1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 #include <sys/sunddi.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <rpc/pmap_prot.h> 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 133 * IP_SQUEUE_ENTER: squeue_enter 134 * IP_SQUEUE_FILL: squeue_fill 135 */ 136 int ip_squeue_enter = 2; /* Setable in /etc/system */ 137 138 squeue_func_t ip_input_proc; 139 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 /* 180 * Cluster specific hooks. These should be NULL when booted as a non-cluster 181 */ 182 183 /* 184 * Hook functions to enable cluster networking 185 * On non-clustered systems these vectors must always be NULL. 186 * 187 * Hook function to Check ip specified ip address is a shared ip address 188 * in the cluster 189 * 190 */ 191 int (*cl_inet_isclusterwide)(uint8_t protocol, 192 sa_family_t addr_family, uint8_t *laddrp) = NULL; 193 194 /* 195 * Hook function to generate cluster wide ip fragment identifier 196 */ 197 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 198 uint8_t *laddrp, uint8_t *faddrp) = NULL; 199 200 /* 201 * Synchronization notes: 202 * 203 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 204 * MT level protection given by STREAMS. IP uses a combination of its own 205 * internal serialization mechanism and standard Solaris locking techniques. 206 * The internal serialization is per phyint (no IPMP) or per IPMP group. 207 * This is used to serialize plumbing operations, IPMP operations, certain 208 * multicast operations, most set ioctls, igmp/mld timers etc. 209 * 210 * Plumbing is a long sequence of operations involving message 211 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 212 * involved in plumbing operations. A natural model is to serialize these 213 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 214 * parallel without any interference. But various set ioctls on hme0 are best 215 * serialized. However if the system uses IPMP, the operations are easier if 216 * they are serialized on a per IPMP group basis since IPMP operations 217 * happen across ill's of a group. Thus the lowest common denominator is to 218 * serialize most set ioctls, multicast join/leave operations, IPMP operations 219 * igmp/mld timer operations, and processing of DLPI control messages received 220 * from drivers on a per IPMP group basis. If the system does not employ 221 * IPMP the serialization is on a per phyint basis. This serialization is 222 * provided by the ipsq_t and primitives operating on this. Details can 223 * be found in ip_if.c above the core primitives operating on ipsq_t. 224 * 225 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 226 * Simiarly lookup of an ire by a thread also returns a refheld ire. 227 * In addition ipif's and ill's referenced by the ire are also indirectly 228 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 229 * the ipif's address or netmask change as long as an ipif is refheld 230 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 231 * address of an ipif has to go through the ipsq_t. This ensures that only 232 * 1 such exclusive operation proceeds at any time on the ipif. It then 233 * deletes all ires associated with this ipif, and waits for all refcnts 234 * associated with this ipif to come down to zero. The address is changed 235 * only after the ipif has been quiesced. Then the ipif is brought up again. 236 * More details are described above the comment in ip_sioctl_flags. 237 * 238 * Packet processing is based mostly on IREs and are fully multi-threaded 239 * using standard Solaris MT techniques. 240 * 241 * There are explicit locks in IP to handle: 242 * - The ip_g_head list maintained by mi_open_link() and friends. 243 * 244 * - The reassembly data structures (one lock per hash bucket) 245 * 246 * - conn_lock is meant to protect conn_t fields. The fields actually 247 * protected by conn_lock are documented in the conn_t definition. 248 * 249 * - ire_lock to protect some of the fields of the ire, IRE tables 250 * (one lock per hash bucket). Refer to ip_ire.c for details. 251 * 252 * - ndp_g_lock and nce_lock for protecting NCEs. 253 * 254 * - ill_lock protects fields of the ill and ipif. Details in ip.h 255 * 256 * - ill_g_lock: This is a global reader/writer lock. Protects the following 257 * * The AVL tree based global multi list of all ills. 258 * * The linked list of all ipifs of an ill 259 * * The <ill-ipsq> mapping 260 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 261 * * The illgroup list threaded by ill_group_next. 262 * * <ill-phyint> association 263 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 264 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 265 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 266 * will all have to hold the ill_g_lock as writer for the actual duration 267 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 268 * may be found in the IPMP section. 269 * 270 * - ill_lock: This is a per ill mutex. 271 * It protects some members of the ill and is documented below. 272 * It also protects the <ill-ipsq> mapping 273 * It also protects the illgroup list threaded by ill_group_next. 274 * It also protects the <ill-phyint> assoc. 275 * It also protects the list of ipifs hanging off the ill. 276 * 277 * - ipsq_lock: This is a per ipsq_t mutex lock. 278 * This protects all the other members of the ipsq struct except 279 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 280 * 281 * - illgrp_lock: This is a per ill_group mutex lock. 282 * The only thing it protects is the illgrp_ill_schednext member of ill_group 283 * which dictates which is the next ill in an ill_group that is to be chosen 284 * for sending outgoing packets, through creation of an IRE_CACHE that 285 * references this ill. 286 * 287 * - phyint_lock: This is a per phyint mutex lock. Protects just the 288 * phyint_flags 289 * 290 * - ip_g_nd_lock: This is a global reader/writer lock. 291 * Any call to nd_load to load a new parameter to the ND table must hold the 292 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 293 * as reader. 294 * 295 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 296 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 297 * uniqueness check also done atomically. 298 * 299 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 300 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 301 * as a writer when adding or deleting elements from these lists, and 302 * as a reader when walking these lists to send a SADB update to the 303 * IPsec capable ills. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 314 * ip_sioctl_flags since the these operations are executed exclusively and 315 * that ensures that the "usesrc group state" cannot change. The "usesrc 316 * group state" change can happen only in the latter part of 317 * ip_sioctl_slifusesrc and in ill_delete. 318 * 319 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 320 * 321 * To change the <ill-phyint> association, the ill_g_lock must be held 322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 323 * must be held. 324 * 325 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 326 * and the ill_lock of the ill in question must be held. 327 * 328 * To change the <ill-illgroup> association the ill_g_lock must be held as 329 * writer and the ill_lock of the ill in question must be held. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq,. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 346 * ill_g_lock -> illgrp_lock -> ill_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * IPsec scenarios 358 * 359 * ipsa_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ipsa_lock 362 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 363 * 364 * Trusted Solaris scenarios 365 * 366 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 367 * igsa_lock -> gcdb_lock 368 * gcgrp_rwlock -> ire_lock 369 * gcgrp_rwlock -> gcdb_lock 370 * 371 * 372 * Routing/forwarding table locking notes: 373 * 374 * Lock acquisition order: Radix tree lock, irb_lock. 375 * Requirements: 376 * i. Walker must not hold any locks during the walker callback. 377 * ii Walker must not see a truncated tree during the walk because of any node 378 * deletion. 379 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 380 * in many places in the code to walk the irb list. Thus even if all the 381 * ires in a bucket have been deleted, we still can't free the radix node 382 * until the ires have actually been inactive'd (freed). 383 * 384 * Tree traversal - Need to hold the global tree lock in read mode. 385 * Before dropping the global tree lock, need to either increment the ire_refcnt 386 * to ensure that the radix node can't be deleted. 387 * 388 * Tree add - Need to hold the global tree lock in write mode to add a 389 * radix node. To prevent the node from being deleted, increment the 390 * irb_refcnt, after the node is added to the tree. The ire itself is 391 * added later while holding the irb_lock, but not the tree lock. 392 * 393 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 394 * All associated ires must be inactive (i.e. freed), and irb_refcnt 395 * must be zero. 396 * 397 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 398 * global tree lock (read mode) for traversal. 399 * 400 * IPsec notes : 401 * 402 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 403 * in front of the actual packet. For outbound datagrams, the M_CTL 404 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 405 * information used by the IPsec code for applying the right level of 406 * protection. The information initialized by IP in the ipsec_out_t 407 * is determined by the per-socket policy or global policy in the system. 408 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 409 * ipsec_info.h) which starts out with nothing in it. It gets filled 410 * with the right information if it goes through the AH/ESP code, which 411 * happens if the incoming packet is secure. The information initialized 412 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 413 * the policy requirements needed by per-socket policy or global policy 414 * is met or not. 415 * 416 * If there is both per-socket policy (set using setsockopt) and there 417 * is also global policy match for the 5 tuples of the socket, 418 * ipsec_override_policy() makes the decision of which one to use. 419 * 420 * For fully connected sockets i.e dst, src [addr, port] is known, 421 * conn_policy_cached is set indicating that policy has been cached. 422 * conn_in_enforce_policy may or may not be set depending on whether 423 * there is a global policy match or per-socket policy match. 424 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 425 * Once the right policy is set on the conn_t, policy cannot change for 426 * this socket. This makes life simpler for TCP (UDP ?) where 427 * re-transmissions go out with the same policy. For symmetry, policy 428 * is cached for fully connected UDP sockets also. Thus if policy is cached, 429 * it also implies that policy is latched i.e policy cannot change 430 * on these sockets. As we have the right policy on the conn, we don't 431 * have to lookup global policy for every outbound and inbound datagram 432 * and thus serving as an optimization. Note that a global policy change 433 * does not affect fully connected sockets if they have policy. If fully 434 * connected sockets did not have any policy associated with it, global 435 * policy change may affect them. 436 * 437 * IP Flow control notes: 438 * 439 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 440 * cannot be sent down to the driver by IP, because of a canput failure, IP 441 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 442 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 443 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 444 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 445 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 446 * the queued messages, and removes the conn from the drain list, if all 447 * messages were drained. It also qenables the next conn in the drain list to 448 * continue the drain process. 449 * 450 * In reality the drain list is not a single list, but a configurable number 451 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 452 * list. If the ip_wsrv of the next qenabled conn does not run, because the 453 * stream closes, ip_close takes responsibility to qenable the next conn in 454 * the drain list. The directly called ip_wput path always does a putq, if 455 * it cannot putnext. Thus synchronization problems are handled between 456 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 457 * functions that manipulate this drain list. Furthermore conn_drain_insert 458 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 459 * running on a queue at any time. conn_drain_tail can be simultaneously called 460 * from both ip_wsrv and ip_close. 461 * 462 * IPQOS notes: 463 * 464 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 465 * and IPQoS modules. IPPF includes hooks in IP at different control points 466 * (callout positions) which direct packets to IPQoS modules for policy 467 * processing. Policies, if present, are global. 468 * 469 * The callout positions are located in the following paths: 470 * o local_in (packets destined for this host) 471 * o local_out (packets orginating from this host ) 472 * o fwd_in (packets forwarded by this m/c - inbound) 473 * o fwd_out (packets forwarded by this m/c - outbound) 474 * Hooks at these callout points can be enabled/disabled using the ndd variable 475 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 476 * By default all the callout positions are enabled. 477 * 478 * Outbound (local_out) 479 * Hooks are placed in ip_wput_ire and ipsec_out_process. 480 * 481 * Inbound (local_in) 482 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 483 * TCP and UDP fanout routines. 484 * 485 * Forwarding (in and out) 486 * Hooks are placed in ip_rput_forward. 487 * 488 * IP Policy Framework processing (IPPF processing) 489 * Policy processing for a packet is initiated by ip_process, which ascertains 490 * that the classifier (ipgpc) is loaded and configured, failing which the 491 * packet resumes normal processing in IP. If the clasifier is present, the 492 * packet is acted upon by one or more IPQoS modules (action instances), per 493 * filters configured in ipgpc and resumes normal IP processing thereafter. 494 * An action instance can drop a packet in course of its processing. 495 * 496 * A boolean variable, ip_policy, is used in all the fanout routines that can 497 * invoke ip_process for a packet. This variable indicates if the packet should 498 * to be sent for policy processing. The variable is set to B_TRUE by default, 499 * i.e. when the routines are invoked in the normal ip procesing path for a 500 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 501 * ip_policy is set to B_FALSE for all the routines called in these two 502 * functions because, in the former case, we don't process loopback traffic 503 * currently while in the latter, the packets have already been processed in 504 * icmp_inbound. 505 * 506 * Zones notes: 507 * 508 * The partitioning rules for networking are as follows: 509 * 1) Packets coming from a zone must have a source address belonging to that 510 * zone. 511 * 2) Packets coming from a zone can only be sent on a physical interface on 512 * which the zone has an IP address. 513 * 3) Between two zones on the same machine, packet delivery is only allowed if 514 * there's a matching route for the destination and zone in the forwarding 515 * table. 516 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 517 * different zones can bind to the same port with the wildcard address 518 * (INADDR_ANY). 519 * 520 * The granularity of interface partitioning is at the logical interface level. 521 * Therefore, every zone has its own IP addresses, and incoming packets can be 522 * attributed to a zone unambiguously. A logical interface is placed into a zone 523 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 524 * structure. Rule (1) is implemented by modifying the source address selection 525 * algorithm so that the list of eligible addresses is filtered based on the 526 * sending process zone. 527 * 528 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 529 * across all zones, depending on their type. Here is the break-up: 530 * 531 * IRE type Shared/exclusive 532 * -------- ---------------- 533 * IRE_BROADCAST Exclusive 534 * IRE_DEFAULT (default routes) Shared (*) 535 * IRE_LOCAL Exclusive (x) 536 * IRE_LOOPBACK Exclusive 537 * IRE_PREFIX (net routes) Shared (*) 538 * IRE_CACHE Exclusive 539 * IRE_IF_NORESOLVER (interface routes) Exclusive 540 * IRE_IF_RESOLVER (interface routes) Exclusive 541 * IRE_HOST (host routes) Shared (*) 542 * 543 * (*) A zone can only use a default or off-subnet route if the gateway is 544 * directly reachable from the zone, that is, if the gateway's address matches 545 * one of the zone's logical interfaces. 546 * 547 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 548 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 549 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 550 * address of the zone itself (the destination). Since IRE_LOCAL is used 551 * for communication between zones, ip_wput_ire has special logic to set 552 * the right source address when sending using an IRE_LOCAL. 553 * 554 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 555 * ire_cache_lookup restricts loopback using an IRE_LOCAL 556 * between zone to the case when L2 would have conceptually looped the packet 557 * back, i.e. the loopback which is required since neither Ethernet drivers 558 * nor Ethernet hardware loops them back. This is the case when the normal 559 * routes (ignoring IREs with different zoneids) would send out the packet on 560 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 561 * associated. 562 * 563 * Multiple zones can share a common broadcast address; typically all zones 564 * share the 255.255.255.255 address. Incoming as well as locally originated 565 * broadcast packets must be dispatched to all the zones on the broadcast 566 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 567 * since some zones may not be on the 10.16.72/24 network. To handle this, each 568 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 569 * sent to every zone that has an IRE_BROADCAST entry for the destination 570 * address on the input ill, see conn_wantpacket(). 571 * 572 * Applications in different zones can join the same multicast group address. 573 * For IPv4, group memberships are per-logical interface, so they're already 574 * inherently part of a zone. For IPv6, group memberships are per-physical 575 * interface, so we distinguish IPv6 group memberships based on group address, 576 * interface and zoneid. In both cases, received multicast packets are sent to 577 * every zone for which a group membership entry exists. On IPv6 we need to 578 * check that the target zone still has an address on the receiving physical 579 * interface; it could have been removed since the application issued the 580 * IPV6_JOIN_GROUP. 581 */ 582 583 /* 584 * Squeue Fanout flags: 585 * 0: No fanout. 586 * 1: Fanout across all squeues 587 */ 588 boolean_t ip_squeue_fanout = 0; 589 590 /* 591 * Maximum dups allowed per packet. 592 */ 593 uint_t ip_max_frag_dups = 10; 594 595 #define IS_SIMPLE_IPH(ipha) \ 596 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 597 598 /* RFC1122 Conformance */ 599 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 600 601 #define ILL_MAX_NAMELEN LIFNAMSIZ 602 603 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 604 605 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 606 cred_t *credp, boolean_t isv6); 607 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena; 789 790 int ip_debug; 791 792 #ifdef DEBUG 793 uint32_t ipsechw_debug = 0; 794 #endif 795 796 /* 797 * Multirouting/CGTP stuff 798 */ 799 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 800 801 /* 802 * XXX following really should only be in a header. Would need more 803 * header and .c clean up first. 804 */ 805 extern optdb_obj_t ip_opt_obj; 806 807 ulong_t ip_squeue_enter_unbound = 0; 808 809 /* 810 * Named Dispatch Parameter Table. 811 * All of these are alterable, within the min/max values given, at run time. 812 */ 813 static ipparam_t lcl_param_arr[] = { 814 /* min max value name */ 815 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 816 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 818 { 0, 1, 0, "ip_respond_to_timestamp"}, 819 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 820 { 0, 1, 1, "ip_send_redirects"}, 821 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 822 { 0, 10, 0, "ip_debug"}, 823 { 0, 10, 0, "ip_mrtdebug"}, 824 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 825 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 826 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 827 { 1, 255, 255, "ip_def_ttl" }, 828 { 0, 1, 0, "ip_forward_src_routed"}, 829 { 0, 256, 32, "ip_wroff_extra" }, 830 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 831 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 832 { 0, 1, 1, "ip_path_mtu_discovery" }, 833 { 0, 240, 30, "ip_ignore_delete_time" }, 834 { 0, 1, 0, "ip_ignore_redirect" }, 835 { 0, 1, 1, "ip_output_queue" }, 836 { 1, 254, 1, "ip_broadcast_ttl" }, 837 { 0, 99999, 100, "ip_icmp_err_interval" }, 838 { 1, 99999, 10, "ip_icmp_err_burst" }, 839 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 840 { 0, 1, 0, "ip_strict_dst_multihoming" }, 841 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 842 { 0, 1, 0, "ipsec_override_persocket_policy" }, 843 { 0, 1, 1, "icmp_accept_clear_messages" }, 844 { 0, 1, 1, "igmp_accept_clear_messages" }, 845 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 846 "ip_ndp_delay_first_probe_time"}, 847 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 848 "ip_ndp_max_unicast_solicit"}, 849 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 850 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 851 { 0, 1, 0, "ip6_forward_src_routed"}, 852 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 853 { 0, 1, 1, "ip6_send_redirects"}, 854 { 0, 1, 0, "ip6_ignore_redirect" }, 855 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 856 857 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 858 859 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 860 861 { 0, 1, 1, "pim_accept_clear_messages" }, 862 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 863 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 864 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 865 { 0, 15, 0, "ip_policy_mask" }, 866 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 867 { 0, 255, 1, "ip_multirt_ttl" }, 868 { 0, 1, 1, "ip_multidata_outbound" }, 869 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 870 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 871 { 0, 1000, 1, "ip_max_temp_defend" }, 872 { 0, 1000, 3, "ip_max_defend" }, 873 { 0, 999999, 30, "ip_defend_interval" }, 874 { 0, 3600000, 300000, "ip_dup_recovery" }, 875 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 876 { 0, 1, 1, "ip_lso_outbound" }, 877 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 878 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 879 #ifdef DEBUG 880 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 881 #else 882 { 0, 0, 0, "" }, 883 #endif 884 }; 885 886 /* 887 * Extended NDP table 888 * The addresses for the first two are filled in to be ips_ip_g_forward 889 * and ips_ipv6_forward at init time. 890 */ 891 static ipndp_t lcl_ndp_arr[] = { 892 /* getf setf data name */ 893 #define IPNDP_IP_FORWARDING_OFFSET 0 894 { ip_param_generic_get, ip_forward_set, NULL, 895 "ip_forwarding" }, 896 #define IPNDP_IP6_FORWARDING_OFFSET 1 897 { ip_param_generic_get, ip_forward_set, NULL, 898 "ip6_forwarding" }, 899 { ip_ill_report, NULL, NULL, 900 "ip_ill_status" }, 901 { ip_ipif_report, NULL, NULL, 902 "ip_ipif_status" }, 903 { ip_ire_report, NULL, NULL, 904 "ipv4_ire_status" }, 905 { ip_ire_report_v6, NULL, NULL, 906 "ipv6_ire_status" }, 907 { ip_conn_report, NULL, NULL, 908 "ip_conn_status" }, 909 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 910 "ip_rput_pullups" }, 911 { ndp_report, NULL, NULL, 912 "ip_ndp_cache_report" }, 913 { ip_srcid_report, NULL, NULL, 914 "ip_srcid_status" }, 915 { ip_param_generic_get, ip_squeue_profile_set, 916 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 917 { ip_param_generic_get, ip_squeue_bind_set, 918 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 919 { ip_param_generic_get, ip_input_proc_set, 920 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 921 { ip_param_generic_get, ip_int_set, 922 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 923 #define IPNDP_CGTP_FILTER_OFFSET 14 924 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 925 "ip_cgtp_filter" }, 926 { ip_param_generic_get, ip_int_set, 927 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 928 #define IPNDP_IPMP_HOOK_OFFSET 16 929 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 930 "ipmp_hook_emulation" }, 931 }; 932 933 /* 934 * Table of IP ioctls encoding the various properties of the ioctl and 935 * indexed based on the last byte of the ioctl command. Occasionally there 936 * is a clash, and there is more than 1 ioctl with the same last byte. 937 * In such a case 1 ioctl is encoded in the ndx table and the remaining 938 * ioctls are encoded in the misc table. An entry in the ndx table is 939 * retrieved by indexing on the last byte of the ioctl command and comparing 940 * the ioctl command with the value in the ndx table. In the event of a 941 * mismatch the misc table is then searched sequentially for the desired 942 * ioctl command. 943 * 944 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 945 */ 946 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 947 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 958 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 959 MISC_CMD, ip_siocaddrt, NULL }, 960 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 961 MISC_CMD, ip_siocdelrt, NULL }, 962 963 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 964 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 965 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 966 IF_CMD, ip_sioctl_get_addr, NULL }, 967 968 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 969 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 970 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 971 IPI_GET_CMD | IPI_REPL, 972 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 973 974 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 975 IPI_PRIV | IPI_WR | IPI_REPL, 976 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 977 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 978 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 979 IF_CMD, ip_sioctl_get_flags, NULL }, 980 981 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 982 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 983 984 /* copyin size cannot be coded for SIOCGIFCONF */ 985 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 986 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 987 988 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 989 IF_CMD, ip_sioctl_mtu, NULL }, 990 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 991 IF_CMD, ip_sioctl_get_mtu, NULL }, 992 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 993 IPI_GET_CMD | IPI_REPL, 994 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 995 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 996 IF_CMD, ip_sioctl_brdaddr, NULL }, 997 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 998 IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_netmask, NULL }, 1000 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1001 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1002 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1003 IPI_GET_CMD | IPI_REPL, 1004 IF_CMD, ip_sioctl_get_metric, NULL }, 1005 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1006 IF_CMD, ip_sioctl_metric, NULL }, 1007 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1008 1009 /* See 166-168 below for extended SIOC*XARP ioctls */ 1010 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1013 ARP_CMD, ip_sioctl_arp, NULL }, 1014 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1015 ARP_CMD, ip_sioctl_arp, NULL }, 1016 1017 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 1039 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1040 MISC_CMD, if_unitsel, if_unitsel_restart }, 1041 1042 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1062 IPI_PRIV | IPI_WR | IPI_MODOK, 1063 IF_CMD, ip_sioctl_sifname, NULL }, 1064 1065 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 1079 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1080 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1081 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1082 IF_CMD, ip_sioctl_get_muxid, NULL }, 1083 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1084 IPI_PRIV | IPI_WR | IPI_REPL, 1085 IF_CMD, ip_sioctl_muxid, NULL }, 1086 1087 /* Both if and lif variants share same func */ 1088 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1089 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1090 /* Both if and lif variants share same func */ 1091 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_slifindex, NULL }, 1094 1095 /* copyin size cannot be coded for SIOCGIFCONF */ 1096 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1097 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1098 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 1116 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1117 IPI_PRIV | IPI_WR | IPI_REPL, 1118 LIF_CMD, ip_sioctl_removeif, 1119 ip_sioctl_removeif_restart }, 1120 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1121 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1122 LIF_CMD, ip_sioctl_addif, NULL }, 1123 #define SIOCLIFADDR_NDX 112 1124 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1125 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1126 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1127 IPI_GET_CMD | IPI_REPL, 1128 LIF_CMD, ip_sioctl_get_addr, NULL }, 1129 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1130 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1131 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1132 IPI_GET_CMD | IPI_REPL, 1133 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1134 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1135 IPI_PRIV | IPI_WR | IPI_REPL, 1136 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1137 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1138 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1139 LIF_CMD, ip_sioctl_get_flags, NULL }, 1140 1141 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 1144 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1145 ip_sioctl_get_lifconf, NULL }, 1146 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1147 LIF_CMD, ip_sioctl_mtu, NULL }, 1148 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1149 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1150 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1151 IPI_GET_CMD | IPI_REPL, 1152 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1153 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1154 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1155 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1156 IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1158 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1159 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1160 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1161 IPI_GET_CMD | IPI_REPL, 1162 LIF_CMD, ip_sioctl_get_metric, NULL }, 1163 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1164 LIF_CMD, ip_sioctl_metric, NULL }, 1165 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1166 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1167 LIF_CMD, ip_sioctl_slifname, 1168 ip_sioctl_slifname_restart }, 1169 1170 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1171 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1172 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1173 IPI_GET_CMD | IPI_REPL, 1174 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1175 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1176 IPI_PRIV | IPI_WR | IPI_REPL, 1177 LIF_CMD, ip_sioctl_muxid, NULL }, 1178 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1179 IPI_GET_CMD | IPI_REPL, 1180 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1181 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1182 IPI_PRIV | IPI_WR | IPI_REPL, 1183 LIF_CMD, ip_sioctl_slifindex, 0 }, 1184 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1185 LIF_CMD, ip_sioctl_token, NULL }, 1186 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_token, NULL }, 1189 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1190 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1191 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_REPL, 1193 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1194 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1195 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1196 1197 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1198 IPI_GET_CMD | IPI_REPL, 1199 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1200 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1201 LIF_CMD, ip_siocdelndp_v6, NULL }, 1202 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1203 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1204 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1205 LIF_CMD, ip_siocsetndp_v6, NULL }, 1206 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1207 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1208 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1209 MISC_CMD, ip_sioctl_tonlink, NULL }, 1210 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1211 MISC_CMD, ip_sioctl_tmysite, NULL }, 1212 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1213 TUN_CMD, ip_sioctl_tunparam, NULL }, 1214 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1215 IPI_PRIV | IPI_WR, 1216 TUN_CMD, ip_sioctl_tunparam, NULL }, 1217 1218 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1219 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1222 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1223 1224 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1225 IPI_PRIV | IPI_WR | IPI_REPL, 1226 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1227 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1228 IPI_PRIV | IPI_WR | IPI_REPL, 1229 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1230 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1231 IPI_PRIV | IPI_WR, 1232 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1233 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1234 IPI_GET_CMD | IPI_REPL, 1235 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1236 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1237 IPI_GET_CMD | IPI_REPL, 1238 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1239 1240 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1241 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 1245 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1246 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1247 1248 /* These are handled in ip_sioctl_copyin_setup itself */ 1249 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1250 MISC_CMD, NULL, NULL }, 1251 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1252 MISC_CMD, NULL, NULL }, 1253 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1254 1255 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1256 ip_sioctl_get_lifconf, NULL }, 1257 1258 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1259 XARP_CMD, ip_sioctl_arp, NULL }, 1260 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1261 XARP_CMD, ip_sioctl_arp, NULL }, 1262 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1263 XARP_CMD, ip_sioctl_arp, NULL }, 1264 1265 /* SIOCPOPSOCKFS is not handled by IP */ 1266 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1267 1268 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1269 IPI_GET_CMD | IPI_REPL, 1270 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1271 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1272 IPI_PRIV | IPI_WR | IPI_REPL, 1273 LIF_CMD, ip_sioctl_slifzone, 1274 ip_sioctl_slifzone_restart }, 1275 /* 172-174 are SCTP ioctls and not handled by IP */ 1276 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1277 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1278 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1279 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1280 IPI_GET_CMD, LIF_CMD, 1281 ip_sioctl_get_lifusesrc, 0 }, 1282 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1283 IPI_PRIV | IPI_WR, 1284 LIF_CMD, ip_sioctl_slifusesrc, 1285 NULL }, 1286 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1287 ip_sioctl_get_lifsrcof, NULL }, 1288 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1289 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1290 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1291 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1292 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1293 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1294 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1295 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1296 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1297 ip_sioctl_set_ipmpfailback, NULL }, 1298 /* SIOCSENABLESDP is handled by SDP */ 1299 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1300 }; 1301 1302 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1303 1304 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1305 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1306 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1307 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1308 TUN_CMD, ip_sioctl_tunparam, NULL }, 1309 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1314 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1315 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1316 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1317 MISC_CMD, mrt_ioctl}, 1318 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1319 MISC_CMD, mrt_ioctl}, 1320 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1321 MISC_CMD, mrt_ioctl} 1322 }; 1323 1324 int ip_misc_ioctl_count = 1325 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1326 1327 int conn_drain_nthreads; /* Number of drainers reqd. */ 1328 /* Settable in /etc/system */ 1329 /* Defined in ip_ire.c */ 1330 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1331 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1332 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1333 1334 static nv_t ire_nv_arr[] = { 1335 { IRE_BROADCAST, "BROADCAST" }, 1336 { IRE_LOCAL, "LOCAL" }, 1337 { IRE_LOOPBACK, "LOOPBACK" }, 1338 { IRE_CACHE, "CACHE" }, 1339 { IRE_DEFAULT, "DEFAULT" }, 1340 { IRE_PREFIX, "PREFIX" }, 1341 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1342 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1343 { IRE_HOST, "HOST" }, 1344 { 0 } 1345 }; 1346 1347 nv_t *ire_nv_tbl = ire_nv_arr; 1348 1349 /* Defined in ip_netinfo.c */ 1350 extern ddi_taskq_t *eventq_queue_nic; 1351 1352 /* Simple ICMP IP Header Template */ 1353 static ipha_t icmp_ipha = { 1354 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1355 }; 1356 1357 struct module_info ip_mod_info = { 1358 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1359 }; 1360 1361 /* 1362 * Duplicate static symbols within a module confuses mdb; so we avoid the 1363 * problem by making the symbols here distinct from those in udp.c. 1364 */ 1365 1366 /* 1367 * Entry points for IP as a device and as a module. 1368 * FIXME: down the road we might want a separate module and driver qinit. 1369 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1370 */ 1371 static struct qinit iprinitv4 = { 1372 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1373 &ip_mod_info 1374 }; 1375 1376 struct qinit iprinitv6 = { 1377 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1378 &ip_mod_info 1379 }; 1380 1381 static struct qinit ipwinitv4 = { 1382 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1383 &ip_mod_info 1384 }; 1385 1386 struct qinit ipwinitv6 = { 1387 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1388 &ip_mod_info 1389 }; 1390 1391 static struct qinit iplrinit = { 1392 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1393 &ip_mod_info 1394 }; 1395 1396 static struct qinit iplwinit = { 1397 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1398 &ip_mod_info 1399 }; 1400 1401 /* For AF_INET aka /dev/ip */ 1402 struct streamtab ipinfov4 = { 1403 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1404 }; 1405 1406 /* For AF_INET6 aka /dev/ip6 */ 1407 struct streamtab ipinfov6 = { 1408 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1409 }; 1410 1411 #ifdef DEBUG 1412 static boolean_t skip_sctp_cksum = B_FALSE; 1413 #endif 1414 1415 /* 1416 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1417 * ip_rput_v6(), ip_output(), etc. If the message 1418 * block already has a M_CTL at the front of it, then simply set the zoneid 1419 * appropriately. 1420 */ 1421 mblk_t * 1422 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1423 { 1424 mblk_t *first_mp; 1425 ipsec_out_t *io; 1426 1427 ASSERT(zoneid != ALL_ZONES); 1428 if (mp->b_datap->db_type == M_CTL) { 1429 io = (ipsec_out_t *)mp->b_rptr; 1430 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1431 io->ipsec_out_zoneid = zoneid; 1432 return (mp); 1433 } 1434 1435 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1436 if (first_mp == NULL) 1437 return (NULL); 1438 io = (ipsec_out_t *)first_mp->b_rptr; 1439 /* This is not a secure packet */ 1440 io->ipsec_out_secure = B_FALSE; 1441 io->ipsec_out_zoneid = zoneid; 1442 first_mp->b_cont = mp; 1443 return (first_mp); 1444 } 1445 1446 /* 1447 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1448 */ 1449 mblk_t * 1450 ip_copymsg(mblk_t *mp) 1451 { 1452 mblk_t *nmp; 1453 ipsec_info_t *in; 1454 1455 if (mp->b_datap->db_type != M_CTL) 1456 return (copymsg(mp)); 1457 1458 in = (ipsec_info_t *)mp->b_rptr; 1459 1460 /* 1461 * Note that M_CTL is also used for delivering ICMP error messages 1462 * upstream to transport layers. 1463 */ 1464 if (in->ipsec_info_type != IPSEC_OUT && 1465 in->ipsec_info_type != IPSEC_IN) 1466 return (copymsg(mp)); 1467 1468 nmp = copymsg(mp->b_cont); 1469 1470 if (in->ipsec_info_type == IPSEC_OUT) { 1471 return (ipsec_out_tag(mp, nmp, 1472 ((ipsec_out_t *)in)->ipsec_out_ns)); 1473 } else { 1474 return (ipsec_in_tag(mp, nmp, 1475 ((ipsec_in_t *)in)->ipsec_in_ns)); 1476 } 1477 } 1478 1479 /* Generate an ICMP fragmentation needed message. */ 1480 static void 1481 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1482 ip_stack_t *ipst) 1483 { 1484 icmph_t icmph; 1485 mblk_t *first_mp; 1486 boolean_t mctl_present; 1487 1488 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1489 1490 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1491 if (mctl_present) 1492 freeb(first_mp); 1493 return; 1494 } 1495 1496 bzero(&icmph, sizeof (icmph_t)); 1497 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1498 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1499 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1500 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1501 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1502 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1503 ipst); 1504 } 1505 1506 /* 1507 * icmp_inbound deals with ICMP messages in the following ways. 1508 * 1509 * 1) It needs to send a reply back and possibly delivering it 1510 * to the "interested" upper clients. 1511 * 2) It needs to send it to the upper clients only. 1512 * 3) It needs to change some values in IP only. 1513 * 4) It needs to change some values in IP and upper layers e.g TCP. 1514 * 1515 * We need to accomodate icmp messages coming in clear until we get 1516 * everything secure from the wire. If icmp_accept_clear_messages 1517 * is zero we check with the global policy and act accordingly. If 1518 * it is non-zero, we accept the message without any checks. But 1519 * *this does not mean* that this will be delivered to the upper 1520 * clients. By accepting we might send replies back, change our MTU 1521 * value etc. but delivery to the ULP/clients depends on their policy 1522 * dispositions. 1523 * 1524 * We handle the above 4 cases in the context of IPsec in the 1525 * following way : 1526 * 1527 * 1) Send the reply back in the same way as the request came in. 1528 * If it came in encrypted, it goes out encrypted. If it came in 1529 * clear, it goes out in clear. Thus, this will prevent chosen 1530 * plain text attack. 1531 * 2) The client may or may not expect things to come in secure. 1532 * If it comes in secure, the policy constraints are checked 1533 * before delivering it to the upper layers. If it comes in 1534 * clear, ipsec_inbound_accept_clear will decide whether to 1535 * accept this in clear or not. In both the cases, if the returned 1536 * message (IP header + 8 bytes) that caused the icmp message has 1537 * AH/ESP headers, it is sent up to AH/ESP for validation before 1538 * sending up. If there are only 8 bytes of returned message, then 1539 * upper client will not be notified. 1540 * 3) Check with global policy to see whether it matches the constaints. 1541 * But this will be done only if icmp_accept_messages_in_clear is 1542 * zero. 1543 * 4) If we need to change both in IP and ULP, then the decision taken 1544 * while affecting the values in IP and while delivering up to TCP 1545 * should be the same. 1546 * 1547 * There are two cases. 1548 * 1549 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1550 * failed), we will not deliver it to the ULP, even though they 1551 * are *willing* to accept in *clear*. This is fine as our global 1552 * disposition to icmp messages asks us reject the datagram. 1553 * 1554 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1555 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1556 * to deliver it to ULP (policy failed), it can lead to 1557 * consistency problems. The cases known at this time are 1558 * ICMP_DESTINATION_UNREACHABLE messages with following code 1559 * values : 1560 * 1561 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1562 * and Upper layer rejects. Then the communication will 1563 * come to a stop. This is solved by making similar decisions 1564 * at both levels. Currently, when we are unable to deliver 1565 * to the Upper Layer (due to policy failures) while IP has 1566 * adjusted ire_max_frag, the next outbound datagram would 1567 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1568 * will be with the right level of protection. Thus the right 1569 * value will be communicated even if we are not able to 1570 * communicate when we get from the wire initially. But this 1571 * assumes there would be at least one outbound datagram after 1572 * IP has adjusted its ire_max_frag value. To make things 1573 * simpler, we accept in clear after the validation of 1574 * AH/ESP headers. 1575 * 1576 * - Other ICMP ERRORS : We may not be able to deliver it to the 1577 * upper layer depending on the level of protection the upper 1578 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1579 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1580 * should be accepted in clear when the Upper layer expects secure. 1581 * Thus the communication may get aborted by some bad ICMP 1582 * packets. 1583 * 1584 * IPQoS Notes: 1585 * The only instance when a packet is sent for processing is when there 1586 * isn't an ICMP client and if we are interested in it. 1587 * If there is a client, IPPF processing will take place in the 1588 * ip_fanout_proto routine. 1589 * 1590 * Zones notes: 1591 * The packet is only processed in the context of the specified zone: typically 1592 * only this zone will reply to an echo request, and only interested clients in 1593 * this zone will receive a copy of the packet. This means that the caller must 1594 * call icmp_inbound() for each relevant zone. 1595 */ 1596 static void 1597 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1598 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1599 ill_t *recv_ill, zoneid_t zoneid) 1600 { 1601 icmph_t *icmph; 1602 ipha_t *ipha; 1603 int iph_hdr_length; 1604 int hdr_length; 1605 boolean_t interested; 1606 uint32_t ts; 1607 uchar_t *wptr; 1608 ipif_t *ipif; 1609 mblk_t *first_mp; 1610 ipsec_in_t *ii; 1611 ire_t *src_ire; 1612 boolean_t onlink; 1613 timestruc_t now; 1614 uint32_t ill_index; 1615 ip_stack_t *ipst; 1616 1617 ASSERT(ill != NULL); 1618 ipst = ill->ill_ipst; 1619 1620 first_mp = mp; 1621 if (mctl_present) { 1622 mp = first_mp->b_cont; 1623 ASSERT(mp != NULL); 1624 } 1625 1626 ipha = (ipha_t *)mp->b_rptr; 1627 if (ipst->ips_icmp_accept_clear_messages == 0) { 1628 first_mp = ipsec_check_global_policy(first_mp, NULL, 1629 ipha, NULL, mctl_present, ipst->ips_netstack); 1630 if (first_mp == NULL) 1631 return; 1632 } 1633 1634 /* 1635 * On a labeled system, we have to check whether the zone itself is 1636 * permitted to receive raw traffic. 1637 */ 1638 if (is_system_labeled()) { 1639 if (zoneid == ALL_ZONES) 1640 zoneid = tsol_packet_to_zoneid(mp); 1641 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1642 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1643 zoneid)); 1644 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1645 freemsg(first_mp); 1646 return; 1647 } 1648 } 1649 1650 /* 1651 * We have accepted the ICMP message. It means that we will 1652 * respond to the packet if needed. It may not be delivered 1653 * to the upper client depending on the policy constraints 1654 * and the disposition in ipsec_inbound_accept_clear. 1655 */ 1656 1657 ASSERT(ill != NULL); 1658 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1660 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1661 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1662 /* Last chance to get real. */ 1663 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1664 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1665 freemsg(first_mp); 1666 return; 1667 } 1668 /* Refresh iph following the pullup. */ 1669 ipha = (ipha_t *)mp->b_rptr; 1670 } 1671 /* ICMP header checksum, including checksum field, should be zero. */ 1672 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1673 IP_CSUM(mp, iph_hdr_length, 0)) { 1674 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1675 freemsg(first_mp); 1676 return; 1677 } 1678 /* The IP header will always be a multiple of four bytes */ 1679 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1680 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1681 icmph->icmph_code)); 1682 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1683 /* We will set "interested" to "true" if we want a copy */ 1684 interested = B_FALSE; 1685 switch (icmph->icmph_type) { 1686 case ICMP_ECHO_REPLY: 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1688 break; 1689 case ICMP_DEST_UNREACHABLE: 1690 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1691 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1692 interested = B_TRUE; /* Pass up to transport */ 1693 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1694 break; 1695 case ICMP_SOURCE_QUENCH: 1696 interested = B_TRUE; /* Pass up to transport */ 1697 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1698 break; 1699 case ICMP_REDIRECT: 1700 if (!ipst->ips_ip_ignore_redirect) 1701 interested = B_TRUE; 1702 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1703 break; 1704 case ICMP_ECHO_REQUEST: 1705 /* 1706 * Whether to respond to echo requests that come in as IP 1707 * broadcasts or as IP multicast is subject to debate 1708 * (what isn't?). We aim to please, you pick it. 1709 * Default is do it. 1710 */ 1711 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1712 /* unicast: always respond */ 1713 interested = B_TRUE; 1714 } else if (CLASSD(ipha->ipha_dst)) { 1715 /* multicast: respond based on tunable */ 1716 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1717 } else if (broadcast) { 1718 /* broadcast: respond based on tunable */ 1719 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1720 } 1721 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1722 break; 1723 case ICMP_ROUTER_ADVERTISEMENT: 1724 case ICMP_ROUTER_SOLICITATION: 1725 break; 1726 case ICMP_TIME_EXCEEDED: 1727 interested = B_TRUE; /* Pass up to transport */ 1728 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1729 break; 1730 case ICMP_PARAM_PROBLEM: 1731 interested = B_TRUE; /* Pass up to transport */ 1732 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1733 break; 1734 case ICMP_TIME_STAMP_REQUEST: 1735 /* Response to Time Stamp Requests is local policy. */ 1736 if (ipst->ips_ip_g_resp_to_timestamp && 1737 /* So is whether to respond if it was an IP broadcast. */ 1738 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1739 int tstamp_len = 3 * sizeof (uint32_t); 1740 1741 if (wptr + tstamp_len > mp->b_wptr) { 1742 if (!pullupmsg(mp, wptr + tstamp_len - 1743 mp->b_rptr)) { 1744 BUMP_MIB(ill->ill_ip_mib, 1745 ipIfStatsInDiscards); 1746 freemsg(first_mp); 1747 return; 1748 } 1749 /* Refresh ipha following the pullup. */ 1750 ipha = (ipha_t *)mp->b_rptr; 1751 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1752 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1753 } 1754 interested = B_TRUE; 1755 } 1756 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1757 break; 1758 case ICMP_TIME_STAMP_REPLY: 1759 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1760 break; 1761 case ICMP_INFO_REQUEST: 1762 /* Per RFC 1122 3.2.2.7, ignore this. */ 1763 case ICMP_INFO_REPLY: 1764 break; 1765 case ICMP_ADDRESS_MASK_REQUEST: 1766 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1767 !broadcast) && 1768 /* TODO m_pullup of complete header? */ 1769 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1770 interested = B_TRUE; 1771 } 1772 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1773 break; 1774 case ICMP_ADDRESS_MASK_REPLY: 1775 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1776 break; 1777 default: 1778 interested = B_TRUE; /* Pass up to transport */ 1779 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1780 break; 1781 } 1782 /* See if there is an ICMP client. */ 1783 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1784 /* If there is an ICMP client and we want one too, copy it. */ 1785 mblk_t *first_mp1; 1786 1787 if (!interested) { 1788 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1789 ip_policy, recv_ill, zoneid); 1790 return; 1791 } 1792 first_mp1 = ip_copymsg(first_mp); 1793 if (first_mp1 != NULL) { 1794 ip_fanout_proto(q, first_mp1, ill, ipha, 1795 0, mctl_present, ip_policy, recv_ill, zoneid); 1796 } 1797 } else if (!interested) { 1798 freemsg(first_mp); 1799 return; 1800 } else { 1801 /* 1802 * Initiate policy processing for this packet if ip_policy 1803 * is true. 1804 */ 1805 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1806 ill_index = ill->ill_phyint->phyint_ifindex; 1807 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1808 if (mp == NULL) { 1809 if (mctl_present) { 1810 freeb(first_mp); 1811 } 1812 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1813 return; 1814 } 1815 } 1816 } 1817 /* We want to do something with it. */ 1818 /* Check db_ref to make sure we can modify the packet. */ 1819 if (mp->b_datap->db_ref > 1) { 1820 mblk_t *first_mp1; 1821 1822 first_mp1 = ip_copymsg(first_mp); 1823 freemsg(first_mp); 1824 if (!first_mp1) { 1825 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1826 return; 1827 } 1828 first_mp = first_mp1; 1829 if (mctl_present) { 1830 mp = first_mp->b_cont; 1831 ASSERT(mp != NULL); 1832 } else { 1833 mp = first_mp; 1834 } 1835 ipha = (ipha_t *)mp->b_rptr; 1836 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1837 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1838 } 1839 switch (icmph->icmph_type) { 1840 case ICMP_ADDRESS_MASK_REQUEST: 1841 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1842 if (ipif == NULL) { 1843 freemsg(first_mp); 1844 return; 1845 } 1846 /* 1847 * outging interface must be IPv4 1848 */ 1849 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1850 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1851 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1852 ipif_refrele(ipif); 1853 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1854 break; 1855 case ICMP_ECHO_REQUEST: 1856 icmph->icmph_type = ICMP_ECHO_REPLY; 1857 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1858 break; 1859 case ICMP_TIME_STAMP_REQUEST: { 1860 uint32_t *tsp; 1861 1862 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1863 tsp = (uint32_t *)wptr; 1864 tsp++; /* Skip past 'originate time' */ 1865 /* Compute # of milliseconds since midnight */ 1866 gethrestime(&now); 1867 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1868 now.tv_nsec / (NANOSEC / MILLISEC); 1869 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1870 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1871 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1872 break; 1873 } 1874 default: 1875 ipha = (ipha_t *)&icmph[1]; 1876 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1877 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1878 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1879 freemsg(first_mp); 1880 return; 1881 } 1882 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1883 ipha = (ipha_t *)&icmph[1]; 1884 } 1885 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1886 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1887 freemsg(first_mp); 1888 return; 1889 } 1890 hdr_length = IPH_HDR_LENGTH(ipha); 1891 if (hdr_length < sizeof (ipha_t)) { 1892 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1893 freemsg(first_mp); 1894 return; 1895 } 1896 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1897 if (!pullupmsg(mp, 1898 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1899 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1900 freemsg(first_mp); 1901 return; 1902 } 1903 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1904 ipha = (ipha_t *)&icmph[1]; 1905 } 1906 switch (icmph->icmph_type) { 1907 case ICMP_REDIRECT: 1908 /* 1909 * As there is no upper client to deliver, we don't 1910 * need the first_mp any more. 1911 */ 1912 if (mctl_present) { 1913 freeb(first_mp); 1914 } 1915 icmp_redirect(ill, mp); 1916 return; 1917 case ICMP_DEST_UNREACHABLE: 1918 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1919 if (!icmp_inbound_too_big(icmph, ipha, ill, 1920 zoneid, mp, iph_hdr_length, ipst)) { 1921 freemsg(first_mp); 1922 return; 1923 } 1924 /* 1925 * icmp_inbound_too_big() may alter mp. 1926 * Resynch ipha and icmph accordingly. 1927 */ 1928 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1929 ipha = (ipha_t *)&icmph[1]; 1930 } 1931 /* FALLTHRU */ 1932 default : 1933 /* 1934 * IPQoS notes: Since we have already done IPQoS 1935 * processing we don't want to do it again in 1936 * the fanout routines called by 1937 * icmp_inbound_error_fanout, hence the last 1938 * argument, ip_policy, is B_FALSE. 1939 */ 1940 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1941 ipha, iph_hdr_length, hdr_length, mctl_present, 1942 B_FALSE, recv_ill, zoneid); 1943 } 1944 return; 1945 } 1946 /* Send out an ICMP packet */ 1947 icmph->icmph_checksum = 0; 1948 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1949 if (broadcast || CLASSD(ipha->ipha_dst)) { 1950 ipif_t *ipif_chosen; 1951 /* 1952 * Make it look like it was directed to us, so we don't look 1953 * like a fool with a broadcast or multicast source address. 1954 */ 1955 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1956 /* 1957 * Make sure that we haven't grabbed an interface that's DOWN. 1958 */ 1959 if (ipif != NULL) { 1960 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1961 ipha->ipha_src, zoneid); 1962 if (ipif_chosen != NULL) { 1963 ipif_refrele(ipif); 1964 ipif = ipif_chosen; 1965 } 1966 } 1967 if (ipif == NULL) { 1968 ip0dbg(("icmp_inbound: " 1969 "No source for broadcast/multicast:\n" 1970 "\tsrc 0x%x dst 0x%x ill %p " 1971 "ipif_lcl_addr 0x%x\n", 1972 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1973 (void *)ill, 1974 ill->ill_ipif->ipif_lcl_addr)); 1975 freemsg(first_mp); 1976 return; 1977 } 1978 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1979 ipha->ipha_dst = ipif->ipif_src_addr; 1980 ipif_refrele(ipif); 1981 } 1982 /* Reset time to live. */ 1983 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1984 { 1985 /* Swap source and destination addresses */ 1986 ipaddr_t tmp; 1987 1988 tmp = ipha->ipha_src; 1989 ipha->ipha_src = ipha->ipha_dst; 1990 ipha->ipha_dst = tmp; 1991 } 1992 ipha->ipha_ident = 0; 1993 if (!IS_SIMPLE_IPH(ipha)) 1994 icmp_options_update(ipha); 1995 1996 /* 1997 * ICMP echo replies should go out on the same interface 1998 * the request came on as probes used by in.mpathd for detecting 1999 * NIC failures are ECHO packets. We turn-off load spreading 2000 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2001 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2002 * function. This is in turn handled by ip_wput and ip_newroute 2003 * to make sure that the packet goes out on the interface it came 2004 * in on. If we don't turnoff load spreading, the packets might get 2005 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2006 * to go out and in.mpathd would wrongly detect a failure or 2007 * mis-detect a NIC failure for link failure. As load spreading 2008 * can happen only if ill_group is not NULL, we do only for 2009 * that case and this does not affect the normal case. 2010 * 2011 * We turn off load spreading only on echo packets that came from 2012 * on-link hosts. If the interface route has been deleted, this will 2013 * not be enforced as we can't do much. For off-link hosts, as the 2014 * default routes in IPv4 does not typically have an ire_ipif 2015 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2016 * Moreover, expecting a default route through this interface may 2017 * not be correct. We use ipha_dst because of the swap above. 2018 */ 2019 onlink = B_FALSE; 2020 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2021 /* 2022 * First, we need to make sure that it is not one of our 2023 * local addresses. If we set onlink when it is one of 2024 * our local addresses, we will end up creating IRE_CACHES 2025 * for one of our local addresses. Then, we will never 2026 * accept packets for them afterwards. 2027 */ 2028 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2029 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2030 if (src_ire == NULL) { 2031 ipif = ipif_get_next_ipif(NULL, ill); 2032 if (ipif == NULL) { 2033 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2034 freemsg(mp); 2035 return; 2036 } 2037 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2038 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2039 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2040 ipif_refrele(ipif); 2041 if (src_ire != NULL) { 2042 onlink = B_TRUE; 2043 ire_refrele(src_ire); 2044 } 2045 } else { 2046 ire_refrele(src_ire); 2047 } 2048 } 2049 if (!mctl_present) { 2050 /* 2051 * This packet should go out the same way as it 2052 * came in i.e in clear. To make sure that global 2053 * policy will not be applied to this in ip_wput_ire, 2054 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2055 */ 2056 ASSERT(first_mp == mp); 2057 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2058 if (first_mp == NULL) { 2059 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2060 freemsg(mp); 2061 return; 2062 } 2063 ii = (ipsec_in_t *)first_mp->b_rptr; 2064 2065 /* This is not a secure packet */ 2066 ii->ipsec_in_secure = B_FALSE; 2067 if (onlink) { 2068 ii->ipsec_in_attach_if = B_TRUE; 2069 ii->ipsec_in_ill_index = 2070 ill->ill_phyint->phyint_ifindex; 2071 ii->ipsec_in_rill_index = 2072 recv_ill->ill_phyint->phyint_ifindex; 2073 } 2074 first_mp->b_cont = mp; 2075 } else if (onlink) { 2076 ii = (ipsec_in_t *)first_mp->b_rptr; 2077 ii->ipsec_in_attach_if = B_TRUE; 2078 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2079 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2080 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2081 } else { 2082 ii = (ipsec_in_t *)first_mp->b_rptr; 2083 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2084 } 2085 ii->ipsec_in_zoneid = zoneid; 2086 ASSERT(zoneid != ALL_ZONES); 2087 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2088 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2089 return; 2090 } 2091 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2092 put(WR(q), first_mp); 2093 } 2094 2095 static ipaddr_t 2096 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2097 { 2098 conn_t *connp; 2099 connf_t *connfp; 2100 ipaddr_t nexthop_addr = INADDR_ANY; 2101 int hdr_length = IPH_HDR_LENGTH(ipha); 2102 uint16_t *up; 2103 uint32_t ports; 2104 ip_stack_t *ipst = ill->ill_ipst; 2105 2106 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2107 switch (ipha->ipha_protocol) { 2108 case IPPROTO_TCP: 2109 { 2110 tcph_t *tcph; 2111 2112 /* do a reverse lookup */ 2113 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2114 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2115 TCPS_LISTEN, ipst); 2116 break; 2117 } 2118 case IPPROTO_UDP: 2119 { 2120 uint32_t dstport, srcport; 2121 2122 ((uint16_t *)&ports)[0] = up[1]; 2123 ((uint16_t *)&ports)[1] = up[0]; 2124 2125 /* Extract ports in net byte order */ 2126 dstport = htons(ntohl(ports) & 0xFFFF); 2127 srcport = htons(ntohl(ports) >> 16); 2128 2129 connfp = &ipst->ips_ipcl_udp_fanout[ 2130 IPCL_UDP_HASH(dstport, ipst)]; 2131 mutex_enter(&connfp->connf_lock); 2132 connp = connfp->connf_head; 2133 2134 /* do a reverse lookup */ 2135 while ((connp != NULL) && 2136 (!IPCL_UDP_MATCH(connp, dstport, 2137 ipha->ipha_src, srcport, ipha->ipha_dst) || 2138 !IPCL_ZONE_MATCH(connp, zoneid))) { 2139 connp = connp->conn_next; 2140 } 2141 if (connp != NULL) 2142 CONN_INC_REF(connp); 2143 mutex_exit(&connfp->connf_lock); 2144 break; 2145 } 2146 case IPPROTO_SCTP: 2147 { 2148 in6_addr_t map_src, map_dst; 2149 2150 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2151 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2152 ((uint16_t *)&ports)[0] = up[1]; 2153 ((uint16_t *)&ports)[1] = up[0]; 2154 2155 connp = sctp_find_conn(&map_src, &map_dst, ports, 2156 zoneid, ipst->ips_netstack->netstack_sctp); 2157 if (connp == NULL) { 2158 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2159 zoneid, ports, ipha, ipst); 2160 } else { 2161 CONN_INC_REF(connp); 2162 SCTP_REFRELE(CONN2SCTP(connp)); 2163 } 2164 break; 2165 } 2166 default: 2167 { 2168 ipha_t ripha; 2169 2170 ripha.ipha_src = ipha->ipha_dst; 2171 ripha.ipha_dst = ipha->ipha_src; 2172 ripha.ipha_protocol = ipha->ipha_protocol; 2173 2174 connfp = &ipst->ips_ipcl_proto_fanout[ 2175 ipha->ipha_protocol]; 2176 mutex_enter(&connfp->connf_lock); 2177 connp = connfp->connf_head; 2178 for (connp = connfp->connf_head; connp != NULL; 2179 connp = connp->conn_next) { 2180 if (IPCL_PROTO_MATCH(connp, 2181 ipha->ipha_protocol, &ripha, ill, 2182 0, zoneid)) { 2183 CONN_INC_REF(connp); 2184 break; 2185 } 2186 } 2187 mutex_exit(&connfp->connf_lock); 2188 } 2189 } 2190 if (connp != NULL) { 2191 if (connp->conn_nexthop_set) 2192 nexthop_addr = connp->conn_nexthop_v4; 2193 CONN_DEC_REF(connp); 2194 } 2195 return (nexthop_addr); 2196 } 2197 2198 /* Table from RFC 1191 */ 2199 static int icmp_frag_size_table[] = 2200 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2201 2202 /* 2203 * Process received ICMP Packet too big. 2204 * After updating any IRE it does the fanout to any matching transport streams. 2205 * Assumes the message has been pulled up till the IP header that caused 2206 * the error. 2207 * 2208 * Returns B_FALSE on failure and B_TRUE on success. 2209 */ 2210 static boolean_t 2211 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2212 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2213 ip_stack_t *ipst) 2214 { 2215 ire_t *ire, *first_ire; 2216 int mtu; 2217 int hdr_length; 2218 ipaddr_t nexthop_addr; 2219 2220 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2221 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2222 ASSERT(ill != NULL); 2223 2224 hdr_length = IPH_HDR_LENGTH(ipha); 2225 2226 /* Drop if the original packet contained a source route */ 2227 if (ip_source_route_included(ipha)) { 2228 return (B_FALSE); 2229 } 2230 /* 2231 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2232 * header. 2233 */ 2234 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2235 mp->b_wptr) { 2236 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2237 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2238 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2239 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2240 return (B_FALSE); 2241 } 2242 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2243 ipha = (ipha_t *)&icmph[1]; 2244 } 2245 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2246 if (nexthop_addr != INADDR_ANY) { 2247 /* nexthop set */ 2248 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2249 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2250 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2251 } else { 2252 /* nexthop not set */ 2253 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2254 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2255 } 2256 2257 if (!first_ire) { 2258 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2259 ntohl(ipha->ipha_dst))); 2260 return (B_FALSE); 2261 } 2262 /* Check for MTU discovery advice as described in RFC 1191 */ 2263 mtu = ntohs(icmph->icmph_du_mtu); 2264 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2265 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2266 ire = ire->ire_next) { 2267 /* 2268 * Look for the connection to which this ICMP message is 2269 * directed. If it has the IP_NEXTHOP option set, then the 2270 * search is limited to IREs with the MATCH_IRE_PRIVATE 2271 * option. Else the search is limited to regular IREs. 2272 */ 2273 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2274 (nexthop_addr != ire->ire_gateway_addr)) || 2275 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2276 (nexthop_addr != INADDR_ANY))) 2277 continue; 2278 2279 mutex_enter(&ire->ire_lock); 2280 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2281 /* Reduce the IRE max frag value as advised. */ 2282 ip1dbg(("Received mtu from router: %d (was %d)\n", 2283 mtu, ire->ire_max_frag)); 2284 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2285 } else { 2286 uint32_t length; 2287 int i; 2288 2289 /* 2290 * Use the table from RFC 1191 to figure out 2291 * the next "plateau" based on the length in 2292 * the original IP packet. 2293 */ 2294 length = ntohs(ipha->ipha_length); 2295 if (ire->ire_max_frag <= length && 2296 ire->ire_max_frag >= length - hdr_length) { 2297 /* 2298 * Handle broken BSD 4.2 systems that 2299 * return the wrong iph_length in ICMP 2300 * errors. 2301 */ 2302 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2303 length, ire->ire_max_frag)); 2304 length -= hdr_length; 2305 } 2306 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2307 if (length > icmp_frag_size_table[i]) 2308 break; 2309 } 2310 if (i == A_CNT(icmp_frag_size_table)) { 2311 /* Smaller than 68! */ 2312 ip1dbg(("Too big for packet size %d\n", 2313 length)); 2314 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2315 ire->ire_frag_flag = 0; 2316 } else { 2317 mtu = icmp_frag_size_table[i]; 2318 ip1dbg(("Calculated mtu %d, packet size %d, " 2319 "before %d", mtu, length, 2320 ire->ire_max_frag)); 2321 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2322 ip1dbg((", after %d\n", ire->ire_max_frag)); 2323 } 2324 /* Record the new max frag size for the ULP. */ 2325 icmph->icmph_du_zero = 0; 2326 icmph->icmph_du_mtu = 2327 htons((uint16_t)ire->ire_max_frag); 2328 } 2329 mutex_exit(&ire->ire_lock); 2330 } 2331 rw_exit(&first_ire->ire_bucket->irb_lock); 2332 ire_refrele(first_ire); 2333 return (B_TRUE); 2334 } 2335 2336 /* 2337 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2338 * calls this function. 2339 */ 2340 static mblk_t * 2341 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2342 { 2343 ipha_t *ipha; 2344 icmph_t *icmph; 2345 ipha_t *in_ipha; 2346 int length; 2347 2348 ASSERT(mp->b_datap->db_type == M_DATA); 2349 2350 /* 2351 * For Self-encapsulated packets, we added an extra IP header 2352 * without the options. Inner IP header is the one from which 2353 * the outer IP header was formed. Thus, we need to remove the 2354 * outer IP header. To do this, we pullup the whole message 2355 * and overlay whatever follows the outer IP header over the 2356 * outer IP header. 2357 */ 2358 2359 if (!pullupmsg(mp, -1)) 2360 return (NULL); 2361 2362 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2363 ipha = (ipha_t *)&icmph[1]; 2364 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2365 2366 /* 2367 * The length that we want to overlay is following the inner 2368 * IP header. Subtracting the IP header + icmp header + outer 2369 * IP header's length should give us the length that we want to 2370 * overlay. 2371 */ 2372 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2373 hdr_length; 2374 /* 2375 * Overlay whatever follows the inner header over the 2376 * outer header. 2377 */ 2378 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2379 2380 /* Set the wptr to account for the outer header */ 2381 mp->b_wptr -= hdr_length; 2382 return (mp); 2383 } 2384 2385 /* 2386 * Try to pass the ICMP message upstream in case the ULP cares. 2387 * 2388 * If the packet that caused the ICMP error is secure, we send 2389 * it to AH/ESP to make sure that the attached packet has a 2390 * valid association. ipha in the code below points to the 2391 * IP header of the packet that caused the error. 2392 * 2393 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2394 * in the context of IPsec. Normally we tell the upper layer 2395 * whenever we send the ire (including ip_bind), the IPsec header 2396 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2397 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2398 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2399 * same thing. As TCP has the IPsec options size that needs to be 2400 * adjusted, we just pass the MTU unchanged. 2401 * 2402 * IFN could have been generated locally or by some router. 2403 * 2404 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2405 * This happens because IP adjusted its value of MTU on an 2406 * earlier IFN message and could not tell the upper layer, 2407 * the new adjusted value of MTU e.g. Packet was encrypted 2408 * or there was not enough information to fanout to upper 2409 * layers. Thus on the next outbound datagram, ip_wput_ire 2410 * generates the IFN, where IPsec processing has *not* been 2411 * done. 2412 * 2413 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2414 * could have generated this. This happens because ire_max_frag 2415 * value in IP was set to a new value, while the IPsec processing 2416 * was being done and after we made the fragmentation check in 2417 * ip_wput_ire. Thus on return from IPsec processing, 2418 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2419 * and generates the IFN. As IPsec processing is over, we fanout 2420 * to AH/ESP to remove the header. 2421 * 2422 * In both these cases, ipsec_in_loopback will be set indicating 2423 * that IFN was generated locally. 2424 * 2425 * ROUTER : IFN could be secure or non-secure. 2426 * 2427 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2428 * packet in error has AH/ESP headers to validate the AH/ESP 2429 * headers. AH/ESP will verify whether there is a valid SA or 2430 * not and send it back. We will fanout again if we have more 2431 * data in the packet. 2432 * 2433 * If the packet in error does not have AH/ESP, we handle it 2434 * like any other case. 2435 * 2436 * * NON_SECURE : If the packet in error has AH/ESP headers, 2437 * we attach a dummy ipsec_in and send it up to AH/ESP 2438 * for validation. AH/ESP will verify whether there is a 2439 * valid SA or not and send it back. We will fanout again if 2440 * we have more data in the packet. 2441 * 2442 * If the packet in error does not have AH/ESP, we handle it 2443 * like any other case. 2444 */ 2445 static void 2446 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2447 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2448 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2449 zoneid_t zoneid) 2450 { 2451 uint16_t *up; /* Pointer to ports in ULP header */ 2452 uint32_t ports; /* reversed ports for fanout */ 2453 ipha_t ripha; /* With reversed addresses */ 2454 mblk_t *first_mp; 2455 ipsec_in_t *ii; 2456 tcph_t *tcph; 2457 conn_t *connp; 2458 ip_stack_t *ipst; 2459 2460 ASSERT(ill != NULL); 2461 2462 ASSERT(recv_ill != NULL); 2463 ipst = recv_ill->ill_ipst; 2464 2465 first_mp = mp; 2466 if (mctl_present) { 2467 mp = first_mp->b_cont; 2468 ASSERT(mp != NULL); 2469 2470 ii = (ipsec_in_t *)first_mp->b_rptr; 2471 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2472 } else { 2473 ii = NULL; 2474 } 2475 2476 switch (ipha->ipha_protocol) { 2477 case IPPROTO_UDP: 2478 /* 2479 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2480 * transport header. 2481 */ 2482 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2483 mp->b_wptr) { 2484 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2485 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2486 goto discard_pkt; 2487 } 2488 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2489 ipha = (ipha_t *)&icmph[1]; 2490 } 2491 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2492 2493 /* 2494 * Attempt to find a client stream based on port. 2495 * Note that we do a reverse lookup since the header is 2496 * in the form we sent it out. 2497 * The ripha header is only used for the IP_UDP_MATCH and we 2498 * only set the src and dst addresses and protocol. 2499 */ 2500 ripha.ipha_src = ipha->ipha_dst; 2501 ripha.ipha_dst = ipha->ipha_src; 2502 ripha.ipha_protocol = ipha->ipha_protocol; 2503 ((uint16_t *)&ports)[0] = up[1]; 2504 ((uint16_t *)&ports)[1] = up[0]; 2505 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2506 ntohl(ipha->ipha_src), ntohs(up[0]), 2507 ntohl(ipha->ipha_dst), ntohs(up[1]), 2508 icmph->icmph_type, icmph->icmph_code)); 2509 2510 /* Have to change db_type after any pullupmsg */ 2511 DB_TYPE(mp) = M_CTL; 2512 2513 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2514 mctl_present, ip_policy, recv_ill, zoneid); 2515 return; 2516 2517 case IPPROTO_TCP: 2518 /* 2519 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2520 * transport header. 2521 */ 2522 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2523 mp->b_wptr) { 2524 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2525 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2526 goto discard_pkt; 2527 } 2528 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2529 ipha = (ipha_t *)&icmph[1]; 2530 } 2531 /* 2532 * Find a TCP client stream for this packet. 2533 * Note that we do a reverse lookup since the header is 2534 * in the form we sent it out. 2535 */ 2536 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2537 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2538 ipst); 2539 if (connp == NULL) 2540 goto discard_pkt; 2541 2542 /* Have to change db_type after any pullupmsg */ 2543 DB_TYPE(mp) = M_CTL; 2544 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2545 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2546 return; 2547 2548 case IPPROTO_SCTP: 2549 /* 2550 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2551 * transport header. 2552 */ 2553 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2554 mp->b_wptr) { 2555 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2556 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2557 goto discard_pkt; 2558 } 2559 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2560 ipha = (ipha_t *)&icmph[1]; 2561 } 2562 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2563 /* 2564 * Find a SCTP client stream for this packet. 2565 * Note that we do a reverse lookup since the header is 2566 * in the form we sent it out. 2567 * The ripha header is only used for the matching and we 2568 * only set the src and dst addresses, protocol, and version. 2569 */ 2570 ripha.ipha_src = ipha->ipha_dst; 2571 ripha.ipha_dst = ipha->ipha_src; 2572 ripha.ipha_protocol = ipha->ipha_protocol; 2573 ripha.ipha_version_and_hdr_length = 2574 ipha->ipha_version_and_hdr_length; 2575 ((uint16_t *)&ports)[0] = up[1]; 2576 ((uint16_t *)&ports)[1] = up[0]; 2577 2578 /* Have to change db_type after any pullupmsg */ 2579 DB_TYPE(mp) = M_CTL; 2580 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2581 mctl_present, ip_policy, zoneid); 2582 return; 2583 2584 case IPPROTO_ESP: 2585 case IPPROTO_AH: { 2586 int ipsec_rc; 2587 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2588 2589 /* 2590 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2591 * We will re-use the IPSEC_IN if it is already present as 2592 * AH/ESP will not affect any fields in the IPSEC_IN for 2593 * ICMP errors. If there is no IPSEC_IN, allocate a new 2594 * one and attach it in the front. 2595 */ 2596 if (ii != NULL) { 2597 /* 2598 * ip_fanout_proto_again converts the ICMP errors 2599 * that come back from AH/ESP to M_DATA so that 2600 * if it is non-AH/ESP and we do a pullupmsg in 2601 * this function, it would work. Convert it back 2602 * to M_CTL before we send up as this is a ICMP 2603 * error. This could have been generated locally or 2604 * by some router. Validate the inner IPsec 2605 * headers. 2606 * 2607 * NOTE : ill_index is used by ip_fanout_proto_again 2608 * to locate the ill. 2609 */ 2610 ASSERT(ill != NULL); 2611 ii->ipsec_in_ill_index = 2612 ill->ill_phyint->phyint_ifindex; 2613 ii->ipsec_in_rill_index = 2614 recv_ill->ill_phyint->phyint_ifindex; 2615 DB_TYPE(first_mp->b_cont) = M_CTL; 2616 } else { 2617 /* 2618 * IPSEC_IN is not present. We attach a ipsec_in 2619 * message and send up to IPsec for validating 2620 * and removing the IPsec headers. Clear 2621 * ipsec_in_secure so that when we return 2622 * from IPsec, we don't mistakenly think that this 2623 * is a secure packet came from the network. 2624 * 2625 * NOTE : ill_index is used by ip_fanout_proto_again 2626 * to locate the ill. 2627 */ 2628 ASSERT(first_mp == mp); 2629 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2630 if (first_mp == NULL) { 2631 freemsg(mp); 2632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2633 return; 2634 } 2635 ii = (ipsec_in_t *)first_mp->b_rptr; 2636 2637 /* This is not a secure packet */ 2638 ii->ipsec_in_secure = B_FALSE; 2639 first_mp->b_cont = mp; 2640 DB_TYPE(mp) = M_CTL; 2641 ASSERT(ill != NULL); 2642 ii->ipsec_in_ill_index = 2643 ill->ill_phyint->phyint_ifindex; 2644 ii->ipsec_in_rill_index = 2645 recv_ill->ill_phyint->phyint_ifindex; 2646 } 2647 ip2dbg(("icmp_inbound_error: ipsec\n")); 2648 2649 if (!ipsec_loaded(ipss)) { 2650 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2651 return; 2652 } 2653 2654 if (ipha->ipha_protocol == IPPROTO_ESP) 2655 ipsec_rc = ipsecesp_icmp_error(first_mp); 2656 else 2657 ipsec_rc = ipsecah_icmp_error(first_mp); 2658 if (ipsec_rc == IPSEC_STATUS_FAILED) 2659 return; 2660 2661 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2662 return; 2663 } 2664 default: 2665 /* 2666 * The ripha header is only used for the lookup and we 2667 * only set the src and dst addresses and protocol. 2668 */ 2669 ripha.ipha_src = ipha->ipha_dst; 2670 ripha.ipha_dst = ipha->ipha_src; 2671 ripha.ipha_protocol = ipha->ipha_protocol; 2672 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2673 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2674 ntohl(ipha->ipha_dst), 2675 icmph->icmph_type, icmph->icmph_code)); 2676 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2677 ipha_t *in_ipha; 2678 2679 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2680 mp->b_wptr) { 2681 if (!pullupmsg(mp, (uchar_t *)ipha + 2682 hdr_length + sizeof (ipha_t) - 2683 mp->b_rptr)) { 2684 goto discard_pkt; 2685 } 2686 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2687 ipha = (ipha_t *)&icmph[1]; 2688 } 2689 /* 2690 * Caller has verified that length has to be 2691 * at least the size of IP header. 2692 */ 2693 ASSERT(hdr_length >= sizeof (ipha_t)); 2694 /* 2695 * Check the sanity of the inner IP header like 2696 * we did for the outer header. 2697 */ 2698 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2699 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2700 goto discard_pkt; 2701 } 2702 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2703 goto discard_pkt; 2704 } 2705 /* Check for Self-encapsulated tunnels */ 2706 if (in_ipha->ipha_src == ipha->ipha_src && 2707 in_ipha->ipha_dst == ipha->ipha_dst) { 2708 2709 mp = icmp_inbound_self_encap_error(mp, 2710 iph_hdr_length, hdr_length); 2711 if (mp == NULL) 2712 goto discard_pkt; 2713 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2714 ipha = (ipha_t *)&icmph[1]; 2715 hdr_length = IPH_HDR_LENGTH(ipha); 2716 /* 2717 * The packet in error is self-encapsualted. 2718 * And we are finding it further encapsulated 2719 * which we could not have possibly generated. 2720 */ 2721 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2722 goto discard_pkt; 2723 } 2724 icmp_inbound_error_fanout(q, ill, first_mp, 2725 icmph, ipha, iph_hdr_length, hdr_length, 2726 mctl_present, ip_policy, recv_ill, zoneid); 2727 return; 2728 } 2729 } 2730 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2731 ipha->ipha_protocol == IPPROTO_IPV6) && 2732 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2733 ii != NULL && 2734 ii->ipsec_in_loopback && 2735 ii->ipsec_in_secure) { 2736 /* 2737 * For IP tunnels that get a looped-back 2738 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2739 * reported new MTU to take into account the IPsec 2740 * headers protecting this configured tunnel. 2741 * 2742 * This allows the tunnel module (tun.c) to blindly 2743 * accept the MTU reported in an ICMP "too big" 2744 * message. 2745 * 2746 * Non-looped back ICMP messages will just be 2747 * handled by the security protocols (if needed), 2748 * and the first subsequent packet will hit this 2749 * path. 2750 */ 2751 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2752 ipsec_in_extra_length(first_mp)); 2753 } 2754 /* Have to change db_type after any pullupmsg */ 2755 DB_TYPE(mp) = M_CTL; 2756 2757 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2758 ip_policy, recv_ill, zoneid); 2759 return; 2760 } 2761 /* NOTREACHED */ 2762 discard_pkt: 2763 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2764 drop_pkt:; 2765 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2766 freemsg(first_mp); 2767 } 2768 2769 /* 2770 * Common IP options parser. 2771 * 2772 * Setup routine: fill in *optp with options-parsing state, then 2773 * tail-call ipoptp_next to return the first option. 2774 */ 2775 uint8_t 2776 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2777 { 2778 uint32_t totallen; /* total length of all options */ 2779 2780 totallen = ipha->ipha_version_and_hdr_length - 2781 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2782 totallen <<= 2; 2783 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2784 optp->ipoptp_end = optp->ipoptp_next + totallen; 2785 optp->ipoptp_flags = 0; 2786 return (ipoptp_next(optp)); 2787 } 2788 2789 /* 2790 * Common IP options parser: extract next option. 2791 */ 2792 uint8_t 2793 ipoptp_next(ipoptp_t *optp) 2794 { 2795 uint8_t *end = optp->ipoptp_end; 2796 uint8_t *cur = optp->ipoptp_next; 2797 uint8_t opt, len, pointer; 2798 2799 /* 2800 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2801 * has been corrupted. 2802 */ 2803 ASSERT(cur <= end); 2804 2805 if (cur == end) 2806 return (IPOPT_EOL); 2807 2808 opt = cur[IPOPT_OPTVAL]; 2809 2810 /* 2811 * Skip any NOP options. 2812 */ 2813 while (opt == IPOPT_NOP) { 2814 cur++; 2815 if (cur == end) 2816 return (IPOPT_EOL); 2817 opt = cur[IPOPT_OPTVAL]; 2818 } 2819 2820 if (opt == IPOPT_EOL) 2821 return (IPOPT_EOL); 2822 2823 /* 2824 * Option requiring a length. 2825 */ 2826 if ((cur + 1) >= end) { 2827 optp->ipoptp_flags |= IPOPTP_ERROR; 2828 return (IPOPT_EOL); 2829 } 2830 len = cur[IPOPT_OLEN]; 2831 if (len < 2) { 2832 optp->ipoptp_flags |= IPOPTP_ERROR; 2833 return (IPOPT_EOL); 2834 } 2835 optp->ipoptp_cur = cur; 2836 optp->ipoptp_len = len; 2837 optp->ipoptp_next = cur + len; 2838 if (cur + len > end) { 2839 optp->ipoptp_flags |= IPOPTP_ERROR; 2840 return (IPOPT_EOL); 2841 } 2842 2843 /* 2844 * For the options which require a pointer field, make sure 2845 * its there, and make sure it points to either something 2846 * inside this option, or the end of the option. 2847 */ 2848 switch (opt) { 2849 case IPOPT_RR: 2850 case IPOPT_TS: 2851 case IPOPT_LSRR: 2852 case IPOPT_SSRR: 2853 if (len <= IPOPT_OFFSET) { 2854 optp->ipoptp_flags |= IPOPTP_ERROR; 2855 return (opt); 2856 } 2857 pointer = cur[IPOPT_OFFSET]; 2858 if (pointer - 1 > len) { 2859 optp->ipoptp_flags |= IPOPTP_ERROR; 2860 return (opt); 2861 } 2862 break; 2863 } 2864 2865 /* 2866 * Sanity check the pointer field based on the type of the 2867 * option. 2868 */ 2869 switch (opt) { 2870 case IPOPT_RR: 2871 case IPOPT_SSRR: 2872 case IPOPT_LSRR: 2873 if (pointer < IPOPT_MINOFF_SR) 2874 optp->ipoptp_flags |= IPOPTP_ERROR; 2875 break; 2876 case IPOPT_TS: 2877 if (pointer < IPOPT_MINOFF_IT) 2878 optp->ipoptp_flags |= IPOPTP_ERROR; 2879 /* 2880 * Note that the Internet Timestamp option also 2881 * contains two four bit fields (the Overflow field, 2882 * and the Flag field), which follow the pointer 2883 * field. We don't need to check that these fields 2884 * fall within the length of the option because this 2885 * was implicitely done above. We've checked that the 2886 * pointer value is at least IPOPT_MINOFF_IT, and that 2887 * it falls within the option. Since IPOPT_MINOFF_IT > 2888 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2889 */ 2890 ASSERT(len > IPOPT_POS_OV_FLG); 2891 break; 2892 } 2893 2894 return (opt); 2895 } 2896 2897 /* 2898 * Use the outgoing IP header to create an IP_OPTIONS option the way 2899 * it was passed down from the application. 2900 */ 2901 int 2902 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2903 { 2904 ipoptp_t opts; 2905 const uchar_t *opt; 2906 uint8_t optval; 2907 uint8_t optlen; 2908 uint32_t len = 0; 2909 uchar_t *buf1 = buf; 2910 2911 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2912 len += IP_ADDR_LEN; 2913 bzero(buf1, IP_ADDR_LEN); 2914 2915 /* 2916 * OK to cast away const here, as we don't store through the returned 2917 * opts.ipoptp_cur pointer. 2918 */ 2919 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2920 optval != IPOPT_EOL; 2921 optval = ipoptp_next(&opts)) { 2922 int off; 2923 2924 opt = opts.ipoptp_cur; 2925 optlen = opts.ipoptp_len; 2926 switch (optval) { 2927 case IPOPT_SSRR: 2928 case IPOPT_LSRR: 2929 2930 /* 2931 * Insert ipha_dst as the first entry in the source 2932 * route and move down the entries on step. 2933 * The last entry gets placed at buf1. 2934 */ 2935 buf[IPOPT_OPTVAL] = optval; 2936 buf[IPOPT_OLEN] = optlen; 2937 buf[IPOPT_OFFSET] = optlen; 2938 2939 off = optlen - IP_ADDR_LEN; 2940 if (off < 0) { 2941 /* No entries in source route */ 2942 break; 2943 } 2944 /* Last entry in source route */ 2945 bcopy(opt + off, buf1, IP_ADDR_LEN); 2946 off -= IP_ADDR_LEN; 2947 2948 while (off > 0) { 2949 bcopy(opt + off, 2950 buf + off + IP_ADDR_LEN, 2951 IP_ADDR_LEN); 2952 off -= IP_ADDR_LEN; 2953 } 2954 /* ipha_dst into first slot */ 2955 bcopy(&ipha->ipha_dst, 2956 buf + off + IP_ADDR_LEN, 2957 IP_ADDR_LEN); 2958 buf += optlen; 2959 len += optlen; 2960 break; 2961 2962 case IPOPT_COMSEC: 2963 case IPOPT_SECURITY: 2964 /* if passing up a label is not ok, then remove */ 2965 if (is_system_labeled()) 2966 break; 2967 /* FALLTHROUGH */ 2968 default: 2969 bcopy(opt, buf, optlen); 2970 buf += optlen; 2971 len += optlen; 2972 break; 2973 } 2974 } 2975 done: 2976 /* Pad the resulting options */ 2977 while (len & 0x3) { 2978 *buf++ = IPOPT_EOL; 2979 len++; 2980 } 2981 return (len); 2982 } 2983 2984 /* 2985 * Update any record route or timestamp options to include this host. 2986 * Reverse any source route option. 2987 * This routine assumes that the options are well formed i.e. that they 2988 * have already been checked. 2989 */ 2990 static void 2991 icmp_options_update(ipha_t *ipha) 2992 { 2993 ipoptp_t opts; 2994 uchar_t *opt; 2995 uint8_t optval; 2996 ipaddr_t src; /* Our local address */ 2997 ipaddr_t dst; 2998 2999 ip2dbg(("icmp_options_update\n")); 3000 src = ipha->ipha_src; 3001 dst = ipha->ipha_dst; 3002 3003 for (optval = ipoptp_first(&opts, ipha); 3004 optval != IPOPT_EOL; 3005 optval = ipoptp_next(&opts)) { 3006 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3007 opt = opts.ipoptp_cur; 3008 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3009 optval, opts.ipoptp_len)); 3010 switch (optval) { 3011 int off1, off2; 3012 case IPOPT_SSRR: 3013 case IPOPT_LSRR: 3014 /* 3015 * Reverse the source route. The first entry 3016 * should be the next to last one in the current 3017 * source route (the last entry is our address). 3018 * The last entry should be the final destination. 3019 */ 3020 off1 = IPOPT_MINOFF_SR - 1; 3021 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3022 if (off2 < 0) { 3023 /* No entries in source route */ 3024 ip1dbg(( 3025 "icmp_options_update: bad src route\n")); 3026 break; 3027 } 3028 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3029 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3030 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3031 off2 -= IP_ADDR_LEN; 3032 3033 while (off1 < off2) { 3034 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3035 bcopy((char *)opt + off2, (char *)opt + off1, 3036 IP_ADDR_LEN); 3037 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3038 off1 += IP_ADDR_LEN; 3039 off2 -= IP_ADDR_LEN; 3040 } 3041 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3042 break; 3043 } 3044 } 3045 } 3046 3047 /* 3048 * Process received ICMP Redirect messages. 3049 */ 3050 static void 3051 icmp_redirect(ill_t *ill, mblk_t *mp) 3052 { 3053 ipha_t *ipha; 3054 int iph_hdr_length; 3055 icmph_t *icmph; 3056 ipha_t *ipha_err; 3057 ire_t *ire; 3058 ire_t *prev_ire; 3059 ire_t *save_ire; 3060 ipaddr_t src, dst, gateway; 3061 iulp_t ulp_info = { 0 }; 3062 int error; 3063 ip_stack_t *ipst; 3064 3065 ASSERT(ill != NULL); 3066 ipst = ill->ill_ipst; 3067 3068 ipha = (ipha_t *)mp->b_rptr; 3069 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3070 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3071 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3072 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3073 freemsg(mp); 3074 return; 3075 } 3076 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3077 ipha_err = (ipha_t *)&icmph[1]; 3078 src = ipha->ipha_src; 3079 dst = ipha_err->ipha_dst; 3080 gateway = icmph->icmph_rd_gateway; 3081 /* Make sure the new gateway is reachable somehow. */ 3082 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3083 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3084 /* 3085 * Make sure we had a route for the dest in question and that 3086 * that route was pointing to the old gateway (the source of the 3087 * redirect packet.) 3088 */ 3089 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3090 NULL, MATCH_IRE_GW, ipst); 3091 /* 3092 * Check that 3093 * the redirect was not from ourselves 3094 * the new gateway and the old gateway are directly reachable 3095 */ 3096 if (!prev_ire || 3097 !ire || 3098 ire->ire_type == IRE_LOCAL) { 3099 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3100 freemsg(mp); 3101 if (ire != NULL) 3102 ire_refrele(ire); 3103 if (prev_ire != NULL) 3104 ire_refrele(prev_ire); 3105 return; 3106 } 3107 3108 /* 3109 * Should we use the old ULP info to create the new gateway? From 3110 * a user's perspective, we should inherit the info so that it 3111 * is a "smooth" transition. If we do not do that, then new 3112 * connections going thru the new gateway will have no route metrics, 3113 * which is counter-intuitive to user. From a network point of 3114 * view, this may or may not make sense even though the new gateway 3115 * is still directly connected to us so the route metrics should not 3116 * change much. 3117 * 3118 * But if the old ire_uinfo is not initialized, we do another 3119 * recursive lookup on the dest using the new gateway. There may 3120 * be a route to that. If so, use it to initialize the redirect 3121 * route. 3122 */ 3123 if (prev_ire->ire_uinfo.iulp_set) { 3124 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3125 } else { 3126 ire_t *tmp_ire; 3127 ire_t *sire; 3128 3129 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3130 ALL_ZONES, 0, NULL, 3131 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3132 ipst); 3133 if (sire != NULL) { 3134 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3135 /* 3136 * If sire != NULL, ire_ftable_lookup() should not 3137 * return a NULL value. 3138 */ 3139 ASSERT(tmp_ire != NULL); 3140 ire_refrele(tmp_ire); 3141 ire_refrele(sire); 3142 } else if (tmp_ire != NULL) { 3143 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3144 sizeof (iulp_t)); 3145 ire_refrele(tmp_ire); 3146 } 3147 } 3148 if (prev_ire->ire_type == IRE_CACHE) 3149 ire_delete(prev_ire); 3150 ire_refrele(prev_ire); 3151 /* 3152 * TODO: more precise handling for cases 0, 2, 3, the latter two 3153 * require TOS routing 3154 */ 3155 switch (icmph->icmph_code) { 3156 case 0: 3157 case 1: 3158 /* TODO: TOS specificity for cases 2 and 3 */ 3159 case 2: 3160 case 3: 3161 break; 3162 default: 3163 freemsg(mp); 3164 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3165 ire_refrele(ire); 3166 return; 3167 } 3168 /* 3169 * Create a Route Association. This will allow us to remember that 3170 * someone we believe told us to use the particular gateway. 3171 */ 3172 save_ire = ire; 3173 ire = ire_create( 3174 (uchar_t *)&dst, /* dest addr */ 3175 (uchar_t *)&ip_g_all_ones, /* mask */ 3176 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3177 (uchar_t *)&gateway, /* gateway addr */ 3178 &save_ire->ire_max_frag, /* max frag */ 3179 NULL, /* no src nce */ 3180 NULL, /* no rfq */ 3181 NULL, /* no stq */ 3182 IRE_HOST, 3183 NULL, /* ipif */ 3184 0, /* cmask */ 3185 0, /* phandle */ 3186 0, /* ihandle */ 3187 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3188 &ulp_info, 3189 NULL, /* tsol_gc_t */ 3190 NULL, /* gcgrp */ 3191 ipst); 3192 3193 if (ire == NULL) { 3194 freemsg(mp); 3195 ire_refrele(save_ire); 3196 return; 3197 } 3198 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3199 ire_refrele(save_ire); 3200 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3201 3202 if (error == 0) { 3203 ire_refrele(ire); /* Held in ire_add_v4 */ 3204 /* tell routing sockets that we received a redirect */ 3205 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3206 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3207 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3208 } 3209 3210 /* 3211 * Delete any existing IRE_HOST type redirect ires for this destination. 3212 * This together with the added IRE has the effect of 3213 * modifying an existing redirect. 3214 */ 3215 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3216 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3217 if (prev_ire != NULL) { 3218 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3219 ire_delete(prev_ire); 3220 ire_refrele(prev_ire); 3221 } 3222 3223 freemsg(mp); 3224 } 3225 3226 /* 3227 * Generate an ICMP parameter problem message. 3228 */ 3229 static void 3230 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3231 ip_stack_t *ipst) 3232 { 3233 icmph_t icmph; 3234 boolean_t mctl_present; 3235 mblk_t *first_mp; 3236 3237 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3238 3239 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3240 if (mctl_present) 3241 freeb(first_mp); 3242 return; 3243 } 3244 3245 bzero(&icmph, sizeof (icmph_t)); 3246 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3247 icmph.icmph_pp_ptr = ptr; 3248 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3249 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3250 ipst); 3251 } 3252 3253 /* 3254 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3255 * the ICMP header pointed to by "stuff". (May be called as writer.) 3256 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3257 * an icmp error packet can be sent. 3258 * Assigns an appropriate source address to the packet. If ipha_dst is 3259 * one of our addresses use it for source. Otherwise pick a source based 3260 * on a route lookup back to ipha_src. 3261 * Note that ipha_src must be set here since the 3262 * packet is likely to arrive on an ill queue in ip_wput() which will 3263 * not set a source address. 3264 */ 3265 static void 3266 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3267 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3268 { 3269 ipaddr_t dst; 3270 icmph_t *icmph; 3271 ipha_t *ipha; 3272 uint_t len_needed; 3273 size_t msg_len; 3274 mblk_t *mp1; 3275 ipaddr_t src; 3276 ire_t *ire; 3277 mblk_t *ipsec_mp; 3278 ipsec_out_t *io = NULL; 3279 3280 if (mctl_present) { 3281 /* 3282 * If it is : 3283 * 3284 * 1) a IPSEC_OUT, then this is caused by outbound 3285 * datagram originating on this host. IPsec processing 3286 * may or may not have been done. Refer to comments above 3287 * icmp_inbound_error_fanout for details. 3288 * 3289 * 2) a IPSEC_IN if we are generating a icmp_message 3290 * for an incoming datagram destined for us i.e called 3291 * from ip_fanout_send_icmp. 3292 */ 3293 ipsec_info_t *in; 3294 ipsec_mp = mp; 3295 mp = ipsec_mp->b_cont; 3296 3297 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3298 ipha = (ipha_t *)mp->b_rptr; 3299 3300 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3301 in->ipsec_info_type == IPSEC_IN); 3302 3303 if (in->ipsec_info_type == IPSEC_IN) { 3304 /* 3305 * Convert the IPSEC_IN to IPSEC_OUT. 3306 */ 3307 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3308 BUMP_MIB(&ipst->ips_ip_mib, 3309 ipIfStatsOutDiscards); 3310 return; 3311 } 3312 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3313 } else { 3314 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3315 io = (ipsec_out_t *)in; 3316 /* 3317 * Clear out ipsec_out_proc_begin, so we do a fresh 3318 * ire lookup. 3319 */ 3320 io->ipsec_out_proc_begin = B_FALSE; 3321 } 3322 ASSERT(zoneid == io->ipsec_out_zoneid); 3323 ASSERT(zoneid != ALL_ZONES); 3324 } else { 3325 /* 3326 * This is in clear. The icmp message we are building 3327 * here should go out in clear. 3328 * 3329 * Pardon the convolution of it all, but it's easier to 3330 * allocate a "use cleartext" IPSEC_IN message and convert 3331 * it than it is to allocate a new one. 3332 */ 3333 ipsec_in_t *ii; 3334 ASSERT(DB_TYPE(mp) == M_DATA); 3335 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3336 if (ipsec_mp == NULL) { 3337 freemsg(mp); 3338 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3339 return; 3340 } 3341 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3342 3343 /* This is not a secure packet */ 3344 ii->ipsec_in_secure = B_FALSE; 3345 /* 3346 * For trusted extensions using a shared IP address we can 3347 * send using any zoneid. 3348 */ 3349 if (zoneid == ALL_ZONES) 3350 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3351 else 3352 ii->ipsec_in_zoneid = zoneid; 3353 ipsec_mp->b_cont = mp; 3354 ipha = (ipha_t *)mp->b_rptr; 3355 /* 3356 * Convert the IPSEC_IN to IPSEC_OUT. 3357 */ 3358 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3359 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3360 return; 3361 } 3362 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3363 } 3364 3365 /* Remember our eventual destination */ 3366 dst = ipha->ipha_src; 3367 3368 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3369 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3370 if (ire != NULL && 3371 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3372 src = ipha->ipha_dst; 3373 } else { 3374 if (ire != NULL) 3375 ire_refrele(ire); 3376 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3377 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3378 ipst); 3379 if (ire == NULL) { 3380 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3381 freemsg(ipsec_mp); 3382 return; 3383 } 3384 src = ire->ire_src_addr; 3385 } 3386 3387 if (ire != NULL) 3388 ire_refrele(ire); 3389 3390 /* 3391 * Check if we can send back more then 8 bytes in addition to 3392 * the IP header. We try to send 64 bytes of data and the internal 3393 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3394 */ 3395 len_needed = IPH_HDR_LENGTH(ipha); 3396 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3397 ipha->ipha_protocol == IPPROTO_IPV6) { 3398 3399 if (!pullupmsg(mp, -1)) { 3400 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3401 freemsg(ipsec_mp); 3402 return; 3403 } 3404 ipha = (ipha_t *)mp->b_rptr; 3405 3406 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3407 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3408 len_needed)); 3409 } else { 3410 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3411 3412 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3413 len_needed += ip_hdr_length_v6(mp, ip6h); 3414 } 3415 } 3416 len_needed += ipst->ips_ip_icmp_return; 3417 msg_len = msgdsize(mp); 3418 if (msg_len > len_needed) { 3419 (void) adjmsg(mp, len_needed - msg_len); 3420 msg_len = len_needed; 3421 } 3422 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3423 if (mp1 == NULL) { 3424 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3425 freemsg(ipsec_mp); 3426 return; 3427 } 3428 mp1->b_cont = mp; 3429 mp = mp1; 3430 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3431 ipsec_mp->b_rptr == (uint8_t *)io && 3432 io->ipsec_out_type == IPSEC_OUT); 3433 ipsec_mp->b_cont = mp; 3434 3435 /* 3436 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3437 * node generates be accepted in peace by all on-host destinations. 3438 * If we do NOT assume that all on-host destinations trust 3439 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3440 * (Look for ipsec_out_icmp_loopback). 3441 */ 3442 io->ipsec_out_icmp_loopback = B_TRUE; 3443 3444 ipha = (ipha_t *)mp->b_rptr; 3445 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3446 *ipha = icmp_ipha; 3447 ipha->ipha_src = src; 3448 ipha->ipha_dst = dst; 3449 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3450 msg_len += sizeof (icmp_ipha) + len; 3451 if (msg_len > IP_MAXPACKET) { 3452 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3453 msg_len = IP_MAXPACKET; 3454 } 3455 ipha->ipha_length = htons((uint16_t)msg_len); 3456 icmph = (icmph_t *)&ipha[1]; 3457 bcopy(stuff, icmph, len); 3458 icmph->icmph_checksum = 0; 3459 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3460 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3461 put(q, ipsec_mp); 3462 } 3463 3464 /* 3465 * Determine if an ICMP error packet can be sent given the rate limit. 3466 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3467 * in milliseconds) and a burst size. Burst size number of packets can 3468 * be sent arbitrarely closely spaced. 3469 * The state is tracked using two variables to implement an approximate 3470 * token bucket filter: 3471 * icmp_pkt_err_last - lbolt value when the last burst started 3472 * icmp_pkt_err_sent - number of packets sent in current burst 3473 */ 3474 boolean_t 3475 icmp_err_rate_limit(ip_stack_t *ipst) 3476 { 3477 clock_t now = TICK_TO_MSEC(lbolt); 3478 uint_t refilled; /* Number of packets refilled in tbf since last */ 3479 /* Guard against changes by loading into local variable */ 3480 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3481 3482 if (err_interval == 0) 3483 return (B_FALSE); 3484 3485 if (ipst->ips_icmp_pkt_err_last > now) { 3486 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3487 ipst->ips_icmp_pkt_err_last = 0; 3488 ipst->ips_icmp_pkt_err_sent = 0; 3489 } 3490 /* 3491 * If we are in a burst update the token bucket filter. 3492 * Update the "last" time to be close to "now" but make sure 3493 * we don't loose precision. 3494 */ 3495 if (ipst->ips_icmp_pkt_err_sent != 0) { 3496 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3497 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3498 ipst->ips_icmp_pkt_err_sent = 0; 3499 } else { 3500 ipst->ips_icmp_pkt_err_sent -= refilled; 3501 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3502 } 3503 } 3504 if (ipst->ips_icmp_pkt_err_sent == 0) { 3505 /* Start of new burst */ 3506 ipst->ips_icmp_pkt_err_last = now; 3507 } 3508 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3509 ipst->ips_icmp_pkt_err_sent++; 3510 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3511 ipst->ips_icmp_pkt_err_sent)); 3512 return (B_FALSE); 3513 } 3514 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3515 return (B_TRUE); 3516 } 3517 3518 /* 3519 * Check if it is ok to send an IPv4 ICMP error packet in 3520 * response to the IPv4 packet in mp. 3521 * Free the message and return null if no 3522 * ICMP error packet should be sent. 3523 */ 3524 static mblk_t * 3525 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3526 { 3527 icmph_t *icmph; 3528 ipha_t *ipha; 3529 uint_t len_needed; 3530 ire_t *src_ire; 3531 ire_t *dst_ire; 3532 3533 if (!mp) 3534 return (NULL); 3535 ipha = (ipha_t *)mp->b_rptr; 3536 if (ip_csum_hdr(ipha)) { 3537 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3538 freemsg(mp); 3539 return (NULL); 3540 } 3541 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3542 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3543 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3544 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3545 if (src_ire != NULL || dst_ire != NULL || 3546 CLASSD(ipha->ipha_dst) || 3547 CLASSD(ipha->ipha_src) || 3548 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3549 /* Note: only errors to the fragment with offset 0 */ 3550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3551 freemsg(mp); 3552 if (src_ire != NULL) 3553 ire_refrele(src_ire); 3554 if (dst_ire != NULL) 3555 ire_refrele(dst_ire); 3556 return (NULL); 3557 } 3558 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3559 /* 3560 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3561 * errors in response to any ICMP errors. 3562 */ 3563 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3564 if (mp->b_wptr - mp->b_rptr < len_needed) { 3565 if (!pullupmsg(mp, len_needed)) { 3566 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3567 freemsg(mp); 3568 return (NULL); 3569 } 3570 ipha = (ipha_t *)mp->b_rptr; 3571 } 3572 icmph = (icmph_t *) 3573 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3574 switch (icmph->icmph_type) { 3575 case ICMP_DEST_UNREACHABLE: 3576 case ICMP_SOURCE_QUENCH: 3577 case ICMP_TIME_EXCEEDED: 3578 case ICMP_PARAM_PROBLEM: 3579 case ICMP_REDIRECT: 3580 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3581 freemsg(mp); 3582 return (NULL); 3583 default: 3584 break; 3585 } 3586 } 3587 /* 3588 * If this is a labeled system, then check to see if we're allowed to 3589 * send a response to this particular sender. If not, then just drop. 3590 */ 3591 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3592 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3593 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3594 freemsg(mp); 3595 return (NULL); 3596 } 3597 if (icmp_err_rate_limit(ipst)) { 3598 /* 3599 * Only send ICMP error packets every so often. 3600 * This should be done on a per port/source basis, 3601 * but for now this will suffice. 3602 */ 3603 freemsg(mp); 3604 return (NULL); 3605 } 3606 return (mp); 3607 } 3608 3609 /* 3610 * Generate an ICMP redirect message. 3611 */ 3612 static void 3613 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3614 { 3615 icmph_t icmph; 3616 3617 /* 3618 * We are called from ip_rput where we could 3619 * not have attached an IPSEC_IN. 3620 */ 3621 ASSERT(mp->b_datap->db_type == M_DATA); 3622 3623 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3624 return; 3625 } 3626 3627 bzero(&icmph, sizeof (icmph_t)); 3628 icmph.icmph_type = ICMP_REDIRECT; 3629 icmph.icmph_code = 1; 3630 icmph.icmph_rd_gateway = gateway; 3631 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3632 /* Redirects sent by router, and router is global zone */ 3633 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3634 } 3635 3636 /* 3637 * Generate an ICMP time exceeded message. 3638 */ 3639 void 3640 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3641 ip_stack_t *ipst) 3642 { 3643 icmph_t icmph; 3644 boolean_t mctl_present; 3645 mblk_t *first_mp; 3646 3647 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3648 3649 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3650 if (mctl_present) 3651 freeb(first_mp); 3652 return; 3653 } 3654 3655 bzero(&icmph, sizeof (icmph_t)); 3656 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3657 icmph.icmph_code = code; 3658 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3659 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3660 ipst); 3661 } 3662 3663 /* 3664 * Generate an ICMP unreachable message. 3665 */ 3666 void 3667 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3668 ip_stack_t *ipst) 3669 { 3670 icmph_t icmph; 3671 mblk_t *first_mp; 3672 boolean_t mctl_present; 3673 3674 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3675 3676 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3677 if (mctl_present) 3678 freeb(first_mp); 3679 return; 3680 } 3681 3682 bzero(&icmph, sizeof (icmph_t)); 3683 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3684 icmph.icmph_code = code; 3685 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3686 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3687 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3688 zoneid, ipst); 3689 } 3690 3691 /* 3692 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3693 * duplicate. As long as someone else holds the address, the interface will 3694 * stay down. When that conflict goes away, the interface is brought back up. 3695 * This is done so that accidental shutdowns of addresses aren't made 3696 * permanent. Your server will recover from a failure. 3697 * 3698 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3699 * user space process (dhcpagent). 3700 * 3701 * Recovery completes if ARP reports that the address is now ours (via 3702 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3703 * 3704 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3705 */ 3706 static void 3707 ipif_dup_recovery(void *arg) 3708 { 3709 ipif_t *ipif = arg; 3710 ill_t *ill = ipif->ipif_ill; 3711 mblk_t *arp_add_mp; 3712 mblk_t *arp_del_mp; 3713 area_t *area; 3714 ip_stack_t *ipst = ill->ill_ipst; 3715 3716 ipif->ipif_recovery_id = 0; 3717 3718 /* 3719 * No lock needed for moving or condemned check, as this is just an 3720 * optimization. 3721 */ 3722 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3723 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3724 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3725 /* No reason to try to bring this address back. */ 3726 return; 3727 } 3728 3729 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3730 goto alloc_fail; 3731 3732 if (ipif->ipif_arp_del_mp == NULL) { 3733 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3734 goto alloc_fail; 3735 ipif->ipif_arp_del_mp = arp_del_mp; 3736 } 3737 3738 /* Setting the 'unverified' flag restarts DAD */ 3739 area = (area_t *)arp_add_mp->b_rptr; 3740 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3741 ACE_F_UNVERIFIED; 3742 putnext(ill->ill_rq, arp_add_mp); 3743 return; 3744 3745 alloc_fail: 3746 /* 3747 * On allocation failure, just restart the timer. Note that the ipif 3748 * is down here, so no other thread could be trying to start a recovery 3749 * timer. The ill_lock protects the condemned flag and the recovery 3750 * timer ID. 3751 */ 3752 freemsg(arp_add_mp); 3753 mutex_enter(&ill->ill_lock); 3754 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3755 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3756 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3757 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3758 } 3759 mutex_exit(&ill->ill_lock); 3760 } 3761 3762 /* 3763 * This is for exclusive changes due to ARP. Either tear down an interface due 3764 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3765 */ 3766 /* ARGSUSED */ 3767 static void 3768 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3769 { 3770 ill_t *ill = rq->q_ptr; 3771 arh_t *arh; 3772 ipaddr_t src; 3773 ipif_t *ipif; 3774 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3775 char hbuf[MAC_STR_LEN]; 3776 char sbuf[INET_ADDRSTRLEN]; 3777 const char *failtype; 3778 boolean_t bring_up; 3779 ip_stack_t *ipst = ill->ill_ipst; 3780 3781 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3782 case AR_CN_READY: 3783 failtype = NULL; 3784 bring_up = B_TRUE; 3785 break; 3786 case AR_CN_FAILED: 3787 failtype = "in use"; 3788 bring_up = B_FALSE; 3789 break; 3790 default: 3791 failtype = "claimed"; 3792 bring_up = B_FALSE; 3793 break; 3794 } 3795 3796 arh = (arh_t *)mp->b_cont->b_rptr; 3797 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3798 3799 /* Handle failures due to probes */ 3800 if (src == 0) { 3801 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3802 IP_ADDR_LEN); 3803 } 3804 3805 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3806 sizeof (hbuf)); 3807 (void) ip_dot_addr(src, sbuf); 3808 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3809 3810 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3811 ipif->ipif_lcl_addr != src) { 3812 continue; 3813 } 3814 3815 /* 3816 * If we failed on a recovery probe, then restart the timer to 3817 * try again later. 