1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/iptun/iptun_impl.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 #define IPV6_FRAG_TIMEOUT 60 874 875 /* 876 * Threshold which determines whether MDT should be used when 877 * generating IP fragments; payload size must be greater than 878 * this threshold for MDT to take place. 879 */ 880 #define IP_WPUT_FRAG_MDT_MIN 32768 881 882 /* Setable in /etc/system only */ 883 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 884 885 static long ip_rput_pullups; 886 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 887 888 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 889 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 890 891 int ip_debug; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 901 902 /* 903 * XXX following really should only be in a header. Would need more 904 * header and .c clean up first. 905 */ 906 extern optdb_obj_t ip_opt_obj; 907 908 ulong_t ip_squeue_enter_unbound = 0; 909 910 /* 911 * Named Dispatch Parameter Table. 912 * All of these are alterable, within the min/max values given, at run time. 913 */ 914 static ipparam_t lcl_param_arr[] = { 915 /* min max value name */ 916 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 918 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 919 { 0, 1, 0, "ip_respond_to_timestamp"}, 920 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 921 { 0, 1, 1, "ip_send_redirects"}, 922 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 923 { 0, 10, 0, "ip_mrtdebug"}, 924 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 925 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 926 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 927 { 1, 255, 255, "ip_def_ttl" }, 928 { 0, 1, 0, "ip_forward_src_routed"}, 929 { 0, 256, 32, "ip_wroff_extra" }, 930 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 931 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 932 { 0, 1, 1, "ip_path_mtu_discovery" }, 933 { 0, 240, 30, "ip_ignore_delete_time" }, 934 { 0, 1, 0, "ip_ignore_redirect" }, 935 { 0, 1, 1, "ip_output_queue" }, 936 { 1, 254, 1, "ip_broadcast_ttl" }, 937 { 0, 99999, 100, "ip_icmp_err_interval" }, 938 { 1, 99999, 10, "ip_icmp_err_burst" }, 939 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 940 { 0, 1, 0, "ip_strict_dst_multihoming" }, 941 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 942 { 0, 1, 0, "ipsec_override_persocket_policy" }, 943 { 0, 1, 1, "icmp_accept_clear_messages" }, 944 { 0, 1, 1, "igmp_accept_clear_messages" }, 945 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 946 "ip_ndp_delay_first_probe_time"}, 947 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 948 "ip_ndp_max_unicast_solicit"}, 949 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 950 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 951 { 0, 1, 0, "ip6_forward_src_routed"}, 952 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 953 { 0, 1, 1, "ip6_send_redirects"}, 954 { 0, 1, 0, "ip6_ignore_redirect" }, 955 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 956 957 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 958 959 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 960 961 { 0, 1, 1, "pim_accept_clear_messages" }, 962 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 963 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 964 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 965 { 0, 15, 0, "ip_policy_mask" }, 966 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 967 { 0, 255, 1, "ip_multirt_ttl" }, 968 { 0, 1, 1, "ip_multidata_outbound" }, 969 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 970 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 971 { 0, 1000, 1, "ip_max_temp_defend" }, 972 { 0, 1000, 3, "ip_max_defend" }, 973 { 0, 999999, 30, "ip_defend_interval" }, 974 { 0, 3600000, 300000, "ip_dup_recovery" }, 975 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 976 { 0, 1, 1, "ip_lso_outbound" }, 977 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 978 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 979 { 68, 65535, 576, "ip_pmtu_min" }, 980 #ifdef DEBUG 981 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 982 #else 983 { 0, 0, 0, "" }, 984 #endif 985 }; 986 987 /* 988 * Extended NDP table 989 * The addresses for the first two are filled in to be ips_ip_g_forward 990 * and ips_ipv6_forward at init time. 991 */ 992 static ipndp_t lcl_ndp_arr[] = { 993 /* getf setf data name */ 994 #define IPNDP_IP_FORWARDING_OFFSET 0 995 { ip_param_generic_get, ip_forward_set, NULL, 996 "ip_forwarding" }, 997 #define IPNDP_IP6_FORWARDING_OFFSET 1 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip6_forwarding" }, 1000 { ip_param_generic_get, ip_input_proc_set, 1001 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1002 { ip_param_generic_get, ip_int_set, 1003 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1004 #define IPNDP_CGTP_FILTER_OFFSET 4 1005 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1006 "ip_cgtp_filter" }, 1007 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1008 "ip_debug" }, 1009 }; 1010 1011 /* 1012 * Table of IP ioctls encoding the various properties of the ioctl and 1013 * indexed based on the last byte of the ioctl command. Occasionally there 1014 * is a clash, and there is more than 1 ioctl with the same last byte. 1015 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1016 * ioctls are encoded in the misc table. An entry in the ndx table is 1017 * retrieved by indexing on the last byte of the ioctl command and comparing 1018 * the ioctl command with the value in the ndx table. In the event of a 1019 * mismatch the misc table is then searched sequentially for the desired 1020 * ioctl command. 1021 * 1022 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1023 */ 1024 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1025 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1037 MISC_CMD, ip_siocaddrt, NULL }, 1038 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1039 MISC_CMD, ip_siocdelrt, NULL }, 1040 1041 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1042 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1043 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1044 IF_CMD, ip_sioctl_get_addr, NULL }, 1045 1046 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1047 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1048 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1049 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1050 1051 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1052 IPI_PRIV | IPI_WR, 1053 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1054 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1055 IPI_MODOK | IPI_GET_CMD, 1056 IF_CMD, ip_sioctl_get_flags, NULL }, 1057 1058 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* copyin size cannot be coded for SIOCGIFCONF */ 1062 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1063 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1064 1065 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_mtu, NULL }, 1067 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1068 IF_CMD, ip_sioctl_get_mtu, NULL }, 1069 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1070 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1071 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1072 IF_CMD, ip_sioctl_brdaddr, NULL }, 1073 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1074 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1075 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1076 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1077 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1078 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1079 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1080 IF_CMD, ip_sioctl_metric, NULL }, 1081 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* See 166-168 below for extended SIOC*XARP ioctls */ 1084 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1085 ARP_CMD, ip_sioctl_arp, NULL }, 1086 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1087 ARP_CMD, ip_sioctl_arp, NULL }, 1088 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1089 ARP_CMD, ip_sioctl_arp, NULL }, 1090 1091 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1114 MISC_CMD, if_unitsel, if_unitsel_restart }, 1115 1116 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1136 IPI_PRIV | IPI_WR | IPI_MODOK, 1137 IF_CMD, ip_sioctl_sifname, NULL }, 1138 1139 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 1153 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1154 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1155 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1156 IF_CMD, ip_sioctl_get_muxid, NULL }, 1157 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1159 1160 /* Both if and lif variants share same func */ 1161 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1162 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1163 /* Both if and lif variants share same func */ 1164 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1165 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1190 ip_sioctl_removeif_restart }, 1191 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_addif, NULL }, 1194 #define SIOCLIFADDR_NDX 112 1195 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1197 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1198 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1203 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1204 IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1206 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1207 IPI_GET_CMD | IPI_MODOK, 1208 LIF_CMD, ip_sioctl_get_flags, NULL }, 1209 1210 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 1213 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1214 ip_sioctl_get_lifconf, NULL }, 1215 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1216 LIF_CMD, ip_sioctl_mtu, NULL }, 1217 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1218 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1219 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1220 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1221 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1222 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1223 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1224 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1225 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1227 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1228 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1229 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_metric, NULL }, 1231 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR | IPI_MODOK, 1233 LIF_CMD, ip_sioctl_slifname, 1234 ip_sioctl_slifname_restart }, 1235 1236 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1237 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1238 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1239 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1240 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1241 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1242 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1243 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1244 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1246 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_token, NULL }, 1248 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1249 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1250 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1251 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1252 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1253 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1254 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1256 1257 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1258 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1259 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1260 LIF_CMD, ip_siocdelndp_v6, NULL }, 1261 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1262 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1263 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1264 LIF_CMD, ip_siocsetndp_v6, NULL }, 1265 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1266 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1267 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1268 MISC_CMD, ip_sioctl_tonlink, NULL }, 1269 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1270 MISC_CMD, ip_sioctl_tmysite, NULL }, 1271 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1272 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1273 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1274 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1275 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1276 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1277 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1278 1279 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 1281 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1282 LIF_CMD, ip_sioctl_get_binding, NULL }, 1283 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1284 IPI_PRIV | IPI_WR, 1285 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1286 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1287 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1288 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1289 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1290 1291 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1292 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1293 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1294 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1295 1296 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 1298 /* These are handled in ip_sioctl_copyin_setup itself */ 1299 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1300 MISC_CMD, NULL, NULL }, 1301 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1302 MISC_CMD, NULL, NULL }, 1303 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1304 1305 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1306 ip_sioctl_get_lifconf, NULL }, 1307 1308 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1309 XARP_CMD, ip_sioctl_arp, NULL }, 1310 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1311 XARP_CMD, ip_sioctl_arp, NULL }, 1312 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1313 XARP_CMD, ip_sioctl_arp, NULL }, 1314 1315 /* SIOCPOPSOCKFS is not handled by IP */ 1316 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1317 1318 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1319 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1320 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1321 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1322 ip_sioctl_slifzone_restart }, 1323 /* 172-174 are SCTP ioctls and not handled by IP */ 1324 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1325 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1326 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1327 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1328 IPI_GET_CMD, LIF_CMD, 1329 ip_sioctl_get_lifusesrc, 0 }, 1330 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1331 IPI_PRIV | IPI_WR, 1332 LIF_CMD, ip_sioctl_slifusesrc, 1333 NULL }, 1334 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1335 ip_sioctl_get_lifsrcof, NULL }, 1336 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1337 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1338 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1339 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1340 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1341 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1342 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1343 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1344 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1345 /* SIOCSENABLESDP is handled by SDP */ 1346 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1347 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1348 }; 1349 1350 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1351 1352 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1353 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1354 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1355 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1356 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1357 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1358 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1359 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1360 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1361 MISC_CMD, mrt_ioctl}, 1362 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1363 MISC_CMD, mrt_ioctl}, 1364 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1365 MISC_CMD, mrt_ioctl} 1366 }; 1367 1368 int ip_misc_ioctl_count = 1369 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1370 1371 int conn_drain_nthreads; /* Number of drainers reqd. */ 1372 /* Settable in /etc/system */ 1373 /* Defined in ip_ire.c */ 1374 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1375 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1376 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1377 1378 static nv_t ire_nv_arr[] = { 1379 { IRE_BROADCAST, "BROADCAST" }, 1380 { IRE_LOCAL, "LOCAL" }, 1381 { IRE_LOOPBACK, "LOOPBACK" }, 1382 { IRE_CACHE, "CACHE" }, 1383 { IRE_DEFAULT, "DEFAULT" }, 1384 { IRE_PREFIX, "PREFIX" }, 1385 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1386 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1387 { IRE_HOST, "HOST" }, 1388 { 0 } 1389 }; 1390 1391 nv_t *ire_nv_tbl = ire_nv_arr; 1392 1393 /* Simple ICMP IP Header Template */ 1394 static ipha_t icmp_ipha = { 1395 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1396 }; 1397 1398 struct module_info ip_mod_info = { 1399 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1400 IP_MOD_LOWAT 1401 }; 1402 1403 /* 1404 * Duplicate static symbols within a module confuses mdb; so we avoid the 1405 * problem by making the symbols here distinct from those in udp.c. 1406 */ 1407 1408 /* 1409 * Entry points for IP as a device and as a module. 1410 * FIXME: down the road we might want a separate module and driver qinit. 1411 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1412 */ 1413 static struct qinit iprinitv4 = { 1414 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1415 &ip_mod_info 1416 }; 1417 1418 struct qinit iprinitv6 = { 1419 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1420 &ip_mod_info 1421 }; 1422 1423 static struct qinit ipwinitv4 = { 1424 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1425 &ip_mod_info 1426 }; 1427 1428 struct qinit ipwinitv6 = { 1429 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1430 &ip_mod_info 1431 }; 1432 1433 static struct qinit iplrinit = { 1434 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1435 &ip_mod_info 1436 }; 1437 1438 static struct qinit iplwinit = { 1439 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1440 &ip_mod_info 1441 }; 1442 1443 /* For AF_INET aka /dev/ip */ 1444 struct streamtab ipinfov4 = { 1445 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1446 }; 1447 1448 /* For AF_INET6 aka /dev/ip6 */ 1449 struct streamtab ipinfov6 = { 1450 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1451 }; 1452 1453 #ifdef DEBUG 1454 static boolean_t skip_sctp_cksum = B_FALSE; 1455 #endif 1456 1457 /* 1458 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1459 * ip_rput_v6(), ip_output(), etc. If the message 1460 * block already has a M_CTL at the front of it, then simply set the zoneid 1461 * appropriately. 1462 */ 1463 mblk_t * 1464 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1465 { 1466 mblk_t *first_mp; 1467 ipsec_out_t *io; 1468 1469 ASSERT(zoneid != ALL_ZONES); 1470 if (mp->b_datap->db_type == M_CTL) { 1471 io = (ipsec_out_t *)mp->b_rptr; 1472 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1473 io->ipsec_out_zoneid = zoneid; 1474 return (mp); 1475 } 1476 1477 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1478 if (first_mp == NULL) 1479 return (NULL); 1480 io = (ipsec_out_t *)first_mp->b_rptr; 1481 /* This is not a secure packet */ 1482 io->ipsec_out_secure = B_FALSE; 1483 io->ipsec_out_zoneid = zoneid; 1484 first_mp->b_cont = mp; 1485 return (first_mp); 1486 } 1487 1488 /* 1489 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1490 */ 1491 mblk_t * 1492 ip_copymsg(mblk_t *mp) 1493 { 1494 mblk_t *nmp; 1495 ipsec_info_t *in; 1496 1497 if (mp->b_datap->db_type != M_CTL) 1498 return (copymsg(mp)); 1499 1500 in = (ipsec_info_t *)mp->b_rptr; 1501 1502 /* 1503 * Note that M_CTL is also used for delivering ICMP error messages 1504 * upstream to transport layers. 1505 */ 1506 if (in->ipsec_info_type != IPSEC_OUT && 1507 in->ipsec_info_type != IPSEC_IN) 1508 return (copymsg(mp)); 1509 1510 nmp = copymsg(mp->b_cont); 1511 1512 if (in->ipsec_info_type == IPSEC_OUT) { 1513 return (ipsec_out_tag(mp, nmp, 1514 ((ipsec_out_t *)in)->ipsec_out_ns)); 1515 } else { 1516 return (ipsec_in_tag(mp, nmp, 1517 ((ipsec_in_t *)in)->ipsec_in_ns)); 1518 } 1519 } 1520 1521 /* Generate an ICMP fragmentation needed message. */ 1522 static void 1523 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1524 ip_stack_t *ipst) 1525 { 1526 icmph_t icmph; 1527 mblk_t *first_mp; 1528 boolean_t mctl_present; 1529 1530 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1531 1532 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1533 if (mctl_present) 1534 freeb(first_mp); 1535 return; 1536 } 1537 1538 bzero(&icmph, sizeof (icmph_t)); 1539 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1540 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1541 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1542 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1544 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1545 ipst); 1546 } 1547 1548 /* 1549 * icmp_inbound deals with ICMP messages in the following ways. 1550 * 1551 * 1) It needs to send a reply back and possibly delivering it 1552 * to the "interested" upper clients. 1553 * 2) It needs to send it to the upper clients only. 1554 * 3) It needs to change some values in IP only. 1555 * 4) It needs to change some values in IP and upper layers e.g TCP. 1556 * 1557 * We need to accomodate icmp messages coming in clear until we get 1558 * everything secure from the wire. If icmp_accept_clear_messages 1559 * is zero we check with the global policy and act accordingly. If 1560 * it is non-zero, we accept the message without any checks. But 1561 * *this does not mean* that this will be delivered to the upper 1562 * clients. By accepting we might send replies back, change our MTU 1563 * value etc. but delivery to the ULP/clients depends on their policy 1564 * dispositions. 1565 * 1566 * We handle the above 4 cases in the context of IPsec in the 1567 * following way : 1568 * 1569 * 1) Send the reply back in the same way as the request came in. 1570 * If it came in encrypted, it goes out encrypted. If it came in 1571 * clear, it goes out in clear. Thus, this will prevent chosen 1572 * plain text attack. 1573 * 2) The client may or may not expect things to come in secure. 1574 * If it comes in secure, the policy constraints are checked 1575 * before delivering it to the upper layers. If it comes in 1576 * clear, ipsec_inbound_accept_clear will decide whether to 1577 * accept this in clear or not. In both the cases, if the returned 1578 * message (IP header + 8 bytes) that caused the icmp message has 1579 * AH/ESP headers, it is sent up to AH/ESP for validation before 1580 * sending up. If there are only 8 bytes of returned message, then 1581 * upper client will not be notified. 1582 * 3) Check with global policy to see whether it matches the constaints. 1583 * But this will be done only if icmp_accept_messages_in_clear is 1584 * zero. 1585 * 4) If we need to change both in IP and ULP, then the decision taken 1586 * while affecting the values in IP and while delivering up to TCP 1587 * should be the same. 1588 * 1589 * There are two cases. 1590 * 1591 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1592 * failed), we will not deliver it to the ULP, even though they 1593 * are *willing* to accept in *clear*. This is fine as our global 1594 * disposition to icmp messages asks us reject the datagram. 1595 * 1596 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1597 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1598 * to deliver it to ULP (policy failed), it can lead to 1599 * consistency problems. The cases known at this time are 1600 * ICMP_DESTINATION_UNREACHABLE messages with following code 1601 * values : 1602 * 1603 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1604 * and Upper layer rejects. Then the communication will 1605 * come to a stop. This is solved by making similar decisions 1606 * at both levels. Currently, when we are unable to deliver 1607 * to the Upper Layer (due to policy failures) while IP has 1608 * adjusted ire_max_frag, the next outbound datagram would 1609 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1610 * will be with the right level of protection. Thus the right 1611 * value will be communicated even if we are not able to 1612 * communicate when we get from the wire initially. But this 1613 * assumes there would be at least one outbound datagram after 1614 * IP has adjusted its ire_max_frag value. To make things 1615 * simpler, we accept in clear after the validation of 1616 * AH/ESP headers. 1617 * 1618 * - Other ICMP ERRORS : We may not be able to deliver it to the 1619 * upper layer depending on the level of protection the upper 1620 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1621 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1622 * should be accepted in clear when the Upper layer expects secure. 1623 * Thus the communication may get aborted by some bad ICMP 1624 * packets. 1625 * 1626 * IPQoS Notes: 1627 * The only instance when a packet is sent for processing is when there 1628 * isn't an ICMP client and if we are interested in it. 1629 * If there is a client, IPPF processing will take place in the 1630 * ip_fanout_proto routine. 1631 * 1632 * Zones notes: 1633 * The packet is only processed in the context of the specified zone: typically 1634 * only this zone will reply to an echo request, and only interested clients in 1635 * this zone will receive a copy of the packet. This means that the caller must 1636 * call icmp_inbound() for each relevant zone. 1637 */ 1638 static void 1639 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1640 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1641 ill_t *recv_ill, zoneid_t zoneid) 1642 { 1643 icmph_t *icmph; 1644 ipha_t *ipha; 1645 int iph_hdr_length; 1646 int hdr_length; 1647 boolean_t interested; 1648 uint32_t ts; 1649 uchar_t *wptr; 1650 ipif_t *ipif; 1651 mblk_t *first_mp; 1652 ipsec_in_t *ii; 1653 timestruc_t now; 1654 uint32_t ill_index; 1655 ip_stack_t *ipst; 1656 1657 ASSERT(ill != NULL); 1658 ipst = ill->ill_ipst; 1659 1660 first_mp = mp; 1661 if (mctl_present) { 1662 mp = first_mp->b_cont; 1663 ASSERT(mp != NULL); 1664 } 1665 1666 ipha = (ipha_t *)mp->b_rptr; 1667 if (ipst->ips_icmp_accept_clear_messages == 0) { 1668 first_mp = ipsec_check_global_policy(first_mp, NULL, 1669 ipha, NULL, mctl_present, ipst->ips_netstack); 1670 if (first_mp == NULL) 1671 return; 1672 } 1673 1674 /* 1675 * On a labeled system, we have to check whether the zone itself is 1676 * permitted to receive raw traffic. 1677 */ 1678 if (is_system_labeled()) { 1679 if (zoneid == ALL_ZONES) 1680 zoneid = tsol_packet_to_zoneid(mp); 1681 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1682 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1683 zoneid)); 1684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1685 freemsg(first_mp); 1686 return; 1687 } 1688 } 1689 1690 /* 1691 * We have accepted the ICMP message. It means that we will 1692 * respond to the packet if needed. It may not be delivered 1693 * to the upper client depending on the policy constraints 1694 * and the disposition in ipsec_inbound_accept_clear. 1695 */ 1696 1697 ASSERT(ill != NULL); 1698 1699 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1700 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1701 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1702 /* Last chance to get real. */ 1703 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1704 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1705 freemsg(first_mp); 1706 return; 1707 } 1708 /* Refresh iph following the pullup. */ 1709 ipha = (ipha_t *)mp->b_rptr; 1710 } 1711 /* ICMP header checksum, including checksum field, should be zero. */ 1712 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1713 IP_CSUM(mp, iph_hdr_length, 0)) { 1714 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1715 freemsg(first_mp); 1716 return; 1717 } 1718 /* The IP header will always be a multiple of four bytes */ 1719 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1720 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1721 icmph->icmph_code)); 1722 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1723 /* We will set "interested" to "true" if we want a copy */ 1724 interested = B_FALSE; 1725 switch (icmph->icmph_type) { 1726 case ICMP_ECHO_REPLY: 1727 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1728 break; 1729 case ICMP_DEST_UNREACHABLE: 1730 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1731 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1732 interested = B_TRUE; /* Pass up to transport */ 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1734 break; 1735 case ICMP_SOURCE_QUENCH: 1736 interested = B_TRUE; /* Pass up to transport */ 1737 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1738 break; 1739 case ICMP_REDIRECT: 1740 if (!ipst->ips_ip_ignore_redirect) 1741 interested = B_TRUE; 1742 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1743 break; 1744 case ICMP_ECHO_REQUEST: 1745 /* 1746 * Whether to respond to echo requests that come in as IP 1747 * broadcasts or as IP multicast is subject to debate 1748 * (what isn't?). We aim to please, you pick it. 1749 * Default is do it. 1750 */ 1751 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1752 /* unicast: always respond */ 1753 interested = B_TRUE; 1754 } else if (CLASSD(ipha->ipha_dst)) { 1755 /* multicast: respond based on tunable */ 1756 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1757 } else if (broadcast) { 1758 /* broadcast: respond based on tunable */ 1759 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1760 } 1761 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1762 break; 1763 case ICMP_ROUTER_ADVERTISEMENT: 1764 case ICMP_ROUTER_SOLICITATION: 1765 break; 1766 case ICMP_TIME_EXCEEDED: 1767 interested = B_TRUE; /* Pass up to transport */ 1768 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1769 break; 1770 case ICMP_PARAM_PROBLEM: 1771 interested = B_TRUE; /* Pass up to transport */ 1772 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1773 break; 1774 case ICMP_TIME_STAMP_REQUEST: 1775 /* Response to Time Stamp Requests is local policy. */ 1776 if (ipst->ips_ip_g_resp_to_timestamp && 1777 /* So is whether to respond if it was an IP broadcast. */ 1778 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1779 int tstamp_len = 3 * sizeof (uint32_t); 1780 1781 if (wptr + tstamp_len > mp->b_wptr) { 1782 if (!pullupmsg(mp, wptr + tstamp_len - 1783 mp->b_rptr)) { 1784 BUMP_MIB(ill->ill_ip_mib, 1785 ipIfStatsInDiscards); 1786 freemsg(first_mp); 1787 return; 1788 } 1789 /* Refresh ipha following the pullup. */ 1790 ipha = (ipha_t *)mp->b_rptr; 1791 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1792 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1793 } 1794 interested = B_TRUE; 1795 } 1796 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1797 break; 1798 case ICMP_TIME_STAMP_REPLY: 1799 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1800 break; 1801 case ICMP_INFO_REQUEST: 1802 /* Per RFC 1122 3.2.2.7, ignore this. */ 1803 case ICMP_INFO_REPLY: 1804 break; 1805 case ICMP_ADDRESS_MASK_REQUEST: 1806 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1807 !broadcast) && 1808 /* TODO m_pullup of complete header? */ 1809 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1810 interested = B_TRUE; 1811 } 1812 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1813 break; 1814 case ICMP_ADDRESS_MASK_REPLY: 1815 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1816 break; 1817 default: 1818 interested = B_TRUE; /* Pass up to transport */ 1819 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1820 break; 1821 } 1822 /* See if there is an ICMP client. */ 1823 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1824 /* If there is an ICMP client and we want one too, copy it. */ 1825 mblk_t *first_mp1; 1826 1827 if (!interested) { 1828 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1829 ip_policy, recv_ill, zoneid); 1830 return; 1831 } 1832 first_mp1 = ip_copymsg(first_mp); 1833 if (first_mp1 != NULL) { 1834 ip_fanout_proto(q, first_mp1, ill, ipha, 1835 0, mctl_present, ip_policy, recv_ill, zoneid); 1836 } 1837 } else if (!interested) { 1838 freemsg(first_mp); 1839 return; 1840 } else { 1841 /* 1842 * Initiate policy processing for this packet if ip_policy 1843 * is true. 1844 */ 1845 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1846 ill_index = ill->ill_phyint->phyint_ifindex; 1847 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1848 if (mp == NULL) { 1849 if (mctl_present) { 1850 freeb(first_mp); 1851 } 1852 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1853 return; 1854 } 1855 } 1856 } 1857 /* We want to do something with it. */ 1858 /* Check db_ref to make sure we can modify the packet. */ 1859 if (mp->b_datap->db_ref > 1) { 1860 mblk_t *first_mp1; 1861 1862 first_mp1 = ip_copymsg(first_mp); 1863 freemsg(first_mp); 1864 if (!first_mp1) { 1865 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1866 return; 1867 } 1868 first_mp = first_mp1; 1869 if (mctl_present) { 1870 mp = first_mp->b_cont; 1871 ASSERT(mp != NULL); 1872 } else { 1873 mp = first_mp; 1874 } 1875 ipha = (ipha_t *)mp->b_rptr; 1876 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1877 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1878 } 1879 switch (icmph->icmph_type) { 1880 case ICMP_ADDRESS_MASK_REQUEST: 1881 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1882 if (ipif == NULL) { 1883 freemsg(first_mp); 1884 return; 1885 } 1886 /* 1887 * outging interface must be IPv4 1888 */ 1889 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1890 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1891 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1892 ipif_refrele(ipif); 1893 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1894 break; 1895 case ICMP_ECHO_REQUEST: 1896 icmph->icmph_type = ICMP_ECHO_REPLY; 1897 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1898 break; 1899 case ICMP_TIME_STAMP_REQUEST: { 1900 uint32_t *tsp; 1901 1902 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1903 tsp = (uint32_t *)wptr; 1904 tsp++; /* Skip past 'originate time' */ 1905 /* Compute # of milliseconds since midnight */ 1906 gethrestime(&now); 1907 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1908 now.tv_nsec / (NANOSEC / MILLISEC); 1909 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1910 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1911 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1912 break; 1913 } 1914 default: 1915 ipha = (ipha_t *)&icmph[1]; 1916 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1917 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1918 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1919 freemsg(first_mp); 1920 return; 1921 } 1922 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1923 ipha = (ipha_t *)&icmph[1]; 1924 } 1925 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1927 freemsg(first_mp); 1928 return; 1929 } 1930 hdr_length = IPH_HDR_LENGTH(ipha); 1931 if (hdr_length < sizeof (ipha_t)) { 1932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1933 freemsg(first_mp); 1934 return; 1935 } 1936 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1937 if (!pullupmsg(mp, 1938 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1940 freemsg(first_mp); 1941 return; 1942 } 1943 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1944 ipha = (ipha_t *)&icmph[1]; 1945 } 1946 switch (icmph->icmph_type) { 1947 case ICMP_REDIRECT: 1948 /* 1949 * As there is no upper client to deliver, we don't 1950 * need the first_mp any more. 1951 */ 1952 if (mctl_present) { 1953 freeb(first_mp); 1954 } 1955 icmp_redirect(ill, mp); 1956 return; 1957 case ICMP_DEST_UNREACHABLE: 1958 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1959 if (!icmp_inbound_too_big(icmph, ipha, ill, 1960 zoneid, mp, iph_hdr_length, ipst)) { 1961 freemsg(first_mp); 1962 return; 1963 } 1964 /* 1965 * icmp_inbound_too_big() may alter mp. 1966 * Resynch ipha and icmph accordingly. 1967 */ 1968 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1969 ipha = (ipha_t *)&icmph[1]; 1970 } 1971 /* FALLTHRU */ 1972 default : 1973 /* 1974 * IPQoS notes: Since we have already done IPQoS 1975 * processing we don't want to do it again in 1976 * the fanout routines called by 1977 * icmp_inbound_error_fanout, hence the last 1978 * argument, ip_policy, is B_FALSE. 1979 */ 1980 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1981 ipha, iph_hdr_length, hdr_length, mctl_present, 1982 B_FALSE, recv_ill, zoneid); 1983 } 1984 return; 1985 } 1986 /* Send out an ICMP packet */ 1987 icmph->icmph_checksum = 0; 1988 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1989 if (broadcast || CLASSD(ipha->ipha_dst)) { 1990 ipif_t *ipif_chosen; 1991 /* 1992 * Make it look like it was directed to us, so we don't look 1993 * like a fool with a broadcast or multicast source address. 1994 */ 1995 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1996 /* 1997 * Make sure that we haven't grabbed an interface that's DOWN. 1998 */ 1999 if (ipif != NULL) { 2000 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2001 ipha->ipha_src, zoneid); 2002 if (ipif_chosen != NULL) { 2003 ipif_refrele(ipif); 2004 ipif = ipif_chosen; 2005 } 2006 } 2007 if (ipif == NULL) { 2008 ip0dbg(("icmp_inbound: " 2009 "No source for broadcast/multicast:\n" 2010 "\tsrc 0x%x dst 0x%x ill %p " 2011 "ipif_lcl_addr 0x%x\n", 2012 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2013 (void *)ill, 2014 ill->ill_ipif->ipif_lcl_addr)); 2015 freemsg(first_mp); 2016 return; 2017 } 2018 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2019 ipha->ipha_dst = ipif->ipif_src_addr; 2020 ipif_refrele(ipif); 2021 } 2022 /* Reset time to live. */ 2023 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2024 { 2025 /* Swap source and destination addresses */ 2026 ipaddr_t tmp; 2027 2028 tmp = ipha->ipha_src; 2029 ipha->ipha_src = ipha->ipha_dst; 2030 ipha->ipha_dst = tmp; 2031 } 2032 ipha->ipha_ident = 0; 2033 if (!IS_SIMPLE_IPH(ipha)) 2034 icmp_options_update(ipha); 2035 2036 if (!mctl_present) { 2037 /* 2038 * This packet should go out the same way as it 2039 * came in i.e in clear. To make sure that global 2040 * policy will not be applied to this in ip_wput_ire, 2041 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2042 */ 2043 ASSERT(first_mp == mp); 2044 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2045 if (first_mp == NULL) { 2046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2047 freemsg(mp); 2048 return; 2049 } 2050 ii = (ipsec_in_t *)first_mp->b_rptr; 2051 2052 /* This is not a secure packet */ 2053 ii->ipsec_in_secure = B_FALSE; 2054 first_mp->b_cont = mp; 2055 } else { 2056 ii = (ipsec_in_t *)first_mp->b_rptr; 2057 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2058 } 2059 ii->ipsec_in_zoneid = zoneid; 2060 ASSERT(zoneid != ALL_ZONES); 2061 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2063 return; 2064 } 2065 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2066 put(WR(q), first_mp); 2067 } 2068 2069 static ipaddr_t 2070 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2071 { 2072 conn_t *connp; 2073 connf_t *connfp; 2074 ipaddr_t nexthop_addr = INADDR_ANY; 2075 int hdr_length = IPH_HDR_LENGTH(ipha); 2076 uint16_t *up; 2077 uint32_t ports; 2078 ip_stack_t *ipst = ill->ill_ipst; 2079 2080 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2081 switch (ipha->ipha_protocol) { 2082 case IPPROTO_TCP: 2083 { 2084 tcph_t *tcph; 2085 2086 /* do a reverse lookup */ 2087 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2088 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2089 TCPS_LISTEN, ipst); 2090 break; 2091 } 2092 case IPPROTO_UDP: 2093 { 2094 uint32_t dstport, srcport; 2095 2096 ((uint16_t *)&ports)[0] = up[1]; 2097 ((uint16_t *)&ports)[1] = up[0]; 2098 2099 /* Extract ports in net byte order */ 2100 dstport = htons(ntohl(ports) & 0xFFFF); 2101 srcport = htons(ntohl(ports) >> 16); 2102 2103 connfp = &ipst->ips_ipcl_udp_fanout[ 2104 IPCL_UDP_HASH(dstport, ipst)]; 2105 mutex_enter(&connfp->connf_lock); 2106 connp = connfp->connf_head; 2107 2108 /* do a reverse lookup */ 2109 while ((connp != NULL) && 2110 (!IPCL_UDP_MATCH(connp, dstport, 2111 ipha->ipha_src, srcport, ipha->ipha_dst) || 2112 !IPCL_ZONE_MATCH(connp, zoneid))) { 2113 connp = connp->conn_next; 2114 } 2115 if (connp != NULL) 2116 CONN_INC_REF(connp); 2117 mutex_exit(&connfp->connf_lock); 2118 break; 2119 } 2120 case IPPROTO_SCTP: 2121 { 2122 in6_addr_t map_src, map_dst; 2123 2124 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2125 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2126 ((uint16_t *)&ports)[0] = up[1]; 2127 ((uint16_t *)&ports)[1] = up[0]; 2128 2129 connp = sctp_find_conn(&map_src, &map_dst, ports, 2130 zoneid, ipst->ips_netstack->netstack_sctp); 2131 if (connp == NULL) { 2132 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2133 zoneid, ports, ipha, ipst); 2134 } else { 2135 CONN_INC_REF(connp); 2136 SCTP_REFRELE(CONN2SCTP(connp)); 2137 } 2138 break; 2139 } 2140 default: 2141 { 2142 ipha_t ripha; 2143 2144 ripha.ipha_src = ipha->ipha_dst; 2145 ripha.ipha_dst = ipha->ipha_src; 2146 ripha.ipha_protocol = ipha->ipha_protocol; 2147 2148 connfp = &ipst->ips_ipcl_proto_fanout[ 2149 ipha->ipha_protocol]; 2150 mutex_enter(&connfp->connf_lock); 2151 connp = connfp->connf_head; 2152 for (connp = connfp->connf_head; connp != NULL; 2153 connp = connp->conn_next) { 2154 if (IPCL_PROTO_MATCH(connp, 2155 ipha->ipha_protocol, &ripha, ill, 2156 0, zoneid)) { 2157 CONN_INC_REF(connp); 2158 break; 2159 } 2160 } 2161 mutex_exit(&connfp->connf_lock); 2162 } 2163 } 2164 if (connp != NULL) { 2165 if (connp->conn_nexthop_set) 2166 nexthop_addr = connp->conn_nexthop_v4; 2167 CONN_DEC_REF(connp); 2168 } 2169 return (nexthop_addr); 2170 } 2171 2172 /* Table from RFC 1191 */ 2173 static int icmp_frag_size_table[] = 2174 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2175 2176 /* 2177 * Process received ICMP Packet too big. 2178 * After updating any IRE it does the fanout to any matching transport streams. 2179 * Assumes the message has been pulled up till the IP header that caused 2180 * the error. 2181 * 2182 * Returns B_FALSE on failure and B_TRUE on success. 2183 */ 2184 static boolean_t 2185 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2186 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2187 ip_stack_t *ipst) 2188 { 2189 ire_t *ire, *first_ire; 2190 int mtu, orig_mtu; 2191 int hdr_length; 2192 ipaddr_t nexthop_addr; 2193 boolean_t disable_pmtud; 2194 2195 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2196 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2197 ASSERT(ill != NULL); 2198 2199 hdr_length = IPH_HDR_LENGTH(ipha); 2200 2201 /* Drop if the original packet contained a source route */ 2202 if (ip_source_route_included(ipha)) { 2203 return (B_FALSE); 2204 } 2205 /* 2206 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2207 * header. 2208 */ 2209 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2210 mp->b_wptr) { 2211 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2212 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2213 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2214 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2215 return (B_FALSE); 2216 } 2217 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2218 ipha = (ipha_t *)&icmph[1]; 2219 } 2220 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2221 if (nexthop_addr != INADDR_ANY) { 2222 /* nexthop set */ 2223 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2224 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2225 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2226 } else { 2227 /* nexthop not set */ 2228 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2229 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2230 } 2231 2232 if (!first_ire) { 2233 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2234 ntohl(ipha->ipha_dst))); 2235 return (B_FALSE); 2236 } 2237 2238 /* Check for MTU discovery advice as described in RFC 1191 */ 2239 mtu = ntohs(icmph->icmph_du_mtu); 2240 orig_mtu = mtu; 2241 disable_pmtud = B_FALSE; 2242 2243 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2244 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2245 ire = ire->ire_next) { 2246 /* 2247 * Look for the connection to which this ICMP message is 2248 * directed. If it has the IP_NEXTHOP option set, then the 2249 * search is limited to IREs with the MATCH_IRE_PRIVATE 2250 * option. Else the search is limited to regular IREs. 2251 */ 2252 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2253 (nexthop_addr != ire->ire_gateway_addr)) || 2254 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2255 (nexthop_addr != INADDR_ANY))) 2256 continue; 2257 2258 mutex_enter(&ire->ire_lock); 2259 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2260 uint32_t length; 2261 int i; 2262 2263 /* 2264 * Use the table from RFC 1191 to figure out 2265 * the next "plateau" based on the length in 2266 * the original IP packet. 2267 */ 2268 length = ntohs(ipha->ipha_length); 2269 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2270 uint32_t, length); 2271 if (ire->ire_max_frag <= length && 2272 ire->ire_max_frag >= length - hdr_length) { 2273 /* 2274 * Handle broken BSD 4.2 systems that 2275 * return the wrong iph_length in ICMP 2276 * errors. 2277 */ 2278 length -= hdr_length; 2279 } 2280 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2281 if (length > icmp_frag_size_table[i]) 2282 break; 2283 } 2284 if (i == A_CNT(icmp_frag_size_table)) { 2285 /* Smaller than 68! */ 2286 disable_pmtud = B_TRUE; 2287 mtu = ipst->ips_ip_pmtu_min; 2288 } else { 2289 mtu = icmp_frag_size_table[i]; 2290 if (mtu < ipst->ips_ip_pmtu_min) { 2291 mtu = ipst->ips_ip_pmtu_min; 2292 disable_pmtud = B_TRUE; 2293 } 2294 } 2295 /* Fool the ULP into believing our guessed PMTU. */ 2296 icmph->icmph_du_zero = 0; 2297 icmph->icmph_du_mtu = htons(mtu); 2298 } 2299 if (disable_pmtud) 2300 ire->ire_frag_flag = 0; 2301 /* Reduce the IRE max frag value as advised. */ 2302 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2303 if (ire->ire_max_frag == mtu) { 2304 /* Decreased it */ 2305 ire->ire_marks |= IRE_MARK_PMTU; 2306 } 2307 mutex_exit(&ire->ire_lock); 2308 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2309 ire, int, orig_mtu, int, mtu); 2310 } 2311 rw_exit(&first_ire->ire_bucket->irb_lock); 2312 ire_refrele(first_ire); 2313 return (B_TRUE); 2314 } 2315 2316 /* 2317 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2318 * calls this function. 2319 */ 2320 static mblk_t * 2321 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2322 { 2323 ipha_t *ipha; 2324 icmph_t *icmph; 2325 ipha_t *in_ipha; 2326 int length; 2327 2328 ASSERT(mp->b_datap->db_type == M_DATA); 2329 2330 /* 2331 * For Self-encapsulated packets, we added an extra IP header 2332 * without the options. Inner IP header is the one from which 2333 * the outer IP header was formed. Thus, we need to remove the 2334 * outer IP header. To do this, we pullup the whole message 2335 * and overlay whatever follows the outer IP header over the 2336 * outer IP header. 2337 */ 2338 2339 if (!pullupmsg(mp, -1)) 2340 return (NULL); 2341 2342 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2343 ipha = (ipha_t *)&icmph[1]; 2344 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2345 2346 /* 2347 * The length that we want to overlay is following the inner 2348 * IP header. Subtracting the IP header + icmp header + outer 2349 * IP header's length should give us the length that we want to 2350 * overlay. 2351 */ 2352 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2353 hdr_length; 2354 /* 2355 * Overlay whatever follows the inner header over the 2356 * outer header. 2357 */ 2358 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2359 2360 /* Set the wptr to account for the outer header */ 2361 mp->b_wptr -= hdr_length; 2362 return (mp); 2363 } 2364 2365 /* 2366 * Fanout for ICMP errors containing IP-in-IPv4 packets. Returns B_TRUE if a 2367 * tunnel consumed the message, and B_FALSE otherwise. 2368 */ 2369 static boolean_t 2370 icmp_inbound_iptun_fanout(mblk_t *first_mp, ipha_t *ripha, ill_t *ill, 2371 ip_stack_t *ipst) 2372 { 2373 conn_t *connp; 2374 2375 if ((connp = ipcl_iptun_classify_v4(&ripha->ipha_src, &ripha->ipha_dst, 2376 ipst)) == NULL) 2377 return (B_FALSE); 2378 2379 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 2380 connp->conn_recv(connp, first_mp, NULL); 2381 CONN_DEC_REF(connp); 2382 return (B_TRUE); 2383 } 2384 2385 /* 2386 * Try to pass the ICMP message upstream in case the ULP cares. 2387 * 2388 * If the packet that caused the ICMP error is secure, we send 2389 * it to AH/ESP to make sure that the attached packet has a 2390 * valid association. ipha in the code below points to the 2391 * IP header of the packet that caused the error. 2392 * 2393 * For IPsec cases, we let the next-layer-up (which has access to 2394 * cached policy on the conn_t, or can query the SPD directly) 2395 * subtract out any IPsec overhead if they must. We therefore make no 2396 * adjustments here for IPsec overhead. 2397 * 2398 * IFN could have been generated locally or by some router. 2399 * 2400 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2401 * This happens because IP adjusted its value of MTU on an 2402 * earlier IFN message and could not tell the upper layer, 2403 * the new adjusted value of MTU e.g. Packet was encrypted 2404 * or there was not enough information to fanout to upper 2405 * layers. Thus on the next outbound datagram, ip_wput_ire 2406 * generates the IFN, where IPsec processing has *not* been 2407 * done. 2408 * 2409 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2410 * could have generated this. This happens because ire_max_frag 2411 * value in IP was set to a new value, while the IPsec processing 2412 * was being done and after we made the fragmentation check in 2413 * ip_wput_ire. Thus on return from IPsec processing, 2414 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2415 * and generates the IFN. As IPsec processing is over, we fanout 2416 * to AH/ESP to remove the header. 2417 * 2418 * In both these cases, ipsec_in_loopback will be set indicating 2419 * that IFN was generated locally. 2420 * 2421 * ROUTER : IFN could be secure or non-secure. 2422 * 2423 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2424 * packet in error has AH/ESP headers to validate the AH/ESP 2425 * headers. AH/ESP will verify whether there is a valid SA or 2426 * not and send it back. We will fanout again if we have more 2427 * data in the packet. 2428 * 2429 * If the packet in error does not have AH/ESP, we handle it 2430 * like any other case. 2431 * 2432 * * NON_SECURE : If the packet in error has AH/ESP headers, 2433 * we attach a dummy ipsec_in and send it up to AH/ESP 2434 * for validation. AH/ESP will verify whether there is a 2435 * valid SA or not and send it back. We will fanout again if 2436 * we have more data in the packet. 2437 * 2438 * If the packet in error does not have AH/ESP, we handle it 2439 * like any other case. 2440 */ 2441 static void 2442 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2443 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2444 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2445 zoneid_t zoneid) 2446 { 2447 uint16_t *up; /* Pointer to ports in ULP header */ 2448 uint32_t ports; /* reversed ports for fanout */ 2449 ipha_t ripha; /* With reversed addresses */ 2450 mblk_t *first_mp; 2451 ipsec_in_t *ii; 2452 tcph_t *tcph; 2453 conn_t *connp; 2454 ip_stack_t *ipst; 2455 2456 ASSERT(ill != NULL); 2457 2458 ASSERT(recv_ill != NULL); 2459 ipst = recv_ill->ill_ipst; 2460 2461 first_mp = mp; 2462 if (mctl_present) { 2463 mp = first_mp->b_cont; 2464 ASSERT(mp != NULL); 2465 2466 ii = (ipsec_in_t *)first_mp->b_rptr; 2467 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2468 } else { 2469 ii = NULL; 2470 } 2471 2472 /* 2473 * We need a separate IP header with the source and destination 2474 * addresses reversed to do fanout/classification because the ipha in 2475 * the ICMP error is in the form we sent it out. 2476 */ 2477 ripha.ipha_src = ipha->ipha_dst; 2478 ripha.ipha_dst = ipha->ipha_src; 2479 ripha.ipha_protocol = ipha->ipha_protocol; 2480 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2481 2482 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2483 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2484 ntohl(ipha->ipha_dst), 2485 icmph->icmph_type, icmph->icmph_code)); 2486 2487 switch (ipha->ipha_protocol) { 2488 case IPPROTO_UDP: 2489 /* 2490 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2491 * transport header. 2492 */ 2493 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2494 mp->b_wptr) { 2495 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2496 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2497 goto discard_pkt; 2498 } 2499 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2500 ipha = (ipha_t *)&icmph[1]; 2501 } 2502 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2503 2504 /* Attempt to find a client stream based on port. */ 2505 ((uint16_t *)&ports)[0] = up[1]; 2506 ((uint16_t *)&ports)[1] = up[0]; 2507 ip2dbg(("icmp_inbound_error: UDP ports %d to %d\n", 2508 ntohs(up[0]), ntohs(up[1]))); 2509 2510 /* Have to change db_type after any pullupmsg */ 2511 DB_TYPE(mp) = M_CTL; 2512 2513 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2514 mctl_present, ip_policy, recv_ill, zoneid); 2515 return; 2516 2517 case IPPROTO_TCP: 2518 /* 2519 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2520 * transport header. 2521 */ 2522 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2523 mp->b_wptr) { 2524 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2525 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2526 goto discard_pkt; 2527 } 2528 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2529 ipha = (ipha_t *)&icmph[1]; 2530 } 2531 /* 2532 * Find a TCP client stream for this packet. 2533 * Note that we do a reverse lookup since the header is 2534 * in the form we sent it out. 2535 */ 2536 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2537 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2538 ipst); 2539 if (connp == NULL) 2540 goto discard_pkt; 2541 2542 /* Have to change db_type after any pullupmsg */ 2543 DB_TYPE(mp) = M_CTL; 2544 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2545 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2546 return; 2547 2548 case IPPROTO_SCTP: 2549 /* 2550 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2551 * transport header. 2552 */ 2553 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2554 mp->b_wptr) { 2555 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2556 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2557 goto discard_pkt; 2558 } 2559 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2560 ipha = (ipha_t *)&icmph[1]; 2561 } 2562 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2563 /* Find a SCTP client stream for this packet. */ 2564 ((uint16_t *)&ports)[0] = up[1]; 2565 ((uint16_t *)&ports)[1] = up[0]; 2566 2567 /* Have to change db_type after any pullupmsg */ 2568 DB_TYPE(mp) = M_CTL; 2569 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2570 mctl_present, ip_policy, zoneid); 2571 return; 2572 2573 case IPPROTO_ESP: 2574 case IPPROTO_AH: { 2575 int ipsec_rc; 2576 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2577 2578 /* 2579 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2580 * We will re-use the IPSEC_IN if it is already present as 2581 * AH/ESP will not affect any fields in the IPSEC_IN for 2582 * ICMP errors. If there is no IPSEC_IN, allocate a new 2583 * one and attach it in the front. 