IPOPT_TS_PRESPEC_RFC791: 17906 case IPOPT_TS_TSANDADDR: 17907 bcopy(&ire->ire_src_addr, (char *)opt + off, 17908 IP_ADDR_LEN); 17909 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17910 /* FALLTHRU */ 17911 case IPOPT_TS_TSONLY: 17912 off = opt[IPOPT_OFFSET] - 1; 17913 /* Compute # of milliseconds since midnight */ 17914 gethrestime(&now); 17915 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17916 now.tv_nsec / (NANOSEC / MILLISEC); 17917 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17918 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17919 break; 17920 } 17921 break; 17922 } 17923 } 17924 return (B_TRUE); 17925 17926 bad_src_route: 17927 q = WR(q); 17928 if (q->q_next != NULL) 17929 ill = q->q_ptr; 17930 else 17931 ill = NULL; 17932 17933 /* make sure we clear any indication of a hardware checksum */ 17934 DB_CKSUMFLAGS(mp) = 0; 17935 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17936 if (zoneid == ALL_ZONES) 17937 freemsg(mp); 17938 else 17939 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17940 return (B_FALSE); 17941 17942 } 17943 17944 /* 17945 * Process IP options in an inbound packet. If an option affects the 17946 * effective destination address, return the next hop address via dstp. 17947 * Returns -1 if something fails in which case an ICMP error has been sent 17948 * and mp freed. 17949 */ 17950 static int 17951 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17952 ip_stack_t *ipst) 17953 { 17954 ipoptp_t opts; 17955 uchar_t *opt; 17956 uint8_t optval; 17957 uint8_t optlen; 17958 ipaddr_t dst; 17959 intptr_t code = 0; 17960 ire_t *ire = NULL; 17961 zoneid_t zoneid; 17962 ill_t *ill; 17963 17964 ip2dbg(("ip_rput_options\n")); 17965 dst = ipha->ipha_dst; 17966 for (optval = ipoptp_first(&opts, ipha); 17967 optval != IPOPT_EOL; 17968 optval = ipoptp_next(&opts)) { 17969 opt = opts.ipoptp_cur; 17970 optlen = opts.ipoptp_len; 17971 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17972 optval, optlen)); 17973 /* 17974 * Note: we need to verify the checksum before we 17975 * modify anything thus this routine only extracts the next 17976 * hop dst from any source route. 17977 */ 17978 switch (optval) { 17979 uint32_t off; 17980 case IPOPT_SSRR: 17981 case IPOPT_LSRR: 17982 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17983 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17984 if (ire == NULL) { 17985 if (optval == IPOPT_SSRR) { 17986 ip1dbg(("ip_rput_options: not next" 17987 " strict source route 0x%x\n", 17988 ntohl(dst))); 17989 code = (char *)&ipha->ipha_dst - 17990 (char *)ipha; 17991 goto param_prob; /* RouterReq's */ 17992 } 17993 ip2dbg(("ip_rput_options: " 17994 "not next source route 0x%x\n", 17995 ntohl(dst))); 17996 break; 17997 } 17998 ire_refrele(ire); 17999 18000 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18001 ip1dbg(( 18002 "ip_rput_options: bad option offset\n")); 18003 code = (char *)&opt[IPOPT_OLEN] - 18004 (char *)ipha; 18005 goto param_prob; 18006 } 18007 off = opt[IPOPT_OFFSET]; 18008 off--; 18009 redo_srr: 18010 if (optlen < IP_ADDR_LEN || 18011 off > optlen - IP_ADDR_LEN) { 18012 /* End of source route */ 18013 ip1dbg(("ip_rput_options: end of SR\n")); 18014 break; 18015 } 18016 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18017 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18018 ntohl(dst))); 18019 18020 /* 18021 * Check if our address is present more than 18022 * once as consecutive hops in source route. 18023 * XXX verify per-interface ip_forwarding 18024 * for source route? 18025 */ 18026 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18027 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18028 18029 if (ire != NULL) { 18030 ire_refrele(ire); 18031 off += IP_ADDR_LEN; 18032 goto redo_srr; 18033 } 18034 18035 if (dst == htonl(INADDR_LOOPBACK)) { 18036 ip1dbg(("ip_rput_options: loopback addr in " 18037 "source route!\n")); 18038 goto bad_src_route; 18039 } 18040 /* 18041 * For strict: verify that dst is directly 18042 * reachable. 18043 */ 18044 if (optval == IPOPT_SSRR) { 18045 ire = ire_ftable_lookup(dst, 0, 0, 18046 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18047 MBLK_GETLABEL(mp), 18048 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18049 if (ire == NULL) { 18050 ip1dbg(("ip_rput_options: SSRR not " 18051 "directly reachable: 0x%x\n", 18052 ntohl(dst))); 18053 goto bad_src_route; 18054 } 18055 ire_refrele(ire); 18056 } 18057 /* 18058 * Defer update of the offset and the record route 18059 * until the packet is forwarded. 18060 */ 18061 break; 18062 case IPOPT_RR: 18063 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18064 ip1dbg(( 18065 "ip_rput_options: bad option offset\n")); 18066 code = (char *)&opt[IPOPT_OLEN] - 18067 (char *)ipha; 18068 goto param_prob; 18069 } 18070 break; 18071 case IPOPT_TS: 18072 /* 18073 * Verify that length >= 5 and that there is either 18074 * room for another timestamp or that the overflow 18075 * counter is not maxed out. 18076 */ 18077 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18078 if (optlen < IPOPT_MINLEN_IT) { 18079 goto param_prob; 18080 } 18081 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18082 ip1dbg(( 18083 "ip_rput_options: bad option offset\n")); 18084 code = (char *)&opt[IPOPT_OFFSET] - 18085 (char *)ipha; 18086 goto param_prob; 18087 } 18088 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18089 case IPOPT_TS_TSONLY: 18090 off = IPOPT_TS_TIMELEN; 18091 break; 18092 case IPOPT_TS_TSANDADDR: 18093 case IPOPT_TS_PRESPEC: 18094 case IPOPT_TS_PRESPEC_RFC791: 18095 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18096 break; 18097 default: 18098 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18099 (char *)ipha; 18100 goto param_prob; 18101 } 18102 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18103 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18104 /* 18105 * No room and the overflow counter is 15 18106 * already. 18107 */ 18108 goto param_prob; 18109 } 18110 break; 18111 } 18112 } 18113 18114 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18115 *dstp = dst; 18116 return (0); 18117 } 18118 18119 ip1dbg(("ip_rput_options: error processing IP options.")); 18120 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18121 18122 param_prob: 18123 q = WR(q); 18124 if (q->q_next != NULL) 18125 ill = q->q_ptr; 18126 else 18127 ill = NULL; 18128 18129 /* make sure we clear any indication of a hardware checksum */ 18130 DB_CKSUMFLAGS(mp) = 0; 18131 /* Don't know whether this is for non-global or global/forwarding */ 18132 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18133 if (zoneid == ALL_ZONES) 18134 freemsg(mp); 18135 else 18136 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18137 return (-1); 18138 18139 bad_src_route: 18140 q = WR(q); 18141 if (q->q_next != NULL) 18142 ill = q->q_ptr; 18143 else 18144 ill = NULL; 18145 18146 /* make sure we clear any indication of a hardware checksum */ 18147 DB_CKSUMFLAGS(mp) = 0; 18148 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18149 if (zoneid == ALL_ZONES) 18150 freemsg(mp); 18151 else 18152 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18153 return (-1); 18154 } 18155 18156 /* 18157 * IP & ICMP info in >=14 msg's ... 18158 * - ip fixed part (mib2_ip_t) 18159 * - icmp fixed part (mib2_icmp_t) 18160 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18161 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18162 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18163 * - ipRouteAttributeTable (ip 102) labeled routes 18164 * - ip multicast membership (ip_member_t) 18165 * - ip multicast source filtering (ip_grpsrc_t) 18166 * - igmp fixed part (struct igmpstat) 18167 * - multicast routing stats (struct mrtstat) 18168 * - multicast routing vifs (array of struct vifctl) 18169 * - multicast routing routes (array of struct mfcctl) 18170 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18171 * One per ill plus one generic 18172 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18173 * One per ill plus one generic 18174 * - ipv6RouteEntry all IPv6 IREs 18175 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18176 * - ipv6NetToMediaEntry all Neighbor Cache entries 18177 * - ipv6AddrEntry all IPv6 ipifs 18178 * - ipv6 multicast membership (ipv6_member_t) 18179 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18180 * 18181 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18182 * 18183 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18184 * already filled in by the caller. 18185 * Return value of 0 indicates that no messages were sent and caller 18186 * should free mpctl. 18187 */ 18188 int 18189 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18190 { 18191 ip_stack_t *ipst; 18192 sctp_stack_t *sctps; 18193 18194 18195 if (q->q_next != NULL) { 18196 ipst = ILLQ_TO_IPST(q); 18197 } else { 18198 ipst = CONNQ_TO_IPST(q); 18199 } 18200 ASSERT(ipst != NULL); 18201 sctps = ipst->ips_netstack->netstack_sctp; 18202 18203 if (mpctl == NULL || mpctl->b_cont == NULL) { 18204 return (0); 18205 } 18206 18207 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18208 ipst)) == NULL) { 18209 return (1); 18210 } 18211 18212 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18213 return (1); 18214 } 18215 18216 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18217 return (1); 18218 } 18219 18220 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18221 return (1); 18222 } 18223 18224 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18225 return (1); 18226 } 18227 18228 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18229 return (1); 18230 } 18231 18232 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18233 return (1); 18234 } 18235 18236 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18237 return (1); 18238 } 18239 18240 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18241 return (1); 18242 } 18243 18244 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18245 return (1); 18246 } 18247 18248 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18249 return (1); 18250 } 18251 18252 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18253 return (1); 18254 } 18255 18256 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18257 return (1); 18258 } 18259 18260 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18261 return (1); 18262 } 18263 18264 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18265 return (1); 18266 } 18267 18268 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18269 if (mpctl == NULL) { 18270 return (1); 18271 } 18272 18273 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18274 return (1); 18275 } 18276 freemsg(mpctl); 18277 return (1); 18278 } 18279 18280 18281 /* Get global (legacy) IPv4 statistics */ 18282 static mblk_t * 18283 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18284 ip_stack_t *ipst) 18285 { 18286 mib2_ip_t old_ip_mib; 18287 struct opthdr *optp; 18288 mblk_t *mp2ctl; 18289 18290 /* 18291 * make a copy of the original message 18292 */ 18293 mp2ctl = copymsg(mpctl); 18294 18295 /* fixed length IP structure... */ 18296 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18297 optp->level = MIB2_IP; 18298 optp->name = 0; 18299 SET_MIB(old_ip_mib.ipForwarding, 18300 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18301 SET_MIB(old_ip_mib.ipDefaultTTL, 18302 (uint32_t)ipst->ips_ip_def_ttl); 18303 SET_MIB(old_ip_mib.ipReasmTimeout, 18304 ipst->ips_ip_g_frag_timeout); 18305 SET_MIB(old_ip_mib.ipAddrEntrySize, 18306 sizeof (mib2_ipAddrEntry_t)); 18307 SET_MIB(old_ip_mib.ipRouteEntrySize, 18308 sizeof (mib2_ipRouteEntry_t)); 18309 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18310 sizeof (mib2_ipNetToMediaEntry_t)); 18311 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18312 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18313 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18314 sizeof (mib2_ipAttributeEntry_t)); 18315 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18316 18317 /* 18318 * Grab the statistics from the new IP MIB 18319 */ 18320 SET_MIB(old_ip_mib.ipInReceives, 18321 (uint32_t)ipmib->ipIfStatsHCInReceives); 18322 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18323 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18324 SET_MIB(old_ip_mib.ipForwDatagrams, 18325 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18326 SET_MIB(old_ip_mib.ipInUnknownProtos, 18327 ipmib->ipIfStatsInUnknownProtos); 18328 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18329 SET_MIB(old_ip_mib.ipInDelivers, 18330 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18331 SET_MIB(old_ip_mib.ipOutRequests, 18332 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18333 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18334 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18335 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18336 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18337 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18338 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18339 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18340 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18341 18342 /* ipRoutingDiscards is not being used */ 18343 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18344 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18345 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18346 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18347 SET_MIB(old_ip_mib.ipReasmDuplicates, 18348 ipmib->ipIfStatsReasmDuplicates); 18349 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18350 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18351 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18352 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18353 SET_MIB(old_ip_mib.rawipInOverflows, 18354 ipmib->rawipIfStatsInOverflows); 18355 18356 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18357 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18358 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18359 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18360 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18361 ipmib->ipIfStatsOutSwitchIPVersion); 18362 18363 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18364 (int)sizeof (old_ip_mib))) { 18365 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18366 (uint_t)sizeof (old_ip_mib))); 18367 } 18368 18369 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18370 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18371 (int)optp->level, (int)optp->name, (int)optp->len)); 18372 qreply(q, mpctl); 18373 return (mp2ctl); 18374 } 18375 18376 /* Per interface IPv4 statistics */ 18377 static mblk_t * 18378 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18379 { 18380 struct opthdr *optp; 18381 mblk_t *mp2ctl; 18382 ill_t *ill; 18383 ill_walk_context_t ctx; 18384 mblk_t *mp_tail = NULL; 18385 mib2_ipIfStatsEntry_t global_ip_mib; 18386 18387 /* 18388 * Make a copy of the original message 18389 */ 18390 mp2ctl = copymsg(mpctl); 18391 18392 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18393 optp->level = MIB2_IP; 18394 optp->name = MIB2_IP_TRAFFIC_STATS; 18395 /* Include "unknown interface" ip_mib */ 18396 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18397 ipst->ips_ip_mib.ipIfStatsIfIndex = 18398 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18399 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18400 (ipst->ips_ip_g_forward ? 1 : 2)); 18401 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18402 (uint32_t)ipst->ips_ip_def_ttl); 18403 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18404 sizeof (mib2_ipIfStatsEntry_t)); 18405 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18406 sizeof (mib2_ipAddrEntry_t)); 18407 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18408 sizeof (mib2_ipRouteEntry_t)); 18409 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18410 sizeof (mib2_ipNetToMediaEntry_t)); 18411 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18412 sizeof (ip_member_t)); 18413 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18414 sizeof (ip_grpsrc_t)); 18415 18416 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18417 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18418 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18419 "failed to allocate %u bytes\n", 18420 (uint_t)sizeof (ipst->ips_ip_mib))); 18421 } 18422 18423 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18424 18425 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18426 ill = ILL_START_WALK_V4(&ctx, ipst); 18427 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18428 ill->ill_ip_mib->ipIfStatsIfIndex = 18429 ill->ill_phyint->phyint_ifindex; 18430 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18431 (ipst->ips_ip_g_forward ? 1 : 2)); 18432 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18433 (uint32_t)ipst->ips_ip_def_ttl); 18434 18435 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18436 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18437 (char *)ill->ill_ip_mib, 18438 (int)sizeof (*ill->ill_ip_mib))) { 18439 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18440 "failed to allocate %u bytes\n", 18441 (uint_t)sizeof (*ill->ill_ip_mib))); 18442 } 18443 } 18444 rw_exit(&ipst->ips_ill_g_lock); 18445 18446 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18447 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18448 "level %d, name %d, len %d\n", 18449 (int)optp->level, (int)optp->name, (int)optp->len)); 18450 qreply(q, mpctl); 18451 18452 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18453 } 18454 18455 /* Global IPv4 ICMP statistics */ 18456 static mblk_t * 18457 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18458 { 18459 struct opthdr *optp; 18460 mblk_t *mp2ctl; 18461 18462 /* 18463 * Make a copy of the original message 18464 */ 18465 mp2ctl = copymsg(mpctl); 18466 18467 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18468 optp->level = MIB2_ICMP; 18469 optp->name = 0; 18470 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18471 (int)sizeof (ipst->ips_icmp_mib))) { 18472 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18473 (uint_t)sizeof (ipst->ips_icmp_mib))); 18474 } 18475 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18476 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18477 (int)optp->level, (int)optp->name, (int)optp->len)); 18478 qreply(q, mpctl); 18479 return (mp2ctl); 18480 } 18481 18482 /* Global IPv4 IGMP statistics */ 18483 static mblk_t * 18484 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18485 { 18486 struct opthdr *optp; 18487 mblk_t *mp2ctl; 18488 18489 /* 18490 * make a copy of the original message 18491 */ 18492 mp2ctl = copymsg(mpctl); 18493 18494 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18495 optp->level = EXPER_IGMP; 18496 optp->name = 0; 18497 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18498 (int)sizeof (ipst->ips_igmpstat))) { 18499 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18500 (uint_t)sizeof (ipst->ips_igmpstat))); 18501 } 18502 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18503 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18504 (int)optp->level, (int)optp->name, (int)optp->len)); 18505 qreply(q, mpctl); 18506 return (mp2ctl); 18507 } 18508 18509 /* Global IPv4 Multicast Routing statistics */ 18510 static mblk_t * 18511 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18512 { 18513 struct opthdr *optp; 18514 mblk_t *mp2ctl; 18515 18516 /* 18517 * make a copy of the original message 18518 */ 18519 mp2ctl = copymsg(mpctl); 18520 18521 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18522 optp->level = EXPER_DVMRP; 18523 optp->name = 0; 18524 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18525 ip0dbg(("ip_mroute_stats: failed\n")); 18526 } 18527 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18528 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18529 (int)optp->level, (int)optp->name, (int)optp->len)); 18530 qreply(q, mpctl); 18531 return (mp2ctl); 18532 } 18533 18534 /* IPv4 address information */ 18535 static mblk_t * 18536 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18537 { 18538 struct opthdr *optp; 18539 mblk_t *mp2ctl; 18540 mblk_t *mp_tail = NULL; 18541 ill_t *ill; 18542 ipif_t *ipif; 18543 uint_t bitval; 18544 mib2_ipAddrEntry_t mae; 18545 zoneid_t zoneid; 18546 ill_walk_context_t ctx; 18547 18548 /* 18549 * make a copy of the original message 18550 */ 18551 mp2ctl = copymsg(mpctl); 18552 18553 /* ipAddrEntryTable */ 18554 18555 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18556 optp->level = MIB2_IP; 18557 optp->name = MIB2_IP_ADDR; 18558 zoneid = Q_TO_CONN(q)->conn_zoneid; 18559 18560 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18561 ill = ILL_START_WALK_V4(&ctx, ipst); 18562 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18563 for (ipif = ill->ill_ipif; ipif != NULL; 18564 ipif = ipif->ipif_next) { 18565 if (ipif->ipif_zoneid != zoneid && 18566 ipif->ipif_zoneid != ALL_ZONES) 18567 continue; 18568 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18569 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18570 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18571 18572 (void) ipif_get_name(ipif, 18573 mae.ipAdEntIfIndex.o_bytes, 18574 OCTET_LENGTH); 18575 mae.ipAdEntIfIndex.o_length = 18576 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18577 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18578 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18579 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18580 mae.ipAdEntInfo.ae_subnet_len = 18581 ip_mask_to_plen(ipif->ipif_net_mask); 18582 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18583 for (bitval = 1; 18584 bitval && 18585 !(bitval & ipif->ipif_brd_addr); 18586 bitval <<= 1) 18587 noop; 18588 mae.ipAdEntBcastAddr = bitval; 18589 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18590 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18591 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18592 mae.ipAdEntInfo.ae_broadcast_addr = 18593 ipif->ipif_brd_addr; 18594 mae.ipAdEntInfo.ae_pp_dst_addr = 18595 ipif->ipif_pp_dst_addr; 18596 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18597 ill->ill_flags | ill->ill_phyint->phyint_flags; 18598 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18599 18600 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18601 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18602 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18603 "allocate %u bytes\n", 18604 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18605 } 18606 } 18607 } 18608 rw_exit(&ipst->ips_ill_g_lock); 18609 18610 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18611 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18612 (int)optp->level, (int)optp->name, (int)optp->len)); 18613 qreply(q, mpctl); 18614 return (mp2ctl); 18615 } 18616 18617 /* IPv6 address information */ 18618 static mblk_t * 18619 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18620 { 18621 struct opthdr *optp; 18622 mblk_t *mp2ctl; 18623 mblk_t *mp_tail = NULL; 18624 ill_t *ill; 18625 ipif_t *ipif; 18626 mib2_ipv6AddrEntry_t mae6; 18627 zoneid_t zoneid; 18628 ill_walk_context_t ctx; 18629 18630 /* 18631 * make a copy of the original message 18632 */ 18633 mp2ctl = copymsg(mpctl); 18634 18635 /* ipv6AddrEntryTable */ 18636 18637 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18638 optp->level = MIB2_IP6; 18639 optp->name = MIB2_IP6_ADDR; 18640 zoneid = Q_TO_CONN(q)->conn_zoneid; 18641 18642 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18643 ill = ILL_START_WALK_V6(&ctx, ipst); 18644 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18645 for (ipif = ill->ill_ipif; ipif != NULL; 18646 ipif = ipif->ipif_next) { 18647 if (ipif->ipif_zoneid != zoneid && 18648 ipif->ipif_zoneid != ALL_ZONES) 18649 continue; 18650 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18651 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18652 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18653 18654 (void) ipif_get_name(ipif, 18655 mae6.ipv6AddrIfIndex.o_bytes, 18656 OCTET_LENGTH); 18657 mae6.ipv6AddrIfIndex.o_length = 18658 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18659 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18660 mae6.ipv6AddrPfxLength = 18661 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18662 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18663 mae6.ipv6AddrInfo.ae_subnet_len = 18664 mae6.ipv6AddrPfxLength; 18665 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18666 18667 /* Type: stateless(1), stateful(2), unknown(3) */ 18668 if (ipif->ipif_flags & IPIF_ADDRCONF) 18669 mae6.ipv6AddrType = 1; 18670 else 18671 mae6.ipv6AddrType = 2; 18672 /* Anycast: true(1), false(2) */ 18673 if (ipif->ipif_flags & IPIF_ANYCAST) 18674 mae6.ipv6AddrAnycastFlag = 1; 18675 else 18676 mae6.ipv6AddrAnycastFlag = 2; 18677 18678 /* 18679 * Address status: preferred(1), deprecated(2), 18680 * invalid(3), inaccessible(4), unknown(5) 18681 */ 18682 if (ipif->ipif_flags & IPIF_NOLOCAL) 18683 mae6.ipv6AddrStatus = 3; 18684 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18685 mae6.ipv6AddrStatus = 2; 18686 else 18687 mae6.ipv6AddrStatus = 1; 18688 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18689 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18690 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18691 ipif->ipif_v6pp_dst_addr; 18692 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18693 ill->ill_flags | ill->ill_phyint->phyint_flags; 18694 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18695 mae6.ipv6AddrIdentifier = ill->ill_token; 18696 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18697 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18698 mae6.ipv6AddrRetransmitTime = 18699 ill->ill_reachable_retrans_time; 18700 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18701 (char *)&mae6, 18702 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18703 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18704 "allocate %u bytes\n", 18705 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18706 } 18707 } 18708 } 18709 rw_exit(&ipst->ips_ill_g_lock); 18710 18711 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18712 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18713 (int)optp->level, (int)optp->name, (int)optp->len)); 18714 qreply(q, mpctl); 18715 return (mp2ctl); 18716 } 18717 18718 /* IPv4 multicast group membership. */ 18719 static mblk_t * 18720 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18721 { 18722 struct opthdr *optp; 18723 mblk_t *mp2ctl; 18724 ill_t *ill; 18725 ipif_t *ipif; 18726 ilm_t *ilm; 18727 ip_member_t ipm; 18728 mblk_t *mp_tail = NULL; 18729 ill_walk_context_t ctx; 18730 zoneid_t zoneid; 18731 18732 /* 18733 * make a copy of the original message 18734 */ 18735 mp2ctl = copymsg(mpctl); 18736 zoneid = Q_TO_CONN(q)->conn_zoneid; 18737 18738 /* ipGroupMember table */ 18739 optp = (struct opthdr *)&mpctl->b_rptr[ 18740 sizeof (struct T_optmgmt_ack)]; 18741 optp->level = MIB2_IP; 18742 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18743 18744 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18745 ill = ILL_START_WALK_V4(&ctx, ipst); 18746 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18747 ILM_WALKER_HOLD(ill); 18748 for (ipif = ill->ill_ipif; ipif != NULL; 18749 ipif = ipif->ipif_next) { 18750 if (ipif->ipif_zoneid != zoneid && 18751 ipif->ipif_zoneid != ALL_ZONES) 18752 continue; /* not this zone */ 18753 (void) ipif_get_name(ipif, 18754 ipm.ipGroupMemberIfIndex.o_bytes, 18755 OCTET_LENGTH); 18756 ipm.ipGroupMemberIfIndex.o_length = 18757 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18758 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18759 ASSERT(ilm->ilm_ipif != NULL); 18760 ASSERT(ilm->ilm_ill == NULL); 18761 if (ilm->ilm_ipif != ipif) 18762 continue; 18763 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18764 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18765 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18766 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18767 (char *)&ipm, (int)sizeof (ipm))) { 18768 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18769 "failed to allocate %u bytes\n", 18770 (uint_t)sizeof (ipm))); 18771 } 18772 } 18773 } 18774 ILM_WALKER_RELE(ill); 18775 } 18776 rw_exit(&ipst->ips_ill_g_lock); 18777 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18778 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18779 (int)optp->level, (int)optp->name, (int)optp->len)); 18780 qreply(q, mpctl); 18781 return (mp2ctl); 18782 } 18783 18784 /* IPv6 multicast group membership. */ 18785 static mblk_t * 18786 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18787 { 18788 struct opthdr *optp; 18789 mblk_t *mp2ctl; 18790 ill_t *ill; 18791 ilm_t *ilm; 18792 ipv6_member_t ipm6; 18793 mblk_t *mp_tail = NULL; 18794 ill_walk_context_t ctx; 18795 zoneid_t zoneid; 18796 18797 /* 18798 * make a copy of the original message 18799 */ 18800 mp2ctl = copymsg(mpctl); 18801 zoneid = Q_TO_CONN(q)->conn_zoneid; 18802 18803 /* ip6GroupMember table */ 18804 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18805 optp->level = MIB2_IP6; 18806 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18807 18808 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18809 ill = ILL_START_WALK_V6(&ctx, ipst); 18810 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18811 ILM_WALKER_HOLD(ill); 18812 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18813 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18814 ASSERT(ilm->ilm_ipif == NULL); 18815 ASSERT(ilm->ilm_ill != NULL); 18816 if (ilm->ilm_zoneid != zoneid) 18817 continue; /* not this zone */ 18818 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18819 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18820 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18821 if (!snmp_append_data2(mpctl->b_cont, 18822 &mp_tail, 18823 (char *)&ipm6, (int)sizeof (ipm6))) { 18824 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18825 "failed to allocate %u bytes\n", 18826 (uint_t)sizeof (ipm6))); 18827 } 18828 } 18829 ILM_WALKER_RELE(ill); 18830 } 18831 rw_exit(&ipst->ips_ill_g_lock); 18832 18833 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18834 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18835 (int)optp->level, (int)optp->name, (int)optp->len)); 18836 qreply(q, mpctl); 18837 return (mp2ctl); 18838 } 18839 18840 /* IP multicast filtered sources */ 18841 static mblk_t * 18842 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18843 { 18844 struct opthdr *optp; 18845 mblk_t *mp2ctl; 18846 ill_t *ill; 18847 ipif_t *ipif; 18848 ilm_t *ilm; 18849 ip_grpsrc_t ips; 18850 mblk_t *mp_tail = NULL; 18851 ill_walk_context_t ctx; 18852 zoneid_t zoneid; 18853 int i; 18854 slist_t *sl; 18855 18856 /* 18857 * make a copy of the original message 18858 */ 18859 mp2ctl = copymsg(mpctl); 18860 zoneid = Q_TO_CONN(q)->conn_zoneid; 18861 18862 /* ipGroupSource table */ 18863 optp = (struct opthdr *)&mpctl->b_rptr[ 18864 sizeof (struct T_optmgmt_ack)]; 18865 optp->level = MIB2_IP; 18866 optp->name = EXPER_IP_GROUP_SOURCES; 18867 18868 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18869 ill = ILL_START_WALK_V4(&ctx, ipst); 18870 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18871 ILM_WALKER_HOLD(ill); 18872 for (ipif = ill->ill_ipif; ipif != NULL; 18873 ipif = ipif->ipif_next) { 18874 if (ipif->ipif_zoneid != zoneid) 18875 continue; /* not this zone */ 18876 (void) ipif_get_name(ipif, 18877 ips.ipGroupSourceIfIndex.o_bytes, 18878 OCTET_LENGTH); 18879 ips.ipGroupSourceIfIndex.o_length = 18880 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18881 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18882 ASSERT(ilm->ilm_ipif != NULL); 18883 ASSERT(ilm->ilm_ill == NULL); 18884 sl = ilm->ilm_filter; 18885 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18886 continue; 18887 ips.ipGroupSourceGroup = ilm->ilm_addr; 18888 for (i = 0; i < sl->sl_numsrc; i++) { 18889 if (!IN6_IS_ADDR_V4MAPPED( 18890 &sl->sl_addr[i])) 18891 continue; 18892 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18893 ips.ipGroupSourceAddress); 18894 if (snmp_append_data2(mpctl->b_cont, 18895 &mp_tail, (char *)&ips, 18896 (int)sizeof (ips)) == 0) { 18897 ip1dbg(("ip_snmp_get_mib2_" 18898 "ip_group_src: failed to " 18899 "allocate %u bytes\n", 18900 (uint_t)sizeof (ips))); 18901 } 18902 } 18903 } 18904 } 18905 ILM_WALKER_RELE(ill); 18906 } 18907 rw_exit(&ipst->ips_ill_g_lock); 18908 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18909 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18910 (int)optp->level, (int)optp->name, (int)optp->len)); 18911 qreply(q, mpctl); 18912 return (mp2ctl); 18913 } 18914 18915 /* IPv6 multicast filtered sources. */ 18916 static mblk_t * 18917 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18918 { 18919 struct opthdr *optp; 18920 mblk_t *mp2ctl; 18921 ill_t *ill; 18922 ilm_t *ilm; 18923 ipv6_grpsrc_t ips6; 18924 mblk_t *mp_tail = NULL; 18925 ill_walk_context_t ctx; 18926 zoneid_t zoneid; 18927 int i; 18928 slist_t *sl; 18929 18930 /* 18931 * make a copy of the original message 18932 */ 18933 mp2ctl = copymsg(mpctl); 18934 zoneid = Q_TO_CONN(q)->conn_zoneid; 18935 18936 /* ip6GroupMember table */ 18937 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18938 optp->level = MIB2_IP6; 18939 optp->name = EXPER_IP6_GROUP_SOURCES; 18940 18941 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18942 ill = ILL_START_WALK_V6(&ctx, ipst); 18943 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18944 ILM_WALKER_HOLD(ill); 18945 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18946 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18947 ASSERT(ilm->ilm_ipif == NULL); 18948 ASSERT(ilm->ilm_ill != NULL); 18949 sl = ilm->ilm_filter; 18950 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18951 continue; 18952 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18953 for (i = 0; i < sl->sl_numsrc; i++) { 18954 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18955 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18956 (char *)&ips6, (int)sizeof (ips6))) { 18957 ip1dbg(("ip_snmp_get_mib2_ip6_" 18958 "group_src: failed to allocate " 18959 "%u bytes\n", 18960 (uint_t)sizeof (ips6))); 18961 } 18962 } 18963 } 18964 ILM_WALKER_RELE(ill); 18965 } 18966 rw_exit(&ipst->ips_ill_g_lock); 18967 18968 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18969 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18970 (int)optp->level, (int)optp->name, (int)optp->len)); 18971 qreply(q, mpctl); 18972 return (mp2ctl); 18973 } 18974 18975 /* Multicast routing virtual interface table. */ 18976 static mblk_t * 18977 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18978 { 18979 struct opthdr *optp; 18980 mblk_t *mp2ctl; 18981 18982 /* 18983 * make a copy of the original message 18984 */ 18985 mp2ctl = copymsg(mpctl); 18986 18987 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18988 optp->level = EXPER_DVMRP; 18989 optp->name = EXPER_DVMRP_VIF; 18990 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18991 ip0dbg(("ip_mroute_vif: failed\n")); 18992 } 18993 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18994 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18995 (int)optp->level, (int)optp->name, (int)optp->len)); 18996 qreply(q, mpctl); 18997 return (mp2ctl); 18998 } 18999 19000 /* Multicast routing table. */ 19001 static mblk_t * 19002 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19003 { 19004 struct opthdr *optp; 19005 mblk_t *mp2ctl; 19006 19007 /* 19008 * make a copy of the original message 19009 */ 19010 mp2ctl = copymsg(mpctl); 19011 19012 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19013 optp->level = EXPER_DVMRP; 19014 optp->name = EXPER_DVMRP_MRT; 19015 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19016 ip0dbg(("ip_mroute_mrt: failed\n")); 19017 } 19018 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19019 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19020 (int)optp->level, (int)optp->name, (int)optp->len)); 19021 qreply(q, mpctl); 19022 return (mp2ctl); 19023 } 19024 19025 /* 19026 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19027 * in one IRE walk. 19028 */ 19029 static mblk_t * 19030 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19031 { 19032 struct opthdr *optp; 19033 mblk_t *mp2ctl; /* Returned */ 19034 mblk_t *mp3ctl; /* nettomedia */ 19035 mblk_t *mp4ctl; /* routeattrs */ 19036 iproutedata_t ird; 19037 zoneid_t zoneid; 19038 19039 /* 19040 * make copies of the original message 19041 * - mp2ctl is returned unchanged to the caller for his use 19042 * - mpctl is sent upstream as ipRouteEntryTable 19043 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19044 * - mp4ctl is sent upstream as ipRouteAttributeTable 19045 */ 19046 mp2ctl = copymsg(mpctl); 19047 mp3ctl = copymsg(mpctl); 19048 mp4ctl = copymsg(mpctl); 19049 if (mp3ctl == NULL || mp4ctl == NULL) { 19050 freemsg(mp4ctl); 19051 freemsg(mp3ctl); 19052 freemsg(mp2ctl); 19053 freemsg(mpctl); 19054 return (NULL); 19055 } 19056 19057 bzero(&ird, sizeof (ird)); 19058 19059 ird.ird_route.lp_head = mpctl->b_cont; 19060 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19061 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19062 19063 zoneid = Q_TO_CONN(q)->conn_zoneid; 19064 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19065 if (zoneid == GLOBAL_ZONEID) { 19066 /* 19067 * Those IREs are used by Mobile-IP; since mipagent(1M) 19068 * requires the sys_net_config or sys_ip_config privilege, 19069 * it can only run in the global zone or an exclusive-IP zone, 19070 * and both those have a conn_zoneid == GLOBAL_ZONEID. 19071 */ 19072 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst); 19073 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst); 19074 } 19075 19076 /* ipRouteEntryTable in mpctl */ 19077 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19078 optp->level = MIB2_IP; 19079 optp->name = MIB2_IP_ROUTE; 19080 optp->len = msgdsize(ird.ird_route.lp_head); 19081 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19082 (int)optp->level, (int)optp->name, (int)optp->len)); 19083 qreply(q, mpctl); 19084 19085 /* ipNetToMediaEntryTable in mp3ctl */ 19086 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19087 optp->level = MIB2_IP; 19088 optp->name = MIB2_IP_MEDIA; 19089 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19090 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19091 (int)optp->level, (int)optp->name, (int)optp->len)); 19092 qreply(q, mp3ctl); 19093 19094 /* ipRouteAttributeTable in mp4ctl */ 19095 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19096 optp->level = MIB2_IP; 19097 optp->name = EXPER_IP_RTATTR; 19098 optp->len = msgdsize(ird.ird_attrs.lp_head); 19099 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19100 (int)optp->level, (int)optp->name, (int)optp->len)); 19101 if (optp->len == 0) 19102 freemsg(mp4ctl); 19103 else 19104 qreply(q, mp4ctl); 19105 19106 return (mp2ctl); 19107 } 19108 19109 /* 19110 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19111 * ipv6NetToMediaEntryTable in an NDP walk. 19112 */ 19113 static mblk_t * 19114 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19115 { 19116 struct opthdr *optp; 19117 mblk_t *mp2ctl; /* Returned */ 19118 mblk_t *mp3ctl; /* nettomedia */ 19119 mblk_t *mp4ctl; /* routeattrs */ 19120 iproutedata_t ird; 19121 zoneid_t zoneid; 19122 19123 /* 19124 * make copies of the original message 19125 * - mp2ctl is returned unchanged to the caller for his use 19126 * - mpctl is sent upstream as ipv6RouteEntryTable 19127 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19128 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19129 */ 19130 mp2ctl = copymsg(mpctl); 19131 mp3ctl = copymsg(mpctl); 19132 mp4ctl = copymsg(mpctl); 19133 if (mp3ctl == NULL || mp4ctl == NULL) { 19134 freemsg(mp4ctl); 19135 freemsg(mp3ctl); 19136 freemsg(mp2ctl); 19137 freemsg(mpctl); 19138 return (NULL); 19139 } 19140 19141 bzero(&ird, sizeof (ird)); 19142 19143 ird.ird_route.lp_head = mpctl->b_cont; 19144 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19145 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19146 19147 zoneid = Q_TO_CONN(q)->conn_zoneid; 19148 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19149 19150 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19151 optp->level = MIB2_IP6; 19152 optp->name = MIB2_IP6_ROUTE; 19153 optp->len = msgdsize(ird.ird_route.lp_head); 19154 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19155 (int)optp->level, (int)optp->name, (int)optp->len)); 19156 qreply(q, mpctl); 19157 19158 /* ipv6NetToMediaEntryTable in mp3ctl */ 19159 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19160 19161 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19162 optp->level = MIB2_IP6; 19163 optp->name = MIB2_IP6_MEDIA; 19164 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19165 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19166 (int)optp->level, (int)optp->name, (int)optp->len)); 19167 qreply(q, mp3ctl); 19168 19169 /* ipv6RouteAttributeTable in mp4ctl */ 19170 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19171 optp->level = MIB2_IP6; 19172 optp->name = EXPER_IP_RTATTR; 19173 optp->len = msgdsize(ird.ird_attrs.lp_head); 19174 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19175 (int)optp->level, (int)optp->name, (int)optp->len)); 19176 if (optp->len == 0) 19177 freemsg(mp4ctl); 19178 else 19179 qreply(q, mp4ctl); 19180 19181 return (mp2ctl); 19182 } 19183 19184 /* 19185 * IPv6 mib: One per ill 19186 */ 19187 static mblk_t * 19188 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19189 { 19190 struct opthdr *optp; 19191 mblk_t *mp2ctl; 19192 ill_t *ill; 19193 ill_walk_context_t ctx; 19194 mblk_t *mp_tail = NULL; 19195 19196 /* 19197 * Make a copy of the original message 19198 */ 19199 mp2ctl = copymsg(mpctl); 19200 19201 /* fixed length IPv6 structure ... */ 19202 19203 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19204 optp->level = MIB2_IP6; 19205 optp->name = 0; 19206 /* Include "unknown interface" ip6_mib */ 19207 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19208 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19209 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19210 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19211 ipst->ips_ipv6_forward ? 1 : 2); 19212 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19213 ipst->ips_ipv6_def_hops); 19214 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19215 sizeof (mib2_ipIfStatsEntry_t)); 19216 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19217 sizeof (mib2_ipv6AddrEntry_t)); 19218 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19219 sizeof (mib2_ipv6RouteEntry_t)); 19220 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19221 sizeof (mib2_ipv6NetToMediaEntry_t)); 19222 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19223 sizeof (ipv6_member_t)); 19224 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19225 sizeof (ipv6_grpsrc_t)); 19226 19227 /* 19228 * Synchronize 64- and 32-bit counters 19229 */ 19230 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19231 ipIfStatsHCInReceives); 19232 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19233 ipIfStatsHCInDelivers); 19234 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19235 ipIfStatsHCOutRequests); 19236 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19237 ipIfStatsHCOutForwDatagrams); 19238 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19239 ipIfStatsHCOutMcastPkts); 19240 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19241 ipIfStatsHCInMcastPkts); 19242 19243 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19244 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19245 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19246 (uint_t)sizeof (ipst->ips_ip6_mib))); 19247 } 19248 19249 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19250 ill = ILL_START_WALK_V6(&ctx, ipst); 19251 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19252 ill->ill_ip_mib->ipIfStatsIfIndex = 19253 ill->ill_phyint->phyint_ifindex; 19254 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19255 ipst->ips_ipv6_forward ? 1 : 2); 19256 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19257 ill->ill_max_hops); 19258 19259 /* 19260 * Synchronize 64- and 32-bit counters 19261 */ 19262 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19263 ipIfStatsHCInReceives); 19264 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19265 ipIfStatsHCInDelivers); 19266 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19267 ipIfStatsHCOutRequests); 19268 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19269 ipIfStatsHCOutForwDatagrams); 19270 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19271 ipIfStatsHCOutMcastPkts); 19272 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19273 ipIfStatsHCInMcastPkts); 19274 19275 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19276 (char *)ill->ill_ip_mib, 19277 (int)sizeof (*ill->ill_ip_mib))) { 19278 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19279 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19280 } 19281 } 19282 rw_exit(&ipst->ips_ill_g_lock); 19283 19284 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19285 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19286 (int)optp->level, (int)optp->name, (int)optp->len)); 19287 qreply(q, mpctl); 19288 return (mp2ctl); 19289 } 19290 19291 /* 19292 * ICMPv6 mib: One per ill 19293 */ 19294 static mblk_t * 19295 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19296 { 19297 struct opthdr *optp; 19298 mblk_t *mp2ctl; 19299 ill_t *ill; 19300 ill_walk_context_t ctx; 19301 mblk_t *mp_tail = NULL; 19302 /* 19303 * Make a copy of the original message 19304 */ 19305 mp2ctl = copymsg(mpctl); 19306 19307 /* fixed length ICMPv6 structure ... */ 19308 19309 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19310 optp->level = MIB2_ICMP6; 19311 optp->name = 0; 19312 /* Include "unknown interface" icmp6_mib */ 19313 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19314 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19315 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19316 sizeof (mib2_ipv6IfIcmpEntry_t); 19317 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19318 (char *)&ipst->ips_icmp6_mib, 19319 (int)sizeof (ipst->ips_icmp6_mib))) { 19320 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19321 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19322 } 19323 19324 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19325 ill = ILL_START_WALK_V6(&ctx, ipst); 19326 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19327 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19328 ill->ill_phyint->phyint_ifindex; 19329 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19330 (char *)ill->ill_icmp6_mib, 19331 (int)sizeof (*ill->ill_icmp6_mib))) { 19332 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19333 "%u bytes\n", 19334 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19335 } 19336 } 19337 rw_exit(&ipst->ips_ill_g_lock); 19338 19339 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19340 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19341 (int)optp->level, (int)optp->name, (int)optp->len)); 19342 qreply(q, mpctl); 19343 return (mp2ctl); 19344 } 19345 19346 /* 19347 * ire_walk routine to create both ipRouteEntryTable and 19348 * ipRouteAttributeTable in one IRE walk 19349 */ 19350 static void 19351 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19352 { 19353 ill_t *ill; 19354 ipif_t *ipif; 19355 mib2_ipRouteEntry_t *re; 19356 mib2_ipAttributeEntry_t *iae, *iaeptr; 19357 ipaddr_t gw_addr; 19358 tsol_ire_gw_secattr_t *attrp; 19359 tsol_gc_t *gc = NULL; 19360 tsol_gcgrp_t *gcgrp = NULL; 19361 uint_t sacnt = 0; 19362 int i; 19363 19364 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19365 19366 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19367 return; 19368 19369 if ((attrp = ire->ire_gw_secattr) != NULL) { 19370 mutex_enter(&attrp->igsa_lock); 19371 if ((gc = attrp->igsa_gc) != NULL) { 19372 gcgrp = gc->gc_grp; 19373 ASSERT(gcgrp != NULL); 19374 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19375 sacnt = 1; 19376 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19377 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19378 gc = gcgrp->gcgrp_head; 19379 sacnt = gcgrp->gcgrp_count; 19380 } 19381 mutex_exit(&attrp->igsa_lock); 19382 19383 /* do nothing if there's no gc to report */ 19384 if (gc == NULL) { 19385 ASSERT(sacnt == 0); 19386 if (gcgrp != NULL) { 19387 /* we might as well drop the lock now */ 19388 rw_exit(&gcgrp->gcgrp_rwlock); 19389 gcgrp = NULL; 19390 } 19391 attrp = NULL; 19392 } 19393 19394 ASSERT(gc == NULL || (gcgrp != NULL && 19395 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19396 } 19397 ASSERT(sacnt == 0 || gc != NULL); 19398 19399 if (sacnt != 0 && 19400 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19401 kmem_free(re, sizeof (*re)); 19402 rw_exit(&gcgrp->gcgrp_rwlock); 19403 return; 19404 } 19405 19406 /* 19407 * Return all IRE types for route table... let caller pick and choose 19408 */ 19409 re->ipRouteDest = ire->ire_addr; 19410 ipif = ire->ire_ipif; 19411 re->ipRouteIfIndex.o_length = 0; 19412 if (ire->ire_type == IRE_CACHE) { 19413 ill = (ill_t *)ire->ire_stq->q_ptr; 19414 re->ipRouteIfIndex.o_length = 19415 ill->ill_name_length == 0 ? 