1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/tcp_impl.h> 83 #include <inet/ip_multi.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_rts.h> 87 #include <inet/optcom.h> 88 #include <inet/ip_ndp.h> 89 #include <inet/ip_listutils.h> 90 #include <netinet/igmp.h> 91 #include <netinet/ip_mroute.h> 92 #include <inet/ipp_common.h> 93 94 #include <net/pfkeyv2.h> 95 #include <inet/ipsec_info.h> 96 #include <inet/sadb.h> 97 #include <inet/ipsec_impl.h> 98 #include <sys/iphada.h> 99 #include <inet/tun.h> 100 #include <inet/ipdrop.h> 101 102 #include <sys/ethernet.h> 103 #include <net/if_types.h> 104 #include <sys/cpuvar.h> 105 106 #include <ipp/ipp.h> 107 #include <ipp/ipp_impl.h> 108 #include <ipp/ipgpc/ipgpc.h> 109 110 #include <sys/multidata.h> 111 #include <sys/pattr.h> 112 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/udp_impl.h> 116 117 /* 118 * Values for squeue switch: 119 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 120 * IP_SQUEUE_ENTER: squeue_enter 121 * IP_SQUEUE_FILL: squeue_fill 122 */ 123 int ip_squeue_enter = 2; 124 squeue_func_t ip_input_proc; 125 /* 126 * IP statistics. 127 */ 128 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 129 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 130 131 typedef struct ip_stat { 132 kstat_named_t ipsec_fanout_proto; 133 kstat_named_t ip_udp_fannorm; 134 kstat_named_t ip_udp_fanmb; 135 kstat_named_t ip_udp_fanothers; 136 kstat_named_t ip_udp_fast_path; 137 kstat_named_t ip_udp_slow_path; 138 kstat_named_t ip_udp_input_err; 139 kstat_named_t ip_tcppullup; 140 kstat_named_t ip_tcpoptions; 141 kstat_named_t ip_multipkttcp; 142 kstat_named_t ip_tcp_fast_path; 143 kstat_named_t ip_tcp_slow_path; 144 kstat_named_t ip_tcp_input_error; 145 kstat_named_t ip_db_ref; 146 kstat_named_t ip_notaligned1; 147 kstat_named_t ip_notaligned2; 148 kstat_named_t ip_multimblk3; 149 kstat_named_t ip_multimblk4; 150 kstat_named_t ip_ipoptions; 151 kstat_named_t ip_classify_fail; 152 kstat_named_t ip_opt; 153 kstat_named_t ip_udp_rput_local; 154 kstat_named_t ipsec_proto_ahesp; 155 kstat_named_t ip_conn_flputbq; 156 kstat_named_t ip_conn_walk_drain; 157 kstat_named_t ip_out_sw_cksum; 158 kstat_named_t ip_in_sw_cksum; 159 kstat_named_t ip_trash_ire_reclaim_calls; 160 kstat_named_t ip_trash_ire_reclaim_success; 161 kstat_named_t ip_ire_arp_timer_expired; 162 kstat_named_t ip_ire_redirect_timer_expired; 163 kstat_named_t ip_ire_pmtu_timer_expired; 164 kstat_named_t ip_input_multi_squeue; 165 kstat_named_t ip_tcp_in_full_hw_cksum_err; 166 kstat_named_t ip_tcp_in_part_hw_cksum_err; 167 kstat_named_t ip_tcp_in_sw_cksum_err; 168 kstat_named_t ip_tcp_out_sw_cksum_bytes; 169 kstat_named_t ip_udp_in_full_hw_cksum_err; 170 kstat_named_t ip_udp_in_part_hw_cksum_err; 171 kstat_named_t ip_udp_in_sw_cksum_err; 172 kstat_named_t ip_udp_out_sw_cksum_bytes; 173 kstat_named_t ip_frag_mdt_pkt_out; 174 kstat_named_t ip_frag_mdt_discarded; 175 kstat_named_t ip_frag_mdt_allocfail; 176 kstat_named_t ip_frag_mdt_addpdescfail; 177 kstat_named_t ip_frag_mdt_allocd; 178 } ip_stat_t; 179 180 static ip_stat_t ip_statistics = { 181 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 182 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 183 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 184 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 185 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 186 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 187 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 188 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 189 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 190 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 191 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 192 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 193 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 194 { "ip_db_ref", KSTAT_DATA_UINT64 }, 195 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 196 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 197 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 198 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 199 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 200 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 201 { "ip_opt", KSTAT_DATA_UINT64 }, 202 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 203 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 204 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 205 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 206 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 207 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 208 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 209 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 210 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 211 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 212 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 213 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 214 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 215 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 216 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 217 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 218 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 219 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 220 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 221 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 222 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 223 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 224 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 225 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 226 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 227 }; 228 229 static kstat_t *ip_kstat; 230 231 #define TCP6 "tcp6" 232 #define TCP "tcp" 233 #define SCTP "sctp" 234 #define SCTP6 "sctp6" 235 236 major_t TCP6_MAJ; 237 major_t TCP_MAJ; 238 major_t SCTP_MAJ; 239 major_t SCTP6_MAJ; 240 241 int ip_poll_normal_ms = 100; 242 int ip_poll_normal_ticks = 0; 243 244 /* 245 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 246 */ 247 248 struct listptr_s { 249 mblk_t *lp_head; /* pointer to the head of the list */ 250 mblk_t *lp_tail; /* pointer to the tail of the list */ 251 }; 252 253 typedef struct listptr_s listptr_t; 254 255 /* 256 * Cluster specific hooks. These should be NULL when booted as a non-cluster 257 */ 258 259 /* 260 * Hook functions to enable cluster networking 261 * On non-clustered systems these vectors must always be NULL. 262 * 263 * Hook function to Check ip specified ip address is a shared ip address 264 * in the cluster 265 * 266 */ 267 int (*cl_inet_isclusterwide)(uint8_t protocol, 268 sa_family_t addr_family, uint8_t *laddrp) = NULL; 269 270 /* 271 * Hook function to generate cluster wide ip fragment identifier 272 */ 273 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 274 uint8_t *laddrp, uint8_t *faddrp) = NULL; 275 276 /* 277 * Synchronization notes: 278 * 279 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 280 * MT level protection given by STREAMS. IP uses a combination of its own 281 * internal serialization mechanism and standard Solaris locking techniques. 282 * The internal serialization is per phyint (no IPMP) or per IPMP group. 283 * This is used to serialize plumbing operations, IPMP operations, certain 284 * multicast operations, most set ioctls, igmp/mld timers etc. 285 * 286 * Plumbing is a long sequence of operations involving message 287 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 288 * involved in plumbing operations. A natural model is to serialize these 289 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 290 * parallel without any interference. But various set ioctls on hme0 are best 291 * serialized. However if the system uses IPMP, the operations are easier if 292 * they are serialized on a per IPMP group basis since IPMP operations 293 * happen across ill's of a group. Thus the lowest common denominator is to 294 * serialize most set ioctls, multicast join/leave operations, IPMP operations 295 * igmp/mld timer operations, and processing of DLPI control messages received 296 * from drivers on a per IPMP group basis. If the system does not employ 297 * IPMP the serialization is on a per phyint basis. This serialization is 298 * provided by the ipsq_t and primitives operating on this. Details can 299 * be found in ip_if.c above the core primitives operating on ipsq_t. 300 * 301 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 302 * Simiarly lookup of an ire by a thread also returns a refheld ire. 303 * In addition ipif's and ill's referenced by the ire are also indirectly 304 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 305 * the ipif's address or netmask change as long as an ipif is refheld 306 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 307 * address of an ipif has to go through the ipsq_t. This ensures that only 308 * 1 such exclusive operation proceeds at any time on the ipif. It then 309 * deletes all ires associated with this ipif, and waits for all refcnts 310 * associated with this ipif to come down to zero. The address is changed 311 * only after the ipif has been quiesced. Then the ipif is brought up again. 312 * More details are described above the comment in ip_sioctl_flags. 313 * 314 * Packet processing is based mostly on IREs and are fully multi-threaded 315 * using standard Solaris MT techniques. 316 * 317 * There are explicit locks in IP to handle: 318 * - The ip_g_head list maintained by mi_open_link() and friends. 319 * 320 * - The reassembly data structures (one lock per hash bucket) 321 * 322 * - conn_lock is meant to protect conn_t fields. The fields actually 323 * protected by conn_lock are documented in the conn_t definition. 324 * 325 * - ire_lock to protect some of the fields of the ire, IRE tables 326 * (one lock per hash bucket). Refer to ip_ire.c for details. 327 * 328 * - ndp_g_lock and nce_lock for protecting NCEs. 329 * 330 * - ill_lock protects fields of the ill and ipif. Details in ip.h 331 * 332 * - ill_g_lock: This is a global reader/writer lock. Protects the following 333 * * The AVL tree based global multi list of all ills. 334 * * The linked list of all ipifs of an ill 335 * * The <ill-ipsq> mapping 336 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 337 * * The illgroup list threaded by ill_group_next. 338 * * <ill-phyint> association 339 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 340 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 341 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 342 * will all have to hold the ill_g_lock as writer for the actual duration 343 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 344 * may be found in the IPMP section. 345 * 346 * - ill_lock: This is a per ill mutex. 347 * It protects some members of the ill and is documented below. 348 * It also protects the <ill-ipsq> mapping 349 * It also protects the illgroup list threaded by ill_group_next. 350 * It also protects the <ill-phyint> assoc. 351 * It also protects the list of ipifs hanging off the ill. 352 * 353 * - ipsq_lock: This is a per ipsq_t mutex lock. 354 * This protects all the other members of the ipsq struct except 355 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 356 * 357 * - illgrp_lock: This is a per ill_group mutex lock. 358 * The only thing it protects is the illgrp_ill_schednext member of ill_group 359 * which dictates which is the next ill in an ill_group that is to be chosen 360 * for sending outgoing packets, through creation of an IRE_CACHE that 361 * references this ill. 362 * 363 * - phyint_lock: This is a per phyint mutex lock. Protects just the 364 * phyint_flags 365 * 366 * - ip_g_nd_lock: This is a global reader/writer lock. 367 * Any call to nd_load to load a new parameter to the ND table must hold the 368 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 369 * as reader. 370 * 371 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 372 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 373 * uniqueness check also done atomically. 374 * 375 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 376 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 377 * as a writer when adding or deleting elements from these lists, and 378 * as a reader when walking these lists to send a SADB update to the 379 * IPsec capable ills. 380 * 381 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 382 * group list linked by ill_usesrc_grp_next. It also protects the 383 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 384 * group is being added or deleted. This lock is taken as a reader when 385 * walking the list/group(eg: to get the number of members in a usesrc group). 386 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 387 * field is changing state i.e from NULL to non-NULL or vice-versa. For 388 * example, it is not necessary to take this lock in the initial portion 389 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 390 * ip_sioctl_flags since the these operations are executed exclusively and 391 * that ensures that the "usesrc group state" cannot change. The "usesrc 392 * group state" change can happen only in the latter part of 393 * ip_sioctl_slifusesrc and in ill_delete. 394 * 395 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 396 * 397 * To change the <ill-phyint> association, the ill_g_lock must be held 398 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 399 * must be held. 400 * 401 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 402 * and the ill_lock of the ill in question must be held. 403 * 404 * To change the <ill-illgroup> association the ill_g_lock must be held as 405 * writer and the ill_lock of the ill in question must be held. 406 * 407 * To add or delete an ipif from the list of ipifs hanging off the ill, 408 * ill_g_lock (writer) and ill_lock must be held and the thread must be 409 * a writer on the associated ipsq,. 410 * 411 * To add or delete an ill to the system, the ill_g_lock must be held as 412 * writer and the thread must be a writer on the associated ipsq. 413 * 414 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 415 * must be a writer on the associated ipsq. 416 * 417 * Lock hierarchy 418 * 419 * Some lock hierarchy scenarios are listed below. 420 * 421 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 422 * ill_g_lock -> illgrp_lock -> ill_lock 423 * ill_g_lock -> ill_lock(s) -> phyint_lock 424 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 425 * ill_g_lock -> ip_addr_avail_lock 426 * conn_lock -> irb_lock -> ill_lock -> ire_lock 427 * ipsa_lock -> ill_g_lock -> ill_lock 428 * ill_g_lock -> ip_g_nd_lock 429 * irb_lock -> ill_lock -> ire_mrtun_lock 430 * irb_lock -> ill_lock -> ire_srcif_table_lock 431 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 432 * ipsec_capab_ills_lock -> ipsa_lock 433 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 434 * 435 * When more than 1 ill lock is needed to be held, all ill lock addresses 436 * are sorted on address and locked starting from highest addressed lock 437 * downward. 438 * 439 * IPSEC notes : 440 * 441 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 442 * in front of the actual packet. For outbound datagrams, the M_CTL 443 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 444 * information used by the IPSEC code for applying the right level of 445 * protection. The information initialized by IP in the ipsec_out_t 446 * is determined by the per-socket policy or global policy in the system. 447 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 448 * ipsec_info.h) which starts out with nothing in it. It gets filled 449 * with the right information if it goes through the AH/ESP code, which 450 * happens if the incoming packet is secure. The information initialized 451 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 452 * the policy requirements needed by per-socket policy or global policy 453 * is met or not. 454 * 455 * If there is both per-socket policy (set using setsockopt) and there 456 * is also global policy match for the 5 tuples of the socket, 457 * ipsec_override_policy() makes the decision of which one to use. 458 * 459 * For fully connected sockets i.e dst, src [addr, port] is known, 460 * conn_policy_cached is set indicating that policy has been cached. 461 * conn_in_enforce_policy may or may not be set depending on whether 462 * there is a global policy match or per-socket policy match. 463 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 464 * Once the right policy is set on the conn_t, policy cannot change for 465 * this socket. This makes life simpler for TCP (UDP ?) where 466 * re-transmissions go out with the same policy. For symmetry, policy 467 * is cached for fully connected UDP sockets also. Thus if policy is cached, 468 * it also implies that policy is latched i.e policy cannot change 469 * on these sockets. As we have the right policy on the conn, we don't 470 * have to lookup global policy for every outbound and inbound datagram 471 * and thus serving as an optimization. Note that a global policy change 472 * does not affect fully connected sockets if they have policy. If fully 473 * connected sockets did not have any policy associated with it, global 474 * policy change may affect them. 475 * 476 * IP Flow control notes: 477 * 478 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 479 * cannot be sent down to the driver by IP, because of a canput failure, IP 480 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 481 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 482 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 483 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 484 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 485 * the queued messages, and removes the conn from the drain list, if all 486 * messages were drained. It also qenables the next conn in the drain list to 487 * continue the drain process. 488 * 489 * In reality the drain list is not a single list, but a configurable number 490 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 491 * list. If the ip_wsrv of the next qenabled conn does not run, because the 492 * stream closes, ip_close takes responsibility to qenable the next conn in 493 * the drain list. The directly called ip_wput path always does a putq, if 494 * it cannot putnext. Thus synchronization problems are handled between 495 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 496 * functions that manipulate this drain list. Furthermore conn_drain_insert 497 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 498 * running on a queue at any time. conn_drain_tail can be simultaneously called 499 * from both ip_wsrv and ip_close. 500 * 501 * IPQOS notes: 502 * 503 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 504 * and IPQoS modules. IPPF includes hooks in IP at different control points 505 * (callout positions) which direct packets to IPQoS modules for policy 506 * processing. Policies, if present, are global. 507 * 508 * The callout positions are located in the following paths: 509 * o local_in (packets destined for this host) 510 * o local_out (packets orginating from this host ) 511 * o fwd_in (packets forwarded by this m/c - inbound) 512 * o fwd_out (packets forwarded by this m/c - outbound) 513 * Hooks at these callout points can be enabled/disabled using the ndd variable 514 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 515 * By default all the callout positions are enabled. 516 * 517 * Outbound (local_out) 518 * Hooks are placed in ip_wput_ire and ipsec_out_process. 519 * 520 * Inbound (local_in) 521 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 522 * TCP and UDP fanout routines. 523 * 524 * Forwarding (in and out) 525 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 526 * 527 * IP Policy Framework processing (IPPF processing) 528 * Policy processing for a packet is initiated by ip_process, which ascertains 529 * that the classifier (ipgpc) is loaded and configured, failing which the 530 * packet resumes normal processing in IP. If the clasifier is present, the 531 * packet is acted upon by one or more IPQoS modules (action instances), per 532 * filters configured in ipgpc and resumes normal IP processing thereafter. 533 * An action instance can drop a packet in course of its processing. 534 * 535 * A boolean variable, ip_policy, is used in all the fanout routines that can 536 * invoke ip_process for a packet. This variable indicates if the packet should 537 * to be sent for policy processing. The variable is set to B_TRUE by default, 538 * i.e. when the routines are invoked in the normal ip procesing path for a 539 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 540 * ip_policy is set to B_FALSE for all the routines called in these two 541 * functions because, in the former case, we don't process loopback traffic 542 * currently while in the latter, the packets have already been processed in 543 * icmp_inbound. 544 * 545 * Zones notes: 546 * 547 * The partitioning rules for networking are as follows: 548 * 1) Packets coming from a zone must have a source address belonging to that 549 * zone. 550 * 2) Packets coming from a zone can only be sent on a physical interface on 551 * which the zone has an IP address. 552 * 3) Between two zones on the same machine, packet delivery is only allowed if 553 * there's a matching route for the destination and zone in the forwarding 554 * table. 555 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 556 * different zones can bind to the same port with the wildcard address 557 * (INADDR_ANY). 558 * 559 * The granularity of interface partitioning is at the logical interface level. 560 * Therefore, every zone has its own IP addresses, and incoming packets can be 561 * attributed to a zone unambiguously. A logical interface is placed into a zone 562 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 563 * structure. Rule (1) is implemented by modifying the source address selection 564 * algorithm so that the list of eligible addresses is filtered based on the 565 * sending process zone. 566 * 567 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 568 * across all zones, depending on their type. Here is the break-up: 569 * 570 * IRE type Shared/exclusive 571 * -------- ---------------- 572 * IRE_BROADCAST Exclusive 573 * IRE_DEFAULT (default routes) Shared (*) 574 * IRE_LOCAL Exclusive 575 * IRE_LOOPBACK Exclusive 576 * IRE_PREFIX (net routes) Shared (*) 577 * IRE_CACHE Exclusive 578 * IRE_IF_NORESOLVER (interface routes) Exclusive 579 * IRE_IF_RESOLVER (interface routes) Exclusive 580 * IRE_HOST (host routes) Shared (*) 581 * 582 * (*) A zone can only use a default or off-subnet route if the gateway is 583 * directly reachable from the zone, that is, if the gateway's address matches 584 * one of the zone's logical interfaces. 585 * 586 * Multiple zones can share a common broadcast address; typically all zones 587 * share the 255.255.255.255 address. Incoming as well as locally originated 588 * broadcast packets must be dispatched to all the zones on the broadcast 589 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 590 * since some zones may not be on the 10.16.72/24 network. To handle this, each 591 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 592 * sent to every zone that has an IRE_BROADCAST entry for the destination 593 * address on the input ill, see conn_wantpacket(). 594 * 595 * Applications in different zones can join the same multicast group address. 596 * For IPv4, group memberships are per-logical interface, so they're already 597 * inherently part of a zone. For IPv6, group memberships are per-physical 598 * interface, so we distinguish IPv6 group memberships based on group address, 599 * interface and zoneid. In both cases, received multicast packets are sent to 600 * every zone for which a group membership entry exists. On IPv6 we need to 601 * check that the target zone still has an address on the receiving physical 602 * interface; it could have been removed since the application issued the 603 * IPV6_JOIN_GROUP. 604 */ 605 606 /* 607 * Squeue Fanout flags: 608 * 0: No fanout. 609 * 1: Fanout across all squeues 610 */ 611 boolean_t ip_squeue_fanout = 0; 612 613 /* 614 * Maximum dups allowed per packet. 615 */ 616 uint_t ip_max_frag_dups = 10; 617 618 #define IS_SIMPLE_IPH(ipha) \ 619 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 620 621 /* RFC1122 Conformance */ 622 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 623 624 #define ILL_MAX_NAMELEN LIFNAMSIZ 625 626 /* Leave room for ip_newroute to tack on the src and target addresses */ 627 #define OK_RESOLVER_MP(mp) \ 628 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 629 630 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 631 632 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 633 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 634 635 static void icmp_frag_needed(queue_t *, mblk_t *, int); 636 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 637 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 638 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *); 639 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 640 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 641 ill_t *, zoneid_t); 642 static void icmp_options_update(ipha_t *); 643 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 644 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 645 static mblk_t *icmp_pkt_err_ok(mblk_t *); 646 static void icmp_redirect(mblk_t *); 647 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 648 649 static void ip_arp_news(queue_t *, mblk_t *); 650 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 651 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 652 char *ip_dot_addr(ipaddr_t, char *); 653 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 654 int ip_close(queue_t *, int); 655 static char *ip_dot_saddr(uchar_t *, char *); 656 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 657 boolean_t, boolean_t, ill_t *, zoneid_t); 658 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 659 boolean_t, boolean_t, zoneid_t); 660 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 661 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 662 static void ip_lrput(queue_t *, mblk_t *); 663 ipaddr_t ip_massage_options(ipha_t *); 664 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 665 ipaddr_t ip_net_mask(ipaddr_t); 666 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 667 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 668 conn_t *, uint32_t); 669 static int ip_hdr_complete(ipha_t *, zoneid_t); 670 char *ip_nv_lookup(nv_t *, int); 671 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 672 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 673 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 674 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 675 size_t); 676 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 677 void ip_rput(queue_t *, mblk_t *); 678 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 679 void *dummy_arg); 680 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 681 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 682 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 683 ire_t *); 684 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 685 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 686 uint16_t *); 687 int ip_snmp_get(queue_t *, mblk_t *); 688 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 689 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 690 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 691 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 692 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 693 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 694 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 695 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 696 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 697 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 698 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 699 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 700 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 701 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 702 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 703 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 704 static void ip_snmp_get2_v4(ire_t *, listptr_t []); 705 static void ip_snmp_get2_v6_route(ire_t *, listptr_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, listptr_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 711 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 712 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 713 static void ip_wput_local_options(ipha_t *); 714 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 715 zoneid_t); 716 717 static void conn_drain_init(void); 718 static void conn_drain_fini(void); 719 static void conn_drain_tail(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(void); 722 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 723 zoneid_t); 724 725 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 726 zoneid_t); 727 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 728 void *dummy_arg); 729 730 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 731 732 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 733 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 734 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 735 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 736 737 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 738 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 739 caddr_t, cred_t *); 740 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 741 caddr_t cp, cred_t *cr); 742 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 743 cred_t *); 744 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 745 caddr_t cp, cred_t *cr); 746 static int ip_fanout_set(queue_t *, mblk_t *, char *, caddr_t, 747 cred_t *); 748 static squeue_func_t ip_squeue_switch(int); 749 750 static void ip_kstat_init(void); 751 static void ip_kstat_fini(void); 752 static int ip_kstat_update(kstat_t *kp, int rw); 753 static void icmp_kstat_init(void); 754 static void icmp_kstat_fini(void); 755 static int icmp_kstat_update(kstat_t *kp, int rw); 756 757 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 758 759 static boolean_t ip_no_forward(ipha_t *, ill_t *); 760 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 761 762 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 763 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 764 765 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 766 767 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 768 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 769 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 770 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 771 772 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 773 uint_t ip_ire_default_index; /* Walking index used to mod in */ 774 775 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 776 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 777 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 778 779 /* How long, in seconds, we allow frags to hang around. */ 780 #define IP_FRAG_TIMEOUT 60 781 782 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 783 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 784 785 /* 786 * Threshold which determines whether MDT should be used when 787 * generating IP fragments; payload size must be greater than 788 * this threshold for MDT to take place. 789 */ 790 #define IP_WPUT_FRAG_MDT_MIN 32768 791 792 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 793 794 /* Protected by ip_mi_lock */ 795 static void *ip_g_head; /* Instance Data List Head */ 796 kmutex_t ip_mi_lock; /* Lock for list of instances */ 797 798 /* Only modified during _init and _fini thus no locking is needed. */ 799 caddr_t ip_g_nd; /* Named Dispatch List Head */ 800 801 802 static long ip_rput_pullups; 803 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 804 805 vmem_t *ip_minor_arena; 806 807 /* 808 * MIB-2 stuff for SNMP (both IP and ICMP) 809 */ 810 mib2_ip_t ip_mib; 811 mib2_icmp_t icmp_mib; 812 813 #ifdef DEBUG 814 uint32_t ipsechw_debug = 0; 815 #endif 816 817 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 818 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 819 820 uint_t loopback_packets = 0; 821 822 /* 823 * Multirouting/CGTP stuff 824 */ 825 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 826 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 827 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 828 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 829 hrtime_t ip_multirt_log_interval = 1000; 830 /* Time since last warning issued. */ 831 static hrtime_t multirt_bad_mtu_last_time = 0; 832 833 kmutex_t ip_trash_timer_lock; 834 krwlock_t ip_g_nd_lock; 835 836 /* 837 * XXX following really should only be in a header. Would need more 838 * header and .c clean up first. 839 */ 840 extern optdb_obj_t ip_opt_obj; 841 842 ulong_t ip_squeue_enter_unbound = 0; 843 844 /* 845 * Named Dispatch Parameter Table. 846 * All of these are alterable, within the min/max values given, at run time. 847 */ 848 static ipparam_t lcl_param_arr[] = { 849 /* min max value name */ 850 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 851 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 852 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 853 { 0, 1, 0, "ip_respond_to_timestamp"}, 854 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 855 { 0, 1, 1, "ip_send_redirects"}, 856 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 857 { 0, 10, 0, "ip_debug"}, 858 { 0, 10, 0, "ip_mrtdebug"}, 859 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 860 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 861 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 862 { 1, 255, 255, "ip_def_ttl" }, 863 { 0, 1, 0, "ip_forward_src_routed"}, 864 { 0, 256, 32, "ip_wroff_extra" }, 865 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 866 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 867 { 0, 1, 1, "ip_path_mtu_discovery" }, 868 { 0, 240, 30, "ip_ignore_delete_time" }, 869 { 0, 1, 0, "ip_ignore_redirect" }, 870 { 0, 1, 1, "ip_output_queue" }, 871 { 1, 254, 1, "ip_broadcast_ttl" }, 872 { 0, 99999, 100, "ip_icmp_err_interval" }, 873 { 1, 99999, 10, "ip_icmp_err_burst" }, 874 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 875 { 0, 1, 0, "ip_strict_dst_multihoming" }, 876 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 877 { 0, 1, 0, "ipsec_override_persocket_policy" }, 878 { 0, 1, 1, "icmp_accept_clear_messages" }, 879 { 0, 1, 1, "igmp_accept_clear_messages" }, 880 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 881 "ip_ndp_delay_first_probe_time"}, 882 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 883 "ip_ndp_max_unicast_solicit"}, 884 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 885 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 886 { 0, 1, 0, "ip6_forward_src_routed"}, 887 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 888 { 0, 1, 1, "ip6_send_redirects"}, 889 { 0, 1, 0, "ip6_ignore_redirect" }, 890 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 891 892 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 893 894 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 895 896 { 0, 1, 1, "pim_accept_clear_messages" }, 897 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 898 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 899 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 900 { 0, 15, 0, "ip_policy_mask" }, 901 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 902 { 0, 255, 1, "ip_multirt_ttl" }, 903 { 0, 1, 1, "ip_multidata_outbound" }, 904 #ifdef DEBUG 905 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 906 #endif 907 }; 908 909 ipparam_t *ip_param_arr = lcl_param_arr; 910 911 /* Extended NDP table */ 912 static ipndp_t lcl_ndp_arr[] = { 913 /* getf setf data name */ 914 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 915 "ip_forwarding" }, 916 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 917 "ip6_forwarding" }, 918 { ip_ill_report, NULL, NULL, 919 "ip_ill_status" }, 920 { ip_ipif_report, NULL, NULL, 921 "ip_ipif_status" }, 922 { ip_ire_report, NULL, NULL, 923 "ipv4_ire_status" }, 924 { ip_ire_report_mrtun, NULL, NULL, 925 "ipv4_mrtun_ire_status" }, 926 { ip_ire_report_srcif, NULL, NULL, 927 "ipv4_srcif_ire_status" }, 928 { ip_ire_report_v6, NULL, NULL, 929 "ipv6_ire_status" }, 930 { ip_conn_report, NULL, NULL, 931 "ip_conn_status" }, 932 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 933 "ip_rput_pullups" }, 934 { ndp_report, NULL, NULL, 935 "ip_ndp_cache_report" }, 936 { ip_srcid_report, NULL, NULL, 937 "ip_srcid_status" }, 938 { ip_param_generic_get, ip_squeue_profile_set, 939 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 940 { ip_param_generic_get, ip_squeue_bind_set, 941 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 942 { ip_param_generic_get, ip_input_proc_set, 943 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 944 { ip_param_generic_get, ip_fanout_set, 945 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 946 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 947 "ip_cgtp_filter" } 948 }; 949 950 /* 951 * ip_g_forward controls IP forwarding. It takes two values: 952 * 0: IP_FORWARD_NEVER Don't forward packets ever. 953 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 954 * 955 * RFC1122 says there must be a configuration switch to control forwarding, 956 * but that the default MUST be to not forward packets ever. Implicit 957 * control based on configuration of multiple interfaces MUST NOT be 958 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 959 * and, in fact, it was the default. That capability is now provided in the 960 * /etc/rc2.d/S69inet script. 961 */ 962 int ip_g_forward = IP_FORWARD_DEFAULT; 963 964 /* It also has an IPv6 counterpart. */ 965 966 int ipv6_forward = IP_FORWARD_DEFAULT; 967 968 /* Following line is external, and in ip.h. Normally marked with * *. */ 969 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 970 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 971 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 972 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 973 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 974 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 975 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 976 #define ip_debug ip_param_arr[7].ip_param_value /* */ 977 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 978 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 979 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 980 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 981 #define ip_def_ttl ip_param_arr[12].ip_param_value 982 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 983 #define ip_wroff_extra ip_param_arr[14].ip_param_value 984 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 985 #define ip_icmp_return ip_param_arr[16].ip_param_value 986 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 987 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 988 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 989 #define ip_output_queue ip_param_arr[20].ip_param_value 990 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 991 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 992 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 993 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 994 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 995 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 996 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 997 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 998 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 999 1000 /* IPv6 configuration knobs */ 1001 #define delay_first_probe_time ip_param_arr[30].ip_param_value 1002 #define max_unicast_solicit ip_param_arr[31].ip_param_value 1003 #define ipv6_def_hops ip_param_arr[32].ip_param_value 1004 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 1005 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 1006 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 1007 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 1008 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 1009 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 1010 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 1011 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 1012 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 1013 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 1014 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 1015 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 1016 #define ip_policy_mask ip_param_arr[45].ip_param_value 1017 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 1018 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 1019 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 1020 #ifdef DEBUG 1021 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1022 #else 1023 #define ipv6_drop_inbound_icmpv6 0 1024 #endif 1025 1026 1027 /* 1028 * Table of IP ioctls encoding the various properties of the ioctl and 1029 * indexed based on the last byte of the ioctl command. Occasionally there 1030 * is a clash, and there is more than 1 ioctl with the same last byte. 1031 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1032 * ioctls are encoded in the misc table. An entry in the ndx table is 1033 * retrieved by indexing on the last byte of the ioctl command and comparing 1034 * the ioctl command with the value in the ndx table. In the event of a 1035 * mismatch the misc table is then searched sequentially for the desired 1036 * ioctl command. 1037 * 1038 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1039 */ 1040 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1041 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 1052 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1053 MISC_CMD, ip_siocaddrt, NULL }, 1054 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1055 MISC_CMD, ip_siocdelrt, NULL }, 1056 1057 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1058 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1059 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1060 IF_CMD, ip_sioctl_get_addr, NULL }, 1061 1062 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1063 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1064 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1065 IPI_GET_CMD | IPI_REPL, 1066 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1067 1068 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1069 IPI_PRIV | IPI_WR | IPI_REPL, 1070 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1071 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1072 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1073 IF_CMD, ip_sioctl_get_flags, NULL }, 1074 1075 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 1078 /* copyin size cannot be coded for SIOCGIFCONF */ 1079 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1080 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1081 1082 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1083 IF_CMD, ip_sioctl_mtu, NULL }, 1084 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1085 IF_CMD, ip_sioctl_get_mtu, NULL }, 1086 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1087 IPI_GET_CMD | IPI_REPL, 1088 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1089 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1090 IF_CMD, ip_sioctl_brdaddr, NULL }, 1091 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1092 IPI_GET_CMD | IPI_REPL, 1093 IF_CMD, ip_sioctl_get_netmask, NULL }, 1094 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1095 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1096 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1097 IPI_GET_CMD | IPI_REPL, 1098 IF_CMD, ip_sioctl_get_metric, NULL }, 1099 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1100 IF_CMD, ip_sioctl_metric, NULL }, 1101 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 1103 /* See 166-168 below for extended SIOC*XARP ioctls */ 1104 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1105 MISC_CMD, ip_sioctl_arp, NULL }, 1106 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1107 MISC_CMD, ip_sioctl_arp, NULL }, 1108 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1109 MISC_CMD, ip_sioctl_arp, NULL }, 1110 1111 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 1133 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1134 MISC_CMD, if_unitsel, if_unitsel_restart }, 1135 1136 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 1155 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1156 IPI_PRIV | IPI_WR | IPI_MODOK, 1157 IF_CMD, ip_sioctl_sifname, NULL }, 1158 1159 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 1173 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1174 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1175 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1176 IF_CMD, ip_sioctl_get_muxid, NULL }, 1177 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1178 IPI_PRIV | IPI_WR | IPI_REPL, 1179 IF_CMD, ip_sioctl_muxid, NULL }, 1180 1181 /* Both if and lif variants share same func */ 1182 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1183 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1184 /* Both if and lif variants share same func */ 1185 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1186 IPI_PRIV | IPI_WR | IPI_REPL, 1187 IF_CMD, ip_sioctl_slifindex, NULL }, 1188 1189 /* copyin size cannot be coded for SIOCGIFCONF */ 1190 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1191 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1192 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1204 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1205 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1208 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1209 1210 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1211 IPI_PRIV | IPI_WR | IPI_REPL, 1212 LIF_CMD, ip_sioctl_removeif, 1213 ip_sioctl_removeif_restart }, 1214 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1215 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1216 LIF_CMD, ip_sioctl_addif, NULL }, 1217 #define SIOCLIFADDR_NDX 112 1218 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1219 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1220 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1221 IPI_GET_CMD | IPI_REPL, 1222 LIF_CMD, ip_sioctl_get_addr, NULL }, 1223 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1224 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1225 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1226 IPI_GET_CMD | IPI_REPL, 1227 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1228 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1229 IPI_PRIV | IPI_WR | IPI_REPL, 1230 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1231 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1232 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1233 LIF_CMD, ip_sioctl_get_flags, NULL }, 1234 1235 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1236 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1237 1238 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1239 ip_sioctl_get_lifconf, NULL }, 1240 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1241 LIF_CMD, ip_sioctl_mtu, NULL }, 1242 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1243 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1244 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1247 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1248 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1249 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1250 IPI_GET_CMD | IPI_REPL, 1251 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1252 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1253 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1254 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1255 IPI_GET_CMD | IPI_REPL, 1256 LIF_CMD, ip_sioctl_get_metric, NULL }, 1257 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1258 LIF_CMD, ip_sioctl_metric, NULL }, 1259 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1260 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1261 LIF_CMD, ip_sioctl_slifname, 1262 ip_sioctl_slifname_restart }, 1263 1264 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1265 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1266 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1269 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1270 IPI_PRIV | IPI_WR | IPI_REPL, 1271 LIF_CMD, ip_sioctl_muxid, NULL }, 1272 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1273 IPI_GET_CMD | IPI_REPL, 1274 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1275 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1276 IPI_PRIV | IPI_WR | IPI_REPL, 1277 LIF_CMD, ip_sioctl_slifindex, 0 }, 1278 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1279 LIF_CMD, ip_sioctl_token, NULL }, 1280 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1281 IPI_GET_CMD | IPI_REPL, 1282 LIF_CMD, ip_sioctl_get_token, NULL }, 1283 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1284 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1285 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1286 IPI_GET_CMD | IPI_REPL, 1287 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1288 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1289 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1290 1291 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1292 IPI_GET_CMD | IPI_REPL, 1293 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1294 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1295 LIF_CMD, ip_siocdelndp_v6, NULL }, 1296 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1297 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1298 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1299 LIF_CMD, ip_siocsetndp_v6, NULL }, 1300 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1301 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1302 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1303 MISC_CMD, ip_sioctl_tonlink, NULL }, 1304 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1305 MISC_CMD, ip_sioctl_tmysite, NULL }, 1306 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1307 TUN_CMD, ip_sioctl_tunparam, NULL }, 1308 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1309 IPI_PRIV | IPI_WR, 1310 TUN_CMD, ip_sioctl_tunparam, NULL }, 1311 1312 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1313 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1314 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1315 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1316 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1317 1318 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1319 IPI_PRIV | IPI_WR | IPI_REPL, 1320 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1321 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1322 IPI_PRIV | IPI_WR | IPI_REPL, 1323 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1324 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1325 IPI_PRIV | IPI_WR, 1326 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1327 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1328 IPI_GET_CMD | IPI_REPL, 1329 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1330 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1331 IPI_GET_CMD | IPI_REPL, 1332 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1333 1334 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1335 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1336 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1337 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1338 1339 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1340 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1341 1342 /* These are handled in ip_sioctl_copyin_setup itself */ 1343 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1344 MISC_CMD, NULL, NULL }, 1345 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1346 MISC_CMD, NULL, NULL }, 1347 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1348 1349 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1350 ip_sioctl_get_lifconf, NULL }, 1351 1352 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1353 MISC_CMD, ip_sioctl_xarp, NULL }, 1354 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1355 MISC_CMD, ip_sioctl_xarp, NULL }, 1356 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1357 MISC_CMD, ip_sioctl_xarp, NULL }, 1358 1359 /* SIOCPOPSOCKFS is not handled by IP */ 1360 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1361 1362 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1363 IPI_GET_CMD | IPI_REPL, 1364 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1365 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1366 IPI_PRIV | IPI_WR | IPI_REPL, 1367 LIF_CMD, ip_sioctl_slifzone, 1368 ip_sioctl_slifzone_restart }, 1369 /* 172-174 are SCTP ioctls and not handled by IP */ 1370 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1371 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1372 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1373 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1374 IPI_GET_CMD, LIF_CMD, 1375 ip_sioctl_get_lifusesrc, 0 }, 1376 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1377 IPI_PRIV | IPI_WR, 1378 LIF_CMD, ip_sioctl_slifusesrc, 1379 NULL }, 1380 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1381 ip_sioctl_get_lifsrcof, NULL }, 1382 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1383 MISC_CMD, ip_sioctl_msfilter, NULL }, 1384 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1385 MISC_CMD, ip_sioctl_msfilter, NULL }, 1386 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1387 MISC_CMD, ip_sioctl_msfilter, NULL }, 1388 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1389 MISC_CMD, ip_sioctl_msfilter, NULL }, 1390 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1391 ip_sioctl_set_ipmpfailback, NULL } 1392 }; 1393 1394 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1395 1396 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1397 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1398 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1399 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1400 TUN_CMD, ip_sioctl_tunparam, NULL }, 1401 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1402 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1403 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1404 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1405 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1406 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1407 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1408 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1409 MISC_CMD, mrt_ioctl}, 1410 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1411 MISC_CMD, mrt_ioctl}, 1412 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1413 MISC_CMD, mrt_ioctl} 1414 }; 1415 1416 int ip_misc_ioctl_count = 1417 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1418 1419 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1420 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1421 static int conn_drain_list_index; /* Next drain_list to be used */ 1422 int conn_drain_nthreads; /* Number of drainers reqd. */ 1423 /* Settable in /etc/system */ 1424 1425 /* Defined in ip_ire.c */ 1426 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1427 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1428 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1429 1430 static nv_t ire_nv_arr[] = { 1431 { IRE_BROADCAST, "BROADCAST" }, 1432 { IRE_LOCAL, "LOCAL" }, 1433 { IRE_LOOPBACK, "LOOPBACK" }, 1434 { IRE_CACHE, "CACHE" }, 1435 { IRE_DEFAULT, "DEFAULT" }, 1436 { IRE_PREFIX, "PREFIX" }, 1437 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1438 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1439 { IRE_HOST, "HOST" }, 1440 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1441 { 0 } 1442 }; 1443 1444 nv_t *ire_nv_tbl = ire_nv_arr; 1445 1446 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1447 extern krwlock_t ipsec_capab_ills_lock; 1448 1449 /* Packet dropper for IP IPsec processing failures */ 1450 ipdropper_t ip_dropper; 1451 1452 /* Simple ICMP IP Header Template */ 1453 static ipha_t icmp_ipha = { 1454 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1455 }; 1456 1457 struct module_info ip_mod_info = { 1458 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1459 }; 1460 1461 static struct qinit rinit = { 1462 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1463 &ip_mod_info 1464 }; 1465 1466 static struct qinit winit = { 1467 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1468 &ip_mod_info 1469 }; 1470 1471 static struct qinit lrinit = { 1472 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1473 &ip_mod_info 1474 }; 1475 1476 static struct qinit lwinit = { 1477 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1478 &ip_mod_info 1479 }; 1480 1481 struct streamtab ipinfo = { 1482 &rinit, &winit, &lrinit, &lwinit 1483 }; 1484 1485 #ifdef DEBUG 1486 static boolean_t skip_sctp_cksum = B_FALSE; 1487 #endif 1488 /* 1489 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1490 */ 1491 mblk_t * 1492 ip_copymsg(mblk_t *mp) 1493 { 1494 mblk_t *nmp; 1495 ipsec_info_t *in; 1496 1497 if (mp->b_datap->db_type != M_CTL) 1498 return (copymsg(mp)); 1499 1500 in = (ipsec_info_t *)mp->b_rptr; 1501 1502 /* 1503 * Note that M_CTL is also used for delivering ICMP error messages 1504 * upstream to transport layers. 1505 */ 1506 if (in->ipsec_info_type != IPSEC_OUT && 1507 in->ipsec_info_type != IPSEC_IN) 1508 return (copymsg(mp)); 1509 1510 nmp = copymsg(mp->b_cont); 1511 1512 if (in->ipsec_info_type == IPSEC_OUT) 1513 return (ipsec_out_tag(mp, nmp)); 1514 else 1515 return (ipsec_in_tag(mp, nmp)); 1516 } 1517 1518 /* Generate an ICMP fragmentation needed message. */ 1519 static void 1520 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1521 { 1522 icmph_t icmph; 1523 mblk_t *first_mp; 1524 boolean_t mctl_present; 1525 1526 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1527 1528 if (!(mp = icmp_pkt_err_ok(mp))) { 1529 if (mctl_present) 1530 freeb(first_mp); 1531 return; 1532 } 1533 1534 bzero(&icmph, sizeof (icmph_t)); 1535 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1536 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1537 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1538 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1539 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1540 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1541 } 1542 1543 /* 1544 * icmp_inbound deals with ICMP messages in the following ways. 1545 * 1546 * 1) It needs to send a reply back and possibly delivering it 1547 * to the "interested" upper clients. 1548 * 2) It needs to send it to the upper clients only. 1549 * 3) It needs to change some values in IP only. 1550 * 4) It needs to change some values in IP and upper layers e.g TCP. 1551 * 1552 * We need to accomodate icmp messages coming in clear until we get 1553 * everything secure from the wire. If icmp_accept_clear_messages 1554 * is zero we check with the global policy and act accordingly. If 1555 * it is non-zero, we accept the message without any checks. But 1556 * *this does not mean* that this will be delivered to the upper 1557 * clients. By accepting we might send replies back, change our MTU 1558 * value etc. but delivery to the ULP/clients depends on their policy 1559 * dispositions. 1560 * 1561 * We handle the above 4 cases in the context of IPSEC in the 1562 * following way : 1563 * 1564 * 1) Send the reply back in the same way as the request came in. 1565 * If it came in encrypted, it goes out encrypted. If it came in 1566 * clear, it goes out in clear. Thus, this will prevent chosen 1567 * plain text attack. 1568 * 2) The client may or may not expect things to come in secure. 1569 * If it comes in secure, the policy constraints are checked 1570 * before delivering it to the upper layers. If it comes in 1571 * clear, ipsec_inbound_accept_clear will decide whether to 1572 * accept this in clear or not. In both the cases, if the returned 1573 * message (IP header + 8 bytes) that caused the icmp message has 1574 * AH/ESP headers, it is sent up to AH/ESP for validation before 1575 * sending up. If there are only 8 bytes of returned message, then 1576 * upper client will not be notified. 1577 * 3) Check with global policy to see whether it matches the constaints. 1578 * But this will be done only if icmp_accept_messages_in_clear is 1579 * zero. 1580 * 4) If we need to change both in IP and ULP, then the decision taken 1581 * while affecting the values in IP and while delivering up to TCP 1582 * should be the same. 1583 * 1584 * There are two cases. 1585 * 1586 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1587 * failed), we will not deliver it to the ULP, even though they 1588 * are *willing* to accept in *clear*. This is fine as our global 1589 * disposition to icmp messages asks us reject the datagram. 1590 * 1591 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1592 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1593 * to deliver it to ULP (policy failed), it can lead to 1594 * consistency problems. The cases known at this time are 1595 * ICMP_DESTINATION_UNREACHABLE messages with following code 1596 * values : 1597 * 1598 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1599 * and Upper layer rejects. Then the communication will 1600 * come to a stop. This is solved by making similar decisions 1601 * at both levels. Currently, when we are unable to deliver 1602 * to the Upper Layer (due to policy failures) while IP has 1603 * adjusted ire_max_frag, the next outbound datagram would 1604 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1605 * will be with the right level of protection. Thus the right 1606 * value will be communicated even if we are not able to 1607 * communicate when we get from the wire initially. But this 1608 * assumes there would be at least one outbound datagram after 1609 * IP has adjusted its ire_max_frag value. To make things 1610 * simpler, we accept in clear after the validation of 1611 * AH/ESP headers. 1612 * 1613 * - Other ICMP ERRORS : We may not be able to deliver it to the 1614 * upper layer depending on the level of protection the upper 1615 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1616 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1617 * should be accepted in clear when the Upper layer expects secure. 1618 * Thus the communication may get aborted by some bad ICMP 1619 * packets. 1620 * 1621 * IPQoS Notes: 1622 * The only instance when a packet is sent for processing is when there 1623 * isn't an ICMP client and if we are interested in it. 1624 * If there is a client, IPPF processing will take place in the 1625 * ip_fanout_proto routine. 1626 * 1627 * Zones notes: 1628 * The packet is only processed in the context of the specified zone: typically 1629 * only this zone will reply to an echo request, and only interested clients in 1630 * this zone will receive a copy of the packet. This means that the caller must 1631 * call icmp_inbound() for each relevant zone. 1632 */ 1633 static void 1634 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1635 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1636 ill_t *recv_ill, zoneid_t zoneid) 1637 { 1638 icmph_t *icmph; 1639 ipha_t *ipha; 1640 int iph_hdr_length; 1641 int hdr_length; 1642 boolean_t interested; 1643 uint32_t ts; 1644 uchar_t *wptr; 1645 ipif_t *ipif; 1646 mblk_t *first_mp; 1647 ipsec_in_t *ii; 1648 ire_t *src_ire; 1649 boolean_t onlink; 1650 timestruc_t now; 1651 uint32_t ill_index; 1652 1653 ASSERT(ill != NULL); 1654 1655 first_mp = mp; 1656 if (mctl_present) { 1657 mp = first_mp->b_cont; 1658 ASSERT(mp != NULL); 1659 } 1660 1661 ipha = (ipha_t *)mp->b_rptr; 1662 if (icmp_accept_clear_messages == 0) { 1663 first_mp = ipsec_check_global_policy(first_mp, NULL, 1664 ipha, NULL, mctl_present); 1665 if (first_mp == NULL) 1666 return; 1667 } 1668 /* 1669 * We have accepted the ICMP message. It means that we will 1670 * respond to the packet if needed. It may not be delivered 1671 * to the upper client depending on the policy constraints 1672 * and the disposition in ipsec_inbound_accept_clear. 1673 */ 1674 1675 ASSERT(ill != NULL); 1676 1677 BUMP_MIB(&icmp_mib, icmpInMsgs); 1678 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1679 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1680 /* Last chance to get real. */ 1681 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1682 BUMP_MIB(&icmp_mib, icmpInErrors); 1683 freemsg(first_mp); 1684 return; 1685 } 1686 /* Refresh iph following the pullup. */ 1687 ipha = (ipha_t *)mp->b_rptr; 1688 } 1689 /* ICMP header checksum, including checksum field, should be zero. */ 1690 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1691 IP_CSUM(mp, iph_hdr_length, 0)) { 1692 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1693 freemsg(first_mp); 1694 return; 1695 } 1696 /* The IP header will always be a multiple of four bytes */ 1697 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1698 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1699 icmph->icmph_code)); 1700 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1701 /* We will set "interested" to "true" if we want a copy */ 1702 interested = B_FALSE; 1703 switch (icmph->icmph_type) { 1704 case ICMP_ECHO_REPLY: 1705 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1706 break; 1707 case ICMP_DEST_UNREACHABLE: 1708 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1709 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1710 interested = B_TRUE; /* Pass up to transport */ 1711 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1712 break; 1713 case ICMP_SOURCE_QUENCH: 1714 interested = B_TRUE; /* Pass up to transport */ 1715 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1716 break; 1717 case ICMP_REDIRECT: 1718 if (!ip_ignore_redirect) 1719 interested = B_TRUE; 1720 BUMP_MIB(&icmp_mib, icmpInRedirects); 1721 break; 1722 case ICMP_ECHO_REQUEST: 1723 /* 1724 * Whether to respond to echo requests that come in as IP 1725 * broadcasts or as IP multicast is subject to debate 1726 * (what isn't?). We aim to please, you pick it. 1727 * Default is do it. 1728 */ 1729 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1730 /* unicast: always respond */ 1731 interested = B_TRUE; 1732 } else if (CLASSD(ipha->ipha_dst)) { 1733 /* multicast: respond based on tunable */ 1734 interested = ip_g_resp_to_echo_mcast; 1735 } else if (broadcast) { 1736 /* broadcast: respond based on tunable */ 1737 interested = ip_g_resp_to_echo_bcast; 1738 } 1739 BUMP_MIB(&icmp_mib, icmpInEchos); 1740 break; 1741 case ICMP_ROUTER_ADVERTISEMENT: 1742 case ICMP_ROUTER_SOLICITATION: 1743 break; 1744 case ICMP_TIME_EXCEEDED: 1745 interested = B_TRUE; /* Pass up to transport */ 1746 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1747 break; 1748 case ICMP_PARAM_PROBLEM: 1749 interested = B_TRUE; /* Pass up to transport */ 1750 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1751 break; 1752 case ICMP_TIME_STAMP_REQUEST: 1753 /* Response to Time Stamp Requests is local policy. */ 1754 if (ip_g_resp_to_timestamp && 1755 /* So is whether to respond if it was an IP broadcast. */ 1756 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1757 int tstamp_len = 3 * sizeof (uint32_t); 1758 1759 if (wptr + tstamp_len > mp->b_wptr) { 1760 if (!pullupmsg(mp, wptr + tstamp_len - 1761 mp->b_rptr)) { 1762 BUMP_MIB(&ip_mib, ipInDiscards); 1763 freemsg(first_mp); 1764 return; 1765 } 1766 /* Refresh ipha following the pullup. */ 1767 ipha = (ipha_t *)mp->b_rptr; 1768 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1769 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1770 } 1771 interested = B_TRUE; 1772 } 1773 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1774 break; 1775 case ICMP_TIME_STAMP_REPLY: 1776 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1777 break; 1778 case ICMP_INFO_REQUEST: 1779 /* Per RFC 1122 3.2.2.7, ignore this. */ 1780 case ICMP_INFO_REPLY: 1781 break; 1782 case ICMP_ADDRESS_MASK_REQUEST: 1783 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1784 /* TODO m_pullup of complete header? */ 1785 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1786 interested = B_TRUE; 1787 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1788 break; 1789 case ICMP_ADDRESS_MASK_REPLY: 1790 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1791 break; 1792 default: 1793 interested = B_TRUE; /* Pass up to transport */ 1794 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1795 break; 1796 } 1797 /* See if there is an ICMP client. */ 1798 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1799 /* If there is an ICMP client and we want one too, copy it. */ 1800 mblk_t *first_mp1; 1801 1802 if (!interested) { 1803 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1804 ip_policy, recv_ill, zoneid); 1805 return; 1806 } 1807 first_mp1 = ip_copymsg(first_mp); 1808 if (first_mp1 != NULL) { 1809 ip_fanout_proto(q, first_mp1, ill, ipha, 1810 0, mctl_present, ip_policy, recv_ill, zoneid); 1811 } 1812 } else if (!interested) { 1813 freemsg(first_mp); 1814 return; 1815 } else { 1816 /* 1817 * Initiate policy processing for this packet if ip_policy 1818 * is true. 1819 */ 1820 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1821 ill_index = ill->ill_phyint->phyint_ifindex; 1822 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1823 if (mp == NULL) { 1824 if (mctl_present) { 1825 freeb(first_mp); 1826 } 1827 BUMP_MIB(&icmp_mib, icmpInErrors); 1828 return; 1829 } 1830 } 1831 } 1832 /* We want to do something with it. */ 1833 /* Check db_ref to make sure we can modify the packet. */ 1834 if (mp->b_datap->db_ref > 1) { 1835 mblk_t *first_mp1; 1836 1837 first_mp1 = ip_copymsg(first_mp); 1838 freemsg(first_mp); 1839 if (!first_mp1) { 1840 BUMP_MIB(&icmp_mib, icmpOutDrops); 1841 return; 1842 } 1843 first_mp = first_mp1; 1844 if (mctl_present) { 1845 mp = first_mp->b_cont; 1846 ASSERT(mp != NULL); 1847 } else { 1848 mp = first_mp; 1849 } 1850 ipha = (ipha_t *)mp->b_rptr; 1851 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1852 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1853 } 1854 switch (icmph->icmph_type) { 1855 case ICMP_ADDRESS_MASK_REQUEST: 1856 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1857 if (ipif == NULL) { 1858 freemsg(first_mp); 1859 return; 1860 } 1861 /* 1862 * outging interface must be IPv4 1863 */ 1864 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1865 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1866 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1867 ipif_refrele(ipif); 1868 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1869 break; 1870 case ICMP_ECHO_REQUEST: 1871 icmph->icmph_type = ICMP_ECHO_REPLY; 1872 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1873 break; 1874 case ICMP_TIME_STAMP_REQUEST: { 1875 uint32_t *tsp; 1876 1877 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1878 tsp = (uint32_t *)wptr; 1879 tsp++; /* Skip past 'originate time' */ 1880 /* Compute # of milliseconds since midnight */ 1881 gethrestime(&now); 1882 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1883 now.tv_nsec / (NANOSEC / MILLISEC); 1884 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1885 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1886 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1887 break; 1888 } 1889 default: 1890 ipha = (ipha_t *)&icmph[1]; 1891 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1892 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1893 BUMP_MIB(&ip_mib, ipInDiscards); 1894 freemsg(first_mp); 1895 return; 1896 } 1897 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1898 ipha = (ipha_t *)&icmph[1]; 1899 } 1900 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1901 BUMP_MIB(&ip_mib, ipInDiscards); 1902 freemsg(first_mp); 1903 return; 1904 } 1905 hdr_length = IPH_HDR_LENGTH(ipha); 1906 if (hdr_length < sizeof (ipha_t)) { 1907 BUMP_MIB(&ip_mib, ipInDiscards); 1908 freemsg(first_mp); 1909 return; 1910 } 1911 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1912 if (!pullupmsg(mp, 1913 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1914 BUMP_MIB(&ip_mib, ipInDiscards); 1915 freemsg(first_mp); 1916 return; 1917 } 1918 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1919 ipha = (ipha_t *)&icmph[1]; 1920 } 1921 switch (icmph->icmph_type) { 1922 case ICMP_REDIRECT: 1923 /* 1924 * As there is no upper client to deliver, we don't 1925 * need the first_mp any more. 1926 */ 1927 if (mctl_present) { 1928 freeb(first_mp); 1929 } 1930 icmp_redirect(mp); 1931 return; 1932 case ICMP_DEST_UNREACHABLE: 1933 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1934 if (!icmp_inbound_too_big(icmph, ipha)) { 1935 freemsg(first_mp); 1936 return; 1937 } 1938 } 1939 /* FALLTHRU */ 1940 default : 1941 /* 1942 * IPQoS notes: Since we have already done IPQoS 1943 * processing we don't want to do it again in 1944 * the fanout routines called by 1945 * icmp_inbound_error_fanout, hence the last 1946 * argument, ip_policy, is B_FALSE. 1947 */ 1948 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1949 ipha, iph_hdr_length, hdr_length, mctl_present, 1950 B_FALSE, recv_ill, zoneid); 1951 } 1952 return; 1953 } 1954 /* Send out an ICMP packet */ 1955 icmph->icmph_checksum = 0; 1956 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1957 if (icmph->icmph_checksum == 0) 1958 icmph->icmph_checksum = 0xFFFF; 1959 if (broadcast || CLASSD(ipha->ipha_dst)) { 1960 ipif_t *ipif_chosen; 1961 /* 1962 * Make it look like it was directed to us, so we don't look 1963 * like a fool with a broadcast or multicast source address. 1964 */ 1965 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1966 /* 1967 * Make sure that we haven't grabbed an interface that's DOWN. 1968 */ 1969 if (ipif != NULL) { 1970 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1971 ipha->ipha_src, zoneid); 1972 if (ipif_chosen != NULL) { 1973 ipif_refrele(ipif); 1974 ipif = ipif_chosen; 1975 } 1976 } 1977 if (ipif == NULL) { 1978 ip0dbg(("icmp_inbound: " 1979 "No source for broadcast/multicast:\n" 1980 "\tsrc 0x%x dst 0x%x ill %p " 1981 "ipif_lcl_addr 0x%x\n", 1982 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1983 (void *)ill, 1984 ill->ill_ipif->ipif_lcl_addr)); 1985 freemsg(first_mp); 1986 return; 1987 } 1988 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1989 ipha->ipha_dst = ipif->ipif_src_addr; 1990 ipif_refrele(ipif); 1991 } 1992 /* Reset time to live. */ 1993 ipha->ipha_ttl = ip_def_ttl; 1994 { 1995 /* Swap source and destination addresses */ 1996 ipaddr_t tmp; 1997 1998 tmp = ipha->ipha_src; 1999 ipha->ipha_src = ipha->ipha_dst; 2000 ipha->ipha_dst = tmp; 2001 } 2002 ipha->ipha_ident = 0; 2003 if (!IS_SIMPLE_IPH(ipha)) 2004 icmp_options_update(ipha); 2005 2006 /* 2007 * ICMP echo replies should go out on the same interface 2008 * the request came on as probes used by in.mpathd for detecting 2009 * NIC failures are ECHO packets. We turn-off load spreading 2010 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2011 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2012 * function. This is in turn handled by ip_wput and ip_newroute 2013 * to make sure that the packet goes out on the interface it came 2014 * in on. If we don't turnoff load spreading, the packets might get 2015 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2016 * to go out and in.mpathd would wrongly detect a failure or 2017 * mis-detect a NIC failure for link failure. As load spreading 2018 * can happen only if ill_group is not NULL, we do only for 2019 * that case and this does not affect the normal case. 2020 * 2021 * We turn off load spreading only on echo packets that came from 2022 * on-link hosts. If the interface route has been deleted, this will 2023 * not be enforced as we can't do much. For off-link hosts, as the 2024 * default routes in IPv4 does not typically have an ire_ipif 2025 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2026 * Moreover, expecting a default route through this interface may 2027 * not be correct. We use ipha_dst because of the swap above. 2028 */ 2029 onlink = B_FALSE; 2030 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2031 /* 2032 * First, we need to make sure that it is not one of our 2033 * local addresses. If we set onlink when it is one of 2034 * our local addresses, we will end up creating IRE_CACHES 2035 * for one of our local addresses. Then, we will never 2036 * accept packets for them afterwards. 2037 */ 2038 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2039 NULL, ALL_ZONES, MATCH_IRE_TYPE); 2040 if (src_ire == NULL) { 2041 ipif = ipif_get_next_ipif(NULL, ill); 2042 if (ipif == NULL) { 2043 BUMP_MIB(&ip_mib, ipInDiscards); 2044 freemsg(mp); 2045 return; 2046 } 2047 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2048 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2049 MATCH_IRE_ILL | MATCH_IRE_TYPE); 2050 ipif_refrele(ipif); 2051 if (src_ire != NULL) { 2052 onlink = B_TRUE; 2053 ire_refrele(src_ire); 2054 } 2055 } else { 2056 ire_refrele(src_ire); 2057 } 2058 } 2059 if (!mctl_present) { 2060 /* 2061 * This packet should go out the same way as it 2062 * came in i.e in clear. To make sure that global 2063 * policy will not be applied to this in ip_wput_ire, 2064 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2065 */ 2066 ASSERT(first_mp == mp); 2067 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2068 BUMP_MIB(&ip_mib, ipInDiscards); 2069 freemsg(mp); 2070 return; 2071 } 2072 ii = (ipsec_in_t *)first_mp->b_rptr; 2073 2074 /* This is not a secure packet */ 2075 ii->ipsec_in_secure = B_FALSE; 2076 if (onlink) { 2077 ii->ipsec_in_attach_if = B_TRUE; 2078 ii->ipsec_in_ill_index = 2079 ill->ill_phyint->phyint_ifindex; 2080 ii->ipsec_in_rill_index = 2081 recv_ill->ill_phyint->phyint_ifindex; 2082 } 2083 first_mp->b_cont = mp; 2084 } else if (onlink) { 2085 ii = (ipsec_in_t *)first_mp->b_rptr; 2086 ii->ipsec_in_attach_if = B_TRUE; 2087 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2088 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2089 } else { 2090 ii = (ipsec_in_t *)first_mp->b_rptr; 2091 } 2092 ii->ipsec_in_zoneid = zoneid; 2093 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2094 BUMP_MIB(&ip_mib, ipInDiscards); 2095 return; 2096 } 2097 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2098 put(WR(q), first_mp); 2099 } 2100 2101 /* Table from RFC 1191 */ 2102 static int icmp_frag_size_table[] = 2103 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2104 2105 /* 2106 * Process received ICMP Packet too big. 2107 * After updating any IRE it does the fanout to any matching transport streams. 2108 * Assumes the message has been pulled up till the IP header that caused 2109 * the error. 2110 * 2111 * Returns B_FALSE on failure and B_TRUE on success. 2112 */ 2113 static boolean_t 2114 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha) 2115 { 2116 ire_t *ire, *first_ire; 2117 int mtu; 2118 int hdr_length; 2119 2120 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2121 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2122 2123 hdr_length = IPH_HDR_LENGTH(ipha); 2124 2125 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, NULL, 2126 ALL_ZONES, MATCH_IRE_TYPE); 2127 2128 if (!first_ire) { 2129 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2130 ntohl(ipha->ipha_dst))); 2131 return (B_FALSE); 2132 } 2133 /* Drop if the original packet contained a source route */ 2134 if (ip_source_route_included(ipha)) { 2135 ire_refrele(first_ire); 2136 return (B_FALSE); 2137 } 2138 /* Check for MTU discovery advice as described in RFC 1191 */ 2139 mtu = ntohs(icmph->icmph_du_mtu); 2140 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2141 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2142 ire = ire->ire_next) { 2143 mutex_enter(&ire->ire_lock); 2144 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2145 /* Reduce the IRE max frag value as advised. */ 2146 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2147 ip1dbg(("Received mtu from router: %d\n", mtu)); 2148 } else { 2149 uint32_t length; 2150 int i; 2151 2152 /* 2153 * Use the table from RFC 1191 to figure out 2154 * the next "plateau" based on the length in 2155 * the original IP packet. 2156 */ 2157 length = ntohs(ipha->ipha_length); 2158 if (ire->ire_max_frag <= length && 2159 ire->ire_max_frag >= length - hdr_length) { 2160 /* 2161 * Handle broken BSD 4.2 systems that 2162 * return the wrong iph_length in ICMP 2163 * errors. 2164 */ 2165 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2166 length, ire->ire_max_frag)); 2167 length -= hdr_length; 2168 } 2169 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2170 if (length > icmp_frag_size_table[i]) 2171 break; 2172 } 2173 if (i == A_CNT(icmp_frag_size_table)) { 2174 /* Smaller than 68! */ 2175 ip1dbg(("Too big for packet size %d\n", 2176 length)); 2177 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2178 ire->ire_frag_flag = 0; 2179 } else { 2180 mtu = icmp_frag_size_table[i]; 2181 ip1dbg(("Calculated mtu %d, packet size %d, " 2182 "before %d", mtu, length, 2183 ire->ire_max_frag)); 2184 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2185 ip1dbg((", after %d\n", ire->ire_max_frag)); 2186 } 2187 /* Record the new max frag size for the ULP. */ 2188 icmph->icmph_du_zero = 0; 2189 icmph->icmph_du_mtu = 2190 htons((uint16_t)ire->ire_max_frag); 2191 } 2192 mutex_exit(&ire->ire_lock); 2193 } 2194 rw_exit(&first_ire->ire_bucket->irb_lock); 2195 ire_refrele(first_ire); 2196 return (B_TRUE); 2197 } 2198 2199 /* 2200 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2201 * calls this function. 2202 */ 2203 static mblk_t * 2204 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2205 { 2206 ipha_t *ipha; 2207 icmph_t *icmph; 2208 ipha_t *in_ipha; 2209 int length; 2210 2211 ASSERT(mp->b_datap->db_type == M_DATA); 2212 2213 /* 2214 * For Self-encapsulated packets, we added an extra IP header 2215 * without the options. Inner IP header is the one from which 2216 * the outer IP header was formed. Thus, we need to remove the 2217 * outer IP header. To do this, we pullup the whole message 2218 * and overlay whatever follows the outer IP header over the 2219 * outer IP header. 2220 */ 2221 2222 if (!pullupmsg(mp, -1)) { 2223 BUMP_MIB(&ip_mib, ipInDiscards); 2224 return (NULL); 2225 } 2226 2227 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2228 ipha = (ipha_t *)&icmph[1]; 2229 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2230 2231 /* 2232 * The length that we want to overlay is following the inner 2233 * IP header. Subtracting the IP header + icmp header + outer 2234 * IP header's length should give us the length that we want to 2235 * overlay. 2236 */ 2237 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2238 hdr_length; 2239 /* 2240 * Overlay whatever follows the inner header over the 2241 * outer header. 2242 */ 2243 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2244 2245 /* Set the wptr to account for the outer header */ 2246 mp->b_wptr -= hdr_length; 2247 return (mp); 2248 } 2249 2250 /* 2251 * Try to pass the ICMP message upstream in case the ULP cares. 2252 * 2253 * If the packet that caused the ICMP error is secure, we send 2254 * it to AH/ESP to make sure that the attached packet has a 2255 * valid association. ipha in the code below points to the 2256 * IP header of the packet that caused the error. 2257 * 2258 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2259 * in the context of IPSEC. Normally we tell the upper layer 2260 * whenever we send the ire (including ip_bind), the IPSEC header 2261 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2262 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2263 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2264 * same thing. As TCP has the IPSEC options size that needs to be 2265 * adjusted, we just pass the MTU unchanged. 2266 * 2267 * IFN could have been generated locally or by some router. 2268 * 2269 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2270 * This happens because IP adjusted its value of MTU on an 2271 * earlier IFN message and could not tell the upper layer, 2272 * the new adjusted value of MTU e.g. Packet was encrypted 2273 * or there was not enough information to fanout to upper 2274 * layers. Thus on the next outbound datagram, ip_wput_ire 2275 * generates the IFN, where IPSEC processing has *not* been 2276 * done. 2277 * 2278 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2279 * could have generated this. This happens because ire_max_frag 2280 * value in IP was set to a new value, while the IPSEC processing 2281 * was being done and after we made the fragmentation check in 2282 * ip_wput_ire. Thus on return from IPSEC processing, 2283 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2284 * and generates the IFN. As IPSEC processing is over, we fanout 2285 * to AH/ESP to remove the header. 2286 * 2287 * In both these cases, ipsec_in_loopback will be set indicating 2288 * that IFN was generated locally. 2289 * 2290 * ROUTER : IFN could be secure or non-secure. 2291 * 2292 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2293 * packet in error has AH/ESP headers to validate the AH/ESP 2294 * headers. AH/ESP will verify whether there is a valid SA or 2295 * not and send it back. We will fanout again if we have more 2296 * data in the packet. 2297 * 2298 * If the packet in error does not have AH/ESP, we handle it 2299 * like any other case. 2300 * 2301 * * NON_SECURE : If the packet in error has AH/ESP headers, 2302 * we attach a dummy ipsec_in and send it up to AH/ESP 2303 * for validation. AH/ESP will verify whether there is a 2304 * valid SA or not and send it back. We will fanout again if 2305 * we have more data in the packet. 2306 * 2307 * If the packet in error does not have AH/ESP, we handle it 2308 * like any other case. 2309 */ 2310 static void 2311 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2312 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2313 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2314 zoneid_t zoneid) 2315 { 2316 uint16_t *up; /* Pointer to ports in ULP header */ 2317 uint32_t ports; /* reversed ports for fanout */ 2318 ipha_t ripha; /* With reversed addresses */ 2319 mblk_t *first_mp; 2320 ipsec_in_t *ii; 2321 tcph_t *tcph; 2322 conn_t *connp; 2323 2324 first_mp = mp; 2325 if (mctl_present) { 2326 mp = first_mp->b_cont; 2327 ASSERT(mp != NULL); 2328 2329 ii = (ipsec_in_t *)first_mp->b_rptr; 2330 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2331 } else { 2332 ii = NULL; 2333 } 2334 2335 switch (ipha->ipha_protocol) { 2336 case IPPROTO_UDP: 2337 /* 2338 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2339 * transport header. 2340 */ 2341 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2342 mp->b_wptr) { 2343 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2344 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2345 BUMP_MIB(&ip_mib, ipInDiscards); 2346 goto drop_pkt; 2347 } 2348 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2349 ipha = (ipha_t *)&icmph[1]; 2350 } 2351 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2352 2353 /* 2354 * Attempt to find a client stream based on port. 2355 * Note that we do a reverse lookup since the header is 2356 * in the form we sent it out. 2357 * The ripha header is only used for the IP_UDP_MATCH and we 2358 * only set the src and dst addresses and protocol. 2359 */ 2360 ripha.ipha_src = ipha->ipha_dst; 2361 ripha.ipha_dst = ipha->ipha_src; 2362 ripha.ipha_protocol = ipha->ipha_protocol; 2363 ((uint16_t *)&ports)[0] = up[1]; 2364 ((uint16_t *)&ports)[1] = up[0]; 2365 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2366 ntohl(ipha->ipha_src), ntohs(up[0]), 2367 ntohl(ipha->ipha_dst), ntohs(up[1]), 2368 icmph->icmph_type, icmph->icmph_code)); 2369 2370 /* Have to change db_type after any pullupmsg */ 2371 DB_TYPE(mp) = M_CTL; 2372 2373 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2374 mctl_present, ip_policy, recv_ill, zoneid); 2375 return; 2376 2377 case IPPROTO_TCP: 2378 /* 2379 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2380 * transport header. 2381 */ 2382 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2383 mp->b_wptr) { 2384 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2385 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2386 BUMP_MIB(&ip_mib, ipInDiscards); 2387 goto drop_pkt; 2388 } 2389 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2390 ipha = (ipha_t *)&icmph[1]; 2391 } 2392 /* 2393 * Find a TCP client stream for this packet. 2394 * Note that we do a reverse lookup since the header is 2395 * in the form we sent it out. 2396 */ 2397 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2398 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2399 if (connp == NULL) { 2400 BUMP_MIB(&ip_mib, ipInDiscards); 2401 goto drop_pkt; 2402 } 2403 2404 /* Have to change db_type after any pullupmsg */ 2405 DB_TYPE(mp) = M_CTL; 2406 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2407 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2408 return; 2409 2410 case IPPROTO_SCTP: 2411 /* 2412 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2413 * transport header. 2414 */ 2415 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2416 mp->b_wptr) { 2417 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2418 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2419 BUMP_MIB(&ip_mib, ipInDiscards); 2420 goto drop_pkt; 2421 } 2422 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2423 ipha = (ipha_t *)&icmph[1]; 2424 } 2425 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2426 /* 2427 * Find a SCTP client stream for this packet. 2428 * Note that we do a reverse lookup since the header is 2429 * in the form we sent it out. 2430 * The ripha header is only used for the matching and we 2431 * only set the src and dst addresses, protocol, and version. 2432 */ 2433 ripha.ipha_src = ipha->ipha_dst; 2434 ripha.ipha_dst = ipha->ipha_src; 2435 ripha.ipha_protocol = ipha->ipha_protocol; 2436 ripha.ipha_version_and_hdr_length = 2437 ipha->ipha_version_and_hdr_length; 2438 ((uint16_t *)&ports)[0] = up[1]; 2439 ((uint16_t *)&ports)[1] = up[0]; 2440 2441 /* Have to change db_type after any pullupmsg */ 2442 DB_TYPE(mp) = M_CTL; 2443 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2444 mctl_present, ip_policy, 0, zoneid); 2445 return; 2446 2447 case IPPROTO_ESP: 2448 case IPPROTO_AH: { 2449 int ipsec_rc; 2450 2451 /* 2452 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2453 * We will re-use the IPSEC_IN if it is already present as 2454 * AH/ESP will not affect any fields in the IPSEC_IN for 2455 * ICMP errors. If there is no IPSEC_IN, allocate a new 2456 * one and attach it in the front. 2457 */ 2458 if (ii != NULL) { 2459 /* 2460 * ip_fanout_proto_again converts the ICMP errors 2461 * that come back from AH/ESP to M_DATA so that 2462 * if it is non-AH/ESP and we do a pullupmsg in 2463 * this function, it would work. Convert it back 2464 * to M_CTL before we send up as this is a ICMP 2465 * error. This could have been generated locally or 2466 * by some router. Validate the inner IPSEC 2467 * headers. 2468 * 2469 * NOTE : ill_index is used by ip_fanout_proto_again 2470 * to locate the ill. 2471 */ 2472 ASSERT(ill != NULL); 2473 ii->ipsec_in_ill_index = 2474 ill->ill_phyint->phyint_ifindex; 2475 ii->ipsec_in_rill_index = 2476 recv_ill->ill_phyint->phyint_ifindex; 2477 DB_TYPE(first_mp->b_cont) = M_CTL; 2478 } else { 2479 /* 2480 * IPSEC_IN is not present. We attach a ipsec_in 2481 * message and send up to IPSEC for validating 2482 * and removing the IPSEC headers. Clear 2483 * ipsec_in_secure so that when we return 2484 * from IPSEC, we don't mistakenly think that this 2485 * is a secure packet came from the network. 2486 * 2487 * NOTE : ill_index is used by ip_fanout_proto_again 2488 * to locate the ill. 2489 */ 2490 ASSERT(first_mp == mp); 2491 first_mp = ipsec_in_alloc(B_TRUE); 2492 if (first_mp == NULL) { 2493 freemsg(mp); 2494 BUMP_MIB(&ip_mib, ipInDiscards); 2495 return; 2496 } 2497 ii = (ipsec_in_t *)first_mp->b_rptr; 2498 2499 /* This is not a secure packet */ 2500 ii->ipsec_in_secure = B_FALSE; 2501 first_mp->b_cont = mp; 2502 DB_TYPE(mp) = M_CTL; 2503 ASSERT(ill != NULL); 2504 ii->ipsec_in_ill_index = 2505 ill->ill_phyint->phyint_ifindex; 2506 ii->ipsec_in_rill_index = 2507 recv_ill->ill_phyint->phyint_ifindex; 2508 } 2509 ip2dbg(("icmp_inbound_error: ipsec\n")); 2510 2511 if (!ipsec_loaded()) { 2512 ip_proto_not_sup(q, first_mp, 0, zoneid); 2513 return; 2514 } 2515 2516 if (ipha->ipha_protocol == IPPROTO_ESP) 2517 ipsec_rc = ipsecesp_icmp_error(first_mp); 2518 else 2519 ipsec_rc = ipsecah_icmp_error(first_mp); 2520 if (ipsec_rc == IPSEC_STATUS_FAILED) 2521 return; 2522 2523 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2524 return; 2525 } 2526 default: 2527 /* 2528 * The ripha header is only used for the lookup and we 2529 * only set the src and dst addresses and protocol. 2530 */ 2531 ripha.ipha_src = ipha->ipha_dst; 2532 ripha.ipha_dst = ipha->ipha_src; 2533 ripha.ipha_protocol = ipha->ipha_protocol; 2534 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2535 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2536 ntohl(ipha->ipha_dst), 2537 icmph->icmph_type, icmph->icmph_code)); 2538 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2539 ipha_t *in_ipha; 2540 2541 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2542 mp->b_wptr) { 2543 if (!pullupmsg(mp, (uchar_t *)ipha + 2544 hdr_length + sizeof (ipha_t) - 2545 mp->b_rptr)) { 2546 2547 BUMP_MIB(&ip_mib, ipInDiscards); 2548 goto drop_pkt; 2549 } 2550 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2551 ipha = (ipha_t *)&icmph[1]; 2552 } 2553 /* 2554 * Caller has verified that length has to be 2555 * at least the size of IP header. 2556 */ 2557 ASSERT(hdr_length >= sizeof (ipha_t)); 2558 /* 2559 * Check the sanity of the inner IP header like 2560 * we did for the outer header. 2561 */ 2562 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2563 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2564 BUMP_MIB(&ip_mib, ipInDiscards); 2565 goto drop_pkt; 2566 } 2567 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2568 BUMP_MIB(&ip_mib, ipInDiscards); 2569 goto drop_pkt; 2570 } 2571 /* Check for Self-encapsulated tunnels */ 2572 if (in_ipha->ipha_src == ipha->ipha_src && 2573 in_ipha->ipha_dst == ipha->ipha_dst) { 2574 2575 mp = icmp_inbound_self_encap_error(mp, 2576 iph_hdr_length, hdr_length); 2577 if (mp == NULL) 2578 goto drop_pkt; 2579 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2580 ipha = (ipha_t *)&icmph[1]; 2581 hdr_length = IPH_HDR_LENGTH(ipha); 2582 /* 2583 * The packet in error is self-encapsualted. 2584 * And we are finding it further encapsulated 2585 * which we could not have possibly generated. 2586 */ 2587 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2588 BUMP_MIB(&ip_mib, ipInDiscards); 2589 goto drop_pkt; 2590 } 2591 icmp_inbound_error_fanout(q, ill, first_mp, 2592 icmph, ipha, iph_hdr_length, hdr_length, 2593 mctl_present, ip_policy, recv_ill, zoneid); 2594 return; 2595 } 2596 } 2597 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2598 ipha->ipha_protocol == IPPROTO_IPV6) && 2599 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2600 ii != NULL && 2601 ii->ipsec_in_loopback && 2602 ii->ipsec_in_secure) { 2603 /* 2604 * For IP tunnels that get a looped-back 2605 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2606 * reported new MTU to take into account the IPsec 2607 * headers protecting this configured tunnel. 2608 * 2609 * This allows the tunnel module (tun.c) to blindly 2610 * accept the MTU reported in an ICMP "too big" 2611 * message. 2612 * 2613 * Non-looped back ICMP messages will just be 2614 * handled by the security protocols (if needed), 2615 * and the first subsequent packet will hit this 2616 * path. 2617 */ 2618 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2619 ipsec_in_extra_length(first_mp)); 2620 } 2621 /* Have to change db_type after any pullupmsg */ 2622 DB_TYPE(mp) = M_CTL; 2623 2624 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2625 ip_policy, recv_ill, zoneid); 2626 return; 2627 } 2628 /* NOTREACHED */ 2629 drop_pkt:; 2630 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2631 freemsg(first_mp); 2632 } 2633 2634 /* 2635 * Common IP options parser. 2636 * 2637 * Setup routine: fill in *optp with options-parsing state, then 2638 * tail-call ipoptp_next to return the first option. 2639 */ 2640 uint8_t 2641 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2642 { 2643 uint32_t totallen; /* total length of all options */ 2644 2645 totallen = ipha->ipha_version_and_hdr_length - 2646 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2647 totallen <<= 2; 2648 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2649 optp->ipoptp_end = optp->ipoptp_next + totallen; 2650 optp->ipoptp_flags = 0; 2651 return (ipoptp_next(optp)); 2652 } 2653 2654 /* 2655 * Common IP options parser: extract next option. 2656 */ 2657 uint8_t 2658 ipoptp_next(ipoptp_t *optp) 2659 { 2660 uint8_t *end = optp->ipoptp_end; 2661 uint8_t *cur = optp->ipoptp_next; 2662 uint8_t opt, len, pointer; 2663 2664 /* 2665 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2666 * has been corrupted. 2667 */ 2668 ASSERT(cur <= end); 2669 2670 if (cur == end) 2671 return (IPOPT_EOL); 2672 2673 opt = cur[IPOPT_OPTVAL]; 2674 2675 /* 2676 * Skip any NOP options. 2677 */ 2678 while (opt == IPOPT_NOP) { 2679 cur++; 2680 if (cur == end) 2681 return (IPOPT_EOL); 2682 opt = cur[IPOPT_OPTVAL]; 2683 } 2684 2685 if (opt == IPOPT_EOL) 2686 return (IPOPT_EOL); 2687 2688 /* 2689 * Option requiring a length. 2690 */ 2691 if ((cur + 1) >= end) { 2692 optp->ipoptp_flags |= IPOPTP_ERROR; 2693 return (IPOPT_EOL); 2694 } 2695 len = cur[IPOPT_OLEN]; 2696 if (len < 2) { 2697 optp->ipoptp_flags |= IPOPTP_ERROR; 2698 return (IPOPT_EOL); 2699 } 2700 optp->ipoptp_cur = cur; 2701 optp->ipoptp_len = len; 2702 optp->ipoptp_next = cur + len; 2703 if (cur + len > end) { 2704 optp->ipoptp_flags |= IPOPTP_ERROR; 2705 return (IPOPT_EOL); 2706 } 2707 2708 /* 2709 * For the options which require a pointer field, make sure 2710 * its there, and make sure it points to either something 2711 * inside this option, or the end of the option. 2712 */ 2713 switch (opt) { 2714 case IPOPT_RR: 2715 case IPOPT_TS: 2716 case IPOPT_LSRR: 2717 case IPOPT_SSRR: 2718 if (len <= IPOPT_OFFSET) { 2719 optp->ipoptp_flags |= IPOPTP_ERROR; 2720 return (opt); 2721 } 2722 pointer = cur[IPOPT_OFFSET]; 2723 if (pointer - 1 > len) { 2724 optp->ipoptp_flags |= IPOPTP_ERROR; 2725 return (opt); 2726 } 2727 break; 2728 } 2729 2730 /* 2731 * Sanity check the pointer field based on the type of the 2732 * option. 2733 */ 2734 switch (opt) { 2735 case IPOPT_RR: 2736 case IPOPT_SSRR: 2737 case IPOPT_LSRR: 2738 if (pointer < IPOPT_MINOFF_SR) 2739 optp->ipoptp_flags |= IPOPTP_ERROR; 2740 break; 2741 case IPOPT_TS: 2742 if (pointer < IPOPT_MINOFF_IT) 2743 optp->ipoptp_flags |= IPOPTP_ERROR; 2744 /* 2745 * Note that the Internet Timestamp option also 2746 * contains two four bit fields (the Overflow field, 2747 * and the Flag field), which follow the pointer 2748 * field. We don't need to check that these fields 2749 * fall within the length of the option because this 2750 * was implicitely done above. We've checked that the 2751 * pointer value is at least IPOPT_MINOFF_IT, and that 2752 * it falls within the option. Since IPOPT_MINOFF_IT > 2753 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2754 */ 2755 ASSERT(len > IPOPT_POS_OV_FLG); 2756 break; 2757 } 2758 2759 return (opt); 2760 } 2761 2762 /* 2763 * Update any record route or timestamp options to include this host. 2764 * Reverse any source route option. 2765 * This routine assumes that the options are well formed i.e. that they 2766 * have already been checked. 2767 */ 2768 static void 2769 icmp_options_update(ipha_t *ipha) 2770 { 2771 ipoptp_t opts; 2772 uchar_t *opt; 2773 uint8_t optval; 2774 ipaddr_t src; /* Our local address */ 2775 ipaddr_t dst; 2776 2777 ip2dbg(("icmp_options_update\n")); 2778 src = ipha->ipha_src; 2779 dst = ipha->ipha_dst; 2780 2781 for (optval = ipoptp_first(&opts, ipha); 2782 optval != IPOPT_EOL; 2783 optval = ipoptp_next(&opts)) { 2784 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2785 opt = opts.ipoptp_cur; 2786 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2787 optval, opts.ipoptp_len)); 2788 switch (optval) { 2789 int off1, off2; 2790 case IPOPT_SSRR: 2791 case IPOPT_LSRR: 2792 /* 2793 * Reverse the source route. The first entry 2794 * should be the next to last one in the current 2795 * source route (the last entry is our address). 2796 * The last entry should be the final destination. 2797 */ 2798 off1 = IPOPT_MINOFF_SR - 1; 2799 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2800 if (off2 < 0) { 2801 /* No entries in source route */ 2802 ip1dbg(( 2803 "icmp_options_update: bad src route\n")); 2804 break; 2805 } 2806 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2807 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2808 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2809 off2 -= IP_ADDR_LEN; 2810 2811 while (off1 < off2) { 2812 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2813 bcopy((char *)opt + off2, (char *)opt + off1, 2814 IP_ADDR_LEN); 2815 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2816 off1 += IP_ADDR_LEN; 2817 off2 -= IP_ADDR_LEN; 2818 } 2819 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2820 break; 2821 } 2822 } 2823 } 2824 2825 /* 2826 * Process received ICMP Redirect messages. 2827 */ 2828 /* ARGSUSED */ 2829 static void 2830 icmp_redirect(mblk_t *mp) 2831 { 2832 ipha_t *ipha; 2833 int iph_hdr_length; 2834 icmph_t *icmph; 2835 ipha_t *ipha_err; 2836 ire_t *ire; 2837 ire_t *prev_ire; 2838 ire_t *save_ire; 2839 ipaddr_t src, dst, gateway; 2840 iulp_t ulp_info = { 0 }; 2841 int error; 2842 2843 ipha = (ipha_t *)mp->b_rptr; 2844 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2845 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2846 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2847 BUMP_MIB(&icmp_mib, icmpInErrors); 2848 freemsg(mp); 2849 return; 2850 } 2851 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2852 ipha_err = (ipha_t *)&icmph[1]; 2853 src = ipha->ipha_src; 2854 dst = ipha_err->ipha_dst; 2855 gateway = icmph->icmph_rd_gateway; 2856 /* Make sure the new gateway is reachable somehow. */ 2857 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2858 ALL_ZONES, MATCH_IRE_TYPE); 2859 /* 2860 * Make sure we had a route for the dest in question and that 2861 * that route was pointing to the old gateway (the source of the 2862 * redirect packet.) 