2584 */ 2585 if (ii != NULL) { 2586 /* 2587 * ip_fanout_proto_again converts the ICMP errors 2588 * that come back from AH/ESP to M_DATA so that 2589 * if it is non-AH/ESP and we do a pullupmsg in 2590 * this function, it would work. Convert it back 2591 * to M_CTL before we send up as this is a ICMP 2592 * error. This could have been generated locally or 2593 * by some router. Validate the inner IPsec 2594 * headers. 2595 * 2596 * NOTE : ill_index is used by ip_fanout_proto_again 2597 * to locate the ill. 2598 */ 2599 ASSERT(ill != NULL); 2600 ii->ipsec_in_ill_index = 2601 ill->ill_phyint->phyint_ifindex; 2602 ii->ipsec_in_rill_index = 2603 recv_ill->ill_phyint->phyint_ifindex; 2604 DB_TYPE(first_mp->b_cont) = M_CTL; 2605 } else { 2606 /* 2607 * IPSEC_IN is not present. We attach a ipsec_in 2608 * message and send up to IPsec for validating 2609 * and removing the IPsec headers. Clear 2610 * ipsec_in_secure so that when we return 2611 * from IPsec, we don't mistakenly think that this 2612 * is a secure packet came from the network. 2613 * 2614 * NOTE : ill_index is used by ip_fanout_proto_again 2615 * to locate the ill. 2616 */ 2617 ASSERT(first_mp == mp); 2618 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2619 if (first_mp == NULL) { 2620 freemsg(mp); 2621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2622 return; 2623 } 2624 ii = (ipsec_in_t *)first_mp->b_rptr; 2625 2626 /* This is not a secure packet */ 2627 ii->ipsec_in_secure = B_FALSE; 2628 first_mp->b_cont = mp; 2629 DB_TYPE(mp) = M_CTL; 2630 ASSERT(ill != NULL); 2631 ii->ipsec_in_ill_index = 2632 ill->ill_phyint->phyint_ifindex; 2633 ii->ipsec_in_rill_index = 2634 recv_ill->ill_phyint->phyint_ifindex; 2635 } 2636 2637 if (!ipsec_loaded(ipss)) { 2638 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2639 return; 2640 } 2641 2642 if (ipha->ipha_protocol == IPPROTO_ESP) 2643 ipsec_rc = ipsecesp_icmp_error(first_mp); 2644 else 2645 ipsec_rc = ipsecah_icmp_error(first_mp); 2646 if (ipsec_rc == IPSEC_STATUS_FAILED) 2647 return; 2648 2649 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2650 return; 2651 } 2652 case IPPROTO_ENCAP: 2653 case IPPROTO_IPV6: 2654 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2655 ipha_t *in_ipha; 2656 2657 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2658 mp->b_wptr) { 2659 if (!pullupmsg(mp, (uchar_t *)ipha + 2660 hdr_length + sizeof (ipha_t) - 2661 mp->b_rptr)) { 2662 goto discard_pkt; 2663 } 2664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2665 ipha = (ipha_t *)&icmph[1]; 2666 } 2667 /* 2668 * Caller has verified that length has to be 2669 * at least the size of IP header. 2670 */ 2671 ASSERT(hdr_length >= sizeof (ipha_t)); 2672 /* 2673 * Check the sanity of the inner IP header like 2674 * we did for the outer header. 2675 */ 2676 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2677 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION) || 2678 IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) 2679 goto discard_pkt; 2680 /* Check for Self-encapsulated tunnels */ 2681 if (in_ipha->ipha_src == ipha->ipha_src && 2682 in_ipha->ipha_dst == ipha->ipha_dst) { 2683 2684 mp = icmp_inbound_self_encap_error(mp, 2685 iph_hdr_length, hdr_length); 2686 if (mp == NULL) 2687 goto discard_pkt; 2688 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2689 ipha = (ipha_t *)&icmph[1]; 2690 hdr_length = IPH_HDR_LENGTH(ipha); 2691 /* 2692 * The packet in error is self-encapsualted. 2693 * And we are finding it further encapsulated 2694 * which we could not have possibly generated. 2695 */ 2696 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2697 goto discard_pkt; 2698 } 2699 icmp_inbound_error_fanout(q, ill, first_mp, 2700 icmph, ipha, iph_hdr_length, hdr_length, 2701 mctl_present, ip_policy, recv_ill, zoneid); 2702 return; 2703 } 2704 } 2705 2706 DB_TYPE(mp) = M_CTL; 2707 if (icmp_inbound_iptun_fanout(first_mp, &ripha, ill, ipst)) 2708 return; 2709 /* 2710 * No IP tunnel is interested, fallthrough and see 2711 * if a raw socket will want it. 2712 */ 2713 /* FALLTHRU */ 2714 default: 2715 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2716 ip_policy, recv_ill, zoneid); 2717 return; 2718 } 2719 /* NOTREACHED */ 2720 discard_pkt: 2721 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2722 drop_pkt:; 2723 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2724 freemsg(first_mp); 2725 } 2726 2727 /* 2728 * Common IP options parser. 2729 * 2730 * Setup routine: fill in *optp with options-parsing state, then 2731 * tail-call ipoptp_next to return the first option. 2732 */ 2733 uint8_t 2734 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2735 { 2736 uint32_t totallen; /* total length of all options */ 2737 2738 totallen = ipha->ipha_version_and_hdr_length - 2739 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2740 totallen <<= 2; 2741 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2742 optp->ipoptp_end = optp->ipoptp_next + totallen; 2743 optp->ipoptp_flags = 0; 2744 return (ipoptp_next(optp)); 2745 } 2746 2747 /* 2748 * Common IP options parser: extract next option. 2749 */ 2750 uint8_t 2751 ipoptp_next(ipoptp_t *optp) 2752 { 2753 uint8_t *end = optp->ipoptp_end; 2754 uint8_t *cur = optp->ipoptp_next; 2755 uint8_t opt, len, pointer; 2756 2757 /* 2758 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2759 * has been corrupted. 2760 */ 2761 ASSERT(cur <= end); 2762 2763 if (cur == end) 2764 return (IPOPT_EOL); 2765 2766 opt = cur[IPOPT_OPTVAL]; 2767 2768 /* 2769 * Skip any NOP options. 2770 */ 2771 while (opt == IPOPT_NOP) { 2772 cur++; 2773 if (cur == end) 2774 return (IPOPT_EOL); 2775 opt = cur[IPOPT_OPTVAL]; 2776 } 2777 2778 if (opt == IPOPT_EOL) 2779 return (IPOPT_EOL); 2780 2781 /* 2782 * Option requiring a length. 2783 */ 2784 if ((cur + 1) >= end) { 2785 optp->ipoptp_flags |= IPOPTP_ERROR; 2786 return (IPOPT_EOL); 2787 } 2788 len = cur[IPOPT_OLEN]; 2789 if (len < 2) { 2790 optp->ipoptp_flags |= IPOPTP_ERROR; 2791 return (IPOPT_EOL); 2792 } 2793 optp->ipoptp_cur = cur; 2794 optp->ipoptp_len = len; 2795 optp->ipoptp_next = cur + len; 2796 if (cur + len > end) { 2797 optp->ipoptp_flags |= IPOPTP_ERROR; 2798 return (IPOPT_EOL); 2799 } 2800 2801 /* 2802 * For the options which require a pointer field, make sure 2803 * its there, and make sure it points to either something 2804 * inside this option, or the end of the option. 2805 */ 2806 switch (opt) { 2807 case IPOPT_RR: 2808 case IPOPT_TS: 2809 case IPOPT_LSRR: 2810 case IPOPT_SSRR: 2811 if (len <= IPOPT_OFFSET) { 2812 optp->ipoptp_flags |= IPOPTP_ERROR; 2813 return (opt); 2814 } 2815 pointer = cur[IPOPT_OFFSET]; 2816 if (pointer - 1 > len) { 2817 optp->ipoptp_flags |= IPOPTP_ERROR; 2818 return (opt); 2819 } 2820 break; 2821 } 2822 2823 /* 2824 * Sanity check the pointer field based on the type of the 2825 * option. 2826 */ 2827 switch (opt) { 2828 case IPOPT_RR: 2829 case IPOPT_SSRR: 2830 case IPOPT_LSRR: 2831 if (pointer < IPOPT_MINOFF_SR) 2832 optp->ipoptp_flags |= IPOPTP_ERROR; 2833 break; 2834 case IPOPT_TS: 2835 if (pointer < IPOPT_MINOFF_IT) 2836 optp->ipoptp_flags |= IPOPTP_ERROR; 2837 /* 2838 * Note that the Internet Timestamp option also 2839 * contains two four bit fields (the Overflow field, 2840 * and the Flag field), which follow the pointer 2841 * field. We don't need to check that these fields 2842 * fall within the length of the option because this 2843 * was implicitely done above. We've checked that the 2844 * pointer value is at least IPOPT_MINOFF_IT, and that 2845 * it falls within the option. Since IPOPT_MINOFF_IT > 2846 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2847 */ 2848 ASSERT(len > IPOPT_POS_OV_FLG); 2849 break; 2850 } 2851 2852 return (opt); 2853 } 2854 2855 /* 2856 * Use the outgoing IP header to create an IP_OPTIONS option the way 2857 * it was passed down from the application. 2858 */ 2859 int 2860 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2861 { 2862 ipoptp_t opts; 2863 const uchar_t *opt; 2864 uint8_t optval; 2865 uint8_t optlen; 2866 uint32_t len = 0; 2867 uchar_t *buf1 = buf; 2868 2869 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2870 len += IP_ADDR_LEN; 2871 bzero(buf1, IP_ADDR_LEN); 2872 2873 /* 2874 * OK to cast away const here, as we don't store through the returned 2875 * opts.ipoptp_cur pointer. 2876 */ 2877 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2878 optval != IPOPT_EOL; 2879 optval = ipoptp_next(&opts)) { 2880 int off; 2881 2882 opt = opts.ipoptp_cur; 2883 optlen = opts.ipoptp_len; 2884 switch (optval) { 2885 case IPOPT_SSRR: 2886 case IPOPT_LSRR: 2887 2888 /* 2889 * Insert ipha_dst as the first entry in the source 2890 * route and move down the entries on step. 2891 * The last entry gets placed at buf1. 2892 */ 2893 buf[IPOPT_OPTVAL] = optval; 2894 buf[IPOPT_OLEN] = optlen; 2895 buf[IPOPT_OFFSET] = optlen; 2896 2897 off = optlen - IP_ADDR_LEN; 2898 if (off < 0) { 2899 /* No entries in source route */ 2900 break; 2901 } 2902 /* Last entry in source route */ 2903 bcopy(opt + off, buf1, IP_ADDR_LEN); 2904 off -= IP_ADDR_LEN; 2905 2906 while (off > 0) { 2907 bcopy(opt + off, 2908 buf + off + IP_ADDR_LEN, 2909 IP_ADDR_LEN); 2910 off -= IP_ADDR_LEN; 2911 } 2912 /* ipha_dst into first slot */ 2913 bcopy(&ipha->ipha_dst, 2914 buf + off + IP_ADDR_LEN, 2915 IP_ADDR_LEN); 2916 buf += optlen; 2917 len += optlen; 2918 break; 2919 2920 case IPOPT_COMSEC: 2921 case IPOPT_SECURITY: 2922 /* if passing up a label is not ok, then remove */ 2923 if (is_system_labeled()) 2924 break; 2925 /* FALLTHROUGH */ 2926 default: 2927 bcopy(opt, buf, optlen); 2928 buf += optlen; 2929 len += optlen; 2930 break; 2931 } 2932 } 2933 done: 2934 /* Pad the resulting options */ 2935 while (len & 0x3) { 2936 *buf++ = IPOPT_EOL; 2937 len++; 2938 } 2939 return (len); 2940 } 2941 2942 /* 2943 * Update any record route or timestamp options to include this host. 2944 * Reverse any source route option. 2945 * This routine assumes that the options are well formed i.e. that they 2946 * have already been checked. 2947 */ 2948 static void 2949 icmp_options_update(ipha_t *ipha) 2950 { 2951 ipoptp_t opts; 2952 uchar_t *opt; 2953 uint8_t optval; 2954 ipaddr_t src; /* Our local address */ 2955 ipaddr_t dst; 2956 2957 ip2dbg(("icmp_options_update\n")); 2958 src = ipha->ipha_src; 2959 dst = ipha->ipha_dst; 2960 2961 for (optval = ipoptp_first(&opts, ipha); 2962 optval != IPOPT_EOL; 2963 optval = ipoptp_next(&opts)) { 2964 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2965 opt = opts.ipoptp_cur; 2966 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2967 optval, opts.ipoptp_len)); 2968 switch (optval) { 2969 int off1, off2; 2970 case IPOPT_SSRR: 2971 case IPOPT_LSRR: 2972 /* 2973 * Reverse the source route. The first entry 2974 * should be the next to last one in the current 2975 * source route (the last entry is our address). 2976 * The last entry should be the final destination. 2977 */ 2978 off1 = IPOPT_MINOFF_SR - 1; 2979 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2980 if (off2 < 0) { 2981 /* No entries in source route */ 2982 ip1dbg(( 2983 "icmp_options_update: bad src route\n")); 2984 break; 2985 } 2986 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2987 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2988 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2989 off2 -= IP_ADDR_LEN; 2990 2991 while (off1 < off2) { 2992 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2993 bcopy((char *)opt + off2, (char *)opt + off1, 2994 IP_ADDR_LEN); 2995 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2996 off1 += IP_ADDR_LEN; 2997 off2 -= IP_ADDR_LEN; 2998 } 2999 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3000 break; 3001 } 3002 } 3003 } 3004 3005 /* 3006 * Process received ICMP Redirect messages. 3007 */ 3008 static void 3009 icmp_redirect(ill_t *ill, mblk_t *mp) 3010 { 3011 ipha_t *ipha; 3012 int iph_hdr_length; 3013 icmph_t *icmph; 3014 ipha_t *ipha_err; 3015 ire_t *ire; 3016 ire_t *prev_ire; 3017 ire_t *save_ire; 3018 ipaddr_t src, dst, gateway; 3019 iulp_t ulp_info = { 0 }; 3020 int error; 3021 ip_stack_t *ipst; 3022 3023 ASSERT(ill != NULL); 3024 ipst = ill->ill_ipst; 3025 3026 ipha = (ipha_t *)mp->b_rptr; 3027 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3028 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3029 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3030 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3031 freemsg(mp); 3032 return; 3033 } 3034 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3035 ipha_err = (ipha_t *)&icmph[1]; 3036 src = ipha->ipha_src; 3037 dst = ipha_err->ipha_dst; 3038 gateway = icmph->icmph_rd_gateway; 3039 /* Make sure the new gateway is reachable somehow. */ 3040 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3041 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3042 /* 3043 * Make sure we had a route for the dest in question and that 3044 * that route was pointing to the old gateway (the source of the 3045 * redirect packet.) 3046 */ 3047 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3048 NULL, MATCH_IRE_GW, ipst); 3049 /* 3050 * Check that 3051 * the redirect was not from ourselves 3052 * the new gateway and the old gateway are directly reachable 3053 */ 3054 if (!prev_ire || 3055 !ire || 3056 ire->ire_type == IRE_LOCAL) { 3057 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3058 freemsg(mp); 3059 if (ire != NULL) 3060 ire_refrele(ire); 3061 if (prev_ire != NULL) 3062 ire_refrele(prev_ire); 3063 return; 3064 } 3065 3066 /* 3067 * Should we use the old ULP info to create the new gateway? From 3068 * a user's perspective, we should inherit the info so that it 3069 * is a "smooth" transition. If we do not do that, then new 3070 * connections going thru the new gateway will have no route metrics, 3071 * which is counter-intuitive to user. From a network point of 3072 * view, this may or may not make sense even though the new gateway 3073 * is still directly connected to us so the route metrics should not 3074 * change much. 3075 * 3076 * But if the old ire_uinfo is not initialized, we do another 3077 * recursive lookup on the dest using the new gateway. There may 3078 * be a route to that. If so, use it to initialize the redirect 3079 * route. 3080 */ 3081 if (prev_ire->ire_uinfo.iulp_set) { 3082 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3083 } else { 3084 ire_t *tmp_ire; 3085 ire_t *sire; 3086 3087 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3088 ALL_ZONES, 0, NULL, 3089 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3090 ipst); 3091 if (sire != NULL) { 3092 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3093 /* 3094 * If sire != NULL, ire_ftable_lookup() should not 3095 * return a NULL value. 3096 */ 3097 ASSERT(tmp_ire != NULL); 3098 ire_refrele(tmp_ire); 3099 ire_refrele(sire); 3100 } else if (tmp_ire != NULL) { 3101 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3102 sizeof (iulp_t)); 3103 ire_refrele(tmp_ire); 3104 } 3105 } 3106 if (prev_ire->ire_type == IRE_CACHE) 3107 ire_delete(prev_ire); 3108 ire_refrele(prev_ire); 3109 /* 3110 * TODO: more precise handling for cases 0, 2, 3, the latter two 3111 * require TOS routing 3112 */ 3113 switch (icmph->icmph_code) { 3114 case 0: 3115 case 1: 3116 /* TODO: TOS specificity for cases 2 and 3 */ 3117 case 2: 3118 case 3: 3119 break; 3120 default: 3121 freemsg(mp); 3122 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3123 ire_refrele(ire); 3124 return; 3125 } 3126 /* 3127 * Create a Route Association. This will allow us to remember that 3128 * someone we believe told us to use the particular gateway. 3129 */ 3130 save_ire = ire; 3131 ire = ire_create( 3132 (uchar_t *)&dst, /* dest addr */ 3133 (uchar_t *)&ip_g_all_ones, /* mask */ 3134 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3135 (uchar_t *)&gateway, /* gateway addr */ 3136 &save_ire->ire_max_frag, /* max frag */ 3137 NULL, /* no src nce */ 3138 NULL, /* no rfq */ 3139 NULL, /* no stq */ 3140 IRE_HOST, 3141 NULL, /* ipif */ 3142 0, /* cmask */ 3143 0, /* phandle */ 3144 0, /* ihandle */ 3145 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3146 &ulp_info, 3147 NULL, /* tsol_gc_t */ 3148 NULL, /* gcgrp */ 3149 ipst); 3150 3151 if (ire == NULL) { 3152 freemsg(mp); 3153 ire_refrele(save_ire); 3154 return; 3155 } 3156 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3157 ire_refrele(save_ire); 3158 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3159 3160 if (error == 0) { 3161 ire_refrele(ire); /* Held in ire_add_v4 */ 3162 /* tell routing sockets that we received a redirect */ 3163 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3164 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3165 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3166 } 3167 3168 /* 3169 * Delete any existing IRE_HOST type redirect ires for this destination. 3170 * This together with the added IRE has the effect of 3171 * modifying an existing redirect. 3172 */ 3173 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3174 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3175 if (prev_ire != NULL) { 3176 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3177 ire_delete(prev_ire); 3178 ire_refrele(prev_ire); 3179 } 3180 3181 freemsg(mp); 3182 } 3183 3184 /* 3185 * Generate an ICMP parameter problem message. 3186 */ 3187 static void 3188 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3189 ip_stack_t *ipst) 3190 { 3191 icmph_t icmph; 3192 boolean_t mctl_present; 3193 mblk_t *first_mp; 3194 3195 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3196 3197 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3198 if (mctl_present) 3199 freeb(first_mp); 3200 return; 3201 } 3202 3203 bzero(&icmph, sizeof (icmph_t)); 3204 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3205 icmph.icmph_pp_ptr = ptr; 3206 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3207 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3208 ipst); 3209 } 3210 3211 /* 3212 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3213 * the ICMP header pointed to by "stuff". (May be called as writer.) 3214 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3215 * an icmp error packet can be sent. 3216 * Assigns an appropriate source address to the packet. If ipha_dst is 3217 * one of our addresses use it for source. Otherwise pick a source based 3218 * on a route lookup back to ipha_src. 3219 * Note that ipha_src must be set here since the 3220 * packet is likely to arrive on an ill queue in ip_wput() which will 3221 * not set a source address. 3222 */ 3223 static void 3224 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3225 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3226 { 3227 ipaddr_t dst; 3228 icmph_t *icmph; 3229 ipha_t *ipha; 3230 uint_t len_needed; 3231 size_t msg_len; 3232 mblk_t *mp1; 3233 ipaddr_t src; 3234 ire_t *ire; 3235 mblk_t *ipsec_mp; 3236 ipsec_out_t *io = NULL; 3237 3238 if (mctl_present) { 3239 /* 3240 * If it is : 3241 * 3242 * 1) a IPSEC_OUT, then this is caused by outbound 3243 * datagram originating on this host. IPsec processing 3244 * may or may not have been done. Refer to comments above 3245 * icmp_inbound_error_fanout for details. 3246 * 3247 * 2) a IPSEC_IN if we are generating a icmp_message 3248 * for an incoming datagram destined for us i.e called 3249 * from ip_fanout_send_icmp. 3250 */ 3251 ipsec_info_t *in; 3252 ipsec_mp = mp; 3253 mp = ipsec_mp->b_cont; 3254 3255 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3256 ipha = (ipha_t *)mp->b_rptr; 3257 3258 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3259 in->ipsec_info_type == IPSEC_IN); 3260 3261 if (in->ipsec_info_type == IPSEC_IN) { 3262 /* 3263 * Convert the IPSEC_IN to IPSEC_OUT. 3264 */ 3265 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3266 BUMP_MIB(&ipst->ips_ip_mib, 3267 ipIfStatsOutDiscards); 3268 return; 3269 } 3270 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3271 } else { 3272 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3273 io = (ipsec_out_t *)in; 3274 /* 3275 * Clear out ipsec_out_proc_begin, so we do a fresh 3276 * ire lookup. 3277 */ 3278 io->ipsec_out_proc_begin = B_FALSE; 3279 } 3280 ASSERT(zoneid != ALL_ZONES); 3281 /* 3282 * The IPSEC_IN (now an IPSEC_OUT) didn't have its zoneid 3283 * initialized. We need to do that now. 3284 */ 3285 io->ipsec_out_zoneid = zoneid; 3286 } else { 3287 /* 3288 * This is in clear. The icmp message we are building 3289 * here should go out in clear. 3290 * 3291 * Pardon the convolution of it all, but it's easier to 3292 * allocate a "use cleartext" IPSEC_IN message and convert 3293 * it than it is to allocate a new one. 3294 */ 3295 ipsec_in_t *ii; 3296 ASSERT(DB_TYPE(mp) == M_DATA); 3297 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3298 if (ipsec_mp == NULL) { 3299 freemsg(mp); 3300 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3301 return; 3302 } 3303 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3304 3305 /* This is not a secure packet */ 3306 ii->ipsec_in_secure = B_FALSE; 3307 /* 3308 * For trusted extensions using a shared IP address we can 3309 * send using any zoneid. 3310 */ 3311 if (zoneid == ALL_ZONES) 3312 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3313 else 3314 ii->ipsec_in_zoneid = zoneid; 3315 ipsec_mp->b_cont = mp; 3316 ipha = (ipha_t *)mp->b_rptr; 3317 /* 3318 * Convert the IPSEC_IN to IPSEC_OUT. 3319 */ 3320 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3321 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3322 return; 3323 } 3324 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3325 } 3326 3327 /* Remember our eventual destination */ 3328 dst = ipha->ipha_src; 3329 3330 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3331 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3332 if (ire != NULL && 3333 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3334 src = ipha->ipha_dst; 3335 } else { 3336 if (ire != NULL) 3337 ire_refrele(ire); 3338 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3339 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3340 ipst); 3341 if (ire == NULL) { 3342 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3343 freemsg(ipsec_mp); 3344 return; 3345 } 3346 src = ire->ire_src_addr; 3347 } 3348 3349 if (ire != NULL) 3350 ire_refrele(ire); 3351 3352 /* 3353 * Check if we can send back more then 8 bytes in addition to 3354 * the IP header. We try to send 64 bytes of data and the internal 3355 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3356 */ 3357 len_needed = IPH_HDR_LENGTH(ipha); 3358 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3359 ipha->ipha_protocol == IPPROTO_IPV6) { 3360 3361 if (!pullupmsg(mp, -1)) { 3362 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3363 freemsg(ipsec_mp); 3364 return; 3365 } 3366 ipha = (ipha_t *)mp->b_rptr; 3367 3368 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3369 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3370 len_needed)); 3371 } else { 3372 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3373 3374 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3375 len_needed += ip_hdr_length_v6(mp, ip6h); 3376 } 3377 } 3378 len_needed += ipst->ips_ip_icmp_return; 3379 msg_len = msgdsize(mp); 3380 if (msg_len > len_needed) { 3381 (void) adjmsg(mp, len_needed - msg_len); 3382 msg_len = len_needed; 3383 } 3384 /* Make sure we propagate the cred/label for TX */ 3385 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3386 if (mp1 == NULL) { 3387 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3388 freemsg(ipsec_mp); 3389 return; 3390 } 3391 mp1->b_cont = mp; 3392 mp = mp1; 3393 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3394 ipsec_mp->b_rptr == (uint8_t *)io && 3395 io->ipsec_out_type == IPSEC_OUT); 3396 ipsec_mp->b_cont = mp; 3397 3398 /* 3399 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3400 * node generates be accepted in peace by all on-host destinations. 3401 * If we do NOT assume that all on-host destinations trust 3402 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3403 * (Look for ipsec_out_icmp_loopback). 3404 */ 3405 io->ipsec_out_icmp_loopback = B_TRUE; 3406 3407 ipha = (ipha_t *)mp->b_rptr; 3408 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3409 *ipha = icmp_ipha; 3410 ipha->ipha_src = src; 3411 ipha->ipha_dst = dst; 3412 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3413 msg_len += sizeof (icmp_ipha) + len; 3414 if (msg_len > IP_MAXPACKET) { 3415 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3416 msg_len = IP_MAXPACKET; 3417 } 3418 ipha->ipha_length = htons((uint16_t)msg_len); 3419 icmph = (icmph_t *)&ipha[1]; 3420 bcopy(stuff, icmph, len); 3421 icmph->icmph_checksum = 0; 3422 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3423 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3424 put(q, ipsec_mp); 3425 } 3426 3427 /* 3428 * Determine if an ICMP error packet can be sent given the rate limit. 3429 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3430 * in milliseconds) and a burst size. Burst size number of packets can 3431 * be sent arbitrarely closely spaced. 3432 * The state is tracked using two variables to implement an approximate 3433 * token bucket filter: 3434 * icmp_pkt_err_last - lbolt value when the last burst started 3435 * icmp_pkt_err_sent - number of packets sent in current burst 3436 */ 3437 boolean_t 3438 icmp_err_rate_limit(ip_stack_t *ipst) 3439 { 3440 clock_t now = TICK_TO_MSEC(lbolt); 3441 uint_t refilled; /* Number of packets refilled in tbf since last */ 3442 /* Guard against changes by loading into local variable */ 3443 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3444 3445 if (err_interval == 0) 3446 return (B_FALSE); 3447 3448 if (ipst->ips_icmp_pkt_err_last > now) { 3449 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3450 ipst->ips_icmp_pkt_err_last = 0; 3451 ipst->ips_icmp_pkt_err_sent = 0; 3452 } 3453 /* 3454 * If we are in a burst update the token bucket filter. 3455 * Update the "last" time to be close to "now" but make sure 3456 * we don't loose precision. 3457 */ 3458 if (ipst->ips_icmp_pkt_err_sent != 0) { 3459 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3460 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3461 ipst->ips_icmp_pkt_err_sent = 0; 3462 } else { 3463 ipst->ips_icmp_pkt_err_sent -= refilled; 3464 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3465 } 3466 } 3467 if (ipst->ips_icmp_pkt_err_sent == 0) { 3468 /* Start of new burst */ 3469 ipst->ips_icmp_pkt_err_last = now; 3470 } 3471 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3472 ipst->ips_icmp_pkt_err_sent++; 3473 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3474 ipst->ips_icmp_pkt_err_sent)); 3475 return (B_FALSE); 3476 } 3477 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3478 return (B_TRUE); 3479 } 3480 3481 /* 3482 * Check if it is ok to send an IPv4 ICMP error packet in 3483 * response to the IPv4 packet in mp. 3484 * Free the message and return null if no 3485 * ICMP error packet should be sent. 3486 */ 3487 static mblk_t * 3488 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3489 { 3490 icmph_t *icmph; 3491 ipha_t *ipha; 3492 uint_t len_needed; 3493 ire_t *src_ire; 3494 ire_t *dst_ire; 3495 3496 if (!mp) 3497 return (NULL); 3498 ipha = (ipha_t *)mp->b_rptr; 3499 if (ip_csum_hdr(ipha)) { 3500 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3501 freemsg(mp); 3502 return (NULL); 3503 } 3504 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3505 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3506 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3507 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3508 if (src_ire != NULL || dst_ire != NULL || 3509 CLASSD(ipha->ipha_dst) || 3510 CLASSD(ipha->ipha_src) || 3511 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3512 /* Note: only errors to the fragment with offset 0 */ 3513 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3514 freemsg(mp); 3515 if (src_ire != NULL) 3516 ire_refrele(src_ire); 3517 if (dst_ire != NULL) 3518 ire_refrele(dst_ire); 3519 return (NULL); 3520 } 3521 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3522 /* 3523 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3524 * errors in response to any ICMP errors. 3525 */ 3526 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3527 if (mp->b_wptr - mp->b_rptr < len_needed) { 3528 if (!pullupmsg(mp, len_needed)) { 3529 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3530 freemsg(mp); 3531 return (NULL); 3532 } 3533 ipha = (ipha_t *)mp->b_rptr; 3534 } 3535 icmph = (icmph_t *) 3536 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3537 switch (icmph->icmph_type) { 3538 case ICMP_DEST_UNREACHABLE: 3539 case ICMP_SOURCE_QUENCH: 3540 case ICMP_TIME_EXCEEDED: 3541 case ICMP_PARAM_PROBLEM: 3542 case ICMP_REDIRECT: 3543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3544 freemsg(mp); 3545 return (NULL); 3546 default: 3547 break; 3548 } 3549 } 3550 /* 3551 * If this is a labeled system, then check to see if we're allowed to 3552 * send a response to this particular sender. If not, then just drop. 3553 */ 3554 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3555 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3556 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3557 freemsg(mp); 3558 return (NULL); 3559 } 3560 if (icmp_err_rate_limit(ipst)) { 3561 /* 3562 * Only send ICMP error packets every so often. 3563 * This should be done on a per port/source basis, 3564 * but for now this will suffice. 3565 */ 3566 freemsg(mp); 3567 return (NULL); 3568 } 3569 return (mp); 3570 } 3571 3572 /* 3573 * Generate an ICMP redirect message. 3574 */ 3575 static void 3576 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3577 { 3578 icmph_t icmph; 3579 3580 /* 3581 * We are called from ip_rput where we could 3582 * not have attached an IPSEC_IN. 3583 */ 3584 ASSERT(mp->b_datap->db_type == M_DATA); 3585 3586 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3587 return; 3588 } 3589 3590 bzero(&icmph, sizeof (icmph_t)); 3591 icmph.icmph_type = ICMP_REDIRECT; 3592 icmph.icmph_code = 1; 3593 icmph.icmph_rd_gateway = gateway; 3594 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3595 /* Redirects sent by router, and router is global zone */ 3596 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3597 } 3598 3599 /* 3600 * Generate an ICMP time exceeded message. 3601 */ 3602 void 3603 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3604 ip_stack_t *ipst) 3605 { 3606 icmph_t icmph; 3607 boolean_t mctl_present; 3608 mblk_t *first_mp; 3609 3610 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3611 3612 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3613 if (mctl_present) 3614 freeb(first_mp); 3615 return; 3616 } 3617 3618 bzero(&icmph, sizeof (icmph_t)); 3619 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3620 icmph.icmph_code = code; 3621 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3622 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3623 ipst); 3624 } 3625 3626 /* 3627 * Generate an ICMP unreachable message. 3628 */ 3629 void 3630 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3631 ip_stack_t *ipst) 3632 { 3633 icmph_t icmph; 3634 mblk_t *first_mp; 3635 boolean_t mctl_present; 3636 3637 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3638 3639 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3640 if (mctl_present) 3641 freeb(first_mp); 3642 return; 3643 } 3644 3645 bzero(&icmph, sizeof (icmph_t)); 3646 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3647 icmph.icmph_code = code; 3648 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3649 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3650 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3651 zoneid, ipst); 3652 } 3653 3654 /* 3655 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3656 * duplicate. As long as someone else holds the address, the interface will 3657 * stay down. When that conflict goes away, the interface is brought back up. 3658 * This is done so that accidental shutdowns of addresses aren't made 3659 * permanent. Your server will recover from a failure. 3660 * 3661 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3662 * user space process (dhcpagent). 3663 * 3664 * Recovery completes if ARP reports that the address is now ours (via 3665 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3666 * 3667 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3668 */ 3669 static void 3670 ipif_dup_recovery(void *arg) 3671 { 3672 ipif_t *ipif = arg; 3673 ill_t *ill = ipif->ipif_ill; 3674 mblk_t *arp_add_mp; 3675 mblk_t *arp_del_mp; 3676 ip_stack_t *ipst = ill->ill_ipst; 3677 3678 ipif->ipif_recovery_id = 0; 3679 3680 /* 3681 * No lock needed for moving or condemned check, as this is just an 3682 * optimization. 3683 */ 3684 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3685 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3686 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3687 /* No reason to try to bring this address back. */ 3688 return; 3689 } 3690 3691 /* ACE_F_UNVERIFIED restarts DAD */ 3692 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3693 goto alloc_fail; 3694 3695 if (ipif->ipif_arp_del_mp == NULL) { 3696 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3697 goto alloc_fail; 3698 ipif->ipif_arp_del_mp = arp_del_mp; 3699 } 3700 3701 putnext(ill->ill_rq, arp_add_mp); 3702 return; 3703 3704 alloc_fail: 3705 /* 3706 * On allocation failure, just restart the timer. Note that the ipif 3707 * is down here, so no other thread could be trying to start a recovery 3708 * timer. The ill_lock protects the condemned flag and the recovery 3709 * timer ID. 3710 */ 3711 freemsg(arp_add_mp); 3712 mutex_enter(&ill->ill_lock); 3713 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3714 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3715 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3716 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3717 } 3718 mutex_exit(&ill->ill_lock); 3719 } 3720 3721 /* 3722 * This is for exclusive changes due to ARP. Either tear down an interface due 3723 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3724 */ 3725 /* ARGSUSED */ 3726 static void 3727 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3728 { 3729 ill_t *ill = rq->q_ptr; 3730 arh_t *arh; 3731 ipaddr_t src; 3732 ipif_t *ipif; 3733 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3734 char hbuf[MAC_STR_LEN]; 3735 char sbuf[INET_ADDRSTRLEN]; 3736 const char *failtype; 3737 boolean_t bring_up; 3738 ip_stack_t *ipst = ill->ill_ipst; 3739 3740 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3741 case AR_CN_READY: 3742 failtype = NULL; 3743 bring_up = B_TRUE; 3744 break; 3745 case AR_CN_FAILED: 3746 failtype = "in use"; 3747 bring_up = B_FALSE; 3748 break; 3749 default: 3750 failtype = "claimed"; 3751 bring_up = B_FALSE; 3752 break; 3753 } 3754 3755 arh = (arh_t *)mp->b_cont->b_rptr; 3756 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3757 3758 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3759 sizeof (hbuf)); 3760 (void) ip_dot_addr(src, sbuf); 3761 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3762 3763 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3764 ipif->ipif_lcl_addr != src) { 3765 continue; 3766 } 3767 3768 /* 3769 * If we failed on a recovery probe, then restart the timer to 3770 * try again later. 3771 */ 3772 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3773 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3774 ill->ill_net_type == IRE_IF_RESOLVER && 3775 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3776 ipst->ips_ip_dup_recovery > 0 && 3777 ipif->ipif_recovery_id == 0) { 3778 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3779 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3780 continue; 3781 } 3782 3783 /* 3784 * If what we're trying to do has already been done, then do 3785 * nothing. 3786 */ 3787 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3788 continue; 3789 3790 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3791 3792 if (failtype == NULL) { 3793 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3794 ibuf); 3795 } else { 3796 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3797 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3798 } 3799 3800 if (bring_up) { 3801 ASSERT(ill->ill_dl_up); 3802 /* 3803 * Free up the ARP delete message so we can allocate 3804 * a fresh one through the normal path. 3805 */ 3806 freemsg(ipif->ipif_arp_del_mp); 3807 ipif->ipif_arp_del_mp = NULL; 3808 if (ipif_resolver_up(ipif, Res_act_initial) != 3809 EINPROGRESS) { 3810 ipif->ipif_addr_ready = 1; 3811 (void) ipif_up_done(ipif); 3812 ASSERT(ill->ill_move_ipif == NULL); 3813 } 3814 continue; 3815 } 3816 3817 mutex_enter(&ill->ill_lock); 3818 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3819 ipif->ipif_flags |= IPIF_DUPLICATE; 3820 ill->ill_ipif_dup_count++; 3821 mutex_exit(&ill->ill_lock); 3822 /* 3823 * Already exclusive on the ill; no need to handle deferred 3824 * processing here. 3825 */ 3826 (void) ipif_down(ipif, NULL, NULL); 3827 ipif_down_tail(ipif); 3828 mutex_enter(&ill->ill_lock); 3829 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3830 ill->ill_net_type == IRE_IF_RESOLVER && 3831 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3832 ipst->ips_ip_dup_recovery > 0) { 3833 ASSERT(ipif->ipif_recovery_id == 0); 3834 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3835 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3836 } 3837 mutex_exit(&ill->ill_lock); 3838 } 3839 freemsg(mp); 3840 } 3841 3842 /* ARGSUSED */ 3843 static void 3844 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3845 { 3846 ill_t *ill = rq->q_ptr; 3847 arh_t *arh; 3848 ipaddr_t src; 3849 ipif_t *ipif; 3850 3851 arh = (arh_t *)mp->b_cont->b_rptr; 3852 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3853 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3854 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3855 (void) ipif_resolver_up(ipif, Res_act_defend); 3856 } 3857 freemsg(mp); 3858 } 3859 3860 /* 3861 * News from ARP. ARP sends notification of interesting events down 3862 * to its clients using M_CTL messages with the interesting ARP packet 3863 * attached via b_cont. 3864 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3865 * queue as opposed to ARP sending the message to all the clients, i.e. all 3866 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3867 * table if a cache IRE is found to delete all the entries for the address in 3868 * the packet. 3869 */ 3870 static void 3871 ip_arp_news(queue_t *q, mblk_t *mp) 3872 { 3873 arcn_t *arcn; 3874 arh_t *arh; 3875 ire_t *ire = NULL; 3876 char hbuf[MAC_STR_LEN]; 3877 char sbuf[INET_ADDRSTRLEN]; 3878 ipaddr_t src; 3879 in6_addr_t v6src; 3880 boolean_t isv6 = B_FALSE; 3881 ipif_t *ipif; 3882 ill_t *ill; 3883 ip_stack_t *ipst; 3884 3885 if (CONN_Q(q)) { 3886 conn_t *connp = Q_TO_CONN(q); 3887 3888 ipst = connp->conn_netstack->netstack_ip; 3889 } else { 3890 ill_t *ill = (ill_t *)q->q_ptr; 3891 3892 ipst = ill->ill_ipst; 3893 } 3894 3895 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3896 if (q->q_next) { 3897 putnext(q, mp); 3898 } else 3899 freemsg(mp); 3900 return; 3901 } 3902 arh = (arh_t *)mp->b_cont->b_rptr; 3903 /* Is it one we are interested in? */ 3904 if (BE16_TO_U16(arh->arh_proto) == ETHERTYPE_IPV6) { 3905 isv6 = B_TRUE; 3906 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3907 IPV6_ADDR_LEN); 3908 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3909 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3910 IP_ADDR_LEN); 3911 } else { 3912 freemsg(mp); 3913 return; 3914 } 3915 3916 ill = q->q_ptr; 3917 3918 arcn = (arcn_t *)mp->b_rptr; 3919 switch (arcn->arcn_code) { 3920 case AR_CN_BOGON: 3921 /* 3922 * Someone is sending ARP packets with a source protocol 3923 * address that we have published and for which we believe our 3924 * entry is authoritative and (when ill_arp_extend is set) 3925 * verified to be unique on the network. 3926 * 3927 * The ARP module internally handles the cases where the sender 3928 * is just probing (for DAD) and where the hardware address of 3929 * a non-authoritative entry has changed. Thus, these are the 3930 * real conflicts, and we have to do resolution. 3931 * 3932 * We back away quickly from the address if it's from DHCP or 3933 * otherwise temporary and hasn't been used recently (or at 3934 * all). We'd like to include "deprecated" addresses here as 3935 * well (as there's no real reason to defend something we're 3936 * discarding), but IPMP "reuses" this flag to mean something 3937 * other than the standard meaning. 3938 * 3939 * If the ARP module above is not extended (meaning that it 3940 * doesn't know how to defend the address), then we just log 3941 * the problem as we always did and continue on. It's not 3942 * right, but there's little else we can do, and those old ATM 3943 * users are going away anyway. 3944 */ 3945 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3946 hbuf, sizeof (hbuf)); 3947 (void) ip_dot_addr(src, sbuf); 3948 if (isv6) { 3949 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3950 ipst); 3951 } else { 3952 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3953 } 3954 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3955 uint32_t now; 3956 uint32_t maxage; 3957 clock_t lused; 3958 uint_t maxdefense; 3959 uint_t defs; 3960 3961 /* 3962 * First, figure out if this address hasn't been used 3963 * in a while. If it hasn't, then it's a better 3964 * candidate for abandoning. 3965 */ 3966 ipif = ire->ire_ipif; 3967 ASSERT(ipif != NULL); 3968 now = gethrestime_sec(); 3969 maxage = now - ire->ire_create_time; 3970 if (maxage > ipst->ips_ip_max_temp_idle) 3971 maxage = ipst->ips_ip_max_temp_idle; 3972 lused = drv_hztousec(ddi_get_lbolt() - 3973 ire->ire_last_used_time) / MICROSEC + 1; 3974 if (lused >= maxage && (ipif->ipif_flags & 3975 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3976 maxdefense = ipst->ips_ip_max_temp_defend; 3977 else 3978 maxdefense = ipst->ips_ip_max_defend; 3979 3980 /* 3981 * Now figure out how many times we've defended 3982 * ourselves. Ignore defenses that happened long in 3983 * the past. 3984 */ 3985 mutex_enter(&ire->ire_lock); 3986 if ((defs = ire->ire_defense_count) > 0 && 3987 now - ire->ire_defense_time > 3988 ipst->ips_ip_defend_interval) { 3989 ire->ire_defense_count = defs = 0; 3990 } 3991 ire->ire_defense_count++; 3992 ire->ire_defense_time = now; 3993 mutex_exit(&ire->ire_lock); 3994 ill_refhold(ill); 3995 ire_refrele(ire); 3996 3997 /* 3998 * If we've defended ourselves too many times already, 3999 * then give up and tear down the interface(s) using 4000 * this address. Otherwise, defend by sending out a 4001 * gratuitous ARP. 4002 */ 4003 if (defs >= maxdefense && ill->ill_arp_extend) { 4004 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4005 B_FALSE); 4006 } else { 4007 cmn_err(CE_WARN, 4008 "node %s is using our IP address %s on %s", 4009 hbuf, sbuf, ill->ill_name); 4010 /* 4011 * If this is an old (ATM) ARP module, then 4012 * don't try to defend the address. Remain 4013 * compatible with the old behavior. Defend 4014 * only with new ARP. 4015 */ 4016 if (ill->ill_arp_extend) { 4017 qwriter_ip(ill, q, mp, ip_arp_defend, 4018 NEW_OP, B_FALSE); 4019 } else { 4020 ill_refrele(ill); 4021 } 4022 } 4023 return; 4024 } 4025 cmn_err(CE_WARN, 4026 "proxy ARP problem? Node '%s' is using %s on %s", 4027 hbuf, sbuf, ill->ill_name); 4028 if (ire != NULL) 4029 ire_refrele(ire); 4030 break; 4031 case AR_CN_ANNOUNCE: 4032 if (isv6) { 4033 /* 4034 * For XRESOLV interfaces. 4035 * Delete the IRE cache entry and NCE for this 4036 * v6 address 4037 */ 4038 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4039 /* 4040 * If v6src is a non-zero, it's a router address 4041 * as below. Do the same sort of thing to clean 4042 * out off-net IRE_CACHE entries that go through 4043 * the router. 4044 */ 4045 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4046 ire_walk_v6(ire_delete_cache_gw_v6, 4047 (char *)&v6src, ALL_ZONES, ipst); 4048 } 4049 } else { 4050 nce_hw_map_t hwm; 4051 4052 /* 4053 * ARP gives us a copy of any packet where it thinks 4054 * the address has changed, so that we can update our 4055 * caches. We're responsible for caching known answers 4056 * in the current design. We check whether the 4057 * hardware address really has changed in all of our 4058 * entries that have cached this mapping, and if so, we 4059 * blow them away. This way we will immediately pick 4060 * up the rare case of a host changing hardware 4061 * address. 4062 */ 4063 if (src == 0) 4064 break; 4065 hwm.hwm_addr = src; 4066 hwm.hwm_hwlen = arh->arh_hlen; 4067 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4068 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4069 ndp_walk_common(ipst->ips_ndp4, NULL, 4070 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4071 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4072 } 4073 break; 4074 case AR_CN_READY: 4075 /* No external v6 resolver has a contract to use this */ 4076 if (isv6) 4077 break; 4078 /* If the link is down, we'll retry this later */ 4079 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4080 break; 4081 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4082 NULL, NULL, ipst); 4083 if (ipif != NULL) { 4084 /* 4085 * If this is a duplicate recovery, then we now need to 4086 * go exclusive to bring this thing back up. 4087 */ 4088 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4089 IPIF_DUPLICATE) { 4090 ipif_refrele(ipif); 4091 ill_refhold(ill); 4092 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4093 B_FALSE); 4094 return; 4095 } 4096 /* 4097 * If this is the first notice that this address is 4098 * ready, then let the user know now. 4099 */ 4100 if ((ipif->ipif_flags & IPIF_UP) && 4101 !ipif->ipif_addr_ready) { 4102 ipif_mask_reply(ipif); 4103 ipif_up_notify(ipif); 4104 } 4105 ipif->ipif_addr_ready = 1; 4106 ipif_refrele(ipif); 4107 } 4108 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4109 if (ire != NULL) { 4110 ire->ire_defense_count = 0; 4111 ire_refrele(ire); 4112 } 4113 break; 4114 case AR_CN_FAILED: 4115 /* No external v6 resolver has a contract to use this */ 4116 if (isv6) 4117 break; 4118 if (!ill->ill_arp_extend) { 4119 (void) mac_colon_addr((uint8_t *)(arh + 1), 4120 arh->arh_hlen, hbuf, sizeof (hbuf)); 4121 (void) ip_dot_addr(src, sbuf); 4122 4123 cmn_err(CE_WARN, 4124 "node %s is using our IP address %s on %s", 4125 hbuf, sbuf, ill->ill_name); 4126 break; 4127 } 4128 ill_refhold(ill); 4129 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4130 return; 4131 } 4132 freemsg(mp); 4133 } 4134 4135 /* 4136 * Create a mblk suitable for carrying the interface index and/or source link 4137 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4138 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4139 * application. 4140 */ 4141 mblk_t * 4142 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4143 ip_stack_t *ipst) 4144 { 4145 mblk_t *mp; 4146 ip_pktinfo_t *pinfo; 4147 ipha_t *ipha; 4148 struct ether_header *pether; 4149 boolean_t ipmp_ill_held = B_FALSE; 4150 4151 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4152 if (mp == NULL) { 4153 ip1dbg(("ip_add_info: allocation failure.\n")); 4154 return (data_mp); 4155 } 4156 4157 ipha = (ipha_t *)data_mp->b_rptr; 4158 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4159 bzero(pinfo, sizeof (ip_pktinfo_t)); 4160 pinfo->ip_pkt_flags = (uchar_t)flags; 4161 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4162 4163 pether = (struct ether_header *)((char *)ipha 4164 - sizeof (struct ether_header)); 4165 4166 /* 4167 * Make sure the interface is an ethernet type, since this option 4168 * is currently supported only on this type of interface. Also make 4169 * sure we are pointing correctly above db_base. 4170 */ 4171 if ((flags & IPF_RECVSLLA) && 4172 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4173 (ill->ill_type == IFT_ETHER) && 4174 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4175 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4176 bcopy(pether->ether_shost.ether_addr_octet, 4177 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4178 } else { 4179 /* 4180 * Clear the bit. Indicate to upper layer that IP is not 4181 * sending this ancillary info. 4182 */ 4183 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4184 } 4185 4186 /* 4187 * If `ill' is in an IPMP group, use the IPMP ill to determine 4188 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4189 * IPF_RECVADDR support on test addresses is not needed.) 4190 * 4191 * Note that `ill' may already be an IPMP ill if e.g. we're 4192 * processing a packet looped back to an IPMP data address 4193 * (since those IRE_LOCALs are tied to IPMP ills). 4194 */ 4195 if (IS_UNDER_IPMP(ill)) { 4196 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4197 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4198 freemsg(mp); 4199 return (data_mp); 4200 } 4201 ipmp_ill_held = B_TRUE; 4202 } 4203 4204 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4205 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4206 if (flags & IPF_RECVADDR) { 4207 ipif_t *ipif; 4208 ire_t *ire; 4209 4210 /* 4211 * Only valid for V4 4212 */ 4213 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4214 (IPV4_VERSION << 4)); 4215 4216 ipif = ipif_get_next_ipif(NULL, ill); 4217 if (ipif != NULL) { 4218 /* 4219 * Since a decision has already been made to deliver the 4220 * packet, there is no need to test for SECATTR and 4221 * ZONEONLY. 4222 * When a multicast packet is transmitted 4223 * a cache entry is created for the multicast address. 4224 * When delivering a copy of the packet or when new 4225 * packets are received we do not want to match on the 4226 * cached entry so explicitly match on 4227 * IRE_LOCAL and IRE_LOOPBACK 4228 */ 4229 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4230 IRE_LOCAL | IRE_LOOPBACK, 4231 ipif, zoneid, NULL, 4232 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4233 if (ire == NULL) { 4234 /* 4235 * packet must have come on a different 4236 * interface. 4237 * Since a decision has already been made to 4238 * deliver the packet, there is no need to test 4239 * for SECATTR and ZONEONLY. 4240 * Only match on local and broadcast ire's. 4241 * See detailed comment above. 4242 */ 4243 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4244 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4245 NULL, MATCH_IRE_TYPE, ipst); 4246 } 4247 4248 if (ire == NULL) { 4249 /* 4250 * This is either a multicast packet or 4251 * the address has been removed since 4252 * the packet was received. 4253 * Return INADDR_ANY so that normal source 4254 * selection occurs for the response. 4255 */ 4256 4257 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4258 } else { 4259 pinfo->ip_pkt_match_addr.s_addr = 4260 ire->ire_src_addr; 4261 ire_refrele(ire); 4262 } 4263 ipif_refrele(ipif); 4264 } else { 4265 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4266 } 4267 } 4268 4269 if (ipmp_ill_held) 4270 ill_refrele(ill); 4271 4272 mp->b_datap->db_type = M_CTL; 4273 mp->b_wptr += sizeof (ip_pktinfo_t); 4274 mp->b_cont = data_mp; 4275 4276 return (mp); 4277 } 4278 4279 /* 4280 * Used to determine the most accurate cred_t to use for TX. 4281 * First priority is SCM_UCRED having set the label in the message, 4282 * which is used for MLP on UDP. Second priority is the open credentials 4283 * with the peer's label (aka conn_effective_cred), which is needed for 4284 * MLP on TCP/SCTP and for MAC-Exempt. Last priority is the open credentials. 4285 */ 4286 cred_t * 4287 ip_best_cred(mblk_t *mp, conn_t *connp, pid_t *pidp) 4288 { 4289 cred_t *cr; 4290 4291 cr = msg_getcred(mp, pidp); 4292 if (cr != NULL && crgetlabel(cr) != NULL) 4293 return (cr); 4294 *pidp = NOPID; 4295 return (CONN_CRED(connp)); 4296 } 4297 4298 /* 4299 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4300 * part of the bind request. 4301 */ 4302 4303 boolean_t 4304 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4305 { 4306 ipsec_in_t *ii; 4307 4308 ASSERT(policy_mp != NULL); 4309 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4310 4311 ii = (ipsec_in_t *)policy_mp->b_rptr; 4312 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4313 4314 connp->conn_policy = ii->ipsec_in_policy; 4315 ii->ipsec_in_policy = NULL; 4316 4317 if (ii->ipsec_in_action != NULL) { 4318 if (connp->conn_latch == NULL) { 4319 connp->conn_latch = iplatch_create(); 4320 if (connp->conn_latch == NULL) 4321 return (B_FALSE); 4322 } 4323 ipsec_latch_inbound(connp->conn_latch, ii); 4324 } 4325 return (B_TRUE); 4326 } 4327 4328 /* 4329 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4330 * and to arrange for power-fanout assist. The ULP is identified by 4331 * adding a single byte at the end of the original bind message. 4332 * A ULP other than UDP or TCP that wishes to be recognized passes 4333 * down a bind with a zero length address. 4334 * 4335 * The binding works as follows: 4336 * - A zero byte address means just bind to the protocol. 4337 * - A four byte address is treated as a request to validate 4338 * that the address is a valid local address, appropriate for 4339 * an application to bind to. This does not affect any fanout 4340 * information in IP. 4341 * - A sizeof sin_t byte address is used to bind to only the local address 4342 * and port. 4343 * - A sizeof ipa_conn_t byte address contains complete fanout information 4344 * consisting of local and remote addresses and ports. In 4345 * this case, the addresses are both validated as appropriate 4346 * for this operation, and, if so, the information is retained 4347 * for use in the inbound fanout. 4348 * 4349 * The ULP (except in the zero-length bind) can append an 4350 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4351 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4352 * a copy of the source or destination IRE (source for local bind; 4353 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4354 * policy information contained should be copied on to the conn. 4355 * 4356 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4357 */ 4358 mblk_t * 4359 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4360 { 4361 ssize_t len; 4362 struct T_bind_req *tbr; 4363 sin_t *sin; 4364 ipa_conn_t *ac; 4365 uchar_t *ucp; 4366 mblk_t *mp1; 4367 int error = 0; 4368 int protocol; 4369 ipa_conn_x_t *acx; 4370 cred_t *cr; 4371 4372 /* 4373 * All Solaris components should pass a db_credp 4374 * for this TPI message, hence we ASSERT. 4375 * But in case there is some other M_PROTO that looks 4376 * like a TPI message sent by some other kernel 4377 * component, we check and return an error. 4378 */ 4379 cr = msg_getcred(mp, NULL); 4380 ASSERT(cr != NULL); 4381 if (cr == NULL) { 4382 error = EINVAL; 4383 goto bad_addr; 4384 } 4385 4386 ASSERT(!connp->conn_af_isv6); 4387 connp->conn_pkt_isv6 = B_FALSE; 4388 4389 len = MBLKL(mp); 4390 if (len < (sizeof (*tbr) + 1)) { 4391 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4392 "ip_bind: bogus msg, len %ld", len); 4393 /* XXX: Need to return something better */ 4394 goto bad_addr; 4395 } 4396 /* Back up and extract the protocol identifier. */ 4397 mp->b_wptr--; 4398 protocol = *mp->b_wptr & 0xFF; 4399 tbr = (struct T_bind_req *)mp->b_rptr; 4400 /* Reset the message type in preparation for shipping it back. */ 4401 DB_TYPE(mp) = M_PCPROTO; 4402 4403 connp->conn_ulp = (uint8_t)protocol; 4404 4405 /* 4406 * Check for a zero length address. This is from a protocol that 4407 * wants to register to receive all packets of its type. 4408 */ 4409 if (tbr->ADDR_length == 0) { 4410 /* 4411 * These protocols are now intercepted in ip_bind_v6(). 4412 * Reject protocol-level binds here for now. 4413 * 4414 * For SCTP raw socket, ICMP sends down a bind with sin_t 4415 * so that the protocol type cannot be SCTP. 4416 */ 4417 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4418 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4419 goto bad_addr; 4420 } 4421 4422 /* 4423 * 4424 * The udp module never sends down a zero-length address, 4425 * and allowing this on a labeled system will break MLP 4426 * functionality. 