0 : 19416 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19417 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19418 re->ipRouteIfIndex.o_length); 19419 } else if (ipif != NULL) { 19420 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19421 OCTET_LENGTH); 19422 re->ipRouteIfIndex.o_length = 19423 mi_strlen(re->ipRouteIfIndex.o_bytes); 19424 } 19425 re->ipRouteMetric1 = -1; 19426 re->ipRouteMetric2 = -1; 19427 re->ipRouteMetric3 = -1; 19428 re->ipRouteMetric4 = -1; 19429 19430 gw_addr = ire->ire_gateway_addr; 19431 19432 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19433 re->ipRouteNextHop = ire->ire_src_addr; 19434 else 19435 re->ipRouteNextHop = gw_addr; 19436 /* indirect(4), direct(3), or invalid(2) */ 19437 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19438 re->ipRouteType = 2; 19439 else 19440 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19441 re->ipRouteProto = -1; 19442 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19443 re->ipRouteMask = ire->ire_mask; 19444 re->ipRouteMetric5 = -1; 19445 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19446 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19447 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19448 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19449 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19450 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19451 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19452 re->ipRouteInfo.re_flags = ire->ire_flags; 19453 re->ipRouteInfo.re_in_ill.o_length = 0; 19454 19455 if (ire->ire_flags & RTF_DYNAMIC) { 19456 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19457 } else { 19458 re->ipRouteInfo.re_ire_type = ire->ire_type; 19459 } 19460 19461 if (ire->ire_in_ill != NULL) { 19462 re->ipRouteInfo.re_in_ill.o_length = 19463 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19464 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19465 bcopy(ire->ire_in_ill->ill_name, 19466 re->ipRouteInfo.re_in_ill.o_bytes, 19467 re->ipRouteInfo.re_in_ill.o_length); 19468 } 19469 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19470 19471 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19472 (char *)re, (int)sizeof (*re))) { 19473 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19474 (uint_t)sizeof (*re))); 19475 } 19476 19477 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19478 iaeptr->iae_routeidx = ird->ird_idx; 19479 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19480 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19481 } 19482 19483 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19484 (char *)iae, sacnt * sizeof (*iae))) { 19485 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19486 (unsigned)(sacnt * sizeof (*iae)))); 19487 } 19488 19489 /* bump route index for next pass */ 19490 ird->ird_idx++; 19491 19492 kmem_free(re, sizeof (*re)); 19493 if (sacnt != 0) 19494 kmem_free(iae, sacnt * sizeof (*iae)); 19495 19496 if (gcgrp != NULL) 19497 rw_exit(&gcgrp->gcgrp_rwlock); 19498 } 19499 19500 /* 19501 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19502 */ 19503 static void 19504 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19505 { 19506 ill_t *ill; 19507 ipif_t *ipif; 19508 mib2_ipv6RouteEntry_t *re; 19509 mib2_ipAttributeEntry_t *iae, *iaeptr; 19510 in6_addr_t gw_addr_v6; 19511 tsol_ire_gw_secattr_t *attrp; 19512 tsol_gc_t *gc = NULL; 19513 tsol_gcgrp_t *gcgrp = NULL; 19514 uint_t sacnt = 0; 19515 int i; 19516 19517 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19518 19519 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19520 return; 19521 19522 if ((attrp = ire->ire_gw_secattr) != NULL) { 19523 mutex_enter(&attrp->igsa_lock); 19524 if ((gc = attrp->igsa_gc) != NULL) { 19525 gcgrp = gc->gc_grp; 19526 ASSERT(gcgrp != NULL); 19527 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19528 sacnt = 1; 19529 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19530 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19531 gc = gcgrp->gcgrp_head; 19532 sacnt = gcgrp->gcgrp_count; 19533 } 19534 mutex_exit(&attrp->igsa_lock); 19535 19536 /* do nothing if there's no gc to report */ 19537 if (gc == NULL) { 19538 ASSERT(sacnt == 0); 19539 if (gcgrp != NULL) { 19540 /* we might as well drop the lock now */ 19541 rw_exit(&gcgrp->gcgrp_rwlock); 19542 gcgrp = NULL; 19543 } 19544 attrp = NULL; 19545 } 19546 19547 ASSERT(gc == NULL || (gcgrp != NULL && 19548 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19549 } 19550 ASSERT(sacnt == 0 || gc != NULL); 19551 19552 if (sacnt != 0 && 19553 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19554 kmem_free(re, sizeof (*re)); 19555 rw_exit(&gcgrp->gcgrp_rwlock); 19556 return; 19557 } 19558 19559 /* 19560 * Return all IRE types for route table... let caller pick and choose 19561 */ 19562 re->ipv6RouteDest = ire->ire_addr_v6; 19563 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19564 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19565 re->ipv6RouteIfIndex.o_length = 0; 19566 ipif = ire->ire_ipif; 19567 if (ire->ire_type == IRE_CACHE) { 19568 ill = (ill_t *)ire->ire_stq->q_ptr; 19569 re->ipv6RouteIfIndex.o_length = 19570 ill->ill_name_length == 0 ? 0 : 19571 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19572 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19573 re->ipv6RouteIfIndex.o_length); 19574 } else if (ipif != NULL) { 19575 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19576 OCTET_LENGTH); 19577 re->ipv6RouteIfIndex.o_length = 19578 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19579 } 19580 19581 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19582 19583 mutex_enter(&ire->ire_lock); 19584 gw_addr_v6 = ire->ire_gateway_addr_v6; 19585 mutex_exit(&ire->ire_lock); 19586 19587 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19588 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19589 else 19590 re->ipv6RouteNextHop = gw_addr_v6; 19591 19592 /* remote(4), local(3), or discard(2) */ 19593 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19594 re->ipv6RouteType = 2; 19595 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19596 re->ipv6RouteType = 3; 19597 else 19598 re->ipv6RouteType = 4; 19599 19600 re->ipv6RouteProtocol = -1; 19601 re->ipv6RoutePolicy = 0; 19602 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19603 re->ipv6RouteNextHopRDI = 0; 19604 re->ipv6RouteWeight = 0; 19605 re->ipv6RouteMetric = 0; 19606 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19607 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19608 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19609 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19610 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19611 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19612 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19613 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19614 19615 if (ire->ire_flags & RTF_DYNAMIC) { 19616 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19617 } else { 19618 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19619 } 19620 19621 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19622 (char *)re, (int)sizeof (*re))) { 19623 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19624 (uint_t)sizeof (*re))); 19625 } 19626 19627 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19628 iaeptr->iae_routeidx = ird->ird_idx; 19629 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19630 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19631 } 19632 19633 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19634 (char *)iae, sacnt * sizeof (*iae))) { 19635 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19636 (unsigned)(sacnt * sizeof (*iae)))); 19637 } 19638 19639 /* bump route index for next pass */ 19640 ird->ird_idx++; 19641 19642 kmem_free(re, sizeof (*re)); 19643 if (sacnt != 0) 19644 kmem_free(iae, sacnt * sizeof (*iae)); 19645 19646 if (gcgrp != NULL) 19647 rw_exit(&gcgrp->gcgrp_rwlock); 19648 } 19649 19650 /* 19651 * ndp_walk routine to create ipv6NetToMediaEntryTable 19652 */ 19653 static int 19654 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19655 { 19656 ill_t *ill; 19657 mib2_ipv6NetToMediaEntry_t ntme; 19658 dl_unitdata_req_t *dl; 19659 19660 ill = nce->nce_ill; 19661 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19662 return (0); 19663 19664 /* 19665 * Neighbor cache entry attached to IRE with on-link 19666 * destination. 19667 */ 19668 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19669 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19670 if ((ill->ill_flags & ILLF_XRESOLV) && 19671 (nce->nce_res_mp != NULL)) { 19672 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19673 ntme.ipv6NetToMediaPhysAddress.o_length = 19674 dl->dl_dest_addr_length; 19675 } else { 19676 ntme.ipv6NetToMediaPhysAddress.o_length = 19677 ill->ill_phys_addr_length; 19678 } 19679 if (nce->nce_res_mp != NULL) { 19680 bcopy((char *)nce->nce_res_mp->b_rptr + 19681 NCE_LL_ADDR_OFFSET(ill), 19682 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19683 ntme.ipv6NetToMediaPhysAddress.o_length); 19684 } else { 19685 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19686 ill->ill_phys_addr_length); 19687 } 19688 /* 19689 * Note: Returns ND_* states. Should be: 19690 * reachable(1), stale(2), delay(3), probe(4), 19691 * invalid(5), unknown(6) 19692 */ 19693 ntme.ipv6NetToMediaState = nce->nce_state; 19694 ntme.ipv6NetToMediaLastUpdated = 0; 19695 19696 /* other(1), dynamic(2), static(3), local(4) */ 19697 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19698 ntme.ipv6NetToMediaType = 4; 19699 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19700 ntme.ipv6NetToMediaType = 1; 19701 } else { 19702 ntme.ipv6NetToMediaType = 2; 19703 } 19704 19705 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19706 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19707 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19708 (uint_t)sizeof (ntme))); 19709 } 19710 return (0); 19711 } 19712 19713 /* 19714 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19715 */ 19716 /* ARGSUSED */ 19717 int 19718 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19719 { 19720 switch (level) { 19721 case MIB2_IP: 19722 case MIB2_ICMP: 19723 switch (name) { 19724 default: 19725 break; 19726 } 19727 return (1); 19728 default: 19729 return (1); 19730 } 19731 } 19732 19733 /* 19734 * When there exists both a 64- and 32-bit counter of a particular type 19735 * (i.e., InReceives), only the 64-bit counters are added. 19736 */ 19737 void 19738 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19739 { 19740 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19741 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19742 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19743 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19744 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19745 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19746 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19747 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19748 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19749 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19750 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19751 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19752 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19753 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19754 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19755 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19756 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19757 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19758 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19759 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19760 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19761 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19762 o2->ipIfStatsInWrongIPVersion); 19763 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19764 o2->ipIfStatsInWrongIPVersion); 19765 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19766 o2->ipIfStatsOutSwitchIPVersion); 19767 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19768 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19769 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19770 o2->ipIfStatsHCInForwDatagrams); 19771 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19772 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19773 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19774 o2->ipIfStatsHCOutForwDatagrams); 19775 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19776 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19777 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19778 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19779 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19780 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19781 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19782 o2->ipIfStatsHCOutMcastOctets); 19783 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19784 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19785 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19786 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19787 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19788 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19789 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19790 } 19791 19792 void 19793 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19794 { 19795 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19796 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19797 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19798 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19799 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19800 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19801 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19802 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19803 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19804 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19805 o2->ipv6IfIcmpInRouterSolicits); 19806 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19807 o2->ipv6IfIcmpInRouterAdvertisements); 19808 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19809 o2->ipv6IfIcmpInNeighborSolicits); 19810 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19811 o2->ipv6IfIcmpInNeighborAdvertisements); 19812 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19813 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19814 o2->ipv6IfIcmpInGroupMembQueries); 19815 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19816 o2->ipv6IfIcmpInGroupMembResponses); 19817 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19818 o2->ipv6IfIcmpInGroupMembReductions); 19819 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19820 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19821 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19822 o2->ipv6IfIcmpOutDestUnreachs); 19823 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19824 o2->ipv6IfIcmpOutAdminProhibs); 19825 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19826 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19827 o2->ipv6IfIcmpOutParmProblems); 19828 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19829 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19830 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19831 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19832 o2->ipv6IfIcmpOutRouterSolicits); 19833 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19834 o2->ipv6IfIcmpOutRouterAdvertisements); 19835 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19836 o2->ipv6IfIcmpOutNeighborSolicits); 19837 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19838 o2->ipv6IfIcmpOutNeighborAdvertisements); 19839 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19840 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19841 o2->ipv6IfIcmpOutGroupMembQueries); 19842 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19843 o2->ipv6IfIcmpOutGroupMembResponses); 19844 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19845 o2->ipv6IfIcmpOutGroupMembReductions); 19846 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19847 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19848 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19849 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19850 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19851 o2->ipv6IfIcmpInBadNeighborSolicitations); 19852 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19853 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19854 o2->ipv6IfIcmpInGroupMembTotal); 19855 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19856 o2->ipv6IfIcmpInGroupMembBadQueries); 19857 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19858 o2->ipv6IfIcmpInGroupMembBadReports); 19859 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19860 o2->ipv6IfIcmpInGroupMembOurReports); 19861 } 19862 19863 /* 19864 * Called before the options are updated to check if this packet will 19865 * be source routed from here. 19866 * This routine assumes that the options are well formed i.e. that they 19867 * have already been checked. 19868 */ 19869 static boolean_t 19870 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19871 { 19872 ipoptp_t opts; 19873 uchar_t *opt; 19874 uint8_t optval; 19875 uint8_t optlen; 19876 ipaddr_t dst; 19877 ire_t *ire; 19878 19879 if (IS_SIMPLE_IPH(ipha)) { 19880 ip2dbg(("not source routed\n")); 19881 return (B_FALSE); 19882 } 19883 dst = ipha->ipha_dst; 19884 for (optval = ipoptp_first(&opts, ipha); 19885 optval != IPOPT_EOL; 19886 optval = ipoptp_next(&opts)) { 19887 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19888 opt = opts.ipoptp_cur; 19889 optlen = opts.ipoptp_len; 19890 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19891 optval, optlen)); 19892 switch (optval) { 19893 uint32_t off; 19894 case IPOPT_SSRR: 19895 case IPOPT_LSRR: 19896 /* 19897 * If dst is one of our addresses and there are some 19898 * entries left in the source route return (true). 19899 */ 19900 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19901 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19902 if (ire == NULL) { 19903 ip2dbg(("ip_source_routed: not next" 19904 " source route 0x%x\n", 19905 ntohl(dst))); 19906 return (B_FALSE); 19907 } 19908 ire_refrele(ire); 19909 off = opt[IPOPT_OFFSET]; 19910 off--; 19911 if (optlen < IP_ADDR_LEN || 19912 off > optlen - IP_ADDR_LEN) { 19913 /* End of source route */ 19914 ip1dbg(("ip_source_routed: end of SR\n")); 19915 return (B_FALSE); 19916 } 19917 return (B_TRUE); 19918 } 19919 } 19920 ip2dbg(("not source routed\n")); 19921 return (B_FALSE); 19922 } 19923 19924 /* 19925 * Check if the packet contains any source route. 19926 */ 19927 static boolean_t 19928 ip_source_route_included(ipha_t *ipha) 19929 { 19930 ipoptp_t opts; 19931 uint8_t optval; 19932 19933 if (IS_SIMPLE_IPH(ipha)) 19934 return (B_FALSE); 19935 for (optval = ipoptp_first(&opts, ipha); 19936 optval != IPOPT_EOL; 19937 optval = ipoptp_next(&opts)) { 19938 switch (optval) { 19939 case IPOPT_SSRR: 19940 case IPOPT_LSRR: 19941 return (B_TRUE); 19942 } 19943 } 19944 return (B_FALSE); 19945 } 19946 19947 /* 19948 * Called when the IRE expiration timer fires. 19949 */ 19950 void 19951 ip_trash_timer_expire(void *args) 19952 { 19953 int flush_flag = 0; 19954 ire_expire_arg_t iea; 19955 ip_stack_t *ipst = (ip_stack_t *)args; 19956 19957 iea.iea_ipst = ipst; /* No netstack_hold */ 19958 19959 /* 19960 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19961 * This lock makes sure that a new invocation of this function 19962 * that occurs due to an almost immediate timer firing will not 19963 * progress beyond this point until the current invocation is done 19964 */ 19965 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19966 ipst->ips_ip_ire_expire_id = 0; 19967 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19968 19969 /* Periodic timer */ 19970 if (ipst->ips_ip_ire_arp_time_elapsed >= 19971 ipst->ips_ip_ire_arp_interval) { 19972 /* 19973 * Remove all IRE_CACHE entries since they might 19974 * contain arp information. 19975 */ 19976 flush_flag |= FLUSH_ARP_TIME; 19977 ipst->ips_ip_ire_arp_time_elapsed = 0; 19978 IP_STAT(ipst, ip_ire_arp_timer_expired); 19979 } 19980 if (ipst->ips_ip_ire_rd_time_elapsed >= 19981 ipst->ips_ip_ire_redir_interval) { 19982 /* Remove all redirects */ 19983 flush_flag |= FLUSH_REDIRECT_TIME; 19984 ipst->ips_ip_ire_rd_time_elapsed = 0; 19985 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19986 } 19987 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19988 ipst->ips_ip_ire_pathmtu_interval) { 19989 /* Increase path mtu */ 19990 flush_flag |= FLUSH_MTU_TIME; 19991 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19992 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19993 } 19994 19995 /* 19996 * Optimize for the case when there are no redirects in the 19997 * ftable, that is, no need to walk the ftable in that case. 19998 */ 19999 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20000 iea.iea_flush_flag = flush_flag; 20001 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20002 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20003 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20004 NULL, ALL_ZONES, ipst); 20005 } 20006 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20007 ipst->ips_ip_redirect_cnt > 0) { 20008 iea.iea_flush_flag = flush_flag; 20009 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20010 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20011 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20012 } 20013 if (flush_flag & FLUSH_MTU_TIME) { 20014 /* 20015 * Walk all IPv6 IRE's and update them 20016 * Note that ARP and redirect timers are not 20017 * needed since NUD handles stale entries. 20018 */ 20019 flush_flag = FLUSH_MTU_TIME; 20020 iea.iea_flush_flag = flush_flag; 20021 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20022 ALL_ZONES, ipst); 20023 } 20024 20025 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20026 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20027 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20028 20029 /* 20030 * Hold the lock to serialize timeout calls and prevent 20031 * stale values in ip_ire_expire_id. Otherwise it is possible 20032 * for the timer to fire and a new invocation of this function 20033 * to start before the return value of timeout has been stored 20034 * in ip_ire_expire_id by the current invocation. 20035 */ 20036 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20037 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20038 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20039 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20040 } 20041 20042 /* 20043 * Called by the memory allocator subsystem directly, when the system 20044 * is running low on memory. 20045 */ 20046 /* ARGSUSED */ 20047 void 20048 ip_trash_ire_reclaim(void *args) 20049 { 20050 netstack_handle_t nh; 20051 netstack_t *ns; 20052 20053 netstack_next_init(&nh); 20054 while ((ns = netstack_next(&nh)) != NULL) { 20055 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20056 netstack_rele(ns); 20057 } 20058 netstack_next_fini(&nh); 20059 } 20060 20061 static void 20062 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20063 { 20064 ire_cache_count_t icc; 20065 ire_cache_reclaim_t icr; 20066 ncc_cache_count_t ncc; 20067 nce_cache_reclaim_t ncr; 20068 uint_t delete_cnt; 20069 /* 20070 * Memory reclaim call back. 20071 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20072 * Then, with a target of freeing 1/Nth of IRE_CACHE 20073 * entries, determine what fraction to free for 20074 * each category of IRE_CACHE entries giving absolute priority 20075 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20076 * entry will be freed unless all offlink entries are freed). 20077 */ 20078 icc.icc_total = 0; 20079 icc.icc_unused = 0; 20080 icc.icc_offlink = 0; 20081 icc.icc_pmtu = 0; 20082 icc.icc_onlink = 0; 20083 ire_walk(ire_cache_count, (char *)&icc, ipst); 20084 20085 /* 20086 * Free NCEs for IPv6 like the onlink ires. 20087 */ 20088 ncc.ncc_total = 0; 20089 ncc.ncc_host = 0; 20090 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20091 20092 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20093 icc.icc_pmtu + icc.icc_onlink); 20094 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20095 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20096 if (delete_cnt == 0) 20097 return; 20098 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20099 /* Always delete all unused offlink entries */ 20100 icr.icr_ipst = ipst; 20101 icr.icr_unused = 1; 20102 if (delete_cnt <= icc.icc_unused) { 20103 /* 20104 * Only need to free unused entries. In other words, 20105 * there are enough unused entries to free to meet our 20106 * target number of freed ire cache entries. 20107 */ 20108 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20109 ncr.ncr_host = 0; 20110 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20111 /* 20112 * Only need to free unused entries, plus a fraction of offlink 20113 * entries. It follows from the first if statement that 20114 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20115 */ 20116 delete_cnt -= icc.icc_unused; 20117 /* Round up # deleted by truncating fraction */ 20118 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20119 icr.icr_pmtu = icr.icr_onlink = 0; 20120 ncr.ncr_host = 0; 20121 } else if (delete_cnt <= 20122 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20123 /* 20124 * Free all unused and offlink entries, plus a fraction of 20125 * pmtu entries. It follows from the previous if statement 20126 * that icc_pmtu is non-zero, and that 20127 * delete_cnt != icc_unused + icc_offlink. 20128 */ 20129 icr.icr_offlink = 1; 20130 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20131 /* Round up # deleted by truncating fraction */ 20132 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20133 icr.icr_onlink = 0; 20134 ncr.ncr_host = 0; 20135 } else { 20136 /* 20137 * Free all unused, offlink, and pmtu entries, plus a fraction 20138 * of onlink entries. If we're here, then we know that 20139 * icc_onlink is non-zero, and that 20140 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20141 */ 20142 icr.icr_offlink = icr.icr_pmtu = 1; 20143 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20144 icc.icc_pmtu; 20145 /* Round up # deleted by truncating fraction */ 20146 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20147 /* Using the same delete fraction as for onlink IREs */ 20148 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20149 } 20150 #ifdef DEBUG 20151 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20152 "fractions %d/%d/%d/%d\n", 20153 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20154 icc.icc_unused, icc.icc_offlink, 20155 icc.icc_pmtu, icc.icc_onlink, 20156 icr.icr_unused, icr.icr_offlink, 20157 icr.icr_pmtu, icr.icr_onlink)); 20158 #endif 20159 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20160 if (ncr.ncr_host != 0) 20161 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20162 (uchar_t *)&ncr, ipst); 20163 #ifdef DEBUG 20164 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20165 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20166 ire_walk(ire_cache_count, (char *)&icc, ipst); 20167 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20168 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20169 icc.icc_pmtu, icc.icc_onlink)); 20170 #endif 20171 } 20172 20173 /* 20174 * ip_unbind is called when a copy of an unbind request is received from the 20175 * upper level protocol. We remove this conn from any fanout hash list it is 20176 * on, and zero out the bind information. No reply is expected up above. 20177 */ 20178 mblk_t * 20179 ip_unbind(queue_t *q, mblk_t *mp) 20180 { 20181 conn_t *connp = Q_TO_CONN(q); 20182 20183 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20184 20185 if (is_system_labeled() && connp->conn_anon_port) { 20186 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20187 connp->conn_mlp_type, connp->conn_ulp, 20188 ntohs(connp->conn_lport), B_FALSE); 20189 connp->conn_anon_port = 0; 20190 } 20191 connp->conn_mlp_type = mlptSingle; 20192 20193 ipcl_hash_remove(connp); 20194 20195 ASSERT(mp->b_cont == NULL); 20196 /* 20197 * Convert mp into a T_OK_ACK 20198 */ 20199 mp = mi_tpi_ok_ack_alloc(mp); 20200 20201 /* 20202 * should not happen in practice... T_OK_ACK is smaller than the 20203 * original message. 20204 */ 20205 if (mp == NULL) 20206 return (NULL); 20207 20208 /* 20209 * Don't bzero the ports if its TCP since TCP still needs the 20210 * lport to remove it from its own bind hash. TCP will do the 20211 * cleanup. 20212 */ 20213 if (!IPCL_IS_TCP(connp)) 20214 bzero(&connp->u_port, sizeof (connp->u_port)); 20215 20216 return (mp); 20217 } 20218 20219 /* 20220 * Write side put procedure. Outbound data, IOCTLs, responses from 20221 * resolvers, etc, come down through here. 20222 * 20223 * arg2 is always a queue_t *. 20224 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20225 * the zoneid. 20226 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20227 */ 20228 void 20229 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20230 { 20231 ip_output_options(arg, mp, arg2, caller, &zero_info); 20232 } 20233 20234 void 20235 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20236 ip_opt_info_t *infop) 20237 { 20238 conn_t *connp = NULL; 20239 queue_t *q = (queue_t *)arg2; 20240 ipha_t *ipha; 20241 #define rptr ((uchar_t *)ipha) 20242 ire_t *ire = NULL; 20243 ire_t *sctp_ire = NULL; 20244 uint32_t v_hlen_tos_len; 20245 ipaddr_t dst; 20246 mblk_t *first_mp = NULL; 20247 boolean_t mctl_present; 20248 ipsec_out_t *io; 20249 int match_flags; 20250 ill_t *attach_ill = NULL; 20251 /* Bind to IPIF_NOFAILOVER ill etc. */ 20252 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20253 ipif_t *dst_ipif; 20254 boolean_t multirt_need_resolve = B_FALSE; 20255 mblk_t *copy_mp = NULL; 20256 int err; 20257 zoneid_t zoneid; 20258 int adjust; 20259 uint16_t iplen; 20260 boolean_t need_decref = B_FALSE; 20261 boolean_t ignore_dontroute = B_FALSE; 20262 boolean_t ignore_nexthop = B_FALSE; 20263 boolean_t ip_nexthop = B_FALSE; 20264 ipaddr_t nexthop_addr; 20265 ip_stack_t *ipst; 20266 20267 #ifdef _BIG_ENDIAN 20268 #define V_HLEN (v_hlen_tos_len >> 24) 20269 #else 20270 #define V_HLEN (v_hlen_tos_len & 0xFF) 20271 #endif 20272 20273 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20274 "ip_wput_start: q %p", q); 20275 20276 /* 20277 * ip_wput fast path 20278 */ 20279 20280 /* is packet from ARP ? */ 20281 if (q->q_next != NULL) { 20282 zoneid = (zoneid_t)(uintptr_t)arg; 20283 goto qnext; 20284 } 20285 20286 connp = (conn_t *)arg; 20287 ASSERT(connp != NULL); 20288 zoneid = connp->conn_zoneid; 20289 ipst = connp->conn_netstack->netstack_ip; 20290 20291 /* is queue flow controlled? */ 20292 if ((q->q_first != NULL || connp->conn_draining) && 20293 (caller == IP_WPUT)) { 20294 ASSERT(!need_decref); 20295 (void) putq(q, mp); 20296 return; 20297 } 20298 20299 /* Multidata transmit? */ 20300 if (DB_TYPE(mp) == M_MULTIDATA) { 20301 /* 20302 * We should never get here, since all Multidata messages 20303 * originating from tcp should have been directed over to 20304 * tcp_multisend() in the first place. 20305 */ 20306 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20307 freemsg(mp); 20308 return; 20309 } else if (DB_TYPE(mp) != M_DATA) 20310 goto notdata; 20311 20312 if (mp->b_flag & MSGHASREF) { 20313 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20314 mp->b_flag &= ~MSGHASREF; 20315 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20316 need_decref = B_TRUE; 20317 } 20318 ipha = (ipha_t *)mp->b_rptr; 20319 20320 /* is IP header non-aligned or mblk smaller than basic IP header */ 20321 #ifndef SAFETY_BEFORE_SPEED 20322 if (!OK_32PTR(rptr) || 20323 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20324 goto hdrtoosmall; 20325 #endif 20326 20327 ASSERT(OK_32PTR(ipha)); 20328 20329 /* 20330 * This function assumes that mp points to an IPv4 packet. If it's the 20331 * wrong version, we'll catch it again in ip_output_v6. 20332 * 20333 * Note that this is *only* locally-generated output here, and never 20334 * forwarded data, and that we need to deal only with transports that 20335 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20336 * label.) 20337 */ 20338 if (is_system_labeled() && 20339 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20340 !connp->conn_ulp_labeled) { 20341 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20342 connp->conn_mac_exempt, ipst); 20343 ipha = (ipha_t *)mp->b_rptr; 20344 if (err != 0) { 20345 first_mp = mp; 20346 if (err == EINVAL) 20347 goto icmp_parameter_problem; 20348 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20349 goto discard_pkt; 20350 } 20351 iplen = ntohs(ipha->ipha_length) + adjust; 20352 ipha->ipha_length = htons(iplen); 20353 } 20354 20355 ASSERT(infop != NULL); 20356 20357 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20358 /* 20359 * IP_PKTINFO ancillary option is present. 20360 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20361 * allows using address of any zone as the source address. 20362 */ 20363 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20364 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20365 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20366 if (ire == NULL) 20367 goto drop_pkt; 20368 ire_refrele(ire); 20369 ire = NULL; 20370 } 20371 20372 /* 20373 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20374 * ill index passed in IP_PKTINFO. 20375 */ 20376 if (infop->ip_opt_ill_index != 0 && 20377 connp->conn_xmit_if_ill == NULL && 20378 connp->conn_nofailover_ill == NULL) { 20379 20380 xmit_ill = ill_lookup_on_ifindex( 20381 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20382 ipst); 20383 20384 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20385 goto drop_pkt; 20386 /* 20387 * check that there is an ipif belonging 20388 * to our zone. IPCL_ZONEID is not used because 20389 * IP_ALLZONES option is valid only when the ill is 20390 * accessible from all zones i.e has a valid ipif in 20391 * all zones. 20392 */ 20393 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20394 goto drop_pkt; 20395 } 20396 } 20397 20398 /* 20399 * If there is a policy, try to attach an ipsec_out in 20400 * the front. At the end, first_mp either points to a 20401 * M_DATA message or IPSEC_OUT message linked to a 20402 * M_DATA message. We have to do it now as we might 20403 * lose the "conn" if we go through ip_newroute. 20404 */ 20405 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20406 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20407 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20408 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20409 if (need_decref) 20410 CONN_DEC_REF(connp); 20411 return; 20412 } else { 20413 ASSERT(mp->b_datap->db_type == M_CTL); 20414 first_mp = mp; 20415 mp = mp->b_cont; 20416 mctl_present = B_TRUE; 20417 } 20418 } else { 20419 first_mp = mp; 20420 mctl_present = B_FALSE; 20421 } 20422 20423 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20424 20425 /* is wrong version or IP options present */ 20426 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20427 goto version_hdrlen_check; 20428 dst = ipha->ipha_dst; 20429 20430 if (connp->conn_nofailover_ill != NULL) { 20431 attach_ill = conn_get_held_ill(connp, 20432 &connp->conn_nofailover_ill, &err); 20433 if (err == ILL_LOOKUP_FAILED) { 20434 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20435 if (need_decref) 20436 CONN_DEC_REF(connp); 20437 freemsg(first_mp); 20438 return; 20439 } 20440 } 20441 20442 20443 /* is packet multicast? */ 20444 if (CLASSD(dst)) 20445 goto multicast; 20446 20447 /* 20448 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20449 * takes precedence over conn_dontroute and conn_nexthop_set 20450 */ 20451 if (xmit_ill != NULL) { 20452 goto send_from_ill; 20453 } 20454 20455 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20456 (connp->conn_nexthop_set)) { 20457 /* 20458 * If the destination is a broadcast or a loopback 20459 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20460 * through the standard path. But in the case of local 20461 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20462 * the standard path not IP_XMIT_IF. 20463 */ 20464 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20465 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20466 (ire->ire_type != IRE_LOOPBACK))) { 20467 if ((connp->conn_dontroute || 20468 connp->conn_nexthop_set) && (ire != NULL) && 20469 (ire->ire_type == IRE_LOCAL)) 20470 goto standard_path; 20471 20472 if (ire != NULL) { 20473 ire_refrele(ire); 20474 /* No more access to ire */ 20475 ire = NULL; 20476 } 20477 /* 20478 * bypass routing checks and go directly to 20479 * interface. 20480 */ 20481 if (connp->conn_dontroute) { 20482 goto dontroute; 20483 } else if (connp->conn_nexthop_set) { 20484 ip_nexthop = B_TRUE; 20485 nexthop_addr = connp->conn_nexthop_v4; 20486 goto send_from_ill; 20487 } 20488 20489 /* 20490 * If IP_XMIT_IF socket option is set, 20491 * then we allow unicast and multicast 20492 * packets to go through the ill. It is 20493 * quite possible that the destination 20494 * is not in the ire cache table and we 20495 * do not want to go to ip_newroute() 20496 * instead we call ip_newroute_ipif. 20497 */ 20498 xmit_ill = conn_get_held_ill(connp, 20499 &connp->conn_xmit_if_ill, &err); 20500 if (err == ILL_LOOKUP_FAILED) { 20501 BUMP_MIB(&ipst->ips_ip_mib, 20502 ipIfStatsOutDiscards); 20503 if (attach_ill != NULL) 20504 ill_refrele(attach_ill); 20505 if (need_decref) 20506 CONN_DEC_REF(connp); 20507 freemsg(first_mp); 20508 return; 20509 } 20510 goto send_from_ill; 20511 } 20512 standard_path: 20513 /* Must be a broadcast, a loopback or a local ire */ 20514 if (ire != NULL) { 20515 ire_refrele(ire); 20516 /* No more access to ire */ 20517 ire = NULL; 20518 } 20519 } 20520 20521 if (attach_ill != NULL) 20522 goto send_from_ill; 20523 20524 /* 20525 * We cache IRE_CACHEs to avoid lookups. We don't do 20526 * this for the tcp global queue and listen end point 20527 * as it does not really have a real destination to 20528 * talk to. This is also true for SCTP. 20529 */ 20530 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20531 !connp->conn_fully_bound) { 20532 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20533 if (ire == NULL) 20534 goto noirefound; 20535 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20536 "ip_wput_end: q %p (%S)", q, "end"); 20537 20538 /* 20539 * Check if the ire has the RTF_MULTIRT flag, inherited 20540 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20541 */ 20542 if (ire->ire_flags & RTF_MULTIRT) { 20543 20544 /* 20545 * Force the TTL of multirouted packets if required. 20546 * The TTL of such packets is bounded by the 20547 * ip_multirt_ttl ndd variable. 20548 */ 20549 if ((ipst->ips_ip_multirt_ttl > 0) && 20550 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20551 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20552 "(was %d), dst 0x%08x\n", 20553 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20554 ntohl(ire->ire_addr))); 20555 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20556 } 20557 /* 20558 * We look at this point if there are pending 20559 * unresolved routes. ire_multirt_resolvable() 20560 * checks in O(n) that all IRE_OFFSUBNET ire 20561 * entries for the packet's destination and 20562 * flagged RTF_MULTIRT are currently resolved. 20563 * If some remain unresolved, we make a copy 20564 * of the current message. It will be used 20565 * to initiate additional route resolutions. 20566 */ 20567 multirt_need_resolve = 20568 ire_multirt_need_resolve(ire->ire_addr, 20569 MBLK_GETLABEL(first_mp), ipst); 20570 ip2dbg(("ip_wput[TCP]: ire %p, " 20571 "multirt_need_resolve %d, first_mp %p\n", 20572 (void *)ire, multirt_need_resolve, 20573 (void *)first_mp)); 20574 if (multirt_need_resolve) { 20575 copy_mp = copymsg(first_mp); 20576 if (copy_mp != NULL) { 20577 MULTIRT_DEBUG_TAG(copy_mp); 20578 } 20579 } 20580 } 20581 20582 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20583 20584 /* 20585 * Try to resolve another multiroute if 20586 * ire_multirt_need_resolve() deemed it necessary. 20587 */ 20588 if (copy_mp != NULL) { 20589 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20590 } 20591 if (need_decref) 20592 CONN_DEC_REF(connp); 20593 return; 20594 } 20595 20596 /* 20597 * Access to conn_ire_cache. (protected by conn_lock) 20598 * 20599 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20600 * the ire bucket lock here to check for CONDEMNED as it is okay to 20601 * send a packet or two with the IRE_CACHE that is going away. 20602 * Access to the ire requires an ire refhold on the ire prior to 20603 * its use since an interface unplumb thread may delete the cached 20604 * ire and release the refhold at any time. 20605 * 20606 * Caching an ire in the conn_ire_cache 20607 * 20608 * o Caching an ire pointer in the conn requires a strict check for 20609 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20610 * ires before cleaning up the conns. So the caching of an ire pointer 20611 * in the conn is done after making sure under the bucket lock that the 20612 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20613 * caching an ire after the unplumb thread has cleaned up the conn. 20614 * If the conn does not send a packet subsequently the unplumb thread 20615 * will be hanging waiting for the ire count to drop to zero. 20616 * 20617 * o We also need to atomically test for a null conn_ire_cache and 20618 * set the conn_ire_cache under the the protection of the conn_lock 20619 * to avoid races among concurrent threads trying to simultaneously 20620 * cache an ire in the conn_ire_cache. 20621 */ 20622 mutex_enter(&connp->conn_lock); 20623 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20624 20625 if (ire != NULL && ire->ire_addr == dst && 20626 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20627 20628 IRE_REFHOLD(ire); 20629 mutex_exit(&connp->conn_lock); 20630 20631 } else { 20632 boolean_t cached = B_FALSE; 20633 connp->conn_ire_cache = NULL; 20634 mutex_exit(&connp->conn_lock); 20635 /* Release the old ire */ 20636 if (ire != NULL && sctp_ire == NULL) 20637 IRE_REFRELE_NOTR(ire); 20638 20639 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20640 if (ire == NULL) 20641 goto noirefound; 20642 IRE_REFHOLD_NOTR(ire); 20643 20644 mutex_enter(&connp->conn_lock); 20645 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20646 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20647 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20648 if (connp->conn_ulp == IPPROTO_TCP) 20649 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20650 connp->conn_ire_cache = ire; 20651 cached = B_TRUE; 20652 } 20653 rw_exit(&ire->ire_bucket->irb_lock); 20654 } 20655 mutex_exit(&connp->conn_lock); 20656 20657 /* 20658 * We can continue to use the ire but since it was 20659 * not cached, we should drop the extra reference. 20660 */ 20661 if (!cached) 20662 IRE_REFRELE_NOTR(ire); 20663 } 20664 20665 20666 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20667 "ip_wput_end: q %p (%S)", q, "end"); 20668 20669 /* 20670 * Check if the ire has the RTF_MULTIRT flag, inherited 20671 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20672 */ 20673 if (ire->ire_flags & RTF_MULTIRT) { 20674 20675 /* 20676 * Force the TTL of multirouted packets if required. 20677 * The TTL of such packets is bounded by the 20678 * ip_multirt_ttl ndd variable. 20679 */ 20680 if ((ipst->ips_ip_multirt_ttl > 0) && 20681 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20682 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20683 "(was %d), dst 0x%08x\n", 20684 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20685 ntohl(ire->ire_addr))); 20686 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20687 } 20688 20689 /* 20690 * At this point, we check to see if there are any pending 20691 * unresolved routes. ire_multirt_resolvable() 20692 * checks in O(n) that all IRE_OFFSUBNET ire 20693 * entries for the packet's destination and 20694 * flagged RTF_MULTIRT are currently resolved. 20695 * If some remain unresolved, we make a copy 20696 * of the current message. It will be used 20697 * to initiate additional route resolutions. 20698 */ 20699 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20700 MBLK_GETLABEL(first_mp), ipst); 20701 ip2dbg(("ip_wput[not TCP]: ire %p, " 20702 "multirt_need_resolve %d, first_mp %p\n", 20703 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20704 if (multirt_need_resolve) { 20705 copy_mp = copymsg(first_mp); 20706 if (copy_mp != NULL) { 20707 MULTIRT_DEBUG_TAG(copy_mp); 20708 } 20709 } 20710 } 20711 20712 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20713 20714 /* 20715 * Try to resolve another multiroute if 20716 * ire_multirt_resolvable() deemed it necessary 20717 */ 20718 if (copy_mp != NULL) { 20719 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20720 } 20721 if (need_decref) 20722 CONN_DEC_REF(connp); 20723 return; 20724 20725 qnext: 20726 /* 20727 * Upper Level Protocols pass down complete IP datagrams 20728 * as M_DATA messages. Everything else is a sideshow. 20729 * 20730 * 1) We could be re-entering ip_wput because of ip_neworute 20731 * in which case we could have a IPSEC_OUT message. We 20732 * need to pass through ip_wput like other datagrams and 20733 * hence cannot branch to ip_wput_nondata. 20734 * 20735 * 2) ARP, AH, ESP, and other clients who are on the module 20736 * instance of IP stream, give us something to deal with. 20737 * We will handle AH and ESP here and rest in ip_wput_nondata. 20738 * 20739 * 3) ICMP replies also could come here. 20740 */ 20741 ipst = ILLQ_TO_IPST(q); 20742 20743 if (DB_TYPE(mp) != M_DATA) { 20744 notdata: 20745 if (DB_TYPE(mp) == M_CTL) { 20746 /* 20747 * M_CTL messages are used by ARP, AH and ESP to 20748 * communicate with IP. We deal with IPSEC_IN and 20749 * IPSEC_OUT here. ip_wput_nondata handles other 20750 * cases. 20751 */ 20752 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20753 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20754 first_mp = mp->b_cont; 20755 first_mp->b_flag &= ~MSGHASREF; 20756 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20757 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20758 CONN_DEC_REF(connp); 20759 connp = NULL; 20760 } 20761 if (ii->ipsec_info_type == IPSEC_IN) { 20762 /* 20763 * Either this message goes back to 20764 * IPSEC for further processing or to 20765 * ULP after policy checks. 20766 */ 20767 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20768 return; 20769 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20770 io = (ipsec_out_t *)ii; 20771 if (io->ipsec_out_proc_begin) { 20772 /* 20773 * IPSEC processing has already started. 20774 * Complete it. 20775 * IPQoS notes: We don't care what is 20776 * in ipsec_out_ill_index since this 20777 * won't be processed for IPQoS policies 20778 * in ipsec_out_process. 20779 */ 20780 ipsec_out_process(q, mp, NULL, 20781 io->ipsec_out_ill_index); 20782 return; 20783 } else { 20784 connp = (q->q_next != NULL) ? 20785 NULL : Q_TO_CONN(q); 20786 first_mp = mp; 20787 mp = mp->b_cont; 20788 mctl_present = B_TRUE; 20789 } 20790 zoneid = io->ipsec_out_zoneid; 20791 ASSERT(zoneid != ALL_ZONES); 20792 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20793 /* 20794 * It's an IPsec control message requesting 20795 * an SADB update to be sent to the IPsec 20796 * hardware acceleration capable ills. 20797 */ 20798 ipsec_ctl_t *ipsec_ctl = 20799 (ipsec_ctl_t *)mp->b_rptr; 20800 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20801 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20802 mblk_t *cmp = mp->b_cont; 20803 20804 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20805 ASSERT(cmp != NULL); 20806 20807 freeb(mp); 20808 ill_ipsec_capab_send_all(satype, cmp, sa, 20809 ipst->ips_netstack); 20810 return; 20811 } else { 20812 /* 20813 * This must be ARP or special TSOL signaling. 20814 */ 20815 ip_wput_nondata(NULL, q, mp, NULL); 20816 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20817 "ip_wput_end: q %p (%S)", q, "nondata"); 20818 return; 20819 } 20820 } else { 20821 /* 20822 * This must be non-(ARP/AH/ESP) messages. 20823 */ 20824 ASSERT(!need_decref); 20825 ip_wput_nondata(NULL, q, mp, NULL); 20826 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20827 "ip_wput_end: q %p (%S)", q, "nondata"); 20828 return; 20829 } 20830 } else { 20831 first_mp = mp; 20832 mctl_present = B_FALSE; 20833 } 20834 20835 ASSERT(first_mp != NULL); 20836 /* 20837 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20838 * to make sure that this packet goes out on the same interface it 20839 * came in. We handle that here. 20840 */ 20841 if (mctl_present) { 20842 uint_t ifindex; 20843 20844 io = (ipsec_out_t *)first_mp->b_rptr; 20845 if (io->ipsec_out_attach_if || 20846 io->ipsec_out_xmit_if || 20847 io->ipsec_out_ip_nexthop) { 20848 ill_t *ill; 20849 20850 /* 20851 * We may have lost the conn context if we are 20852 * coming here from ip_newroute(). Copy the 20853 * nexthop information. 