2863 */ 2864 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2865 MATCH_IRE_GW); 2866 /* 2867 * Check that 2868 * the redirect was not from ourselves 2869 * the new gateway and the old gateway are directly reachable 2870 */ 2871 if (!prev_ire || 2872 !ire || 2873 ire->ire_type == IRE_LOCAL) { 2874 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2875 freemsg(mp); 2876 if (ire != NULL) 2877 ire_refrele(ire); 2878 if (prev_ire != NULL) 2879 ire_refrele(prev_ire); 2880 return; 2881 } 2882 2883 /* 2884 * Should we use the old ULP info to create the new gateway? From 2885 * a user's perspective, we should inherit the info so that it 2886 * is a "smooth" transition. If we do not do that, then new 2887 * connections going thru the new gateway will have no route metrics, 2888 * which is counter-intuitive to user. From a network point of 2889 * view, this may or may not make sense even though the new gateway 2890 * is still directly connected to us so the route metrics should not 2891 * change much. 2892 * 2893 * But if the old ire_uinfo is not initialized, we do another 2894 * recursive lookup on the dest using the new gateway. There may 2895 * be a route to that. If so, use it to initialize the redirect 2896 * route. 2897 */ 2898 if (prev_ire->ire_uinfo.iulp_set) { 2899 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2900 } else { 2901 ire_t *tmp_ire; 2902 ire_t *sire; 2903 2904 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 2905 ALL_ZONES, 0, 2906 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 2907 if (sire != NULL) { 2908 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2909 /* 2910 * If sire != NULL, ire_ftable_lookup() should not 2911 * return a NULL value. 2912 */ 2913 ASSERT(tmp_ire != NULL); 2914 ire_refrele(tmp_ire); 2915 ire_refrele(sire); 2916 } else if (tmp_ire != NULL) { 2917 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 2918 sizeof (iulp_t)); 2919 ire_refrele(tmp_ire); 2920 } 2921 } 2922 if (prev_ire->ire_type == IRE_CACHE) 2923 ire_delete(prev_ire); 2924 ire_refrele(prev_ire); 2925 /* 2926 * TODO: more precise handling for cases 0, 2, 3, the latter two 2927 * require TOS routing 2928 */ 2929 switch (icmph->icmph_code) { 2930 case 0: 2931 case 1: 2932 /* TODO: TOS specificity for cases 2 and 3 */ 2933 case 2: 2934 case 3: 2935 break; 2936 default: 2937 freemsg(mp); 2938 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2939 ire_refrele(ire); 2940 return; 2941 } 2942 /* 2943 * Create a Route Association. This will allow us to remember that 2944 * someone we believe told us to use the particular gateway. 2945 */ 2946 save_ire = ire; 2947 ire = ire_create( 2948 (uchar_t *)&dst, /* dest addr */ 2949 (uchar_t *)&ip_g_all_ones, /* mask */ 2950 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 2951 (uchar_t *)&gateway, /* gateway addr */ 2952 NULL, /* no in_srcaddr */ 2953 &save_ire->ire_max_frag, /* max frag */ 2954 NULL, /* Fast Path header */ 2955 NULL, /* no rfq */ 2956 NULL, /* no stq */ 2957 IRE_HOST_REDIRECT, 2958 NULL, 2959 NULL, 2960 NULL, 2961 0, 2962 0, 2963 0, 2964 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2965 &ulp_info); 2966 2967 if (ire == NULL) { 2968 freemsg(mp); 2969 ire_refrele(save_ire); 2970 return; 2971 } 2972 error = ire_add(&ire, NULL, NULL, NULL); 2973 ire_refrele(save_ire); 2974 if (error == 0) { 2975 ire_refrele(ire); /* Held in ire_add_v4 */ 2976 /* tell routing sockets that we received a redirect */ 2977 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2978 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2979 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 2980 } 2981 2982 /* 2983 * Delete any existing IRE_HOST_REDIRECT for this destination. 2984 * This together with the added IRE has the effect of 2985 * modifying an existing redirect. 2986 */ 2987 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 2988 ALL_ZONES, 0, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 2989 if (prev_ire) { 2990 ire_delete(prev_ire); 2991 ire_refrele(prev_ire); 2992 } 2993 2994 freemsg(mp); 2995 } 2996 2997 /* 2998 * Generate an ICMP parameter problem message. 2999 */ 3000 static void 3001 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 3002 { 3003 icmph_t icmph; 3004 boolean_t mctl_present; 3005 mblk_t *first_mp; 3006 3007 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3008 3009 if (!(mp = icmp_pkt_err_ok(mp))) { 3010 if (mctl_present) 3011 freeb(first_mp); 3012 return; 3013 } 3014 3015 bzero(&icmph, sizeof (icmph_t)); 3016 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3017 icmph.icmph_pp_ptr = ptr; 3018 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3019 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3020 } 3021 3022 /* 3023 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3024 * the ICMP header pointed to by "stuff". (May be called as writer.) 3025 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3026 * an icmp error packet can be sent. 3027 * Assigns an appropriate source address to the packet. If ipha_dst is 3028 * one of our addresses use it for source. Otherwise pick a source based 3029 * on a route lookup back to ipha_src. 3030 * Note that ipha_src must be set here since the 3031 * packet is likely to arrive on an ill queue in ip_wput() which will 3032 * not set a source address. 3033 */ 3034 static void 3035 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3036 boolean_t mctl_present) 3037 { 3038 ipaddr_t dst; 3039 icmph_t *icmph; 3040 ipha_t *ipha; 3041 uint_t len_needed; 3042 size_t msg_len; 3043 mblk_t *mp1; 3044 ipaddr_t src; 3045 ire_t *ire; 3046 mblk_t *ipsec_mp; 3047 ipsec_out_t *io = NULL; 3048 boolean_t xmit_if_on = B_FALSE; 3049 zoneid_t zoneid; 3050 3051 if (mctl_present) { 3052 /* 3053 * If it is : 3054 * 3055 * 1) a IPSEC_OUT, then this is caused by outbound 3056 * datagram originating on this host. IPSEC processing 3057 * may or may not have been done. Refer to comments above 3058 * icmp_inbound_error_fanout for details. 3059 * 3060 * 2) a IPSEC_IN if we are generating a icmp_message 3061 * for an incoming datagram destined for us i.e called 3062 * from ip_fanout_send_icmp. 3063 */ 3064 ipsec_info_t *in; 3065 ipsec_mp = mp; 3066 mp = ipsec_mp->b_cont; 3067 3068 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3069 ipha = (ipha_t *)mp->b_rptr; 3070 3071 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3072 in->ipsec_info_type == IPSEC_IN); 3073 3074 if (in->ipsec_info_type == IPSEC_IN) { 3075 /* 3076 * Convert the IPSEC_IN to IPSEC_OUT. 3077 */ 3078 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3079 BUMP_MIB(&ip_mib, ipOutDiscards); 3080 return; 3081 } 3082 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3083 } else { 3084 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3085 io = (ipsec_out_t *)in; 3086 if (io->ipsec_out_xmit_if) 3087 xmit_if_on = B_TRUE; 3088 /* 3089 * Clear out ipsec_out_proc_begin, so we do a fresh 3090 * ire lookup. 3091 */ 3092 io->ipsec_out_proc_begin = B_FALSE; 3093 } 3094 zoneid = io->ipsec_out_zoneid; 3095 ASSERT(zoneid != ALL_ZONES); 3096 } else { 3097 /* 3098 * This is in clear. The icmp message we are building 3099 * here should go out in clear. 3100 * 3101 * Pardon the convolution of it all, but it's easier to 3102 * allocate a "use cleartext" IPSEC_IN message and convert 3103 * it than it is to allocate a new one. 3104 */ 3105 ipsec_in_t *ii; 3106 ASSERT(DB_TYPE(mp) == M_DATA); 3107 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3108 freemsg(mp); 3109 BUMP_MIB(&ip_mib, ipOutDiscards); 3110 return; 3111 } 3112 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3113 3114 /* This is not a secure packet */ 3115 ii->ipsec_in_secure = B_FALSE; 3116 if (CONN_Q(q)) { 3117 zoneid = Q_TO_CONN(q)->conn_zoneid; 3118 } else { 3119 zoneid = GLOBAL_ZONEID; 3120 } 3121 ii->ipsec_in_zoneid = zoneid; 3122 ipsec_mp->b_cont = mp; 3123 ipha = (ipha_t *)mp->b_rptr; 3124 /* 3125 * Convert the IPSEC_IN to IPSEC_OUT. 3126 */ 3127 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3128 BUMP_MIB(&ip_mib, ipOutDiscards); 3129 return; 3130 } 3131 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3132 } 3133 3134 /* Remember our eventual destination */ 3135 dst = ipha->ipha_src; 3136 3137 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3138 NULL, NULL, zoneid, MATCH_IRE_TYPE); 3139 if (ire != NULL && ire->ire_zoneid == zoneid) { 3140 src = ipha->ipha_dst; 3141 } else if (!xmit_if_on) { 3142 if (ire != NULL) 3143 ire_refrele(ire); 3144 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, 3145 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3146 if (ire == NULL) { 3147 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3148 freemsg(ipsec_mp); 3149 return; 3150 } 3151 src = ire->ire_src_addr; 3152 } else { 3153 ipif_t *ipif = NULL; 3154 ill_t *ill; 3155 /* 3156 * This must be an ICMP error coming from 3157 * ip_mrtun_forward(). The src addr should 3158 * be equal to the IP-addr of the outgoing 3159 * interface. 3160 */ 3161 if (io == NULL) { 3162 /* This is not a IPSEC_OUT type control msg */ 3163 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3164 freemsg(ipsec_mp); 3165 return; 3166 } 3167 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3168 NULL, NULL, NULL, NULL); 3169 if (ill != NULL) { 3170 ipif = ipif_get_next_ipif(NULL, ill); 3171 ill_refrele(ill); 3172 } 3173 if (ipif == NULL) { 3174 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3175 freemsg(ipsec_mp); 3176 return; 3177 } 3178 src = ipif->ipif_src_addr; 3179 ipif_refrele(ipif); 3180 } 3181 3182 if (ire != NULL) 3183 ire_refrele(ire); 3184 3185 /* 3186 * Check if we can send back more then 8 bytes in addition 3187 * to the IP header. We will include as much as 64 bytes. 3188 */ 3189 len_needed = IPH_HDR_LENGTH(ipha) + ip_icmp_return; 3190 msg_len = msgdsize(mp); 3191 if (msg_len > len_needed) { 3192 (void) adjmsg(mp, len_needed - msg_len); 3193 msg_len = len_needed; 3194 } 3195 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3196 if (!mp1) { 3197 BUMP_MIB(&icmp_mib, icmpOutErrors); 3198 freemsg(ipsec_mp); 3199 return; 3200 } 3201 mp1->b_cont = mp; 3202 mp = mp1; 3203 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3204 ipsec_mp->b_rptr == (uint8_t *)io && 3205 io->ipsec_out_type == IPSEC_OUT); 3206 ipsec_mp->b_cont = mp; 3207 3208 /* 3209 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3210 * node generates be accepted in peace by all on-host destinations. 3211 * If we do NOT assume that all on-host destinations trust 3212 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3213 * (Look for ipsec_out_icmp_loopback). 3214 */ 3215 io->ipsec_out_icmp_loopback = B_TRUE; 3216 3217 ipha = (ipha_t *)mp->b_rptr; 3218 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3219 *ipha = icmp_ipha; 3220 ipha->ipha_src = src; 3221 ipha->ipha_dst = dst; 3222 ipha->ipha_ttl = ip_def_ttl; 3223 msg_len += sizeof (icmp_ipha) + len; 3224 if (msg_len > IP_MAXPACKET) { 3225 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3226 msg_len = IP_MAXPACKET; 3227 } 3228 ipha->ipha_length = htons((uint16_t)msg_len); 3229 icmph = (icmph_t *)&ipha[1]; 3230 bcopy(stuff, icmph, len); 3231 icmph->icmph_checksum = 0; 3232 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3233 if (icmph->icmph_checksum == 0) 3234 icmph->icmph_checksum = 0xFFFF; 3235 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3236 put(q, ipsec_mp); 3237 } 3238 3239 /* 3240 * Determine if an ICMP error packet can be sent given the rate limit. 3241 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3242 * in milliseconds) and a burst size. Burst size number of packets can 3243 * be sent arbitrarely closely spaced. 3244 * The state is tracked using two variables to implement an approximate 3245 * token bucket filter: 3246 * icmp_pkt_err_last - lbolt value when the last burst started 3247 * icmp_pkt_err_sent - number of packets sent in current burst 3248 */ 3249 boolean_t 3250 icmp_err_rate_limit(void) 3251 { 3252 clock_t now = TICK_TO_MSEC(lbolt); 3253 uint_t refilled; /* Number of packets refilled in tbf since last */ 3254 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3255 3256 if (err_interval == 0) 3257 return (B_FALSE); 3258 3259 if (icmp_pkt_err_last > now) { 3260 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3261 icmp_pkt_err_last = 0; 3262 icmp_pkt_err_sent = 0; 3263 } 3264 /* 3265 * If we are in a burst update the token bucket filter. 3266 * Update the "last" time to be close to "now" but make sure 3267 * we don't loose precision. 3268 */ 3269 if (icmp_pkt_err_sent != 0) { 3270 refilled = (now - icmp_pkt_err_last)/err_interval; 3271 if (refilled > icmp_pkt_err_sent) { 3272 icmp_pkt_err_sent = 0; 3273 } else { 3274 icmp_pkt_err_sent -= refilled; 3275 icmp_pkt_err_last += refilled * err_interval; 3276 } 3277 } 3278 if (icmp_pkt_err_sent == 0) { 3279 /* Start of new burst */ 3280 icmp_pkt_err_last = now; 3281 } 3282 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3283 icmp_pkt_err_sent++; 3284 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3285 icmp_pkt_err_sent)); 3286 return (B_FALSE); 3287 } 3288 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3289 return (B_TRUE); 3290 } 3291 3292 /* 3293 * Check if it is ok to send an IPv4 ICMP error packet in 3294 * response to the IPv4 packet in mp. 3295 * Free the message and return null if no 3296 * ICMP error packet should be sent. 3297 */ 3298 static mblk_t * 3299 icmp_pkt_err_ok(mblk_t *mp) 3300 { 3301 icmph_t *icmph; 3302 ipha_t *ipha; 3303 uint_t len_needed; 3304 ire_t *src_ire; 3305 ire_t *dst_ire; 3306 3307 if (!mp) 3308 return (NULL); 3309 ipha = (ipha_t *)mp->b_rptr; 3310 if (ip_csum_hdr(ipha)) { 3311 BUMP_MIB(&ip_mib, ipInCksumErrs); 3312 freemsg(mp); 3313 return (NULL); 3314 } 3315 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3316 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3317 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3318 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3319 if (src_ire != NULL || dst_ire != NULL || 3320 CLASSD(ipha->ipha_dst) || 3321 CLASSD(ipha->ipha_src) || 3322 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3323 /* Note: only errors to the fragment with offset 0 */ 3324 BUMP_MIB(&icmp_mib, icmpOutDrops); 3325 freemsg(mp); 3326 if (src_ire != NULL) 3327 ire_refrele(src_ire); 3328 if (dst_ire != NULL) 3329 ire_refrele(dst_ire); 3330 return (NULL); 3331 } 3332 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3333 /* 3334 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3335 * errors in response to any ICMP errors. 3336 */ 3337 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3338 if (mp->b_wptr - mp->b_rptr < len_needed) { 3339 if (!pullupmsg(mp, len_needed)) { 3340 BUMP_MIB(&icmp_mib, icmpInErrors); 3341 freemsg(mp); 3342 return (NULL); 3343 } 3344 ipha = (ipha_t *)mp->b_rptr; 3345 } 3346 icmph = (icmph_t *) 3347 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3348 switch (icmph->icmph_type) { 3349 case ICMP_DEST_UNREACHABLE: 3350 case ICMP_SOURCE_QUENCH: 3351 case ICMP_TIME_EXCEEDED: 3352 case ICMP_PARAM_PROBLEM: 3353 case ICMP_REDIRECT: 3354 BUMP_MIB(&icmp_mib, icmpOutDrops); 3355 freemsg(mp); 3356 return (NULL); 3357 default: 3358 break; 3359 } 3360 } 3361 if (icmp_err_rate_limit()) { 3362 /* 3363 * Only send ICMP error packets every so often. 3364 * This should be done on a per port/source basis, 3365 * but for now this will suffice. 3366 */ 3367 freemsg(mp); 3368 return (NULL); 3369 } 3370 return (mp); 3371 } 3372 3373 /* 3374 * Generate an ICMP redirect message. 3375 */ 3376 static void 3377 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3378 { 3379 icmph_t icmph; 3380 3381 /* 3382 * We are called from ip_rput where we could 3383 * not have attached an IPSEC_IN. 3384 */ 3385 ASSERT(mp->b_datap->db_type == M_DATA); 3386 3387 if (!(mp = icmp_pkt_err_ok(mp))) { 3388 return; 3389 } 3390 3391 bzero(&icmph, sizeof (icmph_t)); 3392 icmph.icmph_type = ICMP_REDIRECT; 3393 icmph.icmph_code = 1; 3394 icmph.icmph_rd_gateway = gateway; 3395 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3396 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3397 } 3398 3399 /* 3400 * Generate an ICMP time exceeded message. 3401 */ 3402 void 3403 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3404 { 3405 icmph_t icmph; 3406 boolean_t mctl_present; 3407 mblk_t *first_mp; 3408 3409 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3410 3411 if (!(mp = icmp_pkt_err_ok(mp))) { 3412 if (mctl_present) 3413 freeb(first_mp); 3414 return; 3415 } 3416 3417 bzero(&icmph, sizeof (icmph_t)); 3418 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3419 icmph.icmph_code = code; 3420 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3421 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3422 } 3423 3424 /* 3425 * Generate an ICMP unreachable message. 3426 */ 3427 void 3428 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3429 { 3430 icmph_t icmph; 3431 mblk_t *first_mp; 3432 boolean_t mctl_present; 3433 3434 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3435 3436 if (!(mp = icmp_pkt_err_ok(mp))) { 3437 if (mctl_present) 3438 freeb(first_mp); 3439 return; 3440 } 3441 3442 bzero(&icmph, sizeof (icmph_t)); 3443 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3444 icmph.icmph_code = code; 3445 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3446 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3447 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3448 } 3449 3450 /* 3451 * News from ARP. ARP sends notification of interesting events down 3452 * to its clients using M_CTL messages with the interesting ARP packet 3453 * attached via b_cont. 3454 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3455 * queue as opposed to ARP sending the message to all the clients, i.e. all 3456 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3457 * table if a cache IRE is found to delete all the entries for the address in 3458 * the packet. 3459 */ 3460 static void 3461 ip_arp_news(queue_t *q, mblk_t *mp) 3462 { 3463 arcn_t *arcn; 3464 arh_t *arh; 3465 char *cp1; 3466 uchar_t *cp2; 3467 ire_t *ire = NULL; 3468 int i1; 3469 char hbuf[128]; 3470 char sbuf[16]; 3471 ipaddr_t src; 3472 in6_addr_t v6src; 3473 boolean_t isv6 = B_FALSE; 3474 3475 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3476 if (q->q_next) { 3477 putnext(q, mp); 3478 } else 3479 freemsg(mp); 3480 return; 3481 } 3482 arh = (arh_t *)mp->b_cont->b_rptr; 3483 /* Is it one we are interested in? */ 3484 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3485 isv6 = B_TRUE; 3486 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3487 IPV6_ADDR_LEN); 3488 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3489 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3490 IP_ADDR_LEN); 3491 } else { 3492 freemsg(mp); 3493 return; 3494 } 3495 3496 arcn = (arcn_t *)mp->b_rptr; 3497 switch (arcn->arcn_code) { 3498 case AR_CN_BOGON: 3499 /* 3500 * Someone is sending ARP packets with a source protocol 3501 * address which we have published. Either they are 3502 * pretending to be us, or we have been asked to proxy 3503 * for a machine that can do fine for itself, or two 3504 * different machines are providing proxy service for the 3505 * same protocol address, or something. We try and do 3506 * something appropriate here. 3507 */ 3508 cp2 = (uchar_t *)&arh[1]; 3509 cp1 = hbuf; 3510 *cp1 = '\0'; 3511 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3512 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3513 if (cp1 != hbuf) 3514 cp1[-1] = '\0'; 3515 (void) ip_dot_addr(src, sbuf); 3516 if (isv6) 3517 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES); 3518 else 3519 ire = ire_cache_lookup(src, ALL_ZONES); 3520 3521 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3522 cmn_err(CE_WARN, 3523 "IP: Hardware address '%s' trying" 3524 " to be our address %s!", 3525 hbuf, sbuf); 3526 } else { 3527 cmn_err(CE_WARN, 3528 "IP: Proxy ARP problem? " 3529 "Hardware address '%s' thinks it is %s", 3530 hbuf, sbuf); 3531 } 3532 if (ire != NULL) 3533 ire_refrele(ire); 3534 break; 3535 case AR_CN_ANNOUNCE: 3536 if (isv6) { 3537 /* 3538 * For XRESOLV interfaces. 3539 * Delete the IRE cache entry and NCE for this 3540 * v6 address 3541 */ 3542 ip_ire_clookup_and_delete_v6(&v6src); 3543 /* 3544 * If v6src is a non-zero, it's a router address 3545 * as below. Do the same sort of thing to clean 3546 * out off-net IRE_CACHE entries that go through 3547 * the router. 3548 */ 3549 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3550 ire_walk_v6(ire_delete_cache_gw_v6, 3551 (char *)&v6src, ALL_ZONES); 3552 } 3553 break; 3554 } 3555 /* 3556 * ARP gives us a copy of any broadcast packet with identical 3557 * sender and receiver protocol address, in 3558 * case we want to intuit something from it. Such a packet 3559 * usually means that a machine has just come up on the net. 3560 * If we have an IRE_CACHE, we blow it away. This way we will 3561 * immediately pick up the rare case of a host changing 3562 * hardware address. ip_ire_clookup_and_delete achieves this. 3563 * 3564 * The address in "src" may be an entry for a router. 3565 * (Default router, or non-default router.) If 3566 * that's true, then any off-net IRE_CACHE entries 3567 * that go through the router with address "src" 3568 * must be clobbered. Use ire_walk to achieve this 3569 * goal. 3570 * 3571 * It should be possible to determine if the address 3572 * in src is or is not for a router. This way, 3573 * the ire_walk() isn't called all of the time here. 3574 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3575 * as it would remove all IRE_CACHE entries for onlink 3576 * destinations. All onlink destinations have 3577 * ire_gateway_addr == 0. 3578 */ 3579 if ((ip_ire_clookup_and_delete(src, NULL) || 3580 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3581 0, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3582 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3583 ALL_ZONES); 3584 } 3585 /* From ire_ftable_lookup */ 3586 if (ire != NULL) 3587 ire_refrele(ire); 3588 break; 3589 default: 3590 if (ire != NULL) 3591 ire_refrele(ire); 3592 break; 3593 } 3594 freemsg(mp); 3595 } 3596 3597 /* 3598 * Create a mblk suitable for carrying the interface index and/or source link 3599 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3600 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3601 * application. 3602 */ 3603 mblk_t * 3604 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3605 { 3606 mblk_t *mp; 3607 in_pktinfo_t *pinfo; 3608 ipha_t *ipha; 3609 struct ether_header *pether; 3610 3611 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3612 if (mp == NULL) { 3613 ip1dbg(("ip_add_info: allocation failure.\n")); 3614 return (data_mp); 3615 } 3616 3617 ipha = (ipha_t *)data_mp->b_rptr; 3618 pinfo = (in_pktinfo_t *)mp->b_rptr; 3619 bzero(pinfo, sizeof (in_pktinfo_t)); 3620 pinfo->in_pkt_flags = (uchar_t)flags; 3621 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3622 3623 if (flags & IPF_RECVIF) 3624 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3625 3626 pether = (struct ether_header *)((char *)ipha 3627 - sizeof (struct ether_header)); 3628 /* 3629 * Make sure the interface is an ethernet type, since this option 3630 * is currently supported only on this type of interface. Also make 3631 * sure we are pointing correctly above db_base. 3632 */ 3633 3634 if ((flags & IPF_RECVSLLA) && 3635 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3636 (ill->ill_type == IFT_ETHER) && 3637 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3638 3639 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3640 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3641 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3642 } else { 3643 /* 3644 * Clear the bit. Indicate to upper layer that IP is not 3645 * sending this ancillary info. 3646 */ 3647 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3648 } 3649 3650 mp->b_datap->db_type = M_CTL; 3651 mp->b_wptr += sizeof (in_pktinfo_t); 3652 mp->b_cont = data_mp; 3653 3654 return (mp); 3655 } 3656 3657 /* 3658 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3659 * part of the bind request. 3660 */ 3661 3662 boolean_t 3663 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3664 { 3665 ipsec_in_t *ii; 3666 3667 ASSERT(policy_mp != NULL); 3668 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3669 3670 ii = (ipsec_in_t *)policy_mp->b_rptr; 3671 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3672 3673 connp->conn_policy = ii->ipsec_in_policy; 3674 ii->ipsec_in_policy = NULL; 3675 3676 if (ii->ipsec_in_action != NULL) { 3677 if (connp->conn_latch == NULL) { 3678 connp->conn_latch = iplatch_create(); 3679 if (connp->conn_latch == NULL) 3680 return (B_FALSE); 3681 } 3682 ipsec_latch_inbound(connp->conn_latch, ii); 3683 } 3684 return (B_TRUE); 3685 } 3686 3687 /* 3688 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3689 * and to arrange for power-fanout assist. The ULP is identified by 3690 * adding a single byte at the end of the original bind message. 3691 * A ULP other than UDP or TCP that wishes to be recognized passes 3692 * down a bind with a zero length address. 3693 * 3694 * The binding works as follows: 3695 * - A zero byte address means just bind to the protocol. 3696 * - A four byte address is treated as a request to validate 3697 * that the address is a valid local address, appropriate for 3698 * an application to bind to. This does not affect any fanout 3699 * information in IP. 3700 * - A sizeof sin_t byte address is used to bind to only the local address 3701 * and port. 3702 * - A sizeof ipa_conn_t byte address contains complete fanout information 3703 * consisting of local and remote addresses and ports. In 3704 * this case, the addresses are both validated as appropriate 3705 * for this operation, and, if so, the information is retained 3706 * for use in the inbound fanout. 3707 * 3708 * The ULP (except in the zero-length bind) can append an 3709 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 3710 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 3711 * a copy of the source or destination IRE (source for local bind; 3712 * destination for complete bind). IPSEC_POLICY_SET indicates that the 3713 * policy information contained should be copied on to the conn. 3714 * 3715 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 3716 */ 3717 mblk_t * 3718 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 3719 { 3720 ssize_t len; 3721 struct T_bind_req *tbr; 3722 sin_t *sin; 3723 ipa_conn_t *ac; 3724 uchar_t *ucp; 3725 mblk_t *mp1; 3726 boolean_t ire_requested; 3727 boolean_t ipsec_policy_set = B_FALSE; 3728 int error = 0; 3729 int protocol; 3730 ipa_conn_x_t *acx; 3731 3732 ASSERT(!connp->conn_af_isv6); 3733 connp->conn_pkt_isv6 = B_FALSE; 3734 3735 len = MBLKL(mp); 3736 if (len < (sizeof (*tbr) + 1)) { 3737 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 3738 "ip_bind: bogus msg, len %ld", len); 3739 /* XXX: Need to return something better */ 3740 goto bad_addr; 3741 } 3742 /* Back up and extract the protocol identifier. */ 3743 mp->b_wptr--; 3744 protocol = *mp->b_wptr & 0xFF; 3745 tbr = (struct T_bind_req *)mp->b_rptr; 3746 /* Reset the message type in preparation for shipping it back. */ 3747 DB_TYPE(mp) = M_PCPROTO; 3748 3749 connp->conn_ulp = (uint8_t)protocol; 3750 3751 /* 3752 * Check for a zero length address. This is from a protocol that 3753 * wants to register to receive all packets of its type. 3754 */ 3755 if (tbr->ADDR_length == 0) { 3756 /* 3757 * These protocols are now intercepted in ip_bind_v6(). 3758 * Reject protocol-level binds here for now. 3759 * 3760 * For SCTP raw socket, ICMP sends down a bind with sin_t 3761 * so that the protocol type cannot be SCTP. 3762 */ 3763 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 3764 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 3765 goto bad_addr; 3766 } 3767 3768 /* No hash here really. The table is big enough. */ 3769 connp->conn_srcv6 = ipv6_all_zeros; 3770 3771 ipcl_proto_insert(connp, protocol); 3772 3773 tbr->PRIM_type = T_BIND_ACK; 3774 return (mp); 3775 } 3776 3777 /* Extract the address pointer from the message. */ 3778 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 3779 tbr->ADDR_length); 3780 if (ucp == NULL) { 3781 ip1dbg(("ip_bind: no address\n")); 3782 goto bad_addr; 3783 } 3784 if (!OK_32PTR(ucp)) { 3785 ip1dbg(("ip_bind: unaligned address\n")); 3786 goto bad_addr; 3787 } 3788 /* 3789 * Check for trailing mps. 3790 */ 3791 3792 mp1 = mp->b_cont; 3793 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 3794 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 3795 3796 switch (tbr->ADDR_length) { 3797 default: 3798 ip1dbg(("ip_bind: bad address length %d\n", 3799 (int)tbr->ADDR_length)); 3800 goto bad_addr; 3801 3802 case IP_ADDR_LEN: 3803 /* Verification of local address only */ 3804 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 3805 ire_requested, ipsec_policy_set, B_FALSE); 3806 break; 3807 3808 case sizeof (sin_t): 3809 sin = (sin_t *)ucp; 3810 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 3811 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 3812 if (protocol == IPPROTO_TCP) 3813 connp->conn_recv = tcp_conn_request; 3814 break; 3815 3816 case sizeof (ipa_conn_t): 3817 ac = (ipa_conn_t *)ucp; 3818 /* For raw socket, the local port is not set. */ 3819 if (ac->ac_lport == 0) 3820 ac->ac_lport = connp->conn_lport; 3821 /* Always verify destination reachability. */ 3822 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 3823 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 3824 ipsec_policy_set, B_TRUE, B_TRUE); 3825 if (protocol == IPPROTO_TCP) 3826 connp->conn_recv = tcp_input; 3827 break; 3828 3829 case sizeof (ipa_conn_x_t): 3830 acx = (ipa_conn_x_t *)ucp; 3831 /* 3832 * Whether or not to verify destination reachability depends 3833 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 3834 */ 3835 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 3836 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 3837 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 3838 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 3839 if (protocol == IPPROTO_TCP) 3840 connp->conn_recv = tcp_input; 3841 break; 3842 } 3843 if (error == EINPROGRESS) 3844 return (NULL); 3845 else if (error != 0) 3846 goto bad_addr; 3847 /* 3848 * Pass the IPSEC headers size in ire_ipsec_overhead. 3849 * We can't do this in ip_bind_insert_ire because the policy 3850 * may not have been inherited at that point in time and hence 3851 * conn_out_enforce_policy may not be set. 3852 */ 3853 mp1 = mp->b_cont; 3854 if (ire_requested && connp->conn_out_enforce_policy && 3855 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 3856 ire_t *ire = (ire_t *)mp1->b_rptr; 3857 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 3858 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 3859 } 3860 3861 /* Send it home. */ 3862 mp->b_datap->db_type = M_PCPROTO; 3863 tbr->PRIM_type = T_BIND_ACK; 3864 return (mp); 3865 3866 bad_addr: 3867 /* 3868 * If error = -1 then we generate a TBADADDR - otherwise error is 3869 * a unix errno. 3870 */ 3871 if (error > 0) 3872 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 3873 else 3874 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 3875 return (mp); 3876 } 3877 3878 /* 3879 * Here address is verified to be a valid local address. 3880 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 3881 * address is also considered a valid local address. 3882 * In the case of a broadcast/multicast address, however, the 3883 * upper protocol is expected to reset the src address 3884 * to 0 if it sees a IRE_BROADCAST type returned so that 3885 * no packets are emitted with broadcast/multicast address as 3886 * source address (that violates hosts requirements RFC1122) 3887 * The addresses valid for bind are: 3888 * (1) - INADDR_ANY (0) 3889 * (2) - IP address of an UP interface 3890 * (3) - IP address of a DOWN interface 3891 * (4) - valid local IP broadcast addresses. In this case 3892 * the conn will only receive packets destined to 3893 * the specified broadcast address. 3894 * (5) - a multicast address. In this case 3895 * the conn will only receive packets destined to 3896 * the specified multicast address. Note: the 3897 * application still has to issue an 3898 * IP_ADD_MEMBERSHIP socket option. 3899 * 3900 * On error, return -1 for TBADADDR otherwise pass the 3901 * errno with TSYSERR reply. 3902 * 3903 * In all the above cases, the bound address must be valid in the current zone. 3904 * When the address is loopback, multicast or broadcast, there might be many 3905 * matching IREs so bind has to look up based on the zone. 3906 */ 3907 int 3908 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 3909 boolean_t ire_requested, boolean_t ipsec_policy_set, 3910 boolean_t fanout_insert) 3911 { 3912 int error = 0; 3913 ire_t *src_ire; 3914 mblk_t *policy_mp; 3915 ipif_t *ipif; 3916 zoneid_t zoneid; 3917 3918 if (ipsec_policy_set) { 3919 policy_mp = mp->b_cont; 3920 } 3921 3922 /* 3923 * If it was previously connected, conn_fully_bound would have 3924 * been set. 3925 */ 3926 connp->conn_fully_bound = B_FALSE; 3927 3928 src_ire = NULL; 3929 ipif = NULL; 3930 3931 zoneid = connp->conn_zoneid; 3932 3933 if (src_addr) { 3934 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 3935 NULL, NULL, zoneid, MATCH_IRE_ZONEONLY); 3936 /* 3937 * If an address other than 0.0.0.0 is requested, 3938 * we verify that it is a valid address for bind 3939 * Note: Following code is in if-else-if form for 3940 * readability compared to a condition check. 3941 */ 3942 /* LINTED - statement has no consequent */ 3943 if (IRE_IS_LOCAL(src_ire)) { 3944 /* 3945 * (2) Bind to address of local UP interface 3946 */ 3947 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 3948 /* 3949 * (4) Bind to broadcast address 3950 * Note: permitted only from transports that 3951 * request IRE 3952 */ 3953 if (!ire_requested) 3954 error = EADDRNOTAVAIL; 3955 } else { 3956 /* 3957 * (3) Bind to address of local DOWN interface 3958 * (ipif_lookup_addr() looks up all interfaces 3959 * but we do not get here for UP interfaces 3960 * - case (2) above) 3961 * We put the protocol byte back into the mblk 3962 * since we may come back via ip_wput_nondata() 3963 * later with this mblk if ipif_lookup_addr chooses 3964 * to defer processing. 3965 */ 3966 *mp->b_wptr++ = (char)connp->conn_ulp; 3967 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 3968 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 3969 &error)) != NULL) { 3970 ipif_refrele(ipif); 3971 } else if (error == EINPROGRESS) { 3972 if (src_ire != NULL) 3973 ire_refrele(src_ire); 3974 return (EINPROGRESS); 3975 } else if (CLASSD(src_addr)) { 3976 error = 0; 3977 if (src_ire != NULL) 3978 ire_refrele(src_ire); 3979 /* 3980 * (5) bind to multicast address. 3981 * Fake out the IRE returned to upper 3982 * layer to be a broadcast IRE. 3983 */ 3984 src_ire = ire_ctable_lookup( 3985 INADDR_BROADCAST, INADDR_ANY, 3986 IRE_BROADCAST, NULL, zoneid, 3987 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 3988 if (src_ire == NULL || !ire_requested) 3989 error = EADDRNOTAVAIL; 3990 } else { 3991 /* 3992 * Not a valid address for bind 3993 */ 3994 error = EADDRNOTAVAIL; 3995 } 3996 /* 3997 * Just to keep it consistent with the processing in 3998 * ip_bind_v4() 3999 */ 4000 mp->b_wptr--; 4001 } 4002 if (error) { 4003 /* Red Alert! Attempting to be a bogon! */ 4004 ip1dbg(("ip_bind: bad src address 0x%x\n", 4005 ntohl(src_addr))); 4006 goto bad_addr; 4007 } 4008 } 4009 4010 /* 4011 * Allow setting new policies. For example, disconnects come 4012 * down as ipa_t bind. As we would have set conn_policy_cached 4013 * to B_TRUE before, we should set it to B_FALSE, so that policy 4014 * can change after the disconnect. 4015 */ 4016 connp->conn_policy_cached = B_FALSE; 4017 4018 /* 4019 * If not fanout_insert this was just an address verification 4020 */ 4021 if (fanout_insert) { 4022 /* 4023 * The addresses have been verified. Time to insert in 4024 * the correct fanout list. 4025 */ 4026 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4027 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4028 connp->conn_lport = lport; 4029 connp->conn_fport = 0; 4030 /* 4031 * Do we need to add a check to reject Multicast packets 4032 */ 4033 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4034 } 4035 done: 4036 if (error == 0) { 4037 if (ire_requested) { 4038 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4039 error = -1; 4040 /* Falls through to bad_addr */ 4041 } 4042 } else if (ipsec_policy_set) { 4043 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4044 error = -1; 4045 /* Falls through to bad_addr */ 4046 } 4047 } 4048 } 4049 bad_addr: 4050 if (src_ire != NULL) 4051 IRE_REFRELE(src_ire); 4052 if (ipsec_policy_set) { 4053 ASSERT(policy_mp == mp->b_cont); 4054 ASSERT(policy_mp != NULL); 4055 freeb(policy_mp); 4056 /* 4057 * As of now assume that nothing else accompanies 4058 * IPSEC_POLICY_SET. 4059 */ 4060 mp->b_cont = NULL; 4061 } 4062 return (error); 4063 } 4064 4065 /* 4066 * Verify that both the source and destination addresses 4067 * are valid. If verify_dst is false, then the destination address may be 4068 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4069 * destination reachability, while tunnels do not. 4070 * Note that we allow connect to broadcast and multicast 4071 * addresses when ire_requested is set. Thus the ULP 4072 * has to check for IRE_BROADCAST and multicast. 4073 * 4074 * Returns zero if ok. 4075 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4076 * (for use with TSYSERR reply). 4077 */ 4078 int 4079 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4080 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4081 boolean_t ire_requested, boolean_t ipsec_policy_set, 4082 boolean_t fanout_insert, boolean_t verify_dst) 4083 { 4084 ire_t *src_ire; 4085 ire_t *dst_ire; 4086 int error = 0; 4087 int protocol; 4088 mblk_t *policy_mp; 4089 ire_t *sire = NULL; 4090 ire_t *md_dst_ire = NULL; 4091 ill_t *md_ill = NULL; 4092 zoneid_t zoneid; 4093 ipaddr_t src_addr = *src_addrp; 4094 4095 src_ire = dst_ire = NULL; 4096 protocol = *mp->b_wptr & 0xFF; 4097 4098 /* 4099 * If we never got a disconnect before, clear it now. 4100 */ 4101 connp->conn_fully_bound = B_FALSE; 4102 4103 if (ipsec_policy_set) { 4104 policy_mp = mp->b_cont; 4105 } 4106 4107 zoneid = connp->conn_zoneid; 4108 4109 if (CLASSD(dst_addr)) { 4110 /* Pick up an IRE_BROADCAST */ 4111 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4112 NULL, zoneid, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4113 MATCH_IRE_RJ_BHOLE)); 4114 } else { 4115 /* 4116 * If conn_dontroute is set, and onlink ipif is not found 4117 * set ENETUNREACH error 4118 */ 4119 if (connp->conn_dontroute) { 4120 ipif_t *ipif; 4121 4122 ipif = ipif_lookup_onlink_addr(dst_addr, zoneid); 4123 if (ipif == NULL) { 4124 error = ENETUNREACH; 4125 goto bad_addr; 4126 } 4127 ipif_refrele(ipif); 4128 } 4129 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, &sire, 4130 zoneid, 4131 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4132 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE)); 4133 } 4134 /* 4135 * dst_ire can't be a broadcast when not ire_requested. 4136 * We also prevent ire's with src address INADDR_ANY to 4137 * be used, which are created temporarily for 4138 * sending out packets from endpoints that have 4139 * conn_unspec_src set. If verify_dst is true, the destination must be 4140 * reachable. If verify_dst is false, the destination needn't be 4141 * reachable. 4142 * 4143 * If we match on a reject or black hole, then we've got a 4144 * local failure. May as well fail out the connect() attempt, 4145 * since it's never going to succeed. 4146 */ 4147 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4148 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4149 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4150 /* 4151 * If we're verifying destination reachability, we always want 4152 * to complain here. 4153 * 4154 * If we're not verifying destination reachability but the 4155 * destination has a route, we still want to fail on the 4156 * temporary address and broadcast address tests. 4157 */ 4158 if (verify_dst || (dst_ire != NULL)) { 4159 if (ip_debug > 2) { 4160 pr_addr_dbg("ip_bind_connected: bad connected " 4161 "dst %s\n", AF_INET, &dst_addr); 4162 } 4163 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4164 error = ENETUNREACH; 4165 else 4166 error = EHOSTUNREACH; 4167 goto bad_addr; 4168 } 4169 } 4170 /* 4171 * If the app does a connect(), it means that it will most likely 4172 * send more than 1 packet to the destination. It makes sense 4173 * to clear the temporary flag. 4174 */ 4175 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4176 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4177 irb_t *irb = dst_ire->ire_bucket; 4178 4179 rw_enter(&irb->irb_lock, RW_WRITER); 4180 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4181 irb->irb_tmp_ire_cnt--; 4182 rw_exit(&irb->irb_lock); 4183 } 4184 4185 /* 4186 * See if we should notify ULP about MDT; we do this whether or not 4187 * ire_requested is TRUE, in order to handle active connects; MDT 4188 * eligibility tests for passive connects are handled separately 4189 * through tcp_adapt_ire(). We do this before the source address 4190 * selection, because dst_ire may change after a call to 4191 * ipif_select_source(). This is a best-effort check, as the 4192 * packet for this connection may not actually go through 4193 * dst_ire->ire_stq, and the exact IRE can only be known after 4194 * calling ip_newroute(). This is why we further check on the 4195 * IRE during Multidata packet transmission in tcp_multisend(). 4196 */ 4197 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4198 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4199 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4200 ILL_MDT_CAPABLE(md_ill)) { 4201 md_dst_ire = dst_ire; 4202 IRE_REFHOLD(md_dst_ire); 4203 } 4204 4205 if (dst_ire != NULL && 4206 dst_ire->ire_type == IRE_LOCAL && 4207 dst_ire->ire_zoneid != zoneid) { 4208 /* 4209 * If the IRE belongs to a different zone, look for a matching 4210 * route in the forwarding table and use the source address from 4211 * that route. 4212 */ 4213 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4214 zoneid, 0, 4215 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4216 MATCH_IRE_RJ_BHOLE); 4217 if (src_ire == NULL) { 4218 error = EHOSTUNREACH; 4219 goto bad_addr; 4220 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4221 if (!(src_ire->ire_type & IRE_HOST)) 4222 error = ENETUNREACH; 4223 else 4224 error = EHOSTUNREACH; 4225 goto bad_addr; 4226 } 4227 if (src_addr == INADDR_ANY) 4228 src_addr = src_ire->ire_src_addr; 4229 ire_refrele(src_ire); 4230 src_ire = NULL; 4231 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4232 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4233 src_addr = sire->ire_src_addr; 4234 ire_refrele(dst_ire); 4235 dst_ire = sire; 4236 sire = NULL; 4237 } else { 4238 /* 4239 * Pick a source address so that a proper inbound 4240 * load spreading would happen. 4241 */ 4242 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4243 ipif_t *src_ipif = NULL; 4244 ire_t *ipif_ire; 4245 4246 /* 4247 * Supply a local source address such that inbound 4248 * load spreading happens. 4249 * 4250 * Determine the best source address on this ill for 4251 * the destination. 4252 * 4253 * 1) For broadcast, we should return a broadcast ire 4254 * found above so that upper layers know that the 4255 * destination address is a broadcast address. 4256 * 4257 * 2) If this is part of a group, select a better 4258 * source address so that better inbound load 4259 * balancing happens. Do the same if the ipif 4260 * is DEPRECATED. 4261 * 4262 * 3) If the outgoing interface is part of a usesrc 4263 * group, then try selecting a source address from 4264 * the usesrc ILL. 4265 */ 4266 if (!(dst_ire->ire_type & IRE_BROADCAST) && 4267 ((dst_ill->ill_group != NULL) || 4268 (dst_ire->ire_ipif->ipif_flags & 4269 IPIF_DEPRECATED) || 4270 (dst_ill->ill_usesrc_ifindex != 0))) { 4271 src_ipif = ipif_select_source(dst_ill, 4272 dst_addr, zoneid); 4273 if (src_ipif != NULL) { 4274 if (IS_VNI(src_ipif->ipif_ill)) { 4275 /* 4276 * For VNI there is no 4277 * interface route 4278 */ 4279 src_addr = 4280 src_ipif->ipif_src_addr; 4281 } else { 4282 ipif_ire = 4283 ipif_to_ire(src_ipif); 4284 if (ipif_ire != NULL) { 4285 IRE_REFRELE(dst_ire); 4286 dst_ire = ipif_ire; 4287 } 4288 src_addr = 4289 dst_ire->ire_src_addr; 4290 } 4291 ipif_refrele(src_ipif); 4292 } else { 4293 src_addr = dst_ire->ire_src_addr; 4294 } 4295 } else { 4296 src_addr = dst_ire->ire_src_addr; 4297 } 4298 } 4299 } 4300 4301 /* 4302 * We do ire_route_lookup() here (and not 4303 * interface lookup as we assert that 4304 * src_addr should only come from an 4305 * UP interface for hard binding. 4306 */ 4307 ASSERT(src_ire == NULL); 4308 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4309 NULL, zoneid, MATCH_IRE_ZONEONLY); 4310 /* src_ire must be a local|loopback */ 4311 if (!IRE_IS_LOCAL(src_ire)) { 4312 if (ip_debug > 2) { 4313 pr_addr_dbg("ip_bind_connected: bad connected " 4314 "src %s\n", AF_INET, &src_addr); 4315 } 4316 error = EADDRNOTAVAIL; 4317 goto bad_addr; 4318 } 4319 4320 /* 4321 * If the source address is a loopback address, the 4322 * destination had best be local or multicast. 4323 * The transports that can't handle multicast will reject 4324 * those addresses. 4325 */ 4326 if (src_ire->ire_type == IRE_LOOPBACK && 4327 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4328 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4329 error = -1; 4330 goto bad_addr; 4331 } 4332 4333 /* 4334 * Allow setting new policies. For example, disconnects come 4335 * down as ipa_t bind. As we would have set conn_policy_cached 4336 * to B_TRUE before, we should set it to B_FALSE, so that policy 4337 * can change after the disconnect. 4338 */ 4339 connp->conn_policy_cached = B_FALSE; 4340 4341 /* 4342 * Set the conn addresses/ports immediately, so the IPsec policy calls 4343 * can handle their passed-in conn's. 4344 */ 4345 4346 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4347 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4348 connp->conn_lport = lport; 4349 connp->conn_fport = fport; 4350 *src_addrp = src_addr; 4351 4352 ASSERT(!(ipsec_policy_set && ire_requested)); 4353 if (ire_requested) { 4354 iulp_t *ulp_info = NULL; 4355 4356 /* 4357 * Note that sire will not be NULL if this is an off-link 4358 * connection and there is not cache for that dest yet. 4359 * 4360 * XXX Because of an existing bug, if there are multiple 4361 * default routes, the IRE returned now may not be the actual 4362 * default route used (default routes are chosen in a 4363 * round robin fashion). So if the metrics for different 4364 * default routes are different, we may return the wrong 4365 * metrics. This will not be a problem if the existing 4366 * bug is fixed. 4367 */ 4368 if (sire != NULL) { 4369 ulp_info = &(sire->ire_uinfo); 4370 } 4371 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4372 error = -1; 4373 goto bad_addr; 4374 } 4375 } else if (ipsec_policy_set) { 4376 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4377 error = -1; 4378 goto bad_addr; 4379 } 4380 } 4381 4382 /* 4383 * Cache IPsec policy in this conn. If we have per-socket policy, 4384 * we'll cache that. If we don't, we'll inherit global policy. 4385 * 4386 * We can't insert until the conn reflects the policy. Note that 4387 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4388 * connections where we don't have a policy. This is to prevent 4389 * global policy lookups in the inbound path. 4390 * 4391 * If we insert before we set conn_policy_cached, 4392 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4393 * because global policy cound be non-empty. We normally call 4394 * ipsec_check_policy() for conn_policy_cached connections only if 4395 * ipc_in_enforce_policy is set. But in this case, 4396 * conn_policy_cached can get set anytime since we made the 4397 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4398 * called, which will make the above assumption false. Thus, we 4399 * need to insert after we set conn_policy_cached. 4400 */ 4401 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4402 goto bad_addr; 4403 4404 if (fanout_insert) { 4405 /* 4406 * The addresses have been verified. Time to insert in 4407 * the correct fanout list. 4408 */ 4409 error = ipcl_conn_insert(connp, protocol, src_addr, 4410 dst_addr, connp->conn_ports); 4411 } 4412 4413 if (error == 0) { 4414 connp->conn_fully_bound = B_TRUE; 4415 /* 4416 * Our initial checks for MDT have passed; the IRE is not 4417 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4418 * be supporting MDT. Pass the IRE, IPC and ILL into 4419 * ip_mdinfo_return(), which performs further checks 4420 * against them and upon success, returns the MDT info 4421 * mblk which we will attach to the bind acknowledgment. 4422 */ 4423 if (md_dst_ire != NULL) { 4424 mblk_t *mdinfo_mp; 4425 4426 ASSERT(md_ill != NULL); 4427 ASSERT(md_ill->ill_mdt_capab != NULL); 4428 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4429 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4430 linkb(mp, mdinfo_mp); 4431 } 4432 } 4433 bad_addr: 4434 if (ipsec_policy_set) { 4435 ASSERT(policy_mp == mp->b_cont); 4436 ASSERT(policy_mp != NULL); 4437 freeb(policy_mp); 4438 /* 4439 * As of now assume that nothing else accompanies 4440 * IPSEC_POLICY_SET. 4441 */ 4442 mp->b_cont = NULL; 4443 } 4444 if (src_ire != NULL) 4445 IRE_REFRELE(src_ire); 4446 if (dst_ire != NULL) 4447 IRE_REFRELE(dst_ire); 4448 if (sire != NULL) 4449 IRE_REFRELE(sire); 4450 if (md_dst_ire != NULL) 4451 IRE_REFRELE(md_dst_ire); 4452 return (error); 4453 } 4454 4455 /* 4456 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4457 * Prefers dst_ire over src_ire. 4458 */ 4459 static boolean_t 4460 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4461 { 4462 mblk_t *mp1; 4463 ire_t *ret_ire = NULL; 4464 4465 mp1 = mp->b_cont; 4466 ASSERT(mp1 != NULL); 4467 4468 if (ire != NULL) { 4469 /* 4470 * mp1 initialized above to IRE_DB_REQ_TYPE 4471 * appended mblk. Its <upper protocol>'s 4472 * job to make sure there is room. 4473 */ 4474 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4475 return (0); 4476 4477 mp1->b_datap->db_type = IRE_DB_TYPE; 4478 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4479 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4480 ret_ire = (ire_t *)mp1->b_rptr; 4481 /* 4482 * Pass the latest setting of the ip_path_mtu_discovery and 4483 * copy the ulp info if any. 4484 */ 4485 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4486 IPH_DF : 0; 4487 if (ulp_info != NULL) { 4488 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4489 sizeof (iulp_t)); 4490 } 4491 ret_ire->ire_mp = mp1; 4492 } else { 4493 /* 4494 * No IRE was found. Remove IRE mblk. 4495 */ 4496 mp->b_cont = mp1->b_cont; 4497 freeb(mp1); 4498 } 4499 4500 return (1); 4501 } 4502 4503 /* 4504 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4505 * the final piece where we don't. Return a pointer to the first mblk in the 4506 * result, and update the pointer to the next mblk to chew on. If anything 4507 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4508 * NULL pointer. 4509 */ 4510 mblk_t * 4511 ip_carve_mp(mblk_t **mpp, ssize_t len) 4512 { 4513 mblk_t *mp0; 4514 mblk_t *mp1; 4515 mblk_t *mp2; 4516 4517 if (!len || !mpp || !(mp0 = *mpp)) 4518 return (NULL); 4519 /* If we aren't going to consume the first mblk, we need a dup. */ 4520 if (mp0->b_wptr - mp0->b_rptr > len) { 4521 mp1 = dupb(mp0); 4522 if (mp1) { 4523 /* Partition the data between the two mblks. */ 4524 mp1->b_wptr = mp1->b_rptr + len; 4525 mp0->b_rptr = mp1->b_wptr; 4526 /* 4527 * after adjustments if mblk not consumed is now 4528 * unaligned, try to align it. If this fails free 4529 * all messages and let upper layer recover. 4530 */ 4531 if (!OK_32PTR(mp0->b_rptr)) { 4532 if (!pullupmsg(mp0, -1)) { 4533 freemsg(mp0); 4534 freemsg(mp1); 4535 *mpp = NULL; 4536 return (NULL); 4537 } 4538 } 4539 } 4540 return (mp1); 4541 } 4542 /* Eat through as many mblks as we need to get len bytes. */ 4543 len -= mp0->b_wptr - mp0->b_rptr; 4544 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4545 if (mp2->b_wptr - mp2->b_rptr > len) { 4546 /* 4547 * We won't consume the entire last mblk. Like 4548 * above, dup and partition it. 4549 */ 4550 mp1->b_cont = dupb(mp2); 4551 mp1 = mp1->b_cont; 4552 if (!mp1) { 4553 /* 4554 * Trouble. Rather than go to a lot of 4555 * trouble to clean up, we free the messages. 4556 * This won't be any worse than losing it on 4557 * the wire. 4558 */ 4559 freemsg(mp0); 4560 freemsg(mp2); 4561 *mpp = NULL; 4562 return (NULL); 4563 } 4564 mp1->b_wptr = mp1->b_rptr + len; 4565 mp2->b_rptr = mp1->b_wptr; 4566 /* 4567 * after adjustments if mblk not consumed is now 4568 * unaligned, try to align it. If this fails free 4569 * all messages and let upper layer recover. 4570 */ 4571 if (!OK_32PTR(mp2->b_rptr)) { 4572 if (!pullupmsg(mp2, -1)) { 4573 freemsg(mp0); 4574 freemsg(mp2); 4575 *mpp = NULL; 4576 return (NULL); 4577 } 4578 } 4579 *mpp = mp2; 4580 return (mp0); 4581 } 4582 /* Decrement len by the amount we just got. */ 4583 len -= mp2->b_wptr - mp2->b_rptr; 4584 } 4585 /* 4586 * len should be reduced to zero now. If not our caller has 4587 * screwed up. 4588 */ 4589 if (len) { 4590 /* Shouldn't happen! */ 4591 freemsg(mp0); 4592 *mpp = NULL; 4593 return (NULL); 4594 } 4595 /* 4596 * We consumed up to exactly the end of an mblk. Detach the part 4597 * we are returning from the rest of the chain. 4598 */ 4599 mp1->b_cont = NULL; 4600 *mpp = mp2; 4601 return (mp0); 4602 } 4603 4604 /* The ill stream is being unplumbed. Called from ip_close */ 4605 int 4606 ip_modclose(ill_t *ill) 4607 { 4608 4609 boolean_t success; 4610 ipsq_t *ipsq; 4611 ipif_t *ipif; 4612 queue_t *q = ill->ill_rq; 4613 4614 /* 4615 * Forcibly enter the ipsq after some delay. This is to take 4616 * care of the case when some ioctl does not complete because 4617 * we sent a control message to the driver and it did not 4618 * send us a reply. We want to be able to at least unplumb 4619 * and replumb rather than force the user to reboot the system. 4620 */ 4621 success = ipsq_enter(ill, B_FALSE); 4622 4623 /* 4624 * Open/close/push/pop is guaranteed to be single threaded 4625 * per stream by STREAMS. FS guarantees that all references 4626 * from top are gone before close is called. So there can't 4627 * be another close thread that has set CONDEMNED on this ill. 4628 * and cause ipsq_enter to return failure. 4629 */ 4630 ASSERT(success); 4631 ipsq = ill->ill_phyint->phyint_ipsq; 4632 4633 /* 4634 * Mark it condemned. No new reference will be made to this ill. 4635 * Lookup functions will return an error. Threads that try to 4636 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4637 * that the refcnt will drop down to zero. 4638 */ 4639 mutex_enter(&ill->ill_lock); 4640 ill->ill_state_flags |= ILL_CONDEMNED; 4641 for (ipif = ill->ill_ipif; ipif != NULL; 4642 ipif = ipif->ipif_next) { 4643 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4644 } 4645 /* 4646 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4647 * returns error if ILL_CONDEMNED is set 4648 */ 4649 cv_broadcast(&ill->ill_cv); 4650 mutex_exit(&ill->ill_lock); 4651 4652 /* 4653 * Shut down fragmentation reassembly. 4654 * ill_frag_timer won't start a timer again. 4655 * Now cancel any existing timer 4656 */ 4657 (void) untimeout(ill->ill_frag_timer_id); 4658 (void) ill_frag_timeout(ill, 0); 4659 4660 /* 4661 * If MOVE was in progress, clear the 4662 * move_in_progress fields also. 4663 */ 4664 if (ill->ill_move_in_progress) { 4665 ILL_CLEAR_MOVE(ill); 4666 } 4667 4668 /* 4669 * Call ill_delete to bring down the ipifs, ilms and ill on 4670 * this ill. Then wait for the refcnts to drop to zero. 4671 * ill_is_quiescent checks whether the ill is really quiescent. 4672 * Then make sure that threads that are waiting to enter the 4673 * ipsq have seen the error returned by ipsq_enter and have 4674 * gone away. Then we call ill_delete_tail which does the 4675 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 4676 */ 4677 ill_delete(ill); 4678 mutex_enter(&ill->ill_lock); 4679 while (!ill_is_quiescent(ill)) 4680 cv_wait(&ill->ill_cv, &ill->ill_lock); 4681 while (ill->ill_waiters) 4682 cv_wait(&ill->ill_cv, &ill->ill_lock); 4683 4684 mutex_exit(&ill->ill_lock); 4685 4686 /* qprocsoff is called in ill_delete_tail */ 4687 ill_delete_tail(ill); 4688 4689 /* 4690 * Walk through all upper (conn) streams and qenable 4691 * those that have queued data. 4692 * close synchronization needs this to 4693 * be done to ensure that all upper layers blocked 4694 * due to flow control to the closing device 4695 * get unblocked. 4696 */ 4697 ip1dbg(("ip_wsrv: walking\n")); 4698 conn_walk_drain(); 4699 4700 mutex_enter(&ip_mi_lock); 4701 mi_close_unlink(&ip_g_head, (IDP)ill); 4702 mutex_exit(&ip_mi_lock); 4703 4704 /* 4705 * credp could be null if the open didn't succeed and ip_modopen 4706 * itself calls ip_close. 4707 */ 4708 if (ill->ill_credp != NULL) 4709 crfree(ill->ill_credp); 4710 4711 mi_close_free((IDP)ill); 4712 q->q_ptr = WR(q)->q_ptr = NULL; 4713 4714 ipsq_exit(ipsq, B_TRUE, B_TRUE); 4715 4716 return (0); 4717 } 4718 4719 /* 4720 * This is called as part of close() for both IP and UDP 4721 * in order to quiesce the conn. 4722 */ 4723 void 4724 ip_quiesce_conn(conn_t *connp) 4725 { 4726 boolean_t drain_cleanup_reqd = B_FALSE; 4727 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4728 boolean_t ilg_cleanup_reqd = B_FALSE; 4729 4730 ASSERT(!IPCL_IS_TCP(connp)); 4731 4732 /* 4733 * Mark the conn as closing, and this conn must not be 4734 * inserted in future into any list. Eg. conn_drain_insert(), 4735 * won't insert this conn into the conn_drain_list. 4736 * Similarly ill_pending_mp_add() will not add any mp to 4737 * the pending mp list, after this conn has started closing. 4738 * 4739 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 4740 * cannot get set henceforth. 4741 */ 4742 mutex_enter(&connp->conn_lock); 4743 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4744 connp->conn_state_flags |= CONN_CLOSING; 4745 if (connp->conn_idl != NULL) 4746 drain_cleanup_reqd = B_TRUE; 4747 if (connp->conn_oper_pending_ill != NULL) 4748 conn_ioctl_cleanup_reqd = B_TRUE; 4749 if (connp->conn_ilg_inuse != 0) 4750 ilg_cleanup_reqd = B_TRUE; 4751 mutex_exit(&connp->conn_lock); 4752 4753 if (IPCL_IS_UDP(connp)) 4754 udp_quiesce_conn(connp); 4755 4756 if (conn_ioctl_cleanup_reqd) 4757 conn_ioctl_cleanup(connp); 4758 4759 /* 4760 * Remove this conn from any fanout list it is on. 4761 * and then wait for any threads currently operating 4762 * on this endpoint to finish 4763 */ 4764 ipcl_hash_remove(connp); 4765 4766 /* 4767 * Remove this conn from the drain list, and do 4768 * any other cleanup that may be required. 4769 * (Only non-tcp streams may have a non-null conn_idl. 4770 * TCP streams are never flow controlled, and 4771 * conn_idl will be null) 4772 */ 4773 if (drain_cleanup_reqd) 4774 conn_drain_tail(connp, B_TRUE); 4775 4776 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 4777 (void) ip_mrouter_done(NULL); 4778 4779 if (ilg_cleanup_reqd) 4780 ilg_delete_all(connp); 4781 4782 conn_delete_ire(connp, NULL); 4783 4784 /* 4785 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4786 * callers from write side can't be there now because close 4787 * is in progress. The only other caller is ipcl_walk 4788 * which checks for the condemned flag. 4789 */ 4790 mutex_enter(&connp->conn_lock); 4791 connp->conn_state_flags |= CONN_CONDEMNED; 4792 while (connp->conn_ref != 1) 4793 cv_wait(&connp->conn_cv, &connp->conn_lock); 4794 connp->conn_state_flags |= CONN_QUIESCED; 4795 mutex_exit(&connp->conn_lock); 4796 } 4797 4798 /* ARGSUSED */ 4799 int 4800 ip_close(queue_t *q, int flags) 4801 { 4802 conn_t *connp; 4803 4804 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 4805 4806 /* 4807 * Call the appropriate delete routine depending on whether this is 4808 * a module or device. 4809 */ 4810 if (WR(q)->q_next != NULL) { 4811 /* This is a module close */ 4812 return (ip_modclose((ill_t *)q->q_ptr)); 4813 } 4814 4815 connp = q->q_ptr; 4816 ip_quiesce_conn(connp); 4817 4818 qprocsoff(q); 4819 4820 /* 4821 * Now we are truly single threaded on this stream, and can 4822 * delete the things hanging off the connp, and finally the connp. 4823 * We removed this connp from the fanout list, it cannot be 4824 * accessed thru the fanouts, and we already waited for the 4825 * conn_ref to drop to 0. We are already in close, so 4826 * there cannot be any other thread from the top. qprocsoff 4827 * has completed, and service has completed or won't run in 4828 * future. 4829 */ 4830 ASSERT(connp->conn_ref == 1); 4831 4832 /* 4833 * A conn which was previously marked as IPCL_UDP cannot 4834 * retain the flag because it would have been cleared by 4835 * udp_close(). 4836 */ 4837 ASSERT(!IPCL_IS_UDP(connp)); 4838 4839 if (connp->conn_latch != NULL) { 4840 IPLATCH_REFRELE(connp->conn_latch); 4841 connp->conn_latch = NULL; 4842 } 4843 if (connp->conn_policy != NULL) { 4844 IPPH_REFRELE(connp->conn_policy); 4845 connp->conn_policy = NULL; 4846 } 4847 if (connp->conn_ipsec_opt_mp != NULL) { 4848 freemsg(connp->conn_ipsec_opt_mp); 4849 connp->conn_ipsec_opt_mp = NULL; 4850 } 4851 if (connp->conn_cred != NULL) { 4852 crfree(connp->conn_cred); 4853 connp->conn_cred = NULL; 4854 } 4855 4856 inet_minor_free(ip_minor_arena, connp->conn_dev); 4857 4858 connp->conn_ref--; 4859 ipcl_conn_destroy(connp); 4860 4861 q->q_ptr = WR(q)->q_ptr = NULL; 4862 return (0); 4863 } 4864 4865 int 4866 ip_snmpmod_close(queue_t *q) 4867 { 4868 conn_t *connp = Q_TO_CONN(q); 4869 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 4870 4871 qprocsoff(q); 4872 4873 if (connp->conn_flags & IPCL_UDPMOD) 4874 udp_close_free(connp); 4875 4876 if (connp->conn_cred != NULL) { 4877 crfree(connp->conn_cred); 4878 connp->conn_cred = NULL; 4879 } 4880 CONN_DEC_REF(connp); 4881 q->q_ptr = WR(q)->q_ptr = NULL; 4882 return (0); 4883 } 4884 4885 /* 4886 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 4887 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 4888 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 4889 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 4890 * queues as we never enqueue messages there and we don't handle any ioctls. 4891 * Everything else is freed. 4892 */ 4893 void 4894 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 4895 { 4896 conn_t *connp = q->q_ptr; 4897 pfi_t setfn; 4898 pfi_t getfn; 4899 4900 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 4901 4902 switch (DB_TYPE(mp)) { 4903 case M_PROTO: 4904 case M_PCPROTO: 4905 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 4906 ((((union T_primitives *)mp->b_rptr)->type == 4907 T_SVR4_OPTMGMT_REQ) || 4908 (((union T_primitives *)mp->b_rptr)->type == 4909 T_OPTMGMT_REQ))) { 4910 /* 4911 * This is the only TPI primitive supported. Its 4912 * handling does not require tcp_t, but it does require 4913 * conn_t to check permissions. 4914 */ 4915 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 4916 4917 if (connp->conn_flags & IPCL_TCPMOD) { 4918 setfn = tcp_snmp_set; 4919 getfn = tcp_snmp_get; 4920 } else { 4921 setfn = udp_snmp_set; 4922 getfn = udp_snmp_get; 4923 } 4924 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 4925 freemsg(mp); 4926 return; 4927 } 4928 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 4929 != NULL) 4930 qreply(q, mp); 4931 break; 4932 case M_FLUSH: 4933 case M_IOCTL: 4934 putnext(q, mp); 4935 break; 4936 default: 4937 freemsg(mp); 4938 break; 4939 } 4940 } 4941 4942 /* Return the IP checksum for the IP header at "iph". */ 4943 uint16_t 4944 ip_csum_hdr(ipha_t *ipha) 4945 { 4946 uint16_t *uph; 4947 uint32_t sum; 4948 int opt_len; 4949 4950 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 4951 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 4952 uph = (uint16_t *)ipha; 4953 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 4954 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 4955 if (opt_len > 0) { 4956 do { 4957 sum += uph[10]; 4958 sum += uph[11]; 4959 uph += 2; 4960 } while (--opt_len); 4961 } 4962 sum = (sum & 0xFFFF) + (sum >> 16); 4963 sum = ~(sum + (sum >> 16)) & 0xFFFF; 4964 if (sum == 0xffff) 4965 sum = 0; 4966 return ((uint16_t)sum); 4967 } 4968 4969 void 4970 ip_ddi_destroy(void) 4971 { 4972 tcp_ddi_destroy(); 4973 sctp_ddi_destroy(); 4974 ipsec_loader_destroy(); 4975 ipsec_policy_destroy(); 4976 ipsec_kstat_destroy(); 4977 nd_free(&ip_g_nd); 4978 mutex_destroy(&igmp_timer_lock); 4979 mutex_destroy(&mld_timer_lock); 4980 mutex_destroy(&igmp_slowtimeout_lock); 4981 mutex_destroy(&mld_slowtimeout_lock); 4982 mutex_destroy(&ip_mi_lock); 4983 mutex_destroy(&rts_clients.connf_lock); 4984 ip_ire_fini(); 4985 ip6_asp_free(); 4986 conn_drain_fini(); 4987 ipcl_destroy(); 4988 inet_minor_destroy(ip_minor_arena); 4989 icmp_kstat_fini(); 4990 ip_kstat_fini(); 4991 rw_destroy(&ipsec_capab_ills_lock); 4992 rw_destroy(&ill_g_usesrc_lock); 4993 ip_drop_unregister(&ip_dropper); 4994 } 4995 4996 4997 void 4998 ip_ddi_init(void) 4999 { 5000 TCP6_MAJ = ddi_name_to_major(TCP6); 5001 TCP_MAJ = ddi_name_to_major(TCP); 5002 SCTP_MAJ = ddi_name_to_major(SCTP); 5003 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5004 5005 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5006 5007 /* IP's IPsec code calls the packet dropper */ 5008 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5009 5010 if (!ip_g_nd) { 5011 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5012 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5013 nd_free(&ip_g_nd); 5014 } 5015 } 5016 5017 ipsec_loader_init(); 5018 ipsec_policy_init(); 5019 ipsec_kstat_init(); 5020 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5021 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5022 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5023 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5024 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5025 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5026 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5027 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5028 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5029 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5030 5031 /* 5032 * For IP and TCP the minor numbers should start from 2 since we have 4 5033 * initial devices: ip, ip6, tcp, tcp6. 5034 */ 5035 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5036 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5037 cmn_err(CE_PANIC, 5038 "ip_ddi_init: ip_minor_arena creation failed\n"); 5039 } 5040 5041 ipcl_init(); 5042 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5043 ip_ire_init(); 5044 ip6_asp_init(); 5045 ipif_init(); 5046 conn_drain_init(); 5047 tcp_ddi_init(); 5048 sctp_ddi_init(); 5049 5050 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5051 5052 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5053 "net", KSTAT_TYPE_NAMED, 5054 sizeof (ip_statistics) / sizeof (kstat_named_t), 5055 KSTAT_FLAG_VIRTUAL)) != NULL) { 5056 ip_kstat->ks_data = &ip_statistics; 5057 kstat_install(ip_kstat); 5058 } 5059 ip_kstat_init(); 5060 ip6_kstat_init(); 5061 icmp_kstat_init(); 5062 5063 ipsec_loader_start(); 5064 } 5065 5066 /* 5067 * Allocate and initialize a DLPI template of the specified length. (May be 5068 * called as writer.) 5069 */ 5070 mblk_t * 5071 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5072 { 5073 mblk_t *mp; 5074 5075 mp = allocb(len, BPRI_MED); 5076 if (!mp) 5077 return (NULL); 5078 5079 /* 5080 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5081 * of which we don't seem to use) are sent with M_PCPROTO, and 5082 * that other DLPI are M_PROTO. 5083 */ 5084 if (prim == DL_INFO_REQ) { 5085 mp->b_datap->db_type = M_PCPROTO; 5086 } else { 5087 mp->b_datap->db_type = M_PROTO; 5088 } 5089 5090 mp->b_wptr = mp->b_rptr + len; 5091 bzero(mp->b_rptr, len); 5092 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5093 return (mp); 5094 } 5095 5096 const char * 5097 dlpi_prim_str(int prim) 5098 { 5099 switch (prim) { 5100 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5101 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5102 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5103 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5104 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5105 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5106 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5107 case DL_OK_ACK: return ("DL_OK_ACK"); 5108 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5109 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5110 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5111 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5112 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5113 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5114 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5115 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5116 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5117 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5118 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5119 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5120 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5121 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5122 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5123 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5124 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5125 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5126 default: return ("<unknown primitive>"); 5127 } 5128 } 5129 5130 const char * 5131 dlpi_err_str(int err) 5132 { 5133 switch (err) { 5134 case DL_ACCESS: return ("DL_ACCESS"); 5135 case DL_BADADDR: return ("DL_BADADDR"); 5136 case DL_BADCORR: return ("DL_BADCORR"); 5137 case DL_BADDATA: return ("DL_BADDATA"); 5138 case DL_BADPPA: return ("DL_BADPPA"); 5139 case DL_BADPRIM: return ("DL_BADPRIM"); 5140 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5141 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5142 case DL_BADSAP: return ("DL_BADSAP"); 5143 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5144 case DL_BOUND: return ("DL_BOUND"); 5145 case DL_INITFAILED: return ("DL_INITFAILED"); 5146 case DL_NOADDR: return ("DL_NOADDR"); 5147 case DL_NOTINIT: return ("DL_NOTINIT"); 5148 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5149 case DL_SYSERR: return ("DL_SYSERR"); 5150 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5151 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5152 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5153 case DL_TOOMANY: return ("DL_TOOMANY"); 5154 case DL_NOTENAB: return ("DL_NOTENAB"); 5155 case DL_BUSY: return ("DL_BUSY"); 5156 case DL_NOAUTO: return ("DL_NOAUTO"); 5157 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5158 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5159 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5160 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5161 case DL_PENDING: return ("DL_PENDING"); 5162 default: return ("<unknown error>"); 5163 } 5164 } 5165 5166 /* 5167 * Debug formatting routine. Returns a character string representation of the 5168 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5169 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5170 */ 5171 char * 5172 ip_dot_addr(ipaddr_t addr, char *buf) 5173 { 5174 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5175 } 5176 5177 /* 5178 * Debug formatting routine. Returns a character string representation of the 5179 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5180 * as a pointer. The "xxx" parts including left zero padding so the final 5181 * string will fit easily in tables. It would be nice to take a padding 5182 * length argument instead. 5183 */ 5184 static char * 5185 ip_dot_saddr(uchar_t *addr, char *buf) 5186 { 5187 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5188 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5189 return (buf); 5190 } 5191 5192 /* 5193 * Send an ICMP error after patching up the packet appropriately. Returns 5194 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5195 */ 5196 static boolean_t 5197 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5198 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5199 { 5200 ipha_t *ipha; 5201 mblk_t *first_mp; 5202 boolean_t secure; 5203 unsigned char db_type; 5204 5205 first_mp = mp; 5206 if (mctl_present) { 5207 mp = mp->b_cont; 5208 secure = ipsec_in_is_secure(first_mp); 5209 ASSERT(mp != NULL); 5210 } else { 5211 /* 5212 * If this is an ICMP error being reported - which goes 5213 * up as M_CTLs, we need to convert them to M_DATA till 5214 * we finish checking with global policy because 5215 * ipsec_check_global_policy() assumes M_DATA as clear 5216 * and M_CTL as secure. 5217 */ 5218 db_type = DB_TYPE(mp); 5219 DB_TYPE(mp) = M_DATA; 5220 secure = B_FALSE; 5221 } 5222 /* 5223 * We are generating an icmp error for some inbound packet. 5224 * Called from all ip_fanout_(udp, tcp, proto) functions. 5225 * Before we generate an error, check with global policy 5226 * to see whether this is allowed to enter the system. As 5227 * there is no "conn", we are checking with global policy. 5228 */ 5229 ipha = (ipha_t *)mp->b_rptr; 5230 if (secure || ipsec_inbound_v4_policy_present) { 5231 first_mp = ipsec_check_global_policy(first_mp, NULL, 5232 ipha, NULL, mctl_present); 5233 if (first_mp == NULL) 5234 return (B_FALSE); 5235 } 5236 5237 if (!mctl_present) 5238 DB_TYPE(mp) = db_type; 5239 5240 if (flags & IP_FF_SEND_ICMP) { 5241 if (flags & IP_FF_HDR_COMPLETE) { 5242 if (ip_hdr_complete(ipha, zoneid)) { 5243 freemsg(first_mp); 5244 return (B_TRUE); 5245 } 5246 } 5247 if (flags & IP_FF_CKSUM) { 5248 /* 5249 * Have to correct checksum since 5250 * the packet might have been 5251 * fragmented and the reassembly code in ip_rput 5252 * does not restore the IP checksum. 5253 */ 5254 ipha->ipha_hdr_checksum = 0; 5255 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5256 } 5257 switch (icmp_type) { 5258 case ICMP_DEST_UNREACHABLE: 5259 icmp_unreachable(WR(q), first_mp, icmp_code); 5260 break; 5261 default: 5262 freemsg(first_mp); 5263 break; 5264 } 5265 } else { 5266 freemsg(first_mp); 5267 return (B_FALSE); 5268 } 5269 5270 return (B_TRUE); 5271 } 5272 5273 #ifdef DEBUG 5274 /* 5275 * Copy the header into the IPSEC_IN message. 5276 */ 5277 static void 5278 ipsec_inbound_debug_tag(mblk_t *ipsec_mp) 5279 { 5280 mblk_t *data_mp = ipsec_mp->b_cont; 5281 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5282 ipha_t *ipha; 5283 5284 if (ii->ipsec_in_type != IPSEC_IN) 5285 return; 5286 ASSERT(data_mp != NULL); 5287 5288 ipha = (ipha_t *)data_mp->b_rptr; 5289 bcopy(ipha, ii->ipsec_in_saved_hdr, 5290 (IPH_HDR_VERSION(ipha) == IP_VERSION) ? 5291 sizeof (ipha_t) : sizeof (ip6_t)); 5292 } 5293 #else 5294 #define ipsec_inbound_debug_tag(x) /* NOP */ 5295 #endif /* DEBUG */ 5296 5297 /* 5298 * Used to send an ICMP error message when a packet is received for 5299 * a protocol that is not supported. The mblk passed as argument 5300 * is consumed by this function. 5301 */ 5302 void 5303 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5304 { 5305 mblk_t *mp; 5306 ipha_t *ipha; 5307 ill_t *ill; 5308 ipsec_in_t *ii; 5309 5310 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5311 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5312 5313 mp = ipsec_mp->b_cont; 5314 ipsec_mp->b_cont = NULL; 5315 ipha = (ipha_t *)mp->b_rptr; 5316 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5317 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5318 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5319 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5320 } 5321 } else { 5322 /* Get ill from index in ipsec_in_t. */ 5323 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5324 B_TRUE, NULL, NULL, NULL, NULL); 5325 if (ill != NULL) { 5326 if (ip_fanout_send_icmp_v6(q, mp, flags, 5327 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5328 0, B_FALSE, zoneid)) { 5329 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5330 } 5331 5332 ill_refrele(ill); 5333 } else { /* re-link for the freemsg() below. */ 5334 ipsec_mp->b_cont = mp; 5335 } 5336 } 5337 5338 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5339 freemsg(ipsec_mp); 5340 } 5341 5342 /* 5343 * See if the inbound datagram has had IPsec processing applied to it. 5344 */ 5345 boolean_t 5346 ipsec_in_is_secure(mblk_t *ipsec_mp) 5347 { 5348 ipsec_in_t *ii; 5349 5350 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5351 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5352 5353 if (ii->ipsec_in_loopback) { 5354 return (ii->ipsec_in_secure); 5355 } else { 5356 return (ii->ipsec_in_ah_sa != NULL || 5357 ii->ipsec_in_esp_sa != NULL || 5358 ii->ipsec_in_decaps); 5359 } 5360 } 5361 5362 /* 5363 * Handle protocols with which IP is less intimate. There 5364 * can be more than one stream bound to a particular 5365 * protocol. When this is the case, normally each one gets a copy 5366 * of any incoming packets. 5367 * 5368 * IPSEC NOTE : 5369 * 5370 * Don't allow a secure packet going up a non-secure connection. 5371 * We don't allow this because 5372 * 5373 * 1) Reply might go out in clear which will be dropped at 5374 * the sending side. 5375 * 2) If the reply goes out in clear it will give the 5376 * adversary enough information for getting the key in 5377 * most of the cases. 5378 * 5379 * Moreover getting a secure packet when we expect clear 5380 * implies that SA's were added without checking for 5381 * policy on both ends. This should not happen once ISAKMP 5382 * is used to negotiate SAs as SAs will be added only after 5383 * verifying the policy. 5384 * 5385 * NOTE : If the packet was tunneled and not multicast we only send 5386 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5387 * back to delivering packets to AF_INET6 raw sockets. 5388 * 5389 * IPQoS Notes: 5390 * Once we have determined the client, invoke IPPF processing. 5391 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5392 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5393 * ip_policy will be false. 5394 * 5395 * Zones notes: 5396 * Currently only applications in the global zone can create raw sockets for 5397 * protocols other than ICMP. So unlike the broadcast / multicast case of 5398 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5399 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5400 */ 5401 static void 5402 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5403 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5404 zoneid_t zoneid) 5405 { 5406 queue_t *rq; 5407 mblk_t *mp1, *first_mp1; 5408 uint_t protocol = ipha->ipha_protocol; 5409 ipaddr_t dst; 5410 boolean_t one_only; 5411 mblk_t *first_mp = mp; 5412 boolean_t secure; 5413 uint32_t ill_index; 5414 conn_t *connp, *first_connp, *next_connp; 5415 connf_t *connfp; 5416 5417 if (mctl_present) { 5418 mp = first_mp->b_cont; 5419 secure = ipsec_in_is_secure(first_mp); 5420 ASSERT(mp != NULL); 5421 } else { 5422 secure = B_FALSE; 5423 } 5424 dst = ipha->ipha_dst; 5425 /* 5426 * If the packet was tunneled and not multicast we only send to it 5427 * the first match. 5428 */ 5429 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5430 !CLASSD(dst)); 5431 5432 connfp = &ipcl_proto_fanout[protocol]; 5433 mutex_enter(&connfp->connf_lock); 5434 connp = connfp->connf_head; 5435 for (connp = connfp->connf_head; connp != NULL; 5436 connp = connp->conn_next) { 5437 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, zoneid)) 5438 break; 5439 } 5440 5441 if (connp == NULL || connp->conn_upq == NULL) { 5442 /* 5443 * No one bound to these addresses. Is 5444 * there a client that wants all 5445 * unclaimed datagrams? 5446 */ 5447 mutex_exit(&connfp->connf_lock); 5448 /* 5449 * Check for IPPROTO_ENCAP... 5450 */ 5451 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5452 /* 5453 * XXX If an IPsec mblk is here on a multicast 5454 * tunnel (using ip_mroute stuff), what should 5455 * I do? 5456 * 5457 * For now, just free the IPsec mblk before 5458 * passing it up to the multicast routing 5459 * stuff. 5460 * 5461 * BTW, If I match a configured IP-in-IP 5462 * tunnel, ip_mroute_decap will never be 5463 * called. 5464 */ 5465 if (mp != first_mp) 5466 freeb(first_mp); 5467 ip_mroute_decap(q, mp); 5468 } else { 5469 /* 5470 * Otherwise send an ICMP protocol unreachable. 5471 */ 5472 if (ip_fanout_send_icmp(q, first_mp, flags, 5473 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5474 mctl_present, zoneid)) { 5475 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5476 } 5477 } 5478 return; 5479 } 5480 CONN_INC_REF(connp); 5481 first_connp = connp; 5482 5483 /* 5484 * Only send message to one tunnel driver by immediately 5485 * terminating the loop. 5486 */ 5487 connp = one_only ? NULL : connp->conn_next; 5488 5489 for (;;) { 5490 while (connp != NULL) { 5491 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5492 flags, zoneid)) 5493 break; 5494 connp = connp->conn_next; 5495 } 5496 5497 /* 5498 * Copy the packet. 5499 */ 5500 if (connp == NULL || connp->conn_upq == NULL || 5501 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5502 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5503 /* 5504 * No more interested clients or memory 5505 * allocation failed 5506 */ 5507 connp = first_connp; 5508 break; 5509 } 5510 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5511 CONN_INC_REF(connp); 5512 mutex_exit(&connfp->connf_lock); 5513 rq = connp->conn_rq; 5514 if (!canputnext(rq)) { 5515 if (flags & IP_FF_RAWIP) { 5516 BUMP_MIB(&ip_mib, rawipInOverflows); 5517 } else { 5518 BUMP_MIB(&icmp_mib, icmpInOverflows); 5519 } 5520 5521 freemsg(first_mp1); 5522 } else { 5523 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5524 first_mp1 = ipsec_check_inbound_policy 5525 (first_mp1, connp, ipha, NULL, 5526 mctl_present); 5527 } 5528 if (first_mp1 != NULL) { 5529 /* 5530 * ip_fanout_proto also gets called from 5531 * icmp_inbound_error_fanout, in which case 5532 * the msg type is M_CTL. Don't add info 5533 * in this case for the time being. In future 5534 * when there is a need for knowing the 5535 * inbound iface index for ICMP error msgs, 5536 * then this can be changed. 5537 */ 5538 if ((connp->conn_recvif != 0) && 5539 (mp->b_datap->db_type != M_CTL)) { 5540 /* 5541 * the actual data will be 5542 * contained in b_cont upon 5543 * successful return of the 5544 * following call else 5545 * original mblk is returned 5546 */ 5547 ASSERT(recv_ill != NULL); 5548 mp1 = ip_add_info(mp1, recv_ill, 5549 IPF_RECVIF); 5550 } 5551 BUMP_MIB(&ip_mib, ipInDelivers); 5552 if (mctl_present) 5553 freeb(first_mp1); 5554 putnext(rq, mp1); 5555 } 5556 } 5557 mutex_enter(&connfp->connf_lock); 5558 /* Follow the next pointer before releasing the conn. */ 5559 next_connp = connp->conn_next; 5560 CONN_DEC_REF(connp); 5561 connp = next_connp; 5562 } 5563 5564 /* Last one. Send it upstream. */ 5565 mutex_exit(&connfp->connf_lock); 5566 5567 /* 5568 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5569 * will be set to false. 5570 */ 5571 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5572 ill_index = ill->ill_phyint->phyint_ifindex; 5573 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5574 if (mp == NULL) { 5575 CONN_DEC_REF(connp); 5576 if (mctl_present) { 5577 freeb(first_mp); 5578 } 5579 return; 5580 } 5581 } 5582 5583 rq = connp->conn_rq; 5584 if (!canputnext(rq)) { 5585 if (flags & IP_FF_RAWIP) { 5586 BUMP_MIB(&ip_mib, rawipInOverflows); 5587 } else { 5588 BUMP_MIB(&icmp_mib, icmpInOverflows); 5589 } 5590 5591 freemsg(first_mp); 5592 } else { 5593 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5594 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5595 ipha, NULL, mctl_present); 5596 } 5597 if (first_mp != NULL) { 5598 /* 5599 * ip_fanout_proto also gets called 5600 * from icmp_inbound_error_fanout, in 5601 * which case the msg type is M_CTL. 5602 * Don't add info in this case for time 5603 * being. In future when there is a 5604 * need for knowing the inbound iface 5605 * index for ICMP error msgs, then this 5606 * can be changed 5607 */ 5608 if ((connp->conn_recvif != 0) && 5609 (mp->b_datap->db_type != M_CTL)) { 5610 /* 5611 * the actual data will be contained in 5612 * b_cont upon successful return 5613 * of the following call else original 5614 * mblk is returned 5615 */ 5616 ASSERT(recv_ill != NULL); 5617 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5618 } 5619 BUMP_MIB(&ip_mib, ipInDelivers); 5620 putnext(rq, mp); 5621 if (mctl_present) 5622 freeb(first_mp); 5623 } 5624 } 5625 CONN_DEC_REF(connp); 5626 } 5627 5628 /* 5629 * Fanout for TCP packets 5630 * The caller puts <fport, lport> in the ports parameter. 5631 * 5632 * IPQoS Notes 5633 * Before sending it to the client, invoke IPPF processing. 5634 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5635 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5636 * ip_policy is false. 5637 */ 5638 static void 5639 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 5640 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 5641 { 5642 mblk_t *first_mp; 5643 boolean_t secure; 5644 uint32_t ill_index; 5645 int ip_hdr_len; 5646 tcph_t *tcph; 5647 boolean_t syn_present = B_FALSE; 5648 conn_t *connp; 5649 5650 first_mp = mp; 5651 if (mctl_present) { 5652 ASSERT(first_mp->b_datap->db_type == M_CTL); 5653 mp = first_mp->b_cont; 5654 secure = ipsec_in_is_secure(first_mp); 5655 ASSERT(mp != NULL); 5656 } else { 5657 secure = B_FALSE; 5658 } 5659 5660 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 5661 5662 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 5663 NULL) { 5664 /* 5665 * No connected connection or listener. Send a 5666 * TH_RST via tcp_xmit_listeners_reset. 5667 */ 5668 5669 /* Initiate IPPf processing, if needed. */ 5670 if (IPP_ENABLED(IPP_LOCAL_IN)) { 5671 uint32_t ill_index; 5672 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5673 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 5674 if (first_mp == NULL) 5675 return; 5676 } 5677 BUMP_MIB(&ip_mib, ipInDelivers); 5678 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5679 return; 5680 } 5681 5682 /* 5683 * Allocate the SYN for the TCP connection here itself 5684 */ 5685 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5686 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 5687 if (IPCL_IS_TCP(connp)) { 5688 squeue_t *sqp; 5689 5690 /* 5691 * For fused tcp loopback, assign the eager's 5692 * squeue to be that of the active connect's. 5693 * Note that we don't check for IP_FF_LOOPBACK 5694 * here since this routine gets called only 5695 * for loopback (unlike the IPv6 counterpart). 5696 */ 5697 if (do_tcp_fusion && 5698 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 5699 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy) { 5700 ASSERT(Q_TO_CONN(q) != NULL); 5701 sqp = Q_TO_CONN(q)->conn_sqp; 5702 } else { 5703 sqp = IP_SQUEUE_GET(lbolt); 5704 } 5705 5706 mp->b_datap->db_struioflag |= STRUIO_EAGER; 5707 DB_CKSUMSTART(mp) = (intptr_t)sqp; 5708 syn_present = B_TRUE; 5709 } 5710 } 5711 5712 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 5713 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 5714 if ((flags & TH_RST) || (flags & TH_URG)) { 5715 CONN_DEC_REF(connp); 5716 freemsg(first_mp); 5717 return; 5718 } 5719 if (flags & TH_ACK) { 5720 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5721 CONN_DEC_REF(connp); 5722 return; 5723 } 5724 5725 CONN_DEC_REF(connp); 5726 freemsg(first_mp); 5727 return; 5728 } 5729 5730 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5731 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5732 NULL, mctl_present); 5733 if (first_mp == NULL) { 5734 CONN_DEC_REF(connp); 5735 return; 5736 } 5737 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 5738 ASSERT(syn_present); 5739 if (mctl_present) { 5740 ASSERT(first_mp != mp); 5741 first_mp->b_datap->db_struioflag |= 5742 STRUIO_POLICY; 5743 } else { 5744 ASSERT(first_mp == mp); 5745 mp->b_datap->db_struioflag &= 5746 ~STRUIO_EAGER; 5747 mp->b_datap->db_struioflag |= 5748 STRUIO_POLICY; 5749 } 5750 } else { 5751 /* 5752 * Discard first_mp early since we're dealing with a 5753 * fully-connected conn_t and tcp doesn't do policy in 5754 * this case. 5755 */ 5756 if (mctl_present) { 5757 freeb(first_mp); 5758 mctl_present = B_FALSE; 5759 } 5760 first_mp = mp; 5761 } 5762 } 5763 5764 /* 5765 * Initiate policy processing here if needed. If we get here from 5766 * icmp_inbound_error_fanout, ip_policy is false. 5767 */ 5768 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5769 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5770 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5771 if (mp == NULL) { 5772 CONN_DEC_REF(connp); 5773 if (mctl_present) 5774 freeb(first_mp); 5775 return; 5776 } else if (mctl_present) { 5777 ASSERT(first_mp != mp); 5778 first_mp->b_cont = mp; 5779 } else { 5780 first_mp = mp; 5781 } 5782 } 5783 5784 5785 5786 /* Handle IPv6 socket options. */ 5787 if (!syn_present && 5788 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 5789 /* Add header */ 5790 ASSERT(recv_ill != NULL); 5791 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5792 if (mp == NULL) { 5793 CONN_DEC_REF(connp); 5794 if (mctl_present) 5795 freeb(first_mp); 5796 return; 5797 } else if (mctl_present) { 5798 /* 5799 * ip_add_info might return a new mp. 5800 */ 5801 ASSERT(first_mp != mp); 5802 first_mp->b_cont = mp; 5803 } else { 5804 first_mp = mp; 5805 } 5806 } 5807 5808 BUMP_MIB(&ip_mib, ipInDelivers); 5809 if (IPCL_IS_TCP(connp)) { 5810 (*ip_input_proc)(connp->conn_sqp, first_mp, 5811 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 5812 } else { 5813 putnext(connp->conn_rq, first_mp); 5814 CONN_DEC_REF(connp); 5815 } 5816 } 5817 5818 /* 5819 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5820 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5821 * Caller is responsible for dropping references to the conn, and freeing 5822 * first_mp. 5823 * 5824 * IPQoS Notes 5825 * Before sending it to the client, invoke IPPF processing. Policy processing 5826 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 5827 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 5828 * ip_wput_local, ip_policy is false. 5829 */ 5830 static void 5831 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 5832 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 5833 boolean_t ip_policy) 5834 { 5835 boolean_t mctl_present = (first_mp != NULL); 5836 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 5837 uint32_t ill_index; 5838 5839 if (mctl_present) 5840 first_mp->b_cont = mp; 5841 else 5842 first_mp = mp; 5843 5844 if (CONN_UDP_FLOWCTLD(connp)) { 5845 BUMP_MIB(&ip_mib, udpInOverflows); 5846 freemsg(first_mp); 5847 return; 5848 } 5849 5850 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5851 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5852 NULL, mctl_present); 5853 if (first_mp == NULL) 5854 return; /* Freed by ipsec_check_inbound_policy(). */ 5855 } 5856 if (mctl_present) 5857 freeb(first_mp); 5858 5859 if (connp->conn_recvif) 5860 in_flags = IPF_RECVIF; 5861 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 5862 in_flags |= IPF_RECVSLLA; 5863 5864 /* Handle IPv6 options. */ 5865 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 5866 in_flags |= IPF_RECVIF; 5867 5868 /* 5869 * Initiate IPPF processing here, if needed. Note first_mp won't be 5870 * freed if the packet is dropped. The caller will do so. 5871 */ 5872 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5873 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5874 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5875 if (mp == NULL) { 5876 return; 5877 } 5878 } 5879 if ((in_flags != 0) && 5880 (mp->b_datap->db_type != M_CTL)) { 5881 /* 5882 * The actual data will be contained in b_cont 5883 * upon successful return of the following call 5884 * else original mblk is returned 5885 */ 5886 ASSERT(recv_ill != NULL); 5887 mp = ip_add_info(mp, recv_ill, in_flags); 5888 } 5889 BUMP_MIB(&ip_mib, ipInDelivers); 5890 5891 /* Send it upstream */ 5892 CONN_UDP_RECV(connp, mp); 5893 } 5894 5895 /* 5896 * Fanout for UDP packets. 5897 * The caller puts <fport, lport> in the ports parameter. 5898 * 5899 * If SO_REUSEADDR is set all multicast and broadcast packets 5900 * will be delivered to all streams bound to the same port. 5901 * 5902 * Zones notes: 5903 * Multicast and broadcast packets will be distributed to streams in all zones. 5904 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5905 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5906 * packets. To maintain this behavior with multiple zones, the conns are grouped 5907 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 5908 * each zone. If unset, all the following conns in the same zone are skipped. 5909 */ 5910 static void 5911 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 5912 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 5913 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 5914 { 5915 uint32_t dstport, srcport; 5916 ipaddr_t dst; 5917 mblk_t *first_mp; 5918 boolean_t secure; 5919 in6_addr_t v6src; 5920 conn_t *connp; 5921 connf_t *connfp; 5922 conn_t *first_connp; 5923 conn_t *next_connp; 5924 mblk_t *mp1, *first_mp1; 5925 ipaddr_t src; 5926 zoneid_t last_zoneid; 5927 boolean_t reuseaddr; 5928 5929 first_mp = mp; 5930 if (mctl_present) { 5931 mp = first_mp->b_cont; 5932 first_mp->b_cont = NULL; 5933 secure = ipsec_in_is_secure(first_mp); 5934 ASSERT(mp != NULL); 5935 } else { 5936 first_mp = NULL; 5937 secure = B_FALSE; 5938 } 5939 5940 /* Extract ports in net byte order */ 5941 dstport = htons(ntohl(ports) & 0xFFFF); 5942 srcport = htons(ntohl(ports) >> 16); 5943 dst = ipha->ipha_dst; 5944 src = ipha->ipha_src; 5945 5946 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5947 mutex_enter(&connfp->connf_lock); 5948 connp = connfp->connf_head; 5949 if (!broadcast && !CLASSD(dst)) { 5950 /* 5951 * Not broadcast or multicast. Send to the one (first) 5952 * client we find. No need to check conn_wantpacket() 5953 * since IP_BOUND_IF/conn_incoming_ill does not apply to 5954 * IPv4 unicast packets. 5955 */ 5956 while ((connp != NULL) && 5957 (!IPCL_UDP_MATCH(connp, dstport, dst, 5958 srcport, src) || connp->conn_zoneid != zoneid)) { 5959 connp = connp->conn_next; 5960 } 5961 5962 if (connp == NULL || connp->conn_upq == NULL) 5963 goto notfound; 5964 CONN_INC_REF(connp); 5965 mutex_exit(&connfp->connf_lock); 5966 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 5967 recv_ill, ip_policy); 5968 IP_STAT(ip_udp_fannorm); 5969 CONN_DEC_REF(connp); 5970 return; 5971 } 5972 5973 /* 5974 * Broadcast and multicast case 5975 * 5976 * Need to check conn_wantpacket(). 5977 * If SO_REUSEADDR has been set on the first we send the 5978 * packet to all clients that have joined the group and 5979 * match the port. 5980 */ 5981 5982 while (connp != NULL) { 5983 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 5984 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 5985 break; 5986 connp = connp->conn_next; 5987 } 5988 5989 if (connp == NULL || connp->conn_upq == NULL) 5990 goto notfound; 5991 5992 first_connp = connp; 5993 /* 5994 * When SO_REUSEADDR is not set, send the packet only to the first 5995 * matching connection in its zone by keeping track of the zoneid. 5996 */ 5997 reuseaddr = first_connp->conn_reuseaddr; 5998 last_zoneid = first_connp->conn_zoneid; 5999 6000 CONN_INC_REF(connp); 6001 connp = connp->conn_next; 6002 for (;;) { 6003 while (connp != NULL) { 6004 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6005 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6006 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6007 break; 6008 connp = connp->conn_next; 6009 } 6010 /* 6011 * Just copy the data part alone. The mctl part is 6012 * needed just for verifying policy and it is never 6013 * sent up. 6014 */ 6015 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6016 ((mp1 = copymsg(mp)) == NULL))) { 6017 /* 6018 * No more interested clients or memory 6019 * allocation failed 6020 */ 6021 connp = first_connp; 6022 break; 6023 } 6024 if (connp->conn_zoneid != last_zoneid) { 6025 /* 6026 * Update the zoneid so that the packet isn't sent to 6027 * any more conns in the same zone unless SO_REUSEADDR 6028 * is set. 6029 */ 6030 reuseaddr = connp->conn_reuseaddr; 6031 last_zoneid = connp->conn_zoneid; 6032 } 6033 if (first_mp != NULL) { 6034 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6035 ipsec_info_type == IPSEC_IN); 6036 first_mp1 = ipsec_in_tag(first_mp, NULL); 6037 if (first_mp1 == NULL) { 6038 freemsg(mp1); 6039 connp = first_connp; 6040 break; 6041 } 6042 } else { 6043 first_mp1 = NULL; 6044 } 6045 CONN_INC_REF(connp); 6046 mutex_exit(&connfp->connf_lock); 6047 /* 6048 * IPQoS notes: We don't send the packet for policy 6049 * processing here, will do it for the last one (below). 6050 * i.e. we do it per-packet now, but if we do policy 6051 * processing per-conn, then we would need to do it 6052 * here too. 6053 */ 6054 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6055 ipha, flags, recv_ill, B_FALSE); 6056 mutex_enter(&connfp->connf_lock); 6057 /* Follow the next pointer before releasing the conn. */ 6058 next_connp = connp->conn_next; 6059 IP_STAT(ip_udp_fanmb); 6060 CONN_DEC_REF(connp); 6061 connp = next_connp; 6062 } 6063 6064 /* Last one. Send it upstream. */ 6065 mutex_exit(&connfp->connf_lock); 6066 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6067 ip_policy); 6068 IP_STAT(ip_udp_fanmb); 6069 CONN_DEC_REF(connp); 6070 return; 6071 6072 notfound: 6073 6074 mutex_exit(&connfp->connf_lock); 6075 IP_STAT(ip_udp_fanothers); 6076 /* 6077 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6078 * have already been matched above, since they live in the IPv4 6079 * fanout tables. This implies we only need to 6080 * check for IPv6 in6addr_any endpoints here. 6081 * Thus we compare using ipv6_all_zeros instead of the destination 6082 * address, except for the multicast group membership lookup which 6083 * uses the IPv4 destination. 6084 */ 6085 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6086 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6087 mutex_enter(&connfp->connf_lock); 6088 connp = connfp->connf_head; 6089 if (!broadcast && !CLASSD(dst)) { 6090 while (connp != NULL) { 6091 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6092 srcport, v6src) && connp->conn_zoneid == zoneid && 6093 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6094 !connp->conn_ipv6_v6only) 6095 break; 6096 connp = connp->conn_next; 6097 } 6098 6099 if (connp == NULL || connp->conn_upq == NULL) { 6100 /* 6101 * No one bound to this port. Is 6102 * there a client that wants all 6103 * unclaimed datagrams? 6104 */ 6105 mutex_exit(&connfp->connf_lock); 6106 6107 if (mctl_present) 6108 first_mp->b_cont = mp; 6109 else 6110 first_mp = mp; 6111 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6112 ip_fanout_proto(q, first_mp, ill, ipha, 6113 flags | IP_FF_RAWIP, mctl_present, 6114 ip_policy, recv_ill, zoneid); 6115 } else { 6116 if (ip_fanout_send_icmp(q, first_mp, flags, 6117 ICMP_DEST_UNREACHABLE, 6118 ICMP_PORT_UNREACHABLE, 6119 mctl_present, zoneid)) { 6120 BUMP_MIB(&ip_mib, udpNoPorts); 6121 } 6122 } 6123 return; 6124 } 6125 CONN_INC_REF(connp); 6126 mutex_exit(&connfp->connf_lock); 6127 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6128 recv_ill, ip_policy); 6129 CONN_DEC_REF(connp); 6130 return; 6131 } 6132 /* 6133 * IPv4 multicast packet being delivered to an AF_INET6 6134 * in6addr_any endpoint. 6135 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6136 * and not conn_wantpacket_v6() since any multicast membership is 6137 * for an IPv4-mapped multicast address. 6138 * The packet is sent to all clients in all zones that have joined the 6139 * group and match the port. 6140 */ 6141 while (connp != NULL) { 6142 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6143 srcport, v6src) && 6144 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6145 break; 6146 connp = connp->conn_next; 6147 } 6148 6149 if (connp == NULL || connp->conn_upq == NULL) { 6150 /* 6151 * No one bound to this port. Is 6152 * there a client that wants all 6153 * unclaimed datagrams? 6154 */ 6155 mutex_exit(&connfp->connf_lock); 6156 6157 if (mctl_present) 6158 first_mp->b_cont = mp; 6159 else 6160 first_mp = mp; 6161 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6162 ip_fanout_proto(q, first_mp, ill, ipha, 6163 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6164 recv_ill, zoneid); 6165 } else { 6166 /* 6167 * We used to attempt to send an icmp error here, but 6168 * since this is known to be a multicast packet 6169 * and we don't send icmp errors in response to 6170 * multicast, just drop the packet and give up sooner. 6171 */ 6172 BUMP_MIB(&ip_mib, udpNoPorts); 6173 freemsg(first_mp); 6174 } 6175 return; 6176 } 6177 6178 first_connp = connp; 6179 6180 CONN_INC_REF(connp); 6181 connp = connp->conn_next; 6182 for (;;) { 6183 while (connp != NULL) { 6184 if (IPCL_UDP_MATCH_V6(connp, dstport, 6185 ipv6_all_zeros, srcport, v6src) && 6186 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6187 break; 6188 connp = connp->conn_next; 6189 } 6190 /* 6191 * Just copy the data part alone. The mctl part is 6192 * needed just for verifying policy and it is never 6193 * sent up. 6194 */ 6195 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6196 ((mp1 = copymsg(mp)) == NULL))) { 6197 /* 6198 * No more intested clients or memory 6199 * allocation failed 6200 */ 6201 connp = first_connp; 6202 break; 6203 } 6204 if (first_mp != NULL) { 6205 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6206 ipsec_info_type == IPSEC_IN); 6207 first_mp1 = ipsec_in_tag(first_mp, NULL); 6208 if (first_mp1 == NULL) { 6209 freemsg(mp1); 6210 connp = first_connp; 6211 break; 6212 } 6213 } else { 6214 first_mp1 = NULL; 6215 } 6216 CONN_INC_REF(connp); 6217 mutex_exit(&connfp->connf_lock); 6218 /* 6219 * IPQoS notes: We don't send the packet for policy 6220 * processing here, will do it for the last one (below). 6221 * i.e. we do it per-packet now, but if we do policy 6222 * processing per-conn, then we would need to do it 6223 * here too. 6224 */ 6225 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6226 ipha, flags, recv_ill, B_FALSE); 6227 mutex_enter(&connfp->connf_lock); 6228 /* Follow the next pointer before releasing the conn. */ 6229 next_connp = connp->conn_next; 6230 CONN_DEC_REF(connp); 6231 connp = next_connp; 6232 } 6233 6234 /* Last one. Send it upstream. */ 6235 mutex_exit(&connfp->connf_lock); 6236 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6237 ip_policy); 6238 CONN_DEC_REF(connp); 6239 } 6240 6241 /* 6242 * Complete the ip_wput header so that it 6243 * is possible to generate ICMP 6244 * errors. 