4427 */ 4428 if (is_system_labeled() && protocol == IPPROTO_UDP) 4429 goto bad_addr; 4430 4431 if (connp->conn_mac_exempt) 4432 goto bad_addr; 4433 4434 /* No hash here really. The table is big enough. */ 4435 connp->conn_srcv6 = ipv6_all_zeros; 4436 4437 ipcl_proto_insert(connp, protocol); 4438 4439 tbr->PRIM_type = T_BIND_ACK; 4440 return (mp); 4441 } 4442 4443 /* Extract the address pointer from the message. */ 4444 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4445 tbr->ADDR_length); 4446 if (ucp == NULL) { 4447 ip1dbg(("ip_bind: no address\n")); 4448 goto bad_addr; 4449 } 4450 if (!OK_32PTR(ucp)) { 4451 ip1dbg(("ip_bind: unaligned address\n")); 4452 goto bad_addr; 4453 } 4454 /* 4455 * Check for trailing mps. 4456 */ 4457 mp1 = mp->b_cont; 4458 4459 switch (tbr->ADDR_length) { 4460 default: 4461 ip1dbg(("ip_bind: bad address length %d\n", 4462 (int)tbr->ADDR_length)); 4463 goto bad_addr; 4464 4465 case IP_ADDR_LEN: 4466 /* Verification of local address only */ 4467 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4468 *(ipaddr_t *)ucp, 0, B_FALSE); 4469 break; 4470 4471 case sizeof (sin_t): 4472 sin = (sin_t *)ucp; 4473 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4474 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4475 break; 4476 4477 case sizeof (ipa_conn_t): 4478 ac = (ipa_conn_t *)ucp; 4479 /* For raw socket, the local port is not set. */ 4480 if (ac->ac_lport == 0) 4481 ac->ac_lport = connp->conn_lport; 4482 /* Always verify destination reachability. */ 4483 error = ip_bind_connected_v4(connp, &mp1, protocol, 4484 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4485 B_TRUE, B_TRUE, cr); 4486 break; 4487 4488 case sizeof (ipa_conn_x_t): 4489 acx = (ipa_conn_x_t *)ucp; 4490 /* 4491 * Whether or not to verify destination reachability depends 4492 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4493 */ 4494 error = ip_bind_connected_v4(connp, &mp1, protocol, 4495 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4496 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4497 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4498 break; 4499 } 4500 ASSERT(error != EINPROGRESS); 4501 if (error != 0) 4502 goto bad_addr; 4503 4504 /* Send it home. */ 4505 mp->b_datap->db_type = M_PCPROTO; 4506 tbr->PRIM_type = T_BIND_ACK; 4507 return (mp); 4508 4509 bad_addr: 4510 /* 4511 * If error = -1 then we generate a TBADADDR - otherwise error is 4512 * a unix errno. 4513 */ 4514 if (error > 0) 4515 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4516 else 4517 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4518 return (mp); 4519 } 4520 4521 /* 4522 * Here address is verified to be a valid local address. 4523 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4524 * address is also considered a valid local address. 4525 * In the case of a broadcast/multicast address, however, the 4526 * upper protocol is expected to reset the src address 4527 * to 0 if it sees a IRE_BROADCAST type returned so that 4528 * no packets are emitted with broadcast/multicast address as 4529 * source address (that violates hosts requirements RFC 1122) 4530 * The addresses valid for bind are: 4531 * (1) - INADDR_ANY (0) 4532 * (2) - IP address of an UP interface 4533 * (3) - IP address of a DOWN interface 4534 * (4) - valid local IP broadcast addresses. In this case 4535 * the conn will only receive packets destined to 4536 * the specified broadcast address. 4537 * (5) - a multicast address. In this case 4538 * the conn will only receive packets destined to 4539 * the specified multicast address. Note: the 4540 * application still has to issue an 4541 * IP_ADD_MEMBERSHIP socket option. 4542 * 4543 * On error, return -1 for TBADADDR otherwise pass the 4544 * errno with TSYSERR reply. 4545 * 4546 * In all the above cases, the bound address must be valid in the current zone. 4547 * When the address is loopback, multicast or broadcast, there might be many 4548 * matching IREs so bind has to look up based on the zone. 4549 * 4550 * Note: lport is in network byte order. 4551 * 4552 */ 4553 int 4554 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4555 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4556 { 4557 int error = 0; 4558 ire_t *src_ire; 4559 zoneid_t zoneid; 4560 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4561 mblk_t *mp = NULL; 4562 boolean_t ire_requested = B_FALSE; 4563 boolean_t ipsec_policy_set = B_FALSE; 4564 4565 if (mpp) 4566 mp = *mpp; 4567 4568 if (mp != NULL) { 4569 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4570 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4571 } 4572 4573 /* 4574 * If it was previously connected, conn_fully_bound would have 4575 * been set. 4576 */ 4577 connp->conn_fully_bound = B_FALSE; 4578 4579 src_ire = NULL; 4580 4581 zoneid = IPCL_ZONEID(connp); 4582 4583 if (src_addr) { 4584 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4585 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4586 /* 4587 * If an address other than 0.0.0.0 is requested, 4588 * we verify that it is a valid address for bind 4589 * Note: Following code is in if-else-if form for 4590 * readability compared to a condition check. 4591 */ 4592 /* LINTED - statement has no consequence */ 4593 if (IRE_IS_LOCAL(src_ire)) { 4594 /* 4595 * (2) Bind to address of local UP interface 4596 */ 4597 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4598 /* 4599 * (4) Bind to broadcast address 4600 * Note: permitted only from transports that 4601 * request IRE 4602 */ 4603 if (!ire_requested) 4604 error = EADDRNOTAVAIL; 4605 } else { 4606 /* 4607 * (3) Bind to address of local DOWN interface 4608 * (ipif_lookup_addr() looks up all interfaces 4609 * but we do not get here for UP interfaces 4610 * - case (2) above) 4611 */ 4612 /* LINTED - statement has no consequent */ 4613 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4614 /* The address exists */ 4615 } else if (CLASSD(src_addr)) { 4616 error = 0; 4617 if (src_ire != NULL) 4618 ire_refrele(src_ire); 4619 /* 4620 * (5) bind to multicast address. 4621 * Fake out the IRE returned to upper 4622 * layer to be a broadcast IRE. 4623 */ 4624 src_ire = ire_ctable_lookup( 4625 INADDR_BROADCAST, INADDR_ANY, 4626 IRE_BROADCAST, NULL, zoneid, NULL, 4627 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4628 ipst); 4629 if (src_ire == NULL || !ire_requested) 4630 error = EADDRNOTAVAIL; 4631 } else { 4632 /* 4633 * Not a valid address for bind 4634 */ 4635 error = EADDRNOTAVAIL; 4636 } 4637 } 4638 if (error) { 4639 /* Red Alert! Attempting to be a bogon! */ 4640 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4641 ntohl(src_addr))); 4642 goto bad_addr; 4643 } 4644 } 4645 4646 /* 4647 * Allow setting new policies. For example, disconnects come 4648 * down as ipa_t bind. As we would have set conn_policy_cached 4649 * to B_TRUE before, we should set it to B_FALSE, so that policy 4650 * can change after the disconnect. 4651 */ 4652 connp->conn_policy_cached = B_FALSE; 4653 4654 /* 4655 * If not fanout_insert this was just an address verification 4656 */ 4657 if (fanout_insert) { 4658 /* 4659 * The addresses have been verified. Time to insert in 4660 * the correct fanout list. 4661 */ 4662 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4663 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4664 connp->conn_lport = lport; 4665 connp->conn_fport = 0; 4666 /* 4667 * Do we need to add a check to reject Multicast packets 4668 */ 4669 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4670 } 4671 4672 if (error == 0) { 4673 if (ire_requested) { 4674 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4675 error = -1; 4676 /* Falls through to bad_addr */ 4677 } 4678 } else if (ipsec_policy_set) { 4679 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4680 error = -1; 4681 /* Falls through to bad_addr */ 4682 } 4683 } 4684 } 4685 bad_addr: 4686 if (error != 0) { 4687 if (connp->conn_anon_port) { 4688 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4689 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4690 B_FALSE); 4691 } 4692 connp->conn_mlp_type = mlptSingle; 4693 } 4694 if (src_ire != NULL) 4695 IRE_REFRELE(src_ire); 4696 return (error); 4697 } 4698 4699 int 4700 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4701 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4702 { 4703 int error; 4704 4705 ASSERT(!connp->conn_af_isv6); 4706 connp->conn_pkt_isv6 = B_FALSE; 4707 connp->conn_ulp = protocol; 4708 4709 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4710 fanout_insert); 4711 if (error < 0) 4712 error = -TBADADDR; 4713 return (error); 4714 } 4715 4716 /* 4717 * Verify that both the source and destination addresses 4718 * are valid. If verify_dst is false, then the destination address may be 4719 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4720 * destination reachability, while tunnels do not. 4721 * Note that we allow connect to broadcast and multicast 4722 * addresses when ire_requested is set. Thus the ULP 4723 * has to check for IRE_BROADCAST and multicast. 4724 * 4725 * Returns zero if ok. 4726 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4727 * (for use with TSYSERR reply). 4728 * 4729 * Note: lport and fport are in network byte order. 4730 */ 4731 int 4732 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4733 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4734 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4735 { 4736 4737 ire_t *src_ire; 4738 ire_t *dst_ire; 4739 int error = 0; 4740 ire_t *sire = NULL; 4741 ire_t *md_dst_ire = NULL; 4742 ire_t *lso_dst_ire = NULL; 4743 ill_t *ill = NULL; 4744 zoneid_t zoneid; 4745 ipaddr_t src_addr = *src_addrp; 4746 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4747 mblk_t *mp = NULL; 4748 boolean_t ire_requested = B_FALSE; 4749 boolean_t ipsec_policy_set = B_FALSE; 4750 ts_label_t *tsl = NULL; 4751 cred_t *effective_cred = NULL; 4752 4753 if (mpp) 4754 mp = *mpp; 4755 4756 if (mp != NULL) { 4757 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4758 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4759 } 4760 4761 src_ire = dst_ire = NULL; 4762 4763 /* 4764 * If we never got a disconnect before, clear it now. 4765 */ 4766 connp->conn_fully_bound = B_FALSE; 4767 4768 zoneid = IPCL_ZONEID(connp); 4769 4770 /* 4771 * Check whether Trusted Solaris policy allows communication with this 4772 * host, and pretend that the destination is unreachable if not. 4773 * 4774 * This is never a problem for TCP, since that transport is known to 4775 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4776 * handling. If the remote is unreachable, it will be detected at that 4777 * point, so there's no reason to check it here. 4778 * 4779 * Note that for sendto (and other datagram-oriented friends), this 4780 * check is done as part of the data path label computation instead. 4781 * The check here is just to make non-TCP connect() report the right 4782 * error. 4783 */ 4784 if (is_system_labeled() && !IPCL_IS_TCP(connp)) { 4785 if ((error = tsol_check_dest(cr, &dst_addr, IPV4_VERSION, 4786 connp->conn_mac_exempt, &effective_cred)) != 0) { 4787 if (ip_debug > 2) { 4788 pr_addr_dbg( 4789 "ip_bind_connected_v4:" 4790 " no label for dst %s\n", 4791 AF_INET, &dst_addr); 4792 } 4793 goto bad_addr; 4794 } 4795 4796 /* 4797 * tsol_check_dest() may have created a new cred with 4798 * a modified security label. Use that cred if it exists 4799 * for ire lookups. 4800 */ 4801 if (effective_cred == NULL) { 4802 tsl = crgetlabel(cr); 4803 } else { 4804 tsl = crgetlabel(effective_cred); 4805 } 4806 } 4807 4808 if (CLASSD(dst_addr)) { 4809 /* Pick up an IRE_BROADCAST */ 4810 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4811 NULL, zoneid, tsl, 4812 (MATCH_IRE_RECURSIVE | 4813 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4814 MATCH_IRE_SECATTR), ipst); 4815 } else { 4816 /* 4817 * If conn_dontroute is set or if conn_nexthop_set is set, 4818 * and onlink ipif is not found set ENETUNREACH error. 4819 */ 4820 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4821 ipif_t *ipif; 4822 4823 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4824 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4825 if (ipif == NULL) { 4826 error = ENETUNREACH; 4827 goto bad_addr; 4828 } 4829 ipif_refrele(ipif); 4830 } 4831 4832 if (connp->conn_nexthop_set) { 4833 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4834 0, 0, NULL, NULL, zoneid, tsl, 4835 MATCH_IRE_SECATTR, ipst); 4836 } else { 4837 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4838 &sire, zoneid, tsl, 4839 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4840 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4841 MATCH_IRE_SECATTR), ipst); 4842 } 4843 } 4844 /* 4845 * dst_ire can't be a broadcast when not ire_requested. 4846 * We also prevent ire's with src address INADDR_ANY to 4847 * be used, which are created temporarily for 4848 * sending out packets from endpoints that have 4849 * conn_unspec_src set. If verify_dst is true, the destination must be 4850 * reachable. If verify_dst is false, the destination needn't be 4851 * reachable. 4852 * 4853 * If we match on a reject or black hole, then we've got a 4854 * local failure. May as well fail out the connect() attempt, 4855 * since it's never going to succeed. 4856 */ 4857 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4858 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4859 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4860 /* 4861 * If we're verifying destination reachability, we always want 4862 * to complain here. 4863 * 4864 * If we're not verifying destination reachability but the 4865 * destination has a route, we still want to fail on the 4866 * temporary address and broadcast address tests. 4867 */ 4868 if (verify_dst || (dst_ire != NULL)) { 4869 if (ip_debug > 2) { 4870 pr_addr_dbg("ip_bind_connected_v4:" 4871 "bad connected dst %s\n", 4872 AF_INET, &dst_addr); 4873 } 4874 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4875 error = ENETUNREACH; 4876 else 4877 error = EHOSTUNREACH; 4878 goto bad_addr; 4879 } 4880 } 4881 4882 /* 4883 * If the app does a connect(), it means that it will most likely 4884 * send more than 1 packet to the destination. It makes sense 4885 * to clear the temporary flag. 4886 */ 4887 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4888 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4889 irb_t *irb = dst_ire->ire_bucket; 4890 4891 rw_enter(&irb->irb_lock, RW_WRITER); 4892 /* 4893 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4894 * the lock to guarantee irb_tmp_ire_cnt. 4895 */ 4896 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4897 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4898 irb->irb_tmp_ire_cnt--; 4899 } 4900 rw_exit(&irb->irb_lock); 4901 } 4902 4903 /* 4904 * See if we should notify ULP about LSO/MDT; we do this whether or not 4905 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4906 * eligibility tests for passive connects are handled separately 4907 * through tcp_adapt_ire(). We do this before the source address 4908 * selection, because dst_ire may change after a call to 4909 * ipif_select_source(). This is a best-effort check, as the 4910 * packet for this connection may not actually go through 4911 * dst_ire->ire_stq, and the exact IRE can only be known after 4912 * calling ip_newroute(). This is why we further check on the 4913 * IRE during LSO/Multidata packet transmission in 4914 * tcp_lsosend()/tcp_multisend(). 4915 */ 4916 if (!ipsec_policy_set && dst_ire != NULL && 4917 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4918 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4919 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4920 lso_dst_ire = dst_ire; 4921 IRE_REFHOLD(lso_dst_ire); 4922 } else if (ipst->ips_ip_multidata_outbound && 4923 ILL_MDT_CAPABLE(ill)) { 4924 md_dst_ire = dst_ire; 4925 IRE_REFHOLD(md_dst_ire); 4926 } 4927 } 4928 4929 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4930 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4931 /* 4932 * If the IRE belongs to a different zone, look for a matching 4933 * route in the forwarding table and use the source address from 4934 * that route. 4935 */ 4936 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4937 zoneid, 0, NULL, 4938 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4939 MATCH_IRE_RJ_BHOLE, ipst); 4940 if (src_ire == NULL) { 4941 error = EHOSTUNREACH; 4942 goto bad_addr; 4943 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4944 if (!(src_ire->ire_type & IRE_HOST)) 4945 error = ENETUNREACH; 4946 else 4947 error = EHOSTUNREACH; 4948 goto bad_addr; 4949 } 4950 if (src_addr == INADDR_ANY) 4951 src_addr = src_ire->ire_src_addr; 4952 ire_refrele(src_ire); 4953 src_ire = NULL; 4954 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4955 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4956 src_addr = sire->ire_src_addr; 4957 ire_refrele(dst_ire); 4958 dst_ire = sire; 4959 sire = NULL; 4960 } else { 4961 /* 4962 * Pick a source address so that a proper inbound 4963 * load spreading would happen. 4964 */ 4965 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 4966 ipif_t *src_ipif = NULL; 4967 ire_t *ipif_ire; 4968 4969 /* 4970 * Supply a local source address such that inbound 4971 * load spreading happens. 4972 * 4973 * Determine the best source address on this ill for 4974 * the destination. 4975 * 4976 * 1) For broadcast, we should return a broadcast ire 4977 * found above so that upper layers know that the 4978 * destination address is a broadcast address. 4979 * 4980 * 2) If the ipif is DEPRECATED, select a better 4981 * source address. Similarly, if the ipif is on 4982 * the IPMP meta-interface, pick a source address 4983 * at random to improve inbound load spreading. 4984 * 4985 * 3) If the outgoing interface is part of a usesrc 4986 * group, then try selecting a source address from 4987 * the usesrc ILL. 4988 */ 4989 if ((dst_ire->ire_zoneid != zoneid && 4990 dst_ire->ire_zoneid != ALL_ZONES) || 4991 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4992 (!(dst_ire->ire_type & IRE_BROADCAST) && 4993 (IS_IPMP(ire_ill) || 4994 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4995 (ire_ill->ill_usesrc_ifindex != 0)))) { 4996 /* 4997 * If the destination is reachable via a 4998 * given gateway, the selected source address 4999 * should be in the same subnet as the gateway. 5000 * Otherwise, the destination is not reachable. 5001 * 5002 * If there are no interfaces on the same subnet 5003 * as the destination, ipif_select_source gives 5004 * first non-deprecated interface which might be 5005 * on a different subnet than the gateway. 5006 * This is not desirable. Hence pass the dst_ire 5007 * source address to ipif_select_source. 5008 * It is sure that the destination is reachable 5009 * with the dst_ire source address subnet. 5010 * So passing dst_ire source address to 5011 * ipif_select_source will make sure that the 5012 * selected source will be on the same subnet 5013 * as dst_ire source address. 5014 */ 5015 ipaddr_t saddr = 5016 dst_ire->ire_ipif->ipif_src_addr; 5017 src_ipif = ipif_select_source(ire_ill, 5018 saddr, zoneid); 5019 if (src_ipif != NULL) { 5020 if (IS_VNI(src_ipif->ipif_ill)) { 5021 /* 5022 * For VNI there is no 5023 * interface route 5024 */ 5025 src_addr = 5026 src_ipif->ipif_src_addr; 5027 } else { 5028 ipif_ire = 5029 ipif_to_ire(src_ipif); 5030 if (ipif_ire != NULL) { 5031 IRE_REFRELE(dst_ire); 5032 dst_ire = ipif_ire; 5033 } 5034 src_addr = 5035 dst_ire->ire_src_addr; 5036 } 5037 ipif_refrele(src_ipif); 5038 } else { 5039 src_addr = dst_ire->ire_src_addr; 5040 } 5041 } else { 5042 src_addr = dst_ire->ire_src_addr; 5043 } 5044 } 5045 } 5046 5047 /* 5048 * We do ire_route_lookup() here (and not 5049 * interface lookup as we assert that 5050 * src_addr should only come from an 5051 * UP interface for hard binding. 5052 */ 5053 ASSERT(src_ire == NULL); 5054 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5055 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5056 /* src_ire must be a local|loopback */ 5057 if (!IRE_IS_LOCAL(src_ire)) { 5058 if (ip_debug > 2) { 5059 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5060 "src %s\n", AF_INET, &src_addr); 5061 } 5062 error = EADDRNOTAVAIL; 5063 goto bad_addr; 5064 } 5065 5066 /* 5067 * If the source address is a loopback address, the 5068 * destination had best be local or multicast. 5069 * The transports that can't handle multicast will reject 5070 * those addresses. 5071 */ 5072 if (src_ire->ire_type == IRE_LOOPBACK && 5073 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5074 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5075 error = -1; 5076 goto bad_addr; 5077 } 5078 5079 /* 5080 * Allow setting new policies. For example, disconnects come 5081 * down as ipa_t bind. As we would have set conn_policy_cached 5082 * to B_TRUE before, we should set it to B_FALSE, so that policy 5083 * can change after the disconnect. 5084 */ 5085 connp->conn_policy_cached = B_FALSE; 5086 5087 /* 5088 * Set the conn addresses/ports immediately, so the IPsec policy calls 5089 * can handle their passed-in conn's. 5090 */ 5091 5092 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5093 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5094 connp->conn_lport = lport; 5095 connp->conn_fport = fport; 5096 *src_addrp = src_addr; 5097 5098 ASSERT(!(ipsec_policy_set && ire_requested)); 5099 if (ire_requested) { 5100 iulp_t *ulp_info = NULL; 5101 5102 /* 5103 * Note that sire will not be NULL if this is an off-link 5104 * connection and there is not cache for that dest yet. 5105 * 5106 * XXX Because of an existing bug, if there are multiple 5107 * default routes, the IRE returned now may not be the actual 5108 * default route used (default routes are chosen in a 5109 * round robin fashion). So if the metrics for different 5110 * default routes are different, we may return the wrong 5111 * metrics. This will not be a problem if the existing 5112 * bug is fixed. 5113 */ 5114 if (sire != NULL) { 5115 ulp_info = &(sire->ire_uinfo); 5116 } 5117 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5118 error = -1; 5119 goto bad_addr; 5120 } 5121 mp = *mpp; 5122 } else if (ipsec_policy_set) { 5123 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5124 error = -1; 5125 goto bad_addr; 5126 } 5127 } 5128 5129 /* 5130 * Cache IPsec policy in this conn. If we have per-socket policy, 5131 * we'll cache that. If we don't, we'll inherit global policy. 5132 * 5133 * We can't insert until the conn reflects the policy. Note that 5134 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5135 * connections where we don't have a policy. This is to prevent 5136 * global policy lookups in the inbound path. 5137 * 5138 * If we insert before we set conn_policy_cached, 5139 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5140 * because global policy cound be non-empty. We normally call 5141 * ipsec_check_policy() for conn_policy_cached connections only if 5142 * ipc_in_enforce_policy is set. But in this case, 5143 * conn_policy_cached can get set anytime since we made the 5144 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5145 * called, which will make the above assumption false. Thus, we 5146 * need to insert after we set conn_policy_cached. 5147 */ 5148 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5149 goto bad_addr; 5150 5151 if (fanout_insert) { 5152 /* 5153 * The addresses have been verified. Time to insert in 5154 * the correct fanout list. 5155 */ 5156 error = ipcl_conn_insert(connp, protocol, src_addr, 5157 dst_addr, connp->conn_ports); 5158 } 5159 5160 if (error == 0) { 5161 connp->conn_fully_bound = B_TRUE; 5162 /* 5163 * Our initial checks for LSO/MDT have passed; the IRE is not 5164 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5165 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5166 * ip_xxinfo_return(), which performs further checks 5167 * against them and upon success, returns the LSO/MDT info 5168 * mblk which we will attach to the bind acknowledgment. 5169 */ 5170 if (lso_dst_ire != NULL) { 5171 mblk_t *lsoinfo_mp; 5172 5173 ASSERT(ill->ill_lso_capab != NULL); 5174 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5175 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5176 if (mp == NULL) { 5177 *mpp = lsoinfo_mp; 5178 } else { 5179 linkb(mp, lsoinfo_mp); 5180 } 5181 } 5182 } else if (md_dst_ire != NULL) { 5183 mblk_t *mdinfo_mp; 5184 5185 ASSERT(ill->ill_mdt_capab != NULL); 5186 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5187 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5188 if (mp == NULL) { 5189 *mpp = mdinfo_mp; 5190 } else { 5191 linkb(mp, mdinfo_mp); 5192 } 5193 } 5194 } 5195 } 5196 bad_addr: 5197 if (ipsec_policy_set) { 5198 ASSERT(mp != NULL); 5199 freeb(mp); 5200 /* 5201 * As of now assume that nothing else accompanies 5202 * IPSEC_POLICY_SET. 5203 */ 5204 *mpp = NULL; 5205 } 5206 if (src_ire != NULL) 5207 IRE_REFRELE(src_ire); 5208 if (dst_ire != NULL) 5209 IRE_REFRELE(dst_ire); 5210 if (sire != NULL) 5211 IRE_REFRELE(sire); 5212 if (md_dst_ire != NULL) 5213 IRE_REFRELE(md_dst_ire); 5214 if (lso_dst_ire != NULL) 5215 IRE_REFRELE(lso_dst_ire); 5216 if (effective_cred != NULL) 5217 crfree(effective_cred); 5218 return (error); 5219 } 5220 5221 int 5222 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5223 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5224 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5225 { 5226 int error; 5227 5228 ASSERT(!connp->conn_af_isv6); 5229 connp->conn_pkt_isv6 = B_FALSE; 5230 connp->conn_ulp = protocol; 5231 5232 /* For raw socket, the local port is not set. */ 5233 if (lport == 0) 5234 lport = connp->conn_lport; 5235 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5236 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5237 if (error < 0) 5238 error = -TBADADDR; 5239 return (error); 5240 } 5241 5242 /* 5243 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5244 * Prefers dst_ire over src_ire. 5245 */ 5246 static boolean_t 5247 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5248 { 5249 mblk_t *mp = *mpp; 5250 ire_t *ret_ire; 5251 5252 ASSERT(mp != NULL); 5253 5254 if (ire != NULL) { 5255 /* 5256 * mp initialized above to IRE_DB_REQ_TYPE 5257 * appended mblk. Its <upper protocol>'s 5258 * job to make sure there is room. 5259 */ 5260 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5261 return (B_FALSE); 5262 5263 mp->b_datap->db_type = IRE_DB_TYPE; 5264 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5265 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5266 ret_ire = (ire_t *)mp->b_rptr; 5267 /* 5268 * Pass the latest setting of the ip_path_mtu_discovery and 5269 * copy the ulp info if any. 5270 */ 5271 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5272 IPH_DF : 0; 5273 if (ulp_info != NULL) { 5274 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5275 sizeof (iulp_t)); 5276 } 5277 ret_ire->ire_mp = mp; 5278 } else { 5279 /* 5280 * No IRE was found. Remove IRE mblk. 5281 */ 5282 *mpp = mp->b_cont; 5283 freeb(mp); 5284 } 5285 return (B_TRUE); 5286 } 5287 5288 /* 5289 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5290 * the final piece where we don't. Return a pointer to the first mblk in the 5291 * result, and update the pointer to the next mblk to chew on. If anything 5292 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5293 * NULL pointer. 5294 */ 5295 mblk_t * 5296 ip_carve_mp(mblk_t **mpp, ssize_t len) 5297 { 5298 mblk_t *mp0; 5299 mblk_t *mp1; 5300 mblk_t *mp2; 5301 5302 if (!len || !mpp || !(mp0 = *mpp)) 5303 return (NULL); 5304 /* If we aren't going to consume the first mblk, we need a dup. */ 5305 if (mp0->b_wptr - mp0->b_rptr > len) { 5306 mp1 = dupb(mp0); 5307 if (mp1) { 5308 /* Partition the data between the two mblks. */ 5309 mp1->b_wptr = mp1->b_rptr + len; 5310 mp0->b_rptr = mp1->b_wptr; 5311 /* 5312 * after adjustments if mblk not consumed is now 5313 * unaligned, try to align it. If this fails free 5314 * all messages and let upper layer recover. 5315 */ 5316 if (!OK_32PTR(mp0->b_rptr)) { 5317 if (!pullupmsg(mp0, -1)) { 5318 freemsg(mp0); 5319 freemsg(mp1); 5320 *mpp = NULL; 5321 return (NULL); 5322 } 5323 } 5324 } 5325 return (mp1); 5326 } 5327 /* Eat through as many mblks as we need to get len bytes. */ 5328 len -= mp0->b_wptr - mp0->b_rptr; 5329 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5330 if (mp2->b_wptr - mp2->b_rptr > len) { 5331 /* 5332 * We won't consume the entire last mblk. Like 5333 * above, dup and partition it. 5334 */ 5335 mp1->b_cont = dupb(mp2); 5336 mp1 = mp1->b_cont; 5337 if (!mp1) { 5338 /* 5339 * Trouble. Rather than go to a lot of 5340 * trouble to clean up, we free the messages. 5341 * This won't be any worse than losing it on 5342 * the wire. 5343 */ 5344 freemsg(mp0); 5345 freemsg(mp2); 5346 *mpp = NULL; 5347 return (NULL); 5348 } 5349 mp1->b_wptr = mp1->b_rptr + len; 5350 mp2->b_rptr = mp1->b_wptr; 5351 /* 5352 * after adjustments if mblk not consumed is now 5353 * unaligned, try to align it. If this fails free 5354 * all messages and let upper layer recover. 5355 */ 5356 if (!OK_32PTR(mp2->b_rptr)) { 5357 if (!pullupmsg(mp2, -1)) { 5358 freemsg(mp0); 5359 freemsg(mp2); 5360 *mpp = NULL; 5361 return (NULL); 5362 } 5363 } 5364 *mpp = mp2; 5365 return (mp0); 5366 } 5367 /* Decrement len by the amount we just got. */ 5368 len -= mp2->b_wptr - mp2->b_rptr; 5369 } 5370 /* 5371 * len should be reduced to zero now. If not our caller has 5372 * screwed up. 5373 */ 5374 if (len) { 5375 /* Shouldn't happen! */ 5376 freemsg(mp0); 5377 *mpp = NULL; 5378 return (NULL); 5379 } 5380 /* 5381 * We consumed up to exactly the end of an mblk. Detach the part 5382 * we are returning from the rest of the chain. 5383 */ 5384 mp1->b_cont = NULL; 5385 *mpp = mp2; 5386 return (mp0); 5387 } 5388 5389 /* The ill stream is being unplumbed. Called from ip_close */ 5390 int 5391 ip_modclose(ill_t *ill) 5392 { 5393 boolean_t success; 5394 ipsq_t *ipsq; 5395 ipif_t *ipif; 5396 queue_t *q = ill->ill_rq; 5397 ip_stack_t *ipst = ill->ill_ipst; 5398 int i; 5399 5400 /* 5401 * The punlink prior to this may have initiated a capability 5402 * negotiation. But ipsq_enter will block until that finishes or 5403 * times out. 5404 */ 5405 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5406 5407 /* 5408 * Open/close/push/pop is guaranteed to be single threaded 5409 * per stream by STREAMS. FS guarantees that all references 5410 * from top are gone before close is called. So there can't 5411 * be another close thread that has set CONDEMNED on this ill. 5412 * and cause ipsq_enter to return failure. 5413 */ 5414 ASSERT(success); 5415 ipsq = ill->ill_phyint->phyint_ipsq; 5416 5417 /* 5418 * Mark it condemned. No new reference will be made to this ill. 5419 * Lookup functions will return an error. Threads that try to 5420 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5421 * that the refcnt will drop down to zero. 5422 */ 5423 mutex_enter(&ill->ill_lock); 5424 ill->ill_state_flags |= ILL_CONDEMNED; 5425 for (ipif = ill->ill_ipif; ipif != NULL; 5426 ipif = ipif->ipif_next) { 5427 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5428 } 5429 /* 5430 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5431 * returns error if ILL_CONDEMNED is set 5432 */ 5433 cv_broadcast(&ill->ill_cv); 5434 mutex_exit(&ill->ill_lock); 5435 5436 /* 5437 * Send all the deferred DLPI messages downstream which came in 5438 * during the small window right before ipsq_enter(). We do this 5439 * without waiting for the ACKs because all the ACKs for M_PROTO 5440 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5441 */ 5442 ill_dlpi_send_deferred(ill); 5443 5444 /* 5445 * Shut down fragmentation reassembly. 5446 * ill_frag_timer won't start a timer again. 5447 * Now cancel any existing timer 5448 */ 5449 (void) untimeout(ill->ill_frag_timer_id); 5450 (void) ill_frag_timeout(ill, 0); 5451 5452 /* 5453 * Call ill_delete to bring down the ipifs, ilms and ill on 5454 * this ill. Then wait for the refcnts to drop to zero. 5455 * ill_is_freeable checks whether the ill is really quiescent. 5456 * Then make sure that threads that are waiting to enter the 5457 * ipsq have seen the error returned by ipsq_enter and have 5458 * gone away. Then we call ill_delete_tail which does the 5459 * DL_UNBIND_REQ with the driver and then qprocsoff. 5460 */ 5461 ill_delete(ill); 5462 mutex_enter(&ill->ill_lock); 5463 while (!ill_is_freeable(ill)) 5464 cv_wait(&ill->ill_cv, &ill->ill_lock); 5465 while (ill->ill_waiters) 5466 cv_wait(&ill->ill_cv, &ill->ill_lock); 5467 5468 mutex_exit(&ill->ill_lock); 5469 5470 /* 5471 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5472 * it held until the end of the function since the cleanup 5473 * below needs to be able to use the ip_stack_t. 5474 */ 5475 netstack_hold(ipst->ips_netstack); 5476 5477 /* qprocsoff is done via ill_delete_tail */ 5478 ill_delete_tail(ill); 5479 ASSERT(ill->ill_ipst == NULL); 5480 5481 /* 5482 * Walk through all upper (conn) streams and qenable 5483 * those that have queued data. 5484 * close synchronization needs this to 5485 * be done to ensure that all upper layers blocked 5486 * due to flow control to the closing device 5487 * get unblocked. 5488 */ 5489 ip1dbg(("ip_wsrv: walking\n")); 5490 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5491 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5492 } 5493 5494 mutex_enter(&ipst->ips_ip_mi_lock); 5495 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5496 mutex_exit(&ipst->ips_ip_mi_lock); 5497 5498 /* 5499 * credp could be null if the open didn't succeed and ip_modopen 5500 * itself calls ip_close. 5501 */ 5502 if (ill->ill_credp != NULL) 5503 crfree(ill->ill_credp); 5504 5505 /* 5506 * Now we are done with the module close pieces that 5507 * need the netstack_t. 5508 */ 5509 netstack_rele(ipst->ips_netstack); 5510 5511 mi_close_free((IDP)ill); 5512 q->q_ptr = WR(q)->q_ptr = NULL; 5513 5514 ipsq_exit(ipsq); 5515 5516 return (0); 5517 } 5518 5519 /* 5520 * This is called as part of close() for IP, UDP, ICMP, and RTS 5521 * in order to quiesce the conn. 5522 */ 5523 void 5524 ip_quiesce_conn(conn_t *connp) 5525 { 5526 boolean_t drain_cleanup_reqd = B_FALSE; 5527 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5528 boolean_t ilg_cleanup_reqd = B_FALSE; 5529 ip_stack_t *ipst; 5530 5531 ASSERT(!IPCL_IS_TCP(connp)); 5532 ipst = connp->conn_netstack->netstack_ip; 5533 5534 /* 5535 * Mark the conn as closing, and this conn must not be 5536 * inserted in future into any list. Eg. conn_drain_insert(), 5537 * won't insert this conn into the conn_drain_list. 5538 * Similarly ill_pending_mp_add() will not add any mp to 5539 * the pending mp list, after this conn has started closing. 5540 * 5541 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5542 * cannot get set henceforth. 5543 */ 5544 mutex_enter(&connp->conn_lock); 5545 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5546 connp->conn_state_flags |= CONN_CLOSING; 5547 if (connp->conn_idl != NULL) 5548 drain_cleanup_reqd = B_TRUE; 5549 if (connp->conn_oper_pending_ill != NULL) 5550 conn_ioctl_cleanup_reqd = B_TRUE; 5551 if (connp->conn_dhcpinit_ill != NULL) { 5552 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5553 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5554 connp->conn_dhcpinit_ill = NULL; 5555 } 5556 if (connp->conn_ilg_inuse != 0) 5557 ilg_cleanup_reqd = B_TRUE; 5558 mutex_exit(&connp->conn_lock); 5559 5560 if (conn_ioctl_cleanup_reqd) 5561 conn_ioctl_cleanup(connp); 5562 5563 if (is_system_labeled() && connp->conn_anon_port) { 5564 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5565 connp->conn_mlp_type, connp->conn_ulp, 5566 ntohs(connp->conn_lport), B_FALSE); 5567 connp->conn_anon_port = 0; 5568 } 5569 connp->conn_mlp_type = mlptSingle; 5570 5571 /* 5572 * Remove this conn from any fanout list it is on. 5573 * and then wait for any threads currently operating 5574 * on this endpoint to finish 5575 */ 5576 ipcl_hash_remove(connp); 5577 5578 /* 5579 * Remove this conn from the drain list, and do 5580 * any other cleanup that may be required. 5581 * (Only non-tcp streams may have a non-null conn_idl. 5582 * TCP streams are never flow controlled, and 5583 * conn_idl will be null) 5584 */ 5585 if (drain_cleanup_reqd) 5586 conn_drain_tail(connp, B_TRUE); 5587 5588 if (connp == ipst->ips_ip_g_mrouter) 5589 (void) ip_mrouter_done(NULL, ipst); 5590 5591 if (ilg_cleanup_reqd) 5592 ilg_delete_all(connp); 5593 5594 conn_delete_ire(connp, NULL); 5595 5596 /* 5597 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5598 * callers from write side can't be there now because close 5599 * is in progress. The only other caller is ipcl_walk 5600 * which checks for the condemned flag. 5601 */ 5602 mutex_enter(&connp->conn_lock); 5603 connp->conn_state_flags |= CONN_CONDEMNED; 5604 while (connp->conn_ref != 1) 5605 cv_wait(&connp->conn_cv, &connp->conn_lock); 5606 connp->conn_state_flags |= CONN_QUIESCED; 5607 mutex_exit(&connp->conn_lock); 5608 } 5609 5610 /* ARGSUSED */ 5611 int 5612 ip_close(queue_t *q, int flags) 5613 { 5614 conn_t *connp; 5615 5616 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5617 5618 /* 5619 * Call the appropriate delete routine depending on whether this is 5620 * a module or device. 5621 */ 5622 if (WR(q)->q_next != NULL) { 5623 /* This is a module close */ 5624 return (ip_modclose((ill_t *)q->q_ptr)); 5625 } 5626 5627 connp = q->q_ptr; 5628 ip_quiesce_conn(connp); 5629 5630 qprocsoff(q); 5631 5632 /* 5633 * Now we are truly single threaded on this stream, and can 5634 * delete the things hanging off the connp, and finally the connp. 5635 * We removed this connp from the fanout list, it cannot be 5636 * accessed thru the fanouts, and we already waited for the 5637 * conn_ref to drop to 0. We are already in close, so 5638 * there cannot be any other thread from the top. qprocsoff 5639 * has completed, and service has completed or won't run in 5640 * future. 5641 */ 5642 ASSERT(connp->conn_ref == 1); 5643 5644 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5645 5646 connp->conn_ref--; 5647 ipcl_conn_destroy(connp); 5648 5649 q->q_ptr = WR(q)->q_ptr = NULL; 5650 return (0); 5651 } 5652 5653 /* 5654 * Wapper around putnext() so that ip_rts_request can merely use 5655 * conn_recv. 5656 */ 5657 /*ARGSUSED2*/ 5658 static void 5659 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5660 { 5661 conn_t *connp = (conn_t *)arg1; 5662 5663 putnext(connp->conn_rq, mp); 5664 } 5665 5666 /* 5667 * Called when the module is about to be unloaded 5668 */ 5669 void 5670 ip_ddi_destroy(void) 5671 { 5672 tnet_fini(); 5673 5674 icmp_ddi_g_destroy(); 5675 rts_ddi_g_destroy(); 5676 udp_ddi_g_destroy(); 5677 sctp_ddi_g_destroy(); 5678 tcp_ddi_g_destroy(); 5679 ipsec_policy_g_destroy(); 5680 ipcl_g_destroy(); 5681 ip_net_g_destroy(); 5682 ip_ire_g_fini(); 5683 inet_minor_destroy(ip_minor_arena_sa); 5684 #if defined(_LP64) 5685 inet_minor_destroy(ip_minor_arena_la); 5686 #endif 5687 5688 #ifdef DEBUG 5689 list_destroy(&ip_thread_list); 5690 rw_destroy(&ip_thread_rwlock); 5691 tsd_destroy(&ip_thread_data); 5692 #endif 5693 5694 netstack_unregister(NS_IP); 5695 } 5696 5697 /* 5698 * First step in cleanup. 5699 */ 5700 /* ARGSUSED */ 5701 static void 5702 ip_stack_shutdown(netstackid_t stackid, void *arg) 5703 { 5704 ip_stack_t *ipst = (ip_stack_t *)arg; 5705 5706 #ifdef NS_DEBUG 5707 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5708 #endif 5709 5710 /* Get rid of loopback interfaces and their IREs */ 5711 ip_loopback_cleanup(ipst); 5712 5713 /* 5714 * The *_hook_shutdown()s start the process of notifying any 5715 * consumers that things are going away.... nothing is destroyed. 5716 */ 5717 ipv4_hook_shutdown(ipst); 5718 ipv6_hook_shutdown(ipst); 5719 5720 mutex_enter(&ipst->ips_capab_taskq_lock); 5721 ipst->ips_capab_taskq_quit = B_TRUE; 5722 cv_signal(&ipst->ips_capab_taskq_cv); 5723 mutex_exit(&ipst->ips_capab_taskq_lock); 5724 5725 mutex_enter(&ipst->ips_mrt_lock); 5726 ipst->ips_mrt_flags |= IP_MRT_STOP; 5727 cv_signal(&ipst->ips_mrt_cv); 5728 mutex_exit(&ipst->ips_mrt_lock); 5729 } 5730 5731 /* 5732 * Free the IP stack instance. 5733 */ 5734 static void 5735 ip_stack_fini(netstackid_t stackid, void *arg) 5736 { 5737 ip_stack_t *ipst = (ip_stack_t *)arg; 5738 int ret; 5739 5740 #ifdef NS_DEBUG 5741 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5742 #endif 5743 /* 5744 * At this point, all of the notifications that the events and 5745 * protocols are going away have been run, meaning that we can 5746 * now set about starting to clean things up. 5747 */ 5748 ipobs_fini(ipst); 5749 ipv4_hook_destroy(ipst); 5750 ipv6_hook_destroy(ipst); 5751 ip_net_destroy(ipst); 5752 5753 mutex_destroy(&ipst->ips_capab_taskq_lock); 5754 cv_destroy(&ipst->ips_capab_taskq_cv); 5755 5756 mutex_enter(&ipst->ips_mrt_lock); 5757 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5758 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5759 mutex_destroy(&ipst->ips_mrt_lock); 5760 cv_destroy(&ipst->ips_mrt_cv); 5761 cv_destroy(&ipst->ips_mrt_done_cv); 5762 5763 ipmp_destroy(ipst); 5764 rw_destroy(&ipst->ips_srcid_lock); 5765 5766 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5767 ipst->ips_ip_mibkp = NULL; 5768 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5769 ipst->ips_icmp_mibkp = NULL; 5770 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5771 ipst->ips_ip_kstat = NULL; 5772 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5773 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5774 ipst->ips_ip6_kstat = NULL; 5775 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5776 5777 nd_free(&ipst->ips_ip_g_nd); 5778 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5779 ipst->ips_param_arr = NULL; 5780 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5781 ipst->ips_ndp_arr = NULL; 5782 5783 ip_mrouter_stack_destroy(ipst); 5784 5785 mutex_destroy(&ipst->ips_ip_mi_lock); 5786 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5787 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5788 rw_destroy(&ipst->ips_ip_g_nd_lock); 5789 5790 ret = untimeout(ipst->ips_igmp_timeout_id); 5791 if (ret == -1) { 5792 ASSERT(ipst->ips_igmp_timeout_id == 0); 5793 } else { 5794 ASSERT(ipst->ips_igmp_timeout_id != 0); 5795 ipst->ips_igmp_timeout_id = 0; 5796 } 5797 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5798 if (ret == -1) { 5799 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5800 } else { 5801 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5802 ipst->ips_igmp_slowtimeout_id = 0; 5803 } 5804 ret = untimeout(ipst->ips_mld_timeout_id); 5805 if (ret == -1) { 5806 ASSERT(ipst->ips_mld_timeout_id == 0); 5807 } else { 5808 ASSERT(ipst->ips_mld_timeout_id != 0); 5809 ipst->ips_mld_timeout_id = 0; 5810 } 5811 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5812 if (ret == -1) { 5813 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5814 } else { 5815 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5816 ipst->ips_mld_slowtimeout_id = 0; 5817 } 5818 ret = untimeout(ipst->ips_ip_ire_expire_id); 5819 if (ret == -1) { 5820 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5821 } else { 5822 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5823 ipst->ips_ip_ire_expire_id = 0; 5824 } 5825 5826 mutex_destroy(&ipst->ips_igmp_timer_lock); 5827 mutex_destroy(&ipst->ips_mld_timer_lock); 5828 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5829 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5830 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5831 rw_destroy(&ipst->ips_ill_g_lock); 5832 5833 ip_ire_fini(ipst); 5834 ip6_asp_free(ipst); 5835 conn_drain_fini(ipst); 5836 ipcl_destroy(ipst); 5837 5838 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5839 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5840 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5841 ipst->ips_ndp4 = NULL; 5842 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5843 ipst->ips_ndp6 = NULL; 5844 5845 if (ipst->ips_loopback_ksp != NULL) { 5846 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5847 ipst->ips_loopback_ksp = NULL; 5848 } 5849 5850 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5851 ipst->ips_phyint_g_list = NULL; 5852 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5853 ipst->ips_ill_g_heads = NULL; 5854 5855 ldi_ident_release(ipst->ips_ldi_ident); 5856 kmem_free(ipst, sizeof (*ipst)); 5857 } 5858 5859 /* 5860 * This function is called from the TSD destructor, and is used to debug 5861 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5862 * details. 5863 */ 5864 static void 5865 ip_thread_exit(void *phash) 5866 { 5867 th_hash_t *thh = phash; 5868 5869 rw_enter(&ip_thread_rwlock, RW_WRITER); 5870 list_remove(&ip_thread_list, thh); 5871 rw_exit(&ip_thread_rwlock); 5872 mod_hash_destroy_hash(thh->thh_hash); 5873 kmem_free(thh, sizeof (*thh)); 5874 } 5875 5876 /* 5877 * Called when the IP kernel module is loaded into the kernel 5878 */ 5879 void 5880 ip_ddi_init(void) 5881 { 5882 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5883 5884 /* 5885 * For IP and TCP the minor numbers should start from 2 since we have 4 5886 * initial devices: ip, ip6, tcp, tcp6. 5887 */ 5888 /* 5889 * If this is a 64-bit kernel, then create two separate arenas - 5890 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5891 * other for socket apps in the range 2^^18 through 2^^32-1. 5892 */ 5893 ip_minor_arena_la = NULL; 5894 ip_minor_arena_sa = NULL; 5895 #if defined(_LP64) 5896 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5897 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5898 cmn_err(CE_PANIC, 5899 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5900 } 5901 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5902 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5903 cmn_err(CE_PANIC, 5904 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5905 } 5906 #else 5907 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5908 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5909 cmn_err(CE_PANIC, 5910 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5911 } 5912 #endif 5913 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5914 5915 ipcl_g_init(); 5916 ip_ire_g_init(); 5917 ip_net_g_init(); 5918 5919 #ifdef DEBUG 5920 tsd_create(&ip_thread_data, ip_thread_exit); 5921 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5922 list_create(&ip_thread_list, sizeof (th_hash_t), 5923 offsetof(th_hash_t, thh_link)); 5924 #endif 5925 5926 /* 5927 * We want to be informed each time a stack is created or 5928 * destroyed in the kernel, so we can maintain the 5929 * set of udp_stack_t's. 5930 */ 5931 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5932 ip_stack_fini); 5933 5934 ipsec_policy_g_init(); 5935 tcp_ddi_g_init(); 5936 sctp_ddi_g_init(); 5937 5938 tnet_init(); 5939 5940 udp_ddi_g_init(); 5941 rts_ddi_g_init(); 5942 icmp_ddi_g_init(); 5943 } 5944 5945 /* 5946 * Initialize the IP stack instance. 5947 */ 5948 static void * 5949 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5950 { 5951 ip_stack_t *ipst; 5952 ipparam_t *pa; 5953 ipndp_t *na; 5954 major_t major; 5955 5956 #ifdef NS_DEBUG 5957 printf("ip_stack_init(stack %d)\n", stackid); 5958 #endif 5959 5960 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5961 ipst->ips_netstack = ns; 5962 5963 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5964 KM_SLEEP); 5965 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5966 KM_SLEEP); 5967 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5968 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5969 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5970 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5971 5972 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5973 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5974 ipst->ips_igmp_deferred_next = INFINITY; 5975 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5976 ipst->ips_mld_deferred_next = INFINITY; 5977 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5978 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5979 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5980 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5981 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5982 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5983 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5984 5985 ipcl_init(ipst); 5986 ip_ire_init(ipst); 5987 ip6_asp_init(ipst); 5988 ipif_init(ipst); 5989 conn_drain_init(ipst); 5990 ip_mrouter_stack_init(ipst); 5991 5992 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5993 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5994 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 5995 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 5996 5997 ipst->ips_ip_multirt_log_interval = 1000; 5998 5999 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6000 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6001 ipst->ips_ill_index = 1; 6002 6003 ipst->ips_saved_ip_g_forward = -1; 6004 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6005 6006 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6007 ipst->ips_param_arr = pa; 6008 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6009 6010 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6011 ipst->ips_ndp_arr = na; 6012 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6013 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6014 (caddr_t)&ipst->ips_ip_g_forward; 6015 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6016 (caddr_t)&ipst->ips_ipv6_forward; 6017 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6018 "ip_cgtp_filter") == 0); 6019 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6020 (caddr_t)&ipst->ips_ip_cgtp_filter; 6021 6022 (void) ip_param_register(&ipst->ips_ip_g_nd, 6023 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6024 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6025 6026 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6027 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6028 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6029 ipst->ips_ip6_kstat = 6030 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6031 6032 ipst->ips_ip_src_id = 1; 6033 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6034 6035 ip_net_init(ipst, ns); 6036 ipv4_hook_init(ipst); 6037 ipv6_hook_init(ipst); 6038 ipmp_init(ipst); 6039 ipobs_init(ipst); 6040 6041 /* 6042 * Create the taskq dispatcher thread and initialize related stuff. 6043 */ 6044 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6045 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6046 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6047 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6048 6049 /* 6050 * Create the mcast_restart_timers_thread() worker thread. 6051 */ 6052 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6053 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6054 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6055 ipst->ips_mrt_thread = thread_create(NULL, 0, 6056 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6057 6058 major = mod_name_to_major(INET_NAME); 6059 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6060 return (ipst); 6061 } 6062 6063 /* 6064 * Allocate and initialize a DLPI template of the specified length. (May be 6065 * called as writer.) 6066 */ 6067 mblk_t * 6068 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6069 { 6070 mblk_t *mp; 6071 6072 mp = allocb(len, BPRI_MED); 6073 if (!mp) 6074 return (NULL); 6075 6076 /* 6077 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6078 * of which we don't seem to use) are sent with M_PCPROTO, and 6079 * that other DLPI are M_PROTO. 6080 */ 6081 if (prim == DL_INFO_REQ) { 6082 mp->b_datap->db_type = M_PCPROTO; 6083 } else { 6084 mp->b_datap->db_type = M_PROTO; 6085 } 6086 6087 mp->b_wptr = mp->b_rptr + len; 6088 bzero(mp->b_rptr, len); 6089 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6090 return (mp); 6091 } 6092 6093 /* 6094 * Allocate and initialize a DLPI notification. (May be called as writer.) 6095 */ 6096 mblk_t * 6097 ip_dlnotify_alloc(uint_t notification, uint_t data) 6098 { 6099 dl_notify_ind_t *notifyp; 6100 mblk_t *mp; 6101 6102 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6103 return (NULL); 6104 6105 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6106 notifyp->dl_notification = notification; 6107 notifyp->dl_data = data; 6108 return (mp); 6109 } 6110 6111 /* 6112 * Debug formatting routine. Returns a character string representation of the 6113 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6114 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6115 * 6116 * Once the ndd table-printing interfaces are removed, this can be changed to 6117 * standard dotted-decimal form. 6118 */ 6119 char * 6120 ip_dot_addr(ipaddr_t addr, char *buf) 6121 { 6122 uint8_t *ap = (uint8_t *)&addr; 6123 6124 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6125 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6126 return (buf); 6127 } 6128 6129 /* 6130 * Write the given MAC address as a printable string in the usual colon- 6131 * separated format. 6132 */ 6133 const char * 6134 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6135 { 6136 char *bp; 6137 6138 if (alen == 0 || buflen < 4) 6139 return ("?"); 6140 bp = buf; 6141 for (;;) { 6142 /* 6143 * If there are more MAC address bytes available, but we won't 6144 * have any room to print them, then add "..." to the string 6145 * instead. See below for the 'magic number' explanation. 6146 */ 6147 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6148 (void) strcpy(bp, "..."); 6149 break; 6150 } 6151 (void) sprintf(bp, "%02x", *addr++); 6152 bp += 2; 6153 if (--alen == 0) 6154 break; 6155 *bp++ = ':'; 6156 buflen -= 3; 6157 /* 6158 * At this point, based on the first 'if' statement above, 6159 * either alen == 1 and buflen >= 3, or alen > 1 and 6160 * buflen >= 4. The first case leaves room for the final "xx" 6161 * number and trailing NUL byte. The second leaves room for at 6162 * least "...". Thus the apparently 'magic' numbers chosen for 6163 * that statement. 6164 */ 6165 } 6166 return (buf); 6167 } 6168 6169 /* 6170 * Send an ICMP error after patching up the packet appropriately. Returns 6171 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6172 */ 6173 static boolean_t 6174 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6175 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6176 zoneid_t zoneid, ip_stack_t *ipst) 6177 { 6178 ipha_t *ipha; 6179 mblk_t *first_mp; 6180 boolean_t secure; 6181 unsigned char db_type; 6182 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6183 6184 first_mp = mp; 6185 if (mctl_present) { 6186 mp = mp->b_cont; 6187 secure = ipsec_in_is_secure(first_mp); 6188 ASSERT(mp != NULL); 6189 } else { 6190 /* 6191 * If this is an ICMP error being reported - which goes 6192 * up as M_CTLs, we need to convert them to M_DATA till 6193 * we finish checking with global policy because 6194 * ipsec_check_global_policy() assumes M_DATA as clear 6195 * and M_CTL as secure. 6196 */ 6197 db_type = DB_TYPE(mp); 6198 DB_TYPE(mp) = M_DATA; 6199 secure = B_FALSE; 6200 } 6201 /* 6202 * We are generating an icmp error for some inbound packet. 6203 * Called from all ip_fanout_(udp, tcp, proto) functions. 6204 * Before we generate an error, check with global policy 6205 * to see whether this is allowed to enter the system. As 6206 * there is no "conn", we are checking with global policy. 6207 */ 6208 ipha = (ipha_t *)mp->b_rptr; 6209 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6210 first_mp = ipsec_check_global_policy(first_mp, NULL, 6211 ipha, NULL, mctl_present, ipst->ips_netstack); 6212 if (first_mp == NULL) 6213 return (B_FALSE); 6214 } 6215 6216 if (!mctl_present) 6217 DB_TYPE(mp) = db_type; 6218 6219 if (flags & IP_FF_SEND_ICMP) { 6220 if (flags & IP_FF_HDR_COMPLETE) { 6221 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6222 freemsg(first_mp); 6223 return (B_TRUE); 6224 } 6225 } 6226 if (flags & IP_FF_CKSUM) { 6227 /* 6228 * Have to correct checksum since 6229 * the packet might have been 6230 * fragmented and the reassembly code in ip_rput 6231 * does not restore the IP checksum. 6232 */ 6233 ipha->ipha_hdr_checksum = 0; 6234 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6235 } 6236 switch (icmp_type) { 6237 case ICMP_DEST_UNREACHABLE: 6238 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6239 ipst); 6240 break; 6241 default: 6242 freemsg(first_mp); 6243 break; 6244 } 6245 } else { 6246 freemsg(first_mp); 6247 return (B_FALSE); 6248 } 6249 6250 return (B_TRUE); 6251 } 6252 6253 /* 6254 * Used to send an ICMP error message when a packet is received for 6255 * a protocol that is not supported. The mblk passed as argument 6256 * is consumed by this function. 