20854 */ 20855 if (io->ipsec_out_ip_nexthop) { 20856 ip_nexthop = B_TRUE; 20857 nexthop_addr = io->ipsec_out_nexthop_addr; 20858 20859 ipha = (ipha_t *)mp->b_rptr; 20860 dst = ipha->ipha_dst; 20861 goto send_from_ill; 20862 } else { 20863 ASSERT(io->ipsec_out_ill_index != 0); 20864 ifindex = io->ipsec_out_ill_index; 20865 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20866 NULL, NULL, NULL, NULL, ipst); 20867 /* 20868 * ipsec_out_xmit_if bit is used to tell 20869 * ip_wput to use the ill to send outgoing data 20870 * as we have no conn when data comes from ICMP 20871 * error msg routines. Currently this feature is 20872 * only used by ip_mrtun_forward routine. 20873 */ 20874 if (io->ipsec_out_xmit_if) { 20875 xmit_ill = ill; 20876 if (xmit_ill == NULL) { 20877 ip1dbg(("ip_output:bad ifindex " 20878 "for xmit_ill %d\n", 20879 ifindex)); 20880 freemsg(first_mp); 20881 BUMP_MIB(&ipst->ips_ip_mib, 20882 ipIfStatsOutDiscards); 20883 ASSERT(!need_decref); 20884 return; 20885 } 20886 /* Free up the ipsec_out_t mblk */ 20887 ASSERT(first_mp->b_cont == mp); 20888 first_mp->b_cont = NULL; 20889 freeb(first_mp); 20890 /* Just send the IP header+ICMP+data */ 20891 first_mp = mp; 20892 ipha = (ipha_t *)mp->b_rptr; 20893 dst = ipha->ipha_dst; 20894 goto send_from_ill; 20895 } else { 20896 attach_ill = ill; 20897 } 20898 20899 if (attach_ill == NULL) { 20900 ASSERT(xmit_ill == NULL); 20901 ip1dbg(("ip_output: bad ifindex for " 20902 "(BIND TO IPIF_NOFAILOVER) %d\n", 20903 ifindex)); 20904 freemsg(first_mp); 20905 BUMP_MIB(&ipst->ips_ip_mib, 20906 ipIfStatsOutDiscards); 20907 ASSERT(!need_decref); 20908 return; 20909 } 20910 } 20911 } 20912 } 20913 20914 ASSERT(xmit_ill == NULL); 20915 20916 /* We have a complete IP datagram heading outbound. */ 20917 ipha = (ipha_t *)mp->b_rptr; 20918 20919 #ifndef SPEED_BEFORE_SAFETY 20920 /* 20921 * Make sure we have a full-word aligned message and that at least 20922 * a simple IP header is accessible in the first message. If not, 20923 * try a pullup. 20924 */ 20925 if (!OK_32PTR(rptr) || 20926 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20927 hdrtoosmall: 20928 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20929 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20930 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20931 if (first_mp == NULL) 20932 first_mp = mp; 20933 goto discard_pkt; 20934 } 20935 20936 /* This function assumes that mp points to an IPv4 packet. */ 20937 if (is_system_labeled() && q->q_next == NULL && 20938 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20939 !connp->conn_ulp_labeled) { 20940 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20941 &adjust, connp->conn_mac_exempt, ipst); 20942 ipha = (ipha_t *)mp->b_rptr; 20943 if (first_mp != NULL) 20944 first_mp->b_cont = mp; 20945 if (err != 0) { 20946 if (first_mp == NULL) 20947 first_mp = mp; 20948 if (err == EINVAL) 20949 goto icmp_parameter_problem; 20950 ip2dbg(("ip_wput: label check failed (%d)\n", 20951 err)); 20952 goto discard_pkt; 20953 } 20954 iplen = ntohs(ipha->ipha_length) + adjust; 20955 ipha->ipha_length = htons(iplen); 20956 } 20957 20958 ipha = (ipha_t *)mp->b_rptr; 20959 if (first_mp == NULL) { 20960 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20961 /* 20962 * If we got here because of "goto hdrtoosmall" 20963 * We need to attach a IPSEC_OUT. 20964 */ 20965 if (connp->conn_out_enforce_policy) { 20966 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20967 NULL, ipha->ipha_protocol, 20968 ipst->ips_netstack)) == NULL)) { 20969 BUMP_MIB(&ipst->ips_ip_mib, 20970 ipIfStatsOutDiscards); 20971 if (need_decref) 20972 CONN_DEC_REF(connp); 20973 return; 20974 } else { 20975 ASSERT(mp->b_datap->db_type == M_CTL); 20976 first_mp = mp; 20977 mp = mp->b_cont; 20978 mctl_present = B_TRUE; 20979 } 20980 } else { 20981 first_mp = mp; 20982 mctl_present = B_FALSE; 20983 } 20984 } 20985 } 20986 #endif 20987 20988 /* Most of the code below is written for speed, not readability */ 20989 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20990 20991 /* 20992 * If ip_newroute() fails, we're going to need a full 20993 * header for the icmp wraparound. 20994 */ 20995 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20996 uint_t v_hlen; 20997 version_hdrlen_check: 20998 ASSERT(first_mp != NULL); 20999 v_hlen = V_HLEN; 21000 /* 21001 * siphon off IPv6 packets coming down from transport 21002 * layer modules here. 21003 * Note: high-order bit carries NUD reachability confirmation 21004 */ 21005 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21006 /* 21007 * XXX implement a IPv4 and IPv6 packet counter per 21008 * conn and switch when ratio exceeds e.g. 10:1 21009 */ 21010 #ifdef notyet 21011 if (q->q_next == NULL) /* Avoid ill queue */ 21012 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 21013 #endif 21014 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21015 ASSERT(xmit_ill == NULL); 21016 if (attach_ill != NULL) 21017 ill_refrele(attach_ill); 21018 if (need_decref) 21019 mp->b_flag |= MSGHASREF; 21020 (void) ip_output_v6(arg, first_mp, arg2, caller); 21021 return; 21022 } 21023 21024 if ((v_hlen >> 4) != IP_VERSION) { 21025 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21026 "ip_wput_end: q %p (%S)", q, "badvers"); 21027 goto discard_pkt; 21028 } 21029 /* 21030 * Is the header length at least 20 bytes? 21031 * 21032 * Are there enough bytes accessible in the header? If 21033 * not, try a pullup. 21034 */ 21035 v_hlen &= 0xF; 21036 v_hlen <<= 2; 21037 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21038 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21039 "ip_wput_end: q %p (%S)", q, "badlen"); 21040 goto discard_pkt; 21041 } 21042 if (v_hlen > (mp->b_wptr - rptr)) { 21043 if (!pullupmsg(mp, v_hlen)) { 21044 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21045 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21046 goto discard_pkt; 21047 } 21048 ipha = (ipha_t *)mp->b_rptr; 21049 } 21050 /* 21051 * Move first entry from any source route into ipha_dst and 21052 * verify the options 21053 */ 21054 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21055 zoneid, ipst)) { 21056 ASSERT(xmit_ill == NULL); 21057 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21058 if (attach_ill != NULL) 21059 ill_refrele(attach_ill); 21060 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21061 "ip_wput_end: q %p (%S)", q, "badopts"); 21062 if (need_decref) 21063 CONN_DEC_REF(connp); 21064 return; 21065 } 21066 } 21067 dst = ipha->ipha_dst; 21068 21069 /* 21070 * Try to get an IRE_CACHE for the destination address. If we can't, 21071 * we have to run the packet through ip_newroute which will take 21072 * the appropriate action to arrange for an IRE_CACHE, such as querying 21073 * a resolver, or assigning a default gateway, etc. 21074 */ 21075 if (CLASSD(dst)) { 21076 ipif_t *ipif; 21077 uint32_t setsrc = 0; 21078 21079 multicast: 21080 ASSERT(first_mp != NULL); 21081 ip2dbg(("ip_wput: CLASSD\n")); 21082 if (connp == NULL) { 21083 /* 21084 * Use the first good ipif on the ill. 21085 * XXX Should this ever happen? (Appears 21086 * to show up with just ppp and no ethernet due 21087 * to in.rdisc.) 21088 * However, ire_send should be able to 21089 * call ip_wput_ire directly. 21090 * 21091 * XXX Also, this can happen for ICMP and other packets 21092 * with multicast source addresses. Perhaps we should 21093 * fix things so that we drop the packet in question, 21094 * but for now, just run with it. 21095 */ 21096 ill_t *ill = (ill_t *)q->q_ptr; 21097 21098 /* 21099 * Don't honor attach_if for this case. If ill 21100 * is part of the group, ipif could belong to 21101 * any ill and we cannot maintain attach_ill 21102 * and ipif_ill same anymore and the assert 21103 * below would fail. 21104 */ 21105 if (mctl_present && io->ipsec_out_attach_if) { 21106 io->ipsec_out_ill_index = 0; 21107 io->ipsec_out_attach_if = B_FALSE; 21108 ASSERT(attach_ill != NULL); 21109 ill_refrele(attach_ill); 21110 attach_ill = NULL; 21111 } 21112 21113 ASSERT(attach_ill == NULL); 21114 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21115 if (ipif == NULL) { 21116 if (need_decref) 21117 CONN_DEC_REF(connp); 21118 freemsg(first_mp); 21119 return; 21120 } 21121 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21122 ntohl(dst), ill->ill_name)); 21123 } else { 21124 /* 21125 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 21126 * and IP_MULTICAST_IF. 21127 * Block comment above this function explains the 21128 * locking mechanism used here 21129 */ 21130 if (xmit_ill == NULL) { 21131 xmit_ill = conn_get_held_ill(connp, 21132 &connp->conn_xmit_if_ill, &err); 21133 if (err == ILL_LOOKUP_FAILED) { 21134 ip1dbg(("ip_wput: No ill for " 21135 "IP_XMIT_IF\n")); 21136 BUMP_MIB(&ipst->ips_ip_mib, 21137 ipIfStatsOutNoRoutes); 21138 goto drop_pkt; 21139 } 21140 } 21141 21142 if (xmit_ill == NULL) { 21143 ipif = conn_get_held_ipif(connp, 21144 &connp->conn_multicast_ipif, &err); 21145 if (err == IPIF_LOOKUP_FAILED) { 21146 ip1dbg(("ip_wput: No ipif for " 21147 "multicast\n")); 21148 BUMP_MIB(&ipst->ips_ip_mib, 21149 ipIfStatsOutNoRoutes); 21150 goto drop_pkt; 21151 } 21152 } 21153 if (xmit_ill != NULL) { 21154 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21155 if (ipif == NULL) { 21156 ip1dbg(("ip_wput: No ipif for " 21157 "IP_XMIT_IF\n")); 21158 BUMP_MIB(&ipst->ips_ip_mib, 21159 ipIfStatsOutNoRoutes); 21160 goto drop_pkt; 21161 } 21162 } else if (ipif == NULL || ipif->ipif_isv6) { 21163 /* 21164 * We must do this ipif determination here 21165 * else we could pass through ip_newroute 21166 * and come back here without the conn context. 21167 * 21168 * Note: we do late binding i.e. we bind to 21169 * the interface when the first packet is sent. 21170 * For performance reasons we do not rebind on 21171 * each packet but keep the binding until the 21172 * next IP_MULTICAST_IF option. 21173 * 21174 * conn_multicast_{ipif,ill} are shared between 21175 * IPv4 and IPv6 and AF_INET6 sockets can 21176 * send both IPv4 and IPv6 packets. Hence 21177 * we have to check that "isv6" matches above. 21178 */ 21179 if (ipif != NULL) 21180 ipif_refrele(ipif); 21181 ipif = ipif_lookup_group(dst, zoneid, ipst); 21182 if (ipif == NULL) { 21183 ip1dbg(("ip_wput: No ipif for " 21184 "multicast\n")); 21185 BUMP_MIB(&ipst->ips_ip_mib, 21186 ipIfStatsOutNoRoutes); 21187 goto drop_pkt; 21188 } 21189 err = conn_set_held_ipif(connp, 21190 &connp->conn_multicast_ipif, ipif); 21191 if (err == IPIF_LOOKUP_FAILED) { 21192 ipif_refrele(ipif); 21193 ip1dbg(("ip_wput: No ipif for " 21194 "multicast\n")); 21195 BUMP_MIB(&ipst->ips_ip_mib, 21196 ipIfStatsOutNoRoutes); 21197 goto drop_pkt; 21198 } 21199 } 21200 } 21201 ASSERT(!ipif->ipif_isv6); 21202 /* 21203 * As we may lose the conn by the time we reach ip_wput_ire, 21204 * we copy conn_multicast_loop and conn_dontroute on to an 21205 * ipsec_out. In case if this datagram goes out secure, 21206 * we need the ill_index also. Copy that also into the 21207 * ipsec_out. 21208 */ 21209 if (mctl_present) { 21210 io = (ipsec_out_t *)first_mp->b_rptr; 21211 ASSERT(first_mp->b_datap->db_type == M_CTL); 21212 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21213 } else { 21214 ASSERT(mp == first_mp); 21215 if ((first_mp = allocb(sizeof (ipsec_info_t), 21216 BPRI_HI)) == NULL) { 21217 ipif_refrele(ipif); 21218 first_mp = mp; 21219 goto discard_pkt; 21220 } 21221 first_mp->b_datap->db_type = M_CTL; 21222 first_mp->b_wptr += sizeof (ipsec_info_t); 21223 /* ipsec_out_secure is B_FALSE now */ 21224 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21225 io = (ipsec_out_t *)first_mp->b_rptr; 21226 io->ipsec_out_type = IPSEC_OUT; 21227 io->ipsec_out_len = sizeof (ipsec_out_t); 21228 io->ipsec_out_use_global_policy = B_TRUE; 21229 io->ipsec_out_ns = ipst->ips_netstack; 21230 first_mp->b_cont = mp; 21231 mctl_present = B_TRUE; 21232 } 21233 if (attach_ill != NULL) { 21234 ASSERT(attach_ill == ipif->ipif_ill); 21235 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21236 21237 /* 21238 * Check if we need an ire that will not be 21239 * looked up by anybody else i.e. HIDDEN. 21240 */ 21241 if (ill_is_probeonly(attach_ill)) { 21242 match_flags |= MATCH_IRE_MARK_HIDDEN; 21243 } 21244 io->ipsec_out_ill_index = 21245 attach_ill->ill_phyint->phyint_ifindex; 21246 io->ipsec_out_attach_if = B_TRUE; 21247 } else { 21248 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21249 io->ipsec_out_ill_index = 21250 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21251 } 21252 if (connp != NULL) { 21253 io->ipsec_out_multicast_loop = 21254 connp->conn_multicast_loop; 21255 io->ipsec_out_dontroute = connp->conn_dontroute; 21256 io->ipsec_out_zoneid = connp->conn_zoneid; 21257 } 21258 /* 21259 * If the application uses IP_MULTICAST_IF with 21260 * different logical addresses of the same ILL, we 21261 * need to make sure that the soruce address of 21262 * the packet matches the logical IP address used 21263 * in the option. We do it by initializing ipha_src 21264 * here. This should keep IPSEC also happy as 21265 * when we return from IPSEC processing, we don't 21266 * have to worry about getting the right address on 21267 * the packet. Thus it is sufficient to look for 21268 * IRE_CACHE using MATCH_IRE_ILL rathen than 21269 * MATCH_IRE_IPIF. 21270 * 21271 * NOTE : We need to do it for non-secure case also as 21272 * this might go out secure if there is a global policy 21273 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21274 * address, the source should be initialized already and 21275 * hence we won't be initializing here. 21276 * 21277 * As we do not have the ire yet, it is possible that 21278 * we set the source address here and then later discover 21279 * that the ire implies the source address to be assigned 21280 * through the RTF_SETSRC flag. 21281 * In that case, the setsrc variable will remind us 21282 * that overwritting the source address by the one 21283 * of the RTF_SETSRC-flagged ire is allowed. 21284 */ 21285 if (ipha->ipha_src == INADDR_ANY && 21286 (connp == NULL || !connp->conn_unspec_src)) { 21287 ipha->ipha_src = ipif->ipif_src_addr; 21288 setsrc = RTF_SETSRC; 21289 } 21290 /* 21291 * Find an IRE which matches the destination and the outgoing 21292 * queue (i.e. the outgoing interface.) 21293 * For loopback use a unicast IP address for 21294 * the ire lookup. 21295 */ 21296 if (IS_LOOPBACK(ipif->ipif_ill)) 21297 dst = ipif->ipif_lcl_addr; 21298 21299 /* 21300 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21301 * We don't need to lookup ire in ctable as the packet 21302 * needs to be sent to the destination through the specified 21303 * ill irrespective of ires in the cache table. 21304 */ 21305 ire = NULL; 21306 if (xmit_ill == NULL) { 21307 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21308 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21309 } 21310 21311 /* 21312 * refrele attach_ill as its not needed anymore. 21313 */ 21314 if (attach_ill != NULL) { 21315 ill_refrele(attach_ill); 21316 attach_ill = NULL; 21317 } 21318 21319 if (ire == NULL) { 21320 /* 21321 * Multicast loopback and multicast forwarding is 21322 * done in ip_wput_ire. 21323 * 21324 * Mark this packet to make it be delivered to 21325 * ip_wput_ire after the new ire has been 21326 * created. 21327 * 21328 * The call to ip_newroute_ipif takes into account 21329 * the setsrc reminder. In any case, we take care 21330 * of the RTF_MULTIRT flag. 21331 */ 21332 mp->b_prev = mp->b_next = NULL; 21333 if (xmit_ill == NULL || 21334 xmit_ill->ill_ipif_up_count > 0) { 21335 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21336 setsrc | RTF_MULTIRT, zoneid, infop); 21337 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21338 "ip_wput_end: q %p (%S)", q, "noire"); 21339 } else { 21340 freemsg(first_mp); 21341 } 21342 ipif_refrele(ipif); 21343 if (xmit_ill != NULL) 21344 ill_refrele(xmit_ill); 21345 if (need_decref) 21346 CONN_DEC_REF(connp); 21347 return; 21348 } 21349 21350 ipif_refrele(ipif); 21351 ipif = NULL; 21352 ASSERT(xmit_ill == NULL); 21353 21354 /* 21355 * Honor the RTF_SETSRC flag for multicast packets, 21356 * if allowed by the setsrc reminder. 21357 */ 21358 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21359 ipha->ipha_src = ire->ire_src_addr; 21360 } 21361 21362 /* 21363 * Unconditionally force the TTL to 1 for 21364 * multirouted multicast packets: 21365 * multirouted multicast should not cross 21366 * multicast routers. 21367 */ 21368 if (ire->ire_flags & RTF_MULTIRT) { 21369 if (ipha->ipha_ttl > 1) { 21370 ip2dbg(("ip_wput: forcing multicast " 21371 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21372 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21373 ipha->ipha_ttl = 1; 21374 } 21375 } 21376 } else { 21377 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21378 if ((ire != NULL) && (ire->ire_type & 21379 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21380 ignore_dontroute = B_TRUE; 21381 ignore_nexthop = B_TRUE; 21382 } 21383 if (ire != NULL) { 21384 ire_refrele(ire); 21385 ire = NULL; 21386 } 21387 /* 21388 * Guard against coming in from arp in which case conn is NULL. 21389 * Also guard against non M_DATA with dontroute set but 21390 * destined to local, loopback or broadcast addresses. 21391 */ 21392 if (connp != NULL && connp->conn_dontroute && 21393 !ignore_dontroute) { 21394 dontroute: 21395 /* 21396 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21397 * routing protocols from seeing false direct 21398 * connectivity. 21399 */ 21400 ipha->ipha_ttl = 1; 21401 /* 21402 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21403 * along with SO_DONTROUTE, higher precedence is 21404 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21405 */ 21406 if (connp->conn_xmit_if_ill == NULL) { 21407 /* If suitable ipif not found, drop packet */ 21408 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21409 ipst); 21410 if (dst_ipif == NULL) { 21411 ip1dbg(("ip_wput: no route for " 21412 "dst using SO_DONTROUTE\n")); 21413 BUMP_MIB(&ipst->ips_ip_mib, 21414 ipIfStatsOutNoRoutes); 21415 mp->b_prev = mp->b_next = NULL; 21416 if (first_mp == NULL) 21417 first_mp = mp; 21418 goto drop_pkt; 21419 } else { 21420 /* 21421 * If suitable ipif has been found, set 21422 * xmit_ill to the corresponding 21423 * ipif_ill because we'll be following 21424 * the IP_XMIT_IF logic. 21425 */ 21426 ASSERT(xmit_ill == NULL); 21427 xmit_ill = dst_ipif->ipif_ill; 21428 mutex_enter(&xmit_ill->ill_lock); 21429 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21430 mutex_exit(&xmit_ill->ill_lock); 21431 xmit_ill = NULL; 21432 ipif_refrele(dst_ipif); 21433 ip1dbg(("ip_wput: no route for" 21434 " dst using" 21435 " SO_DONTROUTE\n")); 21436 BUMP_MIB(&ipst->ips_ip_mib, 21437 ipIfStatsOutNoRoutes); 21438 mp->b_prev = mp->b_next = NULL; 21439 if (first_mp == NULL) 21440 first_mp = mp; 21441 goto drop_pkt; 21442 } 21443 ill_refhold_locked(xmit_ill); 21444 mutex_exit(&xmit_ill->ill_lock); 21445 ipif_refrele(dst_ipif); 21446 } 21447 } 21448 21449 } 21450 /* 21451 * If we are bound to IPIF_NOFAILOVER address, look for 21452 * an IRE_CACHE matching the ill. 21453 */ 21454 send_from_ill: 21455 if (attach_ill != NULL) { 21456 ipif_t *attach_ipif; 21457 21458 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21459 21460 /* 21461 * Check if we need an ire that will not be 21462 * looked up by anybody else i.e. HIDDEN. 21463 */ 21464 if (ill_is_probeonly(attach_ill)) { 21465 match_flags |= MATCH_IRE_MARK_HIDDEN; 21466 } 21467 21468 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21469 if (attach_ipif == NULL) { 21470 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21471 goto discard_pkt; 21472 } 21473 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21474 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21475 ipif_refrele(attach_ipif); 21476 } else if (xmit_ill != NULL || (connp != NULL && 21477 connp->conn_xmit_if_ill != NULL)) { 21478 /* 21479 * Mark this packet as originated locally 21480 */ 21481 mp->b_prev = mp->b_next = NULL; 21482 /* 21483 * xmit_ill could be NULL if SO_DONTROUTE 21484 * is also set. 21485 */ 21486 if (xmit_ill == NULL) { 21487 xmit_ill = conn_get_held_ill(connp, 21488 &connp->conn_xmit_if_ill, &err); 21489 if (err == ILL_LOOKUP_FAILED) { 21490 BUMP_MIB(&ipst->ips_ip_mib, 21491 ipIfStatsOutDiscards); 21492 if (need_decref) 21493 CONN_DEC_REF(connp); 21494 freemsg(first_mp); 21495 return; 21496 } 21497 if (xmit_ill == NULL) { 21498 if (connp->conn_dontroute) 21499 goto dontroute; 21500 goto send_from_ill; 21501 } 21502 } 21503 /* 21504 * Could be SO_DONTROUTE case also. 21505 * check at least one interface is UP as 21506 * specified by this ILL 21507 */ 21508 if (xmit_ill->ill_ipif_up_count > 0) { 21509 ipif_t *ipif; 21510 21511 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21512 if (ipif == NULL) { 21513 ip1dbg(("ip_output: " 21514 "xmit_ill NULL ipif\n")); 21515 goto drop_pkt; 21516 } 21517 /* 21518 * Look for a ire that is part of the group, 21519 * if found use it else call ip_newroute_ipif. 21520 * IPCL_ZONEID is not used for matching because 21521 * IP_ALLZONES option is valid only when the 21522 * ill is accessible from all zones i.e has a 21523 * valid ipif in all zones. 21524 */ 21525 match_flags = MATCH_IRE_ILL_GROUP | 21526 MATCH_IRE_SECATTR; 21527 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21528 MBLK_GETLABEL(mp), match_flags, ipst); 21529 /* 21530 * If an ire exists use it or else create 21531 * an ire but don't add it to the cache. 21532 * Adding an ire may cause issues with 21533 * asymmetric routing. 21534 * In case of multiroute always act as if 21535 * ire does not exist. 21536 */ 21537 if (ire == NULL || 21538 ire->ire_flags & RTF_MULTIRT) { 21539 if (ire != NULL) 21540 ire_refrele(ire); 21541 ip_newroute_ipif(q, first_mp, ipif, 21542 dst, connp, 0, zoneid, infop); 21543 ipif_refrele(ipif); 21544 ip1dbg(("ip_wput: ip_unicast_if\n")); 21545 ill_refrele(xmit_ill); 21546 if (need_decref) 21547 CONN_DEC_REF(connp); 21548 return; 21549 } 21550 ipif_refrele(ipif); 21551 } else { 21552 goto drop_pkt; 21553 } 21554 } else if (ip_nexthop || (connp != NULL && 21555 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21556 if (!ip_nexthop) { 21557 ip_nexthop = B_TRUE; 21558 nexthop_addr = connp->conn_nexthop_v4; 21559 } 21560 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21561 MATCH_IRE_GW; 21562 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21563 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21564 } else { 21565 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21566 ipst); 21567 } 21568 if (!ire) { 21569 /* 21570 * Make sure we don't load spread if this 21571 * is IPIF_NOFAILOVER case. 21572 */ 21573 if ((attach_ill != NULL) || 21574 (ip_nexthop && !ignore_nexthop)) { 21575 if (mctl_present) { 21576 io = (ipsec_out_t *)first_mp->b_rptr; 21577 ASSERT(first_mp->b_datap->db_type == 21578 M_CTL); 21579 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21580 } else { 21581 ASSERT(mp == first_mp); 21582 first_mp = allocb( 21583 sizeof (ipsec_info_t), BPRI_HI); 21584 if (first_mp == NULL) { 21585 first_mp = mp; 21586 goto discard_pkt; 21587 } 21588 first_mp->b_datap->db_type = M_CTL; 21589 first_mp->b_wptr += 21590 sizeof (ipsec_info_t); 21591 /* ipsec_out_secure is B_FALSE now */ 21592 bzero(first_mp->b_rptr, 21593 sizeof (ipsec_info_t)); 21594 io = (ipsec_out_t *)first_mp->b_rptr; 21595 io->ipsec_out_type = IPSEC_OUT; 21596 io->ipsec_out_len = 21597 sizeof (ipsec_out_t); 21598 io->ipsec_out_use_global_policy = 21599 B_TRUE; 21600 io->ipsec_out_ns = ipst->ips_netstack; 21601 first_mp->b_cont = mp; 21602 mctl_present = B_TRUE; 21603 } 21604 if (attach_ill != NULL) { 21605 io->ipsec_out_ill_index = attach_ill-> 21606 ill_phyint->phyint_ifindex; 21607 io->ipsec_out_attach_if = B_TRUE; 21608 } else { 21609 io->ipsec_out_ip_nexthop = ip_nexthop; 21610 io->ipsec_out_nexthop_addr = 21611 nexthop_addr; 21612 } 21613 } 21614 noirefound: 21615 /* 21616 * Mark this packet as having originated on 21617 * this machine. This will be noted in 21618 * ire_add_then_send, which needs to know 21619 * whether to run it back through ip_wput or 21620 * ip_rput following successful resolution. 21621 */ 21622 mp->b_prev = NULL; 21623 mp->b_next = NULL; 21624 ip_newroute(q, first_mp, dst, NULL, connp, zoneid, 21625 ipst); 21626 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21627 "ip_wput_end: q %p (%S)", q, "newroute"); 21628 if (attach_ill != NULL) 21629 ill_refrele(attach_ill); 21630 if (xmit_ill != NULL) 21631 ill_refrele(xmit_ill); 21632 if (need_decref) 21633 CONN_DEC_REF(connp); 21634 return; 21635 } 21636 } 21637 21638 /* We now know where we are going with it. */ 21639 21640 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21641 "ip_wput_end: q %p (%S)", q, "end"); 21642 21643 /* 21644 * Check if the ire has the RTF_MULTIRT flag, inherited 21645 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21646 */ 21647 if (ire->ire_flags & RTF_MULTIRT) { 21648 /* 21649 * Force the TTL of multirouted packets if required. 21650 * The TTL of such packets is bounded by the 21651 * ip_multirt_ttl ndd variable. 21652 */ 21653 if ((ipst->ips_ip_multirt_ttl > 0) && 21654 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21655 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21656 "(was %d), dst 0x%08x\n", 21657 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21658 ntohl(ire->ire_addr))); 21659 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21660 } 21661 /* 21662 * At this point, we check to see if there are any pending 21663 * unresolved routes. ire_multirt_resolvable() 21664 * checks in O(n) that all IRE_OFFSUBNET ire 21665 * entries for the packet's destination and 21666 * flagged RTF_MULTIRT are currently resolved. 21667 * If some remain unresolved, we make a copy 21668 * of the current message. It will be used 21669 * to initiate additional route resolutions. 21670 */ 21671 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21672 MBLK_GETLABEL(first_mp), ipst); 21673 ip2dbg(("ip_wput[noirefound]: ire %p, " 21674 "multirt_need_resolve %d, first_mp %p\n", 21675 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21676 if (multirt_need_resolve) { 21677 copy_mp = copymsg(first_mp); 21678 if (copy_mp != NULL) { 21679 MULTIRT_DEBUG_TAG(copy_mp); 21680 } 21681 } 21682 } 21683 21684 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21685 /* 21686 * Try to resolve another multiroute if 21687 * ire_multirt_resolvable() deemed it necessary. 21688 * At this point, we need to distinguish 21689 * multicasts from other packets. For multicasts, 21690 * we call ip_newroute_ipif() and request that both 21691 * multirouting and setsrc flags are checked. 21692 */ 21693 if (copy_mp != NULL) { 21694 if (CLASSD(dst)) { 21695 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21696 if (ipif) { 21697 ASSERT(infop->ip_opt_ill_index == 0); 21698 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21699 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21700 ipif_refrele(ipif); 21701 } else { 21702 MULTIRT_DEBUG_UNTAG(copy_mp); 21703 freemsg(copy_mp); 21704 copy_mp = NULL; 21705 } 21706 } else { 21707 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 21708 } 21709 } 21710 if (attach_ill != NULL) 21711 ill_refrele(attach_ill); 21712 if (xmit_ill != NULL) 21713 ill_refrele(xmit_ill); 21714 if (need_decref) 21715 CONN_DEC_REF(connp); 21716 return; 21717 21718 icmp_parameter_problem: 21719 /* could not have originated externally */ 21720 ASSERT(mp->b_prev == NULL); 21721 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21722 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21723 /* it's the IP header length that's in trouble */ 21724 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21725 first_mp = NULL; 21726 } 21727 21728 discard_pkt: 21729 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21730 drop_pkt: 21731 ip1dbg(("ip_wput: dropped packet\n")); 21732 if (ire != NULL) 21733 ire_refrele(ire); 21734 if (need_decref) 21735 CONN_DEC_REF(connp); 21736 freemsg(first_mp); 21737 if (attach_ill != NULL) 21738 ill_refrele(attach_ill); 21739 if (xmit_ill != NULL) 21740 ill_refrele(xmit_ill); 21741 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21742 "ip_wput_end: q %p (%S)", q, "droppkt"); 21743 } 21744 21745 /* 21746 * If this is a conn_t queue, then we pass in the conn. This includes the 21747 * zoneid. 21748 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21749 * in which case we use the global zoneid since those are all part of 21750 * the global zone. 21751 */ 21752 void 21753 ip_wput(queue_t *q, mblk_t *mp) 21754 { 21755 if (CONN_Q(q)) 21756 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21757 else 21758 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21759 } 21760 21761 /* 21762 * 21763 * The following rules must be observed when accessing any ipif or ill 21764 * that has been cached in the conn. Typically conn_nofailover_ill, 21765 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21766 * 21767 * Access: The ipif or ill pointed to from the conn can be accessed under 21768 * the protection of the conn_lock or after it has been refheld under the 21769 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21770 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21771 * The reason for this is that a concurrent unplumb could actually be 21772 * cleaning up these cached pointers by walking the conns and might have 21773 * finished cleaning up the conn in question. The macros check that an 21774 * unplumb has not yet started on the ipif or ill. 21775 * 21776 * Caching: An ipif or ill pointer may be cached in the conn only after 21777 * making sure that an unplumb has not started. So the caching is done 21778 * while holding both the conn_lock and the ill_lock and after using the 21779 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21780 * flag before starting the cleanup of conns. 21781 * 21782 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21783 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21784 * or a reference to the ipif or a reference to an ire that references the 21785 * ipif. An ipif does not change its ill except for failover/failback. Since 21786 * failover/failback happens only after bringing down the ipif and making sure 21787 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21788 * the above holds. 21789 */ 21790 ipif_t * 21791 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21792 { 21793 ipif_t *ipif; 21794 ill_t *ill; 21795 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21796 21797 *err = 0; 21798 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21799 mutex_enter(&connp->conn_lock); 21800 ipif = *ipifp; 21801 if (ipif != NULL) { 21802 ill = ipif->ipif_ill; 21803 mutex_enter(&ill->ill_lock); 21804 if (IPIF_CAN_LOOKUP(ipif)) { 21805 ipif_refhold_locked(ipif); 21806 mutex_exit(&ill->ill_lock); 21807 mutex_exit(&connp->conn_lock); 21808 rw_exit(&ipst->ips_ill_g_lock); 21809 return (ipif); 21810 } else { 21811 *err = IPIF_LOOKUP_FAILED; 21812 } 21813 mutex_exit(&ill->ill_lock); 21814 } 21815 mutex_exit(&connp->conn_lock); 21816 rw_exit(&ipst->ips_ill_g_lock); 21817 return (NULL); 21818 } 21819 21820 ill_t * 21821 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21822 { 21823 ill_t *ill; 21824 21825 *err = 0; 21826 mutex_enter(&connp->conn_lock); 21827 ill = *illp; 21828 if (ill != NULL) { 21829 mutex_enter(&ill->ill_lock); 21830 if (ILL_CAN_LOOKUP(ill)) { 21831 ill_refhold_locked(ill); 21832 mutex_exit(&ill->ill_lock); 21833 mutex_exit(&connp->conn_lock); 21834 return (ill); 21835 } else { 21836 *err = ILL_LOOKUP_FAILED; 21837 } 21838 mutex_exit(&ill->ill_lock); 21839 } 21840 mutex_exit(&connp->conn_lock); 21841 return (NULL); 21842 } 21843 21844 static int 21845 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21846 { 21847 ill_t *ill; 21848 21849 ill = ipif->ipif_ill; 21850 mutex_enter(&connp->conn_lock); 21851 mutex_enter(&ill->ill_lock); 21852 if (IPIF_CAN_LOOKUP(ipif)) { 21853 *ipifp = ipif; 21854 mutex_exit(&ill->ill_lock); 21855 mutex_exit(&connp->conn_lock); 21856 return (0); 21857 } 21858 mutex_exit(&ill->ill_lock); 21859 mutex_exit(&connp->conn_lock); 21860 return (IPIF_LOOKUP_FAILED); 21861 } 21862 21863 /* 21864 * This is called if the outbound datagram needs fragmentation. 21865 * 21866 * NOTE : This function does not ire_refrele the ire argument passed in. 21867 */ 21868 static void 21869 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21870 ip_stack_t *ipst) 21871 { 21872 ipha_t *ipha; 21873 mblk_t *mp; 21874 uint32_t v_hlen_tos_len; 21875 uint32_t max_frag; 21876 uint32_t frag_flag; 21877 boolean_t dont_use; 21878 21879 if (ipsec_mp->b_datap->db_type == M_CTL) { 21880 mp = ipsec_mp->b_cont; 21881 } else { 21882 mp = ipsec_mp; 21883 } 21884 21885 ipha = (ipha_t *)mp->b_rptr; 21886 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21887 21888 #ifdef _BIG_ENDIAN 21889 #define V_HLEN (v_hlen_tos_len >> 24) 21890 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21891 #else 21892 #define V_HLEN (v_hlen_tos_len & 0xFF) 21893 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21894 #endif 21895 21896 #ifndef SPEED_BEFORE_SAFETY 21897 /* 21898 * Check that ipha_length is consistent with 21899 * the mblk length 21900 */ 21901 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21902 ip0dbg(("Packet length mismatch: %d, %ld\n", 21903 LENGTH, msgdsize(mp))); 21904 freemsg(ipsec_mp); 21905 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21906 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21907 "packet length mismatch"); 21908 return; 21909 } 21910 #endif 21911 /* 21912 * Don't use frag_flag if pre-built packet or source 21913 * routed or if multicast (since multicast packets do not solicit 21914 * ICMP "packet too big" messages). Get the values of 21915 * max_frag and frag_flag atomically by acquiring the 21916 * ire_lock. 21917 */ 21918 mutex_enter(&ire->ire_lock); 21919 max_frag = ire->ire_max_frag; 21920 frag_flag = ire->ire_frag_flag; 21921 mutex_exit(&ire->ire_lock); 21922 21923 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21924 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21925 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21926 21927 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21928 (dont_use ? 0 : frag_flag), zoneid, ipst); 21929 } 21930 21931 /* 21932 * Used for deciding the MSS size for the upper layer. Thus 21933 * we need to check the outbound policy values in the conn. 21934 */ 21935 int 21936 conn_ipsec_length(conn_t *connp) 21937 { 21938 ipsec_latch_t *ipl; 21939 21940 ipl = connp->conn_latch; 21941 if (ipl == NULL) 21942 return (0); 21943 21944 if (ipl->ipl_out_policy == NULL) 21945 return (0); 21946 21947 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21948 } 21949 21950 /* 21951 * Returns an estimate of the IPSEC headers size. This is used if 21952 * we don't want to call into IPSEC to get the exact size. 21953 */ 21954 int 21955 ipsec_out_extra_length(mblk_t *ipsec_mp) 21956 { 21957 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21958 ipsec_action_t *a; 21959 21960 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21961 if (!io->ipsec_out_secure) 21962 return (0); 21963 21964 a = io->ipsec_out_act; 21965 21966 if (a == NULL) { 21967 ASSERT(io->ipsec_out_policy != NULL); 21968 a = io->ipsec_out_policy->ipsp_act; 21969 } 21970 ASSERT(a != NULL); 21971 21972 return (a->ipa_ovhd); 21973 } 21974 21975 /* 21976 * Returns an estimate of the IPSEC headers size. This is used if 21977 * we don't want to call into IPSEC to get the exact size. 21978 */ 21979 int 21980 ipsec_in_extra_length(mblk_t *ipsec_mp) 21981 { 21982 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21983 ipsec_action_t *a; 21984 21985 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21986 21987 a = ii->ipsec_in_action; 21988 return (a == NULL ? 0 : a->ipa_ovhd); 21989 } 21990 21991 /* 21992 * If there are any source route options, return the true final 21993 * destination. Otherwise, return the destination. 21994 */ 21995 ipaddr_t 21996 ip_get_dst(ipha_t *ipha) 21997 { 21998 ipoptp_t opts; 21999 uchar_t *opt; 22000 uint8_t optval; 22001 uint8_t optlen; 22002 ipaddr_t dst; 22003 uint32_t off; 22004 22005 dst = ipha->ipha_dst; 22006 22007 if (IS_SIMPLE_IPH(ipha)) 22008 return (dst); 22009 22010 for (optval = ipoptp_first(&opts, ipha); 22011 optval != IPOPT_EOL; 22012 optval = ipoptp_next(&opts)) { 22013 opt = opts.ipoptp_cur; 22014 optlen = opts.ipoptp_len; 22015 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22016 switch (optval) { 22017 case IPOPT_SSRR: 22018 case IPOPT_LSRR: 22019 off = opt[IPOPT_OFFSET]; 22020 /* 22021 * If one of the conditions is true, it means 22022 * end of options and dst already has the right 22023 * value. 22024 */ 22025 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22026 off = optlen - IP_ADDR_LEN; 22027 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22028 } 22029 return (dst); 22030 default: 22031 break; 22032 } 22033 } 22034 22035 return (dst); 22036 } 22037 22038 mblk_t * 22039 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22040 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22041 { 22042 ipsec_out_t *io; 22043 mblk_t *first_mp; 22044 boolean_t policy_present; 22045 ip_stack_t *ipst; 22046 ipsec_stack_t *ipss; 22047 22048 ASSERT(ire != NULL); 22049 ipst = ire->ire_ipst; 22050 ipss = ipst->ips_netstack->netstack_ipsec; 22051 22052 first_mp = mp; 22053 if (mp->b_datap->db_type == M_CTL) { 22054 io = (ipsec_out_t *)first_mp->b_rptr; 22055 /* 22056 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22057 * 22058 * 1) There is per-socket policy (including cached global 22059 * policy) or a policy on the IP-in-IP tunnel. 22060 * 2) There is no per-socket policy, but it is 22061 * a multicast packet that needs to go out 22062 * on a specific interface. This is the case 22063 * where (ip_wput and ip_wput_multicast) attaches 22064 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22065 * 22066 * In case (2) we check with global policy to 22067 * see if there is a match and set the ill_index 22068 * appropriately so that we can lookup the ire 22069 * properly in ip_wput_ipsec_out. 22070 */ 22071 22072 /* 22073 * ipsec_out_use_global_policy is set to B_FALSE 22074 * in ipsec_in_to_out(). Refer to that function for 22075 * details. 22076 */ 22077 if ((io->ipsec_out_latch == NULL) && 22078 (io->ipsec_out_use_global_policy)) { 22079 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22080 ire, connp, unspec_src, zoneid)); 22081 } 22082 if (!io->ipsec_out_secure) { 22083 /* 22084 * If this is not a secure packet, drop 22085 * the IPSEC_OUT mp and treat it as a clear 22086 * packet. This happens when we are sending 22087 * a ICMP reply back to a clear packet. See 22088 * ipsec_in_to_out() for details. 22089 */ 22090 mp = first_mp->b_cont; 22091 freeb(first_mp); 22092 } 22093 return (mp); 22094 } 22095 /* 22096 * See whether we need to attach a global policy here. We 22097 * don't depend on the conn (as it could be null) for deciding 22098 * what policy this datagram should go through because it 22099 * should have happened in ip_wput if there was some 22100 * policy. This normally happens for connections which are not 22101 * fully bound preventing us from caching policies in 22102 * ip_bind. Packets coming from the TCP listener/global queue 22103 * - which are non-hard_bound - could also be affected by 22104 * applying policy here. 22105 * 22106 * If this packet is coming from tcp global queue or listener, 22107 * we will be applying policy here. This may not be *right* 22108 * if these packets are coming from the detached connection as 22109 * it could have gone in clear before. This happens only if a 22110 * TCP connection started when there is no policy and somebody 22111 * added policy before it became detached. Thus packets of the 22112 * detached connection could go out secure and the other end 22113 * would drop it because it will be expecting in clear. The 22114 * converse is not true i.e if somebody starts a TCP 22115 * connection and deletes the policy, all the packets will 22116 * still go out with the policy that existed before deleting 22117 * because ip_unbind sends up policy information which is used 22118 * by TCP on subsequent ip_wputs. The right solution is to fix 22119 * TCP to attach a dummy IPSEC_OUT and set 22120 * ipsec_out_use_global_policy to B_FALSE. As this might 22121 * affect performance for normal cases, we are not doing it. 22122 * Thus, set policy before starting any TCP connections. 22123 * 22124 * NOTE - We might apply policy even for a hard bound connection 22125 * - for which we cached policy in ip_bind - if somebody added 22126 * global policy after we inherited the policy in ip_bind. 22127 * This means that the packets that were going out in clear 22128 * previously would start going secure and hence get dropped 22129 * on the other side. To fix this, TCP attaches a dummy 22130 * ipsec_out and make sure that we don't apply global policy. 22131 */ 22132 if (ipha != NULL) 22133 policy_present = ipss->ipsec_outbound_v4_policy_present; 22134 else 22135 policy_present = ipss->ipsec_outbound_v6_policy_present; 22136 if (!policy_present) 22137 return (mp); 22138 22139 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22140 zoneid)); 22141 } 22142 22143 ire_t * 22144 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22145 { 22146 ipaddr_t addr; 22147 ire_t *save_ire; 22148 irb_t *irb; 22149 ill_group_t *illgrp; 22150 int err; 22151 22152 save_ire = ire; 22153 addr = ire->ire_addr; 22154 22155 ASSERT(ire->ire_type == IRE_BROADCAST); 22156 22157 illgrp = connp->conn_outgoing_ill->ill_group; 22158 if (illgrp == NULL) { 22159 *conn_outgoing_ill = conn_get_held_ill(connp, 22160 &connp->conn_outgoing_ill, &err); 22161 if (err == ILL_LOOKUP_FAILED) { 22162 ire_refrele(save_ire); 22163 return (NULL); 22164 } 22165 return (save_ire); 22166 } 22167 /* 22168 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22169 * If it is part of the group, we need to send on the ire 22170 * that has been cleared of IRE_MARK_NORECV and that belongs 22171 * to this group. This is okay as IP_BOUND_IF really means 22172 * any ill in the group. We depend on the fact that the 22173 * first ire in the group is always cleared of IRE_MARK_NORECV 22174 * if such an ire exists. This is possible only if you have 22175 * at least one ill in the group that has not failed. 22176 * 22177 * First get to the ire that matches the address and group. 22178 * 22179 * We don't look for an ire with a matching zoneid because a given zone 22180 * won't always have broadcast ires on all ills in the group. 22181 */ 22182 irb = ire->ire_bucket; 22183 rw_enter(&irb->irb_lock, RW_READER); 22184 if (ire->ire_marks & IRE_MARK_NORECV) { 22185 /* 22186 * If the current zone only has an ire broadcast for this 22187 * address marked NORECV, the ire we want is ahead in the 22188 * bucket, so we look it up deliberately ignoring the zoneid. 22189 */ 22190 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22191 if (ire->ire_addr != addr) 22192 continue; 22193 /* skip over deleted ires */ 22194 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22195 continue; 22196 } 22197 } 22198 while (ire != NULL) { 22199 /* 22200 * If a new interface is coming up, we could end up 22201 * seeing the loopback ire and the non-loopback ire 22202 * may not have been added yet. So check for ire_stq 22203 */ 22204 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22205 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22206 break; 22207 } 22208 ire = ire->ire_next; 22209 } 22210 if (ire != NULL && ire->ire_addr == addr && 22211 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22212 IRE_REFHOLD(ire); 22213 rw_exit(&irb->irb_lock); 22214 ire_refrele(save_ire); 22215 *conn_outgoing_ill = ire_to_ill(ire); 22216 /* 22217 * Refhold the ill to make the conn_outgoing_ill 22218 * independent of the ire. ip_wput_ire goes in a loop 22219 * and may refrele the ire. Since we have an ire at this 22220 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22221 */ 22222 ill_refhold(*conn_outgoing_ill); 22223 return (ire); 22224 } 22225 rw_exit(&irb->irb_lock); 22226 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22227 /* 22228 * If we can't find a suitable ire, return the original ire. 22229 */ 22230 return (save_ire); 22231 } 22232 22233 /* 22234 * This function does the ire_refrele of the ire passed in as the 22235 * argument. As this function looks up more ires i.e broadcast ires, 22236 * it needs to REFRELE them. Currently, for simplicity we don't 22237 * differentiate the one passed in and looked up here. We always 22238 * REFRELE. 22239 * IPQoS Notes: 22240 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22241 * IPSec packets are done in ipsec_out_process. 22242 * 22243 */ 22244 void 22245 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22246 zoneid_t zoneid) 22247 { 22248 ipha_t *ipha; 22249 #define rptr ((uchar_t *)ipha) 22250 queue_t *stq; 22251 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22252 uint32_t v_hlen_tos_len; 22253 uint32_t ttl_protocol; 22254 ipaddr_t src; 22255 ipaddr_t dst; 22256 uint32_t cksum; 22257 ipaddr_t orig_src; 22258 ire_t *ire1; 22259 mblk_t *next_mp; 22260 uint_t hlen; 22261 uint16_t *up; 22262 uint32_t max_frag = ire->ire_max_frag; 22263 ill_t *ill = ire_to_ill(ire); 22264 int clusterwide; 22265 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22266 int ipsec_len; 22267 mblk_t *first_mp; 22268 ipsec_out_t *io; 22269 boolean_t conn_dontroute; /* conn value for multicast */ 22270 boolean_t conn_multicast_loop; /* conn value for multicast */ 22271 boolean_t multicast_forward; /* Should we forward ? */ 22272 boolean_t unspec_src; 22273 ill_t *conn_outgoing_ill = NULL; 22274 ill_t *ire_ill; 22275 ill_t *ire1_ill; 22276 ill_t *out_ill; 22277 uint32_t ill_index = 0; 22278 boolean_t multirt_send = B_FALSE; 22279 int err; 22280 ipxmit_state_t pktxmit_state; 22281 ip_stack_t *ipst = ire->ire_ipst; 22282 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22283 22284 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22285 "ip_wput_ire_start: q %p", q); 22286 22287 multicast_forward = B_FALSE; 22288 unspec_src = (connp != NULL && connp->conn_unspec_src); 22289 22290 if (ire->ire_flags & RTF_MULTIRT) { 22291 /* 22292 * Multirouting case. The bucket where ire is stored 22293 * probably holds other RTF_MULTIRT flagged ire 22294 * to the destination. In this call to ip_wput_ire, 22295 * we attempt to send the packet through all 22296 * those ires. Thus, we first ensure that ire is the 22297 * first RTF_MULTIRT ire in the bucket, 22298 * before walking the ire list. 22299 */ 22300 ire_t *first_ire; 22301 irb_t *irb = ire->ire_bucket; 22302 ASSERT(irb != NULL); 22303 22304 /* Make sure we do not omit any multiroute ire. */ 22305 IRB_REFHOLD(irb); 22306 for (first_ire = irb->irb_ire; 22307 first_ire != NULL; 22308 first_ire = first_ire->ire_next) { 22309 if ((first_ire->ire_flags & RTF_MULTIRT) && 22310 (first_ire->ire_addr == ire->ire_addr) && 22311 !(first_ire->ire_marks & 22312 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22313 break; 22314 } 22315 } 22316 22317 if ((first_ire != NULL) && (first_ire != ire)) { 22318 IRE_REFHOLD(first_ire); 22319 ire_refrele(ire); 22320 ire = first_ire; 22321 ill = ire_to_ill(ire); 22322 } 22323 IRB_REFRELE(irb); 22324 } 22325 22326 /* 22327 * conn_outgoing_ill is used only in the broadcast loop. 22328 * for performance we don't grab the mutexs in the fastpath 22329 */ 22330 if ((connp != NULL) && 22331 (connp->conn_xmit_if_ill == NULL) && 22332 (ire->ire_type == IRE_BROADCAST) && 22333 ((connp->conn_nofailover_ill != NULL) || 22334 (connp->conn_outgoing_ill != NULL))) { 22335 /* 22336 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22337 * option. So, see if this endpoint is bound to a 22338 * IPIF_NOFAILOVER address. If so, honor it. This implies 22339 * that if the interface is failed, we will still send 22340 * the packet on the same ill which is what we want. 22341 */ 22342 conn_outgoing_ill = conn_get_held_ill(connp, 22343 &connp->conn_nofailover_ill, &err); 22344 if (err == ILL_LOOKUP_FAILED) { 22345 ire_refrele(ire); 22346 freemsg(mp); 22347 return; 22348 } 22349 if (conn_outgoing_ill == NULL) { 22350 /* 22351 * Choose a good ill in the group to send the 22352 * packets on. 22353 */ 22354 ire = conn_set_outgoing_ill(connp, ire, 22355 &conn_outgoing_ill); 22356 if (ire == NULL) { 22357 freemsg(mp); 22358 return; 22359 } 22360 } 22361 } 22362 22363 if (mp->b_datap->db_type != M_CTL) { 22364 ipha = (ipha_t *)mp->b_rptr; 22365 } else { 22366 io = (ipsec_out_t *)mp->b_rptr; 22367 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22368 ASSERT(zoneid == io->ipsec_out_zoneid); 22369 ASSERT(zoneid != ALL_ZONES); 22370 ipha = (ipha_t *)mp->b_cont->b_rptr; 22371 dst = ipha->ipha_dst; 22372 /* 22373 * For the multicast case, ipsec_out carries conn_dontroute and 22374 * conn_multicast_loop as conn may not be available here. We 22375 * need this for multicast loopback and forwarding which is done 22376 * later in the code. 22377 */ 22378 if (CLASSD(dst)) { 22379 conn_dontroute = io->ipsec_out_dontroute; 22380 conn_multicast_loop = io->ipsec_out_multicast_loop; 22381 /* 22382 * If conn_dontroute is not set or conn_multicast_loop 22383 * is set, we need to do forwarding/loopback. For 22384 * datagrams from ip_wput_multicast, conn_dontroute is 22385 * set to B_TRUE and conn_multicast_loop is set to 22386 * B_FALSE so that we neither do forwarding nor 22387 * loopback. 22388 */ 22389 if (!conn_dontroute || conn_multicast_loop) 22390 multicast_forward = B_TRUE; 22391 } 22392 } 22393 22394 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22395 ire->ire_zoneid != ALL_ZONES) { 22396 /* 22397 * When a zone sends a packet to another zone, we try to deliver 22398 * the packet under the same conditions as if the destination 22399 * was a real node on the network. To do so, we look for a 22400 * matching route in the forwarding table. 