1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 #define IPV6_FRAG_TIMEOUT 60 874 875 /* 876 * Threshold which determines whether MDT should be used when 877 * generating IP fragments; payload size must be greater than 878 * this threshold for MDT to take place. 879 */ 880 #define IP_WPUT_FRAG_MDT_MIN 32768 881 882 /* Setable in /etc/system only */ 883 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 884 885 static long ip_rput_pullups; 886 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 887 888 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 889 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 890 891 int ip_debug; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 901 902 /* 903 * XXX following really should only be in a header. Would need more 904 * header and .c clean up first. 905 */ 906 extern optdb_obj_t ip_opt_obj; 907 908 ulong_t ip_squeue_enter_unbound = 0; 909 910 /* 911 * Named Dispatch Parameter Table. 912 * All of these are alterable, within the min/max values given, at run time. 913 */ 914 static ipparam_t lcl_param_arr[] = { 915 /* min max value name */ 916 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 918 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 919 { 0, 1, 0, "ip_respond_to_timestamp"}, 920 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 921 { 0, 1, 1, "ip_send_redirects"}, 922 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 923 { 0, 10, 0, "ip_mrtdebug"}, 924 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 925 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 926 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 927 { 1, 255, 255, "ip_def_ttl" }, 928 { 0, 1, 0, "ip_forward_src_routed"}, 929 { 0, 256, 32, "ip_wroff_extra" }, 930 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 931 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 932 { 0, 1, 1, "ip_path_mtu_discovery" }, 933 { 0, 240, 30, "ip_ignore_delete_time" }, 934 { 0, 1, 0, "ip_ignore_redirect" }, 935 { 0, 1, 1, "ip_output_queue" }, 936 { 1, 254, 1, "ip_broadcast_ttl" }, 937 { 0, 99999, 100, "ip_icmp_err_interval" }, 938 { 1, 99999, 10, "ip_icmp_err_burst" }, 939 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 940 { 0, 1, 0, "ip_strict_dst_multihoming" }, 941 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 942 { 0, 1, 0, "ipsec_override_persocket_policy" }, 943 { 0, 1, 1, "icmp_accept_clear_messages" }, 944 { 0, 1, 1, "igmp_accept_clear_messages" }, 945 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 946 "ip_ndp_delay_first_probe_time"}, 947 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 948 "ip_ndp_max_unicast_solicit"}, 949 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 950 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 951 { 0, 1, 0, "ip6_forward_src_routed"}, 952 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 953 { 0, 1, 1, "ip6_send_redirects"}, 954 { 0, 1, 0, "ip6_ignore_redirect" }, 955 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 956 957 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 958 959 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 960 961 { 0, 1, 1, "pim_accept_clear_messages" }, 962 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 963 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 964 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 965 { 0, 15, 0, "ip_policy_mask" }, 966 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 967 { 0, 255, 1, "ip_multirt_ttl" }, 968 { 0, 1, 1, "ip_multidata_outbound" }, 969 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 970 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 971 { 0, 1000, 1, "ip_max_temp_defend" }, 972 { 0, 1000, 3, "ip_max_defend" }, 973 { 0, 999999, 30, "ip_defend_interval" }, 974 { 0, 3600000, 300000, "ip_dup_recovery" }, 975 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 976 { 0, 1, 1, "ip_lso_outbound" }, 977 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 978 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 979 { 68, 65535, 576, "ip_pmtu_min" }, 980 #ifdef DEBUG 981 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 982 #else 983 { 0, 0, 0, "" }, 984 #endif 985 }; 986 987 /* 988 * Extended NDP table 989 * The addresses for the first two are filled in to be ips_ip_g_forward 990 * and ips_ipv6_forward at init time. 991 */ 992 static ipndp_t lcl_ndp_arr[] = { 993 /* getf setf data name */ 994 #define IPNDP_IP_FORWARDING_OFFSET 0 995 { ip_param_generic_get, ip_forward_set, NULL, 996 "ip_forwarding" }, 997 #define IPNDP_IP6_FORWARDING_OFFSET 1 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip6_forwarding" }, 1000 { ip_param_generic_get, ip_input_proc_set, 1001 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1002 { ip_param_generic_get, ip_int_set, 1003 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1004 #define IPNDP_CGTP_FILTER_OFFSET 4 1005 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1006 "ip_cgtp_filter" }, 1007 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1008 "ip_debug" }, 1009 }; 1010 1011 /* 1012 * Table of IP ioctls encoding the various properties of the ioctl and 1013 * indexed based on the last byte of the ioctl command. Occasionally there 1014 * is a clash, and there is more than 1 ioctl with the same last byte. 1015 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1016 * ioctls are encoded in the misc table. An entry in the ndx table is 1017 * retrieved by indexing on the last byte of the ioctl command and comparing 1018 * the ioctl command with the value in the ndx table. In the event of a 1019 * mismatch the misc table is then searched sequentially for the desired 1020 * ioctl command. 1021 * 1022 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1023 */ 1024 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1025 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1037 MISC_CMD, ip_siocaddrt, NULL }, 1038 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1039 MISC_CMD, ip_siocdelrt, NULL }, 1040 1041 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1042 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1043 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1044 IF_CMD, ip_sioctl_get_addr, NULL }, 1045 1046 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1047 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1048 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1049 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1050 1051 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1052 IPI_PRIV | IPI_WR, 1053 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1054 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1055 IPI_MODOK | IPI_GET_CMD, 1056 IF_CMD, ip_sioctl_get_flags, NULL }, 1057 1058 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* copyin size cannot be coded for SIOCGIFCONF */ 1062 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1063 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1064 1065 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_mtu, NULL }, 1067 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1068 IF_CMD, ip_sioctl_get_mtu, NULL }, 1069 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1070 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1071 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1072 IF_CMD, ip_sioctl_brdaddr, NULL }, 1073 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1074 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1075 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1076 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1077 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1078 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1079 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1080 IF_CMD, ip_sioctl_metric, NULL }, 1081 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* See 166-168 below for extended SIOC*XARP ioctls */ 1084 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1085 ARP_CMD, ip_sioctl_arp, NULL }, 1086 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1087 ARP_CMD, ip_sioctl_arp, NULL }, 1088 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1089 ARP_CMD, ip_sioctl_arp, NULL }, 1090 1091 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1114 MISC_CMD, if_unitsel, if_unitsel_restart }, 1115 1116 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1136 IPI_PRIV | IPI_WR | IPI_MODOK, 1137 IF_CMD, ip_sioctl_sifname, NULL }, 1138 1139 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 1153 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1154 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1155 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1156 IF_CMD, ip_sioctl_get_muxid, NULL }, 1157 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1159 1160 /* Both if and lif variants share same func */ 1161 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1162 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1163 /* Both if and lif variants share same func */ 1164 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1165 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1190 ip_sioctl_removeif_restart }, 1191 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_addif, NULL }, 1194 #define SIOCLIFADDR_NDX 112 1195 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1197 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1198 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1203 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1204 IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1206 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1207 IPI_GET_CMD | IPI_MODOK, 1208 LIF_CMD, ip_sioctl_get_flags, NULL }, 1209 1210 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 1213 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1214 ip_sioctl_get_lifconf, NULL }, 1215 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1216 LIF_CMD, ip_sioctl_mtu, NULL }, 1217 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1218 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1219 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1220 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1221 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1222 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1223 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1224 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1225 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1227 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1228 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1229 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_metric, NULL }, 1231 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR | IPI_MODOK, 1233 LIF_CMD, ip_sioctl_slifname, 1234 ip_sioctl_slifname_restart }, 1235 1236 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1237 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1238 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1239 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1240 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1241 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1242 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1243 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1244 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1246 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_token, NULL }, 1248 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1249 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1250 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1251 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1252 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1253 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1254 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1256 1257 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1258 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1259 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1260 LIF_CMD, ip_siocdelndp_v6, NULL }, 1261 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1262 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1263 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1264 LIF_CMD, ip_siocsetndp_v6, NULL }, 1265 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1266 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1267 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1268 MISC_CMD, ip_sioctl_tonlink, NULL }, 1269 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1270 MISC_CMD, ip_sioctl_tmysite, NULL }, 1271 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1272 TUN_CMD, ip_sioctl_tunparam, NULL }, 1273 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1274 IPI_PRIV | IPI_WR, 1275 TUN_CMD, ip_sioctl_tunparam, NULL }, 1276 1277 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1278 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1279 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1280 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1281 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1282 1283 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1284 1285 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1286 LIF_CMD, ip_sioctl_get_binding, NULL }, 1287 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1288 IPI_PRIV | IPI_WR, 1289 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1290 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1291 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1292 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1293 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1294 1295 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1296 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1298 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1299 1300 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1301 1302 /* These are handled in ip_sioctl_copyin_setup itself */ 1303 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1304 MISC_CMD, NULL, NULL }, 1305 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1306 MISC_CMD, NULL, NULL }, 1307 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1308 1309 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1310 ip_sioctl_get_lifconf, NULL }, 1311 1312 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1313 XARP_CMD, ip_sioctl_arp, NULL }, 1314 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1315 XARP_CMD, ip_sioctl_arp, NULL }, 1316 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1317 XARP_CMD, ip_sioctl_arp, NULL }, 1318 1319 /* SIOCPOPSOCKFS is not handled by IP */ 1320 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1321 1322 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1323 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1324 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1325 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1326 ip_sioctl_slifzone_restart }, 1327 /* 172-174 are SCTP ioctls and not handled by IP */ 1328 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1329 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1330 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1331 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1332 IPI_GET_CMD, LIF_CMD, 1333 ip_sioctl_get_lifusesrc, 0 }, 1334 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1335 IPI_PRIV | IPI_WR, 1336 LIF_CMD, ip_sioctl_slifusesrc, 1337 NULL }, 1338 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1339 ip_sioctl_get_lifsrcof, NULL }, 1340 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1341 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1342 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1343 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1344 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1345 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1346 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1347 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1348 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1349 /* SIOCSENABLESDP is handled by SDP */ 1350 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1351 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1352 }; 1353 1354 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1355 1356 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1357 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1358 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1359 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1360 TUN_CMD, ip_sioctl_tunparam, NULL }, 1361 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1362 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1363 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1364 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1365 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1366 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1367 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1368 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1369 MISC_CMD, mrt_ioctl}, 1370 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1371 MISC_CMD, mrt_ioctl}, 1372 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1373 MISC_CMD, mrt_ioctl} 1374 }; 1375 1376 int ip_misc_ioctl_count = 1377 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1378 1379 int conn_drain_nthreads; /* Number of drainers reqd. */ 1380 /* Settable in /etc/system */ 1381 /* Defined in ip_ire.c */ 1382 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1383 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1384 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1385 1386 static nv_t ire_nv_arr[] = { 1387 { IRE_BROADCAST, "BROADCAST" }, 1388 { IRE_LOCAL, "LOCAL" }, 1389 { IRE_LOOPBACK, "LOOPBACK" }, 1390 { IRE_CACHE, "CACHE" }, 1391 { IRE_DEFAULT, "DEFAULT" }, 1392 { IRE_PREFIX, "PREFIX" }, 1393 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1394 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1395 { IRE_HOST, "HOST" }, 1396 { 0 } 1397 }; 1398 1399 nv_t *ire_nv_tbl = ire_nv_arr; 1400 1401 /* Simple ICMP IP Header Template */ 1402 static ipha_t icmp_ipha = { 1403 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1404 }; 1405 1406 struct module_info ip_mod_info = { 1407 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1408 IP_MOD_LOWAT 1409 }; 1410 1411 /* 1412 * Duplicate static symbols within a module confuses mdb; so we avoid the 1413 * problem by making the symbols here distinct from those in udp.c. 1414 */ 1415 1416 /* 1417 * Entry points for IP as a device and as a module. 1418 * FIXME: down the road we might want a separate module and driver qinit. 1419 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1420 */ 1421 static struct qinit iprinitv4 = { 1422 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1423 &ip_mod_info 1424 }; 1425 1426 struct qinit iprinitv6 = { 1427 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1428 &ip_mod_info 1429 }; 1430 1431 static struct qinit ipwinitv4 = { 1432 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1433 &ip_mod_info 1434 }; 1435 1436 struct qinit ipwinitv6 = { 1437 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1438 &ip_mod_info 1439 }; 1440 1441 static struct qinit iplrinit = { 1442 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1443 &ip_mod_info 1444 }; 1445 1446 static struct qinit iplwinit = { 1447 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1448 &ip_mod_info 1449 }; 1450 1451 /* For AF_INET aka /dev/ip */ 1452 struct streamtab ipinfov4 = { 1453 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1454 }; 1455 1456 /* For AF_INET6 aka /dev/ip6 */ 1457 struct streamtab ipinfov6 = { 1458 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1459 }; 1460 1461 #ifdef DEBUG 1462 static boolean_t skip_sctp_cksum = B_FALSE; 1463 #endif 1464 1465 /* 1466 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1467 * ip_rput_v6(), ip_output(), etc. If the message 1468 * block already has a M_CTL at the front of it, then simply set the zoneid 1469 * appropriately. 1470 */ 1471 mblk_t * 1472 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1473 { 1474 mblk_t *first_mp; 1475 ipsec_out_t *io; 1476 1477 ASSERT(zoneid != ALL_ZONES); 1478 if (mp->b_datap->db_type == M_CTL) { 1479 io = (ipsec_out_t *)mp->b_rptr; 1480 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1481 io->ipsec_out_zoneid = zoneid; 1482 return (mp); 1483 } 1484 1485 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1486 if (first_mp == NULL) 1487 return (NULL); 1488 io = (ipsec_out_t *)first_mp->b_rptr; 1489 /* This is not a secure packet */ 1490 io->ipsec_out_secure = B_FALSE; 1491 io->ipsec_out_zoneid = zoneid; 1492 first_mp->b_cont = mp; 1493 return (first_mp); 1494 } 1495 1496 /* 1497 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1498 */ 1499 mblk_t * 1500 ip_copymsg(mblk_t *mp) 1501 { 1502 mblk_t *nmp; 1503 ipsec_info_t *in; 1504 1505 if (mp->b_datap->db_type != M_CTL) 1506 return (copymsg(mp)); 1507 1508 in = (ipsec_info_t *)mp->b_rptr; 1509 1510 /* 1511 * Note that M_CTL is also used for delivering ICMP error messages 1512 * upstream to transport layers. 1513 */ 1514 if (in->ipsec_info_type != IPSEC_OUT && 1515 in->ipsec_info_type != IPSEC_IN) 1516 return (copymsg(mp)); 1517 1518 nmp = copymsg(mp->b_cont); 1519 1520 if (in->ipsec_info_type == IPSEC_OUT) { 1521 return (ipsec_out_tag(mp, nmp, 1522 ((ipsec_out_t *)in)->ipsec_out_ns)); 1523 } else { 1524 return (ipsec_in_tag(mp, nmp, 1525 ((ipsec_in_t *)in)->ipsec_in_ns)); 1526 } 1527 } 1528 1529 /* Generate an ICMP fragmentation needed message. */ 1530 static void 1531 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1532 ip_stack_t *ipst) 1533 { 1534 icmph_t icmph; 1535 mblk_t *first_mp; 1536 boolean_t mctl_present; 1537 1538 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1539 1540 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1541 if (mctl_present) 1542 freeb(first_mp); 1543 return; 1544 } 1545 1546 bzero(&icmph, sizeof (icmph_t)); 1547 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1548 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1549 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1552 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1553 ipst); 1554 } 1555 1556 /* 1557 * icmp_inbound deals with ICMP messages in the following ways. 1558 * 1559 * 1) It needs to send a reply back and possibly delivering it 1560 * to the "interested" upper clients. 1561 * 2) It needs to send it to the upper clients only. 1562 * 3) It needs to change some values in IP only. 1563 * 4) It needs to change some values in IP and upper layers e.g TCP. 1564 * 1565 * We need to accomodate icmp messages coming in clear until we get 1566 * everything secure from the wire. If icmp_accept_clear_messages 1567 * is zero we check with the global policy and act accordingly. If 1568 * it is non-zero, we accept the message without any checks. But 1569 * *this does not mean* that this will be delivered to the upper 1570 * clients. By accepting we might send replies back, change our MTU 1571 * value etc. but delivery to the ULP/clients depends on their policy 1572 * dispositions. 1573 * 1574 * We handle the above 4 cases in the context of IPsec in the 1575 * following way : 1576 * 1577 * 1) Send the reply back in the same way as the request came in. 1578 * If it came in encrypted, it goes out encrypted. If it came in 1579 * clear, it goes out in clear. Thus, this will prevent chosen 1580 * plain text attack. 1581 * 2) The client may or may not expect things to come in secure. 1582 * If it comes in secure, the policy constraints are checked 1583 * before delivering it to the upper layers. If it comes in 1584 * clear, ipsec_inbound_accept_clear will decide whether to 1585 * accept this in clear or not. In both the cases, if the returned 1586 * message (IP header + 8 bytes) that caused the icmp message has 1587 * AH/ESP headers, it is sent up to AH/ESP for validation before 1588 * sending up. If there are only 8 bytes of returned message, then 1589 * upper client will not be notified. 1590 * 3) Check with global policy to see whether it matches the constaints. 1591 * But this will be done only if icmp_accept_messages_in_clear is 1592 * zero. 1593 * 4) If we need to change both in IP and ULP, then the decision taken 1594 * while affecting the values in IP and while delivering up to TCP 1595 * should be the same. 1596 * 1597 * There are two cases. 1598 * 1599 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1600 * failed), we will not deliver it to the ULP, even though they 1601 * are *willing* to accept in *clear*. This is fine as our global 1602 * disposition to icmp messages asks us reject the datagram. 1603 * 1604 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1605 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1606 * to deliver it to ULP (policy failed), it can lead to 1607 * consistency problems. The cases known at this time are 1608 * ICMP_DESTINATION_UNREACHABLE messages with following code 1609 * values : 1610 * 1611 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1612 * and Upper layer rejects. Then the communication will 1613 * come to a stop. This is solved by making similar decisions 1614 * at both levels. Currently, when we are unable to deliver 1615 * to the Upper Layer (due to policy failures) while IP has 1616 * adjusted ire_max_frag, the next outbound datagram would 1617 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1618 * will be with the right level of protection. Thus the right 1619 * value will be communicated even if we are not able to 1620 * communicate when we get from the wire initially. But this 1621 * assumes there would be at least one outbound datagram after 1622 * IP has adjusted its ire_max_frag value. To make things 1623 * simpler, we accept in clear after the validation of 1624 * AH/ESP headers. 1625 * 1626 * - Other ICMP ERRORS : We may not be able to deliver it to the 1627 * upper layer depending on the level of protection the upper 1628 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1629 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1630 * should be accepted in clear when the Upper layer expects secure. 1631 * Thus the communication may get aborted by some bad ICMP 1632 * packets. 1633 * 1634 * IPQoS Notes: 1635 * The only instance when a packet is sent for processing is when there 1636 * isn't an ICMP client and if we are interested in it. 1637 * If there is a client, IPPF processing will take place in the 1638 * ip_fanout_proto routine. 1639 * 1640 * Zones notes: 1641 * The packet is only processed in the context of the specified zone: typically 1642 * only this zone will reply to an echo request, and only interested clients in 1643 * this zone will receive a copy of the packet. This means that the caller must 1644 * call icmp_inbound() for each relevant zone. 1645 */ 1646 static void 1647 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1648 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1649 ill_t *recv_ill, zoneid_t zoneid) 1650 { 1651 icmph_t *icmph; 1652 ipha_t *ipha; 1653 int iph_hdr_length; 1654 int hdr_length; 1655 boolean_t interested; 1656 uint32_t ts; 1657 uchar_t *wptr; 1658 ipif_t *ipif; 1659 mblk_t *first_mp; 1660 ipsec_in_t *ii; 1661 timestruc_t now; 1662 uint32_t ill_index; 1663 ip_stack_t *ipst; 1664 1665 ASSERT(ill != NULL); 1666 ipst = ill->ill_ipst; 1667 1668 first_mp = mp; 1669 if (mctl_present) { 1670 mp = first_mp->b_cont; 1671 ASSERT(mp != NULL); 1672 } 1673 1674 ipha = (ipha_t *)mp->b_rptr; 1675 if (ipst->ips_icmp_accept_clear_messages == 0) { 1676 first_mp = ipsec_check_global_policy(first_mp, NULL, 1677 ipha, NULL, mctl_present, ipst->ips_netstack); 1678 if (first_mp == NULL) 1679 return; 1680 } 1681 1682 /* 1683 * On a labeled system, we have to check whether the zone itself is 1684 * permitted to receive raw traffic. 1685 */ 1686 if (is_system_labeled()) { 1687 if (zoneid == ALL_ZONES) 1688 zoneid = tsol_packet_to_zoneid(mp); 1689 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1690 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1691 zoneid)); 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1693 freemsg(first_mp); 1694 return; 1695 } 1696 } 1697 1698 /* 1699 * We have accepted the ICMP message. It means that we will 1700 * respond to the packet if needed. It may not be delivered 1701 * to the upper client depending on the policy constraints 1702 * and the disposition in ipsec_inbound_accept_clear. 1703 */ 1704 1705 ASSERT(ill != NULL); 1706 1707 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1708 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1709 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1710 /* Last chance to get real. */ 1711 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1712 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1713 freemsg(first_mp); 1714 return; 1715 } 1716 /* Refresh iph following the pullup. */ 1717 ipha = (ipha_t *)mp->b_rptr; 1718 } 1719 /* ICMP header checksum, including checksum field, should be zero. */ 1720 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1721 IP_CSUM(mp, iph_hdr_length, 0)) { 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1723 freemsg(first_mp); 1724 return; 1725 } 1726 /* The IP header will always be a multiple of four bytes */ 1727 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1728 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1729 icmph->icmph_code)); 1730 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1731 /* We will set "interested" to "true" if we want a copy */ 1732 interested = B_FALSE; 1733 switch (icmph->icmph_type) { 1734 case ICMP_ECHO_REPLY: 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1736 break; 1737 case ICMP_DEST_UNREACHABLE: 1738 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1739 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1740 interested = B_TRUE; /* Pass up to transport */ 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1742 break; 1743 case ICMP_SOURCE_QUENCH: 1744 interested = B_TRUE; /* Pass up to transport */ 1745 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1746 break; 1747 case ICMP_REDIRECT: 1748 if (!ipst->ips_ip_ignore_redirect) 1749 interested = B_TRUE; 1750 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1751 break; 1752 case ICMP_ECHO_REQUEST: 1753 /* 1754 * Whether to respond to echo requests that come in as IP 1755 * broadcasts or as IP multicast is subject to debate 1756 * (what isn't?). We aim to please, you pick it. 1757 * Default is do it. 1758 */ 1759 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1760 /* unicast: always respond */ 1761 interested = B_TRUE; 1762 } else if (CLASSD(ipha->ipha_dst)) { 1763 /* multicast: respond based on tunable */ 1764 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1765 } else if (broadcast) { 1766 /* broadcast: respond based on tunable */ 1767 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1768 } 1769 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1770 break; 1771 case ICMP_ROUTER_ADVERTISEMENT: 1772 case ICMP_ROUTER_SOLICITATION: 1773 break; 1774 case ICMP_TIME_EXCEEDED: 1775 interested = B_TRUE; /* Pass up to transport */ 1776 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1777 break; 1778 case ICMP_PARAM_PROBLEM: 1779 interested = B_TRUE; /* Pass up to transport */ 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1781 break; 1782 case ICMP_TIME_STAMP_REQUEST: 1783 /* Response to Time Stamp Requests is local policy. */ 1784 if (ipst->ips_ip_g_resp_to_timestamp && 1785 /* So is whether to respond if it was an IP broadcast. */ 1786 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1787 int tstamp_len = 3 * sizeof (uint32_t); 1788 1789 if (wptr + tstamp_len > mp->b_wptr) { 1790 if (!pullupmsg(mp, wptr + tstamp_len - 1791 mp->b_rptr)) { 1792 BUMP_MIB(ill->ill_ip_mib, 1793 ipIfStatsInDiscards); 1794 freemsg(first_mp); 1795 return; 1796 } 1797 /* Refresh ipha following the pullup. */ 1798 ipha = (ipha_t *)mp->b_rptr; 1799 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1800 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1801 } 1802 interested = B_TRUE; 1803 } 1804 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1805 break; 1806 case ICMP_TIME_STAMP_REPLY: 1807 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1808 break; 1809 case ICMP_INFO_REQUEST: 1810 /* Per RFC 1122 3.2.2.7, ignore this. */ 1811 case ICMP_INFO_REPLY: 1812 break; 1813 case ICMP_ADDRESS_MASK_REQUEST: 1814 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1815 !broadcast) && 1816 /* TODO m_pullup of complete header? */ 1817 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1818 interested = B_TRUE; 1819 } 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1821 break; 1822 case ICMP_ADDRESS_MASK_REPLY: 1823 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1824 break; 1825 default: 1826 interested = B_TRUE; /* Pass up to transport */ 1827 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1828 break; 1829 } 1830 /* See if there is an ICMP client. */ 1831 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1832 /* If there is an ICMP client and we want one too, copy it. */ 1833 mblk_t *first_mp1; 1834 1835 if (!interested) { 1836 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1837 ip_policy, recv_ill, zoneid); 1838 return; 1839 } 1840 first_mp1 = ip_copymsg(first_mp); 1841 if (first_mp1 != NULL) { 1842 ip_fanout_proto(q, first_mp1, ill, ipha, 1843 0, mctl_present, ip_policy, recv_ill, zoneid); 1844 } 1845 } else if (!interested) { 1846 freemsg(first_mp); 1847 return; 1848 } else { 1849 /* 1850 * Initiate policy processing for this packet if ip_policy 1851 * is true. 1852 */ 1853 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1854 ill_index = ill->ill_phyint->phyint_ifindex; 1855 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1856 if (mp == NULL) { 1857 if (mctl_present) { 1858 freeb(first_mp); 1859 } 1860 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1861 return; 1862 } 1863 } 1864 } 1865 /* We want to do something with it. */ 1866 /* Check db_ref to make sure we can modify the packet. */ 1867 if (mp->b_datap->db_ref > 1) { 1868 mblk_t *first_mp1; 1869 1870 first_mp1 = ip_copymsg(first_mp); 1871 freemsg(first_mp); 1872 if (!first_mp1) { 1873 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1874 return; 1875 } 1876 first_mp = first_mp1; 1877 if (mctl_present) { 1878 mp = first_mp->b_cont; 1879 ASSERT(mp != NULL); 1880 } else { 1881 mp = first_mp; 1882 } 1883 ipha = (ipha_t *)mp->b_rptr; 1884 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1885 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1886 } 1887 switch (icmph->icmph_type) { 1888 case ICMP_ADDRESS_MASK_REQUEST: 1889 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1890 if (ipif == NULL) { 1891 freemsg(first_mp); 1892 return; 1893 } 1894 /* 1895 * outging interface must be IPv4 1896 */ 1897 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1898 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1899 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1900 ipif_refrele(ipif); 1901 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1902 break; 1903 case ICMP_ECHO_REQUEST: 1904 icmph->icmph_type = ICMP_ECHO_REPLY; 1905 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1906 break; 1907 case ICMP_TIME_STAMP_REQUEST: { 1908 uint32_t *tsp; 1909 1910 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1911 tsp = (uint32_t *)wptr; 1912 tsp++; /* Skip past 'originate time' */ 1913 /* Compute # of milliseconds since midnight */ 1914 gethrestime(&now); 1915 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1916 now.tv_nsec / (NANOSEC / MILLISEC); 1917 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1918 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1919 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1920 break; 1921 } 1922 default: 1923 ipha = (ipha_t *)&icmph[1]; 1924 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1925 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1927 freemsg(first_mp); 1928 return; 1929 } 1930 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1931 ipha = (ipha_t *)&icmph[1]; 1932 } 1933 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1935 freemsg(first_mp); 1936 return; 1937 } 1938 hdr_length = IPH_HDR_LENGTH(ipha); 1939 if (hdr_length < sizeof (ipha_t)) { 1940 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1941 freemsg(first_mp); 1942 return; 1943 } 1944 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1945 if (!pullupmsg(mp, 1946 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1948 freemsg(first_mp); 1949 return; 1950 } 1951 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1952 ipha = (ipha_t *)&icmph[1]; 1953 } 1954 switch (icmph->icmph_type) { 1955 case ICMP_REDIRECT: 1956 /* 1957 * As there is no upper client to deliver, we don't 1958 * need the first_mp any more. 1959 */ 1960 if (mctl_present) { 1961 freeb(first_mp); 1962 } 1963 icmp_redirect(ill, mp); 1964 return; 1965 case ICMP_DEST_UNREACHABLE: 1966 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1967 if (!icmp_inbound_too_big(icmph, ipha, ill, 1968 zoneid, mp, iph_hdr_length, ipst)) { 1969 freemsg(first_mp); 1970 return; 1971 } 1972 /* 1973 * icmp_inbound_too_big() may alter mp. 1974 * Resynch ipha and icmph accordingly. 1975 */ 1976 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1977 ipha = (ipha_t *)&icmph[1]; 1978 } 1979 /* FALLTHRU */ 1980 default : 1981 /* 1982 * IPQoS notes: Since we have already done IPQoS 1983 * processing we don't want to do it again in 1984 * the fanout routines called by 1985 * icmp_inbound_error_fanout, hence the last 1986 * argument, ip_policy, is B_FALSE. 1987 */ 1988 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1989 ipha, iph_hdr_length, hdr_length, mctl_present, 1990 B_FALSE, recv_ill, zoneid); 1991 } 1992 return; 1993 } 1994 /* Send out an ICMP packet */ 1995 icmph->icmph_checksum = 0; 1996 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1997 if (broadcast || CLASSD(ipha->ipha_dst)) { 1998 ipif_t *ipif_chosen; 1999 /* 2000 * Make it look like it was directed to us, so we don't look 2001 * like a fool with a broadcast or multicast source address. 2002 */ 2003 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2004 /* 2005 * Make sure that we haven't grabbed an interface that's DOWN. 2006 */ 2007 if (ipif != NULL) { 2008 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2009 ipha->ipha_src, zoneid); 2010 if (ipif_chosen != NULL) { 2011 ipif_refrele(ipif); 2012 ipif = ipif_chosen; 2013 } 2014 } 2015 if (ipif == NULL) { 2016 ip0dbg(("icmp_inbound: " 2017 "No source for broadcast/multicast:\n" 2018 "\tsrc 0x%x dst 0x%x ill %p " 2019 "ipif_lcl_addr 0x%x\n", 2020 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2021 (void *)ill, 2022 ill->ill_ipif->ipif_lcl_addr)); 2023 freemsg(first_mp); 2024 return; 2025 } 2026 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2027 ipha->ipha_dst = ipif->ipif_src_addr; 2028 ipif_refrele(ipif); 2029 } 2030 /* Reset time to live. */ 2031 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2032 { 2033 /* Swap source and destination addresses */ 2034 ipaddr_t tmp; 2035 2036 tmp = ipha->ipha_src; 2037 ipha->ipha_src = ipha->ipha_dst; 2038 ipha->ipha_dst = tmp; 2039 } 2040 ipha->ipha_ident = 0; 2041 if (!IS_SIMPLE_IPH(ipha)) 2042 icmp_options_update(ipha); 2043 2044 if (!mctl_present) { 2045 /* 2046 * This packet should go out the same way as it 2047 * came in i.e in clear. To make sure that global 2048 * policy will not be applied to this in ip_wput_ire, 2049 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2050 */ 2051 ASSERT(first_mp == mp); 2052 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2053 if (first_mp == NULL) { 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2055 freemsg(mp); 2056 return; 2057 } 2058 ii = (ipsec_in_t *)first_mp->b_rptr; 2059 2060 /* This is not a secure packet */ 2061 ii->ipsec_in_secure = B_FALSE; 2062 first_mp->b_cont = mp; 2063 } else { 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2066 } 2067 ii->ipsec_in_zoneid = zoneid; 2068 ASSERT(zoneid != ALL_ZONES); 2069 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2071 return; 2072 } 2073 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2074 put(WR(q), first_mp); 2075 } 2076 2077 static ipaddr_t 2078 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2079 { 2080 conn_t *connp; 2081 connf_t *connfp; 2082 ipaddr_t nexthop_addr = INADDR_ANY; 2083 int hdr_length = IPH_HDR_LENGTH(ipha); 2084 uint16_t *up; 2085 uint32_t ports; 2086 ip_stack_t *ipst = ill->ill_ipst; 2087 2088 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2089 switch (ipha->ipha_protocol) { 2090 case IPPROTO_TCP: 2091 { 2092 tcph_t *tcph; 2093 2094 /* do a reverse lookup */ 2095 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2096 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2097 TCPS_LISTEN, ipst); 2098 break; 2099 } 2100 case IPPROTO_UDP: 2101 { 2102 uint32_t dstport, srcport; 2103 2104 ((uint16_t *)&ports)[0] = up[1]; 2105 ((uint16_t *)&ports)[1] = up[0]; 2106 2107 /* Extract ports in net byte order */ 2108 dstport = htons(ntohl(ports) & 0xFFFF); 2109 srcport = htons(ntohl(ports) >> 16); 2110 2111 connfp = &ipst->ips_ipcl_udp_fanout[ 2112 IPCL_UDP_HASH(dstport, ipst)]; 2113 mutex_enter(&connfp->connf_lock); 2114 connp = connfp->connf_head; 2115 2116 /* do a reverse lookup */ 2117 while ((connp != NULL) && 2118 (!IPCL_UDP_MATCH(connp, dstport, 2119 ipha->ipha_src, srcport, ipha->ipha_dst) || 2120 !IPCL_ZONE_MATCH(connp, zoneid))) { 2121 connp = connp->conn_next; 2122 } 2123 if (connp != NULL) 2124 CONN_INC_REF(connp); 2125 mutex_exit(&connfp->connf_lock); 2126 break; 2127 } 2128 case IPPROTO_SCTP: 2129 { 2130 in6_addr_t map_src, map_dst; 2131 2132 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2133 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2134 ((uint16_t *)&ports)[0] = up[1]; 2135 ((uint16_t *)&ports)[1] = up[0]; 2136 2137 connp = sctp_find_conn(&map_src, &map_dst, ports, 2138 zoneid, ipst->ips_netstack->netstack_sctp); 2139 if (connp == NULL) { 2140 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2141 zoneid, ports, ipha, ipst); 2142 } else { 2143 CONN_INC_REF(connp); 2144 SCTP_REFRELE(CONN2SCTP(connp)); 2145 } 2146 break; 2147 } 2148 default: 2149 { 2150 ipha_t ripha; 2151 2152 ripha.ipha_src = ipha->ipha_dst; 2153 ripha.ipha_dst = ipha->ipha_src; 2154 ripha.ipha_protocol = ipha->ipha_protocol; 2155 2156 connfp = &ipst->ips_ipcl_proto_fanout[ 2157 ipha->ipha_protocol]; 2158 mutex_enter(&connfp->connf_lock); 2159 connp = connfp->connf_head; 2160 for (connp = connfp->connf_head; connp != NULL; 2161 connp = connp->conn_next) { 2162 if (IPCL_PROTO_MATCH(connp, 2163 ipha->ipha_protocol, &ripha, ill, 2164 0, zoneid)) { 2165 CONN_INC_REF(connp); 2166 break; 2167 } 2168 } 2169 mutex_exit(&connfp->connf_lock); 2170 } 2171 } 2172 if (connp != NULL) { 2173 if (connp->conn_nexthop_set) 2174 nexthop_addr = connp->conn_nexthop_v4; 2175 CONN_DEC_REF(connp); 2176 } 2177 return (nexthop_addr); 2178 } 2179 2180 /* Table from RFC 1191 */ 2181 static int icmp_frag_size_table[] = 2182 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2183 2184 /* 2185 * Process received ICMP Packet too big. 2186 * After updating any IRE it does the fanout to any matching transport streams. 2187 * Assumes the message has been pulled up till the IP header that caused 2188 * the error. 2189 * 2190 * Returns B_FALSE on failure and B_TRUE on success. 2191 */ 2192 static boolean_t 2193 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2194 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2195 ip_stack_t *ipst) 2196 { 2197 ire_t *ire, *first_ire; 2198 int mtu, orig_mtu; 2199 int hdr_length; 2200 ipaddr_t nexthop_addr; 2201 boolean_t disable_pmtud; 2202 2203 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2204 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2205 ASSERT(ill != NULL); 2206 2207 hdr_length = IPH_HDR_LENGTH(ipha); 2208 2209 /* Drop if the original packet contained a source route */ 2210 if (ip_source_route_included(ipha)) { 2211 return (B_FALSE); 2212 } 2213 /* 2214 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2215 * header. 2216 */ 2217 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2218 mp->b_wptr) { 2219 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2220 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2222 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2223 return (B_FALSE); 2224 } 2225 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2226 ipha = (ipha_t *)&icmph[1]; 2227 } 2228 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2229 if (nexthop_addr != INADDR_ANY) { 2230 /* nexthop set */ 2231 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2232 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2233 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2234 } else { 2235 /* nexthop not set */ 2236 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2237 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2238 } 2239 2240 if (!first_ire) { 2241 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2242 ntohl(ipha->ipha_dst))); 2243 return (B_FALSE); 2244 } 2245 2246 /* Check for MTU discovery advice as described in RFC 1191 */ 2247 mtu = ntohs(icmph->icmph_du_mtu); 2248 orig_mtu = mtu; 2249 disable_pmtud = B_FALSE; 2250 2251 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2252 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2253 ire = ire->ire_next) { 2254 /* 2255 * Look for the connection to which this ICMP message is 2256 * directed. If it has the IP_NEXTHOP option set, then the 2257 * search is limited to IREs with the MATCH_IRE_PRIVATE 2258 * option. Else the search is limited to regular IREs. 2259 */ 2260 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2261 (nexthop_addr != ire->ire_gateway_addr)) || 2262 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2263 (nexthop_addr != INADDR_ANY))) 2264 continue; 2265 2266 mutex_enter(&ire->ire_lock); 2267 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2268 uint32_t length; 2269 int i; 2270 2271 /* 2272 * Use the table from RFC 1191 to figure out 2273 * the next "plateau" based on the length in 2274 * the original IP packet. 2275 */ 2276 length = ntohs(ipha->ipha_length); 2277 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2278 uint32_t, length); 2279 if (ire->ire_max_frag <= length && 2280 ire->ire_max_frag >= length - hdr_length) { 2281 /* 2282 * Handle broken BSD 4.2 systems that 2283 * return the wrong iph_length in ICMP 2284 * errors. 2285 */ 2286 length -= hdr_length; 2287 } 2288 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2289 if (length > icmp_frag_size_table[i]) 2290 break; 2291 } 2292 if (i == A_CNT(icmp_frag_size_table)) { 2293 /* Smaller than 68! */ 2294 disable_pmtud = B_TRUE; 2295 mtu = ipst->ips_ip_pmtu_min; 2296 } else { 2297 mtu = icmp_frag_size_table[i]; 2298 if (mtu < ipst->ips_ip_pmtu_min) { 2299 mtu = ipst->ips_ip_pmtu_min; 2300 disable_pmtud = B_TRUE; 2301 } 2302 } 2303 /* Fool the ULP into believing our guessed PMTU. */ 2304 icmph->icmph_du_zero = 0; 2305 icmph->icmph_du_mtu = htons(mtu); 2306 } 2307 if (disable_pmtud) 2308 ire->ire_frag_flag = 0; 2309 /* Reduce the IRE max frag value as advised. */ 2310 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2311 if (ire->ire_max_frag == mtu) { 2312 /* Decreased it */ 2313 ire->ire_marks |= IRE_MARK_PMTU; 2314 } 2315 mutex_exit(&ire->ire_lock); 2316 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2317 ire, int, orig_mtu, int, mtu); 2318 } 2319 rw_exit(&first_ire->ire_bucket->irb_lock); 2320 ire_refrele(first_ire); 2321 return (B_TRUE); 2322 } 2323 2324 /* 2325 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2326 * calls this function. 2327 */ 2328 static mblk_t * 2329 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2330 { 2331 ipha_t *ipha; 2332 icmph_t *icmph; 2333 ipha_t *in_ipha; 2334 int length; 2335 2336 ASSERT(mp->b_datap->db_type == M_DATA); 2337 2338 /* 2339 * For Self-encapsulated packets, we added an extra IP header 2340 * without the options. Inner IP header is the one from which 2341 * the outer IP header was formed. Thus, we need to remove the 2342 * outer IP header. To do this, we pullup the whole message 2343 * and overlay whatever follows the outer IP header over the 2344 * outer IP header. 2345 */ 2346 2347 if (!pullupmsg(mp, -1)) 2348 return (NULL); 2349 2350 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2351 ipha = (ipha_t *)&icmph[1]; 2352 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2353 2354 /* 2355 * The length that we want to overlay is following the inner 2356 * IP header. Subtracting the IP header + icmp header + outer 2357 * IP header's length should give us the length that we want to 2358 * overlay. 2359 */ 2360 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2361 hdr_length; 2362 /* 2363 * Overlay whatever follows the inner header over the 2364 * outer header. 2365 */ 2366 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2367 2368 /* Set the wptr to account for the outer header */ 2369 mp->b_wptr -= hdr_length; 2370 return (mp); 2371 } 2372 2373 /* 2374 * Try to pass the ICMP message upstream in case the ULP cares. 2375 * 2376 * If the packet that caused the ICMP error is secure, we send 2377 * it to AH/ESP to make sure that the attached packet has a 2378 * valid association. ipha in the code below points to the 2379 * IP header of the packet that caused the error. 2380 * 2381 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2382 * in the context of IPsec. Normally we tell the upper layer 2383 * whenever we send the ire (including ip_bind), the IPsec header 2384 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2385 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2386 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2387 * same thing. As TCP has the IPsec options size that needs to be 2388 * adjusted, we just pass the MTU unchanged. 2389 * 2390 * IFN could have been generated locally or by some router. 2391 * 2392 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2393 * This happens because IP adjusted its value of MTU on an 2394 * earlier IFN message and could not tell the upper layer, 2395 * the new adjusted value of MTU e.g. Packet was encrypted 2396 * or there was not enough information to fanout to upper 2397 * layers. Thus on the next outbound datagram, ip_wput_ire 2398 * generates the IFN, where IPsec processing has *not* been 2399 * done. 2400 * 2401 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2402 * could have generated this. This happens because ire_max_frag 2403 * value in IP was set to a new value, while the IPsec processing 2404 * was being done and after we made the fragmentation check in 2405 * ip_wput_ire. Thus on return from IPsec processing, 2406 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2407 * and generates the IFN. As IPsec processing is over, we fanout 2408 * to AH/ESP to remove the header. 2409 * 2410 * In both these cases, ipsec_in_loopback will be set indicating 2411 * that IFN was generated locally. 2412 * 2413 * ROUTER : IFN could be secure or non-secure. 2414 * 2415 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2416 * packet in error has AH/ESP headers to validate the AH/ESP 2417 * headers. AH/ESP will verify whether there is a valid SA or 2418 * not and send it back. We will fanout again if we have more 2419 * data in the packet. 2420 * 2421 * If the packet in error does not have AH/ESP, we handle it 2422 * like any other case. 2423 * 2424 * * NON_SECURE : If the packet in error has AH/ESP headers, 2425 * we attach a dummy ipsec_in and send it up to AH/ESP 2426 * for validation. AH/ESP will verify whether there is a 2427 * valid SA or not and send it back. We will fanout again if 2428 * we have more data in the packet. 2429 * 2430 * If the packet in error does not have AH/ESP, we handle it 2431 * like any other case. 2432 */ 2433 static void 2434 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2435 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2436 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2437 zoneid_t zoneid) 2438 { 2439 uint16_t *up; /* Pointer to ports in ULP header */ 2440 uint32_t ports; /* reversed ports for fanout */ 2441 ipha_t ripha; /* With reversed addresses */ 2442 mblk_t *first_mp; 2443 ipsec_in_t *ii; 2444 tcph_t *tcph; 2445 conn_t *connp; 2446 ip_stack_t *ipst; 2447 2448 ASSERT(ill != NULL); 2449 2450 ASSERT(recv_ill != NULL); 2451 ipst = recv_ill->ill_ipst; 2452 2453 first_mp = mp; 2454 if (mctl_present) { 2455 mp = first_mp->b_cont; 2456 ASSERT(mp != NULL); 2457 2458 ii = (ipsec_in_t *)first_mp->b_rptr; 2459 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2460 } else { 2461 ii = NULL; 2462 } 2463 2464 switch (ipha->ipha_protocol) { 2465 case IPPROTO_UDP: 2466 /* 2467 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2468 * transport header. 2469 */ 2470 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2471 mp->b_wptr) { 2472 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2473 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2474 goto discard_pkt; 2475 } 2476 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2477 ipha = (ipha_t *)&icmph[1]; 2478 } 2479 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2480 2481 /* 2482 * Attempt to find a client stream based on port. 2483 * Note that we do a reverse lookup since the header is 2484 * in the form we sent it out. 2485 * The ripha header is only used for the IP_UDP_MATCH and we 2486 * only set the src and dst addresses and protocol. 2487 */ 2488 ripha.ipha_src = ipha->ipha_dst; 2489 ripha.ipha_dst = ipha->ipha_src; 2490 ripha.ipha_protocol = ipha->ipha_protocol; 2491 ((uint16_t *)&ports)[0] = up[1]; 2492 ((uint16_t *)&ports)[1] = up[0]; 2493 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2494 ntohl(ipha->ipha_src), ntohs(up[0]), 2495 ntohl(ipha->ipha_dst), ntohs(up[1]), 2496 icmph->icmph_type, icmph->icmph_code)); 2497 2498 /* Have to change db_type after any pullupmsg */ 2499 DB_TYPE(mp) = M_CTL; 2500 2501 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2502 mctl_present, ip_policy, recv_ill, zoneid); 2503 return; 2504 2505 case IPPROTO_TCP: 2506 /* 2507 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2508 * transport header. 2509 */ 2510 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2511 mp->b_wptr) { 2512 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2513 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2514 goto discard_pkt; 2515 } 2516 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2517 ipha = (ipha_t *)&icmph[1]; 2518 } 2519 /* 2520 * Find a TCP client stream for this packet. 2521 * Note that we do a reverse lookup since the header is 2522 * in the form we sent it out. 2523 */ 2524 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2525 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2526 ipst); 2527 if (connp == NULL) 2528 goto discard_pkt; 2529 2530 /* Have to change db_type after any pullupmsg */ 2531 DB_TYPE(mp) = M_CTL; 2532 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2533 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2534 return; 2535 2536 case IPPROTO_SCTP: 2537 /* 2538 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2539 * transport header. 2540 */ 2541 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2542 mp->b_wptr) { 2543 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2544 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2545 goto discard_pkt; 2546 } 2547 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2548 ipha = (ipha_t *)&icmph[1]; 2549 } 2550 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2551 /* 2552 * Find a SCTP client stream for this packet. 2553 * Note that we do a reverse lookup since the header is 2554 * in the form we sent it out. 2555 * The ripha header is only used for the matching and we 2556 * only set the src and dst addresses, protocol, and version. 2557 */ 2558 ripha.ipha_src = ipha->ipha_dst; 2559 ripha.ipha_dst = ipha->ipha_src; 2560 ripha.ipha_protocol = ipha->ipha_protocol; 2561 ripha.ipha_version_and_hdr_length = 2562 ipha->ipha_version_and_hdr_length; 2563 ((uint16_t *)&ports)[0] = up[1]; 2564 ((uint16_t *)&ports)[1] = up[0]; 2565 2566 /* Have to change db_type after any pullupmsg */ 2567 DB_TYPE(mp) = M_CTL; 2568 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2569 mctl_present, ip_policy, zoneid); 2570 return; 2571 2572 case IPPROTO_ESP: 2573 case IPPROTO_AH: { 2574 int ipsec_rc; 2575 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2576 2577 /* 2578 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2579 * We will re-use the IPSEC_IN if it is already present as 2580 * AH/ESP will not affect any fields in the IPSEC_IN for 2581 * ICMP errors. If there is no IPSEC_IN, allocate a new 2582 * one and attach it in the front. 2583 */ 2584 if (ii != NULL) { 2585 /* 2586 * ip_fanout_proto_again converts the ICMP errors 2587 * that come back from AH/ESP to M_DATA so that 2588 * if it is non-AH/ESP and we do a pullupmsg in 2589 * this function, it would work. Convert it back 2590 * to M_CTL before we send up as this is a ICMP 2591 * error. This could have been generated locally or 2592 * by some router. Validate the inner IPsec 2593 * headers. 2594 * 2595 * NOTE : ill_index is used by ip_fanout_proto_again 2596 * to locate the ill. 2597 */ 2598 ASSERT(ill != NULL); 2599 ii->ipsec_in_ill_index = 2600 ill->ill_phyint->phyint_ifindex; 2601 ii->ipsec_in_rill_index = 2602 recv_ill->ill_phyint->phyint_ifindex; 2603 DB_TYPE(first_mp->b_cont) = M_CTL; 2604 } else { 2605 /* 2606 * IPSEC_IN is not present. We attach a ipsec_in 2607 * message and send up to IPsec for validating 2608 * and removing the IPsec headers. Clear 2609 * ipsec_in_secure so that when we return 2610 * from IPsec, we don't mistakenly think that this 2611 * is a secure packet came from the network. 2612 * 2613 * NOTE : ill_index is used by ip_fanout_proto_again 2614 * to locate the ill. 2615 */ 2616 ASSERT(first_mp == mp); 2617 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2618 if (first_mp == NULL) { 2619 freemsg(mp); 2620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2621 return; 2622 } 2623 ii = (ipsec_in_t *)first_mp->b_rptr; 2624 2625 /* This is not a secure packet */ 2626 ii->ipsec_in_secure = B_FALSE; 2627 first_mp->b_cont = mp; 2628 DB_TYPE(mp) = M_CTL; 2629 ASSERT(ill != NULL); 2630 ii->ipsec_in_ill_index = 2631 ill->ill_phyint->phyint_ifindex; 2632 ii->ipsec_in_rill_index = 2633 recv_ill->ill_phyint->phyint_ifindex; 2634 } 2635 ip2dbg(("icmp_inbound_error: ipsec\n")); 2636 2637 if (!ipsec_loaded(ipss)) { 2638 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2639 return; 2640 } 2641 2642 if (ipha->ipha_protocol == IPPROTO_ESP) 2643 ipsec_rc = ipsecesp_icmp_error(first_mp); 2644 else 2645 ipsec_rc = ipsecah_icmp_error(first_mp); 2646 if (ipsec_rc == IPSEC_STATUS_FAILED) 2647 return; 2648 2649 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2650 return; 2651 } 2652 default: 2653 /* 2654 * The ripha header is only used for the lookup and we 2655 * only set the src and dst addresses and protocol. 2656 */ 2657 ripha.ipha_src = ipha->ipha_dst; 2658 ripha.ipha_dst = ipha->ipha_src; 2659 ripha.ipha_protocol = ipha->ipha_protocol; 2660 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2661 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2662 ntohl(ipha->ipha_dst), 2663 icmph->icmph_type, icmph->icmph_code)); 2664 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2665 ipha_t *in_ipha; 2666 2667 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2668 mp->b_wptr) { 2669 if (!pullupmsg(mp, (uchar_t *)ipha + 2670 hdr_length + sizeof (ipha_t) - 2671 mp->b_rptr)) { 2672 goto discard_pkt; 2673 } 2674 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2675 ipha = (ipha_t *)&icmph[1]; 2676 } 2677 /* 2678 * Caller has verified that length has to be 2679 * at least the size of IP header. 2680 */ 2681 ASSERT(hdr_length >= sizeof (ipha_t)); 2682 /* 2683 * Check the sanity of the inner IP header like 2684 * we did for the outer header. 2685 */ 2686 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2687 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2688 goto discard_pkt; 2689 } 2690 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2691 goto discard_pkt; 2692 } 2693 /* Check for Self-encapsulated tunnels */ 2694 if (in_ipha->ipha_src == ipha->ipha_src && 2695 in_ipha->ipha_dst == ipha->ipha_dst) { 2696 2697 mp = icmp_inbound_self_encap_error(mp, 2698 iph_hdr_length, hdr_length); 2699 if (mp == NULL) 2700 goto discard_pkt; 2701 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2702 ipha = (ipha_t *)&icmph[1]; 2703 hdr_length = IPH_HDR_LENGTH(ipha); 2704 /* 2705 * The packet in error is self-encapsualted. 2706 * And we are finding it further encapsulated 2707 * which we could not have possibly generated. 2708 */ 2709 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2710 goto discard_pkt; 2711 } 2712 icmp_inbound_error_fanout(q, ill, first_mp, 2713 icmph, ipha, iph_hdr_length, hdr_length, 2714 mctl_present, ip_policy, recv_ill, zoneid); 2715 return; 2716 } 2717 } 2718 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2719 ipha->ipha_protocol == IPPROTO_IPV6) && 2720 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2721 ii != NULL && 2722 ii->ipsec_in_loopback && 2723 ii->ipsec_in_secure) { 2724 /* 2725 * For IP tunnels that get a looped-back 2726 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2727 * reported new MTU to take into account the IPsec 2728 * headers protecting this configured tunnel. 2729 * 2730 * This allows the tunnel module (tun.c) to blindly 2731 * accept the MTU reported in an ICMP "too big" 2732 * message. 2733 * 2734 * Non-looped back ICMP messages will just be 2735 * handled by the security protocols (if needed), 2736 * and the first subsequent packet will hit this 2737 * path. 2738 */ 2739 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2740 ipsec_in_extra_length(first_mp)); 2741 } 2742 /* Have to change db_type after any pullupmsg */ 2743 DB_TYPE(mp) = M_CTL; 2744 2745 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2746 ip_policy, recv_ill, zoneid); 2747 return; 2748 } 2749 /* NOTREACHED */ 2750 discard_pkt: 2751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2752 drop_pkt:; 2753 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2754 freemsg(first_mp); 2755 } 2756 2757 /* 2758 * Common IP options parser. 2759 * 2760 * Setup routine: fill in *optp with options-parsing state, then 2761 * tail-call ipoptp_next to return the first option. 2762 */ 2763 uint8_t 2764 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2765 { 2766 uint32_t totallen; /* total length of all options */ 2767 2768 totallen = ipha->ipha_version_and_hdr_length - 2769 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2770 totallen <<= 2; 2771 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2772 optp->ipoptp_end = optp->ipoptp_next + totallen; 2773 optp->ipoptp_flags = 0; 2774 return (ipoptp_next(optp)); 2775 } 2776 2777 /* 2778 * Common IP options parser: extract next option. 2779 */ 2780 uint8_t 2781 ipoptp_next(ipoptp_t *optp) 2782 { 2783 uint8_t *end = optp->ipoptp_end; 2784 uint8_t *cur = optp->ipoptp_next; 2785 uint8_t opt, len, pointer; 2786 2787 /* 2788 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2789 * has been corrupted. 2790 */ 2791 ASSERT(cur <= end); 2792 2793 if (cur == end) 2794 return (IPOPT_EOL); 2795 2796 opt = cur[IPOPT_OPTVAL]; 2797 2798 /* 2799 * Skip any NOP options. 2800 */ 2801 while (opt == IPOPT_NOP) { 2802 cur++; 2803 if (cur == end) 2804 return (IPOPT_EOL); 2805 opt = cur[IPOPT_OPTVAL]; 2806 } 2807 2808 if (opt == IPOPT_EOL) 2809 return (IPOPT_EOL); 2810 2811 /* 2812 * Option requiring a length. 2813 */ 2814 if ((cur + 1) >= end) { 2815 optp->ipoptp_flags |= IPOPTP_ERROR; 2816 return (IPOPT_EOL); 2817 } 2818 len = cur[IPOPT_OLEN]; 2819 if (len < 2) { 2820 optp->ipoptp_flags |= IPOPTP_ERROR; 2821 return (IPOPT_EOL); 2822 } 2823 optp->ipoptp_cur = cur; 2824 optp->ipoptp_len = len; 2825 optp->ipoptp_next = cur + len; 2826 if (cur + len > end) { 2827 optp->ipoptp_flags |= IPOPTP_ERROR; 2828 return (IPOPT_EOL); 2829 } 2830 2831 /* 2832 * For the options which require a pointer field, make sure 2833 * its there, and make sure it points to either something 2834 * inside this option, or the end of the option. 2835 */ 2836 switch (opt) { 2837 case IPOPT_RR: 2838 case IPOPT_TS: 2839 case IPOPT_LSRR: 2840 case IPOPT_SSRR: 2841 if (len <= IPOPT_OFFSET) { 2842 optp->ipoptp_flags |= IPOPTP_ERROR; 2843 return (opt); 2844 } 2845 pointer = cur[IPOPT_OFFSET]; 2846 if (pointer - 1 > len) { 2847 optp->ipoptp_flags |= IPOPTP_ERROR; 2848 return (opt); 2849 } 2850 break; 2851 } 2852 2853 /* 2854 * Sanity check the pointer field based on the type of the 2855 * option. 2856 */ 2857 switch (opt) { 2858 case IPOPT_RR: 2859 case IPOPT_SSRR: 2860 case IPOPT_LSRR: 2861 if (pointer < IPOPT_MINOFF_SR) 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 break; 2864 case IPOPT_TS: 2865 if (pointer < IPOPT_MINOFF_IT) 2866 optp->ipoptp_flags |= IPOPTP_ERROR; 2867 /* 2868 * Note that the Internet Timestamp option also 2869 * contains two four bit fields (the Overflow field, 2870 * and the Flag field), which follow the pointer 2871 * field. We don't need to check that these fields 2872 * fall within the length of the option because this 2873 * was implicitely done above. We've checked that the 2874 * pointer value is at least IPOPT_MINOFF_IT, and that 2875 * it falls within the option. Since IPOPT_MINOFF_IT > 2876 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2877 */ 2878 ASSERT(len > IPOPT_POS_OV_FLG); 2879 break; 2880 } 2881 2882 return (opt); 2883 } 2884 2885 /* 2886 * Use the outgoing IP header to create an IP_OPTIONS option the way 2887 * it was passed down from the application. 2888 */ 2889 int 2890 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2891 { 2892 ipoptp_t opts; 2893 const uchar_t *opt; 2894 uint8_t optval; 2895 uint8_t optlen; 2896 uint32_t len = 0; 2897 uchar_t *buf1 = buf; 2898 2899 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2900 len += IP_ADDR_LEN; 2901 bzero(buf1, IP_ADDR_LEN); 2902 2903 /* 2904 * OK to cast away const here, as we don't store through the returned 2905 * opts.ipoptp_cur pointer. 2906 */ 2907 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2908 optval != IPOPT_EOL; 2909 optval = ipoptp_next(&opts)) { 2910 int off; 2911 2912 opt = opts.ipoptp_cur; 2913 optlen = opts.ipoptp_len; 2914 switch (optval) { 2915 case IPOPT_SSRR: 2916 case IPOPT_LSRR: 2917 2918 /* 2919 * Insert ipha_dst as the first entry in the source 2920 * route and move down the entries on step. 2921 * The last entry gets placed at buf1. 2922 */ 2923 buf[IPOPT_OPTVAL] = optval; 2924 buf[IPOPT_OLEN] = optlen; 2925 buf[IPOPT_OFFSET] = optlen; 2926 2927 off = optlen - IP_ADDR_LEN; 2928 if (off < 0) { 2929 /* No entries in source route */ 2930 break; 2931 } 2932 /* Last entry in source route */ 2933 bcopy(opt + off, buf1, IP_ADDR_LEN); 2934 off -= IP_ADDR_LEN; 2935 2936 while (off > 0) { 2937 bcopy(opt + off, 2938 buf + off + IP_ADDR_LEN, 2939 IP_ADDR_LEN); 2940 off -= IP_ADDR_LEN; 2941 } 2942 /* ipha_dst into first slot */ 2943 bcopy(&ipha->ipha_dst, 2944 buf + off + IP_ADDR_LEN, 2945 IP_ADDR_LEN); 2946 buf += optlen; 2947 len += optlen; 2948 break; 2949 2950 case IPOPT_COMSEC: 2951 case IPOPT_SECURITY: 2952 /* if passing up a label is not ok, then remove */ 2953 if (is_system_labeled()) 2954 break; 2955 /* FALLTHROUGH */ 2956 default: 2957 bcopy(opt, buf, optlen); 2958 buf += optlen; 2959 len += optlen; 2960 break; 2961 } 2962 } 2963 done: 2964 /* Pad the resulting options */ 2965 while (len & 0x3) { 2966 *buf++ = IPOPT_EOL; 2967 len++; 2968 } 2969 return (len); 2970 } 2971 2972 /* 2973 * Update any record route or timestamp options to include this host. 2974 * Reverse any source route option. 2975 * This routine assumes that the options are well formed i.e. that they 2976 * have already been checked. 2977 */ 2978 static void 2979 icmp_options_update(ipha_t *ipha) 2980 { 2981 ipoptp_t opts; 2982 uchar_t *opt; 2983 uint8_t optval; 2984 ipaddr_t src; /* Our local address */ 2985 ipaddr_t dst; 2986 2987 ip2dbg(("icmp_options_update\n")); 2988 src = ipha->ipha_src; 2989 dst = ipha->ipha_dst; 2990 2991 for (optval = ipoptp_first(&opts, ipha); 2992 optval != IPOPT_EOL; 2993 optval = ipoptp_next(&opts)) { 2994 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2995 opt = opts.ipoptp_cur; 2996 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2997 optval, opts.ipoptp_len)); 2998 switch (optval) { 2999 int off1, off2; 3000 case IPOPT_SSRR: 3001 case IPOPT_LSRR: 3002 /* 3003 * Reverse the source route. The first entry 3004 * should be the next to last one in the current 3005 * source route (the last entry is our address). 3006 * The last entry should be the final destination. 3007 */ 3008 off1 = IPOPT_MINOFF_SR - 1; 3009 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3010 if (off2 < 0) { 3011 /* No entries in source route */ 3012 ip1dbg(( 3013 "icmp_options_update: bad src route\n")); 3014 break; 3015 } 3016 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3017 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3018 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3019 off2 -= IP_ADDR_LEN; 3020 3021 while (off1 < off2) { 3022 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3023 bcopy((char *)opt + off2, (char *)opt + off1, 3024 IP_ADDR_LEN); 3025 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3026 off1 += IP_ADDR_LEN; 3027 off2 -= IP_ADDR_LEN; 3028 } 3029 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3030 break; 3031 } 3032 } 3033 } 3034 3035 /* 3036 * Process received ICMP Redirect messages. 3037 */ 3038 static void 3039 icmp_redirect(ill_t *ill, mblk_t *mp) 3040 { 3041 ipha_t *ipha; 3042 int iph_hdr_length; 3043 icmph_t *icmph; 3044 ipha_t *ipha_err; 3045 ire_t *ire; 3046 ire_t *prev_ire; 3047 ire_t *save_ire; 3048 ipaddr_t src, dst, gateway; 3049 iulp_t ulp_info = { 0 }; 3050 int error; 3051 ip_stack_t *ipst; 3052 3053 ASSERT(ill != NULL); 3054 ipst = ill->ill_ipst; 3055 3056 ipha = (ipha_t *)mp->b_rptr; 3057 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3058 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3059 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3060 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3061 freemsg(mp); 3062 return; 3063 } 3064 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3065 ipha_err = (ipha_t *)&icmph[1]; 3066 src = ipha->ipha_src; 3067 dst = ipha_err->ipha_dst; 3068 gateway = icmph->icmph_rd_gateway; 3069 /* Make sure the new gateway is reachable somehow. */ 3070 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3071 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3072 /* 3073 * Make sure we had a route for the dest in question and that 3074 * that route was pointing to the old gateway (the source of the 3075 * redirect packet.) 3076 */ 3077 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3078 NULL, MATCH_IRE_GW, ipst); 3079 /* 3080 * Check that 3081 * the redirect was not from ourselves 3082 * the new gateway and the old gateway are directly reachable 3083 */ 3084 if (!prev_ire || 3085 !ire || 3086 ire->ire_type == IRE_LOCAL) { 3087 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3088 freemsg(mp); 3089 if (ire != NULL) 3090 ire_refrele(ire); 3091 if (prev_ire != NULL) 3092 ire_refrele(prev_ire); 3093 return; 3094 } 3095 3096 /* 3097 * Should we use the old ULP info to create the new gateway? From 3098 * a user's perspective, we should inherit the info so that it 3099 * is a "smooth" transition. If we do not do that, then new 3100 * connections going thru the new gateway will have no route metrics, 3101 * which is counter-intuitive to user. From a network point of 3102 * view, this may or may not make sense even though the new gateway 3103 * is still directly connected to us so the route metrics should not 3104 * change much. 3105 * 3106 * But if the old ire_uinfo is not initialized, we do another 3107 * recursive lookup on the dest using the new gateway. There may 3108 * be a route to that. If so, use it to initialize the redirect 3109 * route. 3110 */ 3111 if (prev_ire->ire_uinfo.iulp_set) { 3112 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3113 } else { 3114 ire_t *tmp_ire; 3115 ire_t *sire; 3116 3117 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3118 ALL_ZONES, 0, NULL, 3119 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3120 ipst); 3121 if (sire != NULL) { 3122 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3123 /* 3124 * If sire != NULL, ire_ftable_lookup() should not 3125 * return a NULL value. 3126 */ 3127 ASSERT(tmp_ire != NULL); 3128 ire_refrele(tmp_ire); 3129 ire_refrele(sire); 3130 } else if (tmp_ire != NULL) { 3131 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3132 sizeof (iulp_t)); 3133 ire_refrele(tmp_ire); 3134 } 3135 } 3136 if (prev_ire->ire_type == IRE_CACHE) 3137 ire_delete(prev_ire); 3138 ire_refrele(prev_ire); 3139 /* 3140 * TODO: more precise handling for cases 0, 2, 3, the latter two 3141 * require TOS routing 3142 */ 3143 switch (icmph->icmph_code) { 3144 case 0: 3145 case 1: 3146 /* TODO: TOS specificity for cases 2 and 3 */ 3147 case 2: 3148 case 3: 3149 break; 3150 default: 3151 freemsg(mp); 3152 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3153 ire_refrele(ire); 3154 return; 3155 } 3156 /* 3157 * Create a Route Association. This will allow us to remember that 3158 * someone we believe told us to use the particular gateway. 3159 */ 3160 save_ire = ire; 3161 ire = ire_create( 3162 (uchar_t *)&dst, /* dest addr */ 3163 (uchar_t *)&ip_g_all_ones, /* mask */ 3164 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3165 (uchar_t *)&gateway, /* gateway addr */ 3166 &save_ire->ire_max_frag, /* max frag */ 3167 NULL, /* no src nce */ 3168 NULL, /* no rfq */ 3169 NULL, /* no stq */ 3170 IRE_HOST, 3171 NULL, /* ipif */ 3172 0, /* cmask */ 3173 0, /* phandle */ 3174 0, /* ihandle */ 3175 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3176 &ulp_info, 3177 NULL, /* tsol_gc_t */ 3178 NULL, /* gcgrp */ 3179 ipst); 3180 3181 if (ire == NULL) { 3182 freemsg(mp); 3183 ire_refrele(save_ire); 3184 return; 3185 } 3186 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3187 ire_refrele(save_ire); 3188 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3189 3190 if (error == 0) { 3191 ire_refrele(ire); /* Held in ire_add_v4 */ 3192 /* tell routing sockets that we received a redirect */ 3193 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3194 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3195 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3196 } 3197 3198 /* 3199 * Delete any existing IRE_HOST type redirect ires for this destination. 3200 * This together with the added IRE has the effect of 3201 * modifying an existing redirect. 3202 */ 3203 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3204 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3205 if (prev_ire != NULL) { 3206 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3207 ire_delete(prev_ire); 3208 ire_refrele(prev_ire); 3209 } 3210 3211 freemsg(mp); 3212 } 3213 3214 /* 3215 * Generate an ICMP parameter problem message. 3216 */ 3217 static void 3218 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3219 ip_stack_t *ipst) 3220 { 3221 icmph_t icmph; 3222 boolean_t mctl_present; 3223 mblk_t *first_mp; 3224 3225 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3226 3227 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3228 if (mctl_present) 3229 freeb(first_mp); 3230 return; 3231 } 3232 3233 bzero(&icmph, sizeof (icmph_t)); 3234 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3235 icmph.icmph_pp_ptr = ptr; 3236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3237 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3238 ipst); 3239 } 3240 3241 /* 3242 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3243 * the ICMP header pointed to by "stuff". (May be called as writer.) 3244 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3245 * an icmp error packet can be sent. 3246 * Assigns an appropriate source address to the packet. If ipha_dst is 3247 * one of our addresses use it for source. Otherwise pick a source based 3248 * on a route lookup back to ipha_src. 3249 * Note that ipha_src must be set here since the 3250 * packet is likely to arrive on an ill queue in ip_wput() which will 3251 * not set a source address. 3252 */ 3253 static void 3254 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3255 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3256 { 3257 ipaddr_t dst; 3258 icmph_t *icmph; 3259 ipha_t *ipha; 3260 uint_t len_needed; 3261 size_t msg_len; 3262 mblk_t *mp1; 3263 ipaddr_t src; 3264 ire_t *ire; 3265 mblk_t *ipsec_mp; 3266 ipsec_out_t *io = NULL; 3267 3268 if (mctl_present) { 3269 /* 3270 * If it is : 3271 * 3272 * 1) a IPSEC_OUT, then this is caused by outbound 3273 * datagram originating on this host. IPsec processing 3274 * may or may not have been done. Refer to comments above 3275 * icmp_inbound_error_fanout for details. 3276 * 3277 * 2) a IPSEC_IN if we are generating a icmp_message 3278 * for an incoming datagram destined for us i.e called 3279 * from ip_fanout_send_icmp. 3280 */ 3281 ipsec_info_t *in; 3282 ipsec_mp = mp; 3283 mp = ipsec_mp->b_cont; 3284 3285 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3286 ipha = (ipha_t *)mp->b_rptr; 3287 3288 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3289 in->ipsec_info_type == IPSEC_IN); 3290 3291 if (in->ipsec_info_type == IPSEC_IN) { 3292 /* 3293 * Convert the IPSEC_IN to IPSEC_OUT. 3294 */ 3295 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3296 BUMP_MIB(&ipst->ips_ip_mib, 3297 ipIfStatsOutDiscards); 3298 return; 3299 } 3300 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3301 } else { 3302 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3303 io = (ipsec_out_t *)in; 3304 /* 3305 * Clear out ipsec_out_proc_begin, so we do a fresh 3306 * ire lookup. 3307 */ 3308 io->ipsec_out_proc_begin = B_FALSE; 3309 } 3310 ASSERT(zoneid != ALL_ZONES); 3311 /* 3312 * The IPSEC_IN (now an IPSEC_OUT) didn't have its zoneid 3313 * initialized. We need to do that now. 3314 */ 3315 io->ipsec_out_zoneid = zoneid; 3316 } else { 3317 /* 3318 * This is in clear. The icmp message we are building 3319 * here should go out in clear. 3320 * 3321 * Pardon the convolution of it all, but it's easier to 3322 * allocate a "use cleartext" IPSEC_IN message and convert 3323 * it than it is to allocate a new one. 3324 */ 3325 ipsec_in_t *ii; 3326 ASSERT(DB_TYPE(mp) == M_DATA); 3327 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3328 if (ipsec_mp == NULL) { 3329 freemsg(mp); 3330 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3331 return; 3332 } 3333 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3334 3335 /* This is not a secure packet */ 3336 ii->ipsec_in_secure = B_FALSE; 3337 /* 3338 * For trusted extensions using a shared IP address we can 3339 * send using any zoneid. 3340 */ 3341 if (zoneid == ALL_ZONES) 3342 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3343 else 3344 ii->ipsec_in_zoneid = zoneid; 3345 ipsec_mp->b_cont = mp; 3346 ipha = (ipha_t *)mp->b_rptr; 3347 /* 3348 * Convert the IPSEC_IN to IPSEC_OUT. 3349 */ 3350 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3351 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3352 return; 3353 } 3354 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3355 } 3356 3357 /* Remember our eventual destination */ 3358 dst = ipha->ipha_src; 3359 3360 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3361 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3362 if (ire != NULL && 3363 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3364 src = ipha->ipha_dst; 3365 } else { 3366 if (ire != NULL) 3367 ire_refrele(ire); 3368 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3369 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3370 ipst); 3371 if (ire == NULL) { 3372 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3373 freemsg(ipsec_mp); 3374 return; 3375 } 3376 src = ire->ire_src_addr; 3377 } 3378 3379 if (ire != NULL) 3380 ire_refrele(ire); 3381 3382 /* 3383 * Check if we can send back more then 8 bytes in addition to 3384 * the IP header. We try to send 64 bytes of data and the internal 3385 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3386 */ 3387 len_needed = IPH_HDR_LENGTH(ipha); 3388 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3389 ipha->ipha_protocol == IPPROTO_IPV6) { 3390 3391 if (!pullupmsg(mp, -1)) { 3392 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3393 freemsg(ipsec_mp); 3394 return; 3395 } 3396 ipha = (ipha_t *)mp->b_rptr; 3397 3398 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3399 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3400 len_needed)); 3401 } else { 3402 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3403 3404 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3405 len_needed += ip_hdr_length_v6(mp, ip6h); 3406 } 3407 } 3408 len_needed += ipst->ips_ip_icmp_return; 3409 msg_len = msgdsize(mp); 3410 if (msg_len > len_needed) { 3411 (void) adjmsg(mp, len_needed - msg_len); 3412 msg_len = len_needed; 3413 } 3414 /* Make sure we propagate the cred/label for TX */ 3415 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3416 if (mp1 == NULL) { 3417 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3418 freemsg(ipsec_mp); 3419 return; 3420 } 3421 mp1->b_cont = mp; 3422 mp = mp1; 3423 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3424 ipsec_mp->b_rptr == (uint8_t *)io && 3425 io->ipsec_out_type == IPSEC_OUT); 3426 ipsec_mp->b_cont = mp; 3427 3428 /* 3429 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3430 * node generates be accepted in peace by all on-host destinations. 3431 * If we do NOT assume that all on-host destinations trust 3432 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3433 * (Look for ipsec_out_icmp_loopback). 3434 */ 3435 io->ipsec_out_icmp_loopback = B_TRUE; 3436 3437 ipha = (ipha_t *)mp->b_rptr; 3438 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3439 *ipha = icmp_ipha; 3440 ipha->ipha_src = src; 3441 ipha->ipha_dst = dst; 3442 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3443 msg_len += sizeof (icmp_ipha) + len; 3444 if (msg_len > IP_MAXPACKET) { 3445 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3446 msg_len = IP_MAXPACKET; 3447 } 3448 ipha->ipha_length = htons((uint16_t)msg_len); 3449 icmph = (icmph_t *)&ipha[1]; 3450 bcopy(stuff, icmph, len); 3451 icmph->icmph_checksum = 0; 3452 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3453 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3454 put(q, ipsec_mp); 3455 } 3456 3457 /* 3458 * Determine if an ICMP error packet can be sent given the rate limit. 3459 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3460 * in milliseconds) and a burst size. Burst size number of packets can 3461 * be sent arbitrarely closely spaced. 3462 * The state is tracked using two variables to implement an approximate 3463 * token bucket filter: 3464 * icmp_pkt_err_last - lbolt value when the last burst started 3465 * icmp_pkt_err_sent - number of packets sent in current burst 3466 */ 3467 boolean_t 3468 icmp_err_rate_limit(ip_stack_t *ipst) 3469 { 3470 clock_t now = TICK_TO_MSEC(lbolt); 3471 uint_t refilled; /* Number of packets refilled in tbf since last */ 3472 /* Guard against changes by loading into local variable */ 3473 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3474 3475 if (err_interval == 0) 3476 return (B_FALSE); 3477 3478 if (ipst->ips_icmp_pkt_err_last > now) { 3479 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3480 ipst->ips_icmp_pkt_err_last = 0; 3481 ipst->ips_icmp_pkt_err_sent = 0; 3482 } 3483 /* 3484 * If we are in a burst update the token bucket filter. 3485 * Update the "last" time to be close to "now" but make sure 3486 * we don't loose precision. 3487 */ 3488 if (ipst->ips_icmp_pkt_err_sent != 0) { 3489 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3490 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3491 ipst->ips_icmp_pkt_err_sent = 0; 3492 } else { 3493 ipst->ips_icmp_pkt_err_sent -= refilled; 3494 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3495 } 3496 } 3497 if (ipst->ips_icmp_pkt_err_sent == 0) { 3498 /* Start of new burst */ 3499 ipst->ips_icmp_pkt_err_last = now; 3500 } 3501 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3502 ipst->ips_icmp_pkt_err_sent++; 3503 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3504 ipst->ips_icmp_pkt_err_sent)); 3505 return (B_FALSE); 3506 } 3507 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3508 return (B_TRUE); 3509 } 3510 3511 /* 3512 * Check if it is ok to send an IPv4 ICMP error packet in 3513 * response to the IPv4 packet in mp. 3514 * Free the message and return null if no 3515 * ICMP error packet should be sent. 3516 */ 3517 static mblk_t * 3518 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3519 { 3520 icmph_t *icmph; 3521 ipha_t *ipha; 3522 uint_t len_needed; 3523 ire_t *src_ire; 3524 ire_t *dst_ire; 3525 3526 if (!mp) 3527 return (NULL); 3528 ipha = (ipha_t *)mp->b_rptr; 3529 if (ip_csum_hdr(ipha)) { 3530 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3531 freemsg(mp); 3532 return (NULL); 3533 } 3534 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3535 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3536 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3537 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3538 if (src_ire != NULL || dst_ire != NULL || 3539 CLASSD(ipha->ipha_dst) || 3540 CLASSD(ipha->ipha_src) || 3541 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3542 /* Note: only errors to the fragment with offset 0 */ 3543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3544 freemsg(mp); 3545 if (src_ire != NULL) 3546 ire_refrele(src_ire); 3547 if (dst_ire != NULL) 3548 ire_refrele(dst_ire); 3549 return (NULL); 3550 } 3551 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3552 /* 3553 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3554 * errors in response to any ICMP errors. 3555 */ 3556 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3557 if (mp->b_wptr - mp->b_rptr < len_needed) { 3558 if (!pullupmsg(mp, len_needed)) { 3559 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3560 freemsg(mp); 3561 return (NULL); 3562 } 3563 ipha = (ipha_t *)mp->b_rptr; 3564 } 3565 icmph = (icmph_t *) 3566 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3567 switch (icmph->icmph_type) { 3568 case ICMP_DEST_UNREACHABLE: 3569 case ICMP_SOURCE_QUENCH: 3570 case ICMP_TIME_EXCEEDED: 3571 case ICMP_PARAM_PROBLEM: 3572 case ICMP_REDIRECT: 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3574 freemsg(mp); 3575 return (NULL); 3576 default: 3577 break; 3578 } 3579 } 3580 /* 3581 * If this is a labeled system, then check to see if we're allowed to 3582 * send a response to this particular sender. If not, then just drop. 3583 */ 3584 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3585 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3586 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 if (icmp_err_rate_limit(ipst)) { 3591 /* 3592 * Only send ICMP error packets every so often. 3593 * This should be done on a per port/source basis, 3594 * but for now this will suffice. 3595 */ 3596 freemsg(mp); 3597 return (NULL); 3598 } 3599 return (mp); 3600 } 3601 3602 /* 3603 * Generate an ICMP redirect message. 3604 */ 3605 static void 3606 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3607 { 3608 icmph_t icmph; 3609 3610 /* 3611 * We are called from ip_rput where we could 3612 * not have attached an IPSEC_IN. 3613 */ 3614 ASSERT(mp->b_datap->db_type == M_DATA); 3615 3616 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3617 return; 3618 } 3619 3620 bzero(&icmph, sizeof (icmph_t)); 3621 icmph.icmph_type = ICMP_REDIRECT; 3622 icmph.icmph_code = 1; 3623 icmph.icmph_rd_gateway = gateway; 3624 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3625 /* Redirects sent by router, and router is global zone */ 3626 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3627 } 3628 3629 /* 3630 * Generate an ICMP time exceeded message. 3631 */ 3632 void 3633 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3634 ip_stack_t *ipst) 3635 { 3636 icmph_t icmph; 3637 boolean_t mctl_present; 3638 mblk_t *first_mp; 3639 3640 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3641 3642 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3643 if (mctl_present) 3644 freeb(first_mp); 3645 return; 3646 } 3647 3648 bzero(&icmph, sizeof (icmph_t)); 3649 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3650 icmph.icmph_code = code; 3651 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3652 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3653 ipst); 3654 } 3655 3656 /* 3657 * Generate an ICMP unreachable message. 3658 */ 3659 void 3660 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3661 ip_stack_t *ipst) 3662 { 3663 icmph_t icmph; 3664 mblk_t *first_mp; 3665 boolean_t mctl_present; 3666 3667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3668 3669 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3670 if (mctl_present) 3671 freeb(first_mp); 3672 return; 3673 } 3674 3675 bzero(&icmph, sizeof (icmph_t)); 3676 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3677 icmph.icmph_code = code; 3678 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3679 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3680 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3681 zoneid, ipst); 3682 } 3683 3684 /* 3685 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3686 * duplicate. As long as someone else holds the address, the interface will 3687 * stay down. When that conflict goes away, the interface is brought back up. 3688 * This is done so that accidental shutdowns of addresses aren't made 3689 * permanent. Your server will recover from a failure. 3690 * 3691 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3692 * user space process (dhcpagent). 3693 * 3694 * Recovery completes if ARP reports that the address is now ours (via 3695 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3696 * 3697 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3698 */ 3699 static void 3700 ipif_dup_recovery(void *arg) 3701 { 3702 ipif_t *ipif = arg; 3703 ill_t *ill = ipif->ipif_ill; 3704 mblk_t *arp_add_mp; 3705 mblk_t *arp_del_mp; 3706 ip_stack_t *ipst = ill->ill_ipst; 3707 3708 ipif->ipif_recovery_id = 0; 3709 3710 /* 3711 * No lock needed for moving or condemned check, as this is just an 3712 * optimization. 3713 */ 3714 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3715 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3716 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3717 /* No reason to try to bring this address back. */ 3718 return; 3719 } 3720 3721 /* ACE_F_UNVERIFIED restarts DAD */ 3722 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3723 goto alloc_fail; 3724 3725 if (ipif->ipif_arp_del_mp == NULL) { 3726 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3727 goto alloc_fail; 3728 ipif->ipif_arp_del_mp = arp_del_mp; 3729 } 3730 3731 putnext(ill->ill_rq, arp_add_mp); 3732 return; 3733 3734 alloc_fail: 3735 /* 3736 * On allocation failure, just restart the timer. Note that the ipif 3737 * is down here, so no other thread could be trying to start a recovery 3738 * timer. The ill_lock protects the condemned flag and the recovery 3739 * timer ID. 3740 */ 3741 freemsg(arp_add_mp); 3742 mutex_enter(&ill->ill_lock); 3743 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3744 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3745 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3746 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3747 } 3748 mutex_exit(&ill->ill_lock); 3749 } 3750 3751 /* 3752 * This is for exclusive changes due to ARP. Either tear down an interface due 3753 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3754 */ 3755 /* ARGSUSED */ 3756 static void 3757 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3758 { 3759 ill_t *ill = rq->q_ptr; 3760 arh_t *arh; 3761 ipaddr_t src; 3762 ipif_t *ipif; 3763 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3764 char hbuf[MAC_STR_LEN]; 3765 char sbuf[INET_ADDRSTRLEN]; 3766 const char *failtype; 3767 boolean_t bring_up; 3768 ip_stack_t *ipst = ill->ill_ipst; 3769 3770 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3771 case AR_CN_READY: 3772 failtype = NULL; 3773 bring_up = B_TRUE; 3774 break; 3775 case AR_CN_FAILED: 3776 failtype = "in use"; 3777 bring_up = B_FALSE; 3778 break; 3779 default: 3780 failtype = "claimed"; 3781 bring_up = B_FALSE; 3782 break; 3783 } 3784 3785 arh = (arh_t *)mp->b_cont->b_rptr; 3786 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3787 3788 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3789 sizeof (hbuf)); 3790 (void) ip_dot_addr(src, sbuf); 3791 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3792 3793 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3794 ipif->ipif_lcl_addr != src) { 3795 continue; 3796 } 3797 3798 /* 3799 * If we failed on a recovery probe, then restart the timer to 3800 * try again later. 3801 */ 3802 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3803 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3804 ill->ill_net_type == IRE_IF_RESOLVER && 3805 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3806 ipst->ips_ip_dup_recovery > 0 && 3807 ipif->ipif_recovery_id == 0) { 3808 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3809 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3810 continue; 3811 } 3812 3813 /* 3814 * If what we're trying to do has already been done, then do 3815 * nothing. 3816 */ 3817 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3818 continue; 3819 3820 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3821 3822 if (failtype == NULL) { 3823 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3824 ibuf); 3825 } else { 3826 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3827 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3828 } 3829 3830 if (bring_up) { 3831 ASSERT(ill->ill_dl_up); 3832 /* 3833 * Free up the ARP delete message so we can allocate 3834 * a fresh one through the normal path. 3835 */ 3836 freemsg(ipif->ipif_arp_del_mp); 3837 ipif->ipif_arp_del_mp = NULL; 3838 if (ipif_resolver_up(ipif, Res_act_initial) != 3839 EINPROGRESS) { 3840 ipif->ipif_addr_ready = 1; 3841 (void) ipif_up_done(ipif); 3842 ASSERT(ill->ill_move_ipif == NULL); 3843 } 3844 continue; 3845 } 3846 3847 mutex_enter(&ill->ill_lock); 3848 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3849 ipif->ipif_flags |= IPIF_DUPLICATE; 3850 ill->ill_ipif_dup_count++; 3851 mutex_exit(&ill->ill_lock); 3852 /* 3853 * Already exclusive on the ill; no need to handle deferred 3854 * processing here. 3855 */ 3856 (void) ipif_down(ipif, NULL, NULL); 3857 ipif_down_tail(ipif); 3858 mutex_enter(&ill->ill_lock); 3859 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3860 ill->ill_net_type == IRE_IF_RESOLVER && 3861 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3862 ipst->ips_ip_dup_recovery > 0) { 3863 ASSERT(ipif->ipif_recovery_id == 0); 3864 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3865 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3866 } 3867 mutex_exit(&ill->ill_lock); 3868 } 3869 freemsg(mp); 3870 } 3871 3872 /* ARGSUSED */ 3873 static void 3874 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3875 { 3876 ill_t *ill = rq->q_ptr; 3877 arh_t *arh; 3878 ipaddr_t src; 3879 ipif_t *ipif; 3880 3881 arh = (arh_t *)mp->b_cont->b_rptr; 3882 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3883 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3884 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3885 (void) ipif_resolver_up(ipif, Res_act_defend); 3886 } 3887 freemsg(mp); 3888 } 3889 3890 /* 3891 * News from ARP. ARP sends notification of interesting events down 3892 * to its clients using M_CTL messages with the interesting ARP packet 3893 * attached via b_cont. 3894 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3895 * queue as opposed to ARP sending the message to all the clients, i.e. all 3896 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3897 * table if a cache IRE is found to delete all the entries for the address in 3898 * the packet. 3899 */ 3900 static void 3901 ip_arp_news(queue_t *q, mblk_t *mp) 3902 { 3903 arcn_t *arcn; 3904 arh_t *arh; 3905 ire_t *ire = NULL; 3906 char hbuf[MAC_STR_LEN]; 3907 char sbuf[INET_ADDRSTRLEN]; 3908 ipaddr_t src; 3909 in6_addr_t v6src; 3910 boolean_t isv6 = B_FALSE; 3911 ipif_t *ipif; 3912 ill_t *ill; 3913 ip_stack_t *ipst; 3914 3915 if (CONN_Q(q)) { 3916 conn_t *connp = Q_TO_CONN(q); 3917 3918 ipst = connp->conn_netstack->netstack_ip; 3919 } else { 3920 ill_t *ill = (ill_t *)q->q_ptr; 3921 3922 ipst = ill->ill_ipst; 3923 } 3924 3925 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3926 if (q->q_next) { 3927 putnext(q, mp); 3928 } else 3929 freemsg(mp); 3930 return; 3931 } 3932 arh = (arh_t *)mp->b_cont->b_rptr; 3933 /* Is it one we are interested in? */ 3934 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3935 isv6 = B_TRUE; 3936 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3937 IPV6_ADDR_LEN); 3938 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3939 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3940 IP_ADDR_LEN); 3941 } else { 3942 freemsg(mp); 3943 return; 3944 } 3945 3946 ill = q->q_ptr; 3947 3948 arcn = (arcn_t *)mp->b_rptr; 3949 switch (arcn->arcn_code) { 3950 case AR_CN_BOGON: 3951 /* 3952 * Someone is sending ARP packets with a source protocol 3953 * address that we have published and for which we believe our 3954 * entry is authoritative and (when ill_arp_extend is set) 3955 * verified to be unique on the network. 3956 * 3957 * The ARP module internally handles the cases where the sender 3958 * is just probing (for DAD) and where the hardware address of 3959 * a non-authoritative entry has changed. Thus, these are the 3960 * real conflicts, and we have to do resolution. 3961 * 3962 * We back away quickly from the address if it's from DHCP or 3963 * otherwise temporary and hasn't been used recently (or at 3964 * all). We'd like to include "deprecated" addresses here as 3965 * well (as there's no real reason to defend something we're 3966 * discarding), but IPMP "reuses" this flag to mean something 3967 * other than the standard meaning. 3968 * 3969 * If the ARP module above is not extended (meaning that it 3970 * doesn't know how to defend the address), then we just log 3971 * the problem as we always did and continue on. It's not 3972 * right, but there's little else we can do, and those old ATM 3973 * users are going away anyway. 3974 */ 3975 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3976 hbuf, sizeof (hbuf)); 3977 (void) ip_dot_addr(src, sbuf); 3978 if (isv6) { 3979 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3980 ipst); 3981 } else { 3982 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3983 } 3984 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3985 uint32_t now; 3986 uint32_t maxage; 3987 clock_t lused; 3988 uint_t maxdefense; 3989 uint_t defs; 3990 3991 /* 3992 * First, figure out if this address hasn't been used 3993 * in a while. If it hasn't, then it's a better 3994 * candidate for abandoning. 3995 */ 3996 ipif = ire->ire_ipif; 3997 ASSERT(ipif != NULL); 3998 now = gethrestime_sec(); 3999 maxage = now - ire->ire_create_time; 4000 if (maxage > ipst->ips_ip_max_temp_idle) 4001 maxage = ipst->ips_ip_max_temp_idle; 4002 lused = drv_hztousec(ddi_get_lbolt() - 4003 ire->ire_last_used_time) / MICROSEC + 1; 4004 if (lused >= maxage && (ipif->ipif_flags & 4005 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4006 maxdefense = ipst->ips_ip_max_temp_defend; 4007 else 4008 maxdefense = ipst->ips_ip_max_defend; 4009 4010 /* 4011 * Now figure out how many times we've defended 4012 * ourselves. Ignore defenses that happened long in 4013 * the past. 4014 */ 4015 mutex_enter(&ire->ire_lock); 4016 if ((defs = ire->ire_defense_count) > 0 && 4017 now - ire->ire_defense_time > 4018 ipst->ips_ip_defend_interval) { 4019 ire->ire_defense_count = defs = 0; 4020 } 4021 ire->ire_defense_count++; 4022 ire->ire_defense_time = now; 4023 mutex_exit(&ire->ire_lock); 4024 ill_refhold(ill); 4025 ire_refrele(ire); 4026 4027 /* 4028 * If we've defended ourselves too many times already, 4029 * then give up and tear down the interface(s) using 4030 * this address. Otherwise, defend by sending out a 4031 * gratuitous ARP. 4032 */ 4033 if (defs >= maxdefense && ill->ill_arp_extend) { 4034 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4035 B_FALSE); 4036 } else { 4037 cmn_err(CE_WARN, 4038 "node %s is using our IP address %s on %s", 4039 hbuf, sbuf, ill->ill_name); 4040 /* 4041 * If this is an old (ATM) ARP module, then 4042 * don't try to defend the address. Remain 4043 * compatible with the old behavior. Defend 4044 * only with new ARP. 4045 */ 4046 if (ill->ill_arp_extend) { 4047 qwriter_ip(ill, q, mp, ip_arp_defend, 4048 NEW_OP, B_FALSE); 4049 } else { 4050 ill_refrele(ill); 4051 } 4052 } 4053 return; 4054 } 4055 cmn_err(CE_WARN, 4056 "proxy ARP problem? Node '%s' is using %s on %s", 4057 hbuf, sbuf, ill->ill_name); 4058 if (ire != NULL) 4059 ire_refrele(ire); 4060 break; 4061 case AR_CN_ANNOUNCE: 4062 if (isv6) { 4063 /* 4064 * For XRESOLV interfaces. 4065 * Delete the IRE cache entry and NCE for this 4066 * v6 address 4067 */ 4068 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4069 /* 4070 * If v6src is a non-zero, it's a router address 4071 * as below. Do the same sort of thing to clean 4072 * out off-net IRE_CACHE entries that go through 4073 * the router. 4074 */ 4075 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4076 ire_walk_v6(ire_delete_cache_gw_v6, 4077 (char *)&v6src, ALL_ZONES, ipst); 4078 } 4079 } else { 4080 nce_hw_map_t hwm; 4081 4082 /* 4083 * ARP gives us a copy of any packet where it thinks 4084 * the address has changed, so that we can update our 4085 * caches. We're responsible for caching known answers 4086 * in the current design. We check whether the 4087 * hardware address really has changed in all of our 4088 * entries that have cached this mapping, and if so, we 4089 * blow them away. This way we will immediately pick 4090 * up the rare case of a host changing hardware 4091 * address. 4092 */ 4093 if (src == 0) 4094 break; 4095 hwm.hwm_addr = src; 4096 hwm.hwm_hwlen = arh->arh_hlen; 4097 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4098 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4099 ndp_walk_common(ipst->ips_ndp4, NULL, 4100 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4101 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4102 } 4103 break; 4104 case AR_CN_READY: 4105 /* No external v6 resolver has a contract to use this */ 4106 if (isv6) 4107 break; 4108 /* If the link is down, we'll retry this later */ 4109 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4110 break; 4111 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4112 NULL, NULL, ipst); 4113 if (ipif != NULL) { 4114 /* 4115 * If this is a duplicate recovery, then we now need to 4116 * go exclusive to bring this thing back up. 4117 */ 4118 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4119 IPIF_DUPLICATE) { 4120 ipif_refrele(ipif); 4121 ill_refhold(ill); 4122 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4123 B_FALSE); 4124 return; 4125 } 4126 /* 4127 * If this is the first notice that this address is 4128 * ready, then let the user know now. 4129 */ 4130 if ((ipif->ipif_flags & IPIF_UP) && 4131 !ipif->ipif_addr_ready) { 4132 ipif_mask_reply(ipif); 4133 ipif_up_notify(ipif); 4134 } 4135 ipif->ipif_addr_ready = 1; 4136 ipif_refrele(ipif); 4137 } 4138 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4139 if (ire != NULL) { 4140 ire->ire_defense_count = 0; 4141 ire_refrele(ire); 4142 } 4143 break; 4144 case AR_CN_FAILED: 4145 /* No external v6 resolver has a contract to use this */ 4146 if (isv6) 4147 break; 4148 if (!ill->ill_arp_extend) { 4149 (void) mac_colon_addr((uint8_t *)(arh + 1), 4150 arh->arh_hlen, hbuf, sizeof (hbuf)); 4151 (void) ip_dot_addr(src, sbuf); 4152 4153 cmn_err(CE_WARN, 4154 "node %s is using our IP address %s on %s", 4155 hbuf, sbuf, ill->ill_name); 4156 break; 4157 } 4158 ill_refhold(ill); 4159 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4160 return; 4161 } 4162 freemsg(mp); 4163 } 4164 4165 /* 4166 * Create a mblk suitable for carrying the interface index and/or source link 4167 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4168 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4169 * application. 4170 */ 4171 mblk_t * 4172 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4173 ip_stack_t *ipst) 4174 { 4175 mblk_t *mp; 4176 ip_pktinfo_t *pinfo; 4177 ipha_t *ipha; 4178 struct ether_header *pether; 4179 boolean_t ipmp_ill_held = B_FALSE; 4180 4181 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4182 if (mp == NULL) { 4183 ip1dbg(("ip_add_info: allocation failure.\n")); 4184 return (data_mp); 4185 } 4186 4187 ipha = (ipha_t *)data_mp->b_rptr; 4188 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4189 bzero(pinfo, sizeof (ip_pktinfo_t)); 4190 pinfo->ip_pkt_flags = (uchar_t)flags; 4191 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4192 4193 pether = (struct ether_header *)((char *)ipha 4194 - sizeof (struct ether_header)); 4195 4196 /* 4197 * Make sure the interface is an ethernet type, since this option 4198 * is currently supported only on this type of interface. Also make 4199 * sure we are pointing correctly above db_base. 4200 */ 4201 if ((flags & IPF_RECVSLLA) && 4202 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4203 (ill->ill_type == IFT_ETHER) && 4204 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4205 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4206 bcopy(pether->ether_shost.ether_addr_octet, 4207 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4208 } else { 4209 /* 4210 * Clear the bit. Indicate to upper layer that IP is not 4211 * sending this ancillary info. 4212 */ 4213 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4214 } 4215 4216 /* 4217 * If `ill' is in an IPMP group, use the IPMP ill to determine 4218 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4219 * IPF_RECVADDR support on test addresses is not needed.) 4220 * 4221 * Note that `ill' may already be an IPMP ill if e.g. we're 4222 * processing a packet looped back to an IPMP data address 4223 * (since those IRE_LOCALs are tied to IPMP ills). 4224 */ 4225 if (IS_UNDER_IPMP(ill)) { 4226 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4227 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4228 freemsg(mp); 4229 return (data_mp); 4230 } 4231 ipmp_ill_held = B_TRUE; 4232 } 4233 4234 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4235 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4236 if (flags & IPF_RECVADDR) { 4237 ipif_t *ipif; 4238 ire_t *ire; 4239 4240 /* 4241 * Only valid for V4 4242 */ 4243 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4244 (IPV4_VERSION << 4)); 4245 4246 ipif = ipif_get_next_ipif(NULL, ill); 4247 if (ipif != NULL) { 4248 /* 4249 * Since a decision has already been made to deliver the 4250 * packet, there is no need to test for SECATTR and 4251 * ZONEONLY. 4252 * When a multicast packet is transmitted 4253 * a cache entry is created for the multicast address. 4254 * When delivering a copy of the packet or when new 4255 * packets are received we do not want to match on the 4256 * cached entry so explicitly match on 4257 * IRE_LOCAL and IRE_LOOPBACK 4258 */ 4259 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4260 IRE_LOCAL | IRE_LOOPBACK, 4261 ipif, zoneid, NULL, 4262 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4263 if (ire == NULL) { 4264 /* 4265 * packet must have come on a different 4266 * interface. 4267 * Since a decision has already been made to 4268 * deliver the packet, there is no need to test 4269 * for SECATTR and ZONEONLY. 4270 * Only match on local and broadcast ire's. 4271 * See detailed comment above. 4272 */ 4273 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4274 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4275 NULL, MATCH_IRE_TYPE, ipst); 4276 } 4277 4278 if (ire == NULL) { 4279 /* 4280 * This is either a multicast packet or 4281 * the address has been removed since 4282 * the packet was received. 4283 * Return INADDR_ANY so that normal source 4284 * selection occurs for the response. 4285 */ 4286 4287 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4288 } else { 4289 pinfo->ip_pkt_match_addr.s_addr = 4290 ire->ire_src_addr; 4291 ire_refrele(ire); 4292 } 4293 ipif_refrele(ipif); 4294 } else { 4295 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4296 } 4297 } 4298 4299 if (ipmp_ill_held) 4300 ill_refrele(ill); 4301 4302 mp->b_datap->db_type = M_CTL; 4303 mp->b_wptr += sizeof (ip_pktinfo_t); 4304 mp->b_cont = data_mp; 4305 4306 return (mp); 4307 } 4308 4309 /* 4310 * Used to determine the most accurate cred_t to use for TX. 4311 * First priority is SCM_UCRED having set the label in the message, 4312 * which is used for MLP on UDP. Second priority is the peers label (aka 4313 * conn_peercred), which is needed for MLP on TCP/SCTP. Last priority is the 4314 * open credentials. 4315 */ 4316 cred_t * 4317 ip_best_cred(mblk_t *mp, conn_t *connp) 4318 { 4319 cred_t *cr; 4320 4321 cr = msg_getcred(mp, NULL); 4322 if (cr != NULL && crgetlabel(cr) != NULL) 4323 return (cr); 4324 return (CONN_CRED(connp)); 4325 } 4326 4327 /* 4328 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4329 * part of the bind request. 4330 */ 4331 4332 boolean_t 4333 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4334 { 4335 ipsec_in_t *ii; 4336 4337 ASSERT(policy_mp != NULL); 4338 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4339 4340 ii = (ipsec_in_t *)policy_mp->b_rptr; 4341 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4342 4343 connp->conn_policy = ii->ipsec_in_policy; 4344 ii->ipsec_in_policy = NULL; 4345 4346 if (ii->ipsec_in_action != NULL) { 4347 if (connp->conn_latch == NULL) { 4348 connp->conn_latch = iplatch_create(); 4349 if (connp->conn_latch == NULL) 4350 return (B_FALSE); 4351 } 4352 ipsec_latch_inbound(connp->conn_latch, ii); 4353 } 4354 return (B_TRUE); 4355 } 4356 4357 static void 4358 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4359 { 4360 /* 4361 * Pass the IPsec headers size in ire_ipsec_overhead. 4362 * We can't do this in ip_bind_get_ire because the policy 4363 * may not have been inherited at that point in time and hence 4364 * conn_out_enforce_policy may not be set. 4365 */ 4366 if (ire_requested && connp->conn_out_enforce_policy && 4367 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4368 ire_t *ire = (ire_t *)mp->b_rptr; 4369 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4370 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4371 } 4372 } 4373 4374 /* 4375 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4376 * and to arrange for power-fanout assist. The ULP is identified by 4377 * adding a single byte at the end of the original bind message. 4378 * A ULP other than UDP or TCP that wishes to be recognized passes 4379 * down a bind with a zero length address. 4380 * 4381 * The binding works as follows: 4382 * - A zero byte address means just bind to the protocol. 4383 * - A four byte address is treated as a request to validate 4384 * that the address is a valid local address, appropriate for 4385 * an application to bind to. This does not affect any fanout 4386 * information in IP. 4387 * - A sizeof sin_t byte address is used to bind to only the local address 4388 * and port. 4389 * - A sizeof ipa_conn_t byte address contains complete fanout information 4390 * consisting of local and remote addresses and ports. In 4391 * this case, the addresses are both validated as appropriate 4392 * for this operation, and, if so, the information is retained 4393 * for use in the inbound fanout. 4394 * 4395 * The ULP (except in the zero-length bind) can append an 4396 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4397 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4398 * a copy of the source or destination IRE (source for local bind; 4399 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4400 * policy information contained should be copied on to the conn. 4401 * 4402 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4403 */ 4404 mblk_t * 4405 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4406 { 4407 ssize_t len; 4408 struct T_bind_req *tbr; 4409 sin_t *sin; 4410 ipa_conn_t *ac; 4411 uchar_t *ucp; 4412 mblk_t *mp1; 4413 boolean_t ire_requested; 4414 int error = 0; 4415 int protocol; 4416 ipa_conn_x_t *acx; 4417 cred_t *cr; 4418 4419 /* 4420 * All Solaris components should pass a db_credp 4421 * for this TPI message, hence we ASSERT. 4422 * But in case there is some other M_PROTO that looks 4423 * like a TPI message sent by some other kernel 4424 * component, we check and return an error. 4425 */ 4426 cr = msg_getcred(mp, NULL); 4427 ASSERT(cr != NULL); 4428 if (cr == NULL) { 4429 error = EINVAL; 4430 goto bad_addr; 4431 } 4432 4433 ASSERT(!connp->conn_af_isv6); 4434 connp->conn_pkt_isv6 = B_FALSE; 4435 4436 len = MBLKL(mp); 4437 if (len < (sizeof (*tbr) + 1)) { 4438 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4439 "ip_bind: bogus msg, len %ld", len); 4440 /* XXX: Need to return something better */ 4441 goto bad_addr; 4442 } 4443 /* Back up and extract the protocol identifier. */ 4444 mp->b_wptr--; 4445 protocol = *mp->b_wptr & 0xFF; 4446 tbr = (struct T_bind_req *)mp->b_rptr; 4447 /* Reset the message type in preparation for shipping it back. */ 4448 DB_TYPE(mp) = M_PCPROTO; 4449 4450 connp->conn_ulp = (uint8_t)protocol; 4451 4452 /* 4453 * Check for a zero length address. This is from a protocol that 4454 * wants to register to receive all packets of its type. 4455 */ 4456 if (tbr->ADDR_length == 0) { 4457 /* 4458 * These protocols are now intercepted in ip_bind_v6(). 4459 * Reject protocol-level binds here for now. 4460 * 4461 * For SCTP raw socket, ICMP sends down a bind with sin_t 4462 * so that the protocol type cannot be SCTP. 4463 */ 4464 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4465 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4466 goto bad_addr; 4467 } 4468 4469 /* 4470 * 4471 * The udp module never sends down a zero-length address, 4472 * and allowing this on a labeled system will break MLP 4473 * functionality. 