6245 */ 6246 static int 6247 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6248 { 6249 ire_t *ire; 6250 6251 if (ipha->ipha_src == INADDR_ANY) { 6252 ire = ire_lookup_local(zoneid); 6253 if (ire == NULL) { 6254 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6255 return (1); 6256 } 6257 ipha->ipha_src = ire->ire_addr; 6258 ire_refrele(ire); 6259 } 6260 ipha->ipha_ttl = ip_def_ttl; 6261 ipha->ipha_hdr_checksum = 0; 6262 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6263 return (0); 6264 } 6265 6266 /* 6267 * Nobody should be sending 6268 * packets up this stream 6269 */ 6270 static void 6271 ip_lrput(queue_t *q, mblk_t *mp) 6272 { 6273 mblk_t *mp1; 6274 6275 switch (mp->b_datap->db_type) { 6276 case M_FLUSH: 6277 /* Turn around */ 6278 if (*mp->b_rptr & FLUSHW) { 6279 *mp->b_rptr &= ~FLUSHR; 6280 qreply(q, mp); 6281 return; 6282 } 6283 break; 6284 } 6285 /* Could receive messages that passed through ar_rput */ 6286 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6287 mp1->b_prev = mp1->b_next = NULL; 6288 freemsg(mp); 6289 } 6290 6291 /* Nobody should be sending packets down this stream */ 6292 /* ARGSUSED */ 6293 void 6294 ip_lwput(queue_t *q, mblk_t *mp) 6295 { 6296 freemsg(mp); 6297 } 6298 6299 /* 6300 * Move the first hop in any source route to ipha_dst and remove that part of 6301 * the source route. Called by other protocols. Errors in option formatting 6302 * are ignored - will be handled by ip_wput_options Return the final 6303 * destination (either ipha_dst or the last entry in a source route.) 6304 */ 6305 ipaddr_t 6306 ip_massage_options(ipha_t *ipha) 6307 { 6308 ipoptp_t opts; 6309 uchar_t *opt; 6310 uint8_t optval; 6311 uint8_t optlen; 6312 ipaddr_t dst; 6313 int i; 6314 ire_t *ire; 6315 6316 ip2dbg(("ip_massage_options\n")); 6317 dst = ipha->ipha_dst; 6318 for (optval = ipoptp_first(&opts, ipha); 6319 optval != IPOPT_EOL; 6320 optval = ipoptp_next(&opts)) { 6321 opt = opts.ipoptp_cur; 6322 switch (optval) { 6323 uint8_t off; 6324 case IPOPT_SSRR: 6325 case IPOPT_LSRR: 6326 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6327 ip1dbg(("ip_massage_options: bad src route\n")); 6328 break; 6329 } 6330 optlen = opts.ipoptp_len; 6331 off = opt[IPOPT_OFFSET]; 6332 off--; 6333 redo_srr: 6334 if (optlen < IP_ADDR_LEN || 6335 off > optlen - IP_ADDR_LEN) { 6336 /* End of source route */ 6337 ip1dbg(("ip_massage_options: end of SR\n")); 6338 break; 6339 } 6340 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6341 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6342 ntohl(dst))); 6343 /* 6344 * Check if our address is present more than 6345 * once as consecutive hops in source route. 6346 * XXX verify per-interface ip_forwarding 6347 * for source route? 6348 */ 6349 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6350 ALL_ZONES, MATCH_IRE_TYPE); 6351 if (ire != NULL) { 6352 ire_refrele(ire); 6353 off += IP_ADDR_LEN; 6354 goto redo_srr; 6355 } 6356 if (dst == htonl(INADDR_LOOPBACK)) { 6357 ip1dbg(("ip_massage_options: loopback addr in " 6358 "source route!\n")); 6359 break; 6360 } 6361 /* 6362 * Update ipha_dst to be the first hop and remove the 6363 * first hop from the source route (by overwriting 6364 * part of the option with NOP options). 6365 */ 6366 ipha->ipha_dst = dst; 6367 /* Put the last entry in dst */ 6368 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6369 3; 6370 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6371 6372 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6373 ntohl(dst))); 6374 /* Move down and overwrite */ 6375 opt[IP_ADDR_LEN] = opt[0]; 6376 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6377 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6378 for (i = 0; i < IP_ADDR_LEN; i++) 6379 opt[i] = IPOPT_NOP; 6380 break; 6381 } 6382 } 6383 return (dst); 6384 } 6385 6386 /* 6387 * This function's job is to forward data to the reverse tunnel (FA->HA) 6388 * after doing a few checks. It is assumed that the incoming interface 6389 * of the packet is always different than the outgoing interface and the 6390 * ire_type of the found ire has to be a non-resolver type. 6391 * 6392 * IPQoS notes 6393 * IP policy is invoked twice for a forwarded packet, once on the read side 6394 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6395 * enabled. 6396 */ 6397 static void 6398 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6399 { 6400 ipha_t *ipha; 6401 queue_t *q; 6402 uint32_t pkt_len; 6403 #define rptr ((uchar_t *)ipha) 6404 uint32_t sum; 6405 uint32_t max_frag; 6406 mblk_t *first_mp; 6407 uint32_t ill_index; 6408 6409 ASSERT(ire != NULL); 6410 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6411 ASSERT(ire->ire_stq != NULL); 6412 6413 /* Initiate read side IPPF processing */ 6414 if (IPP_ENABLED(IPP_FWD_IN)) { 6415 ill_index = in_ill->ill_phyint->phyint_ifindex; 6416 ip_process(IPP_FWD_IN, &mp, ill_index); 6417 if (mp == NULL) { 6418 ip2dbg(("ip_mrtun_forward: inbound pkt " 6419 "dropped during IPPF processing\n")); 6420 return; 6421 } 6422 } 6423 6424 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6425 ILLF_ROUTER) == 0) || 6426 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6427 BUMP_MIB(&ip_mib, ipForwProhibits); 6428 ip0dbg(("ip_mrtun_forward: Can't forward :" 6429 "forwarding is not turned on\n")); 6430 goto drop_pkt; 6431 } 6432 6433 /* 6434 * Don't forward if the interface is down 6435 */ 6436 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6437 BUMP_MIB(&ip_mib, ipInDiscards); 6438 goto drop_pkt; 6439 } 6440 6441 ipha = (ipha_t *)mp->b_rptr; 6442 pkt_len = ntohs(ipha->ipha_length); 6443 /* Adjust the checksum to reflect the ttl decrement. */ 6444 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6445 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6446 if (ipha->ipha_ttl-- <= 1) { 6447 if (ip_csum_hdr(ipha)) { 6448 BUMP_MIB(&ip_mib, ipInCksumErrs); 6449 goto drop_pkt; 6450 } 6451 q = ire->ire_stq; 6452 if ((first_mp = allocb(sizeof (ipsec_info_t), 6453 BPRI_HI)) == NULL) { 6454 goto drop_pkt; 6455 } 6456 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6457 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6458 6459 return; 6460 } 6461 6462 /* Get the ill_index of the ILL */ 6463 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6464 6465 /* 6466 * ip_mrtun_forward is only used by foreign agent to reverse 6467 * tunnel the incoming packet. So it does not do any option 6468 * processing for source routing. 6469 */ 6470 max_frag = ire->ire_max_frag; 6471 if (pkt_len > max_frag) { 6472 /* 6473 * It needs fragging on its way out. We haven't 6474 * verified the header checksum yet. Since we 6475 * are going to put a surely good checksum in the 6476 * outgoing header, we have to make sure that it 6477 * was good coming in. 6478 */ 6479 if (ip_csum_hdr(ipha)) { 6480 BUMP_MIB(&ip_mib, ipInCksumErrs); 6481 goto drop_pkt; 6482 } 6483 6484 /* Initiate write side IPPF processing */ 6485 if (IPP_ENABLED(IPP_FWD_OUT)) { 6486 ip_process(IPP_FWD_OUT, &mp, ill_index); 6487 if (mp == NULL) { 6488 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6489 "dropped/deferred during ip policy "\ 6490 "processing\n")); 6491 return; 6492 } 6493 } 6494 if ((first_mp = allocb(sizeof (ipsec_info_t), 6495 BPRI_HI)) == NULL) { 6496 goto drop_pkt; 6497 } 6498 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6499 mp = first_mp; 6500 6501 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6502 return; 6503 } 6504 6505 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6506 6507 ASSERT(ire->ire_ipif != NULL); 6508 6509 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6510 if (mp == NULL) { 6511 BUMP_MIB(&ip_mib, ipInDiscards); 6512 return; 6513 } 6514 6515 /* Now send the packet to the tunnel interface */ 6516 q = ire->ire_stq; 6517 UPDATE_IB_PKT_COUNT(ire); 6518 ire->ire_last_used_time = lbolt; 6519 BUMP_MIB(&ip_mib, ipForwDatagrams); 6520 putnext(q, mp); 6521 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6522 return; 6523 6524 drop_pkt:; 6525 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6526 freemsg(mp); 6527 #undef rptr 6528 } 6529 6530 /* 6531 * Fills the ipsec_out_t data structure with appropriate fields and 6532 * prepends it to mp which contains the IP hdr + data that was meant 6533 * to be forwarded. Please note that ipsec_out_info data structure 6534 * is used here to communicate the outgoing ill path at ip_wput() 6535 * for the ICMP error packet. This has nothing to do with ipsec IP 6536 * security. ipsec_out_t is really used to pass the info to the module 6537 * IP where this information cannot be extracted from conn. 6538 * This functions is called by ip_mrtun_forward(). 6539 */ 6540 void 6541 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6542 { 6543 ipsec_out_t *io; 6544 6545 ASSERT(xmit_ill != NULL); 6546 first_mp->b_datap->db_type = M_CTL; 6547 first_mp->b_wptr += sizeof (ipsec_info_t); 6548 /* 6549 * This is to pass info to ip_wput in absence of conn. 6550 * ipsec_out_secure will be B_FALSE because of this. 6551 * Thus ipsec_out_secure being B_FALSE indicates that 6552 * this is not IPSEC security related information. 6553 */ 6554 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6555 io = (ipsec_out_t *)first_mp->b_rptr; 6556 io->ipsec_out_type = IPSEC_OUT; 6557 io->ipsec_out_len = sizeof (ipsec_out_t); 6558 first_mp->b_cont = mp; 6559 io->ipsec_out_ill_index = 6560 xmit_ill->ill_phyint->phyint_ifindex; 6561 io->ipsec_out_xmit_if = B_TRUE; 6562 } 6563 6564 /* 6565 * Return the network mask 6566 * associated with the specified address. 6567 */ 6568 ipaddr_t 6569 ip_net_mask(ipaddr_t addr) 6570 { 6571 uchar_t *up = (uchar_t *)&addr; 6572 ipaddr_t mask = 0; 6573 uchar_t *maskp = (uchar_t *)&mask; 6574 6575 #if defined(__i386) || defined(__amd64) 6576 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 6577 #endif 6578 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 6579 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 6580 #endif 6581 if (CLASSD(addr)) { 6582 maskp[0] = 0xF0; 6583 return (mask); 6584 } 6585 if (addr == 0) 6586 return (0); 6587 maskp[0] = 0xFF; 6588 if ((up[0] & 0x80) == 0) 6589 return (mask); 6590 6591 maskp[1] = 0xFF; 6592 if ((up[0] & 0xC0) == 0x80) 6593 return (mask); 6594 6595 maskp[2] = 0xFF; 6596 if ((up[0] & 0xE0) == 0xC0) 6597 return (mask); 6598 6599 /* Must be experimental or multicast, indicate as much */ 6600 return ((ipaddr_t)0); 6601 } 6602 6603 /* 6604 * Select an ill for the packet by considering load spreading across 6605 * a different ill in the group if dst_ill is part of some group. 6606 */ 6607 static ill_t * 6608 ip_newroute_get_dst_ill(ill_t *dst_ill) 6609 { 6610 ill_t *ill; 6611 6612 /* 6613 * We schedule irrespective of whether the source address is 6614 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 6615 */ 6616 ill = illgrp_scheduler(dst_ill); 6617 if (ill == NULL) 6618 return (NULL); 6619 6620 /* 6621 * For groups with names ip_sioctl_groupname ensures that all 6622 * ills are of same type. For groups without names, ifgrp_insert 6623 * ensures this. 6624 */ 6625 ASSERT(dst_ill->ill_type == ill->ill_type); 6626 6627 return (ill); 6628 } 6629 6630 /* 6631 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 6632 */ 6633 ill_t * 6634 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 6635 { 6636 ill_t *ret_ill; 6637 6638 ASSERT(ifindex != 0); 6639 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 6640 if (ret_ill == NULL || 6641 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 6642 if (isv6) { 6643 if (ill != NULL) { 6644 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 6645 } else { 6646 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 6647 } 6648 ip1dbg(("ip_grab_attach_ill (IPv6): " 6649 "bad ifindex %d.\n", ifindex)); 6650 } else { 6651 BUMP_MIB(&ip_mib, ipOutDiscards); 6652 ip1dbg(("ip_grab_attach_ill (IPv4): " 6653 "bad ifindex %d.\n", ifindex)); 6654 } 6655 if (ret_ill != NULL) 6656 ill_refrele(ret_ill); 6657 freemsg(first_mp); 6658 return (NULL); 6659 } 6660 6661 return (ret_ill); 6662 } 6663 6664 /* 6665 * IPv4 - 6666 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 6667 * out a packet to a destination address for which we do not have specific 6668 * (or sufficient) routing information. 6669 * 6670 * NOTE : These are the scopes of some of the variables that point at IRE, 6671 * which needs to be followed while making any future modifications 6672 * to avoid memory leaks. 6673 * 6674 * - ire and sire are the entries looked up initially by 6675 * ire_ftable_lookup. 6676 * - ipif_ire is used to hold the interface ire associated with 6677 * the new cache ire. But it's scope is limited, so we always REFRELE 6678 * it before branching out to error paths. 6679 * - save_ire is initialized before ire_create, so that ire returned 6680 * by ire_create will not over-write the ire. We REFRELE save_ire 6681 * before breaking out of the switch. 6682 * 6683 * Thus on failures, we have to REFRELE only ire and sire, if they 6684 * are not NULL. 6685 */ 6686 void 6687 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 6688 { 6689 areq_t *areq; 6690 ipaddr_t gw = 0; 6691 ire_t *ire = NULL; 6692 mblk_t *res_mp; 6693 ipaddr_t *addrp; 6694 ipif_t *src_ipif = NULL; 6695 ill_t *dst_ill = NULL; 6696 ipha_t *ipha; 6697 ire_t *sire = NULL; 6698 mblk_t *first_mp; 6699 ire_t *save_ire; 6700 mblk_t *dlureq_mp; 6701 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 6702 ushort_t ire_marks = 0; 6703 boolean_t mctl_present; 6704 ipsec_out_t *io; 6705 mblk_t *saved_mp; 6706 ire_t *first_sire = NULL; 6707 mblk_t *copy_mp = NULL; 6708 mblk_t *xmit_mp = NULL; 6709 ipaddr_t save_dst; 6710 uint32_t multirt_flags = 6711 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 6712 boolean_t multirt_is_resolvable; 6713 boolean_t multirt_resolve_next; 6714 boolean_t do_attach_ill = B_FALSE; 6715 zoneid_t zoneid; 6716 6717 if (ip_debug > 2) { 6718 /* ip1dbg */ 6719 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 6720 } 6721 6722 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 6723 if (mctl_present) { 6724 io = (ipsec_out_t *)first_mp->b_rptr; 6725 zoneid = io->ipsec_out_zoneid; 6726 ASSERT(zoneid != ALL_ZONES); 6727 } else if (connp != NULL) { 6728 zoneid = connp->conn_zoneid; 6729 } else { 6730 zoneid = GLOBAL_ZONEID; 6731 } 6732 6733 ipha = (ipha_t *)mp->b_rptr; 6734 6735 /* All multicast lookups come through ip_newroute_ipif() */ 6736 if (CLASSD(dst)) { 6737 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 6738 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 6739 freemsg(first_mp); 6740 return; 6741 } 6742 6743 if (ip_loopback_src_or_dst(ipha, NULL)) { 6744 goto icmp_err_ret; 6745 } 6746 6747 if (mctl_present && io->ipsec_out_attach_if) { 6748 /* ip_grab_attach_ill returns a held ill */ 6749 attach_ill = ip_grab_attach_ill(NULL, first_mp, 6750 io->ipsec_out_ill_index, B_FALSE); 6751 6752 /* Failure case frees things for us. */ 6753 if (attach_ill == NULL) 6754 return; 6755 6756 /* 6757 * Check if we need an ire that will not be 6758 * looked up by anybody else i.e. HIDDEN. 6759 */ 6760 if (ill_is_probeonly(attach_ill)) 6761 ire_marks = IRE_MARK_HIDDEN; 6762 } 6763 /* 6764 * If this IRE is created for forwarding or it is not for 6765 * traffic for congestion controlled protocols, mark it as temporary. 6766 */ 6767 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 6768 ire_marks |= IRE_MARK_TEMPORARY; 6769 6770 /* 6771 * Get what we can from ire_ftable_lookup which will follow an IRE 6772 * chain until it gets the most specific information available. 6773 * For example, we know that there is no IRE_CACHE for this dest, 6774 * but there may be an IRE_OFFSUBNET which specifies a gateway. 6775 * ire_ftable_lookup will look up the gateway, etc. 6776 * Check if in_ill != NULL. If it is true, the packet must be 6777 * from an incoming interface where RTA_SRCIFP is set. 6778 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 6779 * to the destination, of equal netmask length in the forward table, 6780 * will be recursively explored. If no information is available 6781 * for the final gateway of that route, we force the returned ire 6782 * to be equal to sire using MATCH_IRE_PARENT. 6783 * At least, in this case we have a starting point (in the buckets) 6784 * to look for other routes to the destination in the forward table. 6785 * This is actually used only for multirouting, where a list 6786 * of routes has to be processed in sequence. 6787 */ 6788 if (in_ill != NULL) { 6789 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 6790 in_ill, MATCH_IRE_TYPE); 6791 } else if (attach_ill == NULL) { 6792 ire = ire_ftable_lookup(dst, 0, 0, 0, 6793 NULL, &sire, zoneid, 0, 6794 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 6795 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT); 6796 } else { 6797 /* 6798 * attach_ill is set only for communicating with 6799 * on-link hosts. So, don't look for DEFAULT. 6800 */ 6801 ipif_t *attach_ipif; 6802 6803 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 6804 if (attach_ipif == NULL) { 6805 ill_refrele(attach_ill); 6806 goto icmp_err_ret; 6807 } 6808 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 6809 &sire, zoneid, 0, 6810 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL); 6811 ipif_refrele(attach_ipif); 6812 } 6813 ip3dbg(("ip_newroute: ire_ftable_lookup() " 6814 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 6815 6816 /* 6817 * This loop is run only once in most cases. 6818 * We loop to resolve further routes only when the destination 6819 * can be reached through multiple RTF_MULTIRT-flagged ires. 6820 */ 6821 do { 6822 /* Clear the previous iteration's values */ 6823 if (src_ipif != NULL) { 6824 ipif_refrele(src_ipif); 6825 src_ipif = NULL; 6826 } 6827 if (dst_ill != NULL) { 6828 ill_refrele(dst_ill); 6829 dst_ill = NULL; 6830 } 6831 6832 multirt_resolve_next = B_FALSE; 6833 /* 6834 * We check if packets have to be multirouted. 6835 * In this case, given the current <ire, sire> couple, 6836 * we look for the next suitable <ire, sire>. 6837 * This check is done in ire_multirt_lookup(), 6838 * which applies various criteria to find the next route 6839 * to resolve. ire_multirt_lookup() leaves <ire, sire> 6840 * unchanged if it detects it has not been tried yet. 6841 */ 6842 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6843 ip3dbg(("ip_newroute: starting next_resolution " 6844 "with first_mp %p, tag %d\n", 6845 (void *)first_mp, 6846 MULTIRT_DEBUG_TAGGED(first_mp))); 6847 6848 ASSERT(sire != NULL); 6849 multirt_is_resolvable = 6850 ire_multirt_lookup(&ire, &sire, multirt_flags); 6851 6852 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 6853 "ire %p, sire %p\n", 6854 multirt_is_resolvable, 6855 (void *)ire, (void *)sire)); 6856 6857 if (!multirt_is_resolvable) { 6858 /* 6859 * No more multirt route to resolve; give up 6860 * (all routes resolved or no more 6861 * resolvable routes). 6862 */ 6863 if (ire != NULL) { 6864 ire_refrele(ire); 6865 ire = NULL; 6866 } 6867 } else { 6868 ASSERT(sire != NULL); 6869 ASSERT(ire != NULL); 6870 /* 6871 * We simply use first_sire as a flag that 6872 * indicates if a resolvable multirt route 6873 * has already been found. 6874 * If it is not the case, we may have to send 6875 * an ICMP error to report that the 6876 * destination is unreachable. 6877 * We do not IRE_REFHOLD first_sire. 6878 */ 6879 if (first_sire == NULL) { 6880 first_sire = sire; 6881 } 6882 } 6883 } 6884 if (ire == NULL) { 6885 if (ip_debug > 3) { 6886 /* ip2dbg */ 6887 pr_addr_dbg("ip_newroute: " 6888 "can't resolve %s\n", AF_INET, &dst); 6889 } 6890 ip3dbg(("ip_newroute: " 6891 "ire %p, sire %p, first_sire %p\n", 6892 (void *)ire, (void *)sire, (void *)first_sire)); 6893 6894 if (sire != NULL) { 6895 ire_refrele(sire); 6896 sire = NULL; 6897 } 6898 6899 if (first_sire != NULL) { 6900 /* 6901 * At least one multirt route has been found 6902 * in the same call to ip_newroute(); 6903 * there is no need to report an ICMP error. 6904 * first_sire was not IRE_REFHOLDed. 6905 */ 6906 MULTIRT_DEBUG_UNTAG(first_mp); 6907 freemsg(first_mp); 6908 return; 6909 } 6910 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 6911 RTA_DST); 6912 if (attach_ill != NULL) 6913 ill_refrele(attach_ill); 6914 goto icmp_err_ret; 6915 } 6916 6917 /* 6918 * When RTA_SRCIFP is used to add a route, then an interface 6919 * route is added in the source interface's routing table. 6920 * If the outgoing interface of this route is of type 6921 * IRE_IF_RESOLVER, then upon creation of the ire, 6922 * ire_dlureq_mp is set to NULL. Later, when this route is 6923 * first used for forwarding packet, ip_newroute() is called 6924 * to resolve the hardware address of the outgoing ipif. 6925 * We do not come here for IRE_IF_NORESOLVER entries in the 6926 * source interface based table. We only come here if the 6927 * outgoing interface is a resolver interface and we don't 6928 * have the ire_dlureq_mp information yet. 6929 * If in_ill is not null that means it is called from 6930 * ip_rput. 6931 */ 6932 6933 ASSERT(ire->ire_in_ill == NULL || 6934 (ire->ire_type == IRE_IF_RESOLVER && 6935 ire->ire_dlureq_mp == NULL)); 6936 6937 /* 6938 * Verify that the returned IRE does not have either 6939 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 6940 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 6941 */ 6942 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 6943 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 6944 if (attach_ill != NULL) 6945 ill_refrele(attach_ill); 6946 goto icmp_err_ret; 6947 } 6948 /* 6949 * Increment the ire_ob_pkt_count field for ire if it is an 6950 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 6951 * increment the same for the parent IRE, sire, if it is some 6952 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 6953 * and HOST_REDIRECT). 6954 */ 6955 if ((ire->ire_type & IRE_INTERFACE) != 0) { 6956 UPDATE_OB_PKT_COUNT(ire); 6957 ire->ire_last_used_time = lbolt; 6958 } 6959 6960 if (sire != NULL) { 6961 gw = sire->ire_gateway_addr; 6962 ASSERT((sire->ire_type & (IRE_CACHETABLE | 6963 IRE_INTERFACE)) == 0); 6964 UPDATE_OB_PKT_COUNT(sire); 6965 sire->ire_last_used_time = lbolt; 6966 } 6967 /* 6968 * We have a route to reach the destination. 6969 * 6970 * 1) If the interface is part of ill group, try to get a new 6971 * ill taking load spreading into account. 6972 * 6973 * 2) After selecting the ill, get a source address that 6974 * might create good inbound load spreading. 6975 * ipif_select_source does this for us. 6976 * 6977 * If the application specified the ill (ifindex), we still 6978 * load spread. Only if the packets needs to go out 6979 * specifically on a given ill e.g. binding to 6980 * IPIF_NOFAILOVER address, then we don't try to use a 6981 * different ill for load spreading. 6982 */ 6983 if (attach_ill == NULL) { 6984 /* 6985 * Don't perform outbound load spreading in the 6986 * case of an RTF_MULTIRT route, as we actually 6987 * typically want to replicate outgoing packets 6988 * through particular interfaces. 6989 */ 6990 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6991 dst_ill = ire->ire_ipif->ipif_ill; 6992 /* for uniformity */ 6993 ill_refhold(dst_ill); 6994 } else { 6995 /* 6996 * If we are here trying to create an IRE_CACHE 6997 * for an offlink destination and have the 6998 * IRE_CACHE for the next hop and the latter is 6999 * using virtual IP source address selection i.e 7000 * it's ire->ire_ipif is pointing to a virtual 7001 * network interface (vni) then 7002 * ip_newroute_get_dst_ll() will return the vni 7003 * interface as the dst_ill. Since the vni is 7004 * virtual i.e not associated with any physical 7005 * interface, it cannot be the dst_ill, hence 7006 * in such a case call ip_newroute_get_dst_ll() 7007 * with the stq_ill instead of the ire_ipif ILL. 7008 * The function returns a refheld ill. 7009 */ 7010 if ((ire->ire_type == IRE_CACHE) && 7011 IS_VNI(ire->ire_ipif->ipif_ill)) 7012 dst_ill = ip_newroute_get_dst_ill( 7013 ire->ire_stq->q_ptr); 7014 else 7015 dst_ill = ip_newroute_get_dst_ill( 7016 ire->ire_ipif->ipif_ill); 7017 } 7018 if (dst_ill == NULL) { 7019 if (ip_debug > 2) { 7020 pr_addr_dbg("ip_newroute: " 7021 "no dst ill for dst" 7022 " %s\n", AF_INET, &dst); 7023 } 7024 goto icmp_err_ret; 7025 } 7026 } else { 7027 dst_ill = ire->ire_ipif->ipif_ill; 7028 /* for uniformity */ 7029 ill_refhold(dst_ill); 7030 /* 7031 * We should have found a route matching ill as we 7032 * called ire_ftable_lookup with MATCH_IRE_ILL. 7033 * Rather than asserting, when there is a mismatch, 7034 * we just drop the packet. 7035 */ 7036 if (dst_ill != attach_ill) { 7037 ip0dbg(("ip_newroute: Packet dropped as " 7038 "IPIF_NOFAILOVER ill is %s, " 7039 "ire->ire_ipif->ipif_ill is %s\n", 7040 attach_ill->ill_name, 7041 dst_ill->ill_name)); 7042 ill_refrele(attach_ill); 7043 goto icmp_err_ret; 7044 } 7045 } 7046 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7047 if (attach_ill != NULL) { 7048 ill_refrele(attach_ill); 7049 attach_ill = NULL; 7050 do_attach_ill = B_TRUE; 7051 } 7052 ASSERT(dst_ill != NULL); 7053 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7054 7055 /* 7056 * Pick the best source address from dst_ill. 7057 * 7058 * 1) If it is part of a multipathing group, we would 7059 * like to spread the inbound packets across different 7060 * interfaces. ipif_select_source picks a random source 7061 * across the different ills in the group. 7062 * 7063 * 2) If it is not part of a multipathing group, we try 7064 * to pick the source address from the destination 7065 * route. Clustering assumes that when we have multiple 7066 * prefixes hosted on an interface, the prefix of the 7067 * source address matches the prefix of the destination 7068 * route. We do this only if the address is not 7069 * DEPRECATED. 7070 * 7071 * 3) If the conn is in a different zone than the ire, we 7072 * need to pick a source address from the right zone. 7073 * 7074 * NOTE : If we hit case (1) above, the prefix of the source 7075 * address picked may not match the prefix of the 7076 * destination routes prefix as ipif_select_source 7077 * does not look at "dst" while picking a source 7078 * address. 7079 * If we want the same behavior as (2), we will need 7080 * to change the behavior of ipif_select_source. 7081 */ 7082 ASSERT(src_ipif == NULL); 7083 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7084 /* 7085 * The RTF_SETSRC flag is set in the parent ire (sire). 7086 * Check that the ipif matching the requested source 7087 * address still exists. 7088 */ 7089 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7090 zoneid, NULL, NULL, NULL, NULL); 7091 } 7092 if (src_ipif == NULL) { 7093 ire_marks |= IRE_MARK_USESRC_CHECK; 7094 if ((dst_ill->ill_group != NULL) || 7095 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7096 (connp != NULL && ire->ire_zoneid != zoneid) || 7097 (dst_ill->ill_usesrc_ifindex != 0)) { 7098 src_ipif = ipif_select_source(dst_ill, dst, 7099 zoneid); 7100 if (src_ipif == NULL) { 7101 if (ip_debug > 2) { 7102 pr_addr_dbg("ip_newroute: " 7103 "no src for dst %s ", 7104 AF_INET, &dst); 7105 printf("through interface %s\n", 7106 dst_ill->ill_name); 7107 } 7108 goto icmp_err_ret; 7109 } 7110 } else { 7111 src_ipif = ire->ire_ipif; 7112 ASSERT(src_ipif != NULL); 7113 /* hold src_ipif for uniformity */ 7114 ipif_refhold(src_ipif); 7115 } 7116 } 7117 7118 /* 7119 * Assign a source address while we have the conn. 7120 * We can't have ip_wput_ire pick a source address when the 7121 * packet returns from arp since we need to look at 7122 * conn_unspec_src and conn_zoneid, and we lose the conn when 7123 * going through arp. 7124 * 7125 * NOTE : ip_newroute_v6 does not have this piece of code as 7126 * it uses ip6i to store this information. 7127 */ 7128 if (ipha->ipha_src == INADDR_ANY && 7129 (connp == NULL || !connp->conn_unspec_src)) { 7130 ipha->ipha_src = src_ipif->ipif_src_addr; 7131 } 7132 if (ip_debug > 3) { 7133 /* ip2dbg */ 7134 pr_addr_dbg("ip_newroute: first hop %s\n", 7135 AF_INET, &gw); 7136 } 7137 ip2dbg(("\tire type %s (%d)\n", 7138 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7139 7140 /* 7141 * The TTL of multirouted packets is bounded by the 7142 * ip_multirt_ttl ndd variable. 7143 */ 7144 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7145 /* Force TTL of multirouted packets */ 7146 if ((ip_multirt_ttl > 0) && 7147 (ipha->ipha_ttl > ip_multirt_ttl)) { 7148 ip2dbg(("ip_newroute: forcing multirt TTL " 7149 "to %d (was %d), dst 0x%08x\n", 7150 ip_multirt_ttl, ipha->ipha_ttl, 7151 ntohl(sire->ire_addr))); 7152 ipha->ipha_ttl = ip_multirt_ttl; 7153 } 7154 } 7155 /* 7156 * At this point in ip_newroute(), ire is either the 7157 * IRE_CACHE of the next-hop gateway for an off-subnet 7158 * destination or an IRE_INTERFACE type that should be used 7159 * to resolve an on-subnet destination or an on-subnet 7160 * next-hop gateway. 7161 * 7162 * In the IRE_CACHE case, we have the following : 7163 * 7164 * 1) src_ipif - used for getting a source address. 7165 * 7166 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7167 * means packets using this IRE_CACHE will go out on 7168 * dst_ill. 7169 * 7170 * 3) The IRE sire will point to the prefix that is the 7171 * longest matching route for the destination. These 7172 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7173 * and IRE_HOST_REDIRECT. 7174 * 7175 * The newly created IRE_CACHE entry for the off-subnet 7176 * destination is tied to both the prefix route and the 7177 * interface route used to resolve the next-hop gateway 7178 * via the ire_phandle and ire_ihandle fields, 7179 * respectively. 7180 * 7181 * In the IRE_INTERFACE case, we have the following : 7182 * 7183 * 1) src_ipif - used for getting a source address. 7184 * 7185 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7186 * means packets using the IRE_CACHE that we will build 7187 * here will go out on dst_ill. 7188 * 7189 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7190 * to be created will only be tied to the IRE_INTERFACE 7191 * that was derived from the ire_ihandle field. 7192 * 7193 * If sire is non-NULL, it means the destination is 7194 * off-link and we will first create the IRE_CACHE for the 7195 * gateway. Next time through ip_newroute, we will create 7196 * the IRE_CACHE for the final destination as described 7197 * above. 7198 * 7199 * In both cases, after the current resolution has been 7200 * completed (or possibly initialised, in the IRE_INTERFACE 7201 * case), the loop may be re-entered to attempt the resolution 7202 * of another RTF_MULTIRT route. 7203 * 7204 * When an IRE_CACHE entry for the off-subnet destination is 7205 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7206 * for further processing in emission loops. 7207 */ 7208 save_ire = ire; 7209 switch (ire->ire_type) { 7210 case IRE_CACHE: { 7211 ire_t *ipif_ire; 7212 mblk_t *ire_fp_mp; 7213 7214 ASSERT(sire != NULL); 7215 if (gw == 0) 7216 gw = ire->ire_gateway_addr; 7217 /* 7218 * We need 3 ire's to create a new cache ire for an 7219 * off-link destination from the cache ire of the 7220 * gateway. 7221 * 7222 * 1. The prefix ire 'sire' 7223 * 2. The cache ire of the gateway 'ire' 7224 * 3. The interface ire 'ipif_ire' 7225 * 7226 * We have (1) and (2). We lookup (3) below. 7227 * 7228 * If there is no interface route to the gateway, 7229 * it is a race condition, where we found the cache 7230 * but the inteface route has been deleted. 7231 */ 7232 ipif_ire = ire_ihandle_lookup_offlink(ire, sire); 7233 if (ipif_ire == NULL) { 7234 ip1dbg(("ip_newroute: " 7235 "ire_ihandle_lookup_offlink failed\n")); 7236 goto icmp_err_ret; 7237 } 7238 /* 7239 * XXX We are using the same dlureq_mp 7240 * (DL_UNITDATA_REQ) though the save_ire is not 7241 * pointing at the same ill. 7242 * This is incorrect. We need to send it up to the 7243 * resolver to get the right dlureq_mp. For ethernets 7244 * this may be okay (ill_type == DL_ETHER). 7245 */ 7246 dlureq_mp = save_ire->ire_dlureq_mp; 7247 ire_fp_mp = NULL; 7248 /* 7249 * save_ire's ire_fp_mp can't change since it is 7250 * not an IRE_MIPRTUN or IRE_BROADCAST 7251 * LOCK_IRE_FP_MP does not do any useful work in 7252 * the case of IRE_CACHE. So we don't use it below. 7253 */ 7254 if (save_ire->ire_stq == dst_ill->ill_wq) 7255 ire_fp_mp = save_ire->ire_fp_mp; 7256 7257 ire = ire_create( 7258 (uchar_t *)&dst, /* dest address */ 7259 (uchar_t *)&ip_g_all_ones, /* mask */ 7260 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7261 (uchar_t *)&gw, /* gateway address */ 7262 NULL, 7263 &save_ire->ire_max_frag, 7264 ire_fp_mp, /* Fast Path header */ 7265 dst_ill->ill_rq, /* recv-from queue */ 7266 dst_ill->ill_wq, /* send-to queue */ 7267 IRE_CACHE, /* IRE type */ 7268 save_ire->ire_dlureq_mp, 7269 src_ipif, 7270 in_ill, /* incoming ill */ 7271 sire->ire_mask, /* Parent mask */ 7272 sire->ire_phandle, /* Parent handle */ 7273 ipif_ire->ire_ihandle, /* Interface handle */ 7274 sire->ire_flags & 7275 (RTF_SETSRC | RTF_MULTIRT), /* flags if any */ 7276 &(sire->ire_uinfo)); 7277 7278 if (ire == NULL) { 7279 ire_refrele(ipif_ire); 7280 ire_refrele(save_ire); 7281 break; 7282 } 7283 7284 ire->ire_marks |= ire_marks; 7285 7286 /* 7287 * Prevent sire and ipif_ire from getting deleted. 7288 * The newly created ire is tied to both of them via 7289 * the phandle and ihandle respectively. 7290 */ 7291 IRB_REFHOLD(sire->ire_bucket); 7292 /* Has it been removed already ? */ 7293 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7294 IRB_REFRELE(sire->ire_bucket); 7295 ire_refrele(ipif_ire); 7296 ire_refrele(save_ire); 7297 break; 7298 } 7299 7300 IRB_REFHOLD(ipif_ire->ire_bucket); 7301 /* Has it been removed already ? */ 7302 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7303 IRB_REFRELE(ipif_ire->ire_bucket); 7304 IRB_REFRELE(sire->ire_bucket); 7305 ire_refrele(ipif_ire); 7306 ire_refrele(save_ire); 7307 break; 7308 } 7309 7310 xmit_mp = first_mp; 7311 /* 7312 * In the case of multirouting, a copy 7313 * of the packet is done before its sending. 7314 * The copy is used to attempt another 7315 * route resolution, in a next loop. 7316 */ 7317 if (ire->ire_flags & RTF_MULTIRT) { 7318 copy_mp = copymsg(first_mp); 7319 if (copy_mp != NULL) { 7320 xmit_mp = copy_mp; 7321 MULTIRT_DEBUG_TAG(first_mp); 7322 } 7323 } 7324 ire_add_then_send(q, ire, xmit_mp); 7325 ire_refrele(save_ire); 7326 7327 /* Assert that sire is not deleted yet. */ 7328 ASSERT(sire->ire_ptpn != NULL); 7329 IRB_REFRELE(sire->ire_bucket); 7330 7331 /* Assert that ipif_ire is not deleted yet. */ 7332 ASSERT(ipif_ire->ire_ptpn != NULL); 7333 IRB_REFRELE(ipif_ire->ire_bucket); 7334 ire_refrele(ipif_ire); 7335 7336 /* 7337 * If copy_mp is not NULL, multirouting was 7338 * requested. We loop to initiate a next 7339 * route resolution attempt, starting from sire. 7340 */ 7341 if (copy_mp != NULL) { 7342 /* 7343 * Search for the next unresolved 7344 * multirt route. 7345 */ 7346 copy_mp = NULL; 7347 ipif_ire = NULL; 7348 ire = NULL; 7349 multirt_resolve_next = B_TRUE; 7350 continue; 7351 } 7352 7353 ire_refrele(sire); 7354 ipif_refrele(src_ipif); 7355 ill_refrele(dst_ill); 7356 return; 7357 } 7358 case IRE_IF_NORESOLVER: { 7359 /* 7360 * We have what we need to build an IRE_CACHE. 7361 * 7362 * Create a new dlureq_mp with the IP gateway address 7363 * in destination address in the DLPI hdr if the 7364 * physical length is exactly 4 bytes. 7365 */ 7366 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7367 uchar_t *addr; 7368 7369 if (gw) 7370 addr = (uchar_t *)&gw; 7371 else 7372 addr = (uchar_t *)&dst; 7373 7374 dlureq_mp = ill_dlur_gen(addr, 7375 dst_ill->ill_phys_addr_length, 7376 dst_ill->ill_sap, 7377 dst_ill->ill_sap_length); 7378 } else { 7379 dlureq_mp = ire->ire_dlureq_mp; 7380 } 7381 7382 if (dlureq_mp == NULL) { 7383 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7384 break; 7385 } 7386 7387 ire = ire_create( 7388 (uchar_t *)&dst, /* dest address */ 7389 (uchar_t *)&ip_g_all_ones, /* mask */ 7390 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7391 (uchar_t *)&gw, /* gateway address */ 7392 NULL, 7393 &save_ire->ire_max_frag, 7394 NULL, /* Fast Path header */ 7395 dst_ill->ill_rq, /* recv-from queue */ 7396 dst_ill->ill_wq, /* send-to queue */ 7397 IRE_CACHE, 7398 dlureq_mp, 7399 src_ipif, 7400 in_ill, /* Incoming ill */ 7401 save_ire->ire_mask, /* Parent mask */ 7402 (sire != NULL) ? /* Parent handle */ 7403 sire->ire_phandle : 0, 7404 save_ire->ire_ihandle, /* Interface handle */ 7405 (sire != NULL) ? sire->ire_flags & 7406 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7407 &(save_ire->ire_uinfo)); 7408 7409 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7410 freeb(dlureq_mp); 7411 7412 if (ire == NULL) { 7413 ire_refrele(save_ire); 7414 break; 7415 } 7416 7417 ire->ire_marks |= ire_marks; 7418 7419 /* Prevent save_ire from getting deleted */ 7420 IRB_REFHOLD(save_ire->ire_bucket); 7421 /* Has it been removed already ? */ 7422 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7423 IRB_REFRELE(save_ire->ire_bucket); 7424 ire_refrele(save_ire); 7425 break; 7426 } 7427 7428 /* 7429 * In the case of multirouting, a copy 7430 * of the packet is made before it is sent. 7431 * The copy is used in the next 7432 * loop to attempt another resolution. 7433 */ 7434 xmit_mp = first_mp; 7435 if ((sire != NULL) && 7436 (sire->ire_flags & RTF_MULTIRT)) { 7437 copy_mp = copymsg(first_mp); 7438 if (copy_mp != NULL) { 7439 xmit_mp = copy_mp; 7440 MULTIRT_DEBUG_TAG(first_mp); 7441 } 7442 } 7443 ire_add_then_send(q, ire, xmit_mp); 7444 7445 /* Assert that it is not deleted yet. */ 7446 ASSERT(save_ire->ire_ptpn != NULL); 7447 IRB_REFRELE(save_ire->ire_bucket); 7448 ire_refrele(save_ire); 7449 7450 if (copy_mp != NULL) { 7451 /* 7452 * If we found a (no)resolver, we ignore any 7453 * trailing top priority IRE_CACHE in further 7454 * loops. This ensures that we do not omit any 7455 * (no)resolver. 7456 * This IRE_CACHE, if any, will be processed 7457 * by another thread entering ip_newroute(). 7458 * IRE_CACHE entries, if any, will be processed 7459 * by another thread entering ip_newroute(), 7460 * (upon resolver response, for instance). 7461 * This aims to force parallel multirt 7462 * resolutions as soon as a packet must be sent. 7463 * In the best case, after the tx of only one 7464 * packet, all reachable routes are resolved. 7465 * Otherwise, the resolution of all RTF_MULTIRT 7466 * routes would require several emissions. 7467 */ 7468 multirt_flags &= ~MULTIRT_CACHEGW; 7469 7470 /* 7471 * Search for the next unresolved multirt 7472 * route. 7473 */ 7474 copy_mp = NULL; 7475 save_ire = NULL; 7476 ire = NULL; 7477 multirt_resolve_next = B_TRUE; 7478 continue; 7479 } 7480 7481 /* 7482 * Don't need sire anymore 7483 */ 7484 if (sire != NULL) 7485 ire_refrele(sire); 7486 7487 ipif_refrele(src_ipif); 7488 ill_refrele(dst_ill); 7489 return; 7490 } 7491 case IRE_IF_RESOLVER: 7492 /* 7493 * We can't build an IRE_CACHE yet, but at least we 7494 * found a resolver that can help. 7495 */ 7496 res_mp = dst_ill->ill_resolver_mp; 7497 if (!OK_RESOLVER_MP(res_mp)) 7498 break; 7499 /* 7500 * To be at this point in the code with a non-zero gw 7501 * means that dst is reachable through a gateway that 7502 * we have never resolved. By changing dst to the gw 7503 * addr we resolve the gateway first. 7504 * When ire_add_then_send() tries to put the IP dg 7505 * to dst, it will reenter ip_newroute() at which 7506 * time we will find the IRE_CACHE for the gw and 7507 * create another IRE_CACHE in case IRE_CACHE above. 7508 */ 7509 if (gw != INADDR_ANY) { 7510 /* 7511 * The source ipif that was determined above was 7512 * relative to the destination address, not the 7513 * gateway's. If src_ipif was not taken out of 7514 * the IRE_IF_RESOLVER entry, we'll need to call 7515 * ipif_select_source() again. 7516 */ 7517 if (src_ipif != ire->ire_ipif) { 7518 ipif_refrele(src_ipif); 7519 src_ipif = ipif_select_source(dst_ill, 7520 gw, zoneid); 7521 if (src_ipif == NULL) { 7522 if (ip_debug > 2) { 7523 pr_addr_dbg( 7524 "ip_newroute: no " 7525 "src for gw %s ", 7526 AF_INET, &gw); 7527 printf("through " 7528 "interface %s\n", 7529 dst_ill->ill_name); 7530 } 7531 goto icmp_err_ret; 7532 } 7533 } 7534 save_dst = dst; 7535 dst = gw; 7536 gw = INADDR_ANY; 7537 } 7538 /* 7539 * We obtain a partial IRE_CACHE which we will pass 7540 * along with the resolver query. When the response 7541 * comes back it will be there ready for us to add. 7542 * The ire_max_frag is atomically set under the 7543 * irebucket lock in ire_add_v[46]. 7544 */ 7545 ire = ire_create_mp( 7546 (uchar_t *)&dst, /* dest address */ 7547 (uchar_t *)&ip_g_all_ones, /* mask */ 7548 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7549 (uchar_t *)&gw, /* gateway address */ 7550 NULL, /* no in_src_addr */ 7551 NULL, /* ire_max_frag */ 7552 NULL, /* Fast Path header */ 7553 dst_ill->ill_rq, /* recv-from queue */ 7554 dst_ill->ill_wq, /* send-to queue */ 7555 IRE_CACHE, 7556 res_mp, 7557 src_ipif, /* Interface ipif */ 7558 in_ill, /* Incoming ILL */ 7559 save_ire->ire_mask, /* Parent mask */ 7560 0, 7561 save_ire->ire_ihandle, /* Interface handle */ 7562 0, /* flags if any */ 7563 &(save_ire->ire_uinfo)); 7564 7565 if (ire == NULL) { 7566 ire_refrele(save_ire); 7567 break; 7568 } 7569 7570 if ((sire != NULL) && 7571 (sire->ire_flags & RTF_MULTIRT)) { 7572 copy_mp = copymsg(first_mp); 7573 if (copy_mp != NULL) 7574 MULTIRT_DEBUG_TAG(copy_mp); 7575 } 7576 7577 ire->ire_marks |= ire_marks; 7578 7579 /* 7580 * Construct message chain for the resolver 7581 * of the form: 7582 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 7583 * Packet could contain a IPSEC_OUT mp. 7584 * 7585 * NOTE : ire will be added later when the response 7586 * comes back from ARP. If the response does not 7587 * come back, ARP frees the packet. For this reason, 7588 * we can't REFHOLD the bucket of save_ire to prevent 7589 * deletions. We may not be able to REFRELE the bucket 7590 * if the response never comes back. Thus, before 7591 * adding the ire, ire_add_v4 will make sure that the 7592 * interface route does not get deleted. This is the 7593 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 7594 * where we can always prevent deletions because of 7595 * the synchronous nature of adding IRES i.e 7596 * ire_add_then_send is called after creating the IRE. 7597 */ 7598 ASSERT(ire->ire_mp != NULL); 7599 ire->ire_mp->b_cont = first_mp; 7600 /* Have saved_mp handy, for cleanup if canput fails */ 7601 saved_mp = mp; 7602 mp = ire->ire_dlureq_mp; 7603 ASSERT(mp != NULL); 7604 ire->ire_dlureq_mp = NULL; 7605 linkb(mp, ire->ire_mp); 7606 7607 7608 /* 7609 * Fill in the source and dest addrs for the resolver. 7610 * NOTE: this depends on memory layouts imposed by 7611 * ill_init(). 7612 */ 7613 areq = (areq_t *)mp->b_rptr; 7614 addrp = (ipaddr_t *)((char *)areq + 7615 areq->areq_sender_addr_offset); 7616 if (do_attach_ill) { 7617 /* 7618 * This is bind to no failover case. 7619 * arp packet also must go out on attach_ill. 7620 */ 7621 ASSERT(ipha->ipha_src != NULL); 7622 *addrp = ipha->ipha_src; 7623 } else { 7624 *addrp = save_ire->ire_src_addr; 7625 } 7626 7627 ire_refrele(save_ire); 7628 addrp = (ipaddr_t *)((char *)areq + 7629 areq->areq_target_addr_offset); 7630 *addrp = dst; 7631 /* Up to the resolver. */ 7632 if (canputnext(dst_ill->ill_rq)) { 7633 putnext(dst_ill->ill_rq, mp); 7634 ire = NULL; 7635 if (copy_mp != NULL) { 7636 /* 7637 * If we found a resolver, we ignore 7638 * any trailing top priority IRE_CACHE 7639 * in the further loops. This ensures 7640 * that we do not omit any resolver. 7641 * IRE_CACHE entries, if any, will be 7642 * processed next time we enter 7643 * ip_newroute(). 7644 */ 7645 multirt_flags &= ~MULTIRT_CACHEGW; 7646 /* 7647 * Search for the next unresolved 7648 * multirt route. 7649 */ 7650 first_mp = copy_mp; 7651 copy_mp = NULL; 7652 /* Prepare the next resolution loop. */ 7653 mp = first_mp; 7654 EXTRACT_PKT_MP(mp, first_mp, 7655 mctl_present); 7656 if (mctl_present) 7657 io = (ipsec_out_t *) 7658 first_mp->b_rptr; 7659 ipha = (ipha_t *)mp->b_rptr; 7660 7661 ASSERT(sire != NULL); 7662 7663 dst = save_dst; 7664 multirt_resolve_next = B_TRUE; 7665 continue; 7666 } 7667 7668 if (sire != NULL) 7669 ire_refrele(sire); 7670 7671 /* 7672 * The response will come back in ip_wput 7673 * with db_type IRE_DB_TYPE. 7674 */ 7675 ipif_refrele(src_ipif); 7676 ill_refrele(dst_ill); 7677 return; 7678 } else { 7679 /* Prepare for cleanup */ 7680 ire->ire_dlureq_mp = mp; 7681 mp->b_cont = NULL; 7682 ire_delete(ire); 7683 mp = saved_mp; 7684 ire = NULL; 7685 if (copy_mp != NULL) { 7686 MULTIRT_DEBUG_UNTAG(copy_mp); 7687 freemsg(copy_mp); 7688 copy_mp = NULL; 7689 } 7690 break; 7691 } 7692 default: 7693 break; 7694 } 7695 } while (multirt_resolve_next); 7696 7697 ip1dbg(("ip_newroute: dropped\n")); 7698 /* Did this packet originate externally? */ 7699 if (mp->b_prev) { 7700 mp->b_next = NULL; 7701 mp->b_prev = NULL; 7702 BUMP_MIB(&ip_mib, ipInDiscards); 7703 } else { 7704 BUMP_MIB(&ip_mib, ipOutDiscards); 7705 } 7706 ASSERT(copy_mp == NULL); 7707 MULTIRT_DEBUG_UNTAG(first_mp); 7708 freemsg(first_mp); 7709 if (ire != NULL) 7710 ire_refrele(ire); 7711 if (sire != NULL) 7712 ire_refrele(sire); 7713 if (src_ipif != NULL) 7714 ipif_refrele(src_ipif); 7715 if (dst_ill != NULL) 7716 ill_refrele(dst_ill); 7717 return; 7718 7719 icmp_err_ret: 7720 ip1dbg(("ip_newroute: no route\n")); 7721 if (src_ipif != NULL) 7722 ipif_refrele(src_ipif); 7723 if (dst_ill != NULL) 7724 ill_refrele(dst_ill); 7725 if (sire != NULL) 7726 ire_refrele(sire); 7727 /* Did this packet originate externally? */ 7728 if (mp->b_prev) { 7729 mp->b_next = NULL; 7730 mp->b_prev = NULL; 7731 /* XXX ipInNoRoutes */ 7732 q = WR(q); 7733 } else { 7734 /* 7735 * Since ip_wput() isn't close to finished, we fill 7736 * in enough of the header for credible error reporting. 7737 */ 7738 if (ip_hdr_complete(ipha, zoneid)) { 7739 /* Failed */ 7740 MULTIRT_DEBUG_UNTAG(first_mp); 7741 freemsg(first_mp); 7742 if (ire != NULL) 7743 ire_refrele(ire); 7744 return; 7745 } 7746 } 7747 BUMP_MIB(&ip_mib, ipOutNoRoutes); 7748 7749 /* 7750 * At this point we will have ire only if RTF_BLACKHOLE 7751 * or RTF_REJECT flags are set on the IRE. It will not 7752 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 7753 */ 7754 if (ire != NULL) { 7755 if (ire->ire_flags & RTF_BLACKHOLE) { 7756 ire_refrele(ire); 7757 MULTIRT_DEBUG_UNTAG(first_mp); 7758 freemsg(first_mp); 7759 return; 7760 } 7761 ire_refrele(ire); 7762 } 7763 if (ip_source_routed(ipha)) { 7764 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 7765 return; 7766 } 7767 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 7768 } 7769 7770 /* 7771 * IPv4 - 7772 * ip_newroute_ipif is called by ip_wput_multicast and 7773 * ip_rput_forward_multicast whenever we need to send 7774 * out a packet to a destination address for which we do not have specific 7775 * routing information. It is used when the packet will be sent out 7776 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 7777 * socket option is set or icmp error message wants to go out on a particular 7778 * interface for a unicast packet. 7779 * 7780 * In most cases, the destination address is resolved thanks to the ipif 7781 * intrinsic resolver. However, there are some cases where the call to 7782 * ip_newroute_ipif must take into account the potential presence of 7783 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 7784 * that uses the interface. This is specified through flags, 7785 * which can be a combination of: 7786 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 7787 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 7788 * and flags. Additionally, the packet source address has to be set to 7789 * the specified address. The caller is thus expected to set this flag 7790 * if the packet has no specific source address yet. 7791 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 7792 * flag, the resulting ire will inherit the flag. All unresolved routes 7793 * to the destination must be explored in the same call to 7794 * ip_newroute_ipif(). 7795 */ 7796 static void 7797 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 7798 conn_t *connp, uint32_t flags) 7799 { 7800 areq_t *areq; 7801 ire_t *ire = NULL; 7802 mblk_t *res_mp; 7803 ipaddr_t *addrp; 7804 mblk_t *first_mp; 7805 ire_t *save_ire = NULL; 7806 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 7807 ipif_t *src_ipif = NULL; 7808 ushort_t ire_marks = 0; 7809 ill_t *dst_ill = NULL; 7810 boolean_t mctl_present; 7811 ipsec_out_t *io; 7812 ipha_t *ipha; 7813 int ihandle = 0; 7814 mblk_t *saved_mp; 7815 ire_t *fire = NULL; 7816 mblk_t *copy_mp = NULL; 7817 boolean_t multirt_resolve_next; 7818 ipaddr_t ipha_dst; 7819 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 7820 7821 /* 7822 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 7823 * here for uniformity 7824 */ 7825 ipif_refhold(ipif); 7826 7827 /* 7828 * This loop is run only once in most cases. 7829 * We loop to resolve further routes only when the destination 7830 * can be reached through multiple RTF_MULTIRT-flagged ires. 7831 */ 7832 do { 7833 if (dst_ill != NULL) { 7834 ill_refrele(dst_ill); 7835 dst_ill = NULL; 7836 } 7837 if (src_ipif != NULL) { 7838 ipif_refrele(src_ipif); 7839 src_ipif = NULL; 7840 } 7841 multirt_resolve_next = B_FALSE; 7842 7843 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 7844 ipif->ipif_ill->ill_name)); 7845 7846 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7847 if (mctl_present) 7848 io = (ipsec_out_t *)first_mp->b_rptr; 7849 7850 ipha = (ipha_t *)mp->b_rptr; 7851 7852 /* 7853 * Save the packet destination address, we may need it after 7854 * the packet has been consumed. 7855 */ 7856 ipha_dst = ipha->ipha_dst; 7857 7858 /* 7859 * If the interface is a pt-pt interface we look for an 7860 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 7861 * local_address and the pt-pt destination address. Otherwise 7862 * we just match the local address. 7863 * NOTE: dst could be different than ipha->ipha_dst in case 7864 * of sending igmp multicast packets over a point-to-point 7865 * connection. 7866 * Thus we must be careful enough to check ipha_dst to be a 7867 * multicast address, otherwise it will take xmit_if path for 7868 * multicast packets resulting into kernel stack overflow by 7869 * repeated calls to ip_newroute_ipif from ire_send(). 7870 */ 7871 if (CLASSD(ipha_dst) && 7872 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 7873 goto err_ret; 7874 } 7875 7876 /* 7877 * We check if an IRE_OFFSUBNET for the addr that goes through 7878 * ipif exists. We need it to determine if the RTF_SETSRC and/or 7879 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 7880 * propagate its flags to the new ire. 7881 */ 7882 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 7883 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 7884 ip2dbg(("ip_newroute_ipif: " 7885 "ipif_lookup_multi_ire(" 7886 "ipif %p, dst %08x) = fire %p\n", 7887 (void *)ipif, ntohl(dst), (void *)fire)); 7888 } 7889 7890 if (mctl_present && io->ipsec_out_attach_if) { 7891 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7892 io->ipsec_out_ill_index, B_FALSE); 7893 7894 /* Failure case frees things for us. */ 7895 if (attach_ill == NULL) { 7896 ipif_refrele(ipif); 7897 if (fire != NULL) 7898 ire_refrele(fire); 7899 return; 7900 } 7901 7902 /* 7903 * Check if we need an ire that will not be 7904 * looked up by anybody else i.e. HIDDEN. 7905 */ 7906 if (ill_is_probeonly(attach_ill)) { 7907 ire_marks = IRE_MARK_HIDDEN; 7908 } 7909 /* 7910 * ip_wput passes the right ipif for IPIF_NOFAILOVER 7911 * case. 7912 */ 7913 dst_ill = ipif->ipif_ill; 7914 /* attach_ill has been refheld by ip_grab_attach_ill */ 7915 ASSERT(dst_ill == attach_ill); 7916 } else { 7917 /* 7918 * If this is set by IP_XMIT_IF, then make sure that 7919 * ipif is pointing to the same ill as the IP_XMIT_IF 7920 * specified ill. 7921 */ 7922 ASSERT((connp == NULL) || 7923 (connp->conn_xmit_if_ill == NULL) || 7924 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 7925 /* 7926 * If the interface belongs to an interface group, 7927 * make sure the next possible interface in the group 7928 * is used. This encourages load spreading among 7929 * peers in an interface group. 7930 * Note: load spreading is disabled for RTF_MULTIRT 7931 * routes. 7932 */ 7933 if ((flags & RTF_MULTIRT) && (fire != NULL) && 7934 (fire->ire_flags & RTF_MULTIRT)) { 7935 /* 7936 * Don't perform outbound load spreading 7937 * in the case of an RTF_MULTIRT issued route, 7938 * we actually typically want to replicate 7939 * outgoing packets through particular 7940 * interfaces. 7941 */ 7942 dst_ill = ipif->ipif_ill; 7943 ill_refhold(dst_ill); 7944 } else { 7945 dst_ill = ip_newroute_get_dst_ill( 7946 ipif->ipif_ill); 7947 } 7948 if (dst_ill == NULL) { 7949 if (ip_debug > 2) { 7950 pr_addr_dbg("ip_newroute_ipif: " 7951 "no dst ill for dst %s\n", 7952 AF_INET, &dst); 7953 } 7954 goto err_ret; 7955 } 7956 } 7957 7958 /* 7959 * Pick a source address preferring non-deprecated ones. 7960 * Unlike ip_newroute, we don't do any source address 7961 * selection here since for multicast it really does not help 7962 * in inbound load spreading as in the unicast case. 7963 */ 7964 if ((flags & RTF_SETSRC) && (fire != NULL) && 7965 (fire->ire_flags & RTF_SETSRC)) { 7966 /* 7967 * As requested by flags, an IRE_OFFSUBNET was looked up 7968 * on that interface. This ire has RTF_SETSRC flag, so 7969 * the source address of the packet must be changed. 7970 * Check that the ipif matching the requested source 7971 * address still exists. 7972 */ 7973 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 7974 zoneid, NULL, NULL, NULL, NULL); 7975 } 7976 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 7977 (connp != NULL && ipif->ipif_zoneid != zoneid)) && 7978 (src_ipif == NULL)) { 7979 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 7980 if (src_ipif == NULL) { 7981 if (ip_debug > 2) { 7982 /* ip1dbg */ 7983 pr_addr_dbg("ip_newroute_ipif: " 7984 "no src for dst %s", 7985 AF_INET, &dst); 7986 } 7987 ip1dbg((" through interface %s\n", 7988 dst_ill->ill_name)); 7989 goto err_ret; 7990 } 7991 ipif_refrele(ipif); 7992 ipif = src_ipif; 7993 ipif_refhold(ipif); 7994 } 7995 if (src_ipif == NULL) { 7996 src_ipif = ipif; 7997 ipif_refhold(src_ipif); 7998 } 7999 8000 /* 8001 * Assign a source address while we have the conn. 8002 * We can't have ip_wput_ire pick a source address when the 8003 * packet returns from arp since conn_unspec_src might be set 8004 * and we loose the conn when going through arp. 8005 */ 8006 if (ipha->ipha_src == INADDR_ANY && 8007 (connp == NULL || !connp->conn_unspec_src)) { 8008 ipha->ipha_src = src_ipif->ipif_src_addr; 8009 } 8010 8011 /* 8012 * In case of IP_XMIT_IF, it is possible that the outgoing 8013 * interface does not have an interface ire. 8014 * Example: Thousands of mobileip PPP interfaces to mobile 8015 * nodes. We don't want to create interface ires because 8016 * packets from other mobile nodes must not take the route 8017 * via interface ires to the visiting mobile node without 8018 * going through the home agent, in absence of mobileip 8019 * route optimization. 8020 */ 8021 if (CLASSD(ipha_dst) && (connp == NULL || 8022 connp->conn_xmit_if_ill == NULL)) { 8023 /* ipif_to_ire returns an held ire */ 8024 ire = ipif_to_ire(ipif); 8025 if (ire == NULL) 8026 goto err_ret; 8027 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8028 goto err_ret; 8029 /* 8030 * ihandle is needed when the ire is added to 8031 * cache table. 8032 */ 8033 save_ire = ire; 8034 ihandle = save_ire->ire_ihandle; 8035 8036 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8037 "flags %04x\n", 8038 (void *)ire, (void *)ipif, flags)); 8039 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8040 (fire->ire_flags & RTF_MULTIRT)) { 8041 /* 8042 * As requested by flags, an IRE_OFFSUBNET was 8043 * looked up on that interface. This ire has 8044 * RTF_MULTIRT flag, so the resolution loop will 8045 * be re-entered to resolve additional routes on 8046 * other interfaces. For that purpose, a copy of 8047 * the packet is performed at this point. 8048 */ 8049 fire->ire_last_used_time = lbolt; 8050 copy_mp = copymsg(first_mp); 8051 if (copy_mp) { 8052 MULTIRT_DEBUG_TAG(copy_mp); 8053 } 8054 } 8055 if ((flags & RTF_SETSRC) && (fire != NULL) && 8056 (fire->ire_flags & RTF_SETSRC)) { 8057 /* 8058 * As requested by flags, an IRE_OFFSUBET was 8059 * looked up on that interface. This ire has 8060 * RTF_SETSRC flag, so the source address of the 8061 * packet must be changed. 8062 */ 8063 ipha->ipha_src = fire->ire_src_addr; 8064 } 8065 } else { 8066 ASSERT((connp == NULL) || 8067 (connp->conn_xmit_if_ill != NULL) || 8068 (connp->conn_dontroute)); 8069 /* 8070 * The only ways we can come here are: 8071 * 1) IP_XMIT_IF socket option is set 8072 * 2) ICMP error message generated from 8073 * ip_mrtun_forward() routine and it needs 8074 * to go through the specified ill. 8075 * 3) SO_DONTROUTE socket option is set 8076 * In all cases, the new ire will not be added 8077 * into cache table. 8078 */ 8079 ire_marks |= IRE_MARK_NOADD; 8080 } 8081 8082 switch (ipif->ipif_net_type) { 8083 case IRE_IF_NORESOLVER: { 8084 /* We have what we need to build an IRE_CACHE. */ 8085 mblk_t *dlureq_mp; 8086 8087 /* 8088 * Create a new dlureq_mp with the 8089 * IP gateway address as destination address in the 8090 * DLPI hdr if the physical length is exactly 4 bytes. 8091 */ 8092 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8093 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 8094 dst_ill->ill_phys_addr_length, 8095 dst_ill->ill_sap, 8096 dst_ill->ill_sap_length); 8097 } else { 8098 /* use the value set in ip_ll_subnet_defaults */ 8099 dlureq_mp = ill_dlur_gen(NULL, 8100 dst_ill->ill_phys_addr_length, 8101 dst_ill->ill_sap, 8102 dst_ill->ill_sap_length); 8103 } 8104 8105 if (dlureq_mp == NULL) 8106 break; 8107 /* 8108 * The new ire inherits the IRE_OFFSUBNET flags 8109 * and source address, if this was requested. 8110 */ 8111 ire = ire_create( 8112 (uchar_t *)&dst, /* dest address */ 8113 (uchar_t *)&ip_g_all_ones, /* mask */ 8114 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8115 NULL, /* gateway address */ 8116 NULL, 8117 &ipif->ipif_mtu, 8118 NULL, /* Fast Path header */ 8119 dst_ill->ill_rq, /* recv-from queue */ 8120 dst_ill->ill_wq, /* send-to queue */ 8121 IRE_CACHE, 8122 dlureq_mp, 8123 src_ipif, 8124 NULL, 8125 (save_ire != NULL ? save_ire->ire_mask : 0), 8126 (fire != NULL) ? /* Parent handle */ 8127 fire->ire_phandle : 0, 8128 ihandle, /* Interface handle */ 8129 (fire != NULL) ? 8130 (fire->ire_flags & 8131 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8132 (save_ire == NULL ? &ire_uinfo_null : 8133 &save_ire->ire_uinfo)); 8134 8135 freeb(dlureq_mp); 8136 8137 if (ire == NULL) { 8138 if (save_ire != NULL) 8139 ire_refrele(save_ire); 8140 break; 8141 } 8142 8143 ire->ire_marks |= ire_marks; 8144 8145 /* Prevent save_ire from getting deleted */ 8146 if (save_ire != NULL) { 8147 IRB_REFHOLD(save_ire->ire_bucket); 8148 /* Has it been removed already ? */ 8149 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8150 IRB_REFRELE(save_ire->ire_bucket); 8151 ire_refrele(save_ire); 8152 break; 8153 } 8154 } 8155 8156 ire_add_then_send(q, ire, first_mp); 8157 8158 /* Assert that save_ire is not deleted yet. */ 8159 if (save_ire != NULL) { 8160 ASSERT(save_ire->ire_ptpn != NULL); 8161 IRB_REFRELE(save_ire->ire_bucket); 8162 ire_refrele(save_ire); 8163 save_ire = NULL; 8164 } 8165 if (fire != NULL) { 8166 ire_refrele(fire); 8167 fire = NULL; 8168 } 8169 8170 /* 8171 * the resolution loop is re-entered if this 8172 * was requested through flags and if we 8173 * actually are in a multirouting case. 8174 */ 8175 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8176 boolean_t need_resolve = 8177 ire_multirt_need_resolve(ipha_dst); 8178 if (!need_resolve) { 8179 MULTIRT_DEBUG_UNTAG(copy_mp); 8180 freemsg(copy_mp); 8181 copy_mp = NULL; 8182 } else { 8183 /* 8184 * ipif_lookup_group() calls 8185 * ire_lookup_multi() that uses 8186 * ire_ftable_lookup() to find 8187 * an IRE_INTERFACE for the group. 8188 * In the multirt case, 8189 * ire_lookup_multi() then invokes 8190 * ire_multirt_lookup() to find 8191 * the next resolvable ire. 8192 * As a result, we obtain an new 8193 * interface, derived from the 8194 * next ire. 8195 */ 8196 ipif_refrele(ipif); 8197 ipif = ipif_lookup_group(ipha_dst, 8198 zoneid); 8199 ip2dbg(("ip_newroute_ipif: " 8200 "multirt dst %08x, ipif %p\n", 8201 htonl(dst), (void *)ipif)); 8202 if (ipif != NULL) { 8203 mp = copy_mp; 8204 copy_mp = NULL; 8205 multirt_resolve_next = B_TRUE; 8206 continue; 8207 } else { 8208 freemsg(copy_mp); 8209 } 8210 } 8211 } 8212 if (ipif != NULL) 8213 ipif_refrele(ipif); 8214 ill_refrele(dst_ill); 8215 ipif_refrele(src_ipif); 8216 return; 8217 } 8218 case IRE_IF_RESOLVER: 8219 /* 8220 * We can't build an IRE_CACHE yet, but at least 8221 * we found a resolver that can help. 8222 */ 8223 res_mp = dst_ill->ill_resolver_mp; 8224 if (!OK_RESOLVER_MP(res_mp)) 8225 break; 8226 8227 /* 8228 * We obtain a partial IRE_CACHE which we will pass 8229 * along with the resolver query. When the response 8230 * comes back it will be there ready for us to add. 8231 * The new ire inherits the IRE_OFFSUBNET flags 8232 * and source address, if this was requested. 8233 * The ire_max_frag is atomically set under the 8234 * irebucket lock in ire_add_v[46]. Only in the 8235 * case of IRE_MARK_NOADD, we set it here itself. 8236 */ 8237 ire = ire_create_mp( 8238 (uchar_t *)&dst, /* dest address */ 8239 (uchar_t *)&ip_g_all_ones, /* mask */ 8240 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8241 NULL, /* gateway address */ 8242 NULL, /* no in_src_addr */ 8243 (ire_marks & IRE_MARK_NOADD) ? 8244 ipif->ipif_mtu : 0, /* max_frag */ 8245 NULL, /* Fast path header */ 8246 dst_ill->ill_rq, /* recv-from queue */ 8247 dst_ill->ill_wq, /* send-to queue */ 8248 IRE_CACHE, 8249 res_mp, 8250 src_ipif, 8251 NULL, 8252 (save_ire != NULL ? save_ire->ire_mask : 0), 8253 (fire != NULL) ? /* Parent handle */ 8254 fire->ire_phandle : 0, 8255 ihandle, /* Interface handle */ 8256 (fire != NULL) ? /* flags if any */ 8257 (fire->ire_flags & 8258 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8259 (save_ire == NULL ? &ire_uinfo_null : 8260 &save_ire->ire_uinfo)); 8261 8262 if (save_ire != NULL) { 8263 ire_refrele(save_ire); 8264 save_ire = NULL; 8265 } 8266 if (ire == NULL) 8267 break; 8268 8269 ire->ire_marks |= ire_marks; 8270 /* 8271 * Construct message chain for the resolver of the 8272 * form: 8273 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8274 * 8275 * NOTE : ire will be added later when the response 8276 * comes back from ARP. If the response does not 8277 * come back, ARP frees the packet. For this reason, 8278 * we can't REFHOLD the bucket of save_ire to prevent 8279 * deletions. We may not be able to REFRELE the 8280 * bucket if the response never comes back. 8281 * Thus, before adding the ire, ire_add_v4 will make 8282 * sure that the interface route does not get deleted. 8283 * This is the only case unlike ip_newroute_v6, 8284 * ip_newroute_ipif_v6 where we can always prevent 8285 * deletions because ire_add_then_send is called after 8286 * creating the IRE. 8287 * If IRE_MARK_NOADD is set, then ire_add_then_send 8288 * does not add this IRE into the IRE CACHE. 8289 */ 8290 ASSERT(ire->ire_mp != NULL); 8291 ire->ire_mp->b_cont = first_mp; 8292 /* Have saved_mp handy, for cleanup if canput fails */ 8293 saved_mp = mp; 8294 mp = ire->ire_dlureq_mp; 8295 ASSERT(mp != NULL); 8296 ire->ire_dlureq_mp = NULL; 8297 linkb(mp, ire->ire_mp); 8298 8299 /* 8300 * Fill in the source and dest addrs for the resolver. 8301 * NOTE: this depends on memory layouts imposed by 8302 * ill_init(). 8303 */ 8304 areq = (areq_t *)mp->b_rptr; 8305 addrp = (ipaddr_t *)((char *)areq + 8306 areq->areq_sender_addr_offset); 8307 *addrp = ire->ire_src_addr; 8308 addrp = (ipaddr_t *)((char *)areq + 8309 areq->areq_target_addr_offset); 8310 *addrp = dst; 8311 /* Up to the resolver. */ 8312 if (canputnext(dst_ill->ill_rq)) { 8313 putnext(dst_ill->ill_rq, mp); 8314 /* 8315 * The response will come back in ip_wput 8316 * with db_type IRE_DB_TYPE. 8317 */ 8318 } else { 8319 ire->ire_dlureq_mp = mp; 8320 mp->b_cont = NULL; 8321 ire_delete(ire); 8322 saved_mp->b_next = NULL; 8323 saved_mp->b_prev = NULL; 8324 freemsg(first_mp); 8325 ip2dbg(("ip_newroute_ipif: dropped\n")); 8326 } 8327 8328 if (fire != NULL) { 8329 ire_refrele(fire); 8330 fire = NULL; 8331 } 8332 8333 8334 /* 8335 * The resolution loop is re-entered if this was 8336 * requested through flags and we actually are 8337 * in a multirouting case. 8338 */ 8339 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8340 boolean_t need_resolve = 8341 ire_multirt_need_resolve(ipha_dst); 8342 if (!need_resolve) { 8343 MULTIRT_DEBUG_UNTAG(copy_mp); 8344 freemsg(copy_mp); 8345 copy_mp = NULL; 8346 } else { 8347 /* 8348 * ipif_lookup_group() calls 8349 * ire_lookup_multi() that uses 8350 * ire_ftable_lookup() to find 8351 * an IRE_INTERFACE for the group. 8352 * In the multirt case, 8353 * ire_lookup_multi() then invokes 8354 * ire_multirt_lookup() to find 8355 * the next resolvable ire. 8356 * As a result, we obtain an new 8357 * interface, derived from the 8358 * next ire. 8359 */ 8360 ipif_refrele(ipif); 8361 ipif = ipif_lookup_group(ipha_dst, 8362 zoneid); 8363 if (ipif != NULL) { 8364 mp = copy_mp; 8365 copy_mp = NULL; 8366 multirt_resolve_next = B_TRUE; 8367 continue; 8368 } else { 8369 freemsg(copy_mp); 8370 } 8371 } 8372 } 8373 if (ipif != NULL) 8374 ipif_refrele(ipif); 8375 ill_refrele(dst_ill); 8376 ipif_refrele(src_ipif); 8377 return; 8378 default: 8379 break; 8380 } 8381 } while (multirt_resolve_next); 8382 8383 err_ret: 8384 ip2dbg(("ip_newroute_ipif: dropped\n")); 8385 if (fire != NULL) 8386 ire_refrele(fire); 8387 ipif_refrele(ipif); 8388 /* Did this packet originate externally? */ 8389 if (dst_ill != NULL) 8390 ill_refrele(dst_ill); 8391 if (src_ipif != NULL) 8392 ipif_refrele(src_ipif); 8393 if (mp->b_prev || mp->b_next) { 8394 mp->b_next = NULL; 8395 mp->b_prev = NULL; 8396 } else { 8397 /* 8398 * Since ip_wput() isn't close to finished, we fill 8399 * in enough of the header for credible error reporting. 8400 */ 8401 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8402 /* Failed */ 8403 freemsg(first_mp); 8404 if (ire != NULL) 8405 ire_refrele(ire); 8406 return; 8407 } 8408 } 8409 /* 8410 * At this point we will have ire only if RTF_BLACKHOLE 8411 * or RTF_REJECT flags are set on the IRE. It will not 8412 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8413 */ 8414 if (ire != NULL) { 8415 if (ire->ire_flags & RTF_BLACKHOLE) { 8416 ire_refrele(ire); 8417 freemsg(first_mp); 8418 return; 8419 } 8420 ire_refrele(ire); 8421 } 8422 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8423 } 8424 8425 /* Name/Value Table Lookup Routine */ 8426 char * 8427 ip_nv_lookup(nv_t *nv, int value) 8428 { 8429 if (!nv) 8430 return (NULL); 8431 for (; nv->nv_name; nv++) { 8432 if (nv->nv_value == value) 8433 return (nv->nv_name); 8434 } 8435 return ("unknown"); 8436 } 8437 8438 /* 8439 * one day it can be patched to 1 from /etc/system for machines that have few 8440 * fast network interfaces feeding multiple cpus. 8441 */ 8442 int ill_stream_putlocks = 0; 8443 8444 /* 8445 * This is a module open, i.e. this is a control stream for access 8446 * to a DLPI device. We allocate an ill_t as the instance data in 8447 * this case. 8448 */ 8449 int 8450 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8451 { 8452 uint32_t mem_cnt; 8453 uint32_t cpu_cnt; 8454 uint32_t min_cnt; 8455 pgcnt_t mem_avail; 8456 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 8457 ill_t *ill; 8458 int err; 8459 8460 /* 8461 * Prevent unprivileged processes from pushing IP so that 8462 * they can't send raw IP. 8463 */ 8464 if (secpolicy_net_rawaccess(credp) != 0) 8465 return (EPERM); 8466 8467 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 8468 q->q_ptr = WR(q)->q_ptr = ill; 8469 8470 /* 8471 * ill_init initializes the ill fields and then sends down 8472 * down a DL_INFO_REQ after calling qprocson. 8473 */ 8474 err = ill_init(q, ill); 8475 if (err != 0) { 8476 mi_free(ill); 8477 q->q_ptr = NULL; 8478 WR(q)->q_ptr = NULL; 8479 return (err); 8480 } 8481 8482 /* ill_init initializes the ipsq marking this thread as writer */ 8483 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 8484 /* Wait for the DL_INFO_ACK */ 8485 mutex_enter(&ill->ill_lock); 8486 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 8487 /* 8488 * Return value of 0 indicates a pending signal. 8489 */ 8490 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 8491 if (err == 0) { 8492 mutex_exit(&ill->ill_lock); 8493 (void) ip_close(q, 0); 8494 return (EINTR); 8495 } 8496 } 8497 mutex_exit(&ill->ill_lock); 8498 8499 /* 8500 * ip_rput_other could have set an error in ill_error on 8501 * receipt of M_ERROR. 8502 */ 8503 8504 err = ill->ill_error; 8505 if (err != 0) { 8506 (void) ip_close(q, 0); 8507 return (err); 8508 } 8509 8510 /* 8511 * ip_ire_max_bucket_cnt is sized below based on the memory 8512 * size and the cpu speed of the machine. This is upper 8513 * bounded by the compile time value of ip_ire_max_bucket_cnt 8514 * and is lower bounded by the compile time value of 8515 * ip_ire_min_bucket_cnt. Similar logic applies to 8516 * ip6_ire_max_bucket_cnt. 8517 */ 8518 mem_avail = kmem_avail(); 8519 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8520 ip_cache_table_size / sizeof (ire_t); 8521 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 8522 8523 min_cnt = MIN(cpu_cnt, mem_cnt); 8524 if (min_cnt < ip_ire_min_bucket_cnt) 8525 min_cnt = ip_ire_min_bucket_cnt; 8526 if (ip_ire_max_bucket_cnt > min_cnt) { 8527 ip_ire_max_bucket_cnt = min_cnt; 8528 } 8529 8530 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8531 ip6_cache_table_size / sizeof (ire_t); 8532 min_cnt = MIN(cpu_cnt, mem_cnt); 8533 if (min_cnt < ip6_ire_min_bucket_cnt) 8534 min_cnt = ip6_ire_min_bucket_cnt; 8535 if (ip6_ire_max_bucket_cnt > min_cnt) { 8536 ip6_ire_max_bucket_cnt = min_cnt; 8537 } 8538 8539 ill->ill_credp = credp; 8540 crhold(credp); 8541 8542 mutex_enter(&ip_mi_lock); 8543 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 8544 mutex_exit(&ip_mi_lock); 8545 if (err) { 8546 (void) ip_close(q, 0); 8547 return (err); 8548 } 8549 return (0); 8550 } 8551 8552 /* IP open routine. */ 8553 int 8554 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8555 { 8556 conn_t *connp; 8557 major_t maj; 8558 8559 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 8560 8561 /* Allow reopen. */ 8562 if (q->q_ptr != NULL) 8563 return (0); 8564 8565 if (sflag & MODOPEN) { 8566 /* This is a module open */ 8567 return (ip_modopen(q, devp, flag, sflag, credp)); 8568 } 8569 8570 /* 8571 * We are opening as a device. This is an IP client stream, and we 8572 * allocate an conn_t as the instance data. 8573 */ 8574 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 8575 connp->conn_upq = q; 8576 q->q_ptr = WR(q)->q_ptr = connp; 8577 8578 if (flag & SO_SOCKSTR) 8579 connp->conn_flags |= IPCL_SOCKET; 8580 8581 /* Minor tells us which /dev entry was opened */ 8582 if (geteminor(*devp) == IPV6_MINOR) { 8583 connp->conn_flags |= IPCL_ISV6; 8584 connp->conn_af_isv6 = B_TRUE; 8585 ip_setqinfo(q, geteminor(*devp), B_FALSE); 8586 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 8587 } else { 8588 connp->conn_af_isv6 = B_FALSE; 8589 connp->conn_pkt_isv6 = B_FALSE; 8590 } 8591 8592 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 8593 q->q_ptr = WR(q)->q_ptr = NULL; 8594 CONN_DEC_REF(connp); 8595 return (EBUSY); 8596 } 8597 8598 maj = getemajor(*devp); 8599 *devp = makedevice(maj, (minor_t)connp->conn_dev); 8600 8601 /* 8602 * connp->conn_cred is crfree()ed in ip_close(). 8603 */ 8604 connp->conn_cred = credp; 8605 crhold(connp->conn_cred); 8606 8607 connp->conn_zoneid = getzoneid(); 8608 8609 /* 8610 * This should only happen for ndd, netstat, raw socket or other SCTP 8611 * administrative ops. In these cases, we just need a normal conn_t 8612 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 8613 * an error will be returned. 8614 */ 8615 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 8616 connp->conn_rq = q; 8617 connp->conn_wq = WR(q); 8618 } else { 8619 connp->conn_ulp = IPPROTO_SCTP; 8620 connp->conn_rq = connp->conn_wq = NULL; 8621 } 8622 /* Non-zero default values */ 8623 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 8624 8625 /* 8626 * Make the conn globally visible to walkers 8627 */ 8628 mutex_enter(&connp->conn_lock); 8629 connp->conn_state_flags &= ~CONN_INCIPIENT; 8630 mutex_exit(&connp->conn_lock); 8631 ASSERT(connp->conn_ref == 1); 8632 8633 qprocson(q); 8634 8635 return (0); 8636 } 8637 8638 /* 8639 * Change q_qinfo based on the value of isv6. 8640 * This can not called on an ill queue. 8641 * Note that there is no race since either q_qinfo works for conn queues - it 8642 * is just an optimization to enter the best wput routine directly. 8643 */ 8644 void 8645 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 8646 { 8647 ASSERT(q->q_flag & QREADR); 8648 ASSERT(WR(q)->q_next == NULL); 8649 ASSERT(q->q_ptr != NULL); 8650 8651 if (minor == IPV6_MINOR) { 8652 if (bump_mib) 8653 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 8654 q->q_qinfo = &rinit_ipv6; 8655 WR(q)->q_qinfo = &winit_ipv6; 8656 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 8657 } else { 8658 if (bump_mib) 8659 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 8660 q->q_qinfo = &rinit; 8661 WR(q)->q_qinfo = &winit; 8662 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 8663 } 8664 8665 } 8666 8667 /* 8668 * See if IPsec needs loading because of the options in mp. 8669 */ 8670 static boolean_t 8671 ipsec_opt_present(mblk_t *mp) 8672 { 8673 uint8_t *optcp, *next_optcp, *opt_endcp; 8674 struct opthdr *opt; 8675 struct T_opthdr *topt; 8676 int opthdr_len; 8677 t_uscalar_t optname, optlevel; 8678 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 8679 ipsec_req_t *ipsr; 8680 8681 /* 8682 * Walk through the mess, and find IP_SEC_OPT. If it's there, 8683 * return TRUE. 8684 */ 8685 8686 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 8687 opt_endcp = optcp + tor->OPT_length; 8688 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8689 opthdr_len = sizeof (struct T_opthdr); 8690 } else { /* O_OPTMGMT_REQ */ 8691 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 8692 opthdr_len = sizeof (struct opthdr); 8693 } 8694 for (; optcp < opt_endcp; optcp = next_optcp) { 8695 if (optcp + opthdr_len > opt_endcp) 8696 return (B_FALSE); /* Not enough option header. */ 8697 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8698 topt = (struct T_opthdr *)optcp; 8699 optlevel = topt->level; 8700 optname = topt->name; 8701 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 8702 } else { 8703 opt = (struct opthdr *)optcp; 8704 optlevel = opt->level; 8705 optname = opt->name; 8706 next_optcp = optcp + opthdr_len + 8707 _TPI_ALIGN_OPT(opt->len); 8708 } 8709 if ((next_optcp < optcp) || /* wraparound pointer space */ 8710 ((next_optcp >= opt_endcp) && /* last option bad len */ 8711 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 8712 return (B_FALSE); /* bad option buffer */ 8713 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 8714 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 8715 /* 8716 * Check to see if it's an all-bypass or all-zeroes 8717 * IPsec request. Don't bother loading IPsec if 8718 * the socket doesn't want to use it. (A good example 8719 * is a bypass request.) 8720 * 8721 * Basically, if any of the non-NEVER bits are set, 8722 * load IPsec. 8723 */ 8724 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 8725 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 8726 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 8727 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 8728 != 0) 8729 return (B_TRUE); 8730 } 8731 } 8732 return (B_FALSE); 8733 } 8734 8735 /* 8736 * If conn is is waiting for ipsec to finish loading, kick it. 8737 */ 8738 /* ARGSUSED */ 8739 static void 8740 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 8741 { 8742 t_scalar_t optreq_prim; 8743 mblk_t *mp; 8744 cred_t *cr; 8745 int err = 0; 8746 8747 /* 8748 * This function is called, after ipsec loading is complete. 8749 * Since IP checks exclusively and atomically (i.e it prevents 8750 * ipsec load from completing until ip_optcom_req completes) 8751 * whether ipsec load is complete, there cannot be a race with IP 8752 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 8753 */ 8754 mutex_enter(&connp->conn_lock); 8755 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 8756 ASSERT(connp->conn_ipsec_opt_mp != NULL); 8757 mp = connp->conn_ipsec_opt_mp; 8758 connp->conn_ipsec_opt_mp = NULL; 8759 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 8760 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 8761 mutex_exit(&connp->conn_lock); 8762 8763 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 8764 8765 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 8766 if (optreq_prim == T_OPTMGMT_REQ) { 8767 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8768 &ip_opt_obj); 8769 } else { 8770 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 8771 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8772 &ip_opt_obj); 8773 } 8774 if (err != EINPROGRESS) 8775 CONN_OPER_PENDING_DONE(connp); 8776 return; 8777 } 8778 mutex_exit(&connp->conn_lock); 8779 } 8780 8781 /* 8782 * Called from the ipsec_loader thread, outside any perimeter, to tell 8783 * ip qenable any of the queues waiting for the ipsec loader to 8784 * complete. 8785 * 8786 * Use ip_mi_lock to be safe here: all modifications of the mi lists 8787 * are done with this lock held, so it's guaranteed that none of the 8788 * links will change along the way. 8789 */ 8790 void 8791 ip_ipsec_load_complete() 8792 { 8793 ipcl_walk(conn_restart_ipsec_waiter, NULL); 8794 } 8795 8796 /* 8797 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 8798 * determines the grp on which it has to become exclusive, queues the mp 8799 * and sq draining restarts the optmgmt 8800 */ 8801 static boolean_t 8802 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 8803 { 8804 conn_t *connp; 8805 8806 /* 8807 * Take IPsec requests and treat them special. 8808 */ 8809 if (ipsec_opt_present(mp)) { 8810 /* First check if IPsec is loaded. */ 8811 mutex_enter(&ipsec_loader_lock); 8812 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 8813 mutex_exit(&ipsec_loader_lock); 8814 return (B_FALSE); 8815 } 8816 connp = Q_TO_CONN(q); 8817 mutex_enter(&connp->conn_lock); 8818 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 8819 8820 ASSERT(connp->conn_ipsec_opt_mp == NULL); 8821 connp->conn_ipsec_opt_mp = mp; 8822 mutex_exit(&connp->conn_lock); 8823 mutex_exit(&ipsec_loader_lock); 8824 8825 ipsec_loader_loadnow(); 8826 return (B_TRUE); 8827 } 8828 return (B_FALSE); 8829 } 8830 8831 /* 8832 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 8833 * all of them are copied to the conn_t. If the req is "zero", the policy is 8834 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 8835 * fields. 8836 * We keep only the latest setting of the policy and thus policy setting 8837 * is not incremental/cumulative. 8838 * 8839 * Requests to set policies with multiple alternative actions will 8840 * go through a different API. 8841 */ 8842 int 8843 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 8844 { 8845 uint_t ah_req = 0; 8846 uint_t esp_req = 0; 8847 uint_t se_req = 0; 8848 ipsec_selkey_t sel; 8849 ipsec_act_t *actp = NULL; 8850 uint_t nact; 8851 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 8852 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 8853 ipsec_policy_root_t *pr; 8854 ipsec_policy_head_t *ph; 8855 int fam; 8856 boolean_t is_pol_reset; 8857 int error = 0; 8858 8859 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 8860 8861 /* 8862 * The IP_SEC_OPT option does not allow variable length parameters, 8863 * hence a request cannot be NULL. 8864 */ 8865 if (req == NULL) 8866 return (EINVAL); 8867 8868 ah_req = req->ipsr_ah_req; 8869 esp_req = req->ipsr_esp_req; 8870 se_req = req->ipsr_self_encap_req; 8871 8872 /* 8873 * Are we dealing with a request to reset the policy (i.e. 8874 * zero requests). 8875 */ 8876 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 8877 (esp_req & REQ_MASK) == 0 && 8878 (se_req & REQ_MASK) == 0); 8879 8880 if (!is_pol_reset) { 8881 /* 8882 * If we couldn't load IPsec, fail with "protocol 8883 * not supported". 8884 * IPsec may not have been loaded for a request with zero 8885 * policies, so we don't fail in this case. 8886 */ 8887 mutex_enter(&ipsec_loader_lock); 8888 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 8889 mutex_exit(&ipsec_loader_lock); 8890 return (EPROTONOSUPPORT); 8891 } 8892 mutex_exit(&ipsec_loader_lock); 8893 8894 /* 8895 * Test for valid requests. Invalid algorithms 8896 * need to be tested by IPSEC code because new 8897 * algorithms can be added dynamically. 8898 */ 8899 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8900 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8901 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 8902 return (EINVAL); 8903 } 8904 8905 /* 8906 * Only privileged users can issue these 8907 * requests. 8908 */ 8909 if (((ah_req & IPSEC_PREF_NEVER) || 8910 (esp_req & IPSEC_PREF_NEVER) || 8911 (se_req & IPSEC_PREF_NEVER)) && 8912 secpolicy_net_config(cr, B_FALSE) != 0) { 8913 return (EPERM); 8914 } 8915 8916 /* 8917 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 8918 * are mutually exclusive. 8919 */ 8920 if (((ah_req & REQ_MASK) == REQ_MASK) || 8921 ((esp_req & REQ_MASK) == REQ_MASK) || 8922 ((se_req & REQ_MASK) == REQ_MASK)) { 8923 /* Both of them are set */ 8924 return (EINVAL); 8925 } 8926 } 8927 8928 mutex_enter(&connp->conn_lock); 8929 8930 /* 8931 * If we have already cached policies in ip_bind_connected*(), don't 8932 * let them change now. We cache policies for connections 8933 * whose src,dst [addr, port] is known. The exception to this is 8934 * tunnels. Tunnels are allowed to change policies after having 8935 * become fully bound. 8936 */ 8937 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 8938 mutex_exit(&connp->conn_lock); 8939 return (EINVAL); 8940 } 8941 8942 /* 8943 * We have a zero policies, reset the connection policy if already 8944 * set. This will cause the connection to inherit the 8945 * global policy, if any. 8946 */ 8947 if (is_pol_reset) { 8948 if (connp->conn_policy != NULL) { 8949 IPPH_REFRELE(connp->conn_policy); 8950 connp->conn_policy = NULL; 8951 } 8952 connp->conn_flags &= ~IPCL_CHECK_POLICY; 8953 connp->conn_in_enforce_policy = B_FALSE; 8954 connp->conn_out_enforce_policy = B_FALSE; 8955 mutex_exit(&connp->conn_lock); 8956 return (0); 8957 } 8958 8959 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 8960 if (ph == NULL) 8961 goto enomem; 8962 8963 ipsec_actvec_from_req(req, &actp, &nact); 8964 if (actp == NULL) 8965 goto enomem; 8966 8967 /* 8968 * Always allocate IPv4 policy entries, since they can also 8969 * apply to ipv6 sockets being used in ipv4-compat mode. 8970 */ 8971 bzero(&sel, sizeof (sel)); 8972 sel.ipsl_valid = IPSL_IPV4; 8973 8974 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 8975 if (pin4 == NULL) 8976 goto enomem; 8977 8978 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 8979 if (pout4 == NULL) 8980 goto enomem; 8981 8982 if (connp->conn_pkt_isv6) { 8983 /* 8984 * We're looking at a v6 socket, also allocate the 8985 * v6-specific entries... 8986 */ 8987 sel.ipsl_valid = IPSL_IPV6; 8988 pin6 = ipsec_policy_create(&sel, actp, nact, 8989 IPSEC_PRIO_SOCKET); 8990 if (pin6 == NULL) 8991 goto enomem; 8992 8993 pout6 = ipsec_policy_create(&sel, actp, nact, 8994 IPSEC_PRIO_SOCKET); 8995 if (pout6 == NULL) 8996 goto enomem; 8997 8998 /* 8999 * .. and file them away in the right place. 9000 */ 9001 fam = IPSEC_AF_V6; 9002 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9003 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9004 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9005 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9006 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9007 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9008 } 9009 9010 ipsec_actvec_free(actp, nact); 9011 9012 /* 9013 * File the v4 policies. 9014 */ 9015 fam = IPSEC_AF_V4; 9016 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9017 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 9018 ipsec_insert_always(&ph->iph_rulebyid, pin4); 9019 9020 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9021 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 9022 ipsec_insert_always(&ph->iph_rulebyid, pout4); 9023 9024 /* 9025 * If the requests need security, set enforce_policy. 9026 * If the requests are IPSEC_PREF_NEVER, one should 9027 * still set conn_out_enforce_policy so that an ipsec_out 9028 * gets attached in ip_wput. This is needed so that 9029 * for connections that we don't cache policy in ip_bind, 9030 * if global policy matches in ip_wput_attach_policy, we 9031 * don't wrongly inherit global policy. Similarly, we need 9032 * to set conn_in_enforce_policy also so that we don't verify 9033 * policy wrongly. 9034 */ 9035 if ((ah_req & REQ_MASK) != 0 || 9036 (esp_req & REQ_MASK) != 0 || 9037 (se_req & REQ_MASK) != 0) { 9038 connp->conn_in_enforce_policy = B_TRUE; 9039 connp->conn_out_enforce_policy = B_TRUE; 9040 connp->conn_flags |= IPCL_CHECK_POLICY; 9041 } 9042 9043 /* 9044 * Tunnels are allowed to set policy after having been fully bound. 9045 * If that's the case, cache policy here. 9046 */ 9047 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 9048 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 9049 9050 mutex_exit(&connp->conn_lock); 9051 return (error); 9052 #undef REQ_MASK 9053 9054 /* 9055 * Common memory-allocation-failure exit path. 9056 */ 9057 enomem: 9058 mutex_exit(&connp->conn_lock); 9059 if (actp != NULL) 9060 ipsec_actvec_free(actp, nact); 9061 if (pin4 != NULL) 9062 IPPOL_REFRELE(pin4); 9063 if (pout4 != NULL) 9064 IPPOL_REFRELE(pout4); 9065 if (pin6 != NULL) 9066 IPPOL_REFRELE(pin6); 9067 if (pout6 != NULL) 9068 IPPOL_REFRELE(pout6); 9069 return (ENOMEM); 9070 } 9071 9072 /* 9073 * Only for options that pass in an IP addr. Currently only V4 options 9074 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 9075 * So this function assumes level is IPPROTO_IP 9076 */ 9077 int 9078 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 9079 mblk_t *first_mp) 9080 { 9081 ipif_t *ipif = NULL; 9082 int error; 9083 ill_t *ill; 9084 9085 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 9086 9087 if (addr != INADDR_ANY || checkonly) { 9088 ASSERT(connp != NULL); 9089 ipif = ipif_lookup_addr(addr, NULL, connp->conn_zoneid, 9090 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, &error); 9091 if (ipif == NULL) { 9092 if (error == EINPROGRESS) 9093 return (error); 9094 else if (option == IP_MULTICAST_IF) 9095 return (EHOSTUNREACH); 9096 else 9097 return (EINVAL); 9098 } else if (checkonly) { 9099 if (option == IP_MULTICAST_IF) { 9100 ill = ipif->ipif_ill; 9101 /* not supported by the virtual network iface */ 9102 if (IS_VNI(ill)) { 9103 ipif_refrele(ipif); 9104 return (EINVAL); 9105 } 9106 } 9107 ipif_refrele(ipif); 9108 return (0); 9109 } 9110 ill = ipif->ipif_ill; 9111 mutex_enter(&connp->conn_lock); 9112 mutex_enter(&ill->ill_lock); 9113 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9114 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9115 mutex_exit(&ill->ill_lock); 9116 mutex_exit(&connp->conn_lock); 9117 ipif_refrele(ipif); 9118 return (option == IP_MULTICAST_IF ? 9119 EHOSTUNREACH : EINVAL); 9120 } 9121 } else { 9122 mutex_enter(&connp->conn_lock); 9123 } 9124 9125 /* None of the options below are supported on the VNI */ 9126 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9127 mutex_exit(&ill->ill_lock); 9128 mutex_exit(&connp->conn_lock); 9129 ipif_refrele(ipif); 9130 return (EINVAL); 9131 } 9132 9133 switch (option) { 9134 case IP_DONTFAILOVER_IF: 9135 /* 9136 * This option is used by in.mpathd to ensure 9137 * that IPMP probe packets only go out on the 9138 * test interfaces. in.mpathd sets this option 9139 * on the non-failover interfaces. 9140 * For backward compatibility, this option 9141 * implicitly sets IP_MULTICAST_IF, as used 9142 * be done in bind(), so that ip_wput gets 9143 * this ipif to send mcast packets. 9144 */ 9145 if (ipif != NULL) { 9146 ASSERT(addr != INADDR_ANY); 9147 connp->conn_nofailover_ill = ipif->ipif_ill; 9148 connp->conn_multicast_ipif = ipif; 9149 } else { 9150 ASSERT(addr == INADDR_ANY); 9151 connp->conn_nofailover_ill = NULL; 9152 connp->conn_multicast_ipif = NULL; 9153 } 9154 break; 9155 9156 case IP_MULTICAST_IF: 9157 connp->conn_multicast_ipif = ipif; 9158 break; 9159 } 9160 9161 if (ipif != NULL) { 9162 mutex_exit(&ill->ill_lock); 9163 mutex_exit(&connp->conn_lock); 9164 ipif_refrele(ipif); 9165 return (0); 9166 } 9167 mutex_exit(&connp->conn_lock); 9168 /* We succeded in cleared the option */ 9169 return (0); 9170 } 9171 9172 /* 9173 * For options that pass in an ifindex specifying the ill. V6 options always 9174 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9175 */ 9176 int 9177 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9178 int level, int option, mblk_t *first_mp) 9179 { 9180 ill_t *ill = NULL; 9181 int error = 0; 9182 9183 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9184 if (ifindex != 0) { 9185 ASSERT(connp != NULL); 9186 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9187 first_mp, ip_restart_optmgmt, &error); 9188 if (ill != NULL) { 9189 if (checkonly) { 9190 /* not supported by the virtual network iface */ 9191 if (IS_VNI(ill)) { 9192 ill_refrele(ill); 9193 return (EINVAL); 9194 } 9195 ill_refrele(ill); 9196 return (0); 9197 } 9198 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9199 0, NULL)) { 9200 ill_refrele(ill); 9201 ill = NULL; 9202 mutex_enter(&connp->conn_lock); 9203 goto setit; 9204 } 9205 mutex_enter(&connp->conn_lock); 9206 mutex_enter(&ill->ill_lock); 9207 if (ill->ill_state_flags & ILL_CONDEMNED) { 9208 mutex_exit(&ill->ill_lock); 9209 mutex_exit(&connp->conn_lock); 9210 ill_refrele(ill); 9211 ill = NULL; 9212 mutex_enter(&connp->conn_lock); 9213 } 9214 goto setit; 9215 } else if (error == EINPROGRESS) { 9216 return (error); 9217 } else { 9218 error = 0; 9219 } 9220 } 9221 mutex_enter(&connp->conn_lock); 9222 setit: 9223 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9224 9225 /* 9226 * The options below assume that the ILL (if any) transmits and/or 9227 * receives traffic. Neither of which is true for the virtual network 9228 * interface, so fail setting these on a VNI. 9229 */ 9230 if (IS_VNI(ill)) { 9231 ASSERT(ill != NULL); 9232 mutex_exit(&ill->ill_lock); 9233 mutex_exit(&connp->conn_lock); 9234 ill_refrele(ill); 9235 return (EINVAL); 9236 } 9237 9238 if (level == IPPROTO_IP) { 9239 switch (option) { 9240 case IP_BOUND_IF: 9241 connp->conn_incoming_ill = ill; 9242 connp->conn_outgoing_ill = ill; 9243 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9244 0 : ifindex; 9245 break; 9246 9247 case IP_XMIT_IF: 9248 /* 9249 * Similar to IP_BOUND_IF, but this only 9250 * determines the outgoing interface for 9251 * unicast packets. Also no IRE_CACHE entry 9252 * is added for the destination of the 9253 * outgoing packets. This feature is needed 9254 * for mobile IP. 9255 */ 9256 connp->conn_xmit_if_ill = ill; 9257 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9258 0 : ifindex; 9259 break; 9260 9261 case IP_MULTICAST_IF: 9262 /* 9263 * This option is an internal special. The socket 9264 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9265 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9266 * specifies an ifindex and we try first on V6 ill's. 9267 * If we don't find one, we they try using on v4 ill's 9268 * intenally and we come here. 9269 */ 9270 if (!checkonly && ill != NULL) { 9271 ipif_t *ipif; 9272 ipif = ill->ill_ipif; 9273 9274 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9275 mutex_exit(&ill->ill_lock); 9276 mutex_exit(&connp->conn_lock); 9277 ill_refrele(ill); 9278 ill = NULL; 9279 mutex_enter(&connp->conn_lock); 9280 } else { 9281 connp->conn_multicast_ipif = ipif; 9282 } 9283 } 9284 break; 9285 } 9286 } else { 9287 switch (option) { 9288 case IPV6_BOUND_IF: 9289 connp->conn_incoming_ill = ill; 9290 connp->conn_outgoing_ill = ill; 9291 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9292 0 : ifindex; 9293 break; 9294 9295 case IPV6_BOUND_PIF: 9296 /* 9297 * Limit all transmit to this ill. 9298 * Unlike IPV6_BOUND_IF, using this option 9299 * prevents load spreading and failover from 9300 * happening when the interface is part of the 9301 * group. That's why we don't need to remember 9302 * the ifindex in orig_bound_ifindex as in 9303 * IPV6_BOUND_IF. 9304 */ 9305 connp->conn_outgoing_pill = ill; 9306 break; 9307 9308 case IPV6_DONTFAILOVER_IF: 9309 /* 9310 * This option is used by in.mpathd to ensure 9311 * that IPMP probe packets only go out on the 9312 * test interfaces. in.mpathd sets this option 9313 * on the non-failover interfaces. 9314 */ 9315 connp->conn_nofailover_ill = ill; 9316 /* 9317 * For backward compatibility, this option 9318 * implicitly sets ip_multicast_ill as used in 9319 * IP_MULTICAST_IF so that ip_wput gets 9320 * this ipif to send mcast packets. 9321 */ 9322 connp->conn_multicast_ill = ill; 9323 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9324 0 : ifindex; 9325 break; 9326 9327 case IPV6_MULTICAST_IF: 9328 /* 9329 * Set conn_multicast_ill to be the IPv6 ill. 9330 * Set conn_multicast_ipif to be an IPv4 ipif 9331 * for ifindex to make IPv4 mapped addresses 9332 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9333 * Even if no IPv6 ill exists for the ifindex 9334 * we need to check for an IPv4 ifindex in order 9335 * for this to work with mapped addresses. In that 9336 * case only set conn_multicast_ipif. 9337 */ 9338 if (!checkonly) { 9339 if (ifindex == 0) { 9340 connp->conn_multicast_ill = NULL; 9341 connp->conn_orig_multicast_ifindex = 0; 9342 connp->conn_multicast_ipif = NULL; 9343 } else if (ill != NULL) { 9344 connp->conn_multicast_ill = ill; 9345 connp->conn_orig_multicast_ifindex = 9346 ifindex; 9347 } 9348 } 9349 break; 9350 } 9351 } 9352 9353 if (ill != NULL) { 9354 mutex_exit(&ill->ill_lock); 9355 mutex_exit(&connp->conn_lock); 9356 ill_refrele(ill); 9357 return (0); 9358 } 9359 mutex_exit(&connp->conn_lock); 9360 /* 9361 * We succeeded in clearing the option (ifindex == 0) or failed to 9362 * locate the ill and could not set the option (ifindex != 0) 9363 */ 9364 return (ifindex == 0 ? 0 : EINVAL); 9365 } 9366 9367 /* This routine sets socket options. */ 9368 /* ARGSUSED */ 9369 int 9370 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9371 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9372 void *dummy, cred_t *cr, mblk_t *first_mp) 9373 { 9374 int *i1 = (int *)invalp; 9375 conn_t *connp = Q_TO_CONN(q); 9376 int error = 0; 9377 boolean_t checkonly; 9378 ire_t *ire; 9379 boolean_t found; 9380 9381 switch (optset_context) { 9382 9383 case SETFN_OPTCOM_CHECKONLY: 9384 checkonly = B_TRUE; 9385 /* 9386 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9387 * inlen != 0 implies value supplied and 9388 * we have to "pretend" to set it. 9389 * inlen == 0 implies that there is no 9390 * value part in T_CHECK request and just validation 9391 * done elsewhere should be enough, we just return here. 9392 */ 9393 if (inlen == 0) { 9394 *outlenp = 0; 9395 return (0); 9396 } 9397 break; 9398 case SETFN_OPTCOM_NEGOTIATE: 9399 case SETFN_UD_NEGOTIATE: 9400 case SETFN_CONN_NEGOTIATE: 9401 checkonly = B_FALSE; 9402 break; 9403 default: 9404 /* 9405 * We should never get here 9406 */ 9407 *outlenp = 0; 9408 return (EINVAL); 9409 } 9410 9411 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9412 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9413 9414 /* 9415 * For fixed length options, no sanity check 9416 * of passed in length is done. It is assumed *_optcom_req() 9417 * routines do the right thing. 9418 */ 9419 9420 switch (level) { 9421 case SOL_SOCKET: 9422 /* 9423 * conn_lock protects the bitfields, and is used to 9424 * set the fields atomically. 9425 */ 9426 switch (name) { 9427 case SO_BROADCAST: 9428 if (!checkonly) { 9429 /* TODO: use value someplace? */ 9430 mutex_enter(&connp->conn_lock); 9431 connp->conn_broadcast = *i1 ? 1 : 0; 9432 mutex_exit(&connp->conn_lock); 9433 } 9434 break; /* goto sizeof (int) option return */ 9435 case SO_USELOOPBACK: 9436 if (!checkonly) { 9437 /* TODO: use value someplace? */ 9438 mutex_enter(&connp->conn_lock); 9439 connp->conn_loopback = *i1 ? 1 : 0; 9440 mutex_exit(&connp->conn_lock); 9441 } 9442 break; /* goto sizeof (int) option return */ 9443 case SO_DONTROUTE: 9444 if (!checkonly) { 9445 mutex_enter(&connp->conn_lock); 9446 connp->conn_dontroute = *i1 ? 1 : 0; 9447 mutex_exit(&connp->conn_lock); 9448 } 9449 break; /* goto sizeof (int) option return */ 9450 case SO_REUSEADDR: 9451 if (!checkonly) { 9452 mutex_enter(&connp->conn_lock); 9453 connp->conn_reuseaddr = *i1 ? 1 : 0; 9454 mutex_exit(&connp->conn_lock); 9455 } 9456 break; /* goto sizeof (int) option return */ 9457 case SO_PROTOTYPE: 9458 if (!checkonly) { 9459 mutex_enter(&connp->conn_lock); 9460 connp->conn_proto = *i1; 9461 mutex_exit(&connp->conn_lock); 9462 } 9463 break; /* goto sizeof (int) option return */ 9464 default: 9465 /* 9466 * "soft" error (negative) 9467 * option not handled at this level 9468 * Note: Do not modify *outlenp 9469 */ 9470 return (-EINVAL); 9471 } 9472 break; 9473 case IPPROTO_IP: 9474 switch (name) { 9475 case IP_MULTICAST_IF: 9476 case IP_DONTFAILOVER_IF: { 9477 ipaddr_t addr = *i1; 9478 9479 error = ip_opt_set_ipif(connp, addr, checkonly, name, 9480 first_mp); 9481 if (error != 0) 9482 return (error); 9483 break; /* goto sizeof (int) option return */ 9484 } 9485 9486 case IP_MULTICAST_TTL: 9487 /* Recorded in transport above IP */ 9488 *outvalp = *invalp; 9489 *outlenp = sizeof (uchar_t); 9490 return (0); 9491 case IP_MULTICAST_LOOP: 9492 if (!checkonly) { 9493 mutex_enter(&connp->conn_lock); 9494 connp->conn_multicast_loop = *invalp ? 1 : 0; 9495 mutex_exit(&connp->conn_lock); 9496 } 9497 *outvalp = *invalp; 9498 *outlenp = sizeof (uchar_t); 9499 return (0); 9500 case IP_ADD_MEMBERSHIP: 9501 case MCAST_JOIN_GROUP: 9502 case IP_DROP_MEMBERSHIP: 9503 case MCAST_LEAVE_GROUP: { 9504 struct ip_mreq *mreqp; 9505 struct group_req *greqp; 9506 ire_t *ire; 9507 boolean_t done = B_FALSE; 9508 ipaddr_t group, ifaddr; 9509 struct sockaddr_in *sin; 9510 uint32_t *ifindexp; 9511 boolean_t mcast_opt = B_TRUE; 9512 mcast_record_t fmode; 9513 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9514 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9515 9516 switch (name) { 9517 case IP_ADD_MEMBERSHIP: 9518 mcast_opt = B_FALSE; 9519 /* FALLTHRU */ 9520 case MCAST_JOIN_GROUP: 9521 fmode = MODE_IS_EXCLUDE; 9522 optfn = ip_opt_add_group; 9523 break; 9524 9525 case IP_DROP_MEMBERSHIP: 9526 mcast_opt = B_FALSE; 9527 /* FALLTHRU */ 9528 case MCAST_LEAVE_GROUP: 9529 fmode = MODE_IS_INCLUDE; 9530 optfn = ip_opt_delete_group; 9531 break; 9532 } 9533 9534 if (mcast_opt) { 9535 greqp = (struct group_req *)i1; 9536 sin = (struct sockaddr_in *)&greqp->gr_group; 9537 if (sin->sin_family != AF_INET) { 9538 *outlenp = 0; 9539 return (ENOPROTOOPT); 9540 } 9541 group = (ipaddr_t)sin->sin_addr.s_addr; 9542 ifaddr = INADDR_ANY; 9543 ifindexp = &greqp->gr_interface; 9544 } else { 9545 mreqp = (struct ip_mreq *)i1; 9546 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 9547 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 9548 ifindexp = NULL; 9549 } 9550 9551 /* 9552 * In the multirouting case, we need to replicate 9553 * the request on all interfaces that will take part 9554 * in replication. We do so because multirouting is 9555 * reflective, thus we will probably receive multi- 9556 * casts on those interfaces. 9557 * The ip_multirt_apply_membership() succeeds if the 9558 * operation succeeds on at least one interface. 9559 */ 9560 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 9561 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9562 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9563 if (ire != NULL) { 9564 if (ire->ire_flags & RTF_MULTIRT) { 9565 error = ip_multirt_apply_membership( 9566 optfn, ire, connp, checkonly, group, 9567 fmode, INADDR_ANY, first_mp); 9568 done = B_TRUE; 9569 } 9570 ire_refrele(ire); 9571 } 9572 if (!done) { 9573 error = optfn(connp, checkonly, group, ifaddr, 9574 ifindexp, fmode, INADDR_ANY, first_mp); 9575 } 9576 if (error) { 9577 /* 9578 * EINPROGRESS is a soft error, needs retry 9579 * so don't make *outlenp zero. 9580 */ 9581 if (error != EINPROGRESS) 9582 *outlenp = 0; 9583 return (error); 9584 } 9585 /* OK return - copy input buffer into output buffer */ 9586 if (invalp != outvalp) { 9587 /* don't trust bcopy for identical src/dst */ 9588 bcopy(invalp, outvalp, inlen); 9589 } 9590 *outlenp = inlen; 9591 return (0); 9592 } 9593 case IP_BLOCK_SOURCE: 9594 case IP_UNBLOCK_SOURCE: 9595 case IP_ADD_SOURCE_MEMBERSHIP: 9596 case IP_DROP_SOURCE_MEMBERSHIP: 9597 case MCAST_BLOCK_SOURCE: 9598 case MCAST_UNBLOCK_SOURCE: 9599 case MCAST_JOIN_SOURCE_GROUP: 9600 case MCAST_LEAVE_SOURCE_GROUP: { 9601 struct ip_mreq_source *imreqp; 9602 struct group_source_req *gsreqp; 9603 in_addr_t grp, src, ifaddr = INADDR_ANY; 9604 uint32_t ifindex = 0; 9605 mcast_record_t fmode; 9606 struct sockaddr_in *sin; 9607 ire_t *ire; 9608 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 9609 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9610 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9611 9612 switch (name) { 9613 case IP_BLOCK_SOURCE: 9614 mcast_opt = B_FALSE; 9615 /* FALLTHRU */ 9616 case MCAST_BLOCK_SOURCE: 9617 fmode = MODE_IS_EXCLUDE; 9618 optfn = ip_opt_add_group; 9619 break; 9620 9621 case IP_UNBLOCK_SOURCE: 9622 mcast_opt = B_FALSE; 9623 /* FALLTHRU */ 9624 case MCAST_UNBLOCK_SOURCE: 9625 fmode = MODE_IS_EXCLUDE; 9626 optfn = ip_opt_delete_group; 9627 break; 9628 9629 case IP_ADD_SOURCE_MEMBERSHIP: 9630 mcast_opt = B_FALSE; 9631 /* FALLTHRU */ 9632 case MCAST_JOIN_SOURCE_GROUP: 9633 fmode = MODE_IS_INCLUDE; 9634 optfn = ip_opt_add_group; 9635 break; 9636 9637 case IP_DROP_SOURCE_MEMBERSHIP: 9638 mcast_opt = B_FALSE; 9639 /* FALLTHRU */ 9640 case MCAST_LEAVE_SOURCE_GROUP: 9641 fmode = MODE_IS_INCLUDE; 9642 optfn = ip_opt_delete_group; 9643 break; 9644 } 9645 9646 if (mcast_opt) { 9647 gsreqp = (struct group_source_req *)i1; 9648 if (gsreqp->gsr_group.ss_family != AF_INET) { 9649 *outlenp = 0; 9650 return (ENOPROTOOPT); 9651 } 9652 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 9653 grp = (ipaddr_t)sin->sin_addr.s_addr; 9654 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 9655 src = (ipaddr_t)sin->sin_addr.s_addr; 9656 ifindex = gsreqp->gsr_interface; 9657 } else { 9658 imreqp = (struct ip_mreq_source *)i1; 9659 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 9660 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 9661 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 9662 } 9663 9664 /* 9665 * In the multirouting case, we need to replicate 9666 * the request as noted in the mcast cases above. 