22401 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22402 * ip_newroute() does. 22403 * Note that IRE_LOCAL are special, since they are used 22404 * when the zoneid doesn't match in some cases. This means that 22405 * we need to handle ipha_src differently since ire_src_addr 22406 * belongs to the receiving zone instead of the sending zone. 22407 * When ip_restrict_interzone_loopback is set, then 22408 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22409 * for loopback between zones when the logical "Ethernet" would 22410 * have looped them back. 22411 */ 22412 ire_t *src_ire; 22413 22414 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22415 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22416 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22417 if (src_ire != NULL && 22418 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22419 (!ipst->ips_ip_restrict_interzone_loopback || 22420 ire_local_same_ill_group(ire, src_ire))) { 22421 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22422 ipha->ipha_src = src_ire->ire_src_addr; 22423 ire_refrele(src_ire); 22424 } else { 22425 ire_refrele(ire); 22426 if (conn_outgoing_ill != NULL) 22427 ill_refrele(conn_outgoing_ill); 22428 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22429 if (src_ire != NULL) { 22430 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22431 ire_refrele(src_ire); 22432 freemsg(mp); 22433 return; 22434 } 22435 ire_refrele(src_ire); 22436 } 22437 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22438 /* Failed */ 22439 freemsg(mp); 22440 return; 22441 } 22442 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22443 ipst); 22444 return; 22445 } 22446 } 22447 22448 if (mp->b_datap->db_type == M_CTL || 22449 ipss->ipsec_outbound_v4_policy_present) { 22450 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22451 unspec_src, zoneid); 22452 if (mp == NULL) { 22453 ire_refrele(ire); 22454 if (conn_outgoing_ill != NULL) 22455 ill_refrele(conn_outgoing_ill); 22456 return; 22457 } 22458 } 22459 22460 first_mp = mp; 22461 ipsec_len = 0; 22462 22463 if (first_mp->b_datap->db_type == M_CTL) { 22464 io = (ipsec_out_t *)first_mp->b_rptr; 22465 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22466 mp = first_mp->b_cont; 22467 ipsec_len = ipsec_out_extra_length(first_mp); 22468 ASSERT(ipsec_len >= 0); 22469 /* We already picked up the zoneid from the M_CTL above */ 22470 ASSERT(zoneid == io->ipsec_out_zoneid); 22471 ASSERT(zoneid != ALL_ZONES); 22472 22473 /* 22474 * Drop M_CTL here if IPsec processing is not needed. 22475 * (Non-IPsec use of M_CTL extracted any information it 22476 * needed above). 22477 */ 22478 if (ipsec_len == 0) { 22479 freeb(first_mp); 22480 first_mp = mp; 22481 } 22482 } 22483 22484 /* 22485 * Fast path for ip_wput_ire 22486 */ 22487 22488 ipha = (ipha_t *)mp->b_rptr; 22489 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22490 dst = ipha->ipha_dst; 22491 22492 /* 22493 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22494 * if the socket is a SOCK_RAW type. The transport checksum should 22495 * be provided in the pre-built packet, so we don't need to compute it. 22496 * Also, other application set flags, like DF, should not be altered. 22497 * Other transport MUST pass down zero. 22498 */ 22499 ip_hdr_included = ipha->ipha_ident; 22500 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22501 22502 if (CLASSD(dst)) { 22503 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22504 ntohl(dst), 22505 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22506 ntohl(ire->ire_addr))); 22507 } 22508 22509 /* Macros to extract header fields from data already in registers */ 22510 #ifdef _BIG_ENDIAN 22511 #define V_HLEN (v_hlen_tos_len >> 24) 22512 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22513 #define PROTO (ttl_protocol & 0xFF) 22514 #else 22515 #define V_HLEN (v_hlen_tos_len & 0xFF) 22516 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22517 #define PROTO (ttl_protocol >> 8) 22518 #endif 22519 22520 22521 orig_src = src = ipha->ipha_src; 22522 /* (The loop back to "another" is explained down below.) */ 22523 another:; 22524 /* 22525 * Assign an ident value for this packet. We assign idents on 22526 * a per destination basis out of the IRE. There could be 22527 * other threads targeting the same destination, so we have to 22528 * arrange for a atomic increment. Note that we use a 32-bit 22529 * atomic add because it has better performance than its 22530 * 16-bit sibling. 22531 * 22532 * If running in cluster mode and if the source address 22533 * belongs to a replicated service then vector through 22534 * cl_inet_ipident vector to allocate ip identifier 22535 * NOTE: This is a contract private interface with the 22536 * clustering group. 22537 */ 22538 clusterwide = 0; 22539 if (cl_inet_ipident) { 22540 ASSERT(cl_inet_isclusterwide); 22541 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22542 AF_INET, (uint8_t *)(uintptr_t)src)) { 22543 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22544 AF_INET, (uint8_t *)(uintptr_t)src, 22545 (uint8_t *)(uintptr_t)dst); 22546 clusterwide = 1; 22547 } 22548 } 22549 if (!clusterwide) { 22550 ipha->ipha_ident = 22551 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22552 } 22553 22554 #ifndef _BIG_ENDIAN 22555 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22556 #endif 22557 22558 /* 22559 * Set source address unless sent on an ill or conn_unspec_src is set. 22560 * This is needed to obey conn_unspec_src when packets go through 22561 * ip_newroute + arp. 22562 * Assumes ip_newroute{,_multi} sets the source address as well. 22563 */ 22564 if (src == INADDR_ANY && !unspec_src) { 22565 /* 22566 * Assign the appropriate source address from the IRE if none 22567 * was specified. 22568 */ 22569 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22570 22571 /* 22572 * With IP multipathing, broadcast packets are sent on the ire 22573 * that has been cleared of IRE_MARK_NORECV and that belongs to 22574 * the group. However, this ire might not be in the same zone so 22575 * we can't always use its source address. We look for a 22576 * broadcast ire in the same group and in the right zone. 22577 */ 22578 if (ire->ire_type == IRE_BROADCAST && 22579 ire->ire_zoneid != zoneid) { 22580 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22581 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22582 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22583 if (src_ire != NULL) { 22584 src = src_ire->ire_src_addr; 22585 ire_refrele(src_ire); 22586 } else { 22587 ire_refrele(ire); 22588 if (conn_outgoing_ill != NULL) 22589 ill_refrele(conn_outgoing_ill); 22590 freemsg(first_mp); 22591 if (ill != NULL) { 22592 BUMP_MIB(ill->ill_ip_mib, 22593 ipIfStatsOutDiscards); 22594 } else { 22595 BUMP_MIB(&ipst->ips_ip_mib, 22596 ipIfStatsOutDiscards); 22597 } 22598 return; 22599 } 22600 } else { 22601 src = ire->ire_src_addr; 22602 } 22603 22604 if (connp == NULL) { 22605 ip1dbg(("ip_wput_ire: no connp and no src " 22606 "address for dst 0x%x, using src 0x%x\n", 22607 ntohl(dst), 22608 ntohl(src))); 22609 } 22610 ipha->ipha_src = src; 22611 } 22612 stq = ire->ire_stq; 22613 22614 /* 22615 * We only allow ire chains for broadcasts since there will 22616 * be multiple IRE_CACHE entries for the same multicast 22617 * address (one per ipif). 22618 */ 22619 next_mp = NULL; 22620 22621 /* broadcast packet */ 22622 if (ire->ire_type == IRE_BROADCAST) 22623 goto broadcast; 22624 22625 /* loopback ? */ 22626 if (stq == NULL) 22627 goto nullstq; 22628 22629 /* The ill_index for outbound ILL */ 22630 ill_index = Q_TO_INDEX(stq); 22631 22632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22633 ttl_protocol = ((uint16_t *)ipha)[4]; 22634 22635 /* pseudo checksum (do it in parts for IP header checksum) */ 22636 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22637 22638 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22639 queue_t *dev_q = stq->q_next; 22640 22641 /* flow controlled */ 22642 if ((dev_q->q_next || dev_q->q_first) && 22643 !canput(dev_q)) 22644 goto blocked; 22645 if ((PROTO == IPPROTO_UDP) && 22646 (ip_hdr_included != IP_HDR_INCLUDED)) { 22647 hlen = (V_HLEN & 0xF) << 2; 22648 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22649 if (*up != 0) { 22650 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22651 hlen, LENGTH, max_frag, ipsec_len, cksum); 22652 /* Software checksum? */ 22653 if (DB_CKSUMFLAGS(mp) == 0) { 22654 IP_STAT(ipst, ip_out_sw_cksum); 22655 IP_STAT_UPDATE(ipst, 22656 ip_udp_out_sw_cksum_bytes, 22657 LENGTH - hlen); 22658 } 22659 } 22660 } 22661 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22662 hlen = (V_HLEN & 0xF) << 2; 22663 if (PROTO == IPPROTO_TCP) { 22664 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22665 /* 22666 * The packet header is processed once and for all, even 22667 * in the multirouting case. We disable hardware 22668 * checksum if the packet is multirouted, as it will be 22669 * replicated via several interfaces, and not all of 22670 * them may have this capability. 22671 */ 22672 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22673 LENGTH, max_frag, ipsec_len, cksum); 22674 /* Software checksum? */ 22675 if (DB_CKSUMFLAGS(mp) == 0) { 22676 IP_STAT(ipst, ip_out_sw_cksum); 22677 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22678 LENGTH - hlen); 22679 } 22680 } else { 22681 sctp_hdr_t *sctph; 22682 22683 ASSERT(PROTO == IPPROTO_SCTP); 22684 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22685 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22686 /* 22687 * Zero out the checksum field to ensure proper 22688 * checksum calculation. 22689 */ 22690 sctph->sh_chksum = 0; 22691 #ifdef DEBUG 22692 if (!skip_sctp_cksum) 22693 #endif 22694 sctph->sh_chksum = sctp_cksum(mp, hlen); 22695 } 22696 } 22697 22698 /* 22699 * If this is a multicast packet and originated from ip_wput 22700 * we need to do loopback and forwarding checks. If it comes 22701 * from ip_wput_multicast, we SHOULD not do this. 22702 */ 22703 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22704 22705 /* checksum */ 22706 cksum += ttl_protocol; 22707 22708 /* fragment the packet */ 22709 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22710 goto fragmentit; 22711 /* 22712 * Don't use frag_flag if packet is pre-built or source 22713 * routed or if multicast (since multicast packets do 22714 * not solicit ICMP "packet too big" messages). 22715 */ 22716 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22717 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22718 !ip_source_route_included(ipha)) && 22719 !CLASSD(ipha->ipha_dst)) 22720 ipha->ipha_fragment_offset_and_flags |= 22721 htons(ire->ire_frag_flag); 22722 22723 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22724 /* calculate IP header checksum */ 22725 cksum += ipha->ipha_ident; 22726 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22727 cksum += ipha->ipha_fragment_offset_and_flags; 22728 22729 /* IP options present */ 22730 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22731 if (hlen) 22732 goto checksumoptions; 22733 22734 /* calculate hdr checksum */ 22735 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22736 cksum = ~(cksum + (cksum >> 16)); 22737 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22738 } 22739 if (ipsec_len != 0) { 22740 /* 22741 * We will do the rest of the processing after 22742 * we come back from IPSEC in ip_wput_ipsec_out(). 22743 */ 22744 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22745 22746 io = (ipsec_out_t *)first_mp->b_rptr; 22747 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22748 ill_phyint->phyint_ifindex; 22749 22750 ipsec_out_process(q, first_mp, ire, ill_index); 22751 ire_refrele(ire); 22752 if (conn_outgoing_ill != NULL) 22753 ill_refrele(conn_outgoing_ill); 22754 return; 22755 } 22756 22757 /* 22758 * In most cases, the emission loop below is entered only 22759 * once. Only in the case where the ire holds the 22760 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22761 * flagged ires in the bucket, and send the packet 22762 * through all crossed RTF_MULTIRT routes. 22763 */ 22764 if (ire->ire_flags & RTF_MULTIRT) { 22765 multirt_send = B_TRUE; 22766 } 22767 do { 22768 if (multirt_send) { 22769 irb_t *irb; 22770 /* 22771 * We are in a multiple send case, need to get 22772 * the next ire and make a duplicate of the packet. 22773 * ire1 holds here the next ire to process in the 22774 * bucket. If multirouting is expected, 22775 * any non-RTF_MULTIRT ire that has the 22776 * right destination address is ignored. 22777 */ 22778 irb = ire->ire_bucket; 22779 ASSERT(irb != NULL); 22780 22781 IRB_REFHOLD(irb); 22782 for (ire1 = ire->ire_next; 22783 ire1 != NULL; 22784 ire1 = ire1->ire_next) { 22785 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22786 continue; 22787 if (ire1->ire_addr != ire->ire_addr) 22788 continue; 22789 if (ire1->ire_marks & 22790 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22791 continue; 22792 22793 /* Got one */ 22794 IRE_REFHOLD(ire1); 22795 break; 22796 } 22797 IRB_REFRELE(irb); 22798 22799 if (ire1 != NULL) { 22800 next_mp = copyb(mp); 22801 if ((next_mp == NULL) || 22802 ((mp->b_cont != NULL) && 22803 ((next_mp->b_cont = 22804 dupmsg(mp->b_cont)) == NULL))) { 22805 freemsg(next_mp); 22806 next_mp = NULL; 22807 ire_refrele(ire1); 22808 ire1 = NULL; 22809 } 22810 } 22811 22812 /* Last multiroute ire; don't loop anymore. */ 22813 if (ire1 == NULL) { 22814 multirt_send = B_FALSE; 22815 } 22816 } 22817 22818 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22819 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22820 mblk_t *, mp); 22821 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22822 ipst->ips_ipv4firewall_physical_out, 22823 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22824 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22825 if (mp == NULL) 22826 goto release_ire_and_ill; 22827 22828 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22829 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22830 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22831 if ((pktxmit_state == SEND_FAILED) || 22832 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22833 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22834 "- packet dropped\n")); 22835 release_ire_and_ill: 22836 ire_refrele(ire); 22837 if (next_mp != NULL) { 22838 freemsg(next_mp); 22839 ire_refrele(ire1); 22840 } 22841 if (conn_outgoing_ill != NULL) 22842 ill_refrele(conn_outgoing_ill); 22843 return; 22844 } 22845 22846 if (CLASSD(dst)) { 22847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22848 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22849 LENGTH); 22850 } 22851 22852 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22853 "ip_wput_ire_end: q %p (%S)", 22854 q, "last copy out"); 22855 IRE_REFRELE(ire); 22856 22857 if (multirt_send) { 22858 ASSERT(ire1); 22859 /* 22860 * Proceed with the next RTF_MULTIRT ire, 22861 * Also set up the send-to queue accordingly. 22862 */ 22863 ire = ire1; 22864 ire1 = NULL; 22865 stq = ire->ire_stq; 22866 mp = next_mp; 22867 next_mp = NULL; 22868 ipha = (ipha_t *)mp->b_rptr; 22869 ill_index = Q_TO_INDEX(stq); 22870 ill = (ill_t *)stq->q_ptr; 22871 } 22872 } while (multirt_send); 22873 if (conn_outgoing_ill != NULL) 22874 ill_refrele(conn_outgoing_ill); 22875 return; 22876 22877 /* 22878 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22879 */ 22880 broadcast: 22881 { 22882 /* 22883 * Avoid broadcast storms by setting the ttl to 1 22884 * for broadcasts. This parameter can be set 22885 * via ndd, so make sure that for the SO_DONTROUTE 22886 * case that ipha_ttl is always set to 1. 22887 * In the event that we are replying to incoming 22888 * ICMP packets, conn could be NULL. 22889 */ 22890 if ((connp != NULL) && connp->conn_dontroute) 22891 ipha->ipha_ttl = 1; 22892 else 22893 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22894 22895 /* 22896 * Note that we are not doing a IRB_REFHOLD here. 22897 * Actually we don't care if the list changes i.e 22898 * if somebody deletes an IRE from the list while 22899 * we drop the lock, the next time we come around 22900 * ire_next will be NULL and hence we won't send 22901 * out multiple copies which is fine. 22902 */ 22903 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22904 ire1 = ire->ire_next; 22905 if (conn_outgoing_ill != NULL) { 22906 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22907 ASSERT(ire1 == ire->ire_next); 22908 if (ire1 != NULL && ire1->ire_addr == dst) { 22909 ire_refrele(ire); 22910 ire = ire1; 22911 IRE_REFHOLD(ire); 22912 ire1 = ire->ire_next; 22913 continue; 22914 } 22915 rw_exit(&ire->ire_bucket->irb_lock); 22916 /* Did not find a matching ill */ 22917 ip1dbg(("ip_wput_ire: broadcast with no " 22918 "matching IP_BOUND_IF ill %s\n", 22919 conn_outgoing_ill->ill_name)); 22920 freemsg(first_mp); 22921 if (ire != NULL) 22922 ire_refrele(ire); 22923 ill_refrele(conn_outgoing_ill); 22924 return; 22925 } 22926 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22927 /* 22928 * If the next IRE has the same address and is not one 22929 * of the two copies that we need to send, try to see 22930 * whether this copy should be sent at all. This 22931 * assumes that we insert loopbacks first and then 22932 * non-loopbacks. This is acheived by inserting the 22933 * loopback always before non-loopback. 22934 * This is used to send a single copy of a broadcast 22935 * packet out all physical interfaces that have an 22936 * matching IRE_BROADCAST while also looping 22937 * back one copy (to ip_wput_local) for each 22938 * matching physical interface. However, we avoid 22939 * sending packets out different logical that match by 22940 * having ipif_up/ipif_down supress duplicate 22941 * IRE_BROADCASTS. 22942 * 22943 * This feature is currently used to get broadcasts 22944 * sent to multiple interfaces, when the broadcast 22945 * address being used applies to multiple interfaces. 22946 * For example, a whole net broadcast will be 22947 * replicated on every connected subnet of 22948 * the target net. 22949 * 22950 * Each zone has its own set of IRE_BROADCASTs, so that 22951 * we're able to distribute inbound packets to multiple 22952 * zones who share a broadcast address. We avoid looping 22953 * back outbound packets in different zones but on the 22954 * same ill, as the application would see duplicates. 22955 * 22956 * If the interfaces are part of the same group, 22957 * we would want to send only one copy out for 22958 * whole group. 22959 * 22960 * This logic assumes that ire_add_v4() groups the 22961 * IRE_BROADCAST entries so that those with the same 22962 * ire_addr and ill_group are kept together. 22963 */ 22964 ire_ill = ire->ire_ipif->ipif_ill; 22965 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22966 if (ire_ill->ill_group != NULL && 22967 (ire->ire_marks & IRE_MARK_NORECV)) { 22968 /* 22969 * If the current zone only has an ire 22970 * broadcast for this address marked 22971 * NORECV, the ire we want is ahead in 22972 * the bucket, so we look it up 22973 * deliberately ignoring the zoneid. 22974 */ 22975 for (ire1 = ire->ire_bucket->irb_ire; 22976 ire1 != NULL; 22977 ire1 = ire1->ire_next) { 22978 ire1_ill = 22979 ire1->ire_ipif->ipif_ill; 22980 if (ire1->ire_addr != dst) 22981 continue; 22982 /* skip over the current ire */ 22983 if (ire1 == ire) 22984 continue; 22985 /* skip over deleted ires */ 22986 if (ire1->ire_marks & 22987 IRE_MARK_CONDEMNED) 22988 continue; 22989 /* 22990 * non-loopback ire in our 22991 * group: use it for the next 22992 * pass in the loop 22993 */ 22994 if (ire1->ire_stq != NULL && 22995 ire1_ill->ill_group == 22996 ire_ill->ill_group) 22997 break; 22998 } 22999 } 23000 } else { 23001 while (ire1 != NULL && ire1->ire_addr == dst) { 23002 ire1_ill = ire1->ire_ipif->ipif_ill; 23003 /* 23004 * We can have two broadcast ires on the 23005 * same ill in different zones; here 23006 * we'll send a copy of the packet on 23007 * each ill and the fanout code will 23008 * call conn_wantpacket() to check that 23009 * the zone has the broadcast address 23010 * configured on the ill. If the two 23011 * ires are in the same group we only 23012 * send one copy up. 23013 */ 23014 if (ire1_ill != ire_ill && 23015 (ire1_ill->ill_group == NULL || 23016 ire_ill->ill_group == NULL || 23017 ire1_ill->ill_group != 23018 ire_ill->ill_group)) { 23019 break; 23020 } 23021 ire1 = ire1->ire_next; 23022 } 23023 } 23024 } 23025 ASSERT(multirt_send == B_FALSE); 23026 if (ire1 != NULL && ire1->ire_addr == dst) { 23027 if ((ire->ire_flags & RTF_MULTIRT) && 23028 (ire1->ire_flags & RTF_MULTIRT)) { 23029 /* 23030 * We are in the multirouting case. 23031 * The message must be sent at least 23032 * on both ires. These ires have been 23033 * inserted AFTER the standard ones 23034 * in ip_rt_add(). There are thus no 23035 * other ire entries for the destination 23036 * address in the rest of the bucket 23037 * that do not have the RTF_MULTIRT 23038 * flag. We don't process a copy 23039 * of the message here. This will be 23040 * done in the final sending loop. 23041 */ 23042 multirt_send = B_TRUE; 23043 } else { 23044 next_mp = ip_copymsg(first_mp); 23045 if (next_mp != NULL) 23046 IRE_REFHOLD(ire1); 23047 } 23048 } 23049 rw_exit(&ire->ire_bucket->irb_lock); 23050 } 23051 23052 if (stq) { 23053 /* 23054 * A non-NULL send-to queue means this packet is going 23055 * out of this machine. 23056 */ 23057 out_ill = (ill_t *)stq->q_ptr; 23058 23059 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23060 ttl_protocol = ((uint16_t *)ipha)[4]; 23061 /* 23062 * We accumulate the pseudo header checksum in cksum. 23063 * This is pretty hairy code, so watch close. One 23064 * thing to keep in mind is that UDP and TCP have 23065 * stored their respective datagram lengths in their 23066 * checksum fields. This lines things up real nice. 23067 */ 23068 cksum = (dst >> 16) + (dst & 0xFFFF) + 23069 (src >> 16) + (src & 0xFFFF); 23070 /* 23071 * We assume the udp checksum field contains the 23072 * length, so to compute the pseudo header checksum, 23073 * all we need is the protocol number and src/dst. 23074 */ 23075 /* Provide the checksums for UDP and TCP. */ 23076 if ((PROTO == IPPROTO_TCP) && 23077 (ip_hdr_included != IP_HDR_INCLUDED)) { 23078 /* hlen gets the number of uchar_ts in the IP header */ 23079 hlen = (V_HLEN & 0xF) << 2; 23080 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23081 IP_STAT(ipst, ip_out_sw_cksum); 23082 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23083 LENGTH - hlen); 23084 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23085 } else if (PROTO == IPPROTO_SCTP && 23086 (ip_hdr_included != IP_HDR_INCLUDED)) { 23087 sctp_hdr_t *sctph; 23088 23089 hlen = (V_HLEN & 0xF) << 2; 23090 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23091 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23092 sctph->sh_chksum = 0; 23093 #ifdef DEBUG 23094 if (!skip_sctp_cksum) 23095 #endif 23096 sctph->sh_chksum = sctp_cksum(mp, hlen); 23097 } else { 23098 queue_t *dev_q = stq->q_next; 23099 23100 if ((dev_q->q_next || dev_q->q_first) && 23101 !canput(dev_q)) { 23102 blocked: 23103 ipha->ipha_ident = ip_hdr_included; 23104 /* 23105 * If we don't have a conn to apply 23106 * backpressure, free the message. 23107 * In the ire_send path, we don't know 23108 * the position to requeue the packet. Rather 23109 * than reorder packets, we just drop this 23110 * packet. 23111 */ 23112 if (ipst->ips_ip_output_queue && 23113 connp != NULL && 23114 caller != IRE_SEND) { 23115 if (caller == IP_WSRV) { 23116 connp->conn_did_putbq = 1; 23117 (void) putbq(connp->conn_wq, 23118 first_mp); 23119 conn_drain_insert(connp); 23120 /* 23121 * This is the service thread, 23122 * and the queue is already 23123 * noenabled. The check for 23124 * canput and the putbq is not 23125 * atomic. So we need to check 23126 * again. 23127 */ 23128 if (canput(stq->q_next)) 23129 connp->conn_did_putbq 23130 = 0; 23131 IP_STAT(ipst, ip_conn_flputbq); 23132 } else { 23133 /* 23134 * We are not the service proc. 23135 * ip_wsrv will be scheduled or 23136 * is already running. 23137 */ 23138 (void) putq(connp->conn_wq, 23139 first_mp); 23140 } 23141 } else { 23142 out_ill = (ill_t *)stq->q_ptr; 23143 BUMP_MIB(out_ill->ill_ip_mib, 23144 ipIfStatsOutDiscards); 23145 freemsg(first_mp); 23146 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23147 "ip_wput_ire_end: q %p (%S)", 23148 q, "discard"); 23149 } 23150 ire_refrele(ire); 23151 if (next_mp) { 23152 ire_refrele(ire1); 23153 freemsg(next_mp); 23154 } 23155 if (conn_outgoing_ill != NULL) 23156 ill_refrele(conn_outgoing_ill); 23157 return; 23158 } 23159 if ((PROTO == IPPROTO_UDP) && 23160 (ip_hdr_included != IP_HDR_INCLUDED)) { 23161 /* 23162 * hlen gets the number of uchar_ts in the 23163 * IP header 23164 */ 23165 hlen = (V_HLEN & 0xF) << 2; 23166 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23167 max_frag = ire->ire_max_frag; 23168 if (*up != 0) { 23169 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 23170 up, PROTO, hlen, LENGTH, max_frag, 23171 ipsec_len, cksum); 23172 /* Software checksum? */ 23173 if (DB_CKSUMFLAGS(mp) == 0) { 23174 IP_STAT(ipst, ip_out_sw_cksum); 23175 IP_STAT_UPDATE(ipst, 23176 ip_udp_out_sw_cksum_bytes, 23177 LENGTH - hlen); 23178 } 23179 } 23180 } 23181 } 23182 /* 23183 * Need to do this even when fragmenting. The local 23184 * loopback can be done without computing checksums 23185 * but forwarding out other interface must be done 23186 * after the IP checksum (and ULP checksums) have been 23187 * computed. 23188 * 23189 * NOTE : multicast_forward is set only if this packet 23190 * originated from ip_wput. For packets originating from 23191 * ip_wput_multicast, it is not set. 23192 */ 23193 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23194 multi_loopback: 23195 ip2dbg(("ip_wput: multicast, loop %d\n", 23196 conn_multicast_loop)); 23197 23198 /* Forget header checksum offload */ 23199 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23200 23201 /* 23202 * Local loopback of multicasts? Check the 23203 * ill. 23204 * 23205 * Note that the loopback function will not come 23206 * in through ip_rput - it will only do the 23207 * client fanout thus we need to do an mforward 23208 * as well. The is different from the BSD 23209 * logic. 23210 */ 23211 if (ill != NULL) { 23212 ilm_t *ilm; 23213 23214 ILM_WALKER_HOLD(ill); 23215 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23216 ALL_ZONES); 23217 ILM_WALKER_RELE(ill); 23218 if (ilm != NULL) { 23219 /* 23220 * Pass along the virtual output q. 23221 * ip_wput_local() will distribute the 23222 * packet to all the matching zones, 23223 * except the sending zone when 23224 * IP_MULTICAST_LOOP is false. 23225 */ 23226 ip_multicast_loopback(q, ill, first_mp, 23227 conn_multicast_loop ? 0 : 23228 IP_FF_NO_MCAST_LOOP, zoneid); 23229 } 23230 } 23231 if (ipha->ipha_ttl == 0) { 23232 /* 23233 * 0 => only to this host i.e. we are 23234 * done. We are also done if this was the 23235 * loopback interface since it is sufficient 23236 * to loopback one copy of a multicast packet. 23237 */ 23238 freemsg(first_mp); 23239 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23240 "ip_wput_ire_end: q %p (%S)", 23241 q, "loopback"); 23242 ire_refrele(ire); 23243 if (conn_outgoing_ill != NULL) 23244 ill_refrele(conn_outgoing_ill); 23245 return; 23246 } 23247 /* 23248 * ILLF_MULTICAST is checked in ip_newroute 23249 * i.e. we don't need to check it here since 23250 * all IRE_CACHEs come from ip_newroute. 23251 * For multicast traffic, SO_DONTROUTE is interpreted 23252 * to mean only send the packet out the interface 23253 * (optionally specified with IP_MULTICAST_IF) 23254 * and do not forward it out additional interfaces. 23255 * RSVP and the rsvp daemon is an example of a 23256 * protocol and user level process that 23257 * handles it's own routing. Hence, it uses the 23258 * SO_DONTROUTE option to accomplish this. 23259 */ 23260 23261 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23262 ill != NULL) { 23263 /* Unconditionally redo the checksum */ 23264 ipha->ipha_hdr_checksum = 0; 23265 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23266 23267 /* 23268 * If this needs to go out secure, we need 23269 * to wait till we finish the IPSEC 23270 * processing. 23271 */ 23272 if (ipsec_len == 0 && 23273 ip_mforward(ill, ipha, mp)) { 23274 freemsg(first_mp); 23275 ip1dbg(("ip_wput: mforward failed\n")); 23276 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23277 "ip_wput_ire_end: q %p (%S)", 23278 q, "mforward failed"); 23279 ire_refrele(ire); 23280 if (conn_outgoing_ill != NULL) 23281 ill_refrele(conn_outgoing_ill); 23282 return; 23283 } 23284 } 23285 } 23286 max_frag = ire->ire_max_frag; 23287 cksum += ttl_protocol; 23288 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23289 /* No fragmentation required for this one. */ 23290 /* 23291 * Don't use frag_flag if packet is pre-built or source 23292 * routed or if multicast (since multicast packets do 23293 * not solicit ICMP "packet too big" messages). 23294 */ 23295 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23296 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23297 !ip_source_route_included(ipha)) && 23298 !CLASSD(ipha->ipha_dst)) 23299 ipha->ipha_fragment_offset_and_flags |= 23300 htons(ire->ire_frag_flag); 23301 23302 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23303 /* Complete the IP header checksum. */ 23304 cksum += ipha->ipha_ident; 23305 cksum += (v_hlen_tos_len >> 16)+ 23306 (v_hlen_tos_len & 0xFFFF); 23307 cksum += ipha->ipha_fragment_offset_and_flags; 23308 hlen = (V_HLEN & 0xF) - 23309 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23310 if (hlen) { 23311 checksumoptions: 23312 /* 23313 * Account for the IP Options in the IP 23314 * header checksum. 23315 */ 23316 up = (uint16_t *)(rptr+ 23317 IP_SIMPLE_HDR_LENGTH); 23318 do { 23319 cksum += up[0]; 23320 cksum += up[1]; 23321 up += 2; 23322 } while (--hlen); 23323 } 23324 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23325 cksum = ~(cksum + (cksum >> 16)); 23326 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23327 } 23328 if (ipsec_len != 0) { 23329 ipsec_out_process(q, first_mp, ire, ill_index); 23330 if (!next_mp) { 23331 ire_refrele(ire); 23332 if (conn_outgoing_ill != NULL) 23333 ill_refrele(conn_outgoing_ill); 23334 return; 23335 } 23336 goto next; 23337 } 23338 23339 /* 23340 * multirt_send has already been handled 23341 * for broadcast, but not yet for multicast 23342 * or IP options. 23343 */ 23344 if (next_mp == NULL) { 23345 if (ire->ire_flags & RTF_MULTIRT) { 23346 multirt_send = B_TRUE; 23347 } 23348 } 23349 23350 /* 23351 * In most cases, the emission loop below is 23352 * entered only once. Only in the case where 23353 * the ire holds the RTF_MULTIRT flag, do we loop 23354 * to process all RTF_MULTIRT ires in the bucket, 23355 * and send the packet through all crossed 23356 * RTF_MULTIRT routes. 23357 */ 23358 do { 23359 if (multirt_send) { 23360 irb_t *irb; 23361 23362 irb = ire->ire_bucket; 23363 ASSERT(irb != NULL); 23364 /* 23365 * We are in a multiple send case, 23366 * need to get the next IRE and make 23367 * a duplicate of the packet. 23368 */ 23369 IRB_REFHOLD(irb); 23370 for (ire1 = ire->ire_next; 23371 ire1 != NULL; 23372 ire1 = ire1->ire_next) { 23373 if (!(ire1->ire_flags & 23374 RTF_MULTIRT)) { 23375 continue; 23376 } 23377 if (ire1->ire_addr != 23378 ire->ire_addr) { 23379 continue; 23380 } 23381 if (ire1->ire_marks & 23382 (IRE_MARK_CONDEMNED| 23383 IRE_MARK_HIDDEN)) { 23384 continue; 23385 } 23386 23387 /* Got one */ 23388 IRE_REFHOLD(ire1); 23389 break; 23390 } 23391 IRB_REFRELE(irb); 23392 23393 if (ire1 != NULL) { 23394 next_mp = copyb(mp); 23395 if ((next_mp == NULL) || 23396 ((mp->b_cont != NULL) && 23397 ((next_mp->b_cont = 23398 dupmsg(mp->b_cont)) 23399 == NULL))) { 23400 freemsg(next_mp); 23401 next_mp = NULL; 23402 ire_refrele(ire1); 23403 ire1 = NULL; 23404 } 23405 } 23406 23407 /* 23408 * Last multiroute ire; don't loop 23409 * anymore. The emission is over 23410 * and next_mp is NULL. 23411 */ 23412 if (ire1 == NULL) { 23413 multirt_send = B_FALSE; 23414 } 23415 } 23416 23417 out_ill = ire->ire_ipif->ipif_ill; 23418 DTRACE_PROBE4(ip4__physical__out__start, 23419 ill_t *, NULL, 23420 ill_t *, out_ill, 23421 ipha_t *, ipha, mblk_t *, mp); 23422 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23423 ipst->ips_ipv4firewall_physical_out, 23424 NULL, out_ill, ipha, mp, mp, ipst); 23425 DTRACE_PROBE1(ip4__physical__out__end, 23426 mblk_t *, mp); 23427 if (mp == NULL) 23428 goto release_ire_and_ill_2; 23429 23430 ASSERT(ipsec_len == 0); 23431 mp->b_prev = 23432 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23433 DTRACE_PROBE2(ip__xmit__2, 23434 mblk_t *, mp, ire_t *, ire); 23435 pktxmit_state = ip_xmit_v4(mp, ire, 23436 NULL, B_TRUE); 23437 if ((pktxmit_state == SEND_FAILED) || 23438 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23439 release_ire_and_ill_2: 23440 if (next_mp) { 23441 freemsg(next_mp); 23442 ire_refrele(ire1); 23443 } 23444 ire_refrele(ire); 23445 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23446 "ip_wput_ire_end: q %p (%S)", 23447 q, "discard MDATA"); 23448 if (conn_outgoing_ill != NULL) 23449 ill_refrele(conn_outgoing_ill); 23450 return; 23451 } 23452 23453 if (CLASSD(dst)) { 23454 BUMP_MIB(out_ill->ill_ip_mib, 23455 ipIfStatsHCOutMcastPkts); 23456 UPDATE_MIB(out_ill->ill_ip_mib, 23457 ipIfStatsHCOutMcastOctets, 23458 LENGTH); 23459 } else if (ire->ire_type == IRE_BROADCAST) { 23460 BUMP_MIB(out_ill->ill_ip_mib, 23461 ipIfStatsHCOutBcastPkts); 23462 } 23463 23464 if (multirt_send) { 23465 /* 23466 * We are in a multiple send case, 23467 * need to re-enter the sending loop 23468 * using the next ire. 23469 */ 23470 ire_refrele(ire); 23471 ire = ire1; 23472 stq = ire->ire_stq; 23473 mp = next_mp; 23474 next_mp = NULL; 23475 ipha = (ipha_t *)mp->b_rptr; 23476 ill_index = Q_TO_INDEX(stq); 23477 } 23478 } while (multirt_send); 23479 23480 if (!next_mp) { 23481 /* 23482 * Last copy going out (the ultra-common 23483 * case). Note that we intentionally replicate 23484 * the putnext rather than calling it before 23485 * the next_mp check in hopes of a little 23486 * tail-call action out of the compiler. 23487 */ 23488 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23489 "ip_wput_ire_end: q %p (%S)", 23490 q, "last copy out(1)"); 23491 ire_refrele(ire); 23492 if (conn_outgoing_ill != NULL) 23493 ill_refrele(conn_outgoing_ill); 23494 return; 23495 } 23496 /* More copies going out below. */ 23497 } else { 23498 int offset; 23499 fragmentit: 23500 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23501 /* 23502 * If this would generate a icmp_frag_needed message, 23503 * we need to handle it before we do the IPSEC 23504 * processing. Otherwise, we need to strip the IPSEC 23505 * headers before we send up the message to the ULPs 23506 * which becomes messy and difficult. 23507 */ 23508 if (ipsec_len != 0) { 23509 if ((max_frag < (unsigned int)(LENGTH + 23510 ipsec_len)) && (offset & IPH_DF)) { 23511 out_ill = (ill_t *)stq->q_ptr; 23512 BUMP_MIB(out_ill->ill_ip_mib, 23513 ipIfStatsOutFragFails); 23514 BUMP_MIB(out_ill->ill_ip_mib, 23515 ipIfStatsOutFragReqds); 23516 ipha->ipha_hdr_checksum = 0; 23517 ipha->ipha_hdr_checksum = 23518 (uint16_t)ip_csum_hdr(ipha); 23519 icmp_frag_needed(ire->ire_stq, first_mp, 23520 max_frag, zoneid, ipst); 23521 if (!next_mp) { 23522 ire_refrele(ire); 23523 if (conn_outgoing_ill != NULL) { 23524 ill_refrele( 23525 conn_outgoing_ill); 23526 } 23527 return; 23528 } 23529 } else { 23530 /* 23531 * This won't cause a icmp_frag_needed 23532 * message. to be generated. Send it on 23533 * the wire. Note that this could still 23534 * cause fragmentation and all we 23535 * do is the generation of the message 23536 * to the ULP if needed before IPSEC. 23537 */ 23538 if (!next_mp) { 23539 ipsec_out_process(q, first_mp, 23540 ire, ill_index); 23541 TRACE_2(TR_FAC_IP, 23542 TR_IP_WPUT_IRE_END, 23543 "ip_wput_ire_end: q %p " 23544 "(%S)", q, 23545 "last ipsec_out_process"); 23546 ire_refrele(ire); 23547 if (conn_outgoing_ill != NULL) { 23548 ill_refrele( 23549 conn_outgoing_ill); 23550 } 23551 return; 23552 } 23553 ipsec_out_process(q, first_mp, 23554 ire, ill_index); 23555 } 23556 } else { 23557 /* 23558 * Initiate IPPF processing. For 23559 * fragmentable packets we finish 23560 * all QOS packet processing before 23561 * calling: 23562 * ip_wput_ire_fragmentit->ip_wput_frag 23563 */ 23564 23565 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23566 ip_process(IPP_LOCAL_OUT, &mp, 23567 ill_index); 23568 if (mp == NULL) { 23569 out_ill = (ill_t *)stq->q_ptr; 23570 BUMP_MIB(out_ill->ill_ip_mib, 23571 ipIfStatsOutDiscards); 23572 if (next_mp != NULL) { 23573 freemsg(next_mp); 23574 ire_refrele(ire1); 23575 } 23576 ire_refrele(ire); 23577 TRACE_2(TR_FAC_IP, 23578 TR_IP_WPUT_IRE_END, 23579 "ip_wput_ire: q %p (%S)", 23580 q, "discard MDATA"); 23581 if (conn_outgoing_ill != NULL) { 23582 ill_refrele( 23583 conn_outgoing_ill); 23584 } 23585 return; 23586 } 23587 } 23588 if (!next_mp) { 23589 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23590 "ip_wput_ire_end: q %p (%S)", 23591 q, "last fragmentation"); 23592 ip_wput_ire_fragmentit(mp, ire, 23593 zoneid, ipst); 23594 ire_refrele(ire); 23595 if (conn_outgoing_ill != NULL) 23596 ill_refrele(conn_outgoing_ill); 23597 return; 23598 } 23599 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23600 } 23601 } 23602 } else { 23603 nullstq: 23604 /* A NULL stq means the destination address is local. */ 23605 UPDATE_OB_PKT_COUNT(ire); 23606 ire->ire_last_used_time = lbolt; 23607 ASSERT(ire->ire_ipif != NULL); 23608 if (!next_mp) { 23609 /* 23610 * Is there an "in" and "out" for traffic local 23611 * to a host (loopback)? The code in Solaris doesn't 23612 * explicitly draw a line in its code for in vs out, 23613 * so we've had to draw a line in the sand: ip_wput_ire 23614 * is considered to be the "output" side and 23615 * ip_wput_local to be the "input" side. 23616 */ 23617 out_ill = ire->ire_ipif->ipif_ill; 23618 23619 DTRACE_PROBE4(ip4__loopback__out__start, 23620 ill_t *, NULL, ill_t *, out_ill, 23621 ipha_t *, ipha, mblk_t *, first_mp); 23622 23623 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23624 ipst->ips_ipv4firewall_loopback_out, 23625 NULL, out_ill, ipha, first_mp, mp, ipst); 23626 23627 DTRACE_PROBE1(ip4__loopback__out_end, 23628 mblk_t *, first_mp); 23629 23630 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23631 "ip_wput_ire_end: q %p (%S)", 23632 q, "local address"); 23633 23634 if (first_mp != NULL) 23635 ip_wput_local(q, out_ill, ipha, 23636 first_mp, ire, 0, ire->ire_zoneid); 23637 ire_refrele(ire); 23638 if (conn_outgoing_ill != NULL) 23639 ill_refrele(conn_outgoing_ill); 23640 return; 23641 } 23642 23643 out_ill = ire->ire_ipif->ipif_ill; 23644 23645 DTRACE_PROBE4(ip4__loopback__out__start, 23646 ill_t *, NULL, ill_t *, out_ill, 23647 ipha_t *, ipha, mblk_t *, first_mp); 23648 23649 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23650 ipst->ips_ipv4firewall_loopback_out, 23651 NULL, out_ill, ipha, first_mp, mp, ipst); 23652 23653 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23654 23655 if (first_mp != NULL) 23656 ip_wput_local(q, out_ill, ipha, 23657 first_mp, ire, 0, ire->ire_zoneid); 23658 } 23659 next: 23660 /* 23661 * More copies going out to additional interfaces. 23662 * ire1 has already been held. We don't need the 23663 * "ire" anymore. 23664 */ 23665 ire_refrele(ire); 23666 ire = ire1; 23667 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23668 mp = next_mp; 23669 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23670 ill = ire_to_ill(ire); 23671 first_mp = mp; 23672 if (ipsec_len != 0) { 23673 ASSERT(first_mp->b_datap->db_type == M_CTL); 23674 mp = mp->b_cont; 23675 } 23676 dst = ire->ire_addr; 23677 ipha = (ipha_t *)mp->b_rptr; 23678 /* 23679 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23680 * Restore ipha_ident "no checksum" flag. 23681 */ 23682 src = orig_src; 23683 ipha->ipha_ident = ip_hdr_included; 23684 goto another; 23685 23686 #undef rptr 23687 #undef Q_TO_INDEX 23688 } 23689 23690 /* 23691 * Routine to allocate a message that is used to notify the ULP about MDT. 23692 * The caller may provide a pointer to the link-layer MDT capabilities, 23693 * or NULL if MDT is to be disabled on the stream. 23694 */ 23695 mblk_t * 23696 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23697 { 23698 mblk_t *mp; 23699 ip_mdt_info_t *mdti; 23700 ill_mdt_capab_t *idst; 23701 23702 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23703 DB_TYPE(mp) = M_CTL; 23704 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23705 mdti = (ip_mdt_info_t *)mp->b_rptr; 23706 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23707 idst = &(mdti->mdt_capab); 23708 23709 /* 23710 * If the caller provides us with the capability, copy 23711 * it over into our notification message; otherwise 23712 * we zero out the capability portion. 23713 */ 23714 if (isrc != NULL) 23715 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23716 else 23717 bzero((caddr_t)idst, sizeof (*idst)); 23718 } 23719 return (mp); 23720 } 23721 23722 /* 23723 * Routine which determines whether MDT can be enabled on the destination 23724 * IRE and IPC combination, and if so, allocates and returns the MDT 23725 * notification mblk that may be used by ULP. We also check if we need to 23726 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23727 * MDT usage in the past have been lifted. This gets called during IP 23728 * and ULP binding. 23729 */ 23730 mblk_t * 23731 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23732 ill_mdt_capab_t *mdt_cap) 23733 { 23734 mblk_t *mp; 23735 boolean_t rc = B_FALSE; 23736 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23737 23738 ASSERT(dst_ire != NULL); 23739 ASSERT(connp != NULL); 23740 ASSERT(mdt_cap != NULL); 23741 23742 /* 23743 * Currently, we only support simple TCP/{IPv4,IPv6} with 23744 * Multidata, which is handled in tcp_multisend(). This 23745 * is the reason why we do all these checks here, to ensure 23746 * that we don't enable Multidata for the cases which we 23747 * can't handle at the moment. 23748 */ 23749 do { 23750 /* Only do TCP at the moment */ 23751 if (connp->conn_ulp != IPPROTO_TCP) 23752 break; 23753 23754 /* 23755 * IPSEC outbound policy present? Note that we get here 23756 * after calling ipsec_conn_cache_policy() where the global 23757 * policy checking is performed. conn_latch will be 23758 * non-NULL as long as there's a policy defined, 23759 * i.e. conn_out_enforce_policy may be NULL in such case 23760 * when the connection is non-secure, and hence we check 23761 * further if the latch refers to an outbound policy. 23762 */ 23763 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23764 break; 23765 23766 /* CGTP (multiroute) is enabled? */ 23767 if (dst_ire->ire_flags & RTF_MULTIRT) 23768 break; 23769 23770 /* Outbound IPQoS enabled? */ 23771 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23772 /* 23773 * In this case, we disable MDT for this and all 23774 * future connections going over the interface. 23775 */ 23776 mdt_cap->ill_mdt_on = 0; 23777 break; 23778 } 23779 23780 /* socket option(s) present? */ 23781 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23782 break; 23783 23784 rc = B_TRUE; 23785 /* CONSTCOND */ 23786 } while (0); 23787 23788 /* Remember the result */ 23789 connp->conn_mdt_ok = rc; 23790 23791 if (!rc) 23792 return (NULL); 23793 else if (!mdt_cap->ill_mdt_on) { 23794 /* 23795 * If MDT has been previously turned off in the past, and we 23796 * currently can do MDT (due to IPQoS policy removal, etc.) 23797 * then enable it for this interface. 23798 */ 23799 mdt_cap->ill_mdt_on = 1; 23800 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23801 "interface %s\n", ill_name)); 23802 } 23803 23804 /* Allocate the MDT info mblk */ 23805 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23806 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23807 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23808 return (NULL); 23809 } 23810 return (mp); 23811 } 23812 23813 /* 23814 * Routine to allocate a message that is used to notify the ULP about LSO. 23815 * The caller may provide a pointer to the link-layer LSO capabilities, 23816 * or NULL if LSO is to be disabled on the stream. 23817 */ 23818 mblk_t * 23819 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23820 { 23821 mblk_t *mp; 23822 ip_lso_info_t *lsoi; 23823 ill_lso_capab_t *idst; 23824 23825 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23826 DB_TYPE(mp) = M_CTL; 23827 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23828 lsoi = (ip_lso_info_t *)mp->b_rptr; 23829 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23830 idst = &(lsoi->lso_capab); 23831 23832 /* 23833 * If the caller provides us with the capability, copy 23834 * it over into our notification message; otherwise 23835 * we zero out the capability portion. 23836 */ 23837 if (isrc != NULL) 23838 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23839 else 23840 bzero((caddr_t)idst, sizeof (*idst)); 23841 } 23842 return (mp); 23843 } 23844 23845 /* 23846 * Routine which determines whether LSO can be enabled on the destination 23847 * IRE and IPC combination, and if so, allocates and returns the LSO 23848 * notification mblk that may be used by ULP. We also check if we need to 23849 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23850 * LSO usage in the past have been lifted. This gets called during IP 23851 * and ULP binding. 23852 */ 23853 mblk_t * 23854 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23855 ill_lso_capab_t *lso_cap) 23856 { 23857 mblk_t *mp; 23858 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23859 23860 ASSERT(dst_ire != NULL); 23861 ASSERT(connp != NULL); 23862 ASSERT(lso_cap != NULL); 23863 23864 connp->conn_lso_ok = B_TRUE; 23865 23866 if ((connp->conn_ulp != IPPROTO_TCP) || 23867 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23868 (dst_ire->ire_flags & RTF_MULTIRT) || 23869 !CONN_IS_LSO_MD_FASTPATH(connp) || 23870 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23871 connp->conn_lso_ok = B_FALSE; 23872 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23873 /* 23874 * Disable LSO for this and all future connections going 23875 * over the interface. 23876 */ 23877 lso_cap->ill_lso_on = 0; 23878 } 23879 } 23880 23881 if (!connp->conn_lso_ok) 23882 return (NULL); 23883 else if (!lso_cap->ill_lso_on) { 23884 /* 23885 * If LSO has been previously turned off in the past, and we 23886 * currently can do LSO (due to IPQoS policy removal, etc.) 23887 * then enable it for this interface. 23888 */ 23889 lso_cap->ill_lso_on = 1; 23890 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23891 ill_name)); 23892 } 23893 23894 /* Allocate the LSO info mblk */ 23895 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23896 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23897 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23898 23899 return (mp); 23900 } 23901 23902 /* 23903 * Create destination address attribute, and fill it with the physical 23904 * destination address and SAP taken from the template DL_UNITDATA_REQ 23905 * message block. 23906 */ 23907 boolean_t 23908 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23909 { 23910 dl_unitdata_req_t *dlurp; 23911 pattr_t *pa; 23912 pattrinfo_t pa_info; 23913 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23914 uint_t das_len, das_off; 23915 23916 ASSERT(dlmp != NULL); 23917 23918 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23919 das_len = dlurp->dl_dest_addr_length; 23920 das_off = dlurp->dl_dest_addr_offset; 23921 23922 pa_info.type = PATTR_DSTADDRSAP; 23923 pa_info.len = sizeof (**das) + das_len - 1; 23924 23925 /* create and associate the attribute */ 23926 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23927 if (pa != NULL) { 23928 ASSERT(*das != NULL); 23929 (*das)->addr_is_group = 0; 23930 (*das)->addr_len = (uint8_t)das_len; 23931 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23932 } 23933 23934 return (pa != NULL); 23935 } 23936 23937 /* 23938 * Create hardware checksum attribute and fill it with the values passed. 23939 */ 23940 boolean_t 23941 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23942 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23943 { 23944 pattr_t *pa; 23945 pattrinfo_t pa_info; 23946 23947 ASSERT(mmd != NULL); 23948 23949 pa_info.type = PATTR_HCKSUM; 23950 pa_info.len = sizeof (pattr_hcksum_t); 23951 23952 /* create and associate the attribute */ 23953 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23954 if (pa != NULL) { 23955 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23956 23957 hck->hcksum_start_offset = start_offset; 23958 hck->hcksum_stuff_offset = stuff_offset; 23959 hck->hcksum_end_offset = end_offset; 23960 hck->hcksum_flags = flags; 23961 } 23962 return (pa != NULL); 23963 } 23964 23965 /* 23966 * Create zerocopy attribute and fill it with the specified flags 23967 */ 23968 boolean_t 23969 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23970 { 23971 pattr_t *pa; 23972 pattrinfo_t pa_info; 23973 23974 ASSERT(mmd != NULL); 23975 pa_info.type = PATTR_ZCOPY; 23976 pa_info.len = sizeof (pattr_zcopy_t); 23977 23978 /* create and associate the attribute */ 23979 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23980 if (pa != NULL) { 23981 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23982 23983 zcopy->zcopy_flags = flags; 23984 } 23985 return (pa != NULL); 23986 } 23987 23988 /* 23989 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23990 * block chain. We could rewrite to handle arbitrary message block chains but 23991 * that would make the code complicated and slow. Right now there three 23992 * restrictions: 23993 * 23994 * 1. The first message block must contain the complete IP header and 23995 * at least 1 byte of payload data. 23996 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23997 * so that we can use a single Multidata message. 