4474 */ 4475 if (is_system_labeled() && protocol == IPPROTO_UDP) 4476 goto bad_addr; 4477 4478 if (connp->conn_mac_exempt) 4479 goto bad_addr; 4480 4481 /* No hash here really. The table is big enough. */ 4482 connp->conn_srcv6 = ipv6_all_zeros; 4483 4484 ipcl_proto_insert(connp, protocol); 4485 4486 tbr->PRIM_type = T_BIND_ACK; 4487 return (mp); 4488 } 4489 4490 /* Extract the address pointer from the message. */ 4491 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4492 tbr->ADDR_length); 4493 if (ucp == NULL) { 4494 ip1dbg(("ip_bind: no address\n")); 4495 goto bad_addr; 4496 } 4497 if (!OK_32PTR(ucp)) { 4498 ip1dbg(("ip_bind: unaligned address\n")); 4499 goto bad_addr; 4500 } 4501 /* 4502 * Check for trailing mps. 4503 */ 4504 4505 mp1 = mp->b_cont; 4506 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4507 4508 switch (tbr->ADDR_length) { 4509 default: 4510 ip1dbg(("ip_bind: bad address length %d\n", 4511 (int)tbr->ADDR_length)); 4512 goto bad_addr; 4513 4514 case IP_ADDR_LEN: 4515 /* Verification of local address only */ 4516 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4517 *(ipaddr_t *)ucp, 0, B_FALSE); 4518 break; 4519 4520 case sizeof (sin_t): 4521 sin = (sin_t *)ucp; 4522 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4523 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4524 break; 4525 4526 case sizeof (ipa_conn_t): 4527 ac = (ipa_conn_t *)ucp; 4528 /* For raw socket, the local port is not set. */ 4529 if (ac->ac_lport == 0) 4530 ac->ac_lport = connp->conn_lport; 4531 /* Always verify destination reachability. */ 4532 error = ip_bind_connected_v4(connp, &mp1, protocol, 4533 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4534 B_TRUE, B_TRUE, cr); 4535 break; 4536 4537 case sizeof (ipa_conn_x_t): 4538 acx = (ipa_conn_x_t *)ucp; 4539 /* 4540 * Whether or not to verify destination reachability depends 4541 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4542 */ 4543 error = ip_bind_connected_v4(connp, &mp1, protocol, 4544 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4545 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4546 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4547 break; 4548 } 4549 ASSERT(error != EINPROGRESS); 4550 if (error != 0) 4551 goto bad_addr; 4552 4553 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4554 4555 /* Send it home. */ 4556 mp->b_datap->db_type = M_PCPROTO; 4557 tbr->PRIM_type = T_BIND_ACK; 4558 return (mp); 4559 4560 bad_addr: 4561 /* 4562 * If error = -1 then we generate a TBADADDR - otherwise error is 4563 * a unix errno. 4564 */ 4565 if (error > 0) 4566 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4567 else 4568 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4569 return (mp); 4570 } 4571 4572 /* 4573 * Here address is verified to be a valid local address. 4574 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4575 * address is also considered a valid local address. 4576 * In the case of a broadcast/multicast address, however, the 4577 * upper protocol is expected to reset the src address 4578 * to 0 if it sees a IRE_BROADCAST type returned so that 4579 * no packets are emitted with broadcast/multicast address as 4580 * source address (that violates hosts requirements RFC 1122) 4581 * The addresses valid for bind are: 4582 * (1) - INADDR_ANY (0) 4583 * (2) - IP address of an UP interface 4584 * (3) - IP address of a DOWN interface 4585 * (4) - valid local IP broadcast addresses. In this case 4586 * the conn will only receive packets destined to 4587 * the specified broadcast address. 4588 * (5) - a multicast address. In this case 4589 * the conn will only receive packets destined to 4590 * the specified multicast address. Note: the 4591 * application still has to issue an 4592 * IP_ADD_MEMBERSHIP socket option. 4593 * 4594 * On error, return -1 for TBADADDR otherwise pass the 4595 * errno with TSYSERR reply. 4596 * 4597 * In all the above cases, the bound address must be valid in the current zone. 4598 * When the address is loopback, multicast or broadcast, there might be many 4599 * matching IREs so bind has to look up based on the zone. 4600 * 4601 * Note: lport is in network byte order. 4602 * 4603 */ 4604 int 4605 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4606 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4607 { 4608 int error = 0; 4609 ire_t *src_ire; 4610 zoneid_t zoneid; 4611 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4612 mblk_t *mp = NULL; 4613 boolean_t ire_requested = B_FALSE; 4614 boolean_t ipsec_policy_set = B_FALSE; 4615 4616 if (mpp) 4617 mp = *mpp; 4618 4619 if (mp != NULL) { 4620 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4621 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4622 } 4623 4624 /* 4625 * If it was previously connected, conn_fully_bound would have 4626 * been set. 4627 */ 4628 connp->conn_fully_bound = B_FALSE; 4629 4630 src_ire = NULL; 4631 4632 zoneid = IPCL_ZONEID(connp); 4633 4634 if (src_addr) { 4635 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4636 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4637 /* 4638 * If an address other than 0.0.0.0 is requested, 4639 * we verify that it is a valid address for bind 4640 * Note: Following code is in if-else-if form for 4641 * readability compared to a condition check. 4642 */ 4643 /* LINTED - statement has no consequence */ 4644 if (IRE_IS_LOCAL(src_ire)) { 4645 /* 4646 * (2) Bind to address of local UP interface 4647 */ 4648 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4649 /* 4650 * (4) Bind to broadcast address 4651 * Note: permitted only from transports that 4652 * request IRE 4653 */ 4654 if (!ire_requested) 4655 error = EADDRNOTAVAIL; 4656 } else { 4657 /* 4658 * (3) Bind to address of local DOWN interface 4659 * (ipif_lookup_addr() looks up all interfaces 4660 * but we do not get here for UP interfaces 4661 * - case (2) above) 4662 */ 4663 /* LINTED - statement has no consequent */ 4664 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4665 /* The address exists */ 4666 } else if (CLASSD(src_addr)) { 4667 error = 0; 4668 if (src_ire != NULL) 4669 ire_refrele(src_ire); 4670 /* 4671 * (5) bind to multicast address. 4672 * Fake out the IRE returned to upper 4673 * layer to be a broadcast IRE. 4674 */ 4675 src_ire = ire_ctable_lookup( 4676 INADDR_BROADCAST, INADDR_ANY, 4677 IRE_BROADCAST, NULL, zoneid, NULL, 4678 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4679 ipst); 4680 if (src_ire == NULL || !ire_requested) 4681 error = EADDRNOTAVAIL; 4682 } else { 4683 /* 4684 * Not a valid address for bind 4685 */ 4686 error = EADDRNOTAVAIL; 4687 } 4688 } 4689 if (error) { 4690 /* Red Alert! Attempting to be a bogon! */ 4691 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4692 ntohl(src_addr))); 4693 goto bad_addr; 4694 } 4695 } 4696 4697 /* 4698 * Allow setting new policies. For example, disconnects come 4699 * down as ipa_t bind. As we would have set conn_policy_cached 4700 * to B_TRUE before, we should set it to B_FALSE, so that policy 4701 * can change after the disconnect. 4702 */ 4703 connp->conn_policy_cached = B_FALSE; 4704 4705 /* 4706 * If not fanout_insert this was just an address verification 4707 */ 4708 if (fanout_insert) { 4709 /* 4710 * The addresses have been verified. Time to insert in 4711 * the correct fanout list. 4712 */ 4713 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4714 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4715 connp->conn_lport = lport; 4716 connp->conn_fport = 0; 4717 /* 4718 * Do we need to add a check to reject Multicast packets 4719 */ 4720 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4721 } 4722 4723 if (error == 0) { 4724 if (ire_requested) { 4725 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4726 error = -1; 4727 /* Falls through to bad_addr */ 4728 } 4729 } else if (ipsec_policy_set) { 4730 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4731 error = -1; 4732 /* Falls through to bad_addr */ 4733 } 4734 } 4735 } 4736 bad_addr: 4737 if (error != 0) { 4738 if (connp->conn_anon_port) { 4739 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4740 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4741 B_FALSE); 4742 } 4743 connp->conn_mlp_type = mlptSingle; 4744 } 4745 if (src_ire != NULL) 4746 IRE_REFRELE(src_ire); 4747 return (error); 4748 } 4749 4750 int 4751 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4752 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4753 { 4754 int error; 4755 mblk_t *mp = NULL; 4756 boolean_t ire_requested; 4757 4758 if (ire_mpp) 4759 mp = *ire_mpp; 4760 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4761 4762 ASSERT(!connp->conn_af_isv6); 4763 connp->conn_pkt_isv6 = B_FALSE; 4764 connp->conn_ulp = protocol; 4765 4766 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4767 fanout_insert); 4768 if (error == 0) { 4769 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4770 ire_requested); 4771 } else if (error < 0) { 4772 error = -TBADADDR; 4773 } 4774 return (error); 4775 } 4776 4777 /* 4778 * Verify that both the source and destination addresses 4779 * are valid. If verify_dst is false, then the destination address may be 4780 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4781 * destination reachability, while tunnels do not. 4782 * Note that we allow connect to broadcast and multicast 4783 * addresses when ire_requested is set. Thus the ULP 4784 * has to check for IRE_BROADCAST and multicast. 4785 * 4786 * Returns zero if ok. 4787 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4788 * (for use with TSYSERR reply). 4789 * 4790 * Note: lport and fport are in network byte order. 4791 */ 4792 int 4793 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4794 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4795 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4796 { 4797 4798 ire_t *src_ire; 4799 ire_t *dst_ire; 4800 int error = 0; 4801 ire_t *sire = NULL; 4802 ire_t *md_dst_ire = NULL; 4803 ire_t *lso_dst_ire = NULL; 4804 ill_t *ill = NULL; 4805 zoneid_t zoneid; 4806 ipaddr_t src_addr = *src_addrp; 4807 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4808 mblk_t *mp = NULL; 4809 boolean_t ire_requested = B_FALSE; 4810 boolean_t ipsec_policy_set = B_FALSE; 4811 ts_label_t *tsl = NULL; 4812 4813 if (mpp) 4814 mp = *mpp; 4815 4816 if (mp != NULL) { 4817 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4818 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4819 } 4820 if (cr != NULL) 4821 tsl = crgetlabel(cr); 4822 4823 src_ire = dst_ire = NULL; 4824 4825 /* 4826 * If we never got a disconnect before, clear it now. 4827 */ 4828 connp->conn_fully_bound = B_FALSE; 4829 4830 zoneid = IPCL_ZONEID(connp); 4831 4832 if (CLASSD(dst_addr)) { 4833 /* Pick up an IRE_BROADCAST */ 4834 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4835 NULL, zoneid, tsl, 4836 (MATCH_IRE_RECURSIVE | 4837 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4838 MATCH_IRE_SECATTR), ipst); 4839 } else { 4840 /* 4841 * If conn_dontroute is set or if conn_nexthop_set is set, 4842 * and onlink ipif is not found set ENETUNREACH error. 4843 */ 4844 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4845 ipif_t *ipif; 4846 4847 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4848 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4849 if (ipif == NULL) { 4850 error = ENETUNREACH; 4851 goto bad_addr; 4852 } 4853 ipif_refrele(ipif); 4854 } 4855 4856 if (connp->conn_nexthop_set) { 4857 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4858 0, 0, NULL, NULL, zoneid, tsl, 4859 MATCH_IRE_SECATTR, ipst); 4860 } else { 4861 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4862 &sire, zoneid, tsl, 4863 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4864 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4865 MATCH_IRE_SECATTR), ipst); 4866 } 4867 } 4868 /* 4869 * dst_ire can't be a broadcast when not ire_requested. 4870 * We also prevent ire's with src address INADDR_ANY to 4871 * be used, which are created temporarily for 4872 * sending out packets from endpoints that have 4873 * conn_unspec_src set. If verify_dst is true, the destination must be 4874 * reachable. If verify_dst is false, the destination needn't be 4875 * reachable. 4876 * 4877 * If we match on a reject or black hole, then we've got a 4878 * local failure. May as well fail out the connect() attempt, 4879 * since it's never going to succeed. 4880 */ 4881 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4882 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4883 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4884 /* 4885 * If we're verifying destination reachability, we always want 4886 * to complain here. 4887 * 4888 * If we're not verifying destination reachability but the 4889 * destination has a route, we still want to fail on the 4890 * temporary address and broadcast address tests. 4891 */ 4892 if (verify_dst || (dst_ire != NULL)) { 4893 if (ip_debug > 2) { 4894 pr_addr_dbg("ip_bind_connected_v4:" 4895 "bad connected dst %s\n", 4896 AF_INET, &dst_addr); 4897 } 4898 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4899 error = ENETUNREACH; 4900 else 4901 error = EHOSTUNREACH; 4902 goto bad_addr; 4903 } 4904 } 4905 4906 /* 4907 * We now know that routing will allow us to reach the destination. 4908 * Check whether Trusted Solaris policy allows communication with this 4909 * host, and pretend that the destination is unreachable if not. 4910 * 4911 * This is never a problem for TCP, since that transport is known to 4912 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4913 * handling. If the remote is unreachable, it will be detected at that 4914 * point, so there's no reason to check it here. 4915 * 4916 * Note that for sendto (and other datagram-oriented friends), this 4917 * check is done as part of the data path label computation instead. 4918 * The check here is just to make non-TCP connect() report the right 4919 * error. 4920 */ 4921 if (dst_ire != NULL && is_system_labeled() && 4922 !IPCL_IS_TCP(connp) && 4923 tsol_compute_label(cr, dst_addr, NULL, 4924 connp->conn_mac_exempt, ipst) != 0) { 4925 error = EHOSTUNREACH; 4926 if (ip_debug > 2) { 4927 pr_addr_dbg("ip_bind_connected_v4:" 4928 " no label for dst %s\n", 4929 AF_INET, &dst_addr); 4930 } 4931 goto bad_addr; 4932 } 4933 4934 /* 4935 * If the app does a connect(), it means that it will most likely 4936 * send more than 1 packet to the destination. It makes sense 4937 * to clear the temporary flag. 4938 */ 4939 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4940 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4941 irb_t *irb = dst_ire->ire_bucket; 4942 4943 rw_enter(&irb->irb_lock, RW_WRITER); 4944 /* 4945 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4946 * the lock to guarantee irb_tmp_ire_cnt. 4947 */ 4948 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4949 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4950 irb->irb_tmp_ire_cnt--; 4951 } 4952 rw_exit(&irb->irb_lock); 4953 } 4954 4955 /* 4956 * See if we should notify ULP about LSO/MDT; we do this whether or not 4957 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4958 * eligibility tests for passive connects are handled separately 4959 * through tcp_adapt_ire(). We do this before the source address 4960 * selection, because dst_ire may change after a call to 4961 * ipif_select_source(). This is a best-effort check, as the 4962 * packet for this connection may not actually go through 4963 * dst_ire->ire_stq, and the exact IRE can only be known after 4964 * calling ip_newroute(). This is why we further check on the 4965 * IRE during LSO/Multidata packet transmission in 4966 * tcp_lsosend()/tcp_multisend(). 4967 */ 4968 if (!ipsec_policy_set && dst_ire != NULL && 4969 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4970 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4971 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4972 lso_dst_ire = dst_ire; 4973 IRE_REFHOLD(lso_dst_ire); 4974 } else if (ipst->ips_ip_multidata_outbound && 4975 ILL_MDT_CAPABLE(ill)) { 4976 md_dst_ire = dst_ire; 4977 IRE_REFHOLD(md_dst_ire); 4978 } 4979 } 4980 4981 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4982 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4983 /* 4984 * If the IRE belongs to a different zone, look for a matching 4985 * route in the forwarding table and use the source address from 4986 * that route. 4987 */ 4988 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4989 zoneid, 0, NULL, 4990 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4991 MATCH_IRE_RJ_BHOLE, ipst); 4992 if (src_ire == NULL) { 4993 error = EHOSTUNREACH; 4994 goto bad_addr; 4995 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4996 if (!(src_ire->ire_type & IRE_HOST)) 4997 error = ENETUNREACH; 4998 else 4999 error = EHOSTUNREACH; 5000 goto bad_addr; 5001 } 5002 if (src_addr == INADDR_ANY) 5003 src_addr = src_ire->ire_src_addr; 5004 ire_refrele(src_ire); 5005 src_ire = NULL; 5006 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 5007 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 5008 src_addr = sire->ire_src_addr; 5009 ire_refrele(dst_ire); 5010 dst_ire = sire; 5011 sire = NULL; 5012 } else { 5013 /* 5014 * Pick a source address so that a proper inbound 5015 * load spreading would happen. 5016 */ 5017 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 5018 ipif_t *src_ipif = NULL; 5019 ire_t *ipif_ire; 5020 5021 /* 5022 * Supply a local source address such that inbound 5023 * load spreading happens. 5024 * 5025 * Determine the best source address on this ill for 5026 * the destination. 5027 * 5028 * 1) For broadcast, we should return a broadcast ire 5029 * found above so that upper layers know that the 5030 * destination address is a broadcast address. 5031 * 5032 * 2) If the ipif is DEPRECATED, select a better 5033 * source address. Similarly, if the ipif is on 5034 * the IPMP meta-interface, pick a source address 5035 * at random to improve inbound load spreading. 5036 * 5037 * 3) If the outgoing interface is part of a usesrc 5038 * group, then try selecting a source address from 5039 * the usesrc ILL. 5040 */ 5041 if ((dst_ire->ire_zoneid != zoneid && 5042 dst_ire->ire_zoneid != ALL_ZONES) || 5043 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5044 (!(dst_ire->ire_type & IRE_BROADCAST) && 5045 (IS_IPMP(ire_ill) || 5046 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5047 (ire_ill->ill_usesrc_ifindex != 0)))) { 5048 /* 5049 * If the destination is reachable via a 5050 * given gateway, the selected source address 5051 * should be in the same subnet as the gateway. 5052 * Otherwise, the destination is not reachable. 5053 * 5054 * If there are no interfaces on the same subnet 5055 * as the destination, ipif_select_source gives 5056 * first non-deprecated interface which might be 5057 * on a different subnet than the gateway. 5058 * This is not desirable. Hence pass the dst_ire 5059 * source address to ipif_select_source. 5060 * It is sure that the destination is reachable 5061 * with the dst_ire source address subnet. 5062 * So passing dst_ire source address to 5063 * ipif_select_source will make sure that the 5064 * selected source will be on the same subnet 5065 * as dst_ire source address. 5066 */ 5067 ipaddr_t saddr = 5068 dst_ire->ire_ipif->ipif_src_addr; 5069 src_ipif = ipif_select_source(ire_ill, 5070 saddr, zoneid); 5071 if (src_ipif != NULL) { 5072 if (IS_VNI(src_ipif->ipif_ill)) { 5073 /* 5074 * For VNI there is no 5075 * interface route 5076 */ 5077 src_addr = 5078 src_ipif->ipif_src_addr; 5079 } else { 5080 ipif_ire = 5081 ipif_to_ire(src_ipif); 5082 if (ipif_ire != NULL) { 5083 IRE_REFRELE(dst_ire); 5084 dst_ire = ipif_ire; 5085 } 5086 src_addr = 5087 dst_ire->ire_src_addr; 5088 } 5089 ipif_refrele(src_ipif); 5090 } else { 5091 src_addr = dst_ire->ire_src_addr; 5092 } 5093 } else { 5094 src_addr = dst_ire->ire_src_addr; 5095 } 5096 } 5097 } 5098 5099 /* 5100 * We do ire_route_lookup() here (and not 5101 * interface lookup as we assert that 5102 * src_addr should only come from an 5103 * UP interface for hard binding. 5104 */ 5105 ASSERT(src_ire == NULL); 5106 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5107 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5108 /* src_ire must be a local|loopback */ 5109 if (!IRE_IS_LOCAL(src_ire)) { 5110 if (ip_debug > 2) { 5111 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5112 "src %s\n", AF_INET, &src_addr); 5113 } 5114 error = EADDRNOTAVAIL; 5115 goto bad_addr; 5116 } 5117 5118 /* 5119 * If the source address is a loopback address, the 5120 * destination had best be local or multicast. 5121 * The transports that can't handle multicast will reject 5122 * those addresses. 5123 */ 5124 if (src_ire->ire_type == IRE_LOOPBACK && 5125 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5126 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5127 error = -1; 5128 goto bad_addr; 5129 } 5130 5131 /* 5132 * Allow setting new policies. For example, disconnects come 5133 * down as ipa_t bind. As we would have set conn_policy_cached 5134 * to B_TRUE before, we should set it to B_FALSE, so that policy 5135 * can change after the disconnect. 5136 */ 5137 connp->conn_policy_cached = B_FALSE; 5138 5139 /* 5140 * Set the conn addresses/ports immediately, so the IPsec policy calls 5141 * can handle their passed-in conn's. 5142 */ 5143 5144 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5145 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5146 connp->conn_lport = lport; 5147 connp->conn_fport = fport; 5148 *src_addrp = src_addr; 5149 5150 ASSERT(!(ipsec_policy_set && ire_requested)); 5151 if (ire_requested) { 5152 iulp_t *ulp_info = NULL; 5153 5154 /* 5155 * Note that sire will not be NULL if this is an off-link 5156 * connection and there is not cache for that dest yet. 5157 * 5158 * XXX Because of an existing bug, if there are multiple 5159 * default routes, the IRE returned now may not be the actual 5160 * default route used (default routes are chosen in a 5161 * round robin fashion). So if the metrics for different 5162 * default routes are different, we may return the wrong 5163 * metrics. This will not be a problem if the existing 5164 * bug is fixed. 5165 */ 5166 if (sire != NULL) { 5167 ulp_info = &(sire->ire_uinfo); 5168 } 5169 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5170 error = -1; 5171 goto bad_addr; 5172 } 5173 mp = *mpp; 5174 } else if (ipsec_policy_set) { 5175 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5176 error = -1; 5177 goto bad_addr; 5178 } 5179 } 5180 5181 /* 5182 * Cache IPsec policy in this conn. If we have per-socket policy, 5183 * we'll cache that. If we don't, we'll inherit global policy. 5184 * 5185 * We can't insert until the conn reflects the policy. Note that 5186 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5187 * connections where we don't have a policy. This is to prevent 5188 * global policy lookups in the inbound path. 5189 * 5190 * If we insert before we set conn_policy_cached, 5191 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5192 * because global policy cound be non-empty. We normally call 5193 * ipsec_check_policy() for conn_policy_cached connections only if 5194 * ipc_in_enforce_policy is set. But in this case, 5195 * conn_policy_cached can get set anytime since we made the 5196 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5197 * called, which will make the above assumption false. Thus, we 5198 * need to insert after we set conn_policy_cached. 5199 */ 5200 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5201 goto bad_addr; 5202 5203 if (fanout_insert) { 5204 /* 5205 * The addresses have been verified. Time to insert in 5206 * the correct fanout list. 5207 */ 5208 error = ipcl_conn_insert(connp, protocol, src_addr, 5209 dst_addr, connp->conn_ports); 5210 } 5211 5212 if (error == 0) { 5213 connp->conn_fully_bound = B_TRUE; 5214 /* 5215 * Our initial checks for LSO/MDT have passed; the IRE is not 5216 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5217 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5218 * ip_xxinfo_return(), which performs further checks 5219 * against them and upon success, returns the LSO/MDT info 5220 * mblk which we will attach to the bind acknowledgment. 5221 */ 5222 if (lso_dst_ire != NULL) { 5223 mblk_t *lsoinfo_mp; 5224 5225 ASSERT(ill->ill_lso_capab != NULL); 5226 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5227 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5228 if (mp == NULL) { 5229 *mpp = lsoinfo_mp; 5230 } else { 5231 linkb(mp, lsoinfo_mp); 5232 } 5233 } 5234 } else if (md_dst_ire != NULL) { 5235 mblk_t *mdinfo_mp; 5236 5237 ASSERT(ill->ill_mdt_capab != NULL); 5238 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5239 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5240 if (mp == NULL) { 5241 *mpp = mdinfo_mp; 5242 } else { 5243 linkb(mp, mdinfo_mp); 5244 } 5245 } 5246 } 5247 } 5248 bad_addr: 5249 if (ipsec_policy_set) { 5250 ASSERT(mp != NULL); 5251 freeb(mp); 5252 /* 5253 * As of now assume that nothing else accompanies 5254 * IPSEC_POLICY_SET. 5255 */ 5256 *mpp = NULL; 5257 } 5258 if (src_ire != NULL) 5259 IRE_REFRELE(src_ire); 5260 if (dst_ire != NULL) 5261 IRE_REFRELE(dst_ire); 5262 if (sire != NULL) 5263 IRE_REFRELE(sire); 5264 if (md_dst_ire != NULL) 5265 IRE_REFRELE(md_dst_ire); 5266 if (lso_dst_ire != NULL) 5267 IRE_REFRELE(lso_dst_ire); 5268 return (error); 5269 } 5270 5271 int 5272 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5273 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5274 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5275 { 5276 int error; 5277 mblk_t *mp = NULL; 5278 boolean_t ire_requested; 5279 5280 if (ire_mpp) 5281 mp = *ire_mpp; 5282 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5283 5284 ASSERT(!connp->conn_af_isv6); 5285 connp->conn_pkt_isv6 = B_FALSE; 5286 connp->conn_ulp = protocol; 5287 5288 /* For raw socket, the local port is not set. */ 5289 if (lport == 0) 5290 lport = connp->conn_lport; 5291 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5292 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5293 if (error == 0) { 5294 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5295 ire_requested); 5296 } else if (error < 0) { 5297 error = -TBADADDR; 5298 } 5299 return (error); 5300 } 5301 5302 /* 5303 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5304 * Prefers dst_ire over src_ire. 5305 */ 5306 static boolean_t 5307 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5308 { 5309 mblk_t *mp = *mpp; 5310 ire_t *ret_ire; 5311 5312 ASSERT(mp != NULL); 5313 5314 if (ire != NULL) { 5315 /* 5316 * mp initialized above to IRE_DB_REQ_TYPE 5317 * appended mblk. Its <upper protocol>'s 5318 * job to make sure there is room. 5319 */ 5320 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5321 return (B_FALSE); 5322 5323 mp->b_datap->db_type = IRE_DB_TYPE; 5324 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5325 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5326 ret_ire = (ire_t *)mp->b_rptr; 5327 /* 5328 * Pass the latest setting of the ip_path_mtu_discovery and 5329 * copy the ulp info if any. 5330 */ 5331 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5332 IPH_DF : 0; 5333 if (ulp_info != NULL) { 5334 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5335 sizeof (iulp_t)); 5336 } 5337 ret_ire->ire_mp = mp; 5338 } else { 5339 /* 5340 * No IRE was found. Remove IRE mblk. 5341 */ 5342 *mpp = mp->b_cont; 5343 freeb(mp); 5344 } 5345 return (B_TRUE); 5346 } 5347 5348 /* 5349 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5350 * the final piece where we don't. Return a pointer to the first mblk in the 5351 * result, and update the pointer to the next mblk to chew on. If anything 5352 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5353 * NULL pointer. 5354 */ 5355 mblk_t * 5356 ip_carve_mp(mblk_t **mpp, ssize_t len) 5357 { 5358 mblk_t *mp0; 5359 mblk_t *mp1; 5360 mblk_t *mp2; 5361 5362 if (!len || !mpp || !(mp0 = *mpp)) 5363 return (NULL); 5364 /* If we aren't going to consume the first mblk, we need a dup. */ 5365 if (mp0->b_wptr - mp0->b_rptr > len) { 5366 mp1 = dupb(mp0); 5367 if (mp1) { 5368 /* Partition the data between the two mblks. */ 5369 mp1->b_wptr = mp1->b_rptr + len; 5370 mp0->b_rptr = mp1->b_wptr; 5371 /* 5372 * after adjustments if mblk not consumed is now 5373 * unaligned, try to align it. If this fails free 5374 * all messages and let upper layer recover. 5375 */ 5376 if (!OK_32PTR(mp0->b_rptr)) { 5377 if (!pullupmsg(mp0, -1)) { 5378 freemsg(mp0); 5379 freemsg(mp1); 5380 *mpp = NULL; 5381 return (NULL); 5382 } 5383 } 5384 } 5385 return (mp1); 5386 } 5387 /* Eat through as many mblks as we need to get len bytes. */ 5388 len -= mp0->b_wptr - mp0->b_rptr; 5389 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5390 if (mp2->b_wptr - mp2->b_rptr > len) { 5391 /* 5392 * We won't consume the entire last mblk. Like 5393 * above, dup and partition it. 5394 */ 5395 mp1->b_cont = dupb(mp2); 5396 mp1 = mp1->b_cont; 5397 if (!mp1) { 5398 /* 5399 * Trouble. Rather than go to a lot of 5400 * trouble to clean up, we free the messages. 5401 * This won't be any worse than losing it on 5402 * the wire. 5403 */ 5404 freemsg(mp0); 5405 freemsg(mp2); 5406 *mpp = NULL; 5407 return (NULL); 5408 } 5409 mp1->b_wptr = mp1->b_rptr + len; 5410 mp2->b_rptr = mp1->b_wptr; 5411 /* 5412 * after adjustments if mblk not consumed is now 5413 * unaligned, try to align it. If this fails free 5414 * all messages and let upper layer recover. 5415 */ 5416 if (!OK_32PTR(mp2->b_rptr)) { 5417 if (!pullupmsg(mp2, -1)) { 5418 freemsg(mp0); 5419 freemsg(mp2); 5420 *mpp = NULL; 5421 return (NULL); 5422 } 5423 } 5424 *mpp = mp2; 5425 return (mp0); 5426 } 5427 /* Decrement len by the amount we just got. */ 5428 len -= mp2->b_wptr - mp2->b_rptr; 5429 } 5430 /* 5431 * len should be reduced to zero now. If not our caller has 5432 * screwed up. 5433 */ 5434 if (len) { 5435 /* Shouldn't happen! */ 5436 freemsg(mp0); 5437 *mpp = NULL; 5438 return (NULL); 5439 } 5440 /* 5441 * We consumed up to exactly the end of an mblk. Detach the part 5442 * we are returning from the rest of the chain. 5443 */ 5444 mp1->b_cont = NULL; 5445 *mpp = mp2; 5446 return (mp0); 5447 } 5448 5449 /* The ill stream is being unplumbed. Called from ip_close */ 5450 int 5451 ip_modclose(ill_t *ill) 5452 { 5453 boolean_t success; 5454 ipsq_t *ipsq; 5455 ipif_t *ipif; 5456 queue_t *q = ill->ill_rq; 5457 ip_stack_t *ipst = ill->ill_ipst; 5458 int i; 5459 5460 /* 5461 * The punlink prior to this may have initiated a capability 5462 * negotiation. But ipsq_enter will block until that finishes or 5463 * times out. 5464 */ 5465 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5466 5467 /* 5468 * Open/close/push/pop is guaranteed to be single threaded 5469 * per stream by STREAMS. FS guarantees that all references 5470 * from top are gone before close is called. So there can't 5471 * be another close thread that has set CONDEMNED on this ill. 5472 * and cause ipsq_enter to return failure. 5473 */ 5474 ASSERT(success); 5475 ipsq = ill->ill_phyint->phyint_ipsq; 5476 5477 /* 5478 * Mark it condemned. No new reference will be made to this ill. 5479 * Lookup functions will return an error. Threads that try to 5480 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5481 * that the refcnt will drop down to zero. 5482 */ 5483 mutex_enter(&ill->ill_lock); 5484 ill->ill_state_flags |= ILL_CONDEMNED; 5485 for (ipif = ill->ill_ipif; ipif != NULL; 5486 ipif = ipif->ipif_next) { 5487 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5488 } 5489 /* 5490 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5491 * returns error if ILL_CONDEMNED is set 5492 */ 5493 cv_broadcast(&ill->ill_cv); 5494 mutex_exit(&ill->ill_lock); 5495 5496 /* 5497 * Send all the deferred DLPI messages downstream which came in 5498 * during the small window right before ipsq_enter(). We do this 5499 * without waiting for the ACKs because all the ACKs for M_PROTO 5500 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5501 */ 5502 ill_dlpi_send_deferred(ill); 5503 5504 /* 5505 * Shut down fragmentation reassembly. 5506 * ill_frag_timer won't start a timer again. 5507 * Now cancel any existing timer 5508 */ 5509 (void) untimeout(ill->ill_frag_timer_id); 5510 (void) ill_frag_timeout(ill, 0); 5511 5512 /* 5513 * Call ill_delete to bring down the ipifs, ilms and ill on 5514 * this ill. Then wait for the refcnts to drop to zero. 5515 * ill_is_freeable checks whether the ill is really quiescent. 5516 * Then make sure that threads that are waiting to enter the 5517 * ipsq have seen the error returned by ipsq_enter and have 5518 * gone away. Then we call ill_delete_tail which does the 5519 * DL_UNBIND_REQ with the driver and then qprocsoff. 5520 */ 5521 ill_delete(ill); 5522 mutex_enter(&ill->ill_lock); 5523 while (!ill_is_freeable(ill)) 5524 cv_wait(&ill->ill_cv, &ill->ill_lock); 5525 while (ill->ill_waiters) 5526 cv_wait(&ill->ill_cv, &ill->ill_lock); 5527 5528 mutex_exit(&ill->ill_lock); 5529 5530 /* 5531 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5532 * it held until the end of the function since the cleanup 5533 * below needs to be able to use the ip_stack_t. 5534 */ 5535 netstack_hold(ipst->ips_netstack); 5536 5537 /* qprocsoff is done via ill_delete_tail */ 5538 ill_delete_tail(ill); 5539 ASSERT(ill->ill_ipst == NULL); 5540 5541 /* 5542 * Walk through all upper (conn) streams and qenable 5543 * those that have queued data. 5544 * close synchronization needs this to 5545 * be done to ensure that all upper layers blocked 5546 * due to flow control to the closing device 5547 * get unblocked. 5548 */ 5549 ip1dbg(("ip_wsrv: walking\n")); 5550 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5551 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5552 } 5553 5554 mutex_enter(&ipst->ips_ip_mi_lock); 5555 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5556 mutex_exit(&ipst->ips_ip_mi_lock); 5557 5558 /* 5559 * credp could be null if the open didn't succeed and ip_modopen 5560 * itself calls ip_close. 5561 */ 5562 if (ill->ill_credp != NULL) 5563 crfree(ill->ill_credp); 5564 5565 /* 5566 * Now we are done with the module close pieces that 5567 * need the netstack_t. 5568 */ 5569 netstack_rele(ipst->ips_netstack); 5570 5571 mi_close_free((IDP)ill); 5572 q->q_ptr = WR(q)->q_ptr = NULL; 5573 5574 ipsq_exit(ipsq); 5575 5576 return (0); 5577 } 5578 5579 /* 5580 * This is called as part of close() for IP, UDP, ICMP, and RTS 5581 * in order to quiesce the conn. 5582 */ 5583 void 5584 ip_quiesce_conn(conn_t *connp) 5585 { 5586 boolean_t drain_cleanup_reqd = B_FALSE; 5587 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5588 boolean_t ilg_cleanup_reqd = B_FALSE; 5589 ip_stack_t *ipst; 5590 5591 ASSERT(!IPCL_IS_TCP(connp)); 5592 ipst = connp->conn_netstack->netstack_ip; 5593 5594 /* 5595 * Mark the conn as closing, and this conn must not be 5596 * inserted in future into any list. Eg. conn_drain_insert(), 5597 * won't insert this conn into the conn_drain_list. 5598 * Similarly ill_pending_mp_add() will not add any mp to 5599 * the pending mp list, after this conn has started closing. 5600 * 5601 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5602 * cannot get set henceforth. 5603 */ 5604 mutex_enter(&connp->conn_lock); 5605 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5606 connp->conn_state_flags |= CONN_CLOSING; 5607 if (connp->conn_idl != NULL) 5608 drain_cleanup_reqd = B_TRUE; 5609 if (connp->conn_oper_pending_ill != NULL) 5610 conn_ioctl_cleanup_reqd = B_TRUE; 5611 if (connp->conn_dhcpinit_ill != NULL) { 5612 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5613 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5614 connp->conn_dhcpinit_ill = NULL; 5615 } 5616 if (connp->conn_ilg_inuse != 0) 5617 ilg_cleanup_reqd = B_TRUE; 5618 mutex_exit(&connp->conn_lock); 5619 5620 if (conn_ioctl_cleanup_reqd) 5621 conn_ioctl_cleanup(connp); 5622 5623 if (is_system_labeled() && connp->conn_anon_port) { 5624 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5625 connp->conn_mlp_type, connp->conn_ulp, 5626 ntohs(connp->conn_lport), B_FALSE); 5627 connp->conn_anon_port = 0; 5628 } 5629 connp->conn_mlp_type = mlptSingle; 5630 5631 /* 5632 * Remove this conn from any fanout list it is on. 5633 * and then wait for any threads currently operating 5634 * on this endpoint to finish 5635 */ 5636 ipcl_hash_remove(connp); 5637 5638 /* 5639 * Remove this conn from the drain list, and do 5640 * any other cleanup that may be required. 5641 * (Only non-tcp streams may have a non-null conn_idl. 5642 * TCP streams are never flow controlled, and 5643 * conn_idl will be null) 5644 */ 5645 if (drain_cleanup_reqd) 5646 conn_drain_tail(connp, B_TRUE); 5647 5648 if (connp == ipst->ips_ip_g_mrouter) 5649 (void) ip_mrouter_done(NULL, ipst); 5650 5651 if (ilg_cleanup_reqd) 5652 ilg_delete_all(connp); 5653 5654 conn_delete_ire(connp, NULL); 5655 5656 /* 5657 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5658 * callers from write side can't be there now because close 5659 * is in progress. The only other caller is ipcl_walk 5660 * which checks for the condemned flag. 5661 */ 5662 mutex_enter(&connp->conn_lock); 5663 connp->conn_state_flags |= CONN_CONDEMNED; 5664 while (connp->conn_ref != 1) 5665 cv_wait(&connp->conn_cv, &connp->conn_lock); 5666 connp->conn_state_flags |= CONN_QUIESCED; 5667 mutex_exit(&connp->conn_lock); 5668 } 5669 5670 /* ARGSUSED */ 5671 int 5672 ip_close(queue_t *q, int flags) 5673 { 5674 conn_t *connp; 5675 5676 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5677 5678 /* 5679 * Call the appropriate delete routine depending on whether this is 5680 * a module or device. 5681 */ 5682 if (WR(q)->q_next != NULL) { 5683 /* This is a module close */ 5684 return (ip_modclose((ill_t *)q->q_ptr)); 5685 } 5686 5687 connp = q->q_ptr; 5688 ip_quiesce_conn(connp); 5689 5690 qprocsoff(q); 5691 5692 /* 5693 * Now we are truly single threaded on this stream, and can 5694 * delete the things hanging off the connp, and finally the connp. 5695 * We removed this connp from the fanout list, it cannot be 5696 * accessed thru the fanouts, and we already waited for the 5697 * conn_ref to drop to 0. We are already in close, so 5698 * there cannot be any other thread from the top. qprocsoff 5699 * has completed, and service has completed or won't run in 5700 * future. 5701 */ 5702 ASSERT(connp->conn_ref == 1); 5703 5704 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5705 5706 connp->conn_ref--; 5707 ipcl_conn_destroy(connp); 5708 5709 q->q_ptr = WR(q)->q_ptr = NULL; 5710 return (0); 5711 } 5712 5713 /* 5714 * Wapper around putnext() so that ip_rts_request can merely use 5715 * conn_recv. 5716 */ 5717 /*ARGSUSED2*/ 5718 static void 5719 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5720 { 5721 conn_t *connp = (conn_t *)arg1; 5722 5723 putnext(connp->conn_rq, mp); 5724 } 5725 5726 /* 5727 * Called when the module is about to be unloaded 5728 */ 5729 void 5730 ip_ddi_destroy(void) 5731 { 5732 tnet_fini(); 5733 5734 icmp_ddi_g_destroy(); 5735 rts_ddi_g_destroy(); 5736 udp_ddi_g_destroy(); 5737 sctp_ddi_g_destroy(); 5738 tcp_ddi_g_destroy(); 5739 ipsec_policy_g_destroy(); 5740 ipcl_g_destroy(); 5741 ip_net_g_destroy(); 5742 ip_ire_g_fini(); 5743 inet_minor_destroy(ip_minor_arena_sa); 5744 #if defined(_LP64) 5745 inet_minor_destroy(ip_minor_arena_la); 5746 #endif 5747 5748 #ifdef DEBUG 5749 list_destroy(&ip_thread_list); 5750 rw_destroy(&ip_thread_rwlock); 5751 tsd_destroy(&ip_thread_data); 5752 #endif 5753 5754 netstack_unregister(NS_IP); 5755 } 5756 5757 /* 5758 * First step in cleanup. 5759 */ 5760 /* ARGSUSED */ 5761 static void 5762 ip_stack_shutdown(netstackid_t stackid, void *arg) 5763 { 5764 ip_stack_t *ipst = (ip_stack_t *)arg; 5765 5766 #ifdef NS_DEBUG 5767 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5768 #endif 5769 5770 /* Get rid of loopback interfaces and their IREs */ 5771 ip_loopback_cleanup(ipst); 5772 5773 /* 5774 * The *_hook_shutdown()s start the process of notifying any 5775 * consumers that things are going away.... nothing is destroyed. 5776 */ 5777 ipv4_hook_shutdown(ipst); 5778 ipv6_hook_shutdown(ipst); 5779 5780 mutex_enter(&ipst->ips_capab_taskq_lock); 5781 ipst->ips_capab_taskq_quit = B_TRUE; 5782 cv_signal(&ipst->ips_capab_taskq_cv); 5783 mutex_exit(&ipst->ips_capab_taskq_lock); 5784 5785 mutex_enter(&ipst->ips_mrt_lock); 5786 ipst->ips_mrt_flags |= IP_MRT_STOP; 5787 cv_signal(&ipst->ips_mrt_cv); 5788 mutex_exit(&ipst->ips_mrt_lock); 5789 } 5790 5791 /* 5792 * Free the IP stack instance. 5793 */ 5794 static void 5795 ip_stack_fini(netstackid_t stackid, void *arg) 5796 { 5797 ip_stack_t *ipst = (ip_stack_t *)arg; 5798 int ret; 5799 5800 #ifdef NS_DEBUG 5801 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5802 #endif 5803 /* 5804 * At this point, all of the notifications that the events and 5805 * protocols are going away have been run, meaning that we can 5806 * now set about starting to clean things up. 5807 */ 5808 ipv4_hook_destroy(ipst); 5809 ipv6_hook_destroy(ipst); 5810 ip_net_destroy(ipst); 5811 5812 mutex_destroy(&ipst->ips_capab_taskq_lock); 5813 cv_destroy(&ipst->ips_capab_taskq_cv); 5814 list_destroy(&ipst->ips_capab_taskq_list); 5815 5816 mutex_enter(&ipst->ips_mrt_lock); 5817 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5818 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5819 mutex_destroy(&ipst->ips_mrt_lock); 5820 cv_destroy(&ipst->ips_mrt_cv); 5821 cv_destroy(&ipst->ips_mrt_done_cv); 5822 5823 ipmp_destroy(ipst); 5824 rw_destroy(&ipst->ips_srcid_lock); 5825 5826 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5827 ipst->ips_ip_mibkp = NULL; 5828 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5829 ipst->ips_icmp_mibkp = NULL; 5830 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5831 ipst->ips_ip_kstat = NULL; 5832 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5833 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5834 ipst->ips_ip6_kstat = NULL; 5835 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5836 5837 nd_free(&ipst->ips_ip_g_nd); 5838 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5839 ipst->ips_param_arr = NULL; 5840 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5841 ipst->ips_ndp_arr = NULL; 5842 5843 ip_mrouter_stack_destroy(ipst); 5844 5845 mutex_destroy(&ipst->ips_ip_mi_lock); 5846 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5847 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5848 rw_destroy(&ipst->ips_ip_g_nd_lock); 5849 5850 ret = untimeout(ipst->ips_igmp_timeout_id); 5851 if (ret == -1) { 5852 ASSERT(ipst->ips_igmp_timeout_id == 0); 5853 } else { 5854 ASSERT(ipst->ips_igmp_timeout_id != 0); 5855 ipst->ips_igmp_timeout_id = 0; 5856 } 5857 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5858 if (ret == -1) { 5859 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5860 } else { 5861 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5862 ipst->ips_igmp_slowtimeout_id = 0; 5863 } 5864 ret = untimeout(ipst->ips_mld_timeout_id); 5865 if (ret == -1) { 5866 ASSERT(ipst->ips_mld_timeout_id == 0); 5867 } else { 5868 ASSERT(ipst->ips_mld_timeout_id != 0); 5869 ipst->ips_mld_timeout_id = 0; 5870 } 5871 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5872 if (ret == -1) { 5873 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5874 } else { 5875 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5876 ipst->ips_mld_slowtimeout_id = 0; 5877 } 5878 ret = untimeout(ipst->ips_ip_ire_expire_id); 5879 if (ret == -1) { 5880 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5881 } else { 5882 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5883 ipst->ips_ip_ire_expire_id = 0; 5884 } 5885 5886 mutex_destroy(&ipst->ips_igmp_timer_lock); 5887 mutex_destroy(&ipst->ips_mld_timer_lock); 5888 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5889 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5890 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5891 rw_destroy(&ipst->ips_ill_g_lock); 5892 5893 ipobs_fini(ipst); 5894 ip_ire_fini(ipst); 5895 ip6_asp_free(ipst); 5896 conn_drain_fini(ipst); 5897 ipcl_destroy(ipst); 5898 5899 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5900 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5901 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5902 ipst->ips_ndp4 = NULL; 5903 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5904 ipst->ips_ndp6 = NULL; 5905 5906 if (ipst->ips_loopback_ksp != NULL) { 5907 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5908 ipst->ips_loopback_ksp = NULL; 5909 } 5910 5911 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5912 ipst->ips_phyint_g_list = NULL; 5913 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5914 ipst->ips_ill_g_heads = NULL; 5915 5916 ldi_ident_release(ipst->ips_ldi_ident); 5917 kmem_free(ipst, sizeof (*ipst)); 5918 } 5919 5920 /* 5921 * This function is called from the TSD destructor, and is used to debug 5922 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5923 * details. 5924 */ 5925 static void 5926 ip_thread_exit(void *phash) 5927 { 5928 th_hash_t *thh = phash; 5929 5930 rw_enter(&ip_thread_rwlock, RW_WRITER); 5931 list_remove(&ip_thread_list, thh); 5932 rw_exit(&ip_thread_rwlock); 5933 mod_hash_destroy_hash(thh->thh_hash); 5934 kmem_free(thh, sizeof (*thh)); 5935 } 5936 5937 /* 5938 * Called when the IP kernel module is loaded into the kernel 5939 */ 5940 void 5941 ip_ddi_init(void) 5942 { 5943 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5944 5945 /* 5946 * For IP and TCP the minor numbers should start from 2 since we have 4 5947 * initial devices: ip, ip6, tcp, tcp6. 5948 */ 5949 /* 5950 * If this is a 64-bit kernel, then create two separate arenas - 5951 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5952 * other for socket apps in the range 2^^18 through 2^^32-1. 5953 */ 5954 ip_minor_arena_la = NULL; 5955 ip_minor_arena_sa = NULL; 5956 #if defined(_LP64) 5957 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5958 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5959 cmn_err(CE_PANIC, 5960 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5961 } 5962 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5963 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5964 cmn_err(CE_PANIC, 5965 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5966 } 5967 #else 5968 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5969 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5970 cmn_err(CE_PANIC, 5971 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5972 } 5973 #endif 5974 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5975 5976 ipcl_g_init(); 5977 ip_ire_g_init(); 5978 ip_net_g_init(); 5979 5980 #ifdef DEBUG 5981 tsd_create(&ip_thread_data, ip_thread_exit); 5982 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5983 list_create(&ip_thread_list, sizeof (th_hash_t), 5984 offsetof(th_hash_t, thh_link)); 5985 #endif 5986 5987 /* 5988 * We want to be informed each time a stack is created or 5989 * destroyed in the kernel, so we can maintain the 5990 * set of udp_stack_t's. 5991 */ 5992 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5993 ip_stack_fini); 5994 5995 ipsec_policy_g_init(); 5996 tcp_ddi_g_init(); 5997 sctp_ddi_g_init(); 5998 5999 tnet_init(); 6000 6001 udp_ddi_g_init(); 6002 rts_ddi_g_init(); 6003 icmp_ddi_g_init(); 6004 } 6005 6006 /* 6007 * Initialize the IP stack instance. 6008 */ 6009 static void * 6010 ip_stack_init(netstackid_t stackid, netstack_t *ns) 6011 { 6012 ip_stack_t *ipst; 6013 ipparam_t *pa; 6014 ipndp_t *na; 6015 major_t major; 6016 6017 #ifdef NS_DEBUG 6018 printf("ip_stack_init(stack %d)\n", stackid); 6019 #endif 6020 6021 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6022 ipst->ips_netstack = ns; 6023 6024 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6025 KM_SLEEP); 6026 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6027 KM_SLEEP); 6028 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6029 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6030 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6031 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6032 6033 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6034 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6035 ipst->ips_igmp_deferred_next = INFINITY; 6036 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6037 ipst->ips_mld_deferred_next = INFINITY; 6038 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6039 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6040 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6041 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6042 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6043 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6044 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6045 6046 ipcl_init(ipst); 6047 ip_ire_init(ipst); 6048 ip6_asp_init(ipst); 6049 ipif_init(ipst); 6050 conn_drain_init(ipst); 6051 ip_mrouter_stack_init(ipst); 6052 6053 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6054 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6055 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 6056 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 6057 6058 ipst->ips_ip_multirt_log_interval = 1000; 6059 6060 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6061 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6062 ipst->ips_ill_index = 1; 6063 6064 ipst->ips_saved_ip_g_forward = -1; 6065 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6066 6067 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6068 ipst->ips_param_arr = pa; 6069 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6070 6071 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6072 ipst->ips_ndp_arr = na; 6073 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6074 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6075 (caddr_t)&ipst->ips_ip_g_forward; 6076 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6077 (caddr_t)&ipst->ips_ipv6_forward; 6078 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6079 "ip_cgtp_filter") == 0); 6080 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6081 (caddr_t)&ipst->ips_ip_cgtp_filter; 6082 6083 (void) ip_param_register(&ipst->ips_ip_g_nd, 6084 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6085 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6086 6087 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6088 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6089 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6090 ipst->ips_ip6_kstat = 6091 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6092 6093 ipst->ips_ip_src_id = 1; 6094 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6095 6096 ipobs_init(ipst); 6097 ip_net_init(ipst, ns); 6098 ipv4_hook_init(ipst); 6099 ipv6_hook_init(ipst); 6100 ipmp_init(ipst); 6101 6102 /* 6103 * Create the taskq dispatcher thread and initialize related stuff. 6104 */ 6105 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6106 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6107 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6108 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6109 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6110 offsetof(mblk_t, b_next)); 6111 6112 /* 6113 * Create the mcast_restart_timers_thread() worker thread. 6114 */ 6115 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6116 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6117 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6118 ipst->ips_mrt_thread = thread_create(NULL, 0, 6119 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6120 6121 major = mod_name_to_major(INET_NAME); 6122 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6123 return (ipst); 6124 } 6125 6126 /* 6127 * Allocate and initialize a DLPI template of the specified length. (May be 6128 * called as writer.) 6129 */ 6130 mblk_t * 6131 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6132 { 6133 mblk_t *mp; 6134 6135 mp = allocb(len, BPRI_MED); 6136 if (!mp) 6137 return (NULL); 6138 6139 /* 6140 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6141 * of which we don't seem to use) are sent with M_PCPROTO, and 6142 * that other DLPI are M_PROTO. 6143 */ 6144 if (prim == DL_INFO_REQ) { 6145 mp->b_datap->db_type = M_PCPROTO; 6146 } else { 6147 mp->b_datap->db_type = M_PROTO; 6148 } 6149 6150 mp->b_wptr = mp->b_rptr + len; 6151 bzero(mp->b_rptr, len); 6152 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6153 return (mp); 6154 } 6155 6156 /* 6157 * Allocate and initialize a DLPI notification. (May be called as writer.) 6158 */ 6159 mblk_t * 6160 ip_dlnotify_alloc(uint_t notification, uint_t data) 6161 { 6162 dl_notify_ind_t *notifyp; 6163 mblk_t *mp; 6164 6165 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6166 return (NULL); 6167 6168 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6169 notifyp->dl_notification = notification; 6170 notifyp->dl_data = data; 6171 return (mp); 6172 } 6173 6174 /* 6175 * Debug formatting routine. Returns a character string representation of the 6176 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6177 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6178 * 6179 * Once the ndd table-printing interfaces are removed, this can be changed to 6180 * standard dotted-decimal form. 6181 */ 6182 char * 6183 ip_dot_addr(ipaddr_t addr, char *buf) 6184 { 6185 uint8_t *ap = (uint8_t *)&addr; 6186 6187 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6188 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6189 return (buf); 6190 } 6191 6192 /* 6193 * Write the given MAC address as a printable string in the usual colon- 6194 * separated format. 6195 */ 6196 const char * 6197 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6198 { 6199 char *bp; 6200 6201 if (alen == 0 || buflen < 4) 6202 return ("?"); 6203 bp = buf; 6204 for (;;) { 6205 /* 6206 * If there are more MAC address bytes available, but we won't 6207 * have any room to print them, then add "..." to the string 6208 * instead. See below for the 'magic number' explanation. 6209 */ 6210 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6211 (void) strcpy(bp, "..."); 6212 break; 6213 } 6214 (void) sprintf(bp, "%02x", *addr++); 6215 bp += 2; 6216 if (--alen == 0) 6217 break; 6218 *bp++ = ':'; 6219 buflen -= 3; 6220 /* 6221 * At this point, based on the first 'if' statement above, 6222 * either alen == 1 and buflen >= 3, or alen > 1 and 6223 * buflen >= 4. The first case leaves room for the final "xx" 6224 * number and trailing NUL byte. The second leaves room for at 6225 * least "...". Thus the apparently 'magic' numbers chosen for 6226 * that statement. 6227 */ 6228 } 6229 return (buf); 6230 } 6231 6232 /* 6233 * Send an ICMP error after patching up the packet appropriately. Returns 6234 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6235 */ 6236 static boolean_t 6237 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6238 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6239 zoneid_t zoneid, ip_stack_t *ipst) 6240 { 6241 ipha_t *ipha; 6242 mblk_t *first_mp; 6243 boolean_t secure; 6244 unsigned char db_type; 6245 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6246 6247 first_mp = mp; 6248 if (mctl_present) { 6249 mp = mp->b_cont; 6250 secure = ipsec_in_is_secure(first_mp); 6251 ASSERT(mp != NULL); 6252 } else { 6253 /* 6254 * If this is an ICMP error being reported - which goes 6255 * up as M_CTLs, we need to convert them to M_DATA till 6256 * we finish checking with global policy because 6257 * ipsec_check_global_policy() assumes M_DATA as clear 6258 * and M_CTL as secure. 6259 */ 6260 db_type = DB_TYPE(mp); 6261 DB_TYPE(mp) = M_DATA; 6262 secure = B_FALSE; 6263 } 6264 /* 6265 * We are generating an icmp error for some inbound packet. 6266 * Called from all ip_fanout_(udp, tcp, proto) functions. 6267 * Before we generate an error, check with global policy 6268 * to see whether this is allowed to enter the system. As 6269 * there is no "conn", we are checking with global policy. 6270 */ 6271 ipha = (ipha_t *)mp->b_rptr; 6272 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6273 first_mp = ipsec_check_global_policy(first_mp, NULL, 6274 ipha, NULL, mctl_present, ipst->ips_netstack); 6275 if (first_mp == NULL) 6276 return (B_FALSE); 6277 } 6278 6279 if (!mctl_present) 6280 DB_TYPE(mp) = db_type; 6281 6282 if (flags & IP_FF_SEND_ICMP) { 6283 if (flags & IP_FF_HDR_COMPLETE) { 6284 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6285 freemsg(first_mp); 6286 return (B_TRUE); 6287 } 6288 } 6289 if (flags & IP_FF_CKSUM) { 6290 /* 6291 * Have to correct checksum since 6292 * the packet might have been 6293 * fragmented and the reassembly code in ip_rput 6294 * does not restore the IP checksum. 6295 */ 6296 ipha->ipha_hdr_checksum = 0; 6297 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6298 } 6299 switch (icmp_type) { 6300 case ICMP_DEST_UNREACHABLE: 6301 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6302 ipst); 6303 break; 6304 default: 6305 freemsg(first_mp); 6306 break; 6307 } 6308 } else { 6309 freemsg(first_mp); 6310 return (B_FALSE); 6311 } 6312 6313 return (B_TRUE); 6314 } 6315 6316 /* 6317 * Used to send an ICMP error message when a packet is received for 6318 * a protocol that is not supported. The mblk passed as argument 6319 * is consumed by this function. 6320 */ 6321 void 6322 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6323 ip_stack_t *ipst) 6324 { 6325 mblk_t *mp; 6326 ipha_t *ipha; 6327 ill_t *ill; 6328 ipsec_in_t *ii; 6329 6330 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6331 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6332 6333 mp = ipsec_mp->b_cont; 6334 ipsec_mp->b_cont = NULL; 6335 ipha = (ipha_t *)mp->b_rptr; 6336 /* Get ill from index in ipsec_in_t. */ 6337 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6338 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6339 ipst); 6340 if (ill != NULL) { 6341 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6342 if (ip_fanout_send_icmp(q, mp, flags, 6343 ICMP_DEST_UNREACHABLE, 6344 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6345 BUMP_MIB(ill->ill_ip_mib, 6346 ipIfStatsInUnknownProtos); 6347 } 6348 } else { 6349 if (ip_fanout_send_icmp_v6(q, mp, flags, 6350 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6351 0, B_FALSE, zoneid, ipst)) { 6352 BUMP_MIB(ill->ill_ip_mib, 6353 ipIfStatsInUnknownProtos); 6354 } 6355 } 6356 ill_refrele(ill); 6357 } else { /* re-link for the freemsg() below. */ 6358 ipsec_mp->b_cont = mp; 6359 } 6360 6361 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6362 freemsg(ipsec_mp); 6363 } 6364 6365 /* 6366 * See if the inbound datagram has had IPsec processing applied to it. 6367 */ 6368 boolean_t 6369 ipsec_in_is_secure(mblk_t *ipsec_mp) 6370 { 6371 ipsec_in_t *ii; 6372 6373 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6374 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6375 6376 if (ii->ipsec_in_loopback) { 6377 return (ii->ipsec_in_secure); 6378 } else { 6379 return (ii->ipsec_in_ah_sa != NULL || 6380 ii->ipsec_in_esp_sa != NULL || 6381 ii->ipsec_in_decaps); 6382 } 6383 } 6384 6385 /* 6386 * Handle protocols with which IP is less intimate. There 6387 * can be more than one stream bound to a particular 6388 * protocol. When this is the case, normally each one gets a copy 6389 * of any incoming packets. 6390 * 6391 * IPsec NOTE : 6392 * 6393 * Don't allow a secure packet going up a non-secure connection. 6394 * We don't allow this because 6395 * 6396 * 1) Reply might go out in clear which will be dropped at 6397 * the sending side. 6398 * 2) If the reply goes out in clear it will give the 6399 * adversary enough information for getting the key in 6400 * most of the cases. 6401 * 6402 * Moreover getting a secure packet when we expect clear 6403 * implies that SA's were added without checking for 6404 * policy on both ends. This should not happen once ISAKMP 6405 * is used to negotiate SAs as SAs will be added only after 6406 * verifying the policy. 6407 * 6408 * NOTE : If the packet was tunneled and not multicast we only send 6409 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6410 * back to delivering packets to AF_INET6 raw sockets. 6411 * 6412 * IPQoS Notes: 6413 * Once we have determined the client, invoke IPPF processing. 6414 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6415 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6416 * ip_policy will be false. 6417 * 6418 * Zones notes: 6419 * Currently only applications in the global zone can create raw sockets for 6420 * protocols other than ICMP. So unlike the broadcast / multicast case of 6421 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6422 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6423 */ 6424 static void 6425 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6426 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6427 zoneid_t zoneid) 6428 { 6429 queue_t *rq; 6430 mblk_t *mp1, *first_mp1; 6431 uint_t protocol = ipha->ipha_protocol; 6432 ipaddr_t dst; 6433 boolean_t one_only; 6434 mblk_t *first_mp = mp; 6435 boolean_t secure; 6436 uint32_t ill_index; 6437 conn_t *connp, *first_connp, *next_connp; 6438 connf_t *connfp; 6439 boolean_t shared_addr; 6440 mib2_ipIfStatsEntry_t *mibptr; 6441 ip_stack_t *ipst = recv_ill->ill_ipst; 6442 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6443 6444 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6445 if (mctl_present) { 6446 mp = first_mp->b_cont; 6447 secure = ipsec_in_is_secure(first_mp); 6448 ASSERT(mp != NULL); 6449 } else { 6450 secure = B_FALSE; 6451 } 6452 dst = ipha->ipha_dst; 6453 /* 6454 * If the packet was tunneled and not multicast we only send to it 6455 * the first match. 6456 */ 6457 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6458 !CLASSD(dst)); 6459 6460 shared_addr = (zoneid == ALL_ZONES); 6461 if (shared_addr) { 6462 /* 6463 * We don't allow multilevel ports for raw IP, so no need to 6464 * check for that here. 6465 */ 6466 zoneid = tsol_packet_to_zoneid(mp); 6467 } 6468 6469 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6470 mutex_enter(&connfp->connf_lock); 6471 connp = connfp->connf_head; 6472 for (connp = connfp->connf_head; connp != NULL; 6473 connp = connp->conn_next) { 6474 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6475 zoneid) && 6476 (!is_system_labeled() || 6477 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6478 connp))) { 6479 break; 6480 } 6481 } 6482 6483 if (connp == NULL) { 6484 /* 6485 * No one bound to these addresses. Is 6486 * there a client that wants all 6487 * unclaimed datagrams? 6488 */ 6489 mutex_exit(&connfp->connf_lock); 6490 /* 6491 * Check for IPPROTO_ENCAP... 6492 */ 6493 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6494 /* 6495 * If an IPsec mblk is here on a multicast 6496 * tunnel (using ip_mroute stuff), check policy here, 6497 * THEN ship off to ip_mroute_decap(). 6498 * 6499 * BTW, If I match a configured IP-in-IP 6500 * tunnel, this path will not be reached, and 6501 * ip_mroute_decap will never be called. 6502 */ 6503 first_mp = ipsec_check_global_policy(first_mp, connp, 6504 ipha, NULL, mctl_present, ipst->ips_netstack); 6505 if (first_mp != NULL) { 6506 if (mctl_present) 6507 freeb(first_mp); 6508 ip_mroute_decap(q, mp, ill); 6509 } /* Else we already freed everything! */ 6510 } else { 6511 /* 6512 * Otherwise send an ICMP protocol unreachable. 6513 */ 6514 if (ip_fanout_send_icmp(q, first_mp, flags, 6515 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6516 mctl_present, zoneid, ipst)) { 6517 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6518 } 6519 } 6520 return; 6521 } 6522 6523 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6524 6525 CONN_INC_REF(connp); 6526 first_connp = connp; 6527 6528 /* 6529 * Only send message to one tunnel driver by immediately 6530 * terminating the loop. 6531 */ 6532 connp = one_only ? NULL : connp->conn_next; 6533 6534 for (;;) { 6535 while (connp != NULL) { 6536 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6537 flags, zoneid) && 6538 (!is_system_labeled() || 6539 tsol_receive_local(mp, &dst, IPV4_VERSION, 6540 shared_addr, connp))) 6541 break; 6542 connp = connp->conn_next; 6543 } 6544 6545 /* 6546 * Copy the packet. 6547 */ 6548 if (connp == NULL || 6549 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6550 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6551 /* 6552 * No more interested clients or memory 6553 * allocation failed 6554 */ 6555 connp = first_connp; 6556 break; 6557 } 6558 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6559 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6560 CONN_INC_REF(connp); 6561 mutex_exit(&connfp->connf_lock); 6562 rq = connp->conn_rq; 6563 6564 /* 6565 * Check flow control 6566 */ 6567 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6568 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6569 if (flags & IP_FF_RAWIP) { 6570 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6571 } else { 6572 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6573 } 6574 6575 freemsg(first_mp1); 6576 } else { 6577 /* 6578 * Don't enforce here if we're an actual tunnel - 6579 * let "tun" do it instead. 6580 */ 6581 if (!IPCL_IS_IPTUN(connp) && 6582 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6583 secure)) { 6584 first_mp1 = ipsec_check_inbound_policy 6585 (first_mp1, connp, ipha, NULL, 6586 mctl_present); 6587 } 6588 if (first_mp1 != NULL) { 6589 int in_flags = 0; 6590 /* 6591 * ip_fanout_proto also gets called from 6592 * icmp_inbound_error_fanout, in which case 6593 * the msg type is M_CTL. Don't add info 6594 * in this case for the time being. In future 6595 * when there is a need for knowing the 6596 * inbound iface index for ICMP error msgs, 6597 * then this can be changed. 6598 */ 6599 if (connp->conn_recvif) 6600 in_flags = IPF_RECVIF; 6601 /* 6602 * The ULP may support IP_RECVPKTINFO for both 6603 * IP v4 and v6 so pass the appropriate argument 6604 * based on conn IP version. 6605 */ 6606 if (connp->conn_ip_recvpktinfo) { 6607 if (connp->conn_af_isv6) { 6608 /* 6609 * V6 only needs index 6610 */ 6611 in_flags |= IPF_RECVIF; 6612 } else { 6613 /* 6614 * V4 needs index + 6615 * matching address. 6616 */ 6617 in_flags |= IPF_RECVADDR; 6618 } 6619 } 6620 if ((in_flags != 0) && 6621 (mp->b_datap->db_type != M_CTL)) { 6622 /* 6623 * the actual data will be 6624 * contained in b_cont upon 6625 * successful return of the 6626 * following call else 6627 * original mblk is returned 6628 */ 6629 ASSERT(recv_ill != NULL); 6630 mp1 = ip_add_info(mp1, recv_ill, 6631 in_flags, IPCL_ZONEID(connp), ipst); 6632 } 6633 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6634 if (mctl_present) 6635 freeb(first_mp1); 6636 (connp->conn_recv)(connp, mp1, NULL); 6637 } 6638 } 6639 mutex_enter(&connfp->connf_lock); 6640 /* Follow the next pointer before releasing the conn. */ 6641 next_connp = connp->conn_next; 6642 CONN_DEC_REF(connp); 6643 connp = next_connp; 6644 } 6645 6646 /* Last one. Send it upstream. */ 6647 mutex_exit(&connfp->connf_lock); 6648 6649 /* 6650 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6651 * will be set to false. 6652 */ 6653 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6654 ill_index = ill->ill_phyint->phyint_ifindex; 6655 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6656 if (mp == NULL) { 6657 CONN_DEC_REF(connp); 6658 if (mctl_present) { 6659 freeb(first_mp); 6660 } 6661 return; 6662 } 6663 } 6664 6665 rq = connp->conn_rq; 6666 /* 6667 * Check flow control 6668 */ 6669 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6670 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6671 if (flags & IP_FF_RAWIP) { 6672 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6673 } else { 6674 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6675 } 6676 6677 freemsg(first_mp); 6678 } else { 6679 if (IPCL_IS_IPTUN(connp)) { 6680 /* 6681 * Tunneled packet. We enforce policy in the tunnel 6682 * module itself. 6683 * 6684 * Send the WHOLE packet up (incl. IPSEC_IN) without 6685 * a policy check. 6686 * FIXME to use conn_recv for tun later. 6687 */ 6688 putnext(rq, first_mp); 6689 CONN_DEC_REF(connp); 6690 return; 6691 } 6692 6693 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6694 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6695 ipha, NULL, mctl_present); 6696 } 6697 6698 if (first_mp != NULL) { 6699 int in_flags = 0; 6700 6701 /* 6702 * ip_fanout_proto also gets called 6703 * from icmp_inbound_error_fanout, in 6704 * which case the msg type is M_CTL. 6705 * Don't add info in this case for time 6706 * being. In future when there is a 6707 * need for knowing the inbound iface 6708 * index for ICMP error msgs, then this 6709 * can be changed 6710 */ 6711 if (connp->conn_recvif) 6712 in_flags = IPF_RECVIF; 6713 if (connp->conn_ip_recvpktinfo) { 6714 if (connp->conn_af_isv6) { 6715 /* 6716 * V6 only needs index 6717 */ 6718 in_flags |= IPF_RECVIF; 6719 } else { 6720 /* 6721 * V4 needs index + 6722 * matching address. 6723 */ 6724 in_flags |= IPF_RECVADDR; 6725 } 6726 } 6727 if ((in_flags != 0) && 6728 (mp->b_datap->db_type != M_CTL)) { 6729 6730 /* 6731 * the actual data will be contained in 6732 * b_cont upon successful return 6733 * of the following call else original 6734 * mblk is returned 6735 */ 6736 ASSERT(recv_ill != NULL); 6737 mp = ip_add_info(mp, recv_ill, 6738 in_flags, IPCL_ZONEID(connp), ipst); 6739 } 6740 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6741 (connp->conn_recv)(connp, mp, NULL); 6742 if (mctl_present) 6743 freeb(first_mp); 6744 } 6745 } 6746 CONN_DEC_REF(connp); 6747 } 6748 6749 /* 6750 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6751 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6752 * the correct squeue, in this case the same squeue as a valid listener with 6753 * no current connection state for the packet we are processing. The function 6754 * is called for synchronizing both IPv4 and IPv6. 6755 */ 6756 void 6757 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6758 tcp_stack_t *tcps, conn_t *connp) 6759 { 6760 mblk_t *rst_mp; 6761 tcp_xmit_reset_event_t *eventp; 6762 6763 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6764 6765 if (rst_mp == NULL) { 6766 freemsg(mp); 6767 return; 6768 } 6769 6770 rst_mp->b_datap->db_type = M_PROTO; 6771 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6772 6773 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6774 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6775 eventp->tcp_xre_iphdrlen = hdrlen; 6776 eventp->tcp_xre_zoneid = zoneid; 6777 eventp->tcp_xre_tcps = tcps; 6778 6779 rst_mp->b_cont = mp; 6780 mp = rst_mp; 6781 6782 /* 6783 * Increment the connref, this ref will be released by the squeue 6784 * framework. 6785 */ 6786 CONN_INC_REF(connp); 6787 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6788 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6789 } 6790 6791 /* 6792 * Fanout for TCP packets 6793 * The caller puts <fport, lport> in the ports parameter. 6794 * 6795 * IPQoS Notes 6796 * Before sending it to the client, invoke IPPF processing. 6797 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6798 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6799 * ip_policy is false. 6800 */ 6801 static void 6802 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6803 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6804 { 6805 mblk_t *first_mp; 6806 boolean_t secure; 6807 uint32_t ill_index; 6808 int ip_hdr_len; 6809 tcph_t *tcph; 6810 boolean_t syn_present = B_FALSE; 6811 conn_t *connp; 6812 ip_stack_t *ipst = recv_ill->ill_ipst; 6813 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6814 6815 ASSERT(recv_ill != NULL); 6816 6817 first_mp = mp; 6818 if (mctl_present) { 6819 ASSERT(first_mp->b_datap->db_type == M_CTL); 6820 mp = first_mp->b_cont; 6821 secure = ipsec_in_is_secure(first_mp); 6822 ASSERT(mp != NULL); 6823 } else { 6824 secure = B_FALSE; 6825 } 6826 6827 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6828 6829 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6830 zoneid, ipst)) == NULL) { 6831 /* 6832 * No connected connection or listener. Send a 6833 * TH_RST via tcp_xmit_listeners_reset. 6834 */ 6835 6836 /* Initiate IPPf processing, if needed. */ 6837 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6838 uint32_t ill_index; 6839 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6840 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6841 if (first_mp == NULL) 6842 return; 6843 } 6844 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6845 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6846 zoneid)); 6847 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6848 ipst->ips_netstack->netstack_tcp, NULL); 6849 return; 6850 } 6851 6852 /* 6853 * Allocate the SYN for the TCP connection here itself 6854 */ 6855 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6856 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6857 if (IPCL_IS_TCP(connp)) { 6858 squeue_t *sqp; 6859 6860 /* 6861 * For fused tcp loopback, assign the eager's 6862 * squeue to be that of the active connect's. 6863 * Note that we don't check for IP_FF_LOOPBACK 6864 * here since this routine gets called only 6865 * for loopback (unlike the IPv6 counterpart). 6866 */ 6867 ASSERT(Q_TO_CONN(q) != NULL); 6868 if (do_tcp_fusion && 6869 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6870 !secure && 6871 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6872 IPCL_IS_TCP(Q_TO_CONN(q))) { 6873 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6874 sqp = Q_TO_CONN(q)->conn_sqp; 6875 } else { 6876 sqp = IP_SQUEUE_GET(lbolt); 6877 } 6878 6879 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6880 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6881 syn_present = B_TRUE; 6882 } 6883 } 6884 6885 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6886 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6887 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6888 if ((flags & TH_RST) || (flags & TH_URG)) { 6889 CONN_DEC_REF(connp); 6890 freemsg(first_mp); 6891 return; 6892 } 6893 if (flags & TH_ACK) { 6894 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6895 ipst->ips_netstack->netstack_tcp, connp); 6896 CONN_DEC_REF(connp); 6897 return; 6898 } 6899 6900 CONN_DEC_REF(connp); 6901 freemsg(first_mp); 6902 return; 6903 } 6904 6905 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6906 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6907 NULL, mctl_present); 6908 if (first_mp == NULL) { 6909 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6910 CONN_DEC_REF(connp); 6911 return; 6912 } 6913 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6914 ASSERT(syn_present); 6915 if (mctl_present) { 6916 ASSERT(first_mp != mp); 6917 first_mp->b_datap->db_struioflag |= 6918 STRUIO_POLICY; 6919 } else { 6920 ASSERT(first_mp == mp); 6921 mp->b_datap->db_struioflag &= 6922 ~STRUIO_EAGER; 6923 mp->b_datap->db_struioflag |= 6924 STRUIO_POLICY; 6925 } 6926 } else { 6927 /* 6928 * Discard first_mp early since we're dealing with a 6929 * fully-connected conn_t and tcp doesn't do policy in 6930 * this case. 6931 */ 6932 if (mctl_present) { 6933 freeb(first_mp); 6934 mctl_present = B_FALSE; 6935 } 6936 first_mp = mp; 6937 } 6938 } 6939 6940 /* 6941 * Initiate policy processing here if needed. If we get here from 6942 * icmp_inbound_error_fanout, ip_policy is false. 6943 */ 6944 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6945 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6946 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6947 if (mp == NULL) { 6948 CONN_DEC_REF(connp); 6949 if (mctl_present) 6950 freeb(first_mp); 6951 return; 6952 } else if (mctl_present) { 6953 ASSERT(first_mp != mp); 6954 first_mp->b_cont = mp; 6955 } else { 6956 first_mp = mp; 6957 } 6958 } 6959 6960 /* Handle socket options. */ 6961 if (!syn_present && 6962 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6963 /* Add header */ 6964 ASSERT(recv_ill != NULL); 6965 /* 6966 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6967 * IPF_RECVIF. 6968 */ 6969 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6970 ipst); 6971 if (mp == NULL) { 6972 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6973 CONN_DEC_REF(connp); 6974 if (mctl_present) 6975 freeb(first_mp); 6976 return; 6977 } else if (mctl_present) { 6978 /* 6979 * ip_add_info might return a new mp. 6980 */ 6981 ASSERT(first_mp != mp); 6982 first_mp->b_cont = mp; 6983 } else { 6984 first_mp = mp; 6985 } 6986 } 6987 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6988 if (IPCL_IS_TCP(connp)) { 6989 /* do not drain, certain use cases can blow the stack */ 6990 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6991 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6992 } else { 6993 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6994 (connp->conn_recv)(connp, first_mp, NULL); 6995 CONN_DEC_REF(connp); 6996 } 6997 } 6998 6999 /* 7000 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 7001 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 7002 * is not consumed. 7003 * 7004 * One of four things can happen, all of which affect the passed-in mblk: 7005 * 7006 * 1.) ICMP messages that go through here just get returned TRUE. 7007 * 7008 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 7009 * 7010 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 7011 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 7012 * 7013 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 7014 */ 7015 static boolean_t 7016 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 7017 ipsec_stack_t *ipss) 7018 { 7019 int shift, plen, iph_len; 7020 ipha_t *ipha; 7021 udpha_t *udpha; 7022 uint32_t *spi; 7023 uint32_t esp_ports; 7024 uint8_t *orptr; 7025 boolean_t free_ire; 7026 7027 if (DB_TYPE(mp) == M_CTL) { 7028 /* 7029 * ICMP message with UDP inside. Don't bother stripping, just 7030 * send it up. 7031 * 7032 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 7033 * to ignore errors set by ICMP anyway ('cause they might be 7034 * forged), but that's the app's decision, not ours. 7035 */ 7036 7037 /* Bunch of reality checks for DEBUG kernels... */ 7038 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 7039 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 7040 7041 return (B_TRUE); 7042 } 7043 7044 ipha = (ipha_t *)mp->b_rptr; 7045 iph_len = IPH_HDR_LENGTH(ipha); 7046 plen = ntohs(ipha->ipha_length); 7047 7048 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 7049 /* 7050 * Most likely a keepalive for the benefit of an intervening 7051 * NAT. These aren't for us, per se, so drop it. 7052 * 7053 * RFC 3947/8 doesn't say for sure what to do for 2-3 7054 * byte packets (keepalives are 1-byte), but we'll drop them 7055 * also. 7056 */ 7057 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7058 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 7059 return (B_FALSE); 7060 } 7061 7062 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 7063 /* might as well pull it all up - it might be ESP. */ 7064 if (!pullupmsg(mp, -1)) { 7065 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7066 DROPPER(ipss, ipds_esp_nomem), 7067 &ipss->ipsec_dropper); 7068 return (B_FALSE); 7069 } 7070 7071 ipha = (ipha_t *)mp->b_rptr; 7072 } 7073 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 7074 if (*spi == 0) { 7075 /* UDP packet - remove 0-spi. */ 7076 shift = sizeof (uint32_t); 7077 } else { 7078 /* ESP-in-UDP packet - reduce to ESP. */ 7079 ipha->ipha_protocol = IPPROTO_ESP; 7080 shift = sizeof (udpha_t); 7081 } 7082 7083 /* Fix IP header */ 7084 ipha->ipha_length = htons(plen - shift); 7085 ipha->ipha_hdr_checksum = 0; 7086 7087 orptr = mp->b_rptr; 7088 mp->b_rptr += shift; 7089 7090 udpha = (udpha_t *)(orptr + iph_len); 7091 if (*spi == 0) { 7092 ASSERT((uint8_t *)ipha == orptr); 7093 udpha->uha_length = htons(plen - shift - iph_len); 7094 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7095 esp_ports = 0; 7096 } else { 7097 esp_ports = *((uint32_t *)udpha); 7098 ASSERT(esp_ports != 0); 7099 } 7100 ovbcopy(orptr, orptr + shift, iph_len); 7101 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7102 ipha = (ipha_t *)(orptr + shift); 7103 7104 free_ire = (ire == NULL); 7105 if (free_ire) { 7106 /* Re-acquire ire. */ 7107 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7108 ipss->ipsec_netstack->netstack_ip); 7109 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7110 if (ire != NULL) 7111 ire_refrele(ire); 7112 /* 7113 * Do a regular freemsg(), as this is an IP 7114 * error (no local route) not an IPsec one. 7115 */ 7116 freemsg(mp); 7117 } 7118 } 7119 7120 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7121 if (free_ire) 7122 ire_refrele(ire); 7123 } 7124 7125 return (esp_ports == 0); 7126 } 7127 7128 /* 7129 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7130 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7131 * Caller is responsible for dropping references to the conn, and freeing 7132 * first_mp. 7133 * 7134 * IPQoS Notes 7135 * Before sending it to the client, invoke IPPF processing. Policy processing 7136 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7137 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7138 * ip_wput_local, ip_policy is false. 7139 */ 7140 static void 7141 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7142 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7143 boolean_t ip_policy) 7144 { 7145 boolean_t mctl_present = (first_mp != NULL); 7146 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7147 uint32_t ill_index; 7148 ip_stack_t *ipst = recv_ill->ill_ipst; 7149 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7150 7151 ASSERT(ill != NULL); 7152 7153 if (mctl_present) 7154 first_mp->b_cont = mp; 7155 else 7156 first_mp = mp; 7157 7158 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7159 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7160 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7161 freemsg(first_mp); 7162 return; 7163 } 7164 7165 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7166 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7167 NULL, mctl_present); 7168 /* Freed by ipsec_check_inbound_policy(). */ 7169 if (first_mp == NULL) { 7170 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7171 return; 7172 } 7173 } 7174 if (mctl_present) 7175 freeb(first_mp); 7176 7177 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7178 if (connp->conn_udp->udp_nat_t_endpoint) { 7179 if (mctl_present) { 7180 /* mctl_present *shouldn't* happen. */ 7181 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7182 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7183 &ipss->ipsec_dropper); 7184 return; 7185 } 7186 7187 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7188 return; 7189 } 7190 7191 /* Handle options. */ 7192 if (connp->conn_recvif) 7193 in_flags = IPF_RECVIF; 7194 /* 7195 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7196 * passed to ip_add_info is based on IP version of connp. 7197 */ 7198 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7199 if (connp->conn_af_isv6) { 7200 /* 7201 * V6 only needs index 7202 */ 7203 in_flags |= IPF_RECVIF; 7204 } else { 7205 /* 7206 * V4 needs index + matching address. 7207 */ 7208 in_flags |= IPF_RECVADDR; 7209 } 7210 } 7211 7212 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7213 in_flags |= IPF_RECVSLLA; 7214 7215 /* 7216 * Initiate IPPF processing here, if needed. Note first_mp won't be 7217 * freed if the packet is dropped. The caller will do so. 7218 */ 7219 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7220 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7221 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7222 if (mp == NULL) { 7223 return; 7224 } 7225 } 7226 if ((in_flags != 0) && 7227 (mp->b_datap->db_type != M_CTL)) { 7228 /* 7229 * The actual data will be contained in b_cont 7230 * upon successful return of the following call 7231 * else original mblk is returned 7232 */ 7233 ASSERT(recv_ill != NULL); 7234 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7235 ipst); 7236 } 7237 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7238 /* Send it upstream */ 7239 (connp->conn_recv)(connp, mp, NULL); 7240 } 7241 7242 /* 7243 * Fanout for UDP packets. 7244 * The caller puts <fport, lport> in the ports parameter. 7245 * 7246 * If SO_REUSEADDR is set all multicast and broadcast packets 7247 * will be delivered to all streams bound to the same port. 7248 * 7249 * Zones notes: 7250 * Multicast and broadcast packets will be distributed to streams in all zones. 7251 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7252 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7253 * packets. To maintain this behavior with multiple zones, the conns are grouped 7254 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7255 * each zone. If unset, all the following conns in the same zone are skipped. 7256 */ 7257 static void 7258 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7259 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7260 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7261 { 7262 uint32_t dstport, srcport; 7263 ipaddr_t dst; 7264 mblk_t *first_mp; 7265 boolean_t secure; 7266 in6_addr_t v6src; 7267 conn_t *connp; 7268 connf_t *connfp; 7269 conn_t *first_connp; 7270 conn_t *next_connp; 7271 mblk_t *mp1, *first_mp1; 7272 ipaddr_t src; 7273 zoneid_t last_zoneid; 7274 boolean_t reuseaddr; 7275 boolean_t shared_addr; 7276 boolean_t unlabeled; 7277 ip_stack_t *ipst; 7278 7279 ASSERT(recv_ill != NULL); 7280 ipst = recv_ill->ill_ipst; 7281 7282 first_mp = mp; 7283 if (mctl_present) { 7284 mp = first_mp->b_cont; 7285 first_mp->b_cont = NULL; 7286 secure = ipsec_in_is_secure(first_mp); 7287 ASSERT(mp != NULL); 7288 } else { 7289 first_mp = NULL; 7290 secure = B_FALSE; 7291 } 7292 7293 /* Extract ports in net byte order */ 7294 dstport = htons(ntohl(ports) & 0xFFFF); 7295 srcport = htons(ntohl(ports) >> 16); 7296 dst = ipha->ipha_dst; 7297 src = ipha->ipha_src; 7298 7299 unlabeled = B_FALSE; 7300 if (is_system_labeled()) 7301 /* Cred cannot be null on IPv4 */ 7302 unlabeled = (msg_getlabel(mp)->tsl_flags & 7303 TSLF_UNLABELED) != 0; 7304 shared_addr = (zoneid == ALL_ZONES); 7305 if (shared_addr) { 7306 /* 7307 * No need to handle exclusive-stack zones since ALL_ZONES 7308 * only applies to the shared stack. 7309 */ 7310 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7311 /* 7312 * If no shared MLP is found, tsol_mlp_findzone returns 7313 * ALL_ZONES. In that case, we assume it's SLP, and 7314 * search for the zone based on the packet label. 7315 * 7316 * If there is such a zone, we prefer to find a 7317 * connection in it. Otherwise, we look for a 7318 * MAC-exempt connection in any zone whose label 7319 * dominates the default label on the packet. 7320 */ 7321 if (zoneid == ALL_ZONES) 7322 zoneid = tsol_packet_to_zoneid(mp); 7323 else 7324 unlabeled = B_FALSE; 7325 } 7326 7327 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7328 mutex_enter(&connfp->connf_lock); 7329 connp = connfp->connf_head; 7330 if (!broadcast && !CLASSD(dst)) { 7331 /* 7332 * Not broadcast or multicast. Send to the one (first) 7333 * client we find. No need to check conn_wantpacket() 7334 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7335 * IPv4 unicast packets. 7336 */ 7337 while ((connp != NULL) && 7338 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7339 (!IPCL_ZONE_MATCH(connp, zoneid) && 7340 !(unlabeled && connp->conn_mac_exempt)))) { 7341 /* 7342 * We keep searching since the conn did not match, 7343 * or its zone did not match and it is not either 7344 * an allzones conn or a mac exempt conn (if the 7345 * sender is unlabeled.) 7346 */ 7347 connp = connp->conn_next; 7348 } 7349 7350 if (connp == NULL || 7351 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7352 goto notfound; 7353 7354 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7355 7356 if (is_system_labeled() && 7357 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7358 connp)) 7359 goto notfound; 7360 7361 CONN_INC_REF(connp); 7362 mutex_exit(&connfp->connf_lock); 7363 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7364 flags, recv_ill, ip_policy); 7365 IP_STAT(ipst, ip_udp_fannorm); 7366 CONN_DEC_REF(connp); 7367 return; 7368 } 7369 7370 /* 7371 * Broadcast and multicast case 7372 * 7373 * Need to check conn_wantpacket(). 7374 * If SO_REUSEADDR has been set on the first we send the 7375 * packet to all clients that have joined the group and 7376 * match the port. 7377 */ 7378 7379 while (connp != NULL) { 7380 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7381 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7382 (!is_system_labeled() || 7383 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7384 connp))) 7385 break; 7386 connp = connp->conn_next; 7387 } 7388 7389 if (connp == NULL || 7390 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7391 goto notfound; 7392 7393 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7394 7395 first_connp = connp; 7396 /* 7397 * When SO_REUSEADDR is not set, send the packet only to the first 7398 * matching connection in its zone by keeping track of the zoneid. 7399 */ 7400 reuseaddr = first_connp->conn_reuseaddr; 7401 last_zoneid = first_connp->conn_zoneid; 7402 7403 CONN_INC_REF(connp); 7404 connp = connp->conn_next; 7405 for (;;) { 7406 while (connp != NULL) { 7407 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7408 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7409 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7410 (!is_system_labeled() || 7411 tsol_receive_local(mp, &dst, IPV4_VERSION, 7412 shared_addr, connp))) 7413 break; 7414 connp = connp->conn_next; 7415 } 7416 /* 7417 * Just copy the data part alone. The mctl part is 7418 * needed just for verifying policy and it is never 7419 * sent up. 7420 */ 7421 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7422 ((mp1 = copymsg(mp)) == NULL))) { 7423 /* 7424 * No more interested clients or memory 7425 * allocation failed 7426 */ 7427 connp = first_connp; 7428 break; 7429 } 7430 if (connp->conn_zoneid != last_zoneid) { 7431 /* 7432 * Update the zoneid so that the packet isn't sent to 7433 * any more conns in the same zone unless SO_REUSEADDR 7434 * is set. 7435 */ 7436 reuseaddr = connp->conn_reuseaddr; 7437 last_zoneid = connp->conn_zoneid; 7438 } 7439 if (first_mp != NULL) { 7440 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7441 ipsec_info_type == IPSEC_IN); 7442 first_mp1 = ipsec_in_tag(first_mp, NULL, 7443 ipst->ips_netstack); 7444 if (first_mp1 == NULL) { 7445 freemsg(mp1); 7446 connp = first_connp; 7447 break; 7448 } 7449 } else { 7450 first_mp1 = NULL; 7451 } 7452 CONN_INC_REF(connp); 7453 mutex_exit(&connfp->connf_lock); 7454 /* 7455 * IPQoS notes: We don't send the packet for policy 7456 * processing here, will do it for the last one (below). 7457 * i.e. we do it per-packet now, but if we do policy 7458 * processing per-conn, then we would need to do it 7459 * here too. 7460 */ 7461 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7462 ipha, flags, recv_ill, B_FALSE); 7463 mutex_enter(&connfp->connf_lock); 7464 /* Follow the next pointer before releasing the conn. */ 7465 next_connp = connp->conn_next; 7466 IP_STAT(ipst, ip_udp_fanmb); 7467 CONN_DEC_REF(connp); 7468 connp = next_connp; 7469 } 7470 7471 /* Last one. Send it upstream. */ 7472 mutex_exit(&connfp->connf_lock); 7473 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7474 recv_ill, ip_policy); 7475 IP_STAT(ipst, ip_udp_fanmb); 7476 CONN_DEC_REF(connp); 7477 return; 7478 7479 notfound: 7480 7481 mutex_exit(&connfp->connf_lock); 7482 IP_STAT(ipst, ip_udp_fanothers); 7483 /* 7484 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7485 * have already been matched above, since they live in the IPv4 7486 * fanout tables. This implies we only need to 7487 * check for IPv6 in6addr_any endpoints here. 7488 * Thus we compare using ipv6_all_zeros instead of the destination 7489 * address, except for the multicast group membership lookup which 7490 * uses the IPv4 destination. 7491 */ 7492 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7493 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7494 mutex_enter(&connfp->connf_lock); 7495 connp = connfp->connf_head; 7496 if (!broadcast && !CLASSD(dst)) { 7497 while (connp != NULL) { 7498 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7499 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7500 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7501 !connp->conn_ipv6_v6only) 7502 break; 7503 connp = connp->conn_next; 7504 } 7505 7506 if (connp != NULL && is_system_labeled() && 7507 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7508 connp)) 7509 connp = NULL; 7510 7511 if (connp == NULL || 7512 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7513 /* 7514 * No one bound to this port. Is 7515 * there a client that wants all 7516 * unclaimed datagrams? 7517 */ 7518 mutex_exit(&connfp->connf_lock); 7519 7520 if (mctl_present) 7521 first_mp->b_cont = mp; 7522 else 7523 first_mp = mp; 7524 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7525 connf_head != NULL) { 7526 ip_fanout_proto(q, first_mp, ill, ipha, 7527 flags | IP_FF_RAWIP, mctl_present, 7528 ip_policy, recv_ill, zoneid); 7529 } else { 7530 if (ip_fanout_send_icmp(q, first_mp, flags, 7531 ICMP_DEST_UNREACHABLE, 7532 ICMP_PORT_UNREACHABLE, 7533 mctl_present, zoneid, ipst)) { 7534 BUMP_MIB(ill->ill_ip_mib, 7535 udpIfStatsNoPorts); 7536 } 7537 } 7538 return; 7539 } 7540 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7541 7542 CONN_INC_REF(connp); 7543 mutex_exit(&connfp->connf_lock); 7544 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7545 flags, recv_ill, ip_policy); 7546 CONN_DEC_REF(connp); 7547 return; 7548 } 7549 /* 7550 * IPv4 multicast packet being delivered to an AF_INET6 7551 * in6addr_any endpoint. 7552 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7553 * and not conn_wantpacket_v6() since any multicast membership is 7554 * for an IPv4-mapped multicast address. 7555 * The packet is sent to all clients in all zones that have joined the 7556 * group and match the port. 7557 */ 7558 while (connp != NULL) { 7559 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7560 srcport, v6src) && 7561 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7562 (!is_system_labeled() || 7563 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7564 connp))) 7565 break; 7566 connp = connp->conn_next; 7567 } 7568 7569 if (connp == NULL || 7570 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7571 /* 7572 * No one bound to this port. Is 7573 * there a client that wants all 7574 * unclaimed datagrams? 7575 */ 7576 mutex_exit(&connfp->connf_lock); 7577 7578 if (mctl_present) 7579 first_mp->b_cont = mp; 7580 else 7581 first_mp = mp; 7582 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7583 NULL) { 7584 ip_fanout_proto(q, first_mp, ill, ipha, 7585 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7586 recv_ill, zoneid); 7587 } else { 7588 /* 7589 * We used to attempt to send an icmp error here, but 7590 * since this is known to be a multicast packet 7591 * and we don't send icmp errors in response to 7592 * multicast, just drop the packet and give up sooner. 7593 */ 7594 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7595 freemsg(first_mp); 7596 } 7597 return; 7598 } 7599 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7600 7601 first_connp = connp; 7602 7603 CONN_INC_REF(connp); 7604 connp = connp->conn_next; 7605 for (;;) { 7606 while (connp != NULL) { 7607 if (IPCL_UDP_MATCH_V6(connp, dstport, 7608 ipv6_all_zeros, srcport, v6src) && 7609 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7610 (!is_system_labeled() || 7611 tsol_receive_local(mp, &dst, IPV4_VERSION, 7612 shared_addr, connp))) 7613 break; 7614 connp = connp->conn_next; 7615 } 7616 /* 7617 * Just copy the data part alone. The mctl part is 7618 * needed just for verifying policy and it is never 7619 * sent up. 7620 */ 7621 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7622 ((mp1 = copymsg(mp)) == NULL))) { 7623 /* 7624 * No more intested clients or memory 7625 * allocation failed 7626 */ 7627 connp = first_connp; 7628 break; 7629 } 7630 if (first_mp != NULL) { 7631 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7632 ipsec_info_type == IPSEC_IN); 7633 first_mp1 = ipsec_in_tag(first_mp, NULL, 7634 ipst->ips_netstack); 7635 if (first_mp1 == NULL) { 7636 freemsg(mp1); 7637 connp = first_connp; 7638 break; 7639 } 7640 } else { 7641 first_mp1 = NULL; 7642 } 7643 CONN_INC_REF(connp); 7644 mutex_exit(&connfp->connf_lock); 7645 /* 7646 * IPQoS notes: We don't send the packet for policy 7647 * processing here, will do it for the last one (below). 7648 * i.e. we do it per-packet now, but if we do policy 7649 * processing per-conn, then we would need to do it 7650 * here too. 7651 */ 7652 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7653 ipha, flags, recv_ill, B_FALSE); 7654 mutex_enter(&connfp->connf_lock); 7655 /* Follow the next pointer before releasing the conn. */ 7656 next_connp = connp->conn_next; 7657 CONN_DEC_REF(connp); 7658 connp = next_connp; 7659 } 7660 7661 /* Last one. Send it upstream. */ 7662 mutex_exit(&connfp->connf_lock); 7663 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7664 recv_ill, ip_policy); 7665 CONN_DEC_REF(connp); 7666 } 7667 7668 /* 7669 * Complete the ip_wput header so that it 7670 * is possible to generate ICMP 7671 * errors. 7672 */ 7673 int 7674 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7675 { 7676 ire_t *ire; 7677 7678 if (ipha->ipha_src == INADDR_ANY) { 7679 ire = ire_lookup_local(zoneid, ipst); 7680 if (ire == NULL) { 7681 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7682 return (1); 7683 } 7684 ipha->ipha_src = ire->ire_addr; 7685 ire_refrele(ire); 7686 } 7687 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7688 ipha->ipha_hdr_checksum = 0; 7689 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7690 return (0); 7691 } 7692 7693 /* 7694 * Nobody should be sending 7695 * packets up this stream 7696 */ 7697 static void 7698 ip_lrput(queue_t *q, mblk_t *mp) 7699 { 7700 mblk_t *mp1; 7701 7702 switch (mp->b_datap->db_type) { 7703 case M_FLUSH: 7704 /* Turn around */ 7705 if (*mp->b_rptr & FLUSHW) { 7706 *mp->b_rptr &= ~FLUSHR; 7707 qreply(q, mp); 7708 return; 7709 } 7710 break; 7711 } 7712 /* Could receive messages that passed through ar_rput */ 7713 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7714 mp1->b_prev = mp1->b_next = NULL; 7715 freemsg(mp); 7716 } 7717 7718 /* Nobody should be sending packets down this stream */ 7719 /* ARGSUSED */ 7720 void 7721 ip_lwput(queue_t *q, mblk_t *mp) 7722 { 7723 freemsg(mp); 7724 } 7725 7726 /* 7727 * Move the first hop in any source route to ipha_dst and remove that part of 7728 * the source route. Called by other protocols. Errors in option formatting 7729 * are ignored - will be handled by ip_wput_options Return the final 7730 * destination (either ipha_dst or the last entry in a source route.) 7731 */ 7732 ipaddr_t 7733 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7734 { 7735 ipoptp_t opts; 7736 uchar_t *opt; 7737 uint8_t optval; 7738 uint8_t optlen; 7739 ipaddr_t dst; 7740 int i; 7741 ire_t *ire; 7742 ip_stack_t *ipst = ns->netstack_ip; 7743 7744 ip2dbg(("ip_massage_options\n")); 7745 dst = ipha->ipha_dst; 7746 for (optval = ipoptp_first(&opts, ipha); 7747 optval != IPOPT_EOL; 7748 optval = ipoptp_next(&opts)) { 7749 opt = opts.ipoptp_cur; 7750 switch (optval) { 7751 uint8_t off; 7752 case IPOPT_SSRR: 7753 case IPOPT_LSRR: 7754 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7755 ip1dbg(("ip_massage_options: bad src route\n")); 7756 break; 7757 } 7758 optlen = opts.ipoptp_len; 7759 off = opt[IPOPT_OFFSET]; 7760 off--; 7761 redo_srr: 7762 if (optlen < IP_ADDR_LEN || 7763 off > optlen - IP_ADDR_LEN) { 7764 /* End of source route */ 7765 ip1dbg(("ip_massage_options: end of SR\n")); 7766 break; 7767 } 7768 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7769 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7770 ntohl(dst))); 7771 /* 7772 * Check if our address is present more than 7773 * once as consecutive hops in source route. 7774 * XXX verify per-interface ip_forwarding 7775 * for source route? 7776 */ 7777 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7778 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7779 if (ire != NULL) { 7780 ire_refrele(ire); 7781 off += IP_ADDR_LEN; 7782 goto redo_srr; 7783 } 7784 if (dst == htonl(INADDR_LOOPBACK)) { 7785 ip1dbg(("ip_massage_options: loopback addr in " 7786 "source route!\n")); 7787 break; 7788 } 7789 /* 7790 * Update ipha_dst to be the first hop and remove the 7791 * first hop from the source route (by overwriting 7792 * part of the option with NOP options). 7793 */ 7794 ipha->ipha_dst = dst; 7795 /* Put the last entry in dst */ 7796 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7797 3; 7798 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7799 7800 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7801 ntohl(dst))); 7802 /* Move down and overwrite */ 7803 opt[IP_ADDR_LEN] = opt[0]; 7804 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7805 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7806 for (i = 0; i < IP_ADDR_LEN; i++) 7807 opt[i] = IPOPT_NOP; 7808 break; 7809 } 7810 } 7811 return (dst); 7812 } 7813 7814 /* 7815 * Return the network mask 7816 * associated with the specified address. 7817 */ 7818 ipaddr_t 7819 ip_net_mask(ipaddr_t addr) 7820 { 7821 uchar_t *up = (uchar_t *)&addr; 7822 ipaddr_t mask = 0; 7823 uchar_t *maskp = (uchar_t *)&mask; 7824 7825 #if defined(__i386) || defined(__amd64) 7826 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7827 #endif 7828 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7829 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7830 #endif 7831 if (CLASSD(addr)) { 7832 maskp[0] = 0xF0; 7833 return (mask); 7834 } 7835 7836 /* We assume Class E default netmask to be 32 */ 7837 if (CLASSE(addr)) 7838 return (0xffffffffU); 7839 7840 if (addr == 0) 7841 return (0); 7842 maskp[0] = 0xFF; 7843 if ((up[0] & 0x80) == 0) 7844 return (mask); 7845 7846 maskp[1] = 0xFF; 7847 if ((up[0] & 0xC0) == 0x80) 7848 return (mask); 7849 7850 maskp[2] = 0xFF; 7851 if ((up[0] & 0xE0) == 0xC0) 7852 return (mask); 7853 7854 /* Otherwise return no mask */ 7855 return ((ipaddr_t)0); 7856 } 7857 7858 /* 7859 * Helper ill lookup function used by IPsec. 7860 */ 7861 ill_t * 7862 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7863 { 7864 ill_t *ret_ill; 7865 7866 ASSERT(ifindex != 0); 7867 7868 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7869 ipst); 7870 if (ret_ill == NULL) { 7871 if (isv6) { 7872 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7873 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7874 ifindex)); 7875 } else { 7876 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7877 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7878 ifindex)); 7879 } 7880 freemsg(first_mp); 7881 return (NULL); 7882 } 7883 return (ret_ill); 7884 } 7885 7886 /* 7887 * IPv4 - 7888 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7889 * out a packet to a destination address for which we do not have specific 7890 * (or sufficient) routing information. 7891 * 7892 * NOTE : These are the scopes of some of the variables that point at IRE, 7893 * which needs to be followed while making any future modifications 7894 * to avoid memory leaks. 7895 * 7896 * - ire and sire are the entries looked up initially by 7897 * ire_ftable_lookup. 7898 * - ipif_ire is used to hold the interface ire associated with 7899 * the new cache ire. But it's scope is limited, so we always REFRELE 7900 * it before branching out to error paths. 7901 * - save_ire is initialized before ire_create, so that ire returned 7902 * by ire_create will not over-write the ire. We REFRELE save_ire 7903 * before breaking out of the switch. 7904 * 7905 * Thus on failures, we have to REFRELE only ire and sire, if they 7906 * are not NULL. 7907 */ 7908 void 7909 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7910 zoneid_t zoneid, ip_stack_t *ipst) 7911 { 7912 areq_t *areq; 7913 ipaddr_t gw = 0; 7914 ire_t *ire = NULL; 7915 mblk_t *res_mp; 7916 ipaddr_t *addrp; 7917 ipaddr_t nexthop_addr; 7918 ipif_t *src_ipif = NULL; 7919 ill_t *dst_ill = NULL; 7920 ipha_t *ipha; 7921 ire_t *sire = NULL; 7922 mblk_t *first_mp; 7923 ire_t *save_ire; 7924 ushort_t ire_marks = 0; 7925 boolean_t mctl_present; 7926 ipsec_out_t *io; 7927 mblk_t *saved_mp; 7928 ire_t *first_sire = NULL; 7929 mblk_t *copy_mp = NULL; 7930 mblk_t *xmit_mp = NULL; 7931 ipaddr_t save_dst; 7932 uint32_t multirt_flags = 7933 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7934 boolean_t multirt_is_resolvable; 7935 boolean_t multirt_resolve_next; 7936 boolean_t unspec_src; 7937 boolean_t ip_nexthop = B_FALSE; 7938 tsol_ire_gw_secattr_t *attrp = NULL; 7939 tsol_gcgrp_t *gcgrp = NULL; 7940 tsol_gcgrp_addr_t ga; 7941 7942 if (ip_debug > 2) { 7943 /* ip1dbg */ 7944 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7945 } 7946 7947 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7948 if (mctl_present) { 7949 io = (ipsec_out_t *)first_mp->b_rptr; 7950 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7951 ASSERT(zoneid == io->ipsec_out_zoneid); 7952 ASSERT(zoneid != ALL_ZONES); 7953 } 7954 7955 ipha = (ipha_t *)mp->b_rptr; 7956 7957 /* All multicast lookups come through ip_newroute_ipif() */ 7958 if (CLASSD(dst)) { 7959 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7960 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7961 freemsg(first_mp); 7962 return; 7963 } 7964 7965 if (mctl_present && io->ipsec_out_ip_nexthop) { 7966 ip_nexthop = B_TRUE; 7967 nexthop_addr = io->ipsec_out_nexthop_addr; 7968 } 7969 /* 7970 * If this IRE is created for forwarding or it is not for 7971 * traffic for congestion controlled protocols, mark it as temporary. 7972 */ 7973 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7974 ire_marks |= IRE_MARK_TEMPORARY; 7975 7976 /* 7977 * Get what we can from ire_ftable_lookup which will follow an IRE 7978 * chain until it gets the most specific information available. 7979 * For example, we know that there is no IRE_CACHE for this dest, 7980 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7981 * ire_ftable_lookup will look up the gateway, etc. 7982 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7983 * to the destination, of equal netmask length in the forward table, 7984 * will be recursively explored. If no information is available 7985 * for the final gateway of that route, we force the returned ire 7986 * to be equal to sire using MATCH_IRE_PARENT. 7987 * At least, in this case we have a starting point (in the buckets) 7988 * to look for other routes to the destination in the forward table. 7989 * This is actually used only for multirouting, where a list 7990 * of routes has to be processed in sequence. 7991 * 7992 * In the process of coming up with the most specific information, 7993 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7994 * for the gateway (i.e., one for which the ire_nce->nce_state is 7995 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7996 * Two caveats when handling incomplete ire's in ip_newroute: 7997 * - we should be careful when accessing its ire_nce (specifically 7998 * the nce_res_mp) ast it might change underneath our feet, and, 7999 * - not all legacy code path callers are prepared to handle 8000 * incomplete ire's, so we should not create/add incomplete 8001 * ire_cache entries here. (See discussion about temporary solution 8002 * further below). 8003 * 8004 * In order to minimize packet dropping, and to preserve existing 8005 * behavior, we treat this case as if there were no IRE_CACHE for the 8006 * gateway, and instead use the IF_RESOLVER ire to send out 8007 * another request to ARP (this is achieved by passing the 8008 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8009 * arp response comes back in ip_wput_nondata, we will create 8010 * a per-dst ire_cache that has an ND_COMPLETE ire. 8011 * 8012 * Note that this is a temporary solution; the correct solution is 8013 * to create an incomplete per-dst ire_cache entry, and send the 8014 * packet out when the gw's nce is resolved. In order to achieve this, 8015 * all packet processing must have been completed prior to calling 8016 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8017 * to be modified to accomodate this solution. 8018 */ 8019 if (ip_nexthop) { 8020 /* 8021 * The first time we come here, we look for an IRE_INTERFACE 8022 * entry for the specified nexthop, set the dst to be the 8023 * nexthop address and create an IRE_CACHE entry for the 8024 * nexthop. The next time around, we are able to find an 8025 * IRE_CACHE entry for the nexthop, set the gateway to be the 8026 * nexthop address and create an IRE_CACHE entry for the 8027 * destination address via the specified nexthop. 8028 */ 8029 ire = ire_cache_lookup(nexthop_addr, zoneid, 8030 msg_getlabel(mp), ipst); 8031 if (ire != NULL) { 8032 gw = nexthop_addr; 8033 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8034 } else { 8035 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8036 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8037 msg_getlabel(mp), 8038 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8039 ipst); 8040 if (ire != NULL) { 8041 dst = nexthop_addr; 8042 } 8043 } 8044 } else { 8045 ire = ire_ftable_lookup(dst, 0, 0, 0, 8046 NULL, &sire, zoneid, 0, msg_getlabel(mp), 8047 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8048 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8049 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8050 ipst); 8051 } 8052 8053 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8054 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8055 8056 /* 8057 * This loop is run only once in most cases. 8058 * We loop to resolve further routes only when the destination 8059 * can be reached through multiple RTF_MULTIRT-flagged ires. 8060 */ 8061 do { 8062 /* Clear the previous iteration's values */ 8063 if (src_ipif != NULL) { 8064 ipif_refrele(src_ipif); 8065 src_ipif = NULL; 8066 } 8067 if (dst_ill != NULL) { 8068 ill_refrele(dst_ill); 8069 dst_ill = NULL; 8070 } 8071 8072 multirt_resolve_next = B_FALSE; 8073 /* 8074 * We check if packets have to be multirouted. 8075 * In this case, given the current <ire, sire> couple, 8076 * we look for the next suitable <ire, sire>. 8077 * This check is done in ire_multirt_lookup(), 8078 * which applies various criteria to find the next route 8079 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8080 * unchanged if it detects it has not been tried yet. 8081 */ 8082 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8083 ip3dbg(("ip_newroute: starting next_resolution " 8084 "with first_mp %p, tag %d\n", 8085 (void *)first_mp, 8086 MULTIRT_DEBUG_TAGGED(first_mp))); 8087 8088 ASSERT(sire != NULL); 8089 multirt_is_resolvable = 8090 ire_multirt_lookup(&ire, &sire, multirt_flags, 8091 msg_getlabel(mp), ipst); 8092 8093 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8094 "ire %p, sire %p\n", 8095 multirt_is_resolvable, 8096 (void *)ire, (void *)sire)); 8097 8098 if (!multirt_is_resolvable) { 8099 /* 8100 * No more multirt route to resolve; give up 8101 * (all routes resolved or no more 8102 * resolvable routes). 8103 */ 8104 if (ire != NULL) { 8105 ire_refrele(ire); 8106 ire = NULL; 8107 } 8108 } else { 8109 ASSERT(sire != NULL); 8110 ASSERT(ire != NULL); 8111 /* 8112 * We simply use first_sire as a flag that 8113 * indicates if a resolvable multirt route 8114 * has already been found. 8115 * If it is not the case, we may have to send 8116 * an ICMP error to report that the 8117 * destination is unreachable. 8118 * We do not IRE_REFHOLD first_sire. 8119 */ 8120 if (first_sire == NULL) { 8121 first_sire = sire; 8122 } 8123 } 8124 } 8125 if (ire == NULL) { 8126 if (ip_debug > 3) { 8127 /* ip2dbg */ 8128 pr_addr_dbg("ip_newroute: " 8129 "can't resolve %s\n", AF_INET, &dst); 8130 } 8131 ip3dbg(("ip_newroute: " 8132 "ire %p, sire %p, first_sire %p\n", 8133 (void *)ire, (void *)sire, (void *)first_sire)); 8134 8135 if (sire != NULL) { 8136 ire_refrele(sire); 8137 sire = NULL; 8138 } 8139 8140 if (first_sire != NULL) { 8141 /* 8142 * At least one multirt route has been found 8143 * in the same call to ip_newroute(); 8144 * there is no need to report an ICMP error. 8145 * first_sire was not IRE_REFHOLDed. 8146 */ 8147 MULTIRT_DEBUG_UNTAG(first_mp); 8148 freemsg(first_mp); 8149 return; 8150 } 8151 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8152 RTA_DST, ipst); 8153 goto icmp_err_ret; 8154 } 8155 8156 /* 8157 * Verify that the returned IRE does not have either 8158 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8159 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8160 */ 8161 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8162 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8163 goto icmp_err_ret; 8164 } 8165 /* 8166 * Increment the ire_ob_pkt_count field for ire if it is an 8167 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8168 * increment the same for the parent IRE, sire, if it is some 8169 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8170 */ 8171 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8172 UPDATE_OB_PKT_COUNT(ire); 8173 ire->ire_last_used_time = lbolt; 8174 } 8175 8176 if (sire != NULL) { 8177 gw = sire->ire_gateway_addr; 8178 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8179 IRE_INTERFACE)) == 0); 8180 UPDATE_OB_PKT_COUNT(sire); 8181 sire->ire_last_used_time = lbolt; 8182 } 8183 /* 8184 * We have a route to reach the destination. Find the 8185 * appropriate ill, then get a source address using 8186 * ipif_select_source(). 8187 * 8188 * If we are here trying to create an IRE_CACHE for an offlink 8189 * destination and have an IRE_CACHE entry for VNI, then use 8190 * ire_stq instead since VNI's queue is a black hole. 8191 */ 8192 if ((ire->ire_type == IRE_CACHE) && 8193 IS_VNI(ire->ire_ipif->ipif_ill)) { 8194 dst_ill = ire->ire_stq->q_ptr; 8195 ill_refhold(dst_ill); 8196 } else { 8197 ill_t *ill = ire->ire_ipif->ipif_ill; 8198 8199 if (IS_IPMP(ill)) { 8200 dst_ill = 8201 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8202 } else { 8203 dst_ill = ill; 8204 ill_refhold(dst_ill); 8205 } 8206 } 8207 8208 if (dst_ill == NULL) { 8209 if (ip_debug > 2) { 8210 pr_addr_dbg("ip_newroute: no dst " 8211 "ill for dst %s\n", AF_INET, &dst); 8212 } 8213 goto icmp_err_ret; 8214 } 8215 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8216 8217 /* 8218 * Pick the best source address from dst_ill. 8219 * 8220 * 1) Try to pick the source address from the destination 8221 * route. Clustering assumes that when we have multiple 8222 * prefixes hosted on an interface, the prefix of the 8223 * source address matches the prefix of the destination 8224 * route. We do this only if the address is not 8225 * DEPRECATED. 