9667 */ 9668 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 9669 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9670 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9671 if (ire != NULL) { 9672 if (ire->ire_flags & RTF_MULTIRT) { 9673 error = ip_multirt_apply_membership( 9674 optfn, ire, connp, checkonly, grp, 9675 fmode, src, first_mp); 9676 done = B_TRUE; 9677 } 9678 ire_refrele(ire); 9679 } 9680 if (!done) { 9681 error = optfn(connp, checkonly, grp, ifaddr, 9682 &ifindex, fmode, src, first_mp); 9683 } 9684 if (error != 0) { 9685 /* 9686 * EINPROGRESS is a soft error, needs retry 9687 * so don't make *outlenp zero. 9688 */ 9689 if (error != EINPROGRESS) 9690 *outlenp = 0; 9691 return (error); 9692 } 9693 /* OK return - copy input buffer into output buffer */ 9694 if (invalp != outvalp) { 9695 bcopy(invalp, outvalp, inlen); 9696 } 9697 *outlenp = inlen; 9698 return (0); 9699 } 9700 case IP_SEC_OPT: 9701 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 9702 if (error != 0) { 9703 *outlenp = 0; 9704 return (error); 9705 } 9706 break; 9707 case IP_HDRINCL: 9708 case IP_OPTIONS: 9709 case T_IP_OPTIONS: 9710 case IP_TOS: 9711 case T_IP_TOS: 9712 case IP_TTL: 9713 case IP_RECVDSTADDR: 9714 case IP_RECVOPTS: 9715 /* OK return - copy input buffer into output buffer */ 9716 if (invalp != outvalp) { 9717 /* don't trust bcopy for identical src/dst */ 9718 bcopy(invalp, outvalp, inlen); 9719 } 9720 *outlenp = inlen; 9721 return (0); 9722 case IP_RECVIF: 9723 /* Retrieve the inbound interface index */ 9724 if (!checkonly) { 9725 mutex_enter(&connp->conn_lock); 9726 connp->conn_recvif = *i1 ? 1 : 0; 9727 mutex_exit(&connp->conn_lock); 9728 } 9729 break; /* goto sizeof (int) option return */ 9730 case IP_RECVSLLA: 9731 /* Retrieve the source link layer address */ 9732 if (!checkonly) { 9733 mutex_enter(&connp->conn_lock); 9734 connp->conn_recvslla = *i1 ? 1 : 0; 9735 mutex_exit(&connp->conn_lock); 9736 } 9737 break; /* goto sizeof (int) option return */ 9738 case MRT_INIT: 9739 case MRT_DONE: 9740 case MRT_ADD_VIF: 9741 case MRT_DEL_VIF: 9742 case MRT_ADD_MFC: 9743 case MRT_DEL_MFC: 9744 case MRT_ASSERT: 9745 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 9746 *outlenp = 0; 9747 return (error); 9748 } 9749 error = ip_mrouter_set((int)name, q, checkonly, 9750 (uchar_t *)invalp, inlen, first_mp); 9751 if (error) { 9752 *outlenp = 0; 9753 return (error); 9754 } 9755 /* OK return - copy input buffer into output buffer */ 9756 if (invalp != outvalp) { 9757 /* don't trust bcopy for identical src/dst */ 9758 bcopy(invalp, outvalp, inlen); 9759 } 9760 *outlenp = inlen; 9761 return (0); 9762 case IP_BOUND_IF: 9763 case IP_XMIT_IF: 9764 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9765 level, name, first_mp); 9766 if (error != 0) 9767 return (error); 9768 break; /* goto sizeof (int) option return */ 9769 9770 case IP_UNSPEC_SRC: 9771 /* Allow sending with a zero source address */ 9772 if (!checkonly) { 9773 mutex_enter(&connp->conn_lock); 9774 connp->conn_unspec_src = *i1 ? 1 : 0; 9775 mutex_exit(&connp->conn_lock); 9776 } 9777 break; /* goto sizeof (int) option return */ 9778 default: 9779 /* 9780 * "soft" error (negative) 9781 * option not handled at this level 9782 * Note: Do not modify *outlenp 9783 */ 9784 return (-EINVAL); 9785 } 9786 break; 9787 case IPPROTO_IPV6: 9788 switch (name) { 9789 case IPV6_BOUND_IF: 9790 case IPV6_BOUND_PIF: 9791 case IPV6_DONTFAILOVER_IF: 9792 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9793 level, name, first_mp); 9794 if (error != 0) 9795 return (error); 9796 break; /* goto sizeof (int) option return */ 9797 9798 case IPV6_MULTICAST_IF: 9799 /* 9800 * The only possible errors are EINPROGRESS and 9801 * EINVAL. EINPROGRESS will be restarted and is not 9802 * a hard error. We call this option on both V4 and V6 9803 * If both return EINVAL, then this call returns 9804 * EINVAL. If at least one of them succeeds we 9805 * return success. 9806 */ 9807 found = B_FALSE; 9808 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9809 level, name, first_mp); 9810 if (error == EINPROGRESS) 9811 return (error); 9812 if (error == 0) 9813 found = B_TRUE; 9814 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9815 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 9816 if (error == 0) 9817 found = B_TRUE; 9818 if (!found) 9819 return (error); 9820 break; /* goto sizeof (int) option return */ 9821 9822 case IPV6_MULTICAST_HOPS: 9823 /* Recorded in transport above IP */ 9824 break; /* goto sizeof (int) option return */ 9825 case IPV6_MULTICAST_LOOP: 9826 if (!checkonly) { 9827 mutex_enter(&connp->conn_lock); 9828 connp->conn_multicast_loop = *i1; 9829 mutex_exit(&connp->conn_lock); 9830 } 9831 break; /* goto sizeof (int) option return */ 9832 case IPV6_JOIN_GROUP: 9833 case MCAST_JOIN_GROUP: 9834 case IPV6_LEAVE_GROUP: 9835 case MCAST_LEAVE_GROUP: { 9836 struct ipv6_mreq *ip_mreqp; 9837 struct group_req *greqp; 9838 ire_t *ire; 9839 boolean_t done = B_FALSE; 9840 in6_addr_t groupv6; 9841 uint32_t ifindex; 9842 boolean_t mcast_opt = B_TRUE; 9843 mcast_record_t fmode; 9844 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9845 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9846 9847 switch (name) { 9848 case IPV6_JOIN_GROUP: 9849 mcast_opt = B_FALSE; 9850 /* FALLTHRU */ 9851 case MCAST_JOIN_GROUP: 9852 fmode = MODE_IS_EXCLUDE; 9853 optfn = ip_opt_add_group_v6; 9854 break; 9855 9856 case IPV6_LEAVE_GROUP: 9857 mcast_opt = B_FALSE; 9858 /* FALLTHRU */ 9859 case MCAST_LEAVE_GROUP: 9860 fmode = MODE_IS_INCLUDE; 9861 optfn = ip_opt_delete_group_v6; 9862 break; 9863 } 9864 9865 if (mcast_opt) { 9866 struct sockaddr_in *sin; 9867 struct sockaddr_in6 *sin6; 9868 greqp = (struct group_req *)i1; 9869 if (greqp->gr_group.ss_family == AF_INET) { 9870 sin = (struct sockaddr_in *) 9871 &(greqp->gr_group); 9872 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 9873 &groupv6); 9874 } else { 9875 sin6 = (struct sockaddr_in6 *) 9876 &(greqp->gr_group); 9877 groupv6 = sin6->sin6_addr; 9878 } 9879 ifindex = greqp->gr_interface; 9880 } else { 9881 ip_mreqp = (struct ipv6_mreq *)i1; 9882 groupv6 = ip_mreqp->ipv6mr_multiaddr; 9883 ifindex = ip_mreqp->ipv6mr_interface; 9884 } 9885 /* 9886 * In the multirouting case, we need to replicate 9887 * the request on all interfaces that will take part 9888 * in replication. We do so because multirouting is 9889 * reflective, thus we will probably receive multi- 9890 * casts on those interfaces. 9891 * The ip_multirt_apply_membership_v6() succeeds if 9892 * the operation succeeds on at least one interface. 9893 */ 9894 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 9895 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9896 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9897 if (ire != NULL) { 9898 if (ire->ire_flags & RTF_MULTIRT) { 9899 error = ip_multirt_apply_membership_v6( 9900 optfn, ire, connp, checkonly, 9901 &groupv6, fmode, &ipv6_all_zeros, 9902 first_mp); 9903 done = B_TRUE; 9904 } 9905 ire_refrele(ire); 9906 } 9907 if (!done) { 9908 error = optfn(connp, checkonly, &groupv6, 9909 ifindex, fmode, &ipv6_all_zeros, first_mp); 9910 } 9911 if (error) { 9912 /* 9913 * EINPROGRESS is a soft error, needs retry 9914 * so don't make *outlenp zero. 9915 */ 9916 if (error != EINPROGRESS) 9917 *outlenp = 0; 9918 return (error); 9919 } 9920 /* OK return - copy input buffer into output buffer */ 9921 if (invalp != outvalp) { 9922 /* don't trust bcopy for identical src/dst */ 9923 bcopy(invalp, outvalp, inlen); 9924 } 9925 *outlenp = inlen; 9926 return (0); 9927 } 9928 case MCAST_BLOCK_SOURCE: 9929 case MCAST_UNBLOCK_SOURCE: 9930 case MCAST_JOIN_SOURCE_GROUP: 9931 case MCAST_LEAVE_SOURCE_GROUP: { 9932 struct group_source_req *gsreqp; 9933 in6_addr_t v6grp, v6src; 9934 uint32_t ifindex; 9935 mcast_record_t fmode; 9936 ire_t *ire; 9937 boolean_t done = B_FALSE; 9938 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9939 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9940 9941 switch (name) { 9942 case MCAST_BLOCK_SOURCE: 9943 fmode = MODE_IS_EXCLUDE; 9944 optfn = ip_opt_add_group_v6; 9945 break; 9946 case MCAST_UNBLOCK_SOURCE: 9947 fmode = MODE_IS_EXCLUDE; 9948 optfn = ip_opt_delete_group_v6; 9949 break; 9950 case MCAST_JOIN_SOURCE_GROUP: 9951 fmode = MODE_IS_INCLUDE; 9952 optfn = ip_opt_add_group_v6; 9953 break; 9954 case MCAST_LEAVE_SOURCE_GROUP: 9955 fmode = MODE_IS_INCLUDE; 9956 optfn = ip_opt_delete_group_v6; 9957 break; 9958 } 9959 9960 gsreqp = (struct group_source_req *)i1; 9961 ifindex = gsreqp->gsr_interface; 9962 if (gsreqp->gsr_group.ss_family == AF_INET) { 9963 struct sockaddr_in *s; 9964 s = (struct sockaddr_in *)&gsreqp->gsr_group; 9965 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 9966 s = (struct sockaddr_in *)&gsreqp->gsr_source; 9967 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 9968 } else { 9969 struct sockaddr_in6 *s6; 9970 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 9971 v6grp = s6->sin6_addr; 9972 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 9973 v6src = s6->sin6_addr; 9974 } 9975 9976 /* 9977 * In the multirouting case, we need to replicate 9978 * the request as noted in the mcast cases above. 9979 */ 9980 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 9981 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9982 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9983 if (ire != NULL) { 9984 if (ire->ire_flags & RTF_MULTIRT) { 9985 error = ip_multirt_apply_membership_v6( 9986 optfn, ire, connp, checkonly, 9987 &v6grp, fmode, &v6src, first_mp); 9988 done = B_TRUE; 9989 } 9990 ire_refrele(ire); 9991 } 9992 if (!done) { 9993 error = optfn(connp, checkonly, &v6grp, 9994 ifindex, fmode, &v6src, first_mp); 9995 } 9996 if (error != 0) { 9997 /* 9998 * EINPROGRESS is a soft error, needs retry 9999 * so don't make *outlenp zero. 10000 */ 10001 if (error != EINPROGRESS) 10002 *outlenp = 0; 10003 return (error); 10004 } 10005 /* OK return - copy input buffer into output buffer */ 10006 if (invalp != outvalp) { 10007 bcopy(invalp, outvalp, inlen); 10008 } 10009 *outlenp = inlen; 10010 return (0); 10011 } 10012 case IPV6_UNICAST_HOPS: 10013 /* Recorded in transport above IP */ 10014 break; /* goto sizeof (int) option return */ 10015 case IPV6_UNSPEC_SRC: 10016 /* Allow sending with a zero source address */ 10017 if (!checkonly) { 10018 mutex_enter(&connp->conn_lock); 10019 connp->conn_unspec_src = *i1 ? 1 : 0; 10020 mutex_exit(&connp->conn_lock); 10021 } 10022 break; /* goto sizeof (int) option return */ 10023 case IPV6_RECVPKTINFO: 10024 if (!checkonly) { 10025 mutex_enter(&connp->conn_lock); 10026 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 10027 mutex_exit(&connp->conn_lock); 10028 } 10029 break; /* goto sizeof (int) option return */ 10030 case IPV6_RECVTCLASS: 10031 if (!checkonly) { 10032 if (*i1 < 0 || *i1 > 1) { 10033 return (EINVAL); 10034 } 10035 mutex_enter(&connp->conn_lock); 10036 connp->conn_ipv6_recvtclass = *i1; 10037 mutex_exit(&connp->conn_lock); 10038 } 10039 break; 10040 case IPV6_RECVPATHMTU: 10041 if (!checkonly) { 10042 if (*i1 < 0 || *i1 > 1) { 10043 return (EINVAL); 10044 } 10045 mutex_enter(&connp->conn_lock); 10046 connp->conn_ipv6_recvpathmtu = *i1; 10047 mutex_exit(&connp->conn_lock); 10048 } 10049 break; 10050 case IPV6_RECVHOPLIMIT: 10051 if (!checkonly) { 10052 mutex_enter(&connp->conn_lock); 10053 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 10054 mutex_exit(&connp->conn_lock); 10055 } 10056 break; /* goto sizeof (int) option return */ 10057 case IPV6_RECVHOPOPTS: 10058 if (!checkonly) { 10059 mutex_enter(&connp->conn_lock); 10060 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 10061 mutex_exit(&connp->conn_lock); 10062 } 10063 break; /* goto sizeof (int) option return */ 10064 case IPV6_RECVDSTOPTS: 10065 if (!checkonly) { 10066 mutex_enter(&connp->conn_lock); 10067 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 10068 mutex_exit(&connp->conn_lock); 10069 } 10070 break; /* goto sizeof (int) option return */ 10071 case IPV6_RECVRTHDR: 10072 if (!checkonly) { 10073 mutex_enter(&connp->conn_lock); 10074 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 10075 mutex_exit(&connp->conn_lock); 10076 } 10077 break; /* goto sizeof (int) option return */ 10078 case IPV6_RECVRTHDRDSTOPTS: 10079 if (!checkonly) { 10080 mutex_enter(&connp->conn_lock); 10081 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 10082 mutex_exit(&connp->conn_lock); 10083 } 10084 break; /* goto sizeof (int) option return */ 10085 case IPV6_PKTINFO: 10086 if (inlen == 0) 10087 return (-EINVAL); /* clearing option */ 10088 error = ip6_set_pktinfo(cr, connp, 10089 (struct in6_pktinfo *)invalp, first_mp); 10090 if (error != 0) 10091 *outlenp = 0; 10092 else 10093 *outlenp = inlen; 10094 return (error); 10095 case IPV6_NEXTHOP: { 10096 struct sockaddr_in6 *sin6; 10097 10098 /* Verify that the nexthop is reachable */ 10099 if (inlen == 0) 10100 return (-EINVAL); /* clearing option */ 10101 10102 sin6 = (struct sockaddr_in6 *)invalp; 10103 ire = ire_route_lookup_v6(&sin6->sin6_addr, 10104 0, 0, 0, NULL, NULL, connp->conn_zoneid, 10105 MATCH_IRE_DEFAULT); 10106 10107 if (ire == NULL) { 10108 *outlenp = 0; 10109 return (EHOSTUNREACH); 10110 } 10111 ire_refrele(ire); 10112 return (-EINVAL); 10113 } 10114 case IPV6_SEC_OPT: 10115 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10116 if (error != 0) { 10117 *outlenp = 0; 10118 return (error); 10119 } 10120 break; 10121 case IPV6_SRC_PREFERENCES: { 10122 /* 10123 * This is implemented strictly in the ip module 10124 * (here and in tcp_opt_*() to accomodate tcp 10125 * sockets). Modules above ip pass this option 10126 * down here since ip is the only one that needs to 10127 * be aware of source address preferences. 10128 * 10129 * This socket option only affects connected 10130 * sockets that haven't already bound to a specific 10131 * IPv6 address. In other words, sockets that 10132 * don't call bind() with an address other than the 10133 * unspecified address and that call connect(). 10134 * ip_bind_connected_v6() passes these preferences 10135 * to the ipif_select_source_v6() function. 10136 */ 10137 if (inlen != sizeof (uint32_t)) 10138 return (EINVAL); 10139 error = ip6_set_src_preferences(connp, 10140 *(uint32_t *)invalp); 10141 if (error != 0) { 10142 *outlenp = 0; 10143 return (error); 10144 } else { 10145 *outlenp = sizeof (uint32_t); 10146 } 10147 break; 10148 } 10149 case IPV6_V6ONLY: 10150 if (*i1 < 0 || *i1 > 1) { 10151 return (EINVAL); 10152 } 10153 mutex_enter(&connp->conn_lock); 10154 connp->conn_ipv6_v6only = *i1; 10155 mutex_exit(&connp->conn_lock); 10156 break; 10157 default: 10158 return (-EINVAL); 10159 } 10160 break; 10161 default: 10162 /* 10163 * "soft" error (negative) 10164 * option not handled at this level 10165 * Note: Do not modify *outlenp 10166 */ 10167 return (-EINVAL); 10168 } 10169 /* 10170 * Common case of return from an option that is sizeof (int) 10171 */ 10172 *(int *)outvalp = *i1; 10173 *outlenp = sizeof (int); 10174 return (0); 10175 } 10176 10177 /* 10178 * This routine gets default values of certain options whose default 10179 * values are maintained by protocol specific code 10180 */ 10181 /* ARGSUSED */ 10182 int 10183 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10184 { 10185 int *i1 = (int *)ptr; 10186 10187 switch (level) { 10188 case IPPROTO_IP: 10189 switch (name) { 10190 case IP_MULTICAST_TTL: 10191 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10192 return (sizeof (uchar_t)); 10193 case IP_MULTICAST_LOOP: 10194 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10195 return (sizeof (uchar_t)); 10196 default: 10197 return (-1); 10198 } 10199 case IPPROTO_IPV6: 10200 switch (name) { 10201 case IPV6_UNICAST_HOPS: 10202 *i1 = ipv6_def_hops; 10203 return (sizeof (int)); 10204 case IPV6_MULTICAST_HOPS: 10205 *i1 = IP_DEFAULT_MULTICAST_TTL; 10206 return (sizeof (int)); 10207 case IPV6_MULTICAST_LOOP: 10208 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10209 return (sizeof (int)); 10210 case IPV6_V6ONLY: 10211 *i1 = 1; 10212 return (sizeof (int)); 10213 default: 10214 return (-1); 10215 } 10216 default: 10217 return (-1); 10218 } 10219 /* NOTREACHED */ 10220 } 10221 10222 /* 10223 * Given a destination address and a pointer to where to put the information 10224 * this routine fills in the mtuinfo. 10225 */ 10226 int 10227 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10228 struct ip6_mtuinfo *mtuinfo) 10229 { 10230 ire_t *ire; 10231 10232 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10233 return (-1); 10234 10235 bzero(mtuinfo, sizeof (*mtuinfo)); 10236 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10237 mtuinfo->ip6m_addr.sin6_port = port; 10238 mtuinfo->ip6m_addr.sin6_addr = *in6; 10239 10240 ire = ire_cache_lookup_v6(in6, ALL_ZONES); 10241 if (ire != NULL) { 10242 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10243 ire_refrele(ire); 10244 } else { 10245 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10246 } 10247 return (sizeof (struct ip6_mtuinfo)); 10248 } 10249 10250 /* 10251 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10252 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10253 * isn't. This doesn't matter as the error checking is done properly for the 10254 * other MRT options coming in through ip_opt_set. 10255 */ 10256 int 10257 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10258 { 10259 conn_t *connp = Q_TO_CONN(q); 10260 ipsec_req_t *req = (ipsec_req_t *)ptr; 10261 10262 switch (level) { 10263 case IPPROTO_IP: 10264 switch (name) { 10265 case MRT_VERSION: 10266 case MRT_ASSERT: 10267 (void) ip_mrouter_get(name, q, ptr); 10268 return (sizeof (int)); 10269 case IP_SEC_OPT: 10270 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10271 default: 10272 break; 10273 } 10274 break; 10275 case IPPROTO_IPV6: 10276 switch (name) { 10277 case IPV6_SEC_OPT: 10278 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10279 case IPV6_SRC_PREFERENCES: { 10280 return (ip6_get_src_preferences(connp, 10281 (uint32_t *)ptr)); 10282 } 10283 case IPV6_V6ONLY: 10284 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10285 return (sizeof (int)); 10286 case IPV6_PATHMTU: 10287 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10288 (struct ip6_mtuinfo *)ptr)); 10289 default: 10290 break; 10291 } 10292 break; 10293 default: 10294 break; 10295 } 10296 return (-1); 10297 } 10298 10299 /* Named Dispatch routine to get a current value out of our parameter table. */ 10300 /* ARGSUSED */ 10301 static int 10302 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10303 { 10304 ipparam_t *ippa = (ipparam_t *)cp; 10305 10306 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10307 return (0); 10308 } 10309 10310 /* ARGSUSED */ 10311 static int 10312 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10313 { 10314 10315 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10316 return (0); 10317 } 10318 10319 /* 10320 * Set ip{,6}_forwarding values. This means walking through all of the 10321 * ill's and toggling their forwarding values. 10322 */ 10323 /* ARGSUSED */ 10324 static int 10325 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10326 { 10327 long new_value; 10328 int *forwarding_value = (int *)cp; 10329 ill_t *walker; 10330 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10331 ill_walk_context_t ctx; 10332 10333 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10334 new_value < 0 || new_value > 1) { 10335 return (EINVAL); 10336 } 10337 10338 *forwarding_value = new_value; 10339 10340 /* 10341 * Regardless of the current value of ip_forwarding, set all per-ill 10342 * values of ip_forwarding to the value being set. 10343 * 10344 * Bring all the ill's up to date with the new global value. 10345 */ 10346 rw_enter(&ill_g_lock, RW_READER); 10347 10348 if (isv6) 10349 walker = ILL_START_WALK_V6(&ctx); 10350 else 10351 walker = ILL_START_WALK_V4(&ctx); 10352 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10353 (void) ill_forward_set(q, mp, (new_value != 0), 10354 (caddr_t)walker); 10355 } 10356 rw_exit(&ill_g_lock); 10357 10358 return (0); 10359 } 10360 10361 /* 10362 * Walk through the param array specified registering each element with the 10363 * Named Dispatch handler. This is called only during init. So it is ok 10364 * not to acquire any locks 10365 */ 10366 static boolean_t 10367 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 10368 ipndp_t *ipnd, size_t ipnd_cnt) 10369 { 10370 for (; ippa_cnt-- > 0; ippa++) { 10371 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 10372 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 10373 ip_param_get, ip_param_set, (caddr_t)ippa)) { 10374 nd_free(&ip_g_nd); 10375 return (B_FALSE); 10376 } 10377 } 10378 } 10379 10380 for (; ipnd_cnt-- > 0; ipnd++) { 10381 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 10382 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 10383 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 10384 ipnd->ip_ndp_data)) { 10385 nd_free(&ip_g_nd); 10386 return (B_FALSE); 10387 } 10388 } 10389 } 10390 10391 return (B_TRUE); 10392 } 10393 10394 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 10395 /* ARGSUSED */ 10396 static int 10397 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10398 { 10399 long new_value; 10400 ipparam_t *ippa = (ipparam_t *)cp; 10401 10402 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10403 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 10404 return (EINVAL); 10405 } 10406 ippa->ip_param_value = new_value; 10407 return (0); 10408 } 10409 10410 /* 10411 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 10412 * When an ipf is passed here for the first time, if 10413 * we already have in-order fragments on the queue, we convert from the fast- 10414 * path reassembly scheme to the hard-case scheme. From then on, additional 10415 * fragments are reassembled here. We keep track of the start and end offsets 10416 * of each piece, and the number of holes in the chain. When the hole count 10417 * goes to zero, we are done! 10418 * 10419 * The ipf_count will be updated to account for any mblk(s) added (pointed to 10420 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 10421 * ipfb_count and ill_frag_count by the difference of ipf_count before and 10422 * after the call to ip_reassemble(). 10423 */ 10424 int 10425 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 10426 size_t msg_len) 10427 { 10428 uint_t end; 10429 mblk_t *next_mp; 10430 mblk_t *mp1; 10431 uint_t offset; 10432 boolean_t incr_dups = B_TRUE; 10433 boolean_t offset_zero_seen = B_FALSE; 10434 boolean_t pkt_boundary_checked = B_FALSE; 10435 10436 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 10437 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 10438 10439 /* Add in byte count */ 10440 ipf->ipf_count += msg_len; 10441 if (ipf->ipf_end) { 10442 /* 10443 * We were part way through in-order reassembly, but now there 10444 * is a hole. We walk through messages already queued, and 10445 * mark them for hard case reassembly. We know that up till 10446 * now they were in order starting from offset zero. 10447 */ 10448 offset = 0; 10449 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10450 IP_REASS_SET_START(mp1, offset); 10451 if (offset == 0) { 10452 ASSERT(ipf->ipf_nf_hdr_len != 0); 10453 offset = -ipf->ipf_nf_hdr_len; 10454 } 10455 offset += mp1->b_wptr - mp1->b_rptr; 10456 IP_REASS_SET_END(mp1, offset); 10457 } 10458 /* One hole at the end. */ 10459 ipf->ipf_hole_cnt = 1; 10460 /* Brand it as a hard case, forever. */ 10461 ipf->ipf_end = 0; 10462 } 10463 /* Walk through all the new pieces. */ 10464 do { 10465 end = start + (mp->b_wptr - mp->b_rptr); 10466 /* 10467 * If start is 0, decrease 'end' only for the first mblk of 10468 * the fragment. Otherwise 'end' can get wrong value in the 10469 * second pass of the loop if first mblk is exactly the 10470 * size of ipf_nf_hdr_len. 10471 */ 10472 if (start == 0 && !offset_zero_seen) { 10473 /* First segment */ 10474 ASSERT(ipf->ipf_nf_hdr_len != 0); 10475 end -= ipf->ipf_nf_hdr_len; 10476 offset_zero_seen = B_TRUE; 10477 } 10478 next_mp = mp->b_cont; 10479 /* 10480 * We are checking to see if there is any interesing data 10481 * to process. If there isn't and the mblk isn't the 10482 * one which carries the unfragmentable header then we 10483 * drop it. It's possible to have just the unfragmentable 10484 * header come through without any data. That needs to be 10485 * saved. 10486 * 10487 * If the assert at the top of this function holds then the 10488 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 10489 * is infrequently traveled enough that the test is left in 10490 * to protect against future code changes which break that 10491 * invariant. 10492 */ 10493 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 10494 /* Empty. Blast it. */ 10495 IP_REASS_SET_START(mp, 0); 10496 IP_REASS_SET_END(mp, 0); 10497 /* 10498 * If the ipf points to the mblk we are about to free, 10499 * update ipf to point to the next mblk (or NULL 10500 * if none). 10501 */ 10502 if (ipf->ipf_mp->b_cont == mp) 10503 ipf->ipf_mp->b_cont = next_mp; 10504 freeb(mp); 10505 continue; 10506 } 10507 mp->b_cont = NULL; 10508 IP_REASS_SET_START(mp, start); 10509 IP_REASS_SET_END(mp, end); 10510 if (!ipf->ipf_tail_mp) { 10511 ipf->ipf_tail_mp = mp; 10512 ipf->ipf_mp->b_cont = mp; 10513 if (start == 0 || !more) { 10514 ipf->ipf_hole_cnt = 1; 10515 /* 10516 * if the first fragment comes in more than one 10517 * mblk, this loop will be executed for each 10518 * mblk. Need to adjust hole count so exiting 10519 * this routine will leave hole count at 1. 10520 */ 10521 if (next_mp) 10522 ipf->ipf_hole_cnt++; 10523 } else 10524 ipf->ipf_hole_cnt = 2; 10525 continue; 10526 } else if (ipf->ipf_last_frag_seen && !more && 10527 !pkt_boundary_checked) { 10528 /* 10529 * We check datagram boundary only if this fragment 10530 * claims to be the last fragment and we have seen a 10531 * last fragment in the past too. We do this only 10532 * once for a given fragment. 10533 * 10534 * start cannot be 0 here as fragments with start=0 10535 * and MF=0 gets handled as a complete packet. These 10536 * fragments should not reach here. 10537 */ 10538 10539 if (start + msgdsize(mp) != 10540 IP_REASS_END(ipf->ipf_tail_mp)) { 10541 /* 10542 * We have two fragments both of which claim 10543 * to be the last fragment but gives conflicting 10544 * information about the whole datagram size. 10545 * Something fishy is going on. Drop the 10546 * fragment and free up the reassembly list. 10547 */ 10548 return (IP_REASS_FAILED); 10549 } 10550 10551 /* 10552 * We shouldn't come to this code block again for this 10553 * particular fragment. 10554 */ 10555 pkt_boundary_checked = B_TRUE; 10556 } 10557 10558 /* New stuff at or beyond tail? */ 10559 offset = IP_REASS_END(ipf->ipf_tail_mp); 10560 if (start >= offset) { 10561 if (ipf->ipf_last_frag_seen) { 10562 /* current fragment is beyond last fragment */ 10563 return (IP_REASS_FAILED); 10564 } 10565 /* Link it on end. */ 10566 ipf->ipf_tail_mp->b_cont = mp; 10567 ipf->ipf_tail_mp = mp; 10568 if (more) { 10569 if (start != offset) 10570 ipf->ipf_hole_cnt++; 10571 } else if (start == offset && next_mp == NULL) 10572 ipf->ipf_hole_cnt--; 10573 continue; 10574 } 10575 mp1 = ipf->ipf_mp->b_cont; 10576 offset = IP_REASS_START(mp1); 10577 /* New stuff at the front? */ 10578 if (start < offset) { 10579 if (start == 0) { 10580 if (end >= offset) { 10581 /* Nailed the hole at the begining. */ 10582 ipf->ipf_hole_cnt--; 10583 } 10584 } else if (end < offset) { 10585 /* 10586 * A hole, stuff, and a hole where there used 10587 * to be just a hole. 10588 */ 10589 ipf->ipf_hole_cnt++; 10590 } 10591 mp->b_cont = mp1; 10592 /* Check for overlap. */ 10593 while (end > offset) { 10594 if (end < IP_REASS_END(mp1)) { 10595 mp->b_wptr -= end - offset; 10596 IP_REASS_SET_END(mp, offset); 10597 if (ill->ill_isv6) { 10598 BUMP_MIB(ill->ill_ip6_mib, 10599 ipv6ReasmPartDups); 10600 } else { 10601 BUMP_MIB(&ip_mib, 10602 ipReasmPartDups); 10603 } 10604 break; 10605 } 10606 /* Did we cover another hole? */ 10607 if ((mp1->b_cont && 10608 IP_REASS_END(mp1) != 10609 IP_REASS_START(mp1->b_cont) && 10610 end >= IP_REASS_START(mp1->b_cont)) || 10611 (!ipf->ipf_last_frag_seen && !more)) { 10612 ipf->ipf_hole_cnt--; 10613 } 10614 /* Clip out mp1. */ 10615 if ((mp->b_cont = mp1->b_cont) == NULL) { 10616 /* 10617 * After clipping out mp1, this guy 10618 * is now hanging off the end. 10619 */ 10620 ipf->ipf_tail_mp = mp; 10621 } 10622 IP_REASS_SET_START(mp1, 0); 10623 IP_REASS_SET_END(mp1, 0); 10624 /* Subtract byte count */ 10625 ipf->ipf_count -= mp1->b_datap->db_lim - 10626 mp1->b_datap->db_base; 10627 freeb(mp1); 10628 if (ill->ill_isv6) { 10629 BUMP_MIB(ill->ill_ip6_mib, 10630 ipv6ReasmPartDups); 10631 } else { 10632 BUMP_MIB(&ip_mib, ipReasmPartDups); 10633 } 10634 mp1 = mp->b_cont; 10635 if (!mp1) 10636 break; 10637 offset = IP_REASS_START(mp1); 10638 } 10639 ipf->ipf_mp->b_cont = mp; 10640 continue; 10641 } 10642 /* 10643 * The new piece starts somewhere between the start of the head 10644 * and before the end of the tail. 10645 */ 10646 for (; mp1; mp1 = mp1->b_cont) { 10647 offset = IP_REASS_END(mp1); 10648 if (start < offset) { 10649 if (end <= offset) { 10650 /* Nothing new. */ 10651 IP_REASS_SET_START(mp, 0); 10652 IP_REASS_SET_END(mp, 0); 10653 /* Subtract byte count */ 10654 ipf->ipf_count -= mp->b_datap->db_lim - 10655 mp->b_datap->db_base; 10656 if (incr_dups) { 10657 ipf->ipf_num_dups++; 10658 incr_dups = B_FALSE; 10659 } 10660 freeb(mp); 10661 if (ill->ill_isv6) { 10662 BUMP_MIB(ill->ill_ip6_mib, 10663 ipv6ReasmDuplicates); 10664 } else { 10665 BUMP_MIB(&ip_mib, 10666 ipReasmDuplicates); 10667 } 10668 break; 10669 } 10670 /* 10671 * Trim redundant stuff off beginning of new 10672 * piece. 10673 */ 10674 IP_REASS_SET_START(mp, offset); 10675 mp->b_rptr += offset - start; 10676 if (ill->ill_isv6) { 10677 BUMP_MIB(ill->ill_ip6_mib, 10678 ipv6ReasmPartDups); 10679 } else { 10680 BUMP_MIB(&ip_mib, ipReasmPartDups); 10681 } 10682 start = offset; 10683 if (!mp1->b_cont) { 10684 /* 10685 * After trimming, this guy is now 10686 * hanging off the end. 10687 */ 10688 mp1->b_cont = mp; 10689 ipf->ipf_tail_mp = mp; 10690 if (!more) { 10691 ipf->ipf_hole_cnt--; 10692 } 10693 break; 10694 } 10695 } 10696 if (start >= IP_REASS_START(mp1->b_cont)) 10697 continue; 10698 /* Fill a hole */ 10699 if (start > offset) 10700 ipf->ipf_hole_cnt++; 10701 mp->b_cont = mp1->b_cont; 10702 mp1->b_cont = mp; 10703 mp1 = mp->b_cont; 10704 offset = IP_REASS_START(mp1); 10705 if (end >= offset) { 10706 ipf->ipf_hole_cnt--; 10707 /* Check for overlap. */ 10708 while (end > offset) { 10709 if (end < IP_REASS_END(mp1)) { 10710 mp->b_wptr -= end - offset; 10711 IP_REASS_SET_END(mp, offset); 10712 /* 10713 * TODO we might bump 10714 * this up twice if there is 10715 * overlap at both ends. 10716 */ 10717 if (ill->ill_isv6) { 10718 BUMP_MIB( 10719 ill->ill_ip6_mib, 10720 ipv6ReasmPartDups); 10721 } else { 10722 BUMP_MIB(&ip_mib, 10723 ipReasmPartDups); 10724 } 10725 break; 10726 } 10727 /* Did we cover another hole? */ 10728 if ((mp1->b_cont && 10729 IP_REASS_END(mp1) 10730 != IP_REASS_START(mp1->b_cont) && 10731 end >= 10732 IP_REASS_START(mp1->b_cont)) || 10733 (!ipf->ipf_last_frag_seen && 10734 !more)) { 10735 ipf->ipf_hole_cnt--; 10736 } 10737 /* Clip out mp1. */ 10738 if ((mp->b_cont = mp1->b_cont) == 10739 NULL) { 10740 /* 10741 * After clipping out mp1, 10742 * this guy is now hanging 10743 * off the end. 10744 */ 10745 ipf->ipf_tail_mp = mp; 10746 } 10747 IP_REASS_SET_START(mp1, 0); 10748 IP_REASS_SET_END(mp1, 0); 10749 /* Subtract byte count */ 10750 ipf->ipf_count -= 10751 mp1->b_datap->db_lim - 10752 mp1->b_datap->db_base; 10753 freeb(mp1); 10754 if (ill->ill_isv6) { 10755 BUMP_MIB(ill->ill_ip6_mib, 10756 ipv6ReasmPartDups); 10757 } else { 10758 BUMP_MIB(&ip_mib, 10759 ipReasmPartDups); 10760 } 10761 mp1 = mp->b_cont; 10762 if (!mp1) 10763 break; 10764 offset = IP_REASS_START(mp1); 10765 } 10766 } 10767 break; 10768 } 10769 } while (start = end, mp = next_mp); 10770 10771 /* Fragment just processed could be the last one. Remember this fact */ 10772 if (!more) 10773 ipf->ipf_last_frag_seen = B_TRUE; 10774 10775 /* Still got holes? */ 10776 if (ipf->ipf_hole_cnt) 10777 return (IP_REASS_PARTIAL); 10778 /* Clean up overloaded fields to avoid upstream disasters. */ 10779 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10780 IP_REASS_SET_START(mp1, 0); 10781 IP_REASS_SET_END(mp1, 0); 10782 } 10783 return (IP_REASS_COMPLETE); 10784 } 10785 10786 /* 10787 * ipsec processing for the fast path, used for input UDP Packets 10788 */ 10789 static boolean_t 10790 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 10791 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 10792 { 10793 uint32_t ill_index; 10794 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 10795 10796 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 10797 /* The ill_index of the incoming ILL */ 10798 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 10799 10800 /* pass packet up to the transport */ 10801 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 10802 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 10803 NULL, mctl_present); 10804 if (*first_mpp == NULL) { 10805 return (B_FALSE); 10806 } 10807 } 10808 10809 /* Initiate IPPF processing for fastpath UDP */ 10810 if (IPP_ENABLED(IPP_LOCAL_IN)) { 10811 ip_process(IPP_LOCAL_IN, mpp, ill_index); 10812 if (*mpp == NULL) { 10813 ip2dbg(("ip_input_ipsec_process: UDP pkt " 10814 "deferred/dropped during IPPF processing\n")); 10815 return (B_FALSE); 10816 } 10817 } 10818 /* 10819 * We make the checks as below since we are in the fast path 10820 * and want to minimize the number of checks if the IP_RECVIF and/or 10821 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 10822 */ 10823 if (connp->conn_recvif || connp->conn_recvslla || 10824 connp->conn_ipv6_recvpktinfo) { 10825 if (connp->conn_recvif || 10826 connp->conn_ipv6_recvpktinfo) { 10827 in_flags = IPF_RECVIF; 10828 } 10829 if (connp->conn_recvslla) { 10830 in_flags |= IPF_RECVSLLA; 10831 } 10832 /* 10833 * since in_flags are being set ill will be 10834 * referenced in ip_add_info, so it better not 10835 * be NULL. 10836 */ 10837 /* 10838 * the actual data will be contained in b_cont 10839 * upon successful return of the following call. 10840 * If the call fails then the original mblk is 10841 * returned. 10842 */ 10843 *mpp = ip_add_info(*mpp, ill, in_flags); 10844 } 10845 10846 return (B_TRUE); 10847 } 10848 10849 /* 10850 * Fragmentation reassembly. Each ILL has a hash table for 10851 * queuing packets undergoing reassembly for all IPIFs 10852 * associated with the ILL. The hash is based on the packet 10853 * IP ident field. The ILL frag hash table was allocated 10854 * as a timer block at the time the ILL was created. Whenever 10855 * there is anything on the reassembly queue, the timer will 10856 * be running. Returns B_TRUE if successful else B_FALSE; 10857 * frees mp on failure. 10858 */ 10859 static boolean_t 10860 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 10861 uint32_t *cksum_val, uint16_t *cksum_flags) 10862 { 10863 uint32_t frag_offset_flags; 10864 ill_t *ill = (ill_t *)q->q_ptr; 10865 mblk_t *mp = *mpp; 10866 mblk_t *t_mp; 10867 ipaddr_t dst; 10868 uint8_t proto = ipha->ipha_protocol; 10869 uint32_t sum_val; 10870 uint16_t sum_flags; 10871 ipf_t *ipf; 10872 ipf_t **ipfp; 10873 ipfb_t *ipfb; 10874 uint16_t ident; 10875 uint32_t offset; 10876 ipaddr_t src; 10877 uint_t hdr_length; 10878 uint32_t end; 10879 mblk_t *mp1; 10880 mblk_t *tail_mp; 10881 size_t count; 10882 size_t msg_len; 10883 uint8_t ecn_info = 0; 10884 uint32_t packet_size; 10885 boolean_t pruned = B_FALSE; 10886 10887 if (cksum_val != NULL) 10888 *cksum_val = 0; 10889 if (cksum_flags != NULL) 10890 *cksum_flags = 0; 10891 10892 /* 10893 * Drop the fragmented as early as possible, if 10894 * we don't have resource(s) to re-assemble. 10895 */ 10896 if (ip_reass_queue_bytes == 0) { 10897 freemsg(mp); 10898 return (B_FALSE); 10899 } 10900 10901 /* Check for fragmentation offset; return if there's none */ 10902 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 10903 (IPH_MF | IPH_OFFSET)) == 0) 10904 return (B_TRUE); 10905 10906 /* 10907 * We utilize hardware computed checksum info only for UDP since 10908 * IP fragmentation is a normal occurence for the protocol. In 10909 * addition, checksum offload support for IP fragments carrying 10910 * UDP payload is commonly implemented across network adapters. 10911 */ 10912 ASSERT(ill != NULL); 10913 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 10914 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 10915 mblk_t *mp1 = mp->b_cont; 10916 int32_t len; 10917 10918 /* Record checksum information from the packet */ 10919 sum_val = (uint32_t)DB_CKSUM16(mp); 10920 sum_flags = DB_CKSUMFLAGS(mp); 10921 10922 /* IP payload offset from beginning of mblk */ 10923 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 10924 10925 if ((sum_flags & HCK_PARTIALCKSUM) && 10926 (mp1 == NULL || mp1->b_cont == NULL) && 10927 offset >= DB_CKSUMSTART(mp) && 10928 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 10929 uint32_t adj; 10930 /* 10931 * Partial checksum has been calculated by hardware 10932 * and attached to the packet; in addition, any 10933 * prepended extraneous data is even byte aligned. 10934 * If any such data exists, we adjust the checksum; 10935 * this would also handle any postpended data. 10936 */ 10937 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 10938 mp, mp1, len, adj); 10939 10940 /* One's complement subtract extraneous checksum */ 10941 if (adj >= sum_val) 10942 sum_val = ~(adj - sum_val) & 0xFFFF; 10943 else 10944 sum_val -= adj; 10945 } 10946 } else { 10947 sum_val = 0; 10948 sum_flags = 0; 10949 } 10950 10951 /* Clear hardware checksumming flag */ 10952 DB_CKSUMFLAGS(mp) = 0; 10953 10954 ident = ipha->ipha_ident; 10955 offset = (frag_offset_flags << 3) & 0xFFFF; 10956 src = ipha->ipha_src; 10957 dst = ipha->ipha_dst; 10958 hdr_length = IPH_HDR_LENGTH(ipha); 10959 end = ntohs(ipha->ipha_length) - hdr_length; 10960 10961 /* If end == 0 then we have a packet with no data, so just free it */ 10962 if (end == 0) { 10963 freemsg(mp); 10964 return (B_FALSE); 10965 } 10966 10967 /* Record the ECN field info. */ 10968 ecn_info = (ipha->ipha_type_of_service & 0x3); 10969 if (offset != 0) { 10970 /* 10971 * If this isn't the first piece, strip the header, and 10972 * add the offset to the end value. 10973 */ 10974 mp->b_rptr += hdr_length; 10975 end += offset; 10976 } 10977 10978 msg_len = MBLKSIZE(mp); 10979 tail_mp = mp; 10980 while (tail_mp->b_cont != NULL) { 10981 tail_mp = tail_mp->b_cont; 10982 msg_len += MBLKSIZE(tail_mp); 10983 } 10984 10985 /* If the reassembly list for this ILL will get too big, prune it */ 10986 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 10987 ip_reass_queue_bytes) { 10988 ill_frag_prune(ill, 10989 (ip_reass_queue_bytes < msg_len) ? 0 : 10990 (ip_reass_queue_bytes - msg_len)); 10991 pruned = B_TRUE; 10992 } 10993 10994 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 10995 mutex_enter(&ipfb->ipfb_lock); 10996 10997 ipfp = &ipfb->ipfb_ipf; 10998 /* Try to find an existing fragment queue for this packet. */ 10999 for (;;) { 11000 ipf = ipfp[0]; 11001 if (ipf != NULL) { 11002 /* 11003 * It has to match on ident and src/dst address. 11004 */ 11005 if (ipf->ipf_ident == ident && 11006 ipf->ipf_src == src && 11007 ipf->ipf_dst == dst && 11008 ipf->ipf_protocol == proto) { 11009 /* 11010 * If we have received too many 11011 * duplicate fragments for this packet 11012 * free it. 11013 */ 11014 if (ipf->ipf_num_dups > ip_max_frag_dups) { 11015 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11016 freemsg(mp); 11017 mutex_exit(&ipfb->ipfb_lock); 11018 return (B_FALSE); 11019 } 11020 /* Found it. */ 11021 break; 11022 } 11023 ipfp = &ipf->ipf_hash_next; 11024 continue; 11025 } 11026 11027 /* 11028 * If we pruned the list, do we want to store this new 11029 * fragment?. We apply an optimization here based on the 11030 * fact that most fragments will be received in order. 11031 * So if the offset of this incoming fragment is zero, 11032 * it is the first fragment of a new packet. We will 11033 * keep it. Otherwise drop the fragment, as we have 11034 * probably pruned the packet already (since the 11035 * packet cannot be found). 11036 */ 11037 if (pruned && offset != 0) { 11038 mutex_exit(&ipfb->ipfb_lock); 11039 freemsg(mp); 11040 return (B_FALSE); 11041 } 11042 11043 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 11044 /* 11045 * Too many fragmented packets in this hash 11046 * bucket. Free the oldest. 11047 */ 11048 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 11049 } 11050 11051 /* New guy. Allocate a frag message. */ 11052 mp1 = allocb(sizeof (*ipf), BPRI_MED); 11053 if (mp1 == NULL) { 11054 BUMP_MIB(&ip_mib, ipInDiscards); 11055 freemsg(mp); 11056 reass_done: 11057 mutex_exit(&ipfb->ipfb_lock); 11058 return (B_FALSE); 11059 } 11060 11061 11062 BUMP_MIB(&ip_mib, ipReasmReqds); 11063 mp1->b_cont = mp; 11064 11065 /* Initialize the fragment header. */ 11066 ipf = (ipf_t *)mp1->b_rptr; 11067 ipf->ipf_mp = mp1; 11068 ipf->ipf_ptphn = ipfp; 11069 ipfp[0] = ipf; 11070 ipf->ipf_hash_next = NULL; 11071 ipf->ipf_ident = ident; 11072 ipf->ipf_protocol = proto; 11073 ipf->ipf_src = src; 11074 ipf->ipf_dst = dst; 11075 ipf->ipf_nf_hdr_len = 0; 11076 /* Record reassembly start time. */ 11077 ipf->ipf_timestamp = gethrestime_sec(); 11078 /* Record ipf generation and account for frag header */ 11079 ipf->ipf_gen = ill->ill_ipf_gen++; 11080 ipf->ipf_count = MBLKSIZE(mp1); 11081 ipf->ipf_last_frag_seen = B_FALSE; 11082 ipf->ipf_ecn = ecn_info; 11083 ipf->ipf_num_dups = 0; 11084 ipfb->ipfb_frag_pkts++; 11085 ipf->ipf_checksum = 0; 11086 ipf->ipf_checksum_flags = 0; 11087 11088 /* Store checksum value in fragment header */ 11089 if (sum_flags != 0) { 11090 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11091 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11092 ipf->ipf_checksum = sum_val; 11093 ipf->ipf_checksum_flags = sum_flags; 11094 } 11095 11096 /* 11097 * We handle reassembly two ways. In the easy case, 11098 * where all the fragments show up in order, we do 11099 * minimal bookkeeping, and just clip new pieces on 11100 * the end. If we ever see a hole, then we go off 11101 * to ip_reassemble which has to mark the pieces and 11102 * keep track of the number of holes, etc. Obviously, 11103 * the point of having both mechanisms is so we can 11104 * handle the easy case as efficiently as possible. 11105 */ 11106 if (offset == 0) { 11107 /* Easy case, in-order reassembly so far. */ 11108 ipf->ipf_count += msg_len; 11109 ipf->ipf_tail_mp = tail_mp; 11110 /* 11111 * Keep track of next expected offset in 11112 * ipf_end. 11113 */ 11114 ipf->ipf_end = end; 11115 ipf->ipf_nf_hdr_len = hdr_length; 11116 } else { 11117 /* Hard case, hole at the beginning. */ 11118 ipf->ipf_tail_mp = NULL; 11119 /* 11120 * ipf_end == 0 means that we have given up 11121 * on easy reassembly. 11122 */ 11123 ipf->ipf_end = 0; 11124 11125 /* Forget checksum offload from now on */ 11126 ipf->ipf_checksum_flags = 0; 11127 11128 /* 11129 * ipf_hole_cnt is set by ip_reassemble. 11130 * ipf_count is updated by ip_reassemble. 11131 * No need to check for return value here 11132 * as we don't expect reassembly to complete 11133 * or fail for the first fragment itself. 11134 */ 11135 (void) ip_reassemble(mp, ipf, 11136 (frag_offset_flags & IPH_OFFSET) << 3, 11137 (frag_offset_flags & IPH_MF), ill, msg_len); 11138 } 11139 /* Update per ipfb and ill byte counts */ 11140 ipfb->ipfb_count += ipf->ipf_count; 11141 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11142 ill->ill_frag_count += ipf->ipf_count; 11143 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11144 /* If the frag timer wasn't already going, start it. */ 11145 mutex_enter(&ill->ill_lock); 11146 ill_frag_timer_start(ill); 11147 mutex_exit(&ill->ill_lock); 11148 goto reass_done; 11149 } 11150 11151 /* 11152 * If the packet's flag has changed (it could be coming up 11153 * from an interface different than the previous, therefore 11154 * possibly different checksum capability), then forget about 11155 * any stored checksum states. Otherwise add the value to 11156 * the existing one stored in the fragment header. 11157 */ 11158 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 11159 sum_val += ipf->ipf_checksum; 11160 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11161 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11162 ipf->ipf_checksum = sum_val; 11163 } else if (ipf->ipf_checksum_flags != 0) { 11164 /* Forget checksum offload from now on */ 11165 ipf->ipf_checksum_flags = 0; 11166 } 11167 11168 /* 11169 * We have a new piece of a datagram which is already being 11170 * reassembled. Update the ECN info if all IP fragments 11171 * are ECN capable. If there is one which is not, clear 11172 * all the info. If there is at least one which has CE 11173 * code point, IP needs to report that up to transport. 11174 */ 11175 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 11176 if (ecn_info == IPH_ECN_CE) 11177 ipf->ipf_ecn = IPH_ECN_CE; 11178 } else { 11179 ipf->ipf_ecn = IPH_ECN_NECT; 11180 } 11181 if (offset && ipf->ipf_end == offset) { 11182 /* The new fragment fits at the end */ 11183 ipf->ipf_tail_mp->b_cont = mp; 11184 /* Update the byte count */ 11185 ipf->ipf_count += msg_len; 11186 /* Update per ipfb and ill byte counts */ 11187 ipfb->ipfb_count += msg_len; 11188 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11189 ill->ill_frag_count += msg_len; 11190 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11191 if (frag_offset_flags & IPH_MF) { 11192 /* More to come. */ 11193 ipf->ipf_end = end; 11194 ipf->ipf_tail_mp = tail_mp; 11195 goto reass_done; 11196 } 11197 } else { 11198 /* Go do the hard cases. */ 11199 int ret; 11200 11201 if (offset == 0) 11202 ipf->ipf_nf_hdr_len = hdr_length; 11203 11204 /* Save current byte count */ 11205 count = ipf->ipf_count; 11206 ret = ip_reassemble(mp, ipf, 11207 (frag_offset_flags & IPH_OFFSET) << 3, 11208 (frag_offset_flags & IPH_MF), ill, msg_len); 11209 /* Count of bytes added and subtracted (freeb()ed) */ 11210 count = ipf->ipf_count - count; 11211 if (count) { 11212 /* Update per ipfb and ill byte counts */ 11213 ipfb->ipfb_count += count; 11214 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11215 ill->ill_frag_count += count; 11216 ASSERT(ill->ill_frag_count > 0); 11217 } 11218 if (ret == IP_REASS_PARTIAL) { 11219 goto reass_done; 11220 } else if (ret == IP_REASS_FAILED) { 11221 /* Reassembly failed. Free up all resources */ 11222 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11223 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 11224 IP_REASS_SET_START(t_mp, 0); 11225 IP_REASS_SET_END(t_mp, 0); 11226 } 11227 freemsg(mp); 11228 goto reass_done; 11229 } 11230 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11231 } 11232 /* 11233 * We have completed reassembly. Unhook the frag header from 11234 * the reassembly list. 11235 * 11236 * Before we free the frag header, record the ECN info 11237 * to report back to the transport. 11238 */ 11239 ecn_info = ipf->ipf_ecn; 11240 BUMP_MIB(&ip_mib, ipReasmOKs); 11241 ipfp = ipf->ipf_ptphn; 11242 11243 /* We need to supply these to caller */ 11244 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 11245 sum_val = ipf->ipf_checksum; 11246 else 11247 sum_val = 0; 11248 11249 mp1 = ipf->ipf_mp; 11250 count = ipf->ipf_count; 11251 ipf = ipf->ipf_hash_next; 11252 if (ipf != NULL) 11253 ipf->ipf_ptphn = ipfp; 11254 ipfp[0] = ipf; 11255 ill->ill_frag_count -= count; 11256 ASSERT(ipfb->ipfb_count >= count); 11257 ipfb->ipfb_count -= count; 11258 ipfb->ipfb_frag_pkts--; 11259 mutex_exit(&ipfb->ipfb_lock); 11260 /* Ditch the frag header. */ 11261 mp = mp1->b_cont; 11262 11263 freeb(mp1); 11264 11265 /* Restore original IP length in header. */ 11266 packet_size = (uint32_t)msgdsize(mp); 11267 if (packet_size > IP_MAXPACKET) { 11268 freemsg(mp); 11269 BUMP_MIB(&ip_mib, ipInHdrErrors); 11270 return (B_FALSE); 11271 } 11272 11273 if (DB_REF(mp) > 1) { 11274 mblk_t *mp2 = copymsg(mp); 11275 11276 freemsg(mp); 11277 if (mp2 == NULL) { 11278 BUMP_MIB(&ip_mib, ipInDiscards); 11279 return (B_FALSE); 11280 } 11281 mp = mp2; 11282 } 11283 ipha = (ipha_t *)mp->b_rptr; 11284 11285 ipha->ipha_length = htons((uint16_t)packet_size); 11286 /* We're now complete, zip the frag state */ 11287 ipha->ipha_fragment_offset_and_flags = 0; 11288 /* Record the ECN info. */ 11289 ipha->ipha_type_of_service &= 0xFC; 11290 ipha->ipha_type_of_service |= ecn_info; 11291 *mpp = mp; 11292 11293 /* Reassembly is successful; return checksum information if needed */ 11294 if (cksum_val != NULL) 11295 *cksum_val = sum_val; 11296 if (cksum_flags != NULL) 11297 *cksum_flags = sum_flags; 11298 11299 return (B_TRUE); 11300 } 11301 11302 /* 11303 * Perform ip header check sum update local options. 11304 * return B_TRUE if all is well, else return B_FALSE and release 11305 * the mp. caller is responsible for decrementing ire ref cnt. 11306 */ 11307 static boolean_t 11308 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11309 { 11310 mblk_t *first_mp; 11311 boolean_t mctl_present; 11312 uint16_t sum; 11313 11314 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11315 /* 11316 * Don't do the checksum if it has gone through AH/ESP 11317 * processing. 11318 */ 11319 if (!mctl_present) { 11320 sum = ip_csum_hdr(ipha); 11321 if (sum != 0) { 11322 BUMP_MIB(&ip_mib, ipInCksumErrs); 11323 freemsg(first_mp); 11324 return (B_FALSE); 11325 } 11326 } 11327 11328 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11329 if (mctl_present) 11330 freeb(first_mp); 11331 return (B_FALSE); 11332 } 11333 11334 return (B_TRUE); 11335 } 11336 11337 /* 11338 * All udp packet are delivered to the local host via this routine. 11339 */ 11340 void 11341 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11342 ill_t *recv_ill) 11343 { 11344 uint32_t sum; 11345 uint32_t u1; 11346 boolean_t mctl_present; 11347 conn_t *connp; 11348 mblk_t *first_mp; 11349 uint16_t *up; 11350 ill_t *ill = (ill_t *)q->q_ptr; 11351 uint16_t reass_hck_flags = 0; 11352 11353 #define rptr ((uchar_t *)ipha) 11354 11355 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11356 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11357 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11358 11359 /* 11360 * FAST PATH for udp packets 11361 */ 11362 11363 /* u1 is # words of IP options */ 11364 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11365 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11366 11367 /* IP options present */ 11368 if (u1 != 0) 11369 goto ipoptions; 11370 11371 /* Check the IP header checksum. */ 11372 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 11373 /* Clear the IP header h/w cksum flag */ 11374 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 11375 } else { 11376 #define uph ((uint16_t *)ipha) 11377 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 11378 uph[6] + uph[7] + uph[8] + uph[9]; 11379 #undef uph 11380 /* finish doing IP checksum */ 11381 sum = (sum & 0xFFFF) + (sum >> 16); 11382 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11383 /* 11384 * Don't verify header checksum if this packet is coming 11385 * back from AH/ESP as we already did it. 11386 */ 11387 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 11388 BUMP_MIB(&ip_mib, ipInCksumErrs); 11389 freemsg(first_mp); 11390 return; 11391 } 11392 } 11393 11394 /* 11395 * Count for SNMP of inbound packets for ire. 11396 * if mctl is present this might be a secure packet and 11397 * has already been counted for in ip_proto_input(). 11398 */ 11399 if (!mctl_present) { 11400 UPDATE_IB_PKT_COUNT(ire); 11401 ire->ire_last_used_time = lbolt; 11402 } 11403 11404 /* packet part of fragmented IP packet? */ 11405 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11406 if (u1 & (IPH_MF | IPH_OFFSET)) { 11407 goto fragmented; 11408 } 11409 11410 /* u1 = IP header length (20 bytes) */ 11411 u1 = IP_SIMPLE_HDR_LENGTH; 11412 11413 /* packet does not contain complete IP & UDP headers */ 11414 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 11415 goto udppullup; 11416 11417 /* up points to UDP header */ 11418 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 11419 #define iphs ((uint16_t *)ipha) 11420 11421 /* if udp hdr cksum != 0, then need to checksum udp packet */ 11422 if (up[3] != 0) { 11423 mblk_t *mp1 = mp->b_cont; 11424 boolean_t cksum_err; 11425 uint16_t hck_flags = 0; 11426 11427 /* Pseudo-header checksum */ 11428 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11429 iphs[9] + up[2]; 11430 11431 /* 11432 * Revert to software checksum calculation if the interface 11433 * isn't capable of checksum offload or if IPsec is present. 11434 */ 11435 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 11436 hck_flags = DB_CKSUMFLAGS(mp); 11437 11438 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11439 IP_STAT(ip_in_sw_cksum); 11440 11441 IP_CKSUM_RECV(hck_flags, u1, 11442 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 11443 (int32_t)((uchar_t *)up - rptr), 11444 mp, mp1, cksum_err); 11445 11446 if (cksum_err) { 11447 BUMP_MIB(&ip_mib, udpInCksumErrs); 11448 11449 if (hck_flags & HCK_FULLCKSUM) 11450 IP_STAT(ip_udp_in_full_hw_cksum_err); 11451 else if (hck_flags & HCK_PARTIALCKSUM) 11452 IP_STAT(ip_udp_in_part_hw_cksum_err); 11453 else 11454 IP_STAT(ip_udp_in_sw_cksum_err); 11455 11456 freemsg(first_mp); 11457 return; 11458 } 11459 } 11460 11461 /* Non-fragmented broadcast or multicast packet? */ 11462 if (ire->ire_type == IRE_BROADCAST) 11463 goto udpslowpath; 11464 11465 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 11466 ire->ire_zoneid)) != NULL) { 11467 ASSERT(connp->conn_upq != NULL); 11468 IP_STAT(ip_udp_fast_path); 11469 11470 if (CONN_UDP_FLOWCTLD(connp)) { 11471 freemsg(mp); 11472 BUMP_MIB(&ip_mib, udpInOverflows); 11473 } else { 11474 if (!mctl_present) { 11475 BUMP_MIB(&ip_mib, ipInDelivers); 11476 } 11477 /* 11478 * mp and first_mp can change. 11479 */ 11480 if (ip_udp_check(q, connp, recv_ill, 11481 ipha, &mp, &first_mp, mctl_present)) { 11482 /* Send it upstream */ 11483 CONN_UDP_RECV(connp, mp); 11484 } 11485 } 11486 /* 11487 * freeb() cannot deal with null mblk being passed 11488 * in and first_mp can be set to null in the call 11489 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 11490 */ 11491 if (mctl_present && first_mp != NULL) { 11492 freeb(first_mp); 11493 } 11494 CONN_DEC_REF(connp); 11495 return; 11496 } 11497 11498 /* 11499 * if we got here we know the packet is not fragmented and 11500 * has no options. The classifier could not find a conn_t and 11501 * most likely its an icmp packet so send it through slow path. 11502 */ 11503 11504 goto udpslowpath; 11505 11506 ipoptions: 11507 if (!ip_options_cksum(q, mp, ipha, ire)) { 11508 goto slow_done; 11509 } 11510 11511 UPDATE_IB_PKT_COUNT(ire); 11512 ire->ire_last_used_time = lbolt; 11513 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11514 if (u1 & (IPH_MF | IPH_OFFSET)) { 11515 fragmented: 11516 /* 11517 * "sum" and "reass_hck_flags" are non-zero if the 11518 * reassembled packet has a valid hardware computed 11519 * checksum information associated with it. 11520 */ 11521 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 11522 goto slow_done; 11523 /* 11524 * Make sure that first_mp points back to mp as 11525 * the mp we came in with could have changed in 11526 * ip_rput_fragment(). 11527 */ 11528 ASSERT(!mctl_present); 11529 ipha = (ipha_t *)mp->b_rptr; 11530 first_mp = mp; 11531 } 11532 11533 /* Now we have a complete datagram, destined for this machine. */ 11534 u1 = IPH_HDR_LENGTH(ipha); 11535 /* Pull up the UDP header, if necessary. */ 11536 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 11537 udppullup: 11538 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 11539 BUMP_MIB(&ip_mib, ipInDiscards); 11540 freemsg(first_mp); 11541 goto slow_done; 11542 } 11543 ipha = (ipha_t *)mp->b_rptr; 11544 } 11545 11546 /* 11547 * Validate the checksum for the reassembled packet; for the 11548 * pullup case we calculate the payload checksum in software. 11549 */ 11550 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 11551 if (up[3] != 0) { 11552 boolean_t cksum_err; 11553 11554 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11555 IP_STAT(ip_in_sw_cksum); 11556 11557 IP_CKSUM_RECV_REASS(reass_hck_flags, 11558 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 11559 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11560 iphs[9] + up[2], sum, cksum_err); 11561 11562 if (cksum_err) { 11563 BUMP_MIB(&ip_mib, udpInCksumErrs); 11564 11565 if (reass_hck_flags & HCK_FULLCKSUM) 11566 IP_STAT(ip_udp_in_full_hw_cksum_err); 11567 else if (reass_hck_flags & HCK_PARTIALCKSUM) 11568 IP_STAT(ip_udp_in_part_hw_cksum_err); 11569 else 11570 IP_STAT(ip_udp_in_sw_cksum_err); 11571 11572 freemsg(first_mp); 11573 goto slow_done; 11574 } 11575 } 11576 udpslowpath: 11577 11578 /* Clear hardware checksum flag to be safe */ 11579 DB_CKSUMFLAGS(mp) = 0; 11580 11581 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 11582 (ire->ire_type == IRE_BROADCAST), 11583 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 11584 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 11585 11586 slow_done: 11587 IP_STAT(ip_udp_slow_path); 11588 return; 11589 11590 #undef iphs 11591 #undef rptr 11592 } 11593 11594 /* ARGSUSED */ 11595 static mblk_t * 11596 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11597 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 11598 ill_rx_ring_t *ill_ring) 11599 { 11600 conn_t *connp; 11601 uint32_t sum; 11602 uint32_t u1; 11603 uint16_t *up; 11604 int offset; 11605 ssize_t len; 11606 mblk_t *mp1; 11607 boolean_t syn_present = B_FALSE; 11608 tcph_t *tcph; 11609 uint_t ip_hdr_len; 11610 ill_t *ill = (ill_t *)q->q_ptr; 11611 zoneid_t zoneid = ire->ire_zoneid; 11612 boolean_t cksum_err; 11613 uint16_t hck_flags = 0; 11614 11615 #define rptr ((uchar_t *)ipha) 11616 11617 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 11618 11619 /* 11620 * FAST PATH for tcp packets 11621 */ 11622 11623 /* u1 is # words of IP options */ 11624 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11625 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11626 11627 /* IP options present */ 11628 if (u1) { 11629 goto ipoptions; 11630 } else { 11631 /* Check the IP header checksum. */ 11632 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 11633 /* Clear the IP header h/w cksum flag */ 11634 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 11635 } else { 11636 #define uph ((uint16_t *)ipha) 11637 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11638 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11639 #undef uph 11640 /* finish doing IP checksum */ 11641 sum = (sum & 0xFFFF) + (sum >> 16); 11642 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11643 /* 11644 * Don't verify header checksum if this packet 11645 * is coming back from AH/ESP as we already did it. 11646 */ 11647 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11648 BUMP_MIB(&ip_mib, ipInCksumErrs); 11649 goto error; 11650 } 11651 } 11652 } 11653 11654 if (!mctl_present) { 11655 UPDATE_IB_PKT_COUNT(ire); 11656 ire->ire_last_used_time = lbolt; 11657 } 11658 11659 /* packet part of fragmented IP packet? */ 11660 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11661 if (u1 & (IPH_MF | IPH_OFFSET)) { 11662 goto fragmented; 11663 } 11664 11665 /* u1 = IP header length (20 bytes) */ 11666 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 11667 11668 /* does packet contain IP+TCP headers? */ 11669 len = mp->b_wptr - rptr; 11670 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 11671 IP_STAT(ip_tcppullup); 11672 goto tcppullup; 11673 } 11674 11675 /* TCP options present? */ 11676 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 11677 11678 /* 11679 * If options need to be pulled up, then goto tcpoptions. 11680 * otherwise we are still in the fast path 11681 */ 11682 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 11683 IP_STAT(ip_tcpoptions); 11684 goto tcpoptions; 11685 } 11686 11687 /* multiple mblks of tcp data? */ 11688 if ((mp1 = mp->b_cont) != NULL) { 11689 /* more then two? */ 11690 if (mp1->b_cont != NULL) { 11691 IP_STAT(ip_multipkttcp); 11692 goto multipkttcp; 11693 } 11694 len += mp1->b_wptr - mp1->b_rptr; 11695 } 11696 11697 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 11698 11699 /* part of pseudo checksum */ 11700 11701 /* TCP datagram length */ 11702 u1 = len - IP_SIMPLE_HDR_LENGTH; 11703 11704 #define iphs ((uint16_t *)ipha) 11705 11706 #ifdef _BIG_ENDIAN 11707 u1 += IPPROTO_TCP; 11708 #else 11709 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11710 #endif 11711 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11712 11713 /* 11714 * Revert to software checksum calculation if the interface 11715 * isn't capable of checksum offload or if IPsec is present. 11716 */ 11717 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 11718 hck_flags = DB_CKSUMFLAGS(mp); 11719 11720 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11721 IP_STAT(ip_in_sw_cksum); 11722 11723 IP_CKSUM_RECV(hck_flags, u1, 11724 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 11725 (int32_t)((uchar_t *)up - rptr), 11726 mp, mp1, cksum_err); 11727 11728 if (cksum_err) { 11729 BUMP_MIB(&ip_mib, tcpInErrs); 11730 11731 if (hck_flags & HCK_FULLCKSUM) 11732 IP_STAT(ip_tcp_in_full_hw_cksum_err); 11733 else if (hck_flags & HCK_PARTIALCKSUM) 11734 IP_STAT(ip_tcp_in_part_hw_cksum_err); 11735 else 11736 IP_STAT(ip_tcp_in_sw_cksum_err); 11737 11738 goto error; 11739 } 11740 11741 try_again: 11742 11743 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 11744 NULL) { 11745 /* Send the TH_RST */ 11746 goto no_conn; 11747 } 11748 11749 /* 11750 * TCP FAST PATH for AF_INET socket. 11751 * 11752 * TCP fast path to avoid extra work. An AF_INET socket type 11753 * does not have facility to receive extra information via 11754 * ip_process or ip_add_info. Also, when the connection was 11755 * established, we made a check if this connection is impacted 11756 * by any global IPSec policy or per connection policy (a 11757 * policy that comes in effect later will not apply to this 11758 * connection). Since all this can be determined at the 11759 * connection establishment time, a quick check of flags 11760 * can avoid extra work. 11761 */ 11762 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 11763 !IPP_ENABLED(IPP_LOCAL_IN)) { 11764 ASSERT(first_mp == mp); 11765 SET_SQUEUE(mp, tcp_rput_data, connp); 11766 return (mp); 11767 } 11768 11769 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 11770 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 11771 if (IPCL_IS_TCP(connp)) { 11772 mp->b_datap->db_struioflag |= STRUIO_EAGER; 11773 DB_CKSUMSTART(mp) = 11774 (intptr_t)ip_squeue_get(ill_ring); 11775 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 11776 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11777 SET_SQUEUE(mp, connp->conn_recv, connp); 11778 return (mp); 11779 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 11780 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11781 ip_squeue_enter_unbound++; 11782 SET_SQUEUE(mp, tcp_conn_request_unbound, 11783 connp); 11784 return (mp); 11785 } 11786 syn_present = B_TRUE; 11787 } 11788 11789 } 11790 11791 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 11792 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 11793 11794 /* No need to send this packet to TCP */ 11795 if ((flags & TH_RST) || (flags & TH_URG)) { 11796 CONN_DEC_REF(connp); 11797 freemsg(first_mp); 11798 return (NULL); 11799 } 11800 if (flags & TH_ACK) { 11801 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 11802 CONN_DEC_REF(connp); 11803 return (NULL); 11804 } 11805 11806 CONN_DEC_REF(connp); 11807 freemsg(first_mp); 11808 return (NULL); 11809 } 11810 11811 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11812 first_mp = ipsec_check_inbound_policy(first_mp, connp, 11813 ipha, NULL, mctl_present); 11814 if (first_mp == NULL) { 11815 CONN_DEC_REF(connp); 11816 return (NULL); 11817 } 11818 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 11819 ASSERT(syn_present); 11820 if (mctl_present) { 11821 ASSERT(first_mp != mp); 11822 first_mp->b_datap->db_struioflag |= 11823 STRUIO_POLICY; 11824 } else { 11825 ASSERT(first_mp == mp); 11826 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 11827 mp->b_datap->db_struioflag |= STRUIO_POLICY; 11828 } 11829 } else { 11830 /* 11831 * Discard first_mp early since we're dealing with a 11832 * fully-connected conn_t and tcp doesn't do policy in 11833 * this case. 11834 */ 11835 if (mctl_present) { 11836 freeb(first_mp); 11837 mctl_present = B_FALSE; 11838 } 11839 first_mp = mp; 11840 } 11841 } 11842 11843 /* Initiate IPPF processing for fastpath */ 11844 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11845 uint32_t ill_index; 11846 11847 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11848 ip_process(IPP_LOCAL_IN, &mp, ill_index); 11849 if (mp == NULL) { 11850 ip2dbg(("ip_input_ipsec_process: TCP pkt " 11851 "deferred/dropped during IPPF processing\n")); 11852 CONN_DEC_REF(connp); 11853 if (mctl_present) 11854 freeb(first_mp); 11855 return (NULL); 11856 } else if (mctl_present) { 11857 /* 11858 * ip_process might return a new mp. 11859 */ 11860 ASSERT(first_mp != mp); 11861 first_mp->b_cont = mp; 11862 } else { 11863 first_mp = mp; 11864 } 11865 11866 } 11867 11868 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 11869 mp = ip_add_info(mp, recv_ill, flags); 11870 if (mp == NULL) { 11871 CONN_DEC_REF(connp); 11872 if (mctl_present) 11873 freeb(first_mp); 11874 return (NULL); 11875 } else if (mctl_present) { 11876 /* 11877 * ip_add_info might return a new mp. 11878 */ 11879 ASSERT(first_mp != mp); 11880 first_mp->b_cont = mp; 11881 } else { 11882 first_mp = mp; 11883 } 11884 } 11885 11886 if (IPCL_IS_TCP(connp)) { 11887 SET_SQUEUE(first_mp, connp->conn_recv, connp); 11888 return (first_mp); 11889 } else { 11890 putnext(connp->conn_rq, first_mp); 11891 CONN_DEC_REF(connp); 11892 return (NULL); 11893 } 11894 11895 no_conn: 11896 /* Initiate IPPf processing, if needed. */ 11897 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11898 uint32_t ill_index; 11899 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11900 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 11901 if (first_mp == NULL) { 11902 return (NULL); 11903 } 11904 } 11905 BUMP_MIB(&ip_mib, ipInDelivers); 11906 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 11907 return (NULL); 11908 ipoptions: 11909 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 11910 goto slow_done; 11911 } 11912 11913 UPDATE_IB_PKT_COUNT(ire); 11914 ire->ire_last_used_time = lbolt; 11915 11916 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11917 if (u1 & (IPH_MF | IPH_OFFSET)) { 11918 fragmented: 11919 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 11920 if (mctl_present) 11921 freeb(first_mp); 11922 goto slow_done; 11923 } 11924 /* 11925 * Make sure that first_mp points back to mp as 11926 * the mp we came in with could have changed in 11927 * ip_rput_fragment(). 11928 */ 11929 ASSERT(!mctl_present); 11930 ipha = (ipha_t *)mp->b_rptr; 11931 first_mp = mp; 11932 } 11933 11934 tcp_slow: 11935 /* Now we have a complete datagram, destined for this machine. */ 11936 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 11937 11938 len = mp->b_wptr - mp->b_rptr; 11939 /* Pull up a minimal TCP header, if necessary. */ 11940 if (len < (u1 + 20)) { 11941 tcppullup: 11942 if (!pullupmsg(mp, u1 + 20)) { 11943 BUMP_MIB(&ip_mib, ipInDiscards); 11944 goto error; 11945 } 11946 ipha = (ipha_t *)mp->b_rptr; 11947 len = mp->b_wptr - mp->b_rptr; 11948 } 11949 11950 /* 11951 * Extract the offset field from the TCP header. As usual, we 11952 * try to help the compiler more than the reader. 11953 */ 11954 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 11955 if (offset != 5) { 11956 tcpoptions: 11957 if (offset < 5) { 11958 BUMP_MIB(&ip_mib, ipInDiscards); 11959 goto error; 11960 } 11961 /* 11962 * There must be TCP options. 11963 * Make sure we can grab them. 11964 */ 11965 offset <<= 2; 11966 offset += u1; 11967 if (len < offset) { 11968 if (!pullupmsg(mp, offset)) { 11969 BUMP_MIB(&ip_mib, ipInDiscards); 11970 goto error; 11971 } 11972 ipha = (ipha_t *)mp->b_rptr; 11973 len = mp->b_wptr - rptr; 11974 } 11975 } 11976 11977 /* Get the total packet length in len, including headers. */ 11978 if (mp->b_cont) { 11979 multipkttcp: 11980 len = msgdsize(mp); 11981 } 11982 11983 /* 11984 * Check the TCP checksum by pulling together the pseudo- 11985 * header checksum, and passing it to ip_csum to be added in 11986 * with the TCP datagram. 11987 * 11988 * Since we are not using the hwcksum if available we must 11989 * clear the flag. We may come here via tcppullup or tcpoptions. 11990 * If either of these fails along the way the mblk is freed. 11991 * If this logic ever changes and mblk is reused to say send 11992 * ICMP's back, then this flag may need to be cleared in 11993 * other places as well. 11994 */ 11995 DB_CKSUMFLAGS(mp) = 0; 11996 11997 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 11998 11999 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 12000 #ifdef _BIG_ENDIAN 12001 u1 += IPPROTO_TCP; 12002 #else 12003 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12004 #endif 12005 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12006 /* 12007 * Not M_DATA mblk or its a dup, so do the checksum now. 12008 */ 12009 IP_STAT(ip_in_sw_cksum); 12010 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 12011 BUMP_MIB(&ip_mib, tcpInErrs); 12012 goto error; 12013 } 12014 12015 IP_STAT(ip_tcp_slow_path); 12016 goto try_again; 12017 #undef iphs 12018 #undef rptr 12019 12020 error: 12021 freemsg(first_mp); 12022 slow_done: 12023 return (NULL); 12024 } 12025 12026 /* ARGSUSED */ 12027 static void 12028 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12029 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 12030 { 12031 conn_t *connp; 12032 uint32_t sum; 12033 uint32_t u1; 12034 ssize_t len; 12035 sctp_hdr_t *sctph; 12036 zoneid_t zoneid = ire->ire_zoneid; 12037 uint32_t pktsum; 12038 uint32_t calcsum; 12039 uint32_t ports; 12040 uint_t ipif_seqid; 12041 in6_addr_t map_src, map_dst; 12042 ill_t *ill = (ill_t *)q->q_ptr; 12043 12044 #define rptr ((uchar_t *)ipha) 12045 12046 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 12047 12048 /* u1 is # words of IP options */ 12049 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12050 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12051 12052 /* IP options present */ 12053 if (u1 > 0) { 12054 goto ipoptions; 12055 } else { 12056 /* Check the IP header checksum. */ 12057 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12058 /* 12059 * Since there is no SCTP h/w cksum support yet, just 12060 * clear the flag. 12061 */ 12062 DB_CKSUMFLAGS(mp) = 0; 12063 } else { 12064 #define uph ((uint16_t *)ipha) 12065 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12066 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12067 #undef uph 12068 /* finish doing IP checksum */ 12069 sum = (sum & 0xFFFF) + (sum >> 16); 12070 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12071 /* 12072 * Don't verify header checksum if this packet 12073 * is coming back from AH/ESP as we already did it. 12074 */ 12075 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12076 BUMP_MIB(&ip_mib, ipInCksumErrs); 12077 goto error; 12078 } 12079 } 12080 } 12081 12082 /* 12083 * Don't verify header checksum if this packet is coming 12084 * back from AH/ESP as we already did it. 12085 */ 12086 if (!mctl_present) { 12087 UPDATE_IB_PKT_COUNT(ire); 12088 ire->ire_last_used_time = lbolt; 12089 } 12090 12091 /* packet part of fragmented IP packet? */ 12092 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12093 if (u1 & (IPH_MF | IPH_OFFSET)) 12094 goto fragmented; 12095 12096 /* u1 = IP header length (20 bytes) */ 12097 u1 = IP_SIMPLE_HDR_LENGTH; 12098 12099 find_sctp_client: 12100 /* Pullup if we don't have the sctp common header. */ 12101 len = MBLKL(mp); 12102 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 12103 if (mp->b_cont == NULL || 12104 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 12105 BUMP_MIB(&ip_mib, ipInDiscards); 12106 goto error; 12107 } 12108 ipha = (ipha_t *)mp->b_rptr; 12109 len = MBLKL(mp); 12110 } 12111 12112 sctph = (sctp_hdr_t *)(rptr + u1); 12113 #ifdef DEBUG 12114 if (!skip_sctp_cksum) { 12115 #endif 12116 pktsum = sctph->sh_chksum; 12117 sctph->sh_chksum = 0; 12118 calcsum = sctp_cksum(mp, u1); 12119 if (calcsum != pktsum) { 12120 BUMP_MIB(&sctp_mib, sctpChecksumError); 12121 goto error; 12122 } 12123 sctph->sh_chksum = pktsum; 12124 #ifdef DEBUG /* skip_sctp_cksum */ 12125 } 12126 #endif 12127 /* get the ports */ 12128 ports = *(uint32_t *)&sctph->sh_sport; 12129 12130 ipif_seqid = ire->ire_ipif->ipif_seqid; 12131 IRE_REFRELE(ire); 12132 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12133 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12134 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, ipif_seqid, 12135 zoneid)) == NULL) { 12136 /* Check for raw socket or OOTB handling */ 12137 goto no_conn; 12138 } 12139 12140 /* Found a client; up it goes */ 12141 BUMP_MIB(&ip_mib, ipInDelivers); 12142 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12143 return; 12144 12145 no_conn: 12146 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12147 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12148 return; 12149 12150 ipoptions: 12151 DB_CKSUMFLAGS(mp) = 0; 12152 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12153 goto slow_done; 12154 12155 UPDATE_IB_PKT_COUNT(ire); 12156 ire->ire_last_used_time = lbolt; 12157 12158 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12159 if (u1 & (IPH_MF | IPH_OFFSET)) { 12160 fragmented: 12161 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 12162 goto slow_done; 12163 /* 12164 * Make sure that first_mp points back to mp as 12165 * the mp we came in with could have changed in 12166 * ip_rput_fragment(). 12167 */ 12168 ASSERT(!mctl_present); 12169 ipha = (ipha_t *)mp->b_rptr; 12170 first_mp = mp; 12171 } 12172 12173 /* Now we have a complete datagram, destined for this machine. */ 12174 u1 = IPH_HDR_LENGTH(ipha); 12175 goto find_sctp_client; 12176 #undef iphs 12177 #undef rptr 12178 12179 error: 12180 freemsg(first_mp); 12181 slow_done: 12182 IRE_REFRELE(ire); 12183 } 12184 12185 #define VER_BITS 0xF0 12186 #define VERSION_6 0x60 12187 12188 static boolean_t 12189 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12190 ipaddr_t *dstp) 12191 { 12192 uint_t opt_len; 12193 ipha_t *ipha; 12194 ssize_t len; 12195 uint_t pkt_len; 12196 12197 IP_STAT(ip_ipoptions); 12198 ipha = *iphapp; 12199 12200 #define rptr ((uchar_t *)ipha) 12201 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12202 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12203 BUMP_MIB(&ip_mib, ipInIPv6); 12204 freemsg(mp); 12205 return (B_FALSE); 12206 } 12207 12208 /* multiple mblk or too short */ 12209 pkt_len = ntohs(ipha->ipha_length); 12210 12211 /* Get the number of words of IP options in the IP header. */ 12212 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12213 if (opt_len) { 12214 /* IP Options present! Validate and process. */ 12215 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12216 BUMP_MIB(&ip_mib, ipInHdrErrors); 12217 goto done; 12218 } 12219 /* 12220 * Recompute complete header length and make sure we 12221 * have access to all of it. 12222 */ 12223 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12224 if (len > (mp->b_wptr - rptr)) { 12225 if (len > pkt_len) { 12226 BUMP_MIB(&ip_mib, ipInHdrErrors); 12227 goto done; 12228 } 12229 if (!pullupmsg(mp, len)) { 12230 BUMP_MIB(&ip_mib, ipInDiscards); 12231 goto done; 12232 } 12233 ipha = (ipha_t *)mp->b_rptr; 12234 } 12235 /* 12236 * Go off to ip_rput_options which returns the next hop 12237 * destination address, which may have been affected 12238 * by source routing. 12239 */ 12240 IP_STAT(ip_opt); 12241 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12242 return (B_FALSE); 12243 } 12244 } 12245 *iphapp = ipha; 12246 return (B_TRUE); 12247 done: 12248 /* clear b_prev - used by ip_mroute_decap */ 12249 mp->b_prev = NULL; 12250 freemsg(mp); 12251 return (B_FALSE); 12252 #undef rptr 12253 } 12254 12255 /* 12256 * Deal with the fact that there is no ire for the destination. 12257 * The incoming ill (in_ill) is passed in to ip_newroute only 12258 * in the case of packets coming from mobile ip forward tunnel. 12259 * It must be null otherwise. 12260 */ 12261 static void 12262 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12263 ipaddr_t dst) 12264 { 12265 ipha_t *ipha; 12266 ill_t *ill; 12267 12268 ipha = (ipha_t *)mp->b_rptr; 12269 ill = (ill_t *)q->q_ptr; 12270 12271 ASSERT(ill != NULL); 12272 /* 12273 * No IRE for this destination, so it can't be for us. 12274 * Unless we are forwarding, drop the packet. 12275 * We have to let source routed packets through 12276 * since we don't yet know if they are 'ping -l' 12277 * packets i.e. if they will go out over the 12278 * same interface as they came in on. 12279 */ 12280 if (ll_multicast) { 12281 freemsg(mp); 12282 return; 12283 } 12284 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12285 BUMP_MIB(&ip_mib, ipForwProhibits); 12286 freemsg(mp); 12287 return; 12288 } 12289 12290 /* Check for Martian addresses */ 12291 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12292 freemsg(mp); 12293 return; 12294 } 12295 12296 /* Mark this packet as having originated externally */ 12297 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12298 12299 /* 12300 * Clear the indication that this may have a hardware checksum 12301 * as we are not using it 12302 */ 12303 DB_CKSUMFLAGS(mp) = 0; 12304 12305 /* 12306 * Now hand the packet to ip_newroute. 12307 */ 12308 ip_newroute(q, mp, dst, in_ill, NULL); 12309 } 12310 12311 /* 12312 * check ip header length and align it. 12313 */ 12314 static boolean_t 12315 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12316 { 12317 ssize_t len; 12318 ill_t *ill; 12319 ipha_t *ipha; 12320 12321 len = MBLKL(mp); 12322 12323 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12324 if (!OK_32PTR(mp->b_rptr)) 12325 IP_STAT(ip_notaligned1); 12326 else 12327 IP_STAT(ip_notaligned2); 12328 /* Guard against bogus device drivers */ 12329 if (len < 0) { 12330 /* clear b_prev - used by ip_mroute_decap */ 12331 mp->b_prev = NULL; 12332 BUMP_MIB(&ip_mib, ipInHdrErrors); 12333 freemsg(mp); 12334 return (B_FALSE); 12335 } 12336 12337 if (ip_rput_pullups++ == 0) { 12338 ill = (ill_t *)q->q_ptr; 12339 ipha = (ipha_t *)mp->b_rptr; 12340 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12341 "ip_check_and_align_header: %s forced us to " 12342 " pullup pkt, hdr len %ld, hdr addr %p", 12343 ill->ill_name, len, ipha); 12344 } 12345 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12346 /* clear b_prev - used by ip_mroute_decap */ 12347 mp->b_prev = NULL; 12348 BUMP_MIB(&ip_mib, ipInDiscards); 12349 freemsg(mp); 12350 return (B_FALSE); 12351 } 12352 } 12353 return (B_TRUE); 12354 } 12355 12356 static boolean_t 12357 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12358 { 12359 ill_group_t *ill_group; 12360 ill_group_t *ire_group; 12361 queue_t *q; 12362 ill_t *ire_ill; 12363 uint_t ill_ifindex; 12364 12365 q = *qp; 12366 /* 12367 * We need to check to make sure the packet came in 12368 * on the queue associated with the destination IRE. 12369 * Note that for multicast packets and broadcast packets sent to 12370 * a broadcast address which is shared between multiple interfaces 12371 * we should not do this since we just got a random broadcast ire. 12372 */ 12373 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 12374 boolean_t check_multi = B_TRUE; 12375 12376 /* 12377 * This packet came in on an interface other than the 12378 * one associated with the destination address. 12379 * "Gateway" it to the appropriate interface here. 12380 * As long as the ills belong to the same group, 12381 * we don't consider them to arriving on the wrong 12382 * interface. Thus, when the switch is doing inbound 12383 * load spreading, we won't drop packets when we 12384 * are doing strict multihoming checks. Note, the 12385 * same holds true for 'usesrc groups' where the 12386 * destination address may belong to another interface 12387 * to allow multipathing to happen 12388 */ 12389 ill_group = ill->ill_group; 12390 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 12391 ill_ifindex = ill->ill_usesrc_ifindex; 12392 ire_group = ire_ill->ill_group; 12393 12394 /* 12395 * If it's part of the same IPMP group, or if it's a legal 12396 * address on the 'usesrc' interface, then bypass strict 12397 * checks. 12398 */ 12399 if (ill_group != NULL && ill_group == ire_group) { 12400 check_multi = B_FALSE; 12401 } else if (ill_ifindex != 0 && 12402 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 12403 check_multi = B_FALSE; 12404 } 12405 12406 if (check_multi && 12407 ip_strict_dst_multihoming && 12408 ((ill->ill_flags & 12409 ire->ire_ipif->ipif_ill->ill_flags & 12410 ILLF_ROUTER) == 0)) { 12411 /* Drop packet */ 12412 BUMP_MIB(&ip_mib, ipForwProhibits); 12413 freemsg(mp); 12414 ire_refrele(ire); 12415 return (B_TRUE); 12416 } 12417 12418 /* 12419 * Change the queue (for non-virtual destination network 12420 * interfaces) and ip_rput_local will be called with the right 12421 * queue 12422 */ 12423 q = ire->ire_rfq; 12424 } 12425 /* Must be broadcast. We'll take it. */ 12426 *qp = q; 12427 return (B_FALSE); 12428 } 12429 12430 static void 12431 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 12432 ill_t *ill, int ll_multicast) 12433 { 12434 ill_group_t *ill_group; 12435 ill_group_t *ire_group; 12436 queue_t *dev_q; 12437 12438 ASSERT(ire->ire_stq != NULL); 12439 if (ll_multicast != 0) 12440 goto drop_pkt; 12441 12442 if (ip_no_forward(ipha, ill)) 12443 goto drop_pkt; 12444 12445 ill_group = ill->ill_group; 12446 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 12447 /* 12448 * Check if we want to forward this one at this time. 12449 * We allow source routed packets on a host provided that 12450 * they go out the same interface or same interface group 12451 * as they came in on. 12452 * 12453 * XXX To be quicker, we may wish to not chase pointers to 12454 * get the ILLF_ROUTER flag and instead store the 12455 * forwarding policy in the ire. An unfortunate 12456 * side-effect of that would be requiring an ire flush 12457 * whenever the ILLF_ROUTER flag changes. 12458 */ 12459 if (((ill->ill_flags & 12460 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 12461 ILLF_ROUTER) == 0) && 12462 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 12463 (ill_group != NULL && ill_group == ire_group)))) { 12464 BUMP_MIB(&ip_mib, ipForwProhibits); 12465 if (ip_source_routed(ipha)) { 12466 q = WR(q); 12467 /* 12468 * Clear the indication that this may have 12469 * hardware checksum as we are not using it. 12470 */ 12471 DB_CKSUMFLAGS(mp) = 0; 12472 icmp_unreachable(q, mp, 12473 ICMP_SOURCE_ROUTE_FAILED); 12474 ire_refrele(ire); 12475 return; 12476 } 12477 goto drop_pkt; 12478 } 12479 12480 /* Packet is being forwarded. Turning off hwcksum flag. */ 12481 DB_CKSUMFLAGS(mp) = 0; 12482 if (ip_g_send_redirects) { 12483 /* 12484 * Check whether the incoming interface and outgoing 12485 * interface is part of the same group. If so, 12486 * send redirects. 12487 * 12488 * Check the source address to see if it originated 12489 * on the same logical subnet it is going back out on. 12490 * If so, we should be able to send it a redirect. 12491 * Avoid sending a redirect if the destination 12492 * is directly connected (gw_addr == 0), 12493 * or if the packet was source routed out this 12494 * interface. 12495 */ 12496 ipaddr_t src; 12497 mblk_t *mp1; 12498 ire_t *src_ire = NULL; 12499 12500 /* 12501 * Check whether ire_rfq and q are from the same ill 12502 * or if they are not same, they at least belong 12503 * to the same group. If so, send redirects. 12504 */ 12505 if ((ire->ire_rfq == q || 12506 (ill_group != NULL && ill_group == ire_group)) && 12507 (ire->ire_gateway_addr != 0) && 12508 !ip_source_routed(ipha)) { 12509 12510 src = ipha->ipha_src; 12511 src_ire = ire_ftable_lookup(src, 0, 0, 12512 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 12513 0, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 12514 12515 if (src_ire != NULL) { 12516 /* 12517 * The source is directly connected. 12518 * Just copy the ip header (which is 12519 * in the first mblk) 12520 */ 12521 mp1 = copyb(mp); 12522 if (mp1 != NULL) { 12523 icmp_send_redirect(WR(q), mp1, 12524 ire->ire_gateway_addr); 12525 } 12526 ire_refrele(src_ire); 12527 } 12528 } 12529 } 12530 12531 dev_q = ire->ire_stq->q_next; 12532 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 12533 BUMP_MIB(&ip_mib, ipInDiscards); 12534 freemsg(mp); 12535 ire_refrele(ire); 12536 return; 12537 } 12538 12539 ip_rput_forward(ire, ipha, mp, ill); 12540 IRE_REFRELE(ire); 12541 return; 12542 12543 drop_pkt: 12544 ire_refrele(ire); 12545 ip2dbg(("ip_rput_forward: drop pkt\n")); 12546 freemsg(mp); 12547 } 12548 12549 static boolean_t 12550 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 12551 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 12552 { 12553 queue_t *q; 12554 ire_t *ire; 12555 uint16_t hcksumflags; 12556 12557 q = *qp; 12558 ire = *irep; 12559 12560 /* 12561 * Clear the indication that this may have hardware 12562 * checksum as we are not using it for forwarding. 12563 */ 12564 hcksumflags = DB_CKSUMFLAGS(mp); 12565 DB_CKSUMFLAGS(mp) = 0; 12566 12567 /* 12568 * Directed broadcast forwarding: if the packet came in over a 12569 * different interface then it is routed out over we can forward it. 12570 */ 12571 if (ipha->ipha_protocol == IPPROTO_TCP) { 12572 ire_refrele(ire); 12573 freemsg(mp); 12574 BUMP_MIB(&ip_mib, ipInDiscards); 12575 return (B_TRUE); 12576 } 12577 /* 12578 * For multicast we have set dst to be INADDR_BROADCAST 12579 * for delivering to all STREAMS. IRE_MARK_NORECV is really 12580 * only for broadcast packets. 12581 */ 12582 if (!CLASSD(ipha->ipha_dst)) { 12583 ire_t *new_ire; 12584 ipif_t *ipif; 12585 /* 12586 * For ill groups, as the switch duplicates broadcasts 12587 * across all the ports, we need to filter out and 12588 * send up only one copy. There is one copy for every 12589 * broadcast address on each ill. Thus, we look for a 12590 * specific IRE on this ill and look at IRE_MARK_NORECV 12591 * later to see whether this ill is eligible to receive 12592 * them or not. ill_nominate_bcast_rcv() nominates only 12593 * one set of IREs for receiving. 12594 */ 12595 12596 ipif = ipif_get_next_ipif(NULL, ill); 12597 if (ipif == NULL) { 12598 ire_refrele(ire); 12599 freemsg(mp); 12600 BUMP_MIB(&ip_mib, ipInDiscards); 12601 return (B_TRUE); 12602 } 12603 new_ire = ire_ctable_lookup(dst, 0, 0, 12604 ipif, ALL_ZONES, MATCH_IRE_ILL); 12605 ipif_refrele(ipif); 12606 12607 if (new_ire != NULL) { 12608 if (new_ire->ire_marks & IRE_MARK_NORECV) { 12609 ire_refrele(ire); 12610 ire_refrele(new_ire); 12611 freemsg(mp); 12612 BUMP_MIB(&ip_mib, ipInDiscards); 12613 return (B_TRUE); 12614 } 12615 /* 12616 * In the special case of multirouted broadcast 12617 * packets, we unconditionally need to "gateway" 12618 * them to the appropriate interface here. 12619 * In the normal case, this cannot happen, because 12620 * there is no broadcast IRE tagged with the 12621 * RTF_MULTIRT flag. 12622 */ 12623 if (new_ire->ire_flags & RTF_MULTIRT) { 12624 ire_refrele(new_ire); 12625 if (ire->ire_rfq != NULL) { 12626 q = ire->ire_rfq; 12627 *qp = q; 12628 } 12629 } else { 12630 ire_refrele(ire); 12631 ire = new_ire; 12632 } 12633 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 12634 if (!ip_g_forward_directed_bcast) { 12635 /* 12636 * Free the message if 12637 * ip_g_forward_directed_bcast is turned 12638 * off for non-local broadcast. 12639 */ 12640 ire_refrele(ire); 12641 freemsg(mp); 12642 BUMP_MIB(&ip_mib, ipInDiscards); 12643 return (B_TRUE); 12644 } 12645 } else { 12646 /* 12647 * This CGTP packet successfully passed the 12648 * CGTP filter, but the related CGTP 12649 * broadcast IRE has not been found, 12650 * meaning that the redundant ipif is 12651 * probably down. However, if we discarded 12652 * this packet, its duplicate would be 12653 * filtered out by the CGTP filter so none 12654 * of them would get through. So we keep 12655 * going with this one. 12656 */ 12657 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 12658 if (ire->ire_rfq != NULL) { 12659 q = ire->ire_rfq; 12660 *qp = q; 12661 } 12662 } 12663 } 12664 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 12665 /* 12666 * Verify that there are not more then one 12667 * IRE_BROADCAST with this broadcast address which 12668 * has ire_stq set. 12669 * TODO: simplify, loop over all IRE's 12670 */ 12671 ire_t *ire1; 12672 int num_stq = 0; 12673 mblk_t *mp1; 12674 12675 /* Find the first one with ire_stq set */ 12676 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 12677 for (ire1 = ire; ire1 && 12678 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 12679 ire1 = ire1->ire_next) 12680 ; 12681 if (ire1) { 12682 ire_refrele(ire); 12683 ire = ire1; 12684 IRE_REFHOLD(ire); 12685 } 12686 12687 /* Check if there are additional ones with stq set */ 12688 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 12689 if (ire->ire_addr != ire1->ire_addr) 12690 break; 12691 if (ire1->ire_stq) { 12692 num_stq++; 12693 break; 12694 } 12695 } 12696 rw_exit(&ire->ire_bucket->irb_lock); 12697 if (num_stq == 1 && ire->ire_stq != NULL) { 12698 ip1dbg(("ip_rput_process_broadcast: directed " 12699 "broadcast to 0x%x\n", 12700 ntohl(ire->ire_addr))); 12701 mp1 = copymsg(mp); 12702 if (mp1) { 12703 switch (ipha->ipha_protocol) { 12704 case IPPROTO_UDP: 12705 ip_udp_input(q, mp1, ipha, ire, ill); 12706 break; 12707 default: 12708 ip_proto_input(q, mp1, ipha, ire, ill); 12709 break; 12710 } 12711 } 12712 /* 12713 * Adjust ttl to 2 (1+1 - the forward engine 12714 * will decrement it by one. 12715 */ 12716 if (ip_csum_hdr(ipha)) { 12717 BUMP_MIB(&ip_mib, ipInCksumErrs); 12718 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 12719 freemsg(mp); 12720 ire_refrele(ire); 12721 return (B_TRUE); 12722 } 12723 ipha->ipha_ttl = ip_broadcast_ttl + 1; 12724 ipha->ipha_hdr_checksum = 0; 12725 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 12726 ip_rput_process_forward(q, mp, ire, ipha, 12727 ill, ll_multicast); 12728 return (B_TRUE); 12729 } 12730 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 12731 ntohl(ire->ire_addr))); 12732 } 12733 12734 *irep = ire; 12735 12736 /* Restore any hardware checksum flags */ 12737 DB_CKSUMFLAGS(mp) = hcksumflags; 12738 return (B_FALSE); 12739 } 12740 12741 /* ARGSUSED */ 12742 static boolean_t 12743 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 12744 int *ll_multicast, ipaddr_t *dstp) 12745 { 12746 /* 12747 * Forward packets only if we have joined the allmulti 12748 * group on this interface. 12749 */ 12750 if (ip_g_mrouter && ill->ill_join_allmulti) { 12751 int retval; 12752 12753 /* 12754 * Clear the indication that this may have hardware 12755 * checksum as we are not using it. 12756 */ 12757 DB_CKSUMFLAGS(mp) = 0; 12758 retval = ip_mforward(ill, ipha, mp); 12759 /* ip_mforward updates mib variables if needed */ 12760 /* clear b_prev - used by ip_mroute_decap */ 12761 mp->b_prev = NULL; 12762 12763 switch (retval) { 12764 case 0: 12765 /* 12766 * pkt is okay and arrived on phyint. 12767 * 12768 * If we are running as a multicast router 12769 * we need to see all IGMP and/or PIM packets. 12770 */ 12771 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 12772 (ipha->ipha_protocol == IPPROTO_PIM)) { 12773 goto done; 12774 } 12775 break; 12776 case -1: 12777 /* pkt is mal-formed, toss it */ 12778 goto drop_pkt; 12779 case 1: 12780 /* pkt is okay and arrived on a tunnel */ 12781 /* 12782 * If we are running a multicast router 12783 * we need to see all igmp packets. 12784 */ 12785 if (ipha->ipha_protocol == IPPROTO_IGMP) { 12786 *dstp = INADDR_BROADCAST; 12787 *ll_multicast = 1; 12788 return (B_FALSE); 12789 } 12790 12791 goto drop_pkt; 12792 } 12793 } 12794 12795 ILM_WALKER_HOLD(ill); 12796 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 12797 /* 12798 * This might just be caused by the fact that 12799 * multiple IP Multicast addresses map to the same 12800 * link layer multicast - no need to increment counter! 12801 */ 12802 ILM_WALKER_RELE(ill); 12803 freemsg(mp); 12804 return (B_TRUE); 12805 } 12806 ILM_WALKER_RELE(ill); 12807 done: 12808 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 12809 /* 12810 * This assumes the we deliver to all streams for multicast 12811 * and broadcast packets. 12812 */ 12813 *dstp = INADDR_BROADCAST; 12814 *ll_multicast = 1; 12815 return (B_FALSE); 12816 drop_pkt: 12817 ip2dbg(("ip_rput: drop pkt\n")); 12818 freemsg(mp); 12819 return (B_TRUE); 12820 } 12821 12822 static boolean_t 12823 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 12824 int *ll_multicast, mblk_t **mpp) 12825 { 12826 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 12827 boolean_t must_copy = B_FALSE; 12828 struct iocblk *iocp; 12829 ipha_t *ipha; 12830 12831 #define rptr ((uchar_t *)ipha) 12832 12833 first_mp = *first_mpp; 12834 mp = *mpp; 12835 12836 ASSERT(first_mp == mp); 12837 12838 /* 12839 * if db_ref > 1 then copymsg and free original. Packet may be 12840 * changed and do not want other entity who has a reference to this 12841 * message to trip over the changes. This is a blind change because 12842 * trying to catch all places that might change packet is too 12843 * difficult (since it may be a module above this one) 12844 * 12845 * This corresponds to the non-fast path case. We walk down the full 12846 * chain in this case, and check the db_ref count of all the dblks, 12847 * and do a copymsg if required. It is possible that the db_ref counts 12848 * of the data blocks in the mblk chain can be different. 12849 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 12850 * count of 1, followed by a M_DATA block with a ref count of 2, if 12851 * 'snoop' is running. 12852 */ 12853 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 12854 if (mp1->b_datap->db_ref > 1) { 12855 must_copy = B_TRUE; 12856 break; 12857 } 12858 } 12859 12860 if (must_copy) { 12861 mp1 = copymsg(mp); 12862 if (mp1 == NULL) { 12863 for (mp1 = mp; mp1 != NULL; 12864 mp1 = mp1->b_cont) { 12865 mp1->b_next = NULL; 12866 mp1->b_prev = NULL; 12867 } 12868 freemsg(mp); 12869 BUMP_MIB(&ip_mib, ipInDiscards); 12870 return (B_TRUE); 12871 } 12872 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 12873 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 12874 /* Copy b_next - used in M_BREAK messages */ 12875 to_mp->b_next = from_mp->b_next; 12876 from_mp->b_next = NULL; 12877 /* Copy b_prev - used by ip_mroute_decap */ 12878 to_mp->b_prev = from_mp->b_prev; 12879 from_mp->b_prev = NULL; 12880 } 12881 *first_mpp = first_mp = mp1; 12882 freemsg(mp); 12883 mp = mp1; 12884 *mpp = mp1; 12885 } 12886 12887 ipha = (ipha_t *)mp->b_rptr; 12888 12889 /* 12890 * previous code has a case for M_DATA. 12891 * We want to check how that happens. 12892 */ 12893 ASSERT(first_mp->b_datap->db_type != M_DATA); 12894 switch (first_mp->b_datap->db_type) { 12895 case M_PROTO: 12896 case M_PCPROTO: 12897 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 12898 DL_UNITDATA_IND) { 12899 /* Go handle anything other than data elsewhere. */ 12900 ip_rput_dlpi(q, mp); 12901 return (B_TRUE); 12902 } 12903 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 12904 /* Ditch the DLPI header. */ 12905 mp1 = mp->b_cont; 12906 ASSERT(first_mp == mp); 12907 *first_mpp = mp1; 12908 freeb(mp); 12909 *mpp = mp1; 12910 return (B_FALSE); 12911 case M_BREAK: 12912 /* 12913 * A packet arrives as M_BREAK following a cycle through 12914 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 12915 * This is an IP datagram sans lower level header. 12916 * M_BREAK are also used to pass back in multicast packets 12917 * that are encapsulated with a source route. 12918 */ 12919 /* Ditch the M_BREAK mblk */ 12920 mp1 = mp->b_cont; 12921 ASSERT(first_mp == mp); 12922 *first_mpp = mp1; 12923 freeb(mp); 12924 mp = mp1; 12925 mp->b_next = NULL; 12926 *mpp = mp; 12927 *ll_multicast = 0; 12928 return (B_FALSE); 12929 case M_IOCACK: 12930 ip1dbg(("got iocack ")); 12931 iocp = (struct iocblk *)mp->b_rptr; 12932 switch (iocp->ioc_cmd) { 12933 case DL_IOC_HDR_INFO: 12934 ill = (ill_t *)q->q_ptr; 12935 ill_fastpath_ack(ill, mp); 12936 return (B_TRUE); 12937 case SIOCSTUNPARAM: 12938 case OSIOCSTUNPARAM: 12939 /* Go through qwriter_ip */ 12940 break; 12941 case SIOCGTUNPARAM: 12942 case OSIOCGTUNPARAM: 12943 ip_rput_other(NULL, q, mp, NULL); 12944 return (B_TRUE); 12945 default: 12946 putnext(q, mp); 12947 return (B_TRUE); 12948 } 12949 /* FALLTHRU */ 12950 case M_ERROR: 12951 case M_HANGUP: 12952 /* 12953 * Since this is on the ill stream we unconditionally 12954 * bump up the refcount 12955 */ 12956 ill_refhold(ill); 12957 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 12958 B_FALSE); 12959 return (B_TRUE); 12960 case M_CTL: 12961 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 12962 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 12963 IPHADA_M_CTL)) { 12964 /* 12965 * It's an IPsec accelerated packet. 12966 * Make sure that the ill from which we received the 12967 * packet has enabled IPsec hardware acceleration. 12968 */ 12969 if (!(ill->ill_capabilities & 12970 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 12971 /* IPsec kstats: bean counter */ 12972 freemsg(mp); 12973 return (B_TRUE); 12974 } 12975 12976 /* 12977 * Make mp point to the mblk following the M_CTL, 12978 * then process according to type of mp. 12979 * After this processing, first_mp will point to 12980 * the data-attributes and mp to the pkt following 12981 * the M_CTL. 12982 */ 12983 mp = first_mp->b_cont; 12984 if (mp == NULL) { 12985 freemsg(first_mp); 12986 return (B_TRUE); 12987 } 12988 /* 12989 * A Hardware Accelerated packet can only be M_DATA 12990 * ESP or AH packet. 12991 */ 12992 if (mp->b_datap->db_type != M_DATA) { 12993 /* non-M_DATA IPsec accelerated packet */ 12994 IPSECHW_DEBUG(IPSECHW_PKT, 12995 ("non-M_DATA IPsec accelerated pkt\n")); 12996 freemsg(first_mp); 12997 return (B_TRUE); 12998 } 12999 ipha = (ipha_t *)mp->b_rptr; 13000 if (ipha->ipha_protocol != IPPROTO_AH && 13001 ipha->ipha_protocol != IPPROTO_ESP) { 13002 IPSECHW_DEBUG(IPSECHW_PKT, 13003 ("non-M_DATA IPsec accelerated pkt\n")); 13004 freemsg(first_mp); 13005 return (B_TRUE); 13006 } 13007 *mpp = mp; 13008 return (B_FALSE); 13009 } 13010 putnext(q, mp); 13011 return (B_TRUE); 13012 case M_FLUSH: 13013 if (*mp->b_rptr & FLUSHW) { 13014 *mp->b_rptr &= ~FLUSHR; 13015 qreply(q, mp); 13016 return (B_TRUE); 13017 } 13018 freemsg(mp); 13019 return (B_TRUE); 13020 case M_IOCNAK: 13021 ip1dbg(("got iocnak ")); 13022 iocp = (struct iocblk *)mp->b_rptr; 13023 switch (iocp->ioc_cmd) { 13024 case DL_IOC_HDR_INFO: 13025 case SIOCSTUNPARAM: 13026 case OSIOCSTUNPARAM: 13027 /* 13028 * Since this is on the ill stream we unconditionally 13029 * bump up the refcount 13030 */ 13031 ill_refhold(ill); 13032 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 13033 CUR_OP, B_FALSE); 13034 return (B_TRUE); 13035 case SIOCGTUNPARAM: 13036 case OSIOCGTUNPARAM: 13037 ip_rput_other(NULL, q, mp, NULL); 13038 return (B_TRUE); 13039 default: 13040 break; 13041 } 13042 /* FALLTHRU */ 13043 default: 13044 putnext(q, mp); 13045 return (B_TRUE); 13046 } 13047 } 13048 13049 /* Read side put procedure. Packets coming from the wire arrive here. */ 13050 void 13051 ip_rput(queue_t *q, mblk_t *mp) 13052 { 13053 ill_t *ill; 13054 13055 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 13056 13057 ill = (ill_t *)q->q_ptr; 13058 13059 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 13060 union DL_primitives *dl; 13061 13062 /* 13063 * Things are opening or closing. Only accept DLPI control 13064 * messages. In the open case, the ill->ill_ipif has not yet 13065 * been created. In the close case, things hanging off the 13066 * ill could have been freed already. In either case it 13067 * may not be safe to proceed further. 13068 */ 13069 13070 dl = (union DL_primitives *)mp->b_rptr; 13071 if ((mp->b_datap->db_type != M_PCPROTO) || 13072 (dl->dl_primitive == DL_UNITDATA_IND)) { 13073 /* 13074 * Also SIOC[GS]TUN* ioctls can come here. 13075 */ 13076 inet_freemsg(mp); 13077 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13078 "ip_input_end: q %p (%S)", q, "uninit"); 13079 return; 13080 } 13081 } 13082 13083 /* 13084 * if db_ref > 1 then copymsg and free original. Packet may be 13085 * changed and we do not want the other entity who has a reference to 13086 * this message to trip over the changes. This is a blind change because 13087 * trying to catch all places that might change the packet is too 13088 * difficult. 13089 * 13090 * This corresponds to the fast path case, where we have a chain of 13091 * M_DATA mblks. We check the db_ref count of only the 1st data block 13092 * in the mblk chain. There doesn't seem to be a reason why a device 13093 * driver would send up data with varying db_ref counts in the mblk 13094 * chain. In any case the Fast path is a private interface, and our 13095 * drivers don't do such a thing. Given the above assumption, there is 13096 * no need to walk down the entire mblk chain (which could have a 13097 * potential performance problem) 13098 */ 13099 if (mp->b_datap->db_ref > 1) { 13100 mblk_t *mp1; 13101 boolean_t adjusted = B_FALSE; 13102 IP_STAT(ip_db_ref); 13103 13104 /* 13105 * The IP_RECVSLLA option depends on having the link layer 13106 * header. First check that: 13107 * a> the underlying device is of type ether, since this 13108 * option is currently supported only over ethernet. 13109 * b> there is enough room to copy over the link layer header. 