23998 * 3. No frag must be distributed over two or more message blocks so 23999 * that we don't need more than two packet descriptors per frag. 24000 * 24001 * The above restrictions allow us to support userland applications (which 24002 * will send down a single message block) and NFS over UDP (which will 24003 * send down a chain of at most three message blocks). 24004 * 24005 * We also don't use MDT for payloads with less than or equal to 24006 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24007 */ 24008 boolean_t 24009 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24010 { 24011 int blocks; 24012 ssize_t total, missing, size; 24013 24014 ASSERT(mp != NULL); 24015 ASSERT(hdr_len > 0); 24016 24017 size = MBLKL(mp) - hdr_len; 24018 if (size <= 0) 24019 return (B_FALSE); 24020 24021 /* The first mblk contains the header and some payload. */ 24022 blocks = 1; 24023 total = size; 24024 size %= len; 24025 missing = (size == 0) ? 0 : (len - size); 24026 mp = mp->b_cont; 24027 24028 while (mp != NULL) { 24029 /* 24030 * Give up if we encounter a zero length message block. 24031 * In practice, this should rarely happen and therefore 24032 * not worth the trouble of freeing and re-linking the 24033 * mblk from the chain to handle such case. 24034 */ 24035 if ((size = MBLKL(mp)) == 0) 24036 return (B_FALSE); 24037 24038 /* Too many payload buffers for a single Multidata message? */ 24039 if (++blocks > MULTIDATA_MAX_PBUFS) 24040 return (B_FALSE); 24041 24042 total += size; 24043 /* Is a frag distributed over two or more message blocks? */ 24044 if (missing > size) 24045 return (B_FALSE); 24046 size -= missing; 24047 24048 size %= len; 24049 missing = (size == 0) ? 0 : (len - size); 24050 24051 mp = mp->b_cont; 24052 } 24053 24054 return (total > ip_wput_frag_mdt_min); 24055 } 24056 24057 /* 24058 * Outbound IPv4 fragmentation routine using MDT. 24059 */ 24060 static void 24061 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24062 uint32_t frag_flag, int offset) 24063 { 24064 ipha_t *ipha_orig; 24065 int i1, ip_data_end; 24066 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24067 mblk_t *hdr_mp, *md_mp = NULL; 24068 unsigned char *hdr_ptr, *pld_ptr; 24069 multidata_t *mmd; 24070 ip_pdescinfo_t pdi; 24071 ill_t *ill; 24072 ip_stack_t *ipst = ire->ire_ipst; 24073 24074 ASSERT(DB_TYPE(mp) == M_DATA); 24075 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24076 24077 ill = ire_to_ill(ire); 24078 ASSERT(ill != NULL); 24079 24080 ipha_orig = (ipha_t *)mp->b_rptr; 24081 mp->b_rptr += sizeof (ipha_t); 24082 24083 /* Calculate how many packets we will send out */ 24084 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24085 pkts = (i1 + len - 1) / len; 24086 ASSERT(pkts > 1); 24087 24088 /* Allocate a message block which will hold all the IP Headers. */ 24089 wroff = ipst->ips_ip_wroff_extra; 24090 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24091 24092 i1 = pkts * hdr_chunk_len; 24093 /* 24094 * Create the header buffer, Multidata and destination address 24095 * and SAP attribute that should be associated with it. 24096 */ 24097 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24098 ((hdr_mp->b_wptr += i1), 24099 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24100 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24101 freemsg(mp); 24102 if (md_mp == NULL) { 24103 freemsg(hdr_mp); 24104 } else { 24105 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24106 freemsg(md_mp); 24107 } 24108 IP_STAT(ipst, ip_frag_mdt_allocfail); 24109 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24110 return; 24111 } 24112 IP_STAT(ipst, ip_frag_mdt_allocd); 24113 24114 /* 24115 * Add a payload buffer to the Multidata; this operation must not 24116 * fail, or otherwise our logic in this routine is broken. There 24117 * is no memory allocation done by the routine, so any returned 24118 * failure simply tells us that we've done something wrong. 24119 * 24120 * A failure tells us that either we're adding the same payload 24121 * buffer more than once, or we're trying to add more buffers than 24122 * allowed. None of the above cases should happen, and we panic 24123 * because either there's horrible heap corruption, and/or 24124 * programming mistake. 24125 */ 24126 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24127 goto pbuf_panic; 24128 24129 hdr_ptr = hdr_mp->b_rptr; 24130 pld_ptr = mp->b_rptr; 24131 24132 /* Establish the ending byte offset, based on the starting offset. */ 24133 offset <<= 3; 24134 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24135 IP_SIMPLE_HDR_LENGTH; 24136 24137 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24138 24139 while (pld_ptr < mp->b_wptr) { 24140 ipha_t *ipha; 24141 uint16_t offset_and_flags; 24142 uint16_t ip_len; 24143 int error; 24144 24145 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24146 ipha = (ipha_t *)(hdr_ptr + wroff); 24147 ASSERT(OK_32PTR(ipha)); 24148 *ipha = *ipha_orig; 24149 24150 if (ip_data_end - offset > len) { 24151 offset_and_flags = IPH_MF; 24152 } else { 24153 /* 24154 * Last frag. Set len to the length of this last piece. 24155 */ 24156 len = ip_data_end - offset; 24157 /* A frag of a frag might have IPH_MF non-zero */ 24158 offset_and_flags = 24159 ntohs(ipha->ipha_fragment_offset_and_flags) & 24160 IPH_MF; 24161 } 24162 offset_and_flags |= (uint16_t)(offset >> 3); 24163 offset_and_flags |= (uint16_t)frag_flag; 24164 /* Store the offset and flags in the IP header. */ 24165 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24166 24167 /* Store the length in the IP header. */ 24168 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24169 ipha->ipha_length = htons(ip_len); 24170 24171 /* 24172 * Set the IP header checksum. Note that mp is just 24173 * the header, so this is easy to pass to ip_csum. 24174 */ 24175 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24176 24177 /* 24178 * Record offset and size of header and data of the next packet 24179 * in the multidata message. 24180 */ 24181 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24182 PDESC_PLD_INIT(&pdi); 24183 i1 = MIN(mp->b_wptr - pld_ptr, len); 24184 ASSERT(i1 > 0); 24185 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24186 if (i1 == len) { 24187 pld_ptr += len; 24188 } else { 24189 i1 = len - i1; 24190 mp = mp->b_cont; 24191 ASSERT(mp != NULL); 24192 ASSERT(MBLKL(mp) >= i1); 24193 /* 24194 * Attach the next payload message block to the 24195 * multidata message. 24196 */ 24197 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24198 goto pbuf_panic; 24199 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24200 pld_ptr = mp->b_rptr + i1; 24201 } 24202 24203 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24204 KM_NOSLEEP)) == NULL) { 24205 /* 24206 * Any failure other than ENOMEM indicates that we 24207 * have passed in invalid pdesc info or parameters 24208 * to mmd_addpdesc, which must not happen. 24209 * 24210 * EINVAL is a result of failure on boundary checks 24211 * against the pdesc info contents. It should not 24212 * happen, and we panic because either there's 24213 * horrible heap corruption, and/or programming 24214 * mistake. 24215 */ 24216 if (error != ENOMEM) { 24217 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24218 "pdesc logic error detected for " 24219 "mmd %p pinfo %p (%d)\n", 24220 (void *)mmd, (void *)&pdi, error); 24221 /* NOTREACHED */ 24222 } 24223 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24224 /* Free unattached payload message blocks as well */ 24225 md_mp->b_cont = mp->b_cont; 24226 goto free_mmd; 24227 } 24228 24229 /* Advance fragment offset. */ 24230 offset += len; 24231 24232 /* Advance to location for next header in the buffer. */ 24233 hdr_ptr += hdr_chunk_len; 24234 24235 /* Did we reach the next payload message block? */ 24236 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24237 mp = mp->b_cont; 24238 /* 24239 * Attach the next message block with payload 24240 * data to the multidata message. 24241 */ 24242 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24243 goto pbuf_panic; 24244 pld_ptr = mp->b_rptr; 24245 } 24246 } 24247 24248 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24249 ASSERT(mp->b_wptr == pld_ptr); 24250 24251 /* Update IP statistics */ 24252 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24253 24254 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24255 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24256 24257 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24258 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24259 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24260 24261 if (pkt_type == OB_PKT) { 24262 ire->ire_ob_pkt_count += pkts; 24263 if (ire->ire_ipif != NULL) 24264 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24265 } else { 24266 /* 24267 * The type is IB_PKT in the forwarding path and in 24268 * the mobile IP case when the packet is being reverse- 24269 * tunneled to the home agent. 24270 */ 24271 ire->ire_ib_pkt_count += pkts; 24272 ASSERT(!IRE_IS_LOCAL(ire)); 24273 if (ire->ire_type & IRE_BROADCAST) { 24274 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24275 } else { 24276 UPDATE_MIB(ill->ill_ip_mib, 24277 ipIfStatsHCOutForwDatagrams, pkts); 24278 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24279 } 24280 } 24281 ire->ire_last_used_time = lbolt; 24282 /* Send it down */ 24283 putnext(ire->ire_stq, md_mp); 24284 return; 24285 24286 pbuf_panic: 24287 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24288 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24289 pbuf_idx); 24290 /* NOTREACHED */ 24291 } 24292 24293 /* 24294 * Outbound IP fragmentation routine. 24295 * 24296 * NOTE : This routine does not ire_refrele the ire that is passed in 24297 * as the argument. 24298 */ 24299 static void 24300 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24301 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24302 { 24303 int i1; 24304 mblk_t *ll_hdr_mp; 24305 int ll_hdr_len; 24306 int hdr_len; 24307 mblk_t *hdr_mp; 24308 ipha_t *ipha; 24309 int ip_data_end; 24310 int len; 24311 mblk_t *mp = mp_orig, *mp1; 24312 int offset; 24313 queue_t *q; 24314 uint32_t v_hlen_tos_len; 24315 mblk_t *first_mp; 24316 boolean_t mctl_present; 24317 ill_t *ill; 24318 ill_t *out_ill; 24319 mblk_t *xmit_mp; 24320 mblk_t *carve_mp; 24321 ire_t *ire1 = NULL; 24322 ire_t *save_ire = NULL; 24323 mblk_t *next_mp = NULL; 24324 boolean_t last_frag = B_FALSE; 24325 boolean_t multirt_send = B_FALSE; 24326 ire_t *first_ire = NULL; 24327 irb_t *irb = NULL; 24328 mib2_ipIfStatsEntry_t *mibptr = NULL; 24329 24330 ill = ire_to_ill(ire); 24331 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24332 24333 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24334 24335 if (max_frag == 0) { 24336 ip1dbg(("ip_wput_frag: ire frag size is 0" 24337 " - dropping packet\n")); 24338 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24339 freemsg(mp); 24340 return; 24341 } 24342 24343 /* 24344 * IPSEC does not allow hw accelerated packets to be fragmented 24345 * This check is made in ip_wput_ipsec_out prior to coming here 24346 * via ip_wput_ire_fragmentit. 24347 * 24348 * If at this point we have an ire whose ARP request has not 24349 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24350 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24351 * This packet and all fragmentable packets for this ire will 24352 * continue to get dropped while ire_nce->nce_state remains in 24353 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24354 * ND_REACHABLE, all subsquent large packets for this ire will 24355 * get fragemented and sent out by this function. 24356 */ 24357 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24358 /* If nce_state is ND_INITIAL, trigger ARP query */ 24359 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24360 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24361 " - dropping packet\n")); 24362 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24363 freemsg(mp); 24364 return; 24365 } 24366 24367 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24368 "ip_wput_frag_start:"); 24369 24370 if (mp->b_datap->db_type == M_CTL) { 24371 first_mp = mp; 24372 mp_orig = mp = mp->b_cont; 24373 mctl_present = B_TRUE; 24374 } else { 24375 first_mp = mp; 24376 mctl_present = B_FALSE; 24377 } 24378 24379 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24380 ipha = (ipha_t *)mp->b_rptr; 24381 24382 /* 24383 * If the Don't Fragment flag is on, generate an ICMP destination 24384 * unreachable, fragmentation needed. 24385 */ 24386 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24387 if (offset & IPH_DF) { 24388 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24389 /* 24390 * Need to compute hdr checksum if called from ip_wput_ire. 24391 * Note that ip_rput_forward verifies the checksum before 24392 * calling this routine so in that case this is a noop. 24393 */ 24394 ipha->ipha_hdr_checksum = 0; 24395 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24396 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24397 ipst); 24398 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24399 "ip_wput_frag_end:(%S)", 24400 "don't fragment"); 24401 return; 24402 } 24403 if (mctl_present) 24404 freeb(first_mp); 24405 /* 24406 * Establish the starting offset. May not be zero if we are fragging 24407 * a fragment that is being forwarded. 24408 */ 24409 offset = offset & IPH_OFFSET; 24410 24411 /* TODO why is this test needed? */ 24412 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24413 if (((max_frag - LENGTH) & ~7) < 8) { 24414 /* TODO: notify ulp somehow */ 24415 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24416 freemsg(mp); 24417 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24418 "ip_wput_frag_end:(%S)", 24419 "len < 8"); 24420 return; 24421 } 24422 24423 hdr_len = (V_HLEN & 0xF) << 2; 24424 24425 ipha->ipha_hdr_checksum = 0; 24426 24427 /* 24428 * Establish the number of bytes maximum per frag, after putting 24429 * in the header. 24430 */ 24431 len = (max_frag - hdr_len) & ~7; 24432 24433 /* Check if we can use MDT to send out the frags. */ 24434 ASSERT(!IRE_IS_LOCAL(ire)); 24435 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24436 ipst->ips_ip_multidata_outbound && 24437 !(ire->ire_flags & RTF_MULTIRT) && 24438 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24439 ill != NULL && ILL_MDT_CAPABLE(ill) && 24440 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24441 ASSERT(ill->ill_mdt_capab != NULL); 24442 if (!ill->ill_mdt_capab->ill_mdt_on) { 24443 /* 24444 * If MDT has been previously turned off in the past, 24445 * and we currently can do MDT (due to IPQoS policy 24446 * removal, etc.) then enable it for this interface. 24447 */ 24448 ill->ill_mdt_capab->ill_mdt_on = 1; 24449 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24450 ill->ill_name)); 24451 } 24452 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24453 offset); 24454 return; 24455 } 24456 24457 /* Get a copy of the header for the trailing frags */ 24458 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24459 if (!hdr_mp) { 24460 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24461 freemsg(mp); 24462 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24463 "ip_wput_frag_end:(%S)", 24464 "couldn't copy hdr"); 24465 return; 24466 } 24467 if (DB_CRED(mp) != NULL) 24468 mblk_setcred(hdr_mp, DB_CRED(mp)); 24469 24470 /* Store the starting offset, with the MoreFrags flag. */ 24471 i1 = offset | IPH_MF | frag_flag; 24472 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24473 24474 /* Establish the ending byte offset, based on the starting offset. */ 24475 offset <<= 3; 24476 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24477 24478 /* Store the length of the first fragment in the IP header. */ 24479 i1 = len + hdr_len; 24480 ASSERT(i1 <= IP_MAXPACKET); 24481 ipha->ipha_length = htons((uint16_t)i1); 24482 24483 /* 24484 * Compute the IP header checksum for the first frag. We have to 24485 * watch out that we stop at the end of the header. 24486 */ 24487 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24488 24489 /* 24490 * Now carve off the first frag. Note that this will include the 24491 * original IP header. 24492 */ 24493 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24494 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24495 freeb(hdr_mp); 24496 freemsg(mp_orig); 24497 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24498 "ip_wput_frag_end:(%S)", 24499 "couldn't carve first"); 24500 return; 24501 } 24502 24503 /* 24504 * Multirouting case. Each fragment is replicated 24505 * via all non-condemned RTF_MULTIRT routes 24506 * currently resolved. 24507 * We ensure that first_ire is the first RTF_MULTIRT 24508 * ire in the bucket. 24509 */ 24510 if (ire->ire_flags & RTF_MULTIRT) { 24511 irb = ire->ire_bucket; 24512 ASSERT(irb != NULL); 24513 24514 multirt_send = B_TRUE; 24515 24516 /* Make sure we do not omit any multiroute ire. */ 24517 IRB_REFHOLD(irb); 24518 for (first_ire = irb->irb_ire; 24519 first_ire != NULL; 24520 first_ire = first_ire->ire_next) { 24521 if ((first_ire->ire_flags & RTF_MULTIRT) && 24522 (first_ire->ire_addr == ire->ire_addr) && 24523 !(first_ire->ire_marks & 24524 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24525 break; 24526 } 24527 } 24528 24529 if (first_ire != NULL) { 24530 if (first_ire != ire) { 24531 IRE_REFHOLD(first_ire); 24532 /* 24533 * Do not release the ire passed in 24534 * as the argument. 24535 */ 24536 ire = first_ire; 24537 } else { 24538 first_ire = NULL; 24539 } 24540 } 24541 IRB_REFRELE(irb); 24542 24543 /* 24544 * Save the first ire; we will need to restore it 24545 * for the trailing frags. 24546 * We REFHOLD save_ire, as each iterated ire will be 24547 * REFRELEd. 24548 */ 24549 save_ire = ire; 24550 IRE_REFHOLD(save_ire); 24551 } 24552 24553 /* 24554 * First fragment emission loop. 24555 * In most cases, the emission loop below is entered only 24556 * once. Only in the case where the ire holds the RTF_MULTIRT 24557 * flag, do we loop to process all RTF_MULTIRT ires in the 24558 * bucket, and send the fragment through all crossed 24559 * RTF_MULTIRT routes. 24560 */ 24561 do { 24562 if (ire->ire_flags & RTF_MULTIRT) { 24563 /* 24564 * We are in a multiple send case, need to get 24565 * the next ire and make a copy of the packet. 24566 * ire1 holds here the next ire to process in the 24567 * bucket. If multirouting is expected, 24568 * any non-RTF_MULTIRT ire that has the 24569 * right destination address is ignored. 24570 * 24571 * We have to take into account the MTU of 24572 * each walked ire. max_frag is set by the 24573 * the caller and generally refers to 24574 * the primary ire entry. Here we ensure that 24575 * no route with a lower MTU will be used, as 24576 * fragments are carved once for all ires, 24577 * then replicated. 24578 */ 24579 ASSERT(irb != NULL); 24580 IRB_REFHOLD(irb); 24581 for (ire1 = ire->ire_next; 24582 ire1 != NULL; 24583 ire1 = ire1->ire_next) { 24584 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24585 continue; 24586 if (ire1->ire_addr != ire->ire_addr) 24587 continue; 24588 if (ire1->ire_marks & 24589 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24590 continue; 24591 /* 24592 * Ensure we do not exceed the MTU 24593 * of the next route. 24594 */ 24595 if (ire1->ire_max_frag < max_frag) { 24596 ip_multirt_bad_mtu(ire1, max_frag); 24597 continue; 24598 } 24599 24600 /* Got one. */ 24601 IRE_REFHOLD(ire1); 24602 break; 24603 } 24604 IRB_REFRELE(irb); 24605 24606 if (ire1 != NULL) { 24607 next_mp = copyb(mp); 24608 if ((next_mp == NULL) || 24609 ((mp->b_cont != NULL) && 24610 ((next_mp->b_cont = 24611 dupmsg(mp->b_cont)) == NULL))) { 24612 freemsg(next_mp); 24613 next_mp = NULL; 24614 ire_refrele(ire1); 24615 ire1 = NULL; 24616 } 24617 } 24618 24619 /* Last multiroute ire; don't loop anymore. */ 24620 if (ire1 == NULL) { 24621 multirt_send = B_FALSE; 24622 } 24623 } 24624 24625 ll_hdr_len = 0; 24626 LOCK_IRE_FP_MP(ire); 24627 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24628 if (ll_hdr_mp != NULL) { 24629 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24630 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24631 } else { 24632 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24633 } 24634 24635 /* If there is a transmit header, get a copy for this frag. */ 24636 /* 24637 * TODO: should check db_ref before calling ip_carve_mp since 24638 * it might give us a dup. 24639 */ 24640 if (!ll_hdr_mp) { 24641 /* No xmit header. */ 24642 xmit_mp = mp; 24643 24644 /* We have a link-layer header that can fit in our mblk. */ 24645 } else if (mp->b_datap->db_ref == 1 && 24646 ll_hdr_len != 0 && 24647 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24648 /* M_DATA fastpath */ 24649 mp->b_rptr -= ll_hdr_len; 24650 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24651 xmit_mp = mp; 24652 24653 /* Corner case if copyb has failed */ 24654 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24655 UNLOCK_IRE_FP_MP(ire); 24656 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24657 freeb(hdr_mp); 24658 freemsg(mp); 24659 freemsg(mp_orig); 24660 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24661 "ip_wput_frag_end:(%S)", 24662 "discard"); 24663 24664 if (multirt_send) { 24665 ASSERT(ire1); 24666 ASSERT(next_mp); 24667 24668 freemsg(next_mp); 24669 ire_refrele(ire1); 24670 } 24671 if (save_ire != NULL) 24672 IRE_REFRELE(save_ire); 24673 24674 if (first_ire != NULL) 24675 ire_refrele(first_ire); 24676 return; 24677 24678 /* 24679 * Case of res_mp OR the fastpath mp can't fit 24680 * in the mblk 24681 */ 24682 } else { 24683 xmit_mp->b_cont = mp; 24684 if (DB_CRED(mp) != NULL) 24685 mblk_setcred(xmit_mp, DB_CRED(mp)); 24686 /* 24687 * Get priority marking, if any. 24688 * We propagate the CoS marking from the 24689 * original packet that went to QoS processing 24690 * in ip_wput_ire to the newly carved mp. 24691 */ 24692 if (DB_TYPE(xmit_mp) == M_DATA) 24693 xmit_mp->b_band = mp->b_band; 24694 } 24695 UNLOCK_IRE_FP_MP(ire); 24696 24697 q = ire->ire_stq; 24698 out_ill = (ill_t *)q->q_ptr; 24699 24700 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24701 24702 DTRACE_PROBE4(ip4__physical__out__start, 24703 ill_t *, NULL, ill_t *, out_ill, 24704 ipha_t *, ipha, mblk_t *, xmit_mp); 24705 24706 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24707 ipst->ips_ipv4firewall_physical_out, 24708 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24709 24710 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24711 24712 if (xmit_mp != NULL) { 24713 putnext(q, xmit_mp); 24714 24715 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24716 UPDATE_MIB(out_ill->ill_ip_mib, 24717 ipIfStatsHCOutOctets, i1); 24718 24719 if (pkt_type != OB_PKT) { 24720 /* 24721 * Update the packet count and MIB stats 24722 * of trailing RTF_MULTIRT ires. 24723 */ 24724 UPDATE_OB_PKT_COUNT(ire); 24725 BUMP_MIB(out_ill->ill_ip_mib, 24726 ipIfStatsOutFragReqds); 24727 } 24728 } 24729 24730 if (multirt_send) { 24731 /* 24732 * We are in a multiple send case; look for 24733 * the next ire and re-enter the loop. 24734 */ 24735 ASSERT(ire1); 24736 ASSERT(next_mp); 24737 /* REFRELE the current ire before looping */ 24738 ire_refrele(ire); 24739 ire = ire1; 24740 ire1 = NULL; 24741 mp = next_mp; 24742 next_mp = NULL; 24743 } 24744 } while (multirt_send); 24745 24746 ASSERT(ire1 == NULL); 24747 24748 /* Restore the original ire; we need it for the trailing frags */ 24749 if (save_ire != NULL) { 24750 /* REFRELE the last iterated ire */ 24751 ire_refrele(ire); 24752 /* save_ire has been REFHOLDed */ 24753 ire = save_ire; 24754 save_ire = NULL; 24755 q = ire->ire_stq; 24756 } 24757 24758 if (pkt_type == OB_PKT) { 24759 UPDATE_OB_PKT_COUNT(ire); 24760 } else { 24761 out_ill = (ill_t *)q->q_ptr; 24762 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24763 UPDATE_IB_PKT_COUNT(ire); 24764 } 24765 24766 /* Advance the offset to the second frag starting point. */ 24767 offset += len; 24768 /* 24769 * Update hdr_len from the copied header - there might be less options 24770 * in the later fragments. 24771 */ 24772 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24773 /* Loop until done. */ 24774 for (;;) { 24775 uint16_t offset_and_flags; 24776 uint16_t ip_len; 24777 24778 if (ip_data_end - offset > len) { 24779 /* 24780 * Carve off the appropriate amount from the original 24781 * datagram. 24782 */ 24783 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24784 mp = NULL; 24785 break; 24786 } 24787 /* 24788 * More frags after this one. Get another copy 24789 * of the header. 24790 */ 24791 if (carve_mp->b_datap->db_ref == 1 && 24792 hdr_mp->b_wptr - hdr_mp->b_rptr < 24793 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24794 /* Inline IP header */ 24795 carve_mp->b_rptr -= hdr_mp->b_wptr - 24796 hdr_mp->b_rptr; 24797 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24798 hdr_mp->b_wptr - hdr_mp->b_rptr); 24799 mp = carve_mp; 24800 } else { 24801 if (!(mp = copyb(hdr_mp))) { 24802 freemsg(carve_mp); 24803 break; 24804 } 24805 /* Get priority marking, if any. */ 24806 mp->b_band = carve_mp->b_band; 24807 mp->b_cont = carve_mp; 24808 } 24809 ipha = (ipha_t *)mp->b_rptr; 24810 offset_and_flags = IPH_MF; 24811 } else { 24812 /* 24813 * Last frag. Consume the header. Set len to 24814 * the length of this last piece. 24815 */ 24816 len = ip_data_end - offset; 24817 24818 /* 24819 * Carve off the appropriate amount from the original 24820 * datagram. 24821 */ 24822 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24823 mp = NULL; 24824 break; 24825 } 24826 if (carve_mp->b_datap->db_ref == 1 && 24827 hdr_mp->b_wptr - hdr_mp->b_rptr < 24828 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24829 /* Inline IP header */ 24830 carve_mp->b_rptr -= hdr_mp->b_wptr - 24831 hdr_mp->b_rptr; 24832 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24833 hdr_mp->b_wptr - hdr_mp->b_rptr); 24834 mp = carve_mp; 24835 freeb(hdr_mp); 24836 hdr_mp = mp; 24837 } else { 24838 mp = hdr_mp; 24839 /* Get priority marking, if any. */ 24840 mp->b_band = carve_mp->b_band; 24841 mp->b_cont = carve_mp; 24842 } 24843 ipha = (ipha_t *)mp->b_rptr; 24844 /* A frag of a frag might have IPH_MF non-zero */ 24845 offset_and_flags = 24846 ntohs(ipha->ipha_fragment_offset_and_flags) & 24847 IPH_MF; 24848 } 24849 offset_and_flags |= (uint16_t)(offset >> 3); 24850 offset_and_flags |= (uint16_t)frag_flag; 24851 /* Store the offset and flags in the IP header. */ 24852 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24853 24854 /* Store the length in the IP header. */ 24855 ip_len = (uint16_t)(len + hdr_len); 24856 ipha->ipha_length = htons(ip_len); 24857 24858 /* 24859 * Set the IP header checksum. Note that mp is just 24860 * the header, so this is easy to pass to ip_csum. 24861 */ 24862 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24863 24864 /* Attach a transmit header, if any, and ship it. */ 24865 if (pkt_type == OB_PKT) { 24866 UPDATE_OB_PKT_COUNT(ire); 24867 } else { 24868 out_ill = (ill_t *)q->q_ptr; 24869 BUMP_MIB(out_ill->ill_ip_mib, 24870 ipIfStatsHCOutForwDatagrams); 24871 UPDATE_IB_PKT_COUNT(ire); 24872 } 24873 24874 if (ire->ire_flags & RTF_MULTIRT) { 24875 irb = ire->ire_bucket; 24876 ASSERT(irb != NULL); 24877 24878 multirt_send = B_TRUE; 24879 24880 /* 24881 * Save the original ire; we will need to restore it 24882 * for the tailing frags. 24883 */ 24884 save_ire = ire; 24885 IRE_REFHOLD(save_ire); 24886 } 24887 /* 24888 * Emission loop for this fragment, similar 24889 * to what is done for the first fragment. 24890 */ 24891 do { 24892 if (multirt_send) { 24893 /* 24894 * We are in a multiple send case, need to get 24895 * the next ire and make a copy of the packet. 24896 */ 24897 ASSERT(irb != NULL); 24898 IRB_REFHOLD(irb); 24899 for (ire1 = ire->ire_next; 24900 ire1 != NULL; 24901 ire1 = ire1->ire_next) { 24902 if (!(ire1->ire_flags & RTF_MULTIRT)) 24903 continue; 24904 if (ire1->ire_addr != ire->ire_addr) 24905 continue; 24906 if (ire1->ire_marks & 24907 (IRE_MARK_CONDEMNED| 24908 IRE_MARK_HIDDEN)) { 24909 continue; 24910 } 24911 /* 24912 * Ensure we do not exceed the MTU 24913 * of the next route. 24914 */ 24915 if (ire1->ire_max_frag < max_frag) { 24916 ip_multirt_bad_mtu(ire1, 24917 max_frag); 24918 continue; 24919 } 24920 24921 /* Got one. */ 24922 IRE_REFHOLD(ire1); 24923 break; 24924 } 24925 IRB_REFRELE(irb); 24926 24927 if (ire1 != NULL) { 24928 next_mp = copyb(mp); 24929 if ((next_mp == NULL) || 24930 ((mp->b_cont != NULL) && 24931 ((next_mp->b_cont = 24932 dupmsg(mp->b_cont)) == NULL))) { 24933 freemsg(next_mp); 24934 next_mp = NULL; 24935 ire_refrele(ire1); 24936 ire1 = NULL; 24937 } 24938 } 24939 24940 /* Last multiroute ire; don't loop anymore. */ 24941 if (ire1 == NULL) { 24942 multirt_send = B_FALSE; 24943 } 24944 } 24945 24946 /* Update transmit header */ 24947 ll_hdr_len = 0; 24948 LOCK_IRE_FP_MP(ire); 24949 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24950 if (ll_hdr_mp != NULL) { 24951 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24952 ll_hdr_len = MBLKL(ll_hdr_mp); 24953 } else { 24954 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24955 } 24956 24957 if (!ll_hdr_mp) { 24958 xmit_mp = mp; 24959 24960 /* 24961 * We have link-layer header that can fit in 24962 * our mblk. 24963 */ 24964 } else if (mp->b_datap->db_ref == 1 && 24965 ll_hdr_len != 0 && 24966 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24967 /* M_DATA fastpath */ 24968 mp->b_rptr -= ll_hdr_len; 24969 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24970 ll_hdr_len); 24971 xmit_mp = mp; 24972 24973 /* 24974 * Case of res_mp OR the fastpath mp can't fit 24975 * in the mblk 24976 */ 24977 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24978 xmit_mp->b_cont = mp; 24979 if (DB_CRED(mp) != NULL) 24980 mblk_setcred(xmit_mp, DB_CRED(mp)); 24981 /* Get priority marking, if any. */ 24982 if (DB_TYPE(xmit_mp) == M_DATA) 24983 xmit_mp->b_band = mp->b_band; 24984 24985 /* Corner case if copyb failed */ 24986 } else { 24987 /* 24988 * Exit both the replication and 24989 * fragmentation loops. 24990 */ 24991 UNLOCK_IRE_FP_MP(ire); 24992 goto drop_pkt; 24993 } 24994 UNLOCK_IRE_FP_MP(ire); 24995 24996 mp1 = mp; 24997 out_ill = (ill_t *)q->q_ptr; 24998 24999 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 25000 25001 DTRACE_PROBE4(ip4__physical__out__start, 25002 ill_t *, NULL, ill_t *, out_ill, 25003 ipha_t *, ipha, mblk_t *, xmit_mp); 25004 25005 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25006 ipst->ips_ipv4firewall_physical_out, 25007 NULL, out_ill, ipha, xmit_mp, mp, ipst); 25008 25009 DTRACE_PROBE1(ip4__physical__out__end, 25010 mblk_t *, xmit_mp); 25011 25012 if (mp != mp1 && hdr_mp == mp1) 25013 hdr_mp = mp; 25014 if (mp != mp1 && mp_orig == mp1) 25015 mp_orig = mp; 25016 25017 if (xmit_mp != NULL) { 25018 putnext(q, xmit_mp); 25019 25020 BUMP_MIB(out_ill->ill_ip_mib, 25021 ipIfStatsHCOutTransmits); 25022 UPDATE_MIB(out_ill->ill_ip_mib, 25023 ipIfStatsHCOutOctets, ip_len); 25024 25025 if (pkt_type != OB_PKT) { 25026 /* 25027 * Update the packet count of trailing 25028 * RTF_MULTIRT ires. 25029 */ 25030 UPDATE_OB_PKT_COUNT(ire); 25031 } 25032 } 25033 25034 /* All done if we just consumed the hdr_mp. */ 25035 if (mp == hdr_mp) { 25036 last_frag = B_TRUE; 25037 BUMP_MIB(out_ill->ill_ip_mib, 25038 ipIfStatsOutFragOKs); 25039 } 25040 25041 if (multirt_send) { 25042 /* 25043 * We are in a multiple send case; look for 25044 * the next ire and re-enter the loop. 25045 */ 25046 ASSERT(ire1); 25047 ASSERT(next_mp); 25048 /* REFRELE the current ire before looping */ 25049 ire_refrele(ire); 25050 ire = ire1; 25051 ire1 = NULL; 25052 q = ire->ire_stq; 25053 mp = next_mp; 25054 next_mp = NULL; 25055 } 25056 } while (multirt_send); 25057 /* 25058 * Restore the original ire; we need it for the 25059 * trailing frags 25060 */ 25061 if (save_ire != NULL) { 25062 ASSERT(ire1 == NULL); 25063 /* REFRELE the last iterated ire */ 25064 ire_refrele(ire); 25065 /* save_ire has been REFHOLDed */ 25066 ire = save_ire; 25067 q = ire->ire_stq; 25068 save_ire = NULL; 25069 } 25070 25071 if (last_frag) { 25072 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25073 "ip_wput_frag_end:(%S)", 25074 "consumed hdr_mp"); 25075 25076 if (first_ire != NULL) 25077 ire_refrele(first_ire); 25078 return; 25079 } 25080 /* Otherwise, advance and loop. */ 25081 offset += len; 25082 } 25083 25084 drop_pkt: 25085 /* Clean up following allocation failure. */ 25086 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25087 freemsg(mp); 25088 if (mp != hdr_mp) 25089 freeb(hdr_mp); 25090 if (mp != mp_orig) 25091 freemsg(mp_orig); 25092 25093 if (save_ire != NULL) 25094 IRE_REFRELE(save_ire); 25095 if (first_ire != NULL) 25096 ire_refrele(first_ire); 25097 25098 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25099 "ip_wput_frag_end:(%S)", 25100 "end--alloc failure"); 25101 } 25102 25103 /* 25104 * Copy the header plus those options which have the copy bit set 25105 */ 25106 static mblk_t * 25107 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25108 { 25109 mblk_t *mp; 25110 uchar_t *up; 25111 25112 /* 25113 * Quick check if we need to look for options without the copy bit 25114 * set 25115 */ 25116 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25117 if (!mp) 25118 return (mp); 25119 mp->b_rptr += ipst->ips_ip_wroff_extra; 25120 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25121 bcopy(rptr, mp->b_rptr, hdr_len); 25122 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25123 return (mp); 25124 } 25125 up = mp->b_rptr; 25126 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25127 up += IP_SIMPLE_HDR_LENGTH; 25128 rptr += IP_SIMPLE_HDR_LENGTH; 25129 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25130 while (hdr_len > 0) { 25131 uint32_t optval; 25132 uint32_t optlen; 25133 25134 optval = *rptr; 25135 if (optval == IPOPT_EOL) 25136 break; 25137 if (optval == IPOPT_NOP) 25138 optlen = 1; 25139 else 25140 optlen = rptr[1]; 25141 if (optval & IPOPT_COPY) { 25142 bcopy(rptr, up, optlen); 25143 up += optlen; 25144 } 25145 rptr += optlen; 25146 hdr_len -= optlen; 25147 } 25148 /* 25149 * Make sure that we drop an even number of words by filling 25150 * with EOL to the next word boundary. 25151 */ 25152 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25153 hdr_len & 0x3; hdr_len++) 25154 *up++ = IPOPT_EOL; 25155 mp->b_wptr = up; 25156 /* Update header length */ 25157 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25158 return (mp); 25159 } 25160 25161 /* 25162 * Delivery to local recipients including fanout to multiple recipients. 25163 * Does not do checksumming of UDP/TCP. 25164 * Note: q should be the read side queue for either the ill or conn. 25165 * Note: rq should be the read side q for the lower (ill) stream. 25166 * We don't send packets to IPPF processing, thus the last argument 25167 * to all the fanout calls are B_FALSE. 25168 */ 25169 void 25170 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25171 int fanout_flags, zoneid_t zoneid) 25172 { 25173 uint32_t protocol; 25174 mblk_t *first_mp; 25175 boolean_t mctl_present; 25176 int ire_type; 25177 #define rptr ((uchar_t *)ipha) 25178 ip_stack_t *ipst = ill->ill_ipst; 25179 25180 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25181 "ip_wput_local_start: q %p", q); 25182 25183 if (ire != NULL) { 25184 ire_type = ire->ire_type; 25185 } else { 25186 /* 25187 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25188 * packet is not multicast, we can't tell the ire type. 25189 */ 25190 ASSERT(CLASSD(ipha->ipha_dst)); 25191 ire_type = IRE_BROADCAST; 25192 } 25193 25194 first_mp = mp; 25195 if (first_mp->b_datap->db_type == M_CTL) { 25196 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25197 if (!io->ipsec_out_secure) { 25198 /* 25199 * This ipsec_out_t was allocated in ip_wput 25200 * for multicast packets to store the ill_index. 25201 * As this is being delivered locally, we don't 25202 * need this anymore. 25203 */ 25204 mp = first_mp->b_cont; 25205 freeb(first_mp); 25206 first_mp = mp; 25207 mctl_present = B_FALSE; 25208 } else { 25209 /* 25210 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25211 * security properties for the looped-back packet. 25212 */ 25213 mctl_present = B_TRUE; 25214 mp = first_mp->b_cont; 25215 ASSERT(mp != NULL); 25216 ipsec_out_to_in(first_mp); 25217 } 25218 } else { 25219 mctl_present = B_FALSE; 25220 } 25221 25222 DTRACE_PROBE4(ip4__loopback__in__start, 25223 ill_t *, ill, ill_t *, NULL, 25224 ipha_t *, ipha, mblk_t *, first_mp); 25225 25226 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25227 ipst->ips_ipv4firewall_loopback_in, 25228 ill, NULL, ipha, first_mp, mp, ipst); 25229 25230 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25231 25232 if (first_mp == NULL) 25233 return; 25234 25235 ipst->ips_loopback_packets++; 25236 25237 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25238 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25239 if (!IS_SIMPLE_IPH(ipha)) { 25240 ip_wput_local_options(ipha, ipst); 25241 } 25242 25243 protocol = ipha->ipha_protocol; 25244 switch (protocol) { 25245 case IPPROTO_ICMP: { 25246 ire_t *ire_zone; 25247 ilm_t *ilm; 25248 mblk_t *mp1; 25249 zoneid_t last_zoneid; 25250 25251 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25252 ASSERT(ire_type == IRE_BROADCAST); 25253 /* 25254 * In the multicast case, applications may have joined 25255 * the group from different zones, so we need to deliver 25256 * the packet to each of them. Loop through the 25257 * multicast memberships structures (ilm) on the receive 25258 * ill and send a copy of the packet up each matching 25259 * one. However, we don't do this for multicasts sent on 25260 * the loopback interface (PHYI_LOOPBACK flag set) as 25261 * they must stay in the sender's zone. 25262 * 25263 * ilm_add_v6() ensures that ilms in the same zone are 25264 * contiguous in the ill_ilm list. We use this property 25265 * to avoid sending duplicates needed when two 25266 * applications in the same zone join the same group on 25267 * different logical interfaces: we ignore the ilm if 25268 * it's zoneid is the same as the last matching one. 25269 * In addition, the sending of the packet for 25270 * ire_zoneid is delayed until all of the other ilms 25271 * have been exhausted. 25272 */ 25273 last_zoneid = -1; 25274 ILM_WALKER_HOLD(ill); 25275 for (ilm = ill->ill_ilm; ilm != NULL; 25276 ilm = ilm->ilm_next) { 25277 if ((ilm->ilm_flags & ILM_DELETED) || 25278 ipha->ipha_dst != ilm->ilm_addr || 25279 ilm->ilm_zoneid == last_zoneid || 25280 ilm->ilm_zoneid == zoneid || 25281 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25282 continue; 25283 mp1 = ip_copymsg(first_mp); 25284 if (mp1 == NULL) 25285 continue; 25286 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25287 mctl_present, B_FALSE, ill, 25288 ilm->ilm_zoneid); 25289 last_zoneid = ilm->ilm_zoneid; 25290 } 25291 ILM_WALKER_RELE(ill); 25292 /* 25293 * Loopback case: the sending endpoint has 25294 * IP_MULTICAST_LOOP disabled, therefore we don't 25295 * dispatch the multicast packet to the sending zone. 25296 */ 25297 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25298 freemsg(first_mp); 25299 return; 25300 } 25301 } else if (ire_type == IRE_BROADCAST) { 25302 /* 25303 * In the broadcast case, there may be many zones 25304 * which need a copy of the packet delivered to them. 25305 * There is one IRE_BROADCAST per broadcast address 25306 * and per zone; we walk those using a helper function. 25307 * In addition, the sending of the packet for zoneid is 25308 * delayed until all of the other ires have been 25309 * processed. 25310 */ 25311 IRB_REFHOLD(ire->ire_bucket); 25312 ire_zone = NULL; 25313 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25314 ire)) != NULL) { 25315 mp1 = ip_copymsg(first_mp); 25316 if (mp1 == NULL) 25317 continue; 25318 25319 UPDATE_IB_PKT_COUNT(ire_zone); 25320 ire_zone->ire_last_used_time = lbolt; 25321 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25322 mctl_present, B_FALSE, ill, 25323 ire_zone->ire_zoneid); 25324 } 25325 IRB_REFRELE(ire->ire_bucket); 25326 } 25327 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25328 0, mctl_present, B_FALSE, ill, zoneid); 25329 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25330 "ip_wput_local_end: q %p (%S)", 25331 q, "icmp"); 25332 return; 25333 } 25334 case IPPROTO_IGMP: 25335 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25336 /* Bad packet - discarded by igmp_input */ 25337 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25338 "ip_wput_local_end: q %p (%S)", 25339 q, "igmp_input--bad packet"); 25340 if (mctl_present) 25341 freeb(first_mp); 25342 return; 25343 } 25344 /* 25345 * igmp_input() may have returned the pulled up message. 25346 * So first_mp and ipha need to be reinitialized. 25347 */ 25348 ipha = (ipha_t *)mp->b_rptr; 25349 if (mctl_present) 25350 first_mp->b_cont = mp; 25351 else 25352 first_mp = mp; 25353 /* deliver to local raw users */ 25354 break; 25355 case IPPROTO_ENCAP: 25356 /* 25357 * This case is covered by either ip_fanout_proto, or by 25358 * the above security processing for self-tunneled packets. 25359 */ 25360 break; 25361 case IPPROTO_UDP: { 25362 uint16_t *up; 25363 uint32_t ports; 25364 25365 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25366 UDP_PORTS_OFFSET); 25367 /* Force a 'valid' checksum. */ 25368 up[3] = 0; 25369 25370 ports = *(uint32_t *)up; 25371 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25372 (ire_type == IRE_BROADCAST), 25373 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25374 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25375 ill, zoneid); 25376 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25377 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25378 return; 25379 } 25380 case IPPROTO_TCP: { 25381 25382 /* 25383 * For TCP, discard broadcast packets. 25384 */ 25385 if ((ushort_t)ire_type == IRE_BROADCAST) { 25386 freemsg(first_mp); 25387 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25388 ip2dbg(("ip_wput_local: discard broadcast\n")); 25389 return; 25390 } 25391 25392 if (mp->b_datap->db_type == M_DATA) { 25393 /* 25394 * M_DATA mblk, so init mblk (chain) for no struio(). 25395 */ 25396 mblk_t *mp1 = mp; 25397 25398 do { 25399 mp1->b_datap->db_struioflag = 0; 25400 } while ((mp1 = mp1->b_cont) != NULL); 25401 } 25402 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25403 <= mp->b_wptr); 25404 ip_fanout_tcp(q, first_mp, ill, ipha, 25405 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25406 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25407 mctl_present, B_FALSE, zoneid); 25408 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25409 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25410 return; 25411 } 25412 case IPPROTO_SCTP: 25413 { 25414 uint32_t ports; 25415 25416 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25417 ip_fanout_sctp(first_mp, ill, ipha, ports, 25418 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25419 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25420 return; 25421 } 25422 25423 default: 25424 break; 25425 } 25426 /* 25427 * Find a client for some other protocol. We give 25428 * copies to multiple clients, if more than one is 25429 * bound. 25430 */ 25431 ip_fanout_proto(q, first_mp, ill, ipha, 25432 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25433 mctl_present, B_FALSE, ill, zoneid); 25434 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25435 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25436 #undef rptr 25437 } 25438 25439 /* 25440 * Update any source route, record route, or timestamp options. 25441 * Check that we are at end of strict source route. 25442 * The options have been sanity checked by ip_wput_options(). 25443 */ 25444 static void 25445 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25446 { 25447 ipoptp_t opts; 25448 uchar_t *opt; 25449 uint8_t optval; 25450 uint8_t optlen; 25451 ipaddr_t dst; 25452 uint32_t ts; 25453 ire_t *ire; 25454 timestruc_t now; 25455 25456 ip2dbg(("ip_wput_local_options\n")); 25457 for (optval = ipoptp_first(&opts, ipha); 25458 optval != IPOPT_EOL; 25459 optval = ipoptp_next(&opts)) { 25460 opt = opts.ipoptp_cur; 25461 optlen = opts.ipoptp_len; 25462 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25463 switch (optval) { 25464 uint32_t off; 25465 case IPOPT_SSRR: 25466 case IPOPT_LSRR: 25467 off = opt[IPOPT_OFFSET]; 25468 off--; 25469 if (optlen < IP_ADDR_LEN || 25470 off > optlen - IP_ADDR_LEN) { 25471 /* End of source route */ 25472 break; 25473 } 25474 /* 25475 * This will only happen if two consecutive entries 25476 * in the source route contains our address or if 25477 * it is a packet with a loose source route which 25478 * reaches us before consuming the whole source route 25479 */ 25480 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25481 if (optval == IPOPT_SSRR) { 25482 return; 25483 } 25484 /* 25485 * Hack: instead of dropping the packet truncate the 25486 * source route to what has been used by filling the 25487 * rest with IPOPT_NOP. 25488 */ 25489 opt[IPOPT_OLEN] = (uint8_t)off; 25490 while (off < optlen) { 25491 opt[off++] = IPOPT_NOP; 25492 } 25493 break; 25494 case IPOPT_RR: 25495 off = opt[IPOPT_OFFSET]; 25496 off--; 25497 if (optlen < IP_ADDR_LEN || 25498 off > optlen - IP_ADDR_LEN) { 25499 /* No more room - ignore */ 25500 ip1dbg(( 25501 "ip_wput_forward_options: end of RR\n")); 25502 break; 25503 } 25504 dst = htonl(INADDR_LOOPBACK); 25505 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25506 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25507 break; 25508 case IPOPT_TS: 25509 /* Insert timestamp if there is romm */ 25510 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25511 case IPOPT_TS_TSONLY: 25512 off = IPOPT_TS_TIMELEN; 25513 break; 25514 case IPOPT_TS_PRESPEC: 25515 case IPOPT_TS_PRESPEC_RFC791: 25516 /* Verify that the address matched */ 25517 off = opt[IPOPT_OFFSET] - 1; 25518 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25519 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25520 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25521 ipst); 25522 if (ire == NULL) { 25523 /* Not for us */ 25524 break; 25525 } 25526 ire_refrele(ire); 25527 /* FALLTHRU */ 25528 case IPOPT_TS_TSANDADDR: 25529 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25530 break; 25531 default: 25532 /* 25533 * ip_*put_options should have already 25534 * dropped this packet. 25535 */ 25536 cmn_err(CE_PANIC, "ip_wput_local_options: " 25537 "unknown IT - bug in ip_wput_options?\n"); 25538 return; /* Keep "lint" happy */ 25539 } 25540 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25541 /* Increase overflow counter */ 25542 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25543 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25544 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25545 (off << 4); 25546 break; 25547 } 25548 off = opt[IPOPT_OFFSET] - 1; 25549 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25550 case IPOPT_TS_PRESPEC: 25551 case IPOPT_TS_PRESPEC_RFC791: 25552 case IPOPT_TS_TSANDADDR: 25553 dst = htonl(INADDR_LOOPBACK); 25554 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25555 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25556 /* FALLTHRU */ 25557 case IPOPT_TS_TSONLY: 25558 off = opt[IPOPT_OFFSET] - 1; 25559 /* Compute # of milliseconds since midnight */ 25560 gethrestime(&now); 25561 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25562 now.tv_nsec / (NANOSEC / MILLISEC); 25563 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25564 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25565 break; 25566 } 25567 break; 25568 } 25569 } 25570 } 25571 25572 /* 25573 * Send out a multicast packet on interface ipif. 25574 * The sender does not have an conn. 25575 * Caller verifies that this isn't a PHYI_LOOPBACK. 25576 */ 25577 void 25578 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25579 { 25580 ipha_t *ipha; 25581 ire_t *ire; 25582 ipaddr_t dst; 25583 mblk_t *first_mp; 25584 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25585 25586 /* igmp_sendpkt always allocates a ipsec_out_t */ 25587 ASSERT(mp->b_datap->db_type == M_CTL); 25588 ASSERT(!ipif->ipif_isv6); 25589 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25590 25591 first_mp = mp; 25592 mp = first_mp->b_cont; 25593 ASSERT(mp->b_datap->db_type == M_DATA); 25594 ipha = (ipha_t *)mp->b_rptr; 25595 25596 /* 25597 * Find an IRE which matches the destination and the outgoing 25598 * queue (i.e. the outgoing interface.) 25599 */ 25600 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25601 dst = ipif->ipif_pp_dst_addr; 25602 else 25603 dst = ipha->ipha_dst; 25604 /* 25605 * The source address has already been initialized by the 25606 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25607 * be sufficient rather than MATCH_IRE_IPIF. 25608 * 25609 * This function is used for sending IGMP packets. We need 25610 * to make sure that we send the packet out of the interface 25611 * (ipif->ipif_ill) where we joined the group. This is to 25612 * prevent from switches doing IGMP snooping to send us multicast 25613 * packets for a given group on the interface we have joined. 