8226 * 8227 * 2) If the conn is in a different zone than the ire, we 8228 * need to pick a source address from the right zone. 8229 */ 8230 ASSERT(src_ipif == NULL); 8231 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8232 /* 8233 * The RTF_SETSRC flag is set in the parent ire (sire). 8234 * Check that the ipif matching the requested source 8235 * address still exists. 8236 */ 8237 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8238 zoneid, NULL, NULL, NULL, NULL, ipst); 8239 } 8240 8241 unspec_src = (connp != NULL && connp->conn_unspec_src); 8242 8243 if (src_ipif == NULL && 8244 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8245 ire_marks |= IRE_MARK_USESRC_CHECK; 8246 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8247 IS_IPMP(ire->ire_ipif->ipif_ill) || 8248 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8249 (connp != NULL && ire->ire_zoneid != zoneid && 8250 ire->ire_zoneid != ALL_ZONES) || 8251 (dst_ill->ill_usesrc_ifindex != 0)) { 8252 /* 8253 * If the destination is reachable via a 8254 * given gateway, the selected source address 8255 * should be in the same subnet as the gateway. 8256 * Otherwise, the destination is not reachable. 8257 * 8258 * If there are no interfaces on the same subnet 8259 * as the destination, ipif_select_source gives 8260 * first non-deprecated interface which might be 8261 * on a different subnet than the gateway. 8262 * This is not desirable. Hence pass the dst_ire 8263 * source address to ipif_select_source. 8264 * It is sure that the destination is reachable 8265 * with the dst_ire source address subnet. 8266 * So passing dst_ire source address to 8267 * ipif_select_source will make sure that the 8268 * selected source will be on the same subnet 8269 * as dst_ire source address. 8270 */ 8271 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8272 8273 src_ipif = ipif_select_source(dst_ill, saddr, 8274 zoneid); 8275 if (src_ipif == NULL) { 8276 if (ip_debug > 2) { 8277 pr_addr_dbg("ip_newroute: " 8278 "no src for dst %s ", 8279 AF_INET, &dst); 8280 printf("on interface %s\n", 8281 dst_ill->ill_name); 8282 } 8283 goto icmp_err_ret; 8284 } 8285 } else { 8286 src_ipif = ire->ire_ipif; 8287 ASSERT(src_ipif != NULL); 8288 /* hold src_ipif for uniformity */ 8289 ipif_refhold(src_ipif); 8290 } 8291 } 8292 8293 /* 8294 * Assign a source address while we have the conn. 8295 * We can't have ip_wput_ire pick a source address when the 8296 * packet returns from arp since we need to look at 8297 * conn_unspec_src and conn_zoneid, and we lose the conn when 8298 * going through arp. 8299 * 8300 * NOTE : ip_newroute_v6 does not have this piece of code as 8301 * it uses ip6i to store this information. 8302 */ 8303 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8304 ipha->ipha_src = src_ipif->ipif_src_addr; 8305 8306 if (ip_debug > 3) { 8307 /* ip2dbg */ 8308 pr_addr_dbg("ip_newroute: first hop %s\n", 8309 AF_INET, &gw); 8310 } 8311 ip2dbg(("\tire type %s (%d)\n", 8312 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8313 8314 /* 8315 * The TTL of multirouted packets is bounded by the 8316 * ip_multirt_ttl ndd variable. 8317 */ 8318 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8319 /* Force TTL of multirouted packets */ 8320 if ((ipst->ips_ip_multirt_ttl > 0) && 8321 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8322 ip2dbg(("ip_newroute: forcing multirt TTL " 8323 "to %d (was %d), dst 0x%08x\n", 8324 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8325 ntohl(sire->ire_addr))); 8326 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8327 } 8328 } 8329 /* 8330 * At this point in ip_newroute(), ire is either the 8331 * IRE_CACHE of the next-hop gateway for an off-subnet 8332 * destination or an IRE_INTERFACE type that should be used 8333 * to resolve an on-subnet destination or an on-subnet 8334 * next-hop gateway. 8335 * 8336 * In the IRE_CACHE case, we have the following : 8337 * 8338 * 1) src_ipif - used for getting a source address. 8339 * 8340 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8341 * means packets using this IRE_CACHE will go out on 8342 * dst_ill. 8343 * 8344 * 3) The IRE sire will point to the prefix that is the 8345 * longest matching route for the destination. These 8346 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8347 * 8348 * The newly created IRE_CACHE entry for the off-subnet 8349 * destination is tied to both the prefix route and the 8350 * interface route used to resolve the next-hop gateway 8351 * via the ire_phandle and ire_ihandle fields, 8352 * respectively. 8353 * 8354 * In the IRE_INTERFACE case, we have the following : 8355 * 8356 * 1) src_ipif - used for getting a source address. 8357 * 8358 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8359 * means packets using the IRE_CACHE that we will build 8360 * here will go out on dst_ill. 8361 * 8362 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8363 * to be created will only be tied to the IRE_INTERFACE 8364 * that was derived from the ire_ihandle field. 8365 * 8366 * If sire is non-NULL, it means the destination is 8367 * off-link and we will first create the IRE_CACHE for the 8368 * gateway. Next time through ip_newroute, we will create 8369 * the IRE_CACHE for the final destination as described 8370 * above. 8371 * 8372 * In both cases, after the current resolution has been 8373 * completed (or possibly initialised, in the IRE_INTERFACE 8374 * case), the loop may be re-entered to attempt the resolution 8375 * of another RTF_MULTIRT route. 8376 * 8377 * When an IRE_CACHE entry for the off-subnet destination is 8378 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8379 * for further processing in emission loops. 8380 */ 8381 save_ire = ire; 8382 switch (ire->ire_type) { 8383 case IRE_CACHE: { 8384 ire_t *ipif_ire; 8385 8386 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8387 if (gw == 0) 8388 gw = ire->ire_gateway_addr; 8389 /* 8390 * We need 3 ire's to create a new cache ire for an 8391 * off-link destination from the cache ire of the 8392 * gateway. 8393 * 8394 * 1. The prefix ire 'sire' (Note that this does 8395 * not apply to the conn_nexthop_set case) 8396 * 2. The cache ire of the gateway 'ire' 8397 * 3. The interface ire 'ipif_ire' 8398 * 8399 * We have (1) and (2). We lookup (3) below. 8400 * 8401 * If there is no interface route to the gateway, 8402 * it is a race condition, where we found the cache 8403 * but the interface route has been deleted. 8404 */ 8405 if (ip_nexthop) { 8406 ipif_ire = ire_ihandle_lookup_onlink(ire); 8407 } else { 8408 ipif_ire = 8409 ire_ihandle_lookup_offlink(ire, sire); 8410 } 8411 if (ipif_ire == NULL) { 8412 ip1dbg(("ip_newroute: " 8413 "ire_ihandle_lookup_offlink failed\n")); 8414 goto icmp_err_ret; 8415 } 8416 8417 /* 8418 * Check cached gateway IRE for any security 8419 * attributes; if found, associate the gateway 8420 * credentials group to the destination IRE. 8421 */ 8422 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8423 mutex_enter(&attrp->igsa_lock); 8424 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8425 GCGRP_REFHOLD(gcgrp); 8426 mutex_exit(&attrp->igsa_lock); 8427 } 8428 8429 /* 8430 * XXX For the source of the resolver mp, 8431 * we are using the same DL_UNITDATA_REQ 8432 * (from save_ire->ire_nce->nce_res_mp) 8433 * though the save_ire is not pointing at the same ill. 8434 * This is incorrect. We need to send it up to the 8435 * resolver to get the right res_mp. For ethernets 8436 * this may be okay (ill_type == DL_ETHER). 8437 */ 8438 8439 ire = ire_create( 8440 (uchar_t *)&dst, /* dest address */ 8441 (uchar_t *)&ip_g_all_ones, /* mask */ 8442 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8443 (uchar_t *)&gw, /* gateway address */ 8444 &save_ire->ire_max_frag, 8445 save_ire->ire_nce, /* src nce */ 8446 dst_ill->ill_rq, /* recv-from queue */ 8447 dst_ill->ill_wq, /* send-to queue */ 8448 IRE_CACHE, /* IRE type */ 8449 src_ipif, 8450 (sire != NULL) ? 8451 sire->ire_mask : 0, /* Parent mask */ 8452 (sire != NULL) ? 8453 sire->ire_phandle : 0, /* Parent handle */ 8454 ipif_ire->ire_ihandle, /* Interface handle */ 8455 (sire != NULL) ? (sire->ire_flags & 8456 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8457 (sire != NULL) ? 8458 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8459 NULL, 8460 gcgrp, 8461 ipst); 8462 8463 if (ire == NULL) { 8464 if (gcgrp != NULL) { 8465 GCGRP_REFRELE(gcgrp); 8466 gcgrp = NULL; 8467 } 8468 ire_refrele(ipif_ire); 8469 ire_refrele(save_ire); 8470 break; 8471 } 8472 8473 /* reference now held by IRE */ 8474 gcgrp = NULL; 8475 8476 ire->ire_marks |= ire_marks; 8477 8478 /* 8479 * Prevent sire and ipif_ire from getting deleted. 8480 * The newly created ire is tied to both of them via 8481 * the phandle and ihandle respectively. 8482 */ 8483 if (sire != NULL) { 8484 IRB_REFHOLD(sire->ire_bucket); 8485 /* Has it been removed already ? */ 8486 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8487 IRB_REFRELE(sire->ire_bucket); 8488 ire_refrele(ipif_ire); 8489 ire_refrele(save_ire); 8490 break; 8491 } 8492 } 8493 8494 IRB_REFHOLD(ipif_ire->ire_bucket); 8495 /* Has it been removed already ? */ 8496 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8497 IRB_REFRELE(ipif_ire->ire_bucket); 8498 if (sire != NULL) 8499 IRB_REFRELE(sire->ire_bucket); 8500 ire_refrele(ipif_ire); 8501 ire_refrele(save_ire); 8502 break; 8503 } 8504 8505 xmit_mp = first_mp; 8506 /* 8507 * In the case of multirouting, a copy 8508 * of the packet is done before its sending. 8509 * The copy is used to attempt another 8510 * route resolution, in a next loop. 8511 */ 8512 if (ire->ire_flags & RTF_MULTIRT) { 8513 copy_mp = copymsg(first_mp); 8514 if (copy_mp != NULL) { 8515 xmit_mp = copy_mp; 8516 MULTIRT_DEBUG_TAG(first_mp); 8517 } 8518 } 8519 8520 ire_add_then_send(q, ire, xmit_mp); 8521 ire_refrele(save_ire); 8522 8523 /* Assert that sire is not deleted yet. */ 8524 if (sire != NULL) { 8525 ASSERT(sire->ire_ptpn != NULL); 8526 IRB_REFRELE(sire->ire_bucket); 8527 } 8528 8529 /* Assert that ipif_ire is not deleted yet. */ 8530 ASSERT(ipif_ire->ire_ptpn != NULL); 8531 IRB_REFRELE(ipif_ire->ire_bucket); 8532 ire_refrele(ipif_ire); 8533 8534 /* 8535 * If copy_mp is not NULL, multirouting was 8536 * requested. We loop to initiate a next 8537 * route resolution attempt, starting from sire. 8538 */ 8539 if (copy_mp != NULL) { 8540 /* 8541 * Search for the next unresolved 8542 * multirt route. 8543 */ 8544 copy_mp = NULL; 8545 ipif_ire = NULL; 8546 ire = NULL; 8547 multirt_resolve_next = B_TRUE; 8548 continue; 8549 } 8550 if (sire != NULL) 8551 ire_refrele(sire); 8552 ipif_refrele(src_ipif); 8553 ill_refrele(dst_ill); 8554 return; 8555 } 8556 case IRE_IF_NORESOLVER: { 8557 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8558 dst_ill->ill_resolver_mp == NULL) { 8559 ip1dbg(("ip_newroute: dst_ill %p " 8560 "for IRE_IF_NORESOLVER ire %p has " 8561 "no ill_resolver_mp\n", 8562 (void *)dst_ill, (void *)ire)); 8563 break; 8564 } 8565 8566 /* 8567 * TSol note: We are creating the ire cache for the 8568 * destination 'dst'. If 'dst' is offlink, going 8569 * through the first hop 'gw', the security attributes 8570 * of 'dst' must be set to point to the gateway 8571 * credentials of gateway 'gw'. If 'dst' is onlink, it 8572 * is possible that 'dst' is a potential gateway that is 8573 * referenced by some route that has some security 8574 * attributes. Thus in the former case, we need to do a 8575 * gcgrp_lookup of 'gw' while in the latter case we 8576 * need to do gcgrp_lookup of 'dst' itself. 8577 */ 8578 ga.ga_af = AF_INET; 8579 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8580 &ga.ga_addr); 8581 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8582 8583 ire = ire_create( 8584 (uchar_t *)&dst, /* dest address */ 8585 (uchar_t *)&ip_g_all_ones, /* mask */ 8586 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8587 (uchar_t *)&gw, /* gateway address */ 8588 &save_ire->ire_max_frag, 8589 NULL, /* no src nce */ 8590 dst_ill->ill_rq, /* recv-from queue */ 8591 dst_ill->ill_wq, /* send-to queue */ 8592 IRE_CACHE, 8593 src_ipif, 8594 save_ire->ire_mask, /* Parent mask */ 8595 (sire != NULL) ? /* Parent handle */ 8596 sire->ire_phandle : 0, 8597 save_ire->ire_ihandle, /* Interface handle */ 8598 (sire != NULL) ? sire->ire_flags & 8599 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8600 &(save_ire->ire_uinfo), 8601 NULL, 8602 gcgrp, 8603 ipst); 8604 8605 if (ire == NULL) { 8606 if (gcgrp != NULL) { 8607 GCGRP_REFRELE(gcgrp); 8608 gcgrp = NULL; 8609 } 8610 ire_refrele(save_ire); 8611 break; 8612 } 8613 8614 /* reference now held by IRE */ 8615 gcgrp = NULL; 8616 8617 ire->ire_marks |= ire_marks; 8618 8619 /* Prevent save_ire from getting deleted */ 8620 IRB_REFHOLD(save_ire->ire_bucket); 8621 /* Has it been removed already ? */ 8622 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8623 IRB_REFRELE(save_ire->ire_bucket); 8624 ire_refrele(save_ire); 8625 break; 8626 } 8627 8628 /* 8629 * In the case of multirouting, a copy 8630 * of the packet is made before it is sent. 8631 * The copy is used in the next 8632 * loop to attempt another resolution. 8633 */ 8634 xmit_mp = first_mp; 8635 if ((sire != NULL) && 8636 (sire->ire_flags & RTF_MULTIRT)) { 8637 copy_mp = copymsg(first_mp); 8638 if (copy_mp != NULL) { 8639 xmit_mp = copy_mp; 8640 MULTIRT_DEBUG_TAG(first_mp); 8641 } 8642 } 8643 ire_add_then_send(q, ire, xmit_mp); 8644 8645 /* Assert that it is not deleted yet. */ 8646 ASSERT(save_ire->ire_ptpn != NULL); 8647 IRB_REFRELE(save_ire->ire_bucket); 8648 ire_refrele(save_ire); 8649 8650 if (copy_mp != NULL) { 8651 /* 8652 * If we found a (no)resolver, we ignore any 8653 * trailing top priority IRE_CACHE in further 8654 * loops. This ensures that we do not omit any 8655 * (no)resolver. 8656 * This IRE_CACHE, if any, will be processed 8657 * by another thread entering ip_newroute(). 8658 * IRE_CACHE entries, if any, will be processed 8659 * by another thread entering ip_newroute(), 8660 * (upon resolver response, for instance). 8661 * This aims to force parallel multirt 8662 * resolutions as soon as a packet must be sent. 8663 * In the best case, after the tx of only one 8664 * packet, all reachable routes are resolved. 8665 * Otherwise, the resolution of all RTF_MULTIRT 8666 * routes would require several emissions. 8667 */ 8668 multirt_flags &= ~MULTIRT_CACHEGW; 8669 8670 /* 8671 * Search for the next unresolved multirt 8672 * route. 8673 */ 8674 copy_mp = NULL; 8675 save_ire = NULL; 8676 ire = NULL; 8677 multirt_resolve_next = B_TRUE; 8678 continue; 8679 } 8680 8681 /* 8682 * Don't need sire anymore 8683 */ 8684 if (sire != NULL) 8685 ire_refrele(sire); 8686 8687 ipif_refrele(src_ipif); 8688 ill_refrele(dst_ill); 8689 return; 8690 } 8691 case IRE_IF_RESOLVER: 8692 /* 8693 * We can't build an IRE_CACHE yet, but at least we 8694 * found a resolver that can help. 8695 */ 8696 res_mp = dst_ill->ill_resolver_mp; 8697 if (!OK_RESOLVER_MP(res_mp)) 8698 break; 8699 8700 /* 8701 * To be at this point in the code with a non-zero gw 8702 * means that dst is reachable through a gateway that 8703 * we have never resolved. By changing dst to the gw 8704 * addr we resolve the gateway first. 8705 * When ire_add_then_send() tries to put the IP dg 8706 * to dst, it will reenter ip_newroute() at which 8707 * time we will find the IRE_CACHE for the gw and 8708 * create another IRE_CACHE in case IRE_CACHE above. 8709 */ 8710 if (gw != INADDR_ANY) { 8711 /* 8712 * The source ipif that was determined above was 8713 * relative to the destination address, not the 8714 * gateway's. If src_ipif was not taken out of 8715 * the IRE_IF_RESOLVER entry, we'll need to call 8716 * ipif_select_source() again. 8717 */ 8718 if (src_ipif != ire->ire_ipif) { 8719 ipif_refrele(src_ipif); 8720 src_ipif = ipif_select_source(dst_ill, 8721 gw, zoneid); 8722 if (src_ipif == NULL) { 8723 if (ip_debug > 2) { 8724 pr_addr_dbg( 8725 "ip_newroute: no " 8726 "src for gw %s ", 8727 AF_INET, &gw); 8728 printf("on " 8729 "interface %s\n", 8730 dst_ill->ill_name); 8731 } 8732 goto icmp_err_ret; 8733 } 8734 } 8735 save_dst = dst; 8736 dst = gw; 8737 gw = INADDR_ANY; 8738 } 8739 8740 /* 8741 * We obtain a partial IRE_CACHE which we will pass 8742 * along with the resolver query. When the response 8743 * comes back it will be there ready for us to add. 8744 * The ire_max_frag is atomically set under the 8745 * irebucket lock in ire_add_v[46]. 8746 */ 8747 8748 ire = ire_create_mp( 8749 (uchar_t *)&dst, /* dest address */ 8750 (uchar_t *)&ip_g_all_ones, /* mask */ 8751 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8752 (uchar_t *)&gw, /* gateway address */ 8753 NULL, /* ire_max_frag */ 8754 NULL, /* no src nce */ 8755 dst_ill->ill_rq, /* recv-from queue */ 8756 dst_ill->ill_wq, /* send-to queue */ 8757 IRE_CACHE, 8758 src_ipif, /* Interface ipif */ 8759 save_ire->ire_mask, /* Parent mask */ 8760 0, 8761 save_ire->ire_ihandle, /* Interface handle */ 8762 0, /* flags if any */ 8763 &(save_ire->ire_uinfo), 8764 NULL, 8765 NULL, 8766 ipst); 8767 8768 if (ire == NULL) { 8769 ire_refrele(save_ire); 8770 break; 8771 } 8772 8773 if ((sire != NULL) && 8774 (sire->ire_flags & RTF_MULTIRT)) { 8775 copy_mp = copymsg(first_mp); 8776 if (copy_mp != NULL) 8777 MULTIRT_DEBUG_TAG(copy_mp); 8778 } 8779 8780 ire->ire_marks |= ire_marks; 8781 8782 /* 8783 * Construct message chain for the resolver 8784 * of the form: 8785 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8786 * Packet could contain a IPSEC_OUT mp. 8787 * 8788 * NOTE : ire will be added later when the response 8789 * comes back from ARP. If the response does not 8790 * come back, ARP frees the packet. For this reason, 8791 * we can't REFHOLD the bucket of save_ire to prevent 8792 * deletions. We may not be able to REFRELE the bucket 8793 * if the response never comes back. Thus, before 8794 * adding the ire, ire_add_v4 will make sure that the 8795 * interface route does not get deleted. This is the 8796 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8797 * where we can always prevent deletions because of 8798 * the synchronous nature of adding IRES i.e 8799 * ire_add_then_send is called after creating the IRE. 8800 */ 8801 ASSERT(ire->ire_mp != NULL); 8802 ire->ire_mp->b_cont = first_mp; 8803 /* Have saved_mp handy, for cleanup if canput fails */ 8804 saved_mp = mp; 8805 mp = copyb(res_mp); 8806 if (mp == NULL) { 8807 /* Prepare for cleanup */ 8808 mp = saved_mp; /* pkt */ 8809 ire_delete(ire); /* ire_mp */ 8810 ire = NULL; 8811 ire_refrele(save_ire); 8812 if (copy_mp != NULL) { 8813 MULTIRT_DEBUG_UNTAG(copy_mp); 8814 freemsg(copy_mp); 8815 copy_mp = NULL; 8816 } 8817 break; 8818 } 8819 linkb(mp, ire->ire_mp); 8820 8821 /* 8822 * Fill in the source and dest addrs for the resolver. 8823 * NOTE: this depends on memory layouts imposed by 8824 * ill_init(). 8825 */ 8826 areq = (areq_t *)mp->b_rptr; 8827 addrp = (ipaddr_t *)((char *)areq + 8828 areq->areq_sender_addr_offset); 8829 *addrp = save_ire->ire_src_addr; 8830 8831 ire_refrele(save_ire); 8832 addrp = (ipaddr_t *)((char *)areq + 8833 areq->areq_target_addr_offset); 8834 *addrp = dst; 8835 /* Up to the resolver. */ 8836 if (canputnext(dst_ill->ill_rq) && 8837 !(dst_ill->ill_arp_closing)) { 8838 putnext(dst_ill->ill_rq, mp); 8839 ire = NULL; 8840 if (copy_mp != NULL) { 8841 /* 8842 * If we found a resolver, we ignore 8843 * any trailing top priority IRE_CACHE 8844 * in the further loops. This ensures 8845 * that we do not omit any resolver. 8846 * IRE_CACHE entries, if any, will be 8847 * processed next time we enter 8848 * ip_newroute(). 8849 */ 8850 multirt_flags &= ~MULTIRT_CACHEGW; 8851 /* 8852 * Search for the next unresolved 8853 * multirt route. 8854 */ 8855 first_mp = copy_mp; 8856 copy_mp = NULL; 8857 /* Prepare the next resolution loop. */ 8858 mp = first_mp; 8859 EXTRACT_PKT_MP(mp, first_mp, 8860 mctl_present); 8861 if (mctl_present) 8862 io = (ipsec_out_t *) 8863 first_mp->b_rptr; 8864 ipha = (ipha_t *)mp->b_rptr; 8865 8866 ASSERT(sire != NULL); 8867 8868 dst = save_dst; 8869 multirt_resolve_next = B_TRUE; 8870 continue; 8871 } 8872 8873 if (sire != NULL) 8874 ire_refrele(sire); 8875 8876 /* 8877 * The response will come back in ip_wput 8878 * with db_type IRE_DB_TYPE. 8879 */ 8880 ipif_refrele(src_ipif); 8881 ill_refrele(dst_ill); 8882 return; 8883 } else { 8884 /* Prepare for cleanup */ 8885 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8886 mp); 8887 mp->b_cont = NULL; 8888 freeb(mp); /* areq */ 8889 /* 8890 * this is an ire that is not added to the 8891 * cache. ire_freemblk will handle the release 8892 * of any resources associated with the ire. 8893 */ 8894 ire_delete(ire); /* ire_mp */ 8895 mp = saved_mp; /* pkt */ 8896 ire = NULL; 8897 if (copy_mp != NULL) { 8898 MULTIRT_DEBUG_UNTAG(copy_mp); 8899 freemsg(copy_mp); 8900 copy_mp = NULL; 8901 } 8902 break; 8903 } 8904 default: 8905 break; 8906 } 8907 } while (multirt_resolve_next); 8908 8909 ip1dbg(("ip_newroute: dropped\n")); 8910 /* Did this packet originate externally? */ 8911 if (mp->b_prev) { 8912 mp->b_next = NULL; 8913 mp->b_prev = NULL; 8914 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8915 } else { 8916 if (dst_ill != NULL) { 8917 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8918 } else { 8919 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8920 } 8921 } 8922 ASSERT(copy_mp == NULL); 8923 MULTIRT_DEBUG_UNTAG(first_mp); 8924 freemsg(first_mp); 8925 if (ire != NULL) 8926 ire_refrele(ire); 8927 if (sire != NULL) 8928 ire_refrele(sire); 8929 if (src_ipif != NULL) 8930 ipif_refrele(src_ipif); 8931 if (dst_ill != NULL) 8932 ill_refrele(dst_ill); 8933 return; 8934 8935 icmp_err_ret: 8936 ip1dbg(("ip_newroute: no route\n")); 8937 if (src_ipif != NULL) 8938 ipif_refrele(src_ipif); 8939 if (dst_ill != NULL) 8940 ill_refrele(dst_ill); 8941 if (sire != NULL) 8942 ire_refrele(sire); 8943 /* Did this packet originate externally? */ 8944 if (mp->b_prev) { 8945 mp->b_next = NULL; 8946 mp->b_prev = NULL; 8947 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8948 q = WR(q); 8949 } else { 8950 /* 8951 * There is no outgoing ill, so just increment the 8952 * system MIB. 8953 */ 8954 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8955 /* 8956 * Since ip_wput() isn't close to finished, we fill 8957 * in enough of the header for credible error reporting. 8958 */ 8959 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8960 /* Failed */ 8961 MULTIRT_DEBUG_UNTAG(first_mp); 8962 freemsg(first_mp); 8963 if (ire != NULL) 8964 ire_refrele(ire); 8965 return; 8966 } 8967 } 8968 8969 /* 8970 * At this point we will have ire only if RTF_BLACKHOLE 8971 * or RTF_REJECT flags are set on the IRE. It will not 8972 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8973 */ 8974 if (ire != NULL) { 8975 if (ire->ire_flags & RTF_BLACKHOLE) { 8976 ire_refrele(ire); 8977 MULTIRT_DEBUG_UNTAG(first_mp); 8978 freemsg(first_mp); 8979 return; 8980 } 8981 ire_refrele(ire); 8982 } 8983 if (ip_source_routed(ipha, ipst)) { 8984 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8985 zoneid, ipst); 8986 return; 8987 } 8988 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8989 } 8990 8991 ip_opt_info_t zero_info; 8992 8993 /* 8994 * IPv4 - 8995 * ip_newroute_ipif is called by ip_wput_multicast and 8996 * ip_rput_forward_multicast whenever we need to send 8997 * out a packet to a destination address for which we do not have specific 8998 * routing information. It is used when the packet will be sent out 8999 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 9000 * socket option is set or icmp error message wants to go out on a particular 9001 * interface for a unicast packet. 9002 * 9003 * In most cases, the destination address is resolved thanks to the ipif 9004 * intrinsic resolver. However, there are some cases where the call to 9005 * ip_newroute_ipif must take into account the potential presence of 9006 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9007 * that uses the interface. This is specified through flags, 9008 * which can be a combination of: 9009 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9010 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9011 * and flags. Additionally, the packet source address has to be set to 9012 * the specified address. The caller is thus expected to set this flag 9013 * if the packet has no specific source address yet. 9014 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9015 * flag, the resulting ire will inherit the flag. All unresolved routes 9016 * to the destination must be explored in the same call to 9017 * ip_newroute_ipif(). 9018 */ 9019 static void 9020 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9021 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9022 { 9023 areq_t *areq; 9024 ire_t *ire = NULL; 9025 mblk_t *res_mp; 9026 ipaddr_t *addrp; 9027 mblk_t *first_mp; 9028 ire_t *save_ire = NULL; 9029 ipif_t *src_ipif = NULL; 9030 ushort_t ire_marks = 0; 9031 ill_t *dst_ill = NULL; 9032 ipha_t *ipha; 9033 mblk_t *saved_mp; 9034 ire_t *fire = NULL; 9035 mblk_t *copy_mp = NULL; 9036 boolean_t multirt_resolve_next; 9037 boolean_t unspec_src; 9038 ipaddr_t ipha_dst; 9039 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9040 9041 /* 9042 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9043 * here for uniformity 9044 */ 9045 ipif_refhold(ipif); 9046 9047 /* 9048 * This loop is run only once in most cases. 9049 * We loop to resolve further routes only when the destination 9050 * can be reached through multiple RTF_MULTIRT-flagged ires. 9051 */ 9052 do { 9053 if (dst_ill != NULL) { 9054 ill_refrele(dst_ill); 9055 dst_ill = NULL; 9056 } 9057 if (src_ipif != NULL) { 9058 ipif_refrele(src_ipif); 9059 src_ipif = NULL; 9060 } 9061 multirt_resolve_next = B_FALSE; 9062 9063 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9064 ipif->ipif_ill->ill_name)); 9065 9066 first_mp = mp; 9067 if (DB_TYPE(mp) == M_CTL) 9068 mp = mp->b_cont; 9069 ipha = (ipha_t *)mp->b_rptr; 9070 9071 /* 9072 * Save the packet destination address, we may need it after 9073 * the packet has been consumed. 9074 */ 9075 ipha_dst = ipha->ipha_dst; 9076 9077 /* 9078 * If the interface is a pt-pt interface we look for an 9079 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9080 * local_address and the pt-pt destination address. Otherwise 9081 * we just match the local address. 9082 * NOTE: dst could be different than ipha->ipha_dst in case 9083 * of sending igmp multicast packets over a point-to-point 9084 * connection. 9085 * Thus we must be careful enough to check ipha_dst to be a 9086 * multicast address, otherwise it will take xmit_if path for 9087 * multicast packets resulting into kernel stack overflow by 9088 * repeated calls to ip_newroute_ipif from ire_send(). 9089 */ 9090 if (CLASSD(ipha_dst) && 9091 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9092 goto err_ret; 9093 } 9094 9095 /* 9096 * We check if an IRE_OFFSUBNET for the addr that goes through 9097 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9098 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9099 * propagate its flags to the new ire. 9100 */ 9101 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9102 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9103 ip2dbg(("ip_newroute_ipif: " 9104 "ipif_lookup_multi_ire(" 9105 "ipif %p, dst %08x) = fire %p\n", 9106 (void *)ipif, ntohl(dst), (void *)fire)); 9107 } 9108 9109 /* 9110 * Note: While we pick a dst_ill we are really only 9111 * interested in the ill for load spreading. The source 9112 * ipif is determined by source address selection below. 9113 */ 9114 if (IS_IPMP(ipif->ipif_ill)) { 9115 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9116 9117 if (CLASSD(ipha_dst)) 9118 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9119 else 9120 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9121 } else { 9122 dst_ill = ipif->ipif_ill; 9123 ill_refhold(dst_ill); 9124 } 9125 9126 if (dst_ill == NULL) { 9127 if (ip_debug > 2) { 9128 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9129 "for dst %s\n", AF_INET, &dst); 9130 } 9131 goto err_ret; 9132 } 9133 9134 /* 9135 * Pick a source address preferring non-deprecated ones. 9136 * Unlike ip_newroute, we don't do any source address 9137 * selection here since for multicast it really does not help 9138 * in inbound load spreading as in the unicast case. 9139 */ 9140 if ((flags & RTF_SETSRC) && (fire != NULL) && 9141 (fire->ire_flags & RTF_SETSRC)) { 9142 /* 9143 * As requested by flags, an IRE_OFFSUBNET was looked up 9144 * on that interface. This ire has RTF_SETSRC flag, so 9145 * the source address of the packet must be changed. 9146 * Check that the ipif matching the requested source 9147 * address still exists. 9148 */ 9149 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9150 zoneid, NULL, NULL, NULL, NULL, ipst); 9151 } 9152 9153 unspec_src = (connp != NULL && connp->conn_unspec_src); 9154 9155 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9156 (IS_IPMP(ipif->ipif_ill) || 9157 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9158 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9159 (connp != NULL && ipif->ipif_zoneid != zoneid && 9160 ipif->ipif_zoneid != ALL_ZONES)) && 9161 (src_ipif == NULL) && 9162 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9163 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9164 if (src_ipif == NULL) { 9165 if (ip_debug > 2) { 9166 /* ip1dbg */ 9167 pr_addr_dbg("ip_newroute_ipif: " 9168 "no src for dst %s", 9169 AF_INET, &dst); 9170 } 9171 ip1dbg((" on interface %s\n", 9172 dst_ill->ill_name)); 9173 goto err_ret; 9174 } 9175 ipif_refrele(ipif); 9176 ipif = src_ipif; 9177 ipif_refhold(ipif); 9178 } 9179 if (src_ipif == NULL) { 9180 src_ipif = ipif; 9181 ipif_refhold(src_ipif); 9182 } 9183 9184 /* 9185 * Assign a source address while we have the conn. 9186 * We can't have ip_wput_ire pick a source address when the 9187 * packet returns from arp since conn_unspec_src might be set 9188 * and we lose the conn when going through arp. 9189 */ 9190 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9191 ipha->ipha_src = src_ipif->ipif_src_addr; 9192 9193 /* 9194 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9195 * that the outgoing interface does not have an interface ire. 9196 */ 9197 if (CLASSD(ipha_dst) && (connp == NULL || 9198 connp->conn_outgoing_ill == NULL) && 9199 infop->ip_opt_ill_index == 0) { 9200 /* ipif_to_ire returns an held ire */ 9201 ire = ipif_to_ire(ipif); 9202 if (ire == NULL) 9203 goto err_ret; 9204 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9205 goto err_ret; 9206 save_ire = ire; 9207 9208 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9209 "flags %04x\n", 9210 (void *)ire, (void *)ipif, flags)); 9211 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9212 (fire->ire_flags & RTF_MULTIRT)) { 9213 /* 9214 * As requested by flags, an IRE_OFFSUBNET was 9215 * looked up on that interface. This ire has 9216 * RTF_MULTIRT flag, so the resolution loop will 9217 * be re-entered to resolve additional routes on 9218 * other interfaces. For that purpose, a copy of 9219 * the packet is performed at this point. 9220 */ 9221 fire->ire_last_used_time = lbolt; 9222 copy_mp = copymsg(first_mp); 9223 if (copy_mp) { 9224 MULTIRT_DEBUG_TAG(copy_mp); 9225 } 9226 } 9227 if ((flags & RTF_SETSRC) && (fire != NULL) && 9228 (fire->ire_flags & RTF_SETSRC)) { 9229 /* 9230 * As requested by flags, an IRE_OFFSUBET was 9231 * looked up on that interface. This ire has 9232 * RTF_SETSRC flag, so the source address of the 9233 * packet must be changed. 9234 */ 9235 ipha->ipha_src = fire->ire_src_addr; 9236 } 9237 } else { 9238 /* 9239 * The only ways we can come here are: 9240 * 1) IP_BOUND_IF socket option is set 9241 * 2) SO_DONTROUTE socket option is set 9242 * 3) IP_PKTINFO option is passed in as ancillary data. 9243 * In all cases, the new ire will not be added 9244 * into cache table. 9245 */ 9246 ASSERT(connp == NULL || connp->conn_dontroute || 9247 connp->conn_outgoing_ill != NULL || 9248 infop->ip_opt_ill_index != 0); 9249 ire_marks |= IRE_MARK_NOADD; 9250 } 9251 9252 switch (ipif->ipif_net_type) { 9253 case IRE_IF_NORESOLVER: { 9254 /* We have what we need to build an IRE_CACHE. */ 9255 9256 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9257 (dst_ill->ill_resolver_mp == NULL)) { 9258 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9259 "for IRE_IF_NORESOLVER ire %p has " 9260 "no ill_resolver_mp\n", 9261 (void *)dst_ill, (void *)ire)); 9262 break; 9263 } 9264 9265 /* 9266 * The new ire inherits the IRE_OFFSUBNET flags 9267 * and source address, if this was requested. 9268 */ 9269 ire = ire_create( 9270 (uchar_t *)&dst, /* dest address */ 9271 (uchar_t *)&ip_g_all_ones, /* mask */ 9272 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9273 NULL, /* gateway address */ 9274 &ipif->ipif_mtu, 9275 NULL, /* no src nce */ 9276 dst_ill->ill_rq, /* recv-from queue */ 9277 dst_ill->ill_wq, /* send-to queue */ 9278 IRE_CACHE, 9279 src_ipif, 9280 (save_ire != NULL ? save_ire->ire_mask : 0), 9281 (fire != NULL) ? /* Parent handle */ 9282 fire->ire_phandle : 0, 9283 (save_ire != NULL) ? /* Interface handle */ 9284 save_ire->ire_ihandle : 0, 9285 (fire != NULL) ? 9286 (fire->ire_flags & 9287 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9288 (save_ire == NULL ? &ire_uinfo_null : 9289 &save_ire->ire_uinfo), 9290 NULL, 9291 NULL, 9292 ipst); 9293 9294 if (ire == NULL) { 9295 if (save_ire != NULL) 9296 ire_refrele(save_ire); 9297 break; 9298 } 9299 9300 ire->ire_marks |= ire_marks; 9301 9302 /* 9303 * If IRE_MARK_NOADD is set then we need to convert 9304 * the max_fragp to a useable value now. This is 9305 * normally done in ire_add_v[46]. We also need to 9306 * associate the ire with an nce (normally would be 9307 * done in ip_wput_nondata()). 9308 * 9309 * Note that IRE_MARK_NOADD packets created here 9310 * do not have a non-null ire_mp pointer. The null 9311 * value of ire_bucket indicates that they were 9312 * never added. 9313 */ 9314 if (ire->ire_marks & IRE_MARK_NOADD) { 9315 uint_t max_frag; 9316 9317 max_frag = *ire->ire_max_fragp; 9318 ire->ire_max_fragp = NULL; 9319 ire->ire_max_frag = max_frag; 9320 9321 if ((ire->ire_nce = ndp_lookup_v4( 9322 ire_to_ill(ire), 9323 (ire->ire_gateway_addr != INADDR_ANY ? 9324 &ire->ire_gateway_addr : &ire->ire_addr), 9325 B_FALSE)) == NULL) { 9326 if (save_ire != NULL) 9327 ire_refrele(save_ire); 9328 break; 9329 } 9330 ASSERT(ire->ire_nce->nce_state == 9331 ND_REACHABLE); 9332 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9333 } 9334 9335 /* Prevent save_ire from getting deleted */ 9336 if (save_ire != NULL) { 9337 IRB_REFHOLD(save_ire->ire_bucket); 9338 /* Has it been removed already ? */ 9339 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9340 IRB_REFRELE(save_ire->ire_bucket); 9341 ire_refrele(save_ire); 9342 break; 9343 } 9344 } 9345 9346 ire_add_then_send(q, ire, first_mp); 9347 9348 /* Assert that save_ire is not deleted yet. */ 9349 if (save_ire != NULL) { 9350 ASSERT(save_ire->ire_ptpn != NULL); 9351 IRB_REFRELE(save_ire->ire_bucket); 9352 ire_refrele(save_ire); 9353 save_ire = NULL; 9354 } 9355 if (fire != NULL) { 9356 ire_refrele(fire); 9357 fire = NULL; 9358 } 9359 9360 /* 9361 * the resolution loop is re-entered if this 9362 * was requested through flags and if we 9363 * actually are in a multirouting case. 9364 */ 9365 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9366 boolean_t need_resolve = 9367 ire_multirt_need_resolve(ipha_dst, 9368 msg_getlabel(copy_mp), ipst); 9369 if (!need_resolve) { 9370 MULTIRT_DEBUG_UNTAG(copy_mp); 9371 freemsg(copy_mp); 9372 copy_mp = NULL; 9373 } else { 9374 /* 9375 * ipif_lookup_group() calls 9376 * ire_lookup_multi() that uses 9377 * ire_ftable_lookup() to find 9378 * an IRE_INTERFACE for the group. 9379 * In the multirt case, 9380 * ire_lookup_multi() then invokes 9381 * ire_multirt_lookup() to find 9382 * the next resolvable ire. 9383 * As a result, we obtain an new 9384 * interface, derived from the 9385 * next ire. 9386 */ 9387 ipif_refrele(ipif); 9388 ipif = ipif_lookup_group(ipha_dst, 9389 zoneid, ipst); 9390 ip2dbg(("ip_newroute_ipif: " 9391 "multirt dst %08x, ipif %p\n", 9392 htonl(dst), (void *)ipif)); 9393 if (ipif != NULL) { 9394 mp = copy_mp; 9395 copy_mp = NULL; 9396 multirt_resolve_next = B_TRUE; 9397 continue; 9398 } else { 9399 freemsg(copy_mp); 9400 } 9401 } 9402 } 9403 if (ipif != NULL) 9404 ipif_refrele(ipif); 9405 ill_refrele(dst_ill); 9406 ipif_refrele(src_ipif); 9407 return; 9408 } 9409 case IRE_IF_RESOLVER: 9410 /* 9411 * We can't build an IRE_CACHE yet, but at least 9412 * we found a resolver that can help. 9413 */ 9414 res_mp = dst_ill->ill_resolver_mp; 9415 if (!OK_RESOLVER_MP(res_mp)) 9416 break; 9417 9418 /* 9419 * We obtain a partial IRE_CACHE which we will pass 9420 * along with the resolver query. When the response 9421 * comes back it will be there ready for us to add. 9422 * The new ire inherits the IRE_OFFSUBNET flags 9423 * and source address, if this was requested. 9424 * The ire_max_frag is atomically set under the 9425 * irebucket lock in ire_add_v[46]. Only in the 9426 * case of IRE_MARK_NOADD, we set it here itself. 9427 */ 9428 ire = ire_create_mp( 9429 (uchar_t *)&dst, /* dest address */ 9430 (uchar_t *)&ip_g_all_ones, /* mask */ 9431 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9432 NULL, /* gateway address */ 9433 (ire_marks & IRE_MARK_NOADD) ? 9434 ipif->ipif_mtu : 0, /* max_frag */ 9435 NULL, /* no src nce */ 9436 dst_ill->ill_rq, /* recv-from queue */ 9437 dst_ill->ill_wq, /* send-to queue */ 9438 IRE_CACHE, 9439 src_ipif, 9440 (save_ire != NULL ? save_ire->ire_mask : 0), 9441 (fire != NULL) ? /* Parent handle */ 9442 fire->ire_phandle : 0, 9443 (save_ire != NULL) ? /* Interface handle */ 9444 save_ire->ire_ihandle : 0, 9445 (fire != NULL) ? /* flags if any */ 9446 (fire->ire_flags & 9447 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9448 (save_ire == NULL ? &ire_uinfo_null : 9449 &save_ire->ire_uinfo), 9450 NULL, 9451 NULL, 9452 ipst); 9453 9454 if (save_ire != NULL) { 9455 ire_refrele(save_ire); 9456 save_ire = NULL; 9457 } 9458 if (ire == NULL) 9459 break; 9460 9461 ire->ire_marks |= ire_marks; 9462 /* 9463 * Construct message chain for the resolver of the 9464 * form: 9465 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9466 * 9467 * NOTE : ire will be added later when the response 9468 * comes back from ARP. If the response does not 9469 * come back, ARP frees the packet. For this reason, 9470 * we can't REFHOLD the bucket of save_ire to prevent 9471 * deletions. We may not be able to REFRELE the 9472 * bucket if the response never comes back. 9473 * Thus, before adding the ire, ire_add_v4 will make 9474 * sure that the interface route does not get deleted. 9475 * This is the only case unlike ip_newroute_v6, 9476 * ip_newroute_ipif_v6 where we can always prevent 9477 * deletions because ire_add_then_send is called after 9478 * creating the IRE. 9479 * If IRE_MARK_NOADD is set, then ire_add_then_send 9480 * does not add this IRE into the IRE CACHE. 9481 */ 9482 ASSERT(ire->ire_mp != NULL); 9483 ire->ire_mp->b_cont = first_mp; 9484 /* Have saved_mp handy, for cleanup if canput fails */ 9485 saved_mp = mp; 9486 mp = copyb(res_mp); 9487 if (mp == NULL) { 9488 /* Prepare for cleanup */ 9489 mp = saved_mp; /* pkt */ 9490 ire_delete(ire); /* ire_mp */ 9491 ire = NULL; 9492 if (copy_mp != NULL) { 9493 MULTIRT_DEBUG_UNTAG(copy_mp); 9494 freemsg(copy_mp); 9495 copy_mp = NULL; 9496 } 9497 break; 9498 } 9499 linkb(mp, ire->ire_mp); 9500 9501 /* 9502 * Fill in the source and dest addrs for the resolver. 9503 * NOTE: this depends on memory layouts imposed by 9504 * ill_init(). There are corner cases above where we 9505 * might've created the IRE with an INADDR_ANY source 9506 * address (e.g., if the zeroth ipif on an underlying 9507 * ill in an IPMP group is 0.0.0.0, but another ipif 9508 * on the ill has a usable test address). If so, tell 9509 * ARP to use ipha_src as its sender address. 9510 */ 9511 areq = (areq_t *)mp->b_rptr; 9512 addrp = (ipaddr_t *)((char *)areq + 9513 areq->areq_sender_addr_offset); 9514 if (ire->ire_src_addr != INADDR_ANY) 9515 *addrp = ire->ire_src_addr; 9516 else 9517 *addrp = ipha->ipha_src; 9518 addrp = (ipaddr_t *)((char *)areq + 9519 areq->areq_target_addr_offset); 9520 *addrp = dst; 9521 /* Up to the resolver. */ 9522 if (canputnext(dst_ill->ill_rq) && 9523 !(dst_ill->ill_arp_closing)) { 9524 putnext(dst_ill->ill_rq, mp); 9525 /* 9526 * The response will come back in ip_wput 9527 * with db_type IRE_DB_TYPE. 9528 */ 9529 } else { 9530 mp->b_cont = NULL; 9531 freeb(mp); /* areq */ 9532 ire_delete(ire); /* ire_mp */ 9533 saved_mp->b_next = NULL; 9534 saved_mp->b_prev = NULL; 9535 freemsg(first_mp); /* pkt */ 9536 ip2dbg(("ip_newroute_ipif: dropped\n")); 9537 } 9538 9539 if (fire != NULL) { 9540 ire_refrele(fire); 9541 fire = NULL; 9542 } 9543 9544 /* 9545 * The resolution loop is re-entered if this was 9546 * requested through flags and we actually are 9547 * in a multirouting case. 9548 */ 9549 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9550 boolean_t need_resolve = 9551 ire_multirt_need_resolve(ipha_dst, 9552 msg_getlabel(copy_mp), ipst); 9553 if (!need_resolve) { 9554 MULTIRT_DEBUG_UNTAG(copy_mp); 9555 freemsg(copy_mp); 9556 copy_mp = NULL; 9557 } else { 9558 /* 9559 * ipif_lookup_group() calls 9560 * ire_lookup_multi() that uses 9561 * ire_ftable_lookup() to find 9562 * an IRE_INTERFACE for the group. 9563 * In the multirt case, 9564 * ire_lookup_multi() then invokes 9565 * ire_multirt_lookup() to find 9566 * the next resolvable ire. 9567 * As a result, we obtain an new 9568 * interface, derived from the 9569 * next ire. 9570 */ 9571 ipif_refrele(ipif); 9572 ipif = ipif_lookup_group(ipha_dst, 9573 zoneid, ipst); 9574 if (ipif != NULL) { 9575 mp = copy_mp; 9576 copy_mp = NULL; 9577 multirt_resolve_next = B_TRUE; 9578 continue; 9579 } else { 9580 freemsg(copy_mp); 9581 } 9582 } 9583 } 9584 if (ipif != NULL) 9585 ipif_refrele(ipif); 9586 ill_refrele(dst_ill); 9587 ipif_refrele(src_ipif); 9588 return; 9589 default: 9590 break; 9591 } 9592 } while (multirt_resolve_next); 9593 9594 err_ret: 9595 ip2dbg(("ip_newroute_ipif: dropped\n")); 9596 if (fire != NULL) 9597 ire_refrele(fire); 9598 ipif_refrele(ipif); 9599 /* Did this packet originate externally? */ 9600 if (dst_ill != NULL) 9601 ill_refrele(dst_ill); 9602 if (src_ipif != NULL) 9603 ipif_refrele(src_ipif); 9604 if (mp->b_prev || mp->b_next) { 9605 mp->b_next = NULL; 9606 mp->b_prev = NULL; 9607 } else { 9608 /* 9609 * Since ip_wput() isn't close to finished, we fill 9610 * in enough of the header for credible error reporting. 9611 */ 9612 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9613 /* Failed */ 9614 freemsg(first_mp); 9615 if (ire != NULL) 9616 ire_refrele(ire); 9617 return; 9618 } 9619 } 9620 /* 9621 * At this point we will have ire only if RTF_BLACKHOLE 9622 * or RTF_REJECT flags are set on the IRE. It will not 9623 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9624 */ 9625 if (ire != NULL) { 9626 if (ire->ire_flags & RTF_BLACKHOLE) { 9627 ire_refrele(ire); 9628 freemsg(first_mp); 9629 return; 9630 } 9631 ire_refrele(ire); 9632 } 9633 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9634 } 9635 9636 /* Name/Value Table Lookup Routine */ 9637 char * 9638 ip_nv_lookup(nv_t *nv, int value) 9639 { 9640 if (!nv) 9641 return (NULL); 9642 for (; nv->nv_name; nv++) { 9643 if (nv->nv_value == value) 9644 return (nv->nv_name); 9645 } 9646 return ("unknown"); 9647 } 9648 9649 /* 9650 * This is a module open, i.e. this is a control stream for access 9651 * to a DLPI device. We allocate an ill_t as the instance data in 9652 * this case. 9653 */ 9654 int 9655 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9656 { 9657 ill_t *ill; 9658 int err; 9659 zoneid_t zoneid; 9660 netstack_t *ns; 9661 ip_stack_t *ipst; 9662 9663 /* 9664 * Prevent unprivileged processes from pushing IP so that 9665 * they can't send raw IP. 9666 */ 9667 if (secpolicy_net_rawaccess(credp) != 0) 9668 return (EPERM); 9669 9670 ns = netstack_find_by_cred(credp); 9671 ASSERT(ns != NULL); 9672 ipst = ns->netstack_ip; 9673 ASSERT(ipst != NULL); 9674 9675 /* 9676 * For exclusive stacks we set the zoneid to zero 9677 * to make IP operate as if in the global zone. 9678 */ 9679 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9680 zoneid = GLOBAL_ZONEID; 9681 else 9682 zoneid = crgetzoneid(credp); 9683 9684 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9685 q->q_ptr = WR(q)->q_ptr = ill; 9686 ill->ill_ipst = ipst; 9687 ill->ill_zoneid = zoneid; 9688 9689 /* 9690 * ill_init initializes the ill fields and then sends down 9691 * down a DL_INFO_REQ after calling qprocson. 9692 */ 9693 err = ill_init(q, ill); 9694 if (err != 0) { 9695 mi_free(ill); 9696 netstack_rele(ipst->ips_netstack); 9697 q->q_ptr = NULL; 9698 WR(q)->q_ptr = NULL; 9699 return (err); 9700 } 9701 9702 /* ill_init initializes the ipsq marking this thread as writer */ 9703 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9704 /* Wait for the DL_INFO_ACK */ 9705 mutex_enter(&ill->ill_lock); 9706 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9707 /* 9708 * Return value of 0 indicates a pending signal. 9709 */ 9710 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9711 if (err == 0) { 9712 mutex_exit(&ill->ill_lock); 9713 (void) ip_close(q, 0); 9714 return (EINTR); 9715 } 9716 } 9717 mutex_exit(&ill->ill_lock); 9718 9719 /* 9720 * ip_rput_other could have set an error in ill_error on 9721 * receipt of M_ERROR. 9722 */ 9723 9724 err = ill->ill_error; 9725 if (err != 0) { 9726 (void) ip_close(q, 0); 9727 return (err); 9728 } 9729 9730 ill->ill_credp = credp; 9731 crhold(credp); 9732 9733 mutex_enter(&ipst->ips_ip_mi_lock); 9734 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9735 credp); 9736 mutex_exit(&ipst->ips_ip_mi_lock); 9737 if (err) { 9738 (void) ip_close(q, 0); 9739 return (err); 9740 } 9741 return (0); 9742 } 9743 9744 /* For /dev/ip aka AF_INET open */ 9745 int 9746 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9747 { 9748 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9749 } 9750 9751 /* For /dev/ip6 aka AF_INET6 open */ 9752 int 9753 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9754 { 9755 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9756 } 9757 9758 /* IP open routine. */ 9759 int 9760 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9761 boolean_t isv6) 9762 { 9763 conn_t *connp; 9764 major_t maj; 9765 zoneid_t zoneid; 9766 netstack_t *ns; 9767 ip_stack_t *ipst; 9768 9769 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9770 9771 /* Allow reopen. */ 9772 if (q->q_ptr != NULL) 9773 return (0); 9774 9775 if (sflag & MODOPEN) { 9776 /* This is a module open */ 9777 return (ip_modopen(q, devp, flag, sflag, credp)); 9778 } 9779 9780 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9781 /* 9782 * Non streams based socket looking for a stream 9783 * to access IP 9784 */ 9785 return (ip_helper_stream_setup(q, devp, flag, sflag, 9786 credp, isv6)); 9787 } 9788 9789 ns = netstack_find_by_cred(credp); 9790 ASSERT(ns != NULL); 9791 ipst = ns->netstack_ip; 9792 ASSERT(ipst != NULL); 9793 9794 /* 9795 * For exclusive stacks we set the zoneid to zero 9796 * to make IP operate as if in the global zone. 9797 */ 9798 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9799 zoneid = GLOBAL_ZONEID; 9800 else 9801 zoneid = crgetzoneid(credp); 9802 9803 /* 9804 * We are opening as a device. This is an IP client stream, and we 9805 * allocate an conn_t as the instance data. 9806 */ 9807 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9808 9809 /* 9810 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9811 * done by netstack_find_by_cred() 9812 */ 9813 netstack_rele(ipst->ips_netstack); 9814 9815 connp->conn_zoneid = zoneid; 9816 connp->conn_sqp = NULL; 9817 connp->conn_initial_sqp = NULL; 9818 connp->conn_final_sqp = NULL; 9819 9820 connp->conn_upq = q; 9821 q->q_ptr = WR(q)->q_ptr = connp; 9822 9823 if (flag & SO_SOCKSTR) 9824 connp->conn_flags |= IPCL_SOCKET; 9825 9826 /* Minor tells us which /dev entry was opened */ 9827 if (isv6) { 9828 connp->conn_flags |= IPCL_ISV6; 9829 connp->conn_af_isv6 = B_TRUE; 9830 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9831 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9832 } else { 9833 connp->conn_af_isv6 = B_FALSE; 9834 connp->conn_pkt_isv6 = B_FALSE; 9835 } 9836 9837 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9838 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9839 connp->conn_minor_arena = ip_minor_arena_la; 9840 } else { 9841 /* 9842 * Either minor numbers in the large arena were exhausted 9843 * or a non socket application is doing the open. 9844 * Try to allocate from the small arena. 9845 */ 9846 if ((connp->conn_dev = 9847 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9848 /* CONN_DEC_REF takes care of netstack_rele() */ 9849 q->q_ptr = WR(q)->q_ptr = NULL; 9850 CONN_DEC_REF(connp); 9851 return (EBUSY); 9852 } 9853 connp->conn_minor_arena = ip_minor_arena_sa; 9854 } 9855 9856 maj = getemajor(*devp); 9857 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9858 9859 /* 9860 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9861 */ 9862 connp->conn_cred = credp; 9863 9864 /* 9865 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9866 */ 9867 connp->conn_recv = ip_conn_input; 9868 9869 crhold(connp->conn_cred); 9870 9871 /* 9872 * If the caller has the process-wide flag set, then default to MAC 9873 * exempt mode. This allows read-down to unlabeled hosts. 9874 */ 9875 if (getpflags(NET_MAC_AWARE, credp) != 0) 9876 connp->conn_mac_exempt = B_TRUE; 9877 9878 connp->conn_rq = q; 9879 connp->conn_wq = WR(q); 9880 9881 /* Non-zero default values */ 9882 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9883 9884 /* 9885 * Make the conn globally visible to walkers 9886 */ 9887 ASSERT(connp->conn_ref == 1); 9888 mutex_enter(&connp->conn_lock); 9889 connp->conn_state_flags &= ~CONN_INCIPIENT; 9890 mutex_exit(&connp->conn_lock); 9891 9892 qprocson(q); 9893 9894 return (0); 9895 } 9896 9897 /* 9898 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9899 * Note that there is no race since either ip_output function works - it 9900 * is just an optimization to enter the best ip_output routine directly. 9901 */ 9902 void 9903 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9904 ip_stack_t *ipst) 9905 { 9906 if (isv6) { 9907 if (bump_mib) { 9908 BUMP_MIB(&ipst->ips_ip6_mib, 9909 ipIfStatsOutSwitchIPVersion); 9910 } 9911 connp->conn_send = ip_output_v6; 9912 connp->conn_pkt_isv6 = B_TRUE; 9913 } else { 9914 if (bump_mib) { 9915 BUMP_MIB(&ipst->ips_ip_mib, 9916 ipIfStatsOutSwitchIPVersion); 9917 } 9918 connp->conn_send = ip_output; 9919 connp->conn_pkt_isv6 = B_FALSE; 9920 } 9921 9922 } 9923 9924 /* 9925 * See if IPsec needs loading because of the options in mp. 9926 */ 9927 static boolean_t 9928 ipsec_opt_present(mblk_t *mp) 9929 { 9930 uint8_t *optcp, *next_optcp, *opt_endcp; 9931 struct opthdr *opt; 9932 struct T_opthdr *topt; 9933 int opthdr_len; 9934 t_uscalar_t optname, optlevel; 9935 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9936 ipsec_req_t *ipsr; 9937 9938 /* 9939 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9940 * return TRUE. 9941 */ 9942 9943 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9944 opt_endcp = optcp + tor->OPT_length; 9945 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9946 opthdr_len = sizeof (struct T_opthdr); 9947 } else { /* O_OPTMGMT_REQ */ 9948 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9949 opthdr_len = sizeof (struct opthdr); 9950 } 9951 for (; optcp < opt_endcp; optcp = next_optcp) { 9952 if (optcp + opthdr_len > opt_endcp) 9953 return (B_FALSE); /* Not enough option header. */ 9954 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9955 topt = (struct T_opthdr *)optcp; 9956 optlevel = topt->level; 9957 optname = topt->name; 9958 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9959 } else { 9960 opt = (struct opthdr *)optcp; 9961 optlevel = opt->level; 9962 optname = opt->name; 9963 next_optcp = optcp + opthdr_len + 9964 _TPI_ALIGN_OPT(opt->len); 9965 } 9966 if ((next_optcp < optcp) || /* wraparound pointer space */ 9967 ((next_optcp >= opt_endcp) && /* last option bad len */ 9968 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9969 return (B_FALSE); /* bad option buffer */ 9970 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9971 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9972 /* 9973 * Check to see if it's an all-bypass or all-zeroes 9974 * IPsec request. Don't bother loading IPsec if 9975 * the socket doesn't want to use it. (A good example 9976 * is a bypass request.) 9977 * 9978 * Basically, if any of the non-NEVER bits are set, 9979 * load IPsec. 9980 */ 9981 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9982 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9983 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9984 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9985 != 0) 9986 return (B_TRUE); 9987 } 9988 } 9989 return (B_FALSE); 9990 } 9991 9992 /* 9993 * If conn is is waiting for ipsec to finish loading, kick it. 9994 */ 9995 /* ARGSUSED */ 9996 static void 9997 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9998 { 9999 t_scalar_t optreq_prim; 10000 mblk_t *mp; 10001 cred_t *cr; 10002 int err = 0; 10003 10004 /* 10005 * This function is called, after ipsec loading is complete. 10006 * Since IP checks exclusively and atomically (i.e it prevents 10007 * ipsec load from completing until ip_optcom_req completes) 10008 * whether ipsec load is complete, there cannot be a race with IP 10009 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10010 */ 10011 mutex_enter(&connp->conn_lock); 10012 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10013 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10014 mp = connp->conn_ipsec_opt_mp; 10015 connp->conn_ipsec_opt_mp = NULL; 10016 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10017 mutex_exit(&connp->conn_lock); 10018 10019 /* 10020 * All Solaris components should pass a db_credp 10021 * for this TPI message, hence we ASSERT. 10022 * But in case there is some other M_PROTO that looks 10023 * like a TPI message sent by some other kernel 10024 * component, we check and return an error. 10025 */ 10026 cr = msg_getcred(mp, NULL); 10027 ASSERT(cr != NULL); 10028 if (cr == NULL) { 10029 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 10030 if (mp != NULL) 10031 qreply(connp->conn_wq, mp); 10032 return; 10033 } 10034 10035 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10036 10037 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10038 if (optreq_prim == T_OPTMGMT_REQ) { 10039 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10040 &ip_opt_obj, B_FALSE); 10041 } else { 10042 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10043 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10044 &ip_opt_obj, B_FALSE); 10045 } 10046 if (err != EINPROGRESS) 10047 CONN_OPER_PENDING_DONE(connp); 10048 return; 10049 } 10050 mutex_exit(&connp->conn_lock); 10051 } 10052 10053 /* 10054 * Called from the ipsec_loader thread, outside any perimeter, to tell 10055 * ip qenable any of the queues waiting for the ipsec loader to 10056 * complete. 10057 */ 10058 void 10059 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10060 { 10061 netstack_t *ns = ipss->ipsec_netstack; 10062 10063 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10064 } 10065 10066 /* 10067 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10068 * determines the grp on which it has to become exclusive, queues the mp 10069 * and IPSQ draining restarts the optmgmt 10070 */ 10071 static boolean_t 10072 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10073 { 10074 conn_t *connp = Q_TO_CONN(q); 10075 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10076 10077 /* 10078 * Take IPsec requests and treat them special. 10079 */ 10080 if (ipsec_opt_present(mp)) { 10081 /* First check if IPsec is loaded. */ 10082 mutex_enter(&ipss->ipsec_loader_lock); 10083 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10084 mutex_exit(&ipss->ipsec_loader_lock); 10085 return (B_FALSE); 10086 } 10087 mutex_enter(&connp->conn_lock); 10088 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10089 10090 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10091 connp->conn_ipsec_opt_mp = mp; 10092 mutex_exit(&connp->conn_lock); 10093 mutex_exit(&ipss->ipsec_loader_lock); 10094 10095 ipsec_loader_loadnow(ipss); 10096 return (B_TRUE); 10097 } 10098 return (B_FALSE); 10099 } 10100 10101 /* 10102 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10103 * all of them are copied to the conn_t. If the req is "zero", the policy is 10104 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10105 * fields. 10106 * We keep only the latest setting of the policy and thus policy setting 10107 * is not incremental/cumulative. 10108 * 10109 * Requests to set policies with multiple alternative actions will 10110 * go through a different API. 10111 */ 10112 int 10113 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10114 { 10115 uint_t ah_req = 0; 10116 uint_t esp_req = 0; 10117 uint_t se_req = 0; 10118 ipsec_selkey_t sel; 10119 ipsec_act_t *actp = NULL; 10120 uint_t nact; 10121 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10122 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10123 ipsec_policy_root_t *pr; 10124 ipsec_policy_head_t *ph; 10125 int fam; 10126 boolean_t is_pol_reset; 10127 int error = 0; 10128 netstack_t *ns = connp->conn_netstack; 10129 ip_stack_t *ipst = ns->netstack_ip; 10130 ipsec_stack_t *ipss = ns->netstack_ipsec; 10131 10132 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10133 10134 /* 10135 * The IP_SEC_OPT option does not allow variable length parameters, 10136 * hence a request cannot be NULL. 10137 */ 10138 if (req == NULL) 10139 return (EINVAL); 10140 10141 ah_req = req->ipsr_ah_req; 10142 esp_req = req->ipsr_esp_req; 10143 se_req = req->ipsr_self_encap_req; 10144 10145 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10146 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10147 return (EINVAL); 10148 10149 /* 10150 * Are we dealing with a request to reset the policy (i.e. 10151 * zero requests). 10152 */ 10153 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10154 (esp_req & REQ_MASK) == 0 && 10155 (se_req & REQ_MASK) == 0); 10156 10157 if (!is_pol_reset) { 10158 /* 10159 * If we couldn't load IPsec, fail with "protocol 10160 * not supported". 10161 * IPsec may not have been loaded for a request with zero 10162 * policies, so we don't fail in this case. 10163 */ 10164 mutex_enter(&ipss->ipsec_loader_lock); 10165 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10166 mutex_exit(&ipss->ipsec_loader_lock); 10167 return (EPROTONOSUPPORT); 10168 } 10169 mutex_exit(&ipss->ipsec_loader_lock); 10170 10171 /* 10172 * Test for valid requests. Invalid algorithms 10173 * need to be tested by IPsec code because new 10174 * algorithms can be added dynamically. 10175 */ 10176 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10177 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10178 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10179 return (EINVAL); 10180 } 10181 10182 /* 10183 * Only privileged users can issue these 10184 * requests. 10185 */ 10186 if (((ah_req & IPSEC_PREF_NEVER) || 10187 (esp_req & IPSEC_PREF_NEVER) || 10188 (se_req & IPSEC_PREF_NEVER)) && 10189 secpolicy_ip_config(cr, B_FALSE) != 0) { 10190 return (EPERM); 10191 } 10192 10193 /* 10194 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10195 * are mutually exclusive. 10196 */ 10197 if (((ah_req & REQ_MASK) == REQ_MASK) || 10198 ((esp_req & REQ_MASK) == REQ_MASK) || 10199 ((se_req & REQ_MASK) == REQ_MASK)) { 10200 /* Both of them are set */ 10201 return (EINVAL); 10202 } 10203 } 10204 10205 mutex_enter(&connp->conn_lock); 10206 10207 /* 10208 * If we have already cached policies in ip_bind_connected*(), don't 10209 * let them change now. We cache policies for connections 10210 * whose src,dst [addr, port] is known. 10211 */ 10212 if (connp->conn_policy_cached) { 10213 mutex_exit(&connp->conn_lock); 10214 return (EINVAL); 10215 } 10216 10217 /* 10218 * We have a zero policies, reset the connection policy if already 10219 * set. This will cause the connection to inherit the 10220 * global policy, if any. 10221 */ 10222 if (is_pol_reset) { 10223 if (connp->conn_policy != NULL) { 10224 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10225 connp->conn_policy = NULL; 10226 } 10227 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10228 connp->conn_in_enforce_policy = B_FALSE; 10229 connp->conn_out_enforce_policy = B_FALSE; 10230 mutex_exit(&connp->conn_lock); 10231 return (0); 10232 } 10233 10234 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10235 ipst->ips_netstack); 10236 if (ph == NULL) 10237 goto enomem; 10238 10239 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10240 if (actp == NULL) 10241 goto enomem; 10242 10243 /* 10244 * Always allocate IPv4 policy entries, since they can also 10245 * apply to ipv6 sockets being used in ipv4-compat mode. 10246 */ 10247 bzero(&sel, sizeof (sel)); 10248 sel.ipsl_valid = IPSL_IPV4; 10249 10250 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10251 ipst->ips_netstack); 10252 if (pin4 == NULL) 10253 goto enomem; 10254 10255 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10256 ipst->ips_netstack); 10257 if (pout4 == NULL) 10258 goto enomem; 10259 10260 if (connp->conn_af_isv6) { 10261 /* 10262 * We're looking at a v6 socket, also allocate the 10263 * v6-specific entries... 10264 */ 10265 sel.ipsl_valid = IPSL_IPV6; 10266 pin6 = ipsec_policy_create(&sel, actp, nact, 10267 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10268 if (pin6 == NULL) 10269 goto enomem; 10270 10271 pout6 = ipsec_policy_create(&sel, actp, nact, 10272 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10273 if (pout6 == NULL) 10274 goto enomem; 10275 10276 /* 10277 * .. and file them away in the right place. 10278 */ 10279 fam = IPSEC_AF_V6; 10280 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10281 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10282 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10283 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10284 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10285 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10286 } 10287 10288 ipsec_actvec_free(actp, nact); 10289 10290 /* 10291 * File the v4 policies. 10292 */ 10293 fam = IPSEC_AF_V4; 10294 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10295 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10296 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10297 10298 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10299 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10300 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10301 10302 /* 10303 * If the requests need security, set enforce_policy. 10304 * If the requests are IPSEC_PREF_NEVER, one should 10305 * still set conn_out_enforce_policy so that an ipsec_out 10306 * gets attached in ip_wput. This is needed so that 10307 * for connections that we don't cache policy in ip_bind, 10308 * if global policy matches in ip_wput_attach_policy, we 10309 * don't wrongly inherit global policy. Similarly, we need 10310 * to set conn_in_enforce_policy also so that we don't verify 10311 * policy wrongly. 10312 */ 10313 if ((ah_req & REQ_MASK) != 0 || 10314 (esp_req & REQ_MASK) != 0 || 10315 (se_req & REQ_MASK) != 0) { 10316 connp->conn_in_enforce_policy = B_TRUE; 10317 connp->conn_out_enforce_policy = B_TRUE; 10318 connp->conn_flags |= IPCL_CHECK_POLICY; 10319 } 10320 10321 mutex_exit(&connp->conn_lock); 10322 return (error); 10323 #undef REQ_MASK 10324 10325 /* 10326 * Common memory-allocation-failure exit path. 10327 */ 10328 enomem: 10329 mutex_exit(&connp->conn_lock); 10330 if (actp != NULL) 10331 ipsec_actvec_free(actp, nact); 10332 if (pin4 != NULL) 10333 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10334 if (pout4 != NULL) 10335 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10336 if (pin6 != NULL) 10337 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10338 if (pout6 != NULL) 10339 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10340 return (ENOMEM); 10341 } 10342 10343 /* 10344 * Only for options that pass in an IP addr. Currently only V4 options 10345 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10346 * So this function assumes level is IPPROTO_IP 10347 */ 10348 int 10349 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10350 mblk_t *first_mp) 10351 { 10352 ipif_t *ipif = NULL; 10353 int error; 10354 ill_t *ill; 10355 int zoneid; 10356 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10357 10358 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10359 10360 if (addr != INADDR_ANY || checkonly) { 10361 ASSERT(connp != NULL); 10362 zoneid = IPCL_ZONEID(connp); 10363 if (option == IP_NEXTHOP) { 10364 ipif = ipif_lookup_onlink_addr(addr, 10365 connp->conn_zoneid, ipst); 10366 } else { 10367 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10368 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10369 &error, ipst); 10370 } 10371 if (ipif == NULL) { 10372 if (error == EINPROGRESS) 10373 return (error); 10374 if ((option == IP_MULTICAST_IF) || 10375 (option == IP_NEXTHOP)) 10376 return (EHOSTUNREACH); 10377 else 10378 return (EINVAL); 10379 } else if (checkonly) { 10380 if (option == IP_MULTICAST_IF) { 10381 ill = ipif->ipif_ill; 10382 /* not supported by the virtual network iface */ 10383 if (IS_VNI(ill)) { 10384 ipif_refrele(ipif); 10385 return (EINVAL); 10386 } 10387 } 10388 ipif_refrele(ipif); 10389 return (0); 10390 } 10391 ill = ipif->ipif_ill; 10392 mutex_enter(&connp->conn_lock); 10393 mutex_enter(&ill->ill_lock); 10394 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10395 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10396 mutex_exit(&ill->ill_lock); 10397 mutex_exit(&connp->conn_lock); 10398 ipif_refrele(ipif); 10399 return (option == IP_MULTICAST_IF ? 10400 EHOSTUNREACH : EINVAL); 10401 } 10402 } else { 10403 mutex_enter(&connp->conn_lock); 10404 } 10405 10406 /* None of the options below are supported on the VNI */ 10407 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10408 mutex_exit(&ill->ill_lock); 10409 mutex_exit(&connp->conn_lock); 10410 ipif_refrele(ipif); 10411 return (EINVAL); 10412 } 10413 10414 switch (option) { 10415 case IP_MULTICAST_IF: 10416 connp->conn_multicast_ipif = ipif; 10417 break; 10418 case IP_NEXTHOP: 10419 connp->conn_nexthop_v4 = addr; 10420 connp->conn_nexthop_set = B_TRUE; 10421 break; 10422 } 10423 10424 if (ipif != NULL) { 10425 mutex_exit(&ill->ill_lock); 10426 mutex_exit(&connp->conn_lock); 10427 ipif_refrele(ipif); 10428 return (0); 10429 } 10430 mutex_exit(&connp->conn_lock); 10431 /* We succeded in cleared the option */ 10432 return (0); 10433 } 10434 10435 /* 10436 * For options that pass in an ifindex specifying the ill. V6 options always 10437 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10438 */ 10439 int 10440 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10441 int level, int option, mblk_t *first_mp) 10442 { 10443 ill_t *ill = NULL; 10444 int error = 0; 10445 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10446 10447 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10448 if (ifindex != 0) { 10449 ASSERT(connp != NULL); 10450 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10451 first_mp, ip_restart_optmgmt, &error, ipst); 10452 if (ill != NULL) { 10453 if (checkonly) { 10454 /* not supported by the virtual network iface */ 10455 if (IS_VNI(ill)) { 10456 ill_refrele(ill); 10457 return (EINVAL); 10458 } 10459 ill_refrele(ill); 10460 return (0); 10461 } 10462 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10463 0, NULL)) { 10464 ill_refrele(ill); 10465 ill = NULL; 10466 mutex_enter(&connp->conn_lock); 10467 goto setit; 10468 } 10469 mutex_enter(&connp->conn_lock); 10470 mutex_enter(&ill->ill_lock); 10471 if (ill->ill_state_flags & ILL_CONDEMNED) { 10472 mutex_exit(&ill->ill_lock); 10473 mutex_exit(&connp->conn_lock); 10474 ill_refrele(ill); 10475 ill = NULL; 10476 mutex_enter(&connp->conn_lock); 10477 } 10478 goto setit; 10479 } else if (error == EINPROGRESS) { 10480 return (error); 10481 } else { 10482 error = 0; 10483 } 10484 } 10485 mutex_enter(&connp->conn_lock); 10486 setit: 10487 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10488 10489 /* 10490 * The options below assume that the ILL (if any) transmits and/or 10491 * receives traffic. Neither of which is true for the virtual network 10492 * interface, so fail setting these on a VNI. 10493 */ 10494 if (IS_VNI(ill)) { 10495 ASSERT(ill != NULL); 10496 mutex_exit(&ill->ill_lock); 10497 mutex_exit(&connp->conn_lock); 10498 ill_refrele(ill); 10499 return (EINVAL); 10500 } 10501 10502 if (level == IPPROTO_IP) { 10503 switch (option) { 10504 case IP_BOUND_IF: 10505 connp->conn_incoming_ill = ill; 10506 connp->conn_outgoing_ill = ill; 10507 break; 10508 10509 case IP_MULTICAST_IF: 10510 /* 10511 * This option is an internal special. The socket 10512 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10513 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10514 * specifies an ifindex and we try first on V6 ill's. 10515 * If we don't find one, we they try using on v4 ill's 10516 * intenally and we come here. 10517 */ 10518 if (!checkonly && ill != NULL) { 10519 ipif_t *ipif; 10520 ipif = ill->ill_ipif; 10521 10522 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10523 mutex_exit(&ill->ill_lock); 10524 mutex_exit(&connp->conn_lock); 10525 ill_refrele(ill); 10526 ill = NULL; 10527 mutex_enter(&connp->conn_lock); 10528 } else { 10529 connp->conn_multicast_ipif = ipif; 10530 } 10531 } 10532 break; 10533 10534 case IP_DHCPINIT_IF: 10535 if (connp->conn_dhcpinit_ill != NULL) { 10536 /* 10537 * We've locked the conn so conn_cleanup_ill() 10538 * cannot clear conn_dhcpinit_ill -- so it's 10539 * safe to access the ill. 10540 */ 10541 ill_t *oill = connp->conn_dhcpinit_ill; 10542 10543 ASSERT(oill->ill_dhcpinit != 0); 10544 atomic_dec_32(&oill->ill_dhcpinit); 10545 connp->conn_dhcpinit_ill = NULL; 10546 } 10547 10548 if (ill != NULL) { 10549 connp->conn_dhcpinit_ill = ill; 10550 atomic_inc_32(&ill->ill_dhcpinit); 10551 } 10552 break; 10553 } 10554 } else { 10555 switch (option) { 10556 case IPV6_BOUND_IF: 10557 connp->conn_incoming_ill = ill; 10558 connp->conn_outgoing_ill = ill; 10559 break; 10560 10561 case IPV6_MULTICAST_IF: 10562 /* 10563 * Set conn_multicast_ill to be the IPv6 ill. 10564 * Set conn_multicast_ipif to be an IPv4 ipif 10565 * for ifindex to make IPv4 mapped addresses 10566 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10567 * Even if no IPv6 ill exists for the ifindex 10568 * we need to check for an IPv4 ifindex in order 10569 * for this to work with mapped addresses. In that 10570 * case only set conn_multicast_ipif. 10571 */ 10572 if (!checkonly) { 10573 if (ifindex == 0) { 10574 connp->conn_multicast_ill = NULL; 10575 connp->conn_multicast_ipif = NULL; 10576 } else if (ill != NULL) { 10577 connp->conn_multicast_ill = ill; 10578 } 10579 } 10580 break; 10581 } 10582 } 10583 10584 if (ill != NULL) { 10585 mutex_exit(&ill->ill_lock); 10586 mutex_exit(&connp->conn_lock); 10587 ill_refrele(ill); 10588 return (0); 10589 } 10590 mutex_exit(&connp->conn_lock); 10591 /* 10592 * We succeeded in clearing the option (ifindex == 0) or failed to 10593 * locate the ill and could not set the option (ifindex != 0) 10594 */ 10595 return (ifindex == 0 ? 0 : EINVAL); 10596 } 10597 10598 /* This routine sets socket options. */ 10599 /* ARGSUSED */ 10600 int 10601 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10602 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10603 void *dummy, cred_t *cr, mblk_t *first_mp) 10604 { 10605 int *i1 = (int *)invalp; 10606 conn_t *connp = Q_TO_CONN(q); 10607 int error = 0; 10608 boolean_t checkonly; 10609 ire_t *ire; 10610 boolean_t found; 10611 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10612 10613 switch (optset_context) { 10614 10615 case SETFN_OPTCOM_CHECKONLY: 10616 checkonly = B_TRUE; 10617 /* 10618 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10619 * inlen != 0 implies value supplied and 10620 * we have to "pretend" to set it. 10621 * inlen == 0 implies that there is no 10622 * value part in T_CHECK request and just validation 10623 * done elsewhere should be enough, we just return here. 10624 */ 10625 if (inlen == 0) { 10626 *outlenp = 0; 10627 return (0); 10628 } 10629 break; 10630 case SETFN_OPTCOM_NEGOTIATE: 10631 case SETFN_UD_NEGOTIATE: 10632 case SETFN_CONN_NEGOTIATE: 10633 checkonly = B_FALSE; 10634 break; 10635 default: 10636 /* 10637 * We should never get here 10638 */ 10639 *outlenp = 0; 10640 return (EINVAL); 10641 } 10642 10643 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10644 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10645 10646 /* 10647 * For fixed length options, no sanity check 10648 * of passed in length is done. It is assumed *_optcom_req() 10649 * routines do the right thing. 10650 */ 10651 10652 switch (level) { 10653 case SOL_SOCKET: 10654 /* 10655 * conn_lock protects the bitfields, and is used to 10656 * set the fields atomically. 10657 */ 10658 switch (name) { 10659 case SO_BROADCAST: 10660 if (!checkonly) { 10661 /* TODO: use value someplace? */ 10662 mutex_enter(&connp->conn_lock); 10663 connp->conn_broadcast = *i1 ? 1 : 0; 10664 mutex_exit(&connp->conn_lock); 10665 } 10666 break; /* goto sizeof (int) option return */ 10667 case SO_USELOOPBACK: 10668 if (!checkonly) { 10669 /* TODO: use value someplace? */ 10670 mutex_enter(&connp->conn_lock); 10671 connp->conn_loopback = *i1 ? 1 : 0; 10672 mutex_exit(&connp->conn_lock); 10673 } 10674 break; /* goto sizeof (int) option return */ 10675 case SO_DONTROUTE: 10676 if (!checkonly) { 10677 mutex_enter(&connp->conn_lock); 10678 connp->conn_dontroute = *i1 ? 1 : 0; 10679 mutex_exit(&connp->conn_lock); 10680 } 10681 break; /* goto sizeof (int) option return */ 10682 case SO_REUSEADDR: 10683 if (!checkonly) { 10684 mutex_enter(&connp->conn_lock); 10685 connp->conn_reuseaddr = *i1 ? 1 : 0; 10686 mutex_exit(&connp->conn_lock); 10687 } 10688 break; /* goto sizeof (int) option return */ 10689 case SO_PROTOTYPE: 10690 if (!checkonly) { 10691 mutex_enter(&connp->conn_lock); 10692 connp->conn_proto = *i1; 10693 mutex_exit(&connp->conn_lock); 10694 } 10695 break; /* goto sizeof (int) option return */ 10696 case SO_ALLZONES: 10697 if (!checkonly) { 10698 mutex_enter(&connp->conn_lock); 10699 if (IPCL_IS_BOUND(connp)) { 10700 mutex_exit(&connp->conn_lock); 10701 return (EINVAL); 10702 } 10703 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10704 mutex_exit(&connp->conn_lock); 10705 } 10706 break; /* goto sizeof (int) option return */ 10707 case SO_ANON_MLP: 10708 if (!checkonly) { 10709 mutex_enter(&connp->conn_lock); 10710 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10711 mutex_exit(&connp->conn_lock); 10712 } 10713 break; /* goto sizeof (int) option return */ 10714 case SO_MAC_EXEMPT: 10715 if (secpolicy_net_mac_aware(cr) != 0 || 10716 IPCL_IS_BOUND(connp)) 10717 return (EACCES); 10718 if (!checkonly) { 10719 mutex_enter(&connp->conn_lock); 10720 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10721 mutex_exit(&connp->conn_lock); 10722 } 10723 break; /* goto sizeof (int) option return */ 10724 default: 10725 /* 10726 * "soft" error (negative) 10727 * option not handled at this level 10728 * Note: Do not modify *outlenp 10729 */ 10730 return (-EINVAL); 10731 } 10732 break; 10733 case IPPROTO_IP: 10734 switch (name) { 10735 case IP_NEXTHOP: 10736 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10737 return (EPERM); 10738 /* FALLTHRU */ 10739 case IP_MULTICAST_IF: { 10740 ipaddr_t addr = *i1; 10741 10742 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10743 first_mp); 10744 if (error != 0) 10745 return (error); 10746 break; /* goto sizeof (int) option return */ 10747 } 10748 10749 case IP_MULTICAST_TTL: 10750 /* Recorded in transport above IP */ 10751 *outvalp = *invalp; 10752 *outlenp = sizeof (uchar_t); 10753 return (0); 10754 case IP_MULTICAST_LOOP: 10755 if (!checkonly) { 10756 mutex_enter(&connp->conn_lock); 10757 connp->conn_multicast_loop = *invalp ? 1 : 0; 10758 mutex_exit(&connp->conn_lock); 10759 } 10760 *outvalp = *invalp; 10761 *outlenp = sizeof (uchar_t); 10762 return (0); 10763 case IP_ADD_MEMBERSHIP: 10764 case MCAST_JOIN_GROUP: 10765 case IP_DROP_MEMBERSHIP: 10766 case MCAST_LEAVE_GROUP: { 10767 struct ip_mreq *mreqp; 10768 struct group_req *greqp; 10769 ire_t *ire; 10770 boolean_t done = B_FALSE; 10771 ipaddr_t group, ifaddr; 10772 struct sockaddr_in *sin; 10773 uint32_t *ifindexp; 10774 boolean_t mcast_opt = B_TRUE; 10775 mcast_record_t fmode; 10776 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10777 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10778 10779 switch (name) { 10780 case IP_ADD_MEMBERSHIP: 10781 mcast_opt = B_FALSE; 10782 /* FALLTHRU */ 10783 case MCAST_JOIN_GROUP: 10784 fmode = MODE_IS_EXCLUDE; 10785 optfn = ip_opt_add_group; 10786 break; 10787 10788 case IP_DROP_MEMBERSHIP: 10789 mcast_opt = B_FALSE; 10790 /* FALLTHRU */ 10791 case MCAST_LEAVE_GROUP: 10792 fmode = MODE_IS_INCLUDE; 10793 optfn = ip_opt_delete_group; 10794 break; 10795 } 10796 10797 if (mcast_opt) { 10798 greqp = (struct group_req *)i1; 10799 sin = (struct sockaddr_in *)&greqp->gr_group; 10800 if (sin->sin_family != AF_INET) { 10801 *outlenp = 0; 10802 return (ENOPROTOOPT); 10803 } 10804 group = (ipaddr_t)sin->sin_addr.s_addr; 10805 ifaddr = INADDR_ANY; 10806 ifindexp = &greqp->gr_interface; 10807 } else { 10808 mreqp = (struct ip_mreq *)i1; 10809 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10810 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10811 ifindexp = NULL; 10812 } 10813 10814 /* 10815 * In the multirouting case, we need to replicate 10816 * the request on all interfaces that will take part 10817 * in replication. We do so because multirouting is 10818 * reflective, thus we will probably receive multi- 10819 * casts on those interfaces. 10820 * The ip_multirt_apply_membership() succeeds if the 10821 * operation succeeds on at least one interface. 10822 */ 10823 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10824 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10825 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10826 if (ire != NULL) { 10827 if (ire->ire_flags & RTF_MULTIRT) { 10828 error = ip_multirt_apply_membership( 10829 optfn, ire, connp, checkonly, group, 10830 fmode, INADDR_ANY, first_mp); 10831 done = B_TRUE; 10832 } 10833 ire_refrele(ire); 10834 } 10835 if (!done) { 10836 error = optfn(connp, checkonly, group, ifaddr, 10837 ifindexp, fmode, INADDR_ANY, first_mp); 10838 } 10839 if (error) { 10840 /* 10841 * EINPROGRESS is a soft error, needs retry 10842 * so don't make *outlenp zero. 10843 */ 10844 if (error != EINPROGRESS) 10845 *outlenp = 0; 10846 return (error); 10847 } 10848 /* OK return - copy input buffer into output buffer */ 10849 if (invalp != outvalp) { 10850 /* don't trust bcopy for identical src/dst */ 10851 bcopy(invalp, outvalp, inlen); 10852 } 10853 *outlenp = inlen; 10854 return (0); 10855 } 10856 case IP_BLOCK_SOURCE: 10857 case IP_UNBLOCK_SOURCE: 10858 case IP_ADD_SOURCE_MEMBERSHIP: 10859 case IP_DROP_SOURCE_MEMBERSHIP: 10860 case MCAST_BLOCK_SOURCE: 10861 case MCAST_UNBLOCK_SOURCE: 10862 case MCAST_JOIN_SOURCE_GROUP: 10863 case MCAST_LEAVE_SOURCE_GROUP: { 10864 struct ip_mreq_source *imreqp; 10865 struct group_source_req *gsreqp; 10866 in_addr_t grp, src, ifaddr = INADDR_ANY; 10867 uint32_t ifindex = 0; 10868 mcast_record_t fmode; 10869 struct sockaddr_in *sin; 10870 ire_t *ire; 10871 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10872 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10873 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10874 10875 switch (name) { 10876 case IP_BLOCK_SOURCE: 10877 mcast_opt = B_FALSE; 10878 /* FALLTHRU */ 10879 case MCAST_BLOCK_SOURCE: 10880 fmode = MODE_IS_EXCLUDE; 10881 optfn = ip_opt_add_group; 10882 break; 10883 10884 case IP_UNBLOCK_SOURCE: 10885 mcast_opt = B_FALSE; 10886 /* FALLTHRU */ 10887 case MCAST_UNBLOCK_SOURCE: 10888 fmode = MODE_IS_EXCLUDE; 10889 optfn = ip_opt_delete_group; 10890 break; 10891 10892 case IP_ADD_SOURCE_MEMBERSHIP: 10893 mcast_opt = B_FALSE; 10894 /* FALLTHRU */ 10895 case MCAST_JOIN_SOURCE_GROUP: 10896 fmode = MODE_IS_INCLUDE; 10897 optfn = ip_opt_add_group; 10898 break; 10899 10900 case IP_DROP_SOURCE_MEMBERSHIP: 10901 mcast_opt = B_FALSE; 10902 /* FALLTHRU */ 10903 case MCAST_LEAVE_SOURCE_GROUP: 10904 fmode = MODE_IS_INCLUDE; 10905 optfn = ip_opt_delete_group; 10906 break; 10907 } 10908 10909 if (mcast_opt) { 10910 gsreqp = (struct group_source_req *)i1; 10911 if (gsreqp->gsr_group.ss_family != AF_INET) { 10912 *outlenp = 0; 10913 return (ENOPROTOOPT); 10914 } 10915 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10916 grp = (ipaddr_t)sin->sin_addr.s_addr; 10917 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10918 src = (ipaddr_t)sin->sin_addr.s_addr; 10919 ifindex = gsreqp->gsr_interface; 10920 } else { 10921 imreqp = (struct ip_mreq_source *)i1; 10922 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10923 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10924 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10925 } 10926 10927 /* 10928 * In the multirouting case, we need to replicate 10929 * the request as noted in the mcast cases above. 10930 */ 10931 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10932 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10933 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10934 if (ire != NULL) { 10935 if (ire->ire_flags & RTF_MULTIRT) { 10936 error = ip_multirt_apply_membership( 10937 optfn, ire, connp, checkonly, grp, 10938 fmode, src, first_mp); 10939 done = B_TRUE; 10940 } 10941 ire_refrele(ire); 10942 } 10943 if (!done) { 10944 error = optfn(connp, checkonly, grp, ifaddr, 10945 &ifindex, fmode, src, first_mp); 10946 } 10947 if (error != 0) { 10948 /* 10949 * EINPROGRESS is a soft error, needs retry 10950 * so don't make *outlenp zero. 10951 */ 10952 if (error != EINPROGRESS) 10953 *outlenp = 0; 10954 return (error); 10955 } 10956 /* OK return - copy input buffer into output buffer */ 10957 if (invalp != outvalp) { 10958 bcopy(invalp, outvalp, inlen); 10959 } 10960 *outlenp = inlen; 10961 return (0); 10962 } 10963 case IP_SEC_OPT: 10964 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10965 if (error != 0) { 10966 *outlenp = 0; 10967 return (error); 10968 } 10969 break; 10970 case IP_HDRINCL: 10971 case IP_OPTIONS: 10972 case T_IP_OPTIONS: 10973 case IP_TOS: 10974 case T_IP_TOS: 10975 case IP_TTL: 10976 case IP_RECVDSTADDR: 10977 case IP_RECVOPTS: 10978 /* OK return - copy input buffer into output buffer */ 10979 if (invalp != outvalp) { 10980 /* don't trust bcopy for identical src/dst */ 10981 bcopy(invalp, outvalp, inlen); 10982 } 10983 *outlenp = inlen; 10984 return (0); 10985 case IP_RECVIF: 10986 /* Retrieve the inbound interface index */ 10987 if (!checkonly) { 10988 mutex_enter(&connp->conn_lock); 10989 connp->conn_recvif = *i1 ? 1 : 0; 10990 mutex_exit(&connp->conn_lock); 10991 } 10992 break; /* goto sizeof (int) option return */ 10993 case IP_RECVPKTINFO: 10994 if (!checkonly) { 10995 mutex_enter(&connp->conn_lock); 10996 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10997 mutex_exit(&connp->conn_lock); 10998 } 10999 break; /* goto sizeof (int) option return */ 11000 case IP_RECVSLLA: 11001 /* Retrieve the source link layer address */ 11002 if (!checkonly) { 11003 mutex_enter(&connp->conn_lock); 11004 connp->conn_recvslla = *i1 ? 1 : 0; 11005 mutex_exit(&connp->conn_lock); 11006 } 11007 break; /* goto sizeof (int) option return */ 11008 case MRT_INIT: 11009 case MRT_DONE: 11010 case MRT_ADD_VIF: 11011 case MRT_DEL_VIF: 11012 case MRT_ADD_MFC: 11013 case MRT_DEL_MFC: 11014 case MRT_ASSERT: 11015 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11016 *outlenp = 0; 11017 return (error); 11018 } 11019 error = ip_mrouter_set((int)name, q, checkonly, 11020 (uchar_t *)invalp, inlen, first_mp); 11021 if (error) { 11022 *outlenp = 0; 11023 return (error); 11024 } 11025 /* OK return - copy input buffer into output buffer */ 11026 if (invalp != outvalp) { 11027 /* don't trust bcopy for identical src/dst */ 11028 bcopy(invalp, outvalp, inlen); 11029 } 11030 *outlenp = inlen; 11031 return (0); 11032 case IP_BOUND_IF: 11033 case IP_DHCPINIT_IF: 11034 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11035 level, name, first_mp); 11036 if (error != 0) 11037 return (error); 11038 break; /* goto sizeof (int) option return */ 11039 11040 case IP_UNSPEC_SRC: 11041 /* Allow sending with a zero source address */ 11042 if (!checkonly) { 11043 mutex_enter(&connp->conn_lock); 11044 connp->conn_unspec_src = *i1 ? 1 : 0; 11045 mutex_exit(&connp->conn_lock); 11046 } 11047 break; /* goto sizeof (int) option return */ 11048 default: 11049 /* 11050 * "soft" error (negative) 11051 * option not handled at this level 11052 * Note: Do not modify *outlenp 11053 */ 11054 return (-EINVAL); 11055 } 11056 break; 11057 case IPPROTO_IPV6: 11058 switch (name) { 11059 case IPV6_BOUND_IF: 11060 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11061 level, name, first_mp); 11062 if (error != 0) 11063 return (error); 11064 break; /* goto sizeof (int) option return */ 11065 11066 case IPV6_MULTICAST_IF: 11067 /* 11068 * The only possible errors are EINPROGRESS and 11069 * EINVAL. EINPROGRESS will be restarted and is not 11070 * a hard error. We call this option on both V4 and V6 11071 * If both return EINVAL, then this call returns 11072 * EINVAL. If at least one of them succeeds we 11073 * return success. 11074 */ 11075 found = B_FALSE; 11076 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11077 level, name, first_mp); 11078 if (error == EINPROGRESS) 11079 return (error); 11080 if (error == 0) 11081 found = B_TRUE; 11082 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11083 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11084 if (error == 0) 11085 found = B_TRUE; 11086 if (!found) 11087 return (error); 11088 break; /* goto sizeof (int) option return */ 11089 11090 case IPV6_MULTICAST_HOPS: 11091 /* Recorded in transport above IP */ 11092 break; /* goto sizeof (int) option return */ 11093 case IPV6_MULTICAST_LOOP: 11094 if (!checkonly) { 11095 mutex_enter(&connp->conn_lock); 11096 connp->conn_multicast_loop = *i1; 11097 mutex_exit(&connp->conn_lock); 11098 } 11099 break; /* goto sizeof (int) option return */ 11100 case IPV6_JOIN_GROUP: 11101 case MCAST_JOIN_GROUP: 11102 case IPV6_LEAVE_GROUP: 11103 case MCAST_LEAVE_GROUP: { 11104 struct ipv6_mreq *ip_mreqp; 11105 struct group_req *greqp; 11106 ire_t *ire; 11107 boolean_t done = B_FALSE; 11108 in6_addr_t groupv6; 11109 uint32_t ifindex; 11110 boolean_t mcast_opt = B_TRUE; 11111 mcast_record_t fmode; 11112 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11113 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11114 11115 switch (name) { 11116 case IPV6_JOIN_GROUP: 11117 mcast_opt = B_FALSE; 11118 /* FALLTHRU */ 11119 case MCAST_JOIN_GROUP: 11120 fmode = MODE_IS_EXCLUDE; 11121 optfn = ip_opt_add_group_v6; 11122 break; 11123 11124 case IPV6_LEAVE_GROUP: 11125 mcast_opt = B_FALSE; 11126 /* FALLTHRU */ 11127 case MCAST_LEAVE_GROUP: 11128 fmode = MODE_IS_INCLUDE; 11129 optfn = ip_opt_delete_group_v6; 11130 break; 11131 } 11132 11133 if (mcast_opt) { 11134 struct sockaddr_in *sin; 11135 struct sockaddr_in6 *sin6; 11136 greqp = (struct group_req *)i1; 11137 if (greqp->gr_group.ss_family == AF_INET) { 11138 sin = (struct sockaddr_in *) 11139 &(greqp->gr_group); 11140 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11141 &groupv6); 11142 } else { 11143 sin6 = (struct sockaddr_in6 *) 11144 &(greqp->gr_group); 11145 groupv6 = sin6->sin6_addr; 11146 } 11147 ifindex = greqp->gr_interface; 11148 } else { 11149 ip_mreqp = (struct ipv6_mreq *)i1; 11150 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11151 ifindex = ip_mreqp->ipv6mr_interface; 11152 } 11153 /* 11154 * In the multirouting case, we need to replicate 11155 * the request on all interfaces that will take part 11156 * in replication. We do so because multirouting is 11157 * reflective, thus we will probably receive multi- 11158 * casts on those interfaces. 11159 * The ip_multirt_apply_membership_v6() succeeds if 11160 * the operation succeeds on at least one interface. 11161 */ 11162 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11163 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11164 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11165 if (ire != NULL) { 11166 if (ire->ire_flags & RTF_MULTIRT) { 11167 error = ip_multirt_apply_membership_v6( 11168 optfn, ire, connp, checkonly, 11169 &groupv6, fmode, &ipv6_all_zeros, 11170 first_mp); 11171 done = B_TRUE; 11172 } 11173 ire_refrele(ire); 11174 } 11175 if (!done) { 11176 error = optfn(connp, checkonly, &groupv6, 11177 ifindex, fmode, &ipv6_all_zeros, first_mp); 11178 } 11179 if (error) { 11180 /* 11181 * EINPROGRESS is a soft error, needs retry 11182 * so don't make *outlenp zero. 11183 */ 11184 if (error != EINPROGRESS) 11185 *outlenp = 0; 11186 return (error); 11187 } 11188 /* OK return - copy input buffer into output buffer */ 11189 if (invalp != outvalp) { 11190 /* don't trust bcopy for identical src/dst */ 11191 bcopy(invalp, outvalp, inlen); 11192 } 11193 *outlenp = inlen; 11194 return (0); 11195 } 11196 case MCAST_BLOCK_SOURCE: 11197 case MCAST_UNBLOCK_SOURCE: 11198 case MCAST_JOIN_SOURCE_GROUP: 11199 case MCAST_LEAVE_SOURCE_GROUP: { 11200 struct group_source_req *gsreqp; 11201 in6_addr_t v6grp, v6src; 11202 uint32_t ifindex; 11203 mcast_record_t fmode; 11204 ire_t *ire; 11205 boolean_t done = B_FALSE; 11206 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11207 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11208 11209 switch (name) { 11210 case MCAST_BLOCK_SOURCE: 11211 fmode = MODE_IS_EXCLUDE; 11212 optfn = ip_opt_add_group_v6; 11213 break; 11214 case MCAST_UNBLOCK_SOURCE: 11215 fmode = MODE_IS_EXCLUDE; 11216 optfn = ip_opt_delete_group_v6; 11217 break; 11218 case MCAST_JOIN_SOURCE_GROUP: 11219 fmode = MODE_IS_INCLUDE; 11220 optfn = ip_opt_add_group_v6; 11221 break; 11222 case MCAST_LEAVE_SOURCE_GROUP: 11223 fmode = MODE_IS_INCLUDE; 11224 optfn = ip_opt_delete_group_v6; 11225 break; 11226 } 11227 11228 gsreqp = (struct group_source_req *)i1; 11229 ifindex = gsreqp->gsr_interface; 11230 if (gsreqp->gsr_group.ss_family == AF_INET) { 11231 struct sockaddr_in *s; 11232 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11233 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11234 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11235 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11236 } else { 11237 struct sockaddr_in6 *s6; 11238 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11239 v6grp = s6->sin6_addr; 11240 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11241 v6src = s6->sin6_addr; 11242 } 11243 11244 /* 11245 * In the multirouting case, we need to replicate 11246 * the request as noted in the mcast cases above. 11247 */ 11248 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11249 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11250 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11251 if (ire != NULL) { 11252 if (ire->ire_flags & RTF_MULTIRT) { 11253 error = ip_multirt_apply_membership_v6( 11254 optfn, ire, connp, checkonly, 11255 &v6grp, fmode, &v6src, first_mp); 11256 done = B_TRUE; 11257 } 11258 ire_refrele(ire); 11259 } 11260 if (!done) { 11261 error = optfn(connp, checkonly, &v6grp, 11262 ifindex, fmode, &v6src, first_mp); 11263 } 11264 if (error != 0) { 11265 /* 11266 * EINPROGRESS is a soft error, needs retry 11267 * so don't make *outlenp zero. 11268 */ 11269 if (error != EINPROGRESS) 11270 *outlenp = 0; 11271 return (error); 11272 } 11273 /* OK return - copy input buffer into output buffer */ 11274 if (invalp != outvalp) { 11275 bcopy(invalp, outvalp, inlen); 11276 } 11277 *outlenp = inlen; 11278 return (0); 11279 } 11280 case IPV6_UNICAST_HOPS: 11281 /* Recorded in transport above IP */ 11282 break; /* goto sizeof (int) option return */ 11283 case IPV6_UNSPEC_SRC: 11284 /* Allow sending with a zero source address */ 11285 if (!checkonly) { 11286 mutex_enter(&connp->conn_lock); 11287 connp->conn_unspec_src = *i1 ? 1 : 0; 11288 mutex_exit(&connp->conn_lock); 11289 } 11290 break; /* goto sizeof (int) option return */ 11291 case IPV6_RECVPKTINFO: 11292 if (!checkonly) { 11293 mutex_enter(&connp->conn_lock); 11294 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11295 mutex_exit(&connp->conn_lock); 11296 } 11297 break; /* goto sizeof (int) option return */ 11298 case IPV6_RECVTCLASS: 11299 if (!checkonly) { 11300 if (*i1 < 0 || *i1 > 1) { 11301 return (EINVAL); 11302 } 11303 mutex_enter(&connp->conn_lock); 11304 connp->conn_ipv6_recvtclass = *i1; 11305 mutex_exit(&connp->conn_lock); 11306 } 11307 break; 11308 case IPV6_RECVPATHMTU: 11309 if (!checkonly) { 11310 if (*i1 < 0 || *i1 > 1) { 11311 return (EINVAL); 11312 } 11313 mutex_enter(&connp->conn_lock); 11314 connp->conn_ipv6_recvpathmtu = *i1; 11315 mutex_exit(&connp->conn_lock); 11316 } 11317 break; 11318 case IPV6_RECVHOPLIMIT: 11319 if (!checkonly) { 11320 mutex_enter(&connp->conn_lock); 11321 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11322 mutex_exit(&connp->conn_lock); 11323 } 11324 break; /* goto sizeof (int) option return */ 11325 case IPV6_RECVHOPOPTS: 11326 if (!checkonly) { 11327 mutex_enter(&connp->conn_lock); 11328 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11329 mutex_exit(&connp->conn_lock); 11330 } 11331 break; /* goto sizeof (int) option return */ 11332 case IPV6_RECVDSTOPTS: 11333 if (!checkonly) { 11334 mutex_enter(&connp->conn_lock); 11335 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11336 mutex_exit(&connp->conn_lock); 11337 } 11338 break; /* goto sizeof (int) option return */ 11339 case IPV6_RECVRTHDR: 11340 if (!checkonly) { 11341 mutex_enter(&connp->conn_lock); 11342 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11343 mutex_exit(&connp->conn_lock); 11344 } 11345 break; /* goto sizeof (int) option return */ 11346 case IPV6_RECVRTHDRDSTOPTS: 11347 if (!checkonly) { 11348 mutex_enter(&connp->conn_lock); 11349 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11350 mutex_exit(&connp->conn_lock); 11351 } 11352 break; /* goto sizeof (int) option return */ 11353 case IPV6_PKTINFO: 11354 if (inlen == 0) 11355 return (-EINVAL); /* clearing option */ 11356 error = ip6_set_pktinfo(cr, connp, 11357 (struct in6_pktinfo *)invalp); 11358 if (error != 0) 11359 *outlenp = 0; 11360 else 11361 *outlenp = inlen; 11362 return (error); 11363 case IPV6_NEXTHOP: { 11364 struct sockaddr_in6 *sin6; 11365 11366 /* Verify that the nexthop is reachable */ 11367 if (inlen == 0) 11368 return (-EINVAL); /* clearing option */ 11369 11370 sin6 = (struct sockaddr_in6 *)invalp; 11371 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11372 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11373 NULL, MATCH_IRE_DEFAULT, ipst); 11374 11375 if (ire == NULL) { 11376 *outlenp = 0; 11377 return (EHOSTUNREACH); 11378 } 11379 ire_refrele(ire); 11380 return (-EINVAL); 11381 } 11382 case IPV6_SEC_OPT: 11383 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11384 if (error != 0) { 11385 *outlenp = 0; 11386 return (error); 11387 } 11388 break; 11389 case IPV6_SRC_PREFERENCES: { 11390 /* 11391 * This is implemented strictly in the ip module 11392 * (here and in tcp_opt_*() to accomodate tcp 11393 * sockets). Modules above ip pass this option 11394 * down here since ip is the only one that needs to 11395 * be aware of source address preferences. 11396 * 11397 * This socket option only affects connected 11398 * sockets that haven't already bound to a specific 11399 * IPv6 address. In other words, sockets that 11400 * don't call bind() with an address other than the 11401 * unspecified address and that call connect(). 11402 * ip_bind_connected_v6() passes these preferences 11403 * to the ipif_select_source_v6() function. 11404 */ 11405 if (inlen != sizeof (uint32_t)) 11406 return (EINVAL); 11407 error = ip6_set_src_preferences(connp, 11408 *(uint32_t *)invalp); 11409 if (error != 0) { 11410 *outlenp = 0; 11411 return (error); 11412 } else { 11413 *outlenp = sizeof (uint32_t); 11414 } 11415 break; 11416 } 11417 case IPV6_V6ONLY: 11418 if (*i1 < 0 || *i1 > 1) { 11419 return (EINVAL); 11420 } 11421 mutex_enter(&connp->conn_lock); 11422 connp->conn_ipv6_v6only = *i1; 11423 mutex_exit(&connp->conn_lock); 11424 break; 11425 default: 11426 return (-EINVAL); 11427 } 11428 break; 11429 default: 11430 /* 11431 * "soft" error (negative) 11432 * option not handled at this level 11433 * Note: Do not modify *outlenp 11434 */ 11435 return (-EINVAL); 11436 } 11437 /* 11438 * Common case of return from an option that is sizeof (int) 11439 */ 11440 *(int *)outvalp = *i1; 11441 *outlenp = sizeof (int); 11442 return (0); 11443 } 11444 11445 /* 11446 * This routine gets default values of certain options whose default 11447 * values are maintained by protocol specific code 11448 */ 11449 /* ARGSUSED */ 11450 int 11451 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11452 { 11453 int *i1 = (int *)ptr; 11454 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11455 11456 switch (level) { 11457 case IPPROTO_IP: 11458 switch (name) { 11459 case IP_MULTICAST_TTL: 11460 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11461 return (sizeof (uchar_t)); 11462 case IP_MULTICAST_LOOP: 11463 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11464 return (sizeof (uchar_t)); 11465 default: 11466 return (-1); 11467 } 11468 case IPPROTO_IPV6: 11469 switch (name) { 11470 case IPV6_UNICAST_HOPS: 11471 *i1 = ipst->ips_ipv6_def_hops; 11472 return (sizeof (int)); 11473 case IPV6_MULTICAST_HOPS: 11474 *i1 = IP_DEFAULT_MULTICAST_TTL; 11475 return (sizeof (int)); 11476 case IPV6_MULTICAST_LOOP: 11477 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11478 return (sizeof (int)); 11479 case IPV6_V6ONLY: 11480 *i1 = 1; 11481 return (sizeof (int)); 11482 default: 11483 return (-1); 11484 } 11485 default: 11486 return (-1); 11487 } 11488 /* NOTREACHED */ 11489 } 11490 11491 /* 11492 * Given a destination address and a pointer to where to put the information 11493 * this routine fills in the mtuinfo. 11494 */ 11495 int 11496 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11497 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11498 { 11499 ire_t *ire; 11500 ip_stack_t *ipst = ns->netstack_ip; 11501 11502 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11503 return (-1); 11504 11505 bzero(mtuinfo, sizeof (*mtuinfo)); 11506 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11507 mtuinfo->ip6m_addr.sin6_port = port; 11508 mtuinfo->ip6m_addr.sin6_addr = *in6; 11509 11510 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11511 if (ire != NULL) { 11512 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11513 ire_refrele(ire); 11514 } else { 11515 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11516 } 11517 return (sizeof (struct ip6_mtuinfo)); 11518 } 11519 11520 /* 11521 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11522 * checking of cred and that ip_g_mrouter is set should be done and 11523 * isn't. This doesn't matter as the error checking is done properly for the 11524 * other MRT options coming in through ip_opt_set. 11525 */ 11526 int 11527 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11528 { 11529 conn_t *connp = Q_TO_CONN(q); 11530 ipsec_req_t *req = (ipsec_req_t *)ptr; 11531 11532 switch (level) { 11533 case IPPROTO_IP: 11534 switch (name) { 11535 case MRT_VERSION: 11536 case MRT_ASSERT: 11537 (void) ip_mrouter_get(name, q, ptr); 11538 return (sizeof (int)); 11539 case IP_SEC_OPT: 11540 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11541 case IP_NEXTHOP: 11542 if (connp->conn_nexthop_set) { 11543 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11544 return (sizeof (ipaddr_t)); 11545 } else 11546 return (0); 11547 case IP_RECVPKTINFO: 11548 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11549 return (sizeof (int)); 11550 default: 11551 break; 11552 } 11553 break; 11554 case IPPROTO_IPV6: 11555 switch (name) { 11556 case IPV6_SEC_OPT: 11557 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11558 case IPV6_SRC_PREFERENCES: { 11559 return (ip6_get_src_preferences(connp, 11560 (uint32_t *)ptr)); 11561 } 11562 case IPV6_V6ONLY: 11563 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11564 return (sizeof (int)); 11565 case IPV6_PATHMTU: 11566 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11567 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11568 default: 11569 break; 11570 } 11571 break; 11572 default: 11573 break; 11574 } 11575 return (-1); 11576 } 11577 /* Named Dispatch routine to get a current value out of our parameter table. */ 11578 /* ARGSUSED */ 11579 static int 11580 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11581 { 11582 ipparam_t *ippa = (ipparam_t *)cp; 11583 11584 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11585 return (0); 11586 } 11587 11588 /* ARGSUSED */ 11589 static int 11590 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11591 { 11592 11593 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11594 return (0); 11595 } 11596 11597 /* 11598 * Set ip{,6}_forwarding values. This means walking through all of the 11599 * ill's and toggling their forwarding values. 11600 */ 11601 /* ARGSUSED */ 11602 static int 11603 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11604 { 11605 long new_value; 11606 int *forwarding_value = (int *)cp; 11607 ill_t *ill; 11608 boolean_t isv6; 11609 ill_walk_context_t ctx; 11610 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11611 11612 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11613 11614 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11615 new_value < 0 || new_value > 1) { 11616 return (EINVAL); 11617 } 11618 11619 *forwarding_value = new_value; 11620 11621 /* 11622 * Regardless of the current value of ip_forwarding, set all per-ill 11623 * values of ip_forwarding to the value being set. 11624 * 11625 * Bring all the ill's up to date with the new global value. 11626 */ 11627 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11628 11629 if (isv6) 11630 ill = ILL_START_WALK_V6(&ctx, ipst); 11631 else 11632 ill = ILL_START_WALK_V4(&ctx, ipst); 11633 11634 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11635 (void) ill_forward_set(ill, new_value != 0); 11636 11637 rw_exit(&ipst->ips_ill_g_lock); 11638 return (0); 11639 } 11640 11641 /* 11642 * Walk through the param array specified registering each element with the 11643 * Named Dispatch handler. This is called only during init. So it is ok 11644 * not to acquire any locks 11645 */ 11646 static boolean_t 11647 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11648 ipndp_t *ipnd, size_t ipnd_cnt) 11649 { 11650 for (; ippa_cnt-- > 0; ippa++) { 11651 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11652 if (!nd_load(ndp, ippa->ip_param_name, 11653 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11654 nd_free(ndp); 11655 return (B_FALSE); 11656 } 11657 } 11658 } 11659 11660 for (; ipnd_cnt-- > 0; ipnd++) { 11661 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11662 if (!nd_load(ndp, ipnd->ip_ndp_name, 11663 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11664 ipnd->ip_ndp_data)) { 11665 nd_free(ndp); 11666 return (B_FALSE); 11667 } 11668 } 11669 } 11670 11671 return (B_TRUE); 11672 } 11673 11674 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11675 /* ARGSUSED */ 11676 static int 11677 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11678 { 11679 long new_value; 11680 ipparam_t *ippa = (ipparam_t *)cp; 11681 11682 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11683 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11684 return (EINVAL); 11685 } 11686 ippa->ip_param_value = new_value; 11687 return (0); 11688 } 11689 11690 /* 11691 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11692 * When an ipf is passed here for the first time, if 11693 * we already have in-order fragments on the queue, we convert from the fast- 11694 * path reassembly scheme to the hard-case scheme. From then on, additional 11695 * fragments are reassembled here. We keep track of the start and end offsets 11696 * of each piece, and the number of holes in the chain. When the hole count 11697 * goes to zero, we are done! 11698 * 11699 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11700 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11701 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11702 * after the call to ip_reassemble(). 11703 */ 11704 int 11705 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11706 size_t msg_len) 11707 { 11708 uint_t end; 11709 mblk_t *next_mp; 11710 mblk_t *mp1; 11711 uint_t offset; 11712 boolean_t incr_dups = B_TRUE; 11713 boolean_t offset_zero_seen = B_FALSE; 11714 boolean_t pkt_boundary_checked = B_FALSE; 11715 11716 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11717 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11718 11719 /* Add in byte count */ 11720 ipf->ipf_count += msg_len; 11721 if (ipf->ipf_end) { 11722 /* 11723 * We were part way through in-order reassembly, but now there 11724 * is a hole. We walk through messages already queued, and 11725 * mark them for hard case reassembly. We know that up till 11726 * now they were in order starting from offset zero. 11727 */ 11728 offset = 0; 11729 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11730 IP_REASS_SET_START(mp1, offset); 11731 if (offset == 0) { 11732 ASSERT(ipf->ipf_nf_hdr_len != 0); 11733 offset = -ipf->ipf_nf_hdr_len; 11734 } 11735 offset += mp1->b_wptr - mp1->b_rptr; 11736 IP_REASS_SET_END(mp1, offset); 11737 } 11738 /* One hole at the end. */ 11739 ipf->ipf_hole_cnt = 1; 11740 /* Brand it as a hard case, forever. */ 11741 ipf->ipf_end = 0; 11742 } 11743 /* Walk through all the new pieces. */ 11744 do { 11745 end = start + (mp->b_wptr - mp->b_rptr); 11746 /* 11747 * If start is 0, decrease 'end' only for the first mblk of 11748 * the fragment. Otherwise 'end' can get wrong value in the 11749 * second pass of the loop if first mblk is exactly the 11750 * size of ipf_nf_hdr_len. 11751 */ 11752 if (start == 0 && !offset_zero_seen) { 11753 /* First segment */ 11754 ASSERT(ipf->ipf_nf_hdr_len != 0); 11755 end -= ipf->ipf_nf_hdr_len; 11756 offset_zero_seen = B_TRUE; 11757 } 11758 next_mp = mp->b_cont; 11759 /* 11760 * We are checking to see if there is any interesing data 11761 * to process. If there isn't and the mblk isn't the 11762 * one which carries the unfragmentable header then we 11763 * drop it. It's possible to have just the unfragmentable 11764 * header come through without any data. That needs to be 11765 * saved. 11766 * 11767 * If the assert at the top of this function holds then the 11768 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11769 * is infrequently traveled enough that the test is left in 11770 * to protect against future code changes which break that 11771 * invariant. 11772 */ 11773 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11774 /* Empty. Blast it. */ 11775 IP_REASS_SET_START(mp, 0); 11776 IP_REASS_SET_END(mp, 0); 11777 /* 11778 * If the ipf points to the mblk we are about to free, 11779 * update ipf to point to the next mblk (or NULL 11780 * if none). 11781 */ 11782 if (ipf->ipf_mp->b_cont == mp) 11783 ipf->ipf_mp->b_cont = next_mp; 11784 freeb(mp); 11785 continue; 11786 } 11787 mp->b_cont = NULL; 11788 IP_REASS_SET_START(mp, start); 11789 IP_REASS_SET_END(mp, end); 11790 if (!ipf->ipf_tail_mp) { 11791 ipf->ipf_tail_mp = mp; 11792 ipf->ipf_mp->b_cont = mp; 11793 if (start == 0 || !more) { 11794 ipf->ipf_hole_cnt = 1; 11795 /* 11796 * if the first fragment comes in more than one 11797 * mblk, this loop will be executed for each 11798 * mblk. Need to adjust hole count so exiting 11799 * this routine will leave hole count at 1. 11800 */ 11801 if (next_mp) 11802 ipf->ipf_hole_cnt++; 11803 } else 11804 ipf->ipf_hole_cnt = 2; 11805 continue; 11806 } else if (ipf->ipf_last_frag_seen && !more && 11807 !pkt_boundary_checked) { 11808 /* 11809 * We check datagram boundary only if this fragment 11810 * claims to be the last fragment and we have seen a 11811 * last fragment in the past too. We do this only 11812 * once for a given fragment. 11813 * 11814 * start cannot be 0 here as fragments with start=0 11815 * and MF=0 gets handled as a complete packet. These 11816 * fragments should not reach here. 11817 */ 11818 11819 if (start + msgdsize(mp) != 11820 IP_REASS_END(ipf->ipf_tail_mp)) { 11821 /* 11822 * We have two fragments both of which claim 11823 * to be the last fragment but gives conflicting 11824 * information about the whole datagram size. 11825 * Something fishy is going on. Drop the 11826 * fragment and free up the reassembly list. 11827 */ 11828 return (IP_REASS_FAILED); 11829 } 11830 11831 /* 11832 * We shouldn't come to this code block again for this 11833 * particular fragment. 11834 */ 11835 pkt_boundary_checked = B_TRUE; 11836 } 11837 11838 /* New stuff at or beyond tail? */ 11839 offset = IP_REASS_END(ipf->ipf_tail_mp); 11840 if (start >= offset) { 11841 if (ipf->ipf_last_frag_seen) { 11842 /* current fragment is beyond last fragment */ 11843 return (IP_REASS_FAILED); 11844 } 11845 /* Link it on end. */ 11846 ipf->ipf_tail_mp->b_cont = mp; 11847 ipf->ipf_tail_mp = mp; 11848 if (more) { 11849 if (start != offset) 11850 ipf->ipf_hole_cnt++; 11851 } else if (start == offset && next_mp == NULL) 11852 ipf->ipf_hole_cnt--; 11853 continue; 11854 } 11855 mp1 = ipf->ipf_mp->b_cont; 11856 offset = IP_REASS_START(mp1); 11857 /* New stuff at the front? */ 11858 if (start < offset) { 11859 if (start == 0) { 11860 if (end >= offset) { 11861 /* Nailed the hole at the begining. */ 11862 ipf->ipf_hole_cnt--; 11863 } 11864 } else if (end < offset) { 11865 /* 11866 * A hole, stuff, and a hole where there used 11867 * to be just a hole. 11868 */ 11869 ipf->ipf_hole_cnt++; 11870 } 11871 mp->b_cont = mp1; 11872 /* Check for overlap. */ 11873 while (end > offset) { 11874 if (end < IP_REASS_END(mp1)) { 11875 mp->b_wptr -= end - offset; 11876 IP_REASS_SET_END(mp, offset); 11877 BUMP_MIB(ill->ill_ip_mib, 11878 ipIfStatsReasmPartDups); 11879 break; 11880 } 11881 /* Did we cover another hole? */ 11882 if ((mp1->b_cont && 11883 IP_REASS_END(mp1) != 11884 IP_REASS_START(mp1->b_cont) && 11885 end >= IP_REASS_START(mp1->b_cont)) || 11886 (!ipf->ipf_last_frag_seen && !more)) { 11887 ipf->ipf_hole_cnt--; 11888 } 11889 /* Clip out mp1. */ 11890 if ((mp->b_cont = mp1->b_cont) == NULL) { 11891 /* 11892 * After clipping out mp1, this guy 11893 * is now hanging off the end. 11894 */ 11895 ipf->ipf_tail_mp = mp; 11896 } 11897 IP_REASS_SET_START(mp1, 0); 11898 IP_REASS_SET_END(mp1, 0); 11899 /* Subtract byte count */ 11900 ipf->ipf_count -= mp1->b_datap->db_lim - 11901 mp1->b_datap->db_base; 11902 freeb(mp1); 11903 BUMP_MIB(ill->ill_ip_mib, 11904 ipIfStatsReasmPartDups); 11905 mp1 = mp->b_cont; 11906 if (!mp1) 11907 break; 11908 offset = IP_REASS_START(mp1); 11909 } 11910 ipf->ipf_mp->b_cont = mp; 11911 continue; 11912 } 11913 /* 11914 * The new piece starts somewhere between the start of the head 11915 * and before the end of the tail. 11916 */ 11917 for (; mp1; mp1 = mp1->b_cont) { 11918 offset = IP_REASS_END(mp1); 11919 if (start < offset) { 11920 if (end <= offset) { 11921 /* Nothing new. */ 11922 IP_REASS_SET_START(mp, 0); 11923 IP_REASS_SET_END(mp, 0); 11924 /* Subtract byte count */ 11925 ipf->ipf_count -= mp->b_datap->db_lim - 11926 mp->b_datap->db_base; 11927 if (incr_dups) { 11928 ipf->ipf_num_dups++; 11929 incr_dups = B_FALSE; 11930 } 11931 freeb(mp); 11932 BUMP_MIB(ill->ill_ip_mib, 11933 ipIfStatsReasmDuplicates); 11934 break; 11935 } 11936 /* 11937 * Trim redundant stuff off beginning of new 11938 * piece. 11939 */ 11940 IP_REASS_SET_START(mp, offset); 11941 mp->b_rptr += offset - start; 11942 BUMP_MIB(ill->ill_ip_mib, 11943 ipIfStatsReasmPartDups); 11944 start = offset; 11945 if (!mp1->b_cont) { 11946 /* 11947 * After trimming, this guy is now 11948 * hanging off the end. 11949 */ 11950 mp1->b_cont = mp; 11951 ipf->ipf_tail_mp = mp; 11952 if (!more) { 11953 ipf->ipf_hole_cnt--; 11954 } 11955 break; 11956 } 11957 } 11958 if (start >= IP_REASS_START(mp1->b_cont)) 11959 continue; 11960 /* Fill a hole */ 11961 if (start > offset) 11962 ipf->ipf_hole_cnt++; 11963 mp->b_cont = mp1->b_cont; 11964 mp1->b_cont = mp; 11965 mp1 = mp->b_cont; 11966 offset = IP_REASS_START(mp1); 11967 if (end >= offset) { 11968 ipf->ipf_hole_cnt--; 11969 /* Check for overlap. */ 11970 while (end > offset) { 11971 if (end < IP_REASS_END(mp1)) { 11972 mp->b_wptr -= end - offset; 11973 IP_REASS_SET_END(mp, offset); 11974 /* 11975 * TODO we might bump 11976 * this up twice if there is 11977 * overlap at both ends. 11978 */ 11979 BUMP_MIB(ill->ill_ip_mib, 11980 ipIfStatsReasmPartDups); 11981 break; 11982 } 11983 /* Did we cover another hole? */ 11984 if ((mp1->b_cont && 11985 IP_REASS_END(mp1) 11986 != IP_REASS_START(mp1->b_cont) && 11987 end >= 11988 IP_REASS_START(mp1->b_cont)) || 11989 (!ipf->ipf_last_frag_seen && 11990 !more)) { 11991 ipf->ipf_hole_cnt--; 11992 } 11993 /* Clip out mp1. */ 11994 if ((mp->b_cont = mp1->b_cont) == 11995 NULL) { 11996 /* 11997 * After clipping out mp1, 11998 * this guy is now hanging 11999 * off the end. 12000 */ 12001 ipf->ipf_tail_mp = mp; 12002 } 12003 IP_REASS_SET_START(mp1, 0); 12004 IP_REASS_SET_END(mp1, 0); 12005 /* Subtract byte count */ 12006 ipf->ipf_count -= 12007 mp1->b_datap->db_lim - 12008 mp1->b_datap->db_base; 12009 freeb(mp1); 12010 BUMP_MIB(ill->ill_ip_mib, 12011 ipIfStatsReasmPartDups); 12012 mp1 = mp->b_cont; 12013 if (!mp1) 12014 break; 12015 offset = IP_REASS_START(mp1); 12016 } 12017 } 12018 break; 12019 } 12020 } while (start = end, mp = next_mp); 12021 12022 /* Fragment just processed could be the last one. Remember this fact */ 12023 if (!more) 12024 ipf->ipf_last_frag_seen = B_TRUE; 12025 12026 /* Still got holes? */ 12027 if (ipf->ipf_hole_cnt) 12028 return (IP_REASS_PARTIAL); 12029 /* Clean up overloaded fields to avoid upstream disasters. */ 12030 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12031 IP_REASS_SET_START(mp1, 0); 12032 IP_REASS_SET_END(mp1, 0); 12033 } 12034 return (IP_REASS_COMPLETE); 12035 } 12036 12037 /* 12038 * ipsec processing for the fast path, used for input UDP Packets 12039 * Returns true if ready for passup to UDP. 12040 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12041 * was an ESP-in-UDP packet, etc.). 