6257 */ 6258 void 6259 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6260 ip_stack_t *ipst) 6261 { 6262 mblk_t *mp; 6263 ipha_t *ipha; 6264 ill_t *ill; 6265 ipsec_in_t *ii; 6266 6267 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6268 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6269 6270 mp = ipsec_mp->b_cont; 6271 ipsec_mp->b_cont = NULL; 6272 ipha = (ipha_t *)mp->b_rptr; 6273 /* Get ill from index in ipsec_in_t. */ 6274 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6275 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6276 ipst); 6277 if (ill != NULL) { 6278 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6279 if (ip_fanout_send_icmp(q, mp, flags, 6280 ICMP_DEST_UNREACHABLE, 6281 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6282 BUMP_MIB(ill->ill_ip_mib, 6283 ipIfStatsInUnknownProtos); 6284 } 6285 } else { 6286 if (ip_fanout_send_icmp_v6(q, mp, flags, 6287 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6288 0, B_FALSE, zoneid, ipst)) { 6289 BUMP_MIB(ill->ill_ip_mib, 6290 ipIfStatsInUnknownProtos); 6291 } 6292 } 6293 ill_refrele(ill); 6294 } else { /* re-link for the freemsg() below. */ 6295 ipsec_mp->b_cont = mp; 6296 } 6297 6298 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6299 freemsg(ipsec_mp); 6300 } 6301 6302 /* 6303 * See if the inbound datagram has had IPsec processing applied to it. 6304 */ 6305 boolean_t 6306 ipsec_in_is_secure(mblk_t *ipsec_mp) 6307 { 6308 ipsec_in_t *ii; 6309 6310 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6311 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6312 6313 if (ii->ipsec_in_loopback) { 6314 return (ii->ipsec_in_secure); 6315 } else { 6316 return (ii->ipsec_in_ah_sa != NULL || 6317 ii->ipsec_in_esp_sa != NULL || 6318 ii->ipsec_in_decaps); 6319 } 6320 } 6321 6322 /* 6323 * Handle protocols with which IP is less intimate. There 6324 * can be more than one stream bound to a particular 6325 * protocol. When this is the case, normally each one gets a copy 6326 * of any incoming packets. 6327 * 6328 * IPsec NOTE : 6329 * 6330 * Don't allow a secure packet going up a non-secure connection. 6331 * We don't allow this because 6332 * 6333 * 1) Reply might go out in clear which will be dropped at 6334 * the sending side. 6335 * 2) If the reply goes out in clear it will give the 6336 * adversary enough information for getting the key in 6337 * most of the cases. 6338 * 6339 * Moreover getting a secure packet when we expect clear 6340 * implies that SA's were added without checking for 6341 * policy on both ends. This should not happen once ISAKMP 6342 * is used to negotiate SAs as SAs will be added only after 6343 * verifying the policy. 6344 * 6345 * IPQoS Notes: 6346 * Once we have determined the client, invoke IPPF processing. 6347 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6348 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6349 * ip_policy will be false. 6350 * 6351 * Zones notes: 6352 * Currently only applications in the global zone can create raw sockets for 6353 * protocols other than ICMP. So unlike the broadcast / multicast case of 6354 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6355 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6356 */ 6357 static void 6358 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6359 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6360 zoneid_t zoneid) 6361 { 6362 queue_t *rq; 6363 mblk_t *mp1, *first_mp1; 6364 uint_t protocol = ipha->ipha_protocol; 6365 ipaddr_t dst; 6366 mblk_t *first_mp = mp; 6367 boolean_t secure; 6368 uint32_t ill_index; 6369 conn_t *connp, *first_connp, *next_connp; 6370 connf_t *connfp; 6371 boolean_t shared_addr; 6372 mib2_ipIfStatsEntry_t *mibptr; 6373 ip_stack_t *ipst = recv_ill->ill_ipst; 6374 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6375 6376 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6377 if (mctl_present) { 6378 mp = first_mp->b_cont; 6379 secure = ipsec_in_is_secure(first_mp); 6380 ASSERT(mp != NULL); 6381 } else { 6382 secure = B_FALSE; 6383 } 6384 dst = ipha->ipha_dst; 6385 shared_addr = (zoneid == ALL_ZONES); 6386 if (shared_addr) { 6387 /* 6388 * We don't allow multilevel ports for raw IP, so no need to 6389 * check for that here. 6390 */ 6391 zoneid = tsol_packet_to_zoneid(mp); 6392 } 6393 6394 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6395 mutex_enter(&connfp->connf_lock); 6396 connp = connfp->connf_head; 6397 for (connp = connfp->connf_head; connp != NULL; 6398 connp = connp->conn_next) { 6399 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6400 zoneid) && 6401 (!is_system_labeled() || 6402 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6403 connp))) { 6404 break; 6405 } 6406 } 6407 6408 if (connp == NULL) { 6409 /* 6410 * No one bound to these addresses. Is 6411 * there a client that wants all 6412 * unclaimed datagrams? 6413 */ 6414 mutex_exit(&connfp->connf_lock); 6415 /* 6416 * Check for IPPROTO_ENCAP... 6417 */ 6418 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6419 /* 6420 * If an IPsec mblk is here on a multicast 6421 * tunnel (using ip_mroute stuff), check policy here, 6422 * THEN ship off to ip_mroute_decap(). 6423 * 6424 * BTW, If I match a configured IP-in-IP 6425 * tunnel, this path will not be reached, and 6426 * ip_mroute_decap will never be called. 6427 */ 6428 first_mp = ipsec_check_global_policy(first_mp, connp, 6429 ipha, NULL, mctl_present, ipst->ips_netstack); 6430 if (first_mp != NULL) { 6431 if (mctl_present) 6432 freeb(first_mp); 6433 ip_mroute_decap(q, mp, ill); 6434 } /* Else we already freed everything! */ 6435 } else { 6436 /* 6437 * Otherwise send an ICMP protocol unreachable. 6438 */ 6439 if (ip_fanout_send_icmp(q, first_mp, flags, 6440 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6441 mctl_present, zoneid, ipst)) { 6442 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6443 } 6444 } 6445 return; 6446 } 6447 6448 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6449 6450 CONN_INC_REF(connp); 6451 first_connp = connp; 6452 connp = connp->conn_next; 6453 6454 for (;;) { 6455 while (connp != NULL) { 6456 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6457 flags, zoneid) && 6458 (!is_system_labeled() || 6459 tsol_receive_local(mp, &dst, IPV4_VERSION, 6460 shared_addr, connp))) 6461 break; 6462 connp = connp->conn_next; 6463 } 6464 6465 /* 6466 * Copy the packet. 6467 */ 6468 if (connp == NULL || 6469 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6470 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6471 /* 6472 * No more interested clients or memory 6473 * allocation failed 6474 */ 6475 connp = first_connp; 6476 break; 6477 } 6478 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6479 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6480 CONN_INC_REF(connp); 6481 mutex_exit(&connfp->connf_lock); 6482 rq = connp->conn_rq; 6483 6484 /* 6485 * Check flow control 6486 */ 6487 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6488 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6489 if (flags & IP_FF_RAWIP) { 6490 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6491 } else { 6492 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6493 } 6494 6495 freemsg(first_mp1); 6496 } else { 6497 /* 6498 * Enforce policy like any other conn_t. Note that 6499 * IP-in-IP packets don't come through here, but 6500 * through ip_iptun_input() or 6501 * icmp_inbound_iptun_fanout(). IPsec policy for such 6502 * packets is enforced in the iptun module. 6503 */ 6504 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6505 secure) { 6506 first_mp1 = ipsec_check_inbound_policy 6507 (first_mp1, connp, ipha, NULL, 6508 mctl_present); 6509 } 6510 if (first_mp1 != NULL) { 6511 int in_flags = 0; 6512 /* 6513 * ip_fanout_proto also gets called from 6514 * icmp_inbound_error_fanout, in which case 6515 * the msg type is M_CTL. Don't add info 6516 * in this case for the time being. In future 6517 * when there is a need for knowing the 6518 * inbound iface index for ICMP error msgs, 6519 * then this can be changed. 6520 */ 6521 if (connp->conn_recvif) 6522 in_flags = IPF_RECVIF; 6523 /* 6524 * The ULP may support IP_RECVPKTINFO for both 6525 * IP v4 and v6 so pass the appropriate argument 6526 * based on conn IP version. 6527 */ 6528 if (connp->conn_ip_recvpktinfo) { 6529 if (connp->conn_af_isv6) { 6530 /* 6531 * V6 only needs index 6532 */ 6533 in_flags |= IPF_RECVIF; 6534 } else { 6535 /* 6536 * V4 needs index + 6537 * matching address. 6538 */ 6539 in_flags |= IPF_RECVADDR; 6540 } 6541 } 6542 if ((in_flags != 0) && 6543 (mp->b_datap->db_type != M_CTL)) { 6544 /* 6545 * the actual data will be 6546 * contained in b_cont upon 6547 * successful return of the 6548 * following call else 6549 * original mblk is returned 6550 */ 6551 ASSERT(recv_ill != NULL); 6552 mp1 = ip_add_info(mp1, recv_ill, 6553 in_flags, IPCL_ZONEID(connp), ipst); 6554 } 6555 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6556 if (mctl_present) 6557 freeb(first_mp1); 6558 (connp->conn_recv)(connp, mp1, NULL); 6559 } 6560 } 6561 mutex_enter(&connfp->connf_lock); 6562 /* Follow the next pointer before releasing the conn. */ 6563 next_connp = connp->conn_next; 6564 CONN_DEC_REF(connp); 6565 connp = next_connp; 6566 } 6567 6568 /* Last one. Send it upstream. */ 6569 mutex_exit(&connfp->connf_lock); 6570 6571 /* 6572 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6573 * will be set to false. 6574 */ 6575 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6576 ill_index = ill->ill_phyint->phyint_ifindex; 6577 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6578 if (mp == NULL) { 6579 CONN_DEC_REF(connp); 6580 if (mctl_present) { 6581 freeb(first_mp); 6582 } 6583 return; 6584 } 6585 } 6586 6587 rq = connp->conn_rq; 6588 /* 6589 * Check flow control 6590 */ 6591 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6592 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6593 if (flags & IP_FF_RAWIP) { 6594 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6595 } else { 6596 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6597 } 6598 6599 freemsg(first_mp); 6600 } else { 6601 ASSERT(!IPCL_IS_IPTUN(connp)); 6602 6603 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6604 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6605 ipha, NULL, mctl_present); 6606 } 6607 6608 if (first_mp != NULL) { 6609 int in_flags = 0; 6610 6611 /* 6612 * ip_fanout_proto also gets called 6613 * from icmp_inbound_error_fanout, in 6614 * which case the msg type is M_CTL. 6615 * Don't add info in this case for time 6616 * being. In future when there is a 6617 * need for knowing the inbound iface 6618 * index for ICMP error msgs, then this 6619 * can be changed 6620 */ 6621 if (connp->conn_recvif) 6622 in_flags = IPF_RECVIF; 6623 if (connp->conn_ip_recvpktinfo) { 6624 if (connp->conn_af_isv6) { 6625 /* 6626 * V6 only needs index 6627 */ 6628 in_flags |= IPF_RECVIF; 6629 } else { 6630 /* 6631 * V4 needs index + 6632 * matching address. 6633 */ 6634 in_flags |= IPF_RECVADDR; 6635 } 6636 } 6637 if ((in_flags != 0) && 6638 (mp->b_datap->db_type != M_CTL)) { 6639 6640 /* 6641 * the actual data will be contained in 6642 * b_cont upon successful return 6643 * of the following call else original 6644 * mblk is returned 6645 */ 6646 ASSERT(recv_ill != NULL); 6647 mp = ip_add_info(mp, recv_ill, 6648 in_flags, IPCL_ZONEID(connp), ipst); 6649 } 6650 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6651 (connp->conn_recv)(connp, mp, NULL); 6652 if (mctl_present) 6653 freeb(first_mp); 6654 } 6655 } 6656 CONN_DEC_REF(connp); 6657 } 6658 6659 /* 6660 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6661 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6662 * the correct squeue, in this case the same squeue as a valid listener with 6663 * no current connection state for the packet we are processing. The function 6664 * is called for synchronizing both IPv4 and IPv6. 6665 */ 6666 void 6667 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6668 tcp_stack_t *tcps, conn_t *connp) 6669 { 6670 mblk_t *rst_mp; 6671 tcp_xmit_reset_event_t *eventp; 6672 6673 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6674 6675 if (rst_mp == NULL) { 6676 freemsg(mp); 6677 return; 6678 } 6679 6680 rst_mp->b_datap->db_type = M_PROTO; 6681 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6682 6683 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6684 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6685 eventp->tcp_xre_iphdrlen = hdrlen; 6686 eventp->tcp_xre_zoneid = zoneid; 6687 eventp->tcp_xre_tcps = tcps; 6688 6689 rst_mp->b_cont = mp; 6690 mp = rst_mp; 6691 6692 /* 6693 * Increment the connref, this ref will be released by the squeue 6694 * framework. 6695 */ 6696 CONN_INC_REF(connp); 6697 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6698 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6699 } 6700 6701 /* 6702 * Fanout for TCP packets 6703 * The caller puts <fport, lport> in the ports parameter. 6704 * 6705 * IPQoS Notes 6706 * Before sending it to the client, invoke IPPF processing. 6707 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6708 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6709 * ip_policy is false. 6710 */ 6711 static void 6712 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6713 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6714 { 6715 mblk_t *first_mp; 6716 boolean_t secure; 6717 uint32_t ill_index; 6718 int ip_hdr_len; 6719 tcph_t *tcph; 6720 boolean_t syn_present = B_FALSE; 6721 conn_t *connp; 6722 ip_stack_t *ipst = recv_ill->ill_ipst; 6723 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6724 6725 ASSERT(recv_ill != NULL); 6726 6727 first_mp = mp; 6728 if (mctl_present) { 6729 ASSERT(first_mp->b_datap->db_type == M_CTL); 6730 mp = first_mp->b_cont; 6731 secure = ipsec_in_is_secure(first_mp); 6732 ASSERT(mp != NULL); 6733 } else { 6734 secure = B_FALSE; 6735 } 6736 6737 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6738 6739 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6740 zoneid, ipst)) == NULL) { 6741 /* 6742 * No connected connection or listener. Send a 6743 * TH_RST via tcp_xmit_listeners_reset. 6744 */ 6745 6746 /* Initiate IPPf processing, if needed. */ 6747 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6748 uint32_t ill_index; 6749 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6750 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6751 if (first_mp == NULL) 6752 return; 6753 } 6754 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6755 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6756 zoneid)); 6757 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6758 ipst->ips_netstack->netstack_tcp, NULL); 6759 return; 6760 } 6761 6762 /* 6763 * Allocate the SYN for the TCP connection here itself 6764 */ 6765 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6766 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6767 if (IPCL_IS_TCP(connp)) { 6768 squeue_t *sqp; 6769 6770 /* 6771 * If the queue belongs to a conn, and fused tcp 6772 * loopback is enabled, assign the eager's squeue 6773 * to be that of the active connect's. Note that 6774 * we don't check for IP_FF_LOOPBACK here since this 6775 * routine gets called only for loopback (unlike the 6776 * IPv6 counterpart). 6777 */ 6778 if (do_tcp_fusion && 6779 CONN_Q(q) && IPCL_IS_TCP(Q_TO_CONN(q)) && 6780 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6781 !secure && 6782 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy) { 6783 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6784 sqp = Q_TO_CONN(q)->conn_sqp; 6785 } else { 6786 sqp = IP_SQUEUE_GET(lbolt); 6787 } 6788 6789 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6790 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6791 syn_present = B_TRUE; 6792 } 6793 } 6794 6795 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6796 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6797 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6798 if ((flags & TH_RST) || (flags & TH_URG)) { 6799 CONN_DEC_REF(connp); 6800 freemsg(first_mp); 6801 return; 6802 } 6803 if (flags & TH_ACK) { 6804 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6805 ipst->ips_netstack->netstack_tcp, connp); 6806 CONN_DEC_REF(connp); 6807 return; 6808 } 6809 6810 CONN_DEC_REF(connp); 6811 freemsg(first_mp); 6812 return; 6813 } 6814 6815 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6816 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6817 NULL, mctl_present); 6818 if (first_mp == NULL) { 6819 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6820 CONN_DEC_REF(connp); 6821 return; 6822 } 6823 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6824 ASSERT(syn_present); 6825 if (mctl_present) { 6826 ASSERT(first_mp != mp); 6827 first_mp->b_datap->db_struioflag |= 6828 STRUIO_POLICY; 6829 } else { 6830 ASSERT(first_mp == mp); 6831 mp->b_datap->db_struioflag &= 6832 ~STRUIO_EAGER; 6833 mp->b_datap->db_struioflag |= 6834 STRUIO_POLICY; 6835 } 6836 } else { 6837 /* 6838 * Discard first_mp early since we're dealing with a 6839 * fully-connected conn_t and tcp doesn't do policy in 6840 * this case. 6841 */ 6842 if (mctl_present) { 6843 freeb(first_mp); 6844 mctl_present = B_FALSE; 6845 } 6846 first_mp = mp; 6847 } 6848 } 6849 6850 /* 6851 * Initiate policy processing here if needed. If we get here from 6852 * icmp_inbound_error_fanout, ip_policy is false. 6853 */ 6854 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6855 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6856 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6857 if (mp == NULL) { 6858 CONN_DEC_REF(connp); 6859 if (mctl_present) 6860 freeb(first_mp); 6861 return; 6862 } else if (mctl_present) { 6863 ASSERT(first_mp != mp); 6864 first_mp->b_cont = mp; 6865 } else { 6866 first_mp = mp; 6867 } 6868 } 6869 6870 /* Handle socket options. */ 6871 if (!syn_present && 6872 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6873 /* Add header */ 6874 ASSERT(recv_ill != NULL); 6875 /* 6876 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6877 * IPF_RECVIF. 6878 */ 6879 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6880 ipst); 6881 if (mp == NULL) { 6882 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6883 CONN_DEC_REF(connp); 6884 if (mctl_present) 6885 freeb(first_mp); 6886 return; 6887 } else if (mctl_present) { 6888 /* 6889 * ip_add_info might return a new mp. 6890 */ 6891 ASSERT(first_mp != mp); 6892 first_mp->b_cont = mp; 6893 } else { 6894 first_mp = mp; 6895 } 6896 } 6897 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6898 if (IPCL_IS_TCP(connp)) { 6899 /* do not drain, certain use cases can blow the stack */ 6900 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6901 connp, SQ_NODRAIN, SQTAG_IP_FANOUT_TCP); 6902 } else { 6903 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6904 (connp->conn_recv)(connp, first_mp, NULL); 6905 CONN_DEC_REF(connp); 6906 } 6907 } 6908 6909 /* 6910 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6911 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6912 * is not consumed. 6913 * 6914 * One of four things can happen, all of which affect the passed-in mblk: 6915 * 6916 * 1.) ICMP messages that go through here just get returned TRUE. 6917 * 6918 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6919 * 6920 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6921 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6922 * 6923 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6924 */ 6925 static boolean_t 6926 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6927 ipsec_stack_t *ipss) 6928 { 6929 int shift, plen, iph_len; 6930 ipha_t *ipha; 6931 udpha_t *udpha; 6932 uint32_t *spi; 6933 uint32_t esp_ports; 6934 uint8_t *orptr; 6935 boolean_t free_ire; 6936 6937 if (DB_TYPE(mp) == M_CTL) { 6938 /* 6939 * ICMP message with UDP inside. Don't bother stripping, just 6940 * send it up. 6941 * 6942 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6943 * to ignore errors set by ICMP anyway ('cause they might be 6944 * forged), but that's the app's decision, not ours. 6945 */ 6946 6947 /* Bunch of reality checks for DEBUG kernels... */ 6948 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6949 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6950 6951 return (B_TRUE); 6952 } 6953 6954 ipha = (ipha_t *)mp->b_rptr; 6955 iph_len = IPH_HDR_LENGTH(ipha); 6956 plen = ntohs(ipha->ipha_length); 6957 6958 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6959 /* 6960 * Most likely a keepalive for the benefit of an intervening 6961 * NAT. These aren't for us, per se, so drop it. 6962 * 6963 * RFC 3947/8 doesn't say for sure what to do for 2-3 6964 * byte packets (keepalives are 1-byte), but we'll drop them 6965 * also. 6966 */ 6967 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6968 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6969 return (B_FALSE); 6970 } 6971 6972 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6973 /* might as well pull it all up - it might be ESP. */ 6974 if (!pullupmsg(mp, -1)) { 6975 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6976 DROPPER(ipss, ipds_esp_nomem), 6977 &ipss->ipsec_dropper); 6978 return (B_FALSE); 6979 } 6980 6981 ipha = (ipha_t *)mp->b_rptr; 6982 } 6983 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6984 if (*spi == 0) { 6985 /* UDP packet - remove 0-spi. */ 6986 shift = sizeof (uint32_t); 6987 } else { 6988 /* ESP-in-UDP packet - reduce to ESP. */ 6989 ipha->ipha_protocol = IPPROTO_ESP; 6990 shift = sizeof (udpha_t); 6991 } 6992 6993 /* Fix IP header */ 6994 ipha->ipha_length = htons(plen - shift); 6995 ipha->ipha_hdr_checksum = 0; 6996 6997 orptr = mp->b_rptr; 6998 mp->b_rptr += shift; 6999 7000 udpha = (udpha_t *)(orptr + iph_len); 7001 if (*spi == 0) { 7002 ASSERT((uint8_t *)ipha == orptr); 7003 udpha->uha_length = htons(plen - shift - iph_len); 7004 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7005 esp_ports = 0; 7006 } else { 7007 esp_ports = *((uint32_t *)udpha); 7008 ASSERT(esp_ports != 0); 7009 } 7010 ovbcopy(orptr, orptr + shift, iph_len); 7011 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7012 ipha = (ipha_t *)(orptr + shift); 7013 7014 free_ire = (ire == NULL); 7015 if (free_ire) { 7016 /* Re-acquire ire. */ 7017 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7018 ipss->ipsec_netstack->netstack_ip); 7019 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7020 if (ire != NULL) 7021 ire_refrele(ire); 7022 /* 7023 * Do a regular freemsg(), as this is an IP 7024 * error (no local route) not an IPsec one. 7025 */ 7026 freemsg(mp); 7027 } 7028 } 7029 7030 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7031 if (free_ire) 7032 ire_refrele(ire); 7033 } 7034 7035 return (esp_ports == 0); 7036 } 7037 7038 /* 7039 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7040 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7041 * Caller is responsible for dropping references to the conn, and freeing 7042 * first_mp. 7043 * 7044 * IPQoS Notes 7045 * Before sending it to the client, invoke IPPF processing. Policy processing 7046 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7047 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7048 * ip_wput_local, ip_policy is false. 7049 */ 7050 static void 7051 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7052 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7053 boolean_t ip_policy) 7054 { 7055 boolean_t mctl_present = (first_mp != NULL); 7056 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7057 uint32_t ill_index; 7058 ip_stack_t *ipst = recv_ill->ill_ipst; 7059 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7060 7061 ASSERT(ill != NULL); 7062 7063 if (mctl_present) 7064 first_mp->b_cont = mp; 7065 else 7066 first_mp = mp; 7067 7068 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7069 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7070 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7071 freemsg(first_mp); 7072 return; 7073 } 7074 7075 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7076 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7077 NULL, mctl_present); 7078 /* Freed by ipsec_check_inbound_policy(). */ 7079 if (first_mp == NULL) { 7080 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7081 return; 7082 } 7083 } 7084 if (mctl_present) 7085 freeb(first_mp); 7086 7087 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7088 if (connp->conn_udp->udp_nat_t_endpoint) { 7089 if (mctl_present) { 7090 /* mctl_present *shouldn't* happen. */ 7091 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7092 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7093 &ipss->ipsec_dropper); 7094 return; 7095 } 7096 7097 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7098 return; 7099 } 7100 7101 /* Handle options. */ 7102 if (connp->conn_recvif) 7103 in_flags = IPF_RECVIF; 7104 /* 7105 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7106 * passed to ip_add_info is based on IP version of connp. 7107 */ 7108 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7109 if (connp->conn_af_isv6) { 7110 /* 7111 * V6 only needs index 7112 */ 7113 in_flags |= IPF_RECVIF; 7114 } else { 7115 /* 7116 * V4 needs index + matching address. 7117 */ 7118 in_flags |= IPF_RECVADDR; 7119 } 7120 } 7121 7122 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7123 in_flags |= IPF_RECVSLLA; 7124 7125 /* 7126 * Initiate IPPF processing here, if needed. Note first_mp won't be 7127 * freed if the packet is dropped. The caller will do so. 7128 */ 7129 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7130 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7131 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7132 if (mp == NULL) { 7133 return; 7134 } 7135 } 7136 if ((in_flags != 0) && 7137 (mp->b_datap->db_type != M_CTL)) { 7138 /* 7139 * The actual data will be contained in b_cont 7140 * upon successful return of the following call 7141 * else original mblk is returned 7142 */ 7143 ASSERT(recv_ill != NULL); 7144 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7145 ipst); 7146 } 7147 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7148 /* Send it upstream */ 7149 (connp->conn_recv)(connp, mp, NULL); 7150 } 7151 7152 /* 7153 * Fanout for UDP packets. 7154 * The caller puts <fport, lport> in the ports parameter. 7155 * 7156 * If SO_REUSEADDR is set all multicast and broadcast packets 7157 * will be delivered to all streams bound to the same port. 7158 * 7159 * Zones notes: 7160 * Multicast and broadcast packets will be distributed to streams in all zones. 7161 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7162 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7163 * packets. To maintain this behavior with multiple zones, the conns are grouped 7164 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7165 * each zone. If unset, all the following conns in the same zone are skipped. 7166 */ 7167 static void 7168 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7169 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7170 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7171 { 7172 uint32_t dstport, srcport; 7173 ipaddr_t dst; 7174 mblk_t *first_mp; 7175 boolean_t secure; 7176 in6_addr_t v6src; 7177 conn_t *connp; 7178 connf_t *connfp; 7179 conn_t *first_connp; 7180 conn_t *next_connp; 7181 mblk_t *mp1, *first_mp1; 7182 ipaddr_t src; 7183 zoneid_t last_zoneid; 7184 boolean_t reuseaddr; 7185 boolean_t shared_addr; 7186 boolean_t unlabeled; 7187 ip_stack_t *ipst; 7188 7189 ASSERT(recv_ill != NULL); 7190 ipst = recv_ill->ill_ipst; 7191 7192 first_mp = mp; 7193 if (mctl_present) { 7194 mp = first_mp->b_cont; 7195 first_mp->b_cont = NULL; 7196 secure = ipsec_in_is_secure(first_mp); 7197 ASSERT(mp != NULL); 7198 } else { 7199 first_mp = NULL; 7200 secure = B_FALSE; 7201 } 7202 7203 /* Extract ports in net byte order */ 7204 dstport = htons(ntohl(ports) & 0xFFFF); 7205 srcport = htons(ntohl(ports) >> 16); 7206 dst = ipha->ipha_dst; 7207 src = ipha->ipha_src; 7208 7209 unlabeled = B_FALSE; 7210 if (is_system_labeled()) 7211 /* Cred cannot be null on IPv4 */ 7212 unlabeled = (msg_getlabel(mp)->tsl_flags & 7213 TSLF_UNLABELED) != 0; 7214 shared_addr = (zoneid == ALL_ZONES); 7215 if (shared_addr) { 7216 /* 7217 * No need to handle exclusive-stack zones since ALL_ZONES 7218 * only applies to the shared stack. 7219 */ 7220 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7221 /* 7222 * If no shared MLP is found, tsol_mlp_findzone returns 7223 * ALL_ZONES. In that case, we assume it's SLP, and 7224 * search for the zone based on the packet label. 7225 * 7226 * If there is such a zone, we prefer to find a 7227 * connection in it. Otherwise, we look for a 7228 * MAC-exempt connection in any zone whose label 7229 * dominates the default label on the packet. 7230 */ 7231 if (zoneid == ALL_ZONES) 7232 zoneid = tsol_packet_to_zoneid(mp); 7233 else 7234 unlabeled = B_FALSE; 7235 } 7236 7237 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7238 mutex_enter(&connfp->connf_lock); 7239 connp = connfp->connf_head; 7240 if (!broadcast && !CLASSD(dst)) { 7241 /* 7242 * Not broadcast or multicast. Send to the one (first) 7243 * client we find. No need to check conn_wantpacket() 7244 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7245 * IPv4 unicast packets. 7246 */ 7247 while ((connp != NULL) && 7248 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7249 (!IPCL_ZONE_MATCH(connp, zoneid) && 7250 !(unlabeled && connp->conn_mac_exempt && shared_addr)))) { 7251 /* 7252 * We keep searching since the conn did not match, 7253 * or its zone did not match and it is not either 7254 * an allzones conn or a mac exempt conn (if the 7255 * sender is unlabeled.) 7256 */ 7257 connp = connp->conn_next; 7258 } 7259 7260 if (connp == NULL || 7261 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7262 goto notfound; 7263 7264 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7265 7266 if (is_system_labeled() && 7267 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7268 connp)) 7269 goto notfound; 7270 7271 CONN_INC_REF(connp); 7272 mutex_exit(&connfp->connf_lock); 7273 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7274 flags, recv_ill, ip_policy); 7275 IP_STAT(ipst, ip_udp_fannorm); 7276 CONN_DEC_REF(connp); 7277 return; 7278 } 7279 7280 /* 7281 * Broadcast and multicast case 7282 * 7283 * Need to check conn_wantpacket(). 7284 * If SO_REUSEADDR has been set on the first we send the 7285 * packet to all clients that have joined the group and 7286 * match the port. 7287 */ 7288 7289 while (connp != NULL) { 7290 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7291 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7292 (!is_system_labeled() || 7293 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7294 connp))) 7295 break; 7296 connp = connp->conn_next; 7297 } 7298 7299 if (connp == NULL || 7300 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7301 goto notfound; 7302 7303 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7304 7305 first_connp = connp; 7306 /* 7307 * When SO_REUSEADDR is not set, send the packet only to the first 7308 * matching connection in its zone by keeping track of the zoneid. 7309 */ 7310 reuseaddr = first_connp->conn_reuseaddr; 7311 last_zoneid = first_connp->conn_zoneid; 7312 7313 CONN_INC_REF(connp); 7314 connp = connp->conn_next; 7315 for (;;) { 7316 while (connp != NULL) { 7317 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7318 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7319 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7320 (!is_system_labeled() || 7321 tsol_receive_local(mp, &dst, IPV4_VERSION, 7322 shared_addr, connp))) 7323 break; 7324 connp = connp->conn_next; 7325 } 7326 /* 7327 * Just copy the data part alone. The mctl part is 7328 * needed just for verifying policy and it is never 7329 * sent up. 7330 */ 7331 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7332 ((mp1 = copymsg(mp)) == NULL))) { 7333 /* 7334 * No more interested clients or memory 7335 * allocation failed 7336 */ 7337 connp = first_connp; 7338 break; 7339 } 7340 if (connp->conn_zoneid != last_zoneid) { 7341 /* 7342 * Update the zoneid so that the packet isn't sent to 7343 * any more conns in the same zone unless SO_REUSEADDR 7344 * is set. 7345 */ 7346 reuseaddr = connp->conn_reuseaddr; 7347 last_zoneid = connp->conn_zoneid; 7348 } 7349 if (first_mp != NULL) { 7350 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7351 ipsec_info_type == IPSEC_IN); 7352 first_mp1 = ipsec_in_tag(first_mp, NULL, 7353 ipst->ips_netstack); 7354 if (first_mp1 == NULL) { 7355 freemsg(mp1); 7356 connp = first_connp; 7357 break; 7358 } 7359 } else { 7360 first_mp1 = NULL; 7361 } 7362 CONN_INC_REF(connp); 7363 mutex_exit(&connfp->connf_lock); 7364 /* 7365 * IPQoS notes: We don't send the packet for policy 7366 * processing here, will do it for the last one (below). 7367 * i.e. we do it per-packet now, but if we do policy 7368 * processing per-conn, then we would need to do it 7369 * here too. 7370 */ 7371 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7372 ipha, flags, recv_ill, B_FALSE); 7373 mutex_enter(&connfp->connf_lock); 7374 /* Follow the next pointer before releasing the conn. */ 7375 next_connp = connp->conn_next; 7376 IP_STAT(ipst, ip_udp_fanmb); 7377 CONN_DEC_REF(connp); 7378 connp = next_connp; 7379 } 7380 7381 /* Last one. Send it upstream. */ 7382 mutex_exit(&connfp->connf_lock); 7383 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7384 recv_ill, ip_policy); 7385 IP_STAT(ipst, ip_udp_fanmb); 7386 CONN_DEC_REF(connp); 7387 return; 7388 7389 notfound: 7390 7391 mutex_exit(&connfp->connf_lock); 7392 IP_STAT(ipst, ip_udp_fanothers); 7393 /* 7394 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7395 * have already been matched above, since they live in the IPv4 7396 * fanout tables. This implies we only need to 7397 * check for IPv6 in6addr_any endpoints here. 7398 * Thus we compare using ipv6_all_zeros instead of the destination 7399 * address, except for the multicast group membership lookup which 7400 * uses the IPv4 destination. 7401 */ 7402 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7403 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7404 mutex_enter(&connfp->connf_lock); 7405 connp = connfp->connf_head; 7406 if (!broadcast && !CLASSD(dst)) { 7407 while (connp != NULL) { 7408 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7409 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7410 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7411 !connp->conn_ipv6_v6only) 7412 break; 7413 connp = connp->conn_next; 7414 } 7415 7416 if (connp != NULL && is_system_labeled() && 7417 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7418 connp)) 7419 connp = NULL; 7420 7421 if (connp == NULL || 7422 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7423 /* 7424 * No one bound to this port. Is 7425 * there a client that wants all 7426 * unclaimed datagrams? 7427 */ 7428 mutex_exit(&connfp->connf_lock); 7429 7430 if (mctl_present) 7431 first_mp->b_cont = mp; 7432 else 7433 first_mp = mp; 7434 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7435 connf_head != NULL) { 7436 ip_fanout_proto(q, first_mp, ill, ipha, 7437 flags | IP_FF_RAWIP, mctl_present, 7438 ip_policy, recv_ill, zoneid); 7439 } else { 7440 if (ip_fanout_send_icmp(q, first_mp, flags, 7441 ICMP_DEST_UNREACHABLE, 7442 ICMP_PORT_UNREACHABLE, 7443 mctl_present, zoneid, ipst)) { 7444 BUMP_MIB(ill->ill_ip_mib, 7445 udpIfStatsNoPorts); 7446 } 7447 } 7448 return; 7449 } 7450 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7451 7452 CONN_INC_REF(connp); 7453 mutex_exit(&connfp->connf_lock); 7454 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7455 flags, recv_ill, ip_policy); 7456 CONN_DEC_REF(connp); 7457 return; 7458 } 7459 /* 7460 * IPv4 multicast packet being delivered to an AF_INET6 7461 * in6addr_any endpoint. 7462 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7463 * and not conn_wantpacket_v6() since any multicast membership is 7464 * for an IPv4-mapped multicast address. 7465 * The packet is sent to all clients in all zones that have joined the 7466 * group and match the port. 7467 */ 7468 while (connp != NULL) { 7469 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7470 srcport, v6src) && 7471 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7472 (!is_system_labeled() || 7473 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7474 connp))) 7475 break; 7476 connp = connp->conn_next; 7477 } 7478 7479 if (connp == NULL || 7480 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7481 /* 7482 * No one bound to this port. Is 7483 * there a client that wants all 7484 * unclaimed datagrams? 7485 */ 7486 mutex_exit(&connfp->connf_lock); 7487 7488 if (mctl_present) 7489 first_mp->b_cont = mp; 7490 else 7491 first_mp = mp; 7492 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7493 NULL) { 7494 ip_fanout_proto(q, first_mp, ill, ipha, 7495 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7496 recv_ill, zoneid); 7497 } else { 7498 /* 7499 * We used to attempt to send an icmp error here, but 7500 * since this is known to be a multicast packet 7501 * and we don't send icmp errors in response to 7502 * multicast, just drop the packet and give up sooner. 7503 */ 7504 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7505 freemsg(first_mp); 7506 } 7507 return; 7508 } 7509 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7510 7511 first_connp = connp; 7512 7513 CONN_INC_REF(connp); 7514 connp = connp->conn_next; 7515 for (;;) { 7516 while (connp != NULL) { 7517 if (IPCL_UDP_MATCH_V6(connp, dstport, 7518 ipv6_all_zeros, srcport, v6src) && 7519 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7520 (!is_system_labeled() || 7521 tsol_receive_local(mp, &dst, IPV4_VERSION, 7522 shared_addr, connp))) 7523 break; 7524 connp = connp->conn_next; 7525 } 7526 /* 7527 * Just copy the data part alone. The mctl part is 7528 * needed just for verifying policy and it is never 7529 * sent up. 7530 */ 7531 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7532 ((mp1 = copymsg(mp)) == NULL))) { 7533 /* 7534 * No more intested clients or memory 7535 * allocation failed 7536 */ 7537 connp = first_connp; 7538 break; 7539 } 7540 if (first_mp != NULL) { 7541 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7542 ipsec_info_type == IPSEC_IN); 7543 first_mp1 = ipsec_in_tag(first_mp, NULL, 7544 ipst->ips_netstack); 7545 if (first_mp1 == NULL) { 7546 freemsg(mp1); 7547 connp = first_connp; 7548 break; 7549 } 7550 } else { 7551 first_mp1 = NULL; 7552 } 7553 CONN_INC_REF(connp); 7554 mutex_exit(&connfp->connf_lock); 7555 /* 7556 * IPQoS notes: We don't send the packet for policy 7557 * processing here, will do it for the last one (below). 7558 * i.e. we do it per-packet now, but if we do policy 7559 * processing per-conn, then we would need to do it 7560 * here too. 7561 */ 7562 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7563 ipha, flags, recv_ill, B_FALSE); 7564 mutex_enter(&connfp->connf_lock); 7565 /* Follow the next pointer before releasing the conn. */ 7566 next_connp = connp->conn_next; 7567 CONN_DEC_REF(connp); 7568 connp = next_connp; 7569 } 7570 7571 /* Last one. Send it upstream. */ 7572 mutex_exit(&connfp->connf_lock); 7573 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7574 recv_ill, ip_policy); 7575 CONN_DEC_REF(connp); 7576 } 7577 7578 /* 7579 * Complete the ip_wput header so that it 7580 * is possible to generate ICMP 7581 * errors. 7582 */ 7583 int 7584 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7585 { 7586 ire_t *ire; 7587 7588 if (ipha->ipha_src == INADDR_ANY) { 7589 ire = ire_lookup_local(zoneid, ipst); 7590 if (ire == NULL) { 7591 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7592 return (1); 7593 } 7594 ipha->ipha_src = ire->ire_addr; 7595 ire_refrele(ire); 7596 } 7597 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7598 ipha->ipha_hdr_checksum = 0; 7599 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7600 return (0); 7601 } 7602 7603 /* 7604 * Nobody should be sending 7605 * packets up this stream 7606 */ 7607 static void 7608 ip_lrput(queue_t *q, mblk_t *mp) 7609 { 7610 mblk_t *mp1; 7611 7612 switch (mp->b_datap->db_type) { 7613 case M_FLUSH: 7614 /* Turn around */ 7615 if (*mp->b_rptr & FLUSHW) { 7616 *mp->b_rptr &= ~FLUSHR; 7617 qreply(q, mp); 7618 return; 7619 } 7620 break; 7621 } 7622 /* Could receive messages that passed through ar_rput */ 7623 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7624 mp1->b_prev = mp1->b_next = NULL; 7625 freemsg(mp); 7626 } 7627 7628 /* Nobody should be sending packets down this stream */ 7629 /* ARGSUSED */ 7630 void 7631 ip_lwput(queue_t *q, mblk_t *mp) 7632 { 7633 freemsg(mp); 7634 } 7635 7636 /* 7637 * Move the first hop in any source route to ipha_dst and remove that part of 7638 * the source route. Called by other protocols. Errors in option formatting 7639 * are ignored - will be handled by ip_wput_options Return the final 7640 * destination (either ipha_dst or the last entry in a source route.) 7641 */ 7642 ipaddr_t 7643 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7644 { 7645 ipoptp_t opts; 7646 uchar_t *opt; 7647 uint8_t optval; 7648 uint8_t optlen; 7649 ipaddr_t dst; 7650 int i; 7651 ire_t *ire; 7652 ip_stack_t *ipst = ns->netstack_ip; 7653 7654 ip2dbg(("ip_massage_options\n")); 7655 dst = ipha->ipha_dst; 7656 for (optval = ipoptp_first(&opts, ipha); 7657 optval != IPOPT_EOL; 7658 optval = ipoptp_next(&opts)) { 7659 opt = opts.ipoptp_cur; 7660 switch (optval) { 7661 uint8_t off; 7662 case IPOPT_SSRR: 7663 case IPOPT_LSRR: 7664 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7665 ip1dbg(("ip_massage_options: bad src route\n")); 7666 break; 7667 } 7668 optlen = opts.ipoptp_len; 7669 off = opt[IPOPT_OFFSET]; 7670 off--; 7671 redo_srr: 7672 if (optlen < IP_ADDR_LEN || 7673 off > optlen - IP_ADDR_LEN) { 7674 /* End of source route */ 7675 ip1dbg(("ip_massage_options: end of SR\n")); 7676 break; 7677 } 7678 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7679 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7680 ntohl(dst))); 7681 /* 7682 * Check if our address is present more than 7683 * once as consecutive hops in source route. 7684 * XXX verify per-interface ip_forwarding 7685 * for source route? 7686 */ 7687 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7688 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7689 if (ire != NULL) { 7690 ire_refrele(ire); 7691 off += IP_ADDR_LEN; 7692 goto redo_srr; 7693 } 7694 if (dst == htonl(INADDR_LOOPBACK)) { 7695 ip1dbg(("ip_massage_options: loopback addr in " 7696 "source route!\n")); 7697 break; 7698 } 7699 /* 7700 * Update ipha_dst to be the first hop and remove the 7701 * first hop from the source route (by overwriting 7702 * part of the option with NOP options). 7703 */ 7704 ipha->ipha_dst = dst; 7705 /* Put the last entry in dst */ 7706 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7707 3; 7708 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7709 7710 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7711 ntohl(dst))); 7712 /* Move down and overwrite */ 7713 opt[IP_ADDR_LEN] = opt[0]; 7714 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7715 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7716 for (i = 0; i < IP_ADDR_LEN; i++) 7717 opt[i] = IPOPT_NOP; 7718 break; 7719 } 7720 } 7721 return (dst); 7722 } 7723 7724 /* 7725 * Return the network mask 7726 * associated with the specified address. 7727 */ 7728 ipaddr_t 7729 ip_net_mask(ipaddr_t addr) 7730 { 7731 uchar_t *up = (uchar_t *)&addr; 7732 ipaddr_t mask = 0; 7733 uchar_t *maskp = (uchar_t *)&mask; 7734 7735 #if defined(__i386) || defined(__amd64) 7736 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7737 #endif 7738 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7739 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7740 #endif 7741 if (CLASSD(addr)) { 7742 maskp[0] = 0xF0; 7743 return (mask); 7744 } 7745 7746 /* We assume Class E default netmask to be 32 */ 7747 if (CLASSE(addr)) 7748 return (0xffffffffU); 7749 7750 if (addr == 0) 7751 return (0); 7752 maskp[0] = 0xFF; 7753 if ((up[0] & 0x80) == 0) 7754 return (mask); 7755 7756 maskp[1] = 0xFF; 7757 if ((up[0] & 0xC0) == 0x80) 7758 return (mask); 7759 7760 maskp[2] = 0xFF; 7761 if ((up[0] & 0xE0) == 0xC0) 7762 return (mask); 7763 7764 /* Otherwise return no mask */ 7765 return ((ipaddr_t)0); 7766 } 7767 7768 /* 7769 * Helper ill lookup function used by IPsec. 7770 */ 7771 ill_t * 7772 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7773 { 7774 ill_t *ret_ill; 7775 7776 ASSERT(ifindex != 0); 7777 7778 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7779 ipst); 7780 if (ret_ill == NULL) { 7781 if (isv6) { 7782 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7783 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7784 ifindex)); 7785 } else { 7786 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7787 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7788 ifindex)); 7789 } 7790 freemsg(first_mp); 7791 return (NULL); 7792 } 7793 return (ret_ill); 7794 } 7795 7796 /* 7797 * IPv4 - 7798 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7799 * out a packet to a destination address for which we do not have specific 7800 * (or sufficient) routing information. 7801 * 7802 * NOTE : These are the scopes of some of the variables that point at IRE, 7803 * which needs to be followed while making any future modifications 7804 * to avoid memory leaks. 7805 * 7806 * - ire and sire are the entries looked up initially by 7807 * ire_ftable_lookup. 7808 * - ipif_ire is used to hold the interface ire associated with 7809 * the new cache ire. But it's scope is limited, so we always REFRELE 7810 * it before branching out to error paths. 7811 * - save_ire is initialized before ire_create, so that ire returned 7812 * by ire_create will not over-write the ire. We REFRELE save_ire 7813 * before breaking out of the switch. 7814 * 7815 * Thus on failures, we have to REFRELE only ire and sire, if they 7816 * are not NULL. 7817 */ 7818 void 7819 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7820 zoneid_t zoneid, ip_stack_t *ipst) 7821 { 7822 areq_t *areq; 7823 ipaddr_t gw = 0; 7824 ire_t *ire = NULL; 7825 mblk_t *res_mp; 7826 ipaddr_t *addrp; 7827 ipaddr_t nexthop_addr; 7828 ipif_t *src_ipif = NULL; 7829 ill_t *dst_ill = NULL; 7830 ipha_t *ipha; 7831 ire_t *sire = NULL; 7832 mblk_t *first_mp; 7833 ire_t *save_ire; 7834 ushort_t ire_marks = 0; 7835 boolean_t mctl_present; 7836 ipsec_out_t *io; 7837 mblk_t *saved_mp; 7838 mblk_t *copy_mp = NULL; 7839 mblk_t *xmit_mp = NULL; 7840 ipaddr_t save_dst; 7841 uint32_t multirt_flags = 7842 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7843 boolean_t multirt_is_resolvable; 7844 boolean_t multirt_resolve_next; 7845 boolean_t unspec_src; 7846 boolean_t ip_nexthop = B_FALSE; 7847 tsol_ire_gw_secattr_t *attrp = NULL; 7848 tsol_gcgrp_t *gcgrp = NULL; 7849 tsol_gcgrp_addr_t ga; 7850 int multirt_res_failures = 0; 7851 int multirt_res_attempts = 0; 7852 int multirt_already_resolved = 0; 7853 boolean_t multirt_no_icmp_error = B_FALSE; 7854 7855 if (ip_debug > 2) { 7856 /* ip1dbg */ 7857 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7858 } 7859 7860 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7861 if (mctl_present) { 7862 io = (ipsec_out_t *)first_mp->b_rptr; 7863 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7864 ASSERT(zoneid == io->ipsec_out_zoneid); 7865 ASSERT(zoneid != ALL_ZONES); 7866 } 7867 7868 ipha = (ipha_t *)mp->b_rptr; 7869 7870 /* All multicast lookups come through ip_newroute_ipif() */ 7871 if (CLASSD(dst)) { 7872 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7873 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7874 freemsg(first_mp); 7875 return; 7876 } 7877 7878 if (mctl_present && io->ipsec_out_ip_nexthop) { 7879 ip_nexthop = B_TRUE; 7880 nexthop_addr = io->ipsec_out_nexthop_addr; 7881 } 7882 /* 7883 * If this IRE is created for forwarding or it is not for 7884 * traffic for congestion controlled protocols, mark it as temporary. 7885 */ 7886 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7887 ire_marks |= IRE_MARK_TEMPORARY; 7888 7889 /* 7890 * Get what we can from ire_ftable_lookup which will follow an IRE 7891 * chain until it gets the most specific information available. 7892 * For example, we know that there is no IRE_CACHE for this dest, 7893 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7894 * ire_ftable_lookup will look up the gateway, etc. 7895 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7896 * to the destination, of equal netmask length in the forward table, 7897 * will be recursively explored. If no information is available 7898 * for the final gateway of that route, we force the returned ire 7899 * to be equal to sire using MATCH_IRE_PARENT. 7900 * At least, in this case we have a starting point (in the buckets) 7901 * to look for other routes to the destination in the forward table. 7902 * This is actually used only for multirouting, where a list 7903 * of routes has to be processed in sequence. 7904 * 7905 * In the process of coming up with the most specific information, 7906 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7907 * for the gateway (i.e., one for which the ire_nce->nce_state is 7908 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7909 * Two caveats when handling incomplete ire's in ip_newroute: 7910 * - we should be careful when accessing its ire_nce (specifically 7911 * the nce_res_mp) ast it might change underneath our feet, and, 7912 * - not all legacy code path callers are prepared to handle 7913 * incomplete ire's, so we should not create/add incomplete 7914 * ire_cache entries here. (See discussion about temporary solution 7915 * further below). 7916 * 7917 * In order to minimize packet dropping, and to preserve existing 7918 * behavior, we treat this case as if there were no IRE_CACHE for the 7919 * gateway, and instead use the IF_RESOLVER ire to send out 7920 * another request to ARP (this is achieved by passing the 7921 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7922 * arp response comes back in ip_wput_nondata, we will create 7923 * a per-dst ire_cache that has an ND_COMPLETE ire. 7924 * 7925 * Note that this is a temporary solution; the correct solution is 7926 * to create an incomplete per-dst ire_cache entry, and send the 7927 * packet out when the gw's nce is resolved. In order to achieve this, 7928 * all packet processing must have been completed prior to calling 7929 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7930 * to be modified to accomodate this solution. 7931 */ 7932 if (ip_nexthop) { 7933 /* 7934 * The first time we come here, we look for an IRE_INTERFACE 7935 * entry for the specified nexthop, set the dst to be the 7936 * nexthop address and create an IRE_CACHE entry for the 7937 * nexthop. The next time around, we are able to find an 7938 * IRE_CACHE entry for the nexthop, set the gateway to be the 7939 * nexthop address and create an IRE_CACHE entry for the 7940 * destination address via the specified nexthop. 7941 */ 7942 ire = ire_cache_lookup(nexthop_addr, zoneid, 7943 msg_getlabel(mp), ipst); 7944 if (ire != NULL) { 7945 gw = nexthop_addr; 7946 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7947 } else { 7948 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7949 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7950 msg_getlabel(mp), 7951 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7952 ipst); 7953 if (ire != NULL) { 7954 dst = nexthop_addr; 7955 } 7956 } 7957 } else { 7958 ire = ire_ftable_lookup(dst, 0, 0, 0, 7959 NULL, &sire, zoneid, 0, msg_getlabel(mp), 7960 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7961 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7962 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7963 ipst); 7964 } 7965 7966 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7967 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7968 7969 /* 7970 * This loop is run only once in most cases. 7971 * We loop to resolve further routes only when the destination 7972 * can be reached through multiple RTF_MULTIRT-flagged ires. 7973 */ 7974 do { 7975 /* Clear the previous iteration's values */ 7976 if (src_ipif != NULL) { 7977 ipif_refrele(src_ipif); 7978 src_ipif = NULL; 7979 } 7980 if (dst_ill != NULL) { 7981 ill_refrele(dst_ill); 7982 dst_ill = NULL; 7983 } 7984 7985 multirt_resolve_next = B_FALSE; 7986 /* 7987 * We check if packets have to be multirouted. 7988 * In this case, given the current <ire, sire> couple, 7989 * we look for the next suitable <ire, sire>. 7990 * This check is done in ire_multirt_lookup(), 7991 * which applies various criteria to find the next route 7992 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7993 * unchanged if it detects it has not been tried yet. 7994 */ 7995 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7996 ip3dbg(("ip_newroute: starting next_resolution " 7997 "with first_mp %p, tag %d\n", 7998 (void *)first_mp, 7999 MULTIRT_DEBUG_TAGGED(first_mp))); 8000 8001 ASSERT(sire != NULL); 8002 multirt_is_resolvable = 8003 ire_multirt_lookup(&ire, &sire, multirt_flags, 8004 &multirt_already_resolved, msg_getlabel(mp), ipst); 8005 8006 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8007 "multirt_already_resolved %d, " 8008 "multirt_res_attempts %d, multirt_res_failures %d, " 8009 "ire %p, sire %p\n", multirt_is_resolvable, 8010 multirt_already_resolved, multirt_res_attempts, 8011 multirt_res_failures, (void *)ire, (void *)sire)); 8012 8013 if (!multirt_is_resolvable) { 8014 /* 8015 * No more multirt route to resolve; give up 8016 * (all routes resolved or no more 8017 * resolvable routes). 8018 */ 8019 if (ire != NULL) { 8020 ire_refrele(ire); 8021 ire = NULL; 8022 } 8023 /* 8024 * Generate ICMP error only if all attempts to 8025 * resolve multirt route failed and there is no 8026 * already resolved one. Don't generate ICMP 8027 * error when: 8028 * 8029 * 1) there was no attempt to resolve 8030 * 2) at least one attempt passed 8031 * 3) a multirt route is already resolved 8032 * 8033 * Case 1) may occur due to multiple 8034 * resolution attempts during single 8035 * ip_multirt_resolution_interval. 8036 * 8037 * Case 2-3) means that CGTP destination is 8038 * reachable via one link so we don't want to 8039 * generate ICMP host unreachable error. 8040 */ 8041 if (multirt_res_attempts == 0 || 8042 multirt_res_failures < 8043 multirt_res_attempts || 8044 multirt_already_resolved > 0) 8045 multirt_no_icmp_error = B_TRUE; 8046 } else { 8047 ASSERT(sire != NULL); 8048 ASSERT(ire != NULL); 8049 8050 multirt_res_attempts++; 8051 } 8052 } 8053 8054 if (ire == NULL) { 8055 if (ip_debug > 3) { 8056 /* ip2dbg */ 8057 pr_addr_dbg("ip_newroute: " 8058 "can't resolve %s\n", AF_INET, &dst); 8059 } 8060 ip3dbg(("ip_newroute: " 8061 "ire %p, sire %p, multirt_no_icmp_error %d\n", 8062 (void *)ire, (void *)sire, 8063 (int)multirt_no_icmp_error)); 8064 8065 if (sire != NULL) { 8066 ire_refrele(sire); 8067 sire = NULL; 8068 } 8069 8070 if (multirt_no_icmp_error) { 8071 /* There is no need to report an ICMP error. */ 8072 MULTIRT_DEBUG_UNTAG(first_mp); 8073 freemsg(first_mp); 8074 return; 8075 } 8076 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8077 RTA_DST, ipst); 8078 goto icmp_err_ret; 8079 } 8080 8081 /* 8082 * Verify that the returned IRE does not have either 8083 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8084 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8085 */ 8086 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8087 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8088 goto icmp_err_ret; 8089 } 8090 /* 8091 * Increment the ire_ob_pkt_count field for ire if it is an 8092 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8093 * increment the same for the parent IRE, sire, if it is some 8094 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8095 */ 8096 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8097 UPDATE_OB_PKT_COUNT(ire); 8098 ire->ire_last_used_time = lbolt; 8099 } 8100 8101 if (sire != NULL) { 8102 gw = sire->ire_gateway_addr; 8103 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8104 IRE_INTERFACE)) == 0); 8105 UPDATE_OB_PKT_COUNT(sire); 8106 sire->ire_last_used_time = lbolt; 8107 } 8108 /* 8109 * We have a route to reach the destination. Find the 8110 * appropriate ill, then get a source address using 8111 * ipif_select_source(). 8112 * 8113 * If we are here trying to create an IRE_CACHE for an offlink 8114 * destination and have an IRE_CACHE entry for VNI, then use 8115 * ire_stq instead since VNI's queue is a black hole. 8116 */ 8117 if ((ire->ire_type == IRE_CACHE) && 8118 IS_VNI(ire->ire_ipif->ipif_ill)) { 8119 dst_ill = ire->ire_stq->q_ptr; 8120 ill_refhold(dst_ill); 8121 } else { 8122 ill_t *ill = ire->ire_ipif->ipif_ill; 8123 8124 if (IS_IPMP(ill)) { 8125 dst_ill = 8126 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8127 } else { 8128 dst_ill = ill; 8129 ill_refhold(dst_ill); 8130 } 8131 } 8132 8133 if (dst_ill == NULL) { 8134 if (ip_debug > 2) { 8135 pr_addr_dbg("ip_newroute: no dst " 8136 "ill for dst %s\n", AF_INET, &dst); 8137 } 8138 goto icmp_err_ret; 8139 } 8140 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8141 8142 /* 8143 * Pick the best source address from dst_ill. 8144 * 8145 * 1) Try to pick the source address from the destination 8146 * route. Clustering assumes that when we have multiple 8147 * prefixes hosted on an interface, the prefix of the 8148 * source address matches the prefix of the destination 8149 * route. We do this only if the address is not 8150 * DEPRECATED. 