25614 * If we can't find an ire, igmp_sendpkt has already initialized 25615 * ipsec_out_attach_if so that this will not be load spread in 25616 * ip_newroute_ipif. 25617 */ 25618 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25619 MATCH_IRE_ILL, ipst); 25620 if (!ire) { 25621 /* 25622 * Mark this packet to make it be delivered to 25623 * ip_wput_ire after the new ire has been 25624 * created. 25625 */ 25626 mp->b_prev = NULL; 25627 mp->b_next = NULL; 25628 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25629 zoneid, &zero_info); 25630 return; 25631 } 25632 25633 /* 25634 * Honor the RTF_SETSRC flag; this is the only case 25635 * where we force this addr whatever the current src addr is, 25636 * because this address is set by igmp_sendpkt(), and 25637 * cannot be specified by any user. 25638 */ 25639 if (ire->ire_flags & RTF_SETSRC) { 25640 ipha->ipha_src = ire->ire_src_addr; 25641 } 25642 25643 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25644 } 25645 25646 /* 25647 * NOTE : This function does not ire_refrele the ire argument passed in. 25648 * 25649 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25650 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25651 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25652 * the ire_lock to access the nce_fp_mp in this case. 25653 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25654 * prepending a fastpath message IPQoS processing must precede it, we also set 25655 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25656 * (IPQoS might have set the b_band for CoS marking). 25657 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25658 * must follow it so that IPQoS can mark the dl_priority field for CoS 25659 * marking, if needed. 25660 */ 25661 static mblk_t * 25662 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25663 { 25664 uint_t hlen; 25665 ipha_t *ipha; 25666 mblk_t *mp1; 25667 boolean_t qos_done = B_FALSE; 25668 uchar_t *ll_hdr; 25669 ip_stack_t *ipst = ire->ire_ipst; 25670 25671 #define rptr ((uchar_t *)ipha) 25672 25673 ipha = (ipha_t *)mp->b_rptr; 25674 hlen = 0; 25675 LOCK_IRE_FP_MP(ire); 25676 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25677 ASSERT(DB_TYPE(mp1) == M_DATA); 25678 /* Initiate IPPF processing */ 25679 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25680 UNLOCK_IRE_FP_MP(ire); 25681 ip_process(proc, &mp, ill_index); 25682 if (mp == NULL) 25683 return (NULL); 25684 25685 ipha = (ipha_t *)mp->b_rptr; 25686 LOCK_IRE_FP_MP(ire); 25687 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25688 qos_done = B_TRUE; 25689 goto no_fp_mp; 25690 } 25691 ASSERT(DB_TYPE(mp1) == M_DATA); 25692 } 25693 hlen = MBLKL(mp1); 25694 /* 25695 * Check if we have enough room to prepend fastpath 25696 * header 25697 */ 25698 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25699 ll_hdr = rptr - hlen; 25700 bcopy(mp1->b_rptr, ll_hdr, hlen); 25701 /* 25702 * Set the b_rptr to the start of the link layer 25703 * header 25704 */ 25705 mp->b_rptr = ll_hdr; 25706 mp1 = mp; 25707 } else { 25708 mp1 = copyb(mp1); 25709 if (mp1 == NULL) 25710 goto unlock_err; 25711 mp1->b_band = mp->b_band; 25712 mp1->b_cont = mp; 25713 /* 25714 * certain system generated traffic may not 25715 * have cred/label in ip header block. This 25716 * is true even for a labeled system. But for 25717 * labeled traffic, inherit the label in the 25718 * new header. 25719 */ 25720 if (DB_CRED(mp) != NULL) 25721 mblk_setcred(mp1, DB_CRED(mp)); 25722 /* 25723 * XXX disable ICK_VALID and compute checksum 25724 * here; can happen if nce_fp_mp changes and 25725 * it can't be copied now due to insufficient 25726 * space. (unlikely, fp mp can change, but it 25727 * does not increase in length) 25728 */ 25729 } 25730 UNLOCK_IRE_FP_MP(ire); 25731 } else { 25732 no_fp_mp: 25733 mp1 = copyb(ire->ire_nce->nce_res_mp); 25734 if (mp1 == NULL) { 25735 unlock_err: 25736 UNLOCK_IRE_FP_MP(ire); 25737 freemsg(mp); 25738 return (NULL); 25739 } 25740 UNLOCK_IRE_FP_MP(ire); 25741 mp1->b_cont = mp; 25742 /* 25743 * certain system generated traffic may not 25744 * have cred/label in ip header block. This 25745 * is true even for a labeled system. But for 25746 * labeled traffic, inherit the label in the 25747 * new header. 25748 */ 25749 if (DB_CRED(mp) != NULL) 25750 mblk_setcred(mp1, DB_CRED(mp)); 25751 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25752 ip_process(proc, &mp1, ill_index); 25753 if (mp1 == NULL) 25754 return (NULL); 25755 } 25756 } 25757 return (mp1); 25758 #undef rptr 25759 } 25760 25761 /* 25762 * Finish the outbound IPsec processing for an IPv6 packet. This function 25763 * is called from ipsec_out_process() if the IPsec packet was processed 25764 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25765 * asynchronously. 25766 */ 25767 void 25768 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25769 ire_t *ire_arg) 25770 { 25771 in6_addr_t *v6dstp; 25772 ire_t *ire; 25773 mblk_t *mp; 25774 ip6_t *ip6h1; 25775 uint_t ill_index; 25776 ipsec_out_t *io; 25777 boolean_t attach_if, hwaccel; 25778 uint32_t flags = IP6_NO_IPPOLICY; 25779 int match_flags; 25780 zoneid_t zoneid; 25781 boolean_t ill_need_rele = B_FALSE; 25782 boolean_t ire_need_rele = B_FALSE; 25783 ip_stack_t *ipst; 25784 25785 mp = ipsec_mp->b_cont; 25786 ip6h1 = (ip6_t *)mp->b_rptr; 25787 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25788 ASSERT(io->ipsec_out_ns != NULL); 25789 ipst = io->ipsec_out_ns->netstack_ip; 25790 ill_index = io->ipsec_out_ill_index; 25791 if (io->ipsec_out_reachable) { 25792 flags |= IPV6_REACHABILITY_CONFIRMATION; 25793 } 25794 attach_if = io->ipsec_out_attach_if; 25795 hwaccel = io->ipsec_out_accelerated; 25796 zoneid = io->ipsec_out_zoneid; 25797 ASSERT(zoneid != ALL_ZONES); 25798 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25799 /* Multicast addresses should have non-zero ill_index. */ 25800 v6dstp = &ip6h->ip6_dst; 25801 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25802 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25803 ASSERT(!attach_if || ill_index != 0); 25804 if (ill_index != 0) { 25805 if (ill == NULL) { 25806 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25807 B_TRUE, ipst); 25808 25809 /* Failure case frees things for us. */ 25810 if (ill == NULL) 25811 return; 25812 25813 ill_need_rele = B_TRUE; 25814 } 25815 /* 25816 * If this packet needs to go out on a particular interface 25817 * honor it. 25818 */ 25819 if (attach_if) { 25820 match_flags = MATCH_IRE_ILL; 25821 25822 /* 25823 * Check if we need an ire that will not be 25824 * looked up by anybody else i.e. HIDDEN. 25825 */ 25826 if (ill_is_probeonly(ill)) { 25827 match_flags |= MATCH_IRE_MARK_HIDDEN; 25828 } 25829 } 25830 } 25831 ASSERT(mp != NULL); 25832 25833 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25834 boolean_t unspec_src; 25835 ipif_t *ipif; 25836 25837 /* 25838 * Use the ill_index to get the right ill. 25839 */ 25840 unspec_src = io->ipsec_out_unspec_src; 25841 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25842 if (ipif == NULL) { 25843 if (ill_need_rele) 25844 ill_refrele(ill); 25845 freemsg(ipsec_mp); 25846 return; 25847 } 25848 25849 if (ire_arg != NULL) { 25850 ire = ire_arg; 25851 } else { 25852 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25853 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25854 ire_need_rele = B_TRUE; 25855 } 25856 if (ire != NULL) { 25857 ipif_refrele(ipif); 25858 /* 25859 * XXX Do the multicast forwarding now, as the IPSEC 25860 * processing has been done. 25861 */ 25862 goto send; 25863 } 25864 25865 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25866 mp->b_prev = NULL; 25867 mp->b_next = NULL; 25868 25869 /* 25870 * If the IPsec packet was processed asynchronously, 25871 * drop it now. 25872 */ 25873 if (q == NULL) { 25874 if (ill_need_rele) 25875 ill_refrele(ill); 25876 freemsg(ipsec_mp); 25877 return; 25878 } 25879 25880 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25881 unspec_src, zoneid); 25882 ipif_refrele(ipif); 25883 } else { 25884 if (attach_if) { 25885 ipif_t *ipif; 25886 25887 ipif = ipif_get_next_ipif(NULL, ill); 25888 if (ipif == NULL) { 25889 if (ill_need_rele) 25890 ill_refrele(ill); 25891 freemsg(ipsec_mp); 25892 return; 25893 } 25894 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25895 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25896 ire_need_rele = B_TRUE; 25897 ipif_refrele(ipif); 25898 } else { 25899 if (ire_arg != NULL) { 25900 ire = ire_arg; 25901 } else { 25902 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25903 ipst); 25904 ire_need_rele = B_TRUE; 25905 } 25906 } 25907 if (ire != NULL) 25908 goto send; 25909 /* 25910 * ire disappeared underneath. 25911 * 25912 * What we need to do here is the ip_newroute 25913 * logic to get the ire without doing the IPSEC 25914 * processing. Follow the same old path. But this 25915 * time, ip_wput or ire_add_then_send will call us 25916 * directly as all the IPSEC operations are done. 25917 */ 25918 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25919 mp->b_prev = NULL; 25920 mp->b_next = NULL; 25921 25922 /* 25923 * If the IPsec packet was processed asynchronously, 25924 * drop it now. 25925 */ 25926 if (q == NULL) { 25927 if (ill_need_rele) 25928 ill_refrele(ill); 25929 freemsg(ipsec_mp); 25930 return; 25931 } 25932 25933 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25934 zoneid, ipst); 25935 } 25936 if (ill != NULL && ill_need_rele) 25937 ill_refrele(ill); 25938 return; 25939 send: 25940 if (ill != NULL && ill_need_rele) 25941 ill_refrele(ill); 25942 25943 /* Local delivery */ 25944 if (ire->ire_stq == NULL) { 25945 ill_t *out_ill; 25946 ASSERT(q != NULL); 25947 25948 /* PFHooks: LOOPBACK_OUT */ 25949 out_ill = ire->ire_ipif->ipif_ill; 25950 25951 DTRACE_PROBE4(ip6__loopback__out__start, 25952 ill_t *, NULL, ill_t *, out_ill, 25953 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25954 25955 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25956 ipst->ips_ipv6firewall_loopback_out, 25957 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25958 25959 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25960 25961 if (ipsec_mp != NULL) 25962 ip_wput_local_v6(RD(q), out_ill, 25963 ip6h, ipsec_mp, ire, 0); 25964 if (ire_need_rele) 25965 ire_refrele(ire); 25966 return; 25967 } 25968 /* 25969 * Everything is done. Send it out on the wire. 25970 * We force the insertion of a fragment header using the 25971 * IPH_FRAG_HDR flag in two cases: 25972 * - after reception of an ICMPv6 "packet too big" message 25973 * with a MTU < 1280 (cf. RFC 2460 section 5) 25974 * - for multirouted IPv6 packets, so that the receiver can 25975 * discard duplicates according to their fragment identifier 25976 */ 25977 /* XXX fix flow control problems. */ 25978 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25979 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25980 if (hwaccel) { 25981 /* 25982 * hardware acceleration does not handle these 25983 * "slow path" cases. 25984 */ 25985 /* IPsec KSTATS: should bump bean counter here. */ 25986 if (ire_need_rele) 25987 ire_refrele(ire); 25988 freemsg(ipsec_mp); 25989 return; 25990 } 25991 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25992 (mp->b_cont ? msgdsize(mp) : 25993 mp->b_wptr - (uchar_t *)ip6h)) { 25994 /* IPsec KSTATS: should bump bean counter here. */ 25995 ip0dbg(("Packet length mismatch: %d, %ld\n", 25996 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25997 msgdsize(mp))); 25998 if (ire_need_rele) 25999 ire_refrele(ire); 26000 freemsg(ipsec_mp); 26001 return; 26002 } 26003 ASSERT(mp->b_prev == NULL); 26004 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26005 ntohs(ip6h->ip6_plen) + 26006 IPV6_HDR_LEN, ire->ire_max_frag)); 26007 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26008 ire->ire_max_frag); 26009 } else { 26010 UPDATE_OB_PKT_COUNT(ire); 26011 ire->ire_last_used_time = lbolt; 26012 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26013 } 26014 if (ire_need_rele) 26015 ire_refrele(ire); 26016 freeb(ipsec_mp); 26017 } 26018 26019 void 26020 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26021 { 26022 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26023 da_ipsec_t *hada; /* data attributes */ 26024 ill_t *ill = (ill_t *)q->q_ptr; 26025 26026 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26027 26028 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26029 /* IPsec KSTATS: Bump lose counter here! */ 26030 freemsg(mp); 26031 return; 26032 } 26033 26034 /* 26035 * It's an IPsec packet that must be 26036 * accelerated by the Provider, and the 26037 * outbound ill is IPsec acceleration capable. 26038 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26039 * to the ill. 26040 * IPsec KSTATS: should bump packet counter here. 26041 */ 26042 26043 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26044 if (hada_mp == NULL) { 26045 /* IPsec KSTATS: should bump packet counter here. */ 26046 freemsg(mp); 26047 return; 26048 } 26049 26050 hada_mp->b_datap->db_type = M_CTL; 26051 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26052 hada_mp->b_cont = mp; 26053 26054 hada = (da_ipsec_t *)hada_mp->b_rptr; 26055 bzero(hada, sizeof (da_ipsec_t)); 26056 hada->da_type = IPHADA_M_CTL; 26057 26058 putnext(q, hada_mp); 26059 } 26060 26061 /* 26062 * Finish the outbound IPsec processing. This function is called from 26063 * ipsec_out_process() if the IPsec packet was processed 26064 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26065 * asynchronously. 26066 */ 26067 void 26068 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26069 ire_t *ire_arg) 26070 { 26071 uint32_t v_hlen_tos_len; 26072 ipaddr_t dst; 26073 ipif_t *ipif = NULL; 26074 ire_t *ire; 26075 ire_t *ire1 = NULL; 26076 mblk_t *next_mp = NULL; 26077 uint32_t max_frag; 26078 boolean_t multirt_send = B_FALSE; 26079 mblk_t *mp; 26080 mblk_t *mp1; 26081 ipha_t *ipha1; 26082 uint_t ill_index; 26083 ipsec_out_t *io; 26084 boolean_t attach_if; 26085 int match_flags, offset; 26086 irb_t *irb = NULL; 26087 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26088 zoneid_t zoneid; 26089 uint32_t cksum; 26090 uint16_t *up; 26091 ipxmit_state_t pktxmit_state; 26092 ip_stack_t *ipst; 26093 26094 #ifdef _BIG_ENDIAN 26095 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26096 #else 26097 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26098 #endif 26099 26100 mp = ipsec_mp->b_cont; 26101 ipha1 = (ipha_t *)mp->b_rptr; 26102 ASSERT(mp != NULL); 26103 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26104 dst = ipha->ipha_dst; 26105 26106 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26107 ill_index = io->ipsec_out_ill_index; 26108 attach_if = io->ipsec_out_attach_if; 26109 zoneid = io->ipsec_out_zoneid; 26110 ASSERT(zoneid != ALL_ZONES); 26111 ipst = io->ipsec_out_ns->netstack_ip; 26112 ASSERT(io->ipsec_out_ns != NULL); 26113 26114 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26115 if (ill_index != 0) { 26116 if (ill == NULL) { 26117 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26118 ill_index, B_FALSE, ipst); 26119 26120 /* Failure case frees things for us. */ 26121 if (ill == NULL) 26122 return; 26123 26124 ill_need_rele = B_TRUE; 26125 } 26126 /* 26127 * If this packet needs to go out on a particular interface 26128 * honor it. 26129 */ 26130 if (attach_if) { 26131 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26132 26133 /* 26134 * Check if we need an ire that will not be 26135 * looked up by anybody else i.e. HIDDEN. 26136 */ 26137 if (ill_is_probeonly(ill)) { 26138 match_flags |= MATCH_IRE_MARK_HIDDEN; 26139 } 26140 } 26141 } 26142 26143 if (CLASSD(dst)) { 26144 boolean_t conn_dontroute; 26145 /* 26146 * Use the ill_index to get the right ipif. 26147 */ 26148 conn_dontroute = io->ipsec_out_dontroute; 26149 if (ill_index == 0) 26150 ipif = ipif_lookup_group(dst, zoneid, ipst); 26151 else 26152 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26153 if (ipif == NULL) { 26154 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26155 " multicast\n")); 26156 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26157 freemsg(ipsec_mp); 26158 goto done; 26159 } 26160 /* 26161 * ipha_src has already been intialized with the 26162 * value of the ipif in ip_wput. All we need now is 26163 * an ire to send this downstream. 26164 */ 26165 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26166 MBLK_GETLABEL(mp), match_flags, ipst); 26167 if (ire != NULL) { 26168 ill_t *ill1; 26169 /* 26170 * Do the multicast forwarding now, as the IPSEC 26171 * processing has been done. 26172 */ 26173 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26174 (ill1 = ire_to_ill(ire))) { 26175 if (ip_mforward(ill1, ipha, mp)) { 26176 freemsg(ipsec_mp); 26177 ip1dbg(("ip_wput_ipsec_out: mforward " 26178 "failed\n")); 26179 ire_refrele(ire); 26180 goto done; 26181 } 26182 } 26183 goto send; 26184 } 26185 26186 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26187 mp->b_prev = NULL; 26188 mp->b_next = NULL; 26189 26190 /* 26191 * If the IPsec packet was processed asynchronously, 26192 * drop it now. 26193 */ 26194 if (q == NULL) { 26195 freemsg(ipsec_mp); 26196 goto done; 26197 } 26198 26199 /* 26200 * We may be using a wrong ipif to create the ire. 26201 * But it is okay as the source address is assigned 26202 * for the packet already. Next outbound packet would 26203 * create the IRE with the right IPIF in ip_wput. 26204 * 26205 * Also handle RTF_MULTIRT routes. 26206 */ 26207 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26208 zoneid, &zero_info); 26209 } else { 26210 if (attach_if) { 26211 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26212 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26213 } else { 26214 if (ire_arg != NULL) { 26215 ire = ire_arg; 26216 ire_need_rele = B_FALSE; 26217 } else { 26218 ire = ire_cache_lookup(dst, zoneid, 26219 MBLK_GETLABEL(mp), ipst); 26220 } 26221 } 26222 if (ire != NULL) { 26223 goto send; 26224 } 26225 26226 /* 26227 * ire disappeared underneath. 26228 * 26229 * What we need to do here is the ip_newroute 26230 * logic to get the ire without doing the IPSEC 26231 * processing. Follow the same old path. But this 26232 * time, ip_wput or ire_add_then_put will call us 26233 * directly as all the IPSEC operations are done. 26234 */ 26235 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26236 mp->b_prev = NULL; 26237 mp->b_next = NULL; 26238 26239 /* 26240 * If the IPsec packet was processed asynchronously, 26241 * drop it now. 26242 */ 26243 if (q == NULL) { 26244 freemsg(ipsec_mp); 26245 goto done; 26246 } 26247 26248 /* 26249 * Since we're going through ip_newroute() again, we 26250 * need to make sure we don't: 26251 * 26252 * 1.) Trigger the ASSERT() with the ipha_ident 26253 * overloading. 26254 * 2.) Redo transport-layer checksumming, since we've 26255 * already done all that to get this far. 26256 * 26257 * The easiest way not do either of the above is to set 26258 * the ipha_ident field to IP_HDR_INCLUDED. 26259 */ 26260 ipha->ipha_ident = IP_HDR_INCLUDED; 26261 ip_newroute(q, ipsec_mp, dst, NULL, 26262 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst); 26263 } 26264 goto done; 26265 send: 26266 if (ipha->ipha_protocol == IPPROTO_UDP && 26267 udp_compute_checksum(ipst->ips_netstack)) { 26268 /* 26269 * ESP NAT-Traversal packet. 26270 * 26271 * Just do software checksum for now. 26272 */ 26273 26274 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 26275 IP_STAT(ipst, ip_out_sw_cksum); 26276 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 26277 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 26278 #define iphs ((uint16_t *)ipha) 26279 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 26280 iphs[9] + ntohs(htons(ipha->ipha_length) - 26281 IP_SIMPLE_HDR_LENGTH); 26282 #undef iphs 26283 cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum); 26284 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 26285 if (mp1->b_wptr - mp1->b_rptr >= 26286 offset + sizeof (uint16_t)) { 26287 up = (uint16_t *)(mp1->b_rptr + offset); 26288 *up = cksum; 26289 break; /* out of for loop */ 26290 } else { 26291 offset -= (mp->b_wptr - mp->b_rptr); 26292 } 26293 } /* Otherwise, just keep the all-zero checksum. */ 26294 26295 if (ire->ire_stq == NULL) { 26296 ill_t *out_ill; 26297 /* 26298 * Loopbacks go through ip_wput_local except for one case. 26299 * We come here if we generate a icmp_frag_needed message 26300 * after IPSEC processing is over. When this function calls 26301 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26302 * icmp_frag_needed. The message generated comes back here 26303 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26304 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26305 * source address as it is usually set in ip_wput_ire. As 26306 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26307 * and we end up here. We can't enter ip_wput_ire once the 26308 * IPSEC processing is over and hence we need to do it here. 26309 */ 26310 ASSERT(q != NULL); 26311 UPDATE_OB_PKT_COUNT(ire); 26312 ire->ire_last_used_time = lbolt; 26313 if (ipha->ipha_src == 0) 26314 ipha->ipha_src = ire->ire_src_addr; 26315 26316 /* PFHooks: LOOPBACK_OUT */ 26317 out_ill = ire->ire_ipif->ipif_ill; 26318 26319 DTRACE_PROBE4(ip4__loopback__out__start, 26320 ill_t *, NULL, ill_t *, out_ill, 26321 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26322 26323 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26324 ipst->ips_ipv4firewall_loopback_out, 26325 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26326 26327 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26328 26329 if (ipsec_mp != NULL) 26330 ip_wput_local(RD(q), out_ill, 26331 ipha, ipsec_mp, ire, 0, zoneid); 26332 if (ire_need_rele) 26333 ire_refrele(ire); 26334 goto done; 26335 } 26336 26337 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26338 /* 26339 * We are through with IPSEC processing. 26340 * Fragment this and send it on the wire. 26341 */ 26342 if (io->ipsec_out_accelerated) { 26343 /* 26344 * The packet has been accelerated but must 26345 * be fragmented. This should not happen 26346 * since AH and ESP must not accelerate 26347 * packets that need fragmentation, however 26348 * the configuration could have changed 26349 * since the AH or ESP processing. 26350 * Drop packet. 26351 * IPsec KSTATS: bump bean counter here. 26352 */ 26353 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26354 "fragmented accelerated packet!\n")); 26355 freemsg(ipsec_mp); 26356 } else { 26357 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26358 } 26359 if (ire_need_rele) 26360 ire_refrele(ire); 26361 goto done; 26362 } 26363 26364 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26365 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26366 (void *)ire->ire_ipif, (void *)ipif)); 26367 26368 /* 26369 * Multiroute the secured packet, unless IPsec really 26370 * requires the packet to go out only through a particular 26371 * interface. 26372 */ 26373 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26374 ire_t *first_ire; 26375 irb = ire->ire_bucket; 26376 ASSERT(irb != NULL); 26377 /* 26378 * This ire has been looked up as the one that 26379 * goes through the given ipif; 26380 * make sure we do not omit any other multiroute ire 26381 * that may be present in the bucket before this one. 26382 */ 26383 IRB_REFHOLD(irb); 26384 for (first_ire = irb->irb_ire; 26385 first_ire != NULL; 26386 first_ire = first_ire->ire_next) { 26387 if ((first_ire->ire_flags & RTF_MULTIRT) && 26388 (first_ire->ire_addr == ire->ire_addr) && 26389 !(first_ire->ire_marks & 26390 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26391 break; 26392 } 26393 } 26394 26395 if ((first_ire != NULL) && (first_ire != ire)) { 26396 /* 26397 * Don't change the ire if the packet must 26398 * be fragmented if sent via this new one. 26399 */ 26400 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26401 IRE_REFHOLD(first_ire); 26402 if (ire_need_rele) 26403 ire_refrele(ire); 26404 else 26405 ire_need_rele = B_TRUE; 26406 ire = first_ire; 26407 } 26408 } 26409 IRB_REFRELE(irb); 26410 26411 multirt_send = B_TRUE; 26412 max_frag = ire->ire_max_frag; 26413 } else { 26414 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26415 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26416 "flag, attach_if %d\n", attach_if)); 26417 } 26418 } 26419 26420 /* 26421 * In most cases, the emission loop below is entered only once. 26422 * Only in the case where the ire holds the RTF_MULTIRT 26423 * flag, we loop to process all RTF_MULTIRT ires in the 26424 * bucket, and send the packet through all crossed 26425 * RTF_MULTIRT routes. 26426 */ 26427 do { 26428 if (multirt_send) { 26429 /* 26430 * ire1 holds here the next ire to process in the 26431 * bucket. If multirouting is expected, 26432 * any non-RTF_MULTIRT ire that has the 26433 * right destination address is ignored. 26434 */ 26435 ASSERT(irb != NULL); 26436 IRB_REFHOLD(irb); 26437 for (ire1 = ire->ire_next; 26438 ire1 != NULL; 26439 ire1 = ire1->ire_next) { 26440 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26441 continue; 26442 if (ire1->ire_addr != ire->ire_addr) 26443 continue; 26444 if (ire1->ire_marks & 26445 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26446 continue; 26447 /* No loopback here */ 26448 if (ire1->ire_stq == NULL) 26449 continue; 26450 /* 26451 * Ensure we do not exceed the MTU 26452 * of the next route. 26453 */ 26454 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26455 ip_multirt_bad_mtu(ire1, max_frag); 26456 continue; 26457 } 26458 26459 IRE_REFHOLD(ire1); 26460 break; 26461 } 26462 IRB_REFRELE(irb); 26463 if (ire1 != NULL) { 26464 /* 26465 * We are in a multiple send case, need to 26466 * make a copy of the packet. 26467 */ 26468 next_mp = copymsg(ipsec_mp); 26469 if (next_mp == NULL) { 26470 ire_refrele(ire1); 26471 ire1 = NULL; 26472 } 26473 } 26474 } 26475 /* 26476 * Everything is done. Send it out on the wire 26477 * 26478 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26479 * either send it on the wire or, in the case of 26480 * HW acceleration, call ipsec_hw_putnext. 26481 */ 26482 if (ire->ire_nce && 26483 ire->ire_nce->nce_state != ND_REACHABLE) { 26484 DTRACE_PROBE2(ip__wput__ipsec__bail, 26485 (ire_t *), ire, (mblk_t *), ipsec_mp); 26486 /* 26487 * If ire's link-layer is unresolved (this 26488 * would only happen if the incomplete ire 26489 * was added to cachetable via forwarding path) 26490 * don't bother going to ip_xmit_v4. Just drop the 26491 * packet. 26492 * There is a slight risk here, in that, if we 26493 * have the forwarding path create an incomplete 26494 * IRE, then until the IRE is completed, any 26495 * transmitted IPSEC packets will be dropped 26496 * instead of being queued waiting for resolution. 26497 * 26498 * But the likelihood of a forwarding packet and a wput 26499 * packet sending to the same dst at the same time 26500 * and there not yet be an ARP entry for it is small. 26501 * Furthermore, if this actually happens, it might 26502 * be likely that wput would generate multiple 26503 * packets (and forwarding would also have a train 26504 * of packets) for that destination. If this is 26505 * the case, some of them would have been dropped 26506 * anyway, since ARP only queues a few packets while 26507 * waiting for resolution 26508 * 26509 * NOTE: We should really call ip_xmit_v4, 26510 * and let it queue the packet and send the 26511 * ARP query and have ARP come back thus: 26512 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26513 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26514 * hw accel work. But it's too complex to get 26515 * the IPsec hw acceleration approach to fit 26516 * well with ip_xmit_v4 doing ARP without 26517 * doing IPSEC simplification. For now, we just 26518 * poke ip_xmit_v4 to trigger the arp resolve, so 26519 * that we can continue with the send on the next 26520 * attempt. 26521 * 26522 * XXX THis should be revisited, when 26523 * the IPsec/IP interaction is cleaned up 26524 */ 26525 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26526 " - dropping packet\n")); 26527 freemsg(ipsec_mp); 26528 /* 26529 * Call ip_xmit_v4() to trigger ARP query 26530 * in case the nce_state is ND_INITIAL 26531 */ 26532 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26533 goto drop_pkt; 26534 } 26535 26536 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26537 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26538 mblk_t *, ipsec_mp); 26539 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26540 ipst->ips_ipv4firewall_physical_out, 26541 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26542 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26543 if (ipsec_mp == NULL) 26544 goto drop_pkt; 26545 26546 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26547 pktxmit_state = ip_xmit_v4(mp, ire, 26548 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26549 26550 if ((pktxmit_state == SEND_FAILED) || 26551 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26552 26553 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26554 drop_pkt: 26555 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26556 ipIfStatsOutDiscards); 26557 if (ire_need_rele) 26558 ire_refrele(ire); 26559 if (ire1 != NULL) { 26560 ire_refrele(ire1); 26561 freemsg(next_mp); 26562 } 26563 goto done; 26564 } 26565 26566 freeb(ipsec_mp); 26567 if (ire_need_rele) 26568 ire_refrele(ire); 26569 26570 if (ire1 != NULL) { 26571 ire = ire1; 26572 ire_need_rele = B_TRUE; 26573 ASSERT(next_mp); 26574 ipsec_mp = next_mp; 26575 mp = ipsec_mp->b_cont; 26576 ire1 = NULL; 26577 next_mp = NULL; 26578 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26579 } else { 26580 multirt_send = B_FALSE; 26581 } 26582 } while (multirt_send); 26583 done: 26584 if (ill != NULL && ill_need_rele) 26585 ill_refrele(ill); 26586 if (ipif != NULL) 26587 ipif_refrele(ipif); 26588 } 26589 26590 /* 26591 * Get the ill corresponding to the specified ire, and compare its 26592 * capabilities with the protocol and algorithms specified by the 26593 * the SA obtained from ipsec_out. If they match, annotate the 26594 * ipsec_out structure to indicate that the packet needs acceleration. 26595 * 26596 * 26597 * A packet is eligible for outbound hardware acceleration if the 26598 * following conditions are satisfied: 26599 * 26600 * 1. the packet will not be fragmented 26601 * 2. the provider supports the algorithm 26602 * 3. there is no pending control message being exchanged 26603 * 4. snoop is not attached 26604 * 5. the destination address is not a broadcast or multicast address. 26605 * 26606 * Rationale: 26607 * - Hardware drivers do not support fragmentation with 26608 * the current interface. 26609 * - snoop, multicast, and broadcast may result in exposure of 26610 * a cleartext datagram. 26611 * We check all five of these conditions here. 26612 * 26613 * XXX would like to nuke "ire_t *" parameter here; problem is that 26614 * IRE is only way to figure out if a v4 address is a broadcast and 26615 * thus ineligible for acceleration... 26616 */ 26617 static void 26618 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26619 { 26620 ipsec_out_t *io; 26621 mblk_t *data_mp; 26622 uint_t plen, overhead; 26623 ip_stack_t *ipst; 26624 26625 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26626 return; 26627 26628 if (ill == NULL) 26629 return; 26630 ipst = ill->ill_ipst; 26631 /* 26632 * Destination address is a broadcast or multicast. Punt. 26633 */ 26634 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26635 IRE_LOCAL))) 26636 return; 26637 26638 data_mp = ipsec_mp->b_cont; 26639 26640 if (ill->ill_isv6) { 26641 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26642 26643 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26644 return; 26645 26646 plen = ip6h->ip6_plen; 26647 } else { 26648 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26649 26650 if (CLASSD(ipha->ipha_dst)) 26651 return; 26652 26653 plen = ipha->ipha_length; 26654 } 26655 /* 26656 * Is there a pending DLPI control message being exchanged 26657 * between IP/IPsec and the DLS Provider? If there is, it 26658 * could be a SADB update, and the state of the DLS Provider 26659 * SADB might not be in sync with the SADB maintained by 26660 * IPsec. To avoid dropping packets or using the wrong keying 26661 * material, we do not accelerate this packet. 26662 */ 26663 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26664 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26665 "ill_dlpi_pending! don't accelerate packet\n")); 26666 return; 26667 } 26668 26669 /* 26670 * Is the Provider in promiscous mode? If it does, we don't 26671 * accelerate the packet since it will bounce back up to the 26672 * listeners in the clear. 26673 */ 26674 if (ill->ill_promisc_on_phys) { 26675 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26676 "ill in promiscous mode, don't accelerate packet\n")); 26677 return; 26678 } 26679 26680 /* 26681 * Will the packet require fragmentation? 26682 */ 26683 26684 /* 26685 * IPsec ESP note: this is a pessimistic estimate, but the same 26686 * as is used elsewhere. 26687 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26688 * + 2-byte trailer 26689 */ 26690 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26691 IPSEC_BASE_ESP_HDR_SIZE(sa); 26692 26693 if ((plen + overhead) > ill->ill_max_mtu) 26694 return; 26695 26696 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26697 26698 /* 26699 * Can the ill accelerate this IPsec protocol and algorithm 26700 * specified by the SA? 26701 */ 26702 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26703 ill->ill_isv6, sa, ipst->ips_netstack)) { 26704 return; 26705 } 26706 26707 /* 26708 * Tell AH or ESP that the outbound ill is capable of 26709 * accelerating this packet. 26710 */ 26711 io->ipsec_out_is_capab_ill = B_TRUE; 26712 } 26713 26714 /* 26715 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26716 * 26717 * If this function returns B_TRUE, the requested SA's have been filled 26718 * into the ipsec_out_*_sa pointers. 26719 * 26720 * If the function returns B_FALSE, the packet has been "consumed", most 26721 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26722 * 26723 * The SA references created by the protocol-specific "select" 26724 * function will be released when the ipsec_mp is freed, thanks to the 26725 * ipsec_out_free destructor -- see spd.c. 26726 */ 26727 static boolean_t 26728 ipsec_out_select_sa(mblk_t *ipsec_mp) 26729 { 26730 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26731 ipsec_out_t *io; 26732 ipsec_policy_t *pp; 26733 ipsec_action_t *ap; 26734 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26735 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26736 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26737 26738 if (!io->ipsec_out_secure) { 26739 /* 26740 * We came here by mistake. 26741 * Don't bother with ipsec processing 26742 * We should "discourage" this path in the future. 26743 */ 26744 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26745 return (B_FALSE); 26746 } 26747 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26748 ASSERT((io->ipsec_out_policy != NULL) || 26749 (io->ipsec_out_act != NULL)); 26750 26751 ASSERT(io->ipsec_out_failed == B_FALSE); 26752 26753 /* 26754 * IPSEC processing has started. 26755 */ 26756 io->ipsec_out_proc_begin = B_TRUE; 26757 ap = io->ipsec_out_act; 26758 if (ap == NULL) { 26759 pp = io->ipsec_out_policy; 26760 ASSERT(pp != NULL); 26761 ap = pp->ipsp_act; 26762 ASSERT(ap != NULL); 26763 } 26764 26765 /* 26766 * We have an action. now, let's select SA's. 26767 * (In the future, we can cache this in the conn_t..) 26768 */ 26769 if (ap->ipa_want_esp) { 26770 if (io->ipsec_out_esp_sa == NULL) { 26771 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26772 IPPROTO_ESP); 26773 } 26774 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26775 } 26776 26777 if (ap->ipa_want_ah) { 26778 if (io->ipsec_out_ah_sa == NULL) { 26779 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26780 IPPROTO_AH); 26781 } 26782 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26783 /* 26784 * The ESP and AH processing order needs to be preserved 26785 * when both protocols are required (ESP should be applied 26786 * before AH for an outbound packet). Force an ESP ACQUIRE 26787 * when both ESP and AH are required, and an AH ACQUIRE 26788 * is needed. 26789 */ 26790 if (ap->ipa_want_esp && need_ah_acquire) 26791 need_esp_acquire = B_TRUE; 26792 } 26793 26794 /* 26795 * Send an ACQUIRE (extended, regular, or both) if we need one. 26796 * Release SAs that got referenced, but will not be used until we 26797 * acquire _all_ of the SAs we need. 26798 */ 26799 if (need_ah_acquire || need_esp_acquire) { 26800 if (io->ipsec_out_ah_sa != NULL) { 26801 IPSA_REFRELE(io->ipsec_out_ah_sa); 26802 io->ipsec_out_ah_sa = NULL; 26803 } 26804 if (io->ipsec_out_esp_sa != NULL) { 26805 IPSA_REFRELE(io->ipsec_out_esp_sa); 26806 io->ipsec_out_esp_sa = NULL; 26807 } 26808 26809 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26810 return (B_FALSE); 26811 } 26812 26813 return (B_TRUE); 26814 } 26815 26816 /* 26817 * Process an IPSEC_OUT message and see what you can 26818 * do with it. 26819 * IPQoS Notes: 26820 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26821 * IPSec. 26822 * XXX would like to nuke ire_t. 26823 * XXX ill_index better be "real" 26824 */ 26825 void 26826 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26827 { 26828 ipsec_out_t *io; 26829 ipsec_policy_t *pp; 26830 ipsec_action_t *ap; 26831 ipha_t *ipha; 26832 ip6_t *ip6h; 26833 mblk_t *mp; 26834 ill_t *ill; 26835 zoneid_t zoneid; 26836 ipsec_status_t ipsec_rc; 26837 boolean_t ill_need_rele = B_FALSE; 26838 ip_stack_t *ipst; 26839 ipsec_stack_t *ipss; 26840 26841 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26842 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26843 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26844 ipst = io->ipsec_out_ns->netstack_ip; 26845 mp = ipsec_mp->b_cont; 26846 26847 /* 26848 * Initiate IPPF processing. We do it here to account for packets 26849 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26850 * We can check for ipsec_out_proc_begin even for such packets, as 26851 * they will always be false (asserted below). 26852 */ 26853 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26854 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26855 io->ipsec_out_ill_index : ill_index); 26856 if (mp == NULL) { 26857 ip2dbg(("ipsec_out_process: packet dropped "\ 26858 "during IPPF processing\n")); 26859 freeb(ipsec_mp); 26860 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26861 return; 26862 } 26863 } 26864 26865 if (!io->ipsec_out_secure) { 26866 /* 26867 * We came here by mistake. 26868 * Don't bother with ipsec processing 26869 * Should "discourage" this path in the future. 26870 */ 26871 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26872 goto done; 26873 } 26874 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26875 ASSERT((io->ipsec_out_policy != NULL) || 26876 (io->ipsec_out_act != NULL)); 26877 ASSERT(io->ipsec_out_failed == B_FALSE); 26878 26879 ipss = ipst->ips_netstack->netstack_ipsec; 26880 if (!ipsec_loaded(ipss)) { 26881 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26882 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26883 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26884 } else { 26885 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26886 } 26887 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26888 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26889 &ipss->ipsec_dropper); 26890 return; 26891 } 26892 26893 /* 26894 * IPSEC processing has started. 26895 */ 26896 io->ipsec_out_proc_begin = B_TRUE; 26897 ap = io->ipsec_out_act; 26898 if (ap == NULL) { 26899 pp = io->ipsec_out_policy; 26900 ASSERT(pp != NULL); 26901 ap = pp->ipsp_act; 26902 ASSERT(ap != NULL); 26903 } 26904 26905 /* 26906 * Save the outbound ill index. When the packet comes back 26907 * from IPsec, we make sure the ill hasn't changed or disappeared 26908 * before sending it the accelerated packet. 26909 */ 26910 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26911 int ifindex; 26912 ill = ire_to_ill(ire); 26913 ifindex = ill->ill_phyint->phyint_ifindex; 26914 io->ipsec_out_capab_ill_index = ifindex; 26915 } 26916 26917 /* 26918 * The order of processing is first insert a IP header if needed. 26919 * Then insert the ESP header and then the AH header. 26920 */ 26921 if ((io->ipsec_out_se_done == B_FALSE) && 26922 (ap->ipa_want_se)) { 26923 /* 26924 * First get the outer IP header before sending 26925 * it to ESP. 26926 */ 26927 ipha_t *oipha, *iipha; 26928 mblk_t *outer_mp, *inner_mp; 26929 26930 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26931 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26932 "ipsec_out_process: " 26933 "Self-Encapsulation failed: Out of memory\n"); 26934 freemsg(ipsec_mp); 26935 if (ill != NULL) { 26936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26937 } else { 26938 BUMP_MIB(&ipst->ips_ip_mib, 26939 ipIfStatsOutDiscards); 26940 } 26941 return; 26942 } 26943 inner_mp = ipsec_mp->b_cont; 26944 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26945 oipha = (ipha_t *)outer_mp->b_rptr; 26946 iipha = (ipha_t *)inner_mp->b_rptr; 26947 *oipha = *iipha; 26948 outer_mp->b_wptr += sizeof (ipha_t); 26949 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26950 sizeof (ipha_t)); 26951 oipha->ipha_protocol = IPPROTO_ENCAP; 26952 oipha->ipha_version_and_hdr_length = 26953 IP_SIMPLE_HDR_VERSION; 26954 oipha->ipha_hdr_checksum = 0; 26955 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26956 outer_mp->b_cont = inner_mp; 26957 ipsec_mp->b_cont = outer_mp; 26958 26959 io->ipsec_out_se_done = B_TRUE; 26960 io->ipsec_out_tunnel = B_TRUE; 26961 } 26962 26963 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26964 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26965 !ipsec_out_select_sa(ipsec_mp)) 26966 return; 26967 26968 /* 26969 * By now, we know what SA's to use. Toss over to ESP & AH 26970 * to do the heavy lifting. 26971 */ 26972 zoneid = io->ipsec_out_zoneid; 26973 ASSERT(zoneid != ALL_ZONES); 26974 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26975 ASSERT(io->ipsec_out_esp_sa != NULL); 26976 io->ipsec_out_esp_done = B_TRUE; 26977 /* 26978 * Note that since hw accel can only apply one transform, 26979 * not two, we skip hw accel for ESP if we also have AH 26980 * This is an design limitation of the interface 26981 * which should be revisited. 26982 */ 26983 ASSERT(ire != NULL); 26984 if (io->ipsec_out_ah_sa == NULL) { 26985 ill = (ill_t *)ire->ire_stq->q_ptr; 26986 ipsec_out_is_accelerated(ipsec_mp, 26987 io->ipsec_out_esp_sa, ill, ire); 26988 } 26989 26990 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26991 switch (ipsec_rc) { 26992 case IPSEC_STATUS_SUCCESS: 26993 break; 26994 case IPSEC_STATUS_FAILED: 26995 if (ill != NULL) { 26996 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26997 } else { 26998 BUMP_MIB(&ipst->ips_ip_mib, 26999 ipIfStatsOutDiscards); 27000 } 27001 /* FALLTHRU */ 27002 case IPSEC_STATUS_PENDING: 27003 return; 27004 } 27005 } 27006 27007 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27008 ASSERT(io->ipsec_out_ah_sa != NULL); 27009 io->ipsec_out_ah_done = B_TRUE; 27010 if (ire == NULL) { 27011 int idx = io->ipsec_out_capab_ill_index; 27012 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27013 NULL, NULL, NULL, NULL, ipst); 27014 ill_need_rele = B_TRUE; 27015 } else { 27016 ill = (ill_t *)ire->ire_stq->q_ptr; 27017 } 27018 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27019 ire); 27020 27021 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27022 switch (ipsec_rc) { 27023 case IPSEC_STATUS_SUCCESS: 27024 break; 27025 case IPSEC_STATUS_FAILED: 27026 if (ill != NULL) { 27027 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27028 } else { 27029 BUMP_MIB(&ipst->ips_ip_mib, 27030 ipIfStatsOutDiscards); 27031 } 27032 /* FALLTHRU */ 27033 case IPSEC_STATUS_PENDING: 27034 if (ill != NULL && ill_need_rele) 27035 ill_refrele(ill); 27036 return; 27037 } 27038 } 27039 /* 27040 * We are done with IPSEC processing. Send it over 27041 * the wire. 27042 */ 27043 done: 27044 mp = ipsec_mp->b_cont; 27045 ipha = (ipha_t *)mp->b_rptr; 27046 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27047 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27048 } else { 27049 ip6h = (ip6_t *)ipha; 27050 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27051 } 27052 if (ill != NULL && ill_need_rele) 27053 ill_refrele(ill); 27054 } 27055 27056 /* ARGSUSED */ 27057 void 27058 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27059 { 27060 opt_restart_t *or; 27061 int err; 27062 conn_t *connp; 27063 27064 ASSERT(CONN_Q(q)); 27065 connp = Q_TO_CONN(q); 27066 27067 ASSERT(first_mp->b_datap->db_type == M_CTL); 27068 or = (opt_restart_t *)first_mp->b_rptr; 27069 /* 27070 * We don't need to pass any credentials here since this is just 27071 * a restart. The credentials are passed in when svr4_optcom_req 27072 * is called the first time (from ip_wput_nondata). 27073 */ 27074 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27075 err = svr4_optcom_req(q, first_mp, NULL, 27076 &ip_opt_obj); 27077 } else { 27078 ASSERT(or->or_type == T_OPTMGMT_REQ); 27079 err = tpi_optcom_req(q, first_mp, NULL, 27080 &ip_opt_obj); 27081 } 27082 if (err != EINPROGRESS) { 27083 /* operation is done */ 27084 CONN_OPER_PENDING_DONE(connp); 27085 } 27086 } 27087 27088 /* 27089 * ioctls that go through a down/up sequence may need to wait for the down 27090 * to complete. This involves waiting for the ire and ipif refcnts to go down 27091 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27092 */ 27093 /* ARGSUSED */ 27094 void 27095 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27096 { 27097 struct iocblk *iocp; 27098 mblk_t *mp1; 27099 ip_ioctl_cmd_t *ipip; 27100 int err; 27101 sin_t *sin; 27102 struct lifreq *lifr; 27103 struct ifreq *ifr; 27104 27105 iocp = (struct iocblk *)mp->b_rptr; 27106 ASSERT(ipsq != NULL); 27107 /* Existence of mp1 verified in ip_wput_nondata */ 27108 mp1 = mp->b_cont->b_cont; 27109 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27110 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27111 /* 27112 * Special case where ipsq_current_ipif is not set: 27113 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27114 * ill could also have become part of a ipmp group in the 27115 * process, we are here as were not able to complete the 27116 * operation in ipif_set_values because we could not become 27117 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27118 * will not be set so we need to set it. 27119 */ 27120 ill_t *ill = q->q_ptr; 27121 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27122 } 27123 ASSERT(ipsq->ipsq_current_ipif != NULL); 27124 27125 if (ipip->ipi_cmd_type == IF_CMD) { 27126 /* This a old style SIOC[GS]IF* command */ 27127 ifr = (struct ifreq *)mp1->b_rptr; 27128 sin = (sin_t *)&ifr->ifr_addr; 27129 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27130 /* This a new style SIOC[GS]LIF* command */ 27131 lifr = (struct lifreq *)mp1->b_rptr; 27132 sin = (sin_t *)&lifr->lifr_addr; 27133 } else { 27134 sin = NULL; 27135 } 27136 27137 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27138 ipip, mp1->b_rptr); 27139 27140 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27141 } 27142 27143 /* 27144 * ioctl processing 27145 * 27146 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 27147 * the ioctl command in the ioctl tables and determines the copyin data size 27148 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 27149 * size. 27150 * 27151 * ioctl processing then continues when the M_IOCDATA makes its way down. 27152 * Now the ioctl is looked up again in the ioctl table, and its properties are 27153 * extracted. The associated 'conn' is then refheld till the end of the ioctl 27154 * and the general ioctl processing function ip_process_ioctl is called. 27155 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27156 * so goes thru the serialization primitive ipsq_try_enter. Then the 27157 * appropriate function to handle the ioctl is called based on the entry in 27158 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27159 * which also refreleases the 'conn' that was refheld at the start of the 27160 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27161 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 27162 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 27163 * 27164 * Many exclusive ioctls go thru an internal down up sequence as part of 27165 * the operation. For example an attempt to change the IP address of an 27166 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27167 * does all the cleanup such as deleting all ires that use this address. 27168 * Then we need to wait till all references to the interface go away. 27169 */ 27170 void 27171 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27172 { 27173 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27174 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 27175 cmd_info_t ci; 27176 int err; 27177 boolean_t entered_ipsq = B_FALSE; 27178 27179 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27180 27181 if (ipip == NULL) 27182 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27183 27184 /* 27185 * SIOCLIFADDIF needs to go thru a special path since the 27186 * ill may not exist yet. This happens in the case of lo0 27187 * which is created using this ioctl. 