12042 */ 12043 static boolean_t 12044 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12045 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12046 { 12047 uint32_t ill_index; 12048 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12049 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12050 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12051 udp_t *udp = connp->conn_udp; 12052 12053 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12054 /* The ill_index of the incoming ILL */ 12055 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12056 12057 /* pass packet up to the transport */ 12058 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12059 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12060 NULL, mctl_present); 12061 if (*first_mpp == NULL) { 12062 return (B_FALSE); 12063 } 12064 } 12065 12066 /* Initiate IPPF processing for fastpath UDP */ 12067 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12068 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12069 if (*mpp == NULL) { 12070 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12071 "deferred/dropped during IPPF processing\n")); 12072 return (B_FALSE); 12073 } 12074 } 12075 /* 12076 * Remove 0-spi if it's 0, or move everything behind 12077 * the UDP header over it and forward to ESP via 12078 * ip_proto_input(). 12079 */ 12080 if (udp->udp_nat_t_endpoint) { 12081 if (mctl_present) { 12082 /* mctl_present *shouldn't* happen. */ 12083 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12084 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12085 &ipss->ipsec_dropper); 12086 *first_mpp = NULL; 12087 return (B_FALSE); 12088 } 12089 12090 /* "ill" is "recv_ill" in actuality. */ 12091 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12092 return (B_FALSE); 12093 12094 /* Else continue like a normal UDP packet. */ 12095 } 12096 12097 /* 12098 * We make the checks as below since we are in the fast path 12099 * and want to minimize the number of checks if the IP_RECVIF and/or 12100 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12101 */ 12102 if (connp->conn_recvif || connp->conn_recvslla || 12103 connp->conn_ip_recvpktinfo) { 12104 if (connp->conn_recvif) { 12105 in_flags = IPF_RECVIF; 12106 } 12107 /* 12108 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12109 * so the flag passed to ip_add_info is based on IP version 12110 * of connp. 12111 */ 12112 if (connp->conn_ip_recvpktinfo) { 12113 if (connp->conn_af_isv6) { 12114 /* 12115 * V6 only needs index 12116 */ 12117 in_flags |= IPF_RECVIF; 12118 } else { 12119 /* 12120 * V4 needs index + matching address. 12121 */ 12122 in_flags |= IPF_RECVADDR; 12123 } 12124 } 12125 if (connp->conn_recvslla) { 12126 in_flags |= IPF_RECVSLLA; 12127 } 12128 /* 12129 * since in_flags are being set ill will be 12130 * referenced in ip_add_info, so it better not 12131 * be NULL. 12132 */ 12133 /* 12134 * the actual data will be contained in b_cont 12135 * upon successful return of the following call. 12136 * If the call fails then the original mblk is 12137 * returned. 12138 */ 12139 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12140 ipst); 12141 } 12142 12143 return (B_TRUE); 12144 } 12145 12146 /* 12147 * Fragmentation reassembly. Each ILL has a hash table for 12148 * queuing packets undergoing reassembly for all IPIFs 12149 * associated with the ILL. The hash is based on the packet 12150 * IP ident field. The ILL frag hash table was allocated 12151 * as a timer block at the time the ILL was created. Whenever 12152 * there is anything on the reassembly queue, the timer will 12153 * be running. Returns B_TRUE if successful else B_FALSE; 12154 * frees mp on failure. 12155 */ 12156 static boolean_t 12157 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12158 uint32_t *cksum_val, uint16_t *cksum_flags) 12159 { 12160 uint32_t frag_offset_flags; 12161 mblk_t *mp = *mpp; 12162 mblk_t *t_mp; 12163 ipaddr_t dst; 12164 uint8_t proto = ipha->ipha_protocol; 12165 uint32_t sum_val; 12166 uint16_t sum_flags; 12167 ipf_t *ipf; 12168 ipf_t **ipfp; 12169 ipfb_t *ipfb; 12170 uint16_t ident; 12171 uint32_t offset; 12172 ipaddr_t src; 12173 uint_t hdr_length; 12174 uint32_t end; 12175 mblk_t *mp1; 12176 mblk_t *tail_mp; 12177 size_t count; 12178 size_t msg_len; 12179 uint8_t ecn_info = 0; 12180 uint32_t packet_size; 12181 boolean_t pruned = B_FALSE; 12182 ip_stack_t *ipst = ill->ill_ipst; 12183 12184 if (cksum_val != NULL) 12185 *cksum_val = 0; 12186 if (cksum_flags != NULL) 12187 *cksum_flags = 0; 12188 12189 /* 12190 * Drop the fragmented as early as possible, if 12191 * we don't have resource(s) to re-assemble. 12192 */ 12193 if (ipst->ips_ip_reass_queue_bytes == 0) { 12194 freemsg(mp); 12195 return (B_FALSE); 12196 } 12197 12198 /* Check for fragmentation offset; return if there's none */ 12199 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12200 (IPH_MF | IPH_OFFSET)) == 0) 12201 return (B_TRUE); 12202 12203 /* 12204 * We utilize hardware computed checksum info only for UDP since 12205 * IP fragmentation is a normal occurrence for the protocol. In 12206 * addition, checksum offload support for IP fragments carrying 12207 * UDP payload is commonly implemented across network adapters. 12208 */ 12209 ASSERT(recv_ill != NULL); 12210 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12211 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12212 mblk_t *mp1 = mp->b_cont; 12213 int32_t len; 12214 12215 /* Record checksum information from the packet */ 12216 sum_val = (uint32_t)DB_CKSUM16(mp); 12217 sum_flags = DB_CKSUMFLAGS(mp); 12218 12219 /* IP payload offset from beginning of mblk */ 12220 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12221 12222 if ((sum_flags & HCK_PARTIALCKSUM) && 12223 (mp1 == NULL || mp1->b_cont == NULL) && 12224 offset >= DB_CKSUMSTART(mp) && 12225 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12226 uint32_t adj; 12227 /* 12228 * Partial checksum has been calculated by hardware 12229 * and attached to the packet; in addition, any 12230 * prepended extraneous data is even byte aligned. 12231 * If any such data exists, we adjust the checksum; 12232 * this would also handle any postpended data. 12233 */ 12234 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12235 mp, mp1, len, adj); 12236 12237 /* One's complement subtract extraneous checksum */ 12238 if (adj >= sum_val) 12239 sum_val = ~(adj - sum_val) & 0xFFFF; 12240 else 12241 sum_val -= adj; 12242 } 12243 } else { 12244 sum_val = 0; 12245 sum_flags = 0; 12246 } 12247 12248 /* Clear hardware checksumming flag */ 12249 DB_CKSUMFLAGS(mp) = 0; 12250 12251 ident = ipha->ipha_ident; 12252 offset = (frag_offset_flags << 3) & 0xFFFF; 12253 src = ipha->ipha_src; 12254 dst = ipha->ipha_dst; 12255 hdr_length = IPH_HDR_LENGTH(ipha); 12256 end = ntohs(ipha->ipha_length) - hdr_length; 12257 12258 /* If end == 0 then we have a packet with no data, so just free it */ 12259 if (end == 0) { 12260 freemsg(mp); 12261 return (B_FALSE); 12262 } 12263 12264 /* Record the ECN field info. */ 12265 ecn_info = (ipha->ipha_type_of_service & 0x3); 12266 if (offset != 0) { 12267 /* 12268 * If this isn't the first piece, strip the header, and 12269 * add the offset to the end value. 12270 */ 12271 mp->b_rptr += hdr_length; 12272 end += offset; 12273 } 12274 12275 msg_len = MBLKSIZE(mp); 12276 tail_mp = mp; 12277 while (tail_mp->b_cont != NULL) { 12278 tail_mp = tail_mp->b_cont; 12279 msg_len += MBLKSIZE(tail_mp); 12280 } 12281 12282 /* If the reassembly list for this ILL will get too big, prune it */ 12283 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12284 ipst->ips_ip_reass_queue_bytes) { 12285 ill_frag_prune(ill, 12286 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12287 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12288 pruned = B_TRUE; 12289 } 12290 12291 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12292 mutex_enter(&ipfb->ipfb_lock); 12293 12294 ipfp = &ipfb->ipfb_ipf; 12295 /* Try to find an existing fragment queue for this packet. */ 12296 for (;;) { 12297 ipf = ipfp[0]; 12298 if (ipf != NULL) { 12299 /* 12300 * It has to match on ident and src/dst address. 12301 */ 12302 if (ipf->ipf_ident == ident && 12303 ipf->ipf_src == src && 12304 ipf->ipf_dst == dst && 12305 ipf->ipf_protocol == proto) { 12306 /* 12307 * If we have received too many 12308 * duplicate fragments for this packet 12309 * free it. 12310 */ 12311 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12312 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12313 freemsg(mp); 12314 mutex_exit(&ipfb->ipfb_lock); 12315 return (B_FALSE); 12316 } 12317 /* Found it. */ 12318 break; 12319 } 12320 ipfp = &ipf->ipf_hash_next; 12321 continue; 12322 } 12323 12324 /* 12325 * If we pruned the list, do we want to store this new 12326 * fragment?. We apply an optimization here based on the 12327 * fact that most fragments will be received in order. 12328 * So if the offset of this incoming fragment is zero, 12329 * it is the first fragment of a new packet. We will 12330 * keep it. Otherwise drop the fragment, as we have 12331 * probably pruned the packet already (since the 12332 * packet cannot be found). 12333 */ 12334 if (pruned && offset != 0) { 12335 mutex_exit(&ipfb->ipfb_lock); 12336 freemsg(mp); 12337 return (B_FALSE); 12338 } 12339 12340 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12341 /* 12342 * Too many fragmented packets in this hash 12343 * bucket. Free the oldest. 12344 */ 12345 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12346 } 12347 12348 /* New guy. Allocate a frag message. */ 12349 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12350 if (mp1 == NULL) { 12351 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12352 freemsg(mp); 12353 reass_done: 12354 mutex_exit(&ipfb->ipfb_lock); 12355 return (B_FALSE); 12356 } 12357 12358 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12359 mp1->b_cont = mp; 12360 12361 /* Initialize the fragment header. */ 12362 ipf = (ipf_t *)mp1->b_rptr; 12363 ipf->ipf_mp = mp1; 12364 ipf->ipf_ptphn = ipfp; 12365 ipfp[0] = ipf; 12366 ipf->ipf_hash_next = NULL; 12367 ipf->ipf_ident = ident; 12368 ipf->ipf_protocol = proto; 12369 ipf->ipf_src = src; 12370 ipf->ipf_dst = dst; 12371 ipf->ipf_nf_hdr_len = 0; 12372 /* Record reassembly start time. */ 12373 ipf->ipf_timestamp = gethrestime_sec(); 12374 /* Record ipf generation and account for frag header */ 12375 ipf->ipf_gen = ill->ill_ipf_gen++; 12376 ipf->ipf_count = MBLKSIZE(mp1); 12377 ipf->ipf_last_frag_seen = B_FALSE; 12378 ipf->ipf_ecn = ecn_info; 12379 ipf->ipf_num_dups = 0; 12380 ipfb->ipfb_frag_pkts++; 12381 ipf->ipf_checksum = 0; 12382 ipf->ipf_checksum_flags = 0; 12383 12384 /* Store checksum value in fragment header */ 12385 if (sum_flags != 0) { 12386 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12387 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12388 ipf->ipf_checksum = sum_val; 12389 ipf->ipf_checksum_flags = sum_flags; 12390 } 12391 12392 /* 12393 * We handle reassembly two ways. In the easy case, 12394 * where all the fragments show up in order, we do 12395 * minimal bookkeeping, and just clip new pieces on 12396 * the end. If we ever see a hole, then we go off 12397 * to ip_reassemble which has to mark the pieces and 12398 * keep track of the number of holes, etc. Obviously, 12399 * the point of having both mechanisms is so we can 12400 * handle the easy case as efficiently as possible. 12401 */ 12402 if (offset == 0) { 12403 /* Easy case, in-order reassembly so far. */ 12404 ipf->ipf_count += msg_len; 12405 ipf->ipf_tail_mp = tail_mp; 12406 /* 12407 * Keep track of next expected offset in 12408 * ipf_end. 12409 */ 12410 ipf->ipf_end = end; 12411 ipf->ipf_nf_hdr_len = hdr_length; 12412 } else { 12413 /* Hard case, hole at the beginning. */ 12414 ipf->ipf_tail_mp = NULL; 12415 /* 12416 * ipf_end == 0 means that we have given up 12417 * on easy reassembly. 12418 */ 12419 ipf->ipf_end = 0; 12420 12421 /* Forget checksum offload from now on */ 12422 ipf->ipf_checksum_flags = 0; 12423 12424 /* 12425 * ipf_hole_cnt is set by ip_reassemble. 12426 * ipf_count is updated by ip_reassemble. 12427 * No need to check for return value here 12428 * as we don't expect reassembly to complete 12429 * or fail for the first fragment itself. 12430 */ 12431 (void) ip_reassemble(mp, ipf, 12432 (frag_offset_flags & IPH_OFFSET) << 3, 12433 (frag_offset_flags & IPH_MF), ill, msg_len); 12434 } 12435 /* Update per ipfb and ill byte counts */ 12436 ipfb->ipfb_count += ipf->ipf_count; 12437 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12438 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12439 /* If the frag timer wasn't already going, start it. */ 12440 mutex_enter(&ill->ill_lock); 12441 ill_frag_timer_start(ill); 12442 mutex_exit(&ill->ill_lock); 12443 goto reass_done; 12444 } 12445 12446 /* 12447 * If the packet's flag has changed (it could be coming up 12448 * from an interface different than the previous, therefore 12449 * possibly different checksum capability), then forget about 12450 * any stored checksum states. Otherwise add the value to 12451 * the existing one stored in the fragment header. 12452 */ 12453 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12454 sum_val += ipf->ipf_checksum; 12455 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12456 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12457 ipf->ipf_checksum = sum_val; 12458 } else if (ipf->ipf_checksum_flags != 0) { 12459 /* Forget checksum offload from now on */ 12460 ipf->ipf_checksum_flags = 0; 12461 } 12462 12463 /* 12464 * We have a new piece of a datagram which is already being 12465 * reassembled. Update the ECN info if all IP fragments 12466 * are ECN capable. If there is one which is not, clear 12467 * all the info. If there is at least one which has CE 12468 * code point, IP needs to report that up to transport. 12469 */ 12470 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12471 if (ecn_info == IPH_ECN_CE) 12472 ipf->ipf_ecn = IPH_ECN_CE; 12473 } else { 12474 ipf->ipf_ecn = IPH_ECN_NECT; 12475 } 12476 if (offset && ipf->ipf_end == offset) { 12477 /* The new fragment fits at the end */ 12478 ipf->ipf_tail_mp->b_cont = mp; 12479 /* Update the byte count */ 12480 ipf->ipf_count += msg_len; 12481 /* Update per ipfb and ill byte counts */ 12482 ipfb->ipfb_count += msg_len; 12483 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12484 atomic_add_32(&ill->ill_frag_count, msg_len); 12485 if (frag_offset_flags & IPH_MF) { 12486 /* More to come. */ 12487 ipf->ipf_end = end; 12488 ipf->ipf_tail_mp = tail_mp; 12489 goto reass_done; 12490 } 12491 } else { 12492 /* Go do the hard cases. */ 12493 int ret; 12494 12495 if (offset == 0) 12496 ipf->ipf_nf_hdr_len = hdr_length; 12497 12498 /* Save current byte count */ 12499 count = ipf->ipf_count; 12500 ret = ip_reassemble(mp, ipf, 12501 (frag_offset_flags & IPH_OFFSET) << 3, 12502 (frag_offset_flags & IPH_MF), ill, msg_len); 12503 /* Count of bytes added and subtracted (freeb()ed) */ 12504 count = ipf->ipf_count - count; 12505 if (count) { 12506 /* Update per ipfb and ill byte counts */ 12507 ipfb->ipfb_count += count; 12508 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12509 atomic_add_32(&ill->ill_frag_count, count); 12510 } 12511 if (ret == IP_REASS_PARTIAL) { 12512 goto reass_done; 12513 } else if (ret == IP_REASS_FAILED) { 12514 /* Reassembly failed. Free up all resources */ 12515 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12516 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12517 IP_REASS_SET_START(t_mp, 0); 12518 IP_REASS_SET_END(t_mp, 0); 12519 } 12520 freemsg(mp); 12521 goto reass_done; 12522 } 12523 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12524 } 12525 /* 12526 * We have completed reassembly. Unhook the frag header from 12527 * the reassembly list. 12528 * 12529 * Before we free the frag header, record the ECN info 12530 * to report back to the transport. 12531 */ 12532 ecn_info = ipf->ipf_ecn; 12533 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12534 ipfp = ipf->ipf_ptphn; 12535 12536 /* We need to supply these to caller */ 12537 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12538 sum_val = ipf->ipf_checksum; 12539 else 12540 sum_val = 0; 12541 12542 mp1 = ipf->ipf_mp; 12543 count = ipf->ipf_count; 12544 ipf = ipf->ipf_hash_next; 12545 if (ipf != NULL) 12546 ipf->ipf_ptphn = ipfp; 12547 ipfp[0] = ipf; 12548 atomic_add_32(&ill->ill_frag_count, -count); 12549 ASSERT(ipfb->ipfb_count >= count); 12550 ipfb->ipfb_count -= count; 12551 ipfb->ipfb_frag_pkts--; 12552 mutex_exit(&ipfb->ipfb_lock); 12553 /* Ditch the frag header. */ 12554 mp = mp1->b_cont; 12555 12556 freeb(mp1); 12557 12558 /* Restore original IP length in header. */ 12559 packet_size = (uint32_t)msgdsize(mp); 12560 if (packet_size > IP_MAXPACKET) { 12561 freemsg(mp); 12562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12563 return (B_FALSE); 12564 } 12565 12566 if (DB_REF(mp) > 1) { 12567 mblk_t *mp2 = copymsg(mp); 12568 12569 freemsg(mp); 12570 if (mp2 == NULL) { 12571 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12572 return (B_FALSE); 12573 } 12574 mp = mp2; 12575 } 12576 ipha = (ipha_t *)mp->b_rptr; 12577 12578 ipha->ipha_length = htons((uint16_t)packet_size); 12579 /* We're now complete, zip the frag state */ 12580 ipha->ipha_fragment_offset_and_flags = 0; 12581 /* Record the ECN info. */ 12582 ipha->ipha_type_of_service &= 0xFC; 12583 ipha->ipha_type_of_service |= ecn_info; 12584 *mpp = mp; 12585 12586 /* Reassembly is successful; return checksum information if needed */ 12587 if (cksum_val != NULL) 12588 *cksum_val = sum_val; 12589 if (cksum_flags != NULL) 12590 *cksum_flags = sum_flags; 12591 12592 return (B_TRUE); 12593 } 12594 12595 /* 12596 * Perform ip header check sum update local options. 12597 * return B_TRUE if all is well, else return B_FALSE and release 12598 * the mp. caller is responsible for decrementing ire ref cnt. 12599 */ 12600 static boolean_t 12601 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12602 ip_stack_t *ipst) 12603 { 12604 mblk_t *first_mp; 12605 boolean_t mctl_present; 12606 uint16_t sum; 12607 12608 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12609 /* 12610 * Don't do the checksum if it has gone through AH/ESP 12611 * processing. 12612 */ 12613 if (!mctl_present) { 12614 sum = ip_csum_hdr(ipha); 12615 if (sum != 0) { 12616 if (ill != NULL) { 12617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12618 } else { 12619 BUMP_MIB(&ipst->ips_ip_mib, 12620 ipIfStatsInCksumErrs); 12621 } 12622 freemsg(first_mp); 12623 return (B_FALSE); 12624 } 12625 } 12626 12627 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12628 if (mctl_present) 12629 freeb(first_mp); 12630 return (B_FALSE); 12631 } 12632 12633 return (B_TRUE); 12634 } 12635 12636 /* 12637 * All udp packet are delivered to the local host via this routine. 12638 */ 12639 void 12640 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12641 ill_t *recv_ill) 12642 { 12643 uint32_t sum; 12644 uint32_t u1; 12645 boolean_t mctl_present; 12646 conn_t *connp; 12647 mblk_t *first_mp; 12648 uint16_t *up; 12649 ill_t *ill = (ill_t *)q->q_ptr; 12650 uint16_t reass_hck_flags = 0; 12651 ip_stack_t *ipst; 12652 12653 ASSERT(recv_ill != NULL); 12654 ipst = recv_ill->ill_ipst; 12655 12656 #define rptr ((uchar_t *)ipha) 12657 12658 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12659 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12660 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12661 ASSERT(ill != NULL); 12662 12663 /* 12664 * FAST PATH for udp packets 12665 */ 12666 12667 /* u1 is # words of IP options */ 12668 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12669 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12670 12671 /* IP options present */ 12672 if (u1 != 0) 12673 goto ipoptions; 12674 12675 /* Check the IP header checksum. */ 12676 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12677 /* Clear the IP header h/w cksum flag */ 12678 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12679 } else if (!mctl_present) { 12680 /* 12681 * Don't verify header checksum if this packet is coming 12682 * back from AH/ESP as we already did it. 12683 */ 12684 #define uph ((uint16_t *)ipha) 12685 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12686 uph[6] + uph[7] + uph[8] + uph[9]; 12687 #undef uph 12688 /* finish doing IP checksum */ 12689 sum = (sum & 0xFFFF) + (sum >> 16); 12690 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12691 if (sum != 0 && sum != 0xFFFF) { 12692 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12693 freemsg(first_mp); 12694 return; 12695 } 12696 } 12697 12698 /* 12699 * Count for SNMP of inbound packets for ire. 12700 * if mctl is present this might be a secure packet and 12701 * has already been counted for in ip_proto_input(). 12702 */ 12703 if (!mctl_present) { 12704 UPDATE_IB_PKT_COUNT(ire); 12705 ire->ire_last_used_time = lbolt; 12706 } 12707 12708 /* packet part of fragmented IP packet? */ 12709 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12710 if (u1 & (IPH_MF | IPH_OFFSET)) { 12711 goto fragmented; 12712 } 12713 12714 /* u1 = IP header length (20 bytes) */ 12715 u1 = IP_SIMPLE_HDR_LENGTH; 12716 12717 /* packet does not contain complete IP & UDP headers */ 12718 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12719 goto udppullup; 12720 12721 /* up points to UDP header */ 12722 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12723 #define iphs ((uint16_t *)ipha) 12724 12725 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12726 if (up[3] != 0) { 12727 mblk_t *mp1 = mp->b_cont; 12728 boolean_t cksum_err; 12729 uint16_t hck_flags = 0; 12730 12731 /* Pseudo-header checksum */ 12732 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12733 iphs[9] + up[2]; 12734 12735 /* 12736 * Revert to software checksum calculation if the interface 12737 * isn't capable of checksum offload or if IPsec is present. 12738 */ 12739 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12740 hck_flags = DB_CKSUMFLAGS(mp); 12741 12742 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12743 IP_STAT(ipst, ip_in_sw_cksum); 12744 12745 IP_CKSUM_RECV(hck_flags, u1, 12746 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12747 (int32_t)((uchar_t *)up - rptr), 12748 mp, mp1, cksum_err); 12749 12750 if (cksum_err) { 12751 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12752 if (hck_flags & HCK_FULLCKSUM) 12753 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12754 else if (hck_flags & HCK_PARTIALCKSUM) 12755 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12756 else 12757 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12758 12759 freemsg(first_mp); 12760 return; 12761 } 12762 } 12763 12764 /* Non-fragmented broadcast or multicast packet? */ 12765 if (ire->ire_type == IRE_BROADCAST) 12766 goto udpslowpath; 12767 12768 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12769 ire->ire_zoneid, ipst)) != NULL) { 12770 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12771 IP_STAT(ipst, ip_udp_fast_path); 12772 12773 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12774 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12775 freemsg(mp); 12776 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12777 } else { 12778 if (!mctl_present) { 12779 BUMP_MIB(ill->ill_ip_mib, 12780 ipIfStatsHCInDelivers); 12781 } 12782 /* 12783 * mp and first_mp can change. 12784 */ 12785 if (ip_udp_check(q, connp, recv_ill, 12786 ipha, &mp, &first_mp, mctl_present, ire)) { 12787 /* Send it upstream */ 12788 (connp->conn_recv)(connp, mp, NULL); 12789 } 12790 } 12791 /* 12792 * freeb() cannot deal with null mblk being passed 12793 * in and first_mp can be set to null in the call 12794 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12795 */ 12796 if (mctl_present && first_mp != NULL) { 12797 freeb(first_mp); 12798 } 12799 CONN_DEC_REF(connp); 12800 return; 12801 } 12802 12803 /* 12804 * if we got here we know the packet is not fragmented and 12805 * has no options. The classifier could not find a conn_t and 12806 * most likely its an icmp packet so send it through slow path. 12807 */ 12808 12809 goto udpslowpath; 12810 12811 ipoptions: 12812 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12813 goto slow_done; 12814 } 12815 12816 UPDATE_IB_PKT_COUNT(ire); 12817 ire->ire_last_used_time = lbolt; 12818 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12819 if (u1 & (IPH_MF | IPH_OFFSET)) { 12820 fragmented: 12821 /* 12822 * "sum" and "reass_hck_flags" are non-zero if the 12823 * reassembled packet has a valid hardware computed 12824 * checksum information associated with it. 12825 */ 12826 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12827 &reass_hck_flags)) { 12828 goto slow_done; 12829 } 12830 12831 /* 12832 * Make sure that first_mp points back to mp as 12833 * the mp we came in with could have changed in 12834 * ip_rput_fragment(). 12835 */ 12836 ASSERT(!mctl_present); 12837 ipha = (ipha_t *)mp->b_rptr; 12838 first_mp = mp; 12839 } 12840 12841 /* Now we have a complete datagram, destined for this machine. */ 12842 u1 = IPH_HDR_LENGTH(ipha); 12843 /* Pull up the UDP header, if necessary. */ 12844 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12845 udppullup: 12846 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12848 freemsg(first_mp); 12849 goto slow_done; 12850 } 12851 ipha = (ipha_t *)mp->b_rptr; 12852 } 12853 12854 /* 12855 * Validate the checksum for the reassembled packet; for the 12856 * pullup case we calculate the payload checksum in software. 12857 */ 12858 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12859 if (up[3] != 0) { 12860 boolean_t cksum_err; 12861 12862 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12863 IP_STAT(ipst, ip_in_sw_cksum); 12864 12865 IP_CKSUM_RECV_REASS(reass_hck_flags, 12866 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12867 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12868 iphs[9] + up[2], sum, cksum_err); 12869 12870 if (cksum_err) { 12871 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12872 12873 if (reass_hck_flags & HCK_FULLCKSUM) 12874 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12875 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12876 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12877 else 12878 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12879 12880 freemsg(first_mp); 12881 goto slow_done; 12882 } 12883 } 12884 udpslowpath: 12885 12886 /* Clear hardware checksum flag to be safe */ 12887 DB_CKSUMFLAGS(mp) = 0; 12888 12889 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12890 (ire->ire_type == IRE_BROADCAST), 12891 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12892 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12893 12894 slow_done: 12895 IP_STAT(ipst, ip_udp_slow_path); 12896 return; 12897 12898 #undef iphs 12899 #undef rptr 12900 } 12901 12902 /* ARGSUSED */ 12903 static mblk_t * 12904 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12905 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12906 ill_rx_ring_t *ill_ring) 12907 { 12908 conn_t *connp; 12909 uint32_t sum; 12910 uint32_t u1; 12911 uint16_t *up; 12912 int offset; 12913 ssize_t len; 12914 mblk_t *mp1; 12915 boolean_t syn_present = B_FALSE; 12916 tcph_t *tcph; 12917 uint_t tcph_flags; 12918 uint_t ip_hdr_len; 12919 ill_t *ill = (ill_t *)q->q_ptr; 12920 zoneid_t zoneid = ire->ire_zoneid; 12921 boolean_t cksum_err; 12922 uint16_t hck_flags = 0; 12923 ip_stack_t *ipst = recv_ill->ill_ipst; 12924 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12925 12926 #define rptr ((uchar_t *)ipha) 12927 12928 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12929 ASSERT(ill != NULL); 12930 12931 /* 12932 * FAST PATH for tcp packets 12933 */ 12934 12935 /* u1 is # words of IP options */ 12936 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12937 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12938 12939 /* IP options present */ 12940 if (u1) { 12941 goto ipoptions; 12942 } else if (!mctl_present) { 12943 /* Check the IP header checksum. */ 12944 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12945 /* Clear the IP header h/w cksum flag */ 12946 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12947 } else if (!mctl_present) { 12948 /* 12949 * Don't verify header checksum if this packet 12950 * is coming back from AH/ESP as we already did it. 12951 */ 12952 #define uph ((uint16_t *)ipha) 12953 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12954 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12955 #undef uph 12956 /* finish doing IP checksum */ 12957 sum = (sum & 0xFFFF) + (sum >> 16); 12958 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12959 if (sum != 0 && sum != 0xFFFF) { 12960 BUMP_MIB(ill->ill_ip_mib, 12961 ipIfStatsInCksumErrs); 12962 goto error; 12963 } 12964 } 12965 } 12966 12967 if (!mctl_present) { 12968 UPDATE_IB_PKT_COUNT(ire); 12969 ire->ire_last_used_time = lbolt; 12970 } 12971 12972 /* packet part of fragmented IP packet? */ 12973 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12974 if (u1 & (IPH_MF | IPH_OFFSET)) { 12975 goto fragmented; 12976 } 12977 12978 /* u1 = IP header length (20 bytes) */ 12979 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12980 12981 /* does packet contain IP+TCP headers? */ 12982 len = mp->b_wptr - rptr; 12983 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12984 IP_STAT(ipst, ip_tcppullup); 12985 goto tcppullup; 12986 } 12987 12988 /* TCP options present? */ 12989 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12990 12991 /* 12992 * If options need to be pulled up, then goto tcpoptions. 12993 * otherwise we are still in the fast path 12994 */ 12995 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12996 IP_STAT(ipst, ip_tcpoptions); 12997 goto tcpoptions; 12998 } 12999 13000 /* multiple mblks of tcp data? */ 13001 if ((mp1 = mp->b_cont) != NULL) { 13002 IP_STAT(ipst, ip_multipkttcp); 13003 len += msgdsize(mp1); 13004 } 13005 13006 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13007 13008 /* part of pseudo checksum */ 13009 13010 /* TCP datagram length */ 13011 u1 = len - IP_SIMPLE_HDR_LENGTH; 13012 13013 #define iphs ((uint16_t *)ipha) 13014 13015 #ifdef _BIG_ENDIAN 13016 u1 += IPPROTO_TCP; 13017 #else 13018 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13019 #endif 13020 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13021 13022 /* 13023 * Revert to software checksum calculation if the interface 13024 * isn't capable of checksum offload or if IPsec is present. 13025 */ 13026 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 13027 hck_flags = DB_CKSUMFLAGS(mp); 13028 13029 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13030 IP_STAT(ipst, ip_in_sw_cksum); 13031 13032 IP_CKSUM_RECV(hck_flags, u1, 13033 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13034 (int32_t)((uchar_t *)up - rptr), 13035 mp, mp1, cksum_err); 13036 13037 if (cksum_err) { 13038 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13039 13040 if (hck_flags & HCK_FULLCKSUM) 13041 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13042 else if (hck_flags & HCK_PARTIALCKSUM) 13043 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13044 else 13045 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13046 13047 goto error; 13048 } 13049 13050 try_again: 13051 13052 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13053 zoneid, ipst)) == NULL) { 13054 /* Send the TH_RST */ 13055 goto no_conn; 13056 } 13057 13058 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13059 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13060 13061 /* 13062 * TCP FAST PATH for AF_INET socket. 13063 * 13064 * TCP fast path to avoid extra work. An AF_INET socket type 13065 * does not have facility to receive extra information via 13066 * ip_process or ip_add_info. Also, when the connection was 13067 * established, we made a check if this connection is impacted 13068 * by any global IPsec policy or per connection policy (a 13069 * policy that comes in effect later will not apply to this 13070 * connection). Since all this can be determined at the 13071 * connection establishment time, a quick check of flags 13072 * can avoid extra work. 13073 */ 13074 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13075 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13076 ASSERT(first_mp == mp); 13077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13078 if (tcph_flags != (TH_SYN | TH_ACK)) { 13079 SET_SQUEUE(mp, tcp_rput_data, connp); 13080 return (mp); 13081 } 13082 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13083 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13084 SET_SQUEUE(mp, tcp_input, connp); 13085 return (mp); 13086 } 13087 13088 if (tcph_flags == TH_SYN) { 13089 if (IPCL_IS_TCP(connp)) { 13090 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13091 DB_CKSUMSTART(mp) = 13092 (intptr_t)ip_squeue_get(ill_ring); 13093 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13094 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13095 BUMP_MIB(ill->ill_ip_mib, 13096 ipIfStatsHCInDelivers); 13097 SET_SQUEUE(mp, connp->conn_recv, connp); 13098 return (mp); 13099 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13100 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13101 BUMP_MIB(ill->ill_ip_mib, 13102 ipIfStatsHCInDelivers); 13103 ip_squeue_enter_unbound++; 13104 SET_SQUEUE(mp, tcp_conn_request_unbound, 13105 connp); 13106 return (mp); 13107 } 13108 syn_present = B_TRUE; 13109 } 13110 } 13111 13112 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13113 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13114 13115 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13116 /* No need to send this packet to TCP */ 13117 if ((flags & TH_RST) || (flags & TH_URG)) { 13118 CONN_DEC_REF(connp); 13119 freemsg(first_mp); 13120 return (NULL); 13121 } 13122 if (flags & TH_ACK) { 13123 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13124 ipst->ips_netstack->netstack_tcp, connp); 13125 CONN_DEC_REF(connp); 13126 return (NULL); 13127 } 13128 13129 CONN_DEC_REF(connp); 13130 freemsg(first_mp); 13131 return (NULL); 13132 } 13133 13134 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13135 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13136 ipha, NULL, mctl_present); 13137 if (first_mp == NULL) { 13138 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13139 CONN_DEC_REF(connp); 13140 return (NULL); 13141 } 13142 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13143 ASSERT(syn_present); 13144 if (mctl_present) { 13145 ASSERT(first_mp != mp); 13146 first_mp->b_datap->db_struioflag |= 13147 STRUIO_POLICY; 13148 } else { 13149 ASSERT(first_mp == mp); 13150 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13151 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13152 } 13153 } else { 13154 /* 13155 * Discard first_mp early since we're dealing with a 13156 * fully-connected conn_t and tcp doesn't do policy in 13157 * this case. 13158 */ 13159 if (mctl_present) { 13160 freeb(first_mp); 13161 mctl_present = B_FALSE; 13162 } 13163 first_mp = mp; 13164 } 13165 } 13166 13167 /* Initiate IPPF processing for fastpath */ 13168 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13169 uint32_t ill_index; 13170 13171 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13172 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13173 if (mp == NULL) { 13174 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13175 "deferred/dropped during IPPF processing\n")); 13176 CONN_DEC_REF(connp); 13177 if (mctl_present) 13178 freeb(first_mp); 13179 return (NULL); 13180 } else if (mctl_present) { 13181 /* 13182 * ip_process might return a new mp. 13183 */ 13184 ASSERT(first_mp != mp); 13185 first_mp->b_cont = mp; 13186 } else { 13187 first_mp = mp; 13188 } 13189 13190 } 13191 13192 if (!syn_present && connp->conn_ip_recvpktinfo) { 13193 /* 13194 * TCP does not support IP_RECVPKTINFO for v4 so lets 13195 * make sure IPF_RECVIF is passed to ip_add_info. 13196 */ 13197 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13198 IPCL_ZONEID(connp), ipst); 13199 if (mp == NULL) { 13200 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13201 CONN_DEC_REF(connp); 13202 if (mctl_present) 13203 freeb(first_mp); 13204 return (NULL); 13205 } else if (mctl_present) { 13206 /* 13207 * ip_add_info might return a new mp. 13208 */ 13209 ASSERT(first_mp != mp); 13210 first_mp->b_cont = mp; 13211 } else { 13212 first_mp = mp; 13213 } 13214 } 13215 13216 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13217 if (IPCL_IS_TCP(connp)) { 13218 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13219 return (first_mp); 13220 } else { 13221 /* SOCK_RAW, IPPROTO_TCP case */ 13222 (connp->conn_recv)(connp, first_mp, NULL); 13223 CONN_DEC_REF(connp); 13224 return (NULL); 13225 } 13226 13227 no_conn: 13228 /* Initiate IPPf processing, if needed. */ 13229 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13230 uint32_t ill_index; 13231 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13232 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13233 if (first_mp == NULL) { 13234 return (NULL); 13235 } 13236 } 13237 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13238 13239 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13240 ipst->ips_netstack->netstack_tcp, NULL); 13241 return (NULL); 13242 ipoptions: 13243 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13244 goto slow_done; 13245 } 13246 13247 UPDATE_IB_PKT_COUNT(ire); 13248 ire->ire_last_used_time = lbolt; 13249 13250 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13251 if (u1 & (IPH_MF | IPH_OFFSET)) { 13252 fragmented: 13253 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13254 if (mctl_present) 13255 freeb(first_mp); 13256 goto slow_done; 13257 } 13258 /* 13259 * Make sure that first_mp points back to mp as 13260 * the mp we came in with could have changed in 13261 * ip_rput_fragment(). 13262 */ 13263 ASSERT(!mctl_present); 13264 ipha = (ipha_t *)mp->b_rptr; 13265 first_mp = mp; 13266 } 13267 13268 /* Now we have a complete datagram, destined for this machine. */ 13269 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13270 13271 len = mp->b_wptr - mp->b_rptr; 13272 /* Pull up a minimal TCP header, if necessary. */ 13273 if (len < (u1 + 20)) { 13274 tcppullup: 13275 if (!pullupmsg(mp, u1 + 20)) { 13276 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13277 goto error; 13278 } 13279 ipha = (ipha_t *)mp->b_rptr; 13280 len = mp->b_wptr - mp->b_rptr; 13281 } 13282 13283 /* 13284 * Extract the offset field from the TCP header. As usual, we 13285 * try to help the compiler more than the reader. 13286 */ 13287 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13288 if (offset != 5) { 13289 tcpoptions: 13290 if (offset < 5) { 13291 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13292 goto error; 13293 } 13294 /* 13295 * There must be TCP options. 13296 * Make sure we can grab them. 13297 */ 13298 offset <<= 2; 13299 offset += u1; 13300 if (len < offset) { 13301 if (!pullupmsg(mp, offset)) { 13302 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13303 goto error; 13304 } 13305 ipha = (ipha_t *)mp->b_rptr; 13306 len = mp->b_wptr - rptr; 13307 } 13308 } 13309 13310 /* Get the total packet length in len, including headers. */ 13311 if (mp->b_cont) 13312 len = msgdsize(mp); 13313 13314 /* 13315 * Check the TCP checksum by pulling together the pseudo- 13316 * header checksum, and passing it to ip_csum to be added in 13317 * with the TCP datagram. 13318 * 13319 * Since we are not using the hwcksum if available we must 13320 * clear the flag. We may come here via tcppullup or tcpoptions. 13321 * If either of these fails along the way the mblk is freed. 13322 * If this logic ever changes and mblk is reused to say send 13323 * ICMP's back, then this flag may need to be cleared in 13324 * other places as well. 13325 */ 13326 DB_CKSUMFLAGS(mp) = 0; 13327 13328 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13329 13330 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13331 #ifdef _BIG_ENDIAN 13332 u1 += IPPROTO_TCP; 13333 #else 13334 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13335 #endif 13336 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13337 /* 13338 * Not M_DATA mblk or its a dup, so do the checksum now. 13339 */ 13340 IP_STAT(ipst, ip_in_sw_cksum); 13341 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13342 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13343 goto error; 13344 } 13345 13346 IP_STAT(ipst, ip_tcp_slow_path); 13347 goto try_again; 13348 #undef iphs 13349 #undef rptr 13350 13351 error: 13352 freemsg(first_mp); 13353 slow_done: 13354 return (NULL); 13355 } 13356 13357 /* ARGSUSED */ 13358 static void 13359 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13360 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13361 { 13362 conn_t *connp; 13363 uint32_t sum; 13364 uint32_t u1; 13365 ssize_t len; 13366 sctp_hdr_t *sctph; 13367 zoneid_t zoneid = ire->ire_zoneid; 13368 uint32_t pktsum; 13369 uint32_t calcsum; 13370 uint32_t ports; 13371 in6_addr_t map_src, map_dst; 13372 ill_t *ill = (ill_t *)q->q_ptr; 13373 ip_stack_t *ipst; 13374 sctp_stack_t *sctps; 13375 boolean_t sctp_csum_err = B_FALSE; 13376 13377 ASSERT(recv_ill != NULL); 13378 ipst = recv_ill->ill_ipst; 13379 sctps = ipst->ips_netstack->netstack_sctp; 13380 13381 #define rptr ((uchar_t *)ipha) 13382 13383 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13384 ASSERT(ill != NULL); 13385 13386 /* u1 is # words of IP options */ 13387 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13388 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13389 13390 /* IP options present */ 13391 if (u1 > 0) { 13392 goto ipoptions; 13393 } else { 13394 /* Check the IP header checksum. */ 13395 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13396 !mctl_present) { 13397 #define uph ((uint16_t *)ipha) 13398 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13399 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13400 #undef uph 13401 /* finish doing IP checksum */ 13402 sum = (sum & 0xFFFF) + (sum >> 16); 13403 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13404 /* 13405 * Don't verify header checksum if this packet 13406 * is coming back from AH/ESP as we already did it. 13407 */ 13408 if (sum != 0 && sum != 0xFFFF) { 13409 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13410 goto error; 13411 } 13412 } 13413 /* 13414 * Since there is no SCTP h/w cksum support yet, just 13415 * clear the flag. 13416 */ 13417 DB_CKSUMFLAGS(mp) = 0; 13418 } 13419 13420 /* 13421 * Don't verify header checksum if this packet is coming 13422 * back from AH/ESP as we already did it. 13423 */ 13424 if (!mctl_present) { 13425 UPDATE_IB_PKT_COUNT(ire); 13426 ire->ire_last_used_time = lbolt; 13427 } 13428 13429 /* packet part of fragmented IP packet? */ 13430 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13431 if (u1 & (IPH_MF | IPH_OFFSET)) 13432 goto fragmented; 13433 13434 /* u1 = IP header length (20 bytes) */ 13435 u1 = IP_SIMPLE_HDR_LENGTH; 13436 13437 find_sctp_client: 13438 /* Pullup if we don't have the sctp common header. */ 13439 len = MBLKL(mp); 13440 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13441 if (mp->b_cont == NULL || 13442 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13443 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13444 goto error; 13445 } 13446 ipha = (ipha_t *)mp->b_rptr; 13447 len = MBLKL(mp); 13448 } 13449 13450 sctph = (sctp_hdr_t *)(rptr + u1); 13451 #ifdef DEBUG 13452 if (!skip_sctp_cksum) { 13453 #endif 13454 pktsum = sctph->sh_chksum; 13455 sctph->sh_chksum = 0; 13456 calcsum = sctp_cksum(mp, u1); 13457 sctph->sh_chksum = pktsum; 13458 if (calcsum != pktsum) 13459 sctp_csum_err = B_TRUE; 13460 #ifdef DEBUG /* skip_sctp_cksum */ 13461 } 13462 #endif 13463 /* get the ports */ 13464 ports = *(uint32_t *)&sctph->sh_sport; 13465 13466 IRE_REFRELE(ire); 13467 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13468 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13469 if (sctp_csum_err) { 13470 /* 13471 * No potential sctp checksum errors go to the Sun 13472 * sctp stack however they might be Adler-32 summed 13473 * packets a userland stack bound to a raw IP socket 13474 * could reasonably use. Note though that Adler-32 is 13475 * a long deprecated algorithm and customer sctp 13476 * networks should eventually migrate to CRC-32 at 13477 * which time this facility should be removed. 13478 */ 13479 flags |= IP_FF_SCTP_CSUM_ERR; 13480 goto no_conn; 13481 } 13482 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13483 sctps)) == NULL) { 13484 /* Check for raw socket or OOTB handling */ 13485 goto no_conn; 13486 } 13487 13488 /* Found a client; up it goes */ 13489 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13490 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13491 return; 13492 13493 no_conn: 13494 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13495 ports, mctl_present, flags, B_TRUE, zoneid); 13496 return; 13497 13498 ipoptions: 13499 DB_CKSUMFLAGS(mp) = 0; 13500 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13501 goto slow_done; 13502 13503 UPDATE_IB_PKT_COUNT(ire); 13504 ire->ire_last_used_time = lbolt; 13505 13506 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13507 if (u1 & (IPH_MF | IPH_OFFSET)) { 13508 fragmented: 13509 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13510 goto slow_done; 13511 /* 13512 * Make sure that first_mp points back to mp as 13513 * the mp we came in with could have changed in 13514 * ip_rput_fragment(). 13515 */ 13516 ASSERT(!mctl_present); 13517 ipha = (ipha_t *)mp->b_rptr; 13518 first_mp = mp; 13519 } 13520 13521 /* Now we have a complete datagram, destined for this machine. */ 13522 u1 = IPH_HDR_LENGTH(ipha); 13523 goto find_sctp_client; 13524 #undef iphs 13525 #undef rptr 13526 13527 error: 13528 freemsg(first_mp); 13529 slow_done: 13530 IRE_REFRELE(ire); 13531 } 13532 13533 #define VER_BITS 0xF0 13534 #define VERSION_6 0x60 13535 13536 static boolean_t 13537 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13538 ipaddr_t *dstp, ip_stack_t *ipst) 13539 { 13540 uint_t opt_len; 13541 ipha_t *ipha; 13542 ssize_t len; 13543 uint_t pkt_len; 13544 13545 ASSERT(ill != NULL); 13546 IP_STAT(ipst, ip_ipoptions); 13547 ipha = *iphapp; 13548 13549 #define rptr ((uchar_t *)ipha) 13550 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13551 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13552 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13553 freemsg(mp); 13554 return (B_FALSE); 13555 } 13556 13557 /* multiple mblk or too short */ 13558 pkt_len = ntohs(ipha->ipha_length); 13559 13560 /* Get the number of words of IP options in the IP header. */ 13561 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13562 if (opt_len) { 13563 /* IP Options present! Validate and process. */ 13564 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13566 goto done; 13567 } 13568 /* 13569 * Recompute complete header length and make sure we 13570 * have access to all of it. 13571 */ 13572 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13573 if (len > (mp->b_wptr - rptr)) { 13574 if (len > pkt_len) { 13575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13576 goto done; 13577 } 13578 if (!pullupmsg(mp, len)) { 13579 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13580 goto done; 13581 } 13582 ipha = (ipha_t *)mp->b_rptr; 13583 } 13584 /* 13585 * Go off to ip_rput_options which returns the next hop 13586 * destination address, which may have been affected 13587 * by source routing. 13588 */ 13589 IP_STAT(ipst, ip_opt); 13590 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13592 return (B_FALSE); 13593 } 13594 } 13595 *iphapp = ipha; 13596 return (B_TRUE); 13597 done: 13598 /* clear b_prev - used by ip_mroute_decap */ 13599 mp->b_prev = NULL; 13600 freemsg(mp); 13601 return (B_FALSE); 13602 #undef rptr 13603 } 13604 13605 /* 13606 * Deal with the fact that there is no ire for the destination. 13607 */ 13608 static ire_t * 13609 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13610 { 13611 ipha_t *ipha; 13612 ill_t *ill; 13613 ire_t *ire; 13614 ip_stack_t *ipst; 13615 enum ire_forward_action ret_action; 13616 13617 ipha = (ipha_t *)mp->b_rptr; 13618 ill = (ill_t *)q->q_ptr; 13619 13620 ASSERT(ill != NULL); 13621 ipst = ill->ill_ipst; 13622 13623 /* 13624 * No IRE for this destination, so it can't be for us. 13625 * Unless we are forwarding, drop the packet. 13626 * We have to let source routed packets through 13627 * since we don't yet know if they are 'ping -l' 13628 * packets i.e. if they will go out over the 13629 * same interface as they came in on. 13630 */ 13631 if (ll_multicast) { 13632 freemsg(mp); 13633 return (NULL); 13634 } 13635 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13636 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13637 freemsg(mp); 13638 return (NULL); 13639 } 13640 13641 /* 13642 * Mark this packet as having originated externally. 13643 * 13644 * For non-forwarding code path, ire_send later double 13645 * checks this interface to see if it is still exists 13646 * post-ARP resolution. 13647 * 13648 * Also, IPQOS uses this to differentiate between 13649 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13650 * QOS packet processing in ip_wput_attach_llhdr(). 13651 * The QoS module can mark the b_band for a fastpath message 13652 * or the dl_priority field in a unitdata_req header for 13653 * CoS marking. This info can only be found in 13654 * ip_wput_attach_llhdr(). 13655 */ 13656 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13657 /* 13658 * Clear the indication that this may have a hardware checksum 13659 * as we are not using it 13660 */ 13661 DB_CKSUMFLAGS(mp) = 0; 13662 13663 ire = ire_forward(dst, &ret_action, NULL, NULL, 13664 msg_getlabel(mp), ipst); 13665 13666 if (ire == NULL && ret_action == Forward_check_multirt) { 13667 /* Let ip_newroute handle CGTP */ 13668 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13669 return (NULL); 13670 } 13671 13672 if (ire != NULL) 13673 return (ire); 13674 13675 mp->b_prev = mp->b_next = 0; 13676 13677 if (ret_action == Forward_blackhole) { 13678 freemsg(mp); 13679 return (NULL); 13680 } 13681 /* send icmp unreachable */ 13682 q = WR(q); 13683 /* Sent by forwarding path, and router is global zone */ 13684 if (ip_source_routed(ipha, ipst)) { 13685 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13686 GLOBAL_ZONEID, ipst); 13687 } else { 13688 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13689 ipst); 13690 } 13691 13692 return (NULL); 13693 13694 } 13695 13696 /* 13697 * check ip header length and align it. 13698 */ 13699 static boolean_t 13700 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13701 { 13702 ssize_t len; 13703 ill_t *ill; 13704 ipha_t *ipha; 13705 13706 len = MBLKL(mp); 13707 13708 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13709 ill = (ill_t *)q->q_ptr; 13710 13711 if (!OK_32PTR(mp->b_rptr)) 13712 IP_STAT(ipst, ip_notaligned1); 13713 else 13714 IP_STAT(ipst, ip_notaligned2); 13715 /* Guard against bogus device drivers */ 13716 if (len < 0) { 13717 /* clear b_prev - used by ip_mroute_decap */ 13718 mp->b_prev = NULL; 13719 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13720 freemsg(mp); 13721 return (B_FALSE); 13722 } 13723 13724 if (ip_rput_pullups++ == 0) { 13725 ipha = (ipha_t *)mp->b_rptr; 13726 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13727 "ip_check_and_align_header: %s forced us to " 13728 " pullup pkt, hdr len %ld, hdr addr %p", 13729 ill->ill_name, len, (void *)ipha); 13730 } 13731 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13732 /* clear b_prev - used by ip_mroute_decap */ 13733 mp->b_prev = NULL; 13734 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13735 freemsg(mp); 13736 return (B_FALSE); 13737 } 13738 } 13739 return (B_TRUE); 13740 } 13741 13742 /* 13743 * Handle the situation where a packet came in on `ill' but matched an IRE 13744 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13745 * for interface statistics. 13746 */ 13747 ire_t * 13748 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13749 { 13750 ire_t *new_ire; 13751 ill_t *ire_ill; 13752 uint_t ifindex; 13753 ip_stack_t *ipst = ill->ill_ipst; 13754 boolean_t strict_check = B_FALSE; 13755 13756 /* 13757 * IPMP common case: if IRE and ILL are in the same group, there's no 13758 * issue (e.g. packet received on an underlying interface matched an 13759 * IRE_LOCAL on its associated group interface). 13760 */ 13761 if (ire->ire_rfq != NULL && 13762 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13763 return (ire); 13764 } 13765 13766 /* 13767 * Do another ire lookup here, using the ingress ill, to see if the 13768 * interface is in a usesrc group. 13769 * As long as the ills belong to the same group, we don't consider 13770 * them to be arriving on the wrong interface. Thus, if the switch 13771 * is doing inbound load spreading, we won't drop packets when the 13772 * ip*_strict_dst_multihoming switch is on. 13773 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13774 * where the local address may not be unique. In this case we were 13775 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13776 * actually returned. The new lookup, which is more specific, should 13777 * only find the IRE_LOCAL associated with the ingress ill if one 13778 * exists. 13779 */ 13780 13781 if (ire->ire_ipversion == IPV4_VERSION) { 13782 if (ipst->ips_ip_strict_dst_multihoming) 13783 strict_check = B_TRUE; 13784 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13785 ill->ill_ipif, ALL_ZONES, NULL, 13786 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13787 } else { 13788 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13789 if (ipst->ips_ipv6_strict_dst_multihoming) 13790 strict_check = B_TRUE; 13791 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13792 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13793 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13794 } 13795 /* 13796 * If the same ire that was returned in ip_input() is found then this 13797 * is an indication that usesrc groups are in use. The packet 13798 * arrived on a different ill in the group than the one associated with 13799 * the destination address. If a different ire was found then the same 13800 * IP address must be hosted on multiple ills. This is possible with 13801 * unnumbered point2point interfaces. We switch to use this new ire in 13802 * order to have accurate interface statistics. 13803 */ 13804 if (new_ire != NULL) { 13805 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13806 ire_refrele(ire); 13807 ire = new_ire; 13808 } else { 13809 ire_refrele(new_ire); 13810 } 13811 return (ire); 13812 } else if ((ire->ire_rfq == NULL) && 13813 (ire->ire_ipversion == IPV4_VERSION)) { 13814 /* 13815 * The best match could have been the original ire which 13816 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13817 * the strict multihoming checks are irrelevant as we consider 13818 * local addresses hosted on lo0 to be interface agnostic. We 13819 * only expect a null ire_rfq on IREs which are associated with 13820 * lo0 hence we can return now. 13821 */ 13822 return (ire); 13823 } 13824 13825 /* 13826 * Chase pointers once and store locally. 13827 */ 13828 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13829 (ill_t *)(ire->ire_rfq->q_ptr); 13830 ifindex = ill->ill_usesrc_ifindex; 13831 13832 /* 13833 * Check if it's a legal address on the 'usesrc' interface. 13834 */ 13835 if ((ifindex != 0) && (ire_ill != NULL) && 13836 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13837 return (ire); 13838 } 13839 13840 /* 13841 * If the ip*_strict_dst_multihoming switch is on then we can 13842 * only accept this packet if the interface is marked as routing. 13843 */ 13844 if (!(strict_check)) 13845 return (ire); 13846 13847 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13848 ILLF_ROUTER) != 0) { 13849 return (ire); 13850 } 13851 13852 ire_refrele(ire); 13853 return (NULL); 13854 } 13855 13856 /* 13857 * 13858 * This is the fast forward path. If we are here, we dont need to 13859 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13860 * needed to find the nexthop in this case is much simpler 13861 */ 13862 ire_t * 13863 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13864 { 13865 ipha_t *ipha; 13866 ire_t *src_ire; 13867 ill_t *stq_ill; 13868 uint_t hlen; 13869 uint_t pkt_len; 13870 uint32_t sum; 13871 queue_t *dev_q; 13872 ip_stack_t *ipst = ill->ill_ipst; 13873 mblk_t *fpmp; 13874 enum ire_forward_action ret_action; 13875 13876 ipha = (ipha_t *)mp->b_rptr; 13877 13878 if (ire != NULL && 13879 ire->ire_zoneid != GLOBAL_ZONEID && 13880 ire->ire_zoneid != ALL_ZONES) { 13881 /* 13882 * Should only use IREs that are visible to the global 13883 * zone for forwarding. 13884 */ 13885 ire_refrele(ire); 13886 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13887 /* 13888 * ire_cache_lookup() can return ire of IRE_LOCAL in 13889 * transient cases. In such case, just drop the packet 13890 */ 13891 if (ire->ire_type != IRE_CACHE) 13892 goto drop; 13893 } 13894 13895 /* 13896 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13897 * The loopback address check for both src and dst has already 13898 * been checked in ip_input 13899 */ 13900 13901 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13902 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13903 goto drop; 13904 } 13905 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13906 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13907 13908 if (src_ire != NULL) { 13909 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13910 ire_refrele(src_ire); 13911 goto drop; 13912 } 13913 13914 /* No ire cache of nexthop. So first create one */ 13915 if (ire == NULL) { 13916 13917 ire = ire_forward_simple(dst, &ret_action, ipst); 13918 13919 /* 13920 * We only come to ip_fast_forward if ip_cgtp_filter 13921 * is not set. So ire_forward() should not return with 13922 * Forward_check_multirt as the next action. 13923 */ 13924 ASSERT(ret_action != Forward_check_multirt); 13925 if (ire == NULL) { 13926 /* An attempt was made to forward the packet */ 13927 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13928 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13929 mp->b_prev = mp->b_next = 0; 13930 /* send icmp unreachable */ 13931 /* Sent by forwarding path, and router is global zone */ 13932 if (ret_action == Forward_ret_icmp_err) { 13933 if (ip_source_routed(ipha, ipst)) { 13934 icmp_unreachable(ill->ill_wq, mp, 13935 ICMP_SOURCE_ROUTE_FAILED, 13936 GLOBAL_ZONEID, ipst); 13937 } else { 13938 icmp_unreachable(ill->ill_wq, mp, 13939 ICMP_HOST_UNREACHABLE, 13940 GLOBAL_ZONEID, ipst); 13941 } 13942 } else { 13943 freemsg(mp); 13944 } 13945 return (NULL); 13946 } 13947 } 13948 13949 /* 13950 * Forwarding fastpath exception case: 13951 * If any of the following are true, we take the slowpath: 13952 * o forwarding is not enabled 13953 * o incoming and outgoing interface are the same, or in the same 13954 * IPMP group. 13955 * o corresponding ire is in incomplete state 13956 * o packet needs fragmentation 13957 * o ARP cache is not resolved 13958 * 13959 * The codeflow from here on is thus: 13960 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13961 */ 13962 pkt_len = ntohs(ipha->ipha_length); 13963 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13964 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13965 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13966 (ire->ire_nce == NULL) || 13967 (pkt_len > ire->ire_max_frag) || 13968 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13969 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13970 ipha->ipha_ttl <= 1) { 13971 ip_rput_process_forward(ill->ill_rq, mp, ire, 13972 ipha, ill, B_FALSE, B_TRUE); 13973 return (ire); 13974 } 13975 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13976 13977 DTRACE_PROBE4(ip4__forwarding__start, 13978 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13979 13980 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13981 ipst->ips_ipv4firewall_forwarding, 13982 ill, stq_ill, ipha, mp, mp, 0, ipst); 13983 13984 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13985 13986 if (mp == NULL) 13987 goto drop; 13988 13989 mp->b_datap->db_struioun.cksum.flags = 0; 13990 /* Adjust the checksum to reflect the ttl decrement. */ 13991 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13992 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13993 ipha->ipha_ttl--; 13994 13995 /* 13996 * Write the link layer header. We can do this safely here, 13997 * because we have already tested to make sure that the IP 13998 * policy is not set, and that we have a fast path destination 13999 * header. 14000 */ 14001 mp->b_rptr -= hlen; 14002 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14003 14004 UPDATE_IB_PKT_COUNT(ire); 14005 ire->ire_last_used_time = lbolt; 14006 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14007 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14008 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14009 14010 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14011 dev_q = ire->ire_stq->q_next; 14012 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14013 goto indiscard; 14014 } 14015 14016 DTRACE_PROBE4(ip4__physical__out__start, 14017 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14018 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14019 ipst->ips_ipv4firewall_physical_out, 14020 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14021 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14022 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14023 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14024 ip6_t *, NULL, int, 0); 14025 14026 if (mp != NULL) { 14027 if (ipst->ips_ipobs_enabled) { 14028 zoneid_t szone; 14029 14030 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14031 ipst, ALL_ZONES); 14032 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14033 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14034 } 14035 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 14036 } 14037 return (ire); 14038 14039 indiscard: 14040 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14041 drop: 14042 if (mp != NULL) 14043 freemsg(mp); 14044 return (ire); 14045 14046 } 14047 14048 /* 14049 * This function is called in the forwarding slowpath, when 14050 * either the ire lacks the link-layer address, or the packet needs 14051 * further processing(eg. fragmentation), before transmission. 14052 */ 14053 14054 static void 14055 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14056 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14057 { 14058 queue_t *dev_q; 14059 ire_t *src_ire; 14060 ip_stack_t *ipst = ill->ill_ipst; 14061 boolean_t same_illgrp = B_FALSE; 14062 14063 ASSERT(ire->ire_stq != NULL); 14064 14065 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14066 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14067 14068 /* 14069 * If the caller of this function is ip_fast_forward() skip the 14070 * next three checks as it does not apply. 14071 */ 14072 if (from_ip_fast_forward) 14073 goto skip; 14074 14075 if (ll_multicast != 0) { 14076 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14077 goto drop_pkt; 14078 } 14079 14080 /* 14081 * check if ipha_src is a broadcast address. Note that this 14082 * check is redundant when we get here from ip_fast_forward() 14083 * which has already done this check. However, since we can 14084 * also get here from ip_rput_process_broadcast() or, for 14085 * for the slow path through ip_fast_forward(), we perform 14086 * the check again for code-reusability 14087 */ 14088 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14089 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14090 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14091 if (src_ire != NULL) 14092 ire_refrele(src_ire); 14093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14094 ip2dbg(("ip_rput_process_forward: Received packet with" 14095 " bad src/dst address on %s\n", ill->ill_name)); 14096 goto drop_pkt; 14097 } 14098 14099 /* 14100 * Check if we want to forward this one at this time. 14101 * We allow source routed packets on a host provided that 14102 * they go out the same ill or illgrp as they came in on. 14103 * 14104 * XXX To be quicker, we may wish to not chase pointers to 14105 * get the ILLF_ROUTER flag and instead store the 14106 * forwarding policy in the ire. An unfortunate 14107 * side-effect of that would be requiring an ire flush 14108 * whenever the ILLF_ROUTER flag changes. 14109 */ 14110 skip: 14111 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14112 14113 if (((ill->ill_flags & 14114 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14115 !(ip_source_routed(ipha, ipst) && 14116 (ire->ire_rfq == q || same_illgrp))) { 14117 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14118 if (ip_source_routed(ipha, ipst)) { 14119 q = WR(q); 14120 /* 14121 * Clear the indication that this may have 14122 * hardware checksum as we are not using it. 14123 */ 14124 DB_CKSUMFLAGS(mp) = 0; 14125 /* Sent by forwarding path, and router is global zone */ 14126 icmp_unreachable(q, mp, 14127 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14128 return; 14129 } 14130 goto drop_pkt; 14131 } 14132 14133 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14134 14135 /* Packet is being forwarded. Turning off hwcksum flag. */ 14136 DB_CKSUMFLAGS(mp) = 0; 14137 if (ipst->ips_ip_g_send_redirects) { 14138 /* 14139 * Check whether the incoming interface and outgoing 14140 * interface is part of the same group. If so, 14141 * send redirects. 14142 * 14143 * Check the source address to see if it originated 14144 * on the same logical subnet it is going back out on. 14145 * If so, we should be able to send it a redirect. 14146 * Avoid sending a redirect if the destination 14147 * is directly connected (i.e., ipha_dst is the same 14148 * as ire_gateway_addr or the ire_addr of the 14149 * nexthop IRE_CACHE ), or if the packet was source 14150 * routed out this interface. 14151 */ 14152 ipaddr_t src, nhop; 14153 mblk_t *mp1; 14154 ire_t *nhop_ire = NULL; 14155 14156 /* 14157 * Check whether ire_rfq and q are from the same ill or illgrp. 14158 * If so, send redirects. 14159 */ 14160 if ((ire->ire_rfq == q || same_illgrp) && 14161 !ip_source_routed(ipha, ipst)) { 14162 14163 nhop = (ire->ire_gateway_addr != 0 ? 14164 ire->ire_gateway_addr : ire->ire_addr); 14165 14166 if (ipha->ipha_dst == nhop) { 14167 /* 14168 * We avoid sending a redirect if the 14169 * destination is directly connected 14170 * because it is possible that multiple 14171 * IP subnets may have been configured on 14172 * the link, and the source may not 14173 * be on the same subnet as ip destination, 14174 * even though they are on the same 14175 * physical link. 14176 */ 14177 goto sendit; 14178 } 14179 14180 src = ipha->ipha_src; 14181 14182 /* 14183 * We look up the interface ire for the nexthop, 14184 * to see if ipha_src is in the same subnet 14185 * as the nexthop. 14186 * 14187 * Note that, if, in the future, IRE_CACHE entries 14188 * are obsoleted, this lookup will not be needed, 14189 * as the ire passed to this function will be the 14190 * same as the nhop_ire computed below. 14191 */ 14192 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14193 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14194 0, NULL, MATCH_IRE_TYPE, ipst); 14195 14196 if (nhop_ire != NULL) { 14197 if ((src & nhop_ire->ire_mask) == 14198 (nhop & nhop_ire->ire_mask)) { 14199 /* 14200 * The source is directly connected. 14201 * Just copy the ip header (which is 14202 * in the first mblk) 14203 */ 14204 mp1 = copyb(mp); 14205 if (mp1 != NULL) { 14206 icmp_send_redirect(WR(q), mp1, 14207 nhop, ipst); 14208 } 14209 } 14210 ire_refrele(nhop_ire); 14211 } 14212 } 14213 } 14214 sendit: 14215 dev_q = ire->ire_stq->q_next; 14216 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14217 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14218 freemsg(mp); 14219 return; 14220 } 14221 14222 ip_rput_forward(ire, ipha, mp, ill); 14223 return; 14224 14225 drop_pkt: 14226 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14227 freemsg(mp); 14228 } 14229 14230 ire_t * 14231 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14232 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14233 { 14234 queue_t *q; 14235 uint16_t hcksumflags; 14236 ip_stack_t *ipst = ill->ill_ipst; 14237 14238 q = *qp; 14239 14240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14241 14242 /* 14243 * Clear the indication that this may have hardware 14244 * checksum as we are not using it for forwarding. 14245 */ 14246 hcksumflags = DB_CKSUMFLAGS(mp); 14247 DB_CKSUMFLAGS(mp) = 0; 14248 14249 /* 14250 * Directed broadcast forwarding: if the packet came in over a 14251 * different interface then it is routed out over we can forward it. 14252 */ 14253 if (ipha->ipha_protocol == IPPROTO_TCP) { 14254 ire_refrele(ire); 14255 freemsg(mp); 14256 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14257 return (NULL); 14258 } 14259 /* 14260 * For multicast we have set dst to be INADDR_BROADCAST 14261 * for delivering to all STREAMS. 14262 */ 14263 if (!CLASSD(ipha->ipha_dst)) { 14264 ire_t *new_ire; 14265 ipif_t *ipif; 14266 14267 ipif = ipif_get_next_ipif(NULL, ill); 14268 if (ipif == NULL) { 14269 discard: ire_refrele(ire); 14270 freemsg(mp); 14271 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14272 return (NULL); 14273 } 14274 new_ire = ire_ctable_lookup(dst, 0, 0, 14275 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14276 ipif_refrele(ipif); 14277 14278 if (new_ire != NULL) { 14279 /* 14280 * If the matching IRE_BROADCAST is part of an IPMP 14281 * group, then drop the packet unless our ill has been 14282 * nominated to receive for the group. 14283 */ 14284 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14285 new_ire->ire_rfq != q) { 14286 ire_refrele(new_ire); 14287 goto discard; 14288 } 14289 14290 /* 14291 * In the special case of multirouted broadcast 14292 * packets, we unconditionally need to "gateway" 14293 * them to the appropriate interface here. 14294 * In the normal case, this cannot happen, because 14295 * there is no broadcast IRE tagged with the 14296 * RTF_MULTIRT flag. 14297 */ 14298 if (new_ire->ire_flags & RTF_MULTIRT) { 14299 ire_refrele(new_ire); 14300 if (ire->ire_rfq != NULL) { 14301 q = ire->ire_rfq; 14302 *qp = q; 14303 } 14304 } else { 14305 ire_refrele(ire); 14306 ire = new_ire; 14307 } 14308 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14309 if (!ipst->ips_ip_g_forward_directed_bcast) { 14310 /* 14311 * Free the message if 14312 * ip_g_forward_directed_bcast is turned 14313 * off for non-local broadcast. 14314 */ 14315 ire_refrele(ire); 14316 freemsg(mp); 14317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14318 return (NULL); 14319 } 14320 } else { 14321 /* 14322 * This CGTP packet successfully passed the 14323 * CGTP filter, but the related CGTP 14324 * broadcast IRE has not been found, 14325 * meaning that the redundant ipif is 14326 * probably down. However, if we discarded 14327 * this packet, its duplicate would be 14328 * filtered out by the CGTP filter so none 14329 * of them would get through. So we keep 14330 * going with this one. 14331 */ 14332 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14333 if (ire->ire_rfq != NULL) { 14334 q = ire->ire_rfq; 14335 *qp = q; 14336 } 14337 } 14338 } 14339 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14340 /* 14341 * Verify that there are not more then one 14342 * IRE_BROADCAST with this broadcast address which 14343 * has ire_stq set. 14344 * TODO: simplify, loop over all IRE's 14345 */ 14346 ire_t *ire1; 14347 int num_stq = 0; 14348 mblk_t *mp1; 14349 14350 /* Find the first one with ire_stq set */ 14351 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14352 for (ire1 = ire; ire1 && 14353 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14354 ire1 = ire1->ire_next) 14355 ; 14356 if (ire1) { 14357 ire_refrele(ire); 14358 ire = ire1; 14359 IRE_REFHOLD(ire); 14360 } 14361 14362 /* Check if there are additional ones with stq set */ 14363 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14364 if (ire->ire_addr != ire1->ire_addr) 14365 break; 14366 if (ire1->ire_stq) { 14367 num_stq++; 14368 break; 14369 } 14370 } 14371 rw_exit(&ire->ire_bucket->irb_lock); 14372 if (num_stq == 1 && ire->ire_stq != NULL) { 14373 ip1dbg(("ip_rput_process_broadcast: directed " 14374 "broadcast to 0x%x\n", 14375 ntohl(ire->ire_addr))); 14376 mp1 = copymsg(mp); 14377 if (mp1) { 14378 switch (ipha->ipha_protocol) { 14379 case IPPROTO_UDP: 14380 ip_udp_input(q, mp1, ipha, ire, ill); 14381 break; 14382 default: 14383 ip_proto_input(q, mp1, ipha, ire, ill, 14384 0); 14385 break; 14386 } 14387 } 14388 /* 14389 * Adjust ttl to 2 (1+1 - the forward engine 14390 * will decrement it by one. 14391 */ 14392 if (ip_csum_hdr(ipha)) { 14393 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14394 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14395 freemsg(mp); 14396 ire_refrele(ire); 14397 return (NULL); 14398 } 14399 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14400 ipha->ipha_hdr_checksum = 0; 14401 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14402 ip_rput_process_forward(q, mp, ire, ipha, 14403 ill, ll_multicast, B_FALSE); 14404 ire_refrele(ire); 14405 return (NULL); 14406 } 14407 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14408 ntohl(ire->ire_addr))); 14409 } 14410 14411 /* Restore any hardware checksum flags */ 14412 DB_CKSUMFLAGS(mp) = hcksumflags; 14413 return (ire); 14414 } 14415 14416 /* ARGSUSED */ 14417 static boolean_t 14418 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14419 int *ll_multicast, ipaddr_t *dstp) 14420 { 14421 ip_stack_t *ipst = ill->ill_ipst; 14422 14423 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14424 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14425 ntohs(ipha->ipha_length)); 14426 14427 /* 14428 * So that we don't end up with dups, only one ill in an IPMP group is 14429 * nominated to receive multicast traffic. 14430 */ 14431 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14432 goto drop_pkt; 14433 14434 /* 14435 * Forward packets only if we have joined the allmulti 14436 * group on this interface. 14437 */ 14438 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14439 int retval; 14440 14441 /* 14442 * Clear the indication that this may have hardware 14443 * checksum as we are not using it. 14444 */ 14445 DB_CKSUMFLAGS(mp) = 0; 14446 retval = ip_mforward(ill, ipha, mp); 14447 /* ip_mforward updates mib variables if needed */ 14448 /* clear b_prev - used by ip_mroute_decap */ 14449 mp->b_prev = NULL; 14450 14451 switch (retval) { 14452 case 0: 14453 /* 14454 * pkt is okay and arrived on phyint. 14455 * 14456 * If we are running as a multicast router 14457 * we need to see all IGMP and/or PIM packets. 14458 */ 14459 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14460 (ipha->ipha_protocol == IPPROTO_PIM)) { 14461 goto done; 14462 } 14463 break; 14464 case -1: 14465 /* pkt is mal-formed, toss it */ 14466 goto drop_pkt; 14467 case 1: 14468 /* pkt is okay and arrived on a tunnel */ 14469 /* 14470 * If we are running a multicast router 14471 * we need to see all igmp packets. 14472 */ 14473 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14474 *dstp = INADDR_BROADCAST; 14475 *ll_multicast = 1; 14476 return (B_FALSE); 14477 } 14478 14479 goto drop_pkt; 14480 } 14481 } 14482 14483 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14484 /* 14485 * This might just be caused by the fact that 14486 * multiple IP Multicast addresses map to the same 14487 * link layer multicast - no need to increment counter! 14488 */ 14489 freemsg(mp); 14490 return (B_TRUE); 14491 } 14492 done: 14493 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14494 /* 14495 * This assumes the we deliver to all streams for multicast 14496 * and broadcast packets. 14497 */ 14498 *dstp = INADDR_BROADCAST; 14499 *ll_multicast = 1; 14500 return (B_FALSE); 14501 drop_pkt: 14502 ip2dbg(("ip_rput: drop pkt\n")); 14503 freemsg(mp); 14504 return (B_TRUE); 14505 } 14506 14507 /* 14508 * This function is used to both return an indication of whether or not 14509 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14510 * and in doing so, determine whether or not it is broadcast vs multicast. 14511 * For it to be a broadcast packet, we must have the appropriate mblk_t 14512 * hanging off the ill_t. If this is either not present or doesn't match 14513 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14514 * to be multicast. Thus NICs that have no broadcast address (or no 14515 * capability for one, such as point to point links) cannot return as 14516 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14517 * the return values simplifies the current use of the return value of this 14518 * function, which is to pass through the multicast/broadcast characteristic 14519 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14520 * changing the return value to some other symbol demands the appropriate 14521 * "translation" when hpe_flags is set prior to calling hook_run() for 14522 * packet events. 14523 */ 14524 int 14525 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14526 { 14527 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14528 mblk_t *bmp; 14529 14530 if (ind->dl_group_address) { 14531 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14532 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14533 MBLKL(mb) && 14534 (bmp = ill->ill_bcast_mp) != NULL) { 14535 dl_unitdata_req_t *dlur; 14536 uint8_t *bphys_addr; 14537 14538 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14539 if (ill->ill_sap_length < 0) 14540 bphys_addr = (uchar_t *)dlur + 14541 dlur->dl_dest_addr_offset; 14542 else 14543 bphys_addr = (uchar_t *)dlur + 14544 dlur->dl_dest_addr_offset + 14545 ill->ill_sap_length; 14546 14547 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14548 bphys_addr, ind->dl_dest_addr_length) == 0) { 14549 return (HPE_BROADCAST); 14550 } 14551 return (HPE_MULTICAST); 14552 } 14553 return (HPE_MULTICAST); 14554 } 14555 return (0); 14556 } 14557 14558 static boolean_t 14559 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14560 int *ll_multicast, mblk_t **mpp) 14561 { 14562 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14563 boolean_t must_copy = B_FALSE; 14564 struct iocblk *iocp; 14565 ipha_t *ipha; 14566 ip_stack_t *ipst = ill->ill_ipst; 14567 14568 #define rptr ((uchar_t *)ipha) 14569 14570 first_mp = *first_mpp; 14571 mp = *mpp; 14572 14573 ASSERT(first_mp == mp); 14574 14575 /* 14576 * if db_ref > 1 then copymsg and free original. Packet may be 14577 * changed and do not want other entity who has a reference to this 14578 * message to trip over the changes. This is a blind change because 14579 * trying to catch all places that might change packet is too 14580 * difficult (since it may be a module above this one) 14581 * 14582 * This corresponds to the non-fast path case. We walk down the full 14583 * chain in this case, and check the db_ref count of all the dblks, 14584 * and do a copymsg if required. It is possible that the db_ref counts 14585 * of the data blocks in the mblk chain can be different. 14586 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14587 * count of 1, followed by a M_DATA block with a ref count of 2, if 14588 * 'snoop' is running. 14589 */ 14590 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14591 if (mp1->b_datap->db_ref > 1) { 14592 must_copy = B_TRUE; 14593 break; 14594 } 14595 } 14596 14597 if (must_copy) { 14598 mp1 = copymsg(mp); 14599 if (mp1 == NULL) { 14600 for (mp1 = mp; mp1 != NULL; 14601 mp1 = mp1->b_cont) { 14602 mp1->b_next = NULL; 14603 mp1->b_prev = NULL; 14604 } 14605 freemsg(mp); 14606 if (ill != NULL) { 14607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14608 } else { 14609 BUMP_MIB(&ipst->ips_ip_mib, 14610 ipIfStatsInDiscards); 14611 } 14612 return (B_TRUE); 14613 } 14614 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14615 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14616 /* Copy b_prev - used by ip_mroute_decap */ 14617 to_mp->b_prev = from_mp->b_prev; 14618 from_mp->b_prev = NULL; 14619 } 14620 *first_mpp = first_mp = mp1; 14621 freemsg(mp); 14622 mp = mp1; 14623 *mpp = mp1; 14624 } 14625 14626 ipha = (ipha_t *)mp->b_rptr; 14627 14628 /* 14629 * previous code has a case for M_DATA. 14630 * We want to check how that happens. 14631 */ 14632 ASSERT(first_mp->b_datap->db_type != M_DATA); 14633 switch (first_mp->b_datap->db_type) { 14634 case M_PROTO: 14635 case M_PCPROTO: 14636 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14637 DL_UNITDATA_IND) { 14638 /* Go handle anything other than data elsewhere. */ 14639 ip_rput_dlpi(q, mp); 14640 return (B_TRUE); 14641 } 14642 14643 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14644 /* Ditch the DLPI header. */ 14645 mp1 = mp->b_cont; 14646 ASSERT(first_mp == mp); 14647 *first_mpp = mp1; 14648 freeb(mp); 14649 *mpp = mp1; 14650 return (B_FALSE); 14651 case M_IOCACK: 14652 ip1dbg(("got iocack ")); 14653 iocp = (struct iocblk *)mp->b_rptr; 14654 switch (iocp->ioc_cmd) { 14655 case DL_IOC_HDR_INFO: 14656 ill = (ill_t *)q->q_ptr; 14657 ill_fastpath_ack(ill, mp); 14658 return (B_TRUE); 14659 case SIOCSTUNPARAM: 14660 case OSIOCSTUNPARAM: 14661 /* Go through qwriter_ip */ 14662 break; 14663 case SIOCGTUNPARAM: 14664 case OSIOCGTUNPARAM: 14665 ip_rput_other(NULL, q, mp, NULL); 14666 return (B_TRUE); 14667 default: 14668 putnext(q, mp); 14669 return (B_TRUE); 14670 } 14671 /* FALLTHRU */ 14672 case M_ERROR: 14673 case M_HANGUP: 14674 /* 14675 * Since this is on the ill stream we unconditionally 14676 * bump up the refcount 14677 */ 14678 ill_refhold(ill); 14679 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14680 return (B_TRUE); 14681 case M_CTL: 14682 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14683 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14684 IPHADA_M_CTL)) { 14685 /* 14686 * It's an IPsec accelerated packet. 14687 * Make sure that the ill from which we received the 14688 * packet has enabled IPsec hardware acceleration. 14689 */ 14690 if (!(ill->ill_capabilities & 14691 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14692 /* IPsec kstats: bean counter */ 14693 freemsg(mp); 14694 return (B_TRUE); 14695 } 14696 14697 /* 14698 * Make mp point to the mblk following the M_CTL, 14699 * then process according to type of mp. 14700 * After this processing, first_mp will point to 14701 * the data-attributes and mp to the pkt following 14702 * the M_CTL. 14703 */ 14704 mp = first_mp->b_cont; 14705 if (mp == NULL) { 14706 freemsg(first_mp); 14707 return (B_TRUE); 14708 } 14709 /* 14710 * A Hardware Accelerated packet can only be M_DATA 14711 * ESP or AH packet. 14712 */ 14713 if (mp->b_datap->db_type != M_DATA) { 14714 /* non-M_DATA IPsec accelerated packet */ 14715 IPSECHW_DEBUG(IPSECHW_PKT, 14716 ("non-M_DATA IPsec accelerated pkt\n")); 14717 freemsg(first_mp); 14718 return (B_TRUE); 14719 } 14720 ipha = (ipha_t *)mp->b_rptr; 14721 if (ipha->ipha_protocol != IPPROTO_AH && 14722 ipha->ipha_protocol != IPPROTO_ESP) { 14723 IPSECHW_DEBUG(IPSECHW_PKT, 14724 ("non-M_DATA IPsec accelerated pkt\n")); 14725 freemsg(first_mp); 14726 return (B_TRUE); 14727 } 14728 *mpp = mp; 14729 return (B_FALSE); 14730 } 14731 putnext(q, mp); 14732 return (B_TRUE); 14733 case M_IOCNAK: 14734 ip1dbg(("got iocnak ")); 14735 iocp = (struct iocblk *)mp->b_rptr; 14736 switch (iocp->ioc_cmd) { 14737 case SIOCSTUNPARAM: 14738 case OSIOCSTUNPARAM: 14739 /* 14740 * Since this is on the ill stream we unconditionally 14741 * bump up the refcount 14742 */ 14743 ill_refhold(ill); 14744 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14745 return (B_TRUE); 14746 case DL_IOC_HDR_INFO: 14747 case SIOCGTUNPARAM: 14748 case OSIOCGTUNPARAM: 14749 ip_rput_other(NULL, q, mp, NULL); 14750 return (B_TRUE); 14751 default: 14752 break; 14753 } 14754 /* FALLTHRU */ 14755 default: 14756 putnext(q, mp); 14757 return (B_TRUE); 14758 } 14759 } 14760 14761 /* Read side put procedure. Packets coming from the wire arrive here. */ 14762 void 14763 ip_rput(queue_t *q, mblk_t *mp) 14764 { 14765 ill_t *ill; 14766 union DL_primitives *dl; 14767 14768 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14769 14770 ill = (ill_t *)q->q_ptr; 14771 14772 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14773 /* 14774 * If things are opening or closing, only accept high-priority 14775 * DLPI messages. (On open ill->ill_ipif has not yet been 14776 * created; on close, things hanging off the ill may have been 14777 * freed already.) 14778 */ 14779 dl = (union DL_primitives *)mp->b_rptr; 14780 if (DB_TYPE(mp) != M_PCPROTO || 14781 dl->dl_primitive == DL_UNITDATA_IND) { 14782 /* 14783 * SIOC[GS]TUNPARAM ioctls can come here. 14784 */ 14785 inet_freemsg(mp); 14786 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14787 "ip_rput_end: q %p (%S)", q, "uninit"); 14788 return; 14789 } 14790 } 14791 14792 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14793 "ip_rput_end: q %p (%S)", q, "end"); 14794 14795 ip_input(ill, NULL, mp, NULL); 14796 } 14797 14798 static mblk_t * 14799 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14800 { 14801 mblk_t *mp1; 14802 boolean_t adjusted = B_FALSE; 14803 ip_stack_t *ipst = ill->ill_ipst; 14804 14805 IP_STAT(ipst, ip_db_ref); 14806 /* 14807 * The IP_RECVSLLA option depends on having the 14808 * link layer header. First check that: 14809 * a> the underlying device is of type ether, 14810 * since this option is currently supported only 14811 * over ethernet. 14812 * b> there is enough room to copy over the link 14813 * layer header. 14814 * 14815 * Once the checks are done, adjust rptr so that 14816 * the link layer header will be copied via 14817 * copymsg. Note that, IFT_ETHER may be returned 14818 * by some non-ethernet drivers but in this case 14819 * the second check will fail. 14820 */ 14821 if (ill->ill_type == IFT_ETHER && 14822 (mp->b_rptr - mp->b_datap->db_base) >= 14823 sizeof (struct ether_header)) { 14824 mp->b_rptr -= sizeof (struct ether_header); 14825 adjusted = B_TRUE; 14826 } 14827 mp1 = copymsg(mp); 14828 14829 if (mp1 == NULL) { 14830 mp->b_next = NULL; 14831 /* clear b_prev - used by ip_mroute_decap */ 14832 mp->b_prev = NULL; 14833 freemsg(mp); 14834 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14835 return (NULL); 14836 } 14837 14838 if (adjusted) { 14839 /* 14840 * Copy is done. Restore the pointer in 14841 * the _new_ mblk 14842 */ 14843 mp1->b_rptr += sizeof (struct ether_header); 14844 } 14845 14846 /* Copy b_prev - used by ip_mroute_decap */ 14847 mp1->b_prev = mp->b_prev; 14848 mp->b_prev = NULL; 14849 14850 /* preserve the hardware checksum flags and data, if present */ 14851 if (DB_CKSUMFLAGS(mp) != 0) { 14852 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14853 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14854 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14855 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14856 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14857 } 14858 14859 freemsg(mp); 14860 return (mp1); 14861 } 14862 14863 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14864 if (tail != NULL) \ 14865 tail->b_next = mp; \ 14866 else \ 14867 head = mp; \ 14868 tail = mp; \ 14869 cnt++; \ 14870 } 14871 14872 /* 14873 * Direct read side procedure capable of dealing with chains. GLDv3 based 14874 * drivers call this function directly with mblk chains while STREAMS 14875 * read side procedure ip_rput() calls this for single packet with ip_ring 14876 * set to NULL to process one packet at a time. 14877 * 14878 * The ill will always be valid if this function is called directly from 14879 * the driver. 14880 * 14881 * If ip_input() is called from GLDv3: 14882 * 14883 * - This must be a non-VLAN IP stream. 14884 * - 'mp' is either an untagged or a special priority-tagged packet. 14885 * - Any VLAN tag that was in the MAC header has been stripped. 14886 * 14887 * If the IP header in packet is not 32-bit aligned, every message in the 14888 * chain will be aligned before further operations. This is required on SPARC 14889 * platform. 14890 */ 14891 /* ARGSUSED */ 14892 void 14893 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14894 struct mac_header_info_s *mhip) 14895 { 14896 ipaddr_t dst = NULL; 14897 ipaddr_t prev_dst; 14898 ire_t *ire = NULL; 14899 ipha_t *ipha; 14900 uint_t pkt_len; 14901 ssize_t len; 14902 uint_t opt_len; 14903 int ll_multicast; 14904 int cgtp_flt_pkt; 14905 queue_t *q = ill->ill_rq; 14906 squeue_t *curr_sqp = NULL; 14907 mblk_t *head = NULL; 14908 mblk_t *tail = NULL; 14909 mblk_t *first_mp; 14910 int cnt = 0; 14911 ip_stack_t *ipst = ill->ill_ipst; 14912 mblk_t *mp; 14913 mblk_t *dmp; 14914 uint8_t tag; 14915 14916 ASSERT(mp_chain != NULL); 14917 ASSERT(ill != NULL); 14918 14919 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14920 14921 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14922 14923 #define rptr ((uchar_t *)ipha) 14924 14925 while (mp_chain != NULL) { 14926 mp = mp_chain; 14927 mp_chain = mp_chain->b_next; 14928 mp->b_next = NULL; 14929 ll_multicast = 0; 14930 14931 /* 14932 * We do ire caching from one iteration to 14933 * another. In the event the packet chain contains 14934 * all packets from the same dst, this caching saves 14935 * an ire_cache_lookup for each of the succeeding 14936 * packets in a packet chain. 14937 */ 14938 prev_dst = dst; 14939 14940 /* 14941 * if db_ref > 1 then copymsg and free original. Packet 14942 * may be changed and we do not want the other entity 14943 * who has a reference to this message to trip over the 14944 * changes. This is a blind change because trying to 14945 * catch all places that might change the packet is too 14946 * difficult. 14947 * 14948 * This corresponds to the fast path case, where we have 14949 * a chain of M_DATA mblks. We check the db_ref count 14950 * of only the 1st data block in the mblk chain. There 14951 * doesn't seem to be a reason why a device driver would 14952 * send up data with varying db_ref counts in the mblk 14953 * chain. In any case the Fast path is a private 14954 * interface, and our drivers don't do such a thing. 14955 * Given the above assumption, there is no need to walk 14956 * down the entire mblk chain (which could have a 14957 * potential performance problem) 14958 * 14959 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14960 * to here because of exclusive ip stacks and vnics. 14961 * Packets transmitted from exclusive stack over vnic 14962 * can have db_ref > 1 and when it gets looped back to 14963 * another vnic in a different zone, you have ip_input() 14964 * getting dblks with db_ref > 1. So if someone 14965 * complains of TCP performance under this scenario, 14966 * take a serious look here on the impact of copymsg(). 14967 */ 14968 14969 if (DB_REF(mp) > 1) { 14970 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14971 continue; 14972 } 14973 14974 /* 14975 * Check and align the IP header. 14976 */ 14977 first_mp = mp; 14978 if (DB_TYPE(mp) == M_DATA) { 14979 dmp = mp; 14980 } else if (DB_TYPE(mp) == M_PROTO && 14981 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14982 dmp = mp->b_cont; 14983 } else { 14984 dmp = NULL; 14985 } 14986 if (dmp != NULL) { 14987 /* 14988 * IP header ptr not aligned? 14989 * OR IP header not complete in first mblk 14990 */ 14991 if (!OK_32PTR(dmp->b_rptr) || 14992 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14993 if (!ip_check_and_align_header(q, dmp, ipst)) 14994 continue; 14995 } 14996 } 14997 14998 /* 14999 * ip_input fast path 15000 */ 15001 15002 /* mblk type is not M_DATA */ 15003 if (DB_TYPE(mp) != M_DATA) { 15004 if (ip_rput_process_notdata(q, &first_mp, ill, 15005 &ll_multicast, &mp)) 15006 continue; 15007 15008 /* 15009 * The only way we can get here is if we had a 15010 * packet that was either a DL_UNITDATA_IND or 15011 * an M_CTL for an IPsec accelerated packet. 15012 * 15013 * In either case, the first_mp will point to 15014 * the leading M_PROTO or M_CTL. 15015 */ 15016 ASSERT(first_mp != NULL); 15017 } else if (mhip != NULL) { 15018 /* 15019 * ll_multicast is set here so that it is ready 15020 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15021 * manipulates ll_multicast in the same fashion when 15022 * called from ip_rput_process_notdata. 15023 */ 15024 switch (mhip->mhi_dsttype) { 15025 case MAC_ADDRTYPE_MULTICAST : 15026 ll_multicast = HPE_MULTICAST; 15027 break; 15028 case MAC_ADDRTYPE_BROADCAST : 15029 ll_multicast = HPE_BROADCAST; 15030 break; 15031 default : 15032 break; 15033 } 15034 } 15035 15036 /* Only M_DATA can come here and it is always aligned */ 15037 ASSERT(DB_TYPE(mp) == M_DATA); 15038 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15039 15040 ipha = (ipha_t *)mp->b_rptr; 15041 len = mp->b_wptr - rptr; 15042 pkt_len = ntohs(ipha->ipha_length); 15043 15044 /* 15045 * We must count all incoming packets, even if they end 15046 * up being dropped later on. 15047 */ 15048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15049 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15050 15051 /* multiple mblk or too short */ 15052 len -= pkt_len; 15053 if (len != 0) { 15054 /* 15055 * Make sure we have data length consistent 15056 * with the IP header. 15057 */ 15058 if (mp->b_cont == NULL) { 15059 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15060 BUMP_MIB(ill->ill_ip_mib, 15061 ipIfStatsInHdrErrors); 15062 ip2dbg(("ip_input: drop pkt\n")); 15063 freemsg(mp); 15064 continue; 15065 } 15066 mp->b_wptr = rptr + pkt_len; 15067 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15068 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15069 BUMP_MIB(ill->ill_ip_mib, 15070 ipIfStatsInHdrErrors); 15071 ip2dbg(("ip_input: drop pkt\n")); 15072 freemsg(mp); 15073 continue; 15074 } 15075 (void) adjmsg(mp, -len); 15076 IP_STAT(ipst, ip_multimblk3); 15077 } 15078 } 15079 15080 /* Obtain the dst of the current packet */ 15081 dst = ipha->ipha_dst; 15082 15083 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15084 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15085 ipha, ip6_t *, NULL, int, 0); 15086 15087 /* 15088 * The following test for loopback is faster than 15089 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15090 * operations. 15091 * Note that these addresses are always in network byte order 15092 */ 15093 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15094 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15095 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15096 freemsg(mp); 15097 continue; 15098 } 15099 15100 /* 15101 * The event for packets being received from a 'physical' 15102 * interface is placed after validation of the source and/or 15103 * destination address as being local so that packets can be 15104 * redirected to loopback addresses using ipnat. 15105 */ 15106 DTRACE_PROBE4(ip4__physical__in__start, 15107 ill_t *, ill, ill_t *, NULL, 15108 ipha_t *, ipha, mblk_t *, first_mp); 15109 15110 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15111 ipst->ips_ipv4firewall_physical_in, 15112 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15113 15114 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15115 15116 if (first_mp == NULL) { 15117 continue; 15118 } 15119 dst = ipha->ipha_dst; 15120 /* 15121 * Attach any necessary label information to 15122 * this packet 15123 */ 15124 if (is_system_labeled() && 15125 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15126 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15127 freemsg(mp); 15128 continue; 15129 } 15130 15131 if (ipst->ips_ipobs_enabled) { 15132 zoneid_t dzone; 15133 15134 /* 15135 * On the inbound path the src zone will be unknown as 15136 * this packet has come from the wire. 15137 */ 15138 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15139 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15140 ill, IPV4_VERSION, 0, ipst); 15141 } 15142 15143 /* 15144 * Reuse the cached ire only if the ipha_dst of the previous 15145 * packet is the same as the current packet AND it is not 15146 * INADDR_ANY. 15147 */ 15148 if (!(dst == prev_dst && dst != INADDR_ANY) && 15149 (ire != NULL)) { 15150 ire_refrele(ire); 15151 ire = NULL; 15152 } 15153 15154 opt_len = ipha->ipha_version_and_hdr_length - 15155 IP_SIMPLE_HDR_VERSION; 15156 15157 /* 15158 * Check to see if we can take the fastpath. 15159 * That is possible if the following conditions are met 15160 * o Tsol disabled 15161 * o CGTP disabled 15162 * o ipp_action_count is 0 15163 * o no options in the packet 15164 * o not a RSVP packet 15165 * o not a multicast packet 15166 * o ill not in IP_DHCPINIT_IF mode 15167 */ 15168 if (!is_system_labeled() && 15169 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15170 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15171 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15172 if (ire == NULL) 15173 ire = ire_cache_lookup_simple(dst, ipst); 15174 /* 15175 * Unless forwarding is enabled, dont call 15176 * ip_fast_forward(). Incoming packet is for forwarding 15177 */ 15178 if ((ill->ill_flags & ILLF_ROUTER) && 15179 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15180 ire = ip_fast_forward(ire, dst, ill, mp); 15181 continue; 15182 } 15183 /* incoming packet is for local consumption */ 15184 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15185 goto local; 15186 } 15187 15188 /* 15189 * Disable ire caching for anything more complex 15190 * than the simple fast path case we checked for above. 15191 */ 15192 if (ire != NULL) { 15193 ire_refrele(ire); 15194 ire = NULL; 15195 } 15196 15197 /* 15198 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15199 * server to unicast DHCP packets to a DHCP client using the 15200 * IP address it is offering to the client. This can be 15201 * disabled through the "broadcast bit", but not all DHCP 15202 * servers honor that bit. Therefore, to interoperate with as 15203 * many DHCP servers as possible, the DHCP client allows the 15204 * server to unicast, but we treat those packets as broadcast 15205 * here. Note that we don't rewrite the packet itself since 15206 * (a) that would mess up the checksums and (b) the DHCP 15207 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15208 * hand it the packet regardless. 15209 */ 15210 if (ill->ill_dhcpinit != 0 && 15211 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15212 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15213 udpha_t *udpha; 15214 15215 /* 15216 * Reload ipha since pullupmsg() can change b_rptr. 15217 */ 15218 ipha = (ipha_t *)mp->b_rptr; 15219 udpha = (udpha_t *)&ipha[1]; 15220 15221 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15222 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15223 mblk_t *, mp); 15224 dst = INADDR_BROADCAST; 15225 } 15226 } 15227 15228 /* Full-blown slow path */ 15229 if (opt_len != 0) { 15230 if (len != 0) 15231 IP_STAT(ipst, ip_multimblk4); 15232 else 15233 IP_STAT(ipst, ip_ipoptions); 15234 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15235 &dst, ipst)) 15236 continue; 15237 } 15238 15239 /* 15240 * Invoke the CGTP (multirouting) filtering module to process 15241 * the incoming packet. Packets identified as duplicates 15242 * must be discarded. Filtering is active only if the 15243 * the ip_cgtp_filter ndd variable is non-zero. 15244 */ 15245 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15246 if (ipst->ips_ip_cgtp_filter && 15247 ipst->ips_ip_cgtp_filter_ops != NULL) { 15248 netstackid_t stackid; 15249 15250 stackid = ipst->ips_netstack->netstack_stackid; 15251 cgtp_flt_pkt = 15252 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15253 ill->ill_phyint->phyint_ifindex, mp); 15254 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15255 freemsg(first_mp); 15256 continue; 15257 } 15258 } 15259 15260 /* 15261 * If rsvpd is running, let RSVP daemon handle its processing 15262 * and forwarding of RSVP multicast/unicast packets. 15263 * If rsvpd is not running but mrouted is running, RSVP 15264 * multicast packets are forwarded as multicast traffic 15265 * and RSVP unicast packets are forwarded by unicast router. 15266 * If neither rsvpd nor mrouted is running, RSVP multicast 15267 * packets are not forwarded, but the unicast packets are 15268 * forwarded like unicast traffic. 15269 */ 15270 if (ipha->ipha_protocol == IPPROTO_RSVP && 15271 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15272 NULL) { 15273 /* RSVP packet and rsvpd running. Treat as ours */ 15274 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15275 /* 15276 * This assumes that we deliver to all streams for 15277 * multicast and broadcast packets. 15278 * We have to force ll_multicast to 1 to handle the 15279 * M_DATA messages passed in from ip_mroute_decap. 15280 */ 15281 dst = INADDR_BROADCAST; 15282 ll_multicast = 1; 15283 } else if (CLASSD(dst)) { 15284 /* packet is multicast */ 15285 mp->b_next = NULL; 15286 if (ip_rput_process_multicast(q, mp, ill, ipha, 15287 &ll_multicast, &dst)) 15288 continue; 15289 } 15290 15291 if (ire == NULL) { 15292 ire = ire_cache_lookup(dst, ALL_ZONES, 15293 msg_getlabel(mp), ipst); 15294 } 15295 15296 if (ire != NULL && ire->ire_stq != NULL && 15297 ire->ire_zoneid != GLOBAL_ZONEID && 15298 ire->ire_zoneid != ALL_ZONES) { 15299 /* 15300 * Should only use IREs that are visible from the 15301 * global zone for forwarding. 15302 */ 15303 ire_refrele(ire); 15304 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15305 msg_getlabel(mp), ipst); 15306 } 15307 15308 if (ire == NULL) { 15309 /* 15310 * No IRE for this destination, so it can't be for us. 15311 * Unless we are forwarding, drop the packet. 15312 * We have to let source routed packets through 15313 * since we don't yet know if they are 'ping -l' 15314 * packets i.e. if they will go out over the 15315 * same interface as they came in on. 15316 */ 15317 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15318 if (ire == NULL) 15319 continue; 15320 } 15321 15322 /* 15323 * Broadcast IRE may indicate either broadcast or 15324 * multicast packet 15325 */ 15326 if (ire->ire_type == IRE_BROADCAST) { 15327 /* 15328 * Skip broadcast checks if packet is UDP multicast; 15329 * we'd rather not enter ip_rput_process_broadcast() 15330 * unless the packet is broadcast for real, since 15331 * that routine is a no-op for multicast. 15332 */ 15333 if (ipha->ipha_protocol != IPPROTO_UDP || 15334 !CLASSD(ipha->ipha_dst)) { 15335 ire = ip_rput_process_broadcast(&q, mp, 15336 ire, ipha, ill, dst, cgtp_flt_pkt, 15337 ll_multicast); 15338 if (ire == NULL) 15339 continue; 15340 } 15341 } else if (ire->ire_stq != NULL) { 15342 /* fowarding? */ 15343 ip_rput_process_forward(q, mp, ire, ipha, ill, 15344 ll_multicast, B_FALSE); 15345 /* ip_rput_process_forward consumed the packet */ 15346 continue; 15347 } 15348 15349 local: 15350 /* 15351 * If the queue in the ire is different to the ingress queue 15352 * then we need to check to see if we can accept the packet. 15353 * Note that for multicast packets and broadcast packets sent 15354 * to a broadcast address which is shared between multiple 15355 * interfaces we should not do this since we just got a random 15356 * broadcast ire. 15357 */ 15358 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15359 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15360 if (ire == NULL) { 15361 /* Drop packet */ 15362 BUMP_MIB(ill->ill_ip_mib, 15363 ipIfStatsForwProhibits); 15364 freemsg(mp); 15365 continue; 15366 } 15367 if (ire->ire_rfq != NULL) 15368 q = ire->ire_rfq; 15369 } 15370 15371 switch (ipha->ipha_protocol) { 15372 case IPPROTO_TCP: 15373 ASSERT(first_mp == mp); 15374 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15375 mp, 0, q, ip_ring)) != NULL) { 15376 if (curr_sqp == NULL) { 15377 curr_sqp = GET_SQUEUE(mp); 15378 ASSERT(cnt == 0); 15379 cnt++; 15380 head = tail = mp; 15381 } else if (curr_sqp == GET_SQUEUE(mp)) { 15382 ASSERT(tail != NULL); 15383 cnt++; 15384 tail->b_next = mp; 15385 tail = mp; 15386 } else { 15387 /* 15388 * A different squeue. Send the 15389 * chain for the previous squeue on 15390 * its way. This shouldn't happen 15391 * often unless interrupt binding 15392 * changes. 15393 */ 15394 IP_STAT(ipst, ip_input_multi_squeue); 15395 SQUEUE_ENTER(curr_sqp, head, 15396 tail, cnt, SQ_PROCESS, tag); 15397 curr_sqp = GET_SQUEUE(mp); 15398 head = mp; 15399 tail = mp; 15400 cnt = 1; 15401 } 15402 } 15403 continue; 15404 case IPPROTO_UDP: 15405 ASSERT(first_mp == mp); 15406 ip_udp_input(q, mp, ipha, ire, ill); 15407 continue; 15408 case IPPROTO_SCTP: 15409 ASSERT(first_mp == mp); 15410 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15411 q, dst); 15412 /* ire has been released by ip_sctp_input */ 15413 ire = NULL; 15414 continue; 15415 default: 15416 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15417 continue; 15418 } 15419 } 15420 15421 if (ire != NULL) 15422 ire_refrele(ire); 15423 15424 if (head != NULL) 15425 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15426 15427 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15428 "ip_input_end: q %p (%S)", q, "end"); 15429 #undef rptr 15430 } 15431 15432 /* 15433 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15434 * a chain of packets in the poll mode. The packets have gone through the 15435 * data link processing but not IP processing. For performance and latency 15436 * reasons, the squeue wants to process the chain in line instead of feeding 15437 * it back via ip_input path. 15438 * 15439 * So this is a light weight function which checks to see if the packets 15440 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15441 * but we still do the paranoid check) meant for local machine and we don't 15442 * have labels etc enabled. Packets that meet the criterion are returned to 15443 * the squeue and processed inline while the rest go via ip_input path. 15444 */ 15445 /*ARGSUSED*/ 15446 mblk_t * 15447 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15448 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15449 { 15450 mblk_t *mp; 15451 ipaddr_t dst = NULL; 15452 ipaddr_t prev_dst; 15453 ire_t *ire = NULL; 15454 ipha_t *ipha; 15455 uint_t pkt_len; 15456 ssize_t len; 15457 uint_t opt_len; 15458 queue_t *q = ill->ill_rq; 15459 squeue_t *curr_sqp; 15460 mblk_t *ahead = NULL; /* Accepted head */ 15461 mblk_t *atail = NULL; /* Accepted tail */ 15462 uint_t acnt = 0; /* Accepted count */ 15463 mblk_t *utail = NULL; /* Unaccepted head */ 15464 mblk_t *uhead = NULL; /* Unaccepted tail */ 15465 uint_t ucnt = 0; /* Unaccepted cnt */ 15466 ip_stack_t *ipst = ill->ill_ipst; 15467 15468 *cnt = 0; 15469 15470 ASSERT(ill != NULL); 15471 ASSERT(ip_ring != NULL); 15472 15473 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15474 15475 #define rptr ((uchar_t *)ipha) 15476 15477 while (mp_chain != NULL) { 15478 mp = mp_chain; 15479 mp_chain = mp_chain->b_next; 15480 mp->b_next = NULL; 15481 15482 /* 15483 * We do ire caching from one iteration to 15484 * another. In the event the packet chain contains 15485 * all packets from the same dst, this caching saves 15486 * an ire_cache_lookup for each of the succeeding 15487 * packets in a packet chain. 15488 */ 15489 prev_dst = dst; 15490 15491 ipha = (ipha_t *)mp->b_rptr; 15492 len = mp->b_wptr - rptr; 15493 15494 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15495 15496 /* 15497 * If it is a non TCP packet, or doesn't have H/W cksum, 15498 * or doesn't have min len, reject. 15499 */ 15500 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15501 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15502 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15503 continue; 15504 } 15505 15506 pkt_len = ntohs(ipha->ipha_length); 15507 if (len != pkt_len) { 15508 if (len > pkt_len) { 15509 mp->b_wptr = rptr + pkt_len; 15510 } else { 15511 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15512 continue; 15513 } 15514 } 15515 15516 opt_len = ipha->ipha_version_and_hdr_length - 15517 IP_SIMPLE_HDR_VERSION; 15518 dst = ipha->ipha_dst; 15519 15520 /* IP version bad or there are IP options */ 15521 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15522 mp, &ipha, &dst, ipst))) 15523 continue; 15524 15525 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15526 (ipst->ips_ip_cgtp_filter && 15527 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15528 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15529 continue; 15530 } 15531 15532 /* 15533 * Reuse the cached ire only if the ipha_dst of the previous 15534 * packet is the same as the current packet AND it is not 15535 * INADDR_ANY. 15536 */ 15537 if (!(dst == prev_dst && dst != INADDR_ANY) && 15538 (ire != NULL)) { 15539 ire_refrele(ire); 15540 ire = NULL; 15541 } 15542 15543 if (ire == NULL) 15544 ire = ire_cache_lookup_simple(dst, ipst); 15545 15546 /* 15547 * Unless forwarding is enabled, dont call 15548 * ip_fast_forward(). Incoming packet is for forwarding 15549 */ 15550 if ((ill->ill_flags & ILLF_ROUTER) && 15551 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15552 15553 DTRACE_PROBE4(ip4__physical__in__start, 15554 ill_t *, ill, ill_t *, NULL, 15555 ipha_t *, ipha, mblk_t *, mp); 15556 15557 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15558 ipst->ips_ipv4firewall_physical_in, 15559 ill, NULL, ipha, mp, mp, 0, ipst); 15560 15561 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15562 15563 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15564 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15565 pkt_len); 15566 15567 if (mp != NULL) 15568 ire = ip_fast_forward(ire, dst, ill, mp); 15569 continue; 15570 } 15571 15572 /* incoming packet is for local consumption */ 15573 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15574 goto local_accept; 15575 15576 /* 15577 * Disable ire caching for anything more complex 15578 * than the simple fast path case we checked for above. 15579 */ 15580 if (ire != NULL) { 15581 ire_refrele(ire); 15582 ire = NULL; 15583 } 15584 15585 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15586 ipst); 15587 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15588 ire->ire_stq != NULL) { 15589 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15590 if (ire != NULL) { 15591 ire_refrele(ire); 15592 ire = NULL; 15593 } 15594 continue; 15595 } 15596 15597 local_accept: 15598 15599 if (ire->ire_rfq != q) { 15600 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15601 if (ire != NULL) { 15602 ire_refrele(ire); 15603 ire = NULL; 15604 } 15605 continue; 15606 } 15607 15608 /* 15609 * The event for packets being received from a 'physical' 15610 * interface is placed after validation of the source and/or 15611 * destination address as being local so that packets can be 15612 * redirected to loopback addresses using ipnat. 15613 */ 15614 DTRACE_PROBE4(ip4__physical__in__start, 15615 ill_t *, ill, ill_t *, NULL, 15616 ipha_t *, ipha, mblk_t *, mp); 15617 15618 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15619 ipst->ips_ipv4firewall_physical_in, 15620 ill, NULL, ipha, mp, mp, 0, ipst); 15621 15622 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15623 15624 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15625 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15626 15627 if (mp != NULL && 15628 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15629 0, q, ip_ring)) != NULL) { 15630 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15631 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15632 } else { 15633 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15634 SQ_FILL, SQTAG_IP_INPUT); 15635 } 15636 } 15637 } 15638 15639 if (ire != NULL) 15640 ire_refrele(ire); 15641 15642 if (uhead != NULL) 15643 ip_input(ill, ip_ring, uhead, NULL); 15644 15645 if (ahead != NULL) { 15646 *last = atail; 15647 *cnt = acnt; 15648 return (ahead); 15649 } 15650 15651 return (NULL); 15652 #undef rptr 15653 } 15654 15655 static void 15656 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15657 t_uscalar_t err) 15658 { 15659 if (dl_err == DL_SYSERR) { 15660 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15661 "%s: %s failed: DL_SYSERR (errno %u)\n", 15662 ill->ill_name, dl_primstr(prim), err); 15663 return; 15664 } 15665 15666 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15667 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15668 dl_errstr(dl_err)); 15669 } 15670 15671 /* 15672 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15673 * than DL_UNITDATA_IND messages. If we need to process this message 15674 * exclusively, we call qwriter_ip, in which case we also need to call 15675 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15676 */ 15677 void 15678 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15679 { 15680 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15681 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15682 ill_t *ill = q->q_ptr; 15683 t_uscalar_t prim = dloa->dl_primitive; 15684 t_uscalar_t reqprim = DL_PRIM_INVAL; 15685 15686 ip1dbg(("ip_rput_dlpi")); 15687 15688 /* 15689 * If we received an ACK but didn't send a request for it, then it 15690 * can't be part of any pending operation; discard up-front. 15691 */ 15692 switch (prim) { 15693 case DL_ERROR_ACK: 15694 reqprim = dlea->dl_error_primitive; 15695 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15696 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15697 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15698 dlea->dl_unix_errno)); 15699 break; 15700 case DL_OK_ACK: 15701 reqprim = dloa->dl_correct_primitive; 15702 break; 15703 case DL_INFO_ACK: 15704 reqprim = DL_INFO_REQ; 15705 break; 15706 case DL_BIND_ACK: 15707 reqprim = DL_BIND_REQ; 15708 break; 15709 case DL_PHYS_ADDR_ACK: 15710 reqprim = DL_PHYS_ADDR_REQ; 15711 break; 15712 case DL_NOTIFY_ACK: 15713 reqprim = DL_NOTIFY_REQ; 15714 break; 15715 case DL_CONTROL_ACK: 15716 reqprim = DL_CONTROL_REQ; 15717 break; 15718 case DL_CAPABILITY_ACK: 15719 reqprim = DL_CAPABILITY_REQ; 15720 break; 15721 } 15722 15723 if (prim != DL_NOTIFY_IND) { 15724 if (reqprim == DL_PRIM_INVAL || 15725 !ill_dlpi_pending(ill, reqprim)) { 15726 /* Not a DLPI message we support or expected */ 15727 freemsg(mp); 15728 return; 15729 } 15730 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15731 dl_primstr(reqprim))); 15732 } 15733 15734 switch (reqprim) { 15735 case DL_UNBIND_REQ: 15736 /* 15737 * NOTE: we mark the unbind as complete even if we got a 15738 * DL_ERROR_ACK, since there's not much else we can do. 15739 */ 15740 mutex_enter(&ill->ill_lock); 15741 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15742 cv_signal(&ill->ill_cv); 15743 mutex_exit(&ill->ill_lock); 15744 break; 15745 15746 case DL_ENABMULTI_REQ: 15747 if (prim == DL_OK_ACK) { 15748 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15749 ill->ill_dlpi_multicast_state = IDS_OK; 15750 } 15751 break; 15752 } 15753 15754 /* 15755 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15756 * need to become writer to continue to process it. Because an 15757 * exclusive operation doesn't complete until replies to all queued 15758 * DLPI messages have been received, we know we're in the middle of an 15759 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15760 * 15761 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15762 * Since this is on the ill stream we unconditionally bump up the 15763 * refcount without doing ILL_CAN_LOOKUP(). 