13110 * 13111 * Once the checks are done, adjust rptr so that the link layer 13112 * header will be copied via copymsg. Note that, IFT_ETHER may 13113 * be returned by some non-ethernet drivers but in this case the 13114 * second check will fail. 13115 */ 13116 if (ill->ill_type == IFT_ETHER && 13117 (mp->b_rptr - mp->b_datap->db_base) >= 13118 sizeof (struct ether_header)) { 13119 mp->b_rptr -= sizeof (struct ether_header); 13120 adjusted = B_TRUE; 13121 } 13122 mp1 = copymsg(mp); 13123 if (mp1 == NULL) { 13124 /* Clear b_next - used in M_BREAK messages */ 13125 mp->b_next = NULL; 13126 /* clear b_prev - used by ip_mroute_decap */ 13127 mp->b_prev = NULL; 13128 freemsg(mp); 13129 BUMP_MIB(&ip_mib, ipInDiscards); 13130 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13131 "ip_rput_end: q %p (%S)", q, "copymsg"); 13132 return; 13133 } 13134 if (adjusted) { 13135 /* 13136 * Copy is done. Restore the pointer in the _new_ mblk 13137 */ 13138 mp1->b_rptr += sizeof (struct ether_header); 13139 } 13140 /* Copy b_next - used in M_BREAK messages */ 13141 mp1->b_next = mp->b_next; 13142 mp->b_next = NULL; 13143 /* Copy b_prev - used by ip_mroute_decap */ 13144 mp1->b_prev = mp->b_prev; 13145 mp->b_prev = NULL; 13146 freemsg(mp); 13147 mp = mp1; 13148 } 13149 13150 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13151 "ip_rput_end: q %p (%S)", q, "end"); 13152 13153 ip_input(ill, NULL, mp, 0); 13154 } 13155 13156 /* 13157 * Direct read side procedure capable of dealing with chains. GLDv3 based 13158 * drivers call this function directly with mblk chains while STREAMS 13159 * read side procedure ip_rput() calls this for single packet with ip_ring 13160 * set to NULL to process one packet at a time. 13161 * 13162 * The ill will always be valid if this function is called directly from 13163 * the driver. 13164 */ 13165 /*ARGSUSED*/ 13166 void 13167 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13168 { 13169 ipaddr_t dst; 13170 ire_t *ire; 13171 ipha_t *ipha; 13172 uint_t pkt_len; 13173 ssize_t len; 13174 uint_t opt_len; 13175 int ll_multicast; 13176 int cgtp_flt_pkt; 13177 queue_t *q = ill->ill_rq; 13178 squeue_t *curr_sqp = NULL; 13179 mblk_t *head = NULL; 13180 mblk_t *tail = NULL; 13181 mblk_t *first_mp; 13182 mblk_t *mp; 13183 int cnt = 0; 13184 13185 ASSERT(mp_chain != NULL); 13186 ASSERT(ill != NULL); 13187 13188 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13189 13190 #define rptr ((uchar_t *)ipha) 13191 13192 while (mp_chain != NULL) { 13193 first_mp = mp = mp_chain; 13194 mp_chain = mp_chain->b_next; 13195 mp->b_next = NULL; 13196 ll_multicast = 0; 13197 ire = NULL; 13198 13199 /* 13200 * ip_input fast path 13201 */ 13202 13203 /* mblk type is not M_DATA */ 13204 if (mp->b_datap->db_type != M_DATA) { 13205 if (ip_rput_process_notdata(q, &first_mp, ill, 13206 &ll_multicast, &mp)) 13207 continue; 13208 } 13209 13210 ASSERT(mp->b_datap->db_type == M_DATA); 13211 ASSERT(mp->b_datap->db_ref == 1); 13212 13213 /* 13214 * Invoke the CGTP (multirouting) filtering module to process 13215 * the incoming packet. Packets identified as duplicates 13216 * must be discarded. Filtering is active only if the 13217 * the ip_cgtp_filter ndd variable is non-zero. 13218 */ 13219 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13220 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13221 cgtp_flt_pkt = 13222 ip_cgtp_filter_ops->cfo_filter_fp(q, mp); 13223 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13224 freemsg(first_mp); 13225 continue; 13226 } 13227 } 13228 13229 ipha = (ipha_t *)mp->b_rptr; 13230 len = mp->b_wptr - rptr; 13231 13232 BUMP_MIB(&ip_mib, ipInReceives); 13233 13234 /* 13235 * IP header ptr not aligned? 13236 * OR IP header not complete in first mblk 13237 */ 13238 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13239 if (!ip_check_and_align_header(q, mp)) 13240 continue; 13241 ipha = (ipha_t *)mp->b_rptr; 13242 len = mp->b_wptr - rptr; 13243 } 13244 13245 /* multiple mblk or too short */ 13246 pkt_len = ntohs(ipha->ipha_length); 13247 len -= pkt_len; 13248 if (len != 0) { 13249 /* 13250 * Make sure we have data length consistent 13251 * with the IP header. 13252 */ 13253 if (mp->b_cont == NULL) { 13254 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13255 BUMP_MIB(&ip_mib, ipInHdrErrors); 13256 ip2dbg(("ip_input: drop pkt\n")); 13257 freemsg(mp); 13258 continue; 13259 } 13260 mp->b_wptr = rptr + pkt_len; 13261 } else if (len += msgdsize(mp->b_cont)) { 13262 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13263 BUMP_MIB(&ip_mib, ipInHdrErrors); 13264 ip2dbg(("ip_input: drop pkt\n")); 13265 freemsg(mp); 13266 continue; 13267 } 13268 (void) adjmsg(mp, -len); 13269 IP_STAT(ip_multimblk3); 13270 } 13271 } 13272 13273 if (ip_loopback_src_or_dst(ipha, ill)) { 13274 ip2dbg(("ip_input: drop pkt\n")); 13275 freemsg(mp); 13276 continue; 13277 } 13278 13279 opt_len = ipha->ipha_version_and_hdr_length - 13280 IP_SIMPLE_HDR_VERSION; 13281 /* IP version bad or there are IP options */ 13282 if (opt_len) { 13283 if (len != 0) 13284 IP_STAT(ip_multimblk4); 13285 else 13286 IP_STAT(ip_ipoptions); 13287 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13288 continue; 13289 } else { 13290 dst = ipha->ipha_dst; 13291 } 13292 13293 /* 13294 * If rsvpd is running, let RSVP daemon handle its processing 13295 * and forwarding of RSVP multicast/unicast packets. 13296 * If rsvpd is not running but mrouted is running, RSVP 13297 * multicast packets are forwarded as multicast traffic 13298 * and RSVP unicast packets are forwarded by unicast router. 13299 * If neither rsvpd nor mrouted is running, RSVP multicast 13300 * packets are not forwarded, but the unicast packets are 13301 * forwarded like unicast traffic. 13302 */ 13303 if (ipha->ipha_protocol == IPPROTO_RSVP && 13304 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13305 /* RSVP packet and rsvpd running. Treat as ours */ 13306 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13307 /* 13308 * This assumes that we deliver to all streams for 13309 * multicast and broadcast packets. 13310 * We have to force ll_multicast to 1 to handle the 13311 * M_DATA messages passed in from ip_mroute_decap. 13312 */ 13313 dst = INADDR_BROADCAST; 13314 ll_multicast = 1; 13315 } else if (CLASSD(dst)) { 13316 /* packet is multicast */ 13317 mp->b_next = NULL; 13318 if (ip_rput_process_multicast(q, mp, ill, ipha, 13319 &ll_multicast, &dst)) 13320 continue; 13321 } 13322 13323 13324 /* 13325 * Check if the packet is coming from the Mobile IP 13326 * forward tunnel interface 13327 */ 13328 if (ill->ill_srcif_refcnt > 0) { 13329 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13330 NULL, ill, MATCH_IRE_TYPE); 13331 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13332 ire->ire_ipif->ipif_net_type == 13333 IRE_IF_RESOLVER) { 13334 /* We need to resolve the link layer info */ 13335 ire_refrele(ire); 13336 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13337 ll_multicast, dst); 13338 continue; 13339 } 13340 } 13341 13342 if (ire == NULL) 13343 ire = ire_cache_lookup(dst, ALL_ZONES); 13344 13345 /* 13346 * If mipagent is running and reverse tunnel is created as per 13347 * mobile node request, then any packet coming through the 13348 * incoming interface from the mobile-node, should be reverse 13349 * tunneled to it's home agent except those that are destined 13350 * to foreign agent only. 13351 * This needs source address based ire lookup. The routing 13352 * entries for source address based lookup are only created by 13353 * mipagent program only when a reverse tunnel is created. 13354 * Reference : RFC2002, RFC2344 13355 */ 13356 if (ill->ill_mrtun_refcnt > 0) { 13357 ipaddr_t srcaddr; 13358 ire_t *tmp_ire; 13359 13360 tmp_ire = ire; /* Save, we might need it later */ 13361 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 13362 ire->ire_type != IRE_BROADCAST)) { 13363 srcaddr = ipha->ipha_src; 13364 ire = ire_mrtun_lookup(srcaddr, ill); 13365 if (ire != NULL) { 13366 /* 13367 * Should not be getting iphada packet 13368 * here. we should only get those for 13369 * IRE_LOCAL traffic, excluded above. 13370 * Fail-safe (drop packet) in the event 13371 * hardware is misbehaving. 13372 */ 13373 if (first_mp != mp) { 13374 /* IPsec KSTATS: beancount me */ 13375 freemsg(first_mp); 13376 } else { 13377 /* 13378 * This packet must be forwarded 13379 * to Reverse Tunnel 13380 */ 13381 ip_mrtun_forward(ire, ill, mp); 13382 } 13383 ire_refrele(ire); 13384 if (tmp_ire != NULL) 13385 ire_refrele(tmp_ire); 13386 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13387 "ip_input_end: q %p (%S)", 13388 q, "uninit"); 13389 continue; 13390 } 13391 } 13392 /* 13393 * If this packet is from a non-mobilenode or a 13394 * mobile-node which does not request reverse 13395 * tunnel service 13396 */ 13397 ire = tmp_ire; 13398 } 13399 13400 13401 /* 13402 * If we reach here that means the incoming packet satisfies 13403 * one of the following conditions: 13404 * - packet is from a mobile node which does not request 13405 * reverse tunnel 13406 * - packet is from a non-mobile node, which is the most 13407 * common case 13408 * - packet is from a reverse tunnel enabled mobile node 13409 * and destined to foreign agent only 13410 */ 13411 13412 if (ire == NULL) { 13413 /* 13414 * No IRE for this destination, so it can't be for us. 13415 * Unless we are forwarding, drop the packet. 13416 * We have to let source routed packets through 13417 * since we don't yet know if they are 'ping -l' 13418 * packets i.e. if they will go out over the 13419 * same interface as they came in on. 13420 */ 13421 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 13422 continue; 13423 } 13424 13425 /* 13426 * Broadcast IRE may indicate either broadcast or 13427 * multicast packet 13428 */ 13429 if (ire->ire_type == IRE_BROADCAST) { 13430 /* 13431 * Skip broadcast checks if packet is UDP multicast; 13432 * we'd rather not enter ip_rput_process_broadcast() 13433 * unless the packet is broadcast for real, since 13434 * that routine is a no-op for multicast. 13435 */ 13436 if ((ipha->ipha_protocol != IPPROTO_UDP || 13437 !CLASSD(ipha->ipha_dst)) && 13438 ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 13439 dst, cgtp_flt_pkt, ll_multicast)) { 13440 continue; 13441 } 13442 } else if (ire->ire_stq != NULL) { 13443 /* fowarding? */ 13444 ip_rput_process_forward(q, mp, ire, ipha, ill, 13445 ll_multicast); 13446 continue; 13447 } 13448 13449 /* packet not for us */ 13450 if (ire->ire_rfq != q) { 13451 if (ip_rput_notforus(&q, mp, ire, ill)) { 13452 continue; 13453 } 13454 } 13455 13456 switch (ipha->ipha_protocol) { 13457 case IPPROTO_TCP: 13458 ASSERT(first_mp == mp); 13459 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 13460 mp, 0, q, ip_ring)) != NULL) { 13461 if (curr_sqp == NULL) { 13462 curr_sqp = GET_SQUEUE(mp); 13463 ASSERT(cnt == 0); 13464 cnt++; 13465 head = tail = mp; 13466 } else if (curr_sqp == GET_SQUEUE(mp)) { 13467 ASSERT(tail != NULL); 13468 cnt++; 13469 tail->b_next = mp; 13470 tail = mp; 13471 } else { 13472 /* 13473 * A different squeue. Send the 13474 * chain for the previous squeue on 13475 * its way. This shouldn't happen 13476 * often unless interrupt binding 13477 * changes. 13478 */ 13479 IP_STAT(ip_input_multi_squeue); 13480 squeue_enter_chain(curr_sqp, head, 13481 tail, cnt, SQTAG_IP_INPUT); 13482 curr_sqp = GET_SQUEUE(mp); 13483 head = mp; 13484 tail = mp; 13485 cnt = 1; 13486 } 13487 } 13488 IRE_REFRELE(ire); 13489 continue; 13490 case IPPROTO_UDP: 13491 ASSERT(first_mp == mp); 13492 ip_udp_input(q, mp, ipha, ire, ill); 13493 IRE_REFRELE(ire); 13494 continue; 13495 case IPPROTO_SCTP: 13496 ASSERT(first_mp == mp); 13497 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 13498 q, dst); 13499 continue; 13500 default: 13501 ip_proto_input(q, first_mp, ipha, ire, ill); 13502 IRE_REFRELE(ire); 13503 continue; 13504 } 13505 } 13506 13507 if (head != NULL) 13508 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 13509 13510 /* 13511 * This code is there just to make netperf/ttcp look good. 13512 * 13513 * Its possible that after being in polling mode (and having cleared 13514 * the backlog), squeues have turned the interrupt frequency higher 13515 * to improve latency at the expense of more CPU utilization (less 13516 * packets per interrupts or more number of interrupts). Workloads 13517 * like ttcp/netperf do manage to tickle polling once in a while 13518 * but for the remaining time, stay in higher interrupt mode since 13519 * their packet arrival rate is pretty uniform and this shows up 13520 * as higher CPU utilization. Since people care about CPU utilization 13521 * while running netperf/ttcp, turn the interrupt frequency back to 13522 * normal/default if polling has not been used in ip_poll_normal_ticks. 13523 */ 13524 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 13525 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 13526 ip_ring->rr_poll_state &= ~ILL_POLLING; 13527 ip_ring->rr_blank(ip_ring->rr_handle, 13528 ip_ring->rr_normal_blank_time, 13529 ip_ring->rr_normal_pkt_cnt); 13530 } 13531 } 13532 13533 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13534 "ip_input_end: q %p (%S)", q, "end"); 13535 #undef rptr 13536 } 13537 13538 static void 13539 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 13540 t_uscalar_t err) 13541 { 13542 if (dl_err == DL_SYSERR) { 13543 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13544 "%s: %s failed: DL_SYSERR (errno %u)\n", 13545 ill->ill_name, dlpi_prim_str(prim), err); 13546 return; 13547 } 13548 13549 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13550 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 13551 dlpi_err_str(dl_err)); 13552 } 13553 13554 /* 13555 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 13556 * than DL_UNITDATA_IND messages. If we need to process this message 13557 * exclusively, we call qwriter_ip, in which case we also need to call 13558 * ill_refhold before that, since qwriter_ip does an ill_refrele. 13559 */ 13560 void 13561 ip_rput_dlpi(queue_t *q, mblk_t *mp) 13562 { 13563 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13564 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13565 ill_t *ill; 13566 13567 ip1dbg(("ip_rput_dlpi")); 13568 ill = (ill_t *)q->q_ptr; 13569 switch (dloa->dl_primitive) { 13570 case DL_ERROR_ACK: 13571 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 13572 "%s (0x%x), unix %u\n", ill->ill_name, 13573 dlpi_prim_str(dlea->dl_error_primitive), 13574 dlea->dl_error_primitive, 13575 dlpi_err_str(dlea->dl_errno), 13576 dlea->dl_errno, 13577 dlea->dl_unix_errno)); 13578 switch (dlea->dl_error_primitive) { 13579 case DL_NOTIFY_REQ: 13580 case DL_UNBIND_REQ: 13581 case DL_ATTACH_REQ: 13582 case DL_DETACH_REQ: 13583 case DL_INFO_REQ: 13584 case DL_BIND_REQ: 13585 case DL_ENABMULTI_REQ: 13586 case DL_PHYS_ADDR_REQ: 13587 case DL_CAPABILITY_REQ: 13588 case DL_CONTROL_REQ: 13589 /* 13590 * Refhold the ill to match qwriter_ip which does a 13591 * refrele. Since this is on the ill stream we 13592 * unconditionally bump up the refcount without 13593 * checking for ILL_CAN_LOOKUP 13594 */ 13595 ill_refhold(ill); 13596 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13597 CUR_OP, B_FALSE); 13598 return; 13599 case DL_DISABMULTI_REQ: 13600 freemsg(mp); /* Don't want to pass this up */ 13601 return; 13602 default: 13603 break; 13604 } 13605 ip_dlpi_error(ill, dlea->dl_error_primitive, 13606 dlea->dl_errno, dlea->dl_unix_errno); 13607 freemsg(mp); 13608 return; 13609 case DL_INFO_ACK: 13610 case DL_BIND_ACK: 13611 case DL_PHYS_ADDR_ACK: 13612 case DL_NOTIFY_ACK: 13613 case DL_CAPABILITY_ACK: 13614 case DL_CONTROL_ACK: 13615 /* 13616 * Refhold the ill to match qwriter_ip which does a refrele 13617 * Since this is on the ill stream we unconditionally 13618 * bump up the refcount without doing ILL_CAN_LOOKUP. 13619 */ 13620 ill_refhold(ill); 13621 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13622 CUR_OP, B_FALSE); 13623 return; 13624 case DL_NOTIFY_IND: 13625 ill_refhold(ill); 13626 /* 13627 * The DL_NOTIFY_IND is an asynchronous message that has no 13628 * relation to the current ioctl in progress (if any). Hence we 13629 * pass in NEW_OP in this case. 13630 */ 13631 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13632 NEW_OP, B_FALSE); 13633 return; 13634 case DL_OK_ACK: 13635 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 13636 dlpi_prim_str((int)dloa->dl_correct_primitive))); 13637 switch (dloa->dl_correct_primitive) { 13638 case DL_UNBIND_REQ: 13639 mutex_enter(&ill->ill_lock); 13640 ill->ill_state_flags |= ILL_DL_UNBIND_DONE; 13641 cv_signal(&ill->ill_cv); 13642 mutex_exit(&ill->ill_lock); 13643 /* FALLTHRU */ 13644 case DL_ATTACH_REQ: 13645 case DL_DETACH_REQ: 13646 /* 13647 * Refhold the ill to match qwriter_ip which does a 13648 * refrele. Since this is on the ill stream we 13649 * unconditionally bump up the refcount 13650 */ 13651 ill_refhold(ill); 13652 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13653 CUR_OP, B_FALSE); 13654 return; 13655 case DL_ENABMULTI_REQ: 13656 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13657 ill->ill_dlpi_multicast_state = IDMS_OK; 13658 break; 13659 13660 } 13661 break; 13662 default: 13663 break; 13664 } 13665 freemsg(mp); 13666 } 13667 13668 /* 13669 * Handling of DLPI messages that require exclusive access to the ipsq. 13670 * 13671 * Need to do ill_pending_mp_release on ioctl completion, which could 13672 * happen here. (along with mi_copy_done) 13673 */ 13674 /* ARGSUSED */ 13675 static void 13676 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 13677 { 13678 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13679 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13680 int err = 0; 13681 ill_t *ill; 13682 ipif_t *ipif = NULL; 13683 mblk_t *mp1 = NULL; 13684 conn_t *connp = NULL; 13685 t_uscalar_t physaddr_req; 13686 mblk_t *mp_hw; 13687 union DL_primitives *dlp; 13688 boolean_t success; 13689 boolean_t ioctl_aborted = B_FALSE; 13690 boolean_t log = B_TRUE; 13691 13692 ip1dbg(("ip_rput_dlpi_writer ..")); 13693 ill = (ill_t *)q->q_ptr; 13694 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 13695 13696 ASSERT(IAM_WRITER_ILL(ill)); 13697 13698 /* 13699 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 13700 * both are null or non-null. However we can assert that only 13701 * after grabbing the ipsq_lock. So we don't make any assertion 13702 * here and in other places in the code. 13703 */ 13704 ipif = ipsq->ipsq_pending_ipif; 13705 /* 13706 * The current ioctl could have been aborted by the user and a new 13707 * ioctl to bring up another ill could have started. We could still 13708 * get a response from the driver later. 13709 */ 13710 if (ipif != NULL && ipif->ipif_ill != ill) 13711 ioctl_aborted = B_TRUE; 13712 13713 switch (dloa->dl_primitive) { 13714 case DL_ERROR_ACK: 13715 switch (dlea->dl_error_primitive) { 13716 case DL_UNBIND_REQ: 13717 case DL_ATTACH_REQ: 13718 case DL_DETACH_REQ: 13719 case DL_INFO_REQ: 13720 ill_dlpi_done(ill, dlea->dl_error_primitive); 13721 break; 13722 case DL_NOTIFY_REQ: 13723 ill_dlpi_done(ill, DL_NOTIFY_REQ); 13724 log = B_FALSE; 13725 break; 13726 case DL_PHYS_ADDR_REQ: 13727 /* 13728 * For IPv6 only, there are two additional 13729 * phys_addr_req's sent to the driver to get the 13730 * IPv6 token and lla. This allows IP to acquire 13731 * the hardware address format for a given interface 13732 * without having built in knowledge of the hardware 13733 * address. ill_phys_addr_pend keeps track of the last 13734 * DL_PAR sent so we know which response we are 13735 * dealing with. ill_dlpi_done will update 13736 * ill_phys_addr_pend when it sends the next req. 13737 * We don't complete the IOCTL until all three DL_PARs 13738 * have been attempted, so set *_len to 0 and break. 13739 */ 13740 physaddr_req = ill->ill_phys_addr_pend; 13741 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 13742 if (physaddr_req == DL_IPV6_TOKEN) { 13743 ill->ill_token_length = 0; 13744 log = B_FALSE; 13745 break; 13746 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 13747 ill->ill_nd_lla_len = 0; 13748 log = B_FALSE; 13749 break; 13750 } 13751 /* 13752 * Something went wrong with the DL_PHYS_ADDR_REQ. 13753 * We presumably have an IOCTL hanging out waiting 13754 * for completion. Find it and complete the IOCTL 13755 * with the error noted. 13756 * However, ill_dl_phys was called on an ill queue 13757 * (from SIOCSLIFNAME), thus conn_pending_ill is not 13758 * set. But the ioctl is known to be pending on ill_wq. 13759 */ 13760 if (!ill->ill_ifname_pending) 13761 break; 13762 ill->ill_ifname_pending = 0; 13763 if (!ioctl_aborted) 13764 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13765 if (mp1 != NULL) { 13766 /* 13767 * This operation (SIOCSLIFNAME) must have 13768 * happened on the ill. Assert there is no conn 13769 */ 13770 ASSERT(connp == NULL); 13771 q = ill->ill_wq; 13772 } 13773 break; 13774 case DL_BIND_REQ: 13775 ill_dlpi_done(ill, DL_BIND_REQ); 13776 if (ill->ill_ifname_pending) 13777 break; 13778 /* 13779 * Something went wrong with the bind. We presumably 13780 * have an IOCTL hanging out waiting for completion. 13781 * Find it, take down the interface that was coming 13782 * up, and complete the IOCTL with the error noted. 13783 */ 13784 if (!ioctl_aborted) 13785 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13786 if (mp1 != NULL) { 13787 /* 13788 * This operation (SIOCSLIFFLAGS) must have 13789 * happened from a conn. 13790 */ 13791 ASSERT(connp != NULL); 13792 q = CONNP_TO_WQ(connp); 13793 if (ill->ill_move_in_progress) { 13794 ILL_CLEAR_MOVE(ill); 13795 } 13796 (void) ipif_down(ipif, NULL, NULL); 13797 /* error is set below the switch */ 13798 } 13799 break; 13800 case DL_ENABMULTI_REQ: 13801 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 13802 13803 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13804 ill->ill_dlpi_multicast_state = IDMS_FAILED; 13805 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 13806 ipif_t *ipif; 13807 13808 log = B_FALSE; 13809 printf("ip: joining multicasts failed (%d)" 13810 " on %s - will use link layer " 13811 "broadcasts for multicast\n", 13812 dlea->dl_errno, ill->ill_name); 13813 13814 /* 13815 * Set up the multicast mapping alone. 13816 * writer, so ok to access ill->ill_ipif 13817 * without any lock. 13818 */ 13819 ipif = ill->ill_ipif; 13820 mutex_enter(&ill->ill_phyint->phyint_lock); 13821 ill->ill_phyint->phyint_flags |= 13822 PHYI_MULTI_BCAST; 13823 mutex_exit(&ill->ill_phyint->phyint_lock); 13824 13825 if (!ill->ill_isv6) { 13826 (void) ipif_arp_setup_multicast(ipif, 13827 NULL); 13828 } else { 13829 (void) ipif_ndp_setup_multicast(ipif, 13830 NULL); 13831 } 13832 } 13833 freemsg(mp); /* Don't want to pass this up */ 13834 return; 13835 case DL_CAPABILITY_REQ: 13836 case DL_CONTROL_REQ: 13837 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 13838 "DL_CAPABILITY/CONTROL REQ\n")); 13839 ill_dlpi_done(ill, dlea->dl_error_primitive); 13840 ill->ill_capab_state = IDMS_FAILED; 13841 freemsg(mp); 13842 return; 13843 } 13844 /* 13845 * Note the error for IOCTL completion (mp1 is set when 13846 * ready to complete ioctl). If ill_ifname_pending_err is 13847 * set, an error occured during plumbing (ill_ifname_pending), 13848 * so we want to report that error. 13849 * 13850 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 13851 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 13852 * expected to get errack'd if the driver doesn't support 13853 * these flags (e.g. ethernet). log will be set to B_FALSE 13854 * if these error conditions are encountered. 13855 */ 13856 if (mp1 != NULL) { 13857 if (ill->ill_ifname_pending_err != 0) { 13858 err = ill->ill_ifname_pending_err; 13859 ill->ill_ifname_pending_err = 0; 13860 } else { 13861 err = dlea->dl_unix_errno ? 13862 dlea->dl_unix_errno : ENXIO; 13863 } 13864 /* 13865 * If we're plumbing an interface and an error hasn't already 13866 * been saved, set ill_ifname_pending_err to the error passed 13867 * up. Ignore the error if log is B_FALSE (see comment above). 13868 */ 13869 } else if (log && ill->ill_ifname_pending && 13870 ill->ill_ifname_pending_err == 0) { 13871 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 13872 dlea->dl_unix_errno : ENXIO; 13873 } 13874 13875 if (log) 13876 ip_dlpi_error(ill, dlea->dl_error_primitive, 13877 dlea->dl_errno, dlea->dl_unix_errno); 13878 break; 13879 case DL_CAPABILITY_ACK: { 13880 boolean_t reneg_flag = B_FALSE; 13881 /* Call a routine to handle this one. */ 13882 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 13883 /* 13884 * Check if the ACK is due to renegotiation case since we 13885 * will need to send a new CAPABILITY_REQ later. 13886 */ 13887 if (ill->ill_capab_state == IDMS_RENEG) { 13888 /* This is the ack for a renogiation case */ 13889 reneg_flag = B_TRUE; 13890 ill->ill_capab_state = IDMS_UNKNOWN; 13891 } 13892 ill_capability_ack(ill, mp); 13893 if (reneg_flag) 13894 ill_capability_probe(ill); 13895 break; 13896 } 13897 case DL_CONTROL_ACK: 13898 /* We treat all of these as "fire and forget" */ 13899 ill_dlpi_done(ill, DL_CONTROL_REQ); 13900 break; 13901 case DL_INFO_ACK: 13902 /* Call a routine to handle this one. */ 13903 ill_dlpi_done(ill, DL_INFO_REQ); 13904 ip_ll_subnet_defaults(ill, mp); 13905 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 13906 return; 13907 case DL_BIND_ACK: 13908 /* 13909 * We should have an IOCTL waiting on this unless 13910 * sent by ill_dl_phys, in which case just return 13911 */ 13912 ill_dlpi_done(ill, DL_BIND_REQ); 13913 if (ill->ill_ifname_pending) 13914 break; 13915 13916 if (!ioctl_aborted) 13917 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13918 if (mp1 == NULL) 13919 break; 13920 ASSERT(connp != NULL); 13921 q = CONNP_TO_WQ(connp); 13922 13923 /* 13924 * We are exclusive. So nothing can change even after 13925 * we get the pending mp. If need be we can put it back 13926 * and restart, as in calling ipif_arp_up() below. 13927 */ 13928 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 13929 13930 mutex_enter(&ill->ill_lock); 13931 ill->ill_dl_up = 1; 13932 mutex_exit(&ill->ill_lock); 13933 13934 /* 13935 * Now bring up the resolver, when that is 13936 * done we'll create IREs and we are done. 13937 */ 13938 if (ill->ill_isv6) { 13939 /* 13940 * v6 interfaces. 13941 * Unlike ARP which has to do another bind 13942 * and attach, once we get here we are 13943 * done withh NDP. Except in the case of 13944 * ILLF_XRESOLV, in which case we send an 13945 * AR_INTERFACE_UP to the external resolver. 13946 * If all goes well, the ioctl will complete 13947 * in ip_rput(). If there's an error, we 13948 * complete it here. 13949 */ 13950 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 13951 B_FALSE); 13952 if (err == 0) { 13953 if (ill->ill_flags & ILLF_XRESOLV) { 13954 mutex_enter(&connp->conn_lock); 13955 mutex_enter(&ill->ill_lock); 13956 success = ipsq_pending_mp_add( 13957 connp, ipif, q, mp1, 0); 13958 mutex_exit(&ill->ill_lock); 13959 mutex_exit(&connp->conn_lock); 13960 if (success) { 13961 err = ipif_resolver_up(ipif, 13962 B_FALSE); 13963 if (err == EINPROGRESS) { 13964 freemsg(mp); 13965 return; 13966 } 13967 ASSERT(err != 0); 13968 mp1 = ipsq_pending_mp_get(ipsq, 13969 &connp); 13970 ASSERT(mp1 != NULL); 13971 } else { 13972 /* conn has started closing */ 13973 err = EINTR; 13974 } 13975 } else { /* Non XRESOLV interface */ 13976 err = ipif_up_done_v6(ipif); 13977 } 13978 } 13979 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 13980 /* 13981 * ARP and other v4 external resolvers. 13982 * Leave the pending mblk intact so that 13983 * the ioctl completes in ip_rput(). 13984 */ 13985 mutex_enter(&connp->conn_lock); 13986 mutex_enter(&ill->ill_lock); 13987 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 13988 mutex_exit(&ill->ill_lock); 13989 mutex_exit(&connp->conn_lock); 13990 if (success) { 13991 err = ipif_resolver_up(ipif, B_FALSE); 13992 if (err == EINPROGRESS) { 13993 freemsg(mp); 13994 return; 13995 } 13996 ASSERT(err != 0); 13997 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13998 } else { 13999 /* The conn has started closing */ 14000 err = EINTR; 14001 } 14002 } else { 14003 /* 14004 * This one is complete. Reply to pending ioctl. 14005 */ 14006 err = ipif_up_done(ipif); 14007 } 14008 14009 if ((err == 0) && (ill->ill_up_ipifs)) { 14010 err = ill_up_ipifs(ill, q, mp1); 14011 if (err == EINPROGRESS) { 14012 freemsg(mp); 14013 return; 14014 } 14015 } 14016 14017 if (ill->ill_up_ipifs) { 14018 ill_group_cleanup(ill); 14019 } 14020 14021 break; 14022 case DL_NOTIFY_IND: { 14023 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 14024 ire_t *ire; 14025 boolean_t need_ire_walk_v4 = B_FALSE; 14026 boolean_t need_ire_walk_v6 = B_FALSE; 14027 14028 /* 14029 * Change the address everywhere we need to. 14030 * What we're getting here is a link-level addr or phys addr. 14031 * The new addr is at notify + notify->dl_addr_offset 14032 * The address length is notify->dl_addr_length; 14033 */ 14034 switch (notify->dl_notification) { 14035 case DL_NOTE_PHYS_ADDR: 14036 mp_hw = copyb(mp); 14037 if (mp_hw == NULL) { 14038 err = ENOMEM; 14039 break; 14040 } 14041 dlp = (union DL_primitives *)mp_hw->b_rptr; 14042 /* 14043 * We currently don't support changing 14044 * the token via DL_NOTIFY_IND. 14045 * When we do support it, we have to consider 14046 * what the implications are with respect to 14047 * the token and the link local address. 14048 */ 14049 mutex_enter(&ill->ill_lock); 14050 if (dlp->notify_ind.dl_data == 14051 DL_IPV6_LINK_LAYER_ADDR) { 14052 if (ill->ill_nd_lla_mp != NULL) 14053 freemsg(ill->ill_nd_lla_mp); 14054 ill->ill_nd_lla_mp = mp_hw; 14055 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14056 dlp->notify_ind.dl_addr_offset; 14057 ill->ill_nd_lla_len = 14058 dlp->notify_ind.dl_addr_length - 14059 ABS(ill->ill_sap_length); 14060 mutex_exit(&ill->ill_lock); 14061 break; 14062 } else if (dlp->notify_ind.dl_data == 14063 DL_CURR_PHYS_ADDR) { 14064 if (ill->ill_phys_addr_mp != NULL) 14065 freemsg(ill->ill_phys_addr_mp); 14066 ill->ill_phys_addr_mp = mp_hw; 14067 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14068 dlp->notify_ind.dl_addr_offset; 14069 ill->ill_phys_addr_length = 14070 dlp->notify_ind.dl_addr_length - 14071 ABS(ill->ill_sap_length); 14072 if (ill->ill_isv6 && 14073 !(ill->ill_flags & ILLF_XRESOLV)) { 14074 if (ill->ill_nd_lla_mp != NULL) 14075 freemsg(ill->ill_nd_lla_mp); 14076 ill->ill_nd_lla_mp = copyb(mp_hw); 14077 ill->ill_nd_lla = (uchar_t *) 14078 ill->ill_nd_lla_mp->b_rptr + 14079 dlp->notify_ind.dl_addr_offset; 14080 ill->ill_nd_lla_len = 14081 ill->ill_phys_addr_length; 14082 } 14083 } 14084 mutex_exit(&ill->ill_lock); 14085 /* 14086 * Send out gratuitous arp request for our new 14087 * hardware address. 14088 */ 14089 for (ipif = ill->ill_ipif; ipif != NULL; 14090 ipif = ipif->ipif_next) { 14091 if (!(ipif->ipif_flags & IPIF_UP)) 14092 continue; 14093 if (ill->ill_isv6) { 14094 ipif_ndp_down(ipif); 14095 /* 14096 * Set B_TRUE to enable 14097 * ipif_ndp_up() to send out 14098 * unsolicited advertisements. 14099 */ 14100 err = ipif_ndp_up(ipif, 14101 &ipif->ipif_v6lcl_addr, 14102 B_TRUE); 14103 if (err) { 14104 ip1dbg(( 14105 "ip_rput_dlpi_writer: " 14106 "Failed to update ndp " 14107 "err %d\n", err)); 14108 } 14109 } else { 14110 /* 14111 * IPv4 ARP case 14112 * 14113 * Set B_TRUE, as we only want 14114 * ipif_resolver_up to send an 14115 * AR_ENTRY_ADD request up to 14116 * ARP. 14117 */ 14118 err = ipif_resolver_up(ipif, 14119 B_TRUE); 14120 if (err) { 14121 ip1dbg(( 14122 "ip_rput_dlpi_writer: " 14123 "Failed to update arp " 14124 "err %d\n", err)); 14125 } 14126 } 14127 } 14128 /* 14129 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14130 * case so that all old fastpath information can be 14131 * purged from IRE caches. 14132 */ 14133 /* FALLTHRU */ 14134 case DL_NOTE_FASTPATH_FLUSH: 14135 /* 14136 * Any fastpath probe sent henceforth will get the 14137 * new fp mp. So we first delete any ires that are 14138 * waiting for the fastpath. Then walk all ires and 14139 * delete the ire or delete the fp mp. In the case of 14140 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14141 * recreate the ire's without going through a complex 14142 * ipif up/down dance. So we don't delete the ire 14143 * itself, but just the ire_fp_mp for these 2 ire's 14144 * In the case of the other ire's we delete the ire's 14145 * themselves. Access to ire_fp_mp is completely 14146 * protected by ire_lock for IRE_MIPRTUN and 14147 * IRE_BROADCAST. Deleting the ire is preferable in the 14148 * other cases for performance. 14149 */ 14150 if (ill->ill_isv6) { 14151 nce_fastpath_list_dispatch(ill, NULL, NULL); 14152 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14153 NULL); 14154 } else { 14155 ire_fastpath_list_dispatch(ill, NULL, NULL); 14156 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14157 IRE_CACHE | IRE_BROADCAST, 14158 ire_fastpath_flush, NULL, ill); 14159 mutex_enter(&ire_mrtun_lock); 14160 if (ire_mrtun_count != 0) { 14161 mutex_exit(&ire_mrtun_lock); 14162 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14163 IRE_MIPRTUN, ire_fastpath_flush, 14164 NULL, ill); 14165 } else { 14166 mutex_exit(&ire_mrtun_lock); 14167 } 14168 } 14169 break; 14170 case DL_NOTE_SDU_SIZE: 14171 /* 14172 * Change the MTU size of the interface, of all 14173 * attached ipif's, and of all relevant ire's. The 14174 * new value's a uint32_t at notify->dl_data. 14175 * Mtu change Vs. new ire creation - protocol below. 14176 * 14177 * a Mark the ipif as IPIF_CHANGING. 14178 * b Set the new mtu in the ipif. 14179 * c Change the ire_max_frag on all affected ires 14180 * d Unmark the IPIF_CHANGING 14181 * 14182 * To see how the protocol works, assume an interface 14183 * route is also being added simultaneously by 14184 * ip_rt_add and let 'ipif' be the ipif referenced by 14185 * the ire. If the ire is created before step a, 14186 * it will be cleaned up by step c. If the ire is 14187 * created after step d, it will see the new value of 14188 * ipif_mtu. Any attempt to create the ire between 14189 * steps a to d will fail because of the IPIF_CHANGING 14190 * flag. Note that ire_create() is passed a pointer to 14191 * the ipif_mtu, and not the value. During ire_add 14192 * under the bucket lock, the ire_max_frag of the 14193 * new ire being created is set from the ipif/ire from 14194 * which it is being derived. 14195 */ 14196 mutex_enter(&ill->ill_lock); 14197 ill->ill_max_frag = (uint_t)notify->dl_data; 14198 14199 /* 14200 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14201 * leave it alone 14202 */ 14203 if (ill->ill_mtu_userspecified) { 14204 mutex_exit(&ill->ill_lock); 14205 break; 14206 } 14207 ill->ill_max_mtu = ill->ill_max_frag; 14208 if (ill->ill_isv6) { 14209 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14210 ill->ill_max_mtu = IPV6_MIN_MTU; 14211 } else { 14212 if (ill->ill_max_mtu < IP_MIN_MTU) 14213 ill->ill_max_mtu = IP_MIN_MTU; 14214 } 14215 for (ipif = ill->ill_ipif; ipif != NULL; 14216 ipif = ipif->ipif_next) { 14217 /* 14218 * Don't override the mtu if the user 14219 * has explicitly set it. 14220 */ 14221 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14222 continue; 14223 ipif->ipif_mtu = (uint_t)notify->dl_data; 14224 if (ipif->ipif_isv6) 14225 ire = ipif_to_ire_v6(ipif); 14226 else 14227 ire = ipif_to_ire(ipif); 14228 if (ire != NULL) { 14229 ire->ire_max_frag = ipif->ipif_mtu; 14230 ire_refrele(ire); 14231 } 14232 if (ipif->ipif_flags & IPIF_UP) { 14233 if (ill->ill_isv6) 14234 need_ire_walk_v6 = B_TRUE; 14235 else 14236 need_ire_walk_v4 = B_TRUE; 14237 } 14238 } 14239 mutex_exit(&ill->ill_lock); 14240 if (need_ire_walk_v4) 14241 ire_walk_v4(ill_mtu_change, (char *)ill, 14242 ALL_ZONES); 14243 if (need_ire_walk_v6) 14244 ire_walk_v6(ill_mtu_change, (char *)ill, 14245 ALL_ZONES); 14246 break; 14247 case DL_NOTE_LINK_UP: 14248 case DL_NOTE_LINK_DOWN: { 14249 /* 14250 * We are writer. ill / phyint / ipsq assocs stable. 14251 * The RUNNING flag reflects the state of the link. 14252 */ 14253 phyint_t *phyint = ill->ill_phyint; 14254 uint64_t new_phyint_flags; 14255 boolean_t changed = B_FALSE; 14256 14257 mutex_enter(&phyint->phyint_lock); 14258 new_phyint_flags = 14259 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14260 phyint->phyint_flags | PHYI_RUNNING : 14261 phyint->phyint_flags & ~PHYI_RUNNING; 14262 if (new_phyint_flags != phyint->phyint_flags) { 14263 phyint->phyint_flags = new_phyint_flags; 14264 changed = B_TRUE; 14265 } 14266 mutex_exit(&phyint->phyint_lock); 14267 /* 14268 * If the flags have changed, send a message to 14269 * the routing socket. 14270 */ 14271 if (changed) { 14272 if (phyint->phyint_illv4 != NULL) { 14273 ip_rts_ifmsg( 14274 phyint->phyint_illv4->ill_ipif); 14275 } 14276 if (phyint->phyint_illv6 != NULL) { 14277 ip_rts_ifmsg( 14278 phyint->phyint_illv6->ill_ipif); 14279 } 14280 } 14281 break; 14282 } 14283 case DL_NOTE_PROMISC_ON_PHYS: 14284 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14285 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14286 mutex_enter(&ill->ill_lock); 14287 ill->ill_promisc_on_phys = B_TRUE; 14288 mutex_exit(&ill->ill_lock); 14289 break; 14290 case DL_NOTE_PROMISC_OFF_PHYS: 14291 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14292 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14293 mutex_enter(&ill->ill_lock); 14294 ill->ill_promisc_on_phys = B_FALSE; 14295 mutex_exit(&ill->ill_lock); 14296 break; 14297 case DL_NOTE_CAPAB_RENEG: 14298 /* 14299 * Something changed on the driver side. 14300 * It wants us to renegotiate the capabilities 14301 * on this ill. The most likely cause is the 14302 * aggregation interface under us where a 14303 * port got added or went away. 14304 * 14305 * We reset the capabilities and set the 14306 * state to IDMS_RENG so that when the ack 14307 * comes back, we can start the 14308 * renegotiation process. 14309 */ 14310 ill_capability_reset(ill); 14311 ill->ill_capab_state = IDMS_RENEG; 14312 break; 14313 default: 14314 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14315 "type 0x%x for DL_NOTIFY_IND\n", 14316 notify->dl_notification)); 14317 break; 14318 } 14319 14320 /* 14321 * As this is an asynchronous operation, we 14322 * should not call ill_dlpi_done 14323 */ 14324 break; 14325 } 14326 case DL_NOTIFY_ACK: 14327 /* 14328 * Don't really need to check for what notifications 14329 * are supported; we'll process what gets sent upstream, 14330 * and we know it'll be something we support changing 14331 * based on our DL_NOTIFY_REQ. 14332 */ 14333 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14334 break; 14335 case DL_PHYS_ADDR_ACK: { 14336 /* 14337 * We should have an IOCTL waiting on this when request 14338 * sent by ill_dl_phys. 14339 * However, ill_dl_phys was called on an ill queue (from 14340 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14341 * ioctl is known to be pending on ill_wq. 14342 * There are two additional phys_addr_req's sent to the 14343 * driver to get the token and lla. ill_phys_addr_pend 14344 * keeps track of the last one sent so we know which 14345 * response we are dealing with. ill_dlpi_done will 14346 * update ill_phys_addr_pend when it sends the next req. 14347 * We don't complete the IOCTL until all three DL_PARs 14348 * have been attempted. 14349 * 14350 * We don't need any lock to update ill_nd_lla* fields, 14351 * since the ill is not yet up, We grab the lock just 14352 * for uniformity with other code that accesses ill_nd_lla. 14353 */ 14354 physaddr_req = ill->ill_phys_addr_pend; 14355 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14356 if (physaddr_req == DL_IPV6_TOKEN || 14357 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14358 if (physaddr_req == DL_IPV6_TOKEN) { 14359 /* 14360 * bcopy to low-order bits of ill_token 14361 * 14362 * XXX Temporary hack - currently, 14363 * all known tokens are 64 bits, 14364 * so I'll cheat for the moment. 14365 */ 14366 dlp = (union DL_primitives *)mp->b_rptr; 14367 14368 mutex_enter(&ill->ill_lock); 14369 bcopy((uchar_t *)(mp->b_rptr + 14370 dlp->physaddr_ack.dl_addr_offset), 14371 (void *)&ill->ill_token.s6_addr32[2], 14372 dlp->physaddr_ack.dl_addr_length); 14373 ill->ill_token_length = 14374 dlp->physaddr_ack.dl_addr_length; 14375 mutex_exit(&ill->ill_lock); 14376 } else { 14377 ASSERT(ill->ill_nd_lla_mp == NULL); 14378 mp_hw = copyb(mp); 14379 if (mp_hw == NULL) { 14380 err = ENOMEM; 14381 break; 14382 } 14383 dlp = (union DL_primitives *)mp_hw->b_rptr; 14384 mutex_enter(&ill->ill_lock); 14385 ill->ill_nd_lla_mp = mp_hw; 14386 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14387 dlp->physaddr_ack.dl_addr_offset; 14388 ill->ill_nd_lla_len = 14389 dlp->physaddr_ack.dl_addr_length; 14390 mutex_exit(&ill->ill_lock); 14391 } 14392 break; 14393 } 14394 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 14395 ASSERT(ill->ill_phys_addr_mp == NULL); 14396 if (!ill->ill_ifname_pending) 14397 break; 14398 ill->ill_ifname_pending = 0; 14399 if (!ioctl_aborted) 14400 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14401 if (mp1 != NULL) { 14402 ASSERT(connp == NULL); 14403 q = ill->ill_wq; 14404 } 14405 /* 14406 * If any error acks received during the plumbing sequence, 14407 * ill_ifname_pending_err will be set. Break out and send up 14408 * the error to the pending ioctl. 14409 */ 14410 if (ill->ill_ifname_pending_err != 0) { 14411 err = ill->ill_ifname_pending_err; 14412 ill->ill_ifname_pending_err = 0; 14413 break; 14414 } 14415 /* 14416 * Get the interface token. If the zeroth interface 14417 * address is zero then set the address to the link local 14418 * address 14419 */ 14420 mp_hw = copyb(mp); 14421 if (mp_hw == NULL) { 14422 err = ENOMEM; 14423 break; 14424 } 14425 dlp = (union DL_primitives *)mp_hw->b_rptr; 14426 ill->ill_phys_addr_mp = mp_hw; 14427 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14428 dlp->physaddr_ack.dl_addr_offset; 14429 if (dlp->physaddr_ack.dl_addr_length == 0 || 14430 ill->ill_phys_addr_length == 0 || 14431 ill->ill_phys_addr_length == IP_ADDR_LEN) { 14432 /* 14433 * Compatibility: atun driver returns a length of 0. 14434 * ipdptp has an ill_phys_addr_length of zero(from 14435 * DL_BIND_ACK) but a non-zero length here. 14436 * ipd has an ill_phys_addr_length of 4(from 14437 * DL_BIND_ACK) but a non-zero length here. 14438 */ 14439 ill->ill_phys_addr = NULL; 14440 } else if (dlp->physaddr_ack.dl_addr_length != 14441 ill->ill_phys_addr_length) { 14442 ip0dbg(("DL_PHYS_ADDR_ACK: " 14443 "Address length mismatch %d %d\n", 14444 dlp->physaddr_ack.dl_addr_length, 14445 ill->ill_phys_addr_length)); 14446 err = EINVAL; 14447 break; 14448 } 14449 mutex_enter(&ill->ill_lock); 14450 if (ill->ill_nd_lla_mp == NULL) { 14451 ill->ill_nd_lla_mp = copyb(mp_hw); 14452 if (ill->ill_nd_lla_mp == NULL) { 14453 err = ENOMEM; 14454 mutex_exit(&ill->ill_lock); 14455 break; 14456 } 14457 ill->ill_nd_lla = 14458 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 14459 dlp->physaddr_ack.dl_addr_offset; 14460 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 14461 } 14462 mutex_exit(&ill->ill_lock); 14463 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 14464 (void) ill_setdefaulttoken(ill); 14465 14466 /* 14467 * If the ill zero interface has a zero address assign 14468 * it the proper link local address. 14469 */ 14470 ASSERT(ill->ill_ipif->ipif_id == 0); 14471 if (ipif != NULL && 14472 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14473 (void) ipif_setlinklocal(ipif); 14474 break; 14475 } 14476 case DL_OK_ACK: 14477 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 14478 dlpi_prim_str((int)dloa->dl_correct_primitive), 14479 dloa->dl_correct_primitive)); 14480 switch (dloa->dl_correct_primitive) { 14481 case DL_UNBIND_REQ: 14482 case DL_ATTACH_REQ: 14483 case DL_DETACH_REQ: 14484 ill_dlpi_done(ill, dloa->dl_correct_primitive); 14485 break; 14486 } 14487 break; 14488 default: 14489 break; 14490 } 14491 14492 freemsg(mp); 14493 if (mp1) { 14494 struct iocblk *iocp; 14495 int mode; 14496 14497 /* 14498 * Complete the waiting IOCTL. For SIOCLIFADDIF or 14499 * SIOCSLIFNAME do a copyout. 14500 */ 14501 iocp = (struct iocblk *)mp1->b_rptr; 14502 14503 if (iocp->ioc_cmd == SIOCLIFADDIF || 14504 iocp->ioc_cmd == SIOCSLIFNAME) 14505 mode = COPYOUT; 14506 else 14507 mode = NO_COPYOUT; 14508 /* 14509 * The ioctl must complete now without EINPROGRESS 14510 * since ipsq_pending_mp_get has removed the ioctl mblk 14511 * from ipsq_pending_mp. Otherwise the ioctl will be 14512 * stuck for ever in the ipsq. 14513 */ 14514 ASSERT(err != EINPROGRESS); 14515 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 14516 14517 } 14518 } 14519 14520 /* 14521 * ip_rput_other is called by ip_rput to handle messages modifying the global 14522 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 14523 */ 14524 /* ARGSUSED */ 14525 void 14526 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14527 { 14528 ill_t *ill; 14529 struct iocblk *iocp; 14530 mblk_t *mp1; 14531 conn_t *connp = NULL; 14532 14533 ip1dbg(("ip_rput_other ")); 14534 ill = (ill_t *)q->q_ptr; 14535 /* 14536 * This routine is not a writer in the case of SIOCGTUNPARAM 14537 * in which case ipsq is NULL. 14538 */ 14539 if (ipsq != NULL) { 14540 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14541 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14542 } 14543 14544 switch (mp->b_datap->db_type) { 14545 case M_ERROR: 14546 case M_HANGUP: 14547 /* 14548 * The device has a problem. We force the ILL down. It can 14549 * be brought up again manually using SIOCSIFFLAGS (via 14550 * ifconfig or equivalent). 14551 */ 14552 ASSERT(ipsq != NULL); 14553 if (mp->b_rptr < mp->b_wptr) 14554 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 14555 if (ill->ill_error == 0) 14556 ill->ill_error = ENXIO; 14557 if (!ill_down_start(q, mp)) 14558 return; 14559 ipif_all_down_tail(ipsq, q, mp, NULL); 14560 break; 14561 case M_IOCACK: 14562 iocp = (struct iocblk *)mp->b_rptr; 14563 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 14564 switch (iocp->ioc_cmd) { 14565 case SIOCSTUNPARAM: 14566 case OSIOCSTUNPARAM: 14567 ASSERT(ipsq != NULL); 14568 /* 14569 * Finish socket ioctl passed through to tun. 14570 * We should have an IOCTL waiting on this. 14571 */ 14572 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14573 if (ill->ill_isv6) { 14574 struct iftun_req *ta; 14575 14576 /* 14577 * if a source or destination is 14578 * being set, try and set the link 14579 * local address for the tunnel 14580 */ 14581 ta = (struct iftun_req *)mp->b_cont-> 14582 b_cont->b_rptr; 14583 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 14584 ipif_set_tun_llink(ill, ta); 14585 } 14586 14587 } 14588 if (mp1 != NULL) { 14589 /* 14590 * Now copy back the b_next/b_prev used by 14591 * mi code for the mi_copy* functions. 14592 * See ip_sioctl_tunparam() for the reason. 14593 * Also protect against missing b_cont. 14594 */ 14595 if (mp->b_cont != NULL) { 14596 mp->b_cont->b_next = 14597 mp1->b_cont->b_next; 14598 mp->b_cont->b_prev = 14599 mp1->b_cont->b_prev; 14600 } 14601 inet_freemsg(mp1); 14602 ASSERT(ipsq->ipsq_current_ipif != NULL); 14603 ASSERT(connp != NULL); 14604 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14605 iocp->ioc_error, NO_COPYOUT, 14606 ipsq->ipsq_current_ipif, ipsq); 14607 } else { 14608 ASSERT(connp == NULL); 14609 putnext(q, mp); 14610 } 14611 break; 14612 case SIOCGTUNPARAM: 14613 case OSIOCGTUNPARAM: 14614 /* 14615 * This is really M_IOCDATA from the tunnel driver. 14616 * convert back and complete the ioctl. 14617 * We should have an IOCTL waiting on this. 14618 */ 14619 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 14620 if (mp1) { 14621 /* 14622 * Now copy back the b_next/b_prev used by 14623 * mi code for the mi_copy* functions. 14624 * See ip_sioctl_tunparam() for the reason. 14625 * Also protect against missing b_cont. 14626 */ 14627 if (mp->b_cont != NULL) { 14628 mp->b_cont->b_next = 14629 mp1->b_cont->b_next; 14630 mp->b_cont->b_prev = 14631 mp1->b_cont->b_prev; 14632 } 14633 inet_freemsg(mp1); 14634 if (iocp->ioc_error == 0) 14635 mp->b_datap->db_type = M_IOCDATA; 14636 ASSERT(connp != NULL); 14637 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14638 iocp->ioc_error, COPYOUT, NULL, NULL); 14639 } else { 14640 ASSERT(connp == NULL); 14641 putnext(q, mp); 14642 } 14643 break; 14644 default: 14645 break; 14646 } 14647 break; 14648 case M_IOCNAK: 14649 iocp = (struct iocblk *)mp->b_rptr; 14650 14651 switch (iocp->ioc_cmd) { 14652 int mode; 14653 ipif_t *ipif; 14654 14655 case DL_IOC_HDR_INFO: 14656 /* 14657 * If this was the first attempt turn of the 14658 * fastpath probing. 14659 */ 14660 mutex_enter(&ill->ill_lock); 14661 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 14662 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 14663 mutex_exit(&ill->ill_lock); 14664 ill_fastpath_nack(ill); 14665 ip1dbg(("ip_rput: DLPI fastpath off on " 14666 "interface %s\n", 14667 ill->ill_name)); 14668 } else { 14669 mutex_exit(&ill->ill_lock); 14670 } 14671 freemsg(mp); 14672 break; 14673 case SIOCSTUNPARAM: 14674 case OSIOCSTUNPARAM: 14675 ASSERT(ipsq != NULL); 14676 /* 14677 * Finish socket ioctl passed through to tun 14678 * We should have an IOCTL waiting on this. 14679 */ 14680 /* FALLTHRU */ 14681 case SIOCGTUNPARAM: 14682 case OSIOCGTUNPARAM: 14683 /* 14684 * This is really M_IOCDATA from the tunnel driver. 14685 * convert back and complete the ioctl. 14686 * We should have an IOCTL waiting on this. 14687 */ 14688 if (iocp->ioc_cmd == SIOCGTUNPARAM || 14689 iocp->ioc_cmd == OSIOCGTUNPARAM) { 14690 mp1 = ill_pending_mp_get(ill, &connp, 14691 iocp->ioc_id); 14692 mode = COPYOUT; 14693 ipsq = NULL; 14694 ipif = NULL; 14695 } else { 14696 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14697 mode = NO_COPYOUT; 14698 ASSERT(ipsq->ipsq_current_ipif != NULL); 14699 ipif = ipsq->ipsq_current_ipif; 14700 } 14701 if (mp1 != NULL) { 14702 /* 14703 * Now copy back the b_next/b_prev used by 14704 * mi code for the mi_copy* functions. 14705 * See ip_sioctl_tunparam() for the reason. 14706 * Also protect against missing b_cont. 14707 */ 14708 if (mp->b_cont != NULL) { 14709 mp->b_cont->b_next = 14710 mp1->b_cont->b_next; 14711 mp->b_cont->b_prev = 14712 mp1->b_cont->b_prev; 14713 } 14714 inet_freemsg(mp1); 14715 if (iocp->ioc_error == 0) 14716 iocp->ioc_error = EINVAL; 14717 ASSERT(connp != NULL); 14718 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14719 iocp->ioc_error, mode, ipif, ipsq); 14720 } else { 14721 ASSERT(connp == NULL); 14722 putnext(q, mp); 14723 } 14724 break; 14725 default: 14726 break; 14727 } 14728 default: 14729 break; 14730 } 14731 } 14732 14733 /* 14734 * NOTE : This function does not ire_refrele the ire argument passed in. 14735 * 14736 * IPQoS notes 14737 * IP policy is invoked twice for a forwarded packet, once on the read side 14738 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 14739 * enabled. An additional parameter, in_ill, has been added for this purpose. 14740 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 14741 * because ip_mroute drops this information. 14742 * 14743 */ 14744 void 14745 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 14746 { 14747 uint32_t pkt_len; 14748 queue_t *q; 14749 uint32_t sum; 14750 #define rptr ((uchar_t *)ipha) 14751 uint32_t max_frag; 14752 uint32_t ill_index; 14753 14754 /* Get the ill_index of the incoming ILL */ 14755 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 14756 14757 /* Initiate Read side IPPF processing */ 14758 if (IPP_ENABLED(IPP_FWD_IN)) { 14759 ip_process(IPP_FWD_IN, &mp, ill_index); 14760 if (mp == NULL) { 14761 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 14762 "during IPPF processing\n")); 14763 return; 14764 } 14765 } 14766 pkt_len = ntohs(ipha->ipha_length); 14767 14768 /* Adjust the checksum to reflect the ttl decrement. */ 14769 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14770 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14771 14772 if (ipha->ipha_ttl-- <= 1) { 14773 if (ip_csum_hdr(ipha)) { 14774 BUMP_MIB(&ip_mib, ipInCksumErrs); 14775 goto drop_pkt; 14776 } 14777 /* 14778 * Note: ire_stq this will be NULL for multicast 14779 * datagrams using the long path through arp (the IRE 14780 * is not an IRE_CACHE). This should not cause 14781 * problems since we don't generate ICMP errors for 14782 * multicast packets. 14783 */ 14784 q = ire->ire_stq; 14785 if (q) 14786 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 14787 else 14788 freemsg(mp); 14789 return; 14790 } 14791 14792 /* 14793 * Don't forward if the interface is down 14794 */ 14795 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 14796 BUMP_MIB(&ip_mib, ipInDiscards); 14797 goto drop_pkt; 14798 } 14799 14800 /* Get the ill_index of the outgoing ILL */ 14801 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 14802 14803 /* Check if there are options to update */ 14804 if (!IS_SIMPLE_IPH(ipha)) { 14805 if (ip_csum_hdr(ipha)) { 14806 BUMP_MIB(&ip_mib, ipInCksumErrs); 14807 goto drop_pkt; 14808 } 14809 if (ip_rput_forward_options(mp, ipha, ire)) { 14810 return; 14811 } 14812 14813 ipha->ipha_hdr_checksum = 0; 14814 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14815 } 14816 max_frag = ire->ire_max_frag; 14817 if (pkt_len > max_frag) { 14818 /* 14819 * It needs fragging on its way out. We haven't 14820 * verified the header checksum yet. Since we 14821 * are going to put a surely good checksum in the 14822 * outgoing header, we have to make sure that it 14823 * was good coming in. 14824 */ 14825 if (ip_csum_hdr(ipha)) { 14826 BUMP_MIB(&ip_mib, ipInCksumErrs); 14827 goto drop_pkt; 14828 } 14829 /* Initiate Write side IPPF processing */ 14830 if (IPP_ENABLED(IPP_FWD_OUT)) { 14831 ip_process(IPP_FWD_OUT, &mp, ill_index); 14832 if (mp == NULL) { 14833 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 14834 " during IPPF processing\n")); 14835 return; 14836 } 14837 } 14838 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 14839 return; 14840 } 14841 14842 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 14843 if (mp == NULL) { 14844 BUMP_MIB(&ip_mib, ipInDiscards); 14845 return; 14846 } 14847 14848 q = ire->ire_stq; 14849 UPDATE_IB_PKT_COUNT(ire); 14850 ire->ire_last_used_time = lbolt; 14851 BUMP_MIB(&ip_mib, ipForwDatagrams); 14852 putnext(q, mp); 14853 return; 14854 14855 drop_pkt:; 14856 ip1dbg(("ip_rput_forward: drop pkt\n")); 14857 freemsg(mp); 14858 #undef rptr 14859 } 14860 14861 void 14862 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 14863 { 14864 ire_t *ire; 14865 14866 ASSERT(!ipif->ipif_isv6); 14867 /* 14868 * Find an IRE which matches the destination and the outgoing 14869 * queue in the cache table. All we need is an IRE_CACHE which 14870 * is pointing at ipif->ipif_ill. If it is part of some ill group, 14871 * then it is enough to have some IRE_CACHE in the group. 14872 */ 14873 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14874 dst = ipif->ipif_pp_dst_addr; 14875 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, 14876 MATCH_IRE_ILL_GROUP); 14877 if (!ire) { 14878 /* 14879 * Mark this packet to make it be delivered to 14880 * ip_rput_forward after the new ire has been 14881 * created. 14882 */ 14883 mp->b_prev = NULL; 14884 mp->b_next = mp; 14885 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 14886 NULL, 0); 14887 } else { 14888 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 14889 IRE_REFRELE(ire); 14890 } 14891 } 14892 14893 /* Update any source route, record route or timestamp options */ 14894 static int 14895 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 14896 { 14897 ipoptp_t opts; 14898 uchar_t *opt; 14899 uint8_t optval; 14900 uint8_t optlen; 14901 ipaddr_t dst; 14902 uint32_t ts; 14903 ire_t *dst_ire = NULL; 14904 ire_t *tmp_ire = NULL; 14905 timestruc_t now; 14906 14907 ip2dbg(("ip_rput_forward_options\n")); 14908 dst = ipha->ipha_dst; 14909 for (optval = ipoptp_first(&opts, ipha); 14910 optval != IPOPT_EOL; 14911 optval = ipoptp_next(&opts)) { 14912 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 14913 opt = opts.ipoptp_cur; 14914 optlen = opts.ipoptp_len; 14915 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 14916 optval, opts.ipoptp_len)); 14917 switch (optval) { 14918 uint32_t off; 14919 case IPOPT_SSRR: 14920 case IPOPT_LSRR: 14921 /* Check if adminstratively disabled */ 14922 if (!ip_forward_src_routed) { 14923 BUMP_MIB(&ip_mib, ipForwProhibits); 14924 if (ire->ire_stq) 14925 icmp_unreachable(ire->ire_stq, mp, 14926 ICMP_SOURCE_ROUTE_FAILED); 14927 else { 14928 ip0dbg(("ip_rput_forward_options: " 14929 "unable to send unreach\n")); 14930 freemsg(mp); 14931 } 14932 return (-1); 14933 } 14934 14935 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 14936 NULL, ALL_ZONES, MATCH_IRE_TYPE); 14937 if (dst_ire == NULL) { 14938 /* 14939 * Must be partial since ip_rput_options 14940 * checked for strict. 14941 */ 14942 break; 14943 } 14944 off = opt[IPOPT_OFFSET]; 14945 off--; 14946 redo_srr: 14947 if (optlen < IP_ADDR_LEN || 14948 off > optlen - IP_ADDR_LEN) { 14949 /* End of source route */ 14950 ip1dbg(( 14951 "ip_rput_forward_options: end of SR\n")); 14952 ire_refrele(dst_ire); 14953 break; 14954 } 14955 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 14956 bcopy(&ire->ire_src_addr, (char *)opt + off, 14957 IP_ADDR_LEN); 14958 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 14959 ntohl(dst))); 14960 14961 /* 14962 * Check if our address is present more than 14963 * once as consecutive hops in source route. 14964 */ 14965 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 14966 NULL, ALL_ZONES, MATCH_IRE_TYPE); 14967 if (tmp_ire != NULL) { 14968 ire_refrele(tmp_ire); 14969 off += IP_ADDR_LEN; 14970 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14971 goto redo_srr; 14972 } 14973 ipha->ipha_dst = dst; 14974 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14975 ire_refrele(dst_ire); 14976 break; 14977 case IPOPT_RR: 14978 off = opt[IPOPT_OFFSET]; 14979 off--; 14980 if (optlen < IP_ADDR_LEN || 14981 off > optlen - IP_ADDR_LEN) { 14982 /* No more room - ignore */ 14983 ip1dbg(( 14984 "ip_rput_forward_options: end of RR\n")); 14985 break; 14986 } 14987 bcopy(&ire->ire_src_addr, (char *)opt + off, 14988 IP_ADDR_LEN); 14989 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14990 break; 14991 case IPOPT_TS: 14992 /* Insert timestamp if there is room */ 14993 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 14994 case IPOPT_TS_TSONLY: 14995 off = IPOPT_TS_TIMELEN; 14996 break; 14997 case IPOPT_TS_PRESPEC: 14998 case IPOPT_TS_PRESPEC_RFC791: 14999 /* Verify that the address matched */ 15000 off = opt[IPOPT_OFFSET] - 1; 15001 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15002 dst_ire = ire_ctable_lookup(dst, 0, 15003 IRE_LOCAL, NULL, ALL_ZONES, MATCH_IRE_TYPE); 15004 if (dst_ire == NULL) { 15005 /* Not for us */ 15006 break; 15007 } 15008 ire_refrele(dst_ire); 15009 /* FALLTHRU */ 15010 case IPOPT_TS_TSANDADDR: 15011 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15012 break; 15013 default: 15014 /* 15015 * ip_*put_options should have already 15016 * dropped this packet. 15017 */ 15018 cmn_err(CE_PANIC, "ip_rput_forward_options: " 15019 "unknown IT - bug in ip_rput_options?\n"); 15020 return (0); /* Keep "lint" happy */ 15021 } 15022 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15023 /* Increase overflow counter */ 15024 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15025 opt[IPOPT_POS_OV_FLG] = 15026 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15027 (off << 4)); 15028 break; 15029 } 15030 off = opt[IPOPT_OFFSET] - 1; 15031 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15032 case IPOPT_TS_PRESPEC: 15033 case IPOPT_TS_PRESPEC_RFC791: 15034 case IPOPT_TS_TSANDADDR: 15035 bcopy(&ire->ire_src_addr, 15036 (char *)opt + off, IP_ADDR_LEN); 15037 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15038 /* FALLTHRU */ 15039 case IPOPT_TS_TSONLY: 15040 off = opt[IPOPT_OFFSET] - 1; 15041 /* Compute # of milliseconds since midnight */ 15042 gethrestime(&now); 15043 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15044 now.tv_nsec / (NANOSEC / MILLISEC); 15045 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15046 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15047 break; 15048 } 15049 break; 15050 } 15051 } 15052 return (0); 15053 } 15054 15055 /* 15056 * This is called after processing at least one of AH/ESP headers. 15057 * 15058 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 15059 * the actual, physical interface on which the packet was received, 15060 * but, when ip_strict_dst_multihoming is set to 1, could be the 15061 * interface which had the ipha_dst configured when the packet went 15062 * through ip_rput. The ill_index corresponding to the recv_ill 15063 * is saved in ipsec_in_rill_index 15064 */ 15065 void 15066 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 15067 { 15068 mblk_t *mp; 15069 ipaddr_t dst; 15070 in6_addr_t *v6dstp; 15071 ipha_t *ipha; 15072 ip6_t *ip6h; 15073 ipsec_in_t *ii; 15074 boolean_t ill_need_rele = B_FALSE; 15075 boolean_t rill_need_rele = B_FALSE; 15076 boolean_t ire_need_rele = B_FALSE; 15077 15078 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 15079 ASSERT(ii->ipsec_in_ill_index != 0); 15080 15081 mp = ipsec_mp->b_cont; 15082 ASSERT(mp != NULL); 15083 15084 15085 if (ill == NULL) { 15086 ASSERT(recv_ill == NULL); 15087 /* 15088 * We need to get the original queue on which ip_rput_local 15089 * or ip_rput_data_v6 was called. 15090 */ 15091 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 15092 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 15093 ill_need_rele = B_TRUE; 15094 15095 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 15096 recv_ill = ill_lookup_on_ifindex( 15097 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 15098 NULL, NULL, NULL, NULL); 15099 rill_need_rele = B_TRUE; 15100 } else { 15101 recv_ill = ill; 15102 } 15103 15104 if ((ill == NULL) || (recv_ill == NULL)) { 15105 ip0dbg(("ip_fanout_proto_again: interface " 15106 "disappeared\n")); 15107 if (ill != NULL) 15108 ill_refrele(ill); 15109 if (recv_ill != NULL) 15110 ill_refrele(recv_ill); 15111 freemsg(ipsec_mp); 15112 return; 15113 } 15114 } 15115 15116 ASSERT(ill != NULL && recv_ill != NULL); 15117 15118 if (mp->b_datap->db_type == M_CTL) { 15119 /* 15120 * AH/ESP is returning the ICMP message after 15121 * removing their headers. Fanout again till 15122 * it gets to the right protocol. 15123 */ 15124 if (ii->ipsec_in_v4) { 15125 icmph_t *icmph; 15126 int iph_hdr_length; 15127 int hdr_length; 15128 15129 ipha = (ipha_t *)mp->b_rptr; 15130 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15131 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15132 ipha = (ipha_t *)&icmph[1]; 15133 hdr_length = IPH_HDR_LENGTH(ipha); 15134 /* 15135 * icmp_inbound_error_fanout may need to do pullupmsg. 15136 * Reset the type to M_DATA. 15137 */ 15138 mp->b_datap->db_type = M_DATA; 15139 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15140 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15141 B_FALSE, ill, ii->ipsec_in_zoneid); 15142 } else { 15143 icmp6_t *icmp6; 15144 int hdr_length; 15145 15146 ip6h = (ip6_t *)mp->b_rptr; 15147 /* Don't call hdr_length_v6() unless you have to. */ 15148 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15149 hdr_length = ip_hdr_length_v6(mp, ip6h); 15150 else 15151 hdr_length = IPV6_HDR_LEN; 15152 15153 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15154 /* 15155 * icmp_inbound_error_fanout_v6 may need to do 15156 * pullupmsg. Reset the type to M_DATA. 15157 */ 15158 mp->b_datap->db_type = M_DATA; 15159 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15160 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15161 } 15162 if (ill_need_rele) 15163 ill_refrele(ill); 15164 if (rill_need_rele) 15165 ill_refrele(recv_ill); 15166 return; 15167 } 15168 15169 if (ii->ipsec_in_v4) { 15170 ipha = (ipha_t *)mp->b_rptr; 15171 dst = ipha->ipha_dst; 15172 if (CLASSD(dst)) { 15173 /* 15174 * Multicast has to be delivered to all streams. 15175 */ 15176 dst = INADDR_BROADCAST; 15177 } 15178 15179 if (ire == NULL) { 15180 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid); 15181 if (ire == NULL) { 15182 if (ill_need_rele) 15183 ill_refrele(ill); 15184 if (rill_need_rele) 15185 ill_refrele(recv_ill); 15186 ip1dbg(("ip_fanout_proto_again: " 15187 "IRE not found")); 15188 freemsg(ipsec_mp); 15189 return; 15190 } 15191 ire_need_rele = B_TRUE; 15192 } 15193 15194 switch (ipha->ipha_protocol) { 15195 case IPPROTO_UDP: 15196 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15197 recv_ill); 15198 if (ire_need_rele) 15199 ire_refrele(ire); 15200 break; 15201 case IPPROTO_TCP: 15202 if (!ire_need_rele) 15203 IRE_REFHOLD(ire); 15204 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15205 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15206 IRE_REFRELE(ire); 15207 if (mp != NULL) 15208 squeue_enter_chain(GET_SQUEUE(mp), mp, 15209 mp, 1, SQTAG_IP_PROTO_AGAIN); 15210 break; 15211 case IPPROTO_SCTP: 15212 if (!ire_need_rele) 15213 IRE_REFHOLD(ire); 15214 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15215 ipsec_mp, 0, ill->ill_rq, dst); 15216 break; 15217 default: 15218 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15219 recv_ill); 15220 if (ire_need_rele) 15221 ire_refrele(ire); 15222 break; 15223 } 15224 } else { 15225 uint32_t rput_flags = 0; 15226 15227 ip6h = (ip6_t *)mp->b_rptr; 15228 v6dstp = &ip6h->ip6_dst; 15229 /* 15230 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15231 * address. 15232 * 15233 * Currently, we don't store that state in the IPSEC_IN 15234 * message, and we may need to. 15235 */ 15236 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15237 IP6_IN_LLMCAST : 0); 15238 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15239 NULL); 15240 } 15241 if (ill_need_rele) 15242 ill_refrele(ill); 15243 if (rill_need_rele) 15244 ill_refrele(recv_ill); 15245 } 15246 15247 /* 15248 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15249 * returns 'true' if there are still fragments left on the queue, in 15250 * which case we restart the timer. 15251 */ 15252 void 15253 ill_frag_timer(void *arg) 15254 { 15255 ill_t *ill = (ill_t *)arg; 15256 boolean_t frag_pending; 15257 15258 mutex_enter(&ill->ill_lock); 15259 ASSERT(!ill->ill_fragtimer_executing); 15260 if (ill->ill_state_flags & ILL_CONDEMNED) { 15261 ill->ill_frag_timer_id = 0; 15262 mutex_exit(&ill->ill_lock); 15263 return; 15264 } 15265 ill->ill_fragtimer_executing = 1; 15266 mutex_exit(&ill->ill_lock); 15267 15268 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15269 15270 /* 15271 * Restart the timer, if we have fragments pending or if someone 15272 * wanted us to be scheduled again. 15273 */ 15274 mutex_enter(&ill->ill_lock); 15275 ill->ill_fragtimer_executing = 0; 15276 ill->ill_frag_timer_id = 0; 15277 if (frag_pending || ill->ill_fragtimer_needrestart) 15278 ill_frag_timer_start(ill); 15279 mutex_exit(&ill->ill_lock); 15280 } 15281 15282 void 15283 ill_frag_timer_start(ill_t *ill) 15284 { 15285 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15286 15287 /* If the ill is closing or opening don't proceed */ 15288 if (ill->ill_state_flags & ILL_CONDEMNED) 15289 return; 15290 15291 if (ill->ill_fragtimer_executing) { 15292 /* 15293 * ill_frag_timer is currently executing. Just record the 15294 * the fact that we want the timer to be restarted. 15295 * ill_frag_timer will post a timeout before it returns, 15296 * ensuring it will be called again. 15297 */ 15298 ill->ill_fragtimer_needrestart = 1; 15299 return; 15300 } 15301 15302 if (ill->ill_frag_timer_id == 0) { 15303 /* 15304 * The timer is neither running nor is the timeout handler 15305 * executing. Post a timeout so that ill_frag_timer will be 15306 * called 15307 */ 15308 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15309 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15310 ill->ill_fragtimer_needrestart = 0; 15311 } 15312 } 15313 15314 /* 15315 * This routine is needed for loopback when forwarding multicasts. 15316 * 15317 * IPQoS Notes: 15318 * IPPF processing is done in fanout routines. 15319 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15320 * processing for IPSec packets is done when it comes back in clear. 15321 * NOTE : The callers of this function need to do the ire_refrele for the 15322 * ire that is being passed in. 15323 */ 15324 void 15325 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15326 ill_t *recv_ill) 15327 { 15328 ill_t *ill = (ill_t *)q->q_ptr; 15329 uint32_t sum; 15330 uint32_t u1; 15331 uint32_t u2; 15332 int hdr_length; 15333 boolean_t mctl_present; 15334 mblk_t *first_mp = mp; 15335 mblk_t *hada_mp = NULL; 15336 ipha_t *inner_ipha; 15337 15338 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 15339 "ip_rput_locl_start: q %p", q); 15340 15341 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15342 15343 15344 #define rptr ((uchar_t *)ipha) 15345 #define iphs ((uint16_t *)ipha) 15346 15347 /* 15348 * no UDP or TCP packet should come here anymore. 15349 */ 15350 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 15351 (ipha->ipha_protocol != IPPROTO_UDP)); 15352 15353 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 15354 if (mctl_present && 15355 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 15356 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 15357 15358 /* 15359 * It's an IPsec accelerated packet. 15360 * Keep a pointer to the data attributes around until 15361 * we allocate the ipsec_info_t. 15362 */ 15363 IPSECHW_DEBUG(IPSECHW_PKT, 15364 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 15365 hada_mp = first_mp; 15366 hada_mp->b_cont = NULL; 15367 /* 15368 * Since it is accelerated, it comes directly from 15369 * the ill and the data attributes is followed by 15370 * the packet data. 15371 */ 15372 ASSERT(mp->b_datap->db_type != M_CTL); 15373 first_mp = mp; 15374 mctl_present = B_FALSE; 15375 } 15376 15377 /* 15378 * IF M_CTL is not present, then ipsec_in_is_secure 15379 * should return B_TRUE. There is a case where loopback 15380 * packets has an M_CTL in the front with all the 15381 * IPSEC options set to IPSEC_PREF_NEVER - which means 15382 * ipsec_in_is_secure will return B_FALSE. As loopback 15383 * packets never comes here, it is safe to ASSERT the 15384 * following. 15385 */ 15386 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 15387 15388 15389 /* u1 is # words of IP options */ 15390 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 15391 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 15392 15393 if (u1) { 15394 if (!ip_options_cksum(q, mp, ipha, ire)) { 15395 if (hada_mp != NULL) 15396 freemsg(hada_mp); 15397 return; 15398 } 15399 } else { 15400 /* Check the IP header checksum. */ 15401 #define uph ((uint16_t *)ipha) 15402 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 15403 uph[6] + uph[7] + uph[8] + uph[9]; 15404 #undef uph 15405 /* finish doing IP checksum */ 15406 sum = (sum & 0xFFFF) + (sum >> 16); 15407 sum = ~(sum + (sum >> 16)) & 0xFFFF; 15408 /* 15409 * Don't verify header checksum if this packet is coming 15410 * back from AH/ESP as we already did it. 15411 */ 15412 if (!mctl_present && (sum && sum != 0xFFFF)) { 15413 BUMP_MIB(&ip_mib, ipInCksumErrs); 15414 goto drop_pkt; 15415 } 15416 } 15417 15418 /* 15419 * Count for SNMP of inbound packets for ire. As ip_proto_input 15420 * might be called more than once for secure packets, count only 15421 * the first time. 15422 */ 15423 if (!mctl_present) { 15424 UPDATE_IB_PKT_COUNT(ire); 15425 ire->ire_last_used_time = lbolt; 15426 } 15427 15428 /* Check for fragmentation offset. */ 15429 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 15430 u1 = u2 & (IPH_MF | IPH_OFFSET); 15431 if (u1) { 15432 /* 15433 * We re-assemble fragments before we do the AH/ESP 15434 * processing. Thus, M_CTL should not be present 15435 * while we are re-assembling. 15436 */ 15437 ASSERT(!mctl_present); 15438 ASSERT(first_mp == mp); 15439 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 15440 return; 15441 } 15442 /* 15443 * Make sure that first_mp points back to mp as 15444 * the mp we came in with could have changed in 15445 * ip_rput_fragment(). 15446 */ 15447 ipha = (ipha_t *)mp->b_rptr; 15448 first_mp = mp; 15449 } 15450 15451 /* 15452 * Clear hardware checksumming flag as it is currently only 15453 * used by TCP and UDP. 15454 */ 15455 DB_CKSUMFLAGS(mp) = 0; 15456 15457 /* Now we have a complete datagram, destined for this machine. */ 15458 u1 = IPH_HDR_LENGTH(ipha); 15459 switch (ipha->ipha_protocol) { 15460 case IPPROTO_ICMP: { 15461 ire_t *ire_zone; 15462 ilm_t *ilm; 15463 mblk_t *mp1; 15464 zoneid_t last_zoneid; 15465 15466 if (CLASSD(ipha->ipha_dst) && 15467 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 15468 ASSERT(ire->ire_type == IRE_BROADCAST); 15469 /* 15470 * In the multicast case, applications may have joined 15471 * the group from different zones, so we need to deliver 15472 * the packet to each of them. Loop through the 15473 * multicast memberships structures (ilm) on the receive 15474 * ill and send a copy of the packet up each matching 15475 * one. However, we don't do this for multicasts sent on 15476 * the loopback interface (PHYI_LOOPBACK flag set) as 15477 * they must stay in the sender's zone. 15478 * 15479 * ilm_add_v6() ensures that ilms in the same zone are 15480 * contiguous in the ill_ilm list. We use this property 15481 * to avoid sending duplicates needed when two 15482 * applications in the same zone join the same group on 15483 * different logical interfaces: we ignore the ilm if 15484 * its zoneid is the same as the last matching one. 15485 * In addition, the sending of the packet for 15486 * ire_zoneid is delayed until all of the other ilms 15487 * have been exhausted. 15488 */ 15489 last_zoneid = -1; 15490 ILM_WALKER_HOLD(recv_ill); 15491 for (ilm = recv_ill->ill_ilm; ilm != NULL; 15492 ilm = ilm->ilm_next) { 15493 if ((ilm->ilm_flags & ILM_DELETED) || 15494 ipha->ipha_dst != ilm->ilm_addr || 15495 ilm->ilm_zoneid == last_zoneid || 15496 ilm->ilm_zoneid == ire->ire_zoneid || 15497 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 15498 continue; 15499 mp1 = ip_copymsg(first_mp); 15500 if (mp1 == NULL) 15501 continue; 15502 icmp_inbound(q, mp1, B_TRUE, ill, 15503 0, sum, mctl_present, B_TRUE, 15504 recv_ill, ilm->ilm_zoneid); 15505 last_zoneid = ilm->ilm_zoneid; 15506 } 15507 ILM_WALKER_RELE(recv_ill); 15508 } else if (ire->ire_type == IRE_BROADCAST) { 15509 /* 15510 * In the broadcast case, there may be many zones 15511 * which need a copy of the packet delivered to them. 15512 * There is one IRE_BROADCAST per broadcast address 15513 * and per zone; we walk those using a helper function. 15514 * In addition, the sending of the packet for ire is 15515 * delayed until all of the other ires have been 15516 * processed. 15517 */ 15518 IRB_REFHOLD(ire->ire_bucket); 15519 ire_zone = NULL; 15520 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 15521 ire)) != NULL) { 15522 mp1 = ip_copymsg(first_mp); 15523 if (mp1 == NULL) 15524 continue; 15525 15526 UPDATE_IB_PKT_COUNT(ire_zone); 15527 ire_zone->ire_last_used_time = lbolt; 15528 icmp_inbound(q, mp1, B_TRUE, ill, 15529 0, sum, mctl_present, B_TRUE, 15530 recv_ill, ire_zone->ire_zoneid); 15531 } 15532 IRB_REFRELE(ire->ire_bucket); 15533 } 15534 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 15535 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 15536 ire->ire_zoneid); 15537 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15538 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 15539 return; 15540 } 15541 case IPPROTO_IGMP: 15542 /* 15543 * If we are not willing to accept IGMP packets in clear, 15544 * then check with global policy. 15545 */ 15546 if (igmp_accept_clear_messages == 0) { 15547 first_mp = ipsec_check_global_policy(first_mp, NULL, 15548 ipha, NULL, mctl_present); 15549 if (first_mp == NULL) 15550 return; 15551 } 15552 if (igmp_input(q, mp, ill)) { 15553 /* Bad packet - discarded by igmp_input */ 15554 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15555 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 15556 if (mctl_present) 15557 freeb(first_mp); 15558 return; 15559 } 15560 /* 15561 * igmp_input() may have pulled up the message so ipha needs to 15562 * be reinitialized. 15563 */ 15564 ipha = (ipha_t *)mp->b_rptr; 15565 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15566 /* No user-level listener for IGMP packets */ 15567 goto drop_pkt; 15568 } 15569 /* deliver to local raw users */ 15570 break; 15571 case IPPROTO_PIM: 15572 /* 15573 * If we are not willing to accept PIM packets in clear, 15574 * then check with global policy. 15575 */ 15576 if (pim_accept_clear_messages == 0) { 15577 first_mp = ipsec_check_global_policy(first_mp, NULL, 15578 ipha, NULL, mctl_present); 15579 if (first_mp == NULL) 15580 return; 15581 } 15582 if (pim_input(q, mp) != 0) { 15583 /* Bad packet - discarded by pim_input */ 15584 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15585 "ip_rput_locl_end: q %p (%S)", q, "pim"); 15586 if (mctl_present) 15587 freeb(first_mp); 15588 return; 15589 } 15590 15591 /* 15592 * pim_input() may have pulled up the message so ipha needs to 15593 * be reinitialized. 15594 */ 15595 ipha = (ipha_t *)mp->b_rptr; 15596 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15597 /* No user-level listener for PIM packets */ 15598 goto drop_pkt; 15599 } 15600 /* deliver to local raw users */ 15601 break; 15602 case IPPROTO_ENCAP: 15603 /* 15604 * Handle self-encapsulated packets (IP-in-IP where 15605 * the inner addresses == the outer addresses). 15606 */ 15607 hdr_length = IPH_HDR_LENGTH(ipha); 15608 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 15609 mp->b_wptr) { 15610 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 15611 sizeof (ipha_t) - mp->b_rptr)) { 15612 BUMP_MIB(&ip_mib, ipInDiscards); 15613 freemsg(first_mp); 15614 return; 15615 } 15616 ipha = (ipha_t *)mp->b_rptr; 15617 } 15618 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 15619 /* 15620 * Check the sanity of the inner IP header. 15621 */ 15622 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 15623 BUMP_MIB(&ip_mib, ipInDiscards); 15624 freemsg(first_mp); 15625 return; 15626 } 15627 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 15628 BUMP_MIB(&ip_mib, ipInDiscards); 15629 freemsg(first_mp); 15630 return; 15631 } 15632 if (inner_ipha->ipha_src == ipha->ipha_src && 15633 inner_ipha->ipha_dst == ipha->ipha_dst) { 15634 ipsec_in_t *ii; 15635 15636 /* 15637 * Self-encapsulated tunnel packet. Remove 15638 * the outer IP header and fanout again. 15639 * We also need to make sure that the inner 15640 * header is pulled up until options. 15641 */ 15642 mp->b_rptr = (uchar_t *)inner_ipha; 15643 ipha = inner_ipha; 15644 hdr_length = IPH_HDR_LENGTH(ipha); 15645 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 15646 if (!pullupmsg(mp, (uchar_t *)ipha + 15647 + hdr_length - mp->b_rptr)) { 15648 freemsg(first_mp); 15649 return; 15650 } 15651 ipha = (ipha_t *)mp->b_rptr; 15652 } 15653 if (!mctl_present) { 15654 ASSERT(first_mp == mp); 15655 /* 15656 * This means that somebody is sending 15657 * Self-encapsualted packets without AH/ESP. 15658 * If AH/ESP was present, we would have already 15659 * allocated the first_mp. 15660 */ 15661 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 15662 NULL) { 15663 ip1dbg(("ip_proto_input: IPSEC_IN " 15664 "allocation failure.\n")); 15665 BUMP_MIB(&ip_mib, ipInDiscards); 15666 freemsg(mp); 15667 return; 15668 } 15669 first_mp->b_cont = mp; 15670 } 15671 /* 15672 * We generally store the ill_index if we need to 15673 * do IPSEC processing as we lose the ill queue when 15674 * we come back. But in this case, we never should 15675 * have to store the ill_index here as it should have 15676 * been stored previously when we processed the 15677 * AH/ESP header in this routine or for non-ipsec 15678 * cases, we still have the queue. But for some bad 15679 * packets from the wire, we can get to IPSEC after 15680 * this and we better store the index for that case. 15681 */ 15682 ill = (ill_t *)q->q_ptr; 15683 ii = (ipsec_in_t *)first_mp->b_rptr; 15684 ii->ipsec_in_ill_index = 15685 ill->ill_phyint->phyint_ifindex; 15686 ii->ipsec_in_rill_index = 15687 recv_ill->ill_phyint->phyint_ifindex; 15688 if (ii->ipsec_in_decaps) { 15689 /* 15690 * This packet is self-encapsulated multiple 15691 * times. We don't want to recurse infinitely. 15692 * To keep it simple, drop the packet. 15693 */ 15694 BUMP_MIB(&ip_mib, ipInDiscards); 15695 freemsg(first_mp); 15696 return; 15697 } 15698 ii->ipsec_in_decaps = B_TRUE; 15699 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 15700 return; 15701 } 15702 break; 15703 case IPPROTO_AH: 15704 case IPPROTO_ESP: { 15705 /* 15706 * Fast path for AH/ESP. If this is the first time 15707 * we are sending a datagram to AH/ESP, allocate 15708 * a IPSEC_IN message and prepend it. Otherwise, 15709 * just fanout. 15710 */ 15711 15712 int ipsec_rc; 15713 ipsec_in_t *ii; 15714 15715 IP_STAT(ipsec_proto_ahesp); 15716 if (!mctl_present) { 15717 ASSERT(first_mp == mp); 15718 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 15719 ip1dbg(("ip_proto_input: IPSEC_IN " 15720 "allocation failure.\n")); 15721 freemsg(hada_mp); /* okay ifnull */ 15722 BUMP_MIB(&ip_mib, ipInDiscards); 15723 freemsg(mp); 15724 return; 15725 } 15726 /* 15727 * Store the ill_index so that when we come back 15728 * from IPSEC we ride on the same queue. 15729 */ 15730 ill = (ill_t *)q->q_ptr; 15731 ii = (ipsec_in_t *)first_mp->b_rptr; 15732 ii->ipsec_in_ill_index = 15733 ill->ill_phyint->phyint_ifindex; 15734 ii->ipsec_in_rill_index = 15735 recv_ill->ill_phyint->phyint_ifindex; 15736 first_mp->b_cont = mp; 15737 /* 15738 * Cache hardware acceleration info. 15739 */ 15740 if (hada_mp != NULL) { 15741 IPSECHW_DEBUG(IPSECHW_PKT, 15742 ("ip_rput_local: caching data attr.\n")); 15743 ii->ipsec_in_accelerated = B_TRUE; 15744 ii->ipsec_in_da = hada_mp; 15745 hada_mp = NULL; 15746 } 15747 } else { 15748 ii = (ipsec_in_t *)first_mp->b_rptr; 15749 } 15750 15751 if (!ipsec_loaded()) { 15752 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 15753 ire->ire_zoneid); 15754 return; 15755 } 15756 15757 /* select inbound SA and have IPsec process the pkt */ 15758 if (ipha->ipha_protocol == IPPROTO_ESP) { 15759 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 15760 if (esph == NULL) 15761 return; 15762 ASSERT(ii->ipsec_in_esp_sa != NULL); 15763 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 15764 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 15765 first_mp, esph); 15766 } else { 15767 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 15768 if (ah == NULL) 15769 return; 15770 ASSERT(ii->ipsec_in_ah_sa != NULL); 15771 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 15772 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 15773 first_mp, ah); 15774 } 15775 15776 switch (ipsec_rc) { 15777 case IPSEC_STATUS_SUCCESS: 15778 break; 15779 case IPSEC_STATUS_FAILED: 15780 BUMP_MIB(&ip_mib, ipInDiscards); 15781 /* FALLTHRU */ 15782 case IPSEC_STATUS_PENDING: 15783 return; 15784 } 15785 /* we're done with IPsec processing, send it up */ 15786 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 15787 return; 15788 } 15789 default: 15790 break; 15791 } 15792 /* 15793 * Handle protocols with which IP is less intimate. There 15794 * can be more than one stream bound to a particular 15795 * protocol. When this is the case, each one gets a copy 15796 * of any incoming packets. 15797 */ 15798 ip_fanout_proto(q, first_mp, ill, ipha, 15799 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 15800 B_TRUE, recv_ill, ire->ire_zoneid); 15801 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15802 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 15803 return; 15804 15805 drop_pkt: 15806 freemsg(first_mp); 15807 if (hada_mp != NULL) 15808 freeb(hada_mp); 15809 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15810 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 15811 #undef rptr 15812 #undef iphs 15813 15814 } 15815 15816 /* 15817 * Update any source route, record route or timestamp options. 15818 * Check that we are at end of strict source route. 15819 * The options have already been checked for sanity in ip_rput_options(). 15820 */ 15821 static boolean_t 15822 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 15823 { 15824 ipoptp_t opts; 15825 uchar_t *opt; 15826 uint8_t optval; 15827 uint8_t optlen; 15828 ipaddr_t dst; 15829 uint32_t ts; 15830 ire_t *dst_ire; 15831 timestruc_t now; 15832 15833 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15834 15835 ip2dbg(("ip_rput_local_options\n")); 15836 15837 for (optval = ipoptp_first(&opts, ipha); 15838 optval != IPOPT_EOL; 15839 optval = ipoptp_next(&opts)) { 15840 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15841 opt = opts.ipoptp_cur; 15842 optlen = opts.ipoptp_len; 15843 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 15844 optval, optlen)); 15845 switch (optval) { 15846 uint32_t off; 15847 case IPOPT_SSRR: 15848 case IPOPT_LSRR: 15849 off = opt[IPOPT_OFFSET]; 15850 off--; 15851 if (optlen < IP_ADDR_LEN || 15852 off > optlen - IP_ADDR_LEN) { 15853 /* End of source route */ 15854 ip1dbg(("ip_rput_local_options: end of SR\n")); 15855 break; 15856 } 15857 /* 15858 * This will only happen if two consecutive entries 15859 * in the source route contains our address or if 15860 * it is a packet with a loose source route which 15861 * reaches us before consuming the whole source route 15862 */ 15863 ip1dbg(("ip_rput_local_options: not end of SR\n")); 15864 if (optval == IPOPT_SSRR) { 15865 goto bad_src_route; 15866 } 15867 /* 15868 * Hack: instead of dropping the packet truncate the 15869 * source route to what has been used by filling the 15870 * rest with IPOPT_NOP. 15871 */ 15872 opt[IPOPT_OLEN] = (uint8_t)off; 15873 while (off < optlen) { 15874 opt[off++] = IPOPT_NOP; 15875 } 15876 break; 15877 case IPOPT_RR: 15878 off = opt[IPOPT_OFFSET]; 15879 off--; 15880 if (optlen < IP_ADDR_LEN || 15881 off > optlen - IP_ADDR_LEN) { 15882 /* No more room - ignore */ 15883 ip1dbg(( 15884 "ip_rput_local_options: end of RR\n")); 15885 break; 15886 } 15887 bcopy(&ire->ire_src_addr, (char *)opt + off, 15888 IP_ADDR_LEN); 15889 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15890 break; 15891 case IPOPT_TS: 15892 /* Insert timestamp if there is romm */ 15893 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15894 case IPOPT_TS_TSONLY: 15895 off = IPOPT_TS_TIMELEN; 15896 break; 15897 case IPOPT_TS_PRESPEC: 15898 case IPOPT_TS_PRESPEC_RFC791: 15899 /* Verify that the address matched */ 15900 off = opt[IPOPT_OFFSET] - 1; 15901 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15902 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15903 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15904 if (dst_ire == NULL) { 15905 /* Not for us */ 15906 break; 15907 } 15908 ire_refrele(dst_ire); 15909 /* FALLTHRU */ 15910 case IPOPT_TS_TSANDADDR: 15911 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15912 break; 15913 default: 15914 /* 15915 * ip_*put_options should have already 15916 * dropped this packet. 15917 */ 15918 cmn_err(CE_PANIC, "ip_rput_local_options: " 15919 "unknown IT - bug in ip_rput_options?\n"); 15920 return (B_TRUE); /* Keep "lint" happy */ 15921 } 15922 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15923 /* Increase overflow counter */ 15924 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15925 opt[IPOPT_POS_OV_FLG] = 15926 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15927 (off << 4)); 15928 break; 15929 } 15930 off = opt[IPOPT_OFFSET] - 1; 15931 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15932 case IPOPT_TS_PRESPEC: 15933 case IPOPT_TS_PRESPEC_RFC791: 15934 case IPOPT_TS_TSANDADDR: 15935 bcopy(&ire->ire_src_addr, (char *)opt + off, 15936 IP_ADDR_LEN); 15937 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15938 /* FALLTHRU */ 15939 case IPOPT_TS_TSONLY: 15940 off = opt[IPOPT_OFFSET] - 1; 15941 /* Compute # of milliseconds since midnight */ 15942 gethrestime(&now); 15943 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15944 now.tv_nsec / (NANOSEC / MILLISEC); 15945 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15946 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15947 break; 15948 } 15949 break; 15950 } 15951 } 15952 return (B_TRUE); 15953 15954 bad_src_route: 15955 q = WR(q); 15956 /* make sure we clear any indication of a hardware checksum */ 15957 DB_CKSUMFLAGS(mp) = 0; 15958 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 15959 return (B_FALSE); 15960 15961 } 15962 15963 /* 15964 * Process IP options in an inbound packet. If an option affects the 15965 * effective destination address, return the next hop address via dstp. 15966 * Returns -1 if something fails in which case an ICMP error has been sent 15967 * and mp freed. 15968 */ 15969 static int 15970 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 15971 { 15972 ipoptp_t opts; 15973 uchar_t *opt; 15974 uint8_t optval; 15975 uint8_t optlen; 15976 ipaddr_t dst; 15977 intptr_t code = 0; 15978 ire_t *ire = NULL; 15979 15980 ip2dbg(("ip_rput_options\n")); 15981 dst = ipha->ipha_dst; 15982 for (optval = ipoptp_first(&opts, ipha); 15983 optval != IPOPT_EOL; 15984 optval = ipoptp_next(&opts)) { 15985 opt = opts.ipoptp_cur; 15986 optlen = opts.ipoptp_len; 15987 ip2dbg(("ip_rput_options: opt %d, len %d\n", 15988 optval, optlen)); 15989 /* 15990 * Note: we need to verify the checksum before we 15991 * modify anything thus this routine only extracts the next 15992 * hop dst from any source route. 15993 */ 15994 switch (optval) { 15995 uint32_t off; 15996 case IPOPT_SSRR: 15997 case IPOPT_LSRR: 15998 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 15999 ALL_ZONES, MATCH_IRE_TYPE); 16000 if (ire == NULL) { 16001 if (optval == IPOPT_SSRR) { 16002 ip1dbg(("ip_rput_options: not next" 16003 " strict source route 0x%x\n", 16004 ntohl(dst))); 16005 code = (char *)&ipha->ipha_dst - 16006 (char *)ipha; 16007 goto param_prob; /* RouterReq's */ 16008 } 16009 ip2dbg(("ip_rput_options: " 16010 "not next source route 0x%x\n", 16011 ntohl(dst))); 16012 break; 16013 } 16014 ire_refrele(ire); 16015 16016 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16017 ip1dbg(( 16018 "ip_rput_options: bad option offset\n")); 16019 code = (char *)&opt[IPOPT_OLEN] - 16020 (char *)ipha; 16021 goto param_prob; 16022 } 16023 off = opt[IPOPT_OFFSET]; 16024 off--; 16025 redo_srr: 16026 if (optlen < IP_ADDR_LEN || 16027 off > optlen - IP_ADDR_LEN) { 16028 /* End of source route */ 16029 ip1dbg(("ip_rput_options: end of SR\n")); 16030 break; 16031 } 16032 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16033 ip1dbg(("ip_rput_options: next hop 0x%x\n", 16034 ntohl(dst))); 16035 16036 /* 16037 * Check if our address is present more than 16038 * once as consecutive hops in source route. 16039 * XXX verify per-interface ip_forwarding 16040 * for source route? 16041 */ 16042 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16043 ALL_ZONES, MATCH_IRE_TYPE); 16044 16045 if (ire != NULL) { 16046 ire_refrele(ire); 16047 off += IP_ADDR_LEN; 16048 goto redo_srr; 16049 } 16050 16051 if (dst == htonl(INADDR_LOOPBACK)) { 16052 ip1dbg(("ip_rput_options: loopback addr in " 16053 "source route!\n")); 16054 goto bad_src_route; 16055 } 16056 /* 16057 * For strict: verify that dst is directly 16058 * reachable. 16059 */ 16060 if (optval == IPOPT_SSRR) { 16061 ire = ire_ftable_lookup(dst, 0, 0, 16062 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 16063 MATCH_IRE_TYPE); 16064 if (ire == NULL) { 16065 ip1dbg(("ip_rput_options: SSRR not " 16066 "directly reachable: 0x%x\n", 16067 ntohl(dst))); 16068 goto bad_src_route; 16069 } 16070 ire_refrele(ire); 16071 } 16072 /* 16073 * Defer update of the offset and the record route 16074 * until the packet is forwarded. 16075 */ 16076 break; 16077 case IPOPT_RR: 16078 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16079 ip1dbg(( 16080 "ip_rput_options: bad option offset\n")); 16081 code = (char *)&opt[IPOPT_OLEN] - 16082 (char *)ipha; 16083 goto param_prob; 16084 } 16085 break; 16086 case IPOPT_TS: 16087 /* 16088 * Verify that length >= 5 and that there is either 16089 * room for another timestamp or that the overflow 16090 * counter is not maxed out. 16091 */ 16092 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 16093 if (optlen < IPOPT_MINLEN_IT) { 16094 goto param_prob; 16095 } 16096 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16097 ip1dbg(( 16098 "ip_rput_options: bad option offset\n")); 16099 code = (char *)&opt[IPOPT_OFFSET] - 16100 (char *)ipha; 16101 goto param_prob; 16102 } 16103 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16104 case IPOPT_TS_TSONLY: 16105 off = IPOPT_TS_TIMELEN; 16106 break; 16107 case IPOPT_TS_TSANDADDR: 16108 case IPOPT_TS_PRESPEC: 16109 case IPOPT_TS_PRESPEC_RFC791: 16110 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16111 break; 16112 default: 16113 code = (char *)&opt[IPOPT_POS_OV_FLG] - 16114 (char *)ipha; 16115 goto param_prob; 16116 } 16117 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16118 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16119 /* 16120 * No room and the overflow counter is 15 16121 * already. 16122 */ 16123 goto param_prob; 16124 } 16125 break; 16126 } 16127 } 16128 16129 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16130 *dstp = dst; 16131 return (0); 16132 } 16133 16134 ip1dbg(("ip_rput_options: error processing IP options.")); 16135 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16136 16137 param_prob: 16138 q = WR(q); 16139 /* make sure we clear any indication of a hardware checksum */ 16140 DB_CKSUMFLAGS(mp) = 0; 16141 icmp_param_problem(q, mp, (uint8_t)code); 16142 return (-1); 16143 16144 bad_src_route: 16145 q = WR(q); 16146 /* make sure we clear any indication of a hardware checksum */ 16147 DB_CKSUMFLAGS(mp) = 0; 16148 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16149 return (-1); 16150 } 16151 16152 /* 16153 * IP & ICMP info in >=14 msg's ... 16154 * - ip fixed part (mib2_ip_t) 16155 * - icmp fixed part (mib2_icmp_t) 16156 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16157 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16158 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16159 * - ip multicast membership (ip_member_t) 16160 * - ip multicast source filtering (ip_grpsrc_t) 16161 * - igmp fixed part (struct igmpstat) 16162 * - multicast routing stats (struct mrtstat) 16163 * - multicast routing vifs (array of struct vifctl) 16164 * - multicast routing routes (array of struct mfcctl) 16165 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16166 * One per ill plus one generic 16167 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16168 * One per ill plus one generic 16169 * - ipv6RouteEntry all IPv6 IREs 16170 * - ipv6NetToMediaEntry all Neighbor Cache entries 16171 * - ipv6AddrEntry all IPv6 ipifs 16172 * - ipv6 multicast membership (ipv6_member_t) 16173 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16174 * 16175 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16176 * already present. 16177 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part 16178 * already filled in by caller. 16179 * Return value of 0 indicates that no messages were sent and caller 16180 * should free mpctl. 16181 */ 16182 int 16183 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16184 { 16185 16186 if (mpctl == NULL || mpctl->b_cont == NULL) { 16187 return (0); 16188 } 16189 16190 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16191 return (1); 16192 } 16193 16194 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16195 return (1); 16196 } 16197 16198 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16199 return (1); 16200 } 16201 16202 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16203 return (1); 16204 } 16205 16206 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16207 return (1); 16208 } 16209 16210 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16211 return (1); 16212 } 16213 16214 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16215 return (1); 16216 } 16217 16218 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16219 return (1); 16220 } 16221 16222 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16223 return (1); 16224 } 16225 16226 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16227 return (1); 16228 } 16229 16230 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16231 return (1); 16232 } 16233 16234 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16235 return (1); 16236 } 16237 16238 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16239 return (1); 16240 } 16241 16242 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16243 return (1); 16244 } 16245 16246 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16247 return (1); 16248 } 16249 16250 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16251 return (1); 16252 } 16253 16254 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16255 return (1); 16256 } 16257 freemsg(mpctl); 16258 return (1); 16259 } 16260 16261 16262 /* Get global IPv4 statistics */ 16263 static mblk_t * 16264 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16265 { 16266 struct opthdr *optp; 16267 mblk_t *mp2ctl; 16268 16269 /* 16270 * make a copy of the original message 16271 */ 16272 mp2ctl = copymsg(mpctl); 16273 16274 /* fixed length IP structure... */ 16275 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16276 optp->level = MIB2_IP; 16277 optp->name = 0; 16278 SET_MIB(ip_mib.ipForwarding, 16279 (WE_ARE_FORWARDING ? 1 : 2)); 16280 SET_MIB(ip_mib.ipDefaultTTL, 16281 (uint32_t)ip_def_ttl); 16282 SET_MIB(ip_mib.ipReasmTimeout, 16283 ip_g_frag_timeout); 16284 SET_MIB(ip_mib.ipAddrEntrySize, 16285 sizeof (mib2_ipAddrEntry_t)); 16286 SET_MIB(ip_mib.ipRouteEntrySize, 16287 sizeof (mib2_ipRouteEntry_t)); 16288 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16289 sizeof (mib2_ipNetToMediaEntry_t)); 16290 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16291 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16292 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16293 (int)sizeof (ip_mib))) { 16294 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16295 (uint_t)sizeof (ip_mib))); 16296 } 16297 16298 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16299 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16300 (int)optp->level, (int)optp->name, (int)optp->len)); 16301 qreply(q, mpctl); 16302 return (mp2ctl); 16303 } 16304 16305 /* Global IPv4 ICMP statistics */ 16306 static mblk_t * 16307 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16308 { 16309 struct opthdr *optp; 16310 mblk_t *mp2ctl; 16311 16312 /* 16313 * Make a copy of the original message 16314 */ 16315 mp2ctl = copymsg(mpctl); 16316 16317 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16318 optp->level = MIB2_ICMP; 16319 optp->name = 0; 16320 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 16321 (int)sizeof (icmp_mib))) { 16322 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 16323 (uint_t)sizeof (icmp_mib))); 16324 } 16325 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16326 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 16327 (int)optp->level, (int)optp->name, (int)optp->len)); 16328 qreply(q, mpctl); 16329 return (mp2ctl); 16330 } 16331 16332 /* Global IPv4 IGMP statistics */ 16333 static mblk_t * 16334 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 16335 { 16336 struct opthdr *optp; 16337 mblk_t *mp2ctl; 16338 16339 /* 16340 * make a copy of the original message 16341 */ 16342 mp2ctl = copymsg(mpctl); 16343 16344 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16345 optp->level = EXPER_IGMP; 16346 optp->name = 0; 16347 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 16348 (int)sizeof (igmpstat))) { 16349 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 16350 (uint_t)sizeof (igmpstat))); 16351 } 16352 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16353 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 16354 (int)optp->level, (int)optp->name, (int)optp->len)); 16355 qreply(q, mpctl); 16356 return (mp2ctl); 16357 } 16358 16359 /* Global IPv4 Multicast Routing statistics */ 16360 static mblk_t * 16361 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 16362 { 16363 struct opthdr *optp; 16364 mblk_t *mp2ctl; 16365 16366 /* 16367 * make a copy of the original message 16368 */ 16369 mp2ctl = copymsg(mpctl); 16370 16371 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16372 optp->level = EXPER_DVMRP; 16373 optp->name = 0; 16374 if (!ip_mroute_stats(mpctl->b_cont)) { 16375 ip0dbg(("ip_mroute_stats: failed\n")); 16376 } 16377 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16378 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 16379 (int)optp->level, (int)optp->name, (int)optp->len)); 16380 qreply(q, mpctl); 16381 return (mp2ctl); 16382 } 16383 16384 /* IPv4 address information */ 16385 static mblk_t * 16386 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 16387 { 16388 struct opthdr *optp; 16389 mblk_t *mp2ctl; 16390 mblk_t *mp_tail = NULL; 16391 ill_t *ill; 16392 ipif_t *ipif; 16393 uint_t bitval; 16394 mib2_ipAddrEntry_t mae; 16395 zoneid_t zoneid; 16396 ill_walk_context_t ctx; 16397 16398 /* 16399 * make a copy of the original message 16400 */ 16401 mp2ctl = copymsg(mpctl); 16402 16403 /* ipAddrEntryTable */ 16404 16405 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16406 optp->level = MIB2_IP; 16407 optp->name = MIB2_IP_ADDR; 16408 zoneid = Q_TO_CONN(q)->conn_zoneid; 16409 16410 rw_enter(&ill_g_lock, RW_READER); 16411 ill = ILL_START_WALK_V4(&ctx); 16412 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16413 for (ipif = ill->ill_ipif; ipif != NULL; 16414 ipif = ipif->ipif_next) { 16415 if (ipif->ipif_zoneid != zoneid) 16416 continue; 16417 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16418 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16419 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16420 16421 (void) ipif_get_name(ipif, 16422 mae.ipAdEntIfIndex.o_bytes, 16423 OCTET_LENGTH); 16424 mae.ipAdEntIfIndex.o_length = 16425 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 16426 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 16427 mae.ipAdEntNetMask = ipif->ipif_net_mask; 16428 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 16429 mae.ipAdEntInfo.ae_subnet_len = 16430 ip_mask_to_plen(ipif->ipif_net_mask); 16431 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 16432 for (bitval = 1; 16433 bitval && 16434 !