8151 * 8152 * 2) If the conn is in a different zone than the ire, we 8153 * need to pick a source address from the right zone. 8154 */ 8155 ASSERT(src_ipif == NULL); 8156 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8157 /* 8158 * The RTF_SETSRC flag is set in the parent ire (sire). 8159 * Check that the ipif matching the requested source 8160 * address still exists. 8161 */ 8162 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8163 zoneid, NULL, NULL, NULL, NULL, ipst); 8164 } 8165 8166 unspec_src = (connp != NULL && connp->conn_unspec_src); 8167 8168 if (src_ipif == NULL && 8169 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8170 ire_marks |= IRE_MARK_USESRC_CHECK; 8171 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8172 IS_IPMP(ire->ire_ipif->ipif_ill) || 8173 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8174 (connp != NULL && ire->ire_zoneid != zoneid && 8175 ire->ire_zoneid != ALL_ZONES) || 8176 (dst_ill->ill_usesrc_ifindex != 0)) { 8177 /* 8178 * If the destination is reachable via a 8179 * given gateway, the selected source address 8180 * should be in the same subnet as the gateway. 8181 * Otherwise, the destination is not reachable. 8182 * 8183 * If there are no interfaces on the same subnet 8184 * as the destination, ipif_select_source gives 8185 * first non-deprecated interface which might be 8186 * on a different subnet than the gateway. 8187 * This is not desirable. Hence pass the dst_ire 8188 * source address to ipif_select_source. 8189 * It is sure that the destination is reachable 8190 * with the dst_ire source address subnet. 8191 * So passing dst_ire source address to 8192 * ipif_select_source will make sure that the 8193 * selected source will be on the same subnet 8194 * as dst_ire source address. 8195 */ 8196 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8197 8198 src_ipif = ipif_select_source(dst_ill, saddr, 8199 zoneid); 8200 if (src_ipif == NULL) { 8201 /* 8202 * In the case of multirouting, it may 8203 * happen that ipif_select_source fails 8204 * as DAD may disallow use of the 8205 * particular source interface. Anyway, 8206 * we need to continue and attempt to 8207 * resolve other multirt routes. 8208 */ 8209 if ((sire != NULL) && 8210 (sire->ire_flags & RTF_MULTIRT)) { 8211 ire_refrele(ire); 8212 ire = NULL; 8213 multirt_resolve_next = B_TRUE; 8214 multirt_res_failures++; 8215 continue; 8216 } 8217 8218 if (ip_debug > 2) { 8219 pr_addr_dbg("ip_newroute: " 8220 "no src for dst %s ", 8221 AF_INET, &dst); 8222 printf("on interface %s\n", 8223 dst_ill->ill_name); 8224 } 8225 goto icmp_err_ret; 8226 } 8227 } else { 8228 src_ipif = ire->ire_ipif; 8229 ASSERT(src_ipif != NULL); 8230 /* hold src_ipif for uniformity */ 8231 ipif_refhold(src_ipif); 8232 } 8233 } 8234 8235 /* 8236 * Assign a source address while we have the conn. 8237 * We can't have ip_wput_ire pick a source address when the 8238 * packet returns from arp since we need to look at 8239 * conn_unspec_src and conn_zoneid, and we lose the conn when 8240 * going through arp. 8241 * 8242 * NOTE : ip_newroute_v6 does not have this piece of code as 8243 * it uses ip6i to store this information. 8244 */ 8245 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8246 ipha->ipha_src = src_ipif->ipif_src_addr; 8247 8248 if (ip_debug > 3) { 8249 /* ip2dbg */ 8250 pr_addr_dbg("ip_newroute: first hop %s\n", 8251 AF_INET, &gw); 8252 } 8253 ip2dbg(("\tire type %s (%d)\n", 8254 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8255 8256 /* 8257 * The TTL of multirouted packets is bounded by the 8258 * ip_multirt_ttl ndd variable. 8259 */ 8260 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8261 /* Force TTL of multirouted packets */ 8262 if ((ipst->ips_ip_multirt_ttl > 0) && 8263 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8264 ip2dbg(("ip_newroute: forcing multirt TTL " 8265 "to %d (was %d), dst 0x%08x\n", 8266 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8267 ntohl(sire->ire_addr))); 8268 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8269 } 8270 } 8271 /* 8272 * At this point in ip_newroute(), ire is either the 8273 * IRE_CACHE of the next-hop gateway for an off-subnet 8274 * destination or an IRE_INTERFACE type that should be used 8275 * to resolve an on-subnet destination or an on-subnet 8276 * next-hop gateway. 8277 * 8278 * In the IRE_CACHE case, we have the following : 8279 * 8280 * 1) src_ipif - used for getting a source address. 8281 * 8282 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8283 * means packets using this IRE_CACHE will go out on 8284 * dst_ill. 8285 * 8286 * 3) The IRE sire will point to the prefix that is the 8287 * longest matching route for the destination. These 8288 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8289 * 8290 * The newly created IRE_CACHE entry for the off-subnet 8291 * destination is tied to both the prefix route and the 8292 * interface route used to resolve the next-hop gateway 8293 * via the ire_phandle and ire_ihandle fields, 8294 * respectively. 8295 * 8296 * In the IRE_INTERFACE case, we have the following : 8297 * 8298 * 1) src_ipif - used for getting a source address. 8299 * 8300 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8301 * means packets using the IRE_CACHE that we will build 8302 * here will go out on dst_ill. 8303 * 8304 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8305 * to be created will only be tied to the IRE_INTERFACE 8306 * that was derived from the ire_ihandle field. 8307 * 8308 * If sire is non-NULL, it means the destination is 8309 * off-link and we will first create the IRE_CACHE for the 8310 * gateway. Next time through ip_newroute, we will create 8311 * the IRE_CACHE for the final destination as described 8312 * above. 8313 * 8314 * In both cases, after the current resolution has been 8315 * completed (or possibly initialised, in the IRE_INTERFACE 8316 * case), the loop may be re-entered to attempt the resolution 8317 * of another RTF_MULTIRT route. 8318 * 8319 * When an IRE_CACHE entry for the off-subnet destination is 8320 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8321 * for further processing in emission loops. 8322 */ 8323 save_ire = ire; 8324 switch (ire->ire_type) { 8325 case IRE_CACHE: { 8326 ire_t *ipif_ire; 8327 8328 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8329 if (gw == 0) 8330 gw = ire->ire_gateway_addr; 8331 /* 8332 * We need 3 ire's to create a new cache ire for an 8333 * off-link destination from the cache ire of the 8334 * gateway. 8335 * 8336 * 1. The prefix ire 'sire' (Note that this does 8337 * not apply to the conn_nexthop_set case) 8338 * 2. The cache ire of the gateway 'ire' 8339 * 3. The interface ire 'ipif_ire' 8340 * 8341 * We have (1) and (2). We lookup (3) below. 8342 * 8343 * If there is no interface route to the gateway, 8344 * it is a race condition, where we found the cache 8345 * but the interface route has been deleted. 8346 */ 8347 if (ip_nexthop) { 8348 ipif_ire = ire_ihandle_lookup_onlink(ire); 8349 } else { 8350 ipif_ire = 8351 ire_ihandle_lookup_offlink(ire, sire); 8352 } 8353 if (ipif_ire == NULL) { 8354 ip1dbg(("ip_newroute: " 8355 "ire_ihandle_lookup_offlink failed\n")); 8356 goto icmp_err_ret; 8357 } 8358 8359 /* 8360 * Check cached gateway IRE for any security 8361 * attributes; if found, associate the gateway 8362 * credentials group to the destination IRE. 8363 */ 8364 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8365 mutex_enter(&attrp->igsa_lock); 8366 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8367 GCGRP_REFHOLD(gcgrp); 8368 mutex_exit(&attrp->igsa_lock); 8369 } 8370 8371 /* 8372 * XXX For the source of the resolver mp, 8373 * we are using the same DL_UNITDATA_REQ 8374 * (from save_ire->ire_nce->nce_res_mp) 8375 * though the save_ire is not pointing at the same ill. 8376 * This is incorrect. We need to send it up to the 8377 * resolver to get the right res_mp. For ethernets 8378 * this may be okay (ill_type == DL_ETHER). 8379 */ 8380 8381 ire = ire_create( 8382 (uchar_t *)&dst, /* dest address */ 8383 (uchar_t *)&ip_g_all_ones, /* mask */ 8384 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8385 (uchar_t *)&gw, /* gateway address */ 8386 &save_ire->ire_max_frag, 8387 save_ire->ire_nce, /* src nce */ 8388 dst_ill->ill_rq, /* recv-from queue */ 8389 dst_ill->ill_wq, /* send-to queue */ 8390 IRE_CACHE, /* IRE type */ 8391 src_ipif, 8392 (sire != NULL) ? 8393 sire->ire_mask : 0, /* Parent mask */ 8394 (sire != NULL) ? 8395 sire->ire_phandle : 0, /* Parent handle */ 8396 ipif_ire->ire_ihandle, /* Interface handle */ 8397 (sire != NULL) ? (sire->ire_flags & 8398 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8399 (sire != NULL) ? 8400 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8401 NULL, 8402 gcgrp, 8403 ipst); 8404 8405 if (ire == NULL) { 8406 if (gcgrp != NULL) { 8407 GCGRP_REFRELE(gcgrp); 8408 gcgrp = NULL; 8409 } 8410 ire_refrele(ipif_ire); 8411 ire_refrele(save_ire); 8412 break; 8413 } 8414 8415 /* reference now held by IRE */ 8416 gcgrp = NULL; 8417 8418 ire->ire_marks |= ire_marks; 8419 8420 /* 8421 * Prevent sire and ipif_ire from getting deleted. 8422 * The newly created ire is tied to both of them via 8423 * the phandle and ihandle respectively. 8424 */ 8425 if (sire != NULL) { 8426 IRB_REFHOLD(sire->ire_bucket); 8427 /* Has it been removed already ? */ 8428 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8429 IRB_REFRELE(sire->ire_bucket); 8430 ire_refrele(ipif_ire); 8431 ire_refrele(save_ire); 8432 break; 8433 } 8434 } 8435 8436 IRB_REFHOLD(ipif_ire->ire_bucket); 8437 /* Has it been removed already ? */ 8438 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8439 IRB_REFRELE(ipif_ire->ire_bucket); 8440 if (sire != NULL) 8441 IRB_REFRELE(sire->ire_bucket); 8442 ire_refrele(ipif_ire); 8443 ire_refrele(save_ire); 8444 break; 8445 } 8446 8447 xmit_mp = first_mp; 8448 /* 8449 * In the case of multirouting, a copy 8450 * of the packet is done before its sending. 8451 * The copy is used to attempt another 8452 * route resolution, in a next loop. 8453 */ 8454 if (ire->ire_flags & RTF_MULTIRT) { 8455 copy_mp = copymsg(first_mp); 8456 if (copy_mp != NULL) { 8457 xmit_mp = copy_mp; 8458 MULTIRT_DEBUG_TAG(first_mp); 8459 } 8460 } 8461 8462 ire_add_then_send(q, ire, xmit_mp); 8463 ire_refrele(save_ire); 8464 8465 /* Assert that sire is not deleted yet. */ 8466 if (sire != NULL) { 8467 ASSERT(sire->ire_ptpn != NULL); 8468 IRB_REFRELE(sire->ire_bucket); 8469 } 8470 8471 /* Assert that ipif_ire is not deleted yet. */ 8472 ASSERT(ipif_ire->ire_ptpn != NULL); 8473 IRB_REFRELE(ipif_ire->ire_bucket); 8474 ire_refrele(ipif_ire); 8475 8476 /* 8477 * If copy_mp is not NULL, multirouting was 8478 * requested. We loop to initiate a next 8479 * route resolution attempt, starting from sire. 8480 */ 8481 if (copy_mp != NULL) { 8482 /* 8483 * Search for the next unresolved 8484 * multirt route. 8485 */ 8486 copy_mp = NULL; 8487 ipif_ire = NULL; 8488 ire = NULL; 8489 multirt_resolve_next = B_TRUE; 8490 continue; 8491 } 8492 if (sire != NULL) 8493 ire_refrele(sire); 8494 ipif_refrele(src_ipif); 8495 ill_refrele(dst_ill); 8496 return; 8497 } 8498 case IRE_IF_NORESOLVER: { 8499 if (dst_ill->ill_resolver_mp == NULL) { 8500 ip1dbg(("ip_newroute: dst_ill %p " 8501 "for IRE_IF_NORESOLVER ire %p has " 8502 "no ill_resolver_mp\n", 8503 (void *)dst_ill, (void *)ire)); 8504 break; 8505 } 8506 8507 /* 8508 * TSol note: We are creating the ire cache for the 8509 * destination 'dst'. If 'dst' is offlink, going 8510 * through the first hop 'gw', the security attributes 8511 * of 'dst' must be set to point to the gateway 8512 * credentials of gateway 'gw'. If 'dst' is onlink, it 8513 * is possible that 'dst' is a potential gateway that is 8514 * referenced by some route that has some security 8515 * attributes. Thus in the former case, we need to do a 8516 * gcgrp_lookup of 'gw' while in the latter case we 8517 * need to do gcgrp_lookup of 'dst' itself. 8518 */ 8519 ga.ga_af = AF_INET; 8520 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8521 &ga.ga_addr); 8522 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8523 8524 ire = ire_create( 8525 (uchar_t *)&dst, /* dest address */ 8526 (uchar_t *)&ip_g_all_ones, /* mask */ 8527 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8528 (uchar_t *)&gw, /* gateway address */ 8529 &save_ire->ire_max_frag, 8530 NULL, /* no src nce */ 8531 dst_ill->ill_rq, /* recv-from queue */ 8532 dst_ill->ill_wq, /* send-to queue */ 8533 IRE_CACHE, 8534 src_ipif, 8535 save_ire->ire_mask, /* Parent mask */ 8536 (sire != NULL) ? /* Parent handle */ 8537 sire->ire_phandle : 0, 8538 save_ire->ire_ihandle, /* Interface handle */ 8539 (sire != NULL) ? sire->ire_flags & 8540 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8541 &(save_ire->ire_uinfo), 8542 NULL, 8543 gcgrp, 8544 ipst); 8545 8546 if (ire == NULL) { 8547 if (gcgrp != NULL) { 8548 GCGRP_REFRELE(gcgrp); 8549 gcgrp = NULL; 8550 } 8551 ire_refrele(save_ire); 8552 break; 8553 } 8554 8555 /* reference now held by IRE */ 8556 gcgrp = NULL; 8557 8558 ire->ire_marks |= ire_marks; 8559 8560 /* Prevent save_ire from getting deleted */ 8561 IRB_REFHOLD(save_ire->ire_bucket); 8562 /* Has it been removed already ? */ 8563 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8564 IRB_REFRELE(save_ire->ire_bucket); 8565 ire_refrele(save_ire); 8566 break; 8567 } 8568 8569 /* 8570 * In the case of multirouting, a copy 8571 * of the packet is made before it is sent. 8572 * The copy is used in the next 8573 * loop to attempt another resolution. 8574 */ 8575 xmit_mp = first_mp; 8576 if ((sire != NULL) && 8577 (sire->ire_flags & RTF_MULTIRT)) { 8578 copy_mp = copymsg(first_mp); 8579 if (copy_mp != NULL) { 8580 xmit_mp = copy_mp; 8581 MULTIRT_DEBUG_TAG(first_mp); 8582 } 8583 } 8584 ire_add_then_send(q, ire, xmit_mp); 8585 8586 /* Assert that it is not deleted yet. */ 8587 ASSERT(save_ire->ire_ptpn != NULL); 8588 IRB_REFRELE(save_ire->ire_bucket); 8589 ire_refrele(save_ire); 8590 8591 if (copy_mp != NULL) { 8592 /* 8593 * If we found a (no)resolver, we ignore any 8594 * trailing top priority IRE_CACHE in further 8595 * loops. This ensures that we do not omit any 8596 * (no)resolver. 8597 * This IRE_CACHE, if any, will be processed 8598 * by another thread entering ip_newroute(). 8599 * IRE_CACHE entries, if any, will be processed 8600 * by another thread entering ip_newroute(), 8601 * (upon resolver response, for instance). 8602 * This aims to force parallel multirt 8603 * resolutions as soon as a packet must be sent. 8604 * In the best case, after the tx of only one 8605 * packet, all reachable routes are resolved. 8606 * Otherwise, the resolution of all RTF_MULTIRT 8607 * routes would require several emissions. 8608 */ 8609 multirt_flags &= ~MULTIRT_CACHEGW; 8610 8611 /* 8612 * Search for the next unresolved multirt 8613 * route. 8614 */ 8615 copy_mp = NULL; 8616 save_ire = NULL; 8617 ire = NULL; 8618 multirt_resolve_next = B_TRUE; 8619 continue; 8620 } 8621 8622 /* 8623 * Don't need sire anymore 8624 */ 8625 if (sire != NULL) 8626 ire_refrele(sire); 8627 8628 ipif_refrele(src_ipif); 8629 ill_refrele(dst_ill); 8630 return; 8631 } 8632 case IRE_IF_RESOLVER: 8633 /* 8634 * We can't build an IRE_CACHE yet, but at least we 8635 * found a resolver that can help. 8636 */ 8637 res_mp = dst_ill->ill_resolver_mp; 8638 if (!OK_RESOLVER_MP(res_mp)) 8639 break; 8640 8641 /* 8642 * To be at this point in the code with a non-zero gw 8643 * means that dst is reachable through a gateway that 8644 * we have never resolved. By changing dst to the gw 8645 * addr we resolve the gateway first. 8646 * When ire_add_then_send() tries to put the IP dg 8647 * to dst, it will reenter ip_newroute() at which 8648 * time we will find the IRE_CACHE for the gw and 8649 * create another IRE_CACHE in case IRE_CACHE above. 8650 */ 8651 if (gw != INADDR_ANY) { 8652 /* 8653 * The source ipif that was determined above was 8654 * relative to the destination address, not the 8655 * gateway's. If src_ipif was not taken out of 8656 * the IRE_IF_RESOLVER entry, we'll need to call 8657 * ipif_select_source() again. 8658 */ 8659 if (src_ipif != ire->ire_ipif) { 8660 ipif_refrele(src_ipif); 8661 src_ipif = ipif_select_source(dst_ill, 8662 gw, zoneid); 8663 /* 8664 * In the case of multirouting, it may 8665 * happen that ipif_select_source fails 8666 * as DAD may disallow use of the 8667 * particular source interface. Anyway, 8668 * we need to continue and attempt to 8669 * resolve other multirt routes. 8670 */ 8671 if (src_ipif == NULL) { 8672 if (sire != NULL && 8673 (sire->ire_flags & 8674 RTF_MULTIRT)) { 8675 ire_refrele(ire); 8676 ire = NULL; 8677 multirt_resolve_next = 8678 B_TRUE; 8679 multirt_res_failures++; 8680 continue; 8681 } 8682 if (ip_debug > 2) { 8683 pr_addr_dbg( 8684 "ip_newroute: no " 8685 "src for gw %s ", 8686 AF_INET, &gw); 8687 printf("on " 8688 "interface %s\n", 8689 dst_ill->ill_name); 8690 } 8691 goto icmp_err_ret; 8692 } 8693 } 8694 save_dst = dst; 8695 dst = gw; 8696 gw = INADDR_ANY; 8697 } 8698 8699 /* 8700 * We obtain a partial IRE_CACHE which we will pass 8701 * along with the resolver query. When the response 8702 * comes back it will be there ready for us to add. 8703 * The ire_max_frag is atomically set under the 8704 * irebucket lock in ire_add_v[46]. 8705 */ 8706 8707 ire = ire_create_mp( 8708 (uchar_t *)&dst, /* dest address */ 8709 (uchar_t *)&ip_g_all_ones, /* mask */ 8710 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8711 (uchar_t *)&gw, /* gateway address */ 8712 NULL, /* ire_max_frag */ 8713 NULL, /* no src nce */ 8714 dst_ill->ill_rq, /* recv-from queue */ 8715 dst_ill->ill_wq, /* send-to queue */ 8716 IRE_CACHE, 8717 src_ipif, /* Interface ipif */ 8718 save_ire->ire_mask, /* Parent mask */ 8719 0, 8720 save_ire->ire_ihandle, /* Interface handle */ 8721 0, /* flags if any */ 8722 &(save_ire->ire_uinfo), 8723 NULL, 8724 NULL, 8725 ipst); 8726 8727 if (ire == NULL) { 8728 ire_refrele(save_ire); 8729 break; 8730 } 8731 8732 if ((sire != NULL) && 8733 (sire->ire_flags & RTF_MULTIRT)) { 8734 copy_mp = copymsg(first_mp); 8735 if (copy_mp != NULL) 8736 MULTIRT_DEBUG_TAG(copy_mp); 8737 } 8738 8739 ire->ire_marks |= ire_marks; 8740 8741 /* 8742 * Construct message chain for the resolver 8743 * of the form: 8744 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8745 * Packet could contain a IPSEC_OUT mp. 8746 * 8747 * NOTE : ire will be added later when the response 8748 * comes back from ARP. If the response does not 8749 * come back, ARP frees the packet. For this reason, 8750 * we can't REFHOLD the bucket of save_ire to prevent 8751 * deletions. We may not be able to REFRELE the bucket 8752 * if the response never comes back. Thus, before 8753 * adding the ire, ire_add_v4 will make sure that the 8754 * interface route does not get deleted. This is the 8755 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8756 * where we can always prevent deletions because of 8757 * the synchronous nature of adding IRES i.e 8758 * ire_add_then_send is called after creating the IRE. 8759 */ 8760 ASSERT(ire->ire_mp != NULL); 8761 ire->ire_mp->b_cont = first_mp; 8762 /* Have saved_mp handy, for cleanup if canput fails */ 8763 saved_mp = mp; 8764 mp = copyb(res_mp); 8765 if (mp == NULL) { 8766 /* Prepare for cleanup */ 8767 mp = saved_mp; /* pkt */ 8768 ire_delete(ire); /* ire_mp */ 8769 ire = NULL; 8770 ire_refrele(save_ire); 8771 if (copy_mp != NULL) { 8772 MULTIRT_DEBUG_UNTAG(copy_mp); 8773 freemsg(copy_mp); 8774 copy_mp = NULL; 8775 } 8776 break; 8777 } 8778 linkb(mp, ire->ire_mp); 8779 8780 /* 8781 * Fill in the source and dest addrs for the resolver. 8782 * NOTE: this depends on memory layouts imposed by 8783 * ill_init(). 8784 */ 8785 areq = (areq_t *)mp->b_rptr; 8786 addrp = (ipaddr_t *)((char *)areq + 8787 areq->areq_sender_addr_offset); 8788 *addrp = save_ire->ire_src_addr; 8789 8790 ire_refrele(save_ire); 8791 addrp = (ipaddr_t *)((char *)areq + 8792 areq->areq_target_addr_offset); 8793 *addrp = dst; 8794 /* Up to the resolver. */ 8795 if (canputnext(dst_ill->ill_rq) && 8796 !(dst_ill->ill_arp_closing)) { 8797 putnext(dst_ill->ill_rq, mp); 8798 ire = NULL; 8799 if (copy_mp != NULL) { 8800 /* 8801 * If we found a resolver, we ignore 8802 * any trailing top priority IRE_CACHE 8803 * in the further loops. This ensures 8804 * that we do not omit any resolver. 8805 * IRE_CACHE entries, if any, will be 8806 * processed next time we enter 8807 * ip_newroute(). 8808 */ 8809 multirt_flags &= ~MULTIRT_CACHEGW; 8810 /* 8811 * Search for the next unresolved 8812 * multirt route. 8813 */ 8814 first_mp = copy_mp; 8815 copy_mp = NULL; 8816 /* Prepare the next resolution loop. */ 8817 mp = first_mp; 8818 EXTRACT_PKT_MP(mp, first_mp, 8819 mctl_present); 8820 if (mctl_present) 8821 io = (ipsec_out_t *) 8822 first_mp->b_rptr; 8823 ipha = (ipha_t *)mp->b_rptr; 8824 8825 ASSERT(sire != NULL); 8826 8827 dst = save_dst; 8828 multirt_resolve_next = B_TRUE; 8829 continue; 8830 } 8831 8832 if (sire != NULL) 8833 ire_refrele(sire); 8834 8835 /* 8836 * The response will come back in ip_wput 8837 * with db_type IRE_DB_TYPE. 8838 */ 8839 ipif_refrele(src_ipif); 8840 ill_refrele(dst_ill); 8841 return; 8842 } else { 8843 /* Prepare for cleanup */ 8844 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8845 mp); 8846 mp->b_cont = NULL; 8847 freeb(mp); /* areq */ 8848 /* 8849 * this is an ire that is not added to the 8850 * cache. ire_freemblk will handle the release 8851 * of any resources associated with the ire. 8852 */ 8853 ire_delete(ire); /* ire_mp */ 8854 mp = saved_mp; /* pkt */ 8855 ire = NULL; 8856 if (copy_mp != NULL) { 8857 MULTIRT_DEBUG_UNTAG(copy_mp); 8858 freemsg(copy_mp); 8859 copy_mp = NULL; 8860 } 8861 break; 8862 } 8863 default: 8864 break; 8865 } 8866 } while (multirt_resolve_next); 8867 8868 ip1dbg(("ip_newroute: dropped\n")); 8869 /* Did this packet originate externally? */ 8870 if (mp->b_prev) { 8871 mp->b_next = NULL; 8872 mp->b_prev = NULL; 8873 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8874 } else { 8875 if (dst_ill != NULL) { 8876 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8877 } else { 8878 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8879 } 8880 } 8881 ASSERT(copy_mp == NULL); 8882 MULTIRT_DEBUG_UNTAG(first_mp); 8883 freemsg(first_mp); 8884 if (ire != NULL) 8885 ire_refrele(ire); 8886 if (sire != NULL) 8887 ire_refrele(sire); 8888 if (src_ipif != NULL) 8889 ipif_refrele(src_ipif); 8890 if (dst_ill != NULL) 8891 ill_refrele(dst_ill); 8892 return; 8893 8894 icmp_err_ret: 8895 ip1dbg(("ip_newroute: no route\n")); 8896 if (src_ipif != NULL) 8897 ipif_refrele(src_ipif); 8898 if (dst_ill != NULL) 8899 ill_refrele(dst_ill); 8900 if (sire != NULL) 8901 ire_refrele(sire); 8902 /* Did this packet originate externally? */ 8903 if (mp->b_prev) { 8904 mp->b_next = NULL; 8905 mp->b_prev = NULL; 8906 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8907 q = WR(q); 8908 } else { 8909 /* 8910 * There is no outgoing ill, so just increment the 8911 * system MIB. 8912 */ 8913 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8914 /* 8915 * Since ip_wput() isn't close to finished, we fill 8916 * in enough of the header for credible error reporting. 8917 */ 8918 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8919 /* Failed */ 8920 MULTIRT_DEBUG_UNTAG(first_mp); 8921 freemsg(first_mp); 8922 if (ire != NULL) 8923 ire_refrele(ire); 8924 return; 8925 } 8926 } 8927 8928 /* 8929 * At this point we will have ire only if RTF_BLACKHOLE 8930 * or RTF_REJECT flags are set on the IRE. It will not 8931 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8932 */ 8933 if (ire != NULL) { 8934 if (ire->ire_flags & RTF_BLACKHOLE) { 8935 ire_refrele(ire); 8936 MULTIRT_DEBUG_UNTAG(first_mp); 8937 freemsg(first_mp); 8938 return; 8939 } 8940 ire_refrele(ire); 8941 } 8942 if (ip_source_routed(ipha, ipst)) { 8943 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8944 zoneid, ipst); 8945 return; 8946 } 8947 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8948 } 8949 8950 ip_opt_info_t zero_info; 8951 8952 /* 8953 * IPv4 - 8954 * ip_newroute_ipif is called by ip_wput_multicast and 8955 * ip_rput_forward_multicast whenever we need to send 8956 * out a packet to a destination address for which we do not have specific 8957 * routing information. It is used when the packet will be sent out 8958 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8959 * socket option is set or icmp error message wants to go out on a particular 8960 * interface for a unicast packet. 8961 * 8962 * In most cases, the destination address is resolved thanks to the ipif 8963 * intrinsic resolver. However, there are some cases where the call to 8964 * ip_newroute_ipif must take into account the potential presence of 8965 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8966 * that uses the interface. This is specified through flags, 8967 * which can be a combination of: 8968 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8969 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8970 * and flags. Additionally, the packet source address has to be set to 8971 * the specified address. The caller is thus expected to set this flag 8972 * if the packet has no specific source address yet. 8973 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8974 * flag, the resulting ire will inherit the flag. All unresolved routes 8975 * to the destination must be explored in the same call to 8976 * ip_newroute_ipif(). 8977 */ 8978 static void 8979 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8980 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8981 { 8982 areq_t *areq; 8983 ire_t *ire = NULL; 8984 mblk_t *res_mp; 8985 ipaddr_t *addrp; 8986 mblk_t *first_mp; 8987 ire_t *save_ire = NULL; 8988 ipif_t *src_ipif = NULL; 8989 ushort_t ire_marks = 0; 8990 ill_t *dst_ill = NULL; 8991 ipha_t *ipha; 8992 mblk_t *saved_mp; 8993 ire_t *fire = NULL; 8994 mblk_t *copy_mp = NULL; 8995 boolean_t multirt_resolve_next; 8996 boolean_t unspec_src; 8997 ipaddr_t ipha_dst; 8998 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8999 9000 /* 9001 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9002 * here for uniformity 9003 */ 9004 ipif_refhold(ipif); 9005 9006 /* 9007 * This loop is run only once in most cases. 9008 * We loop to resolve further routes only when the destination 9009 * can be reached through multiple RTF_MULTIRT-flagged ires. 9010 */ 9011 do { 9012 if (dst_ill != NULL) { 9013 ill_refrele(dst_ill); 9014 dst_ill = NULL; 9015 } 9016 if (src_ipif != NULL) { 9017 ipif_refrele(src_ipif); 9018 src_ipif = NULL; 9019 } 9020 multirt_resolve_next = B_FALSE; 9021 9022 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9023 ipif->ipif_ill->ill_name)); 9024 9025 first_mp = mp; 9026 if (DB_TYPE(mp) == M_CTL) 9027 mp = mp->b_cont; 9028 ipha = (ipha_t *)mp->b_rptr; 9029 9030 /* 9031 * Save the packet destination address, we may need it after 9032 * the packet has been consumed. 9033 */ 9034 ipha_dst = ipha->ipha_dst; 9035 9036 /* 9037 * If the interface is a pt-pt interface we look for an 9038 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9039 * local_address and the pt-pt destination address. Otherwise 9040 * we just match the local address. 9041 * NOTE: dst could be different than ipha->ipha_dst in case 9042 * of sending igmp multicast packets over a point-to-point 9043 * connection. 9044 * Thus we must be careful enough to check ipha_dst to be a 9045 * multicast address, otherwise it will take xmit_if path for 9046 * multicast packets resulting into kernel stack overflow by 9047 * repeated calls to ip_newroute_ipif from ire_send(). 9048 */ 9049 if (CLASSD(ipha_dst) && 9050 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9051 goto err_ret; 9052 } 9053 9054 /* 9055 * We check if an IRE_OFFSUBNET for the addr that goes through 9056 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9057 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9058 * propagate its flags to the new ire. 9059 */ 9060 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9061 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9062 ip2dbg(("ip_newroute_ipif: " 9063 "ipif_lookup_multi_ire(" 9064 "ipif %p, dst %08x) = fire %p\n", 9065 (void *)ipif, ntohl(dst), (void *)fire)); 9066 } 9067 9068 /* 9069 * Note: While we pick a dst_ill we are really only 9070 * interested in the ill for load spreading. The source 9071 * ipif is determined by source address selection below. 9072 */ 9073 if (IS_IPMP(ipif->ipif_ill)) { 9074 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9075 9076 if (CLASSD(ipha_dst)) 9077 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9078 else 9079 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9080 } else { 9081 dst_ill = ipif->ipif_ill; 9082 ill_refhold(dst_ill); 9083 } 9084 9085 if (dst_ill == NULL) { 9086 if (ip_debug > 2) { 9087 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9088 "for dst %s\n", AF_INET, &dst); 9089 } 9090 goto err_ret; 9091 } 9092 9093 /* 9094 * Pick a source address preferring non-deprecated ones. 9095 * Unlike ip_newroute, we don't do any source address 9096 * selection here since for multicast it really does not help 9097 * in inbound load spreading as in the unicast case. 9098 */ 9099 if ((flags & RTF_SETSRC) && (fire != NULL) && 9100 (fire->ire_flags & RTF_SETSRC)) { 9101 /* 9102 * As requested by flags, an IRE_OFFSUBNET was looked up 9103 * on that interface. This ire has RTF_SETSRC flag, so 9104 * the source address of the packet must be changed. 9105 * Check that the ipif matching the requested source 9106 * address still exists. 9107 */ 9108 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9109 zoneid, NULL, NULL, NULL, NULL, ipst); 9110 } 9111 9112 unspec_src = (connp != NULL && connp->conn_unspec_src); 9113 9114 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9115 (IS_IPMP(ipif->ipif_ill) || 9116 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9117 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9118 (connp != NULL && ipif->ipif_zoneid != zoneid && 9119 ipif->ipif_zoneid != ALL_ZONES)) && 9120 (src_ipif == NULL) && 9121 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9122 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9123 if (src_ipif == NULL) { 9124 if (ip_debug > 2) { 9125 /* ip1dbg */ 9126 pr_addr_dbg("ip_newroute_ipif: " 9127 "no src for dst %s", 9128 AF_INET, &dst); 9129 } 9130 ip1dbg((" on interface %s\n", 9131 dst_ill->ill_name)); 9132 goto err_ret; 9133 } 9134 ipif_refrele(ipif); 9135 ipif = src_ipif; 9136 ipif_refhold(ipif); 9137 } 9138 if (src_ipif == NULL) { 9139 src_ipif = ipif; 9140 ipif_refhold(src_ipif); 9141 } 9142 9143 /* 9144 * Assign a source address while we have the conn. 9145 * We can't have ip_wput_ire pick a source address when the 9146 * packet returns from arp since conn_unspec_src might be set 9147 * and we lose the conn when going through arp. 9148 */ 9149 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9150 ipha->ipha_src = src_ipif->ipif_src_addr; 9151 9152 /* 9153 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9154 * that the outgoing interface does not have an interface ire. 9155 */ 9156 if (CLASSD(ipha_dst) && (connp == NULL || 9157 connp->conn_outgoing_ill == NULL) && 9158 infop->ip_opt_ill_index == 0) { 9159 /* ipif_to_ire returns an held ire */ 9160 ire = ipif_to_ire(ipif); 9161 if (ire == NULL) 9162 goto err_ret; 9163 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9164 goto err_ret; 9165 save_ire = ire; 9166 9167 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9168 "flags %04x\n", 9169 (void *)ire, (void *)ipif, flags)); 9170 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9171 (fire->ire_flags & RTF_MULTIRT)) { 9172 /* 9173 * As requested by flags, an IRE_OFFSUBNET was 9174 * looked up on that interface. This ire has 9175 * RTF_MULTIRT flag, so the resolution loop will 9176 * be re-entered to resolve additional routes on 9177 * other interfaces. For that purpose, a copy of 9178 * the packet is performed at this point. 9179 */ 9180 fire->ire_last_used_time = lbolt; 9181 copy_mp = copymsg(first_mp); 9182 if (copy_mp) { 9183 MULTIRT_DEBUG_TAG(copy_mp); 9184 } 9185 } 9186 if ((flags & RTF_SETSRC) && (fire != NULL) && 9187 (fire->ire_flags & RTF_SETSRC)) { 9188 /* 9189 * As requested by flags, an IRE_OFFSUBET was 9190 * looked up on that interface. This ire has 9191 * RTF_SETSRC flag, so the source address of the 9192 * packet must be changed. 9193 */ 9194 ipha->ipha_src = fire->ire_src_addr; 9195 } 9196 } else { 9197 /* 9198 * The only ways we can come here are: 9199 * 1) IP_BOUND_IF socket option is set 9200 * 2) SO_DONTROUTE socket option is set 9201 * 3) IP_PKTINFO option is passed in as ancillary data. 9202 * In all cases, the new ire will not be added 9203 * into cache table. 9204 */ 9205 ASSERT(connp == NULL || connp->conn_dontroute || 9206 connp->conn_outgoing_ill != NULL || 9207 infop->ip_opt_ill_index != 0); 9208 ire_marks |= IRE_MARK_NOADD; 9209 } 9210 9211 switch (ipif->ipif_net_type) { 9212 case IRE_IF_NORESOLVER: { 9213 /* We have what we need to build an IRE_CACHE. */ 9214 9215 if (dst_ill->ill_resolver_mp == NULL) { 9216 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9217 "for IRE_IF_NORESOLVER ire %p has " 9218 "no ill_resolver_mp\n", 9219 (void *)dst_ill, (void *)ire)); 9220 break; 9221 } 9222 9223 /* 9224 * The new ire inherits the IRE_OFFSUBNET flags 9225 * and source address, if this was requested. 9226 */ 9227 ire = ire_create( 9228 (uchar_t *)&dst, /* dest address */ 9229 (uchar_t *)&ip_g_all_ones, /* mask */ 9230 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9231 NULL, /* gateway address */ 9232 &ipif->ipif_mtu, 9233 NULL, /* no src nce */ 9234 dst_ill->ill_rq, /* recv-from queue */ 9235 dst_ill->ill_wq, /* send-to queue */ 9236 IRE_CACHE, 9237 src_ipif, 9238 (save_ire != NULL ? save_ire->ire_mask : 0), 9239 (fire != NULL) ? /* Parent handle */ 9240 fire->ire_phandle : 0, 9241 (save_ire != NULL) ? /* Interface handle */ 9242 save_ire->ire_ihandle : 0, 9243 (fire != NULL) ? 9244 (fire->ire_flags & 9245 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9246 (save_ire == NULL ? &ire_uinfo_null : 9247 &save_ire->ire_uinfo), 9248 NULL, 9249 NULL, 9250 ipst); 9251 9252 if (ire == NULL) { 9253 if (save_ire != NULL) 9254 ire_refrele(save_ire); 9255 break; 9256 } 9257 9258 ire->ire_marks |= ire_marks; 9259 9260 /* 9261 * If IRE_MARK_NOADD is set then we need to convert 9262 * the max_fragp to a useable value now. This is 9263 * normally done in ire_add_v[46]. We also need to 9264 * associate the ire with an nce (normally would be 9265 * done in ip_wput_nondata()). 9266 * 9267 * Note that IRE_MARK_NOADD packets created here 9268 * do not have a non-null ire_mp pointer. The null 9269 * value of ire_bucket indicates that they were 9270 * never added. 9271 */ 9272 if (ire->ire_marks & IRE_MARK_NOADD) { 9273 uint_t max_frag; 9274 9275 max_frag = *ire->ire_max_fragp; 9276 ire->ire_max_fragp = NULL; 9277 ire->ire_max_frag = max_frag; 9278 9279 if ((ire->ire_nce = ndp_lookup_v4( 9280 ire_to_ill(ire), 9281 (ire->ire_gateway_addr != INADDR_ANY ? 9282 &ire->ire_gateway_addr : &ire->ire_addr), 9283 B_FALSE)) == NULL) { 9284 if (save_ire != NULL) 9285 ire_refrele(save_ire); 9286 break; 9287 } 9288 ASSERT(ire->ire_nce->nce_state == 9289 ND_REACHABLE); 9290 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9291 } 9292 9293 /* Prevent save_ire from getting deleted */ 9294 if (save_ire != NULL) { 9295 IRB_REFHOLD(save_ire->ire_bucket); 9296 /* Has it been removed already ? */ 9297 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9298 IRB_REFRELE(save_ire->ire_bucket); 9299 ire_refrele(save_ire); 9300 break; 9301 } 9302 } 9303 9304 ire_add_then_send(q, ire, first_mp); 9305 9306 /* Assert that save_ire is not deleted yet. */ 9307 if (save_ire != NULL) { 9308 ASSERT(save_ire->ire_ptpn != NULL); 9309 IRB_REFRELE(save_ire->ire_bucket); 9310 ire_refrele(save_ire); 9311 save_ire = NULL; 9312 } 9313 if (fire != NULL) { 9314 ire_refrele(fire); 9315 fire = NULL; 9316 } 9317 9318 /* 9319 * the resolution loop is re-entered if this 9320 * was requested through flags and if we 9321 * actually are in a multirouting case. 9322 */ 9323 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9324 boolean_t need_resolve = 9325 ire_multirt_need_resolve(ipha_dst, 9326 msg_getlabel(copy_mp), ipst); 9327 if (!need_resolve) { 9328 MULTIRT_DEBUG_UNTAG(copy_mp); 9329 freemsg(copy_mp); 9330 copy_mp = NULL; 9331 } else { 9332 /* 9333 * ipif_lookup_group() calls 9334 * ire_lookup_multi() that uses 9335 * ire_ftable_lookup() to find 9336 * an IRE_INTERFACE for the group. 9337 * In the multirt case, 9338 * ire_lookup_multi() then invokes 9339 * ire_multirt_lookup() to find 9340 * the next resolvable ire. 9341 * As a result, we obtain an new 9342 * interface, derived from the 9343 * next ire. 9344 */ 9345 ipif_refrele(ipif); 9346 ipif = ipif_lookup_group(ipha_dst, 9347 zoneid, ipst); 9348 ip2dbg(("ip_newroute_ipif: " 9349 "multirt dst %08x, ipif %p\n", 9350 htonl(dst), (void *)ipif)); 9351 if (ipif != NULL) { 9352 mp = copy_mp; 9353 copy_mp = NULL; 9354 multirt_resolve_next = B_TRUE; 9355 continue; 9356 } else { 9357 freemsg(copy_mp); 9358 } 9359 } 9360 } 9361 if (ipif != NULL) 9362 ipif_refrele(ipif); 9363 ill_refrele(dst_ill); 9364 ipif_refrele(src_ipif); 9365 return; 9366 } 9367 case IRE_IF_RESOLVER: 9368 /* 9369 * We can't build an IRE_CACHE yet, but at least 9370 * we found a resolver that can help. 9371 */ 9372 res_mp = dst_ill->ill_resolver_mp; 9373 if (!OK_RESOLVER_MP(res_mp)) 9374 break; 9375 9376 /* 9377 * We obtain a partial IRE_CACHE which we will pass 9378 * along with the resolver query. When the response 9379 * comes back it will be there ready for us to add. 9380 * The new ire inherits the IRE_OFFSUBNET flags 9381 * and source address, if this was requested. 9382 * The ire_max_frag is atomically set under the 9383 * irebucket lock in ire_add_v[46]. Only in the 9384 * case of IRE_MARK_NOADD, we set it here itself. 9385 */ 9386 ire = ire_create_mp( 9387 (uchar_t *)&dst, /* dest address */ 9388 (uchar_t *)&ip_g_all_ones, /* mask */ 9389 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9390 NULL, /* gateway address */ 9391 (ire_marks & IRE_MARK_NOADD) ? 9392 ipif->ipif_mtu : 0, /* max_frag */ 9393 NULL, /* no src nce */ 9394 dst_ill->ill_rq, /* recv-from queue */ 9395 dst_ill->ill_wq, /* send-to queue */ 9396 IRE_CACHE, 9397 src_ipif, 9398 (save_ire != NULL ? save_ire->ire_mask : 0), 9399 (fire != NULL) ? /* Parent handle */ 9400 fire->ire_phandle : 0, 9401 (save_ire != NULL) ? /* Interface handle */ 9402 save_ire->ire_ihandle : 0, 9403 (fire != NULL) ? /* flags if any */ 9404 (fire->ire_flags & 9405 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9406 (save_ire == NULL ? &ire_uinfo_null : 9407 &save_ire->ire_uinfo), 9408 NULL, 9409 NULL, 9410 ipst); 9411 9412 if (save_ire != NULL) { 9413 ire_refrele(save_ire); 9414 save_ire = NULL; 9415 } 9416 if (ire == NULL) 9417 break; 9418 9419 ire->ire_marks |= ire_marks; 9420 /* 9421 * Construct message chain for the resolver of the 9422 * form: 9423 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9424 * 9425 * NOTE : ire will be added later when the response 9426 * comes back from ARP. If the response does not 9427 * come back, ARP frees the packet. For this reason, 9428 * we can't REFHOLD the bucket of save_ire to prevent 9429 * deletions. We may not be able to REFRELE the 9430 * bucket if the response never comes back. 9431 * Thus, before adding the ire, ire_add_v4 will make 9432 * sure that the interface route does not get deleted. 9433 * This is the only case unlike ip_newroute_v6, 9434 * ip_newroute_ipif_v6 where we can always prevent 9435 * deletions because ire_add_then_send is called after 9436 * creating the IRE. 9437 * If IRE_MARK_NOADD is set, then ire_add_then_send 9438 * does not add this IRE into the IRE CACHE. 9439 */ 9440 ASSERT(ire->ire_mp != NULL); 9441 ire->ire_mp->b_cont = first_mp; 9442 /* Have saved_mp handy, for cleanup if canput fails */ 9443 saved_mp = mp; 9444 mp = copyb(res_mp); 9445 if (mp == NULL) { 9446 /* Prepare for cleanup */ 9447 mp = saved_mp; /* pkt */ 9448 ire_delete(ire); /* ire_mp */ 9449 ire = NULL; 9450 if (copy_mp != NULL) { 9451 MULTIRT_DEBUG_UNTAG(copy_mp); 9452 freemsg(copy_mp); 9453 copy_mp = NULL; 9454 } 9455 break; 9456 } 9457 linkb(mp, ire->ire_mp); 9458 9459 /* 9460 * Fill in the source and dest addrs for the resolver. 9461 * NOTE: this depends on memory layouts imposed by 9462 * ill_init(). There are corner cases above where we 9463 * might've created the IRE with an INADDR_ANY source 9464 * address (e.g., if the zeroth ipif on an underlying 9465 * ill in an IPMP group is 0.0.0.0, but another ipif 9466 * on the ill has a usable test address). If so, tell 9467 * ARP to use ipha_src as its sender address. 9468 */ 9469 areq = (areq_t *)mp->b_rptr; 9470 addrp = (ipaddr_t *)((char *)areq + 9471 areq->areq_sender_addr_offset); 9472 if (ire->ire_src_addr != INADDR_ANY) 9473 *addrp = ire->ire_src_addr; 9474 else 9475 *addrp = ipha->ipha_src; 9476 addrp = (ipaddr_t *)((char *)areq + 9477 areq->areq_target_addr_offset); 9478 *addrp = dst; 9479 /* Up to the resolver. */ 9480 if (canputnext(dst_ill->ill_rq) && 9481 !(dst_ill->ill_arp_closing)) { 9482 putnext(dst_ill->ill_rq, mp); 9483 /* 9484 * The response will come back in ip_wput 9485 * with db_type IRE_DB_TYPE. 9486 */ 9487 } else { 9488 mp->b_cont = NULL; 9489 freeb(mp); /* areq */ 9490 ire_delete(ire); /* ire_mp */ 9491 saved_mp->b_next = NULL; 9492 saved_mp->b_prev = NULL; 9493 freemsg(first_mp); /* pkt */ 9494 ip2dbg(("ip_newroute_ipif: dropped\n")); 9495 } 9496 9497 if (fire != NULL) { 9498 ire_refrele(fire); 9499 fire = NULL; 9500 } 9501 9502 /* 9503 * The resolution loop is re-entered if this was 9504 * requested through flags and we actually are 9505 * in a multirouting case. 9506 */ 9507 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9508 boolean_t need_resolve = 9509 ire_multirt_need_resolve(ipha_dst, 9510 msg_getlabel(copy_mp), ipst); 9511 if (!need_resolve) { 9512 MULTIRT_DEBUG_UNTAG(copy_mp); 9513 freemsg(copy_mp); 9514 copy_mp = NULL; 9515 } else { 9516 /* 9517 * ipif_lookup_group() calls 9518 * ire_lookup_multi() that uses 9519 * ire_ftable_lookup() to find 9520 * an IRE_INTERFACE for the group. 9521 * In the multirt case, 9522 * ire_lookup_multi() then invokes 9523 * ire_multirt_lookup() to find 9524 * the next resolvable ire. 9525 * As a result, we obtain an new 9526 * interface, derived from the 9527 * next ire. 9528 */ 9529 ipif_refrele(ipif); 9530 ipif = ipif_lookup_group(ipha_dst, 9531 zoneid, ipst); 9532 if (ipif != NULL) { 9533 mp = copy_mp; 9534 copy_mp = NULL; 9535 multirt_resolve_next = B_TRUE; 9536 continue; 9537 } else { 9538 freemsg(copy_mp); 9539 } 9540 } 9541 } 9542 if (ipif != NULL) 9543 ipif_refrele(ipif); 9544 ill_refrele(dst_ill); 9545 ipif_refrele(src_ipif); 9546 return; 9547 default: 9548 break; 9549 } 9550 } while (multirt_resolve_next); 9551 9552 err_ret: 9553 ip2dbg(("ip_newroute_ipif: dropped\n")); 9554 if (fire != NULL) 9555 ire_refrele(fire); 9556 ipif_refrele(ipif); 9557 /* Did this packet originate externally? */ 9558 if (dst_ill != NULL) 9559 ill_refrele(dst_ill); 9560 if (src_ipif != NULL) 9561 ipif_refrele(src_ipif); 9562 if (mp->b_prev || mp->b_next) { 9563 mp->b_next = NULL; 9564 mp->b_prev = NULL; 9565 } else { 9566 /* 9567 * Since ip_wput() isn't close to finished, we fill 9568 * in enough of the header for credible error reporting. 9569 */ 9570 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9571 /* Failed */ 9572 freemsg(first_mp); 9573 if (ire != NULL) 9574 ire_refrele(ire); 9575 return; 9576 } 9577 } 9578 /* 9579 * At this point we will have ire only if RTF_BLACKHOLE 9580 * or RTF_REJECT flags are set on the IRE. It will not 9581 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9582 */ 9583 if (ire != NULL) { 9584 if (ire->ire_flags & RTF_BLACKHOLE) { 9585 ire_refrele(ire); 9586 freemsg(first_mp); 9587 return; 9588 } 9589 ire_refrele(ire); 9590 } 9591 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9592 } 9593 9594 /* Name/Value Table Lookup Routine */ 9595 char * 9596 ip_nv_lookup(nv_t *nv, int value) 9597 { 9598 if (!nv) 9599 return (NULL); 9600 for (; nv->nv_name; nv++) { 9601 if (nv->nv_value == value) 9602 return (nv->nv_name); 9603 } 9604 return ("unknown"); 9605 } 9606 9607 /* 9608 * This is a module open, i.e. this is a control stream for access 9609 * to a DLPI device. We allocate an ill_t as the instance data in 9610 * this case. 9611 */ 9612 int 9613 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9614 { 9615 ill_t *ill; 9616 int err; 9617 zoneid_t zoneid; 9618 netstack_t *ns; 9619 ip_stack_t *ipst; 9620 9621 /* 9622 * Prevent unprivileged processes from pushing IP so that 9623 * they can't send raw IP. 9624 */ 9625 if (secpolicy_net_rawaccess(credp) != 0) 9626 return (EPERM); 9627 9628 ns = netstack_find_by_cred(credp); 9629 ASSERT(ns != NULL); 9630 ipst = ns->netstack_ip; 9631 ASSERT(ipst != NULL); 9632 9633 /* 9634 * For exclusive stacks we set the zoneid to zero 9635 * to make IP operate as if in the global zone. 9636 */ 9637 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9638 zoneid = GLOBAL_ZONEID; 9639 else 9640 zoneid = crgetzoneid(credp); 9641 9642 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9643 q->q_ptr = WR(q)->q_ptr = ill; 9644 ill->ill_ipst = ipst; 9645 ill->ill_zoneid = zoneid; 9646 9647 /* 9648 * ill_init initializes the ill fields and then sends down 9649 * down a DL_INFO_REQ after calling qprocson. 9650 */ 9651 err = ill_init(q, ill); 9652 if (err != 0) { 9653 mi_free(ill); 9654 netstack_rele(ipst->ips_netstack); 9655 q->q_ptr = NULL; 9656 WR(q)->q_ptr = NULL; 9657 return (err); 9658 } 9659 9660 /* ill_init initializes the ipsq marking this thread as writer */ 9661 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9662 /* Wait for the DL_INFO_ACK */ 9663 mutex_enter(&ill->ill_lock); 9664 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9665 /* 9666 * Return value of 0 indicates a pending signal. 9667 */ 9668 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9669 if (err == 0) { 9670 mutex_exit(&ill->ill_lock); 9671 (void) ip_close(q, 0); 9672 return (EINTR); 9673 } 9674 } 9675 mutex_exit(&ill->ill_lock); 9676 9677 /* 9678 * ip_rput_other could have set an error in ill_error on 9679 * receipt of M_ERROR. 9680 */ 9681 9682 err = ill->ill_error; 9683 if (err != 0) { 9684 (void) ip_close(q, 0); 9685 return (err); 9686 } 9687 9688 ill->ill_credp = credp; 9689 crhold(credp); 9690 9691 mutex_enter(&ipst->ips_ip_mi_lock); 9692 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9693 credp); 9694 mutex_exit(&ipst->ips_ip_mi_lock); 9695 if (err) { 9696 (void) ip_close(q, 0); 9697 return (err); 9698 } 9699 return (0); 9700 } 9701 9702 /* For /dev/ip aka AF_INET open */ 9703 int 9704 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9705 { 9706 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9707 } 9708 9709 /* For /dev/ip6 aka AF_INET6 open */ 9710 int 9711 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9712 { 9713 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9714 } 9715 9716 /* IP open routine. */ 9717 int 9718 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9719 boolean_t isv6) 9720 { 9721 conn_t *connp; 9722 major_t maj; 9723 zoneid_t zoneid; 9724 netstack_t *ns; 9725 ip_stack_t *ipst; 9726 9727 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9728 9729 /* Allow reopen. */ 9730 if (q->q_ptr != NULL) 9731 return (0); 9732 9733 if (sflag & MODOPEN) { 9734 /* This is a module open */ 9735 return (ip_modopen(q, devp, flag, sflag, credp)); 9736 } 9737 9738 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9739 /* 9740 * Non streams based socket looking for a stream 9741 * to access IP 9742 */ 9743 return (ip_helper_stream_setup(q, devp, flag, sflag, 9744 credp, isv6)); 9745 } 9746 9747 ns = netstack_find_by_cred(credp); 9748 ASSERT(ns != NULL); 9749 ipst = ns->netstack_ip; 9750 ASSERT(ipst != NULL); 9751 9752 /* 9753 * For exclusive stacks we set the zoneid to zero 9754 * to make IP operate as if in the global zone. 9755 */ 9756 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9757 zoneid = GLOBAL_ZONEID; 9758 else 9759 zoneid = crgetzoneid(credp); 9760 9761 /* 9762 * We are opening as a device. This is an IP client stream, and we 9763 * allocate an conn_t as the instance data. 9764 */ 9765 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9766 9767 /* 9768 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9769 * done by netstack_find_by_cred() 9770 */ 9771 netstack_rele(ipst->ips_netstack); 9772 9773 connp->conn_zoneid = zoneid; 9774 connp->conn_sqp = NULL; 9775 connp->conn_initial_sqp = NULL; 9776 connp->conn_final_sqp = NULL; 9777 9778 connp->conn_upq = q; 9779 q->q_ptr = WR(q)->q_ptr = connp; 9780 9781 if (flag & SO_SOCKSTR) 9782 connp->conn_flags |= IPCL_SOCKET; 9783 9784 /* Minor tells us which /dev entry was opened */ 9785 if (isv6) { 9786 connp->conn_af_isv6 = B_TRUE; 9787 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9788 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9789 } else { 9790 connp->conn_af_isv6 = B_FALSE; 9791 connp->conn_pkt_isv6 = B_FALSE; 9792 } 9793 9794 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9795 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9796 connp->conn_minor_arena = ip_minor_arena_la; 9797 } else { 9798 /* 9799 * Either minor numbers in the large arena were exhausted 9800 * or a non socket application is doing the open. 9801 * Try to allocate from the small arena. 9802 */ 9803 if ((connp->conn_dev = 9804 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9805 /* CONN_DEC_REF takes care of netstack_rele() */ 9806 q->q_ptr = WR(q)->q_ptr = NULL; 9807 CONN_DEC_REF(connp); 9808 return (EBUSY); 9809 } 9810 connp->conn_minor_arena = ip_minor_arena_sa; 9811 } 9812 9813 maj = getemajor(*devp); 9814 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9815 9816 /* 9817 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9818 */ 9819 connp->conn_cred = credp; 9820 9821 /* 9822 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9823 */ 9824 connp->conn_recv = ip_conn_input; 9825 9826 crhold(connp->conn_cred); 9827 9828 /* 9829 * If the caller has the process-wide flag set, then default to MAC 9830 * exempt mode. This allows read-down to unlabeled hosts. 9831 */ 9832 if (getpflags(NET_MAC_AWARE, credp) != 0) 9833 connp->conn_mac_exempt = B_TRUE; 9834 9835 connp->conn_rq = q; 9836 connp->conn_wq = WR(q); 9837 9838 /* Non-zero default values */ 9839 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9840 9841 /* 9842 * Make the conn globally visible to walkers 9843 */ 9844 ASSERT(connp->conn_ref == 1); 9845 mutex_enter(&connp->conn_lock); 9846 connp->conn_state_flags &= ~CONN_INCIPIENT; 9847 mutex_exit(&connp->conn_lock); 9848 9849 qprocson(q); 9850 9851 return (0); 9852 } 9853 9854 /* 9855 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9856 * Note that there is no race since either ip_output function works - it 9857 * is just an optimization to enter the best ip_output routine directly. 9858 */ 9859 void 9860 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9861 ip_stack_t *ipst) 9862 { 9863 if (isv6) { 9864 if (bump_mib) { 9865 BUMP_MIB(&ipst->ips_ip6_mib, 9866 ipIfStatsOutSwitchIPVersion); 9867 } 9868 connp->conn_send = ip_output_v6; 9869 connp->conn_pkt_isv6 = B_TRUE; 9870 } else { 9871 if (bump_mib) { 9872 BUMP_MIB(&ipst->ips_ip_mib, 9873 ipIfStatsOutSwitchIPVersion); 9874 } 9875 connp->conn_send = ip_output; 9876 connp->conn_pkt_isv6 = B_FALSE; 9877 } 9878 9879 } 9880 9881 /* 9882 * See if IPsec needs loading because of the options in mp. 9883 */ 9884 static boolean_t 9885 ipsec_opt_present(mblk_t *mp) 9886 { 9887 uint8_t *optcp, *next_optcp, *opt_endcp; 9888 struct opthdr *opt; 9889 struct T_opthdr *topt; 9890 int opthdr_len; 9891 t_uscalar_t optname, optlevel; 9892 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9893 ipsec_req_t *ipsr; 9894 9895 /* 9896 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9897 * return TRUE. 9898 */ 9899 9900 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9901 opt_endcp = optcp + tor->OPT_length; 9902 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9903 opthdr_len = sizeof (struct T_opthdr); 9904 } else { /* O_OPTMGMT_REQ */ 9905 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9906 opthdr_len = sizeof (struct opthdr); 9907 } 9908 for (; optcp < opt_endcp; optcp = next_optcp) { 9909 if (optcp + opthdr_len > opt_endcp) 9910 return (B_FALSE); /* Not enough option header. */ 9911 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9912 topt = (struct T_opthdr *)optcp; 9913 optlevel = topt->level; 9914 optname = topt->name; 9915 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9916 } else { 9917 opt = (struct opthdr *)optcp; 9918 optlevel = opt->level; 9919 optname = opt->name; 9920 next_optcp = optcp + opthdr_len + 9921 _TPI_ALIGN_OPT(opt->len); 9922 } 9923 if ((next_optcp < optcp) || /* wraparound pointer space */ 9924 ((next_optcp >= opt_endcp) && /* last option bad len */ 9925 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9926 return (B_FALSE); /* bad option buffer */ 9927 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9928 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9929 /* 9930 * Check to see if it's an all-bypass or all-zeroes 9931 * IPsec request. Don't bother loading IPsec if 9932 * the socket doesn't want to use it. (A good example 9933 * is a bypass request.) 9934 * 9935 * Basically, if any of the non-NEVER bits are set, 9936 * load IPsec. 9937 */ 9938 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9939 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9940 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9941 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9942 != 0) 9943 return (B_TRUE); 9944 } 9945 } 9946 return (B_FALSE); 9947 } 9948 9949 /* 9950 * If conn is is waiting for ipsec to finish loading, kick it. 9951 */ 9952 /* ARGSUSED */ 9953 static void 9954 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9955 { 9956 t_scalar_t optreq_prim; 9957 mblk_t *mp; 9958 cred_t *cr; 9959 int err = 0; 9960 9961 /* 9962 * This function is called, after ipsec loading is complete. 9963 * Since IP checks exclusively and atomically (i.e it prevents 9964 * ipsec load from completing until ip_optcom_req completes) 9965 * whether ipsec load is complete, there cannot be a race with IP 9966 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9967 */ 9968 mutex_enter(&connp->conn_lock); 9969 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9970 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9971 mp = connp->conn_ipsec_opt_mp; 9972 connp->conn_ipsec_opt_mp = NULL; 9973 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9974 mutex_exit(&connp->conn_lock); 9975 9976 /* 9977 * All Solaris components should pass a db_credp 9978 * for this TPI message, hence we ASSERT. 9979 * But in case there is some other M_PROTO that looks 9980 * like a TPI message sent by some other kernel 9981 * component, we check and return an error. 9982 */ 9983 cr = msg_getcred(mp, NULL); 9984 ASSERT(cr != NULL); 9985 if (cr == NULL) { 9986 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 9987 if (mp != NULL) 9988 qreply(connp->conn_wq, mp); 9989 return; 9990 } 9991 9992 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9993 9994 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9995 if (optreq_prim == T_OPTMGMT_REQ) { 9996 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9997 &ip_opt_obj, B_FALSE); 9998 } else { 9999 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10000 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10001 &ip_opt_obj, B_FALSE); 10002 } 10003 if (err != EINPROGRESS) 10004 CONN_OPER_PENDING_DONE(connp); 10005 return; 10006 } 10007 mutex_exit(&connp->conn_lock); 10008 } 10009 10010 /* 10011 * Called from the ipsec_loader thread, outside any perimeter, to tell 10012 * ip qenable any of the queues waiting for the ipsec loader to 10013 * complete. 10014 */ 10015 void 10016 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10017 { 10018 netstack_t *ns = ipss->ipsec_netstack; 10019 10020 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10021 } 10022 10023 /* 10024 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10025 * determines the grp on which it has to become exclusive, queues the mp 10026 * and IPSQ draining restarts the optmgmt 10027 */ 10028 static boolean_t 10029 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10030 { 10031 conn_t *connp = Q_TO_CONN(q); 10032 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10033 10034 /* 10035 * Take IPsec requests and treat them special. 