15764 */ 15765 ill_refhold(ill); 15766 if (prim == DL_NOTIFY_IND) 15767 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15768 else 15769 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15770 } 15771 15772 /* 15773 * Handling of DLPI messages that require exclusive access to the ipsq. 15774 * 15775 * Need to do ill_pending_mp_release on ioctl completion, which could 15776 * happen here. (along with mi_copy_done) 15777 */ 15778 /* ARGSUSED */ 15779 static void 15780 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15781 { 15782 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15783 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15784 int err = 0; 15785 ill_t *ill; 15786 ipif_t *ipif = NULL; 15787 mblk_t *mp1 = NULL; 15788 conn_t *connp = NULL; 15789 t_uscalar_t paddrreq; 15790 mblk_t *mp_hw; 15791 boolean_t success; 15792 boolean_t ioctl_aborted = B_FALSE; 15793 boolean_t log = B_TRUE; 15794 ip_stack_t *ipst; 15795 15796 ip1dbg(("ip_rput_dlpi_writer ..")); 15797 ill = (ill_t *)q->q_ptr; 15798 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15799 ASSERT(IAM_WRITER_ILL(ill)); 15800 15801 ipst = ill->ill_ipst; 15802 15803 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15804 /* 15805 * The current ioctl could have been aborted by the user and a new 15806 * ioctl to bring up another ill could have started. We could still 15807 * get a response from the driver later. 15808 */ 15809 if (ipif != NULL && ipif->ipif_ill != ill) 15810 ioctl_aborted = B_TRUE; 15811 15812 switch (dloa->dl_primitive) { 15813 case DL_ERROR_ACK: 15814 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15815 dl_primstr(dlea->dl_error_primitive))); 15816 15817 switch (dlea->dl_error_primitive) { 15818 case DL_DISABMULTI_REQ: 15819 ill_dlpi_done(ill, dlea->dl_error_primitive); 15820 break; 15821 case DL_PROMISCON_REQ: 15822 case DL_PROMISCOFF_REQ: 15823 case DL_UNBIND_REQ: 15824 case DL_ATTACH_REQ: 15825 case DL_INFO_REQ: 15826 ill_dlpi_done(ill, dlea->dl_error_primitive); 15827 break; 15828 case DL_NOTIFY_REQ: 15829 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15830 log = B_FALSE; 15831 break; 15832 case DL_PHYS_ADDR_REQ: 15833 /* 15834 * For IPv6 only, there are two additional 15835 * phys_addr_req's sent to the driver to get the 15836 * IPv6 token and lla. This allows IP to acquire 15837 * the hardware address format for a given interface 15838 * without having built in knowledge of the hardware 15839 * address. ill_phys_addr_pend keeps track of the last 15840 * DL_PAR sent so we know which response we are 15841 * dealing with. ill_dlpi_done will update 15842 * ill_phys_addr_pend when it sends the next req. 15843 * We don't complete the IOCTL until all three DL_PARs 15844 * have been attempted, so set *_len to 0 and break. 15845 */ 15846 paddrreq = ill->ill_phys_addr_pend; 15847 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15848 if (paddrreq == DL_IPV6_TOKEN) { 15849 ill->ill_token_length = 0; 15850 log = B_FALSE; 15851 break; 15852 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15853 ill->ill_nd_lla_len = 0; 15854 log = B_FALSE; 15855 break; 15856 } 15857 /* 15858 * Something went wrong with the DL_PHYS_ADDR_REQ. 15859 * We presumably have an IOCTL hanging out waiting 15860 * for completion. Find it and complete the IOCTL 15861 * with the error noted. 15862 * However, ill_dl_phys was called on an ill queue 15863 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15864 * set. But the ioctl is known to be pending on ill_wq. 15865 */ 15866 if (!ill->ill_ifname_pending) 15867 break; 15868 ill->ill_ifname_pending = 0; 15869 if (!ioctl_aborted) 15870 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15871 if (mp1 != NULL) { 15872 /* 15873 * This operation (SIOCSLIFNAME) must have 15874 * happened on the ill. Assert there is no conn 15875 */ 15876 ASSERT(connp == NULL); 15877 q = ill->ill_wq; 15878 } 15879 break; 15880 case DL_BIND_REQ: 15881 ill_dlpi_done(ill, DL_BIND_REQ); 15882 if (ill->ill_ifname_pending) 15883 break; 15884 /* 15885 * Something went wrong with the bind. We presumably 15886 * have an IOCTL hanging out waiting for completion. 15887 * Find it, take down the interface that was coming 15888 * up, and complete the IOCTL with the error noted. 15889 */ 15890 if (!ioctl_aborted) 15891 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15892 if (mp1 != NULL) { 15893 /* 15894 * This might be a result of a DL_NOTE_REPLUMB 15895 * notification. In that case, connp is NULL. 15896 */ 15897 if (connp != NULL) 15898 q = CONNP_TO_WQ(connp); 15899 15900 (void) ipif_down(ipif, NULL, NULL); 15901 /* error is set below the switch */ 15902 } 15903 break; 15904 case DL_ENABMULTI_REQ: 15905 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15906 15907 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15908 ill->ill_dlpi_multicast_state = IDS_FAILED; 15909 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15910 ipif_t *ipif; 15911 15912 printf("ip: joining multicasts failed (%d)" 15913 " on %s - will use link layer " 15914 "broadcasts for multicast\n", 15915 dlea->dl_errno, ill->ill_name); 15916 15917 /* 15918 * Set up the multicast mapping alone. 15919 * writer, so ok to access ill->ill_ipif 15920 * without any lock. 15921 */ 15922 ipif = ill->ill_ipif; 15923 mutex_enter(&ill->ill_phyint->phyint_lock); 15924 ill->ill_phyint->phyint_flags |= 15925 PHYI_MULTI_BCAST; 15926 mutex_exit(&ill->ill_phyint->phyint_lock); 15927 15928 if (!ill->ill_isv6) { 15929 (void) ipif_arp_setup_multicast(ipif, 15930 NULL); 15931 } else { 15932 (void) ipif_ndp_setup_multicast(ipif, 15933 NULL); 15934 } 15935 } 15936 freemsg(mp); /* Don't want to pass this up */ 15937 return; 15938 case DL_CONTROL_REQ: 15939 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15940 "DL_CONTROL_REQ\n")); 15941 ill_dlpi_done(ill, dlea->dl_error_primitive); 15942 freemsg(mp); 15943 return; 15944 case DL_CAPABILITY_REQ: 15945 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15946 "DL_CAPABILITY REQ\n")); 15947 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15948 ill->ill_dlpi_capab_state = IDCS_FAILED; 15949 ill_capability_done(ill); 15950 freemsg(mp); 15951 return; 15952 } 15953 /* 15954 * Note the error for IOCTL completion (mp1 is set when 15955 * ready to complete ioctl). If ill_ifname_pending_err is 15956 * set, an error occured during plumbing (ill_ifname_pending), 15957 * so we want to report that error. 15958 * 15959 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15960 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15961 * expected to get errack'd if the driver doesn't support 15962 * these flags (e.g. ethernet). log will be set to B_FALSE 15963 * if these error conditions are encountered. 15964 */ 15965 if (mp1 != NULL) { 15966 if (ill->ill_ifname_pending_err != 0) { 15967 err = ill->ill_ifname_pending_err; 15968 ill->ill_ifname_pending_err = 0; 15969 } else { 15970 err = dlea->dl_unix_errno ? 15971 dlea->dl_unix_errno : ENXIO; 15972 } 15973 /* 15974 * If we're plumbing an interface and an error hasn't already 15975 * been saved, set ill_ifname_pending_err to the error passed 15976 * up. Ignore the error if log is B_FALSE (see comment above). 15977 */ 15978 } else if (log && ill->ill_ifname_pending && 15979 ill->ill_ifname_pending_err == 0) { 15980 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15981 dlea->dl_unix_errno : ENXIO; 15982 } 15983 15984 if (log) 15985 ip_dlpi_error(ill, dlea->dl_error_primitive, 15986 dlea->dl_errno, dlea->dl_unix_errno); 15987 break; 15988 case DL_CAPABILITY_ACK: 15989 ill_capability_ack(ill, mp); 15990 /* 15991 * The message has been handed off to ill_capability_ack 15992 * and must not be freed below 15993 */ 15994 mp = NULL; 15995 break; 15996 15997 case DL_CONTROL_ACK: 15998 /* We treat all of these as "fire and forget" */ 15999 ill_dlpi_done(ill, DL_CONTROL_REQ); 16000 break; 16001 case DL_INFO_ACK: 16002 /* Call a routine to handle this one. */ 16003 ill_dlpi_done(ill, DL_INFO_REQ); 16004 ip_ll_subnet_defaults(ill, mp); 16005 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 16006 return; 16007 case DL_BIND_ACK: 16008 /* 16009 * We should have an IOCTL waiting on this unless 16010 * sent by ill_dl_phys, in which case just return 16011 */ 16012 ill_dlpi_done(ill, DL_BIND_REQ); 16013 if (ill->ill_ifname_pending) 16014 break; 16015 16016 if (!ioctl_aborted) 16017 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16018 if (mp1 == NULL) 16019 break; 16020 /* 16021 * mp1 was added by ill_dl_up(). if that is a result of 16022 * a DL_NOTE_REPLUMB notification, connp could be NULL. 16023 */ 16024 if (connp != NULL) 16025 q = CONNP_TO_WQ(connp); 16026 16027 /* 16028 * We are exclusive. So nothing can change even after 16029 * we get the pending mp. If need be we can put it back 16030 * and restart, as in calling ipif_arp_up() below. 16031 */ 16032 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16033 16034 mutex_enter(&ill->ill_lock); 16035 ill->ill_dl_up = 1; 16036 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16037 mutex_exit(&ill->ill_lock); 16038 16039 /* 16040 * Now bring up the resolver; when that is complete, we'll 16041 * create IREs. Note that we intentionally mirror what 16042 * ipif_up() would have done, because we got here by way of 16043 * ill_dl_up(), which stopped ipif_up()'s processing. 16044 */ 16045 if (ill->ill_isv6) { 16046 if (ill->ill_flags & ILLF_XRESOLV) { 16047 if (connp != NULL) 16048 mutex_enter(&connp->conn_lock); 16049 mutex_enter(&ill->ill_lock); 16050 success = ipsq_pending_mp_add(connp, ipif, q, 16051 mp1, 0); 16052 mutex_exit(&ill->ill_lock); 16053 if (connp != NULL) 16054 mutex_exit(&connp->conn_lock); 16055 if (success) { 16056 err = ipif_resolver_up(ipif, 16057 Res_act_initial); 16058 if (err == EINPROGRESS) { 16059 freemsg(mp); 16060 return; 16061 } 16062 ASSERT(err != 0); 16063 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16064 ASSERT(mp1 != NULL); 16065 } else { 16066 /* conn has started closing */ 16067 err = EINTR; 16068 } 16069 } else { /* Non XRESOLV interface */ 16070 (void) ipif_resolver_up(ipif, Res_act_initial); 16071 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16072 err = ipif_up_done_v6(ipif); 16073 } 16074 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16075 /* 16076 * ARP and other v4 external resolvers. 16077 * Leave the pending mblk intact so that 16078 * the ioctl completes in ip_rput(). 16079 */ 16080 if (connp != NULL) 16081 mutex_enter(&connp->conn_lock); 16082 mutex_enter(&ill->ill_lock); 16083 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16084 mutex_exit(&ill->ill_lock); 16085 if (connp != NULL) 16086 mutex_exit(&connp->conn_lock); 16087 if (success) { 16088 err = ipif_resolver_up(ipif, Res_act_initial); 16089 if (err == EINPROGRESS) { 16090 freemsg(mp); 16091 return; 16092 } 16093 ASSERT(err != 0); 16094 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16095 } else { 16096 /* The conn has started closing */ 16097 err = EINTR; 16098 } 16099 } else { 16100 /* 16101 * This one is complete. Reply to pending ioctl. 16102 */ 16103 (void) ipif_resolver_up(ipif, Res_act_initial); 16104 err = ipif_up_done(ipif); 16105 } 16106 16107 if ((err == 0) && (ill->ill_up_ipifs)) { 16108 err = ill_up_ipifs(ill, q, mp1); 16109 if (err == EINPROGRESS) { 16110 freemsg(mp); 16111 return; 16112 } 16113 } 16114 16115 /* 16116 * If we have a moved ipif to bring up, and everything has 16117 * succeeded to this point, bring it up on the IPMP ill. 16118 * Otherwise, leave it down -- the admin can try to bring it 16119 * up by hand if need be. 16120 */ 16121 if (ill->ill_move_ipif != NULL) { 16122 if (err != 0) { 16123 ill->ill_move_ipif = NULL; 16124 } else { 16125 ipif = ill->ill_move_ipif; 16126 ill->ill_move_ipif = NULL; 16127 err = ipif_up(ipif, q, mp1); 16128 if (err == EINPROGRESS) { 16129 freemsg(mp); 16130 return; 16131 } 16132 } 16133 } 16134 break; 16135 16136 case DL_NOTIFY_IND: { 16137 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16138 ire_t *ire; 16139 uint_t orig_mtu; 16140 boolean_t need_ire_walk_v4 = B_FALSE; 16141 boolean_t need_ire_walk_v6 = B_FALSE; 16142 16143 switch (notify->dl_notification) { 16144 case DL_NOTE_PHYS_ADDR: 16145 err = ill_set_phys_addr(ill, mp); 16146 break; 16147 16148 case DL_NOTE_REPLUMB: 16149 /* 16150 * Directly return after calling ill_replumb(). 16151 * Note that we should not free mp as it is reused 16152 * in the ill_replumb() function. 16153 */ 16154 err = ill_replumb(ill, mp); 16155 return; 16156 16157 case DL_NOTE_FASTPATH_FLUSH: 16158 ill_fastpath_flush(ill); 16159 break; 16160 16161 case DL_NOTE_SDU_SIZE: 16162 /* 16163 * Change the MTU size of the interface, of all 16164 * attached ipif's, and of all relevant ire's. The 16165 * new value's a uint32_t at notify->dl_data. 16166 * Mtu change Vs. new ire creation - protocol below. 16167 * 16168 * a Mark the ipif as IPIF_CHANGING. 16169 * b Set the new mtu in the ipif. 16170 * c Change the ire_max_frag on all affected ires 16171 * d Unmark the IPIF_CHANGING 16172 * 16173 * To see how the protocol works, assume an interface 16174 * route is also being added simultaneously by 16175 * ip_rt_add and let 'ipif' be the ipif referenced by 16176 * the ire. If the ire is created before step a, 16177 * it will be cleaned up by step c. If the ire is 16178 * created after step d, it will see the new value of 16179 * ipif_mtu. Any attempt to create the ire between 16180 * steps a to d will fail because of the IPIF_CHANGING 16181 * flag. Note that ire_create() is passed a pointer to 16182 * the ipif_mtu, and not the value. During ire_add 16183 * under the bucket lock, the ire_max_frag of the 16184 * new ire being created is set from the ipif/ire from 16185 * which it is being derived. 16186 */ 16187 mutex_enter(&ill->ill_lock); 16188 16189 orig_mtu = ill->ill_max_mtu; 16190 ill->ill_max_frag = (uint_t)notify->dl_data; 16191 ill->ill_max_mtu = (uint_t)notify->dl_data; 16192 16193 /* 16194 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16195 * clamp ill_max_mtu at it. 16196 */ 16197 if (ill->ill_user_mtu != 0 && 16198 ill->ill_user_mtu < ill->ill_max_mtu) 16199 ill->ill_max_mtu = ill->ill_user_mtu; 16200 16201 /* 16202 * If the MTU is unchanged, we're done. 16203 */ 16204 if (orig_mtu == ill->ill_max_mtu) { 16205 mutex_exit(&ill->ill_lock); 16206 break; 16207 } 16208 16209 if (ill->ill_isv6) { 16210 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16211 ill->ill_max_mtu = IPV6_MIN_MTU; 16212 } else { 16213 if (ill->ill_max_mtu < IP_MIN_MTU) 16214 ill->ill_max_mtu = IP_MIN_MTU; 16215 } 16216 for (ipif = ill->ill_ipif; ipif != NULL; 16217 ipif = ipif->ipif_next) { 16218 /* 16219 * Don't override the mtu if the user 16220 * has explicitly set it. 16221 */ 16222 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16223 continue; 16224 ipif->ipif_mtu = (uint_t)notify->dl_data; 16225 if (ipif->ipif_isv6) 16226 ire = ipif_to_ire_v6(ipif); 16227 else 16228 ire = ipif_to_ire(ipif); 16229 if (ire != NULL) { 16230 ire->ire_max_frag = ipif->ipif_mtu; 16231 ire_refrele(ire); 16232 } 16233 if (ipif->ipif_flags & IPIF_UP) { 16234 if (ill->ill_isv6) 16235 need_ire_walk_v6 = B_TRUE; 16236 else 16237 need_ire_walk_v4 = B_TRUE; 16238 } 16239 } 16240 mutex_exit(&ill->ill_lock); 16241 if (need_ire_walk_v4) 16242 ire_walk_v4(ill_mtu_change, (char *)ill, 16243 ALL_ZONES, ipst); 16244 if (need_ire_walk_v6) 16245 ire_walk_v6(ill_mtu_change, (char *)ill, 16246 ALL_ZONES, ipst); 16247 16248 /* 16249 * Refresh IPMP meta-interface MTU if necessary. 16250 */ 16251 if (IS_UNDER_IPMP(ill)) 16252 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16253 break; 16254 16255 case DL_NOTE_LINK_UP: 16256 case DL_NOTE_LINK_DOWN: { 16257 /* 16258 * We are writer. ill / phyint / ipsq assocs stable. 16259 * The RUNNING flag reflects the state of the link. 16260 */ 16261 phyint_t *phyint = ill->ill_phyint; 16262 uint64_t new_phyint_flags; 16263 boolean_t changed = B_FALSE; 16264 boolean_t went_up; 16265 16266 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16267 mutex_enter(&phyint->phyint_lock); 16268 16269 new_phyint_flags = went_up ? 16270 phyint->phyint_flags | PHYI_RUNNING : 16271 phyint->phyint_flags & ~PHYI_RUNNING; 16272 16273 if (IS_IPMP(ill)) { 16274 new_phyint_flags = went_up ? 16275 new_phyint_flags & ~PHYI_FAILED : 16276 new_phyint_flags | PHYI_FAILED; 16277 } 16278 16279 if (new_phyint_flags != phyint->phyint_flags) { 16280 phyint->phyint_flags = new_phyint_flags; 16281 changed = B_TRUE; 16282 } 16283 mutex_exit(&phyint->phyint_lock); 16284 /* 16285 * ill_restart_dad handles the DAD restart and routing 16286 * socket notification logic. 16287 */ 16288 if (changed) { 16289 ill_restart_dad(phyint->phyint_illv4, went_up); 16290 ill_restart_dad(phyint->phyint_illv6, went_up); 16291 } 16292 break; 16293 } 16294 case DL_NOTE_PROMISC_ON_PHYS: 16295 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16296 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16297 mutex_enter(&ill->ill_lock); 16298 ill->ill_promisc_on_phys = B_TRUE; 16299 mutex_exit(&ill->ill_lock); 16300 break; 16301 case DL_NOTE_PROMISC_OFF_PHYS: 16302 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16303 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16304 mutex_enter(&ill->ill_lock); 16305 ill->ill_promisc_on_phys = B_FALSE; 16306 mutex_exit(&ill->ill_lock); 16307 break; 16308 case DL_NOTE_CAPAB_RENEG: 16309 /* 16310 * Something changed on the driver side. 16311 * It wants us to renegotiate the capabilities 16312 * on this ill. One possible cause is the aggregation 16313 * interface under us where a port got added or 16314 * went away. 16315 * 16316 * If the capability negotiation is already done 16317 * or is in progress, reset the capabilities and 16318 * mark the ill's ill_capab_reneg to be B_TRUE, 16319 * so that when the ack comes back, we can start 16320 * the renegotiation process. 16321 * 16322 * Note that if ill_capab_reneg is already B_TRUE 16323 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16324 * the capability resetting request has been sent 16325 * and the renegotiation has not been started yet; 16326 * nothing needs to be done in this case. 16327 */ 16328 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16329 ill_capability_reset(ill, B_TRUE); 16330 ipsq_current_finish(ipsq); 16331 break; 16332 default: 16333 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16334 "type 0x%x for DL_NOTIFY_IND\n", 16335 notify->dl_notification)); 16336 break; 16337 } 16338 16339 /* 16340 * As this is an asynchronous operation, we 16341 * should not call ill_dlpi_done 16342 */ 16343 break; 16344 } 16345 case DL_NOTIFY_ACK: { 16346 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16347 16348 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16349 ill->ill_note_link = 1; 16350 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16351 break; 16352 } 16353 case DL_PHYS_ADDR_ACK: { 16354 /* 16355 * As part of plumbing the interface via SIOCSLIFNAME, 16356 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16357 * whose answers we receive here. As each answer is received, 16358 * we call ill_dlpi_done() to dispatch the next request as 16359 * we're processing the current one. Once all answers have 16360 * been received, we use ipsq_pending_mp_get() to dequeue the 16361 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16362 * is invoked from an ill queue, conn_oper_pending_ill is not 16363 * available, but we know the ioctl is pending on ill_wq.) 16364 */ 16365 uint_t paddrlen, paddroff; 16366 16367 paddrreq = ill->ill_phys_addr_pend; 16368 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16369 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16370 16371 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16372 if (paddrreq == DL_IPV6_TOKEN) { 16373 /* 16374 * bcopy to low-order bits of ill_token 16375 * 16376 * XXX Temporary hack - currently, all known tokens 16377 * are 64 bits, so I'll cheat for the moment. 16378 */ 16379 bcopy(mp->b_rptr + paddroff, 16380 &ill->ill_token.s6_addr32[2], paddrlen); 16381 ill->ill_token_length = paddrlen; 16382 break; 16383 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16384 ASSERT(ill->ill_nd_lla_mp == NULL); 16385 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16386 mp = NULL; 16387 break; 16388 } 16389 16390 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16391 ASSERT(ill->ill_phys_addr_mp == NULL); 16392 if (!ill->ill_ifname_pending) 16393 break; 16394 ill->ill_ifname_pending = 0; 16395 if (!ioctl_aborted) 16396 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16397 if (mp1 != NULL) { 16398 ASSERT(connp == NULL); 16399 q = ill->ill_wq; 16400 } 16401 /* 16402 * If any error acks received during the plumbing sequence, 16403 * ill_ifname_pending_err will be set. Break out and send up 16404 * the error to the pending ioctl. 16405 */ 16406 if (ill->ill_ifname_pending_err != 0) { 16407 err = ill->ill_ifname_pending_err; 16408 ill->ill_ifname_pending_err = 0; 16409 break; 16410 } 16411 16412 ill->ill_phys_addr_mp = mp; 16413 ill->ill_phys_addr = mp->b_rptr + paddroff; 16414 mp = NULL; 16415 16416 /* 16417 * If paddrlen is zero, the DLPI provider doesn't support 16418 * physical addresses. The other two tests were historical 16419 * workarounds for bugs in our former PPP implementation, but 16420 * now other things have grown dependencies on them -- e.g., 16421 * the tun module specifies a dl_addr_length of zero in its 16422 * DL_BIND_ACK, but then specifies an incorrect value in its 16423 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16424 * but only after careful testing ensures that all dependent 16425 * broken DLPI providers have been fixed. 16426 */ 16427 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16428 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16429 ill->ill_phys_addr = NULL; 16430 } else if (paddrlen != ill->ill_phys_addr_length) { 16431 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16432 paddrlen, ill->ill_phys_addr_length)); 16433 err = EINVAL; 16434 break; 16435 } 16436 16437 if (ill->ill_nd_lla_mp == NULL) { 16438 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16439 err = ENOMEM; 16440 break; 16441 } 16442 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16443 } 16444 16445 /* 16446 * Set the interface token. If the zeroth interface address 16447 * is unspecified, then set it to the link local address. 16448 */ 16449 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16450 (void) ill_setdefaulttoken(ill); 16451 16452 ASSERT(ill->ill_ipif->ipif_id == 0); 16453 if (ipif != NULL && 16454 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16455 (void) ipif_setlinklocal(ipif); 16456 } 16457 break; 16458 } 16459 case DL_OK_ACK: 16460 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16461 dl_primstr((int)dloa->dl_correct_primitive), 16462 dloa->dl_correct_primitive)); 16463 switch (dloa->dl_correct_primitive) { 16464 case DL_ENABMULTI_REQ: 16465 case DL_DISABMULTI_REQ: 16466 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16467 break; 16468 case DL_PROMISCON_REQ: 16469 case DL_PROMISCOFF_REQ: 16470 case DL_UNBIND_REQ: 16471 case DL_ATTACH_REQ: 16472 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16473 break; 16474 } 16475 break; 16476 default: 16477 break; 16478 } 16479 16480 freemsg(mp); 16481 if (mp1 == NULL) 16482 return; 16483 16484 /* 16485 * The operation must complete without EINPROGRESS since 16486 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16487 * the operation will be stuck forever inside the IPSQ. 16488 */ 16489 ASSERT(err != EINPROGRESS); 16490 16491 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16492 case 0: 16493 ipsq_current_finish(ipsq); 16494 break; 16495 16496 case SIOCSLIFNAME: 16497 case IF_UNITSEL: { 16498 ill_t *ill_other = ILL_OTHER(ill); 16499 16500 /* 16501 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16502 * ill has a peer which is in an IPMP group, then place ill 16503 * into the same group. One catch: although ifconfig plumbs 16504 * the appropriate IPMP meta-interface prior to plumbing this 16505 * ill, it is possible for multiple ifconfig applications to 16506 * race (or for another application to adjust plumbing), in 16507 * which case the IPMP meta-interface we need will be missing. 16508 * If so, kick the phyint out of the group. 16509 */ 16510 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16511 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16512 ipmp_illgrp_t *illg; 16513 16514 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16515 if (illg == NULL) 16516 ipmp_phyint_leave_grp(ill->ill_phyint); 16517 else 16518 ipmp_ill_join_illgrp(ill, illg); 16519 } 16520 16521 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16522 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16523 else 16524 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16525 break; 16526 } 16527 case SIOCLIFADDIF: 16528 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16529 break; 16530 16531 default: 16532 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16533 break; 16534 } 16535 } 16536 16537 /* 16538 * ip_rput_other is called by ip_rput to handle messages modifying the global 16539 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16540 */ 16541 /* ARGSUSED */ 16542 void 16543 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16544 { 16545 ill_t *ill = q->q_ptr; 16546 struct iocblk *iocp; 16547 mblk_t *mp1; 16548 conn_t *connp = NULL; 16549 16550 ip1dbg(("ip_rput_other ")); 16551 if (ipsq != NULL) { 16552 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16553 ASSERT(ipsq->ipsq_xop == 16554 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16555 } 16556 16557 switch (mp->b_datap->db_type) { 16558 case M_ERROR: 16559 case M_HANGUP: 16560 /* 16561 * The device has a problem. We force the ILL down. It can 16562 * be brought up again manually using SIOCSIFFLAGS (via 16563 * ifconfig or equivalent). 16564 */ 16565 ASSERT(ipsq != NULL); 16566 if (mp->b_rptr < mp->b_wptr) 16567 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16568 if (ill->ill_error == 0) 16569 ill->ill_error = ENXIO; 16570 if (!ill_down_start(q, mp)) 16571 return; 16572 ipif_all_down_tail(ipsq, q, mp, NULL); 16573 break; 16574 case M_IOCACK: 16575 iocp = (struct iocblk *)mp->b_rptr; 16576 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16577 switch (iocp->ioc_cmd) { 16578 case SIOCSTUNPARAM: 16579 case OSIOCSTUNPARAM: 16580 ASSERT(ipsq != NULL); 16581 /* 16582 * Finish socket ioctl passed through to tun. 16583 * We should have an IOCTL waiting on this. 16584 */ 16585 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16586 if (ill->ill_isv6) { 16587 struct iftun_req *ta; 16588 16589 /* 16590 * if a source or destination is 16591 * being set, try and set the link 16592 * local address for the tunnel 16593 */ 16594 ta = (struct iftun_req *)mp->b_cont-> 16595 b_cont->b_rptr; 16596 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16597 ipif_set_tun_llink(ill, ta); 16598 } 16599 16600 } 16601 if (mp1 != NULL) { 16602 /* 16603 * Now copy back the b_next/b_prev used by 16604 * mi code for the mi_copy* functions. 16605 * See ip_sioctl_tunparam() for the reason. 16606 * Also protect against missing b_cont. 16607 */ 16608 if (mp->b_cont != NULL) { 16609 mp->b_cont->b_next = 16610 mp1->b_cont->b_next; 16611 mp->b_cont->b_prev = 16612 mp1->b_cont->b_prev; 16613 } 16614 inet_freemsg(mp1); 16615 ASSERT(connp != NULL); 16616 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16617 iocp->ioc_error, NO_COPYOUT, ipsq); 16618 } else { 16619 ASSERT(connp == NULL); 16620 putnext(q, mp); 16621 } 16622 break; 16623 case SIOCGTUNPARAM: 16624 case OSIOCGTUNPARAM: 16625 /* 16626 * This is really M_IOCDATA from the tunnel driver. 16627 * convert back and complete the ioctl. 16628 * We should have an IOCTL waiting on this. 16629 */ 16630 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16631 if (mp1) { 16632 /* 16633 * Now copy back the b_next/b_prev used by 16634 * mi code for the mi_copy* functions. 16635 * See ip_sioctl_tunparam() for the reason. 16636 * Also protect against missing b_cont. 16637 */ 16638 if (mp->b_cont != NULL) { 16639 mp->b_cont->b_next = 16640 mp1->b_cont->b_next; 16641 mp->b_cont->b_prev = 16642 mp1->b_cont->b_prev; 16643 } 16644 inet_freemsg(mp1); 16645 if (iocp->ioc_error == 0) 16646 mp->b_datap->db_type = M_IOCDATA; 16647 ASSERT(connp != NULL); 16648 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16649 iocp->ioc_error, COPYOUT, NULL); 16650 } else { 16651 ASSERT(connp == NULL); 16652 putnext(q, mp); 16653 } 16654 break; 16655 default: 16656 break; 16657 } 16658 break; 16659 case M_IOCNAK: 16660 iocp = (struct iocblk *)mp->b_rptr; 16661 16662 switch (iocp->ioc_cmd) { 16663 int mode; 16664 16665 case DL_IOC_HDR_INFO: 16666 /* 16667 * If this was the first attempt, turn off the 16668 * fastpath probing. 16669 */ 16670 mutex_enter(&ill->ill_lock); 16671 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16672 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16673 mutex_exit(&ill->ill_lock); 16674 ill_fastpath_nack(ill); 16675 ip1dbg(("ip_rput: DLPI fastpath off on " 16676 "interface %s\n", 16677 ill->ill_name)); 16678 } else { 16679 mutex_exit(&ill->ill_lock); 16680 } 16681 freemsg(mp); 16682 break; 16683 case SIOCSTUNPARAM: 16684 case OSIOCSTUNPARAM: 16685 ASSERT(ipsq != NULL); 16686 /* 16687 * Finish socket ioctl passed through to tun 16688 * We should have an IOCTL waiting on this. 16689 */ 16690 /* FALLTHRU */ 16691 case SIOCGTUNPARAM: 16692 case OSIOCGTUNPARAM: 16693 /* 16694 * This is really M_IOCDATA from the tunnel driver. 16695 * convert back and complete the ioctl. 16696 * We should have an IOCTL waiting on this. 16697 */ 16698 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16699 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16700 mp1 = ill_pending_mp_get(ill, &connp, 16701 iocp->ioc_id); 16702 mode = COPYOUT; 16703 ipsq = NULL; 16704 } else { 16705 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16706 mode = NO_COPYOUT; 16707 } 16708 if (mp1 != NULL) { 16709 /* 16710 * Now copy back the b_next/b_prev used by 16711 * mi code for the mi_copy* functions. 16712 * See ip_sioctl_tunparam() for the reason. 16713 * Also protect against missing b_cont. 16714 */ 16715 if (mp->b_cont != NULL) { 16716 mp->b_cont->b_next = 16717 mp1->b_cont->b_next; 16718 mp->b_cont->b_prev = 16719 mp1->b_cont->b_prev; 16720 } 16721 inet_freemsg(mp1); 16722 if (iocp->ioc_error == 0) 16723 iocp->ioc_error = EINVAL; 16724 ASSERT(connp != NULL); 16725 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16726 iocp->ioc_error, mode, ipsq); 16727 } else { 16728 ASSERT(connp == NULL); 16729 putnext(q, mp); 16730 } 16731 break; 16732 default: 16733 break; 16734 } 16735 default: 16736 break; 16737 } 16738 } 16739 16740 /* 16741 * NOTE : This function does not ire_refrele the ire argument passed in. 16742 * 16743 * IPQoS notes 16744 * IP policy is invoked twice for a forwarded packet, once on the read side 16745 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16746 * enabled. An additional parameter, in_ill, has been added for this purpose. 16747 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16748 * because ip_mroute drops this information. 16749 * 16750 */ 16751 void 16752 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16753 { 16754 uint32_t old_pkt_len; 16755 uint32_t pkt_len; 16756 queue_t *q; 16757 uint32_t sum; 16758 #define rptr ((uchar_t *)ipha) 16759 uint32_t max_frag; 16760 uint32_t ill_index; 16761 ill_t *out_ill; 16762 mib2_ipIfStatsEntry_t *mibptr; 16763 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16764 16765 /* Get the ill_index of the incoming ILL */ 16766 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16767 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16768 16769 /* Initiate Read side IPPF processing */ 16770 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16771 ip_process(IPP_FWD_IN, &mp, ill_index); 16772 if (mp == NULL) { 16773 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16774 "during IPPF processing\n")); 16775 return; 16776 } 16777 } 16778 16779 /* Adjust the checksum to reflect the ttl decrement. */ 16780 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16781 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16782 16783 if (ipha->ipha_ttl-- <= 1) { 16784 if (ip_csum_hdr(ipha)) { 16785 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16786 goto drop_pkt; 16787 } 16788 /* 16789 * Note: ire_stq this will be NULL for multicast 16790 * datagrams using the long path through arp (the IRE 16791 * is not an IRE_CACHE). This should not cause 16792 * problems since we don't generate ICMP errors for 16793 * multicast packets. 16794 */ 16795 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16796 q = ire->ire_stq; 16797 if (q != NULL) { 16798 /* Sent by forwarding path, and router is global zone */ 16799 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16800 GLOBAL_ZONEID, ipst); 16801 } else 16802 freemsg(mp); 16803 return; 16804 } 16805 16806 /* 16807 * Don't forward if the interface is down 16808 */ 16809 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16810 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16811 ip2dbg(("ip_rput_forward:interface is down\n")); 16812 goto drop_pkt; 16813 } 16814 16815 /* Get the ill_index of the outgoing ILL */ 16816 out_ill = ire_to_ill(ire); 16817 ill_index = out_ill->ill_phyint->phyint_ifindex; 16818 16819 DTRACE_PROBE4(ip4__forwarding__start, 16820 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16821 16822 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16823 ipst->ips_ipv4firewall_forwarding, 16824 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16825 16826 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16827 16828 if (mp == NULL) 16829 return; 16830 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16831 16832 if (is_system_labeled()) { 16833 mblk_t *mp1; 16834 16835 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16836 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16837 goto drop_pkt; 16838 } 16839 /* Size may have changed */ 16840 mp = mp1; 16841 ipha = (ipha_t *)mp->b_rptr; 16842 pkt_len = ntohs(ipha->ipha_length); 16843 } 16844 16845 /* Check if there are options to update */ 16846 if (!IS_SIMPLE_IPH(ipha)) { 16847 if (ip_csum_hdr(ipha)) { 16848 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16849 goto drop_pkt; 16850 } 16851 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16852 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16853 return; 16854 } 16855 16856 ipha->ipha_hdr_checksum = 0; 16857 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16858 } 16859 max_frag = ire->ire_max_frag; 16860 if (pkt_len > max_frag) { 16861 /* 16862 * It needs fragging on its way out. We haven't 16863 * verified the header checksum yet. Since we 16864 * are going to put a surely good checksum in the 16865 * outgoing header, we have to make sure that it 16866 * was good coming in. 16867 */ 16868 if (ip_csum_hdr(ipha)) { 16869 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16870 goto drop_pkt; 16871 } 16872 /* Initiate Write side IPPF processing */ 16873 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16874 ip_process(IPP_FWD_OUT, &mp, ill_index); 16875 if (mp == NULL) { 16876 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16877 " during IPPF processing\n")); 16878 return; 16879 } 16880 } 16881 /* 16882 * Handle labeled packet resizing. 16883 * 16884 * If we have added a label, inform ip_wput_frag() of its 16885 * effect on the MTU for ICMP messages. 16886 */ 16887 if (pkt_len > old_pkt_len) { 16888 uint32_t secopt_size; 16889 16890 secopt_size = pkt_len - old_pkt_len; 16891 if (secopt_size < max_frag) 16892 max_frag -= secopt_size; 16893 } 16894 16895 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16896 GLOBAL_ZONEID, ipst, NULL); 16897 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16898 return; 16899 } 16900 16901 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16902 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16903 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16904 ipst->ips_ipv4firewall_physical_out, 16905 NULL, out_ill, ipha, mp, mp, 0, ipst); 16906 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16907 if (mp == NULL) 16908 return; 16909 16910 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16911 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16912 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16913 /* ip_xmit_v4 always consumes the packet */ 16914 return; 16915 16916 drop_pkt:; 16917 ip1dbg(("ip_rput_forward: drop pkt\n")); 16918 freemsg(mp); 16919 #undef rptr 16920 } 16921 16922 void 16923 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16924 { 16925 ire_t *ire; 16926 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16927 16928 ASSERT(!ipif->ipif_isv6); 16929 /* 16930 * Find an IRE which matches the destination and the outgoing 16931 * queue in the cache table. All we need is an IRE_CACHE which 16932 * is pointing at ipif->ipif_ill. 16933 */ 16934 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16935 dst = ipif->ipif_pp_dst_addr; 16936 16937 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16938 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16939 if (ire == NULL) { 16940 /* 16941 * Mark this packet to make it be delivered to 16942 * ip_rput_forward after the new ire has been 16943 * created. 16944 */ 16945 mp->b_prev = NULL; 16946 mp->b_next = mp; 16947 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16948 NULL, 0, GLOBAL_ZONEID, &zero_info); 16949 } else { 16950 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16951 IRE_REFRELE(ire); 16952 } 16953 } 16954 16955 /* Update any source route, record route or timestamp options */ 16956 static int 16957 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16958 { 16959 ipoptp_t opts; 16960 uchar_t *opt; 16961 uint8_t optval; 16962 uint8_t optlen; 16963 ipaddr_t dst; 16964 uint32_t ts; 16965 ire_t *dst_ire = NULL; 16966 ire_t *tmp_ire = NULL; 16967 timestruc_t now; 16968 16969 ip2dbg(("ip_rput_forward_options\n")); 16970 dst = ipha->ipha_dst; 16971 for (optval = ipoptp_first(&opts, ipha); 16972 optval != IPOPT_EOL; 16973 optval = ipoptp_next(&opts)) { 16974 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16975 opt = opts.ipoptp_cur; 16976 optlen = opts.ipoptp_len; 16977 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16978 optval, opts.ipoptp_len)); 16979 switch (optval) { 16980 uint32_t off; 16981 case IPOPT_SSRR: 16982 case IPOPT_LSRR: 16983 /* Check if adminstratively disabled */ 16984 if (!ipst->ips_ip_forward_src_routed) { 16985 if (ire->ire_stq != NULL) { 16986 /* 16987 * Sent by forwarding path, and router 16988 * is global zone 16989 */ 16990 icmp_unreachable(ire->ire_stq, mp, 16991 ICMP_SOURCE_ROUTE_FAILED, 16992 GLOBAL_ZONEID, ipst); 16993 } else { 16994 ip0dbg(("ip_rput_forward_options: " 16995 "unable to send unreach\n")); 16996 freemsg(mp); 16997 } 16998 return (-1); 16999 } 17000 17001 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17002 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17003 if (dst_ire == NULL) { 17004 /* 17005 * Must be partial since ip_rput_options 17006 * checked for strict. 17007 */ 17008 break; 17009 } 17010 off = opt[IPOPT_OFFSET]; 17011 off--; 17012 redo_srr: 17013 if (optlen < IP_ADDR_LEN || 17014 off > optlen - IP_ADDR_LEN) { 17015 /* End of source route */ 17016 ip1dbg(( 17017 "ip_rput_forward_options: end of SR\n")); 17018 ire_refrele(dst_ire); 17019 break; 17020 } 17021 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17022 bcopy(&ire->ire_src_addr, (char *)opt + off, 17023 IP_ADDR_LEN); 17024 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17025 ntohl(dst))); 17026 17027 /* 17028 * Check if our address is present more than 17029 * once as consecutive hops in source route. 17030 */ 17031 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17032 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17033 if (tmp_ire != NULL) { 17034 ire_refrele(tmp_ire); 17035 off += IP_ADDR_LEN; 17036 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17037 goto redo_srr; 17038 } 17039 ipha->ipha_dst = dst; 17040 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17041 ire_refrele(dst_ire); 17042 break; 17043 case IPOPT_RR: 17044 off = opt[IPOPT_OFFSET]; 17045 off--; 17046 if (optlen < IP_ADDR_LEN || 17047 off > optlen - IP_ADDR_LEN) { 17048 /* No more room - ignore */ 17049 ip1dbg(( 17050 "ip_rput_forward_options: end of RR\n")); 17051 break; 17052 } 17053 bcopy(&ire->ire_src_addr, (char *)opt + off, 17054 IP_ADDR_LEN); 17055 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17056 break; 17057 case IPOPT_TS: 17058 /* Insert timestamp if there is room */ 17059 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17060 case IPOPT_TS_TSONLY: 17061 off = IPOPT_TS_TIMELEN; 17062 break; 17063 case IPOPT_TS_PRESPEC: 17064 case IPOPT_TS_PRESPEC_RFC791: 17065 /* Verify that the address matched */ 17066 off = opt[IPOPT_OFFSET] - 1; 17067 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17068 dst_ire = ire_ctable_lookup(dst, 0, 17069 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17070 MATCH_IRE_TYPE, ipst); 17071 if (dst_ire == NULL) { 17072 /* Not for us */ 17073 break; 17074 } 17075 ire_refrele(dst_ire); 17076 /* FALLTHRU */ 17077 case IPOPT_TS_TSANDADDR: 17078 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17079 break; 17080 default: 17081 /* 17082 * ip_*put_options should have already 17083 * dropped this packet. 17084 */ 17085 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17086 "unknown IT - bug in ip_rput_options?\n"); 17087 return (0); /* Keep "lint" happy */ 17088 } 17089 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17090 /* Increase overflow counter */ 17091 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17092 opt[IPOPT_POS_OV_FLG] = 17093 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17094 (off << 4)); 17095 break; 17096 } 17097 off = opt[IPOPT_OFFSET] - 1; 17098 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17099 case IPOPT_TS_PRESPEC: 17100 case IPOPT_TS_PRESPEC_RFC791: 17101 case IPOPT_TS_TSANDADDR: 17102 bcopy(&ire->ire_src_addr, 17103 (char *)opt + off, IP_ADDR_LEN); 17104 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17105 /* FALLTHRU */ 17106 case IPOPT_TS_TSONLY: 17107 off = opt[IPOPT_OFFSET] - 1; 17108 /* Compute # of milliseconds since midnight */ 17109 gethrestime(&now); 17110 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17111 now.tv_nsec / (NANOSEC / MILLISEC); 17112 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17113 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17114 break; 17115 } 17116 break; 17117 } 17118 } 17119 return (0); 17120 } 17121 17122 /* 17123 * This is called after processing at least one of AH/ESP headers. 17124 * 17125 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17126 * the actual, physical interface on which the packet was received, 17127 * but, when ip_strict_dst_multihoming is set to 1, could be the 17128 * interface which had the ipha_dst configured when the packet went 17129 * through ip_rput. The ill_index corresponding to the recv_ill 17130 * is saved in ipsec_in_rill_index 17131 * 17132 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17133 * cannot assume "ire" points to valid data for any IPv6 cases. 17134 */ 17135 void 17136 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17137 { 17138 mblk_t *mp; 17139 ipaddr_t dst; 17140 in6_addr_t *v6dstp; 17141 ipha_t *ipha; 17142 ip6_t *ip6h; 17143 ipsec_in_t *ii; 17144 boolean_t ill_need_rele = B_FALSE; 17145 boolean_t rill_need_rele = B_FALSE; 17146 boolean_t ire_need_rele = B_FALSE; 17147 netstack_t *ns; 17148 ip_stack_t *ipst; 17149 17150 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17151 ASSERT(ii->ipsec_in_ill_index != 0); 17152 ns = ii->ipsec_in_ns; 17153 ASSERT(ii->ipsec_in_ns != NULL); 17154 ipst = ns->netstack_ip; 17155 17156 mp = ipsec_mp->b_cont; 17157 ASSERT(mp != NULL); 17158 17159 if (ill == NULL) { 17160 ASSERT(recv_ill == NULL); 17161 /* 17162 * We need to get the original queue on which ip_rput_local 17163 * or ip_rput_data_v6 was called. 17164 */ 17165 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17166 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17167 ill_need_rele = B_TRUE; 17168 17169 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17170 recv_ill = ill_lookup_on_ifindex( 17171 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17172 NULL, NULL, NULL, NULL, ipst); 17173 rill_need_rele = B_TRUE; 17174 } else { 17175 recv_ill = ill; 17176 } 17177 17178 if ((ill == NULL) || (recv_ill == NULL)) { 17179 ip0dbg(("ip_fanout_proto_again: interface " 17180 "disappeared\n")); 17181 if (ill != NULL) 17182 ill_refrele(ill); 17183 if (recv_ill != NULL) 17184 ill_refrele(recv_ill); 17185 freemsg(ipsec_mp); 17186 return; 17187 } 17188 } 17189 17190 ASSERT(ill != NULL && recv_ill != NULL); 17191 17192 if (mp->b_datap->db_type == M_CTL) { 17193 /* 17194 * AH/ESP is returning the ICMP message after 17195 * removing their headers. Fanout again till 17196 * it gets to the right protocol. 17197 */ 17198 if (ii->ipsec_in_v4) { 17199 icmph_t *icmph; 17200 int iph_hdr_length; 17201 int hdr_length; 17202 17203 ipha = (ipha_t *)mp->b_rptr; 17204 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17205 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17206 ipha = (ipha_t *)&icmph[1]; 17207 hdr_length = IPH_HDR_LENGTH(ipha); 17208 /* 17209 * icmp_inbound_error_fanout may need to do pullupmsg. 17210 * Reset the type to M_DATA. 17211 */ 17212 mp->b_datap->db_type = M_DATA; 17213 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17214 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17215 B_FALSE, ill, ii->ipsec_in_zoneid); 17216 } else { 17217 icmp6_t *icmp6; 17218 int hdr_length; 17219 17220 ip6h = (ip6_t *)mp->b_rptr; 17221 /* Don't call hdr_length_v6() unless you have to. */ 17222 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17223 hdr_length = ip_hdr_length_v6(mp, ip6h); 17224 else 17225 hdr_length = IPV6_HDR_LEN; 17226 17227 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17228 /* 17229 * icmp_inbound_error_fanout_v6 may need to do 17230 * pullupmsg. Reset the type to M_DATA. 17231 */ 17232 mp->b_datap->db_type = M_DATA; 17233 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17234 ip6h, icmp6, ill, recv_ill, B_TRUE, 17235 ii->ipsec_in_zoneid); 17236 } 17237 if (ill_need_rele) 17238 ill_refrele(ill); 17239 if (rill_need_rele) 17240 ill_refrele(recv_ill); 17241 return; 17242 } 17243 17244 if (ii->ipsec_in_v4) { 17245 ipha = (ipha_t *)mp->b_rptr; 17246 dst = ipha->ipha_dst; 17247 if (CLASSD(dst)) { 17248 /* 17249 * Multicast has to be delivered to all streams. 17250 */ 17251 dst = INADDR_BROADCAST; 17252 } 17253 17254 if (ire == NULL) { 17255 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17256 msg_getlabel(mp), ipst); 17257 if (ire == NULL) { 17258 if (ill_need_rele) 17259 ill_refrele(ill); 17260 if (rill_need_rele) 17261 ill_refrele(recv_ill); 17262 ip1dbg(("ip_fanout_proto_again: " 17263 "IRE not found")); 17264 freemsg(ipsec_mp); 17265 return; 17266 } 17267 ire_need_rele = B_TRUE; 17268 } 17269 17270 switch (ipha->ipha_protocol) { 17271 case IPPROTO_UDP: 17272 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17273 recv_ill); 17274 if (ire_need_rele) 17275 ire_refrele(ire); 17276 break; 17277 case IPPROTO_TCP: 17278 if (!ire_need_rele) 17279 IRE_REFHOLD(ire); 17280 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17281 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17282 IRE_REFRELE(ire); 17283 if (mp != NULL) { 17284 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17285 mp, 1, SQ_PROCESS, 17286 SQTAG_IP_PROTO_AGAIN); 17287 } 17288 break; 17289 case IPPROTO_SCTP: 17290 if (!ire_need_rele) 17291 IRE_REFHOLD(ire); 17292 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17293 ipsec_mp, 0, ill->ill_rq, dst); 17294 break; 17295 default: 17296 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17297 recv_ill, 0); 17298 if (ire_need_rele) 17299 ire_refrele(ire); 17300 break; 17301 } 17302 } else { 17303 uint32_t rput_flags = 0; 17304 17305 ip6h = (ip6_t *)mp->b_rptr; 17306 v6dstp = &ip6h->ip6_dst; 17307 /* 17308 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17309 * address. 17310 * 17311 * Currently, we don't store that state in the IPSEC_IN 17312 * message, and we may need to. 17313 */ 17314 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17315 IP6_IN_LLMCAST : 0); 17316 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17317 NULL, NULL); 17318 } 17319 if (ill_need_rele) 17320 ill_refrele(ill); 17321 if (rill_need_rele) 17322 ill_refrele(recv_ill); 17323 } 17324 17325 /* 17326 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17327 * returns 'true' if there are still fragments left on the queue, in 17328 * which case we restart the timer. 17329 */ 17330 void 17331 ill_frag_timer(void *arg) 17332 { 17333 ill_t *ill = (ill_t *)arg; 17334 boolean_t frag_pending; 17335 ip_stack_t *ipst = ill->ill_ipst; 17336 time_t timeout; 17337 17338 mutex_enter(&ill->ill_lock); 17339 ASSERT(!ill->ill_fragtimer_executing); 17340 if (ill->ill_state_flags & ILL_CONDEMNED) { 17341 ill->ill_frag_timer_id = 0; 17342 mutex_exit(&ill->ill_lock); 17343 return; 17344 } 17345 ill->ill_fragtimer_executing = 1; 17346 mutex_exit(&ill->ill_lock); 17347 17348 if (ill->ill_isv6) 17349 timeout = ipst->ips_ipv6_frag_timeout; 17350 else 17351 timeout = ipst->ips_ip_g_frag_timeout; 17352 17353 frag_pending = ill_frag_timeout(ill, timeout); 17354 17355 /* 17356 * Restart the timer, if we have fragments pending or if someone 17357 * wanted us to be scheduled again. 17358 */ 17359 mutex_enter(&ill->ill_lock); 17360 ill->ill_fragtimer_executing = 0; 17361 ill->ill_frag_timer_id = 0; 17362 if (frag_pending || ill->ill_fragtimer_needrestart) 17363 ill_frag_timer_start(ill); 17364 mutex_exit(&ill->ill_lock); 17365 } 17366 17367 void 17368 ill_frag_timer_start(ill_t *ill) 17369 { 17370 ip_stack_t *ipst = ill->ill_ipst; 17371 clock_t timeo_ms; 17372 17373 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17374 17375 /* If the ill is closing or opening don't proceed */ 17376 if (ill->ill_state_flags & ILL_CONDEMNED) 17377 return; 17378 17379 if (ill->ill_fragtimer_executing) { 17380 /* 17381 * ill_frag_timer is currently executing. Just record the 17382 * the fact that we want the timer to be restarted. 17383 * ill_frag_timer will post a timeout before it returns, 17384 * ensuring it will be called again. 17385 */ 17386 ill->ill_fragtimer_needrestart = 1; 17387 return; 17388 } 17389 17390 if (ill->ill_frag_timer_id == 0) { 17391 if (ill->ill_isv6) 17392 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 17393 else 17394 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 17395 /* 17396 * The timer is neither running nor is the timeout handler 17397 * executing. Post a timeout so that ill_frag_timer will be 17398 * called 17399 */ 17400 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17401 MSEC_TO_TICK(timeo_ms >> 1)); 17402 ill->ill_fragtimer_needrestart = 0; 17403 } 17404 } 17405 17406 /* 17407 * This routine is needed for loopback when forwarding multicasts. 17408 * 17409 * IPQoS Notes: 17410 * IPPF processing is done in fanout routines. 17411 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17412 * processing for IPsec packets is done when it comes back in clear. 17413 * NOTE : The callers of this function need to do the ire_refrele for the 17414 * ire that is being passed in. 17415 */ 17416 void 17417 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17418 ill_t *recv_ill, uint32_t esp_udp_ports) 17419 { 17420 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17421 ill_t *ill = (ill_t *)q->q_ptr; 17422 uint32_t sum; 17423 uint32_t u1; 17424 uint32_t u2; 17425 int hdr_length; 17426 boolean_t mctl_present; 17427 mblk_t *first_mp = mp; 17428 mblk_t *hada_mp = NULL; 17429 ipha_t *inner_ipha; 17430 ip_stack_t *ipst; 17431 17432 ASSERT(recv_ill != NULL); 17433 ipst = recv_ill->ill_ipst; 17434 17435 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17436 "ip_rput_locl_start: q %p", q); 17437 17438 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17439 ASSERT(ill != NULL); 17440 17441 #define rptr ((uchar_t *)ipha) 17442 #define iphs ((uint16_t *)ipha) 17443 17444 /* 17445 * no UDP or TCP packet should come here anymore. 17446 */ 17447 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17448 ipha->ipha_protocol != IPPROTO_UDP); 17449 17450 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17451 if (mctl_present && 17452 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17453 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17454 17455 /* 17456 * It's an IPsec accelerated packet. 17457 * Keep a pointer to the data attributes around until 17458 * we allocate the ipsec_info_t. 17459 */ 17460 IPSECHW_DEBUG(IPSECHW_PKT, 17461 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17462 hada_mp = first_mp; 17463 hada_mp->b_cont = NULL; 17464 /* 17465 * Since it is accelerated, it comes directly from 17466 * the ill and the data attributes is followed by 17467 * the packet data. 17468 */ 17469 ASSERT(mp->b_datap->db_type != M_CTL); 17470 first_mp = mp; 17471 mctl_present = B_FALSE; 17472 } 17473 17474 /* 17475 * IF M_CTL is not present, then ipsec_in_is_secure 17476 * should return B_TRUE. There is a case where loopback 17477 * packets has an M_CTL in the front with all the 17478 * IPsec options set to IPSEC_PREF_NEVER - which means 17479 * ipsec_in_is_secure will return B_FALSE. As loopback 17480 * packets never comes here, it is safe to ASSERT the 17481 * following. 17482 */ 17483 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17484 17485 /* 17486 * Also, we should never have an mctl_present if this is an 17487 * ESP-in-UDP packet. 17488 */ 17489 ASSERT(!mctl_present || !esp_in_udp_packet); 17490 17491 /* u1 is # words of IP options */ 17492 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17493 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17494 17495 /* 17496 * Don't verify header checksum if we just removed UDP header or 17497 * packet is coming back from AH/ESP. 17498 */ 17499 if (!esp_in_udp_packet && !mctl_present) { 17500 if (u1) { 17501 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17502 if (hada_mp != NULL) 17503 freemsg(hada_mp); 17504 return; 17505 } 17506 } else { 17507 /* Check the IP header checksum. */ 17508 #define uph ((uint16_t *)ipha) 17509 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17510 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17511 #undef uph 17512 /* finish doing IP checksum */ 17513 sum = (sum & 0xFFFF) + (sum >> 16); 17514 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17515 if (sum && sum != 0xFFFF) { 17516 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17517 goto drop_pkt; 17518 } 17519 } 17520 } 17521 17522 /* 17523 * Count for SNMP of inbound packets for ire. As ip_proto_input 17524 * might be called more than once for secure packets, count only 17525 * the first time. 17526 */ 17527 if (!mctl_present) { 17528 UPDATE_IB_PKT_COUNT(ire); 17529 ire->ire_last_used_time = lbolt; 17530 } 17531 17532 /* Check for fragmentation offset. */ 17533 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17534 u1 = u2 & (IPH_MF | IPH_OFFSET); 17535 if (u1) { 17536 /* 17537 * We re-assemble fragments before we do the AH/ESP 17538 * processing. Thus, M_CTL should not be present 17539 * while we are re-assembling. 17540 */ 17541 ASSERT(!mctl_present); 17542 ASSERT(first_mp == mp); 17543 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17544 return; 17545 17546 /* 17547 * Make sure that first_mp points back to mp as 17548 * the mp we came in with could have changed in 17549 * ip_rput_fragment(). 17550 */ 17551 ipha = (ipha_t *)mp->b_rptr; 17552 first_mp = mp; 17553 } 17554 17555 /* 17556 * Clear hardware checksumming flag as it is currently only 17557 * used by TCP and UDP. 17558 */ 17559 DB_CKSUMFLAGS(mp) = 0; 17560 17561 /* Now we have a complete datagram, destined for this machine. */ 17562 u1 = IPH_HDR_LENGTH(ipha); 17563 switch (ipha->ipha_protocol) { 17564 case IPPROTO_ICMP: { 17565 ire_t *ire_zone; 17566 ilm_t *ilm; 17567 mblk_t *mp1; 17568 zoneid_t last_zoneid; 17569 ilm_walker_t ilw; 17570 17571 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17572 ASSERT(ire->ire_type == IRE_BROADCAST); 17573 17574 /* 17575 * In the multicast case, applications may have joined 17576 * the group from different zones, so we need to deliver 17577 * the packet to each of them. Loop through the 17578 * multicast memberships structures (ilm) on the receive 17579 * ill and send a copy of the packet up each matching 17580 * one. However, we don't do this for multicasts sent on 17581 * the loopback interface (PHYI_LOOPBACK flag set) as 17582 * they must stay in the sender's zone. 17583 * 17584 * ilm_add_v6() ensures that ilms in the same zone are 17585 * contiguous in the ill_ilm list. We use this property 17586 * to avoid sending duplicates needed when two 17587 * applications in the same zone join the same group on 17588 * different logical interfaces: we ignore the ilm if 17589 * its zoneid is the same as the last matching one. 17590 * In addition, the sending of the packet for 17591 * ire_zoneid is delayed until all of the other ilms 17592 * have been exhausted. 17593 */ 17594 last_zoneid = -1; 17595 ilm = ilm_walker_start(&ilw, recv_ill); 17596 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17597 if (ipha->ipha_dst != ilm->ilm_addr || 17598 ilm->ilm_zoneid == last_zoneid || 17599 ilm->ilm_zoneid == ire->ire_zoneid || 17600 ilm->ilm_zoneid == ALL_ZONES || 17601 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17602 continue; 17603 mp1 = ip_copymsg(first_mp); 17604 if (mp1 == NULL) 17605 continue; 17606 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17607 0, sum, mctl_present, B_TRUE, 17608 recv_ill, ilm->ilm_zoneid); 17609 last_zoneid = ilm->ilm_zoneid; 17610 } 17611 ilm_walker_finish(&ilw); 17612 } else if (ire->ire_type == IRE_BROADCAST) { 17613 /* 17614 * In the broadcast case, there may be many zones 17615 * which need a copy of the packet delivered to them. 17616 * There is one IRE_BROADCAST per broadcast address 17617 * and per zone; we walk those using a helper function. 17618 * In addition, the sending of the packet for ire is 17619 * delayed until all of the other ires have been 17620 * processed. 17621 */ 17622 IRB_REFHOLD(ire->ire_bucket); 17623 ire_zone = NULL; 17624 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17625 ire)) != NULL) { 17626 mp1 = ip_copymsg(first_mp); 17627 if (mp1 == NULL) 17628 continue; 17629 17630 UPDATE_IB_PKT_COUNT(ire_zone); 17631 ire_zone->ire_last_used_time = lbolt; 17632 icmp_inbound(q, mp1, B_TRUE, ill, 17633 0, sum, mctl_present, B_TRUE, 17634 recv_ill, ire_zone->ire_zoneid); 17635 } 17636 IRB_REFRELE(ire->ire_bucket); 17637 } 17638 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17639 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17640 ire->ire_zoneid); 17641 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17642 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17643 return; 17644 } 17645 case IPPROTO_IGMP: 17646 /* 17647 * If we are not willing to accept IGMP packets in clear, 17648 * then check with global policy. 17649 */ 17650 if (ipst->ips_igmp_accept_clear_messages == 0) { 17651 first_mp = ipsec_check_global_policy(first_mp, NULL, 17652 ipha, NULL, mctl_present, ipst->ips_netstack); 17653 if (first_mp == NULL) 17654 return; 17655 } 17656 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17657 freemsg(first_mp); 17658 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17659 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17660 return; 17661 } 17662 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17663 /* Bad packet - discarded by igmp_input */ 17664 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17665 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17666 if (mctl_present) 17667 freeb(first_mp); 17668 return; 17669 } 17670 /* 17671 * igmp_input() may have returned the pulled up message. 17672 * So first_mp and ipha need to be reinitialized. 17673 */ 17674 ipha = (ipha_t *)mp->b_rptr; 17675 if (mctl_present) 17676 first_mp->b_cont = mp; 17677 else 17678 first_mp = mp; 17679 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17680 connf_head != NULL) { 17681 /* No user-level listener for IGMP packets */ 17682 goto drop_pkt; 17683 } 17684 /* deliver to local raw users */ 17685 break; 17686 case IPPROTO_PIM: 17687 /* 17688 * If we are not willing to accept PIM packets in clear, 17689 * then check with global policy. 17690 */ 17691 if (ipst->ips_pim_accept_clear_messages == 0) { 17692 first_mp = ipsec_check_global_policy(first_mp, NULL, 17693 ipha, NULL, mctl_present, ipst->ips_netstack); 17694 if (first_mp == NULL) 17695 return; 17696 } 17697 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17698 freemsg(first_mp); 17699 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17700 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17701 return; 17702 } 17703 if (pim_input(q, mp, ill) != 0) { 17704 /* Bad packet - discarded by pim_input */ 17705 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17706 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17707 if (mctl_present) 17708 freeb(first_mp); 17709 return; 17710 } 17711 17712 /* 17713 * pim_input() may have pulled up the message so ipha needs to 17714 * be reinitialized. 17715 */ 17716 ipha = (ipha_t *)mp->b_rptr; 17717 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17718 connf_head != NULL) { 17719 /* No user-level listener for PIM packets */ 17720 goto drop_pkt; 17721 } 17722 /* deliver to local raw users */ 17723 break; 17724 case IPPROTO_ENCAP: 17725 /* 17726 * Handle self-encapsulated packets (IP-in-IP where 17727 * the inner addresses == the outer addresses). 17728 */ 17729 hdr_length = IPH_HDR_LENGTH(ipha); 17730 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17731 mp->b_wptr) { 17732 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17733 sizeof (ipha_t) - mp->b_rptr)) { 17734 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17735 freemsg(first_mp); 17736 return; 17737 } 17738 ipha = (ipha_t *)mp->b_rptr; 17739 } 17740 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17741 /* 17742 * Check the sanity of the inner IP header. 17743 */ 17744 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17745 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17746 freemsg(first_mp); 17747 return; 17748 } 17749 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17750 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17751 freemsg(first_mp); 17752 return; 17753 } 17754 if (inner_ipha->ipha_src == ipha->ipha_src && 17755 inner_ipha->ipha_dst == ipha->ipha_dst) { 17756 ipsec_in_t *ii; 17757 17758 /* 17759 * Self-encapsulated tunnel packet. Remove 17760 * the outer IP header and fanout again. 17761 * We also need to make sure that the inner 17762 * header is pulled up until options. 17763 */ 17764 mp->b_rptr = (uchar_t *)inner_ipha; 17765 ipha = inner_ipha; 17766 hdr_length = IPH_HDR_LENGTH(ipha); 17767 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17768 if (!pullupmsg(mp, (uchar_t *)ipha + 17769 + hdr_length - mp->b_rptr)) { 17770 freemsg(first_mp); 17771 return; 17772 } 17773 ipha = (ipha_t *)mp->b_rptr; 17774 } 17775 if (hdr_length > sizeof (ipha_t)) { 17776 /* We got options on the inner packet. */ 17777 ipaddr_t dst = ipha->ipha_dst; 17778 17779 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17780 -1) { 17781 /* Bad options! */ 17782 return; 17783 } 17784 if (dst != ipha->ipha_dst) { 17785 /* 17786 * Someone put a source-route in 17787 * the inside header of a self- 17788 * encapsulated packet. Drop it 17789 * with extreme prejudice and let 17790 * the sender know. 17791 */ 17792 icmp_unreachable(q, first_mp, 17793 ICMP_SOURCE_ROUTE_FAILED, 17794 recv_ill->ill_zoneid, ipst); 17795 return; 17796 } 17797 } 17798 if (!mctl_present) { 17799 ASSERT(first_mp == mp); 17800 /* 17801 * This means that somebody is sending 17802 * Self-encapsualted packets without AH/ESP. 17803 * If AH/ESP was present, we would have already 17804 * allocated the first_mp. 17805 * 17806 * Send this packet to find a tunnel endpoint. 17807 * if I can't find one, an ICMP 17808 * PROTOCOL_UNREACHABLE will get sent. 17809 */ 17810 goto fanout; 17811 } 17812 /* 17813 * We generally store the ill_index if we need to 17814 * do IPsec processing as we lose the ill queue when 17815 * we come back. But in this case, we never should 17816 * have to store the ill_index here as it should have 17817 * been stored previously when we processed the 17818 * AH/ESP header in this routine or for non-ipsec 17819 * cases, we still have the queue. But for some bad 17820 * packets from the wire, we can get to IPsec after 17821 * this and we better store the index for that case. 17822 */ 17823 ill = (ill_t *)q->q_ptr; 17824 ii = (ipsec_in_t *)first_mp->b_rptr; 17825 ii->ipsec_in_ill_index = 17826 ill->ill_phyint->phyint_ifindex; 17827 ii->ipsec_in_rill_index = 17828 recv_ill->ill_phyint->phyint_ifindex; 17829 if (ii->ipsec_in_decaps) { 17830 /* 17831 * This packet is self-encapsulated multiple 17832 * times. We don't want to recurse infinitely. 17833 * To keep it simple, drop the packet. 17834 */ 17835 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17836 freemsg(first_mp); 17837 return; 17838 } 17839 ii->ipsec_in_decaps = B_TRUE; 17840 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17841 ire); 17842 return; 17843 } 17844 break; 17845 case IPPROTO_AH: 17846 case IPPROTO_ESP: { 17847 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17848 17849 /* 17850 * Fast path for AH/ESP. If this is the first time 17851 * we are sending a datagram to AH/ESP, allocate 17852 * a IPSEC_IN message and prepend it. Otherwise, 17853 * just fanout. 17854 */ 17855 17856 int ipsec_rc; 17857 ipsec_in_t *ii; 17858 netstack_t *ns = ipst->ips_netstack; 17859 17860 IP_STAT(ipst, ipsec_proto_ahesp); 17861 if (!mctl_present) { 17862 ASSERT(first_mp == mp); 17863 first_mp = ipsec_in_alloc(B_TRUE, ns); 17864 if (first_mp == NULL) { 17865 ip1dbg(("ip_proto_input: IPSEC_IN " 17866 "allocation failure.\n")); 17867 freemsg(hada_mp); /* okay ifnull */ 17868 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17869 freemsg(mp); 17870 return; 17871 } 17872 /* 17873 * Store the ill_index so that when we come back 17874 * from IPsec we ride on the same queue. 17875 */ 17876 ill = (ill_t *)q->q_ptr; 17877 ii = (ipsec_in_t *)first_mp->b_rptr; 17878 ii->ipsec_in_ill_index = 17879 ill->ill_phyint->phyint_ifindex; 17880 ii->ipsec_in_rill_index = 17881 recv_ill->ill_phyint->phyint_ifindex; 17882 first_mp->b_cont = mp; 17883 /* 17884 * Cache hardware acceleration info. 17885 */ 17886 if (hada_mp != NULL) { 17887 IPSECHW_DEBUG(IPSECHW_PKT, 17888 ("ip_rput_local: caching data attr.\n")); 17889 ii->ipsec_in_accelerated = B_TRUE; 17890 ii->ipsec_in_da = hada_mp; 17891 hada_mp = NULL; 17892 } 17893 } else { 17894 ii = (ipsec_in_t *)first_mp->b_rptr; 17895 } 17896 17897 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17898 17899 if (!ipsec_loaded(ipss)) { 17900 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17901 ire->ire_zoneid, ipst); 17902 return; 17903 } 17904 17905 ns = ipst->ips_netstack; 17906 /* select inbound SA and have IPsec process the pkt */ 17907 if (ipha->ipha_protocol == IPPROTO_ESP) { 17908 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17909 boolean_t esp_in_udp_sa; 17910 if (esph == NULL) 17911 return; 17912 ASSERT(ii->ipsec_in_esp_sa != NULL); 17913 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17914 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17915 IPSA_F_NATT) != 0); 17916 /* 17917 * The following is a fancy, but quick, way of saying: 17918 * ESP-in-UDP SA and Raw ESP packet --> drop 17919 * OR 17920 * ESP SA and ESP-in-UDP packet --> drop 17921 */ 17922 if (esp_in_udp_sa != esp_in_udp_packet) { 17923 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17924 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17925 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17926 &ns->netstack_ipsec->ipsec_dropper); 17927 return; 17928 } 17929 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17930 first_mp, esph); 17931 } else { 17932 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17933 if (ah == NULL) 17934 return; 17935 ASSERT(ii->ipsec_in_ah_sa != NULL); 17936 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17937 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17938 first_mp, ah); 17939 } 17940 17941 switch (ipsec_rc) { 17942 case IPSEC_STATUS_SUCCESS: 17943 break; 17944 case IPSEC_STATUS_FAILED: 17945 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17946 /* FALLTHRU */ 17947 case IPSEC_STATUS_PENDING: 17948 return; 17949 } 17950 /* we're done with IPsec processing, send it up */ 17951 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17952 return; 17953 } 17954 default: 17955 break; 17956 } 17957 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17958 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17959 ire->ire_zoneid)); 17960 goto drop_pkt; 17961 } 17962 /* 17963 * Handle protocols with which IP is less intimate. There 17964 * can be more than one stream bound to a particular 17965 * protocol. When this is the case, each one gets a copy 17966 * of any incoming packets. 17967 */ 17968 fanout: 17969 ip_fanout_proto(q, first_mp, ill, ipha, 17970 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17971 B_TRUE, recv_ill, ire->ire_zoneid); 17972 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17973 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17974 return; 17975 17976 drop_pkt: 17977 freemsg(first_mp); 17978 if (hada_mp != NULL) 17979 freeb(hada_mp); 17980 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17981 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17982 #undef rptr 17983 #undef iphs 17984 17985 } 17986 17987 /* 17988 * Update any source route, record route or timestamp options. 17989 * Check that we are at end of strict source route. 17990 * The options have already been checked for sanity in ip_rput_options(). 17991 */ 17992 static boolean_t 17993 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17994 ip_stack_t *ipst) 17995 { 17996 ipoptp_t opts; 17997 uchar_t *opt; 17998 uint8_t optval; 17999 uint8_t optlen; 18000 ipaddr_t dst; 18001 uint32_t ts; 18002 ire_t *dst_ire; 18003 timestruc_t now; 18004 zoneid_t zoneid; 18005 ill_t *ill; 18006 18007 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18008 18009 ip2dbg(("ip_rput_local_options\n")); 18010 18011 for (optval = ipoptp_first(&opts, ipha); 18012 optval != IPOPT_EOL; 18013 optval = ipoptp_next(&opts)) { 18014 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18015 opt = opts.ipoptp_cur; 18016 optlen = opts.ipoptp_len; 18017 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 18018 optval, optlen)); 18019 switch (optval) { 18020 uint32_t off; 18021 case IPOPT_SSRR: 18022 case IPOPT_LSRR: 18023 off = opt[IPOPT_OFFSET]; 18024 off--; 18025 if (optlen < IP_ADDR_LEN || 18026 off > optlen - IP_ADDR_LEN) { 18027 /* End of source route */ 18028 ip1dbg(("ip_rput_local_options: end of SR\n")); 18029 break; 18030 } 18031 /* 18032 * This will only happen if two consecutive entries 18033 * in the source route contains our address or if 18034 * it is a packet with a loose source route which 18035 * reaches us before consuming the whole source route 18036 */ 18037 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18038 if (optval == IPOPT_SSRR) { 18039 goto bad_src_route; 18040 } 18041 /* 18042 * Hack: instead of dropping the packet truncate the 18043 * source route to what has been used by filling the 18044 * rest with IPOPT_NOP. 18045 */ 18046 opt[IPOPT_OLEN] = (uint8_t)off; 18047 while (off < optlen) { 18048 opt[off++] = IPOPT_NOP; 18049 } 18050 break; 18051 case IPOPT_RR: 18052 off = opt[IPOPT_OFFSET]; 18053 off--; 18054 if (optlen < IP_ADDR_LEN || 18055 off > optlen - IP_ADDR_LEN) { 18056 /* No more room - ignore */ 18057 ip1dbg(( 18058 "ip_rput_local_options: end of RR\n")); 18059 break; 18060 } 18061 bcopy(&ire->ire_src_addr, (char *)opt + off, 18062 IP_ADDR_LEN); 18063 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18064 break; 18065 case IPOPT_TS: 18066 /* Insert timestamp if there is romm */ 18067 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18068 case IPOPT_TS_TSONLY: 18069 off = IPOPT_TS_TIMELEN; 18070 break; 18071 case IPOPT_TS_PRESPEC: 18072 case IPOPT_TS_PRESPEC_RFC791: 18073 /* Verify that the address matched */ 18074 off = opt[IPOPT_OFFSET] - 1; 18075 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18076 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18077 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18078 ipst); 18079 if (dst_ire == NULL) { 18080 /* Not for us */ 18081 break; 18082 } 18083 ire_refrele(dst_ire); 18084 /* FALLTHRU */ 18085 case IPOPT_TS_TSANDADDR: 18086 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18087 break; 18088 default: 18089 /* 18090 * ip_*put_options should have already 18091 * dropped this packet. 18092 */ 18093 cmn_err(CE_PANIC, "ip_rput_local_options: " 18094 "unknown IT - bug in ip_rput_options?\n"); 18095 return (B_TRUE); /* Keep "lint" happy */ 18096 } 18097 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18098 /* Increase overflow counter */ 18099 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18100 opt[IPOPT_POS_OV_FLG] = 18101 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18102 (off << 4)); 18103 break; 18104 } 18105 off = opt[IPOPT_OFFSET] - 1; 18106 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18107 case IPOPT_TS_PRESPEC: 18108 case IPOPT_TS_PRESPEC_RFC791: 18109 case IPOPT_TS_TSANDADDR: 18110 bcopy(&ire->ire_src_addr, (char *)opt + off, 18111 IP_ADDR_LEN); 18112 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18113 /* FALLTHRU */ 18114 case IPOPT_TS_TSONLY: 18115 off = opt[IPOPT_OFFSET] - 1; 18116 /* Compute # of milliseconds since midnight */ 18117 gethrestime(&now); 18118 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18119 now.tv_nsec / (NANOSEC / MILLISEC); 18120 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18121 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18122 break; 18123 } 18124 break; 18125 } 18126 } 18127 return (B_TRUE); 18128 18129 bad_src_route: 18130 q = WR(q); 18131 if (q->q_next != NULL) 18132 ill = q->q_ptr; 18133 else 18134 ill = NULL; 18135 18136 /* make sure we clear any indication of a hardware checksum */ 18137 DB_CKSUMFLAGS(mp) = 0; 18138 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18139 if (zoneid == ALL_ZONES) 18140 freemsg(mp); 18141 else 18142 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18143 return (B_FALSE); 18144 18145 } 18146 18147 /* 18148 * Process IP options in an inbound packet. If an option affects the 18149 * effective destination address, return the next hop address via dstp. 18150 * Returns -1 if something fails in which case an ICMP error has been sent 18151 * and mp freed. 18152 */ 18153 static int 18154 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18155 ip_stack_t *ipst) 18156 { 18157 ipoptp_t opts; 18158 uchar_t *opt; 18159 uint8_t optval; 18160 uint8_t optlen; 18161 ipaddr_t dst; 18162 intptr_t code = 0; 18163 ire_t *ire = NULL; 18164 zoneid_t zoneid; 18165 ill_t *ill; 18166 18167 ip2dbg(("ip_rput_options\n")); 18168 dst = ipha->ipha_dst; 18169 for (optval = ipoptp_first(&opts, ipha); 18170 optval != IPOPT_EOL; 18171 optval = ipoptp_next(&opts)) { 18172 opt = opts.ipoptp_cur; 18173 optlen = opts.ipoptp_len; 18174 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18175 optval, optlen)); 18176 /* 18177 * Note: we need to verify the checksum before we 18178 * modify anything thus this routine only extracts the next 18179 * hop dst from any source route. 18180 */ 18181 switch (optval) { 18182 uint32_t off; 18183 case IPOPT_SSRR: 18184 case IPOPT_LSRR: 18185 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18186 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18187 if (ire == NULL) { 18188 if (optval == IPOPT_SSRR) { 18189 ip1dbg(("ip_rput_options: not next" 18190 " strict source route 0x%x\n", 18191 ntohl(dst))); 18192 code = (char *)&ipha->ipha_dst - 18193 (char *)ipha; 18194 goto param_prob; /* RouterReq's */ 18195 } 18196 ip2dbg(("ip_rput_options: " 18197 "not next source route 0x%x\n", 18198 ntohl(dst))); 18199 break; 18200 } 18201 ire_refrele(ire); 18202 18203 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18204 ip1dbg(( 18205 "ip_rput_options: bad option offset\n")); 18206 code = (char *)&opt[IPOPT_OLEN] - 18207 (char *)ipha; 18208 goto param_prob; 18209 } 18210 off = opt[IPOPT_OFFSET]; 18211 off--; 18212 redo_srr: 18213 if (optlen < IP_ADDR_LEN || 18214 off > optlen - IP_ADDR_LEN) { 18215 /* End of source route */ 18216 ip1dbg(("ip_rput_options: end of SR\n")); 18217 break; 18218 } 18219 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18220 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18221 ntohl(dst))); 18222 18223 /* 18224 * Check if our address is present more than 18225 * once as consecutive hops in source route. 18226 * XXX verify per-interface ip_forwarding 18227 * for source route? 18228 */ 18229 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18230 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18231 18232 if (ire != NULL) { 18233 ire_refrele(ire); 18234 off += IP_ADDR_LEN; 18235 goto redo_srr; 18236 } 18237 18238 if (dst == htonl(INADDR_LOOPBACK)) { 18239 ip1dbg(("ip_rput_options: loopback addr in " 18240 "source route!\n")); 18241 goto bad_src_route; 18242 } 18243 /* 18244 * For strict: verify that dst is directly 18245 * reachable. 18246 */ 18247 if (optval == IPOPT_SSRR) { 18248 ire = ire_ftable_lookup(dst, 0, 0, 18249 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18250 msg_getlabel(mp), 18251 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18252 if (ire == NULL) { 18253 ip1dbg(("ip_rput_options: SSRR not " 18254 "directly reachable: 0x%x\n", 18255 ntohl(dst))); 18256 goto bad_src_route; 18257 } 18258 ire_refrele(ire); 18259 } 18260 /* 18261 * Defer update of the offset and the record route 18262 * until the packet is forwarded. 18263 */ 18264 break; 18265 case IPOPT_RR: 18266 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18267 ip1dbg(( 18268 "ip_rput_options: bad option offset\n")); 18269 code = (char *)&opt[IPOPT_OLEN] - 18270 (char *)ipha; 18271 goto param_prob; 18272 } 18273 break; 18274 case IPOPT_TS: 18275 /* 18276 * Verify that length >= 5 and that there is either 18277 * room for another timestamp or that the overflow 18278 * counter is not maxed out. 18279 */ 18280 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18281 if (optlen < IPOPT_MINLEN_IT) { 18282 goto param_prob; 18283 } 18284 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18285 ip1dbg(( 18286 "ip_rput_options: bad option offset\n")); 18287 code = (char *)&opt[IPOPT_OFFSET] - 18288 (char *)ipha; 18289 goto param_prob; 18290 } 18291 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18292 case IPOPT_TS_TSONLY: 18293 off = IPOPT_TS_TIMELEN; 18294 break; 18295 case IPOPT_TS_TSANDADDR: 18296 case IPOPT_TS_PRESPEC: 18297 case IPOPT_TS_PRESPEC_RFC791: 18298 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18299 break; 18300 default: 18301 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18302 (char *)ipha; 18303 goto param_prob; 18304 } 18305 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18306 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18307 /* 18308 * No room and the overflow counter is 15 18309 * already. 18310 */ 18311 goto param_prob; 18312 } 18313 break; 18314 } 18315 } 18316 18317 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18318 *dstp = dst; 18319 return (0); 18320 } 18321 18322 ip1dbg(("ip_rput_options: error processing IP options.")); 18323 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18324 18325 param_prob: 18326 q = WR(q); 18327 if (q->q_next != NULL) 18328 ill = q->q_ptr; 18329 else 18330 ill = NULL; 18331 18332 /* make sure we clear any indication of a hardware checksum */ 18333 DB_CKSUMFLAGS(mp) = 0; 18334 /* Don't know whether this is for non-global or global/forwarding */ 18335 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18336 if (zoneid == ALL_ZONES) 18337 freemsg(mp); 18338 else 18339 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18340 return (-1); 18341 18342 bad_src_route: 18343 q = WR(q); 18344 if (q->q_next != NULL) 18345 ill = q->q_ptr; 18346 else 18347 ill = NULL; 18348 18349 /* make sure we clear any indication of a hardware checksum */ 18350 DB_CKSUMFLAGS(mp) = 0; 18351 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18352 if (zoneid == ALL_ZONES) 18353 freemsg(mp); 18354 else 18355 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18356 return (-1); 18357 } 18358 18359 /* 18360 * IP & ICMP info in >=14 msg's ... 18361 * - ip fixed part (mib2_ip_t) 18362 * - icmp fixed part (mib2_icmp_t) 18363 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18364 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18365 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18366 * - ipRouteAttributeTable (ip 102) labeled routes 18367 * - ip multicast membership (ip_member_t) 18368 * - ip multicast source filtering (ip_grpsrc_t) 18369 * - igmp fixed part (struct igmpstat) 18370 * - multicast routing stats (struct mrtstat) 18371 * - multicast routing vifs (array of struct vifctl) 18372 * - multicast routing routes (array of struct mfcctl) 18373 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18374 * One per ill plus one generic 18375 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18376 * One per ill plus one generic 18377 * - ipv6RouteEntry all IPv6 IREs 18378 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18379 * - ipv6NetToMediaEntry all Neighbor Cache entries 18380 * - ipv6AddrEntry all IPv6 ipifs 18381 * - ipv6 multicast membership (ipv6_member_t) 18382 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18383 * 18384 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18385 * 18386 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18387 * already filled in by the caller. 18388 * Return value of 0 indicates that no messages were sent and caller 18389 * should free mpctl. 18390 */ 18391 int 18392 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18393 { 18394 ip_stack_t *ipst; 18395 sctp_stack_t *sctps; 18396 18397 if (q->q_next != NULL) { 18398 ipst = ILLQ_TO_IPST(q); 18399 } else { 18400 ipst = CONNQ_TO_IPST(q); 18401 } 18402 ASSERT(ipst != NULL); 18403 sctps = ipst->ips_netstack->netstack_sctp; 18404 18405 if (mpctl == NULL || mpctl->b_cont == NULL) { 18406 return (0); 18407 } 18408 18409 /* 18410 * For the purposes of the (broken) packet shell use 18411 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18412 * to make TCP and UDP appear first in the list of mib items. 18413 * TBD: We could expand this and use it in netstat so that 18414 * the kernel doesn't have to produce large tables (connections, 18415 * routes, etc) when netstat only wants the statistics or a particular 18416 * table. 18417 */ 18418 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18419 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18420 return (1); 18421 } 18422 } 18423 18424 if (level != MIB2_TCP) { 18425 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18426 return (1); 18427 } 18428 } 18429 18430 if (level != MIB2_UDP) { 18431 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18432 return (1); 18433 } 18434 } 18435 18436 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18437 ipst)) == NULL) { 18438 return (1); 18439 } 18440 18441 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18442 return (1); 18443 } 18444 18445 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18446 return (1); 18447 } 18448 18449 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18450 return (1); 18451 } 18452 18453 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18454 return (1); 18455 } 18456 18457 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18458 return (1); 18459 } 18460 18461 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18462 return (1); 18463 } 18464 18465 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18466 return (1); 18467 } 18468 18469 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18470 return (1); 18471 } 18472 18473 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18474 return (1); 18475 } 18476 18477 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18478 return (1); 18479 } 18480 18481 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18482 return (1); 18483 } 18484 18485 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18486 return (1); 18487 } 18488 18489 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18490 return (1); 18491 } 18492 18493 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18494 if (mpctl == NULL) 18495 return (1); 18496 18497 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18498 if (mpctl == NULL) 18499 return (1); 18500 18501 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18502 return (1); 18503 } 18504 freemsg(mpctl); 18505 return (1); 18506 } 18507 18508 /* Get global (legacy) IPv4 statistics */ 18509 static mblk_t * 18510 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18511 ip_stack_t *ipst) 18512 { 18513 mib2_ip_t old_ip_mib; 18514 struct opthdr *optp; 18515 mblk_t *mp2ctl; 18516 18517 /* 18518 * make a copy of the original message 18519 */ 18520 mp2ctl = copymsg(mpctl); 18521 18522 /* fixed length IP structure... */ 18523 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18524 optp->level = MIB2_IP; 18525 optp->name = 0; 18526 SET_MIB(old_ip_mib.ipForwarding, 18527 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18528 SET_MIB(old_ip_mib.ipDefaultTTL, 18529 (uint32_t)ipst->ips_ip_def_ttl); 18530 SET_MIB(old_ip_mib.ipReasmTimeout, 18531 ipst->ips_ip_g_frag_timeout); 18532 SET_MIB(old_ip_mib.ipAddrEntrySize, 18533 sizeof (mib2_ipAddrEntry_t)); 18534 SET_MIB(old_ip_mib.ipRouteEntrySize, 18535 sizeof (mib2_ipRouteEntry_t)); 18536 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18537 sizeof (mib2_ipNetToMediaEntry_t)); 18538 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18539 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18540 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18541 sizeof (mib2_ipAttributeEntry_t)); 18542 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18543 18544 /* 18545 * Grab the statistics from the new IP MIB 18546 */ 18547 SET_MIB(old_ip_mib.ipInReceives, 18548 (uint32_t)ipmib->ipIfStatsHCInReceives); 18549 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18550 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18551 SET_MIB(old_ip_mib.ipForwDatagrams, 18552 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18553 SET_MIB(old_ip_mib.ipInUnknownProtos, 18554 ipmib->ipIfStatsInUnknownProtos); 18555 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18556 SET_MIB(old_ip_mib.ipInDelivers, 18557 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18558 SET_MIB(old_ip_mib.ipOutRequests, 18559 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18560 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18561 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18562 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18563 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18564 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18565 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18566 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18567 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18568 18569 /* ipRoutingDiscards is not being used */ 18570 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18571 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18572 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18573 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18574 SET_MIB(old_ip_mib.ipReasmDuplicates, 18575 ipmib->ipIfStatsReasmDuplicates); 18576 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18577 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18578 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18579 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18580 SET_MIB(old_ip_mib.rawipInOverflows, 18581 ipmib->rawipIfStatsInOverflows); 18582 18583 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18584 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18585 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18586 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18587 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18588 ipmib->ipIfStatsOutSwitchIPVersion); 18589 18590 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18591 (int)sizeof (old_ip_mib))) { 18592 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18593 (uint_t)sizeof (old_ip_mib))); 18594 } 18595 18596 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18597 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18598 (int)optp->level, (int)optp->name, (int)optp->len)); 18599 qreply(q, mpctl); 18600 return (mp2ctl); 18601 } 18602 18603 /* Per interface IPv4 statistics */ 18604 static mblk_t * 18605 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18606 { 18607 struct opthdr *optp; 18608 mblk_t *mp2ctl; 18609 ill_t *ill; 18610 ill_walk_context_t ctx; 18611 mblk_t *mp_tail = NULL; 18612 mib2_ipIfStatsEntry_t global_ip_mib; 18613 18614 /* 18615 * Make a copy of the original message 18616 */ 18617 mp2ctl = copymsg(mpctl); 18618 18619 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18620 optp->level = MIB2_IP; 18621 optp->name = MIB2_IP_TRAFFIC_STATS; 18622 /* Include "unknown interface" ip_mib */ 18623 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18624 ipst->ips_ip_mib.ipIfStatsIfIndex = 18625 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18626 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18627 (ipst->ips_ip_g_forward ? 1 : 2)); 18628 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18629 (uint32_t)ipst->ips_ip_def_ttl); 18630 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18631 sizeof (mib2_ipIfStatsEntry_t)); 18632 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18633 sizeof (mib2_ipAddrEntry_t)); 18634 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18635 sizeof (mib2_ipRouteEntry_t)); 18636 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18637 sizeof (mib2_ipNetToMediaEntry_t)); 18638 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18639 sizeof (ip_member_t)); 18640 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18641 sizeof (ip_grpsrc_t)); 18642 18643 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18644 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18645 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18646 "failed to allocate %u bytes\n", 18647 (uint_t)sizeof (ipst->ips_ip_mib))); 18648 } 18649 18650 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18651 18652 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18653 ill = ILL_START_WALK_V4(&ctx, ipst); 18654 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18655 ill->ill_ip_mib->ipIfStatsIfIndex = 18656 ill->ill_phyint->phyint_ifindex; 18657 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18658 (ipst->ips_ip_g_forward ? 1 : 2)); 18659 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18660 (uint32_t)ipst->ips_ip_def_ttl); 18661 18662 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18663 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18664 (char *)ill->ill_ip_mib, 18665 (int)sizeof (*ill->ill_ip_mib))) { 18666 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18667 "failed to allocate %u bytes\n", 18668 (uint_t)sizeof (*ill->ill_ip_mib))); 18669 } 18670 } 18671 rw_exit(&ipst->ips_ill_g_lock); 18672 18673 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18674 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18675 "level %d, name %d, len %d\n", 18676 (int)optp->level, (int)optp->name, (int)optp->len)); 18677 qreply(q, mpctl); 18678 18679 if (mp2ctl == NULL) 18680 return (NULL); 18681 18682 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18683 } 18684 18685 /* Global IPv4 ICMP statistics */ 18686 static mblk_t * 18687 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18688 { 18689 struct opthdr *optp; 18690 mblk_t *mp2ctl; 18691 18692 /* 18693 * Make a copy of the original message 18694 */ 18695 mp2ctl = copymsg(mpctl); 18696 18697 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18698 optp->level = MIB2_ICMP; 18699 optp->name = 0; 18700 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18701 (int)sizeof (ipst->ips_icmp_mib))) { 18702 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18703 (uint_t)sizeof (ipst->ips_icmp_mib))); 18704 } 18705 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18706 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18707 (int)optp->level, (int)optp->name, (int)optp->len)); 18708 qreply(q, mpctl); 18709 return (mp2ctl); 18710 } 18711 18712 /* Global IPv4 IGMP statistics */ 18713 static mblk_t * 18714 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18715 { 18716 struct opthdr *optp; 18717 mblk_t *mp2ctl; 18718 18719 /* 18720 * make a copy of the original message 18721 */ 18722 mp2ctl = copymsg(mpctl); 18723 18724 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18725 optp->level = EXPER_IGMP; 18726 optp->name = 0; 18727 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18728 (int)sizeof (ipst->ips_igmpstat))) { 18729 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18730 (uint_t)sizeof (ipst->ips_igmpstat))); 18731 } 18732 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18733 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18734 (int)optp->level, (int)optp->name, (int)optp->len)); 18735 qreply(q, mpctl); 18736 return (mp2ctl); 18737 } 18738 18739 /* Global IPv4 Multicast Routing statistics */ 18740 static mblk_t * 18741 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18742 { 18743 struct opthdr *optp; 18744 mblk_t *mp2ctl; 18745 18746 /* 18747 * make a copy of the original message 18748 */ 18749 mp2ctl = copymsg(mpctl); 18750 18751 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18752 optp->level = EXPER_DVMRP; 18753 optp->name = 0; 18754 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18755 ip0dbg(("ip_mroute_stats: failed\n")); 18756 } 18757 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18758 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18759 (int)optp->level, (int)optp->name, (int)optp->len)); 18760 qreply(q, mpctl); 18761 return (mp2ctl); 18762 } 18763 18764 /* IPv4 address information */ 18765 static mblk_t * 18766 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18767 { 18768 struct opthdr *optp; 18769 mblk_t *mp2ctl; 18770 mblk_t *mp_tail = NULL; 18771 ill_t *ill; 18772 ipif_t *ipif; 18773 uint_t bitval; 18774 mib2_ipAddrEntry_t mae; 18775 zoneid_t zoneid; 18776 ill_walk_context_t ctx; 18777 18778 /* 18779 * make a copy of the original message 18780 */ 18781 mp2ctl = copymsg(mpctl); 18782 18783 /* ipAddrEntryTable */ 18784 18785 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18786 optp->level = MIB2_IP; 18787 optp->name = MIB2_IP_ADDR; 18788 zoneid = Q_TO_CONN(q)->conn_zoneid; 18789 18790 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18791 ill = ILL_START_WALK_V4(&ctx, ipst); 18792 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18793 for (ipif = ill->ill_ipif; ipif != NULL; 18794 ipif = ipif->ipif_next) { 18795 if (ipif->ipif_zoneid != zoneid && 18796 ipif->ipif_zoneid != ALL_ZONES) 18797 continue; 18798 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18799 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18800 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18801 18802 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18803 OCTET_LENGTH); 18804 mae.ipAdEntIfIndex.o_length = 18805 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18806 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18807 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18808 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18809 mae.ipAdEntInfo.ae_subnet_len = 18810 ip_mask_to_plen(ipif->ipif_net_mask); 18811 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18812 for (bitval = 1; 18813 bitval && 18814 !(bitval & ipif->ipif_brd_addr); 18815 bitval <<= 1) 18816 noop; 18817 mae.ipAdEntBcastAddr = bitval; 18818 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18819 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18820 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18821 mae.ipAdEntInfo.ae_broadcast_addr = 18822 ipif->ipif_brd_addr; 18823 mae.ipAdEntInfo.ae_pp_dst_addr = 18824 ipif->ipif_pp_dst_addr; 18825 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18826 ill->ill_flags | ill->ill_phyint->phyint_flags; 18827 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18828 18829 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18830 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18831 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18832 "allocate %u bytes\n", 18833 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18834 } 18835 } 18836 } 18837 rw_exit(&ipst->ips_ill_g_lock); 18838 18839 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18840 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18841 (int)optp->level, (int)optp->name, (int)optp->len)); 18842 qreply(q, mpctl); 18843 return (mp2ctl); 18844 } 18845 18846 /* IPv6 address information */ 18847 static mblk_t * 18848 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18849 { 18850 struct opthdr *optp; 18851 mblk_t *mp2ctl; 18852 mblk_t *mp_tail = NULL; 18853 ill_t *ill; 18854 ipif_t *ipif; 18855 mib2_ipv6AddrEntry_t mae6; 18856 zoneid_t zoneid; 18857 ill_walk_context_t ctx; 18858 18859 /* 18860 * make a copy of the original message 18861 */ 18862 mp2ctl = copymsg(mpctl); 18863 18864 /* ipv6AddrEntryTable */ 18865 18866 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18867 optp->level = MIB2_IP6; 18868 optp->name = MIB2_IP6_ADDR; 18869 zoneid = Q_TO_CONN(q)->conn_zoneid; 18870 18871 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18872 ill = ILL_START_WALK_V6(&ctx, ipst); 18873 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18874 for (ipif = ill->ill_ipif; ipif != NULL; 18875 ipif = ipif->ipif_next) { 18876 if (ipif->ipif_zoneid != zoneid && 18877 ipif->ipif_zoneid != ALL_ZONES) 18878 continue; 18879 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18880 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18881 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18882 18883 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18884 OCTET_LENGTH); 18885 mae6.ipv6AddrIfIndex.o_length = 18886 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18887 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18888 mae6.ipv6AddrPfxLength = 18889 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18890 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18891 mae6.ipv6AddrInfo.ae_subnet_len = 18892 mae6.ipv6AddrPfxLength; 18893 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18894 18895 /* Type: stateless(1), stateful(2), unknown(3) */ 18896 if (ipif->ipif_flags & IPIF_ADDRCONF) 18897 mae6.ipv6AddrType = 1; 18898 else 18899 mae6.ipv6AddrType = 2; 18900 /* Anycast: true(1), false(2) */ 18901 if (ipif->ipif_flags & IPIF_ANYCAST) 18902 mae6.ipv6AddrAnycastFlag = 1; 18903 else 18904 mae6.ipv6AddrAnycastFlag = 2; 18905 18906 /* 18907 * Address status: preferred(1), deprecated(2), 18908 * invalid(3), inaccessible(4), unknown(5) 18909 */ 18910 if (ipif->ipif_flags & IPIF_NOLOCAL) 18911 mae6.ipv6AddrStatus = 3; 18912 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18913 mae6.ipv6AddrStatus = 2; 18914 else 18915 mae6.ipv6AddrStatus = 1; 18916 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18917 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18918 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18919 ipif->ipif_v6pp_dst_addr; 18920 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18921 ill->ill_flags | ill->ill_phyint->phyint_flags; 18922 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18923 mae6.ipv6AddrIdentifier = ill->ill_token; 18924 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18925 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18926 mae6.ipv6AddrRetransmitTime = 18927 ill->ill_reachable_retrans_time; 18928 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18929 (char *)&mae6, 18930 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18931 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18932 "allocate %u bytes\n", 18933 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18934 } 18935 } 18936 } 18937 rw_exit(&ipst->ips_ill_g_lock); 18938 18939 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18940 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18941 (int)optp->level, (int)optp->name, (int)optp->len)); 18942 qreply(q, mpctl); 18943 return (mp2ctl); 18944 } 18945 18946 /* IPv4 multicast group membership. */ 18947 static mblk_t * 18948 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18949 { 18950 struct opthdr *optp; 18951 mblk_t *mp2ctl; 18952 ill_t *ill; 18953 ipif_t *ipif; 18954 ilm_t *ilm; 18955 ip_member_t ipm; 18956 mblk_t *mp_tail = NULL; 18957 ill_walk_context_t ctx; 18958 zoneid_t zoneid; 18959 ilm_walker_t ilw; 18960 18961 /* 18962 * make a copy of the original message 18963 */ 18964 mp2ctl = copymsg(mpctl); 18965 zoneid = Q_TO_CONN(q)->conn_zoneid; 18966 18967 /* ipGroupMember table */ 18968 optp = (struct opthdr *)&mpctl->b_rptr[ 18969 sizeof (struct T_optmgmt_ack)]; 18970 optp->level = MIB2_IP; 18971 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18972 18973 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18974 ill = ILL_START_WALK_V4(&ctx, ipst); 18975 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18976 if (IS_UNDER_IPMP(ill)) 18977 continue; 18978 18979 ilm = ilm_walker_start(&ilw, ill); 18980 for (ipif = ill->ill_ipif; ipif != NULL; 18981 ipif = ipif->ipif_next) { 18982 if (ipif->ipif_zoneid != zoneid && 18983 ipif->ipif_zoneid != ALL_ZONES) 18984 continue; /* not this zone */ 18985 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18986 OCTET_LENGTH); 18987 ipm.ipGroupMemberIfIndex.o_length = 18988 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18989 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18990 ASSERT(ilm->ilm_ipif != NULL); 18991 ASSERT(ilm->ilm_ill == NULL); 18992 if (ilm->ilm_ipif != ipif) 18993 continue; 18994 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18995 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18996 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18997 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18998 (char *)&ipm, (int)sizeof (ipm))) { 18999 ip1dbg(("ip_snmp_get_mib2_ip_group: " 19000 "failed to allocate %u bytes\n", 19001 (uint_t)sizeof (ipm))); 19002 } 19003 } 19004 } 19005 ilm_walker_finish(&ilw); 19006 } 19007 rw_exit(&ipst->ips_ill_g_lock); 19008 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19009 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19010 (int)optp->level, (int)optp->name, (int)optp->len)); 19011 qreply(q, mpctl); 19012 return (mp2ctl); 19013 } 19014 19015 /* IPv6 multicast group membership. */ 19016 static mblk_t * 19017 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19018 { 19019 struct opthdr *optp; 19020 mblk_t *mp2ctl; 19021 ill_t *ill; 19022 ilm_t *ilm; 19023 ipv6_member_t ipm6; 19024 mblk_t *mp_tail = NULL; 19025 ill_walk_context_t ctx; 19026 zoneid_t zoneid; 19027 ilm_walker_t ilw; 19028 19029 /* 19030 * make a copy of the original message 19031 */ 19032 mp2ctl = copymsg(mpctl); 19033 zoneid = Q_TO_CONN(q)->conn_zoneid; 19034 19035 /* ip6GroupMember table */ 19036 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19037 optp->level = MIB2_IP6; 19038 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19039 19040 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19041 ill = ILL_START_WALK_V6(&ctx, ipst); 19042 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19043 if (IS_UNDER_IPMP(ill)) 19044 continue; 19045 19046 ilm = ilm_walker_start(&ilw, ill); 19047 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19048 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19049 ASSERT(ilm->ilm_ipif == NULL); 19050 ASSERT(ilm->ilm_ill != NULL); 19051 if (ilm->ilm_zoneid != zoneid) 19052 continue; /* not this zone */ 19053 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19054 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19055 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19056 if (!snmp_append_data2(mpctl->b_cont, 19057 &mp_tail, 19058 (char *)&ipm6, (int)sizeof (ipm6))) { 19059 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19060 "failed to allocate %u bytes\n", 19061 (uint_t)sizeof (ipm6))); 19062 } 19063 } 19064 ilm_walker_finish(&ilw); 19065 } 19066 rw_exit(&ipst->ips_ill_g_lock); 19067 19068 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19069 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19070 (int)optp->level, (int)optp->name, (int)optp->len)); 19071 qreply(q, mpctl); 19072 return (mp2ctl); 19073 } 19074 19075 /* IP multicast filtered sources */ 19076 static mblk_t * 19077 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19078 { 19079 struct opthdr *optp; 19080 mblk_t *mp2ctl; 19081 ill_t *ill; 19082 ipif_t *ipif; 19083 ilm_t *ilm; 19084 ip_grpsrc_t ips; 19085 mblk_t *mp_tail = NULL; 19086 ill_walk_context_t ctx; 19087 zoneid_t zoneid; 19088 int i; 19089 slist_t *sl; 19090 ilm_walker_t ilw; 19091 19092 /* 19093 * make a copy of the original message 19094 */ 19095 mp2ctl = copymsg(mpctl); 19096 zoneid = Q_TO_CONN(q)->conn_zoneid; 19097 19098 /* ipGroupSource table */ 19099 optp = (struct opthdr *)&mpctl->b_rptr[ 19100 sizeof (struct T_optmgmt_ack)]; 19101 optp->level = MIB2_IP; 19102 optp->name = EXPER_IP_GROUP_SOURCES; 19103 19104 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19105 ill = ILL_START_WALK_V4(&ctx, ipst); 19106 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19107 if (IS_UNDER_IPMP(ill)) 19108 continue; 19109 19110 ilm = ilm_walker_start(&ilw, ill); 19111 for (ipif = ill->ill_ipif; ipif != NULL; 19112 ipif = ipif->ipif_next) { 19113 if (ipif->ipif_zoneid != zoneid) 19114 continue; /* not this zone */ 19115 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19116 OCTET_LENGTH); 19117 ips.ipGroupSourceIfIndex.o_length = 19118 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19119 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19120 ASSERT(ilm->ilm_ipif != NULL); 19121 ASSERT(ilm->ilm_ill == NULL); 19122 sl = ilm->ilm_filter; 19123 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19124 continue; 19125 ips.ipGroupSourceGroup = ilm->ilm_addr; 19126 for (i = 0; i < sl->sl_numsrc; i++) { 19127 if (!IN6_IS_ADDR_V4MAPPED( 19128 &sl->sl_addr[i])) 19129 continue; 19130 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19131 ips.ipGroupSourceAddress); 19132 if (snmp_append_data2(mpctl->b_cont, 19133 &mp_tail, (char *)&ips, 19134 (int)sizeof (ips)) == 0) { 19135 ip1dbg(("ip_snmp_get_mib2_" 19136 "ip_group_src: failed to " 19137 "allocate %u bytes\n", 19138 (uint_t)sizeof (ips))); 19139 } 19140 } 19141 } 19142 } 19143 ilm_walker_finish(&ilw); 19144 } 19145 rw_exit(&ipst->ips_ill_g_lock); 19146 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19147 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19148 (int)optp->level, (int)optp->name, (int)optp->len)); 19149 qreply(q, mpctl); 19150 return (mp2ctl); 19151 } 19152 19153 /* IPv6 multicast filtered sources. */ 19154 static mblk_t * 19155 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19156 { 19157 struct opthdr *optp; 19158 mblk_t *mp2ctl; 19159 ill_t *ill; 19160 ilm_t *ilm; 19161 ipv6_grpsrc_t ips6; 19162 mblk_t *mp_tail = NULL; 19163 ill_walk_context_t ctx; 19164 zoneid_t zoneid; 19165 int i; 19166 slist_t *sl; 19167 ilm_walker_t ilw; 19168 19169 /* 19170 * make a copy of the original message 19171 */ 19172 mp2ctl = copymsg(mpctl); 19173 zoneid = Q_TO_CONN(q)->conn_zoneid; 19174 19175 /* ip6GroupMember table */ 19176 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19177 optp->level = MIB2_IP6; 19178 optp->name = EXPER_IP6_GROUP_SOURCES; 19179 19180 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19181 ill = ILL_START_WALK_V6(&ctx, ipst); 19182 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19183 if (IS_UNDER_IPMP(ill)) 19184 continue; 19185 19186 ilm = ilm_walker_start(&ilw, ill); 19187 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19188 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19189 ASSERT(ilm->ilm_ipif == NULL); 19190 ASSERT(ilm->ilm_ill != NULL); 19191 sl = ilm->ilm_filter; 19192 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19193 continue; 19194 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19195 for (i = 0; i < sl->sl_numsrc; i++) { 19196 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19197 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19198 (char *)&ips6, (int)sizeof (ips6))) { 19199 ip1dbg(("ip_snmp_get_mib2_ip6_" 19200 "group_src: failed to allocate " 19201 "%u bytes\n", 19202 (uint_t)sizeof (ips6))); 19203 } 19204 } 19205 } 19206 ilm_walker_finish(&ilw); 19207 } 19208 rw_exit(&ipst->ips_ill_g_lock); 19209 19210 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19211 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19212 (int)optp->level, (int)optp->name, (int)optp->len)); 19213 qreply(q, mpctl); 19214 return (mp2ctl); 19215 } 19216 19217 /* Multicast routing virtual interface table. */ 19218 static mblk_t * 19219 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19220 { 19221 struct opthdr *optp; 19222 mblk_t *mp2ctl; 19223 19224 /* 19225 * make a copy of the original message 19226 */ 19227 mp2ctl = copymsg(mpctl); 19228 19229 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19230 optp->level = EXPER_DVMRP; 19231 optp->name = EXPER_DVMRP_VIF; 19232 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19233 ip0dbg(("ip_mroute_vif: failed\n")); 19234 } 19235 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19236 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19237 (int)optp->level, (int)optp->name, (int)optp->len)); 19238 qreply(q, mpctl); 19239 return (mp2ctl); 19240 } 19241 19242 /* Multicast routing table. */ 19243 static mblk_t * 19244 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19245 { 19246 struct opthdr *optp; 19247 mblk_t *mp2ctl; 19248 19249 /* 19250 * make a copy of the original message 19251 */ 19252 mp2ctl = copymsg(mpctl); 19253 19254 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19255 optp->level = EXPER_DVMRP; 19256 optp->name = EXPER_DVMRP_MRT; 19257 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19258 ip0dbg(("ip_mroute_mrt: failed\n")); 19259 } 19260 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19261 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19262 (int)optp->level, (int)optp->name, (int)optp->len)); 19263 qreply(q, mpctl); 19264 return (mp2ctl); 19265 } 19266 19267 /* 19268 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19269 * in one IRE walk. 19270 */ 19271 static mblk_t * 19272 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19273 ip_stack_t *ipst) 19274 { 19275 struct opthdr *optp; 19276 mblk_t *mp2ctl; /* Returned */ 19277 mblk_t *mp3ctl; /* nettomedia */ 19278 mblk_t *mp4ctl; /* routeattrs */ 19279 iproutedata_t ird; 19280 zoneid_t zoneid; 19281 19282 /* 19283 * make copies of the original message 19284 * - mp2ctl is returned unchanged to the caller for his use 19285 * - mpctl is sent upstream as ipRouteEntryTable 19286 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19287 * - mp4ctl is sent upstream as ipRouteAttributeTable 19288 */ 19289 mp2ctl = copymsg(mpctl); 19290 mp3ctl = copymsg(mpctl); 19291 mp4ctl = copymsg(mpctl); 19292 if (mp3ctl == NULL || mp4ctl == NULL) { 19293 freemsg(mp4ctl); 19294 freemsg(mp3ctl); 19295 freemsg(mp2ctl); 19296 freemsg(mpctl); 19297 return (NULL); 19298 } 19299 19300 bzero(&ird, sizeof (ird)); 19301 19302 ird.ird_route.lp_head = mpctl->b_cont; 19303 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19304 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19305 /* 19306 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19307 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19308 * intended a temporary solution until a proper MIB API is provided 19309 * that provides complete filtering/caller-opt-in. 19310 */ 19311 if (level == EXPER_IP_AND_TESTHIDDEN) 19312 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19313 19314 zoneid = Q_TO_CONN(q)->conn_zoneid; 19315 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19316 19317 /* ipRouteEntryTable in mpctl */ 19318 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19319 optp->level = MIB2_IP; 19320 optp->name = MIB2_IP_ROUTE; 19321 optp->len = msgdsize(ird.ird_route.lp_head); 19322 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19323 (int)optp->level, (int)optp->name, (int)optp->len)); 19324 qreply(q, mpctl); 19325 19326 /* ipNetToMediaEntryTable in mp3ctl */ 19327 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19328 optp->level = MIB2_IP; 19329 optp->name = MIB2_IP_MEDIA; 19330 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19331 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19332 (int)optp->level, (int)optp->name, (int)optp->len)); 19333 qreply(q, mp3ctl); 19334 19335 /* ipRouteAttributeTable in mp4ctl */ 19336 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19337 optp->level = MIB2_IP; 19338 optp->name = EXPER_IP_RTATTR; 19339 optp->len = msgdsize(ird.ird_attrs.lp_head); 19340 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19341 (int)optp->level, (int)optp->name, (int)optp->len)); 19342 if (optp->len == 0) 19343 freemsg(mp4ctl); 19344 else 19345 qreply(q, mp4ctl); 19346 19347 return (mp2ctl); 19348 } 19349 19350 /* 19351 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19352 * ipv6NetToMediaEntryTable in an NDP walk. 19353 */ 19354 static mblk_t * 19355 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19356 ip_stack_t *ipst) 19357 { 19358 struct opthdr *optp; 19359 mblk_t *mp2ctl; /* Returned */ 19360 mblk_t *mp3ctl; /* nettomedia */ 19361 mblk_t *mp4ctl; /* routeattrs */ 19362 iproutedata_t ird; 19363 zoneid_t zoneid; 19364 19365 /* 19366 * make copies of the original message 19367 * - mp2ctl is returned unchanged to the caller for his use 19368 * - mpctl is sent upstream as ipv6RouteEntryTable 19369 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19370 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19371 */ 19372 mp2ctl = copymsg(mpctl); 19373 mp3ctl = copymsg(mpctl); 19374 mp4ctl = copymsg(mpctl); 19375 if (mp3ctl == NULL || mp4ctl == NULL) { 19376 freemsg(mp4ctl); 19377 freemsg(mp3ctl); 19378 freemsg(mp2ctl); 19379 freemsg(mpctl); 19380 return (NULL); 19381 } 19382 19383 bzero(&ird, sizeof (ird)); 19384 19385 ird.ird_route.lp_head = mpctl->b_cont; 19386 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19387 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19388 /* 19389 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19390 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19391 * intended a temporary solution until a proper MIB API is provided 19392 * that provides complete filtering/caller-opt-in. 19393 */ 19394 if (level == EXPER_IP_AND_TESTHIDDEN) 19395 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19396 19397 zoneid = Q_TO_CONN(q)->conn_zoneid; 19398 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19399 19400 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19401 optp->level = MIB2_IP6; 19402 optp->name = MIB2_IP6_ROUTE; 19403 optp->len = msgdsize(ird.ird_route.lp_head); 19404 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19405 (int)optp->level, (int)optp->name, (int)optp->len)); 19406 qreply(q, mpctl); 19407 19408 /* ipv6NetToMediaEntryTable in mp3ctl */ 19409 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19410 19411 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19412 optp->level = MIB2_IP6; 19413 optp->name = MIB2_IP6_MEDIA; 19414 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19415 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19416 (int)optp->level, (int)optp->name, (int)optp->len)); 19417 qreply(q, mp3ctl); 19418 19419 /* ipv6RouteAttributeTable in mp4ctl */ 19420 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19421 optp->level = MIB2_IP6; 19422 optp->name = EXPER_IP_RTATTR; 19423 optp->len = msgdsize(ird.ird_attrs.lp_head); 19424 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19425 (int)optp->level, (int)optp->name, (int)optp->len)); 19426 if (optp->len == 0) 19427 freemsg(mp4ctl); 19428 else 19429 qreply(q, mp4ctl); 19430 19431 return (mp2ctl); 19432 } 19433 19434 /* 19435 * IPv6 mib: One per ill 19436 */ 19437 static mblk_t * 19438 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19439 { 19440 struct opthdr *optp; 19441 mblk_t *mp2ctl; 19442 ill_t *ill; 19443 ill_walk_context_t ctx; 19444 mblk_t *mp_tail = NULL; 19445 19446 /* 19447 * Make a copy of the original message 19448 */ 19449 mp2ctl = copymsg(mpctl); 19450 19451 /* fixed length IPv6 structure ... */ 19452 19453 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19454 optp->level = MIB2_IP6; 19455 optp->name = 0; 19456 /* Include "unknown interface" ip6_mib */ 19457 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19458 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19459 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19460 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19461 ipst->ips_ipv6_forward ? 