3818 */ 3819 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3820 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3821 ill->ill_net_type == IRE_IF_RESOLVER && 3822 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3823 ipst->ips_ip_dup_recovery > 0 && 3824 ipif->ipif_recovery_id == 0) { 3825 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3826 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3827 continue; 3828 } 3829 3830 /* 3831 * If what we're trying to do has already been done, then do 3832 * nothing. 3833 */ 3834 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3835 continue; 3836 3837 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3838 3839 if (failtype == NULL) { 3840 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3841 ibuf); 3842 } else { 3843 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3844 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3845 } 3846 3847 if (bring_up) { 3848 ASSERT(ill->ill_dl_up); 3849 /* 3850 * Free up the ARP delete message so we can allocate 3851 * a fresh one through the normal path. 3852 */ 3853 freemsg(ipif->ipif_arp_del_mp); 3854 ipif->ipif_arp_del_mp = NULL; 3855 if (ipif_resolver_up(ipif, Res_act_initial) != 3856 EINPROGRESS) { 3857 ipif->ipif_addr_ready = 1; 3858 (void) ipif_up_done(ipif); 3859 } 3860 continue; 3861 } 3862 3863 mutex_enter(&ill->ill_lock); 3864 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3865 ipif->ipif_flags |= IPIF_DUPLICATE; 3866 ill->ill_ipif_dup_count++; 3867 mutex_exit(&ill->ill_lock); 3868 /* 3869 * Already exclusive on the ill; no need to handle deferred 3870 * processing here. 3871 */ 3872 (void) ipif_down(ipif, NULL, NULL); 3873 ipif_down_tail(ipif); 3874 mutex_enter(&ill->ill_lock); 3875 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3876 ill->ill_net_type == IRE_IF_RESOLVER && 3877 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3878 ipst->ips_ip_dup_recovery > 0) { 3879 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3880 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3881 } 3882 mutex_exit(&ill->ill_lock); 3883 } 3884 freemsg(mp); 3885 } 3886 3887 /* ARGSUSED */ 3888 static void 3889 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3890 { 3891 ill_t *ill = rq->q_ptr; 3892 arh_t *arh; 3893 ipaddr_t src; 3894 ipif_t *ipif; 3895 3896 arh = (arh_t *)mp->b_cont->b_rptr; 3897 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3898 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3899 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3900 (void) ipif_resolver_up(ipif, Res_act_defend); 3901 } 3902 freemsg(mp); 3903 } 3904 3905 /* 3906 * News from ARP. ARP sends notification of interesting events down 3907 * to its clients using M_CTL messages with the interesting ARP packet 3908 * attached via b_cont. 3909 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3910 * queue as opposed to ARP sending the message to all the clients, i.e. all 3911 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3912 * table if a cache IRE is found to delete all the entries for the address in 3913 * the packet. 3914 */ 3915 static void 3916 ip_arp_news(queue_t *q, mblk_t *mp) 3917 { 3918 arcn_t *arcn; 3919 arh_t *arh; 3920 ire_t *ire = NULL; 3921 char hbuf[MAC_STR_LEN]; 3922 char sbuf[INET_ADDRSTRLEN]; 3923 ipaddr_t src; 3924 in6_addr_t v6src; 3925 boolean_t isv6 = B_FALSE; 3926 ipif_t *ipif; 3927 ill_t *ill; 3928 ip_stack_t *ipst; 3929 3930 if (CONN_Q(q)) { 3931 conn_t *connp = Q_TO_CONN(q); 3932 3933 ipst = connp->conn_netstack->netstack_ip; 3934 } else { 3935 ill_t *ill = (ill_t *)q->q_ptr; 3936 3937 ipst = ill->ill_ipst; 3938 } 3939 3940 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3941 if (q->q_next) { 3942 putnext(q, mp); 3943 } else 3944 freemsg(mp); 3945 return; 3946 } 3947 arh = (arh_t *)mp->b_cont->b_rptr; 3948 /* Is it one we are interested in? */ 3949 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3950 isv6 = B_TRUE; 3951 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3952 IPV6_ADDR_LEN); 3953 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3954 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3955 IP_ADDR_LEN); 3956 } else { 3957 freemsg(mp); 3958 return; 3959 } 3960 3961 ill = q->q_ptr; 3962 3963 arcn = (arcn_t *)mp->b_rptr; 3964 switch (arcn->arcn_code) { 3965 case AR_CN_BOGON: 3966 /* 3967 * Someone is sending ARP packets with a source protocol 3968 * address that we have published and for which we believe our 3969 * entry is authoritative and (when ill_arp_extend is set) 3970 * verified to be unique on the network. 3971 * 3972 * The ARP module internally handles the cases where the sender 3973 * is just probing (for DAD) and where the hardware address of 3974 * a non-authoritative entry has changed. Thus, these are the 3975 * real conflicts, and we have to do resolution. 3976 * 3977 * We back away quickly from the address if it's from DHCP or 3978 * otherwise temporary and hasn't been used recently (or at 3979 * all). We'd like to include "deprecated" addresses here as 3980 * well (as there's no real reason to defend something we're 3981 * discarding), but IPMP "reuses" this flag to mean something 3982 * other than the standard meaning. 3983 * 3984 * If the ARP module above is not extended (meaning that it 3985 * doesn't know how to defend the address), then we just log 3986 * the problem as we always did and continue on. It's not 3987 * right, but there's little else we can do, and those old ATM 3988 * users are going away anyway. 3989 */ 3990 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3991 hbuf, sizeof (hbuf)); 3992 (void) ip_dot_addr(src, sbuf); 3993 if (isv6) { 3994 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3995 ipst); 3996 } else { 3997 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3998 } 3999 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4000 uint32_t now; 4001 uint32_t maxage; 4002 clock_t lused; 4003 uint_t maxdefense; 4004 uint_t defs; 4005 4006 /* 4007 * First, figure out if this address hasn't been used 4008 * in a while. If it hasn't, then it's a better 4009 * candidate for abandoning. 4010 */ 4011 ipif = ire->ire_ipif; 4012 ASSERT(ipif != NULL); 4013 now = gethrestime_sec(); 4014 maxage = now - ire->ire_create_time; 4015 if (maxage > ipst->ips_ip_max_temp_idle) 4016 maxage = ipst->ips_ip_max_temp_idle; 4017 lused = drv_hztousec(ddi_get_lbolt() - 4018 ire->ire_last_used_time) / MICROSEC + 1; 4019 if (lused >= maxage && (ipif->ipif_flags & 4020 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4021 maxdefense = ipst->ips_ip_max_temp_defend; 4022 else 4023 maxdefense = ipst->ips_ip_max_defend; 4024 4025 /* 4026 * Now figure out how many times we've defended 4027 * ourselves. Ignore defenses that happened long in 4028 * the past. 4029 */ 4030 mutex_enter(&ire->ire_lock); 4031 if ((defs = ire->ire_defense_count) > 0 && 4032 now - ire->ire_defense_time > 4033 ipst->ips_ip_defend_interval) { 4034 ire->ire_defense_count = defs = 0; 4035 } 4036 ire->ire_defense_count++; 4037 ire->ire_defense_time = now; 4038 mutex_exit(&ire->ire_lock); 4039 ill_refhold(ill); 4040 ire_refrele(ire); 4041 4042 /* 4043 * If we've defended ourselves too many times already, 4044 * then give up and tear down the interface(s) using 4045 * this address. Otherwise, defend by sending out a 4046 * gratuitous ARP. 4047 */ 4048 if (defs >= maxdefense && ill->ill_arp_extend) { 4049 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4050 B_FALSE); 4051 } else { 4052 cmn_err(CE_WARN, 4053 "node %s is using our IP address %s on %s", 4054 hbuf, sbuf, ill->ill_name); 4055 /* 4056 * If this is an old (ATM) ARP module, then 4057 * don't try to defend the address. Remain 4058 * compatible with the old behavior. Defend 4059 * only with new ARP. 4060 */ 4061 if (ill->ill_arp_extend) { 4062 qwriter_ip(ill, q, mp, ip_arp_defend, 4063 NEW_OP, B_FALSE); 4064 } else { 4065 ill_refrele(ill); 4066 } 4067 } 4068 return; 4069 } 4070 cmn_err(CE_WARN, 4071 "proxy ARP problem? Node '%s' is using %s on %s", 4072 hbuf, sbuf, ill->ill_name); 4073 if (ire != NULL) 4074 ire_refrele(ire); 4075 break; 4076 case AR_CN_ANNOUNCE: 4077 if (isv6) { 4078 /* 4079 * For XRESOLV interfaces. 4080 * Delete the IRE cache entry and NCE for this 4081 * v6 address 4082 */ 4083 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4084 /* 4085 * If v6src is a non-zero, it's a router address 4086 * as below. Do the same sort of thing to clean 4087 * out off-net IRE_CACHE entries that go through 4088 * the router. 4089 */ 4090 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4091 ire_walk_v6(ire_delete_cache_gw_v6, 4092 (char *)&v6src, ALL_ZONES, ipst); 4093 } 4094 } else { 4095 nce_hw_map_t hwm; 4096 4097 /* 4098 * ARP gives us a copy of any packet where it thinks 4099 * the address has changed, so that we can update our 4100 * caches. We're responsible for caching known answers 4101 * in the current design. We check whether the 4102 * hardware address really has changed in all of our 4103 * entries that have cached this mapping, and if so, we 4104 * blow them away. This way we will immediately pick 4105 * up the rare case of a host changing hardware 4106 * address. 4107 */ 4108 if (src == 0) 4109 break; 4110 hwm.hwm_addr = src; 4111 hwm.hwm_hwlen = arh->arh_hlen; 4112 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4113 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4114 ndp_walk_common(ipst->ips_ndp4, NULL, 4115 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4116 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4117 } 4118 break; 4119 case AR_CN_READY: 4120 /* No external v6 resolver has a contract to use this */ 4121 if (isv6) 4122 break; 4123 /* If the link is down, we'll retry this later */ 4124 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4125 break; 4126 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4127 NULL, NULL, ipst); 4128 if (ipif != NULL) { 4129 /* 4130 * If this is a duplicate recovery, then we now need to 4131 * go exclusive to bring this thing back up. 4132 */ 4133 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4134 IPIF_DUPLICATE) { 4135 ipif_refrele(ipif); 4136 ill_refhold(ill); 4137 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4138 B_FALSE); 4139 return; 4140 } 4141 /* 4142 * If this is the first notice that this address is 4143 * ready, then let the user know now. 4144 */ 4145 if ((ipif->ipif_flags & IPIF_UP) && 4146 !ipif->ipif_addr_ready) { 4147 ipif_mask_reply(ipif); 4148 ip_rts_ifmsg(ipif); 4149 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4150 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4151 } 4152 ipif->ipif_addr_ready = 1; 4153 ipif_refrele(ipif); 4154 } 4155 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4156 if (ire != NULL) { 4157 ire->ire_defense_count = 0; 4158 ire_refrele(ire); 4159 } 4160 break; 4161 case AR_CN_FAILED: 4162 /* No external v6 resolver has a contract to use this */ 4163 if (isv6) 4164 break; 4165 ill_refhold(ill); 4166 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4167 return; 4168 } 4169 freemsg(mp); 4170 } 4171 4172 /* 4173 * Create a mblk suitable for carrying the interface index and/or source link 4174 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4175 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4176 * application. 4177 */ 4178 mblk_t * 4179 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4180 ip_stack_t *ipst) 4181 { 4182 mblk_t *mp; 4183 ip_pktinfo_t *pinfo; 4184 ipha_t *ipha; 4185 struct ether_header *pether; 4186 4187 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4188 if (mp == NULL) { 4189 ip1dbg(("ip_add_info: allocation failure.\n")); 4190 return (data_mp); 4191 } 4192 4193 ipha = (ipha_t *)data_mp->b_rptr; 4194 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4195 bzero(pinfo, sizeof (ip_pktinfo_t)); 4196 pinfo->ip_pkt_flags = (uchar_t)flags; 4197 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4198 4199 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4200 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4201 if (flags & IPF_RECVADDR) { 4202 ipif_t *ipif; 4203 ire_t *ire; 4204 4205 /* 4206 * Only valid for V4 4207 */ 4208 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4209 (IPV4_VERSION << 4)); 4210 4211 ipif = ipif_get_next_ipif(NULL, ill); 4212 if (ipif != NULL) { 4213 /* 4214 * Since a decision has already been made to deliver the 4215 * packet, there is no need to test for SECATTR and 4216 * ZONEONLY. 4217 * When a multicast packet is transmitted 4218 * a cache entry is created for the multicast address. 4219 * When delivering a copy of the packet or when new 4220 * packets are received we do not want to match on the 4221 * cached entry so explicitly match on 4222 * IRE_LOCAL and IRE_LOOPBACK 4223 */ 4224 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4225 IRE_LOCAL | IRE_LOOPBACK, 4226 ipif, zoneid, NULL, 4227 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4228 if (ire == NULL) { 4229 /* 4230 * packet must have come on a different 4231 * interface. 4232 * Since a decision has already been made to 4233 * deliver the packet, there is no need to test 4234 * for SECATTR and ZONEONLY. 4235 * Only match on local and broadcast ire's. 4236 * See detailed comment above. 4237 */ 4238 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4239 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4240 NULL, MATCH_IRE_TYPE, ipst); 4241 } 4242 4243 if (ire == NULL) { 4244 /* 4245 * This is either a multicast packet or 4246 * the address has been removed since 4247 * the packet was received. 4248 * Return INADDR_ANY so that normal source 4249 * selection occurs for the response. 4250 */ 4251 4252 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4253 } else { 4254 pinfo->ip_pkt_match_addr.s_addr = 4255 ire->ire_src_addr; 4256 ire_refrele(ire); 4257 } 4258 ipif_refrele(ipif); 4259 } else { 4260 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4261 } 4262 } 4263 4264 pether = (struct ether_header *)((char *)ipha 4265 - sizeof (struct ether_header)); 4266 /* 4267 * Make sure the interface is an ethernet type, since this option 4268 * is currently supported only on this type of interface. Also make 4269 * sure we are pointing correctly above db_base. 4270 */ 4271 4272 if ((flags & IPF_RECVSLLA) && 4273 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4274 (ill->ill_type == IFT_ETHER) && 4275 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4276 4277 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4278 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4279 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4280 } else { 4281 /* 4282 * Clear the bit. Indicate to upper layer that IP is not 4283 * sending this ancillary info. 4284 */ 4285 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4286 } 4287 4288 mp->b_datap->db_type = M_CTL; 4289 mp->b_wptr += sizeof (ip_pktinfo_t); 4290 mp->b_cont = data_mp; 4291 4292 return (mp); 4293 } 4294 4295 /* 4296 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4297 * part of the bind request. 4298 */ 4299 4300 boolean_t 4301 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4302 { 4303 ipsec_in_t *ii; 4304 4305 ASSERT(policy_mp != NULL); 4306 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4307 4308 ii = (ipsec_in_t *)policy_mp->b_rptr; 4309 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4310 4311 connp->conn_policy = ii->ipsec_in_policy; 4312 ii->ipsec_in_policy = NULL; 4313 4314 if (ii->ipsec_in_action != NULL) { 4315 if (connp->conn_latch == NULL) { 4316 connp->conn_latch = iplatch_create(); 4317 if (connp->conn_latch == NULL) 4318 return (B_FALSE); 4319 } 4320 ipsec_latch_inbound(connp->conn_latch, ii); 4321 } 4322 return (B_TRUE); 4323 } 4324 4325 /* 4326 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4327 * and to arrange for power-fanout assist. The ULP is identified by 4328 * adding a single byte at the end of the original bind message. 4329 * A ULP other than UDP or TCP that wishes to be recognized passes 4330 * down a bind with a zero length address. 4331 * 4332 * The binding works as follows: 4333 * - A zero byte address means just bind to the protocol. 4334 * - A four byte address is treated as a request to validate 4335 * that the address is a valid local address, appropriate for 4336 * an application to bind to. This does not affect any fanout 4337 * information in IP. 4338 * - A sizeof sin_t byte address is used to bind to only the local address 4339 * and port. 4340 * - A sizeof ipa_conn_t byte address contains complete fanout information 4341 * consisting of local and remote addresses and ports. In 4342 * this case, the addresses are both validated as appropriate 4343 * for this operation, and, if so, the information is retained 4344 * for use in the inbound fanout. 4345 * 4346 * The ULP (except in the zero-length bind) can append an 4347 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4348 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4349 * a copy of the source or destination IRE (source for local bind; 4350 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4351 * policy information contained should be copied on to the conn. 4352 * 4353 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4354 */ 4355 mblk_t * 4356 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4357 { 4358 ssize_t len; 4359 struct T_bind_req *tbr; 4360 sin_t *sin; 4361 ipa_conn_t *ac; 4362 uchar_t *ucp; 4363 mblk_t *mp1; 4364 boolean_t ire_requested; 4365 boolean_t ipsec_policy_set = B_FALSE; 4366 int error = 0; 4367 int protocol; 4368 ipa_conn_x_t *acx; 4369 4370 ASSERT(!connp->conn_af_isv6); 4371 connp->conn_pkt_isv6 = B_FALSE; 4372 4373 len = MBLKL(mp); 4374 if (len < (sizeof (*tbr) + 1)) { 4375 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4376 "ip_bind: bogus msg, len %ld", len); 4377 /* XXX: Need to return something better */ 4378 goto bad_addr; 4379 } 4380 /* Back up and extract the protocol identifier. */ 4381 mp->b_wptr--; 4382 protocol = *mp->b_wptr & 0xFF; 4383 tbr = (struct T_bind_req *)mp->b_rptr; 4384 /* Reset the message type in preparation for shipping it back. */ 4385 DB_TYPE(mp) = M_PCPROTO; 4386 4387 connp->conn_ulp = (uint8_t)protocol; 4388 4389 /* 4390 * Check for a zero length address. This is from a protocol that 4391 * wants to register to receive all packets of its type. 4392 */ 4393 if (tbr->ADDR_length == 0) { 4394 /* 4395 * These protocols are now intercepted in ip_bind_v6(). 4396 * Reject protocol-level binds here for now. 4397 * 4398 * For SCTP raw socket, ICMP sends down a bind with sin_t 4399 * so that the protocol type cannot be SCTP. 4400 */ 4401 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4402 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4403 goto bad_addr; 4404 } 4405 4406 /* 4407 * 4408 * The udp module never sends down a zero-length address, 4409 * and allowing this on a labeled system will break MLP 4410 * functionality. 4411 */ 4412 if (is_system_labeled() && protocol == IPPROTO_UDP) 4413 goto bad_addr; 4414 4415 if (connp->conn_mac_exempt) 4416 goto bad_addr; 4417 4418 /* No hash here really. The table is big enough. */ 4419 connp->conn_srcv6 = ipv6_all_zeros; 4420 4421 ipcl_proto_insert(connp, protocol); 4422 4423 tbr->PRIM_type = T_BIND_ACK; 4424 return (mp); 4425 } 4426 4427 /* Extract the address pointer from the message. */ 4428 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4429 tbr->ADDR_length); 4430 if (ucp == NULL) { 4431 ip1dbg(("ip_bind: no address\n")); 4432 goto bad_addr; 4433 } 4434 if (!OK_32PTR(ucp)) { 4435 ip1dbg(("ip_bind: unaligned address\n")); 4436 goto bad_addr; 4437 } 4438 /* 4439 * Check for trailing mps. 4440 */ 4441 4442 mp1 = mp->b_cont; 4443 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4444 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4445 4446 switch (tbr->ADDR_length) { 4447 default: 4448 ip1dbg(("ip_bind: bad address length %d\n", 4449 (int)tbr->ADDR_length)); 4450 goto bad_addr; 4451 4452 case IP_ADDR_LEN: 4453 /* Verification of local address only */ 4454 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4455 ire_requested, ipsec_policy_set, B_FALSE); 4456 break; 4457 4458 case sizeof (sin_t): 4459 sin = (sin_t *)ucp; 4460 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4461 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4462 break; 4463 4464 case sizeof (ipa_conn_t): 4465 ac = (ipa_conn_t *)ucp; 4466 /* For raw socket, the local port is not set. */ 4467 if (ac->ac_lport == 0) 4468 ac->ac_lport = connp->conn_lport; 4469 /* Always verify destination reachability. */ 4470 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4471 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4472 ipsec_policy_set, B_TRUE, B_TRUE); 4473 break; 4474 4475 case sizeof (ipa_conn_x_t): 4476 acx = (ipa_conn_x_t *)ucp; 4477 /* 4478 * Whether or not to verify destination reachability depends 4479 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4480 */ 4481 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4482 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4483 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4484 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4485 break; 4486 } 4487 if (error == EINPROGRESS) 4488 return (NULL); 4489 else if (error != 0) 4490 goto bad_addr; 4491 /* 4492 * Pass the IPsec headers size in ire_ipsec_overhead. 4493 * We can't do this in ip_bind_insert_ire because the policy 4494 * may not have been inherited at that point in time and hence 4495 * conn_out_enforce_policy may not be set. 4496 */ 4497 mp1 = mp->b_cont; 4498 if (ire_requested && connp->conn_out_enforce_policy && 4499 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4500 ire_t *ire = (ire_t *)mp1->b_rptr; 4501 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4502 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4503 } 4504 4505 /* Send it home. */ 4506 mp->b_datap->db_type = M_PCPROTO; 4507 tbr->PRIM_type = T_BIND_ACK; 4508 return (mp); 4509 4510 bad_addr: 4511 /* 4512 * If error = -1 then we generate a TBADADDR - otherwise error is 4513 * a unix errno. 4514 */ 4515 if (error > 0) 4516 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4517 else 4518 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4519 return (mp); 4520 } 4521 4522 /* 4523 * Here address is verified to be a valid local address. 4524 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4525 * address is also considered a valid local address. 4526 * In the case of a broadcast/multicast address, however, the 4527 * upper protocol is expected to reset the src address 4528 * to 0 if it sees a IRE_BROADCAST type returned so that 4529 * no packets are emitted with broadcast/multicast address as 4530 * source address (that violates hosts requirements RFC1122) 4531 * The addresses valid for bind are: 4532 * (1) - INADDR_ANY (0) 4533 * (2) - IP address of an UP interface 4534 * (3) - IP address of a DOWN interface 4535 * (4) - valid local IP broadcast addresses. In this case 4536 * the conn will only receive packets destined to 4537 * the specified broadcast address. 4538 * (5) - a multicast address. In this case 4539 * the conn will only receive packets destined to 4540 * the specified multicast address. Note: the 4541 * application still has to issue an 4542 * IP_ADD_MEMBERSHIP socket option. 4543 * 4544 * On error, return -1 for TBADADDR otherwise pass the 4545 * errno with TSYSERR reply. 4546 * 4547 * In all the above cases, the bound address must be valid in the current zone. 4548 * When the address is loopback, multicast or broadcast, there might be many 4549 * matching IREs so bind has to look up based on the zone. 4550 * 4551 * Note: lport is in network byte order. 4552 */ 4553 int 4554 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4555 boolean_t ire_requested, boolean_t ipsec_policy_set, 4556 boolean_t fanout_insert) 4557 { 4558 int error = 0; 4559 ire_t *src_ire; 4560 mblk_t *policy_mp; 4561 ipif_t *ipif; 4562 zoneid_t zoneid; 4563 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4564 4565 if (ipsec_policy_set) { 4566 policy_mp = mp->b_cont; 4567 } 4568 4569 /* 4570 * If it was previously connected, conn_fully_bound would have 4571 * been set. 4572 */ 4573 connp->conn_fully_bound = B_FALSE; 4574 4575 src_ire = NULL; 4576 ipif = NULL; 4577 4578 zoneid = IPCL_ZONEID(connp); 4579 4580 if (src_addr) { 4581 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4582 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4583 /* 4584 * If an address other than 0.0.0.0 is requested, 4585 * we verify that it is a valid address for bind 4586 * Note: Following code is in if-else-if form for 4587 * readability compared to a condition check. 4588 */ 4589 /* LINTED - statement has no consequent */ 4590 if (IRE_IS_LOCAL(src_ire)) { 4591 /* 4592 * (2) Bind to address of local UP interface 4593 */ 4594 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4595 /* 4596 * (4) Bind to broadcast address 4597 * Note: permitted only from transports that 4598 * request IRE 4599 */ 4600 if (!ire_requested) 4601 error = EADDRNOTAVAIL; 4602 } else { 4603 /* 4604 * (3) Bind to address of local DOWN interface 4605 * (ipif_lookup_addr() looks up all interfaces 4606 * but we do not get here for UP interfaces 4607 * - case (2) above) 4608 * We put the protocol byte back into the mblk 4609 * since we may come back via ip_wput_nondata() 4610 * later with this mblk if ipif_lookup_addr chooses 4611 * to defer processing. 4612 */ 4613 *mp->b_wptr++ = (char)connp->conn_ulp; 4614 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4615 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4616 &error, ipst)) != NULL) { 4617 ipif_refrele(ipif); 4618 } else if (error == EINPROGRESS) { 4619 if (src_ire != NULL) 4620 ire_refrele(src_ire); 4621 return (EINPROGRESS); 4622 } else if (CLASSD(src_addr)) { 4623 error = 0; 4624 if (src_ire != NULL) 4625 ire_refrele(src_ire); 4626 /* 4627 * (5) bind to multicast address. 4628 * Fake out the IRE returned to upper 4629 * layer to be a broadcast IRE. 4630 */ 4631 src_ire = ire_ctable_lookup( 4632 INADDR_BROADCAST, INADDR_ANY, 4633 IRE_BROADCAST, NULL, zoneid, NULL, 4634 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4635 ipst); 4636 if (src_ire == NULL || !ire_requested) 4637 error = EADDRNOTAVAIL; 4638 } else { 4639 /* 4640 * Not a valid address for bind 4641 */ 4642 error = EADDRNOTAVAIL; 4643 } 4644 /* 4645 * Just to keep it consistent with the processing in 4646 * ip_bind_v4() 4647 */ 4648 mp->b_wptr--; 4649 } 4650 if (error) { 4651 /* Red Alert! Attempting to be a bogon! */ 4652 ip1dbg(("ip_bind: bad src address 0x%x\n", 4653 ntohl(src_addr))); 4654 goto bad_addr; 4655 } 4656 } 4657 4658 /* 4659 * Allow setting new policies. For example, disconnects come 4660 * down as ipa_t bind. As we would have set conn_policy_cached 4661 * to B_TRUE before, we should set it to B_FALSE, so that policy 4662 * can change after the disconnect. 4663 */ 4664 connp->conn_policy_cached = B_FALSE; 4665 4666 /* 4667 * If not fanout_insert this was just an address verification 4668 */ 4669 if (fanout_insert) { 4670 /* 4671 * The addresses have been verified. Time to insert in 4672 * the correct fanout list. 4673 */ 4674 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4675 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4676 connp->conn_lport = lport; 4677 connp->conn_fport = 0; 4678 /* 4679 * Do we need to add a check to reject Multicast packets 4680 */ 4681 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4682 } 4683 4684 if (error == 0) { 4685 if (ire_requested) { 4686 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4687 error = -1; 4688 /* Falls through to bad_addr */ 4689 } 4690 } else if (ipsec_policy_set) { 4691 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4692 error = -1; 4693 /* Falls through to bad_addr */ 4694 } 4695 } 4696 } 4697 bad_addr: 4698 if (error != 0) { 4699 if (connp->conn_anon_port) { 4700 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4701 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4702 B_FALSE); 4703 } 4704 connp->conn_mlp_type = mlptSingle; 4705 } 4706 if (src_ire != NULL) 4707 IRE_REFRELE(src_ire); 4708 if (ipsec_policy_set) { 4709 ASSERT(policy_mp == mp->b_cont); 4710 ASSERT(policy_mp != NULL); 4711 freeb(policy_mp); 4712 /* 4713 * As of now assume that nothing else accompanies 4714 * IPSEC_POLICY_SET. 4715 */ 4716 mp->b_cont = NULL; 4717 } 4718 return (error); 4719 } 4720 4721 /* 4722 * Verify that both the source and destination addresses 4723 * are valid. If verify_dst is false, then the destination address may be 4724 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4725 * destination reachability, while tunnels do not. 4726 * Note that we allow connect to broadcast and multicast 4727 * addresses when ire_requested is set. Thus the ULP 4728 * has to check for IRE_BROADCAST and multicast. 4729 * 4730 * Returns zero if ok. 4731 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4732 * (for use with TSYSERR reply). 4733 * 4734 * Note: lport and fport are in network byte order. 4735 */ 4736 int 4737 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4738 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4739 boolean_t ire_requested, boolean_t ipsec_policy_set, 4740 boolean_t fanout_insert, boolean_t verify_dst) 4741 { 4742 ire_t *src_ire; 4743 ire_t *dst_ire; 4744 int error = 0; 4745 int protocol; 4746 mblk_t *policy_mp; 4747 ire_t *sire = NULL; 4748 ire_t *md_dst_ire = NULL; 4749 ire_t *lso_dst_ire = NULL; 4750 ill_t *ill = NULL; 4751 zoneid_t zoneid; 4752 ipaddr_t src_addr = *src_addrp; 4753 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4754 4755 src_ire = dst_ire = NULL; 4756 protocol = *mp->b_wptr & 0xFF; 4757 4758 /* 4759 * If we never got a disconnect before, clear it now. 4760 */ 4761 connp->conn_fully_bound = B_FALSE; 4762 4763 if (ipsec_policy_set) { 4764 policy_mp = mp->b_cont; 4765 } 4766 4767 zoneid = IPCL_ZONEID(connp); 4768 4769 if (CLASSD(dst_addr)) { 4770 /* Pick up an IRE_BROADCAST */ 4771 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4772 NULL, zoneid, MBLK_GETLABEL(mp), 4773 (MATCH_IRE_RECURSIVE | 4774 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4775 MATCH_IRE_SECATTR), ipst); 4776 } else { 4777 /* 4778 * If conn_dontroute is set or if conn_nexthop_set is set, 4779 * and onlink ipif is not found set ENETUNREACH error. 4780 */ 4781 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4782 ipif_t *ipif; 4783 4784 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4785 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4786 if (ipif == NULL) { 4787 error = ENETUNREACH; 4788 goto bad_addr; 4789 } 4790 ipif_refrele(ipif); 4791 } 4792 4793 if (connp->conn_nexthop_set) { 4794 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4795 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4796 MATCH_IRE_SECATTR, ipst); 4797 } else { 4798 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4799 &sire, zoneid, MBLK_GETLABEL(mp), 4800 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4801 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4802 MATCH_IRE_SECATTR), ipst); 4803 } 4804 } 4805 /* 4806 * dst_ire can't be a broadcast when not ire_requested. 4807 * We also prevent ire's with src address INADDR_ANY to 4808 * be used, which are created temporarily for 4809 * sending out packets from endpoints that have 4810 * conn_unspec_src set. If verify_dst is true, the destination must be 4811 * reachable. If verify_dst is false, the destination needn't be 4812 * reachable. 4813 * 4814 * If we match on a reject or black hole, then we've got a 4815 * local failure. May as well fail out the connect() attempt, 4816 * since it's never going to succeed. 4817 */ 4818 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4819 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4820 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4821 /* 4822 * If we're verifying destination reachability, we always want 4823 * to complain here. 4824 * 4825 * If we're not verifying destination reachability but the 4826 * destination has a route, we still want to fail on the 4827 * temporary address and broadcast address tests. 4828 */ 4829 if (verify_dst || (dst_ire != NULL)) { 4830 if (ip_debug > 2) { 4831 pr_addr_dbg("ip_bind_connected: bad connected " 4832 "dst %s\n", AF_INET, &dst_addr); 4833 } 4834 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4835 error = ENETUNREACH; 4836 else 4837 error = EHOSTUNREACH; 4838 goto bad_addr; 4839 } 4840 } 4841 4842 /* 4843 * We now know that routing will allow us to reach the destination. 4844 * Check whether Trusted Solaris policy allows communication with this 4845 * host, and pretend that the destination is unreachable if not. 4846 * 4847 * This is never a problem for TCP, since that transport is known to 4848 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4849 * handling. If the remote is unreachable, it will be detected at that 4850 * point, so there's no reason to check it here. 4851 * 4852 * Note that for sendto (and other datagram-oriented friends), this 4853 * check is done as part of the data path label computation instead. 4854 * The check here is just to make non-TCP connect() report the right 4855 * error. 4856 */ 4857 if (dst_ire != NULL && is_system_labeled() && 4858 !IPCL_IS_TCP(connp) && 4859 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4860 connp->conn_mac_exempt, ipst) != 0) { 4861 error = EHOSTUNREACH; 4862 if (ip_debug > 2) { 4863 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4864 AF_INET, &dst_addr); 4865 } 4866 goto bad_addr; 4867 } 4868 4869 /* 4870 * If the app does a connect(), it means that it will most likely 4871 * send more than 1 packet to the destination. It makes sense 4872 * to clear the temporary flag. 4873 */ 4874 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4875 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4876 irb_t *irb = dst_ire->ire_bucket; 4877 4878 rw_enter(&irb->irb_lock, RW_WRITER); 4879 /* 4880 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4881 * the lock to guarantee irb_tmp_ire_cnt. 4882 */ 4883 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4884 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4885 irb->irb_tmp_ire_cnt--; 4886 } 4887 rw_exit(&irb->irb_lock); 4888 } 4889 4890 /* 4891 * See if we should notify ULP about LSO/MDT; we do this whether or not 4892 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4893 * eligibility tests for passive connects are handled separately 4894 * through tcp_adapt_ire(). We do this before the source address 4895 * selection, because dst_ire may change after a call to 4896 * ipif_select_source(). This is a best-effort check, as the 4897 * packet for this connection may not actually go through 4898 * dst_ire->ire_stq, and the exact IRE can only be known after 4899 * calling ip_newroute(). This is why we further check on the 4900 * IRE during LSO/Multidata packet transmission in 4901 * tcp_lsosend()/tcp_multisend(). 4902 */ 4903 if (!ipsec_policy_set && dst_ire != NULL && 4904 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4905 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4906 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4907 lso_dst_ire = dst_ire; 4908 IRE_REFHOLD(lso_dst_ire); 4909 } else if (ipst->ips_ip_multidata_outbound && 4910 ILL_MDT_CAPABLE(ill)) { 4911 md_dst_ire = dst_ire; 4912 IRE_REFHOLD(md_dst_ire); 4913 } 4914 } 4915 4916 if (dst_ire != NULL && 4917 dst_ire->ire_type == IRE_LOCAL && 4918 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4919 /* 4920 * If the IRE belongs to a different zone, look for a matching 4921 * route in the forwarding table and use the source address from 4922 * that route. 4923 */ 4924 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4925 zoneid, 0, NULL, 4926 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4927 MATCH_IRE_RJ_BHOLE, ipst); 4928 if (src_ire == NULL) { 4929 error = EHOSTUNREACH; 4930 goto bad_addr; 4931 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4932 if (!(src_ire->ire_type & IRE_HOST)) 4933 error = ENETUNREACH; 4934 else 4935 error = EHOSTUNREACH; 4936 goto bad_addr; 4937 } 4938 if (src_addr == INADDR_ANY) 4939 src_addr = src_ire->ire_src_addr; 4940 ire_refrele(src_ire); 4941 src_ire = NULL; 4942 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4943 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4944 src_addr = sire->ire_src_addr; 4945 ire_refrele(dst_ire); 4946 dst_ire = sire; 4947 sire = NULL; 4948 } else { 4949 /* 4950 * Pick a source address so that a proper inbound 4951 * load spreading would happen. 4952 */ 4953 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4954 ipif_t *src_ipif = NULL; 4955 ire_t *ipif_ire; 4956 4957 /* 4958 * Supply a local source address such that inbound 4959 * load spreading happens. 4960 * 4961 * Determine the best source address on this ill for 4962 * the destination. 4963 * 4964 * 1) For broadcast, we should return a broadcast ire 4965 * found above so that upper layers know that the 4966 * destination address is a broadcast address. 4967 * 4968 * 2) If this is part of a group, select a better 4969 * source address so that better inbound load 4970 * balancing happens. Do the same if the ipif 4971 * is DEPRECATED. 4972 * 4973 * 3) If the outgoing interface is part of a usesrc 4974 * group, then try selecting a source address from 4975 * the usesrc ILL. 4976 */ 4977 if ((dst_ire->ire_zoneid != zoneid && 4978 dst_ire->ire_zoneid != ALL_ZONES) || 4979 (!(dst_ire->ire_type & IRE_BROADCAST) && 4980 ((dst_ill->ill_group != NULL) || 4981 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4982 (dst_ill->ill_usesrc_ifindex != 0)))) { 4983 /* 4984 * If the destination is reachable via a 4985 * given gateway, the selected source address 4986 * should be in the same subnet as the gateway. 4987 * Otherwise, the destination is not reachable. 4988 * 4989 * If there are no interfaces on the same subnet 4990 * as the destination, ipif_select_source gives 4991 * first non-deprecated interface which might be 4992 * on a different subnet than the gateway. 4993 * This is not desirable. Hence pass the dst_ire 4994 * source address to ipif_select_source. 4995 * It is sure that the destination is reachable 4996 * with the dst_ire source address subnet. 4997 * So passing dst_ire source address to 4998 * ipif_select_source will make sure that the 4999 * selected source will be on the same subnet 5000 * as dst_ire source address. 5001 */ 5002 ipaddr_t saddr = 5003 dst_ire->ire_ipif->ipif_src_addr; 5004 src_ipif = ipif_select_source(dst_ill, 5005 saddr, zoneid); 5006 if (src_ipif != NULL) { 5007 if (IS_VNI(src_ipif->ipif_ill)) { 5008 /* 5009 * For VNI there is no 5010 * interface route 5011 */ 5012 src_addr = 5013 src_ipif->ipif_src_addr; 5014 } else { 5015 ipif_ire = 5016 ipif_to_ire(src_ipif); 5017 if (ipif_ire != NULL) { 5018 IRE_REFRELE(dst_ire); 5019 dst_ire = ipif_ire; 5020 } 5021 src_addr = 5022 dst_ire->ire_src_addr; 5023 } 5024 ipif_refrele(src_ipif); 5025 } else { 5026 src_addr = dst_ire->ire_src_addr; 5027 } 5028 } else { 5029 src_addr = dst_ire->ire_src_addr; 5030 } 5031 } 5032 } 5033 5034 /* 5035 * We do ire_route_lookup() here (and not 5036 * interface lookup as we assert that 5037 * src_addr should only come from an 5038 * UP interface for hard binding. 5039 */ 5040 ASSERT(src_ire == NULL); 5041 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5042 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5043 /* src_ire must be a local|loopback */ 5044 if (!IRE_IS_LOCAL(src_ire)) { 5045 if (ip_debug > 2) { 5046 pr_addr_dbg("ip_bind_connected: bad connected " 5047 "src %s\n", AF_INET, &src_addr); 5048 } 5049 error = EADDRNOTAVAIL; 5050 goto bad_addr; 5051 } 5052 5053 /* 5054 * If the source address is a loopback address, the 5055 * destination had best be local or multicast. 5056 * The transports that can't handle multicast will reject 5057 * those addresses. 5058 */ 5059 if (src_ire->ire_type == IRE_LOOPBACK && 5060 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5061 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5062 error = -1; 5063 goto bad_addr; 5064 } 5065 5066 /* 5067 * Allow setting new policies. For example, disconnects come 5068 * down as ipa_t bind. As we would have set conn_policy_cached 5069 * to B_TRUE before, we should set it to B_FALSE, so that policy 5070 * can change after the disconnect. 5071 */ 5072 connp->conn_policy_cached = B_FALSE; 5073 5074 /* 5075 * Set the conn addresses/ports immediately, so the IPsec policy calls 5076 * can handle their passed-in conn's. 5077 */ 5078 5079 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5080 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5081 connp->conn_lport = lport; 5082 connp->conn_fport = fport; 5083 *src_addrp = src_addr; 5084 5085 ASSERT(!(ipsec_policy_set && ire_requested)); 5086 if (ire_requested) { 5087 iulp_t *ulp_info = NULL; 5088 5089 /* 5090 * Note that sire will not be NULL if this is an off-link 5091 * connection and there is not cache for that dest yet. 5092 * 5093 * XXX Because of an existing bug, if there are multiple 5094 * default routes, the IRE returned now may not be the actual 5095 * default route used (default routes are chosen in a 5096 * round robin fashion). So if the metrics for different 5097 * default routes are different, we may return the wrong 5098 * metrics. This will not be a problem if the existing 5099 * bug is fixed. 5100 */ 5101 if (sire != NULL) { 5102 ulp_info = &(sire->ire_uinfo); 5103 } 5104 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5105 error = -1; 5106 goto bad_addr; 5107 } 5108 } else if (ipsec_policy_set) { 5109 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5110 error = -1; 5111 goto bad_addr; 5112 } 5113 } 5114 5115 /* 5116 * Cache IPsec policy in this conn. If we have per-socket policy, 5117 * we'll cache that. If we don't, we'll inherit global policy. 5118 * 5119 * We can't insert until the conn reflects the policy. Note that 5120 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5121 * connections where we don't have a policy. This is to prevent 5122 * global policy lookups in the inbound path. 5123 * 5124 * If we insert before we set conn_policy_cached, 5125 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5126 * because global policy cound be non-empty. We normally call 5127 * ipsec_check_policy() for conn_policy_cached connections only if 5128 * ipc_in_enforce_policy is set. But in this case, 5129 * conn_policy_cached can get set anytime since we made the 5130 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5131 * called, which will make the above assumption false. Thus, we 5132 * need to insert after we set conn_policy_cached. 5133 */ 5134 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5135 goto bad_addr; 5136 5137 if (fanout_insert) { 5138 /* 5139 * The addresses have been verified. Time to insert in 5140 * the correct fanout list. 5141 */ 5142 error = ipcl_conn_insert(connp, protocol, src_addr, 5143 dst_addr, connp->conn_ports); 5144 } 5145 5146 if (error == 0) { 5147 connp->conn_fully_bound = B_TRUE; 5148 /* 5149 * Our initial checks for LSO/MDT have passed; the IRE is not 5150 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5151 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5152 * ip_xxinfo_return(), which performs further checks 5153 * against them and upon success, returns the LSO/MDT info 5154 * mblk which we will attach to the bind acknowledgment. 5155 */ 5156 if (lso_dst_ire != NULL) { 5157 mblk_t *lsoinfo_mp; 5158 5159 ASSERT(ill->ill_lso_capab != NULL); 5160 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5161 ill->ill_name, ill->ill_lso_capab)) != NULL) 5162 linkb(mp, lsoinfo_mp); 5163 } else if (md_dst_ire != NULL) { 5164 mblk_t *mdinfo_mp; 5165 5166 ASSERT(ill->ill_mdt_capab != NULL); 5167 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5168 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5169 linkb(mp, mdinfo_mp); 5170 } 5171 } 5172 bad_addr: 5173 if (ipsec_policy_set) { 5174 ASSERT(policy_mp == mp->b_cont); 5175 ASSERT(policy_mp != NULL); 5176 freeb(policy_mp); 5177 /* 5178 * As of now assume that nothing else accompanies 5179 * IPSEC_POLICY_SET. 5180 */ 5181 mp->b_cont = NULL; 5182 } 5183 if (src_ire != NULL) 5184 IRE_REFRELE(src_ire); 5185 if (dst_ire != NULL) 5186 IRE_REFRELE(dst_ire); 5187 if (sire != NULL) 5188 IRE_REFRELE(sire); 5189 if (md_dst_ire != NULL) 5190 IRE_REFRELE(md_dst_ire); 5191 if (lso_dst_ire != NULL) 5192 IRE_REFRELE(lso_dst_ire); 5193 return (error); 5194 } 5195 5196 /* 5197 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5198 * Prefers dst_ire over src_ire. 5199 */ 5200 static boolean_t 5201 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5202 { 5203 mblk_t *mp1; 5204 ire_t *ret_ire = NULL; 5205 5206 mp1 = mp->b_cont; 5207 ASSERT(mp1 != NULL); 5208 5209 if (ire != NULL) { 5210 /* 5211 * mp1 initialized above to IRE_DB_REQ_TYPE 5212 * appended mblk. Its <upper protocol>'s 5213 * job to make sure there is room. 5214 */ 5215 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5216 return (0); 5217 5218 mp1->b_datap->db_type = IRE_DB_TYPE; 5219 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5220 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5221 ret_ire = (ire_t *)mp1->b_rptr; 5222 /* 5223 * Pass the latest setting of the ip_path_mtu_discovery and 5224 * copy the ulp info if any. 5225 */ 5226 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5227 IPH_DF : 0; 5228 if (ulp_info != NULL) { 5229 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5230 sizeof (iulp_t)); 5231 } 5232 ret_ire->ire_mp = mp1; 5233 } else { 5234 /* 5235 * No IRE was found. Remove IRE mblk. 5236 */ 5237 mp->b_cont = mp1->b_cont; 5238 freeb(mp1); 5239 } 5240 5241 return (1); 5242 } 5243 5244 /* 5245 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5246 * the final piece where we don't. Return a pointer to the first mblk in the 5247 * result, and update the pointer to the next mblk to chew on. If anything 5248 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5249 * NULL pointer. 5250 */ 5251 mblk_t * 5252 ip_carve_mp(mblk_t **mpp, ssize_t len) 5253 { 5254 mblk_t *mp0; 5255 mblk_t *mp1; 5256 mblk_t *mp2; 5257 5258 if (!len || !mpp || !(mp0 = *mpp)) 5259 return (NULL); 5260 /* If we aren't going to consume the first mblk, we need a dup. */ 5261 if (mp0->b_wptr - mp0->b_rptr > len) { 5262 mp1 = dupb(mp0); 5263 if (mp1) { 5264 /* Partition the data between the two mblks. */ 5265 mp1->b_wptr = mp1->b_rptr + len; 5266 mp0->b_rptr = mp1->b_wptr; 5267 /* 5268 * after adjustments if mblk not consumed is now 5269 * unaligned, try to align it. If this fails free 5270 * all messages and let upper layer recover. 5271 */ 5272 if (!OK_32PTR(mp0->b_rptr)) { 5273 if (!pullupmsg(mp0, -1)) { 5274 freemsg(mp0); 5275 freemsg(mp1); 5276 *mpp = NULL; 5277 return (NULL); 5278 } 5279 } 5280 } 5281 return (mp1); 5282 } 5283 /* Eat through as many mblks as we need to get len bytes. */ 5284 len -= mp0->b_wptr - mp0->b_rptr; 5285 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5286 if (mp2->b_wptr - mp2->b_rptr > len) { 5287 /* 5288 * We won't consume the entire last mblk. Like 5289 * above, dup and partition it. 5290 */ 5291 mp1->b_cont = dupb(mp2); 5292 mp1 = mp1->b_cont; 5293 if (!mp1) { 5294 /* 5295 * Trouble. Rather than go to a lot of 5296 * trouble to clean up, we free the messages. 5297 * This won't be any worse than losing it on 5298 * the wire. 5299 */ 5300 freemsg(mp0); 5301 freemsg(mp2); 5302 *mpp = NULL; 5303 return (NULL); 5304 } 5305 mp1->b_wptr = mp1->b_rptr + len; 5306 mp2->b_rptr = mp1->b_wptr; 5307 /* 5308 * after adjustments if mblk not consumed is now 5309 * unaligned, try to align it. If this fails free 5310 * all messages and let upper layer recover. 5311 */ 5312 if (!OK_32PTR(mp2->b_rptr)) { 5313 if (!pullupmsg(mp2, -1)) { 5314 freemsg(mp0); 5315 freemsg(mp2); 5316 *mpp = NULL; 5317 return (NULL); 5318 } 5319 } 5320 *mpp = mp2; 5321 return (mp0); 5322 } 5323 /* Decrement len by the amount we just got. */ 5324 len -= mp2->b_wptr - mp2->b_rptr; 5325 } 5326 /* 5327 * len should be reduced to zero now. If not our caller has 5328 * screwed up. 5329 */ 5330 if (len) { 5331 /* Shouldn't happen! */ 5332 freemsg(mp0); 5333 *mpp = NULL; 5334 return (NULL); 5335 } 5336 /* 5337 * We consumed up to exactly the end of an mblk. Detach the part 5338 * we are returning from the rest of the chain. 5339 */ 5340 mp1->b_cont = NULL; 5341 *mpp = mp2; 5342 return (mp0); 5343 } 5344 5345 /* The ill stream is being unplumbed. Called from ip_close */ 5346 int 5347 ip_modclose(ill_t *ill) 5348 { 5349 boolean_t success; 5350 ipsq_t *ipsq; 5351 ipif_t *ipif; 5352 queue_t *q = ill->ill_rq; 5353 ip_stack_t *ipst = ill->ill_ipst; 5354 clock_t timeout; 5355 5356 /* 5357 * Wait for the ACKs of all deferred control messages to be processed. 5358 * In particular, we wait for a potential capability reset initiated 5359 * in ip_sioctl_plink() to complete before proceeding. 5360 * 5361 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5362 * in case the driver never replies. 5363 */ 5364 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5365 mutex_enter(&ill->ill_lock); 5366 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5367 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5368 /* Timeout */ 5369 break; 5370 } 5371 } 5372 mutex_exit(&ill->ill_lock); 5373 5374 /* 5375 * Forcibly enter the ipsq after some delay. This is to take 5376 * care of the case when some ioctl does not complete because 5377 * we sent a control message to the driver and it did not 5378 * send us a reply. We want to be able to at least unplumb 5379 * and replumb rather than force the user to reboot the system. 5380 */ 5381 success = ipsq_enter(ill, B_FALSE); 5382 5383 /* 5384 * Open/close/push/pop is guaranteed to be single threaded 5385 * per stream by STREAMS. FS guarantees that all references 5386 * from top are gone before close is called. So there can't 5387 * be another close thread that has set CONDEMNED on this ill. 5388 * and cause ipsq_enter to return failure. 5389 */ 5390 ASSERT(success); 5391 ipsq = ill->ill_phyint->phyint_ipsq; 5392 5393 /* 5394 * Mark it condemned. No new reference will be made to this ill. 5395 * Lookup functions will return an error. Threads that try to 5396 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5397 * that the refcnt will drop down to zero. 5398 */ 5399 mutex_enter(&ill->ill_lock); 5400 ill->ill_state_flags |= ILL_CONDEMNED; 5401 for (ipif = ill->ill_ipif; ipif != NULL; 5402 ipif = ipif->ipif_next) { 5403 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5404 } 5405 /* 5406 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5407 * returns error if ILL_CONDEMNED is set 5408 */ 5409 cv_broadcast(&ill->ill_cv); 5410 mutex_exit(&ill->ill_lock); 5411 5412 /* 5413 * Send all the deferred DLPI messages downstream which came in 5414 * during the small window right before ipsq_enter(). We do this 5415 * without waiting for the ACKs because all the ACKs for M_PROTO 5416 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5417 */ 5418 ill_dlpi_send_deferred(ill); 5419 5420 /* 5421 * Shut down fragmentation reassembly. 5422 * ill_frag_timer won't start a timer again. 5423 * Now cancel any existing timer 5424 */ 5425 (void) untimeout(ill->ill_frag_timer_id); 5426 (void) ill_frag_timeout(ill, 0); 5427 5428 /* 5429 * If MOVE was in progress, clear the 5430 * move_in_progress fields also. 5431 */ 5432 if (ill->ill_move_in_progress) { 5433 ILL_CLEAR_MOVE(ill); 5434 } 5435 5436 /* 5437 * Call ill_delete to bring down the ipifs, ilms and ill on 5438 * this ill. Then wait for the refcnts to drop to zero. 5439 * ill_is_quiescent checks whether the ill is really quiescent. 5440 * Then make sure that threads that are waiting to enter the 5441 * ipsq have seen the error returned by ipsq_enter and have 5442 * gone away. Then we call ill_delete_tail which does the 5443 * DL_UNBIND_REQ with the driver and then qprocsoff. 5444 */ 5445 ill_delete(ill); 5446 mutex_enter(&ill->ill_lock); 5447 while (!ill_is_quiescent(ill)) 5448 cv_wait(&ill->ill_cv, &ill->ill_lock); 5449 while (ill->ill_waiters) 5450 cv_wait(&ill->ill_cv, &ill->ill_lock); 5451 5452 mutex_exit(&ill->ill_lock); 5453 5454 /* 5455 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5456 * it held until the end of the function since the cleanup 5457 * below needs to be able to use the ip_stack_t. 5458 */ 5459 netstack_hold(ipst->ips_netstack); 5460 5461 /* qprocsoff is called in ill_delete_tail */ 5462 ill_delete_tail(ill); 5463 ASSERT(ill->ill_ipst == NULL); 5464 5465 /* 5466 * Walk through all upper (conn) streams and qenable 5467 * those that have queued data. 5468 * close synchronization needs this to 5469 * be done to ensure that all upper layers blocked 5470 * due to flow control to the closing device 5471 * get unblocked. 5472 */ 5473 ip1dbg(("ip_wsrv: walking\n")); 5474 conn_walk_drain(ipst); 5475 5476 mutex_enter(&ipst->ips_ip_mi_lock); 5477 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5478 mutex_exit(&ipst->ips_ip_mi_lock); 5479 5480 /* 5481 * credp could be null if the open didn't succeed and ip_modopen 5482 * itself calls ip_close. 5483 */ 5484 if (ill->ill_credp != NULL) 5485 crfree(ill->ill_credp); 5486 5487 mutex_enter(&ill->ill_lock); 5488 ill_nic_info_dispatch(ill); 5489 mutex_exit(&ill->ill_lock); 5490 5491 /* 5492 * Now we are done with the module close pieces that 5493 * need the netstack_t. 5494 */ 5495 netstack_rele(ipst->ips_netstack); 5496 5497 mi_close_free((IDP)ill); 5498 q->q_ptr = WR(q)->q_ptr = NULL; 5499 5500 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5501 5502 return (0); 5503 } 5504 5505 /* 5506 * This is called as part of close() for IP, UDP, ICMP, and RTS 5507 * in order to quiesce the conn. 5508 */ 5509 void 5510 ip_quiesce_conn(conn_t *connp) 5511 { 5512 boolean_t drain_cleanup_reqd = B_FALSE; 5513 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5514 boolean_t ilg_cleanup_reqd = B_FALSE; 5515 ip_stack_t *ipst; 5516 5517 ASSERT(!IPCL_IS_TCP(connp)); 5518 ipst = connp->conn_netstack->netstack_ip; 5519 5520 /* 5521 * Mark the conn as closing, and this conn must not be 5522 * inserted in future into any list. Eg. conn_drain_insert(), 5523 * won't insert this conn into the conn_drain_list. 5524 * Similarly ill_pending_mp_add() will not add any mp to 5525 * the pending mp list, after this conn has started closing. 5526 * 5527 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5528 * cannot get set henceforth. 5529 */ 5530 mutex_enter(&connp->conn_lock); 5531 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5532 connp->conn_state_flags |= CONN_CLOSING; 5533 if (connp->conn_idl != NULL) 5534 drain_cleanup_reqd = B_TRUE; 5535 if (connp->conn_oper_pending_ill != NULL) 5536 conn_ioctl_cleanup_reqd = B_TRUE; 5537 if (connp->conn_dhcpinit_ill != NULL) { 5538 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5539 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5540 connp->conn_dhcpinit_ill = NULL; 5541 } 5542 if (connp->conn_ilg_inuse != 0) 5543 ilg_cleanup_reqd = B_TRUE; 5544 mutex_exit(&connp->conn_lock); 5545 5546 if (conn_ioctl_cleanup_reqd) 5547 conn_ioctl_cleanup(connp); 5548 5549 if (is_system_labeled() && connp->conn_anon_port) { 5550 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5551 connp->conn_mlp_type, connp->conn_ulp, 5552 ntohs(connp->conn_lport), B_FALSE); 5553 connp->conn_anon_port = 0; 5554 } 5555 connp->conn_mlp_type = mlptSingle; 5556 5557 /* 5558 * Remove this conn from any fanout list it is on. 5559 * and then wait for any threads currently operating 5560 * on this endpoint to finish 5561 */ 5562 ipcl_hash_remove(connp); 5563 5564 /* 5565 * Remove this conn from the drain list, and do 5566 * any other cleanup that may be required. 5567 * (Only non-tcp streams may have a non-null conn_idl. 5568 * TCP streams are never flow controlled, and 5569 * conn_idl will be null) 5570 */ 5571 if (drain_cleanup_reqd) 5572 conn_drain_tail(connp, B_TRUE); 5573 5574 if (connp == ipst->ips_ip_g_mrouter) 5575 (void) ip_mrouter_done(NULL, ipst); 5576 5577 if (ilg_cleanup_reqd) 5578 ilg_delete_all(connp); 5579 5580 conn_delete_ire(connp, NULL); 5581 5582 /* 5583 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5584 * callers from write side can't be there now because close 5585 * is in progress. The only other caller is ipcl_walk 5586 * which checks for the condemned flag. 5587 */ 5588 mutex_enter(&connp->conn_lock); 5589 connp->conn_state_flags |= CONN_CONDEMNED; 5590 while (connp->conn_ref != 1) 5591 cv_wait(&connp->conn_cv, &connp->conn_lock); 5592 connp->conn_state_flags |= CONN_QUIESCED; 5593 mutex_exit(&connp->conn_lock); 5594 } 5595 5596 /* ARGSUSED */ 5597 int 5598 ip_close(queue_t *q, int flags) 5599 { 5600 conn_t *connp; 5601 5602 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5603 5604 /* 5605 * Call the appropriate delete routine depending on whether this is 5606 * a module or device. 5607 */ 5608 if (WR(q)->q_next != NULL) { 5609 /* This is a module close */ 5610 return (ip_modclose((ill_t *)q->q_ptr)); 5611 } 5612 5613 connp = q->q_ptr; 5614 ip_quiesce_conn(connp); 5615 5616 qprocsoff(q); 5617 5618 /* 5619 * Now we are truly single threaded on this stream, and can 5620 * delete the things hanging off the connp, and finally the connp. 5621 * We removed this connp from the fanout list, it cannot be 5622 * accessed thru the fanouts, and we already waited for the 5623 * conn_ref to drop to 0. We are already in close, so 5624 * there cannot be any other thread from the top. qprocsoff 5625 * has completed, and service has completed or won't run in 5626 * future. 5627 */ 5628 ASSERT(connp->conn_ref == 1); 5629 5630 inet_minor_free(ip_minor_arena, connp->conn_dev); 5631 5632 connp->conn_ref--; 5633 ipcl_conn_destroy(connp); 5634 5635 q->q_ptr = WR(q)->q_ptr = NULL; 5636 return (0); 5637 } 5638 5639 /* 5640 * Wapper around putnext() so that ip_rts_request can merely use 5641 * conn_recv. 5642 */ 5643 /*ARGSUSED2*/ 5644 static void 5645 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5646 { 5647 conn_t *connp = (conn_t *)arg1; 5648 5649 putnext(connp->conn_rq, mp); 5650 } 5651 5652 /* Return the IP checksum for the IP header at "iph". */ 5653 uint16_t 5654 ip_csum_hdr(ipha_t *ipha) 5655 { 5656 uint16_t *uph; 5657 uint32_t sum; 5658 int opt_len; 5659 5660 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5661 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5662 uph = (uint16_t *)ipha; 5663 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5664 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5665 if (opt_len > 0) { 5666 do { 5667 sum += uph[10]; 5668 sum += uph[11]; 5669 uph += 2; 5670 } while (--opt_len); 5671 } 5672 sum = (sum & 0xFFFF) + (sum >> 16); 5673 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5674 if (sum == 0xffff) 5675 sum = 0; 5676 return ((uint16_t)sum); 5677 } 5678 5679 /* 5680 * Called when the module is about to be unloaded 5681 */ 5682 void 5683 ip_ddi_destroy(void) 5684 { 5685 tnet_fini(); 5686 5687 icmp_ddi_destroy(); 5688 rts_ddi_destroy(); 5689 udp_ddi_destroy(); 5690 sctp_ddi_g_destroy(); 5691 tcp_ddi_g_destroy(); 5692 ipsec_policy_g_destroy(); 5693 ipcl_g_destroy(); 5694 ip_net_g_destroy(); 5695 ip_ire_g_fini(); 5696 inet_minor_destroy(ip_minor_arena); 5697 5698 #ifdef DEBUG 5699 list_destroy(&ip_thread_list); 5700 rw_destroy(&ip_thread_rwlock); 5701 tsd_destroy(&ip_thread_data); 5702 #endif 5703 5704 netstack_unregister(NS_IP); 5705 } 5706 5707 /* 5708 * First step in cleanup. 5709 */ 5710 /* ARGSUSED */ 5711 static void 5712 ip_stack_shutdown(netstackid_t stackid, void *arg) 5713 { 5714 ip_stack_t *ipst = (ip_stack_t *)arg; 5715 5716 #ifdef NS_DEBUG 5717 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5718 #endif 5719 5720 /* Get rid of loopback interfaces and their IREs */ 5721 ip_loopback_cleanup(ipst); 5722 } 5723 5724 /* 5725 * Free the IP stack instance. 5726 */ 5727 static void 5728 ip_stack_fini(netstackid_t stackid, void *arg) 5729 { 5730 ip_stack_t *ipst = (ip_stack_t *)arg; 5731 int ret; 5732 5733 #ifdef NS_DEBUG 5734 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5735 #endif 5736 ipv4_hook_destroy(ipst); 5737 ipv6_hook_destroy(ipst); 5738 ip_net_destroy(ipst); 5739 5740 rw_destroy(&ipst->ips_srcid_lock); 5741 5742 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5743 ipst->ips_ip_mibkp = NULL; 5744 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5745 ipst->ips_icmp_mibkp = NULL; 5746 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5747 ipst->ips_ip_kstat = NULL; 5748 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5749 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5750 ipst->ips_ip6_kstat = NULL; 5751 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5752 5753 nd_free(&ipst->ips_ip_g_nd); 5754 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5755 ipst->ips_param_arr = NULL; 5756 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5757 ipst->ips_ndp_arr = NULL; 5758 5759 ip_mrouter_stack_destroy(ipst); 5760 5761 mutex_destroy(&ipst->ips_ip_mi_lock); 5762 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5763 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5764 rw_destroy(&ipst->ips_ip_g_nd_lock); 5765 5766 ret = untimeout(ipst->ips_igmp_timeout_id); 5767 if (ret == -1) { 5768 ASSERT(ipst->ips_igmp_timeout_id == 0); 5769 } else { 5770 ASSERT(ipst->ips_igmp_timeout_id != 0); 5771 ipst->ips_igmp_timeout_id = 0; 5772 } 5773 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5774 if (ret == -1) { 5775 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5776 } else { 5777 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5778 ipst->ips_igmp_slowtimeout_id = 0; 5779 } 5780 ret = untimeout(ipst->ips_mld_timeout_id); 5781 if (ret == -1) { 5782 ASSERT(ipst->ips_mld_timeout_id == 0); 5783 } else { 5784 ASSERT(ipst->ips_mld_timeout_id != 0); 5785 ipst->ips_mld_timeout_id = 0; 5786 } 5787 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5788 if (ret == -1) { 5789 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5790 } else { 5791 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5792 ipst->ips_mld_slowtimeout_id = 0; 5793 } 5794 ret = untimeout(ipst->ips_ip_ire_expire_id); 5795 if (ret == -1) { 5796 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5797 } else { 5798 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5799 ipst->ips_ip_ire_expire_id = 0; 5800 } 5801 5802 mutex_destroy(&ipst->ips_igmp_timer_lock); 5803 mutex_destroy(&ipst->ips_mld_timer_lock); 5804 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5805 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5806 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5807 rw_destroy(&ipst->ips_ill_g_lock); 5808 5809 ip_ire_fini(ipst); 5810 ip6_asp_free(ipst); 5811 conn_drain_fini(ipst); 5812 ipcl_destroy(ipst); 5813 5814 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5815 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5816 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5817 ipst->ips_ndp4 = NULL; 5818 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5819 ipst->ips_ndp6 = NULL; 5820 5821 if (ipst->ips_loopback_ksp != NULL) { 5822 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5823 ipst->ips_loopback_ksp = NULL; 5824 } 5825 5826 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5827 ipst->ips_phyint_g_list = NULL; 5828 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5829 ipst->ips_ill_g_heads = NULL; 5830 5831 kmem_free(ipst, sizeof (*ipst)); 5832 } 5833 5834 /* 5835 * This function is called from the TSD destructor, and is used to debug 5836 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5837 * details. 5838 */ 5839 static void 5840 ip_thread_exit(void *phash) 5841 { 5842 th_hash_t *thh = phash; 5843 5844 rw_enter(&ip_thread_rwlock, RW_WRITER); 5845 list_remove(&ip_thread_list, thh); 5846 rw_exit(&ip_thread_rwlock); 5847 mod_hash_destroy_hash(thh->thh_hash); 5848 kmem_free(thh, sizeof (*thh)); 5849 } 5850 5851 /* 5852 * Called when the IP kernel module is loaded into the kernel 5853 */ 5854 void 5855 ip_ddi_init(void) 5856 { 5857 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5858 5859 /* 5860 * For IP and TCP the minor numbers should start from 2 since we have 4 5861 * initial devices: ip, ip6, tcp, tcp6. 5862 */ 5863 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5864 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5865 cmn_err(CE_PANIC, 5866 "ip_ddi_init: ip_minor_arena creation failed\n"); 5867 } 5868 5869 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5870 5871 ipcl_g_init(); 5872 ip_ire_g_init(); 5873 ip_net_g_init(); 5874 5875 #ifdef DEBUG 5876 tsd_create(&ip_thread_data, ip_thread_exit); 5877 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5878 list_create(&ip_thread_list, sizeof (th_hash_t), 5879 offsetof(th_hash_t, thh_link)); 5880 #endif 5881 5882 /* 5883 * We want to be informed each time a stack is created or 5884 * destroyed in the kernel, so we can maintain the 5885 * set of udp_stack_t's. 5886 */ 5887 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5888 ip_stack_fini); 5889 5890 ipsec_policy_g_init(); 5891 tcp_ddi_g_init(); 5892 sctp_ddi_g_init(); 5893 5894 tnet_init(); 5895 5896 udp_ddi_init(); 5897 rts_ddi_init(); 5898 icmp_ddi_init(); 5899 } 5900 5901 /* 5902 * Initialize the IP stack instance. 5903 */ 5904 static void * 5905 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5906 { 5907 ip_stack_t *ipst; 5908 ipparam_t *pa; 5909 ipndp_t *na; 5910 5911 #ifdef NS_DEBUG 5912 printf("ip_stack_init(stack %d)\n", stackid); 5913 #endif 5914 5915 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5916 ipst->ips_netstack = ns; 5917 5918 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5919 KM_SLEEP); 5920 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5921 KM_SLEEP); 5922 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5923 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5924 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5925 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5926 5927 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5928 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5929 ipst->ips_igmp_deferred_next = INFINITY; 5930 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5931 ipst->ips_mld_deferred_next = INFINITY; 5932 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5933 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5934 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5935 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5936 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5937 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5938 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5939 5940 ipcl_init(ipst); 5941 ip_ire_init(ipst); 5942 ip6_asp_init(ipst); 5943 ipif_init(ipst); 5944 conn_drain_init(ipst); 5945 ip_mrouter_stack_init(ipst); 5946 5947 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5948 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5949 5950 ipst->ips_ip_multirt_log_interval = 1000; 5951 5952 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5953 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5954 ipst->ips_ill_index = 1; 5955 5956 ipst->ips_saved_ip_g_forward = -1; 5957 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5958 5959 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5960 ipst->ips_param_arr = pa; 5961 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5962 5963 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5964 ipst->ips_ndp_arr = na; 5965 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5966 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5967 (caddr_t)&ipst->ips_ip_g_forward; 5968 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5969 (caddr_t)&ipst->ips_ipv6_forward; 5970 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5971 "ip_cgtp_filter") == 0); 5972 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5973 (caddr_t)&ipst->ips_ip_cgtp_filter; 5974 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5975 "ipmp_hook_emulation") == 0); 5976 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5977 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5978 5979 (void) ip_param_register(&ipst->ips_ip_g_nd, 5980 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5981 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5982 5983 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5984 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5985 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5986 ipst->ips_ip6_kstat = 5987 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5988 5989 ipst->ips_ipmp_enable_failback = B_TRUE; 5990 5991 ipst->ips_ip_src_id = 1; 5992 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5993 5994 ip_net_init(ipst, ns); 5995 ipv4_hook_init(ipst); 5996 ipv6_hook_init(ipst); 5997 5998 return (ipst); 5999 } 6000 6001 /* 6002 * Allocate and initialize a DLPI template of the specified length. (May be 6003 * called as writer.) 6004 */ 6005 mblk_t * 6006 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6007 { 6008 mblk_t *mp; 6009 6010 mp = allocb(len, BPRI_MED); 6011 if (!mp) 6012 return (NULL); 6013 6014 /* 6015 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6016 * of which we don't seem to use) are sent with M_PCPROTO, and 6017 * that other DLPI are M_PROTO. 6018 */ 6019 if (prim == DL_INFO_REQ) { 6020 mp->b_datap->db_type = M_PCPROTO; 6021 } else { 6022 mp->b_datap->db_type = M_PROTO; 6023 } 6024 6025 mp->b_wptr = mp->b_rptr + len; 6026 bzero(mp->b_rptr, len); 6027 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6028 return (mp); 6029 } 6030 6031 const char * 6032 dlpi_prim_str(int prim) 6033 { 6034 switch (prim) { 6035 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6036 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6037 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6038 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6039 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6040 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6041 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6042 case DL_OK_ACK: return ("DL_OK_ACK"); 6043 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6044 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6045 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6046 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6047 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6048 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6049 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6050 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6051 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6052 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6053 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6054 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6055 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6056 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6057 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6058 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6059 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6060 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6061 default: return ("<unknown primitive>"); 6062 } 6063 } 6064 6065 const char * 6066 dlpi_err_str(int err) 6067 { 6068 switch (err) { 6069 case DL_ACCESS: return ("DL_ACCESS"); 6070 case DL_BADADDR: return ("DL_BADADDR"); 6071 case DL_BADCORR: return ("DL_BADCORR"); 6072 case DL_BADDATA: return ("DL_BADDATA"); 6073 case DL_BADPPA: return ("DL_BADPPA"); 6074 case DL_BADPRIM: return ("DL_BADPRIM"); 6075 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6076 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6077 case DL_BADSAP: return ("DL_BADSAP"); 6078 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6079 case DL_BOUND: return ("DL_BOUND"); 6080 case DL_INITFAILED: return ("DL_INITFAILED"); 6081 case DL_NOADDR: return ("DL_NOADDR"); 6082 case DL_NOTINIT: return ("DL_NOTINIT"); 6083 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6084 case DL_SYSERR: return ("DL_SYSERR"); 6085 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6086 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6087 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6088 case DL_TOOMANY: return ("DL_TOOMANY"); 6089 case DL_NOTENAB: return ("DL_NOTENAB"); 6090 case DL_BUSY: return ("DL_BUSY"); 6091 case DL_NOAUTO: return ("DL_NOAUTO"); 6092 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6093 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6094 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6095 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6096 case DL_PENDING: return ("DL_PENDING"); 6097 default: return ("<unknown error>"); 6098 } 6099 } 6100 6101 /* 6102 * Debug formatting routine. Returns a character string representation of the 6103 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6104 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6105 * 6106 * Once the ndd table-printing interfaces are removed, this can be changed to 6107 * standard dotted-decimal form. 6108 */ 6109 char * 6110 ip_dot_addr(ipaddr_t addr, char *buf) 6111 { 6112 uint8_t *ap = (uint8_t *)&addr; 6113 6114 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6115 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6116 return (buf); 6117 } 6118 6119 /* 6120 * Write the given MAC address as a printable string in the usual colon- 6121 * separated format. 6122 */ 6123 const char * 6124 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6125 { 6126 char *bp; 6127 6128 if (alen == 0 || buflen < 4) 6129 return ("?"); 6130 bp = buf; 6131 for (;;) { 6132 /* 6133 * If there are more MAC address bytes available, but we won't 6134 * have any room to print them, then add "..." to the string 6135 * instead. See below for the 'magic number' explanation. 6136 */ 6137 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6138 (void) strcpy(bp, "..."); 6139 break; 6140 } 6141 (void) sprintf(bp, "%02x", *addr++); 6142 bp += 2; 6143 if (--alen == 0) 6144 break; 6145 *bp++ = ':'; 6146 buflen -= 3; 6147 /* 6148 * At this point, based on the first 'if' statement above, 6149 * either alen == 1 and buflen >= 3, or alen > 1 and 6150 * buflen >= 4. The first case leaves room for the final "xx" 6151 * number and trailing NUL byte. The second leaves room for at 6152 * least "...". Thus the apparently 'magic' numbers chosen for 6153 * that statement. 6154 */ 6155 } 6156 return (buf); 6157 } 6158 6159 /* 6160 * Send an ICMP error after patching up the packet appropriately. Returns 6161 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6162 */ 6163 static boolean_t 6164 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6165 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6166 zoneid_t zoneid, ip_stack_t *ipst) 6167 { 6168 ipha_t *ipha; 6169 mblk_t *first_mp; 6170 boolean_t secure; 6171 unsigned char db_type; 6172 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6173 6174 first_mp = mp; 6175 if (mctl_present) { 6176 mp = mp->b_cont; 6177 secure = ipsec_in_is_secure(first_mp); 6178 ASSERT(mp != NULL); 6179 } else { 6180 /* 6181 * If this is an ICMP error being reported - which goes 6182 * up as M_CTLs, we need to convert them to M_DATA till 6183 * we finish checking with global policy because 6184 * ipsec_check_global_policy() assumes M_DATA as clear 6185 * and M_CTL as secure. 6186 */ 6187 db_type = DB_TYPE(mp); 6188 DB_TYPE(mp) = M_DATA; 6189 secure = B_FALSE; 6190 } 6191 /* 6192 * We are generating an icmp error for some inbound packet. 6193 * Called from all ip_fanout_(udp, tcp, proto) functions. 6194 * Before we generate an error, check with global policy 6195 * to see whether this is allowed to enter the system. As 6196 * there is no "conn", we are checking with global policy. 6197 */ 6198 ipha = (ipha_t *)mp->b_rptr; 6199 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6200 first_mp = ipsec_check_global_policy(first_mp, NULL, 6201 ipha, NULL, mctl_present, ipst->ips_netstack); 6202 if (first_mp == NULL) 6203 return (B_FALSE); 6204 } 6205 6206 if (!mctl_present) 6207 DB_TYPE(mp) = db_type; 6208 6209 if (flags & IP_FF_SEND_ICMP) { 6210 if (flags & IP_FF_HDR_COMPLETE) { 6211 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6212 freemsg(first_mp); 6213 return (B_TRUE); 6214 } 6215 } 6216 if (flags & IP_FF_CKSUM) { 6217 /* 6218 * Have to correct checksum since 6219 * the packet might have been 6220 * fragmented and the reassembly code in ip_rput 6221 * does not restore the IP checksum. 6222 */ 6223 ipha->ipha_hdr_checksum = 0; 6224 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6225 } 6226 switch (icmp_type) { 6227 case ICMP_DEST_UNREACHABLE: 6228 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6229 ipst); 6230 break; 6231 default: 6232 freemsg(first_mp); 6233 break; 6234 } 6235 } else { 6236 freemsg(first_mp); 6237 return (B_FALSE); 6238 } 6239 6240 return (B_TRUE); 6241 } 6242 6243 /* 6244 * Used to send an ICMP error message when a packet is received for 6245 * a protocol that is not supported. The mblk passed as argument 6246 * is consumed by this function. 6247 */ 6248 void 6249 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6250 ip_stack_t *ipst) 6251 { 6252 mblk_t *mp; 6253 ipha_t *ipha; 6254 ill_t *ill; 6255 ipsec_in_t *ii; 6256 6257 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6258 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6259 6260 mp = ipsec_mp->b_cont; 6261 ipsec_mp->b_cont = NULL; 6262 ipha = (ipha_t *)mp->b_rptr; 6263 /* Get ill from index in ipsec_in_t. */ 6264 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6265 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6266 ipst); 6267 if (ill != NULL) { 6268 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6269 if (ip_fanout_send_icmp(q, mp, flags, 6270 ICMP_DEST_UNREACHABLE, 6271 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6272 BUMP_MIB(ill->ill_ip_mib, 6273 ipIfStatsInUnknownProtos); 6274 } 6275 } else { 6276 if (ip_fanout_send_icmp_v6(q, mp, flags, 6277 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6278 0, B_FALSE, zoneid, ipst)) { 6279 BUMP_MIB(ill->ill_ip_mib, 6280 ipIfStatsInUnknownProtos); 6281 } 6282 } 6283 ill_refrele(ill); 6284 } else { /* re-link for the freemsg() below. */ 6285 ipsec_mp->b_cont = mp; 6286 } 6287 6288 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6289 freemsg(ipsec_mp); 6290 } 6291 6292 /* 6293 * See if the inbound datagram has had IPsec processing applied to it. 6294 */ 6295 boolean_t 6296 ipsec_in_is_secure(mblk_t *ipsec_mp) 6297 { 6298 ipsec_in_t *ii; 6299 6300 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6301 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6302 6303 if (ii->ipsec_in_loopback) { 6304 return (ii->ipsec_in_secure); 6305 } else { 6306 return (ii->ipsec_in_ah_sa != NULL || 6307 ii->ipsec_in_esp_sa != NULL || 6308 ii->ipsec_in_decaps); 6309 } 6310 } 6311 6312 /* 6313 * Handle protocols with which IP is less intimate. There 6314 * can be more than one stream bound to a particular 6315 * protocol. When this is the case, normally each one gets a copy 6316 * of any incoming packets. 6317 * 6318 * IPsec NOTE : 6319 * 6320 * Don't allow a secure packet going up a non-secure connection. 6321 * We don't allow this because 6322 * 6323 * 1) Reply might go out in clear which will be dropped at 6324 * the sending side. 6325 * 2) If the reply goes out in clear it will give the 6326 * adversary enough information for getting the key in 6327 * most of the cases. 6328 * 6329 * Moreover getting a secure packet when we expect clear 6330 * implies that SA's were added without checking for 6331 * policy on both ends. This should not happen once ISAKMP 6332 * is used to negotiate SAs as SAs will be added only after 6333 * verifying the policy. 6334 * 6335 * NOTE : If the packet was tunneled and not multicast we only send 6336 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6337 * back to delivering packets to AF_INET6 raw sockets. 6338 * 6339 * IPQoS Notes: 6340 * Once we have determined the client, invoke IPPF processing. 6341 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6342 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6343 * ip_policy will be false. 6344 * 6345 * Zones notes: 6346 * Currently only applications in the global zone can create raw sockets for 6347 * protocols other than ICMP. So unlike the broadcast / multicast case of 6348 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6349 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6350 */ 6351 static void 6352 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6353 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6354 zoneid_t zoneid) 6355 { 6356 queue_t *rq; 6357 mblk_t *mp1, *first_mp1; 6358 uint_t protocol = ipha->ipha_protocol; 6359 ipaddr_t dst; 6360 boolean_t one_only; 6361 mblk_t *first_mp = mp; 6362 boolean_t secure; 6363 uint32_t ill_index; 6364 conn_t *connp, *first_connp, *next_connp; 6365 connf_t *connfp; 6366 boolean_t shared_addr; 6367 mib2_ipIfStatsEntry_t *mibptr; 6368 ip_stack_t *ipst = recv_ill->ill_ipst; 6369 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6370 6371 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6372 if (mctl_present) { 6373 mp = first_mp->b_cont; 6374 secure = ipsec_in_is_secure(first_mp); 6375 ASSERT(mp != NULL); 6376 } else { 6377 secure = B_FALSE; 6378 } 6379 dst = ipha->ipha_dst; 6380 /* 6381 * If the packet was tunneled and not multicast we only send to it 6382 * the first match. 6383 */ 6384 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6385 !CLASSD(dst)); 6386 6387 shared_addr = (zoneid == ALL_ZONES); 6388 if (shared_addr) { 6389 /* 6390 * We don't allow multilevel ports for raw IP, so no need to 6391 * check for that here. 6392 */ 6393 zoneid = tsol_packet_to_zoneid(mp); 6394 } 6395 6396 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6397 mutex_enter(&connfp->connf_lock); 6398 connp = connfp->connf_head; 6399 for (connp = connfp->connf_head; connp != NULL; 6400 connp = connp->conn_next) { 6401 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6402 zoneid) && 6403 (!is_system_labeled() || 6404 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6405 connp))) { 6406 break; 6407 } 6408 } 6409 6410 if (connp == NULL || connp->conn_upq == NULL) { 6411 /* 6412 * No one bound to these addresses. Is 6413 * there a client that wants all 6414 * unclaimed datagrams? 6415 */ 6416 mutex_exit(&connfp->connf_lock); 6417 /* 6418 * Check for IPPROTO_ENCAP... 6419 */ 6420 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6421 /* 6422 * If an IPsec mblk is here on a multicast 6423 * tunnel (using ip_mroute stuff), check policy here, 6424 * THEN ship off to ip_mroute_decap(). 6425 * 6426 * BTW, If I match a configured IP-in-IP 6427 * tunnel, this path will not be reached, and 6428 * ip_mroute_decap will never be called. 6429 */ 6430 first_mp = ipsec_check_global_policy(first_mp, connp, 6431 ipha, NULL, mctl_present, ipst->ips_netstack); 6432 if (first_mp != NULL) { 6433 if (mctl_present) 6434 freeb(first_mp); 6435 ip_mroute_decap(q, mp, ill); 6436 } /* Else we already freed everything! */ 6437 } else { 6438 /* 6439 * Otherwise send an ICMP protocol unreachable. 6440 */ 6441 if (ip_fanout_send_icmp(q, first_mp, flags, 6442 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6443 mctl_present, zoneid, ipst)) { 6444 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6445 } 6446 } 6447 return; 6448 } 6449 CONN_INC_REF(connp); 6450 first_connp = connp; 6451 6452 /* 6453 * Only send message to one tunnel driver by immediately 6454 * terminating the loop. 6455 */ 6456 connp = one_only ? NULL : connp->conn_next; 6457 6458 for (;;) { 6459 while (connp != NULL) { 6460 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6461 flags, zoneid) && 6462 (!is_system_labeled() || 6463 tsol_receive_local(mp, &dst, IPV4_VERSION, 6464 shared_addr, connp))) 6465 break; 6466 connp = connp->conn_next; 6467 } 6468 6469 /* 6470 * Copy the packet. 6471 */ 6472 if (connp == NULL || connp->conn_upq == NULL || 6473 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6474 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6475 /* 6476 * No more interested clients or memory 6477 * allocation failed 6478 */ 6479 connp = first_connp; 6480 break; 6481 } 6482 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6483 CONN_INC_REF(connp); 6484 mutex_exit(&connfp->connf_lock); 6485 rq = connp->conn_rq; 6486 if (!canputnext(rq)) { 6487 if (flags & IP_FF_RAWIP) { 6488 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6489 } else { 6490 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6491 } 6492 6493 freemsg(first_mp1); 6494 } else { 6495 /* 6496 * Don't enforce here if we're an actual tunnel - 6497 * let "tun" do it instead. 6498 */ 6499 if (!IPCL_IS_IPTUN(connp) && 6500 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6501 secure)) { 6502 first_mp1 = ipsec_check_inbound_policy 6503 (first_mp1, connp, ipha, NULL, 6504 mctl_present); 6505 } 6506 if (first_mp1 != NULL) { 6507 int in_flags = 0; 6508 /* 6509 * ip_fanout_proto also gets called from 6510 * icmp_inbound_error_fanout, in which case 6511 * the msg type is M_CTL. Don't add info 6512 * in this case for the time being. In future 6513 * when there is a need for knowing the 6514 * inbound iface index for ICMP error msgs, 6515 * then this can be changed. 6516 */ 6517 if (connp->conn_recvif) 6518 in_flags = IPF_RECVIF; 6519 /* 6520 * The ULP may support IP_RECVPKTINFO for both 6521 * IP v4 and v6 so pass the appropriate argument 6522 * based on conn IP version. 6523 */ 6524 if (connp->conn_ip_recvpktinfo) { 6525 if (connp->conn_af_isv6) { 6526 /* 6527 * V6 only needs index 6528 */ 6529 in_flags |= IPF_RECVIF; 6530 } else { 6531 /* 6532 * V4 needs index + 6533 * matching address. 6534 */ 6535 in_flags |= IPF_RECVADDR; 6536 } 6537 } 6538 if ((in_flags != 0) && 6539 (mp->b_datap->db_type != M_CTL)) { 6540 /* 6541 * the actual data will be 6542 * contained in b_cont upon 6543 * successful return of the 6544 * following call else 6545 * original mblk is returned 6546 */ 6547 ASSERT(recv_ill != NULL); 6548 mp1 = ip_add_info(mp1, recv_ill, 6549 in_flags, IPCL_ZONEID(connp), ipst); 6550 } 6551 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6552 if (mctl_present) 6553 freeb(first_mp1); 6554 (connp->conn_recv)(connp, mp1, NULL); 6555 } 6556 } 6557 mutex_enter(&connfp->connf_lock); 6558 /* Follow the next pointer before releasing the conn. */ 6559 next_connp = connp->conn_next; 6560 CONN_DEC_REF(connp); 6561 connp = next_connp; 6562 } 6563 6564 /* Last one. Send it upstream. */ 6565 mutex_exit(&connfp->connf_lock); 6566 6567 /* 6568 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6569 * will be set to false. 6570 */ 6571 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6572 ill_index = ill->ill_phyint->phyint_ifindex; 6573 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6574 if (mp == NULL) { 6575 CONN_DEC_REF(connp); 6576 if (mctl_present) { 6577 freeb(first_mp); 6578 } 6579 return; 6580 } 6581 } 6582 6583 rq = connp->conn_rq; 6584 if (!canputnext(rq)) { 6585 if (flags & IP_FF_RAWIP) { 6586 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6587 } else { 6588 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6589 } 6590 6591 freemsg(first_mp); 6592 } else { 6593 if (IPCL_IS_IPTUN(connp)) { 6594 /* 6595 * Tunneled packet. We enforce policy in the tunnel 6596 * module itself. 6597 * 6598 * Send the WHOLE packet up (incl. IPSEC_IN) without 6599 * a policy check. 6600 * FIXME to use conn_recv for tun later. 6601 */ 6602 putnext(rq, first_mp); 6603 CONN_DEC_REF(connp); 6604 return; 6605 } 6606 6607 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6608 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6609 ipha, NULL, mctl_present); 6610 } 6611 6612 if (first_mp != NULL) { 6613 int in_flags = 0; 6614 6615 /* 6616 * ip_fanout_proto also gets called 6617 * from icmp_inbound_error_fanout, in 6618 * which case the msg type is M_CTL. 6619 * Don't add info in this case for time 6620 * being. In future when there is a 6621 * need for knowing the inbound iface 6622 * index for ICMP error msgs, then this 6623 * can be changed 6624 */ 6625 if (connp->conn_recvif) 6626 in_flags = IPF_RECVIF; 6627 if (connp->conn_ip_recvpktinfo) { 6628 if (connp->conn_af_isv6) { 6629 /* 6630 * V6 only needs index 6631 */ 6632 in_flags |= IPF_RECVIF; 6633 } else { 6634 /* 6635 * V4 needs index + 6636 * matching address. 6637 */ 6638 in_flags |= IPF_RECVADDR; 6639 } 6640 } 6641 if ((in_flags != 0) && 6642 (mp->b_datap->db_type != M_CTL)) { 6643 6644 /* 6645 * the actual data will be contained in 6646 * b_cont upon successful return 6647 * of the following call else original 6648 * mblk is returned 6649 */ 6650 ASSERT(recv_ill != NULL); 6651 mp = ip_add_info(mp, recv_ill, 6652 in_flags, IPCL_ZONEID(connp), ipst); 6653 } 6654 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6655 (connp->conn_recv)(connp, mp, NULL); 6656 if (mctl_present) 6657 freeb(first_mp); 6658 } 6659 } 6660 CONN_DEC_REF(connp); 6661 } 6662 6663 /* 6664 * Fanout for TCP packets 6665 * The caller puts <fport, lport> in the ports parameter. 6666 * 6667 * IPQoS Notes 6668 * Before sending it to the client, invoke IPPF processing. 6669 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6670 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6671 * ip_policy is false. 6672 */ 6673 static void 6674 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6675 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6676 { 6677 mblk_t *first_mp; 6678 boolean_t secure; 6679 uint32_t ill_index; 6680 int ip_hdr_len; 6681 tcph_t *tcph; 6682 boolean_t syn_present = B_FALSE; 6683 conn_t *connp; 6684 ip_stack_t *ipst = recv_ill->ill_ipst; 6685 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6686 6687 ASSERT(recv_ill != NULL); 6688 6689 first_mp = mp; 6690 if (mctl_present) { 6691 ASSERT(first_mp->b_datap->db_type == M_CTL); 6692 mp = first_mp->b_cont; 6693 secure = ipsec_in_is_secure(first_mp); 6694 ASSERT(mp != NULL); 6695 } else { 6696 secure = B_FALSE; 6697 } 6698 6699 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6700 6701 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6702 zoneid, ipst)) == NULL) { 6703 /* 6704 * No connected connection or listener. Send a 6705 * TH_RST via tcp_xmit_listeners_reset. 6706 */ 6707 6708 /* Initiate IPPf processing, if needed. */ 6709 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6710 uint32_t ill_index; 6711 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6712 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6713 if (first_mp == NULL) 6714 return; 6715 } 6716 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6717 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6718 zoneid)); 6719 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6720 ipst->ips_netstack->netstack_tcp, NULL); 6721 return; 6722 } 6723 6724 /* 6725 * Allocate the SYN for the TCP connection here itself 6726 */ 6727 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6728 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6729 if (IPCL_IS_TCP(connp)) { 6730 squeue_t *sqp; 6731 6732 /* 6733 * For fused tcp loopback, assign the eager's 6734 * squeue to be that of the active connect's. 6735 * Note that we don't check for IP_FF_LOOPBACK 6736 * here since this routine gets called only 6737 * for loopback (unlike the IPv6 counterpart). 6738 */ 6739 ASSERT(Q_TO_CONN(q) != NULL); 6740 if (do_tcp_fusion && 6741 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6742 !secure && 6743 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6744 IPCL_IS_TCP(Q_TO_CONN(q))) { 6745 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6746 sqp = Q_TO_CONN(q)->conn_sqp; 6747 } else { 6748 sqp = IP_SQUEUE_GET(lbolt); 6749 } 6750 6751 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6752 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6753 syn_present = B_TRUE; 6754 } 6755 } 6756 6757 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6758 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6759 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6760 if ((flags & TH_RST) || (flags & TH_URG)) { 6761 CONN_DEC_REF(connp); 6762 freemsg(first_mp); 6763 return; 6764 } 6765 if (flags & TH_ACK) { 6766 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6767 ipst->ips_netstack->netstack_tcp, connp); 6768 CONN_DEC_REF(connp); 6769 return; 6770 } 6771 6772 CONN_DEC_REF(connp); 6773 freemsg(first_mp); 6774 return; 6775 } 6776 6777 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6778 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6779 NULL, mctl_present); 6780 if (first_mp == NULL) { 6781 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6782 CONN_DEC_REF(connp); 6783 return; 6784 } 6785 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6786 ASSERT(syn_present); 6787 if (mctl_present) { 6788 ASSERT(first_mp != mp); 6789 first_mp->b_datap->db_struioflag |= 6790 STRUIO_POLICY; 6791 } else { 6792 ASSERT(first_mp == mp); 6793 mp->b_datap->db_struioflag &= 6794 ~STRUIO_EAGER; 6795 mp->b_datap->db_struioflag |= 6796 STRUIO_POLICY; 6797 } 6798 } else { 6799 /* 6800 * Discard first_mp early since we're dealing with a 6801 * fully-connected conn_t and tcp doesn't do policy in 6802 * this case. 6803 */ 6804 if (mctl_present) { 6805 freeb(first_mp); 6806 mctl_present = B_FALSE; 6807 } 6808 first_mp = mp; 6809 } 6810 } 6811 6812 /* 6813 * Initiate policy processing here if needed. If we get here from 6814 * icmp_inbound_error_fanout, ip_policy is false. 6815 */ 6816 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6817 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6818 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6819 if (mp == NULL) { 6820 CONN_DEC_REF(connp); 6821 if (mctl_present) 6822 freeb(first_mp); 6823 return; 6824 } else if (mctl_present) { 6825 ASSERT(first_mp != mp); 6826 first_mp->b_cont = mp; 6827 } else { 6828 first_mp = mp; 6829 } 6830 } 6831 6832 6833 6834 /* Handle socket options. */ 6835 if (!syn_present && 6836 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6837 /* Add header */ 6838 ASSERT(recv_ill != NULL); 6839 /* 6840 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6841 * IPF_RECVIF. 6842 */ 6843 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6844 ipst); 6845 if (mp == NULL) { 6846 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6847 CONN_DEC_REF(connp); 6848 if (mctl_present) 6849 freeb(first_mp); 6850 return; 6851 } else if (mctl_present) { 6852 /* 6853 * ip_add_info might return a new mp. 6854 */ 6855 ASSERT(first_mp != mp); 6856 first_mp->b_cont = mp; 6857 } else { 6858 first_mp = mp; 6859 } 6860 } 6861 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6862 if (IPCL_IS_TCP(connp)) { 6863 /* do not drain, certain use cases can blow the stack */ 6864 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6865 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6866 } else { 6867 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6868 (connp->conn_recv)(connp, first_mp, NULL); 6869 CONN_DEC_REF(connp); 6870 } 6871 } 6872 6873 /* 6874 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6875 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6876 * is not consumed. 6877 * 6878 * One of four things can happen, all of which affect the passed-in mblk: 6879 * 6880 * 1.) ICMP messages that go through here just get returned TRUE. 6881 * 6882 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6883 * 6884 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6885 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6886 * 6887 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6888 */ 6889 static boolean_t 6890 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6891 ipsec_stack_t *ipss) 6892 { 6893 int shift, plen, iph_len; 6894 ipha_t *ipha; 6895 udpha_t *udpha; 6896 uint32_t *spi; 6897 uint8_t *orptr; 6898 boolean_t udp_pkt, free_ire; 6899 6900 if (DB_TYPE(mp) == M_CTL) { 6901 /* 6902 * ICMP message with UDP inside. Don't bother stripping, just 6903 * send it up. 6904 * 6905 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6906 * to ignore errors set by ICMP anyway ('cause they might be 6907 * forged), but that's the app's decision, not ours. 6908 */ 6909 6910 /* Bunch of reality checks for DEBUG kernels... */ 6911 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6912 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6913 6914 return (B_TRUE); 6915 } 6916 6917 ipha = (ipha_t *)mp->b_rptr; 6918 iph_len = IPH_HDR_LENGTH(ipha); 6919 plen = ntohs(ipha->ipha_length); 6920 6921 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6922 /* 6923 * Most likely a keepalive for the benefit of an intervening 6924 * NAT. These aren't for us, per se, so drop it. 6925 * 6926 * RFC 3947/8 doesn't say for sure what to do for 2-3 6927 * byte packets (keepalives are 1-byte), but we'll drop them 6928 * also. 6929 */ 6930 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6931 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6932 return (B_FALSE); 6933 } 6934 6935 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6936 /* might as well pull it all up - it might be ESP. */ 6937 if (!pullupmsg(mp, -1)) { 6938 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6939 DROPPER(ipss, ipds_esp_nomem), 6940 &ipss->ipsec_dropper); 6941 return (B_FALSE); 6942 } 6943 6944 ipha = (ipha_t *)mp->b_rptr; 6945 } 6946 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6947 if (*spi == 0) { 6948 /* UDP packet - remove 0-spi. */ 6949 shift = sizeof (uint32_t); 6950 } else { 6951 /* ESP-in-UDP packet - reduce to ESP. */ 6952 ipha->ipha_protocol = IPPROTO_ESP; 6953 shift = sizeof (udpha_t); 6954 } 6955 6956 /* Fix IP header */ 6957 ipha->ipha_length = htons(plen - shift); 6958 ipha->ipha_hdr_checksum = 0; 6959 6960 orptr = mp->b_rptr; 6961 mp->b_rptr += shift; 6962 6963 if (*spi == 0) { 6964 ASSERT((uint8_t *)ipha == orptr); 6965 udpha = (udpha_t *)(orptr + iph_len); 6966 udpha->uha_length = htons(plen - shift - iph_len); 6967 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6968 udp_pkt = B_TRUE; 6969 } else { 6970 udp_pkt = B_FALSE; 6971 } 6972 ovbcopy(orptr, orptr + shift, iph_len); 6973 if (!udp_pkt) /* Punt up for ESP processing. */ { 6974 ipha = (ipha_t *)(orptr + shift); 6975 6976 free_ire = (ire == NULL); 6977 if (free_ire) { 6978 /* Re-acquire ire. */ 6979 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6980 ipss->ipsec_netstack->netstack_ip); 6981 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6982 if (ire != NULL) 6983 ire_refrele(ire); 6984 /* 6985 * Do a regular freemsg(), as this is an IP 6986 * error (no local route) not an IPsec one. 6987 */ 6988 freemsg(mp); 6989 } 6990 } 6991 6992 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6993 if (free_ire) 6994 ire_refrele(ire); 6995 } 6996 6997 return (udp_pkt); 6998 } 6999 7000 /* 7001 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7002 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7003 * Caller is responsible for dropping references to the conn, and freeing 7004 * first_mp. 7005 * 7006 * IPQoS Notes 7007 * Before sending it to the client, invoke IPPF processing. Policy processing 7008 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7009 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7010 * ip_wput_local, ip_policy is false. 7011 */ 7012 static void 7013 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7014 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7015 boolean_t ip_policy) 7016 { 7017 boolean_t mctl_present = (first_mp != NULL); 7018 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7019 uint32_t ill_index; 7020 ip_stack_t *ipst = recv_ill->ill_ipst; 7021 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7022 7023 ASSERT(ill != NULL); 7024 7025 if (mctl_present) 7026 first_mp->b_cont = mp; 7027 else 7028 first_mp = mp; 7029 7030 if (CONN_UDP_FLOWCTLD(connp)) { 7031 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7032 freemsg(first_mp); 7033 return; 7034 } 7035 7036 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7037 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7038 NULL, mctl_present); 7039 if (first_mp == NULL) { 7040 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7041 return; /* Freed by ipsec_check_inbound_policy(). */ 7042 } 7043 } 7044 if (mctl_present) 7045 freeb(first_mp); 7046 7047 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7048 if (connp->conn_udp->udp_nat_t_endpoint) { 7049 if (mctl_present) { 7050 /* mctl_present *shouldn't* happen. */ 7051 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7052 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7053 &ipss->ipsec_dropper); 7054 return; 7055 } 7056 7057 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7058 return; 7059 } 7060 7061 /* Handle options. */ 7062 if (connp->conn_recvif) 7063 in_flags = IPF_RECVIF; 7064 /* 7065 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7066 * passed to ip_add_info is based on IP version of connp. 7067 */ 7068 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7069 if (connp->conn_af_isv6) { 7070 /* 7071 * V6 only needs index 7072 */ 7073 in_flags |= IPF_RECVIF; 7074 } else { 7075 /* 7076 * V4 needs index + matching address. 7077 */ 7078 in_flags |= IPF_RECVADDR; 7079 } 7080 } 7081 7082 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7083 in_flags |= IPF_RECVSLLA; 7084 7085 /* 7086 * Initiate IPPF processing here, if needed. Note first_mp won't be 7087 * freed if the packet is dropped. The caller will do so. 7088 */ 7089 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7090 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7091 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7092 if (mp == NULL) { 7093 return; 7094 } 7095 } 7096 if ((in_flags != 0) && 7097 (mp->b_datap->db_type != M_CTL)) { 7098 /* 7099 * The actual data will be contained in b_cont 7100 * upon successful return of the following call 7101 * else original mblk is returned 7102 */ 7103 ASSERT(recv_ill != NULL); 7104 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7105 ipst); 7106 } 7107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7108 /* Send it upstream */ 7109 (connp->conn_recv)(connp, mp, NULL); 7110 } 7111 7112 /* 7113 * Fanout for UDP packets. 7114 * The caller puts <fport, lport> in the ports parameter. 7115 * 7116 * If SO_REUSEADDR is set all multicast and broadcast packets 7117 * will be delivered to all streams bound to the same port. 7118 * 7119 * Zones notes: 7120 * Multicast and broadcast packets will be distributed to streams in all zones. 7121 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7122 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7123 * packets. To maintain this behavior with multiple zones, the conns are grouped 7124 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7125 * each zone. If unset, all the following conns in the same zone are skipped. 7126 */ 7127 static void 7128 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7129 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7130 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7131 { 7132 uint32_t dstport, srcport; 7133 ipaddr_t dst; 7134 mblk_t *first_mp; 7135 boolean_t secure; 7136 in6_addr_t v6src; 7137 conn_t *connp; 7138 connf_t *connfp; 7139 conn_t *first_connp; 7140 conn_t *next_connp; 7141 mblk_t *mp1, *first_mp1; 7142 ipaddr_t src; 7143 zoneid_t last_zoneid; 7144 boolean_t reuseaddr; 7145 boolean_t shared_addr; 7146 ip_stack_t *ipst; 7147 7148 ASSERT(recv_ill != NULL); 7149 ipst = recv_ill->ill_ipst; 7150 7151 first_mp = mp; 7152 if (mctl_present) { 7153 mp = first_mp->b_cont; 7154 first_mp->b_cont = NULL; 7155 secure = ipsec_in_is_secure(first_mp); 7156 ASSERT(mp != NULL); 7157 } else { 7158 first_mp = NULL; 7159 secure = B_FALSE; 7160 } 7161 7162 /* Extract ports in net byte order */ 7163 dstport = htons(ntohl(ports) & 0xFFFF); 7164 srcport = htons(ntohl(ports) >> 16); 7165 dst = ipha->ipha_dst; 7166 src = ipha->ipha_src; 7167 7168 shared_addr = (zoneid == ALL_ZONES); 7169 if (shared_addr) { 7170 /* 7171 * No need to handle exclusive-stack zones since ALL_ZONES 7172 * only applies to the shared stack. 7173 */ 7174 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7175 if (zoneid == ALL_ZONES) 7176 zoneid = tsol_packet_to_zoneid(mp); 7177 } 7178 7179 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7180 mutex_enter(&connfp->connf_lock); 7181 connp = connfp->connf_head; 7182 if (!broadcast && !CLASSD(dst)) { 7183 /* 7184 * Not broadcast or multicast. Send to the one (first) 7185 * client we find. No need to check conn_wantpacket() 7186 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7187 * IPv4 unicast packets. 7188 */ 7189 while ((connp != NULL) && 7190 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7191 !IPCL_ZONE_MATCH(connp, zoneid))) { 7192 connp = connp->conn_next; 7193 } 7194 7195 if (connp == NULL || connp->conn_upq == NULL) 7196 goto notfound; 7197 7198 if (is_system_labeled() && 7199 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7200 connp)) 7201 goto notfound; 7202 7203 CONN_INC_REF(connp); 7204 mutex_exit(&connfp->connf_lock); 7205 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7206 flags, recv_ill, ip_policy); 7207 IP_STAT(ipst, ip_udp_fannorm); 7208 CONN_DEC_REF(connp); 7209 return; 7210 } 7211 7212 /* 7213 * Broadcast and multicast case 7214 * 7215 * Need to check conn_wantpacket(). 7216 * If SO_REUSEADDR has been set on the first we send the 7217 * packet to all clients that have joined the group and 7218 * match the port. 7219 */ 7220 7221 while (connp != NULL) { 7222 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7223 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7224 (!is_system_labeled() || 7225 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7226 connp))) 7227 break; 7228 connp = connp->conn_next; 7229 } 7230 7231 if (connp == NULL || connp->conn_upq == NULL) 7232 goto notfound; 7233 7234 first_connp = connp; 7235 /* 7236 * When SO_REUSEADDR is not set, send the packet only to the first 7237 * matching connection in its zone by keeping track of the zoneid. 7238 */ 7239 reuseaddr = first_connp->conn_reuseaddr; 7240 last_zoneid = first_connp->conn_zoneid; 7241 7242 CONN_INC_REF(connp); 7243 connp = connp->conn_next; 7244 for (;;) { 7245 while (connp != NULL) { 7246 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7247 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7248 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7249 (!is_system_labeled() || 7250 tsol_receive_local(mp, &dst, IPV4_VERSION, 7251 shared_addr, connp))) 7252 break; 7253 connp = connp->conn_next; 7254 } 7255 /* 7256 * Just copy the data part alone. The mctl part is 7257 * needed just for verifying policy and it is never 7258 * sent up. 7259 */ 7260 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7261 ((mp1 = copymsg(mp)) == NULL))) { 7262 /* 7263 * No more interested clients or memory 7264 * allocation failed 7265 */ 7266 connp = first_connp; 7267 break; 7268 } 7269 if (connp->conn_zoneid != last_zoneid) { 7270 /* 7271 * Update the zoneid so that the packet isn't sent to 7272 * any more conns in the same zone unless SO_REUSEADDR 7273 * is set. 7274 */ 7275 reuseaddr = connp->conn_reuseaddr; 7276 last_zoneid = connp->conn_zoneid; 7277 } 7278 if (first_mp != NULL) { 7279 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7280 ipsec_info_type == IPSEC_IN); 7281 first_mp1 = ipsec_in_tag(first_mp, NULL, 7282 ipst->ips_netstack); 7283 if (first_mp1 == NULL) { 7284 freemsg(mp1); 7285 connp = first_connp; 7286 break; 7287 } 7288 } else { 7289 first_mp1 = NULL; 7290 } 7291 CONN_INC_REF(connp); 7292 mutex_exit(&connfp->connf_lock); 7293 /* 7294 * IPQoS notes: We don't send the packet for policy 7295 * processing here, will do it for the last one (below). 7296 * i.e. we do it per-packet now, but if we do policy 7297 * processing per-conn, then we would need to do it 7298 * here too. 7299 */ 7300 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7301 ipha, flags, recv_ill, B_FALSE); 7302 mutex_enter(&connfp->connf_lock); 7303 /* Follow the next pointer before releasing the conn. */ 7304 next_connp = connp->conn_next; 7305 IP_STAT(ipst, ip_udp_fanmb); 7306 CONN_DEC_REF(connp); 7307 connp = next_connp; 7308 } 7309 7310 /* Last one. Send it upstream. */ 7311 mutex_exit(&connfp->connf_lock); 7312 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7313 recv_ill, ip_policy); 7314 IP_STAT(ipst, ip_udp_fanmb); 7315 CONN_DEC_REF(connp); 7316 return; 7317 7318 notfound: 7319 7320 mutex_exit(&connfp->connf_lock); 7321 IP_STAT(ipst, ip_udp_fanothers); 7322 /* 7323 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7324 * have already been matched above, since they live in the IPv4 7325 * fanout tables. This implies we only need to 7326 * check for IPv6 in6addr_any endpoints here. 7327 * Thus we compare using ipv6_all_zeros instead of the destination 7328 * address, except for the multicast group membership lookup which 7329 * uses the IPv4 destination. 7330 */ 7331 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7332 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7333 mutex_enter(&connfp->connf_lock); 7334 connp = connfp->connf_head; 7335 if (!broadcast && !CLASSD(dst)) { 7336 while (connp != NULL) { 7337 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7338 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7339 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7340 !connp->conn_ipv6_v6only) 7341 break; 7342 connp = connp->conn_next; 7343 } 7344 7345 if (connp != NULL && is_system_labeled() && 7346 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7347 connp)) 7348 connp = NULL; 7349 7350 if (connp == NULL || connp->conn_upq == NULL) { 7351 /* 7352 * No one bound to this port. Is 7353 * there a client that wants all 7354 * unclaimed datagrams? 7355 */ 7356 mutex_exit(&connfp->connf_lock); 7357 7358 if (mctl_present) 7359 first_mp->b_cont = mp; 7360 else 7361 first_mp = mp; 7362 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7363 connf_head != NULL) { 7364 ip_fanout_proto(q, first_mp, ill, ipha, 7365 flags | IP_FF_RAWIP, mctl_present, 7366 ip_policy, recv_ill, zoneid); 7367 } else { 7368 if (ip_fanout_send_icmp(q, first_mp, flags, 7369 ICMP_DEST_UNREACHABLE, 7370 ICMP_PORT_UNREACHABLE, 7371 mctl_present, zoneid, ipst)) { 7372 BUMP_MIB(ill->ill_ip_mib, 7373 udpIfStatsNoPorts); 7374 } 7375 } 7376 return; 7377 } 7378 7379 CONN_INC_REF(connp); 7380 mutex_exit(&connfp->connf_lock); 7381 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7382 flags, recv_ill, ip_policy); 7383 CONN_DEC_REF(connp); 7384 return; 7385 } 7386 /* 7387 * IPv4 multicast packet being delivered to an AF_INET6 7388 * in6addr_any endpoint. 7389 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7390 * and not conn_wantpacket_v6() since any multicast membership is 7391 * for an IPv4-mapped multicast address. 7392 * The packet is sent to all clients in all zones that have joined the 7393 * group and match the port. 7394 */ 7395 while (connp != NULL) { 7396 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7397 srcport, v6src) && 7398 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7399 (!is_system_labeled() || 7400 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7401 connp))) 7402 break; 7403 connp = connp->conn_next; 7404 } 7405 7406 if (connp == NULL || connp->conn_upq == NULL) { 7407 /* 7408 * No one bound to this port. Is 7409 * there a client that wants all 7410 * unclaimed datagrams? 7411 */ 7412 mutex_exit(&connfp->connf_lock); 7413 7414 if (mctl_present) 7415 first_mp->b_cont = mp; 7416 else 7417 first_mp = mp; 7418 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7419 NULL) { 7420 ip_fanout_proto(q, first_mp, ill, ipha, 7421 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7422 recv_ill, zoneid); 7423 } else { 7424 /* 7425 * We used to attempt to send an icmp error here, but 7426 * since this is known to be a multicast packet 7427 * and we don't send icmp errors in response to 7428 * multicast, just drop the packet and give up sooner. 7429 */ 7430 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7431 freemsg(first_mp); 7432 } 7433 return; 7434 } 7435 7436 first_connp = connp; 7437 7438 CONN_INC_REF(connp); 7439 connp = connp->conn_next; 7440 for (;;) { 7441 while (connp != NULL) { 7442 if (IPCL_UDP_MATCH_V6(connp, dstport, 7443 ipv6_all_zeros, srcport, v6src) && 7444 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7445 (!is_system_labeled() || 7446 tsol_receive_local(mp, &dst, IPV4_VERSION, 7447 shared_addr, connp))) 7448 break; 7449 connp = connp->conn_next; 7450 } 7451 /* 7452 * Just copy the data part alone. The mctl part is 7453 * needed just for verifying policy and it is never 7454 * sent up. 7455 */ 7456 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7457 ((mp1 = copymsg(mp)) == NULL))) { 7458 /* 7459 * No more intested clients or memory 7460 * allocation failed 7461 */ 7462 connp = first_connp; 7463 break; 7464 } 7465 if (first_mp != NULL) { 7466 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7467 ipsec_info_type == IPSEC_IN); 7468 first_mp1 = ipsec_in_tag(first_mp, NULL, 7469 ipst->ips_netstack); 7470 if (first_mp1 == NULL) { 7471 freemsg(mp1); 7472 connp = first_connp; 7473 break; 7474 } 7475 } else { 7476 first_mp1 = NULL; 7477 } 7478 CONN_INC_REF(connp); 7479 mutex_exit(&connfp->connf_lock); 7480 /* 7481 * IPQoS notes: We don't send the packet for policy 7482 * processing here, will do it for the last one (below). 7483 * i.e. we do it per-packet now, but if we do policy 7484 * processing per-conn, then we would need to do it 7485 * here too. 7486 */ 7487 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7488 ipha, flags, recv_ill, B_FALSE); 7489 mutex_enter(&connfp->connf_lock); 7490 /* Follow the next pointer before releasing the conn. */ 7491 next_connp = connp->conn_next; 7492 CONN_DEC_REF(connp); 7493 connp = next_connp; 7494 } 7495 7496 /* Last one. Send it upstream. */ 7497 mutex_exit(&connfp->connf_lock); 7498 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7499 recv_ill, ip_policy); 7500 CONN_DEC_REF(connp); 7501 } 7502 7503 /* 7504 * Complete the ip_wput header so that it 7505 * is possible to generate ICMP 7506 * errors. 7507 */ 7508 int 7509 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7510 { 7511 ire_t *ire; 7512 7513 if (ipha->ipha_src == INADDR_ANY) { 7514 ire = ire_lookup_local(zoneid, ipst); 7515 if (ire == NULL) { 7516 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7517 return (1); 7518 } 7519 ipha->ipha_src = ire->ire_addr; 7520 ire_refrele(ire); 7521 } 7522 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7523 ipha->ipha_hdr_checksum = 0; 7524 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7525 return (0); 7526 } 7527 7528 /* 7529 * Nobody should be sending 7530 * packets up this stream 7531 */ 7532 static void 7533 ip_lrput(queue_t *q, mblk_t *mp) 7534 { 7535 mblk_t *mp1; 7536 7537 switch (mp->b_datap->db_type) { 7538 case M_FLUSH: 7539 /* Turn around */ 7540 if (*mp->b_rptr & FLUSHW) { 7541 *mp->b_rptr &= ~FLUSHR; 7542 qreply(q, mp); 7543 return; 7544 } 7545 break; 7546 } 7547 /* Could receive messages that passed through ar_rput */ 7548 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7549 mp1->b_prev = mp1->b_next = NULL; 7550 freemsg(mp); 7551 } 7552 7553 /* Nobody should be sending packets down this stream */ 7554 /* ARGSUSED */ 7555 void 7556 ip_lwput(queue_t *q, mblk_t *mp) 7557 { 7558 freemsg(mp); 7559 } 7560 7561 /* 7562 * Move the first hop in any source route to ipha_dst and remove that part of 7563 * the source route. Called by other protocols. Errors in option formatting 7564 * are ignored - will be handled by ip_wput_options Return the final 7565 * destination (either ipha_dst or the last entry in a source route.) 7566 */ 7567 ipaddr_t 7568 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7569 { 7570 ipoptp_t opts; 7571 uchar_t *opt; 7572 uint8_t optval; 7573 uint8_t optlen; 7574 ipaddr_t dst; 7575 int i; 7576 ire_t *ire; 7577 ip_stack_t *ipst = ns->netstack_ip; 7578 7579 ip2dbg(("ip_massage_options\n")); 7580 dst = ipha->ipha_dst; 7581 for (optval = ipoptp_first(&opts, ipha); 7582 optval != IPOPT_EOL; 7583 optval = ipoptp_next(&opts)) { 7584 opt = opts.ipoptp_cur; 7585 switch (optval) { 7586 uint8_t off; 7587 case IPOPT_SSRR: 7588 case IPOPT_LSRR: 7589 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7590 ip1dbg(("ip_massage_options: bad src route\n")); 7591 break; 7592 } 7593 optlen = opts.ipoptp_len; 7594 off = opt[IPOPT_OFFSET]; 7595 off--; 7596 redo_srr: 7597 if (optlen < IP_ADDR_LEN || 7598 off > optlen - IP_ADDR_LEN) { 7599 /* End of source route */ 7600 ip1dbg(("ip_massage_options: end of SR\n")); 7601 break; 7602 } 7603 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7604 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7605 ntohl(dst))); 7606 /* 7607 * Check if our address is present more than 7608 * once as consecutive hops in source route. 