(bitval & ipif->ipif_brd_addr); 16435 bitval <<= 1) 16436 noop; 16437 mae.ipAdEntBcastAddr = bitval; 16438 mae.ipAdEntReasmMaxSize = 65535; 16439 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 16440 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 16441 mae.ipAdEntInfo.ae_broadcast_addr = 16442 ipif->ipif_brd_addr; 16443 mae.ipAdEntInfo.ae_pp_dst_addr = 16444 ipif->ipif_pp_dst_addr; 16445 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 16446 ill->ill_flags | ill->ill_phyint->phyint_flags; 16447 16448 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16449 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 16450 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 16451 "allocate %u bytes\n", 16452 (uint_t)sizeof (mib2_ipAddrEntry_t))); 16453 } 16454 } 16455 } 16456 rw_exit(&ill_g_lock); 16457 16458 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16459 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 16460 (int)optp->level, (int)optp->name, (int)optp->len)); 16461 qreply(q, mpctl); 16462 return (mp2ctl); 16463 } 16464 16465 /* IPv6 address information */ 16466 static mblk_t * 16467 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 16468 { 16469 struct opthdr *optp; 16470 mblk_t *mp2ctl; 16471 mblk_t *mp_tail = NULL; 16472 ill_t *ill; 16473 ipif_t *ipif; 16474 mib2_ipv6AddrEntry_t mae6; 16475 zoneid_t zoneid; 16476 ill_walk_context_t ctx; 16477 16478 /* 16479 * make a copy of the original message 16480 */ 16481 mp2ctl = copymsg(mpctl); 16482 16483 /* ipv6AddrEntryTable */ 16484 16485 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16486 optp->level = MIB2_IP6; 16487 optp->name = MIB2_IP6_ADDR; 16488 zoneid = Q_TO_CONN(q)->conn_zoneid; 16489 16490 rw_enter(&ill_g_lock, RW_READER); 16491 ill = ILL_START_WALK_V6(&ctx); 16492 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16493 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 16494 if (ipif->ipif_zoneid != zoneid) 16495 continue; 16496 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16497 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16498 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16499 16500 (void) ipif_get_name(ipif, 16501 mae6.ipv6AddrIfIndex.o_bytes, 16502 OCTET_LENGTH); 16503 mae6.ipv6AddrIfIndex.o_length = 16504 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 16505 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 16506 mae6.ipv6AddrPfxLength = 16507 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 16508 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 16509 mae6.ipv6AddrInfo.ae_subnet_len = 16510 mae6.ipv6AddrPfxLength; 16511 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 16512 16513 /* Type: stateless(1), stateful(2), unknown(3) */ 16514 if (ipif->ipif_flags & IPIF_ADDRCONF) 16515 mae6.ipv6AddrType = 1; 16516 else 16517 mae6.ipv6AddrType = 2; 16518 /* Anycast: true(1), false(2) */ 16519 if (ipif->ipif_flags & IPIF_ANYCAST) 16520 mae6.ipv6AddrAnycastFlag = 1; 16521 else 16522 mae6.ipv6AddrAnycastFlag = 2; 16523 16524 /* 16525 * Address status: preferred(1), deprecated(2), 16526 * invalid(3), inaccessible(4), unknown(5) 16527 */ 16528 if (ipif->ipif_flags & IPIF_NOLOCAL) 16529 mae6.ipv6AddrStatus = 3; 16530 else if (ipif->ipif_flags & IPIF_DEPRECATED) 16531 mae6.ipv6AddrStatus = 2; 16532 else 16533 mae6.ipv6AddrStatus = 1; 16534 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 16535 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 16536 mae6.ipv6AddrInfo.ae_pp_dst_addr = 16537 ipif->ipif_v6pp_dst_addr; 16538 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 16539 ill->ill_flags | ill->ill_phyint->phyint_flags; 16540 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16541 (char *)&mae6, 16542 (int)sizeof (mib2_ipv6AddrEntry_t))) { 16543 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 16544 "allocate %u bytes\n", 16545 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 16546 } 16547 } 16548 } 16549 rw_exit(&ill_g_lock); 16550 16551 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16552 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 16553 (int)optp->level, (int)optp->name, (int)optp->len)); 16554 qreply(q, mpctl); 16555 return (mp2ctl); 16556 } 16557 16558 /* IPv4 multicast group membership. */ 16559 static mblk_t * 16560 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 16561 { 16562 struct opthdr *optp; 16563 mblk_t *mp2ctl; 16564 ill_t *ill; 16565 ipif_t *ipif; 16566 ilm_t *ilm; 16567 ip_member_t ipm; 16568 mblk_t *mp_tail = NULL; 16569 ill_walk_context_t ctx; 16570 zoneid_t zoneid; 16571 16572 /* 16573 * make a copy of the original message 16574 */ 16575 mp2ctl = copymsg(mpctl); 16576 zoneid = Q_TO_CONN(q)->conn_zoneid; 16577 16578 /* ipGroupMember table */ 16579 optp = (struct opthdr *)&mpctl->b_rptr[ 16580 sizeof (struct T_optmgmt_ack)]; 16581 optp->level = MIB2_IP; 16582 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 16583 16584 rw_enter(&ill_g_lock, RW_READER); 16585 ill = ILL_START_WALK_V4(&ctx); 16586 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16587 ILM_WALKER_HOLD(ill); 16588 for (ipif = ill->ill_ipif; ipif != NULL; 16589 ipif = ipif->ipif_next) { 16590 if (ipif->ipif_zoneid != zoneid) 16591 continue; /* not this zone */ 16592 (void) ipif_get_name(ipif, 16593 ipm.ipGroupMemberIfIndex.o_bytes, 16594 OCTET_LENGTH); 16595 ipm.ipGroupMemberIfIndex.o_length = 16596 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 16597 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16598 ASSERT(ilm->ilm_ipif != NULL); 16599 ASSERT(ilm->ilm_ill == NULL); 16600 if (ilm->ilm_ipif != ipif) 16601 continue; 16602 ipm.ipGroupMemberAddress = ilm->ilm_addr; 16603 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 16604 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 16605 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16606 (char *)&ipm, (int)sizeof (ipm))) { 16607 ip1dbg(("ip_snmp_get_mib2_ip_group: " 16608 "failed to allocate %u bytes\n", 16609 (uint_t)sizeof (ipm))); 16610 } 16611 } 16612 } 16613 ILM_WALKER_RELE(ill); 16614 } 16615 rw_exit(&ill_g_lock); 16616 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16617 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16618 (int)optp->level, (int)optp->name, (int)optp->len)); 16619 qreply(q, mpctl); 16620 return (mp2ctl); 16621 } 16622 16623 /* IPv6 multicast group membership. */ 16624 static mblk_t * 16625 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 16626 { 16627 struct opthdr *optp; 16628 mblk_t *mp2ctl; 16629 ill_t *ill; 16630 ilm_t *ilm; 16631 ipv6_member_t ipm6; 16632 mblk_t *mp_tail = NULL; 16633 ill_walk_context_t ctx; 16634 zoneid_t zoneid; 16635 16636 /* 16637 * make a copy of the original message 16638 */ 16639 mp2ctl = copymsg(mpctl); 16640 zoneid = Q_TO_CONN(q)->conn_zoneid; 16641 16642 /* ip6GroupMember table */ 16643 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16644 optp->level = MIB2_IP6; 16645 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 16646 16647 rw_enter(&ill_g_lock, RW_READER); 16648 ill = ILL_START_WALK_V6(&ctx); 16649 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16650 ILM_WALKER_HOLD(ill); 16651 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 16652 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16653 ASSERT(ilm->ilm_ipif == NULL); 16654 ASSERT(ilm->ilm_ill != NULL); 16655 if (ilm->ilm_zoneid != zoneid) 16656 continue; /* not this zone */ 16657 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 16658 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 16659 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 16660 if (!snmp_append_data2(mpctl->b_cont, 16661 &mp_tail, 16662 (char *)&ipm6, (int)sizeof (ipm6))) { 16663 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 16664 "failed to allocate %u bytes\n", 16665 (uint_t)sizeof (ipm6))); 16666 } 16667 } 16668 ILM_WALKER_RELE(ill); 16669 } 16670 rw_exit(&ill_g_lock); 16671 16672 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16673 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16674 (int)optp->level, (int)optp->name, (int)optp->len)); 16675 qreply(q, mpctl); 16676 return (mp2ctl); 16677 } 16678 16679 /* IP multicast filtered sources */ 16680 static mblk_t * 16681 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 16682 { 16683 struct opthdr *optp; 16684 mblk_t *mp2ctl; 16685 ill_t *ill; 16686 ipif_t *ipif; 16687 ilm_t *ilm; 16688 ip_grpsrc_t ips; 16689 mblk_t *mp_tail = NULL; 16690 ill_walk_context_t ctx; 16691 zoneid_t zoneid; 16692 int i; 16693 slist_t *sl; 16694 16695 /* 16696 * make a copy of the original message 16697 */ 16698 mp2ctl = copymsg(mpctl); 16699 zoneid = Q_TO_CONN(q)->conn_zoneid; 16700 16701 /* ipGroupSource table */ 16702 optp = (struct opthdr *)&mpctl->b_rptr[ 16703 sizeof (struct T_optmgmt_ack)]; 16704 optp->level = MIB2_IP; 16705 optp->name = EXPER_IP_GROUP_SOURCES; 16706 16707 rw_enter(&ill_g_lock, RW_READER); 16708 ill = ILL_START_WALK_V4(&ctx); 16709 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16710 ILM_WALKER_HOLD(ill); 16711 for (ipif = ill->ill_ipif; ipif != NULL; 16712 ipif = ipif->ipif_next) { 16713 if (ipif->ipif_zoneid != zoneid) 16714 continue; /* not this zone */ 16715 (void) ipif_get_name(ipif, 16716 ips.ipGroupSourceIfIndex.o_bytes, 16717 OCTET_LENGTH); 16718 ips.ipGroupSourceIfIndex.o_length = 16719 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 16720 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16721 ASSERT(ilm->ilm_ipif != NULL); 16722 ASSERT(ilm->ilm_ill == NULL); 16723 sl = ilm->ilm_filter; 16724 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 16725 continue; 16726 ips.ipGroupSourceGroup = ilm->ilm_addr; 16727 for (i = 0; i < sl->sl_numsrc; i++) { 16728 if (!IN6_IS_ADDR_V4MAPPED( 16729 &sl->sl_addr[i])) 16730 continue; 16731 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 16732 ips.ipGroupSourceAddress); 16733 if (snmp_append_data2(mpctl->b_cont, 16734 &mp_tail, (char *)&ips, 16735 (int)sizeof (ips)) == 0) { 16736 ip1dbg(("ip_snmp_get_mib2_" 16737 "ip_group_src: failed to " 16738 "allocate %u bytes\n", 16739 (uint_t)sizeof (ips))); 16740 } 16741 } 16742 } 16743 } 16744 ILM_WALKER_RELE(ill); 16745 } 16746 rw_exit(&ill_g_lock); 16747 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16748 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16749 (int)optp->level, (int)optp->name, (int)optp->len)); 16750 qreply(q, mpctl); 16751 return (mp2ctl); 16752 } 16753 16754 /* IPv6 multicast filtered sources. */ 16755 static mblk_t * 16756 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 16757 { 16758 struct opthdr *optp; 16759 mblk_t *mp2ctl; 16760 ill_t *ill; 16761 ilm_t *ilm; 16762 ipv6_grpsrc_t ips6; 16763 mblk_t *mp_tail = NULL; 16764 ill_walk_context_t ctx; 16765 zoneid_t zoneid; 16766 int i; 16767 slist_t *sl; 16768 16769 /* 16770 * make a copy of the original message 16771 */ 16772 mp2ctl = copymsg(mpctl); 16773 zoneid = Q_TO_CONN(q)->conn_zoneid; 16774 16775 /* ip6GroupMember table */ 16776 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16777 optp->level = MIB2_IP6; 16778 optp->name = EXPER_IP6_GROUP_SOURCES; 16779 16780 rw_enter(&ill_g_lock, RW_READER); 16781 ill = ILL_START_WALK_V6(&ctx); 16782 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16783 ILM_WALKER_HOLD(ill); 16784 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 16785 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16786 ASSERT(ilm->ilm_ipif == NULL); 16787 ASSERT(ilm->ilm_ill != NULL); 16788 sl = ilm->ilm_filter; 16789 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 16790 continue; 16791 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 16792 for (i = 0; i < sl->sl_numsrc; i++) { 16793 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 16794 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16795 (char *)&ips6, (int)sizeof (ips6))) { 16796 ip1dbg(("ip_snmp_get_mib2_ip6_" 16797 "group_src: failed to allocate " 16798 "%u bytes\n", 16799 (uint_t)sizeof (ips6))); 16800 } 16801 } 16802 } 16803 ILM_WALKER_RELE(ill); 16804 } 16805 rw_exit(&ill_g_lock); 16806 16807 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16808 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16809 (int)optp->level, (int)optp->name, (int)optp->len)); 16810 qreply(q, mpctl); 16811 return (mp2ctl); 16812 } 16813 16814 /* Multicast routing virtual interface table. */ 16815 static mblk_t * 16816 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 16817 { 16818 struct opthdr *optp; 16819 mblk_t *mp2ctl; 16820 16821 /* 16822 * make a copy of the original message 16823 */ 16824 mp2ctl = copymsg(mpctl); 16825 16826 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16827 optp->level = EXPER_DVMRP; 16828 optp->name = EXPER_DVMRP_VIF; 16829 if (!ip_mroute_vif(mpctl->b_cont)) { 16830 ip0dbg(("ip_mroute_vif: failed\n")); 16831 } 16832 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16833 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 16834 (int)optp->level, (int)optp->name, (int)optp->len)); 16835 qreply(q, mpctl); 16836 return (mp2ctl); 16837 } 16838 16839 /* Multicast routing table. */ 16840 static mblk_t * 16841 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 16842 { 16843 struct opthdr *optp; 16844 mblk_t *mp2ctl; 16845 16846 /* 16847 * make a copy of the original message 16848 */ 16849 mp2ctl = copymsg(mpctl); 16850 16851 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16852 optp->level = EXPER_DVMRP; 16853 optp->name = EXPER_DVMRP_MRT; 16854 if (!ip_mroute_mrt(mpctl->b_cont)) { 16855 ip0dbg(("ip_mroute_mrt: failed\n")); 16856 } 16857 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16858 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 16859 (int)optp->level, (int)optp->name, (int)optp->len)); 16860 qreply(q, mpctl); 16861 return (mp2ctl); 16862 } 16863 16864 /* 16865 * Return both ipRouteEntryTable, and ipNetToMediaEntryTable 16866 * in one IRE walk. 16867 */ 16868 static mblk_t * 16869 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 16870 { 16871 struct opthdr *optp; 16872 mblk_t *mp2ctl; /* Returned */ 16873 mblk_t *mp3ctl; /* nettomedia */ 16874 /* 16875 * We need two listptrs, for ipRouteEntryTable and 16876 * ipNetToMediaEntryTable to pass to ip_snmp_get2_v4() 16877 */ 16878 listptr_t re_ntme_v4[2]; 16879 zoneid_t zoneid; 16880 16881 /* 16882 * make a copy of the original message 16883 */ 16884 mp2ctl = copymsg(mpctl); 16885 mp3ctl = copymsg(mpctl); 16886 if (mp3ctl == NULL) { 16887 freemsg(mp2ctl); 16888 freemsg(mpctl); 16889 return (NULL); 16890 } 16891 16892 re_ntme_v4[0].lp_head = mpctl->b_cont; /* ipRouteEntryTable */ 16893 re_ntme_v4[1].lp_head = mp3ctl->b_cont; /* ipNetToMediaEntryTable */ 16894 /* 16895 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16896 * proper values when called. 16897 */ 16898 re_ntme_v4[0].lp_tail = NULL; 16899 re_ntme_v4[1].lp_tail = NULL; 16900 16901 zoneid = Q_TO_CONN(q)->conn_zoneid; 16902 ire_walk_v4(ip_snmp_get2_v4, (char *)re_ntme_v4, zoneid); 16903 if (zoneid == GLOBAL_ZONEID) { 16904 /* 16905 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 16906 * the sys_net_config privilege, it can only run in the global 16907 * zone, so we don't display these IREs in the other zones. 16908 */ 16909 ire_walk_srcif_table_v4(ip_snmp_get2_v4, (char *)re_ntme_v4); 16910 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, (char *)re_ntme_v4, 16911 NULL); 16912 } 16913 16914 /* ipRouteEntryTable in mpctl */ 16915 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16916 optp->level = MIB2_IP; 16917 optp->name = MIB2_IP_ROUTE; 16918 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[0].lp_head); 16919 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16920 (int)optp->level, (int)optp->name, (int)optp->len)); 16921 qreply(q, mpctl); 16922 16923 /* ipNetToMediaEntryTable in mp3ctl */ 16924 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16925 optp->level = MIB2_IP; 16926 optp->name = MIB2_IP_MEDIA; 16927 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[1].lp_head); 16928 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16929 (int)optp->level, (int)optp->name, (int)optp->len)); 16930 qreply(q, mp3ctl); 16931 return (mp2ctl); 16932 } 16933 16934 /* 16935 * Return both ipv6RouteEntryTable, and ipv6NetToMediaEntryTable 16936 * in one IRE walk. 16937 */ 16938 static mblk_t * 16939 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 16940 { 16941 struct opthdr *optp; 16942 mblk_t *mp2ctl; /* Returned */ 16943 mblk_t *mp3ctl; /* nettomedia */ 16944 listptr_t re_ntme_v6; 16945 zoneid_t zoneid; 16946 16947 /* 16948 * make a copy of the original message 16949 */ 16950 mp2ctl = copymsg(mpctl); 16951 mp3ctl = copymsg(mpctl); 16952 if (mp3ctl == NULL) { 16953 freemsg(mp2ctl); 16954 freemsg(mpctl); 16955 return (NULL); 16956 } 16957 16958 /* 16959 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16960 * proper values when called. ipv6RouteEntryTable in is placed 16961 * in mpctl. 16962 */ 16963 re_ntme_v6.lp_head = mpctl->b_cont; /* ip6RouteEntryTable */ 16964 re_ntme_v6.lp_tail = NULL; 16965 zoneid = Q_TO_CONN(q)->conn_zoneid; 16966 ire_walk_v6(ip_snmp_get2_v6_route, (char *)&re_ntme_v6, zoneid); 16967 16968 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16969 optp->level = MIB2_IP6; 16970 optp->name = MIB2_IP6_ROUTE; 16971 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 16972 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 16973 (int)optp->level, (int)optp->name, (int)optp->len)); 16974 qreply(q, mpctl); 16975 16976 /* ipv6NetToMediaEntryTable in mp3ctl */ 16977 re_ntme_v6.lp_head = mp3ctl->b_cont; /* ip6NetToMediaEntryTable */ 16978 re_ntme_v6.lp_tail = NULL; 16979 ndp_walk(NULL, ip_snmp_get2_v6_media, (uchar_t *)&re_ntme_v6); 16980 16981 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16982 optp->level = MIB2_IP6; 16983 optp->name = MIB2_IP6_MEDIA; 16984 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 16985 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 16986 (int)optp->level, (int)optp->name, (int)optp->len)); 16987 qreply(q, mp3ctl); 16988 return (mp2ctl); 16989 } 16990 16991 /* 16992 * ICMPv6 mib: One per ill 16993 */ 16994 static mblk_t * 16995 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 16996 { 16997 struct opthdr *optp; 16998 mblk_t *mp2ctl; 16999 ill_t *ill; 17000 ill_walk_context_t ctx; 17001 mblk_t *mp_tail = NULL; 17002 17003 /* 17004 * Make a copy of the original message 17005 */ 17006 mp2ctl = copymsg(mpctl); 17007 17008 /* fixed length IPv6 structure ... */ 17009 17010 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17011 optp->level = MIB2_IP6; 17012 optp->name = 0; 17013 /* Include "unknown interface" ip6_mib */ 17014 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 17015 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 17016 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 17017 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 17018 sizeof (mib2_ipv6IfStatsEntry_t)); 17019 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 17020 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 17021 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 17022 sizeof (mib2_ipv6NetToMediaEntry_t)); 17023 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 17024 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 17025 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 17026 (int)sizeof (ip6_mib))) { 17027 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 17028 (uint_t)sizeof (ip6_mib))); 17029 } 17030 17031 rw_enter(&ill_g_lock, RW_READER); 17032 ill = ILL_START_WALK_V6(&ctx); 17033 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17034 ill->ill_ip6_mib->ipv6IfIndex = 17035 ill->ill_phyint->phyint_ifindex; 17036 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 17037 ipv6_forward ? 1 : 2); 17038 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 17039 ill->ill_max_hops); 17040 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 17041 sizeof (mib2_ipv6IfStatsEntry_t)); 17042 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 17043 sizeof (mib2_ipv6AddrEntry_t)); 17044 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 17045 sizeof (mib2_ipv6RouteEntry_t)); 17046 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 17047 sizeof (mib2_ipv6NetToMediaEntry_t)); 17048 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 17049 sizeof (ipv6_member_t)); 17050 17051 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17052 (char *)ill->ill_ip6_mib, 17053 (int)sizeof (*ill->ill_ip6_mib))) { 17054 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 17055 "%u bytes\n", 17056 (uint_t)sizeof (*ill->ill_ip6_mib))); 17057 } 17058 } 17059 rw_exit(&ill_g_lock); 17060 17061 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17062 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 17063 (int)optp->level, (int)optp->name, (int)optp->len)); 17064 qreply(q, mpctl); 17065 return (mp2ctl); 17066 } 17067 17068 /* 17069 * ICMPv6 mib: One per ill 17070 */ 17071 static mblk_t * 17072 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 17073 { 17074 struct opthdr *optp; 17075 mblk_t *mp2ctl; 17076 ill_t *ill; 17077 ill_walk_context_t ctx; 17078 mblk_t *mp_tail = NULL; 17079 /* 17080 * Make a copy of the original message 17081 */ 17082 mp2ctl = copymsg(mpctl); 17083 17084 /* fixed length ICMPv6 structure ... */ 17085 17086 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17087 optp->level = MIB2_ICMP6; 17088 optp->name = 0; 17089 /* Include "unknown interface" icmp6_mib */ 17090 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 17091 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 17092 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 17093 (int)sizeof (icmp6_mib))) { 17094 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 17095 (uint_t)sizeof (icmp6_mib))); 17096 } 17097 17098 rw_enter(&ill_g_lock, RW_READER); 17099 ill = ILL_START_WALK_V6(&ctx); 17100 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17101 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 17102 ill->ill_phyint->phyint_ifindex; 17103 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 17104 sizeof (mib2_ipv6IfIcmpEntry_t); 17105 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17106 (char *)ill->ill_icmp6_mib, 17107 (int)sizeof (*ill->ill_icmp6_mib))) { 17108 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 17109 "%u bytes\n", 17110 (uint_t)sizeof (*ill->ill_icmp6_mib))); 17111 } 17112 } 17113 rw_exit(&ill_g_lock); 17114 17115 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17116 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17117 (int)optp->level, (int)optp->name, (int)optp->len)); 17118 qreply(q, mpctl); 17119 return (mp2ctl); 17120 } 17121 17122 /* 17123 * ire_walk routine to create both ipRouteEntryTable and 17124 * ipNetToMediaEntryTable in one IRE walk 17125 */ 17126 static void 17127 ip_snmp_get2_v4(ire_t *ire, listptr_t re_ntme[]) 17128 { 17129 ill_t *ill; 17130 ipif_t *ipif; 17131 mblk_t *llmp; 17132 dl_unitdata_req_t *dlup; 17133 mib2_ipRouteEntry_t re; 17134 mib2_ipNetToMediaEntry_t ntme; 17135 ipaddr_t gw_addr; 17136 17137 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17138 17139 /* 17140 * Return all IRE types for route table... let caller pick and choose 17141 */ 17142 re.ipRouteDest = ire->ire_addr; 17143 ipif = ire->ire_ipif; 17144 re.ipRouteIfIndex.o_length = 0; 17145 if (ire->ire_type == IRE_CACHE) { 17146 ill = (ill_t *)ire->ire_stq->q_ptr; 17147 re.ipRouteIfIndex.o_length = 17148 ill->ill_name_length == 0 ? 0 : 17149 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17150 bcopy(ill->ill_name, re.ipRouteIfIndex.o_bytes, 17151 re.ipRouteIfIndex.o_length); 17152 } else if (ipif != NULL) { 17153 (void) ipif_get_name(ipif, re.ipRouteIfIndex.o_bytes, 17154 OCTET_LENGTH); 17155 re.ipRouteIfIndex.o_length = 17156 mi_strlen(re.ipRouteIfIndex.o_bytes); 17157 } 17158 re.ipRouteMetric1 = -1; 17159 re.ipRouteMetric2 = -1; 17160 re.ipRouteMetric3 = -1; 17161 re.ipRouteMetric4 = -1; 17162 17163 gw_addr = ire->ire_gateway_addr; 17164 17165 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17166 re.ipRouteNextHop = ire->ire_src_addr; 17167 else 17168 re.ipRouteNextHop = gw_addr; 17169 /* indirect(4), direct(3), or invalid(2) */ 17170 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17171 re.ipRouteType = 2; 17172 else 17173 re.ipRouteType = (gw_addr != 0) ? 4 : 3; 17174 re.ipRouteProto = -1; 17175 re.ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17176 re.ipRouteMask = ire->ire_mask; 17177 re.ipRouteMetric5 = -1; 17178 re.ipRouteInfo.re_max_frag = ire->ire_max_frag; 17179 re.ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17180 re.ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17181 llmp = ire->ire_dlureq_mp; 17182 re.ipRouteInfo.re_ref = ire->ire_refcnt; 17183 re.ipRouteInfo.re_src_addr = ire->ire_src_addr; 17184 re.ipRouteInfo.re_ire_type = ire->ire_type; 17185 re.ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17186 re.ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17187 re.ipRouteInfo.re_flags = ire->ire_flags; 17188 re.ipRouteInfo.re_in_ill.o_length = 0; 17189 if (ire->ire_in_ill != NULL) { 17190 re.ipRouteInfo.re_in_ill.o_length = 17191 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17192 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17193 bcopy(ire->ire_in_ill->ill_name, 17194 re.ipRouteInfo.re_in_ill.o_bytes, 17195 re.ipRouteInfo.re_in_ill.o_length); 17196 } 17197 re.ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17198 if (!snmp_append_data2(re_ntme[0].lp_head, &(re_ntme[0].lp_tail), 17199 (char *)&re, (int)sizeof (re))) { 17200 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17201 (uint_t)sizeof (re))); 17202 } 17203 17204 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17205 return; 17206 /* 17207 * only IRE_CACHE entries that are for a directly connected subnet 17208 * get appended to net -> phys addr table 17209 * (others in arp) 17210 */ 17211 ntme.ipNetToMediaIfIndex.o_length = 0; 17212 ill = ire_to_ill(ire); 17213 ASSERT(ill != NULL); 17214 ntme.ipNetToMediaIfIndex.o_length = 17215 ill->ill_name_length == 0 ? 0 : 17216 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17217 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17218 ntme.ipNetToMediaIfIndex.o_length); 17219 17220 ntme.ipNetToMediaPhysAddress.o_length = 0; 17221 if (llmp) { 17222 uchar_t *addr; 17223 17224 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 17225 /* Remove sap from address */ 17226 if (ill->ill_sap_length < 0) 17227 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 17228 else 17229 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 17230 ill->ill_sap_length; 17231 17232 ntme.ipNetToMediaPhysAddress.o_length = 17233 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 17234 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 17235 ntme.ipNetToMediaPhysAddress.o_length); 17236 } 17237 ntme.ipNetToMediaNetAddress = ire->ire_addr; 17238 /* assume dynamic (may be changed in arp) */ 17239 ntme.ipNetToMediaType = 3; 17240 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 17241 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 17242 ntme.ipNetToMediaInfo.ntm_mask.o_length); 17243 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 17244 if (!snmp_append_data2(re_ntme[1].lp_head, &(re_ntme[1].lp_tail), 17245 (char *)&ntme, (int)sizeof (ntme))) { 17246 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17247 (uint_t)sizeof (ntme))); 17248 } 17249 } 17250 17251 /* 17252 * ire_walk routine to create ipv6RouteEntryTable. 17253 */ 17254 static void 17255 ip_snmp_get2_v6_route(ire_t *ire, listptr_t *re_ntme) 17256 { 17257 ill_t *ill; 17258 ipif_t *ipif; 17259 mib2_ipv6RouteEntry_t re; 17260 in6_addr_t gw_addr_v6; 17261 17262 ASSERT(ire->ire_ipversion == IPV6_VERSION); 17263 17264 /* 17265 * Return all IRE types for route table... let caller pick and choose 17266 */ 17267 re.ipv6RouteDest = ire->ire_addr_v6; 17268 re.ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 17269 re.ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 17270 re.ipv6RouteIfIndex.o_length = 0; 17271 ipif = ire->ire_ipif; 17272 if (ire->ire_type == IRE_CACHE) { 17273 ill = (ill_t *)ire->ire_stq->q_ptr; 17274 re.ipv6RouteIfIndex.o_length = 17275 ill->ill_name_length == 0 ? 0 : 17276 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17277 bcopy(ill->ill_name, re.ipv6RouteIfIndex.o_bytes, 17278 re.ipv6RouteIfIndex.o_length); 17279 } else if (ipif != NULL) { 17280 (void) ipif_get_name(ipif, re.ipv6RouteIfIndex.o_bytes, 17281 OCTET_LENGTH); 17282 re.ipv6RouteIfIndex.o_length = 17283 mi_strlen(re.ipv6RouteIfIndex.o_bytes); 17284 } 17285 17286 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 17287 17288 mutex_enter(&ire->ire_lock); 17289 gw_addr_v6 = ire->ire_gateway_addr_v6; 17290 mutex_exit(&ire->ire_lock); 17291 17292 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 17293 re.ipv6RouteNextHop = ire->ire_src_addr_v6; 17294 else 17295 re.ipv6RouteNextHop = gw_addr_v6; 17296 17297 /* remote(4), local(3), or discard(2) */ 17298 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17299 re.ipv6RouteType = 2; 17300 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 17301 re.ipv6RouteType = 3; 17302 else 17303 re.ipv6RouteType = 4; 17304 17305 re.ipv6RouteProtocol = -1; 17306 re.ipv6RoutePolicy = 0; 17307 re.ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 17308 re.ipv6RouteNextHopRDI = 0; 17309 re.ipv6RouteWeight = 0; 17310 re.ipv6RouteMetric = 0; 17311 re.ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 17312 re.ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 17313 re.ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17314 re.ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 17315 re.ipv6RouteInfo.re_ire_type = ire->ire_type; 17316 re.ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17317 re.ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17318 re.ipv6RouteInfo.re_ref = ire->ire_refcnt; 17319 re.ipv6RouteInfo.re_flags = ire->ire_flags; 17320 17321 if (!snmp_append_data2(re_ntme->lp_head, &(re_ntme->lp_tail), 17322 (char *)&re, (int)sizeof (re))) { 17323 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 17324 (uint_t)sizeof (re))); 17325 } 17326 } 17327 17328 /* 17329 * ndp_walk routine to create ipv6NetToMediaEntryTable 17330 */ 17331 static int 17332 ip_snmp_get2_v6_media(nce_t *nce, listptr_t *re_ntme) 17333 { 17334 ill_t *ill; 17335 mib2_ipv6NetToMediaEntry_t ntme; 17336 dl_unitdata_req_t *dl; 17337 17338 ill = nce->nce_ill; 17339 ASSERT(ill->ill_isv6); 17340 17341 /* 17342 * Neighbor cache entry attached to IRE with on-link 17343 * destination. 17344 */ 17345 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 17346 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 17347 if ((ill->ill_flags & ILLF_XRESOLV) && 17348 (nce->nce_res_mp != NULL)) { 17349 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 17350 ntme.ipv6NetToMediaPhysAddress.o_length = 17351 dl->dl_dest_addr_length; 17352 } else { 17353 ntme.ipv6NetToMediaPhysAddress.o_length = 17354 ill->ill_phys_addr_length; 17355 } 17356 if (nce->nce_res_mp != NULL) { 17357 bcopy((char *)nce->nce_res_mp->b_rptr + 17358 NCE_LL_ADDR_OFFSET(ill), 17359 ntme.ipv6NetToMediaPhysAddress.o_bytes, 17360 ntme.ipv6NetToMediaPhysAddress.o_length); 17361 } else { 17362 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 17363 ill->ill_phys_addr_length); 17364 } 17365 /* 17366 * Note: Returns ND_* states. Should be: 17367 * reachable(1), stale(2), delay(3), probe(4), 17368 * invalid(5), unknown(6) 17369 */ 17370 ntme.ipv6NetToMediaState = nce->nce_state; 17371 ntme.ipv6NetToMediaLastUpdated = 0; 17372 17373 /* other(1), dynamic(2), static(3), local(4) */ 17374 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 17375 ntme.ipv6NetToMediaType = 4; 17376 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 17377 ntme.ipv6NetToMediaType = 1; 17378 } else { 17379 ntme.ipv6NetToMediaType = 2; 17380 } 17381 17382 if (!snmp_append_data2(re_ntme->lp_head, 17383 &(re_ntme->lp_tail), (char *)&ntme, (int)sizeof (ntme))) { 17384 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 17385 (uint_t)sizeof (ntme))); 17386 } 17387 return (0); 17388 } 17389 17390 /* 17391 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 17392 */ 17393 /* ARGSUSED */ 17394 int 17395 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 17396 { 17397 switch (level) { 17398 case MIB2_IP: 17399 case MIB2_ICMP: 17400 switch (name) { 17401 default: 17402 break; 17403 } 17404 return (1); 17405 default: 17406 return (1); 17407 } 17408 } 17409 17410 /* 17411 * Called before the options are updated to check if this packet will 17412 * be source routed from here. 17413 * This routine assumes that the options are well formed i.e. that they 17414 * have already been checked. 17415 */ 17416 static boolean_t 17417 ip_source_routed(ipha_t *ipha) 17418 { 17419 ipoptp_t opts; 17420 uchar_t *opt; 17421 uint8_t optval; 17422 uint8_t optlen; 17423 ipaddr_t dst; 17424 ire_t *ire; 17425 17426 if (IS_SIMPLE_IPH(ipha)) { 17427 ip2dbg(("not source routed\n")); 17428 return (B_FALSE); 17429 } 17430 dst = ipha->ipha_dst; 17431 for (optval = ipoptp_first(&opts, ipha); 17432 optval != IPOPT_EOL; 17433 optval = ipoptp_next(&opts)) { 17434 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17435 opt = opts.ipoptp_cur; 17436 optlen = opts.ipoptp_len; 17437 ip2dbg(("ip_source_routed: opt %d, len %d\n", 17438 optval, optlen)); 17439 switch (optval) { 17440 uint32_t off; 17441 case IPOPT_SSRR: 17442 case IPOPT_LSRR: 17443 /* 17444 * If dst is one of our addresses and there are some 17445 * entries left in the source route return (true). 17446 */ 17447 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17448 ALL_ZONES, MATCH_IRE_TYPE); 17449 if (ire == NULL) { 17450 ip2dbg(("ip_source_routed: not next" 17451 " source route 0x%x\n", 17452 ntohl(dst))); 17453 return (B_FALSE); 17454 } 17455 ire_refrele(ire); 17456 off = opt[IPOPT_OFFSET]; 17457 off--; 17458 if (optlen < IP_ADDR_LEN || 17459 off > optlen - IP_ADDR_LEN) { 17460 /* End of source route */ 17461 ip1dbg(("ip_source_routed: end of SR\n")); 17462 return (B_FALSE); 17463 } 17464 return (B_TRUE); 17465 } 17466 } 17467 ip2dbg(("not source routed\n")); 17468 return (B_FALSE); 17469 } 17470 17471 /* 17472 * Check if the packet contains any source route. 17473 */ 17474 static boolean_t 17475 ip_source_route_included(ipha_t *ipha) 17476 { 17477 ipoptp_t opts; 17478 uint8_t optval; 17479 17480 if (IS_SIMPLE_IPH(ipha)) 17481 return (B_FALSE); 17482 for (optval = ipoptp_first(&opts, ipha); 17483 optval != IPOPT_EOL; 17484 optval = ipoptp_next(&opts)) { 17485 switch (optval) { 17486 case IPOPT_SSRR: 17487 case IPOPT_LSRR: 17488 return (B_TRUE); 17489 } 17490 } 17491 return (B_FALSE); 17492 } 17493 17494 /* 17495 * Called when the IRE expiration timer fires. 17496 */ 17497 /* ARGSUSED */ 17498 void 17499 ip_trash_timer_expire(void *args) 17500 { 17501 int flush_flag = 0; 17502 17503 /* 17504 * ip_ire_expire_id is protected by ip_trash_timer_lock. 17505 * This lock makes sure that a new invocation of this function 17506 * that occurs due to an almost immediate timer firing will not 17507 * progress beyond this point until the current invocation is done 17508 */ 17509 mutex_enter(&ip_trash_timer_lock); 17510 ip_ire_expire_id = 0; 17511 mutex_exit(&ip_trash_timer_lock); 17512 17513 /* Periodic timer */ 17514 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 17515 /* 17516 * Remove all IRE_CACHE entries since they might 17517 * contain arp information. 17518 */ 17519 flush_flag |= FLUSH_ARP_TIME; 17520 ip_ire_arp_time_elapsed = 0; 17521 IP_STAT(ip_ire_arp_timer_expired); 17522 } 17523 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 17524 /* Remove all redirects */ 17525 flush_flag |= FLUSH_REDIRECT_TIME; 17526 ip_ire_rd_time_elapsed = 0; 17527 IP_STAT(ip_ire_redirect_timer_expired); 17528 } 17529 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 17530 /* Increase path mtu */ 17531 flush_flag |= FLUSH_MTU_TIME; 17532 ip_ire_pmtu_time_elapsed = 0; 17533 IP_STAT(ip_ire_pmtu_timer_expired); 17534 } 17535 if (flush_flag != 0) { 17536 /* Walk all IPv4 IRE's and update them */ 17537 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 17538 ALL_ZONES); 17539 } 17540 if (flush_flag & FLUSH_MTU_TIME) { 17541 /* 17542 * Walk all IPv6 IRE's and update them 17543 * Note that ARP and redirect timers are not 17544 * needed since NUD handles stale entries. 17545 */ 17546 flush_flag = FLUSH_MTU_TIME; 17547 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 17548 ALL_ZONES); 17549 } 17550 17551 ip_ire_arp_time_elapsed += ip_timer_interval; 17552 ip_ire_rd_time_elapsed += ip_timer_interval; 17553 ip_ire_pmtu_time_elapsed += ip_timer_interval; 17554 17555 /* 17556 * Hold the lock to serialize timeout calls and prevent 17557 * stale values in ip_ire_expire_id. Otherwise it is possible 17558 * for the timer to fire and a new invocation of this function 17559 * to start before the return value of timeout has been stored 17560 * in ip_ire_expire_id by the current invocation. 17561 */ 17562 mutex_enter(&ip_trash_timer_lock); 17563 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 17564 MSEC_TO_TICK(ip_timer_interval)); 17565 mutex_exit(&ip_trash_timer_lock); 17566 } 17567 17568 /* 17569 * Called by the memory allocator subsystem directly, when the system 17570 * is running low on memory. 17571 */ 17572 /* ARGSUSED */ 17573 void 17574 ip_trash_ire_reclaim(void *args) 17575 { 17576 ire_cache_count_t icc; 17577 ire_cache_reclaim_t icr; 17578 ncc_cache_count_t ncc; 17579 nce_cache_reclaim_t ncr; 17580 uint_t delete_cnt; 17581 /* 17582 * Memory reclaim call back. 17583 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 17584 * Then, with a target of freeing 1/Nth of IRE_CACHE 17585 * entries, determine what fraction to free for 17586 * each category of IRE_CACHE entries giving absolute priority 17587 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 17588 * entry will be freed unless all offlink entries are freed). 17589 */ 17590 icc.icc_total = 0; 17591 icc.icc_unused = 0; 17592 icc.icc_offlink = 0; 17593 icc.icc_pmtu = 0; 17594 icc.icc_onlink = 0; 17595 ire_walk(ire_cache_count, (char *)&icc); 17596 17597 /* 17598 * Free NCEs for IPv6 like the onlink ires. 17599 */ 17600 ncc.ncc_total = 0; 17601 ncc.ncc_host = 0; 17602 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 17603 17604 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 17605 icc.icc_pmtu + icc.icc_onlink); 17606 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 17607 IP_STAT(ip_trash_ire_reclaim_calls); 17608 if (delete_cnt == 0) 17609 return; 17610 IP_STAT(ip_trash_ire_reclaim_success); 17611 /* Always delete all unused offlink entries */ 17612 icr.icr_unused = 1; 17613 if (delete_cnt <= icc.icc_unused) { 17614 /* 17615 * Only need to free unused entries. In other words, 17616 * there are enough unused entries to free to meet our 17617 * target number of freed ire cache entries. 17618 */ 17619 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 17620 ncr.ncr_host = 0; 17621 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 17622 /* 17623 * Only need to free unused entries, plus a fraction of offlink 17624 * entries. It follows from the first if statement that 17625 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 17626 */ 17627 delete_cnt -= icc.icc_unused; 17628 /* Round up # deleted by truncating fraction */ 17629 icr.icr_offlink = icc.icc_offlink / delete_cnt; 17630 icr.icr_pmtu = icr.icr_onlink = 0; 17631 ncr.ncr_host = 0; 17632 } else if (delete_cnt <= 17633 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 17634 /* 17635 * Free all unused and offlink entries, plus a fraction of 17636 * pmtu entries. It follows from the previous if statement 17637 * that icc_pmtu is non-zero, and that 17638 * delete_cnt != icc_unused + icc_offlink. 17639 */ 17640 icr.icr_offlink = 1; 17641 delete_cnt -= icc.icc_unused + icc.icc_offlink; 17642 /* Round up # deleted by truncating fraction */ 17643 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 17644 icr.icr_onlink = 0; 17645 ncr.ncr_host = 0; 17646 } else { 17647 /* 17648 * Free all unused, offlink, and pmtu entries, plus a fraction 17649 * of onlink entries. If we're here, then we know that 17650 * icc_onlink is non-zero, and that 17651 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 17652 */ 17653 icr.icr_offlink = icr.icr_pmtu = 1; 17654 delete_cnt -= icc.icc_unused + icc.icc_offlink + 17655 icc.icc_pmtu; 17656 /* Round up # deleted by truncating fraction */ 17657 icr.icr_onlink = icc.icc_onlink / delete_cnt; 17658 /* Using the same delete fraction as for onlink IREs */ 17659 ncr.ncr_host = ncc.ncc_host / delete_cnt; 17660 } 17661 #ifdef DEBUG 17662 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 17663 "fractions %d/%d/%d/%d\n", 17664 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 17665 icc.icc_unused, icc.icc_offlink, 17666 icc.icc_pmtu, icc.icc_onlink, 17667 icr.icr_unused, icr.icr_offlink, 17668 icr.icr_pmtu, icr.icr_onlink)); 17669 #endif 17670 ire_walk(ire_cache_reclaim, (char *)&icr); 17671 if (ncr.ncr_host != 0) 17672 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 17673 (uchar_t *)&ncr); 17674 #ifdef DEBUG 17675 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 17676 icc.icc_pmtu = 0; icc.icc_onlink = 0; 17677 ire_walk(ire_cache_count, (char *)&icc); 17678 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 17679 icc.icc_total, icc.icc_unused, icc.icc_offlink, 17680 icc.icc_pmtu, icc.icc_onlink)); 17681 #endif 17682 } 17683 17684 /* 17685 * ip_unbind is called when a copy of an unbind request is received from the 17686 * upper level protocol. We remove this conn from any fanout hash list it is 17687 * on, and zero out the bind information. No reply is expected up above. 17688 */ 17689 mblk_t * 17690 ip_unbind(queue_t *q, mblk_t *mp) 17691 { 17692 conn_t *connp = Q_TO_CONN(q); 17693 17694 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 17695 17696 ipcl_hash_remove(connp); 17697 17698 ASSERT(mp->b_cont == NULL); 17699 /* 17700 * Convert mp into a T_OK_ACK 17701 */ 17702 mp = mi_tpi_ok_ack_alloc(mp); 17703 17704 /* 17705 * should not happen in practice... T_OK_ACK is smaller than the 17706 * original message. 17707 */ 17708 if (mp == NULL) 17709 return (NULL); 17710 17711 /* 17712 * Don't bzero the ports if its TCP since TCP still needs the 17713 * lport to remove it from its own bind hash. TCP will do the 17714 * cleanup. 17715 */ 17716 if (!IPCL_IS_TCP(connp)) 17717 bzero(&connp->u_port, sizeof (connp->u_port)); 17718 17719 return (mp); 17720 } 17721 17722 /* 17723 * Write side put procedure. Outbound data, IOCTLs, responses from 17724 * resolvers, etc, come down through here. 17725 */ 17726 void 17727 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 17728 { 17729 conn_t *connp = NULL; 17730 queue_t *q = (queue_t *)arg2; 17731 ipha_t *ipha; 17732 #define rptr ((uchar_t *)ipha) 17733 ire_t *ire = NULL; 17734 ire_t *sctp_ire = NULL; 17735 uint32_t v_hlen_tos_len; 17736 ipaddr_t dst; 17737 mblk_t *first_mp = NULL; 17738 boolean_t mctl_present; 17739 ipsec_out_t *io; 17740 int match_flags; 17741 ill_t *attach_ill = NULL; 17742 /* Bind to IPIF_NOFAILOVER ill etc. */ 17743 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 17744 ipif_t *dst_ipif; 17745 boolean_t multirt_need_resolve = B_FALSE; 17746 mblk_t *copy_mp = NULL; 17747 int err; 17748 zoneid_t zoneid; 17749 boolean_t need_decref = B_FALSE; 17750 boolean_t ignore_dontroute = B_FALSE; 17751 17752 #ifdef _BIG_ENDIAN 17753 #define V_HLEN (v_hlen_tos_len >> 24) 17754 #else 17755 #define V_HLEN (v_hlen_tos_len & 0xFF) 17756 #endif 17757 17758 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 17759 "ip_wput_start: q %p", q); 17760 17761 /* 17762 * ip_wput fast path 17763 */ 17764 17765 /* is packet from ARP ? */ 17766 if (q->q_next != NULL) 17767 goto qnext; 17768 17769 connp = (conn_t *)arg; 17770 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 17771 17772 /* is queue flow controlled? */ 17773 if ((q->q_first != NULL || connp->conn_draining) && 17774 (caller == IP_WPUT)) { 17775 ASSERT(!need_decref); 17776 (void) putq(q, mp); 17777 return; 17778 } 17779 17780 /* Multidata transmit? */ 17781 if (DB_TYPE(mp) == M_MULTIDATA) { 17782 /* 17783 * We should never get here, since all Multidata messages 17784 * originating from tcp should have been directed over to 17785 * tcp_multisend() in the first place. 17786 */ 17787 BUMP_MIB(&ip_mib, ipOutDiscards); 17788 freemsg(mp); 17789 return; 17790 } else if (DB_TYPE(mp) != M_DATA) 17791 goto notdata; 17792 if (mp->b_flag & MSGHASREF) { 17793 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 17794 mp->b_flag &= ~MSGHASREF; 17795 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 17796 need_decref = B_TRUE; 17797 } 17798 ipha = (ipha_t *)mp->b_rptr; 17799 17800 /* is IP header non-aligned or mblk smaller than basic IP header */ 17801 #ifndef SAFETY_BEFORE_SPEED 17802 if (!OK_32PTR(rptr) || 17803 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 17804 goto hdrtoosmall; 17805 #endif 17806 17807 /* 17808 * If there is a policy, try to attach an ipsec_out in 17809 * the front. At the end, first_mp either points to a 17810 * M_DATA message or IPSEC_OUT message linked to a 17811 * M_DATA message. We have to do it now as we might 17812 * lose the "conn" if we go through ip_newroute. 17813 */ 17814 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 17815 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 17816 ipha->ipha_protocol)) == NULL)) { 17817 if (need_decref) 17818 CONN_DEC_REF(connp); 17819 return; 17820 } else { 17821 ASSERT(mp->b_datap->db_type == M_CTL); 17822 first_mp = mp; 17823 mp = mp->b_cont; 17824 mctl_present = B_TRUE; 17825 } 17826 } else { 17827 first_mp = mp; 17828 mctl_present = B_FALSE; 17829 } 17830 17831 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 17832 17833 /* is wrong version or IP options present */ 17834 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 17835 goto version_hdrlen_check; 17836 dst = ipha->ipha_dst; 17837 17838 if (connp->conn_nofailover_ill != NULL) { 17839 attach_ill = conn_get_held_ill(connp, 17840 &connp->conn_nofailover_ill, &err); 17841 if (err == ILL_LOOKUP_FAILED) { 17842 if (need_decref) 17843 CONN_DEC_REF(connp); 17844 freemsg(first_mp); 17845 return; 17846 } 17847 } 17848 17849 /* is packet multicast? */ 17850 if (CLASSD(dst)) 17851 goto multicast; 17852 17853 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL)) { 17854 /* 17855 * If the destination is a broadcast or a loopback 17856 * address, both SO_DONTROUTE and IP_XMIT_IF go 17857 * through the standard path. But in the case of local 17858 * destination only SO_DONTROUTE goes through the 17859 * standard path not IP_XMIT_IF. 17860 */ 17861 ire = ire_cache_lookup(dst, zoneid); 17862 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 17863 (ire->ire_type != IRE_LOOPBACK))) { 17864 17865 if ((connp->conn_dontroute) && (ire != NULL) && 17866 (ire->ire_type == IRE_LOCAL)) 17867 goto standard_path; 17868 17869 if (ire != NULL) { 17870 ire_refrele(ire); 17871 /* No more access to ire */ 17872 ire = NULL; 17873 } 17874 /* 17875 * bypass routing checks and go directly to 17876 * interface. 17877 */ 17878 if (connp->conn_dontroute) 17879 goto dontroute; 17880 17881 /* 17882 * If IP_XMIT_IF socket option is set, 17883 * then we allow unicast and multicast 17884 * packets to go through the ill. It is 17885 * quite possible that the destination 17886 * is not in the ire cache table and we 17887 * do not want to go to ip_newroute() 17888 * instead we call ip_newroute_ipif. 17889 */ 17890 xmit_ill = conn_get_held_ill(connp, 17891 &connp->conn_xmit_if_ill, &err); 17892 if (err == ILL_LOOKUP_FAILED) { 17893 if (attach_ill != NULL) 17894 ill_refrele(attach_ill); 17895 if (need_decref) 17896 CONN_DEC_REF(connp); 17897 freemsg(first_mp); 17898 return; 17899 } 17900 goto send_from_ill; 17901 } 17902 standard_path: 17903 /* Must be a broadcast, a loopback or a local ire */ 17904 if (ire != NULL) { 17905 ire_refrele(ire); 17906 /* No more access to ire */ 17907 ire = NULL; 17908 } 17909 } 17910 17911 if (attach_ill != NULL) 17912 goto send_from_ill; 17913 17914 /* 17915 * We cache IRE_CACHEs to avoid lookups. We don't do 17916 * this for the tcp global queue and listen end point 17917 * as it does not really have a real destination to 17918 * talk to. This is also true for SCTP. 17919 */ 17920 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 17921 !connp->conn_fully_bound) { 17922 ire = ire_cache_lookup(dst, zoneid); 17923 if (ire == NULL) 17924 goto noirefound; 17925 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 17926 "ip_wput_end: q %p (%S)", q, "end"); 17927 17928 /* 17929 * Check if the ire has the RTF_MULTIRT flag, inherited 17930 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 17931 */ 17932 if (ire->ire_flags & RTF_MULTIRT) { 17933 17934 /* 17935 * Force the TTL of multirouted packets if required. 17936 * The TTL of such packets is bounded by the 17937 * ip_multirt_ttl ndd variable. 17938 */ 17939 if ((ip_multirt_ttl > 0) && 17940 (ipha->ipha_ttl > ip_multirt_ttl)) { 17941 ip2dbg(("ip_wput: forcing multirt TTL to %d " 17942 "(was %d), dst 0x%08x\n", 17943 ip_multirt_ttl, ipha->ipha_ttl, 17944 ntohl(ire->ire_addr))); 17945 ipha->ipha_ttl = ip_multirt_ttl; 17946 } 17947 /* 17948 * We look at this point if there are pending 17949 * unresolved routes. ire_multirt_resolvable() 17950 * checks in O(n) that all IRE_OFFSUBNET ire 17951 * entries for the packet's destination and 17952 * flagged RTF_MULTIRT are currently resolved. 17953 * If some remain unresolved, we make a copy 17954 * of the current message. It will be used 17955 * to initiate additional route resolutions. 17956 */ 17957 multirt_need_resolve = 17958 ire_multirt_need_resolve(ire->ire_addr); 17959 ip2dbg(("ip_wput[TCP]: ire %p, " 17960 "multirt_need_resolve %d, first_mp %p\n", 17961 (void *)ire, multirt_need_resolve, 17962 (void *)first_mp)); 17963 if (multirt_need_resolve) { 17964 copy_mp = copymsg(first_mp); 17965 if (copy_mp != NULL) { 17966 MULTIRT_DEBUG_TAG(copy_mp); 17967 } 17968 } 17969 } 17970 17971 ip_wput_ire(q, first_mp, ire, connp, caller); 17972 17973 /* 17974 * Try to resolve another multiroute if 17975 * ire_multirt_need_resolve() deemed it necessary. 17976 */ 17977 if (copy_mp != NULL) { 17978 ip_newroute(q, copy_mp, dst, NULL, connp); 17979 } 17980 if (need_decref) 17981 CONN_DEC_REF(connp); 17982 return; 17983 } 17984 17985 /* 17986 * Access to conn_ire_cache. (protected by conn_lock) 17987 * 17988 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 17989 * the ire bucket lock here to check for CONDEMNED as it is okay to 17990 * send a packet or two with the IRE_CACHE that is going away. 17991 * Access to the ire requires an ire refhold on the ire prior to 17992 * its use since an interface unplumb thread may delete the cached 17993 * ire and release the refhold at any time. 17994 * 17995 * Caching an ire in the conn_ire_cache 17996 * 17997 * o Caching an ire pointer in the conn requires a strict check for 17998 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 17999 * ires before cleaning up the conns. So the caching of an ire pointer 18000 * in the conn is done after making sure under the bucket lock that the 18001 * ire has not yet been marked CONDEMNED. Otherwise we will end up 18002 * caching an ire after the unplumb thread has cleaned up the conn. 18003 * If the conn does not send a packet subsequently the unplumb thread 18004 * will be hanging waiting for the ire count to drop to zero. 18005 * 18006 * o We also need to atomically test for a null conn_ire_cache and 18007 * set the conn_ire_cache under the the protection of the conn_lock 18008 * to avoid races among concurrent threads trying to simultaneously 18009 * cache an ire in the conn_ire_cache. 18010 */ 18011 mutex_enter(&connp->conn_lock); 18012 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 18013 18014 if (ire != NULL && ire->ire_addr == dst && 18015 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18016 18017 IRE_REFHOLD(ire); 18018 mutex_exit(&connp->conn_lock); 18019 18020 } else { 18021 boolean_t cached = B_FALSE; 18022 connp->conn_ire_cache = NULL; 18023 mutex_exit(&connp->conn_lock); 18024 /* Release the old ire */ 18025 if (ire != NULL && sctp_ire == NULL) 18026 IRE_REFRELE_NOTR(ire); 18027 18028 ire = (ire_t *)ire_cache_lookup(dst, zoneid); 18029 if (ire == NULL) 18030 goto noirefound; 18031 IRE_REFHOLD_NOTR(ire); 18032 18033 mutex_enter(&connp->conn_lock); 18034 if (!(connp->conn_state_flags & CONN_CLOSING) && 18035 connp->conn_ire_cache == NULL) { 18036 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18037 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18038 connp->conn_ire_cache = ire; 18039 cached = B_TRUE; 18040 } 18041 rw_exit(&ire->ire_bucket->irb_lock); 18042 } 18043 mutex_exit(&connp->conn_lock); 18044 18045 /* 18046 * We can continue to use the ire but since it was 18047 * not cached, we should drop the extra reference. 18048 */ 18049 if (!cached) 18050 IRE_REFRELE_NOTR(ire); 18051 } 18052 18053 18054 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18055 "ip_wput_end: q %p (%S)", q, "end"); 18056 18057 /* 18058 * Check if the ire has the RTF_MULTIRT flag, inherited 18059 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18060 */ 18061 if (ire->ire_flags & RTF_MULTIRT) { 18062 18063 /* 18064 * Force the TTL of multirouted packets if required. 18065 * The TTL of such packets is bounded by the 18066 * ip_multirt_ttl ndd variable. 18067 */ 18068 if ((ip_multirt_ttl > 0) && 18069 (ipha->ipha_ttl > ip_multirt_ttl)) { 18070 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18071 "(was %d), dst 0x%08x\n", 18072 ip_multirt_ttl, ipha->ipha_ttl, 18073 ntohl(ire->ire_addr))); 18074 ipha->ipha_ttl = ip_multirt_ttl; 18075 } 18076 18077 /* 18078 * At this point, we check to see if there are any pending 18079 * unresolved routes. ire_multirt_resolvable() 18080 * checks in O(n) that all IRE_OFFSUBNET ire 18081 * entries for the packet's destination and 18082 * flagged RTF_MULTIRT are currently resolved. 18083 * If some remain unresolved, we make a copy 18084 * of the current message. It will be used 18085 * to initiate additional route resolutions. 18086 */ 18087 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 18088 ip2dbg(("ip_wput[not TCP]: ire %p, " 18089 "multirt_need_resolve %d, first_mp %p\n", 18090 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18091 if (multirt_need_resolve) { 18092 copy_mp = copymsg(first_mp); 18093 if (copy_mp != NULL) { 18094 MULTIRT_DEBUG_TAG(copy_mp); 18095 } 18096 } 18097 } 18098 18099 ip_wput_ire(q, first_mp, ire, connp, caller); 18100 18101 /* 18102 * Try to resolve another multiroute if 18103 * ire_multirt_resolvable() deemed it necessary 18104 */ 18105 if (copy_mp != NULL) { 18106 ip_newroute(q, copy_mp, dst, NULL, connp); 18107 } 18108 if (need_decref) 18109 CONN_DEC_REF(connp); 18110 return; 18111 18112 qnext: 18113 /* 18114 * Upper Level Protocols pass down complete IP datagrams 18115 * as M_DATA messages. Everything else is a sideshow. 18116 * 18117 * 1) We could be re-entering ip_wput because of ip_neworute 18118 * in which case we could have a IPSEC_OUT message. We 18119 * need to pass through ip_wput like other datagrams and 18120 * hence cannot branch to ip_wput_nondata. 18121 * 18122 * 2) ARP, AH, ESP, and other clients who are on the module 18123 * instance of IP stream, give us something to deal with. 18124 * We will handle AH and ESP here and rest in ip_wput_nondata. 18125 * 18126 * 3) ICMP replies also could come here. 18127 */ 18128 if (DB_TYPE(mp) != M_DATA) { 18129 notdata: 18130 if (DB_TYPE(mp) == M_CTL) { 18131 /* 18132 * M_CTL messages are used by ARP, AH and ESP to 18133 * communicate with IP. We deal with IPSEC_IN and 18134 * IPSEC_OUT here. ip_wput_nondata handles other 18135 * cases. 18136 */ 18137 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 18138 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 18139 first_mp = mp->b_cont; 18140 first_mp->b_flag &= ~MSGHASREF; 18141 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18142 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 18143 CONN_DEC_REF(connp); 18144 connp = NULL; 18145 } 18146 if (ii->ipsec_info_type == IPSEC_IN) { 18147 /* 18148 * Either this message goes back to 18149 * IPSEC for further processing or to 18150 * ULP after policy checks. 18151 */ 18152 ip_fanout_proto_again(mp, NULL, NULL, NULL); 18153 return; 18154 } else if (ii->ipsec_info_type == IPSEC_OUT) { 18155 io = (ipsec_out_t *)ii; 18156 if (io->ipsec_out_proc_begin) { 18157 /* 18158 * IPSEC processing has already started. 18159 * Complete it. 18160 * IPQoS notes: We don't care what is 18161 * in ipsec_out_ill_index since this 18162 * won't be processed for IPQoS policies 18163 * in ipsec_out_process. 18164 */ 18165 ipsec_out_process(q, mp, NULL, 18166 io->ipsec_out_ill_index); 18167 return; 18168 } else { 18169 connp = (q->q_next != NULL) ? 18170 NULL : Q_TO_CONN(q); 18171 first_mp = mp; 18172 mp = mp->b_cont; 18173 mctl_present = B_TRUE; 18174 } 18175 zoneid = io->ipsec_out_zoneid; 18176 ASSERT(zoneid != ALL_ZONES); 18177 } else if (ii->ipsec_info_type == IPSEC_CTL) { 18178 /* 18179 * It's an IPsec control message requesting 18180 * an SADB update to be sent to the IPsec 18181 * hardware acceleration capable ills. 18182 */ 18183 ipsec_ctl_t *ipsec_ctl = 18184 (ipsec_ctl_t *)mp->b_rptr; 18185 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 18186 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 18187 mblk_t *cmp = mp->b_cont; 18188 18189 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 18190 ASSERT(cmp != NULL); 18191 18192 freeb(mp); 18193 ill_ipsec_capab_send_all(satype, cmp, sa); 18194 return; 18195 } else { 18196 /* 18197 * This must be ARP. 18198 */ 18199 ip_wput_nondata(NULL, q, mp, NULL); 18200 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18201 "ip_wput_end: q %p (%S)", q, "nondata"); 18202 return; 18203 } 18204 } else { 18205 /* 18206 * This must be non-(ARP/AH/ESP) messages. 18207 */ 18208 ASSERT(!need_decref); 18209 ip_wput_nondata(NULL, q, mp, NULL); 18210 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18211 "ip_wput_end: q %p (%S)", q, "nondata"); 18212 return; 18213 } 18214 } else { 18215 first_mp = mp; 18216 mctl_present = B_FALSE; 18217 } 18218 18219 ASSERT(first_mp != NULL); 18220 /* 18221 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 18222 * to make sure that this packet goes out on the same interface it 18223 * came in. We handle that here. 18224 */ 18225 if (mctl_present) { 18226 uint_t ifindex; 18227 18228 io = (ipsec_out_t *)first_mp->b_rptr; 18229 if (io->ipsec_out_attach_if || 18230 io->ipsec_out_xmit_if) { 18231 ill_t *ill; 18232 18233 ASSERT(io->ipsec_out_ill_index != 0); 18234 ifindex = io->ipsec_out_ill_index; 18235 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 18236 NULL, NULL, NULL, NULL); 18237 /* 18238 * ipsec_out_xmit_if bit is used to tell 18239 * ip_wput to use the ill to send outgoing data 18240 * as we have no conn when data comes from ICMP 18241 * error msg routines. Currently this feature is 18242 * only used by ip_mrtun_forward routine. 18243 */ 18244 if (io->ipsec_out_xmit_if) { 18245 xmit_ill = ill; 18246 if (xmit_ill == NULL) { 18247 ip1dbg(("ip_wput: bad ifindex for" 18248 "xmit_ill %d\n", ifindex)); 18249 freemsg(first_mp); 18250 BUMP_MIB(&ip_mib, ipOutDiscards); 18251 ASSERT(!need_decref); 18252 return; 18253 } 18254 /* Free up the ipsec_out_t mblk */ 18255 ASSERT(first_mp->b_cont == mp); 18256 first_mp->b_cont = NULL; 18257 freeb(first_mp); 18258 /* Just send the IP header+ICMP+data */ 18259 first_mp = mp; 18260 ipha = (ipha_t *)mp->b_rptr; 18261 dst = ipha->ipha_dst; 18262 goto send_from_ill; 18263 18264 } else { 18265 attach_ill = ill; 18266 } 18267 18268 if (attach_ill == NULL) { 18269 ASSERT(xmit_ill == NULL); 18270 ip1dbg(("ip_wput : bad ifindex for " 18271 "(BIND TO IPIF_NOFAILOVER) %d\n", ifindex)); 18272 freemsg(first_mp); 18273 BUMP_MIB(&ip_mib, ipOutDiscards); 18274 ASSERT(!need_decref); 18275 return; 18276 } 18277 } 18278 } 18279 18280 ASSERT(xmit_ill == NULL); 18281 18282 /* We have a complete IP datagram heading outbound. */ 18283 ipha = (ipha_t *)mp->b_rptr; 18284 18285 #ifndef SPEED_BEFORE_SAFETY 18286 /* 18287 * Make sure we have a full-word aligned message and that at least 18288 * a simple IP header is accessible in the first message. If not, 18289 * try a pullup. 18290 */ 18291 if (!OK_32PTR(rptr) || 18292 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 18293 hdrtoosmall: 18294 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 18295 BUMP_MIB(&ip_mib, ipOutDiscards); 18296 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18297 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 18298 if (first_mp == NULL) 18299 first_mp = mp; 18300 goto drop_pkt; 18301 } 18302 ipha = (ipha_t *)mp->b_rptr; 18303 if (first_mp == NULL) { 18304 ASSERT(attach_ill == NULL && xmit_ill == NULL); 18305 /* 18306 * If we got here because of "goto hdrtoosmall" 18307 * We need to attach a IPSEC_OUT. 18308 */ 18309 if (connp->conn_out_enforce_policy) { 18310 if (((mp = ipsec_attach_ipsec_out(mp, connp, 18311 NULL, ipha->ipha_protocol)) == NULL)) { 18312 if (need_decref) 18313 CONN_DEC_REF(connp); 18314 return; 18315 } else { 18316 ASSERT(mp->b_datap->db_type == M_CTL); 18317 first_mp = mp; 18318 mp = mp->b_cont; 18319 mctl_present = B_TRUE; 18320 } 18321 } else { 18322 first_mp = mp; 18323 mctl_present = B_FALSE; 18324 } 18325 } 18326 } 18327 #endif 18328 18329 /* Most of the code below is written for speed, not readability */ 18330 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18331 18332 /* 18333 * If ip_newroute() fails, we're going to need a full 18334 * header for the icmp wraparound. 18335 */ 18336 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 18337 uint_t v_hlen; 18338 version_hdrlen_check: 18339 ASSERT(first_mp != NULL); 18340 v_hlen = V_HLEN; 18341 /* 18342 * siphon off IPv6 packets coming down from transport 18343 * layer modules here. 18344 * Note: high-order bit carries NUD reachability confirmation 18345 */ 18346 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 18347 /* 18348 * XXX implement a IPv4 and IPv6 packet counter per 18349 * conn and switch when ratio exceeds e.g. 10:1 18350 */ 18351 #ifdef notyet 18352 if (q->q_next == NULL) /* Avoid ill queue */ 18353 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 18354 #endif 18355 BUMP_MIB(&ip_mib, ipOutIPv6); 18356 ASSERT(xmit_ill == NULL); 18357 if (attach_ill != NULL) 18358 ill_refrele(attach_ill); 18359 if (need_decref) 18360 mp->b_flag |= MSGHASREF; 18361 (void) ip_output_v6(connp, first_mp, q, caller); 18362 return; 18363 } 18364 18365 if ((v_hlen >> 4) != IP_VERSION) { 18366 BUMP_MIB(&ip_mib, ipOutDiscards); 18367 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18368 "ip_wput_end: q %p (%S)", q, "badvers"); 18369 goto drop_pkt; 18370 } 18371 /* 18372 * Is the header length at least 20 bytes? 18373 * 18374 * Are there enough bytes accessible in the header? If 18375 * not, try a pullup. 18376 */ 18377 v_hlen &= 0xF; 18378 v_hlen <<= 2; 18379 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 18380 BUMP_MIB(&ip_mib, ipOutDiscards); 18381 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18382 "ip_wput_end: q %p (%S)", q, "badlen"); 18383 goto drop_pkt; 18384 } 18385 if (v_hlen > (mp->b_wptr - rptr)) { 18386 if (!pullupmsg(mp, v_hlen)) { 18387 BUMP_MIB(&ip_mib, ipOutDiscards); 18388 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18389 "ip_wput_end: q %p (%S)", q, "badpullup2"); 18390 goto drop_pkt; 18391 } 18392 ipha = (ipha_t *)mp->b_rptr; 18393 } 18394 /* 18395 * Move first entry from any source route into ipha_dst and 18396 * verify the options 18397 */ 18398 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 18399 ASSERT(xmit_ill == NULL); 18400 if (attach_ill != NULL) 18401 ill_refrele(attach_ill); 18402 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18403 "ip_wput_end: q %p (%S)", q, "badopts"); 18404 if (need_decref) 18405 CONN_DEC_REF(connp); 18406 return; 18407 } 18408 } 18409 dst = ipha->ipha_dst; 18410 18411 /* 18412 * Try to get an IRE_CACHE for the destination address. If we can't, 18413 * we have to run the packet through ip_newroute which will take 18414 * the appropriate action to arrange for an IRE_CACHE, such as querying 18415 * a resolver, or assigning a default gateway, etc. 18416 */ 18417 if (CLASSD(dst)) { 18418 ipif_t *ipif; 18419 uint32_t setsrc = 0; 18420 18421 multicast: 18422 ASSERT(first_mp != NULL); 18423 ASSERT(xmit_ill == NULL); 18424 ip2dbg(("ip_wput: CLASSD\n")); 18425 if (connp == NULL) { 18426 /* 18427 * Use the first good ipif on the ill. 18428 * XXX Should this ever happen? (Appears 18429 * to show up with just ppp and no ethernet due 18430 * to in.rdisc.) 18431 * However, ire_send should be able to 18432 * call ip_wput_ire directly. 18433 * 18434 * XXX Also, this can happen for ICMP and other packets 18435 * with multicast source addresses. Perhaps we should 18436 * fix things so that we drop the packet in question, 18437 * but for now, just run with it. 18438 */ 18439 ill_t *ill = (ill_t *)q->q_ptr; 18440 18441 /* 18442 * Don't honor attach_if for this case. If ill 18443 * is part of the group, ipif could belong to 18444 * any ill and we cannot maintain attach_ill 18445 * and ipif_ill same anymore and the assert 18446 * below would fail. 18447 */ 18448 if (mctl_present) { 18449 io->ipsec_out_ill_index = 0; 18450 io->ipsec_out_attach_if = B_FALSE; 18451 ASSERT(attach_ill != NULL); 18452 ill_refrele(attach_ill); 18453 attach_ill = NULL; 18454 } 18455 18456 ASSERT(attach_ill == NULL); 18457 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 18458 if (ipif == NULL) { 18459 if (need_decref) 18460 CONN_DEC_REF(connp); 18461 freemsg(first_mp); 18462 return; 18463 } 18464 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 18465 ntohl(dst), ill->ill_name)); 18466 } else { 18467 /* 18468 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 18469 * IP_XMIT_IF is honoured. 18470 * Block comment above this function explains the 18471 * locking mechanism used here 18472 */ 18473 xmit_ill = conn_get_held_ill(connp, 18474 &connp->conn_xmit_if_ill, &err); 18475 if (err == ILL_LOOKUP_FAILED) { 18476 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 18477 goto drop_pkt; 18478 } 18479 if (xmit_ill == NULL) { 18480 ipif = conn_get_held_ipif(connp, 18481 &connp->conn_multicast_ipif, &err); 18482 if (err == IPIF_LOOKUP_FAILED) { 18483 ip1dbg(("ip_wput: No ipif for " 18484 "multicast\n")); 18485 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18486 goto drop_pkt; 18487 } 18488 } 18489 if (xmit_ill != NULL) { 18490 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18491 if (ipif == NULL) { 18492 ip1dbg(("ip_wput: No ipif for " 18493 "IP_XMIT_IF\n")); 18494 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18495 goto drop_pkt; 18496 } 18497 } else if (ipif == NULL || ipif->ipif_isv6) { 18498 /* 18499 * We must do this ipif determination here 18500 * else we could pass through ip_newroute 18501 * and come back here without the conn context. 18502 * 18503 * Note: we do late binding i.e. we bind to 18504 * the interface when the first packet is sent. 18505 * For performance reasons we do not rebind on 18506 * each packet but keep the binding until the 18507 * next IP_MULTICAST_IF option. 18508 * 18509 * conn_multicast_{ipif,ill} are shared between 18510 * IPv4 and IPv6 and AF_INET6 sockets can 18511 * send both IPv4 and IPv6 packets. Hence 18512 * we have to check that "isv6" matches above. 18513 */ 18514 if (ipif != NULL) 18515 ipif_refrele(ipif); 18516 ipif = ipif_lookup_group(dst, zoneid); 18517 if (ipif == NULL) { 18518 ip1dbg(("ip_wput: No ipif for " 18519 "multicast\n")); 18520 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18521 goto drop_pkt; 18522 } 18523 err = conn_set_held_ipif(connp, 18524 &connp->conn_multicast_ipif, ipif); 18525 if (err == IPIF_LOOKUP_FAILED) { 18526 ipif_refrele(ipif); 18527 ip1dbg(("ip_wput: No ipif for " 18528 "multicast\n")); 18529 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18530 goto drop_pkt; 18531 } 18532 } 18533 } 18534 ASSERT(!ipif->ipif_isv6); 18535 /* 18536 * As we may lose the conn by the time we reach ip_wput_ire, 18537 * we copy conn_multicast_loop and conn_dontroute on to an 18538 * ipsec_out. In case if this datagram goes out secure, 18539 * we need the ill_index also. Copy that also into the 18540 * ipsec_out. 18541 */ 18542 if (mctl_present) { 18543 io = (ipsec_out_t *)first_mp->b_rptr; 18544 ASSERT(first_mp->b_datap->db_type == M_CTL); 18545 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18546 } else { 18547 ASSERT(mp == first_mp); 18548 if ((first_mp = allocb(sizeof (ipsec_info_t), 18549 BPRI_HI)) == NULL) { 18550 ipif_refrele(ipif); 18551 first_mp = mp; 18552 goto drop_pkt; 18553 } 18554 first_mp->b_datap->db_type = M_CTL; 18555 first_mp->b_wptr += sizeof (ipsec_info_t); 18556 /* ipsec_out_secure is B_FALSE now */ 18557 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 18558 io = (ipsec_out_t *)first_mp->b_rptr; 18559 io->ipsec_out_type = IPSEC_OUT; 18560 io->ipsec_out_len = sizeof (ipsec_out_t); 18561 io->ipsec_out_use_global_policy = B_TRUE; 18562 first_mp->b_cont = mp; 18563 mctl_present = B_TRUE; 18564 } 18565 if (attach_ill != NULL) { 18566 ASSERT(attach_ill == ipif->ipif_ill); 18567 match_flags = MATCH_IRE_ILL; 18568 18569 /* 18570 * Check if we need an ire that will not be 18571 * looked up by anybody else i.e. HIDDEN. 18572 */ 18573 if (ill_is_probeonly(attach_ill)) { 18574 match_flags |= MATCH_IRE_MARK_HIDDEN; 18575 } 18576 io->ipsec_out_ill_index = 18577 attach_ill->ill_phyint->phyint_ifindex; 18578 io->ipsec_out_attach_if = B_TRUE; 18579 } else { 18580 match_flags = MATCH_IRE_ILL_GROUP; 18581 io->ipsec_out_ill_index = 18582 ipif->ipif_ill->ill_phyint->phyint_ifindex; 18583 } 18584 if (connp != NULL) { 18585 io->ipsec_out_multicast_loop = 18586 connp->conn_multicast_loop; 18587 io->ipsec_out_dontroute = connp->conn_dontroute; 18588 io->ipsec_out_zoneid = connp->conn_zoneid; 18589 } 18590 /* 18591 * If the application uses IP_MULTICAST_IF with 18592 * different logical addresses of the same ILL, we 18593 * need to make sure that the soruce address of 18594 * the packet matches the logical IP address used 18595 * in the option. We do it by initializing ipha_src 18596 * here. This should keep IPSEC also happy as 18597 * when we return from IPSEC processing, we don't 18598 * have to worry about getting the right address on 18599 * the packet. Thus it is sufficient to look for 18600 * IRE_CACHE using MATCH_IRE_ILL rathen than 18601 * MATCH_IRE_IPIF. 18602 * 18603 * NOTE : We need to do it for non-secure case also as 18604 * this might go out secure if there is a global policy 18605 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 18606 * address, the source should be initialized already and 18607 * hence we won't be initializing here. 18608 * 18609 * As we do not have the ire yet, it is possible that 18610 * we set the source address here and then later discover 18611 * that the ire implies the source address to be assigned 18612 * through the RTF_SETSRC flag. 18613 * In that case, the setsrc variable will remind us 18614 * that overwritting the source address by the one 18615 * of the RTF_SETSRC-flagged ire is allowed. 18616 */ 18617 if (ipha->ipha_src == INADDR_ANY && 18618 (connp == NULL || !connp->conn_unspec_src)) { 18619 ipha->ipha_src = ipif->ipif_src_addr; 18620 setsrc = RTF_SETSRC; 18621 } 18622 /* 18623 * Find an IRE which matches the destination and the outgoing 18624 * queue (i.e. the outgoing interface.) 18625 * For loopback use a unicast IP address for 18626 * the ire lookup. 18627 */ 18628 if (ipif->ipif_ill->ill_phyint->phyint_flags & 18629 PHYI_LOOPBACK) { 18630 dst = ipif->ipif_lcl_addr; 18631 } 18632 /* 18633 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 18634 * We don't need to lookup ire in ctable as the packet 18635 * needs to be sent to the destination through the specified 18636 * ill irrespective of ires in the cache table. 18637 */ 18638 ire = NULL; 18639 if (xmit_ill == NULL) { 18640 ire = ire_ctable_lookup(dst, 0, 0, ipif, 18641 zoneid, match_flags); 18642 } 18643 18644 /* 18645 * refrele attach_ill as its not needed anymore. 18646 */ 18647 if (attach_ill != NULL) { 18648 ill_refrele(attach_ill); 18649 attach_ill = NULL; 18650 } 18651 18652 if (ire == NULL) { 18653 /* 18654 * Multicast loopback and multicast forwarding is 18655 * done in ip_wput_ire. 18656 * 18657 * Mark this packet to make it be delivered to 18658 * ip_wput_ire after the new ire has been 18659 * created. 18660 * 18661 * The call to ip_newroute_ipif takes into account 18662 * the setsrc reminder. In any case, we take care 18663 * of the RTF_MULTIRT flag. 18664 */ 18665 mp->b_prev = mp->b_next = NULL; 18666 if (xmit_ill == NULL || 18667 xmit_ill->ill_ipif_up_count > 0) { 18668 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 18669 setsrc | RTF_MULTIRT); 18670 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18671 "ip_wput_end: q %p (%S)", q, "noire"); 18672 } else { 18673 freemsg(first_mp); 18674 } 18675 ipif_refrele(ipif); 18676 if (xmit_ill != NULL) 18677 ill_refrele(xmit_ill); 18678 if (need_decref) 18679 CONN_DEC_REF(connp); 18680 return; 18681 } 18682 18683 ipif_refrele(ipif); 18684 ipif = NULL; 18685 ASSERT(xmit_ill == NULL); 18686 18687 /* 18688 * Honor the RTF_SETSRC flag for multicast packets, 18689 * if allowed by the setsrc reminder. 18690 */ 18691 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 18692 ipha->ipha_src = ire->ire_src_addr; 18693 } 18694 18695 /* 18696 * Unconditionally force the TTL to 1 for 18697 * multirouted multicast packets: 18698 * multirouted multicast should not cross 18699 * multicast routers. 18700 */ 18701 if (ire->ire_flags & RTF_MULTIRT) { 18702 if (ipha->ipha_ttl > 1) { 18703 ip2dbg(("ip_wput: forcing multicast " 18704 "multirt TTL to 1 (was %d), dst 0x%08x\n", 18705 ipha->ipha_ttl, ntohl(ire->ire_addr))); 18706 ipha->ipha_ttl = 1; 18707 } 18708 } 18709 } else { 18710 ire = ire_cache_lookup(dst, zoneid); 18711 if ((ire != NULL) && (ire->ire_type & 18712 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 18713 ignore_dontroute = B_TRUE; 18714 } 18715 if (ire != NULL) { 18716 ire_refrele(ire); 18717 ire = NULL; 18718 } 18719 /* 18720 * Guard against coming in from arp in which case conn is NULL. 18721 * Also guard against non M_DATA with dontroute set but 18722 * destined to local, loopback or broadcast addresses. 18723 */ 18724 if (connp != NULL && connp->conn_dontroute && 18725 !ignore_dontroute) { 18726 dontroute: 18727 /* 18728 * Set TTL to 1 if SO_DONTROUTE is set to prevent 18729 * routing protocols from seeing false direct 18730 * connectivity. 18731 */ 18732 ipha->ipha_ttl = 1; 18733 /* 18734 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 18735 * along with SO_DONTROUTE, higher precedence is 18736 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 18737 */ 18738 if (connp->conn_xmit_if_ill == NULL) { 18739 /* If suitable ipif not found, drop packet */ 18740 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 18741 if (dst_ipif == NULL) { 18742 ip1dbg(("ip_wput: no route for " 18743 "dst using SO_DONTROUTE\n")); 18744 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18745 mp->b_prev = mp->b_next = NULL; 18746 if (first_mp == NULL) 18747 first_mp = mp; 18748 goto drop_pkt; 18749 } else { 18750 /* 18751 * If suitable ipif has been found, set 18752 * xmit_ill to the corresponding 18753 * ipif_ill because we'll be following 18754 * the IP_XMIT_IF logic. 18755 */ 18756 ASSERT(xmit_ill == NULL); 18757 xmit_ill = dst_ipif->ipif_ill; 18758 mutex_enter(&xmit_ill->ill_lock); 18759 if (!ILL_CAN_LOOKUP(xmit_ill)) { 18760 mutex_exit(&xmit_ill->ill_lock); 18761 xmit_ill = NULL; 18762 ipif_refrele(dst_ipif); 18763 ip1dbg(("ip_wput: no route for" 18764 " dst using" 18765 " SO_DONTROUTE\n")); 18766 BUMP_MIB(&ip_mib, 18767 ipOutNoRoutes); 18768 mp->b_prev = mp->b_next = NULL; 18769 if (first_mp == NULL) 18770 first_mp = mp; 18771 goto drop_pkt; 18772 } 18773 ill_refhold_locked(xmit_ill); 18774 mutex_exit(&xmit_ill->ill_lock); 18775 ipif_refrele(dst_ipif); 18776 } 18777 } 18778 18779 } 18780 /* 18781 * If we are bound to IPIF_NOFAILOVER address, look for 18782 * an IRE_CACHE matching the ill. 18783 */ 18784 send_from_ill: 18785 if (attach_ill != NULL) { 18786 ipif_t *attach_ipif; 18787 18788 match_flags = MATCH_IRE_ILL; 18789 18790 /* 18791 * Check if we need an ire that will not be 18792 * looked up by anybody else i.e. HIDDEN. 18793 */ 18794 if (ill_is_probeonly(attach_ill)) { 18795 match_flags |= MATCH_IRE_MARK_HIDDEN; 18796 } 18797 18798 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 18799 if (attach_ipif == NULL) { 18800 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 18801 goto drop_pkt; 18802 } 18803 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 18804 zoneid, match_flags); 18805 ipif_refrele(attach_ipif); 18806 } else if (xmit_ill != NULL || (connp != NULL && 18807 connp->conn_xmit_if_ill != NULL)) { 18808 /* 18809 * Mark this packet as originated locally 18810 */ 18811 mp->b_prev = mp->b_next = NULL; 18812 /* 18813 * xmit_ill could be NULL if SO_DONTROUTE 18814 * is also set. 18815 */ 18816 if (xmit_ill == NULL) { 18817 xmit_ill = conn_get_held_ill(connp, 18818 &connp->conn_xmit_if_ill, &err); 18819 if (err == ILL_LOOKUP_FAILED) { 18820 if (need_decref) 18821 CONN_DEC_REF(connp); 18822 freemsg(first_mp); 18823 return; 18824 } 18825 if (xmit_ill == NULL) { 18826 if (connp->conn_dontroute) 18827 goto dontroute; 18828 goto send_from_ill; 18829 } 18830 } 18831 /* 18832 * could be SO_DONTROUTE case also. 18833 * check at least one interface is UP as 18834 * spcified by this ILL, and then call 18835 * ip_newroute_ipif() 18836 */ 18837 if (xmit_ill->ill_ipif_up_count > 0) { 18838 ipif_t *ipif; 18839 18840 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18841 if (ipif != NULL) { 18842 ip_newroute_ipif(q, first_mp, ipif, 18843 dst, connp, 0); 18844 ipif_refrele(ipif); 18845 ip1dbg(("ip_wput: ip_unicast_if\n")); 18846 } 18847 } else { 18848 freemsg(first_mp); 18849 } 18850 ill_refrele(xmit_ill); 18851 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18852 "ip_wput_end: q %p (%S)", q, "unicast_if"); 18853 if (need_decref) 18854 CONN_DEC_REF(connp); 18855 return; 18856 } else { 18857 ire = ire_cache_lookup(dst, zoneid); 18858 } 18859 if (!ire) { 18860 /* 18861 * Make sure we don't load spread if this 18862 * is IPIF_NOFAILOVER case. 18863 */ 18864 if (attach_ill != NULL) { 18865 if (mctl_present) { 18866 io = (ipsec_out_t *)first_mp->b_rptr; 18867 ASSERT(first_mp->b_datap->db_type == 18868 M_CTL); 18869 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18870 } else { 18871 ASSERT(mp == first_mp); 18872 first_mp = allocb( 18873 sizeof (ipsec_info_t), BPRI_HI); 18874 if (first_mp == NULL) { 18875 first_mp = mp; 18876 goto drop_pkt; 18877 } 18878 first_mp->b_datap->db_type = M_CTL; 18879 first_mp->b_wptr += 18880 sizeof (ipsec_info_t); 18881 /* ipsec_out_secure is B_FALSE now */ 18882 bzero(first_mp->b_rptr, 18883 sizeof (ipsec_info_t)); 18884 io = (ipsec_out_t *)first_mp->b_rptr; 18885 io->ipsec_out_type = IPSEC_OUT; 18886 io->ipsec_out_len = 18887 sizeof (ipsec_out_t); 18888 io->ipsec_out_use_global_policy = 18889 B_TRUE; 18890 first_mp->b_cont = mp; 18891 mctl_present = B_TRUE; 18892 } 18893 io->ipsec_out_ill_index = attach_ill-> 18894 ill_phyint->phyint_ifindex; 18895 io->ipsec_out_attach_if = B_TRUE; 18896 } 18897 noirefound: 18898 /* 18899 * Mark this packet as having originated on 18900 * this machine. This will be noted in 18901 * ire_add_then_send, which needs to know 18902 * whether to run it back through ip_wput or 18903 * ip_rput following successful resolution. 18904 */ 18905 mp->b_prev = NULL; 18906 mp->b_next = NULL; 18907 ip_newroute(q, first_mp, dst, NULL, connp); 18908 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18909 "ip_wput_end: q %p (%S)", q, "newroute"); 18910 if (attach_ill != NULL) 18911 ill_refrele(attach_ill); 18912 if (xmit_ill != NULL) 18913 ill_refrele(xmit_ill); 18914 if (need_decref) 18915 CONN_DEC_REF(connp); 18916 return; 18917 } 18918 } 18919 18920 /* We now know where we are going with it. */ 18921 18922 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18923 "ip_wput_end: q %p (%S)", q, "end"); 18924 18925 /* 18926 * Check if the ire has the RTF_MULTIRT flag, inherited 18927 * from an IRE_OFFSUBNET ire entry in ip_newroute. 18928 */ 18929 if (ire->ire_flags & RTF_MULTIRT) { 18930 /* 18931 * Force the TTL of multirouted packets if required. 18932 * The TTL of such packets is bounded by the 18933 * ip_multirt_ttl ndd variable. 18934 */ 18935 if ((ip_multirt_ttl > 0) && 18936 (ipha->ipha_ttl > ip_multirt_ttl)) { 18937 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18938 "(was %d), dst 0x%08x\n", 18939 ip_multirt_ttl, ipha->ipha_ttl, 18940 ntohl(ire->ire_addr))); 18941 ipha->ipha_ttl = ip_multirt_ttl; 18942 } 18943 /* 18944 * At this point, we check to see if there are any pending 18945 * unresolved routes. ire_multirt_resolvable() 18946 * checks in O(n) that all IRE_OFFSUBNET ire 18947 * entries for the packet's destination and 18948 * flagged RTF_MULTIRT are currently resolved. 18949 * If some remain unresolved, we make a copy 18950 * of the current message. It will be used 18951 * to initiate additional route resolutions. 18952 */ 18953 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 18954 ip2dbg(("ip_wput[noirefound]: ire %p, " 18955 "multirt_need_resolve %d, first_mp %p\n", 18956 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18957 if (multirt_need_resolve) { 18958 copy_mp = copymsg(first_mp); 18959 if (copy_mp != NULL) { 18960 MULTIRT_DEBUG_TAG(copy_mp); 18961 } 18962 } 18963 } 18964 18965 ip_wput_ire(q, first_mp, ire, connp, caller); 18966 /* 18967 * Try to resolve another multiroute if 18968 * ire_multirt_resolvable() deemed it necessary. 18969 * At this point, we need to distinguish 18970 * multicasts from other packets. For multicasts, 18971 * we call ip_newroute_ipif() and request that both 18972 * multirouting and setsrc flags are checked. 18973 */ 18974 if (copy_mp != NULL) { 18975 if (CLASSD(dst)) { 18976 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 18977 if (ipif) { 18978 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 18979 RTF_SETSRC | RTF_MULTIRT); 18980 ipif_refrele(ipif); 18981 } else { 18982 MULTIRT_DEBUG_UNTAG(copy_mp); 18983 freemsg(copy_mp); 18984 copy_mp = NULL; 18985 } 18986 } else { 18987 ip_newroute(q, copy_mp, dst, NULL, connp); 18988 } 18989 } 18990 if (attach_ill != NULL) 18991 ill_refrele(attach_ill); 18992 if (xmit_ill != NULL) 18993 ill_refrele(xmit_ill); 18994 if (need_decref) 18995 CONN_DEC_REF(connp); 18996 return; 18997 18998 drop_pkt: 18999 ip1dbg(("ip_wput: dropped packet\n")); 19000 if (ire != NULL) 19001 ire_refrele(ire); 19002 if (need_decref) 19003 CONN_DEC_REF(connp); 19004 freemsg(first_mp); 19005 if (attach_ill != NULL) 19006 ill_refrele(attach_ill); 19007 if (xmit_ill != NULL) 19008 ill_refrele(xmit_ill); 19009 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19010 "ip_wput_end: q %p (%S)", q, "droppkt"); 19011 } 19012 19013 void 19014 ip_wput(queue_t *q, mblk_t *mp) 19015 { 19016 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 19017 } 19018 19019 /* 19020 * 19021 * The following rules must be observed when accessing any ipif or ill 19022 * that has been cached in the conn. Typically conn_nofailover_ill, 19023 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 19024 * 19025 * Access: The ipif or ill pointed to from the conn can be accessed under 19026 * the protection of the conn_lock or after it has been refheld under the 19027 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 19028 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 19029 * The reason for this is that a concurrent unplumb could actually be 19030 * cleaning up these cached pointers by walking the conns and might have 19031 * finished cleaning up the conn in question. The macros check that an 19032 * unplumb has not yet started on the ipif or ill. 19033 * 19034 * Caching: An ipif or ill pointer may be cached in the conn only after 19035 * making sure that an unplumb has not started. So the caching is done 19036 * while holding both the conn_lock and the ill_lock and after using the 19037 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 19038 * flag before starting the cleanup of conns. 19039 * 19040 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 19041 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 19042 * or a reference to the ipif or a reference to an ire that references the 19043 * ipif. An ipif does not change its ill except for failover/failback. Since 19044 * failover/failback happens only after bringing down the ipif and making sure 19045 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 19046 * the above holds. 19047 */ 19048 ipif_t * 19049 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 19050 { 19051 ipif_t *ipif; 19052 ill_t *ill; 19053 19054 *err = 0; 19055 rw_enter(&ill_g_lock, RW_READER); 19056 mutex_enter(&connp->conn_lock); 19057 ipif = *ipifp; 19058 if (ipif != NULL) { 19059 ill = ipif->ipif_ill; 19060 mutex_enter(&ill->ill_lock); 19061 if (IPIF_CAN_LOOKUP(ipif)) { 19062 ipif_refhold_locked(ipif); 19063 mutex_exit(&ill->ill_lock); 19064 mutex_exit(&connp->conn_lock); 19065 rw_exit(&ill_g_lock); 19066 return (ipif); 19067 } else { 19068 *err = IPIF_LOOKUP_FAILED; 19069 } 19070 mutex_exit(&ill->ill_lock); 19071 } 19072 mutex_exit(&connp->conn_lock); 19073 rw_exit(&ill_g_lock); 19074 return (NULL); 19075 } 19076 19077 ill_t * 19078 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 19079 { 19080 ill_t *ill; 19081 19082 *err = 0; 19083 mutex_enter(&connp->conn_lock); 19084 ill = *illp; 19085 if (ill != NULL) { 19086 mutex_enter(&ill->ill_lock); 19087 if (ILL_CAN_LOOKUP(ill)) { 19088 ill_refhold_locked(ill); 19089 mutex_exit(&ill->ill_lock); 19090 mutex_exit(&connp->conn_lock); 19091 return (ill); 19092 } else { 19093 *err = ILL_LOOKUP_FAILED; 19094 } 19095 mutex_exit(&ill->ill_lock); 19096 } 19097 mutex_exit(&connp->conn_lock); 19098 return (NULL); 19099 } 19100 19101 static int 19102 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 19103 { 19104 ill_t *ill; 19105 19106 ill = ipif->ipif_ill; 19107 mutex_enter(&connp->conn_lock); 19108 mutex_enter(&ill->ill_lock); 19109 if (IPIF_CAN_LOOKUP(ipif)) { 19110 *ipifp = ipif; 19111 mutex_exit(&ill->ill_lock); 19112 mutex_exit(&connp->conn_lock); 19113 return (0); 19114 } 19115 mutex_exit(&ill->ill_lock); 19116 mutex_exit(&connp->conn_lock); 19117 return (IPIF_LOOKUP_FAILED); 19118 } 19119 19120 /* 19121 * This is called if the outbound datagram needs fragmentation. 19122 * 19123 * NOTE : This function does not ire_refrele the ire argument passed in. 19124 */ 19125 static void 19126 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 19127 { 19128 ipha_t *ipha; 19129 mblk_t *mp; 19130 uint32_t v_hlen_tos_len; 19131 uint32_t max_frag; 19132 uint32_t frag_flag; 19133 boolean_t dont_use; 19134 19135 if (ipsec_mp->b_datap->db_type == M_CTL) { 19136 mp = ipsec_mp->b_cont; 19137 } else { 19138 mp = ipsec_mp; 19139 } 19140 19141 ipha = (ipha_t *)mp->b_rptr; 19142 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19143 19144 #ifdef _BIG_ENDIAN 19145 #define V_HLEN (v_hlen_tos_len >> 24) 19146 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19147 #else 19148 #define V_HLEN (v_hlen_tos_len & 0xFF) 19149 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19150 #endif 19151 19152 #ifndef SPEED_BEFORE_SAFETY 19153 /* 19154 * Check that ipha_length is consistent with 19155 * the mblk length 19156 */ 19157 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 19158 ip0dbg(("Packet length mismatch: %d, %ld\n", 19159 LENGTH, msgdsize(mp))); 19160 freemsg(ipsec_mp); 19161 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 19162 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 19163 "packet length mismatch"); 19164 return; 19165 } 19166 #endif 19167 /* 19168 * Don't use frag_flag if pre-built packet or source 19169 * routed or if multicast (since multicast packets do not solicit 19170 * ICMP "packet too big" messages). Get the values of 19171 * max_frag and frag_flag atomically by acquiring the 19172 * ire_lock. 19173 */ 19174 mutex_enter(&ire->ire_lock); 19175 max_frag = ire->ire_max_frag; 19176 frag_flag = ire->ire_frag_flag; 19177 mutex_exit(&ire->ire_lock); 19178 19179 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 19180 (V_HLEN != IP_SIMPLE_HDR_VERSION && 19181 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 19182 19183 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 19184 (dont_use ? 0 : frag_flag)); 19185 } 19186 19187 /* 19188 * Used for deciding the MSS size for the upper layer. Thus 19189 * we need to check the outbound policy values in the conn. 19190 */ 19191 int 19192 conn_ipsec_length(conn_t *connp) 19193 { 19194 ipsec_latch_t *ipl; 19195 19196 ipl = connp->conn_latch; 19197 if (ipl == NULL) 19198 return (0); 19199 19200 if (ipl->ipl_out_policy == NULL) 19201 return (0); 19202 19203 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 19204 } 19205 19206 /* 19207 * Returns an estimate of the IPSEC headers size. This is used if 19208 * we don't want to call into IPSEC to get the exact size. 19209 */ 19210 int 19211 ipsec_out_extra_length(mblk_t *ipsec_mp) 19212 { 19213 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 19214 ipsec_action_t *a; 19215 19216 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19217 if (!io->ipsec_out_secure) 19218 return (0); 19219 19220 a = io->ipsec_out_act; 19221 19222 if (a == NULL) { 19223 ASSERT(io->ipsec_out_policy != NULL); 19224 a = io->ipsec_out_policy->ipsp_act; 19225 } 19226 ASSERT(a != NULL); 19227 19228 return (a->ipa_ovhd); 19229 } 19230 19231 /* 19232 * Returns an estimate of the IPSEC headers size. This is used if 19233 * we don't want to call into IPSEC to get the exact size. 19234 */ 19235 int 19236 ipsec_in_extra_length(mblk_t *ipsec_mp) 19237 { 19238 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 19239 ipsec_action_t *a; 19240 19241 ASSERT(ii->ipsec_in_type == IPSEC_IN); 19242 19243 a = ii->ipsec_in_action; 19244 return (a == NULL ? 0 : a->ipa_ovhd); 19245 } 19246 19247 /* 19248 * If there are any source route options, return the true final 19249 * destination. Otherwise, return the destination. 19250 */ 19251 ipaddr_t 19252 ip_get_dst(ipha_t *ipha) 19253 { 19254 ipoptp_t opts; 19255 uchar_t *opt; 19256 uint8_t optval; 19257 uint8_t optlen; 19258 ipaddr_t dst; 19259 uint32_t off; 19260 19261 dst = ipha->ipha_dst; 19262 19263 if (IS_SIMPLE_IPH(ipha)) 19264 return (dst); 19265 19266 for (optval = ipoptp_first(&opts, ipha); 19267 optval != IPOPT_EOL; 19268 optval = ipoptp_next(&opts)) { 19269 opt = opts.ipoptp_cur; 19270 optlen = opts.ipoptp_len; 19271 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19272 switch (optval) { 19273 case IPOPT_SSRR: 19274 case IPOPT_LSRR: 19275 off = opt[IPOPT_OFFSET]; 19276 /* 19277 * If one of the conditions is true, it means 19278 * end of options and dst already has the right 19279 * value. 19280 */ 19281 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 19282 off = optlen - IP_ADDR_LEN; 19283 bcopy(&opt[off], &dst, IP_ADDR_LEN); 19284 } 19285 return (dst); 19286 default: 19287 break; 19288 } 19289 } 19290 19291 return (dst); 19292 } 19293 19294 mblk_t * 19295 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 19296 conn_t *connp, boolean_t unspec_src) 19297 { 19298 ipsec_out_t *io; 19299 mblk_t *first_mp; 19300 boolean_t policy_present; 19301 19302 first_mp = mp; 19303 if (mp->b_datap->db_type == M_CTL) { 19304 io = (ipsec_out_t *)first_mp->b_rptr; 19305 /* 19306 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 19307 * 19308 * 1) There is per-socket policy (including cached global 19309 * policy). 19310 * 2) There is no per-socket policy, but it is 19311 * a multicast packet that needs to go out 19312 * on a specific interface. This is the case 19313 * where (ip_wput and ip_wput_multicast) attaches 19314 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 19315 * 19316 * In case (2) we check with global policy to 19317 * see if there is a match and set the ill_index 19318 * appropriately so that we can lookup the ire 19319 * properly in ip_wput_ipsec_out. 19320 */ 19321 19322 /* 19323 * ipsec_out_use_global_policy is set to B_FALSE 19324 * in ipsec_in_to_out(). Refer to that function for 19325 * details. 19326 */ 19327 if ((io->ipsec_out_latch == NULL) && 19328 (io->ipsec_out_use_global_policy)) { 19329 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 19330 ire, connp, unspec_src)); 19331 } 19332 if (!io->ipsec_out_secure) { 19333 /* 19334 * If this is not a secure packet, drop 19335 * the IPSEC_OUT mp and treat it as a clear 19336 * packet. This happens when we are sending 19337 * a ICMP reply back to a clear packet. See 19338 * ipsec_in_to_out() for details. 19339 */ 19340 mp = first_mp->b_cont; 19341 freeb(first_mp); 19342 } 19343 return (mp); 19344 } 19345 /* 19346 * See whether we need to attach a global policy here. We 19347 * don't depend on the conn (as it could be null) for deciding 19348 * what policy this datagram should go through because it 19349 * should have happened in ip_wput if there was some 19350 * policy. This normally happens for connections which are not 19351 * fully bound preventing us from caching policies in 19352 * ip_bind. Packets coming from the TCP listener/global queue 19353 * - which are non-hard_bound - could also be affected by 19354 * applying policy here. 19355 * 19356 * If this packet is coming from tcp global queue or listener, 19357 * we will be applying policy here. This may not be *right* 19358 * if these packets are coming from the detached connection as 19359 * it could have gone in clear before. This happens only if a 19360 * TCP connection started when there is no policy and somebody 19361 * added policy before it became detached. Thus packets of the 19362 * detached connection could go out secure and the other end 19363 * would drop it because it will be expecting in clear. The 19364 * converse is not true i.e if somebody starts a TCP 19365 * connection and deletes the policy, all the packets will 19366 * still go out with the policy that existed before deleting 19367 * because ip_unbind sends up policy information which is used 19368 * by TCP on subsequent ip_wputs. The right solution is to fix 19369 * TCP to attach a dummy IPSEC_OUT and set 19370 * ipsec_out_use_global_policy to B_FALSE. As this might 19371 * affect performance for normal cases, we are not doing it. 19372 * Thus, set policy before starting any TCP connections. 19373 * 19374 * NOTE - We might apply policy even for a hard bound connection 19375 * - for which we cached policy in ip_bind - if somebody added 19376 * global policy after we inherited the policy in ip_bind. 19377 * This means that the packets that were going out in clear 19378 * previously would start going secure and hence get dropped 19379 * on the other side. To fix this, TCP attaches a dummy 19380 * ipsec_out and make sure that we don't apply global policy. 19381 */ 19382 if (ipha != NULL) 19383 policy_present = ipsec_outbound_v4_policy_present; 19384 else 19385 policy_present = ipsec_outbound_v6_policy_present; 19386 if (!policy_present) 19387 return (mp); 19388 19389 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 19390 } 19391 19392 ire_t * 19393 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 19394 { 19395 ipaddr_t addr; 19396 ire_t *save_ire; 19397 irb_t *irb; 19398 ill_group_t *illgrp; 19399 int err; 19400 19401 save_ire = ire; 19402 addr = ire->ire_addr; 19403 19404 ASSERT(ire->ire_type == IRE_BROADCAST); 19405 19406 illgrp = connp->conn_outgoing_ill->ill_group; 19407 if (illgrp == NULL) { 19408 *conn_outgoing_ill = conn_get_held_ill(connp, 19409 &connp->conn_outgoing_ill, &err); 19410 if (err == ILL_LOOKUP_FAILED) { 19411 ire_refrele(save_ire); 19412 return (NULL); 19413 } 19414 return (save_ire); 19415 } 19416 /* 19417 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 19418 * If it is part of the group, we need to send on the ire 19419 * that has been cleared of IRE_MARK_NORECV and that belongs 19420 * to this group. This is okay as IP_BOUND_IF really means 19421 * any ill in the group. We depend on the fact that the 19422 * first ire in the group is always cleared of IRE_MARK_NORECV 19423 * if such an ire exists. This is possible only if you have 19424 * at least one ill in the group that has not failed. 19425 * 19426 * First get to the ire that matches the address and group. 19427 * 19428 * We don't look for an ire with a matching zoneid because a given zone 19429 * won't always have broadcast ires on all ills in the group. 19430 */ 19431 irb = ire->ire_bucket; 19432 rw_enter(&irb->irb_lock, RW_READER); 19433 if (ire->ire_marks & IRE_MARK_NORECV) { 19434 /* 19435 * If the current zone only has an ire broadcast for this 19436 * address marked NORECV, the ire we want is ahead in the 19437 * bucket, so we look it up deliberately ignoring the zoneid. 19438 */ 19439 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 19440 if (ire->ire_addr != addr) 19441 continue; 19442 /* skip over deleted ires */ 19443 if (ire->ire_marks & IRE_MARK_CONDEMNED) 19444 continue; 19445 } 19446 } 19447 while (ire != NULL) { 19448 /* 19449 * If a new interface is coming up, we could end up 19450 * seeing the loopback ire and the non-loopback ire 19451 * may not have been added yet. So check for ire_stq 19452 */ 19453 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 19454 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 19455 break; 19456 } 19457 ire = ire->ire_next; 19458 } 19459 if (ire != NULL && ire->ire_addr == addr && 19460 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 19461 IRE_REFHOLD(ire); 19462 rw_exit(&irb->irb_lock); 19463 ire_refrele(save_ire); 19464 *conn_outgoing_ill = ire_to_ill(ire); 19465 /* 19466 * Refhold the ill to make the conn_outgoing_ill 19467 * independent of the ire. ip_wput_ire goes in a loop 19468 * and may refrele the ire. Since we have an ire at this 19469 * point we don't need to use ILL_CAN_LOOKUP on the ill. 19470 */ 19471 ill_refhold(*conn_outgoing_ill); 19472 return (ire); 19473 } 19474 rw_exit(&irb->irb_lock); 19475 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 19476 /* 19477 * If we can't find a suitable ire, return the original ire. 19478 */ 19479 return (save_ire); 19480 } 19481 19482 /* 19483 * This function does the ire_refrele of the ire passed in as the 19484 * argument. As this function looks up more ires i.e broadcast ires, 19485 * it needs to REFRELE them. Currently, for simplicity we don't 19486 * differentiate the one passed in and looked up here. We always 19487 * REFRELE. 19488 * IPQoS Notes: 19489 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 19490 * IPSec packets are done in ipsec_out_process. 19491 * 19492 */ 19493 void 19494 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 19495 { 19496 ipha_t *ipha; 19497 #define rptr ((uchar_t *)ipha) 19498 mblk_t *mp1; 19499 queue_t *stq; 19500 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 19501 uint32_t v_hlen_tos_len; 19502 uint32_t ttl_protocol; 19503 ipaddr_t src; 19504 ipaddr_t dst; 19505 uint32_t cksum; 19506 ipaddr_t orig_src; 19507 ire_t *ire1; 19508 mblk_t *next_mp; 19509 uint_t hlen; 19510 uint16_t *up; 19511 uint32_t max_frag = ire->ire_max_frag; 19512 ill_t *ill = ire_to_ill(ire); 19513 int clusterwide; 19514 uint16_t ip_hdr_included; /* IP header included by ULP? */ 19515 int ipsec_len; 19516 mblk_t *first_mp; 19517 ipsec_out_t *io; 19518 boolean_t conn_dontroute; /* conn value for multicast */ 19519 boolean_t conn_multicast_loop; /* conn value for multicast */ 19520 boolean_t multicast_forward; /* Should we forward ? */ 19521 boolean_t unspec_src; 19522 ill_t *conn_outgoing_ill = NULL; 19523 ill_t *ire_ill; 19524 ill_t *ire1_ill; 19525 uint32_t ill_index = 0; 19526 boolean_t multirt_send = B_FALSE; 19527 int err; 19528 zoneid_t zoneid; 19529 19530 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 19531 "ip_wput_ire_start: q %p", q); 19532 19533 multicast_forward = B_FALSE; 19534 unspec_src = (connp != NULL && connp->conn_unspec_src); 19535 19536 if (ire->ire_flags & RTF_MULTIRT) { 19537 /* 19538 * Multirouting case. The bucket where ire is stored 19539 * probably holds other RTF_MULTIRT flagged ire 19540 * to the destination. In this call to ip_wput_ire, 19541 * we attempt to send the packet through all 19542 * those ires. Thus, we first ensure that ire is the 19543 * first RTF_MULTIRT ire in the bucket, 19544 * before walking the ire list. 19545 */ 19546 ire_t *first_ire; 19547 irb_t *irb = ire->ire_bucket; 19548 ASSERT(irb != NULL); 19549 19550 /* Make sure we do not omit any multiroute ire. */ 19551 IRB_REFHOLD(irb); 19552 for (first_ire = irb->irb_ire; 19553 first_ire != NULL; 19554 first_ire = first_ire->ire_next) { 19555 if ((first_ire->ire_flags & RTF_MULTIRT) && 19556 (first_ire->ire_addr == ire->ire_addr) && 19557 !(first_ire->ire_marks & 19558 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 19559 break; 19560 } 19561 19562 if ((first_ire != NULL) && (first_ire != ire)) { 19563 IRE_REFHOLD(first_ire); 19564 ire_refrele(ire); 19565 ire = first_ire; 19566 ill = ire_to_ill(ire); 19567 } 19568 IRB_REFRELE(irb); 19569 } 19570 19571 /* 19572 * conn_outgoing_ill is used only in the broadcast loop. 19573 * for performance we don't grab the mutexs in the fastpath 19574 */ 19575 if ((connp != NULL) && 19576 (connp->conn_xmit_if_ill == NULL) && 19577 (ire->ire_type == IRE_BROADCAST) && 19578 ((connp->conn_nofailover_ill != NULL) || 19579 (connp->conn_outgoing_ill != NULL))) { 19580 /* 19581 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 19582 * option. So, see if this endpoint is bound to a 19583 * IPIF_NOFAILOVER address. If so, honor it. This implies 19584 * that if the interface is failed, we will still send 19585 * the packet on the same ill which is what we want. 19586 */ 19587 conn_outgoing_ill = conn_get_held_ill(connp, 19588 &connp->conn_nofailover_ill, &err); 19589 if (err == ILL_LOOKUP_FAILED) { 19590 ire_refrele(ire); 19591 freemsg(mp); 19592 return; 19593 } 19594 if (conn_outgoing_ill == NULL) { 19595 /* 19596 * Choose a good ill in the group to send the 19597 * packets on. 19598 */ 19599 ire = conn_set_outgoing_ill(connp, ire, 19600 &conn_outgoing_ill); 19601 if (ire == NULL) { 19602 freemsg(mp); 19603 return; 19604 } 19605 } 19606 } 19607 19608 if (mp->b_datap->db_type != M_CTL) { 19609 ipha = (ipha_t *)mp->b_rptr; 19610 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 19611 } else { 19612 io = (ipsec_out_t *)mp->b_rptr; 19613 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19614 zoneid = io->ipsec_out_zoneid; 19615 ASSERT(zoneid != ALL_ZONES); 19616 ipha = (ipha_t *)mp->b_cont->b_rptr; 19617 dst = ipha->ipha_dst; 19618 /* 19619 * For the multicast case, ipsec_out carries conn_dontroute and 19620 * conn_multicast_loop as conn may not be available here. We 19621 * need this for multicast loopback and forwarding which is done 19622 * later in the code. 19623 */ 19624 if (CLASSD(dst)) { 19625 conn_dontroute = io->ipsec_out_dontroute; 19626 conn_multicast_loop = io->ipsec_out_multicast_loop; 19627 /* 19628 * If conn_dontroute is not set or conn_multicast_loop 19629 * is set, we need to do forwarding/loopback. For 19630 * datagrams from ip_wput_multicast, conn_dontroute is 19631 * set to B_TRUE and conn_multicast_loop is set to 19632 * B_FALSE so that we neither do forwarding nor 19633 * loopback. 19634 */ 19635 if (!conn_dontroute || conn_multicast_loop) 19636 multicast_forward = B_TRUE; 19637 } 19638 } 19639 19640 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid) { 19641 /* 19642 * When a zone sends a packet to another zone, we try to deliver 19643 * the packet under the same conditions as if the destination 19644 * was a real node on the network. To do so, we look for a 19645 * matching route in the forwarding table. 