1 : 2); 19462 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19463 ipst->ips_ipv6_def_hops); 19464 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19465 sizeof (mib2_ipIfStatsEntry_t)); 19466 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19467 sizeof (mib2_ipv6AddrEntry_t)); 19468 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19469 sizeof (mib2_ipv6RouteEntry_t)); 19470 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19471 sizeof (mib2_ipv6NetToMediaEntry_t)); 19472 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19473 sizeof (ipv6_member_t)); 19474 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19475 sizeof (ipv6_grpsrc_t)); 19476 19477 /* 19478 * Synchronize 64- and 32-bit counters 19479 */ 19480 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19481 ipIfStatsHCInReceives); 19482 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19483 ipIfStatsHCInDelivers); 19484 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19485 ipIfStatsHCOutRequests); 19486 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19487 ipIfStatsHCOutForwDatagrams); 19488 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19489 ipIfStatsHCOutMcastPkts); 19490 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19491 ipIfStatsHCInMcastPkts); 19492 19493 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19494 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19495 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19496 (uint_t)sizeof (ipst->ips_ip6_mib))); 19497 } 19498 19499 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19500 ill = ILL_START_WALK_V6(&ctx, ipst); 19501 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19502 ill->ill_ip_mib->ipIfStatsIfIndex = 19503 ill->ill_phyint->phyint_ifindex; 19504 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19505 ipst->ips_ipv6_forward ? 1 : 2); 19506 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19507 ill->ill_max_hops); 19508 19509 /* 19510 * Synchronize 64- and 32-bit counters 19511 */ 19512 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19513 ipIfStatsHCInReceives); 19514 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19515 ipIfStatsHCInDelivers); 19516 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19517 ipIfStatsHCOutRequests); 19518 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19519 ipIfStatsHCOutForwDatagrams); 19520 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19521 ipIfStatsHCOutMcastPkts); 19522 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19523 ipIfStatsHCInMcastPkts); 19524 19525 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19526 (char *)ill->ill_ip_mib, 19527 (int)sizeof (*ill->ill_ip_mib))) { 19528 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19529 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19530 } 19531 } 19532 rw_exit(&ipst->ips_ill_g_lock); 19533 19534 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19535 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19536 (int)optp->level, (int)optp->name, (int)optp->len)); 19537 qreply(q, mpctl); 19538 return (mp2ctl); 19539 } 19540 19541 /* 19542 * ICMPv6 mib: One per ill 19543 */ 19544 static mblk_t * 19545 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19546 { 19547 struct opthdr *optp; 19548 mblk_t *mp2ctl; 19549 ill_t *ill; 19550 ill_walk_context_t ctx; 19551 mblk_t *mp_tail = NULL; 19552 /* 19553 * Make a copy of the original message 19554 */ 19555 mp2ctl = copymsg(mpctl); 19556 19557 /* fixed length ICMPv6 structure ... */ 19558 19559 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19560 optp->level = MIB2_ICMP6; 19561 optp->name = 0; 19562 /* Include "unknown interface" icmp6_mib */ 19563 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19564 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19565 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19566 sizeof (mib2_ipv6IfIcmpEntry_t); 19567 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19568 (char *)&ipst->ips_icmp6_mib, 19569 (int)sizeof (ipst->ips_icmp6_mib))) { 19570 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19571 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19572 } 19573 19574 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19575 ill = ILL_START_WALK_V6(&ctx, ipst); 19576 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19577 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19578 ill->ill_phyint->phyint_ifindex; 19579 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19580 (char *)ill->ill_icmp6_mib, 19581 (int)sizeof (*ill->ill_icmp6_mib))) { 19582 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19583 "%u bytes\n", 19584 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19585 } 19586 } 19587 rw_exit(&ipst->ips_ill_g_lock); 19588 19589 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19590 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19591 (int)optp->level, (int)optp->name, (int)optp->len)); 19592 qreply(q, mpctl); 19593 return (mp2ctl); 19594 } 19595 19596 /* 19597 * ire_walk routine to create both ipRouteEntryTable and 19598 * ipRouteAttributeTable in one IRE walk 19599 */ 19600 static void 19601 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19602 { 19603 ill_t *ill; 19604 ipif_t *ipif; 19605 mib2_ipRouteEntry_t *re; 19606 mib2_ipAttributeEntry_t *iae, *iaeptr; 19607 ipaddr_t gw_addr; 19608 tsol_ire_gw_secattr_t *attrp; 19609 tsol_gc_t *gc = NULL; 19610 tsol_gcgrp_t *gcgrp = NULL; 19611 uint_t sacnt = 0; 19612 int i; 19613 19614 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19615 19616 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19617 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19618 return; 19619 } 19620 19621 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19622 return; 19623 19624 if ((attrp = ire->ire_gw_secattr) != NULL) { 19625 mutex_enter(&attrp->igsa_lock); 19626 if ((gc = attrp->igsa_gc) != NULL) { 19627 gcgrp = gc->gc_grp; 19628 ASSERT(gcgrp != NULL); 19629 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19630 sacnt = 1; 19631 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19632 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19633 gc = gcgrp->gcgrp_head; 19634 sacnt = gcgrp->gcgrp_count; 19635 } 19636 mutex_exit(&attrp->igsa_lock); 19637 19638 /* do nothing if there's no gc to report */ 19639 if (gc == NULL) { 19640 ASSERT(sacnt == 0); 19641 if (gcgrp != NULL) { 19642 /* we might as well drop the lock now */ 19643 rw_exit(&gcgrp->gcgrp_rwlock); 19644 gcgrp = NULL; 19645 } 19646 attrp = NULL; 19647 } 19648 19649 ASSERT(gc == NULL || (gcgrp != NULL && 19650 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19651 } 19652 ASSERT(sacnt == 0 || gc != NULL); 19653 19654 if (sacnt != 0 && 19655 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19656 kmem_free(re, sizeof (*re)); 19657 rw_exit(&gcgrp->gcgrp_rwlock); 19658 return; 19659 } 19660 19661 /* 19662 * Return all IRE types for route table... let caller pick and choose 19663 */ 19664 re->ipRouteDest = ire->ire_addr; 19665 ipif = ire->ire_ipif; 19666 re->ipRouteIfIndex.o_length = 0; 19667 if (ire->ire_type == IRE_CACHE) { 19668 ill = (ill_t *)ire->ire_stq->q_ptr; 19669 re->ipRouteIfIndex.o_length = 19670 ill->ill_name_length == 0 ? 0 : 19671 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19672 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19673 re->ipRouteIfIndex.o_length); 19674 } else if (ipif != NULL) { 19675 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19676 re->ipRouteIfIndex.o_length = 19677 mi_strlen(re->ipRouteIfIndex.o_bytes); 19678 } 19679 re->ipRouteMetric1 = -1; 19680 re->ipRouteMetric2 = -1; 19681 re->ipRouteMetric3 = -1; 19682 re->ipRouteMetric4 = -1; 19683 19684 gw_addr = ire->ire_gateway_addr; 19685 19686 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19687 re->ipRouteNextHop = ire->ire_src_addr; 19688 else 19689 re->ipRouteNextHop = gw_addr; 19690 /* indirect(4), direct(3), or invalid(2) */ 19691 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19692 re->ipRouteType = 2; 19693 else 19694 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19695 re->ipRouteProto = -1; 19696 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19697 re->ipRouteMask = ire->ire_mask; 19698 re->ipRouteMetric5 = -1; 19699 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19700 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19701 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19702 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19703 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19704 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19705 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19706 re->ipRouteInfo.re_flags = ire->ire_flags; 19707 19708 if (ire->ire_flags & RTF_DYNAMIC) { 19709 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19710 } else { 19711 re->ipRouteInfo.re_ire_type = ire->ire_type; 19712 } 19713 19714 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19715 (char *)re, (int)sizeof (*re))) { 19716 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19717 (uint_t)sizeof (*re))); 19718 } 19719 19720 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19721 iaeptr->iae_routeidx = ird->ird_idx; 19722 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19723 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19724 } 19725 19726 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19727 (char *)iae, sacnt * sizeof (*iae))) { 19728 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19729 (unsigned)(sacnt * sizeof (*iae)))); 19730 } 19731 19732 /* bump route index for next pass */ 19733 ird->ird_idx++; 19734 19735 kmem_free(re, sizeof (*re)); 19736 if (sacnt != 0) 19737 kmem_free(iae, sacnt * sizeof (*iae)); 19738 19739 if (gcgrp != NULL) 19740 rw_exit(&gcgrp->gcgrp_rwlock); 19741 } 19742 19743 /* 19744 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19745 */ 19746 static void 19747 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19748 { 19749 ill_t *ill; 19750 ipif_t *ipif; 19751 mib2_ipv6RouteEntry_t *re; 19752 mib2_ipAttributeEntry_t *iae, *iaeptr; 19753 in6_addr_t gw_addr_v6; 19754 tsol_ire_gw_secattr_t *attrp; 19755 tsol_gc_t *gc = NULL; 19756 tsol_gcgrp_t *gcgrp = NULL; 19757 uint_t sacnt = 0; 19758 int i; 19759 19760 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19761 19762 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19763 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19764 return; 19765 } 19766 19767 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19768 return; 19769 19770 if ((attrp = ire->ire_gw_secattr) != NULL) { 19771 mutex_enter(&attrp->igsa_lock); 19772 if ((gc = attrp->igsa_gc) != NULL) { 19773 gcgrp = gc->gc_grp; 19774 ASSERT(gcgrp != NULL); 19775 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19776 sacnt = 1; 19777 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19778 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19779 gc = gcgrp->gcgrp_head; 19780 sacnt = gcgrp->gcgrp_count; 19781 } 19782 mutex_exit(&attrp->igsa_lock); 19783 19784 /* do nothing if there's no gc to report */ 19785 if (gc == NULL) { 19786 ASSERT(sacnt == 0); 19787 if (gcgrp != NULL) { 19788 /* we might as well drop the lock now */ 19789 rw_exit(&gcgrp->gcgrp_rwlock); 19790 gcgrp = NULL; 19791 } 19792 attrp = NULL; 19793 } 19794 19795 ASSERT(gc == NULL || (gcgrp != NULL && 19796 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19797 } 19798 ASSERT(sacnt == 0 || gc != NULL); 19799 19800 if (sacnt != 0 && 19801 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19802 kmem_free(re, sizeof (*re)); 19803 rw_exit(&gcgrp->gcgrp_rwlock); 19804 return; 19805 } 19806 19807 /* 19808 * Return all IRE types for route table... let caller pick and choose 19809 */ 19810 re->ipv6RouteDest = ire->ire_addr_v6; 19811 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19812 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19813 re->ipv6RouteIfIndex.o_length = 0; 19814 ipif = ire->ire_ipif; 19815 if (ire->ire_type == IRE_CACHE) { 19816 ill = (ill_t *)ire->ire_stq->q_ptr; 19817 re->ipv6RouteIfIndex.o_length = 19818 ill->ill_name_length == 0 ? 0 : 19819 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19820 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19821 re->ipv6RouteIfIndex.o_length); 19822 } else if (ipif != NULL) { 19823 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19824 re->ipv6RouteIfIndex.o_length = 19825 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19826 } 19827 19828 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19829 19830 mutex_enter(&ire->ire_lock); 19831 gw_addr_v6 = ire->ire_gateway_addr_v6; 19832 mutex_exit(&ire->ire_lock); 19833 19834 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19835 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19836 else 19837 re->ipv6RouteNextHop = gw_addr_v6; 19838 19839 /* remote(4), local(3), or discard(2) */ 19840 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19841 re->ipv6RouteType = 2; 19842 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19843 re->ipv6RouteType = 3; 19844 else 19845 re->ipv6RouteType = 4; 19846 19847 re->ipv6RouteProtocol = -1; 19848 re->ipv6RoutePolicy = 0; 19849 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19850 re->ipv6RouteNextHopRDI = 0; 19851 re->ipv6RouteWeight = 0; 19852 re->ipv6RouteMetric = 0; 19853 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19854 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19855 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19856 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19857 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19858 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19859 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19860 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19861 19862 if (ire->ire_flags & RTF_DYNAMIC) { 19863 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19864 } else { 19865 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19866 } 19867 19868 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19869 (char *)re, (int)sizeof (*re))) { 19870 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19871 (uint_t)sizeof (*re))); 19872 } 19873 19874 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19875 iaeptr->iae_routeidx = ird->ird_idx; 19876 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19877 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19878 } 19879 19880 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19881 (char *)iae, sacnt * sizeof (*iae))) { 19882 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19883 (unsigned)(sacnt * sizeof (*iae)))); 19884 } 19885 19886 /* bump route index for next pass */ 19887 ird->ird_idx++; 19888 19889 kmem_free(re, sizeof (*re)); 19890 if (sacnt != 0) 19891 kmem_free(iae, sacnt * sizeof (*iae)); 19892 19893 if (gcgrp != NULL) 19894 rw_exit(&gcgrp->gcgrp_rwlock); 19895 } 19896 19897 /* 19898 * ndp_walk routine to create ipv6NetToMediaEntryTable 19899 */ 19900 static int 19901 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19902 { 19903 ill_t *ill; 19904 mib2_ipv6NetToMediaEntry_t ntme; 19905 dl_unitdata_req_t *dl; 19906 19907 ill = nce->nce_ill; 19908 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19909 return (0); 19910 19911 /* 19912 * Neighbor cache entry attached to IRE with on-link 19913 * destination. 19914 */ 19915 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19916 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19917 if ((ill->ill_flags & ILLF_XRESOLV) && 19918 (nce->nce_res_mp != NULL)) { 19919 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19920 ntme.ipv6NetToMediaPhysAddress.o_length = 19921 dl->dl_dest_addr_length; 19922 } else { 19923 ntme.ipv6NetToMediaPhysAddress.o_length = 19924 ill->ill_phys_addr_length; 19925 } 19926 if (nce->nce_res_mp != NULL) { 19927 bcopy((char *)nce->nce_res_mp->b_rptr + 19928 NCE_LL_ADDR_OFFSET(ill), 19929 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19930 ntme.ipv6NetToMediaPhysAddress.o_length); 19931 } else { 19932 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19933 ill->ill_phys_addr_length); 19934 } 19935 /* 19936 * Note: Returns ND_* states. Should be: 19937 * reachable(1), stale(2), delay(3), probe(4), 19938 * invalid(5), unknown(6) 19939 */ 19940 ntme.ipv6NetToMediaState = nce->nce_state; 19941 ntme.ipv6NetToMediaLastUpdated = 0; 19942 19943 /* other(1), dynamic(2), static(3), local(4) */ 19944 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19945 ntme.ipv6NetToMediaType = 4; 19946 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19947 ntme.ipv6NetToMediaType = 1; 19948 } else { 19949 ntme.ipv6NetToMediaType = 2; 19950 } 19951 19952 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19953 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19954 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19955 (uint_t)sizeof (ntme))); 19956 } 19957 return (0); 19958 } 19959 19960 /* 19961 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19962 */ 19963 /* ARGSUSED */ 19964 int 19965 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19966 { 19967 switch (level) { 19968 case MIB2_IP: 19969 case MIB2_ICMP: 19970 switch (name) { 19971 default: 19972 break; 19973 } 19974 return (1); 19975 default: 19976 return (1); 19977 } 19978 } 19979 19980 /* 19981 * When there exists both a 64- and 32-bit counter of a particular type 19982 * (i.e., InReceives), only the 64-bit counters are added. 19983 */ 19984 void 19985 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19986 { 19987 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19988 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19989 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19990 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19991 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19992 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19993 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19994 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19995 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19996 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19997 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19998 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19999 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 20000 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 20001 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 20002 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 20003 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 20004 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 20005 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 20006 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 20007 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 20008 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 20009 o2->ipIfStatsInWrongIPVersion); 20010 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 20011 o2->ipIfStatsInWrongIPVersion); 20012 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 20013 o2->ipIfStatsOutSwitchIPVersion); 20014 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 20015 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 20016 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 20017 o2->ipIfStatsHCInForwDatagrams); 20018 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 20019 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 20020 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 20021 o2->ipIfStatsHCOutForwDatagrams); 20022 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 20023 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 20024 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 20025 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 20026 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 20027 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 20028 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 20029 o2->ipIfStatsHCOutMcastOctets); 20030 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 20031 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 20032 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 20033 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 20034 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 20035 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 20036 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 20037 } 20038 20039 void 20040 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 20041 { 20042 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 20043 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 20044 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 20045 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 20046 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 20047 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 20048 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20049 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20050 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20051 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20052 o2->ipv6IfIcmpInRouterSolicits); 20053 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20054 o2->ipv6IfIcmpInRouterAdvertisements); 20055 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20056 o2->ipv6IfIcmpInNeighborSolicits); 20057 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20058 o2->ipv6IfIcmpInNeighborAdvertisements); 20059 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20060 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20061 o2->ipv6IfIcmpInGroupMembQueries); 20062 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20063 o2->ipv6IfIcmpInGroupMembResponses); 20064 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20065 o2->ipv6IfIcmpInGroupMembReductions); 20066 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20067 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20068 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20069 o2->ipv6IfIcmpOutDestUnreachs); 20070 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20071 o2->ipv6IfIcmpOutAdminProhibs); 20072 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20073 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20074 o2->ipv6IfIcmpOutParmProblems); 20075 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20076 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20077 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20078 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20079 o2->ipv6IfIcmpOutRouterSolicits); 20080 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20081 o2->ipv6IfIcmpOutRouterAdvertisements); 20082 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20083 o2->ipv6IfIcmpOutNeighborSolicits); 20084 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20085 o2->ipv6IfIcmpOutNeighborAdvertisements); 20086 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20087 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20088 o2->ipv6IfIcmpOutGroupMembQueries); 20089 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20090 o2->ipv6IfIcmpOutGroupMembResponses); 20091 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20092 o2->ipv6IfIcmpOutGroupMembReductions); 20093 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20094 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20095 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20096 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20097 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20098 o2->ipv6IfIcmpInBadNeighborSolicitations); 20099 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20100 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20101 o2->ipv6IfIcmpInGroupMembTotal); 20102 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20103 o2->ipv6IfIcmpInGroupMembBadQueries); 20104 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20105 o2->ipv6IfIcmpInGroupMembBadReports); 20106 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20107 o2->ipv6IfIcmpInGroupMembOurReports); 20108 } 20109 20110 /* 20111 * Called before the options are updated to check if this packet will 20112 * be source routed from here. 20113 * This routine assumes that the options are well formed i.e. that they 20114 * have already been checked. 20115 */ 20116 static boolean_t 20117 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20118 { 20119 ipoptp_t opts; 20120 uchar_t *opt; 20121 uint8_t optval; 20122 uint8_t optlen; 20123 ipaddr_t dst; 20124 ire_t *ire; 20125 20126 if (IS_SIMPLE_IPH(ipha)) { 20127 ip2dbg(("not source routed\n")); 20128 return (B_FALSE); 20129 } 20130 dst = ipha->ipha_dst; 20131 for (optval = ipoptp_first(&opts, ipha); 20132 optval != IPOPT_EOL; 20133 optval = ipoptp_next(&opts)) { 20134 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20135 opt = opts.ipoptp_cur; 20136 optlen = opts.ipoptp_len; 20137 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20138 optval, optlen)); 20139 switch (optval) { 20140 uint32_t off; 20141 case IPOPT_SSRR: 20142 case IPOPT_LSRR: 20143 /* 20144 * If dst is one of our addresses and there are some 20145 * entries left in the source route return (true). 20146 */ 20147 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20148 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20149 if (ire == NULL) { 20150 ip2dbg(("ip_source_routed: not next" 20151 " source route 0x%x\n", 20152 ntohl(dst))); 20153 return (B_FALSE); 20154 } 20155 ire_refrele(ire); 20156 off = opt[IPOPT_OFFSET]; 20157 off--; 20158 if (optlen < IP_ADDR_LEN || 20159 off > optlen - IP_ADDR_LEN) { 20160 /* End of source route */ 20161 ip1dbg(("ip_source_routed: end of SR\n")); 20162 return (B_FALSE); 20163 } 20164 return (B_TRUE); 20165 } 20166 } 20167 ip2dbg(("not source routed\n")); 20168 return (B_FALSE); 20169 } 20170 20171 /* 20172 * Check if the packet contains any source route. 20173 */ 20174 static boolean_t 20175 ip_source_route_included(ipha_t *ipha) 20176 { 20177 ipoptp_t opts; 20178 uint8_t optval; 20179 20180 if (IS_SIMPLE_IPH(ipha)) 20181 return (B_FALSE); 20182 for (optval = ipoptp_first(&opts, ipha); 20183 optval != IPOPT_EOL; 20184 optval = ipoptp_next(&opts)) { 20185 switch (optval) { 20186 case IPOPT_SSRR: 20187 case IPOPT_LSRR: 20188 return (B_TRUE); 20189 } 20190 } 20191 return (B_FALSE); 20192 } 20193 20194 /* 20195 * Called when the IRE expiration timer fires. 20196 */ 20197 void 20198 ip_trash_timer_expire(void *args) 20199 { 20200 int flush_flag = 0; 20201 ire_expire_arg_t iea; 20202 ip_stack_t *ipst = (ip_stack_t *)args; 20203 20204 iea.iea_ipst = ipst; /* No netstack_hold */ 20205 20206 /* 20207 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20208 * This lock makes sure that a new invocation of this function 20209 * that occurs due to an almost immediate timer firing will not 20210 * progress beyond this point until the current invocation is done 20211 */ 20212 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20213 ipst->ips_ip_ire_expire_id = 0; 20214 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20215 20216 /* Periodic timer */ 20217 if (ipst->ips_ip_ire_arp_time_elapsed >= 20218 ipst->ips_ip_ire_arp_interval) { 20219 /* 20220 * Remove all IRE_CACHE entries since they might 20221 * contain arp information. 20222 */ 20223 flush_flag |= FLUSH_ARP_TIME; 20224 ipst->ips_ip_ire_arp_time_elapsed = 0; 20225 IP_STAT(ipst, ip_ire_arp_timer_expired); 20226 } 20227 if (ipst->ips_ip_ire_rd_time_elapsed >= 20228 ipst->ips_ip_ire_redir_interval) { 20229 /* Remove all redirects */ 20230 flush_flag |= FLUSH_REDIRECT_TIME; 20231 ipst->ips_ip_ire_rd_time_elapsed = 0; 20232 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20233 } 20234 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20235 ipst->ips_ip_ire_pathmtu_interval) { 20236 /* Increase path mtu */ 20237 flush_flag |= FLUSH_MTU_TIME; 20238 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20239 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20240 } 20241 20242 /* 20243 * Optimize for the case when there are no redirects in the 20244 * ftable, that is, no need to walk the ftable in that case. 20245 */ 20246 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20247 iea.iea_flush_flag = flush_flag; 20248 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20249 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20250 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20251 NULL, ALL_ZONES, ipst); 20252 } 20253 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20254 ipst->ips_ip_redirect_cnt > 0) { 20255 iea.iea_flush_flag = flush_flag; 20256 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20257 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20258 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20259 } 20260 if (flush_flag & FLUSH_MTU_TIME) { 20261 /* 20262 * Walk all IPv6 IRE's and update them 20263 * Note that ARP and redirect timers are not 20264 * needed since NUD handles stale entries. 20265 */ 20266 flush_flag = FLUSH_MTU_TIME; 20267 iea.iea_flush_flag = flush_flag; 20268 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20269 ALL_ZONES, ipst); 20270 } 20271 20272 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20273 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20274 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20275 20276 /* 20277 * Hold the lock to serialize timeout calls and prevent 20278 * stale values in ip_ire_expire_id. Otherwise it is possible 20279 * for the timer to fire and a new invocation of this function 20280 * to start before the return value of timeout has been stored 20281 * in ip_ire_expire_id by the current invocation. 20282 */ 20283 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20284 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20285 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20286 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20287 } 20288 20289 /* 20290 * Called by the memory allocator subsystem directly, when the system 20291 * is running low on memory. 20292 */ 20293 /* ARGSUSED */ 20294 void 20295 ip_trash_ire_reclaim(void *args) 20296 { 20297 netstack_handle_t nh; 20298 netstack_t *ns; 20299 20300 netstack_next_init(&nh); 20301 while ((ns = netstack_next(&nh)) != NULL) { 20302 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20303 netstack_rele(ns); 20304 } 20305 netstack_next_fini(&nh); 20306 } 20307 20308 static void 20309 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20310 { 20311 ire_cache_count_t icc; 20312 ire_cache_reclaim_t icr; 20313 ncc_cache_count_t ncc; 20314 nce_cache_reclaim_t ncr; 20315 uint_t delete_cnt; 20316 /* 20317 * Memory reclaim call back. 20318 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20319 * Then, with a target of freeing 1/Nth of IRE_CACHE 20320 * entries, determine what fraction to free for 20321 * each category of IRE_CACHE entries giving absolute priority 20322 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20323 * entry will be freed unless all offlink entries are freed). 20324 */ 20325 icc.icc_total = 0; 20326 icc.icc_unused = 0; 20327 icc.icc_offlink = 0; 20328 icc.icc_pmtu = 0; 20329 icc.icc_onlink = 0; 20330 ire_walk(ire_cache_count, (char *)&icc, ipst); 20331 20332 /* 20333 * Free NCEs for IPv6 like the onlink ires. 20334 */ 20335 ncc.ncc_total = 0; 20336 ncc.ncc_host = 0; 20337 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20338 20339 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20340 icc.icc_pmtu + icc.icc_onlink); 20341 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20342 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20343 if (delete_cnt == 0) 20344 return; 20345 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20346 /* Always delete all unused offlink entries */ 20347 icr.icr_ipst = ipst; 20348 icr.icr_unused = 1; 20349 if (delete_cnt <= icc.icc_unused) { 20350 /* 20351 * Only need to free unused entries. In other words, 20352 * there are enough unused entries to free to meet our 20353 * target number of freed ire cache entries. 20354 */ 20355 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20356 ncr.ncr_host = 0; 20357 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20358 /* 20359 * Only need to free unused entries, plus a fraction of offlink 20360 * entries. It follows from the first if statement that 20361 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20362 */ 20363 delete_cnt -= icc.icc_unused; 20364 /* Round up # deleted by truncating fraction */ 20365 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20366 icr.icr_pmtu = icr.icr_onlink = 0; 20367 ncr.ncr_host = 0; 20368 } else if (delete_cnt <= 20369 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20370 /* 20371 * Free all unused and offlink entries, plus a fraction of 20372 * pmtu entries. It follows from the previous if statement 20373 * that icc_pmtu is non-zero, and that 20374 * delete_cnt != icc_unused + icc_offlink. 20375 */ 20376 icr.icr_offlink = 1; 20377 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20378 /* Round up # deleted by truncating fraction */ 20379 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20380 icr.icr_onlink = 0; 20381 ncr.ncr_host = 0; 20382 } else { 20383 /* 20384 * Free all unused, offlink, and pmtu entries, plus a fraction 20385 * of onlink entries. If we're here, then we know that 20386 * icc_onlink is non-zero, and that 20387 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20388 */ 20389 icr.icr_offlink = icr.icr_pmtu = 1; 20390 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20391 icc.icc_pmtu; 20392 /* Round up # deleted by truncating fraction */ 20393 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20394 /* Using the same delete fraction as for onlink IREs */ 20395 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20396 } 20397 #ifdef DEBUG 20398 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20399 "fractions %d/%d/%d/%d\n", 20400 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20401 icc.icc_unused, icc.icc_offlink, 20402 icc.icc_pmtu, icc.icc_onlink, 20403 icr.icr_unused, icr.icr_offlink, 20404 icr.icr_pmtu, icr.icr_onlink)); 20405 #endif 20406 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20407 if (ncr.ncr_host != 0) 20408 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20409 (uchar_t *)&ncr, ipst); 20410 #ifdef DEBUG 20411 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20412 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20413 ire_walk(ire_cache_count, (char *)&icc, ipst); 20414 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20415 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20416 icc.icc_pmtu, icc.icc_onlink)); 20417 #endif 20418 } 20419 20420 /* 20421 * ip_unbind is called when a copy of an unbind request is received from the 20422 * upper level protocol. We remove this conn from any fanout hash list it is 20423 * on, and zero out the bind information. No reply is expected up above. 20424 */ 20425 void 20426 ip_unbind(conn_t *connp) 20427 { 20428 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20429 20430 if (is_system_labeled() && connp->conn_anon_port) { 20431 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20432 connp->conn_mlp_type, connp->conn_ulp, 20433 ntohs(connp->conn_lport), B_FALSE); 20434 connp->conn_anon_port = 0; 20435 } 20436 connp->conn_mlp_type = mlptSingle; 20437 20438 ipcl_hash_remove(connp); 20439 20440 } 20441 20442 /* 20443 * Write side put procedure. Outbound data, IOCTLs, responses from 20444 * resolvers, etc, come down through here. 20445 * 20446 * arg2 is always a queue_t *. 20447 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20448 * the zoneid. 20449 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20450 */ 20451 void 20452 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20453 { 20454 ip_output_options(arg, mp, arg2, caller, &zero_info); 20455 } 20456 20457 void 20458 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20459 ip_opt_info_t *infop) 20460 { 20461 conn_t *connp = NULL; 20462 queue_t *q = (queue_t *)arg2; 20463 ipha_t *ipha; 20464 #define rptr ((uchar_t *)ipha) 20465 ire_t *ire = NULL; 20466 ire_t *sctp_ire = NULL; 20467 uint32_t v_hlen_tos_len; 20468 ipaddr_t dst; 20469 mblk_t *first_mp = NULL; 20470 boolean_t mctl_present; 20471 ipsec_out_t *io; 20472 int match_flags; 20473 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20474 ipif_t *dst_ipif; 20475 boolean_t multirt_need_resolve = B_FALSE; 20476 mblk_t *copy_mp = NULL; 20477 int err; 20478 zoneid_t zoneid; 20479 boolean_t need_decref = B_FALSE; 20480 boolean_t ignore_dontroute = B_FALSE; 20481 boolean_t ignore_nexthop = B_FALSE; 20482 boolean_t ip_nexthop = B_FALSE; 20483 ipaddr_t nexthop_addr; 20484 ip_stack_t *ipst; 20485 20486 #ifdef _BIG_ENDIAN 20487 #define V_HLEN (v_hlen_tos_len >> 24) 20488 #else 20489 #define V_HLEN (v_hlen_tos_len & 0xFF) 20490 #endif 20491 20492 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20493 "ip_wput_start: q %p", q); 20494 20495 /* 20496 * ip_wput fast path 20497 */ 20498 20499 /* is packet from ARP ? */ 20500 if (q->q_next != NULL) { 20501 zoneid = (zoneid_t)(uintptr_t)arg; 20502 goto qnext; 20503 } 20504 20505 connp = (conn_t *)arg; 20506 ASSERT(connp != NULL); 20507 zoneid = connp->conn_zoneid; 20508 ipst = connp->conn_netstack->netstack_ip; 20509 ASSERT(ipst != NULL); 20510 20511 /* is queue flow controlled? */ 20512 if ((q->q_first != NULL || connp->conn_draining) && 20513 (caller == IP_WPUT)) { 20514 ASSERT(!need_decref); 20515 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20516 (void) putq(q, mp); 20517 return; 20518 } 20519 20520 /* Multidata transmit? */ 20521 if (DB_TYPE(mp) == M_MULTIDATA) { 20522 /* 20523 * We should never get here, since all Multidata messages 20524 * originating from tcp should have been directed over to 20525 * tcp_multisend() in the first place. 20526 */ 20527 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20528 freemsg(mp); 20529 return; 20530 } else if (DB_TYPE(mp) != M_DATA) 20531 goto notdata; 20532 20533 if (mp->b_flag & MSGHASREF) { 20534 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20535 mp->b_flag &= ~MSGHASREF; 20536 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20537 need_decref = B_TRUE; 20538 } 20539 ipha = (ipha_t *)mp->b_rptr; 20540 20541 /* is IP header non-aligned or mblk smaller than basic IP header */ 20542 #ifndef SAFETY_BEFORE_SPEED 20543 if (!OK_32PTR(rptr) || 20544 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20545 goto hdrtoosmall; 20546 #endif 20547 20548 ASSERT(OK_32PTR(ipha)); 20549 20550 /* 20551 * This function assumes that mp points to an IPv4 packet. If it's the 20552 * wrong version, we'll catch it again in ip_output_v6. 20553 * 20554 * Note that this is *only* locally-generated output here, and never 20555 * forwarded data, and that we need to deal only with transports that 20556 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20557 * label.) 20558 */ 20559 if (is_system_labeled() && 20560 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20561 !connp->conn_ulp_labeled) { 20562 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20563 connp->conn_mac_exempt, ipst); 20564 ipha = (ipha_t *)mp->b_rptr; 20565 if (err != 0) { 20566 first_mp = mp; 20567 if (err == EINVAL) 20568 goto icmp_parameter_problem; 20569 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20570 goto discard_pkt; 20571 } 20572 } 20573 20574 ASSERT(infop != NULL); 20575 20576 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20577 /* 20578 * IP_PKTINFO ancillary option is present. 20579 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20580 * allows using address of any zone as the source address. 20581 */ 20582 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20583 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20584 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20585 if (ire == NULL) 20586 goto drop_pkt; 20587 ire_refrele(ire); 20588 ire = NULL; 20589 } 20590 20591 /* 20592 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20593 */ 20594 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20595 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20596 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20597 20598 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20599 goto drop_pkt; 20600 /* 20601 * check that there is an ipif belonging 20602 * to our zone. IPCL_ZONEID is not used because 20603 * IP_ALLZONES option is valid only when the ill is 20604 * accessible from all zones i.e has a valid ipif in 20605 * all zones. 20606 */ 20607 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20608 goto drop_pkt; 20609 } 20610 } 20611 20612 /* 20613 * If there is a policy, try to attach an ipsec_out in 20614 * the front. At the end, first_mp either points to a 20615 * M_DATA message or IPSEC_OUT message linked to a 20616 * M_DATA message. We have to do it now as we might 20617 * lose the "conn" if we go through ip_newroute. 20618 */ 20619 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20620 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20621 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20622 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20623 if (need_decref) 20624 CONN_DEC_REF(connp); 20625 return; 20626 } else { 20627 ASSERT(mp->b_datap->db_type == M_CTL); 20628 first_mp = mp; 20629 mp = mp->b_cont; 20630 mctl_present = B_TRUE; 20631 } 20632 } else { 20633 first_mp = mp; 20634 mctl_present = B_FALSE; 20635 } 20636 20637 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20638 20639 /* is wrong version or IP options present */ 20640 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20641 goto version_hdrlen_check; 20642 dst = ipha->ipha_dst; 20643 20644 /* If IP_BOUND_IF has been set, use that ill. */ 20645 if (connp->conn_outgoing_ill != NULL) { 20646 xmit_ill = conn_get_held_ill(connp, 20647 &connp->conn_outgoing_ill, &err); 20648 if (err == ILL_LOOKUP_FAILED) 20649 goto drop_pkt; 20650 20651 goto send_from_ill; 20652 } 20653 20654 /* is packet multicast? */ 20655 if (CLASSD(dst)) 20656 goto multicast; 20657 20658 /* 20659 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20660 * takes precedence over conn_dontroute and conn_nexthop_set 20661 */ 20662 if (xmit_ill != NULL) 20663 goto send_from_ill; 20664 20665 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20666 /* 20667 * If the destination is a broadcast, local, or loopback 20668 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20669 * standard path. 20670 */ 20671 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20672 if ((ire == NULL) || (ire->ire_type & 20673 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20674 if (ire != NULL) { 20675 ire_refrele(ire); 20676 /* No more access to ire */ 20677 ire = NULL; 20678 } 20679 /* 20680 * bypass routing checks and go directly to interface. 20681 */ 20682 if (connp->conn_dontroute) 20683 goto dontroute; 20684 20685 ASSERT(connp->conn_nexthop_set); 20686 ip_nexthop = B_TRUE; 20687 nexthop_addr = connp->conn_nexthop_v4; 20688 goto send_from_ill; 20689 } 20690 20691 /* Must be a broadcast, a loopback or a local ire */ 20692 ire_refrele(ire); 20693 /* No more access to ire */ 20694 ire = NULL; 20695 } 20696 20697 /* 20698 * We cache IRE_CACHEs to avoid lookups. We don't do 20699 * this for the tcp global queue and listen end point 20700 * as it does not really have a real destination to 20701 * talk to. This is also true for SCTP. 20702 */ 20703 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20704 !connp->conn_fully_bound) { 20705 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20706 if (ire == NULL) 20707 goto noirefound; 20708 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20709 "ip_wput_end: q %p (%S)", q, "end"); 20710 20711 /* 20712 * Check if the ire has the RTF_MULTIRT flag, inherited 20713 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20714 */ 20715 if (ire->ire_flags & RTF_MULTIRT) { 20716 20717 /* 20718 * Force the TTL of multirouted packets if required. 20719 * The TTL of such packets is bounded by the 20720 * ip_multirt_ttl ndd variable. 20721 */ 20722 if ((ipst->ips_ip_multirt_ttl > 0) && 20723 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20724 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20725 "(was %d), dst 0x%08x\n", 20726 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20727 ntohl(ire->ire_addr))); 20728 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20729 } 20730 /* 20731 * We look at this point if there are pending 20732 * unresolved routes. ire_multirt_resolvable() 20733 * checks in O(n) that all IRE_OFFSUBNET ire 20734 * entries for the packet's destination and 20735 * flagged RTF_MULTIRT are currently resolved. 20736 * If some remain unresolved, we make a copy 20737 * of the current message. It will be used 20738 * to initiate additional route resolutions. 20739 */ 20740 multirt_need_resolve = 20741 ire_multirt_need_resolve(ire->ire_addr, 20742 msg_getlabel(first_mp), ipst); 20743 ip2dbg(("ip_wput[TCP]: ire %p, " 20744 "multirt_need_resolve %d, first_mp %p\n", 20745 (void *)ire, multirt_need_resolve, 20746 (void *)first_mp)); 20747 if (multirt_need_resolve) { 20748 copy_mp = copymsg(first_mp); 20749 if (copy_mp != NULL) { 20750 MULTIRT_DEBUG_TAG(copy_mp); 20751 } 20752 } 20753 } 20754 20755 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20756 20757 /* 20758 * Try to resolve another multiroute if 20759 * ire_multirt_need_resolve() deemed it necessary. 20760 */ 20761 if (copy_mp != NULL) 20762 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20763 if (need_decref) 20764 CONN_DEC_REF(connp); 20765 return; 20766 } 20767 20768 /* 20769 * Access to conn_ire_cache. (protected by conn_lock) 20770 * 20771 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20772 * the ire bucket lock here to check for CONDEMNED as it is okay to 20773 * send a packet or two with the IRE_CACHE that is going away. 20774 * Access to the ire requires an ire refhold on the ire prior to 20775 * its use since an interface unplumb thread may delete the cached 20776 * ire and release the refhold at any time. 20777 * 20778 * Caching an ire in the conn_ire_cache 20779 * 20780 * o Caching an ire pointer in the conn requires a strict check for 20781 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20782 * ires before cleaning up the conns. So the caching of an ire pointer 20783 * in the conn is done after making sure under the bucket lock that the 20784 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20785 * caching an ire after the unplumb thread has cleaned up the conn. 20786 * If the conn does not send a packet subsequently the unplumb thread 20787 * will be hanging waiting for the ire count to drop to zero. 20788 * 20789 * o We also need to atomically test for a null conn_ire_cache and 20790 * set the conn_ire_cache under the the protection of the conn_lock 20791 * to avoid races among concurrent threads trying to simultaneously 20792 * cache an ire in the conn_ire_cache. 20793 */ 20794 mutex_enter(&connp->conn_lock); 20795 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20796 20797 if (ire != NULL && ire->ire_addr == dst && 20798 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20799 20800 IRE_REFHOLD(ire); 20801 mutex_exit(&connp->conn_lock); 20802 20803 } else { 20804 boolean_t cached = B_FALSE; 20805 connp->conn_ire_cache = NULL; 20806 mutex_exit(&connp->conn_lock); 20807 /* Release the old ire */ 20808 if (ire != NULL && sctp_ire == NULL) 20809 IRE_REFRELE_NOTR(ire); 20810 20811 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20812 if (ire == NULL) 20813 goto noirefound; 20814 IRE_REFHOLD_NOTR(ire); 20815 20816 mutex_enter(&connp->conn_lock); 20817 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20818 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20819 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20820 if (connp->conn_ulp == IPPROTO_TCP) 20821 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20822 connp->conn_ire_cache = ire; 20823 cached = B_TRUE; 20824 } 20825 rw_exit(&ire->ire_bucket->irb_lock); 20826 } 20827 mutex_exit(&connp->conn_lock); 20828 20829 /* 20830 * We can continue to use the ire but since it was 20831 * not cached, we should drop the extra reference. 20832 */ 20833 if (!cached) 20834 IRE_REFRELE_NOTR(ire); 20835 } 20836 20837 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20838 "ip_wput_end: q %p (%S)", q, "end"); 20839 20840 /* 20841 * Check if the ire has the RTF_MULTIRT flag, inherited 20842 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20843 */ 20844 if (ire->ire_flags & RTF_MULTIRT) { 20845 /* 20846 * Force the TTL of multirouted packets if required. 20847 * The TTL of such packets is bounded by the 20848 * ip_multirt_ttl ndd variable. 20849 */ 20850 if ((ipst->ips_ip_multirt_ttl > 0) && 20851 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20852 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20853 "(was %d), dst 0x%08x\n", 20854 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20855 ntohl(ire->ire_addr))); 20856 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20857 } 20858 20859 /* 20860 * At this point, we check to see if there are any pending 20861 * unresolved routes. ire_multirt_resolvable() 20862 * checks in O(n) that all IRE_OFFSUBNET ire 20863 * entries for the packet's destination and 20864 * flagged RTF_MULTIRT are currently resolved. 20865 * If some remain unresolved, we make a copy 20866 * of the current message. It will be used 20867 * to initiate additional route resolutions. 20868 */ 20869 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20870 msg_getlabel(first_mp), ipst); 20871 ip2dbg(("ip_wput[not TCP]: ire %p, " 20872 "multirt_need_resolve %d, first_mp %p\n", 20873 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20874 if (multirt_need_resolve) { 20875 copy_mp = copymsg(first_mp); 20876 if (copy_mp != NULL) { 20877 MULTIRT_DEBUG_TAG(copy_mp); 20878 } 20879 } 20880 } 20881 20882 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20883 20884 /* 20885 * Try to resolve another multiroute if 20886 * ire_multirt_resolvable() deemed it necessary 20887 */ 20888 if (copy_mp != NULL) 20889 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20890 if (need_decref) 20891 CONN_DEC_REF(connp); 20892 return; 20893 20894 qnext: 20895 /* 20896 * Upper Level Protocols pass down complete IP datagrams 20897 * as M_DATA messages. Everything else is a sideshow. 20898 * 20899 * 1) We could be re-entering ip_wput because of ip_neworute 20900 * in which case we could have a IPSEC_OUT message. We 20901 * need to pass through ip_wput like other datagrams and 20902 * hence cannot branch to ip_wput_nondata. 20903 * 20904 * 2) ARP, AH, ESP, and other clients who are on the module 20905 * instance of IP stream, give us something to deal with. 20906 * We will handle AH and ESP here and rest in ip_wput_nondata. 20907 * 20908 * 3) ICMP replies also could come here. 20909 */ 20910 ipst = ILLQ_TO_IPST(q); 20911 20912 if (DB_TYPE(mp) != M_DATA) { 20913 notdata: 20914 if (DB_TYPE(mp) == M_CTL) { 20915 /* 20916 * M_CTL messages are used by ARP, AH and ESP to 20917 * communicate with IP. We deal with IPSEC_IN and 20918 * IPSEC_OUT here. ip_wput_nondata handles other 20919 * cases. 20920 */ 20921 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20922 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20923 first_mp = mp->b_cont; 20924 first_mp->b_flag &= ~MSGHASREF; 20925 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20926 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20927 CONN_DEC_REF(connp); 20928 connp = NULL; 20929 } 20930 if (ii->ipsec_info_type == IPSEC_IN) { 20931 /* 20932 * Either this message goes back to 20933 * IPsec for further processing or to 20934 * ULP after policy checks. 20935 */ 20936 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20937 return; 20938 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20939 io = (ipsec_out_t *)ii; 20940 if (io->ipsec_out_proc_begin) { 20941 /* 20942 * IPsec processing has already started. 20943 * Complete it. 20944 * IPQoS notes: We don't care what is 20945 * in ipsec_out_ill_index since this 20946 * won't be processed for IPQoS policies 20947 * in ipsec_out_process. 20948 */ 20949 ipsec_out_process(q, mp, NULL, 20950 io->ipsec_out_ill_index); 20951 return; 20952 } else { 20953 connp = (q->q_next != NULL) ? 20954 NULL : Q_TO_CONN(q); 20955 first_mp = mp; 20956 mp = mp->b_cont; 20957 mctl_present = B_TRUE; 20958 } 20959 zoneid = io->ipsec_out_zoneid; 20960 ASSERT(zoneid != ALL_ZONES); 20961 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20962 /* 20963 * It's an IPsec control message requesting 20964 * an SADB update to be sent to the IPsec 20965 * hardware acceleration capable ills. 20966 */ 20967 ipsec_ctl_t *ipsec_ctl = 20968 (ipsec_ctl_t *)mp->b_rptr; 20969 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20970 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20971 mblk_t *cmp = mp->b_cont; 20972 20973 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20974 ASSERT(cmp != NULL); 20975 20976 freeb(mp); 20977 ill_ipsec_capab_send_all(satype, cmp, sa, 20978 ipst->ips_netstack); 20979 return; 20980 } else { 20981 /* 20982 * This must be ARP or special TSOL signaling. 20983 */ 20984 ip_wput_nondata(NULL, q, mp, NULL); 20985 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20986 "ip_wput_end: q %p (%S)", q, "nondata"); 20987 return; 20988 } 20989 } else { 20990 /* 20991 * This must be non-(ARP/AH/ESP) messages. 20992 */ 20993 ASSERT(!need_decref); 20994 ip_wput_nondata(NULL, q, mp, NULL); 20995 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20996 "ip_wput_end: q %p (%S)", q, "nondata"); 20997 return; 20998 } 20999 } else { 21000 first_mp = mp; 21001 mctl_present = B_FALSE; 21002 } 21003 21004 ASSERT(first_mp != NULL); 21005 21006 if (mctl_present) { 21007 io = (ipsec_out_t *)first_mp->b_rptr; 21008 if (io->ipsec_out_ip_nexthop) { 21009 /* 21010 * We may have lost the conn context if we are 21011 * coming here from ip_newroute(). Copy the 21012 * nexthop information. 21013 */ 21014 ip_nexthop = B_TRUE; 21015 nexthop_addr = io->ipsec_out_nexthop_addr; 21016 21017 ipha = (ipha_t *)mp->b_rptr; 21018 dst = ipha->ipha_dst; 21019 goto send_from_ill; 21020 } 21021 } 21022 21023 ASSERT(xmit_ill == NULL); 21024 21025 /* We have a complete IP datagram heading outbound. */ 21026 ipha = (ipha_t *)mp->b_rptr; 21027 21028 #ifndef SPEED_BEFORE_SAFETY 21029 /* 21030 * Make sure we have a full-word aligned message and that at least 21031 * a simple IP header is accessible in the first message. If not, 21032 * try a pullup. For labeled systems we need to always take this 21033 * path as M_CTLs are "notdata" but have trailing data to process. 21034 */ 21035 if (!OK_32PTR(rptr) || 21036 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21037 hdrtoosmall: 21038 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21039 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21040 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21041 if (first_mp == NULL) 21042 first_mp = mp; 21043 goto discard_pkt; 21044 } 21045 21046 /* This function assumes that mp points to an IPv4 packet. */ 21047 if (is_system_labeled() && q->q_next == NULL && 21048 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21049 !connp->conn_ulp_labeled) { 21050 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 21051 connp->conn_mac_exempt, ipst); 21052 ipha = (ipha_t *)mp->b_rptr; 21053 if (first_mp != NULL) 21054 first_mp->b_cont = mp; 21055 if (err != 0) { 21056 if (first_mp == NULL) 21057 first_mp = mp; 21058 if (err == EINVAL) 21059 goto icmp_parameter_problem; 21060 ip2dbg(("ip_wput: label check failed (%d)\n", 21061 err)); 21062 goto discard_pkt; 21063 } 21064 } 21065 21066 ipha = (ipha_t *)mp->b_rptr; 21067 if (first_mp == NULL) { 21068 ASSERT(xmit_ill == NULL); 21069 /* 21070 * If we got here because of "goto hdrtoosmall" 21071 * We need to attach a IPSEC_OUT. 21072 */ 21073 if (connp->conn_out_enforce_policy) { 21074 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21075 NULL, ipha->ipha_protocol, 21076 ipst->ips_netstack)) == NULL)) { 21077 BUMP_MIB(&ipst->ips_ip_mib, 21078 ipIfStatsOutDiscards); 21079 if (need_decref) 21080 CONN_DEC_REF(connp); 21081 return; 21082 } else { 21083 ASSERT(mp->b_datap->db_type == M_CTL); 21084 first_mp = mp; 21085 mp = mp->b_cont; 21086 mctl_present = B_TRUE; 21087 } 21088 } else { 21089 first_mp = mp; 21090 mctl_present = B_FALSE; 21091 } 21092 } 21093 } 21094 #endif 21095 21096 /* Most of the code below is written for speed, not readability */ 21097 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21098 21099 /* 21100 * If ip_newroute() fails, we're going to need a full 21101 * header for the icmp wraparound. 21102 */ 21103 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21104 uint_t v_hlen; 21105 version_hdrlen_check: 21106 ASSERT(first_mp != NULL); 21107 v_hlen = V_HLEN; 21108 /* 21109 * siphon off IPv6 packets coming down from transport 21110 * layer modules here. 21111 * Note: high-order bit carries NUD reachability confirmation 21112 */ 21113 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21114 /* 21115 * FIXME: assume that callers of ip_output* call 21116 * the right version? 21117 */ 21118 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21119 ASSERT(xmit_ill == NULL); 21120 if (need_decref) 21121 mp->b_flag |= MSGHASREF; 21122 (void) ip_output_v6(arg, first_mp, arg2, caller); 21123 return; 21124 } 21125 21126 if ((v_hlen >> 4) != IP_VERSION) { 21127 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21128 "ip_wput_end: q %p (%S)", q, "badvers"); 21129 goto discard_pkt; 21130 } 21131 /* 21132 * Is the header length at least 20 bytes? 21133 * 21134 * Are there enough bytes accessible in the header? If 21135 * not, try a pullup. 21136 */ 21137 v_hlen &= 0xF; 21138 v_hlen <<= 2; 21139 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21140 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21141 "ip_wput_end: q %p (%S)", q, "badlen"); 21142 goto discard_pkt; 21143 } 21144 if (v_hlen > (mp->b_wptr - rptr)) { 21145 if (!pullupmsg(mp, v_hlen)) { 21146 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21147 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21148 goto discard_pkt; 21149 } 21150 ipha = (ipha_t *)mp->b_rptr; 21151 } 21152 /* 21153 * Move first entry from any source route into ipha_dst and 21154 * verify the options 21155 */ 21156 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21157 zoneid, ipst)) { 21158 ASSERT(xmit_ill == NULL); 21159 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21160 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21161 "ip_wput_end: q %p (%S)", q, "badopts"); 21162 if (need_decref) 21163 CONN_DEC_REF(connp); 21164 return; 21165 } 21166 } 21167 dst = ipha->ipha_dst; 21168 21169 /* 21170 * Try to get an IRE_CACHE for the destination address. If we can't, 21171 * we have to run the packet through ip_newroute which will take 21172 * the appropriate action to arrange for an IRE_CACHE, such as querying 21173 * a resolver, or assigning a default gateway, etc. 21174 */ 21175 if (CLASSD(dst)) { 21176 ipif_t *ipif; 21177 uint32_t setsrc = 0; 21178 21179 multicast: 21180 ASSERT(first_mp != NULL); 21181 ip2dbg(("ip_wput: CLASSD\n")); 21182 if (connp == NULL) { 21183 /* 21184 * Use the first good ipif on the ill. 21185 * XXX Should this ever happen? (Appears 21186 * to show up with just ppp and no ethernet due 21187 * to in.rdisc.) 21188 * However, ire_send should be able to 21189 * call ip_wput_ire directly. 21190 * 21191 * XXX Also, this can happen for ICMP and other packets 21192 * with multicast source addresses. Perhaps we should 21193 * fix things so that we drop the packet in question, 21194 * but for now, just run with it. 21195 */ 21196 ill_t *ill = (ill_t *)q->q_ptr; 21197 21198 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21199 if (ipif == NULL) { 21200 if (need_decref) 21201 CONN_DEC_REF(connp); 21202 freemsg(first_mp); 21203 return; 21204 } 21205 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21206 ntohl(dst), ill->ill_name)); 21207 } else { 21208 /* 21209 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21210 * and IP_MULTICAST_IF. The block comment above this 21211 * function explains the locking mechanism used here. 21212 */ 21213 if (xmit_ill == NULL) { 21214 xmit_ill = conn_get_held_ill(connp, 21215 &connp->conn_outgoing_ill, &err); 21216 if (err == ILL_LOOKUP_FAILED) { 21217 ip1dbg(("ip_wput: No ill for " 21218 "IP_BOUND_IF\n")); 21219 BUMP_MIB(&ipst->ips_ip_mib, 21220 ipIfStatsOutNoRoutes); 21221 goto drop_pkt; 21222 } 21223 } 21224 21225 if (xmit_ill == NULL) { 21226 ipif = conn_get_held_ipif(connp, 21227 &connp->conn_multicast_ipif, &err); 21228 if (err == IPIF_LOOKUP_FAILED) { 21229 ip1dbg(("ip_wput: No ipif for " 21230 "multicast\n")); 21231 BUMP_MIB(&ipst->ips_ip_mib, 21232 ipIfStatsOutNoRoutes); 21233 goto drop_pkt; 21234 } 21235 } 21236 if (xmit_ill != NULL) { 21237 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21238 if (ipif == NULL) { 21239 ip1dbg(("ip_wput: No ipif for " 21240 "xmit_ill\n")); 21241 BUMP_MIB(&ipst->ips_ip_mib, 21242 ipIfStatsOutNoRoutes); 21243 goto drop_pkt; 21244 } 21245 } else if (ipif == NULL || ipif->ipif_isv6) { 21246 /* 21247 * We must do this ipif determination here 21248 * else we could pass through ip_newroute 21249 * and come back here without the conn context. 21250 * 21251 * Note: we do late binding i.e. we bind to 21252 * the interface when the first packet is sent. 21253 * For performance reasons we do not rebind on 21254 * each packet but keep the binding until the 21255 * next IP_MULTICAST_IF option. 21256 * 21257 * conn_multicast_{ipif,ill} are shared between 21258 * IPv4 and IPv6 and AF_INET6 sockets can 21259 * send both IPv4 and IPv6 packets. Hence 21260 * we have to check that "isv6" matches above. 21261 */ 21262 if (ipif != NULL) 21263 ipif_refrele(ipif); 21264 ipif = ipif_lookup_group(dst, zoneid, ipst); 21265 if (ipif == NULL) { 21266 ip1dbg(("ip_wput: No ipif for " 21267 "multicast\n")); 21268 BUMP_MIB(&ipst->ips_ip_mib, 21269 ipIfStatsOutNoRoutes); 21270 goto drop_pkt; 21271 } 21272 err = conn_set_held_ipif(connp, 21273 &connp->conn_multicast_ipif, ipif); 21274 if (err == IPIF_LOOKUP_FAILED) { 21275 ipif_refrele(ipif); 21276 ip1dbg(("ip_wput: No ipif for " 21277 "multicast\n")); 21278 BUMP_MIB(&ipst->ips_ip_mib, 21279 ipIfStatsOutNoRoutes); 21280 goto drop_pkt; 21281 } 21282 } 21283 } 21284 ASSERT(!ipif->ipif_isv6); 21285 /* 21286 * As we may lose the conn by the time we reach ip_wput_ire, 21287 * we copy conn_multicast_loop and conn_dontroute on to an 21288 * ipsec_out. In case if this datagram goes out secure, 21289 * we need the ill_index also. Copy that also into the 21290 * ipsec_out. 21291 */ 21292 if (mctl_present) { 21293 io = (ipsec_out_t *)first_mp->b_rptr; 21294 ASSERT(first_mp->b_datap->db_type == M_CTL); 21295 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21296 } else { 21297 ASSERT(mp == first_mp); 21298 if ((first_mp = allocb(sizeof (ipsec_info_t), 21299 BPRI_HI)) == NULL) { 21300 ipif_refrele(ipif); 21301 first_mp = mp; 21302 goto discard_pkt; 21303 } 21304 first_mp->b_datap->db_type = M_CTL; 21305 first_mp->b_wptr += sizeof (ipsec_info_t); 21306 /* ipsec_out_secure is B_FALSE now */ 21307 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21308 io = (ipsec_out_t *)first_mp->b_rptr; 21309 io->ipsec_out_type = IPSEC_OUT; 21310 io->ipsec_out_len = sizeof (ipsec_out_t); 21311 io->ipsec_out_use_global_policy = B_TRUE; 21312 io->ipsec_out_ns = ipst->ips_netstack; 21313 first_mp->b_cont = mp; 21314 mctl_present = B_TRUE; 21315 } 21316 21317 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21318 io->ipsec_out_ill_index = 21319 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21320 21321 if (connp != NULL) { 21322 io->ipsec_out_multicast_loop = 21323 connp->conn_multicast_loop; 21324 io->ipsec_out_dontroute = connp->conn_dontroute; 21325 io->ipsec_out_zoneid = connp->conn_zoneid; 21326 } 21327 /* 21328 * If the application uses IP_MULTICAST_IF with 21329 * different logical addresses of the same ILL, we 21330 * need to make sure that the soruce address of 21331 * the packet matches the logical IP address used 21332 * in the option. We do it by initializing ipha_src 21333 * here. This should keep IPsec also happy as 21334 * when we return from IPsec processing, we don't 21335 * have to worry about getting the right address on 21336 * the packet. Thus it is sufficient to look for 21337 * IRE_CACHE using MATCH_IRE_ILL rathen than 21338 * MATCH_IRE_IPIF. 21339 * 21340 * NOTE : We need to do it for non-secure case also as 21341 * this might go out secure if there is a global policy 21342 * match in ip_wput_ire. 21343 * 21344 * As we do not have the ire yet, it is possible that 21345 * we set the source address here and then later discover 21346 * that the ire implies the source address to be assigned 21347 * through the RTF_SETSRC flag. 21348 * In that case, the setsrc variable will remind us 21349 * that overwritting the source address by the one 21350 * of the RTF_SETSRC-flagged ire is allowed. 21351 */ 21352 if (ipha->ipha_src == INADDR_ANY && 21353 (connp == NULL || !connp->conn_unspec_src)) { 21354 ipha->ipha_src = ipif->ipif_src_addr; 21355 setsrc = RTF_SETSRC; 21356 } 21357 /* 21358 * Find an IRE which matches the destination and the outgoing 21359 * queue (i.e. the outgoing interface.) 21360 * For loopback use a unicast IP address for 21361 * the ire lookup. 21362 */ 21363 if (IS_LOOPBACK(ipif->ipif_ill)) 21364 dst = ipif->ipif_lcl_addr; 21365 21366 /* 21367 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21368 * We don't need to lookup ire in ctable as the packet 21369 * needs to be sent to the destination through the specified 21370 * ill irrespective of ires in the cache table. 21371 */ 21372 ire = NULL; 21373 if (xmit_ill == NULL) { 21374 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21375 zoneid, msg_getlabel(mp), match_flags, ipst); 21376 } 21377 21378 if (ire == NULL) { 21379 /* 21380 * Multicast loopback and multicast forwarding is 21381 * done in ip_wput_ire. 21382 * 21383 * Mark this packet to make it be delivered to 21384 * ip_wput_ire after the new ire has been 21385 * created. 21386 * 21387 * The call to ip_newroute_ipif takes into account 21388 * the setsrc reminder. In any case, we take care 21389 * of the RTF_MULTIRT flag. 21390 */ 21391 mp->b_prev = mp->b_next = NULL; 21392 if (xmit_ill == NULL || 21393 xmit_ill->ill_ipif_up_count > 0) { 21394 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21395 setsrc | RTF_MULTIRT, zoneid, infop); 21396 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21397 "ip_wput_end: q %p (%S)", q, "noire"); 21398 } else { 21399 freemsg(first_mp); 21400 } 21401 ipif_refrele(ipif); 21402 if (xmit_ill != NULL) 21403 ill_refrele(xmit_ill); 21404 if (need_decref) 21405 CONN_DEC_REF(connp); 21406 return; 21407 } 21408 21409 ipif_refrele(ipif); 21410 ipif = NULL; 21411 ASSERT(xmit_ill == NULL); 21412 21413 /* 21414 * Honor the RTF_SETSRC flag for multicast packets, 21415 * if allowed by the setsrc reminder. 21416 */ 21417 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21418 ipha->ipha_src = ire->ire_src_addr; 21419 } 21420 21421 /* 21422 * Unconditionally force the TTL to 1 for 21423 * multirouted multicast packets: 21424 * multirouted multicast should not cross 21425 * multicast routers. 21426 */ 21427 if (ire->ire_flags & RTF_MULTIRT) { 21428 if (ipha->ipha_ttl > 1) { 21429 ip2dbg(("ip_wput: forcing multicast " 21430 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21431 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21432 ipha->ipha_ttl = 1; 21433 } 21434 } 21435 } else { 21436 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21437 if ((ire != NULL) && (ire->ire_type & 21438 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21439 ignore_dontroute = B_TRUE; 21440 ignore_nexthop = B_TRUE; 21441 } 21442 if (ire != NULL) { 21443 ire_refrele(ire); 21444 ire = NULL; 21445 } 21446 /* 21447 * Guard against coming in from arp in which case conn is NULL. 21448 * Also guard against non M_DATA with dontroute set but 21449 * destined to local, loopback or broadcast addresses. 21450 */ 21451 if (connp != NULL && connp->conn_dontroute && 21452 !ignore_dontroute) { 21453 dontroute: 21454 /* 21455 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21456 * routing protocols from seeing false direct 21457 * connectivity. 21458 */ 21459 ipha->ipha_ttl = 1; 21460 /* If suitable ipif not found, drop packet */ 21461 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21462 if (dst_ipif == NULL) { 21463 noroute: 21464 ip1dbg(("ip_wput: no route for dst using" 21465 " SO_DONTROUTE\n")); 21466 BUMP_MIB(&ipst->ips_ip_mib, 21467 ipIfStatsOutNoRoutes); 21468 mp->b_prev = mp->b_next = NULL; 21469 if (first_mp == NULL) 21470 first_mp = mp; 21471 goto drop_pkt; 21472 } else { 21473 /* 21474 * If suitable ipif has been found, set 21475 * xmit_ill to the corresponding 21476 * ipif_ill because we'll be using the 21477 * send_from_ill logic below. 21478 */ 21479 ASSERT(xmit_ill == NULL); 21480 xmit_ill = dst_ipif->ipif_ill; 21481 mutex_enter(&xmit_ill->ill_lock); 21482 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21483 mutex_exit(&xmit_ill->ill_lock); 21484 xmit_ill = NULL; 21485 ipif_refrele(dst_ipif); 21486 goto noroute; 21487 } 21488 ill_refhold_locked(xmit_ill); 21489 mutex_exit(&xmit_ill->ill_lock); 21490 ipif_refrele(dst_ipif); 21491 } 21492 } 21493 21494 send_from_ill: 21495 if (xmit_ill != NULL) { 21496 ipif_t *ipif; 21497 21498 /* 21499 * Mark this packet as originated locally 21500 */ 21501 mp->b_prev = mp->b_next = NULL; 21502 21503 /* 21504 * Could be SO_DONTROUTE case also. 21505 * Verify that at least one ipif is up on the ill. 21506 */ 21507 if (xmit_ill->ill_ipif_up_count == 0) { 21508 ip1dbg(("ip_output: xmit_ill %s is down\n", 21509 xmit_ill->ill_name)); 21510 goto drop_pkt; 21511 } 21512 21513 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21514 if (ipif == NULL) { 21515 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21516 xmit_ill->ill_name)); 21517 goto drop_pkt; 21518 } 21519 21520 match_flags = 0; 21521 if (IS_UNDER_IPMP(xmit_ill)) 21522 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21523 21524 /* 21525 * Look for a ire that is part of the group, 21526 * if found use it else call ip_newroute_ipif. 21527 * IPCL_ZONEID is not used for matching because 21528 * IP_ALLZONES option is valid only when the 21529 * ill is accessible from all zones i.e has a 21530 * valid ipif in all zones. 21531 */ 21532 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21533 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21534 msg_getlabel(mp), match_flags, ipst); 21535 /* 21536 * If an ire exists use it or else create 21537 * an ire but don't add it to the cache. 21538 * Adding an ire may cause issues with 21539 * asymmetric routing. 21540 * In case of multiroute always act as if 21541 * ire does not exist. 21542 */ 21543 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21544 if (ire != NULL) 21545 ire_refrele(ire); 21546 ip_newroute_ipif(q, first_mp, ipif, 21547 dst, connp, 0, zoneid, infop); 21548 ipif_refrele(ipif); 21549 ip1dbg(("ip_output: xmit_ill via %s\n", 21550 xmit_ill->ill_name)); 21551 ill_refrele(xmit_ill); 21552 if (need_decref) 21553 CONN_DEC_REF(connp); 21554 return; 21555 } 21556 ipif_refrele(ipif); 21557 } else if (ip_nexthop || (connp != NULL && 21558 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21559 if (!ip_nexthop) { 21560 ip_nexthop = B_TRUE; 21561 nexthop_addr = connp->conn_nexthop_v4; 21562 } 21563 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21564 MATCH_IRE_GW; 21565 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21566 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21567 } else { 21568 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21569 ipst); 21570 } 21571 if (!ire) { 21572 if (ip_nexthop && !ignore_nexthop) { 21573 if (mctl_present) { 21574 io = (ipsec_out_t *)first_mp->b_rptr; 21575 ASSERT(first_mp->b_datap->db_type == 21576 M_CTL); 21577 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21578 } else { 21579 ASSERT(mp == first_mp); 21580 first_mp = allocb( 21581 sizeof (ipsec_info_t), BPRI_HI); 21582 if (first_mp == NULL) { 21583 first_mp = mp; 21584 goto discard_pkt; 21585 } 21586 first_mp->b_datap->db_type = M_CTL; 21587 first_mp->b_wptr += 21588 sizeof (ipsec_info_t); 21589 /* ipsec_out_secure is B_FALSE now */ 21590 bzero(first_mp->b_rptr, 21591 sizeof (ipsec_info_t)); 21592 io = (ipsec_out_t *)first_mp->b_rptr; 21593 io->ipsec_out_type = IPSEC_OUT; 21594 io->ipsec_out_len = 21595 sizeof (ipsec_out_t); 21596 io->ipsec_out_use_global_policy = 21597 B_TRUE; 21598 io->ipsec_out_ns = ipst->ips_netstack; 21599 first_mp->b_cont = mp; 21600 mctl_present = B_TRUE; 21601 } 21602 io->ipsec_out_ip_nexthop = ip_nexthop; 21603 io->ipsec_out_nexthop_addr = nexthop_addr; 21604 } 21605 noirefound: 21606 /* 21607 * Mark this packet as having originated on 21608 * this machine. This will be noted in 21609 * ire_add_then_send, which needs to know 21610 * whether to run it back through ip_wput or 21611 * ip_rput following successful resolution. 21612 */ 21613 mp->b_prev = NULL; 21614 mp->b_next = NULL; 21615 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21616 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21617 "ip_wput_end: q %p (%S)", q, "newroute"); 21618 if (xmit_ill != NULL) 21619 ill_refrele(xmit_ill); 21620 if (need_decref) 21621 CONN_DEC_REF(connp); 21622 return; 21623 } 21624 } 21625 21626 /* We now know where we are going with it. */ 21627 21628 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21629 "ip_wput_end: q %p (%S)", q, "end"); 21630 21631 /* 21632 * Check if the ire has the RTF_MULTIRT flag, inherited 21633 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21634 */ 21635 if (ire->ire_flags & RTF_MULTIRT) { 21636 /* 21637 * Force the TTL of multirouted packets if required. 21638 * The TTL of such packets is bounded by the 21639 * ip_multirt_ttl ndd variable. 21640 */ 21641 if ((ipst->ips_ip_multirt_ttl > 0) && 21642 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21643 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21644 "(was %d), dst 0x%08x\n", 21645 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21646 ntohl(ire->ire_addr))); 21647 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21648 } 21649 /* 21650 * At this point, we check to see if there are any pending 21651 * unresolved routes. ire_multirt_resolvable() 21652 * checks in O(n) that all IRE_OFFSUBNET ire 21653 * entries for the packet's destination and 21654 * flagged RTF_MULTIRT are currently resolved. 21655 * If some remain unresolved, we make a copy 21656 * of the current message. It will be used 21657 * to initiate additional route resolutions. 21658 */ 21659 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21660 msg_getlabel(first_mp), ipst); 21661 ip2dbg(("ip_wput[noirefound]: ire %p, " 21662 "multirt_need_resolve %d, first_mp %p\n", 21663 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21664 if (multirt_need_resolve) { 21665 copy_mp = copymsg(first_mp); 21666 if (copy_mp != NULL) { 21667 MULTIRT_DEBUG_TAG(copy_mp); 21668 } 21669 } 21670 } 21671 21672 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21673 /* 21674 * Try to resolve another multiroute if 21675 * ire_multirt_resolvable() deemed it necessary. 21676 * At this point, we need to distinguish 21677 * multicasts from other packets. For multicasts, 21678 * we call ip_newroute_ipif() and request that both 21679 * multirouting and setsrc flags are checked. 21680 */ 21681 if (copy_mp != NULL) { 21682 if (CLASSD(dst)) { 21683 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21684 if (ipif) { 21685 ASSERT(infop->ip_opt_ill_index == 0); 21686 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21687 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21688 ipif_refrele(ipif); 21689 } else { 21690 MULTIRT_DEBUG_UNTAG(copy_mp); 21691 freemsg(copy_mp); 21692 copy_mp = NULL; 21693 } 21694 } else { 21695 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21696 } 21697 } 21698 if (xmit_ill != NULL) 21699 ill_refrele(xmit_ill); 21700 if (need_decref) 21701 CONN_DEC_REF(connp); 21702 return; 21703 21704 icmp_parameter_problem: 21705 /* could not have originated externally */ 21706 ASSERT(mp->b_prev == NULL); 21707 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21708 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21709 /* it's the IP header length that's in trouble */ 21710 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21711 first_mp = NULL; 21712 } 21713 21714 discard_pkt: 21715 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21716 drop_pkt: 21717 ip1dbg(("ip_wput: dropped packet\n")); 21718 if (ire != NULL) 21719 ire_refrele(ire); 21720 if (need_decref) 21721 CONN_DEC_REF(connp); 21722 freemsg(first_mp); 21723 if (xmit_ill != NULL) 21724 ill_refrele(xmit_ill); 21725 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21726 "ip_wput_end: q %p (%S)", q, "droppkt"); 21727 } 21728 21729 /* 21730 * If this is a conn_t queue, then we pass in the conn. This includes the 21731 * zoneid. 21732 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21733 * in which case we use the global zoneid since those are all part of 21734 * the global zone. 21735 */ 21736 void 21737 ip_wput(queue_t *q, mblk_t *mp) 21738 { 21739 if (CONN_Q(q)) 21740 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21741 else 21742 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21743 } 21744 21745 /* 21746 * 21747 * The following rules must be observed when accessing any ipif or ill 21748 * that has been cached in the conn. Typically conn_outgoing_ill, 21749 * conn_multicast_ipif and conn_multicast_ill. 21750 * 21751 * Access: The ipif or ill pointed to from the conn can be accessed under 21752 * the protection of the conn_lock or after it has been refheld under the 21753 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21754 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21755 * The reason for this is that a concurrent unplumb could actually be 21756 * cleaning up these cached pointers by walking the conns and might have 21757 * finished cleaning up the conn in question. The macros check that an 21758 * unplumb has not yet started on the ipif or ill. 21759 * 21760 * Caching: An ipif or ill pointer may be cached in the conn only after 21761 * making sure that an unplumb has not started. So the caching is done 21762 * while holding both the conn_lock and the ill_lock and after using the 21763 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21764 * flag before starting the cleanup of conns. 21765 * 21766 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21767 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21768 * or a reference to the ipif or a reference to an ire that references the 21769 * ipif. An ipif only changes its ill when migrating from an underlying ill 21770 * to an IPMP ill in ipif_up(). 21771 */ 21772 ipif_t * 21773 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21774 { 21775 ipif_t *ipif; 21776 ill_t *ill; 21777 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21778 21779 *err = 0; 21780 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21781 mutex_enter(&connp->conn_lock); 21782 ipif = *ipifp; 21783 if (ipif != NULL) { 21784 ill = ipif->ipif_ill; 21785 mutex_enter(&ill->ill_lock); 21786 if (IPIF_CAN_LOOKUP(ipif)) { 21787 ipif_refhold_locked(ipif); 21788 mutex_exit(&ill->ill_lock); 21789 mutex_exit(&connp->conn_lock); 21790 rw_exit(&ipst->ips_ill_g_lock); 21791 return (ipif); 21792 } else { 21793 *err = IPIF_LOOKUP_FAILED; 21794 } 21795 mutex_exit(&ill->ill_lock); 21796 } 21797 mutex_exit(&connp->conn_lock); 21798 rw_exit(&ipst->ips_ill_g_lock); 21799 return (NULL); 21800 } 21801 21802 ill_t * 21803 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21804 { 21805 ill_t *ill; 21806 21807 *err = 0; 21808 mutex_enter(&connp->conn_lock); 21809 ill = *illp; 21810 if (ill != NULL) { 21811 mutex_enter(&ill->ill_lock); 21812 if (ILL_CAN_LOOKUP(ill)) { 21813 ill_refhold_locked(ill); 21814 mutex_exit(&ill->ill_lock); 21815 mutex_exit(&connp->conn_lock); 21816 return (ill); 21817 } else { 21818 *err = ILL_LOOKUP_FAILED; 21819 } 21820 mutex_exit(&ill->ill_lock); 21821 } 21822 mutex_exit(&connp->conn_lock); 21823 return (NULL); 21824 } 21825 21826 static int 21827 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21828 { 21829 ill_t *ill; 21830 21831 ill = ipif->ipif_ill; 21832 mutex_enter(&connp->conn_lock); 21833 mutex_enter(&ill->ill_lock); 21834 if (IPIF_CAN_LOOKUP(ipif)) { 21835 *ipifp = ipif; 21836 mutex_exit(&ill->ill_lock); 21837 mutex_exit(&connp->conn_lock); 21838 return (0); 21839 } 21840 mutex_exit(&ill->ill_lock); 21841 mutex_exit(&connp->conn_lock); 21842 return (IPIF_LOOKUP_FAILED); 21843 } 21844 21845 /* 21846 * This is called if the outbound datagram needs fragmentation. 21847 * 21848 * NOTE : This function does not ire_refrele the ire argument passed in. 21849 */ 21850 static void 21851 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21852 ip_stack_t *ipst, conn_t *connp) 21853 { 21854 ipha_t *ipha; 21855 mblk_t *mp; 21856 uint32_t v_hlen_tos_len; 21857 uint32_t max_frag; 21858 uint32_t frag_flag; 21859 boolean_t dont_use; 21860 21861 if (ipsec_mp->b_datap->db_type == M_CTL) { 21862 mp = ipsec_mp->b_cont; 21863 } else { 21864 mp = ipsec_mp; 21865 } 21866 21867 ipha = (ipha_t *)mp->b_rptr; 21868 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21869 21870 #ifdef _BIG_ENDIAN 21871 #define V_HLEN (v_hlen_tos_len >> 24) 21872 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21873 #else 21874 #define V_HLEN (v_hlen_tos_len & 0xFF) 21875 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21876 #endif 21877 21878 #ifndef SPEED_BEFORE_SAFETY 21879 /* 21880 * Check that ipha_length is consistent with 21881 * the mblk length 21882 */ 21883 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21884 ip0dbg(("Packet length mismatch: %d, %ld\n", 21885 LENGTH, msgdsize(mp))); 21886 freemsg(ipsec_mp); 21887 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21888 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21889 "packet length mismatch"); 21890 return; 21891 } 21892 #endif 21893 /* 21894 * Don't use frag_flag if pre-built packet or source 21895 * routed or if multicast (since multicast packets do not solicit 21896 * ICMP "packet too big" messages). Get the values of 21897 * max_frag and frag_flag atomically by acquiring the 21898 * ire_lock. 21899 */ 21900 mutex_enter(&ire->ire_lock); 21901 max_frag = ire->ire_max_frag; 21902 frag_flag = ire->ire_frag_flag; 21903 mutex_exit(&ire->ire_lock); 21904 21905 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21906 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21907 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21908 21909 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21910 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21911 } 21912 21913 /* 21914 * Used for deciding the MSS size for the upper layer. Thus 21915 * we need to check the outbound policy values in the conn. 21916 */ 21917 int 21918 conn_ipsec_length(conn_t *connp) 21919 { 21920 ipsec_latch_t *ipl; 21921 21922 ipl = connp->conn_latch; 21923 if (ipl == NULL) 21924 return (0); 21925 21926 if (ipl->ipl_out_policy == NULL) 21927 return (0); 21928 21929 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21930 } 21931 21932 /* 21933 * Returns an estimate of the IPsec headers size. This is used if 21934 * we don't want to call into IPsec to get the exact size. 21935 */ 21936 int 21937 ipsec_out_extra_length(mblk_t *ipsec_mp) 21938 { 21939 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21940 ipsec_action_t *a; 21941 21942 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21943 if (!io->ipsec_out_secure) 21944 return (0); 21945 21946 a = io->ipsec_out_act; 21947 21948 if (a == NULL) { 21949 ASSERT(io->ipsec_out_policy != NULL); 21950 a = io->ipsec_out_policy->ipsp_act; 21951 } 21952 ASSERT(a != NULL); 21953 21954 return (a->ipa_ovhd); 21955 } 21956 21957 /* 21958 * Returns an estimate of the IPsec headers size. This is used if 21959 * we don't want to call into IPsec to get the exact size. 21960 */ 21961 int 21962 ipsec_in_extra_length(mblk_t *ipsec_mp) 21963 { 21964 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21965 ipsec_action_t *a; 21966 21967 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21968 21969 a = ii->ipsec_in_action; 21970 return (a == NULL ? 0 : a->ipa_ovhd); 21971 } 21972 21973 /* 21974 * If there are any source route options, return the true final 21975 * destination. Otherwise, return the destination. 21976 */ 21977 ipaddr_t 21978 ip_get_dst(ipha_t *ipha) 21979 { 21980 ipoptp_t opts; 21981 uchar_t *opt; 21982 uint8_t optval; 21983 uint8_t optlen; 21984 ipaddr_t dst; 21985 uint32_t off; 21986 21987 dst = ipha->ipha_dst; 21988 21989 if (IS_SIMPLE_IPH(ipha)) 21990 return (dst); 21991 21992 for (optval = ipoptp_first(&opts, ipha); 21993 optval != IPOPT_EOL; 21994 optval = ipoptp_next(&opts)) { 21995 opt = opts.ipoptp_cur; 21996 optlen = opts.ipoptp_len; 21997 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21998 switch (optval) { 21999 case IPOPT_SSRR: 22000 case IPOPT_LSRR: 22001 off = opt[IPOPT_OFFSET]; 22002 /* 22003 * If one of the conditions is true, it means 22004 * end of options and dst already has the right 22005 * value. 22006 */ 22007 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22008 off = optlen - IP_ADDR_LEN; 22009 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22010 } 22011 return (dst); 22012 default: 22013 break; 22014 } 22015 } 22016 22017 return (dst); 22018 } 22019 22020 mblk_t * 22021 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22022 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22023 { 22024 ipsec_out_t *io; 22025 mblk_t *first_mp; 22026 boolean_t policy_present; 22027 ip_stack_t *ipst; 22028 ipsec_stack_t *ipss; 22029 22030 ASSERT(ire != NULL); 22031 ipst = ire->ire_ipst; 22032 ipss = ipst->ips_netstack->netstack_ipsec; 22033 22034 first_mp = mp; 22035 if (mp->b_datap->db_type == M_CTL) { 22036 io = (ipsec_out_t *)first_mp->b_rptr; 22037 /* 22038 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22039 * 22040 * 1) There is per-socket policy (including cached global 22041 * policy) or a policy on the IP-in-IP tunnel. 22042 * 2) There is no per-socket policy, but it is 22043 * a multicast packet that needs to go out 22044 * on a specific interface. This is the case 22045 * where (ip_wput and ip_wput_multicast) attaches 22046 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22047 * 22048 * In case (2) we check with global policy to 22049 * see if there is a match and set the ill_index 22050 * appropriately so that we can lookup the ire 22051 * properly in ip_wput_ipsec_out. 22052 */ 22053 22054 /* 22055 * ipsec_out_use_global_policy is set to B_FALSE 22056 * in ipsec_in_to_out(). Refer to that function for 22057 * details. 22058 */ 22059 if ((io->ipsec_out_latch == NULL) && 22060 (io->ipsec_out_use_global_policy)) { 22061 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22062 ire, connp, unspec_src, zoneid)); 22063 } 22064 if (!io->ipsec_out_secure) { 22065 /* 22066 * If this is not a secure packet, drop 22067 * the IPSEC_OUT mp and treat it as a clear 22068 * packet. This happens when we are sending 22069 * a ICMP reply back to a clear packet. See 22070 * ipsec_in_to_out() for details. 22071 */ 22072 mp = first_mp->b_cont; 22073 freeb(first_mp); 22074 } 22075 return (mp); 22076 } 22077 /* 22078 * See whether we need to attach a global policy here. We 22079 * don't depend on the conn (as it could be null) for deciding 22080 * what policy this datagram should go through because it 22081 * should have happened in ip_wput if there was some 22082 * policy. This normally happens for connections which are not 22083 * fully bound preventing us from caching policies in 22084 * ip_bind. Packets coming from the TCP listener/global queue 22085 * - which are non-hard_bound - could also be affected by 22086 * applying policy here. 22087 * 22088 * If this packet is coming from tcp global queue or listener, 22089 * we will be applying policy here. This may not be *right* 22090 * if these packets are coming from the detached connection as 22091 * it could have gone in clear before. This happens only if a 22092 * TCP connection started when there is no policy and somebody 22093 * added policy before it became detached. Thus packets of the 22094 * detached connection could go out secure and the other end 22095 * would drop it because it will be expecting in clear. The 22096 * converse is not true i.e if somebody starts a TCP 22097 * connection and deletes the policy, all the packets will 22098 * still go out with the policy that existed before deleting 22099 * because ip_unbind sends up policy information which is used 22100 * by TCP on subsequent ip_wputs. The right solution is to fix 22101 * TCP to attach a dummy IPSEC_OUT and set 22102 * ipsec_out_use_global_policy to B_FALSE. As this might 22103 * affect performance for normal cases, we are not doing it. 22104 * Thus, set policy before starting any TCP connections. 22105 * 22106 * NOTE - We might apply policy even for a hard bound connection 22107 * - for which we cached policy in ip_bind - if somebody added 22108 * global policy after we inherited the policy in ip_bind. 22109 * This means that the packets that were going out in clear 22110 * previously would start going secure and hence get dropped 22111 * on the other side. To fix this, TCP attaches a dummy 22112 * ipsec_out and make sure that we don't apply global policy. 22113 */ 22114 if (ipha != NULL) 22115 policy_present = ipss->ipsec_outbound_v4_policy_present; 22116 else 22117 policy_present = ipss->ipsec_outbound_v6_policy_present; 22118 if (!policy_present) 22119 return (mp); 22120 22121 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22122 zoneid)); 22123 } 22124 22125 /* 22126 * This function does the ire_refrele of the ire passed in as the 22127 * argument. As this function looks up more ires i.e broadcast ires, 22128 * it needs to REFRELE them. Currently, for simplicity we don't 22129 * differentiate the one passed in and looked up here. We always 22130 * REFRELE. 22131 * IPQoS Notes: 22132 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22133 * IPsec packets are done in ipsec_out_process. 22134 */ 22135 void 22136 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22137 zoneid_t zoneid) 22138 { 22139 ipha_t *ipha; 22140 #define rptr ((uchar_t *)ipha) 22141 queue_t *stq; 22142 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22143 uint32_t v_hlen_tos_len; 22144 uint32_t ttl_protocol; 22145 ipaddr_t src; 22146 ipaddr_t dst; 22147 uint32_t cksum; 22148 ipaddr_t orig_src; 22149 ire_t *ire1; 22150 mblk_t *next_mp; 22151 uint_t hlen; 22152 uint16_t *up; 22153 uint32_t max_frag = ire->ire_max_frag; 22154 ill_t *ill = ire_to_ill(ire); 22155 int clusterwide; 22156 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22157 int ipsec_len; 22158 mblk_t *first_mp; 22159 ipsec_out_t *io; 22160 boolean_t conn_dontroute; /* conn value for multicast */ 22161 boolean_t conn_multicast_loop; /* conn value for multicast */ 22162 boolean_t multicast_forward; /* Should we forward ? */ 22163 boolean_t unspec_src; 22164 ill_t *conn_outgoing_ill = NULL; 22165 ill_t *ire_ill; 22166 ill_t *ire1_ill; 22167 ill_t *out_ill; 22168 uint32_t ill_index = 0; 22169 boolean_t multirt_send = B_FALSE; 22170 int err; 22171 ipxmit_state_t pktxmit_state; 22172 ip_stack_t *ipst = ire->ire_ipst; 22173 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22174 22175 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22176 "ip_wput_ire_start: q %p", q); 22177 22178 multicast_forward = B_FALSE; 22179 unspec_src = (connp != NULL && connp->conn_unspec_src); 22180 22181 if (ire->ire_flags & RTF_MULTIRT) { 22182 /* 22183 * Multirouting case. The bucket where ire is stored 22184 * probably holds other RTF_MULTIRT flagged ire 22185 * to the destination. In this call to ip_wput_ire, 22186 * we attempt to send the packet through all 22187 * those ires. Thus, we first ensure that ire is the 22188 * first RTF_MULTIRT ire in the bucket, 22189 * before walking the ire list. 22190 */ 22191 ire_t *first_ire; 22192 irb_t *irb = ire->ire_bucket; 22193 ASSERT(irb != NULL); 22194 22195 /* Make sure we do not omit any multiroute ire. */ 22196 IRB_REFHOLD(irb); 22197 for (first_ire = irb->irb_ire; 22198 first_ire != NULL; 22199 first_ire = first_ire->ire_next) { 22200 if ((first_ire->ire_flags & RTF_MULTIRT) && 22201 (first_ire->ire_addr == ire->ire_addr) && 22202 !(first_ire->ire_marks & 22203 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22204 break; 22205 } 22206 22207 if ((first_ire != NULL) && (first_ire != ire)) { 22208 IRE_REFHOLD(first_ire); 22209 ire_refrele(ire); 22210 ire = first_ire; 22211 ill = ire_to_ill(ire); 22212 } 22213 IRB_REFRELE(irb); 22214 } 22215 22216 /* 22217 * conn_outgoing_ill variable is used only in the broadcast loop. 22218 * for performance we don't grab the mutexs in the fastpath 22219 */ 22220 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22221 connp->conn_outgoing_ill != NULL) { 22222 conn_outgoing_ill = conn_get_held_ill(connp, 22223 &connp->conn_outgoing_ill, &err); 22224 if (err == ILL_LOOKUP_FAILED) { 22225 ire_refrele(ire); 22226 freemsg(mp); 22227 return; 22228 } 22229 } 22230 22231 if (mp->b_datap->db_type != M_CTL) { 22232 ipha = (ipha_t *)mp->b_rptr; 22233 } else { 22234 io = (ipsec_out_t *)mp->b_rptr; 22235 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22236 ASSERT(zoneid == io->ipsec_out_zoneid); 22237 ASSERT(zoneid != ALL_ZONES); 22238 ipha = (ipha_t *)mp->b_cont->b_rptr; 22239 dst = ipha->ipha_dst; 22240 /* 22241 * For the multicast case, ipsec_out carries conn_dontroute and 22242 * conn_multicast_loop as conn may not be available here. We 22243 * need this for multicast loopback and forwarding which is done 22244 * later in the code. 22245 */ 22246 if (CLASSD(dst)) { 22247 conn_dontroute = io->ipsec_out_dontroute; 22248 conn_multicast_loop = io->ipsec_out_multicast_loop; 22249 /* 22250 * If conn_dontroute is not set or conn_multicast_loop 22251 * is set, we need to do forwarding/loopback. For 22252 * datagrams from ip_wput_multicast, conn_dontroute is 22253 * set to B_TRUE and conn_multicast_loop is set to 22254 * B_FALSE so that we neither do forwarding nor 22255 * loopback. 22256 */ 22257 if (!conn_dontroute || conn_multicast_loop) 22258 multicast_forward = B_TRUE; 22259 } 22260 } 22261 22262 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22263 ire->ire_zoneid != ALL_ZONES) { 22264 /* 22265 * When a zone sends a packet to another zone, we try to deliver 22266 * the packet under the same conditions as if the destination 22267 * was a real node on the network. To do so, we look for a 22268 * matching route in the forwarding table. 22269 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22270 * ip_newroute() does. 22271 * Note that IRE_LOCAL are special, since they are used 22272 * when the zoneid doesn't match in some cases. This means that 22273 * we need to handle ipha_src differently since ire_src_addr 22274 * belongs to the receiving zone instead of the sending zone. 22275 * When ip_restrict_interzone_loopback is set, then 22276 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22277 * for loopback between zones when the logical "Ethernet" would 22278 * have looped them back. 22279 */ 22280 ire_t *src_ire; 22281 22282 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22283 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22284 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22285 if (src_ire != NULL && 22286 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22287 (!ipst->ips_ip_restrict_interzone_loopback || 22288 ire_local_same_lan(ire, src_ire))) { 22289 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22290 ipha->ipha_src = src_ire->ire_src_addr; 22291 ire_refrele(src_ire); 22292 } else { 22293 ire_refrele(ire); 22294 if (conn_outgoing_ill != NULL) 22295 ill_refrele(conn_outgoing_ill); 22296 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22297 if (src_ire != NULL) { 22298 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22299 ire_refrele(src_ire); 22300 freemsg(mp); 22301 return; 22302 } 22303 ire_refrele(src_ire); 22304 } 22305 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22306 /* Failed */ 22307 freemsg(mp); 22308 return; 22309 } 22310 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22311 ipst); 22312 return; 22313 } 22314 } 22315 22316 if (mp->b_datap->db_type == M_CTL || 22317 ipss->ipsec_outbound_v4_policy_present) { 22318 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22319 unspec_src, zoneid); 22320 if (mp == NULL) { 22321 ire_refrele(ire); 22322 if (conn_outgoing_ill != NULL) 22323 ill_refrele(conn_outgoing_ill); 22324 return; 22325 } 22326 /* 22327 * Trusted Extensions supports all-zones interfaces, so 22328 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22329 * the global zone. 22330 */ 22331 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22332 io = (ipsec_out_t *)mp->b_rptr; 22333 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22334 zoneid = io->ipsec_out_zoneid; 22335 } 22336 } 22337 22338 first_mp = mp; 22339 ipsec_len = 0; 22340 22341 if (first_mp->b_datap->db_type == M_CTL) { 22342 io = (ipsec_out_t *)first_mp->b_rptr; 22343 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22344 mp = first_mp->b_cont; 22345 ipsec_len = ipsec_out_extra_length(first_mp); 22346 ASSERT(ipsec_len >= 0); 22347 /* We already picked up the zoneid from the M_CTL above */ 22348 ASSERT(zoneid == io->ipsec_out_zoneid); 22349 ASSERT(zoneid != ALL_ZONES); 22350 22351 /* 22352 * Drop M_CTL here if IPsec processing is not needed. 22353 * (Non-IPsec use of M_CTL extracted any information it 22354 * needed above). 22355 */ 22356 if (ipsec_len == 0) { 22357 freeb(first_mp); 22358 first_mp = mp; 22359 } 22360 } 22361 22362 /* 22363 * Fast path for ip_wput_ire 22364 */ 22365 22366 ipha = (ipha_t *)mp->b_rptr; 22367 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22368 dst = ipha->ipha_dst; 22369 22370 /* 22371 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22372 * if the socket is a SOCK_RAW type. The transport checksum should 22373 * be provided in the pre-built packet, so we don't need to compute it. 22374 * Also, other application set flags, like DF, should not be altered. 22375 * Other transport MUST pass down zero. 22376 */ 22377 ip_hdr_included = ipha->ipha_ident; 22378 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22379 22380 if (CLASSD(dst)) { 22381 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22382 ntohl(dst), 22383 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22384 ntohl(ire->ire_addr))); 22385 } 22386 22387 /* Macros to extract header fields from data already in registers */ 22388 #ifdef _BIG_ENDIAN 22389 #define V_HLEN (v_hlen_tos_len >> 24) 22390 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22391 #define PROTO (ttl_protocol & 0xFF) 22392 #else 22393 #define V_HLEN (v_hlen_tos_len & 0xFF) 22394 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22395 #define PROTO (ttl_protocol >> 8) 22396 #endif 22397 22398 orig_src = src = ipha->ipha_src; 22399 /* (The loop back to "another" is explained down below.) */ 22400 another:; 22401 /* 22402 * Assign an ident value for this packet. We assign idents on 22403 * a per destination basis out of the IRE. There could be 22404 * other threads targeting the same destination, so we have to 22405 * arrange for a atomic increment. Note that we use a 32-bit 22406 * atomic add because it has better performance than its 22407 * 16-bit sibling. 22408 * 22409 * If running in cluster mode and if the source address 22410 * belongs to a replicated service then vector through 22411 * cl_inet_ipident vector to allocate ip identifier 22412 * NOTE: This is a contract private interface with the 22413 * clustering group. 22414 */ 22415 clusterwide = 0; 22416 if (cl_inet_ipident) { 22417 ASSERT(cl_inet_isclusterwide); 22418 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22419 22420 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22421 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22422 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22423 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22424 (uint8_t *)(uintptr_t)dst, NULL); 22425 clusterwide = 1; 22426 } 22427 } 22428 if (!clusterwide) { 22429 ipha->ipha_ident = 22430 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22431 } 22432 22433 #ifndef _BIG_ENDIAN 22434 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22435 #endif 22436 22437 /* 22438 * Set source address unless sent on an ill or conn_unspec_src is set. 22439 * This is needed to obey conn_unspec_src when packets go through 22440 * ip_newroute + arp. 22441 * Assumes ip_newroute{,_multi} sets the source address as well. 22442 */ 22443 if (src == INADDR_ANY && !unspec_src) { 22444 /* 22445 * Assign the appropriate source address from the IRE if none 22446 * was specified. 22447 */ 22448 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22449 22450 src = ire->ire_src_addr; 22451 if (connp == NULL) { 22452 ip1dbg(("ip_wput_ire: no connp and no src " 22453 "address for dst 0x%x, using src 0x%x\n", 22454 ntohl(dst), 22455 ntohl(src))); 22456 } 22457 ipha->ipha_src = src; 22458 } 22459 stq = ire->ire_stq; 22460 22461 /* 22462 * We only allow ire chains for broadcasts since there will 22463 * be multiple IRE_CACHE entries for the same multicast 22464 * address (one per ipif). 22465 */ 22466 next_mp = NULL; 22467 22468 /* broadcast packet */ 22469 if (ire->ire_type == IRE_BROADCAST) 22470 goto broadcast; 22471 22472 /* loopback ? */ 22473 if (stq == NULL) 22474 goto nullstq; 22475 22476 /* The ill_index for outbound ILL */ 22477 ill_index = Q_TO_INDEX(stq); 22478 22479 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22480 ttl_protocol = ((uint16_t *)ipha)[4]; 22481 22482 /* pseudo checksum (do it in parts for IP header checksum) */ 22483 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22484 22485 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22486 queue_t *dev_q = stq->q_next; 22487 22488 /* 22489 * For DIRECT_CAPABLE, we do flow control at 22490 * the time of sending the packet. See 22491 * ILL_SEND_TX(). 22492 */ 22493 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22494 (DEV_Q_FLOW_BLOCKED(dev_q))) 22495 goto blocked; 22496 22497 if ((PROTO == IPPROTO_UDP) && 22498 (ip_hdr_included != IP_HDR_INCLUDED)) { 22499 hlen = (V_HLEN & 0xF) << 2; 22500 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22501 if (*up != 0) { 22502 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22503 hlen, LENGTH, max_frag, ipsec_len, cksum); 22504 /* Software checksum? */ 22505 if (DB_CKSUMFLAGS(mp) == 0) { 22506 IP_STAT(ipst, ip_out_sw_cksum); 22507 IP_STAT_UPDATE(ipst, 22508 ip_udp_out_sw_cksum_bytes, 22509 LENGTH - hlen); 22510 } 22511 } 22512 } 22513 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22514 hlen = (V_HLEN & 0xF) << 2; 22515 if (PROTO == IPPROTO_TCP) { 22516 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22517 /* 22518 * The packet header is processed once and for all, even 22519 * in the multirouting case. We disable hardware 22520 * checksum if the packet is multirouted, as it will be 22521 * replicated via several interfaces, and not all of 22522 * them may have this capability. 22523 */ 22524 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22525 LENGTH, max_frag, ipsec_len, cksum); 22526 /* Software checksum? */ 22527 if (DB_CKSUMFLAGS(mp) == 0) { 22528 IP_STAT(ipst, ip_out_sw_cksum); 22529 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22530 LENGTH - hlen); 22531 } 22532 } else { 22533 sctp_hdr_t *sctph; 22534 22535 ASSERT(PROTO == IPPROTO_SCTP); 22536 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22537 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22538 /* 22539 * Zero out the checksum field to ensure proper 22540 * checksum calculation. 22541 */ 22542 sctph->sh_chksum = 0; 22543 #ifdef DEBUG 22544 if (!skip_sctp_cksum) 22545 #endif 22546 sctph->sh_chksum = sctp_cksum(mp, hlen); 22547 } 22548 } 22549 22550 /* 22551 * If this is a multicast packet and originated from ip_wput 22552 * we need to do loopback and forwarding checks. If it comes 22553 * from ip_wput_multicast, we SHOULD not do this. 22554 */ 22555 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22556 22557 /* checksum */ 22558 cksum += ttl_protocol; 22559 22560 /* fragment the packet */ 22561 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22562 goto fragmentit; 22563 /* 22564 * Don't use frag_flag if packet is pre-built or source 22565 * routed or if multicast (since multicast packets do 22566 * not solicit ICMP "packet too big" messages). 22567 */ 22568 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22569 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22570 !ip_source_route_included(ipha)) && 22571 !CLASSD(ipha->ipha_dst)) 22572 ipha->ipha_fragment_offset_and_flags |= 22573 htons(ire->ire_frag_flag); 22574 22575 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22576 /* calculate IP header checksum */ 22577 cksum += ipha->ipha_ident; 22578 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22579 cksum += ipha->ipha_fragment_offset_and_flags; 22580 22581 /* IP options present */ 22582 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22583 if (hlen) 22584 goto checksumoptions; 22585 22586 /* calculate hdr checksum */ 22587 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22588 cksum = ~(cksum + (cksum >> 16)); 22589 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22590 } 22591 if (ipsec_len != 0) { 22592 /* 22593 * We will do the rest of the processing after 22594 * we come back from IPsec in ip_wput_ipsec_out(). 22595 */ 22596 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22597 22598 io = (ipsec_out_t *)first_mp->b_rptr; 22599 io->ipsec_out_ill_index = 22600 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22601 ipsec_out_process(q, first_mp, ire, 0); 22602 ire_refrele(ire); 22603 if (conn_outgoing_ill != NULL) 22604 ill_refrele(conn_outgoing_ill); 22605 return; 22606 } 22607 22608 /* 22609 * In most cases, the emission loop below is entered only 22610 * once. Only in the case where the ire holds the 22611 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22612 * flagged ires in the bucket, and send the packet 22613 * through all crossed RTF_MULTIRT routes. 22614 */ 22615 if (ire->ire_flags & RTF_MULTIRT) { 22616 multirt_send = B_TRUE; 22617 } 22618 do { 22619 if (multirt_send) { 22620 irb_t *irb; 22621 /* 22622 * We are in a multiple send case, need to get 22623 * the next ire and make a duplicate of the packet. 22624 * ire1 holds here the next ire to process in the 22625 * bucket. If multirouting is expected, 22626 * any non-RTF_MULTIRT ire that has the 22627 * right destination address is ignored. 22628 */ 22629 irb = ire->ire_bucket; 22630 ASSERT(irb != NULL); 22631 22632 IRB_REFHOLD(irb); 22633 for (ire1 = ire->ire_next; 22634 ire1 != NULL; 22635 ire1 = ire1->ire_next) { 22636 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22637 continue; 22638 if (ire1->ire_addr != ire->ire_addr) 22639 continue; 22640 if (ire1->ire_marks & 22641 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22642 continue; 22643 22644 /* Got one */ 22645 IRE_REFHOLD(ire1); 22646 break; 22647 } 22648 IRB_REFRELE(irb); 22649 22650 if (ire1 != NULL) { 22651 next_mp = copyb(mp); 22652 if ((next_mp == NULL) || 22653 ((mp->b_cont != NULL) && 22654 ((next_mp->b_cont = 22655 dupmsg(mp->b_cont)) == NULL))) { 22656 freemsg(next_mp); 22657 next_mp = NULL; 22658 ire_refrele(ire1); 22659 ire1 = NULL; 22660 } 22661 } 22662 22663 /* Last multiroute ire; don't loop anymore. */ 22664 if (ire1 == NULL) { 22665 multirt_send = B_FALSE; 22666 } 22667 } 22668 22669 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22670 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22671 mblk_t *, mp); 22672 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22673 ipst->ips_ipv4firewall_physical_out, 22674 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22675 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22676 22677 if (mp == NULL) 22678 goto release_ire_and_ill; 22679 22680 if (ipst->ips_ipobs_enabled) { 22681 zoneid_t szone; 22682 22683 /* 22684 * On the outbound path the destination zone will be 22685 * unknown as we're sending this packet out on the 22686 * wire. 22687 */ 22688 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22689 ALL_ZONES); 22690 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22691 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22692 } 22693 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22694 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22695 22696 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22697 22698 if ((pktxmit_state == SEND_FAILED) || 22699 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22700 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22701 "- packet dropped\n")); 22702 release_ire_and_ill: 22703 ire_refrele(ire); 22704 if (next_mp != NULL) { 22705 freemsg(next_mp); 22706 ire_refrele(ire1); 22707 } 22708 if (conn_outgoing_ill != NULL) 22709 ill_refrele(conn_outgoing_ill); 22710 return; 22711 } 22712 22713 if (CLASSD(dst)) { 22714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22715 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22716 LENGTH); 22717 } 22718 22719 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22720 "ip_wput_ire_end: q %p (%S)", 22721 q, "last copy out"); 22722 IRE_REFRELE(ire); 22723 22724 if (multirt_send) { 22725 ASSERT(ire1); 22726 /* 22727 * Proceed with the next RTF_MULTIRT ire, 22728 * Also set up the send-to queue accordingly. 22729 */ 22730 ire = ire1; 22731 ire1 = NULL; 22732 stq = ire->ire_stq; 22733 mp = next_mp; 22734 next_mp = NULL; 22735 ipha = (ipha_t *)mp->b_rptr; 22736 ill_index = Q_TO_INDEX(stq); 22737 ill = (ill_t *)stq->q_ptr; 22738 } 22739 } while (multirt_send); 22740 if (conn_outgoing_ill != NULL) 22741 ill_refrele(conn_outgoing_ill); 22742 return; 22743 22744 /* 22745 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22746 */ 22747 broadcast: 22748 { 22749 /* 22750 * To avoid broadcast storms, we usually set the TTL to 1 for 22751 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22752 * can be overridden stack-wide through the ip_broadcast_ttl 22753 * ndd tunable, or on a per-connection basis through the 22754 * IP_BROADCAST_TTL socket option. 