7609 * XXX verify per-interface ip_forwarding 7610 * for source route? 7611 */ 7612 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7613 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7614 if (ire != NULL) { 7615 ire_refrele(ire); 7616 off += IP_ADDR_LEN; 7617 goto redo_srr; 7618 } 7619 if (dst == htonl(INADDR_LOOPBACK)) { 7620 ip1dbg(("ip_massage_options: loopback addr in " 7621 "source route!\n")); 7622 break; 7623 } 7624 /* 7625 * Update ipha_dst to be the first hop and remove the 7626 * first hop from the source route (by overwriting 7627 * part of the option with NOP options). 7628 */ 7629 ipha->ipha_dst = dst; 7630 /* Put the last entry in dst */ 7631 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7632 3; 7633 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7634 7635 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7636 ntohl(dst))); 7637 /* Move down and overwrite */ 7638 opt[IP_ADDR_LEN] = opt[0]; 7639 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7640 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7641 for (i = 0; i < IP_ADDR_LEN; i++) 7642 opt[i] = IPOPT_NOP; 7643 break; 7644 } 7645 } 7646 return (dst); 7647 } 7648 7649 /* 7650 * Return the network mask 7651 * associated with the specified address. 7652 */ 7653 ipaddr_t 7654 ip_net_mask(ipaddr_t addr) 7655 { 7656 uchar_t *up = (uchar_t *)&addr; 7657 ipaddr_t mask = 0; 7658 uchar_t *maskp = (uchar_t *)&mask; 7659 7660 #if defined(__i386) || defined(__amd64) 7661 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7662 #endif 7663 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7664 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7665 #endif 7666 if (CLASSD(addr)) { 7667 maskp[0] = 0xF0; 7668 return (mask); 7669 } 7670 if (addr == 0) 7671 return (0); 7672 maskp[0] = 0xFF; 7673 if ((up[0] & 0x80) == 0) 7674 return (mask); 7675 7676 maskp[1] = 0xFF; 7677 if ((up[0] & 0xC0) == 0x80) 7678 return (mask); 7679 7680 maskp[2] = 0xFF; 7681 if ((up[0] & 0xE0) == 0xC0) 7682 return (mask); 7683 7684 /* Must be experimental or multicast, indicate as much */ 7685 return ((ipaddr_t)0); 7686 } 7687 7688 /* 7689 * Select an ill for the packet by considering load spreading across 7690 * a different ill in the group if dst_ill is part of some group. 7691 */ 7692 ill_t * 7693 ip_newroute_get_dst_ill(ill_t *dst_ill) 7694 { 7695 ill_t *ill; 7696 7697 /* 7698 * We schedule irrespective of whether the source address is 7699 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7700 */ 7701 ill = illgrp_scheduler(dst_ill); 7702 if (ill == NULL) 7703 return (NULL); 7704 7705 /* 7706 * For groups with names ip_sioctl_groupname ensures that all 7707 * ills are of same type. For groups without names, ifgrp_insert 7708 * ensures this. 7709 */ 7710 ASSERT(dst_ill->ill_type == ill->ill_type); 7711 7712 return (ill); 7713 } 7714 7715 /* 7716 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7717 */ 7718 ill_t * 7719 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7720 ip_stack_t *ipst) 7721 { 7722 ill_t *ret_ill; 7723 7724 ASSERT(ifindex != 0); 7725 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7726 ipst); 7727 if (ret_ill == NULL || 7728 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7729 if (isv6) { 7730 if (ill != NULL) { 7731 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7732 } else { 7733 BUMP_MIB(&ipst->ips_ip6_mib, 7734 ipIfStatsOutDiscards); 7735 } 7736 ip1dbg(("ip_grab_attach_ill (IPv6): " 7737 "bad ifindex %d.\n", ifindex)); 7738 } else { 7739 if (ill != NULL) { 7740 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7741 } else { 7742 BUMP_MIB(&ipst->ips_ip_mib, 7743 ipIfStatsOutDiscards); 7744 } 7745 ip1dbg(("ip_grab_attach_ill (IPv4): " 7746 "bad ifindex %d.\n", ifindex)); 7747 } 7748 if (ret_ill != NULL) 7749 ill_refrele(ret_ill); 7750 freemsg(first_mp); 7751 return (NULL); 7752 } 7753 7754 return (ret_ill); 7755 } 7756 7757 /* 7758 * IPv4 - 7759 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7760 * out a packet to a destination address for which we do not have specific 7761 * (or sufficient) routing information. 7762 * 7763 * NOTE : These are the scopes of some of the variables that point at IRE, 7764 * which needs to be followed while making any future modifications 7765 * to avoid memory leaks. 7766 * 7767 * - ire and sire are the entries looked up initially by 7768 * ire_ftable_lookup. 7769 * - ipif_ire is used to hold the interface ire associated with 7770 * the new cache ire. But it's scope is limited, so we always REFRELE 7771 * it before branching out to error paths. 7772 * - save_ire is initialized before ire_create, so that ire returned 7773 * by ire_create will not over-write the ire. We REFRELE save_ire 7774 * before breaking out of the switch. 7775 * 7776 * Thus on failures, we have to REFRELE only ire and sire, if they 7777 * are not NULL. 7778 */ 7779 void 7780 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7781 zoneid_t zoneid, ip_stack_t *ipst) 7782 { 7783 areq_t *areq; 7784 ipaddr_t gw = 0; 7785 ire_t *ire = NULL; 7786 mblk_t *res_mp; 7787 ipaddr_t *addrp; 7788 ipaddr_t nexthop_addr; 7789 ipif_t *src_ipif = NULL; 7790 ill_t *dst_ill = NULL; 7791 ipha_t *ipha; 7792 ire_t *sire = NULL; 7793 mblk_t *first_mp; 7794 ire_t *save_ire; 7795 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7796 ushort_t ire_marks = 0; 7797 boolean_t mctl_present; 7798 ipsec_out_t *io; 7799 mblk_t *saved_mp; 7800 ire_t *first_sire = NULL; 7801 mblk_t *copy_mp = NULL; 7802 mblk_t *xmit_mp = NULL; 7803 ipaddr_t save_dst; 7804 uint32_t multirt_flags = 7805 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7806 boolean_t multirt_is_resolvable; 7807 boolean_t multirt_resolve_next; 7808 boolean_t unspec_src; 7809 boolean_t do_attach_ill = B_FALSE; 7810 boolean_t ip_nexthop = B_FALSE; 7811 tsol_ire_gw_secattr_t *attrp = NULL; 7812 tsol_gcgrp_t *gcgrp = NULL; 7813 tsol_gcgrp_addr_t ga; 7814 7815 if (ip_debug > 2) { 7816 /* ip1dbg */ 7817 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7818 } 7819 7820 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7821 if (mctl_present) { 7822 io = (ipsec_out_t *)first_mp->b_rptr; 7823 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7824 ASSERT(zoneid == io->ipsec_out_zoneid); 7825 ASSERT(zoneid != ALL_ZONES); 7826 } 7827 7828 ipha = (ipha_t *)mp->b_rptr; 7829 7830 /* All multicast lookups come through ip_newroute_ipif() */ 7831 if (CLASSD(dst)) { 7832 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7833 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7834 freemsg(first_mp); 7835 return; 7836 } 7837 7838 if (mctl_present && io->ipsec_out_attach_if) { 7839 /* ip_grab_attach_ill returns a held ill */ 7840 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7841 io->ipsec_out_ill_index, B_FALSE, ipst); 7842 7843 /* Failure case frees things for us. */ 7844 if (attach_ill == NULL) 7845 return; 7846 7847 /* 7848 * Check if we need an ire that will not be 7849 * looked up by anybody else i.e. HIDDEN. 7850 */ 7851 if (ill_is_probeonly(attach_ill)) 7852 ire_marks = IRE_MARK_HIDDEN; 7853 } 7854 if (mctl_present && io->ipsec_out_ip_nexthop) { 7855 ip_nexthop = B_TRUE; 7856 nexthop_addr = io->ipsec_out_nexthop_addr; 7857 } 7858 /* 7859 * If this IRE is created for forwarding or it is not for 7860 * traffic for congestion controlled protocols, mark it as temporary. 7861 */ 7862 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7863 ire_marks |= IRE_MARK_TEMPORARY; 7864 7865 /* 7866 * Get what we can from ire_ftable_lookup which will follow an IRE 7867 * chain until it gets the most specific information available. 7868 * For example, we know that there is no IRE_CACHE for this dest, 7869 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7870 * ire_ftable_lookup will look up the gateway, etc. 7871 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7872 * to the destination, of equal netmask length in the forward table, 7873 * will be recursively explored. If no information is available 7874 * for the final gateway of that route, we force the returned ire 7875 * to be equal to sire using MATCH_IRE_PARENT. 7876 * At least, in this case we have a starting point (in the buckets) 7877 * to look for other routes to the destination in the forward table. 7878 * This is actually used only for multirouting, where a list 7879 * of routes has to be processed in sequence. 7880 * 7881 * In the process of coming up with the most specific information, 7882 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7883 * for the gateway (i.e., one for which the ire_nce->nce_state is 7884 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7885 * Two caveats when handling incomplete ire's in ip_newroute: 7886 * - we should be careful when accessing its ire_nce (specifically 7887 * the nce_res_mp) ast it might change underneath our feet, and, 7888 * - not all legacy code path callers are prepared to handle 7889 * incomplete ire's, so we should not create/add incomplete 7890 * ire_cache entries here. (See discussion about temporary solution 7891 * further below). 7892 * 7893 * In order to minimize packet dropping, and to preserve existing 7894 * behavior, we treat this case as if there were no IRE_CACHE for the 7895 * gateway, and instead use the IF_RESOLVER ire to send out 7896 * another request to ARP (this is achieved by passing the 7897 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7898 * arp response comes back in ip_wput_nondata, we will create 7899 * a per-dst ire_cache that has an ND_COMPLETE ire. 7900 * 7901 * Note that this is a temporary solution; the correct solution is 7902 * to create an incomplete per-dst ire_cache entry, and send the 7903 * packet out when the gw's nce is resolved. In order to achieve this, 7904 * all packet processing must have been completed prior to calling 7905 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7906 * to be modified to accomodate this solution. 7907 */ 7908 if (ip_nexthop) { 7909 /* 7910 * The first time we come here, we look for an IRE_INTERFACE 7911 * entry for the specified nexthop, set the dst to be the 7912 * nexthop address and create an IRE_CACHE entry for the 7913 * nexthop. The next time around, we are able to find an 7914 * IRE_CACHE entry for the nexthop, set the gateway to be the 7915 * nexthop address and create an IRE_CACHE entry for the 7916 * destination address via the specified nexthop. 7917 */ 7918 ire = ire_cache_lookup(nexthop_addr, zoneid, 7919 MBLK_GETLABEL(mp), ipst); 7920 if (ire != NULL) { 7921 gw = nexthop_addr; 7922 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7923 } else { 7924 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7925 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7926 MBLK_GETLABEL(mp), 7927 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7928 ipst); 7929 if (ire != NULL) { 7930 dst = nexthop_addr; 7931 } 7932 } 7933 } else if (attach_ill == NULL) { 7934 ire = ire_ftable_lookup(dst, 0, 0, 0, 7935 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7936 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7937 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7938 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7939 ipst); 7940 } else { 7941 /* 7942 * attach_ill is set only for communicating with 7943 * on-link hosts. So, don't look for DEFAULT. 7944 */ 7945 ipif_t *attach_ipif; 7946 7947 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7948 if (attach_ipif == NULL) { 7949 ill_refrele(attach_ill); 7950 goto icmp_err_ret; 7951 } 7952 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7953 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7954 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7955 MATCH_IRE_SECATTR, ipst); 7956 ipif_refrele(attach_ipif); 7957 } 7958 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7959 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7960 7961 /* 7962 * This loop is run only once in most cases. 7963 * We loop to resolve further routes only when the destination 7964 * can be reached through multiple RTF_MULTIRT-flagged ires. 7965 */ 7966 do { 7967 /* Clear the previous iteration's values */ 7968 if (src_ipif != NULL) { 7969 ipif_refrele(src_ipif); 7970 src_ipif = NULL; 7971 } 7972 if (dst_ill != NULL) { 7973 ill_refrele(dst_ill); 7974 dst_ill = NULL; 7975 } 7976 7977 multirt_resolve_next = B_FALSE; 7978 /* 7979 * We check if packets have to be multirouted. 7980 * In this case, given the current <ire, sire> couple, 7981 * we look for the next suitable <ire, sire>. 7982 * This check is done in ire_multirt_lookup(), 7983 * which applies various criteria to find the next route 7984 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7985 * unchanged if it detects it has not been tried yet. 7986 */ 7987 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7988 ip3dbg(("ip_newroute: starting next_resolution " 7989 "with first_mp %p, tag %d\n", 7990 (void *)first_mp, 7991 MULTIRT_DEBUG_TAGGED(first_mp))); 7992 7993 ASSERT(sire != NULL); 7994 multirt_is_resolvable = 7995 ire_multirt_lookup(&ire, &sire, multirt_flags, 7996 MBLK_GETLABEL(mp), ipst); 7997 7998 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7999 "ire %p, sire %p\n", 8000 multirt_is_resolvable, 8001 (void *)ire, (void *)sire)); 8002 8003 if (!multirt_is_resolvable) { 8004 /* 8005 * No more multirt route to resolve; give up 8006 * (all routes resolved or no more 8007 * resolvable routes). 8008 */ 8009 if (ire != NULL) { 8010 ire_refrele(ire); 8011 ire = NULL; 8012 } 8013 } else { 8014 ASSERT(sire != NULL); 8015 ASSERT(ire != NULL); 8016 /* 8017 * We simply use first_sire as a flag that 8018 * indicates if a resolvable multirt route 8019 * has already been found. 8020 * If it is not the case, we may have to send 8021 * an ICMP error to report that the 8022 * destination is unreachable. 8023 * We do not IRE_REFHOLD first_sire. 8024 */ 8025 if (first_sire == NULL) { 8026 first_sire = sire; 8027 } 8028 } 8029 } 8030 if (ire == NULL) { 8031 if (ip_debug > 3) { 8032 /* ip2dbg */ 8033 pr_addr_dbg("ip_newroute: " 8034 "can't resolve %s\n", AF_INET, &dst); 8035 } 8036 ip3dbg(("ip_newroute: " 8037 "ire %p, sire %p, first_sire %p\n", 8038 (void *)ire, (void *)sire, (void *)first_sire)); 8039 8040 if (sire != NULL) { 8041 ire_refrele(sire); 8042 sire = NULL; 8043 } 8044 8045 if (first_sire != NULL) { 8046 /* 8047 * At least one multirt route has been found 8048 * in the same call to ip_newroute(); 8049 * there is no need to report an ICMP error. 8050 * first_sire was not IRE_REFHOLDed. 8051 */ 8052 MULTIRT_DEBUG_UNTAG(first_mp); 8053 freemsg(first_mp); 8054 return; 8055 } 8056 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8057 RTA_DST, ipst); 8058 if (attach_ill != NULL) 8059 ill_refrele(attach_ill); 8060 goto icmp_err_ret; 8061 } 8062 8063 /* 8064 * Verify that the returned IRE does not have either 8065 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8066 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8067 */ 8068 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8069 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8070 if (attach_ill != NULL) 8071 ill_refrele(attach_ill); 8072 goto icmp_err_ret; 8073 } 8074 /* 8075 * Increment the ire_ob_pkt_count field for ire if it is an 8076 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8077 * increment the same for the parent IRE, sire, if it is some 8078 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8079 */ 8080 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8081 UPDATE_OB_PKT_COUNT(ire); 8082 ire->ire_last_used_time = lbolt; 8083 } 8084 8085 if (sire != NULL) { 8086 gw = sire->ire_gateway_addr; 8087 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8088 IRE_INTERFACE)) == 0); 8089 UPDATE_OB_PKT_COUNT(sire); 8090 sire->ire_last_used_time = lbolt; 8091 } 8092 /* 8093 * We have a route to reach the destination. 8094 * 8095 * 1) If the interface is part of ill group, try to get a new 8096 * ill taking load spreading into account. 8097 * 8098 * 2) After selecting the ill, get a source address that 8099 * might create good inbound load spreading. 8100 * ipif_select_source does this for us. 8101 * 8102 * If the application specified the ill (ifindex), we still 8103 * load spread. Only if the packets needs to go out 8104 * specifically on a given ill e.g. binding to 8105 * IPIF_NOFAILOVER address, then we don't try to use a 8106 * different ill for load spreading. 8107 */ 8108 if (attach_ill == NULL) { 8109 /* 8110 * Don't perform outbound load spreading in the 8111 * case of an RTF_MULTIRT route, as we actually 8112 * typically want to replicate outgoing packets 8113 * through particular interfaces. 8114 */ 8115 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8116 dst_ill = ire->ire_ipif->ipif_ill; 8117 /* for uniformity */ 8118 ill_refhold(dst_ill); 8119 } else { 8120 /* 8121 * If we are here trying to create an IRE_CACHE 8122 * for an offlink destination and have the 8123 * IRE_CACHE for the next hop and the latter is 8124 * using virtual IP source address selection i.e 8125 * it's ire->ire_ipif is pointing to a virtual 8126 * network interface (vni) then 8127 * ip_newroute_get_dst_ll() will return the vni 8128 * interface as the dst_ill. Since the vni is 8129 * virtual i.e not associated with any physical 8130 * interface, it cannot be the dst_ill, hence 8131 * in such a case call ip_newroute_get_dst_ll() 8132 * with the stq_ill instead of the ire_ipif ILL. 8133 * The function returns a refheld ill. 8134 */ 8135 if ((ire->ire_type == IRE_CACHE) && 8136 IS_VNI(ire->ire_ipif->ipif_ill)) 8137 dst_ill = ip_newroute_get_dst_ill( 8138 ire->ire_stq->q_ptr); 8139 else 8140 dst_ill = ip_newroute_get_dst_ill( 8141 ire->ire_ipif->ipif_ill); 8142 } 8143 if (dst_ill == NULL) { 8144 if (ip_debug > 2) { 8145 pr_addr_dbg("ip_newroute: " 8146 "no dst ill for dst" 8147 " %s\n", AF_INET, &dst); 8148 } 8149 goto icmp_err_ret; 8150 } 8151 } else { 8152 dst_ill = ire->ire_ipif->ipif_ill; 8153 /* for uniformity */ 8154 ill_refhold(dst_ill); 8155 /* 8156 * We should have found a route matching ill as we 8157 * called ire_ftable_lookup with MATCH_IRE_ILL. 8158 * Rather than asserting, when there is a mismatch, 8159 * we just drop the packet. 8160 */ 8161 if (dst_ill != attach_ill) { 8162 ip0dbg(("ip_newroute: Packet dropped as " 8163 "IPIF_NOFAILOVER ill is %s, " 8164 "ire->ire_ipif->ipif_ill is %s\n", 8165 attach_ill->ill_name, 8166 dst_ill->ill_name)); 8167 ill_refrele(attach_ill); 8168 goto icmp_err_ret; 8169 } 8170 } 8171 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8172 if (attach_ill != NULL) { 8173 ill_refrele(attach_ill); 8174 attach_ill = NULL; 8175 do_attach_ill = B_TRUE; 8176 } 8177 ASSERT(dst_ill != NULL); 8178 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8179 8180 /* 8181 * Pick the best source address from dst_ill. 8182 * 8183 * 1) If it is part of a multipathing group, we would 8184 * like to spread the inbound packets across different 8185 * interfaces. ipif_select_source picks a random source 8186 * across the different ills in the group. 8187 * 8188 * 2) If it is not part of a multipathing group, we try 8189 * to pick the source address from the destination 8190 * route. Clustering assumes that when we have multiple 8191 * prefixes hosted on an interface, the prefix of the 8192 * source address matches the prefix of the destination 8193 * route. We do this only if the address is not 8194 * DEPRECATED. 8195 * 8196 * 3) If the conn is in a different zone than the ire, we 8197 * need to pick a source address from the right zone. 8198 * 8199 * NOTE : If we hit case (1) above, the prefix of the source 8200 * address picked may not match the prefix of the 8201 * destination routes prefix as ipif_select_source 8202 * does not look at "dst" while picking a source 8203 * address. 8204 * If we want the same behavior as (2), we will need 8205 * to change the behavior of ipif_select_source. 8206 */ 8207 ASSERT(src_ipif == NULL); 8208 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8209 /* 8210 * The RTF_SETSRC flag is set in the parent ire (sire). 8211 * Check that the ipif matching the requested source 8212 * address still exists. 8213 */ 8214 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8215 zoneid, NULL, NULL, NULL, NULL, ipst); 8216 } 8217 8218 unspec_src = (connp != NULL && connp->conn_unspec_src); 8219 8220 if (src_ipif == NULL && 8221 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8222 ire_marks |= IRE_MARK_USESRC_CHECK; 8223 if ((dst_ill->ill_group != NULL) || 8224 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8225 (connp != NULL && ire->ire_zoneid != zoneid && 8226 ire->ire_zoneid != ALL_ZONES) || 8227 (dst_ill->ill_usesrc_ifindex != 0)) { 8228 /* 8229 * If the destination is reachable via a 8230 * given gateway, the selected source address 8231 * should be in the same subnet as the gateway. 8232 * Otherwise, the destination is not reachable. 8233 * 8234 * If there are no interfaces on the same subnet 8235 * as the destination, ipif_select_source gives 8236 * first non-deprecated interface which might be 8237 * on a different subnet than the gateway. 8238 * This is not desirable. Hence pass the dst_ire 8239 * source address to ipif_select_source. 8240 * It is sure that the destination is reachable 8241 * with the dst_ire source address subnet. 8242 * So passing dst_ire source address to 8243 * ipif_select_source will make sure that the 8244 * selected source will be on the same subnet 8245 * as dst_ire source address. 8246 */ 8247 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8248 src_ipif = ipif_select_source(dst_ill, saddr, 8249 zoneid); 8250 if (src_ipif == NULL) { 8251 if (ip_debug > 2) { 8252 pr_addr_dbg("ip_newroute: " 8253 "no src for dst %s ", 8254 AF_INET, &dst); 8255 printf("through interface %s\n", 8256 dst_ill->ill_name); 8257 } 8258 goto icmp_err_ret; 8259 } 8260 } else { 8261 src_ipif = ire->ire_ipif; 8262 ASSERT(src_ipif != NULL); 8263 /* hold src_ipif for uniformity */ 8264 ipif_refhold(src_ipif); 8265 } 8266 } 8267 8268 /* 8269 * Assign a source address while we have the conn. 8270 * We can't have ip_wput_ire pick a source address when the 8271 * packet returns from arp since we need to look at 8272 * conn_unspec_src and conn_zoneid, and we lose the conn when 8273 * going through arp. 8274 * 8275 * NOTE : ip_newroute_v6 does not have this piece of code as 8276 * it uses ip6i to store this information. 8277 */ 8278 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8279 ipha->ipha_src = src_ipif->ipif_src_addr; 8280 8281 if (ip_debug > 3) { 8282 /* ip2dbg */ 8283 pr_addr_dbg("ip_newroute: first hop %s\n", 8284 AF_INET, &gw); 8285 } 8286 ip2dbg(("\tire type %s (%d)\n", 8287 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8288 8289 /* 8290 * The TTL of multirouted packets is bounded by the 8291 * ip_multirt_ttl ndd variable. 8292 */ 8293 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8294 /* Force TTL of multirouted packets */ 8295 if ((ipst->ips_ip_multirt_ttl > 0) && 8296 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8297 ip2dbg(("ip_newroute: forcing multirt TTL " 8298 "to %d (was %d), dst 0x%08x\n", 8299 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8300 ntohl(sire->ire_addr))); 8301 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8302 } 8303 } 8304 /* 8305 * At this point in ip_newroute(), ire is either the 8306 * IRE_CACHE of the next-hop gateway for an off-subnet 8307 * destination or an IRE_INTERFACE type that should be used 8308 * to resolve an on-subnet destination or an on-subnet 8309 * next-hop gateway. 8310 * 8311 * In the IRE_CACHE case, we have the following : 8312 * 8313 * 1) src_ipif - used for getting a source address. 8314 * 8315 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8316 * means packets using this IRE_CACHE will go out on 8317 * dst_ill. 8318 * 8319 * 3) The IRE sire will point to the prefix that is the 8320 * longest matching route for the destination. These 8321 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8322 * 8323 * The newly created IRE_CACHE entry for the off-subnet 8324 * destination is tied to both the prefix route and the 8325 * interface route used to resolve the next-hop gateway 8326 * via the ire_phandle and ire_ihandle fields, 8327 * respectively. 8328 * 8329 * In the IRE_INTERFACE case, we have the following : 8330 * 8331 * 1) src_ipif - used for getting a source address. 8332 * 8333 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8334 * means packets using the IRE_CACHE that we will build 8335 * here will go out on dst_ill. 8336 * 8337 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8338 * to be created will only be tied to the IRE_INTERFACE 8339 * that was derived from the ire_ihandle field. 8340 * 8341 * If sire is non-NULL, it means the destination is 8342 * off-link and we will first create the IRE_CACHE for the 8343 * gateway. Next time through ip_newroute, we will create 8344 * the IRE_CACHE for the final destination as described 8345 * above. 8346 * 8347 * In both cases, after the current resolution has been 8348 * completed (or possibly initialised, in the IRE_INTERFACE 8349 * case), the loop may be re-entered to attempt the resolution 8350 * of another RTF_MULTIRT route. 8351 * 8352 * When an IRE_CACHE entry for the off-subnet destination is 8353 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8354 * for further processing in emission loops. 8355 */ 8356 save_ire = ire; 8357 switch (ire->ire_type) { 8358 case IRE_CACHE: { 8359 ire_t *ipif_ire; 8360 8361 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8362 if (gw == 0) 8363 gw = ire->ire_gateway_addr; 8364 /* 8365 * We need 3 ire's to create a new cache ire for an 8366 * off-link destination from the cache ire of the 8367 * gateway. 8368 * 8369 * 1. The prefix ire 'sire' (Note that this does 8370 * not apply to the conn_nexthop_set case) 8371 * 2. The cache ire of the gateway 'ire' 8372 * 3. The interface ire 'ipif_ire' 8373 * 8374 * We have (1) and (2). We lookup (3) below. 8375 * 8376 * If there is no interface route to the gateway, 8377 * it is a race condition, where we found the cache 8378 * but the interface route has been deleted. 8379 */ 8380 if (ip_nexthop) { 8381 ipif_ire = ire_ihandle_lookup_onlink(ire); 8382 } else { 8383 ipif_ire = 8384 ire_ihandle_lookup_offlink(ire, sire); 8385 } 8386 if (ipif_ire == NULL) { 8387 ip1dbg(("ip_newroute: " 8388 "ire_ihandle_lookup_offlink failed\n")); 8389 goto icmp_err_ret; 8390 } 8391 8392 /* 8393 * Check cached gateway IRE for any security 8394 * attributes; if found, associate the gateway 8395 * credentials group to the destination IRE. 8396 */ 8397 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8398 mutex_enter(&attrp->igsa_lock); 8399 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8400 GCGRP_REFHOLD(gcgrp); 8401 mutex_exit(&attrp->igsa_lock); 8402 } 8403 8404 /* 8405 * XXX For the source of the resolver mp, 8406 * we are using the same DL_UNITDATA_REQ 8407 * (from save_ire->ire_nce->nce_res_mp) 8408 * though the save_ire is not pointing at the same ill. 8409 * This is incorrect. We need to send it up to the 8410 * resolver to get the right res_mp. For ethernets 8411 * this may be okay (ill_type == DL_ETHER). 8412 */ 8413 8414 ire = ire_create( 8415 (uchar_t *)&dst, /* dest address */ 8416 (uchar_t *)&ip_g_all_ones, /* mask */ 8417 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8418 (uchar_t *)&gw, /* gateway address */ 8419 &save_ire->ire_max_frag, 8420 save_ire->ire_nce, /* src nce */ 8421 dst_ill->ill_rq, /* recv-from queue */ 8422 dst_ill->ill_wq, /* send-to queue */ 8423 IRE_CACHE, /* IRE type */ 8424 src_ipif, 8425 (sire != NULL) ? 8426 sire->ire_mask : 0, /* Parent mask */ 8427 (sire != NULL) ? 8428 sire->ire_phandle : 0, /* Parent handle */ 8429 ipif_ire->ire_ihandle, /* Interface handle */ 8430 (sire != NULL) ? (sire->ire_flags & 8431 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8432 (sire != NULL) ? 8433 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8434 NULL, 8435 gcgrp, 8436 ipst); 8437 8438 if (ire == NULL) { 8439 if (gcgrp != NULL) { 8440 GCGRP_REFRELE(gcgrp); 8441 gcgrp = NULL; 8442 } 8443 ire_refrele(ipif_ire); 8444 ire_refrele(save_ire); 8445 break; 8446 } 8447 8448 /* reference now held by IRE */ 8449 gcgrp = NULL; 8450 8451 ire->ire_marks |= ire_marks; 8452 8453 /* 8454 * Prevent sire and ipif_ire from getting deleted. 8455 * The newly created ire is tied to both of them via 8456 * the phandle and ihandle respectively. 8457 */ 8458 if (sire != NULL) { 8459 IRB_REFHOLD(sire->ire_bucket); 8460 /* Has it been removed already ? */ 8461 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8462 IRB_REFRELE(sire->ire_bucket); 8463 ire_refrele(ipif_ire); 8464 ire_refrele(save_ire); 8465 break; 8466 } 8467 } 8468 8469 IRB_REFHOLD(ipif_ire->ire_bucket); 8470 /* Has it been removed already ? */ 8471 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8472 IRB_REFRELE(ipif_ire->ire_bucket); 8473 if (sire != NULL) 8474 IRB_REFRELE(sire->ire_bucket); 8475 ire_refrele(ipif_ire); 8476 ire_refrele(save_ire); 8477 break; 8478 } 8479 8480 xmit_mp = first_mp; 8481 /* 8482 * In the case of multirouting, a copy 8483 * of the packet is done before its sending. 8484 * The copy is used to attempt another 8485 * route resolution, in a next loop. 8486 */ 8487 if (ire->ire_flags & RTF_MULTIRT) { 8488 copy_mp = copymsg(first_mp); 8489 if (copy_mp != NULL) { 8490 xmit_mp = copy_mp; 8491 MULTIRT_DEBUG_TAG(first_mp); 8492 } 8493 } 8494 ire_add_then_send(q, ire, xmit_mp); 8495 ire_refrele(save_ire); 8496 8497 /* Assert that sire is not deleted yet. */ 8498 if (sire != NULL) { 8499 ASSERT(sire->ire_ptpn != NULL); 8500 IRB_REFRELE(sire->ire_bucket); 8501 } 8502 8503 /* Assert that ipif_ire is not deleted yet. */ 8504 ASSERT(ipif_ire->ire_ptpn != NULL); 8505 IRB_REFRELE(ipif_ire->ire_bucket); 8506 ire_refrele(ipif_ire); 8507 8508 /* 8509 * If copy_mp is not NULL, multirouting was 8510 * requested. We loop to initiate a next 8511 * route resolution attempt, starting from sire. 8512 */ 8513 if (copy_mp != NULL) { 8514 /* 8515 * Search for the next unresolved 8516 * multirt route. 8517 */ 8518 copy_mp = NULL; 8519 ipif_ire = NULL; 8520 ire = NULL; 8521 multirt_resolve_next = B_TRUE; 8522 continue; 8523 } 8524 if (sire != NULL) 8525 ire_refrele(sire); 8526 ipif_refrele(src_ipif); 8527 ill_refrele(dst_ill); 8528 return; 8529 } 8530 case IRE_IF_NORESOLVER: { 8531 8532 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8533 dst_ill->ill_resolver_mp == NULL) { 8534 ip1dbg(("ip_newroute: dst_ill %p " 8535 "for IRE_IF_NORESOLVER ire %p has " 8536 "no ill_resolver_mp\n", 8537 (void *)dst_ill, (void *)ire)); 8538 break; 8539 } 8540 8541 /* 8542 * TSol note: We are creating the ire cache for the 8543 * destination 'dst'. If 'dst' is offlink, going 8544 * through the first hop 'gw', the security attributes 8545 * of 'dst' must be set to point to the gateway 8546 * credentials of gateway 'gw'. If 'dst' is onlink, it 8547 * is possible that 'dst' is a potential gateway that is 8548 * referenced by some route that has some security 8549 * attributes. Thus in the former case, we need to do a 8550 * gcgrp_lookup of 'gw' while in the latter case we 8551 * need to do gcgrp_lookup of 'dst' itself. 8552 */ 8553 ga.ga_af = AF_INET; 8554 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8555 &ga.ga_addr); 8556 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8557 8558 ire = ire_create( 8559 (uchar_t *)&dst, /* dest address */ 8560 (uchar_t *)&ip_g_all_ones, /* mask */ 8561 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8562 (uchar_t *)&gw, /* gateway address */ 8563 &save_ire->ire_max_frag, 8564 NULL, /* no src nce */ 8565 dst_ill->ill_rq, /* recv-from queue */ 8566 dst_ill->ill_wq, /* send-to queue */ 8567 IRE_CACHE, 8568 src_ipif, 8569 save_ire->ire_mask, /* Parent mask */ 8570 (sire != NULL) ? /* Parent handle */ 8571 sire->ire_phandle : 0, 8572 save_ire->ire_ihandle, /* Interface handle */ 8573 (sire != NULL) ? sire->ire_flags & 8574 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8575 &(save_ire->ire_uinfo), 8576 NULL, 8577 gcgrp, 8578 ipst); 8579 8580 if (ire == NULL) { 8581 if (gcgrp != NULL) { 8582 GCGRP_REFRELE(gcgrp); 8583 gcgrp = NULL; 8584 } 8585 ire_refrele(save_ire); 8586 break; 8587 } 8588 8589 /* reference now held by IRE */ 8590 gcgrp = NULL; 8591 8592 ire->ire_marks |= ire_marks; 8593 8594 /* Prevent save_ire from getting deleted */ 8595 IRB_REFHOLD(save_ire->ire_bucket); 8596 /* Has it been removed already ? */ 8597 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8598 IRB_REFRELE(save_ire->ire_bucket); 8599 ire_refrele(save_ire); 8600 break; 8601 } 8602 8603 /* 8604 * In the case of multirouting, a copy 8605 * of the packet is made before it is sent. 8606 * The copy is used in the next 8607 * loop to attempt another resolution. 8608 */ 8609 xmit_mp = first_mp; 8610 if ((sire != NULL) && 8611 (sire->ire_flags & RTF_MULTIRT)) { 8612 copy_mp = copymsg(first_mp); 8613 if (copy_mp != NULL) { 8614 xmit_mp = copy_mp; 8615 MULTIRT_DEBUG_TAG(first_mp); 8616 } 8617 } 8618 ire_add_then_send(q, ire, xmit_mp); 8619 8620 /* Assert that it is not deleted yet. */ 8621 ASSERT(save_ire->ire_ptpn != NULL); 8622 IRB_REFRELE(save_ire->ire_bucket); 8623 ire_refrele(save_ire); 8624 8625 if (copy_mp != NULL) { 8626 /* 8627 * If we found a (no)resolver, we ignore any 8628 * trailing top priority IRE_CACHE in further 8629 * loops. This ensures that we do not omit any 8630 * (no)resolver. 8631 * This IRE_CACHE, if any, will be processed 8632 * by another thread entering ip_newroute(). 8633 * IRE_CACHE entries, if any, will be processed 8634 * by another thread entering ip_newroute(), 8635 * (upon resolver response, for instance). 8636 * This aims to force parallel multirt 8637 * resolutions as soon as a packet must be sent. 8638 * In the best case, after the tx of only one 8639 * packet, all reachable routes are resolved. 8640 * Otherwise, the resolution of all RTF_MULTIRT 8641 * routes would require several emissions. 8642 */ 8643 multirt_flags &= ~MULTIRT_CACHEGW; 8644 8645 /* 8646 * Search for the next unresolved multirt 8647 * route. 8648 */ 8649 copy_mp = NULL; 8650 save_ire = NULL; 8651 ire = NULL; 8652 multirt_resolve_next = B_TRUE; 8653 continue; 8654 } 8655 8656 /* 8657 * Don't need sire anymore 8658 */ 8659 if (sire != NULL) 8660 ire_refrele(sire); 8661 8662 ipif_refrele(src_ipif); 8663 ill_refrele(dst_ill); 8664 return; 8665 } 8666 case IRE_IF_RESOLVER: 8667 /* 8668 * We can't build an IRE_CACHE yet, but at least we 8669 * found a resolver that can help. 8670 */ 8671 res_mp = dst_ill->ill_resolver_mp; 8672 if (!OK_RESOLVER_MP(res_mp)) 8673 break; 8674 8675 /* 8676 * To be at this point in the code with a non-zero gw 8677 * means that dst is reachable through a gateway that 8678 * we have never resolved. By changing dst to the gw 8679 * addr we resolve the gateway first. 8680 * When ire_add_then_send() tries to put the IP dg 8681 * to dst, it will reenter ip_newroute() at which 8682 * time we will find the IRE_CACHE for the gw and 8683 * create another IRE_CACHE in case IRE_CACHE above. 8684 */ 8685 if (gw != INADDR_ANY) { 8686 /* 8687 * The source ipif that was determined above was 8688 * relative to the destination address, not the 8689 * gateway's. If src_ipif was not taken out of 8690 * the IRE_IF_RESOLVER entry, we'll need to call 8691 * ipif_select_source() again. 8692 */ 8693 if (src_ipif != ire->ire_ipif) { 8694 ipif_refrele(src_ipif); 8695 src_ipif = ipif_select_source(dst_ill, 8696 gw, zoneid); 8697 if (src_ipif == NULL) { 8698 if (ip_debug > 2) { 8699 pr_addr_dbg( 8700 "ip_newroute: no " 8701 "src for gw %s ", 8702 AF_INET, &gw); 8703 printf("through " 8704 "interface %s\n", 8705 dst_ill->ill_name); 8706 } 8707 goto icmp_err_ret; 8708 } 8709 } 8710 save_dst = dst; 8711 dst = gw; 8712 gw = INADDR_ANY; 8713 } 8714 8715 /* 8716 * We obtain a partial IRE_CACHE which we will pass 8717 * along with the resolver query. When the response 8718 * comes back it will be there ready for us to add. 8719 * The ire_max_frag is atomically set under the 8720 * irebucket lock in ire_add_v[46]. 8721 */ 8722 8723 ire = ire_create_mp( 8724 (uchar_t *)&dst, /* dest address */ 8725 (uchar_t *)&ip_g_all_ones, /* mask */ 8726 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8727 (uchar_t *)&gw, /* gateway address */ 8728 NULL, /* ire_max_frag */ 8729 NULL, /* no src nce */ 8730 dst_ill->ill_rq, /* recv-from queue */ 8731 dst_ill->ill_wq, /* send-to queue */ 8732 IRE_CACHE, 8733 src_ipif, /* Interface ipif */ 8734 save_ire->ire_mask, /* Parent mask */ 8735 0, 8736 save_ire->ire_ihandle, /* Interface handle */ 8737 0, /* flags if any */ 8738 &(save_ire->ire_uinfo), 8739 NULL, 8740 NULL, 8741 ipst); 8742 8743 if (ire == NULL) { 8744 ire_refrele(save_ire); 8745 break; 8746 } 8747 8748 if ((sire != NULL) && 8749 (sire->ire_flags & RTF_MULTIRT)) { 8750 copy_mp = copymsg(first_mp); 8751 if (copy_mp != NULL) 8752 MULTIRT_DEBUG_TAG(copy_mp); 8753 } 8754 8755 ire->ire_marks |= ire_marks; 8756 8757 /* 8758 * Construct message chain for the resolver 8759 * of the form: 8760 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8761 * Packet could contain a IPSEC_OUT mp. 8762 * 8763 * NOTE : ire will be added later when the response 8764 * comes back from ARP. If the response does not 8765 * come back, ARP frees the packet. For this reason, 8766 * we can't REFHOLD the bucket of save_ire to prevent 8767 * deletions. We may not be able to REFRELE the bucket 8768 * if the response never comes back. Thus, before 8769 * adding the ire, ire_add_v4 will make sure that the 8770 * interface route does not get deleted. This is the 8771 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8772 * where we can always prevent deletions because of 8773 * the synchronous nature of adding IRES i.e 8774 * ire_add_then_send is called after creating the IRE. 8775 */ 8776 ASSERT(ire->ire_mp != NULL); 8777 ire->ire_mp->b_cont = first_mp; 8778 /* Have saved_mp handy, for cleanup if canput fails */ 8779 saved_mp = mp; 8780 mp = copyb(res_mp); 8781 if (mp == NULL) { 8782 /* Prepare for cleanup */ 8783 mp = saved_mp; /* pkt */ 8784 ire_delete(ire); /* ire_mp */ 8785 ire = NULL; 8786 ire_refrele(save_ire); 8787 if (copy_mp != NULL) { 8788 MULTIRT_DEBUG_UNTAG(copy_mp); 8789 freemsg(copy_mp); 8790 copy_mp = NULL; 8791 } 8792 break; 8793 } 8794 linkb(mp, ire->ire_mp); 8795 8796 /* 8797 * Fill in the source and dest addrs for the resolver. 8798 * NOTE: this depends on memory layouts imposed by 8799 * ill_init(). 8800 */ 8801 areq = (areq_t *)mp->b_rptr; 8802 addrp = (ipaddr_t *)((char *)areq + 8803 areq->areq_sender_addr_offset); 8804 if (do_attach_ill) { 8805 /* 8806 * This is bind to no failover case. 8807 * arp packet also must go out on attach_ill. 8808 */ 8809 ASSERT(ipha->ipha_src != NULL); 8810 *addrp = ipha->ipha_src; 8811 } else { 8812 *addrp = save_ire->ire_src_addr; 8813 } 8814 8815 ire_refrele(save_ire); 8816 addrp = (ipaddr_t *)((char *)areq + 8817 areq->areq_target_addr_offset); 8818 *addrp = dst; 8819 /* Up to the resolver. */ 8820 if (canputnext(dst_ill->ill_rq) && 8821 !(dst_ill->ill_arp_closing)) { 8822 putnext(dst_ill->ill_rq, mp); 8823 ire = NULL; 8824 if (copy_mp != NULL) { 8825 /* 8826 * If we found a resolver, we ignore 8827 * any trailing top priority IRE_CACHE 8828 * in the further loops. This ensures 8829 * that we do not omit any resolver. 8830 * IRE_CACHE entries, if any, will be 8831 * processed next time we enter 8832 * ip_newroute(). 8833 */ 8834 multirt_flags &= ~MULTIRT_CACHEGW; 8835 /* 8836 * Search for the next unresolved 8837 * multirt route. 8838 */ 8839 first_mp = copy_mp; 8840 copy_mp = NULL; 8841 /* Prepare the next resolution loop. */ 8842 mp = first_mp; 8843 EXTRACT_PKT_MP(mp, first_mp, 8844 mctl_present); 8845 if (mctl_present) 8846 io = (ipsec_out_t *) 8847 first_mp->b_rptr; 8848 ipha = (ipha_t *)mp->b_rptr; 8849 8850 ASSERT(sire != NULL); 8851 8852 dst = save_dst; 8853 multirt_resolve_next = B_TRUE; 8854 continue; 8855 } 8856 8857 if (sire != NULL) 8858 ire_refrele(sire); 8859 8860 /* 8861 * The response will come back in ip_wput 8862 * with db_type IRE_DB_TYPE. 8863 */ 8864 ipif_refrele(src_ipif); 8865 ill_refrele(dst_ill); 8866 return; 8867 } else { 8868 /* Prepare for cleanup */ 8869 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8870 mp); 8871 mp->b_cont = NULL; 8872 freeb(mp); /* areq */ 8873 /* 8874 * this is an ire that is not added to the 8875 * cache. ire_freemblk will handle the release 8876 * of any resources associated with the ire. 8877 */ 8878 ire_delete(ire); /* ire_mp */ 8879 mp = saved_mp; /* pkt */ 8880 ire = NULL; 8881 if (copy_mp != NULL) { 8882 MULTIRT_DEBUG_UNTAG(copy_mp); 8883 freemsg(copy_mp); 8884 copy_mp = NULL; 8885 } 8886 break; 8887 } 8888 default: 8889 break; 8890 } 8891 } while (multirt_resolve_next); 8892 8893 ip1dbg(("ip_newroute: dropped\n")); 8894 /* Did this packet originate externally? */ 8895 if (mp->b_prev) { 8896 mp->b_next = NULL; 8897 mp->b_prev = NULL; 8898 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8899 } else { 8900 if (dst_ill != NULL) { 8901 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8902 } else { 8903 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8904 } 8905 } 8906 ASSERT(copy_mp == NULL); 8907 MULTIRT_DEBUG_UNTAG(first_mp); 8908 freemsg(first_mp); 8909 if (ire != NULL) 8910 ire_refrele(ire); 8911 if (sire != NULL) 8912 ire_refrele(sire); 8913 if (src_ipif != NULL) 8914 ipif_refrele(src_ipif); 8915 if (dst_ill != NULL) 8916 ill_refrele(dst_ill); 8917 return; 8918 8919 icmp_err_ret: 8920 ip1dbg(("ip_newroute: no route\n")); 8921 if (src_ipif != NULL) 8922 ipif_refrele(src_ipif); 8923 if (dst_ill != NULL) 8924 ill_refrele(dst_ill); 8925 if (sire != NULL) 8926 ire_refrele(sire); 8927 /* Did this packet originate externally? */ 8928 if (mp->b_prev) { 8929 mp->b_next = NULL; 8930 mp->b_prev = NULL; 8931 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8932 q = WR(q); 8933 } else { 8934 /* 8935 * There is no outgoing ill, so just increment the 8936 * system MIB. 8937 */ 8938 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8939 /* 8940 * Since ip_wput() isn't close to finished, we fill 8941 * in enough of the header for credible error reporting. 8942 */ 8943 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8944 /* Failed */ 8945 MULTIRT_DEBUG_UNTAG(first_mp); 8946 freemsg(first_mp); 8947 if (ire != NULL) 8948 ire_refrele(ire); 8949 return; 8950 } 8951 } 8952 8953 /* 8954 * At this point we will have ire only if RTF_BLACKHOLE 8955 * or RTF_REJECT flags are set on the IRE. It will not 8956 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8957 */ 8958 if (ire != NULL) { 8959 if (ire->ire_flags & RTF_BLACKHOLE) { 8960 ire_refrele(ire); 8961 MULTIRT_DEBUG_UNTAG(first_mp); 8962 freemsg(first_mp); 8963 return; 8964 } 8965 ire_refrele(ire); 8966 } 8967 if (ip_source_routed(ipha, ipst)) { 8968 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8969 zoneid, ipst); 8970 return; 8971 } 8972 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8973 } 8974 8975 ip_opt_info_t zero_info; 8976 8977 /* 8978 * IPv4 - 8979 * ip_newroute_ipif is called by ip_wput_multicast and 8980 * ip_rput_forward_multicast whenever we need to send 8981 * out a packet to a destination address for which we do not have specific 8982 * routing information. It is used when the packet will be sent out 8983 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8984 * socket option is set or icmp error message wants to go out on a particular 8985 * interface for a unicast packet. 8986 * 8987 * In most cases, the destination address is resolved thanks to the ipif 8988 * intrinsic resolver. However, there are some cases where the call to 8989 * ip_newroute_ipif must take into account the potential presence of 8990 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8991 * that uses the interface. This is specified through flags, 8992 * which can be a combination of: 8993 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8994 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8995 * and flags. Additionally, the packet source address has to be set to 8996 * the specified address. The caller is thus expected to set this flag 8997 * if the packet has no specific source address yet. 8998 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8999 * flag, the resulting ire will inherit the flag. All unresolved routes 9000 * to the destination must be explored in the same call to 9001 * ip_newroute_ipif(). 9002 */ 9003 static void 9004 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9005 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9006 { 9007 areq_t *areq; 9008 ire_t *ire = NULL; 9009 mblk_t *res_mp; 9010 ipaddr_t *addrp; 9011 mblk_t *first_mp; 9012 ire_t *save_ire = NULL; 9013 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9014 ipif_t *src_ipif = NULL; 9015 ushort_t ire_marks = 0; 9016 ill_t *dst_ill = NULL; 9017 boolean_t mctl_present; 9018 ipsec_out_t *io; 9019 ipha_t *ipha; 9020 int ihandle = 0; 9021 mblk_t *saved_mp; 9022 ire_t *fire = NULL; 9023 mblk_t *copy_mp = NULL; 9024 boolean_t multirt_resolve_next; 9025 boolean_t unspec_src; 9026 ipaddr_t ipha_dst; 9027 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9028 9029 /* 9030 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9031 * here for uniformity 9032 */ 9033 ipif_refhold(ipif); 9034 9035 /* 9036 * This loop is run only once in most cases. 9037 * We loop to resolve further routes only when the destination 9038 * can be reached through multiple RTF_MULTIRT-flagged ires. 9039 */ 9040 do { 9041 if (dst_ill != NULL) { 9042 ill_refrele(dst_ill); 9043 dst_ill = NULL; 9044 } 9045 if (src_ipif != NULL) { 9046 ipif_refrele(src_ipif); 9047 src_ipif = NULL; 9048 } 9049 multirt_resolve_next = B_FALSE; 9050 9051 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9052 ipif->ipif_ill->ill_name)); 9053 9054 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9055 if (mctl_present) 9056 io = (ipsec_out_t *)first_mp->b_rptr; 9057 9058 ipha = (ipha_t *)mp->b_rptr; 9059 9060 /* 9061 * Save the packet destination address, we may need it after 9062 * the packet has been consumed. 9063 */ 9064 ipha_dst = ipha->ipha_dst; 9065 9066 /* 9067 * If the interface is a pt-pt interface we look for an 9068 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9069 * local_address and the pt-pt destination address. Otherwise 9070 * we just match the local address. 9071 * NOTE: dst could be different than ipha->ipha_dst in case 9072 * of sending igmp multicast packets over a point-to-point 9073 * connection. 9074 * Thus we must be careful enough to check ipha_dst to be a 9075 * multicast address, otherwise it will take xmit_if path for 9076 * multicast packets resulting into kernel stack overflow by 9077 * repeated calls to ip_newroute_ipif from ire_send(). 9078 */ 9079 if (CLASSD(ipha_dst) && 9080 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9081 goto err_ret; 9082 } 9083 9084 /* 9085 * We check if an IRE_OFFSUBNET for the addr that goes through 9086 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9087 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9088 * propagate its flags to the new ire. 9089 */ 9090 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9091 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9092 ip2dbg(("ip_newroute_ipif: " 9093 "ipif_lookup_multi_ire(" 9094 "ipif %p, dst %08x) = fire %p\n", 9095 (void *)ipif, ntohl(dst), (void *)fire)); 9096 } 9097 9098 if (mctl_present && io->ipsec_out_attach_if) { 9099 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9100 io->ipsec_out_ill_index, B_FALSE, ipst); 9101 9102 /* Failure case frees things for us. */ 9103 if (attach_ill == NULL) { 9104 ipif_refrele(ipif); 9105 if (fire != NULL) 9106 ire_refrele(fire); 9107 return; 9108 } 9109 9110 /* 9111 * Check if we need an ire that will not be 9112 * looked up by anybody else i.e. HIDDEN. 9113 */ 9114 if (ill_is_probeonly(attach_ill)) { 9115 ire_marks = IRE_MARK_HIDDEN; 9116 } 9117 /* 9118 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9119 * case. 9120 */ 9121 dst_ill = ipif->ipif_ill; 9122 /* attach_ill has been refheld by ip_grab_attach_ill */ 9123 ASSERT(dst_ill == attach_ill); 9124 } else { 9125 /* 9126 * If the interface belongs to an interface group, 9127 * make sure the next possible interface in the group 9128 * is used. This encourages load spreading among 9129 * peers in an interface group. 9130 * Note: load spreading is disabled for RTF_MULTIRT 9131 * routes. 9132 */ 9133 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9134 (fire->ire_flags & RTF_MULTIRT)) { 9135 /* 9136 * Don't perform outbound load spreading 9137 * in the case of an RTF_MULTIRT issued route, 9138 * we actually typically want to replicate 9139 * outgoing packets through particular 9140 * interfaces. 9141 */ 9142 dst_ill = ipif->ipif_ill; 9143 ill_refhold(dst_ill); 9144 } else { 9145 dst_ill = ip_newroute_get_dst_ill( 9146 ipif->ipif_ill); 9147 } 9148 if (dst_ill == NULL) { 9149 if (ip_debug > 2) { 9150 pr_addr_dbg("ip_newroute_ipif: " 9151 "no dst ill for dst %s\n", 9152 AF_INET, &dst); 9153 } 9154 goto err_ret; 9155 } 9156 } 9157 9158 /* 9159 * Pick a source address preferring non-deprecated ones. 9160 * Unlike ip_newroute, we don't do any source address 9161 * selection here since for multicast it really does not help 9162 * in inbound load spreading as in the unicast case. 9163 */ 9164 if ((flags & RTF_SETSRC) && (fire != NULL) && 9165 (fire->ire_flags & RTF_SETSRC)) { 9166 /* 9167 * As requested by flags, an IRE_OFFSUBNET was looked up 9168 * on that interface. This ire has RTF_SETSRC flag, so 9169 * the source address of the packet must be changed. 9170 * Check that the ipif matching the requested source 9171 * address still exists. 9172 */ 9173 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9174 zoneid, NULL, NULL, NULL, NULL, ipst); 9175 } 9176 9177 unspec_src = (connp != NULL && connp->conn_unspec_src); 9178 9179 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9180 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9181 (connp != NULL && ipif->ipif_zoneid != zoneid && 9182 ipif->ipif_zoneid != ALL_ZONES)) && 9183 (src_ipif == NULL) && 9184 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9185 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9186 if (src_ipif == NULL) { 9187 if (ip_debug > 2) { 9188 /* ip1dbg */ 9189 pr_addr_dbg("ip_newroute_ipif: " 9190 "no src for dst %s", 9191 AF_INET, &dst); 9192 } 9193 ip1dbg((" through interface %s\n", 9194 dst_ill->ill_name)); 9195 goto err_ret; 9196 } 9197 ipif_refrele(ipif); 9198 ipif = src_ipif; 9199 ipif_refhold(ipif); 9200 } 9201 if (src_ipif == NULL) { 9202 src_ipif = ipif; 9203 ipif_refhold(src_ipif); 9204 } 9205 9206 /* 9207 * Assign a source address while we have the conn. 9208 * We can't have ip_wput_ire pick a source address when the 9209 * packet returns from arp since conn_unspec_src might be set 9210 * and we lose the conn when going through arp. 9211 */ 9212 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9213 ipha->ipha_src = src_ipif->ipif_src_addr; 9214 9215 /* 9216 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9217 * that the outgoing interface does not have an interface ire. 9218 */ 9219 if (CLASSD(ipha_dst) && (connp == NULL || 9220 connp->conn_outgoing_ill == NULL) && 9221 infop->ip_opt_ill_index == 0) { 9222 /* ipif_to_ire returns an held ire */ 9223 ire = ipif_to_ire(ipif); 9224 if (ire == NULL) 9225 goto err_ret; 9226 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9227 goto err_ret; 9228 /* 9229 * ihandle is needed when the ire is added to 9230 * cache table. 9231 */ 9232 save_ire = ire; 9233 ihandle = save_ire->ire_ihandle; 9234 9235 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9236 "flags %04x\n", 9237 (void *)ire, (void *)ipif, flags)); 9238 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9239 (fire->ire_flags & RTF_MULTIRT)) { 9240 /* 9241 * As requested by flags, an IRE_OFFSUBNET was 9242 * looked up on that interface. This ire has 9243 * RTF_MULTIRT flag, so the resolution loop will 9244 * be re-entered to resolve additional routes on 9245 * other interfaces. For that purpose, a copy of 9246 * the packet is performed at this point. 9247 */ 9248 fire->ire_last_used_time = lbolt; 9249 copy_mp = copymsg(first_mp); 9250 if (copy_mp) { 9251 MULTIRT_DEBUG_TAG(copy_mp); 9252 } 9253 } 9254 if ((flags & RTF_SETSRC) && (fire != NULL) && 9255 (fire->ire_flags & RTF_SETSRC)) { 9256 /* 9257 * As requested by flags, an IRE_OFFSUBET was 9258 * looked up on that interface. This ire has 9259 * RTF_SETSRC flag, so the source address of the 9260 * packet must be changed. 9261 */ 9262 ipha->ipha_src = fire->ire_src_addr; 9263 } 9264 } else { 9265 ASSERT((connp == NULL) || 9266 (connp->conn_outgoing_ill != NULL) || 9267 (connp->conn_dontroute) || 9268 infop->ip_opt_ill_index != 0); 9269 /* 9270 * The only ways we can come here are: 9271 * 1) IP_BOUND_IF socket option is set 9272 * 2) SO_DONTROUTE socket option is set 9273 * 3) IP_PKTINFO option is passed in as ancillary data. 9274 * In all cases, the new ire will not be added 9275 * into cache table. 9276 */ 9277 ire_marks |= IRE_MARK_NOADD; 9278 } 9279 9280 switch (ipif->ipif_net_type) { 9281 case IRE_IF_NORESOLVER: { 9282 /* We have what we need to build an IRE_CACHE. */ 9283 9284 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9285 (dst_ill->ill_resolver_mp == NULL)) { 9286 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9287 "for IRE_IF_NORESOLVER ire %p has " 9288 "no ill_resolver_mp\n", 9289 (void *)dst_ill, (void *)ire)); 9290 break; 9291 } 9292 9293 /* 9294 * The new ire inherits the IRE_OFFSUBNET flags 9295 * and source address, if this was requested. 9296 */ 9297 ire = ire_create( 9298 (uchar_t *)&dst, /* dest address */ 9299 (uchar_t *)&ip_g_all_ones, /* mask */ 9300 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9301 NULL, /* gateway address */ 9302 &ipif->ipif_mtu, 9303 NULL, /* no src nce */ 9304 dst_ill->ill_rq, /* recv-from queue */ 9305 dst_ill->ill_wq, /* send-to queue */ 9306 IRE_CACHE, 9307 src_ipif, 9308 (save_ire != NULL ? save_ire->ire_mask : 0), 9309 (fire != NULL) ? /* Parent handle */ 9310 fire->ire_phandle : 0, 9311 ihandle, /* Interface handle */ 9312 (fire != NULL) ? 9313 (fire->ire_flags & 9314 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9315 (save_ire == NULL ? &ire_uinfo_null : 9316 &save_ire->ire_uinfo), 9317 NULL, 9318 NULL, 9319 ipst); 9320 9321 if (ire == NULL) { 9322 if (save_ire != NULL) 9323 ire_refrele(save_ire); 9324 break; 9325 } 9326 9327 ire->ire_marks |= ire_marks; 9328 9329 /* 9330 * If IRE_MARK_NOADD is set then we need to convert 9331 * the max_fragp to a useable value now. This is 9332 * normally done in ire_add_v[46]. We also need to 9333 * associate the ire with an nce (normally would be 9334 * done in ip_wput_nondata()). 9335 * 9336 * Note that IRE_MARK_NOADD packets created here 9337 * do not have a non-null ire_mp pointer. The null 9338 * value of ire_bucket indicates that they were 9339 * never added. 9340 */ 9341 if (ire->ire_marks & IRE_MARK_NOADD) { 9342 uint_t max_frag; 9343 9344 max_frag = *ire->ire_max_fragp; 9345 ire->ire_max_fragp = NULL; 9346 ire->ire_max_frag = max_frag; 9347 9348 if ((ire->ire_nce = ndp_lookup_v4( 9349 ire_to_ill(ire), 9350 (ire->ire_gateway_addr != INADDR_ANY ? 9351 &ire->ire_gateway_addr : &ire->ire_addr), 9352 B_FALSE)) == NULL) { 9353 if (save_ire != NULL) 9354 ire_refrele(save_ire); 9355 break; 9356 } 9357 ASSERT(ire->ire_nce->nce_state == 9358 ND_REACHABLE); 9359 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9360 } 9361 9362 /* Prevent save_ire from getting deleted */ 9363 if (save_ire != NULL) { 9364 IRB_REFHOLD(save_ire->ire_bucket); 9365 /* Has it been removed already ? */ 9366 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9367 IRB_REFRELE(save_ire->ire_bucket); 9368 ire_refrele(save_ire); 9369 break; 9370 } 9371 } 9372 9373 ire_add_then_send(q, ire, first_mp); 9374 9375 /* Assert that save_ire is not deleted yet. */ 9376 if (save_ire != NULL) { 9377 ASSERT(save_ire->ire_ptpn != NULL); 9378 IRB_REFRELE(save_ire->ire_bucket); 9379 ire_refrele(save_ire); 9380 save_ire = NULL; 9381 } 9382 if (fire != NULL) { 9383 ire_refrele(fire); 9384 fire = NULL; 9385 } 9386 9387 /* 9388 * the resolution loop is re-entered if this 9389 * was requested through flags and if we 9390 * actually are in a multirouting case. 9391 */ 9392 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9393 boolean_t need_resolve = 9394 ire_multirt_need_resolve(ipha_dst, 9395 MBLK_GETLABEL(copy_mp), ipst); 9396 if (!need_resolve) { 9397 MULTIRT_DEBUG_UNTAG(copy_mp); 9398 freemsg(copy_mp); 9399 copy_mp = NULL; 9400 } else { 9401 /* 9402 * ipif_lookup_group() calls 9403 * ire_lookup_multi() that uses 9404 * ire_ftable_lookup() to find 9405 * an IRE_INTERFACE for the group. 9406 * In the multirt case, 9407 * ire_lookup_multi() then invokes 9408 * ire_multirt_lookup() to find 9409 * the next resolvable ire. 9410 * As a result, we obtain an new 9411 * interface, derived from the 9412 * next ire. 9413 */ 9414 ipif_refrele(ipif); 9415 ipif = ipif_lookup_group(ipha_dst, 9416 zoneid, ipst); 9417 ip2dbg(("ip_newroute_ipif: " 9418 "multirt dst %08x, ipif %p\n", 9419 htonl(dst), (void *)ipif)); 9420 if (ipif != NULL) { 9421 mp = copy_mp; 9422 copy_mp = NULL; 9423 multirt_resolve_next = B_TRUE; 9424 continue; 9425 } else { 9426 freemsg(copy_mp); 9427 } 9428 } 9429 } 9430 if (ipif != NULL) 9431 ipif_refrele(ipif); 9432 ill_refrele(dst_ill); 9433 ipif_refrele(src_ipif); 9434 return; 9435 } 9436 case IRE_IF_RESOLVER: 9437 /* 9438 * We can't build an IRE_CACHE yet, but at least 9439 * we found a resolver that can help. 9440 */ 9441 res_mp = dst_ill->ill_resolver_mp; 9442 if (!OK_RESOLVER_MP(res_mp)) 9443 break; 9444 9445 /* 9446 * We obtain a partial IRE_CACHE which we will pass 9447 * along with the resolver query. When the response 9448 * comes back it will be there ready for us to add. 9449 * The new ire inherits the IRE_OFFSUBNET flags 9450 * and source address, if this was requested. 9451 * The ire_max_frag is atomically set under the 9452 * irebucket lock in ire_add_v[46]. Only in the 9453 * case of IRE_MARK_NOADD, we set it here itself. 9454 */ 9455 ire = ire_create_mp( 9456 (uchar_t *)&dst, /* dest address */ 9457 (uchar_t *)&ip_g_all_ones, /* mask */ 9458 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9459 NULL, /* gateway address */ 9460 (ire_marks & IRE_MARK_NOADD) ? 9461 ipif->ipif_mtu : 0, /* max_frag */ 9462 NULL, /* no src nce */ 9463 dst_ill->ill_rq, /* recv-from queue */ 9464 dst_ill->ill_wq, /* send-to queue */ 9465 IRE_CACHE, 9466 src_ipif, 9467 (save_ire != NULL ? save_ire->ire_mask : 0), 9468 (fire != NULL) ? /* Parent handle */ 9469 fire->ire_phandle : 0, 9470 ihandle, /* Interface handle */ 9471 (fire != NULL) ? /* flags if any */ 9472 (fire->ire_flags & 9473 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9474 (save_ire == NULL ? &ire_uinfo_null : 9475 &save_ire->ire_uinfo), 9476 NULL, 9477 NULL, 9478 ipst); 9479 9480 if (save_ire != NULL) { 9481 ire_refrele(save_ire); 9482 save_ire = NULL; 9483 } 9484 if (ire == NULL) 9485 break; 9486 9487 ire->ire_marks |= ire_marks; 9488 /* 9489 * Construct message chain for the resolver of the 9490 * form: 9491 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9492 * 9493 * NOTE : ire will be added later when the response 9494 * comes back from ARP. If the response does not 9495 * come back, ARP frees the packet. For this reason, 9496 * we can't REFHOLD the bucket of save_ire to prevent 9497 * deletions. We may not be able to REFRELE the 9498 * bucket if the response never comes back. 9499 * Thus, before adding the ire, ire_add_v4 will make 9500 * sure that the interface route does not get deleted. 9501 * This is the only case unlike ip_newroute_v6, 9502 * ip_newroute_ipif_v6 where we can always prevent 9503 * deletions because ire_add_then_send is called after 9504 * creating the IRE. 9505 * If IRE_MARK_NOADD is set, then ire_add_then_send 9506 * does not add this IRE into the IRE CACHE. 9507 */ 9508 ASSERT(ire->ire_mp != NULL); 9509 ire->ire_mp->b_cont = first_mp; 9510 /* Have saved_mp handy, for cleanup if canput fails */ 9511 saved_mp = mp; 9512 mp = copyb(res_mp); 9513 if (mp == NULL) { 9514 /* Prepare for cleanup */ 9515 mp = saved_mp; /* pkt */ 9516 ire_delete(ire); /* ire_mp */ 9517 ire = NULL; 9518 if (copy_mp != NULL) { 9519 MULTIRT_DEBUG_UNTAG(copy_mp); 9520 freemsg(copy_mp); 9521 copy_mp = NULL; 9522 } 9523 break; 9524 } 9525 linkb(mp, ire->ire_mp); 9526 9527 /* 9528 * Fill in the source and dest addrs for the resolver. 9529 * NOTE: this depends on memory layouts imposed by 9530 * ill_init(). 9531 */ 9532 areq = (areq_t *)mp->b_rptr; 9533 addrp = (ipaddr_t *)((char *)areq + 9534 areq->areq_sender_addr_offset); 9535 *addrp = ire->ire_src_addr; 9536 addrp = (ipaddr_t *)((char *)areq + 9537 areq->areq_target_addr_offset); 9538 *addrp = dst; 9539 /* Up to the resolver. */ 9540 if (canputnext(dst_ill->ill_rq) && 9541 !(dst_ill->ill_arp_closing)) { 9542 putnext(dst_ill->ill_rq, mp); 9543 /* 9544 * The response will come back in ip_wput 9545 * with db_type IRE_DB_TYPE. 9546 */ 9547 } else { 9548 mp->b_cont = NULL; 9549 freeb(mp); /* areq */ 9550 ire_delete(ire); /* ire_mp */ 9551 saved_mp->b_next = NULL; 9552 saved_mp->b_prev = NULL; 9553 freemsg(first_mp); /* pkt */ 9554 ip2dbg(("ip_newroute_ipif: dropped\n")); 9555 } 9556 9557 if (fire != NULL) { 9558 ire_refrele(fire); 9559 fire = NULL; 9560 } 9561 9562 9563 /* 9564 * The resolution loop is re-entered if this was 9565 * requested through flags and we actually are 9566 * in a multirouting case. 9567 */ 9568 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9569 boolean_t need_resolve = 9570 ire_multirt_need_resolve(ipha_dst, 9571 MBLK_GETLABEL(copy_mp), ipst); 9572 if (!need_resolve) { 9573 MULTIRT_DEBUG_UNTAG(copy_mp); 9574 freemsg(copy_mp); 9575 copy_mp = NULL; 9576 } else { 9577 /* 9578 * ipif_lookup_group() calls 9579 * ire_lookup_multi() that uses 9580 * ire_ftable_lookup() to find 9581 * an IRE_INTERFACE for the group. 9582 * In the multirt case, 9583 * ire_lookup_multi() then invokes 9584 * ire_multirt_lookup() to find 9585 * the next resolvable ire. 9586 * As a result, we obtain an new 9587 * interface, derived from the 9588 * next ire. 9589 */ 9590 ipif_refrele(ipif); 9591 ipif = ipif_lookup_group(ipha_dst, 9592 zoneid, ipst); 9593 if (ipif != NULL) { 9594 mp = copy_mp; 9595 copy_mp = NULL; 9596 multirt_resolve_next = B_TRUE; 9597 continue; 9598 } else { 9599 freemsg(copy_mp); 9600 } 9601 } 9602 } 9603 if (ipif != NULL) 9604 ipif_refrele(ipif); 9605 ill_refrele(dst_ill); 9606 ipif_refrele(src_ipif); 9607 return; 9608 default: 9609 break; 9610 } 9611 } while (multirt_resolve_next); 9612 9613 err_ret: 9614 ip2dbg(("ip_newroute_ipif: dropped\n")); 9615 if (fire != NULL) 9616 ire_refrele(fire); 9617 ipif_refrele(ipif); 9618 /* Did this packet originate externally? */ 9619 if (dst_ill != NULL) 9620 ill_refrele(dst_ill); 9621 if (src_ipif != NULL) 9622 ipif_refrele(src_ipif); 9623 if (mp->b_prev || mp->b_next) { 9624 mp->b_next = NULL; 9625 mp->b_prev = NULL; 9626 } else { 9627 /* 9628 * Since ip_wput() isn't close to finished, we fill 9629 * in enough of the header for credible error reporting. 9630 */ 9631 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9632 /* Failed */ 9633 freemsg(first_mp); 9634 if (ire != NULL) 9635 ire_refrele(ire); 9636 return; 9637 } 9638 } 9639 /* 9640 * At this point we will have ire only if RTF_BLACKHOLE 9641 * or RTF_REJECT flags are set on the IRE. It will not 9642 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9643 */ 9644 if (ire != NULL) { 9645 if (ire->ire_flags & RTF_BLACKHOLE) { 9646 ire_refrele(ire); 9647 freemsg(first_mp); 9648 return; 9649 } 9650 ire_refrele(ire); 9651 } 9652 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9653 } 9654 9655 /* Name/Value Table Lookup Routine */ 9656 char * 9657 ip_nv_lookup(nv_t *nv, int value) 9658 { 9659 if (!nv) 9660 return (NULL); 9661 for (; nv->nv_name; nv++) { 9662 if (nv->nv_value == value) 9663 return (nv->nv_name); 9664 } 9665 return ("unknown"); 9666 } 9667 9668 /* 9669 * This is a module open, i.e. this is a control stream for access 9670 * to a DLPI device. We allocate an ill_t as the instance data in 9671 * this case. 9672 */ 9673 int 9674 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9675 { 9676 ill_t *ill; 9677 int err; 9678 zoneid_t zoneid; 9679 netstack_t *ns; 9680 ip_stack_t *ipst; 9681 9682 /* 9683 * Prevent unprivileged processes from pushing IP so that 9684 * they can't send raw IP. 9685 */ 9686 if (secpolicy_net_rawaccess(credp) != 0) 9687 return (EPERM); 9688 9689 ns = netstack_find_by_cred(credp); 9690 ASSERT(ns != NULL); 9691 ipst = ns->netstack_ip; 9692 ASSERT(ipst != NULL); 9693 9694 /* 9695 * For exclusive stacks we set the zoneid to zero 9696 * to make IP operate as if in the global zone. 9697 */ 9698 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9699 zoneid = GLOBAL_ZONEID; 9700 else 9701 zoneid = crgetzoneid(credp); 9702 9703 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9704 q->q_ptr = WR(q)->q_ptr = ill; 9705 ill->ill_ipst = ipst; 9706 ill->ill_zoneid = zoneid; 9707 9708 /* 9709 * ill_init initializes the ill fields and then sends down 9710 * down a DL_INFO_REQ after calling qprocson. 9711 */ 9712 err = ill_init(q, ill); 9713 if (err != 0) { 9714 mi_free(ill); 9715 netstack_rele(ipst->ips_netstack); 9716 q->q_ptr = NULL; 9717 WR(q)->q_ptr = NULL; 9718 return (err); 9719 } 9720 9721 /* ill_init initializes the ipsq marking this thread as writer */ 9722 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9723 /* Wait for the DL_INFO_ACK */ 9724 mutex_enter(&ill->ill_lock); 9725 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9726 /* 9727 * Return value of 0 indicates a pending signal. 9728 */ 9729 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9730 if (err == 0) { 9731 mutex_exit(&ill->ill_lock); 9732 (void) ip_close(q, 0); 9733 return (EINTR); 9734 } 9735 } 9736 mutex_exit(&ill->ill_lock); 9737 9738 /* 9739 * ip_rput_other could have set an error in ill_error on 9740 * receipt of M_ERROR. 9741 */ 9742 9743 err = ill->ill_error; 9744 if (err != 0) { 9745 (void) ip_close(q, 0); 9746 return (err); 9747 } 9748 9749 ill->ill_credp = credp; 9750 crhold(credp); 9751 9752 mutex_enter(&ipst->ips_ip_mi_lock); 9753 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9754 credp); 9755 mutex_exit(&ipst->ips_ip_mi_lock); 9756 if (err) { 9757 (void) ip_close(q, 0); 9758 return (err); 9759 } 9760 return (0); 9761 } 9762 9763 /* For /dev/ip aka AF_INET open */ 9764 int 9765 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9766 { 9767 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9768 } 9769 9770 /* For /dev/ip6 aka AF_INET6 open */ 9771 int 9772 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9773 { 9774 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9775 } 9776 9777 /* IP open routine. */ 9778 int 9779 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9780 boolean_t isv6) 9781 { 9782 conn_t *connp; 9783 major_t maj; 9784 zoneid_t zoneid; 9785 netstack_t *ns; 9786 ip_stack_t *ipst; 9787 9788 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9789 9790 /* Allow reopen. */ 9791 if (q->q_ptr != NULL) 9792 return (0); 9793 9794 if (sflag & MODOPEN) { 9795 /* This is a module open */ 9796 return (ip_modopen(q, devp, flag, sflag, credp)); 9797 } 9798 9799 ns = netstack_find_by_cred(credp); 9800 ASSERT(ns != NULL); 9801 ipst = ns->netstack_ip; 9802 ASSERT(ipst != NULL); 9803 9804 /* 9805 * For exclusive stacks we set the zoneid to zero 9806 * to make IP operate as if in the global zone. 9807 */ 9808 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9809 zoneid = GLOBAL_ZONEID; 9810 else 9811 zoneid = crgetzoneid(credp); 9812 9813 /* 9814 * We are opening as a device. This is an IP client stream, and we 9815 * allocate an conn_t as the instance data. 9816 */ 9817 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9818 9819 /* 9820 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9821 * done by netstack_find_by_cred() 9822 */ 9823 netstack_rele(ipst->ips_netstack); 9824 9825 connp->conn_zoneid = zoneid; 9826 9827 connp->conn_upq = q; 9828 q->q_ptr = WR(q)->q_ptr = connp; 9829 9830 if (flag & SO_SOCKSTR) 9831 connp->conn_flags |= IPCL_SOCKET; 9832 9833 /* Minor tells us which /dev entry was opened */ 9834 if (isv6) { 9835 connp->conn_flags |= IPCL_ISV6; 9836 connp->conn_af_isv6 = B_TRUE; 9837 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9838 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9839 } else { 9840 connp->conn_af_isv6 = B_FALSE; 9841 connp->conn_pkt_isv6 = B_FALSE; 9842 } 9843 9844 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9845 /* CONN_DEC_REF takes care of netstack_rele() */ 9846 q->q_ptr = WR(q)->q_ptr = NULL; 9847 CONN_DEC_REF(connp); 9848 return (EBUSY); 9849 } 9850 9851 maj = getemajor(*devp); 9852 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9853 9854 /* 9855 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9856 */ 9857 connp->conn_cred = credp; 9858 9859 /* 9860 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9861 */ 9862 connp->conn_recv = ip_conn_input; 9863 9864 crhold(connp->conn_cred); 9865 9866 /* 9867 * If the caller has the process-wide flag set, then default to MAC 9868 * exempt mode. This allows read-down to unlabeled hosts. 9869 */ 9870 if (getpflags(NET_MAC_AWARE, credp) != 0) 9871 connp->conn_mac_exempt = B_TRUE; 9872 9873 connp->conn_rq = q; 9874 connp->conn_wq = WR(q); 9875 9876 /* Non-zero default values */ 9877 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9878 9879 /* 9880 * Make the conn globally visible to walkers 9881 */ 9882 ASSERT(connp->conn_ref == 1); 9883 mutex_enter(&connp->conn_lock); 9884 connp->conn_state_flags &= ~CONN_INCIPIENT; 9885 mutex_exit(&connp->conn_lock); 9886 9887 qprocson(q); 9888 9889 return (0); 9890 } 9891 9892 /* 9893 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9894 * Note that there is no race since either ip_output function works - it 9895 * is just an optimization to enter the best ip_output routine directly. 9896 */ 9897 void 9898 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9899 ip_stack_t *ipst) 9900 { 9901 if (isv6) { 9902 if (bump_mib) { 9903 BUMP_MIB(&ipst->ips_ip6_mib, 9904 ipIfStatsOutSwitchIPVersion); 9905 } 9906 connp->conn_send = ip_output_v6; 9907 connp->conn_pkt_isv6 = B_TRUE; 9908 } else { 9909 if (bump_mib) { 9910 BUMP_MIB(&ipst->ips_ip_mib, 9911 ipIfStatsOutSwitchIPVersion); 9912 } 9913 connp->conn_send = ip_output; 9914 connp->conn_pkt_isv6 = B_FALSE; 9915 } 9916 9917 } 9918 9919 /* 9920 * See if IPsec needs loading because of the options in mp. 9921 */ 9922 static boolean_t 9923 ipsec_opt_present(mblk_t *mp) 9924 { 9925 uint8_t *optcp, *next_optcp, *opt_endcp; 9926 struct opthdr *opt; 9927 struct T_opthdr *topt; 9928 int opthdr_len; 9929 t_uscalar_t optname, optlevel; 9930 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9931 ipsec_req_t *ipsr; 9932 9933 /* 9934 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9935 * return TRUE. 9936 */ 9937 9938 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9939 opt_endcp = optcp + tor->OPT_length; 9940 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9941 opthdr_len = sizeof (struct T_opthdr); 9942 } else { /* O_OPTMGMT_REQ */ 9943 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9944 opthdr_len = sizeof (struct opthdr); 9945 } 9946 for (; optcp < opt_endcp; optcp = next_optcp) { 9947 if (optcp + opthdr_len > opt_endcp) 9948 return (B_FALSE); /* Not enough option header. */ 9949 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9950 topt = (struct T_opthdr *)optcp; 9951 optlevel = topt->level; 9952 optname = topt->name; 9953 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9954 } else { 9955 opt = (struct opthdr *)optcp; 9956 optlevel = opt->level; 9957 optname = opt->name; 9958 next_optcp = optcp + opthdr_len + 9959 _TPI_ALIGN_OPT(opt->len); 9960 } 9961 if ((next_optcp < optcp) || /* wraparound pointer space */ 9962 ((next_optcp >= opt_endcp) && /* last option bad len */ 9963 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9964 return (B_FALSE); /* bad option buffer */ 9965 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9966 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9967 /* 9968 * Check to see if it's an all-bypass or all-zeroes 9969 * IPsec request. Don't bother loading IPsec if 9970 * the socket doesn't want to use it. (A good example 9971 * is a bypass request.) 9972 * 9973 * Basically, if any of the non-NEVER bits are set, 9974 * load IPsec. 9975 */ 9976 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9977 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9978 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9979 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9980 != 0) 9981 return (B_TRUE); 9982 } 9983 } 9984 return (B_FALSE); 9985 } 9986 9987 /* 9988 * If conn is is waiting for ipsec to finish loading, kick it. 9989 */ 9990 /* ARGSUSED */ 9991 static void 9992 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9993 { 9994 t_scalar_t optreq_prim; 9995 mblk_t *mp; 9996 cred_t *cr; 9997 int err = 0; 9998 9999 /* 10000 * This function is called, after ipsec loading is complete. 10001 * Since IP checks exclusively and atomically (i.e it prevents 10002 * ipsec load from completing until ip_optcom_req completes) 10003 * whether ipsec load is complete, there cannot be a race with IP 10004 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10005 */ 10006 mutex_enter(&connp->conn_lock); 10007 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10008 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10009 mp = connp->conn_ipsec_opt_mp; 10010 connp->conn_ipsec_opt_mp = NULL; 10011 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10012 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10013 mutex_exit(&connp->conn_lock); 10014 10015 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10016 10017 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10018 if (optreq_prim == T_OPTMGMT_REQ) { 10019 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10020 &ip_opt_obj, B_FALSE); 10021 } else { 10022 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10023 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10024 &ip_opt_obj, B_FALSE); 10025 } 10026 if (err != EINPROGRESS) 10027 CONN_OPER_PENDING_DONE(connp); 10028 return; 10029 } 10030 mutex_exit(&connp->conn_lock); 10031 } 10032 10033 /* 10034 * Called from the ipsec_loader thread, outside any perimeter, to tell 10035 * ip qenable any of the queues waiting for the ipsec loader to 10036 * complete. 10037 */ 10038 void 10039 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10040 { 10041 netstack_t *ns = ipss->ipsec_netstack; 10042 10043 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10044 } 10045 10046 /* 10047 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10048 * determines the grp on which it has to become exclusive, queues the mp 10049 * and sq draining restarts the optmgmt 10050 */ 10051 static boolean_t 10052 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10053 { 10054 conn_t *connp = Q_TO_CONN(q); 10055 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10056 10057 /* 10058 * Take IPsec requests and treat them special. 10059 */ 10060 if (ipsec_opt_present(mp)) { 10061 /* First check if IPsec is loaded. */ 10062 mutex_enter(&ipss->ipsec_loader_lock); 10063 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10064 mutex_exit(&ipss->ipsec_loader_lock); 10065 return (B_FALSE); 10066 } 10067 mutex_enter(&connp->conn_lock); 10068 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10069 10070 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10071 connp->conn_ipsec_opt_mp = mp; 10072 mutex_exit(&connp->conn_lock); 10073 mutex_exit(&ipss->ipsec_loader_lock); 10074 10075 ipsec_loader_loadnow(ipss); 10076 return (B_TRUE); 10077 } 10078 return (B_FALSE); 10079 } 10080 10081 /* 10082 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10083 * all of them are copied to the conn_t. If the req is "zero", the policy is 10084 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10085 * fields. 10086 * We keep only the latest setting of the policy and thus policy setting 10087 * is not incremental/cumulative. 10088 * 10089 * Requests to set policies with multiple alternative actions will 10090 * go through a different API. 10091 */ 10092 int 10093 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10094 { 10095 uint_t ah_req = 0; 10096 uint_t esp_req = 0; 10097 uint_t se_req = 0; 10098 ipsec_selkey_t sel; 10099 ipsec_act_t *actp = NULL; 10100 uint_t nact; 10101 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10102 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10103 ipsec_policy_root_t *pr; 10104 ipsec_policy_head_t *ph; 10105 int fam; 10106 boolean_t is_pol_reset; 10107 int error = 0; 10108 netstack_t *ns = connp->conn_netstack; 10109 ip_stack_t *ipst = ns->netstack_ip; 10110 ipsec_stack_t *ipss = ns->netstack_ipsec; 10111 10112 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10113 10114 /* 10115 * The IP_SEC_OPT option does not allow variable length parameters, 10116 * hence a request cannot be NULL. 10117 */ 10118 if (req == NULL) 10119 return (EINVAL); 10120 10121 ah_req = req->ipsr_ah_req; 10122 esp_req = req->ipsr_esp_req; 10123 se_req = req->ipsr_self_encap_req; 10124 10125 /* 10126 * Are we dealing with a request to reset the policy (i.e. 10127 * zero requests). 10128 */ 10129 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10130 (esp_req & REQ_MASK) == 0 && 10131 (se_req & REQ_MASK) == 0); 10132 10133 if (!is_pol_reset) { 10134 /* 10135 * If we couldn't load IPsec, fail with "protocol 10136 * not supported". 10137 * IPsec may not have been loaded for a request with zero 10138 * policies, so we don't fail in this case. 10139 */ 10140 mutex_enter(&ipss->ipsec_loader_lock); 10141 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10142 mutex_exit(&ipss->ipsec_loader_lock); 10143 return (EPROTONOSUPPORT); 10144 } 10145 mutex_exit(&ipss->ipsec_loader_lock); 10146 10147 /* 10148 * Test for valid requests. Invalid algorithms 10149 * need to be tested by IPsec code because new 10150 * algorithms can be added dynamically. 10151 */ 10152 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10153 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10154 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10155 return (EINVAL); 10156 } 10157 10158 /* 10159 * Only privileged users can issue these 10160 * requests. 10161 */ 10162 if (((ah_req & IPSEC_PREF_NEVER) || 10163 (esp_req & IPSEC_PREF_NEVER) || 10164 (se_req & IPSEC_PREF_NEVER)) && 10165 secpolicy_ip_config(cr, B_FALSE) != 0) { 10166 return (EPERM); 10167 } 10168 10169 /* 10170 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10171 * are mutually exclusive. 10172 */ 10173 if (((ah_req & REQ_MASK) == REQ_MASK) || 10174 ((esp_req & REQ_MASK) == REQ_MASK) || 10175 ((se_req & REQ_MASK) == REQ_MASK)) { 10176 /* Both of them are set */ 10177 return (EINVAL); 10178 } 10179 } 10180 10181 mutex_enter(&connp->conn_lock); 10182 10183 /* 10184 * If we have already cached policies in ip_bind_connected*(), don't 10185 * let them change now. We cache policies for connections 10186 * whose src,dst [addr, port] is known. 10187 */ 10188 if (connp->conn_policy_cached) { 10189 mutex_exit(&connp->conn_lock); 10190 return (EINVAL); 10191 } 10192 10193 /* 10194 * We have a zero policies, reset the connection policy if already 10195 * set. This will cause the connection to inherit the 10196 * global policy, if any. 10197 */ 10198 if (is_pol_reset) { 10199 if (connp->conn_policy != NULL) { 10200 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10201 connp->conn_policy = NULL; 10202 } 10203 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10204 connp->conn_in_enforce_policy = B_FALSE; 10205 connp->conn_out_enforce_policy = B_FALSE; 10206 mutex_exit(&connp->conn_lock); 10207 return (0); 10208 } 10209 10210 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10211 ipst->ips_netstack); 10212 if (ph == NULL) 10213 goto enomem; 10214 10215 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10216 if (actp == NULL) 10217 goto enomem; 10218 10219 /* 10220 * Always allocate IPv4 policy entries, since they can also 10221 * apply to ipv6 sockets being used in ipv4-compat mode. 10222 */ 10223 bzero(&sel, sizeof (sel)); 10224 sel.ipsl_valid = IPSL_IPV4; 10225 10226 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10227 ipst->ips_netstack); 10228 if (pin4 == NULL) 10229 goto enomem; 10230 10231 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10232 ipst->ips_netstack); 10233 if (pout4 == NULL) 10234 goto enomem; 10235 10236 if (connp->conn_af_isv6) { 10237 /* 10238 * We're looking at a v6 socket, also allocate the 10239 * v6-specific entries... 10240 */ 10241 sel.ipsl_valid = IPSL_IPV6; 10242 pin6 = ipsec_policy_create(&sel, actp, nact, 10243 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10244 if (pin6 == NULL) 10245 goto enomem; 10246 10247 pout6 = ipsec_policy_create(&sel, actp, nact, 10248 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10249 if (pout6 == NULL) 10250 goto enomem; 10251 10252 /* 10253 * .. and file them away in the right place. 10254 */ 10255 fam = IPSEC_AF_V6; 10256 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10257 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10258 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10259 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10260 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10261 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10262 } 10263 10264 ipsec_actvec_free(actp, nact); 10265 10266 /* 10267 * File the v4 policies. 10268 */ 10269 fam = IPSEC_AF_V4; 10270 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10271 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10272 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10273 10274 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10275 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10276 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10277 10278 /* 10279 * If the requests need security, set enforce_policy. 10280 * If the requests are IPSEC_PREF_NEVER, one should 10281 * still set conn_out_enforce_policy so that an ipsec_out 10282 * gets attached in ip_wput. This is needed so that 10283 * for connections that we don't cache policy in ip_bind, 10284 * if global policy matches in ip_wput_attach_policy, we 10285 * don't wrongly inherit global policy. Similarly, we need 10286 * to set conn_in_enforce_policy also so that we don't verify 10287 * policy wrongly. 10288 */ 10289 if ((ah_req & REQ_MASK) != 0 || 10290 (esp_req & REQ_MASK) != 0 || 10291 (se_req & REQ_MASK) != 0) { 10292 connp->conn_in_enforce_policy = B_TRUE; 10293 connp->conn_out_enforce_policy = B_TRUE; 10294 connp->conn_flags |= IPCL_CHECK_POLICY; 10295 } 10296 10297 mutex_exit(&connp->conn_lock); 10298 return (error); 10299 #undef REQ_MASK 10300 10301 /* 10302 * Common memory-allocation-failure exit path. 10303 */ 10304 enomem: 10305 mutex_exit(&connp->conn_lock); 10306 if (actp != NULL) 10307 ipsec_actvec_free(actp, nact); 10308 if (pin4 != NULL) 10309 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10310 if (pout4 != NULL) 10311 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10312 if (pin6 != NULL) 10313 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10314 if (pout6 != NULL) 10315 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10316 return (ENOMEM); 10317 } 10318 10319 /* 10320 * Only for options that pass in an IP addr. Currently only V4 options 10321 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10322 * So this function assumes level is IPPROTO_IP 10323 */ 10324 int 10325 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10326 mblk_t *first_mp) 10327 { 10328 ipif_t *ipif = NULL; 10329 int error; 10330 ill_t *ill; 10331 int zoneid; 10332 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10333 10334 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10335 10336 if (addr != INADDR_ANY || checkonly) { 10337 ASSERT(connp != NULL); 10338 zoneid = IPCL_ZONEID(connp); 10339 if (option == IP_NEXTHOP) { 10340 ipif = ipif_lookup_onlink_addr(addr, 10341 connp->conn_zoneid, ipst); 10342 } else { 10343 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10344 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10345 &error, ipst); 10346 } 10347 if (ipif == NULL) { 10348 if (error == EINPROGRESS) 10349 return (error); 10350 else if ((option == IP_MULTICAST_IF) || 10351 (option == IP_NEXTHOP)) 10352 return (EHOSTUNREACH); 10353 else 10354 return (EINVAL); 10355 } else if (checkonly) { 10356 if (option == IP_MULTICAST_IF) { 10357 ill = ipif->ipif_ill; 10358 /* not supported by the virtual network iface */ 10359 if (IS_VNI(ill)) { 10360 ipif_refrele(ipif); 10361 return (EINVAL); 10362 } 10363 } 10364 ipif_refrele(ipif); 10365 return (0); 10366 } 10367 ill = ipif->ipif_ill; 10368 mutex_enter(&connp->conn_lock); 10369 mutex_enter(&ill->ill_lock); 10370 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10371 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10372 mutex_exit(&ill->ill_lock); 10373 mutex_exit(&connp->conn_lock); 10374 ipif_refrele(ipif); 10375 return (option == IP_MULTICAST_IF ? 10376 EHOSTUNREACH : EINVAL); 10377 } 10378 } else { 10379 mutex_enter(&connp->conn_lock); 10380 } 10381 10382 /* None of the options below are supported on the VNI */ 10383 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10384 mutex_exit(&ill->ill_lock); 10385 mutex_exit(&connp->conn_lock); 10386 ipif_refrele(ipif); 10387 return (EINVAL); 10388 } 10389 10390 switch (option) { 10391 case IP_DONTFAILOVER_IF: 10392 /* 10393 * This option is used by in.mpathd to ensure 10394 * that IPMP probe packets only go out on the 10395 * test interfaces. in.mpathd sets this option 10396 * on the non-failover interfaces. 10397 * For backward compatibility, this option 10398 * implicitly sets IP_MULTICAST_IF, as used 10399 * be done in bind(), so that ip_wput gets 10400 * this ipif to send mcast packets. 10401 */ 10402 if (ipif != NULL) { 10403 ASSERT(addr != INADDR_ANY); 10404 connp->conn_nofailover_ill = ipif->ipif_ill; 10405 connp->conn_multicast_ipif = ipif; 10406 } else { 10407 ASSERT(addr == INADDR_ANY); 10408 connp->conn_nofailover_ill = NULL; 10409 connp->conn_multicast_ipif = NULL; 10410 } 10411 break; 10412 10413 case IP_MULTICAST_IF: 10414 connp->conn_multicast_ipif = ipif; 10415 break; 10416 case IP_NEXTHOP: 10417 connp->conn_nexthop_v4 = addr; 10418 connp->conn_nexthop_set = B_TRUE; 10419 break; 10420 } 10421 10422 if (ipif != NULL) { 10423 mutex_exit(&ill->ill_lock); 10424 mutex_exit(&connp->conn_lock); 10425 ipif_refrele(ipif); 10426 return (0); 10427 } 10428 mutex_exit(&connp->conn_lock); 10429 /* We succeded in cleared the option */ 10430 return (0); 10431 } 10432 10433 /* 10434 * For options that pass in an ifindex specifying the ill. V6 options always 10435 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10436 */ 10437 int 10438 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10439 int level, int option, mblk_t *first_mp) 10440 { 10441 ill_t *ill = NULL; 10442 int error = 0; 10443 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10444 10445 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10446 if (ifindex != 0) { 10447 ASSERT(connp != NULL); 10448 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10449 first_mp, ip_restart_optmgmt, &error, ipst); 10450 if (ill != NULL) { 10451 if (checkonly) { 10452 /* not supported by the virtual network iface */ 10453 if (IS_VNI(ill)) { 10454 ill_refrele(ill); 10455 return (EINVAL); 10456 } 10457 ill_refrele(ill); 10458 return (0); 10459 } 10460 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10461 0, NULL)) { 10462 ill_refrele(ill); 10463 ill = NULL; 10464 mutex_enter(&connp->conn_lock); 10465 goto setit; 10466 } 10467 mutex_enter(&connp->conn_lock); 10468 mutex_enter(&ill->ill_lock); 10469 if (ill->ill_state_flags & ILL_CONDEMNED) { 10470 mutex_exit(&ill->ill_lock); 10471 mutex_exit(&connp->conn_lock); 10472 ill_refrele(ill); 10473 ill = NULL; 10474 mutex_enter(&connp->conn_lock); 10475 } 10476 goto setit; 10477 } else if (error == EINPROGRESS) { 10478 return (error); 10479 } else { 10480 error = 0; 10481 } 10482 } 10483 mutex_enter(&connp->conn_lock); 10484 setit: 10485 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10486 10487 /* 10488 * The options below assume that the ILL (if any) transmits and/or 10489 * receives traffic. Neither of which is true for the virtual network 10490 * interface, so fail setting these on a VNI. 10491 */ 10492 if (IS_VNI(ill)) { 10493 ASSERT(ill != NULL); 10494 mutex_exit(&ill->ill_lock); 10495 mutex_exit(&connp->conn_lock); 10496 ill_refrele(ill); 10497 return (EINVAL); 10498 } 10499 10500 if (level == IPPROTO_IP) { 10501 switch (option) { 10502 case IP_BOUND_IF: 10503 connp->conn_incoming_ill = ill; 10504 connp->conn_outgoing_ill = ill; 10505 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10506 0 : ifindex; 10507 break; 10508 10509 case IP_MULTICAST_IF: 10510 /* 10511 * This option is an internal special. The socket 10512 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10513 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10514 * specifies an ifindex and we try first on V6 ill's. 10515 * If we don't find one, we they try using on v4 ill's 10516 * intenally and we come here. 10517 */ 10518 if (!checkonly && ill != NULL) { 10519 ipif_t *ipif; 10520 ipif = ill->ill_ipif; 10521 10522 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10523 mutex_exit(&ill->ill_lock); 10524 mutex_exit(&connp->conn_lock); 10525 ill_refrele(ill); 10526 ill = NULL; 10527 mutex_enter(&connp->conn_lock); 10528 } else { 10529 connp->conn_multicast_ipif = ipif; 10530 } 10531 } 10532 break; 10533 10534 case IP_DHCPINIT_IF: 10535 if (connp->conn_dhcpinit_ill != NULL) { 10536 /* 10537 * We've locked the conn so conn_cleanup_ill() 10538 * cannot clear conn_dhcpinit_ill -- so it's 10539 * safe to access the ill. 10540 */ 10541 ill_t *oill = connp->conn_dhcpinit_ill; 10542 10543 ASSERT(oill->ill_dhcpinit != 0); 10544 atomic_dec_32(&oill->ill_dhcpinit); 10545 connp->conn_dhcpinit_ill = NULL; 10546 } 10547 10548 if (ill != NULL) { 10549 connp->conn_dhcpinit_ill = ill; 10550 atomic_inc_32(&ill->ill_dhcpinit); 10551 } 10552 break; 10553 } 10554 } else { 10555 switch (option) { 10556 case IPV6_BOUND_IF: 10557 connp->conn_incoming_ill = ill; 10558 connp->conn_outgoing_ill = ill; 10559 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10560 0 : ifindex; 10561 break; 10562 10563 case IPV6_BOUND_PIF: 10564 /* 10565 * Limit all transmit to this ill. 10566 * Unlike IPV6_BOUND_IF, using this option 10567 * prevents load spreading and failover from 10568 * happening when the interface is part of the 10569 * group. That's why we don't need to remember 10570 * the ifindex in orig_bound_ifindex as in 10571 * IPV6_BOUND_IF. 10572 */ 10573 connp->conn_outgoing_pill = ill; 10574 break; 10575 10576 case IPV6_DONTFAILOVER_IF: 10577 /* 10578 * This option is used by in.mpathd to ensure 10579 * that IPMP probe packets only go out on the 10580 * test interfaces. in.mpathd sets this option 10581 * on the non-failover interfaces. 10582 */ 10583 connp->conn_nofailover_ill = ill; 10584 /* 10585 * For backward compatibility, this option 10586 * implicitly sets ip_multicast_ill as used in 10587 * IPV6_MULTICAST_IF so that ip_wput gets 10588 * this ill to send mcast packets. 10589 */ 10590 connp->conn_multicast_ill = ill; 10591 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10592 0 : ifindex; 10593 break; 10594 10595 case IPV6_MULTICAST_IF: 10596 /* 10597 * Set conn_multicast_ill to be the IPv6 ill. 10598 * Set conn_multicast_ipif to be an IPv4 ipif 10599 * for ifindex to make IPv4 mapped addresses 10600 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10601 * Even if no IPv6 ill exists for the ifindex 10602 * we need to check for an IPv4 ifindex in order 10603 * for this to work with mapped addresses. In that 10604 * case only set conn_multicast_ipif. 10605 */ 10606 if (!checkonly) { 10607 if (ifindex == 0) { 10608 connp->conn_multicast_ill = NULL; 10609 connp->conn_orig_multicast_ifindex = 0; 10610 connp->conn_multicast_ipif = NULL; 10611 } else if (ill != NULL) { 10612 connp->conn_multicast_ill = ill; 10613 connp->conn_orig_multicast_ifindex = 10614 ifindex; 10615 } 10616 } 10617 break; 10618 } 10619 } 10620 10621 if (ill != NULL) { 10622 mutex_exit(&ill->ill_lock); 10623 mutex_exit(&connp->conn_lock); 10624 ill_refrele(ill); 10625 return (0); 10626 } 10627 mutex_exit(&connp->conn_lock); 10628 /* 10629 * We succeeded in clearing the option (ifindex == 0) or failed to 10630 * locate the ill and could not set the option (ifindex != 0) 10631 */ 10632 return (ifindex == 0 ? 0 : EINVAL); 10633 } 10634 10635 /* This routine sets socket options. */ 10636 /* ARGSUSED */ 10637 int 10638 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10639 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10640 void *dummy, cred_t *cr, mblk_t *first_mp) 10641 { 10642 int *i1 = (int *)invalp; 10643 conn_t *connp = Q_TO_CONN(q); 10644 int error = 0; 10645 boolean_t checkonly; 10646 ire_t *ire; 10647 boolean_t found; 10648 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10649 10650 switch (optset_context) { 10651 10652 case SETFN_OPTCOM_CHECKONLY: 10653 checkonly = B_TRUE; 10654 /* 10655 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10656 * inlen != 0 implies value supplied and 10657 * we have to "pretend" to set it. 10658 * inlen == 0 implies that there is no 10659 * value part in T_CHECK request and just validation 10660 * done elsewhere should be enough, we just return here. 10661 */ 10662 if (inlen == 0) { 10663 *outlenp = 0; 10664 return (0); 10665 } 10666 break; 10667 case SETFN_OPTCOM_NEGOTIATE: 10668 case SETFN_UD_NEGOTIATE: 10669 case SETFN_CONN_NEGOTIATE: 10670 checkonly = B_FALSE; 10671 break; 10672 default: 10673 /* 10674 * We should never get here 10675 */ 10676 *outlenp = 0; 10677 return (EINVAL); 10678 } 10679 10680 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10681 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10682 10683 /* 10684 * For fixed length options, no sanity check 10685 * of passed in length is done. It is assumed *_optcom_req() 10686 * routines do the right thing. 10687 */ 10688 10689 switch (level) { 10690 case SOL_SOCKET: 10691 /* 10692 * conn_lock protects the bitfields, and is used to 10693 * set the fields atomically. 10694 */ 10695 switch (name) { 10696 case SO_BROADCAST: 10697 if (!checkonly) { 10698 /* TODO: use value someplace? */ 10699 mutex_enter(&connp->conn_lock); 10700 connp->conn_broadcast = *i1 ? 1 : 0; 10701 mutex_exit(&connp->conn_lock); 10702 } 10703 break; /* goto sizeof (int) option return */ 10704 case SO_USELOOPBACK: 10705 if (!checkonly) { 10706 /* TODO: use value someplace? */ 10707 mutex_enter(&connp->conn_lock); 10708 connp->conn_loopback = *i1 ? 1 : 0; 10709 mutex_exit(&connp->conn_lock); 10710 } 10711 break; /* goto sizeof (int) option return */ 10712 case SO_DONTROUTE: 10713 if (!checkonly) { 10714 mutex_enter(&connp->conn_lock); 10715 connp->conn_dontroute = *i1 ? 1 : 0; 10716 mutex_exit(&connp->conn_lock); 10717 } 10718 break; /* goto sizeof (int) option return */ 10719 case SO_REUSEADDR: 10720 if (!checkonly) { 10721 mutex_enter(&connp->conn_lock); 10722 connp->conn_reuseaddr = *i1 ? 1 : 0; 10723 mutex_exit(&connp->conn_lock); 10724 } 10725 break; /* goto sizeof (int) option return */ 10726 case SO_PROTOTYPE: 10727 if (!checkonly) { 10728 mutex_enter(&connp->conn_lock); 10729 connp->conn_proto = *i1; 10730 mutex_exit(&connp->conn_lock); 10731 } 10732 break; /* goto sizeof (int) option return */ 10733 case SO_ALLZONES: 10734 if (!checkonly) { 10735 mutex_enter(&connp->conn_lock); 10736 if (IPCL_IS_BOUND(connp)) { 10737 mutex_exit(&connp->conn_lock); 10738 return (EINVAL); 10739 } 10740 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10741 mutex_exit(&connp->conn_lock); 10742 } 10743 break; /* goto sizeof (int) option return */ 10744 case SO_ANON_MLP: 10745 if (!checkonly) { 10746 mutex_enter(&connp->conn_lock); 10747 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10748 mutex_exit(&connp->conn_lock); 10749 } 10750 break; /* goto sizeof (int) option return */ 10751 case SO_MAC_EXEMPT: 10752 if (secpolicy_net_mac_aware(cr) != 0 || 10753 IPCL_IS_BOUND(connp)) 10754 return (EACCES); 10755 if (!checkonly) { 10756 mutex_enter(&connp->conn_lock); 10757 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10758 mutex_exit(&connp->conn_lock); 10759 } 10760 break; /* goto sizeof (int) option return */ 10761 default: 10762 /* 10763 * "soft" error (negative) 10764 * option not handled at this level 10765 * Note: Do not modify *outlenp 10766 */ 10767 return (-EINVAL); 10768 } 10769 break; 10770 case IPPROTO_IP: 10771 switch (name) { 10772 case IP_NEXTHOP: 10773 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10774 return (EPERM); 10775 /* FALLTHRU */ 10776 case IP_MULTICAST_IF: 10777 case IP_DONTFAILOVER_IF: { 10778 ipaddr_t addr = *i1; 10779 10780 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10781 first_mp); 10782 if (error != 0) 10783 return (error); 10784 break; /* goto sizeof (int) option return */ 10785 } 10786 10787 case IP_MULTICAST_TTL: 10788 /* Recorded in transport above IP */ 10789 *outvalp = *invalp; 10790 *outlenp = sizeof (uchar_t); 10791 return (0); 10792 case IP_MULTICAST_LOOP: 10793 if (!checkonly) { 10794 mutex_enter(&connp->conn_lock); 10795 connp->conn_multicast_loop = *invalp ? 1 : 0; 10796 mutex_exit(&connp->conn_lock); 10797 } 10798 *outvalp = *invalp; 10799 *outlenp = sizeof (uchar_t); 10800 return (0); 10801 case IP_ADD_MEMBERSHIP: 10802 case MCAST_JOIN_GROUP: 10803 case IP_DROP_MEMBERSHIP: 10804 case MCAST_LEAVE_GROUP: { 10805 struct ip_mreq *mreqp; 10806 struct group_req *greqp; 10807 ire_t *ire; 10808 boolean_t done = B_FALSE; 10809 ipaddr_t group, ifaddr; 10810 struct sockaddr_in *sin; 10811 uint32_t *ifindexp; 10812 boolean_t mcast_opt = B_TRUE; 10813 mcast_record_t fmode; 10814 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10815 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10816 10817 switch (name) { 10818 case IP_ADD_MEMBERSHIP: 10819 mcast_opt = B_FALSE; 10820 /* FALLTHRU */ 10821 case MCAST_JOIN_GROUP: 10822 fmode = MODE_IS_EXCLUDE; 10823 optfn = ip_opt_add_group; 10824 break; 10825 10826 case IP_DROP_MEMBERSHIP: 10827 mcast_opt = B_FALSE; 10828 /* FALLTHRU */ 10829 case MCAST_LEAVE_GROUP: 10830 fmode = MODE_IS_INCLUDE; 10831 optfn = ip_opt_delete_group; 10832 break; 10833 } 10834 10835 if (mcast_opt) { 10836 greqp = (struct group_req *)i1; 10837 sin = (struct sockaddr_in *)&greqp->gr_group; 10838 if (sin->sin_family != AF_INET) { 10839 *outlenp = 0; 10840 return (ENOPROTOOPT); 10841 } 10842 group = (ipaddr_t)sin->sin_addr.s_addr; 10843 ifaddr = INADDR_ANY; 10844 ifindexp = &greqp->gr_interface; 10845 } else { 10846 mreqp = (struct ip_mreq *)i1; 10847 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10848 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10849 ifindexp = NULL; 10850 } 10851 10852 /* 10853 * In the multirouting case, we need to replicate 10854 * the request on all interfaces that will take part 10855 * in replication. We do so because multirouting is 10856 * reflective, thus we will probably receive multi- 10857 * casts on those interfaces. 10858 * The ip_multirt_apply_membership() succeeds if the 10859 * operation succeeds on at least one interface. 10860 */ 10861 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10862 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10863 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10864 if (ire != NULL) { 10865 if (ire->ire_flags & RTF_MULTIRT) { 10866 error = ip_multirt_apply_membership( 10867 optfn, ire, connp, checkonly, group, 10868 fmode, INADDR_ANY, first_mp); 10869 done = B_TRUE; 10870 } 10871 ire_refrele(ire); 10872 } 10873 if (!done) { 10874 error = optfn(connp, checkonly, group, ifaddr, 10875 ifindexp, fmode, INADDR_ANY, first_mp); 10876 } 10877 if (error) { 10878 /* 10879 * EINPROGRESS is a soft error, needs retry 10880 * so don't make *outlenp zero. 10881 */ 10882 if (error != EINPROGRESS) 10883 *outlenp = 0; 10884 return (error); 10885 } 10886 /* OK return - copy input buffer into output buffer */ 10887 if (invalp != outvalp) { 10888 /* don't trust bcopy for identical src/dst */ 10889 bcopy(invalp, outvalp, inlen); 10890 } 10891 *outlenp = inlen; 10892 return (0); 10893 } 10894 case IP_BLOCK_SOURCE: 10895 case IP_UNBLOCK_SOURCE: 10896 case IP_ADD_SOURCE_MEMBERSHIP: 10897 case IP_DROP_SOURCE_MEMBERSHIP: 10898 case MCAST_BLOCK_SOURCE: 10899 case MCAST_UNBLOCK_SOURCE: 10900 case MCAST_JOIN_SOURCE_GROUP: 10901 case MCAST_LEAVE_SOURCE_GROUP: { 10902 struct ip_mreq_source *imreqp; 10903 struct group_source_req *gsreqp; 10904 in_addr_t grp, src, ifaddr = INADDR_ANY; 10905 uint32_t ifindex = 0; 10906 mcast_record_t fmode; 10907 struct sockaddr_in *sin; 10908 ire_t *ire; 10909 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10910 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10911 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10912 10913 switch (name) { 10914 case IP_BLOCK_SOURCE: 10915 mcast_opt = B_FALSE; 10916 /* FALLTHRU */ 10917 case MCAST_BLOCK_SOURCE: 10918 fmode = MODE_IS_EXCLUDE; 10919 optfn = ip_opt_add_group; 10920 break; 10921 10922 case IP_UNBLOCK_SOURCE: 10923 mcast_opt = B_FALSE; 10924 /* FALLTHRU */ 10925 case MCAST_UNBLOCK_SOURCE: 10926 fmode = MODE_IS_EXCLUDE; 10927 optfn = ip_opt_delete_group; 10928 break; 10929 10930 case IP_ADD_SOURCE_MEMBERSHIP: 10931 mcast_opt = B_FALSE; 10932 /* FALLTHRU */ 10933 case MCAST_JOIN_SOURCE_GROUP: 10934 fmode = MODE_IS_INCLUDE; 10935 optfn = ip_opt_add_group; 10936 break; 10937 10938 case IP_DROP_SOURCE_MEMBERSHIP: 10939 mcast_opt = B_FALSE; 10940 /* FALLTHRU */ 10941 case MCAST_LEAVE_SOURCE_GROUP: 10942 fmode = MODE_IS_INCLUDE; 10943 optfn = ip_opt_delete_group; 10944 break; 10945 } 10946 10947 if (mcast_opt) { 10948 gsreqp = (struct group_source_req *)i1; 10949 if (gsreqp->gsr_group.ss_family != AF_INET) { 10950 *outlenp = 0; 10951 return (ENOPROTOOPT); 10952 } 10953 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10954 grp = (ipaddr_t)sin->sin_addr.s_addr; 10955 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10956 src = (ipaddr_t)sin->sin_addr.s_addr; 10957 ifindex = gsreqp->gsr_interface; 10958 } else { 10959 imreqp = (struct ip_mreq_source *)i1; 10960 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10961 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10962 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10963 } 10964 10965 /* 10966 * In the multirouting case, we need to replicate 10967 * the request as noted in the mcast cases above. 10968 */ 10969 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10970 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10971 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10972 if (ire != NULL) { 10973 if (ire->ire_flags & RTF_MULTIRT) { 10974 error = ip_multirt_apply_membership( 10975 optfn, ire, connp, checkonly, grp, 10976 fmode, src, first_mp); 10977 done = B_TRUE; 10978 } 10979 ire_refrele(ire); 10980 } 10981 if (!done) { 10982 error = optfn(connp, checkonly, grp, ifaddr, 10983 &ifindex, fmode, src, first_mp); 10984 } 10985 if (error != 0) { 10986 /* 10987 * EINPROGRESS is a soft error, needs retry 10988 * so don't make *outlenp zero. 10989 */ 10990 if (error != EINPROGRESS) 10991 *outlenp = 0; 10992 return (error); 10993 } 10994 /* OK return - copy input buffer into output buffer */ 10995 if (invalp != outvalp) { 10996 bcopy(invalp, outvalp, inlen); 10997 } 10998 *outlenp = inlen; 10999 return (0); 11000 } 11001 case IP_SEC_OPT: 11002 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11003 if (error != 0) { 11004 *outlenp = 0; 11005 return (error); 11006 } 11007 break; 11008 case IP_HDRINCL: 11009 case IP_OPTIONS: 11010 case T_IP_OPTIONS: 11011 case IP_TOS: 11012 case T_IP_TOS: 11013 case IP_TTL: 11014 case IP_RECVDSTADDR: 11015 case IP_RECVOPTS: 11016 /* OK return - copy input buffer into output buffer */ 11017 if (invalp != outvalp) { 11018 /* don't trust bcopy for identical src/dst */ 11019 bcopy(invalp, outvalp, inlen); 11020 } 11021 *outlenp = inlen; 11022 return (0); 11023 case IP_RECVIF: 11024 /* Retrieve the inbound interface index */ 11025 if (!checkonly) { 11026 mutex_enter(&connp->conn_lock); 11027 connp->conn_recvif = *i1 ? 1 : 0; 11028 mutex_exit(&connp->conn_lock); 11029 } 11030 break; /* goto sizeof (int) option return */ 11031 case IP_RECVPKTINFO: 11032 if (!checkonly) { 11033 mutex_enter(&connp->conn_lock); 11034 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11035 mutex_exit(&connp->conn_lock); 11036 } 11037 break; /* goto sizeof (int) option return */ 11038 case IP_RECVSLLA: 11039 /* Retrieve the source link layer address */ 11040 if (!checkonly) { 11041 mutex_enter(&connp->conn_lock); 11042 connp->conn_recvslla = *i1 ? 1 : 0; 11043 mutex_exit(&connp->conn_lock); 11044 } 11045 break; /* goto sizeof (int) option return */ 11046 case MRT_INIT: 11047 case MRT_DONE: 11048 case MRT_ADD_VIF: 11049 case MRT_DEL_VIF: 11050 case MRT_ADD_MFC: 11051 case MRT_DEL_MFC: 11052 case MRT_ASSERT: 11053 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11054 *outlenp = 0; 11055 return (error); 11056 } 11057 error = ip_mrouter_set((int)name, q, checkonly, 11058 (uchar_t *)invalp, inlen, first_mp); 11059 if (error) { 11060 *outlenp = 0; 11061 return (error); 11062 } 11063 /* OK return - copy input buffer into output buffer */ 11064 if (invalp != outvalp) { 11065 /* don't trust bcopy for identical src/dst */ 11066 bcopy(invalp, outvalp, inlen); 11067 } 11068 *outlenp = inlen; 11069 return (0); 11070 case IP_BOUND_IF: 11071 case IP_DHCPINIT_IF: 11072 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11073 level, name, first_mp); 11074 if (error != 0) 11075 return (error); 11076 break; /* goto sizeof (int) option return */ 11077 11078 case IP_UNSPEC_SRC: 11079 /* Allow sending with a zero source address */ 11080 if (!checkonly) { 11081 mutex_enter(&connp->conn_lock); 11082 connp->conn_unspec_src = *i1 ? 1 : 0; 11083 mutex_exit(&connp->conn_lock); 11084 } 11085 break; /* goto sizeof (int) option return */ 11086 default: 11087 /* 11088 * "soft" error (negative) 11089 * option not handled at this level 11090 * Note: Do not modify *outlenp 11091 */ 11092 return (-EINVAL); 11093 } 11094 break; 11095 case IPPROTO_IPV6: 11096 switch (name) { 11097 case IPV6_BOUND_IF: 11098 case IPV6_BOUND_PIF: 11099 case IPV6_DONTFAILOVER_IF: 11100 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11101 level, name, first_mp); 11102 if (error != 0) 11103 return (error); 11104 break; /* goto sizeof (int) option return */ 11105 11106 case IPV6_MULTICAST_IF: 11107 /* 11108 * The only possible errors are EINPROGRESS and 11109 * EINVAL. EINPROGRESS will be restarted and is not 11110 * a hard error. We call this option on both V4 and V6 11111 * If both return EINVAL, then this call returns 11112 * EINVAL. If at least one of them succeeds we 11113 * return success. 11114 */ 11115 found = B_FALSE; 11116 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11117 level, name, first_mp); 11118 if (error == EINPROGRESS) 11119 return (error); 11120 if (error == 0) 11121 found = B_TRUE; 11122 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11123 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11124 if (error == 0) 11125 found = B_TRUE; 11126 if (!found) 11127 return (error); 11128 break; /* goto sizeof (int) option return */ 11129 11130 case IPV6_MULTICAST_HOPS: 11131 /* Recorded in transport above IP */ 11132 break; /* goto sizeof (int) option return */ 11133 case IPV6_MULTICAST_LOOP: 11134 if (!checkonly) { 11135 mutex_enter(&connp->conn_lock); 11136 connp->conn_multicast_loop = *i1; 11137 mutex_exit(&connp->conn_lock); 11138 } 11139 break; /* goto sizeof (int) option return */ 11140 case IPV6_JOIN_GROUP: 11141 case MCAST_JOIN_GROUP: 11142 case IPV6_LEAVE_GROUP: 11143 case MCAST_LEAVE_GROUP: { 11144 struct ipv6_mreq *ip_mreqp; 11145 struct group_req *greqp; 11146 ire_t *ire; 11147 boolean_t done = B_FALSE; 11148 in6_addr_t groupv6; 11149 uint32_t ifindex; 11150 boolean_t mcast_opt = B_TRUE; 11151 mcast_record_t fmode; 11152 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11153 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11154 11155 switch (name) { 11156 case IPV6_JOIN_GROUP: 11157 mcast_opt = B_FALSE; 11158 /* FALLTHRU */ 11159 case MCAST_JOIN_GROUP: 11160 fmode = MODE_IS_EXCLUDE; 11161 optfn = ip_opt_add_group_v6; 11162 break; 11163 11164 case IPV6_LEAVE_GROUP: 11165 mcast_opt = B_FALSE; 11166 /* FALLTHRU */ 11167 case MCAST_LEAVE_GROUP: 11168 fmode = MODE_IS_INCLUDE; 11169 optfn = ip_opt_delete_group_v6; 11170 break; 11171 } 11172 11173 if (mcast_opt) { 11174 struct sockaddr_in *sin; 11175 struct sockaddr_in6 *sin6; 11176 greqp = (struct group_req *)i1; 11177 if (greqp->gr_group.ss_family == AF_INET) { 11178 sin = (struct sockaddr_in *) 11179 &(greqp->gr_group); 11180 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11181 &groupv6); 11182 } else { 11183 sin6 = (struct sockaddr_in6 *) 11184 &(greqp->gr_group); 11185 groupv6 = sin6->sin6_addr; 11186 } 11187 ifindex = greqp->gr_interface; 11188 } else { 11189 ip_mreqp = (struct ipv6_mreq *)i1; 11190 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11191 ifindex = ip_mreqp->ipv6mr_interface; 11192 } 11193 /* 11194 * In the multirouting case, we need to replicate 11195 * the request on all interfaces that will take part 11196 * in replication. We do so because multirouting is 11197 * reflective, thus we will probably receive multi- 11198 * casts on those interfaces. 11199 * The ip_multirt_apply_membership_v6() succeeds if 11200 * the operation succeeds on at least one interface. 11201 */ 11202 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11203 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11204 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11205 if (ire != NULL) { 11206 if (ire->ire_flags & RTF_MULTIRT) { 11207 error = ip_multirt_apply_membership_v6( 11208 optfn, ire, connp, checkonly, 11209 &groupv6, fmode, &ipv6_all_zeros, 11210 first_mp); 11211 done = B_TRUE; 11212 } 11213 ire_refrele(ire); 11214 } 11215 if (!done) { 11216 error = optfn(connp, checkonly, &groupv6, 11217 ifindex, fmode, &ipv6_all_zeros, first_mp); 11218 } 11219 if (error) { 11220 /* 11221 * EINPROGRESS is a soft error, needs retry 11222 * so don't make *outlenp zero. 11223 */ 11224 if (error != EINPROGRESS) 11225 *outlenp = 0; 11226 return (error); 11227 } 11228 /* OK return - copy input buffer into output buffer */ 11229 if (invalp != outvalp) { 11230 /* don't trust bcopy for identical src/dst */ 11231 bcopy(invalp, outvalp, inlen); 11232 } 11233 *outlenp = inlen; 11234 return (0); 11235 } 11236 case MCAST_BLOCK_SOURCE: 11237 case MCAST_UNBLOCK_SOURCE: 11238 case MCAST_JOIN_SOURCE_GROUP: 11239 case MCAST_LEAVE_SOURCE_GROUP: { 11240 struct group_source_req *gsreqp; 11241 in6_addr_t v6grp, v6src; 11242 uint32_t ifindex; 11243 mcast_record_t fmode; 11244 ire_t *ire; 11245 boolean_t done = B_FALSE; 11246 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11247 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11248 11249 switch (name) { 11250 case MCAST_BLOCK_SOURCE: 11251 fmode = MODE_IS_EXCLUDE; 11252 optfn = ip_opt_add_group_v6; 11253 break; 11254 case MCAST_UNBLOCK_SOURCE: 11255 fmode = MODE_IS_EXCLUDE; 11256 optfn = ip_opt_delete_group_v6; 11257 break; 11258 case MCAST_JOIN_SOURCE_GROUP: 11259 fmode = MODE_IS_INCLUDE; 11260 optfn = ip_opt_add_group_v6; 11261 break; 11262 case MCAST_LEAVE_SOURCE_GROUP: 11263 fmode = MODE_IS_INCLUDE; 11264 optfn = ip_opt_delete_group_v6; 11265 break; 11266 } 11267 11268 gsreqp = (struct group_source_req *)i1; 11269 ifindex = gsreqp->gsr_interface; 11270 if (gsreqp->gsr_group.ss_family == AF_INET) { 11271 struct sockaddr_in *s; 11272 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11273 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11274 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11275 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11276 } else { 11277 struct sockaddr_in6 *s6; 11278 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11279 v6grp = s6->sin6_addr; 11280 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11281 v6src = s6->sin6_addr; 11282 } 11283 11284 /* 11285 * In the multirouting case, we need to replicate 11286 * the request as noted in the mcast cases above. 11287 */ 11288 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11289 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11290 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11291 if (ire != NULL) { 11292 if (ire->ire_flags & RTF_MULTIRT) { 11293 error = ip_multirt_apply_membership_v6( 11294 optfn, ire, connp, checkonly, 11295 &v6grp, fmode, &v6src, first_mp); 11296 done = B_TRUE; 11297 } 11298 ire_refrele(ire); 11299 } 11300 if (!done) { 11301 error = optfn(connp, checkonly, &v6grp, 11302 ifindex, fmode, &v6src, first_mp); 11303 } 11304 if (error != 0) { 11305 /* 11306 * EINPROGRESS is a soft error, needs retry 11307 * so don't make *outlenp zero. 11308 */ 11309 if (error != EINPROGRESS) 11310 *outlenp = 0; 11311 return (error); 11312 } 11313 /* OK return - copy input buffer into output buffer */ 11314 if (invalp != outvalp) { 11315 bcopy(invalp, outvalp, inlen); 11316 } 11317 *outlenp = inlen; 11318 return (0); 11319 } 11320 case IPV6_UNICAST_HOPS: 11321 /* Recorded in transport above IP */ 11322 break; /* goto sizeof (int) option return */ 11323 case IPV6_UNSPEC_SRC: 11324 /* Allow sending with a zero source address */ 11325 if (!checkonly) { 11326 mutex_enter(&connp->conn_lock); 11327 connp->conn_unspec_src = *i1 ? 1 : 0; 11328 mutex_exit(&connp->conn_lock); 11329 } 11330 break; /* goto sizeof (int) option return */ 11331 case IPV6_RECVPKTINFO: 11332 if (!checkonly) { 11333 mutex_enter(&connp->conn_lock); 11334 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11335 mutex_exit(&connp->conn_lock); 11336 } 11337 break; /* goto sizeof (int) option return */ 11338 case IPV6_RECVTCLASS: 11339 if (!checkonly) { 11340 if (*i1 < 0 || *i1 > 1) { 11341 return (EINVAL); 11342 } 11343 mutex_enter(&connp->conn_lock); 11344 connp->conn_ipv6_recvtclass = *i1; 11345 mutex_exit(&connp->conn_lock); 11346 } 11347 break; 11348 case IPV6_RECVPATHMTU: 11349 if (!checkonly) { 11350 if (*i1 < 0 || *i1 > 1) { 11351 return (EINVAL); 11352 } 11353 mutex_enter(&connp->conn_lock); 11354 connp->conn_ipv6_recvpathmtu = *i1; 11355 mutex_exit(&connp->conn_lock); 11356 } 11357 break; 11358 case IPV6_RECVHOPLIMIT: 11359 if (!checkonly) { 11360 mutex_enter(&connp->conn_lock); 11361 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11362 mutex_exit(&connp->conn_lock); 11363 } 11364 break; /* goto sizeof (int) option return */ 11365 case IPV6_RECVHOPOPTS: 11366 if (!checkonly) { 11367 mutex_enter(&connp->conn_lock); 11368 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11369 mutex_exit(&connp->conn_lock); 11370 } 11371 break; /* goto sizeof (int) option return */ 11372 case IPV6_RECVDSTOPTS: 11373 if (!checkonly) { 11374 mutex_enter(&connp->conn_lock); 11375 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11376 mutex_exit(&connp->conn_lock); 11377 } 11378 break; /* goto sizeof (int) option return */ 11379 case IPV6_RECVRTHDR: 11380 if (!checkonly) { 11381 mutex_enter(&connp->conn_lock); 11382 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11383 mutex_exit(&connp->conn_lock); 11384 } 11385 break; /* goto sizeof (int) option return */ 11386 case IPV6_RECVRTHDRDSTOPTS: 11387 if (!checkonly) { 11388 mutex_enter(&connp->conn_lock); 11389 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11390 mutex_exit(&connp->conn_lock); 11391 } 11392 break; /* goto sizeof (int) option return */ 11393 case IPV6_PKTINFO: 11394 if (inlen == 0) 11395 return (-EINVAL); /* clearing option */ 11396 error = ip6_set_pktinfo(cr, connp, 11397 (struct in6_pktinfo *)invalp, first_mp); 11398 if (error != 0) 11399 *outlenp = 0; 11400 else 11401 *outlenp = inlen; 11402 return (error); 11403 case IPV6_NEXTHOP: { 11404 struct sockaddr_in6 *sin6; 11405 11406 /* Verify that the nexthop is reachable */ 11407 if (inlen == 0) 11408 return (-EINVAL); /* clearing option */ 11409 11410 sin6 = (struct sockaddr_in6 *)invalp; 11411 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11412 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11413 NULL, MATCH_IRE_DEFAULT, ipst); 11414 11415 if (ire == NULL) { 11416 *outlenp = 0; 11417 return (EHOSTUNREACH); 11418 } 11419 ire_refrele(ire); 11420 return (-EINVAL); 11421 } 11422 case IPV6_SEC_OPT: 11423 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11424 if (error != 0) { 11425 *outlenp = 0; 11426 return (error); 11427 } 11428 break; 11429 case IPV6_SRC_PREFERENCES: { 11430 /* 11431 * This is implemented strictly in the ip module 11432 * (here and in tcp_opt_*() to accomodate tcp 11433 * sockets). Modules above ip pass this option 11434 * down here since ip is the only one that needs to 11435 * be aware of source address preferences. 