27188 */ 27189 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27190 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27191 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27192 return; 27193 } 27194 27195 ci.ci_ipif = NULL; 27196 switch (ipip->ipi_cmd_type) { 27197 case IF_CMD: 27198 case LIF_CMD: 27199 /* 27200 * ioctls that pass in a [l]ifreq appear here. 27201 * ip_extract_lifreq_cmn returns a refheld ipif in 27202 * ci.ci_ipif 27203 */ 27204 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 27205 ipip->ipi_flags, &ci, ip_process_ioctl); 27206 if (err != 0) { 27207 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27208 return; 27209 } 27210 ASSERT(ci.ci_ipif != NULL); 27211 break; 27212 27213 case TUN_CMD: 27214 /* 27215 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 27216 * a refheld ipif in ci.ci_ipif 27217 */ 27218 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 27219 if (err != 0) { 27220 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27221 return; 27222 } 27223 ASSERT(ci.ci_ipif != NULL); 27224 break; 27225 27226 case MISC_CMD: 27227 /* 27228 * ioctls that neither pass in [l]ifreq or iftun_req come here 27229 * For eg. SIOCGLIFCONF will appear here. 27230 */ 27231 switch (ipip->ipi_cmd) { 27232 case IF_UNITSEL: 27233 /* ioctl comes down the ill */ 27234 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27235 ipif_refhold(ci.ci_ipif); 27236 break; 27237 case SIOCGMSFILTER: 27238 case SIOCSMSFILTER: 27239 case SIOCGIPMSFILTER: 27240 case SIOCSIPMSFILTER: 27241 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 27242 ip_process_ioctl); 27243 if (err != 0) { 27244 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 27245 NULL); 27246 } 27247 break; 27248 } 27249 err = 0; 27250 ci.ci_sin = NULL; 27251 ci.ci_sin6 = NULL; 27252 ci.ci_lifr = NULL; 27253 break; 27254 } 27255 27256 /* 27257 * If ipsq is non-null, we are already being called exclusively 27258 */ 27259 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27260 if (!(ipip->ipi_flags & IPI_WR)) { 27261 /* 27262 * A return value of EINPROGRESS means the ioctl is 27263 * either queued and waiting for some reason or has 27264 * already completed. 27265 */ 27266 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27267 ci.ci_lifr); 27268 if (ci.ci_ipif != NULL) 27269 ipif_refrele(ci.ci_ipif); 27270 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27271 return; 27272 } 27273 27274 ASSERT(ci.ci_ipif != NULL); 27275 27276 if (ipsq == NULL) { 27277 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27278 ip_process_ioctl, NEW_OP, B_TRUE); 27279 entered_ipsq = B_TRUE; 27280 } 27281 /* 27282 * Release the ipif so that ipif_down and friends that wait for 27283 * references to go away are not misled about the current ipif_refcnt 27284 * values. We are writer so we can access the ipif even after releasing 27285 * the ipif. 27286 */ 27287 ipif_refrele(ci.ci_ipif); 27288 if (ipsq == NULL) 27289 return; 27290 27291 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27292 27293 /* 27294 * For most set ioctls that come here, this serves as a single point 27295 * where we set the IPIF_CHANGING flag. This ensures that there won't 27296 * be any new references to the ipif. This helps functions that go 27297 * through this path and end up trying to wait for the refcnts 27298 * associated with the ipif to go down to zero. Some exceptions are 27299 * Failover, Failback, and Groupname commands that operate on more than 27300 * just the ci.ci_ipif. These commands internally determine the 27301 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27302 * flags on that set. Another exception is the Removeif command that 27303 * sets the IPIF_CONDEMNED flag internally after identifying the right 27304 * ipif to operate on. 27305 */ 27306 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27307 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27308 ipip->ipi_cmd != SIOCLIFFAILOVER && 27309 ipip->ipi_cmd != SIOCLIFFAILBACK && 27310 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27311 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27312 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27313 27314 /* 27315 * A return value of EINPROGRESS means the ioctl is 27316 * either queued and waiting for some reason or has 27317 * already completed. 27318 */ 27319 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27320 27321 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27322 27323 if (entered_ipsq) 27324 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27325 } 27326 27327 /* 27328 * Complete the ioctl. Typically ioctls use the mi package and need to 27329 * do mi_copyout/mi_copy_done. 27330 */ 27331 void 27332 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27333 { 27334 conn_t *connp = NULL; 27335 27336 if (err == EINPROGRESS) 27337 return; 27338 27339 if (CONN_Q(q)) { 27340 connp = Q_TO_CONN(q); 27341 ASSERT(connp->conn_ref >= 2); 27342 } 27343 27344 switch (mode) { 27345 case COPYOUT: 27346 if (err == 0) 27347 mi_copyout(q, mp); 27348 else 27349 mi_copy_done(q, mp, err); 27350 break; 27351 27352 case NO_COPYOUT: 27353 mi_copy_done(q, mp, err); 27354 break; 27355 27356 default: 27357 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27358 break; 27359 } 27360 27361 /* 27362 * The refhold placed at the start of the ioctl is released here. 27363 */ 27364 if (connp != NULL) 27365 CONN_OPER_PENDING_DONE(connp); 27366 27367 if (ipsq != NULL) 27368 ipsq_current_finish(ipsq); 27369 } 27370 27371 /* 27372 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27373 */ 27374 /* ARGSUSED */ 27375 void 27376 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27377 { 27378 conn_t *connp = arg; 27379 tcp_t *tcp; 27380 27381 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27382 tcp = connp->conn_tcp; 27383 27384 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27385 freemsg(mp); 27386 else 27387 tcp_rput_other(tcp, mp); 27388 CONN_OPER_PENDING_DONE(connp); 27389 } 27390 27391 /* Called from ip_wput for all non data messages */ 27392 /* ARGSUSED */ 27393 void 27394 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27395 { 27396 mblk_t *mp1; 27397 ire_t *ire, *fake_ire; 27398 ill_t *ill; 27399 struct iocblk *iocp; 27400 ip_ioctl_cmd_t *ipip; 27401 cred_t *cr; 27402 conn_t *connp; 27403 int cmd, err; 27404 nce_t *nce; 27405 ipif_t *ipif; 27406 ip_stack_t *ipst; 27407 char *proto_str; 27408 27409 if (CONN_Q(q)) { 27410 connp = Q_TO_CONN(q); 27411 ipst = connp->conn_netstack->netstack_ip; 27412 } else { 27413 connp = NULL; 27414 ipst = ILLQ_TO_IPST(q); 27415 } 27416 27417 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27418 27419 /* Check if it is a queue to /dev/sctp. */ 27420 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27421 connp->conn_rq == NULL) { 27422 sctp_wput(q, mp); 27423 return; 27424 } 27425 27426 switch (DB_TYPE(mp)) { 27427 case M_IOCTL: 27428 /* 27429 * IOCTL processing begins in ip_sioctl_copyin_setup which 27430 * will arrange to copy in associated control structures. 27431 */ 27432 ip_sioctl_copyin_setup(q, mp); 27433 return; 27434 case M_IOCDATA: 27435 /* 27436 * Ensure that this is associated with one of our trans- 27437 * parent ioctls. If it's not ours, discard it if we're 27438 * running as a driver, or pass it on if we're a module. 27439 */ 27440 iocp = (struct iocblk *)mp->b_rptr; 27441 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27442 if (ipip == NULL) { 27443 if (q->q_next == NULL) { 27444 goto nak; 27445 } else { 27446 putnext(q, mp); 27447 } 27448 return; 27449 } else if ((q->q_next != NULL) && 27450 !(ipip->ipi_flags & IPI_MODOK)) { 27451 /* 27452 * the ioctl is one we recognise, but is not 27453 * consumed by IP as a module, pass M_IOCDATA 27454 * for processing downstream, but only for 27455 * common Streams ioctls. 27456 */ 27457 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27458 putnext(q, mp); 27459 return; 27460 } else { 27461 goto nak; 27462 } 27463 } 27464 27465 /* IOCTL continuation following copyin or copyout. */ 27466 if (mi_copy_state(q, mp, NULL) == -1) { 27467 /* 27468 * The copy operation failed. mi_copy_state already 27469 * cleaned up, so we're out of here. 27470 */ 27471 return; 27472 } 27473 /* 27474 * If we just completed a copy in, we become writer and 27475 * continue processing in ip_sioctl_copyin_done. If it 27476 * was a copy out, we call mi_copyout again. If there is 27477 * nothing more to copy out, it will complete the IOCTL. 27478 */ 27479 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27480 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27481 mi_copy_done(q, mp, EPROTO); 27482 return; 27483 } 27484 /* 27485 * Check for cases that need more copying. A return 27486 * value of 0 means a second copyin has been started, 27487 * so we return; a return value of 1 means no more 27488 * copying is needed, so we continue. 27489 */ 27490 cmd = iocp->ioc_cmd; 27491 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27492 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27493 MI_COPY_COUNT(mp) == 1) { 27494 if (ip_copyin_msfilter(q, mp) == 0) 27495 return; 27496 } 27497 /* 27498 * Refhold the conn, till the ioctl completes. This is 27499 * needed in case the ioctl ends up in the pending mp 27500 * list. Every mp in the ill_pending_mp list and 27501 * the ipsq_pending_mp must have a refhold on the conn 27502 * to resume processing. The refhold is released when 27503 * the ioctl completes. (normally or abnormally) 27504 * In all cases ip_ioctl_finish is called to finish 27505 * the ioctl. 27506 */ 27507 if (connp != NULL) { 27508 /* This is not a reentry */ 27509 ASSERT(ipsq == NULL); 27510 CONN_INC_REF(connp); 27511 } else { 27512 if (!(ipip->ipi_flags & IPI_MODOK)) { 27513 mi_copy_done(q, mp, EINVAL); 27514 return; 27515 } 27516 } 27517 27518 ip_process_ioctl(ipsq, q, mp, ipip); 27519 27520 } else { 27521 mi_copyout(q, mp); 27522 } 27523 return; 27524 nak: 27525 iocp->ioc_error = EINVAL; 27526 mp->b_datap->db_type = M_IOCNAK; 27527 iocp->ioc_count = 0; 27528 qreply(q, mp); 27529 return; 27530 27531 case M_IOCNAK: 27532 /* 27533 * The only way we could get here is if a resolver didn't like 27534 * an IOCTL we sent it. This shouldn't happen. 27535 */ 27536 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27537 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27538 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27539 freemsg(mp); 27540 return; 27541 case M_IOCACK: 27542 /* /dev/ip shouldn't see this */ 27543 if (CONN_Q(q)) 27544 goto nak; 27545 27546 /* Finish socket ioctls passed through to ARP. */ 27547 ip_sioctl_iocack(q, mp); 27548 return; 27549 case M_FLUSH: 27550 if (*mp->b_rptr & FLUSHW) 27551 flushq(q, FLUSHALL); 27552 if (q->q_next) { 27553 putnext(q, mp); 27554 return; 27555 } 27556 if (*mp->b_rptr & FLUSHR) { 27557 *mp->b_rptr &= ~FLUSHW; 27558 qreply(q, mp); 27559 return; 27560 } 27561 freemsg(mp); 27562 return; 27563 case IRE_DB_REQ_TYPE: 27564 if (connp == NULL) { 27565 proto_str = "IRE_DB_REQ_TYPE"; 27566 goto protonak; 27567 } 27568 /* An Upper Level Protocol wants a copy of an IRE. */ 27569 ip_ire_req(q, mp); 27570 return; 27571 case M_CTL: 27572 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27573 break; 27574 27575 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27576 TUN_HELLO) { 27577 ASSERT(connp != NULL); 27578 connp->conn_flags |= IPCL_IPTUN; 27579 freeb(mp); 27580 return; 27581 } 27582 27583 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27584 IP_ULP_OUT_LABELED) { 27585 out_labeled_t *olp; 27586 27587 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27588 break; 27589 olp = (out_labeled_t *)mp->b_rptr; 27590 connp->conn_ulp_labeled = olp->out_qnext == q; 27591 freemsg(mp); 27592 return; 27593 } 27594 27595 /* M_CTL messages are used by ARP to tell us things. */ 27596 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27597 break; 27598 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27599 case AR_ENTRY_SQUERY: 27600 ip_wput_ctl(q, mp); 27601 return; 27602 case AR_CLIENT_NOTIFY: 27603 ip_arp_news(q, mp); 27604 return; 27605 case AR_DLPIOP_DONE: 27606 ASSERT(q->q_next != NULL); 27607 ill = (ill_t *)q->q_ptr; 27608 /* qwriter_ip releases the refhold */ 27609 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27610 ill_refhold(ill); 27611 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27612 return; 27613 case AR_ARP_CLOSING: 27614 /* 27615 * ARP (above us) is closing. If no ARP bringup is 27616 * currently pending, ack the message so that ARP 27617 * can complete its close. Also mark ill_arp_closing 27618 * so that new ARP bringups will fail. If any 27619 * ARP bringup is currently in progress, we will 27620 * ack this when the current ARP bringup completes. 27621 */ 27622 ASSERT(q->q_next != NULL); 27623 ill = (ill_t *)q->q_ptr; 27624 mutex_enter(&ill->ill_lock); 27625 ill->ill_arp_closing = 1; 27626 if (!ill->ill_arp_bringup_pending) { 27627 mutex_exit(&ill->ill_lock); 27628 qreply(q, mp); 27629 } else { 27630 mutex_exit(&ill->ill_lock); 27631 freemsg(mp); 27632 } 27633 return; 27634 case AR_ARP_EXTEND: 27635 /* 27636 * The ARP module above us is capable of duplicate 27637 * address detection. Old ATM drivers will not send 27638 * this message. 27639 */ 27640 ASSERT(q->q_next != NULL); 27641 ill = (ill_t *)q->q_ptr; 27642 ill->ill_arp_extend = B_TRUE; 27643 freemsg(mp); 27644 return; 27645 default: 27646 break; 27647 } 27648 break; 27649 case M_PROTO: 27650 case M_PCPROTO: 27651 /* 27652 * The only PROTO messages we expect are ULP binds and 27653 * copies of option negotiation acknowledgements. 27654 */ 27655 switch (((union T_primitives *)mp->b_rptr)->type) { 27656 case O_T_BIND_REQ: 27657 case T_BIND_REQ: { 27658 /* Request can get queued in bind */ 27659 if (connp == NULL) { 27660 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27661 goto protonak; 27662 } 27663 /* 27664 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27665 * instead of going through this path. We only get 27666 * here in the following cases: 27667 * 27668 * a. Bind retries, where ipsq is non-NULL. 27669 * b. T_BIND_REQ is issued from non TCP/UDP 27670 * transport, e.g. icmp for raw socket, 27671 * in which case ipsq will be NULL. 27672 */ 27673 ASSERT(ipsq != NULL || 27674 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27675 27676 /* Don't increment refcnt if this is a re-entry */ 27677 if (ipsq == NULL) 27678 CONN_INC_REF(connp); 27679 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27680 connp, NULL) : ip_bind_v4(q, mp, connp); 27681 if (mp == NULL) 27682 return; 27683 if (IPCL_IS_TCP(connp)) { 27684 /* 27685 * In the case of TCP endpoint we 27686 * come here only for bind retries 27687 */ 27688 ASSERT(ipsq != NULL); 27689 CONN_INC_REF(connp); 27690 squeue_fill(connp->conn_sqp, mp, 27691 ip_resume_tcp_bind, connp, 27692 SQTAG_BIND_RETRY); 27693 return; 27694 } else if (IPCL_IS_UDP(connp)) { 27695 /* 27696 * In the case of UDP endpoint we 27697 * come here only for bind retries 27698 */ 27699 ASSERT(ipsq != NULL); 27700 udp_resume_bind(connp, mp); 27701 return; 27702 } 27703 qreply(q, mp); 27704 CONN_OPER_PENDING_DONE(connp); 27705 return; 27706 } 27707 case T_SVR4_OPTMGMT_REQ: 27708 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27709 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27710 27711 if (connp == NULL) { 27712 proto_str = "T_SVR4_OPTMGMT_REQ"; 27713 goto protonak; 27714 } 27715 27716 if (!snmpcom_req(q, mp, ip_snmp_set, 27717 ip_snmp_get, cr)) { 27718 /* 27719 * Call svr4_optcom_req so that it can 27720 * generate the ack. We don't come here 27721 * if this operation is being restarted. 27722 * ip_restart_optmgmt will drop the conn ref. 27723 * In the case of ipsec option after the ipsec 27724 * load is complete conn_restart_ipsec_waiter 27725 * drops the conn ref. 27726 */ 27727 ASSERT(ipsq == NULL); 27728 CONN_INC_REF(connp); 27729 if (ip_check_for_ipsec_opt(q, mp)) 27730 return; 27731 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27732 if (err != EINPROGRESS) { 27733 /* Operation is done */ 27734 CONN_OPER_PENDING_DONE(connp); 27735 } 27736 } 27737 return; 27738 case T_OPTMGMT_REQ: 27739 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27740 /* 27741 * Note: No snmpcom_req support through new 27742 * T_OPTMGMT_REQ. 27743 * Call tpi_optcom_req so that it can 27744 * generate the ack. 27745 */ 27746 if (connp == NULL) { 27747 proto_str = "T_OPTMGMT_REQ"; 27748 goto protonak; 27749 } 27750 27751 ASSERT(ipsq == NULL); 27752 /* 27753 * We don't come here for restart. ip_restart_optmgmt 27754 * will drop the conn ref. In the case of ipsec option 27755 * after the ipsec load is complete 27756 * conn_restart_ipsec_waiter drops the conn ref. 27757 */ 27758 CONN_INC_REF(connp); 27759 if (ip_check_for_ipsec_opt(q, mp)) 27760 return; 27761 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27762 if (err != EINPROGRESS) { 27763 /* Operation is done */ 27764 CONN_OPER_PENDING_DONE(connp); 27765 } 27766 return; 27767 case T_UNBIND_REQ: 27768 if (connp == NULL) { 27769 proto_str = "T_UNBIND_REQ"; 27770 goto protonak; 27771 } 27772 mp = ip_unbind(q, mp); 27773 qreply(q, mp); 27774 return; 27775 default: 27776 /* 27777 * Have to drop any DLPI messages coming down from 27778 * arp (such as an info_req which would cause ip 27779 * to receive an extra info_ack if it was passed 27780 * through. 27781 */ 27782 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27783 (int)*(uint_t *)mp->b_rptr)); 27784 freemsg(mp); 27785 return; 27786 } 27787 /* NOTREACHED */ 27788 case IRE_DB_TYPE: { 27789 nce_t *nce; 27790 ill_t *ill; 27791 in6_addr_t gw_addr_v6; 27792 27793 27794 /* 27795 * This is a response back from a resolver. It 27796 * consists of a message chain containing: 27797 * IRE_MBLK-->LL_HDR_MBLK->pkt 27798 * The IRE_MBLK is the one we allocated in ip_newroute. 27799 * The LL_HDR_MBLK is the DLPI header to use to get 27800 * the attached packet, and subsequent ones for the 27801 * same destination, transmitted. 27802 */ 27803 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27804 break; 27805 /* 27806 * First, check to make sure the resolution succeeded. 27807 * If it failed, the second mblk will be empty. 27808 * If it is, free the chain, dropping the packet. 27809 * (We must ire_delete the ire; that frees the ire mblk) 27810 * We're doing this now to support PVCs for ATM; it's 27811 * a partial xresolv implementation. When we fully implement 27812 * xresolv interfaces, instead of freeing everything here 27813 * we'll initiate neighbor discovery. 27814 * 27815 * For v4 (ARP and other external resolvers) the resolver 27816 * frees the message, so no check is needed. This check 27817 * is required, though, for a full xresolve implementation. 27818 * Including this code here now both shows how external 27819 * resolvers can NACK a resolution request using an 27820 * existing design that has no specific provisions for NACKs, 27821 * and also takes into account that the current non-ARP 27822 * external resolver has been coded to use this method of 27823 * NACKing for all IPv6 (xresolv) cases, 27824 * whether our xresolv implementation is complete or not. 27825 * 27826 */ 27827 ire = (ire_t *)mp->b_rptr; 27828 ill = ire_to_ill(ire); 27829 mp1 = mp->b_cont; /* dl_unitdata_req */ 27830 if (mp1->b_rptr == mp1->b_wptr) { 27831 if (ire->ire_ipversion == IPV6_VERSION) { 27832 /* 27833 * XRESOLV interface. 27834 */ 27835 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27836 mutex_enter(&ire->ire_lock); 27837 gw_addr_v6 = ire->ire_gateway_addr_v6; 27838 mutex_exit(&ire->ire_lock); 27839 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27840 nce = ndp_lookup_v6(ill, 27841 &ire->ire_addr_v6, B_FALSE); 27842 } else { 27843 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27844 B_FALSE); 27845 } 27846 if (nce != NULL) { 27847 nce_resolv_failed(nce); 27848 ndp_delete(nce); 27849 NCE_REFRELE(nce); 27850 } 27851 } 27852 mp->b_cont = NULL; 27853 freemsg(mp1); /* frees the pkt as well */ 27854 ASSERT(ire->ire_nce == NULL); 27855 ire_delete((ire_t *)mp->b_rptr); 27856 return; 27857 } 27858 27859 /* 27860 * Split them into IRE_MBLK and pkt and feed it into 27861 * ire_add_then_send. Then in ire_add_then_send 27862 * the IRE will be added, and then the packet will be 27863 * run back through ip_wput. This time it will make 27864 * it to the wire. 27865 */ 27866 mp->b_cont = NULL; 27867 mp = mp1->b_cont; /* now, mp points to pkt */ 27868 mp1->b_cont = NULL; 27869 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27870 if (ire->ire_ipversion == IPV6_VERSION) { 27871 /* 27872 * XRESOLV interface. Find the nce and put a copy 27873 * of the dl_unitdata_req in nce_res_mp 27874 */ 27875 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27876 mutex_enter(&ire->ire_lock); 27877 gw_addr_v6 = ire->ire_gateway_addr_v6; 27878 mutex_exit(&ire->ire_lock); 27879 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27880 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27881 B_FALSE); 27882 } else { 27883 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27884 } 27885 if (nce != NULL) { 27886 /* 27887 * We have to protect nce_res_mp here 27888 * from being accessed by other threads 27889 * while we change the mblk pointer. 27890 * Other functions will also lock the nce when 27891 * accessing nce_res_mp. 27892 * 27893 * The reason we change the mblk pointer 27894 * here rather than copying the resolved address 27895 * into the template is that, unlike with 27896 * ethernet, we have no guarantee that the 27897 * resolved address length will be 27898 * smaller than or equal to the lla length 27899 * with which the template was allocated, 27900 * (for ethernet, they're equal) 27901 * so we have to use the actual resolved 27902 * address mblk - which holds the real 27903 * dl_unitdata_req with the resolved address. 27904 * 27905 * Doing this is the same behavior as was 27906 * previously used in the v4 ARP case. 27907 */ 27908 mutex_enter(&nce->nce_lock); 27909 if (nce->nce_res_mp != NULL) 27910 freemsg(nce->nce_res_mp); 27911 nce->nce_res_mp = mp1; 27912 mutex_exit(&nce->nce_lock); 27913 /* 27914 * We do a fastpath probe here because 27915 * we have resolved the address without 27916 * using Neighbor Discovery. 27917 * In the non-XRESOLV v6 case, the fastpath 27918 * probe is done right after neighbor 27919 * discovery completes. 27920 */ 27921 if (nce->nce_res_mp != NULL) { 27922 int res; 27923 nce_fastpath_list_add(nce); 27924 res = ill_fastpath_probe(ill, 27925 nce->nce_res_mp); 27926 if (res != 0 && res != EAGAIN) 27927 nce_fastpath_list_delete(nce); 27928 } 27929 27930 ire_add_then_send(q, ire, mp); 27931 /* 27932 * Now we have to clean out any packets 27933 * that may have been queued on the nce 27934 * while it was waiting for address resolution 27935 * to complete. 27936 */ 27937 mutex_enter(&nce->nce_lock); 27938 mp1 = nce->nce_qd_mp; 27939 nce->nce_qd_mp = NULL; 27940 mutex_exit(&nce->nce_lock); 27941 while (mp1 != NULL) { 27942 mblk_t *nxt_mp; 27943 queue_t *fwdq = NULL; 27944 ill_t *inbound_ill; 27945 uint_t ifindex; 27946 27947 nxt_mp = mp1->b_next; 27948 mp1->b_next = NULL; 27949 /* 27950 * Retrieve ifindex stored in 27951 * ip_rput_data_v6() 27952 */ 27953 ifindex = 27954 (uint_t)(uintptr_t)mp1->b_prev; 27955 inbound_ill = 27956 ill_lookup_on_ifindex(ifindex, 27957 B_TRUE, NULL, NULL, NULL, 27958 NULL, ipst); 27959 mp1->b_prev = NULL; 27960 if (inbound_ill != NULL) 27961 fwdq = inbound_ill->ill_rq; 27962 27963 if (fwdq != NULL) { 27964 put(fwdq, mp1); 27965 ill_refrele(inbound_ill); 27966 } else 27967 put(WR(ill->ill_rq), mp1); 27968 mp1 = nxt_mp; 27969 } 27970 NCE_REFRELE(nce); 27971 } else { /* nce is NULL; clean up */ 27972 ire_delete(ire); 27973 freemsg(mp); 27974 freemsg(mp1); 27975 return; 27976 } 27977 } else { 27978 nce_t *arpce; 27979 /* 27980 * Link layer resolution succeeded. Recompute the 27981 * ire_nce. 27982 */ 27983 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27984 if ((arpce = ndp_lookup_v4(ill, 27985 (ire->ire_gateway_addr != INADDR_ANY ? 27986 &ire->ire_gateway_addr : &ire->ire_addr), 27987 B_FALSE)) == NULL) { 27988 freeb(ire->ire_mp); 27989 freeb(mp1); 27990 freemsg(mp); 27991 return; 27992 } 27993 mutex_enter(&arpce->nce_lock); 27994 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27995 if (arpce->nce_state == ND_REACHABLE) { 27996 /* 27997 * Someone resolved this before us; 27998 * cleanup the res_mp. Since ire has 27999 * not been added yet, the call to ire_add_v4 28000 * from ire_add_then_send (when a dup is 28001 * detected) will clean up the ire. 28002 */ 28003 freeb(mp1); 28004 } else { 28005 if (arpce->nce_res_mp != NULL) 28006 freemsg(arpce->nce_res_mp); 28007 arpce->nce_res_mp = mp1; 28008 arpce->nce_state = ND_REACHABLE; 28009 } 28010 mutex_exit(&arpce->nce_lock); 28011 if (ire->ire_marks & IRE_MARK_NOADD) { 28012 /* 28013 * this ire will not be added to the ire 28014 * cache table, so we can set the ire_nce 28015 * here, as there are no atomicity constraints. 28016 */ 28017 ire->ire_nce = arpce; 28018 /* 28019 * We are associating this nce with the ire 28020 * so change the nce ref taken in 28021 * ndp_lookup_v4() from 28022 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28023 */ 28024 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28025 } else { 28026 NCE_REFRELE(arpce); 28027 } 28028 ire_add_then_send(q, ire, mp); 28029 } 28030 return; /* All is well, the packet has been sent. */ 28031 } 28032 case IRE_ARPRESOLVE_TYPE: { 28033 28034 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28035 break; 28036 mp1 = mp->b_cont; /* dl_unitdata_req */ 28037 mp->b_cont = NULL; 28038 /* 28039 * First, check to make sure the resolution succeeded. 28040 * If it failed, the second mblk will be empty. 28041 */ 28042 if (mp1->b_rptr == mp1->b_wptr) { 28043 /* cleanup the incomplete ire, free queued packets */ 28044 freemsg(mp); /* fake ire */ 28045 freeb(mp1); /* dl_unitdata response */ 28046 return; 28047 } 28048 28049 /* 28050 * update any incomplete nce_t found. we lookup the ctable 28051 * and find the nce from the ire->ire_nce because we need 28052 * to pass the ire to ip_xmit_v4 later, and can find both 28053 * ire and nce in one lookup from the ctable. 28054 */ 28055 fake_ire = (ire_t *)mp->b_rptr; 28056 /* 28057 * By the time we come back here from ARP 28058 * the logical outgoing interface of the incomplete ire 28059 * we added in ire_forward could have disappeared, 28060 * causing the incomplete ire to also have 28061 * dissapeared. So we need to retreive the 28062 * proper ipif for the ire before looking 28063 * in ctable; do the ctablelookup based on ire_ipif_seqid 28064 */ 28065 ill = q->q_ptr; 28066 28067 /* Get the outgoing ipif */ 28068 mutex_enter(&ill->ill_lock); 28069 if (ill->ill_state_flags & ILL_CONDEMNED) { 28070 mutex_exit(&ill->ill_lock); 28071 freemsg(mp); /* fake ire */ 28072 freeb(mp1); /* dl_unitdata response */ 28073 return; 28074 } 28075 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28076 28077 if (ipif == NULL) { 28078 mutex_exit(&ill->ill_lock); 28079 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28080 freemsg(mp); 28081 freeb(mp1); 28082 return; 28083 } 28084 ipif_refhold_locked(ipif); 28085 mutex_exit(&ill->ill_lock); 28086 ire = ire_ctable_lookup(fake_ire->ire_addr, 28087 fake_ire->ire_gateway_addr, IRE_CACHE, 28088 ipif, fake_ire->ire_zoneid, NULL, 28089 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 28090 ipif_refrele(ipif); 28091 if (ire == NULL) { 28092 /* 28093 * no ire was found; check if there is an nce 28094 * for this lookup; if it has no ire's pointing at it 28095 * cleanup. 28096 */ 28097 if ((nce = ndp_lookup_v4(ill, 28098 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28099 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28100 B_FALSE)) != NULL) { 28101 /* 28102 * cleanup: 28103 * We check for refcnt 2 (one for the nce 28104 * hash list + 1 for the ref taken by 28105 * ndp_lookup_v4) to check that there are 28106 * no ire's pointing at the nce. 28107 */ 28108 if (nce->nce_refcnt == 2) 28109 ndp_delete(nce); 28110 NCE_REFRELE(nce); 28111 } 28112 freeb(mp1); /* dl_unitdata response */ 28113 freemsg(mp); /* fake ire */ 28114 return; 28115 } 28116 nce = ire->ire_nce; 28117 DTRACE_PROBE2(ire__arpresolve__type, 28118 ire_t *, ire, nce_t *, nce); 28119 ASSERT(nce->nce_state != ND_INITIAL); 28120 mutex_enter(&nce->nce_lock); 28121 nce->nce_last = TICK_TO_MSEC(lbolt64); 28122 if (nce->nce_state == ND_REACHABLE) { 28123 /* 28124 * Someone resolved this before us; 28125 * our response is not needed any more. 28126 */ 28127 mutex_exit(&nce->nce_lock); 28128 freeb(mp1); /* dl_unitdata response */ 28129 } else { 28130 if (nce->nce_res_mp != NULL) { 28131 freemsg(nce->nce_res_mp); 28132 /* existing dl_unitdata template */ 28133 } 28134 nce->nce_res_mp = mp1; 28135 nce->nce_state = ND_REACHABLE; 28136 mutex_exit(&nce->nce_lock); 28137 nce_fastpath(nce); 28138 } 28139 /* 28140 * The cached nce_t has been updated to be reachable; 28141 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 28142 */ 28143 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28144 freemsg(mp); 28145 /* 28146 * send out queued packets. 28147 */ 28148 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28149 28150 IRE_REFRELE(ire); 28151 return; 28152 } 28153 default: 28154 break; 28155 } 28156 if (q->q_next) { 28157 putnext(q, mp); 28158 } else 28159 freemsg(mp); 28160 return; 28161 28162 protonak: 28163 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28164 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28165 qreply(q, mp); 28166 } 28167 28168 /* 28169 * Process IP options in an outbound packet. Modify the destination if there 28170 * is a source route option. 28171 * Returns non-zero if something fails in which case an ICMP error has been 28172 * sent and mp freed. 28173 */ 28174 static int 28175 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28176 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28177 { 28178 ipoptp_t opts; 28179 uchar_t *opt; 28180 uint8_t optval; 28181 uint8_t optlen; 28182 ipaddr_t dst; 28183 intptr_t code = 0; 28184 mblk_t *mp; 28185 ire_t *ire = NULL; 28186 28187 ip2dbg(("ip_wput_options\n")); 28188 mp = ipsec_mp; 28189 if (mctl_present) { 28190 mp = ipsec_mp->b_cont; 28191 } 28192 28193 dst = ipha->ipha_dst; 28194 for (optval = ipoptp_first(&opts, ipha); 28195 optval != IPOPT_EOL; 28196 optval = ipoptp_next(&opts)) { 28197 opt = opts.ipoptp_cur; 28198 optlen = opts.ipoptp_len; 28199 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28200 optval, optlen)); 28201 switch (optval) { 28202 uint32_t off; 28203 case IPOPT_SSRR: 28204 case IPOPT_LSRR: 28205 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28206 ip1dbg(( 28207 "ip_wput_options: bad option offset\n")); 28208 code = (char *)&opt[IPOPT_OLEN] - 28209 (char *)ipha; 28210 goto param_prob; 28211 } 28212 off = opt[IPOPT_OFFSET]; 28213 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28214 ntohl(dst))); 28215 /* 28216 * For strict: verify that dst is directly 28217 * reachable. 28218 */ 28219 if (optval == IPOPT_SSRR) { 28220 ire = ire_ftable_lookup(dst, 0, 0, 28221 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28222 MBLK_GETLABEL(mp), 28223 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28224 if (ire == NULL) { 28225 ip1dbg(("ip_wput_options: SSRR not" 28226 " directly reachable: 0x%x\n", 28227 ntohl(dst))); 28228 goto bad_src_route; 28229 } 28230 ire_refrele(ire); 28231 } 28232 break; 28233 case IPOPT_RR: 28234 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28235 ip1dbg(( 28236 "ip_wput_options: bad option offset\n")); 28237 code = (char *)&opt[IPOPT_OLEN] - 28238 (char *)ipha; 28239 goto param_prob; 28240 } 28241 break; 28242 case IPOPT_TS: 28243 /* 28244 * Verify that length >=5 and that there is either 28245 * room for another timestamp or that the overflow 28246 * counter is not maxed out. 28247 */ 28248 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28249 if (optlen < IPOPT_MINLEN_IT) { 28250 goto param_prob; 28251 } 28252 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28253 ip1dbg(( 28254 "ip_wput_options: bad option offset\n")); 28255 code = (char *)&opt[IPOPT_OFFSET] - 28256 (char *)ipha; 28257 goto param_prob; 28258 } 28259 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28260 case IPOPT_TS_TSONLY: 28261 off = IPOPT_TS_TIMELEN; 28262 break; 28263 case IPOPT_TS_TSANDADDR: 28264 case IPOPT_TS_PRESPEC: 28265 case IPOPT_TS_PRESPEC_RFC791: 28266 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28267 break; 28268 default: 28269 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28270 (char *)ipha; 28271 goto param_prob; 28272 } 28273 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28274 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28275 /* 28276 * No room and the overflow counter is 15 28277 * already. 28278 */ 28279 goto param_prob; 28280 } 28281 break; 28282 } 28283 } 28284 28285 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28286 return (0); 28287 28288 ip1dbg(("ip_wput_options: error processing IP options.")); 28289 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28290 28291 param_prob: 28292 /* 28293 * Since ip_wput() isn't close to finished, we fill 28294 * in enough of the header for credible error reporting. 28295 */ 28296 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28297 /* Failed */ 28298 freemsg(ipsec_mp); 28299 return (-1); 28300 } 28301 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28302 return (-1); 28303 28304 bad_src_route: 28305 /* 28306 * Since ip_wput() isn't close to finished, we fill 28307 * in enough of the header for credible error reporting. 28308 */ 28309 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28310 /* Failed */ 28311 freemsg(ipsec_mp); 28312 return (-1); 28313 } 28314 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28315 return (-1); 28316 } 28317 28318 /* 28319 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28320 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28321 * thru /etc/system. 28322 */ 28323 #define CONN_MAXDRAINCNT 64 28324 28325 static void 28326 conn_drain_init(ip_stack_t *ipst) 28327 { 28328 int i; 28329 28330 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28331 28332 if ((ipst->ips_conn_drain_list_cnt == 0) || 28333 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28334 /* 28335 * Default value of the number of drainers is the 28336 * number of cpus, subject to maximum of 8 drainers. 28337 */ 28338 if (boot_max_ncpus != -1) 28339 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28340 else 28341 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28342 } 28343 28344 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28345 sizeof (idl_t), KM_SLEEP); 28346 28347 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28348 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28349 MUTEX_DEFAULT, NULL); 28350 } 28351 } 28352 28353 static void 28354 conn_drain_fini(ip_stack_t *ipst) 28355 { 28356 int i; 28357 28358 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28359 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28360 kmem_free(ipst->ips_conn_drain_list, 28361 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28362 ipst->ips_conn_drain_list = NULL; 28363 } 28364 28365 /* 28366 * Note: For an overview of how flowcontrol is handled in IP please see the 28367 * IP Flowcontrol notes at the top of this file. 28368 * 28369 * Flow control has blocked us from proceeding. Insert the given conn in one 28370 * of the conn drain lists. These conn wq's will be qenabled later on when 28371 * STREAMS flow control does a backenable. conn_walk_drain will enable 28372 * the first conn in each of these drain lists. Each of these qenabled conns 28373 * in turn enables the next in the list, after it runs, or when it closes, 28374 * thus sustaining the drain process. 28375 * 28376 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28377 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28378 * running at any time, on a given conn, since there can be only 1 service proc 28379 * running on a queue at any time. 28380 */ 28381 void 28382 conn_drain_insert(conn_t *connp) 28383 { 28384 idl_t *idl; 28385 uint_t index; 28386 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28387 28388 mutex_enter(&connp->conn_lock); 28389 if (connp->conn_state_flags & CONN_CLOSING) { 28390 /* 28391 * The conn is closing as a result of which CONN_CLOSING 28392 * is set. Return. 28393 */ 28394 mutex_exit(&connp->conn_lock); 28395 return; 28396 } else if (connp->conn_idl == NULL) { 28397 /* 28398 * Assign the next drain list round robin. We dont' use 28399 * a lock, and thus it may not be strictly round robin. 28400 * Atomicity of load/stores is enough to make sure that 28401 * conn_drain_list_index is always within bounds. 28402 */ 28403 index = ipst->ips_conn_drain_list_index; 28404 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28405 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28406 index++; 28407 if (index == ipst->ips_conn_drain_list_cnt) 28408 index = 0; 28409 ipst->ips_conn_drain_list_index = index; 28410 } 28411 mutex_exit(&connp->conn_lock); 28412 28413 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28414 if ((connp->conn_drain_prev != NULL) || 28415 (connp->conn_state_flags & CONN_CLOSING)) { 28416 /* 28417 * The conn is already in the drain list, OR 28418 * the conn is closing. We need to check again for 28419 * the closing case again since close can happen 28420 * after we drop the conn_lock, and before we 28421 * acquire the CONN_DRAIN_LIST_LOCK. 28422 */ 28423 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28424 return; 28425 } else { 28426 idl = connp->conn_idl; 28427 } 28428 28429 /* 28430 * The conn is not in the drain list. Insert it at the 28431 * tail of the drain list. The drain list is circular 28432 * and doubly linked. idl_conn points to the 1st element 28433 * in the list. 28434 */ 28435 if (idl->idl_conn == NULL) { 28436 idl->idl_conn = connp; 28437 connp->conn_drain_next = connp; 28438 connp->conn_drain_prev = connp; 28439 } else { 28440 conn_t *head = idl->idl_conn; 28441 28442 connp->conn_drain_next = head; 28443 connp->conn_drain_prev = head->conn_drain_prev; 28444 head->conn_drain_prev->conn_drain_next = connp; 28445 head->conn_drain_prev = connp; 28446 } 28447 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28448 } 28449 28450 /* 28451 * This conn is closing, and we are called from ip_close. OR 28452 * This conn has been serviced by ip_wsrv, and we need to do the tail 28453 * processing. 28454 * If this conn is part of the drain list, we may need to sustain the drain 28455 * process by qenabling the next conn in the drain list. We may also need to 28456 * remove this conn from the list, if it is done. 28457 */ 28458 static void 28459 conn_drain_tail(conn_t *connp, boolean_t closing) 28460 { 28461 idl_t *idl; 28462 28463 /* 28464 * connp->conn_idl is stable at this point, and no lock is needed 28465 * to check it. If we are called from ip_close, close has already 28466 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28467 * called us only because conn_idl is non-null. If we are called thru 28468 * service, conn_idl could be null, but it cannot change because 28469 * service is single-threaded per queue, and there cannot be another 28470 * instance of service trying to call conn_drain_insert on this conn 28471 * now. 28472 */ 28473 ASSERT(!closing || (connp->conn_idl != NULL)); 28474 28475 /* 28476 * If connp->conn_idl is null, the conn has not been inserted into any 28477 * drain list even once since creation of the conn. Just return. 28478 */ 28479 if (connp->conn_idl == NULL) 28480 return; 28481 28482 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28483 28484 if (connp->conn_drain_prev == NULL) { 28485 /* This conn is currently not in the drain list. */ 28486 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28487 return; 28488 } 28489 idl = connp->conn_idl; 28490 if (idl->idl_conn_draining == connp) { 28491 /* 28492 * This conn is the current drainer. If this is the last conn 28493 * in the drain list, we need to do more checks, in the 'if' 28494 * below. Otherwwise we need to just qenable the next conn, 28495 * to sustain the draining, and is handled in the 'else' 28496 * below. 28497 */ 28498 if (connp->conn_drain_next == idl->idl_conn) { 28499 /* 28500 * This conn is the last in this list. This round 28501 * of draining is complete. If idl_repeat is set, 28502 * it means another flow enabling has happened from 28503 * the driver/streams and we need to another round 28504 * of draining. 28505 * If there are more than 2 conns in the drain list, 28506 * do a left rotate by 1, so that all conns except the 28507 * conn at the head move towards the head by 1, and the 28508 * the conn at the head goes to the tail. This attempts 28509 * a more even share for all queues that are being 28510 * drained. 28511 */ 28512 if ((connp->conn_drain_next != connp) && 28513 (idl->idl_conn->conn_drain_next != connp)) { 28514 idl->idl_conn = idl->idl_conn->conn_drain_next; 28515 } 28516 if (idl->idl_repeat) { 28517 qenable(idl->idl_conn->conn_wq); 28518 idl->idl_conn_draining = idl->idl_conn; 28519 idl->idl_repeat = 0; 28520 } else { 28521 idl->idl_conn_draining = NULL; 28522 } 28523 } else { 28524 /* 28525 * If the next queue that we are now qenable'ing, 28526 * is closing, it will remove itself from this list 28527 * and qenable the subsequent queue in ip_close(). 28528 * Serialization is acheived thru idl_lock. 28529 */ 28530 qenable(connp->conn_drain_next->conn_wq); 28531 idl->idl_conn_draining = connp->conn_drain_next; 28532 } 28533 } 28534 if (!connp->conn_did_putbq || closing) { 28535 /* 28536 * Remove ourself from the drain list, if we did not do 28537 * a putbq, or if the conn is closing. 28538 * Note: It is possible that q->q_first is non-null. It means 28539 * that these messages landed after we did a enableok() in 28540 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28541 * service them. 28542 */ 28543 if (connp->conn_drain_next == connp) { 28544 /* Singleton in the list */ 28545 ASSERT(connp->conn_drain_prev == connp); 28546 idl->idl_conn = NULL; 28547 idl->idl_conn_draining = NULL; 28548 } else { 28549 connp->conn_drain_prev->conn_drain_next = 28550 connp->conn_drain_next; 28551 connp->conn_drain_next->conn_drain_prev = 28552 connp->conn_drain_prev; 28553 if (idl->idl_conn == connp) 28554 idl->idl_conn = connp->conn_drain_next; 28555 ASSERT(idl->idl_conn_draining != connp); 28556 28557 } 28558 connp->conn_drain_next = NULL; 28559 connp->conn_drain_prev = NULL; 28560 } 28561 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28562 } 28563 28564 /* 28565 * Write service routine. Shared perimeter entry point. 28566 * ip_wsrv can be called in any of the following ways. 28567 * 1. The device queue's messages has fallen below the low water mark 28568 * and STREAMS has backenabled the ill_wq. We walk thru all the 28569 * the drain lists and backenable the first conn in each list. 28570 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28571 * qenabled non-tcp upper layers. We start dequeing messages and call 28572 * ip_wput for each message. 28573 */ 28574 28575 void 28576 ip_wsrv(queue_t *q) 28577 { 28578 conn_t *connp; 28579 ill_t *ill; 28580 mblk_t *mp; 28581 28582 if (q->q_next) { 28583 ill = (ill_t *)q->q_ptr; 28584 if (ill->ill_state_flags == 0) { 28585 /* 28586 * The device flow control has opened up. 28587 * Walk through conn drain lists and qenable the 28588 * first conn in each list. This makes sense only 28589 * if the stream is fully plumbed and setup. 28590 * Hence the if check above. 28591 */ 28592 ip1dbg(("ip_wsrv: walking\n")); 28593 conn_walk_drain(ill->ill_ipst); 28594 } 28595 return; 28596 } 28597 28598 connp = Q_TO_CONN(q); 28599 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28600 28601 /* 28602 * 1. Set conn_draining flag to signal that service is active. 28603 * 28604 * 2. ip_output determines whether it has been called from service, 28605 * based on the last parameter. If it is IP_WSRV it concludes it 28606 * has been called from service. 28607 * 28608 * 3. Message ordering is preserved by the following logic. 28609 * i. A directly called ip_output (i.e. not thru service) will queue 28610 * the message at the tail, if conn_draining is set (i.e. service 28611 * is running) or if q->q_first is non-null. 28612 * 28613 * ii. If ip_output is called from service, and if ip_output cannot 28614 * putnext due to flow control, it does a putbq. 28615 * 28616 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28617 * (causing an infinite loop). 28618 */ 28619 ASSERT(!connp->conn_did_putbq); 28620 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28621 connp->conn_draining = 1; 28622 noenable(q); 28623 while ((mp = getq(q)) != NULL) { 28624 ASSERT(CONN_Q(q)); 28625 28626 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28627 if (connp->conn_did_putbq) { 28628 /* ip_wput did a putbq */ 28629 break; 28630 } 28631 } 28632 /* 28633 * At this point, a thread coming down from top, calling 28634 * ip_wput, may end up queueing the message. We have not yet 28635 * enabled the queue, so ip_wsrv won't be called again. 28636 * To avoid this race, check q->q_first again (in the loop) 28637 * If the other thread queued the message before we call 28638 * enableok(), we will catch it in the q->q_first check. 28639 * If the other thread queues the message after we call 28640 * enableok(), ip_wsrv will be called again by STREAMS. 28641 */ 28642 connp->conn_draining = 0; 28643 enableok(q); 28644 } 28645 28646 /* Enable the next conn for draining */ 28647 conn_drain_tail(connp, B_FALSE); 28648 28649 connp->conn_did_putbq = 0; 28650 } 28651 28652 /* 28653 * Walk the list of all conn's calling the function provided with the 28654 * specified argument for each. Note that this only walks conn's that 28655 * have been bound. 28656 * Applies to both IPv4 and IPv6. 28657 */ 28658 static void 28659 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28660 { 28661 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28662 ipst->ips_ipcl_udp_fanout_size, 28663 func, arg, zoneid); 28664 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28665 ipst->ips_ipcl_conn_fanout_size, 28666 func, arg, zoneid); 28667 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28668 ipst->ips_ipcl_bind_fanout_size, 28669 func, arg, zoneid); 28670 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28671 IPPROTO_MAX, func, arg, zoneid); 28672 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28673 IPPROTO_MAX, func, arg, zoneid); 28674 } 28675 28676 /* 28677 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28678 * of conns that need to be drained, check if drain is already in progress. 28679 * If so set the idl_repeat bit, indicating that the last conn in the list 28680 * needs to reinitiate the drain once again, for the list. If drain is not 28681 * in progress for the list, initiate the draining, by qenabling the 1st 28682 * conn in the list. The drain is self-sustaining, each qenabled conn will 28683 * in turn qenable the next conn, when it is done/blocked/closing. 28684 */ 28685 static void 28686 conn_walk_drain(ip_stack_t *ipst) 28687 { 28688 int i; 28689 idl_t *idl; 28690 28691 IP_STAT(ipst, ip_conn_walk_drain); 28692 28693 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28694 idl = &ipst->ips_conn_drain_list[i]; 28695 mutex_enter(&idl->idl_lock); 28696 if (idl->idl_conn == NULL) { 28697 mutex_exit(&idl->idl_lock); 28698 continue; 28699 } 28700 /* 28701 * If this list is not being drained currently by 28702 * an ip_wsrv thread, start the process. 28703 */ 28704 if (idl->idl_conn_draining == NULL) { 28705 ASSERT(idl->idl_repeat == 0); 28706 qenable(idl->idl_conn->conn_wq); 28707 idl->idl_conn_draining = idl->idl_conn; 28708 } else { 28709 idl->idl_repeat = 1; 28710 } 28711 mutex_exit(&idl->idl_lock); 28712 } 28713 } 28714 28715 /* 28716 * Walk an conn hash table of `count' buckets, calling func for each entry. 28717 */ 28718 static void 28719 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28720 zoneid_t zoneid) 28721 { 28722 conn_t *connp; 28723 28724 while (count-- > 0) { 28725 mutex_enter(&connfp->connf_lock); 28726 for (connp = connfp->connf_head; connp != NULL; 28727 connp = connp->conn_next) { 28728 if (zoneid == GLOBAL_ZONEID || 28729 zoneid == connp->conn_zoneid) { 28730 CONN_INC_REF(connp); 28731 mutex_exit(&connfp->connf_lock); 28732 (*func)(connp, arg); 28733 mutex_enter(&connfp->connf_lock); 28734 CONN_DEC_REF(connp); 28735 } 28736 } 28737 mutex_exit(&connfp->connf_lock); 28738 connfp++; 28739 } 28740 } 28741 28742 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28743 static void 28744 conn_report1(conn_t *connp, void *mp) 28745 { 28746 char buf1[INET6_ADDRSTRLEN]; 28747 char buf2[INET6_ADDRSTRLEN]; 28748 uint_t print_len, buf_len; 28749 28750 ASSERT(connp != NULL); 28751 28752 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28753 if (buf_len <= 0) 28754 return; 28755 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28756 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28757 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28758 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28759 "%5d %s/%05d %s/%05d\n", 28760 (void *)connp, (void *)CONNP_TO_RQ(connp), 28761 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28762 buf1, connp->conn_lport, 28763 buf2, connp->conn_fport); 28764 if (print_len < buf_len) { 28765 ((mblk_t *)mp)->b_wptr += print_len; 28766 } else { 28767 ((mblk_t *)mp)->b_wptr += buf_len; 28768 } 28769 } 28770 28771 /* 28772 * Named Dispatch routine to produce a formatted report on all conns 28773 * that are listed in one of the fanout tables. 