19646 * RTF_REJECT and RTF_BLACKHOLE are handled just like 19647 * ip_newroute() does. 19648 */ 19649 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 19650 NULL, NULL, zoneid, 0, (MATCH_IRE_RECURSIVE | 19651 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 19652 if (src_ire != NULL && 19653 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 19654 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 19655 ipha->ipha_src = src_ire->ire_src_addr; 19656 ire_refrele(src_ire); 19657 } else { 19658 ire_refrele(ire); 19659 if (conn_outgoing_ill != NULL) 19660 ill_refrele(conn_outgoing_ill); 19661 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19662 if (src_ire != NULL) { 19663 if (src_ire->ire_flags & RTF_BLACKHOLE) { 19664 ire_refrele(src_ire); 19665 freemsg(mp); 19666 return; 19667 } 19668 ire_refrele(src_ire); 19669 } 19670 if (ip_hdr_complete(ipha, zoneid)) { 19671 /* Failed */ 19672 freemsg(mp); 19673 return; 19674 } 19675 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 19676 return; 19677 } 19678 } 19679 19680 if (mp->b_datap->db_type == M_CTL || 19681 ipsec_outbound_v4_policy_present) { 19682 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 19683 unspec_src); 19684 if (mp == NULL) { 19685 ire_refrele(ire); 19686 if (conn_outgoing_ill != NULL) 19687 ill_refrele(conn_outgoing_ill); 19688 return; 19689 } 19690 } 19691 19692 first_mp = mp; 19693 ipsec_len = 0; 19694 19695 if (first_mp->b_datap->db_type == M_CTL) { 19696 io = (ipsec_out_t *)first_mp->b_rptr; 19697 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19698 mp = first_mp->b_cont; 19699 ipsec_len = ipsec_out_extra_length(first_mp); 19700 ASSERT(ipsec_len >= 0); 19701 zoneid = io->ipsec_out_zoneid; 19702 ASSERT(zoneid != ALL_ZONES); 19703 19704 /* 19705 * Drop M_CTL here if IPsec processing is not needed. 19706 * (Non-IPsec use of M_CTL extracted any information it 19707 * needed above). 19708 */ 19709 if (ipsec_len == 0) { 19710 freeb(first_mp); 19711 first_mp = mp; 19712 } 19713 } 19714 19715 /* 19716 * Fast path for ip_wput_ire 19717 */ 19718 19719 ipha = (ipha_t *)mp->b_rptr; 19720 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19721 dst = ipha->ipha_dst; 19722 19723 /* 19724 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 19725 * if the socket is a SOCK_RAW type. The transport checksum should 19726 * be provided in the pre-built packet, so we don't need to compute it. 19727 * Also, other application set flags, like DF, should not be altered. 19728 * Other transport MUST pass down zero. 19729 */ 19730 ip_hdr_included = ipha->ipha_ident; 19731 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19732 19733 if (CLASSD(dst)) { 19734 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 19735 ntohl(dst), 19736 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 19737 ntohl(ire->ire_addr))); 19738 } 19739 19740 /* Macros to extract header fields from data already in registers */ 19741 #ifdef _BIG_ENDIAN 19742 #define V_HLEN (v_hlen_tos_len >> 24) 19743 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19744 #define PROTO (ttl_protocol & 0xFF) 19745 #else 19746 #define V_HLEN (v_hlen_tos_len & 0xFF) 19747 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19748 #define PROTO (ttl_protocol >> 8) 19749 #endif 19750 19751 19752 orig_src = src = ipha->ipha_src; 19753 /* (The loop back to "another" is explained down below.) */ 19754 another:; 19755 /* 19756 * Assign an ident value for this packet. We assign idents on 19757 * a per destination basis out of the IRE. There could be 19758 * other threads targeting the same destination, so we have to 19759 * arrange for a atomic increment. Note that we use a 32-bit 19760 * atomic add because it has better performance than its 19761 * 16-bit sibling. 19762 * 19763 * If running in cluster mode and if the source address 19764 * belongs to a replicated service then vector through 19765 * cl_inet_ipident vector to allocate ip identifier 19766 * NOTE: This is a contract private interface with the 19767 * clustering group. 19768 */ 19769 clusterwide = 0; 19770 if (cl_inet_ipident) { 19771 ASSERT(cl_inet_isclusterwide); 19772 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19773 AF_INET, (uint8_t *)(uintptr_t)src)) { 19774 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 19775 AF_INET, (uint8_t *)(uintptr_t)src, 19776 (uint8_t *)(uintptr_t)dst); 19777 clusterwide = 1; 19778 } 19779 } 19780 if (!clusterwide) { 19781 ipha->ipha_ident = 19782 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19783 } 19784 19785 #ifndef _BIG_ENDIAN 19786 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19787 #endif 19788 19789 /* 19790 * Set source address unless sent on an ill or conn_unspec_src is set. 19791 * This is needed to obey conn_unspec_src when packets go through 19792 * ip_newroute + arp. 19793 * Assumes ip_newroute{,_multi} sets the source address as well. 19794 */ 19795 if (src == INADDR_ANY && !unspec_src) { 19796 /* 19797 * Assign the appropriate source address from the IRE if none 19798 * was specified. 19799 */ 19800 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19801 19802 /* 19803 * With IP multipathing, broadcast packets are sent on the ire 19804 * that has been cleared of IRE_MARK_NORECV and that belongs to 19805 * the group. However, this ire might not be in the same zone so 19806 * we can't always use its source address. We look for a 19807 * broadcast ire in the same group and in the right zone. 19808 */ 19809 if (ire->ire_type == IRE_BROADCAST && 19810 ire->ire_zoneid != zoneid) { 19811 ire_t *src_ire = ire_ctable_lookup(dst, 0, 19812 IRE_BROADCAST, ire->ire_ipif, zoneid, 19813 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 19814 if (src_ire != NULL) { 19815 src = src_ire->ire_src_addr; 19816 ire_refrele(src_ire); 19817 } else { 19818 ire_refrele(ire); 19819 if (conn_outgoing_ill != NULL) 19820 ill_refrele(conn_outgoing_ill); 19821 freemsg(first_mp); 19822 BUMP_MIB(&ip_mib, ipOutDiscards); 19823 return; 19824 } 19825 } else { 19826 src = ire->ire_src_addr; 19827 } 19828 19829 if (connp == NULL) { 19830 ip1dbg(("ip_wput_ire: no connp and no src " 19831 "address for dst 0x%x, using src 0x%x\n", 19832 ntohl(dst), 19833 ntohl(src))); 19834 } 19835 ipha->ipha_src = src; 19836 } 19837 stq = ire->ire_stq; 19838 19839 /* 19840 * We only allow ire chains for broadcasts since there will 19841 * be multiple IRE_CACHE entries for the same multicast 19842 * address (one per ipif). 19843 */ 19844 next_mp = NULL; 19845 19846 /* broadcast packet */ 19847 if (ire->ire_type == IRE_BROADCAST) 19848 goto broadcast; 19849 19850 /* loopback ? */ 19851 if (stq == NULL) 19852 goto nullstq; 19853 19854 /* The ill_index for outbound ILL */ 19855 ill_index = Q_TO_INDEX(stq); 19856 19857 BUMP_MIB(&ip_mib, ipOutRequests); 19858 ttl_protocol = ((uint16_t *)ipha)[4]; 19859 19860 /* pseudo checksum (do it in parts for IP header checksum) */ 19861 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19862 19863 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 19864 queue_t *dev_q = stq->q_next; 19865 19866 /* flow controlled */ 19867 if ((dev_q->q_next || dev_q->q_first) && 19868 !canput(dev_q)) 19869 goto blocked; 19870 if ((PROTO == IPPROTO_UDP) && 19871 (ip_hdr_included != IP_HDR_INCLUDED)) { 19872 hlen = (V_HLEN & 0xF) << 2; 19873 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 19874 if (*up != 0) { 19875 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 19876 hlen, LENGTH, max_frag, ipsec_len, cksum); 19877 /* Software checksum? */ 19878 if (DB_CKSUMFLAGS(mp) == 0) { 19879 IP_STAT(ip_out_sw_cksum); 19880 IP_STAT_UPDATE( 19881 ip_udp_out_sw_cksum_bytes, 19882 LENGTH - hlen); 19883 } 19884 } 19885 } 19886 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 19887 hlen = (V_HLEN & 0xF) << 2; 19888 if (PROTO == IPPROTO_TCP) { 19889 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 19890 /* 19891 * The packet header is processed once and for all, even 19892 * in the multirouting case. We disable hardware 19893 * checksum if the packet is multirouted, as it will be 19894 * replicated via several interfaces, and not all of 19895 * them may have this capability. 19896 */ 19897 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 19898 LENGTH, max_frag, ipsec_len, cksum); 19899 /* Software checksum? */ 19900 if (DB_CKSUMFLAGS(mp) == 0) { 19901 IP_STAT(ip_out_sw_cksum); 19902 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 19903 LENGTH - hlen); 19904 } 19905 } else { 19906 sctp_hdr_t *sctph; 19907 19908 ASSERT(PROTO == IPPROTO_SCTP); 19909 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 19910 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 19911 /* 19912 * Zero out the checksum field to ensure proper 19913 * checksum calculation. 19914 */ 19915 sctph->sh_chksum = 0; 19916 #ifdef DEBUG 19917 if (!skip_sctp_cksum) 19918 #endif 19919 sctph->sh_chksum = sctp_cksum(mp, hlen); 19920 } 19921 } 19922 19923 /* 19924 * If this is a multicast packet and originated from ip_wput 19925 * we need to do loopback and forwarding checks. If it comes 19926 * from ip_wput_multicast, we SHOULD not do this. 19927 */ 19928 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 19929 19930 /* checksum */ 19931 cksum += ttl_protocol; 19932 19933 /* fragment the packet */ 19934 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 19935 goto fragmentit; 19936 /* 19937 * Don't use frag_flag if packet is pre-built or source 19938 * routed or if multicast (since multicast packets do 19939 * not solicit ICMP "packet too big" messages). 19940 */ 19941 if ((ip_hdr_included != IP_HDR_INCLUDED) && 19942 (V_HLEN == IP_SIMPLE_HDR_VERSION || 19943 !ip_source_route_included(ipha)) && 19944 !CLASSD(ipha->ipha_dst)) 19945 ipha->ipha_fragment_offset_and_flags |= 19946 htons(ire->ire_frag_flag); 19947 19948 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19949 /* calculate IP header checksum */ 19950 cksum += ipha->ipha_ident; 19951 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 19952 cksum += ipha->ipha_fragment_offset_and_flags; 19953 19954 /* IP options present */ 19955 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 19956 if (hlen) 19957 goto checksumoptions; 19958 19959 /* calculate hdr checksum */ 19960 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 19961 cksum = ~(cksum + (cksum >> 16)); 19962 ipha->ipha_hdr_checksum = (uint16_t)cksum; 19963 } 19964 if (ipsec_len != 0) { 19965 /* 19966 * We will do the rest of the processing after 19967 * we come back from IPSEC in ip_wput_ipsec_out(). 19968 */ 19969 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 19970 19971 io = (ipsec_out_t *)first_mp->b_rptr; 19972 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 19973 ill_phyint->phyint_ifindex; 19974 19975 ipsec_out_process(q, first_mp, ire, ill_index); 19976 ire_refrele(ire); 19977 if (conn_outgoing_ill != NULL) 19978 ill_refrele(conn_outgoing_ill); 19979 return; 19980 } 19981 19982 /* 19983 * In most cases, the emission loop below is entered only 19984 * once. Only in the case where the ire holds the 19985 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 19986 * flagged ires in the bucket, and send the packet 19987 * through all crossed RTF_MULTIRT routes. 19988 */ 19989 if (ire->ire_flags & RTF_MULTIRT) { 19990 multirt_send = B_TRUE; 19991 } 19992 do { 19993 if (multirt_send) { 19994 irb_t *irb; 19995 /* 19996 * We are in a multiple send case, need to get 19997 * the next ire and make a duplicate of the packet. 19998 * ire1 holds here the next ire to process in the 19999 * bucket. If multirouting is expected, 20000 * any non-RTF_MULTIRT ire that has the 20001 * right destination address is ignored. 20002 */ 20003 irb = ire->ire_bucket; 20004 ASSERT(irb != NULL); 20005 20006 IRB_REFHOLD(irb); 20007 for (ire1 = ire->ire_next; 20008 ire1 != NULL; 20009 ire1 = ire1->ire_next) { 20010 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 20011 continue; 20012 if (ire1->ire_addr != ire->ire_addr) 20013 continue; 20014 if (ire1->ire_marks & 20015 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 20016 continue; 20017 20018 /* Got one */ 20019 IRE_REFHOLD(ire1); 20020 break; 20021 } 20022 IRB_REFRELE(irb); 20023 20024 if (ire1 != NULL) { 20025 next_mp = copyb(mp); 20026 if ((next_mp == NULL) || 20027 ((mp->b_cont != NULL) && 20028 ((next_mp->b_cont = 20029 dupmsg(mp->b_cont)) == NULL))) { 20030 freemsg(next_mp); 20031 next_mp = NULL; 20032 ire_refrele(ire1); 20033 ire1 = NULL; 20034 } 20035 } 20036 20037 /* Last multiroute ire; don't loop anymore. */ 20038 if (ire1 == NULL) { 20039 multirt_send = B_FALSE; 20040 } 20041 } 20042 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 20043 if (mp == NULL) { 20044 BUMP_MIB(&ip_mib, ipOutDiscards); 20045 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 20046 "during IPPF processing\n")); 20047 ire_refrele(ire); 20048 if (next_mp != NULL) { 20049 freemsg(next_mp); 20050 ire_refrele(ire1); 20051 } 20052 if (conn_outgoing_ill != NULL) 20053 ill_refrele(conn_outgoing_ill); 20054 return; 20055 } 20056 UPDATE_OB_PKT_COUNT(ire); 20057 ire->ire_last_used_time = lbolt; 20058 20059 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20060 "ip_wput_ire_end: q %p (%S)", 20061 q, "last copy out"); 20062 putnext(stq, mp); 20063 IRE_REFRELE(ire); 20064 20065 if (multirt_send) { 20066 ASSERT(ire1); 20067 /* 20068 * Proceed with the next RTF_MULTIRT ire, 20069 * Also set up the send-to queue accordingly. 20070 */ 20071 ire = ire1; 20072 ire1 = NULL; 20073 stq = ire->ire_stq; 20074 mp = next_mp; 20075 next_mp = NULL; 20076 ipha = (ipha_t *)mp->b_rptr; 20077 ill_index = Q_TO_INDEX(stq); 20078 } 20079 } while (multirt_send); 20080 if (conn_outgoing_ill != NULL) 20081 ill_refrele(conn_outgoing_ill); 20082 return; 20083 20084 /* 20085 * ire->ire_type == IRE_BROADCAST (minimize diffs) 20086 */ 20087 broadcast: 20088 { 20089 /* 20090 * Avoid broadcast storms by setting the ttl to 1 20091 * for broadcasts. This parameter can be set 20092 * via ndd, so make sure that for the SO_DONTROUTE 20093 * case that ipha_ttl is always set to 1. 20094 * In the event that we are replying to incoming 20095 * ICMP packets, conn could be NULL. 20096 */ 20097 if ((connp != NULL) && connp->conn_dontroute) 20098 ipha->ipha_ttl = 1; 20099 else 20100 ipha->ipha_ttl = ip_broadcast_ttl; 20101 20102 /* 20103 * Note that we are not doing a IRB_REFHOLD here. 20104 * Actually we don't care if the list changes i.e 20105 * if somebody deletes an IRE from the list while 20106 * we drop the lock, the next time we come around 20107 * ire_next will be NULL and hence we won't send 20108 * out multiple copies which is fine. 20109 */ 20110 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20111 ire1 = ire->ire_next; 20112 if (conn_outgoing_ill != NULL) { 20113 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 20114 ASSERT(ire1 == ire->ire_next); 20115 if (ire1 != NULL && ire1->ire_addr == dst) { 20116 ire_refrele(ire); 20117 ire = ire1; 20118 IRE_REFHOLD(ire); 20119 ire1 = ire->ire_next; 20120 continue; 20121 } 20122 rw_exit(&ire->ire_bucket->irb_lock); 20123 /* Did not find a matching ill */ 20124 ip1dbg(("ip_wput_ire: broadcast with no " 20125 "matching IP_BOUND_IF ill %s\n", 20126 conn_outgoing_ill->ill_name)); 20127 freemsg(first_mp); 20128 if (ire != NULL) 20129 ire_refrele(ire); 20130 ill_refrele(conn_outgoing_ill); 20131 return; 20132 } 20133 } else if (ire1 != NULL && ire1->ire_addr == dst) { 20134 /* 20135 * If the next IRE has the same address and is not one 20136 * of the two copies that we need to send, try to see 20137 * whether this copy should be sent at all. This 20138 * assumes that we insert loopbacks first and then 20139 * non-loopbacks. This is acheived by inserting the 20140 * loopback always before non-loopback. 20141 * This is used to send a single copy of a broadcast 20142 * packet out all physical interfaces that have an 20143 * matching IRE_BROADCAST while also looping 20144 * back one copy (to ip_wput_local) for each 20145 * matching physical interface. However, we avoid 20146 * sending packets out different logical that match by 20147 * having ipif_up/ipif_down supress duplicate 20148 * IRE_BROADCASTS. 20149 * 20150 * This feature is currently used to get broadcasts 20151 * sent to multiple interfaces, when the broadcast 20152 * address being used applies to multiple interfaces. 20153 * For example, a whole net broadcast will be 20154 * replicated on every connected subnet of 20155 * the target net. 20156 * 20157 * Each zone has its own set of IRE_BROADCASTs, so that 20158 * we're able to distribute inbound packets to multiple 20159 * zones who share a broadcast address. We avoid looping 20160 * back outbound packets in different zones but on the 20161 * same ill, as the application would see duplicates. 20162 * 20163 * If the interfaces are part of the same group, 20164 * we would want to send only one copy out for 20165 * whole group. 20166 * 20167 * This logic assumes that ire_add_v4() groups the 20168 * IRE_BROADCAST entries so that those with the same 20169 * ire_addr and ill_group are kept together. 20170 */ 20171 ire_ill = ire->ire_ipif->ipif_ill; 20172 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 20173 if (ire_ill->ill_group != NULL && 20174 (ire->ire_marks & IRE_MARK_NORECV)) { 20175 /* 20176 * If the current zone only has an ire 20177 * broadcast for this address marked 20178 * NORECV, the ire we want is ahead in 20179 * the bucket, so we look it up 20180 * deliberately ignoring the zoneid. 20181 */ 20182 for (ire1 = ire->ire_bucket->irb_ire; 20183 ire1 != NULL; 20184 ire1 = ire1->ire_next) { 20185 ire1_ill = 20186 ire1->ire_ipif->ipif_ill; 20187 if (ire1->ire_addr != dst) 20188 continue; 20189 /* skip over the current ire */ 20190 if (ire1 == ire) 20191 continue; 20192 /* skip over deleted ires */ 20193 if (ire1->ire_marks & 20194 IRE_MARK_CONDEMNED) 20195 continue; 20196 /* 20197 * non-loopback ire in our 20198 * group: use it for the next 20199 * pass in the loop 20200 */ 20201 if (ire1->ire_stq != NULL && 20202 ire1_ill->ill_group == 20203 ire_ill->ill_group) 20204 break; 20205 } 20206 } 20207 } else { 20208 while (ire1 != NULL && ire1->ire_addr == dst) { 20209 ire1_ill = ire1->ire_ipif->ipif_ill; 20210 /* 20211 * We can have two broadcast ires on the 20212 * same ill in different zones; here 20213 * we'll send a copy of the packet on 20214 * each ill and the fanout code will 20215 * call conn_wantpacket() to check that 20216 * the zone has the broadcast address 20217 * configured on the ill. If the two 20218 * ires are in the same group we only 20219 * send one copy up. 20220 */ 20221 if (ire1_ill != ire_ill && 20222 (ire1_ill->ill_group == NULL || 20223 ire_ill->ill_group == NULL || 20224 ire1_ill->ill_group != 20225 ire_ill->ill_group)) { 20226 break; 20227 } 20228 ire1 = ire1->ire_next; 20229 } 20230 } 20231 } 20232 ASSERT(multirt_send == B_FALSE); 20233 if (ire1 != NULL && ire1->ire_addr == dst) { 20234 if ((ire->ire_flags & RTF_MULTIRT) && 20235 (ire1->ire_flags & RTF_MULTIRT)) { 20236 /* 20237 * We are in the multirouting case. 20238 * The message must be sent at least 20239 * on both ires. These ires have been 20240 * inserted AFTER the standard ones 20241 * in ip_rt_add(). There are thus no 20242 * other ire entries for the destination 20243 * address in the rest of the bucket 20244 * that do not have the RTF_MULTIRT 20245 * flag. We don't process a copy 20246 * of the message here. This will be 20247 * done in the final sending loop. 20248 */ 20249 multirt_send = B_TRUE; 20250 } else { 20251 next_mp = ip_copymsg(first_mp); 20252 if (next_mp != NULL) 20253 IRE_REFHOLD(ire1); 20254 } 20255 } 20256 rw_exit(&ire->ire_bucket->irb_lock); 20257 } 20258 20259 if (stq) { 20260 /* 20261 * A non-NULL send-to queue means this packet is going 20262 * out of this machine. 20263 */ 20264 20265 BUMP_MIB(&ip_mib, ipOutRequests); 20266 ttl_protocol = ((uint16_t *)ipha)[4]; 20267 /* 20268 * We accumulate the pseudo header checksum in cksum. 20269 * This is pretty hairy code, so watch close. One 20270 * thing to keep in mind is that UDP and TCP have 20271 * stored their respective datagram lengths in their 20272 * checksum fields. This lines things up real nice. 20273 */ 20274 cksum = (dst >> 16) + (dst & 0xFFFF) + 20275 (src >> 16) + (src & 0xFFFF); 20276 /* 20277 * We assume the udp checksum field contains the 20278 * length, so to compute the pseudo header checksum, 20279 * all we need is the protocol number and src/dst. 20280 */ 20281 /* Provide the checksums for UDP and TCP. */ 20282 if ((PROTO == IPPROTO_TCP) && 20283 (ip_hdr_included != IP_HDR_INCLUDED)) { 20284 /* hlen gets the number of uchar_ts in the IP header */ 20285 hlen = (V_HLEN & 0xF) << 2; 20286 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20287 IP_STAT(ip_out_sw_cksum); 20288 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20289 LENGTH - hlen); 20290 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 20291 if (*up == 0) 20292 *up = 0xFFFF; 20293 } else if (PROTO == IPPROTO_SCTP && 20294 (ip_hdr_included != IP_HDR_INCLUDED)) { 20295 sctp_hdr_t *sctph; 20296 20297 hlen = (V_HLEN & 0xF) << 2; 20298 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20299 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20300 sctph->sh_chksum = 0; 20301 #ifdef DEBUG 20302 if (!skip_sctp_cksum) 20303 #endif 20304 sctph->sh_chksum = sctp_cksum(mp, hlen); 20305 } else { 20306 queue_t *dev_q = stq->q_next; 20307 20308 if ((dev_q->q_next || dev_q->q_first) && 20309 !canput(dev_q)) { 20310 blocked: 20311 ipha->ipha_ident = ip_hdr_included; 20312 /* 20313 * If we don't have a conn to apply 20314 * backpressure, free the message. 20315 * In the ire_send path, we don't know 20316 * the position to requeue the packet. Rather 20317 * than reorder packets, we just drop this 20318 * packet. 20319 */ 20320 if (ip_output_queue && connp != NULL && 20321 caller != IRE_SEND) { 20322 if (caller == IP_WSRV) { 20323 connp->conn_did_putbq = 1; 20324 (void) putbq(connp->conn_wq, 20325 first_mp); 20326 conn_drain_insert(connp); 20327 /* 20328 * This is the service thread, 20329 * and the queue is already 20330 * noenabled. The check for 20331 * canput and the putbq is not 20332 * atomic. So we need to check 20333 * again. 20334 */ 20335 if (canput(stq->q_next)) 20336 connp->conn_did_putbq 20337 = 0; 20338 IP_STAT(ip_conn_flputbq); 20339 } else { 20340 /* 20341 * We are not the service proc. 20342 * ip_wsrv will be scheduled or 20343 * is already running. 20344 */ 20345 (void) putq(connp->conn_wq, 20346 first_mp); 20347 } 20348 } else { 20349 BUMP_MIB(&ip_mib, ipOutDiscards); 20350 freemsg(first_mp); 20351 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20352 "ip_wput_ire_end: q %p (%S)", 20353 q, "discard"); 20354 } 20355 ire_refrele(ire); 20356 if (next_mp) { 20357 ire_refrele(ire1); 20358 freemsg(next_mp); 20359 } 20360 if (conn_outgoing_ill != NULL) 20361 ill_refrele(conn_outgoing_ill); 20362 return; 20363 } 20364 if ((PROTO == IPPROTO_UDP) && 20365 (ip_hdr_included != IP_HDR_INCLUDED)) { 20366 /* 20367 * hlen gets the number of uchar_ts in the 20368 * IP header 20369 */ 20370 hlen = (V_HLEN & 0xF) << 2; 20371 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20372 max_frag = ire->ire_max_frag; 20373 if (*up != 0) { 20374 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 20375 up, PROTO, hlen, LENGTH, max_frag, 20376 ipsec_len, cksum); 20377 /* Software checksum? */ 20378 if (DB_CKSUMFLAGS(mp) == 0) { 20379 IP_STAT(ip_out_sw_cksum); 20380 IP_STAT_UPDATE( 20381 ip_udp_out_sw_cksum_bytes, 20382 LENGTH - hlen); 20383 } 20384 } 20385 } 20386 } 20387 /* 20388 * Need to do this even when fragmenting. The local 20389 * loopback can be done without computing checksums 20390 * but forwarding out other interface must be done 20391 * after the IP checksum (and ULP checksums) have been 20392 * computed. 20393 * 20394 * NOTE : multicast_forward is set only if this packet 20395 * originated from ip_wput. For packets originating from 20396 * ip_wput_multicast, it is not set. 20397 */ 20398 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 20399 multi_loopback: 20400 ip2dbg(("ip_wput: multicast, loop %d\n", 20401 conn_multicast_loop)); 20402 20403 /* Forget header checksum offload */ 20404 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 20405 20406 /* 20407 * Local loopback of multicasts? Check the 20408 * ill. 20409 * 20410 * Note that the loopback function will not come 20411 * in through ip_rput - it will only do the 20412 * client fanout thus we need to do an mforward 20413 * as well. The is different from the BSD 20414 * logic. 20415 */ 20416 if (ill != NULL) { 20417 ilm_t *ilm; 20418 20419 ILM_WALKER_HOLD(ill); 20420 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 20421 ALL_ZONES); 20422 ILM_WALKER_RELE(ill); 20423 if (ilm != NULL) { 20424 /* 20425 * Pass along the virtual output q. 20426 * ip_wput_local() will distribute the 20427 * packet to all the matching zones, 20428 * except the sending zone when 20429 * IP_MULTICAST_LOOP is false. 20430 */ 20431 ip_multicast_loopback(q, ill, first_mp, 20432 conn_multicast_loop ? 0 : 20433 IP_FF_NO_MCAST_LOOP, zoneid); 20434 } 20435 } 20436 if (ipha->ipha_ttl == 0) { 20437 /* 20438 * 0 => only to this host i.e. we are 20439 * done. We are also done if this was the 20440 * loopback interface since it is sufficient 20441 * to loopback one copy of a multicast packet. 20442 */ 20443 freemsg(first_mp); 20444 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20445 "ip_wput_ire_end: q %p (%S)", 20446 q, "loopback"); 20447 ire_refrele(ire); 20448 if (conn_outgoing_ill != NULL) 20449 ill_refrele(conn_outgoing_ill); 20450 return; 20451 } 20452 /* 20453 * ILLF_MULTICAST is checked in ip_newroute 20454 * i.e. we don't need to check it here since 20455 * all IRE_CACHEs come from ip_newroute. 20456 * For multicast traffic, SO_DONTROUTE is interpreted 20457 * to mean only send the packet out the interface 20458 * (optionally specified with IP_MULTICAST_IF) 20459 * and do not forward it out additional interfaces. 20460 * RSVP and the rsvp daemon is an example of a 20461 * protocol and user level process that 20462 * handles it's own routing. Hence, it uses the 20463 * SO_DONTROUTE option to accomplish this. 20464 */ 20465 20466 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 20467 /* Unconditionally redo the checksum */ 20468 ipha->ipha_hdr_checksum = 0; 20469 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 20470 20471 /* 20472 * If this needs to go out secure, we need 20473 * to wait till we finish the IPSEC 20474 * processing. 20475 */ 20476 if (ipsec_len == 0 && 20477 ip_mforward(ill, ipha, mp)) { 20478 freemsg(first_mp); 20479 ip1dbg(("ip_wput: mforward failed\n")); 20480 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20481 "ip_wput_ire_end: q %p (%S)", 20482 q, "mforward failed"); 20483 ire_refrele(ire); 20484 if (conn_outgoing_ill != NULL) 20485 ill_refrele(conn_outgoing_ill); 20486 return; 20487 } 20488 } 20489 } 20490 max_frag = ire->ire_max_frag; 20491 cksum += ttl_protocol; 20492 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 20493 /* No fragmentation required for this one. */ 20494 /* 20495 * Don't use frag_flag if packet is pre-built or source 20496 * routed or if multicast (since multicast packets do 20497 * not solicit ICMP "packet too big" messages). 20498 */ 20499 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20500 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20501 !ip_source_route_included(ipha)) && 20502 !CLASSD(ipha->ipha_dst)) 20503 ipha->ipha_fragment_offset_and_flags |= 20504 htons(ire->ire_frag_flag); 20505 20506 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20507 /* Complete the IP header checksum. */ 20508 cksum += ipha->ipha_ident; 20509 cksum += (v_hlen_tos_len >> 16)+ 20510 (v_hlen_tos_len & 0xFFFF); 20511 cksum += ipha->ipha_fragment_offset_and_flags; 20512 hlen = (V_HLEN & 0xF) - 20513 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20514 if (hlen) { 20515 checksumoptions: 20516 /* 20517 * Account for the IP Options in the IP 20518 * header checksum. 20519 */ 20520 up = (uint16_t *)(rptr+ 20521 IP_SIMPLE_HDR_LENGTH); 20522 do { 20523 cksum += up[0]; 20524 cksum += up[1]; 20525 up += 2; 20526 } while (--hlen); 20527 } 20528 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20529 cksum = ~(cksum + (cksum >> 16)); 20530 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20531 } 20532 if (ipsec_len != 0) { 20533 ipsec_out_process(q, first_mp, ire, ill_index); 20534 if (!next_mp) { 20535 ire_refrele(ire); 20536 if (conn_outgoing_ill != NULL) 20537 ill_refrele(conn_outgoing_ill); 20538 return; 20539 } 20540 goto next; 20541 } 20542 20543 /* 20544 * multirt_send has already been handled 20545 * for broadcast, but not yet for multicast 20546 * or IP options. 20547 */ 20548 if (next_mp == NULL) { 20549 if (ire->ire_flags & RTF_MULTIRT) { 20550 multirt_send = B_TRUE; 20551 } 20552 } 20553 20554 /* 20555 * In most cases, the emission loop below is 20556 * entered only once. Only in the case where 20557 * the ire holds the RTF_MULTIRT flag, do we loop 20558 * to process all RTF_MULTIRT ires in the bucket, 20559 * and send the packet through all crossed 20560 * RTF_MULTIRT routes. 20561 */ 20562 do { 20563 if (multirt_send) { 20564 irb_t *irb; 20565 20566 irb = ire->ire_bucket; 20567 ASSERT(irb != NULL); 20568 /* 20569 * We are in a multiple send case, 20570 * need to get the next IRE and make 20571 * a duplicate of the packet. 20572 */ 20573 IRB_REFHOLD(irb); 20574 for (ire1 = ire->ire_next; 20575 ire1 != NULL; 20576 ire1 = ire1->ire_next) { 20577 if (!(ire1->ire_flags & 20578 RTF_MULTIRT)) 20579 continue; 20580 if (ire1->ire_addr != 20581 ire->ire_addr) 20582 continue; 20583 if (ire1->ire_marks & 20584 (IRE_MARK_CONDEMNED| 20585 IRE_MARK_HIDDEN)) 20586 continue; 20587 20588 /* Got one */ 20589 IRE_REFHOLD(ire1); 20590 break; 20591 } 20592 IRB_REFRELE(irb); 20593 20594 if (ire1 != NULL) { 20595 next_mp = copyb(mp); 20596 if ((next_mp == NULL) || 20597 ((mp->b_cont != NULL) && 20598 ((next_mp->b_cont = 20599 dupmsg(mp->b_cont)) 20600 == NULL))) { 20601 freemsg(next_mp); 20602 next_mp = NULL; 20603 ire_refrele(ire1); 20604 ire1 = NULL; 20605 } 20606 } 20607 20608 /* 20609 * Last multiroute ire; don't loop 20610 * anymore. The emission is over 20611 * and next_mp is NULL. 20612 */ 20613 if (ire1 == NULL) { 20614 multirt_send = B_FALSE; 20615 } 20616 } 20617 20618 noprepend: 20619 ASSERT(ipsec_len == 0); 20620 mp1 = ip_wput_attach_llhdr(mp, ire, 20621 IPP_LOCAL_OUT, ill_index); 20622 if (mp1 == NULL) { 20623 BUMP_MIB(&ip_mib, ipOutDiscards); 20624 if (next_mp) { 20625 freemsg(next_mp); 20626 ire_refrele(ire1); 20627 } 20628 ire_refrele(ire); 20629 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20630 "ip_wput_ire_end: q %p (%S)", 20631 q, "discard MDATA"); 20632 if (conn_outgoing_ill != NULL) 20633 ill_refrele(conn_outgoing_ill); 20634 return; 20635 } 20636 UPDATE_OB_PKT_COUNT(ire); 20637 ire->ire_last_used_time = lbolt; 20638 20639 if (multirt_send) { 20640 /* 20641 * We are in a multiple send case, 20642 * need to re-enter the sending loop 20643 * using the next ire. 20644 */ 20645 putnext(stq, mp1); 20646 ire_refrele(ire); 20647 ire = ire1; 20648 stq = ire->ire_stq; 20649 mp = next_mp; 20650 next_mp = NULL; 20651 ipha = (ipha_t *)mp->b_rptr; 20652 ill_index = Q_TO_INDEX(stq); 20653 } 20654 } while (multirt_send); 20655 20656 if (!next_mp) { 20657 /* 20658 * Last copy going out (the ultra-common 20659 * case). Note that we intentionally replicate 20660 * the putnext rather than calling it before 20661 * the next_mp check in hopes of a little 20662 * tail-call action out of the compiler. 20663 */ 20664 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20665 "ip_wput_ire_end: q %p (%S)", 20666 q, "last copy out(1)"); 20667 putnext(stq, mp1); 20668 ire_refrele(ire); 20669 if (conn_outgoing_ill != NULL) 20670 ill_refrele(conn_outgoing_ill); 20671 return; 20672 } 20673 /* More copies going out below. */ 20674 putnext(stq, mp1); 20675 } else { 20676 int offset; 20677 fragmentit: 20678 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 20679 /* 20680 * If this would generate a icmp_frag_needed message, 20681 * we need to handle it before we do the IPSEC 20682 * processing. Otherwise, we need to strip the IPSEC 20683 * headers before we send up the message to the ULPs 20684 * which becomes messy and difficult. 20685 */ 20686 if (ipsec_len != 0) { 20687 if ((max_frag < (unsigned int)(LENGTH + 20688 ipsec_len)) && (offset & IPH_DF)) { 20689 20690 BUMP_MIB(&ip_mib, ipFragFails); 20691 ipha->ipha_hdr_checksum = 0; 20692 ipha->ipha_hdr_checksum = 20693 (uint16_t)ip_csum_hdr(ipha); 20694 icmp_frag_needed(ire->ire_stq, first_mp, 20695 max_frag); 20696 if (!next_mp) { 20697 ire_refrele(ire); 20698 if (conn_outgoing_ill != NULL) { 20699 ill_refrele( 20700 conn_outgoing_ill); 20701 } 20702 return; 20703 } 20704 } else { 20705 /* 20706 * This won't cause a icmp_frag_needed 20707 * message. to be gnerated. Send it on 20708 * the wire. Note that this could still 20709 * cause fragmentation and all we 20710 * do is the generation of the message 20711 * to the ULP if needed before IPSEC. 20712 */ 20713 if (!next_mp) { 20714 ipsec_out_process(q, first_mp, 20715 ire, ill_index); 20716 TRACE_2(TR_FAC_IP, 20717 TR_IP_WPUT_IRE_END, 20718 "ip_wput_ire_end: q %p " 20719 "(%S)", q, 20720 "last ipsec_out_process"); 20721 ire_refrele(ire); 20722 if (conn_outgoing_ill != NULL) { 20723 ill_refrele( 20724 conn_outgoing_ill); 20725 } 20726 return; 20727 } 20728 ipsec_out_process(q, first_mp, 20729 ire, ill_index); 20730 } 20731 } else { 20732 /* Initiate IPPF processing */ 20733 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20734 ip_process(IPP_LOCAL_OUT, &mp, 20735 ill_index); 20736 if (mp == NULL) { 20737 BUMP_MIB(&ip_mib, 20738 ipOutDiscards); 20739 if (next_mp != NULL) { 20740 freemsg(next_mp); 20741 ire_refrele(ire1); 20742 } 20743 ire_refrele(ire); 20744 TRACE_2(TR_FAC_IP, 20745 TR_IP_WPUT_IRE_END, 20746 "ip_wput_ire: q %p (%S)", 20747 q, "discard MDATA"); 20748 if (conn_outgoing_ill != NULL) { 20749 ill_refrele( 20750 conn_outgoing_ill); 20751 } 20752 return; 20753 } 20754 } 20755 if (!next_mp) { 20756 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20757 "ip_wput_ire_end: q %p (%S)", 20758 q, "last fragmentation"); 20759 ip_wput_ire_fragmentit(mp, ire); 20760 ire_refrele(ire); 20761 if (conn_outgoing_ill != NULL) 20762 ill_refrele(conn_outgoing_ill); 20763 return; 20764 } 20765 ip_wput_ire_fragmentit(mp, ire); 20766 } 20767 } 20768 } else { 20769 nullstq: 20770 /* A NULL stq means the destination address is local. */ 20771 UPDATE_OB_PKT_COUNT(ire); 20772 ire->ire_last_used_time = lbolt; 20773 ASSERT(ire->ire_ipif != NULL); 20774 if (!next_mp) { 20775 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20776 "ip_wput_ire_end: q %p (%S)", 20777 q, "local address"); 20778 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 20779 first_mp, ire, 0, ire->ire_zoneid); 20780 ire_refrele(ire); 20781 if (conn_outgoing_ill != NULL) 20782 ill_refrele(conn_outgoing_ill); 20783 return; 20784 } 20785 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 20786 ire, 0, ire->ire_zoneid); 20787 } 20788 next: 20789 /* 20790 * More copies going out to additional interfaces. 20791 * ire1 has already been held. We don't need the 20792 * "ire" anymore. 20793 */ 20794 ire_refrele(ire); 20795 ire = ire1; 20796 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 20797 mp = next_mp; 20798 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20799 ill = ire_to_ill(ire); 20800 first_mp = mp; 20801 if (ipsec_len != 0) { 20802 ASSERT(first_mp->b_datap->db_type == M_CTL); 20803 mp = mp->b_cont; 20804 } 20805 dst = ire->ire_addr; 20806 ipha = (ipha_t *)mp->b_rptr; 20807 /* 20808 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 20809 * Restore ipha_ident "no checksum" flag. 20810 */ 20811 src = orig_src; 20812 ipha->ipha_ident = ip_hdr_included; 20813 goto another; 20814 20815 #undef rptr 20816 #undef Q_TO_INDEX 20817 } 20818 20819 /* 20820 * Routine to allocate a message that is used to notify the ULP about MDT. 20821 * The caller may provide a pointer to the link-layer MDT capabilities, 20822 * or NULL if MDT is to be disabled on the stream. 20823 */ 20824 mblk_t * 20825 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 20826 { 20827 mblk_t *mp; 20828 ip_mdt_info_t *mdti; 20829 ill_mdt_capab_t *idst; 20830 20831 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 20832 DB_TYPE(mp) = M_CTL; 20833 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 20834 mdti = (ip_mdt_info_t *)mp->b_rptr; 20835 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 20836 idst = &(mdti->mdt_capab); 20837 20838 /* 20839 * If the caller provides us with the capability, copy 20840 * it over into our notification message; otherwise 20841 * we zero out the capability portion. 20842 */ 20843 if (isrc != NULL) 20844 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 20845 else 20846 bzero((caddr_t)idst, sizeof (*idst)); 20847 } 20848 return (mp); 20849 } 20850 20851 /* 20852 * Routine which determines whether MDT can be enabled on the destination 20853 * IRE and IPC combination, and if so, allocates and returns the MDT 20854 * notification mblk that may be used by ULP. We also check if we need to 20855 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 20856 * MDT usage in the past have been lifted. This gets called during IP 20857 * and ULP binding. 20858 */ 20859 mblk_t * 20860 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 20861 ill_mdt_capab_t *mdt_cap) 20862 { 20863 mblk_t *mp; 20864 boolean_t rc = B_FALSE; 20865 20866 ASSERT(dst_ire != NULL); 20867 ASSERT(connp != NULL); 20868 ASSERT(mdt_cap != NULL); 20869 20870 /* 20871 * Currently, we only support simple TCP/{IPv4,IPv6} with 20872 * Multidata, which is handled in tcp_multisend(). This 20873 * is the reason why we do all these checks here, to ensure 20874 * that we don't enable Multidata for the cases which we 20875 * can't handle at the moment. 20876 */ 20877 do { 20878 /* Only do TCP at the moment */ 20879 if (connp->conn_ulp != IPPROTO_TCP) 20880 break; 20881 20882 /* 20883 * IPSEC outbound policy present? Note that we get here 20884 * after calling ipsec_conn_cache_policy() where the global 20885 * policy checking is performed. conn_latch will be 20886 * non-NULL as long as there's a policy defined, 20887 * i.e. conn_out_enforce_policy may be NULL in such case 20888 * when the connection is non-secure, and hence we check 20889 * further if the latch refers to an outbound policy. 20890 */ 20891 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 20892 break; 20893 20894 /* CGTP (multiroute) is enabled? */ 20895 if (dst_ire->ire_flags & RTF_MULTIRT) 20896 break; 20897 20898 /* Outbound IPQoS enabled? */ 20899 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20900 /* 20901 * In this case, we disable MDT for this and all 20902 * future connections going over the interface. 20903 */ 20904 mdt_cap->ill_mdt_on = 0; 20905 break; 20906 } 20907 20908 /* socket option(s) present? */ 20909 if (!CONN_IS_MD_FASTPATH(connp)) 20910 break; 20911 20912 rc = B_TRUE; 20913 /* CONSTCOND */ 20914 } while (0); 20915 20916 /* Remember the result */ 20917 connp->conn_mdt_ok = rc; 20918 20919 if (!rc) 20920 return (NULL); 20921 else if (!mdt_cap->ill_mdt_on) { 20922 /* 20923 * If MDT has been previously turned off in the past, and we 20924 * currently can do MDT (due to IPQoS policy removal, etc.) 20925 * then enable it for this interface. 20926 */ 20927 mdt_cap->ill_mdt_on = 1; 20928 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 20929 "interface %s\n", ill_name)); 20930 } 20931 20932 /* Allocate the MDT info mblk */ 20933 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 20934 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 20935 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 20936 return (NULL); 20937 } 20938 return (mp); 20939 } 20940 20941 /* 20942 * Create destination address attribute, and fill it with the physical 20943 * destination address and SAP taken from the template DL_UNITDATA_REQ 20944 * message block. 20945 */ 20946 boolean_t 20947 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 20948 { 20949 dl_unitdata_req_t *dlurp; 20950 pattr_t *pa; 20951 pattrinfo_t pa_info; 20952 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 20953 uint_t das_len, das_off; 20954 20955 ASSERT(dlmp != NULL); 20956 20957 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 20958 das_len = dlurp->dl_dest_addr_length; 20959 das_off = dlurp->dl_dest_addr_offset; 20960 20961 pa_info.type = PATTR_DSTADDRSAP; 20962 pa_info.len = sizeof (**das) + das_len - 1; 20963 20964 /* create and associate the attribute */ 20965 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20966 if (pa != NULL) { 20967 ASSERT(*das != NULL); 20968 (*das)->addr_is_group = 0; 20969 (*das)->addr_len = (uint8_t)das_len; 20970 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 20971 } 20972 20973 return (pa != NULL); 20974 } 20975 20976 /* 20977 * Create hardware checksum attribute and fill it with the values passed. 20978 */ 20979 boolean_t 20980 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 20981 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 20982 { 20983 pattr_t *pa; 20984 pattrinfo_t pa_info; 20985 20986 ASSERT(mmd != NULL); 20987 20988 pa_info.type = PATTR_HCKSUM; 20989 pa_info.len = sizeof (pattr_hcksum_t); 20990 20991 /* create and associate the attribute */ 20992 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20993 if (pa != NULL) { 20994 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 20995 20996 hck->hcksum_start_offset = start_offset; 20997 hck->hcksum_stuff_offset = stuff_offset; 20998 hck->hcksum_end_offset = end_offset; 20999 hck->hcksum_flags = flags; 21000 } 21001 return (pa != NULL); 21002 } 21003 21004 /* 21005 * Create zerocopy attribute and fill it with the specified flags 21006 */ 21007 boolean_t 21008 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 21009 { 21010 pattr_t *pa; 21011 pattrinfo_t pa_info; 21012 21013 ASSERT(mmd != NULL); 21014 pa_info.type = PATTR_ZCOPY; 21015 pa_info.len = sizeof (pattr_zcopy_t); 21016 21017 /* create and associate the attribute */ 21018 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21019 if (pa != NULL) { 21020 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 21021 21022 zcopy->zcopy_flags = flags; 21023 } 21024 return (pa != NULL); 21025 } 21026 21027 /* 21028 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 21029 * block chain. We could rewrite to handle arbitrary message block chains but 21030 * that would make the code complicated and slow. Right now there three 21031 * restrictions: 21032 * 21033 * 1. The first message block must contain the complete IP header and 21034 * at least 1 byte of payload data. 21035 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 21036 * so that we can use a single Multidata message. 21037 * 3. No frag must be distributed over two or more message blocks so 21038 * that we don't need more than two packet descriptors per frag. 21039 * 21040 * The above restrictions allow us to support userland applications (which 21041 * will send down a single message block) and NFS over UDP (which will 21042 * send down a chain of at most three message blocks). 21043 * 21044 * We also don't use MDT for payloads with less than or equal to 21045 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 21046 */ 21047 boolean_t 21048 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 21049 { 21050 int blocks; 21051 ssize_t total, missing, size; 21052 21053 ASSERT(mp != NULL); 21054 ASSERT(hdr_len > 0); 21055 21056 size = MBLKL(mp) - hdr_len; 21057 if (size <= 0) 21058 return (B_FALSE); 21059 21060 /* The first mblk contains the header and some payload. */ 21061 blocks = 1; 21062 total = size; 21063 size %= len; 21064 missing = (size == 0) ? 0 : (len - size); 21065 mp = mp->b_cont; 21066 21067 while (mp != NULL) { 21068 /* 21069 * Give up if we encounter a zero length message block. 21070 * In practice, this should rarely happen and therefore 21071 * not worth the trouble of freeing and re-linking the 21072 * mblk from the chain to handle such case. 21073 */ 21074 if ((size = MBLKL(mp)) == 0) 21075 return (B_FALSE); 21076 21077 /* Too many payload buffers for a single Multidata message? */ 21078 if (++blocks > MULTIDATA_MAX_PBUFS) 21079 return (B_FALSE); 21080 21081 total += size; 21082 /* Is a frag distributed over two or more message blocks? */ 21083 if (missing > size) 21084 return (B_FALSE); 21085 size -= missing; 21086 21087 size %= len; 21088 missing = (size == 0) ? 0 : (len - size); 21089 21090 mp = mp->b_cont; 21091 } 21092 21093 return (total > ip_wput_frag_mdt_min); 21094 } 21095 21096 /* 21097 * Outbound IPv4 fragmentation routine using MDT. 21098 */ 21099 static void 21100 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 21101 uint32_t frag_flag, int offset) 21102 { 21103 ipha_t *ipha_orig; 21104 int i1, ip_data_end; 21105 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 21106 mblk_t *hdr_mp, *md_mp = NULL; 21107 unsigned char *hdr_ptr, *pld_ptr; 21108 multidata_t *mmd; 21109 ip_pdescinfo_t pdi; 21110 21111 ASSERT(DB_TYPE(mp) == M_DATA); 21112 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 21113 21114 ipha_orig = (ipha_t *)mp->b_rptr; 21115 mp->b_rptr += sizeof (ipha_t); 21116 21117 /* Calculate how many packets we will send out */ 21118 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 21119 pkts = (i1 + len - 1) / len; 21120 ASSERT(pkts > 1); 21121 21122 /* Allocate a message block which will hold all the IP Headers. */ 21123 wroff = ip_wroff_extra; 21124 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 21125 21126 i1 = pkts * hdr_chunk_len; 21127 /* 21128 * Create the header buffer, Multidata and destination address 21129 * and SAP attribute that should be associated with it. 21130 */ 21131 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 21132 ((hdr_mp->b_wptr += i1), 21133 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 21134 !ip_md_addr_attr(mmd, NULL, ire->ire_dlureq_mp)) { 21135 freemsg(mp); 21136 if (md_mp == NULL) { 21137 freemsg(hdr_mp); 21138 } else { 21139 free_mmd: IP_STAT(ip_frag_mdt_discarded); 21140 freemsg(md_mp); 21141 } 21142 IP_STAT(ip_frag_mdt_allocfail); 21143 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 21144 return; 21145 } 21146 IP_STAT(ip_frag_mdt_allocd); 21147 21148 /* 21149 * Add a payload buffer to the Multidata; this operation must not 21150 * fail, or otherwise our logic in this routine is broken. There 21151 * is no memory allocation done by the routine, so any returned 21152 * failure simply tells us that we've done something wrong. 21153 * 21154 * A failure tells us that either we're adding the same payload 21155 * buffer more than once, or we're trying to add more buffers than 21156 * allowed. None of the above cases should happen, and we panic 21157 * because either there's horrible heap corruption, and/or 21158 * programming mistake. 21159 */ 21160 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21161 goto pbuf_panic; 21162 21163 hdr_ptr = hdr_mp->b_rptr; 21164 pld_ptr = mp->b_rptr; 21165 21166 /* Establish the ending byte offset, based on the starting offset. */ 21167 offset <<= 3; 21168 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 21169 IP_SIMPLE_HDR_LENGTH; 21170 21171 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 21172 21173 while (pld_ptr < mp->b_wptr) { 21174 ipha_t *ipha; 21175 uint16_t offset_and_flags; 21176 uint16_t ip_len; 21177 int error; 21178 21179 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 21180 ipha = (ipha_t *)(hdr_ptr + wroff); 21181 ASSERT(OK_32PTR(ipha)); 21182 *ipha = *ipha_orig; 21183 21184 if (ip_data_end - offset > len) { 21185 offset_and_flags = IPH_MF; 21186 } else { 21187 /* 21188 * Last frag. Set len to the length of this last piece. 21189 */ 21190 len = ip_data_end - offset; 21191 /* A frag of a frag might have IPH_MF non-zero */ 21192 offset_and_flags = 21193 ntohs(ipha->ipha_fragment_offset_and_flags) & 21194 IPH_MF; 21195 } 21196 offset_and_flags |= (uint16_t)(offset >> 3); 21197 offset_and_flags |= (uint16_t)frag_flag; 21198 /* Store the offset and flags in the IP header. */ 21199 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21200 21201 /* Store the length in the IP header. */ 21202 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 21203 ipha->ipha_length = htons(ip_len); 21204 21205 /* 21206 * Set the IP header checksum. Note that mp is just 21207 * the header, so this is easy to pass to ip_csum. 21208 */ 21209 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21210 21211 /* 21212 * Record offset and size of header and data of the next packet 21213 * in the multidata message. 21214 */ 21215 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 21216 PDESC_PLD_INIT(&pdi); 21217 i1 = MIN(mp->b_wptr - pld_ptr, len); 21218 ASSERT(i1 > 0); 21219 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 21220 if (i1 == len) { 21221 pld_ptr += len; 21222 } else { 21223 i1 = len - i1; 21224 mp = mp->b_cont; 21225 ASSERT(mp != NULL); 21226 ASSERT(MBLKL(mp) >= i1); 21227 /* 21228 * Attach the next payload message block to the 21229 * multidata message. 21230 */ 21231 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21232 goto pbuf_panic; 21233 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 21234 pld_ptr = mp->b_rptr + i1; 21235 } 21236 21237 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 21238 KM_NOSLEEP)) == NULL) { 21239 /* 21240 * Any failure other than ENOMEM indicates that we 21241 * have passed in invalid pdesc info or parameters 21242 * to mmd_addpdesc, which must not happen. 21243 * 21244 * EINVAL is a result of failure on boundary checks 21245 * against the pdesc info contents. It should not 21246 * happen, and we panic because either there's 21247 * horrible heap corruption, and/or programming 21248 * mistake. 21249 */ 21250 if (error != ENOMEM) { 21251 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 21252 "pdesc logic error detected for " 21253 "mmd %p pinfo %p (%d)\n", 21254 (void *)mmd, (void *)&pdi, error); 21255 /* NOTREACHED */ 21256 } 21257 IP_STAT(ip_frag_mdt_addpdescfail); 21258 /* Free unattached payload message blocks as well */ 21259 md_mp->b_cont = mp->b_cont; 21260 goto free_mmd; 21261 } 21262 21263 /* Advance fragment offset. */ 21264 offset += len; 21265 21266 /* Advance to location for next header in the buffer. */ 21267 hdr_ptr += hdr_chunk_len; 21268 21269 /* Did we reach the next payload message block? */ 21270 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 21271 mp = mp->b_cont; 21272 /* 21273 * Attach the next message block with payload 21274 * data to the multidata message. 21275 */ 21276 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21277 goto pbuf_panic; 21278 pld_ptr = mp->b_rptr; 21279 } 21280 } 21281 21282 ASSERT(hdr_mp->b_wptr == hdr_ptr); 21283 ASSERT(mp->b_wptr == pld_ptr); 21284 21285 /* Update IP statistics */ 21286 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 21287 BUMP_MIB(&ip_mib, ipFragOKs); 21288 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 21289 21290 if (pkt_type == OB_PKT) { 21291 ire->ire_ob_pkt_count += pkts; 21292 if (ire->ire_ipif != NULL) 21293 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 21294 } else { 21295 /* 21296 * The type is IB_PKT in the forwarding path and in 21297 * the mobile IP case when the packet is being reverse- 21298 * tunneled to the home agent. 21299 */ 21300 ire->ire_ib_pkt_count += pkts; 21301 ASSERT(!IRE_IS_LOCAL(ire)); 21302 if (ire->ire_type & IRE_BROADCAST) 21303 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 21304 else 21305 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 21306 } 21307 ire->ire_last_used_time = lbolt; 21308 /* Send it down */ 21309 putnext(ire->ire_stq, md_mp); 21310 return; 21311 21312 pbuf_panic: 21313 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 21314 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 21315 pbuf_idx); 21316 /* NOTREACHED */ 21317 } 21318 21319 /* 21320 * Outbound IP fragmentation routine. 21321 * 21322 * NOTE : This routine does not ire_refrele the ire that is passed in 21323 * as the argument. 21324 */ 21325 static void 21326 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 21327 uint32_t frag_flag) 21328 { 21329 int i1; 21330 mblk_t *ll_hdr_mp; 21331 int ll_hdr_len; 21332 int hdr_len; 21333 mblk_t *hdr_mp; 21334 ipha_t *ipha; 21335 int ip_data_end; 21336 int len; 21337 mblk_t *mp = mp_orig; 21338 int offset; 21339 queue_t *q; 21340 uint32_t v_hlen_tos_len; 21341 mblk_t *first_mp; 21342 boolean_t mctl_present; 21343 ill_t *ill; 21344 mblk_t *xmit_mp; 21345 mblk_t *carve_mp; 21346 ire_t *ire1 = NULL; 21347 ire_t *save_ire = NULL; 21348 mblk_t *next_mp = NULL; 21349 boolean_t last_frag = B_FALSE; 21350 boolean_t multirt_send = B_FALSE; 21351 ire_t *first_ire = NULL; 21352 irb_t *irb = NULL; 21353 21354 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 21355 "ip_wput_frag_start:"); 21356 21357 if (mp->b_datap->db_type == M_CTL) { 21358 first_mp = mp; 21359 mp_orig = mp = mp->b_cont; 21360 mctl_present = B_TRUE; 21361 } else { 21362 first_mp = mp; 21363 mctl_present = B_FALSE; 21364 } 21365 21366 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 21367 ipha = (ipha_t *)mp->b_rptr; 21368 21369 /* 21370 * If the Don't Fragment flag is on, generate an ICMP destination 21371 * unreachable, fragmentation needed. 21372 */ 21373 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21374 if (offset & IPH_DF) { 21375 BUMP_MIB(&ip_mib, ipFragFails); 21376 /* 21377 * Need to compute hdr checksum if called from ip_wput_ire. 21378 * Note that ip_rput_forward verifies the checksum before 21379 * calling this routine so in that case this is a noop. 21380 */ 21381 ipha->ipha_hdr_checksum = 0; 21382 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21383 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 21384 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21385 "ip_wput_frag_end:(%S)", 21386 "don't fragment"); 21387 return; 21388 } 21389 if (mctl_present) 21390 freeb(first_mp); 21391 /* 21392 * Establish the starting offset. May not be zero if we are fragging 21393 * a fragment that is being forwarded. 21394 */ 21395 offset = offset & IPH_OFFSET; 21396 21397 /* TODO why is this test needed? */ 21398 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21399 if (((max_frag - LENGTH) & ~7) < 8) { 21400 /* TODO: notify ulp somehow */ 21401 BUMP_MIB(&ip_mib, ipFragFails); 21402 freemsg(mp); 21403 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21404 "ip_wput_frag_end:(%S)", 21405 "len < 8"); 21406 return; 21407 } 21408 21409 hdr_len = (V_HLEN & 0xF) << 2; 21410 21411 ipha->ipha_hdr_checksum = 0; 21412 21413 /* 21414 * Establish the number of bytes maximum per frag, after putting 21415 * in the header. 21416 */ 21417 len = (max_frag - hdr_len) & ~7; 21418 21419 /* Check if we can use MDT to send out the frags. */ 21420 ASSERT(!IRE_IS_LOCAL(ire)); 21421 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 21422 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 21423 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 21424 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 21425 ASSERT(ill->ill_mdt_capab != NULL); 21426 if (!ill->ill_mdt_capab->ill_mdt_on) { 21427 /* 21428 * If MDT has been previously turned off in the past, 21429 * and we currently can do MDT (due to IPQoS policy 21430 * removal, etc.) then enable it for this interface. 21431 */ 21432 ill->ill_mdt_capab->ill_mdt_on = 1; 21433 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 21434 ill->ill_name)); 21435 } 21436 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 21437 offset); 21438 return; 21439 } 21440 21441 /* Get a copy of the header for the trailing frags */ 21442 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 21443 if (!hdr_mp) { 21444 BUMP_MIB(&ip_mib, ipOutDiscards); 21445 freemsg(mp); 21446 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21447 "ip_wput_frag_end:(%S)", 21448 "couldn't copy hdr"); 21449 return; 21450 } 21451 21452 /* Store the starting offset, with the MoreFrags flag. */ 21453 i1 = offset | IPH_MF | frag_flag; 21454 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 21455 21456 /* Establish the ending byte offset, based on the starting offset. */ 21457 offset <<= 3; 21458 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 21459 21460 /* Store the length of the first fragment in the IP header. */ 21461 i1 = len + hdr_len; 21462 ASSERT(i1 <= IP_MAXPACKET); 21463 ipha->ipha_length = htons((uint16_t)i1); 21464 21465 /* 21466 * Compute the IP header checksum for the first frag. We have to 21467 * watch out that we stop at the end of the header. 21468 */ 21469 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21470 21471 /* 21472 * Now carve off the first frag. Note that this will include the 21473 * original IP header. 21474 */ 21475 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 21476 BUMP_MIB(&ip_mib, ipOutDiscards); 21477 freeb(hdr_mp); 21478 freemsg(mp_orig); 21479 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21480 "ip_wput_frag_end:(%S)", 21481 "couldn't carve first"); 21482 return; 21483 } 21484 21485 /* 21486 * Multirouting case. Each fragment is replicated 21487 * via all non-condemned RTF_MULTIRT routes 21488 * currently resolved. 21489 * We ensure that first_ire is the first RTF_MULTIRT 21490 * ire in the bucket. 21491 */ 21492 if (ire->ire_flags & RTF_MULTIRT) { 21493 irb = ire->ire_bucket; 21494 ASSERT(irb != NULL); 21495 21496 multirt_send = B_TRUE; 21497 21498 /* Make sure we do not omit any multiroute ire. */ 21499 IRB_REFHOLD(irb); 21500 for (first_ire = irb->irb_ire; 21501 first_ire != NULL; 21502 first_ire = first_ire->ire_next) { 21503 if ((first_ire->ire_flags & RTF_MULTIRT) && 21504 (first_ire->ire_addr == ire->ire_addr) && 21505 !(first_ire->ire_marks & 21506 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21507 break; 21508 } 21509 21510 if (first_ire != NULL) { 21511 if (first_ire != ire) { 21512 IRE_REFHOLD(first_ire); 21513 /* 21514 * Do not release the ire passed in 21515 * as the argument. 21516 */ 21517 ire = first_ire; 21518 } else { 21519 first_ire = NULL; 21520 } 21521 } 21522 IRB_REFRELE(irb); 21523 21524 /* 21525 * Save the first ire; we will need to restore it 21526 * for the trailing frags. 21527 * We REFHOLD save_ire, as each iterated ire will be 21528 * REFRELEd. 21529 */ 21530 save_ire = ire; 21531 IRE_REFHOLD(save_ire); 21532 } 21533 21534 /* 21535 * First fragment emission loop. 21536 * In most cases, the emission loop below is entered only 21537 * once. Only in the case where the ire holds the RTF_MULTIRT 21538 * flag, do we loop to process all RTF_MULTIRT ires in the 21539 * bucket, and send the fragment through all crossed 21540 * RTF_MULTIRT routes. 21541 */ 21542 do { 21543 if (ire->ire_flags & RTF_MULTIRT) { 21544 /* 21545 * We are in a multiple send case, need to get 21546 * the next ire and make a copy of the packet. 21547 * ire1 holds here the next ire to process in the 21548 * bucket. If multirouting is expected, 21549 * any non-RTF_MULTIRT ire that has the 21550 * right destination address is ignored. 21551 * 21552 * We have to take into account the MTU of 21553 * each walked ire. max_frag is set by the 21554 * the caller and generally refers to 21555 * the primary ire entry. Here we ensure that 21556 * no route with a lower MTU will be used, as 21557 * fragments are carved once for all ires, 21558 * then replicated. 21559 */ 21560 ASSERT(irb != NULL); 21561 IRB_REFHOLD(irb); 21562 for (ire1 = ire->ire_next; 21563 ire1 != NULL; 21564 ire1 = ire1->ire_next) { 21565 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21566 continue; 21567 if (ire1->ire_addr != ire->ire_addr) 21568 continue; 21569 if (ire1->ire_marks & 21570 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21571 continue; 21572 /* 21573 * Ensure we do not exceed the MTU 21574 * of the next route. 21575 */ 21576 if (ire1->ire_max_frag < max_frag) { 21577 ip_multirt_bad_mtu(ire1, max_frag); 21578 continue; 21579 } 21580 21581 /* Got one. */ 21582 IRE_REFHOLD(ire1); 21583 break; 21584 } 21585 IRB_REFRELE(irb); 21586 21587 if (ire1 != NULL) { 21588 next_mp = copyb(mp); 21589 if ((next_mp == NULL) || 21590 ((mp->b_cont != NULL) && 21591 ((next_mp->b_cont = 21592 dupmsg(mp->b_cont)) == NULL))) { 21593 freemsg(next_mp); 21594 next_mp = NULL; 21595 ire_refrele(ire1); 21596 ire1 = NULL; 21597 } 21598 } 21599 21600 /* Last multiroute ire; don't loop anymore. */ 21601 if (ire1 == NULL) { 21602 multirt_send = B_FALSE; 21603 } 21604 } 21605 21606 ll_hdr_len = 0; 21607 LOCK_IRE_FP_MP(ire); 21608 ll_hdr_mp = ire->ire_fp_mp; 21609 if (ll_hdr_mp != NULL) { 21610 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21611 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 21612 } else { 21613 ll_hdr_mp = ire->ire_dlureq_mp; 21614 } 21615 21616 /* If there is a transmit header, get a copy for this frag. */ 21617 /* 21618 * TODO: should check db_ref before calling ip_carve_mp since 21619 * it might give us a dup. 21620 */ 21621 if (!ll_hdr_mp) { 21622 /* No xmit header. */ 21623 xmit_mp = mp; 21624 } else if (mp->b_datap->db_ref == 1 && 21625 ll_hdr_len != 0 && 21626 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21627 /* M_DATA fastpath */ 21628 mp->b_rptr -= ll_hdr_len; 21629 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 21630 xmit_mp = mp; 21631 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 21632 UNLOCK_IRE_FP_MP(ire); 21633 BUMP_MIB(&ip_mib, ipOutDiscards); 21634 freeb(hdr_mp); 21635 freemsg(mp); 21636 freemsg(mp_orig); 21637 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21638 "ip_wput_frag_end:(%S)", 21639 "discard"); 21640 21641 if (multirt_send) { 21642 ASSERT(ire1); 21643 ASSERT(next_mp); 21644 21645 freemsg(next_mp); 21646 ire_refrele(ire1); 21647 } 21648 if (save_ire != NULL) 21649 IRE_REFRELE(save_ire); 21650 21651 if (first_ire != NULL) 21652 ire_refrele(first_ire); 21653 return; 21654 } else { 21655 xmit_mp->b_cont = mp; 21656 /* Get priority marking, if any. */ 21657 if (DB_TYPE(xmit_mp) == M_DATA) 21658 xmit_mp->b_band = mp->b_band; 21659 } 21660 UNLOCK_IRE_FP_MP(ire); 21661 q = ire->ire_stq; 21662 BUMP_MIB(&ip_mib, ipFragCreates); 21663 putnext(q, xmit_mp); 21664 if (pkt_type != OB_PKT) { 21665 /* 21666 * Update the packet count of trailing 21667 * RTF_MULTIRT ires. 21668 */ 21669 UPDATE_OB_PKT_COUNT(ire); 21670 } 21671 21672 if (multirt_send) { 21673 /* 21674 * We are in a multiple send case; look for 21675 * the next ire and re-enter the loop. 21676 */ 21677 ASSERT(ire1); 21678 ASSERT(next_mp); 21679 /* REFRELE the current ire before looping */ 21680 ire_refrele(ire); 21681 ire = ire1; 21682 ire1 = NULL; 21683 mp = next_mp; 21684 next_mp = NULL; 21685 } 21686 } while (multirt_send); 21687 21688 ASSERT(ire1 == NULL); 21689 21690 /* Restore the original ire; we need it for the trailing frags */ 21691 if (save_ire != NULL) { 21692 /* REFRELE the last iterated ire */ 21693 ire_refrele(ire); 21694 /* save_ire has been REFHOLDed */ 21695 ire = save_ire; 21696 save_ire = NULL; 21697 q = ire->ire_stq; 21698 } 21699 21700 if (pkt_type == OB_PKT) { 21701 UPDATE_OB_PKT_COUNT(ire); 21702 } else { 21703 UPDATE_IB_PKT_COUNT(ire); 21704 } 21705 21706 /* Advance the offset to the second frag starting point. */ 21707 offset += len; 21708 /* 21709 * Update hdr_len from the copied header - there might be less options 21710 * in the later fragments. 21711 */ 21712 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 21713 /* Loop until done. */ 21714 for (;;) { 21715 uint16_t offset_and_flags; 21716 uint16_t ip_len; 21717 21718 if (ip_data_end - offset > len) { 21719 /* 21720 * Carve off the appropriate amount from the original 21721 * datagram. 21722 */ 21723 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21724 mp = NULL; 21725 break; 21726 } 21727 /* 21728 * More frags after this one. Get another copy 21729 * of the header. 21730 */ 21731 if (carve_mp->b_datap->db_ref == 1 && 21732 hdr_mp->b_wptr - hdr_mp->b_rptr < 21733 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21734 /* Inline IP header */ 21735 carve_mp->b_rptr -= hdr_mp->b_wptr - 21736 hdr_mp->b_rptr; 21737 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21738 hdr_mp->b_wptr - hdr_mp->b_rptr); 21739 mp = carve_mp; 21740 } else { 21741 if (!(mp = copyb(hdr_mp))) { 21742 freemsg(carve_mp); 21743 break; 21744 } 21745 /* Get priority marking, if any. */ 21746 mp->b_band = carve_mp->b_band; 21747 mp->b_cont = carve_mp; 21748 } 21749 ipha = (ipha_t *)mp->b_rptr; 21750 offset_and_flags = IPH_MF; 21751 } else { 21752 /* 21753 * Last frag. Consume the header. Set len to 21754 * the length of this last piece. 21755 */ 21756 len = ip_data_end - offset; 21757 21758 /* 21759 * Carve off the appropriate amount from the original 21760 * datagram. 21761 */ 21762 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21763 mp = NULL; 21764 break; 21765 } 21766 if (carve_mp->b_datap->db_ref == 1 && 21767 hdr_mp->b_wptr - hdr_mp->b_rptr < 21768 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21769 /* Inline IP header */ 21770 carve_mp->b_rptr -= hdr_mp->b_wptr - 21771 hdr_mp->b_rptr; 21772 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21773 hdr_mp->b_wptr - hdr_mp->b_rptr); 21774 mp = carve_mp; 21775 freeb(hdr_mp); 21776 hdr_mp = mp; 21777 } else { 21778 mp = hdr_mp; 21779 /* Get priority marking, if any. */ 21780 mp->b_band = carve_mp->b_band; 21781 mp->b_cont = carve_mp; 21782 } 21783 ipha = (ipha_t *)mp->b_rptr; 21784 /* A frag of a frag might have IPH_MF non-zero */ 21785 offset_and_flags = 21786 ntohs(ipha->ipha_fragment_offset_and_flags) & 21787 IPH_MF; 21788 } 21789 offset_and_flags |= (uint16_t)(offset >> 3); 21790 offset_and_flags |= (uint16_t)frag_flag; 21791 /* Store the offset and flags in the IP header. */ 21792 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21793 21794 /* Store the length in the IP header. */ 21795 ip_len = (uint16_t)(len + hdr_len); 21796 ipha->ipha_length = htons(ip_len); 21797 21798 /* 21799 * Set the IP header checksum. Note that mp is just 21800 * the header, so this is easy to pass to ip_csum. 21801 */ 21802 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21803 21804 /* Attach a transmit header, if any, and ship it. */ 21805 if (pkt_type == OB_PKT) { 21806 UPDATE_OB_PKT_COUNT(ire); 21807 } else { 21808 UPDATE_IB_PKT_COUNT(ire); 21809 } 21810 21811 if (ire->ire_flags & RTF_MULTIRT) { 21812 irb = ire->ire_bucket; 21813 ASSERT(irb != NULL); 21814 21815 multirt_send = B_TRUE; 21816 21817 /* 21818 * Save the original ire; we will need to restore it 21819 * for the tailing frags. 21820 */ 21821 save_ire = ire; 21822 IRE_REFHOLD(save_ire); 21823 } 21824 /* 21825 * Emission loop for this fragment, similar 21826 * to what is done for the first fragment. 21827 */ 21828 do { 21829 if (multirt_send) { 21830 /* 21831 * We are in a multiple send case, need to get 21832 * the next ire and make a copy of the packet. 21833 */ 21834 ASSERT(irb != NULL); 21835 IRB_REFHOLD(irb); 21836 for (ire1 = ire->ire_next; 21837 ire1 != NULL; 21838 ire1 = ire1->ire_next) { 21839 if (!(ire1->ire_flags & RTF_MULTIRT)) 21840 continue; 21841 if (ire1->ire_addr != ire->ire_addr) 21842 continue; 21843 if (ire1->ire_marks & 21844 (IRE_MARK_CONDEMNED| 21845 IRE_MARK_HIDDEN)) 21846 continue; 21847 /* 21848 * Ensure we do not exceed the MTU 21849 * of the next route. 21850 */ 21851 if (ire1->ire_max_frag < max_frag) { 21852 ip_multirt_bad_mtu(ire1, 21853 max_frag); 21854 continue; 21855 } 21856 21857 /* Got one. */ 21858 IRE_REFHOLD(ire1); 21859 break; 21860 } 21861 IRB_REFRELE(irb); 21862 21863 if (ire1 != NULL) { 21864 next_mp = copyb(mp); 21865 if ((next_mp == NULL) || 21866 ((mp->b_cont != NULL) && 21867 ((next_mp->b_cont = 21868 dupmsg(mp->b_cont)) == NULL))) { 21869 freemsg(next_mp); 21870 next_mp = NULL; 21871 ire_refrele(ire1); 21872 ire1 = NULL; 21873 } 21874 } 21875 21876 /* Last multiroute ire; don't loop anymore. */ 21877 if (ire1 == NULL) { 21878 multirt_send = B_FALSE; 21879 } 21880 } 21881 21882 /* Update transmit header */ 21883 ll_hdr_len = 0; 21884 LOCK_IRE_FP_MP(ire); 21885 ll_hdr_mp = ire->ire_fp_mp; 21886 if (ll_hdr_mp != NULL) { 21887 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21888 ll_hdr_len = MBLKL(ll_hdr_mp); 21889 } else { 21890 ll_hdr_mp = ire->ire_dlureq_mp; 21891 } 21892 21893 if (!ll_hdr_mp) { 21894 xmit_mp = mp; 21895 } else if (mp->b_datap->db_ref == 1 && 21896 ll_hdr_len != 0 && 21897 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21898 /* M_DATA fastpath */ 21899 mp->b_rptr -= ll_hdr_len; 21900 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 21901 ll_hdr_len); 21902 xmit_mp = mp; 21903 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 21904 xmit_mp->b_cont = mp; 21905 /* Get priority marking, if any. */ 21906 if (DB_TYPE(xmit_mp) == M_DATA) 21907 xmit_mp->b_band = mp->b_band; 21908 } else { 21909 /* 21910 * Exit both the replication and 21911 * fragmentation loops. 21912 */ 21913 UNLOCK_IRE_FP_MP(ire); 21914 goto drop_pkt; 21915 } 21916 UNLOCK_IRE_FP_MP(ire); 21917 BUMP_MIB(&ip_mib, ipFragCreates); 21918 putnext(q, xmit_mp); 21919 21920 if (pkt_type != OB_PKT) { 21921 /* 21922 * Update the packet count of trailing 21923 * RTF_MULTIRT ires. 21924 */ 21925 UPDATE_OB_PKT_COUNT(ire); 21926 } 21927 21928 /* All done if we just consumed the hdr_mp. */ 21929 if (mp == hdr_mp) { 21930 last_frag = B_TRUE; 21931 } 21932 21933 if (multirt_send) { 21934 /* 21935 * We are in a multiple send case; look for 21936 * the next ire and re-enter the loop. 21937 */ 21938 ASSERT(ire1); 21939 ASSERT(next_mp); 21940 /* REFRELE the current ire before looping */ 21941 ire_refrele(ire); 21942 ire = ire1; 21943 ire1 = NULL; 21944 q = ire->ire_stq; 21945 mp = next_mp; 21946 next_mp = NULL; 21947 } 21948 } while (multirt_send); 21949 /* 21950 * Restore the original ire; we need it for the 21951 * trailing frags 21952 */ 21953 if (save_ire != NULL) { 21954 ASSERT(ire1 == NULL); 21955 /* REFRELE the last iterated ire */ 21956 ire_refrele(ire); 21957 /* save_ire has been REFHOLDed */ 21958 ire = save_ire; 21959 q = ire->ire_stq; 21960 save_ire = NULL; 21961 } 21962 21963 if (last_frag) { 21964 BUMP_MIB(&ip_mib, ipFragOKs); 21965 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21966 "ip_wput_frag_end:(%S)", 21967 "consumed hdr_mp"); 21968 21969 if (first_ire != NULL) 21970 ire_refrele(first_ire); 21971 return; 21972 } 21973 /* Otherwise, advance and loop. */ 21974 offset += len; 21975 } 21976 21977 drop_pkt: 21978 /* Clean up following allocation failure. */ 21979 BUMP_MIB(&ip_mib, ipOutDiscards); 21980 freemsg(mp); 21981 if (mp != hdr_mp) 21982 freeb(hdr_mp); 21983 if (mp != mp_orig) 21984 freemsg(mp_orig); 21985 21986 if (save_ire != NULL) 21987 IRE_REFRELE(save_ire); 21988 if (first_ire != NULL) 21989 ire_refrele(first_ire); 21990 21991 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21992 "ip_wput_frag_end:(%S)", 21993 "end--alloc failure"); 21994 } 21995 21996 /* 21997 * Copy the header plus those options which have the copy bit set 21998 */ 21999 static mblk_t * 22000 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 22001 { 22002 mblk_t *mp; 22003 uchar_t *up; 22004 22005 /* 22006 * Quick check if we need to look for options without the copy bit 22007 * set 22008 */ 22009 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 22010 if (!mp) 22011 return (mp); 22012 mp->b_rptr += ip_wroff_extra; 22013 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 22014 bcopy(rptr, mp->b_rptr, hdr_len); 22015 mp->b_wptr += hdr_len + ip_wroff_extra; 22016 return (mp); 22017 } 22018 up = mp->b_rptr; 22019 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 22020 up += IP_SIMPLE_HDR_LENGTH; 22021 rptr += IP_SIMPLE_HDR_LENGTH; 22022 hdr_len -= IP_SIMPLE_HDR_LENGTH; 22023 while (hdr_len > 0) { 22024 uint32_t optval; 22025 uint32_t optlen; 22026 22027 optval = *rptr; 22028 if (optval == IPOPT_EOL) 22029 break; 22030 if (optval == IPOPT_NOP) 22031 optlen = 1; 22032 else 22033 optlen = rptr[1]; 22034 if (optval & IPOPT_COPY) { 22035 bcopy(rptr, up, optlen); 22036 up += optlen; 22037 } 22038 rptr += optlen; 22039 hdr_len -= optlen; 22040 } 22041 /* 22042 * Make sure that we drop an even number of words by filling 22043 * with EOL to the next word boundary. 22044 */ 22045 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 22046 hdr_len & 0x3; hdr_len++) 22047 *up++ = IPOPT_EOL; 22048 mp->b_wptr = up; 22049 /* Update header length */ 22050 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 22051 return (mp); 22052 } 22053 22054 /* 22055 * Delivery to local recipients including fanout to multiple recipients. 22056 * Does not do checksumming of UDP/TCP. 22057 * Note: q should be the read side queue for either the ill or conn. 22058 * Note: rq should be the read side q for the lower (ill) stream. 22059 * We don't send packets to IPPF processing, thus the last argument 22060 * to all the fanout calls are B_FALSE. 22061 */ 22062 void 22063 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 22064 int fanout_flags, zoneid_t zoneid) 22065 { 22066 uint32_t protocol; 22067 mblk_t *first_mp; 22068 boolean_t mctl_present; 22069 int ire_type; 22070 #define rptr ((uchar_t *)ipha) 22071 22072 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 22073 "ip_wput_local_start: q %p", q); 22074 22075 if (ire != NULL) { 22076 ire_type = ire->ire_type; 22077 } else { 22078 /* 22079 * Only ip_multicast_loopback() calls us with a NULL ire. If the 22080 * packet is not multicast, we can't tell the ire type. 22081 */ 22082 ASSERT(CLASSD(ipha->ipha_dst)); 22083 ire_type = IRE_BROADCAST; 22084 } 22085 22086 first_mp = mp; 22087 if (first_mp->b_datap->db_type == M_CTL) { 22088 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 22089 if (!io->ipsec_out_secure) { 22090 /* 22091 * This ipsec_out_t was allocated in ip_wput 22092 * for multicast packets to store the ill_index. 22093 * As this is being delivered locally, we don't 22094 * need this anymore. 22095 */ 22096 mp = first_mp->b_cont; 22097 freeb(first_mp); 22098 first_mp = mp; 22099 mctl_present = B_FALSE; 22100 } else { 22101 mctl_present = B_TRUE; 22102 mp = first_mp->b_cont; 22103 ASSERT(mp != NULL); 22104 ipsec_out_to_in(first_mp); 22105 } 22106 } else { 22107 mctl_present = B_FALSE; 22108 } 22109 22110 loopback_packets++; 22111 22112 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 22113 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 22114 if (!IS_SIMPLE_IPH(ipha)) { 22115 ip_wput_local_options(ipha); 22116 } 22117 22118 protocol = ipha->ipha_protocol; 22119 switch (protocol) { 22120 case IPPROTO_ICMP: { 22121 ire_t *ire_zone; 22122 ilm_t *ilm; 22123 mblk_t *mp1; 22124 zoneid_t last_zoneid; 22125 22126 if (CLASSD(ipha->ipha_dst) && 22127 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 22128 ASSERT(ire_type == IRE_BROADCAST); 22129 /* 22130 * In the multicast case, applications may have joined 22131 * the group from different zones, so we need to deliver 22132 * the packet to each of them. Loop through the 22133 * multicast memberships structures (ilm) on the receive 22134 * ill and send a copy of the packet up each matching 22135 * one. However, we don't do this for multicasts sent on 22136 * the loopback interface (PHYI_LOOPBACK flag set) as 22137 * they must stay in the sender's zone. 22138 * 22139 * ilm_add_v6() ensures that ilms in the same zone are 22140 * contiguous in the ill_ilm list. We use this property 22141 * to avoid sending duplicates needed when two 22142 * applications in the same zone join the same group on 22143 * different logical interfaces: we ignore the ilm if 22144 * its zoneid is the same as the last matching one. 22145 * In addition, the sending of the packet for 22146 * ire_zoneid is delayed until all of the other ilms 22147 * have been exhausted. 22148 */ 22149 last_zoneid = -1; 22150 ILM_WALKER_HOLD(ill); 22151 for (ilm = ill->ill_ilm; ilm != NULL; 22152 ilm = ilm->ilm_next) { 22153 if ((ilm->ilm_flags & ILM_DELETED) || 22154 ipha->ipha_dst != ilm->ilm_addr || 22155 ilm->ilm_zoneid == last_zoneid || 22156 ilm->ilm_zoneid == zoneid || 22157 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 22158 continue; 22159 mp1 = ip_copymsg(first_mp); 22160 if (mp1 == NULL) 22161 continue; 22162 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 22163 mctl_present, B_FALSE, ill, 22164 ilm->ilm_zoneid); 22165 last_zoneid = ilm->ilm_zoneid; 22166 } 22167 ILM_WALKER_RELE(ill); 22168 /* 22169 * Loopback case: the sending endpoint has 22170 * IP_MULTICAST_LOOP disabled, therefore we don't 22171 * dispatch the multicast packet to the sending zone. 22172 */ 22173 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 22174 freemsg(first_mp); 22175 return; 22176 } 22177 } else if (ire_type == IRE_BROADCAST) { 22178 /* 22179 * In the broadcast case, there may be many zones 22180 * which need a copy of the packet delivered to them. 22181 * There is one IRE_BROADCAST per broadcast address 22182 * and per zone; we walk those using a helper function. 22183 * In addition, the sending of the packet for zoneid is 22184 * delayed until all of the other ires have been 22185 * processed. 22186 */ 22187 IRB_REFHOLD(ire->ire_bucket); 22188 ire_zone = NULL; 22189 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 22190 ire)) != NULL) { 22191 mp1 = ip_copymsg(first_mp); 22192 if (mp1 == NULL) 22193 continue; 22194 22195 UPDATE_IB_PKT_COUNT(ire_zone); 22196 ire_zone->ire_last_used_time = lbolt; 22197 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 22198 mctl_present, B_FALSE, ill, 22199 ire_zone->ire_zoneid); 22200 } 22201 IRB_REFRELE(ire->ire_bucket); 22202 } 22203 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 22204 0, mctl_present, B_FALSE, ill, zoneid); 22205 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22206 "ip_wput_local_end: q %p (%S)", 22207 q, "icmp"); 22208 return; 22209 } 22210 case IPPROTO_IGMP: 22211 if (igmp_input(q, mp, ill)) { 22212 /* Bad packet - discarded by igmp_input */ 22213 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22214 "ip_wput_local_end: q %p (%S)", 22215 q, "igmp_input--bad packet"); 22216 if (mctl_present) 22217 freeb(first_mp); 22218 return; 22219 } 22220 /* 22221 * igmp_input() may have pulled up the message so ipha needs to 22222 * be reinitialized. 22223 */ 22224 ipha = (ipha_t *)mp->b_rptr; 22225 /* deliver to local raw users */ 22226 break; 22227 case IPPROTO_ENCAP: 22228 /* 22229 * This case is covered by either ip_fanout_proto, or by 22230 * the above security processing for self-tunneled packets. 22231 */ 22232 break; 22233 case IPPROTO_UDP: { 22234 uint16_t *up; 22235 uint32_t ports; 22236 22237 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 22238 UDP_PORTS_OFFSET); 22239 /* Force a 'valid' checksum. */ 22240 up[3] = 0; 22241 22242 ports = *(uint32_t *)up; 22243 ip_fanout_udp(q, first_mp, ill, ipha, ports, 22244 (ire_type == IRE_BROADCAST), 22245 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22246 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 22247 ill, zoneid); 22248 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22249 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 22250 return; 22251 } 22252 case IPPROTO_TCP: { 22253 22254 /* 22255 * For TCP, discard broadcast packets. 22256 */ 22257 if ((ushort_t)ire_type == IRE_BROADCAST) { 22258 freemsg(first_mp); 22259 BUMP_MIB(&ip_mib, ipInDiscards); 22260 return; 22261 } 22262 22263 if (mp->b_datap->db_type == M_DATA) { 22264 /* 22265 * M_DATA mblk, so init mblk (chain) for no struio(). 22266 */ 22267 mblk_t *mp1 = mp; 22268 22269 do 22270 mp1->b_datap->db_struioflag = 0; 22271 while ((mp1 = mp1->b_cont) != NULL); 22272 } 22273 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 22274 <= mp->b_wptr); 22275 ip_fanout_tcp(q, first_mp, ill, ipha, 22276 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22277 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 22278 mctl_present, B_FALSE, zoneid); 22279 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22280 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 22281 return; 22282 } 22283 case IPPROTO_SCTP: 22284 { 22285 uint32_t ports; 22286 22287 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 22288 ip_fanout_sctp(first_mp, ill, ipha, ports, 22289 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22290 IP_FF_IP6INFO, 22291 mctl_present, B_FALSE, 0, zoneid); 22292 return; 22293 } 22294 22295 default: 22296 break; 22297 } 22298 /* 22299 * Find a client for some other protocol. We give 22300 * copies to multiple clients, if more than one is 22301 * bound. 22302 */ 22303 ip_fanout_proto(q, first_mp, ill, ipha, 22304 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 22305 mctl_present, B_FALSE, ill, zoneid); 22306 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22307 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 22308 #undef rptr 22309 } 22310 22311 /* 22312 * Update any source route, record route, or timestamp options. 22313 * Check that we are at end of strict source route. 22314 * The options have been sanity checked by ip_wput_options(). 22315 */ 22316 static void 22317 ip_wput_local_options(ipha_t *ipha) 22318 { 22319 ipoptp_t opts; 22320 uchar_t *opt; 22321 uint8_t optval; 22322 uint8_t optlen; 22323 ipaddr_t dst; 22324 uint32_t ts; 22325 ire_t *ire; 22326 timestruc_t now; 22327 22328 ip2dbg(("ip_wput_local_options\n")); 22329 for (optval = ipoptp_first(&opts, ipha); 22330 optval != IPOPT_EOL; 22331 optval = ipoptp_next(&opts)) { 22332 opt = opts.ipoptp_cur; 22333 optlen = opts.ipoptp_len; 22334 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22335 switch (optval) { 22336 uint32_t off; 22337 case IPOPT_SSRR: 22338 case IPOPT_LSRR: 22339 off = opt[IPOPT_OFFSET]; 22340 off--; 22341 if (optlen < IP_ADDR_LEN || 22342 off > optlen - IP_ADDR_LEN) { 22343 /* End of source route */ 22344 break; 22345 } 22346 /* 22347 * This will only happen if two consecutive entries 22348 * in the source route contains our address or if 22349 * it is a packet with a loose source route which 22350 * reaches us before consuming the whole source route 22351 */ 22352 ip1dbg(("ip_wput_local_options: not end of SR\n")); 22353 if (optval == IPOPT_SSRR) { 22354 return; 22355 } 22356 /* 22357 * Hack: instead of dropping the packet truncate the 22358 * source route to what has been used by filling the 22359 * rest with IPOPT_NOP. 22360 */ 22361 opt[IPOPT_OLEN] = (uint8_t)off; 22362 while (off < optlen) { 22363 opt[off++] = IPOPT_NOP; 22364 } 22365 break; 22366 case IPOPT_RR: 22367 off = opt[IPOPT_OFFSET]; 22368 off--; 22369 if (optlen < IP_ADDR_LEN || 22370 off > optlen - IP_ADDR_LEN) { 22371 /* No more room - ignore */ 22372 ip1dbg(( 22373 "ip_wput_forward_options: end of RR\n")); 22374 break; 22375 } 22376 dst = htonl(INADDR_LOOPBACK); 22377 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22378 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22379 break; 22380 case IPOPT_TS: 22381 /* Insert timestamp if there is romm */ 22382 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22383 case IPOPT_TS_TSONLY: 22384 off = IPOPT_TS_TIMELEN; 22385 break; 22386 case IPOPT_TS_PRESPEC: 22387 case IPOPT_TS_PRESPEC_RFC791: 22388 /* Verify that the address matched */ 22389 off = opt[IPOPT_OFFSET] - 1; 22390 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 22391 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 22392 NULL, ALL_ZONES, MATCH_IRE_TYPE); 22393 if (ire == NULL) { 22394 /* Not for us */ 22395 break; 22396 } 22397 ire_refrele(ire); 22398 /* FALLTHRU */ 22399 case IPOPT_TS_TSANDADDR: 22400 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 22401 break; 22402 default: 22403 /* 22404 * ip_*put_options should have already 22405 * dropped this packet. 22406 */ 22407 cmn_err(CE_PANIC, "ip_wput_local_options: " 22408 "unknown IT - bug in ip_wput_options?\n"); 22409 return; /* Keep "lint" happy */ 22410 } 22411 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 22412 /* Increase overflow counter */ 22413 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 22414 opt[IPOPT_POS_OV_FLG] = (uint8_t) 22415 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 22416 (off << 4); 22417 break; 22418 } 22419 off = opt[IPOPT_OFFSET] - 1; 22420 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22421 case IPOPT_TS_PRESPEC: 22422 case IPOPT_TS_PRESPEC_RFC791: 22423 case IPOPT_TS_TSANDADDR: 22424 dst = htonl(INADDR_LOOPBACK); 22425 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22426 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22427 /* FALLTHRU */ 22428 case IPOPT_TS_TSONLY: 22429 off = opt[IPOPT_OFFSET] - 1; 22430 /* Compute # of milliseconds since midnight */ 22431 gethrestime(&now); 22432 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 22433 now.tv_nsec / (NANOSEC / MILLISEC); 22434 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 22435 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 22436 break; 22437 } 22438 break; 22439 } 22440 } 22441 } 22442 22443 /* 22444 * Send out a multicast packet on interface ipif. 22445 * The sender does not have an conn. 22446 * Caller verifies that this isn't a PHYI_LOOPBACK. 22447 */ 22448 void 22449 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 22450 { 22451 ipha_t *ipha; 22452 ire_t *ire; 22453 ipaddr_t dst; 22454 mblk_t *first_mp; 22455 22456 /* igmp_sendpkt always allocates a ipsec_out_t */ 22457 ASSERT(mp->b_datap->db_type == M_CTL); 22458 ASSERT(!ipif->ipif_isv6); 22459 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 22460 22461 first_mp = mp; 22462 mp = first_mp->b_cont; 22463 ASSERT(mp->b_datap->db_type == M_DATA); 22464 ipha = (ipha_t *)mp->b_rptr; 22465 22466 /* 22467 * Find an IRE which matches the destination and the outgoing 22468 * queue (i.e. the outgoing interface.) 22469 */ 22470 if (ipif->ipif_flags & IPIF_POINTOPOINT) 22471 dst = ipif->ipif_pp_dst_addr; 22472 else 22473 dst = ipha->ipha_dst; 22474 /* 22475 * The source address has already been initialized by the 22476 * caller and hence matching on ILL (MATCH_IRE_ILL) would 22477 * be sufficient rather than MATCH_IRE_IPIF. 22478 * 22479 * This function is used for sending IGMP packets. We need 22480 * to make sure that we send the packet out of the interface 22481 * (ipif->ipif_ill) where we joined the group. This is to 22482 * prevent from switches doing IGMP snooping to send us multicast 22483 * packets for a given group on the interface we have joined. 22484 * If we can't find an ire, igmp_sendpkt has already initialized 22485 * ipsec_out_attach_if so that this will not be load spread in 22486 * ip_newroute_ipif. 22487 */ 22488 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MATCH_IRE_ILL); 22489 if (!ire) { 22490 /* 22491 * Mark this packet to make it be delivered to 22492 * ip_wput_ire after the new ire has been 22493 * created. 22494 */ 22495 mp->b_prev = NULL; 22496 mp->b_next = NULL; 22497 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 22498 return; 22499 } 22500 22501 /* 22502 * Honor the RTF_SETSRC flag; this is the only case 22503 * where we force this addr whatever the current src addr is, 22504 * because this address is set by igmp_sendpkt(), and 22505 * cannot be specified by any user. 22506 */ 22507 if (ire->ire_flags & RTF_SETSRC) { 22508 ipha->ipha_src = ire->ire_src_addr; 22509 } 22510 22511 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 22512 } 22513 22514 /* 22515 * NOTE : This function does not ire_refrele the ire argument passed in. 22516 * 22517 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 22518 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 22519 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 22520 * the ire_lock to access the ire_fp_mp in this case. 22521 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 22522 * prepending a fastpath message IPQoS processing must precede it, we also set 22523 * the b_band of the fastpath message to that of the mblk returned by IPQoS 22524 * (IPQoS might have set the b_band for CoS marking). 22525 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 22526 * must follow it so that IPQoS can mark the dl_priority field for CoS 22527 * marking, if needed. 22528 */ 22529 static mblk_t * 22530 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 22531 { 22532 uint_t hlen; 22533 ipha_t *ipha; 22534 mblk_t *mp1; 22535 boolean_t qos_done = B_FALSE; 22536 uchar_t *ll_hdr; 22537 22538 #define rptr ((uchar_t *)ipha) 22539 22540 ipha = (ipha_t *)mp->b_rptr; 22541 hlen = 0; 22542 LOCK_IRE_FP_MP(ire); 22543 if ((mp1 = ire->ire_fp_mp) != NULL) { 22544 ASSERT(DB_TYPE(mp1) == M_DATA); 22545 /* Initiate IPPF processing */ 22546 if ((proc != 0) && IPP_ENABLED(proc)) { 22547 UNLOCK_IRE_FP_MP(ire); 22548 ip_process(proc, &mp, ill_index); 22549 if (mp == NULL) 22550 return (NULL); 22551 22552 ipha = (ipha_t *)mp->b_rptr; 22553 LOCK_IRE_FP_MP(ire); 22554 if ((mp1 = ire->ire_fp_mp) == NULL) { 22555 qos_done = B_TRUE; 22556 goto no_fp_mp; 22557 } 22558 ASSERT(DB_TYPE(mp1) == M_DATA); 22559 } 22560 hlen = MBLKL(mp1); 22561 /* 22562 * Check if we have enough room to prepend fastpath 22563 * header 22564 */ 22565 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 22566 ll_hdr = rptr - hlen; 22567 bcopy(mp1->b_rptr, ll_hdr, hlen); 22568 /* XXX ipha is not aligned here */ 22569 ipha = (ipha_t *)(rptr - hlen); 22570 /* 22571 * Set the b_rptr to the start of the link layer 22572 * header 22573 */ 22574 mp->b_rptr = rptr; 22575 mp1 = mp; 22576 } else { 22577 mp1 = copyb(mp1); 22578 if (mp1 == NULL) 22579 goto unlock_err; 22580 mp1->b_band = mp->b_band; 22581 mp1->b_cont = mp; 22582 /* 22583 * XXX disable ICK_VALID and compute checksum 22584 * here; can happen if ire_fp_mp changes and 22585 * it can't be copied now due to insufficient 22586 * space. (unlikely, fp mp can change, but it 22587 * does not increase in length) 22588 */ 22589 } 22590 UNLOCK_IRE_FP_MP(ire); 22591 } else { 22592 no_fp_mp: 22593 mp1 = copyb(ire->ire_dlureq_mp); 22594 if (mp1 == NULL) { 22595 unlock_err: 22596 UNLOCK_IRE_FP_MP(ire); 22597 freemsg(mp); 22598 return (NULL); 22599 } 22600 UNLOCK_IRE_FP_MP(ire); 22601 mp1->b_cont = mp; 22602 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 22603 ip_process(proc, &mp1, ill_index); 22604 if (mp1 == NULL) 22605 return (NULL); 22606 } 22607 } 22608 return (mp1); 22609 #undef rptr 22610 } 22611 22612 /* 22613 * Finish the outbound IPsec processing for an IPv6 packet. This function 22614 * is called from ipsec_out_process() if the IPsec packet was processed 22615 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22616 * asynchronously. 22617 */ 22618 void 22619 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 22620 ire_t *ire_arg) 22621 { 22622 in6_addr_t *v6dstp; 22623 ire_t *ire; 22624 mblk_t *mp; 22625 uint_t ill_index; 22626 ipsec_out_t *io; 22627 boolean_t attach_if, hwaccel; 22628 uint32_t flags = IP6_NO_IPPOLICY; 22629 int match_flags; 22630 zoneid_t zoneid; 22631 boolean_t ill_need_rele = B_FALSE; 22632 boolean_t ire_need_rele = B_FALSE; 22633 22634 mp = ipsec_mp->b_cont; 22635 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22636 ill_index = io->ipsec_out_ill_index; 22637 if (io->ipsec_out_reachable) { 22638 flags |= IPV6_REACHABILITY_CONFIRMATION; 22639 } 22640 attach_if = io->ipsec_out_attach_if; 22641 hwaccel = io->ipsec_out_accelerated; 22642 zoneid = io->ipsec_out_zoneid; 22643 ASSERT(zoneid != ALL_ZONES); 22644 match_flags = MATCH_IRE_ILL_GROUP; 22645 /* Multicast addresses should have non-zero ill_index. */ 22646 v6dstp = &ip6h->ip6_dst; 22647 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 22648 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 22649 ASSERT(!attach_if || ill_index != 0); 22650 if (ill_index != 0) { 22651 if (ill == NULL) { 22652 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 22653 B_TRUE); 22654 22655 /* Failure case frees things for us. */ 22656 if (ill == NULL) 22657 return; 22658 22659 ill_need_rele = B_TRUE; 22660 } 22661 /* 22662 * If this packet needs to go out on a particular interface 22663 * honor it. 22664 */ 22665 if (attach_if) { 22666 match_flags = MATCH_IRE_ILL; 22667 22668 /* 22669 * Check if we need an ire that will not be 22670 * looked up by anybody else i.e. HIDDEN. 22671 */ 22672 if (ill_is_probeonly(ill)) { 22673 match_flags |= MATCH_IRE_MARK_HIDDEN; 22674 } 22675 } 22676 } 22677 ASSERT(mp != NULL); 22678 22679 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 22680 boolean_t unspec_src; 22681 ipif_t *ipif; 22682 22683 /* 22684 * Use the ill_index to get the right ill. 22685 */ 22686 unspec_src = io->ipsec_out_unspec_src; 22687 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22688 if (ipif == NULL) { 22689 if (ill_need_rele) 22690 ill_refrele(ill); 22691 freemsg(ipsec_mp); 22692 return; 22693 } 22694 22695 if (ire_arg != NULL) { 22696 ire = ire_arg; 22697 } else { 22698 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22699 zoneid, match_flags); 22700 ire_need_rele = B_TRUE; 22701 } 22702 if (ire != NULL) { 22703 ipif_refrele(ipif); 22704 /* 22705 * XXX Do the multicast forwarding now, as the IPSEC 22706 * processing has been done. 22707 */ 22708 goto send; 22709 } 22710 22711 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 22712 mp->b_prev = NULL; 22713 mp->b_next = NULL; 22714 22715 /* 22716 * If the IPsec packet was processed asynchronously, 22717 * drop it now. 22718 */ 22719 if (q == NULL) { 22720 if (ill_need_rele) 22721 ill_refrele(ill); 22722 freemsg(ipsec_mp); 22723 return; 22724 } 22725 22726 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 22727 unspec_src, zoneid); 22728 ipif_refrele(ipif); 22729 } else { 22730 if (attach_if) { 22731 ipif_t *ipif; 22732 22733 ipif = ipif_get_next_ipif(NULL, ill); 22734 if (ipif == NULL) { 22735 if (ill_need_rele) 22736 ill_refrele(ill); 22737 freemsg(ipsec_mp); 22738 return; 22739 } 22740 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22741 zoneid, match_flags); 22742 ire_need_rele = B_TRUE; 22743 ipif_refrele(ipif); 22744 } else { 22745 if (ire_arg != NULL) { 22746 ire = ire_arg; 22747 } else { 22748 ire = ire_cache_lookup_v6(v6dstp, zoneid); 22749 ire_need_rele = B_TRUE; 22750 } 22751 } 22752 if (ire != NULL) 22753 goto send; 22754 /* 22755 * ire disappeared underneath. 22756 * 22757 * What we need to do here is the ip_newroute 22758 * logic to get the ire without doing the IPSEC 22759 * processing. Follow the same old path. But this 22760 * time, ip_wput or ire_add_then_send will call us 22761 * directly as all the IPSEC operations are done. 22762 */ 22763 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 22764 mp->b_prev = NULL; 22765 mp->b_next = NULL; 22766 22767 /* 22768 * If the IPsec packet was processed asynchronously, 22769 * drop it now. 22770 */ 22771 if (q == NULL) { 22772 if (ill_need_rele) 22773 ill_refrele(ill); 22774 freemsg(ipsec_mp); 22775 return; 22776 } 22777 22778 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 22779 zoneid); 22780 } 22781 if (ill != NULL && ill_need_rele) 22782 ill_refrele(ill); 22783 return; 22784 send: 22785 if (ill != NULL && ill_need_rele) 22786 ill_refrele(ill); 22787 22788 /* Local delivery */ 22789 if (ire->ire_stq == NULL) { 22790 ASSERT(q != NULL); 22791 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 22792 ire, 0); 22793 if (ire_need_rele) 22794 ire_refrele(ire); 22795 return; 22796 } 22797 /* 22798 * Everything is done. Send it out on the wire. 22799 * We force the insertion of a fragment header using the 22800 * IPH_FRAG_HDR flag in two cases: 22801 * - after reception of an ICMPv6 "packet too big" message 22802 * with a MTU < 1280 (cf. RFC 2460 section 5) 22803 * - for multirouted IPv6 packets, so that the receiver can 22804 * discard duplicates according to their fragment identifier 22805 */ 22806 /* XXX fix flow control problems. */ 22807 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 22808 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 22809 if (hwaccel) { 22810 /* 22811 * hardware acceleration does not handle these 22812 * "slow path" cases. 22813 */ 22814 /* IPsec KSTATS: should bump bean counter here. */ 22815 if (ire_need_rele) 22816 ire_refrele(ire); 22817 freemsg(ipsec_mp); 22818 return; 22819 } 22820 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 22821 (mp->b_cont ? msgdsize(mp) : 22822 mp->b_wptr - (uchar_t *)ip6h)) { 22823 /* IPsec KSTATS: should bump bean counter here. */ 22824 ip0dbg(("Packet length mismatch: %d, %ld\n", 22825 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 22826 msgdsize(mp))); 22827 if (ire_need_rele) 22828 ire_refrele(ire); 22829 freemsg(ipsec_mp); 22830 return; 22831 } 22832 ASSERT(mp->b_prev == NULL); 22833 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 22834 ntohs(ip6h->ip6_plen) + 22835 IPV6_HDR_LEN, ire->ire_max_frag)); 22836 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 22837 ire->ire_max_frag); 22838 } else { 22839 UPDATE_OB_PKT_COUNT(ire); 22840 ire->ire_last_used_time = lbolt; 22841 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 22842 } 22843 if (ire_need_rele) 22844 ire_refrele(ire); 22845 freeb(ipsec_mp); 22846 } 22847 22848 void 22849 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 22850 { 22851 mblk_t *hada_mp; /* attributes M_CTL mblk */ 22852 da_ipsec_t *hada; /* data attributes */ 22853 ill_t *ill = (ill_t *)q->q_ptr; 22854 22855 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 22856 22857 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 22858 /* IPsec KSTATS: Bump lose counter here! */ 22859 freemsg(mp); 22860 return; 22861 } 22862 22863 /* 22864 * It's an IPsec packet that must be 22865 * accelerated by the Provider, and the 22866 * outbound ill is IPsec acceleration capable. 22867 * Prepends the mblk with an IPHADA_M_CTL, and ship it 22868 * to the ill. 22869 * IPsec KSTATS: should bump packet counter here. 22870 */ 22871 22872 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 22873 if (hada_mp == NULL) { 22874 /* IPsec KSTATS: should bump packet counter here. */ 22875 freemsg(mp); 22876 return; 22877 } 22878 22879 hada_mp->b_datap->db_type = M_CTL; 22880 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 22881 hada_mp->b_cont = mp; 22882 22883 hada = (da_ipsec_t *)hada_mp->b_rptr; 22884 bzero(hada, sizeof (da_ipsec_t)); 22885 hada->da_type = IPHADA_M_CTL; 22886 22887 putnext(q, hada_mp); 22888 } 22889 22890 /* 22891 * Finish the outbound IPsec processing. This function is called from 22892 * ipsec_out_process() if the IPsec packet was processed 22893 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22894 * asynchronously. 22895 */ 22896 void 22897 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 22898 ire_t *ire_arg) 22899 { 22900 uint32_t v_hlen_tos_len; 22901 ipaddr_t dst; 22902 ipif_t *ipif = NULL; 22903 ire_t *ire; 22904 ire_t *ire1 = NULL; 22905 mblk_t *next_mp = NULL; 22906 uint32_t max_frag; 22907 boolean_t multirt_send = B_FALSE; 22908 mblk_t *mp; 22909 mblk_t *mp1; 22910 uint_t ill_index; 22911 ipsec_out_t *io; 22912 boolean_t attach_if; 22913 int match_flags, offset; 22914 irb_t *irb = NULL; 22915 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 22916 zoneid_t zoneid; 22917 uint32_t cksum; 22918 uint16_t *up; 22919 #ifdef _BIG_ENDIAN 22920 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22921 #else 22922 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22923 #endif 22924 22925 mp = ipsec_mp->b_cont; 22926 ASSERT(mp != NULL); 22927 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22928 dst = ipha->ipha_dst; 22929 22930 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22931 ill_index = io->ipsec_out_ill_index; 22932 attach_if = io->ipsec_out_attach_if; 22933 zoneid = io->ipsec_out_zoneid; 22934 ASSERT(zoneid != ALL_ZONES); 22935 match_flags = MATCH_IRE_ILL_GROUP; 22936 if (ill_index != 0) { 22937 if (ill == NULL) { 22938 ill = ip_grab_attach_ill(NULL, ipsec_mp, 22939 ill_index, B_FALSE); 22940 22941 /* Failure case frees things for us. */ 22942 if (ill == NULL) 22943 return; 22944 22945 ill_need_rele = B_TRUE; 22946 } 22947 /* 22948 * If this packet needs to go out on a particular interface 22949 * honor it. 22950 */ 22951 if (attach_if) { 22952 match_flags = MATCH_IRE_ILL; 22953 22954 /* 22955 * Check if we need an ire that will not be 22956 * looked up by anybody else i.e. HIDDEN. 22957 */ 22958 if (ill_is_probeonly(ill)) { 22959 match_flags |= MATCH_IRE_MARK_HIDDEN; 22960 } 22961 } 22962 } 22963 22964 if (CLASSD(dst)) { 22965 boolean_t conn_dontroute; 22966 /* 22967 * Use the ill_index to get the right ipif. 22968 */ 22969 conn_dontroute = io->ipsec_out_dontroute; 22970 if (ill_index == 0) 22971 ipif = ipif_lookup_group(dst, zoneid); 22972 else 22973 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22974 if (ipif == NULL) { 22975 ip1dbg(("ip_wput_ipsec_out: No ipif for" 22976 " multicast\n")); 22977 BUMP_MIB(&ip_mib, ipOutNoRoutes); 22978 freemsg(ipsec_mp); 22979 goto done; 22980 } 22981 /* 22982 * ipha_src has already been intialized with the 22983 * value of the ipif in ip_wput. All we need now is 22984 * an ire to send this downstream. 22985 */ 22986 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, match_flags); 22987 if (ire != NULL) { 22988 ill_t *ill1; 22989 /* 22990 * Do the multicast forwarding now, as the IPSEC 22991 * processing has been done. 22992 */ 22993 if (ip_g_mrouter && !conn_dontroute && 22994 (ill1 = ire_to_ill(ire))) { 22995 if (ip_mforward(ill1, ipha, mp)) { 22996 freemsg(ipsec_mp); 22997 ip1dbg(("ip_wput_ipsec_out: mforward " 22998 "failed\n")); 22999 ire_refrele(ire); 23000 goto done; 23001 } 23002 } 23003 goto send; 23004 } 23005 23006 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 23007 mp->b_prev = NULL; 23008 mp->b_next = NULL; 23009 23010 /* 23011 * If the IPsec packet was processed asynchronously, 23012 * drop it now. 23013 */ 23014 if (q == NULL) { 23015 freemsg(ipsec_mp); 23016 goto done; 23017 } 23018 23019 /* 23020 * We may be using a wrong ipif to create the ire. 23021 * But it is okay as the source address is assigned 23022 * for the packet already. Next outbound packet would 23023 * create the IRE with the right IPIF in ip_wput. 23024 * 23025 * Also handle RTF_MULTIRT routes. 23026 */ 23027 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 23028 } else { 23029 if (attach_if) { 23030 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 23031 zoneid, match_flags); 23032 } else { 23033 if (ire_arg != NULL) { 23034 ire = ire_arg; 23035 ire_need_rele = B_FALSE; 23036 } else { 23037 ire = ire_cache_lookup(dst, zoneid); 23038 } 23039 } 23040 if (ire != NULL) { 23041 goto send; 23042 } 23043 23044 /* 23045 * ire disappeared underneath. 23046 * 23047 * What we need to do here is the ip_newroute 23048 * logic to get the ire without doing the IPSEC 23049 * processing. Follow the same old path. But this 23050 * time, ip_wput or ire_add_then_put will call us 23051 * directly as all the IPSEC operations are done. 23052 */ 23053 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 23054 mp->b_prev = NULL; 23055 mp->b_next = NULL; 23056 23057 /* 23058 * If the IPsec packet was processed asynchronously, 23059 * drop it now. 23060 */ 23061 if (q == NULL) { 23062 freemsg(ipsec_mp); 23063 goto done; 23064 } 23065 23066 /* 23067 * Since we're going through ip_newroute() again, we 23068 * need to make sure we don't: 23069 * 23070 * 1.) Trigger the ASSERT() with the ipha_ident 23071 * overloading. 