11436 * 11437 * This socket option only affects connected 11438 * sockets that haven't already bound to a specific 11439 * IPv6 address. In other words, sockets that 11440 * don't call bind() with an address other than the 11441 * unspecified address and that call connect(). 11442 * ip_bind_connected_v6() passes these preferences 11443 * to the ipif_select_source_v6() function. 11444 */ 11445 if (inlen != sizeof (uint32_t)) 11446 return (EINVAL); 11447 error = ip6_set_src_preferences(connp, 11448 *(uint32_t *)invalp); 11449 if (error != 0) { 11450 *outlenp = 0; 11451 return (error); 11452 } else { 11453 *outlenp = sizeof (uint32_t); 11454 } 11455 break; 11456 } 11457 case IPV6_V6ONLY: 11458 if (*i1 < 0 || *i1 > 1) { 11459 return (EINVAL); 11460 } 11461 mutex_enter(&connp->conn_lock); 11462 connp->conn_ipv6_v6only = *i1; 11463 mutex_exit(&connp->conn_lock); 11464 break; 11465 default: 11466 return (-EINVAL); 11467 } 11468 break; 11469 default: 11470 /* 11471 * "soft" error (negative) 11472 * option not handled at this level 11473 * Note: Do not modify *outlenp 11474 */ 11475 return (-EINVAL); 11476 } 11477 /* 11478 * Common case of return from an option that is sizeof (int) 11479 */ 11480 *(int *)outvalp = *i1; 11481 *outlenp = sizeof (int); 11482 return (0); 11483 } 11484 11485 /* 11486 * This routine gets default values of certain options whose default 11487 * values are maintained by protocol specific code 11488 */ 11489 /* ARGSUSED */ 11490 int 11491 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11492 { 11493 int *i1 = (int *)ptr; 11494 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11495 11496 switch (level) { 11497 case IPPROTO_IP: 11498 switch (name) { 11499 case IP_MULTICAST_TTL: 11500 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11501 return (sizeof (uchar_t)); 11502 case IP_MULTICAST_LOOP: 11503 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11504 return (sizeof (uchar_t)); 11505 default: 11506 return (-1); 11507 } 11508 case IPPROTO_IPV6: 11509 switch (name) { 11510 case IPV6_UNICAST_HOPS: 11511 *i1 = ipst->ips_ipv6_def_hops; 11512 return (sizeof (int)); 11513 case IPV6_MULTICAST_HOPS: 11514 *i1 = IP_DEFAULT_MULTICAST_TTL; 11515 return (sizeof (int)); 11516 case IPV6_MULTICAST_LOOP: 11517 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11518 return (sizeof (int)); 11519 case IPV6_V6ONLY: 11520 *i1 = 1; 11521 return (sizeof (int)); 11522 default: 11523 return (-1); 11524 } 11525 default: 11526 return (-1); 11527 } 11528 /* NOTREACHED */ 11529 } 11530 11531 /* 11532 * Given a destination address and a pointer to where to put the information 11533 * this routine fills in the mtuinfo. 11534 */ 11535 int 11536 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11537 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11538 { 11539 ire_t *ire; 11540 ip_stack_t *ipst = ns->netstack_ip; 11541 11542 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11543 return (-1); 11544 11545 bzero(mtuinfo, sizeof (*mtuinfo)); 11546 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11547 mtuinfo->ip6m_addr.sin6_port = port; 11548 mtuinfo->ip6m_addr.sin6_addr = *in6; 11549 11550 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11551 if (ire != NULL) { 11552 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11553 ire_refrele(ire); 11554 } else { 11555 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11556 } 11557 return (sizeof (struct ip6_mtuinfo)); 11558 } 11559 11560 /* 11561 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11562 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11563 * isn't. This doesn't matter as the error checking is done properly for the 11564 * other MRT options coming in through ip_opt_set. 11565 */ 11566 int 11567 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11568 { 11569 conn_t *connp = Q_TO_CONN(q); 11570 ipsec_req_t *req = (ipsec_req_t *)ptr; 11571 11572 switch (level) { 11573 case IPPROTO_IP: 11574 switch (name) { 11575 case MRT_VERSION: 11576 case MRT_ASSERT: 11577 (void) ip_mrouter_get(name, q, ptr); 11578 return (sizeof (int)); 11579 case IP_SEC_OPT: 11580 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11581 case IP_NEXTHOP: 11582 if (connp->conn_nexthop_set) { 11583 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11584 return (sizeof (ipaddr_t)); 11585 } else 11586 return (0); 11587 case IP_RECVPKTINFO: 11588 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11589 return (sizeof (int)); 11590 default: 11591 break; 11592 } 11593 break; 11594 case IPPROTO_IPV6: 11595 switch (name) { 11596 case IPV6_SEC_OPT: 11597 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11598 case IPV6_SRC_PREFERENCES: { 11599 return (ip6_get_src_preferences(connp, 11600 (uint32_t *)ptr)); 11601 } 11602 case IPV6_V6ONLY: 11603 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11604 return (sizeof (int)); 11605 case IPV6_PATHMTU: 11606 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11607 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11608 default: 11609 break; 11610 } 11611 break; 11612 default: 11613 break; 11614 } 11615 return (-1); 11616 } 11617 11618 /* Named Dispatch routine to get a current value out of our parameter table. */ 11619 /* ARGSUSED */ 11620 static int 11621 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11622 { 11623 ipparam_t *ippa = (ipparam_t *)cp; 11624 11625 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11626 return (0); 11627 } 11628 11629 /* ARGSUSED */ 11630 static int 11631 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11632 { 11633 11634 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11635 return (0); 11636 } 11637 11638 /* 11639 * Set ip{,6}_forwarding values. This means walking through all of the 11640 * ill's and toggling their forwarding values. 11641 */ 11642 /* ARGSUSED */ 11643 static int 11644 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11645 { 11646 long new_value; 11647 int *forwarding_value = (int *)cp; 11648 ill_t *ill; 11649 boolean_t isv6; 11650 ill_walk_context_t ctx; 11651 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11652 11653 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11654 11655 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11656 new_value < 0 || new_value > 1) { 11657 return (EINVAL); 11658 } 11659 11660 *forwarding_value = new_value; 11661 11662 /* 11663 * Regardless of the current value of ip_forwarding, set all per-ill 11664 * values of ip_forwarding to the value being set. 11665 * 11666 * Bring all the ill's up to date with the new global value. 11667 */ 11668 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11669 11670 if (isv6) 11671 ill = ILL_START_WALK_V6(&ctx, ipst); 11672 else 11673 ill = ILL_START_WALK_V4(&ctx, ipst); 11674 11675 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11676 (void) ill_forward_set(ill, new_value != 0); 11677 11678 rw_exit(&ipst->ips_ill_g_lock); 11679 return (0); 11680 } 11681 11682 /* 11683 * Walk through the param array specified registering each element with the 11684 * Named Dispatch handler. This is called only during init. So it is ok 11685 * not to acquire any locks 11686 */ 11687 static boolean_t 11688 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11689 ipndp_t *ipnd, size_t ipnd_cnt) 11690 { 11691 for (; ippa_cnt-- > 0; ippa++) { 11692 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11693 if (!nd_load(ndp, ippa->ip_param_name, 11694 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11695 nd_free(ndp); 11696 return (B_FALSE); 11697 } 11698 } 11699 } 11700 11701 for (; ipnd_cnt-- > 0; ipnd++) { 11702 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11703 if (!nd_load(ndp, ipnd->ip_ndp_name, 11704 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11705 ipnd->ip_ndp_data)) { 11706 nd_free(ndp); 11707 return (B_FALSE); 11708 } 11709 } 11710 } 11711 11712 return (B_TRUE); 11713 } 11714 11715 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11716 /* ARGSUSED */ 11717 static int 11718 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11719 { 11720 long new_value; 11721 ipparam_t *ippa = (ipparam_t *)cp; 11722 11723 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11724 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11725 return (EINVAL); 11726 } 11727 ippa->ip_param_value = new_value; 11728 return (0); 11729 } 11730 11731 /* 11732 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11733 * When an ipf is passed here for the first time, if 11734 * we already have in-order fragments on the queue, we convert from the fast- 11735 * path reassembly scheme to the hard-case scheme. From then on, additional 11736 * fragments are reassembled here. We keep track of the start and end offsets 11737 * of each piece, and the number of holes in the chain. When the hole count 11738 * goes to zero, we are done! 11739 * 11740 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11741 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11742 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11743 * after the call to ip_reassemble(). 11744 */ 11745 int 11746 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11747 size_t msg_len) 11748 { 11749 uint_t end; 11750 mblk_t *next_mp; 11751 mblk_t *mp1; 11752 uint_t offset; 11753 boolean_t incr_dups = B_TRUE; 11754 boolean_t offset_zero_seen = B_FALSE; 11755 boolean_t pkt_boundary_checked = B_FALSE; 11756 11757 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11758 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11759 11760 /* Add in byte count */ 11761 ipf->ipf_count += msg_len; 11762 if (ipf->ipf_end) { 11763 /* 11764 * We were part way through in-order reassembly, but now there 11765 * is a hole. We walk through messages already queued, and 11766 * mark them for hard case reassembly. We know that up till 11767 * now they were in order starting from offset zero. 11768 */ 11769 offset = 0; 11770 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11771 IP_REASS_SET_START(mp1, offset); 11772 if (offset == 0) { 11773 ASSERT(ipf->ipf_nf_hdr_len != 0); 11774 offset = -ipf->ipf_nf_hdr_len; 11775 } 11776 offset += mp1->b_wptr - mp1->b_rptr; 11777 IP_REASS_SET_END(mp1, offset); 11778 } 11779 /* One hole at the end. */ 11780 ipf->ipf_hole_cnt = 1; 11781 /* Brand it as a hard case, forever. */ 11782 ipf->ipf_end = 0; 11783 } 11784 /* Walk through all the new pieces. */ 11785 do { 11786 end = start + (mp->b_wptr - mp->b_rptr); 11787 /* 11788 * If start is 0, decrease 'end' only for the first mblk of 11789 * the fragment. Otherwise 'end' can get wrong value in the 11790 * second pass of the loop if first mblk is exactly the 11791 * size of ipf_nf_hdr_len. 11792 */ 11793 if (start == 0 && !offset_zero_seen) { 11794 /* First segment */ 11795 ASSERT(ipf->ipf_nf_hdr_len != 0); 11796 end -= ipf->ipf_nf_hdr_len; 11797 offset_zero_seen = B_TRUE; 11798 } 11799 next_mp = mp->b_cont; 11800 /* 11801 * We are checking to see if there is any interesing data 11802 * to process. If there isn't and the mblk isn't the 11803 * one which carries the unfragmentable header then we 11804 * drop it. It's possible to have just the unfragmentable 11805 * header come through without any data. That needs to be 11806 * saved. 11807 * 11808 * If the assert at the top of this function holds then the 11809 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11810 * is infrequently traveled enough that the test is left in 11811 * to protect against future code changes which break that 11812 * invariant. 11813 */ 11814 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11815 /* Empty. Blast it. */ 11816 IP_REASS_SET_START(mp, 0); 11817 IP_REASS_SET_END(mp, 0); 11818 /* 11819 * If the ipf points to the mblk we are about to free, 11820 * update ipf to point to the next mblk (or NULL 11821 * if none). 11822 */ 11823 if (ipf->ipf_mp->b_cont == mp) 11824 ipf->ipf_mp->b_cont = next_mp; 11825 freeb(mp); 11826 continue; 11827 } 11828 mp->b_cont = NULL; 11829 IP_REASS_SET_START(mp, start); 11830 IP_REASS_SET_END(mp, end); 11831 if (!ipf->ipf_tail_mp) { 11832 ipf->ipf_tail_mp = mp; 11833 ipf->ipf_mp->b_cont = mp; 11834 if (start == 0 || !more) { 11835 ipf->ipf_hole_cnt = 1; 11836 /* 11837 * if the first fragment comes in more than one 11838 * mblk, this loop will be executed for each 11839 * mblk. Need to adjust hole count so exiting 11840 * this routine will leave hole count at 1. 11841 */ 11842 if (next_mp) 11843 ipf->ipf_hole_cnt++; 11844 } else 11845 ipf->ipf_hole_cnt = 2; 11846 continue; 11847 } else if (ipf->ipf_last_frag_seen && !more && 11848 !pkt_boundary_checked) { 11849 /* 11850 * We check datagram boundary only if this fragment 11851 * claims to be the last fragment and we have seen a 11852 * last fragment in the past too. We do this only 11853 * once for a given fragment. 11854 * 11855 * start cannot be 0 here as fragments with start=0 11856 * and MF=0 gets handled as a complete packet. These 11857 * fragments should not reach here. 11858 */ 11859 11860 if (start + msgdsize(mp) != 11861 IP_REASS_END(ipf->ipf_tail_mp)) { 11862 /* 11863 * We have two fragments both of which claim 11864 * to be the last fragment but gives conflicting 11865 * information about the whole datagram size. 11866 * Something fishy is going on. Drop the 11867 * fragment and free up the reassembly list. 11868 */ 11869 return (IP_REASS_FAILED); 11870 } 11871 11872 /* 11873 * We shouldn't come to this code block again for this 11874 * particular fragment. 11875 */ 11876 pkt_boundary_checked = B_TRUE; 11877 } 11878 11879 /* New stuff at or beyond tail? */ 11880 offset = IP_REASS_END(ipf->ipf_tail_mp); 11881 if (start >= offset) { 11882 if (ipf->ipf_last_frag_seen) { 11883 /* current fragment is beyond last fragment */ 11884 return (IP_REASS_FAILED); 11885 } 11886 /* Link it on end. */ 11887 ipf->ipf_tail_mp->b_cont = mp; 11888 ipf->ipf_tail_mp = mp; 11889 if (more) { 11890 if (start != offset) 11891 ipf->ipf_hole_cnt++; 11892 } else if (start == offset && next_mp == NULL) 11893 ipf->ipf_hole_cnt--; 11894 continue; 11895 } 11896 mp1 = ipf->ipf_mp->b_cont; 11897 offset = IP_REASS_START(mp1); 11898 /* New stuff at the front? */ 11899 if (start < offset) { 11900 if (start == 0) { 11901 if (end >= offset) { 11902 /* Nailed the hole at the begining. */ 11903 ipf->ipf_hole_cnt--; 11904 } 11905 } else if (end < offset) { 11906 /* 11907 * A hole, stuff, and a hole where there used 11908 * to be just a hole. 11909 */ 11910 ipf->ipf_hole_cnt++; 11911 } 11912 mp->b_cont = mp1; 11913 /* Check for overlap. */ 11914 while (end > offset) { 11915 if (end < IP_REASS_END(mp1)) { 11916 mp->b_wptr -= end - offset; 11917 IP_REASS_SET_END(mp, offset); 11918 BUMP_MIB(ill->ill_ip_mib, 11919 ipIfStatsReasmPartDups); 11920 break; 11921 } 11922 /* Did we cover another hole? */ 11923 if ((mp1->b_cont && 11924 IP_REASS_END(mp1) != 11925 IP_REASS_START(mp1->b_cont) && 11926 end >= IP_REASS_START(mp1->b_cont)) || 11927 (!ipf->ipf_last_frag_seen && !more)) { 11928 ipf->ipf_hole_cnt--; 11929 } 11930 /* Clip out mp1. */ 11931 if ((mp->b_cont = mp1->b_cont) == NULL) { 11932 /* 11933 * After clipping out mp1, this guy 11934 * is now hanging off the end. 11935 */ 11936 ipf->ipf_tail_mp = mp; 11937 } 11938 IP_REASS_SET_START(mp1, 0); 11939 IP_REASS_SET_END(mp1, 0); 11940 /* Subtract byte count */ 11941 ipf->ipf_count -= mp1->b_datap->db_lim - 11942 mp1->b_datap->db_base; 11943 freeb(mp1); 11944 BUMP_MIB(ill->ill_ip_mib, 11945 ipIfStatsReasmPartDups); 11946 mp1 = mp->b_cont; 11947 if (!mp1) 11948 break; 11949 offset = IP_REASS_START(mp1); 11950 } 11951 ipf->ipf_mp->b_cont = mp; 11952 continue; 11953 } 11954 /* 11955 * The new piece starts somewhere between the start of the head 11956 * and before the end of the tail. 11957 */ 11958 for (; mp1; mp1 = mp1->b_cont) { 11959 offset = IP_REASS_END(mp1); 11960 if (start < offset) { 11961 if (end <= offset) { 11962 /* Nothing new. */ 11963 IP_REASS_SET_START(mp, 0); 11964 IP_REASS_SET_END(mp, 0); 11965 /* Subtract byte count */ 11966 ipf->ipf_count -= mp->b_datap->db_lim - 11967 mp->b_datap->db_base; 11968 if (incr_dups) { 11969 ipf->ipf_num_dups++; 11970 incr_dups = B_FALSE; 11971 } 11972 freeb(mp); 11973 BUMP_MIB(ill->ill_ip_mib, 11974 ipIfStatsReasmDuplicates); 11975 break; 11976 } 11977 /* 11978 * Trim redundant stuff off beginning of new 11979 * piece. 11980 */ 11981 IP_REASS_SET_START(mp, offset); 11982 mp->b_rptr += offset - start; 11983 BUMP_MIB(ill->ill_ip_mib, 11984 ipIfStatsReasmPartDups); 11985 start = offset; 11986 if (!mp1->b_cont) { 11987 /* 11988 * After trimming, this guy is now 11989 * hanging off the end. 11990 */ 11991 mp1->b_cont = mp; 11992 ipf->ipf_tail_mp = mp; 11993 if (!more) { 11994 ipf->ipf_hole_cnt--; 11995 } 11996 break; 11997 } 11998 } 11999 if (start >= IP_REASS_START(mp1->b_cont)) 12000 continue; 12001 /* Fill a hole */ 12002 if (start > offset) 12003 ipf->ipf_hole_cnt++; 12004 mp->b_cont = mp1->b_cont; 12005 mp1->b_cont = mp; 12006 mp1 = mp->b_cont; 12007 offset = IP_REASS_START(mp1); 12008 if (end >= offset) { 12009 ipf->ipf_hole_cnt--; 12010 /* Check for overlap. */ 12011 while (end > offset) { 12012 if (end < IP_REASS_END(mp1)) { 12013 mp->b_wptr -= end - offset; 12014 IP_REASS_SET_END(mp, offset); 12015 /* 12016 * TODO we might bump 12017 * this up twice if there is 12018 * overlap at both ends. 12019 */ 12020 BUMP_MIB(ill->ill_ip_mib, 12021 ipIfStatsReasmPartDups); 12022 break; 12023 } 12024 /* Did we cover another hole? */ 12025 if ((mp1->b_cont && 12026 IP_REASS_END(mp1) 12027 != IP_REASS_START(mp1->b_cont) && 12028 end >= 12029 IP_REASS_START(mp1->b_cont)) || 12030 (!ipf->ipf_last_frag_seen && 12031 !more)) { 12032 ipf->ipf_hole_cnt--; 12033 } 12034 /* Clip out mp1. */ 12035 if ((mp->b_cont = mp1->b_cont) == 12036 NULL) { 12037 /* 12038 * After clipping out mp1, 12039 * this guy is now hanging 12040 * off the end. 12041 */ 12042 ipf->ipf_tail_mp = mp; 12043 } 12044 IP_REASS_SET_START(mp1, 0); 12045 IP_REASS_SET_END(mp1, 0); 12046 /* Subtract byte count */ 12047 ipf->ipf_count -= 12048 mp1->b_datap->db_lim - 12049 mp1->b_datap->db_base; 12050 freeb(mp1); 12051 BUMP_MIB(ill->ill_ip_mib, 12052 ipIfStatsReasmPartDups); 12053 mp1 = mp->b_cont; 12054 if (!mp1) 12055 break; 12056 offset = IP_REASS_START(mp1); 12057 } 12058 } 12059 break; 12060 } 12061 } while (start = end, mp = next_mp); 12062 12063 /* Fragment just processed could be the last one. Remember this fact */ 12064 if (!more) 12065 ipf->ipf_last_frag_seen = B_TRUE; 12066 12067 /* Still got holes? */ 12068 if (ipf->ipf_hole_cnt) 12069 return (IP_REASS_PARTIAL); 12070 /* Clean up overloaded fields to avoid upstream disasters. */ 12071 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12072 IP_REASS_SET_START(mp1, 0); 12073 IP_REASS_SET_END(mp1, 0); 12074 } 12075 return (IP_REASS_COMPLETE); 12076 } 12077 12078 /* 12079 * ipsec processing for the fast path, used for input UDP Packets 12080 * Returns true if ready for passup to UDP. 12081 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12082 * was an ESP-in-UDP packet, etc.). 12083 */ 12084 static boolean_t 12085 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12086 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12087 { 12088 uint32_t ill_index; 12089 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12090 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12091 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12092 udp_t *udp = connp->conn_udp; 12093 12094 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12095 /* The ill_index of the incoming ILL */ 12096 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12097 12098 /* pass packet up to the transport */ 12099 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12100 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12101 NULL, mctl_present); 12102 if (*first_mpp == NULL) { 12103 return (B_FALSE); 12104 } 12105 } 12106 12107 /* Initiate IPPF processing for fastpath UDP */ 12108 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12109 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12110 if (*mpp == NULL) { 12111 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12112 "deferred/dropped during IPPF processing\n")); 12113 return (B_FALSE); 12114 } 12115 } 12116 /* 12117 * Remove 0-spi if it's 0, or move everything behind 12118 * the UDP header over it and forward to ESP via 12119 * ip_proto_input(). 12120 */ 12121 if (udp->udp_nat_t_endpoint) { 12122 if (mctl_present) { 12123 /* mctl_present *shouldn't* happen. */ 12124 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12125 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12126 &ipss->ipsec_dropper); 12127 *first_mpp = NULL; 12128 return (B_FALSE); 12129 } 12130 12131 /* "ill" is "recv_ill" in actuality. */ 12132 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12133 return (B_FALSE); 12134 12135 /* Else continue like a normal UDP packet. */ 12136 } 12137 12138 /* 12139 * We make the checks as below since we are in the fast path 12140 * and want to minimize the number of checks if the IP_RECVIF and/or 12141 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12142 */ 12143 if (connp->conn_recvif || connp->conn_recvslla || 12144 connp->conn_ip_recvpktinfo) { 12145 if (connp->conn_recvif) { 12146 in_flags = IPF_RECVIF; 12147 } 12148 /* 12149 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12150 * so the flag passed to ip_add_info is based on IP version 12151 * of connp. 12152 */ 12153 if (connp->conn_ip_recvpktinfo) { 12154 if (connp->conn_af_isv6) { 12155 /* 12156 * V6 only needs index 12157 */ 12158 in_flags |= IPF_RECVIF; 12159 } else { 12160 /* 12161 * V4 needs index + matching address. 12162 */ 12163 in_flags |= IPF_RECVADDR; 12164 } 12165 } 12166 if (connp->conn_recvslla) { 12167 in_flags |= IPF_RECVSLLA; 12168 } 12169 /* 12170 * since in_flags are being set ill will be 12171 * referenced in ip_add_info, so it better not 12172 * be NULL. 12173 */ 12174 /* 12175 * the actual data will be contained in b_cont 12176 * upon successful return of the following call. 12177 * If the call fails then the original mblk is 12178 * returned. 12179 */ 12180 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12181 ipst); 12182 } 12183 12184 return (B_TRUE); 12185 } 12186 12187 /* 12188 * Fragmentation reassembly. Each ILL has a hash table for 12189 * queuing packets undergoing reassembly for all IPIFs 12190 * associated with the ILL. The hash is based on the packet 12191 * IP ident field. The ILL frag hash table was allocated 12192 * as a timer block at the time the ILL was created. Whenever 12193 * there is anything on the reassembly queue, the timer will 12194 * be running. Returns B_TRUE if successful else B_FALSE; 12195 * frees mp on failure. 12196 */ 12197 static boolean_t 12198 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12199 uint32_t *cksum_val, uint16_t *cksum_flags) 12200 { 12201 uint32_t frag_offset_flags; 12202 ill_t *ill = (ill_t *)q->q_ptr; 12203 mblk_t *mp = *mpp; 12204 mblk_t *t_mp; 12205 ipaddr_t dst; 12206 uint8_t proto = ipha->ipha_protocol; 12207 uint32_t sum_val; 12208 uint16_t sum_flags; 12209 ipf_t *ipf; 12210 ipf_t **ipfp; 12211 ipfb_t *ipfb; 12212 uint16_t ident; 12213 uint32_t offset; 12214 ipaddr_t src; 12215 uint_t hdr_length; 12216 uint32_t end; 12217 mblk_t *mp1; 12218 mblk_t *tail_mp; 12219 size_t count; 12220 size_t msg_len; 12221 uint8_t ecn_info = 0; 12222 uint32_t packet_size; 12223 boolean_t pruned = B_FALSE; 12224 ip_stack_t *ipst = ill->ill_ipst; 12225 12226 if (cksum_val != NULL) 12227 *cksum_val = 0; 12228 if (cksum_flags != NULL) 12229 *cksum_flags = 0; 12230 12231 /* 12232 * Drop the fragmented as early as possible, if 12233 * we don't have resource(s) to re-assemble. 12234 */ 12235 if (ipst->ips_ip_reass_queue_bytes == 0) { 12236 freemsg(mp); 12237 return (B_FALSE); 12238 } 12239 12240 /* Check for fragmentation offset; return if there's none */ 12241 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12242 (IPH_MF | IPH_OFFSET)) == 0) 12243 return (B_TRUE); 12244 12245 /* 12246 * We utilize hardware computed checksum info only for UDP since 12247 * IP fragmentation is a normal occurence for the protocol. In 12248 * addition, checksum offload support for IP fragments carrying 12249 * UDP payload is commonly implemented across network adapters. 12250 */ 12251 ASSERT(ill != NULL); 12252 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12253 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12254 mblk_t *mp1 = mp->b_cont; 12255 int32_t len; 12256 12257 /* Record checksum information from the packet */ 12258 sum_val = (uint32_t)DB_CKSUM16(mp); 12259 sum_flags = DB_CKSUMFLAGS(mp); 12260 12261 /* IP payload offset from beginning of mblk */ 12262 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12263 12264 if ((sum_flags & HCK_PARTIALCKSUM) && 12265 (mp1 == NULL || mp1->b_cont == NULL) && 12266 offset >= DB_CKSUMSTART(mp) && 12267 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12268 uint32_t adj; 12269 /* 12270 * Partial checksum has been calculated by hardware 12271 * and attached to the packet; in addition, any 12272 * prepended extraneous data is even byte aligned. 12273 * If any such data exists, we adjust the checksum; 12274 * this would also handle any postpended data. 12275 */ 12276 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12277 mp, mp1, len, adj); 12278 12279 /* One's complement subtract extraneous checksum */ 12280 if (adj >= sum_val) 12281 sum_val = ~(adj - sum_val) & 0xFFFF; 12282 else 12283 sum_val -= adj; 12284 } 12285 } else { 12286 sum_val = 0; 12287 sum_flags = 0; 12288 } 12289 12290 /* Clear hardware checksumming flag */ 12291 DB_CKSUMFLAGS(mp) = 0; 12292 12293 ident = ipha->ipha_ident; 12294 offset = (frag_offset_flags << 3) & 0xFFFF; 12295 src = ipha->ipha_src; 12296 dst = ipha->ipha_dst; 12297 hdr_length = IPH_HDR_LENGTH(ipha); 12298 end = ntohs(ipha->ipha_length) - hdr_length; 12299 12300 /* If end == 0 then we have a packet with no data, so just free it */ 12301 if (end == 0) { 12302 freemsg(mp); 12303 return (B_FALSE); 12304 } 12305 12306 /* Record the ECN field info. */ 12307 ecn_info = (ipha->ipha_type_of_service & 0x3); 12308 if (offset != 0) { 12309 /* 12310 * If this isn't the first piece, strip the header, and 12311 * add the offset to the end value. 12312 */ 12313 mp->b_rptr += hdr_length; 12314 end += offset; 12315 } 12316 12317 msg_len = MBLKSIZE(mp); 12318 tail_mp = mp; 12319 while (tail_mp->b_cont != NULL) { 12320 tail_mp = tail_mp->b_cont; 12321 msg_len += MBLKSIZE(tail_mp); 12322 } 12323 12324 /* If the reassembly list for this ILL will get too big, prune it */ 12325 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12326 ipst->ips_ip_reass_queue_bytes) { 12327 ill_frag_prune(ill, 12328 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12329 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12330 pruned = B_TRUE; 12331 } 12332 12333 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12334 mutex_enter(&ipfb->ipfb_lock); 12335 12336 ipfp = &ipfb->ipfb_ipf; 12337 /* Try to find an existing fragment queue for this packet. */ 12338 for (;;) { 12339 ipf = ipfp[0]; 12340 if (ipf != NULL) { 12341 /* 12342 * It has to match on ident and src/dst address. 12343 */ 12344 if (ipf->ipf_ident == ident && 12345 ipf->ipf_src == src && 12346 ipf->ipf_dst == dst && 12347 ipf->ipf_protocol == proto) { 12348 /* 12349 * If we have received too many 12350 * duplicate fragments for this packet 12351 * free it. 12352 */ 12353 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12354 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12355 freemsg(mp); 12356 mutex_exit(&ipfb->ipfb_lock); 12357 return (B_FALSE); 12358 } 12359 /* Found it. */ 12360 break; 12361 } 12362 ipfp = &ipf->ipf_hash_next; 12363 continue; 12364 } 12365 12366 /* 12367 * If we pruned the list, do we want to store this new 12368 * fragment?. We apply an optimization here based on the 12369 * fact that most fragments will be received in order. 12370 * So if the offset of this incoming fragment is zero, 12371 * it is the first fragment of a new packet. We will 12372 * keep it. Otherwise drop the fragment, as we have 12373 * probably pruned the packet already (since the 12374 * packet cannot be found). 12375 */ 12376 if (pruned && offset != 0) { 12377 mutex_exit(&ipfb->ipfb_lock); 12378 freemsg(mp); 12379 return (B_FALSE); 12380 } 12381 12382 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12383 /* 12384 * Too many fragmented packets in this hash 12385 * bucket. Free the oldest. 12386 */ 12387 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12388 } 12389 12390 /* New guy. Allocate a frag message. */ 12391 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12392 if (mp1 == NULL) { 12393 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12394 freemsg(mp); 12395 reass_done: 12396 mutex_exit(&ipfb->ipfb_lock); 12397 return (B_FALSE); 12398 } 12399 12400 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12401 mp1->b_cont = mp; 12402 12403 /* Initialize the fragment header. */ 12404 ipf = (ipf_t *)mp1->b_rptr; 12405 ipf->ipf_mp = mp1; 12406 ipf->ipf_ptphn = ipfp; 12407 ipfp[0] = ipf; 12408 ipf->ipf_hash_next = NULL; 12409 ipf->ipf_ident = ident; 12410 ipf->ipf_protocol = proto; 12411 ipf->ipf_src = src; 12412 ipf->ipf_dst = dst; 12413 ipf->ipf_nf_hdr_len = 0; 12414 /* Record reassembly start time. */ 12415 ipf->ipf_timestamp = gethrestime_sec(); 12416 /* Record ipf generation and account for frag header */ 12417 ipf->ipf_gen = ill->ill_ipf_gen++; 12418 ipf->ipf_count = MBLKSIZE(mp1); 12419 ipf->ipf_last_frag_seen = B_FALSE; 12420 ipf->ipf_ecn = ecn_info; 12421 ipf->ipf_num_dups = 0; 12422 ipfb->ipfb_frag_pkts++; 12423 ipf->ipf_checksum = 0; 12424 ipf->ipf_checksum_flags = 0; 12425 12426 /* Store checksum value in fragment header */ 12427 if (sum_flags != 0) { 12428 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12429 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12430 ipf->ipf_checksum = sum_val; 12431 ipf->ipf_checksum_flags = sum_flags; 12432 } 12433 12434 /* 12435 * We handle reassembly two ways. In the easy case, 12436 * where all the fragments show up in order, we do 12437 * minimal bookkeeping, and just clip new pieces on 12438 * the end. If we ever see a hole, then we go off 12439 * to ip_reassemble which has to mark the pieces and 12440 * keep track of the number of holes, etc. Obviously, 12441 * the point of having both mechanisms is so we can 12442 * handle the easy case as efficiently as possible. 12443 */ 12444 if (offset == 0) { 12445 /* Easy case, in-order reassembly so far. */ 12446 ipf->ipf_count += msg_len; 12447 ipf->ipf_tail_mp = tail_mp; 12448 /* 12449 * Keep track of next expected offset in 12450 * ipf_end. 12451 */ 12452 ipf->ipf_end = end; 12453 ipf->ipf_nf_hdr_len = hdr_length; 12454 } else { 12455 /* Hard case, hole at the beginning. */ 12456 ipf->ipf_tail_mp = NULL; 12457 /* 12458 * ipf_end == 0 means that we have given up 12459 * on easy reassembly. 12460 */ 12461 ipf->ipf_end = 0; 12462 12463 /* Forget checksum offload from now on */ 12464 ipf->ipf_checksum_flags = 0; 12465 12466 /* 12467 * ipf_hole_cnt is set by ip_reassemble. 12468 * ipf_count is updated by ip_reassemble. 12469 * No need to check for return value here 12470 * as we don't expect reassembly to complete 12471 * or fail for the first fragment itself. 12472 */ 12473 (void) ip_reassemble(mp, ipf, 12474 (frag_offset_flags & IPH_OFFSET) << 3, 12475 (frag_offset_flags & IPH_MF), ill, msg_len); 12476 } 12477 /* Update per ipfb and ill byte counts */ 12478 ipfb->ipfb_count += ipf->ipf_count; 12479 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12480 ill->ill_frag_count += ipf->ipf_count; 12481 /* If the frag timer wasn't already going, start it. */ 12482 mutex_enter(&ill->ill_lock); 12483 ill_frag_timer_start(ill); 12484 mutex_exit(&ill->ill_lock); 12485 goto reass_done; 12486 } 12487 12488 /* 12489 * If the packet's flag has changed (it could be coming up 12490 * from an interface different than the previous, therefore 12491 * possibly different checksum capability), then forget about 12492 * any stored checksum states. Otherwise add the value to 12493 * the existing one stored in the fragment header. 12494 */ 12495 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12496 sum_val += ipf->ipf_checksum; 12497 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12498 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12499 ipf->ipf_checksum = sum_val; 12500 } else if (ipf->ipf_checksum_flags != 0) { 12501 /* Forget checksum offload from now on */ 12502 ipf->ipf_checksum_flags = 0; 12503 } 12504 12505 /* 12506 * We have a new piece of a datagram which is already being 12507 * reassembled. Update the ECN info if all IP fragments 12508 * are ECN capable. If there is one which is not, clear 12509 * all the info. If there is at least one which has CE 12510 * code point, IP needs to report that up to transport. 12511 */ 12512 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12513 if (ecn_info == IPH_ECN_CE) 12514 ipf->ipf_ecn = IPH_ECN_CE; 12515 } else { 12516 ipf->ipf_ecn = IPH_ECN_NECT; 12517 } 12518 if (offset && ipf->ipf_end == offset) { 12519 /* The new fragment fits at the end */ 12520 ipf->ipf_tail_mp->b_cont = mp; 12521 /* Update the byte count */ 12522 ipf->ipf_count += msg_len; 12523 /* Update per ipfb and ill byte counts */ 12524 ipfb->ipfb_count += msg_len; 12525 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12526 ill->ill_frag_count += msg_len; 12527 if (frag_offset_flags & IPH_MF) { 12528 /* More to come. */ 12529 ipf->ipf_end = end; 12530 ipf->ipf_tail_mp = tail_mp; 12531 goto reass_done; 12532 } 12533 } else { 12534 /* Go do the hard cases. */ 12535 int ret; 12536 12537 if (offset == 0) 12538 ipf->ipf_nf_hdr_len = hdr_length; 12539 12540 /* Save current byte count */ 12541 count = ipf->ipf_count; 12542 ret = ip_reassemble(mp, ipf, 12543 (frag_offset_flags & IPH_OFFSET) << 3, 12544 (frag_offset_flags & IPH_MF), ill, msg_len); 12545 /* Count of bytes added and subtracted (freeb()ed) */ 12546 count = ipf->ipf_count - count; 12547 if (count) { 12548 /* Update per ipfb and ill byte counts */ 12549 ipfb->ipfb_count += count; 12550 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12551 ill->ill_frag_count += count; 12552 } 12553 if (ret == IP_REASS_PARTIAL) { 12554 goto reass_done; 12555 } else if (ret == IP_REASS_FAILED) { 12556 /* Reassembly failed. Free up all resources */ 12557 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12558 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12559 IP_REASS_SET_START(t_mp, 0); 12560 IP_REASS_SET_END(t_mp, 0); 12561 } 12562 freemsg(mp); 12563 goto reass_done; 12564 } 12565 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12566 } 12567 /* 12568 * We have completed reassembly. Unhook the frag header from 12569 * the reassembly list. 12570 * 12571 * Before we free the frag header, record the ECN info 12572 * to report back to the transport. 12573 */ 12574 ecn_info = ipf->ipf_ecn; 12575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12576 ipfp = ipf->ipf_ptphn; 12577 12578 /* We need to supply these to caller */ 12579 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12580 sum_val = ipf->ipf_checksum; 12581 else 12582 sum_val = 0; 12583 12584 mp1 = ipf->ipf_mp; 12585 count = ipf->ipf_count; 12586 ipf = ipf->ipf_hash_next; 12587 if (ipf != NULL) 12588 ipf->ipf_ptphn = ipfp; 12589 ipfp[0] = ipf; 12590 ill->ill_frag_count -= count; 12591 ASSERT(ipfb->ipfb_count >= count); 12592 ipfb->ipfb_count -= count; 12593 ipfb->ipfb_frag_pkts--; 12594 mutex_exit(&ipfb->ipfb_lock); 12595 /* Ditch the frag header. */ 12596 mp = mp1->b_cont; 12597 12598 freeb(mp1); 12599 12600 /* Restore original IP length in header. */ 12601 packet_size = (uint32_t)msgdsize(mp); 12602 if (packet_size > IP_MAXPACKET) { 12603 freemsg(mp); 12604 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12605 return (B_FALSE); 12606 } 12607 12608 if (DB_REF(mp) > 1) { 12609 mblk_t *mp2 = copymsg(mp); 12610 12611 freemsg(mp); 12612 if (mp2 == NULL) { 12613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12614 return (B_FALSE); 12615 } 12616 mp = mp2; 12617 } 12618 ipha = (ipha_t *)mp->b_rptr; 12619 12620 ipha->ipha_length = htons((uint16_t)packet_size); 12621 /* We're now complete, zip the frag state */ 12622 ipha->ipha_fragment_offset_and_flags = 0; 12623 /* Record the ECN info. */ 12624 ipha->ipha_type_of_service &= 0xFC; 12625 ipha->ipha_type_of_service |= ecn_info; 12626 *mpp = mp; 12627 12628 /* Reassembly is successful; return checksum information if needed */ 12629 if (cksum_val != NULL) 12630 *cksum_val = sum_val; 12631 if (cksum_flags != NULL) 12632 *cksum_flags = sum_flags; 12633 12634 return (B_TRUE); 12635 } 12636 12637 /* 12638 * Perform ip header check sum update local options. 12639 * return B_TRUE if all is well, else return B_FALSE and release 12640 * the mp. caller is responsible for decrementing ire ref cnt. 12641 */ 12642 static boolean_t 12643 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12644 ip_stack_t *ipst) 12645 { 12646 mblk_t *first_mp; 12647 boolean_t mctl_present; 12648 uint16_t sum; 12649 12650 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12651 /* 12652 * Don't do the checksum if it has gone through AH/ESP 12653 * processing. 12654 */ 12655 if (!mctl_present) { 12656 sum = ip_csum_hdr(ipha); 12657 if (sum != 0) { 12658 if (ill != NULL) { 12659 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12660 } else { 12661 BUMP_MIB(&ipst->ips_ip_mib, 12662 ipIfStatsInCksumErrs); 12663 } 12664 freemsg(first_mp); 12665 return (B_FALSE); 12666 } 12667 } 12668 12669 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12670 if (mctl_present) 12671 freeb(first_mp); 12672 return (B_FALSE); 12673 } 12674 12675 return (B_TRUE); 12676 } 12677 12678 /* 12679 * All udp packet are delivered to the local host via this routine. 12680 */ 12681 void 12682 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12683 ill_t *recv_ill) 12684 { 12685 uint32_t sum; 12686 uint32_t u1; 12687 boolean_t mctl_present; 12688 conn_t *connp; 12689 mblk_t *first_mp; 12690 uint16_t *up; 12691 ill_t *ill = (ill_t *)q->q_ptr; 12692 uint16_t reass_hck_flags = 0; 12693 ip_stack_t *ipst; 12694 12695 ASSERT(recv_ill != NULL); 12696 ipst = recv_ill->ill_ipst; 12697 12698 #define rptr ((uchar_t *)ipha) 12699 12700 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12701 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12702 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12703 ASSERT(ill != NULL); 12704 12705 /* 12706 * FAST PATH for udp packets 12707 */ 12708 12709 /* u1 is # words of IP options */ 12710 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12711 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12712 12713 /* IP options present */ 12714 if (u1 != 0) 12715 goto ipoptions; 12716 12717 /* Check the IP header checksum. */ 12718 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12719 /* Clear the IP header h/w cksum flag */ 12720 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12721 } else if (!mctl_present) { 12722 /* 12723 * Don't verify header checksum if this packet is coming 12724 * back from AH/ESP as we already did it. 12725 */ 12726 #define uph ((uint16_t *)ipha) 12727 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12728 uph[6] + uph[7] + uph[8] + uph[9]; 12729 #undef uph 12730 /* finish doing IP checksum */ 12731 sum = (sum & 0xFFFF) + (sum >> 16); 12732 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12733 if (sum != 0 && sum != 0xFFFF) { 12734 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12735 freemsg(first_mp); 12736 return; 12737 } 12738 } 12739 12740 /* 12741 * Count for SNMP of inbound packets for ire. 12742 * if mctl is present this might be a secure packet and 12743 * has already been counted for in ip_proto_input(). 12744 */ 12745 if (!mctl_present) { 12746 UPDATE_IB_PKT_COUNT(ire); 12747 ire->ire_last_used_time = lbolt; 12748 } 12749 12750 /* packet part of fragmented IP packet? */ 12751 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12752 if (u1 & (IPH_MF | IPH_OFFSET)) { 12753 goto fragmented; 12754 } 12755 12756 /* u1 = IP header length (20 bytes) */ 12757 u1 = IP_SIMPLE_HDR_LENGTH; 12758 12759 /* packet does not contain complete IP & UDP headers */ 12760 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12761 goto udppullup; 12762 12763 /* up points to UDP header */ 12764 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12765 #define iphs ((uint16_t *)ipha) 12766 12767 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12768 if (up[3] != 0) { 12769 mblk_t *mp1 = mp->b_cont; 12770 boolean_t cksum_err; 12771 uint16_t hck_flags = 0; 12772 12773 /* Pseudo-header checksum */ 12774 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12775 iphs[9] + up[2]; 12776 12777 /* 12778 * Revert to software checksum calculation if the interface 12779 * isn't capable of checksum offload or if IPsec is present. 12780 */ 12781 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12782 hck_flags = DB_CKSUMFLAGS(mp); 12783 12784 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12785 IP_STAT(ipst, ip_in_sw_cksum); 12786 12787 IP_CKSUM_RECV(hck_flags, u1, 12788 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12789 (int32_t)((uchar_t *)up - rptr), 12790 mp, mp1, cksum_err); 12791 12792 if (cksum_err) { 12793 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12794 if (hck_flags & HCK_FULLCKSUM) 12795 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12796 else if (hck_flags & HCK_PARTIALCKSUM) 12797 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12798 else 12799 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12800 12801 freemsg(first_mp); 12802 return; 12803 } 12804 } 12805 12806 /* Non-fragmented broadcast or multicast packet? */ 12807 if (ire->ire_type == IRE_BROADCAST) 12808 goto udpslowpath; 12809 12810 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12811 ire->ire_zoneid, ipst)) != NULL) { 12812 ASSERT(connp->conn_upq != NULL); 12813 IP_STAT(ipst, ip_udp_fast_path); 12814 12815 if (CONN_UDP_FLOWCTLD(connp)) { 12816 freemsg(mp); 12817 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12818 } else { 12819 if (!mctl_present) { 12820 BUMP_MIB(ill->ill_ip_mib, 12821 ipIfStatsHCInDelivers); 12822 } 12823 /* 12824 * mp and first_mp can change. 12825 */ 12826 if (ip_udp_check(q, connp, recv_ill, 12827 ipha, &mp, &first_mp, mctl_present, ire)) { 12828 /* Send it upstream */ 12829 (connp->conn_recv)(connp, mp, NULL); 12830 } 12831 } 12832 /* 12833 * freeb() cannot deal with null mblk being passed 12834 * in and first_mp can be set to null in the call 12835 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12836 */ 12837 if (mctl_present && first_mp != NULL) { 12838 freeb(first_mp); 12839 } 12840 CONN_DEC_REF(connp); 12841 return; 12842 } 12843 12844 /* 12845 * if we got here we know the packet is not fragmented and 12846 * has no options. The classifier could not find a conn_t and 12847 * most likely its an icmp packet so send it through slow path. 12848 */ 12849 12850 goto udpslowpath; 12851 12852 ipoptions: 12853 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12854 goto slow_done; 12855 } 12856 12857 UPDATE_IB_PKT_COUNT(ire); 12858 ire->ire_last_used_time = lbolt; 12859 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12860 if (u1 & (IPH_MF | IPH_OFFSET)) { 12861 fragmented: 12862 /* 12863 * "sum" and "reass_hck_flags" are non-zero if the 12864 * reassembled packet has a valid hardware computed 12865 * checksum information associated with it. 12866 */ 12867 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12868 goto slow_done; 12869 /* 12870 * Make sure that first_mp points back to mp as 12871 * the mp we came in with could have changed in 12872 * ip_rput_fragment(). 12873 */ 12874 ASSERT(!mctl_present); 12875 ipha = (ipha_t *)mp->b_rptr; 12876 first_mp = mp; 12877 } 12878 12879 /* Now we have a complete datagram, destined for this machine. */ 12880 u1 = IPH_HDR_LENGTH(ipha); 12881 /* Pull up the UDP header, if necessary. */ 12882 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12883 udppullup: 12884 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12885 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12886 freemsg(first_mp); 12887 goto slow_done; 12888 } 12889 ipha = (ipha_t *)mp->b_rptr; 12890 } 12891 12892 /* 12893 * Validate the checksum for the reassembled packet; for the 12894 * pullup case we calculate the payload checksum in software. 12895 */ 12896 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12897 if (up[3] != 0) { 12898 boolean_t cksum_err; 12899 12900 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12901 IP_STAT(ipst, ip_in_sw_cksum); 12902 12903 IP_CKSUM_RECV_REASS(reass_hck_flags, 12904 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12905 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12906 iphs[9] + up[2], sum, cksum_err); 12907 12908 if (cksum_err) { 12909 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12910 12911 if (reass_hck_flags & HCK_FULLCKSUM) 12912 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12913 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12914 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12915 else 12916 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12917 12918 freemsg(first_mp); 12919 goto slow_done; 12920 } 12921 } 12922 udpslowpath: 12923 12924 /* Clear hardware checksum flag to be safe */ 12925 DB_CKSUMFLAGS(mp) = 0; 12926 12927 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12928 (ire->ire_type == IRE_BROADCAST), 12929 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12930 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12931 12932 slow_done: 12933 IP_STAT(ipst, ip_udp_slow_path); 12934 return; 12935 12936 #undef iphs 12937 #undef rptr 12938 } 12939 12940 /* ARGSUSED */ 12941 static mblk_t * 12942 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12943 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12944 ill_rx_ring_t *ill_ring) 12945 { 12946 conn_t *connp; 12947 uint32_t sum; 12948 uint32_t u1; 12949 uint16_t *up; 12950 int offset; 12951 ssize_t len; 12952 mblk_t *mp1; 12953 boolean_t syn_present = B_FALSE; 12954 tcph_t *tcph; 12955 uint_t ip_hdr_len; 12956 ill_t *ill = (ill_t *)q->q_ptr; 12957 zoneid_t zoneid = ire->ire_zoneid; 12958 boolean_t cksum_err; 12959 uint16_t hck_flags = 0; 12960 ip_stack_t *ipst = recv_ill->ill_ipst; 12961 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12962 12963 #define rptr ((uchar_t *)ipha) 12964 12965 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12966 ASSERT(ill != NULL); 12967 12968 /* 12969 * FAST PATH for tcp packets 12970 */ 12971 12972 /* u1 is # words of IP options */ 12973 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12974 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12975 12976 /* IP options present */ 12977 if (u1) { 12978 goto ipoptions; 12979 } else if (!mctl_present) { 12980 /* Check the IP header checksum. */ 12981 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12982 /* Clear the IP header h/w cksum flag */ 12983 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12984 } else if (!mctl_present) { 12985 /* 12986 * Don't verify header checksum if this packet 12987 * is coming back from AH/ESP as we already did it. 12988 */ 12989 #define uph ((uint16_t *)ipha) 12990 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12991 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12992 #undef uph 12993 /* finish doing IP checksum */ 12994 sum = (sum & 0xFFFF) + (sum >> 16); 12995 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12996 if (sum != 0 && sum != 0xFFFF) { 12997 BUMP_MIB(ill->ill_ip_mib, 12998 ipIfStatsInCksumErrs); 12999 goto error; 13000 } 13001 } 13002 } 13003 13004 if (!mctl_present) { 13005 UPDATE_IB_PKT_COUNT(ire); 13006 ire->ire_last_used_time = lbolt; 13007 } 13008 13009 /* packet part of fragmented IP packet? */ 13010 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13011 if (u1 & (IPH_MF | IPH_OFFSET)) { 13012 goto fragmented; 13013 } 13014 13015 /* u1 = IP header length (20 bytes) */ 13016 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13017 13018 /* does packet contain IP+TCP headers? */ 13019 len = mp->b_wptr - rptr; 13020 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13021 IP_STAT(ipst, ip_tcppullup); 13022 goto tcppullup; 13023 } 13024 13025 /* TCP options present? */ 13026 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13027 13028 /* 13029 * If options need to be pulled up, then goto tcpoptions. 13030 * otherwise we are still in the fast path 13031 */ 13032 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13033 IP_STAT(ipst, ip_tcpoptions); 13034 goto tcpoptions; 13035 } 13036 13037 /* multiple mblks of tcp data? */ 13038 if ((mp1 = mp->b_cont) != NULL) { 13039 /* more then two? */ 13040 if (mp1->b_cont != NULL) { 13041 IP_STAT(ipst, ip_multipkttcp); 13042 goto multipkttcp; 13043 } 13044 len += mp1->b_wptr - mp1->b_rptr; 13045 } 13046 13047 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13048 13049 /* part of pseudo checksum */ 13050 13051 /* TCP datagram length */ 13052 u1 = len - IP_SIMPLE_HDR_LENGTH; 13053 13054 #define iphs ((uint16_t *)ipha) 13055 13056 #ifdef _BIG_ENDIAN 13057 u1 += IPPROTO_TCP; 13058 #else 13059 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13060 #endif 13061 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13062 13063 /* 13064 * Revert to software checksum calculation if the interface 13065 * isn't capable of checksum offload or if IPsec is present. 13066 */ 13067 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13068 hck_flags = DB_CKSUMFLAGS(mp); 13069 13070 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13071 IP_STAT(ipst, ip_in_sw_cksum); 13072 13073 IP_CKSUM_RECV(hck_flags, u1, 13074 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13075 (int32_t)((uchar_t *)up - rptr), 13076 mp, mp1, cksum_err); 13077 13078 if (cksum_err) { 13079 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13080 13081 if (hck_flags & HCK_FULLCKSUM) 13082 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13083 else if (hck_flags & HCK_PARTIALCKSUM) 13084 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13085 else 13086 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13087 13088 goto error; 13089 } 13090 13091 try_again: 13092 13093 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13094 zoneid, ipst)) == NULL) { 13095 /* Send the TH_RST */ 13096 goto no_conn; 13097 } 13098 13099 /* 13100 * TCP FAST PATH for AF_INET socket. 13101 * 13102 * TCP fast path to avoid extra work. An AF_INET socket type 13103 * does not have facility to receive extra information via 13104 * ip_process or ip_add_info. Also, when the connection was 13105 * established, we made a check if this connection is impacted 13106 * by any global IPsec policy or per connection policy (a 13107 * policy that comes in effect later will not apply to this 13108 * connection). Since all this can be determined at the 13109 * connection establishment time, a quick check of flags 13110 * can avoid extra work. 13111 */ 13112 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13113 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13114 ASSERT(first_mp == mp); 13115 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13116 SET_SQUEUE(mp, tcp_rput_data, connp); 13117 return (mp); 13118 } 13119 13120 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13121 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13122 if (IPCL_IS_TCP(connp)) { 13123 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13124 DB_CKSUMSTART(mp) = 13125 (intptr_t)ip_squeue_get(ill_ring); 13126 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13127 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13128 BUMP_MIB(ill->ill_ip_mib, 13129 ipIfStatsHCInDelivers); 13130 SET_SQUEUE(mp, connp->conn_recv, connp); 13131 return (mp); 13132 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13133 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13134 BUMP_MIB(ill->ill_ip_mib, 13135 ipIfStatsHCInDelivers); 13136 ip_squeue_enter_unbound++; 13137 SET_SQUEUE(mp, tcp_conn_request_unbound, 13138 connp); 13139 return (mp); 13140 } 13141 syn_present = B_TRUE; 13142 } 13143 13144 } 13145 13146 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13147 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13148 13149 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13150 /* No need to send this packet to TCP */ 13151 if ((flags & TH_RST) || (flags & TH_URG)) { 13152 CONN_DEC_REF(connp); 13153 freemsg(first_mp); 13154 return (NULL); 13155 } 13156 if (flags & TH_ACK) { 13157 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13158 ipst->ips_netstack->netstack_tcp, connp); 13159 CONN_DEC_REF(connp); 13160 return (NULL); 13161 } 13162 13163 CONN_DEC_REF(connp); 13164 freemsg(first_mp); 13165 return (NULL); 13166 } 13167 13168 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13169 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13170 ipha, NULL, mctl_present); 13171 if (first_mp == NULL) { 13172 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13173 CONN_DEC_REF(connp); 13174 return (NULL); 13175 } 13176 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13177 ASSERT(syn_present); 13178 if (mctl_present) { 13179 ASSERT(first_mp != mp); 13180 first_mp->b_datap->db_struioflag |= 13181 STRUIO_POLICY; 13182 } else { 13183 ASSERT(first_mp == mp); 13184 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13185 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13186 } 13187 } else { 13188 /* 13189 * Discard first_mp early since we're dealing with a 13190 * fully-connected conn_t and tcp doesn't do policy in 13191 * this case. 13192 */ 13193 if (mctl_present) { 13194 freeb(first_mp); 13195 mctl_present = B_FALSE; 13196 } 13197 first_mp = mp; 13198 } 13199 } 13200 13201 /* Initiate IPPF processing for fastpath */ 13202 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13203 uint32_t ill_index; 13204 13205 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13206 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13207 if (mp == NULL) { 13208 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13209 "deferred/dropped during IPPF processing\n")); 13210 CONN_DEC_REF(connp); 13211 if (mctl_present) 13212 freeb(first_mp); 13213 return (NULL); 13214 } else if (mctl_present) { 13215 /* 13216 * ip_process might return a new mp. 13217 */ 13218 ASSERT(first_mp != mp); 13219 first_mp->b_cont = mp; 13220 } else { 13221 first_mp = mp; 13222 } 13223 13224 } 13225 13226 if (!syn_present && connp->conn_ip_recvpktinfo) { 13227 /* 13228 * TCP does not support IP_RECVPKTINFO for v4 so lets 13229 * make sure IPF_RECVIF is passed to ip_add_info. 13230 */ 13231 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13232 IPCL_ZONEID(connp), ipst); 13233 if (mp == NULL) { 13234 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13235 CONN_DEC_REF(connp); 13236 if (mctl_present) 13237 freeb(first_mp); 13238 return (NULL); 13239 } else if (mctl_present) { 13240 /* 13241 * ip_add_info might return a new mp. 13242 */ 13243 ASSERT(first_mp != mp); 13244 first_mp->b_cont = mp; 13245 } else { 13246 first_mp = mp; 13247 } 13248 } 13249 13250 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13251 if (IPCL_IS_TCP(connp)) { 13252 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13253 return (first_mp); 13254 } else { 13255 /* SOCK_RAW, IPPROTO_TCP case */ 13256 (connp->conn_recv)(connp, first_mp, NULL); 13257 CONN_DEC_REF(connp); 13258 return (NULL); 13259 } 13260 13261 no_conn: 13262 /* Initiate IPPf processing, if needed. */ 13263 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13264 uint32_t ill_index; 13265 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13266 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13267 if (first_mp == NULL) { 13268 return (NULL); 13269 } 13270 } 13271 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13272 13273 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13274 ipst->ips_netstack->netstack_tcp, NULL); 13275 return (NULL); 13276 ipoptions: 13277 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13278 goto slow_done; 13279 } 13280 13281 UPDATE_IB_PKT_COUNT(ire); 13282 ire->ire_last_used_time = lbolt; 13283 13284 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13285 if (u1 & (IPH_MF | IPH_OFFSET)) { 13286 fragmented: 13287 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13288 if (mctl_present) 13289 freeb(first_mp); 13290 goto slow_done; 13291 } 13292 /* 13293 * Make sure that first_mp points back to mp as 13294 * the mp we came in with could have changed in 13295 * ip_rput_fragment(). 13296 */ 13297 ASSERT(!mctl_present); 13298 ipha = (ipha_t *)mp->b_rptr; 13299 first_mp = mp; 13300 } 13301 13302 /* Now we have a complete datagram, destined for this machine. */ 13303 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13304 13305 len = mp->b_wptr - mp->b_rptr; 13306 /* Pull up a minimal TCP header, if necessary. */ 13307 if (len < (u1 + 20)) { 13308 tcppullup: 13309 if (!pullupmsg(mp, u1 + 20)) { 13310 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13311 goto error; 13312 } 13313 ipha = (ipha_t *)mp->b_rptr; 13314 len = mp->b_wptr - mp->b_rptr; 13315 } 13316 13317 /* 13318 * Extract the offset field from the TCP header. As usual, we 13319 * try to help the compiler more than the reader. 13320 */ 13321 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13322 if (offset != 5) { 13323 tcpoptions: 13324 if (offset < 5) { 13325 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13326 goto error; 13327 } 13328 /* 13329 * There must be TCP options. 13330 * Make sure we can grab them. 13331 */ 13332 offset <<= 2; 13333 offset += u1; 13334 if (len < offset) { 13335 if (!pullupmsg(mp, offset)) { 13336 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13337 goto error; 13338 } 13339 ipha = (ipha_t *)mp->b_rptr; 13340 len = mp->b_wptr - rptr; 13341 } 13342 } 13343 13344 /* Get the total packet length in len, including headers. */ 13345 if (mp->b_cont) { 13346 multipkttcp: 13347 len = msgdsize(mp); 13348 } 13349 13350 /* 13351 * Check the TCP checksum by pulling together the pseudo- 13352 * header checksum, and passing it to ip_csum to be added in 13353 * with the TCP datagram. 13354 * 13355 * Since we are not using the hwcksum if available we must 13356 * clear the flag. We may come here via tcppullup or tcpoptions. 13357 * If either of these fails along the way the mblk is freed. 13358 * If this logic ever changes and mblk is reused to say send 13359 * ICMP's back, then this flag may need to be cleared in 13360 * other places as well. 13361 */ 13362 DB_CKSUMFLAGS(mp) = 0; 13363 13364 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13365 13366 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13367 #ifdef _BIG_ENDIAN 13368 u1 += IPPROTO_TCP; 13369 #else 13370 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13371 #endif 13372 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13373 /* 13374 * Not M_DATA mblk or its a dup, so do the checksum now. 13375 */ 13376 IP_STAT(ipst, ip_in_sw_cksum); 13377 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13378 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13379 goto error; 13380 } 13381 13382 IP_STAT(ipst, ip_tcp_slow_path); 13383 goto try_again; 13384 #undef iphs 13385 #undef rptr 13386 13387 error: 13388 freemsg(first_mp); 13389 slow_done: 13390 return (NULL); 13391 } 13392 13393 /* ARGSUSED */ 13394 static void 13395 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13396 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13397 { 13398 conn_t *connp; 13399 uint32_t sum; 13400 uint32_t u1; 13401 ssize_t len; 13402 sctp_hdr_t *sctph; 13403 zoneid_t zoneid = ire->ire_zoneid; 13404 uint32_t pktsum; 13405 uint32_t calcsum; 13406 uint32_t ports; 13407 in6_addr_t map_src, map_dst; 13408 ill_t *ill = (ill_t *)q->q_ptr; 13409 ip_stack_t *ipst; 13410 sctp_stack_t *sctps; 13411 13412 ASSERT(recv_ill != NULL); 13413 ipst = recv_ill->ill_ipst; 13414 sctps = ipst->ips_netstack->netstack_sctp; 13415 13416 #define rptr ((uchar_t *)ipha) 13417 13418 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13419 ASSERT(ill != NULL); 13420 13421 /* u1 is # words of IP options */ 13422 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13423 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13424 13425 /* IP options present */ 13426 if (u1 > 0) { 13427 goto ipoptions; 13428 } else { 13429 /* Check the IP header checksum. */ 13430 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13431 !mctl_present) { 13432 #define uph ((uint16_t *)ipha) 13433 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13434 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13435 #undef uph 13436 /* finish doing IP checksum */ 13437 sum = (sum & 0xFFFF) + (sum >> 16); 13438 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13439 /* 13440 * Don't verify header checksum if this packet 13441 * is coming back from AH/ESP as we already did it. 13442 */ 13443 if (sum != 0 && sum != 0xFFFF) { 13444 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13445 goto error; 13446 } 13447 } 13448 /* 13449 * Since there is no SCTP h/w cksum support yet, just 13450 * clear the flag. 13451 */ 13452 DB_CKSUMFLAGS(mp) = 0; 13453 } 13454 13455 /* 13456 * Don't verify header checksum if this packet is coming 13457 * back from AH/ESP as we already did it. 13458 */ 13459 if (!mctl_present) { 13460 UPDATE_IB_PKT_COUNT(ire); 13461 ire->ire_last_used_time = lbolt; 13462 } 13463 13464 /* packet part of fragmented IP packet? */ 13465 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13466 if (u1 & (IPH_MF | IPH_OFFSET)) 13467 goto fragmented; 13468 13469 /* u1 = IP header length (20 bytes) */ 13470 u1 = IP_SIMPLE_HDR_LENGTH; 13471 13472 find_sctp_client: 13473 /* Pullup if we don't have the sctp common header. */ 13474 len = MBLKL(mp); 13475 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13476 if (mp->b_cont == NULL || 13477 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13478 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13479 goto error; 13480 } 13481 ipha = (ipha_t *)mp->b_rptr; 13482 len = MBLKL(mp); 13483 } 13484 13485 sctph = (sctp_hdr_t *)(rptr + u1); 13486 #ifdef DEBUG 13487 if (!skip_sctp_cksum) { 13488 #endif 13489 pktsum = sctph->sh_chksum; 13490 sctph->sh_chksum = 0; 13491 calcsum = sctp_cksum(mp, u1); 13492 if (calcsum != pktsum) { 13493 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13494 goto error; 13495 } 13496 sctph->sh_chksum = pktsum; 13497 #ifdef DEBUG /* skip_sctp_cksum */ 13498 } 13499 #endif 13500 /* get the ports */ 13501 ports = *(uint32_t *)&sctph->sh_sport; 13502 13503 IRE_REFRELE(ire); 13504 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13505 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13506 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13507 sctps)) == NULL) { 13508 /* Check for raw socket or OOTB handling */ 13509 goto no_conn; 13510 } 13511 13512 /* Found a client; up it goes */ 13513 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13514 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13515 return; 13516 13517 no_conn: 13518 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13519 ports, mctl_present, flags, B_TRUE, zoneid); 13520 return; 13521 13522 ipoptions: 13523 DB_CKSUMFLAGS(mp) = 0; 13524 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13525 goto slow_done; 13526 13527 UPDATE_IB_PKT_COUNT(ire); 13528 ire->ire_last_used_time = lbolt; 13529 13530 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13531 if (u1 & (IPH_MF | IPH_OFFSET)) { 13532 fragmented: 13533 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13534 goto slow_done; 13535 /* 13536 * Make sure that first_mp points back to mp as 13537 * the mp we came in with could have changed in 13538 * ip_rput_fragment(). 13539 */ 13540 ASSERT(!mctl_present); 13541 ipha = (ipha_t *)mp->b_rptr; 13542 first_mp = mp; 13543 } 13544 13545 /* Now we have a complete datagram, destined for this machine. */ 13546 u1 = IPH_HDR_LENGTH(ipha); 13547 goto find_sctp_client; 13548 #undef iphs 13549 #undef rptr 13550 13551 error: 13552 freemsg(first_mp); 13553 slow_done: 13554 IRE_REFRELE(ire); 13555 } 13556 13557 #define VER_BITS 0xF0 13558 #define VERSION_6 0x60 13559 13560 static boolean_t 13561 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13562 ipaddr_t *dstp, ip_stack_t *ipst) 13563 { 13564 uint_t opt_len; 13565 ipha_t *ipha; 13566 ssize_t len; 13567 uint_t pkt_len; 13568 13569 ASSERT(ill != NULL); 13570 IP_STAT(ipst, ip_ipoptions); 13571 ipha = *iphapp; 13572 13573 #define rptr ((uchar_t *)ipha) 13574 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13575 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13577 freemsg(mp); 13578 return (B_FALSE); 13579 } 13580 13581 /* multiple mblk or too short */ 13582 pkt_len = ntohs(ipha->ipha_length); 13583 13584 /* Get the number of words of IP options in the IP header. */ 13585 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13586 if (opt_len) { 13587 /* IP Options present! Validate and process. */ 13588 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13589 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13590 goto done; 13591 } 13592 /* 13593 * Recompute complete header length and make sure we 13594 * have access to all of it. 13595 */ 13596 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13597 if (len > (mp->b_wptr - rptr)) { 13598 if (len > pkt_len) { 13599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13600 goto done; 13601 } 13602 if (!pullupmsg(mp, len)) { 13603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13604 goto done; 13605 } 13606 ipha = (ipha_t *)mp->b_rptr; 13607 } 13608 /* 13609 * Go off to ip_rput_options which returns the next hop 13610 * destination address, which may have been affected 13611 * by source routing. 13612 */ 13613 IP_STAT(ipst, ip_opt); 13614 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13616 return (B_FALSE); 13617 } 13618 } 13619 *iphapp = ipha; 13620 return (B_TRUE); 13621 done: 13622 /* clear b_prev - used by ip_mroute_decap */ 13623 mp->b_prev = NULL; 13624 freemsg(mp); 13625 return (B_FALSE); 13626 #undef rptr 13627 } 13628 13629 /* 13630 * Deal with the fact that there is no ire for the destination. 13631 */ 13632 static ire_t * 13633 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13634 { 13635 ipha_t *ipha; 13636 ill_t *ill; 13637 ire_t *ire; 13638 boolean_t check_multirt = B_FALSE; 13639 ip_stack_t *ipst; 13640 13641 ipha = (ipha_t *)mp->b_rptr; 13642 ill = (ill_t *)q->q_ptr; 13643 13644 ASSERT(ill != NULL); 13645 ipst = ill->ill_ipst; 13646 13647 /* 13648 * No IRE for this destination, so it can't be for us. 13649 * Unless we are forwarding, drop the packet. 13650 * We have to let source routed packets through 13651 * since we don't yet know if they are 'ping -l' 13652 * packets i.e. if they will go out over the 13653 * same interface as they came in on. 13654 */ 13655 if (ll_multicast) { 13656 freemsg(mp); 13657 return (NULL); 13658 } 13659 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13660 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13661 freemsg(mp); 13662 return (NULL); 13663 } 13664 13665 /* 13666 * Mark this packet as having originated externally. 13667 * 13668 * For non-forwarding code path, ire_send later double 13669 * checks this interface to see if it is still exists 13670 * post-ARP resolution. 13671 * 13672 * Also, IPQOS uses this to differentiate between 13673 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13674 * QOS packet processing in ip_wput_attach_llhdr(). 13675 * The QoS module can mark the b_band for a fastpath message 13676 * or the dl_priority field in a unitdata_req header for 13677 * CoS marking. This info can only be found in 13678 * ip_wput_attach_llhdr(). 13679 */ 13680 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13681 /* 13682 * Clear the indication that this may have a hardware checksum 13683 * as we are not using it 13684 */ 13685 DB_CKSUMFLAGS(mp) = 0; 13686 13687 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13688 MBLK_GETLABEL(mp), ipst); 13689 13690 if (ire == NULL && check_multirt) { 13691 /* Let ip_newroute handle CGTP */ 13692 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13693 return (NULL); 13694 } 13695 13696 if (ire != NULL) 13697 return (ire); 13698 13699 mp->b_prev = mp->b_next = 0; 13700 /* send icmp unreachable */ 13701 q = WR(q); 13702 /* Sent by forwarding path, and router is global zone */ 13703 if (ip_source_routed(ipha, ipst)) { 13704 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13705 GLOBAL_ZONEID, ipst); 13706 } else { 13707 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13708 ipst); 13709 } 13710 13711 return (NULL); 13712 13713 } 13714 13715 /* 13716 * check ip header length and align it. 13717 */ 13718 static boolean_t 13719 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13720 { 13721 ssize_t len; 13722 ill_t *ill; 13723 ipha_t *ipha; 13724 13725 len = MBLKL(mp); 13726 13727 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13728 ill = (ill_t *)q->q_ptr; 13729 13730 if (!OK_32PTR(mp->b_rptr)) 13731 IP_STAT(ipst, ip_notaligned1); 13732 else 13733 IP_STAT(ipst, ip_notaligned2); 13734 /* Guard against bogus device drivers */ 13735 if (len < 0) { 13736 /* clear b_prev - used by ip_mroute_decap */ 13737 mp->b_prev = NULL; 13738 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13739 freemsg(mp); 13740 return (B_FALSE); 13741 } 13742 13743 if (ip_rput_pullups++ == 0) { 13744 ipha = (ipha_t *)mp->b_rptr; 13745 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13746 "ip_check_and_align_header: %s forced us to " 13747 " pullup pkt, hdr len %ld, hdr addr %p", 13748 ill->ill_name, len, ipha); 13749 } 13750 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13751 /* clear b_prev - used by ip_mroute_decap */ 13752 mp->b_prev = NULL; 13753 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13754 freemsg(mp); 13755 return (B_FALSE); 13756 } 13757 } 13758 return (B_TRUE); 13759 } 13760 13761 ire_t * 13762 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13763 { 13764 ire_t *new_ire; 13765 ill_t *ire_ill; 13766 uint_t ifindex; 13767 ip_stack_t *ipst = ill->ill_ipst; 13768 boolean_t strict_check = B_FALSE; 13769 13770 /* 13771 * This packet came in on an interface other than the one associated 13772 * with the first ire we found for the destination address. We do 13773 * another ire lookup here, using the ingress ill, to see if the 13774 * interface is in an interface group. 13775 * As long as the ills belong to the same group, we don't consider 13776 * them to be arriving on the wrong interface. Thus, if the switch 13777 * is doing inbound load spreading, we won't drop packets when the 13778 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13779 * for 'usesrc groups' where the destination address may belong to 13780 * another interface to allow multipathing to happen. 13781 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13782 * where the local address may not be unique. In this case we were 13783 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13784 * actually returned. The new lookup, which is more specific, should 13785 * only find the IRE_LOCAL associated with the ingress ill if one 13786 * exists. 13787 */ 13788 13789 if (ire->ire_ipversion == IPV4_VERSION) { 13790 if (ipst->ips_ip_strict_dst_multihoming) 13791 strict_check = B_TRUE; 13792 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13793 ill->ill_ipif, ALL_ZONES, NULL, 13794 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13795 } else { 13796 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13797 if (ipst->ips_ipv6_strict_dst_multihoming) 13798 strict_check = B_TRUE; 13799 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13800 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13801 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13802 } 13803 /* 13804 * If the same ire that was returned in ip_input() is found then this 13805 * is an indication that interface groups are in use. The packet 13806 * arrived on a different ill in the group than the one associated with 13807 * the destination address. If a different ire was found then the same 13808 * IP address must be hosted on multiple ills. This is possible with 13809 * unnumbered point2point interfaces. We switch to use this new ire in 13810 * order to have accurate interface statistics. 13811 */ 13812 if (new_ire != NULL) { 13813 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13814 ire_refrele(ire); 13815 ire = new_ire; 13816 } else { 13817 ire_refrele(new_ire); 13818 } 13819 return (ire); 13820 } else if ((ire->ire_rfq == NULL) && 13821 (ire->ire_ipversion == IPV4_VERSION)) { 13822 /* 13823 * The best match could have been the original ire which 13824 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13825 * the strict multihoming checks are irrelevant as we consider 13826 * local addresses hosted on lo0 to be interface agnostic. We 13827 * only expect a null ire_rfq on IREs which are associated with 13828 * lo0 hence we can return now. 13829 */ 13830 return (ire); 13831 } 13832 13833 /* 13834 * Chase pointers once and store locally. 13835 */ 13836 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13837 (ill_t *)(ire->ire_rfq->q_ptr); 13838 ifindex = ill->ill_usesrc_ifindex; 13839 13840 /* 13841 * Check if it's a legal address on the 'usesrc' interface. 13842 */ 13843 if ((ifindex != 0) && (ire_ill != NULL) && 13844 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13845 return (ire); 13846 } 13847 13848 /* 13849 * If the ip*_strict_dst_multihoming switch is on then we can 13850 * only accept this packet if the interface is marked as routing. 13851 */ 13852 if (!(strict_check)) 13853 return (ire); 13854 13855 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13856 ILLF_ROUTER) != 0) { 13857 return (ire); 13858 } 13859 13860 ire_refrele(ire); 13861 return (NULL); 13862 } 13863 13864 ire_t * 13865 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13866 { 13867 ipha_t *ipha; 13868 ipaddr_t ip_dst, ip_src; 13869 ire_t *src_ire = NULL; 13870 ill_t *stq_ill; 13871 uint_t hlen; 13872 uint_t pkt_len; 13873 uint32_t sum; 13874 queue_t *dev_q; 13875 boolean_t check_multirt = B_FALSE; 13876 ip_stack_t *ipst = ill->ill_ipst; 13877 13878 ipha = (ipha_t *)mp->b_rptr; 13879 13880 /* 13881 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13882 * The loopback address check for both src and dst has already 13883 * been checked in ip_input 13884 */ 13885 ip_dst = ntohl(dst); 13886 ip_src = ntohl(ipha->ipha_src); 13887 13888 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13889 IN_CLASSD(ip_src)) { 13890 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13891 goto drop; 13892 } 13893 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13894 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13895 13896 if (src_ire != NULL) { 13897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13898 goto drop; 13899 } 13900 13901 13902 /* No ire cache of nexthop. So first create one */ 13903 if (ire == NULL) { 13904 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13905 /* 13906 * We only come to ip_fast_forward if ip_cgtp_filter is 13907 * is not set. So upon return from ire_forward 13908 * check_multirt should remain as false. 13909 */ 13910 ASSERT(!check_multirt); 13911 if (ire == NULL) { 13912 /* An attempt was made to forward the packet */ 13913 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13914 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13915 mp->b_prev = mp->b_next = 0; 13916 /* send icmp unreachable */ 13917 /* Sent by forwarding path, and router is global zone */ 13918 if (ip_source_routed(ipha, ipst)) { 13919 icmp_unreachable(ill->ill_wq, mp, 13920 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13921 ipst); 13922 } else { 13923 icmp_unreachable(ill->ill_wq, mp, 13924 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13925 ipst); 13926 } 13927 return (ire); 13928 } 13929 } 13930 13931 /* 13932 * Forwarding fastpath exception case: 13933 * If either of the follwoing case is true, we take 13934 * the slowpath 13935 * o forwarding is not enabled 13936 * o incoming and outgoing interface are the same, or the same 13937 * IPMP group 13938 * o corresponding ire is in incomplete state 13939 * o packet needs fragmentation 13940 * 13941 * The codeflow from here on is thus: 13942 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13943 */ 13944 pkt_len = ntohs(ipha->ipha_length); 13945 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13946 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13947 !(ill->ill_flags & ILLF_ROUTER) || 13948 (ill == stq_ill) || 13949 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13950 (ire->ire_nce == NULL) || 13951 (ire->ire_nce->nce_state != ND_REACHABLE) || 13952 (pkt_len > ire->ire_max_frag) || 13953 ipha->ipha_ttl <= 1) { 13954 ip_rput_process_forward(ill->ill_rq, mp, ire, 13955 ipha, ill, B_FALSE); 13956 return (ire); 13957 } 13958 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13959 13960 DTRACE_PROBE4(ip4__forwarding__start, 13961 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13962 13963 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13964 ipst->ips_ipv4firewall_forwarding, 13965 ill, stq_ill, ipha, mp, mp, ipst); 13966 13967 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13968 13969 if (mp == NULL) 13970 goto drop; 13971 13972 mp->b_datap->db_struioun.cksum.flags = 0; 13973 /* Adjust the checksum to reflect the ttl decrement. */ 13974 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13975 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13976 ipha->ipha_ttl--; 13977 13978 dev_q = ire->ire_stq->q_next; 13979 if ((dev_q->q_next != NULL || 13980 dev_q->q_first != NULL) && !canput(dev_q)) { 13981 goto indiscard; 13982 } 13983 13984 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13985 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13986 13987 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13988 mblk_t *mpip = mp; 13989 13990 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13991 if (mp != NULL) { 13992 DTRACE_PROBE4(ip4__physical__out__start, 13993 ill_t *, NULL, ill_t *, stq_ill, 13994 ipha_t *, ipha, mblk_t *, mp); 13995 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13996 ipst->ips_ipv4firewall_physical_out, 13997 NULL, stq_ill, ipha, mp, mpip, ipst); 13998 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13999 mp); 14000 if (mp == NULL) 14001 goto drop; 14002 14003 UPDATE_IB_PKT_COUNT(ire); 14004 ire->ire_last_used_time = lbolt; 14005 BUMP_MIB(stq_ill->ill_ip_mib, 14006 ipIfStatsHCOutForwDatagrams); 14007 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14008 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14009 pkt_len); 14010 putnext(ire->ire_stq, mp); 14011 return (ire); 14012 } 14013 } 14014 14015 indiscard: 14016 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14017 drop: 14018 if (mp != NULL) 14019 freemsg(mp); 14020 if (src_ire != NULL) 14021 ire_refrele(src_ire); 14022 return (ire); 14023 14024 } 14025 14026 /* 14027 * This function is called in the forwarding slowpath, when 14028 * either the ire lacks the link-layer address, or the packet needs 14029 * further processing(eg. fragmentation), before transmission. 14030 */ 14031 14032 static void 14033 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14034 ill_t *ill, boolean_t ll_multicast) 14035 { 14036 ill_group_t *ill_group; 14037 ill_group_t *ire_group; 14038 queue_t *dev_q; 14039 ire_t *src_ire; 14040 ip_stack_t *ipst = ill->ill_ipst; 14041 14042 ASSERT(ire->ire_stq != NULL); 14043 14044 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14045 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14046 14047 if (ll_multicast != 0) { 14048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14049 goto drop_pkt; 14050 } 14051 14052 /* 14053 * check if ipha_src is a broadcast address. Note that this 14054 * check is redundant when we get here from ip_fast_forward() 14055 * which has already done this check. However, since we can 14056 * also get here from ip_rput_process_broadcast() or, for 14057 * for the slow path through ip_fast_forward(), we perform 14058 * the check again for code-reusability 14059 */ 14060 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14061 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14062 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14063 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14064 if (src_ire != NULL) 14065 ire_refrele(src_ire); 14066 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14067 ip2dbg(("ip_rput_process_forward: Received packet with" 14068 " bad src/dst address on %s\n", ill->ill_name)); 14069 goto drop_pkt; 14070 } 14071 14072 ill_group = ill->ill_group; 14073 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14074 /* 14075 * Check if we want to forward this one at this time. 14076 * We allow source routed packets on a host provided that 14077 * they go out the same interface or same interface group 14078 * as they came in on. 14079 * 14080 * XXX To be quicker, we may wish to not chase pointers to 14081 * get the ILLF_ROUTER flag and instead store the 14082 * forwarding policy in the ire. An unfortunate 14083 * side-effect of that would be requiring an ire flush 14084 * whenever the ILLF_ROUTER flag changes. 14085 */ 14086 if (((ill->ill_flags & 14087 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14088 ILLF_ROUTER) == 0) && 14089 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14090 (ill_group != NULL && ill_group == ire_group)))) { 14091 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14092 if (ip_source_routed(ipha, ipst)) { 14093 q = WR(q); 14094 /* 14095 * Clear the indication that this may have 14096 * hardware checksum as we are not using it. 14097 */ 14098 DB_CKSUMFLAGS(mp) = 0; 14099 /* Sent by forwarding path, and router is global zone */ 14100 icmp_unreachable(q, mp, 14101 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14102 return; 14103 } 14104 goto drop_pkt; 14105 } 14106 14107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14108 14109 /* Packet is being forwarded. Turning off hwcksum flag. */ 14110 DB_CKSUMFLAGS(mp) = 0; 14111 if (ipst->ips_ip_g_send_redirects) { 14112 /* 14113 * Check whether the incoming interface and outgoing 14114 * interface is part of the same group. If so, 14115 * send redirects. 14116 * 14117 * Check the source address to see if it originated 14118 * on the same logical subnet it is going back out on. 14119 * If so, we should be able to send it a redirect. 14120 * Avoid sending a redirect if the destination 14121 * is directly connected (i.e., ipha_dst is the same 14122 * as ire_gateway_addr or the ire_addr of the 14123 * nexthop IRE_CACHE ), or if the packet was source 14124 * routed out this interface. 14125 */ 14126 ipaddr_t src, nhop; 14127 mblk_t *mp1; 14128 ire_t *nhop_ire = NULL; 14129 14130 /* 14131 * Check whether ire_rfq and q are from the same ill 14132 * or if they are not same, they at least belong 14133 * to the same group. If so, send redirects. 14134 */ 14135 if ((ire->ire_rfq == q || 14136 (ill_group != NULL && ill_group == ire_group)) && 14137 !ip_source_routed(ipha, ipst)) { 14138 14139 nhop = (ire->ire_gateway_addr != 0 ? 14140 ire->ire_gateway_addr : ire->ire_addr); 14141 14142 if (ipha->ipha_dst == nhop) { 14143 /* 14144 * We avoid sending a redirect if the 14145 * destination is directly connected 14146 * because it is possible that multiple 14147 * IP subnets may have been configured on 14148 * the link, and the source may not 14149 * be on the same subnet as ip destination, 14150 * even though they are on the same 14151 * physical link. 14152 */ 14153 goto sendit; 14154 } 14155 14156 src = ipha->ipha_src; 14157 14158 /* 14159 * We look up the interface ire for the nexthop, 14160 * to see if ipha_src is in the same subnet 14161 * as the nexthop. 14162 * 14163 * Note that, if, in the future, IRE_CACHE entries 14164 * are obsoleted, this lookup will not be needed, 14165 * as the ire passed to this function will be the 14166 * same as the nhop_ire computed below. 14167 */ 14168 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14169 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14170 0, NULL, MATCH_IRE_TYPE, ipst); 14171 14172 if (nhop_ire != NULL) { 14173 if ((src & nhop_ire->ire_mask) == 14174 (nhop & nhop_ire->ire_mask)) { 14175 /* 14176 * The source is directly connected. 14177 * Just copy the ip header (which is 14178 * in the first mblk) 14179 */ 14180 mp1 = copyb(mp); 14181 if (mp1 != NULL) { 14182 icmp_send_redirect(WR(q), mp1, 14183 nhop, ipst); 14184 } 14185 } 14186 ire_refrele(nhop_ire); 14187 } 14188 } 14189 } 14190 sendit: 14191 dev_q = ire->ire_stq->q_next; 14192 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14193 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14194 freemsg(mp); 14195 return; 14196 } 14197 14198 ip_rput_forward(ire, ipha, mp, ill); 14199 return; 14200 14201 drop_pkt: 14202 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14203 freemsg(mp); 14204 } 14205 14206 ire_t * 14207 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14208 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14209 { 14210 queue_t *q; 14211 uint16_t hcksumflags; 14212 ip_stack_t *ipst = ill->ill_ipst; 14213 14214 q = *qp; 14215 14216 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14217 14218 /* 14219 * Clear the indication that this may have hardware 14220 * checksum as we are not using it for forwarding. 14221 */ 14222 hcksumflags = DB_CKSUMFLAGS(mp); 14223 DB_CKSUMFLAGS(mp) = 0; 14224 14225 /* 14226 * Directed broadcast forwarding: if the packet came in over a 14227 * different interface then it is routed out over we can forward it. 14228 */ 14229 if (ipha->ipha_protocol == IPPROTO_TCP) { 14230 ire_refrele(ire); 14231 freemsg(mp); 14232 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14233 return (NULL); 14234 } 14235 /* 14236 * For multicast we have set dst to be INADDR_BROADCAST 14237 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14238 * only for broadcast packets. 14239 */ 14240 if (!CLASSD(ipha->ipha_dst)) { 14241 ire_t *new_ire; 14242 ipif_t *ipif; 14243 /* 14244 * For ill groups, as the switch duplicates broadcasts 14245 * across all the ports, we need to filter out and 14246 * send up only one copy. There is one copy for every 14247 * broadcast address on each ill. Thus, we look for a 14248 * specific IRE on this ill and look at IRE_MARK_NORECV 14249 * later to see whether this ill is eligible to receive 14250 * them or not. ill_nominate_bcast_rcv() nominates only 14251 * one set of IREs for receiving. 14252 */ 14253 14254 ipif = ipif_get_next_ipif(NULL, ill); 14255 if (ipif == NULL) { 14256 ire_refrele(ire); 14257 freemsg(mp); 14258 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14259 return (NULL); 14260 } 14261 new_ire = ire_ctable_lookup(dst, 0, 0, 14262 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14263 ipif_refrele(ipif); 14264 14265 if (new_ire != NULL) { 14266 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14267 ire_refrele(ire); 14268 ire_refrele(new_ire); 14269 freemsg(mp); 14270 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14271 return (NULL); 14272 } 14273 /* 14274 * In the special case of multirouted broadcast 14275 * packets, we unconditionally need to "gateway" 14276 * them to the appropriate interface here. 14277 * In the normal case, this cannot happen, because 14278 * there is no broadcast IRE tagged with the 14279 * RTF_MULTIRT flag. 14280 */ 14281 if (new_ire->ire_flags & RTF_MULTIRT) { 14282 ire_refrele(new_ire); 14283 if (ire->ire_rfq != NULL) { 14284 q = ire->ire_rfq; 14285 *qp = q; 14286 } 14287 } else { 14288 ire_refrele(ire); 14289 ire = new_ire; 14290 } 14291 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14292 if (!ipst->ips_ip_g_forward_directed_bcast) { 14293 /* 14294 * Free the message if 14295 * ip_g_forward_directed_bcast is turned 14296 * off for non-local broadcast. 14297 */ 14298 ire_refrele(ire); 14299 freemsg(mp); 14300 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14301 return (NULL); 14302 } 14303 } else { 14304 /* 14305 * This CGTP packet successfully passed the 14306 * CGTP filter, but the related CGTP 14307 * broadcast IRE has not been found, 14308 * meaning that the redundant ipif is 14309 * probably down. However, if we discarded 14310 * this packet, its duplicate would be 14311 * filtered out by the CGTP filter so none 14312 * of them would get through. So we keep 14313 * going with this one. 14314 */ 14315 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14316 if (ire->ire_rfq != NULL) { 14317 q = ire->ire_rfq; 14318 *qp = q; 14319 } 14320 } 14321 } 14322 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14323 /* 14324 * Verify that there are not more then one 14325 * IRE_BROADCAST with this broadcast address which 14326 * has ire_stq set. 14327 * TODO: simplify, loop over all IRE's 14328 */ 14329 ire_t *ire1; 14330 int num_stq = 0; 14331 mblk_t *mp1; 14332 14333 /* Find the first one with ire_stq set */ 14334 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14335 for (ire1 = ire; ire1 && 14336 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14337 ire1 = ire1->ire_next) 14338 ; 14339 if (ire1) { 14340 ire_refrele(ire); 14341 ire = ire1; 14342 IRE_REFHOLD(ire); 14343 } 14344 14345 /* Check if there are additional ones with stq set */ 14346 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14347 if (ire->ire_addr != ire1->ire_addr) 14348 break; 14349 if (ire1->ire_stq) { 14350 num_stq++; 14351 break; 14352 } 14353 } 14354 rw_exit(&ire->ire_bucket->irb_lock); 14355 if (num_stq == 1 && ire->ire_stq != NULL) { 14356 ip1dbg(("ip_rput_process_broadcast: directed " 14357 "broadcast to 0x%x\n", 14358 ntohl(ire->ire_addr))); 14359 mp1 = copymsg(mp); 14360 if (mp1) { 14361 switch (ipha->ipha_protocol) { 14362 case IPPROTO_UDP: 14363 ip_udp_input(q, mp1, ipha, ire, ill); 14364 break; 14365 default: 14366 ip_proto_input(q, mp1, ipha, ire, ill, 14367 B_FALSE); 14368 break; 14369 } 14370 } 14371 /* 14372 * Adjust ttl to 2 (1+1 - the forward engine 14373 * will decrement it by one. 14374 */ 14375 if (ip_csum_hdr(ipha)) { 14376 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14377 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14378 freemsg(mp); 14379 ire_refrele(ire); 14380 return (NULL); 14381 } 14382 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14383 ipha->ipha_hdr_checksum = 0; 14384 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14385 ip_rput_process_forward(q, mp, ire, ipha, 14386 ill, ll_multicast); 14387 ire_refrele(ire); 14388 return (NULL); 14389 } 14390 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14391 ntohl(ire->ire_addr))); 14392 } 14393 14394 14395 /* Restore any hardware checksum flags */ 14396 DB_CKSUMFLAGS(mp) = hcksumflags; 14397 return (ire); 14398 } 14399 14400 /* ARGSUSED */ 14401 static boolean_t 14402 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14403 int *ll_multicast, ipaddr_t *dstp) 14404 { 14405 ip_stack_t *ipst = ill->ill_ipst; 14406 14407 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14408 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14409 ntohs(ipha->ipha_length)); 14410 14411 /* 14412 * Forward packets only if we have joined the allmulti 14413 * group on this interface. 14414 */ 14415 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14416 int retval; 14417 14418 /* 14419 * Clear the indication that this may have hardware 14420 * checksum as we are not using it. 14421 */ 14422 DB_CKSUMFLAGS(mp) = 0; 14423 retval = ip_mforward(ill, ipha, mp); 14424 /* ip_mforward updates mib variables if needed */ 14425 /* clear b_prev - used by ip_mroute_decap */ 14426 mp->b_prev = NULL; 14427 14428 switch (retval) { 14429 case 0: 14430 /* 14431 * pkt is okay and arrived on phyint. 14432 * 14433 * If we are running as a multicast router 14434 * we need to see all IGMP and/or PIM packets. 14435 */ 14436 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14437 (ipha->ipha_protocol == IPPROTO_PIM)) { 14438 goto done; 14439 } 14440 break; 14441 case -1: 14442 /* pkt is mal-formed, toss it */ 14443 goto drop_pkt; 14444 case 1: 14445 /* pkt is okay and arrived on a tunnel */ 14446 /* 14447 * If we are running a multicast router 14448 * we need to see all igmp packets. 14449 */ 14450 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14451 *dstp = INADDR_BROADCAST; 14452 *ll_multicast = 1; 14453 return (B_FALSE); 14454 } 14455 14456 goto drop_pkt; 14457 } 14458 } 14459 14460 ILM_WALKER_HOLD(ill); 14461 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14462 /* 14463 * This might just be caused by the fact that 14464 * multiple IP Multicast addresses map to the same 14465 * link layer multicast - no need to increment counter! 14466 */ 14467 ILM_WALKER_RELE(ill); 14468 freemsg(mp); 14469 return (B_TRUE); 14470 } 14471 ILM_WALKER_RELE(ill); 14472 done: 14473 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14474 /* 14475 * This assumes the we deliver to all streams for multicast 14476 * and broadcast packets. 14477 */ 14478 *dstp = INADDR_BROADCAST; 14479 *ll_multicast = 1; 14480 return (B_FALSE); 14481 drop_pkt: 14482 ip2dbg(("ip_rput: drop pkt\n")); 14483 freemsg(mp); 14484 return (B_TRUE); 14485 } 14486 14487 static boolean_t 14488 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14489 int *ll_multicast, mblk_t **mpp) 14490 { 14491 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14492 boolean_t must_copy = B_FALSE; 14493 struct iocblk *iocp; 14494 ipha_t *ipha; 14495 ip_stack_t *ipst = ill->ill_ipst; 14496 14497 #define rptr ((uchar_t *)ipha) 14498 14499 first_mp = *first_mpp; 14500 mp = *mpp; 14501 14502 ASSERT(first_mp == mp); 14503 14504 /* 14505 * if db_ref > 1 then copymsg and free original. Packet may be 14506 * changed and do not want other entity who has a reference to this 14507 * message to trip over the changes. This is a blind change because 14508 * trying to catch all places that might change packet is too 14509 * difficult (since it may be a module above this one) 14510 * 14511 * This corresponds to the non-fast path case. We walk down the full 14512 * chain in this case, and check the db_ref count of all the dblks, 14513 * and do a copymsg if required. It is possible that the db_ref counts 14514 * of the data blocks in the mblk chain can be different. 14515 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14516 * count of 1, followed by a M_DATA block with a ref count of 2, if 14517 * 'snoop' is running. 14518 */ 14519 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14520 if (mp1->b_datap->db_ref > 1) { 14521 must_copy = B_TRUE; 14522 break; 14523 } 14524 } 14525 14526 if (must_copy) { 14527 mp1 = copymsg(mp); 14528 if (mp1 == NULL) { 14529 for (mp1 = mp; mp1 != NULL; 14530 mp1 = mp1->b_cont) { 14531 mp1->b_next = NULL; 14532 mp1->b_prev = NULL; 14533 } 14534 freemsg(mp); 14535 if (ill != NULL) { 14536 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14537 } else { 14538 BUMP_MIB(&ipst->ips_ip_mib, 14539 ipIfStatsInDiscards); 14540 } 14541 return (B_TRUE); 14542 } 14543 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14544 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14545 /* Copy b_prev - used by ip_mroute_decap */ 14546 to_mp->b_prev = from_mp->b_prev; 14547 from_mp->b_prev = NULL; 14548 } 14549 *first_mpp = first_mp = mp1; 14550 freemsg(mp); 14551 mp = mp1; 14552 *mpp = mp1; 14553 } 14554 14555 ipha = (ipha_t *)mp->b_rptr; 14556 14557 /* 14558 * previous code has a case for M_DATA. 14559 * We want to check how that happens. 14560 */ 14561 ASSERT(first_mp->b_datap->db_type != M_DATA); 14562 switch (first_mp->b_datap->db_type) { 14563 case M_PROTO: 14564 case M_PCPROTO: 14565 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14566 DL_UNITDATA_IND) { 14567 /* Go handle anything other than data elsewhere. */ 14568 ip_rput_dlpi(q, mp); 14569 return (B_TRUE); 14570 } 14571 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14572 /* Ditch the DLPI header. */ 14573 mp1 = mp->b_cont; 14574 ASSERT(first_mp == mp); 14575 *first_mpp = mp1; 14576 freeb(mp); 14577 *mpp = mp1; 14578 return (B_FALSE); 14579 case M_IOCACK: 14580 ip1dbg(("got iocack ")); 14581 iocp = (struct iocblk *)mp->b_rptr; 14582 switch (iocp->ioc_cmd) { 14583 case DL_IOC_HDR_INFO: 14584 ill = (ill_t *)q->q_ptr; 14585 ill_fastpath_ack(ill, mp); 14586 return (B_TRUE); 14587 case SIOCSTUNPARAM: 14588 case OSIOCSTUNPARAM: 14589 /* Go through qwriter_ip */ 14590 break; 14591 case SIOCGTUNPARAM: 14592 case OSIOCGTUNPARAM: 14593 ip_rput_other(NULL, q, mp, NULL); 14594 return (B_TRUE); 14595 default: 14596 putnext(q, mp); 14597 return (B_TRUE); 14598 } 14599 /* FALLTHRU */ 14600 case M_ERROR: 14601 case M_HANGUP: 14602 /* 14603 * Since this is on the ill stream we unconditionally 14604 * bump up the refcount 14605 */ 14606 ill_refhold(ill); 14607 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14608 return (B_TRUE); 14609 case M_CTL: 14610 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14611 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14612 IPHADA_M_CTL)) { 14613 /* 14614 * It's an IPsec accelerated packet. 14615 * Make sure that the ill from which we received the 14616 * packet has enabled IPsec hardware acceleration. 14617 */ 14618 if (!(ill->ill_capabilities & 14619 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14620 /* IPsec kstats: bean counter */ 14621 freemsg(mp); 14622 return (B_TRUE); 14623 } 14624 14625 /* 14626 * Make mp point to the mblk following the M_CTL, 14627 * then process according to type of mp. 14628 * After this processing, first_mp will point to 14629 * the data-attributes and mp to the pkt following 14630 * the M_CTL. 14631 */ 14632 mp = first_mp->b_cont; 14633 if (mp == NULL) { 14634 freemsg(first_mp); 14635 return (B_TRUE); 14636 } 14637 /* 14638 * A Hardware Accelerated packet can only be M_DATA 14639 * ESP or AH packet. 14640 */ 14641 if (mp->b_datap->db_type != M_DATA) { 14642 /* non-M_DATA IPsec accelerated packet */ 14643 IPSECHW_DEBUG(IPSECHW_PKT, 14644 ("non-M_DATA IPsec accelerated pkt\n")); 14645 freemsg(first_mp); 14646 return (B_TRUE); 14647 } 14648 ipha = (ipha_t *)mp->b_rptr; 14649 if (ipha->ipha_protocol != IPPROTO_AH && 14650 ipha->ipha_protocol != IPPROTO_ESP) { 14651 IPSECHW_DEBUG(IPSECHW_PKT, 14652 ("non-M_DATA IPsec accelerated pkt\n")); 14653 freemsg(first_mp); 14654 return (B_TRUE); 14655 } 14656 *mpp = mp; 14657 return (B_FALSE); 14658 } 14659 putnext(q, mp); 14660 return (B_TRUE); 14661 case M_IOCNAK: 14662 ip1dbg(("got iocnak ")); 14663 iocp = (struct iocblk *)mp->b_rptr; 14664 switch (iocp->ioc_cmd) { 14665 case SIOCSTUNPARAM: 14666 case OSIOCSTUNPARAM: 14667 /* 14668 * Since this is on the ill stream we unconditionally 14669 * bump up the refcount 14670 */ 14671 ill_refhold(ill); 14672 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14673 return (B_TRUE); 14674 case DL_IOC_HDR_INFO: 14675 case SIOCGTUNPARAM: 14676 case OSIOCGTUNPARAM: 14677 ip_rput_other(NULL, q, mp, NULL); 14678 return (B_TRUE); 14679 default: 14680 break; 14681 } 14682 /* FALLTHRU */ 14683 default: 14684 putnext(q, mp); 14685 return (B_TRUE); 14686 } 14687 } 14688 14689 /* Read side put procedure. Packets coming from the wire arrive here. */ 14690 void 14691 ip_rput(queue_t *q, mblk_t *mp) 14692 { 14693 ill_t *ill; 14694 union DL_primitives *dl; 14695 14696 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14697 14698 ill = (ill_t *)q->q_ptr; 14699 14700 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14701 /* 14702 * If things are opening or closing, only accept high-priority 14703 * DLPI messages. (On open ill->ill_ipif has not yet been 14704 * created; on close, things hanging off the ill may have been 14705 * freed already.) 14706 */ 14707 dl = (union DL_primitives *)mp->b_rptr; 14708 if (DB_TYPE(mp) != M_PCPROTO || 14709 dl->dl_primitive == DL_UNITDATA_IND) { 14710 /* 14711 * SIOC[GS]TUNPARAM ioctls can come here. 14712 */ 14713 inet_freemsg(mp); 14714 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14715 "ip_rput_end: q %p (%S)", q, "uninit"); 14716 return; 14717 } 14718 } 14719 14720 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14721 "ip_rput_end: q %p (%S)", q, "end"); 14722 14723 ip_input(ill, NULL, mp, NULL); 14724 } 14725 14726 static mblk_t * 14727 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14728 { 14729 mblk_t *mp1; 14730 boolean_t adjusted = B_FALSE; 14731 ip_stack_t *ipst = ill->ill_ipst; 14732 14733 IP_STAT(ipst, ip_db_ref); 14734 /* 14735 * The IP_RECVSLLA option depends on having the 14736 * link layer header. First check that: 14737 * a> the underlying device is of type ether, 14738 * since this option is currently supported only 14739 * over ethernet. 14740 * b> there is enough room to copy over the link 14741 * layer header. 14742 * 14743 * Once the checks are done, adjust rptr so that 14744 * the link layer header will be copied via 14745 * copymsg. Note that, IFT_ETHER may be returned 14746 * by some non-ethernet drivers but in this case 14747 * the second check will fail. 14748 */ 14749 if (ill->ill_type == IFT_ETHER && 14750 (mp->b_rptr - mp->b_datap->db_base) >= 14751 sizeof (struct ether_header)) { 14752 mp->b_rptr -= sizeof (struct ether_header); 14753 adjusted = B_TRUE; 14754 } 14755 mp1 = copymsg(mp); 14756 14757 if (mp1 == NULL) { 14758 mp->b_next = NULL; 14759 /* clear b_prev - used by ip_mroute_decap */ 14760 mp->b_prev = NULL; 14761 freemsg(mp); 14762 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14763 return (NULL); 14764 } 14765 14766 if (adjusted) { 14767 /* 14768 * Copy is done. Restore the pointer in 14769 * the _new_ mblk 14770 */ 14771 mp1->b_rptr += sizeof (struct ether_header); 14772 } 14773 14774 /* Copy b_prev - used by ip_mroute_decap */ 14775 mp1->b_prev = mp->b_prev; 14776 mp->b_prev = NULL; 14777 14778 /* preserve the hardware checksum flags and data, if present */ 14779 if (DB_CKSUMFLAGS(mp) != 0) { 14780 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14781 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14782 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14783 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14784 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14785 } 14786 14787 freemsg(mp); 14788 return (mp1); 14789 } 14790 14791 /* 14792 * Direct read side procedure capable of dealing with chains. GLDv3 based 14793 * drivers call this function directly with mblk chains while STREAMS 14794 * read side procedure ip_rput() calls this for single packet with ip_ring 14795 * set to NULL to process one packet at a time. 14796 * 14797 * The ill will always be valid if this function is called directly from 14798 * the driver. 14799 * 14800 * If ip_input() is called from GLDv3: 14801 * 14802 * - This must be a non-VLAN IP stream. 14803 * - 'mp' is either an untagged or a special priority-tagged packet. 14804 * - Any VLAN tag that was in the MAC header has been stripped. 14805 * 14806 * If the IP header in packet is not 32-bit aligned, every message in the 14807 * chain will be aligned before further operations. This is required on SPARC 14808 * platform. 14809 */ 14810 /* ARGSUSED */ 14811 void 14812 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14813 struct mac_header_info_s *mhip) 14814 { 14815 ipaddr_t dst = NULL; 14816 ipaddr_t prev_dst; 14817 ire_t *ire = NULL; 14818 ipha_t *ipha; 14819 uint_t pkt_len; 14820 ssize_t len; 14821 uint_t opt_len; 14822 int ll_multicast; 14823 int cgtp_flt_pkt; 14824 queue_t *q = ill->ill_rq; 14825 squeue_t *curr_sqp = NULL; 14826 mblk_t *head = NULL; 14827 mblk_t *tail = NULL; 14828 mblk_t *first_mp; 14829 mblk_t *mp; 14830 mblk_t *dmp; 14831 int cnt = 0; 14832 ip_stack_t *ipst = ill->ill_ipst; 14833 14834 ASSERT(mp_chain != NULL); 14835 ASSERT(ill != NULL); 14836 14837 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14838 14839 #define rptr ((uchar_t *)ipha) 14840 14841 while (mp_chain != NULL) { 14842 first_mp = mp = mp_chain; 14843 mp_chain = mp_chain->b_next; 14844 mp->b_next = NULL; 14845 ll_multicast = 0; 14846 14847 /* 14848 * We do ire caching from one iteration to 14849 * another. In the event the packet chain contains 14850 * all packets from the same dst, this caching saves 14851 * an ire_cache_lookup for each of the succeeding 14852 * packets in a packet chain. 14853 */ 14854 prev_dst = dst; 14855 14856 /* 14857 * if db_ref > 1 then copymsg and free original. Packet 14858 * may be changed and we do not want the other entity 14859 * who has a reference to this message to trip over the 14860 * changes. This is a blind change because trying to 14861 * catch all places that might change the packet is too 14862 * difficult. 14863 * 14864 * This corresponds to the fast path case, where we have 14865 * a chain of M_DATA mblks. We check the db_ref count 14866 * of only the 1st data block in the mblk chain. There 14867 * doesn't seem to be a reason why a device driver would 14868 * send up data with varying db_ref counts in the mblk 14869 * chain. In any case the Fast path is a private 14870 * interface, and our drivers don't do such a thing. 14871 * Given the above assumption, there is no need to walk 14872 * down the entire mblk chain (which could have a 14873 * potential performance problem) 14874 */ 14875 14876 if (DB_REF(mp) > 1) { 14877 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14878 continue; 14879 } 14880 14881 /* 14882 * Check and align the IP header. 14883 */ 14884 first_mp = mp; 14885 if (DB_TYPE(mp) == M_DATA) { 14886 dmp = mp; 14887 } else if (DB_TYPE(mp) == M_PROTO && 14888 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14889 dmp = mp->b_cont; 14890 } else { 14891 dmp = NULL; 14892 } 14893 if (dmp != NULL) { 14894 /* 14895 * IP header ptr not aligned? 14896 * OR IP header not complete in first mblk 14897 */ 14898 if (!OK_32PTR(dmp->b_rptr) || 14899 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14900 if (!ip_check_and_align_header(q, dmp, ipst)) 14901 continue; 14902 } 14903 } 14904 14905 /* 14906 * ip_input fast path 14907 */ 14908 14909 /* mblk type is not M_DATA */ 14910 if (DB_TYPE(mp) != M_DATA) { 14911 if (ip_rput_process_notdata(q, &first_mp, ill, 14912 &ll_multicast, &mp)) 14913 continue; 14914 } 14915 14916 /* Make sure its an M_DATA and that its aligned */ 14917 ASSERT(DB_TYPE(mp) == M_DATA); 14918 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14919 14920 ipha = (ipha_t *)mp->b_rptr; 14921 len = mp->b_wptr - rptr; 14922 pkt_len = ntohs(ipha->ipha_length); 14923 14924 /* 14925 * We must count all incoming packets, even if they end 14926 * up being dropped later on. 14927 */ 14928 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14929 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14930 14931 /* multiple mblk or too short */ 14932 len -= pkt_len; 14933 if (len != 0) { 14934 /* 14935 * Make sure we have data length consistent 14936 * with the IP header. 14937 */ 14938 if (mp->b_cont == NULL) { 14939 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14940 BUMP_MIB(ill->ill_ip_mib, 14941 ipIfStatsInHdrErrors); 14942 ip2dbg(("ip_input: drop pkt\n")); 14943 freemsg(mp); 14944 continue; 14945 } 14946 mp->b_wptr = rptr + pkt_len; 14947 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14948 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14949 BUMP_MIB(ill->ill_ip_mib, 14950 ipIfStatsInHdrErrors); 14951 ip2dbg(("ip_input: drop pkt\n")); 14952 freemsg(mp); 14953 continue; 14954 } 14955 (void) adjmsg(mp, -len); 14956 IP_STAT(ipst, ip_multimblk3); 14957 } 14958 } 14959 14960 /* Obtain the dst of the current packet */ 14961 dst = ipha->ipha_dst; 14962 14963 if (IP_LOOPBACK_ADDR(dst) || 14964 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14965 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14966 cmn_err(CE_CONT, "dst %X src %X\n", 14967 dst, ipha->ipha_src); 14968 freemsg(mp); 14969 continue; 14970 } 14971 14972 /* 14973 * The event for packets being received from a 'physical' 14974 * interface is placed after validation of the source and/or 14975 * destination address as being local so that packets can be 14976 * redirected to loopback addresses using ipnat. 14977 */ 14978 DTRACE_PROBE4(ip4__physical__in__start, 14979 ill_t *, ill, ill_t *, NULL, 14980 ipha_t *, ipha, mblk_t *, first_mp); 14981 14982 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14983 ipst->ips_ipv4firewall_physical_in, 14984 ill, NULL, ipha, first_mp, mp, ipst); 14985 14986 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14987 14988 if (first_mp == NULL) { 14989 continue; 14990 } 14991 dst = ipha->ipha_dst; 14992 14993 /* 14994 * Attach any necessary label information to 14995 * this packet 14996 */ 14997 if (is_system_labeled() && 14998 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14999 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15000 freemsg(mp); 15001 continue; 15002 } 15003 15004 /* 15005 * Reuse the cached ire only if the ipha_dst of the previous 15006 * packet is the same as the current packet AND it is not 15007 * INADDR_ANY. 15008 */ 15009 if (!(dst == prev_dst && dst != INADDR_ANY) && 15010 (ire != NULL)) { 15011 ire_refrele(ire); 15012 ire = NULL; 15013 } 15014 opt_len = ipha->ipha_version_and_hdr_length - 15015 IP_SIMPLE_HDR_VERSION; 15016 15017 /* 15018 * Check to see if we can take the fastpath. 15019 * That is possible if the following conditions are met 15020 * o Tsol disabled 15021 * o CGTP disabled 15022 * o ipp_action_count is 0 15023 * o no options in the packet 15024 * o not a RSVP packet 15025 * o not a multicast packet 15026 * o ill not in IP_DHCPINIT_IF mode 15027 */ 15028 if (!is_system_labeled() && 15029 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15030 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15031 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15032 if (ire == NULL) 15033 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15034 ipst); 15035 15036 /* incoming packet is for forwarding */ 15037 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15038 ire = ip_fast_forward(ire, dst, ill, mp); 15039 continue; 15040 } 15041 /* incoming packet is for local consumption */ 15042 if (ire->ire_type & IRE_LOCAL) 15043 goto local; 15044 } 15045 15046 /* 15047 * Disable ire caching for anything more complex 15048 * than the simple fast path case we checked for above. 15049 */ 15050 if (ire != NULL) { 15051 ire_refrele(ire); 15052 ire = NULL; 15053 } 15054 15055 /* 15056 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15057 * server to unicast DHCP packets to a DHCP client using the 15058 * IP address it is offering to the client. This can be 15059 * disabled through the "broadcast bit", but not all DHCP 15060 * servers honor that bit. Therefore, to interoperate with as 15061 * many DHCP servers as possible, the DHCP client allows the 15062 * server to unicast, but we treat those packets as broadcast 15063 * here. Note that we don't rewrite the packet itself since 15064 * (a) that would mess up the checksums and (b) the DHCP 15065 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15066 * hand it the packet regardless. 15067 */ 15068 if (ill->ill_dhcpinit != 0 && 15069 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15070 MBLKL(mp) > sizeof (ipha_t) + sizeof (udpha_t)) { 15071 udpha_t *udpha = (udpha_t *)&ipha[1]; 15072 15073 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15074 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15075 mblk_t *, mp); 15076 dst = INADDR_BROADCAST; 15077 } 15078 } 15079 15080 /* Full-blown slow path */ 15081 if (opt_len != 0) { 15082 if (len != 0) 15083 IP_STAT(ipst, ip_multimblk4); 15084 else 15085 IP_STAT(ipst, ip_ipoptions); 15086 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15087 &dst, ipst)) 15088 continue; 15089 } 15090 15091 /* 15092 * Invoke the CGTP (multirouting) filtering module to process 15093 * the incoming packet. Packets identified as duplicates 15094 * must be discarded. Filtering is active only if the 15095 * the ip_cgtp_filter ndd variable is non-zero. 15096 */ 15097 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15098 if (ipst->ips_ip_cgtp_filter && 15099 ipst->ips_ip_cgtp_filter_ops != NULL) { 15100 netstackid_t stackid; 15101 15102 stackid = ipst->ips_netstack->netstack_stackid; 15103 cgtp_flt_pkt = 15104 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15105 ill->ill_phyint->phyint_ifindex, mp); 15106 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15107 freemsg(first_mp); 15108 continue; 15109 } 15110 } 15111 15112 /* 15113 * If rsvpd is running, let RSVP daemon handle its processing 15114 * and forwarding of RSVP multicast/unicast packets. 15115 * If rsvpd is not running but mrouted is running, RSVP 15116 * multicast packets are forwarded as multicast traffic 15117 * and RSVP unicast packets are forwarded by unicast router. 15118 * If neither rsvpd nor mrouted is running, RSVP multicast 15119 * packets are not forwarded, but the unicast packets are 15120 * forwarded like unicast traffic. 15121 */ 15122 if (ipha->ipha_protocol == IPPROTO_RSVP && 15123 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15124 NULL) { 15125 /* RSVP packet and rsvpd running. Treat as ours */ 15126 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15127 /* 15128 * This assumes that we deliver to all streams for 15129 * multicast and broadcast packets. 15130 * We have to force ll_multicast to 1 to handle the 15131 * M_DATA messages passed in from ip_mroute_decap. 15132 */ 15133 dst = INADDR_BROADCAST; 15134 ll_multicast = 1; 15135 } else if (CLASSD(dst)) { 15136 /* packet is multicast */ 15137 mp->b_next = NULL; 15138 if (ip_rput_process_multicast(q, mp, ill, ipha, 15139 &ll_multicast, &dst)) 15140 continue; 15141 } 15142 15143 if (ire == NULL) { 15144 ire = ire_cache_lookup(dst, ALL_ZONES, 15145 MBLK_GETLABEL(mp), ipst); 15146 } 15147 15148 if (ire == NULL) { 15149 /* 15150 * No IRE for this destination, so it can't be for us. 15151 * Unless we are forwarding, drop the packet. 15152 * We have to let source routed packets through 15153 * since we don't yet know if they are 'ping -l' 15154 * packets i.e. if they will go out over the 15155 * same interface as they came in on. 15156 */ 15157 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15158 if (ire == NULL) 15159 continue; 15160 } 15161 15162 /* 15163 * Broadcast IRE may indicate either broadcast or 15164 * multicast packet 15165 */ 15166 if (ire->ire_type == IRE_BROADCAST) { 15167 /* 15168 * Skip broadcast checks if packet is UDP multicast; 15169 * we'd rather not enter ip_rput_process_broadcast() 15170 * unless the packet is broadcast for real, since 15171 * that routine is a no-op for multicast. 15172 */ 15173 if (ipha->ipha_protocol != IPPROTO_UDP || 15174 !CLASSD(ipha->ipha_dst)) { 15175 ire = ip_rput_process_broadcast(&q, mp, 15176 ire, ipha, ill, dst, cgtp_flt_pkt, 15177 ll_multicast); 15178 if (ire == NULL) 15179 continue; 15180 } 15181 } else if (ire->ire_stq != NULL) { 15182 /* fowarding? */ 15183 ip_rput_process_forward(q, mp, ire, ipha, ill, 15184 ll_multicast); 15185 /* ip_rput_process_forward consumed the packet */ 15186 continue; 15187 } 15188 15189 local: 15190 /* 15191 * If the queue in the ire is different to the ingress queue 15192 * then we need to check to see if we can accept the packet. 15193 * Note that for multicast packets and broadcast packets sent 15194 * to a broadcast address which is shared between multiple 15195 * interfaces we should not do this since we just got a random 15196 * broadcast ire. 15197 */ 15198 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15199 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15200 ill)) == NULL) { 15201 /* Drop packet */ 15202 BUMP_MIB(ill->ill_ip_mib, 15203 ipIfStatsForwProhibits); 15204 freemsg(mp); 15205 continue; 15206 } 15207 if (ire->ire_rfq != NULL) 15208 q = ire->ire_rfq; 15209 } 15210 15211 switch (ipha->ipha_protocol) { 15212 case IPPROTO_TCP: 15213 ASSERT(first_mp == mp); 15214 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15215 mp, 0, q, ip_ring)) != NULL) { 15216 if (curr_sqp == NULL) { 15217 curr_sqp = GET_SQUEUE(mp); 15218 ASSERT(cnt == 0); 15219 cnt++; 15220 head = tail = mp; 15221 } else if (curr_sqp == GET_SQUEUE(mp)) { 15222 ASSERT(tail != NULL); 15223 cnt++; 15224 tail->b_next = mp; 15225 tail = mp; 15226 } else { 15227 /* 15228 * A different squeue. Send the 15229 * chain for the previous squeue on 15230 * its way. This shouldn't happen 15231 * often unless interrupt binding 15232 * changes. 