10036 */ 10037 if (ipsec_opt_present(mp)) { 10038 /* First check if IPsec is loaded. */ 10039 mutex_enter(&ipss->ipsec_loader_lock); 10040 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10041 mutex_exit(&ipss->ipsec_loader_lock); 10042 return (B_FALSE); 10043 } 10044 mutex_enter(&connp->conn_lock); 10045 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10046 10047 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10048 connp->conn_ipsec_opt_mp = mp; 10049 mutex_exit(&connp->conn_lock); 10050 mutex_exit(&ipss->ipsec_loader_lock); 10051 10052 ipsec_loader_loadnow(ipss); 10053 return (B_TRUE); 10054 } 10055 return (B_FALSE); 10056 } 10057 10058 /* 10059 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10060 * all of them are copied to the conn_t. If the req is "zero", the policy is 10061 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10062 * fields. 10063 * We keep only the latest setting of the policy and thus policy setting 10064 * is not incremental/cumulative. 10065 * 10066 * Requests to set policies with multiple alternative actions will 10067 * go through a different API. 10068 */ 10069 int 10070 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10071 { 10072 uint_t ah_req = 0; 10073 uint_t esp_req = 0; 10074 uint_t se_req = 0; 10075 ipsec_act_t *actp = NULL; 10076 uint_t nact; 10077 ipsec_policy_head_t *ph; 10078 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 10079 int error = 0; 10080 netstack_t *ns = connp->conn_netstack; 10081 ip_stack_t *ipst = ns->netstack_ip; 10082 ipsec_stack_t *ipss = ns->netstack_ipsec; 10083 10084 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10085 10086 /* 10087 * The IP_SEC_OPT option does not allow variable length parameters, 10088 * hence a request cannot be NULL. 10089 */ 10090 if (req == NULL) 10091 return (EINVAL); 10092 10093 ah_req = req->ipsr_ah_req; 10094 esp_req = req->ipsr_esp_req; 10095 se_req = req->ipsr_self_encap_req; 10096 10097 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10098 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10099 return (EINVAL); 10100 10101 /* 10102 * Are we dealing with a request to reset the policy (i.e. 10103 * zero requests). 10104 */ 10105 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10106 (esp_req & REQ_MASK) == 0 && 10107 (se_req & REQ_MASK) == 0); 10108 10109 if (!is_pol_reset) { 10110 /* 10111 * If we couldn't load IPsec, fail with "protocol 10112 * not supported". 10113 * IPsec may not have been loaded for a request with zero 10114 * policies, so we don't fail in this case. 10115 */ 10116 mutex_enter(&ipss->ipsec_loader_lock); 10117 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10118 mutex_exit(&ipss->ipsec_loader_lock); 10119 return (EPROTONOSUPPORT); 10120 } 10121 mutex_exit(&ipss->ipsec_loader_lock); 10122 10123 /* 10124 * Test for valid requests. Invalid algorithms 10125 * need to be tested by IPsec code because new 10126 * algorithms can be added dynamically. 10127 */ 10128 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10129 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10130 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10131 return (EINVAL); 10132 } 10133 10134 /* 10135 * Only privileged users can issue these 10136 * requests. 10137 */ 10138 if (((ah_req & IPSEC_PREF_NEVER) || 10139 (esp_req & IPSEC_PREF_NEVER) || 10140 (se_req & IPSEC_PREF_NEVER)) && 10141 secpolicy_ip_config(cr, B_FALSE) != 0) { 10142 return (EPERM); 10143 } 10144 10145 /* 10146 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10147 * are mutually exclusive. 10148 */ 10149 if (((ah_req & REQ_MASK) == REQ_MASK) || 10150 ((esp_req & REQ_MASK) == REQ_MASK) || 10151 ((se_req & REQ_MASK) == REQ_MASK)) { 10152 /* Both of them are set */ 10153 return (EINVAL); 10154 } 10155 } 10156 10157 mutex_enter(&connp->conn_lock); 10158 10159 /* 10160 * If we have already cached policies in ip_bind_connected*(), don't 10161 * let them change now. We cache policies for connections 10162 * whose src,dst [addr, port] is known. 10163 */ 10164 if (connp->conn_policy_cached) { 10165 mutex_exit(&connp->conn_lock); 10166 return (EINVAL); 10167 } 10168 10169 /* 10170 * We have a zero policies, reset the connection policy if already 10171 * set. This will cause the connection to inherit the 10172 * global policy, if any. 10173 */ 10174 if (is_pol_reset) { 10175 if (connp->conn_policy != NULL) { 10176 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10177 connp->conn_policy = NULL; 10178 } 10179 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10180 connp->conn_in_enforce_policy = B_FALSE; 10181 connp->conn_out_enforce_policy = B_FALSE; 10182 mutex_exit(&connp->conn_lock); 10183 return (0); 10184 } 10185 10186 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10187 ipst->ips_netstack); 10188 if (ph == NULL) 10189 goto enomem; 10190 10191 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10192 if (actp == NULL) 10193 goto enomem; 10194 10195 /* 10196 * Always insert IPv4 policy entries, since they can also apply to 10197 * ipv6 sockets being used in ipv4-compat mode. 10198 */ 10199 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 10200 IPSEC_TYPE_INBOUND, ns)) 10201 goto enomem; 10202 is_pol_inserted = B_TRUE; 10203 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 10204 IPSEC_TYPE_OUTBOUND, ns)) 10205 goto enomem; 10206 10207 /* 10208 * We're looking at a v6 socket, also insert the v6-specific 10209 * entries. 10210 */ 10211 if (connp->conn_af_isv6) { 10212 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 10213 IPSEC_TYPE_INBOUND, ns)) 10214 goto enomem; 10215 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 10216 IPSEC_TYPE_OUTBOUND, ns)) 10217 goto enomem; 10218 } 10219 10220 ipsec_actvec_free(actp, nact); 10221 10222 /* 10223 * If the requests need security, set enforce_policy. 10224 * If the requests are IPSEC_PREF_NEVER, one should 10225 * still set conn_out_enforce_policy so that an ipsec_out 10226 * gets attached in ip_wput. This is needed so that 10227 * for connections that we don't cache policy in ip_bind, 10228 * if global policy matches in ip_wput_attach_policy, we 10229 * don't wrongly inherit global policy. Similarly, we need 10230 * to set conn_in_enforce_policy also so that we don't verify 10231 * policy wrongly. 10232 */ 10233 if ((ah_req & REQ_MASK) != 0 || 10234 (esp_req & REQ_MASK) != 0 || 10235 (se_req & REQ_MASK) != 0) { 10236 connp->conn_in_enforce_policy = B_TRUE; 10237 connp->conn_out_enforce_policy = B_TRUE; 10238 connp->conn_flags |= IPCL_CHECK_POLICY; 10239 } 10240 10241 mutex_exit(&connp->conn_lock); 10242 return (error); 10243 #undef REQ_MASK 10244 10245 /* 10246 * Common memory-allocation-failure exit path. 10247 */ 10248 enomem: 10249 mutex_exit(&connp->conn_lock); 10250 if (actp != NULL) 10251 ipsec_actvec_free(actp, nact); 10252 if (is_pol_inserted) 10253 ipsec_polhead_flush(ph, ns); 10254 return (ENOMEM); 10255 } 10256 10257 /* 10258 * Only for options that pass in an IP addr. Currently only V4 options 10259 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10260 * So this function assumes level is IPPROTO_IP 10261 */ 10262 int 10263 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10264 mblk_t *first_mp) 10265 { 10266 ipif_t *ipif = NULL; 10267 int error; 10268 ill_t *ill; 10269 int zoneid; 10270 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10271 10272 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10273 10274 if (addr != INADDR_ANY || checkonly) { 10275 ASSERT(connp != NULL); 10276 zoneid = IPCL_ZONEID(connp); 10277 if (option == IP_NEXTHOP) { 10278 ipif = ipif_lookup_onlink_addr(addr, 10279 connp->conn_zoneid, ipst); 10280 } else { 10281 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10282 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10283 &error, ipst); 10284 } 10285 if (ipif == NULL) { 10286 if (error == EINPROGRESS) 10287 return (error); 10288 if ((option == IP_MULTICAST_IF) || 10289 (option == IP_NEXTHOP)) 10290 return (EHOSTUNREACH); 10291 else 10292 return (EINVAL); 10293 } else if (checkonly) { 10294 if (option == IP_MULTICAST_IF) { 10295 ill = ipif->ipif_ill; 10296 /* not supported by the virtual network iface */ 10297 if (IS_VNI(ill)) { 10298 ipif_refrele(ipif); 10299 return (EINVAL); 10300 } 10301 } 10302 ipif_refrele(ipif); 10303 return (0); 10304 } 10305 ill = ipif->ipif_ill; 10306 mutex_enter(&connp->conn_lock); 10307 mutex_enter(&ill->ill_lock); 10308 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10309 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10310 mutex_exit(&ill->ill_lock); 10311 mutex_exit(&connp->conn_lock); 10312 ipif_refrele(ipif); 10313 return (option == IP_MULTICAST_IF ? 10314 EHOSTUNREACH : EINVAL); 10315 } 10316 } else { 10317 mutex_enter(&connp->conn_lock); 10318 } 10319 10320 /* None of the options below are supported on the VNI */ 10321 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10322 mutex_exit(&ill->ill_lock); 10323 mutex_exit(&connp->conn_lock); 10324 ipif_refrele(ipif); 10325 return (EINVAL); 10326 } 10327 10328 switch (option) { 10329 case IP_MULTICAST_IF: 10330 connp->conn_multicast_ipif = ipif; 10331 break; 10332 case IP_NEXTHOP: 10333 connp->conn_nexthop_v4 = addr; 10334 connp->conn_nexthop_set = B_TRUE; 10335 break; 10336 } 10337 10338 if (ipif != NULL) { 10339 mutex_exit(&ill->ill_lock); 10340 mutex_exit(&connp->conn_lock); 10341 ipif_refrele(ipif); 10342 return (0); 10343 } 10344 mutex_exit(&connp->conn_lock); 10345 /* We succeded in cleared the option */ 10346 return (0); 10347 } 10348 10349 /* 10350 * For options that pass in an ifindex specifying the ill. V6 options always 10351 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10352 */ 10353 int 10354 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10355 int level, int option, mblk_t *first_mp) 10356 { 10357 ill_t *ill = NULL; 10358 int error = 0; 10359 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10360 10361 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10362 if (ifindex != 0) { 10363 ASSERT(connp != NULL); 10364 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10365 first_mp, ip_restart_optmgmt, &error, ipst); 10366 if (ill != NULL) { 10367 if (checkonly) { 10368 /* not supported by the virtual network iface */ 10369 if (IS_VNI(ill)) { 10370 ill_refrele(ill); 10371 return (EINVAL); 10372 } 10373 ill_refrele(ill); 10374 return (0); 10375 } 10376 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10377 0, NULL)) { 10378 ill_refrele(ill); 10379 ill = NULL; 10380 mutex_enter(&connp->conn_lock); 10381 goto setit; 10382 } 10383 mutex_enter(&connp->conn_lock); 10384 mutex_enter(&ill->ill_lock); 10385 if (ill->ill_state_flags & ILL_CONDEMNED) { 10386 mutex_exit(&ill->ill_lock); 10387 mutex_exit(&connp->conn_lock); 10388 ill_refrele(ill); 10389 ill = NULL; 10390 mutex_enter(&connp->conn_lock); 10391 } 10392 goto setit; 10393 } else if (error == EINPROGRESS) { 10394 return (error); 10395 } else { 10396 error = 0; 10397 } 10398 } 10399 mutex_enter(&connp->conn_lock); 10400 setit: 10401 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10402 10403 /* 10404 * The options below assume that the ILL (if any) transmits and/or 10405 * receives traffic. Neither of which is true for the virtual network 10406 * interface, so fail setting these on a VNI. 10407 */ 10408 if (IS_VNI(ill)) { 10409 ASSERT(ill != NULL); 10410 mutex_exit(&ill->ill_lock); 10411 mutex_exit(&connp->conn_lock); 10412 ill_refrele(ill); 10413 return (EINVAL); 10414 } 10415 10416 if (level == IPPROTO_IP) { 10417 switch (option) { 10418 case IP_BOUND_IF: 10419 connp->conn_incoming_ill = ill; 10420 connp->conn_outgoing_ill = ill; 10421 break; 10422 10423 case IP_MULTICAST_IF: 10424 /* 10425 * This option is an internal special. The socket 10426 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10427 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10428 * specifies an ifindex and we try first on V6 ill's. 10429 * If we don't find one, we they try using on v4 ill's 10430 * intenally and we come here. 10431 */ 10432 if (!checkonly && ill != NULL) { 10433 ipif_t *ipif; 10434 ipif = ill->ill_ipif; 10435 10436 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10437 mutex_exit(&ill->ill_lock); 10438 mutex_exit(&connp->conn_lock); 10439 ill_refrele(ill); 10440 ill = NULL; 10441 mutex_enter(&connp->conn_lock); 10442 } else { 10443 connp->conn_multicast_ipif = ipif; 10444 } 10445 } 10446 break; 10447 10448 case IP_DHCPINIT_IF: 10449 if (connp->conn_dhcpinit_ill != NULL) { 10450 /* 10451 * We've locked the conn so conn_cleanup_ill() 10452 * cannot clear conn_dhcpinit_ill -- so it's 10453 * safe to access the ill. 10454 */ 10455 ill_t *oill = connp->conn_dhcpinit_ill; 10456 10457 ASSERT(oill->ill_dhcpinit != 0); 10458 atomic_dec_32(&oill->ill_dhcpinit); 10459 connp->conn_dhcpinit_ill = NULL; 10460 } 10461 10462 if (ill != NULL) { 10463 connp->conn_dhcpinit_ill = ill; 10464 atomic_inc_32(&ill->ill_dhcpinit); 10465 } 10466 break; 10467 } 10468 } else { 10469 switch (option) { 10470 case IPV6_BOUND_IF: 10471 connp->conn_incoming_ill = ill; 10472 connp->conn_outgoing_ill = ill; 10473 break; 10474 10475 case IPV6_MULTICAST_IF: 10476 /* 10477 * Set conn_multicast_ill to be the IPv6 ill. 10478 * Set conn_multicast_ipif to be an IPv4 ipif 10479 * for ifindex to make IPv4 mapped addresses 10480 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10481 * Even if no IPv6 ill exists for the ifindex 10482 * we need to check for an IPv4 ifindex in order 10483 * for this to work with mapped addresses. In that 10484 * case only set conn_multicast_ipif. 10485 */ 10486 if (!checkonly) { 10487 if (ifindex == 0) { 10488 connp->conn_multicast_ill = NULL; 10489 connp->conn_multicast_ipif = NULL; 10490 } else if (ill != NULL) { 10491 connp->conn_multicast_ill = ill; 10492 } 10493 } 10494 break; 10495 } 10496 } 10497 10498 if (ill != NULL) { 10499 mutex_exit(&ill->ill_lock); 10500 mutex_exit(&connp->conn_lock); 10501 ill_refrele(ill); 10502 return (0); 10503 } 10504 mutex_exit(&connp->conn_lock); 10505 /* 10506 * We succeeded in clearing the option (ifindex == 0) or failed to 10507 * locate the ill and could not set the option (ifindex != 0) 10508 */ 10509 return (ifindex == 0 ? 0 : EINVAL); 10510 } 10511 10512 /* This routine sets socket options. */ 10513 /* ARGSUSED */ 10514 int 10515 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10516 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10517 void *dummy, cred_t *cr, mblk_t *first_mp) 10518 { 10519 int *i1 = (int *)invalp; 10520 conn_t *connp = Q_TO_CONN(q); 10521 int error = 0; 10522 boolean_t checkonly; 10523 ire_t *ire; 10524 boolean_t found; 10525 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10526 10527 switch (optset_context) { 10528 10529 case SETFN_OPTCOM_CHECKONLY: 10530 checkonly = B_TRUE; 10531 /* 10532 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10533 * inlen != 0 implies value supplied and 10534 * we have to "pretend" to set it. 10535 * inlen == 0 implies that there is no 10536 * value part in T_CHECK request and just validation 10537 * done elsewhere should be enough, we just return here. 10538 */ 10539 if (inlen == 0) { 10540 *outlenp = 0; 10541 return (0); 10542 } 10543 break; 10544 case SETFN_OPTCOM_NEGOTIATE: 10545 case SETFN_UD_NEGOTIATE: 10546 case SETFN_CONN_NEGOTIATE: 10547 checkonly = B_FALSE; 10548 break; 10549 default: 10550 /* 10551 * We should never get here 10552 */ 10553 *outlenp = 0; 10554 return (EINVAL); 10555 } 10556 10557 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10558 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10559 10560 /* 10561 * For fixed length options, no sanity check 10562 * of passed in length is done. It is assumed *_optcom_req() 10563 * routines do the right thing. 10564 */ 10565 10566 switch (level) { 10567 case SOL_SOCKET: 10568 /* 10569 * conn_lock protects the bitfields, and is used to 10570 * set the fields atomically. 10571 */ 10572 switch (name) { 10573 case SO_BROADCAST: 10574 if (!checkonly) { 10575 /* TODO: use value someplace? */ 10576 mutex_enter(&connp->conn_lock); 10577 connp->conn_broadcast = *i1 ? 1 : 0; 10578 mutex_exit(&connp->conn_lock); 10579 } 10580 break; /* goto sizeof (int) option return */ 10581 case SO_USELOOPBACK: 10582 if (!checkonly) { 10583 /* TODO: use value someplace? */ 10584 mutex_enter(&connp->conn_lock); 10585 connp->conn_loopback = *i1 ? 1 : 0; 10586 mutex_exit(&connp->conn_lock); 10587 } 10588 break; /* goto sizeof (int) option return */ 10589 case SO_DONTROUTE: 10590 if (!checkonly) { 10591 mutex_enter(&connp->conn_lock); 10592 connp->conn_dontroute = *i1 ? 1 : 0; 10593 mutex_exit(&connp->conn_lock); 10594 } 10595 break; /* goto sizeof (int) option return */ 10596 case SO_REUSEADDR: 10597 if (!checkonly) { 10598 mutex_enter(&connp->conn_lock); 10599 connp->conn_reuseaddr = *i1 ? 1 : 0; 10600 mutex_exit(&connp->conn_lock); 10601 } 10602 break; /* goto sizeof (int) option return */ 10603 case SO_PROTOTYPE: 10604 if (!checkonly) { 10605 mutex_enter(&connp->conn_lock); 10606 connp->conn_proto = *i1; 10607 mutex_exit(&connp->conn_lock); 10608 } 10609 break; /* goto sizeof (int) option return */ 10610 case SO_ALLZONES: 10611 if (!checkonly) { 10612 mutex_enter(&connp->conn_lock); 10613 if (IPCL_IS_BOUND(connp)) { 10614 mutex_exit(&connp->conn_lock); 10615 return (EINVAL); 10616 } 10617 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10618 mutex_exit(&connp->conn_lock); 10619 } 10620 break; /* goto sizeof (int) option return */ 10621 case SO_ANON_MLP: 10622 if (!checkonly) { 10623 mutex_enter(&connp->conn_lock); 10624 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10625 mutex_exit(&connp->conn_lock); 10626 } 10627 break; /* goto sizeof (int) option return */ 10628 case SO_MAC_EXEMPT: 10629 if (secpolicy_net_mac_aware(cr) != 0 || 10630 IPCL_IS_BOUND(connp)) 10631 return (EACCES); 10632 if (!checkonly) { 10633 mutex_enter(&connp->conn_lock); 10634 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10635 mutex_exit(&connp->conn_lock); 10636 } 10637 break; /* goto sizeof (int) option return */ 10638 default: 10639 /* 10640 * "soft" error (negative) 10641 * option not handled at this level 10642 * Note: Do not modify *outlenp 10643 */ 10644 return (-EINVAL); 10645 } 10646 break; 10647 case IPPROTO_IP: 10648 switch (name) { 10649 case IP_NEXTHOP: 10650 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10651 return (EPERM); 10652 /* FALLTHRU */ 10653 case IP_MULTICAST_IF: { 10654 ipaddr_t addr = *i1; 10655 10656 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10657 first_mp); 10658 if (error != 0) 10659 return (error); 10660 break; /* goto sizeof (int) option return */ 10661 } 10662 10663 case IP_MULTICAST_TTL: 10664 /* Recorded in transport above IP */ 10665 *outvalp = *invalp; 10666 *outlenp = sizeof (uchar_t); 10667 return (0); 10668 case IP_MULTICAST_LOOP: 10669 if (!checkonly) { 10670 mutex_enter(&connp->conn_lock); 10671 connp->conn_multicast_loop = *invalp ? 1 : 0; 10672 mutex_exit(&connp->conn_lock); 10673 } 10674 *outvalp = *invalp; 10675 *outlenp = sizeof (uchar_t); 10676 return (0); 10677 case IP_ADD_MEMBERSHIP: 10678 case MCAST_JOIN_GROUP: 10679 case IP_DROP_MEMBERSHIP: 10680 case MCAST_LEAVE_GROUP: { 10681 struct ip_mreq *mreqp; 10682 struct group_req *greqp; 10683 ire_t *ire; 10684 boolean_t done = B_FALSE; 10685 ipaddr_t group, ifaddr; 10686 struct sockaddr_in *sin; 10687 uint32_t *ifindexp; 10688 boolean_t mcast_opt = B_TRUE; 10689 mcast_record_t fmode; 10690 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10691 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10692 10693 switch (name) { 10694 case IP_ADD_MEMBERSHIP: 10695 mcast_opt = B_FALSE; 10696 /* FALLTHRU */ 10697 case MCAST_JOIN_GROUP: 10698 fmode = MODE_IS_EXCLUDE; 10699 optfn = ip_opt_add_group; 10700 break; 10701 10702 case IP_DROP_MEMBERSHIP: 10703 mcast_opt = B_FALSE; 10704 /* FALLTHRU */ 10705 case MCAST_LEAVE_GROUP: 10706 fmode = MODE_IS_INCLUDE; 10707 optfn = ip_opt_delete_group; 10708 break; 10709 } 10710 10711 if (mcast_opt) { 10712 greqp = (struct group_req *)i1; 10713 sin = (struct sockaddr_in *)&greqp->gr_group; 10714 if (sin->sin_family != AF_INET) { 10715 *outlenp = 0; 10716 return (ENOPROTOOPT); 10717 } 10718 group = (ipaddr_t)sin->sin_addr.s_addr; 10719 ifaddr = INADDR_ANY; 10720 ifindexp = &greqp->gr_interface; 10721 } else { 10722 mreqp = (struct ip_mreq *)i1; 10723 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10724 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10725 ifindexp = NULL; 10726 } 10727 10728 /* 10729 * In the multirouting case, we need to replicate 10730 * the request on all interfaces that will take part 10731 * in replication. We do so because multirouting is 10732 * reflective, thus we will probably receive multi- 10733 * casts on those interfaces. 10734 * The ip_multirt_apply_membership() succeeds if the 10735 * operation succeeds on at least one interface. 10736 */ 10737 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10738 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10739 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10740 if (ire != NULL) { 10741 if (ire->ire_flags & RTF_MULTIRT) { 10742 error = ip_multirt_apply_membership( 10743 optfn, ire, connp, checkonly, group, 10744 fmode, INADDR_ANY, first_mp); 10745 done = B_TRUE; 10746 } 10747 ire_refrele(ire); 10748 } 10749 if (!done) { 10750 error = optfn(connp, checkonly, group, ifaddr, 10751 ifindexp, fmode, INADDR_ANY, first_mp); 10752 } 10753 if (error) { 10754 /* 10755 * EINPROGRESS is a soft error, needs retry 10756 * so don't make *outlenp zero. 10757 */ 10758 if (error != EINPROGRESS) 10759 *outlenp = 0; 10760 return (error); 10761 } 10762 /* OK return - copy input buffer into output buffer */ 10763 if (invalp != outvalp) { 10764 /* don't trust bcopy for identical src/dst */ 10765 bcopy(invalp, outvalp, inlen); 10766 } 10767 *outlenp = inlen; 10768 return (0); 10769 } 10770 case IP_BLOCK_SOURCE: 10771 case IP_UNBLOCK_SOURCE: 10772 case IP_ADD_SOURCE_MEMBERSHIP: 10773 case IP_DROP_SOURCE_MEMBERSHIP: 10774 case MCAST_BLOCK_SOURCE: 10775 case MCAST_UNBLOCK_SOURCE: 10776 case MCAST_JOIN_SOURCE_GROUP: 10777 case MCAST_LEAVE_SOURCE_GROUP: { 10778 struct ip_mreq_source *imreqp; 10779 struct group_source_req *gsreqp; 10780 in_addr_t grp, src, ifaddr = INADDR_ANY; 10781 uint32_t ifindex = 0; 10782 mcast_record_t fmode; 10783 struct sockaddr_in *sin; 10784 ire_t *ire; 10785 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10786 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10787 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10788 10789 switch (name) { 10790 case IP_BLOCK_SOURCE: 10791 mcast_opt = B_FALSE; 10792 /* FALLTHRU */ 10793 case MCAST_BLOCK_SOURCE: 10794 fmode = MODE_IS_EXCLUDE; 10795 optfn = ip_opt_add_group; 10796 break; 10797 10798 case IP_UNBLOCK_SOURCE: 10799 mcast_opt = B_FALSE; 10800 /* FALLTHRU */ 10801 case MCAST_UNBLOCK_SOURCE: 10802 fmode = MODE_IS_EXCLUDE; 10803 optfn = ip_opt_delete_group; 10804 break; 10805 10806 case IP_ADD_SOURCE_MEMBERSHIP: 10807 mcast_opt = B_FALSE; 10808 /* FALLTHRU */ 10809 case MCAST_JOIN_SOURCE_GROUP: 10810 fmode = MODE_IS_INCLUDE; 10811 optfn = ip_opt_add_group; 10812 break; 10813 10814 case IP_DROP_SOURCE_MEMBERSHIP: 10815 mcast_opt = B_FALSE; 10816 /* FALLTHRU */ 10817 case MCAST_LEAVE_SOURCE_GROUP: 10818 fmode = MODE_IS_INCLUDE; 10819 optfn = ip_opt_delete_group; 10820 break; 10821 } 10822 10823 if (mcast_opt) { 10824 gsreqp = (struct group_source_req *)i1; 10825 if (gsreqp->gsr_group.ss_family != AF_INET) { 10826 *outlenp = 0; 10827 return (ENOPROTOOPT); 10828 } 10829 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10830 grp = (ipaddr_t)sin->sin_addr.s_addr; 10831 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10832 src = (ipaddr_t)sin->sin_addr.s_addr; 10833 ifindex = gsreqp->gsr_interface; 10834 } else { 10835 imreqp = (struct ip_mreq_source *)i1; 10836 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10837 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10838 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10839 } 10840 10841 /* 10842 * In the multirouting case, we need to replicate 10843 * the request as noted in the mcast cases above. 10844 */ 10845 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10846 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10847 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10848 if (ire != NULL) { 10849 if (ire->ire_flags & RTF_MULTIRT) { 10850 error = ip_multirt_apply_membership( 10851 optfn, ire, connp, checkonly, grp, 10852 fmode, src, first_mp); 10853 done = B_TRUE; 10854 } 10855 ire_refrele(ire); 10856 } 10857 if (!done) { 10858 error = optfn(connp, checkonly, grp, ifaddr, 10859 &ifindex, fmode, src, first_mp); 10860 } 10861 if (error != 0) { 10862 /* 10863 * EINPROGRESS is a soft error, needs retry 10864 * so don't make *outlenp zero. 10865 */ 10866 if (error != EINPROGRESS) 10867 *outlenp = 0; 10868 return (error); 10869 } 10870 /* OK return - copy input buffer into output buffer */ 10871 if (invalp != outvalp) { 10872 bcopy(invalp, outvalp, inlen); 10873 } 10874 *outlenp = inlen; 10875 return (0); 10876 } 10877 case IP_SEC_OPT: 10878 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10879 if (error != 0) { 10880 *outlenp = 0; 10881 return (error); 10882 } 10883 break; 10884 case IP_HDRINCL: 10885 case IP_OPTIONS: 10886 case T_IP_OPTIONS: 10887 case IP_TOS: 10888 case T_IP_TOS: 10889 case IP_TTL: 10890 case IP_RECVDSTADDR: 10891 case IP_RECVOPTS: 10892 /* OK return - copy input buffer into output buffer */ 10893 if (invalp != outvalp) { 10894 /* don't trust bcopy for identical src/dst */ 10895 bcopy(invalp, outvalp, inlen); 10896 } 10897 *outlenp = inlen; 10898 return (0); 10899 case IP_RECVIF: 10900 /* Retrieve the inbound interface index */ 10901 if (!checkonly) { 10902 mutex_enter(&connp->conn_lock); 10903 connp->conn_recvif = *i1 ? 1 : 0; 10904 mutex_exit(&connp->conn_lock); 10905 } 10906 break; /* goto sizeof (int) option return */ 10907 case IP_RECVPKTINFO: 10908 if (!checkonly) { 10909 mutex_enter(&connp->conn_lock); 10910 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10911 mutex_exit(&connp->conn_lock); 10912 } 10913 break; /* goto sizeof (int) option return */ 10914 case IP_RECVSLLA: 10915 /* Retrieve the source link layer address */ 10916 if (!checkonly) { 10917 mutex_enter(&connp->conn_lock); 10918 connp->conn_recvslla = *i1 ? 1 : 0; 10919 mutex_exit(&connp->conn_lock); 10920 } 10921 break; /* goto sizeof (int) option return */ 10922 case MRT_INIT: 10923 case MRT_DONE: 10924 case MRT_ADD_VIF: 10925 case MRT_DEL_VIF: 10926 case MRT_ADD_MFC: 10927 case MRT_DEL_MFC: 10928 case MRT_ASSERT: 10929 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10930 *outlenp = 0; 10931 return (error); 10932 } 10933 error = ip_mrouter_set((int)name, q, checkonly, 10934 (uchar_t *)invalp, inlen, first_mp); 10935 if (error) { 10936 *outlenp = 0; 10937 return (error); 10938 } 10939 /* OK return - copy input buffer into output buffer */ 10940 if (invalp != outvalp) { 10941 /* don't trust bcopy for identical src/dst */ 10942 bcopy(invalp, outvalp, inlen); 10943 } 10944 *outlenp = inlen; 10945 return (0); 10946 case IP_BOUND_IF: 10947 case IP_DHCPINIT_IF: 10948 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10949 level, name, first_mp); 10950 if (error != 0) 10951 return (error); 10952 break; /* goto sizeof (int) option return */ 10953 10954 case IP_UNSPEC_SRC: 10955 /* Allow sending with a zero source address */ 10956 if (!checkonly) { 10957 mutex_enter(&connp->conn_lock); 10958 connp->conn_unspec_src = *i1 ? 1 : 0; 10959 mutex_exit(&connp->conn_lock); 10960 } 10961 break; /* goto sizeof (int) option return */ 10962 default: 10963 /* 10964 * "soft" error (negative) 10965 * option not handled at this level 10966 * Note: Do not modify *outlenp 10967 */ 10968 return (-EINVAL); 10969 } 10970 break; 10971 case IPPROTO_IPV6: 10972 switch (name) { 10973 case IPV6_BOUND_IF: 10974 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10975 level, name, first_mp); 10976 if (error != 0) 10977 return (error); 10978 break; /* goto sizeof (int) option return */ 10979 10980 case IPV6_MULTICAST_IF: 10981 /* 10982 * The only possible errors are EINPROGRESS and 10983 * EINVAL. EINPROGRESS will be restarted and is not 10984 * a hard error. We call this option on both V4 and V6 10985 * If both return EINVAL, then this call returns 10986 * EINVAL. If at least one of them succeeds we 10987 * return success. 10988 */ 10989 found = B_FALSE; 10990 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10991 level, name, first_mp); 10992 if (error == EINPROGRESS) 10993 return (error); 10994 if (error == 0) 10995 found = B_TRUE; 10996 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10997 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10998 if (error == 0) 10999 found = B_TRUE; 11000 if (!found) 11001 return (error); 11002 break; /* goto sizeof (int) option return */ 11003 11004 case IPV6_MULTICAST_HOPS: 11005 /* Recorded in transport above IP */ 11006 break; /* goto sizeof (int) option return */ 11007 case IPV6_MULTICAST_LOOP: 11008 if (!checkonly) { 11009 mutex_enter(&connp->conn_lock); 11010 connp->conn_multicast_loop = *i1; 11011 mutex_exit(&connp->conn_lock); 11012 } 11013 break; /* goto sizeof (int) option return */ 11014 case IPV6_JOIN_GROUP: 11015 case MCAST_JOIN_GROUP: 11016 case IPV6_LEAVE_GROUP: 11017 case MCAST_LEAVE_GROUP: { 11018 struct ipv6_mreq *ip_mreqp; 11019 struct group_req *greqp; 11020 ire_t *ire; 11021 boolean_t done = B_FALSE; 11022 in6_addr_t groupv6; 11023 uint32_t ifindex; 11024 boolean_t mcast_opt = B_TRUE; 11025 mcast_record_t fmode; 11026 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11027 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11028 11029 switch (name) { 11030 case IPV6_JOIN_GROUP: 11031 mcast_opt = B_FALSE; 11032 /* FALLTHRU */ 11033 case MCAST_JOIN_GROUP: 11034 fmode = MODE_IS_EXCLUDE; 11035 optfn = ip_opt_add_group_v6; 11036 break; 11037 11038 case IPV6_LEAVE_GROUP: 11039 mcast_opt = B_FALSE; 11040 /* FALLTHRU */ 11041 case MCAST_LEAVE_GROUP: 11042 fmode = MODE_IS_INCLUDE; 11043 optfn = ip_opt_delete_group_v6; 11044 break; 11045 } 11046 11047 if (mcast_opt) { 11048 struct sockaddr_in *sin; 11049 struct sockaddr_in6 *sin6; 11050 greqp = (struct group_req *)i1; 11051 if (greqp->gr_group.ss_family == AF_INET) { 11052 sin = (struct sockaddr_in *) 11053 &(greqp->gr_group); 11054 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11055 &groupv6); 11056 } else { 11057 sin6 = (struct sockaddr_in6 *) 11058 &(greqp->gr_group); 11059 groupv6 = sin6->sin6_addr; 11060 } 11061 ifindex = greqp->gr_interface; 11062 } else { 11063 ip_mreqp = (struct ipv6_mreq *)i1; 11064 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11065 ifindex = ip_mreqp->ipv6mr_interface; 11066 } 11067 /* 11068 * In the multirouting case, we need to replicate 11069 * the request on all interfaces that will take part 11070 * in replication. We do so because multirouting is 11071 * reflective, thus we will probably receive multi- 11072 * casts on those interfaces. 11073 * The ip_multirt_apply_membership_v6() succeeds if 11074 * the operation succeeds on at least one interface. 11075 */ 11076 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11077 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11078 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11079 if (ire != NULL) { 11080 if (ire->ire_flags & RTF_MULTIRT) { 11081 error = ip_multirt_apply_membership_v6( 11082 optfn, ire, connp, checkonly, 11083 &groupv6, fmode, &ipv6_all_zeros, 11084 first_mp); 11085 done = B_TRUE; 11086 } 11087 ire_refrele(ire); 11088 } 11089 if (!done) { 11090 error = optfn(connp, checkonly, &groupv6, 11091 ifindex, fmode, &ipv6_all_zeros, first_mp); 11092 } 11093 if (error) { 11094 /* 11095 * EINPROGRESS is a soft error, needs retry 11096 * so don't make *outlenp zero. 11097 */ 11098 if (error != EINPROGRESS) 11099 *outlenp = 0; 11100 return (error); 11101 } 11102 /* OK return - copy input buffer into output buffer */ 11103 if (invalp != outvalp) { 11104 /* don't trust bcopy for identical src/dst */ 11105 bcopy(invalp, outvalp, inlen); 11106 } 11107 *outlenp = inlen; 11108 return (0); 11109 } 11110 case MCAST_BLOCK_SOURCE: 11111 case MCAST_UNBLOCK_SOURCE: 11112 case MCAST_JOIN_SOURCE_GROUP: 11113 case MCAST_LEAVE_SOURCE_GROUP: { 11114 struct group_source_req *gsreqp; 11115 in6_addr_t v6grp, v6src; 11116 uint32_t ifindex; 11117 mcast_record_t fmode; 11118 ire_t *ire; 11119 boolean_t done = B_FALSE; 11120 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11121 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11122 11123 switch (name) { 11124 case MCAST_BLOCK_SOURCE: 11125 fmode = MODE_IS_EXCLUDE; 11126 optfn = ip_opt_add_group_v6; 11127 break; 11128 case MCAST_UNBLOCK_SOURCE: 11129 fmode = MODE_IS_EXCLUDE; 11130 optfn = ip_opt_delete_group_v6; 11131 break; 11132 case MCAST_JOIN_SOURCE_GROUP: 11133 fmode = MODE_IS_INCLUDE; 11134 optfn = ip_opt_add_group_v6; 11135 break; 11136 case MCAST_LEAVE_SOURCE_GROUP: 11137 fmode = MODE_IS_INCLUDE; 11138 optfn = ip_opt_delete_group_v6; 11139 break; 11140 } 11141 11142 gsreqp = (struct group_source_req *)i1; 11143 ifindex = gsreqp->gsr_interface; 11144 if (gsreqp->gsr_group.ss_family == AF_INET) { 11145 struct sockaddr_in *s; 11146 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11147 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11148 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11149 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11150 } else { 11151 struct sockaddr_in6 *s6; 11152 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11153 v6grp = s6->sin6_addr; 11154 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11155 v6src = s6->sin6_addr; 11156 } 11157 11158 /* 11159 * In the multirouting case, we need to replicate 11160 * the request as noted in the mcast cases above. 11161 */ 11162 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11163 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11164 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11165 if (ire != NULL) { 11166 if (ire->ire_flags & RTF_MULTIRT) { 11167 error = ip_multirt_apply_membership_v6( 11168 optfn, ire, connp, checkonly, 11169 &v6grp, fmode, &v6src, first_mp); 11170 done = B_TRUE; 11171 } 11172 ire_refrele(ire); 11173 } 11174 if (!done) { 11175 error = optfn(connp, checkonly, &v6grp, 11176 ifindex, fmode, &v6src, first_mp); 11177 } 11178 if (error != 0) { 11179 /* 11180 * EINPROGRESS is a soft error, needs retry 11181 * so don't make *outlenp zero. 11182 */ 11183 if (error != EINPROGRESS) 11184 *outlenp = 0; 11185 return (error); 11186 } 11187 /* OK return - copy input buffer into output buffer */ 11188 if (invalp != outvalp) { 11189 bcopy(invalp, outvalp, inlen); 11190 } 11191 *outlenp = inlen; 11192 return (0); 11193 } 11194 case IPV6_UNICAST_HOPS: 11195 /* Recorded in transport above IP */ 11196 break; /* goto sizeof (int) option return */ 11197 case IPV6_UNSPEC_SRC: 11198 /* Allow sending with a zero source address */ 11199 if (!checkonly) { 11200 mutex_enter(&connp->conn_lock); 11201 connp->conn_unspec_src = *i1 ? 1 : 0; 11202 mutex_exit(&connp->conn_lock); 11203 } 11204 break; /* goto sizeof (int) option return */ 11205 case IPV6_RECVPKTINFO: 11206 if (!checkonly) { 11207 mutex_enter(&connp->conn_lock); 11208 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11209 mutex_exit(&connp->conn_lock); 11210 } 11211 break; /* goto sizeof (int) option return */ 11212 case IPV6_RECVTCLASS: 11213 if (!checkonly) { 11214 if (*i1 < 0 || *i1 > 1) { 11215 return (EINVAL); 11216 } 11217 mutex_enter(&connp->conn_lock); 11218 connp->conn_ipv6_recvtclass = *i1; 11219 mutex_exit(&connp->conn_lock); 11220 } 11221 break; 11222 case IPV6_RECVPATHMTU: 11223 if (!checkonly) { 11224 if (*i1 < 0 || *i1 > 1) { 11225 return (EINVAL); 11226 } 11227 mutex_enter(&connp->conn_lock); 11228 connp->conn_ipv6_recvpathmtu = *i1; 11229 mutex_exit(&connp->conn_lock); 11230 } 11231 break; 11232 case IPV6_RECVHOPLIMIT: 11233 if (!checkonly) { 11234 mutex_enter(&connp->conn_lock); 11235 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11236 mutex_exit(&connp->conn_lock); 11237 } 11238 break; /* goto sizeof (int) option return */ 11239 case IPV6_RECVHOPOPTS: 11240 if (!checkonly) { 11241 mutex_enter(&connp->conn_lock); 11242 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11243 mutex_exit(&connp->conn_lock); 11244 } 11245 break; /* goto sizeof (int) option return */ 11246 case IPV6_RECVDSTOPTS: 11247 if (!checkonly) { 11248 mutex_enter(&connp->conn_lock); 11249 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11250 mutex_exit(&connp->conn_lock); 11251 } 11252 break; /* goto sizeof (int) option return */ 11253 case IPV6_RECVRTHDR: 11254 if (!checkonly) { 11255 mutex_enter(&connp->conn_lock); 11256 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11257 mutex_exit(&connp->conn_lock); 11258 } 11259 break; /* goto sizeof (int) option return */ 11260 case IPV6_RECVRTHDRDSTOPTS: 11261 if (!checkonly) { 11262 mutex_enter(&connp->conn_lock); 11263 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11264 mutex_exit(&connp->conn_lock); 11265 } 11266 break; /* goto sizeof (int) option return */ 11267 case IPV6_PKTINFO: 11268 if (inlen == 0) 11269 return (-EINVAL); /* clearing option */ 11270 error = ip6_set_pktinfo(cr, connp, 11271 (struct in6_pktinfo *)invalp); 11272 if (error != 0) 11273 *outlenp = 0; 11274 else 11275 *outlenp = inlen; 11276 return (error); 11277 case IPV6_NEXTHOP: { 11278 struct sockaddr_in6 *sin6; 11279 11280 /* Verify that the nexthop is reachable */ 11281 if (inlen == 0) 11282 return (-EINVAL); /* clearing option */ 11283 11284 sin6 = (struct sockaddr_in6 *)invalp; 11285 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11286 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11287 NULL, MATCH_IRE_DEFAULT, ipst); 11288 11289 if (ire == NULL) { 11290 *outlenp = 0; 11291 return (EHOSTUNREACH); 11292 } 11293 ire_refrele(ire); 11294 return (-EINVAL); 11295 } 11296 case IPV6_SEC_OPT: 11297 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11298 if (error != 0) { 11299 *outlenp = 0; 11300 return (error); 11301 } 11302 break; 11303 case IPV6_SRC_PREFERENCES: { 11304 /* 11305 * This is implemented strictly in the ip module 11306 * (here and in tcp_opt_*() to accomodate tcp 11307 * sockets). Modules above ip pass this option 11308 * down here since ip is the only one that needs to 11309 * be aware of source address preferences. 11310 * 11311 * This socket option only affects connected 11312 * sockets that haven't already bound to a specific 11313 * IPv6 address. In other words, sockets that 11314 * don't call bind() with an address other than the 11315 * unspecified address and that call connect(). 11316 * ip_bind_connected_v6() passes these preferences 11317 * to the ipif_select_source_v6() function. 11318 */ 11319 if (inlen != sizeof (uint32_t)) 11320 return (EINVAL); 11321 error = ip6_set_src_preferences(connp, 11322 *(uint32_t *)invalp); 11323 if (error != 0) { 11324 *outlenp = 0; 11325 return (error); 11326 } else { 11327 *outlenp = sizeof (uint32_t); 11328 } 11329 break; 11330 } 11331 case IPV6_V6ONLY: 11332 if (*i1 < 0 || *i1 > 1) { 11333 return (EINVAL); 11334 } 11335 mutex_enter(&connp->conn_lock); 11336 connp->conn_ipv6_v6only = *i1; 11337 mutex_exit(&connp->conn_lock); 11338 break; 11339 default: 11340 return (-EINVAL); 11341 } 11342 break; 11343 default: 11344 /* 11345 * "soft" error (negative) 11346 * option not handled at this level 11347 * Note: Do not modify *outlenp 11348 */ 11349 return (-EINVAL); 11350 } 11351 /* 11352 * Common case of return from an option that is sizeof (int) 11353 */ 11354 *(int *)outvalp = *i1; 11355 *outlenp = sizeof (int); 11356 return (0); 11357 } 11358 11359 /* 11360 * This routine gets default values of certain options whose default 11361 * values are maintained by protocol specific code 11362 */ 11363 /* ARGSUSED */ 11364 int 11365 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11366 { 11367 int *i1 = (int *)ptr; 11368 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11369 11370 switch (level) { 11371 case IPPROTO_IP: 11372 switch (name) { 11373 case IP_MULTICAST_TTL: 11374 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11375 return (sizeof (uchar_t)); 11376 case IP_MULTICAST_LOOP: 11377 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11378 return (sizeof (uchar_t)); 11379 default: 11380 return (-1); 11381 } 11382 case IPPROTO_IPV6: 11383 switch (name) { 11384 case IPV6_UNICAST_HOPS: 11385 *i1 = ipst->ips_ipv6_def_hops; 11386 return (sizeof (int)); 11387 case IPV6_MULTICAST_HOPS: 11388 *i1 = IP_DEFAULT_MULTICAST_TTL; 11389 return (sizeof (int)); 11390 case IPV6_MULTICAST_LOOP: 11391 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11392 return (sizeof (int)); 11393 case IPV6_V6ONLY: 11394 *i1 = 1; 11395 return (sizeof (int)); 11396 default: 11397 return (-1); 11398 } 11399 default: 11400 return (-1); 11401 } 11402 /* NOTREACHED */ 11403 } 11404 11405 /* 11406 * Given a destination address and a pointer to where to put the information 11407 * this routine fills in the mtuinfo. 11408 */ 11409 int 11410 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11411 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11412 { 11413 ire_t *ire; 11414 ip_stack_t *ipst = ns->netstack_ip; 11415 11416 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11417 return (-1); 11418 11419 bzero(mtuinfo, sizeof (*mtuinfo)); 11420 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11421 mtuinfo->ip6m_addr.sin6_port = port; 11422 mtuinfo->ip6m_addr.sin6_addr = *in6; 11423 11424 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11425 if (ire != NULL) { 11426 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11427 ire_refrele(ire); 11428 } else { 11429 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11430 } 11431 return (sizeof (struct ip6_mtuinfo)); 11432 } 11433 11434 /* 11435 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11436 * checking of cred and that ip_g_mrouter is set should be done and 11437 * isn't. This doesn't matter as the error checking is done properly for the 11438 * other MRT options coming in through ip_opt_set. 11439 */ 11440 int 11441 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11442 { 11443 conn_t *connp = Q_TO_CONN(q); 11444 ipsec_req_t *req = (ipsec_req_t *)ptr; 11445 11446 switch (level) { 11447 case IPPROTO_IP: 11448 switch (name) { 11449 case MRT_VERSION: 11450 case MRT_ASSERT: 11451 (void) ip_mrouter_get(name, q, ptr); 11452 return (sizeof (int)); 11453 case IP_SEC_OPT: 11454 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11455 case IP_NEXTHOP: 11456 if (connp->conn_nexthop_set) { 11457 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11458 return (sizeof (ipaddr_t)); 11459 } else 11460 return (0); 11461 case IP_RECVPKTINFO: 11462 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11463 return (sizeof (int)); 11464 default: 11465 break; 11466 } 11467 break; 11468 case IPPROTO_IPV6: 11469 switch (name) { 11470 case IPV6_SEC_OPT: 11471 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11472 case IPV6_SRC_PREFERENCES: { 11473 return (ip6_get_src_preferences(connp, 11474 (uint32_t *)ptr)); 11475 } 11476 case IPV6_V6ONLY: 11477 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11478 return (sizeof (int)); 11479 case IPV6_PATHMTU: 11480 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11481 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11482 default: 11483 break; 11484 } 11485 break; 11486 default: 11487 break; 11488 } 11489 return (-1); 11490 } 11491 /* Named Dispatch routine to get a current value out of our parameter table. */ 11492 /* ARGSUSED */ 11493 static int 11494 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11495 { 11496 ipparam_t *ippa = (ipparam_t *)cp; 11497 11498 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11499 return (0); 11500 } 11501 11502 /* ARGSUSED */ 11503 static int 11504 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11505 { 11506 11507 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11508 return (0); 11509 } 11510 11511 /* 11512 * Set ip{,6}_forwarding values. This means walking through all of the 11513 * ill's and toggling their forwarding values. 11514 */ 11515 /* ARGSUSED */ 11516 static int 11517 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11518 { 11519 long new_value; 11520 int *forwarding_value = (int *)cp; 11521 ill_t *ill; 11522 boolean_t isv6; 11523 ill_walk_context_t ctx; 11524 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11525 11526 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11527 11528 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11529 new_value < 0 || new_value > 1) { 11530 return (EINVAL); 11531 } 11532 11533 *forwarding_value = new_value; 11534 11535 /* 11536 * Regardless of the current value of ip_forwarding, set all per-ill 11537 * values of ip_forwarding to the value being set. 11538 * 11539 * Bring all the ill's up to date with the new global value. 11540 */ 11541 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11542 11543 if (isv6) 11544 ill = ILL_START_WALK_V6(&ctx, ipst); 11545 else 11546 ill = ILL_START_WALK_V4(&ctx, ipst); 11547 11548 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11549 (void) ill_forward_set(ill, new_value != 0); 11550 11551 rw_exit(&ipst->ips_ill_g_lock); 11552 return (0); 11553 } 11554 11555 /* 11556 * Walk through the param array specified registering each element with the 11557 * Named Dispatch handler. This is called only during init. So it is ok 11558 * not to acquire any locks 11559 */ 11560 static boolean_t 11561 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11562 ipndp_t *ipnd, size_t ipnd_cnt) 11563 { 11564 for (; ippa_cnt-- > 0; ippa++) { 11565 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11566 if (!nd_load(ndp, ippa->ip_param_name, 11567 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11568 nd_free(ndp); 11569 return (B_FALSE); 11570 } 11571 } 11572 } 11573 11574 for (; ipnd_cnt-- > 0; ipnd++) { 11575 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11576 if (!nd_load(ndp, ipnd->ip_ndp_name, 11577 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11578 ipnd->ip_ndp_data)) { 11579 nd_free(ndp); 11580 return (B_FALSE); 11581 } 11582 } 11583 } 11584 11585 return (B_TRUE); 11586 } 11587 11588 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11589 /* ARGSUSED */ 11590 static int 11591 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11592 { 11593 long new_value; 11594 ipparam_t *ippa = (ipparam_t *)cp; 11595 11596 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11597 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11598 return (EINVAL); 11599 } 11600 ippa->ip_param_value = new_value; 11601 return (0); 11602 } 11603 11604 /* 11605 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11606 * When an ipf is passed here for the first time, if 11607 * we already have in-order fragments on the queue, we convert from the fast- 11608 * path reassembly scheme to the hard-case scheme. From then on, additional 11609 * fragments are reassembled here. We keep track of the start and end offsets 11610 * of each piece, and the number of holes in the chain. When the hole count 11611 * goes to zero, we are done! 11612 * 11613 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11614 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11615 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11616 * after the call to ip_reassemble(). 11617 */ 11618 int 11619 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11620 size_t msg_len) 11621 { 11622 uint_t end; 11623 mblk_t *next_mp; 11624 mblk_t *mp1; 11625 uint_t offset; 11626 boolean_t incr_dups = B_TRUE; 11627 boolean_t offset_zero_seen = B_FALSE; 11628 boolean_t pkt_boundary_checked = B_FALSE; 11629 11630 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11631 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11632 11633 /* Add in byte count */ 11634 ipf->ipf_count += msg_len; 11635 if (ipf->ipf_end) { 11636 /* 11637 * We were part way through in-order reassembly, but now there 11638 * is a hole. We walk through messages already queued, and 11639 * mark them for hard case reassembly. We know that up till 11640 * now they were in order starting from offset zero. 11641 */ 11642 offset = 0; 11643 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11644 IP_REASS_SET_START(mp1, offset); 11645 if (offset == 0) { 11646 ASSERT(ipf->ipf_nf_hdr_len != 0); 11647 offset = -ipf->ipf_nf_hdr_len; 11648 } 11649 offset += mp1->b_wptr - mp1->b_rptr; 11650 IP_REASS_SET_END(mp1, offset); 11651 } 11652 /* One hole at the end. */ 11653 ipf->ipf_hole_cnt = 1; 11654 /* Brand it as a hard case, forever. */ 11655 ipf->ipf_end = 0; 11656 } 11657 /* Walk through all the new pieces. */ 11658 do { 11659 end = start + (mp->b_wptr - mp->b_rptr); 11660 /* 11661 * If start is 0, decrease 'end' only for the first mblk of 11662 * the fragment. Otherwise 'end' can get wrong value in the 11663 * second pass of the loop if first mblk is exactly the 11664 * size of ipf_nf_hdr_len. 11665 */ 11666 if (start == 0 && !offset_zero_seen) { 11667 /* First segment */ 11668 ASSERT(ipf->ipf_nf_hdr_len != 0); 11669 end -= ipf->ipf_nf_hdr_len; 11670 offset_zero_seen = B_TRUE; 11671 } 11672 next_mp = mp->b_cont; 11673 /* 11674 * We are checking to see if there is any interesing data 11675 * to process. If there isn't and the mblk isn't the 11676 * one which carries the unfragmentable header then we 11677 * drop it. It's possible to have just the unfragmentable 11678 * header come through without any data. That needs to be 11679 * saved. 11680 * 11681 * If the assert at the top of this function holds then the 11682 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11683 * is infrequently traveled enough that the test is left in 11684 * to protect against future code changes which break that 11685 * invariant. 11686 */ 11687 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11688 /* Empty. Blast it. */ 11689 IP_REASS_SET_START(mp, 0); 11690 IP_REASS_SET_END(mp, 0); 11691 /* 11692 * If the ipf points to the mblk we are about to free, 11693 * update ipf to point to the next mblk (or NULL 11694 * if none). 11695 */ 11696 if (ipf->ipf_mp->b_cont == mp) 11697 ipf->ipf_mp->b_cont = next_mp; 11698 freeb(mp); 11699 continue; 11700 } 11701 mp->b_cont = NULL; 11702 IP_REASS_SET_START(mp, start); 11703 IP_REASS_SET_END(mp, end); 11704 if (!ipf->ipf_tail_mp) { 11705 ipf->ipf_tail_mp = mp; 11706 ipf->ipf_mp->b_cont = mp; 11707 if (start == 0 || !more) { 11708 ipf->ipf_hole_cnt = 1; 11709 /* 11710 * if the first fragment comes in more than one 11711 * mblk, this loop will be executed for each 11712 * mblk. Need to adjust hole count so exiting 11713 * this routine will leave hole count at 1. 11714 */ 11715 if (next_mp) 11716 ipf->ipf_hole_cnt++; 11717 } else 11718 ipf->ipf_hole_cnt = 2; 11719 continue; 11720 } else if (ipf->ipf_last_frag_seen && !more && 11721 !pkt_boundary_checked) { 11722 /* 11723 * We check datagram boundary only if this fragment 11724 * claims to be the last fragment and we have seen a 11725 * last fragment in the past too. We do this only 11726 * once for a given fragment. 11727 * 11728 * start cannot be 0 here as fragments with start=0 11729 * and MF=0 gets handled as a complete packet. These 11730 * fragments should not reach here. 11731 */ 11732 11733 if (start + msgdsize(mp) != 11734 IP_REASS_END(ipf->ipf_tail_mp)) { 11735 /* 11736 * We have two fragments both of which claim 11737 * to be the last fragment but gives conflicting 11738 * information about the whole datagram size. 11739 * Something fishy is going on. Drop the 11740 * fragment and free up the reassembly list. 11741 */ 11742 return (IP_REASS_FAILED); 11743 } 11744 11745 /* 11746 * We shouldn't come to this code block again for this 11747 * particular fragment. 11748 */ 11749 pkt_boundary_checked = B_TRUE; 11750 } 11751 11752 /* New stuff at or beyond tail? */ 11753 offset = IP_REASS_END(ipf->ipf_tail_mp); 11754 if (start >= offset) { 11755 if (ipf->ipf_last_frag_seen) { 11756 /* current fragment is beyond last fragment */ 11757 return (IP_REASS_FAILED); 11758 } 11759 /* Link it on end. */ 11760 ipf->ipf_tail_mp->b_cont = mp; 11761 ipf->ipf_tail_mp = mp; 11762 if (more) { 11763 if (start != offset) 11764 ipf->ipf_hole_cnt++; 11765 } else if (start == offset && next_mp == NULL) 11766 ipf->ipf_hole_cnt--; 11767 continue; 11768 } 11769 mp1 = ipf->ipf_mp->b_cont; 11770 offset = IP_REASS_START(mp1); 11771 /* New stuff at the front? */ 11772 if (start < offset) { 11773 if (start == 0) { 11774 if (end >= offset) { 11775 /* Nailed the hole at the begining. */ 11776 ipf->ipf_hole_cnt--; 11777 } 11778 } else if (end < offset) { 11779 /* 11780 * A hole, stuff, and a hole where there used 11781 * to be just a hole. 11782 */ 11783 ipf->ipf_hole_cnt++; 11784 } 11785 mp->b_cont = mp1; 11786 /* Check for overlap. */ 11787 while (end > offset) { 11788 if (end < IP_REASS_END(mp1)) { 11789 mp->b_wptr -= end - offset; 11790 IP_REASS_SET_END(mp, offset); 11791 BUMP_MIB(ill->ill_ip_mib, 11792 ipIfStatsReasmPartDups); 11793 break; 11794 } 11795 /* Did we cover another hole? */ 11796 if ((mp1->b_cont && 11797 IP_REASS_END(mp1) != 11798 IP_REASS_START(mp1->b_cont) && 11799 end >= IP_REASS_START(mp1->b_cont)) || 11800 (!ipf->ipf_last_frag_seen && !more)) { 11801 ipf->ipf_hole_cnt--; 11802 } 11803 /* Clip out mp1. */ 11804 if ((mp->b_cont = mp1->b_cont) == NULL) { 11805 /* 11806 * After clipping out mp1, this guy 11807 * is now hanging off the end. 11808 */ 11809 ipf->ipf_tail_mp = mp; 11810 } 11811 IP_REASS_SET_START(mp1, 0); 11812 IP_REASS_SET_END(mp1, 0); 11813 /* Subtract byte count */ 11814 ipf->ipf_count -= mp1->b_datap->db_lim - 11815 mp1->b_datap->db_base; 11816 freeb(mp1); 11817 BUMP_MIB(ill->ill_ip_mib, 11818 ipIfStatsReasmPartDups); 11819 mp1 = mp->b_cont; 11820 if (!mp1) 11821 break; 11822 offset = IP_REASS_START(mp1); 11823 } 11824 ipf->ipf_mp->b_cont = mp; 11825 continue; 11826 } 11827 /* 11828 * The new piece starts somewhere between the start of the head 11829 * and before the end of the tail. 11830 */ 11831 for (; mp1; mp1 = mp1->b_cont) { 11832 offset = IP_REASS_END(mp1); 11833 if (start < offset) { 11834 if (end <= offset) { 11835 /* Nothing new. */ 11836 IP_REASS_SET_START(mp, 0); 11837 IP_REASS_SET_END(mp, 0); 11838 /* Subtract byte count */ 11839 ipf->ipf_count -= mp->b_datap->db_lim - 11840 mp->b_datap->db_base; 11841 if (incr_dups) { 11842 ipf->ipf_num_dups++; 11843 incr_dups = B_FALSE; 11844 } 11845 freeb(mp); 11846 BUMP_MIB(ill->ill_ip_mib, 11847 ipIfStatsReasmDuplicates); 11848 break; 11849 } 11850 /* 11851 * Trim redundant stuff off beginning of new 11852 * piece. 11853 */ 11854 IP_REASS_SET_START(mp, offset); 11855 mp->b_rptr += offset - start; 11856 BUMP_MIB(ill->ill_ip_mib, 11857 ipIfStatsReasmPartDups); 11858 start = offset; 11859 if (!mp1->b_cont) { 11860 /* 11861 * After trimming, this guy is now 11862 * hanging off the end. 11863 */ 11864 mp1->b_cont = mp; 11865 ipf->ipf_tail_mp = mp; 11866 if (!more) { 11867 ipf->ipf_hole_cnt--; 11868 } 11869 break; 11870 } 11871 } 11872 if (start >= IP_REASS_START(mp1->b_cont)) 11873 continue; 11874 /* Fill a hole */ 11875 if (start > offset) 11876 ipf->ipf_hole_cnt++; 11877 mp->b_cont = mp1->b_cont; 11878 mp1->b_cont = mp; 11879 mp1 = mp->b_cont; 11880 offset = IP_REASS_START(mp1); 11881 if (end >= offset) { 11882 ipf->ipf_hole_cnt--; 11883 /* Check for overlap. */ 11884 while (end > offset) { 11885 if (end < IP_REASS_END(mp1)) { 11886 mp->b_wptr -= end - offset; 11887 IP_REASS_SET_END(mp, offset); 11888 /* 11889 * TODO we might bump 11890 * this up twice if there is 11891 * overlap at both ends. 11892 */ 11893 BUMP_MIB(ill->ill_ip_mib, 11894 ipIfStatsReasmPartDups); 11895 break; 11896 } 11897 /* Did we cover another hole? */ 11898 if ((mp1->b_cont && 11899 IP_REASS_END(mp1) 11900 != IP_REASS_START(mp1->b_cont) && 11901 end >= 11902 IP_REASS_START(mp1->b_cont)) || 11903 (!ipf->ipf_last_frag_seen && 11904 !more)) { 11905 ipf->ipf_hole_cnt--; 11906 } 11907 /* Clip out mp1. */ 11908 if ((mp->b_cont = mp1->b_cont) == 11909 NULL) { 11910 /* 11911 * After clipping out mp1, 11912 * this guy is now hanging 11913 * off the end. 11914 */ 11915 ipf->ipf_tail_mp = mp; 11916 } 11917 IP_REASS_SET_START(mp1, 0); 11918 IP_REASS_SET_END(mp1, 0); 11919 /* Subtract byte count */ 11920 ipf->ipf_count -= 11921 mp1->b_datap->db_lim - 11922 mp1->b_datap->db_base; 11923 freeb(mp1); 11924 BUMP_MIB(ill->ill_ip_mib, 11925 ipIfStatsReasmPartDups); 11926 mp1 = mp->b_cont; 11927 if (!mp1) 11928 break; 11929 offset = IP_REASS_START(mp1); 11930 } 11931 } 11932 break; 11933 } 11934 } while (start = end, mp = next_mp); 11935 11936 /* Fragment just processed could be the last one. Remember this fact */ 11937 if (!more) 11938 ipf->ipf_last_frag_seen = B_TRUE; 11939 11940 /* Still got holes? */ 11941 if (ipf->ipf_hole_cnt) 11942 return (IP_REASS_PARTIAL); 11943 /* Clean up overloaded fields to avoid upstream disasters. */ 11944 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11945 IP_REASS_SET_START(mp1, 0); 11946 IP_REASS_SET_END(mp1, 0); 11947 } 11948 return (IP_REASS_COMPLETE); 11949 } 11950 11951 /* 11952 * ipsec processing for the fast path, used for input UDP Packets 11953 * Returns true if ready for passup to UDP. 11954 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 11955 * was an ESP-in-UDP packet, etc.). 