22755 * 22756 * In the event that we are replying to incoming ICMP packets, 22757 * connp could be NULL. 22758 */ 22759 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22760 if (connp != NULL) { 22761 if (connp->conn_dontroute) 22762 ipha->ipha_ttl = 1; 22763 else if (connp->conn_broadcast_ttl != 0) 22764 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22765 } 22766 22767 /* 22768 * Note that we are not doing a IRB_REFHOLD here. 22769 * Actually we don't care if the list changes i.e 22770 * if somebody deletes an IRE from the list while 22771 * we drop the lock, the next time we come around 22772 * ire_next will be NULL and hence we won't send 22773 * out multiple copies which is fine. 22774 */ 22775 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22776 ire1 = ire->ire_next; 22777 if (conn_outgoing_ill != NULL) { 22778 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22779 ASSERT(ire1 == ire->ire_next); 22780 if (ire1 != NULL && ire1->ire_addr == dst) { 22781 ire_refrele(ire); 22782 ire = ire1; 22783 IRE_REFHOLD(ire); 22784 ire1 = ire->ire_next; 22785 continue; 22786 } 22787 rw_exit(&ire->ire_bucket->irb_lock); 22788 /* Did not find a matching ill */ 22789 ip1dbg(("ip_wput_ire: broadcast with no " 22790 "matching IP_BOUND_IF ill %s dst %x\n", 22791 conn_outgoing_ill->ill_name, dst)); 22792 freemsg(first_mp); 22793 if (ire != NULL) 22794 ire_refrele(ire); 22795 ill_refrele(conn_outgoing_ill); 22796 return; 22797 } 22798 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22799 /* 22800 * If the next IRE has the same address and is not one 22801 * of the two copies that we need to send, try to see 22802 * whether this copy should be sent at all. This 22803 * assumes that we insert loopbacks first and then 22804 * non-loopbacks. This is acheived by inserting the 22805 * loopback always before non-loopback. 22806 * This is used to send a single copy of a broadcast 22807 * packet out all physical interfaces that have an 22808 * matching IRE_BROADCAST while also looping 22809 * back one copy (to ip_wput_local) for each 22810 * matching physical interface. However, we avoid 22811 * sending packets out different logical that match by 22812 * having ipif_up/ipif_down supress duplicate 22813 * IRE_BROADCASTS. 22814 * 22815 * This feature is currently used to get broadcasts 22816 * sent to multiple interfaces, when the broadcast 22817 * address being used applies to multiple interfaces. 22818 * For example, a whole net broadcast will be 22819 * replicated on every connected subnet of 22820 * the target net. 22821 * 22822 * Each zone has its own set of IRE_BROADCASTs, so that 22823 * we're able to distribute inbound packets to multiple 22824 * zones who share a broadcast address. We avoid looping 22825 * back outbound packets in different zones but on the 22826 * same ill, as the application would see duplicates. 22827 * 22828 * This logic assumes that ire_add_v4() groups the 22829 * IRE_BROADCAST entries so that those with the same 22830 * ire_addr are kept together. 22831 */ 22832 ire_ill = ire->ire_ipif->ipif_ill; 22833 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22834 while (ire1 != NULL && ire1->ire_addr == dst) { 22835 ire1_ill = ire1->ire_ipif->ipif_ill; 22836 if (ire1_ill != ire_ill) 22837 break; 22838 ire1 = ire1->ire_next; 22839 } 22840 } 22841 } 22842 ASSERT(multirt_send == B_FALSE); 22843 if (ire1 != NULL && ire1->ire_addr == dst) { 22844 if ((ire->ire_flags & RTF_MULTIRT) && 22845 (ire1->ire_flags & RTF_MULTIRT)) { 22846 /* 22847 * We are in the multirouting case. 22848 * The message must be sent at least 22849 * on both ires. These ires have been 22850 * inserted AFTER the standard ones 22851 * in ip_rt_add(). There are thus no 22852 * other ire entries for the destination 22853 * address in the rest of the bucket 22854 * that do not have the RTF_MULTIRT 22855 * flag. We don't process a copy 22856 * of the message here. This will be 22857 * done in the final sending loop. 22858 */ 22859 multirt_send = B_TRUE; 22860 } else { 22861 next_mp = ip_copymsg(first_mp); 22862 if (next_mp != NULL) 22863 IRE_REFHOLD(ire1); 22864 } 22865 } 22866 rw_exit(&ire->ire_bucket->irb_lock); 22867 } 22868 22869 if (stq) { 22870 /* 22871 * A non-NULL send-to queue means this packet is going 22872 * out of this machine. 22873 */ 22874 out_ill = (ill_t *)stq->q_ptr; 22875 22876 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22877 ttl_protocol = ((uint16_t *)ipha)[4]; 22878 /* 22879 * We accumulate the pseudo header checksum in cksum. 22880 * This is pretty hairy code, so watch close. One 22881 * thing to keep in mind is that UDP and TCP have 22882 * stored their respective datagram lengths in their 22883 * checksum fields. This lines things up real nice. 22884 */ 22885 cksum = (dst >> 16) + (dst & 0xFFFF) + 22886 (src >> 16) + (src & 0xFFFF); 22887 /* 22888 * We assume the udp checksum field contains the 22889 * length, so to compute the pseudo header checksum, 22890 * all we need is the protocol number and src/dst. 22891 */ 22892 /* Provide the checksums for UDP and TCP. */ 22893 if ((PROTO == IPPROTO_TCP) && 22894 (ip_hdr_included != IP_HDR_INCLUDED)) { 22895 /* hlen gets the number of uchar_ts in the IP header */ 22896 hlen = (V_HLEN & 0xF) << 2; 22897 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22898 IP_STAT(ipst, ip_out_sw_cksum); 22899 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22900 LENGTH - hlen); 22901 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22902 } else if (PROTO == IPPROTO_SCTP && 22903 (ip_hdr_included != IP_HDR_INCLUDED)) { 22904 sctp_hdr_t *sctph; 22905 22906 hlen = (V_HLEN & 0xF) << 2; 22907 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22908 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22909 sctph->sh_chksum = 0; 22910 #ifdef DEBUG 22911 if (!skip_sctp_cksum) 22912 #endif 22913 sctph->sh_chksum = sctp_cksum(mp, hlen); 22914 } else { 22915 queue_t *dev_q = stq->q_next; 22916 22917 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22918 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22919 blocked: 22920 ipha->ipha_ident = ip_hdr_included; 22921 /* 22922 * If we don't have a conn to apply 22923 * backpressure, free the message. 22924 * In the ire_send path, we don't know 22925 * the position to requeue the packet. Rather 22926 * than reorder packets, we just drop this 22927 * packet. 22928 */ 22929 if (ipst->ips_ip_output_queue && 22930 connp != NULL && 22931 caller != IRE_SEND) { 22932 if (caller == IP_WSRV) { 22933 idl_tx_list_t *idl_txl; 22934 22935 idl_txl = 22936 &ipst->ips_idl_tx_list[0]; 22937 connp->conn_did_putbq = 1; 22938 (void) putbq(connp->conn_wq, 22939 first_mp); 22940 conn_drain_insert(connp, 22941 idl_txl); 22942 /* 22943 * This is the service thread, 22944 * and the queue is already 22945 * noenabled. The check for 22946 * canput and the putbq is not 22947 * atomic. So we need to check 22948 * again. 22949 */ 22950 if (canput(stq->q_next)) 22951 connp->conn_did_putbq 22952 = 0; 22953 IP_STAT(ipst, ip_conn_flputbq); 22954 } else { 22955 /* 22956 * We are not the service proc. 22957 * ip_wsrv will be scheduled or 22958 * is already running. 22959 */ 22960 22961 (void) putq(connp->conn_wq, 22962 first_mp); 22963 } 22964 } else { 22965 out_ill = (ill_t *)stq->q_ptr; 22966 BUMP_MIB(out_ill->ill_ip_mib, 22967 ipIfStatsOutDiscards); 22968 freemsg(first_mp); 22969 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22970 "ip_wput_ire_end: q %p (%S)", 22971 q, "discard"); 22972 } 22973 ire_refrele(ire); 22974 if (next_mp) { 22975 ire_refrele(ire1); 22976 freemsg(next_mp); 22977 } 22978 if (conn_outgoing_ill != NULL) 22979 ill_refrele(conn_outgoing_ill); 22980 return; 22981 } 22982 if ((PROTO == IPPROTO_UDP) && 22983 (ip_hdr_included != IP_HDR_INCLUDED)) { 22984 /* 22985 * hlen gets the number of uchar_ts in the 22986 * IP header 22987 */ 22988 hlen = (V_HLEN & 0xF) << 2; 22989 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22990 max_frag = ire->ire_max_frag; 22991 if (*up != 0) { 22992 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22993 up, PROTO, hlen, LENGTH, max_frag, 22994 ipsec_len, cksum); 22995 /* Software checksum? */ 22996 if (DB_CKSUMFLAGS(mp) == 0) { 22997 IP_STAT(ipst, ip_out_sw_cksum); 22998 IP_STAT_UPDATE(ipst, 22999 ip_udp_out_sw_cksum_bytes, 23000 LENGTH - hlen); 23001 } 23002 } 23003 } 23004 } 23005 /* 23006 * Need to do this even when fragmenting. The local 23007 * loopback can be done without computing checksums 23008 * but forwarding out other interface must be done 23009 * after the IP checksum (and ULP checksums) have been 23010 * computed. 23011 * 23012 * NOTE : multicast_forward is set only if this packet 23013 * originated from ip_wput. For packets originating from 23014 * ip_wput_multicast, it is not set. 23015 */ 23016 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23017 multi_loopback: 23018 ip2dbg(("ip_wput: multicast, loop %d\n", 23019 conn_multicast_loop)); 23020 23021 /* Forget header checksum offload */ 23022 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23023 23024 /* 23025 * Local loopback of multicasts? Check the 23026 * ill. 23027 * 23028 * Note that the loopback function will not come 23029 * in through ip_rput - it will only do the 23030 * client fanout thus we need to do an mforward 23031 * as well. The is different from the BSD 23032 * logic. 23033 */ 23034 if (ill != NULL) { 23035 if (ilm_lookup_ill(ill, ipha->ipha_dst, 23036 ALL_ZONES) != NULL) { 23037 /* 23038 * Pass along the virtual output q. 23039 * ip_wput_local() will distribute the 23040 * packet to all the matching zones, 23041 * except the sending zone when 23042 * IP_MULTICAST_LOOP is false. 23043 */ 23044 ip_multicast_loopback(q, ill, first_mp, 23045 conn_multicast_loop ? 0 : 23046 IP_FF_NO_MCAST_LOOP, zoneid); 23047 } 23048 } 23049 if (ipha->ipha_ttl == 0) { 23050 /* 23051 * 0 => only to this host i.e. we are 23052 * done. We are also done if this was the 23053 * loopback interface since it is sufficient 23054 * to loopback one copy of a multicast packet. 23055 */ 23056 freemsg(first_mp); 23057 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23058 "ip_wput_ire_end: q %p (%S)", 23059 q, "loopback"); 23060 ire_refrele(ire); 23061 if (conn_outgoing_ill != NULL) 23062 ill_refrele(conn_outgoing_ill); 23063 return; 23064 } 23065 /* 23066 * ILLF_MULTICAST is checked in ip_newroute 23067 * i.e. we don't need to check it here since 23068 * all IRE_CACHEs come from ip_newroute. 23069 * For multicast traffic, SO_DONTROUTE is interpreted 23070 * to mean only send the packet out the interface 23071 * (optionally specified with IP_MULTICAST_IF) 23072 * and do not forward it out additional interfaces. 23073 * RSVP and the rsvp daemon is an example of a 23074 * protocol and user level process that 23075 * handles it's own routing. Hence, it uses the 23076 * SO_DONTROUTE option to accomplish this. 23077 */ 23078 23079 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23080 ill != NULL) { 23081 /* Unconditionally redo the checksum */ 23082 ipha->ipha_hdr_checksum = 0; 23083 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23084 23085 /* 23086 * If this needs to go out secure, we need 23087 * to wait till we finish the IPsec 23088 * processing. 23089 */ 23090 if (ipsec_len == 0 && 23091 ip_mforward(ill, ipha, mp)) { 23092 freemsg(first_mp); 23093 ip1dbg(("ip_wput: mforward failed\n")); 23094 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23095 "ip_wput_ire_end: q %p (%S)", 23096 q, "mforward failed"); 23097 ire_refrele(ire); 23098 if (conn_outgoing_ill != NULL) 23099 ill_refrele(conn_outgoing_ill); 23100 return; 23101 } 23102 } 23103 } 23104 max_frag = ire->ire_max_frag; 23105 cksum += ttl_protocol; 23106 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23107 /* No fragmentation required for this one. */ 23108 /* 23109 * Don't use frag_flag if packet is pre-built or source 23110 * routed or if multicast (since multicast packets do 23111 * not solicit ICMP "packet too big" messages). 23112 */ 23113 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23114 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23115 !ip_source_route_included(ipha)) && 23116 !CLASSD(ipha->ipha_dst)) 23117 ipha->ipha_fragment_offset_and_flags |= 23118 htons(ire->ire_frag_flag); 23119 23120 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23121 /* Complete the IP header checksum. */ 23122 cksum += ipha->ipha_ident; 23123 cksum += (v_hlen_tos_len >> 16)+ 23124 (v_hlen_tos_len & 0xFFFF); 23125 cksum += ipha->ipha_fragment_offset_and_flags; 23126 hlen = (V_HLEN & 0xF) - 23127 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23128 if (hlen) { 23129 checksumoptions: 23130 /* 23131 * Account for the IP Options in the IP 23132 * header checksum. 23133 */ 23134 up = (uint16_t *)(rptr+ 23135 IP_SIMPLE_HDR_LENGTH); 23136 do { 23137 cksum += up[0]; 23138 cksum += up[1]; 23139 up += 2; 23140 } while (--hlen); 23141 } 23142 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23143 cksum = ~(cksum + (cksum >> 16)); 23144 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23145 } 23146 if (ipsec_len != 0) { 23147 ipsec_out_process(q, first_mp, ire, ill_index); 23148 if (!next_mp) { 23149 ire_refrele(ire); 23150 if (conn_outgoing_ill != NULL) 23151 ill_refrele(conn_outgoing_ill); 23152 return; 23153 } 23154 goto next; 23155 } 23156 23157 /* 23158 * multirt_send has already been handled 23159 * for broadcast, but not yet for multicast 23160 * or IP options. 23161 */ 23162 if (next_mp == NULL) { 23163 if (ire->ire_flags & RTF_MULTIRT) { 23164 multirt_send = B_TRUE; 23165 } 23166 } 23167 23168 /* 23169 * In most cases, the emission loop below is 23170 * entered only once. Only in the case where 23171 * the ire holds the RTF_MULTIRT flag, do we loop 23172 * to process all RTF_MULTIRT ires in the bucket, 23173 * and send the packet through all crossed 23174 * RTF_MULTIRT routes. 23175 */ 23176 do { 23177 if (multirt_send) { 23178 irb_t *irb; 23179 23180 irb = ire->ire_bucket; 23181 ASSERT(irb != NULL); 23182 /* 23183 * We are in a multiple send case, 23184 * need to get the next IRE and make 23185 * a duplicate of the packet. 23186 */ 23187 IRB_REFHOLD(irb); 23188 for (ire1 = ire->ire_next; 23189 ire1 != NULL; 23190 ire1 = ire1->ire_next) { 23191 if (!(ire1->ire_flags & 23192 RTF_MULTIRT)) 23193 continue; 23194 23195 if (ire1->ire_addr != 23196 ire->ire_addr) 23197 continue; 23198 23199 if (ire1->ire_marks & 23200 (IRE_MARK_CONDEMNED | 23201 IRE_MARK_TESTHIDDEN)) 23202 continue; 23203 23204 /* Got one */ 23205 IRE_REFHOLD(ire1); 23206 break; 23207 } 23208 IRB_REFRELE(irb); 23209 23210 if (ire1 != NULL) { 23211 next_mp = copyb(mp); 23212 if ((next_mp == NULL) || 23213 ((mp->b_cont != NULL) && 23214 ((next_mp->b_cont = 23215 dupmsg(mp->b_cont)) 23216 == NULL))) { 23217 freemsg(next_mp); 23218 next_mp = NULL; 23219 ire_refrele(ire1); 23220 ire1 = NULL; 23221 } 23222 } 23223 23224 /* 23225 * Last multiroute ire; don't loop 23226 * anymore. The emission is over 23227 * and next_mp is NULL. 23228 */ 23229 if (ire1 == NULL) { 23230 multirt_send = B_FALSE; 23231 } 23232 } 23233 23234 out_ill = ire_to_ill(ire); 23235 DTRACE_PROBE4(ip4__physical__out__start, 23236 ill_t *, NULL, 23237 ill_t *, out_ill, 23238 ipha_t *, ipha, mblk_t *, mp); 23239 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23240 ipst->ips_ipv4firewall_physical_out, 23241 NULL, out_ill, ipha, mp, mp, 0, ipst); 23242 DTRACE_PROBE1(ip4__physical__out__end, 23243 mblk_t *, mp); 23244 if (mp == NULL) 23245 goto release_ire_and_ill_2; 23246 23247 ASSERT(ipsec_len == 0); 23248 mp->b_prev = 23249 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23250 DTRACE_PROBE2(ip__xmit__2, 23251 mblk_t *, mp, ire_t *, ire); 23252 pktxmit_state = ip_xmit_v4(mp, ire, 23253 NULL, B_TRUE, connp); 23254 if ((pktxmit_state == SEND_FAILED) || 23255 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23256 release_ire_and_ill_2: 23257 if (next_mp) { 23258 freemsg(next_mp); 23259 ire_refrele(ire1); 23260 } 23261 ire_refrele(ire); 23262 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23263 "ip_wput_ire_end: q %p (%S)", 23264 q, "discard MDATA"); 23265 if (conn_outgoing_ill != NULL) 23266 ill_refrele(conn_outgoing_ill); 23267 return; 23268 } 23269 23270 if (CLASSD(dst)) { 23271 BUMP_MIB(out_ill->ill_ip_mib, 23272 ipIfStatsHCOutMcastPkts); 23273 UPDATE_MIB(out_ill->ill_ip_mib, 23274 ipIfStatsHCOutMcastOctets, 23275 LENGTH); 23276 } else if (ire->ire_type == IRE_BROADCAST) { 23277 BUMP_MIB(out_ill->ill_ip_mib, 23278 ipIfStatsHCOutBcastPkts); 23279 } 23280 23281 if (multirt_send) { 23282 /* 23283 * We are in a multiple send case, 23284 * need to re-enter the sending loop 23285 * using the next ire. 23286 */ 23287 ire_refrele(ire); 23288 ire = ire1; 23289 stq = ire->ire_stq; 23290 mp = next_mp; 23291 next_mp = NULL; 23292 ipha = (ipha_t *)mp->b_rptr; 23293 ill_index = Q_TO_INDEX(stq); 23294 } 23295 } while (multirt_send); 23296 23297 if (!next_mp) { 23298 /* 23299 * Last copy going out (the ultra-common 23300 * case). Note that we intentionally replicate 23301 * the putnext rather than calling it before 23302 * the next_mp check in hopes of a little 23303 * tail-call action out of the compiler. 23304 */ 23305 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23306 "ip_wput_ire_end: q %p (%S)", 23307 q, "last copy out(1)"); 23308 ire_refrele(ire); 23309 if (conn_outgoing_ill != NULL) 23310 ill_refrele(conn_outgoing_ill); 23311 return; 23312 } 23313 /* More copies going out below. */ 23314 } else { 23315 int offset; 23316 fragmentit: 23317 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23318 /* 23319 * If this would generate a icmp_frag_needed message, 23320 * we need to handle it before we do the IPsec 23321 * processing. Otherwise, we need to strip the IPsec 23322 * headers before we send up the message to the ULPs 23323 * which becomes messy and difficult. 23324 */ 23325 if (ipsec_len != 0) { 23326 if ((max_frag < (unsigned int)(LENGTH + 23327 ipsec_len)) && (offset & IPH_DF)) { 23328 out_ill = (ill_t *)stq->q_ptr; 23329 BUMP_MIB(out_ill->ill_ip_mib, 23330 ipIfStatsOutFragFails); 23331 BUMP_MIB(out_ill->ill_ip_mib, 23332 ipIfStatsOutFragReqds); 23333 ipha->ipha_hdr_checksum = 0; 23334 ipha->ipha_hdr_checksum = 23335 (uint16_t)ip_csum_hdr(ipha); 23336 icmp_frag_needed(ire->ire_stq, first_mp, 23337 max_frag, zoneid, ipst); 23338 if (!next_mp) { 23339 ire_refrele(ire); 23340 if (conn_outgoing_ill != NULL) { 23341 ill_refrele( 23342 conn_outgoing_ill); 23343 } 23344 return; 23345 } 23346 } else { 23347 /* 23348 * This won't cause a icmp_frag_needed 23349 * message. to be generated. Send it on 23350 * the wire. Note that this could still 23351 * cause fragmentation and all we 23352 * do is the generation of the message 23353 * to the ULP if needed before IPsec. 23354 */ 23355 if (!next_mp) { 23356 ipsec_out_process(q, first_mp, 23357 ire, ill_index); 23358 TRACE_2(TR_FAC_IP, 23359 TR_IP_WPUT_IRE_END, 23360 "ip_wput_ire_end: q %p " 23361 "(%S)", q, 23362 "last ipsec_out_process"); 23363 ire_refrele(ire); 23364 if (conn_outgoing_ill != NULL) { 23365 ill_refrele( 23366 conn_outgoing_ill); 23367 } 23368 return; 23369 } 23370 ipsec_out_process(q, first_mp, 23371 ire, ill_index); 23372 } 23373 } else { 23374 /* 23375 * Initiate IPPF processing. For 23376 * fragmentable packets we finish 23377 * all QOS packet processing before 23378 * calling: 23379 * ip_wput_ire_fragmentit->ip_wput_frag 23380 */ 23381 23382 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23383 ip_process(IPP_LOCAL_OUT, &mp, 23384 ill_index); 23385 if (mp == NULL) { 23386 out_ill = (ill_t *)stq->q_ptr; 23387 BUMP_MIB(out_ill->ill_ip_mib, 23388 ipIfStatsOutDiscards); 23389 if (next_mp != NULL) { 23390 freemsg(next_mp); 23391 ire_refrele(ire1); 23392 } 23393 ire_refrele(ire); 23394 TRACE_2(TR_FAC_IP, 23395 TR_IP_WPUT_IRE_END, 23396 "ip_wput_ire: q %p (%S)", 23397 q, "discard MDATA"); 23398 if (conn_outgoing_ill != NULL) { 23399 ill_refrele( 23400 conn_outgoing_ill); 23401 } 23402 return; 23403 } 23404 } 23405 if (!next_mp) { 23406 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23407 "ip_wput_ire_end: q %p (%S)", 23408 q, "last fragmentation"); 23409 ip_wput_ire_fragmentit(mp, ire, 23410 zoneid, ipst, connp); 23411 ire_refrele(ire); 23412 if (conn_outgoing_ill != NULL) 23413 ill_refrele(conn_outgoing_ill); 23414 return; 23415 } 23416 ip_wput_ire_fragmentit(mp, ire, 23417 zoneid, ipst, connp); 23418 } 23419 } 23420 } else { 23421 nullstq: 23422 /* A NULL stq means the destination address is local. */ 23423 UPDATE_OB_PKT_COUNT(ire); 23424 ire->ire_last_used_time = lbolt; 23425 ASSERT(ire->ire_ipif != NULL); 23426 if (!next_mp) { 23427 /* 23428 * Is there an "in" and "out" for traffic local 23429 * to a host (loopback)? The code in Solaris doesn't 23430 * explicitly draw a line in its code for in vs out, 23431 * so we've had to draw a line in the sand: ip_wput_ire 23432 * is considered to be the "output" side and 23433 * ip_wput_local to be the "input" side. 23434 */ 23435 out_ill = ire_to_ill(ire); 23436 23437 /* 23438 * DTrace this as ip:::send. A blocked packet will 23439 * fire the send probe, but not the receive probe. 23440 */ 23441 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23442 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23443 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23444 23445 DTRACE_PROBE4(ip4__loopback__out__start, 23446 ill_t *, NULL, ill_t *, out_ill, 23447 ipha_t *, ipha, mblk_t *, first_mp); 23448 23449 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23450 ipst->ips_ipv4firewall_loopback_out, 23451 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23452 23453 DTRACE_PROBE1(ip4__loopback__out_end, 23454 mblk_t *, first_mp); 23455 23456 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23457 "ip_wput_ire_end: q %p (%S)", 23458 q, "local address"); 23459 23460 if (first_mp != NULL) 23461 ip_wput_local(q, out_ill, ipha, 23462 first_mp, ire, 0, ire->ire_zoneid); 23463 ire_refrele(ire); 23464 if (conn_outgoing_ill != NULL) 23465 ill_refrele(conn_outgoing_ill); 23466 return; 23467 } 23468 23469 out_ill = ire_to_ill(ire); 23470 23471 /* 23472 * DTrace this as ip:::send. A blocked packet will fire the 23473 * send probe, but not the receive probe. 23474 */ 23475 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23476 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23477 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23478 23479 DTRACE_PROBE4(ip4__loopback__out__start, 23480 ill_t *, NULL, ill_t *, out_ill, 23481 ipha_t *, ipha, mblk_t *, first_mp); 23482 23483 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23484 ipst->ips_ipv4firewall_loopback_out, 23485 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23486 23487 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23488 23489 if (first_mp != NULL) 23490 ip_wput_local(q, out_ill, ipha, 23491 first_mp, ire, 0, ire->ire_zoneid); 23492 } 23493 next: 23494 /* 23495 * More copies going out to additional interfaces. 23496 * ire1 has already been held. We don't need the 23497 * "ire" anymore. 23498 */ 23499 ire_refrele(ire); 23500 ire = ire1; 23501 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23502 mp = next_mp; 23503 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23504 ill = ire_to_ill(ire); 23505 first_mp = mp; 23506 if (ipsec_len != 0) { 23507 ASSERT(first_mp->b_datap->db_type == M_CTL); 23508 mp = mp->b_cont; 23509 } 23510 dst = ire->ire_addr; 23511 ipha = (ipha_t *)mp->b_rptr; 23512 /* 23513 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23514 * Restore ipha_ident "no checksum" flag. 23515 */ 23516 src = orig_src; 23517 ipha->ipha_ident = ip_hdr_included; 23518 goto another; 23519 23520 #undef rptr 23521 #undef Q_TO_INDEX 23522 } 23523 23524 /* 23525 * Routine to allocate a message that is used to notify the ULP about MDT. 23526 * The caller may provide a pointer to the link-layer MDT capabilities, 23527 * or NULL if MDT is to be disabled on the stream. 23528 */ 23529 mblk_t * 23530 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23531 { 23532 mblk_t *mp; 23533 ip_mdt_info_t *mdti; 23534 ill_mdt_capab_t *idst; 23535 23536 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23537 DB_TYPE(mp) = M_CTL; 23538 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23539 mdti = (ip_mdt_info_t *)mp->b_rptr; 23540 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23541 idst = &(mdti->mdt_capab); 23542 23543 /* 23544 * If the caller provides us with the capability, copy 23545 * it over into our notification message; otherwise 23546 * we zero out the capability portion. 23547 */ 23548 if (isrc != NULL) 23549 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23550 else 23551 bzero((caddr_t)idst, sizeof (*idst)); 23552 } 23553 return (mp); 23554 } 23555 23556 /* 23557 * Routine which determines whether MDT can be enabled on the destination 23558 * IRE and IPC combination, and if so, allocates and returns the MDT 23559 * notification mblk that may be used by ULP. We also check if we need to 23560 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23561 * MDT usage in the past have been lifted. This gets called during IP 23562 * and ULP binding. 23563 */ 23564 mblk_t * 23565 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23566 ill_mdt_capab_t *mdt_cap) 23567 { 23568 mblk_t *mp; 23569 boolean_t rc = B_FALSE; 23570 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23571 23572 ASSERT(dst_ire != NULL); 23573 ASSERT(connp != NULL); 23574 ASSERT(mdt_cap != NULL); 23575 23576 /* 23577 * Currently, we only support simple TCP/{IPv4,IPv6} with 23578 * Multidata, which is handled in tcp_multisend(). This 23579 * is the reason why we do all these checks here, to ensure 23580 * that we don't enable Multidata for the cases which we 23581 * can't handle at the moment. 23582 */ 23583 do { 23584 /* Only do TCP at the moment */ 23585 if (connp->conn_ulp != IPPROTO_TCP) 23586 break; 23587 23588 /* 23589 * IPsec outbound policy present? Note that we get here 23590 * after calling ipsec_conn_cache_policy() where the global 23591 * policy checking is performed. conn_latch will be 23592 * non-NULL as long as there's a policy defined, 23593 * i.e. conn_out_enforce_policy may be NULL in such case 23594 * when the connection is non-secure, and hence we check 23595 * further if the latch refers to an outbound policy. 23596 */ 23597 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23598 break; 23599 23600 /* CGTP (multiroute) is enabled? */ 23601 if (dst_ire->ire_flags & RTF_MULTIRT) 23602 break; 23603 23604 /* Outbound IPQoS enabled? */ 23605 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23606 /* 23607 * In this case, we disable MDT for this and all 23608 * future connections going over the interface. 23609 */ 23610 mdt_cap->ill_mdt_on = 0; 23611 break; 23612 } 23613 23614 /* socket option(s) present? */ 23615 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23616 break; 23617 23618 rc = B_TRUE; 23619 /* CONSTCOND */ 23620 } while (0); 23621 23622 /* Remember the result */ 23623 connp->conn_mdt_ok = rc; 23624 23625 if (!rc) 23626 return (NULL); 23627 else if (!mdt_cap->ill_mdt_on) { 23628 /* 23629 * If MDT has been previously turned off in the past, and we 23630 * currently can do MDT (due to IPQoS policy removal, etc.) 23631 * then enable it for this interface. 23632 */ 23633 mdt_cap->ill_mdt_on = 1; 23634 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23635 "interface %s\n", ill_name)); 23636 } 23637 23638 /* Allocate the MDT info mblk */ 23639 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23640 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23641 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23642 return (NULL); 23643 } 23644 return (mp); 23645 } 23646 23647 /* 23648 * Routine to allocate a message that is used to notify the ULP about LSO. 23649 * The caller may provide a pointer to the link-layer LSO capabilities, 23650 * or NULL if LSO is to be disabled on the stream. 23651 */ 23652 mblk_t * 23653 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23654 { 23655 mblk_t *mp; 23656 ip_lso_info_t *lsoi; 23657 ill_lso_capab_t *idst; 23658 23659 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23660 DB_TYPE(mp) = M_CTL; 23661 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23662 lsoi = (ip_lso_info_t *)mp->b_rptr; 23663 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23664 idst = &(lsoi->lso_capab); 23665 23666 /* 23667 * If the caller provides us with the capability, copy 23668 * it over into our notification message; otherwise 23669 * we zero out the capability portion. 23670 */ 23671 if (isrc != NULL) 23672 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23673 else 23674 bzero((caddr_t)idst, sizeof (*idst)); 23675 } 23676 return (mp); 23677 } 23678 23679 /* 23680 * Routine which determines whether LSO can be enabled on the destination 23681 * IRE and IPC combination, and if so, allocates and returns the LSO 23682 * notification mblk that may be used by ULP. We also check if we need to 23683 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23684 * LSO usage in the past have been lifted. This gets called during IP 23685 * and ULP binding. 23686 */ 23687 mblk_t * 23688 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23689 ill_lso_capab_t *lso_cap) 23690 { 23691 mblk_t *mp; 23692 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23693 23694 ASSERT(dst_ire != NULL); 23695 ASSERT(connp != NULL); 23696 ASSERT(lso_cap != NULL); 23697 23698 connp->conn_lso_ok = B_TRUE; 23699 23700 if ((connp->conn_ulp != IPPROTO_TCP) || 23701 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23702 (dst_ire->ire_flags & RTF_MULTIRT) || 23703 !CONN_IS_LSO_MD_FASTPATH(connp) || 23704 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23705 connp->conn_lso_ok = B_FALSE; 23706 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23707 /* 23708 * Disable LSO for this and all future connections going 23709 * over the interface. 23710 */ 23711 lso_cap->ill_lso_on = 0; 23712 } 23713 } 23714 23715 if (!connp->conn_lso_ok) 23716 return (NULL); 23717 else if (!lso_cap->ill_lso_on) { 23718 /* 23719 * If LSO has been previously turned off in the past, and we 23720 * currently can do LSO (due to IPQoS policy removal, etc.) 23721 * then enable it for this interface. 23722 */ 23723 lso_cap->ill_lso_on = 1; 23724 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23725 ill_name)); 23726 } 23727 23728 /* Allocate the LSO info mblk */ 23729 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23730 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23731 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23732 23733 return (mp); 23734 } 23735 23736 /* 23737 * Create destination address attribute, and fill it with the physical 23738 * destination address and SAP taken from the template DL_UNITDATA_REQ 23739 * message block. 23740 */ 23741 boolean_t 23742 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23743 { 23744 dl_unitdata_req_t *dlurp; 23745 pattr_t *pa; 23746 pattrinfo_t pa_info; 23747 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23748 uint_t das_len, das_off; 23749 23750 ASSERT(dlmp != NULL); 23751 23752 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23753 das_len = dlurp->dl_dest_addr_length; 23754 das_off = dlurp->dl_dest_addr_offset; 23755 23756 pa_info.type = PATTR_DSTADDRSAP; 23757 pa_info.len = sizeof (**das) + das_len - 1; 23758 23759 /* create and associate the attribute */ 23760 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23761 if (pa != NULL) { 23762 ASSERT(*das != NULL); 23763 (*das)->addr_is_group = 0; 23764 (*das)->addr_len = (uint8_t)das_len; 23765 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23766 } 23767 23768 return (pa != NULL); 23769 } 23770 23771 /* 23772 * Create hardware checksum attribute and fill it with the values passed. 23773 */ 23774 boolean_t 23775 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23776 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23777 { 23778 pattr_t *pa; 23779 pattrinfo_t pa_info; 23780 23781 ASSERT(mmd != NULL); 23782 23783 pa_info.type = PATTR_HCKSUM; 23784 pa_info.len = sizeof (pattr_hcksum_t); 23785 23786 /* create and associate the attribute */ 23787 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23788 if (pa != NULL) { 23789 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23790 23791 hck->hcksum_start_offset = start_offset; 23792 hck->hcksum_stuff_offset = stuff_offset; 23793 hck->hcksum_end_offset = end_offset; 23794 hck->hcksum_flags = flags; 23795 } 23796 return (pa != NULL); 23797 } 23798 23799 /* 23800 * Create zerocopy attribute and fill it with the specified flags 23801 */ 23802 boolean_t 23803 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23804 { 23805 pattr_t *pa; 23806 pattrinfo_t pa_info; 23807 23808 ASSERT(mmd != NULL); 23809 pa_info.type = PATTR_ZCOPY; 23810 pa_info.len = sizeof (pattr_zcopy_t); 23811 23812 /* create and associate the attribute */ 23813 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23814 if (pa != NULL) { 23815 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23816 23817 zcopy->zcopy_flags = flags; 23818 } 23819 return (pa != NULL); 23820 } 23821 23822 /* 23823 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23824 * block chain. We could rewrite to handle arbitrary message block chains but 23825 * that would make the code complicated and slow. Right now there three 23826 * restrictions: 23827 * 23828 * 1. The first message block must contain the complete IP header and 23829 * at least 1 byte of payload data. 23830 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23831 * so that we can use a single Multidata message. 23832 * 3. No frag must be distributed over two or more message blocks so 23833 * that we don't need more than two packet descriptors per frag. 23834 * 23835 * The above restrictions allow us to support userland applications (which 23836 * will send down a single message block) and NFS over UDP (which will 23837 * send down a chain of at most three message blocks). 23838 * 23839 * We also don't use MDT for payloads with less than or equal to 23840 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23841 */ 23842 boolean_t 23843 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23844 { 23845 int blocks; 23846 ssize_t total, missing, size; 23847 23848 ASSERT(mp != NULL); 23849 ASSERT(hdr_len > 0); 23850 23851 size = MBLKL(mp) - hdr_len; 23852 if (size <= 0) 23853 return (B_FALSE); 23854 23855 /* The first mblk contains the header and some payload. */ 23856 blocks = 1; 23857 total = size; 23858 size %= len; 23859 missing = (size == 0) ? 0 : (len - size); 23860 mp = mp->b_cont; 23861 23862 while (mp != NULL) { 23863 /* 23864 * Give up if we encounter a zero length message block. 23865 * In practice, this should rarely happen and therefore 23866 * not worth the trouble of freeing and re-linking the 23867 * mblk from the chain to handle such case. 23868 */ 23869 if ((size = MBLKL(mp)) == 0) 23870 return (B_FALSE); 23871 23872 /* Too many payload buffers for a single Multidata message? */ 23873 if (++blocks > MULTIDATA_MAX_PBUFS) 23874 return (B_FALSE); 23875 23876 total += size; 23877 /* Is a frag distributed over two or more message blocks? */ 23878 if (missing > size) 23879 return (B_FALSE); 23880 size -= missing; 23881 23882 size %= len; 23883 missing = (size == 0) ? 0 : (len - size); 23884 23885 mp = mp->b_cont; 23886 } 23887 23888 return (total > ip_wput_frag_mdt_min); 23889 } 23890 23891 /* 23892 * Outbound IPv4 fragmentation routine using MDT. 23893 */ 23894 static void 23895 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23896 uint32_t frag_flag, int offset) 23897 { 23898 ipha_t *ipha_orig; 23899 int i1, ip_data_end; 23900 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23901 mblk_t *hdr_mp, *md_mp = NULL; 23902 unsigned char *hdr_ptr, *pld_ptr; 23903 multidata_t *mmd; 23904 ip_pdescinfo_t pdi; 23905 ill_t *ill; 23906 ip_stack_t *ipst = ire->ire_ipst; 23907 23908 ASSERT(DB_TYPE(mp) == M_DATA); 23909 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23910 23911 ill = ire_to_ill(ire); 23912 ASSERT(ill != NULL); 23913 23914 ipha_orig = (ipha_t *)mp->b_rptr; 23915 mp->b_rptr += sizeof (ipha_t); 23916 23917 /* Calculate how many packets we will send out */ 23918 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23919 pkts = (i1 + len - 1) / len; 23920 ASSERT(pkts > 1); 23921 23922 /* Allocate a message block which will hold all the IP Headers. */ 23923 wroff = ipst->ips_ip_wroff_extra; 23924 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23925 23926 i1 = pkts * hdr_chunk_len; 23927 /* 23928 * Create the header buffer, Multidata and destination address 23929 * and SAP attribute that should be associated with it. 23930 */ 23931 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23932 ((hdr_mp->b_wptr += i1), 23933 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23934 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23935 freemsg(mp); 23936 if (md_mp == NULL) { 23937 freemsg(hdr_mp); 23938 } else { 23939 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23940 freemsg(md_mp); 23941 } 23942 IP_STAT(ipst, ip_frag_mdt_allocfail); 23943 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23944 return; 23945 } 23946 IP_STAT(ipst, ip_frag_mdt_allocd); 23947 23948 /* 23949 * Add a payload buffer to the Multidata; this operation must not 23950 * fail, or otherwise our logic in this routine is broken. There 23951 * is no memory allocation done by the routine, so any returned 23952 * failure simply tells us that we've done something wrong. 23953 * 23954 * A failure tells us that either we're adding the same payload 23955 * buffer more than once, or we're trying to add more buffers than 23956 * allowed. None of the above cases should happen, and we panic 23957 * because either there's horrible heap corruption, and/or 23958 * programming mistake. 23959 */ 23960 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23961 goto pbuf_panic; 23962 23963 hdr_ptr = hdr_mp->b_rptr; 23964 pld_ptr = mp->b_rptr; 23965 23966 /* Establish the ending byte offset, based on the starting offset. */ 23967 offset <<= 3; 23968 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23969 IP_SIMPLE_HDR_LENGTH; 23970 23971 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23972 23973 while (pld_ptr < mp->b_wptr) { 23974 ipha_t *ipha; 23975 uint16_t offset_and_flags; 23976 uint16_t ip_len; 23977 int error; 23978 23979 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23980 ipha = (ipha_t *)(hdr_ptr + wroff); 23981 ASSERT(OK_32PTR(ipha)); 23982 *ipha = *ipha_orig; 23983 23984 if (ip_data_end - offset > len) { 23985 offset_and_flags = IPH_MF; 23986 } else { 23987 /* 23988 * Last frag. Set len to the length of this last piece. 23989 */ 23990 len = ip_data_end - offset; 23991 /* A frag of a frag might have IPH_MF non-zero */ 23992 offset_and_flags = 23993 ntohs(ipha->ipha_fragment_offset_and_flags) & 23994 IPH_MF; 23995 } 23996 offset_and_flags |= (uint16_t)(offset >> 3); 23997 offset_and_flags |= (uint16_t)frag_flag; 23998 /* Store the offset and flags in the IP header. */ 23999 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24000 24001 /* Store the length in the IP header. */ 24002 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24003 ipha->ipha_length = htons(ip_len); 24004 24005 /* 24006 * Set the IP header checksum. Note that mp is just 24007 * the header, so this is easy to pass to ip_csum. 24008 */ 24009 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24010 24011 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24012 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24013 NULL, int, 0); 24014 24015 /* 24016 * Record offset and size of header and data of the next packet 24017 * in the multidata message. 24018 */ 24019 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24020 PDESC_PLD_INIT(&pdi); 24021 i1 = MIN(mp->b_wptr - pld_ptr, len); 24022 ASSERT(i1 > 0); 24023 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24024 if (i1 == len) { 24025 pld_ptr += len; 24026 } else { 24027 i1 = len - i1; 24028 mp = mp->b_cont; 24029 ASSERT(mp != NULL); 24030 ASSERT(MBLKL(mp) >= i1); 24031 /* 24032 * Attach the next payload message block to the 24033 * multidata message. 24034 */ 24035 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24036 goto pbuf_panic; 24037 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24038 pld_ptr = mp->b_rptr + i1; 24039 } 24040 24041 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24042 KM_NOSLEEP)) == NULL) { 24043 /* 24044 * Any failure other than ENOMEM indicates that we 24045 * have passed in invalid pdesc info or parameters 24046 * to mmd_addpdesc, which must not happen. 24047 * 24048 * EINVAL is a result of failure on boundary checks 24049 * against the pdesc info contents. It should not 24050 * happen, and we panic because either there's 24051 * horrible heap corruption, and/or programming 24052 * mistake. 24053 */ 24054 if (error != ENOMEM) { 24055 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24056 "pdesc logic error detected for " 24057 "mmd %p pinfo %p (%d)\n", 24058 (void *)mmd, (void *)&pdi, error); 24059 /* NOTREACHED */ 24060 } 24061 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24062 /* Free unattached payload message blocks as well */ 24063 md_mp->b_cont = mp->b_cont; 24064 goto free_mmd; 24065 } 24066 24067 /* Advance fragment offset. */ 24068 offset += len; 24069 24070 /* Advance to location for next header in the buffer. */ 24071 hdr_ptr += hdr_chunk_len; 24072 24073 /* Did we reach the next payload message block? */ 24074 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24075 mp = mp->b_cont; 24076 /* 24077 * Attach the next message block with payload 24078 * data to the multidata message. 24079 */ 24080 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24081 goto pbuf_panic; 24082 pld_ptr = mp->b_rptr; 24083 } 24084 } 24085 24086 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24087 ASSERT(mp->b_wptr == pld_ptr); 24088 24089 /* Update IP statistics */ 24090 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24091 24092 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24094 24095 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24096 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24097 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24098 24099 if (pkt_type == OB_PKT) { 24100 ire->ire_ob_pkt_count += pkts; 24101 if (ire->ire_ipif != NULL) 24102 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24103 } else { 24104 /* The type is IB_PKT in the forwarding path. */ 24105 ire->ire_ib_pkt_count += pkts; 24106 ASSERT(!IRE_IS_LOCAL(ire)); 24107 if (ire->ire_type & IRE_BROADCAST) { 24108 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24109 } else { 24110 UPDATE_MIB(ill->ill_ip_mib, 24111 ipIfStatsHCOutForwDatagrams, pkts); 24112 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24113 } 24114 } 24115 ire->ire_last_used_time = lbolt; 24116 /* Send it down */ 24117 putnext(ire->ire_stq, md_mp); 24118 return; 24119 24120 pbuf_panic: 24121 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24122 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24123 pbuf_idx); 24124 /* NOTREACHED */ 24125 } 24126 24127 /* 24128 * Outbound IP fragmentation routine. 24129 * 24130 * NOTE : This routine does not ire_refrele the ire that is passed in 24131 * as the argument. 24132 */ 24133 static void 24134 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24135 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24136 { 24137 int i1; 24138 mblk_t *ll_hdr_mp; 24139 int ll_hdr_len; 24140 int hdr_len; 24141 mblk_t *hdr_mp; 24142 ipha_t *ipha; 24143 int ip_data_end; 24144 int len; 24145 mblk_t *mp = mp_orig, *mp1; 24146 int offset; 24147 queue_t *q; 24148 uint32_t v_hlen_tos_len; 24149 mblk_t *first_mp; 24150 boolean_t mctl_present; 24151 ill_t *ill; 24152 ill_t *out_ill; 24153 mblk_t *xmit_mp; 24154 mblk_t *carve_mp; 24155 ire_t *ire1 = NULL; 24156 ire_t *save_ire = NULL; 24157 mblk_t *next_mp = NULL; 24158 boolean_t last_frag = B_FALSE; 24159 boolean_t multirt_send = B_FALSE; 24160 ire_t *first_ire = NULL; 24161 irb_t *irb = NULL; 24162 mib2_ipIfStatsEntry_t *mibptr = NULL; 24163 24164 ill = ire_to_ill(ire); 24165 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24166 24167 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24168 24169 if (max_frag == 0) { 24170 ip1dbg(("ip_wput_frag: ire frag size is 0" 24171 " - dropping packet\n")); 24172 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24173 freemsg(mp); 24174 return; 24175 } 24176 24177 /* 24178 * IPsec does not allow hw accelerated packets to be fragmented 24179 * This check is made in ip_wput_ipsec_out prior to coming here 24180 * via ip_wput_ire_fragmentit. 24181 * 24182 * If at this point we have an ire whose ARP request has not 24183 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24184 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24185 * This packet and all fragmentable packets for this ire will 24186 * continue to get dropped while ire_nce->nce_state remains in 24187 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24188 * ND_REACHABLE, all subsquent large packets for this ire will 24189 * get fragemented and sent out by this function. 24190 */ 24191 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24192 /* If nce_state is ND_INITIAL, trigger ARP query */ 24193 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24194 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24195 " - dropping packet\n")); 24196 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24197 freemsg(mp); 24198 return; 24199 } 24200 24201 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24202 "ip_wput_frag_start:"); 24203 24204 if (mp->b_datap->db_type == M_CTL) { 24205 first_mp = mp; 24206 mp_orig = mp = mp->b_cont; 24207 mctl_present = B_TRUE; 24208 } else { 24209 first_mp = mp; 24210 mctl_present = B_FALSE; 24211 } 24212 24213 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24214 ipha = (ipha_t *)mp->b_rptr; 24215 24216 /* 24217 * If the Don't Fragment flag is on, generate an ICMP destination 24218 * unreachable, fragmentation needed. 24219 */ 24220 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24221 if (offset & IPH_DF) { 24222 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24223 if (is_system_labeled()) { 24224 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24225 ire->ire_max_frag - max_frag, AF_INET); 24226 } 24227 /* 24228 * Need to compute hdr checksum if called from ip_wput_ire. 24229 * Note that ip_rput_forward verifies the checksum before 24230 * calling this routine so in that case this is a noop. 24231 */ 24232 ipha->ipha_hdr_checksum = 0; 24233 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24234 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24235 ipst); 24236 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24237 "ip_wput_frag_end:(%S)", 24238 "don't fragment"); 24239 return; 24240 } 24241 /* 24242 * Labeled systems adjust max_frag if they add a label 24243 * to send the correct path mtu. We need the real mtu since we 24244 * are fragmenting the packet after label adjustment. 24245 */ 24246 if (is_system_labeled()) 24247 max_frag = ire->ire_max_frag; 24248 if (mctl_present) 24249 freeb(first_mp); 24250 /* 24251 * Establish the starting offset. May not be zero if we are fragging 24252 * a fragment that is being forwarded. 24253 */ 24254 offset = offset & IPH_OFFSET; 24255 24256 /* TODO why is this test needed? */ 24257 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24258 if (((max_frag - LENGTH) & ~7) < 8) { 24259 /* TODO: notify ulp somehow */ 24260 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24261 freemsg(mp); 24262 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24263 "ip_wput_frag_end:(%S)", 24264 "len < 8"); 24265 return; 24266 } 24267 24268 hdr_len = (V_HLEN & 0xF) << 2; 24269 24270 ipha->ipha_hdr_checksum = 0; 24271 24272 /* 24273 * Establish the number of bytes maximum per frag, after putting 24274 * in the header. 24275 */ 24276 len = (max_frag - hdr_len) & ~7; 24277 24278 /* Check if we can use MDT to send out the frags. */ 24279 ASSERT(!IRE_IS_LOCAL(ire)); 24280 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24281 ipst->ips_ip_multidata_outbound && 24282 !(ire->ire_flags & RTF_MULTIRT) && 24283 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24284 ill != NULL && ILL_MDT_CAPABLE(ill) && 24285 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24286 ASSERT(ill->ill_mdt_capab != NULL); 24287 if (!ill->ill_mdt_capab->ill_mdt_on) { 24288 /* 24289 * If MDT has been previously turned off in the past, 24290 * and we currently can do MDT (due to IPQoS policy 24291 * removal, etc.) then enable it for this interface. 24292 */ 24293 ill->ill_mdt_capab->ill_mdt_on = 1; 24294 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24295 ill->ill_name)); 24296 } 24297 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24298 offset); 24299 return; 24300 } 24301 24302 /* Get a copy of the header for the trailing frags */ 24303 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24304 mp); 24305 if (!hdr_mp) { 24306 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24307 freemsg(mp); 24308 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24309 "ip_wput_frag_end:(%S)", 24310 "couldn't copy hdr"); 24311 return; 24312 } 24313 24314 /* Store the starting offset, with the MoreFrags flag. */ 24315 i1 = offset | IPH_MF | frag_flag; 24316 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24317 24318 /* Establish the ending byte offset, based on the starting offset. */ 24319 offset <<= 3; 24320 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24321 24322 /* Store the length of the first fragment in the IP header. */ 24323 i1 = len + hdr_len; 24324 ASSERT(i1 <= IP_MAXPACKET); 24325 ipha->ipha_length = htons((uint16_t)i1); 24326 24327 /* 24328 * Compute the IP header checksum for the first frag. We have to 24329 * watch out that we stop at the end of the header. 24330 */ 24331 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24332 24333 /* 24334 * Now carve off the first frag. Note that this will include the 24335 * original IP header. 24336 */ 24337 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24338 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24339 freeb(hdr_mp); 24340 freemsg(mp_orig); 24341 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24342 "ip_wput_frag_end:(%S)", 24343 "couldn't carve first"); 24344 return; 24345 } 24346 24347 /* 24348 * Multirouting case. Each fragment is replicated 24349 * via all non-condemned RTF_MULTIRT routes 24350 * currently resolved. 24351 * We ensure that first_ire is the first RTF_MULTIRT 24352 * ire in the bucket. 24353 */ 24354 if (ire->ire_flags & RTF_MULTIRT) { 24355 irb = ire->ire_bucket; 24356 ASSERT(irb != NULL); 24357 24358 multirt_send = B_TRUE; 24359 24360 /* Make sure we do not omit any multiroute ire. */ 24361 IRB_REFHOLD(irb); 24362 for (first_ire = irb->irb_ire; 24363 first_ire != NULL; 24364 first_ire = first_ire->ire_next) { 24365 if ((first_ire->ire_flags & RTF_MULTIRT) && 24366 (first_ire->ire_addr == ire->ire_addr) && 24367 !(first_ire->ire_marks & 24368 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24369 break; 24370 } 24371 24372 if (first_ire != NULL) { 24373 if (first_ire != ire) { 24374 IRE_REFHOLD(first_ire); 24375 /* 24376 * Do not release the ire passed in 24377 * as the argument. 24378 */ 24379 ire = first_ire; 24380 } else { 24381 first_ire = NULL; 24382 } 24383 } 24384 IRB_REFRELE(irb); 24385 24386 /* 24387 * Save the first ire; we will need to restore it 24388 * for the trailing frags. 24389 * We REFHOLD save_ire, as each iterated ire will be 24390 * REFRELEd. 24391 */ 24392 save_ire = ire; 24393 IRE_REFHOLD(save_ire); 24394 } 24395 24396 /* 24397 * First fragment emission loop. 24398 * In most cases, the emission loop below is entered only 24399 * once. Only in the case where the ire holds the RTF_MULTIRT 24400 * flag, do we loop to process all RTF_MULTIRT ires in the 24401 * bucket, and send the fragment through all crossed 24402 * RTF_MULTIRT routes. 24403 */ 24404 do { 24405 if (ire->ire_flags & RTF_MULTIRT) { 24406 /* 24407 * We are in a multiple send case, need to get 24408 * the next ire and make a copy of the packet. 24409 * ire1 holds here the next ire to process in the 24410 * bucket. If multirouting is expected, 24411 * any non-RTF_MULTIRT ire that has the 24412 * right destination address is ignored. 24413 * 24414 * We have to take into account the MTU of 24415 * each walked ire. max_frag is set by the 24416 * the caller and generally refers to 24417 * the primary ire entry. Here we ensure that 24418 * no route with a lower MTU will be used, as 24419 * fragments are carved once for all ires, 24420 * then replicated. 24421 */ 24422 ASSERT(irb != NULL); 24423 IRB_REFHOLD(irb); 24424 for (ire1 = ire->ire_next; 24425 ire1 != NULL; 24426 ire1 = ire1->ire_next) { 24427 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24428 continue; 24429 if (ire1->ire_addr != ire->ire_addr) 24430 continue; 24431 if (ire1->ire_marks & 24432 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24433 continue; 24434 /* 24435 * Ensure we do not exceed the MTU 24436 * of the next route. 24437 */ 24438 if (ire1->ire_max_frag < max_frag) { 24439 ip_multirt_bad_mtu(ire1, max_frag); 24440 continue; 24441 } 24442 24443 /* Got one. */ 24444 IRE_REFHOLD(ire1); 24445 break; 24446 } 24447 IRB_REFRELE(irb); 24448 24449 if (ire1 != NULL) { 24450 next_mp = copyb(mp); 24451 if ((next_mp == NULL) || 24452 ((mp->b_cont != NULL) && 24453 ((next_mp->b_cont = 24454 dupmsg(mp->b_cont)) == NULL))) { 24455 freemsg(next_mp); 24456 next_mp = NULL; 24457 ire_refrele(ire1); 24458 ire1 = NULL; 24459 } 24460 } 24461 24462 /* Last multiroute ire; don't loop anymore. */ 24463 if (ire1 == NULL) { 24464 multirt_send = B_FALSE; 24465 } 24466 } 24467 24468 ll_hdr_len = 0; 24469 LOCK_IRE_FP_MP(ire); 24470 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24471 if (ll_hdr_mp != NULL) { 24472 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24473 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24474 } else { 24475 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24476 } 24477 24478 /* If there is a transmit header, get a copy for this frag. */ 24479 /* 24480 * TODO: should check db_ref before calling ip_carve_mp since 24481 * it might give us a dup. 24482 */ 24483 if (!ll_hdr_mp) { 24484 /* No xmit header. */ 24485 xmit_mp = mp; 24486 24487 /* We have a link-layer header that can fit in our mblk. */ 24488 } else if (mp->b_datap->db_ref == 1 && 24489 ll_hdr_len != 0 && 24490 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24491 /* M_DATA fastpath */ 24492 mp->b_rptr -= ll_hdr_len; 24493 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24494 xmit_mp = mp; 24495 24496 /* Corner case if copyb has failed */ 24497 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24498 UNLOCK_IRE_FP_MP(ire); 24499 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24500 freeb(hdr_mp); 24501 freemsg(mp); 24502 freemsg(mp_orig); 24503 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24504 "ip_wput_frag_end:(%S)", 24505 "discard"); 24506 24507 if (multirt_send) { 24508 ASSERT(ire1); 24509 ASSERT(next_mp); 24510 24511 freemsg(next_mp); 24512 ire_refrele(ire1); 24513 } 24514 if (save_ire != NULL) 24515 IRE_REFRELE(save_ire); 24516 24517 if (first_ire != NULL) 24518 ire_refrele(first_ire); 24519 return; 24520 24521 /* 24522 * Case of res_mp OR the fastpath mp can't fit 24523 * in the mblk 24524 */ 24525 } else { 24526 xmit_mp->b_cont = mp; 24527 24528 /* 24529 * Get priority marking, if any. 24530 * We propagate the CoS marking from the 24531 * original packet that went to QoS processing 24532 * in ip_wput_ire to the newly carved mp. 24533 */ 24534 if (DB_TYPE(xmit_mp) == M_DATA) 24535 xmit_mp->b_band = mp->b_band; 24536 } 24537 UNLOCK_IRE_FP_MP(ire); 24538 24539 q = ire->ire_stq; 24540 out_ill = (ill_t *)q->q_ptr; 24541 24542 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24543 24544 DTRACE_PROBE4(ip4__physical__out__start, 24545 ill_t *, NULL, ill_t *, out_ill, 24546 ipha_t *, ipha, mblk_t *, xmit_mp); 24547 24548 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24549 ipst->ips_ipv4firewall_physical_out, 24550 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24551 24552 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24553 24554 if (xmit_mp != NULL) { 24555 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24556 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24557 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24558 24559 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24560 24561 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24562 UPDATE_MIB(out_ill->ill_ip_mib, 24563 ipIfStatsHCOutOctets, i1); 24564 24565 if (pkt_type != OB_PKT) { 24566 /* 24567 * Update the packet count and MIB stats 24568 * of trailing RTF_MULTIRT ires. 24569 */ 24570 UPDATE_OB_PKT_COUNT(ire); 24571 BUMP_MIB(out_ill->ill_ip_mib, 24572 ipIfStatsOutFragReqds); 24573 } 24574 } 24575 24576 if (multirt_send) { 24577 /* 24578 * We are in a multiple send case; look for 24579 * the next ire and re-enter the loop. 24580 */ 24581 ASSERT(ire1); 24582 ASSERT(next_mp); 24583 /* REFRELE the current ire before looping */ 24584 ire_refrele(ire); 24585 ire = ire1; 24586 ire1 = NULL; 24587 mp = next_mp; 24588 next_mp = NULL; 24589 } 24590 } while (multirt_send); 24591 24592 ASSERT(ire1 == NULL); 24593 24594 /* Restore the original ire; we need it for the trailing frags */ 24595 if (save_ire != NULL) { 24596 /* REFRELE the last iterated ire */ 24597 ire_refrele(ire); 24598 /* save_ire has been REFHOLDed */ 24599 ire = save_ire; 24600 save_ire = NULL; 24601 q = ire->ire_stq; 24602 } 24603 24604 if (pkt_type == OB_PKT) { 24605 UPDATE_OB_PKT_COUNT(ire); 24606 } else { 24607 out_ill = (ill_t *)q->q_ptr; 24608 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24609 UPDATE_IB_PKT_COUNT(ire); 24610 } 24611 24612 /* Advance the offset to the second frag starting point. */ 24613 offset += len; 24614 /* 24615 * Update hdr_len from the copied header - there might be less options 24616 * in the later fragments. 24617 */ 24618 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24619 /* Loop until done. */ 24620 for (;;) { 24621 uint16_t offset_and_flags; 24622 uint16_t ip_len; 24623 24624 if (ip_data_end - offset > len) { 24625 /* 24626 * Carve off the appropriate amount from the original 24627 * datagram. 24628 */ 24629 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24630 mp = NULL; 24631 break; 24632 } 24633 /* 24634 * More frags after this one. Get another copy 24635 * of the header. 24636 */ 24637 if (carve_mp->b_datap->db_ref == 1 && 24638 hdr_mp->b_wptr - hdr_mp->b_rptr < 24639 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24640 /* Inline IP header */ 24641 carve_mp->b_rptr -= hdr_mp->b_wptr - 24642 hdr_mp->b_rptr; 24643 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24644 hdr_mp->b_wptr - hdr_mp->b_rptr); 24645 mp = carve_mp; 24646 } else { 24647 if (!(mp = copyb(hdr_mp))) { 24648 freemsg(carve_mp); 24649 break; 24650 } 24651 /* Get priority marking, if any. */ 24652 mp->b_band = carve_mp->b_band; 24653 mp->b_cont = carve_mp; 24654 } 24655 ipha = (ipha_t *)mp->b_rptr; 24656 offset_and_flags = IPH_MF; 24657 } else { 24658 /* 24659 * Last frag. Consume the header. Set len to 24660 * the length of this last piece. 24661 */ 24662 len = ip_data_end - offset; 24663 24664 /* 24665 * Carve off the appropriate amount from the original 24666 * datagram. 24667 */ 24668 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24669 mp = NULL; 24670 break; 24671 } 24672 if (carve_mp->b_datap->db_ref == 1 && 24673 hdr_mp->b_wptr - hdr_mp->b_rptr < 24674 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24675 /* Inline IP header */ 24676 carve_mp->b_rptr -= hdr_mp->b_wptr - 24677 hdr_mp->b_rptr; 24678 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24679 hdr_mp->b_wptr - hdr_mp->b_rptr); 24680 mp = carve_mp; 24681 freeb(hdr_mp); 24682 hdr_mp = mp; 24683 } else { 24684 mp = hdr_mp; 24685 /* Get priority marking, if any. */ 24686 mp->b_band = carve_mp->b_band; 24687 mp->b_cont = carve_mp; 24688 } 24689 ipha = (ipha_t *)mp->b_rptr; 24690 /* A frag of a frag might have IPH_MF non-zero */ 24691 offset_and_flags = 24692 ntohs(ipha->ipha_fragment_offset_and_flags) & 24693 IPH_MF; 24694 } 24695 offset_and_flags |= (uint16_t)(offset >> 3); 24696 offset_and_flags |= (uint16_t)frag_flag; 24697 /* Store the offset and flags in the IP header. */ 24698 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24699 24700 /* Store the length in the IP header. */ 24701 ip_len = (uint16_t)(len + hdr_len); 24702 ipha->ipha_length = htons(ip_len); 24703 24704 /* 24705 * Set the IP header checksum. Note that mp is just 24706 * the header, so this is easy to pass to ip_csum. 24707 */ 24708 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24709 24710 /* Attach a transmit header, if any, and ship it. */ 24711 if (pkt_type == OB_PKT) { 24712 UPDATE_OB_PKT_COUNT(ire); 24713 } else { 24714 out_ill = (ill_t *)q->q_ptr; 24715 BUMP_MIB(out_ill->ill_ip_mib, 24716 ipIfStatsHCOutForwDatagrams); 24717 UPDATE_IB_PKT_COUNT(ire); 24718 } 24719 24720 if (ire->ire_flags & RTF_MULTIRT) { 24721 irb = ire->ire_bucket; 24722 ASSERT(irb != NULL); 24723 24724 multirt_send = B_TRUE; 24725 24726 /* 24727 * Save the original ire; we will need to restore it 24728 * for the tailing frags. 24729 */ 24730 save_ire = ire; 24731 IRE_REFHOLD(save_ire); 24732 } 24733 /* 24734 * Emission loop for this fragment, similar 24735 * to what is done for the first fragment. 24736 */ 24737 do { 24738 if (multirt_send) { 24739 /* 24740 * We are in a multiple send case, need to get 24741 * the next ire and make a copy of the packet. 24742 */ 24743 ASSERT(irb != NULL); 24744 IRB_REFHOLD(irb); 24745 for (ire1 = ire->ire_next; 24746 ire1 != NULL; 24747 ire1 = ire1->ire_next) { 24748 if (!(ire1->ire_flags & RTF_MULTIRT)) 24749 continue; 24750 if (ire1->ire_addr != ire->ire_addr) 24751 continue; 24752 if (ire1->ire_marks & 24753 (IRE_MARK_CONDEMNED | 24754 IRE_MARK_TESTHIDDEN)) 24755 continue; 24756 /* 24757 * Ensure we do not exceed the MTU 24758 * of the next route. 24759 */ 24760 if (ire1->ire_max_frag < max_frag) { 24761 ip_multirt_bad_mtu(ire1, 24762 max_frag); 24763 continue; 24764 } 24765 24766 /* Got one. */ 24767 IRE_REFHOLD(ire1); 24768 break; 24769 } 24770 IRB_REFRELE(irb); 24771 24772 if (ire1 != NULL) { 24773 next_mp = copyb(mp); 24774 if ((next_mp == NULL) || 24775 ((mp->b_cont != NULL) && 24776 ((next_mp->b_cont = 24777 dupmsg(mp->b_cont)) == NULL))) { 24778 freemsg(next_mp); 24779 next_mp = NULL; 24780 ire_refrele(ire1); 24781 ire1 = NULL; 24782 } 24783 } 24784 24785 /* Last multiroute ire; don't loop anymore. */ 24786 if (ire1 == NULL) { 24787 multirt_send = B_FALSE; 24788 } 24789 } 24790 24791 /* Update transmit header */ 24792 ll_hdr_len = 0; 24793 LOCK_IRE_FP_MP(ire); 24794 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24795 if (ll_hdr_mp != NULL) { 24796 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24797 ll_hdr_len = MBLKL(ll_hdr_mp); 24798 } else { 24799 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24800 } 24801 24802 if (!ll_hdr_mp) { 24803 xmit_mp = mp; 24804 24805 /* 24806 * We have link-layer header that can fit in 24807 * our mblk. 24808 */ 24809 } else if (mp->b_datap->db_ref == 1 && 24810 ll_hdr_len != 0 && 24811 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24812 /* M_DATA fastpath */ 24813 mp->b_rptr -= ll_hdr_len; 24814 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24815 ll_hdr_len); 24816 xmit_mp = mp; 24817 24818 /* 24819 * Case of res_mp OR the fastpath mp can't fit 24820 * in the mblk 24821 */ 24822 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24823 xmit_mp->b_cont = mp; 24824 /* Get priority marking, if any. */ 24825 if (DB_TYPE(xmit_mp) == M_DATA) 24826 xmit_mp->b_band = mp->b_band; 24827 24828 /* Corner case if copyb failed */ 24829 } else { 24830 /* 24831 * Exit both the replication and 24832 * fragmentation loops. 24833 */ 24834 UNLOCK_IRE_FP_MP(ire); 24835 goto drop_pkt; 24836 } 24837 UNLOCK_IRE_FP_MP(ire); 24838 24839 mp1 = mp; 24840 out_ill = (ill_t *)q->q_ptr; 24841 24842 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24843 24844 DTRACE_PROBE4(ip4__physical__out__start, 24845 ill_t *, NULL, ill_t *, out_ill, 24846 ipha_t *, ipha, mblk_t *, xmit_mp); 24847 24848 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24849 ipst->ips_ipv4firewall_physical_out, 24850 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24851 24852 DTRACE_PROBE1(ip4__physical__out__end, 24853 mblk_t *, xmit_mp); 24854 24855 if (mp != mp1 && hdr_mp == mp1) 24856 hdr_mp = mp; 24857 if (mp != mp1 && mp_orig == mp1) 24858 mp_orig = mp; 24859 24860 if (xmit_mp != NULL) { 24861 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24862 NULL, void_ip_t *, ipha, 24863 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24864 ipha, ip6_t *, NULL, int, 0); 24865 24866 ILL_SEND_TX(out_ill, ire, connp, 24867 xmit_mp, 0, connp); 24868 24869 BUMP_MIB(out_ill->ill_ip_mib, 24870 ipIfStatsHCOutTransmits); 24871 UPDATE_MIB(out_ill->ill_ip_mib, 24872 ipIfStatsHCOutOctets, ip_len); 24873 24874 if (pkt_type != OB_PKT) { 24875 /* 24876 * Update the packet count of trailing 24877 * RTF_MULTIRT ires. 24878 */ 24879 UPDATE_OB_PKT_COUNT(ire); 24880 } 24881 } 24882 24883 /* All done if we just consumed the hdr_mp. */ 24884 if (mp == hdr_mp) { 24885 last_frag = B_TRUE; 24886 BUMP_MIB(out_ill->ill_ip_mib, 24887 ipIfStatsOutFragOKs); 24888 } 24889 24890 if (multirt_send) { 24891 /* 24892 * We are in a multiple send case; look for 24893 * the next ire and re-enter the loop. 24894 */ 24895 ASSERT(ire1); 24896 ASSERT(next_mp); 24897 /* REFRELE the current ire before looping */ 24898 ire_refrele(ire); 24899 ire = ire1; 24900 ire1 = NULL; 24901 q = ire->ire_stq; 24902 mp = next_mp; 24903 next_mp = NULL; 24904 } 24905 } while (multirt_send); 24906 /* 24907 * Restore the original ire; we need it for the 24908 * trailing frags 24909 */ 24910 if (save_ire != NULL) { 24911 ASSERT(ire1 == NULL); 24912 /* REFRELE the last iterated ire */ 24913 ire_refrele(ire); 24914 /* save_ire has been REFHOLDed */ 24915 ire = save_ire; 24916 q = ire->ire_stq; 24917 save_ire = NULL; 24918 } 24919 24920 if (last_frag) { 24921 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24922 "ip_wput_frag_end:(%S)", 24923 "consumed hdr_mp"); 24924 24925 if (first_ire != NULL) 24926 ire_refrele(first_ire); 24927 return; 24928 } 24929 /* Otherwise, advance and loop. */ 24930 offset += len; 24931 } 24932 24933 drop_pkt: 24934 /* Clean up following allocation failure. */ 24935 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24936 freemsg(mp); 24937 if (mp != hdr_mp) 24938 freeb(hdr_mp); 24939 if (mp != mp_orig) 24940 freemsg(mp_orig); 24941 24942 if (save_ire != NULL) 24943 IRE_REFRELE(save_ire); 24944 if (first_ire != NULL) 24945 ire_refrele(first_ire); 24946 24947 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24948 "ip_wput_frag_end:(%S)", 24949 "end--alloc failure"); 24950 } 24951 24952 /* 24953 * Copy the header plus those options which have the copy bit set 24954 * src is the template to make sure we preserve the cred for TX purposes. 24955 */ 24956 static mblk_t * 24957 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24958 mblk_t *src) 24959 { 24960 mblk_t *mp; 24961 uchar_t *up; 24962 24963 /* 24964 * Quick check if we need to look for options without the copy bit 24965 * set 24966 */ 24967 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24968 if (!mp) 24969 return (mp); 24970 mp->b_rptr += ipst->ips_ip_wroff_extra; 24971 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24972 bcopy(rptr, mp->b_rptr, hdr_len); 24973 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24974 return (mp); 24975 } 24976 up = mp->b_rptr; 24977 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24978 up += IP_SIMPLE_HDR_LENGTH; 24979 rptr += IP_SIMPLE_HDR_LENGTH; 24980 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24981 while (hdr_len > 0) { 24982 uint32_t optval; 24983 uint32_t optlen; 24984 24985 optval = *rptr; 24986 if (optval == IPOPT_EOL) 24987 break; 24988 if (optval == IPOPT_NOP) 24989 optlen = 1; 24990 else 24991 optlen = rptr[1]; 24992 if (optval & IPOPT_COPY) { 24993 bcopy(rptr, up, optlen); 24994 up += optlen; 24995 } 24996 rptr += optlen; 24997 hdr_len -= optlen; 24998 } 24999 /* 25000 * Make sure that we drop an even number of words by filling 25001 * with EOL to the next word boundary. 25002 */ 25003 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25004 hdr_len & 0x3; hdr_len++) 25005 *up++ = IPOPT_EOL; 25006 mp->b_wptr = up; 25007 /* Update header length */ 25008 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25009 return (mp); 25010 } 25011 25012 /* 25013 * Delivery to local recipients including fanout to multiple recipients. 25014 * Does not do checksumming of UDP/TCP. 25015 * Note: q should be the read side queue for either the ill or conn. 25016 * Note: rq should be the read side q for the lower (ill) stream. 25017 * We don't send packets to IPPF processing, thus the last argument 25018 * to all the fanout calls are B_FALSE. 25019 */ 25020 void 25021 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25022 int fanout_flags, zoneid_t zoneid) 25023 { 25024 uint32_t protocol; 25025 mblk_t *first_mp; 25026 boolean_t mctl_present; 25027 int ire_type; 25028 #define rptr ((uchar_t *)ipha) 25029 ip_stack_t *ipst = ill->ill_ipst; 25030 25031 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25032 "ip_wput_local_start: q %p", q); 25033 25034 if (ire != NULL) { 25035 ire_type = ire->ire_type; 25036 } else { 25037 /* 25038 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25039 * packet is not multicast, we can't tell the ire type. 25040 */ 25041 ASSERT(CLASSD(ipha->ipha_dst)); 25042 ire_type = IRE_BROADCAST; 25043 } 25044 25045 first_mp = mp; 25046 if (first_mp->b_datap->db_type == M_CTL) { 25047 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25048 if (!io->ipsec_out_secure) { 25049 /* 25050 * This ipsec_out_t was allocated in ip_wput 25051 * for multicast packets to store the ill_index. 25052 * As this is being delivered locally, we don't 25053 * need this anymore. 25054 */ 25055 mp = first_mp->b_cont; 25056 freeb(first_mp); 25057 first_mp = mp; 25058 mctl_present = B_FALSE; 25059 } else { 25060 /* 25061 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25062 * security properties for the looped-back packet. 25063 */ 25064 mctl_present = B_TRUE; 25065 mp = first_mp->b_cont; 25066 ASSERT(mp != NULL); 25067 ipsec_out_to_in(first_mp); 25068 } 25069 } else { 25070 mctl_present = B_FALSE; 25071 } 25072 25073 DTRACE_PROBE4(ip4__loopback__in__start, 25074 ill_t *, ill, ill_t *, NULL, 25075 ipha_t *, ipha, mblk_t *, first_mp); 25076 25077 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25078 ipst->ips_ipv4firewall_loopback_in, 25079 ill, NULL, ipha, first_mp, mp, 0, ipst); 25080 25081 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25082 25083 if (first_mp == NULL) 25084 return; 25085 25086 if (ipst->ips_ipobs_enabled) { 25087 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25088 zoneid_t stackzoneid = netstackid_to_zoneid( 25089 ipst->ips_netstack->netstack_stackid); 25090 25091 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25092 /* 25093 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25094 * address. Restrict the lookup below to the destination zone. 25095 */ 25096 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25097 lookup_zoneid = zoneid; 25098 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25099 lookup_zoneid); 25100 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25101 IPV4_VERSION, 0, ipst); 25102 } 25103 25104 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25105 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25106 int, 1); 25107 25108 ipst->ips_loopback_packets++; 25109 25110 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25111 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25112 if (!IS_SIMPLE_IPH(ipha)) { 25113 ip_wput_local_options(ipha, ipst); 25114 } 25115 25116 protocol = ipha->ipha_protocol; 25117 switch (protocol) { 25118 case IPPROTO_ICMP: { 25119 ire_t *ire_zone; 25120 ilm_t *ilm; 25121 mblk_t *mp1; 25122 zoneid_t last_zoneid; 25123 ilm_walker_t ilw; 25124 25125 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25126 ASSERT(ire_type == IRE_BROADCAST); 25127 /* 25128 * In the multicast case, applications may have joined 25129 * the group from different zones, so we need to deliver 25130 * the packet to each of them. Loop through the 25131 * multicast memberships structures (ilm) on the receive 25132 * ill and send a copy of the packet up each matching 25133 * one. However, we don't do this for multicasts sent on 25134 * the loopback interface (PHYI_LOOPBACK flag set) as 25135 * they must stay in the sender's zone. 25136 * 25137 * ilm_add_v6() ensures that ilms in the same zone are 25138 * contiguous in the ill_ilm list. We use this property 25139 * to avoid sending duplicates needed when two 25140 * applications in the same zone join the same group on 25141 * different logical interfaces: we ignore the ilm if 25142 * it's zoneid is the same as the last matching one. 25143 * In addition, the sending of the packet for 25144 * ire_zoneid is delayed until all of the other ilms 25145 * have been exhausted. 25146 */ 25147 last_zoneid = -1; 25148 ilm = ilm_walker_start(&ilw, ill); 25149 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 25150 if (ipha->ipha_dst != ilm->ilm_addr || 25151 ilm->ilm_zoneid == last_zoneid || 25152 ilm->ilm_zoneid == zoneid || 25153 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25154 continue; 25155 mp1 = ip_copymsg(first_mp); 25156 if (mp1 == NULL) 25157 continue; 25158 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 25159 0, 0, mctl_present, B_FALSE, ill, 25160 ilm->ilm_zoneid); 25161 last_zoneid = ilm->ilm_zoneid; 25162 } 25163 ilm_walker_finish(&ilw); 25164 /* 25165 * Loopback case: the sending endpoint has 25166 * IP_MULTICAST_LOOP disabled, therefore we don't 25167 * dispatch the multicast packet to the sending zone. 25168 */ 25169 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25170 freemsg(first_mp); 25171 return; 25172 } 25173 } else if (ire_type == IRE_BROADCAST) { 25174 /* 25175 * In the broadcast case, there may be many zones 25176 * which need a copy of the packet delivered to them. 25177 * There is one IRE_BROADCAST per broadcast address 25178 * and per zone; we walk those using a helper function. 25179 * In addition, the sending of the packet for zoneid is 25180 * delayed until all of the other ires have been 25181 * processed. 25182 */ 25183 IRB_REFHOLD(ire->ire_bucket); 25184 ire_zone = NULL; 25185 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25186 ire)) != NULL) { 25187 mp1 = ip_copymsg(first_mp); 25188 if (mp1 == NULL) 25189 continue; 25190 25191 UPDATE_IB_PKT_COUNT(ire_zone); 25192 ire_zone->ire_last_used_time = lbolt; 25193 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25194 mctl_present, B_FALSE, ill, 25195 ire_zone->ire_zoneid); 25196 } 25197 IRB_REFRELE(ire->ire_bucket); 25198 } 25199 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25200 0, mctl_present, B_FALSE, ill, zoneid); 25201 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25202 "ip_wput_local_end: q %p (%S)", 25203 q, "icmp"); 25204 return; 25205 } 25206 case IPPROTO_IGMP: 25207 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25208 /* Bad packet - discarded by igmp_input */ 25209 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25210 "ip_wput_local_end: q %p (%S)", 25211 q, "igmp_input--bad packet"); 25212 if (mctl_present) 25213 freeb(first_mp); 25214 return; 25215 } 25216 /* 25217 * igmp_input() may have returned the pulled up message. 25218 * So first_mp and ipha need to be reinitialized. 25219 */ 25220 ipha = (ipha_t *)mp->b_rptr; 25221 if (mctl_present) 25222 first_mp->b_cont = mp; 25223 else 25224 first_mp = mp; 25225 /* deliver to local raw users */ 25226 break; 25227 case IPPROTO_ENCAP: 25228 /* 25229 * This case is covered by either ip_fanout_proto, or by 25230 * the above security processing for self-tunneled packets. 25231 */ 25232 break; 25233 case IPPROTO_UDP: { 25234 uint16_t *up; 25235 uint32_t ports; 25236 25237 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25238 UDP_PORTS_OFFSET); 25239 /* Force a 'valid' checksum. */ 25240 up[3] = 0; 25241 25242 ports = *(uint32_t *)up; 25243 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25244 (ire_type == IRE_BROADCAST), 25245 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25246 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25247 ill, zoneid); 25248 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25249 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25250 return; 25251 } 25252 case IPPROTO_TCP: { 25253 25254 /* 25255 * For TCP, discard broadcast packets. 25256 */ 25257 if ((ushort_t)ire_type == IRE_BROADCAST) { 25258 freemsg(first_mp); 25259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25260 ip2dbg(("ip_wput_local: discard broadcast\n")); 25261 return; 25262 } 25263 25264 if (mp->b_datap->db_type == M_DATA) { 25265 /* 25266 * M_DATA mblk, so init mblk (chain) for no struio(). 25267 */ 25268 mblk_t *mp1 = mp; 25269 25270 do { 25271 mp1->b_datap->db_struioflag = 0; 25272 } while ((mp1 = mp1->b_cont) != NULL); 25273 } 25274 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25275 <= mp->b_wptr); 25276 ip_fanout_tcp(q, first_mp, ill, ipha, 25277 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25278 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25279 mctl_present, B_FALSE, zoneid); 25280 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25281 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25282 return; 25283 } 25284 case IPPROTO_SCTP: 25285 { 25286 uint32_t ports; 25287 25288 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25289 ip_fanout_sctp(first_mp, ill, ipha, ports, 25290 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25291 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25292 return; 25293 } 25294 25295 default: 25296 break; 25297 } 25298 /* 25299 * Find a client for some other protocol. We give 25300 * copies to multiple clients, if more than one is 25301 * bound. 25302 */ 25303 ip_fanout_proto(q, first_mp, ill, ipha, 25304 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25305 mctl_present, B_FALSE, ill, zoneid); 25306 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25307 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25308 #undef rptr 25309 } 25310 25311 /* 25312 * Update any source route, record route, or timestamp options. 25313 * Check that we are at end of strict source route. 25314 * The options have been sanity checked by ip_wput_options(). 25315 */ 25316 static void 25317 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25318 { 25319 ipoptp_t opts; 25320 uchar_t *opt; 25321 uint8_t optval; 25322 uint8_t optlen; 25323 ipaddr_t dst; 25324 uint32_t ts; 25325 ire_t *ire; 25326 timestruc_t now; 25327 25328 ip2dbg(("ip_wput_local_options\n")); 25329 for (optval = ipoptp_first(&opts, ipha); 25330 optval != IPOPT_EOL; 25331 optval = ipoptp_next(&opts)) { 25332 opt = opts.ipoptp_cur; 25333 optlen = opts.ipoptp_len; 25334 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25335 switch (optval) { 25336 uint32_t off; 25337 case IPOPT_SSRR: 25338 case IPOPT_LSRR: 25339 off = opt[IPOPT_OFFSET]; 25340 off--; 25341 if (optlen < IP_ADDR_LEN || 25342 off > optlen - IP_ADDR_LEN) { 25343 /* End of source route */ 25344 break; 25345 } 25346 /* 25347 * This will only happen if two consecutive entries 25348 * in the source route contains our address or if 25349 * it is a packet with a loose source route which 25350 * reaches us before consuming the whole source route 25351 */ 25352 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25353 if (optval == IPOPT_SSRR) { 25354 return; 25355 } 25356 /* 25357 * Hack: instead of dropping the packet truncate the 25358 * source route to what has been used by filling the 25359 * rest with IPOPT_NOP. 25360 */ 25361 opt[IPOPT_OLEN] = (uint8_t)off; 25362 while (off < optlen) { 25363 opt[off++] = IPOPT_NOP; 25364 } 25365 break; 25366 case IPOPT_RR: 25367 off = opt[IPOPT_OFFSET]; 25368 off--; 25369 if (optlen < IP_ADDR_LEN || 25370 off > optlen - IP_ADDR_LEN) { 25371 /* No more room - ignore */ 25372 ip1dbg(( 25373 "ip_wput_forward_options: end of RR\n")); 25374 break; 25375 } 25376 dst = htonl(INADDR_LOOPBACK); 25377 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25378 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25379 break; 25380 case IPOPT_TS: 25381 /* Insert timestamp if there is romm */ 25382 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25383 case IPOPT_TS_TSONLY: 25384 off = IPOPT_TS_TIMELEN; 25385 break; 25386 case IPOPT_TS_PRESPEC: 25387 case IPOPT_TS_PRESPEC_RFC791: 25388 /* Verify that the address matched */ 25389 off = opt[IPOPT_OFFSET] - 1; 25390 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25391 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25392 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25393 ipst); 25394 if (ire == NULL) { 25395 /* Not for us */ 25396 break; 25397 } 25398 ire_refrele(ire); 25399 /* FALLTHRU */ 25400 case IPOPT_TS_TSANDADDR: 25401 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25402 break; 25403 default: 25404 /* 25405 * ip_*put_options should have already 25406 * dropped this packet. 25407 */ 25408 cmn_err(CE_PANIC, "ip_wput_local_options: " 25409 "unknown IT - bug in ip_wput_options?\n"); 25410 return; /* Keep "lint" happy */ 25411 } 25412 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25413 /* Increase overflow counter */ 25414 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25415 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25416 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25417 (off << 4); 25418 break; 25419 } 25420 off = opt[IPOPT_OFFSET] - 1; 25421 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25422 case IPOPT_TS_PRESPEC: 25423 case IPOPT_TS_PRESPEC_RFC791: 25424 case IPOPT_TS_TSANDADDR: 25425 dst = htonl(INADDR_LOOPBACK); 25426 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25427 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25428 /* FALLTHRU */ 25429 case IPOPT_TS_TSONLY: 25430 off = opt[IPOPT_OFFSET] - 1; 25431 /* Compute # of milliseconds since midnight */ 25432 gethrestime(&now); 25433 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25434 now.tv_nsec / (NANOSEC / MILLISEC); 25435 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25436 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25437 break; 25438 } 25439 break; 25440 } 25441 } 25442 } 25443 25444 /* 25445 * Send out a multicast packet on interface ipif. 25446 * The sender does not have an conn. 25447 * Caller verifies that this isn't a PHYI_LOOPBACK. 25448 */ 25449 void 25450 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25451 { 25452 ipha_t *ipha; 25453 ire_t *ire; 25454 ipaddr_t dst; 25455 mblk_t *first_mp; 25456 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25457 25458 /* igmp_sendpkt always allocates a ipsec_out_t */ 25459 ASSERT(mp->b_datap->db_type == M_CTL); 25460 ASSERT(!ipif->ipif_isv6); 25461 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25462 25463 first_mp = mp; 25464 mp = first_mp->b_cont; 25465 ASSERT(mp->b_datap->db_type == M_DATA); 25466 ipha = (ipha_t *)mp->b_rptr; 25467 25468 /* 25469 * Find an IRE which matches the destination and the outgoing 25470 * queue (i.e. the outgoing interface.) 25471 */ 25472 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25473 dst = ipif->ipif_pp_dst_addr; 25474 else 25475 dst = ipha->ipha_dst; 25476 /* 25477 * The source address has already been initialized by the 25478 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25479 * be sufficient rather than MATCH_IRE_IPIF. 25480 * 25481 * This function is used for sending IGMP packets. For IPMP, 25482 * we sidestep IGMP snooping issues by sending all multicast 25483 * traffic on a single interface in the IPMP group. 25484 */ 25485 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25486 MATCH_IRE_ILL, ipst); 25487 if (!ire) { 25488 /* 25489 * Mark this packet to make it be delivered to 25490 * ip_wput_ire after the new ire has been 25491 * created. 25492 */ 25493 mp->b_prev = NULL; 25494 mp->b_next = NULL; 25495 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25496 zoneid, &zero_info); 25497 return; 25498 } 25499 25500 /* 25501 * Honor the RTF_SETSRC flag; this is the only case 25502 * where we force this addr whatever the current src addr is, 25503 * because this address is set by igmp_sendpkt(), and 25504 * cannot be specified by any user. 25505 */ 25506 if (ire->ire_flags & RTF_SETSRC) { 25507 ipha->ipha_src = ire->ire_src_addr; 25508 } 25509 25510 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25511 } 25512 25513 /* 25514 * NOTE : This function does not ire_refrele the ire argument passed in. 25515 * 25516 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25517 * failure. The nce_fp_mp can vanish any time in the case of 25518 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25519 * the ire_lock to access the nce_fp_mp in this case. 25520 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25521 * prepending a fastpath message IPQoS processing must precede it, we also set 25522 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25523 * (IPQoS might have set the b_band for CoS marking). 25524 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25525 * must follow it so that IPQoS can mark the dl_priority field for CoS 25526 * marking, if needed. 25527 */ 25528 static mblk_t * 25529 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25530 uint32_t ill_index, ipha_t **iphap) 25531 { 25532 uint_t hlen; 25533 ipha_t *ipha; 25534 mblk_t *mp1; 25535 boolean_t qos_done = B_FALSE; 25536 uchar_t *ll_hdr; 25537 ip_stack_t *ipst = ire->ire_ipst; 25538 25539 #define rptr ((uchar_t *)ipha) 25540 25541 ipha = (ipha_t *)mp->b_rptr; 25542 hlen = 0; 25543 LOCK_IRE_FP_MP(ire); 25544 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25545 ASSERT(DB_TYPE(mp1) == M_DATA); 25546 /* Initiate IPPF processing */ 25547 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25548 UNLOCK_IRE_FP_MP(ire); 25549 ip_process(proc, &mp, ill_index); 25550 if (mp == NULL) 25551 return (NULL); 25552 25553 ipha = (ipha_t *)mp->b_rptr; 25554 LOCK_IRE_FP_MP(ire); 25555 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25556 qos_done = B_TRUE; 25557 goto no_fp_mp; 25558 } 25559 ASSERT(DB_TYPE(mp1) == M_DATA); 25560 } 25561 hlen = MBLKL(mp1); 25562 /* 25563 * Check if we have enough room to prepend fastpath 25564 * header 25565 */ 25566 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25567 ll_hdr = rptr - hlen; 25568 bcopy(mp1->b_rptr, ll_hdr, hlen); 25569 /* 25570 * Set the b_rptr to the start of the link layer 25571 * header 25572 */ 25573 mp->b_rptr = ll_hdr; 25574 mp1 = mp; 25575 } else { 25576 mp1 = copyb(mp1); 25577 if (mp1 == NULL) 25578 goto unlock_err; 25579 mp1->b_band = mp->b_band; 25580 mp1->b_cont = mp; 25581 /* 25582 * XXX disable ICK_VALID and compute checksum 25583 * here; can happen if nce_fp_mp changes and 25584 * it can't be copied now due to insufficient 25585 * space. (unlikely, fp mp can change, but it 25586 * does not increase in length) 25587 */ 25588 } 25589 UNLOCK_IRE_FP_MP(ire); 25590 } else { 25591 no_fp_mp: 25592 mp1 = copyb(ire->ire_nce->nce_res_mp); 25593 if (mp1 == NULL) { 25594 unlock_err: 25595 UNLOCK_IRE_FP_MP(ire); 25596 freemsg(mp); 25597 return (NULL); 25598 } 25599 UNLOCK_IRE_FP_MP(ire); 25600 mp1->b_cont = mp; 25601 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25602 ip_process(proc, &mp1, ill_index); 25603 if (mp1 == NULL) 25604 return (NULL); 25605 25606 if (mp1->b_cont == NULL) 25607 ipha = NULL; 25608 else 25609 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25610 } 25611 } 25612 25613 *iphap = ipha; 25614 return (mp1); 25615 #undef rptr 25616 } 25617 25618 /* 25619 * Finish the outbound IPsec processing for an IPv6 packet. This function 25620 * is called from ipsec_out_process() if the IPsec packet was processed 25621 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25622 * asynchronously. 25623 */ 25624 void 25625 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25626 ire_t *ire_arg) 25627 { 25628 in6_addr_t *v6dstp; 25629 ire_t *ire; 25630 mblk_t *mp; 25631 ip6_t *ip6h1; 25632 uint_t ill_index; 25633 ipsec_out_t *io; 25634 boolean_t hwaccel; 25635 uint32_t flags = IP6_NO_IPPOLICY; 25636 int match_flags; 25637 zoneid_t zoneid; 25638 boolean_t ill_need_rele = B_FALSE; 25639 boolean_t ire_need_rele = B_FALSE; 25640 ip_stack_t *ipst; 25641 25642 mp = ipsec_mp->b_cont; 25643 ip6h1 = (ip6_t *)mp->b_rptr; 25644 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25645 ASSERT(io->ipsec_out_ns != NULL); 25646 ipst = io->ipsec_out_ns->netstack_ip; 25647 ill_index = io->ipsec_out_ill_index; 25648 if (io->ipsec_out_reachable) { 25649 flags |= IPV6_REACHABILITY_CONFIRMATION; 25650 } 25651 hwaccel = io->ipsec_out_accelerated; 25652 zoneid = io->ipsec_out_zoneid; 25653 ASSERT(zoneid != ALL_ZONES); 25654 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25655 /* Multicast addresses should have non-zero ill_index. */ 25656 v6dstp = &ip6h->ip6_dst; 25657 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25658 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25659 25660 if (ill == NULL && ill_index != 0) { 25661 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25662 /* Failure case frees things for us. */ 25663 if (ill == NULL) 25664 return; 25665 25666 ill_need_rele = B_TRUE; 25667 } 25668 ASSERT(mp != NULL); 25669 25670 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25671 boolean_t unspec_src; 25672 ipif_t *ipif; 25673 25674 /* 25675 * Use the ill_index to get the right ill. 25676 */ 25677 unspec_src = io->ipsec_out_unspec_src; 25678 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25679 if (ipif == NULL) { 25680 if (ill_need_rele) 25681 ill_refrele(ill); 25682 freemsg(ipsec_mp); 25683 return; 25684 } 25685 25686 if (ire_arg != NULL) { 25687 ire = ire_arg; 25688 } else { 25689 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25690 zoneid, msg_getlabel(mp), match_flags, ipst); 25691 ire_need_rele = B_TRUE; 25692 } 25693 if (ire != NULL) { 25694 ipif_refrele(ipif); 25695 /* 25696 * XXX Do the multicast forwarding now, as the IPsec 25697 * processing has been done. 25698 */ 25699 goto send; 25700 } 25701 25702 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25703 mp->b_prev = NULL; 25704 mp->b_next = NULL; 25705 25706 /* 25707 * If the IPsec packet was processed asynchronously, 25708 * drop it now. 25709 */ 25710 if (q == NULL) { 25711 if (ill_need_rele) 25712 ill_refrele(ill); 25713 freemsg(ipsec_mp); 25714 return; 25715 } 25716 25717 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25718 unspec_src, zoneid); 25719 ipif_refrele(ipif); 25720 } else { 25721 if (ire_arg != NULL) { 25722 ire = ire_arg; 25723 } else { 25724 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25725 ire_need_rele = B_TRUE; 25726 } 25727 if (ire != NULL) 25728 goto send; 25729 /* 25730 * ire disappeared underneath. 25731 * 25732 * What we need to do here is the ip_newroute 25733 * logic to get the ire without doing the IPsec 25734 * processing. Follow the same old path. But this 25735 * time, ip_wput or ire_add_then_send will call us 25736 * directly as all the IPsec operations are done. 25737 */ 25738 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25739 mp->b_prev = NULL; 25740 mp->b_next = NULL; 25741 25742 /* 25743 * If the IPsec packet was processed asynchronously, 25744 * drop it now. 25745 */ 25746 if (q == NULL) { 25747 if (ill_need_rele) 25748 ill_refrele(ill); 25749 freemsg(ipsec_mp); 25750 return; 25751 } 25752 25753 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25754 zoneid, ipst); 25755 } 25756 if (ill != NULL && ill_need_rele) 25757 ill_refrele(ill); 25758 return; 25759 send: 25760 if (ill != NULL && ill_need_rele) 25761 ill_refrele(ill); 25762 25763 /* Local delivery */ 25764 if (ire->ire_stq == NULL) { 25765 ill_t *out_ill; 25766 ASSERT(q != NULL); 25767 25768 /* PFHooks: LOOPBACK_OUT */ 25769 out_ill = ire_to_ill(ire); 25770 25771 /* 25772 * DTrace this as ip:::send. A blocked packet will fire the 25773 * send probe, but not the receive probe. 25774 */ 25775 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25776 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25777 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25778 25779 DTRACE_PROBE4(ip6__loopback__out__start, 25780 ill_t *, NULL, ill_t *, out_ill, 25781 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25782 25783 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25784 ipst->ips_ipv6firewall_loopback_out, 25785 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25786 25787 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25788 25789 if (ipsec_mp != NULL) { 25790 ip_wput_local_v6(RD(q), out_ill, 25791 ip6h, ipsec_mp, ire, 0, zoneid); 25792 } 25793 if (ire_need_rele) 25794 ire_refrele(ire); 25795 return; 25796 } 25797 /* 25798 * Everything is done. Send it out on the wire. 25799 * We force the insertion of a fragment header using the 25800 * IPH_FRAG_HDR flag in two cases: 25801 * - after reception of an ICMPv6 "packet too big" message 25802 * with a MTU < 1280 (cf. RFC 2460 section 5) 25803 * - for multirouted IPv6 packets, so that the receiver can 25804 * discard duplicates according to their fragment identifier 25805 */ 25806 /* XXX fix flow control problems. */ 25807 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25808 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25809 if (hwaccel) { 25810 /* 25811 * hardware acceleration does not handle these 25812 * "slow path" cases. 25813 */ 25814 /* IPsec KSTATS: should bump bean counter here. */ 25815 if (ire_need_rele) 25816 ire_refrele(ire); 25817 freemsg(ipsec_mp); 25818 return; 25819 } 25820 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25821 (mp->b_cont ? msgdsize(mp) : 25822 mp->b_wptr - (uchar_t *)ip6h)) { 25823 /* IPsec KSTATS: should bump bean counter here. */ 25824 ip0dbg(("Packet length mismatch: %d, %ld\n", 25825 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25826 msgdsize(mp))); 25827 if (ire_need_rele) 25828 ire_refrele(ire); 25829 freemsg(ipsec_mp); 25830 return; 25831 } 25832 ASSERT(mp->b_prev == NULL); 25833 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25834 ntohs(ip6h->ip6_plen) + 25835 IPV6_HDR_LEN, ire->ire_max_frag)); 25836 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25837 ire->ire_max_frag); 25838 } else { 25839 UPDATE_OB_PKT_COUNT(ire); 25840 ire->ire_last_used_time = lbolt; 25841 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25842 } 25843 if (ire_need_rele) 25844 ire_refrele(ire); 25845 freeb(ipsec_mp); 25846 } 25847 25848 void 25849 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25850 { 25851 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25852 da_ipsec_t *hada; /* data attributes */ 25853 ill_t *ill = (ill_t *)q->q_ptr; 25854 25855 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25856 25857 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25858 /* IPsec KSTATS: Bump lose counter here! */ 25859 freemsg(mp); 25860 return; 25861 } 25862 25863 /* 25864 * It's an IPsec packet that must be 25865 * accelerated by the Provider, and the 25866 * outbound ill is IPsec acceleration capable. 25867 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25868 * to the ill. 25869 * IPsec KSTATS: should bump packet counter here. 25870 */ 25871 25872 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25873 if (hada_mp == NULL) { 25874 /* IPsec KSTATS: should bump packet counter here. */ 25875 freemsg(mp); 25876 return; 25877 } 25878 25879 hada_mp->b_datap->db_type = M_CTL; 25880 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25881 hada_mp->b_cont = mp; 25882 25883 hada = (da_ipsec_t *)hada_mp->b_rptr; 25884 bzero(hada, sizeof (da_ipsec_t)); 25885 hada->da_type = IPHADA_M_CTL; 25886 25887 putnext(q, hada_mp); 25888 } 25889 25890 /* 25891 * Finish the outbound IPsec processing. This function is called from 25892 * ipsec_out_process() if the IPsec packet was processed 25893 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25894 * asynchronously. 25895 */ 25896 void 25897 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25898 ire_t *ire_arg) 25899 { 25900 uint32_t v_hlen_tos_len; 25901 ipaddr_t dst; 25902 ipif_t *ipif = NULL; 25903 ire_t *ire; 25904 ire_t *ire1 = NULL; 25905 mblk_t *next_mp = NULL; 25906 uint32_t max_frag; 25907 boolean_t multirt_send = B_FALSE; 25908 mblk_t *mp; 25909 ipha_t *ipha1; 25910 uint_t ill_index; 25911 ipsec_out_t *io; 25912 int match_flags; 25913 irb_t *irb = NULL; 25914 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25915 zoneid_t zoneid; 25916 ipxmit_state_t pktxmit_state; 25917 ip_stack_t *ipst; 25918 25919 #ifdef _BIG_ENDIAN 25920 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25921 #else 25922 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25923 #endif 25924 25925 mp = ipsec_mp->b_cont; 25926 ipha1 = (ipha_t *)mp->b_rptr; 25927 ASSERT(mp != NULL); 25928 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25929 dst = ipha->ipha_dst; 25930 25931 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25932 ill_index = io->ipsec_out_ill_index; 25933 zoneid = io->ipsec_out_zoneid; 25934 ASSERT(zoneid != ALL_ZONES); 25935 ipst = io->ipsec_out_ns->netstack_ip; 25936 ASSERT(io->ipsec_out_ns != NULL); 25937 25938 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25939 if (ill == NULL && ill_index != 0) { 25940 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25941 /* Failure case frees things for us. */ 25942 if (ill == NULL) 25943 return; 25944 25945 ill_need_rele = B_TRUE; 25946 } 25947 25948 if (CLASSD(dst)) { 25949 boolean_t conn_dontroute; 25950 /* 25951 * Use the ill_index to get the right ipif. 25952 */ 25953 conn_dontroute = io->ipsec_out_dontroute; 25954 if (ill_index == 0) 25955 ipif = ipif_lookup_group(dst, zoneid, ipst); 25956 else 25957 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25958 if (ipif == NULL) { 25959 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25960 " multicast\n")); 25961 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25962 freemsg(ipsec_mp); 25963 goto done; 25964 } 25965 /* 25966 * ipha_src has already been intialized with the 25967 * value of the ipif in ip_wput. All we need now is 25968 * an ire to send this downstream. 25969 */ 25970 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25971 msg_getlabel(mp), match_flags, ipst); 25972 if (ire != NULL) { 25973 ill_t *ill1; 25974 /* 25975 * Do the multicast forwarding now, as the IPsec 25976 * processing has been done. 25977 */ 25978 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25979 (ill1 = ire_to_ill(ire))) { 25980 if (ip_mforward(ill1, ipha, mp)) { 25981 freemsg(ipsec_mp); 25982 ip1dbg(("ip_wput_ipsec_out: mforward " 25983 "failed\n")); 25984 ire_refrele(ire); 25985 goto done; 25986 } 25987 } 25988 goto send; 25989 } 25990 25991 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25992 mp->b_prev = NULL; 25993 mp->b_next = NULL; 25994 25995 /* 25996 * If the IPsec packet was processed asynchronously, 25997 * drop it now. 25998 */ 25999 if (q == NULL) { 26000 freemsg(ipsec_mp); 26001 goto done; 26002 } 26003 26004 /* 26005 * We may be using a wrong ipif to create the ire. 26006 * But it is okay as the source address is assigned 26007 * for the packet already. Next outbound packet would 26008 * create the IRE with the right IPIF in ip_wput. 26009 * 26010 * Also handle RTF_MULTIRT routes. 26011 */ 26012 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26013 zoneid, &zero_info); 26014 } else { 26015 if (ire_arg != NULL) { 26016 ire = ire_arg; 26017 ire_need_rele = B_FALSE; 26018 } else { 26019 ire = ire_cache_lookup(dst, zoneid, 26020 msg_getlabel(mp), ipst); 26021 } 26022 if (ire != NULL) { 26023 goto send; 26024 } 26025 26026 /* 26027 * ire disappeared underneath. 26028 * 26029 * What we need to do here is the ip_newroute 26030 * logic to get the ire without doing the IPsec 26031 * processing. Follow the same old path. But this 26032 * time, ip_wput or ire_add_then_put will call us 26033 * directly as all the IPsec operations are done. 26034 */ 26035 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26036 mp->b_prev = NULL; 26037 mp->b_next = NULL; 26038 26039 /* 26040 * If the IPsec packet was processed asynchronously, 26041 * drop it now. 26042 */ 26043 if (q == NULL) { 26044 freemsg(ipsec_mp); 26045 goto done; 26046 } 26047 26048 /* 26049 * Since we're going through ip_newroute() again, we 26050 * need to make sure we don't: 26051 * 26052 * 1.) Trigger the ASSERT() with the ipha_ident 26053 * overloading. 26054 * 2.) Redo transport-layer checksumming, since we've 26055 * already done all that to get this far. 26056 * 26057 * The easiest way not do either of the above is to set 26058 * the ipha_ident field to IP_HDR_INCLUDED. 26059 */ 26060 ipha->ipha_ident = IP_HDR_INCLUDED; 26061 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26062 zoneid, ipst); 26063 } 26064 goto done; 26065 send: 26066 if (ire->ire_stq == NULL) { 26067 ill_t *out_ill; 26068 /* 26069 * Loopbacks go through ip_wput_local except for one case. 26070 * We come here if we generate a icmp_frag_needed message 26071 * after IPsec processing is over. When this function calls 26072 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26073 * icmp_frag_needed. The message generated comes back here 26074 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26075 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26076 * source address as it is usually set in ip_wput_ire. As 26077 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26078 * and we end up here. We can't enter ip_wput_ire once the 26079 * IPsec processing is over and hence we need to do it here. 26080 */ 26081 ASSERT(q != NULL); 26082 UPDATE_OB_PKT_COUNT(ire); 26083 ire->ire_last_used_time = lbolt; 26084 if (ipha->ipha_src == 0) 26085 ipha->ipha_src = ire->ire_src_addr; 26086 26087 /* PFHooks: LOOPBACK_OUT */ 26088 out_ill = ire_to_ill(ire); 26089 26090 /* 26091 * DTrace this as ip:::send. A blocked packet will fire the 26092 * send probe, but not the receive probe. 26093 */ 26094 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26095 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26096 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26097 26098 DTRACE_PROBE4(ip4__loopback__out__start, 26099 ill_t *, NULL, ill_t *, out_ill, 26100 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26101 26102 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26103 ipst->ips_ipv4firewall_loopback_out, 26104 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26105 26106 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26107 26108 if (ipsec_mp != NULL) 26109 ip_wput_local(RD(q), out_ill, 26110 ipha, ipsec_mp, ire, 0, zoneid); 26111 if (ire_need_rele) 26112 ire_refrele(ire); 26113 goto done; 26114 } 26115 26116 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26117 /* 26118 * We are through with IPsec processing. 26119 * Fragment this and send it on the wire. 26120 */ 26121 if (io->ipsec_out_accelerated) { 26122 /* 26123 * The packet has been accelerated but must 26124 * be fragmented. This should not happen 26125 * since AH and ESP must not accelerate 26126 * packets that need fragmentation, however 26127 * the configuration could have changed 26128 * since the AH or ESP processing. 26129 * Drop packet. 26130 * IPsec KSTATS: bump bean counter here. 26131 */ 26132 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26133 "fragmented accelerated packet!\n")); 26134 freemsg(ipsec_mp); 26135 } else { 26136 ip_wput_ire_fragmentit(ipsec_mp, ire, 26137 zoneid, ipst, NULL); 26138 } 26139 if (ire_need_rele) 26140 ire_refrele(ire); 26141 goto done; 26142 } 26143 26144 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26145 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26146 (void *)ire->ire_ipif, (void *)ipif)); 26147 26148 /* 26149 * Multiroute the secured packet. 26150 */ 26151 if (ire->ire_flags & RTF_MULTIRT) { 26152 ire_t *first_ire; 26153 irb = ire->ire_bucket; 26154 ASSERT(irb != NULL); 26155 /* 26156 * This ire has been looked up as the one that 26157 * goes through the given ipif; 26158 * make sure we do not omit any other multiroute ire 26159 * that may be present in the bucket before this one. 26160 */ 26161 IRB_REFHOLD(irb); 26162 for (first_ire = irb->irb_ire; 26163 first_ire != NULL; 26164 first_ire = first_ire->ire_next) { 26165 if ((first_ire->ire_flags & RTF_MULTIRT) && 26166 (first_ire->ire_addr == ire->ire_addr) && 26167 !(first_ire->ire_marks & 26168 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26169 break; 26170 } 26171 26172 if ((first_ire != NULL) && (first_ire != ire)) { 26173 /* 26174 * Don't change the ire if the packet must 26175 * be fragmented if sent via this new one. 26176 */ 26177 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26178 IRE_REFHOLD(first_ire); 26179 if (ire_need_rele) 26180 ire_refrele(ire); 26181 else 26182 ire_need_rele = B_TRUE; 26183 ire = first_ire; 26184 } 26185 } 26186 IRB_REFRELE(irb); 26187 26188 multirt_send = B_TRUE; 26189 max_frag = ire->ire_max_frag; 26190 } 26191 26192 /* 26193 * In most cases, the emission loop below is entered only once. 26194 * Only in the case where the ire holds the RTF_MULTIRT 26195 * flag, we loop to process all RTF_MULTIRT ires in the 26196 * bucket, and send the packet through all crossed 26197 * RTF_MULTIRT routes. 26198 */ 26199 do { 26200 if (multirt_send) { 26201 /* 26202 * ire1 holds here the next ire to process in the 26203 * bucket. If multirouting is expected, 26204 * any non-RTF_MULTIRT ire that has the 26205 * right destination address is ignored. 26206 */ 26207 ASSERT(irb != NULL); 26208 IRB_REFHOLD(irb); 26209 for (ire1 = ire->ire_next; 26210 ire1 != NULL; 26211 ire1 = ire1->ire_next) { 26212 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26213 continue; 26214 if (ire1->ire_addr != ire->ire_addr) 26215 continue; 26216 if (ire1->ire_marks & 26217 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26218 continue; 26219 /* No loopback here */ 26220 if (ire1->ire_stq == NULL) 26221 continue; 26222 /* 26223 * Ensure we do not exceed the MTU 26224 * of the next route. 26225 */ 26226 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26227 ip_multirt_bad_mtu(ire1, max_frag); 26228 continue; 26229 } 26230 26231 IRE_REFHOLD(ire1); 26232 break; 26233 } 26234 IRB_REFRELE(irb); 26235 if (ire1 != NULL) { 26236 /* 26237 * We are in a multiple send case, need to 26238 * make a copy of the packet. 26239 */ 26240 next_mp = copymsg(ipsec_mp); 26241 if (next_mp == NULL) { 26242 ire_refrele(ire1); 26243 ire1 = NULL; 26244 } 26245 } 26246 } 26247 /* 26248 * Everything is done. Send it out on the wire 26249 * 26250 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26251 * either send it on the wire or, in the case of 26252 * HW acceleration, call ipsec_hw_putnext. 26253 */ 26254 if (ire->ire_nce && 26255 ire->ire_nce->nce_state != ND_REACHABLE) { 26256 DTRACE_PROBE2(ip__wput__ipsec__bail, 26257 (ire_t *), ire, (mblk_t *), ipsec_mp); 26258 /* 26259 * If ire's link-layer is unresolved (this 26260 * would only happen if the incomplete ire 26261 * was added to cachetable via forwarding path) 26262 * don't bother going to ip_xmit_v4. Just drop the 26263 * packet. 26264 * There is a slight risk here, in that, if we 26265 * have the forwarding path create an incomplete 26266 * IRE, then until the IRE is completed, any 26267 * transmitted IPsec packets will be dropped 26268 * instead of being queued waiting for resolution. 26269 * 26270 * But the likelihood of a forwarding packet and a wput 26271 * packet sending to the same dst at the same time 26272 * and there not yet be an ARP entry for it is small. 26273 * Furthermore, if this actually happens, it might 26274 * be likely that wput would generate multiple 26275 * packets (and forwarding would also have a train 26276 * of packets) for that destination. If this is 26277 * the case, some of them would have been dropped 26278 * anyway, since ARP only queues a few packets while 26279 * waiting for resolution 26280 * 26281 * NOTE: We should really call ip_xmit_v4, 26282 * and let it queue the packet and send the 26283 * ARP query and have ARP come back thus: 26284 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26285 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26286 * hw accel work. But it's too complex to get 26287 * the IPsec hw acceleration approach to fit 26288 * well with ip_xmit_v4 doing ARP without 26289 * doing IPsec simplification. For now, we just 26290 * poke ip_xmit_v4 to trigger the arp resolve, so 26291 * that we can continue with the send on the next 26292 * attempt. 26293 * 26294 * XXX THis should be revisited, when 26295 * the IPsec/IP interaction is cleaned up 26296 */ 26297 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26298 " - dropping packet\n")); 26299 freemsg(ipsec_mp); 26300 /* 26301 * Call ip_xmit_v4() to trigger ARP query 26302 * in case the nce_state is ND_INITIAL 26303 */ 26304 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26305 goto drop_pkt; 26306 } 26307 26308 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26309 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26310 mblk_t *, ipsec_mp); 26311 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26312 ipst->ips_ipv4firewall_physical_out, NULL, 26313 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26314 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26315 if (ipsec_mp == NULL) 26316 goto drop_pkt; 26317 26318 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26319 pktxmit_state = ip_xmit_v4(mp, ire, 26320 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26321 26322 if ((pktxmit_state == SEND_FAILED) || 26323 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26324 26325 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26326 drop_pkt: 26327 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26328 ipIfStatsOutDiscards); 26329 if (ire_need_rele) 26330 ire_refrele(ire); 26331 if (ire1 != NULL) { 26332 ire_refrele(ire1); 26333 freemsg(next_mp); 26334 } 26335 goto done; 26336 } 26337 26338 freeb(ipsec_mp); 26339 if (ire_need_rele) 26340 ire_refrele(ire); 26341 26342 if (ire1 != NULL) { 26343 ire = ire1; 26344 ire_need_rele = B_TRUE; 26345 ASSERT(next_mp); 26346 ipsec_mp = next_mp; 26347 mp = ipsec_mp->b_cont; 26348 ire1 = NULL; 26349 next_mp = NULL; 26350 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26351 } else { 26352 multirt_send = B_FALSE; 26353 } 26354 } while (multirt_send); 26355 done: 26356 if (ill != NULL && ill_need_rele) 26357 ill_refrele(ill); 26358 if (ipif != NULL) 26359 ipif_refrele(ipif); 26360 } 26361 26362 /* 26363 * Get the ill corresponding to the specified ire, and compare its 26364 * capabilities with the protocol and algorithms specified by the 26365 * the SA obtained from ipsec_out. If they match, annotate the 26366 * ipsec_out structure to indicate that the packet needs acceleration. 26367 * 26368 * 26369 * A packet is eligible for outbound hardware acceleration if the 26370 * following conditions are satisfied: 26371 * 26372 * 1. the packet will not be fragmented 26373 * 2. the provider supports the algorithm 26374 * 3. there is no pending control message being exchanged 26375 * 4. snoop is not attached 26376 * 5. the destination address is not a broadcast or multicast address. 26377 * 26378 * Rationale: 26379 * - Hardware drivers do not support fragmentation with 26380 * the current interface. 26381 * - snoop, multicast, and broadcast may result in exposure of 26382 * a cleartext datagram. 26383 * We check all five of these conditions here. 26384 * 26385 * XXX would like to nuke "ire_t *" parameter here; problem is that 26386 * IRE is only way to figure out if a v4 address is a broadcast and 26387 * thus ineligible for acceleration... 26388 */ 26389 static void 26390 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26391 { 26392 ipsec_out_t *io; 26393 mblk_t *data_mp; 26394 uint_t plen, overhead; 26395 ip_stack_t *ipst; 26396 26397 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26398 return; 26399 26400 if (ill == NULL) 26401 return; 26402 ipst = ill->ill_ipst; 26403 /* 26404 * Destination address is a broadcast or multicast. Punt. 26405 */ 26406 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26407 IRE_LOCAL))) 26408 return; 26409 26410 data_mp = ipsec_mp->b_cont; 26411 26412 if (ill->ill_isv6) { 26413 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26414 26415 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26416 return; 26417 26418 plen = ip6h->ip6_plen; 26419 } else { 26420 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26421 26422 if (CLASSD(ipha->ipha_dst)) 26423 return; 26424 26425 plen = ipha->ipha_length; 26426 } 26427 /* 26428 * Is there a pending DLPI control message being exchanged 26429 * between IP/IPsec and the DLS Provider? If there is, it 26430 * could be a SADB update, and the state of the DLS Provider 26431 * SADB might not be in sync with the SADB maintained by 26432 * IPsec. To avoid dropping packets or using the wrong keying 26433 * material, we do not accelerate this packet. 26434 */ 26435 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26436 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26437 "ill_dlpi_pending! don't accelerate packet\n")); 26438 return; 26439 } 26440 26441 /* 26442 * Is the Provider in promiscous mode? If it does, we don't 26443 * accelerate the packet since it will bounce back up to the 26444 * listeners in the clear. 26445 */ 26446 if (ill->ill_promisc_on_phys) { 26447 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26448 "ill in promiscous mode, don't accelerate packet\n")); 26449 return; 26450 } 26451 26452 /* 26453 * Will the packet require fragmentation? 26454 */ 26455 26456 /* 26457 * IPsec ESP note: this is a pessimistic estimate, but the same 26458 * as is used elsewhere. 26459 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26460 * + 2-byte trailer 26461 */ 26462 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26463 IPSEC_BASE_ESP_HDR_SIZE(sa); 26464 26465 if ((plen + overhead) > ill->ill_max_mtu) 26466 return; 26467 26468 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26469 26470 /* 26471 * Can the ill accelerate this IPsec protocol and algorithm 26472 * specified by the SA? 26473 */ 26474 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26475 ill->ill_isv6, sa, ipst->ips_netstack)) { 26476 return; 26477 } 26478 26479 /* 26480 * Tell AH or ESP that the outbound ill is capable of 26481 * accelerating this packet. 26482 */ 26483 io->ipsec_out_is_capab_ill = B_TRUE; 26484 } 26485 26486 /* 26487 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26488 * 26489 * If this function returns B_TRUE, the requested SA's have been filled 26490 * into the ipsec_out_*_sa pointers. 