15233 */ 15234 IP_STAT(ipst, ip_input_multi_squeue); 15235 squeue_enter_chain(curr_sqp, head, 15236 tail, cnt, SQTAG_IP_INPUT); 15237 curr_sqp = GET_SQUEUE(mp); 15238 head = mp; 15239 tail = mp; 15240 cnt = 1; 15241 } 15242 } 15243 continue; 15244 case IPPROTO_UDP: 15245 ASSERT(first_mp == mp); 15246 ip_udp_input(q, mp, ipha, ire, ill); 15247 continue; 15248 case IPPROTO_SCTP: 15249 ASSERT(first_mp == mp); 15250 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15251 q, dst); 15252 /* ire has been released by ip_sctp_input */ 15253 ire = NULL; 15254 continue; 15255 default: 15256 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15257 continue; 15258 } 15259 } 15260 15261 if (ire != NULL) 15262 ire_refrele(ire); 15263 15264 if (head != NULL) 15265 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15266 15267 /* 15268 * This code is there just to make netperf/ttcp look good. 15269 * 15270 * Its possible that after being in polling mode (and having cleared 15271 * the backlog), squeues have turned the interrupt frequency higher 15272 * to improve latency at the expense of more CPU utilization (less 15273 * packets per interrupts or more number of interrupts). Workloads 15274 * like ttcp/netperf do manage to tickle polling once in a while 15275 * but for the remaining time, stay in higher interrupt mode since 15276 * their packet arrival rate is pretty uniform and this shows up 15277 * as higher CPU utilization. Since people care about CPU utilization 15278 * while running netperf/ttcp, turn the interrupt frequency back to 15279 * normal/default if polling has not been used in ip_poll_normal_ticks. 15280 */ 15281 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15282 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15283 ip_ring->rr_poll_state &= ~ILL_POLLING; 15284 ip_ring->rr_blank(ip_ring->rr_handle, 15285 ip_ring->rr_normal_blank_time, 15286 ip_ring->rr_normal_pkt_cnt); 15287 } 15288 } 15289 15290 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15291 "ip_input_end: q %p (%S)", q, "end"); 15292 #undef rptr 15293 } 15294 15295 static void 15296 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15297 t_uscalar_t err) 15298 { 15299 if (dl_err == DL_SYSERR) { 15300 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15301 "%s: %s failed: DL_SYSERR (errno %u)\n", 15302 ill->ill_name, dlpi_prim_str(prim), err); 15303 return; 15304 } 15305 15306 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15307 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15308 dlpi_err_str(dl_err)); 15309 } 15310 15311 /* 15312 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15313 * than DL_UNITDATA_IND messages. If we need to process this message 15314 * exclusively, we call qwriter_ip, in which case we also need to call 15315 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15316 */ 15317 void 15318 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15319 { 15320 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15321 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15322 ill_t *ill = (ill_t *)q->q_ptr; 15323 boolean_t pending; 15324 15325 ip1dbg(("ip_rput_dlpi")); 15326 if (dloa->dl_primitive == DL_ERROR_ACK) { 15327 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15328 "%s (0x%x), unix %u\n", ill->ill_name, 15329 dlpi_prim_str(dlea->dl_error_primitive), 15330 dlea->dl_error_primitive, 15331 dlpi_err_str(dlea->dl_errno), 15332 dlea->dl_errno, 15333 dlea->dl_unix_errno)); 15334 } 15335 15336 /* 15337 * If we received an ACK but didn't send a request for it, then it 15338 * can't be part of any pending operation; discard up-front. 15339 */ 15340 switch (dloa->dl_primitive) { 15341 case DL_NOTIFY_IND: 15342 pending = B_TRUE; 15343 break; 15344 case DL_ERROR_ACK: 15345 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15346 break; 15347 case DL_OK_ACK: 15348 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15349 break; 15350 case DL_INFO_ACK: 15351 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15352 break; 15353 case DL_BIND_ACK: 15354 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15355 break; 15356 case DL_PHYS_ADDR_ACK: 15357 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15358 break; 15359 case DL_NOTIFY_ACK: 15360 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15361 break; 15362 case DL_CONTROL_ACK: 15363 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15364 break; 15365 case DL_CAPABILITY_ACK: 15366 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15367 break; 15368 default: 15369 /* Not a DLPI message we support or were expecting */ 15370 freemsg(mp); 15371 return; 15372 } 15373 15374 if (!pending) { 15375 freemsg(mp); 15376 return; 15377 } 15378 15379 switch (dloa->dl_primitive) { 15380 case DL_ERROR_ACK: 15381 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15382 mutex_enter(&ill->ill_lock); 15383 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15384 cv_signal(&ill->ill_cv); 15385 mutex_exit(&ill->ill_lock); 15386 } 15387 break; 15388 15389 case DL_OK_ACK: 15390 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15391 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15392 switch (dloa->dl_correct_primitive) { 15393 case DL_UNBIND_REQ: 15394 mutex_enter(&ill->ill_lock); 15395 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15396 cv_signal(&ill->ill_cv); 15397 mutex_exit(&ill->ill_lock); 15398 break; 15399 15400 case DL_ENABMULTI_REQ: 15401 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15402 ill->ill_dlpi_multicast_state = IDS_OK; 15403 break; 15404 } 15405 break; 15406 default: 15407 break; 15408 } 15409 15410 /* 15411 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15412 * and we need to become writer to continue to process it. If it's not 15413 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15414 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15415 * some work as part of the current exclusive operation that actually 15416 * is not part of it -- which is wrong, but better than the 15417 * alternative of deadlock (if NEW_OP is always used). Someday, we 15418 * should track which DLPI requests have ACKs that we wait on 15419 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15420 * 15421 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15422 * Since this is on the ill stream we unconditionally bump up the 15423 * refcount without doing ILL_CAN_LOOKUP(). 15424 */ 15425 ill_refhold(ill); 15426 if (dloa->dl_primitive == DL_NOTIFY_IND) 15427 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15428 else 15429 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15430 } 15431 15432 /* 15433 * Handling of DLPI messages that require exclusive access to the ipsq. 15434 * 15435 * Need to do ill_pending_mp_release on ioctl completion, which could 15436 * happen here. (along with mi_copy_done) 15437 */ 15438 /* ARGSUSED */ 15439 static void 15440 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15441 { 15442 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15443 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15444 int err = 0; 15445 ill_t *ill; 15446 ipif_t *ipif = NULL; 15447 mblk_t *mp1 = NULL; 15448 conn_t *connp = NULL; 15449 t_uscalar_t paddrreq; 15450 mblk_t *mp_hw; 15451 boolean_t success; 15452 boolean_t ioctl_aborted = B_FALSE; 15453 boolean_t log = B_TRUE; 15454 hook_nic_event_t *info; 15455 ip_stack_t *ipst; 15456 15457 ip1dbg(("ip_rput_dlpi_writer ..")); 15458 ill = (ill_t *)q->q_ptr; 15459 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15460 15461 ASSERT(IAM_WRITER_ILL(ill)); 15462 15463 ipst = ill->ill_ipst; 15464 15465 /* 15466 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15467 * both are null or non-null. However we can assert that only 15468 * after grabbing the ipsq_lock. So we don't make any assertion 15469 * here and in other places in the code. 15470 */ 15471 ipif = ipsq->ipsq_pending_ipif; 15472 /* 15473 * The current ioctl could have been aborted by the user and a new 15474 * ioctl to bring up another ill could have started. We could still 15475 * get a response from the driver later. 15476 */ 15477 if (ipif != NULL && ipif->ipif_ill != ill) 15478 ioctl_aborted = B_TRUE; 15479 15480 switch (dloa->dl_primitive) { 15481 case DL_ERROR_ACK: 15482 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15483 dlpi_prim_str(dlea->dl_error_primitive))); 15484 15485 switch (dlea->dl_error_primitive) { 15486 case DL_PROMISCON_REQ: 15487 case DL_PROMISCOFF_REQ: 15488 case DL_DISABMULTI_REQ: 15489 case DL_UNBIND_REQ: 15490 case DL_ATTACH_REQ: 15491 case DL_INFO_REQ: 15492 ill_dlpi_done(ill, dlea->dl_error_primitive); 15493 break; 15494 case DL_NOTIFY_REQ: 15495 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15496 log = B_FALSE; 15497 break; 15498 case DL_PHYS_ADDR_REQ: 15499 /* 15500 * For IPv6 only, there are two additional 15501 * phys_addr_req's sent to the driver to get the 15502 * IPv6 token and lla. This allows IP to acquire 15503 * the hardware address format for a given interface 15504 * without having built in knowledge of the hardware 15505 * address. ill_phys_addr_pend keeps track of the last 15506 * DL_PAR sent so we know which response we are 15507 * dealing with. ill_dlpi_done will update 15508 * ill_phys_addr_pend when it sends the next req. 15509 * We don't complete the IOCTL until all three DL_PARs 15510 * have been attempted, so set *_len to 0 and break. 15511 */ 15512 paddrreq = ill->ill_phys_addr_pend; 15513 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15514 if (paddrreq == DL_IPV6_TOKEN) { 15515 ill->ill_token_length = 0; 15516 log = B_FALSE; 15517 break; 15518 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15519 ill->ill_nd_lla_len = 0; 15520 log = B_FALSE; 15521 break; 15522 } 15523 /* 15524 * Something went wrong with the DL_PHYS_ADDR_REQ. 15525 * We presumably have an IOCTL hanging out waiting 15526 * for completion. Find it and complete the IOCTL 15527 * with the error noted. 15528 * However, ill_dl_phys was called on an ill queue 15529 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15530 * set. But the ioctl is known to be pending on ill_wq. 15531 */ 15532 if (!ill->ill_ifname_pending) 15533 break; 15534 ill->ill_ifname_pending = 0; 15535 if (!ioctl_aborted) 15536 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15537 if (mp1 != NULL) { 15538 /* 15539 * This operation (SIOCSLIFNAME) must have 15540 * happened on the ill. Assert there is no conn 15541 */ 15542 ASSERT(connp == NULL); 15543 q = ill->ill_wq; 15544 } 15545 break; 15546 case DL_BIND_REQ: 15547 ill_dlpi_done(ill, DL_BIND_REQ); 15548 if (ill->ill_ifname_pending) 15549 break; 15550 /* 15551 * Something went wrong with the bind. We presumably 15552 * have an IOCTL hanging out waiting for completion. 15553 * Find it, take down the interface that was coming 15554 * up, and complete the IOCTL with the error noted. 15555 */ 15556 if (!ioctl_aborted) 15557 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15558 if (mp1 != NULL) { 15559 /* 15560 * This operation (SIOCSLIFFLAGS) must have 15561 * happened from a conn. 15562 */ 15563 ASSERT(connp != NULL); 15564 q = CONNP_TO_WQ(connp); 15565 if (ill->ill_move_in_progress) { 15566 ILL_CLEAR_MOVE(ill); 15567 } 15568 (void) ipif_down(ipif, NULL, NULL); 15569 /* error is set below the switch */ 15570 } 15571 break; 15572 case DL_ENABMULTI_REQ: 15573 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15574 15575 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15576 ill->ill_dlpi_multicast_state = IDS_FAILED; 15577 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15578 ipif_t *ipif; 15579 15580 printf("ip: joining multicasts failed (%d)" 15581 " on %s - will use link layer " 15582 "broadcasts for multicast\n", 15583 dlea->dl_errno, ill->ill_name); 15584 15585 /* 15586 * Set up the multicast mapping alone. 15587 * writer, so ok to access ill->ill_ipif 15588 * without any lock. 15589 */ 15590 ipif = ill->ill_ipif; 15591 mutex_enter(&ill->ill_phyint->phyint_lock); 15592 ill->ill_phyint->phyint_flags |= 15593 PHYI_MULTI_BCAST; 15594 mutex_exit(&ill->ill_phyint->phyint_lock); 15595 15596 if (!ill->ill_isv6) { 15597 (void) ipif_arp_setup_multicast(ipif, 15598 NULL); 15599 } else { 15600 (void) ipif_ndp_setup_multicast(ipif, 15601 NULL); 15602 } 15603 } 15604 freemsg(mp); /* Don't want to pass this up */ 15605 return; 15606 15607 case DL_CAPABILITY_REQ: 15608 case DL_CONTROL_REQ: 15609 ill_dlpi_done(ill, dlea->dl_error_primitive); 15610 ill->ill_dlpi_capab_state = IDS_FAILED; 15611 freemsg(mp); 15612 return; 15613 } 15614 /* 15615 * Note the error for IOCTL completion (mp1 is set when 15616 * ready to complete ioctl). If ill_ifname_pending_err is 15617 * set, an error occured during plumbing (ill_ifname_pending), 15618 * so we want to report that error. 15619 * 15620 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15621 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15622 * expected to get errack'd if the driver doesn't support 15623 * these flags (e.g. ethernet). log will be set to B_FALSE 15624 * if these error conditions are encountered. 15625 */ 15626 if (mp1 != NULL) { 15627 if (ill->ill_ifname_pending_err != 0) { 15628 err = ill->ill_ifname_pending_err; 15629 ill->ill_ifname_pending_err = 0; 15630 } else { 15631 err = dlea->dl_unix_errno ? 15632 dlea->dl_unix_errno : ENXIO; 15633 } 15634 /* 15635 * If we're plumbing an interface and an error hasn't already 15636 * been saved, set ill_ifname_pending_err to the error passed 15637 * up. Ignore the error if log is B_FALSE (see comment above). 15638 */ 15639 } else if (log && ill->ill_ifname_pending && 15640 ill->ill_ifname_pending_err == 0) { 15641 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15642 dlea->dl_unix_errno : ENXIO; 15643 } 15644 15645 if (log) 15646 ip_dlpi_error(ill, dlea->dl_error_primitive, 15647 dlea->dl_errno, dlea->dl_unix_errno); 15648 break; 15649 case DL_CAPABILITY_ACK: 15650 /* Call a routine to handle this one. */ 15651 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15652 ill_capability_ack(ill, mp); 15653 15654 /* 15655 * If the ack is due to renegotiation, we will need to send 15656 * a new CAPABILITY_REQ to start the renegotiation. 15657 */ 15658 if (ill->ill_capab_reneg) { 15659 ill->ill_capab_reneg = B_FALSE; 15660 ill_capability_probe(ill); 15661 } 15662 break; 15663 case DL_CONTROL_ACK: 15664 /* We treat all of these as "fire and forget" */ 15665 ill_dlpi_done(ill, DL_CONTROL_REQ); 15666 break; 15667 case DL_INFO_ACK: 15668 /* Call a routine to handle this one. */ 15669 ill_dlpi_done(ill, DL_INFO_REQ); 15670 ip_ll_subnet_defaults(ill, mp); 15671 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15672 return; 15673 case DL_BIND_ACK: 15674 /* 15675 * We should have an IOCTL waiting on this unless 15676 * sent by ill_dl_phys, in which case just return 15677 */ 15678 ill_dlpi_done(ill, DL_BIND_REQ); 15679 if (ill->ill_ifname_pending) 15680 break; 15681 15682 if (!ioctl_aborted) 15683 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15684 if (mp1 == NULL) 15685 break; 15686 /* 15687 * Because mp1 was added by ill_dl_up(), and it always 15688 * passes a valid connp, connp must be valid here. 15689 */ 15690 ASSERT(connp != NULL); 15691 q = CONNP_TO_WQ(connp); 15692 15693 /* 15694 * We are exclusive. So nothing can change even after 15695 * we get the pending mp. If need be we can put it back 15696 * and restart, as in calling ipif_arp_up() below. 15697 */ 15698 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15699 15700 mutex_enter(&ill->ill_lock); 15701 15702 ill->ill_dl_up = 1; 15703 15704 if ((info = ill->ill_nic_event_info) != NULL) { 15705 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15706 "attached for %s\n", info->hne_event, 15707 ill->ill_name)); 15708 if (info->hne_data != NULL) 15709 kmem_free(info->hne_data, info->hne_datalen); 15710 kmem_free(info, sizeof (hook_nic_event_t)); 15711 } 15712 15713 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15714 if (info != NULL) { 15715 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15716 info->hne_lif = 0; 15717 info->hne_event = NE_UP; 15718 info->hne_data = NULL; 15719 info->hne_datalen = 0; 15720 info->hne_family = ill->ill_isv6 ? 15721 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15722 } else 15723 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15724 "event information for %s (ENOMEM)\n", 15725 ill->ill_name)); 15726 15727 ill->ill_nic_event_info = info; 15728 15729 mutex_exit(&ill->ill_lock); 15730 15731 /* 15732 * Now bring up the resolver; when that is complete, we'll 15733 * create IREs. Note that we intentionally mirror what 15734 * ipif_up() would have done, because we got here by way of 15735 * ill_dl_up(), which stopped ipif_up()'s processing. 15736 */ 15737 if (ill->ill_isv6) { 15738 /* 15739 * v6 interfaces. 15740 * Unlike ARP which has to do another bind 15741 * and attach, once we get here we are 15742 * done with NDP. Except in the case of 15743 * ILLF_XRESOLV, in which case we send an 15744 * AR_INTERFACE_UP to the external resolver. 15745 * If all goes well, the ioctl will complete 15746 * in ip_rput(). If there's an error, we 15747 * complete it here. 15748 */ 15749 if ((err = ipif_ndp_up(ipif)) == 0) { 15750 if (ill->ill_flags & ILLF_XRESOLV) { 15751 mutex_enter(&connp->conn_lock); 15752 mutex_enter(&ill->ill_lock); 15753 success = ipsq_pending_mp_add( 15754 connp, ipif, q, mp1, 0); 15755 mutex_exit(&ill->ill_lock); 15756 mutex_exit(&connp->conn_lock); 15757 if (success) { 15758 err = ipif_resolver_up(ipif, 15759 Res_act_initial); 15760 if (err == EINPROGRESS) { 15761 freemsg(mp); 15762 return; 15763 } 15764 ASSERT(err != 0); 15765 mp1 = ipsq_pending_mp_get(ipsq, 15766 &connp); 15767 ASSERT(mp1 != NULL); 15768 } else { 15769 /* conn has started closing */ 15770 err = EINTR; 15771 } 15772 } else { /* Non XRESOLV interface */ 15773 (void) ipif_resolver_up(ipif, 15774 Res_act_initial); 15775 err = ipif_up_done_v6(ipif); 15776 } 15777 } 15778 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15779 /* 15780 * ARP and other v4 external resolvers. 15781 * Leave the pending mblk intact so that 15782 * the ioctl completes in ip_rput(). 15783 */ 15784 mutex_enter(&connp->conn_lock); 15785 mutex_enter(&ill->ill_lock); 15786 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15787 mutex_exit(&ill->ill_lock); 15788 mutex_exit(&connp->conn_lock); 15789 if (success) { 15790 err = ipif_resolver_up(ipif, Res_act_initial); 15791 if (err == EINPROGRESS) { 15792 freemsg(mp); 15793 return; 15794 } 15795 ASSERT(err != 0); 15796 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15797 } else { 15798 /* The conn has started closing */ 15799 err = EINTR; 15800 } 15801 } else { 15802 /* 15803 * This one is complete. Reply to pending ioctl. 15804 */ 15805 (void) ipif_resolver_up(ipif, Res_act_initial); 15806 err = ipif_up_done(ipif); 15807 } 15808 15809 if ((err == 0) && (ill->ill_up_ipifs)) { 15810 err = ill_up_ipifs(ill, q, mp1); 15811 if (err == EINPROGRESS) { 15812 freemsg(mp); 15813 return; 15814 } 15815 } 15816 15817 if (ill->ill_up_ipifs) { 15818 ill_group_cleanup(ill); 15819 } 15820 15821 break; 15822 case DL_NOTIFY_IND: { 15823 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15824 ire_t *ire; 15825 boolean_t need_ire_walk_v4 = B_FALSE; 15826 boolean_t need_ire_walk_v6 = B_FALSE; 15827 15828 switch (notify->dl_notification) { 15829 case DL_NOTE_PHYS_ADDR: 15830 err = ill_set_phys_addr(ill, mp); 15831 break; 15832 15833 case DL_NOTE_FASTPATH_FLUSH: 15834 ill_fastpath_flush(ill); 15835 break; 15836 15837 case DL_NOTE_SDU_SIZE: 15838 /* 15839 * Change the MTU size of the interface, of all 15840 * attached ipif's, and of all relevant ire's. The 15841 * new value's a uint32_t at notify->dl_data. 15842 * Mtu change Vs. new ire creation - protocol below. 15843 * 15844 * a Mark the ipif as IPIF_CHANGING. 15845 * b Set the new mtu in the ipif. 15846 * c Change the ire_max_frag on all affected ires 15847 * d Unmark the IPIF_CHANGING 15848 * 15849 * To see how the protocol works, assume an interface 15850 * route is also being added simultaneously by 15851 * ip_rt_add and let 'ipif' be the ipif referenced by 15852 * the ire. If the ire is created before step a, 15853 * it will be cleaned up by step c. If the ire is 15854 * created after step d, it will see the new value of 15855 * ipif_mtu. Any attempt to create the ire between 15856 * steps a to d will fail because of the IPIF_CHANGING 15857 * flag. Note that ire_create() is passed a pointer to 15858 * the ipif_mtu, and not the value. During ire_add 15859 * under the bucket lock, the ire_max_frag of the 15860 * new ire being created is set from the ipif/ire from 15861 * which it is being derived. 15862 */ 15863 mutex_enter(&ill->ill_lock); 15864 ill->ill_max_frag = (uint_t)notify->dl_data; 15865 15866 /* 15867 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15868 * leave it alone 15869 */ 15870 if (ill->ill_mtu_userspecified) { 15871 mutex_exit(&ill->ill_lock); 15872 break; 15873 } 15874 ill->ill_max_mtu = ill->ill_max_frag; 15875 if (ill->ill_isv6) { 15876 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15877 ill->ill_max_mtu = IPV6_MIN_MTU; 15878 } else { 15879 if (ill->ill_max_mtu < IP_MIN_MTU) 15880 ill->ill_max_mtu = IP_MIN_MTU; 15881 } 15882 for (ipif = ill->ill_ipif; ipif != NULL; 15883 ipif = ipif->ipif_next) { 15884 /* 15885 * Don't override the mtu if the user 15886 * has explicitly set it. 15887 */ 15888 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15889 continue; 15890 ipif->ipif_mtu = (uint_t)notify->dl_data; 15891 if (ipif->ipif_isv6) 15892 ire = ipif_to_ire_v6(ipif); 15893 else 15894 ire = ipif_to_ire(ipif); 15895 if (ire != NULL) { 15896 ire->ire_max_frag = ipif->ipif_mtu; 15897 ire_refrele(ire); 15898 } 15899 if (ipif->ipif_flags & IPIF_UP) { 15900 if (ill->ill_isv6) 15901 need_ire_walk_v6 = B_TRUE; 15902 else 15903 need_ire_walk_v4 = B_TRUE; 15904 } 15905 } 15906 mutex_exit(&ill->ill_lock); 15907 if (need_ire_walk_v4) 15908 ire_walk_v4(ill_mtu_change, (char *)ill, 15909 ALL_ZONES, ipst); 15910 if (need_ire_walk_v6) 15911 ire_walk_v6(ill_mtu_change, (char *)ill, 15912 ALL_ZONES, ipst); 15913 break; 15914 case DL_NOTE_LINK_UP: 15915 case DL_NOTE_LINK_DOWN: { 15916 /* 15917 * We are writer. ill / phyint / ipsq assocs stable. 15918 * The RUNNING flag reflects the state of the link. 15919 */ 15920 phyint_t *phyint = ill->ill_phyint; 15921 uint64_t new_phyint_flags; 15922 boolean_t changed = B_FALSE; 15923 boolean_t went_up; 15924 15925 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15926 mutex_enter(&phyint->phyint_lock); 15927 new_phyint_flags = went_up ? 15928 phyint->phyint_flags | PHYI_RUNNING : 15929 phyint->phyint_flags & ~PHYI_RUNNING; 15930 if (new_phyint_flags != phyint->phyint_flags) { 15931 phyint->phyint_flags = new_phyint_flags; 15932 changed = B_TRUE; 15933 } 15934 mutex_exit(&phyint->phyint_lock); 15935 /* 15936 * ill_restart_dad handles the DAD restart and routing 15937 * socket notification logic. 15938 */ 15939 if (changed) { 15940 ill_restart_dad(phyint->phyint_illv4, went_up); 15941 ill_restart_dad(phyint->phyint_illv6, went_up); 15942 } 15943 break; 15944 } 15945 case DL_NOTE_PROMISC_ON_PHYS: 15946 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15947 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15948 mutex_enter(&ill->ill_lock); 15949 ill->ill_promisc_on_phys = B_TRUE; 15950 mutex_exit(&ill->ill_lock); 15951 break; 15952 case DL_NOTE_PROMISC_OFF_PHYS: 15953 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15954 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15955 mutex_enter(&ill->ill_lock); 15956 ill->ill_promisc_on_phys = B_FALSE; 15957 mutex_exit(&ill->ill_lock); 15958 break; 15959 case DL_NOTE_CAPAB_RENEG: 15960 /* 15961 * Something changed on the driver side. 15962 * It wants us to renegotiate the capabilities 15963 * on this ill. One possible cause is the aggregation 15964 * interface under us where a port got added or 15965 * went away. 15966 * 15967 * If the capability negotiation is already done 15968 * or is in progress, reset the capabilities and 15969 * mark the ill's ill_capab_reneg to be B_TRUE, 15970 * so that when the ack comes back, we can start 15971 * the renegotiation process. 15972 * 15973 * Note that if ill_capab_reneg is already B_TRUE 15974 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 15975 * the capability resetting request has been sent 15976 * and the renegotiation has not been started yet; 15977 * nothing needs to be done in this case. 15978 */ 15979 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 15980 ill_capability_reset(ill); 15981 ill->ill_capab_reneg = B_TRUE; 15982 } 15983 break; 15984 default: 15985 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15986 "type 0x%x for DL_NOTIFY_IND\n", 15987 notify->dl_notification)); 15988 break; 15989 } 15990 15991 /* 15992 * As this is an asynchronous operation, we 15993 * should not call ill_dlpi_done 15994 */ 15995 break; 15996 } 15997 case DL_NOTIFY_ACK: { 15998 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15999 16000 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16001 ill->ill_note_link = 1; 16002 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16003 break; 16004 } 16005 case DL_PHYS_ADDR_ACK: { 16006 /* 16007 * As part of plumbing the interface via SIOCSLIFNAME, 16008 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16009 * whose answers we receive here. As each answer is received, 16010 * we call ill_dlpi_done() to dispatch the next request as 16011 * we're processing the current one. Once all answers have 16012 * been received, we use ipsq_pending_mp_get() to dequeue the 16013 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16014 * is invoked from an ill queue, conn_oper_pending_ill is not 16015 * available, but we know the ioctl is pending on ill_wq.) 16016 */ 16017 uint_t paddrlen, paddroff; 16018 16019 paddrreq = ill->ill_phys_addr_pend; 16020 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16021 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16022 16023 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16024 if (paddrreq == DL_IPV6_TOKEN) { 16025 /* 16026 * bcopy to low-order bits of ill_token 16027 * 16028 * XXX Temporary hack - currently, all known tokens 16029 * are 64 bits, so I'll cheat for the moment. 16030 */ 16031 bcopy(mp->b_rptr + paddroff, 16032 &ill->ill_token.s6_addr32[2], paddrlen); 16033 ill->ill_token_length = paddrlen; 16034 break; 16035 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16036 ASSERT(ill->ill_nd_lla_mp == NULL); 16037 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16038 mp = NULL; 16039 break; 16040 } 16041 16042 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16043 ASSERT(ill->ill_phys_addr_mp == NULL); 16044 if (!ill->ill_ifname_pending) 16045 break; 16046 ill->ill_ifname_pending = 0; 16047 if (!ioctl_aborted) 16048 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16049 if (mp1 != NULL) { 16050 ASSERT(connp == NULL); 16051 q = ill->ill_wq; 16052 } 16053 /* 16054 * If any error acks received during the plumbing sequence, 16055 * ill_ifname_pending_err will be set. Break out and send up 16056 * the error to the pending ioctl. 16057 */ 16058 if (ill->ill_ifname_pending_err != 0) { 16059 err = ill->ill_ifname_pending_err; 16060 ill->ill_ifname_pending_err = 0; 16061 break; 16062 } 16063 16064 ill->ill_phys_addr_mp = mp; 16065 ill->ill_phys_addr = mp->b_rptr + paddroff; 16066 mp = NULL; 16067 16068 /* 16069 * If paddrlen is zero, the DLPI provider doesn't support 16070 * physical addresses. The other two tests were historical 16071 * workarounds for bugs in our former PPP implementation, but 16072 * now other things have grown dependencies on them -- e.g., 16073 * the tun module specifies a dl_addr_length of zero in its 16074 * DL_BIND_ACK, but then specifies an incorrect value in its 16075 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16076 * but only after careful testing ensures that all dependent 16077 * broken DLPI providers have been fixed. 16078 */ 16079 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16080 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16081 ill->ill_phys_addr = NULL; 16082 } else if (paddrlen != ill->ill_phys_addr_length) { 16083 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16084 paddrlen, ill->ill_phys_addr_length)); 16085 err = EINVAL; 16086 break; 16087 } 16088 16089 if (ill->ill_nd_lla_mp == NULL) { 16090 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16091 err = ENOMEM; 16092 break; 16093 } 16094 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16095 } 16096 16097 /* 16098 * Set the interface token. If the zeroth interface address 16099 * is unspecified, then set it to the link local address. 16100 */ 16101 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16102 (void) ill_setdefaulttoken(ill); 16103 16104 ASSERT(ill->ill_ipif->ipif_id == 0); 16105 if (ipif != NULL && 16106 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16107 (void) ipif_setlinklocal(ipif); 16108 } 16109 break; 16110 } 16111 case DL_OK_ACK: 16112 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16113 dlpi_prim_str((int)dloa->dl_correct_primitive), 16114 dloa->dl_correct_primitive)); 16115 switch (dloa->dl_correct_primitive) { 16116 case DL_PROMISCON_REQ: 16117 case DL_PROMISCOFF_REQ: 16118 case DL_ENABMULTI_REQ: 16119 case DL_DISABMULTI_REQ: 16120 case DL_UNBIND_REQ: 16121 case DL_ATTACH_REQ: 16122 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16123 break; 16124 } 16125 break; 16126 default: 16127 break; 16128 } 16129 16130 freemsg(mp); 16131 if (mp1 != NULL) { 16132 /* 16133 * The operation must complete without EINPROGRESS 16134 * since ipsq_pending_mp_get() has removed the mblk 16135 * from ipsq_pending_mp. Otherwise, the operation 16136 * will be stuck forever in the ipsq. 16137 */ 16138 ASSERT(err != EINPROGRESS); 16139 16140 switch (ipsq->ipsq_current_ioctl) { 16141 case 0: 16142 ipsq_current_finish(ipsq); 16143 break; 16144 16145 case SIOCLIFADDIF: 16146 case SIOCSLIFNAME: 16147 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16148 break; 16149 16150 default: 16151 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16152 break; 16153 } 16154 } 16155 } 16156 16157 /* 16158 * ip_rput_other is called by ip_rput to handle messages modifying the global 16159 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16160 */ 16161 /* ARGSUSED */ 16162 void 16163 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16164 { 16165 ill_t *ill; 16166 struct iocblk *iocp; 16167 mblk_t *mp1; 16168 conn_t *connp = NULL; 16169 16170 ip1dbg(("ip_rput_other ")); 16171 ill = (ill_t *)q->q_ptr; 16172 /* 16173 * This routine is not a writer in the case of SIOCGTUNPARAM 16174 * in which case ipsq is NULL. 16175 */ 16176 if (ipsq != NULL) { 16177 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16178 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16179 } 16180 16181 switch (mp->b_datap->db_type) { 16182 case M_ERROR: 16183 case M_HANGUP: 16184 /* 16185 * The device has a problem. We force the ILL down. It can 16186 * be brought up again manually using SIOCSIFFLAGS (via 16187 * ifconfig or equivalent). 16188 */ 16189 ASSERT(ipsq != NULL); 16190 if (mp->b_rptr < mp->b_wptr) 16191 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16192 if (ill->ill_error == 0) 16193 ill->ill_error = ENXIO; 16194 if (!ill_down_start(q, mp)) 16195 return; 16196 ipif_all_down_tail(ipsq, q, mp, NULL); 16197 break; 16198 case M_IOCACK: 16199 iocp = (struct iocblk *)mp->b_rptr; 16200 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16201 switch (iocp->ioc_cmd) { 16202 case SIOCSTUNPARAM: 16203 case OSIOCSTUNPARAM: 16204 ASSERT(ipsq != NULL); 16205 /* 16206 * Finish socket ioctl passed through to tun. 16207 * We should have an IOCTL waiting on this. 16208 */ 16209 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16210 if (ill->ill_isv6) { 16211 struct iftun_req *ta; 16212 16213 /* 16214 * if a source or destination is 16215 * being set, try and set the link 16216 * local address for the tunnel 16217 */ 16218 ta = (struct iftun_req *)mp->b_cont-> 16219 b_cont->b_rptr; 16220 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16221 ipif_set_tun_llink(ill, ta); 16222 } 16223 16224 } 16225 if (mp1 != NULL) { 16226 /* 16227 * Now copy back the b_next/b_prev used by 16228 * mi code for the mi_copy* functions. 16229 * See ip_sioctl_tunparam() for the reason. 16230 * Also protect against missing b_cont. 16231 */ 16232 if (mp->b_cont != NULL) { 16233 mp->b_cont->b_next = 16234 mp1->b_cont->b_next; 16235 mp->b_cont->b_prev = 16236 mp1->b_cont->b_prev; 16237 } 16238 inet_freemsg(mp1); 16239 ASSERT(connp != NULL); 16240 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16241 iocp->ioc_error, NO_COPYOUT, ipsq); 16242 } else { 16243 ASSERT(connp == NULL); 16244 putnext(q, mp); 16245 } 16246 break; 16247 case SIOCGTUNPARAM: 16248 case OSIOCGTUNPARAM: 16249 /* 16250 * This is really M_IOCDATA from the tunnel driver. 16251 * convert back and complete the ioctl. 16252 * We should have an IOCTL waiting on this. 16253 */ 16254 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16255 if (mp1) { 16256 /* 16257 * Now copy back the b_next/b_prev used by 16258 * mi code for the mi_copy* functions. 16259 * See ip_sioctl_tunparam() for the reason. 16260 * Also protect against missing b_cont. 16261 */ 16262 if (mp->b_cont != NULL) { 16263 mp->b_cont->b_next = 16264 mp1->b_cont->b_next; 16265 mp->b_cont->b_prev = 16266 mp1->b_cont->b_prev; 16267 } 16268 inet_freemsg(mp1); 16269 if (iocp->ioc_error == 0) 16270 mp->b_datap->db_type = M_IOCDATA; 16271 ASSERT(connp != NULL); 16272 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16273 iocp->ioc_error, COPYOUT, NULL); 16274 } else { 16275 ASSERT(connp == NULL); 16276 putnext(q, mp); 16277 } 16278 break; 16279 default: 16280 break; 16281 } 16282 break; 16283 case M_IOCNAK: 16284 iocp = (struct iocblk *)mp->b_rptr; 16285 16286 switch (iocp->ioc_cmd) { 16287 int mode; 16288 16289 case DL_IOC_HDR_INFO: 16290 /* 16291 * If this was the first attempt turn of the 16292 * fastpath probing. 16293 */ 16294 mutex_enter(&ill->ill_lock); 16295 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16296 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16297 mutex_exit(&ill->ill_lock); 16298 ill_fastpath_nack(ill); 16299 ip1dbg(("ip_rput: DLPI fastpath off on " 16300 "interface %s\n", 16301 ill->ill_name)); 16302 } else { 16303 mutex_exit(&ill->ill_lock); 16304 } 16305 freemsg(mp); 16306 break; 16307 case SIOCSTUNPARAM: 16308 case OSIOCSTUNPARAM: 16309 ASSERT(ipsq != NULL); 16310 /* 16311 * Finish socket ioctl passed through to tun 16312 * We should have an IOCTL waiting on this. 16313 */ 16314 /* FALLTHRU */ 16315 case SIOCGTUNPARAM: 16316 case OSIOCGTUNPARAM: 16317 /* 16318 * This is really M_IOCDATA from the tunnel driver. 16319 * convert back and complete the ioctl. 16320 * We should have an IOCTL waiting on this. 16321 */ 16322 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16323 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16324 mp1 = ill_pending_mp_get(ill, &connp, 16325 iocp->ioc_id); 16326 mode = COPYOUT; 16327 ipsq = NULL; 16328 } else { 16329 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16330 mode = NO_COPYOUT; 16331 } 16332 if (mp1 != NULL) { 16333 /* 16334 * Now copy back the b_next/b_prev used by 16335 * mi code for the mi_copy* functions. 16336 * See ip_sioctl_tunparam() for the reason. 16337 * Also protect against missing b_cont. 16338 */ 16339 if (mp->b_cont != NULL) { 16340 mp->b_cont->b_next = 16341 mp1->b_cont->b_next; 16342 mp->b_cont->b_prev = 16343 mp1->b_cont->b_prev; 16344 } 16345 inet_freemsg(mp1); 16346 if (iocp->ioc_error == 0) 16347 iocp->ioc_error = EINVAL; 16348 ASSERT(connp != NULL); 16349 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16350 iocp->ioc_error, mode, ipsq); 16351 } else { 16352 ASSERT(connp == NULL); 16353 putnext(q, mp); 16354 } 16355 break; 16356 default: 16357 break; 16358 } 16359 default: 16360 break; 16361 } 16362 } 16363 16364 /* 16365 * NOTE : This function does not ire_refrele the ire argument passed in. 16366 * 16367 * IPQoS notes 16368 * IP policy is invoked twice for a forwarded packet, once on the read side 16369 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16370 * enabled. An additional parameter, in_ill, has been added for this purpose. 16371 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16372 * because ip_mroute drops this information. 16373 * 16374 */ 16375 void 16376 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16377 { 16378 uint32_t old_pkt_len; 16379 uint32_t pkt_len; 16380 queue_t *q; 16381 uint32_t sum; 16382 #define rptr ((uchar_t *)ipha) 16383 uint32_t max_frag; 16384 uint32_t ill_index; 16385 ill_t *out_ill; 16386 mib2_ipIfStatsEntry_t *mibptr; 16387 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16388 16389 /* Get the ill_index of the incoming ILL */ 16390 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16391 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16392 16393 /* Initiate Read side IPPF processing */ 16394 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16395 ip_process(IPP_FWD_IN, &mp, ill_index); 16396 if (mp == NULL) { 16397 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16398 "during IPPF processing\n")); 16399 return; 16400 } 16401 } 16402 16403 /* Adjust the checksum to reflect the ttl decrement. */ 16404 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16405 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16406 16407 if (ipha->ipha_ttl-- <= 1) { 16408 if (ip_csum_hdr(ipha)) { 16409 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16410 goto drop_pkt; 16411 } 16412 /* 16413 * Note: ire_stq this will be NULL for multicast 16414 * datagrams using the long path through arp (the IRE 16415 * is not an IRE_CACHE). This should not cause 16416 * problems since we don't generate ICMP errors for 16417 * multicast packets. 16418 */ 16419 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16420 q = ire->ire_stq; 16421 if (q != NULL) { 16422 /* Sent by forwarding path, and router is global zone */ 16423 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16424 GLOBAL_ZONEID, ipst); 16425 } else 16426 freemsg(mp); 16427 return; 16428 } 16429 16430 /* 16431 * Don't forward if the interface is down 16432 */ 16433 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16434 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16435 ip2dbg(("ip_rput_forward:interface is down\n")); 16436 goto drop_pkt; 16437 } 16438 16439 /* Get the ill_index of the outgoing ILL */ 16440 out_ill = ire_to_ill(ire); 16441 ill_index = out_ill->ill_phyint->phyint_ifindex; 16442 16443 DTRACE_PROBE4(ip4__forwarding__start, 16444 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16445 16446 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16447 ipst->ips_ipv4firewall_forwarding, 16448 in_ill, out_ill, ipha, mp, mp, ipst); 16449 16450 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16451 16452 if (mp == NULL) 16453 return; 16454 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16455 16456 if (is_system_labeled()) { 16457 mblk_t *mp1; 16458 16459 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16460 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16461 goto drop_pkt; 16462 } 16463 /* Size may have changed */ 16464 mp = mp1; 16465 ipha = (ipha_t *)mp->b_rptr; 16466 pkt_len = ntohs(ipha->ipha_length); 16467 } 16468 16469 /* Check if there are options to update */ 16470 if (!IS_SIMPLE_IPH(ipha)) { 16471 if (ip_csum_hdr(ipha)) { 16472 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16473 goto drop_pkt; 16474 } 16475 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16476 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16477 return; 16478 } 16479 16480 ipha->ipha_hdr_checksum = 0; 16481 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16482 } 16483 max_frag = ire->ire_max_frag; 16484 if (pkt_len > max_frag) { 16485 /* 16486 * It needs fragging on its way out. We haven't 16487 * verified the header checksum yet. Since we 16488 * are going to put a surely good checksum in the 16489 * outgoing header, we have to make sure that it 16490 * was good coming in. 16491 */ 16492 if (ip_csum_hdr(ipha)) { 16493 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16494 goto drop_pkt; 16495 } 16496 /* Initiate Write side IPPF processing */ 16497 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16498 ip_process(IPP_FWD_OUT, &mp, ill_index); 16499 if (mp == NULL) { 16500 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16501 " during IPPF processing\n")); 16502 return; 16503 } 16504 } 16505 /* 16506 * Handle labeled packet resizing. 16507 * 16508 * If we have added a label, inform ip_wput_frag() of its 16509 * effect on the MTU for ICMP messages. 16510 */ 16511 if (pkt_len > old_pkt_len) { 16512 uint32_t secopt_size; 16513 16514 secopt_size = pkt_len - old_pkt_len; 16515 if (secopt_size < max_frag) 16516 max_frag -= secopt_size; 16517 } 16518 16519 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16520 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16521 return; 16522 } 16523 16524 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16525 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16526 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16527 ipst->ips_ipv4firewall_physical_out, 16528 NULL, out_ill, ipha, mp, mp, ipst); 16529 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16530 if (mp == NULL) 16531 return; 16532 16533 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16534 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16535 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16536 /* ip_xmit_v4 always consumes the packet */ 16537 return; 16538 16539 drop_pkt:; 16540 ip1dbg(("ip_rput_forward: drop pkt\n")); 16541 freemsg(mp); 16542 #undef rptr 16543 } 16544 16545 void 16546 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16547 { 16548 ire_t *ire; 16549 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16550 16551 ASSERT(!ipif->ipif_isv6); 16552 /* 16553 * Find an IRE which matches the destination and the outgoing 16554 * queue in the cache table. All we need is an IRE_CACHE which 16555 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16556 * then it is enough to have some IRE_CACHE in the group. 16557 */ 16558 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16559 dst = ipif->ipif_pp_dst_addr; 16560 16561 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16562 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16563 if (ire == NULL) { 16564 /* 16565 * Mark this packet to make it be delivered to 16566 * ip_rput_forward after the new ire has been 16567 * created. 16568 */ 16569 mp->b_prev = NULL; 16570 mp->b_next = mp; 16571 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16572 NULL, 0, GLOBAL_ZONEID, &zero_info); 16573 } else { 16574 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16575 IRE_REFRELE(ire); 16576 } 16577 } 16578 16579 /* Update any source route, record route or timestamp options */ 16580 static int 16581 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16582 { 16583 ipoptp_t opts; 16584 uchar_t *opt; 16585 uint8_t optval; 16586 uint8_t optlen; 16587 ipaddr_t dst; 16588 uint32_t ts; 16589 ire_t *dst_ire = NULL; 16590 ire_t *tmp_ire = NULL; 16591 timestruc_t now; 16592 16593 ip2dbg(("ip_rput_forward_options\n")); 16594 dst = ipha->ipha_dst; 16595 for (optval = ipoptp_first(&opts, ipha); 16596 optval != IPOPT_EOL; 16597 optval = ipoptp_next(&opts)) { 16598 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16599 opt = opts.ipoptp_cur; 16600 optlen = opts.ipoptp_len; 16601 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16602 optval, opts.ipoptp_len)); 16603 switch (optval) { 16604 uint32_t off; 16605 case IPOPT_SSRR: 16606 case IPOPT_LSRR: 16607 /* Check if adminstratively disabled */ 16608 if (!ipst->ips_ip_forward_src_routed) { 16609 if (ire->ire_stq != NULL) { 16610 /* 16611 * Sent by forwarding path, and router 16612 * is global zone 16613 */ 16614 icmp_unreachable(ire->ire_stq, mp, 16615 ICMP_SOURCE_ROUTE_FAILED, 16616 GLOBAL_ZONEID, ipst); 16617 } else { 16618 ip0dbg(("ip_rput_forward_options: " 16619 "unable to send unreach\n")); 16620 freemsg(mp); 16621 } 16622 return (-1); 16623 } 16624 16625 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16626 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16627 if (dst_ire == NULL) { 16628 /* 16629 * Must be partial since ip_rput_options 16630 * checked for strict. 16631 */ 16632 break; 16633 } 16634 off = opt[IPOPT_OFFSET]; 16635 off--; 16636 redo_srr: 16637 if (optlen < IP_ADDR_LEN || 16638 off > optlen - IP_ADDR_LEN) { 16639 /* End of source route */ 16640 ip1dbg(( 16641 "ip_rput_forward_options: end of SR\n")); 16642 ire_refrele(dst_ire); 16643 break; 16644 } 16645 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16646 bcopy(&ire->ire_src_addr, (char *)opt + off, 16647 IP_ADDR_LEN); 16648 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16649 ntohl(dst))); 16650 16651 /* 16652 * Check if our address is present more than 16653 * once as consecutive hops in source route. 16654 */ 16655 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16656 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16657 if (tmp_ire != NULL) { 16658 ire_refrele(tmp_ire); 16659 off += IP_ADDR_LEN; 16660 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16661 goto redo_srr; 16662 } 16663 ipha->ipha_dst = dst; 16664 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16665 ire_refrele(dst_ire); 16666 break; 16667 case IPOPT_RR: 16668 off = opt[IPOPT_OFFSET]; 16669 off--; 16670 if (optlen < IP_ADDR_LEN || 16671 off > optlen - IP_ADDR_LEN) { 16672 /* No more room - ignore */ 16673 ip1dbg(( 16674 "ip_rput_forward_options: end of RR\n")); 16675 break; 16676 } 16677 bcopy(&ire->ire_src_addr, (char *)opt + off, 16678 IP_ADDR_LEN); 16679 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16680 break; 16681 case IPOPT_TS: 16682 /* Insert timestamp if there is room */ 16683 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16684 case IPOPT_TS_TSONLY: 16685 off = IPOPT_TS_TIMELEN; 16686 break; 16687 case IPOPT_TS_PRESPEC: 16688 case IPOPT_TS_PRESPEC_RFC791: 16689 /* Verify that the address matched */ 16690 off = opt[IPOPT_OFFSET] - 1; 16691 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16692 dst_ire = ire_ctable_lookup(dst, 0, 16693 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16694 MATCH_IRE_TYPE, ipst); 16695 if (dst_ire == NULL) { 16696 /* Not for us */ 16697 break; 16698 } 16699 ire_refrele(dst_ire); 16700 /* FALLTHRU */ 16701 case IPOPT_TS_TSANDADDR: 16702 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16703 break; 16704 default: 16705 /* 16706 * ip_*put_options should have already 16707 * dropped this packet. 16708 */ 16709 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16710 "unknown IT - bug in ip_rput_options?\n"); 16711 return (0); /* Keep "lint" happy */ 16712 } 16713 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16714 /* Increase overflow counter */ 16715 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16716 opt[IPOPT_POS_OV_FLG] = 16717 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16718 (off << 4)); 16719 break; 16720 } 16721 off = opt[IPOPT_OFFSET] - 1; 16722 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16723 case IPOPT_TS_PRESPEC: 16724 case IPOPT_TS_PRESPEC_RFC791: 16725 case IPOPT_TS_TSANDADDR: 16726 bcopy(&ire->ire_src_addr, 16727 (char *)opt + off, IP_ADDR_LEN); 16728 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16729 /* FALLTHRU */ 16730 case IPOPT_TS_TSONLY: 16731 off = opt[IPOPT_OFFSET] - 1; 16732 /* Compute # of milliseconds since midnight */ 16733 gethrestime(&now); 16734 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16735 now.tv_nsec / (NANOSEC / MILLISEC); 16736 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16737 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16738 break; 16739 } 16740 break; 16741 } 16742 } 16743 return (0); 16744 } 16745 16746 /* 16747 * This is called after processing at least one of AH/ESP headers. 16748 * 16749 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16750 * the actual, physical interface on which the packet was received, 16751 * but, when ip_strict_dst_multihoming is set to 1, could be the 16752 * interface which had the ipha_dst configured when the packet went 16753 * through ip_rput. The ill_index corresponding to the recv_ill 16754 * is saved in ipsec_in_rill_index 16755 * 16756 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16757 * cannot assume "ire" points to valid data for any IPv6 cases. 16758 */ 16759 void 16760 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16761 { 16762 mblk_t *mp; 16763 ipaddr_t dst; 16764 in6_addr_t *v6dstp; 16765 ipha_t *ipha; 16766 ip6_t *ip6h; 16767 ipsec_in_t *ii; 16768 boolean_t ill_need_rele = B_FALSE; 16769 boolean_t rill_need_rele = B_FALSE; 16770 boolean_t ire_need_rele = B_FALSE; 16771 netstack_t *ns; 16772 ip_stack_t *ipst; 16773 16774 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16775 ASSERT(ii->ipsec_in_ill_index != 0); 16776 ns = ii->ipsec_in_ns; 16777 ASSERT(ii->ipsec_in_ns != NULL); 16778 ipst = ns->netstack_ip; 16779 16780 mp = ipsec_mp->b_cont; 16781 ASSERT(mp != NULL); 16782 16783 16784 if (ill == NULL) { 16785 ASSERT(recv_ill == NULL); 16786 /* 16787 * We need to get the original queue on which ip_rput_local 16788 * or ip_rput_data_v6 was called. 16789 */ 16790 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16791 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16792 ill_need_rele = B_TRUE; 16793 16794 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16795 recv_ill = ill_lookup_on_ifindex( 16796 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16797 NULL, NULL, NULL, NULL, ipst); 16798 rill_need_rele = B_TRUE; 16799 } else { 16800 recv_ill = ill; 16801 } 16802 16803 if ((ill == NULL) || (recv_ill == NULL)) { 16804 ip0dbg(("ip_fanout_proto_again: interface " 16805 "disappeared\n")); 16806 if (ill != NULL) 16807 ill_refrele(ill); 16808 if (recv_ill != NULL) 16809 ill_refrele(recv_ill); 16810 freemsg(ipsec_mp); 16811 return; 16812 } 16813 } 16814 16815 ASSERT(ill != NULL && recv_ill != NULL); 16816 16817 if (mp->b_datap->db_type == M_CTL) { 16818 /* 16819 * AH/ESP is returning the ICMP message after 16820 * removing their headers. Fanout again till 16821 * it gets to the right protocol. 16822 */ 16823 if (ii->ipsec_in_v4) { 16824 icmph_t *icmph; 16825 int iph_hdr_length; 16826 int hdr_length; 16827 16828 ipha = (ipha_t *)mp->b_rptr; 16829 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16830 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16831 ipha = (ipha_t *)&icmph[1]; 16832 hdr_length = IPH_HDR_LENGTH(ipha); 16833 /* 16834 * icmp_inbound_error_fanout may need to do pullupmsg. 16835 * Reset the type to M_DATA. 16836 */ 16837 mp->b_datap->db_type = M_DATA; 16838 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16839 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16840 B_FALSE, ill, ii->ipsec_in_zoneid); 16841 } else { 16842 icmp6_t *icmp6; 16843 int hdr_length; 16844 16845 ip6h = (ip6_t *)mp->b_rptr; 16846 /* Don't call hdr_length_v6() unless you have to. */ 16847 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16848 hdr_length = ip_hdr_length_v6(mp, ip6h); 16849 else 16850 hdr_length = IPV6_HDR_LEN; 16851 16852 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16853 /* 16854 * icmp_inbound_error_fanout_v6 may need to do 16855 * pullupmsg. Reset the type to M_DATA. 16856 */ 16857 mp->b_datap->db_type = M_DATA; 16858 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16859 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16860 } 16861 if (ill_need_rele) 16862 ill_refrele(ill); 16863 if (rill_need_rele) 16864 ill_refrele(recv_ill); 16865 return; 16866 } 16867 16868 if (ii->ipsec_in_v4) { 16869 ipha = (ipha_t *)mp->b_rptr; 16870 dst = ipha->ipha_dst; 16871 if (CLASSD(dst)) { 16872 /* 16873 * Multicast has to be delivered to all streams. 16874 */ 16875 dst = INADDR_BROADCAST; 16876 } 16877 16878 if (ire == NULL) { 16879 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16880 MBLK_GETLABEL(mp), ipst); 16881 if (ire == NULL) { 16882 if (ill_need_rele) 16883 ill_refrele(ill); 16884 if (rill_need_rele) 16885 ill_refrele(recv_ill); 16886 ip1dbg(("ip_fanout_proto_again: " 16887 "IRE not found")); 16888 freemsg(ipsec_mp); 16889 return; 16890 } 16891 ire_need_rele = B_TRUE; 16892 } 16893 16894 switch (ipha->ipha_protocol) { 16895 case IPPROTO_UDP: 16896 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16897 recv_ill); 16898 if (ire_need_rele) 16899 ire_refrele(ire); 16900 break; 16901 case IPPROTO_TCP: 16902 if (!ire_need_rele) 16903 IRE_REFHOLD(ire); 16904 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16905 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16906 IRE_REFRELE(ire); 16907 if (mp != NULL) 16908 squeue_enter_chain(GET_SQUEUE(mp), mp, 16909 mp, 1, SQTAG_IP_PROTO_AGAIN); 16910 break; 16911 case IPPROTO_SCTP: 16912 if (!ire_need_rele) 16913 IRE_REFHOLD(ire); 16914 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16915 ipsec_mp, 0, ill->ill_rq, dst); 16916 break; 16917 default: 16918 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16919 recv_ill, B_FALSE); 16920 if (ire_need_rele) 16921 ire_refrele(ire); 16922 break; 16923 } 16924 } else { 16925 uint32_t rput_flags = 0; 16926 16927 ip6h = (ip6_t *)mp->b_rptr; 16928 v6dstp = &ip6h->ip6_dst; 16929 /* 16930 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16931 * address. 16932 * 16933 * Currently, we don't store that state in the IPSEC_IN 16934 * message, and we may need to. 16935 */ 16936 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16937 IP6_IN_LLMCAST : 0); 16938 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16939 NULL, NULL); 16940 } 16941 if (ill_need_rele) 16942 ill_refrele(ill); 16943 if (rill_need_rele) 16944 ill_refrele(recv_ill); 16945 } 16946 16947 /* 16948 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16949 * returns 'true' if there are still fragments left on the queue, in 16950 * which case we restart the timer. 16951 */ 16952 void 16953 ill_frag_timer(void *arg) 16954 { 16955 ill_t *ill = (ill_t *)arg; 16956 boolean_t frag_pending; 16957 ip_stack_t *ipst = ill->ill_ipst; 16958 16959 mutex_enter(&ill->ill_lock); 16960 ASSERT(!ill->ill_fragtimer_executing); 16961 if (ill->ill_state_flags & ILL_CONDEMNED) { 16962 ill->ill_frag_timer_id = 0; 16963 mutex_exit(&ill->ill_lock); 16964 return; 16965 } 16966 ill->ill_fragtimer_executing = 1; 16967 mutex_exit(&ill->ill_lock); 16968 16969 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 16970 16971 /* 16972 * Restart the timer, if we have fragments pending or if someone 16973 * wanted us to be scheduled again. 16974 */ 16975 mutex_enter(&ill->ill_lock); 16976 ill->ill_fragtimer_executing = 0; 16977 ill->ill_frag_timer_id = 0; 16978 if (frag_pending || ill->ill_fragtimer_needrestart) 16979 ill_frag_timer_start(ill); 16980 mutex_exit(&ill->ill_lock); 16981 } 16982 16983 void 16984 ill_frag_timer_start(ill_t *ill) 16985 { 16986 ip_stack_t *ipst = ill->ill_ipst; 16987 16988 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16989 16990 /* If the ill is closing or opening don't proceed */ 16991 if (ill->ill_state_flags & ILL_CONDEMNED) 16992 return; 16993 16994 if (ill->ill_fragtimer_executing) { 16995 /* 16996 * ill_frag_timer is currently executing. Just record the 16997 * the fact that we want the timer to be restarted. 16998 * ill_frag_timer will post a timeout before it returns, 16999 * ensuring it will be called again. 17000 */ 17001 ill->ill_fragtimer_needrestart = 1; 17002 return; 17003 } 17004 17005 if (ill->ill_frag_timer_id == 0) { 17006 /* 17007 * The timer is neither running nor is the timeout handler 17008 * executing. Post a timeout so that ill_frag_timer will be 17009 * called 17010 */ 17011 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17012 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17013 ill->ill_fragtimer_needrestart = 0; 17014 } 17015 } 17016 17017 /* 17018 * This routine is needed for loopback when forwarding multicasts. 17019 * 17020 * IPQoS Notes: 17021 * IPPF processing is done in fanout routines. 17022 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17023 * processing for IPsec packets is done when it comes back in clear. 17024 * NOTE : The callers of this function need to do the ire_refrele for the 17025 * ire that is being passed in. 17026 */ 17027 void 17028 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17029 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17030 { 17031 ill_t *ill = (ill_t *)q->q_ptr; 17032 uint32_t sum; 17033 uint32_t u1; 17034 uint32_t u2; 17035 int hdr_length; 17036 boolean_t mctl_present; 17037 mblk_t *first_mp = mp; 17038 mblk_t *hada_mp = NULL; 17039 ipha_t *inner_ipha; 17040 ip_stack_t *ipst; 17041 17042 ASSERT(recv_ill != NULL); 17043 ipst = recv_ill->ill_ipst; 17044 17045 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17046 "ip_rput_locl_start: q %p", q); 17047 17048 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17049 ASSERT(ill != NULL); 17050 17051 17052 #define rptr ((uchar_t *)ipha) 17053 #define iphs ((uint16_t *)ipha) 17054 17055 /* 17056 * no UDP or TCP packet should come here anymore. 17057 */ 17058 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17059 ipha->ipha_protocol != IPPROTO_UDP); 17060 17061 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17062 if (mctl_present && 17063 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17064 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17065 17066 /* 17067 * It's an IPsec accelerated packet. 17068 * Keep a pointer to the data attributes around until 17069 * we allocate the ipsec_info_t. 17070 */ 17071 IPSECHW_DEBUG(IPSECHW_PKT, 17072 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17073 hada_mp = first_mp; 17074 hada_mp->b_cont = NULL; 17075 /* 17076 * Since it is accelerated, it comes directly from 17077 * the ill and the data attributes is followed by 17078 * the packet data. 17079 */ 17080 ASSERT(mp->b_datap->db_type != M_CTL); 17081 first_mp = mp; 17082 mctl_present = B_FALSE; 17083 } 17084 17085 /* 17086 * IF M_CTL is not present, then ipsec_in_is_secure 17087 * should return B_TRUE. There is a case where loopback 17088 * packets has an M_CTL in the front with all the 17089 * IPsec options set to IPSEC_PREF_NEVER - which means 17090 * ipsec_in_is_secure will return B_FALSE. As loopback 17091 * packets never comes here, it is safe to ASSERT the 17092 * following. 17093 */ 17094 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17095 17096 /* 17097 * Also, we should never have an mctl_present if this is an 17098 * ESP-in-UDP packet. 17099 */ 17100 ASSERT(!mctl_present || !esp_in_udp_packet); 17101 17102 17103 /* u1 is # words of IP options */ 17104 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17105 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17106 17107 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17108 if (u1) { 17109 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17110 if (hada_mp != NULL) 17111 freemsg(hada_mp); 17112 return; 17113 } 17114 } else { 17115 /* Check the IP header checksum. */ 17116 #define uph ((uint16_t *)ipha) 17117 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17118 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17119 #undef uph 17120 /* finish doing IP checksum */ 17121 sum = (sum & 0xFFFF) + (sum >> 16); 17122 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17123 if (sum && sum != 0xFFFF) { 17124 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17125 goto drop_pkt; 17126 } 17127 } 17128 } 17129 17130 /* 17131 * Count for SNMP of inbound packets for ire. As ip_proto_input 17132 * might be called more than once for secure packets, count only 17133 * the first time. 17134 */ 17135 if (!mctl_present) { 17136 UPDATE_IB_PKT_COUNT(ire); 17137 ire->ire_last_used_time = lbolt; 17138 } 17139 17140 /* Check for fragmentation offset. */ 17141 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17142 u1 = u2 & (IPH_MF | IPH_OFFSET); 17143 if (u1) { 17144 /* 17145 * We re-assemble fragments before we do the AH/ESP 17146 * processing. Thus, M_CTL should not be present 17147 * while we are re-assembling. 17148 */ 17149 ASSERT(!mctl_present); 17150 ASSERT(first_mp == mp); 17151 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17152 return; 17153 } 17154 /* 17155 * Make sure that first_mp points back to mp as 17156 * the mp we came in with could have changed in 17157 * ip_rput_fragment(). 17158 */ 17159 ipha = (ipha_t *)mp->b_rptr; 17160 first_mp = mp; 17161 } 17162 17163 /* 17164 * Clear hardware checksumming flag as it is currently only 17165 * used by TCP and UDP. 17166 */ 17167 DB_CKSUMFLAGS(mp) = 0; 17168 17169 /* Now we have a complete datagram, destined for this machine. */ 17170 u1 = IPH_HDR_LENGTH(ipha); 17171 switch (ipha->ipha_protocol) { 17172 case IPPROTO_ICMP: { 17173 ire_t *ire_zone; 17174 ilm_t *ilm; 17175 mblk_t *mp1; 17176 zoneid_t last_zoneid; 17177 17178 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17179 ASSERT(ire->ire_type == IRE_BROADCAST); 17180 /* 17181 * In the multicast case, applications may have joined 17182 * the group from different zones, so we need to deliver 17183 * the packet to each of them. Loop through the 17184 * multicast memberships structures (ilm) on the receive 17185 * ill and send a copy of the packet up each matching 17186 * one. However, we don't do this for multicasts sent on 17187 * the loopback interface (PHYI_LOOPBACK flag set) as 17188 * they must stay in the sender's zone. 17189 * 17190 * ilm_add_v6() ensures that ilms in the same zone are 17191 * contiguous in the ill_ilm list. We use this property 17192 * to avoid sending duplicates needed when two 17193 * applications in the same zone join the same group on 17194 * different logical interfaces: we ignore the ilm if 17195 * its zoneid is the same as the last matching one. 17196 * In addition, the sending of the packet for 17197 * ire_zoneid is delayed until all of the other ilms 17198 * have been exhausted. 17199 */ 17200 last_zoneid = -1; 17201 ILM_WALKER_HOLD(recv_ill); 17202 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17203 ilm = ilm->ilm_next) { 17204 if ((ilm->ilm_flags & ILM_DELETED) || 17205 ipha->ipha_dst != ilm->ilm_addr || 17206 ilm->ilm_zoneid == last_zoneid || 17207 ilm->ilm_zoneid == ire->ire_zoneid || 17208 ilm->ilm_zoneid == ALL_ZONES || 17209 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17210 continue; 17211 mp1 = ip_copymsg(first_mp); 17212 if (mp1 == NULL) 17213 continue; 17214 icmp_inbound(q, mp1, B_TRUE, ill, 17215 0, sum, mctl_present, B_TRUE, 17216 recv_ill, ilm->ilm_zoneid); 17217 last_zoneid = ilm->ilm_zoneid; 17218 } 17219 ILM_WALKER_RELE(recv_ill); 17220 } else if (ire->ire_type == IRE_BROADCAST) { 17221 /* 17222 * In the broadcast case, there may be many zones 17223 * which need a copy of the packet delivered to them. 17224 * There is one IRE_BROADCAST per broadcast address 17225 * and per zone; we walk those using a helper function. 17226 * In addition, the sending of the packet for ire is 17227 * delayed until all of the other ires have been 17228 * processed. 17229 */ 17230 IRB_REFHOLD(ire->ire_bucket); 17231 ire_zone = NULL; 17232 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17233 ire)) != NULL) { 17234 mp1 = ip_copymsg(first_mp); 17235 if (mp1 == NULL) 17236 continue; 17237 17238 UPDATE_IB_PKT_COUNT(ire_zone); 17239 ire_zone->ire_last_used_time = lbolt; 17240 icmp_inbound(q, mp1, B_TRUE, ill, 17241 0, sum, mctl_present, B_TRUE, 17242 recv_ill, ire_zone->ire_zoneid); 17243 } 17244 IRB_REFRELE(ire->ire_bucket); 17245 } 17246 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17247 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17248 ire->ire_zoneid); 17249 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17250 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17251 return; 17252 } 17253 case IPPROTO_IGMP: 17254 /* 17255 * If we are not willing to accept IGMP packets in clear, 17256 * then check with global policy. 17257 */ 17258 if (ipst->ips_igmp_accept_clear_messages == 0) { 17259 first_mp = ipsec_check_global_policy(first_mp, NULL, 17260 ipha, NULL, mctl_present, ipst->ips_netstack); 17261 if (first_mp == NULL) 17262 return; 17263 } 17264 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17265 freemsg(first_mp); 17266 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17267 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17268 return; 17269 } 17270 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17271 /* Bad packet - discarded by igmp_input */ 17272 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17273 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17274 if (mctl_present) 17275 freeb(first_mp); 17276 return; 17277 } 17278 /* 17279 * igmp_input() may have returned the pulled up message. 17280 * So first_mp and ipha need to be reinitialized. 17281 */ 17282 ipha = (ipha_t *)mp->b_rptr; 17283 if (mctl_present) 17284 first_mp->b_cont = mp; 17285 else 17286 first_mp = mp; 17287 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17288 connf_head != NULL) { 17289 /* No user-level listener for IGMP packets */ 17290 goto drop_pkt; 17291 } 17292 /* deliver to local raw users */ 17293 break; 17294 case IPPROTO_PIM: 17295 /* 17296 * If we are not willing to accept PIM packets in clear, 17297 * then check with global policy. 17298 */ 17299 if (ipst->ips_pim_accept_clear_messages == 0) { 17300 first_mp = ipsec_check_global_policy(first_mp, NULL, 17301 ipha, NULL, mctl_present, ipst->ips_netstack); 17302 if (first_mp == NULL) 17303 return; 17304 } 17305 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17306 freemsg(first_mp); 17307 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17308 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17309 return; 17310 } 17311 if (pim_input(q, mp, ill) != 0) { 17312 /* Bad packet - discarded by pim_input */ 17313 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17314 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17315 if (mctl_present) 17316 freeb(first_mp); 17317 return; 17318 } 17319 17320 /* 17321 * pim_input() may have pulled up the message so ipha needs to 17322 * be reinitialized. 17323 */ 17324 ipha = (ipha_t *)mp->b_rptr; 17325 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17326 connf_head != NULL) { 17327 /* No user-level listener for PIM packets */ 17328 goto drop_pkt; 17329 } 17330 /* deliver to local raw users */ 17331 break; 17332 case IPPROTO_ENCAP: 17333 /* 17334 * Handle self-encapsulated packets (IP-in-IP where 17335 * the inner addresses == the outer addresses). 17336 */ 17337 hdr_length = IPH_HDR_LENGTH(ipha); 17338 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17339 mp->b_wptr) { 17340 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17341 sizeof (ipha_t) - mp->b_rptr)) { 17342 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17343 freemsg(first_mp); 17344 return; 17345 } 17346 ipha = (ipha_t *)mp->b_rptr; 17347 } 17348 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17349 /* 17350 * Check the sanity of the inner IP header. 17351 */ 17352 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17353 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17354 freemsg(first_mp); 17355 return; 17356 } 17357 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17358 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17359 freemsg(first_mp); 17360 return; 17361 } 17362 if (inner_ipha->ipha_src == ipha->ipha_src && 17363 inner_ipha->ipha_dst == ipha->ipha_dst) { 17364 ipsec_in_t *ii; 17365 17366 /* 17367 * Self-encapsulated tunnel packet. Remove 17368 * the outer IP header and fanout again. 17369 * We also need to make sure that the inner 17370 * header is pulled up until options. 17371 */ 17372 mp->b_rptr = (uchar_t *)inner_ipha; 17373 ipha = inner_ipha; 17374 hdr_length = IPH_HDR_LENGTH(ipha); 17375 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17376 if (!pullupmsg(mp, (uchar_t *)ipha + 17377 + hdr_length - mp->b_rptr)) { 17378 freemsg(first_mp); 17379 return; 17380 } 17381 ipha = (ipha_t *)mp->b_rptr; 17382 } 17383 if (!mctl_present) { 17384 ASSERT(first_mp == mp); 17385 /* 17386 * This means that somebody is sending 17387 * Self-encapsualted packets without AH/ESP. 17388 * If AH/ESP was present, we would have already 17389 * allocated the first_mp. 17390 */ 17391 first_mp = ipsec_in_alloc(B_TRUE, 17392 ipst->ips_netstack); 17393 if (first_mp == NULL) { 17394 ip1dbg(("ip_proto_input: IPSEC_IN " 17395 "allocation failure.\n")); 17396 BUMP_MIB(ill->ill_ip_mib, 17397 ipIfStatsInDiscards); 17398 freemsg(mp); 17399 return; 17400 } 17401 first_mp->b_cont = mp; 17402 } 17403 /* 17404 * We generally store the ill_index if we need to 17405 * do IPsec processing as we lose the ill queue when 17406 * we come back. But in this case, we never should 17407 * have to store the ill_index here as it should have 17408 * been stored previously when we processed the 17409 * AH/ESP header in this routine or for non-ipsec 17410 * cases, we still have the queue. But for some bad 17411 * packets from the wire, we can get to IPsec after 17412 * this and we better store the index for that case. 17413 */ 17414 ill = (ill_t *)q->q_ptr; 17415 ii = (ipsec_in_t *)first_mp->b_rptr; 17416 ii->ipsec_in_ill_index = 17417 ill->ill_phyint->phyint_ifindex; 17418 ii->ipsec_in_rill_index = 17419 recv_ill->ill_phyint->phyint_ifindex; 17420 if (ii->ipsec_in_decaps) { 17421 /* 17422 * This packet is self-encapsulated multiple 17423 * times. We don't want to recurse infinitely. 17424 * To keep it simple, drop the packet. 17425 */ 17426 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17427 freemsg(first_mp); 17428 return; 17429 } 17430 ii->ipsec_in_decaps = B_TRUE; 17431 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17432 ire); 17433 return; 17434 } 17435 break; 17436 case IPPROTO_AH: 17437 case IPPROTO_ESP: { 17438 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17439 17440 /* 17441 * Fast path for AH/ESP. If this is the first time 17442 * we are sending a datagram to AH/ESP, allocate 17443 * a IPSEC_IN message and prepend it. Otherwise, 17444 * just fanout. 17445 */ 17446 17447 int ipsec_rc; 17448 ipsec_in_t *ii; 17449 netstack_t *ns = ipst->ips_netstack; 17450 17451 IP_STAT(ipst, ipsec_proto_ahesp); 17452 if (!mctl_present) { 17453 ASSERT(first_mp == mp); 17454 first_mp = ipsec_in_alloc(B_TRUE, ns); 17455 if (first_mp == NULL) { 17456 ip1dbg(("ip_proto_input: IPSEC_IN " 17457 "allocation failure.\n")); 17458 freemsg(hada_mp); /* okay ifnull */ 17459 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17460 freemsg(mp); 17461 return; 17462 } 17463 /* 17464 * Store the ill_index so that when we come back 17465 * from IPsec we ride on the same queue. 17466 */ 17467 ill = (ill_t *)q->q_ptr; 17468 ii = (ipsec_in_t *)first_mp->b_rptr; 17469 ii->ipsec_in_ill_index = 17470 ill->ill_phyint->phyint_ifindex; 17471 ii->ipsec_in_rill_index = 17472 recv_ill->ill_phyint->phyint_ifindex; 17473 first_mp->b_cont = mp; 17474 /* 17475 * Cache hardware acceleration info. 17476 */ 17477 if (hada_mp != NULL) { 17478 IPSECHW_DEBUG(IPSECHW_PKT, 17479 ("ip_rput_local: caching data attr.\n")); 17480 ii->ipsec_in_accelerated = B_TRUE; 17481 ii->ipsec_in_da = hada_mp; 17482 hada_mp = NULL; 17483 } 17484 } else { 17485 ii = (ipsec_in_t *)first_mp->b_rptr; 17486 } 17487 17488 if (!ipsec_loaded(ipss)) { 17489 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17490 ire->ire_zoneid, ipst); 17491 return; 17492 } 17493 17494 ns = ipst->ips_netstack; 17495 /* select inbound SA and have IPsec process the pkt */ 17496 if (ipha->ipha_protocol == IPPROTO_ESP) { 17497 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17498 boolean_t esp_in_udp_sa; 17499 if (esph == NULL) 17500 return; 17501 ASSERT(ii->ipsec_in_esp_sa != NULL); 17502 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17503 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17504 IPSA_F_NATT) != 0); 17505 /* 17506 * The following is a fancy, but quick, way of saying: 17507 * ESP-in-UDP SA and Raw ESP packet --> drop 17508 * OR 17509 * ESP SA and ESP-in-UDP packet --> drop 17510 */ 17511 if (esp_in_udp_sa != esp_in_udp_packet) { 17512 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17513 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17514 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17515 &ns->netstack_ipsec->ipsec_dropper); 17516 return; 17517 } 17518 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17519 first_mp, esph); 17520 } else { 17521 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17522 if (ah == NULL) 17523 return; 17524 ASSERT(ii->ipsec_in_ah_sa != NULL); 17525 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17526 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17527 first_mp, ah); 17528 } 17529 17530 switch (ipsec_rc) { 17531 case IPSEC_STATUS_SUCCESS: 17532 break; 17533 case IPSEC_STATUS_FAILED: 17534 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17535 /* FALLTHRU */ 17536 case IPSEC_STATUS_PENDING: 17537 return; 17538 } 17539 /* we're done with IPsec processing, send it up */ 17540 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17541 return; 17542 } 17543 default: 17544 break; 17545 } 17546 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17547 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17548 ire->ire_zoneid)); 17549 goto drop_pkt; 17550 } 17551 /* 17552 * Handle protocols with which IP is less intimate. There 17553 * can be more than one stream bound to a particular 17554 * protocol. When this is the case, each one gets a copy 17555 * of any incoming packets. 17556 */ 17557 ip_fanout_proto(q, first_mp, ill, ipha, 17558 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17559 B_TRUE, recv_ill, ire->ire_zoneid); 17560 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17561 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17562 return; 17563 17564 drop_pkt: 17565 freemsg(first_mp); 17566 if (hada_mp != NULL) 17567 freeb(hada_mp); 17568 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17569 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17570 #undef rptr 17571 #undef iphs 17572 17573 } 17574 17575 /* 17576 * Update any source route, record route or timestamp options. 17577 * Check that we are at end of strict source route. 17578 * The options have already been checked for sanity in ip_rput_options(). 17579 */ 17580 static boolean_t 17581 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17582 ip_stack_t *ipst) 17583 { 17584 ipoptp_t opts; 17585 uchar_t *opt; 17586 uint8_t optval; 17587 uint8_t optlen; 17588 ipaddr_t dst; 17589 uint32_t ts; 17590 ire_t *dst_ire; 17591 timestruc_t now; 17592 zoneid_t zoneid; 17593 ill_t *ill; 17594 17595 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17596 17597 ip2dbg(("ip_rput_local_options\n")); 17598 17599 for (optval = ipoptp_first(&opts, ipha); 17600 optval != IPOPT_EOL; 17601 optval = ipoptp_next(&opts)) { 17602 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17603 opt = opts.ipoptp_cur; 17604 optlen = opts.ipoptp_len; 17605 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17606 optval, optlen)); 17607 switch (optval) { 17608 uint32_t off; 17609 case IPOPT_SSRR: 17610 case IPOPT_LSRR: 17611 off = opt[IPOPT_OFFSET]; 17612 off--; 17613 if (optlen < IP_ADDR_LEN || 17614 off > optlen - IP_ADDR_LEN) { 17615 /* End of source route */ 17616 ip1dbg(("ip_rput_local_options: end of SR\n")); 17617 break; 17618 } 17619 /* 17620 * This will only happen if two consecutive entries 17621 * in the source route contains our address or if 17622 * it is a packet with a loose source route which 17623 * reaches us before consuming the whole source route 17624 */ 17625 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17626 if (optval == IPOPT_SSRR) { 17627 goto bad_src_route; 17628 } 17629 /* 17630 * Hack: instead of dropping the packet truncate the 17631 * source route to what has been used by filling the 17632 * rest with IPOPT_NOP. 17633 */ 17634 opt[IPOPT_OLEN] = (uint8_t)off; 17635 while (off < optlen) { 17636 opt[off++] = IPOPT_NOP; 17637 } 17638 break; 17639 case IPOPT_RR: 17640 off = opt[IPOPT_OFFSET]; 17641 off--; 17642 if (optlen < IP_ADDR_LEN || 17643 off > optlen - IP_ADDR_LEN) { 17644 /* No more room - ignore */ 17645 ip1dbg(( 17646 "ip_rput_local_options: end of RR\n")); 17647 break; 17648 } 17649 bcopy(&ire->ire_src_addr, (char *)opt + off, 17650 IP_ADDR_LEN); 17651 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17652 break; 17653 case IPOPT_TS: 17654 /* Insert timestamp if there is romm */ 17655 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17656 case IPOPT_TS_TSONLY: 17657 off = IPOPT_TS_TIMELEN; 17658 break; 17659 case IPOPT_TS_PRESPEC: 17660 case IPOPT_TS_PRESPEC_RFC791: 17661 /* Verify that the address matched */ 17662 off = opt[IPOPT_OFFSET] - 1; 17663 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17664 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17665 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17666 ipst); 17667 if (dst_ire == NULL) { 17668 /* Not for us */ 17669 break; 17670 } 17671 ire_refrele(dst_ire); 17672 /* FALLTHRU */ 17673 case IPOPT_TS_TSANDADDR: 17674 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17675 break; 17676 default: 17677 /* 17678 * ip_*put_options should have already 17679 * dropped this packet. 17680 */ 17681 cmn_err(CE_PANIC, "ip_rput_local_options: " 17682 "unknown IT - bug in ip_rput_options?\n"); 17683 return (B_TRUE); /* Keep "lint" happy */ 17684 } 17685 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17686 /* Increase overflow counter */ 17687 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17688 opt[IPOPT_POS_OV_FLG] = 17689 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17690 (off << 4)); 17691 break; 17692 } 17693 off = opt[IPOPT_OFFSET] - 1; 17694 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17695 case IPOPT_TS_PRESPEC: 17696 case IPOPT_TS_PRESPEC_RFC791: 17697 case IPOPT_TS_TSANDADDR: 17698 bcopy(&ire->ire_src_addr, (char *)opt + off, 17699 IP_ADDR_LEN); 17700 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17701 /* FALLTHRU */ 17702 case IPOPT_TS_TSONLY: 17703 off = opt[IPOPT_OFFSET] - 1; 17704 /* Compute # of milliseconds since midnight */ 17705 gethrestime(&now); 17706 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17707 now.tv_nsec / (NANOSEC / MILLISEC); 17708 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17709 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17710 break; 17711 } 17712 break; 17713 } 17714 } 17715 return (B_TRUE); 17716 17717 bad_src_route: 17718 q = WR(q); 17719 if (q->q_next != NULL) 17720 ill = q->q_ptr; 17721 else 17722 ill = NULL; 17723 17724 /* make sure we clear any indication of a hardware checksum */ 17725 DB_CKSUMFLAGS(mp) = 0; 17726 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17727 if (zoneid == ALL_ZONES) 17728 freemsg(mp); 17729 else 17730 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17731 return (B_FALSE); 17732 17733 } 17734 17735 /* 17736 * Process IP options in an inbound packet. If an option affects the 17737 * effective destination address, return the next hop address via dstp. 17738 * Returns -1 if something fails in which case an ICMP error has been sent 17739 * and mp freed. 17740 */ 17741 static int 17742 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17743 ip_stack_t *ipst) 17744 { 17745 ipoptp_t opts; 17746 uchar_t *opt; 17747 uint8_t optval; 17748 uint8_t optlen; 17749 ipaddr_t dst; 17750 intptr_t code = 0; 17751 ire_t *ire = NULL; 17752 zoneid_t zoneid; 17753 ill_t *ill; 17754 17755 ip2dbg(("ip_rput_options\n")); 17756 dst = ipha->ipha_dst; 17757 for (optval = ipoptp_first(&opts, ipha); 17758 optval != IPOPT_EOL; 17759 optval = ipoptp_next(&opts)) { 17760 opt = opts.ipoptp_cur; 17761 optlen = opts.ipoptp_len; 17762 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17763 optval, optlen)); 17764 /* 17765 * Note: we need to verify the checksum before we 17766 * modify anything thus this routine only extracts the next 17767 * hop dst from any source route. 17768 */ 17769 switch (optval) { 17770 uint32_t off; 17771 case IPOPT_SSRR: 17772 case IPOPT_LSRR: 17773 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17774 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17775 if (ire == NULL) { 17776 if (optval == IPOPT_SSRR) { 17777 ip1dbg(("ip_rput_options: not next" 17778 " strict source route 0x%x\n", 17779 ntohl(dst))); 17780 code = (char *)&ipha->ipha_dst - 17781 (char *)ipha; 17782 goto param_prob; /* RouterReq's */ 17783 } 17784 ip2dbg(("ip_rput_options: " 17785 "not next source route 0x%x\n", 17786 ntohl(dst))); 17787 break; 17788 } 17789 ire_refrele(ire); 17790 17791 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17792 ip1dbg(( 17793 "ip_rput_options: bad option offset\n")); 17794 code = (char *)&opt[IPOPT_OLEN] - 17795 (char *)ipha; 17796 goto param_prob; 17797 } 17798 off = opt[IPOPT_OFFSET]; 17799 off--; 17800 redo_srr: 17801 if (optlen < IP_ADDR_LEN || 17802 off > optlen - IP_ADDR_LEN) { 17803 /* End of source route */ 17804 ip1dbg(("ip_rput_options: end of SR\n")); 17805 break; 17806 } 17807 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17808 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17809 ntohl(dst))); 17810 17811 /* 17812 * Check if our address is present more than 17813 * once as consecutive hops in source route. 17814 * XXX verify per-interface ip_forwarding 17815 * for source route? 17816 */ 17817 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17818 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17819 17820 if (ire != NULL) { 17821 ire_refrele(ire); 17822 off += IP_ADDR_LEN; 17823 goto redo_srr; 17824 } 17825 17826 if (dst == htonl(INADDR_LOOPBACK)) { 17827 ip1dbg(("ip_rput_options: loopback addr in " 17828 "source route!\n")); 17829 goto bad_src_route; 17830 } 17831 /* 17832 * For strict: verify that dst is directly 17833 * reachable. 17834 */ 17835 if (optval == IPOPT_SSRR) { 17836 ire = ire_ftable_lookup(dst, 0, 0, 17837 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17838 MBLK_GETLABEL(mp), 17839 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17840 if (ire == NULL) { 17841 ip1dbg(("ip_rput_options: SSRR not " 17842 "directly reachable: 0x%x\n", 17843 ntohl(dst))); 17844 goto bad_src_route; 17845 } 17846 ire_refrele(ire); 17847 } 17848 /* 17849 * Defer update of the offset and the record route 17850 * until the packet is forwarded. 17851 */ 17852 break; 17853 case IPOPT_RR: 17854 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17855 ip1dbg(( 17856 "ip_rput_options: bad option offset\n")); 17857 code = (char *)&opt[IPOPT_OLEN] - 17858 (char *)ipha; 17859 goto param_prob; 17860 } 17861 break; 17862 case IPOPT_TS: 17863 /* 17864 * Verify that length >= 5 and that there is either 17865 * room for another timestamp or that the overflow 17866 * counter is not maxed out. 17867 */ 17868 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17869 if (optlen < IPOPT_MINLEN_IT) { 17870 goto param_prob; 17871 } 17872 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17873 ip1dbg(( 17874 "ip_rput_options: bad option offset\n")); 17875 code = (char *)&opt[IPOPT_OFFSET] - 17876 (char *)ipha; 17877 goto param_prob; 17878 } 17879 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17880 case IPOPT_TS_TSONLY: 17881 off = IPOPT_TS_TIMELEN; 17882 break; 17883 case IPOPT_TS_TSANDADDR: 17884 case IPOPT_TS_PRESPEC: 17885 case IPOPT_TS_PRESPEC_RFC791: 17886 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17887 break; 17888 default: 17889 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17890 (char *)ipha; 17891 goto param_prob; 17892 } 17893 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17894 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17895 /* 17896 * No room and the overflow counter is 15 17897 * already. 17898 */ 17899 goto param_prob; 17900 } 17901 break; 17902 } 17903 } 17904 17905 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17906 *dstp = dst; 17907 return (0); 17908 } 17909 17910 ip1dbg(("ip_rput_options: error processing IP options.")); 17911 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17912 17913 param_prob: 17914 q = WR(q); 17915 if (q->q_next != NULL) 17916 ill = q->q_ptr; 17917 else 17918 ill = NULL; 17919 17920 /* make sure we clear any indication of a hardware checksum */ 17921 DB_CKSUMFLAGS(mp) = 0; 17922 /* Don't know whether this is for non-global or global/forwarding */ 17923 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17924 if (zoneid == ALL_ZONES) 17925 freemsg(mp); 17926 else 17927 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17928 return (-1); 17929 17930 bad_src_route: 17931 q = WR(q); 17932 if (q->q_next != NULL) 17933 ill = q->q_ptr; 17934 else 17935 ill = NULL; 17936 17937 /* make sure we clear any indication of a hardware checksum */ 17938 DB_CKSUMFLAGS(mp) = 0; 17939 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17940 if (zoneid == ALL_ZONES) 17941 freemsg(mp); 17942 else 17943 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17944 return (-1); 17945 } 17946 17947 /* 17948 * IP & ICMP info in >=14 msg's ... 17949 * - ip fixed part (mib2_ip_t) 17950 * - icmp fixed part (mib2_icmp_t) 17951 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17952 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17953 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17954 * - ipRouteAttributeTable (ip 102) labeled routes 17955 * - ip multicast membership (ip_member_t) 17956 * - ip multicast source filtering (ip_grpsrc_t) 17957 * - igmp fixed part (struct igmpstat) 17958 * - multicast routing stats (struct mrtstat) 17959 * - multicast routing vifs (array of struct vifctl) 17960 * - multicast routing routes (array of struct mfcctl) 17961 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17962 * One per ill plus one generic 17963 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17964 * One per ill plus one generic 17965 * - ipv6RouteEntry all IPv6 IREs 17966 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17967 * - ipv6NetToMediaEntry all Neighbor Cache entries 17968 * - ipv6AddrEntry all IPv6 ipifs 17969 * - ipv6 multicast membership (ipv6_member_t) 17970 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17971 * 17972 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17973 * 17974 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17975 * already filled in by the caller. 17976 * Return value of 0 indicates that no messages were sent and caller 17977 * should free mpctl. 17978 */ 17979 int 17980 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 17981 { 17982 ip_stack_t *ipst; 17983 sctp_stack_t *sctps; 17984 17985 if (q->q_next != NULL) { 17986 ipst = ILLQ_TO_IPST(q); 17987 } else { 17988 ipst = CONNQ_TO_IPST(q); 17989 } 17990 ASSERT(ipst != NULL); 17991 sctps = ipst->ips_netstack->netstack_sctp; 17992 17993 if (mpctl == NULL || mpctl->b_cont == NULL) { 17994 return (0); 17995 } 17996 17997 /* 17998 * For the purposes of the (broken) packet shell use 17999 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18000 * to make TCP and UDP appear first in the list of mib items. 18001 * TBD: We could expand this and use it in netstat so that 18002 * the kernel doesn't have to produce large tables (connections, 18003 * routes, etc) when netstat only wants the statistics or a particular 18004 * table. 18005 */ 18006 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18007 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18008 return (1); 18009 } 18010 } 18011 18012 if (level != MIB2_TCP) { 18013 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18014 return (1); 18015 } 18016 } 18017 18018 if (level != MIB2_UDP) { 18019 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18020 return (1); 18021 } 18022 } 18023 18024 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18025 ipst)) == NULL) { 18026 return (1); 18027 } 18028 18029 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18030 return (1); 18031 } 18032 18033 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18034 return (1); 18035 } 18036 18037 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18038 return (1); 18039 } 18040 18041 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18042 return (1); 18043 } 18044 18045 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18046 return (1); 18047 } 18048 18049 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18050 return (1); 18051 } 18052 18053 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18054 return (1); 18055 } 18056 18057 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18058 return (1); 18059 } 18060 18061 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18062 return (1); 18063 } 18064 18065 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18066 return (1); 18067 } 18068 18069 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18070 return (1); 18071 } 18072 18073 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18074 return (1); 18075 } 18076 18077 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18078 return (1); 18079 } 18080 18081 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18082 return (1); 18083 } 18084 18085 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18086 if (mpctl == NULL) { 18087 return (1); 18088 } 18089 18090 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18091 return (1); 18092 } 18093 freemsg(mpctl); 18094 return (1); 18095 } 18096 18097 18098 /* Get global (legacy) IPv4 statistics */ 18099 static mblk_t * 18100 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18101 ip_stack_t *ipst) 18102 { 18103 mib2_ip_t old_ip_mib; 18104 struct opthdr *optp; 18105 mblk_t *mp2ctl; 18106 18107 /* 18108 * make a copy of the original message 18109 */ 18110 mp2ctl = copymsg(mpctl); 18111 18112 /* fixed length IP structure... */ 18113 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18114 optp->level = MIB2_IP; 18115 optp->name = 0; 18116 SET_MIB(old_ip_mib.ipForwarding, 18117 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18118 SET_MIB(old_ip_mib.ipDefaultTTL, 18119 (uint32_t)ipst->ips_ip_def_ttl); 18120 SET_MIB(old_ip_mib.ipReasmTimeout, 18121 ipst->ips_ip_g_frag_timeout); 18122 SET_MIB(old_ip_mib.ipAddrEntrySize, 18123 sizeof (mib2_ipAddrEntry_t)); 18124 SET_MIB(old_ip_mib.ipRouteEntrySize, 18125 sizeof (mib2_ipRouteEntry_t)); 18126 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18127 sizeof (mib2_ipNetToMediaEntry_t)); 18128 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18129 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18130 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18131 sizeof (mib2_ipAttributeEntry_t)); 18132 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18133 18134 /* 18135 * Grab the statistics from the new IP MIB 18136 */ 18137 SET_MIB(old_ip_mib.ipInReceives, 18138 (uint32_t)ipmib->ipIfStatsHCInReceives); 18139 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18140 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18141 SET_MIB(old_ip_mib.ipForwDatagrams, 18142 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18143 SET_MIB(old_ip_mib.ipInUnknownProtos, 18144 ipmib->ipIfStatsInUnknownProtos); 18145 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18146 SET_MIB(old_ip_mib.ipInDelivers, 18147 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18148 SET_MIB(old_ip_mib.ipOutRequests, 18149 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18150 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18151 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18152 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18153 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18154 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18155 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18156 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18157 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18158 18159 /* ipRoutingDiscards is not being used */ 18160 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18161 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18162 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18163 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18164 SET_MIB(old_ip_mib.ipReasmDuplicates, 18165 ipmib->ipIfStatsReasmDuplicates); 18166 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18167 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18168 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18169 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18170 SET_MIB(old_ip_mib.rawipInOverflows, 18171 ipmib->rawipIfStatsInOverflows); 18172 18173 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18174 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18175 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18176 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18177 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18178 ipmib->ipIfStatsOutSwitchIPVersion); 18179 18180 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18181 (int)sizeof (old_ip_mib))) { 18182 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18183 (uint_t)sizeof (old_ip_mib))); 18184 } 18185 18186 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18187 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18188 (int)optp->level, (int)optp->name, (int)optp->len)); 18189 qreply(q, mpctl); 18190 return (mp2ctl); 18191 } 18192 18193 /* Per interface IPv4 statistics */ 18194 static mblk_t * 18195 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18196 { 18197 struct opthdr *optp; 18198 mblk_t *mp2ctl; 18199 ill_t *ill; 18200 ill_walk_context_t ctx; 18201 mblk_t *mp_tail = NULL; 18202 mib2_ipIfStatsEntry_t global_ip_mib; 18203 18204 /* 18205 * Make a copy of the original message 18206 */ 18207 mp2ctl = copymsg(mpctl); 18208 18209 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18210 optp->level = MIB2_IP; 18211 optp->name = MIB2_IP_TRAFFIC_STATS; 18212 /* Include "unknown interface" ip_mib */ 18213 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18214 ipst->ips_ip_mib.ipIfStatsIfIndex = 18215 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18216 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18217 (ipst->ips_ip_g_forward ? 1 : 2)); 18218 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18219 (uint32_t)ipst->ips_ip_def_ttl); 18220 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18221 sizeof (mib2_ipIfStatsEntry_t)); 18222 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18223 sizeof (mib2_ipAddrEntry_t)); 18224 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18225 sizeof (mib2_ipRouteEntry_t)); 18226 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18227 sizeof (mib2_ipNetToMediaEntry_t)); 18228 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18229 sizeof (ip_member_t)); 18230 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18231 sizeof (ip_grpsrc_t)); 18232 18233 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18234 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18235 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18236 "failed to allocate %u bytes\n", 18237 (uint_t)sizeof (ipst->ips_ip_mib))); 18238 } 18239 18240 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18241 18242 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18243 ill = ILL_START_WALK_V4(&ctx, ipst); 18244 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18245 ill->ill_ip_mib->ipIfStatsIfIndex = 18246 ill->ill_phyint->phyint_ifindex; 18247 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18248 (ipst->ips_ip_g_forward ? 1 : 2)); 18249 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18250 (uint32_t)ipst->ips_ip_def_ttl); 18251 18252 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18253 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18254 (char *)ill->ill_ip_mib, 18255 (int)sizeof (*ill->ill_ip_mib))) { 18256 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18257 "failed to allocate %u bytes\n", 18258 (uint_t)sizeof (*ill->ill_ip_mib))); 18259 } 18260 } 18261 rw_exit(&ipst->ips_ill_g_lock); 18262 18263 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18264 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18265 "level %d, name %d, len %d\n", 18266 (int)optp->level, (int)optp->name, (int)optp->len)); 18267 qreply(q, mpctl); 18268 18269 if (mp2ctl == NULL) 18270 return (NULL); 18271 18272 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18273 } 18274 18275 /* Global IPv4 ICMP statistics */ 18276 static mblk_t * 18277 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18278 { 18279 struct opthdr *optp; 18280 mblk_t *mp2ctl; 18281 18282 /* 18283 * Make a copy of the original message 18284 */ 18285 mp2ctl = copymsg(mpctl); 18286 18287 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18288 optp->level = MIB2_ICMP; 18289 optp->name = 0; 18290 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18291 (int)sizeof (ipst->ips_icmp_mib))) { 18292 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18293 (uint_t)sizeof (ipst->ips_icmp_mib))); 18294 } 18295 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18296 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18297 (int)optp->level, (int)optp->name, (int)optp->len)); 18298 qreply(q, mpctl); 18299 return (mp2ctl); 18300 } 18301 18302 /* Global IPv4 IGMP statistics */ 18303 static mblk_t * 18304 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18305 { 18306 struct opthdr *optp; 18307 mblk_t *mp2ctl; 18308 18309 /* 18310 * make a copy of the original message 18311 */ 18312 mp2ctl = copymsg(mpctl); 18313 18314 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18315 optp->level = EXPER_IGMP; 18316 optp->name = 0; 18317 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18318 (int)sizeof (ipst->ips_igmpstat))) { 18319 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18320 (uint_t)sizeof (ipst->ips_igmpstat))); 18321 } 18322 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18323 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18324 (int)optp->level, (int)optp->name, (int)optp->len)); 18325 qreply(q, mpctl); 18326 return (mp2ctl); 18327 } 18328 18329 /* Global IPv4 Multicast Routing statistics */ 18330 static mblk_t * 18331 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18332 { 18333 struct opthdr *optp; 18334 mblk_t *mp2ctl; 18335 18336 /* 18337 * make a copy of the original message 18338 */ 18339 mp2ctl = copymsg(mpctl); 18340 18341 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18342 optp->level = EXPER_DVMRP; 18343 optp->name = 0; 18344 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18345 ip0dbg(("ip_mroute_stats: failed\n")); 18346 } 18347 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18348 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18349 (int)optp->level, (int)optp->name, (int)optp->len)); 18350 qreply(q, mpctl); 18351 return (mp2ctl); 18352 } 18353 18354 /* IPv4 address information */ 18355 static mblk_t * 18356 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18357 { 18358 struct opthdr *optp; 18359 mblk_t *mp2ctl; 18360 mblk_t *mp_tail = NULL; 18361 ill_t *ill; 18362 ipif_t *ipif; 18363 uint_t bitval; 18364 mib2_ipAddrEntry_t mae; 18365 zoneid_t zoneid; 18366 ill_walk_context_t ctx; 18367 18368 /* 18369 * make a copy of the original message 18370 */ 18371 mp2ctl = copymsg(mpctl); 18372 18373 /* ipAddrEntryTable */ 18374 18375 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18376 optp->level = MIB2_IP; 18377 optp->name = MIB2_IP_ADDR; 18378 zoneid = Q_TO_CONN(q)->conn_zoneid; 18379 18380 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18381 ill = ILL_START_WALK_V4(&ctx, ipst); 18382 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18383 for (ipif = ill->ill_ipif; ipif != NULL; 18384 ipif = ipif->ipif_next) { 18385 if (ipif->ipif_zoneid != zoneid && 18386 ipif->ipif_zoneid != ALL_ZONES) 18387 continue; 18388 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18389 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18390 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18391 18392 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18393 OCTET_LENGTH); 18394 mae.ipAdEntIfIndex.o_length = 18395 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18396 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18397 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18398 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18399 mae.ipAdEntInfo.ae_subnet_len = 18400 ip_mask_to_plen(ipif->ipif_net_mask); 18401 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18402 for (bitval = 1; 18403 bitval && 18404 !(bitval & ipif->ipif_brd_addr); 18405 bitval <<= 1) 18406 noop; 18407 mae.ipAdEntBcastAddr = bitval; 18408 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18409 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18410 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18411 mae.ipAdEntInfo.ae_broadcast_addr = 18412 ipif->ipif_brd_addr; 18413 mae.ipAdEntInfo.ae_pp_dst_addr = 18414 ipif->ipif_pp_dst_addr; 18415 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18416 ill->ill_flags | ill->ill_phyint->phyint_flags; 18417 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18418 18419 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18420 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18421 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18422 "allocate %u bytes\n", 18423 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18424 } 18425 } 18426 } 18427 rw_exit(&ipst->ips_ill_g_lock); 18428 18429 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18430 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18431 (int)optp->level, (int)optp->name, (int)optp->len)); 18432 qreply(q, mpctl); 18433 return (mp2ctl); 18434 } 18435 18436 /* IPv6 address information */ 18437 static mblk_t * 18438 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18439 { 18440 struct opthdr *optp; 18441 mblk_t *mp2ctl; 18442 mblk_t *mp_tail = NULL; 18443 ill_t *ill; 18444 ipif_t *ipif; 18445 mib2_ipv6AddrEntry_t mae6; 18446 zoneid_t zoneid; 18447 ill_walk_context_t ctx; 18448 18449 /* 18450 * make a copy of the original message 18451 */ 18452 mp2ctl = copymsg(mpctl); 18453 18454 /* ipv6AddrEntryTable */ 18455 18456 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18457 optp->level = MIB2_IP6; 18458 optp->name = MIB2_IP6_ADDR; 18459 zoneid = Q_TO_CONN(q)->conn_zoneid; 18460 18461 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18462 ill = ILL_START_WALK_V6(&ctx, ipst); 18463 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18464 for (ipif = ill->ill_ipif; ipif != NULL; 18465 ipif = ipif->ipif_next) { 18466 if (ipif->ipif_zoneid != zoneid && 18467 ipif->ipif_zoneid != ALL_ZONES) 18468 continue; 18469 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18470 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18471 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18472 18473 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18474 OCTET_LENGTH); 18475 mae6.ipv6AddrIfIndex.o_length = 18476 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18477 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18478 mae6.ipv6AddrPfxLength = 18479 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18480 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18481 mae6.ipv6AddrInfo.ae_subnet_len = 18482 mae6.ipv6AddrPfxLength; 18483 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18484 18485 /* Type: stateless(1), stateful(2), unknown(3) */ 18486 if (ipif->ipif_flags & IPIF_ADDRCONF) 18487 mae6.ipv6AddrType = 1; 18488 else 18489 mae6.ipv6AddrType = 2; 18490 /* Anycast: true(1), false(2) */ 18491 if (ipif->ipif_flags & IPIF_ANYCAST) 18492 mae6.ipv6AddrAnycastFlag = 1; 18493 else 18494 mae6.ipv6AddrAnycastFlag = 2; 18495 18496 /* 18497 * Address status: preferred(1), deprecated(2), 18498 * invalid(3), inaccessible(4), unknown(5) 18499 */ 18500 if (ipif->ipif_flags & IPIF_NOLOCAL) 18501 mae6.ipv6AddrStatus = 3; 18502 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18503 mae6.ipv6AddrStatus = 2; 18504 else 18505 mae6.ipv6AddrStatus = 1; 18506 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18507 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18508 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18509 ipif->ipif_v6pp_dst_addr; 18510 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18511 ill->ill_flags | ill->ill_phyint->phyint_flags; 18512 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18513 mae6.ipv6AddrIdentifier = ill->ill_token; 18514 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18515 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18516 mae6.ipv6AddrRetransmitTime = 18517 ill->ill_reachable_retrans_time; 18518 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18519 (char *)&mae6, 18520 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18521 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18522 "allocate %u bytes\n", 18523 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18524 } 18525 } 18526 } 18527 rw_exit(&ipst->ips_ill_g_lock); 18528 18529 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18530 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18531 (int)optp->level, (int)optp->name, (int)optp->len)); 18532 qreply(q, mpctl); 18533 return (mp2ctl); 18534 } 18535 18536 /* IPv4 multicast group membership. */ 18537 static mblk_t * 18538 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18539 { 18540 struct opthdr *optp; 18541 mblk_t *mp2ctl; 18542 ill_t *ill; 18543 ipif_t *ipif; 18544 ilm_t *ilm; 18545 ip_member_t ipm; 18546 mblk_t *mp_tail = NULL; 18547 ill_walk_context_t ctx; 18548 zoneid_t zoneid; 18549 18550 /* 18551 * make a copy of the original message 18552 */ 18553 mp2ctl = copymsg(mpctl); 18554 zoneid = Q_TO_CONN(q)->conn_zoneid; 18555 18556 /* ipGroupMember table */ 18557 optp = (struct opthdr *)&mpctl->b_rptr[ 18558 sizeof (struct T_optmgmt_ack)]; 18559 optp->level = MIB2_IP; 18560 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18561 18562 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18563 ill = ILL_START_WALK_V4(&ctx, ipst); 18564 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18565 ILM_WALKER_HOLD(ill); 18566 for (ipif = ill->ill_ipif; ipif != NULL; 18567 ipif = ipif->ipif_next) { 18568 if (ipif->ipif_zoneid != zoneid && 18569 ipif->ipif_zoneid != ALL_ZONES) 18570 continue; /* not this zone */ 18571 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18572 OCTET_LENGTH); 18573 ipm.ipGroupMemberIfIndex.o_length = 18574 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18575 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18576 ASSERT(ilm->ilm_ipif != NULL); 18577 ASSERT(ilm->ilm_ill == NULL); 18578 if (ilm->ilm_ipif != ipif) 18579 continue; 18580 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18581 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18582 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18583 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18584 (char *)&ipm, (int)sizeof (ipm))) { 18585 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18586 "failed to allocate %u bytes\n", 18587 (uint_t)sizeof (ipm))); 18588 } 18589 } 18590 } 18591 ILM_WALKER_RELE(ill); 18592 } 18593 rw_exit(&ipst->ips_ill_g_lock); 18594 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18595 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18596 (int)optp->level, (int)optp->name, (int)optp->len)); 18597 qreply(q, mpctl); 18598 return (mp2ctl); 18599 } 18600 18601 /* IPv6 multicast group membership. */ 18602 static mblk_t * 18603 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18604 { 18605 struct opthdr *optp; 18606 mblk_t *mp2ctl; 18607 ill_t *ill; 18608 ilm_t *ilm; 18609 ipv6_member_t ipm6; 18610 mblk_t *mp_tail = NULL; 18611 ill_walk_context_t ctx; 18612 zoneid_t zoneid; 18613 18614 /* 18615 * make a copy of the original message 18616 */ 18617 mp2ctl = copymsg(mpctl); 18618 zoneid = Q_TO_CONN(q)->conn_zoneid; 18619 18620 /* ip6GroupMember table */ 18621 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18622 optp->level = MIB2_IP6; 18623 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18624 18625 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18626 ill = ILL_START_WALK_V6(&ctx, ipst); 18627 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18628 ILM_WALKER_HOLD(ill); 18629 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18630 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18631 ASSERT(ilm->ilm_ipif == NULL); 18632 ASSERT(ilm->ilm_ill != NULL); 18633 if (ilm->ilm_zoneid != zoneid) 18634 continue; /* not this zone */ 18635 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18636 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18637 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18638 if (!snmp_append_data2(mpctl->b_cont, 18639 &mp_tail, 18640 (char *)&ipm6, (int)sizeof (ipm6))) { 18641 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18642 "failed to allocate %u bytes\n", 18643 (uint_t)sizeof (ipm6))); 18644 } 18645 } 18646 ILM_WALKER_RELE(ill); 18647 } 18648 rw_exit(&ipst->ips_ill_g_lock); 18649 18650 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18651 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18652 (int)optp->level, (int)optp->name, (int)optp->len)); 18653 qreply(q, mpctl); 18654 return (mp2ctl); 18655 } 18656 18657 /* IP multicast filtered sources */ 18658 static mblk_t * 18659 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18660 { 18661 struct opthdr *optp; 18662 mblk_t *mp2ctl; 18663 ill_t *ill; 18664 ipif_t *ipif; 18665 ilm_t *ilm; 18666 ip_grpsrc_t ips; 18667 mblk_t *mp_tail = NULL; 18668 ill_walk_context_t ctx; 18669 zoneid_t zoneid; 18670 int i; 18671 slist_t *sl; 18672 18673 /* 18674 * make a copy of the original message 18675 */ 18676 mp2ctl = copymsg(mpctl); 18677 zoneid = Q_TO_CONN(q)->conn_zoneid; 18678 18679 /* ipGroupSource table */ 18680 optp = (struct opthdr *)&mpctl->b_rptr[ 18681 sizeof (struct T_optmgmt_ack)]; 18682 optp->level = MIB2_IP; 18683 optp->name = EXPER_IP_GROUP_SOURCES; 18684 18685 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18686 ill = ILL_START_WALK_V4(&ctx, ipst); 18687 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18688 ILM_WALKER_HOLD(ill); 18689 for (ipif = ill->ill_ipif; ipif != NULL; 18690 ipif = ipif->ipif_next) { 18691 if (ipif->ipif_zoneid != zoneid) 18692 continue; /* not this zone */ 18693 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18694 OCTET_LENGTH); 18695 ips.ipGroupSourceIfIndex.o_length = 18696 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18697 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18698 ASSERT(ilm->ilm_ipif != NULL); 18699 ASSERT(ilm->ilm_ill == NULL); 18700 sl = ilm->ilm_filter; 18701 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18702 continue; 18703 ips.ipGroupSourceGroup = ilm->ilm_addr; 18704 for (i = 0; i < sl->sl_numsrc; i++) { 18705 if (!IN6_IS_ADDR_V4MAPPED( 18706 &sl->sl_addr[i])) 18707 continue; 18708 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18709 ips.ipGroupSourceAddress); 18710 if (snmp_append_data2(mpctl->b_cont, 18711 &mp_tail, (char *)&ips, 18712 (int)sizeof (ips)) == 0) { 18713 ip1dbg(("ip_snmp_get_mib2_" 18714 "ip_group_src: failed to " 18715 "allocate %u bytes\n", 18716 (uint_t)sizeof (ips))); 18717 } 18718 } 18719 } 18720 } 18721 ILM_WALKER_RELE(ill); 18722 } 18723 rw_exit(&ipst->ips_ill_g_lock); 18724 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18725 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18726 (int)optp->level, (int)optp->name, (int)optp->len)); 18727 qreply(q, mpctl); 18728 return (mp2ctl); 18729 } 18730 18731 /* IPv6 multicast filtered sources. */ 18732 static mblk_t * 18733 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18734 { 18735 struct opthdr *optp; 18736 mblk_t *mp2ctl; 18737 ill_t *ill; 18738 ilm_t *ilm; 18739 ipv6_grpsrc_t ips6; 18740 mblk_t *mp_tail = NULL; 18741 ill_walk_context_t ctx; 18742 zoneid_t zoneid; 18743 int i; 18744 slist_t *sl; 18745 18746 /* 18747 * make a copy of the original message 18748 */ 18749 mp2ctl = copymsg(mpctl); 18750 zoneid = Q_TO_CONN(q)->conn_zoneid; 18751 18752 /* ip6GroupMember table */ 18753 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18754 optp->level = MIB2_IP6; 18755 optp->name = EXPER_IP6_GROUP_SOURCES; 18756 18757 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18758 ill = ILL_START_WALK_V6(&ctx, ipst); 18759 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18760 ILM_WALKER_HOLD(ill); 18761 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18762 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18763 ASSERT(ilm->ilm_ipif == NULL); 18764 ASSERT(ilm->ilm_ill != NULL); 18765 sl = ilm->ilm_filter; 18766 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18767 continue; 18768 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18769 for (i = 0; i < sl->sl_numsrc; i++) { 18770 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18771 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18772 (char *)&ips6, (int)sizeof (ips6))) { 18773 ip1dbg(("ip_snmp_get_mib2_ip6_" 18774 "group_src: failed to allocate " 18775 "%u bytes\n", 18776 (uint_t)sizeof (ips6))); 18777 } 18778 } 18779 } 18780 ILM_WALKER_RELE(ill); 18781 } 18782 rw_exit(&ipst->ips_ill_g_lock); 18783 18784 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18785 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18786 (int)optp->level, (int)optp->name, (int)optp->len)); 18787 qreply(q, mpctl); 18788 return (mp2ctl); 18789 } 18790 18791 /* Multicast routing virtual interface table. */ 18792 static mblk_t * 18793 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18794 { 18795 struct opthdr *optp; 18796 mblk_t *mp2ctl; 18797 18798 /* 18799 * make a copy of the original message 18800 */ 18801 mp2ctl = copymsg(mpctl); 18802 18803 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18804 optp->level = EXPER_DVMRP; 18805 optp->name = EXPER_DVMRP_VIF; 18806 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18807 ip0dbg(("ip_mroute_vif: failed\n")); 18808 } 18809 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18810 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18811 (int)optp->level, (int)optp->name, (int)optp->len)); 18812 qreply(q, mpctl); 18813 return (mp2ctl); 18814 } 18815 18816 /* Multicast routing table. */ 18817 static mblk_t * 18818 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18819 { 18820 struct opthdr *optp; 18821 mblk_t *mp2ctl; 18822 18823 /* 18824 * make a copy of the original message 18825 */ 18826 mp2ctl = copymsg(mpctl); 18827 18828 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18829 optp->level = EXPER_DVMRP; 18830 optp->name = EXPER_DVMRP_MRT; 18831 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18832 ip0dbg(("ip_mroute_mrt: failed\n")); 18833 } 18834 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18835 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18836 (int)optp->level, (int)optp->name, (int)optp->len)); 18837 qreply(q, mpctl); 18838 return (mp2ctl); 18839 } 18840 18841 /* 18842 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18843 * in one IRE walk. 18844 */ 18845 static mblk_t * 18846 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18847 { 18848 struct opthdr *optp; 18849 mblk_t *mp2ctl; /* Returned */ 18850 mblk_t *mp3ctl; /* nettomedia */ 18851 mblk_t *mp4ctl; /* routeattrs */ 18852 iproutedata_t ird; 18853 zoneid_t zoneid; 18854 18855 /* 18856 * make copies of the original message 18857 * - mp2ctl is returned unchanged to the caller for his use 18858 * - mpctl is sent upstream as ipRouteEntryTable 18859 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18860 * - mp4ctl is sent upstream as ipRouteAttributeTable 18861 */ 18862 mp2ctl = copymsg(mpctl); 18863 mp3ctl = copymsg(mpctl); 18864 mp4ctl = copymsg(mpctl); 18865 if (mp3ctl == NULL || mp4ctl == NULL) { 18866 freemsg(mp4ctl); 18867 freemsg(mp3ctl); 18868 freemsg(mp2ctl); 18869 freemsg(mpctl); 18870 return (NULL); 18871 } 18872 18873 bzero(&ird, sizeof (ird)); 18874 18875 ird.ird_route.lp_head = mpctl->b_cont; 18876 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18877 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18878 18879 zoneid = Q_TO_CONN(q)->conn_zoneid; 18880 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18881 18882 /* ipRouteEntryTable in mpctl */ 18883 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18884 optp->level = MIB2_IP; 18885 optp->name = MIB2_IP_ROUTE; 18886 optp->len = msgdsize(ird.ird_route.lp_head); 18887 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18888 (int)optp->level, (int)optp->name, (int)optp->len)); 18889 qreply(q, mpctl); 18890 18891 /* ipNetToMediaEntryTable in mp3ctl */ 18892 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18893 optp->level = MIB2_IP; 18894 optp->name = MIB2_IP_MEDIA; 18895 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18896 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18897 (int)optp->level, (int)optp->name, (int)optp->len)); 18898 qreply(q, mp3ctl); 18899 18900 /* ipRouteAttributeTable in mp4ctl */ 18901 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18902 optp->level = MIB2_IP; 18903 optp->name = EXPER_IP_RTATTR; 18904 optp->len = msgdsize(ird.ird_attrs.lp_head); 18905 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18906 (int)optp->level, (int)optp->name, (int)optp->len)); 18907 if (optp->len == 0) 18908 freemsg(mp4ctl); 18909 else 18910 qreply(q, mp4ctl); 18911 18912 return (mp2ctl); 18913 } 18914 18915 /* 18916 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18917 * ipv6NetToMediaEntryTable in an NDP walk. 18918 */ 18919 static mblk_t * 18920 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18921 { 18922 struct opthdr *optp; 18923 mblk_t *mp2ctl; /* Returned */ 18924 mblk_t *mp3ctl; /* nettomedia */ 18925 mblk_t *mp4ctl; /* routeattrs */ 18926 iproutedata_t ird; 18927 zoneid_t zoneid; 18928 18929 /* 18930 * make copies of the original message 18931 * - mp2ctl is returned unchanged to the caller for his use 18932 * - mpctl is sent upstream as ipv6RouteEntryTable 18933 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18934 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18935 */ 18936 mp2ctl = copymsg(mpctl); 18937 mp3ctl = copymsg(mpctl); 18938 mp4ctl = copymsg(mpctl); 18939 if (mp3ctl == NULL || mp4ctl == NULL) { 18940 freemsg(mp4ctl); 18941 freemsg(mp3ctl); 18942 freemsg(mp2ctl); 18943 freemsg(mpctl); 18944 return (NULL); 18945 } 18946 18947 bzero(&ird, sizeof (ird)); 18948 18949 ird.ird_route.lp_head = mpctl->b_cont; 18950 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18951 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18952 18953 zoneid = Q_TO_CONN(q)->conn_zoneid; 18954 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18955 18956 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18957 optp->level = MIB2_IP6; 18958 optp->name = MIB2_IP6_ROUTE; 18959 optp->len = msgdsize(ird.ird_route.lp_head); 18960 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18961 (int)optp->level, (int)optp->name, (int)optp->len)); 18962 qreply(q, mpctl); 18963 18964 /* ipv6NetToMediaEntryTable in mp3ctl */ 18965 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 18966 18967 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18968 optp->level = MIB2_IP6; 18969 optp->name = MIB2_IP6_MEDIA; 18970 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18971 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18972 (int)optp->level, (int)optp->name, (int)optp->len)); 18973 qreply(q, mp3ctl); 18974 18975 /* ipv6RouteAttributeTable in mp4ctl */ 18976 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18977 optp->level = MIB2_IP6; 18978 optp->name = EXPER_IP_RTATTR; 18979 optp->len = msgdsize(ird.ird_attrs.lp_head); 18980 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18981 (int)optp->level, (int)optp->name, (int)optp->len)); 18982 if (optp->len == 0) 18983 freemsg(mp4ctl); 18984 else 18985 qreply(q, mp4ctl); 18986 18987 return (mp2ctl); 18988 } 18989 18990 /* 18991 * IPv6 mib: One per ill 18992 */ 18993 static mblk_t * 18994 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18995 { 18996 struct opthdr *optp; 18997 mblk_t *mp2ctl; 18998 ill_t *ill; 18999 ill_walk_context_t ctx; 19000 mblk_t *mp_tail = NULL; 19001 19002 /* 19003 * Make a copy of the original message 19004 */ 19005 mp2ctl = copymsg(mpctl); 19006 19007 /* fixed length IPv6 structure ... */ 19008 19009 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19010 optp->level = MIB2_IP6; 19011 optp->name = 0; 19012 /* Include "unknown interface" ip6_mib */ 19013 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19014 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19015 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19016 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19017 ipst->ips_ipv6_forward ? 