11956 */ 11957 static boolean_t 11958 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11959 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 11960 { 11961 uint32_t ill_index; 11962 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11963 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 11964 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 11965 udp_t *udp = connp->conn_udp; 11966 11967 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11968 /* The ill_index of the incoming ILL */ 11969 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11970 11971 /* pass packet up to the transport */ 11972 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 11973 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11974 NULL, mctl_present); 11975 if (*first_mpp == NULL) { 11976 return (B_FALSE); 11977 } 11978 } 11979 11980 /* Initiate IPPF processing for fastpath UDP */ 11981 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 11982 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11983 if (*mpp == NULL) { 11984 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11985 "deferred/dropped during IPPF processing\n")); 11986 return (B_FALSE); 11987 } 11988 } 11989 /* 11990 * Remove 0-spi if it's 0, or move everything behind 11991 * the UDP header over it and forward to ESP via 11992 * ip_proto_input(). 11993 */ 11994 if (udp->udp_nat_t_endpoint) { 11995 if (mctl_present) { 11996 /* mctl_present *shouldn't* happen. */ 11997 ip_drop_packet(*first_mpp, B_TRUE, NULL, 11998 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 11999 &ipss->ipsec_dropper); 12000 *first_mpp = NULL; 12001 return (B_FALSE); 12002 } 12003 12004 /* "ill" is "recv_ill" in actuality. */ 12005 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12006 return (B_FALSE); 12007 12008 /* Else continue like a normal UDP packet. */ 12009 } 12010 12011 /* 12012 * We make the checks as below since we are in the fast path 12013 * and want to minimize the number of checks if the IP_RECVIF and/or 12014 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12015 */ 12016 if (connp->conn_recvif || connp->conn_recvslla || 12017 connp->conn_ip_recvpktinfo) { 12018 if (connp->conn_recvif) { 12019 in_flags = IPF_RECVIF; 12020 } 12021 /* 12022 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12023 * so the flag passed to ip_add_info is based on IP version 12024 * of connp. 12025 */ 12026 if (connp->conn_ip_recvpktinfo) { 12027 if (connp->conn_af_isv6) { 12028 /* 12029 * V6 only needs index 12030 */ 12031 in_flags |= IPF_RECVIF; 12032 } else { 12033 /* 12034 * V4 needs index + matching address. 12035 */ 12036 in_flags |= IPF_RECVADDR; 12037 } 12038 } 12039 if (connp->conn_recvslla) { 12040 in_flags |= IPF_RECVSLLA; 12041 } 12042 /* 12043 * since in_flags are being set ill will be 12044 * referenced in ip_add_info, so it better not 12045 * be NULL. 12046 */ 12047 /* 12048 * the actual data will be contained in b_cont 12049 * upon successful return of the following call. 12050 * If the call fails then the original mblk is 12051 * returned. 12052 */ 12053 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12054 ipst); 12055 } 12056 12057 return (B_TRUE); 12058 } 12059 12060 /* 12061 * Fragmentation reassembly. Each ILL has a hash table for 12062 * queuing packets undergoing reassembly for all IPIFs 12063 * associated with the ILL. The hash is based on the packet 12064 * IP ident field. The ILL frag hash table was allocated 12065 * as a timer block at the time the ILL was created. Whenever 12066 * there is anything on the reassembly queue, the timer will 12067 * be running. Returns B_TRUE if successful else B_FALSE; 12068 * frees mp on failure. 12069 */ 12070 static boolean_t 12071 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12072 uint32_t *cksum_val, uint16_t *cksum_flags) 12073 { 12074 uint32_t frag_offset_flags; 12075 mblk_t *mp = *mpp; 12076 mblk_t *t_mp; 12077 ipaddr_t dst; 12078 uint8_t proto = ipha->ipha_protocol; 12079 uint32_t sum_val; 12080 uint16_t sum_flags; 12081 ipf_t *ipf; 12082 ipf_t **ipfp; 12083 ipfb_t *ipfb; 12084 uint16_t ident; 12085 uint32_t offset; 12086 ipaddr_t src; 12087 uint_t hdr_length; 12088 uint32_t end; 12089 mblk_t *mp1; 12090 mblk_t *tail_mp; 12091 size_t count; 12092 size_t msg_len; 12093 uint8_t ecn_info = 0; 12094 uint32_t packet_size; 12095 boolean_t pruned = B_FALSE; 12096 ip_stack_t *ipst = ill->ill_ipst; 12097 12098 if (cksum_val != NULL) 12099 *cksum_val = 0; 12100 if (cksum_flags != NULL) 12101 *cksum_flags = 0; 12102 12103 /* 12104 * Drop the fragmented as early as possible, if 12105 * we don't have resource(s) to re-assemble. 12106 */ 12107 if (ipst->ips_ip_reass_queue_bytes == 0) { 12108 freemsg(mp); 12109 return (B_FALSE); 12110 } 12111 12112 /* Check for fragmentation offset; return if there's none */ 12113 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12114 (IPH_MF | IPH_OFFSET)) == 0) 12115 return (B_TRUE); 12116 12117 /* 12118 * We utilize hardware computed checksum info only for UDP since 12119 * IP fragmentation is a normal occurrence for the protocol. In 12120 * addition, checksum offload support for IP fragments carrying 12121 * UDP payload is commonly implemented across network adapters. 12122 */ 12123 ASSERT(recv_ill != NULL); 12124 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12125 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12126 mblk_t *mp1 = mp->b_cont; 12127 int32_t len; 12128 12129 /* Record checksum information from the packet */ 12130 sum_val = (uint32_t)DB_CKSUM16(mp); 12131 sum_flags = DB_CKSUMFLAGS(mp); 12132 12133 /* IP payload offset from beginning of mblk */ 12134 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12135 12136 if ((sum_flags & HCK_PARTIALCKSUM) && 12137 (mp1 == NULL || mp1->b_cont == NULL) && 12138 offset >= DB_CKSUMSTART(mp) && 12139 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12140 uint32_t adj; 12141 /* 12142 * Partial checksum has been calculated by hardware 12143 * and attached to the packet; in addition, any 12144 * prepended extraneous data is even byte aligned. 12145 * If any such data exists, we adjust the checksum; 12146 * this would also handle any postpended data. 12147 */ 12148 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12149 mp, mp1, len, adj); 12150 12151 /* One's complement subtract extraneous checksum */ 12152 if (adj >= sum_val) 12153 sum_val = ~(adj - sum_val) & 0xFFFF; 12154 else 12155 sum_val -= adj; 12156 } 12157 } else { 12158 sum_val = 0; 12159 sum_flags = 0; 12160 } 12161 12162 /* Clear hardware checksumming flag */ 12163 DB_CKSUMFLAGS(mp) = 0; 12164 12165 ident = ipha->ipha_ident; 12166 offset = (frag_offset_flags << 3) & 0xFFFF; 12167 src = ipha->ipha_src; 12168 dst = ipha->ipha_dst; 12169 hdr_length = IPH_HDR_LENGTH(ipha); 12170 end = ntohs(ipha->ipha_length) - hdr_length; 12171 12172 /* If end == 0 then we have a packet with no data, so just free it */ 12173 if (end == 0) { 12174 freemsg(mp); 12175 return (B_FALSE); 12176 } 12177 12178 /* Record the ECN field info. */ 12179 ecn_info = (ipha->ipha_type_of_service & 0x3); 12180 if (offset != 0) { 12181 /* 12182 * If this isn't the first piece, strip the header, and 12183 * add the offset to the end value. 12184 */ 12185 mp->b_rptr += hdr_length; 12186 end += offset; 12187 } 12188 12189 msg_len = MBLKSIZE(mp); 12190 tail_mp = mp; 12191 while (tail_mp->b_cont != NULL) { 12192 tail_mp = tail_mp->b_cont; 12193 msg_len += MBLKSIZE(tail_mp); 12194 } 12195 12196 /* If the reassembly list for this ILL will get too big, prune it */ 12197 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12198 ipst->ips_ip_reass_queue_bytes) { 12199 ill_frag_prune(ill, 12200 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12201 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12202 pruned = B_TRUE; 12203 } 12204 12205 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12206 mutex_enter(&ipfb->ipfb_lock); 12207 12208 ipfp = &ipfb->ipfb_ipf; 12209 /* Try to find an existing fragment queue for this packet. */ 12210 for (;;) { 12211 ipf = ipfp[0]; 12212 if (ipf != NULL) { 12213 /* 12214 * It has to match on ident and src/dst address. 12215 */ 12216 if (ipf->ipf_ident == ident && 12217 ipf->ipf_src == src && 12218 ipf->ipf_dst == dst && 12219 ipf->ipf_protocol == proto) { 12220 /* 12221 * If we have received too many 12222 * duplicate fragments for this packet 12223 * free it. 12224 */ 12225 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12226 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12227 freemsg(mp); 12228 mutex_exit(&ipfb->ipfb_lock); 12229 return (B_FALSE); 12230 } 12231 /* Found it. */ 12232 break; 12233 } 12234 ipfp = &ipf->ipf_hash_next; 12235 continue; 12236 } 12237 12238 /* 12239 * If we pruned the list, do we want to store this new 12240 * fragment?. We apply an optimization here based on the 12241 * fact that most fragments will be received in order. 12242 * So if the offset of this incoming fragment is zero, 12243 * it is the first fragment of a new packet. We will 12244 * keep it. Otherwise drop the fragment, as we have 12245 * probably pruned the packet already (since the 12246 * packet cannot be found). 12247 */ 12248 if (pruned && offset != 0) { 12249 mutex_exit(&ipfb->ipfb_lock); 12250 freemsg(mp); 12251 return (B_FALSE); 12252 } 12253 12254 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12255 /* 12256 * Too many fragmented packets in this hash 12257 * bucket. Free the oldest. 12258 */ 12259 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12260 } 12261 12262 /* New guy. Allocate a frag message. */ 12263 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12264 if (mp1 == NULL) { 12265 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12266 freemsg(mp); 12267 reass_done: 12268 mutex_exit(&ipfb->ipfb_lock); 12269 return (B_FALSE); 12270 } 12271 12272 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12273 mp1->b_cont = mp; 12274 12275 /* Initialize the fragment header. */ 12276 ipf = (ipf_t *)mp1->b_rptr; 12277 ipf->ipf_mp = mp1; 12278 ipf->ipf_ptphn = ipfp; 12279 ipfp[0] = ipf; 12280 ipf->ipf_hash_next = NULL; 12281 ipf->ipf_ident = ident; 12282 ipf->ipf_protocol = proto; 12283 ipf->ipf_src = src; 12284 ipf->ipf_dst = dst; 12285 ipf->ipf_nf_hdr_len = 0; 12286 /* Record reassembly start time. */ 12287 ipf->ipf_timestamp = gethrestime_sec(); 12288 /* Record ipf generation and account for frag header */ 12289 ipf->ipf_gen = ill->ill_ipf_gen++; 12290 ipf->ipf_count = MBLKSIZE(mp1); 12291 ipf->ipf_last_frag_seen = B_FALSE; 12292 ipf->ipf_ecn = ecn_info; 12293 ipf->ipf_num_dups = 0; 12294 ipfb->ipfb_frag_pkts++; 12295 ipf->ipf_checksum = 0; 12296 ipf->ipf_checksum_flags = 0; 12297 12298 /* Store checksum value in fragment header */ 12299 if (sum_flags != 0) { 12300 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12301 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12302 ipf->ipf_checksum = sum_val; 12303 ipf->ipf_checksum_flags = sum_flags; 12304 } 12305 12306 /* 12307 * We handle reassembly two ways. In the easy case, 12308 * where all the fragments show up in order, we do 12309 * minimal bookkeeping, and just clip new pieces on 12310 * the end. If we ever see a hole, then we go off 12311 * to ip_reassemble which has to mark the pieces and 12312 * keep track of the number of holes, etc. Obviously, 12313 * the point of having both mechanisms is so we can 12314 * handle the easy case as efficiently as possible. 12315 */ 12316 if (offset == 0) { 12317 /* Easy case, in-order reassembly so far. */ 12318 ipf->ipf_count += msg_len; 12319 ipf->ipf_tail_mp = tail_mp; 12320 /* 12321 * Keep track of next expected offset in 12322 * ipf_end. 12323 */ 12324 ipf->ipf_end = end; 12325 ipf->ipf_nf_hdr_len = hdr_length; 12326 } else { 12327 /* Hard case, hole at the beginning. */ 12328 ipf->ipf_tail_mp = NULL; 12329 /* 12330 * ipf_end == 0 means that we have given up 12331 * on easy reassembly. 12332 */ 12333 ipf->ipf_end = 0; 12334 12335 /* Forget checksum offload from now on */ 12336 ipf->ipf_checksum_flags = 0; 12337 12338 /* 12339 * ipf_hole_cnt is set by ip_reassemble. 12340 * ipf_count is updated by ip_reassemble. 12341 * No need to check for return value here 12342 * as we don't expect reassembly to complete 12343 * or fail for the first fragment itself. 12344 */ 12345 (void) ip_reassemble(mp, ipf, 12346 (frag_offset_flags & IPH_OFFSET) << 3, 12347 (frag_offset_flags & IPH_MF), ill, msg_len); 12348 } 12349 /* Update per ipfb and ill byte counts */ 12350 ipfb->ipfb_count += ipf->ipf_count; 12351 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12352 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12353 /* If the frag timer wasn't already going, start it. */ 12354 mutex_enter(&ill->ill_lock); 12355 ill_frag_timer_start(ill); 12356 mutex_exit(&ill->ill_lock); 12357 goto reass_done; 12358 } 12359 12360 /* 12361 * If the packet's flag has changed (it could be coming up 12362 * from an interface different than the previous, therefore 12363 * possibly different checksum capability), then forget about 12364 * any stored checksum states. Otherwise add the value to 12365 * the existing one stored in the fragment header. 12366 */ 12367 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12368 sum_val += ipf->ipf_checksum; 12369 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12370 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12371 ipf->ipf_checksum = sum_val; 12372 } else if (ipf->ipf_checksum_flags != 0) { 12373 /* Forget checksum offload from now on */ 12374 ipf->ipf_checksum_flags = 0; 12375 } 12376 12377 /* 12378 * We have a new piece of a datagram which is already being 12379 * reassembled. Update the ECN info if all IP fragments 12380 * are ECN capable. If there is one which is not, clear 12381 * all the info. If there is at least one which has CE 12382 * code point, IP needs to report that up to transport. 12383 */ 12384 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12385 if (ecn_info == IPH_ECN_CE) 12386 ipf->ipf_ecn = IPH_ECN_CE; 12387 } else { 12388 ipf->ipf_ecn = IPH_ECN_NECT; 12389 } 12390 if (offset && ipf->ipf_end == offset) { 12391 /* The new fragment fits at the end */ 12392 ipf->ipf_tail_mp->b_cont = mp; 12393 /* Update the byte count */ 12394 ipf->ipf_count += msg_len; 12395 /* Update per ipfb and ill byte counts */ 12396 ipfb->ipfb_count += msg_len; 12397 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12398 atomic_add_32(&ill->ill_frag_count, msg_len); 12399 if (frag_offset_flags & IPH_MF) { 12400 /* More to come. */ 12401 ipf->ipf_end = end; 12402 ipf->ipf_tail_mp = tail_mp; 12403 goto reass_done; 12404 } 12405 } else { 12406 /* Go do the hard cases. */ 12407 int ret; 12408 12409 if (offset == 0) 12410 ipf->ipf_nf_hdr_len = hdr_length; 12411 12412 /* Save current byte count */ 12413 count = ipf->ipf_count; 12414 ret = ip_reassemble(mp, ipf, 12415 (frag_offset_flags & IPH_OFFSET) << 3, 12416 (frag_offset_flags & IPH_MF), ill, msg_len); 12417 /* Count of bytes added and subtracted (freeb()ed) */ 12418 count = ipf->ipf_count - count; 12419 if (count) { 12420 /* Update per ipfb and ill byte counts */ 12421 ipfb->ipfb_count += count; 12422 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12423 atomic_add_32(&ill->ill_frag_count, count); 12424 } 12425 if (ret == IP_REASS_PARTIAL) { 12426 goto reass_done; 12427 } else if (ret == IP_REASS_FAILED) { 12428 /* Reassembly failed. Free up all resources */ 12429 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12430 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12431 IP_REASS_SET_START(t_mp, 0); 12432 IP_REASS_SET_END(t_mp, 0); 12433 } 12434 freemsg(mp); 12435 goto reass_done; 12436 } 12437 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12438 } 12439 /* 12440 * We have completed reassembly. Unhook the frag header from 12441 * the reassembly list. 12442 * 12443 * Before we free the frag header, record the ECN info 12444 * to report back to the transport. 12445 */ 12446 ecn_info = ipf->ipf_ecn; 12447 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12448 ipfp = ipf->ipf_ptphn; 12449 12450 /* We need to supply these to caller */ 12451 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12452 sum_val = ipf->ipf_checksum; 12453 else 12454 sum_val = 0; 12455 12456 mp1 = ipf->ipf_mp; 12457 count = ipf->ipf_count; 12458 ipf = ipf->ipf_hash_next; 12459 if (ipf != NULL) 12460 ipf->ipf_ptphn = ipfp; 12461 ipfp[0] = ipf; 12462 atomic_add_32(&ill->ill_frag_count, -count); 12463 ASSERT(ipfb->ipfb_count >= count); 12464 ipfb->ipfb_count -= count; 12465 ipfb->ipfb_frag_pkts--; 12466 mutex_exit(&ipfb->ipfb_lock); 12467 /* Ditch the frag header. */ 12468 mp = mp1->b_cont; 12469 12470 freeb(mp1); 12471 12472 /* Restore original IP length in header. */ 12473 packet_size = (uint32_t)msgdsize(mp); 12474 if (packet_size > IP_MAXPACKET) { 12475 freemsg(mp); 12476 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12477 return (B_FALSE); 12478 } 12479 12480 if (DB_REF(mp) > 1) { 12481 mblk_t *mp2 = copymsg(mp); 12482 12483 freemsg(mp); 12484 if (mp2 == NULL) { 12485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12486 return (B_FALSE); 12487 } 12488 mp = mp2; 12489 } 12490 ipha = (ipha_t *)mp->b_rptr; 12491 12492 ipha->ipha_length = htons((uint16_t)packet_size); 12493 /* We're now complete, zip the frag state */ 12494 ipha->ipha_fragment_offset_and_flags = 0; 12495 /* Record the ECN info. */ 12496 ipha->ipha_type_of_service &= 0xFC; 12497 ipha->ipha_type_of_service |= ecn_info; 12498 *mpp = mp; 12499 12500 /* Reassembly is successful; return checksum information if needed */ 12501 if (cksum_val != NULL) 12502 *cksum_val = sum_val; 12503 if (cksum_flags != NULL) 12504 *cksum_flags = sum_flags; 12505 12506 return (B_TRUE); 12507 } 12508 12509 /* 12510 * Perform ip header check sum update local options. 12511 * return B_TRUE if all is well, else return B_FALSE and release 12512 * the mp. caller is responsible for decrementing ire ref cnt. 12513 */ 12514 static boolean_t 12515 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12516 ip_stack_t *ipst) 12517 { 12518 mblk_t *first_mp; 12519 boolean_t mctl_present; 12520 uint16_t sum; 12521 12522 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12523 /* 12524 * Don't do the checksum if it has gone through AH/ESP 12525 * processing. 12526 */ 12527 if (!mctl_present) { 12528 sum = ip_csum_hdr(ipha); 12529 if (sum != 0) { 12530 if (ill != NULL) { 12531 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12532 } else { 12533 BUMP_MIB(&ipst->ips_ip_mib, 12534 ipIfStatsInCksumErrs); 12535 } 12536 freemsg(first_mp); 12537 return (B_FALSE); 12538 } 12539 } 12540 12541 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12542 if (mctl_present) 12543 freeb(first_mp); 12544 return (B_FALSE); 12545 } 12546 12547 return (B_TRUE); 12548 } 12549 12550 /* 12551 * All udp packet are delivered to the local host via this routine. 12552 */ 12553 void 12554 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12555 ill_t *recv_ill) 12556 { 12557 uint32_t sum; 12558 uint32_t u1; 12559 boolean_t mctl_present; 12560 conn_t *connp; 12561 mblk_t *first_mp; 12562 uint16_t *up; 12563 ill_t *ill = (ill_t *)q->q_ptr; 12564 uint16_t reass_hck_flags = 0; 12565 ip_stack_t *ipst; 12566 12567 ASSERT(recv_ill != NULL); 12568 ipst = recv_ill->ill_ipst; 12569 12570 #define rptr ((uchar_t *)ipha) 12571 12572 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12573 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12574 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12575 ASSERT(ill != NULL); 12576 12577 /* 12578 * FAST PATH for udp packets 12579 */ 12580 12581 /* u1 is # words of IP options */ 12582 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12583 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12584 12585 /* IP options present */ 12586 if (u1 != 0) 12587 goto ipoptions; 12588 12589 /* Check the IP header checksum. */ 12590 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12591 /* Clear the IP header h/w cksum flag */ 12592 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12593 } else if (!mctl_present) { 12594 /* 12595 * Don't verify header checksum if this packet is coming 12596 * back from AH/ESP as we already did it. 12597 */ 12598 #define uph ((uint16_t *)ipha) 12599 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12600 uph[6] + uph[7] + uph[8] + uph[9]; 12601 #undef uph 12602 /* finish doing IP checksum */ 12603 sum = (sum & 0xFFFF) + (sum >> 16); 12604 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12605 if (sum != 0 && sum != 0xFFFF) { 12606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12607 freemsg(first_mp); 12608 return; 12609 } 12610 } 12611 12612 /* 12613 * Count for SNMP of inbound packets for ire. 12614 * if mctl is present this might be a secure packet and 12615 * has already been counted for in ip_proto_input(). 12616 */ 12617 if (!mctl_present) { 12618 UPDATE_IB_PKT_COUNT(ire); 12619 ire->ire_last_used_time = lbolt; 12620 } 12621 12622 /* packet part of fragmented IP packet? */ 12623 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12624 if (u1 & (IPH_MF | IPH_OFFSET)) { 12625 goto fragmented; 12626 } 12627 12628 /* u1 = IP header length (20 bytes) */ 12629 u1 = IP_SIMPLE_HDR_LENGTH; 12630 12631 /* packet does not contain complete IP & UDP headers */ 12632 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12633 goto udppullup; 12634 12635 /* up points to UDP header */ 12636 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12637 #define iphs ((uint16_t *)ipha) 12638 12639 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12640 if (up[3] != 0) { 12641 mblk_t *mp1 = mp->b_cont; 12642 boolean_t cksum_err; 12643 uint16_t hck_flags = 0; 12644 12645 /* Pseudo-header checksum */ 12646 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12647 iphs[9] + up[2]; 12648 12649 /* 12650 * Revert to software checksum calculation if the interface 12651 * isn't capable of checksum offload or if IPsec is present. 12652 */ 12653 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12654 hck_flags = DB_CKSUMFLAGS(mp); 12655 12656 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12657 IP_STAT(ipst, ip_in_sw_cksum); 12658 12659 IP_CKSUM_RECV(hck_flags, u1, 12660 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12661 (int32_t)((uchar_t *)up - rptr), 12662 mp, mp1, cksum_err); 12663 12664 if (cksum_err) { 12665 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12666 if (hck_flags & HCK_FULLCKSUM) 12667 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12668 else if (hck_flags & HCK_PARTIALCKSUM) 12669 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12670 else 12671 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12672 12673 freemsg(first_mp); 12674 return; 12675 } 12676 } 12677 12678 /* Non-fragmented broadcast or multicast packet? */ 12679 if (ire->ire_type == IRE_BROADCAST) 12680 goto udpslowpath; 12681 12682 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12683 ire->ire_zoneid, ipst)) != NULL) { 12684 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12685 IP_STAT(ipst, ip_udp_fast_path); 12686 12687 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12688 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12689 freemsg(mp); 12690 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12691 } else { 12692 if (!mctl_present) { 12693 BUMP_MIB(ill->ill_ip_mib, 12694 ipIfStatsHCInDelivers); 12695 } 12696 /* 12697 * mp and first_mp can change. 12698 */ 12699 if (ip_udp_check(q, connp, recv_ill, 12700 ipha, &mp, &first_mp, mctl_present, ire)) { 12701 /* Send it upstream */ 12702 (connp->conn_recv)(connp, mp, NULL); 12703 } 12704 } 12705 /* 12706 * freeb() cannot deal with null mblk being passed 12707 * in and first_mp can be set to null in the call 12708 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12709 */ 12710 if (mctl_present && first_mp != NULL) { 12711 freeb(first_mp); 12712 } 12713 CONN_DEC_REF(connp); 12714 return; 12715 } 12716 12717 /* 12718 * if we got here we know the packet is not fragmented and 12719 * has no options. The classifier could not find a conn_t and 12720 * most likely its an icmp packet so send it through slow path. 12721 */ 12722 12723 goto udpslowpath; 12724 12725 ipoptions: 12726 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12727 goto slow_done; 12728 } 12729 12730 UPDATE_IB_PKT_COUNT(ire); 12731 ire->ire_last_used_time = lbolt; 12732 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12733 if (u1 & (IPH_MF | IPH_OFFSET)) { 12734 fragmented: 12735 /* 12736 * "sum" and "reass_hck_flags" are non-zero if the 12737 * reassembled packet has a valid hardware computed 12738 * checksum information associated with it. 12739 */ 12740 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12741 &reass_hck_flags)) { 12742 goto slow_done; 12743 } 12744 12745 /* 12746 * Make sure that first_mp points back to mp as 12747 * the mp we came in with could have changed in 12748 * ip_rput_fragment(). 12749 */ 12750 ASSERT(!mctl_present); 12751 ipha = (ipha_t *)mp->b_rptr; 12752 first_mp = mp; 12753 } 12754 12755 /* Now we have a complete datagram, destined for this machine. */ 12756 u1 = IPH_HDR_LENGTH(ipha); 12757 /* Pull up the UDP header, if necessary. */ 12758 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12759 udppullup: 12760 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12761 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12762 freemsg(first_mp); 12763 goto slow_done; 12764 } 12765 ipha = (ipha_t *)mp->b_rptr; 12766 } 12767 12768 /* 12769 * Validate the checksum for the reassembled packet; for the 12770 * pullup case we calculate the payload checksum in software. 12771 */ 12772 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12773 if (up[3] != 0) { 12774 boolean_t cksum_err; 12775 12776 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12777 IP_STAT(ipst, ip_in_sw_cksum); 12778 12779 IP_CKSUM_RECV_REASS(reass_hck_flags, 12780 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12781 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12782 iphs[9] + up[2], sum, cksum_err); 12783 12784 if (cksum_err) { 12785 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12786 12787 if (reass_hck_flags & HCK_FULLCKSUM) 12788 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12789 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12790 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12791 else 12792 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12793 12794 freemsg(first_mp); 12795 goto slow_done; 12796 } 12797 } 12798 udpslowpath: 12799 12800 /* Clear hardware checksum flag to be safe */ 12801 DB_CKSUMFLAGS(mp) = 0; 12802 12803 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12804 (ire->ire_type == IRE_BROADCAST), 12805 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12806 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12807 12808 slow_done: 12809 IP_STAT(ipst, ip_udp_slow_path); 12810 return; 12811 12812 #undef iphs 12813 #undef rptr 12814 } 12815 12816 static boolean_t 12817 ip_iptun_input(mblk_t *ipsec_mp, mblk_t *data_mp, ipha_t *ipha, ill_t *ill, 12818 ire_t *ire, ip_stack_t *ipst) 12819 { 12820 conn_t *connp; 12821 12822 ASSERT(ipsec_mp == NULL || ipsec_mp->b_cont == data_mp); 12823 12824 if ((connp = ipcl_classify_v4(data_mp, ipha->ipha_protocol, 12825 IP_SIMPLE_HDR_LENGTH, ire->ire_zoneid, ipst)) != NULL) { 12826 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12827 connp->conn_recv(connp, ipsec_mp != NULL ? ipsec_mp : data_mp, 12828 NULL); 12829 CONN_DEC_REF(connp); 12830 return (B_TRUE); 12831 } 12832 return (B_FALSE); 12833 } 12834 12835 /* ARGSUSED */ 12836 static mblk_t * 12837 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12838 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12839 ill_rx_ring_t *ill_ring) 12840 { 12841 conn_t *connp; 12842 uint32_t sum; 12843 uint32_t u1; 12844 uint16_t *up; 12845 int offset; 12846 ssize_t len; 12847 mblk_t *mp1; 12848 boolean_t syn_present = B_FALSE; 12849 tcph_t *tcph; 12850 uint_t tcph_flags; 12851 uint_t ip_hdr_len; 12852 ill_t *ill = (ill_t *)q->q_ptr; 12853 zoneid_t zoneid = ire->ire_zoneid; 12854 boolean_t cksum_err; 12855 uint16_t hck_flags = 0; 12856 ip_stack_t *ipst = recv_ill->ill_ipst; 12857 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12858 12859 #define rptr ((uchar_t *)ipha) 12860 12861 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12862 ASSERT(ill != NULL); 12863 12864 /* 12865 * FAST PATH for tcp packets 12866 */ 12867 12868 /* u1 is # words of IP options */ 12869 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12870 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12871 12872 /* IP options present */ 12873 if (u1) { 12874 goto ipoptions; 12875 } else if (!mctl_present) { 12876 /* Check the IP header checksum. */ 12877 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12878 /* Clear the IP header h/w cksum flag */ 12879 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12880 } else if (!mctl_present) { 12881 /* 12882 * Don't verify header checksum if this packet 12883 * is coming back from AH/ESP as we already did it. 12884 */ 12885 #define uph ((uint16_t *)ipha) 12886 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12887 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12888 #undef uph 12889 /* finish doing IP checksum */ 12890 sum = (sum & 0xFFFF) + (sum >> 16); 12891 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12892 if (sum != 0 && sum != 0xFFFF) { 12893 BUMP_MIB(ill->ill_ip_mib, 12894 ipIfStatsInCksumErrs); 12895 goto error; 12896 } 12897 } 12898 } 12899 12900 if (!mctl_present) { 12901 UPDATE_IB_PKT_COUNT(ire); 12902 ire->ire_last_used_time = lbolt; 12903 } 12904 12905 /* packet part of fragmented IP packet? */ 12906 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12907 if (u1 & (IPH_MF | IPH_OFFSET)) { 12908 goto fragmented; 12909 } 12910 12911 /* u1 = IP header length (20 bytes) */ 12912 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12913 12914 /* does packet contain IP+TCP headers? */ 12915 len = mp->b_wptr - rptr; 12916 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12917 IP_STAT(ipst, ip_tcppullup); 12918 goto tcppullup; 12919 } 12920 12921 /* TCP options present? */ 12922 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12923 12924 /* 12925 * If options need to be pulled up, then goto tcpoptions. 12926 * otherwise we are still in the fast path 12927 */ 12928 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12929 IP_STAT(ipst, ip_tcpoptions); 12930 goto tcpoptions; 12931 } 12932 12933 /* multiple mblks of tcp data? */ 12934 if ((mp1 = mp->b_cont) != NULL) { 12935 IP_STAT(ipst, ip_multipkttcp); 12936 len += msgdsize(mp1); 12937 } 12938 12939 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12940 12941 /* part of pseudo checksum */ 12942 12943 /* TCP datagram length */ 12944 u1 = len - IP_SIMPLE_HDR_LENGTH; 12945 12946 #define iphs ((uint16_t *)ipha) 12947 12948 #ifdef _BIG_ENDIAN 12949 u1 += IPPROTO_TCP; 12950 #else 12951 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12952 #endif 12953 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12954 12955 /* 12956 * Revert to software checksum calculation if the interface 12957 * isn't capable of checksum offload or if IPsec is present. 12958 */ 12959 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12960 hck_flags = DB_CKSUMFLAGS(mp); 12961 12962 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12963 IP_STAT(ipst, ip_in_sw_cksum); 12964 12965 IP_CKSUM_RECV(hck_flags, u1, 12966 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12967 (int32_t)((uchar_t *)up - rptr), 12968 mp, mp1, cksum_err); 12969 12970 if (cksum_err) { 12971 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12972 12973 if (hck_flags & HCK_FULLCKSUM) 12974 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 12975 else if (hck_flags & HCK_PARTIALCKSUM) 12976 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 12977 else 12978 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 12979 12980 goto error; 12981 } 12982 12983 try_again: 12984 12985 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 12986 zoneid, ipst)) == NULL) { 12987 /* Send the TH_RST */ 12988 goto no_conn; 12989 } 12990 12991 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12992 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 12993 12994 /* 12995 * TCP FAST PATH for AF_INET socket. 12996 * 12997 * TCP fast path to avoid extra work. An AF_INET socket type 12998 * does not have facility to receive extra information via 12999 * ip_process or ip_add_info. Also, when the connection was 13000 * established, we made a check if this connection is impacted 13001 * by any global IPsec policy or per connection policy (a 13002 * policy that comes in effect later will not apply to this 13003 * connection). Since all this can be determined at the 13004 * connection establishment time, a quick check of flags 13005 * can avoid extra work. 13006 */ 13007 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13008 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13009 ASSERT(first_mp == mp); 13010 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13011 if (tcph_flags != (TH_SYN | TH_ACK)) { 13012 SET_SQUEUE(mp, tcp_rput_data, connp); 13013 return (mp); 13014 } 13015 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13016 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13017 SET_SQUEUE(mp, tcp_input, connp); 13018 return (mp); 13019 } 13020 13021 if (tcph_flags == TH_SYN) { 13022 if (IPCL_IS_TCP(connp)) { 13023 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13024 DB_CKSUMSTART(mp) = 13025 (intptr_t)ip_squeue_get(ill_ring); 13026 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13027 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13028 BUMP_MIB(ill->ill_ip_mib, 13029 ipIfStatsHCInDelivers); 13030 SET_SQUEUE(mp, connp->conn_recv, connp); 13031 return (mp); 13032 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13033 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13034 BUMP_MIB(ill->ill_ip_mib, 13035 ipIfStatsHCInDelivers); 13036 ip_squeue_enter_unbound++; 13037 SET_SQUEUE(mp, tcp_conn_request_unbound, 13038 connp); 13039 return (mp); 13040 } 13041 syn_present = B_TRUE; 13042 } 13043 } 13044 13045 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13046 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13047 13048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13049 /* No need to send this packet to TCP */ 13050 if ((flags & TH_RST) || (flags & TH_URG)) { 13051 CONN_DEC_REF(connp); 13052 freemsg(first_mp); 13053 return (NULL); 13054 } 13055 if (flags & TH_ACK) { 13056 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13057 ipst->ips_netstack->netstack_tcp, connp); 13058 CONN_DEC_REF(connp); 13059 return (NULL); 13060 } 13061 13062 CONN_DEC_REF(connp); 13063 freemsg(first_mp); 13064 return (NULL); 13065 } 13066 13067 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13068 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13069 ipha, NULL, mctl_present); 13070 if (first_mp == NULL) { 13071 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13072 CONN_DEC_REF(connp); 13073 return (NULL); 13074 } 13075 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13076 ASSERT(syn_present); 13077 if (mctl_present) { 13078 ASSERT(first_mp != mp); 13079 first_mp->b_datap->db_struioflag |= 13080 STRUIO_POLICY; 13081 } else { 13082 ASSERT(first_mp == mp); 13083 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13084 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13085 } 13086 } else { 13087 /* 13088 * Discard first_mp early since we're dealing with a 13089 * fully-connected conn_t and tcp doesn't do policy in 13090 * this case. 13091 */ 13092 if (mctl_present) { 13093 freeb(first_mp); 13094 mctl_present = B_FALSE; 13095 } 13096 first_mp = mp; 13097 } 13098 } 13099 13100 /* Initiate IPPF processing for fastpath */ 13101 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13102 uint32_t ill_index; 13103 13104 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13105 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13106 if (mp == NULL) { 13107 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13108 "deferred/dropped during IPPF processing\n")); 13109 CONN_DEC_REF(connp); 13110 if (mctl_present) 13111 freeb(first_mp); 13112 return (NULL); 13113 } else if (mctl_present) { 13114 /* 13115 * ip_process might return a new mp. 13116 */ 13117 ASSERT(first_mp != mp); 13118 first_mp->b_cont = mp; 13119 } else { 13120 first_mp = mp; 13121 } 13122 13123 } 13124 13125 if (!syn_present && connp->conn_ip_recvpktinfo) { 13126 /* 13127 * TCP does not support IP_RECVPKTINFO for v4 so lets 13128 * make sure IPF_RECVIF is passed to ip_add_info. 13129 */ 13130 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13131 IPCL_ZONEID(connp), ipst); 13132 if (mp == NULL) { 13133 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13134 CONN_DEC_REF(connp); 13135 if (mctl_present) 13136 freeb(first_mp); 13137 return (NULL); 13138 } else if (mctl_present) { 13139 /* 13140 * ip_add_info might return a new mp. 13141 */ 13142 ASSERT(first_mp != mp); 13143 first_mp->b_cont = mp; 13144 } else { 13145 first_mp = mp; 13146 } 13147 } 13148 13149 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13150 if (IPCL_IS_TCP(connp)) { 13151 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13152 return (first_mp); 13153 } else { 13154 /* SOCK_RAW, IPPROTO_TCP case */ 13155 (connp->conn_recv)(connp, first_mp, NULL); 13156 CONN_DEC_REF(connp); 13157 return (NULL); 13158 } 13159 13160 no_conn: 13161 /* Initiate IPPf processing, if needed. */ 13162 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13163 uint32_t ill_index; 13164 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13165 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13166 if (first_mp == NULL) { 13167 return (NULL); 13168 } 13169 } 13170 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13171 13172 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13173 ipst->ips_netstack->netstack_tcp, NULL); 13174 return (NULL); 13175 ipoptions: 13176 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13177 goto slow_done; 13178 } 13179 13180 UPDATE_IB_PKT_COUNT(ire); 13181 ire->ire_last_used_time = lbolt; 13182 13183 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13184 if (u1 & (IPH_MF | IPH_OFFSET)) { 13185 fragmented: 13186 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13187 if (mctl_present) 13188 freeb(first_mp); 13189 goto slow_done; 13190 } 13191 /* 13192 * Make sure that first_mp points back to mp as 13193 * the mp we came in with could have changed in 13194 * ip_rput_fragment(). 13195 */ 13196 ASSERT(!mctl_present); 13197 ipha = (ipha_t *)mp->b_rptr; 13198 first_mp = mp; 13199 } 13200 13201 /* Now we have a complete datagram, destined for this machine. */ 13202 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13203 13204 len = mp->b_wptr - mp->b_rptr; 13205 /* Pull up a minimal TCP header, if necessary. */ 13206 if (len < (u1 + 20)) { 13207 tcppullup: 13208 if (!pullupmsg(mp, u1 + 20)) { 13209 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13210 goto error; 13211 } 13212 ipha = (ipha_t *)mp->b_rptr; 13213 len = mp->b_wptr - mp->b_rptr; 13214 } 13215 13216 /* 13217 * Extract the offset field from the TCP header. As usual, we 13218 * try to help the compiler more than the reader. 13219 */ 13220 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13221 if (offset != 5) { 13222 tcpoptions: 13223 if (offset < 5) { 13224 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13225 goto error; 13226 } 13227 /* 13228 * There must be TCP options. 13229 * Make sure we can grab them. 13230 */ 13231 offset <<= 2; 13232 offset += u1; 13233 if (len < offset) { 13234 if (!pullupmsg(mp, offset)) { 13235 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13236 goto error; 13237 } 13238 ipha = (ipha_t *)mp->b_rptr; 13239 len = mp->b_wptr - rptr; 13240 } 13241 } 13242 13243 /* Get the total packet length in len, including headers. */ 13244 if (mp->b_cont) 13245 len = msgdsize(mp); 13246 13247 /* 13248 * Check the TCP checksum by pulling together the pseudo- 13249 * header checksum, and passing it to ip_csum to be added in 13250 * with the TCP datagram. 13251 * 13252 * Since we are not using the hwcksum if available we must 13253 * clear the flag. We may come here via tcppullup or tcpoptions. 13254 * If either of these fails along the way the mblk is freed. 13255 * If this logic ever changes and mblk is reused to say send 13256 * ICMP's back, then this flag may need to be cleared in 13257 * other places as well. 13258 */ 13259 DB_CKSUMFLAGS(mp) = 0; 13260 13261 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13262 13263 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13264 #ifdef _BIG_ENDIAN 13265 u1 += IPPROTO_TCP; 13266 #else 13267 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13268 #endif 13269 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13270 /* 13271 * Not M_DATA mblk or its a dup, so do the checksum now. 13272 */ 13273 IP_STAT(ipst, ip_in_sw_cksum); 13274 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13275 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13276 goto error; 13277 } 13278 13279 IP_STAT(ipst, ip_tcp_slow_path); 13280 goto try_again; 13281 #undef iphs 13282 #undef rptr 13283 13284 error: 13285 freemsg(first_mp); 13286 slow_done: 13287 return (NULL); 13288 } 13289 13290 /* ARGSUSED */ 13291 static void 13292 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13293 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13294 { 13295 conn_t *connp; 13296 uint32_t sum; 13297 uint32_t u1; 13298 ssize_t len; 13299 sctp_hdr_t *sctph; 13300 zoneid_t zoneid = ire->ire_zoneid; 13301 uint32_t pktsum; 13302 uint32_t calcsum; 13303 uint32_t ports; 13304 in6_addr_t map_src, map_dst; 13305 ill_t *ill = (ill_t *)q->q_ptr; 13306 ip_stack_t *ipst; 13307 sctp_stack_t *sctps; 13308 boolean_t sctp_csum_err = B_FALSE; 13309 13310 ASSERT(recv_ill != NULL); 13311 ipst = recv_ill->ill_ipst; 13312 sctps = ipst->ips_netstack->netstack_sctp; 13313 13314 #define rptr ((uchar_t *)ipha) 13315 13316 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13317 ASSERT(ill != NULL); 13318 13319 /* u1 is # words of IP options */ 13320 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13321 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13322 13323 /* IP options present */ 13324 if (u1 > 0) { 13325 goto ipoptions; 13326 } else { 13327 /* Check the IP header checksum. */ 13328 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13329 !mctl_present) { 13330 #define uph ((uint16_t *)ipha) 13331 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13332 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13333 #undef uph 13334 /* finish doing IP checksum */ 13335 sum = (sum & 0xFFFF) + (sum >> 16); 13336 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13337 /* 13338 * Don't verify header checksum if this packet 13339 * is coming back from AH/ESP as we already did it. 13340 */ 13341 if (sum != 0 && sum != 0xFFFF) { 13342 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13343 goto error; 13344 } 13345 } 13346 /* 13347 * Since there is no SCTP h/w cksum support yet, just 13348 * clear the flag. 13349 */ 13350 DB_CKSUMFLAGS(mp) = 0; 13351 } 13352 13353 /* 13354 * Don't verify header checksum if this packet is coming 13355 * back from AH/ESP as we already did it. 13356 */ 13357 if (!mctl_present) { 13358 UPDATE_IB_PKT_COUNT(ire); 13359 ire->ire_last_used_time = lbolt; 13360 } 13361 13362 /* packet part of fragmented IP packet? */ 13363 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13364 if (u1 & (IPH_MF | IPH_OFFSET)) 13365 goto fragmented; 13366 13367 /* u1 = IP header length (20 bytes) */ 13368 u1 = IP_SIMPLE_HDR_LENGTH; 13369 13370 find_sctp_client: 13371 /* Pullup if we don't have the sctp common header. */ 13372 len = MBLKL(mp); 13373 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13374 if (mp->b_cont == NULL || 13375 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13376 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13377 goto error; 13378 } 13379 ipha = (ipha_t *)mp->b_rptr; 13380 len = MBLKL(mp); 13381 } 13382 13383 sctph = (sctp_hdr_t *)(rptr + u1); 13384 #ifdef DEBUG 13385 if (!skip_sctp_cksum) { 13386 #endif 13387 pktsum = sctph->sh_chksum; 13388 sctph->sh_chksum = 0; 13389 calcsum = sctp_cksum(mp, u1); 13390 sctph->sh_chksum = pktsum; 13391 if (calcsum != pktsum) 13392 sctp_csum_err = B_TRUE; 13393 #ifdef DEBUG /* skip_sctp_cksum */ 13394 } 13395 #endif 13396 /* get the ports */ 13397 ports = *(uint32_t *)&sctph->sh_sport; 13398 13399 IRE_REFRELE(ire); 13400 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13401 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13402 if (sctp_csum_err) { 13403 /* 13404 * No potential sctp checksum errors go to the Sun 13405 * sctp stack however they might be Adler-32 summed 13406 * packets a userland stack bound to a raw IP socket 13407 * could reasonably use. Note though that Adler-32 is 13408 * a long deprecated algorithm and customer sctp 13409 * networks should eventually migrate to CRC-32 at 13410 * which time this facility should be removed. 13411 */ 13412 flags |= IP_FF_SCTP_CSUM_ERR; 13413 goto no_conn; 13414 } 13415 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13416 sctps)) == NULL) { 13417 /* Check for raw socket or OOTB handling */ 13418 goto no_conn; 13419 } 13420 13421 /* Found a client; up it goes */ 13422 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13423 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13424 return; 13425 13426 no_conn: 13427 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13428 ports, mctl_present, flags, B_TRUE, zoneid); 13429 return; 13430 13431 ipoptions: 13432 DB_CKSUMFLAGS(mp) = 0; 13433 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13434 goto slow_done; 13435 13436 UPDATE_IB_PKT_COUNT(ire); 13437 ire->ire_last_used_time = lbolt; 13438 13439 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13440 if (u1 & (IPH_MF | IPH_OFFSET)) { 13441 fragmented: 13442 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13443 goto slow_done; 13444 /* 13445 * Make sure that first_mp points back to mp as 13446 * the mp we came in with could have changed in 13447 * ip_rput_fragment(). 13448 */ 13449 ASSERT(!mctl_present); 13450 ipha = (ipha_t *)mp->b_rptr; 13451 first_mp = mp; 13452 } 13453 13454 /* Now we have a complete datagram, destined for this machine. */ 13455 u1 = IPH_HDR_LENGTH(ipha); 13456 goto find_sctp_client; 13457 #undef iphs 13458 #undef rptr 13459 13460 error: 13461 freemsg(first_mp); 13462 slow_done: 13463 IRE_REFRELE(ire); 13464 } 13465 13466 #define VER_BITS 0xF0 13467 #define VERSION_6 0x60 13468 13469 static boolean_t 13470 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13471 ipaddr_t *dstp, ip_stack_t *ipst) 13472 { 13473 uint_t opt_len; 13474 ipha_t *ipha; 13475 ssize_t len; 13476 uint_t pkt_len; 13477 13478 ASSERT(ill != NULL); 13479 IP_STAT(ipst, ip_ipoptions); 13480 ipha = *iphapp; 13481 13482 #define rptr ((uchar_t *)ipha) 13483 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13484 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13486 freemsg(mp); 13487 return (B_FALSE); 13488 } 13489 13490 /* multiple mblk or too short */ 13491 pkt_len = ntohs(ipha->ipha_length); 13492 13493 /* Get the number of words of IP options in the IP header. */ 13494 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13495 if (opt_len) { 13496 /* IP Options present! Validate and process. */ 13497 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13498 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13499 goto done; 13500 } 13501 /* 13502 * Recompute complete header length and make sure we 13503 * have access to all of it. 13504 */ 13505 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13506 if (len > (mp->b_wptr - rptr)) { 13507 if (len > pkt_len) { 13508 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13509 goto done; 13510 } 13511 if (!pullupmsg(mp, len)) { 13512 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13513 goto done; 13514 } 13515 ipha = (ipha_t *)mp->b_rptr; 13516 } 13517 /* 13518 * Go off to ip_rput_options which returns the next hop 13519 * destination address, which may have been affected 13520 * by source routing. 13521 */ 13522 IP_STAT(ipst, ip_opt); 13523 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13524 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13525 return (B_FALSE); 13526 } 13527 } 13528 *iphapp = ipha; 13529 return (B_TRUE); 13530 done: 13531 /* clear b_prev - used by ip_mroute_decap */ 13532 mp->b_prev = NULL; 13533 freemsg(mp); 13534 return (B_FALSE); 13535 #undef rptr 13536 } 13537 13538 /* 13539 * Deal with the fact that there is no ire for the destination. 13540 */ 13541 static ire_t * 13542 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13543 { 13544 ipha_t *ipha; 13545 ill_t *ill; 13546 ire_t *ire; 13547 ip_stack_t *ipst; 13548 enum ire_forward_action ret_action; 13549 13550 ipha = (ipha_t *)mp->b_rptr; 13551 ill = (ill_t *)q->q_ptr; 13552 13553 ASSERT(ill != NULL); 13554 ipst = ill->ill_ipst; 13555 13556 /* 13557 * No IRE for this destination, so it can't be for us. 13558 * Unless we are forwarding, drop the packet. 13559 * We have to let source routed packets through 13560 * since we don't yet know if they are 'ping -l' 13561 * packets i.e. if they will go out over the 13562 * same interface as they came in on. 13563 */ 13564 if (ll_multicast) { 13565 freemsg(mp); 13566 return (NULL); 13567 } 13568 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13569 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13570 freemsg(mp); 13571 return (NULL); 13572 } 13573 13574 /* 13575 * Mark this packet as having originated externally. 13576 * 13577 * For non-forwarding code path, ire_send later double 13578 * checks this interface to see if it is still exists 13579 * post-ARP resolution. 13580 * 13581 * Also, IPQOS uses this to differentiate between 13582 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13583 * QOS packet processing in ip_wput_attach_llhdr(). 13584 * The QoS module can mark the b_band for a fastpath message 13585 * or the dl_priority field in a unitdata_req header for 13586 * CoS marking. This info can only be found in 13587 * ip_wput_attach_llhdr(). 13588 */ 13589 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13590 /* 13591 * Clear the indication that this may have a hardware checksum 13592 * as we are not using it 13593 */ 13594 DB_CKSUMFLAGS(mp) = 0; 13595 13596 ire = ire_forward(dst, &ret_action, NULL, NULL, 13597 msg_getlabel(mp), ipst); 13598 13599 if (ire == NULL && ret_action == Forward_check_multirt) { 13600 /* Let ip_newroute handle CGTP */ 13601 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13602 return (NULL); 13603 } 13604 13605 if (ire != NULL) 13606 return (ire); 13607 13608 mp->b_prev = mp->b_next = 0; 13609 13610 if (ret_action == Forward_blackhole) { 13611 freemsg(mp); 13612 return (NULL); 13613 } 13614 /* send icmp unreachable */ 13615 q = WR(q); 13616 /* Sent by forwarding path, and router is global zone */ 13617 if (ip_source_routed(ipha, ipst)) { 13618 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13619 GLOBAL_ZONEID, ipst); 13620 } else { 13621 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13622 ipst); 13623 } 13624 13625 return (NULL); 13626 13627 } 13628 13629 /* 13630 * check ip header length and align it. 13631 */ 13632 static boolean_t 13633 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13634 { 13635 ssize_t len; 13636 ill_t *ill; 13637 ipha_t *ipha; 13638 13639 len = MBLKL(mp); 13640 13641 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13642 ill = (ill_t *)q->q_ptr; 13643 13644 if (!OK_32PTR(mp->b_rptr)) 13645 IP_STAT(ipst, ip_notaligned1); 13646 else 13647 IP_STAT(ipst, ip_notaligned2); 13648 /* Guard against bogus device drivers */ 13649 if (len < 0) { 13650 /* clear b_prev - used by ip_mroute_decap */ 13651 mp->b_prev = NULL; 13652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13653 freemsg(mp); 13654 return (B_FALSE); 13655 } 13656 13657 if (ip_rput_pullups++ == 0) { 13658 ipha = (ipha_t *)mp->b_rptr; 13659 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13660 "ip_check_and_align_header: %s forced us to " 13661 " pullup pkt, hdr len %ld, hdr addr %p", 13662 ill->ill_name, len, (void *)ipha); 13663 } 13664 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13665 /* clear b_prev - used by ip_mroute_decap */ 13666 mp->b_prev = NULL; 13667 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13668 freemsg(mp); 13669 return (B_FALSE); 13670 } 13671 } 13672 return (B_TRUE); 13673 } 13674 13675 /* 13676 * Handle the situation where a packet came in on `ill' but matched an IRE 13677 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13678 * for interface statistics. 13679 */ 13680 ire_t * 13681 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13682 { 13683 ire_t *new_ire; 13684 ill_t *ire_ill; 13685 uint_t ifindex; 13686 ip_stack_t *ipst = ill->ill_ipst; 13687 boolean_t strict_check = B_FALSE; 13688 13689 /* 13690 * IPMP common case: if IRE and ILL are in the same group, there's no 13691 * issue (e.g. packet received on an underlying interface matched an 13692 * IRE_LOCAL on its associated group interface). 13693 */ 13694 if (ire->ire_rfq != NULL && 13695 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13696 return (ire); 13697 } 13698 13699 /* 13700 * Do another ire lookup here, using the ingress ill, to see if the 13701 * interface is in a usesrc group. 13702 * As long as the ills belong to the same group, we don't consider 13703 * them to be arriving on the wrong interface. Thus, if the switch 13704 * is doing inbound load spreading, we won't drop packets when the 13705 * ip*_strict_dst_multihoming switch is on. 13706 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13707 * where the local address may not be unique. In this case we were 13708 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13709 * actually returned. The new lookup, which is more specific, should 13710 * only find the IRE_LOCAL associated with the ingress ill if one 13711 * exists. 13712 */ 13713 13714 if (ire->ire_ipversion == IPV4_VERSION) { 13715 if (ipst->ips_ip_strict_dst_multihoming) 13716 strict_check = B_TRUE; 13717 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13718 ill->ill_ipif, ALL_ZONES, NULL, 13719 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13720 } else { 13721 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13722 if (ipst->ips_ipv6_strict_dst_multihoming) 13723 strict_check = B_TRUE; 13724 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13725 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13726 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13727 } 13728 /* 13729 * If the same ire that was returned in ip_input() is found then this 13730 * is an indication that usesrc groups are in use. The packet 13731 * arrived on a different ill in the group than the one associated with 13732 * the destination address. If a different ire was found then the same 13733 * IP address must be hosted on multiple ills. This is possible with 13734 * unnumbered point2point interfaces. We switch to use this new ire in 13735 * order to have accurate interface statistics. 13736 */ 13737 if (new_ire != NULL) { 13738 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13739 ire_refrele(ire); 13740 ire = new_ire; 13741 } else { 13742 ire_refrele(new_ire); 13743 } 13744 return (ire); 13745 } else if ((ire->ire_rfq == NULL) && 13746 (ire->ire_ipversion == IPV4_VERSION)) { 13747 /* 13748 * The best match could have been the original ire which 13749 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13750 * the strict multihoming checks are irrelevant as we consider 13751 * local addresses hosted on lo0 to be interface agnostic. We 13752 * only expect a null ire_rfq on IREs which are associated with 13753 * lo0 hence we can return now. 13754 */ 13755 return (ire); 13756 } 13757 13758 /* 13759 * Chase pointers once and store locally. 