23072 * 2.) Redo transport-layer checksumming, since we've 23073 * already done all that to get this far. 23074 * 23075 * The easiest way not do either of the above is to set 23076 * the ipha_ident field to IP_HDR_INCLUDED. 23077 */ 23078 ipha->ipha_ident = IP_HDR_INCLUDED; 23079 ip_newroute(q, ipsec_mp, dst, NULL, 23080 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 23081 } 23082 goto done; 23083 send: 23084 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 23085 /* 23086 * ESP NAT-Traversal packet. 23087 * 23088 * Just do software checksum for now. 23089 */ 23090 23091 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 23092 IP_STAT(ip_out_sw_cksum); 23093 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 23094 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 23095 #define iphs ((uint16_t *)ipha) 23096 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 23097 iphs[9] + ntohs(htons(ipha->ipha_length) - 23098 IP_SIMPLE_HDR_LENGTH); 23099 #undef iphs 23100 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 23101 cksum = 0xFFFF; 23102 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 23103 if (mp1->b_wptr - mp1->b_rptr >= 23104 offset + sizeof (uint16_t)) { 23105 up = (uint16_t *)(mp1->b_rptr + offset); 23106 *up = cksum; 23107 break; /* out of for loop */ 23108 } else { 23109 offset -= (mp->b_wptr - mp->b_rptr); 23110 } 23111 } /* Otherwise, just keep the all-zero checksum. */ 23112 23113 if (ire->ire_stq == NULL) { 23114 /* 23115 * Loopbacks go through ip_wput_local except for one case. 23116 * We come here if we generate a icmp_frag_needed message 23117 * after IPSEC processing is over. When this function calls 23118 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 23119 * icmp_frag_needed. The message generated comes back here 23120 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 23121 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 23122 * source address as it is usually set in ip_wput_ire. As 23123 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 23124 * and we end up here. We can't enter ip_wput_ire once the 23125 * IPSEC processing is over and hence we need to do it here. 23126 */ 23127 ASSERT(q != NULL); 23128 UPDATE_OB_PKT_COUNT(ire); 23129 ire->ire_last_used_time = lbolt; 23130 if (ipha->ipha_src == 0) 23131 ipha->ipha_src = ire->ire_src_addr; 23132 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 23133 ire, 0, zoneid); 23134 if (ire_need_rele) 23135 ire_refrele(ire); 23136 goto done; 23137 } 23138 23139 if (ire->ire_max_frag < (unsigned int)LENGTH) { 23140 /* 23141 * We are through with IPSEC processing. 23142 * Fragment this and send it on the wire. 23143 */ 23144 if (io->ipsec_out_accelerated) { 23145 /* 23146 * The packet has been accelerated but must 23147 * be fragmented. This should not happen 23148 * since AH and ESP must not accelerate 23149 * packets that need fragmentation, however 23150 * the configuration could have changed 23151 * since the AH or ESP processing. 23152 * Drop packet. 23153 * IPsec KSTATS: bump bean counter here. 23154 */ 23155 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 23156 "fragmented accelerated packet!\n")); 23157 freemsg(ipsec_mp); 23158 } else { 23159 ip_wput_ire_fragmentit(ipsec_mp, ire); 23160 } 23161 if (ire_need_rele) 23162 ire_refrele(ire); 23163 goto done; 23164 } 23165 23166 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 23167 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 23168 (void *)ire->ire_ipif, (void *)ipif)); 23169 23170 /* 23171 * Multiroute the secured packet, unless IPsec really 23172 * requires the packet to go out only through a particular 23173 * interface. 23174 */ 23175 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 23176 ire_t *first_ire; 23177 irb = ire->ire_bucket; 23178 ASSERT(irb != NULL); 23179 /* 23180 * This ire has been looked up as the one that 23181 * goes through the given ipif; 23182 * make sure we do not omit any other multiroute ire 23183 * that may be present in the bucket before this one. 23184 */ 23185 IRB_REFHOLD(irb); 23186 for (first_ire = irb->irb_ire; 23187 first_ire != NULL; 23188 first_ire = first_ire->ire_next) { 23189 if ((first_ire->ire_flags & RTF_MULTIRT) && 23190 (first_ire->ire_addr == ire->ire_addr) && 23191 !(first_ire->ire_marks & 23192 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23193 break; 23194 } 23195 23196 if ((first_ire != NULL) && (first_ire != ire)) { 23197 /* 23198 * Don't change the ire if the packet must 23199 * be fragmented if sent via this new one. 23200 */ 23201 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 23202 IRE_REFHOLD(first_ire); 23203 if (ire_need_rele) 23204 ire_refrele(ire); 23205 else 23206 ire_need_rele = B_TRUE; 23207 ire = first_ire; 23208 } 23209 } 23210 IRB_REFRELE(irb); 23211 23212 multirt_send = B_TRUE; 23213 max_frag = ire->ire_max_frag; 23214 } else { 23215 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 23216 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 23217 "flag, attach_if %d\n", attach_if)); 23218 } 23219 } 23220 23221 /* 23222 * In most cases, the emission loop below is entered only once. 23223 * Only in the case where the ire holds the RTF_MULTIRT 23224 * flag, we loop to process all RTF_MULTIRT ires in the 23225 * bucket, and send the packet through all crossed 23226 * RTF_MULTIRT routes. 23227 */ 23228 do { 23229 if (multirt_send) { 23230 /* 23231 * ire1 holds here the next ire to process in the 23232 * bucket. If multirouting is expected, 23233 * any non-RTF_MULTIRT ire that has the 23234 * right destination address is ignored. 23235 */ 23236 ASSERT(irb != NULL); 23237 IRB_REFHOLD(irb); 23238 for (ire1 = ire->ire_next; 23239 ire1 != NULL; 23240 ire1 = ire1->ire_next) { 23241 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23242 continue; 23243 if (ire1->ire_addr != ire->ire_addr) 23244 continue; 23245 if (ire1->ire_marks & 23246 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23247 continue; 23248 /* No loopback here */ 23249 if (ire1->ire_stq == NULL) 23250 continue; 23251 /* 23252 * Ensure we do not exceed the MTU 23253 * of the next route. 23254 */ 23255 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 23256 ip_multirt_bad_mtu(ire1, max_frag); 23257 continue; 23258 } 23259 23260 IRE_REFHOLD(ire1); 23261 break; 23262 } 23263 IRB_REFRELE(irb); 23264 if (ire1 != NULL) { 23265 /* 23266 * We are in a multiple send case, need to 23267 * make a copy of the packet. 23268 */ 23269 next_mp = copymsg(ipsec_mp); 23270 if (next_mp == NULL) { 23271 ire_refrele(ire1); 23272 ire1 = NULL; 23273 } 23274 } 23275 } 23276 23277 /* Everything is done. Send it out on the wire */ 23278 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 23279 if (mp1 == NULL) { 23280 BUMP_MIB(&ip_mib, ipOutDiscards); 23281 freemsg(ipsec_mp); 23282 if (ire_need_rele) 23283 ire_refrele(ire); 23284 if (ire1 != NULL) { 23285 ire_refrele(ire1); 23286 freemsg(next_mp); 23287 } 23288 goto done; 23289 } 23290 UPDATE_OB_PKT_COUNT(ire); 23291 ire->ire_last_used_time = lbolt; 23292 if (!io->ipsec_out_accelerated) { 23293 putnext(ire->ire_stq, mp1); 23294 } else { 23295 /* 23296 * Safety Pup says: make sure this is going to 23297 * the right interface! 23298 */ 23299 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 23300 int ifindex = ill1->ill_phyint->phyint_ifindex; 23301 23302 if (ifindex != io->ipsec_out_capab_ill_index) { 23303 /* IPsec kstats: bump lose counter */ 23304 freemsg(mp1); 23305 } else { 23306 ipsec_hw_putnext(ire->ire_stq, mp1); 23307 } 23308 } 23309 23310 freeb(ipsec_mp); 23311 if (ire_need_rele) 23312 ire_refrele(ire); 23313 23314 if (ire1 != NULL) { 23315 ire = ire1; 23316 ire_need_rele = B_TRUE; 23317 ASSERT(next_mp); 23318 ipsec_mp = next_mp; 23319 mp = ipsec_mp->b_cont; 23320 ire1 = NULL; 23321 next_mp = NULL; 23322 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23323 } else { 23324 multirt_send = B_FALSE; 23325 } 23326 } while (multirt_send); 23327 done: 23328 if (ill != NULL && ill_need_rele) 23329 ill_refrele(ill); 23330 if (ipif != NULL) 23331 ipif_refrele(ipif); 23332 } 23333 23334 /* 23335 * Get the ill corresponding to the specified ire, and compare its 23336 * capabilities with the protocol and algorithms specified by the 23337 * the SA obtained from ipsec_out. If they match, annotate the 23338 * ipsec_out structure to indicate that the packet needs acceleration. 23339 * 23340 * 23341 * A packet is eligible for outbound hardware acceleration if the 23342 * following conditions are satisfied: 23343 * 23344 * 1. the packet will not be fragmented 23345 * 2. the provider supports the algorithm 23346 * 3. there is no pending control message being exchanged 23347 * 4. snoop is not attached 23348 * 5. the destination address is not a broadcast or multicast address. 23349 * 23350 * Rationale: 23351 * - Hardware drivers do not support fragmentation with 23352 * the current interface. 23353 * - snoop, multicast, and broadcast may result in exposure of 23354 * a cleartext datagram. 23355 * We check all five of these conditions here. 23356 * 23357 * XXX would like to nuke "ire_t *" parameter here; problem is that 23358 * IRE is only way to figure out if a v4 address is a broadcast and 23359 * thus ineligible for acceleration... 23360 */ 23361 static void 23362 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 23363 { 23364 ipsec_out_t *io; 23365 mblk_t *data_mp; 23366 uint_t plen, overhead; 23367 23368 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 23369 return; 23370 23371 if (ill == NULL) 23372 return; 23373 23374 /* 23375 * Destination address is a broadcast or multicast. Punt. 23376 */ 23377 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 23378 IRE_LOCAL))) 23379 return; 23380 23381 data_mp = ipsec_mp->b_cont; 23382 23383 if (ill->ill_isv6) { 23384 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 23385 23386 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 23387 return; 23388 23389 plen = ip6h->ip6_plen; 23390 } else { 23391 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 23392 23393 if (CLASSD(ipha->ipha_dst)) 23394 return; 23395 23396 plen = ipha->ipha_length; 23397 } 23398 /* 23399 * Is there a pending DLPI control message being exchanged 23400 * between IP/IPsec and the DLS Provider? If there is, it 23401 * could be a SADB update, and the state of the DLS Provider 23402 * SADB might not be in sync with the SADB maintained by 23403 * IPsec. To avoid dropping packets or using the wrong keying 23404 * material, we do not accelerate this packet. 23405 */ 23406 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 23407 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23408 "ill_dlpi_pending! don't accelerate packet\n")); 23409 return; 23410 } 23411 23412 /* 23413 * Is the Provider in promiscous mode? If it does, we don't 23414 * accelerate the packet since it will bounce back up to the 23415 * listeners in the clear. 23416 */ 23417 if (ill->ill_promisc_on_phys) { 23418 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23419 "ill in promiscous mode, don't accelerate packet\n")); 23420 return; 23421 } 23422 23423 /* 23424 * Will the packet require fragmentation? 23425 */ 23426 23427 /* 23428 * IPsec ESP note: this is a pessimistic estimate, but the same 23429 * as is used elsewhere. 23430 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 23431 * + 2-byte trailer 23432 */ 23433 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 23434 IPSEC_BASE_ESP_HDR_SIZE(sa); 23435 23436 if ((plen + overhead) > ill->ill_max_mtu) 23437 return; 23438 23439 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23440 23441 /* 23442 * Can the ill accelerate this IPsec protocol and algorithm 23443 * specified by the SA? 23444 */ 23445 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 23446 ill->ill_isv6, sa)) { 23447 return; 23448 } 23449 23450 /* 23451 * Tell AH or ESP that the outbound ill is capable of 23452 * accelerating this packet. 23453 */ 23454 io->ipsec_out_is_capab_ill = B_TRUE; 23455 } 23456 23457 /* 23458 * Select which AH & ESP SA's to use (if any) for the outbound packet. 23459 * 23460 * If this function returns B_TRUE, the requested SA's have been filled 23461 * into the ipsec_out_*_sa pointers. 23462 * 23463 * If the function returns B_FALSE, the packet has been "consumed", most 23464 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 23465 * 23466 * The SA references created by the protocol-specific "select" 23467 * function will be released when the ipsec_mp is freed, thanks to the 23468 * ipsec_out_free destructor -- see spd.c. 23469 */ 23470 static boolean_t 23471 ipsec_out_select_sa(mblk_t *ipsec_mp) 23472 { 23473 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 23474 ipsec_out_t *io; 23475 ipsec_policy_t *pp; 23476 ipsec_action_t *ap; 23477 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23478 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23479 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23480 23481 if (!io->ipsec_out_secure) { 23482 /* 23483 * We came here by mistake. 23484 * Don't bother with ipsec processing 23485 * We should "discourage" this path in the future. 23486 */ 23487 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23488 return (B_FALSE); 23489 } 23490 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23491 ASSERT((io->ipsec_out_policy != NULL) || 23492 (io->ipsec_out_act != NULL)); 23493 23494 ASSERT(io->ipsec_out_failed == B_FALSE); 23495 23496 /* 23497 * IPSEC processing has started. 23498 */ 23499 io->ipsec_out_proc_begin = B_TRUE; 23500 ap = io->ipsec_out_act; 23501 if (ap == NULL) { 23502 pp = io->ipsec_out_policy; 23503 ASSERT(pp != NULL); 23504 ap = pp->ipsp_act; 23505 ASSERT(ap != NULL); 23506 } 23507 23508 /* 23509 * We have an action. now, let's select SA's. 23510 * (In the future, we can cache this in the conn_t..) 23511 */ 23512 if (ap->ipa_want_esp) { 23513 if (io->ipsec_out_esp_sa == NULL) { 23514 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 23515 IPPROTO_ESP); 23516 } 23517 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 23518 } 23519 23520 if (ap->ipa_want_ah) { 23521 if (io->ipsec_out_ah_sa == NULL) { 23522 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 23523 IPPROTO_AH); 23524 } 23525 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 23526 /* 23527 * The ESP and AH processing order needs to be preserved 23528 * when both protocols are required (ESP should be applied 23529 * before AH for an outbound packet). Force an ESP ACQUIRE 23530 * when both ESP and AH are required, and an AH ACQUIRE 23531 * is needed. 23532 */ 23533 if (ap->ipa_want_esp && need_ah_acquire) 23534 need_esp_acquire = B_TRUE; 23535 } 23536 23537 /* 23538 * Send an ACQUIRE (extended, regular, or both) if we need one. 23539 * Release SAs that got referenced, but will not be used until we 23540 * acquire _all_ of the SAs we need. 23541 */ 23542 if (need_ah_acquire || need_esp_acquire) { 23543 if (io->ipsec_out_ah_sa != NULL) { 23544 IPSA_REFRELE(io->ipsec_out_ah_sa); 23545 io->ipsec_out_ah_sa = NULL; 23546 } 23547 if (io->ipsec_out_esp_sa != NULL) { 23548 IPSA_REFRELE(io->ipsec_out_esp_sa); 23549 io->ipsec_out_esp_sa = NULL; 23550 } 23551 23552 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 23553 return (B_FALSE); 23554 } 23555 23556 return (B_TRUE); 23557 } 23558 23559 /* 23560 * Process an IPSEC_OUT message and see what you can 23561 * do with it. 23562 * IPQoS Notes: 23563 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 23564 * IPSec. 23565 * XXX would like to nuke ire_t. 23566 * XXX ill_index better be "real" 23567 */ 23568 void 23569 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 23570 { 23571 ipsec_out_t *io; 23572 ipsec_policy_t *pp; 23573 ipsec_action_t *ap; 23574 ipha_t *ipha; 23575 ip6_t *ip6h; 23576 mblk_t *mp; 23577 ill_t *ill; 23578 zoneid_t zoneid; 23579 ipsec_status_t ipsec_rc; 23580 boolean_t ill_need_rele = B_FALSE; 23581 23582 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23583 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23584 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23585 mp = ipsec_mp->b_cont; 23586 23587 /* 23588 * Initiate IPPF processing. We do it here to account for packets 23589 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 23590 * We can check for ipsec_out_proc_begin even for such packets, as 23591 * they will always be false (asserted below). 23592 */ 23593 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 23594 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 23595 io->ipsec_out_ill_index : ill_index); 23596 if (mp == NULL) { 23597 ip2dbg(("ipsec_out_process: packet dropped "\ 23598 "during IPPF processing\n")); 23599 freeb(ipsec_mp); 23600 BUMP_MIB(&ip_mib, ipOutDiscards); 23601 return; 23602 } 23603 } 23604 23605 if (!io->ipsec_out_secure) { 23606 /* 23607 * We came here by mistake. 23608 * Don't bother with ipsec processing 23609 * Should "discourage" this path in the future. 23610 */ 23611 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23612 goto done; 23613 } 23614 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23615 ASSERT((io->ipsec_out_policy != NULL) || 23616 (io->ipsec_out_act != NULL)); 23617 ASSERT(io->ipsec_out_failed == B_FALSE); 23618 23619 if (!ipsec_loaded()) { 23620 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 23621 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23622 BUMP_MIB(&ip_mib, ipOutDiscards); 23623 } else { 23624 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 23625 } 23626 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 23627 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 23628 return; 23629 } 23630 23631 /* 23632 * IPSEC processing has started. 23633 */ 23634 io->ipsec_out_proc_begin = B_TRUE; 23635 ap = io->ipsec_out_act; 23636 if (ap == NULL) { 23637 pp = io->ipsec_out_policy; 23638 ASSERT(pp != NULL); 23639 ap = pp->ipsp_act; 23640 ASSERT(ap != NULL); 23641 } 23642 23643 /* 23644 * Save the outbound ill index. When the packet comes back 23645 * from IPsec, we make sure the ill hasn't changed or disappeared 23646 * before sending it the accelerated packet. 23647 */ 23648 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 23649 int ifindex; 23650 ill = ire_to_ill(ire); 23651 ifindex = ill->ill_phyint->phyint_ifindex; 23652 io->ipsec_out_capab_ill_index = ifindex; 23653 } 23654 23655 /* 23656 * The order of processing is first insert a IP header if needed. 23657 * Then insert the ESP header and then the AH header. 23658 */ 23659 if ((io->ipsec_out_se_done == B_FALSE) && 23660 (ap->ipa_want_se)) { 23661 /* 23662 * First get the outer IP header before sending 23663 * it to ESP. 23664 */ 23665 ipha_t *oipha, *iipha; 23666 mblk_t *outer_mp, *inner_mp; 23667 23668 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 23669 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 23670 "ipsec_out_process: " 23671 "Self-Encapsulation failed: Out of memory\n"); 23672 freemsg(ipsec_mp); 23673 BUMP_MIB(&ip_mib, ipOutDiscards); 23674 return; 23675 } 23676 inner_mp = ipsec_mp->b_cont; 23677 ASSERT(inner_mp->b_datap->db_type == M_DATA); 23678 oipha = (ipha_t *)outer_mp->b_rptr; 23679 iipha = (ipha_t *)inner_mp->b_rptr; 23680 *oipha = *iipha; 23681 outer_mp->b_wptr += sizeof (ipha_t); 23682 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 23683 sizeof (ipha_t)); 23684 oipha->ipha_protocol = IPPROTO_ENCAP; 23685 oipha->ipha_version_and_hdr_length = 23686 IP_SIMPLE_HDR_VERSION; 23687 oipha->ipha_hdr_checksum = 0; 23688 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 23689 outer_mp->b_cont = inner_mp; 23690 ipsec_mp->b_cont = outer_mp; 23691 23692 io->ipsec_out_se_done = B_TRUE; 23693 io->ipsec_out_encaps = B_TRUE; 23694 } 23695 23696 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 23697 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 23698 !ipsec_out_select_sa(ipsec_mp)) 23699 return; 23700 23701 /* 23702 * By now, we know what SA's to use. Toss over to ESP & AH 23703 * to do the heavy lifting. 23704 */ 23705 zoneid = io->ipsec_out_zoneid; 23706 ASSERT(zoneid != ALL_ZONES); 23707 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 23708 ASSERT(io->ipsec_out_esp_sa != NULL); 23709 io->ipsec_out_esp_done = B_TRUE; 23710 /* 23711 * Note that since hw accel can only apply one transform, 23712 * not two, we skip hw accel for ESP if we also have AH 23713 * This is an design limitation of the interface 23714 * which should be revisited. 23715 */ 23716 ASSERT(ire != NULL); 23717 if (io->ipsec_out_ah_sa == NULL) { 23718 ill = (ill_t *)ire->ire_stq->q_ptr; 23719 ipsec_out_is_accelerated(ipsec_mp, 23720 io->ipsec_out_esp_sa, ill, ire); 23721 } 23722 23723 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 23724 switch (ipsec_rc) { 23725 case IPSEC_STATUS_SUCCESS: 23726 break; 23727 case IPSEC_STATUS_FAILED: 23728 BUMP_MIB(&ip_mib, ipOutDiscards); 23729 /* FALLTHRU */ 23730 case IPSEC_STATUS_PENDING: 23731 return; 23732 } 23733 } 23734 23735 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 23736 ASSERT(io->ipsec_out_ah_sa != NULL); 23737 io->ipsec_out_ah_done = B_TRUE; 23738 if (ire == NULL) { 23739 int idx = io->ipsec_out_capab_ill_index; 23740 ill = ill_lookup_on_ifindex(idx, B_FALSE, 23741 NULL, NULL, NULL, NULL); 23742 ill_need_rele = B_TRUE; 23743 } else { 23744 ill = (ill_t *)ire->ire_stq->q_ptr; 23745 } 23746 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 23747 ire); 23748 23749 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 23750 switch (ipsec_rc) { 23751 case IPSEC_STATUS_SUCCESS: 23752 break; 23753 case IPSEC_STATUS_FAILED: 23754 BUMP_MIB(&ip_mib, ipOutDiscards); 23755 /* FALLTHRU */ 23756 case IPSEC_STATUS_PENDING: 23757 if (ill != NULL && ill_need_rele) 23758 ill_refrele(ill); 23759 return; 23760 } 23761 } 23762 /* 23763 * We are done with IPSEC processing. Send it over 23764 * the wire. 23765 */ 23766 done: 23767 mp = ipsec_mp->b_cont; 23768 ipha = (ipha_t *)mp->b_rptr; 23769 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23770 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 23771 } else { 23772 ip6h = (ip6_t *)ipha; 23773 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 23774 } 23775 if (ill != NULL && ill_need_rele) 23776 ill_refrele(ill); 23777 } 23778 23779 /* ARGSUSED */ 23780 void 23781 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 23782 { 23783 opt_restart_t *or; 23784 int err; 23785 conn_t *connp; 23786 23787 ASSERT(CONN_Q(q)); 23788 connp = Q_TO_CONN(q); 23789 23790 ASSERT(first_mp->b_datap->db_type == M_CTL); 23791 or = (opt_restart_t *)first_mp->b_rptr; 23792 /* 23793 * We don't need to pass any credentials here since this is just 23794 * a restart. The credentials are passed in when svr4_optcom_req 23795 * is called the first time (from ip_wput_nondata). 23796 */ 23797 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 23798 err = svr4_optcom_req(q, first_mp, NULL, 23799 &ip_opt_obj); 23800 } else { 23801 ASSERT(or->or_type == T_OPTMGMT_REQ); 23802 err = tpi_optcom_req(q, first_mp, NULL, 23803 &ip_opt_obj); 23804 } 23805 if (err != EINPROGRESS) { 23806 /* operation is done */ 23807 CONN_OPER_PENDING_DONE(connp); 23808 } 23809 } 23810 23811 /* 23812 * ioctls that go through a down/up sequence may need to wait for the down 23813 * to complete. This involves waiting for the ire and ipif refcnts to go down 23814 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 23815 */ 23816 /* ARGSUSED */ 23817 void 23818 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23819 { 23820 struct iocblk *iocp; 23821 mblk_t *mp1; 23822 ipif_t *ipif; 23823 ip_ioctl_cmd_t *ipip; 23824 int err; 23825 sin_t *sin; 23826 struct lifreq *lifr; 23827 struct ifreq *ifr; 23828 23829 iocp = (struct iocblk *)mp->b_rptr; 23830 ASSERT(ipsq != NULL); 23831 /* Existence of mp1 verified in ip_wput_nondata */ 23832 mp1 = mp->b_cont->b_cont; 23833 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23834 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 23835 ill_t *ill; 23836 /* 23837 * Special case where ipsq_current_ipif may not be set. 23838 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 23839 * ill could also have become part of a ipmp group in the 23840 * process, we are here as were not able to complete the 23841 * operation in ipif_set_values because we could not become 23842 * exclusive on the new ipsq, In such a case ipsq_current_ipif 23843 * will not be set so we need to set it. 23844 */ 23845 ill = (ill_t *)q->q_ptr; 23846 ipsq->ipsq_current_ipif = ill->ill_ipif; 23847 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 23848 } 23849 23850 ipif = ipsq->ipsq_current_ipif; 23851 ASSERT(ipif != NULL); 23852 if (ipip->ipi_cmd_type == IF_CMD) { 23853 /* This a old style SIOC[GS]IF* command */ 23854 ifr = (struct ifreq *)mp1->b_rptr; 23855 sin = (sin_t *)&ifr->ifr_addr; 23856 } else if (ipip->ipi_cmd_type == LIF_CMD) { 23857 /* This a new style SIOC[GS]LIF* command */ 23858 lifr = (struct lifreq *)mp1->b_rptr; 23859 sin = (sin_t *)&lifr->lifr_addr; 23860 } else { 23861 sin = NULL; 23862 } 23863 23864 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 23865 (void *)mp1->b_rptr); 23866 23867 /* SIOCLIFREMOVEIF could have removed the ipif */ 23868 ip_ioctl_finish(q, mp, err, 23869 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23870 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 23871 } 23872 23873 /* 23874 * ioctl processing 23875 * 23876 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 23877 * the ioctl command in the ioctl tables and determines the copyin data size 23878 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 23879 * size. 23880 * 23881 * ioctl processing then continues when the M_IOCDATA makes its way down. 23882 * Now the ioctl is looked up again in the ioctl table, and its properties are 23883 * extracted. The associated 'conn' is then refheld till the end of the ioctl 23884 * and the general ioctl processing function ip_process_ioctl is called. 23885 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 23886 * so goes thru the serialization primitive ipsq_try_enter. Then the 23887 * appropriate function to handle the ioctl is called based on the entry in 23888 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 23889 * which also refreleases the 'conn' that was refheld at the start of the 23890 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 23891 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 23892 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 23893 * 23894 * Many exclusive ioctls go thru an internal down up sequence as part of 23895 * the operation. For example an attempt to change the IP address of an 23896 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 23897 * does all the cleanup such as deleting all ires that use this address. 23898 * Then we need to wait till all references to the interface go away. 23899 */ 23900 void 23901 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23902 { 23903 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 23904 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 23905 cmd_info_t ci; 23906 int err; 23907 boolean_t entered_ipsq = B_FALSE; 23908 23909 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 23910 23911 if (ipip == NULL) 23912 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23913 23914 /* 23915 * SIOCLIFADDIF needs to go thru a special path since the 23916 * ill may not exist yet. This happens in the case of lo0 23917 * which is created using this ioctl. 23918 */ 23919 if (ipip->ipi_cmd == SIOCLIFADDIF) { 23920 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 23921 ip_ioctl_finish(q, mp, err, 23922 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23923 NULL, NULL); 23924 return; 23925 } 23926 23927 ci.ci_ipif = NULL; 23928 switch (ipip->ipi_cmd_type) { 23929 case IF_CMD: 23930 case LIF_CMD: 23931 /* 23932 * ioctls that pass in a [l]ifreq appear here. 23933 * ip_extract_lifreq_cmn returns a refheld ipif in 23934 * ci.ci_ipif 23935 */ 23936 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 23937 ipip->ipi_flags, &ci, ip_process_ioctl); 23938 if (err != 0) { 23939 ip_ioctl_finish(q, mp, err, 23940 ipip->ipi_flags & IPI_GET_CMD ? 23941 COPYOUT : NO_COPYOUT, NULL, NULL); 23942 return; 23943 } 23944 ASSERT(ci.ci_ipif != NULL); 23945 break; 23946 23947 case TUN_CMD: 23948 /* 23949 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 23950 * a refheld ipif in ci.ci_ipif 23951 */ 23952 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 23953 if (err != 0) { 23954 ip_ioctl_finish(q, mp, err, 23955 ipip->ipi_flags & IPI_GET_CMD ? 23956 COPYOUT : NO_COPYOUT, NULL, NULL); 23957 return; 23958 } 23959 ASSERT(ci.ci_ipif != NULL); 23960 break; 23961 23962 case MISC_CMD: 23963 /* 23964 * ioctls that neither pass in [l]ifreq or iftun_req come here 23965 * For eg. SIOCGLIFCONF will appear here. 23966 */ 23967 switch (ipip->ipi_cmd) { 23968 case IF_UNITSEL: 23969 /* ioctl comes down the ill */ 23970 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 23971 ipif_refhold(ci.ci_ipif); 23972 break; 23973 case SIOCGMSFILTER: 23974 case SIOCSMSFILTER: 23975 case SIOCGIPMSFILTER: 23976 case SIOCSIPMSFILTER: 23977 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 23978 ip_process_ioctl); 23979 if (err != 0) { 23980 ip_ioctl_finish(q, mp, err, 23981 ipip->ipi_flags & IPI_GET_CMD ? 23982 COPYOUT : NO_COPYOUT, NULL, NULL); 23983 return; 23984 } 23985 break; 23986 } 23987 err = 0; 23988 ci.ci_sin = NULL; 23989 ci.ci_sin6 = NULL; 23990 ci.ci_lifr = NULL; 23991 break; 23992 } 23993 23994 /* 23995 * If ipsq is non-null, we are already being called exclusively 23996 */ 23997 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 23998 if (!(ipip->ipi_flags & IPI_WR)) { 23999 /* 24000 * A return value of EINPROGRESS means the ioctl is 24001 * either queued and waiting for some reason or has 24002 * already completed. 24003 */ 24004 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 24005 ci.ci_lifr); 24006 if (ci.ci_ipif != NULL) 24007 ipif_refrele(ci.ci_ipif); 24008 ip_ioctl_finish(q, mp, err, 24009 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24010 NULL, NULL); 24011 return; 24012 } 24013 24014 ASSERT(ci.ci_ipif != NULL); 24015 24016 if (ipsq == NULL) { 24017 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 24018 ip_process_ioctl, NEW_OP, B_TRUE); 24019 entered_ipsq = B_TRUE; 24020 } 24021 /* 24022 * Release the ipif so that ipif_down and friends that wait for 24023 * references to go away are not misled about the current ipif_refcnt 24024 * values. We are writer so we can access the ipif even after releasing 24025 * the ipif. 24026 */ 24027 ipif_refrele(ci.ci_ipif); 24028 if (ipsq == NULL) 24029 return; 24030 24031 mutex_enter(&ipsq->ipsq_lock); 24032 ASSERT(ipsq->ipsq_current_ipif == NULL); 24033 ipsq->ipsq_current_ipif = ci.ci_ipif; 24034 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 24035 mutex_exit(&ipsq->ipsq_lock); 24036 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 24037 /* 24038 * For most set ioctls that come here, this serves as a single point 24039 * where we set the IPIF_CHANGING flag. This ensures that there won't 24040 * be any new references to the ipif. This helps functions that go 24041 * through this path and end up trying to wait for the refcnts 24042 * associated with the ipif to go down to zero. Some exceptions are 24043 * Failover, Failback, and Groupname commands that operate on more than 24044 * just the ci.ci_ipif. These commands internally determine the 24045 * set of ipif's they operate on and set and clear the IPIF_CHANGING 24046 * flags on that set. Another exception is the Removeif command that 24047 * sets the IPIF_CONDEMNED flag internally after identifying the right 24048 * ipif to operate on. 24049 */ 24050 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 24051 ipip->ipi_cmd != SIOCLIFFAILOVER && 24052 ipip->ipi_cmd != SIOCLIFFAILBACK && 24053 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 24054 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 24055 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 24056 24057 /* 24058 * A return value of EINPROGRESS means the ioctl is 24059 * either queued and waiting for some reason or has 24060 * already completed. 24061 */ 24062 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 24063 ci.ci_lifr); 24064 24065 /* SIOCLIFREMOVEIF could have removed the ipif */ 24066 ip_ioctl_finish(q, mp, err, 24067 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24068 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 24069 24070 if (entered_ipsq) 24071 ipsq_exit(ipsq, B_TRUE, B_TRUE); 24072 } 24073 24074 /* 24075 * Complete the ioctl. Typically ioctls use the mi package and need to 24076 * do mi_copyout/mi_copy_done. 24077 */ 24078 void 24079 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 24080 ipif_t *ipif, ipsq_t *ipsq) 24081 { 24082 conn_t *connp = NULL; 24083 24084 if (err == EINPROGRESS) 24085 return; 24086 24087 if (CONN_Q(q)) { 24088 connp = Q_TO_CONN(q); 24089 ASSERT(connp->conn_ref >= 2); 24090 } 24091 24092 switch (mode) { 24093 case COPYOUT: 24094 if (err == 0) 24095 mi_copyout(q, mp); 24096 else 24097 mi_copy_done(q, mp, err); 24098 break; 24099 24100 case NO_COPYOUT: 24101 mi_copy_done(q, mp, err); 24102 break; 24103 24104 default: 24105 /* An ioctl aborted through a conn close would take this path */ 24106 break; 24107 } 24108 24109 /* 24110 * The refhold placed at the start of the ioctl is released here. 24111 */ 24112 if (connp != NULL) 24113 CONN_OPER_PENDING_DONE(connp); 24114 24115 /* 24116 * If the ioctl were an exclusive ioctl it would have set 24117 * IPIF_CHANGING at the start of the ioctl which is undone here. 24118 */ 24119 if (ipif != NULL) { 24120 mutex_enter(&(ipif)->ipif_ill->ill_lock); 24121 ipif->ipif_state_flags &= ~IPIF_CHANGING; 24122 mutex_exit(&(ipif)->ipif_ill->ill_lock); 24123 } 24124 24125 /* 24126 * Clear the current ipif in the ipsq at the completion of the ioctl. 24127 * Note that a non-null ipsq_current_ipif prevents new ioctls from 24128 * entering the ipsq 24129 */ 24130 if (ipsq != NULL) { 24131 mutex_enter(&ipsq->ipsq_lock); 24132 ipsq->ipsq_current_ipif = NULL; 24133 mutex_exit(&ipsq->ipsq_lock); 24134 } 24135 } 24136 24137 /* 24138 * This is called from ip_wput_nondata to resume a deferred TCP bind. 24139 */ 24140 /* ARGSUSED */ 24141 void 24142 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 24143 { 24144 conn_t *connp = arg; 24145 tcp_t *tcp; 24146 24147 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 24148 tcp = connp->conn_tcp; 24149 24150 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 24151 freemsg(mp); 24152 else 24153 tcp_rput_other(tcp, mp); 24154 CONN_OPER_PENDING_DONE(connp); 24155 } 24156 24157 /* Called from ip_wput for all non data messages */ 24158 /* ARGSUSED */ 24159 void 24160 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 24161 { 24162 mblk_t *mp1; 24163 ire_t *ire; 24164 ill_t *ill; 24165 struct iocblk *iocp; 24166 ip_ioctl_cmd_t *ipip; 24167 cred_t *cr; 24168 conn_t *connp = NULL; 24169 int cmd, err; 24170 24171 if (CONN_Q(q)) 24172 connp = Q_TO_CONN(q); 24173 24174 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 24175 24176 /* Check if it is a queue to /dev/sctp. */ 24177 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 24178 connp->conn_rq == NULL) { 24179 sctp_wput(q, mp); 24180 return; 24181 } 24182 24183 switch (DB_TYPE(mp)) { 24184 case M_IOCTL: 24185 /* 24186 * IOCTL processing begins in ip_sioctl_copyin_setup which 24187 * will arrange to copy in associated control structures. 24188 */ 24189 ip_sioctl_copyin_setup(q, mp); 24190 return; 24191 case M_IOCDATA: 24192 /* 24193 * Ensure that this is associated with one of our trans- 24194 * parent ioctls. If it's not ours, discard it if we're 24195 * running as a driver, or pass it on if we're a module. 24196 */ 24197 iocp = (struct iocblk *)mp->b_rptr; 24198 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24199 if (ipip == NULL) { 24200 if (q->q_next == NULL) { 24201 goto nak; 24202 } else { 24203 putnext(q, mp); 24204 } 24205 return; 24206 } else if ((q->q_next != NULL) && 24207 !(ipip->ipi_flags & IPI_MODOK)) { 24208 /* 24209 * the ioctl is one we recognise, but is not 24210 * consumed by IP as a module, pass M_IOCDATA 24211 * for processing downstream, but only for 24212 * common Streams ioctls. 24213 */ 24214 if (ipip->ipi_flags & IPI_PASS_DOWN) { 24215 putnext(q, mp); 24216 return; 24217 } else { 24218 goto nak; 24219 } 24220 } 24221 24222 /* IOCTL continuation following copyin or copyout. */ 24223 if (mi_copy_state(q, mp, NULL) == -1) { 24224 /* 24225 * The copy operation failed. mi_copy_state already 24226 * cleaned up, so we're out of here. 24227 */ 24228 return; 24229 } 24230 /* 24231 * If we just completed a copy in, we become writer and 24232 * continue processing in ip_sioctl_copyin_done. If it 24233 * was a copy out, we call mi_copyout again. If there is 24234 * nothing more to copy out, it will complete the IOCTL. 24235 */ 24236 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 24237 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 24238 mi_copy_done(q, mp, EPROTO); 24239 return; 24240 } 24241 /* 24242 * Check for cases that need more copying. A return 24243 * value of 0 means a second copyin has been started, 24244 * so we return; a return value of 1 means no more 24245 * copying is needed, so we continue. 24246 */ 24247 cmd = iocp->ioc_cmd; 24248 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 24249 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 24250 MI_COPY_COUNT(mp) == 1) { 24251 if (ip_copyin_msfilter(q, mp) == 0) 24252 return; 24253 } 24254 /* 24255 * Refhold the conn, till the ioctl completes. This is 24256 * needed in case the ioctl ends up in the pending mp 24257 * list. Every mp in the ill_pending_mp list and 24258 * the ipsq_pending_mp must have a refhold on the conn 24259 * to resume processing. The refhold is released when 24260 * the ioctl completes. (normally or abnormally) 24261 * In all cases ip_ioctl_finish is called to finish 24262 * the ioctl. 24263 */ 24264 if (connp != NULL) { 24265 /* This is not a reentry */ 24266 ASSERT(ipsq == NULL); 24267 CONN_INC_REF(connp); 24268 } else { 24269 if (!(ipip->ipi_flags & IPI_MODOK)) { 24270 mi_copy_done(q, mp, EINVAL); 24271 return; 24272 } 24273 } 24274 24275 ip_process_ioctl(ipsq, q, mp, ipip); 24276 24277 } else { 24278 mi_copyout(q, mp); 24279 } 24280 return; 24281 nak: 24282 iocp->ioc_error = EINVAL; 24283 mp->b_datap->db_type = M_IOCNAK; 24284 iocp->ioc_count = 0; 24285 qreply(q, mp); 24286 return; 24287 24288 case M_IOCNAK: 24289 /* 24290 * The only way we could get here is if a resolver didn't like 24291 * an IOCTL we sent it. This shouldn't happen. 24292 */ 24293 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 24294 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 24295 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 24296 freemsg(mp); 24297 return; 24298 case M_IOCACK: 24299 /* Finish socket ioctls passed through to ARP. */ 24300 ip_sioctl_iocack(q, mp); 24301 return; 24302 case M_FLUSH: 24303 if (*mp->b_rptr & FLUSHW) 24304 flushq(q, FLUSHALL); 24305 if (q->q_next) { 24306 /* 24307 * M_FLUSH is sent up to IP by some drivers during 24308 * unbind. ip_rput has already replied to it. We are 24309 * here for the M_FLUSH that we originated in IP 24310 * before sending the unbind request to the driver. 24311 * Just free it as we don't queue packets in IP 24312 * on the write side of the device instance. 24313 */ 24314 freemsg(mp); 24315 return; 24316 } 24317 if (*mp->b_rptr & FLUSHR) { 24318 *mp->b_rptr &= ~FLUSHW; 24319 qreply(q, mp); 24320 return; 24321 } 24322 freemsg(mp); 24323 return; 24324 case IRE_DB_REQ_TYPE: 24325 /* An Upper Level Protocol wants a copy of an IRE. */ 24326 ip_ire_req(q, mp); 24327 return; 24328 case M_CTL: 24329 /* M_CTL messages are used by ARP to tell us things. */ 24330 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 24331 break; 24332 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 24333 case AR_ENTRY_SQUERY: 24334 ip_wput_ctl(q, mp); 24335 return; 24336 case AR_CLIENT_NOTIFY: 24337 ip_arp_news(q, mp); 24338 return; 24339 case AR_DLPIOP_DONE: 24340 ASSERT(q->q_next != NULL); 24341 ill = (ill_t *)q->q_ptr; 24342 /* qwriter_ip releases the refhold */ 24343 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 24344 ill_refhold(ill); 24345 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 24346 CUR_OP, B_FALSE); 24347 return; 24348 case AR_ARP_CLOSING: 24349 /* 24350 * ARP (above us) is closing. If no ARP bringup is 24351 * currently pending, ack the message so that ARP 24352 * can complete its close. Also mark ill_arp_closing 24353 * so that new ARP bringups will fail. If any 24354 * ARP bringup is currently in progress, we will 24355 * ack this when the current ARP bringup completes. 24356 */ 24357 ASSERT(q->q_next != NULL); 24358 ill = (ill_t *)q->q_ptr; 24359 mutex_enter(&ill->ill_lock); 24360 ill->ill_arp_closing = 1; 24361 if (!ill->ill_arp_bringup_pending) { 24362 mutex_exit(&ill->ill_lock); 24363 qreply(q, mp); 24364 } else { 24365 mutex_exit(&ill->ill_lock); 24366 freemsg(mp); 24367 } 24368 return; 24369 default: 24370 break; 24371 } 24372 break; 24373 case M_PROTO: 24374 case M_PCPROTO: 24375 /* 24376 * The only PROTO messages we expect are ULP binds and 24377 * copies of option negotiation acknowledgements. 24378 */ 24379 switch (((union T_primitives *)mp->b_rptr)->type) { 24380 case O_T_BIND_REQ: 24381 case T_BIND_REQ: { 24382 /* Request can get queued in bind */ 24383 ASSERT(connp != NULL); 24384 /* 24385 * Both TCP and UDP call ip_bind_{v4,v6}() directly 24386 * instead of going through this path. We only get 24387 * here in the following cases: 24388 * 24389 * a. Bind retries, where ipsq is non-NULL. 24390 * b. T_BIND_REQ is issued from non TCP/UDP 24391 * transport, e.g. icmp for raw socket, 24392 * in which case ipsq will be NULL. 24393 */ 24394 ASSERT(ipsq != NULL || 24395 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 24396 24397 /* Don't increment refcnt if this is a re-entry */ 24398 if (ipsq == NULL) 24399 CONN_INC_REF(connp); 24400 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 24401 connp, NULL) : ip_bind_v4(q, mp, connp); 24402 if (mp == NULL) 24403 return; 24404 if (IPCL_IS_TCP(connp)) { 24405 /* 24406 * In the case of TCP endpoint we 24407 * come here only for bind retries 24408 */ 24409 ASSERT(ipsq != NULL); 24410 CONN_INC_REF(connp); 24411 squeue_fill(connp->conn_sqp, mp, 24412 ip_resume_tcp_bind, connp, 24413 SQTAG_BIND_RETRY); 24414 return; 24415 } else if (IPCL_IS_UDP(connp)) { 24416 /* 24417 * In the case of UDP endpoint we 24418 * come here only for bind retries 24419 */ 24420 ASSERT(ipsq != NULL); 24421 udp_resume_bind(connp, mp); 24422 return; 24423 } 24424 qreply(q, mp); 24425 CONN_OPER_PENDING_DONE(connp); 24426 return; 24427 } 24428 case T_SVR4_OPTMGMT_REQ: 24429 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 24430 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 24431 24432 ASSERT(connp != NULL); 24433 if (!snmpcom_req(q, mp, ip_snmp_set, 24434 ip_snmp_get, cr)) { 24435 /* 24436 * Call svr4_optcom_req so that it can 24437 * generate the ack. We don't come here 24438 * if this operation is being restarted. 24439 * ip_restart_optmgmt will drop the conn ref. 24440 * In the case of ipsec option after the ipsec 24441 * load is complete conn_restart_ipsec_waiter 24442 * drops the conn ref. 24443 */ 24444 ASSERT(ipsq == NULL); 24445 CONN_INC_REF(connp); 24446 if (ip_check_for_ipsec_opt(q, mp)) 24447 return; 24448 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 24449 if (err != EINPROGRESS) { 24450 /* Operation is done */ 24451 CONN_OPER_PENDING_DONE(connp); 24452 } 24453 } 24454 return; 24455 case T_OPTMGMT_REQ: 24456 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 24457 /* 24458 * Note: No snmpcom_req support through new 24459 * T_OPTMGMT_REQ. 24460 * Call tpi_optcom_req so that it can 24461 * generate the ack. 24462 */ 24463 ASSERT(connp != NULL); 24464 ASSERT(ipsq == NULL); 24465 /* 24466 * We don't come here for restart. ip_restart_optmgmt 24467 * will drop the conn ref. In the case of ipsec option 24468 * after the ipsec load is complete 24469 * conn_restart_ipsec_waiter drops the conn ref. 24470 */ 24471 CONN_INC_REF(connp); 24472 if (ip_check_for_ipsec_opt(q, mp)) 24473 return; 24474 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 24475 if (err != EINPROGRESS) { 24476 /* Operation is done */ 24477 CONN_OPER_PENDING_DONE(connp); 24478 } 24479 return; 24480 case T_UNBIND_REQ: 24481 mp = ip_unbind(q, mp); 24482 qreply(q, mp); 24483 return; 24484 default: 24485 /* 24486 * Have to drop any DLPI messages coming down from 24487 * arp (such as an info_req which would cause ip 24488 * to receive an extra info_ack if it was passed 24489 * through. 24490 */ 24491 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 24492 (int)*(uint_t *)mp->b_rptr)); 24493 freemsg(mp); 24494 return; 24495 } 24496 /* NOTREACHED */ 24497 case IRE_DB_TYPE: { 24498 nce_t *nce; 24499 ill_t *ill; 24500 in6_addr_t gw_addr_v6; 24501 24502 24503 /* 24504 * This is a response back from a resolver. It 24505 * consists of a message chain containing: 24506 * IRE_MBLK-->LL_HDR_MBLK->pkt 24507 * The IRE_MBLK is the one we allocated in ip_newroute. 24508 * The LL_HDR_MBLK is the DLPI header to use to get 24509 * the attached packet, and subsequent ones for the 24510 * same destination, transmitted. 24511 */ 24512 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 24513 break; 24514 /* 24515 * First, check to make sure the resolution succeeded. 24516 * If it failed, the second mblk will be empty. 24517 * If it is, free the chain, dropping the packet. 24518 * (We must ire_delete the ire; that frees the ire mblk) 24519 * We're doing this now to support PVCs for ATM; it's 24520 * a partial xresolv implementation. When we fully implement 24521 * xresolv interfaces, instead of freeing everything here 24522 * we'll initiate neighbor discovery. 24523 * 24524 * For v4 (ARP and other external resolvers) the resolver 24525 * frees the message, so no check is needed. This check 24526 * is required, though, for a full xresolve implementation. 24527 * Including this code here now both shows how external 24528 * resolvers can NACK a resolution request using an 24529 * existing design that has no specific provisions for NACKs, 24530 * and also takes into account that the current non-ARP 24531 * external resolver has been coded to use this method of 24532 * NACKing for all IPv6 (xresolv) cases, 24533 * whether our xresolv implementation is complete or not. 24534 * 24535 */ 24536 ire = (ire_t *)mp->b_rptr; 24537 ill = ire_to_ill(ire); 24538 mp1 = mp->b_cont; /* dl_unitdata_req */ 24539 if (mp1->b_rptr == mp1->b_wptr) { 24540 if (ire->ire_ipversion == IPV6_VERSION) { 24541 /* 24542 * XRESOLV interface. 24543 */ 24544 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24545 mutex_enter(&ire->ire_lock); 24546 gw_addr_v6 = ire->ire_gateway_addr_v6; 24547 mutex_exit(&ire->ire_lock); 24548 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24549 nce = ndp_lookup(ill, 24550 &ire->ire_addr_v6, B_FALSE); 24551 } else { 24552 nce = ndp_lookup(ill, &gw_addr_v6, 24553 B_FALSE); 24554 } 24555 if (nce != NULL) { 24556 nce_resolv_failed(nce); 24557 ndp_delete(nce); 24558 NCE_REFRELE(nce); 24559 } 24560 } 24561 mp->b_cont = NULL; 24562 freemsg(mp1); /* frees the pkt as well */ 24563 ire_delete((ire_t *)mp->b_rptr); 24564 return; 24565 } 24566 /* 24567 * Split them into IRE_MBLK and pkt and feed it into 24568 * ire_add_then_send. Then in ire_add_then_send 24569 * the IRE will be added, and then the packet will be 24570 * run back through ip_wput. This time it will make 24571 * it to the wire. 24572 */ 24573 mp->b_cont = NULL; 24574 mp = mp1->b_cont; /* now, mp points to pkt */ 24575 mp1->b_cont = NULL; 24576 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 24577 if (ire->ire_ipversion == IPV6_VERSION) { 24578 /* 24579 * XRESOLV interface. Find the nce and put a copy 24580 * of the dl_unitdata_req in nce_res_mp 24581 */ 24582 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24583 mutex_enter(&ire->ire_lock); 24584 gw_addr_v6 = ire->ire_gateway_addr_v6; 24585 mutex_exit(&ire->ire_lock); 24586 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24587 nce = ndp_lookup(ill, &ire->ire_addr_v6, 24588 B_FALSE); 24589 } else { 24590 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 24591 } 24592 if (nce != NULL) { 24593 /* 24594 * We have to protect nce_res_mp here 24595 * from being accessed by other threads 24596 * while we change the mblk pointer. 24597 * Other functions will also lock the nce when 24598 * accessing nce_res_mp. 24599 * 24600 * The reason we change the mblk pointer 24601 * here rather than copying the resolved address 24602 * into the template is that, unlike with 24603 * ethernet, we have no guarantee that the 24604 * resolved address length will be 24605 * smaller than or equal to the lla length 24606 * with which the template was allocated, 24607 * (for ethernet, they're equal) 24608 * so we have to use the actual resolved 24609 * address mblk - which holds the real 24610 * dl_unitdata_req with the resolved address. 24611 * 24612 * Doing this is the same behavior as was 24613 * previously used in the v4 ARP case. 24614 */ 24615 mutex_enter(&nce->nce_lock); 24616 if (nce->nce_res_mp != NULL) 24617 freemsg(nce->nce_res_mp); 24618 nce->nce_res_mp = mp1; 24619 mutex_exit(&nce->nce_lock); 24620 /* 24621 * We do a fastpath probe here because 24622 * we have resolved the address without 24623 * using Neighbor Discovery. 24624 * In the non-XRESOLV v6 case, the fastpath 24625 * probe is done right after neighbor 24626 * discovery completes. 24627 */ 24628 if (nce->nce_res_mp != NULL) { 24629 int res; 24630 nce_fastpath_list_add(nce); 24631 res = ill_fastpath_probe(ill, 24632 nce->nce_res_mp); 24633 if (res != 0 && res != EAGAIN) 24634 nce_fastpath_list_delete(nce); 24635 } 24636 24637 ire_add_then_send(q, ire, mp); 24638 /* 24639 * Now we have to clean out any packets 24640 * that may have been queued on the nce 24641 * while it was waiting for address resolution 24642 * to complete. 24643 */ 24644 mutex_enter(&nce->nce_lock); 24645 mp1 = nce->nce_qd_mp; 24646 nce->nce_qd_mp = NULL; 24647 mutex_exit(&nce->nce_lock); 24648 while (mp1 != NULL) { 24649 mblk_t *nxt_mp; 24650 queue_t *fwdq = NULL; 24651 ill_t *inbound_ill; 24652 uint_t ifindex; 24653 24654 nxt_mp = mp1->b_next; 24655 mp1->b_next = NULL; 24656 /* 24657 * Retrieve ifindex stored in 24658 * ip_rput_data_v6() 24659 */ 24660 ifindex = 24661 (uint_t)(uintptr_t)mp1->b_prev; 24662 inbound_ill = 24663 ill_lookup_on_ifindex(ifindex, 24664 B_TRUE, NULL, NULL, NULL, 24665 NULL); 24666 mp1->b_prev = NULL; 24667 if (inbound_ill != NULL) 24668 fwdq = inbound_ill->ill_rq; 24669 24670 if (fwdq != NULL) { 24671 put(fwdq, mp1); 24672 ill_refrele(inbound_ill); 24673 } else 24674 put(WR(ill->ill_rq), mp1); 24675 mp1 = nxt_mp; 24676 } 24677 NCE_REFRELE(nce); 24678 } else { /* nce is NULL; clean up */ 24679 ire_delete(ire); 24680 freemsg(mp); 24681 freemsg(mp1); 24682 return; 24683 } 24684 } else { 24685 ire->ire_dlureq_mp = mp1; 24686 ire_add_then_send(q, ire, mp); 24687 } 24688 return; /* All is well, the packet has been sent. */ 24689 } 24690 default: 24691 break; 24692 } 24693 if (q->q_next) { 24694 putnext(q, mp); 24695 } else 24696 freemsg(mp); 24697 } 24698 24699 /* 24700 * Process IP options in an outbound packet. Modify the destination if there 24701 * is a source route option. 24702 * Returns non-zero if something fails in which case an ICMP error has been 24703 * sent and mp freed. 24704 */ 24705 static int 24706 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 24707 boolean_t mctl_present, zoneid_t zoneid) 24708 { 24709 ipoptp_t opts; 24710 uchar_t *opt; 24711 uint8_t optval; 24712 uint8_t optlen; 24713 ipaddr_t dst; 24714 intptr_t code = 0; 24715 mblk_t *mp; 24716 ire_t *ire = NULL; 24717 24718 ip2dbg(("ip_wput_options\n")); 24719 mp = ipsec_mp; 24720 if (mctl_present) { 24721 mp = ipsec_mp->b_cont; 24722 } 24723 24724 dst = ipha->ipha_dst; 24725 for (optval = ipoptp_first(&opts, ipha); 24726 optval != IPOPT_EOL; 24727 optval = ipoptp_next(&opts)) { 24728 opt = opts.ipoptp_cur; 24729 optlen = opts.ipoptp_len; 24730 ip2dbg(("ip_wput_options: opt %d, len %d\n", 24731 optval, optlen)); 24732 switch (optval) { 24733 uint32_t off; 24734 case IPOPT_SSRR: 24735 case IPOPT_LSRR: 24736 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24737 ip1dbg(( 24738 "ip_wput_options: bad option offset\n")); 24739 code = (char *)&opt[IPOPT_OLEN] - 24740 (char *)ipha; 24741 goto param_prob; 24742 } 24743 off = opt[IPOPT_OFFSET]; 24744 ip1dbg(("ip_wput_options: next hop 0x%x\n", 24745 ntohl(dst))); 24746 /* 24747 * For strict: verify that dst is directly 24748 * reachable. 24749 */ 24750 if (optval == IPOPT_SSRR) { 24751 ire = ire_ftable_lookup(dst, 0, 0, 24752 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 24753 MATCH_IRE_TYPE); 24754 if (ire == NULL) { 24755 ip1dbg(("ip_wput_options: SSRR not" 24756 " directly reachable: 0x%x\n", 24757 ntohl(dst))); 24758 goto bad_src_route; 24759 } 24760 ire_refrele(ire); 24761 } 24762 break; 24763 case IPOPT_RR: 24764 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24765 ip1dbg(( 24766 "ip_wput_options: bad option offset\n")); 24767 code = (char *)&opt[IPOPT_OLEN] - 24768 (char *)ipha; 24769 goto param_prob; 24770 } 24771 break; 24772 case IPOPT_TS: 24773 /* 24774 * Verify that length >=5 and that there is either 24775 * room for another timestamp or that the overflow 24776 * counter is not maxed out. 24777 */ 24778 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 24779 if (optlen < IPOPT_MINLEN_IT) { 24780 goto param_prob; 24781 } 24782 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24783 ip1dbg(( 24784 "ip_wput_options: bad option offset\n")); 24785 code = (char *)&opt[IPOPT_OFFSET] - 24786 (char *)ipha; 24787 goto param_prob; 24788 } 24789 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24790 case IPOPT_TS_TSONLY: 24791 off = IPOPT_TS_TIMELEN; 24792 break; 24793 case IPOPT_TS_TSANDADDR: 24794 case IPOPT_TS_PRESPEC: 24795 case IPOPT_TS_PRESPEC_RFC791: 24796 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24797 break; 24798 default: 24799 code = (char *)&opt[IPOPT_POS_OV_FLG] - 24800 (char *)ipha; 24801 goto param_prob; 24802 } 24803 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 24804 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 24805 /* 24806 * No room and the overflow counter is 15 24807 * already. 24808 */ 24809 goto param_prob; 24810 } 24811 break; 24812 } 24813 } 24814 24815 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 24816 return (0); 24817 24818 ip1dbg(("ip_wput_options: error processing IP options.")); 24819 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 24820 24821 param_prob: 24822 /* 24823 * Since ip_wput() isn't close to finished, we fill 24824 * in enough of the header for credible error reporting. 24825 */ 24826 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24827 /* Failed */ 24828 freemsg(ipsec_mp); 24829 return (-1); 24830 } 24831 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 24832 return (-1); 24833 24834 bad_src_route: 24835 /* 24836 * Since ip_wput() isn't close to finished, we fill 24837 * in enough of the header for credible error reporting. 24838 */ 24839 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24840 /* Failed */ 24841 freemsg(ipsec_mp); 24842 return (-1); 24843 } 24844 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 24845 return (-1); 24846 } 24847 24848 /* 24849 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 24850 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 24851 * thru /etc/system. 24852 */ 24853 #define CONN_MAXDRAINCNT 64 24854 24855 static void 24856 conn_drain_init(void) 24857 { 24858 int i; 24859 24860 conn_drain_list_cnt = conn_drain_nthreads; 24861 24862 if ((conn_drain_list_cnt == 0) || 24863 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 24864 /* 24865 * Default value of the number of drainers is the 24866 * number of cpus, subject to maximum of 8 drainers. 24867 */ 24868 if (boot_max_ncpus != -1) 24869 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 24870 else 24871 conn_drain_list_cnt = MIN(max_ncpus, 8); 24872 } 24873 24874 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 24875 KM_SLEEP); 24876 24877 for (i = 0; i < conn_drain_list_cnt; i++) { 24878 mutex_init(&conn_drain_list[i].idl_lock, NULL, 24879 MUTEX_DEFAULT, NULL); 24880 } 24881 } 24882 24883 static void 24884 conn_drain_fini(void) 24885 { 24886 int i; 24887 24888 for (i = 0; i < conn_drain_list_cnt; i++) 24889 mutex_destroy(&conn_drain_list[i].idl_lock); 24890 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 24891 conn_drain_list = NULL; 24892 } 24893 24894 /* 24895 * Note: For an overview of how flowcontrol is handled in IP please see the 24896 * IP Flowcontrol notes at the top of this file. 24897 * 24898 * Flow control has blocked us from proceeding. Insert the given conn in one 24899 * of the conn drain lists. These conn wq's will be qenabled later on when 24900 * STREAMS flow control does a backenable. conn_walk_drain will enable 24901 * the first conn in each of these drain lists. Each of these qenabled conns 24902 * in turn enables the next in the list, after it runs, or when it closes, 24903 * thus sustaining the drain process. 24904 * 24905 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 24906 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 24907 * running at any time, on a given conn, since there can be only 1 service proc 24908 * running on a queue at any time. 24909 */ 24910 void 24911 conn_drain_insert(conn_t *connp) 24912 { 24913 idl_t *idl; 24914 uint_t index; 24915 24916 mutex_enter(&connp->conn_lock); 24917 if (connp->conn_state_flags & CONN_CLOSING) { 24918 /* 24919 * The conn is closing as a result of which CONN_CLOSING 24920 * is set. Return. 24921 */ 24922 mutex_exit(&connp->conn_lock); 24923 return; 24924 } else if (connp->conn_idl == NULL) { 24925 /* 24926 * Assign the next drain list round robin. We dont' use 24927 * a lock, and thus it may not be strictly round robin. 24928 * Atomicity of load/stores is enough to make sure that 24929 * conn_drain_list_index is always within bounds. 24930 */ 24931 index = conn_drain_list_index; 24932 ASSERT(index < conn_drain_list_cnt); 24933 connp->conn_idl = &conn_drain_list[index]; 24934 index++; 24935 if (index == conn_drain_list_cnt) 24936 index = 0; 24937 conn_drain_list_index = index; 24938 } 24939 mutex_exit(&connp->conn_lock); 24940 24941 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 24942 if ((connp->conn_drain_prev != NULL) || 24943 (connp->conn_state_flags & CONN_CLOSING)) { 24944 /* 24945 * The conn is already in the drain list, OR 24946 * the conn is closing. We need to check again for 24947 * the closing case again since close can happen 24948 * after we drop the conn_lock, and before we 24949 * acquire the CONN_DRAIN_LIST_LOCK. 24950 */ 24951 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24952 return; 24953 } else { 24954 idl = connp->conn_idl; 24955 } 24956 24957 /* 24958 * The conn is not in the drain list. Insert it at the 24959 * tail of the drain list. The drain list is circular 24960 * and doubly linked. idl_conn points to the 1st element 24961 * in the list. 24962 */ 24963 if (idl->idl_conn == NULL) { 24964 idl->idl_conn = connp; 24965 connp->conn_drain_next = connp; 24966 connp->conn_drain_prev = connp; 24967 } else { 24968 conn_t *head = idl->idl_conn; 24969 24970 connp->conn_drain_next = head; 24971 connp->conn_drain_prev = head->conn_drain_prev; 24972 head->conn_drain_prev->conn_drain_next = connp; 24973 head->conn_drain_prev = connp; 24974 } 24975 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24976 } 24977 24978 /* 24979 * This conn is closing, and we are called from ip_close. OR 24980 * This conn has been serviced by ip_wsrv, and we need to do the tail 24981 * processing. 24982 * If this conn is part of the drain list, we may need to sustain the drain 24983 * process by qenabling the next conn in the drain list. We may also need to 24984 * remove this conn from the list, if it is done. 24985 */ 24986 static void 24987 conn_drain_tail(conn_t *connp, boolean_t closing) 24988 { 24989 idl_t *idl; 24990 24991 /* 24992 * connp->conn_idl is stable at this point, and no lock is needed 24993 * to check it. If we are called from ip_close, close has already 24994 * set CONN_CLOSING, thus freezing the value of conn_idl, and 24995 * called us only because conn_idl is non-null. If we are called thru 24996 * service, conn_idl could be null, but it cannot change because 24997 * service is single-threaded per queue, and there cannot be another 24998 * instance of service trying to call conn_drain_insert on this conn 24999 * now. 25000 */ 25001 ASSERT(!closing || (connp->conn_idl != NULL)); 25002 25003 /* 25004 * If connp->conn_idl is null, the conn has not been inserted into any 25005 * drain list even once since creation of the conn. Just return. 25006 */ 25007 if (connp->conn_idl == NULL) 25008 return; 25009 25010 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25011 25012 if (connp->conn_drain_prev == NULL) { 25013 /* This conn is currently not in the drain list. */ 25014 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25015 return; 25016 } 25017 idl = connp->conn_idl; 25018 if (idl->idl_conn_draining == connp) { 25019 /* 25020 * This conn is the current drainer. If this is the last conn 25021 * in the drain list, we need to do more checks, in the 'if' 25022 * below. Otherwwise we need to just qenable the next conn, 25023 * to sustain the draining, and is handled in the 'else' 25024 * below. 25025 */ 25026 if (connp->conn_drain_next == idl->idl_conn) { 25027 /* 25028 * This conn is the last in this list. This round 25029 * of draining is complete. If idl_repeat is set, 25030 * it means another flow enabling has happened from 25031 * the driver/streams and we need to another round 25032 * of draining. 25033 * If there are more than 2 conns in the drain list, 25034 * do a left rotate by 1, so that all conns except the 25035 * conn at the head move towards the head by 1, and the 25036 * the conn at the head goes to the tail. This attempts 25037 * a more even share for all queues that are being 25038 * drained. 25039 */ 25040 if ((connp->conn_drain_next != connp) && 25041 (idl->idl_conn->conn_drain_next != connp)) { 25042 idl->idl_conn = idl->idl_conn->conn_drain_next; 25043 } 25044 if (idl->idl_repeat) { 25045 qenable(idl->idl_conn->conn_wq); 25046 idl->idl_conn_draining = idl->idl_conn; 25047 idl->idl_repeat = 0; 25048 } else { 25049 idl->idl_conn_draining = NULL; 25050 } 25051 } else { 25052 /* 25053 * If the next queue that we are now qenable'ing, 25054 * is closing, it will remove itself from this list 25055 * and qenable the subsequent queue in ip_close(). 25056 * Serialization is acheived thru idl_lock. 25057 */ 25058 qenable(connp->conn_drain_next->conn_wq); 25059 idl->idl_conn_draining = connp->conn_drain_next; 25060 } 25061 } 25062 if (!connp->conn_did_putbq || closing) { 25063 /* 25064 * Remove ourself from the drain list, if we did not do 25065 * a putbq, or if the conn is closing. 25066 * Note: It is possible that q->q_first is non-null. It means 25067 * that these messages landed after we did a enableok() in 25068 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 25069 * service them. 25070 */ 25071 if (connp->conn_drain_next == connp) { 25072 /* Singleton in the list */ 25073 ASSERT(connp->conn_drain_prev == connp); 25074 idl->idl_conn = NULL; 25075 idl->idl_conn_draining = NULL; 25076 } else { 25077 connp->conn_drain_prev->conn_drain_next = 25078 connp->conn_drain_next; 25079 connp->conn_drain_next->conn_drain_prev = 25080 connp->conn_drain_prev; 25081 if (idl->idl_conn == connp) 25082 idl->idl_conn = connp->conn_drain_next; 25083 ASSERT(idl->idl_conn_draining != connp); 25084 25085 } 25086 connp->conn_drain_next = NULL; 25087 connp->conn_drain_prev = NULL; 25088 } 25089 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25090 } 25091 25092 /* 25093 * Write service routine. Shared perimeter entry point. 25094 * ip_wsrv can be called in any of the following ways. 25095 * 1. The device queue's messages has fallen below the low water mark 25096 * and STREAMS has backenabled the ill_wq. We walk thru all the 25097 * the drain lists and backenable the first conn in each list. 25098 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 25099 * qenabled non-tcp upper layers. We start dequeing messages and call 25100 * ip_wput for each message. 25101 */ 25102 25103 void 25104 ip_wsrv(queue_t *q) 25105 { 25106 conn_t *connp; 25107 ill_t *ill; 25108 mblk_t *mp; 25109 25110 if (q->q_next) { 25111 ill = (ill_t *)q->q_ptr; 25112 if (ill->ill_state_flags == 0) { 25113 /* 25114 * The device flow control has opened up. 25115 * Walk through conn drain lists and qenable the 25116 * first conn in each list. This makes sense only 25117 * if the stream is fully plumbed and setup. 25118 * Hence the if check above. 25119 */ 25120 ip1dbg(("ip_wsrv: walking\n")); 25121 conn_walk_drain(); 25122 } 25123 return; 25124 } 25125 25126 connp = Q_TO_CONN(q); 25127 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 25128 25129 /* 25130 * 1. Set conn_draining flag to signal that service is active. 25131 * 25132 * 2. ip_output determines whether it has been called from service, 25133 * based on the last parameter. If it is IP_WSRV it concludes it 25134 * has been called from service. 25135 * 25136 * 3. Message ordering is preserved by the following logic. 25137 * i. A directly called ip_output (i.e. not thru service) will queue 25138 * the message at the tail, if conn_draining is set (i.e. service 25139 * is running) or if q->q_first is non-null. 25140 * 25141 * ii. If ip_output is called from service, and if ip_output cannot 25142 * putnext due to flow control, it does a putbq. 25143 * 25144 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 25145 * (causing an infinite loop). 25146 */ 25147 ASSERT(!connp->conn_did_putbq); 25148 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 25149 connp->conn_draining = 1; 25150 noenable(q); 25151 while ((mp = getq(q)) != NULL) { 25152 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 25153 if (connp->conn_did_putbq) { 25154 /* ip_wput did a putbq */ 25155 break; 25156 } 25157 } 25158 /* 25159 * At this point, a thread coming down from top, calling 25160 * ip_wput, may end up queueing the message. We have not yet 25161 * enabled the queue, so ip_wsrv won't be called again. 25162 * To avoid this race, check q->q_first again (in the loop) 25163 * If the other thread queued the message before we call 25164 * enableok(), we will catch it in the q->q_first check. 25165 * If the other thread queues the message after we call 25166 * enableok(), ip_wsrv will be called again by STREAMS. 25167 */ 25168 connp->conn_draining = 0; 25169 enableok(q); 25170 } 25171 25172 /* Enable the next conn for draining */ 25173 conn_drain_tail(connp, B_FALSE); 25174 25175 connp->conn_did_putbq = 0; 25176 } 25177 25178 /* 25179 * Walk the list of all conn's calling the function provided with the 25180 * specified argument for each. Note that this only walks conn's that 25181 * have been bound. 25182 * Applies to both IPv4 and IPv6. 25183 */ 25184 static void 25185 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 25186 { 25187 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 25188 func, arg, zoneid); 25189 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 25190 func, arg, zoneid); 25191 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 25192 func, arg, zoneid); 25193 conn_walk_fanout_table(ipcl_proto_fanout, 25194 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 25195 conn_walk_fanout_table(ipcl_proto_fanout_v6, 25196 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 25197 } 25198 25199 /* 25200 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 25201 * of conns that need to be drained, check if drain is already in progress. 25202 * If so set the idl_repeat bit, indicating that the last conn in the list 25203 * needs to reinitiate the drain once again, for the list. If drain is not 25204 * in progress for the list, initiate the draining, by qenabling the 1st 25205 * conn in the list. The drain is self-sustaining, each qenabled conn will 25206 * in turn qenable the next conn, when it is done/blocked/closing. 25207 */ 25208 static void 25209 conn_walk_drain(void) 25210 { 25211 int i; 25212 idl_t *idl; 25213 25214 IP_STAT(ip_conn_walk_drain); 25215 25216 for (i = 0; i < conn_drain_list_cnt; i++) { 25217 idl = &conn_drain_list[i]; 25218 mutex_enter(&idl->idl_lock); 25219 if (idl->idl_conn == NULL) { 25220 mutex_exit(&idl->idl_lock); 25221 continue; 25222 } 25223 /* 25224 * If this list is not being drained currently by 25225 * an ip_wsrv thread, start the process. 25226 */ 25227 if (idl->idl_conn_draining == NULL) { 25228 ASSERT(idl->idl_repeat == 0); 25229 qenable(idl->idl_conn->conn_wq); 25230 idl->idl_conn_draining = idl->idl_conn; 25231 } else { 25232 idl->idl_repeat = 1; 25233 } 25234 mutex_exit(&idl->idl_lock); 25235 } 25236 } 25237 25238 /* 25239 * Walk an conn hash table of `count' buckets, calling func for each entry. 25240 */ 25241 static void 25242 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 25243 zoneid_t zoneid) 25244 { 25245 conn_t *connp; 25246 25247 while (count-- > 0) { 25248 mutex_enter(&connfp->connf_lock); 25249 for (connp = connfp->connf_head; connp != NULL; 25250 connp = connp->conn_next) { 25251 if (zoneid == GLOBAL_ZONEID || 25252 zoneid == connp->conn_zoneid) { 25253 CONN_INC_REF(connp); 25254 mutex_exit(&connfp->connf_lock); 25255 (*func)(connp, arg); 25256 mutex_enter(&connfp->connf_lock); 25257 CONN_DEC_REF(connp); 25258 } 25259 } 25260 mutex_exit(&connfp->connf_lock); 25261 connfp++; 25262 } 25263 } 25264 25265 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 25266 static void 25267 conn_report1(conn_t *connp, void *mp) 25268 { 25269 char buf1[INET6_ADDRSTRLEN]; 25270 char buf2[INET6_ADDRSTRLEN]; 25271 uint_t print_len, buf_len; 25272 25273 ASSERT(connp != NULL); 25274 25275 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 25276 if (buf_len <= 0) 25277 return; 25278 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 25279 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 25280 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 25281 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 25282 "%5d %s/%05d %s/%05d\n", 25283 (void *)connp, (void *)CONNP_TO_RQ(connp), 25284 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 25285 buf1, connp->conn_lport, 25286 buf2, connp->conn_fport); 25287 if (print_len < buf_len) { 25288 ((mblk_t *)mp)->b_wptr += print_len; 25289 } else { 25290 ((mblk_t *)mp)->b_wptr += buf_len; 25291 } 25292 } 25293 25294 /* 25295 * Named Dispatch routine to produce a formatted report on all conns 25296 * that are listed in one of the fanout tables. 25297 * This report is accessed by using the ndd utility to "get" ND variable 25298 * "ip_conn_status". 25299 */ 25300 /* ARGSUSED */ 25301 static int 25302 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 25303 { 25304 (void) mi_mpprintf(mp, 25305 "CONN " MI_COL_HDRPAD_STR 25306 "rfq " MI_COL_HDRPAD_STR 25307 "stq " MI_COL_HDRPAD_STR 25308 " zone local remote"); 25309 25310 /* 25311 * Because of the ndd constraint, at most we can have 64K buffer 25312 * to put in all conn info. So to be more efficient, just 25313 * allocate a 64K buffer here, assuming we need that large buffer. 25314 * This should be OK as only privileged processes can do ndd /dev/ip. 25315 */ 25316 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 25317 /* The following may work even if we cannot get a large buf. */ 25318 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 25319 return (0); 25320 } 25321 25322 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 25323 return (0); 25324 } 25325 25326 /* 25327 * Determine if the ill and multicast aspects of that packets 25328 * "matches" the conn. 25329 */ 25330 boolean_t 25331 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 25332 zoneid_t zoneid) 25333 { 25334 ill_t *in_ill; 25335 boolean_t found; 25336 ipif_t *ipif; 25337 ire_t *ire; 25338 ipaddr_t dst, src; 25339 25340 dst = ipha->ipha_dst; 25341 src = ipha->ipha_src; 25342 25343 /* 25344 * conn_incoming_ill is set by IP_BOUND_IF which limits 25345 * unicast, broadcast and multicast reception to 25346 * conn_incoming_ill. conn_wantpacket itself is called 25347 * only for BROADCAST and multicast. 25348 * 25349 * 1) ip_rput supresses duplicate broadcasts if the ill 25350 * is part of a group. Hence, we should be receiving 25351 * just one copy of broadcast for the whole group. 25352 * Thus, if it is part of the group the packet could 25353 * come on any ill of the group and hence we need a 25354 * match on the group. Otherwise, match on ill should 25355 * be sufficient. 25356 * 25357 * 2) ip_rput does not suppress duplicate multicast packets. 25358 * If there are two interfaces in a ill group and we have 25359 * 2 applications (conns) joined a multicast group G on 25360 * both the interfaces, ilm_lookup_ill filter in ip_rput 25361 * will give us two packets because we join G on both the 25362 * interfaces rather than nominating just one interface 25363 * for receiving multicast like broadcast above. So, 25364 * we have to call ilg_lookup_ill to filter out duplicate 25365 * copies, if ill is part of a group. 25366 */ 25367 in_ill = connp->conn_incoming_ill; 25368 if (in_ill != NULL) { 25369 if (in_ill->ill_group == NULL) { 25370 if (in_ill != ill) 25371 return (B_FALSE); 25372 } else if (in_ill->ill_group != ill->ill_group) { 25373 return (B_FALSE); 25374 } 25375 } 25376 25377 if (!CLASSD(dst)) { 25378 if (connp->conn_zoneid == zoneid) 25379 return (B_TRUE); 25380 /* 25381 * The conn is in a different zone; we need to check that this 25382 * broadcast address is configured in the application's zone and 25383 * on one ill in the group. 25384 */ 25385 ipif = ipif_get_next_ipif(NULL, ill); 25386 if (ipif == NULL) 25387 return (B_FALSE); 25388 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 25389 connp->conn_zoneid, (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 25390 ipif_refrele(ipif); 25391 if (ire != NULL) { 25392 ire_refrele(ire); 25393 return (B_TRUE); 25394 } else { 25395 return (B_FALSE); 25396 } 25397 } 25398 25399 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 25400 connp->conn_zoneid == zoneid) { 25401 /* 25402 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 25403 * disabled, therefore we don't dispatch the multicast packet to 25404 * the sending zone. 25405 */ 25406 return (B_FALSE); 25407 } 25408 25409 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 25410 connp->conn_zoneid != zoneid) { 25411 /* 25412 * Multicast packet on the loopback interface: we only match 25413 * conns who joined the group in the specified zone. 25414 */ 25415 return (B_FALSE); 25416 } 25417 25418 if (connp->conn_multi_router) { 25419 /* multicast packet and multicast router socket: send up */ 25420 return (B_TRUE); 25421 } 25422 25423 mutex_enter(&connp->conn_lock); 25424 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 25425 mutex_exit(&connp->conn_lock); 25426 return (found); 25427 } 25428 25429 /* 25430 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 25431 */ 25432 /* ARGSUSED */ 25433 static void 25434 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 25435 { 25436 ill_t *ill = (ill_t *)q->q_ptr; 25437 mblk_t *mp1, *mp2; 25438 ipif_t *ipif; 25439 int err = 0; 25440 conn_t *connp = NULL; 25441 ipsq_t *ipsq; 25442 arc_t *arc; 25443 25444 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 25445 25446 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 25447 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 25448 25449 ASSERT(IAM_WRITER_ILL(ill)); 25450 mp2 = mp->b_cont; 25451 mp->b_cont = NULL; 25452 25453 /* 25454 * We have now received the arp bringup completion message 25455 * from ARP. Mark the arp bringup as done. Also if the arp 25456 * stream has already started closing, send up the AR_ARP_CLOSING 25457 * ack now since ARP is waiting in close for this ack. 25458 */ 25459 mutex_enter(&ill->ill_lock); 25460 ill->ill_arp_bringup_pending = 0; 25461 if (ill->ill_arp_closing) { 25462 mutex_exit(&ill->ill_lock); 25463 /* Let's reuse the mp for sending the ack */ 25464 arc = (arc_t *)mp->b_rptr; 25465 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 25466 arc->arc_cmd = AR_ARP_CLOSING; 25467 qreply(q, mp); 25468 } else { 25469 mutex_exit(&ill->ill_lock); 25470 freeb(mp); 25471 } 25472 25473 /* We should have an IOCTL waiting on this. */ 25474 ipsq = ill->ill_phyint->phyint_ipsq; 25475 ipif = ipsq->ipsq_pending_ipif; 25476 mp1 = ipsq_pending_mp_get(ipsq, &connp); 25477 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 25478 if (mp1 == NULL) { 25479 /* bringup was aborted by the user */ 25480 freemsg(mp2); 25481 return; 25482 } 25483 ASSERT(connp != NULL); 25484 q = CONNP_TO_WQ(connp); 25485 /* 25486 * If the DL_BIND_REQ fails, it is noted 25487 * in arc_name_offset. 25488 */ 25489 err = *((int *)mp2->b_rptr); 25490 if (err == 0) { 25491 if (ipif->ipif_isv6) { 25492 if ((err = ipif_up_done_v6(ipif)) != 0) 25493 ip0dbg(("ip_arp_done: init failed\n")); 25494 } else { 25495 if ((err = ipif_up_done(ipif)) != 0) 25496 ip0dbg(("ip_arp_done: init failed\n")); 25497 } 25498 } else { 25499 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 25500 } 25501 25502 freemsg(mp2); 25503 25504 if ((err == 0) && (ill->ill_up_ipifs)) { 25505 err = ill_up_ipifs(ill, q, mp1); 25506 if (err == EINPROGRESS) 25507 return; 25508 } 25509 25510 if (ill->ill_up_ipifs) { 25511 ill_group_cleanup(ill); 25512 } 25513 25514 /* 25515 * The ioctl must complete now without EINPROGRESS 25516 * since ipsq_pending_mp_get has removed the ioctl mblk 25517 * from ipsq_pending_mp. Otherwise the ioctl will be 25518 * stuck for ever in the ipsq. 25519 */ 25520 ASSERT(err != EINPROGRESS); 25521 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 25522 } 25523 25524 /* Allocate the private structure */ 25525 static int 25526 ip_priv_alloc(void **bufp) 25527 { 25528 void *buf; 25529 25530 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 25531 return (ENOMEM); 25532 25533 *bufp = buf; 25534 return (0); 25535 } 25536 25537 /* Function to delete the private structure */ 25538 void 25539 ip_priv_free(void *buf) 25540 { 25541 ASSERT(buf != NULL); 25542 kmem_free(buf, sizeof (ip_priv_t)); 25543 } 25544 25545 /* 25546 * The entry point for IPPF processing. 25547 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 25548 * routine just returns. 25549 * 25550 * When called, ip_process generates an ipp_packet_t structure 25551 * which holds the state information for this packet and invokes the 25552 * the classifier (via ipp_packet_process). The classification, depending on 25553 * configured filters, results in a list of actions for this packet. Invoking 25554 * an action may cause the packet to be dropped, in which case the resulting 25555 * mblk (*mpp) is NULL. proc indicates the callout position for 25556 * this packet and ill_index is the interface this packet on or will leave 25557 * on (inbound and outbound resp.). 25558 */ 25559 void 25560 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 25561 { 25562 mblk_t *mp; 25563 ip_priv_t *priv; 25564 ipp_action_id_t aid; 25565 int rc = 0; 25566 ipp_packet_t *pp; 25567 #define IP_CLASS "ip" 25568 25569 /* If the classifier is not loaded, return */ 25570 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 25571 return; 25572 } 25573 25574 mp = *mpp; 25575 ASSERT(mp != NULL); 25576 25577 /* Allocate the packet structure */ 25578 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 25579 if (rc != 0) { 25580 *mpp = NULL; 25581 freemsg(mp); 25582 return; 25583 } 25584 25585 /* Allocate the private structure */ 25586 rc = ip_priv_alloc((void **)&priv); 25587 if (rc != 0) { 25588 *mpp = NULL; 25589 freemsg(mp); 25590 ipp_packet_free(pp); 25591 return; 25592 } 25593 priv->proc = proc; 25594 priv->ill_index = ill_index; 25595 ipp_packet_set_private(pp, priv, ip_priv_free); 25596 ipp_packet_set_data(pp, mp); 25597 25598 /* Invoke the classifier */ 25599 rc = ipp_packet_process(&pp); 25600 if (pp != NULL) { 25601 mp = ipp_packet_get_data(pp); 25602 ipp_packet_free(pp); 25603 if (rc != 0) { 25604 freemsg(mp); 25605 *mpp = NULL; 25606 } 25607 } else { 25608 *mpp = NULL; 25609 } 25610 #undef IP_CLASS 25611 } 25612 25613 /* 25614 * Propagate a multicast group membership operation (add/drop) on 25615 * all the interfaces crossed by the related multirt routes. 25616 * The call is considered successful if the operation succeeds 25617 * on at least one interface. 25618 */ 25619 static int 25620 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 25621 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 25622 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 25623 mblk_t *first_mp) 25624 { 25625 ire_t *ire_gw; 25626 irb_t *irb; 25627 int error = 0; 25628 opt_restart_t *or; 25629 25630 irb = ire->ire_bucket; 25631 ASSERT(irb != NULL); 25632 25633 ASSERT(DB_TYPE(first_mp) == M_CTL); 25634 25635 or = (opt_restart_t *)first_mp->b_rptr; 25636 IRB_REFHOLD(irb); 25637 for (; ire != NULL; ire = ire->ire_next) { 25638 if ((ire->ire_flags & RTF_MULTIRT) == 0) 25639 continue; 25640 if (ire->ire_addr != group) 25641 continue; 25642 25643 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 25644 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25645 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 25646 /* No resolver exists for the gateway; skip this ire. */ 25647 if (ire_gw == NULL) 25648 continue; 25649 25650 /* 25651 * This function can return EINPROGRESS. If so the operation 25652 * will be restarted from ip_restart_optmgmt which will 25653 * call ip_opt_set and option processing will restart for 25654 * this option. So we may end up calling 'fn' more than once. 25655 * This requires that 'fn' is idempotent except for the 25656 * return value. The operation is considered a success if 25657 * it succeeds at least once on any one interface. 25658 */ 25659 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 25660 NULL, fmode, src, first_mp); 25661 if (error == 0) 25662 or->or_private = CGTP_MCAST_SUCCESS; 25663 25664 if (ip_debug > 0) { 25665 ulong_t off; 25666 char *ksym; 25667 ksym = kobj_getsymname((uintptr_t)fn, &off); 25668 ip2dbg(("ip_multirt_apply_membership: " 25669 "called %s, multirt group 0x%08x via itf 0x%08x, " 25670 "error %d [success %u]\n", 25671 ksym ? ksym : "?", 25672 ntohl(group), ntohl(ire_gw->ire_src_addr), 25673 error, or->or_private)); 25674 } 25675 25676 ire_refrele(ire_gw); 25677 if (error == EINPROGRESS) { 25678 IRB_REFRELE(irb); 25679 return (error); 25680 } 25681 } 25682 IRB_REFRELE(irb); 25683 /* 25684 * Consider the call as successful if we succeeded on at least 25685 * one interface. Otherwise, return the last encountered error. 25686 */ 25687 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 25688 } 25689 25690 25691 /* 25692 * Issue a warning regarding a route crossing an interface with an 25693 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 25694 * amount of time is logged. 25695 */ 25696 static void 25697 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 25698 { 25699 hrtime_t current = gethrtime(); 25700 char buf[16]; 25701 25702 /* Convert interval in ms to hrtime in ns */ 25703 if (multirt_bad_mtu_last_time + 25704 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 25705 current) { 25706 cmn_err(CE_WARN, "ip: ignoring multiroute " 25707 "to %s, incorrect MTU %u (expected %u)\n", 25708 ip_dot_addr(ire->ire_addr, buf), 25709 ire->ire_max_frag, max_frag); 25710 25711 multirt_bad_mtu_last_time = current; 25712 } 25713 } 25714 25715 25716 /* 25717 * Get the CGTP (multirouting) filtering status. 25718 * If 0, the CGTP hooks are transparent. 25719 */ 25720 /* ARGSUSED */ 25721 static int 25722 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 25723 { 25724 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25725 25726 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 25727 return (0); 25728 } 25729 25730 25731 /* 25732 * Set the CGTP (multirouting) filtering status. 25733 * If the status is changed from active to transparent 25734 * or from transparent to active, forward the new status 25735 * to the filtering module (if loaded). 25736 */ 25737 /* ARGSUSED */ 25738 static int 25739 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 25740 cred_t *ioc_cr) 25741 { 25742 long new_value; 25743 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25744 25745 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 25746 new_value < 0 || new_value > 1) { 25747 return (EINVAL); 25748 } 25749 25750 /* 25751 * Do not enable CGTP filtering - thus preventing the hooks 25752 * from being invoked - if the version number of the 25753 * filtering module hooks does not match. 25754 */ 25755 if ((ip_cgtp_filter_ops != NULL) && 25756 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 25757 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 25758 "(module hooks version %d, expecting %d)\n", 25759 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 25760 return (ENOTSUP); 25761 } 25762 25763 if ((!*ip_cgtp_filter_value) && new_value) { 25764 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 25765 ip_cgtp_filter_ops == NULL ? 25766 " (module not loaded)" : ""); 25767 } 25768 if (*ip_cgtp_filter_value && (!new_value)) { 25769 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 25770 ip_cgtp_filter_ops == NULL ? 25771 " (module not loaded)" : ""); 25772 } 25773 25774 if (ip_cgtp_filter_ops != NULL) { 25775 int res; 25776 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 25777 return (res); 25778 } 25779 } 25780 25781 *ip_cgtp_filter_value = (boolean_t)new_value; 25782 25783 return (0); 25784 } 25785 25786 25787 /* 25788 * Return the expected CGTP hooks version number. 25789 */ 25790 int 25791 ip_cgtp_filter_supported(void) 25792 { 25793 return (ip_cgtp_filter_rev); 25794 } 25795 25796 25797 /* 25798 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 25799 * or by invoking this function. In the first case, the version number 25800 * of the registered structure is checked at hooks activation time 25801 * in ip_cgtp_filter_set(). 25802 */ 25803 int 25804 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 25805 { 25806 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 25807 return (ENOTSUP); 25808 25809 ip_cgtp_filter_ops = ops; 25810 return (0); 25811 } 25812 25813 static squeue_func_t 25814 ip_squeue_switch(int val) 25815 { 25816 squeue_func_t rval = squeue_fill; 25817 25818 switch (val) { 25819 case IP_SQUEUE_ENTER_NODRAIN: 25820 rval = squeue_enter_nodrain; 25821 break; 25822 case IP_SQUEUE_ENTER: 25823 rval = squeue_enter; 25824 break; 25825 default: 25826 break; 25827 } 25828 return (rval); 25829 } 25830 25831 /* ARGSUSED */ 25832 static int 25833 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 25834 caddr_t addr, cred_t *cr) 25835 { 25836 int *v = (int *)addr; 25837 long new_value; 25838 25839 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25840 return (EINVAL); 25841 25842 ip_input_proc = ip_squeue_switch(new_value); 25843 *v = new_value; 25844 return (0); 25845 } 25846 25847 /* ARGSUSED */ 25848 static int 25849 ip_fanout_set(queue_t *q, mblk_t *mp, char *value, 25850 caddr_t addr, cred_t *cr) 25851 { 25852 int *v = (int *)addr; 25853 long new_value; 25854 25855 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25856 return (EINVAL); 25857 25858 *v = new_value; 25859 return (0); 25860 } 25861 25862 25863 static void 25864 ip_kstat_init(void) 25865 { 25866 ip_named_kstat_t template = { 25867 { "forwarding", KSTAT_DATA_UINT32, 0 }, 25868 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 25869 { "inReceives", KSTAT_DATA_UINT32, 0 }, 25870 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 25871 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 25872 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 25873 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 25874 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 25875 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 25876 { "outRequests", KSTAT_DATA_UINT32, 0 }, 25877 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 25878 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 25879 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 25880 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 25881 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 25882 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 25883 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 25884 { "fragFails", KSTAT_DATA_UINT32, 0 }, 25885 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 25886 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 25887 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 25888 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 25889 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 25890 { "inErrs", KSTAT_DATA_UINT32, 0 }, 25891 { "noPorts", KSTAT_DATA_UINT32, 0 }, 25892 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 25893 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 25894 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 25895 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 25896 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 25897 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 25898 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 25899 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 25900 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 25901 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 25902 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 25903 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 25904 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 25905 }; 25906 25907 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 25908 NUM_OF_FIELDS(ip_named_kstat_t), 25909 0); 25910 if (!ip_mibkp) 25911 return; 25912 25913 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 25914 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 25915 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 25916 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 25917 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 25918 25919 template.netToMediaEntrySize.value.i32 = 25920 sizeof (mib2_ipNetToMediaEntry_t); 25921 25922 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 25923 25924 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 25925 25926 ip_mibkp->ks_update = ip_kstat_update; 25927 25928 kstat_install(ip_mibkp); 25929 } 25930 25931 static void 25932 ip_kstat_fini(void) 25933 { 25934 25935 if (ip_mibkp != NULL) { 25936 kstat_delete(ip_mibkp); 25937 ip_mibkp = NULL; 25938 } 25939 } 25940 25941 static int 25942 ip_kstat_update(kstat_t *kp, int rw) 25943 { 25944 ip_named_kstat_t *ipkp; 25945 25946 if (!kp || !kp->ks_data) 25947 return (EIO); 25948 25949 if (rw == KSTAT_WRITE) 25950 return (EACCES); 25951 25952 ipkp = (ip_named_kstat_t *)kp->ks_data; 25953 25954 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 25955 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 25956 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 25957 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 25958 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 25959 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 25960 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 25961 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 25962 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 25963 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 25964 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 25965 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 25966 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 25967 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 25968 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 25969 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 25970 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 25971 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 25972 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 25973 25974 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 25975 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 25976 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 25977 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 25978 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 25979 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 25980 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 25981 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 25982 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 25983 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 25984 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 25985 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 25986 25987 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 25988 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 25989 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 25990 25991 return (0); 25992 } 25993 25994 static void 25995 icmp_kstat_init(void) 25996 { 25997 icmp_named_kstat_t template = { 25998 { "inMsgs", KSTAT_DATA_UINT32 }, 25999 { "inErrors", KSTAT_DATA_UINT32 }, 26000 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 26001 { "inTimeExcds", KSTAT_DATA_UINT32 }, 26002 { "inParmProbs", KSTAT_DATA_UINT32 }, 26003 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 26004 { "inRedirects", KSTAT_DATA_UINT32 }, 26005 { "inEchos", KSTAT_DATA_UINT32 }, 26006 { "inEchoReps", KSTAT_DATA_UINT32 }, 26007 { "inTimestamps", KSTAT_DATA_UINT32 }, 26008 { "inTimestampReps", KSTAT_DATA_UINT32 }, 26009 { "inAddrMasks", KSTAT_DATA_UINT32 }, 26010 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 26011 { "outMsgs", KSTAT_DATA_UINT32 }, 26012 { "outErrors", KSTAT_DATA_UINT32 }, 26013 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 26014 { "outTimeExcds", KSTAT_DATA_UINT32 }, 26015 { "outParmProbs", KSTAT_DATA_UINT32 }, 26016 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 26017 { "outRedirects", KSTAT_DATA_UINT32 }, 26018 { "outEchos", KSTAT_DATA_UINT32 }, 26019 { "outEchoReps", KSTAT_DATA_UINT32 }, 26020 { "outTimestamps", KSTAT_DATA_UINT32 }, 26021 { "outTimestampReps", KSTAT_DATA_UINT32 }, 26022 { "outAddrMasks", KSTAT_DATA_UINT32 }, 26023 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 26024 { "inChksumErrs", KSTAT_DATA_UINT32 }, 26025 { "inUnknowns", KSTAT_DATA_UINT32 }, 26026 { "inFragNeeded", KSTAT_DATA_UINT32 }, 26027 { "outFragNeeded", KSTAT_DATA_UINT32 }, 26028 { "outDrops", KSTAT_DATA_UINT32 }, 26029 { "inOverFlows", KSTAT_DATA_UINT32 }, 26030 { "inBadRedirects", KSTAT_DATA_UINT32 }, 26031 }; 26032 26033 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 26034 NUM_OF_FIELDS(icmp_named_kstat_t), 26035 0); 26036 if (icmp_mibkp == NULL) 26037 return; 26038 26039 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 26040 26041 icmp_mibkp->ks_update = icmp_kstat_update; 26042 26043 kstat_install(icmp_mibkp); 26044 } 26045 26046 static void 26047 icmp_kstat_fini(void) 26048 { 26049 26050 if (icmp_mibkp != NULL) { 26051 kstat_delete(icmp_mibkp); 26052 icmp_mibkp = NULL; 26053 } 26054 } 26055 26056 static int 26057 icmp_kstat_update(kstat_t *kp, int rw) 26058 { 26059 icmp_named_kstat_t *icmpkp; 26060 26061 if ((kp == NULL) || (kp->ks_data == NULL)) 26062 return (EIO); 26063 26064 if (rw == KSTAT_WRITE) 26065 return (EACCES); 26066 26067 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 26068 26069 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 26070 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 26071 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 26072 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 26073 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 26074 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 26075 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 26076 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 26077 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 26078 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 26079 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 26080 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 26081 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 26082 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 26083 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 26084 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 26085 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 26086 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 26087 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 26088 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 26089 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 26090 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 26091 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 26092 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 26093 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 26094 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 26095 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 26096 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 26097 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 26098 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 26099 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 26100 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 26101 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 26102 26103 return (0); 26104 } 26105 26106 /* 26107 * This is the fanout function for raw socket opened for SCTP. Note 26108 * that it is called after SCTP checks that there is no socket which 26109 * wants a packet. Then before SCTP handles this out of the blue packet, 26110 * this function is called to see if there is any raw socket for SCTP. 26111 * If there is and it is bound to the correct address, the packet will 26112 * be sent to that socket. Note that only one raw socket can be bound to 26113 * a port. This is assured in ipcl_sctp_hash_insert(); 26114 */ 26115 void 26116 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 26117 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 26118 uint_t ipif_seqid, zoneid_t zoneid) 26119 { 26120 conn_t *connp; 26121 queue_t *rq; 26122 mblk_t *first_mp; 26123 boolean_t secure; 26124 ip6_t *ip6h; 26125 26126 first_mp = mp; 26127 if (mctl_present) { 26128 mp = first_mp->b_cont; 26129 secure = ipsec_in_is_secure(first_mp); 26130 ASSERT(mp != NULL); 26131 } else { 26132 secure = B_FALSE; 26133 } 26134 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 26135 26136 connp = ipcl_classify_raw(IPPROTO_SCTP, zoneid, ports, ipha); 26137 if (connp == NULL) { 26138 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 26139 mctl_present); 26140 return; 26141 } 26142 rq = connp->conn_rq; 26143 if (!canputnext(rq)) { 26144 CONN_DEC_REF(connp); 26145 BUMP_MIB(&ip_mib, rawipInOverflows); 26146 freemsg(first_mp); 26147 return; 26148 } 26149 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 26150 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 26151 first_mp = ipsec_check_inbound_policy(first_mp, connp, 26152 (isv4 ? ipha : NULL), ip6h, mctl_present); 26153 if (first_mp == NULL) { 26154 CONN_DEC_REF(connp); 26155 return; 26156 } 26157 } 26158 /* 26159 * We probably should not send M_CTL message up to 26160 * raw socket. 26161 */ 26162 if (mctl_present) 26163 freeb(first_mp); 26164 26165 /* Initiate IPPF processing here if needed. */ 26166 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 26167 (!isv4 && IP6_IN_IPP(flags))) { 26168 ip_process(IPP_LOCAL_IN, &mp, 26169 recv_ill->ill_phyint->phyint_ifindex); 26170 if (mp == NULL) { 26171 CONN_DEC_REF(connp); 26172 return; 26173 } 26174 } 26175 26176 if (connp->conn_recvif || connp->conn_recvslla || 26177 ((connp->conn_ipv6_recvpktinfo || 26178 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 26179 (flags & IP_FF_IP6INFO))) { 26180 int in_flags = 0; 26181 26182 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 26183 in_flags = IPF_RECVIF; 26184 } 26185 if (connp->conn_recvslla) { 26186 in_flags |= IPF_RECVSLLA; 26187 } 26188 if (isv4) { 26189 mp = ip_add_info(mp, recv_ill, in_flags); 26190 } else { 26191 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 26192 if (mp == NULL) { 26193 CONN_DEC_REF(connp); 26194 return; 26195 } 26196 } 26197 } 26198 26199 BUMP_MIB(&ip_mib, ipInDelivers); 26200 /* 26201 * We are sending the IPSEC_IN message also up. Refer 26202 * to comments above this function. 26203 */ 26204 putnext(rq, mp); 26205 CONN_DEC_REF(connp); 26206 } 26207 26208 /* 26209 * Martian Address Filtering [RFC 1812, Section 5.3.7] 26210 */ 26211 static boolean_t 26212 ip_no_forward(ipha_t *ipha, ill_t *ill) 26213 { 26214 ipaddr_t ip_src, ip_dst; 26215 ire_t *src_ire = NULL; 26216 26217 ip_src = ntohl(ipha->ipha_src); 26218 ip_dst = ntohl(ipha->ipha_dst); 26219 26220 if (ip_dst == INADDR_ANY) 26221 goto dont_forward; 26222 26223 if (IN_CLASSD(ip_src)) 26224 goto dont_forward; 26225 26226 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 26227 goto dont_forward; 26228 26229 if (IN_BADCLASS(ip_dst)) 26230 goto dont_forward; 26231 26232 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 26233 ALL_ZONES, MATCH_IRE_TYPE); 26234 if (src_ire != NULL) { 26235 ire_refrele(src_ire); 26236 goto dont_forward; 26237 } 26238 26239 return (B_FALSE); 26240 26241 dont_forward: 26242 if (ip_debug > 2) { 26243 printf("ip_no_forward: dropping packet received on %s\n", 26244 ill->ill_name); 26245 pr_addr_dbg("ip_no_forward: from src %s\n", 26246 AF_INET, &ipha->ipha_src); 26247 pr_addr_dbg("ip_no_forward: to dst %s\n", 26248 AF_INET, &ipha->ipha_dst); 26249 } 26250 BUMP_MIB(&ip_mib, ipForwProhibits); 26251 return (B_TRUE); 26252 } 26253 26254 static boolean_t 26255 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 26256 { 26257 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 26258 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 26259 if (ip_debug > 2) { 26260 if (ill != NULL) { 26261 printf("ip_loopback_src_or_dst: " 26262 "dropping packet received on %s\n", 26263 ill->ill_name); 26264 } else { 26265 printf("ip_loopback_src_or_dst: " 26266 "dropping packet\n"); 26267 } 26268 26269 pr_addr_dbg( 26270 "ip_loopback_src_or_dst: from src %s\n", 26271 AF_INET, &ipha->ipha_src); 26272 pr_addr_dbg( 26273 "ip_loopback_src_or_dst: to dst %s\n", 26274 AF_INET, &ipha->ipha_dst); 26275 } 26276 26277 BUMP_MIB(&ip_mib, ipInAddrErrors); 26278 return (B_TRUE); 26279 } 26280 return (B_FALSE); 26281 } 26282