1 : 2); 19018 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19019 ipst->ips_ipv6_def_hops); 19020 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19021 sizeof (mib2_ipIfStatsEntry_t)); 19022 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19023 sizeof (mib2_ipv6AddrEntry_t)); 19024 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19025 sizeof (mib2_ipv6RouteEntry_t)); 19026 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19027 sizeof (mib2_ipv6NetToMediaEntry_t)); 19028 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19029 sizeof (ipv6_member_t)); 19030 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19031 sizeof (ipv6_grpsrc_t)); 19032 19033 /* 19034 * Synchronize 64- and 32-bit counters 19035 */ 19036 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19037 ipIfStatsHCInReceives); 19038 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19039 ipIfStatsHCInDelivers); 19040 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19041 ipIfStatsHCOutRequests); 19042 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19043 ipIfStatsHCOutForwDatagrams); 19044 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19045 ipIfStatsHCOutMcastPkts); 19046 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19047 ipIfStatsHCInMcastPkts); 19048 19049 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19050 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19051 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19052 (uint_t)sizeof (ipst->ips_ip6_mib))); 19053 } 19054 19055 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19056 ill = ILL_START_WALK_V6(&ctx, ipst); 19057 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19058 ill->ill_ip_mib->ipIfStatsIfIndex = 19059 ill->ill_phyint->phyint_ifindex; 19060 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19061 ipst->ips_ipv6_forward ? 1 : 2); 19062 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19063 ill->ill_max_hops); 19064 19065 /* 19066 * Synchronize 64- and 32-bit counters 19067 */ 19068 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19069 ipIfStatsHCInReceives); 19070 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19071 ipIfStatsHCInDelivers); 19072 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19073 ipIfStatsHCOutRequests); 19074 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19075 ipIfStatsHCOutForwDatagrams); 19076 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19077 ipIfStatsHCOutMcastPkts); 19078 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19079 ipIfStatsHCInMcastPkts); 19080 19081 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19082 (char *)ill->ill_ip_mib, 19083 (int)sizeof (*ill->ill_ip_mib))) { 19084 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19085 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19086 } 19087 } 19088 rw_exit(&ipst->ips_ill_g_lock); 19089 19090 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19091 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19092 (int)optp->level, (int)optp->name, (int)optp->len)); 19093 qreply(q, mpctl); 19094 return (mp2ctl); 19095 } 19096 19097 /* 19098 * ICMPv6 mib: One per ill 19099 */ 19100 static mblk_t * 19101 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19102 { 19103 struct opthdr *optp; 19104 mblk_t *mp2ctl; 19105 ill_t *ill; 19106 ill_walk_context_t ctx; 19107 mblk_t *mp_tail = NULL; 19108 /* 19109 * Make a copy of the original message 19110 */ 19111 mp2ctl = copymsg(mpctl); 19112 19113 /* fixed length ICMPv6 structure ... */ 19114 19115 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19116 optp->level = MIB2_ICMP6; 19117 optp->name = 0; 19118 /* Include "unknown interface" icmp6_mib */ 19119 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19120 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19121 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19122 sizeof (mib2_ipv6IfIcmpEntry_t); 19123 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19124 (char *)&ipst->ips_icmp6_mib, 19125 (int)sizeof (ipst->ips_icmp6_mib))) { 19126 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19127 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19128 } 19129 19130 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19131 ill = ILL_START_WALK_V6(&ctx, ipst); 19132 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19133 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19134 ill->ill_phyint->phyint_ifindex; 19135 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19136 (char *)ill->ill_icmp6_mib, 19137 (int)sizeof (*ill->ill_icmp6_mib))) { 19138 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19139 "%u bytes\n", 19140 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19141 } 19142 } 19143 rw_exit(&ipst->ips_ill_g_lock); 19144 19145 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19146 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19147 (int)optp->level, (int)optp->name, (int)optp->len)); 19148 qreply(q, mpctl); 19149 return (mp2ctl); 19150 } 19151 19152 /* 19153 * ire_walk routine to create both ipRouteEntryTable and 19154 * ipRouteAttributeTable in one IRE walk 19155 */ 19156 static void 19157 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19158 { 19159 ill_t *ill; 19160 ipif_t *ipif; 19161 mib2_ipRouteEntry_t *re; 19162 mib2_ipAttributeEntry_t *iae, *iaeptr; 19163 ipaddr_t gw_addr; 19164 tsol_ire_gw_secattr_t *attrp; 19165 tsol_gc_t *gc = NULL; 19166 tsol_gcgrp_t *gcgrp = NULL; 19167 uint_t sacnt = 0; 19168 int i; 19169 19170 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19171 19172 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19173 return; 19174 19175 if ((attrp = ire->ire_gw_secattr) != NULL) { 19176 mutex_enter(&attrp->igsa_lock); 19177 if ((gc = attrp->igsa_gc) != NULL) { 19178 gcgrp = gc->gc_grp; 19179 ASSERT(gcgrp != NULL); 19180 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19181 sacnt = 1; 19182 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19183 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19184 gc = gcgrp->gcgrp_head; 19185 sacnt = gcgrp->gcgrp_count; 19186 } 19187 mutex_exit(&attrp->igsa_lock); 19188 19189 /* do nothing if there's no gc to report */ 19190 if (gc == NULL) { 19191 ASSERT(sacnt == 0); 19192 if (gcgrp != NULL) { 19193 /* we might as well drop the lock now */ 19194 rw_exit(&gcgrp->gcgrp_rwlock); 19195 gcgrp = NULL; 19196 } 19197 attrp = NULL; 19198 } 19199 19200 ASSERT(gc == NULL || (gcgrp != NULL && 19201 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19202 } 19203 ASSERT(sacnt == 0 || gc != NULL); 19204 19205 if (sacnt != 0 && 19206 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19207 kmem_free(re, sizeof (*re)); 19208 rw_exit(&gcgrp->gcgrp_rwlock); 19209 return; 19210 } 19211 19212 /* 19213 * Return all IRE types for route table... let caller pick and choose 19214 */ 19215 re->ipRouteDest = ire->ire_addr; 19216 ipif = ire->ire_ipif; 19217 re->ipRouteIfIndex.o_length = 0; 19218 if (ire->ire_type == IRE_CACHE) { 19219 ill = (ill_t *)ire->ire_stq->q_ptr; 19220 re->ipRouteIfIndex.o_length = 19221 ill->ill_name_length == 0 ? 0 : 19222 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19223 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19224 re->ipRouteIfIndex.o_length); 19225 } else if (ipif != NULL) { 19226 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19227 re->ipRouteIfIndex.o_length = 19228 mi_strlen(re->ipRouteIfIndex.o_bytes); 19229 } 19230 re->ipRouteMetric1 = -1; 19231 re->ipRouteMetric2 = -1; 19232 re->ipRouteMetric3 = -1; 19233 re->ipRouteMetric4 = -1; 19234 19235 gw_addr = ire->ire_gateway_addr; 19236 19237 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19238 re->ipRouteNextHop = ire->ire_src_addr; 19239 else 19240 re->ipRouteNextHop = gw_addr; 19241 /* indirect(4), direct(3), or invalid(2) */ 19242 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19243 re->ipRouteType = 2; 19244 else 19245 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19246 re->ipRouteProto = -1; 19247 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19248 re->ipRouteMask = ire->ire_mask; 19249 re->ipRouteMetric5 = -1; 19250 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19251 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19252 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19253 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19254 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19255 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19256 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19257 re->ipRouteInfo.re_flags = ire->ire_flags; 19258 19259 if (ire->ire_flags & RTF_DYNAMIC) { 19260 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19261 } else { 19262 re->ipRouteInfo.re_ire_type = ire->ire_type; 19263 } 19264 19265 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19266 (char *)re, (int)sizeof (*re))) { 19267 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19268 (uint_t)sizeof (*re))); 19269 } 19270 19271 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19272 iaeptr->iae_routeidx = ird->ird_idx; 19273 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19274 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19275 } 19276 19277 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19278 (char *)iae, sacnt * sizeof (*iae))) { 19279 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19280 (unsigned)(sacnt * sizeof (*iae)))); 19281 } 19282 19283 /* bump route index for next pass */ 19284 ird->ird_idx++; 19285 19286 kmem_free(re, sizeof (*re)); 19287 if (sacnt != 0) 19288 kmem_free(iae, sacnt * sizeof (*iae)); 19289 19290 if (gcgrp != NULL) 19291 rw_exit(&gcgrp->gcgrp_rwlock); 19292 } 19293 19294 /* 19295 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19296 */ 19297 static void 19298 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19299 { 19300 ill_t *ill; 19301 ipif_t *ipif; 19302 mib2_ipv6RouteEntry_t *re; 19303 mib2_ipAttributeEntry_t *iae, *iaeptr; 19304 in6_addr_t gw_addr_v6; 19305 tsol_ire_gw_secattr_t *attrp; 19306 tsol_gc_t *gc = NULL; 19307 tsol_gcgrp_t *gcgrp = NULL; 19308 uint_t sacnt = 0; 19309 int i; 19310 19311 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19312 19313 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19314 return; 19315 19316 if ((attrp = ire->ire_gw_secattr) != NULL) { 19317 mutex_enter(&attrp->igsa_lock); 19318 if ((gc = attrp->igsa_gc) != NULL) { 19319 gcgrp = gc->gc_grp; 19320 ASSERT(gcgrp != NULL); 19321 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19322 sacnt = 1; 19323 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19324 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19325 gc = gcgrp->gcgrp_head; 19326 sacnt = gcgrp->gcgrp_count; 19327 } 19328 mutex_exit(&attrp->igsa_lock); 19329 19330 /* do nothing if there's no gc to report */ 19331 if (gc == NULL) { 19332 ASSERT(sacnt == 0); 19333 if (gcgrp != NULL) { 19334 /* we might as well drop the lock now */ 19335 rw_exit(&gcgrp->gcgrp_rwlock); 19336 gcgrp = NULL; 19337 } 19338 attrp = NULL; 19339 } 19340 19341 ASSERT(gc == NULL || (gcgrp != NULL && 19342 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19343 } 19344 ASSERT(sacnt == 0 || gc != NULL); 19345 19346 if (sacnt != 0 && 19347 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19348 kmem_free(re, sizeof (*re)); 19349 rw_exit(&gcgrp->gcgrp_rwlock); 19350 return; 19351 } 19352 19353 /* 19354 * Return all IRE types for route table... let caller pick and choose 19355 */ 19356 re->ipv6RouteDest = ire->ire_addr_v6; 19357 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19358 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19359 re->ipv6RouteIfIndex.o_length = 0; 19360 ipif = ire->ire_ipif; 19361 if (ire->ire_type == IRE_CACHE) { 19362 ill = (ill_t *)ire->ire_stq->q_ptr; 19363 re->ipv6RouteIfIndex.o_length = 19364 ill->ill_name_length == 0 ? 0 : 19365 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19366 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19367 re->ipv6RouteIfIndex.o_length); 19368 } else if (ipif != NULL) { 19369 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19370 re->ipv6RouteIfIndex.o_length = 19371 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19372 } 19373 19374 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19375 19376 mutex_enter(&ire->ire_lock); 19377 gw_addr_v6 = ire->ire_gateway_addr_v6; 19378 mutex_exit(&ire->ire_lock); 19379 19380 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19381 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19382 else 19383 re->ipv6RouteNextHop = gw_addr_v6; 19384 19385 /* remote(4), local(3), or discard(2) */ 19386 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19387 re->ipv6RouteType = 2; 19388 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19389 re->ipv6RouteType = 3; 19390 else 19391 re->ipv6RouteType = 4; 19392 19393 re->ipv6RouteProtocol = -1; 19394 re->ipv6RoutePolicy = 0; 19395 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19396 re->ipv6RouteNextHopRDI = 0; 19397 re->ipv6RouteWeight = 0; 19398 re->ipv6RouteMetric = 0; 19399 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19400 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19401 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19402 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19403 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19404 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19405 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19406 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19407 19408 if (ire->ire_flags & RTF_DYNAMIC) { 19409 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19410 } else { 19411 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19412 } 19413 19414 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19415 (char *)re, (int)sizeof (*re))) { 19416 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19417 (uint_t)sizeof (*re))); 19418 } 19419 19420 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19421 iaeptr->iae_routeidx = ird->ird_idx; 19422 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19423 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19424 } 19425 19426 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19427 (char *)iae, sacnt * sizeof (*iae))) { 19428 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19429 (unsigned)(sacnt * sizeof (*iae)))); 19430 } 19431 19432 /* bump route index for next pass */ 19433 ird->ird_idx++; 19434 19435 kmem_free(re, sizeof (*re)); 19436 if (sacnt != 0) 19437 kmem_free(iae, sacnt * sizeof (*iae)); 19438 19439 if (gcgrp != NULL) 19440 rw_exit(&gcgrp->gcgrp_rwlock); 19441 } 19442 19443 /* 19444 * ndp_walk routine to create ipv6NetToMediaEntryTable 19445 */ 19446 static int 19447 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19448 { 19449 ill_t *ill; 19450 mib2_ipv6NetToMediaEntry_t ntme; 19451 dl_unitdata_req_t *dl; 19452 19453 ill = nce->nce_ill; 19454 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19455 return (0); 19456 19457 /* 19458 * Neighbor cache entry attached to IRE with on-link 19459 * destination. 19460 */ 19461 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19462 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19463 if ((ill->ill_flags & ILLF_XRESOLV) && 19464 (nce->nce_res_mp != NULL)) { 19465 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19466 ntme.ipv6NetToMediaPhysAddress.o_length = 19467 dl->dl_dest_addr_length; 19468 } else { 19469 ntme.ipv6NetToMediaPhysAddress.o_length = 19470 ill->ill_phys_addr_length; 19471 } 19472 if (nce->nce_res_mp != NULL) { 19473 bcopy((char *)nce->nce_res_mp->b_rptr + 19474 NCE_LL_ADDR_OFFSET(ill), 19475 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19476 ntme.ipv6NetToMediaPhysAddress.o_length); 19477 } else { 19478 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19479 ill->ill_phys_addr_length); 19480 } 19481 /* 19482 * Note: Returns ND_* states. Should be: 19483 * reachable(1), stale(2), delay(3), probe(4), 19484 * invalid(5), unknown(6) 19485 */ 19486 ntme.ipv6NetToMediaState = nce->nce_state; 19487 ntme.ipv6NetToMediaLastUpdated = 0; 19488 19489 /* other(1), dynamic(2), static(3), local(4) */ 19490 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19491 ntme.ipv6NetToMediaType = 4; 19492 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19493 ntme.ipv6NetToMediaType = 1; 19494 } else { 19495 ntme.ipv6NetToMediaType = 2; 19496 } 19497 19498 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19499 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19500 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19501 (uint_t)sizeof (ntme))); 19502 } 19503 return (0); 19504 } 19505 19506 /* 19507 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19508 */ 19509 /* ARGSUSED */ 19510 int 19511 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19512 { 19513 switch (level) { 19514 case MIB2_IP: 19515 case MIB2_ICMP: 19516 switch (name) { 19517 default: 19518 break; 19519 } 19520 return (1); 19521 default: 19522 return (1); 19523 } 19524 } 19525 19526 /* 19527 * When there exists both a 64- and 32-bit counter of a particular type 19528 * (i.e., InReceives), only the 64-bit counters are added. 19529 */ 19530 void 19531 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19532 { 19533 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19534 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19535 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19536 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19537 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19538 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19539 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19540 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19541 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19542 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19543 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19544 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19545 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19546 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19547 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19548 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19549 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19550 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19551 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19552 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19553 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19554 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19555 o2->ipIfStatsInWrongIPVersion); 19556 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19557 o2->ipIfStatsInWrongIPVersion); 19558 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19559 o2->ipIfStatsOutSwitchIPVersion); 19560 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19561 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19562 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19563 o2->ipIfStatsHCInForwDatagrams); 19564 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19565 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19566 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19567 o2->ipIfStatsHCOutForwDatagrams); 19568 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19569 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19570 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19571 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19572 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19573 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19574 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19575 o2->ipIfStatsHCOutMcastOctets); 19576 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19577 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19578 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19579 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19580 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19581 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19582 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19583 } 19584 19585 void 19586 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19587 { 19588 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19589 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19590 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19591 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19592 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19593 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19594 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19595 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19596 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19597 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19598 o2->ipv6IfIcmpInRouterSolicits); 19599 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19600 o2->ipv6IfIcmpInRouterAdvertisements); 19601 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19602 o2->ipv6IfIcmpInNeighborSolicits); 19603 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19604 o2->ipv6IfIcmpInNeighborAdvertisements); 19605 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19606 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19607 o2->ipv6IfIcmpInGroupMembQueries); 19608 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19609 o2->ipv6IfIcmpInGroupMembResponses); 19610 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19611 o2->ipv6IfIcmpInGroupMembReductions); 19612 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19613 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19614 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19615 o2->ipv6IfIcmpOutDestUnreachs); 19616 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19617 o2->ipv6IfIcmpOutAdminProhibs); 19618 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19619 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19620 o2->ipv6IfIcmpOutParmProblems); 19621 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19622 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19623 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19624 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19625 o2->ipv6IfIcmpOutRouterSolicits); 19626 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19627 o2->ipv6IfIcmpOutRouterAdvertisements); 19628 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19629 o2->ipv6IfIcmpOutNeighborSolicits); 19630 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19631 o2->ipv6IfIcmpOutNeighborAdvertisements); 19632 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19633 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19634 o2->ipv6IfIcmpOutGroupMembQueries); 19635 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19636 o2->ipv6IfIcmpOutGroupMembResponses); 19637 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19638 o2->ipv6IfIcmpOutGroupMembReductions); 19639 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19640 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19641 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19642 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19643 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19644 o2->ipv6IfIcmpInBadNeighborSolicitations); 19645 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19646 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19647 o2->ipv6IfIcmpInGroupMembTotal); 19648 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19649 o2->ipv6IfIcmpInGroupMembBadQueries); 19650 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19651 o2->ipv6IfIcmpInGroupMembBadReports); 19652 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19653 o2->ipv6IfIcmpInGroupMembOurReports); 19654 } 19655 19656 /* 19657 * Called before the options are updated to check if this packet will 19658 * be source routed from here. 19659 * This routine assumes that the options are well formed i.e. that they 19660 * have already been checked. 19661 */ 19662 static boolean_t 19663 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19664 { 19665 ipoptp_t opts; 19666 uchar_t *opt; 19667 uint8_t optval; 19668 uint8_t optlen; 19669 ipaddr_t dst; 19670 ire_t *ire; 19671 19672 if (IS_SIMPLE_IPH(ipha)) { 19673 ip2dbg(("not source routed\n")); 19674 return (B_FALSE); 19675 } 19676 dst = ipha->ipha_dst; 19677 for (optval = ipoptp_first(&opts, ipha); 19678 optval != IPOPT_EOL; 19679 optval = ipoptp_next(&opts)) { 19680 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19681 opt = opts.ipoptp_cur; 19682 optlen = opts.ipoptp_len; 19683 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19684 optval, optlen)); 19685 switch (optval) { 19686 uint32_t off; 19687 case IPOPT_SSRR: 19688 case IPOPT_LSRR: 19689 /* 19690 * If dst is one of our addresses and there are some 19691 * entries left in the source route return (true). 19692 */ 19693 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19694 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19695 if (ire == NULL) { 19696 ip2dbg(("ip_source_routed: not next" 19697 " source route 0x%x\n", 19698 ntohl(dst))); 19699 return (B_FALSE); 19700 } 19701 ire_refrele(ire); 19702 off = opt[IPOPT_OFFSET]; 19703 off--; 19704 if (optlen < IP_ADDR_LEN || 19705 off > optlen - IP_ADDR_LEN) { 19706 /* End of source route */ 19707 ip1dbg(("ip_source_routed: end of SR\n")); 19708 return (B_FALSE); 19709 } 19710 return (B_TRUE); 19711 } 19712 } 19713 ip2dbg(("not source routed\n")); 19714 return (B_FALSE); 19715 } 19716 19717 /* 19718 * Check if the packet contains any source route. 19719 */ 19720 static boolean_t 19721 ip_source_route_included(ipha_t *ipha) 19722 { 19723 ipoptp_t opts; 19724 uint8_t optval; 19725 19726 if (IS_SIMPLE_IPH(ipha)) 19727 return (B_FALSE); 19728 for (optval = ipoptp_first(&opts, ipha); 19729 optval != IPOPT_EOL; 19730 optval = ipoptp_next(&opts)) { 19731 switch (optval) { 19732 case IPOPT_SSRR: 19733 case IPOPT_LSRR: 19734 return (B_TRUE); 19735 } 19736 } 19737 return (B_FALSE); 19738 } 19739 19740 /* 19741 * Called when the IRE expiration timer fires. 19742 */ 19743 void 19744 ip_trash_timer_expire(void *args) 19745 { 19746 int flush_flag = 0; 19747 ire_expire_arg_t iea; 19748 ip_stack_t *ipst = (ip_stack_t *)args; 19749 19750 iea.iea_ipst = ipst; /* No netstack_hold */ 19751 19752 /* 19753 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19754 * This lock makes sure that a new invocation of this function 19755 * that occurs due to an almost immediate timer firing will not 19756 * progress beyond this point until the current invocation is done 19757 */ 19758 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19759 ipst->ips_ip_ire_expire_id = 0; 19760 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19761 19762 /* Periodic timer */ 19763 if (ipst->ips_ip_ire_arp_time_elapsed >= 19764 ipst->ips_ip_ire_arp_interval) { 19765 /* 19766 * Remove all IRE_CACHE entries since they might 19767 * contain arp information. 19768 */ 19769 flush_flag |= FLUSH_ARP_TIME; 19770 ipst->ips_ip_ire_arp_time_elapsed = 0; 19771 IP_STAT(ipst, ip_ire_arp_timer_expired); 19772 } 19773 if (ipst->ips_ip_ire_rd_time_elapsed >= 19774 ipst->ips_ip_ire_redir_interval) { 19775 /* Remove all redirects */ 19776 flush_flag |= FLUSH_REDIRECT_TIME; 19777 ipst->ips_ip_ire_rd_time_elapsed = 0; 19778 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19779 } 19780 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19781 ipst->ips_ip_ire_pathmtu_interval) { 19782 /* Increase path mtu */ 19783 flush_flag |= FLUSH_MTU_TIME; 19784 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19785 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19786 } 19787 19788 /* 19789 * Optimize for the case when there are no redirects in the 19790 * ftable, that is, no need to walk the ftable in that case. 19791 */ 19792 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19793 iea.iea_flush_flag = flush_flag; 19794 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19795 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19796 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19797 NULL, ALL_ZONES, ipst); 19798 } 19799 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19800 ipst->ips_ip_redirect_cnt > 0) { 19801 iea.iea_flush_flag = flush_flag; 19802 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19803 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19804 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19805 } 19806 if (flush_flag & FLUSH_MTU_TIME) { 19807 /* 19808 * Walk all IPv6 IRE's and update them 19809 * Note that ARP and redirect timers are not 19810 * needed since NUD handles stale entries. 19811 */ 19812 flush_flag = FLUSH_MTU_TIME; 19813 iea.iea_flush_flag = flush_flag; 19814 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19815 ALL_ZONES, ipst); 19816 } 19817 19818 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19819 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19820 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19821 19822 /* 19823 * Hold the lock to serialize timeout calls and prevent 19824 * stale values in ip_ire_expire_id. Otherwise it is possible 19825 * for the timer to fire and a new invocation of this function 19826 * to start before the return value of timeout has been stored 19827 * in ip_ire_expire_id by the current invocation. 19828 */ 19829 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19830 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19831 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19832 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19833 } 19834 19835 /* 19836 * Called by the memory allocator subsystem directly, when the system 19837 * is running low on memory. 19838 */ 19839 /* ARGSUSED */ 19840 void 19841 ip_trash_ire_reclaim(void *args) 19842 { 19843 netstack_handle_t nh; 19844 netstack_t *ns; 19845 19846 netstack_next_init(&nh); 19847 while ((ns = netstack_next(&nh)) != NULL) { 19848 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19849 netstack_rele(ns); 19850 } 19851 netstack_next_fini(&nh); 19852 } 19853 19854 static void 19855 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19856 { 19857 ire_cache_count_t icc; 19858 ire_cache_reclaim_t icr; 19859 ncc_cache_count_t ncc; 19860 nce_cache_reclaim_t ncr; 19861 uint_t delete_cnt; 19862 /* 19863 * Memory reclaim call back. 19864 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19865 * Then, with a target of freeing 1/Nth of IRE_CACHE 19866 * entries, determine what fraction to free for 19867 * each category of IRE_CACHE entries giving absolute priority 19868 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19869 * entry will be freed unless all offlink entries are freed). 19870 */ 19871 icc.icc_total = 0; 19872 icc.icc_unused = 0; 19873 icc.icc_offlink = 0; 19874 icc.icc_pmtu = 0; 19875 icc.icc_onlink = 0; 19876 ire_walk(ire_cache_count, (char *)&icc, ipst); 19877 19878 /* 19879 * Free NCEs for IPv6 like the onlink ires. 19880 */ 19881 ncc.ncc_total = 0; 19882 ncc.ncc_host = 0; 19883 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19884 19885 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19886 icc.icc_pmtu + icc.icc_onlink); 19887 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19888 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19889 if (delete_cnt == 0) 19890 return; 19891 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19892 /* Always delete all unused offlink entries */ 19893 icr.icr_ipst = ipst; 19894 icr.icr_unused = 1; 19895 if (delete_cnt <= icc.icc_unused) { 19896 /* 19897 * Only need to free unused entries. In other words, 19898 * there are enough unused entries to free to meet our 19899 * target number of freed ire cache entries. 19900 */ 19901 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19902 ncr.ncr_host = 0; 19903 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19904 /* 19905 * Only need to free unused entries, plus a fraction of offlink 19906 * entries. It follows from the first if statement that 19907 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19908 */ 19909 delete_cnt -= icc.icc_unused; 19910 /* Round up # deleted by truncating fraction */ 19911 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19912 icr.icr_pmtu = icr.icr_onlink = 0; 19913 ncr.ncr_host = 0; 19914 } else if (delete_cnt <= 19915 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19916 /* 19917 * Free all unused and offlink entries, plus a fraction of 19918 * pmtu entries. It follows from the previous if statement 19919 * that icc_pmtu is non-zero, and that 19920 * delete_cnt != icc_unused + icc_offlink. 19921 */ 19922 icr.icr_offlink = 1; 19923 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19924 /* Round up # deleted by truncating fraction */ 19925 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19926 icr.icr_onlink = 0; 19927 ncr.ncr_host = 0; 19928 } else { 19929 /* 19930 * Free all unused, offlink, and pmtu entries, plus a fraction 19931 * of onlink entries. If we're here, then we know that 19932 * icc_onlink is non-zero, and that 19933 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19934 */ 19935 icr.icr_offlink = icr.icr_pmtu = 1; 19936 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19937 icc.icc_pmtu; 19938 /* Round up # deleted by truncating fraction */ 19939 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19940 /* Using the same delete fraction as for onlink IREs */ 19941 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19942 } 19943 #ifdef DEBUG 19944 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19945 "fractions %d/%d/%d/%d\n", 19946 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19947 icc.icc_unused, icc.icc_offlink, 19948 icc.icc_pmtu, icc.icc_onlink, 19949 icr.icr_unused, icr.icr_offlink, 19950 icr.icr_pmtu, icr.icr_onlink)); 19951 #endif 19952 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19953 if (ncr.ncr_host != 0) 19954 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19955 (uchar_t *)&ncr, ipst); 19956 #ifdef DEBUG 19957 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19958 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19959 ire_walk(ire_cache_count, (char *)&icc, ipst); 19960 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19961 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19962 icc.icc_pmtu, icc.icc_onlink)); 19963 #endif 19964 } 19965 19966 /* 19967 * ip_unbind is called when a copy of an unbind request is received from the 19968 * upper level protocol. We remove this conn from any fanout hash list it is 19969 * on, and zero out the bind information. No reply is expected up above. 19970 */ 19971 mblk_t * 19972 ip_unbind(queue_t *q, mblk_t *mp) 19973 { 19974 conn_t *connp = Q_TO_CONN(q); 19975 19976 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19977 19978 if (is_system_labeled() && connp->conn_anon_port) { 19979 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19980 connp->conn_mlp_type, connp->conn_ulp, 19981 ntohs(connp->conn_lport), B_FALSE); 19982 connp->conn_anon_port = 0; 19983 } 19984 connp->conn_mlp_type = mlptSingle; 19985 19986 ipcl_hash_remove(connp); 19987 19988 ASSERT(mp->b_cont == NULL); 19989 /* 19990 * Convert mp into a T_OK_ACK 19991 */ 19992 mp = mi_tpi_ok_ack_alloc(mp); 19993 19994 /* 19995 * should not happen in practice... T_OK_ACK is smaller than the 19996 * original message. 19997 */ 19998 if (mp == NULL) 19999 return (NULL); 20000 20001 return (mp); 20002 } 20003 20004 /* 20005 * Write side put procedure. Outbound data, IOCTLs, responses from 20006 * resolvers, etc, come down through here. 20007 * 20008 * arg2 is always a queue_t *. 20009 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20010 * the zoneid. 20011 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20012 */ 20013 void 20014 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20015 { 20016 ip_output_options(arg, mp, arg2, caller, &zero_info); 20017 } 20018 20019 void 20020 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20021 ip_opt_info_t *infop) 20022 { 20023 conn_t *connp = NULL; 20024 queue_t *q = (queue_t *)arg2; 20025 ipha_t *ipha; 20026 #define rptr ((uchar_t *)ipha) 20027 ire_t *ire = NULL; 20028 ire_t *sctp_ire = NULL; 20029 uint32_t v_hlen_tos_len; 20030 ipaddr_t dst; 20031 mblk_t *first_mp = NULL; 20032 boolean_t mctl_present; 20033 ipsec_out_t *io; 20034 int match_flags; 20035 ill_t *attach_ill = NULL; 20036 /* Bind to IPIF_NOFAILOVER ill etc. */ 20037 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20038 ipif_t *dst_ipif; 20039 boolean_t multirt_need_resolve = B_FALSE; 20040 mblk_t *copy_mp = NULL; 20041 int err; 20042 zoneid_t zoneid; 20043 int adjust; 20044 uint16_t iplen; 20045 boolean_t need_decref = B_FALSE; 20046 boolean_t ignore_dontroute = B_FALSE; 20047 boolean_t ignore_nexthop = B_FALSE; 20048 boolean_t ip_nexthop = B_FALSE; 20049 ipaddr_t nexthop_addr; 20050 ip_stack_t *ipst; 20051 20052 #ifdef _BIG_ENDIAN 20053 #define V_HLEN (v_hlen_tos_len >> 24) 20054 #else 20055 #define V_HLEN (v_hlen_tos_len & 0xFF) 20056 #endif 20057 20058 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20059 "ip_wput_start: q %p", q); 20060 20061 /* 20062 * ip_wput fast path 20063 */ 20064 20065 /* is packet from ARP ? */ 20066 if (q->q_next != NULL) { 20067 zoneid = (zoneid_t)(uintptr_t)arg; 20068 goto qnext; 20069 } 20070 20071 connp = (conn_t *)arg; 20072 ASSERT(connp != NULL); 20073 zoneid = connp->conn_zoneid; 20074 ipst = connp->conn_netstack->netstack_ip; 20075 20076 /* is queue flow controlled? */ 20077 if ((q->q_first != NULL || connp->conn_draining) && 20078 (caller == IP_WPUT)) { 20079 ASSERT(!need_decref); 20080 (void) putq(q, mp); 20081 return; 20082 } 20083 20084 /* Multidata transmit? */ 20085 if (DB_TYPE(mp) == M_MULTIDATA) { 20086 /* 20087 * We should never get here, since all Multidata messages 20088 * originating from tcp should have been directed over to 20089 * tcp_multisend() in the first place. 20090 */ 20091 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20092 freemsg(mp); 20093 return; 20094 } else if (DB_TYPE(mp) != M_DATA) 20095 goto notdata; 20096 20097 if (mp->b_flag & MSGHASREF) { 20098 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20099 mp->b_flag &= ~MSGHASREF; 20100 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20101 need_decref = B_TRUE; 20102 } 20103 ipha = (ipha_t *)mp->b_rptr; 20104 20105 /* is IP header non-aligned or mblk smaller than basic IP header */ 20106 #ifndef SAFETY_BEFORE_SPEED 20107 if (!OK_32PTR(rptr) || 20108 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20109 goto hdrtoosmall; 20110 #endif 20111 20112 ASSERT(OK_32PTR(ipha)); 20113 20114 /* 20115 * This function assumes that mp points to an IPv4 packet. If it's the 20116 * wrong version, we'll catch it again in ip_output_v6. 20117 * 20118 * Note that this is *only* locally-generated output here, and never 20119 * forwarded data, and that we need to deal only with transports that 20120 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20121 * label.) 20122 */ 20123 if (is_system_labeled() && 20124 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20125 !connp->conn_ulp_labeled) { 20126 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20127 connp->conn_mac_exempt, ipst); 20128 ipha = (ipha_t *)mp->b_rptr; 20129 if (err != 0) { 20130 first_mp = mp; 20131 if (err == EINVAL) 20132 goto icmp_parameter_problem; 20133 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20134 goto discard_pkt; 20135 } 20136 iplen = ntohs(ipha->ipha_length) + adjust; 20137 ipha->ipha_length = htons(iplen); 20138 } 20139 20140 ASSERT(infop != NULL); 20141 20142 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20143 /* 20144 * IP_PKTINFO ancillary option is present. 20145 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20146 * allows using address of any zone as the source address. 20147 */ 20148 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20149 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20150 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20151 if (ire == NULL) 20152 goto drop_pkt; 20153 ire_refrele(ire); 20154 ire = NULL; 20155 } 20156 20157 /* 20158 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20159 * passed in IP_PKTINFO. 20160 */ 20161 if (infop->ip_opt_ill_index != 0 && 20162 connp->conn_outgoing_ill == NULL && 20163 connp->conn_nofailover_ill == NULL) { 20164 20165 xmit_ill = ill_lookup_on_ifindex( 20166 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20167 ipst); 20168 20169 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20170 goto drop_pkt; 20171 /* 20172 * check that there is an ipif belonging 20173 * to our zone. IPCL_ZONEID is not used because 20174 * IP_ALLZONES option is valid only when the ill is 20175 * accessible from all zones i.e has a valid ipif in 20176 * all zones. 20177 */ 20178 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20179 goto drop_pkt; 20180 } 20181 } 20182 20183 /* 20184 * If there is a policy, try to attach an ipsec_out in 20185 * the front. At the end, first_mp either points to a 20186 * M_DATA message or IPSEC_OUT message linked to a 20187 * M_DATA message. We have to do it now as we might 20188 * lose the "conn" if we go through ip_newroute. 20189 */ 20190 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20191 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20192 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20193 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20194 if (need_decref) 20195 CONN_DEC_REF(connp); 20196 return; 20197 } else { 20198 ASSERT(mp->b_datap->db_type == M_CTL); 20199 first_mp = mp; 20200 mp = mp->b_cont; 20201 mctl_present = B_TRUE; 20202 } 20203 } else { 20204 first_mp = mp; 20205 mctl_present = B_FALSE; 20206 } 20207 20208 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20209 20210 /* is wrong version or IP options present */ 20211 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20212 goto version_hdrlen_check; 20213 dst = ipha->ipha_dst; 20214 20215 if (connp->conn_nofailover_ill != NULL) { 20216 attach_ill = conn_get_held_ill(connp, 20217 &connp->conn_nofailover_ill, &err); 20218 if (err == ILL_LOOKUP_FAILED) { 20219 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20220 if (need_decref) 20221 CONN_DEC_REF(connp); 20222 freemsg(first_mp); 20223 return; 20224 } 20225 } 20226 20227 /* If IP_BOUND_IF has been set, use that ill. */ 20228 if (connp->conn_outgoing_ill != NULL) { 20229 xmit_ill = conn_get_held_ill(connp, 20230 &connp->conn_outgoing_ill, &err); 20231 if (err == ILL_LOOKUP_FAILED) 20232 goto drop_pkt; 20233 20234 goto send_from_ill; 20235 } 20236 20237 /* is packet multicast? */ 20238 if (CLASSD(dst)) 20239 goto multicast; 20240 20241 /* 20242 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20243 * takes precedence over conn_dontroute and conn_nexthop_set 20244 */ 20245 if (xmit_ill != NULL) 20246 goto send_from_ill; 20247 20248 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20249 /* 20250 * If the destination is a broadcast, local, or loopback 20251 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20252 * standard path. 20253 */ 20254 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20255 if ((ire == NULL) || (ire->ire_type & 20256 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20257 if (ire != NULL) { 20258 ire_refrele(ire); 20259 /* No more access to ire */ 20260 ire = NULL; 20261 } 20262 /* 20263 * bypass routing checks and go directly to interface. 20264 */ 20265 if (connp->conn_dontroute) 20266 goto dontroute; 20267 20268 ASSERT(connp->conn_nexthop_set); 20269 ip_nexthop = B_TRUE; 20270 nexthop_addr = connp->conn_nexthop_v4; 20271 goto send_from_ill; 20272 } 20273 20274 /* Must be a broadcast, a loopback or a local ire */ 20275 ire_refrele(ire); 20276 /* No more access to ire */ 20277 ire = NULL; 20278 } 20279 20280 if (attach_ill != NULL) 20281 goto send_from_ill; 20282 20283 /* 20284 * We cache IRE_CACHEs to avoid lookups. We don't do 20285 * this for the tcp global queue and listen end point 20286 * as it does not really have a real destination to 20287 * talk to. This is also true for SCTP. 20288 */ 20289 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20290 !connp->conn_fully_bound) { 20291 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20292 if (ire == NULL) 20293 goto noirefound; 20294 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20295 "ip_wput_end: q %p (%S)", q, "end"); 20296 20297 /* 20298 * Check if the ire has the RTF_MULTIRT flag, inherited 20299 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20300 */ 20301 if (ire->ire_flags & RTF_MULTIRT) { 20302 20303 /* 20304 * Force the TTL of multirouted packets if required. 20305 * The TTL of such packets is bounded by the 20306 * ip_multirt_ttl ndd variable. 20307 */ 20308 if ((ipst->ips_ip_multirt_ttl > 0) && 20309 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20310 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20311 "(was %d), dst 0x%08x\n", 20312 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20313 ntohl(ire->ire_addr))); 20314 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20315 } 20316 /* 20317 * We look at this point if there are pending 20318 * unresolved routes. ire_multirt_resolvable() 20319 * checks in O(n) that all IRE_OFFSUBNET ire 20320 * entries for the packet's destination and 20321 * flagged RTF_MULTIRT are currently resolved. 20322 * If some remain unresolved, we make a copy 20323 * of the current message. It will be used 20324 * to initiate additional route resolutions. 20325 */ 20326 multirt_need_resolve = 20327 ire_multirt_need_resolve(ire->ire_addr, 20328 MBLK_GETLABEL(first_mp), ipst); 20329 ip2dbg(("ip_wput[TCP]: ire %p, " 20330 "multirt_need_resolve %d, first_mp %p\n", 20331 (void *)ire, multirt_need_resolve, 20332 (void *)first_mp)); 20333 if (multirt_need_resolve) { 20334 copy_mp = copymsg(first_mp); 20335 if (copy_mp != NULL) { 20336 MULTIRT_DEBUG_TAG(copy_mp); 20337 } 20338 } 20339 } 20340 20341 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20342 20343 /* 20344 * Try to resolve another multiroute if 20345 * ire_multirt_need_resolve() deemed it necessary. 20346 */ 20347 if (copy_mp != NULL) 20348 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20349 if (need_decref) 20350 CONN_DEC_REF(connp); 20351 return; 20352 } 20353 20354 /* 20355 * Access to conn_ire_cache. (protected by conn_lock) 20356 * 20357 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20358 * the ire bucket lock here to check for CONDEMNED as it is okay to 20359 * send a packet or two with the IRE_CACHE that is going away. 20360 * Access to the ire requires an ire refhold on the ire prior to 20361 * its use since an interface unplumb thread may delete the cached 20362 * ire and release the refhold at any time. 20363 * 20364 * Caching an ire in the conn_ire_cache 20365 * 20366 * o Caching an ire pointer in the conn requires a strict check for 20367 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20368 * ires before cleaning up the conns. So the caching of an ire pointer 20369 * in the conn is done after making sure under the bucket lock that the 20370 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20371 * caching an ire after the unplumb thread has cleaned up the conn. 20372 * If the conn does not send a packet subsequently the unplumb thread 20373 * will be hanging waiting for the ire count to drop to zero. 20374 * 20375 * o We also need to atomically test for a null conn_ire_cache and 20376 * set the conn_ire_cache under the the protection of the conn_lock 20377 * to avoid races among concurrent threads trying to simultaneously 20378 * cache an ire in the conn_ire_cache. 20379 */ 20380 mutex_enter(&connp->conn_lock); 20381 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20382 20383 if (ire != NULL && ire->ire_addr == dst && 20384 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20385 20386 IRE_REFHOLD(ire); 20387 mutex_exit(&connp->conn_lock); 20388 20389 } else { 20390 boolean_t cached = B_FALSE; 20391 connp->conn_ire_cache = NULL; 20392 mutex_exit(&connp->conn_lock); 20393 /* Release the old ire */ 20394 if (ire != NULL && sctp_ire == NULL) 20395 IRE_REFRELE_NOTR(ire); 20396 20397 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20398 if (ire == NULL) 20399 goto noirefound; 20400 IRE_REFHOLD_NOTR(ire); 20401 20402 mutex_enter(&connp->conn_lock); 20403 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20404 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20405 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20406 if (connp->conn_ulp == IPPROTO_TCP) 20407 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20408 connp->conn_ire_cache = ire; 20409 cached = B_TRUE; 20410 } 20411 rw_exit(&ire->ire_bucket->irb_lock); 20412 } 20413 mutex_exit(&connp->conn_lock); 20414 20415 /* 20416 * We can continue to use the ire but since it was 20417 * not cached, we should drop the extra reference. 20418 */ 20419 if (!cached) 20420 IRE_REFRELE_NOTR(ire); 20421 } 20422 20423 20424 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20425 "ip_wput_end: q %p (%S)", q, "end"); 20426 20427 /* 20428 * Check if the ire has the RTF_MULTIRT flag, inherited 20429 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20430 */ 20431 if (ire->ire_flags & RTF_MULTIRT) { 20432 20433 /* 20434 * Force the TTL of multirouted packets if required. 20435 * The TTL of such packets is bounded by the 20436 * ip_multirt_ttl ndd variable. 20437 */ 20438 if ((ipst->ips_ip_multirt_ttl > 0) && 20439 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20440 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20441 "(was %d), dst 0x%08x\n", 20442 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20443 ntohl(ire->ire_addr))); 20444 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20445 } 20446 20447 /* 20448 * At this point, we check to see if there are any pending 20449 * unresolved routes. ire_multirt_resolvable() 20450 * checks in O(n) that all IRE_OFFSUBNET ire 20451 * entries for the packet's destination and 20452 * flagged RTF_MULTIRT are currently resolved. 20453 * If some remain unresolved, we make a copy 20454 * of the current message. It will be used 20455 * to initiate additional route resolutions. 20456 */ 20457 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20458 MBLK_GETLABEL(first_mp), ipst); 20459 ip2dbg(("ip_wput[not TCP]: ire %p, " 20460 "multirt_need_resolve %d, first_mp %p\n", 20461 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20462 if (multirt_need_resolve) { 20463 copy_mp = copymsg(first_mp); 20464 if (copy_mp != NULL) { 20465 MULTIRT_DEBUG_TAG(copy_mp); 20466 } 20467 } 20468 } 20469 20470 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20471 20472 /* 20473 * Try to resolve another multiroute if 20474 * ire_multirt_resolvable() deemed it necessary 20475 */ 20476 if (copy_mp != NULL) 20477 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20478 if (need_decref) 20479 CONN_DEC_REF(connp); 20480 return; 20481 20482 qnext: 20483 /* 20484 * Upper Level Protocols pass down complete IP datagrams 20485 * as M_DATA messages. Everything else is a sideshow. 20486 * 20487 * 1) We could be re-entering ip_wput because of ip_neworute 20488 * in which case we could have a IPSEC_OUT message. We 20489 * need to pass through ip_wput like other datagrams and 20490 * hence cannot branch to ip_wput_nondata. 20491 * 20492 * 2) ARP, AH, ESP, and other clients who are on the module 20493 * instance of IP stream, give us something to deal with. 20494 * We will handle AH and ESP here and rest in ip_wput_nondata. 20495 * 20496 * 3) ICMP replies also could come here. 20497 */ 20498 ipst = ILLQ_TO_IPST(q); 20499 20500 if (DB_TYPE(mp) != M_DATA) { 20501 notdata: 20502 if (DB_TYPE(mp) == M_CTL) { 20503 /* 20504 * M_CTL messages are used by ARP, AH and ESP to 20505 * communicate with IP. We deal with IPSEC_IN and 20506 * IPSEC_OUT here. ip_wput_nondata handles other 20507 * cases. 20508 */ 20509 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20510 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20511 first_mp = mp->b_cont; 20512 first_mp->b_flag &= ~MSGHASREF; 20513 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20514 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20515 CONN_DEC_REF(connp); 20516 connp = NULL; 20517 } 20518 if (ii->ipsec_info_type == IPSEC_IN) { 20519 /* 20520 * Either this message goes back to 20521 * IPsec for further processing or to 20522 * ULP after policy checks. 20523 */ 20524 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20525 return; 20526 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20527 io = (ipsec_out_t *)ii; 20528 if (io->ipsec_out_proc_begin) { 20529 /* 20530 * IPsec processing has already started. 20531 * Complete it. 20532 * IPQoS notes: We don't care what is 20533 * in ipsec_out_ill_index since this 20534 * won't be processed for IPQoS policies 20535 * in ipsec_out_process. 20536 */ 20537 ipsec_out_process(q, mp, NULL, 20538 io->ipsec_out_ill_index); 20539 return; 20540 } else { 20541 connp = (q->q_next != NULL) ? 20542 NULL : Q_TO_CONN(q); 20543 first_mp = mp; 20544 mp = mp->b_cont; 20545 mctl_present = B_TRUE; 20546 } 20547 zoneid = io->ipsec_out_zoneid; 20548 ASSERT(zoneid != ALL_ZONES); 20549 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20550 /* 20551 * It's an IPsec control message requesting 20552 * an SADB update to be sent to the IPsec 20553 * hardware acceleration capable ills. 20554 */ 20555 ipsec_ctl_t *ipsec_ctl = 20556 (ipsec_ctl_t *)mp->b_rptr; 20557 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20558 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20559 mblk_t *cmp = mp->b_cont; 20560 20561 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20562 ASSERT(cmp != NULL); 20563 20564 freeb(mp); 20565 ill_ipsec_capab_send_all(satype, cmp, sa, 20566 ipst->ips_netstack); 20567 return; 20568 } else { 20569 /* 20570 * This must be ARP or special TSOL signaling. 20571 */ 20572 ip_wput_nondata(NULL, q, mp, NULL); 20573 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20574 "ip_wput_end: q %p (%S)", q, "nondata"); 20575 return; 20576 } 20577 } else { 20578 /* 20579 * This must be non-(ARP/AH/ESP) messages. 20580 */ 20581 ASSERT(!need_decref); 20582 ip_wput_nondata(NULL, q, mp, NULL); 20583 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20584 "ip_wput_end: q %p (%S)", q, "nondata"); 20585 return; 20586 } 20587 } else { 20588 first_mp = mp; 20589 mctl_present = B_FALSE; 20590 } 20591 20592 ASSERT(first_mp != NULL); 20593 /* 20594 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20595 * to make sure that this packet goes out on the same interface it 20596 * came in. We handle that here. 20597 */ 20598 if (mctl_present) { 20599 uint_t ifindex; 20600 20601 io = (ipsec_out_t *)first_mp->b_rptr; 20602 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20603 /* 20604 * We may have lost the conn context if we are 20605 * coming here from ip_newroute(). Copy the 20606 * nexthop information. 20607 */ 20608 if (io->ipsec_out_ip_nexthop) { 20609 ip_nexthop = B_TRUE; 20610 nexthop_addr = io->ipsec_out_nexthop_addr; 20611 20612 ipha = (ipha_t *)mp->b_rptr; 20613 dst = ipha->ipha_dst; 20614 goto send_from_ill; 20615 } else { 20616 ASSERT(io->ipsec_out_ill_index != 0); 20617 ifindex = io->ipsec_out_ill_index; 20618 attach_ill = ill_lookup_on_ifindex(ifindex, 20619 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20620 if (attach_ill == NULL) { 20621 ASSERT(xmit_ill == NULL); 20622 ip1dbg(("ip_output: bad ifindex for " 20623 "(BIND TO IPIF_NOFAILOVER) %d\n", 20624 ifindex)); 20625 freemsg(first_mp); 20626 BUMP_MIB(&ipst->ips_ip_mib, 20627 ipIfStatsOutDiscards); 20628 ASSERT(!need_decref); 20629 return; 20630 } 20631 } 20632 } 20633 } 20634 20635 ASSERT(xmit_ill == NULL); 20636 20637 /* We have a complete IP datagram heading outbound. */ 20638 ipha = (ipha_t *)mp->b_rptr; 20639 20640 #ifndef SPEED_BEFORE_SAFETY 20641 /* 20642 * Make sure we have a full-word aligned message and that at least 20643 * a simple IP header is accessible in the first message. If not, 20644 * try a pullup. 20645 */ 20646 if (!OK_32PTR(rptr) || 20647 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20648 hdrtoosmall: 20649 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20650 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20651 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20652 if (first_mp == NULL) 20653 first_mp = mp; 20654 goto discard_pkt; 20655 } 20656 20657 /* This function assumes that mp points to an IPv4 packet. */ 20658 if (is_system_labeled() && q->q_next == NULL && 20659 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20660 !connp->conn_ulp_labeled) { 20661 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20662 &adjust, connp->conn_mac_exempt, ipst); 20663 ipha = (ipha_t *)mp->b_rptr; 20664 if (first_mp != NULL) 20665 first_mp->b_cont = mp; 20666 if (err != 0) { 20667 if (first_mp == NULL) 20668 first_mp = mp; 20669 if (err == EINVAL) 20670 goto icmp_parameter_problem; 20671 ip2dbg(("ip_wput: label check failed (%d)\n", 20672 err)); 20673 goto discard_pkt; 20674 } 20675 iplen = ntohs(ipha->ipha_length) + adjust; 20676 ipha->ipha_length = htons(iplen); 20677 } 20678 20679 ipha = (ipha_t *)mp->b_rptr; 20680 if (first_mp == NULL) { 20681 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20682 /* 20683 * If we got here because of "goto hdrtoosmall" 20684 * We need to attach a IPSEC_OUT. 20685 */ 20686 if (connp->conn_out_enforce_policy) { 20687 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20688 NULL, ipha->ipha_protocol, 20689 ipst->ips_netstack)) == NULL)) { 20690 BUMP_MIB(&ipst->ips_ip_mib, 20691 ipIfStatsOutDiscards); 20692 if (need_decref) 20693 CONN_DEC_REF(connp); 20694 return; 20695 } else { 20696 ASSERT(mp->b_datap->db_type == M_CTL); 20697 first_mp = mp; 20698 mp = mp->b_cont; 20699 mctl_present = B_TRUE; 20700 } 20701 } else { 20702 first_mp = mp; 20703 mctl_present = B_FALSE; 20704 } 20705 } 20706 } 20707 #endif 20708 20709 /* Most of the code below is written for speed, not readability */ 20710 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20711 20712 /* 20713 * If ip_newroute() fails, we're going to need a full 20714 * header for the icmp wraparound. 20715 */ 20716 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20717 uint_t v_hlen; 20718 version_hdrlen_check: 20719 ASSERT(first_mp != NULL); 20720 v_hlen = V_HLEN; 20721 /* 20722 * siphon off IPv6 packets coming down from transport 20723 * layer modules here. 20724 * Note: high-order bit carries NUD reachability confirmation 20725 */ 20726 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20727 /* 20728 * FIXME: assume that callers of ip_output* call 20729 * the right version? 20730 */ 20731 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20732 ASSERT(xmit_ill == NULL); 20733 if (attach_ill != NULL) 20734 ill_refrele(attach_ill); 20735 if (need_decref) 20736 mp->b_flag |= MSGHASREF; 20737 (void) ip_output_v6(arg, first_mp, arg2, caller); 20738 return; 20739 } 20740 20741 if ((v_hlen >> 4) != IP_VERSION) { 20742 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20743 "ip_wput_end: q %p (%S)", q, "badvers"); 20744 goto discard_pkt; 20745 } 20746 /* 20747 * Is the header length at least 20 bytes? 20748 * 20749 * Are there enough bytes accessible in the header? If 20750 * not, try a pullup. 20751 */ 20752 v_hlen &= 0xF; 20753 v_hlen <<= 2; 20754 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20755 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20756 "ip_wput_end: q %p (%S)", q, "badlen"); 20757 goto discard_pkt; 20758 } 20759 if (v_hlen > (mp->b_wptr - rptr)) { 20760 if (!pullupmsg(mp, v_hlen)) { 20761 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20762 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20763 goto discard_pkt; 20764 } 20765 ipha = (ipha_t *)mp->b_rptr; 20766 } 20767 /* 20768 * Move first entry from any source route into ipha_dst and 20769 * verify the options 20770 */ 20771 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20772 zoneid, ipst)) { 20773 ASSERT(xmit_ill == NULL); 20774 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20775 if (attach_ill != NULL) 20776 ill_refrele(attach_ill); 20777 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20778 "ip_wput_end: q %p (%S)", q, "badopts"); 20779 if (need_decref) 20780 CONN_DEC_REF(connp); 20781 return; 20782 } 20783 } 20784 dst = ipha->ipha_dst; 20785 20786 /* 20787 * Try to get an IRE_CACHE for the destination address. If we can't, 20788 * we have to run the packet through ip_newroute which will take 20789 * the appropriate action to arrange for an IRE_CACHE, such as querying 20790 * a resolver, or assigning a default gateway, etc. 20791 */ 20792 if (CLASSD(dst)) { 20793 ipif_t *ipif; 20794 uint32_t setsrc = 0; 20795 20796 multicast: 20797 ASSERT(first_mp != NULL); 20798 ip2dbg(("ip_wput: CLASSD\n")); 20799 if (connp == NULL) { 20800 /* 20801 * Use the first good ipif on the ill. 20802 * XXX Should this ever happen? (Appears 20803 * to show up with just ppp and no ethernet due 20804 * to in.rdisc.) 20805 * However, ire_send should be able to 20806 * call ip_wput_ire directly. 20807 * 20808 * XXX Also, this can happen for ICMP and other packets 20809 * with multicast source addresses. Perhaps we should 20810 * fix things so that we drop the packet in question, 20811 * but for now, just run with it. 20812 */ 20813 ill_t *ill = (ill_t *)q->q_ptr; 20814 20815 /* 20816 * Don't honor attach_if for this case. If ill 20817 * is part of the group, ipif could belong to 20818 * any ill and we cannot maintain attach_ill 20819 * and ipif_ill same anymore and the assert 20820 * below would fail. 20821 */ 20822 if (mctl_present && io->ipsec_out_attach_if) { 20823 io->ipsec_out_ill_index = 0; 20824 io->ipsec_out_attach_if = B_FALSE; 20825 ASSERT(attach_ill != NULL); 20826 ill_refrele(attach_ill); 20827 attach_ill = NULL; 20828 } 20829 20830 ASSERT(attach_ill == NULL); 20831 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20832 if (ipif == NULL) { 20833 if (need_decref) 20834 CONN_DEC_REF(connp); 20835 freemsg(first_mp); 20836 return; 20837 } 20838 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20839 ntohl(dst), ill->ill_name)); 20840 } else { 20841 /* 20842 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20843 * and IP_MULTICAST_IF. The block comment above this 20844 * function explains the locking mechanism used here. 20845 */ 20846 if (xmit_ill == NULL) { 20847 xmit_ill = conn_get_held_ill(connp, 20848 &connp->conn_outgoing_ill, &err); 20849 if (err == ILL_LOOKUP_FAILED) { 20850 ip1dbg(("ip_wput: No ill for " 20851 "IP_BOUND_IF\n")); 20852 BUMP_MIB(&ipst->ips_ip_mib, 20853 ipIfStatsOutNoRoutes); 20854 goto drop_pkt; 20855 } 20856 } 20857 20858 if (xmit_ill == NULL) { 20859 ipif = conn_get_held_ipif(connp, 20860 &connp->conn_multicast_ipif, &err); 20861 if (err == IPIF_LOOKUP_FAILED) { 20862 ip1dbg(("ip_wput: No ipif for " 20863 "multicast\n")); 20864 BUMP_MIB(&ipst->ips_ip_mib, 20865 ipIfStatsOutNoRoutes); 20866 goto drop_pkt; 20867 } 20868 } 20869 if (xmit_ill != NULL) { 20870 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20871 if (ipif == NULL) { 20872 ip1dbg(("ip_wput: No ipif for " 20873 "xmit_ill\n")); 20874 BUMP_MIB(&ipst->ips_ip_mib, 20875 ipIfStatsOutNoRoutes); 20876 goto drop_pkt; 20877 } 20878 } else if (ipif == NULL || ipif->ipif_isv6) { 20879 /* 20880 * We must do this ipif determination here 20881 * else we could pass through ip_newroute 20882 * and come back here without the conn context. 20883 * 20884 * Note: we do late binding i.e. we bind to 20885 * the interface when the first packet is sent. 20886 * For performance reasons we do not rebind on 20887 * each packet but keep the binding until the 20888 * next IP_MULTICAST_IF option. 20889 * 20890 * conn_multicast_{ipif,ill} are shared between 20891 * IPv4 and IPv6 and AF_INET6 sockets can 20892 * send both IPv4 and IPv6 packets. Hence 20893 * we have to check that "isv6" matches above. 20894 */ 20895 if (ipif != NULL) 20896 ipif_refrele(ipif); 20897 ipif = ipif_lookup_group(dst, zoneid, ipst); 20898 if (ipif == NULL) { 20899 ip1dbg(("ip_wput: No ipif for " 20900 "multicast\n")); 20901 BUMP_MIB(&ipst->ips_ip_mib, 20902 ipIfStatsOutNoRoutes); 20903 goto drop_pkt; 20904 } 20905 err = conn_set_held_ipif(connp, 20906 &connp->conn_multicast_ipif, ipif); 20907 if (err == IPIF_LOOKUP_FAILED) { 20908 ipif_refrele(ipif); 20909 ip1dbg(("ip_wput: No ipif for " 20910 "multicast\n")); 20911 BUMP_MIB(&ipst->ips_ip_mib, 20912 ipIfStatsOutNoRoutes); 20913 goto drop_pkt; 20914 } 20915 } 20916 } 20917 ASSERT(!ipif->ipif_isv6); 20918 /* 20919 * As we may lose the conn by the time we reach ip_wput_ire, 20920 * we copy conn_multicast_loop and conn_dontroute on to an 20921 * ipsec_out. In case if this datagram goes out secure, 20922 * we need the ill_index also. Copy that also into the 20923 * ipsec_out. 20924 */ 20925 if (mctl_present) { 20926 io = (ipsec_out_t *)first_mp->b_rptr; 20927 ASSERT(first_mp->b_datap->db_type == M_CTL); 20928 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20929 } else { 20930 ASSERT(mp == first_mp); 20931 if ((first_mp = allocb(sizeof (ipsec_info_t), 20932 BPRI_HI)) == NULL) { 20933 ipif_refrele(ipif); 20934 first_mp = mp; 20935 goto discard_pkt; 20936 } 20937 first_mp->b_datap->db_type = M_CTL; 20938 first_mp->b_wptr += sizeof (ipsec_info_t); 20939 /* ipsec_out_secure is B_FALSE now */ 20940 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20941 io = (ipsec_out_t *)first_mp->b_rptr; 20942 io->ipsec_out_type = IPSEC_OUT; 20943 io->ipsec_out_len = sizeof (ipsec_out_t); 20944 io->ipsec_out_use_global_policy = B_TRUE; 20945 io->ipsec_out_ns = ipst->ips_netstack; 20946 first_mp->b_cont = mp; 20947 mctl_present = B_TRUE; 20948 } 20949 if (attach_ill != NULL) { 20950 ASSERT(attach_ill == ipif->ipif_ill); 20951 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20952 20953 /* 20954 * Check if we need an ire that will not be 20955 * looked up by anybody else i.e. HIDDEN. 20956 */ 20957 if (ill_is_probeonly(attach_ill)) { 20958 match_flags |= MATCH_IRE_MARK_HIDDEN; 20959 } 20960 io->ipsec_out_ill_index = 20961 attach_ill->ill_phyint->phyint_ifindex; 20962 io->ipsec_out_attach_if = B_TRUE; 20963 } else { 20964 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20965 io->ipsec_out_ill_index = 20966 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20967 } 20968 if (connp != NULL) { 20969 io->ipsec_out_multicast_loop = 20970 connp->conn_multicast_loop; 20971 io->ipsec_out_dontroute = connp->conn_dontroute; 20972 io->ipsec_out_zoneid = connp->conn_zoneid; 20973 } 20974 /* 20975 * If the application uses IP_MULTICAST_IF with 20976 * different logical addresses of the same ILL, we 20977 * need to make sure that the soruce address of 20978 * the packet matches the logical IP address used 20979 * in the option. We do it by initializing ipha_src 20980 * here. This should keep IPsec also happy as 20981 * when we return from IPsec processing, we don't 20982 * have to worry about getting the right address on 20983 * the packet. Thus it is sufficient to look for 20984 * IRE_CACHE using MATCH_IRE_ILL rathen than 20985 * MATCH_IRE_IPIF. 20986 * 20987 * NOTE : We need to do it for non-secure case also as 20988 * this might go out secure if there is a global policy 20989 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20990 * address, the source should be initialized already and 20991 * hence we won't be initializing here. 20992 * 20993 * As we do not have the ire yet, it is possible that 20994 * we set the source address here and then later discover 20995 * that the ire implies the source address to be assigned 20996 * through the RTF_SETSRC flag. 20997 * In that case, the setsrc variable will remind us 20998 * that overwritting the source address by the one 20999 * of the RTF_SETSRC-flagged ire is allowed. 21000 */ 21001 if (ipha->ipha_src == INADDR_ANY && 21002 (connp == NULL || !connp->conn_unspec_src)) { 21003 ipha->ipha_src = ipif->ipif_src_addr; 21004 setsrc = RTF_SETSRC; 21005 } 21006 /* 21007 * Find an IRE which matches the destination and the outgoing 21008 * queue (i.e. the outgoing interface.) 21009 * For loopback use a unicast IP address for 21010 * the ire lookup. 21011 */ 21012 if (IS_LOOPBACK(ipif->ipif_ill)) 21013 dst = ipif->ipif_lcl_addr; 21014 21015 /* 21016 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21017 * We don't need to lookup ire in ctable as the packet 21018 * needs to be sent to the destination through the specified 21019 * ill irrespective of ires in the cache table. 21020 */ 21021 ire = NULL; 21022 if (xmit_ill == NULL) { 21023 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21024 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21025 } 21026 21027 /* 21028 * refrele attach_ill as its not needed anymore. 21029 */ 21030 if (attach_ill != NULL) { 21031 ill_refrele(attach_ill); 21032 attach_ill = NULL; 21033 } 21034 21035 if (ire == NULL) { 21036 /* 21037 * Multicast loopback and multicast forwarding is 21038 * done in ip_wput_ire. 21039 * 21040 * Mark this packet to make it be delivered to 21041 * ip_wput_ire after the new ire has been 21042 * created. 21043 * 21044 * The call to ip_newroute_ipif takes into account 21045 * the setsrc reminder. In any case, we take care 21046 * of the RTF_MULTIRT flag. 21047 */ 21048 mp->b_prev = mp->b_next = NULL; 21049 if (xmit_ill == NULL || 21050 xmit_ill->ill_ipif_up_count > 0) { 21051 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21052 setsrc | RTF_MULTIRT, zoneid, infop); 21053 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21054 "ip_wput_end: q %p (%S)", q, "noire"); 21055 } else { 21056 freemsg(first_mp); 21057 } 21058 ipif_refrele(ipif); 21059 if (xmit_ill != NULL) 21060 ill_refrele(xmit_ill); 21061 if (need_decref) 21062 CONN_DEC_REF(connp); 21063 return; 21064 } 21065 21066 ipif_refrele(ipif); 21067 ipif = NULL; 21068 ASSERT(xmit_ill == NULL); 21069 21070 /* 21071 * Honor the RTF_SETSRC flag for multicast packets, 21072 * if allowed by the setsrc reminder. 21073 */ 21074 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21075 ipha->ipha_src = ire->ire_src_addr; 21076 } 21077 21078 /* 21079 * Unconditionally force the TTL to 1 for 21080 * multirouted multicast packets: 21081 * multirouted multicast should not cross 21082 * multicast routers. 21083 */ 21084 if (ire->ire_flags & RTF_MULTIRT) { 21085 if (ipha->ipha_ttl > 1) { 21086 ip2dbg(("ip_wput: forcing multicast " 21087 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21088 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21089 ipha->ipha_ttl = 1; 21090 } 21091 } 21092 } else { 21093 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21094 if ((ire != NULL) && (ire->ire_type & 21095 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21096 ignore_dontroute = B_TRUE; 21097 ignore_nexthop = B_TRUE; 21098 } 21099 if (ire != NULL) { 21100 ire_refrele(ire); 21101 ire = NULL; 21102 } 21103 /* 21104 * Guard against coming in from arp in which case conn is NULL. 21105 * Also guard against non M_DATA with dontroute set but 21106 * destined to local, loopback or broadcast addresses. 21107 */ 21108 if (connp != NULL && connp->conn_dontroute && 21109 !ignore_dontroute) { 21110 dontroute: 21111 /* 21112 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21113 * routing protocols from seeing false direct 21114 * connectivity. 21115 */ 21116 ipha->ipha_ttl = 1; 21117 21118 /* If suitable ipif not found, drop packet */ 21119 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21120 if (dst_ipif == NULL) { 21121 noroute: 21122 ip1dbg(("ip_wput: no route for dst using" 21123 " SO_DONTROUTE\n")); 21124 BUMP_MIB(&ipst->ips_ip_mib, 21125 ipIfStatsOutNoRoutes); 21126 mp->b_prev = mp->b_next = NULL; 21127 if (first_mp == NULL) 21128 first_mp = mp; 21129 goto drop_pkt; 21130 } else { 21131 /* 21132 * If suitable ipif has been found, set 21133 * xmit_ill to the corresponding 21134 * ipif_ill because we'll be using the 21135 * send_from_ill logic below. 21136 */ 21137 ASSERT(xmit_ill == NULL); 21138 xmit_ill = dst_ipif->ipif_ill; 21139 mutex_enter(&xmit_ill->ill_lock); 21140 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21141 mutex_exit(&xmit_ill->ill_lock); 21142 xmit_ill = NULL; 21143 ipif_refrele(dst_ipif); 21144 goto noroute; 21145 } 21146 ill_refhold_locked(xmit_ill); 21147 mutex_exit(&xmit_ill->ill_lock); 21148 ipif_refrele(dst_ipif); 21149 } 21150 } 21151 /* 21152 * If we are bound to IPIF_NOFAILOVER address, look for 21153 * an IRE_CACHE matching the ill. 21154 */ 21155 send_from_ill: 21156 if (attach_ill != NULL) { 21157 ipif_t *attach_ipif; 21158 21159 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21160 21161 /* 21162 * Check if we need an ire that will not be 21163 * looked up by anybody else i.e. HIDDEN. 21164 */ 21165 if (ill_is_probeonly(attach_ill)) { 21166 match_flags |= MATCH_IRE_MARK_HIDDEN; 21167 } 21168 21169 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21170 if (attach_ipif == NULL) { 21171 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21172 goto discard_pkt; 21173 } 21174 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21175 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21176 ipif_refrele(attach_ipif); 21177 } else if (xmit_ill != NULL) { 21178 ipif_t *ipif; 21179 21180 /* 21181 * Mark this packet as originated locally 21182 */ 21183 mp->b_prev = mp->b_next = NULL; 21184 21185 /* 21186 * Could be SO_DONTROUTE case also. 21187 * Verify that at least one ipif is up on the ill. 21188 */ 21189 if (xmit_ill->ill_ipif_up_count == 0) { 21190 ip1dbg(("ip_output: xmit_ill %s is down\n", 21191 xmit_ill->ill_name)); 21192 goto drop_pkt; 21193 } 21194 21195 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21196 if (ipif == NULL) { 21197 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21198 xmit_ill->ill_name)); 21199 goto drop_pkt; 21200 } 21201 21202 /* 21203 * Look for a ire that is part of the group, 21204 * if found use it else call ip_newroute_ipif. 21205 * IPCL_ZONEID is not used for matching because 21206 * IP_ALLZONES option is valid only when the 21207 * ill is accessible from all zones i.e has a 21208 * valid ipif in all zones. 21209 */ 21210 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21211 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21212 MBLK_GETLABEL(mp), match_flags, ipst); 21213 /* 21214 * If an ire exists use it or else create 21215 * an ire but don't add it to the cache. 21216 * Adding an ire may cause issues with 21217 * asymmetric routing. 21218 * In case of multiroute always act as if 21219 * ire does not exist. 21220 */ 21221 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21222 if (ire != NULL) 21223 ire_refrele(ire); 21224 ip_newroute_ipif(q, first_mp, ipif, 21225 dst, connp, 0, zoneid, infop); 21226 ipif_refrele(ipif); 21227 ip1dbg(("ip_output: xmit_ill via %s\n", 21228 xmit_ill->ill_name)); 21229 ill_refrele(xmit_ill); 21230 if (need_decref) 21231 CONN_DEC_REF(connp); 21232 return; 21233 } 21234 ipif_refrele(ipif); 21235 } else if (ip_nexthop || (connp != NULL && 21236 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21237 if (!ip_nexthop) { 21238 ip_nexthop = B_TRUE; 21239 nexthop_addr = connp->conn_nexthop_v4; 21240 } 21241 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21242 MATCH_IRE_GW; 21243 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21244 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21245 } else { 21246 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21247 ipst); 21248 } 21249 if (!ire) { 21250 /* 21251 * Make sure we don't load spread if this 21252 * is IPIF_NOFAILOVER case. 21253 */ 21254 if ((attach_ill != NULL) || 21255 (ip_nexthop && !ignore_nexthop)) { 21256 if (mctl_present) { 21257 io = (ipsec_out_t *)first_mp->b_rptr; 21258 ASSERT(first_mp->b_datap->db_type == 21259 M_CTL); 21260 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21261 } else { 21262 ASSERT(mp == first_mp); 21263 first_mp = allocb( 21264 sizeof (ipsec_info_t), BPRI_HI); 21265 if (first_mp == NULL) { 21266 first_mp = mp; 21267 goto discard_pkt; 21268 } 21269 first_mp->b_datap->db_type = M_CTL; 21270 first_mp->b_wptr += 21271 sizeof (ipsec_info_t); 21272 /* ipsec_out_secure is B_FALSE now */ 21273 bzero(first_mp->b_rptr, 21274 sizeof (ipsec_info_t)); 21275 io = (ipsec_out_t *)first_mp->b_rptr; 21276 io->ipsec_out_type = IPSEC_OUT; 21277 io->ipsec_out_len = 21278 sizeof (ipsec_out_t); 21279 io->ipsec_out_use_global_policy = 21280 B_TRUE; 21281 io->ipsec_out_ns = ipst->ips_netstack; 21282 first_mp->b_cont = mp; 21283 mctl_present = B_TRUE; 21284 } 21285 if (attach_ill != NULL) { 21286 io->ipsec_out_ill_index = attach_ill-> 21287 ill_phyint->phyint_ifindex; 21288 io->ipsec_out_attach_if = B_TRUE; 21289 } else { 21290 io->ipsec_out_ip_nexthop = ip_nexthop; 21291 io->ipsec_out_nexthop_addr = 21292 nexthop_addr; 21293 } 21294 } 21295 noirefound: 21296 /* 21297 * Mark this packet as having originated on 21298 * this machine. This will be noted in 21299 * ire_add_then_send, which needs to know 21300 * whether to run it back through ip_wput or 21301 * ip_rput following successful resolution. 21302 */ 21303 mp->b_prev = NULL; 21304 mp->b_next = NULL; 21305 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21306 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21307 "ip_wput_end: q %p (%S)", q, "newroute"); 21308 if (attach_ill != NULL) 21309 ill_refrele(attach_ill); 21310 if (xmit_ill != NULL) 21311 ill_refrele(xmit_ill); 21312 if (need_decref) 21313 CONN_DEC_REF(connp); 21314 return; 21315 } 21316 } 21317 21318 /* We now know where we are going with it. */ 21319 21320 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21321 "ip_wput_end: q %p (%S)", q, "end"); 21322 21323 /* 21324 * Check if the ire has the RTF_MULTIRT flag, inherited 21325 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21326 */ 21327 if (ire->ire_flags & RTF_MULTIRT) { 21328 /* 21329 * Force the TTL of multirouted packets if required. 21330 * The TTL of such packets is bounded by the 21331 * ip_multirt_ttl ndd variable. 21332 */ 21333 if ((ipst->ips_ip_multirt_ttl > 0) && 21334 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21335 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21336 "(was %d), dst 0x%08x\n", 21337 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21338 ntohl(ire->ire_addr))); 21339 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21340 } 21341 /* 21342 * At this point, we check to see if there are any pending 21343 * unresolved routes. ire_multirt_resolvable() 21344 * checks in O(n) that all IRE_OFFSUBNET ire 21345 * entries for the packet's destination and 21346 * flagged RTF_MULTIRT are currently resolved. 21347 * If some remain unresolved, we make a copy 21348 * of the current message. It will be used 21349 * to initiate additional route resolutions. 21350 */ 21351 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21352 MBLK_GETLABEL(first_mp), ipst); 21353 ip2dbg(("ip_wput[noirefound]: ire %p, " 21354 "multirt_need_resolve %d, first_mp %p\n", 21355 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21356 if (multirt_need_resolve) { 21357 copy_mp = copymsg(first_mp); 21358 if (copy_mp != NULL) { 21359 MULTIRT_DEBUG_TAG(copy_mp); 21360 } 21361 } 21362 } 21363 21364 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21365 /* 21366 * Try to resolve another multiroute if 21367 * ire_multirt_resolvable() deemed it necessary. 21368 * At this point, we need to distinguish 21369 * multicasts from other packets. For multicasts, 21370 * we call ip_newroute_ipif() and request that both 21371 * multirouting and setsrc flags are checked. 21372 */ 21373 if (copy_mp != NULL) { 21374 if (CLASSD(dst)) { 21375 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21376 if (ipif) { 21377 ASSERT(infop->ip_opt_ill_index == 0); 21378 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21379 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21380 ipif_refrele(ipif); 21381 } else { 21382 MULTIRT_DEBUG_UNTAG(copy_mp); 21383 freemsg(copy_mp); 21384 copy_mp = NULL; 21385 } 21386 } else { 21387 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21388 } 21389 } 21390 if (attach_ill != NULL) 21391 ill_refrele(attach_ill); 21392 if (xmit_ill != NULL) 21393 ill_refrele(xmit_ill); 21394 if (need_decref) 21395 CONN_DEC_REF(connp); 21396 return; 21397 21398 icmp_parameter_problem: 21399 /* could not have originated externally */ 21400 ASSERT(mp->b_prev == NULL); 21401 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21402 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21403 /* it's the IP header length that's in trouble */ 21404 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21405 first_mp = NULL; 21406 } 21407 21408 discard_pkt: 21409 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21410 drop_pkt: 21411 ip1dbg(("ip_wput: dropped packet\n")); 21412 if (ire != NULL) 21413 ire_refrele(ire); 21414 if (need_decref) 21415 CONN_DEC_REF(connp); 21416 freemsg(first_mp); 21417 if (attach_ill != NULL) 21418 ill_refrele(attach_ill); 21419 if (xmit_ill != NULL) 21420 ill_refrele(xmit_ill); 21421 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21422 "ip_wput_end: q %p (%S)", q, "droppkt"); 21423 } 21424 21425 /* 21426 * If this is a conn_t queue, then we pass in the conn. This includes the 21427 * zoneid. 21428 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21429 * in which case we use the global zoneid since those are all part of 21430 * the global zone. 21431 */ 21432 void 21433 ip_wput(queue_t *q, mblk_t *mp) 21434 { 21435 if (CONN_Q(q)) 21436 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21437 else 21438 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21439 } 21440 21441 /* 21442 * 21443 * The following rules must be observed when accessing any ipif or ill 21444 * that has been cached in the conn. Typically conn_nofailover_ill, 21445 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21446 * 21447 * Access: The ipif or ill pointed to from the conn can be accessed under 21448 * the protection of the conn_lock or after it has been refheld under the 21449 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21450 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21451 * The reason for this is that a concurrent unplumb could actually be 21452 * cleaning up these cached pointers by walking the conns and might have 21453 * finished cleaning up the conn in question. The macros check that an 21454 * unplumb has not yet started on the ipif or ill. 21455 * 21456 * Caching: An ipif or ill pointer may be cached in the conn only after 21457 * making sure that an unplumb has not started. So the caching is done 21458 * while holding both the conn_lock and the ill_lock and after using the 21459 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21460 * flag before starting the cleanup of conns. 21461 * 21462 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21463 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21464 * or a reference to the ipif or a reference to an ire that references the 21465 * ipif. An ipif does not change its ill except for failover/failback. Since 21466 * failover/failback happens only after bringing down the ipif and making sure 21467 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21468 * the above holds. 21469 */ 21470 ipif_t * 21471 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21472 { 21473 ipif_t *ipif; 21474 ill_t *ill; 21475 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21476 21477 *err = 0; 21478 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21479 mutex_enter(&connp->conn_lock); 21480 ipif = *ipifp; 21481 if (ipif != NULL) { 21482 ill = ipif->ipif_ill; 21483 mutex_enter(&ill->ill_lock); 21484 if (IPIF_CAN_LOOKUP(ipif)) { 21485 ipif_refhold_locked(ipif); 21486 mutex_exit(&ill->ill_lock); 21487 mutex_exit(&connp->conn_lock); 21488 rw_exit(&ipst->ips_ill_g_lock); 21489 return (ipif); 21490 } else { 21491 *err = IPIF_LOOKUP_FAILED; 21492 } 21493 mutex_exit(&ill->ill_lock); 21494 } 21495 mutex_exit(&connp->conn_lock); 21496 rw_exit(&ipst->ips_ill_g_lock); 21497 return (NULL); 21498 } 21499 21500 ill_t * 21501 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21502 { 21503 ill_t *ill; 21504 21505 *err = 0; 21506 mutex_enter(&connp->conn_lock); 21507 ill = *illp; 21508 if (ill != NULL) { 21509 mutex_enter(&ill->ill_lock); 21510 if (ILL_CAN_LOOKUP(ill)) { 21511 ill_refhold_locked(ill); 21512 mutex_exit(&ill->ill_lock); 21513 mutex_exit(&connp->conn_lock); 21514 return (ill); 21515 } else { 21516 *err = ILL_LOOKUP_FAILED; 21517 } 21518 mutex_exit(&ill->ill_lock); 21519 } 21520 mutex_exit(&connp->conn_lock); 21521 return (NULL); 21522 } 21523 21524 static int 21525 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21526 { 21527 ill_t *ill; 21528 21529 ill = ipif->ipif_ill; 21530 mutex_enter(&connp->conn_lock); 21531 mutex_enter(&ill->ill_lock); 21532 if (IPIF_CAN_LOOKUP(ipif)) { 21533 *ipifp = ipif; 21534 mutex_exit(&ill->ill_lock); 21535 mutex_exit(&connp->conn_lock); 21536 return (0); 21537 } 21538 mutex_exit(&ill->ill_lock); 21539 mutex_exit(&connp->conn_lock); 21540 return (IPIF_LOOKUP_FAILED); 21541 } 21542 21543 /* 21544 * This is called if the outbound datagram needs fragmentation. 21545 * 21546 * NOTE : This function does not ire_refrele the ire argument passed in. 21547 */ 21548 static void 21549 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21550 ip_stack_t *ipst) 21551 { 21552 ipha_t *ipha; 21553 mblk_t *mp; 21554 uint32_t v_hlen_tos_len; 21555 uint32_t max_frag; 21556 uint32_t frag_flag; 21557 boolean_t dont_use; 21558 21559 if (ipsec_mp->b_datap->db_type == M_CTL) { 21560 mp = ipsec_mp->b_cont; 21561 } else { 21562 mp = ipsec_mp; 21563 } 21564 21565 ipha = (ipha_t *)mp->b_rptr; 21566 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21567 21568 #ifdef _BIG_ENDIAN 21569 #define V_HLEN (v_hlen_tos_len >> 24) 21570 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21571 #else 21572 #define V_HLEN (v_hlen_tos_len & 0xFF) 21573 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21574 #endif 21575 21576 #ifndef SPEED_BEFORE_SAFETY 21577 /* 21578 * Check that ipha_length is consistent with 21579 * the mblk length 21580 */ 21581 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21582 ip0dbg(("Packet length mismatch: %d, %ld\n", 21583 LENGTH, msgdsize(mp))); 21584 freemsg(ipsec_mp); 21585 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21586 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21587 "packet length mismatch"); 21588 return; 21589 } 21590 #endif 21591 /* 21592 * Don't use frag_flag if pre-built packet or source 21593 * routed or if multicast (since multicast packets do not solicit 21594 * ICMP "packet too big" messages). Get the values of 21595 * max_frag and frag_flag atomically by acquiring the 21596 * ire_lock. 21597 */ 21598 mutex_enter(&ire->ire_lock); 21599 max_frag = ire->ire_max_frag; 21600 frag_flag = ire->ire_frag_flag; 21601 mutex_exit(&ire->ire_lock); 21602 21603 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21604 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21605 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21606 21607 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21608 (dont_use ? 0 : frag_flag), zoneid, ipst); 21609 } 21610 21611 /* 21612 * Used for deciding the MSS size for the upper layer. Thus 21613 * we need to check the outbound policy values in the conn. 21614 */ 21615 int 21616 conn_ipsec_length(conn_t *connp) 21617 { 21618 ipsec_latch_t *ipl; 21619 21620 ipl = connp->conn_latch; 21621 if (ipl == NULL) 21622 return (0); 21623 21624 if (ipl->ipl_out_policy == NULL) 21625 return (0); 21626 21627 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21628 } 21629 21630 /* 21631 * Returns an estimate of the IPsec headers size. This is used if 21632 * we don't want to call into IPsec to get the exact size. 21633 */ 21634 int 21635 ipsec_out_extra_length(mblk_t *ipsec_mp) 21636 { 21637 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21638 ipsec_action_t *a; 21639 21640 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21641 if (!io->ipsec_out_secure) 21642 return (0); 21643 21644 a = io->ipsec_out_act; 21645 21646 if (a == NULL) { 21647 ASSERT(io->ipsec_out_policy != NULL); 21648 a = io->ipsec_out_policy->ipsp_act; 21649 } 21650 ASSERT(a != NULL); 21651 21652 return (a->ipa_ovhd); 21653 } 21654 21655 /* 21656 * Returns an estimate of the IPsec headers size. This is used if 21657 * we don't want to call into IPsec to get the exact size. 21658 */ 21659 int 21660 ipsec_in_extra_length(mblk_t *ipsec_mp) 21661 { 21662 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21663 ipsec_action_t *a; 21664 21665 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21666 21667 a = ii->ipsec_in_action; 21668 return (a == NULL ? 0 : a->ipa_ovhd); 21669 } 21670 21671 /* 21672 * If there are any source route options, return the true final 21673 * destination. Otherwise, return the destination. 21674 */ 21675 ipaddr_t 21676 ip_get_dst(ipha_t *ipha) 21677 { 21678 ipoptp_t opts; 21679 uchar_t *opt; 21680 uint8_t optval; 21681 uint8_t optlen; 21682 ipaddr_t dst; 21683 uint32_t off; 21684 21685 dst = ipha->ipha_dst; 21686 21687 if (IS_SIMPLE_IPH(ipha)) 21688 return (dst); 21689 21690 for (optval = ipoptp_first(&opts, ipha); 21691 optval != IPOPT_EOL; 21692 optval = ipoptp_next(&opts)) { 21693 opt = opts.ipoptp_cur; 21694 optlen = opts.ipoptp_len; 21695 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21696 switch (optval) { 21697 case IPOPT_SSRR: 21698 case IPOPT_LSRR: 21699 off = opt[IPOPT_OFFSET]; 21700 /* 21701 * If one of the conditions is true, it means 21702 * end of options and dst already has the right 21703 * value. 21704 */ 21705 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21706 off = optlen - IP_ADDR_LEN; 21707 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21708 } 21709 return (dst); 21710 default: 21711 break; 21712 } 21713 } 21714 21715 return (dst); 21716 } 21717 21718 mblk_t * 21719 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21720 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21721 { 21722 ipsec_out_t *io; 21723 mblk_t *first_mp; 21724 boolean_t policy_present; 21725 ip_stack_t *ipst; 21726 ipsec_stack_t *ipss; 21727 21728 ASSERT(ire != NULL); 21729 ipst = ire->ire_ipst; 21730 ipss = ipst->ips_netstack->netstack_ipsec; 21731 21732 first_mp = mp; 21733 if (mp->b_datap->db_type == M_CTL) { 21734 io = (ipsec_out_t *)first_mp->b_rptr; 21735 /* 21736 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21737 * 21738 * 1) There is per-socket policy (including cached global 21739 * policy) or a policy on the IP-in-IP tunnel. 21740 * 2) There is no per-socket policy, but it is 21741 * a multicast packet that needs to go out 21742 * on a specific interface. This is the case 21743 * where (ip_wput and ip_wput_multicast) attaches 21744 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21745 * 21746 * In case (2) we check with global policy to 21747 * see if there is a match and set the ill_index 21748 * appropriately so that we can lookup the ire 21749 * properly in ip_wput_ipsec_out. 21750 */ 21751 21752 /* 21753 * ipsec_out_use_global_policy is set to B_FALSE 21754 * in ipsec_in_to_out(). Refer to that function for 21755 * details. 21756 */ 21757 if ((io->ipsec_out_latch == NULL) && 21758 (io->ipsec_out_use_global_policy)) { 21759 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21760 ire, connp, unspec_src, zoneid)); 21761 } 21762 if (!io->ipsec_out_secure) { 21763 /* 21764 * If this is not a secure packet, drop 21765 * the IPSEC_OUT mp and treat it as a clear 21766 * packet. This happens when we are sending 21767 * a ICMP reply back to a clear packet. See 21768 * ipsec_in_to_out() for details. 21769 */ 21770 mp = first_mp->b_cont; 21771 freeb(first_mp); 21772 } 21773 return (mp); 21774 } 21775 /* 21776 * See whether we need to attach a global policy here. We 21777 * don't depend on the conn (as it could be null) for deciding 21778 * what policy this datagram should go through because it 21779 * should have happened in ip_wput if there was some 21780 * policy. This normally happens for connections which are not 21781 * fully bound preventing us from caching policies in 21782 * ip_bind. Packets coming from the TCP listener/global queue 21783 * - which are non-hard_bound - could also be affected by 21784 * applying policy here. 21785 * 21786 * If this packet is coming from tcp global queue or listener, 21787 * we will be applying policy here. This may not be *right* 21788 * if these packets are coming from the detached connection as 21789 * it could have gone in clear before. This happens only if a 21790 * TCP connection started when there is no policy and somebody 21791 * added policy before it became detached. Thus packets of the 21792 * detached connection could go out secure and the other end 21793 * would drop it because it will be expecting in clear. The 21794 * converse is not true i.e if somebody starts a TCP 21795 * connection and deletes the policy, all the packets will 21796 * still go out with the policy that existed before deleting 21797 * because ip_unbind sends up policy information which is used 21798 * by TCP on subsequent ip_wputs. The right solution is to fix 21799 * TCP to attach a dummy IPSEC_OUT and set 21800 * ipsec_out_use_global_policy to B_FALSE. As this might 21801 * affect performance for normal cases, we are not doing it. 21802 * Thus, set policy before starting any TCP connections. 21803 * 21804 * NOTE - We might apply policy even for a hard bound connection 21805 * - for which we cached policy in ip_bind - if somebody added 21806 * global policy after we inherited the policy in ip_bind. 21807 * This means that the packets that were going out in clear 21808 * previously would start going secure and hence get dropped 21809 * on the other side. To fix this, TCP attaches a dummy 21810 * ipsec_out and make sure that we don't apply global policy. 21811 */ 21812 if (ipha != NULL) 21813 policy_present = ipss->ipsec_outbound_v4_policy_present; 21814 else 21815 policy_present = ipss->ipsec_outbound_v6_policy_present; 21816 if (!policy_present) 21817 return (mp); 21818 21819 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21820 zoneid)); 21821 } 21822 21823 ire_t * 21824 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21825 { 21826 ipaddr_t addr; 21827 ire_t *save_ire; 21828 irb_t *irb; 21829 ill_group_t *illgrp; 21830 int err; 21831 21832 save_ire = ire; 21833 addr = ire->ire_addr; 21834 21835 ASSERT(ire->ire_type == IRE_BROADCAST); 21836 21837 illgrp = connp->conn_outgoing_ill->ill_group; 21838 if (illgrp == NULL) { 21839 *conn_outgoing_ill = conn_get_held_ill(connp, 21840 &connp->conn_outgoing_ill, &err); 21841 if (err == ILL_LOOKUP_FAILED) { 21842 ire_refrele(save_ire); 21843 return (NULL); 21844 } 21845 return (save_ire); 21846 } 21847 /* 21848 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21849 * If it is part of the group, we need to send on the ire 21850 * that has been cleared of IRE_MARK_NORECV and that belongs 21851 * to this group. This is okay as IP_BOUND_IF really means 21852 * any ill in the group. We depend on the fact that the 21853 * first ire in the group is always cleared of IRE_MARK_NORECV 21854 * if such an ire exists. This is possible only if you have 21855 * at least one ill in the group that has not failed. 21856 * 21857 * First get to the ire that matches the address and group. 21858 * 21859 * We don't look for an ire with a matching zoneid because a given zone 21860 * won't always have broadcast ires on all ills in the group. 21861 */ 21862 irb = ire->ire_bucket; 21863 rw_enter(&irb->irb_lock, RW_READER); 21864 if (ire->ire_marks & IRE_MARK_NORECV) { 21865 /* 21866 * If the current zone only has an ire broadcast for this 21867 * address marked NORECV, the ire we want is ahead in the 21868 * bucket, so we look it up deliberately ignoring the zoneid. 21869 */ 21870 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21871 if (ire->ire_addr != addr) 21872 continue; 21873 /* skip over deleted ires */ 21874 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21875 continue; 21876 } 21877 } 21878 while (ire != NULL) { 21879 /* 21880 * If a new interface is coming up, we could end up 21881 * seeing the loopback ire and the non-loopback ire 21882 * may not have been added yet. So check for ire_stq 21883 */ 21884 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21885 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21886 break; 21887 } 21888 ire = ire->ire_next; 21889 } 21890 if (ire != NULL && ire->ire_addr == addr && 21891 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21892 IRE_REFHOLD(ire); 21893 rw_exit(&irb->irb_lock); 21894 ire_refrele(save_ire); 21895 *conn_outgoing_ill = ire_to_ill(ire); 21896 /* 21897 * Refhold the ill to make the conn_outgoing_ill 21898 * independent of the ire. ip_wput_ire goes in a loop 21899 * and may refrele the ire. Since we have an ire at this 21900 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21901 */ 21902 ill_refhold(*conn_outgoing_ill); 21903 return (ire); 21904 } 21905 rw_exit(&irb->irb_lock); 21906 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21907 /* 21908 * If we can't find a suitable ire, return the original ire. 21909 */ 21910 return (save_ire); 21911 } 21912 21913 /* 21914 * This function does the ire_refrele of the ire passed in as the 21915 * argument. As this function looks up more ires i.e broadcast ires, 21916 * it needs to REFRELE them. Currently, for simplicity we don't 21917 * differentiate the one passed in and looked up here. We always 21918 * REFRELE. 21919 * IPQoS Notes: 21920 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21921 * IPsec packets are done in ipsec_out_process. 21922 * 21923 */ 21924 void 21925 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21926 zoneid_t zoneid) 21927 { 21928 ipha_t *ipha; 21929 #define rptr ((uchar_t *)ipha) 21930 queue_t *stq; 21931 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21932 uint32_t v_hlen_tos_len; 21933 uint32_t ttl_protocol; 21934 ipaddr_t src; 21935 ipaddr_t dst; 21936 uint32_t cksum; 21937 ipaddr_t orig_src; 21938 ire_t *ire1; 21939 mblk_t *next_mp; 21940 uint_t hlen; 21941 uint16_t *up; 21942 uint32_t max_frag = ire->ire_max_frag; 21943 ill_t *ill = ire_to_ill(ire); 21944 int clusterwide; 21945 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21946 int ipsec_len; 21947 mblk_t *first_mp; 21948 ipsec_out_t *io; 21949 boolean_t conn_dontroute; /* conn value for multicast */ 21950 boolean_t conn_multicast_loop; /* conn value for multicast */ 21951 boolean_t multicast_forward; /* Should we forward ? */ 21952 boolean_t unspec_src; 21953 ill_t *conn_outgoing_ill = NULL; 21954 ill_t *ire_ill; 21955 ill_t *ire1_ill; 21956 ill_t *out_ill; 21957 uint32_t ill_index = 0; 21958 boolean_t multirt_send = B_FALSE; 21959 int err; 21960 ipxmit_state_t pktxmit_state; 21961 ip_stack_t *ipst = ire->ire_ipst; 21962 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21963 21964 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21965 "ip_wput_ire_start: q %p", q); 21966 21967 multicast_forward = B_FALSE; 21968 unspec_src = (connp != NULL && connp->conn_unspec_src); 21969 21970 if (ire->ire_flags & RTF_MULTIRT) { 21971 /* 21972 * Multirouting case. The bucket where ire is stored 21973 * probably holds other RTF_MULTIRT flagged ire 21974 * to the destination. In this call to ip_wput_ire, 21975 * we attempt to send the packet through all 21976 * those ires. Thus, we first ensure that ire is the 21977 * first RTF_MULTIRT ire in the bucket, 21978 * before walking the ire list. 21979 */ 21980 ire_t *first_ire; 21981 irb_t *irb = ire->ire_bucket; 21982 ASSERT(irb != NULL); 21983 21984 /* Make sure we do not omit any multiroute ire. */ 21985 IRB_REFHOLD(irb); 21986 for (first_ire = irb->irb_ire; 21987 first_ire != NULL; 21988 first_ire = first_ire->ire_next) { 21989 if ((first_ire->ire_flags & RTF_MULTIRT) && 21990 (first_ire->ire_addr == ire->ire_addr) && 21991 !(first_ire->ire_marks & 21992 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 21993 break; 21994 } 21995 } 21996 21997 if ((first_ire != NULL) && (first_ire != ire)) { 21998 IRE_REFHOLD(first_ire); 21999 ire_refrele(ire); 22000 ire = first_ire; 22001 ill = ire_to_ill(ire); 22002 } 22003 IRB_REFRELE(irb); 22004 } 22005 22006 /* 22007 * conn_outgoing_ill variable is used only in the broadcast loop. 22008 * for performance we don't grab the mutexs in the fastpath 22009 */ 22010 if ((connp != NULL) && 22011 (ire->ire_type == IRE_BROADCAST) && 22012 ((connp->conn_nofailover_ill != NULL) || 22013 (connp->conn_outgoing_ill != NULL))) { 22014 /* 22015 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22016 * option. So, see if this endpoint is bound to a 22017 * IPIF_NOFAILOVER address. If so, honor it. This implies 22018 * that if the interface is failed, we will still send 22019 * the packet on the same ill which is what we want. 22020 */ 22021 conn_outgoing_ill = conn_get_held_ill(connp, 22022 &connp->conn_nofailover_ill, &err); 22023 if (err == ILL_LOOKUP_FAILED) { 22024 ire_refrele(ire); 22025 freemsg(mp); 22026 return; 22027 } 22028 if (conn_outgoing_ill == NULL) { 22029 /* 22030 * Choose a good ill in the group to send the 22031 * packets on. 22032 */ 22033 ire = conn_set_outgoing_ill(connp, ire, 22034 &conn_outgoing_ill); 22035 if (ire == NULL) { 22036 freemsg(mp); 22037 return; 22038 } 22039 } 22040 } 22041 22042 if (mp->b_datap->db_type != M_CTL) { 22043 ipha = (ipha_t *)mp->b_rptr; 22044 } else { 22045 io = (ipsec_out_t *)mp->b_rptr; 22046 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22047 ASSERT(zoneid == io->ipsec_out_zoneid); 22048 ASSERT(zoneid != ALL_ZONES); 22049 ipha = (ipha_t *)mp->b_cont->b_rptr; 22050 dst = ipha->ipha_dst; 22051 /* 22052 * For the multicast case, ipsec_out carries conn_dontroute and 22053 * conn_multicast_loop as conn may not be available here. We 22054 * need this for multicast loopback and forwarding which is done 22055 * later in the code. 22056 */ 22057 if (CLASSD(dst)) { 22058 conn_dontroute = io->ipsec_out_dontroute; 22059 conn_multicast_loop = io->ipsec_out_multicast_loop; 22060 /* 22061 * If conn_dontroute is not set or conn_multicast_loop 22062 * is set, we need to do forwarding/loopback. For 22063 * datagrams from ip_wput_multicast, conn_dontroute is 22064 * set to B_TRUE and conn_multicast_loop is set to 22065 * B_FALSE so that we neither do forwarding nor 22066 * loopback. 22067 */ 22068 if (!conn_dontroute || conn_multicast_loop) 22069 multicast_forward = B_TRUE; 22070 } 22071 } 22072 22073 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22074 ire->ire_zoneid != ALL_ZONES) { 22075 /* 22076 * When a zone sends a packet to another zone, we try to deliver 22077 * the packet under the same conditions as if the destination 22078 * was a real node on the network. To do so, we look for a 22079 * matching route in the forwarding table. 22080 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22081 * ip_newroute() does. 22082 * Note that IRE_LOCAL are special, since they are used 22083 * when the zoneid doesn't match in some cases. This means that 22084 * we need to handle ipha_src differently since ire_src_addr 22085 * belongs to the receiving zone instead of the sending zone. 22086 * When ip_restrict_interzone_loopback is set, then 22087 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22088 * for loopback between zones when the logical "Ethernet" would 22089 * have looped them back. 22090 */ 22091 ire_t *src_ire; 22092 22093 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22094 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22095 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22096 if (src_ire != NULL && 22097 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22098 (!ipst->ips_ip_restrict_interzone_loopback || 22099 ire_local_same_ill_group(ire, src_ire))) { 22100 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22101 ipha->ipha_src = src_ire->ire_src_addr; 22102 ire_refrele(src_ire); 22103 } else { 22104 ire_refrele(ire); 22105 if (conn_outgoing_ill != NULL) 22106 ill_refrele(conn_outgoing_ill); 22107 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22108 if (src_ire != NULL) { 22109 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22110 ire_refrele(src_ire); 22111 freemsg(mp); 22112 return; 22113 } 22114 ire_refrele(src_ire); 22115 } 22116 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22117 /* Failed */ 22118 freemsg(mp); 22119 return; 22120 } 22121 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22122 ipst); 22123 return; 22124 } 22125 } 22126 22127 if (mp->b_datap->db_type == M_CTL || 22128 ipss->ipsec_outbound_v4_policy_present) { 22129 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22130 unspec_src, zoneid); 22131 if (mp == NULL) { 22132 ire_refrele(ire); 22133 if (conn_outgoing_ill != NULL) 22134 ill_refrele(conn_outgoing_ill); 22135 return; 22136 } 22137 } 22138 22139 first_mp = mp; 22140 ipsec_len = 0; 22141 22142 if (first_mp->b_datap->db_type == M_CTL) { 22143 io = (ipsec_out_t *)first_mp->b_rptr; 22144 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22145 mp = first_mp->b_cont; 22146 ipsec_len = ipsec_out_extra_length(first_mp); 22147 ASSERT(ipsec_len >= 0); 22148 /* We already picked up the zoneid from the M_CTL above */ 22149 ASSERT(zoneid == io->ipsec_out_zoneid); 22150 ASSERT(zoneid != ALL_ZONES); 22151 22152 /* 22153 * Drop M_CTL here if IPsec processing is not needed. 22154 * (Non-IPsec use of M_CTL extracted any information it 22155 * needed above). 22156 */ 22157 if (ipsec_len == 0) { 22158 freeb(first_mp); 22159 first_mp = mp; 22160 } 22161 } 22162 22163 /* 22164 * Fast path for ip_wput_ire 22165 */ 22166 22167 ipha = (ipha_t *)mp->b_rptr; 22168 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22169 dst = ipha->ipha_dst; 22170 22171 /* 22172 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22173 * if the socket is a SOCK_RAW type. The transport checksum should 22174 * be provided in the pre-built packet, so we don't need to compute it. 22175 * Also, other application set flags, like DF, should not be altered. 22176 * Other transport MUST pass down zero. 22177 */ 22178 ip_hdr_included = ipha->ipha_ident; 22179 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22180 22181 if (CLASSD(dst)) { 22182 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22183 ntohl(dst), 22184 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22185 ntohl(ire->ire_addr))); 22186 } 22187 22188 /* Macros to extract header fields from data already in registers */ 22189 #ifdef _BIG_ENDIAN 22190 #define V_HLEN (v_hlen_tos_len >> 24) 22191 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22192 #define PROTO (ttl_protocol & 0xFF) 22193 #else 22194 #define V_HLEN (v_hlen_tos_len & 0xFF) 22195 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22196 #define PROTO (ttl_protocol >> 8) 22197 #endif 22198 22199 22200 orig_src = src = ipha->ipha_src; 22201 /* (The loop back to "another" is explained down below.) */ 22202 another:; 22203 /* 22204 * Assign an ident value for this packet. We assign idents on 22205 * a per destination basis out of the IRE. There could be 22206 * other threads targeting the same destination, so we have to 22207 * arrange for a atomic increment. Note that we use a 32-bit 22208 * atomic add because it has better performance than its 22209 * 16-bit sibling. 22210 * 22211 * If running in cluster mode and if the source address 22212 * belongs to a replicated service then vector through 22213 * cl_inet_ipident vector to allocate ip identifier 22214 * NOTE: This is a contract private interface with the 22215 * clustering group. 22216 */ 22217 clusterwide = 0; 22218 if (cl_inet_ipident) { 22219 ASSERT(cl_inet_isclusterwide); 22220 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22221 AF_INET, (uint8_t *)(uintptr_t)src)) { 22222 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22223 AF_INET, (uint8_t *)(uintptr_t)src, 22224 (uint8_t *)(uintptr_t)dst); 22225 clusterwide = 1; 22226 } 22227 } 22228 if (!clusterwide) { 22229 ipha->ipha_ident = 22230 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22231 } 22232 22233 #ifndef _BIG_ENDIAN 22234 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22235 #endif 22236 22237 /* 22238 * Set source address unless sent on an ill or conn_unspec_src is set. 22239 * This is needed to obey conn_unspec_src when packets go through 22240 * ip_newroute + arp. 22241 * Assumes ip_newroute{,_multi} sets the source address as well. 22242 */ 22243 if (src == INADDR_ANY && !unspec_src) { 22244 /* 22245 * Assign the appropriate source address from the IRE if none 22246 * was specified. 22247 */ 22248 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22249 22250 /* 22251 * With IP multipathing, broadcast packets are sent on the ire 22252 * that has been cleared of IRE_MARK_NORECV and that belongs to 22253 * the group. However, this ire might not be in the same zone so 22254 * we can't always use its source address. We look for a 22255 * broadcast ire in the same group and in the right zone. 22256 */ 22257 if (ire->ire_type == IRE_BROADCAST && 22258 ire->ire_zoneid != zoneid) { 22259 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22260 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22261 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22262 if (src_ire != NULL) { 22263 src = src_ire->ire_src_addr; 22264 ire_refrele(src_ire); 22265 } else { 22266 ire_refrele(ire); 22267 if (conn_outgoing_ill != NULL) 22268 ill_refrele(conn_outgoing_ill); 22269 freemsg(first_mp); 22270 if (ill != NULL) { 22271 BUMP_MIB(ill->ill_ip_mib, 22272 ipIfStatsOutDiscards); 22273 } else { 22274 BUMP_MIB(&ipst->ips_ip_mib, 22275 ipIfStatsOutDiscards); 22276 } 22277 return; 22278 } 22279 } else { 22280 src = ire->ire_src_addr; 22281 } 22282 22283 if (connp == NULL) { 22284 ip1dbg(("ip_wput_ire: no connp and no src " 22285 "address for dst 0x%x, using src 0x%x\n", 22286 ntohl(dst), 22287 ntohl(src))); 22288 } 22289 ipha->ipha_src = src; 22290 } 22291 stq = ire->ire_stq; 22292 22293 /* 22294 * We only allow ire chains for broadcasts since there will 22295 * be multiple IRE_CACHE entries for the same multicast 22296 * address (one per ipif). 22297 */ 22298 next_mp = NULL; 22299 22300 /* broadcast packet */ 22301 if (ire->ire_type == IRE_BROADCAST) 22302 goto broadcast; 22303 22304 /* loopback ? */ 22305 if (stq == NULL) 22306 goto nullstq; 22307 22308 /* The ill_index for outbound ILL */ 22309 ill_index = Q_TO_INDEX(stq); 22310 22311 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22312 ttl_protocol = ((uint16_t *)ipha)[4]; 22313 22314 /* pseudo checksum (do it in parts for IP header checksum) */ 22315 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22316 22317 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22318 queue_t *dev_q = stq->q_next; 22319 22320 /* flow controlled */ 22321 if ((dev_q->q_next || dev_q->q_first) && 22322 !canput(dev_q)) 22323 goto blocked; 22324 if ((PROTO == IPPROTO_UDP) && 22325 (ip_hdr_included != IP_HDR_INCLUDED)) { 22326 hlen = (V_HLEN & 0xF) << 2; 22327 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22328 if (*up != 0) { 22329 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22330 hlen, LENGTH, max_frag, ipsec_len, cksum); 22331 /* Software checksum? */ 22332 if (DB_CKSUMFLAGS(mp) == 0) { 22333 IP_STAT(ipst, ip_out_sw_cksum); 22334 IP_STAT_UPDATE(ipst, 22335 ip_udp_out_sw_cksum_bytes, 22336 LENGTH - hlen); 22337 } 22338 } 22339 } 22340 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22341 hlen = (V_HLEN & 0xF) << 2; 22342 if (PROTO == IPPROTO_TCP) { 22343 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22344 /* 22345 * The packet header is processed once and for all, even 22346 * in the multirouting case. We disable hardware 22347 * checksum if the packet is multirouted, as it will be 22348 * replicated via several interfaces, and not all of 22349 * them may have this capability. 22350 */ 22351 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22352 LENGTH, max_frag, ipsec_len, cksum); 22353 /* Software checksum? */ 22354 if (DB_CKSUMFLAGS(mp) == 0) { 22355 IP_STAT(ipst, ip_out_sw_cksum); 22356 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22357 LENGTH - hlen); 22358 } 22359 } else { 22360 sctp_hdr_t *sctph; 22361 22362 ASSERT(PROTO == IPPROTO_SCTP); 22363 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22364 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22365 /* 22366 * Zero out the checksum field to ensure proper 22367 * checksum calculation. 22368 */ 22369 sctph->sh_chksum = 0; 22370 #ifdef DEBUG 22371 if (!skip_sctp_cksum) 22372 #endif 22373 sctph->sh_chksum = sctp_cksum(mp, hlen); 22374 } 22375 } 22376 22377 /* 22378 * If this is a multicast packet and originated from ip_wput 22379 * we need to do loopback and forwarding checks. If it comes 22380 * from ip_wput_multicast, we SHOULD not do this. 22381 */ 22382 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22383 22384 /* checksum */ 22385 cksum += ttl_protocol; 22386 22387 /* fragment the packet */ 22388 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22389 goto fragmentit; 22390 /* 22391 * Don't use frag_flag if packet is pre-built or source 22392 * routed or if multicast (since multicast packets do 22393 * not solicit ICMP "packet too big" messages). 22394 */ 22395 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22396 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22397 !ip_source_route_included(ipha)) && 22398 !CLASSD(ipha->ipha_dst)) 22399 ipha->ipha_fragment_offset_and_flags |= 22400 htons(ire->ire_frag_flag); 22401 22402 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22403 /* calculate IP header checksum */ 22404 cksum += ipha->ipha_ident; 22405 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22406 cksum += ipha->ipha_fragment_offset_and_flags; 22407 22408 /* IP options present */ 22409 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22410 if (hlen) 22411 goto checksumoptions; 22412 22413 /* calculate hdr checksum */ 22414 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22415 cksum = ~(cksum + (cksum >> 16)); 22416 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22417 } 22418 if (ipsec_len != 0) { 22419 /* 22420 * We will do the rest of the processing after 22421 * we come back from IPsec in ip_wput_ipsec_out(). 