28774 * This report is accessed by using the ndd utility to "get" ND variable 28775 * "ip_conn_status". 28776 */ 28777 /* ARGSUSED */ 28778 static int 28779 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28780 { 28781 conn_t *connp = Q_TO_CONN(q); 28782 28783 (void) mi_mpprintf(mp, 28784 "CONN " MI_COL_HDRPAD_STR 28785 "rfq " MI_COL_HDRPAD_STR 28786 "stq " MI_COL_HDRPAD_STR 28787 " zone local remote"); 28788 28789 /* 28790 * Because of the ndd constraint, at most we can have 64K buffer 28791 * to put in all conn info. So to be more efficient, just 28792 * allocate a 64K buffer here, assuming we need that large buffer. 28793 * This should be OK as only privileged processes can do ndd /dev/ip. 28794 */ 28795 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28796 /* The following may work even if we cannot get a large buf. */ 28797 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28798 return (0); 28799 } 28800 28801 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28802 connp->conn_netstack->netstack_ip); 28803 return (0); 28804 } 28805 28806 /* 28807 * Determine if the ill and multicast aspects of that packets 28808 * "matches" the conn. 28809 */ 28810 boolean_t 28811 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28812 zoneid_t zoneid) 28813 { 28814 ill_t *in_ill; 28815 boolean_t found; 28816 ipif_t *ipif; 28817 ire_t *ire; 28818 ipaddr_t dst, src; 28819 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28820 28821 dst = ipha->ipha_dst; 28822 src = ipha->ipha_src; 28823 28824 /* 28825 * conn_incoming_ill is set by IP_BOUND_IF which limits 28826 * unicast, broadcast and multicast reception to 28827 * conn_incoming_ill. conn_wantpacket itself is called 28828 * only for BROADCAST and multicast. 28829 * 28830 * 1) ip_rput supresses duplicate broadcasts if the ill 28831 * is part of a group. Hence, we should be receiving 28832 * just one copy of broadcast for the whole group. 28833 * Thus, if it is part of the group the packet could 28834 * come on any ill of the group and hence we need a 28835 * match on the group. Otherwise, match on ill should 28836 * be sufficient. 28837 * 28838 * 2) ip_rput does not suppress duplicate multicast packets. 28839 * If there are two interfaces in a ill group and we have 28840 * 2 applications (conns) joined a multicast group G on 28841 * both the interfaces, ilm_lookup_ill filter in ip_rput 28842 * will give us two packets because we join G on both the 28843 * interfaces rather than nominating just one interface 28844 * for receiving multicast like broadcast above. So, 28845 * we have to call ilg_lookup_ill to filter out duplicate 28846 * copies, if ill is part of a group. 28847 */ 28848 in_ill = connp->conn_incoming_ill; 28849 if (in_ill != NULL) { 28850 if (in_ill->ill_group == NULL) { 28851 if (in_ill != ill) 28852 return (B_FALSE); 28853 } else if (in_ill->ill_group != ill->ill_group) { 28854 return (B_FALSE); 28855 } 28856 } 28857 28858 if (!CLASSD(dst)) { 28859 if (IPCL_ZONE_MATCH(connp, zoneid)) 28860 return (B_TRUE); 28861 /* 28862 * The conn is in a different zone; we need to check that this 28863 * broadcast address is configured in the application's zone and 28864 * on one ill in the group. 28865 */ 28866 ipif = ipif_get_next_ipif(NULL, ill); 28867 if (ipif == NULL) 28868 return (B_FALSE); 28869 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28870 connp->conn_zoneid, NULL, 28871 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28872 ipif_refrele(ipif); 28873 if (ire != NULL) { 28874 ire_refrele(ire); 28875 return (B_TRUE); 28876 } else { 28877 return (B_FALSE); 28878 } 28879 } 28880 28881 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28882 connp->conn_zoneid == zoneid) { 28883 /* 28884 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28885 * disabled, therefore we don't dispatch the multicast packet to 28886 * the sending zone. 28887 */ 28888 return (B_FALSE); 28889 } 28890 28891 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28892 /* 28893 * Multicast packet on the loopback interface: we only match 28894 * conns who joined the group in the specified zone. 28895 */ 28896 return (B_FALSE); 28897 } 28898 28899 if (connp->conn_multi_router) { 28900 /* multicast packet and multicast router socket: send up */ 28901 return (B_TRUE); 28902 } 28903 28904 mutex_enter(&connp->conn_lock); 28905 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28906 mutex_exit(&connp->conn_lock); 28907 return (found); 28908 } 28909 28910 /* 28911 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28912 */ 28913 /* ARGSUSED */ 28914 static void 28915 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28916 { 28917 ill_t *ill = (ill_t *)q->q_ptr; 28918 mblk_t *mp1, *mp2; 28919 ipif_t *ipif; 28920 int err = 0; 28921 conn_t *connp = NULL; 28922 ipsq_t *ipsq; 28923 arc_t *arc; 28924 28925 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28926 28927 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28928 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28929 28930 ASSERT(IAM_WRITER_ILL(ill)); 28931 mp2 = mp->b_cont; 28932 mp->b_cont = NULL; 28933 28934 /* 28935 * We have now received the arp bringup completion message 28936 * from ARP. Mark the arp bringup as done. Also if the arp 28937 * stream has already started closing, send up the AR_ARP_CLOSING 28938 * ack now since ARP is waiting in close for this ack. 28939 */ 28940 mutex_enter(&ill->ill_lock); 28941 ill->ill_arp_bringup_pending = 0; 28942 if (ill->ill_arp_closing) { 28943 mutex_exit(&ill->ill_lock); 28944 /* Let's reuse the mp for sending the ack */ 28945 arc = (arc_t *)mp->b_rptr; 28946 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28947 arc->arc_cmd = AR_ARP_CLOSING; 28948 qreply(q, mp); 28949 } else { 28950 mutex_exit(&ill->ill_lock); 28951 freeb(mp); 28952 } 28953 28954 ipsq = ill->ill_phyint->phyint_ipsq; 28955 ipif = ipsq->ipsq_pending_ipif; 28956 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28957 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28958 if (mp1 == NULL) { 28959 /* bringup was aborted by the user */ 28960 freemsg(mp2); 28961 return; 28962 } 28963 28964 /* 28965 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28966 * must have an associated conn_t. Otherwise, we're bringing this 28967 * interface back up as part of handling an asynchronous event (e.g., 28968 * physical address change). 28969 */ 28970 if (ipsq->ipsq_current_ioctl != 0) { 28971 ASSERT(connp != NULL); 28972 q = CONNP_TO_WQ(connp); 28973 } else { 28974 ASSERT(connp == NULL); 28975 q = ill->ill_rq; 28976 } 28977 28978 /* 28979 * If the DL_BIND_REQ fails, it is noted 28980 * in arc_name_offset. 28981 */ 28982 err = *((int *)mp2->b_rptr); 28983 if (err == 0) { 28984 if (ipif->ipif_isv6) { 28985 if ((err = ipif_up_done_v6(ipif)) != 0) 28986 ip0dbg(("ip_arp_done: init failed\n")); 28987 } else { 28988 if ((err = ipif_up_done(ipif)) != 0) 28989 ip0dbg(("ip_arp_done: init failed\n")); 28990 } 28991 } else { 28992 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28993 } 28994 28995 freemsg(mp2); 28996 28997 if ((err == 0) && (ill->ill_up_ipifs)) { 28998 err = ill_up_ipifs(ill, q, mp1); 28999 if (err == EINPROGRESS) 29000 return; 29001 } 29002 29003 if (ill->ill_up_ipifs) 29004 ill_group_cleanup(ill); 29005 29006 /* 29007 * The operation must complete without EINPROGRESS since 29008 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29009 * Otherwise, the operation will be stuck forever in the ipsq. 29010 */ 29011 ASSERT(err != EINPROGRESS); 29012 if (ipsq->ipsq_current_ioctl != 0) 29013 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29014 else 29015 ipsq_current_finish(ipsq); 29016 } 29017 29018 /* Allocate the private structure */ 29019 static int 29020 ip_priv_alloc(void **bufp) 29021 { 29022 void *buf; 29023 29024 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29025 return (ENOMEM); 29026 29027 *bufp = buf; 29028 return (0); 29029 } 29030 29031 /* Function to delete the private structure */ 29032 void 29033 ip_priv_free(void *buf) 29034 { 29035 ASSERT(buf != NULL); 29036 kmem_free(buf, sizeof (ip_priv_t)); 29037 } 29038 29039 /* 29040 * The entry point for IPPF processing. 29041 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29042 * routine just returns. 29043 * 29044 * When called, ip_process generates an ipp_packet_t structure 29045 * which holds the state information for this packet and invokes the 29046 * the classifier (via ipp_packet_process). The classification, depending on 29047 * configured filters, results in a list of actions for this packet. Invoking 29048 * an action may cause the packet to be dropped, in which case the resulting 29049 * mblk (*mpp) is NULL. proc indicates the callout position for 29050 * this packet and ill_index is the interface this packet on or will leave 29051 * on (inbound and outbound resp.). 29052 */ 29053 void 29054 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29055 { 29056 mblk_t *mp; 29057 ip_priv_t *priv; 29058 ipp_action_id_t aid; 29059 int rc = 0; 29060 ipp_packet_t *pp; 29061 #define IP_CLASS "ip" 29062 29063 /* If the classifier is not loaded, return */ 29064 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29065 return; 29066 } 29067 29068 mp = *mpp; 29069 ASSERT(mp != NULL); 29070 29071 /* Allocate the packet structure */ 29072 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29073 if (rc != 0) { 29074 *mpp = NULL; 29075 freemsg(mp); 29076 return; 29077 } 29078 29079 /* Allocate the private structure */ 29080 rc = ip_priv_alloc((void **)&priv); 29081 if (rc != 0) { 29082 *mpp = NULL; 29083 freemsg(mp); 29084 ipp_packet_free(pp); 29085 return; 29086 } 29087 priv->proc = proc; 29088 priv->ill_index = ill_index; 29089 ipp_packet_set_private(pp, priv, ip_priv_free); 29090 ipp_packet_set_data(pp, mp); 29091 29092 /* Invoke the classifier */ 29093 rc = ipp_packet_process(&pp); 29094 if (pp != NULL) { 29095 mp = ipp_packet_get_data(pp); 29096 ipp_packet_free(pp); 29097 if (rc != 0) { 29098 freemsg(mp); 29099 *mpp = NULL; 29100 } 29101 } else { 29102 *mpp = NULL; 29103 } 29104 #undef IP_CLASS 29105 } 29106 29107 /* 29108 * Propagate a multicast group membership operation (add/drop) on 29109 * all the interfaces crossed by the related multirt routes. 29110 * The call is considered successful if the operation succeeds 29111 * on at least one interface. 29112 */ 29113 static int 29114 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29115 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29116 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29117 mblk_t *first_mp) 29118 { 29119 ire_t *ire_gw; 29120 irb_t *irb; 29121 int error = 0; 29122 opt_restart_t *or; 29123 ip_stack_t *ipst = ire->ire_ipst; 29124 29125 irb = ire->ire_bucket; 29126 ASSERT(irb != NULL); 29127 29128 ASSERT(DB_TYPE(first_mp) == M_CTL); 29129 29130 or = (opt_restart_t *)first_mp->b_rptr; 29131 IRB_REFHOLD(irb); 29132 for (; ire != NULL; ire = ire->ire_next) { 29133 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29134 continue; 29135 if (ire->ire_addr != group) 29136 continue; 29137 29138 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29139 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29140 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29141 /* No resolver exists for the gateway; skip this ire. */ 29142 if (ire_gw == NULL) 29143 continue; 29144 29145 /* 29146 * This function can return EINPROGRESS. If so the operation 29147 * will be restarted from ip_restart_optmgmt which will 29148 * call ip_opt_set and option processing will restart for 29149 * this option. So we may end up calling 'fn' more than once. 29150 * This requires that 'fn' is idempotent except for the 29151 * return value. The operation is considered a success if 29152 * it succeeds at least once on any one interface. 29153 */ 29154 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29155 NULL, fmode, src, first_mp); 29156 if (error == 0) 29157 or->or_private = CGTP_MCAST_SUCCESS; 29158 29159 if (ip_debug > 0) { 29160 ulong_t off; 29161 char *ksym; 29162 ksym = kobj_getsymname((uintptr_t)fn, &off); 29163 ip2dbg(("ip_multirt_apply_membership: " 29164 "called %s, multirt group 0x%08x via itf 0x%08x, " 29165 "error %d [success %u]\n", 29166 ksym ? ksym : "?", 29167 ntohl(group), ntohl(ire_gw->ire_src_addr), 29168 error, or->or_private)); 29169 } 29170 29171 ire_refrele(ire_gw); 29172 if (error == EINPROGRESS) { 29173 IRB_REFRELE(irb); 29174 return (error); 29175 } 29176 } 29177 IRB_REFRELE(irb); 29178 /* 29179 * Consider the call as successful if we succeeded on at least 29180 * one interface. Otherwise, return the last encountered error. 29181 */ 29182 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29183 } 29184 29185 29186 /* 29187 * Issue a warning regarding a route crossing an interface with an 29188 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29189 * amount of time is logged. 29190 */ 29191 static void 29192 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29193 { 29194 hrtime_t current = gethrtime(); 29195 char buf[INET_ADDRSTRLEN]; 29196 ip_stack_t *ipst = ire->ire_ipst; 29197 29198 /* Convert interval in ms to hrtime in ns */ 29199 if (ipst->ips_multirt_bad_mtu_last_time + 29200 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29201 current) { 29202 cmn_err(CE_WARN, "ip: ignoring multiroute " 29203 "to %s, incorrect MTU %u (expected %u)\n", 29204 ip_dot_addr(ire->ire_addr, buf), 29205 ire->ire_max_frag, max_frag); 29206 29207 ipst->ips_multirt_bad_mtu_last_time = current; 29208 } 29209 } 29210 29211 29212 /* 29213 * Get the CGTP (multirouting) filtering status. 29214 * If 0, the CGTP hooks are transparent. 29215 */ 29216 /* ARGSUSED */ 29217 static int 29218 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29219 { 29220 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29221 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29222 29223 /* 29224 * Only applies to the shared stack since the filter_ops 29225 * do not carry an ip_stack_t or zoneid. 29226 */ 29227 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29228 return (ENOTSUP); 29229 29230 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29231 return (0); 29232 } 29233 29234 29235 /* 29236 * Set the CGTP (multirouting) filtering status. 29237 * If the status is changed from active to transparent 29238 * or from transparent to active, forward the new status 29239 * to the filtering module (if loaded). 29240 */ 29241 /* ARGSUSED */ 29242 static int 29243 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29244 cred_t *ioc_cr) 29245 { 29246 long new_value; 29247 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29248 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29249 29250 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 29251 return (EPERM); 29252 29253 /* 29254 * Only applies to the shared stack since the filter_ops 29255 * do not carry an ip_stack_t or zoneid. 29256 */ 29257 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29258 return (ENOTSUP); 29259 29260 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29261 new_value < 0 || new_value > 1) { 29262 return (EINVAL); 29263 } 29264 29265 /* 29266 * Do not enable CGTP filtering - thus preventing the hooks 29267 * from being invoked - if the version number of the 29268 * filtering module hooks does not match. 29269 */ 29270 if ((ip_cgtp_filter_ops != NULL) && 29271 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 29272 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 29273 "(module hooks version %d, expecting %d)\n", 29274 ip_cgtp_filter_ops->cfo_filter_rev, 29275 CGTP_FILTER_REV); 29276 return (ENOTSUP); 29277 } 29278 29279 if ((!*ip_cgtp_filter_value) && new_value) { 29280 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29281 ip_cgtp_filter_ops == NULL ? 29282 " (module not loaded)" : ""); 29283 } 29284 if (*ip_cgtp_filter_value && (!new_value)) { 29285 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29286 ip_cgtp_filter_ops == NULL ? 29287 " (module not loaded)" : ""); 29288 } 29289 29290 if (ip_cgtp_filter_ops != NULL) { 29291 int res; 29292 29293 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 29294 if (res) 29295 return (res); 29296 } 29297 29298 *ip_cgtp_filter_value = (boolean_t)new_value; 29299 29300 return (0); 29301 } 29302 29303 29304 /* 29305 * Return the expected CGTP hooks version number. 29306 */ 29307 int 29308 ip_cgtp_filter_supported(void) 29309 { 29310 ip_stack_t *ipst; 29311 int ret; 29312 29313 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29314 if (ipst == NULL) 29315 return (-1); 29316 ret = ip_cgtp_filter_rev; 29317 netstack_rele(ipst->ips_netstack); 29318 return (ret); 29319 } 29320 29321 29322 /* 29323 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 29324 * or by invoking this function. In the first case, the version number 29325 * of the registered structure is checked at hooks activation time 29326 * in ip_cgtp_filter_set(). 29327 * 29328 * Only applies to the shared stack since the filter_ops 29329 * do not carry an ip_stack_t or zoneid. 29330 */ 29331 int 29332 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 29333 { 29334 ip_stack_t *ipst; 29335 29336 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29337 return (ENOTSUP); 29338 29339 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29340 if (ipst == NULL) 29341 return (EINVAL); 29342 29343 ip_cgtp_filter_ops = ops; 29344 netstack_rele(ipst->ips_netstack); 29345 return (0); 29346 } 29347 29348 static squeue_func_t 29349 ip_squeue_switch(int val) 29350 { 29351 squeue_func_t rval = squeue_fill; 29352 29353 switch (val) { 29354 case IP_SQUEUE_ENTER_NODRAIN: 29355 rval = squeue_enter_nodrain; 29356 break; 29357 case IP_SQUEUE_ENTER: 29358 rval = squeue_enter; 29359 break; 29360 default: 29361 break; 29362 } 29363 return (rval); 29364 } 29365 29366 /* ARGSUSED */ 29367 static int 29368 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29369 caddr_t addr, cred_t *cr) 29370 { 29371 int *v = (int *)addr; 29372 long new_value; 29373 29374 if (secpolicy_net_config(cr, B_FALSE) != 0) 29375 return (EPERM); 29376 29377 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29378 return (EINVAL); 29379 29380 ip_input_proc = ip_squeue_switch(new_value); 29381 *v = new_value; 29382 return (0); 29383 } 29384 29385 /* ARGSUSED */ 29386 static int 29387 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29388 caddr_t addr, cred_t *cr) 29389 { 29390 int *v = (int *)addr; 29391 long new_value; 29392 29393 if (secpolicy_net_config(cr, B_FALSE) != 0) 29394 return (EPERM); 29395 29396 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29397 return (EINVAL); 29398 29399 *v = new_value; 29400 return (0); 29401 } 29402 29403 /* 29404 * Handle changes to ipmp_hook_emulation ndd variable. 29405 * Need to update phyint_hook_ifindex. 29406 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29407 */ 29408 static void 29409 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29410 { 29411 phyint_t *phyi; 29412 phyint_t *phyi_tmp; 29413 char *groupname; 29414 int namelen; 29415 ill_t *ill; 29416 boolean_t new_group; 29417 29418 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29419 /* 29420 * Group indicies are stored in the phyint - a common structure 29421 * to both IPv4 and IPv6. 29422 */ 29423 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29424 for (; phyi != NULL; 29425 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29426 phyi, AVL_AFTER)) { 29427 /* Ignore the ones that do not have a group */ 29428 if (phyi->phyint_groupname_len == 0) 29429 continue; 29430 29431 /* 29432 * Look for other phyint in group. 29433 * Clear name/namelen so the lookup doesn't find ourselves. 29434 */ 29435 namelen = phyi->phyint_groupname_len; 29436 groupname = phyi->phyint_groupname; 29437 phyi->phyint_groupname_len = 0; 29438 phyi->phyint_groupname = NULL; 29439 29440 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29441 /* Restore */ 29442 phyi->phyint_groupname_len = namelen; 29443 phyi->phyint_groupname = groupname; 29444 29445 new_group = B_FALSE; 29446 if (ipst->ips_ipmp_hook_emulation) { 29447 /* 29448 * If the group already exists and has already 29449 * been assigned a group ifindex, we use the existing 29450 * group_ifindex, otherwise we pick a new group_ifindex 29451 * here. 29452 */ 29453 if (phyi_tmp != NULL && 29454 phyi_tmp->phyint_group_ifindex != 0) { 29455 phyi->phyint_group_ifindex = 29456 phyi_tmp->phyint_group_ifindex; 29457 } else { 29458 /* XXX We need a recovery strategy here. */ 29459 if (!ip_assign_ifindex( 29460 &phyi->phyint_group_ifindex, ipst)) 29461 cmn_err(CE_PANIC, 29462 "ip_assign_ifindex() failed"); 29463 new_group = B_TRUE; 29464 } 29465 } else { 29466 phyi->phyint_group_ifindex = 0; 29467 } 29468 if (ipst->ips_ipmp_hook_emulation) 29469 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29470 else 29471 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29472 29473 /* 29474 * For IP Filter to find out the relationship between 29475 * names and interface indicies, we need to generate 29476 * a NE_PLUMB event when a new group can appear. 29477 * We always generate events when a new interface appears 29478 * (even when ipmp_hook_emulation is set) so there 29479 * is no need to generate NE_PLUMB events when 29480 * ipmp_hook_emulation is turned off. 29481 * And since it isn't critical for IP Filter to get 29482 * the NE_UNPLUMB events we skip those here. 29483 */ 29484 if (new_group) { 29485 /* 29486 * First phyint in group - generate group PLUMB event. 29487 * Since we are not running inside the ipsq we do 29488 * the dispatch immediately. 29489 */ 29490 if (phyi->phyint_illv4 != NULL) 29491 ill = phyi->phyint_illv4; 29492 else 29493 ill = phyi->phyint_illv6; 29494 29495 if (ill != NULL) { 29496 mutex_enter(&ill->ill_lock); 29497 ill_nic_info_plumb(ill, B_TRUE); 29498 ill_nic_info_dispatch(ill); 29499 mutex_exit(&ill->ill_lock); 29500 } 29501 } 29502 } 29503 rw_exit(&ipst->ips_ill_g_lock); 29504 } 29505 29506 /* ARGSUSED */ 29507 static int 29508 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29509 caddr_t addr, cred_t *cr) 29510 { 29511 int *v = (int *)addr; 29512 long new_value; 29513 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29514 29515 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29516 return (EINVAL); 29517 29518 if (*v != new_value) { 29519 *v = new_value; 29520 ipmp_hook_emulation_changed(ipst); 29521 } 29522 return (0); 29523 } 29524 29525 static void * 29526 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29527 { 29528 kstat_t *ksp; 29529 29530 ip_stat_t template = { 29531 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29532 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29533 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29534 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29535 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29536 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29537 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29538 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29539 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29540 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29541 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29542 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29543 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29544 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29545 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29546 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29547 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29548 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29549 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29550 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29551 { "ip_opt", KSTAT_DATA_UINT64 }, 29552 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29553 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29554 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29555 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29556 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29557 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29558 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29559 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29560 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29561 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29562 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29563 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29564 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29565 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29566 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29567 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29568 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29569 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29570 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29571 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29572 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29573 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29574 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29575 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29576 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29577 }; 29578 29579 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29580 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29581 KSTAT_FLAG_VIRTUAL, stackid); 29582 29583 if (ksp == NULL) 29584 return (NULL); 29585 29586 bcopy(&template, ip_statisticsp, sizeof (template)); 29587 ksp->ks_data = (void *)ip_statisticsp; 29588 ksp->ks_private = (void *)(uintptr_t)stackid; 29589 29590 kstat_install(ksp); 29591 return (ksp); 29592 } 29593 29594 static void 29595 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29596 { 29597 if (ksp != NULL) { 29598 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29599 kstat_delete_netstack(ksp, stackid); 29600 } 29601 } 29602 29603 static void * 29604 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29605 { 29606 kstat_t *ksp; 29607 29608 ip_named_kstat_t template = { 29609 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29610 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29611 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29612 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29613 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29614 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29615 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29616 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29617 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29618 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29619 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29620 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29621 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29622 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29623 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29624 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29625 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29626 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29627 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29628 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29629 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29630 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29631 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29632 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29633 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29634 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29635 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29636 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29637 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29638 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29639 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29640 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29641 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29642 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29643 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29644 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29645 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29646 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29647 }; 29648 29649 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29650 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29651 if (ksp == NULL || ksp->ks_data == NULL) 29652 return (NULL); 29653 29654 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29655 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29656 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29657 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29658 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29659 29660 template.netToMediaEntrySize.value.i32 = 29661 sizeof (mib2_ipNetToMediaEntry_t); 29662 29663 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29664 29665 bcopy(&template, ksp->ks_data, sizeof (template)); 29666 ksp->ks_update = ip_kstat_update; 29667 ksp->ks_private = (void *)(uintptr_t)stackid; 29668 29669 kstat_install(ksp); 29670 return (ksp); 29671 } 29672 29673 static void 29674 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29675 { 29676 if (ksp != NULL) { 29677 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29678 kstat_delete_netstack(ksp, stackid); 29679 } 29680 } 29681 29682 static int 29683 ip_kstat_update(kstat_t *kp, int rw) 29684 { 29685 ip_named_kstat_t *ipkp; 29686 mib2_ipIfStatsEntry_t ipmib; 29687 ill_walk_context_t ctx; 29688 ill_t *ill; 29689 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29690 netstack_t *ns; 29691 ip_stack_t *ipst; 29692 29693 if (kp == NULL || kp->ks_data == NULL) 29694 return (EIO); 29695 29696 if (rw == KSTAT_WRITE) 29697 return (EACCES); 29698 29699 ns = netstack_find_by_stackid(stackid); 29700 if (ns == NULL) 29701 return (-1); 29702 ipst = ns->netstack_ip; 29703 if (ipst == NULL) { 29704 netstack_rele(ns); 29705 return (-1); 29706 } 29707 ipkp = (ip_named_kstat_t *)kp->ks_data; 29708 29709 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29710 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29711 ill = ILL_START_WALK_V4(&ctx, ipst); 29712 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29713 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29714 rw_exit(&ipst->ips_ill_g_lock); 29715 29716 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29717 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29718 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29719 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29720 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29721 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29722 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29723 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29724 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29725 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29726 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29727 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29728 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29729 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29730 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29731 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29732 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29733 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29734 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29735 29736 ipkp->routingDiscards.value.ui32 = 0; 29737 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29738 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29739 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29740 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29741 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29742 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29743 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29744 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29745 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29746 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29747 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29748 29749 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29750 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29751 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29752 29753 netstack_rele(ns); 29754 29755 return (0); 29756 } 29757 29758 static void * 29759 icmp_kstat_init(netstackid_t stackid) 29760 { 29761 kstat_t *ksp; 29762 29763 icmp_named_kstat_t template = { 29764 { "inMsgs", KSTAT_DATA_UINT32 }, 29765 { "inErrors", KSTAT_DATA_UINT32 }, 29766 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29767 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29768 { "inParmProbs", KSTAT_DATA_UINT32 }, 29769 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29770 { "inRedirects", KSTAT_DATA_UINT32 }, 29771 { "inEchos", KSTAT_DATA_UINT32 }, 29772 { "inEchoReps", KSTAT_DATA_UINT32 }, 29773 { "inTimestamps", KSTAT_DATA_UINT32 }, 29774 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29775 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29776 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29777 { "outMsgs", KSTAT_DATA_UINT32 }, 29778 { "outErrors", KSTAT_DATA_UINT32 }, 29779 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29780 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29781 { "outParmProbs", KSTAT_DATA_UINT32 }, 29782 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29783 { "outRedirects", KSTAT_DATA_UINT32 }, 29784 { "outEchos", KSTAT_DATA_UINT32 }, 29785 { "outEchoReps", KSTAT_DATA_UINT32 }, 29786 { "outTimestamps", KSTAT_DATA_UINT32 }, 29787 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29788 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29789 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29790 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29791 { "inUnknowns", KSTAT_DATA_UINT32 }, 29792 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29793 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29794 { "outDrops", KSTAT_DATA_UINT32 }, 29795 { "inOverFlows", KSTAT_DATA_UINT32 }, 29796 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29797 }; 29798 29799 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29800 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29801 if (ksp == NULL || ksp->ks_data == NULL) 29802 return (NULL); 29803 29804 bcopy(&template, ksp->ks_data, sizeof (template)); 29805 29806 ksp->ks_update = icmp_kstat_update; 29807 ksp->ks_private = (void *)(uintptr_t)stackid; 29808 29809 kstat_install(ksp); 29810 return (ksp); 29811 } 29812 29813 static void 29814 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29815 { 29816 if (ksp != NULL) { 29817 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29818 kstat_delete_netstack(ksp, stackid); 29819 } 29820 } 29821 29822 static int 29823 icmp_kstat_update(kstat_t *kp, int rw) 29824 { 29825 icmp_named_kstat_t *icmpkp; 29826 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29827 netstack_t *ns; 29828 ip_stack_t *ipst; 29829 29830 if ((kp == NULL) || (kp->ks_data == NULL)) 29831 return (EIO); 29832 29833 if (rw == KSTAT_WRITE) 29834 return (EACCES); 29835 29836 ns = netstack_find_by_stackid(stackid); 29837 if (ns == NULL) 29838 return (-1); 29839 ipst = ns->netstack_ip; 29840 if (ipst == NULL) { 29841 netstack_rele(ns); 29842 return (-1); 29843 } 29844 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29845 29846 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29847 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29848 icmpkp->inDestUnreachs.value.ui32 = 29849 ipst->ips_icmp_mib.icmpInDestUnreachs; 29850 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29851 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29852 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29853 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29854 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29855 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29856 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29857 icmpkp->inTimestampReps.value.ui32 = 29858 ipst->ips_icmp_mib.icmpInTimestampReps; 29859 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29860 icmpkp->inAddrMaskReps.value.ui32 = 29861 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29862 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29863 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29864 icmpkp->outDestUnreachs.value.ui32 = 29865 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29866 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29867 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29868 icmpkp->outSrcQuenchs.value.ui32 = 29869 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29870 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29871 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29872 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29873 icmpkp->outTimestamps.value.ui32 = 29874 ipst->ips_icmp_mib.icmpOutTimestamps; 29875 icmpkp->outTimestampReps.value.ui32 = 29876 ipst->ips_icmp_mib.icmpOutTimestampReps; 29877 icmpkp->outAddrMasks.value.ui32 = 29878 ipst->ips_icmp_mib.icmpOutAddrMasks; 29879 icmpkp->outAddrMaskReps.value.ui32 = 29880 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29881 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29882 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29883 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29884 icmpkp->outFragNeeded.value.ui32 = 29885 ipst->ips_icmp_mib.icmpOutFragNeeded; 29886 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29887 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29888 icmpkp->inBadRedirects.value.ui32 = 29889 ipst->ips_icmp_mib.icmpInBadRedirects; 29890 29891 netstack_rele(ns); 29892 return (0); 29893 } 29894 29895 /* 29896 * This is the fanout function for raw socket opened for SCTP. Note 29897 * that it is called after SCTP checks that there is no socket which 29898 * wants a packet. Then before SCTP handles this out of the blue packet, 29899 * this function is called to see if there is any raw socket for SCTP. 29900 * If there is and it is bound to the correct address, the packet will 29901 * be sent to that socket. Note that only one raw socket can be bound to 29902 * a port. This is assured in ipcl_sctp_hash_insert(); 29903 */ 29904 void 29905 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29906 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29907 zoneid_t zoneid) 29908 { 29909 conn_t *connp; 29910 queue_t *rq; 29911 mblk_t *first_mp; 29912 boolean_t secure; 29913 ip6_t *ip6h; 29914 ip_stack_t *ipst = recv_ill->ill_ipst; 29915 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29916 29917 first_mp = mp; 29918 if (mctl_present) { 29919 mp = first_mp->b_cont; 29920 secure = ipsec_in_is_secure(first_mp); 29921 ASSERT(mp != NULL); 29922 } else { 29923 secure = B_FALSE; 29924 } 29925 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29926 29927 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29928 if (connp == NULL) { 29929 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29930 return; 29931 } 29932 rq = connp->conn_rq; 29933 if (!canputnext(rq)) { 29934 CONN_DEC_REF(connp); 29935 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29936 freemsg(first_mp); 29937 return; 29938 } 29939 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29940 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29941 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29942 (isv4 ? ipha : NULL), ip6h, mctl_present); 29943 if (first_mp == NULL) { 29944 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29945 CONN_DEC_REF(connp); 29946 return; 29947 } 29948 } 29949 /* 29950 * We probably should not send M_CTL message up to 29951 * raw socket. 29952 */ 29953 if (mctl_present) 29954 freeb(first_mp); 29955 29956 /* Initiate IPPF processing here if needed. */ 29957 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29958 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29959 ip_process(IPP_LOCAL_IN, &mp, 29960 recv_ill->ill_phyint->phyint_ifindex); 29961 if (mp == NULL) { 29962 CONN_DEC_REF(connp); 29963 return; 29964 } 29965 } 29966 29967 if (connp->conn_recvif || connp->conn_recvslla || 29968 ((connp->conn_ip_recvpktinfo || 29969 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29970 (flags & IP_FF_IPINFO))) { 29971 int in_flags = 0; 29972 29973 /* 29974 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29975 * IPF_RECVIF. 29976 */ 29977 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29978 in_flags = IPF_RECVIF; 29979 } 29980 if (connp->conn_recvslla) { 29981 in_flags |= IPF_RECVSLLA; 29982 } 29983 if (isv4) { 29984 mp = ip_add_info(mp, recv_ill, in_flags, 29985 IPCL_ZONEID(connp), ipst); 29986 } else { 29987 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29988 if (mp == NULL) { 29989 BUMP_MIB(recv_ill->ill_ip_mib, 29990 ipIfStatsInDiscards); 29991 CONN_DEC_REF(connp); 29992 return; 29993 } 29994 } 29995 } 29996 29997 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29998 /* 29999 * We are sending the IPSEC_IN message also up. Refer 30000 * to comments above this function. 30001 */ 30002 putnext(rq, mp); 30003 CONN_DEC_REF(connp); 30004 } 30005 30006 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30007 { \ 30008 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30009 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30010 } 30011 /* 30012 * This function should be called only if all packet processing 30013 * including fragmentation is complete. Callers of this function 30014 * must set mp->b_prev to one of these values: 30015 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30016 * prior to handing over the mp as first argument to this function. 30017 * 30018 * If the ire passed by caller is incomplete, this function 30019 * queues the packet and if necessary, sends ARP request and bails. 30020 * If the ire passed is fully resolved, we simply prepend 30021 * the link-layer header to the packet, do ipsec hw acceleration 30022 * work if necessary, and send the packet out on the wire. 30023 * 30024 * NOTE: IPSEC will only call this function with fully resolved 30025 * ires if hw acceleration is involved. 30026 * TODO list : 30027 * a Handle M_MULTIDATA so that 30028 * tcp_multisend->tcp_multisend_data can 30029 * call ip_xmit_v4 directly 30030 * b Handle post-ARP work for fragments so that 30031 * ip_wput_frag can call this function. 30032 */ 30033 ipxmit_state_t 30034 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 30035 { 30036 nce_t *arpce; 30037 queue_t *q; 30038 int ill_index; 30039 mblk_t *nxt_mp, *first_mp; 30040 boolean_t xmit_drop = B_FALSE; 30041 ip_proc_t proc; 30042 ill_t *out_ill; 30043 int pkt_len; 30044 30045 arpce = ire->ire_nce; 30046 ASSERT(arpce != NULL); 30047 30048 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30049 30050 mutex_enter(&arpce->nce_lock); 30051 switch (arpce->nce_state) { 30052 case ND_REACHABLE: 30053 /* If there are other queued packets, queue this packet */ 30054 if (arpce->nce_qd_mp != NULL) { 30055 if (mp != NULL) 30056 nce_queue_mp_common(arpce, mp, B_FALSE); 30057 mp = arpce->nce_qd_mp; 30058 } 30059 arpce->nce_qd_mp = NULL; 30060 mutex_exit(&arpce->nce_lock); 30061 30062 /* 30063 * Flush the queue. In the common case, where the 30064 * ARP is already resolved, it will go through the 30065 * while loop only once. 30066 */ 30067 while (mp != NULL) { 30068 30069 nxt_mp = mp->b_next; 30070 mp->b_next = NULL; 30071 ASSERT(mp->b_datap->db_type != M_CTL); 30072 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30073 /* 30074 * This info is needed for IPQOS to do COS marking 30075 * in ip_wput_attach_llhdr->ip_process. 30076 */ 30077 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30078 mp->b_prev = NULL; 30079 30080 /* set up ill index for outbound qos processing */ 30081 out_ill = ire->ire_ipif->ipif_ill; 30082 ill_index = out_ill->ill_phyint->phyint_ifindex; 30083 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30084 ill_index); 30085 if (first_mp == NULL) { 30086 xmit_drop = B_TRUE; 30087 BUMP_MIB(out_ill->ill_ip_mib, 30088 ipIfStatsOutDiscards); 30089 goto next_mp; 30090 } 30091 /* non-ipsec hw accel case */ 30092 if (io == NULL || !io->ipsec_out_accelerated) { 30093 /* send it */ 30094 q = ire->ire_stq; 30095 if (proc == IPP_FWD_OUT) { 30096 UPDATE_IB_PKT_COUNT(ire); 30097 } else { 30098 UPDATE_OB_PKT_COUNT(ire); 30099 } 30100 ire->ire_last_used_time = lbolt; 30101 30102 if (flow_ctl_enabled || canputnext(q)) { 30103 if (proc == IPP_FWD_OUT) { 30104 30105 BUMP_MIB(out_ill->ill_ip_mib, 30106 ipIfStatsHCOutForwDatagrams); 30107 30108 } 30109 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30110 pkt_len); 30111 30112 putnext(q, first_mp); 30113 } else { 30114 BUMP_MIB(out_ill->ill_ip_mib, 30115 ipIfStatsOutDiscards); 30116 xmit_drop = B_TRUE; 30117 freemsg(first_mp); 30118 } 30119 } else { 30120 /* 30121 * Safety Pup says: make sure this 30122 * is going to the right interface! 30123 */ 30124 ill_t *ill1 = 30125 (ill_t *)ire->ire_stq->q_ptr; 30126 int ifindex = 30127 ill1->ill_phyint->phyint_ifindex; 30128 if (ifindex != 30129 io->ipsec_out_capab_ill_index) { 30130 xmit_drop = B_TRUE; 30131 freemsg(mp); 30132 } else { 30133 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30134 pkt_len); 30135 ipsec_hw_putnext(ire->ire_stq, mp); 30136 } 30137 } 30138 next_mp: 30139 mp = nxt_mp; 30140 } /* while (mp != NULL) */ 30141 if (xmit_drop) 30142 return (SEND_FAILED); 30143 else 30144 return (SEND_PASSED); 30145 30146 case ND_INITIAL: 30147 case ND_INCOMPLETE: 30148 30149 /* 30150 * While we do send off packets to dests that 30151 * use fully-resolved CGTP routes, we do not 30152 * handle unresolved CGTP routes. 30153 */ 30154 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30155 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30156 30157 if (mp != NULL) { 30158 /* queue the packet */ 30159 nce_queue_mp_common(arpce, mp, B_FALSE); 30160 } 30161 30162 if (arpce->nce_state == ND_INCOMPLETE) { 30163 mutex_exit(&arpce->nce_lock); 30164 DTRACE_PROBE3(ip__xmit__incomplete, 30165 (ire_t *), ire, (mblk_t *), mp, 30166 (ipsec_out_t *), io); 30167 return (LOOKUP_IN_PROGRESS); 30168 } 30169 30170 arpce->nce_state = ND_INCOMPLETE; 30171 mutex_exit(&arpce->nce_lock); 30172 /* 30173 * Note that ire_add() (called from ire_forward()) 30174 * holds a ref on the ire until ARP is completed. 30175 */ 30176 30177 ire_arpresolve(ire, ire_to_ill(ire)); 30178 return (LOOKUP_IN_PROGRESS); 30179 default: 30180 ASSERT(0); 30181 mutex_exit(&arpce->nce_lock); 30182 return (LLHDR_RESLV_FAILED); 30183 } 30184 } 30185 30186 #undef UPDATE_IP_MIB_OB_COUNTERS 30187 30188 /* 30189 * Return B_TRUE if the buffers differ in length or content. 30190 * This is used for comparing extension header buffers. 30191 * Note that an extension header would be declared different 30192 * even if all that changed was the next header value in that header i.e. 30193 * what really changed is the next extension header. 30194 */ 30195 boolean_t 30196 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30197 uint_t blen) 30198 { 30199 if (!b_valid) 30200 blen = 0; 30201 30202 if (alen != blen) 30203 return (B_TRUE); 30204 if (alen == 0) 30205 return (B_FALSE); /* Both zero length */ 30206 return (bcmp(abuf, bbuf, alen)); 30207 } 30208 30209 /* 30210 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30211 * Return B_FALSE if memory allocation fails - don't change any state! 30212 */ 30213 boolean_t 30214 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30215 const void *src, uint_t srclen) 30216 { 30217 void *dst; 30218 30219 if (!src_valid) 30220 srclen = 0; 30221 30222 ASSERT(*dstlenp == 0); 30223 if (src != NULL && srclen != 0) { 30224 dst = mi_alloc(srclen, BPRI_MED); 30225 if (dst == NULL) 30226 return (B_FALSE); 30227 } else { 30228 dst = NULL; 30229 } 30230 if (*dstp != NULL) 30231 mi_free(*dstp); 30232 *dstp = dst; 30233 *dstlenp = dst == NULL ? 0 : srclen; 30234 return (B_TRUE); 30235 } 30236 30237 /* 30238 * Replace what is in *dst, *dstlen with the source. 30239 * Assumes ip_allocbuf has already been called. 30240 */ 30241 void 30242 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30243 const void *src, uint_t srclen) 30244 { 30245 if (!src_valid) 30246 srclen = 0; 30247 30248 ASSERT(*dstlenp == srclen); 30249 if (src != NULL && srclen != 0) 30250 bcopy(src, *dstp, srclen); 30251 } 30252 30253 /* 30254 * Free the storage pointed to by the members of an ip6_pkt_t. 30255 */ 30256 void 30257 ip6_pkt_free(ip6_pkt_t *ipp) 30258 { 30259 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30260 30261 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30262 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30263 ipp->ipp_hopopts = NULL; 30264 ipp->ipp_hopoptslen = 0; 30265 } 30266 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30267 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30268 ipp->ipp_rtdstopts = NULL; 30269 ipp->ipp_rtdstoptslen = 0; 30270 } 30271 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30272 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30273 ipp->ipp_dstopts = NULL; 30274 ipp->ipp_dstoptslen = 0; 30275 } 30276 if (ipp->ipp_fields & IPPF_RTHDR) { 30277 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30278 ipp->ipp_rthdr = NULL; 30279 ipp->ipp_rthdrlen = 0; 30280 } 30281 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30282 IPPF_RTHDR); 30283 } 30284