26491 * 26492 * If the function returns B_FALSE, the packet has been "consumed", most 26493 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26494 * 26495 * The SA references created by the protocol-specific "select" 26496 * function will be released when the ipsec_mp is freed, thanks to the 26497 * ipsec_out_free destructor -- see spd.c. 26498 */ 26499 static boolean_t 26500 ipsec_out_select_sa(mblk_t *ipsec_mp) 26501 { 26502 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26503 ipsec_out_t *io; 26504 ipsec_policy_t *pp; 26505 ipsec_action_t *ap; 26506 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26507 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26508 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26509 26510 if (!io->ipsec_out_secure) { 26511 /* 26512 * We came here by mistake. 26513 * Don't bother with ipsec processing 26514 * We should "discourage" this path in the future. 26515 */ 26516 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26517 return (B_FALSE); 26518 } 26519 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26520 ASSERT((io->ipsec_out_policy != NULL) || 26521 (io->ipsec_out_act != NULL)); 26522 26523 ASSERT(io->ipsec_out_failed == B_FALSE); 26524 26525 /* 26526 * IPsec processing has started. 26527 */ 26528 io->ipsec_out_proc_begin = B_TRUE; 26529 ap = io->ipsec_out_act; 26530 if (ap == NULL) { 26531 pp = io->ipsec_out_policy; 26532 ASSERT(pp != NULL); 26533 ap = pp->ipsp_act; 26534 ASSERT(ap != NULL); 26535 } 26536 26537 /* 26538 * We have an action. now, let's select SA's. 26539 * (In the future, we can cache this in the conn_t..) 26540 */ 26541 if (ap->ipa_want_esp) { 26542 if (io->ipsec_out_esp_sa == NULL) { 26543 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26544 IPPROTO_ESP); 26545 } 26546 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26547 } 26548 26549 if (ap->ipa_want_ah) { 26550 if (io->ipsec_out_ah_sa == NULL) { 26551 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26552 IPPROTO_AH); 26553 } 26554 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26555 /* 26556 * The ESP and AH processing order needs to be preserved 26557 * when both protocols are required (ESP should be applied 26558 * before AH for an outbound packet). Force an ESP ACQUIRE 26559 * when both ESP and AH are required, and an AH ACQUIRE 26560 * is needed. 26561 */ 26562 if (ap->ipa_want_esp && need_ah_acquire) 26563 need_esp_acquire = B_TRUE; 26564 } 26565 26566 /* 26567 * Send an ACQUIRE (extended, regular, or both) if we need one. 26568 * Release SAs that got referenced, but will not be used until we 26569 * acquire _all_ of the SAs we need. 26570 */ 26571 if (need_ah_acquire || need_esp_acquire) { 26572 if (io->ipsec_out_ah_sa != NULL) { 26573 IPSA_REFRELE(io->ipsec_out_ah_sa); 26574 io->ipsec_out_ah_sa = NULL; 26575 } 26576 if (io->ipsec_out_esp_sa != NULL) { 26577 IPSA_REFRELE(io->ipsec_out_esp_sa); 26578 io->ipsec_out_esp_sa = NULL; 26579 } 26580 26581 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26582 return (B_FALSE); 26583 } 26584 26585 return (B_TRUE); 26586 } 26587 26588 /* 26589 * Process an IPSEC_OUT message and see what you can 26590 * do with it. 26591 * IPQoS Notes: 26592 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26593 * IPsec. 26594 * XXX would like to nuke ire_t. 26595 * XXX ill_index better be "real" 26596 */ 26597 void 26598 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26599 { 26600 ipsec_out_t *io; 26601 ipsec_policy_t *pp; 26602 ipsec_action_t *ap; 26603 ipha_t *ipha; 26604 ip6_t *ip6h; 26605 mblk_t *mp; 26606 ill_t *ill; 26607 zoneid_t zoneid; 26608 ipsec_status_t ipsec_rc; 26609 boolean_t ill_need_rele = B_FALSE; 26610 ip_stack_t *ipst; 26611 ipsec_stack_t *ipss; 26612 26613 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26614 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26615 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26616 ipst = io->ipsec_out_ns->netstack_ip; 26617 mp = ipsec_mp->b_cont; 26618 26619 /* 26620 * Initiate IPPF processing. We do it here to account for packets 26621 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26622 * We can check for ipsec_out_proc_begin even for such packets, as 26623 * they will always be false (asserted below). 26624 */ 26625 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26626 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26627 io->ipsec_out_ill_index : ill_index); 26628 if (mp == NULL) { 26629 ip2dbg(("ipsec_out_process: packet dropped "\ 26630 "during IPPF processing\n")); 26631 freeb(ipsec_mp); 26632 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26633 return; 26634 } 26635 } 26636 26637 if (!io->ipsec_out_secure) { 26638 /* 26639 * We came here by mistake. 26640 * Don't bother with ipsec processing 26641 * Should "discourage" this path in the future. 26642 */ 26643 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26644 goto done; 26645 } 26646 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26647 ASSERT((io->ipsec_out_policy != NULL) || 26648 (io->ipsec_out_act != NULL)); 26649 ASSERT(io->ipsec_out_failed == B_FALSE); 26650 26651 ipss = ipst->ips_netstack->netstack_ipsec; 26652 if (!ipsec_loaded(ipss)) { 26653 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26654 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26655 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26656 } else { 26657 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26658 } 26659 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26660 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26661 &ipss->ipsec_dropper); 26662 return; 26663 } 26664 26665 /* 26666 * IPsec processing has started. 26667 */ 26668 io->ipsec_out_proc_begin = B_TRUE; 26669 ap = io->ipsec_out_act; 26670 if (ap == NULL) { 26671 pp = io->ipsec_out_policy; 26672 ASSERT(pp != NULL); 26673 ap = pp->ipsp_act; 26674 ASSERT(ap != NULL); 26675 } 26676 26677 /* 26678 * Save the outbound ill index. When the packet comes back 26679 * from IPsec, we make sure the ill hasn't changed or disappeared 26680 * before sending it the accelerated packet. 26681 */ 26682 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26683 ill = ire_to_ill(ire); 26684 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26685 } 26686 26687 /* 26688 * The order of processing is first insert a IP header if needed. 26689 * Then insert the ESP header and then the AH header. 26690 */ 26691 if ((io->ipsec_out_se_done == B_FALSE) && 26692 (ap->ipa_want_se)) { 26693 /* 26694 * First get the outer IP header before sending 26695 * it to ESP. 26696 */ 26697 ipha_t *oipha, *iipha; 26698 mblk_t *outer_mp, *inner_mp; 26699 26700 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26701 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26702 "ipsec_out_process: " 26703 "Self-Encapsulation failed: Out of memory\n"); 26704 freemsg(ipsec_mp); 26705 if (ill != NULL) { 26706 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26707 } else { 26708 BUMP_MIB(&ipst->ips_ip_mib, 26709 ipIfStatsOutDiscards); 26710 } 26711 return; 26712 } 26713 inner_mp = ipsec_mp->b_cont; 26714 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26715 oipha = (ipha_t *)outer_mp->b_rptr; 26716 iipha = (ipha_t *)inner_mp->b_rptr; 26717 *oipha = *iipha; 26718 outer_mp->b_wptr += sizeof (ipha_t); 26719 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26720 sizeof (ipha_t)); 26721 oipha->ipha_protocol = IPPROTO_ENCAP; 26722 oipha->ipha_version_and_hdr_length = 26723 IP_SIMPLE_HDR_VERSION; 26724 oipha->ipha_hdr_checksum = 0; 26725 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26726 outer_mp->b_cont = inner_mp; 26727 ipsec_mp->b_cont = outer_mp; 26728 26729 io->ipsec_out_se_done = B_TRUE; 26730 io->ipsec_out_tunnel = B_TRUE; 26731 } 26732 26733 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26734 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26735 !ipsec_out_select_sa(ipsec_mp)) 26736 return; 26737 26738 /* 26739 * By now, we know what SA's to use. Toss over to ESP & AH 26740 * to do the heavy lifting. 26741 */ 26742 zoneid = io->ipsec_out_zoneid; 26743 ASSERT(zoneid != ALL_ZONES); 26744 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26745 ASSERT(io->ipsec_out_esp_sa != NULL); 26746 io->ipsec_out_esp_done = B_TRUE; 26747 /* 26748 * Note that since hw accel can only apply one transform, 26749 * not two, we skip hw accel for ESP if we also have AH 26750 * This is an design limitation of the interface 26751 * which should be revisited. 26752 */ 26753 ASSERT(ire != NULL); 26754 if (io->ipsec_out_ah_sa == NULL) { 26755 ill = (ill_t *)ire->ire_stq->q_ptr; 26756 ipsec_out_is_accelerated(ipsec_mp, 26757 io->ipsec_out_esp_sa, ill, ire); 26758 } 26759 26760 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26761 switch (ipsec_rc) { 26762 case IPSEC_STATUS_SUCCESS: 26763 break; 26764 case IPSEC_STATUS_FAILED: 26765 if (ill != NULL) { 26766 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26767 } else { 26768 BUMP_MIB(&ipst->ips_ip_mib, 26769 ipIfStatsOutDiscards); 26770 } 26771 /* FALLTHRU */ 26772 case IPSEC_STATUS_PENDING: 26773 return; 26774 } 26775 } 26776 26777 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26778 ASSERT(io->ipsec_out_ah_sa != NULL); 26779 io->ipsec_out_ah_done = B_TRUE; 26780 if (ire == NULL) { 26781 int idx = io->ipsec_out_capab_ill_index; 26782 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26783 NULL, NULL, NULL, NULL, ipst); 26784 ill_need_rele = B_TRUE; 26785 } else { 26786 ill = (ill_t *)ire->ire_stq->q_ptr; 26787 } 26788 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26789 ire); 26790 26791 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26792 switch (ipsec_rc) { 26793 case IPSEC_STATUS_SUCCESS: 26794 break; 26795 case IPSEC_STATUS_FAILED: 26796 if (ill != NULL) { 26797 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26798 } else { 26799 BUMP_MIB(&ipst->ips_ip_mib, 26800 ipIfStatsOutDiscards); 26801 } 26802 /* FALLTHRU */ 26803 case IPSEC_STATUS_PENDING: 26804 if (ill != NULL && ill_need_rele) 26805 ill_refrele(ill); 26806 return; 26807 } 26808 } 26809 /* 26810 * We are done with IPsec processing. Send it over the wire. 26811 */ 26812 done: 26813 mp = ipsec_mp->b_cont; 26814 ipha = (ipha_t *)mp->b_rptr; 26815 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26816 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26817 ire); 26818 } else { 26819 ip6h = (ip6_t *)ipha; 26820 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26821 ire); 26822 } 26823 if (ill != NULL && ill_need_rele) 26824 ill_refrele(ill); 26825 } 26826 26827 /* ARGSUSED */ 26828 void 26829 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26830 { 26831 opt_restart_t *or; 26832 int err; 26833 conn_t *connp; 26834 cred_t *cr; 26835 26836 ASSERT(CONN_Q(q)); 26837 connp = Q_TO_CONN(q); 26838 26839 ASSERT(first_mp->b_datap->db_type == M_CTL); 26840 or = (opt_restart_t *)first_mp->b_rptr; 26841 /* 26842 * We checked for a db_credp the first time svr4_optcom_req 26843 * was called (from ip_wput_nondata). So we can just ASSERT here. 26844 */ 26845 cr = msg_getcred(first_mp, NULL); 26846 ASSERT(cr != NULL); 26847 26848 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26849 err = svr4_optcom_req(q, first_mp, cr, 26850 &ip_opt_obj, B_FALSE); 26851 } else { 26852 ASSERT(or->or_type == T_OPTMGMT_REQ); 26853 err = tpi_optcom_req(q, first_mp, cr, 26854 &ip_opt_obj, B_FALSE); 26855 } 26856 if (err != EINPROGRESS) { 26857 /* operation is done */ 26858 CONN_OPER_PENDING_DONE(connp); 26859 } 26860 } 26861 26862 /* 26863 * ioctls that go through a down/up sequence may need to wait for the down 26864 * to complete. This involves waiting for the ire and ipif refcnts to go down 26865 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26866 */ 26867 /* ARGSUSED */ 26868 void 26869 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26870 { 26871 struct iocblk *iocp; 26872 mblk_t *mp1; 26873 ip_ioctl_cmd_t *ipip; 26874 int err; 26875 sin_t *sin; 26876 struct lifreq *lifr; 26877 struct ifreq *ifr; 26878 26879 iocp = (struct iocblk *)mp->b_rptr; 26880 ASSERT(ipsq != NULL); 26881 /* Existence of mp1 verified in ip_wput_nondata */ 26882 mp1 = mp->b_cont->b_cont; 26883 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26884 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26885 /* 26886 * Special case where ipx_current_ipif is not set: 26887 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26888 * We are here as were not able to complete the operation in 26889 * ipif_set_values because we could not become exclusive on 26890 * the new ipsq. 26891 */ 26892 ill_t *ill = q->q_ptr; 26893 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26894 } 26895 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26896 26897 if (ipip->ipi_cmd_type == IF_CMD) { 26898 /* This a old style SIOC[GS]IF* command */ 26899 ifr = (struct ifreq *)mp1->b_rptr; 26900 sin = (sin_t *)&ifr->ifr_addr; 26901 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26902 /* This a new style SIOC[GS]LIF* command */ 26903 lifr = (struct lifreq *)mp1->b_rptr; 26904 sin = (sin_t *)&lifr->lifr_addr; 26905 } else { 26906 sin = NULL; 26907 } 26908 26909 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26910 q, mp, ipip, mp1->b_rptr); 26911 26912 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26913 } 26914 26915 /* 26916 * ioctl processing 26917 * 26918 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26919 * the ioctl command in the ioctl tables, determines the copyin data size 26920 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26921 * 26922 * ioctl processing then continues when the M_IOCDATA makes its way down to 26923 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26924 * associated 'conn' is refheld till the end of the ioctl and the general 26925 * ioctl processing function ip_process_ioctl() is called to extract the 26926 * arguments and process the ioctl. To simplify extraction, ioctl commands 26927 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26928 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26929 * is used to extract the ioctl's arguments. 26930 * 26931 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26932 * so goes thru the serialization primitive ipsq_try_enter. Then the 26933 * appropriate function to handle the ioctl is called based on the entry in 26934 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26935 * which also refreleases the 'conn' that was refheld at the start of the 26936 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26937 * 26938 * Many exclusive ioctls go thru an internal down up sequence as part of 26939 * the operation. For example an attempt to change the IP address of an 26940 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26941 * does all the cleanup such as deleting all ires that use this address. 26942 * Then we need to wait till all references to the interface go away. 26943 */ 26944 void 26945 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26946 { 26947 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26948 ip_ioctl_cmd_t *ipip = arg; 26949 ip_extract_func_t *extract_funcp; 26950 cmd_info_t ci; 26951 int err; 26952 boolean_t entered_ipsq = B_FALSE; 26953 26954 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26955 26956 if (ipip == NULL) 26957 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26958 26959 /* 26960 * SIOCLIFADDIF needs to go thru a special path since the 26961 * ill may not exist yet. This happens in the case of lo0 26962 * which is created using this ioctl. 26963 */ 26964 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26965 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26966 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26967 return; 26968 } 26969 26970 ci.ci_ipif = NULL; 26971 if (ipip->ipi_cmd_type == MISC_CMD) { 26972 /* 26973 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26974 */ 26975 if (ipip->ipi_cmd == IF_UNITSEL) { 26976 /* ioctl comes down the ill */ 26977 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26978 ipif_refhold(ci.ci_ipif); 26979 } 26980 err = 0; 26981 ci.ci_sin = NULL; 26982 ci.ci_sin6 = NULL; 26983 ci.ci_lifr = NULL; 26984 } else { 26985 switch (ipip->ipi_cmd_type) { 26986 case IF_CMD: 26987 case LIF_CMD: 26988 extract_funcp = ip_extract_lifreq; 26989 break; 26990 26991 case ARP_CMD: 26992 case XARP_CMD: 26993 extract_funcp = ip_extract_arpreq; 26994 break; 26995 26996 case TUN_CMD: 26997 extract_funcp = ip_extract_tunreq; 26998 break; 26999 27000 case MSFILT_CMD: 27001 extract_funcp = ip_extract_msfilter; 27002 break; 27003 27004 default: 27005 ASSERT(0); 27006 } 27007 27008 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27009 if (err != 0) { 27010 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27011 return; 27012 } 27013 27014 /* 27015 * All of the extraction functions return a refheld ipif. 27016 */ 27017 ASSERT(ci.ci_ipif != NULL); 27018 } 27019 27020 if (!(ipip->ipi_flags & IPI_WR)) { 27021 /* 27022 * A return value of EINPROGRESS means the ioctl is 27023 * either queued and waiting for some reason or has 27024 * already completed. 27025 */ 27026 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27027 ci.ci_lifr); 27028 if (ci.ci_ipif != NULL) 27029 ipif_refrele(ci.ci_ipif); 27030 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27031 return; 27032 } 27033 27034 ASSERT(ci.ci_ipif != NULL); 27035 27036 /* 27037 * If ipsq is non-NULL, we are already being called exclusively. 27038 */ 27039 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27040 if (ipsq == NULL) { 27041 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27042 NEW_OP, B_TRUE); 27043 if (ipsq == NULL) { 27044 ipif_refrele(ci.ci_ipif); 27045 return; 27046 } 27047 entered_ipsq = B_TRUE; 27048 } 27049 27050 /* 27051 * Release the ipif so that ipif_down and friends that wait for 27052 * references to go away are not misled about the current ipif_refcnt 27053 * values. We are writer so we can access the ipif even after releasing 27054 * the ipif. 27055 */ 27056 ipif_refrele(ci.ci_ipif); 27057 27058 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27059 27060 /* 27061 * A return value of EINPROGRESS means the ioctl is 27062 * either queued and waiting for some reason or has 27063 * already completed. 27064 */ 27065 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27066 27067 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27068 27069 if (entered_ipsq) 27070 ipsq_exit(ipsq); 27071 } 27072 27073 /* 27074 * Complete the ioctl. Typically ioctls use the mi package and need to 27075 * do mi_copyout/mi_copy_done. 27076 */ 27077 void 27078 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27079 { 27080 conn_t *connp = NULL; 27081 27082 if (err == EINPROGRESS) 27083 return; 27084 27085 if (CONN_Q(q)) { 27086 connp = Q_TO_CONN(q); 27087 ASSERT(connp->conn_ref >= 2); 27088 } 27089 27090 switch (mode) { 27091 case COPYOUT: 27092 if (err == 0) 27093 mi_copyout(q, mp); 27094 else 27095 mi_copy_done(q, mp, err); 27096 break; 27097 27098 case NO_COPYOUT: 27099 mi_copy_done(q, mp, err); 27100 break; 27101 27102 default: 27103 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27104 break; 27105 } 27106 27107 /* 27108 * The refhold placed at the start of the ioctl is released here. 27109 */ 27110 if (connp != NULL) 27111 CONN_OPER_PENDING_DONE(connp); 27112 27113 if (ipsq != NULL) 27114 ipsq_current_finish(ipsq); 27115 } 27116 27117 /* Called from ip_wput for all non data messages */ 27118 /* ARGSUSED */ 27119 void 27120 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27121 { 27122 mblk_t *mp1; 27123 ire_t *ire, *fake_ire; 27124 ill_t *ill; 27125 struct iocblk *iocp; 27126 ip_ioctl_cmd_t *ipip; 27127 cred_t *cr; 27128 conn_t *connp; 27129 int err; 27130 nce_t *nce; 27131 ipif_t *ipif; 27132 ip_stack_t *ipst; 27133 char *proto_str; 27134 27135 if (CONN_Q(q)) { 27136 connp = Q_TO_CONN(q); 27137 ipst = connp->conn_netstack->netstack_ip; 27138 } else { 27139 connp = NULL; 27140 ipst = ILLQ_TO_IPST(q); 27141 } 27142 27143 switch (DB_TYPE(mp)) { 27144 case M_IOCTL: 27145 /* 27146 * IOCTL processing begins in ip_sioctl_copyin_setup which 27147 * will arrange to copy in associated control structures. 27148 */ 27149 ip_sioctl_copyin_setup(q, mp); 27150 return; 27151 case M_IOCDATA: 27152 /* 27153 * Ensure that this is associated with one of our trans- 27154 * parent ioctls. If it's not ours, discard it if we're 27155 * running as a driver, or pass it on if we're a module. 27156 */ 27157 iocp = (struct iocblk *)mp->b_rptr; 27158 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27159 if (ipip == NULL) { 27160 if (q->q_next == NULL) { 27161 goto nak; 27162 } else { 27163 putnext(q, mp); 27164 } 27165 return; 27166 } 27167 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27168 /* 27169 * the ioctl is one we recognise, but is not 27170 * consumed by IP as a module, pass M_IOCDATA 27171 * for processing downstream, but only for 27172 * common Streams ioctls. 27173 */ 27174 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27175 putnext(q, mp); 27176 return; 27177 } else { 27178 goto nak; 27179 } 27180 } 27181 27182 /* IOCTL continuation following copyin or copyout. */ 27183 if (mi_copy_state(q, mp, NULL) == -1) { 27184 /* 27185 * The copy operation failed. mi_copy_state already 27186 * cleaned up, so we're out of here. 27187 */ 27188 return; 27189 } 27190 /* 27191 * If we just completed a copy in, we become writer and 27192 * continue processing in ip_sioctl_copyin_done. If it 27193 * was a copy out, we call mi_copyout again. If there is 27194 * nothing more to copy out, it will complete the IOCTL. 27195 */ 27196 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27197 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27198 mi_copy_done(q, mp, EPROTO); 27199 return; 27200 } 27201 /* 27202 * Check for cases that need more copying. A return 27203 * value of 0 means a second copyin has been started, 27204 * so we return; a return value of 1 means no more 27205 * copying is needed, so we continue. 27206 */ 27207 if (ipip->ipi_cmd_type == MSFILT_CMD && 27208 MI_COPY_COUNT(mp) == 1) { 27209 if (ip_copyin_msfilter(q, mp) == 0) 27210 return; 27211 } 27212 /* 27213 * Refhold the conn, till the ioctl completes. This is 27214 * needed in case the ioctl ends up in the pending mp 27215 * list. Every mp in the ill_pending_mp list and 27216 * the ipx_pending_mp must have a refhold on the conn 27217 * to resume processing. The refhold is released when 27218 * the ioctl completes. (normally or abnormally) 27219 * In all cases ip_ioctl_finish is called to finish 27220 * the ioctl. 27221 */ 27222 if (connp != NULL) { 27223 /* This is not a reentry */ 27224 ASSERT(ipsq == NULL); 27225 CONN_INC_REF(connp); 27226 } else { 27227 if (!(ipip->ipi_flags & IPI_MODOK)) { 27228 mi_copy_done(q, mp, EINVAL); 27229 return; 27230 } 27231 } 27232 27233 ip_process_ioctl(ipsq, q, mp, ipip); 27234 27235 } else { 27236 mi_copyout(q, mp); 27237 } 27238 return; 27239 nak: 27240 iocp->ioc_error = EINVAL; 27241 mp->b_datap->db_type = M_IOCNAK; 27242 iocp->ioc_count = 0; 27243 qreply(q, mp); 27244 return; 27245 27246 case M_IOCNAK: 27247 /* 27248 * The only way we could get here is if a resolver didn't like 27249 * an IOCTL we sent it. This shouldn't happen. 27250 */ 27251 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27252 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27253 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27254 freemsg(mp); 27255 return; 27256 case M_IOCACK: 27257 /* /dev/ip shouldn't see this */ 27258 if (CONN_Q(q)) 27259 goto nak; 27260 27261 /* 27262 * Finish socket ioctls passed through to ARP. We use the 27263 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27264 * we need to become writer before calling ip_sioctl_iocack(). 27265 * Note that qwriter_ip() will release the refhold, and that a 27266 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27267 * ill stream. 27268 */ 27269 iocp = (struct iocblk *)mp->b_rptr; 27270 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27271 ip_sioctl_iocack(NULL, q, mp, NULL); 27272 return; 27273 } 27274 27275 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27276 iocp->ioc_cmd == AR_ENTRY_ADD); 27277 ill = q->q_ptr; 27278 ill_refhold(ill); 27279 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27280 return; 27281 case M_FLUSH: 27282 if (*mp->b_rptr & FLUSHW) 27283 flushq(q, FLUSHALL); 27284 if (q->q_next) { 27285 putnext(q, mp); 27286 return; 27287 } 27288 if (*mp->b_rptr & FLUSHR) { 27289 *mp->b_rptr &= ~FLUSHW; 27290 qreply(q, mp); 27291 return; 27292 } 27293 freemsg(mp); 27294 return; 27295 case IRE_DB_REQ_TYPE: 27296 if (connp == NULL) { 27297 proto_str = "IRE_DB_REQ_TYPE"; 27298 goto protonak; 27299 } 27300 /* An Upper Level Protocol wants a copy of an IRE. */ 27301 ip_ire_req(q, mp); 27302 return; 27303 case M_CTL: 27304 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27305 break; 27306 27307 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27308 TUN_HELLO) { 27309 ASSERT(connp != NULL); 27310 connp->conn_flags |= IPCL_IPTUN; 27311 freeb(mp); 27312 return; 27313 } 27314 27315 /* M_CTL messages are used by ARP to tell us things. */ 27316 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27317 break; 27318 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27319 case AR_ENTRY_SQUERY: 27320 putnext(q, mp); 27321 return; 27322 case AR_CLIENT_NOTIFY: 27323 ip_arp_news(q, mp); 27324 return; 27325 case AR_DLPIOP_DONE: 27326 ASSERT(q->q_next != NULL); 27327 ill = (ill_t *)q->q_ptr; 27328 /* qwriter_ip releases the refhold */ 27329 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27330 ill_refhold(ill); 27331 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27332 return; 27333 case AR_ARP_CLOSING: 27334 /* 27335 * ARP (above us) is closing. If no ARP bringup is 27336 * currently pending, ack the message so that ARP 27337 * can complete its close. Also mark ill_arp_closing 27338 * so that new ARP bringups will fail. If any 27339 * ARP bringup is currently in progress, we will 27340 * ack this when the current ARP bringup completes. 27341 */ 27342 ASSERT(q->q_next != NULL); 27343 ill = (ill_t *)q->q_ptr; 27344 mutex_enter(&ill->ill_lock); 27345 ill->ill_arp_closing = 1; 27346 if (!ill->ill_arp_bringup_pending) { 27347 mutex_exit(&ill->ill_lock); 27348 qreply(q, mp); 27349 } else { 27350 mutex_exit(&ill->ill_lock); 27351 freemsg(mp); 27352 } 27353 return; 27354 case AR_ARP_EXTEND: 27355 /* 27356 * The ARP module above us is capable of duplicate 27357 * address detection. Old ATM drivers will not send 27358 * this message. 27359 */ 27360 ASSERT(q->q_next != NULL); 27361 ill = (ill_t *)q->q_ptr; 27362 ill->ill_arp_extend = B_TRUE; 27363 freemsg(mp); 27364 return; 27365 default: 27366 break; 27367 } 27368 break; 27369 case M_PROTO: 27370 case M_PCPROTO: 27371 /* 27372 * The only PROTO messages we expect are copies of option 27373 * negotiation acknowledgements, AH and ESP bind requests 27374 * are also expected. 27375 */ 27376 switch (((union T_primitives *)mp->b_rptr)->type) { 27377 case O_T_BIND_REQ: 27378 case T_BIND_REQ: { 27379 /* Request can get queued in bind */ 27380 if (connp == NULL) { 27381 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27382 goto protonak; 27383 } 27384 /* 27385 * The transports except SCTP call ip_bind_{v4,v6}() 27386 * directly instead of a a putnext. SCTP doesn't 27387 * generate any T_BIND_REQ since it has its own 27388 * fanout data structures. However, ESP and AH 27389 * come in for regular binds; all other cases are 27390 * bind retries. 27391 */ 27392 ASSERT(!IPCL_IS_SCTP(connp)); 27393 27394 /* Don't increment refcnt if this is a re-entry */ 27395 if (ipsq == NULL) 27396 CONN_INC_REF(connp); 27397 27398 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27399 connp, NULL) : ip_bind_v4(q, mp, connp); 27400 ASSERT(mp != NULL); 27401 27402 ASSERT(!IPCL_IS_TCP(connp)); 27403 ASSERT(!IPCL_IS_UDP(connp)); 27404 ASSERT(!IPCL_IS_RAWIP(connp)); 27405 27406 /* The case of AH and ESP */ 27407 qreply(q, mp); 27408 CONN_OPER_PENDING_DONE(connp); 27409 return; 27410 } 27411 case T_SVR4_OPTMGMT_REQ: 27412 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27413 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27414 27415 if (connp == NULL) { 27416 proto_str = "T_SVR4_OPTMGMT_REQ"; 27417 goto protonak; 27418 } 27419 27420 /* 27421 * All Solaris components should pass a db_credp 27422 * for this TPI message, hence we ASSERT. 27423 * But in case there is some other M_PROTO that looks 27424 * like a TPI message sent by some other kernel 27425 * component, we check and return an error. 27426 */ 27427 cr = msg_getcred(mp, NULL); 27428 ASSERT(cr != NULL); 27429 if (cr == NULL) { 27430 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27431 if (mp != NULL) 27432 qreply(q, mp); 27433 return; 27434 } 27435 27436 if (!snmpcom_req(q, mp, ip_snmp_set, 27437 ip_snmp_get, cr)) { 27438 /* 27439 * Call svr4_optcom_req so that it can 27440 * generate the ack. We don't come here 27441 * if this operation is being restarted. 27442 * ip_restart_optmgmt will drop the conn ref. 27443 * In the case of ipsec option after the ipsec 27444 * load is complete conn_restart_ipsec_waiter 27445 * drops the conn ref. 27446 */ 27447 ASSERT(ipsq == NULL); 27448 CONN_INC_REF(connp); 27449 if (ip_check_for_ipsec_opt(q, mp)) 27450 return; 27451 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27452 B_FALSE); 27453 if (err != EINPROGRESS) { 27454 /* Operation is done */ 27455 CONN_OPER_PENDING_DONE(connp); 27456 } 27457 } 27458 return; 27459 case T_OPTMGMT_REQ: 27460 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27461 /* 27462 * Note: No snmpcom_req support through new 27463 * T_OPTMGMT_REQ. 27464 * Call tpi_optcom_req so that it can 27465 * generate the ack. 27466 */ 27467 if (connp == NULL) { 27468 proto_str = "T_OPTMGMT_REQ"; 27469 goto protonak; 27470 } 27471 27472 /* 27473 * All Solaris components should pass a db_credp 27474 * for this TPI message, hence we ASSERT. 27475 * But in case there is some other M_PROTO that looks 27476 * like a TPI message sent by some other kernel 27477 * component, we check and return an error. 27478 */ 27479 cr = msg_getcred(mp, NULL); 27480 ASSERT(cr != NULL); 27481 if (cr == NULL) { 27482 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27483 if (mp != NULL) 27484 qreply(q, mp); 27485 return; 27486 } 27487 ASSERT(ipsq == NULL); 27488 /* 27489 * We don't come here for restart. ip_restart_optmgmt 27490 * will drop the conn ref. In the case of ipsec option 27491 * after the ipsec load is complete 27492 * conn_restart_ipsec_waiter drops the conn ref. 27493 */ 27494 CONN_INC_REF(connp); 27495 if (ip_check_for_ipsec_opt(q, mp)) 27496 return; 27497 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27498 if (err != EINPROGRESS) { 27499 /* Operation is done */ 27500 CONN_OPER_PENDING_DONE(connp); 27501 } 27502 return; 27503 case T_UNBIND_REQ: 27504 if (connp == NULL) { 27505 proto_str = "T_UNBIND_REQ"; 27506 goto protonak; 27507 } 27508 ip_unbind(Q_TO_CONN(q)); 27509 mp = mi_tpi_ok_ack_alloc(mp); 27510 qreply(q, mp); 27511 return; 27512 default: 27513 /* 27514 * Have to drop any DLPI messages coming down from 27515 * arp (such as an info_req which would cause ip 27516 * to receive an extra info_ack if it was passed 27517 * through. 27518 */ 27519 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27520 (int)*(uint_t *)mp->b_rptr)); 27521 freemsg(mp); 27522 return; 27523 } 27524 /* NOTREACHED */ 27525 case IRE_DB_TYPE: { 27526 nce_t *nce; 27527 ill_t *ill; 27528 in6_addr_t gw_addr_v6; 27529 27530 /* 27531 * This is a response back from a resolver. It 27532 * consists of a message chain containing: 27533 * IRE_MBLK-->LL_HDR_MBLK->pkt 27534 * The IRE_MBLK is the one we allocated in ip_newroute. 27535 * The LL_HDR_MBLK is the DLPI header to use to get 27536 * the attached packet, and subsequent ones for the 27537 * same destination, transmitted. 27538 */ 27539 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27540 break; 27541 /* 27542 * First, check to make sure the resolution succeeded. 27543 * If it failed, the second mblk will be empty. 27544 * If it is, free the chain, dropping the packet. 27545 * (We must ire_delete the ire; that frees the ire mblk) 27546 * We're doing this now to support PVCs for ATM; it's 27547 * a partial xresolv implementation. When we fully implement 27548 * xresolv interfaces, instead of freeing everything here 27549 * we'll initiate neighbor discovery. 27550 * 27551 * For v4 (ARP and other external resolvers) the resolver 27552 * frees the message, so no check is needed. This check 27553 * is required, though, for a full xresolve implementation. 27554 * Including this code here now both shows how external 27555 * resolvers can NACK a resolution request using an 27556 * existing design that has no specific provisions for NACKs, 27557 * and also takes into account that the current non-ARP 27558 * external resolver has been coded to use this method of 27559 * NACKing for all IPv6 (xresolv) cases, 27560 * whether our xresolv implementation is complete or not. 27561 * 27562 */ 27563 ire = (ire_t *)mp->b_rptr; 27564 ill = ire_to_ill(ire); 27565 mp1 = mp->b_cont; /* dl_unitdata_req */ 27566 if (mp1->b_rptr == mp1->b_wptr) { 27567 if (ire->ire_ipversion == IPV6_VERSION) { 27568 /* 27569 * XRESOLV interface. 27570 */ 27571 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27572 mutex_enter(&ire->ire_lock); 27573 gw_addr_v6 = ire->ire_gateway_addr_v6; 27574 mutex_exit(&ire->ire_lock); 27575 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27576 nce = ndp_lookup_v6(ill, B_FALSE, 27577 &ire->ire_addr_v6, B_FALSE); 27578 } else { 27579 nce = ndp_lookup_v6(ill, B_FALSE, 27580 &gw_addr_v6, B_FALSE); 27581 } 27582 if (nce != NULL) { 27583 nce_resolv_failed(nce); 27584 ndp_delete(nce); 27585 NCE_REFRELE(nce); 27586 } 27587 } 27588 mp->b_cont = NULL; 27589 freemsg(mp1); /* frees the pkt as well */ 27590 ASSERT(ire->ire_nce == NULL); 27591 ire_delete((ire_t *)mp->b_rptr); 27592 return; 27593 } 27594 27595 /* 27596 * Split them into IRE_MBLK and pkt and feed it into 27597 * ire_add_then_send. Then in ire_add_then_send 27598 * the IRE will be added, and then the packet will be 27599 * run back through ip_wput. This time it will make 27600 * it to the wire. 27601 */ 27602 mp->b_cont = NULL; 27603 mp = mp1->b_cont; /* now, mp points to pkt */ 27604 mp1->b_cont = NULL; 27605 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27606 if (ire->ire_ipversion == IPV6_VERSION) { 27607 /* 27608 * XRESOLV interface. Find the nce and put a copy 27609 * of the dl_unitdata_req in nce_res_mp 27610 */ 27611 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27612 mutex_enter(&ire->ire_lock); 27613 gw_addr_v6 = ire->ire_gateway_addr_v6; 27614 mutex_exit(&ire->ire_lock); 27615 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27616 nce = ndp_lookup_v6(ill, B_FALSE, 27617 &ire->ire_addr_v6, B_FALSE); 27618 } else { 27619 nce = ndp_lookup_v6(ill, B_FALSE, 27620 &gw_addr_v6, B_FALSE); 27621 } 27622 if (nce != NULL) { 27623 /* 27624 * We have to protect nce_res_mp here 27625 * from being accessed by other threads 27626 * while we change the mblk pointer. 27627 * Other functions will also lock the nce when 27628 * accessing nce_res_mp. 27629 * 27630 * The reason we change the mblk pointer 27631 * here rather than copying the resolved address 27632 * into the template is that, unlike with 27633 * ethernet, we have no guarantee that the 27634 * resolved address length will be 27635 * smaller than or equal to the lla length 27636 * with which the template was allocated, 27637 * (for ethernet, they're equal) 27638 * so we have to use the actual resolved 27639 * address mblk - which holds the real 27640 * dl_unitdata_req with the resolved address. 27641 * 27642 * Doing this is the same behavior as was 27643 * previously used in the v4 ARP case. 27644 */ 27645 mutex_enter(&nce->nce_lock); 27646 if (nce->nce_res_mp != NULL) 27647 freemsg(nce->nce_res_mp); 27648 nce->nce_res_mp = mp1; 27649 mutex_exit(&nce->nce_lock); 27650 /* 27651 * We do a fastpath probe here because 27652 * we have resolved the address without 27653 * using Neighbor Discovery. 27654 * In the non-XRESOLV v6 case, the fastpath 27655 * probe is done right after neighbor 27656 * discovery completes. 27657 */ 27658 if (nce->nce_res_mp != NULL) { 27659 int res; 27660 nce_fastpath_list_add(nce); 27661 res = ill_fastpath_probe(ill, 27662 nce->nce_res_mp); 27663 if (res != 0 && res != EAGAIN) 27664 nce_fastpath_list_delete(nce); 27665 } 27666 27667 ire_add_then_send(q, ire, mp); 27668 /* 27669 * Now we have to clean out any packets 27670 * that may have been queued on the nce 27671 * while it was waiting for address resolution 27672 * to complete. 27673 */ 27674 mutex_enter(&nce->nce_lock); 27675 mp1 = nce->nce_qd_mp; 27676 nce->nce_qd_mp = NULL; 27677 mutex_exit(&nce->nce_lock); 27678 while (mp1 != NULL) { 27679 mblk_t *nxt_mp; 27680 queue_t *fwdq = NULL; 27681 ill_t *inbound_ill; 27682 uint_t ifindex; 27683 27684 nxt_mp = mp1->b_next; 27685 mp1->b_next = NULL; 27686 /* 27687 * Retrieve ifindex stored in 27688 * ip_rput_data_v6() 27689 */ 27690 ifindex = 27691 (uint_t)(uintptr_t)mp1->b_prev; 27692 inbound_ill = 27693 ill_lookup_on_ifindex(ifindex, 27694 B_TRUE, NULL, NULL, NULL, 27695 NULL, ipst); 27696 mp1->b_prev = NULL; 27697 if (inbound_ill != NULL) 27698 fwdq = inbound_ill->ill_rq; 27699 27700 if (fwdq != NULL) { 27701 put(fwdq, mp1); 27702 ill_refrele(inbound_ill); 27703 } else 27704 put(WR(ill->ill_rq), mp1); 27705 mp1 = nxt_mp; 27706 } 27707 NCE_REFRELE(nce); 27708 } else { /* nce is NULL; clean up */ 27709 ire_delete(ire); 27710 freemsg(mp); 27711 freemsg(mp1); 27712 return; 27713 } 27714 } else { 27715 nce_t *arpce; 27716 /* 27717 * Link layer resolution succeeded. Recompute the 27718 * ire_nce. 27719 */ 27720 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27721 if ((arpce = ndp_lookup_v4(ill, 27722 (ire->ire_gateway_addr != INADDR_ANY ? 27723 &ire->ire_gateway_addr : &ire->ire_addr), 27724 B_FALSE)) == NULL) { 27725 freeb(ire->ire_mp); 27726 freeb(mp1); 27727 freemsg(mp); 27728 return; 27729 } 27730 mutex_enter(&arpce->nce_lock); 27731 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27732 if (arpce->nce_state == ND_REACHABLE) { 27733 /* 27734 * Someone resolved this before us; 27735 * cleanup the res_mp. Since ire has 27736 * not been added yet, the call to ire_add_v4 27737 * from ire_add_then_send (when a dup is 27738 * detected) will clean up the ire. 27739 */ 27740 freeb(mp1); 27741 } else { 27742 ASSERT(arpce->nce_res_mp == NULL); 27743 arpce->nce_res_mp = mp1; 27744 arpce->nce_state = ND_REACHABLE; 27745 } 27746 mutex_exit(&arpce->nce_lock); 27747 if (ire->ire_marks & IRE_MARK_NOADD) { 27748 /* 27749 * this ire will not be added to the ire 27750 * cache table, so we can set the ire_nce 27751 * here, as there are no atomicity constraints. 27752 */ 27753 ire->ire_nce = arpce; 27754 /* 27755 * We are associating this nce with the ire 27756 * so change the nce ref taken in 27757 * ndp_lookup_v4() from 27758 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27759 */ 27760 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27761 } else { 27762 NCE_REFRELE(arpce); 27763 } 27764 ire_add_then_send(q, ire, mp); 27765 } 27766 return; /* All is well, the packet has been sent. */ 27767 } 27768 case IRE_ARPRESOLVE_TYPE: { 27769 27770 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27771 break; 27772 mp1 = mp->b_cont; /* dl_unitdata_req */ 27773 mp->b_cont = NULL; 27774 /* 27775 * First, check to make sure the resolution succeeded. 27776 * If it failed, the second mblk will be empty. 27777 */ 27778 if (mp1->b_rptr == mp1->b_wptr) { 27779 /* cleanup the incomplete ire, free queued packets */ 27780 freemsg(mp); /* fake ire */ 27781 freeb(mp1); /* dl_unitdata response */ 27782 return; 27783 } 27784 27785 /* 27786 * Update any incomplete nce_t found. We search the ctable 27787 * and find the nce from the ire->ire_nce because we need 27788 * to pass the ire to ip_xmit_v4 later, and can find both 27789 * ire and nce in one lookup. 27790 */ 27791 fake_ire = (ire_t *)mp->b_rptr; 27792 27793 /* 27794 * By the time we come back here from ARP the logical outgoing 27795 * interface of the incomplete ire we added in ire_forward() 27796 * could have disappeared, causing the incomplete ire to also 27797 * disappear. So we need to retreive the proper ipif for the 27798 * ire before looking in ctable. In the case of IPMP, the 27799 * ipif may be on the IPMP ill, so look it up based on the 27800 * ire_ipif_ifindex we stashed back in ire_init_common(). 27801 * Then, we can verify that ire_ipif_seqid still exists. 27802 */ 27803 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27804 NULL, NULL, NULL, NULL, ipst); 27805 if (ill == NULL) { 27806 ip1dbg(("ill for incomplete ire vanished\n")); 27807 freemsg(mp); /* fake ire */ 27808 freeb(mp1); /* dl_unitdata response */ 27809 return; 27810 } 27811 27812 /* Get the outgoing ipif */ 27813 mutex_enter(&ill->ill_lock); 27814 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27815 if (ipif == NULL) { 27816 mutex_exit(&ill->ill_lock); 27817 ill_refrele(ill); 27818 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27819 freemsg(mp); /* fake_ire */ 27820 freeb(mp1); /* dl_unitdata response */ 27821 return; 27822 } 27823 27824 ipif_refhold_locked(ipif); 27825 mutex_exit(&ill->ill_lock); 27826 ill_refrele(ill); 27827 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27828 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27829 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27830 ipif_refrele(ipif); 27831 if (ire == NULL) { 27832 /* 27833 * no ire was found; check if there is an nce 27834 * for this lookup; if it has no ire's pointing at it 27835 * cleanup. 27836 */ 27837 if ((nce = ndp_lookup_v4(q->q_ptr, 27838 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27839 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27840 B_FALSE)) != NULL) { 27841 /* 27842 * cleanup: 27843 * We check for refcnt 2 (one for the nce 27844 * hash list + 1 for the ref taken by 27845 * ndp_lookup_v4) to check that there are 27846 * no ire's pointing at the nce. 27847 */ 27848 if (nce->nce_refcnt == 2) 27849 ndp_delete(nce); 27850 NCE_REFRELE(nce); 27851 } 27852 freeb(mp1); /* dl_unitdata response */ 27853 freemsg(mp); /* fake ire */ 27854 return; 27855 } 27856 27857 nce = ire->ire_nce; 27858 DTRACE_PROBE2(ire__arpresolve__type, 27859 ire_t *, ire, nce_t *, nce); 27860 mutex_enter(&nce->nce_lock); 27861 nce->nce_last = TICK_TO_MSEC(lbolt64); 27862 if (nce->nce_state == ND_REACHABLE) { 27863 /* 27864 * Someone resolved this before us; 27865 * our response is not needed any more. 27866 */ 27867 mutex_exit(&nce->nce_lock); 27868 freeb(mp1); /* dl_unitdata response */ 27869 } else { 27870 ASSERT(nce->nce_res_mp == NULL); 27871 nce->nce_res_mp = mp1; 27872 nce->nce_state = ND_REACHABLE; 27873 mutex_exit(&nce->nce_lock); 27874 nce_fastpath(nce); 27875 } 27876 /* 27877 * The cached nce_t has been updated to be reachable; 27878 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27879 */ 27880 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27881 freemsg(mp); 27882 /* 27883 * send out queued packets. 27884 */ 27885 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27886 27887 IRE_REFRELE(ire); 27888 return; 27889 } 27890 default: 27891 break; 27892 } 27893 if (q->q_next) { 27894 putnext(q, mp); 27895 } else 27896 freemsg(mp); 27897 return; 27898 27899 protonak: 27900 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27901 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27902 qreply(q, mp); 27903 } 27904 27905 /* 27906 * Process IP options in an outbound packet. Modify the destination if there 27907 * is a source route option. 27908 * Returns non-zero if something fails in which case an ICMP error has been 27909 * sent and mp freed. 27910 */ 27911 static int 27912 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27913 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27914 { 27915 ipoptp_t opts; 27916 uchar_t *opt; 27917 uint8_t optval; 27918 uint8_t optlen; 27919 ipaddr_t dst; 27920 intptr_t code = 0; 27921 mblk_t *mp; 27922 ire_t *ire = NULL; 27923 27924 ip2dbg(("ip_wput_options\n")); 27925 mp = ipsec_mp; 27926 if (mctl_present) { 27927 mp = ipsec_mp->b_cont; 27928 } 27929 27930 dst = ipha->ipha_dst; 27931 for (optval = ipoptp_first(&opts, ipha); 27932 optval != IPOPT_EOL; 27933 optval = ipoptp_next(&opts)) { 27934 opt = opts.ipoptp_cur; 27935 optlen = opts.ipoptp_len; 27936 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27937 optval, optlen)); 27938 switch (optval) { 27939 uint32_t off; 27940 case IPOPT_SSRR: 27941 case IPOPT_LSRR: 27942 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27943 ip1dbg(( 27944 "ip_wput_options: bad option offset\n")); 27945 code = (char *)&opt[IPOPT_OLEN] - 27946 (char *)ipha; 27947 goto param_prob; 27948 } 27949 off = opt[IPOPT_OFFSET]; 27950 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27951 ntohl(dst))); 27952 /* 27953 * For strict: verify that dst is directly 27954 * reachable. 27955 */ 27956 if (optval == IPOPT_SSRR) { 27957 ire = ire_ftable_lookup(dst, 0, 0, 27958 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27959 msg_getlabel(mp), 27960 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27961 if (ire == NULL) { 27962 ip1dbg(("ip_wput_options: SSRR not" 27963 " directly reachable: 0x%x\n", 27964 ntohl(dst))); 27965 goto bad_src_route; 27966 } 27967 ire_refrele(ire); 27968 } 27969 break; 27970 case IPOPT_RR: 27971 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27972 ip1dbg(( 27973 "ip_wput_options: bad option offset\n")); 27974 code = (char *)&opt[IPOPT_OLEN] - 27975 (char *)ipha; 27976 goto param_prob; 27977 } 27978 break; 27979 case IPOPT_TS: 27980 /* 27981 * Verify that length >=5 and that there is either 27982 * room for another timestamp or that the overflow 27983 * counter is not maxed out. 27984 */ 27985 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27986 if (optlen < IPOPT_MINLEN_IT) { 27987 goto param_prob; 27988 } 27989 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27990 ip1dbg(( 27991 "ip_wput_options: bad option offset\n")); 27992 code = (char *)&opt[IPOPT_OFFSET] - 27993 (char *)ipha; 27994 goto param_prob; 27995 } 27996 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27997 case IPOPT_TS_TSONLY: 27998 off = IPOPT_TS_TIMELEN; 27999 break; 28000 case IPOPT_TS_TSANDADDR: 28001 case IPOPT_TS_PRESPEC: 28002 case IPOPT_TS_PRESPEC_RFC791: 28003 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28004 break; 28005 default: 28006 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28007 (char *)ipha; 28008 goto param_prob; 28009 } 28010 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28011 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28012 /* 28013 * No room and the overflow counter is 15 28014 * already. 28015 */ 28016 goto param_prob; 28017 } 28018 break; 28019 } 28020 } 28021 28022 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28023 return (0); 28024 28025 ip1dbg(("ip_wput_options: error processing IP options.")); 28026 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28027 28028 param_prob: 28029 /* 28030 * Since ip_wput() isn't close to finished, we fill 28031 * in enough of the header for credible error reporting. 28032 */ 28033 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28034 /* Failed */ 28035 freemsg(ipsec_mp); 28036 return (-1); 28037 } 28038 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28039 return (-1); 28040 28041 bad_src_route: 28042 /* 28043 * Since ip_wput() isn't close to finished, we fill 28044 * in enough of the header for credible error reporting. 28045 */ 28046 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28047 /* Failed */ 28048 freemsg(ipsec_mp); 28049 return (-1); 28050 } 28051 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28052 return (-1); 28053 } 28054 28055 /* 28056 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28057 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28058 * thru /etc/system. 28059 */ 28060 #define CONN_MAXDRAINCNT 64 28061 28062 static void 28063 conn_drain_init(ip_stack_t *ipst) 28064 { 28065 int i, j; 28066 idl_tx_list_t *itl_tx; 28067 28068 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28069 28070 if ((ipst->ips_conn_drain_list_cnt == 0) || 28071 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28072 /* 28073 * Default value of the number of drainers is the 28074 * number of cpus, subject to maximum of 8 drainers. 28075 */ 28076 if (boot_max_ncpus != -1) 28077 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28078 else 28079 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28080 } 28081 28082 ipst->ips_idl_tx_list = 28083 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 28084 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28085 itl_tx = &ipst->ips_idl_tx_list[i]; 28086 itl_tx->txl_drain_list = 28087 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28088 sizeof (idl_t), KM_SLEEP); 28089 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 28090 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 28091 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 28092 MUTEX_DEFAULT, NULL); 28093 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 28094 } 28095 } 28096 } 28097 28098 static void 28099 conn_drain_fini(ip_stack_t *ipst) 28100 { 28101 int i; 28102 idl_tx_list_t *itl_tx; 28103 28104 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28105 itl_tx = &ipst->ips_idl_tx_list[i]; 28106 kmem_free(itl_tx->txl_drain_list, 28107 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28108 } 28109 kmem_free(ipst->ips_idl_tx_list, 28110 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 28111 ipst->ips_idl_tx_list = NULL; 28112 } 28113 28114 /* 28115 * Note: For an overview of how flowcontrol is handled in IP please see the 28116 * IP Flowcontrol notes at the top of this file. 28117 * 28118 * Flow control has blocked us from proceeding. Insert the given conn in one 28119 * of the conn drain lists. These conn wq's will be qenabled later on when 28120 * STREAMS flow control does a backenable. conn_walk_drain will enable 28121 * the first conn in each of these drain lists. Each of these qenabled conns 28122 * in turn enables the next in the list, after it runs, or when it closes, 28123 * thus sustaining the drain process. 28124 */ 28125 void 28126 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 28127 { 28128 idl_t *idl = tx_list->txl_drain_list; 28129 uint_t index; 28130 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28131 28132 mutex_enter(&connp->conn_lock); 28133 if (connp->conn_state_flags & CONN_CLOSING) { 28134 /* 28135 * The conn is closing as a result of which CONN_CLOSING 28136 * is set. Return. 28137 */ 28138 mutex_exit(&connp->conn_lock); 28139 return; 28140 } else if (connp->conn_idl == NULL) { 28141 /* 28142 * Assign the next drain list round robin. We dont' use 28143 * a lock, and thus it may not be strictly round robin. 28144 * Atomicity of load/stores is enough to make sure that 28145 * conn_drain_list_index is always within bounds. 28146 */ 28147 index = tx_list->txl_drain_index; 28148 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28149 connp->conn_idl = &tx_list->txl_drain_list[index]; 28150 index++; 28151 if (index == ipst->ips_conn_drain_list_cnt) 28152 index = 0; 28153 tx_list->txl_drain_index = index; 28154 } 28155 mutex_exit(&connp->conn_lock); 28156 28157 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28158 if ((connp->conn_drain_prev != NULL) || 28159 (connp->conn_state_flags & CONN_CLOSING)) { 28160 /* 28161 * The conn is already in the drain list, OR 28162 * the conn is closing. We need to check again for 28163 * the closing case again since close can happen 28164 * after we drop the conn_lock, and before we 28165 * acquire the CONN_DRAIN_LIST_LOCK. 28166 */ 28167 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28168 return; 28169 } else { 28170 idl = connp->conn_idl; 28171 } 28172 28173 /* 28174 * The conn is not in the drain list. Insert it at the 28175 * tail of the drain list. The drain list is circular 28176 * and doubly linked. idl_conn points to the 1st element 28177 * in the list. 28178 */ 28179 if (idl->idl_conn == NULL) { 28180 idl->idl_conn = connp; 28181 connp->conn_drain_next = connp; 28182 connp->conn_drain_prev = connp; 28183 } else { 28184 conn_t *head = idl->idl_conn; 28185 28186 connp->conn_drain_next = head; 28187 connp->conn_drain_prev = head->conn_drain_prev; 28188 head->conn_drain_prev->conn_drain_next = connp; 28189 head->conn_drain_prev = connp; 28190 } 28191 /* 28192 * For non streams based sockets assert flow control. 28193 */ 28194 if (IPCL_IS_NONSTR(connp)) { 28195 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28196 (*connp->conn_upcalls->su_txq_full) 28197 (connp->conn_upper_handle, B_TRUE); 28198 } else { 28199 conn_setqfull(connp); 28200 noenable(connp->conn_wq); 28201 } 28202 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28203 } 28204 28205 /* 28206 * This conn is closing, and we are called from ip_close. OR 28207 * This conn has been serviced by ip_wsrv, and we need to do the tail 28208 * processing. 28209 * If this conn is part of the drain list, we may need to sustain the drain 28210 * process by qenabling the next conn in the drain list. We may also need to 28211 * remove this conn from the list, if it is done. 28212 */ 28213 static void 28214 conn_drain_tail(conn_t *connp, boolean_t closing) 28215 { 28216 idl_t *idl; 28217 28218 /* 28219 * connp->conn_idl is stable at this point, and no lock is needed 28220 * to check it. If we are called from ip_close, close has already 28221 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28222 * called us only because conn_idl is non-null. If we are called thru 28223 * service, conn_idl could be null, but it cannot change because 28224 * service is single-threaded per queue, and there cannot be another 28225 * instance of service trying to call conn_drain_insert on this conn 28226 * now. 28227 */ 28228 ASSERT(!closing || (connp->conn_idl != NULL)); 28229 28230 /* 28231 * If connp->conn_idl is null, the conn has not been inserted into any 28232 * drain list even once since creation of the conn. Just return. 28233 */ 28234 if (connp->conn_idl == NULL) 28235 return; 28236 28237 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28238 28239 if (connp->conn_drain_prev == NULL) { 28240 /* This conn is currently not in the drain list. */ 28241 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28242 return; 28243 } 28244 idl = connp->conn_idl; 28245 if (idl->idl_conn_draining == connp) { 28246 /* 28247 * This conn is the current drainer. If this is the last conn 28248 * in the drain list, we need to do more checks, in the 'if' 28249 * below. Otherwwise we need to just qenable the next conn, 28250 * to sustain the draining, and is handled in the 'else' 28251 * below. 28252 */ 28253 if (connp->conn_drain_next == idl->idl_conn) { 28254 /* 28255 * This conn is the last in this list. This round 28256 * of draining is complete. If idl_repeat is set, 28257 * it means another flow enabling has happened from 28258 * the driver/streams and we need to another round 28259 * of draining. 28260 * If there are more than 2 conns in the drain list, 28261 * do a left rotate by 1, so that all conns except the 28262 * conn at the head move towards the head by 1, and the 28263 * the conn at the head goes to the tail. This attempts 28264 * a more even share for all queues that are being 28265 * drained. 28266 */ 28267 if ((connp->conn_drain_next != connp) && 28268 (idl->idl_conn->conn_drain_next != connp)) { 28269 idl->idl_conn = idl->idl_conn->conn_drain_next; 28270 } 28271 if (idl->idl_repeat) { 28272 qenable(idl->idl_conn->conn_wq); 28273 idl->idl_conn_draining = idl->idl_conn; 28274 idl->idl_repeat = 0; 28275 } else { 28276 idl->idl_conn_draining = NULL; 28277 } 28278 } else { 28279 /* 28280 * If the next queue that we are now qenable'ing, 28281 * is closing, it will remove itself from this list 28282 * and qenable the subsequent queue in ip_close(). 28283 * Serialization is acheived thru idl_lock. 28284 */ 28285 qenable(connp->conn_drain_next->conn_wq); 28286 idl->idl_conn_draining = connp->conn_drain_next; 28287 } 28288 } 28289 if (!connp->conn_did_putbq || closing) { 28290 /* 28291 * Remove ourself from the drain list, if we did not do 28292 * a putbq, or if the conn is closing. 28293 * Note: It is possible that q->q_first is non-null. It means 28294 * that these messages landed after we did a enableok() in 28295 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28296 * service them. 28297 */ 28298 if (connp->conn_drain_next == connp) { 28299 /* Singleton in the list */ 28300 ASSERT(connp->conn_drain_prev == connp); 28301 idl->idl_conn = NULL; 28302 idl->idl_conn_draining = NULL; 28303 } else { 28304 connp->conn_drain_prev->conn_drain_next = 28305 connp->conn_drain_next; 28306 connp->conn_drain_next->conn_drain_prev = 28307 connp->conn_drain_prev; 28308 if (idl->idl_conn == connp) 28309 idl->idl_conn = connp->conn_drain_next; 28310 ASSERT(idl->idl_conn_draining != connp); 28311 28312 } 28313 connp->conn_drain_next = NULL; 28314 connp->conn_drain_prev = NULL; 28315 28316 /* 28317 * For non streams based sockets open up flow control. 28318 */ 28319 if (IPCL_IS_NONSTR(connp)) { 28320 (*connp->conn_upcalls->su_txq_full) 28321 (connp->conn_upper_handle, B_FALSE); 28322 } else { 28323 conn_clrqfull(connp); 28324 enableok(connp->conn_wq); 28325 } 28326 } 28327 28328 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28329 } 28330 28331 /* 28332 * Write service routine. Shared perimeter entry point. 28333 * ip_wsrv can be called in any of the following ways. 28334 * 1. The device queue's messages has fallen below the low water mark 28335 * and STREAMS has backenabled the ill_wq. We walk thru all the 28336 * the drain lists and backenable the first conn in each list. 28337 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28338 * qenabled non-tcp upper layers. We start dequeing messages and call 28339 * ip_wput for each message. 28340 */ 28341 28342 void 28343 ip_wsrv(queue_t *q) 28344 { 28345 conn_t *connp; 28346 ill_t *ill; 28347 mblk_t *mp; 28348 28349 if (q->q_next) { 28350 ill = (ill_t *)q->q_ptr; 28351 if (ill->ill_state_flags == 0) { 28352 ip_stack_t *ipst = ill->ill_ipst; 28353 28354 /* 28355 * The device flow control has opened up. 28356 * Walk through conn drain lists and qenable the 28357 * first conn in each list. This makes sense only 28358 * if the stream is fully plumbed and setup. 28359 * Hence the if check above. 28360 */ 28361 ip1dbg(("ip_wsrv: walking\n")); 28362 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28363 } 28364 return; 28365 } 28366 28367 connp = Q_TO_CONN(q); 28368 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28369 28370 /* 28371 * 1. Set conn_draining flag to signal that service is active. 28372 * 28373 * 2. ip_output determines whether it has been called from service, 28374 * based on the last parameter. If it is IP_WSRV it concludes it 28375 * has been called from service. 28376 * 28377 * 3. Message ordering is preserved by the following logic. 28378 * i. A directly called ip_output (i.e. not thru service) will queue 28379 * the message at the tail, if conn_draining is set (i.e. service 28380 * is running) or if q->q_first is non-null. 28381 * 28382 * ii. If ip_output is called from service, and if ip_output cannot 28383 * putnext due to flow control, it does a putbq. 28384 * 28385 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28386 * (causing an infinite loop). 28387 */ 28388 ASSERT(!connp->conn_did_putbq); 28389 28390 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28391 connp->conn_draining = 1; 28392 noenable(q); 28393 while ((mp = getq(q)) != NULL) { 28394 ASSERT(CONN_Q(q)); 28395 28396 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28397 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28398 if (connp->conn_did_putbq) { 28399 /* ip_wput did a putbq */ 28400 break; 28401 } 28402 } 28403 /* 28404 * At this point, a thread coming down from top, calling 28405 * ip_wput, may end up queueing the message. We have not yet 28406 * enabled the queue, so ip_wsrv won't be called again. 28407 * To avoid this race, check q->q_first again (in the loop) 28408 * If the other thread queued the message before we call 28409 * enableok(), we will catch it in the q->q_first check. 28410 * If the other thread queues the message after we call 28411 * enableok(), ip_wsrv will be called again by STREAMS. 28412 */ 28413 connp->conn_draining = 0; 28414 enableok(q); 28415 } 28416 28417 /* Enable the next conn for draining */ 28418 conn_drain_tail(connp, B_FALSE); 28419 28420 /* 28421 * conn_direct_blocked is used to indicate blocked 28422 * condition for direct path (ILL_DIRECT_CAPABLE()). 28423 * This is the only place where it is set without 28424 * checking for ILL_DIRECT_CAPABLE() and setting it 28425 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28426 */ 28427 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28428 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28429 connp->conn_direct_blocked = B_FALSE; 28430 } 28431 28432 connp->conn_did_putbq = 0; 28433 } 28434 28435 /* 28436 * Callback to disable flow control in IP. 28437 * 28438 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28439 * is enabled. 28440 * 28441 * When MAC_TX() is not able to send any more packets, dld sets its queue 28442 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28443 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28444 * function and wakes up corresponding mac worker threads, which in turn 28445 * calls this callback function, and disables flow control. 28446 */ 28447 void 28448 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28449 { 28450 ill_t *ill = (ill_t *)arg; 28451 ip_stack_t *ipst = ill->ill_ipst; 28452 idl_tx_list_t *idl_txl; 28453 28454 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28455 mutex_enter(&idl_txl->txl_lock); 28456 /* add code to to set a flag to indicate idl_txl is enabled */ 28457 conn_walk_drain(ipst, idl_txl); 28458 mutex_exit(&idl_txl->txl_lock); 28459 } 28460 28461 /* 28462 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28463 * of conns that need to be drained, check if drain is already in progress. 28464 * If so set the idl_repeat bit, indicating that the last conn in the list 28465 * needs to reinitiate the drain once again, for the list. If drain is not 28466 * in progress for the list, initiate the draining, by qenabling the 1st 28467 * conn in the list. The drain is self-sustaining, each qenabled conn will 28468 * in turn qenable the next conn, when it is done/blocked/closing. 28469 */ 28470 static void 28471 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28472 { 28473 int i; 28474 idl_t *idl; 28475 28476 IP_STAT(ipst, ip_conn_walk_drain); 28477 28478 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28479 idl = &tx_list->txl_drain_list[i]; 28480 mutex_enter(&idl->idl_lock); 28481 if (idl->idl_conn == NULL) { 28482 mutex_exit(&idl->idl_lock); 28483 continue; 28484 } 28485 /* 28486 * If this list is not being drained currently by 28487 * an ip_wsrv thread, start the process. 28488 */ 28489 if (idl->idl_conn_draining == NULL) { 28490 ASSERT(idl->idl_repeat == 0); 28491 qenable(idl->idl_conn->conn_wq); 28492 idl->idl_conn_draining = idl->idl_conn; 28493 } else { 28494 idl->idl_repeat = 1; 28495 } 28496 mutex_exit(&idl->idl_lock); 28497 } 28498 } 28499 28500 /* 28501 * Determine if the ill and multicast aspects of that packets 28502 * "matches" the conn. 28503 */ 28504 boolean_t 28505 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28506 zoneid_t zoneid) 28507 { 28508 ill_t *bound_ill; 28509 boolean_t found; 28510 ipif_t *ipif; 28511 ire_t *ire; 28512 ipaddr_t dst, src; 28513 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28514 28515 dst = ipha->ipha_dst; 28516 src = ipha->ipha_src; 28517 28518 /* 28519 * conn_incoming_ill is set by IP_BOUND_IF which limits 28520 * unicast, broadcast and multicast reception to 28521 * conn_incoming_ill. conn_wantpacket itself is called 28522 * only for BROADCAST and multicast. 28523 */ 28524 bound_ill = connp->conn_incoming_ill; 28525 if (bound_ill != NULL) { 28526 if (IS_IPMP(bound_ill)) { 28527 if (bound_ill->ill_grp != ill->ill_grp) 28528 return (B_FALSE); 28529 } else { 28530 if (bound_ill != ill) 28531 return (B_FALSE); 28532 } 28533 } 28534 28535 if (!CLASSD(dst)) { 28536 if (IPCL_ZONE_MATCH(connp, zoneid)) 28537 return (B_TRUE); 28538 /* 28539 * The conn is in a different zone; we need to check that this 28540 * broadcast address is configured in the application's zone. 28541 */ 28542 ipif = ipif_get_next_ipif(NULL, ill); 28543 if (ipif == NULL) 28544 return (B_FALSE); 28545 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28546 connp->conn_zoneid, NULL, 28547 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28548 ipif_refrele(ipif); 28549 if (ire != NULL) { 28550 ire_refrele(ire); 28551 return (B_TRUE); 28552 } else { 28553 return (B_FALSE); 28554 } 28555 } 28556 28557 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28558 connp->conn_zoneid == zoneid) { 28559 /* 28560 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28561 * disabled, therefore we don't dispatch the multicast packet to 28562 * the sending zone. 28563 */ 28564 return (B_FALSE); 28565 } 28566 28567 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28568 /* 28569 * Multicast packet on the loopback interface: we only match 28570 * conns who joined the group in the specified zone. 28571 */ 28572 return (B_FALSE); 28573 } 28574 28575 if (connp->conn_multi_router) { 28576 /* multicast packet and multicast router socket: send up */ 28577 return (B_TRUE); 28578 } 28579 28580 mutex_enter(&connp->conn_lock); 28581 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28582 mutex_exit(&connp->conn_lock); 28583 return (found); 28584 } 28585 28586 static void 28587 conn_setqfull(conn_t *connp) 28588 { 28589 queue_t *q = connp->conn_wq; 28590 28591 if (!(q->q_flag & QFULL)) { 28592 mutex_enter(QLOCK(q)); 28593 if (!(q->q_flag & QFULL)) { 28594 /* still need to set QFULL */ 28595 q->q_flag |= QFULL; 28596 mutex_exit(QLOCK(q)); 28597 } else { 28598 mutex_exit(QLOCK(q)); 28599 } 28600 } 28601 } 28602 28603 static void 28604 conn_clrqfull(conn_t *connp) 28605 { 28606 queue_t *q = connp->conn_wq; 28607 28608 if (q->q_flag & QFULL) { 28609 mutex_enter(QLOCK(q)); 28610 if (q->q_flag & QFULL) { 28611 q->q_flag &= ~QFULL; 28612 mutex_exit(QLOCK(q)); 28613 if (q->q_flag & QWANTW) 28614 qbackenable(q, 0); 28615 } else { 28616 mutex_exit(QLOCK(q)); 28617 } 28618 } 28619 } 28620 28621 /* 28622 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28623 */ 28624 /* ARGSUSED */ 28625 static void 28626 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28627 { 28628 ill_t *ill = (ill_t *)q->q_ptr; 28629 mblk_t *mp1, *mp2; 28630 ipif_t *ipif; 28631 int err = 0; 28632 conn_t *connp = NULL; 28633 ipsq_t *ipsq; 28634 arc_t *arc; 28635 28636 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28637 28638 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28639 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28640 28641 ASSERT(IAM_WRITER_ILL(ill)); 28642 mp2 = mp->b_cont; 28643 mp->b_cont = NULL; 28644 28645 /* 28646 * We have now received the arp bringup completion message 28647 * from ARP. Mark the arp bringup as done. Also if the arp 28648 * stream has already started closing, send up the AR_ARP_CLOSING 28649 * ack now since ARP is waiting in close for this ack. 28650 */ 28651 mutex_enter(&ill->ill_lock); 28652 ill->ill_arp_bringup_pending = 0; 28653 if (ill->ill_arp_closing) { 28654 mutex_exit(&ill->ill_lock); 28655 /* Let's reuse the mp for sending the ack */ 28656 arc = (arc_t *)mp->b_rptr; 28657 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28658 arc->arc_cmd = AR_ARP_CLOSING; 28659 qreply(q, mp); 28660 } else { 28661 mutex_exit(&ill->ill_lock); 28662 freeb(mp); 28663 } 28664 28665 ipsq = ill->ill_phyint->phyint_ipsq; 28666 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28667 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28668 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28669 if (mp1 == NULL) { 28670 /* bringup was aborted by the user */ 28671 freemsg(mp2); 28672 return; 28673 } 28674 28675 /* 28676 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28677 * must have an associated conn_t. Otherwise, we're bringing this 28678 * interface back up as part of handling an asynchronous event (e.g., 28679 * physical address change). 28680 */ 28681 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28682 ASSERT(connp != NULL); 28683 q = CONNP_TO_WQ(connp); 28684 } else { 28685 ASSERT(connp == NULL); 28686 q = ill->ill_rq; 28687 } 28688 28689 /* 28690 * If the DL_BIND_REQ fails, it is noted 28691 * in arc_name_offset. 28692 */ 28693 err = *((int *)mp2->b_rptr); 28694 if (err == 0) { 28695 if (ipif->ipif_isv6) { 28696 if ((err = ipif_up_done_v6(ipif)) != 0) 28697 ip0dbg(("ip_arp_done: init failed\n")); 28698 } else { 28699 if ((err = ipif_up_done(ipif)) != 0) 28700 ip0dbg(("ip_arp_done: init failed\n")); 28701 } 28702 } else { 28703 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28704 } 28705 28706 freemsg(mp2); 28707 28708 if ((err == 0) && (ill->ill_up_ipifs)) { 28709 err = ill_up_ipifs(ill, q, mp1); 28710 if (err == EINPROGRESS) 28711 return; 28712 } 28713 28714 /* 28715 * If we have a moved ipif to bring up, and everything has succeeded 28716 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28717 * down -- the admin can try to bring it up by hand if need be. 28718 */ 28719 if (ill->ill_move_ipif != NULL) { 28720 ipif = ill->ill_move_ipif; 28721 ill->ill_move_ipif = NULL; 28722 if (err == 0) { 28723 err = ipif_up(ipif, q, mp1); 28724 if (err == EINPROGRESS) 28725 return; 28726 } 28727 } 28728 28729 /* 28730 * The operation must complete without EINPROGRESS since 28731 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28732 * operation will be stuck forever in the ipsq. 28733 */ 28734 ASSERT(err != EINPROGRESS); 28735 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28736 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28737 else 28738 ipsq_current_finish(ipsq); 28739 } 28740 28741 /* Allocate the private structure */ 28742 static int 28743 ip_priv_alloc(void **bufp) 28744 { 28745 void *buf; 28746 28747 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28748 return (ENOMEM); 28749 28750 *bufp = buf; 28751 return (0); 28752 } 28753 28754 /* Function to delete the private structure */ 28755 void 28756 ip_priv_free(void *buf) 28757 { 28758 ASSERT(buf != NULL); 28759 kmem_free(buf, sizeof (ip_priv_t)); 28760 } 28761 28762 /* 28763 * The entry point for IPPF processing. 28764 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28765 * routine just returns. 28766 * 28767 * When called, ip_process generates an ipp_packet_t structure 28768 * which holds the state information for this packet and invokes the 28769 * the classifier (via ipp_packet_process). The classification, depending on 28770 * configured filters, results in a list of actions for this packet. Invoking 28771 * an action may cause the packet to be dropped, in which case the resulting 28772 * mblk (*mpp) is NULL. proc indicates the callout position for 28773 * this packet and ill_index is the interface this packet on or will leave 28774 * on (inbound and outbound resp.). 28775 */ 28776 void 28777 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28778 { 28779 mblk_t *mp; 28780 ip_priv_t *priv; 28781 ipp_action_id_t aid; 28782 int rc = 0; 28783 ipp_packet_t *pp; 28784 #define IP_CLASS "ip" 28785 28786 /* If the classifier is not loaded, return */ 28787 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28788 return; 28789 } 28790 28791 mp = *mpp; 28792 ASSERT(mp != NULL); 28793 28794 /* Allocate the packet structure */ 28795 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28796 if (rc != 0) { 28797 *mpp = NULL; 28798 freemsg(mp); 28799 return; 28800 } 28801 28802 /* Allocate the private structure */ 28803 rc = ip_priv_alloc((void **)&priv); 28804 if (rc != 0) { 28805 *mpp = NULL; 28806 freemsg(mp); 28807 ipp_packet_free(pp); 28808 return; 28809 } 28810 priv->proc = proc; 28811 priv->ill_index = ill_index; 28812 ipp_packet_set_private(pp, priv, ip_priv_free); 28813 ipp_packet_set_data(pp, mp); 28814 28815 /* Invoke the classifier */ 28816 rc = ipp_packet_process(&pp); 28817 if (pp != NULL) { 28818 mp = ipp_packet_get_data(pp); 28819 ipp_packet_free(pp); 28820 if (rc != 0) { 28821 freemsg(mp); 28822 *mpp = NULL; 28823 } 28824 } else { 28825 *mpp = NULL; 28826 } 28827 #undef IP_CLASS 28828 } 28829 28830 /* 28831 * Propagate a multicast group membership operation (add/drop) on 28832 * all the interfaces crossed by the related multirt routes. 28833 * The call is considered successful if the operation succeeds 28834 * on at least one interface. 28835 */ 28836 static int 28837 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28838 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28839 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28840 mblk_t *first_mp) 28841 { 28842 ire_t *ire_gw; 28843 irb_t *irb; 28844 int error = 0; 28845 opt_restart_t *or; 28846 ip_stack_t *ipst = ire->ire_ipst; 28847 28848 irb = ire->ire_bucket; 28849 ASSERT(irb != NULL); 28850 28851 ASSERT(DB_TYPE(first_mp) == M_CTL); 28852 28853 or = (opt_restart_t *)first_mp->b_rptr; 28854 IRB_REFHOLD(irb); 28855 for (; ire != NULL; ire = ire->ire_next) { 28856 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28857 continue; 28858 if (ire->ire_addr != group) 28859 continue; 28860 28861 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28862 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28863 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28864 /* No resolver exists for the gateway; skip this ire. */ 28865 if (ire_gw == NULL) 28866 continue; 28867 28868 /* 28869 * This function can return EINPROGRESS. If so the operation 28870 * will be restarted from ip_restart_optmgmt which will 28871 * call ip_opt_set and option processing will restart for 28872 * this option. So we may end up calling 'fn' more than once. 28873 * This requires that 'fn' is idempotent except for the 28874 * return value. The operation is considered a success if 28875 * it succeeds at least once on any one interface. 28876 */ 28877 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28878 NULL, fmode, src, first_mp); 28879 if (error == 0) 28880 or->or_private = CGTP_MCAST_SUCCESS; 28881 28882 if (ip_debug > 0) { 28883 ulong_t off; 28884 char *ksym; 28885 ksym = kobj_getsymname((uintptr_t)fn, &off); 28886 ip2dbg(("ip_multirt_apply_membership: " 28887 "called %s, multirt group 0x%08x via itf 0x%08x, " 28888 "error %d [success %u]\n", 28889 ksym ? ksym : "?", 28890 ntohl(group), ntohl(ire_gw->ire_src_addr), 28891 error, or->or_private)); 28892 } 28893 28894 ire_refrele(ire_gw); 28895 if (error == EINPROGRESS) { 28896 IRB_REFRELE(irb); 28897 return (error); 28898 } 28899 } 28900 IRB_REFRELE(irb); 28901 /* 28902 * Consider the call as successful if we succeeded on at least 28903 * one interface. Otherwise, return the last encountered error. 28904 */ 28905 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28906 } 28907 28908 /* 28909 * Issue a warning regarding a route crossing an interface with an 28910 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28911 * amount of time is logged. 28912 */ 28913 static void 28914 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28915 { 28916 hrtime_t current = gethrtime(); 28917 char buf[INET_ADDRSTRLEN]; 28918 ip_stack_t *ipst = ire->ire_ipst; 28919 28920 /* Convert interval in ms to hrtime in ns */ 28921 if (ipst->ips_multirt_bad_mtu_last_time + 28922 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28923 current) { 28924 cmn_err(CE_WARN, "ip: ignoring multiroute " 28925 "to %s, incorrect MTU %u (expected %u)\n", 28926 ip_dot_addr(ire->ire_addr, buf), 28927 ire->ire_max_frag, max_frag); 28928 28929 ipst->ips_multirt_bad_mtu_last_time = current; 28930 } 28931 } 28932 28933 /* 28934 * Get the CGTP (multirouting) filtering status. 28935 * If 0, the CGTP hooks are transparent. 28936 */ 28937 /* ARGSUSED */ 28938 static int 28939 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28940 { 28941 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28942 28943 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28944 return (0); 28945 } 28946 28947 /* 28948 * Set the CGTP (multirouting) filtering status. 28949 * If the status is changed from active to transparent 28950 * or from transparent to active, forward the new status 28951 * to the filtering module (if loaded). 28952 */ 28953 /* ARGSUSED */ 28954 static int 28955 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28956 cred_t *ioc_cr) 28957 { 28958 long new_value; 28959 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28960 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28961 28962 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28963 return (EPERM); 28964 28965 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28966 new_value < 0 || new_value > 1) { 28967 return (EINVAL); 28968 } 28969 28970 if ((!*ip_cgtp_filter_value) && new_value) { 28971 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28972 ipst->ips_ip_cgtp_filter_ops == NULL ? 28973 " (module not loaded)" : ""); 28974 } 28975 if (*ip_cgtp_filter_value && (!new_value)) { 28976 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28977 ipst->ips_ip_cgtp_filter_ops == NULL ? 28978 " (module not loaded)" : ""); 28979 } 28980 28981 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28982 int res; 28983 netstackid_t stackid; 28984 28985 stackid = ipst->ips_netstack->netstack_stackid; 28986 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28987 new_value); 28988 if (res) 28989 return (res); 28990 } 28991 28992 *ip_cgtp_filter_value = (boolean_t)new_value; 28993 28994 return (0); 28995 } 28996 28997 /* 28998 * Return the expected CGTP hooks version number. 28999 */ 29000 int 29001 ip_cgtp_filter_supported(void) 29002 { 29003 return (ip_cgtp_filter_rev); 29004 } 29005 29006 /* 29007 * CGTP hooks can be registered by invoking this function. 29008 * Checks that the version number matches. 29009 */ 29010 int 29011 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29012 { 29013 netstack_t *ns; 29014 ip_stack_t *ipst; 29015 29016 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29017 return (ENOTSUP); 29018 29019 ns = netstack_find_by_stackid(stackid); 29020 if (ns == NULL) 29021 return (EINVAL); 29022 ipst = ns->netstack_ip; 29023 ASSERT(ipst != NULL); 29024 29025 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29026 netstack_rele(ns); 29027 return (EALREADY); 29028 } 29029 29030 ipst->ips_ip_cgtp_filter_ops = ops; 29031 netstack_rele(ns); 29032 return (0); 29033 } 29034 29035 /* 29036 * CGTP hooks can be unregistered by invoking this function. 29037 * Returns ENXIO if there was no registration. 29038 * Returns EBUSY if the ndd variable has not been turned off. 29039 */ 29040 int 29041 ip_cgtp_filter_unregister(netstackid_t stackid) 29042 { 29043 netstack_t *ns; 29044 ip_stack_t *ipst; 29045 29046 ns = netstack_find_by_stackid(stackid); 29047 if (ns == NULL) 29048 return (EINVAL); 29049 ipst = ns->netstack_ip; 29050 ASSERT(ipst != NULL); 29051 29052 if (ipst->ips_ip_cgtp_filter) { 29053 netstack_rele(ns); 29054 return (EBUSY); 29055 } 29056 29057 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29058 netstack_rele(ns); 29059 return (ENXIO); 29060 } 29061 ipst->ips_ip_cgtp_filter_ops = NULL; 29062 netstack_rele(ns); 29063 return (0); 29064 } 29065 29066 /* 29067 * Check whether there is a CGTP filter registration. 29068 * Returns non-zero if there is a registration, otherwise returns zero. 29069 * Note: returns zero if bad stackid. 29070 */ 29071 int 29072 ip_cgtp_filter_is_registered(netstackid_t stackid) 29073 { 29074 netstack_t *ns; 29075 ip_stack_t *ipst; 29076 int ret; 29077 29078 ns = netstack_find_by_stackid(stackid); 29079 if (ns == NULL) 29080 return (0); 29081 ipst = ns->netstack_ip; 29082 ASSERT(ipst != NULL); 29083 29084 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29085 ret = 1; 29086 else 29087 ret = 0; 29088 29089 netstack_rele(ns); 29090 return (ret); 29091 } 29092 29093 static int 29094 ip_squeue_switch(int val) 29095 { 29096 int rval = SQ_FILL; 29097 29098 switch (val) { 29099 case IP_SQUEUE_ENTER_NODRAIN: 29100 rval = SQ_NODRAIN; 29101 break; 29102 case IP_SQUEUE_ENTER: 29103 rval = SQ_PROCESS; 29104 break; 29105 default: 29106 break; 29107 } 29108 return (rval); 29109 } 29110 29111 /* ARGSUSED */ 29112 static int 29113 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29114 caddr_t addr, cred_t *cr) 29115 { 29116 int *v = (int *)addr; 29117 long new_value; 29118 29119 if (secpolicy_net_config(cr, B_FALSE) != 0) 29120 return (EPERM); 29121 29122 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29123 return (EINVAL); 29124 29125 ip_squeue_flag = ip_squeue_switch(new_value); 29126 *v = new_value; 29127 return (0); 29128 } 29129 29130 /* 29131 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29132 * ip_debug. 29133 */ 29134 /* ARGSUSED */ 29135 static int 29136 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29137 caddr_t addr, cred_t *cr) 29138 { 29139 int *v = (int *)addr; 29140 long new_value; 29141 29142 if (secpolicy_net_config(cr, B_FALSE) != 0) 29143 return (EPERM); 29144 29145 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29146 return (EINVAL); 29147 29148 *v = new_value; 29149 return (0); 29150 } 29151 29152 static void * 29153 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29154 { 29155 kstat_t *ksp; 29156 29157 ip_stat_t template = { 29158 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29159 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29160 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29161 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29162 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29163 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29164 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29165 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29166 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29167 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29168 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29169 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29170 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29171 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29172 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29173 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29174 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29175 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29176 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29177 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29178 { "ip_opt", KSTAT_DATA_UINT64 }, 29179 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29180 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29181 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29182 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29183 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29184 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29185 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29186 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29187 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29188 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29189 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29190 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29191 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29192 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29193 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29194 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29195 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29196 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29197 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29198 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29199 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29200 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29201 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29202 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29203 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29204 }; 29205 29206 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29207 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29208 KSTAT_FLAG_VIRTUAL, stackid); 29209 29210 if (ksp == NULL) 29211 return (NULL); 29212 29213 bcopy(&template, ip_statisticsp, sizeof (template)); 29214 ksp->ks_data = (void *)ip_statisticsp; 29215 ksp->ks_private = (void *)(uintptr_t)stackid; 29216 29217 kstat_install(ksp); 29218 return (ksp); 29219 } 29220 29221 static void 29222 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29223 { 29224 if (ksp != NULL) { 29225 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29226 kstat_delete_netstack(ksp, stackid); 29227 } 29228 } 29229 29230 static void * 29231 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29232 { 29233 kstat_t *ksp; 29234 29235 ip_named_kstat_t template = { 29236 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29237 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29238 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29239 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29240 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29241 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29242 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29243 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29244 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29245 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29246 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29247 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29248 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29249 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29250 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29251 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29252 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29253 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29254 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29255 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29256 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29257 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29258 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29259 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29260 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29261 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29262 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29263 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29264 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29265 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29266 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29267 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29268 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29269 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29270 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29271 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29272 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29273 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29274 }; 29275 29276 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29277 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29278 if (ksp == NULL || ksp->ks_data == NULL) 29279 return (NULL); 29280 29281 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29282 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29283 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29284 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29285 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29286 29287 template.netToMediaEntrySize.value.i32 = 29288 sizeof (mib2_ipNetToMediaEntry_t); 29289 29290 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29291 29292 bcopy(&template, ksp->ks_data, sizeof (template)); 29293 ksp->ks_update = ip_kstat_update; 29294 ksp->ks_private = (void *)(uintptr_t)stackid; 29295 29296 kstat_install(ksp); 29297 return (ksp); 29298 } 29299 29300 static void 29301 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29302 { 29303 if (ksp != NULL) { 29304 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29305 kstat_delete_netstack(ksp, stackid); 29306 } 29307 } 29308 29309 static int 29310 ip_kstat_update(kstat_t *kp, int rw) 29311 { 29312 ip_named_kstat_t *ipkp; 29313 mib2_ipIfStatsEntry_t ipmib; 29314 ill_walk_context_t ctx; 29315 ill_t *ill; 29316 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29317 netstack_t *ns; 29318 ip_stack_t *ipst; 29319 29320 if (kp == NULL || kp->ks_data == NULL) 29321 return (EIO); 29322 29323 if (rw == KSTAT_WRITE) 29324 return (EACCES); 29325 29326 ns = netstack_find_by_stackid(stackid); 29327 if (ns == NULL) 29328 return (-1); 29329 ipst = ns->netstack_ip; 29330 if (ipst == NULL) { 29331 netstack_rele(ns); 29332 return (-1); 29333 } 29334 ipkp = (ip_named_kstat_t *)kp->ks_data; 29335 29336 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29337 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29338 ill = ILL_START_WALK_V4(&ctx, ipst); 29339 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29340 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29341 rw_exit(&ipst->ips_ill_g_lock); 29342 29343 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29344 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29345 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29346 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29347 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29348 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29349 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29350 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29351 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29352 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29353 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29354 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29355 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29356 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29357 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29358 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29359 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29360 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29361 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29362 29363 ipkp->routingDiscards.value.ui32 = 0; 29364 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29365 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29366 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29367 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29368 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29369 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29370 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29371 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29372 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29373 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29374 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29375 29376 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29377 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29378 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29379 29380 netstack_rele(ns); 29381 29382 return (0); 29383 } 29384 29385 static void * 29386 icmp_kstat_init(netstackid_t stackid) 29387 { 29388 kstat_t *ksp; 29389 29390 icmp_named_kstat_t template = { 29391 { "inMsgs", KSTAT_DATA_UINT32 }, 29392 { "inErrors", KSTAT_DATA_UINT32 }, 29393 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29394 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29395 { "inParmProbs", KSTAT_DATA_UINT32 }, 29396 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29397 { "inRedirects", KSTAT_DATA_UINT32 }, 29398 { "inEchos", KSTAT_DATA_UINT32 }, 29399 { "inEchoReps", KSTAT_DATA_UINT32 }, 29400 { "inTimestamps", KSTAT_DATA_UINT32 }, 29401 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29402 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29403 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29404 { "outMsgs", KSTAT_DATA_UINT32 }, 29405 { "outErrors", KSTAT_DATA_UINT32 }, 29406 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29407 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29408 { "outParmProbs", KSTAT_DATA_UINT32 }, 29409 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29410 { "outRedirects", KSTAT_DATA_UINT32 }, 29411 { "outEchos", KSTAT_DATA_UINT32 }, 29412 { "outEchoReps", KSTAT_DATA_UINT32 }, 29413 { "outTimestamps", KSTAT_DATA_UINT32 }, 29414 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29415 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29416 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29417 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29418 { "inUnknowns", KSTAT_DATA_UINT32 }, 29419 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29420 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29421 { "outDrops", KSTAT_DATA_UINT32 }, 29422 { "inOverFlows", KSTAT_DATA_UINT32 }, 29423 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29424 }; 29425 29426 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29427 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29428 if (ksp == NULL || ksp->ks_data == NULL) 29429 return (NULL); 29430 29431 bcopy(&template, ksp->ks_data, sizeof (template)); 29432 29433 ksp->ks_update = icmp_kstat_update; 29434 ksp->ks_private = (void *)(uintptr_t)stackid; 29435 29436 kstat_install(ksp); 29437 return (ksp); 29438 } 29439 29440 static void 29441 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29442 { 29443 if (ksp != NULL) { 29444 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29445 kstat_delete_netstack(ksp, stackid); 29446 } 29447 } 29448 29449 static int 29450 icmp_kstat_update(kstat_t *kp, int rw) 29451 { 29452 icmp_named_kstat_t *icmpkp; 29453 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29454 netstack_t *ns; 29455 ip_stack_t *ipst; 29456 29457 if ((kp == NULL) || (kp->ks_data == NULL)) 29458 return (EIO); 29459 29460 if (rw == KSTAT_WRITE) 29461 return (EACCES); 29462 29463 ns = netstack_find_by_stackid(stackid); 29464 if (ns == NULL) 29465 return (-1); 29466 ipst = ns->netstack_ip; 29467 if (ipst == NULL) { 29468 netstack_rele(ns); 29469 return (-1); 29470 } 29471 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29472 29473 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29474 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29475 icmpkp->inDestUnreachs.value.ui32 = 29476 ipst->ips_icmp_mib.icmpInDestUnreachs; 29477 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29478 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29479 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29480 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29481 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29482 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29483 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29484 icmpkp->inTimestampReps.value.ui32 = 29485 ipst->ips_icmp_mib.icmpInTimestampReps; 29486 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29487 icmpkp->inAddrMaskReps.value.ui32 = 29488 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29489 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29490 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29491 icmpkp->outDestUnreachs.value.ui32 = 29492 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29493 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29494 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29495 icmpkp->outSrcQuenchs.value.ui32 = 29496 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29497 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29498 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29499 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29500 icmpkp->outTimestamps.value.ui32 = 29501 ipst->ips_icmp_mib.icmpOutTimestamps; 29502 icmpkp->outTimestampReps.value.ui32 = 29503 ipst->ips_icmp_mib.icmpOutTimestampReps; 29504 icmpkp->outAddrMasks.value.ui32 = 29505 ipst->ips_icmp_mib.icmpOutAddrMasks; 29506 icmpkp->outAddrMaskReps.value.ui32 = 29507 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29508 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29509 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29510 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29511 icmpkp->outFragNeeded.value.ui32 = 29512 ipst->ips_icmp_mib.icmpOutFragNeeded; 29513 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29514 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29515 icmpkp->inBadRedirects.value.ui32 = 29516 ipst->ips_icmp_mib.icmpInBadRedirects; 29517 29518 netstack_rele(ns); 29519 return (0); 29520 } 29521 29522 /* 29523 * This is the fanout function for raw socket opened for SCTP. Note 29524 * that it is called after SCTP checks that there is no socket which 29525 * wants a packet. Then before SCTP handles this out of the blue packet, 29526 * this function is called to see if there is any raw socket for SCTP. 29527 * If there is and it is bound to the correct address, the packet will 29528 * be sent to that socket. Note that only one raw socket can be bound to 29529 * a port. This is assured in ipcl_sctp_hash_insert(); 29530 */ 29531 void 29532 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29533 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29534 zoneid_t zoneid) 29535 { 29536 conn_t *connp; 29537 queue_t *rq; 29538 mblk_t *first_mp; 29539 boolean_t secure; 29540 ip6_t *ip6h; 29541 ip_stack_t *ipst = recv_ill->ill_ipst; 29542 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29543 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29544 boolean_t sctp_csum_err = B_FALSE; 29545 29546 if (flags & IP_FF_SCTP_CSUM_ERR) { 29547 sctp_csum_err = B_TRUE; 29548 flags &= ~IP_FF_SCTP_CSUM_ERR; 29549 } 29550 29551 first_mp = mp; 29552 if (mctl_present) { 29553 mp = first_mp->b_cont; 29554 secure = ipsec_in_is_secure(first_mp); 29555 ASSERT(mp != NULL); 29556 } else { 29557 secure = B_FALSE; 29558 } 29559 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29560 29561 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29562 if (connp == NULL) { 29563 /* 29564 * Although raw sctp is not summed, OOB chunks must be. 29565 * Drop the packet here if the sctp checksum failed. 29566 */ 29567 if (sctp_csum_err) { 29568 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29569 freemsg(first_mp); 29570 return; 29571 } 29572 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29573 return; 29574 } 29575 rq = connp->conn_rq; 29576 if (!canputnext(rq)) { 29577 CONN_DEC_REF(connp); 29578 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29579 freemsg(first_mp); 29580 return; 29581 } 29582 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29583 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29584 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29585 (isv4 ? ipha : NULL), ip6h, mctl_present); 29586 if (first_mp == NULL) { 29587 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29588 CONN_DEC_REF(connp); 29589 return; 29590 } 29591 } 29592 /* 29593 * We probably should not send M_CTL message up to 29594 * raw socket. 29595 */ 29596 if (mctl_present) 29597 freeb(first_mp); 29598 29599 /* Initiate IPPF processing here if needed. */ 29600 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29601 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29602 ip_process(IPP_LOCAL_IN, &mp, 29603 recv_ill->ill_phyint->phyint_ifindex); 29604 if (mp == NULL) { 29605 CONN_DEC_REF(connp); 29606 return; 29607 } 29608 } 29609 29610 if (connp->conn_recvif || connp->conn_recvslla || 29611 ((connp->conn_ip_recvpktinfo || 29612 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29613 (flags & IP_FF_IPINFO))) { 29614 int in_flags = 0; 29615 29616 /* 29617 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29618 * IPF_RECVIF. 29619 */ 29620 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29621 in_flags = IPF_RECVIF; 29622 } 29623 if (connp->conn_recvslla) { 29624 in_flags |= IPF_RECVSLLA; 29625 } 29626 if (isv4) { 29627 mp = ip_add_info(mp, recv_ill, in_flags, 29628 IPCL_ZONEID(connp), ipst); 29629 } else { 29630 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29631 if (mp == NULL) { 29632 BUMP_MIB(recv_ill->ill_ip_mib, 29633 ipIfStatsInDiscards); 29634 CONN_DEC_REF(connp); 29635 return; 29636 } 29637 } 29638 } 29639 29640 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29641 /* 29642 * We are sending the IPSEC_IN message also up. Refer 29643 * to comments above this function. 29644 * This is the SOCK_RAW, IPPROTO_SCTP case. 29645 */ 29646 (connp->conn_recv)(connp, mp, NULL); 29647 CONN_DEC_REF(connp); 29648 } 29649 29650 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29651 { \ 29652 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29653 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29654 } 29655 /* 29656 * This function should be called only if all packet processing 29657 * including fragmentation is complete. Callers of this function 29658 * must set mp->b_prev to one of these values: 29659 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29660 * prior to handing over the mp as first argument to this function. 29661 * 29662 * If the ire passed by caller is incomplete, this function 29663 * queues the packet and if necessary, sends ARP request and bails. 29664 * If the ire passed is fully resolved, we simply prepend 29665 * the link-layer header to the packet, do ipsec hw acceleration 29666 * work if necessary, and send the packet out on the wire. 29667 * 29668 * NOTE: IPsec will only call this function with fully resolved 29669 * ires if hw acceleration is involved. 29670 * TODO list : 29671 * a Handle M_MULTIDATA so that 29672 * tcp_multisend->tcp_multisend_data can 29673 * call ip_xmit_v4 directly 29674 * b Handle post-ARP work for fragments so that 29675 * ip_wput_frag can call this function. 29676 */ 29677 ipxmit_state_t 29678 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29679 boolean_t flow_ctl_enabled, conn_t *connp) 29680 { 29681 nce_t *arpce; 29682 ipha_t *ipha; 29683 queue_t *q; 29684 int ill_index; 29685 mblk_t *nxt_mp, *first_mp; 29686 boolean_t xmit_drop = B_FALSE; 29687 ip_proc_t proc; 29688 ill_t *out_ill; 29689 int pkt_len; 29690 29691 arpce = ire->ire_nce; 29692 ASSERT(arpce != NULL); 29693 29694 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29695 29696 mutex_enter(&arpce->nce_lock); 29697 switch (arpce->nce_state) { 29698 case ND_REACHABLE: 29699 /* If there are other queued packets, queue this packet */ 29700 if (arpce->nce_qd_mp != NULL) { 29701 if (mp != NULL) 29702 nce_queue_mp_common(arpce, mp, B_FALSE); 29703 mp = arpce->nce_qd_mp; 29704 } 29705 arpce->nce_qd_mp = NULL; 29706 mutex_exit(&arpce->nce_lock); 29707 29708 /* 29709 * Flush the queue. In the common case, where the 29710 * ARP is already resolved, it will go through the 29711 * while loop only once. 29712 */ 29713 while (mp != NULL) { 29714 29715 nxt_mp = mp->b_next; 29716 mp->b_next = NULL; 29717 ASSERT(mp->b_datap->db_type != M_CTL); 29718 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29719 /* 29720 * This info is needed for IPQOS to do COS marking 29721 * in ip_wput_attach_llhdr->ip_process. 29722 */ 29723 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29724 mp->b_prev = NULL; 29725 29726 /* set up ill index for outbound qos processing */ 29727 out_ill = ire_to_ill(ire); 29728 ill_index = out_ill->ill_phyint->phyint_ifindex; 29729 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29730 ill_index, &ipha); 29731 if (first_mp == NULL) { 29732 xmit_drop = B_TRUE; 29733 BUMP_MIB(out_ill->ill_ip_mib, 29734 ipIfStatsOutDiscards); 29735 goto next_mp; 29736 } 29737 29738 /* non-ipsec hw accel case */ 29739 if (io == NULL || !io->ipsec_out_accelerated) { 29740 /* send it */ 29741 q = ire->ire_stq; 29742 if (proc == IPP_FWD_OUT) { 29743 UPDATE_IB_PKT_COUNT(ire); 29744 } else { 29745 UPDATE_OB_PKT_COUNT(ire); 29746 } 29747 ire->ire_last_used_time = lbolt; 29748 29749 if (flow_ctl_enabled || canputnext(q)) { 29750 if (proc == IPP_FWD_OUT) { 29751 29752 BUMP_MIB(out_ill->ill_ip_mib, 29753 ipIfStatsHCOutForwDatagrams); 29754 29755 } 29756 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29757 pkt_len); 29758 29759 DTRACE_IP7(send, mblk_t *, first_mp, 29760 conn_t *, NULL, void_ip_t *, ipha, 29761 __dtrace_ipsr_ill_t *, out_ill, 29762 ipha_t *, ipha, ip6_t *, NULL, int, 29763 0); 29764 29765 ILL_SEND_TX(out_ill, 29766 ire, connp, first_mp, 0, connp); 29767 } else { 29768 BUMP_MIB(out_ill->ill_ip_mib, 29769 ipIfStatsOutDiscards); 29770 xmit_drop = B_TRUE; 29771 freemsg(first_mp); 29772 } 29773 } else { 29774 /* 29775 * Safety Pup says: make sure this 29776 * is going to the right interface! 29777 */ 29778 ill_t *ill1 = 29779 (ill_t *)ire->ire_stq->q_ptr; 29780 int ifindex = 29781 ill1->ill_phyint->phyint_ifindex; 29782 if (ifindex != 29783 io->ipsec_out_capab_ill_index) { 29784 xmit_drop = B_TRUE; 29785 freemsg(mp); 29786 } else { 29787 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29788 pkt_len); 29789 29790 DTRACE_IP7(send, mblk_t *, first_mp, 29791 conn_t *, NULL, void_ip_t *, ipha, 29792 __dtrace_ipsr_ill_t *, ill1, 29793 ipha_t *, ipha, ip6_t *, NULL, 29794 int, 0); 29795 29796 ipsec_hw_putnext(ire->ire_stq, mp); 29797 } 29798 } 29799 next_mp: 29800 mp = nxt_mp; 29801 } /* while (mp != NULL) */ 29802 if (xmit_drop) 29803 return (SEND_FAILED); 29804 else 29805 return (SEND_PASSED); 29806 29807 case ND_INITIAL: 29808 case ND_INCOMPLETE: 29809 29810 /* 29811 * While we do send off packets to dests that 29812 * use fully-resolved CGTP routes, we do not 29813 * handle unresolved CGTP routes. 29814 */ 29815 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29816 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29817 29818 if (mp != NULL) { 29819 /* queue the packet */ 29820 nce_queue_mp_common(arpce, mp, B_FALSE); 29821 } 29822 29823 if (arpce->nce_state == ND_INCOMPLETE) { 29824 mutex_exit(&arpce->nce_lock); 29825 DTRACE_PROBE3(ip__xmit__incomplete, 29826 (ire_t *), ire, (mblk_t *), mp, 29827 (ipsec_out_t *), io); 29828 return (LOOKUP_IN_PROGRESS); 29829 } 29830 29831 arpce->nce_state = ND_INCOMPLETE; 29832 mutex_exit(&arpce->nce_lock); 29833 29834 /* 29835 * Note that ire_add() (called from ire_forward()) 29836 * holds a ref on the ire until ARP is completed. 29837 */ 29838 ire_arpresolve(ire); 29839 return (LOOKUP_IN_PROGRESS); 29840 default: 29841 ASSERT(0); 29842 mutex_exit(&arpce->nce_lock); 29843 return (LLHDR_RESLV_FAILED); 29844 } 29845 } 29846 29847 #undef UPDATE_IP_MIB_OB_COUNTERS 29848 29849 /* 29850 * Return B_TRUE if the buffers differ in length or content. 29851 * This is used for comparing extension header buffers. 29852 * Note that an extension header would be declared different 29853 * even if all that changed was the next header value in that header i.e. 29854 * what really changed is the next extension header. 29855 */ 29856 boolean_t 29857 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29858 uint_t blen) 29859 { 29860 if (!b_valid) 29861 blen = 0; 29862 29863 if (alen != blen) 29864 return (B_TRUE); 29865 if (alen == 0) 29866 return (B_FALSE); /* Both zero length */ 29867 return (bcmp(abuf, bbuf, alen)); 29868 } 29869 29870 /* 29871 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29872 * Return B_FALSE if memory allocation fails - don't change any state! 29873 */ 29874 boolean_t 29875 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29876 const void *src, uint_t srclen) 29877 { 29878 void *dst; 29879 29880 if (!src_valid) 29881 srclen = 0; 29882 29883 ASSERT(*dstlenp == 0); 29884 if (src != NULL && srclen != 0) { 29885 dst = mi_alloc(srclen, BPRI_MED); 29886 if (dst == NULL) 29887 return (B_FALSE); 29888 } else { 29889 dst = NULL; 29890 } 29891 if (*dstp != NULL) 29892 mi_free(*dstp); 29893 *dstp = dst; 29894 *dstlenp = dst == NULL ? 0 : srclen; 29895 return (B_TRUE); 29896 } 29897 29898 /* 29899 * Replace what is in *dst, *dstlen with the source. 29900 * Assumes ip_allocbuf has already been called. 29901 */ 29902 void 29903 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29904 const void *src, uint_t srclen) 29905 { 29906 if (!src_valid) 29907 srclen = 0; 29908 29909 ASSERT(*dstlenp == srclen); 29910 if (src != NULL && srclen != 0) 29911 bcopy(src, *dstp, srclen); 29912 } 29913 29914 /* 29915 * Free the storage pointed to by the members of an ip6_pkt_t. 29916 */ 29917 void 29918 ip6_pkt_free(ip6_pkt_t *ipp) 29919 { 29920 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29921 29922 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29923 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29924 ipp->ipp_hopopts = NULL; 29925 ipp->ipp_hopoptslen = 0; 29926 } 29927 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29928 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29929 ipp->ipp_rtdstopts = NULL; 29930 ipp->ipp_rtdstoptslen = 0; 29931 } 29932 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29933 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29934 ipp->ipp_dstopts = NULL; 29935 ipp->ipp_dstoptslen = 0; 29936 } 29937 if (ipp->ipp_fields & IPPF_RTHDR) { 29938 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29939 ipp->ipp_rthdr = NULL; 29940 ipp->ipp_rthdrlen = 0; 29941 } 29942 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29943 IPPF_RTHDR); 29944 } 29945 29946 zoneid_t 29947 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29948 zoneid_t lookup_zoneid) 29949 { 29950 ire_t *ire; 29951 int ire_flags = MATCH_IRE_TYPE; 29952 zoneid_t zoneid = ALL_ZONES; 29953 29954 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29955 return (ALL_ZONES); 29956 29957 if (lookup_zoneid != ALL_ZONES) 29958 ire_flags |= MATCH_IRE_ZONEONLY; 29959 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29960 lookup_zoneid, NULL, ire_flags, ipst); 29961 if (ire != NULL) { 29962 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29963 ire_refrele(ire); 29964 } 29965 return (zoneid); 29966 } 29967 29968 zoneid_t 29969 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29970 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29971 { 29972 ire_t *ire; 29973 int ire_flags = MATCH_IRE_TYPE; 29974 zoneid_t zoneid = ALL_ZONES; 29975 ipif_t *ipif_arg = NULL; 29976 29977 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29978 return (ALL_ZONES); 29979 29980 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29981 ire_flags |= MATCH_IRE_ILL; 29982 ipif_arg = ill->ill_ipif; 29983 } 29984 if (lookup_zoneid != ALL_ZONES) 29985 ire_flags |= MATCH_IRE_ZONEONLY; 29986 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29987 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29988 if (ire != NULL) { 29989 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29990 ire_refrele(ire); 29991 } 29992 return (zoneid); 29993 } 29994 29995 /* 29996 * IP obserability hook support functions. 29997 */ 29998 29999 static void 30000 ipobs_init(ip_stack_t *ipst) 30001 { 30002 ipst->ips_ipobs_enabled = B_FALSE; 30003 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30004 offsetof(ipobs_cb_t, ipobs_cbnext)); 30005 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30006 ipst->ips_ipobs_cb_nwalkers = 0; 30007 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30008 } 30009 30010 static void 30011 ipobs_fini(ip_stack_t *ipst) 30012 { 30013 ipobs_cb_t *cb; 30014 30015 mutex_enter(&ipst->ips_ipobs_cb_lock); 30016 while (ipst->ips_ipobs_cb_nwalkers != 0) 30017 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30018 30019 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30020 list_remove(&ipst->ips_ipobs_cb_list, cb); 30021 kmem_free(cb, sizeof (*cb)); 30022 } 30023 list_destroy(&ipst->ips_ipobs_cb_list); 30024 mutex_exit(&ipst->ips_ipobs_cb_lock); 30025 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30026 cv_destroy(&ipst->ips_ipobs_cb_cv); 30027 } 30028 30029 void 30030 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30031 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30032 { 30033 mblk_t *mp2; 30034 ipobs_cb_t *ipobs_cb; 30035 ipobs_hook_data_t *ihd; 30036 uint64_t grifindex = 0; 30037 30038 ASSERT(DB_TYPE(mp) == M_DATA); 30039 30040 if (IS_UNDER_IPMP(ill)) 30041 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 30042 30043 mutex_enter(&ipst->ips_ipobs_cb_lock); 30044 ipst->ips_ipobs_cb_nwalkers++; 30045 mutex_exit(&ipst->ips_ipobs_cb_lock); 30046 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30047 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30048 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 30049 if (mp2 != NULL) { 30050 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 30051 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30052 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30053 freemsg(mp2); 30054 continue; 30055 } 30056 ihd->ihd_mp->b_rptr += hlen; 30057 ihd->ihd_htype = htype; 30058 ihd->ihd_ipver = ipver; 30059 ihd->ihd_zsrc = zsrc; 30060 ihd->ihd_zdst = zdst; 30061 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30062 ihd->ihd_grifindex = grifindex; 30063 ihd->ihd_stack = ipst->ips_netstack; 30064 mp2->b_wptr += sizeof (*ihd); 30065 ipobs_cb->ipobs_cbfunc(mp2); 30066 } 30067 } 30068 mutex_enter(&ipst->ips_ipobs_cb_lock); 30069 ipst->ips_ipobs_cb_nwalkers--; 30070 if (ipst->ips_ipobs_cb_nwalkers == 0) 30071 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30072 mutex_exit(&ipst->ips_ipobs_cb_lock); 30073 } 30074 30075 void 30076 ipobs_register_hook(netstack_t *ns, pfv_t func) 30077 { 30078 ipobs_cb_t *cb; 30079 ip_stack_t *ipst = ns->netstack_ip; 30080 30081 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30082 30083 mutex_enter(&ipst->ips_ipobs_cb_lock); 30084 while (ipst->ips_ipobs_cb_nwalkers != 0) 30085 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30086 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30087 30088 cb->ipobs_cbfunc = func; 30089 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30090 ipst->ips_ipobs_enabled = B_TRUE; 30091 mutex_exit(&ipst->ips_ipobs_cb_lock); 30092 } 30093 30094 void 30095 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30096 { 30097 ipobs_cb_t *curcb; 30098 ip_stack_t *ipst = ns->netstack_ip; 30099 30100 mutex_enter(&ipst->ips_ipobs_cb_lock); 30101 while (ipst->ips_ipobs_cb_nwalkers != 0) 30102 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30103 30104 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30105 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30106 if (func == curcb->ipobs_cbfunc) { 30107 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30108 kmem_free(curcb, sizeof (*curcb)); 30109 break; 30110 } 30111 } 30112 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30113 ipst->ips_ipobs_enabled = B_FALSE; 30114 mutex_exit(&ipst->ips_ipobs_cb_lock); 30115 } 30116