22422 */ 22423 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22424 22425 io = (ipsec_out_t *)first_mp->b_rptr; 22426 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22427 ill_phyint->phyint_ifindex; 22428 22429 ipsec_out_process(q, first_mp, ire, ill_index); 22430 ire_refrele(ire); 22431 if (conn_outgoing_ill != NULL) 22432 ill_refrele(conn_outgoing_ill); 22433 return; 22434 } 22435 22436 /* 22437 * In most cases, the emission loop below is entered only 22438 * once. Only in the case where the ire holds the 22439 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22440 * flagged ires in the bucket, and send the packet 22441 * through all crossed RTF_MULTIRT routes. 22442 */ 22443 if (ire->ire_flags & RTF_MULTIRT) { 22444 multirt_send = B_TRUE; 22445 } 22446 do { 22447 if (multirt_send) { 22448 irb_t *irb; 22449 /* 22450 * We are in a multiple send case, need to get 22451 * the next ire and make a duplicate of the packet. 22452 * ire1 holds here the next ire to process in the 22453 * bucket. If multirouting is expected, 22454 * any non-RTF_MULTIRT ire that has the 22455 * right destination address is ignored. 22456 */ 22457 irb = ire->ire_bucket; 22458 ASSERT(irb != NULL); 22459 22460 IRB_REFHOLD(irb); 22461 for (ire1 = ire->ire_next; 22462 ire1 != NULL; 22463 ire1 = ire1->ire_next) { 22464 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22465 continue; 22466 if (ire1->ire_addr != ire->ire_addr) 22467 continue; 22468 if (ire1->ire_marks & 22469 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22470 continue; 22471 22472 /* Got one */ 22473 IRE_REFHOLD(ire1); 22474 break; 22475 } 22476 IRB_REFRELE(irb); 22477 22478 if (ire1 != NULL) { 22479 next_mp = copyb(mp); 22480 if ((next_mp == NULL) || 22481 ((mp->b_cont != NULL) && 22482 ((next_mp->b_cont = 22483 dupmsg(mp->b_cont)) == NULL))) { 22484 freemsg(next_mp); 22485 next_mp = NULL; 22486 ire_refrele(ire1); 22487 ire1 = NULL; 22488 } 22489 } 22490 22491 /* Last multiroute ire; don't loop anymore. */ 22492 if (ire1 == NULL) { 22493 multirt_send = B_FALSE; 22494 } 22495 } 22496 22497 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22498 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22499 mblk_t *, mp); 22500 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22501 ipst->ips_ipv4firewall_physical_out, 22502 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22503 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22504 if (mp == NULL) 22505 goto release_ire_and_ill; 22506 22507 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22508 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22509 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22510 if ((pktxmit_state == SEND_FAILED) || 22511 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22512 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22513 "- packet dropped\n")); 22514 release_ire_and_ill: 22515 ire_refrele(ire); 22516 if (next_mp != NULL) { 22517 freemsg(next_mp); 22518 ire_refrele(ire1); 22519 } 22520 if (conn_outgoing_ill != NULL) 22521 ill_refrele(conn_outgoing_ill); 22522 return; 22523 } 22524 22525 if (CLASSD(dst)) { 22526 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22527 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22528 LENGTH); 22529 } 22530 22531 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22532 "ip_wput_ire_end: q %p (%S)", 22533 q, "last copy out"); 22534 IRE_REFRELE(ire); 22535 22536 if (multirt_send) { 22537 ASSERT(ire1); 22538 /* 22539 * Proceed with the next RTF_MULTIRT ire, 22540 * Also set up the send-to queue accordingly. 22541 */ 22542 ire = ire1; 22543 ire1 = NULL; 22544 stq = ire->ire_stq; 22545 mp = next_mp; 22546 next_mp = NULL; 22547 ipha = (ipha_t *)mp->b_rptr; 22548 ill_index = Q_TO_INDEX(stq); 22549 ill = (ill_t *)stq->q_ptr; 22550 } 22551 } while (multirt_send); 22552 if (conn_outgoing_ill != NULL) 22553 ill_refrele(conn_outgoing_ill); 22554 return; 22555 22556 /* 22557 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22558 */ 22559 broadcast: 22560 { 22561 /* 22562 * Avoid broadcast storms by setting the ttl to 1 22563 * for broadcasts. This parameter can be set 22564 * via ndd, so make sure that for the SO_DONTROUTE 22565 * case that ipha_ttl is always set to 1. 22566 * In the event that we are replying to incoming 22567 * ICMP packets, conn could be NULL. 22568 */ 22569 if ((connp != NULL) && connp->conn_dontroute) 22570 ipha->ipha_ttl = 1; 22571 else 22572 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22573 22574 /* 22575 * Note that we are not doing a IRB_REFHOLD here. 22576 * Actually we don't care if the list changes i.e 22577 * if somebody deletes an IRE from the list while 22578 * we drop the lock, the next time we come around 22579 * ire_next will be NULL and hence we won't send 22580 * out multiple copies which is fine. 22581 */ 22582 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22583 ire1 = ire->ire_next; 22584 if (conn_outgoing_ill != NULL) { 22585 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22586 ASSERT(ire1 == ire->ire_next); 22587 if (ire1 != NULL && ire1->ire_addr == dst) { 22588 ire_refrele(ire); 22589 ire = ire1; 22590 IRE_REFHOLD(ire); 22591 ire1 = ire->ire_next; 22592 continue; 22593 } 22594 rw_exit(&ire->ire_bucket->irb_lock); 22595 /* Did not find a matching ill */ 22596 ip1dbg(("ip_wput_ire: broadcast with no " 22597 "matching IP_BOUND_IF ill %s dst %x\n", 22598 conn_outgoing_ill->ill_name, dst)); 22599 freemsg(first_mp); 22600 if (ire != NULL) 22601 ire_refrele(ire); 22602 ill_refrele(conn_outgoing_ill); 22603 return; 22604 } 22605 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22606 /* 22607 * If the next IRE has the same address and is not one 22608 * of the two copies that we need to send, try to see 22609 * whether this copy should be sent at all. This 22610 * assumes that we insert loopbacks first and then 22611 * non-loopbacks. This is acheived by inserting the 22612 * loopback always before non-loopback. 22613 * This is used to send a single copy of a broadcast 22614 * packet out all physical interfaces that have an 22615 * matching IRE_BROADCAST while also looping 22616 * back one copy (to ip_wput_local) for each 22617 * matching physical interface. However, we avoid 22618 * sending packets out different logical that match by 22619 * having ipif_up/ipif_down supress duplicate 22620 * IRE_BROADCASTS. 22621 * 22622 * This feature is currently used to get broadcasts 22623 * sent to multiple interfaces, when the broadcast 22624 * address being used applies to multiple interfaces. 22625 * For example, a whole net broadcast will be 22626 * replicated on every connected subnet of 22627 * the target net. 22628 * 22629 * Each zone has its own set of IRE_BROADCASTs, so that 22630 * we're able to distribute inbound packets to multiple 22631 * zones who share a broadcast address. We avoid looping 22632 * back outbound packets in different zones but on the 22633 * same ill, as the application would see duplicates. 22634 * 22635 * If the interfaces are part of the same group, 22636 * we would want to send only one copy out for 22637 * whole group. 22638 * 22639 * This logic assumes that ire_add_v4() groups the 22640 * IRE_BROADCAST entries so that those with the same 22641 * ire_addr and ill_group are kept together. 22642 */ 22643 ire_ill = ire->ire_ipif->ipif_ill; 22644 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22645 if (ire_ill->ill_group != NULL && 22646 (ire->ire_marks & IRE_MARK_NORECV)) { 22647 /* 22648 * If the current zone only has an ire 22649 * broadcast for this address marked 22650 * NORECV, the ire we want is ahead in 22651 * the bucket, so we look it up 22652 * deliberately ignoring the zoneid. 22653 */ 22654 for (ire1 = ire->ire_bucket->irb_ire; 22655 ire1 != NULL; 22656 ire1 = ire1->ire_next) { 22657 ire1_ill = 22658 ire1->ire_ipif->ipif_ill; 22659 if (ire1->ire_addr != dst) 22660 continue; 22661 /* skip over the current ire */ 22662 if (ire1 == ire) 22663 continue; 22664 /* skip over deleted ires */ 22665 if (ire1->ire_marks & 22666 IRE_MARK_CONDEMNED) 22667 continue; 22668 /* 22669 * non-loopback ire in our 22670 * group: use it for the next 22671 * pass in the loop 22672 */ 22673 if (ire1->ire_stq != NULL && 22674 ire1_ill->ill_group == 22675 ire_ill->ill_group) 22676 break; 22677 } 22678 } 22679 } else { 22680 while (ire1 != NULL && ire1->ire_addr == dst) { 22681 ire1_ill = ire1->ire_ipif->ipif_ill; 22682 /* 22683 * We can have two broadcast ires on the 22684 * same ill in different zones; here 22685 * we'll send a copy of the packet on 22686 * each ill and the fanout code will 22687 * call conn_wantpacket() to check that 22688 * the zone has the broadcast address 22689 * configured on the ill. If the two 22690 * ires are in the same group we only 22691 * send one copy up. 22692 */ 22693 if (ire1_ill != ire_ill && 22694 (ire1_ill->ill_group == NULL || 22695 ire_ill->ill_group == NULL || 22696 ire1_ill->ill_group != 22697 ire_ill->ill_group)) { 22698 break; 22699 } 22700 ire1 = ire1->ire_next; 22701 } 22702 } 22703 } 22704 ASSERT(multirt_send == B_FALSE); 22705 if (ire1 != NULL && ire1->ire_addr == dst) { 22706 if ((ire->ire_flags & RTF_MULTIRT) && 22707 (ire1->ire_flags & RTF_MULTIRT)) { 22708 /* 22709 * We are in the multirouting case. 22710 * The message must be sent at least 22711 * on both ires. These ires have been 22712 * inserted AFTER the standard ones 22713 * in ip_rt_add(). There are thus no 22714 * other ire entries for the destination 22715 * address in the rest of the bucket 22716 * that do not have the RTF_MULTIRT 22717 * flag. We don't process a copy 22718 * of the message here. This will be 22719 * done in the final sending loop. 22720 */ 22721 multirt_send = B_TRUE; 22722 } else { 22723 next_mp = ip_copymsg(first_mp); 22724 if (next_mp != NULL) 22725 IRE_REFHOLD(ire1); 22726 } 22727 } 22728 rw_exit(&ire->ire_bucket->irb_lock); 22729 } 22730 22731 if (stq) { 22732 /* 22733 * A non-NULL send-to queue means this packet is going 22734 * out of this machine. 22735 */ 22736 out_ill = (ill_t *)stq->q_ptr; 22737 22738 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22739 ttl_protocol = ((uint16_t *)ipha)[4]; 22740 /* 22741 * We accumulate the pseudo header checksum in cksum. 22742 * This is pretty hairy code, so watch close. One 22743 * thing to keep in mind is that UDP and TCP have 22744 * stored their respective datagram lengths in their 22745 * checksum fields. This lines things up real nice. 22746 */ 22747 cksum = (dst >> 16) + (dst & 0xFFFF) + 22748 (src >> 16) + (src & 0xFFFF); 22749 /* 22750 * We assume the udp checksum field contains the 22751 * length, so to compute the pseudo header checksum, 22752 * all we need is the protocol number and src/dst. 22753 */ 22754 /* Provide the checksums for UDP and TCP. */ 22755 if ((PROTO == IPPROTO_TCP) && 22756 (ip_hdr_included != IP_HDR_INCLUDED)) { 22757 /* hlen gets the number of uchar_ts in the IP header */ 22758 hlen = (V_HLEN & 0xF) << 2; 22759 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22760 IP_STAT(ipst, ip_out_sw_cksum); 22761 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22762 LENGTH - hlen); 22763 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22764 } else if (PROTO == IPPROTO_SCTP && 22765 (ip_hdr_included != IP_HDR_INCLUDED)) { 22766 sctp_hdr_t *sctph; 22767 22768 hlen = (V_HLEN & 0xF) << 2; 22769 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22770 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22771 sctph->sh_chksum = 0; 22772 #ifdef DEBUG 22773 if (!skip_sctp_cksum) 22774 #endif 22775 sctph->sh_chksum = sctp_cksum(mp, hlen); 22776 } else { 22777 queue_t *dev_q = stq->q_next; 22778 22779 if ((dev_q->q_next || dev_q->q_first) && 22780 !canput(dev_q)) { 22781 blocked: 22782 ipha->ipha_ident = ip_hdr_included; 22783 /* 22784 * If we don't have a conn to apply 22785 * backpressure, free the message. 22786 * In the ire_send path, we don't know 22787 * the position to requeue the packet. Rather 22788 * than reorder packets, we just drop this 22789 * packet. 22790 */ 22791 if (ipst->ips_ip_output_queue && 22792 connp != NULL && 22793 caller != IRE_SEND) { 22794 if (caller == IP_WSRV) { 22795 connp->conn_did_putbq = 1; 22796 (void) putbq(connp->conn_wq, 22797 first_mp); 22798 conn_drain_insert(connp); 22799 /* 22800 * This is the service thread, 22801 * and the queue is already 22802 * noenabled. The check for 22803 * canput and the putbq is not 22804 * atomic. So we need to check 22805 * again. 22806 */ 22807 if (canput(stq->q_next)) 22808 connp->conn_did_putbq 22809 = 0; 22810 IP_STAT(ipst, ip_conn_flputbq); 22811 } else { 22812 /* 22813 * We are not the service proc. 22814 * ip_wsrv will be scheduled or 22815 * is already running. 22816 */ 22817 (void) putq(connp->conn_wq, 22818 first_mp); 22819 } 22820 } else { 22821 out_ill = (ill_t *)stq->q_ptr; 22822 BUMP_MIB(out_ill->ill_ip_mib, 22823 ipIfStatsOutDiscards); 22824 freemsg(first_mp); 22825 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22826 "ip_wput_ire_end: q %p (%S)", 22827 q, "discard"); 22828 } 22829 ire_refrele(ire); 22830 if (next_mp) { 22831 ire_refrele(ire1); 22832 freemsg(next_mp); 22833 } 22834 if (conn_outgoing_ill != NULL) 22835 ill_refrele(conn_outgoing_ill); 22836 return; 22837 } 22838 if ((PROTO == IPPROTO_UDP) && 22839 (ip_hdr_included != IP_HDR_INCLUDED)) { 22840 /* 22841 * hlen gets the number of uchar_ts in the 22842 * IP header 22843 */ 22844 hlen = (V_HLEN & 0xF) << 2; 22845 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22846 max_frag = ire->ire_max_frag; 22847 if (*up != 0) { 22848 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22849 up, PROTO, hlen, LENGTH, max_frag, 22850 ipsec_len, cksum); 22851 /* Software checksum? */ 22852 if (DB_CKSUMFLAGS(mp) == 0) { 22853 IP_STAT(ipst, ip_out_sw_cksum); 22854 IP_STAT_UPDATE(ipst, 22855 ip_udp_out_sw_cksum_bytes, 22856 LENGTH - hlen); 22857 } 22858 } 22859 } 22860 } 22861 /* 22862 * Need to do this even when fragmenting. The local 22863 * loopback can be done without computing checksums 22864 * but forwarding out other interface must be done 22865 * after the IP checksum (and ULP checksums) have been 22866 * computed. 22867 * 22868 * NOTE : multicast_forward is set only if this packet 22869 * originated from ip_wput. For packets originating from 22870 * ip_wput_multicast, it is not set. 22871 */ 22872 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22873 multi_loopback: 22874 ip2dbg(("ip_wput: multicast, loop %d\n", 22875 conn_multicast_loop)); 22876 22877 /* Forget header checksum offload */ 22878 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22879 22880 /* 22881 * Local loopback of multicasts? Check the 22882 * ill. 22883 * 22884 * Note that the loopback function will not come 22885 * in through ip_rput - it will only do the 22886 * client fanout thus we need to do an mforward 22887 * as well. The is different from the BSD 22888 * logic. 22889 */ 22890 if (ill != NULL) { 22891 ilm_t *ilm; 22892 22893 ILM_WALKER_HOLD(ill); 22894 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22895 ALL_ZONES); 22896 ILM_WALKER_RELE(ill); 22897 if (ilm != NULL) { 22898 /* 22899 * Pass along the virtual output q. 22900 * ip_wput_local() will distribute the 22901 * packet to all the matching zones, 22902 * except the sending zone when 22903 * IP_MULTICAST_LOOP is false. 22904 */ 22905 ip_multicast_loopback(q, ill, first_mp, 22906 conn_multicast_loop ? 0 : 22907 IP_FF_NO_MCAST_LOOP, zoneid); 22908 } 22909 } 22910 if (ipha->ipha_ttl == 0) { 22911 /* 22912 * 0 => only to this host i.e. we are 22913 * done. We are also done if this was the 22914 * loopback interface since it is sufficient 22915 * to loopback one copy of a multicast packet. 22916 */ 22917 freemsg(first_mp); 22918 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22919 "ip_wput_ire_end: q %p (%S)", 22920 q, "loopback"); 22921 ire_refrele(ire); 22922 if (conn_outgoing_ill != NULL) 22923 ill_refrele(conn_outgoing_ill); 22924 return; 22925 } 22926 /* 22927 * ILLF_MULTICAST is checked in ip_newroute 22928 * i.e. we don't need to check it here since 22929 * all IRE_CACHEs come from ip_newroute. 22930 * For multicast traffic, SO_DONTROUTE is interpreted 22931 * to mean only send the packet out the interface 22932 * (optionally specified with IP_MULTICAST_IF) 22933 * and do not forward it out additional interfaces. 22934 * RSVP and the rsvp daemon is an example of a 22935 * protocol and user level process that 22936 * handles it's own routing. Hence, it uses the 22937 * SO_DONTROUTE option to accomplish this. 22938 */ 22939 22940 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22941 ill != NULL) { 22942 /* Unconditionally redo the checksum */ 22943 ipha->ipha_hdr_checksum = 0; 22944 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22945 22946 /* 22947 * If this needs to go out secure, we need 22948 * to wait till we finish the IPsec 22949 * processing. 22950 */ 22951 if (ipsec_len == 0 && 22952 ip_mforward(ill, ipha, mp)) { 22953 freemsg(first_mp); 22954 ip1dbg(("ip_wput: mforward failed\n")); 22955 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22956 "ip_wput_ire_end: q %p (%S)", 22957 q, "mforward failed"); 22958 ire_refrele(ire); 22959 if (conn_outgoing_ill != NULL) 22960 ill_refrele(conn_outgoing_ill); 22961 return; 22962 } 22963 } 22964 } 22965 max_frag = ire->ire_max_frag; 22966 cksum += ttl_protocol; 22967 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22968 /* No fragmentation required for this one. */ 22969 /* 22970 * Don't use frag_flag if packet is pre-built or source 22971 * routed or if multicast (since multicast packets do 22972 * not solicit ICMP "packet too big" messages). 22973 */ 22974 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22975 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22976 !ip_source_route_included(ipha)) && 22977 !CLASSD(ipha->ipha_dst)) 22978 ipha->ipha_fragment_offset_and_flags |= 22979 htons(ire->ire_frag_flag); 22980 22981 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22982 /* Complete the IP header checksum. */ 22983 cksum += ipha->ipha_ident; 22984 cksum += (v_hlen_tos_len >> 16)+ 22985 (v_hlen_tos_len & 0xFFFF); 22986 cksum += ipha->ipha_fragment_offset_and_flags; 22987 hlen = (V_HLEN & 0xF) - 22988 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22989 if (hlen) { 22990 checksumoptions: 22991 /* 22992 * Account for the IP Options in the IP 22993 * header checksum. 22994 */ 22995 up = (uint16_t *)(rptr+ 22996 IP_SIMPLE_HDR_LENGTH); 22997 do { 22998 cksum += up[0]; 22999 cksum += up[1]; 23000 up += 2; 23001 } while (--hlen); 23002 } 23003 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23004 cksum = ~(cksum + (cksum >> 16)); 23005 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23006 } 23007 if (ipsec_len != 0) { 23008 ipsec_out_process(q, first_mp, ire, ill_index); 23009 if (!next_mp) { 23010 ire_refrele(ire); 23011 if (conn_outgoing_ill != NULL) 23012 ill_refrele(conn_outgoing_ill); 23013 return; 23014 } 23015 goto next; 23016 } 23017 23018 /* 23019 * multirt_send has already been handled 23020 * for broadcast, but not yet for multicast 23021 * or IP options. 23022 */ 23023 if (next_mp == NULL) { 23024 if (ire->ire_flags & RTF_MULTIRT) { 23025 multirt_send = B_TRUE; 23026 } 23027 } 23028 23029 /* 23030 * In most cases, the emission loop below is 23031 * entered only once. Only in the case where 23032 * the ire holds the RTF_MULTIRT flag, do we loop 23033 * to process all RTF_MULTIRT ires in the bucket, 23034 * and send the packet through all crossed 23035 * RTF_MULTIRT routes. 23036 */ 23037 do { 23038 if (multirt_send) { 23039 irb_t *irb; 23040 23041 irb = ire->ire_bucket; 23042 ASSERT(irb != NULL); 23043 /* 23044 * We are in a multiple send case, 23045 * need to get the next IRE and make 23046 * a duplicate of the packet. 23047 */ 23048 IRB_REFHOLD(irb); 23049 for (ire1 = ire->ire_next; 23050 ire1 != NULL; 23051 ire1 = ire1->ire_next) { 23052 if (!(ire1->ire_flags & 23053 RTF_MULTIRT)) { 23054 continue; 23055 } 23056 if (ire1->ire_addr != 23057 ire->ire_addr) { 23058 continue; 23059 } 23060 if (ire1->ire_marks & 23061 (IRE_MARK_CONDEMNED| 23062 IRE_MARK_HIDDEN)) { 23063 continue; 23064 } 23065 23066 /* Got one */ 23067 IRE_REFHOLD(ire1); 23068 break; 23069 } 23070 IRB_REFRELE(irb); 23071 23072 if (ire1 != NULL) { 23073 next_mp = copyb(mp); 23074 if ((next_mp == NULL) || 23075 ((mp->b_cont != NULL) && 23076 ((next_mp->b_cont = 23077 dupmsg(mp->b_cont)) 23078 == NULL))) { 23079 freemsg(next_mp); 23080 next_mp = NULL; 23081 ire_refrele(ire1); 23082 ire1 = NULL; 23083 } 23084 } 23085 23086 /* 23087 * Last multiroute ire; don't loop 23088 * anymore. The emission is over 23089 * and next_mp is NULL. 23090 */ 23091 if (ire1 == NULL) { 23092 multirt_send = B_FALSE; 23093 } 23094 } 23095 23096 out_ill = ire_to_ill(ire); 23097 DTRACE_PROBE4(ip4__physical__out__start, 23098 ill_t *, NULL, 23099 ill_t *, out_ill, 23100 ipha_t *, ipha, mblk_t *, mp); 23101 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23102 ipst->ips_ipv4firewall_physical_out, 23103 NULL, out_ill, ipha, mp, mp, ipst); 23104 DTRACE_PROBE1(ip4__physical__out__end, 23105 mblk_t *, mp); 23106 if (mp == NULL) 23107 goto release_ire_and_ill_2; 23108 23109 ASSERT(ipsec_len == 0); 23110 mp->b_prev = 23111 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23112 DTRACE_PROBE2(ip__xmit__2, 23113 mblk_t *, mp, ire_t *, ire); 23114 pktxmit_state = ip_xmit_v4(mp, ire, 23115 NULL, B_TRUE); 23116 if ((pktxmit_state == SEND_FAILED) || 23117 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23118 release_ire_and_ill_2: 23119 if (next_mp) { 23120 freemsg(next_mp); 23121 ire_refrele(ire1); 23122 } 23123 ire_refrele(ire); 23124 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23125 "ip_wput_ire_end: q %p (%S)", 23126 q, "discard MDATA"); 23127 if (conn_outgoing_ill != NULL) 23128 ill_refrele(conn_outgoing_ill); 23129 return; 23130 } 23131 23132 if (CLASSD(dst)) { 23133 BUMP_MIB(out_ill->ill_ip_mib, 23134 ipIfStatsHCOutMcastPkts); 23135 UPDATE_MIB(out_ill->ill_ip_mib, 23136 ipIfStatsHCOutMcastOctets, 23137 LENGTH); 23138 } else if (ire->ire_type == IRE_BROADCAST) { 23139 BUMP_MIB(out_ill->ill_ip_mib, 23140 ipIfStatsHCOutBcastPkts); 23141 } 23142 23143 if (multirt_send) { 23144 /* 23145 * We are in a multiple send case, 23146 * need to re-enter the sending loop 23147 * using the next ire. 23148 */ 23149 ire_refrele(ire); 23150 ire = ire1; 23151 stq = ire->ire_stq; 23152 mp = next_mp; 23153 next_mp = NULL; 23154 ipha = (ipha_t *)mp->b_rptr; 23155 ill_index = Q_TO_INDEX(stq); 23156 } 23157 } while (multirt_send); 23158 23159 if (!next_mp) { 23160 /* 23161 * Last copy going out (the ultra-common 23162 * case). Note that we intentionally replicate 23163 * the putnext rather than calling it before 23164 * the next_mp check in hopes of a little 23165 * tail-call action out of the compiler. 23166 */ 23167 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23168 "ip_wput_ire_end: q %p (%S)", 23169 q, "last copy out(1)"); 23170 ire_refrele(ire); 23171 if (conn_outgoing_ill != NULL) 23172 ill_refrele(conn_outgoing_ill); 23173 return; 23174 } 23175 /* More copies going out below. */ 23176 } else { 23177 int offset; 23178 fragmentit: 23179 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23180 /* 23181 * If this would generate a icmp_frag_needed message, 23182 * we need to handle it before we do the IPsec 23183 * processing. Otherwise, we need to strip the IPsec 23184 * headers before we send up the message to the ULPs 23185 * which becomes messy and difficult. 23186 */ 23187 if (ipsec_len != 0) { 23188 if ((max_frag < (unsigned int)(LENGTH + 23189 ipsec_len)) && (offset & IPH_DF)) { 23190 out_ill = (ill_t *)stq->q_ptr; 23191 BUMP_MIB(out_ill->ill_ip_mib, 23192 ipIfStatsOutFragFails); 23193 BUMP_MIB(out_ill->ill_ip_mib, 23194 ipIfStatsOutFragReqds); 23195 ipha->ipha_hdr_checksum = 0; 23196 ipha->ipha_hdr_checksum = 23197 (uint16_t)ip_csum_hdr(ipha); 23198 icmp_frag_needed(ire->ire_stq, first_mp, 23199 max_frag, zoneid, ipst); 23200 if (!next_mp) { 23201 ire_refrele(ire); 23202 if (conn_outgoing_ill != NULL) { 23203 ill_refrele( 23204 conn_outgoing_ill); 23205 } 23206 return; 23207 } 23208 } else { 23209 /* 23210 * This won't cause a icmp_frag_needed 23211 * message. to be generated. Send it on 23212 * the wire. Note that this could still 23213 * cause fragmentation and all we 23214 * do is the generation of the message 23215 * to the ULP if needed before IPsec. 23216 */ 23217 if (!next_mp) { 23218 ipsec_out_process(q, first_mp, 23219 ire, ill_index); 23220 TRACE_2(TR_FAC_IP, 23221 TR_IP_WPUT_IRE_END, 23222 "ip_wput_ire_end: q %p " 23223 "(%S)", q, 23224 "last ipsec_out_process"); 23225 ire_refrele(ire); 23226 if (conn_outgoing_ill != NULL) { 23227 ill_refrele( 23228 conn_outgoing_ill); 23229 } 23230 return; 23231 } 23232 ipsec_out_process(q, first_mp, 23233 ire, ill_index); 23234 } 23235 } else { 23236 /* 23237 * Initiate IPPF processing. For 23238 * fragmentable packets we finish 23239 * all QOS packet processing before 23240 * calling: 23241 * ip_wput_ire_fragmentit->ip_wput_frag 23242 */ 23243 23244 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23245 ip_process(IPP_LOCAL_OUT, &mp, 23246 ill_index); 23247 if (mp == NULL) { 23248 out_ill = (ill_t *)stq->q_ptr; 23249 BUMP_MIB(out_ill->ill_ip_mib, 23250 ipIfStatsOutDiscards); 23251 if (next_mp != NULL) { 23252 freemsg(next_mp); 23253 ire_refrele(ire1); 23254 } 23255 ire_refrele(ire); 23256 TRACE_2(TR_FAC_IP, 23257 TR_IP_WPUT_IRE_END, 23258 "ip_wput_ire: q %p (%S)", 23259 q, "discard MDATA"); 23260 if (conn_outgoing_ill != NULL) { 23261 ill_refrele( 23262 conn_outgoing_ill); 23263 } 23264 return; 23265 } 23266 } 23267 if (!next_mp) { 23268 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23269 "ip_wput_ire_end: q %p (%S)", 23270 q, "last fragmentation"); 23271 ip_wput_ire_fragmentit(mp, ire, 23272 zoneid, ipst); 23273 ire_refrele(ire); 23274 if (conn_outgoing_ill != NULL) 23275 ill_refrele(conn_outgoing_ill); 23276 return; 23277 } 23278 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23279 } 23280 } 23281 } else { 23282 nullstq: 23283 /* A NULL stq means the destination address is local. */ 23284 UPDATE_OB_PKT_COUNT(ire); 23285 ire->ire_last_used_time = lbolt; 23286 ASSERT(ire->ire_ipif != NULL); 23287 if (!next_mp) { 23288 /* 23289 * Is there an "in" and "out" for traffic local 23290 * to a host (loopback)? The code in Solaris doesn't 23291 * explicitly draw a line in its code for in vs out, 23292 * so we've had to draw a line in the sand: ip_wput_ire 23293 * is considered to be the "output" side and 23294 * ip_wput_local to be the "input" side. 23295 */ 23296 out_ill = ire_to_ill(ire); 23297 23298 DTRACE_PROBE4(ip4__loopback__out__start, 23299 ill_t *, NULL, ill_t *, out_ill, 23300 ipha_t *, ipha, mblk_t *, first_mp); 23301 23302 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23303 ipst->ips_ipv4firewall_loopback_out, 23304 NULL, out_ill, ipha, first_mp, mp, ipst); 23305 23306 DTRACE_PROBE1(ip4__loopback__out_end, 23307 mblk_t *, first_mp); 23308 23309 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23310 "ip_wput_ire_end: q %p (%S)", 23311 q, "local address"); 23312 23313 if (first_mp != NULL) 23314 ip_wput_local(q, out_ill, ipha, 23315 first_mp, ire, 0, ire->ire_zoneid); 23316 ire_refrele(ire); 23317 if (conn_outgoing_ill != NULL) 23318 ill_refrele(conn_outgoing_ill); 23319 return; 23320 } 23321 23322 out_ill = ire_to_ill(ire); 23323 23324 DTRACE_PROBE4(ip4__loopback__out__start, 23325 ill_t *, NULL, ill_t *, out_ill, 23326 ipha_t *, ipha, mblk_t *, first_mp); 23327 23328 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23329 ipst->ips_ipv4firewall_loopback_out, 23330 NULL, out_ill, ipha, first_mp, mp, ipst); 23331 23332 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23333 23334 if (first_mp != NULL) 23335 ip_wput_local(q, out_ill, ipha, 23336 first_mp, ire, 0, ire->ire_zoneid); 23337 } 23338 next: 23339 /* 23340 * More copies going out to additional interfaces. 23341 * ire1 has already been held. We don't need the 23342 * "ire" anymore. 23343 */ 23344 ire_refrele(ire); 23345 ire = ire1; 23346 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23347 mp = next_mp; 23348 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23349 ill = ire_to_ill(ire); 23350 first_mp = mp; 23351 if (ipsec_len != 0) { 23352 ASSERT(first_mp->b_datap->db_type == M_CTL); 23353 mp = mp->b_cont; 23354 } 23355 dst = ire->ire_addr; 23356 ipha = (ipha_t *)mp->b_rptr; 23357 /* 23358 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23359 * Restore ipha_ident "no checksum" flag. 23360 */ 23361 src = orig_src; 23362 ipha->ipha_ident = ip_hdr_included; 23363 goto another; 23364 23365 #undef rptr 23366 #undef Q_TO_INDEX 23367 } 23368 23369 /* 23370 * Routine to allocate a message that is used to notify the ULP about MDT. 23371 * The caller may provide a pointer to the link-layer MDT capabilities, 23372 * or NULL if MDT is to be disabled on the stream. 23373 */ 23374 mblk_t * 23375 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23376 { 23377 mblk_t *mp; 23378 ip_mdt_info_t *mdti; 23379 ill_mdt_capab_t *idst; 23380 23381 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23382 DB_TYPE(mp) = M_CTL; 23383 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23384 mdti = (ip_mdt_info_t *)mp->b_rptr; 23385 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23386 idst = &(mdti->mdt_capab); 23387 23388 /* 23389 * If the caller provides us with the capability, copy 23390 * it over into our notification message; otherwise 23391 * we zero out the capability portion. 23392 */ 23393 if (isrc != NULL) 23394 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23395 else 23396 bzero((caddr_t)idst, sizeof (*idst)); 23397 } 23398 return (mp); 23399 } 23400 23401 /* 23402 * Routine which determines whether MDT can be enabled on the destination 23403 * IRE and IPC combination, and if so, allocates and returns the MDT 23404 * notification mblk that may be used by ULP. We also check if we need to 23405 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23406 * MDT usage in the past have been lifted. This gets called during IP 23407 * and ULP binding. 23408 */ 23409 mblk_t * 23410 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23411 ill_mdt_capab_t *mdt_cap) 23412 { 23413 mblk_t *mp; 23414 boolean_t rc = B_FALSE; 23415 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23416 23417 ASSERT(dst_ire != NULL); 23418 ASSERT(connp != NULL); 23419 ASSERT(mdt_cap != NULL); 23420 23421 /* 23422 * Currently, we only support simple TCP/{IPv4,IPv6} with 23423 * Multidata, which is handled in tcp_multisend(). This 23424 * is the reason why we do all these checks here, to ensure 23425 * that we don't enable Multidata for the cases which we 23426 * can't handle at the moment. 23427 */ 23428 do { 23429 /* Only do TCP at the moment */ 23430 if (connp->conn_ulp != IPPROTO_TCP) 23431 break; 23432 23433 /* 23434 * IPsec outbound policy present? Note that we get here 23435 * after calling ipsec_conn_cache_policy() where the global 23436 * policy checking is performed. conn_latch will be 23437 * non-NULL as long as there's a policy defined, 23438 * i.e. conn_out_enforce_policy may be NULL in such case 23439 * when the connection is non-secure, and hence we check 23440 * further if the latch refers to an outbound policy. 23441 */ 23442 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23443 break; 23444 23445 /* CGTP (multiroute) is enabled? */ 23446 if (dst_ire->ire_flags & RTF_MULTIRT) 23447 break; 23448 23449 /* Outbound IPQoS enabled? */ 23450 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23451 /* 23452 * In this case, we disable MDT for this and all 23453 * future connections going over the interface. 23454 */ 23455 mdt_cap->ill_mdt_on = 0; 23456 break; 23457 } 23458 23459 /* socket option(s) present? */ 23460 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23461 break; 23462 23463 rc = B_TRUE; 23464 /* CONSTCOND */ 23465 } while (0); 23466 23467 /* Remember the result */ 23468 connp->conn_mdt_ok = rc; 23469 23470 if (!rc) 23471 return (NULL); 23472 else if (!mdt_cap->ill_mdt_on) { 23473 /* 23474 * If MDT has been previously turned off in the past, and we 23475 * currently can do MDT (due to IPQoS policy removal, etc.) 23476 * then enable it for this interface. 23477 */ 23478 mdt_cap->ill_mdt_on = 1; 23479 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23480 "interface %s\n", ill_name)); 23481 } 23482 23483 /* Allocate the MDT info mblk */ 23484 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23485 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23486 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23487 return (NULL); 23488 } 23489 return (mp); 23490 } 23491 23492 /* 23493 * Routine to allocate a message that is used to notify the ULP about LSO. 23494 * The caller may provide a pointer to the link-layer LSO capabilities, 23495 * or NULL if LSO is to be disabled on the stream. 23496 */ 23497 mblk_t * 23498 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23499 { 23500 mblk_t *mp; 23501 ip_lso_info_t *lsoi; 23502 ill_lso_capab_t *idst; 23503 23504 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23505 DB_TYPE(mp) = M_CTL; 23506 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23507 lsoi = (ip_lso_info_t *)mp->b_rptr; 23508 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23509 idst = &(lsoi->lso_capab); 23510 23511 /* 23512 * If the caller provides us with the capability, copy 23513 * it over into our notification message; otherwise 23514 * we zero out the capability portion. 23515 */ 23516 if (isrc != NULL) 23517 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23518 else 23519 bzero((caddr_t)idst, sizeof (*idst)); 23520 } 23521 return (mp); 23522 } 23523 23524 /* 23525 * Routine which determines whether LSO can be enabled on the destination 23526 * IRE and IPC combination, and if so, allocates and returns the LSO 23527 * notification mblk that may be used by ULP. We also check if we need to 23528 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23529 * LSO usage in the past have been lifted. This gets called during IP 23530 * and ULP binding. 23531 */ 23532 mblk_t * 23533 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23534 ill_lso_capab_t *lso_cap) 23535 { 23536 mblk_t *mp; 23537 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23538 23539 ASSERT(dst_ire != NULL); 23540 ASSERT(connp != NULL); 23541 ASSERT(lso_cap != NULL); 23542 23543 connp->conn_lso_ok = B_TRUE; 23544 23545 if ((connp->conn_ulp != IPPROTO_TCP) || 23546 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23547 (dst_ire->ire_flags & RTF_MULTIRT) || 23548 !CONN_IS_LSO_MD_FASTPATH(connp) || 23549 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23550 connp->conn_lso_ok = B_FALSE; 23551 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23552 /* 23553 * Disable LSO for this and all future connections going 23554 * over the interface. 23555 */ 23556 lso_cap->ill_lso_on = 0; 23557 } 23558 } 23559 23560 if (!connp->conn_lso_ok) 23561 return (NULL); 23562 else if (!lso_cap->ill_lso_on) { 23563 /* 23564 * If LSO has been previously turned off in the past, and we 23565 * currently can do LSO (due to IPQoS policy removal, etc.) 23566 * then enable it for this interface. 23567 */ 23568 lso_cap->ill_lso_on = 1; 23569 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23570 ill_name)); 23571 } 23572 23573 /* Allocate the LSO info mblk */ 23574 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23575 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23576 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23577 23578 return (mp); 23579 } 23580 23581 /* 23582 * Create destination address attribute, and fill it with the physical 23583 * destination address and SAP taken from the template DL_UNITDATA_REQ 23584 * message block. 23585 */ 23586 boolean_t 23587 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23588 { 23589 dl_unitdata_req_t *dlurp; 23590 pattr_t *pa; 23591 pattrinfo_t pa_info; 23592 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23593 uint_t das_len, das_off; 23594 23595 ASSERT(dlmp != NULL); 23596 23597 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23598 das_len = dlurp->dl_dest_addr_length; 23599 das_off = dlurp->dl_dest_addr_offset; 23600 23601 pa_info.type = PATTR_DSTADDRSAP; 23602 pa_info.len = sizeof (**das) + das_len - 1; 23603 23604 /* create and associate the attribute */ 23605 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23606 if (pa != NULL) { 23607 ASSERT(*das != NULL); 23608 (*das)->addr_is_group = 0; 23609 (*das)->addr_len = (uint8_t)das_len; 23610 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23611 } 23612 23613 return (pa != NULL); 23614 } 23615 23616 /* 23617 * Create hardware checksum attribute and fill it with the values passed. 23618 */ 23619 boolean_t 23620 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23621 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23622 { 23623 pattr_t *pa; 23624 pattrinfo_t pa_info; 23625 23626 ASSERT(mmd != NULL); 23627 23628 pa_info.type = PATTR_HCKSUM; 23629 pa_info.len = sizeof (pattr_hcksum_t); 23630 23631 /* create and associate the attribute */ 23632 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23633 if (pa != NULL) { 23634 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23635 23636 hck->hcksum_start_offset = start_offset; 23637 hck->hcksum_stuff_offset = stuff_offset; 23638 hck->hcksum_end_offset = end_offset; 23639 hck->hcksum_flags = flags; 23640 } 23641 return (pa != NULL); 23642 } 23643 23644 /* 23645 * Create zerocopy attribute and fill it with the specified flags 23646 */ 23647 boolean_t 23648 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23649 { 23650 pattr_t *pa; 23651 pattrinfo_t pa_info; 23652 23653 ASSERT(mmd != NULL); 23654 pa_info.type = PATTR_ZCOPY; 23655 pa_info.len = sizeof (pattr_zcopy_t); 23656 23657 /* create and associate the attribute */ 23658 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23659 if (pa != NULL) { 23660 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23661 23662 zcopy->zcopy_flags = flags; 23663 } 23664 return (pa != NULL); 23665 } 23666 23667 /* 23668 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23669 * block chain. We could rewrite to handle arbitrary message block chains but 23670 * that would make the code complicated and slow. Right now there three 23671 * restrictions: 23672 * 23673 * 1. The first message block must contain the complete IP header and 23674 * at least 1 byte of payload data. 23675 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23676 * so that we can use a single Multidata message. 23677 * 3. No frag must be distributed over two or more message blocks so 23678 * that we don't need more than two packet descriptors per frag. 23679 * 23680 * The above restrictions allow us to support userland applications (which 23681 * will send down a single message block) and NFS over UDP (which will 23682 * send down a chain of at most three message blocks). 23683 * 23684 * We also don't use MDT for payloads with less than or equal to 23685 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23686 */ 23687 boolean_t 23688 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23689 { 23690 int blocks; 23691 ssize_t total, missing, size; 23692 23693 ASSERT(mp != NULL); 23694 ASSERT(hdr_len > 0); 23695 23696 size = MBLKL(mp) - hdr_len; 23697 if (size <= 0) 23698 return (B_FALSE); 23699 23700 /* The first mblk contains the header and some payload. */ 23701 blocks = 1; 23702 total = size; 23703 size %= len; 23704 missing = (size == 0) ? 0 : (len - size); 23705 mp = mp->b_cont; 23706 23707 while (mp != NULL) { 23708 /* 23709 * Give up if we encounter a zero length message block. 23710 * In practice, this should rarely happen and therefore 23711 * not worth the trouble of freeing and re-linking the 23712 * mblk from the chain to handle such case. 23713 */ 23714 if ((size = MBLKL(mp)) == 0) 23715 return (B_FALSE); 23716 23717 /* Too many payload buffers for a single Multidata message? */ 23718 if (++blocks > MULTIDATA_MAX_PBUFS) 23719 return (B_FALSE); 23720 23721 total += size; 23722 /* Is a frag distributed over two or more message blocks? */ 23723 if (missing > size) 23724 return (B_FALSE); 23725 size -= missing; 23726 23727 size %= len; 23728 missing = (size == 0) ? 0 : (len - size); 23729 23730 mp = mp->b_cont; 23731 } 23732 23733 return (total > ip_wput_frag_mdt_min); 23734 } 23735 23736 /* 23737 * Outbound IPv4 fragmentation routine using MDT. 23738 */ 23739 static void 23740 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23741 uint32_t frag_flag, int offset) 23742 { 23743 ipha_t *ipha_orig; 23744 int i1, ip_data_end; 23745 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23746 mblk_t *hdr_mp, *md_mp = NULL; 23747 unsigned char *hdr_ptr, *pld_ptr; 23748 multidata_t *mmd; 23749 ip_pdescinfo_t pdi; 23750 ill_t *ill; 23751 ip_stack_t *ipst = ire->ire_ipst; 23752 23753 ASSERT(DB_TYPE(mp) == M_DATA); 23754 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23755 23756 ill = ire_to_ill(ire); 23757 ASSERT(ill != NULL); 23758 23759 ipha_orig = (ipha_t *)mp->b_rptr; 23760 mp->b_rptr += sizeof (ipha_t); 23761 23762 /* Calculate how many packets we will send out */ 23763 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23764 pkts = (i1 + len - 1) / len; 23765 ASSERT(pkts > 1); 23766 23767 /* Allocate a message block which will hold all the IP Headers. */ 23768 wroff = ipst->ips_ip_wroff_extra; 23769 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23770 23771 i1 = pkts * hdr_chunk_len; 23772 /* 23773 * Create the header buffer, Multidata and destination address 23774 * and SAP attribute that should be associated with it. 23775 */ 23776 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23777 ((hdr_mp->b_wptr += i1), 23778 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23779 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23780 freemsg(mp); 23781 if (md_mp == NULL) { 23782 freemsg(hdr_mp); 23783 } else { 23784 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23785 freemsg(md_mp); 23786 } 23787 IP_STAT(ipst, ip_frag_mdt_allocfail); 23788 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23789 return; 23790 } 23791 IP_STAT(ipst, ip_frag_mdt_allocd); 23792 23793 /* 23794 * Add a payload buffer to the Multidata; this operation must not 23795 * fail, or otherwise our logic in this routine is broken. There 23796 * is no memory allocation done by the routine, so any returned 23797 * failure simply tells us that we've done something wrong. 23798 * 23799 * A failure tells us that either we're adding the same payload 23800 * buffer more than once, or we're trying to add more buffers than 23801 * allowed. None of the above cases should happen, and we panic 23802 * because either there's horrible heap corruption, and/or 23803 * programming mistake. 23804 */ 23805 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23806 goto pbuf_panic; 23807 23808 hdr_ptr = hdr_mp->b_rptr; 23809 pld_ptr = mp->b_rptr; 23810 23811 /* Establish the ending byte offset, based on the starting offset. */ 23812 offset <<= 3; 23813 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23814 IP_SIMPLE_HDR_LENGTH; 23815 23816 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23817 23818 while (pld_ptr < mp->b_wptr) { 23819 ipha_t *ipha; 23820 uint16_t offset_and_flags; 23821 uint16_t ip_len; 23822 int error; 23823 23824 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23825 ipha = (ipha_t *)(hdr_ptr + wroff); 23826 ASSERT(OK_32PTR(ipha)); 23827 *ipha = *ipha_orig; 23828 23829 if (ip_data_end - offset > len) { 23830 offset_and_flags = IPH_MF; 23831 } else { 23832 /* 23833 * Last frag. Set len to the length of this last piece. 23834 */ 23835 len = ip_data_end - offset; 23836 /* A frag of a frag might have IPH_MF non-zero */ 23837 offset_and_flags = 23838 ntohs(ipha->ipha_fragment_offset_and_flags) & 23839 IPH_MF; 23840 } 23841 offset_and_flags |= (uint16_t)(offset >> 3); 23842 offset_and_flags |= (uint16_t)frag_flag; 23843 /* Store the offset and flags in the IP header. */ 23844 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23845 23846 /* Store the length in the IP header. */ 23847 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23848 ipha->ipha_length = htons(ip_len); 23849 23850 /* 23851 * Set the IP header checksum. Note that mp is just 23852 * the header, so this is easy to pass to ip_csum. 23853 */ 23854 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23855 23856 /* 23857 * Record offset and size of header and data of the next packet 23858 * in the multidata message. 23859 */ 23860 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23861 PDESC_PLD_INIT(&pdi); 23862 i1 = MIN(mp->b_wptr - pld_ptr, len); 23863 ASSERT(i1 > 0); 23864 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23865 if (i1 == len) { 23866 pld_ptr += len; 23867 } else { 23868 i1 = len - i1; 23869 mp = mp->b_cont; 23870 ASSERT(mp != NULL); 23871 ASSERT(MBLKL(mp) >= i1); 23872 /* 23873 * Attach the next payload message block to the 23874 * multidata message. 23875 */ 23876 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23877 goto pbuf_panic; 23878 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23879 pld_ptr = mp->b_rptr + i1; 23880 } 23881 23882 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23883 KM_NOSLEEP)) == NULL) { 23884 /* 23885 * Any failure other than ENOMEM indicates that we 23886 * have passed in invalid pdesc info or parameters 23887 * to mmd_addpdesc, which must not happen. 23888 * 23889 * EINVAL is a result of failure on boundary checks 23890 * against the pdesc info contents. It should not 23891 * happen, and we panic because either there's 23892 * horrible heap corruption, and/or programming 23893 * mistake. 23894 */ 23895 if (error != ENOMEM) { 23896 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23897 "pdesc logic error detected for " 23898 "mmd %p pinfo %p (%d)\n", 23899 (void *)mmd, (void *)&pdi, error); 23900 /* NOTREACHED */ 23901 } 23902 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23903 /* Free unattached payload message blocks as well */ 23904 md_mp->b_cont = mp->b_cont; 23905 goto free_mmd; 23906 } 23907 23908 /* Advance fragment offset. */ 23909 offset += len; 23910 23911 /* Advance to location for next header in the buffer. */ 23912 hdr_ptr += hdr_chunk_len; 23913 23914 /* Did we reach the next payload message block? */ 23915 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23916 mp = mp->b_cont; 23917 /* 23918 * Attach the next message block with payload 23919 * data to the multidata message. 23920 */ 23921 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23922 goto pbuf_panic; 23923 pld_ptr = mp->b_rptr; 23924 } 23925 } 23926 23927 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23928 ASSERT(mp->b_wptr == pld_ptr); 23929 23930 /* Update IP statistics */ 23931 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23932 23933 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23935 23936 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23937 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23938 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23939 23940 if (pkt_type == OB_PKT) { 23941 ire->ire_ob_pkt_count += pkts; 23942 if (ire->ire_ipif != NULL) 23943 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23944 } else { 23945 /* The type is IB_PKT in the forwarding path. */ 23946 ire->ire_ib_pkt_count += pkts; 23947 ASSERT(!IRE_IS_LOCAL(ire)); 23948 if (ire->ire_type & IRE_BROADCAST) { 23949 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23950 } else { 23951 UPDATE_MIB(ill->ill_ip_mib, 23952 ipIfStatsHCOutForwDatagrams, pkts); 23953 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23954 } 23955 } 23956 ire->ire_last_used_time = lbolt; 23957 /* Send it down */ 23958 putnext(ire->ire_stq, md_mp); 23959 return; 23960 23961 pbuf_panic: 23962 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23963 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23964 pbuf_idx); 23965 /* NOTREACHED */ 23966 } 23967 23968 /* 23969 * Outbound IP fragmentation routine. 23970 * 23971 * NOTE : This routine does not ire_refrele the ire that is passed in 23972 * as the argument. 23973 */ 23974 static void 23975 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23976 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 23977 { 23978 int i1; 23979 mblk_t *ll_hdr_mp; 23980 int ll_hdr_len; 23981 int hdr_len; 23982 mblk_t *hdr_mp; 23983 ipha_t *ipha; 23984 int ip_data_end; 23985 int len; 23986 mblk_t *mp = mp_orig, *mp1; 23987 int offset; 23988 queue_t *q; 23989 uint32_t v_hlen_tos_len; 23990 mblk_t *first_mp; 23991 boolean_t mctl_present; 23992 ill_t *ill; 23993 ill_t *out_ill; 23994 mblk_t *xmit_mp; 23995 mblk_t *carve_mp; 23996 ire_t *ire1 = NULL; 23997 ire_t *save_ire = NULL; 23998 mblk_t *next_mp = NULL; 23999 boolean_t last_frag = B_FALSE; 24000 boolean_t multirt_send = B_FALSE; 24001 ire_t *first_ire = NULL; 24002 irb_t *irb = NULL; 24003 mib2_ipIfStatsEntry_t *mibptr = NULL; 24004 24005 ill = ire_to_ill(ire); 24006 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24007 24008 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24009 24010 if (max_frag == 0) { 24011 ip1dbg(("ip_wput_frag: ire frag size is 0" 24012 " - dropping packet\n")); 24013 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24014 freemsg(mp); 24015 return; 24016 } 24017 24018 /* 24019 * IPsec does not allow hw accelerated packets to be fragmented 24020 * This check is made in ip_wput_ipsec_out prior to coming here 24021 * via ip_wput_ire_fragmentit. 24022 * 24023 * If at this point we have an ire whose ARP request has not 24024 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24025 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24026 * This packet and all fragmentable packets for this ire will 24027 * continue to get dropped while ire_nce->nce_state remains in 24028 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24029 * ND_REACHABLE, all subsquent large packets for this ire will 24030 * get fragemented and sent out by this function. 24031 */ 24032 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24033 /* If nce_state is ND_INITIAL, trigger ARP query */ 24034 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24035 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24036 " - dropping packet\n")); 24037 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24038 freemsg(mp); 24039 return; 24040 } 24041 24042 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24043 "ip_wput_frag_start:"); 24044 24045 if (mp->b_datap->db_type == M_CTL) { 24046 first_mp = mp; 24047 mp_orig = mp = mp->b_cont; 24048 mctl_present = B_TRUE; 24049 } else { 24050 first_mp = mp; 24051 mctl_present = B_FALSE; 24052 } 24053 24054 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24055 ipha = (ipha_t *)mp->b_rptr; 24056 24057 /* 24058 * If the Don't Fragment flag is on, generate an ICMP destination 24059 * unreachable, fragmentation needed. 24060 */ 24061 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24062 if (offset & IPH_DF) { 24063 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24064 if (is_system_labeled()) { 24065 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24066 ire->ire_max_frag - max_frag, AF_INET); 24067 } 24068 /* 24069 * Need to compute hdr checksum if called from ip_wput_ire. 24070 * Note that ip_rput_forward verifies the checksum before 24071 * calling this routine so in that case this is a noop. 24072 */ 24073 ipha->ipha_hdr_checksum = 0; 24074 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24075 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24076 ipst); 24077 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24078 "ip_wput_frag_end:(%S)", 24079 "don't fragment"); 24080 return; 24081 } 24082 /* 24083 * Labeled systems adjust max_frag if they add a label 24084 * to send the correct path mtu. We need the real mtu since we 24085 * are fragmenting the packet after label adjustment. 24086 */ 24087 if (is_system_labeled()) 24088 max_frag = ire->ire_max_frag; 24089 if (mctl_present) 24090 freeb(first_mp); 24091 /* 24092 * Establish the starting offset. May not be zero if we are fragging 24093 * a fragment that is being forwarded. 24094 */ 24095 offset = offset & IPH_OFFSET; 24096 24097 /* TODO why is this test needed? */ 24098 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24099 if (((max_frag - LENGTH) & ~7) < 8) { 24100 /* TODO: notify ulp somehow */ 24101 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24102 freemsg(mp); 24103 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24104 "ip_wput_frag_end:(%S)", 24105 "len < 8"); 24106 return; 24107 } 24108 24109 hdr_len = (V_HLEN & 0xF) << 2; 24110 24111 ipha->ipha_hdr_checksum = 0; 24112 24113 /* 24114 * Establish the number of bytes maximum per frag, after putting 24115 * in the header. 24116 */ 24117 len = (max_frag - hdr_len) & ~7; 24118 24119 /* Check if we can use MDT to send out the frags. */ 24120 ASSERT(!IRE_IS_LOCAL(ire)); 24121 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24122 ipst->ips_ip_multidata_outbound && 24123 !(ire->ire_flags & RTF_MULTIRT) && 24124 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24125 ill != NULL && ILL_MDT_CAPABLE(ill) && 24126 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24127 ASSERT(ill->ill_mdt_capab != NULL); 24128 if (!ill->ill_mdt_capab->ill_mdt_on) { 24129 /* 24130 * If MDT has been previously turned off in the past, 24131 * and we currently can do MDT (due to IPQoS policy 24132 * removal, etc.) then enable it for this interface. 24133 */ 24134 ill->ill_mdt_capab->ill_mdt_on = 1; 24135 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24136 ill->ill_name)); 24137 } 24138 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24139 offset); 24140 return; 24141 } 24142 24143 /* Get a copy of the header for the trailing frags */ 24144 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24145 if (!hdr_mp) { 24146 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24147 freemsg(mp); 24148 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24149 "ip_wput_frag_end:(%S)", 24150 "couldn't copy hdr"); 24151 return; 24152 } 24153 if (DB_CRED(mp) != NULL) 24154 mblk_setcred(hdr_mp, DB_CRED(mp)); 24155 24156 /* Store the starting offset, with the MoreFrags flag. */ 24157 i1 = offset | IPH_MF | frag_flag; 24158 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24159 24160 /* Establish the ending byte offset, based on the starting offset. */ 24161 offset <<= 3; 24162 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24163 24164 /* Store the length of the first fragment in the IP header. */ 24165 i1 = len + hdr_len; 24166 ASSERT(i1 <= IP_MAXPACKET); 24167 ipha->ipha_length = htons((uint16_t)i1); 24168 24169 /* 24170 * Compute the IP header checksum for the first frag. We have to 24171 * watch out that we stop at the end of the header. 24172 */ 24173 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24174 24175 /* 24176 * Now carve off the first frag. Note that this will include the 24177 * original IP header. 24178 */ 24179 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24180 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24181 freeb(hdr_mp); 24182 freemsg(mp_orig); 24183 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24184 "ip_wput_frag_end:(%S)", 24185 "couldn't carve first"); 24186 return; 24187 } 24188 24189 /* 24190 * Multirouting case. Each fragment is replicated 24191 * via all non-condemned RTF_MULTIRT routes 24192 * currently resolved. 24193 * We ensure that first_ire is the first RTF_MULTIRT 24194 * ire in the bucket. 24195 */ 24196 if (ire->ire_flags & RTF_MULTIRT) { 24197 irb = ire->ire_bucket; 24198 ASSERT(irb != NULL); 24199 24200 multirt_send = B_TRUE; 24201 24202 /* Make sure we do not omit any multiroute ire. */ 24203 IRB_REFHOLD(irb); 24204 for (first_ire = irb->irb_ire; 24205 first_ire != NULL; 24206 first_ire = first_ire->ire_next) { 24207 if ((first_ire->ire_flags & RTF_MULTIRT) && 24208 (first_ire->ire_addr == ire->ire_addr) && 24209 !(first_ire->ire_marks & 24210 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24211 break; 24212 } 24213 } 24214 24215 if (first_ire != NULL) { 24216 if (first_ire != ire) { 24217 IRE_REFHOLD(first_ire); 24218 /* 24219 * Do not release the ire passed in 24220 * as the argument. 24221 */ 24222 ire = first_ire; 24223 } else { 24224 first_ire = NULL; 24225 } 24226 } 24227 IRB_REFRELE(irb); 24228 24229 /* 24230 * Save the first ire; we will need to restore it 24231 * for the trailing frags. 24232 * We REFHOLD save_ire, as each iterated ire will be 24233 * REFRELEd. 24234 */ 24235 save_ire = ire; 24236 IRE_REFHOLD(save_ire); 24237 } 24238 24239 /* 24240 * First fragment emission loop. 24241 * In most cases, the emission loop below is entered only 24242 * once. Only in the case where the ire holds the RTF_MULTIRT 24243 * flag, do we loop to process all RTF_MULTIRT ires in the 24244 * bucket, and send the fragment through all crossed 24245 * RTF_MULTIRT routes. 24246 */ 24247 do { 24248 if (ire->ire_flags & RTF_MULTIRT) { 24249 /* 24250 * We are in a multiple send case, need to get 24251 * the next ire and make a copy of the packet. 24252 * ire1 holds here the next ire to process in the 24253 * bucket. If multirouting is expected, 24254 * any non-RTF_MULTIRT ire that has the 24255 * right destination address is ignored. 24256 * 24257 * We have to take into account the MTU of 24258 * each walked ire. max_frag is set by the 24259 * the caller and generally refers to 24260 * the primary ire entry. Here we ensure that 24261 * no route with a lower MTU will be used, as 24262 * fragments are carved once for all ires, 24263 * then replicated. 24264 */ 24265 ASSERT(irb != NULL); 24266 IRB_REFHOLD(irb); 24267 for (ire1 = ire->ire_next; 24268 ire1 != NULL; 24269 ire1 = ire1->ire_next) { 24270 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24271 continue; 24272 if (ire1->ire_addr != ire->ire_addr) 24273 continue; 24274 if (ire1->ire_marks & 24275 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24276 continue; 24277 /* 24278 * Ensure we do not exceed the MTU 24279 * of the next route. 24280 */ 24281 if (ire1->ire_max_frag < max_frag) { 24282 ip_multirt_bad_mtu(ire1, max_frag); 24283 continue; 24284 } 24285 24286 /* Got one. */ 24287 IRE_REFHOLD(ire1); 24288 break; 24289 } 24290 IRB_REFRELE(irb); 24291 24292 if (ire1 != NULL) { 24293 next_mp = copyb(mp); 24294 if ((next_mp == NULL) || 24295 ((mp->b_cont != NULL) && 24296 ((next_mp->b_cont = 24297 dupmsg(mp->b_cont)) == NULL))) { 24298 freemsg(next_mp); 24299 next_mp = NULL; 24300 ire_refrele(ire1); 24301 ire1 = NULL; 24302 } 24303 } 24304 24305 /* Last multiroute ire; don't loop anymore. */ 24306 if (ire1 == NULL) { 24307 multirt_send = B_FALSE; 24308 } 24309 } 24310 24311 ll_hdr_len = 0; 24312 LOCK_IRE_FP_MP(ire); 24313 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24314 if (ll_hdr_mp != NULL) { 24315 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24316 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24317 } else { 24318 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24319 } 24320 24321 /* If there is a transmit header, get a copy for this frag. */ 24322 /* 24323 * TODO: should check db_ref before calling ip_carve_mp since 24324 * it might give us a dup. 24325 */ 24326 if (!ll_hdr_mp) { 24327 /* No xmit header. */ 24328 xmit_mp = mp; 24329 24330 /* We have a link-layer header that can fit in our mblk. */ 24331 } else if (mp->b_datap->db_ref == 1 && 24332 ll_hdr_len != 0 && 24333 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24334 /* M_DATA fastpath */ 24335 mp->b_rptr -= ll_hdr_len; 24336 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24337 xmit_mp = mp; 24338 24339 /* Corner case if copyb has failed */ 24340 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24341 UNLOCK_IRE_FP_MP(ire); 24342 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24343 freeb(hdr_mp); 24344 freemsg(mp); 24345 freemsg(mp_orig); 24346 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24347 "ip_wput_frag_end:(%S)", 24348 "discard"); 24349 24350 if (multirt_send) { 24351 ASSERT(ire1); 24352 ASSERT(next_mp); 24353 24354 freemsg(next_mp); 24355 ire_refrele(ire1); 24356 } 24357 if (save_ire != NULL) 24358 IRE_REFRELE(save_ire); 24359 24360 if (first_ire != NULL) 24361 ire_refrele(first_ire); 24362 return; 24363 24364 /* 24365 * Case of res_mp OR the fastpath mp can't fit 24366 * in the mblk 24367 */ 24368 } else { 24369 xmit_mp->b_cont = mp; 24370 if (DB_CRED(mp) != NULL) 24371 mblk_setcred(xmit_mp, DB_CRED(mp)); 24372 /* 24373 * Get priority marking, if any. 24374 * We propagate the CoS marking from the 24375 * original packet that went to QoS processing 24376 * in ip_wput_ire to the newly carved mp. 24377 */ 24378 if (DB_TYPE(xmit_mp) == M_DATA) 24379 xmit_mp->b_band = mp->b_band; 24380 } 24381 UNLOCK_IRE_FP_MP(ire); 24382 24383 q = ire->ire_stq; 24384 out_ill = (ill_t *)q->q_ptr; 24385 24386 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24387 24388 DTRACE_PROBE4(ip4__physical__out__start, 24389 ill_t *, NULL, ill_t *, out_ill, 24390 ipha_t *, ipha, mblk_t *, xmit_mp); 24391 24392 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24393 ipst->ips_ipv4firewall_physical_out, 24394 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24395 24396 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24397 24398 if (xmit_mp != NULL) { 24399 putnext(q, xmit_mp); 24400 24401 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24402 UPDATE_MIB(out_ill->ill_ip_mib, 24403 ipIfStatsHCOutOctets, i1); 24404 24405 if (pkt_type != OB_PKT) { 24406 /* 24407 * Update the packet count and MIB stats 24408 * of trailing RTF_MULTIRT ires. 24409 */ 24410 UPDATE_OB_PKT_COUNT(ire); 24411 BUMP_MIB(out_ill->ill_ip_mib, 24412 ipIfStatsOutFragReqds); 24413 } 24414 } 24415 24416 if (multirt_send) { 24417 /* 24418 * We are in a multiple send case; look for 24419 * the next ire and re-enter the loop. 24420 */ 24421 ASSERT(ire1); 24422 ASSERT(next_mp); 24423 /* REFRELE the current ire before looping */ 24424 ire_refrele(ire); 24425 ire = ire1; 24426 ire1 = NULL; 24427 mp = next_mp; 24428 next_mp = NULL; 24429 } 24430 } while (multirt_send); 24431 24432 ASSERT(ire1 == NULL); 24433 24434 /* Restore the original ire; we need it for the trailing frags */ 24435 if (save_ire != NULL) { 24436 /* REFRELE the last iterated ire */ 24437 ire_refrele(ire); 24438 /* save_ire has been REFHOLDed */ 24439 ire = save_ire; 24440 save_ire = NULL; 24441 q = ire->ire_stq; 24442 } 24443 24444 if (pkt_type == OB_PKT) { 24445 UPDATE_OB_PKT_COUNT(ire); 24446 } else { 24447 out_ill = (ill_t *)q->q_ptr; 24448 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24449 UPDATE_IB_PKT_COUNT(ire); 24450 } 24451 24452 /* Advance the offset to the second frag starting point. */ 24453 offset += len; 24454 /* 24455 * Update hdr_len from the copied header - there might be less options 24456 * in the later fragments. 24457 */ 24458 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24459 /* Loop until done. */ 24460 for (;;) { 24461 uint16_t offset_and_flags; 24462 uint16_t ip_len; 24463 24464 if (ip_data_end - offset > len) { 24465 /* 24466 * Carve off the appropriate amount from the original 24467 * datagram. 24468 */ 24469 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24470 mp = NULL; 24471 break; 24472 } 24473 /* 24474 * More frags after this one. Get another copy 24475 * of the header. 24476 */ 24477 if (carve_mp->b_datap->db_ref == 1 && 24478 hdr_mp->b_wptr - hdr_mp->b_rptr < 24479 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24480 /* Inline IP header */ 24481 carve_mp->b_rptr -= hdr_mp->b_wptr - 24482 hdr_mp->b_rptr; 24483 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24484 hdr_mp->b_wptr - hdr_mp->b_rptr); 24485 mp = carve_mp; 24486 } else { 24487 if (!(mp = copyb(hdr_mp))) { 24488 freemsg(carve_mp); 24489 break; 24490 } 24491 /* Get priority marking, if any. */ 24492 mp->b_band = carve_mp->b_band; 24493 mp->b_cont = carve_mp; 24494 } 24495 ipha = (ipha_t *)mp->b_rptr; 24496 offset_and_flags = IPH_MF; 24497 } else { 24498 /* 24499 * Last frag. Consume the header. Set len to 24500 * the length of this last piece. 24501 */ 24502 len = ip_data_end - offset; 24503 24504 /* 24505 * Carve off the appropriate amount from the original 24506 * datagram. 24507 */ 24508 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24509 mp = NULL; 24510 break; 24511 } 24512 if (carve_mp->b_datap->db_ref == 1 && 24513 hdr_mp->b_wptr - hdr_mp->b_rptr < 24514 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24515 /* Inline IP header */ 24516 carve_mp->b_rptr -= hdr_mp->b_wptr - 24517 hdr_mp->b_rptr; 24518 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24519 hdr_mp->b_wptr - hdr_mp->b_rptr); 24520 mp = carve_mp; 24521 freeb(hdr_mp); 24522 hdr_mp = mp; 24523 } else { 24524 mp = hdr_mp; 24525 /* Get priority marking, if any. */ 24526 mp->b_band = carve_mp->b_band; 24527 mp->b_cont = carve_mp; 24528 } 24529 ipha = (ipha_t *)mp->b_rptr; 24530 /* A frag of a frag might have IPH_MF non-zero */ 24531 offset_and_flags = 24532 ntohs(ipha->ipha_fragment_offset_and_flags) & 24533 IPH_MF; 24534 } 24535 offset_and_flags |= (uint16_t)(offset >> 3); 24536 offset_and_flags |= (uint16_t)frag_flag; 24537 /* Store the offset and flags in the IP header. */ 24538 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24539 24540 /* Store the length in the IP header. */ 24541 ip_len = (uint16_t)(len + hdr_len); 24542 ipha->ipha_length = htons(ip_len); 24543 24544 /* 24545 * Set the IP header checksum. Note that mp is just 24546 * the header, so this is easy to pass to ip_csum. 24547 */ 24548 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24549 24550 /* Attach a transmit header, if any, and ship it. */ 24551 if (pkt_type == OB_PKT) { 24552 UPDATE_OB_PKT_COUNT(ire); 24553 } else { 24554 out_ill = (ill_t *)q->q_ptr; 24555 BUMP_MIB(out_ill->ill_ip_mib, 24556 ipIfStatsHCOutForwDatagrams); 24557 UPDATE_IB_PKT_COUNT(ire); 24558 } 24559 24560 if (ire->ire_flags & RTF_MULTIRT) { 24561 irb = ire->ire_bucket; 24562 ASSERT(irb != NULL); 24563 24564 multirt_send = B_TRUE; 24565 24566 /* 24567 * Save the original ire; we will need to restore it 24568 * for the tailing frags. 24569 */ 24570 save_ire = ire; 24571 IRE_REFHOLD(save_ire); 24572 } 24573 /* 24574 * Emission loop for this fragment, similar 24575 * to what is done for the first fragment. 24576 */ 24577 do { 24578 if (multirt_send) { 24579 /* 24580 * We are in a multiple send case, need to get 24581 * the next ire and make a copy of the packet. 24582 */ 24583 ASSERT(irb != NULL); 24584 IRB_REFHOLD(irb); 24585 for (ire1 = ire->ire_next; 24586 ire1 != NULL; 24587 ire1 = ire1->ire_next) { 24588 if (!(ire1->ire_flags & RTF_MULTIRT)) 24589 continue; 24590 if (ire1->ire_addr != ire->ire_addr) 24591 continue; 24592 if (ire1->ire_marks & 24593 (IRE_MARK_CONDEMNED| 24594 IRE_MARK_HIDDEN)) { 24595 continue; 24596 } 24597 /* 24598 * Ensure we do not exceed the MTU 24599 * of the next route. 24600 */ 24601 if (ire1->ire_max_frag < max_frag) { 24602 ip_multirt_bad_mtu(ire1, 24603 max_frag); 24604 continue; 24605 } 24606 24607 /* Got one. */ 24608 IRE_REFHOLD(ire1); 24609 break; 24610 } 24611 IRB_REFRELE(irb); 24612 24613 if (ire1 != NULL) { 24614 next_mp = copyb(mp); 24615 if ((next_mp == NULL) || 24616 ((mp->b_cont != NULL) && 24617 ((next_mp->b_cont = 24618 dupmsg(mp->b_cont)) == NULL))) { 24619 freemsg(next_mp); 24620 next_mp = NULL; 24621 ire_refrele(ire1); 24622 ire1 = NULL; 24623 } 24624 } 24625 24626 /* Last multiroute ire; don't loop anymore. */ 24627 if (ire1 == NULL) { 24628 multirt_send = B_FALSE; 24629 } 24630 } 24631 24632 /* Update transmit header */ 24633 ll_hdr_len = 0; 24634 LOCK_IRE_FP_MP(ire); 24635 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24636 if (ll_hdr_mp != NULL) { 24637 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24638 ll_hdr_len = MBLKL(ll_hdr_mp); 24639 } else { 24640 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24641 } 24642 24643 if (!ll_hdr_mp) { 24644 xmit_mp = mp; 24645 24646 /* 24647 * We have link-layer header that can fit in 24648 * our mblk. 24649 */ 24650 } else if (mp->b_datap->db_ref == 1 && 24651 ll_hdr_len != 0 && 24652 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24653 /* M_DATA fastpath */ 24654 mp->b_rptr -= ll_hdr_len; 24655 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24656 ll_hdr_len); 24657 xmit_mp = mp; 24658 24659 /* 24660 * Case of res_mp OR the fastpath mp can't fit 24661 * in the mblk 24662 */ 24663 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24664 xmit_mp->b_cont = mp; 24665 if (DB_CRED(mp) != NULL) 24666 mblk_setcred(xmit_mp, DB_CRED(mp)); 24667 /* Get priority marking, if any. */ 24668 if (DB_TYPE(xmit_mp) == M_DATA) 24669 xmit_mp->b_band = mp->b_band; 24670 24671 /* Corner case if copyb failed */ 24672 } else { 24673 /* 24674 * Exit both the replication and 24675 * fragmentation loops. 24676 */ 24677 UNLOCK_IRE_FP_MP(ire); 24678 goto drop_pkt; 24679 } 24680 UNLOCK_IRE_FP_MP(ire); 24681 24682 mp1 = mp; 24683 out_ill = (ill_t *)q->q_ptr; 24684 24685 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24686 24687 DTRACE_PROBE4(ip4__physical__out__start, 24688 ill_t *, NULL, ill_t *, out_ill, 24689 ipha_t *, ipha, mblk_t *, xmit_mp); 24690 24691 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24692 ipst->ips_ipv4firewall_physical_out, 24693 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24694 24695 DTRACE_PROBE1(ip4__physical__out__end, 24696 mblk_t *, xmit_mp); 24697 24698 if (mp != mp1 && hdr_mp == mp1) 24699 hdr_mp = mp; 24700 if (mp != mp1 && mp_orig == mp1) 24701 mp_orig = mp; 24702 24703 if (xmit_mp != NULL) { 24704 putnext(q, xmit_mp); 24705 24706 BUMP_MIB(out_ill->ill_ip_mib, 24707 ipIfStatsHCOutTransmits); 24708 UPDATE_MIB(out_ill->ill_ip_mib, 24709 ipIfStatsHCOutOctets, ip_len); 24710 24711 if (pkt_type != OB_PKT) { 24712 /* 24713 * Update the packet count of trailing 24714 * RTF_MULTIRT ires. 24715 */ 24716 UPDATE_OB_PKT_COUNT(ire); 24717 } 24718 } 24719 24720 /* All done if we just consumed the hdr_mp. */ 24721 if (mp == hdr_mp) { 24722 last_frag = B_TRUE; 24723 BUMP_MIB(out_ill->ill_ip_mib, 24724 ipIfStatsOutFragOKs); 24725 } 24726 24727 if (multirt_send) { 24728 /* 24729 * We are in a multiple send case; look for 24730 * the next ire and re-enter the loop. 24731 */ 24732 ASSERT(ire1); 24733 ASSERT(next_mp); 24734 /* REFRELE the current ire before looping */ 24735 ire_refrele(ire); 24736 ire = ire1; 24737 ire1 = NULL; 24738 q = ire->ire_stq; 24739 mp = next_mp; 24740 next_mp = NULL; 24741 } 24742 } while (multirt_send); 24743 /* 24744 * Restore the original ire; we need it for the 24745 * trailing frags 24746 */ 24747 if (save_ire != NULL) { 24748 ASSERT(ire1 == NULL); 24749 /* REFRELE the last iterated ire */ 24750 ire_refrele(ire); 24751 /* save_ire has been REFHOLDed */ 24752 ire = save_ire; 24753 q = ire->ire_stq; 24754 save_ire = NULL; 24755 } 24756 24757 if (last_frag) { 24758 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24759 "ip_wput_frag_end:(%S)", 24760 "consumed hdr_mp"); 24761 24762 if (first_ire != NULL) 24763 ire_refrele(first_ire); 24764 return; 24765 } 24766 /* Otherwise, advance and loop. */ 24767 offset += len; 24768 } 24769 24770 drop_pkt: 24771 /* Clean up following allocation failure. */ 24772 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24773 freemsg(mp); 24774 if (mp != hdr_mp) 24775 freeb(hdr_mp); 24776 if (mp != mp_orig) 24777 freemsg(mp_orig); 24778 24779 if (save_ire != NULL) 24780 IRE_REFRELE(save_ire); 24781 if (first_ire != NULL) 24782 ire_refrele(first_ire); 24783 24784 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24785 "ip_wput_frag_end:(%S)", 24786 "end--alloc failure"); 24787 } 24788 24789 /* 24790 * Copy the header plus those options which have the copy bit set 24791 */ 24792 static mblk_t * 24793 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24794 { 24795 mblk_t *mp; 24796 uchar_t *up; 24797 24798 /* 24799 * Quick check if we need to look for options without the copy bit 24800 * set 24801 */ 24802 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24803 if (!mp) 24804 return (mp); 24805 mp->b_rptr += ipst->ips_ip_wroff_extra; 24806 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24807 bcopy(rptr, mp->b_rptr, hdr_len); 24808 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24809 return (mp); 24810 } 24811 up = mp->b_rptr; 24812 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24813 up += IP_SIMPLE_HDR_LENGTH; 24814 rptr += IP_SIMPLE_HDR_LENGTH; 24815 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24816 while (hdr_len > 0) { 24817 uint32_t optval; 24818 uint32_t optlen; 24819 24820 optval = *rptr; 24821 if (optval == IPOPT_EOL) 24822 break; 24823 if (optval == IPOPT_NOP) 24824 optlen = 1; 24825 else 24826 optlen = rptr[1]; 24827 if (optval & IPOPT_COPY) { 24828 bcopy(rptr, up, optlen); 24829 up += optlen; 24830 } 24831 rptr += optlen; 24832 hdr_len -= optlen; 24833 } 24834 /* 24835 * Make sure that we drop an even number of words by filling 24836 * with EOL to the next word boundary. 24837 */ 24838 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24839 hdr_len & 0x3; hdr_len++) 24840 *up++ = IPOPT_EOL; 24841 mp->b_wptr = up; 24842 /* Update header length */ 24843 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24844 return (mp); 24845 } 24846 24847 /* 24848 * Delivery to local recipients including fanout to multiple recipients. 24849 * Does not do checksumming of UDP/TCP. 24850 * Note: q should be the read side queue for either the ill or conn. 24851 * Note: rq should be the read side q for the lower (ill) stream. 24852 * We don't send packets to IPPF processing, thus the last argument 24853 * to all the fanout calls are B_FALSE. 24854 */ 24855 void 24856 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24857 int fanout_flags, zoneid_t zoneid) 24858 { 24859 uint32_t protocol; 24860 mblk_t *first_mp; 24861 boolean_t mctl_present; 24862 int ire_type; 24863 #define rptr ((uchar_t *)ipha) 24864 ip_stack_t *ipst = ill->ill_ipst; 24865 24866 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24867 "ip_wput_local_start: q %p", q); 24868 24869 if (ire != NULL) { 24870 ire_type = ire->ire_type; 24871 } else { 24872 /* 24873 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24874 * packet is not multicast, we can't tell the ire type. 24875 */ 24876 ASSERT(CLASSD(ipha->ipha_dst)); 24877 ire_type = IRE_BROADCAST; 24878 } 24879 24880 first_mp = mp; 24881 if (first_mp->b_datap->db_type == M_CTL) { 24882 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24883 if (!io->ipsec_out_secure) { 24884 /* 24885 * This ipsec_out_t was allocated in ip_wput 24886 * for multicast packets to store the ill_index. 24887 * As this is being delivered locally, we don't 24888 * need this anymore. 24889 */ 24890 mp = first_mp->b_cont; 24891 freeb(first_mp); 24892 first_mp = mp; 24893 mctl_present = B_FALSE; 24894 } else { 24895 /* 24896 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24897 * security properties for the looped-back packet. 24898 */ 24899 mctl_present = B_TRUE; 24900 mp = first_mp->b_cont; 24901 ASSERT(mp != NULL); 24902 ipsec_out_to_in(first_mp); 24903 } 24904 } else { 24905 mctl_present = B_FALSE; 24906 } 24907 24908 DTRACE_PROBE4(ip4__loopback__in__start, 24909 ill_t *, ill, ill_t *, NULL, 24910 ipha_t *, ipha, mblk_t *, first_mp); 24911 24912 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24913 ipst->ips_ipv4firewall_loopback_in, 24914 ill, NULL, ipha, first_mp, mp, ipst); 24915 24916 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24917 24918 if (first_mp == NULL) 24919 return; 24920 24921 ipst->ips_loopback_packets++; 24922 24923 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24924 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24925 if (!IS_SIMPLE_IPH(ipha)) { 24926 ip_wput_local_options(ipha, ipst); 24927 } 24928 24929 protocol = ipha->ipha_protocol; 24930 switch (protocol) { 24931 case IPPROTO_ICMP: { 24932 ire_t *ire_zone; 24933 ilm_t *ilm; 24934 mblk_t *mp1; 24935 zoneid_t last_zoneid; 24936 24937 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24938 ASSERT(ire_type == IRE_BROADCAST); 24939 /* 24940 * In the multicast case, applications may have joined 24941 * the group from different zones, so we need to deliver 24942 * the packet to each of them. Loop through the 24943 * multicast memberships structures (ilm) on the receive 24944 * ill and send a copy of the packet up each matching 24945 * one. However, we don't do this for multicasts sent on 24946 * the loopback interface (PHYI_LOOPBACK flag set) as 24947 * they must stay in the sender's zone. 24948 * 24949 * ilm_add_v6() ensures that ilms in the same zone are 24950 * contiguous in the ill_ilm list. We use this property 24951 * to avoid sending duplicates needed when two 24952 * applications in the same zone join the same group on 24953 * different logical interfaces: we ignore the ilm if 24954 * it's zoneid is the same as the last matching one. 24955 * In addition, the sending of the packet for 24956 * ire_zoneid is delayed until all of the other ilms 24957 * have been exhausted. 24958 */ 24959 last_zoneid = -1; 24960 ILM_WALKER_HOLD(ill); 24961 for (ilm = ill->ill_ilm; ilm != NULL; 24962 ilm = ilm->ilm_next) { 24963 if ((ilm->ilm_flags & ILM_DELETED) || 24964 ipha->ipha_dst != ilm->ilm_addr || 24965 ilm->ilm_zoneid == last_zoneid || 24966 ilm->ilm_zoneid == zoneid || 24967 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24968 continue; 24969 mp1 = ip_copymsg(first_mp); 24970 if (mp1 == NULL) 24971 continue; 24972 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24973 mctl_present, B_FALSE, ill, 24974 ilm->ilm_zoneid); 24975 last_zoneid = ilm->ilm_zoneid; 24976 } 24977 ILM_WALKER_RELE(ill); 24978 /* 24979 * Loopback case: the sending endpoint has 24980 * IP_MULTICAST_LOOP disabled, therefore we don't 24981 * dispatch the multicast packet to the sending zone. 24982 */ 24983 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24984 freemsg(first_mp); 24985 return; 24986 } 24987 } else if (ire_type == IRE_BROADCAST) { 24988 /* 24989 * In the broadcast case, there may be many zones 24990 * which need a copy of the packet delivered to them. 24991 * There is one IRE_BROADCAST per broadcast address 24992 * and per zone; we walk those using a helper function. 24993 * In addition, the sending of the packet for zoneid is 24994 * delayed until all of the other ires have been 24995 * processed. 24996 */ 24997 IRB_REFHOLD(ire->ire_bucket); 24998 ire_zone = NULL; 24999 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25000 ire)) != NULL) { 25001 mp1 = ip_copymsg(first_mp); 25002 if (mp1 == NULL) 25003 continue; 25004 25005 UPDATE_IB_PKT_COUNT(ire_zone); 25006 ire_zone->ire_last_used_time = lbolt; 25007 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25008 mctl_present, B_FALSE, ill, 25009 ire_zone->ire_zoneid); 25010 } 25011 IRB_REFRELE(ire->ire_bucket); 25012 } 25013 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25014 0, mctl_present, B_FALSE, ill, zoneid); 25015 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25016 "ip_wput_local_end: q %p (%S)", 25017 q, "icmp"); 25018 return; 25019 } 25020 case IPPROTO_IGMP: 25021 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25022 /* Bad packet - discarded by igmp_input */ 25023 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25024 "ip_wput_local_end: q %p (%S)", 25025 q, "igmp_input--bad packet"); 25026 if (mctl_present) 25027 freeb(first_mp); 25028 return; 25029 } 25030 /* 25031 * igmp_input() may have returned the pulled up message. 25032 * So first_mp and ipha need to be reinitialized. 25033 */ 25034 ipha = (ipha_t *)mp->b_rptr; 25035 if (mctl_present) 25036 first_mp->b_cont = mp; 25037 else 25038 first_mp = mp; 25039 /* deliver to local raw users */ 25040 break; 25041 case IPPROTO_ENCAP: 25042 /* 25043 * This case is covered by either ip_fanout_proto, or by 25044 * the above security processing for self-tunneled packets. 25045 */ 25046 break; 25047 case IPPROTO_UDP: { 25048 uint16_t *up; 25049 uint32_t ports; 25050 25051 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25052 UDP_PORTS_OFFSET); 25053 /* Force a 'valid' checksum. */ 25054 up[3] = 0; 25055 25056 ports = *(uint32_t *)up; 25057 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25058 (ire_type == IRE_BROADCAST), 25059 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25060 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25061 ill, zoneid); 25062 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25063 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25064 return; 25065 } 25066 case IPPROTO_TCP: { 25067 25068 /* 25069 * For TCP, discard broadcast packets. 25070 */ 25071 if ((ushort_t)ire_type == IRE_BROADCAST) { 25072 freemsg(first_mp); 25073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25074 ip2dbg(("ip_wput_local: discard broadcast\n")); 25075 return; 25076 } 25077 25078 if (mp->b_datap->db_type == M_DATA) { 25079 /* 25080 * M_DATA mblk, so init mblk (chain) for no struio(). 25081 */ 25082 mblk_t *mp1 = mp; 25083 25084 do { 25085 mp1->b_datap->db_struioflag = 0; 25086 } while ((mp1 = mp1->b_cont) != NULL); 25087 } 25088 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25089 <= mp->b_wptr); 25090 ip_fanout_tcp(q, first_mp, ill, ipha, 25091 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25092 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25093 mctl_present, B_FALSE, zoneid); 25094 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25095 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25096 return; 25097 } 25098 case IPPROTO_SCTP: 25099 { 25100 uint32_t ports; 25101 25102 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25103 ip_fanout_sctp(first_mp, ill, ipha, ports, 25104 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25105 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25106 return; 25107 } 25108 25109 default: 25110 break; 25111 } 25112 /* 25113 * Find a client for some other protocol. We give 25114 * copies to multiple clients, if more than one is 25115 * bound. 25116 */ 25117 ip_fanout_proto(q, first_mp, ill, ipha, 25118 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25119 mctl_present, B_FALSE, ill, zoneid); 25120 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25121 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25122 #undef rptr 25123 } 25124 25125 /* 25126 * Update any source route, record route, or timestamp options. 25127 * Check that we are at end of strict source route. 25128 * The options have been sanity checked by ip_wput_options(). 25129 */ 25130 static void 25131 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25132 { 25133 ipoptp_t opts; 25134 uchar_t *opt; 25135 uint8_t optval; 25136 uint8_t optlen; 25137 ipaddr_t dst; 25138 uint32_t ts; 25139 ire_t *ire; 25140 timestruc_t now; 25141 25142 ip2dbg(("ip_wput_local_options\n")); 25143 for (optval = ipoptp_first(&opts, ipha); 25144 optval != IPOPT_EOL; 25145 optval = ipoptp_next(&opts)) { 25146 opt = opts.ipoptp_cur; 25147 optlen = opts.ipoptp_len; 25148 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25149 switch (optval) { 25150 uint32_t off; 25151 case IPOPT_SSRR: 25152 case IPOPT_LSRR: 25153 off = opt[IPOPT_OFFSET]; 25154 off--; 25155 if (optlen < IP_ADDR_LEN || 25156 off > optlen - IP_ADDR_LEN) { 25157 /* End of source route */ 25158 break; 25159 } 25160 /* 25161 * This will only happen if two consecutive entries 25162 * in the source route contains our address or if 25163 * it is a packet with a loose source route which 25164 * reaches us before consuming the whole source route 25165 */ 25166 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25167 if (optval == IPOPT_SSRR) { 25168 return; 25169 } 25170 /* 25171 * Hack: instead of dropping the packet truncate the 25172 * source route to what has been used by filling the 25173 * rest with IPOPT_NOP. 25174 */ 25175 opt[IPOPT_OLEN] = (uint8_t)off; 25176 while (off < optlen) { 25177 opt[off++] = IPOPT_NOP; 25178 } 25179 break; 25180 case IPOPT_RR: 25181 off = opt[IPOPT_OFFSET]; 25182 off--; 25183 if (optlen < IP_ADDR_LEN || 25184 off > optlen - IP_ADDR_LEN) { 25185 /* No more room - ignore */ 25186 ip1dbg(( 25187 "ip_wput_forward_options: end of RR\n")); 25188 break; 25189 } 25190 dst = htonl(INADDR_LOOPBACK); 25191 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25192 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25193 break; 25194 case IPOPT_TS: 25195 /* Insert timestamp if there is romm */ 25196 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25197 case IPOPT_TS_TSONLY: 25198 off = IPOPT_TS_TIMELEN; 25199 break; 25200 case IPOPT_TS_PRESPEC: 25201 case IPOPT_TS_PRESPEC_RFC791: 25202 /* Verify that the address matched */ 25203 off = opt[IPOPT_OFFSET] - 1; 25204 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25205 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25206 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25207 ipst); 25208 if (ire == NULL) { 25209 /* Not for us */ 25210 break; 25211 } 25212 ire_refrele(ire); 25213 /* FALLTHRU */ 25214 case IPOPT_TS_TSANDADDR: 25215 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25216 break; 25217 default: 25218 /* 25219 * ip_*put_options should have already 25220 * dropped this packet. 25221 */ 25222 cmn_err(CE_PANIC, "ip_wput_local_options: " 25223 "unknown IT - bug in ip_wput_options?\n"); 25224 return; /* Keep "lint" happy */ 25225 } 25226 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25227 /* Increase overflow counter */ 25228 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25229 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25230 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25231 (off << 4); 25232 break; 25233 } 25234 off = opt[IPOPT_OFFSET] - 1; 25235 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25236 case IPOPT_TS_PRESPEC: 25237 case IPOPT_TS_PRESPEC_RFC791: 25238 case IPOPT_TS_TSANDADDR: 25239 dst = htonl(INADDR_LOOPBACK); 25240 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25241 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25242 /* FALLTHRU */ 25243 case IPOPT_TS_TSONLY: 25244 off = opt[IPOPT_OFFSET] - 1; 25245 /* Compute # of milliseconds since midnight */ 25246 gethrestime(&now); 25247 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25248 now.tv_nsec / (NANOSEC / MILLISEC); 25249 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25250 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25251 break; 25252 } 25253 break; 25254 } 25255 } 25256 } 25257 25258 /* 25259 * Send out a multicast packet on interface ipif. 25260 * The sender does not have an conn. 25261 * Caller verifies that this isn't a PHYI_LOOPBACK. 25262 */ 25263 void 25264 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25265 { 25266 ipha_t *ipha; 25267 ire_t *ire; 25268 ipaddr_t dst; 25269 mblk_t *first_mp; 25270 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25271 25272 /* igmp_sendpkt always allocates a ipsec_out_t */ 25273 ASSERT(mp->b_datap->db_type == M_CTL); 25274 ASSERT(!ipif->ipif_isv6); 25275 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25276 25277 first_mp = mp; 25278 mp = first_mp->b_cont; 25279 ASSERT(mp->b_datap->db_type == M_DATA); 25280 ipha = (ipha_t *)mp->b_rptr; 25281 25282 /* 25283 * Find an IRE which matches the destination and the outgoing 25284 * queue (i.e. the outgoing interface.) 25285 */ 25286 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25287 dst = ipif->ipif_pp_dst_addr; 25288 else 25289 dst = ipha->ipha_dst; 25290 /* 25291 * The source address has already been initialized by the 25292 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25293 * be sufficient rather than MATCH_IRE_IPIF. 25294 * 25295 * This function is used for sending IGMP packets. We need 25296 * to make sure that we send the packet out of the interface 25297 * (ipif->ipif_ill) where we joined the group. This is to 25298 * prevent from switches doing IGMP snooping to send us multicast 25299 * packets for a given group on the interface we have joined. 25300 * If we can't find an ire, igmp_sendpkt has already initialized 25301 * ipsec_out_attach_if so that this will not be load spread in 25302 * ip_newroute_ipif. 25303 */ 25304 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25305 MATCH_IRE_ILL, ipst); 25306 if (!ire) { 25307 /* 25308 * Mark this packet to make it be delivered to 25309 * ip_wput_ire after the new ire has been 25310 * created. 25311 */ 25312 mp->b_prev = NULL; 25313 mp->b_next = NULL; 25314 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25315 zoneid, &zero_info); 25316 return; 25317 } 25318 25319 /* 25320 * Honor the RTF_SETSRC flag; this is the only case 25321 * where we force this addr whatever the current src addr is, 25322 * because this address is set by igmp_sendpkt(), and 25323 * cannot be specified by any user. 25324 */ 25325 if (ire->ire_flags & RTF_SETSRC) { 25326 ipha->ipha_src = ire->ire_src_addr; 25327 } 25328 25329 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25330 } 25331 25332 /* 25333 * NOTE : This function does not ire_refrele the ire argument passed in. 25334 * 25335 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25336 * failure. The nce_fp_mp can vanish any time in the case of 25337 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25338 * the ire_lock to access the nce_fp_mp in this case. 25339 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25340 * prepending a fastpath message IPQoS processing must precede it, we also set 25341 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25342 * (IPQoS might have set the b_band for CoS marking). 25343 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25344 * must follow it so that IPQoS can mark the dl_priority field for CoS 25345 * marking, if needed. 25346 */ 25347 static mblk_t * 25348 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25349 { 25350 uint_t hlen; 25351 ipha_t *ipha; 25352 mblk_t *mp1; 25353 boolean_t qos_done = B_FALSE; 25354 uchar_t *ll_hdr; 25355 ip_stack_t *ipst = ire->ire_ipst; 25356 25357 #define rptr ((uchar_t *)ipha) 25358 25359 ipha = (ipha_t *)mp->b_rptr; 25360 hlen = 0; 25361 LOCK_IRE_FP_MP(ire); 25362 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25363 ASSERT(DB_TYPE(mp1) == M_DATA); 25364 /* Initiate IPPF processing */ 25365 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25366 UNLOCK_IRE_FP_MP(ire); 25367 ip_process(proc, &mp, ill_index); 25368 if (mp == NULL) 25369 return (NULL); 25370 25371 ipha = (ipha_t *)mp->b_rptr; 25372 LOCK_IRE_FP_MP(ire); 25373 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25374 qos_done = B_TRUE; 25375 goto no_fp_mp; 25376 } 25377 ASSERT(DB_TYPE(mp1) == M_DATA); 25378 } 25379 hlen = MBLKL(mp1); 25380 /* 25381 * Check if we have enough room to prepend fastpath 25382 * header 25383 */ 25384 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25385 ll_hdr = rptr - hlen; 25386 bcopy(mp1->b_rptr, ll_hdr, hlen); 25387 /* 25388 * Set the b_rptr to the start of the link layer 25389 * header 25390 */ 25391 mp->b_rptr = ll_hdr; 25392 mp1 = mp; 25393 } else { 25394 mp1 = copyb(mp1); 25395 if (mp1 == NULL) 25396 goto unlock_err; 25397 mp1->b_band = mp->b_band; 25398 mp1->b_cont = mp; 25399 /* 25400 * certain system generated traffic may not 25401 * have cred/label in ip header block. This 25402 * is true even for a labeled system. But for 25403 * labeled traffic, inherit the label in the 25404 * new header. 25405 */ 25406 if (DB_CRED(mp) != NULL) 25407 mblk_setcred(mp1, DB_CRED(mp)); 25408 /* 25409 * XXX disable ICK_VALID and compute checksum 25410 * here; can happen if nce_fp_mp changes and 25411 * it can't be copied now due to insufficient 25412 * space. (unlikely, fp mp can change, but it 25413 * does not increase in length) 25414 */ 25415 } 25416 UNLOCK_IRE_FP_MP(ire); 25417 } else { 25418 no_fp_mp: 25419 mp1 = copyb(ire->ire_nce->nce_res_mp); 25420 if (mp1 == NULL) { 25421 unlock_err: 25422 UNLOCK_IRE_FP_MP(ire); 25423 freemsg(mp); 25424 return (NULL); 25425 } 25426 UNLOCK_IRE_FP_MP(ire); 25427 mp1->b_cont = mp; 25428 /* 25429 * certain system generated traffic may not 25430 * have cred/label in ip header block. This 25431 * is true even for a labeled system. But for 25432 * labeled traffic, inherit the label in the 25433 * new header. 25434 */ 25435 if (DB_CRED(mp) != NULL) 25436 mblk_setcred(mp1, DB_CRED(mp)); 25437 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25438 ip_process(proc, &mp1, ill_index); 25439 if (mp1 == NULL) 25440 return (NULL); 25441 } 25442 } 25443 return (mp1); 25444 #undef rptr 25445 } 25446 25447 /* 25448 * Finish the outbound IPsec processing for an IPv6 packet. This function 25449 * is called from ipsec_out_process() if the IPsec packet was processed 25450 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25451 * asynchronously. 25452 */ 25453 void 25454 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25455 ire_t *ire_arg) 25456 { 25457 in6_addr_t *v6dstp; 25458 ire_t *ire; 25459 mblk_t *mp; 25460 ip6_t *ip6h1; 25461 uint_t ill_index; 25462 ipsec_out_t *io; 25463 boolean_t attach_if, hwaccel; 25464 uint32_t flags = IP6_NO_IPPOLICY; 25465 int match_flags; 25466 zoneid_t zoneid; 25467 boolean_t ill_need_rele = B_FALSE; 25468 boolean_t ire_need_rele = B_FALSE; 25469 ip_stack_t *ipst; 25470 25471 mp = ipsec_mp->b_cont; 25472 ip6h1 = (ip6_t *)mp->b_rptr; 25473 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25474 ASSERT(io->ipsec_out_ns != NULL); 25475 ipst = io->ipsec_out_ns->netstack_ip; 25476 ill_index = io->ipsec_out_ill_index; 25477 if (io->ipsec_out_reachable) { 25478 flags |= IPV6_REACHABILITY_CONFIRMATION; 25479 } 25480 attach_if = io->ipsec_out_attach_if; 25481 hwaccel = io->ipsec_out_accelerated; 25482 zoneid = io->ipsec_out_zoneid; 25483 ASSERT(zoneid != ALL_ZONES); 25484 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25485 /* Multicast addresses should have non-zero ill_index. */ 25486 v6dstp = &ip6h->ip6_dst; 25487 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25488 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25489 ASSERT(!attach_if || ill_index != 0); 25490 if (ill_index != 0) { 25491 if (ill == NULL) { 25492 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25493 B_TRUE, ipst); 25494 25495 /* Failure case frees things for us. */ 25496 if (ill == NULL) 25497 return; 25498 25499 ill_need_rele = B_TRUE; 25500 } 25501 /* 25502 * If this packet needs to go out on a particular interface 25503 * honor it. 25504 */ 25505 if (attach_if) { 25506 match_flags = MATCH_IRE_ILL; 25507 25508 /* 25509 * Check if we need an ire that will not be 25510 * looked up by anybody else i.e. HIDDEN. 25511 */ 25512 if (ill_is_probeonly(ill)) { 25513 match_flags |= MATCH_IRE_MARK_HIDDEN; 25514 } 25515 } 25516 } 25517 ASSERT(mp != NULL); 25518 25519 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25520 boolean_t unspec_src; 25521 ipif_t *ipif; 25522 25523 /* 25524 * Use the ill_index to get the right ill. 25525 */ 25526 unspec_src = io->ipsec_out_unspec_src; 25527 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25528 if (ipif == NULL) { 25529 if (ill_need_rele) 25530 ill_refrele(ill); 25531 freemsg(ipsec_mp); 25532 return; 25533 } 25534 25535 if (ire_arg != NULL) { 25536 ire = ire_arg; 25537 } else { 25538 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25539 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25540 ire_need_rele = B_TRUE; 25541 } 25542 if (ire != NULL) { 25543 ipif_refrele(ipif); 25544 /* 25545 * XXX Do the multicast forwarding now, as the IPsec 25546 * processing has been done. 25547 */ 25548 goto send; 25549 } 25550 25551 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25552 mp->b_prev = NULL; 25553 mp->b_next = NULL; 25554 25555 /* 25556 * If the IPsec packet was processed asynchronously, 25557 * drop it now. 25558 */ 25559 if (q == NULL) { 25560 if (ill_need_rele) 25561 ill_refrele(ill); 25562 freemsg(ipsec_mp); 25563 return; 25564 } 25565 25566 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25567 unspec_src, zoneid); 25568 ipif_refrele(ipif); 25569 } else { 25570 if (attach_if) { 25571 ipif_t *ipif; 25572 25573 ipif = ipif_get_next_ipif(NULL, ill); 25574 if (ipif == NULL) { 25575 if (ill_need_rele) 25576 ill_refrele(ill); 25577 freemsg(ipsec_mp); 25578 return; 25579 } 25580 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25581 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25582 ire_need_rele = B_TRUE; 25583 ipif_refrele(ipif); 25584 } else { 25585 if (ire_arg != NULL) { 25586 ire = ire_arg; 25587 } else { 25588 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25589 ipst); 25590 ire_need_rele = B_TRUE; 25591 } 25592 } 25593 if (ire != NULL) 25594 goto send; 25595 /* 25596 * ire disappeared underneath. 25597 * 25598 * What we need to do here is the ip_newroute 25599 * logic to get the ire without doing the IPsec 25600 * processing. Follow the same old path. But this 25601 * time, ip_wput or ire_add_then_send will call us 25602 * directly as all the IPsec operations are done. 25603 */ 25604 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25605 mp->b_prev = NULL; 25606 mp->b_next = NULL; 25607 25608 /* 25609 * If the IPsec packet was processed asynchronously, 25610 * drop it now. 25611 */ 25612 if (q == NULL) { 25613 if (ill_need_rele) 25614 ill_refrele(ill); 25615 freemsg(ipsec_mp); 25616 return; 25617 } 25618 25619 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25620 zoneid, ipst); 25621 } 25622 if (ill != NULL && ill_need_rele) 25623 ill_refrele(ill); 25624 return; 25625 send: 25626 if (ill != NULL && ill_need_rele) 25627 ill_refrele(ill); 25628 25629 /* Local delivery */ 25630 if (ire->ire_stq == NULL) { 25631 ill_t *out_ill; 25632 ASSERT(q != NULL); 25633 25634 /* PFHooks: LOOPBACK_OUT */ 25635 out_ill = ire_to_ill(ire); 25636 25637 DTRACE_PROBE4(ip6__loopback__out__start, 25638 ill_t *, NULL, ill_t *, out_ill, 25639 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25640 25641 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25642 ipst->ips_ipv6firewall_loopback_out, 25643 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25644 25645 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25646 25647 if (ipsec_mp != NULL) 25648 ip_wput_local_v6(RD(q), out_ill, 25649 ip6h, ipsec_mp, ire, 0); 25650 if (ire_need_rele) 25651 ire_refrele(ire); 25652 return; 25653 } 25654 /* 25655 * Everything is done. Send it out on the wire. 25656 * We force the insertion of a fragment header using the 25657 * IPH_FRAG_HDR flag in two cases: 25658 * - after reception of an ICMPv6 "packet too big" message 25659 * with a MTU < 1280 (cf. RFC 2460 section 5) 25660 * - for multirouted IPv6 packets, so that the receiver can 25661 * discard duplicates according to their fragment identifier 25662 */ 25663 /* XXX fix flow control problems. */ 25664 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25665 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25666 if (hwaccel) { 25667 /* 25668 * hardware acceleration does not handle these 25669 * "slow path" cases. 25670 */ 25671 /* IPsec KSTATS: should bump bean counter here. */ 25672 if (ire_need_rele) 25673 ire_refrele(ire); 25674 freemsg(ipsec_mp); 25675 return; 25676 } 25677 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25678 (mp->b_cont ? msgdsize(mp) : 25679 mp->b_wptr - (uchar_t *)ip6h)) { 25680 /* IPsec KSTATS: should bump bean counter here. */ 25681 ip0dbg(("Packet length mismatch: %d, %ld\n", 25682 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25683 msgdsize(mp))); 25684 if (ire_need_rele) 25685 ire_refrele(ire); 25686 freemsg(ipsec_mp); 25687 return; 25688 } 25689 ASSERT(mp->b_prev == NULL); 25690 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25691 ntohs(ip6h->ip6_plen) + 25692 IPV6_HDR_LEN, ire->ire_max_frag)); 25693 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25694 ire->ire_max_frag); 25695 } else { 25696 UPDATE_OB_PKT_COUNT(ire); 25697 ire->ire_last_used_time = lbolt; 25698 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25699 } 25700 if (ire_need_rele) 25701 ire_refrele(ire); 25702 freeb(ipsec_mp); 25703 } 25704 25705 void 25706 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25707 { 25708 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25709 da_ipsec_t *hada; /* data attributes */ 25710 ill_t *ill = (ill_t *)q->q_ptr; 25711 25712 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25713 25714 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25715 /* IPsec KSTATS: Bump lose counter here! */ 25716 freemsg(mp); 25717 return; 25718 } 25719 25720 /* 25721 * It's an IPsec packet that must be 25722 * accelerated by the Provider, and the 25723 * outbound ill is IPsec acceleration capable. 25724 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25725 * to the ill. 25726 * IPsec KSTATS: should bump packet counter here. 25727 */ 25728 25729 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25730 if (hada_mp == NULL) { 25731 /* IPsec KSTATS: should bump packet counter here. */ 25732 freemsg(mp); 25733 return; 25734 } 25735 25736 hada_mp->b_datap->db_type = M_CTL; 25737 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25738 hada_mp->b_cont = mp; 25739 25740 hada = (da_ipsec_t *)hada_mp->b_rptr; 25741 bzero(hada, sizeof (da_ipsec_t)); 25742 hada->da_type = IPHADA_M_CTL; 25743 25744 putnext(q, hada_mp); 25745 } 25746 25747 /* 25748 * Finish the outbound IPsec processing. This function is called from 25749 * ipsec_out_process() if the IPsec packet was processed 25750 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25751 * asynchronously. 25752 */ 25753 void 25754 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25755 ire_t *ire_arg) 25756 { 25757 uint32_t v_hlen_tos_len; 25758 ipaddr_t dst; 25759 ipif_t *ipif = NULL; 25760 ire_t *ire; 25761 ire_t *ire1 = NULL; 25762 mblk_t *next_mp = NULL; 25763 uint32_t max_frag; 25764 boolean_t multirt_send = B_FALSE; 25765 mblk_t *mp; 25766 ipha_t *ipha1; 25767 uint_t ill_index; 25768 ipsec_out_t *io; 25769 boolean_t attach_if; 25770 int match_flags; 25771 irb_t *irb = NULL; 25772 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25773 zoneid_t zoneid; 25774 ipxmit_state_t pktxmit_state; 25775 ip_stack_t *ipst; 25776 25777 #ifdef _BIG_ENDIAN 25778 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25779 #else 25780 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25781 #endif 25782 25783 mp = ipsec_mp->b_cont; 25784 ipha1 = (ipha_t *)mp->b_rptr; 25785 ASSERT(mp != NULL); 25786 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25787 dst = ipha->ipha_dst; 25788 25789 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25790 ill_index = io->ipsec_out_ill_index; 25791 attach_if = io->ipsec_out_attach_if; 25792 zoneid = io->ipsec_out_zoneid; 25793 ASSERT(zoneid != ALL_ZONES); 25794 ipst = io->ipsec_out_ns->netstack_ip; 25795 ASSERT(io->ipsec_out_ns != NULL); 25796 25797 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25798 if (ill_index != 0) { 25799 if (ill == NULL) { 25800 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25801 ill_index, B_FALSE, ipst); 25802 25803 /* Failure case frees things for us. */ 25804 if (ill == NULL) 25805 return; 25806 25807 ill_need_rele = B_TRUE; 25808 } 25809 /* 25810 * If this packet needs to go out on a particular interface 25811 * honor it. 25812 */ 25813 if (attach_if) { 25814 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25815 25816 /* 25817 * Check if we need an ire that will not be 25818 * looked up by anybody else i.e. HIDDEN. 25819 */ 25820 if (ill_is_probeonly(ill)) { 25821 match_flags |= MATCH_IRE_MARK_HIDDEN; 25822 } 25823 } 25824 } 25825 25826 if (CLASSD(dst)) { 25827 boolean_t conn_dontroute; 25828 /* 25829 * Use the ill_index to get the right ipif. 25830 */ 25831 conn_dontroute = io->ipsec_out_dontroute; 25832 if (ill_index == 0) 25833 ipif = ipif_lookup_group(dst, zoneid, ipst); 25834 else 25835 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25836 if (ipif == NULL) { 25837 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25838 " multicast\n")); 25839 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25840 freemsg(ipsec_mp); 25841 goto done; 25842 } 25843 /* 25844 * ipha_src has already been intialized with the 25845 * value of the ipif in ip_wput. All we need now is 25846 * an ire to send this downstream. 25847 */ 25848 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25849 MBLK_GETLABEL(mp), match_flags, ipst); 25850 if (ire != NULL) { 25851 ill_t *ill1; 25852 /* 25853 * Do the multicast forwarding now, as the IPsec 25854 * processing has been done. 25855 */ 25856 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25857 (ill1 = ire_to_ill(ire))) { 25858 if (ip_mforward(ill1, ipha, mp)) { 25859 freemsg(ipsec_mp); 25860 ip1dbg(("ip_wput_ipsec_out: mforward " 25861 "failed\n")); 25862 ire_refrele(ire); 25863 goto done; 25864 } 25865 } 25866 goto send; 25867 } 25868 25869 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25870 mp->b_prev = NULL; 25871 mp->b_next = NULL; 25872 25873 /* 25874 * If the IPsec packet was processed asynchronously, 25875 * drop it now. 25876 */ 25877 if (q == NULL) { 25878 freemsg(ipsec_mp); 25879 goto done; 25880 } 25881 25882 /* 25883 * We may be using a wrong ipif to create the ire. 25884 * But it is okay as the source address is assigned 25885 * for the packet already. Next outbound packet would 25886 * create the IRE with the right IPIF in ip_wput. 25887 * 25888 * Also handle RTF_MULTIRT routes. 25889 */ 25890 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25891 zoneid, &zero_info); 25892 } else { 25893 if (attach_if) { 25894 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25895 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25896 } else { 25897 if (ire_arg != NULL) { 25898 ire = ire_arg; 25899 ire_need_rele = B_FALSE; 25900 } else { 25901 ire = ire_cache_lookup(dst, zoneid, 25902 MBLK_GETLABEL(mp), ipst); 25903 } 25904 } 25905 if (ire != NULL) { 25906 goto send; 25907 } 25908 25909 /* 25910 * ire disappeared underneath. 25911 * 25912 * What we need to do here is the ip_newroute 25913 * logic to get the ire without doing the IPsec 25914 * processing. Follow the same old path. But this 25915 * time, ip_wput or ire_add_then_put will call us 25916 * directly as all the IPsec operations are done. 25917 */ 25918 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25919 mp->b_prev = NULL; 25920 mp->b_next = NULL; 25921 25922 /* 25923 * If the IPsec packet was processed asynchronously, 25924 * drop it now. 25925 */ 25926 if (q == NULL) { 25927 freemsg(ipsec_mp); 25928 goto done; 25929 } 25930 25931 /* 25932 * Since we're going through ip_newroute() again, we 25933 * need to make sure we don't: 25934 * 25935 * 1.) Trigger the ASSERT() with the ipha_ident 25936 * overloading. 25937 * 2.) Redo transport-layer checksumming, since we've 25938 * already done all that to get this far. 25939 * 25940 * The easiest way not do either of the above is to set 25941 * the ipha_ident field to IP_HDR_INCLUDED. 25942 */ 25943 ipha->ipha_ident = IP_HDR_INCLUDED; 25944 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25945 zoneid, ipst); 25946 } 25947 goto done; 25948 send: 25949 if (ire->ire_stq == NULL) { 25950 ill_t *out_ill; 25951 /* 25952 * Loopbacks go through ip_wput_local except for one case. 25953 * We come here if we generate a icmp_frag_needed message 25954 * after IPsec processing is over. When this function calls 25955 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25956 * icmp_frag_needed. The message generated comes back here 25957 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25958 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25959 * source address as it is usually set in ip_wput_ire. As 25960 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25961 * and we end up here. We can't enter ip_wput_ire once the 25962 * IPsec processing is over and hence we need to do it here. 25963 */ 25964 ASSERT(q != NULL); 25965 UPDATE_OB_PKT_COUNT(ire); 25966 ire->ire_last_used_time = lbolt; 25967 if (ipha->ipha_src == 0) 25968 ipha->ipha_src = ire->ire_src_addr; 25969 25970 /* PFHooks: LOOPBACK_OUT */ 25971 out_ill = ire_to_ill(ire); 25972 25973 DTRACE_PROBE4(ip4__loopback__out__start, 25974 ill_t *, NULL, ill_t *, out_ill, 25975 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25976 25977 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25978 ipst->ips_ipv4firewall_loopback_out, 25979 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 25980 25981 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25982 25983 if (ipsec_mp != NULL) 25984 ip_wput_local(RD(q), out_ill, 25985 ipha, ipsec_mp, ire, 0, zoneid); 25986 if (ire_need_rele) 25987 ire_refrele(ire); 25988 goto done; 25989 } 25990 25991 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25992 /* 25993 * We are through with IPsec processing. 25994 * Fragment this and send it on the wire. 25995 */ 25996 if (io->ipsec_out_accelerated) { 25997 /* 25998 * The packet has been accelerated but must 25999 * be fragmented. This should not happen 26000 * since AH and ESP must not accelerate 26001 * packets that need fragmentation, however 26002 * the configuration could have changed 26003 * since the AH or ESP processing. 26004 * Drop packet. 26005 * IPsec KSTATS: bump bean counter here. 26006 */ 26007 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26008 "fragmented accelerated packet!\n")); 26009 freemsg(ipsec_mp); 26010 } else { 26011 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26012 } 26013 if (ire_need_rele) 26014 ire_refrele(ire); 26015 goto done; 26016 } 26017 26018 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26019 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26020 (void *)ire->ire_ipif, (void *)ipif)); 26021 26022 /* 26023 * Multiroute the secured packet, unless IPsec really 26024 * requires the packet to go out only through a particular 26025 * interface. 26026 */ 26027 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26028 ire_t *first_ire; 26029 irb = ire->ire_bucket; 26030 ASSERT(irb != NULL); 26031 /* 26032 * This ire has been looked up as the one that 26033 * goes through the given ipif; 26034 * make sure we do not omit any other multiroute ire 26035 * that may be present in the bucket before this one. 26036 */ 26037 IRB_REFHOLD(irb); 26038 for (first_ire = irb->irb_ire; 26039 first_ire != NULL; 26040 first_ire = first_ire->ire_next) { 26041 if ((first_ire->ire_flags & RTF_MULTIRT) && 26042 (first_ire->ire_addr == ire->ire_addr) && 26043 !(first_ire->ire_marks & 26044 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26045 break; 26046 } 26047 } 26048 26049 if ((first_ire != NULL) && (first_ire != ire)) { 26050 /* 26051 * Don't change the ire if the packet must 26052 * be fragmented if sent via this new one. 26053 */ 26054 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26055 IRE_REFHOLD(first_ire); 26056 if (ire_need_rele) 26057 ire_refrele(ire); 26058 else 26059 ire_need_rele = B_TRUE; 26060 ire = first_ire; 26061 } 26062 } 26063 IRB_REFRELE(irb); 26064 26065 multirt_send = B_TRUE; 26066 max_frag = ire->ire_max_frag; 26067 } else { 26068 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26069 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26070 "flag, attach_if %d\n", attach_if)); 26071 } 26072 } 26073 26074 /* 26075 * In most cases, the emission loop below is entered only once. 26076 * Only in the case where the ire holds the RTF_MULTIRT 26077 * flag, we loop to process all RTF_MULTIRT ires in the 26078 * bucket, and send the packet through all crossed 26079 * RTF_MULTIRT routes. 26080 */ 26081 do { 26082 if (multirt_send) { 26083 /* 26084 * ire1 holds here the next ire to process in the 26085 * bucket. If multirouting is expected, 26086 * any non-RTF_MULTIRT ire that has the 26087 * right destination address is ignored. 26088 */ 26089 ASSERT(irb != NULL); 26090 IRB_REFHOLD(irb); 26091 for (ire1 = ire->ire_next; 26092 ire1 != NULL; 26093 ire1 = ire1->ire_next) { 26094 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26095 continue; 26096 if (ire1->ire_addr != ire->ire_addr) 26097 continue; 26098 if (ire1->ire_marks & 26099 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26100 continue; 26101 /* No loopback here */ 26102 if (ire1->ire_stq == NULL) 26103 continue; 26104 /* 26105 * Ensure we do not exceed the MTU 26106 * of the next route. 26107 */ 26108 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26109 ip_multirt_bad_mtu(ire1, max_frag); 26110 continue; 26111 } 26112 26113 IRE_REFHOLD(ire1); 26114 break; 26115 } 26116 IRB_REFRELE(irb); 26117 if (ire1 != NULL) { 26118 /* 26119 * We are in a multiple send case, need to 26120 * make a copy of the packet. 26121 */ 26122 next_mp = copymsg(ipsec_mp); 26123 if (next_mp == NULL) { 26124 ire_refrele(ire1); 26125 ire1 = NULL; 26126 } 26127 } 26128 } 26129 /* 26130 * Everything is done. Send it out on the wire 26131 * 26132 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26133 * either send it on the wire or, in the case of 26134 * HW acceleration, call ipsec_hw_putnext. 26135 */ 26136 if (ire->ire_nce && 26137 ire->ire_nce->nce_state != ND_REACHABLE) { 26138 DTRACE_PROBE2(ip__wput__ipsec__bail, 26139 (ire_t *), ire, (mblk_t *), ipsec_mp); 26140 /* 26141 * If ire's link-layer is unresolved (this 26142 * would only happen if the incomplete ire 26143 * was added to cachetable via forwarding path) 26144 * don't bother going to ip_xmit_v4. Just drop the 26145 * packet. 26146 * There is a slight risk here, in that, if we 26147 * have the forwarding path create an incomplete 26148 * IRE, then until the IRE is completed, any 26149 * transmitted IPsec packets will be dropped 26150 * instead of being queued waiting for resolution. 26151 * 26152 * But the likelihood of a forwarding packet and a wput 26153 * packet sending to the same dst at the same time 26154 * and there not yet be an ARP entry for it is small. 26155 * Furthermore, if this actually happens, it might 26156 * be likely that wput would generate multiple 26157 * packets (and forwarding would also have a train 26158 * of packets) for that destination. If this is 26159 * the case, some of them would have been dropped 26160 * anyway, since ARP only queues a few packets while 26161 * waiting for resolution 26162 * 26163 * NOTE: We should really call ip_xmit_v4, 26164 * and let it queue the packet and send the 26165 * ARP query and have ARP come back thus: 26166 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26167 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26168 * hw accel work. But it's too complex to get 26169 * the IPsec hw acceleration approach to fit 26170 * well with ip_xmit_v4 doing ARP without 26171 * doing IPsec simplification. For now, we just 26172 * poke ip_xmit_v4 to trigger the arp resolve, so 26173 * that we can continue with the send on the next 26174 * attempt. 26175 * 26176 * XXX THis should be revisited, when 26177 * the IPsec/IP interaction is cleaned up 26178 */ 26179 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26180 " - dropping packet\n")); 26181 freemsg(ipsec_mp); 26182 /* 26183 * Call ip_xmit_v4() to trigger ARP query 26184 * in case the nce_state is ND_INITIAL 26185 */ 26186 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26187 goto drop_pkt; 26188 } 26189 26190 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26191 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26192 mblk_t *, ipsec_mp); 26193 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26194 ipst->ips_ipv4firewall_physical_out, 26195 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26196 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26197 if (ipsec_mp == NULL) 26198 goto drop_pkt; 26199 26200 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26201 pktxmit_state = ip_xmit_v4(mp, ire, 26202 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26203 26204 if ((pktxmit_state == SEND_FAILED) || 26205 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26206 26207 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26208 drop_pkt: 26209 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26210 ipIfStatsOutDiscards); 26211 if (ire_need_rele) 26212 ire_refrele(ire); 26213 if (ire1 != NULL) { 26214 ire_refrele(ire1); 26215 freemsg(next_mp); 26216 } 26217 goto done; 26218 } 26219 26220 freeb(ipsec_mp); 26221 if (ire_need_rele) 26222 ire_refrele(ire); 26223 26224 if (ire1 != NULL) { 26225 ire = ire1; 26226 ire_need_rele = B_TRUE; 26227 ASSERT(next_mp); 26228 ipsec_mp = next_mp; 26229 mp = ipsec_mp->b_cont; 26230 ire1 = NULL; 26231 next_mp = NULL; 26232 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26233 } else { 26234 multirt_send = B_FALSE; 26235 } 26236 } while (multirt_send); 26237 done: 26238 if (ill != NULL && ill_need_rele) 26239 ill_refrele(ill); 26240 if (ipif != NULL) 26241 ipif_refrele(ipif); 26242 } 26243 26244 /* 26245 * Get the ill corresponding to the specified ire, and compare its 26246 * capabilities with the protocol and algorithms specified by the 26247 * the SA obtained from ipsec_out. If they match, annotate the 26248 * ipsec_out structure to indicate that the packet needs acceleration. 26249 * 26250 * 26251 * A packet is eligible for outbound hardware acceleration if the 26252 * following conditions are satisfied: 26253 * 26254 * 1. the packet will not be fragmented 26255 * 2. the provider supports the algorithm 26256 * 3. there is no pending control message being exchanged 26257 * 4. snoop is not attached 26258 * 5. the destination address is not a broadcast or multicast address. 26259 * 26260 * Rationale: 26261 * - Hardware drivers do not support fragmentation with 26262 * the current interface. 26263 * - snoop, multicast, and broadcast may result in exposure of 26264 * a cleartext datagram. 26265 * We check all five of these conditions here. 26266 * 26267 * XXX would like to nuke "ire_t *" parameter here; problem is that 26268 * IRE is only way to figure out if a v4 address is a broadcast and 26269 * thus ineligible for acceleration... 26270 */ 26271 static void 26272 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26273 { 26274 ipsec_out_t *io; 26275 mblk_t *data_mp; 26276 uint_t plen, overhead; 26277 ip_stack_t *ipst; 26278 26279 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26280 return; 26281 26282 if (ill == NULL) 26283 return; 26284 ipst = ill->ill_ipst; 26285 /* 26286 * Destination address is a broadcast or multicast. Punt. 26287 */ 26288 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26289 IRE_LOCAL))) 26290 return; 26291 26292 data_mp = ipsec_mp->b_cont; 26293 26294 if (ill->ill_isv6) { 26295 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26296 26297 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26298 return; 26299 26300 plen = ip6h->ip6_plen; 26301 } else { 26302 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26303 26304 if (CLASSD(ipha->ipha_dst)) 26305 return; 26306 26307 plen = ipha->ipha_length; 26308 } 26309 /* 26310 * Is there a pending DLPI control message being exchanged 26311 * between IP/IPsec and the DLS Provider? If there is, it 26312 * could be a SADB update, and the state of the DLS Provider 26313 * SADB might not be in sync with the SADB maintained by 26314 * IPsec. To avoid dropping packets or using the wrong keying 26315 * material, we do not accelerate this packet. 26316 */ 26317 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26318 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26319 "ill_dlpi_pending! don't accelerate packet\n")); 26320 return; 26321 } 26322 26323 /* 26324 * Is the Provider in promiscous mode? If it does, we don't 26325 * accelerate the packet since it will bounce back up to the 26326 * listeners in the clear. 26327 */ 26328 if (ill->ill_promisc_on_phys) { 26329 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26330 "ill in promiscous mode, don't accelerate packet\n")); 26331 return; 26332 } 26333 26334 /* 26335 * Will the packet require fragmentation? 26336 */ 26337 26338 /* 26339 * IPsec ESP note: this is a pessimistic estimate, but the same 26340 * as is used elsewhere. 26341 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26342 * + 2-byte trailer 26343 */ 26344 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26345 IPSEC_BASE_ESP_HDR_SIZE(sa); 26346 26347 if ((plen + overhead) > ill->ill_max_mtu) 26348 return; 26349 26350 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26351 26352 /* 26353 * Can the ill accelerate this IPsec protocol and algorithm 26354 * specified by the SA? 26355 */ 26356 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26357 ill->ill_isv6, sa, ipst->ips_netstack)) { 26358 return; 26359 } 26360 26361 /* 26362 * Tell AH or ESP that the outbound ill is capable of 26363 * accelerating this packet. 26364 */ 26365 io->ipsec_out_is_capab_ill = B_TRUE; 26366 } 26367 26368 /* 26369 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26370 * 26371 * If this function returns B_TRUE, the requested SA's have been filled 26372 * into the ipsec_out_*_sa pointers. 26373 * 26374 * If the function returns B_FALSE, the packet has been "consumed", most 26375 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26376 * 26377 * The SA references created by the protocol-specific "select" 26378 * function will be released when the ipsec_mp is freed, thanks to the 26379 * ipsec_out_free destructor -- see spd.c. 26380 */ 26381 static boolean_t 26382 ipsec_out_select_sa(mblk_t *ipsec_mp) 26383 { 26384 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26385 ipsec_out_t *io; 26386 ipsec_policy_t *pp; 26387 ipsec_action_t *ap; 26388 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26389 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26390 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26391 26392 if (!io->ipsec_out_secure) { 26393 /* 26394 * We came here by mistake. 26395 * Don't bother with ipsec processing 26396 * We should "discourage" this path in the future. 26397 */ 26398 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26399 return (B_FALSE); 26400 } 26401 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26402 ASSERT((io->ipsec_out_policy != NULL) || 26403 (io->ipsec_out_act != NULL)); 26404 26405 ASSERT(io->ipsec_out_failed == B_FALSE); 26406 26407 /* 26408 * IPsec processing has started. 26409 */ 26410 io->ipsec_out_proc_begin = B_TRUE; 26411 ap = io->ipsec_out_act; 26412 if (ap == NULL) { 26413 pp = io->ipsec_out_policy; 26414 ASSERT(pp != NULL); 26415 ap = pp->ipsp_act; 26416 ASSERT(ap != NULL); 26417 } 26418 26419 /* 26420 * We have an action. now, let's select SA's. 26421 * (In the future, we can cache this in the conn_t..) 26422 */ 26423 if (ap->ipa_want_esp) { 26424 if (io->ipsec_out_esp_sa == NULL) { 26425 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26426 IPPROTO_ESP); 26427 } 26428 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26429 } 26430 26431 if (ap->ipa_want_ah) { 26432 if (io->ipsec_out_ah_sa == NULL) { 26433 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26434 IPPROTO_AH); 26435 } 26436 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26437 /* 26438 * The ESP and AH processing order needs to be preserved 26439 * when both protocols are required (ESP should be applied 26440 * before AH for an outbound packet). Force an ESP ACQUIRE 26441 * when both ESP and AH are required, and an AH ACQUIRE 26442 * is needed. 26443 */ 26444 if (ap->ipa_want_esp && need_ah_acquire) 26445 need_esp_acquire = B_TRUE; 26446 } 26447 26448 /* 26449 * Send an ACQUIRE (extended, regular, or both) if we need one. 26450 * Release SAs that got referenced, but will not be used until we 26451 * acquire _all_ of the SAs we need. 26452 */ 26453 if (need_ah_acquire || need_esp_acquire) { 26454 if (io->ipsec_out_ah_sa != NULL) { 26455 IPSA_REFRELE(io->ipsec_out_ah_sa); 26456 io->ipsec_out_ah_sa = NULL; 26457 } 26458 if (io->ipsec_out_esp_sa != NULL) { 26459 IPSA_REFRELE(io->ipsec_out_esp_sa); 26460 io->ipsec_out_esp_sa = NULL; 26461 } 26462 26463 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26464 return (B_FALSE); 26465 } 26466 26467 return (B_TRUE); 26468 } 26469 26470 /* 26471 * Process an IPSEC_OUT message and see what you can 26472 * do with it. 26473 * IPQoS Notes: 26474 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26475 * IPsec. 26476 * XXX would like to nuke ire_t. 26477 * XXX ill_index better be "real" 26478 */ 26479 void 26480 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26481 { 26482 ipsec_out_t *io; 26483 ipsec_policy_t *pp; 26484 ipsec_action_t *ap; 26485 ipha_t *ipha; 26486 ip6_t *ip6h; 26487 mblk_t *mp; 26488 ill_t *ill; 26489 zoneid_t zoneid; 26490 ipsec_status_t ipsec_rc; 26491 boolean_t ill_need_rele = B_FALSE; 26492 ip_stack_t *ipst; 26493 ipsec_stack_t *ipss; 26494 26495 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26496 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26497 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26498 ipst = io->ipsec_out_ns->netstack_ip; 26499 mp = ipsec_mp->b_cont; 26500 26501 /* 26502 * Initiate IPPF processing. We do it here to account for packets 26503 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26504 * We can check for ipsec_out_proc_begin even for such packets, as 26505 * they will always be false (asserted below). 26506 */ 26507 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26508 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26509 io->ipsec_out_ill_index : ill_index); 26510 if (mp == NULL) { 26511 ip2dbg(("ipsec_out_process: packet dropped "\ 26512 "during IPPF processing\n")); 26513 freeb(ipsec_mp); 26514 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26515 return; 26516 } 26517 } 26518 26519 if (!io->ipsec_out_secure) { 26520 /* 26521 * We came here by mistake. 26522 * Don't bother with ipsec processing 26523 * Should "discourage" this path in the future. 26524 */ 26525 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26526 goto done; 26527 } 26528 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26529 ASSERT((io->ipsec_out_policy != NULL) || 26530 (io->ipsec_out_act != NULL)); 26531 ASSERT(io->ipsec_out_failed == B_FALSE); 26532 26533 ipss = ipst->ips_netstack->netstack_ipsec; 26534 if (!ipsec_loaded(ipss)) { 26535 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26536 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26537 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26538 } else { 26539 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26540 } 26541 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26542 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26543 &ipss->ipsec_dropper); 26544 return; 26545 } 26546 26547 /* 26548 * IPsec processing has started. 26549 */ 26550 io->ipsec_out_proc_begin = B_TRUE; 26551 ap = io->ipsec_out_act; 26552 if (ap == NULL) { 26553 pp = io->ipsec_out_policy; 26554 ASSERT(pp != NULL); 26555 ap = pp->ipsp_act; 26556 ASSERT(ap != NULL); 26557 } 26558 26559 /* 26560 * Save the outbound ill index. When the packet comes back 26561 * from IPsec, we make sure the ill hasn't changed or disappeared 26562 * before sending it the accelerated packet. 26563 */ 26564 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26565 int ifindex; 26566 ill = ire_to_ill(ire); 26567 ifindex = ill->ill_phyint->phyint_ifindex; 26568 io->ipsec_out_capab_ill_index = ifindex; 26569 } 26570 26571 /* 26572 * The order of processing is first insert a IP header if needed. 26573 * Then insert the ESP header and then the AH header. 26574 */ 26575 if ((io->ipsec_out_se_done == B_FALSE) && 26576 (ap->ipa_want_se)) { 26577 /* 26578 * First get the outer IP header before sending 26579 * it to ESP. 26580 */ 26581 ipha_t *oipha, *iipha; 26582 mblk_t *outer_mp, *inner_mp; 26583 26584 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26585 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26586 "ipsec_out_process: " 26587 "Self-Encapsulation failed: Out of memory\n"); 26588 freemsg(ipsec_mp); 26589 if (ill != NULL) { 26590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26591 } else { 26592 BUMP_MIB(&ipst->ips_ip_mib, 26593 ipIfStatsOutDiscards); 26594 } 26595 return; 26596 } 26597 inner_mp = ipsec_mp->b_cont; 26598 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26599 oipha = (ipha_t *)outer_mp->b_rptr; 26600 iipha = (ipha_t *)inner_mp->b_rptr; 26601 *oipha = *iipha; 26602 outer_mp->b_wptr += sizeof (ipha_t); 26603 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26604 sizeof (ipha_t)); 26605 oipha->ipha_protocol = IPPROTO_ENCAP; 26606 oipha->ipha_version_and_hdr_length = 26607 IP_SIMPLE_HDR_VERSION; 26608 oipha->ipha_hdr_checksum = 0; 26609 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26610 outer_mp->b_cont = inner_mp; 26611 ipsec_mp->b_cont = outer_mp; 26612 26613 io->ipsec_out_se_done = B_TRUE; 26614 io->ipsec_out_tunnel = B_TRUE; 26615 } 26616 26617 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26618 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26619 !ipsec_out_select_sa(ipsec_mp)) 26620 return; 26621 26622 /* 26623 * By now, we know what SA's to use. Toss over to ESP & AH 26624 * to do the heavy lifting. 26625 */ 26626 zoneid = io->ipsec_out_zoneid; 26627 ASSERT(zoneid != ALL_ZONES); 26628 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26629 ASSERT(io->ipsec_out_esp_sa != NULL); 26630 io->ipsec_out_esp_done = B_TRUE; 26631 /* 26632 * Note that since hw accel can only apply one transform, 26633 * not two, we skip hw accel for ESP if we also have AH 26634 * This is an design limitation of the interface 26635 * which should be revisited. 26636 */ 26637 ASSERT(ire != NULL); 26638 if (io->ipsec_out_ah_sa == NULL) { 26639 ill = (ill_t *)ire->ire_stq->q_ptr; 26640 ipsec_out_is_accelerated(ipsec_mp, 26641 io->ipsec_out_esp_sa, ill, ire); 26642 } 26643 26644 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26645 switch (ipsec_rc) { 26646 case IPSEC_STATUS_SUCCESS: 26647 break; 26648 case IPSEC_STATUS_FAILED: 26649 if (ill != NULL) { 26650 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26651 } else { 26652 BUMP_MIB(&ipst->ips_ip_mib, 26653 ipIfStatsOutDiscards); 26654 } 26655 /* FALLTHRU */ 26656 case IPSEC_STATUS_PENDING: 26657 return; 26658 } 26659 } 26660 26661 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26662 ASSERT(io->ipsec_out_ah_sa != NULL); 26663 io->ipsec_out_ah_done = B_TRUE; 26664 if (ire == NULL) { 26665 int idx = io->ipsec_out_capab_ill_index; 26666 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26667 NULL, NULL, NULL, NULL, ipst); 26668 ill_need_rele = B_TRUE; 26669 } else { 26670 ill = (ill_t *)ire->ire_stq->q_ptr; 26671 } 26672 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26673 ire); 26674 26675 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26676 switch (ipsec_rc) { 26677 case IPSEC_STATUS_SUCCESS: 26678 break; 26679 case IPSEC_STATUS_FAILED: 26680 if (ill != NULL) { 26681 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26682 } else { 26683 BUMP_MIB(&ipst->ips_ip_mib, 26684 ipIfStatsOutDiscards); 26685 } 26686 /* FALLTHRU */ 26687 case IPSEC_STATUS_PENDING: 26688 if (ill != NULL && ill_need_rele) 26689 ill_refrele(ill); 26690 return; 26691 } 26692 } 26693 /* 26694 * We are done with IPsec processing. Send it over 26695 * the wire. 26696 */ 26697 done: 26698 mp = ipsec_mp->b_cont; 26699 ipha = (ipha_t *)mp->b_rptr; 26700 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26701 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26702 } else { 26703 ip6h = (ip6_t *)ipha; 26704 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26705 } 26706 if (ill != NULL && ill_need_rele) 26707 ill_refrele(ill); 26708 } 26709 26710 /* ARGSUSED */ 26711 void 26712 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26713 { 26714 opt_restart_t *or; 26715 int err; 26716 conn_t *connp; 26717 26718 ASSERT(CONN_Q(q)); 26719 connp = Q_TO_CONN(q); 26720 26721 ASSERT(first_mp->b_datap->db_type == M_CTL); 26722 or = (opt_restart_t *)first_mp->b_rptr; 26723 /* 26724 * We don't need to pass any credentials here since this is just 26725 * a restart. The credentials are passed in when svr4_optcom_req 26726 * is called the first time (from ip_wput_nondata). 26727 */ 26728 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26729 err = svr4_optcom_req(q, first_mp, NULL, 26730 &ip_opt_obj, B_FALSE); 26731 } else { 26732 ASSERT(or->or_type == T_OPTMGMT_REQ); 26733 err = tpi_optcom_req(q, first_mp, NULL, 26734 &ip_opt_obj, B_FALSE); 26735 } 26736 if (err != EINPROGRESS) { 26737 /* operation is done */ 26738 CONN_OPER_PENDING_DONE(connp); 26739 } 26740 } 26741 26742 /* 26743 * ioctls that go through a down/up sequence may need to wait for the down 26744 * to complete. This involves waiting for the ire and ipif refcnts to go down 26745 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26746 */ 26747 /* ARGSUSED */ 26748 void 26749 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26750 { 26751 struct iocblk *iocp; 26752 mblk_t *mp1; 26753 ip_ioctl_cmd_t *ipip; 26754 int err; 26755 sin_t *sin; 26756 struct lifreq *lifr; 26757 struct ifreq *ifr; 26758 26759 iocp = (struct iocblk *)mp->b_rptr; 26760 ASSERT(ipsq != NULL); 26761 /* Existence of mp1 verified in ip_wput_nondata */ 26762 mp1 = mp->b_cont->b_cont; 26763 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26764 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26765 /* 26766 * Special case where ipsq_current_ipif is not set: 26767 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26768 * ill could also have become part of a ipmp group in the 26769 * process, we are here as were not able to complete the 26770 * operation in ipif_set_values because we could not become 26771 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26772 * will not be set so we need to set it. 26773 */ 26774 ill_t *ill = q->q_ptr; 26775 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26776 } 26777 ASSERT(ipsq->ipsq_current_ipif != NULL); 26778 26779 if (ipip->ipi_cmd_type == IF_CMD) { 26780 /* This a old style SIOC[GS]IF* command */ 26781 ifr = (struct ifreq *)mp1->b_rptr; 26782 sin = (sin_t *)&ifr->ifr_addr; 26783 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26784 /* This a new style SIOC[GS]LIF* command */ 26785 lifr = (struct lifreq *)mp1->b_rptr; 26786 sin = (sin_t *)&lifr->lifr_addr; 26787 } else { 26788 sin = NULL; 26789 } 26790 26791 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26792 ipip, mp1->b_rptr); 26793 26794 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26795 } 26796 26797 /* 26798 * ioctl processing 26799 * 26800 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26801 * the ioctl command in the ioctl tables, determines the copyin data size 26802 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26803 * 26804 * ioctl processing then continues when the M_IOCDATA makes its way down to 26805 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26806 * associated 'conn' is refheld till the end of the ioctl and the general 26807 * ioctl processing function ip_process_ioctl() is called to extract the 26808 * arguments and process the ioctl. To simplify extraction, ioctl commands 26809 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26810 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26811 * is used to extract the ioctl's arguments. 26812 * 26813 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26814 * so goes thru the serialization primitive ipsq_try_enter. Then the 26815 * appropriate function to handle the ioctl is called based on the entry in 26816 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26817 * which also refreleases the 'conn' that was refheld at the start of the 26818 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26819 * 26820 * Many exclusive ioctls go thru an internal down up sequence as part of 26821 * the operation. For example an attempt to change the IP address of an 26822 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26823 * does all the cleanup such as deleting all ires that use this address. 26824 * Then we need to wait till all references to the interface go away. 26825 */ 26826 void 26827 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26828 { 26829 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26830 ip_ioctl_cmd_t *ipip = arg; 26831 ip_extract_func_t *extract_funcp; 26832 cmd_info_t ci; 26833 int err; 26834 boolean_t entered_ipsq = B_FALSE; 26835 26836 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26837 26838 if (ipip == NULL) 26839 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26840 26841 /* 26842 * SIOCLIFADDIF needs to go thru a special path since the 26843 * ill may not exist yet. This happens in the case of lo0 26844 * which is created using this ioctl. 26845 */ 26846 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26847 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26848 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26849 return; 26850 } 26851 26852 ci.ci_ipif = NULL; 26853 if (ipip->ipi_cmd_type == MISC_CMD) { 26854 /* 26855 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26856 */ 26857 if (ipip->ipi_cmd == IF_UNITSEL) { 26858 /* ioctl comes down the ill */ 26859 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26860 ipif_refhold(ci.ci_ipif); 26861 } 26862 err = 0; 26863 ci.ci_sin = NULL; 26864 ci.ci_sin6 = NULL; 26865 ci.ci_lifr = NULL; 26866 } else { 26867 switch (ipip->ipi_cmd_type) { 26868 case IF_CMD: 26869 case LIF_CMD: 26870 extract_funcp = ip_extract_lifreq; 26871 break; 26872 26873 case ARP_CMD: 26874 case XARP_CMD: 26875 extract_funcp = ip_extract_arpreq; 26876 break; 26877 26878 case TUN_CMD: 26879 extract_funcp = ip_extract_tunreq; 26880 break; 26881 26882 case MSFILT_CMD: 26883 extract_funcp = ip_extract_msfilter; 26884 break; 26885 26886 default: 26887 ASSERT(0); 26888 } 26889 26890 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26891 if (err != 0) { 26892 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26893 return; 26894 } 26895 26896 /* 26897 * All of the extraction functions return a refheld ipif. 26898 */ 26899 ASSERT(ci.ci_ipif != NULL); 26900 } 26901 26902 /* 26903 * If ipsq is non-null, we are already being called exclusively 26904 */ 26905 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26906 if (!(ipip->ipi_flags & IPI_WR)) { 26907 /* 26908 * A return value of EINPROGRESS means the ioctl is 26909 * either queued and waiting for some reason or has 26910 * already completed. 26911 */ 26912 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26913 ci.ci_lifr); 26914 if (ci.ci_ipif != NULL) 26915 ipif_refrele(ci.ci_ipif); 26916 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26917 return; 26918 } 26919 26920 ASSERT(ci.ci_ipif != NULL); 26921 26922 if (ipsq == NULL) { 26923 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26924 ip_process_ioctl, NEW_OP, B_TRUE); 26925 entered_ipsq = B_TRUE; 26926 } 26927 /* 26928 * Release the ipif so that ipif_down and friends that wait for 26929 * references to go away are not misled about the current ipif_refcnt 26930 * values. We are writer so we can access the ipif even after releasing 26931 * the ipif. 26932 */ 26933 ipif_refrele(ci.ci_ipif); 26934 if (ipsq == NULL) 26935 return; 26936 26937 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26938 26939 /* 26940 * For most set ioctls that come here, this serves as a single point 26941 * where we set the IPIF_CHANGING flag. This ensures that there won't 26942 * be any new references to the ipif. This helps functions that go 26943 * through this path and end up trying to wait for the refcnts 26944 * associated with the ipif to go down to zero. Some exceptions are 26945 * Failover, Failback, and Groupname commands that operate on more than 26946 * just the ci.ci_ipif. These commands internally determine the 26947 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26948 * flags on that set. Another exception is the Removeif command that 26949 * sets the IPIF_CONDEMNED flag internally after identifying the right 26950 * ipif to operate on. 26951 */ 26952 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26953 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26954 ipip->ipi_cmd != SIOCLIFFAILOVER && 26955 ipip->ipi_cmd != SIOCLIFFAILBACK && 26956 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26957 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26958 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26959 26960 /* 26961 * A return value of EINPROGRESS means the ioctl is 26962 * either queued and waiting for some reason or has 26963 * already completed. 26964 */ 26965 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26966 26967 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26968 26969 if (entered_ipsq) 26970 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26971 } 26972 26973 /* 26974 * Complete the ioctl. Typically ioctls use the mi package and need to 26975 * do mi_copyout/mi_copy_done. 26976 */ 26977 void 26978 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26979 { 26980 conn_t *connp = NULL; 26981 26982 if (err == EINPROGRESS) 26983 return; 26984 26985 if (CONN_Q(q)) { 26986 connp = Q_TO_CONN(q); 26987 ASSERT(connp->conn_ref >= 2); 26988 } 26989 26990 switch (mode) { 26991 case COPYOUT: 26992 if (err == 0) 26993 mi_copyout(q, mp); 26994 else 26995 mi_copy_done(q, mp, err); 26996 break; 26997 26998 case NO_COPYOUT: 26999 mi_copy_done(q, mp, err); 27000 break; 27001 27002 default: 27003 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27004 break; 27005 } 27006 27007 /* 27008 * The refhold placed at the start of the ioctl is released here. 27009 */ 27010 if (connp != NULL) 27011 CONN_OPER_PENDING_DONE(connp); 27012 27013 if (ipsq != NULL) 27014 ipsq_current_finish(ipsq); 27015 } 27016 27017 /* 27018 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27019 */ 27020 /* ARGSUSED */ 27021 void 27022 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27023 { 27024 conn_t *connp = arg; 27025 tcp_t *tcp; 27026 27027 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27028 tcp = connp->conn_tcp; 27029 27030 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27031 freemsg(mp); 27032 else 27033 tcp_rput_other(tcp, mp); 27034 CONN_OPER_PENDING_DONE(connp); 27035 } 27036 27037 /* Called from ip_wput for all non data messages */ 27038 /* ARGSUSED */ 27039 void 27040 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27041 { 27042 mblk_t *mp1; 27043 ire_t *ire, *fake_ire; 27044 ill_t *ill; 27045 struct iocblk *iocp; 27046 ip_ioctl_cmd_t *ipip; 27047 cred_t *cr; 27048 conn_t *connp; 27049 int err; 27050 nce_t *nce; 27051 ipif_t *ipif; 27052 ip_stack_t *ipst; 27053 char *proto_str; 27054 27055 if (CONN_Q(q)) { 27056 connp = Q_TO_CONN(q); 27057 ipst = connp->conn_netstack->netstack_ip; 27058 } else { 27059 connp = NULL; 27060 ipst = ILLQ_TO_IPST(q); 27061 } 27062 27063 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27064 27065 switch (DB_TYPE(mp)) { 27066 case M_IOCTL: 27067 /* 27068 * IOCTL processing begins in ip_sioctl_copyin_setup which 27069 * will arrange to copy in associated control structures. 27070 */ 27071 ip_sioctl_copyin_setup(q, mp); 27072 return; 27073 case M_IOCDATA: 27074 /* 27075 * Ensure that this is associated with one of our trans- 27076 * parent ioctls. If it's not ours, discard it if we're 27077 * running as a driver, or pass it on if we're a module. 27078 */ 27079 iocp = (struct iocblk *)mp->b_rptr; 27080 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27081 if (ipip == NULL) { 27082 if (q->q_next == NULL) { 27083 goto nak; 27084 } else { 27085 putnext(q, mp); 27086 } 27087 return; 27088 } 27089 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27090 /* 27091 * the ioctl is one we recognise, but is not 27092 * consumed by IP as a module, pass M_IOCDATA 27093 * for processing downstream, but only for 27094 * common Streams ioctls. 27095 */ 27096 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27097 putnext(q, mp); 27098 return; 27099 } else { 27100 goto nak; 27101 } 27102 } 27103 27104 /* IOCTL continuation following copyin or copyout. */ 27105 if (mi_copy_state(q, mp, NULL) == -1) { 27106 /* 27107 * The copy operation failed. mi_copy_state already 27108 * cleaned up, so we're out of here. 27109 */ 27110 return; 27111 } 27112 /* 27113 * If we just completed a copy in, we become writer and 27114 * continue processing in ip_sioctl_copyin_done. If it 27115 * was a copy out, we call mi_copyout again. If there is 27116 * nothing more to copy out, it will complete the IOCTL. 27117 */ 27118 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27119 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27120 mi_copy_done(q, mp, EPROTO); 27121 return; 27122 } 27123 /* 27124 * Check for cases that need more copying. A return 27125 * value of 0 means a second copyin has been started, 27126 * so we return; a return value of 1 means no more 27127 * copying is needed, so we continue. 27128 */ 27129 if (ipip->ipi_cmd_type == MSFILT_CMD && 27130 MI_COPY_COUNT(mp) == 1) { 27131 if (ip_copyin_msfilter(q, mp) == 0) 27132 return; 27133 } 27134 /* 27135 * Refhold the conn, till the ioctl completes. This is 27136 * needed in case the ioctl ends up in the pending mp 27137 * list. Every mp in the ill_pending_mp list and 27138 * the ipsq_pending_mp must have a refhold on the conn 27139 * to resume processing. The refhold is released when 27140 * the ioctl completes. (normally or abnormally) 27141 * In all cases ip_ioctl_finish is called to finish 27142 * the ioctl. 27143 */ 27144 if (connp != NULL) { 27145 /* This is not a reentry */ 27146 ASSERT(ipsq == NULL); 27147 CONN_INC_REF(connp); 27148 } else { 27149 if (!(ipip->ipi_flags & IPI_MODOK)) { 27150 mi_copy_done(q, mp, EINVAL); 27151 return; 27152 } 27153 } 27154 27155 ip_process_ioctl(ipsq, q, mp, ipip); 27156 27157 } else { 27158 mi_copyout(q, mp); 27159 } 27160 return; 27161 nak: 27162 iocp->ioc_error = EINVAL; 27163 mp->b_datap->db_type = M_IOCNAK; 27164 iocp->ioc_count = 0; 27165 qreply(q, mp); 27166 return; 27167 27168 case M_IOCNAK: 27169 /* 27170 * The only way we could get here is if a resolver didn't like 27171 * an IOCTL we sent it. This shouldn't happen. 27172 */ 27173 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27174 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27175 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27176 freemsg(mp); 27177 return; 27178 case M_IOCACK: 27179 /* /dev/ip shouldn't see this */ 27180 if (CONN_Q(q)) 27181 goto nak; 27182 27183 /* Finish socket ioctls passed through to ARP. */ 27184 ip_sioctl_iocack(q, mp); 27185 return; 27186 case M_FLUSH: 27187 if (*mp->b_rptr & FLUSHW) 27188 flushq(q, FLUSHALL); 27189 if (q->q_next) { 27190 putnext(q, mp); 27191 return; 27192 } 27193 if (*mp->b_rptr & FLUSHR) { 27194 *mp->b_rptr &= ~FLUSHW; 27195 qreply(q, mp); 27196 return; 27197 } 27198 freemsg(mp); 27199 return; 27200 case IRE_DB_REQ_TYPE: 27201 if (connp == NULL) { 27202 proto_str = "IRE_DB_REQ_TYPE"; 27203 goto protonak; 27204 } 27205 /* An Upper Level Protocol wants a copy of an IRE. */ 27206 ip_ire_req(q, mp); 27207 return; 27208 case M_CTL: 27209 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27210 break; 27211 27212 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27213 TUN_HELLO) { 27214 ASSERT(connp != NULL); 27215 connp->conn_flags |= IPCL_IPTUN; 27216 freeb(mp); 27217 return; 27218 } 27219 27220 /* M_CTL messages are used by ARP to tell us things. */ 27221 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27222 break; 27223 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27224 case AR_ENTRY_SQUERY: 27225 ip_wput_ctl(q, mp); 27226 return; 27227 case AR_CLIENT_NOTIFY: 27228 ip_arp_news(q, mp); 27229 return; 27230 case AR_DLPIOP_DONE: 27231 ASSERT(q->q_next != NULL); 27232 ill = (ill_t *)q->q_ptr; 27233 /* qwriter_ip releases the refhold */ 27234 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27235 ill_refhold(ill); 27236 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27237 return; 27238 case AR_ARP_CLOSING: 27239 /* 27240 * ARP (above us) is closing. If no ARP bringup is 27241 * currently pending, ack the message so that ARP 27242 * can complete its close. Also mark ill_arp_closing 27243 * so that new ARP bringups will fail. If any 27244 * ARP bringup is currently in progress, we will 27245 * ack this when the current ARP bringup completes. 27246 */ 27247 ASSERT(q->q_next != NULL); 27248 ill = (ill_t *)q->q_ptr; 27249 mutex_enter(&ill->ill_lock); 27250 ill->ill_arp_closing = 1; 27251 if (!ill->ill_arp_bringup_pending) { 27252 mutex_exit(&ill->ill_lock); 27253 qreply(q, mp); 27254 } else { 27255 mutex_exit(&ill->ill_lock); 27256 freemsg(mp); 27257 } 27258 return; 27259 case AR_ARP_EXTEND: 27260 /* 27261 * The ARP module above us is capable of duplicate 27262 * address detection. Old ATM drivers will not send 27263 * this message. 27264 */ 27265 ASSERT(q->q_next != NULL); 27266 ill = (ill_t *)q->q_ptr; 27267 ill->ill_arp_extend = B_TRUE; 27268 freemsg(mp); 27269 return; 27270 default: 27271 break; 27272 } 27273 break; 27274 case M_PROTO: 27275 case M_PCPROTO: 27276 /* 27277 * The only PROTO messages we expect are ULP binds and 27278 * copies of option negotiation acknowledgements. 27279 */ 27280 switch (((union T_primitives *)mp->b_rptr)->type) { 27281 case O_T_BIND_REQ: 27282 case T_BIND_REQ: { 27283 /* Request can get queued in bind */ 27284 if (connp == NULL) { 27285 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27286 goto protonak; 27287 } 27288 /* 27289 * The transports except SCTP call ip_bind_{v4,v6}() 27290 * directly instead of a a putnext. SCTP doesn't 27291 * generate any T_BIND_REQ since it has its own 27292 * fanout data structures. However, ESP and AH 27293 * come in for regular binds; all other cases are 27294 * bind retries. 27295 */ 27296 ASSERT(!IPCL_IS_SCTP(connp)); 27297 27298 /* Don't increment refcnt if this is a re-entry */ 27299 if (ipsq == NULL) 27300 CONN_INC_REF(connp); 27301 27302 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27303 connp, NULL) : ip_bind_v4(q, mp, connp); 27304 if (mp == NULL) 27305 return; 27306 if (IPCL_IS_TCP(connp)) { 27307 /* 27308 * In the case of TCP endpoint we 27309 * come here only for bind retries 27310 */ 27311 ASSERT(ipsq != NULL); 27312 CONN_INC_REF(connp); 27313 squeue_fill(connp->conn_sqp, mp, 27314 ip_resume_tcp_bind, connp, 27315 SQTAG_BIND_RETRY); 27316 } else if (IPCL_IS_UDP(connp)) { 27317 /* 27318 * In the case of UDP endpoint we 27319 * come here only for bind retries 27320 */ 27321 ASSERT(ipsq != NULL); 27322 udp_resume_bind(connp, mp); 27323 } else if (IPCL_IS_RAWIP(connp)) { 27324 /* 27325 * In the case of RAWIP endpoint we 27326 * come here only for bind retries 27327 */ 27328 ASSERT(ipsq != NULL); 27329 rawip_resume_bind(connp, mp); 27330 } else { 27331 /* The case of AH and ESP */ 27332 qreply(q, mp); 27333 CONN_OPER_PENDING_DONE(connp); 27334 } 27335 return; 27336 } 27337 case T_SVR4_OPTMGMT_REQ: 27338 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27339 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27340 27341 if (connp == NULL) { 27342 proto_str = "T_SVR4_OPTMGMT_REQ"; 27343 goto protonak; 27344 } 27345 27346 if (!snmpcom_req(q, mp, ip_snmp_set, 27347 ip_snmp_get, cr)) { 27348 /* 27349 * Call svr4_optcom_req so that it can 27350 * generate the ack. We don't come here 27351 * if this operation is being restarted. 27352 * ip_restart_optmgmt will drop the conn ref. 27353 * In the case of ipsec option after the ipsec 27354 * load is complete conn_restart_ipsec_waiter 27355 * drops the conn ref. 27356 */ 27357 ASSERT(ipsq == NULL); 27358 CONN_INC_REF(connp); 27359 if (ip_check_for_ipsec_opt(q, mp)) 27360 return; 27361 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27362 B_FALSE); 27363 if (err != EINPROGRESS) { 27364 /* Operation is done */ 27365 CONN_OPER_PENDING_DONE(connp); 27366 } 27367 } 27368 return; 27369 case T_OPTMGMT_REQ: 27370 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27371 /* 27372 * Note: No snmpcom_req support through new 27373 * T_OPTMGMT_REQ. 27374 * Call tpi_optcom_req so that it can 27375 * generate the ack. 27376 */ 27377 if (connp == NULL) { 27378 proto_str = "T_OPTMGMT_REQ"; 27379 goto protonak; 27380 } 27381 27382 ASSERT(ipsq == NULL); 27383 /* 27384 * We don't come here for restart. ip_restart_optmgmt 27385 * will drop the conn ref. In the case of ipsec option 27386 * after the ipsec load is complete 27387 * conn_restart_ipsec_waiter drops the conn ref. 27388 */ 27389 CONN_INC_REF(connp); 27390 if (ip_check_for_ipsec_opt(q, mp)) 27391 return; 27392 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27393 if (err != EINPROGRESS) { 27394 /* Operation is done */ 27395 CONN_OPER_PENDING_DONE(connp); 27396 } 27397 return; 27398 case T_UNBIND_REQ: 27399 if (connp == NULL) { 27400 proto_str = "T_UNBIND_REQ"; 27401 goto protonak; 27402 } 27403 mp = ip_unbind(q, mp); 27404 qreply(q, mp); 27405 return; 27406 default: 27407 /* 27408 * Have to drop any DLPI messages coming down from 27409 * arp (such as an info_req which would cause ip 27410 * to receive an extra info_ack if it was passed 27411 * through. 27412 */ 27413 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27414 (int)*(uint_t *)mp->b_rptr)); 27415 freemsg(mp); 27416 return; 27417 } 27418 /* NOTREACHED */ 27419 case IRE_DB_TYPE: { 27420 nce_t *nce; 27421 ill_t *ill; 27422 in6_addr_t gw_addr_v6; 27423 27424 27425 /* 27426 * This is a response back from a resolver. It 27427 * consists of a message chain containing: 27428 * IRE_MBLK-->LL_HDR_MBLK->pkt 27429 * The IRE_MBLK is the one we allocated in ip_newroute. 27430 * The LL_HDR_MBLK is the DLPI header to use to get 27431 * the attached packet, and subsequent ones for the 27432 * same destination, transmitted. 27433 */ 27434 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27435 break; 27436 /* 27437 * First, check to make sure the resolution succeeded. 27438 * If it failed, the second mblk will be empty. 27439 * If it is, free the chain, dropping the packet. 27440 * (We must ire_delete the ire; that frees the ire mblk) 27441 * We're doing this now to support PVCs for ATM; it's 27442 * a partial xresolv implementation. When we fully implement 27443 * xresolv interfaces, instead of freeing everything here 27444 * we'll initiate neighbor discovery. 27445 * 27446 * For v4 (ARP and other external resolvers) the resolver 27447 * frees the message, so no check is needed. This check 27448 * is required, though, for a full xresolve implementation. 27449 * Including this code here now both shows how external 27450 * resolvers can NACK a resolution request using an 27451 * existing design that has no specific provisions for NACKs, 27452 * and also takes into account that the current non-ARP 27453 * external resolver has been coded to use this method of 27454 * NACKing for all IPv6 (xresolv) cases, 27455 * whether our xresolv implementation is complete or not. 27456 * 27457 */ 27458 ire = (ire_t *)mp->b_rptr; 27459 ill = ire_to_ill(ire); 27460 mp1 = mp->b_cont; /* dl_unitdata_req */ 27461 if (mp1->b_rptr == mp1->b_wptr) { 27462 if (ire->ire_ipversion == IPV6_VERSION) { 27463 /* 27464 * XRESOLV interface. 27465 */ 27466 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27467 mutex_enter(&ire->ire_lock); 27468 gw_addr_v6 = ire->ire_gateway_addr_v6; 27469 mutex_exit(&ire->ire_lock); 27470 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27471 nce = ndp_lookup_v6(ill, 27472 &ire->ire_addr_v6, B_FALSE); 27473 } else { 27474 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27475 B_FALSE); 27476 } 27477 if (nce != NULL) { 27478 nce_resolv_failed(nce); 27479 ndp_delete(nce); 27480 NCE_REFRELE(nce); 27481 } 27482 } 27483 mp->b_cont = NULL; 27484 freemsg(mp1); /* frees the pkt as well */ 27485 ASSERT(ire->ire_nce == NULL); 27486 ire_delete((ire_t *)mp->b_rptr); 27487 return; 27488 } 27489 27490 /* 27491 * Split them into IRE_MBLK and pkt and feed it into 27492 * ire_add_then_send. Then in ire_add_then_send 27493 * the IRE will be added, and then the packet will be 27494 * run back through ip_wput. This time it will make 27495 * it to the wire. 27496 */ 27497 mp->b_cont = NULL; 27498 mp = mp1->b_cont; /* now, mp points to pkt */ 27499 mp1->b_cont = NULL; 27500 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27501 if (ire->ire_ipversion == IPV6_VERSION) { 27502 /* 27503 * XRESOLV interface. Find the nce and put a copy 27504 * of the dl_unitdata_req in nce_res_mp 27505 */ 27506 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27507 mutex_enter(&ire->ire_lock); 27508 gw_addr_v6 = ire->ire_gateway_addr_v6; 27509 mutex_exit(&ire->ire_lock); 27510 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27511 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27512 B_FALSE); 27513 } else { 27514 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27515 } 27516 if (nce != NULL) { 27517 /* 27518 * We have to protect nce_res_mp here 27519 * from being accessed by other threads 27520 * while we change the mblk pointer. 27521 * Other functions will also lock the nce when 27522 * accessing nce_res_mp. 27523 * 27524 * The reason we change the mblk pointer 27525 * here rather than copying the resolved address 27526 * into the template is that, unlike with 27527 * ethernet, we have no guarantee that the 27528 * resolved address length will be 27529 * smaller than or equal to the lla length 27530 * with which the template was allocated, 27531 * (for ethernet, they're equal) 27532 * so we have to use the actual resolved 27533 * address mblk - which holds the real 27534 * dl_unitdata_req with the resolved address. 27535 * 27536 * Doing this is the same behavior as was 27537 * previously used in the v4 ARP case. 27538 */ 27539 mutex_enter(&nce->nce_lock); 27540 if (nce->nce_res_mp != NULL) 27541 freemsg(nce->nce_res_mp); 27542 nce->nce_res_mp = mp1; 27543 mutex_exit(&nce->nce_lock); 27544 /* 27545 * We do a fastpath probe here because 27546 * we have resolved the address without 27547 * using Neighbor Discovery. 27548 * In the non-XRESOLV v6 case, the fastpath 27549 * probe is done right after neighbor 27550 * discovery completes. 27551 */ 27552 if (nce->nce_res_mp != NULL) { 27553 int res; 27554 nce_fastpath_list_add(nce); 27555 res = ill_fastpath_probe(ill, 27556 nce->nce_res_mp); 27557 if (res != 0 && res != EAGAIN) 27558 nce_fastpath_list_delete(nce); 27559 } 27560 27561 ire_add_then_send(q, ire, mp); 27562 /* 27563 * Now we have to clean out any packets 27564 * that may have been queued on the nce 27565 * while it was waiting for address resolution 27566 * to complete. 27567 */ 27568 mutex_enter(&nce->nce_lock); 27569 mp1 = nce->nce_qd_mp; 27570 nce->nce_qd_mp = NULL; 27571 mutex_exit(&nce->nce_lock); 27572 while (mp1 != NULL) { 27573 mblk_t *nxt_mp; 27574 queue_t *fwdq = NULL; 27575 ill_t *inbound_ill; 27576 uint_t ifindex; 27577 27578 nxt_mp = mp1->b_next; 27579 mp1->b_next = NULL; 27580 /* 27581 * Retrieve ifindex stored in 27582 * ip_rput_data_v6() 27583 */ 27584 ifindex = 27585 (uint_t)(uintptr_t)mp1->b_prev; 27586 inbound_ill = 27587 ill_lookup_on_ifindex(ifindex, 27588 B_TRUE, NULL, NULL, NULL, 27589 NULL, ipst); 27590 mp1->b_prev = NULL; 27591 if (inbound_ill != NULL) 27592 fwdq = inbound_ill->ill_rq; 27593 27594 if (fwdq != NULL) { 27595 put(fwdq, mp1); 27596 ill_refrele(inbound_ill); 27597 } else 27598 put(WR(ill->ill_rq), mp1); 27599 mp1 = nxt_mp; 27600 } 27601 NCE_REFRELE(nce); 27602 } else { /* nce is NULL; clean up */ 27603 ire_delete(ire); 27604 freemsg(mp); 27605 freemsg(mp1); 27606 return; 27607 } 27608 } else { 27609 nce_t *arpce; 27610 /* 27611 * Link layer resolution succeeded. Recompute the 27612 * ire_nce. 27613 */ 27614 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27615 if ((arpce = ndp_lookup_v4(ill, 27616 (ire->ire_gateway_addr != INADDR_ANY ? 27617 &ire->ire_gateway_addr : &ire->ire_addr), 27618 B_FALSE)) == NULL) { 27619 freeb(ire->ire_mp); 27620 freeb(mp1); 27621 freemsg(mp); 27622 return; 27623 } 27624 mutex_enter(&arpce->nce_lock); 27625 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27626 if (arpce->nce_state == ND_REACHABLE) { 27627 /* 27628 * Someone resolved this before us; 27629 * cleanup the res_mp. Since ire has 27630 * not been added yet, the call to ire_add_v4 27631 * from ire_add_then_send (when a dup is 27632 * detected) will clean up the ire. 27633 */ 27634 freeb(mp1); 27635 } else { 27636 ASSERT(arpce->nce_res_mp == NULL); 27637 arpce->nce_res_mp = mp1; 27638 arpce->nce_state = ND_REACHABLE; 27639 } 27640 mutex_exit(&arpce->nce_lock); 27641 if (ire->ire_marks & IRE_MARK_NOADD) { 27642 /* 27643 * this ire will not be added to the ire 27644 * cache table, so we can set the ire_nce 27645 * here, as there are no atomicity constraints. 27646 */ 27647 ire->ire_nce = arpce; 27648 /* 27649 * We are associating this nce with the ire 27650 * so change the nce ref taken in 27651 * ndp_lookup_v4() from 27652 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27653 */ 27654 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27655 } else { 27656 NCE_REFRELE(arpce); 27657 } 27658 ire_add_then_send(q, ire, mp); 27659 } 27660 return; /* All is well, the packet has been sent. */ 27661 } 27662 case IRE_ARPRESOLVE_TYPE: { 27663 27664 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27665 break; 27666 mp1 = mp->b_cont; /* dl_unitdata_req */ 27667 mp->b_cont = NULL; 27668 /* 27669 * First, check to make sure the resolution succeeded. 27670 * If it failed, the second mblk will be empty. 27671 */ 27672 if (mp1->b_rptr == mp1->b_wptr) { 27673 /* cleanup the incomplete ire, free queued packets */ 27674 freemsg(mp); /* fake ire */ 27675 freeb(mp1); /* dl_unitdata response */ 27676 return; 27677 } 27678 27679 /* 27680 * update any incomplete nce_t found. we lookup the ctable 27681 * and find the nce from the ire->ire_nce because we need 27682 * to pass the ire to ip_xmit_v4 later, and can find both 27683 * ire and nce in one lookup from the ctable. 27684 */ 27685 fake_ire = (ire_t *)mp->b_rptr; 27686 /* 27687 * By the time we come back here from ARP 27688 * the logical outgoing interface of the incomplete ire 27689 * we added in ire_forward could have disappeared, 27690 * causing the incomplete ire to also have 27691 * dissapeared. So we need to retreive the 27692 * proper ipif for the ire before looking 27693 * in ctable; do the ctablelookup based on ire_ipif_seqid 27694 */ 27695 ill = q->q_ptr; 27696 27697 /* Get the outgoing ipif */ 27698 mutex_enter(&ill->ill_lock); 27699 if (ill->ill_state_flags & ILL_CONDEMNED) { 27700 mutex_exit(&ill->ill_lock); 27701 freemsg(mp); /* fake ire */ 27702 freeb(mp1); /* dl_unitdata response */ 27703 return; 27704 } 27705 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27706 27707 if (ipif == NULL) { 27708 mutex_exit(&ill->ill_lock); 27709 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27710 freemsg(mp); 27711 freeb(mp1); 27712 return; 27713 } 27714 ipif_refhold_locked(ipif); 27715 mutex_exit(&ill->ill_lock); 27716 ire = ire_ctable_lookup(fake_ire->ire_addr, 27717 fake_ire->ire_gateway_addr, IRE_CACHE, 27718 ipif, fake_ire->ire_zoneid, NULL, 27719 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27720 ipif_refrele(ipif); 27721 if (ire == NULL) { 27722 /* 27723 * no ire was found; check if there is an nce 27724 * for this lookup; if it has no ire's pointing at it 27725 * cleanup. 27726 */ 27727 if ((nce = ndp_lookup_v4(ill, 27728 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27729 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27730 B_FALSE)) != NULL) { 27731 /* 27732 * cleanup: 27733 * We check for refcnt 2 (one for the nce 27734 * hash list + 1 for the ref taken by 27735 * ndp_lookup_v4) to check that there are 27736 * no ire's pointing at the nce. 27737 */ 27738 if (nce->nce_refcnt == 2) 27739 ndp_delete(nce); 27740 NCE_REFRELE(nce); 27741 } 27742 freeb(mp1); /* dl_unitdata response */ 27743 freemsg(mp); /* fake ire */ 27744 return; 27745 } 27746 nce = ire->ire_nce; 27747 DTRACE_PROBE2(ire__arpresolve__type, 27748 ire_t *, ire, nce_t *, nce); 27749 ASSERT(nce->nce_state != ND_INITIAL); 27750 mutex_enter(&nce->nce_lock); 27751 nce->nce_last = TICK_TO_MSEC(lbolt64); 27752 if (nce->nce_state == ND_REACHABLE) { 27753 /* 27754 * Someone resolved this before us; 27755 * our response is not needed any more. 27756 */ 27757 mutex_exit(&nce->nce_lock); 27758 freeb(mp1); /* dl_unitdata response */ 27759 } else { 27760 ASSERT(nce->nce_res_mp == NULL); 27761 nce->nce_res_mp = mp1; 27762 nce->nce_state = ND_REACHABLE; 27763 mutex_exit(&nce->nce_lock); 27764 nce_fastpath(nce); 27765 } 27766 /* 27767 * The cached nce_t has been updated to be reachable; 27768 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27769 */ 27770 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27771 freemsg(mp); 27772 /* 27773 * send out queued packets. 27774 */ 27775 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27776 27777 IRE_REFRELE(ire); 27778 return; 27779 } 27780 default: 27781 break; 27782 } 27783 if (q->q_next) { 27784 putnext(q, mp); 27785 } else 27786 freemsg(mp); 27787 return; 27788 27789 protonak: 27790 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27791 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27792 qreply(q, mp); 27793 } 27794 27795 /* 27796 * Process IP options in an outbound packet. Modify the destination if there 27797 * is a source route option. 27798 * Returns non-zero if something fails in which case an ICMP error has been 27799 * sent and mp freed. 27800 */ 27801 static int 27802 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27803 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27804 { 27805 ipoptp_t opts; 27806 uchar_t *opt; 27807 uint8_t optval; 27808 uint8_t optlen; 27809 ipaddr_t dst; 27810 intptr_t code = 0; 27811 mblk_t *mp; 27812 ire_t *ire = NULL; 27813 27814 ip2dbg(("ip_wput_options\n")); 27815 mp = ipsec_mp; 27816 if (mctl_present) { 27817 mp = ipsec_mp->b_cont; 27818 } 27819 27820 dst = ipha->ipha_dst; 27821 for (optval = ipoptp_first(&opts, ipha); 27822 optval != IPOPT_EOL; 27823 optval = ipoptp_next(&opts)) { 27824 opt = opts.ipoptp_cur; 27825 optlen = opts.ipoptp_len; 27826 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27827 optval, optlen)); 27828 switch (optval) { 27829 uint32_t off; 27830 case IPOPT_SSRR: 27831 case IPOPT_LSRR: 27832 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27833 ip1dbg(( 27834 "ip_wput_options: bad option offset\n")); 27835 code = (char *)&opt[IPOPT_OLEN] - 27836 (char *)ipha; 27837 goto param_prob; 27838 } 27839 off = opt[IPOPT_OFFSET]; 27840 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27841 ntohl(dst))); 27842 /* 27843 * For strict: verify that dst is directly 27844 * reachable. 27845 */ 27846 if (optval == IPOPT_SSRR) { 27847 ire = ire_ftable_lookup(dst, 0, 0, 27848 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27849 MBLK_GETLABEL(mp), 27850 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27851 if (ire == NULL) { 27852 ip1dbg(("ip_wput_options: SSRR not" 27853 " directly reachable: 0x%x\n", 27854 ntohl(dst))); 27855 goto bad_src_route; 27856 } 27857 ire_refrele(ire); 27858 } 27859 break; 27860 case IPOPT_RR: 27861 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27862 ip1dbg(( 27863 "ip_wput_options: bad option offset\n")); 27864 code = (char *)&opt[IPOPT_OLEN] - 27865 (char *)ipha; 27866 goto param_prob; 27867 } 27868 break; 27869 case IPOPT_TS: 27870 /* 27871 * Verify that length >=5 and that there is either 27872 * room for another timestamp or that the overflow 27873 * counter is not maxed out. 27874 */ 27875 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27876 if (optlen < IPOPT_MINLEN_IT) { 27877 goto param_prob; 27878 } 27879 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27880 ip1dbg(( 27881 "ip_wput_options: bad option offset\n")); 27882 code = (char *)&opt[IPOPT_OFFSET] - 27883 (char *)ipha; 27884 goto param_prob; 27885 } 27886 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27887 case IPOPT_TS_TSONLY: 27888 off = IPOPT_TS_TIMELEN; 27889 break; 27890 case IPOPT_TS_TSANDADDR: 27891 case IPOPT_TS_PRESPEC: 27892 case IPOPT_TS_PRESPEC_RFC791: 27893 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27894 break; 27895 default: 27896 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27897 (char *)ipha; 27898 goto param_prob; 27899 } 27900 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27901 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27902 /* 27903 * No room and the overflow counter is 15 27904 * already. 27905 */ 27906 goto param_prob; 27907 } 27908 break; 27909 } 27910 } 27911 27912 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27913 return (0); 27914 27915 ip1dbg(("ip_wput_options: error processing IP options.")); 27916 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27917 27918 param_prob: 27919 /* 27920 * Since ip_wput() isn't close to finished, we fill 27921 * in enough of the header for credible error reporting. 27922 */ 27923 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27924 /* Failed */ 27925 freemsg(ipsec_mp); 27926 return (-1); 27927 } 27928 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27929 return (-1); 27930 27931 bad_src_route: 27932 /* 27933 * Since ip_wput() isn't close to finished, we fill 27934 * in enough of the header for credible error reporting. 27935 */ 27936 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27937 /* Failed */ 27938 freemsg(ipsec_mp); 27939 return (-1); 27940 } 27941 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27942 return (-1); 27943 } 27944 27945 /* 27946 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27947 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27948 * thru /etc/system. 27949 */ 27950 #define CONN_MAXDRAINCNT 64 27951 27952 static void 27953 conn_drain_init(ip_stack_t *ipst) 27954 { 27955 int i; 27956 27957 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27958 27959 if ((ipst->ips_conn_drain_list_cnt == 0) || 27960 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27961 /* 27962 * Default value of the number of drainers is the 27963 * number of cpus, subject to maximum of 8 drainers. 27964 */ 27965 if (boot_max_ncpus != -1) 27966 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27967 else 27968 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27969 } 27970 27971 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27972 sizeof (idl_t), KM_SLEEP); 27973 27974 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 27975 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 27976 MUTEX_DEFAULT, NULL); 27977 } 27978 } 27979 27980 static void 27981 conn_drain_fini(ip_stack_t *ipst) 27982 { 27983 int i; 27984 27985 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 27986 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 27987 kmem_free(ipst->ips_conn_drain_list, 27988 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27989 ipst->ips_conn_drain_list = NULL; 27990 } 27991 27992 /* 27993 * Note: For an overview of how flowcontrol is handled in IP please see the 27994 * IP Flowcontrol notes at the top of this file. 27995 * 27996 * Flow control has blocked us from proceeding. Insert the given conn in one 27997 * of the conn drain lists. These conn wq's will be qenabled later on when 27998 * STREAMS flow control does a backenable. conn_walk_drain will enable 27999 * the first conn in each of these drain lists. Each of these qenabled conns 28000 * in turn enables the next in the list, after it runs, or when it closes, 28001 * thus sustaining the drain process. 28002 * 28003 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28004 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28005 * running at any time, on a given conn, since there can be only 1 service proc 28006 * running on a queue at any time. 28007 */ 28008 void 28009 conn_drain_insert(conn_t *connp) 28010 { 28011 idl_t *idl; 28012 uint_t index; 28013 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28014 28015 mutex_enter(&connp->conn_lock); 28016 if (connp->conn_state_flags & CONN_CLOSING) { 28017 /* 28018 * The conn is closing as a result of which CONN_CLOSING 28019 * is set. Return. 28020 */ 28021 mutex_exit(&connp->conn_lock); 28022 return; 28023 } else if (connp->conn_idl == NULL) { 28024 /* 28025 * Assign the next drain list round robin. We dont' use 28026 * a lock, and thus it may not be strictly round robin. 28027 * Atomicity of load/stores is enough to make sure that 28028 * conn_drain_list_index is always within bounds. 28029 */ 28030 index = ipst->ips_conn_drain_list_index; 28031 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28032 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28033 index++; 28034 if (index == ipst->ips_conn_drain_list_cnt) 28035 index = 0; 28036 ipst->ips_conn_drain_list_index = index; 28037 } 28038 mutex_exit(&connp->conn_lock); 28039 28040 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28041 if ((connp->conn_drain_prev != NULL) || 28042 (connp->conn_state_flags & CONN_CLOSING)) { 28043 /* 28044 * The conn is already in the drain list, OR 28045 * the conn is closing. We need to check again for 28046 * the closing case again since close can happen 28047 * after we drop the conn_lock, and before we 28048 * acquire the CONN_DRAIN_LIST_LOCK. 28049 */ 28050 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28051 return; 28052 } else { 28053 idl = connp->conn_idl; 28054 } 28055 28056 /* 28057 * The conn is not in the drain list. Insert it at the 28058 * tail of the drain list. The drain list is circular 28059 * and doubly linked. idl_conn points to the 1st element 28060 * in the list. 28061 */ 28062 if (idl->idl_conn == NULL) { 28063 idl->idl_conn = connp; 28064 connp->conn_drain_next = connp; 28065 connp->conn_drain_prev = connp; 28066 } else { 28067 conn_t *head = idl->idl_conn; 28068 28069 connp->conn_drain_next = head; 28070 connp->conn_drain_prev = head->conn_drain_prev; 28071 head->conn_drain_prev->conn_drain_next = connp; 28072 head->conn_drain_prev = connp; 28073 } 28074 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28075 } 28076 28077 /* 28078 * This conn is closing, and we are called from ip_close. OR 28079 * This conn has been serviced by ip_wsrv, and we need to do the tail 28080 * processing. 28081 * If this conn is part of the drain list, we may need to sustain the drain 28082 * process by qenabling the next conn in the drain list. We may also need to 28083 * remove this conn from the list, if it is done. 28084 */ 28085 static void 28086 conn_drain_tail(conn_t *connp, boolean_t closing) 28087 { 28088 idl_t *idl; 28089 28090 /* 28091 * connp->conn_idl is stable at this point, and no lock is needed 28092 * to check it. If we are called from ip_close, close has already 28093 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28094 * called us only because conn_idl is non-null. If we are called thru 28095 * service, conn_idl could be null, but it cannot change because 28096 * service is single-threaded per queue, and there cannot be another 28097 * instance of service trying to call conn_drain_insert on this conn 28098 * now. 28099 */ 28100 ASSERT(!closing || (connp->conn_idl != NULL)); 28101 28102 /* 28103 * If connp->conn_idl is null, the conn has not been inserted into any 28104 * drain list even once since creation of the conn. Just return. 28105 */ 28106 if (connp->conn_idl == NULL) 28107 return; 28108 28109 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28110 28111 if (connp->conn_drain_prev == NULL) { 28112 /* This conn is currently not in the drain list. */ 28113 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28114 return; 28115 } 28116 idl = connp->conn_idl; 28117 if (idl->idl_conn_draining == connp) { 28118 /* 28119 * This conn is the current drainer. If this is the last conn 28120 * in the drain list, we need to do more checks, in the 'if' 28121 * below. Otherwwise we need to just qenable the next conn, 28122 * to sustain the draining, and is handled in the 'else' 28123 * below. 28124 */ 28125 if (connp->conn_drain_next == idl->idl_conn) { 28126 /* 28127 * This conn is the last in this list. This round 28128 * of draining is complete. If idl_repeat is set, 28129 * it means another flow enabling has happened from 28130 * the driver/streams and we need to another round 28131 * of draining. 28132 * If there are more than 2 conns in the drain list, 28133 * do a left rotate by 1, so that all conns except the 28134 * conn at the head move towards the head by 1, and the 28135 * the conn at the head goes to the tail. This attempts 28136 * a more even share for all queues that are being 28137 * drained. 28138 */ 28139 if ((connp->conn_drain_next != connp) && 28140 (idl->idl_conn->conn_drain_next != connp)) { 28141 idl->idl_conn = idl->idl_conn->conn_drain_next; 28142 } 28143 if (idl->idl_repeat) { 28144 qenable(idl->idl_conn->conn_wq); 28145 idl->idl_conn_draining = idl->idl_conn; 28146 idl->idl_repeat = 0; 28147 } else { 28148 idl->idl_conn_draining = NULL; 28149 } 28150 } else { 28151 /* 28152 * If the next queue that we are now qenable'ing, 28153 * is closing, it will remove itself from this list 28154 * and qenable the subsequent queue in ip_close(). 28155 * Serialization is acheived thru idl_lock. 28156 */ 28157 qenable(connp->conn_drain_next->conn_wq); 28158 idl->idl_conn_draining = connp->conn_drain_next; 28159 } 28160 } 28161 if (!connp->conn_did_putbq || closing) { 28162 /* 28163 * Remove ourself from the drain list, if we did not do 28164 * a putbq, or if the conn is closing. 28165 * Note: It is possible that q->q_first is non-null. It means 28166 * that these messages landed after we did a enableok() in 28167 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28168 * service them. 28169 */ 28170 if (connp->conn_drain_next == connp) { 28171 /* Singleton in the list */ 28172 ASSERT(connp->conn_drain_prev == connp); 28173 idl->idl_conn = NULL; 28174 idl->idl_conn_draining = NULL; 28175 } else { 28176 connp->conn_drain_prev->conn_drain_next = 28177 connp->conn_drain_next; 28178 connp->conn_drain_next->conn_drain_prev = 28179 connp->conn_drain_prev; 28180 if (idl->idl_conn == connp) 28181 idl->idl_conn = connp->conn_drain_next; 28182 ASSERT(idl->idl_conn_draining != connp); 28183 28184 } 28185 connp->conn_drain_next = NULL; 28186 connp->conn_drain_prev = NULL; 28187 } 28188 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28189 } 28190 28191 /* 28192 * Write service routine. Shared perimeter entry point. 28193 * ip_wsrv can be called in any of the following ways. 28194 * 1. The device queue's messages has fallen below the low water mark 28195 * and STREAMS has backenabled the ill_wq. We walk thru all the 28196 * the drain lists and backenable the first conn in each list. 28197 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28198 * qenabled non-tcp upper layers. We start dequeing messages and call 28199 * ip_wput for each message. 28200 */ 28201 28202 void 28203 ip_wsrv(queue_t *q) 28204 { 28205 conn_t *connp; 28206 ill_t *ill; 28207 mblk_t *mp; 28208 28209 if (q->q_next) { 28210 ill = (ill_t *)q->q_ptr; 28211 if (ill->ill_state_flags == 0) { 28212 /* 28213 * The device flow control has opened up. 28214 * Walk through conn drain lists and qenable the 28215 * first conn in each list. This makes sense only 28216 * if the stream is fully plumbed and setup. 28217 * Hence the if check above. 28218 */ 28219 ip1dbg(("ip_wsrv: walking\n")); 28220 conn_walk_drain(ill->ill_ipst); 28221 } 28222 return; 28223 } 28224 28225 connp = Q_TO_CONN(q); 28226 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28227 28228 /* 28229 * 1. Set conn_draining flag to signal that service is active. 28230 * 28231 * 2. ip_output determines whether it has been called from service, 28232 * based on the last parameter. If it is IP_WSRV it concludes it 28233 * has been called from service. 28234 * 28235 * 3. Message ordering is preserved by the following logic. 28236 * i. A directly called ip_output (i.e. not thru service) will queue 28237 * the message at the tail, if conn_draining is set (i.e. service 28238 * is running) or if q->q_first is non-null. 28239 * 28240 * ii. If ip_output is called from service, and if ip_output cannot 28241 * putnext due to flow control, it does a putbq. 28242 * 28243 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28244 * (causing an infinite loop). 28245 */ 28246 ASSERT(!connp->conn_did_putbq); 28247 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28248 connp->conn_draining = 1; 28249 noenable(q); 28250 while ((mp = getq(q)) != NULL) { 28251 ASSERT(CONN_Q(q)); 28252 28253 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28254 if (connp->conn_did_putbq) { 28255 /* ip_wput did a putbq */ 28256 break; 28257 } 28258 } 28259 /* 28260 * At this point, a thread coming down from top, calling 28261 * ip_wput, may end up queueing the message. We have not yet 28262 * enabled the queue, so ip_wsrv won't be called again. 28263 * To avoid this race, check q->q_first again (in the loop) 28264 * If the other thread queued the message before we call 28265 * enableok(), we will catch it in the q->q_first check. 28266 * If the other thread queues the message after we call 28267 * enableok(), ip_wsrv will be called again by STREAMS. 28268 */ 28269 connp->conn_draining = 0; 28270 enableok(q); 28271 } 28272 28273 /* Enable the next conn for draining */ 28274 conn_drain_tail(connp, B_FALSE); 28275 28276 connp->conn_did_putbq = 0; 28277 } 28278 28279 /* 28280 * Walk the list of all conn's calling the function provided with the 28281 * specified argument for each. Note that this only walks conn's that 28282 * have been bound. 28283 * Applies to both IPv4 and IPv6. 28284 */ 28285 static void 28286 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28287 { 28288 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28289 ipst->ips_ipcl_udp_fanout_size, 28290 func, arg, zoneid); 28291 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28292 ipst->ips_ipcl_conn_fanout_size, 28293 func, arg, zoneid); 28294 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28295 ipst->ips_ipcl_bind_fanout_size, 28296 func, arg, zoneid); 28297 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28298 IPPROTO_MAX, func, arg, zoneid); 28299 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28300 IPPROTO_MAX, func, arg, zoneid); 28301 } 28302 28303 /* 28304 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28305 * of conns that need to be drained, check if drain is already in progress. 28306 * If so set the idl_repeat bit, indicating that the last conn in the list 28307 * needs to reinitiate the drain once again, for the list. If drain is not 28308 * in progress for the list, initiate the draining, by qenabling the 1st 28309 * conn in the list. The drain is self-sustaining, each qenabled conn will 28310 * in turn qenable the next conn, when it is done/blocked/closing. 28311 */ 28312 static void 28313 conn_walk_drain(ip_stack_t *ipst) 28314 { 28315 int i; 28316 idl_t *idl; 28317 28318 IP_STAT(ipst, ip_conn_walk_drain); 28319 28320 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28321 idl = &ipst->ips_conn_drain_list[i]; 28322 mutex_enter(&idl->idl_lock); 28323 if (idl->idl_conn == NULL) { 28324 mutex_exit(&idl->idl_lock); 28325 continue; 28326 } 28327 /* 28328 * If this list is not being drained currently by 28329 * an ip_wsrv thread, start the process. 28330 */ 28331 if (idl->idl_conn_draining == NULL) { 28332 ASSERT(idl->idl_repeat == 0); 28333 qenable(idl->idl_conn->conn_wq); 28334 idl->idl_conn_draining = idl->idl_conn; 28335 } else { 28336 idl->idl_repeat = 1; 28337 } 28338 mutex_exit(&idl->idl_lock); 28339 } 28340 } 28341 28342 /* 28343 * Walk an conn hash table of `count' buckets, calling func for each entry. 28344 */ 28345 static void 28346 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28347 zoneid_t zoneid) 28348 { 28349 conn_t *connp; 28350 28351 while (count-- > 0) { 28352 mutex_enter(&connfp->connf_lock); 28353 for (connp = connfp->connf_head; connp != NULL; 28354 connp = connp->conn_next) { 28355 if (zoneid == GLOBAL_ZONEID || 28356 zoneid == connp->conn_zoneid) { 28357 CONN_INC_REF(connp); 28358 mutex_exit(&connfp->connf_lock); 28359 (*func)(connp, arg); 28360 mutex_enter(&connfp->connf_lock); 28361 CONN_DEC_REF(connp); 28362 } 28363 } 28364 mutex_exit(&connfp->connf_lock); 28365 connfp++; 28366 } 28367 } 28368 28369 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28370 static void 28371 conn_report1(conn_t *connp, void *mp) 28372 { 28373 char buf1[INET6_ADDRSTRLEN]; 28374 char buf2[INET6_ADDRSTRLEN]; 28375 uint_t print_len, buf_len; 28376 28377 ASSERT(connp != NULL); 28378 28379 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28380 if (buf_len <= 0) 28381 return; 28382 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28383 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28384 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28385 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28386 "%5d %s/%05d %s/%05d\n", 28387 (void *)connp, (void *)CONNP_TO_RQ(connp), 28388 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28389 buf1, connp->conn_lport, 28390 buf2, connp->conn_fport); 28391 if (print_len < buf_len) { 28392 ((mblk_t *)mp)->b_wptr += print_len; 28393 } else { 28394 ((mblk_t *)mp)->b_wptr += buf_len; 28395 } 28396 } 28397 28398 /* 28399 * Named Dispatch routine to produce a formatted report on all conns 28400 * that are listed in one of the fanout tables. 28401 * This report is accessed by using the ndd utility to "get" ND variable 28402 * "ip_conn_status". 28403 */ 28404 /* ARGSUSED */ 28405 static int 28406 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28407 { 28408 conn_t *connp = Q_TO_CONN(q); 28409 28410 (void) mi_mpprintf(mp, 28411 "CONN " MI_COL_HDRPAD_STR 28412 "rfq " MI_COL_HDRPAD_STR 28413 "stq " MI_COL_HDRPAD_STR 28414 " zone local remote"); 28415 28416 /* 28417 * Because of the ndd constraint, at most we can have 64K buffer 28418 * to put in all conn info. So to be more efficient, just 28419 * allocate a 64K buffer here, assuming we need that large buffer. 28420 * This should be OK as only privileged processes can do ndd /dev/ip. 28421 */ 28422 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28423 /* The following may work even if we cannot get a large buf. */ 28424 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28425 return (0); 28426 } 28427 28428 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28429 connp->conn_netstack->netstack_ip); 28430 return (0); 28431 } 28432 28433 /* 28434 * Determine if the ill and multicast aspects of that packets 28435 * "matches" the conn. 28436 */ 28437 boolean_t 28438 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28439 zoneid_t zoneid) 28440 { 28441 ill_t *in_ill; 28442 boolean_t found; 28443 ipif_t *ipif; 28444 ire_t *ire; 28445 ipaddr_t dst, src; 28446 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28447 28448 dst = ipha->ipha_dst; 28449 src = ipha->ipha_src; 28450 28451 /* 28452 * conn_incoming_ill is set by IP_BOUND_IF which limits 28453 * unicast, broadcast and multicast reception to 28454 * conn_incoming_ill. conn_wantpacket itself is called 28455 * only for BROADCAST and multicast. 28456 * 28457 * 1) ip_rput supresses duplicate broadcasts if the ill 28458 * is part of a group. Hence, we should be receiving 28459 * just one copy of broadcast for the whole group. 28460 * Thus, if it is part of the group the packet could 28461 * come on any ill of the group and hence we need a 28462 * match on the group. Otherwise, match on ill should 28463 * be sufficient. 28464 * 28465 * 2) ip_rput does not suppress duplicate multicast packets. 28466 * If there are two interfaces in a ill group and we have 28467 * 2 applications (conns) joined a multicast group G on 28468 * both the interfaces, ilm_lookup_ill filter in ip_rput 28469 * will give us two packets because we join G on both the 28470 * interfaces rather than nominating just one interface 28471 * for receiving multicast like broadcast above. So, 28472 * we have to call ilg_lookup_ill to filter out duplicate 28473 * copies, if ill is part of a group. 28474 */ 28475 in_ill = connp->conn_incoming_ill; 28476 if (in_ill != NULL) { 28477 if (in_ill->ill_group == NULL) { 28478 if (in_ill != ill) 28479 return (B_FALSE); 28480 } else if (in_ill->ill_group != ill->ill_group) { 28481 return (B_FALSE); 28482 } 28483 } 28484 28485 if (!CLASSD(dst)) { 28486 if (IPCL_ZONE_MATCH(connp, zoneid)) 28487 return (B_TRUE); 28488 /* 28489 * The conn is in a different zone; we need to check that this 28490 * broadcast address is configured in the application's zone and 28491 * on one ill in the group. 28492 */ 28493 ipif = ipif_get_next_ipif(NULL, ill); 28494 if (ipif == NULL) 28495 return (B_FALSE); 28496 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28497 connp->conn_zoneid, NULL, 28498 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28499 ipif_refrele(ipif); 28500 if (ire != NULL) { 28501 ire_refrele(ire); 28502 return (B_TRUE); 28503 } else { 28504 return (B_FALSE); 28505 } 28506 } 28507 28508 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28509 connp->conn_zoneid == zoneid) { 28510 /* 28511 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28512 * disabled, therefore we don't dispatch the multicast packet to 28513 * the sending zone. 28514 */ 28515 return (B_FALSE); 28516 } 28517 28518 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28519 /* 28520 * Multicast packet on the loopback interface: we only match 28521 * conns who joined the group in the specified zone. 28522 */ 28523 return (B_FALSE); 28524 } 28525 28526 if (connp->conn_multi_router) { 28527 /* multicast packet and multicast router socket: send up */ 28528 return (B_TRUE); 28529 } 28530 28531 mutex_enter(&connp->conn_lock); 28532 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28533 mutex_exit(&connp->conn_lock); 28534 return (found); 28535 } 28536 28537 /* 28538 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28539 */ 28540 /* ARGSUSED */ 28541 static void 28542 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28543 { 28544 ill_t *ill = (ill_t *)q->q_ptr; 28545 mblk_t *mp1, *mp2; 28546 ipif_t *ipif; 28547 int err = 0; 28548 conn_t *connp = NULL; 28549 ipsq_t *ipsq; 28550 arc_t *arc; 28551 28552 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28553 28554 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28555 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28556 28557 ASSERT(IAM_WRITER_ILL(ill)); 28558 mp2 = mp->b_cont; 28559 mp->b_cont = NULL; 28560 28561 /* 28562 * We have now received the arp bringup completion message 28563 * from ARP. Mark the arp bringup as done. Also if the arp 28564 * stream has already started closing, send up the AR_ARP_CLOSING 28565 * ack now since ARP is waiting in close for this ack. 28566 */ 28567 mutex_enter(&ill->ill_lock); 28568 ill->ill_arp_bringup_pending = 0; 28569 if (ill->ill_arp_closing) { 28570 mutex_exit(&ill->ill_lock); 28571 /* Let's reuse the mp for sending the ack */ 28572 arc = (arc_t *)mp->b_rptr; 28573 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28574 arc->arc_cmd = AR_ARP_CLOSING; 28575 qreply(q, mp); 28576 } else { 28577 mutex_exit(&ill->ill_lock); 28578 freeb(mp); 28579 } 28580 28581 ipsq = ill->ill_phyint->phyint_ipsq; 28582 ipif = ipsq->ipsq_pending_ipif; 28583 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28584 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28585 if (mp1 == NULL) { 28586 /* bringup was aborted by the user */ 28587 freemsg(mp2); 28588 return; 28589 } 28590 28591 /* 28592 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28593 * must have an associated conn_t. Otherwise, we're bringing this 28594 * interface back up as part of handling an asynchronous event (e.g., 28595 * physical address change). 28596 */ 28597 if (ipsq->ipsq_current_ioctl != 0) { 28598 ASSERT(connp != NULL); 28599 q = CONNP_TO_WQ(connp); 28600 } else { 28601 ASSERT(connp == NULL); 28602 q = ill->ill_rq; 28603 } 28604 28605 /* 28606 * If the DL_BIND_REQ fails, it is noted 28607 * in arc_name_offset. 28608 */ 28609 err = *((int *)mp2->b_rptr); 28610 if (err == 0) { 28611 if (ipif->ipif_isv6) { 28612 if ((err = ipif_up_done_v6(ipif)) != 0) 28613 ip0dbg(("ip_arp_done: init failed\n")); 28614 } else { 28615 if ((err = ipif_up_done(ipif)) != 0) 28616 ip0dbg(("ip_arp_done: init failed\n")); 28617 } 28618 } else { 28619 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28620 } 28621 28622 freemsg(mp2); 28623 28624 if ((err == 0) && (ill->ill_up_ipifs)) { 28625 err = ill_up_ipifs(ill, q, mp1); 28626 if (err == EINPROGRESS) 28627 return; 28628 } 28629 28630 if (ill->ill_up_ipifs) 28631 ill_group_cleanup(ill); 28632 28633 /* 28634 * The operation must complete without EINPROGRESS since 28635 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28636 * Otherwise, the operation will be stuck forever in the ipsq. 28637 */ 28638 ASSERT(err != EINPROGRESS); 28639 if (ipsq->ipsq_current_ioctl != 0) 28640 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28641 else 28642 ipsq_current_finish(ipsq); 28643 } 28644 28645 /* Allocate the private structure */ 28646 static int 28647 ip_priv_alloc(void **bufp) 28648 { 28649 void *buf; 28650 28651 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28652 return (ENOMEM); 28653 28654 *bufp = buf; 28655 return (0); 28656 } 28657 28658 /* Function to delete the private structure */ 28659 void 28660 ip_priv_free(void *buf) 28661 { 28662 ASSERT(buf != NULL); 28663 kmem_free(buf, sizeof (ip_priv_t)); 28664 } 28665 28666 /* 28667 * The entry point for IPPF processing. 28668 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28669 * routine just returns. 28670 * 28671 * When called, ip_process generates an ipp_packet_t structure 28672 * which holds the state information for this packet and invokes the 28673 * the classifier (via ipp_packet_process). The classification, depending on 28674 * configured filters, results in a list of actions for this packet. Invoking 28675 * an action may cause the packet to be dropped, in which case the resulting 28676 * mblk (*mpp) is NULL. proc indicates the callout position for 28677 * this packet and ill_index is the interface this packet on or will leave 28678 * on (inbound and outbound resp.). 28679 */ 28680 void 28681 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28682 { 28683 mblk_t *mp; 28684 ip_priv_t *priv; 28685 ipp_action_id_t aid; 28686 int rc = 0; 28687 ipp_packet_t *pp; 28688 #define IP_CLASS "ip" 28689 28690 /* If the classifier is not loaded, return */ 28691 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28692 return; 28693 } 28694 28695 mp = *mpp; 28696 ASSERT(mp != NULL); 28697 28698 /* Allocate the packet structure */ 28699 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28700 if (rc != 0) { 28701 *mpp = NULL; 28702 freemsg(mp); 28703 return; 28704 } 28705 28706 /* Allocate the private structure */ 28707 rc = ip_priv_alloc((void **)&priv); 28708 if (rc != 0) { 28709 *mpp = NULL; 28710 freemsg(mp); 28711 ipp_packet_free(pp); 28712 return; 28713 } 28714 priv->proc = proc; 28715 priv->ill_index = ill_index; 28716 ipp_packet_set_private(pp, priv, ip_priv_free); 28717 ipp_packet_set_data(pp, mp); 28718 28719 /* Invoke the classifier */ 28720 rc = ipp_packet_process(&pp); 28721 if (pp != NULL) { 28722 mp = ipp_packet_get_data(pp); 28723 ipp_packet_free(pp); 28724 if (rc != 0) { 28725 freemsg(mp); 28726 *mpp = NULL; 28727 } 28728 } else { 28729 *mpp = NULL; 28730 } 28731 #undef IP_CLASS 28732 } 28733 28734 /* 28735 * Propagate a multicast group membership operation (add/drop) on 28736 * all the interfaces crossed by the related multirt routes. 28737 * The call is considered successful if the operation succeeds 28738 * on at least one interface. 28739 */ 28740 static int 28741 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28742 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28743 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28744 mblk_t *first_mp) 28745 { 28746 ire_t *ire_gw; 28747 irb_t *irb; 28748 int error = 0; 28749 opt_restart_t *or; 28750 ip_stack_t *ipst = ire->ire_ipst; 28751 28752 irb = ire->ire_bucket; 28753 ASSERT(irb != NULL); 28754 28755 ASSERT(DB_TYPE(first_mp) == M_CTL); 28756 28757 or = (opt_restart_t *)first_mp->b_rptr; 28758 IRB_REFHOLD(irb); 28759 for (; ire != NULL; ire = ire->ire_next) { 28760 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28761 continue; 28762 if (ire->ire_addr != group) 28763 continue; 28764 28765 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28766 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28767 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28768 /* No resolver exists for the gateway; skip this ire. */ 28769 if (ire_gw == NULL) 28770 continue; 28771 28772 /* 28773 * This function can return EINPROGRESS. If so the operation 28774 * will be restarted from ip_restart_optmgmt which will 28775 * call ip_opt_set and option processing will restart for 28776 * this option. So we may end up calling 'fn' more than once. 28777 * This requires that 'fn' is idempotent except for the 28778 * return value. The operation is considered a success if 28779 * it succeeds at least once on any one interface. 28780 */ 28781 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28782 NULL, fmode, src, first_mp); 28783 if (error == 0) 28784 or->or_private = CGTP_MCAST_SUCCESS; 28785 28786 if (ip_debug > 0) { 28787 ulong_t off; 28788 char *ksym; 28789 ksym = kobj_getsymname((uintptr_t)fn, &off); 28790 ip2dbg(("ip_multirt_apply_membership: " 28791 "called %s, multirt group 0x%08x via itf 0x%08x, " 28792 "error %d [success %u]\n", 28793 ksym ? ksym : "?", 28794 ntohl(group), ntohl(ire_gw->ire_src_addr), 28795 error, or->or_private)); 28796 } 28797 28798 ire_refrele(ire_gw); 28799 if (error == EINPROGRESS) { 28800 IRB_REFRELE(irb); 28801 return (error); 28802 } 28803 } 28804 IRB_REFRELE(irb); 28805 /* 28806 * Consider the call as successful if we succeeded on at least 28807 * one interface. Otherwise, return the last encountered error. 28808 */ 28809 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28810 } 28811 28812 28813 /* 28814 * Issue a warning regarding a route crossing an interface with an 28815 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28816 * amount of time is logged. 28817 */ 28818 static void 28819 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28820 { 28821 hrtime_t current = gethrtime(); 28822 char buf[INET_ADDRSTRLEN]; 28823 ip_stack_t *ipst = ire->ire_ipst; 28824 28825 /* Convert interval in ms to hrtime in ns */ 28826 if (ipst->ips_multirt_bad_mtu_last_time + 28827 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28828 current) { 28829 cmn_err(CE_WARN, "ip: ignoring multiroute " 28830 "to %s, incorrect MTU %u (expected %u)\n", 28831 ip_dot_addr(ire->ire_addr, buf), 28832 ire->ire_max_frag, max_frag); 28833 28834 ipst->ips_multirt_bad_mtu_last_time = current; 28835 } 28836 } 28837 28838 28839 /* 28840 * Get the CGTP (multirouting) filtering status. 28841 * If 0, the CGTP hooks are transparent. 28842 */ 28843 /* ARGSUSED */ 28844 static int 28845 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28846 { 28847 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28848 28849 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28850 return (0); 28851 } 28852 28853 28854 /* 28855 * Set the CGTP (multirouting) filtering status. 28856 * If the status is changed from active to transparent 28857 * or from transparent to active, forward the new status 28858 * to the filtering module (if loaded). 28859 */ 28860 /* ARGSUSED */ 28861 static int 28862 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28863 cred_t *ioc_cr) 28864 { 28865 long new_value; 28866 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28867 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28868 28869 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28870 return (EPERM); 28871 28872 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28873 new_value < 0 || new_value > 1) { 28874 return (EINVAL); 28875 } 28876 28877 if ((!*ip_cgtp_filter_value) && new_value) { 28878 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28879 ipst->ips_ip_cgtp_filter_ops == NULL ? 28880 " (module not loaded)" : ""); 28881 } 28882 if (*ip_cgtp_filter_value && (!new_value)) { 28883 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28884 ipst->ips_ip_cgtp_filter_ops == NULL ? 28885 " (module not loaded)" : ""); 28886 } 28887 28888 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28889 int res; 28890 netstackid_t stackid; 28891 28892 stackid = ipst->ips_netstack->netstack_stackid; 28893 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28894 new_value); 28895 if (res) 28896 return (res); 28897 } 28898 28899 *ip_cgtp_filter_value = (boolean_t)new_value; 28900 28901 return (0); 28902 } 28903 28904 28905 /* 28906 * Return the expected CGTP hooks version number. 28907 */ 28908 int 28909 ip_cgtp_filter_supported(void) 28910 { 28911 return (ip_cgtp_filter_rev); 28912 } 28913 28914 28915 /* 28916 * CGTP hooks can be registered by invoking this function. 28917 * Checks that the version number matches. 28918 */ 28919 int 28920 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28921 { 28922 netstack_t *ns; 28923 ip_stack_t *ipst; 28924 28925 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28926 return (ENOTSUP); 28927 28928 ns = netstack_find_by_stackid(stackid); 28929 if (ns == NULL) 28930 return (EINVAL); 28931 ipst = ns->netstack_ip; 28932 ASSERT(ipst != NULL); 28933 28934 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28935 netstack_rele(ns); 28936 return (EALREADY); 28937 } 28938 28939 ipst->ips_ip_cgtp_filter_ops = ops; 28940 netstack_rele(ns); 28941 return (0); 28942 } 28943 28944 /* 28945 * CGTP hooks can be unregistered by invoking this function. 28946 * Returns ENXIO if there was no registration. 28947 * Returns EBUSY if the ndd variable has not been turned off. 28948 */ 28949 int 28950 ip_cgtp_filter_unregister(netstackid_t stackid) 28951 { 28952 netstack_t *ns; 28953 ip_stack_t *ipst; 28954 28955 ns = netstack_find_by_stackid(stackid); 28956 if (ns == NULL) 28957 return (EINVAL); 28958 ipst = ns->netstack_ip; 28959 ASSERT(ipst != NULL); 28960 28961 if (ipst->ips_ip_cgtp_filter) { 28962 netstack_rele(ns); 28963 return (EBUSY); 28964 } 28965 28966 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28967 netstack_rele(ns); 28968 return (ENXIO); 28969 } 28970 ipst->ips_ip_cgtp_filter_ops = NULL; 28971 netstack_rele(ns); 28972 return (0); 28973 } 28974 28975 /* 28976 * Check whether there is a CGTP filter registration. 28977 * Returns non-zero if there is a registration, otherwise returns zero. 28978 * Note: returns zero if bad stackid. 28979 */ 28980 int 28981 ip_cgtp_filter_is_registered(netstackid_t stackid) 28982 { 28983 netstack_t *ns; 28984 ip_stack_t *ipst; 28985 int ret; 28986 28987 ns = netstack_find_by_stackid(stackid); 28988 if (ns == NULL) 28989 return (0); 28990 ipst = ns->netstack_ip; 28991 ASSERT(ipst != NULL); 28992 28993 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28994 ret = 1; 28995 else 28996 ret = 0; 28997 28998 netstack_rele(ns); 28999 return (ret); 29000 } 29001 29002 static squeue_func_t 29003 ip_squeue_switch(int val) 29004 { 29005 squeue_func_t rval = squeue_fill; 29006 29007 switch (val) { 29008 case IP_SQUEUE_ENTER_NODRAIN: 29009 rval = squeue_enter_nodrain; 29010 break; 29011 case IP_SQUEUE_ENTER: 29012 rval = squeue_enter; 29013 break; 29014 default: 29015 break; 29016 } 29017 return (rval); 29018 } 29019 29020 /* ARGSUSED */ 29021 static int 29022 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29023 caddr_t addr, cred_t *cr) 29024 { 29025 int *v = (int *)addr; 29026 long new_value; 29027 29028 if (secpolicy_net_config(cr, B_FALSE) != 0) 29029 return (EPERM); 29030 29031 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29032 return (EINVAL); 29033 29034 ip_input_proc = ip_squeue_switch(new_value); 29035 *v = new_value; 29036 return (0); 29037 } 29038 29039 /* ARGSUSED */ 29040 static int 29041 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29042 caddr_t addr, cred_t *cr) 29043 { 29044 int *v = (int *)addr; 29045 long new_value; 29046 29047 if (secpolicy_net_config(cr, B_FALSE) != 0) 29048 return (EPERM); 29049 29050 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29051 return (EINVAL); 29052 29053 *v = new_value; 29054 return (0); 29055 } 29056 29057 /* 29058 * Handle changes to ipmp_hook_emulation ndd variable. 29059 * Need to update phyint_hook_ifindex. 29060 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29061 */ 29062 static void 29063 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29064 { 29065 phyint_t *phyi; 29066 phyint_t *phyi_tmp; 29067 char *groupname; 29068 int namelen; 29069 ill_t *ill; 29070 boolean_t new_group; 29071 29072 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29073 /* 29074 * Group indicies are stored in the phyint - a common structure 29075 * to both IPv4 and IPv6. 29076 */ 29077 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29078 for (; phyi != NULL; 29079 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29080 phyi, AVL_AFTER)) { 29081 /* Ignore the ones that do not have a group */ 29082 if (phyi->phyint_groupname_len == 0) 29083 continue; 29084 29085 /* 29086 * Look for other phyint in group. 29087 * Clear name/namelen so the lookup doesn't find ourselves. 29088 */ 29089 namelen = phyi->phyint_groupname_len; 29090 groupname = phyi->phyint_groupname; 29091 phyi->phyint_groupname_len = 0; 29092 phyi->phyint_groupname = NULL; 29093 29094 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29095 /* Restore */ 29096 phyi->phyint_groupname_len = namelen; 29097 phyi->phyint_groupname = groupname; 29098 29099 new_group = B_FALSE; 29100 if (ipst->ips_ipmp_hook_emulation) { 29101 /* 29102 * If the group already exists and has already 29103 * been assigned a group ifindex, we use the existing 29104 * group_ifindex, otherwise we pick a new group_ifindex 29105 * here. 29106 */ 29107 if (phyi_tmp != NULL && 29108 phyi_tmp->phyint_group_ifindex != 0) { 29109 phyi->phyint_group_ifindex = 29110 phyi_tmp->phyint_group_ifindex; 29111 } else { 29112 /* XXX We need a recovery strategy here. */ 29113 if (!ip_assign_ifindex( 29114 &phyi->phyint_group_ifindex, ipst)) 29115 cmn_err(CE_PANIC, 29116 "ip_assign_ifindex() failed"); 29117 new_group = B_TRUE; 29118 } 29119 } else { 29120 phyi->phyint_group_ifindex = 0; 29121 } 29122 if (ipst->ips_ipmp_hook_emulation) 29123 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29124 else 29125 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29126 29127 /* 29128 * For IP Filter to find out the relationship between 29129 * names and interface indicies, we need to generate 29130 * a NE_PLUMB event when a new group can appear. 29131 * We always generate events when a new interface appears 29132 * (even when ipmp_hook_emulation is set) so there 29133 * is no need to generate NE_PLUMB events when 29134 * ipmp_hook_emulation is turned off. 29135 * And since it isn't critical for IP Filter to get 29136 * the NE_UNPLUMB events we skip those here. 29137 */ 29138 if (new_group) { 29139 /* 29140 * First phyint in group - generate group PLUMB event. 29141 * Since we are not running inside the ipsq we do 29142 * the dispatch immediately. 29143 */ 29144 if (phyi->phyint_illv4 != NULL) 29145 ill = phyi->phyint_illv4; 29146 else 29147 ill = phyi->phyint_illv6; 29148 29149 if (ill != NULL) { 29150 mutex_enter(&ill->ill_lock); 29151 ill_nic_info_plumb(ill, B_TRUE); 29152 ill_nic_info_dispatch(ill); 29153 mutex_exit(&ill->ill_lock); 29154 } 29155 } 29156 } 29157 rw_exit(&ipst->ips_ill_g_lock); 29158 } 29159 29160 /* ARGSUSED */ 29161 static int 29162 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29163 caddr_t addr, cred_t *cr) 29164 { 29165 int *v = (int *)addr; 29166 long new_value; 29167 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29168 29169 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29170 return (EINVAL); 29171 29172 if (*v != new_value) { 29173 *v = new_value; 29174 ipmp_hook_emulation_changed(ipst); 29175 } 29176 return (0); 29177 } 29178 29179 static void * 29180 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29181 { 29182 kstat_t *ksp; 29183 29184 ip_stat_t template = { 29185 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29186 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29187 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29188 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29189 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29190 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29191 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29192 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29193 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29194 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29195 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29196 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29197 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29198 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29199 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29200 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29201 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29202 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29203 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29204 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29205 { "ip_opt", KSTAT_DATA_UINT64 }, 29206 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29207 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29208 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29209 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29210 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29211 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29212 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29213 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29214 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29215 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29216 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29217 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29218 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29219 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29220 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29221 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29222 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29223 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29224 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29225 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29226 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29227 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29228 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29229 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29230 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29231 }; 29232 29233 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29234 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29235 KSTAT_FLAG_VIRTUAL, stackid); 29236 29237 if (ksp == NULL) 29238 return (NULL); 29239 29240 bcopy(&template, ip_statisticsp, sizeof (template)); 29241 ksp->ks_data = (void *)ip_statisticsp; 29242 ksp->ks_private = (void *)(uintptr_t)stackid; 29243 29244 kstat_install(ksp); 29245 return (ksp); 29246 } 29247 29248 static void 29249 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29250 { 29251 if (ksp != NULL) { 29252 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29253 kstat_delete_netstack(ksp, stackid); 29254 } 29255 } 29256 29257 static void * 29258 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29259 { 29260 kstat_t *ksp; 29261 29262 ip_named_kstat_t template = { 29263 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29264 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29265 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29266 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29267 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29268 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29269 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29270 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29271 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29272 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29273 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29274 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29275 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29276 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29277 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29278 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29279 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29280 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29281 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29282 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29283 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29284 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29285 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29286 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29287 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29288 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29289 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29290 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29291 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29292 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29293 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29294 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29295 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29296 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29297 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29298 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29299 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29300 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29301 }; 29302 29303 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29304 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29305 if (ksp == NULL || ksp->ks_data == NULL) 29306 return (NULL); 29307 29308 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29309 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29310 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29311 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29312 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29313 29314 template.netToMediaEntrySize.value.i32 = 29315 sizeof (mib2_ipNetToMediaEntry_t); 29316 29317 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29318 29319 bcopy(&template, ksp->ks_data, sizeof (template)); 29320 ksp->ks_update = ip_kstat_update; 29321 ksp->ks_private = (void *)(uintptr_t)stackid; 29322 29323 kstat_install(ksp); 29324 return (ksp); 29325 } 29326 29327 static void 29328 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29329 { 29330 if (ksp != NULL) { 29331 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29332 kstat_delete_netstack(ksp, stackid); 29333 } 29334 } 29335 29336 static int 29337 ip_kstat_update(kstat_t *kp, int rw) 29338 { 29339 ip_named_kstat_t *ipkp; 29340 mib2_ipIfStatsEntry_t ipmib; 29341 ill_walk_context_t ctx; 29342 ill_t *ill; 29343 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29344 netstack_t *ns; 29345 ip_stack_t *ipst; 29346 29347 if (kp == NULL || kp->ks_data == NULL) 29348 return (EIO); 29349 29350 if (rw == KSTAT_WRITE) 29351 return (EACCES); 29352 29353 ns = netstack_find_by_stackid(stackid); 29354 if (ns == NULL) 29355 return (-1); 29356 ipst = ns->netstack_ip; 29357 if (ipst == NULL) { 29358 netstack_rele(ns); 29359 return (-1); 29360 } 29361 ipkp = (ip_named_kstat_t *)kp->ks_data; 29362 29363 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29364 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29365 ill = ILL_START_WALK_V4(&ctx, ipst); 29366 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29367 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29368 rw_exit(&ipst->ips_ill_g_lock); 29369 29370 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29371 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29372 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29373 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29374 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29375 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29376 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29377 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29378 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29379 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29380 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29381 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29382 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29383 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29384 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29385 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29386 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29387 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29388 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29389 29390 ipkp->routingDiscards.value.ui32 = 0; 29391 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29392 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29393 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29394 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29395 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29396 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29397 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29398 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29399 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29400 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29401 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29402 29403 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29404 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29405 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29406 29407 netstack_rele(ns); 29408 29409 return (0); 29410 } 29411 29412 static void * 29413 icmp_kstat_init(netstackid_t stackid) 29414 { 29415 kstat_t *ksp; 29416 29417 icmp_named_kstat_t template = { 29418 { "inMsgs", KSTAT_DATA_UINT32 }, 29419 { "inErrors", KSTAT_DATA_UINT32 }, 29420 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29421 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29422 { "inParmProbs", KSTAT_DATA_UINT32 }, 29423 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29424 { "inRedirects", KSTAT_DATA_UINT32 }, 29425 { "inEchos", KSTAT_DATA_UINT32 }, 29426 { "inEchoReps", KSTAT_DATA_UINT32 }, 29427 { "inTimestamps", KSTAT_DATA_UINT32 }, 29428 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29429 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29430 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29431 { "outMsgs", KSTAT_DATA_UINT32 }, 29432 { "outErrors", KSTAT_DATA_UINT32 }, 29433 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29434 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29435 { "outParmProbs", KSTAT_DATA_UINT32 }, 29436 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29437 { "outRedirects", KSTAT_DATA_UINT32 }, 29438 { "outEchos", KSTAT_DATA_UINT32 }, 29439 { "outEchoReps", KSTAT_DATA_UINT32 }, 29440 { "outTimestamps", KSTAT_DATA_UINT32 }, 29441 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29442 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29443 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29444 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29445 { "inUnknowns", KSTAT_DATA_UINT32 }, 29446 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29447 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29448 { "outDrops", KSTAT_DATA_UINT32 }, 29449 { "inOverFlows", KSTAT_DATA_UINT32 }, 29450 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29451 }; 29452 29453 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29454 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29455 if (ksp == NULL || ksp->ks_data == NULL) 29456 return (NULL); 29457 29458 bcopy(&template, ksp->ks_data, sizeof (template)); 29459 29460 ksp->ks_update = icmp_kstat_update; 29461 ksp->ks_private = (void *)(uintptr_t)stackid; 29462 29463 kstat_install(ksp); 29464 return (ksp); 29465 } 29466 29467 static void 29468 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29469 { 29470 if (ksp != NULL) { 29471 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29472 kstat_delete_netstack(ksp, stackid); 29473 } 29474 } 29475 29476 static int 29477 icmp_kstat_update(kstat_t *kp, int rw) 29478 { 29479 icmp_named_kstat_t *icmpkp; 29480 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29481 netstack_t *ns; 29482 ip_stack_t *ipst; 29483 29484 if ((kp == NULL) || (kp->ks_data == NULL)) 29485 return (EIO); 29486 29487 if (rw == KSTAT_WRITE) 29488 return (EACCES); 29489 29490 ns = netstack_find_by_stackid(stackid); 29491 if (ns == NULL) 29492 return (-1); 29493 ipst = ns->netstack_ip; 29494 if (ipst == NULL) { 29495 netstack_rele(ns); 29496 return (-1); 29497 } 29498 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29499 29500 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29501 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29502 icmpkp->inDestUnreachs.value.ui32 = 29503 ipst->ips_icmp_mib.icmpInDestUnreachs; 29504 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29505 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29506 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29507 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29508 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29509 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29510 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29511 icmpkp->inTimestampReps.value.ui32 = 29512 ipst->ips_icmp_mib.icmpInTimestampReps; 29513 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29514 icmpkp->inAddrMaskReps.value.ui32 = 29515 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29516 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29517 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29518 icmpkp->outDestUnreachs.value.ui32 = 29519 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29520 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29521 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29522 icmpkp->outSrcQuenchs.value.ui32 = 29523 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29524 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29525 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29526 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29527 icmpkp->outTimestamps.value.ui32 = 29528 ipst->ips_icmp_mib.icmpOutTimestamps; 29529 icmpkp->outTimestampReps.value.ui32 = 29530 ipst->ips_icmp_mib.icmpOutTimestampReps; 29531 icmpkp->outAddrMasks.value.ui32 = 29532 ipst->ips_icmp_mib.icmpOutAddrMasks; 29533 icmpkp->outAddrMaskReps.value.ui32 = 29534 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29535 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29536 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29537 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29538 icmpkp->outFragNeeded.value.ui32 = 29539 ipst->ips_icmp_mib.icmpOutFragNeeded; 29540 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29541 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29542 icmpkp->inBadRedirects.value.ui32 = 29543 ipst->ips_icmp_mib.icmpInBadRedirects; 29544 29545 netstack_rele(ns); 29546 return (0); 29547 } 29548 29549 /* 29550 * This is the fanout function for raw socket opened for SCTP. Note 29551 * that it is called after SCTP checks that there is no socket which 29552 * wants a packet. Then before SCTP handles this out of the blue packet, 29553 * this function is called to see if there is any raw socket for SCTP. 29554 * If there is and it is bound to the correct address, the packet will 29555 * be sent to that socket. Note that only one raw socket can be bound to 29556 * a port. This is assured in ipcl_sctp_hash_insert(); 29557 */ 29558 void 29559 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29560 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29561 zoneid_t zoneid) 29562 { 29563 conn_t *connp; 29564 queue_t *rq; 29565 mblk_t *first_mp; 29566 boolean_t secure; 29567 ip6_t *ip6h; 29568 ip_stack_t *ipst = recv_ill->ill_ipst; 29569 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29570 29571 first_mp = mp; 29572 if (mctl_present) { 29573 mp = first_mp->b_cont; 29574 secure = ipsec_in_is_secure(first_mp); 29575 ASSERT(mp != NULL); 29576 } else { 29577 secure = B_FALSE; 29578 } 29579 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29580 29581 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29582 if (connp == NULL) { 29583 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29584 return; 29585 } 29586 rq = connp->conn_rq; 29587 if (!canputnext(rq)) { 29588 CONN_DEC_REF(connp); 29589 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29590 freemsg(first_mp); 29591 return; 29592 } 29593 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29594 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29595 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29596 (isv4 ? ipha : NULL), ip6h, mctl_present); 29597 if (first_mp == NULL) { 29598 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29599 CONN_DEC_REF(connp); 29600 return; 29601 } 29602 } 29603 /* 29604 * We probably should not send M_CTL message up to 29605 * raw socket. 29606 */ 29607 if (mctl_present) 29608 freeb(first_mp); 29609 29610 /* Initiate IPPF processing here if needed. */ 29611 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29612 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29613 ip_process(IPP_LOCAL_IN, &mp, 29614 recv_ill->ill_phyint->phyint_ifindex); 29615 if (mp == NULL) { 29616 CONN_DEC_REF(connp); 29617 return; 29618 } 29619 } 29620 29621 if (connp->conn_recvif || connp->conn_recvslla || 29622 ((connp->conn_ip_recvpktinfo || 29623 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29624 (flags & IP_FF_IPINFO))) { 29625 int in_flags = 0; 29626 29627 /* 29628 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29629 * IPF_RECVIF. 29630 */ 29631 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29632 in_flags = IPF_RECVIF; 29633 } 29634 if (connp->conn_recvslla) { 29635 in_flags |= IPF_RECVSLLA; 29636 } 29637 if (isv4) { 29638 mp = ip_add_info(mp, recv_ill, in_flags, 29639 IPCL_ZONEID(connp), ipst); 29640 } else { 29641 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29642 if (mp == NULL) { 29643 BUMP_MIB(recv_ill->ill_ip_mib, 29644 ipIfStatsInDiscards); 29645 CONN_DEC_REF(connp); 29646 return; 29647 } 29648 } 29649 } 29650 29651 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29652 /* 29653 * We are sending the IPSEC_IN message also up. Refer 29654 * to comments above this function. 29655 * This is the SOCK_RAW, IPPROTO_SCTP case. 29656 */ 29657 (connp->conn_recv)(connp, mp, NULL); 29658 CONN_DEC_REF(connp); 29659 } 29660 29661 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29662 { \ 29663 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29664 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29665 } 29666 /* 29667 * This function should be called only if all packet processing 29668 * including fragmentation is complete. Callers of this function 29669 * must set mp->b_prev to one of these values: 29670 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29671 * prior to handing over the mp as first argument to this function. 29672 * 29673 * If the ire passed by caller is incomplete, this function 29674 * queues the packet and if necessary, sends ARP request and bails. 29675 * If the ire passed is fully resolved, we simply prepend 29676 * the link-layer header to the packet, do ipsec hw acceleration 29677 * work if necessary, and send the packet out on the wire. 29678 * 29679 * NOTE: IPsec will only call this function with fully resolved 29680 * ires if hw acceleration is involved. 29681 * TODO list : 29682 * a Handle M_MULTIDATA so that 29683 * tcp_multisend->tcp_multisend_data can 29684 * call ip_xmit_v4 directly 29685 * b Handle post-ARP work for fragments so that 29686 * ip_wput_frag can call this function. 29687 */ 29688 ipxmit_state_t 29689 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29690 { 29691 nce_t *arpce; 29692 queue_t *q; 29693 int ill_index; 29694 mblk_t *nxt_mp, *first_mp; 29695 boolean_t xmit_drop = B_FALSE; 29696 ip_proc_t proc; 29697 ill_t *out_ill; 29698 int pkt_len; 29699 29700 arpce = ire->ire_nce; 29701 ASSERT(arpce != NULL); 29702 29703 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29704 29705 mutex_enter(&arpce->nce_lock); 29706 switch (arpce->nce_state) { 29707 case ND_REACHABLE: 29708 /* If there are other queued packets, queue this packet */ 29709 if (arpce->nce_qd_mp != NULL) { 29710 if (mp != NULL) 29711 nce_queue_mp_common(arpce, mp, B_FALSE); 29712 mp = arpce->nce_qd_mp; 29713 } 29714 arpce->nce_qd_mp = NULL; 29715 mutex_exit(&arpce->nce_lock); 29716 29717 /* 29718 * Flush the queue. In the common case, where the 29719 * ARP is already resolved, it will go through the 29720 * while loop only once. 29721 */ 29722 while (mp != NULL) { 29723 29724 nxt_mp = mp->b_next; 29725 mp->b_next = NULL; 29726 ASSERT(mp->b_datap->db_type != M_CTL); 29727 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29728 /* 29729 * This info is needed for IPQOS to do COS marking 29730 * in ip_wput_attach_llhdr->ip_process. 29731 */ 29732 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29733 mp->b_prev = NULL; 29734 29735 /* set up ill index for outbound qos processing */ 29736 out_ill = ire_to_ill(ire); 29737 ill_index = out_ill->ill_phyint->phyint_ifindex; 29738 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29739 ill_index); 29740 if (first_mp == NULL) { 29741 xmit_drop = B_TRUE; 29742 BUMP_MIB(out_ill->ill_ip_mib, 29743 ipIfStatsOutDiscards); 29744 goto next_mp; 29745 } 29746 /* non-ipsec hw accel case */ 29747 if (io == NULL || !io->ipsec_out_accelerated) { 29748 /* send it */ 29749 q = ire->ire_stq; 29750 if (proc == IPP_FWD_OUT) { 29751 UPDATE_IB_PKT_COUNT(ire); 29752 } else { 29753 UPDATE_OB_PKT_COUNT(ire); 29754 } 29755 ire->ire_last_used_time = lbolt; 29756 29757 if (flow_ctl_enabled || canputnext(q)) { 29758 if (proc == IPP_FWD_OUT) { 29759 29760 BUMP_MIB(out_ill->ill_ip_mib, 29761 ipIfStatsHCOutForwDatagrams); 29762 29763 } 29764 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29765 pkt_len); 29766 29767 putnext(q, first_mp); 29768 } else { 29769 BUMP_MIB(out_ill->ill_ip_mib, 29770 ipIfStatsOutDiscards); 29771 xmit_drop = B_TRUE; 29772 freemsg(first_mp); 29773 } 29774 } else { 29775 /* 29776 * Safety Pup says: make sure this 29777 * is going to the right interface! 29778 */ 29779 ill_t *ill1 = 29780 (ill_t *)ire->ire_stq->q_ptr; 29781 int ifindex = 29782 ill1->ill_phyint->phyint_ifindex; 29783 if (ifindex != 29784 io->ipsec_out_capab_ill_index) { 29785 xmit_drop = B_TRUE; 29786 freemsg(mp); 29787 } else { 29788 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29789 pkt_len); 29790 ipsec_hw_putnext(ire->ire_stq, mp); 29791 } 29792 } 29793 next_mp: 29794 mp = nxt_mp; 29795 } /* while (mp != NULL) */ 29796 if (xmit_drop) 29797 return (SEND_FAILED); 29798 else 29799 return (SEND_PASSED); 29800 29801 case ND_INITIAL: 29802 case ND_INCOMPLETE: 29803 29804 /* 29805 * While we do send off packets to dests that 29806 * use fully-resolved CGTP routes, we do not 29807 * handle unresolved CGTP routes. 29808 */ 29809 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29810 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29811 29812 if (mp != NULL) { 29813 /* queue the packet */ 29814 nce_queue_mp_common(arpce, mp, B_FALSE); 29815 } 29816 29817 if (arpce->nce_state == ND_INCOMPLETE) { 29818 mutex_exit(&arpce->nce_lock); 29819 DTRACE_PROBE3(ip__xmit__incomplete, 29820 (ire_t *), ire, (mblk_t *), mp, 29821 (ipsec_out_t *), io); 29822 return (LOOKUP_IN_PROGRESS); 29823 } 29824 29825 arpce->nce_state = ND_INCOMPLETE; 29826 mutex_exit(&arpce->nce_lock); 29827 /* 29828 * Note that ire_add() (called from ire_forward()) 29829 * holds a ref on the ire until ARP is completed. 29830 */ 29831 29832 ire_arpresolve(ire, ire_to_ill(ire)); 29833 return (LOOKUP_IN_PROGRESS); 29834 default: 29835 ASSERT(0); 29836 mutex_exit(&arpce->nce_lock); 29837 return (LLHDR_RESLV_FAILED); 29838 } 29839 } 29840 29841 #undef UPDATE_IP_MIB_OB_COUNTERS 29842 29843 /* 29844 * Return B_TRUE if the buffers differ in length or content. 29845 * This is used for comparing extension header buffers. 29846 * Note that an extension header would be declared different 29847 * even if all that changed was the next header value in that header i.e. 29848 * what really changed is the next extension header. 29849 */ 29850 boolean_t 29851 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29852 uint_t blen) 29853 { 29854 if (!b_valid) 29855 blen = 0; 29856 29857 if (alen != blen) 29858 return (B_TRUE); 29859 if (alen == 0) 29860 return (B_FALSE); /* Both zero length */ 29861 return (bcmp(abuf, bbuf, alen)); 29862 } 29863 29864 /* 29865 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29866 * Return B_FALSE if memory allocation fails - don't change any state! 29867 */ 29868 boolean_t 29869 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29870 const void *src, uint_t srclen) 29871 { 29872 void *dst; 29873 29874 if (!src_valid) 29875 srclen = 0; 29876 29877 ASSERT(*dstlenp == 0); 29878 if (src != NULL && srclen != 0) { 29879 dst = mi_alloc(srclen, BPRI_MED); 29880 if (dst == NULL) 29881 return (B_FALSE); 29882 } else { 29883 dst = NULL; 29884 } 29885 if (*dstp != NULL) 29886 mi_free(*dstp); 29887 *dstp = dst; 29888 *dstlenp = dst == NULL ? 0 : srclen; 29889 return (B_TRUE); 29890 } 29891 29892 /* 29893 * Replace what is in *dst, *dstlen with the source. 29894 * Assumes ip_allocbuf has already been called. 29895 */ 29896 void 29897 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29898 const void *src, uint_t srclen) 29899 { 29900 if (!src_valid) 29901 srclen = 0; 29902 29903 ASSERT(*dstlenp == srclen); 29904 if (src != NULL && srclen != 0) 29905 bcopy(src, *dstp, srclen); 29906 } 29907 29908 /* 29909 * Free the storage pointed to by the members of an ip6_pkt_t. 29910 */ 29911 void 29912 ip6_pkt_free(ip6_pkt_t *ipp) 29913 { 29914 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29915 29916 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29917 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29918 ipp->ipp_hopopts = NULL; 29919 ipp->ipp_hopoptslen = 0; 29920 } 29921 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29922 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29923 ipp->ipp_rtdstopts = NULL; 29924 ipp->ipp_rtdstoptslen = 0; 29925 } 29926 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29927 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29928 ipp->ipp_dstopts = NULL; 29929 ipp->ipp_dstoptslen = 0; 29930 } 29931 if (ipp->ipp_fields & IPPF_RTHDR) { 29932 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29933 ipp->ipp_rthdr = NULL; 29934 ipp->ipp_rthdrlen = 0; 29935 } 29936 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29937 IPPF_RTHDR); 29938 } 29939