13760 */ 13761 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13762 (ill_t *)(ire->ire_rfq->q_ptr); 13763 ifindex = ill->ill_usesrc_ifindex; 13764 13765 /* 13766 * Check if it's a legal address on the 'usesrc' interface. 13767 */ 13768 if ((ifindex != 0) && (ire_ill != NULL) && 13769 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13770 return (ire); 13771 } 13772 13773 /* 13774 * If the ip*_strict_dst_multihoming switch is on then we can 13775 * only accept this packet if the interface is marked as routing. 13776 */ 13777 if (!(strict_check)) 13778 return (ire); 13779 13780 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13781 ILLF_ROUTER) != 0) { 13782 return (ire); 13783 } 13784 13785 ire_refrele(ire); 13786 return (NULL); 13787 } 13788 13789 /* 13790 * 13791 * This is the fast forward path. If we are here, we dont need to 13792 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13793 * needed to find the nexthop in this case is much simpler 13794 */ 13795 ire_t * 13796 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13797 { 13798 ipha_t *ipha; 13799 ire_t *src_ire; 13800 ill_t *stq_ill; 13801 uint_t hlen; 13802 uint_t pkt_len; 13803 uint32_t sum; 13804 queue_t *dev_q; 13805 ip_stack_t *ipst = ill->ill_ipst; 13806 mblk_t *fpmp; 13807 enum ire_forward_action ret_action; 13808 13809 ipha = (ipha_t *)mp->b_rptr; 13810 13811 if (ire != NULL && 13812 ire->ire_zoneid != GLOBAL_ZONEID && 13813 ire->ire_zoneid != ALL_ZONES) { 13814 /* 13815 * Should only use IREs that are visible to the global 13816 * zone for forwarding. 13817 */ 13818 ire_refrele(ire); 13819 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13820 /* 13821 * ire_cache_lookup() can return ire of IRE_LOCAL in 13822 * transient cases. In such case, just drop the packet 13823 */ 13824 if (ire != NULL && ire->ire_type != IRE_CACHE) 13825 goto indiscard; 13826 } 13827 13828 /* 13829 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13830 * The loopback address check for both src and dst has already 13831 * been checked in ip_input 13832 */ 13833 13834 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13835 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13836 goto drop; 13837 } 13838 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13839 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13840 13841 if (src_ire != NULL) { 13842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13843 ire_refrele(src_ire); 13844 goto drop; 13845 } 13846 13847 /* No ire cache of nexthop. So first create one */ 13848 if (ire == NULL) { 13849 13850 ire = ire_forward_simple(dst, &ret_action, ipst); 13851 13852 /* 13853 * We only come to ip_fast_forward if ip_cgtp_filter 13854 * is not set. So ire_forward() should not return with 13855 * Forward_check_multirt as the next action. 13856 */ 13857 ASSERT(ret_action != Forward_check_multirt); 13858 if (ire == NULL) { 13859 /* An attempt was made to forward the packet */ 13860 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13861 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13862 mp->b_prev = mp->b_next = 0; 13863 /* send icmp unreachable */ 13864 /* Sent by forwarding path, and router is global zone */ 13865 if (ret_action == Forward_ret_icmp_err) { 13866 if (ip_source_routed(ipha, ipst)) { 13867 icmp_unreachable(ill->ill_wq, mp, 13868 ICMP_SOURCE_ROUTE_FAILED, 13869 GLOBAL_ZONEID, ipst); 13870 } else { 13871 icmp_unreachable(ill->ill_wq, mp, 13872 ICMP_HOST_UNREACHABLE, 13873 GLOBAL_ZONEID, ipst); 13874 } 13875 } else { 13876 freemsg(mp); 13877 } 13878 return (NULL); 13879 } 13880 } 13881 13882 /* 13883 * Forwarding fastpath exception case: 13884 * If any of the following are true, we take the slowpath: 13885 * o forwarding is not enabled 13886 * o incoming and outgoing interface are the same, or in the same 13887 * IPMP group. 13888 * o corresponding ire is in incomplete state 13889 * o packet needs fragmentation 13890 * o ARP cache is not resolved 13891 * 13892 * The codeflow from here on is thus: 13893 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13894 */ 13895 pkt_len = ntohs(ipha->ipha_length); 13896 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13897 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13898 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13899 (ire->ire_nce == NULL) || 13900 (pkt_len > ire->ire_max_frag) || 13901 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13902 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13903 ipha->ipha_ttl <= 1) { 13904 ip_rput_process_forward(ill->ill_rq, mp, ire, 13905 ipha, ill, B_FALSE, B_TRUE); 13906 return (ire); 13907 } 13908 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13909 13910 DTRACE_PROBE4(ip4__forwarding__start, 13911 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13912 13913 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13914 ipst->ips_ipv4firewall_forwarding, 13915 ill, stq_ill, ipha, mp, mp, 0, ipst); 13916 13917 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13918 13919 if (mp == NULL) 13920 goto drop; 13921 13922 mp->b_datap->db_struioun.cksum.flags = 0; 13923 /* Adjust the checksum to reflect the ttl decrement. */ 13924 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13925 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13926 ipha->ipha_ttl--; 13927 13928 /* 13929 * Write the link layer header. We can do this safely here, 13930 * because we have already tested to make sure that the IP 13931 * policy is not set, and that we have a fast path destination 13932 * header. 13933 */ 13934 mp->b_rptr -= hlen; 13935 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13936 13937 UPDATE_IB_PKT_COUNT(ire); 13938 ire->ire_last_used_time = lbolt; 13939 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13940 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13941 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13942 13943 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 13944 dev_q = ire->ire_stq->q_next; 13945 if (DEV_Q_FLOW_BLOCKED(dev_q)) 13946 goto indiscard; 13947 } 13948 13949 DTRACE_PROBE4(ip4__physical__out__start, 13950 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13951 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13952 ipst->ips_ipv4firewall_physical_out, 13953 NULL, stq_ill, ipha, mp, mp, 0, ipst); 13954 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 13955 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 13956 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 13957 ip6_t *, NULL, int, 0); 13958 13959 if (mp != NULL) { 13960 if (ipst->ips_ip4_observe.he_interested) { 13961 zoneid_t szone; 13962 13963 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 13964 ipst, ALL_ZONES); 13965 /* 13966 * The IP observability hook expects b_rptr to be 13967 * where the IP header starts, so advance past the 13968 * link layer header. 13969 */ 13970 mp->b_rptr += hlen; 13971 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 13972 ALL_ZONES, ill, ipst); 13973 mp->b_rptr -= hlen; 13974 } 13975 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 13976 } 13977 return (ire); 13978 13979 indiscard: 13980 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13981 drop: 13982 if (mp != NULL) 13983 freemsg(mp); 13984 return (ire); 13985 13986 } 13987 13988 /* 13989 * This function is called in the forwarding slowpath, when 13990 * either the ire lacks the link-layer address, or the packet needs 13991 * further processing(eg. fragmentation), before transmission. 13992 */ 13993 13994 static void 13995 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13996 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 13997 { 13998 queue_t *dev_q; 13999 ire_t *src_ire; 14000 ip_stack_t *ipst = ill->ill_ipst; 14001 boolean_t same_illgrp = B_FALSE; 14002 14003 ASSERT(ire->ire_stq != NULL); 14004 14005 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14006 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14007 14008 /* 14009 * If the caller of this function is ip_fast_forward() skip the 14010 * next three checks as it does not apply. 14011 */ 14012 if (from_ip_fast_forward) 14013 goto skip; 14014 14015 if (ll_multicast != 0) { 14016 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14017 goto drop_pkt; 14018 } 14019 14020 /* 14021 * check if ipha_src is a broadcast address. Note that this 14022 * check is redundant when we get here from ip_fast_forward() 14023 * which has already done this check. However, since we can 14024 * also get here from ip_rput_process_broadcast() or, for 14025 * for the slow path through ip_fast_forward(), we perform 14026 * the check again for code-reusability 14027 */ 14028 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14029 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14030 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14031 if (src_ire != NULL) 14032 ire_refrele(src_ire); 14033 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14034 ip2dbg(("ip_rput_process_forward: Received packet with" 14035 " bad src/dst address on %s\n", ill->ill_name)); 14036 goto drop_pkt; 14037 } 14038 14039 /* 14040 * Check if we want to forward this one at this time. 14041 * We allow source routed packets on a host provided that 14042 * they go out the same ill or illgrp as they came in on. 14043 * 14044 * XXX To be quicker, we may wish to not chase pointers to 14045 * get the ILLF_ROUTER flag and instead store the 14046 * forwarding policy in the ire. An unfortunate 14047 * side-effect of that would be requiring an ire flush 14048 * whenever the ILLF_ROUTER flag changes. 14049 */ 14050 skip: 14051 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14052 14053 if (((ill->ill_flags & 14054 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14055 !(ip_source_routed(ipha, ipst) && 14056 (ire->ire_rfq == q || same_illgrp))) { 14057 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14058 if (ip_source_routed(ipha, ipst)) { 14059 q = WR(q); 14060 /* 14061 * Clear the indication that this may have 14062 * hardware checksum as we are not using it. 14063 */ 14064 DB_CKSUMFLAGS(mp) = 0; 14065 /* Sent by forwarding path, and router is global zone */ 14066 icmp_unreachable(q, mp, 14067 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14068 return; 14069 } 14070 goto drop_pkt; 14071 } 14072 14073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14074 14075 /* Packet is being forwarded. Turning off hwcksum flag. */ 14076 DB_CKSUMFLAGS(mp) = 0; 14077 if (ipst->ips_ip_g_send_redirects) { 14078 /* 14079 * Check whether the incoming interface and outgoing 14080 * interface is part of the same group. If so, 14081 * send redirects. 14082 * 14083 * Check the source address to see if it originated 14084 * on the same logical subnet it is going back out on. 14085 * If so, we should be able to send it a redirect. 14086 * Avoid sending a redirect if the destination 14087 * is directly connected (i.e., ipha_dst is the same 14088 * as ire_gateway_addr or the ire_addr of the 14089 * nexthop IRE_CACHE ), or if the packet was source 14090 * routed out this interface. 14091 */ 14092 ipaddr_t src, nhop; 14093 mblk_t *mp1; 14094 ire_t *nhop_ire = NULL; 14095 14096 /* 14097 * Check whether ire_rfq and q are from the same ill or illgrp. 14098 * If so, send redirects. 14099 */ 14100 if ((ire->ire_rfq == q || same_illgrp) && 14101 !ip_source_routed(ipha, ipst)) { 14102 14103 nhop = (ire->ire_gateway_addr != 0 ? 14104 ire->ire_gateway_addr : ire->ire_addr); 14105 14106 if (ipha->ipha_dst == nhop) { 14107 /* 14108 * We avoid sending a redirect if the 14109 * destination is directly connected 14110 * because it is possible that multiple 14111 * IP subnets may have been configured on 14112 * the link, and the source may not 14113 * be on the same subnet as ip destination, 14114 * even though they are on the same 14115 * physical link. 14116 */ 14117 goto sendit; 14118 } 14119 14120 src = ipha->ipha_src; 14121 14122 /* 14123 * We look up the interface ire for the nexthop, 14124 * to see if ipha_src is in the same subnet 14125 * as the nexthop. 14126 * 14127 * Note that, if, in the future, IRE_CACHE entries 14128 * are obsoleted, this lookup will not be needed, 14129 * as the ire passed to this function will be the 14130 * same as the nhop_ire computed below. 14131 */ 14132 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14133 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14134 0, NULL, MATCH_IRE_TYPE, ipst); 14135 14136 if (nhop_ire != NULL) { 14137 if ((src & nhop_ire->ire_mask) == 14138 (nhop & nhop_ire->ire_mask)) { 14139 /* 14140 * The source is directly connected. 14141 * Just copy the ip header (which is 14142 * in the first mblk) 14143 */ 14144 mp1 = copyb(mp); 14145 if (mp1 != NULL) { 14146 icmp_send_redirect(WR(q), mp1, 14147 nhop, ipst); 14148 } 14149 } 14150 ire_refrele(nhop_ire); 14151 } 14152 } 14153 } 14154 sendit: 14155 dev_q = ire->ire_stq->q_next; 14156 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14157 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14158 freemsg(mp); 14159 return; 14160 } 14161 14162 ip_rput_forward(ire, ipha, mp, ill); 14163 return; 14164 14165 drop_pkt: 14166 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14167 freemsg(mp); 14168 } 14169 14170 ire_t * 14171 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14172 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14173 { 14174 queue_t *q; 14175 uint16_t hcksumflags; 14176 ip_stack_t *ipst = ill->ill_ipst; 14177 14178 q = *qp; 14179 14180 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14181 14182 /* 14183 * Clear the indication that this may have hardware 14184 * checksum as we are not using it for forwarding. 14185 */ 14186 hcksumflags = DB_CKSUMFLAGS(mp); 14187 DB_CKSUMFLAGS(mp) = 0; 14188 14189 /* 14190 * Directed broadcast forwarding: if the packet came in over a 14191 * different interface then it is routed out over we can forward it. 14192 */ 14193 if (ipha->ipha_protocol == IPPROTO_TCP) { 14194 ire_refrele(ire); 14195 freemsg(mp); 14196 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14197 return (NULL); 14198 } 14199 /* 14200 * For multicast we have set dst to be INADDR_BROADCAST 14201 * for delivering to all STREAMS. 14202 */ 14203 if (!CLASSD(ipha->ipha_dst)) { 14204 ire_t *new_ire; 14205 ipif_t *ipif; 14206 14207 ipif = ipif_get_next_ipif(NULL, ill); 14208 if (ipif == NULL) { 14209 discard: ire_refrele(ire); 14210 freemsg(mp); 14211 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14212 return (NULL); 14213 } 14214 new_ire = ire_ctable_lookup(dst, 0, 0, 14215 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14216 ipif_refrele(ipif); 14217 14218 if (new_ire != NULL) { 14219 /* 14220 * If the matching IRE_BROADCAST is part of an IPMP 14221 * group, then drop the packet unless our ill has been 14222 * nominated to receive for the group. 14223 */ 14224 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14225 new_ire->ire_rfq != q) { 14226 ire_refrele(new_ire); 14227 goto discard; 14228 } 14229 14230 /* 14231 * In the special case of multirouted broadcast 14232 * packets, we unconditionally need to "gateway" 14233 * them to the appropriate interface here. 14234 * In the normal case, this cannot happen, because 14235 * there is no broadcast IRE tagged with the 14236 * RTF_MULTIRT flag. 14237 */ 14238 if (new_ire->ire_flags & RTF_MULTIRT) { 14239 ire_refrele(new_ire); 14240 if (ire->ire_rfq != NULL) { 14241 q = ire->ire_rfq; 14242 *qp = q; 14243 } 14244 } else { 14245 ire_refrele(ire); 14246 ire = new_ire; 14247 } 14248 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14249 if (!ipst->ips_ip_g_forward_directed_bcast) { 14250 /* 14251 * Free the message if 14252 * ip_g_forward_directed_bcast is turned 14253 * off for non-local broadcast. 14254 */ 14255 ire_refrele(ire); 14256 freemsg(mp); 14257 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14258 return (NULL); 14259 } 14260 } else { 14261 /* 14262 * This CGTP packet successfully passed the 14263 * CGTP filter, but the related CGTP 14264 * broadcast IRE has not been found, 14265 * meaning that the redundant ipif is 14266 * probably down. However, if we discarded 14267 * this packet, its duplicate would be 14268 * filtered out by the CGTP filter so none 14269 * of them would get through. So we keep 14270 * going with this one. 14271 */ 14272 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14273 if (ire->ire_rfq != NULL) { 14274 q = ire->ire_rfq; 14275 *qp = q; 14276 } 14277 } 14278 } 14279 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14280 /* 14281 * Verify that there are not more then one 14282 * IRE_BROADCAST with this broadcast address which 14283 * has ire_stq set. 14284 * TODO: simplify, loop over all IRE's 14285 */ 14286 ire_t *ire1; 14287 int num_stq = 0; 14288 mblk_t *mp1; 14289 14290 /* Find the first one with ire_stq set */ 14291 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14292 for (ire1 = ire; ire1 && 14293 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14294 ire1 = ire1->ire_next) 14295 ; 14296 if (ire1) { 14297 ire_refrele(ire); 14298 ire = ire1; 14299 IRE_REFHOLD(ire); 14300 } 14301 14302 /* Check if there are additional ones with stq set */ 14303 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14304 if (ire->ire_addr != ire1->ire_addr) 14305 break; 14306 if (ire1->ire_stq) { 14307 num_stq++; 14308 break; 14309 } 14310 } 14311 rw_exit(&ire->ire_bucket->irb_lock); 14312 if (num_stq == 1 && ire->ire_stq != NULL) { 14313 ip1dbg(("ip_rput_process_broadcast: directed " 14314 "broadcast to 0x%x\n", 14315 ntohl(ire->ire_addr))); 14316 mp1 = copymsg(mp); 14317 if (mp1) { 14318 switch (ipha->ipha_protocol) { 14319 case IPPROTO_UDP: 14320 ip_udp_input(q, mp1, ipha, ire, ill); 14321 break; 14322 default: 14323 ip_proto_input(q, mp1, ipha, ire, ill, 14324 0); 14325 break; 14326 } 14327 } 14328 /* 14329 * Adjust ttl to 2 (1+1 - the forward engine 14330 * will decrement it by one. 14331 */ 14332 if (ip_csum_hdr(ipha)) { 14333 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14334 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14335 freemsg(mp); 14336 ire_refrele(ire); 14337 return (NULL); 14338 } 14339 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14340 ipha->ipha_hdr_checksum = 0; 14341 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14342 ip_rput_process_forward(q, mp, ire, ipha, 14343 ill, ll_multicast, B_FALSE); 14344 ire_refrele(ire); 14345 return (NULL); 14346 } 14347 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14348 ntohl(ire->ire_addr))); 14349 } 14350 14351 /* Restore any hardware checksum flags */ 14352 DB_CKSUMFLAGS(mp) = hcksumflags; 14353 return (ire); 14354 } 14355 14356 /* ARGSUSED */ 14357 static boolean_t 14358 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14359 int *ll_multicast, ipaddr_t *dstp) 14360 { 14361 ip_stack_t *ipst = ill->ill_ipst; 14362 14363 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14364 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14365 ntohs(ipha->ipha_length)); 14366 14367 /* 14368 * So that we don't end up with dups, only one ill in an IPMP group is 14369 * nominated to receive multicast traffic. 14370 */ 14371 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14372 goto drop_pkt; 14373 14374 /* 14375 * Forward packets only if we have joined the allmulti 14376 * group on this interface. 14377 */ 14378 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14379 int retval; 14380 14381 /* 14382 * Clear the indication that this may have hardware 14383 * checksum as we are not using it. 14384 */ 14385 DB_CKSUMFLAGS(mp) = 0; 14386 retval = ip_mforward(ill, ipha, mp); 14387 /* ip_mforward updates mib variables if needed */ 14388 /* clear b_prev - used by ip_mroute_decap */ 14389 mp->b_prev = NULL; 14390 14391 switch (retval) { 14392 case 0: 14393 /* 14394 * pkt is okay and arrived on phyint. 14395 * 14396 * If we are running as a multicast router 14397 * we need to see all IGMP and/or PIM packets. 14398 */ 14399 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14400 (ipha->ipha_protocol == IPPROTO_PIM)) { 14401 goto done; 14402 } 14403 break; 14404 case -1: 14405 /* pkt is mal-formed, toss it */ 14406 goto drop_pkt; 14407 case 1: 14408 /* pkt is okay and arrived on a tunnel */ 14409 /* 14410 * If we are running a multicast router 14411 * we need to see all igmp packets. 14412 */ 14413 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14414 *dstp = INADDR_BROADCAST; 14415 *ll_multicast = 1; 14416 return (B_FALSE); 14417 } 14418 14419 goto drop_pkt; 14420 } 14421 } 14422 14423 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14424 /* 14425 * This might just be caused by the fact that 14426 * multiple IP Multicast addresses map to the same 14427 * link layer multicast - no need to increment counter! 14428 */ 14429 freemsg(mp); 14430 return (B_TRUE); 14431 } 14432 done: 14433 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14434 /* 14435 * This assumes the we deliver to all streams for multicast 14436 * and broadcast packets. 14437 */ 14438 *dstp = INADDR_BROADCAST; 14439 *ll_multicast = 1; 14440 return (B_FALSE); 14441 drop_pkt: 14442 ip2dbg(("ip_rput: drop pkt\n")); 14443 freemsg(mp); 14444 return (B_TRUE); 14445 } 14446 14447 /* 14448 * This function is used to both return an indication of whether or not 14449 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14450 * and in doing so, determine whether or not it is broadcast vs multicast. 14451 * For it to be a broadcast packet, we must have the appropriate mblk_t 14452 * hanging off the ill_t. If this is either not present or doesn't match 14453 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14454 * to be multicast. Thus NICs that have no broadcast address (or no 14455 * capability for one, such as point to point links) cannot return as 14456 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14457 * the return values simplifies the current use of the return value of this 14458 * function, which is to pass through the multicast/broadcast characteristic 14459 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14460 * changing the return value to some other symbol demands the appropriate 14461 * "translation" when hpe_flags is set prior to calling hook_run() for 14462 * packet events. 14463 */ 14464 int 14465 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14466 { 14467 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14468 mblk_t *bmp; 14469 14470 if (ind->dl_group_address) { 14471 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14472 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14473 MBLKL(mb) && 14474 (bmp = ill->ill_bcast_mp) != NULL) { 14475 dl_unitdata_req_t *dlur; 14476 uint8_t *bphys_addr; 14477 14478 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14479 if (ill->ill_sap_length < 0) 14480 bphys_addr = (uchar_t *)dlur + 14481 dlur->dl_dest_addr_offset; 14482 else 14483 bphys_addr = (uchar_t *)dlur + 14484 dlur->dl_dest_addr_offset + 14485 ill->ill_sap_length; 14486 14487 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14488 bphys_addr, ind->dl_dest_addr_length) == 0) { 14489 return (HPE_BROADCAST); 14490 } 14491 return (HPE_MULTICAST); 14492 } 14493 return (HPE_MULTICAST); 14494 } 14495 return (0); 14496 } 14497 14498 static boolean_t 14499 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14500 int *ll_multicast, mblk_t **mpp) 14501 { 14502 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14503 boolean_t must_copy = B_FALSE; 14504 struct iocblk *iocp; 14505 ipha_t *ipha; 14506 ip_stack_t *ipst = ill->ill_ipst; 14507 14508 #define rptr ((uchar_t *)ipha) 14509 14510 first_mp = *first_mpp; 14511 mp = *mpp; 14512 14513 ASSERT(first_mp == mp); 14514 14515 /* 14516 * if db_ref > 1 then copymsg and free original. Packet may be 14517 * changed and do not want other entity who has a reference to this 14518 * message to trip over the changes. This is a blind change because 14519 * trying to catch all places that might change packet is too 14520 * difficult (since it may be a module above this one) 14521 * 14522 * This corresponds to the non-fast path case. We walk down the full 14523 * chain in this case, and check the db_ref count of all the dblks, 14524 * and do a copymsg if required. It is possible that the db_ref counts 14525 * of the data blocks in the mblk chain can be different. 14526 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14527 * count of 1, followed by a M_DATA block with a ref count of 2, if 14528 * 'snoop' is running. 14529 */ 14530 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14531 if (mp1->b_datap->db_ref > 1) { 14532 must_copy = B_TRUE; 14533 break; 14534 } 14535 } 14536 14537 if (must_copy) { 14538 mp1 = copymsg(mp); 14539 if (mp1 == NULL) { 14540 for (mp1 = mp; mp1 != NULL; 14541 mp1 = mp1->b_cont) { 14542 mp1->b_next = NULL; 14543 mp1->b_prev = NULL; 14544 } 14545 freemsg(mp); 14546 if (ill != NULL) { 14547 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14548 } else { 14549 BUMP_MIB(&ipst->ips_ip_mib, 14550 ipIfStatsInDiscards); 14551 } 14552 return (B_TRUE); 14553 } 14554 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14555 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14556 /* Copy b_prev - used by ip_mroute_decap */ 14557 to_mp->b_prev = from_mp->b_prev; 14558 from_mp->b_prev = NULL; 14559 } 14560 *first_mpp = first_mp = mp1; 14561 freemsg(mp); 14562 mp = mp1; 14563 *mpp = mp1; 14564 } 14565 14566 ipha = (ipha_t *)mp->b_rptr; 14567 14568 /* 14569 * previous code has a case for M_DATA. 14570 * We want to check how that happens. 14571 */ 14572 ASSERT(first_mp->b_datap->db_type != M_DATA); 14573 switch (first_mp->b_datap->db_type) { 14574 case M_PROTO: 14575 case M_PCPROTO: 14576 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14577 DL_UNITDATA_IND) { 14578 /* Go handle anything other than data elsewhere. */ 14579 ip_rput_dlpi(q, mp); 14580 return (B_TRUE); 14581 } 14582 14583 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14584 /* Ditch the DLPI header. */ 14585 mp1 = mp->b_cont; 14586 ASSERT(first_mp == mp); 14587 *first_mpp = mp1; 14588 freeb(mp); 14589 *mpp = mp1; 14590 return (B_FALSE); 14591 case M_IOCACK: 14592 ip1dbg(("got iocack ")); 14593 iocp = (struct iocblk *)mp->b_rptr; 14594 switch (iocp->ioc_cmd) { 14595 case DL_IOC_HDR_INFO: 14596 ill = (ill_t *)q->q_ptr; 14597 ill_fastpath_ack(ill, mp); 14598 return (B_TRUE); 14599 default: 14600 putnext(q, mp); 14601 return (B_TRUE); 14602 } 14603 /* FALLTHRU */ 14604 case M_ERROR: 14605 case M_HANGUP: 14606 /* 14607 * Since this is on the ill stream we unconditionally 14608 * bump up the refcount 14609 */ 14610 ill_refhold(ill); 14611 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14612 return (B_TRUE); 14613 case M_CTL: 14614 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14615 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14616 IPHADA_M_CTL)) { 14617 /* 14618 * It's an IPsec accelerated packet. 14619 * Make sure that the ill from which we received the 14620 * packet has enabled IPsec hardware acceleration. 14621 */ 14622 if (!(ill->ill_capabilities & 14623 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14624 /* IPsec kstats: bean counter */ 14625 freemsg(mp); 14626 return (B_TRUE); 14627 } 14628 14629 /* 14630 * Make mp point to the mblk following the M_CTL, 14631 * then process according to type of mp. 14632 * After this processing, first_mp will point to 14633 * the data-attributes and mp to the pkt following 14634 * the M_CTL. 14635 */ 14636 mp = first_mp->b_cont; 14637 if (mp == NULL) { 14638 freemsg(first_mp); 14639 return (B_TRUE); 14640 } 14641 /* 14642 * A Hardware Accelerated packet can only be M_DATA 14643 * ESP or AH packet. 14644 */ 14645 if (mp->b_datap->db_type != M_DATA) { 14646 /* non-M_DATA IPsec accelerated packet */ 14647 IPSECHW_DEBUG(IPSECHW_PKT, 14648 ("non-M_DATA IPsec accelerated pkt\n")); 14649 freemsg(first_mp); 14650 return (B_TRUE); 14651 } 14652 ipha = (ipha_t *)mp->b_rptr; 14653 if (ipha->ipha_protocol != IPPROTO_AH && 14654 ipha->ipha_protocol != IPPROTO_ESP) { 14655 IPSECHW_DEBUG(IPSECHW_PKT, 14656 ("non-M_DATA IPsec accelerated pkt\n")); 14657 freemsg(first_mp); 14658 return (B_TRUE); 14659 } 14660 *mpp = mp; 14661 return (B_FALSE); 14662 } 14663 putnext(q, mp); 14664 return (B_TRUE); 14665 case M_IOCNAK: 14666 ip1dbg(("got iocnak ")); 14667 iocp = (struct iocblk *)mp->b_rptr; 14668 switch (iocp->ioc_cmd) { 14669 case DL_IOC_HDR_INFO: 14670 ip_rput_other(NULL, q, mp, NULL); 14671 return (B_TRUE); 14672 default: 14673 break; 14674 } 14675 /* FALLTHRU */ 14676 default: 14677 putnext(q, mp); 14678 return (B_TRUE); 14679 } 14680 } 14681 14682 /* Read side put procedure. Packets coming from the wire arrive here. */ 14683 void 14684 ip_rput(queue_t *q, mblk_t *mp) 14685 { 14686 ill_t *ill; 14687 union DL_primitives *dl; 14688 14689 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14690 14691 ill = (ill_t *)q->q_ptr; 14692 14693 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14694 /* 14695 * If things are opening or closing, only accept high-priority 14696 * DLPI messages. (On open ill->ill_ipif has not yet been 14697 * created; on close, things hanging off the ill may have been 14698 * freed already.) 14699 */ 14700 dl = (union DL_primitives *)mp->b_rptr; 14701 if (DB_TYPE(mp) != M_PCPROTO || 14702 dl->dl_primitive == DL_UNITDATA_IND) { 14703 inet_freemsg(mp); 14704 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14705 "ip_rput_end: q %p (%S)", q, "uninit"); 14706 return; 14707 } 14708 } 14709 14710 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14711 "ip_rput_end: q %p (%S)", q, "end"); 14712 14713 ip_input(ill, NULL, mp, NULL); 14714 } 14715 14716 static mblk_t * 14717 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14718 { 14719 mblk_t *mp1; 14720 boolean_t adjusted = B_FALSE; 14721 ip_stack_t *ipst = ill->ill_ipst; 14722 14723 IP_STAT(ipst, ip_db_ref); 14724 /* 14725 * The IP_RECVSLLA option depends on having the 14726 * link layer header. First check that: 14727 * a> the underlying device is of type ether, 14728 * since this option is currently supported only 14729 * over ethernet. 14730 * b> there is enough room to copy over the link 14731 * layer header. 14732 * 14733 * Once the checks are done, adjust rptr so that 14734 * the link layer header will be copied via 14735 * copymsg. Note that, IFT_ETHER may be returned 14736 * by some non-ethernet drivers but in this case 14737 * the second check will fail. 14738 */ 14739 if (ill->ill_type == IFT_ETHER && 14740 (mp->b_rptr - mp->b_datap->db_base) >= 14741 sizeof (struct ether_header)) { 14742 mp->b_rptr -= sizeof (struct ether_header); 14743 adjusted = B_TRUE; 14744 } 14745 mp1 = copymsg(mp); 14746 14747 if (mp1 == NULL) { 14748 mp->b_next = NULL; 14749 /* clear b_prev - used by ip_mroute_decap */ 14750 mp->b_prev = NULL; 14751 freemsg(mp); 14752 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14753 return (NULL); 14754 } 14755 14756 if (adjusted) { 14757 /* 14758 * Copy is done. Restore the pointer in 14759 * the _new_ mblk 14760 */ 14761 mp1->b_rptr += sizeof (struct ether_header); 14762 } 14763 14764 /* Copy b_prev - used by ip_mroute_decap */ 14765 mp1->b_prev = mp->b_prev; 14766 mp->b_prev = NULL; 14767 14768 /* preserve the hardware checksum flags and data, if present */ 14769 if (DB_CKSUMFLAGS(mp) != 0) { 14770 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14771 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14772 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14773 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14774 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14775 } 14776 14777 freemsg(mp); 14778 return (mp1); 14779 } 14780 14781 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14782 if (tail != NULL) \ 14783 tail->b_next = mp; \ 14784 else \ 14785 head = mp; \ 14786 tail = mp; \ 14787 cnt++; \ 14788 } 14789 14790 /* 14791 * Direct read side procedure capable of dealing with chains. GLDv3 based 14792 * drivers call this function directly with mblk chains while STREAMS 14793 * read side procedure ip_rput() calls this for single packet with ip_ring 14794 * set to NULL to process one packet at a time. 14795 * 14796 * The ill will always be valid if this function is called directly from 14797 * the driver. 14798 * 14799 * If ip_input() is called from GLDv3: 14800 * 14801 * - This must be a non-VLAN IP stream. 14802 * - 'mp' is either an untagged or a special priority-tagged packet. 14803 * - Any VLAN tag that was in the MAC header has been stripped. 14804 * 14805 * If the IP header in packet is not 32-bit aligned, every message in the 14806 * chain will be aligned before further operations. This is required on SPARC 14807 * platform. 14808 */ 14809 /* ARGSUSED */ 14810 void 14811 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14812 struct mac_header_info_s *mhip) 14813 { 14814 ipaddr_t dst = NULL; 14815 ipaddr_t prev_dst; 14816 ire_t *ire = NULL; 14817 ipha_t *ipha; 14818 uint_t pkt_len; 14819 ssize_t len; 14820 uint_t opt_len; 14821 int ll_multicast; 14822 int cgtp_flt_pkt; 14823 queue_t *q = ill->ill_rq; 14824 squeue_t *curr_sqp = NULL; 14825 mblk_t *head = NULL; 14826 mblk_t *tail = NULL; 14827 mblk_t *first_mp; 14828 int cnt = 0; 14829 ip_stack_t *ipst = ill->ill_ipst; 14830 mblk_t *mp; 14831 mblk_t *dmp; 14832 uint8_t tag; 14833 14834 ASSERT(mp_chain != NULL); 14835 ASSERT(ill != NULL); 14836 14837 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14838 14839 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14840 14841 #define rptr ((uchar_t *)ipha) 14842 14843 while (mp_chain != NULL) { 14844 mp = mp_chain; 14845 mp_chain = mp_chain->b_next; 14846 mp->b_next = NULL; 14847 ll_multicast = 0; 14848 14849 /* 14850 * We do ire caching from one iteration to 14851 * another. In the event the packet chain contains 14852 * all packets from the same dst, this caching saves 14853 * an ire_cache_lookup for each of the succeeding 14854 * packets in a packet chain. 14855 */ 14856 prev_dst = dst; 14857 14858 /* 14859 * if db_ref > 1 then copymsg and free original. Packet 14860 * may be changed and we do not want the other entity 14861 * who has a reference to this message to trip over the 14862 * changes. This is a blind change because trying to 14863 * catch all places that might change the packet is too 14864 * difficult. 14865 * 14866 * This corresponds to the fast path case, where we have 14867 * a chain of M_DATA mblks. We check the db_ref count 14868 * of only the 1st data block in the mblk chain. There 14869 * doesn't seem to be a reason why a device driver would 14870 * send up data with varying db_ref counts in the mblk 14871 * chain. In any case the Fast path is a private 14872 * interface, and our drivers don't do such a thing. 14873 * Given the above assumption, there is no need to walk 14874 * down the entire mblk chain (which could have a 14875 * potential performance problem) 14876 * 14877 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14878 * to here because of exclusive ip stacks and vnics. 14879 * Packets transmitted from exclusive stack over vnic 14880 * can have db_ref > 1 and when it gets looped back to 14881 * another vnic in a different zone, you have ip_input() 14882 * getting dblks with db_ref > 1. So if someone 14883 * complains of TCP performance under this scenario, 14884 * take a serious look here on the impact of copymsg(). 14885 */ 14886 14887 if (DB_REF(mp) > 1) { 14888 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14889 continue; 14890 } 14891 14892 /* 14893 * Check and align the IP header. 14894 */ 14895 first_mp = mp; 14896 if (DB_TYPE(mp) == M_DATA) { 14897 dmp = mp; 14898 } else if (DB_TYPE(mp) == M_PROTO && 14899 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14900 dmp = mp->b_cont; 14901 } else { 14902 dmp = NULL; 14903 } 14904 if (dmp != NULL) { 14905 /* 14906 * IP header ptr not aligned? 14907 * OR IP header not complete in first mblk 14908 */ 14909 if (!OK_32PTR(dmp->b_rptr) || 14910 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14911 if (!ip_check_and_align_header(q, dmp, ipst)) 14912 continue; 14913 } 14914 } 14915 14916 /* 14917 * ip_input fast path 14918 */ 14919 14920 /* mblk type is not M_DATA */ 14921 if (DB_TYPE(mp) != M_DATA) { 14922 if (ip_rput_process_notdata(q, &first_mp, ill, 14923 &ll_multicast, &mp)) 14924 continue; 14925 14926 /* 14927 * The only way we can get here is if we had a 14928 * packet that was either a DL_UNITDATA_IND or 14929 * an M_CTL for an IPsec accelerated packet. 14930 * 14931 * In either case, the first_mp will point to 14932 * the leading M_PROTO or M_CTL. 14933 */ 14934 ASSERT(first_mp != NULL); 14935 } else if (mhip != NULL) { 14936 /* 14937 * ll_multicast is set here so that it is ready 14938 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14939 * manipulates ll_multicast in the same fashion when 14940 * called from ip_rput_process_notdata. 14941 */ 14942 switch (mhip->mhi_dsttype) { 14943 case MAC_ADDRTYPE_MULTICAST : 14944 ll_multicast = HPE_MULTICAST; 14945 break; 14946 case MAC_ADDRTYPE_BROADCAST : 14947 ll_multicast = HPE_BROADCAST; 14948 break; 14949 default : 14950 break; 14951 } 14952 } 14953 14954 /* Only M_DATA can come here and it is always aligned */ 14955 ASSERT(DB_TYPE(mp) == M_DATA); 14956 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14957 14958 ipha = (ipha_t *)mp->b_rptr; 14959 len = mp->b_wptr - rptr; 14960 pkt_len = ntohs(ipha->ipha_length); 14961 14962 /* 14963 * We must count all incoming packets, even if they end 14964 * up being dropped later on. 14965 */ 14966 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14967 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14968 14969 /* multiple mblk or too short */ 14970 len -= pkt_len; 14971 if (len != 0) { 14972 /* 14973 * Make sure we have data length consistent 14974 * with the IP header. 14975 */ 14976 if (mp->b_cont == NULL) { 14977 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14978 BUMP_MIB(ill->ill_ip_mib, 14979 ipIfStatsInHdrErrors); 14980 ip2dbg(("ip_input: drop pkt\n")); 14981 freemsg(mp); 14982 continue; 14983 } 14984 mp->b_wptr = rptr + pkt_len; 14985 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14986 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14987 BUMP_MIB(ill->ill_ip_mib, 14988 ipIfStatsInHdrErrors); 14989 ip2dbg(("ip_input: drop pkt\n")); 14990 freemsg(mp); 14991 continue; 14992 } 14993 (void) adjmsg(mp, -len); 14994 /* 14995 * adjmsg may have freed an mblk from the chain, 14996 * hence invalidate any hw checksum here. This 14997 * will force IP to calculate the checksum in 14998 * sw, but only for this packet. 14999 */ 15000 DB_CKSUMFLAGS(mp) = 0; 15001 IP_STAT(ipst, ip_multimblk3); 15002 } 15003 } 15004 15005 /* Obtain the dst of the current packet */ 15006 dst = ipha->ipha_dst; 15007 15008 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15009 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15010 ipha, ip6_t *, NULL, int, 0); 15011 15012 /* 15013 * The following test for loopback is faster than 15014 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15015 * operations. 15016 * Note that these addresses are always in network byte order 15017 */ 15018 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15019 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15020 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15021 freemsg(mp); 15022 continue; 15023 } 15024 15025 /* 15026 * The event for packets being received from a 'physical' 15027 * interface is placed after validation of the source and/or 15028 * destination address as being local so that packets can be 15029 * redirected to loopback addresses using ipnat. 15030 */ 15031 DTRACE_PROBE4(ip4__physical__in__start, 15032 ill_t *, ill, ill_t *, NULL, 15033 ipha_t *, ipha, mblk_t *, first_mp); 15034 15035 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15036 ipst->ips_ipv4firewall_physical_in, 15037 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15038 15039 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15040 15041 if (first_mp == NULL) { 15042 continue; 15043 } 15044 dst = ipha->ipha_dst; 15045 /* 15046 * Attach any necessary label information to 15047 * this packet 15048 */ 15049 if (is_system_labeled() && 15050 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15051 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15052 freemsg(mp); 15053 continue; 15054 } 15055 15056 if (ipst->ips_ip4_observe.he_interested) { 15057 zoneid_t dzone; 15058 15059 /* 15060 * On the inbound path the src zone will be unknown as 15061 * this packet has come from the wire. 15062 */ 15063 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15064 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15065 ill, ipst); 15066 } 15067 15068 /* 15069 * Reuse the cached ire only if the ipha_dst of the previous 15070 * packet is the same as the current packet AND it is not 15071 * INADDR_ANY. 15072 */ 15073 if (!(dst == prev_dst && dst != INADDR_ANY) && 15074 (ire != NULL)) { 15075 ire_refrele(ire); 15076 ire = NULL; 15077 } 15078 15079 opt_len = ipha->ipha_version_and_hdr_length - 15080 IP_SIMPLE_HDR_VERSION; 15081 15082 /* 15083 * Check to see if we can take the fastpath. 15084 * That is possible if the following conditions are met 15085 * o Tsol disabled 15086 * o CGTP disabled 15087 * o ipp_action_count is 0 15088 * o no options in the packet 15089 * o not a RSVP packet 15090 * o not a multicast packet 15091 * o ill not in IP_DHCPINIT_IF mode 15092 */ 15093 if (!is_system_labeled() && 15094 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15095 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15096 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15097 if (ire == NULL) 15098 ire = ire_cache_lookup_simple(dst, ipst); 15099 /* 15100 * Unless forwarding is enabled, dont call 15101 * ip_fast_forward(). Incoming packet is for forwarding 15102 */ 15103 if ((ill->ill_flags & ILLF_ROUTER) && 15104 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15105 ire = ip_fast_forward(ire, dst, ill, mp); 15106 continue; 15107 } 15108 /* incoming packet is for local consumption */ 15109 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15110 goto local; 15111 } 15112 15113 /* 15114 * Disable ire caching for anything more complex 15115 * than the simple fast path case we checked for above. 15116 */ 15117 if (ire != NULL) { 15118 ire_refrele(ire); 15119 ire = NULL; 15120 } 15121 15122 /* 15123 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15124 * server to unicast DHCP packets to a DHCP client using the 15125 * IP address it is offering to the client. This can be 15126 * disabled through the "broadcast bit", but not all DHCP 15127 * servers honor that bit. Therefore, to interoperate with as 15128 * many DHCP servers as possible, the DHCP client allows the 15129 * server to unicast, but we treat those packets as broadcast 15130 * here. Note that we don't rewrite the packet itself since 15131 * (a) that would mess up the checksums and (b) the DHCP 15132 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15133 * hand it the packet regardless. 15134 */ 15135 if (ill->ill_dhcpinit != 0 && 15136 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15137 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15138 udpha_t *udpha; 15139 15140 /* 15141 * Reload ipha since pullupmsg() can change b_rptr. 15142 */ 15143 ipha = (ipha_t *)mp->b_rptr; 15144 udpha = (udpha_t *)&ipha[1]; 15145 15146 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15147 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15148 mblk_t *, mp); 15149 dst = INADDR_BROADCAST; 15150 } 15151 } 15152 15153 /* Full-blown slow path */ 15154 if (opt_len != 0) { 15155 if (len != 0) 15156 IP_STAT(ipst, ip_multimblk4); 15157 else 15158 IP_STAT(ipst, ip_ipoptions); 15159 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15160 &dst, ipst)) 15161 continue; 15162 } 15163 15164 /* 15165 * Invoke the CGTP (multirouting) filtering module to process 15166 * the incoming packet. Packets identified as duplicates 15167 * must be discarded. Filtering is active only if the 15168 * the ip_cgtp_filter ndd variable is non-zero. 15169 */ 15170 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15171 if (ipst->ips_ip_cgtp_filter && 15172 ipst->ips_ip_cgtp_filter_ops != NULL) { 15173 netstackid_t stackid; 15174 15175 stackid = ipst->ips_netstack->netstack_stackid; 15176 cgtp_flt_pkt = 15177 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15178 ill->ill_phyint->phyint_ifindex, mp); 15179 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15180 freemsg(first_mp); 15181 continue; 15182 } 15183 } 15184 15185 /* 15186 * If rsvpd is running, let RSVP daemon handle its processing 15187 * and forwarding of RSVP multicast/unicast packets. 15188 * If rsvpd is not running but mrouted is running, RSVP 15189 * multicast packets are forwarded as multicast traffic 15190 * and RSVP unicast packets are forwarded by unicast router. 15191 * If neither rsvpd nor mrouted is running, RSVP multicast 15192 * packets are not forwarded, but the unicast packets are 15193 * forwarded like unicast traffic. 15194 */ 15195 if (ipha->ipha_protocol == IPPROTO_RSVP && 15196 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15197 NULL) { 15198 /* RSVP packet and rsvpd running. Treat as ours */ 15199 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15200 /* 15201 * This assumes that we deliver to all streams for 15202 * multicast and broadcast packets. 15203 * We have to force ll_multicast to 1 to handle the 15204 * M_DATA messages passed in from ip_mroute_decap. 15205 */ 15206 dst = INADDR_BROADCAST; 15207 ll_multicast = 1; 15208 } else if (CLASSD(dst)) { 15209 /* packet is multicast */ 15210 mp->b_next = NULL; 15211 if (ip_rput_process_multicast(q, mp, ill, ipha, 15212 &ll_multicast, &dst)) 15213 continue; 15214 } 15215 15216 if (ire == NULL) { 15217 ire = ire_cache_lookup(dst, ALL_ZONES, 15218 msg_getlabel(mp), ipst); 15219 } 15220 15221 if (ire != NULL && ire->ire_stq != NULL && 15222 ire->ire_zoneid != GLOBAL_ZONEID && 15223 ire->ire_zoneid != ALL_ZONES) { 15224 /* 15225 * Should only use IREs that are visible from the 15226 * global zone for forwarding. 15227 */ 15228 ire_refrele(ire); 15229 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15230 msg_getlabel(mp), ipst); 15231 } 15232 15233 if (ire == NULL) { 15234 /* 15235 * No IRE for this destination, so it can't be for us. 15236 * Unless we are forwarding, drop the packet. 15237 * We have to let source routed packets through 15238 * since we don't yet know if they are 'ping -l' 15239 * packets i.e. if they will go out over the 15240 * same interface as they came in on. 15241 */ 15242 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15243 if (ire == NULL) 15244 continue; 15245 } 15246 15247 /* 15248 * Broadcast IRE may indicate either broadcast or 15249 * multicast packet 15250 */ 15251 if (ire->ire_type == IRE_BROADCAST) { 15252 /* 15253 * Skip broadcast checks if packet is UDP multicast; 15254 * we'd rather not enter ip_rput_process_broadcast() 15255 * unless the packet is broadcast for real, since 15256 * that routine is a no-op for multicast. 15257 */ 15258 if (ipha->ipha_protocol != IPPROTO_UDP || 15259 !CLASSD(ipha->ipha_dst)) { 15260 ire = ip_rput_process_broadcast(&q, mp, 15261 ire, ipha, ill, dst, cgtp_flt_pkt, 15262 ll_multicast); 15263 if (ire == NULL) 15264 continue; 15265 } 15266 } else if (ire->ire_stq != NULL) { 15267 /* fowarding? */ 15268 ip_rput_process_forward(q, mp, ire, ipha, ill, 15269 ll_multicast, B_FALSE); 15270 /* ip_rput_process_forward consumed the packet */ 15271 continue; 15272 } 15273 15274 local: 15275 /* 15276 * If the queue in the ire is different to the ingress queue 15277 * then we need to check to see if we can accept the packet. 15278 * Note that for multicast packets and broadcast packets sent 15279 * to a broadcast address which is shared between multiple 15280 * interfaces we should not do this since we just got a random 15281 * broadcast ire. 15282 */ 15283 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15284 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15285 if (ire == NULL) { 15286 /* Drop packet */ 15287 BUMP_MIB(ill->ill_ip_mib, 15288 ipIfStatsForwProhibits); 15289 freemsg(mp); 15290 continue; 15291 } 15292 if (ire->ire_rfq != NULL) 15293 q = ire->ire_rfq; 15294 } 15295 15296 switch (ipha->ipha_protocol) { 15297 case IPPROTO_TCP: 15298 ASSERT(first_mp == mp); 15299 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15300 mp, 0, q, ip_ring)) != NULL) { 15301 if (curr_sqp == NULL) { 15302 curr_sqp = GET_SQUEUE(mp); 15303 ASSERT(cnt == 0); 15304 cnt++; 15305 head = tail = mp; 15306 } else if (curr_sqp == GET_SQUEUE(mp)) { 15307 ASSERT(tail != NULL); 15308 cnt++; 15309 tail->b_next = mp; 15310 tail = mp; 15311 } else { 15312 /* 15313 * A different squeue. Send the 15314 * chain for the previous squeue on 15315 * its way. This shouldn't happen 15316 * often unless interrupt binding 15317 * changes. 15318 */ 15319 IP_STAT(ipst, ip_input_multi_squeue); 15320 SQUEUE_ENTER(curr_sqp, head, 15321 tail, cnt, SQ_PROCESS, tag); 15322 curr_sqp = GET_SQUEUE(mp); 15323 head = mp; 15324 tail = mp; 15325 cnt = 1; 15326 } 15327 } 15328 continue; 15329 case IPPROTO_UDP: 15330 ASSERT(first_mp == mp); 15331 ip_udp_input(q, mp, ipha, ire, ill); 15332 continue; 15333 case IPPROTO_SCTP: 15334 ASSERT(first_mp == mp); 15335 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15336 q, dst); 15337 /* ire has been released by ip_sctp_input */ 15338 ire = NULL; 15339 continue; 15340 case IPPROTO_ENCAP: 15341 case IPPROTO_IPV6: 15342 ASSERT(first_mp == mp); 15343 if (ip_iptun_input(NULL, mp, ipha, ill, ire, ipst)) 15344 break; 15345 /* 15346 * If there was no IP tunnel data-link bound to 15347 * receive this packet, then we fall through to 15348 * allow potential raw sockets bound to either of 15349 * these protocols to pick it up. 15350 */ 15351 default: 15352 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15353 continue; 15354 } 15355 } 15356 15357 if (ire != NULL) 15358 ire_refrele(ire); 15359 15360 if (head != NULL) 15361 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15362 15363 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15364 "ip_input_end: q %p (%S)", q, "end"); 15365 #undef rptr 15366 } 15367 15368 /* 15369 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15370 * a chain of packets in the poll mode. The packets have gone through the 15371 * data link processing but not IP processing. For performance and latency 15372 * reasons, the squeue wants to process the chain in line instead of feeding 15373 * it back via ip_input path. 15374 * 15375 * So this is a light weight function which checks to see if the packets 15376 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15377 * but we still do the paranoid check) meant for local machine and we don't 15378 * have labels etc enabled. Packets that meet the criterion are returned to 15379 * the squeue and processed inline while the rest go via ip_input path. 15380 */ 15381 /*ARGSUSED*/ 15382 mblk_t * 15383 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15384 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15385 { 15386 mblk_t *mp; 15387 ipaddr_t dst = NULL; 15388 ipaddr_t prev_dst; 15389 ire_t *ire = NULL; 15390 ipha_t *ipha; 15391 uint_t pkt_len; 15392 ssize_t len; 15393 uint_t opt_len; 15394 queue_t *q = ill->ill_rq; 15395 squeue_t *curr_sqp; 15396 mblk_t *ahead = NULL; /* Accepted head */ 15397 mblk_t *atail = NULL; /* Accepted tail */ 15398 uint_t acnt = 0; /* Accepted count */ 15399 mblk_t *utail = NULL; /* Unaccepted head */ 15400 mblk_t *uhead = NULL; /* Unaccepted tail */ 15401 uint_t ucnt = 0; /* Unaccepted cnt */ 15402 ip_stack_t *ipst = ill->ill_ipst; 15403 15404 *cnt = 0; 15405 15406 ASSERT(ill != NULL); 15407 ASSERT(ip_ring != NULL); 15408 15409 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15410 15411 #define rptr ((uchar_t *)ipha) 15412 15413 while (mp_chain != NULL) { 15414 mp = mp_chain; 15415 mp_chain = mp_chain->b_next; 15416 mp->b_next = NULL; 15417 15418 /* 15419 * We do ire caching from one iteration to 15420 * another. In the event the packet chain contains 15421 * all packets from the same dst, this caching saves 15422 * an ire_cache_lookup for each of the succeeding 15423 * packets in a packet chain. 15424 */ 15425 prev_dst = dst; 15426 15427 ipha = (ipha_t *)mp->b_rptr; 15428 len = mp->b_wptr - rptr; 15429 15430 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15431 15432 /* 15433 * If it is a non TCP packet, or doesn't have H/W cksum, 15434 * or doesn't have min len, reject. 15435 */ 15436 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15437 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15438 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15439 continue; 15440 } 15441 15442 pkt_len = ntohs(ipha->ipha_length); 15443 if (len != pkt_len) { 15444 if (len > pkt_len) { 15445 mp->b_wptr = rptr + pkt_len; 15446 } else { 15447 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15448 continue; 15449 } 15450 } 15451 15452 opt_len = ipha->ipha_version_and_hdr_length - 15453 IP_SIMPLE_HDR_VERSION; 15454 dst = ipha->ipha_dst; 15455 15456 /* IP version bad or there are IP options */ 15457 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15458 mp, &ipha, &dst, ipst))) 15459 continue; 15460 15461 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15462 (ipst->ips_ip_cgtp_filter && 15463 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15464 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15465 continue; 15466 } 15467 15468 /* 15469 * Reuse the cached ire only if the ipha_dst of the previous 15470 * packet is the same as the current packet AND it is not 15471 * INADDR_ANY. 15472 */ 15473 if (!(dst == prev_dst && dst != INADDR_ANY) && 15474 (ire != NULL)) { 15475 ire_refrele(ire); 15476 ire = NULL; 15477 } 15478 15479 if (ire == NULL) 15480 ire = ire_cache_lookup_simple(dst, ipst); 15481 15482 /* 15483 * Unless forwarding is enabled, dont call 15484 * ip_fast_forward(). Incoming packet is for forwarding 15485 */ 15486 if ((ill->ill_flags & ILLF_ROUTER) && 15487 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15488 15489 DTRACE_PROBE4(ip4__physical__in__start, 15490 ill_t *, ill, ill_t *, NULL, 15491 ipha_t *, ipha, mblk_t *, mp); 15492 15493 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15494 ipst->ips_ipv4firewall_physical_in, 15495 ill, NULL, ipha, mp, mp, 0, ipst); 15496 15497 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15498 15499 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15500 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15501 pkt_len); 15502 15503 if (mp != NULL) 15504 ire = ip_fast_forward(ire, dst, ill, mp); 15505 continue; 15506 } 15507 15508 /* incoming packet is for local consumption */ 15509 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15510 goto local_accept; 15511 15512 /* 15513 * Disable ire caching for anything more complex 15514 * than the simple fast path case we checked for above. 15515 */ 15516 if (ire != NULL) { 15517 ire_refrele(ire); 15518 ire = NULL; 15519 } 15520 15521 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15522 ipst); 15523 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15524 ire->ire_stq != NULL) { 15525 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15526 if (ire != NULL) { 15527 ire_refrele(ire); 15528 ire = NULL; 15529 } 15530 continue; 15531 } 15532 15533 local_accept: 15534 15535 if (ire->ire_rfq != q) { 15536 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15537 if (ire != NULL) { 15538 ire_refrele(ire); 15539 ire = NULL; 15540 } 15541 continue; 15542 } 15543 15544 /* 15545 * The event for packets being received from a 'physical' 15546 * interface is placed after validation of the source and/or 15547 * destination address as being local so that packets can be 15548 * redirected to loopback addresses using ipnat. 15549 */ 15550 DTRACE_PROBE4(ip4__physical__in__start, 15551 ill_t *, ill, ill_t *, NULL, 15552 ipha_t *, ipha, mblk_t *, mp); 15553 15554 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15555 ipst->ips_ipv4firewall_physical_in, 15556 ill, NULL, ipha, mp, mp, 0, ipst); 15557 15558 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15559 15560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15561 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15562 15563 if (mp != NULL && 15564 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15565 0, q, ip_ring)) != NULL) { 15566 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15567 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15568 } else { 15569 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15570 SQ_FILL, SQTAG_IP_INPUT); 15571 } 15572 } 15573 } 15574 15575 if (ire != NULL) 15576 ire_refrele(ire); 15577 15578 if (uhead != NULL) 15579 ip_input(ill, ip_ring, uhead, NULL); 15580 15581 if (ahead != NULL) { 15582 *last = atail; 15583 *cnt = acnt; 15584 return (ahead); 15585 } 15586 15587 return (NULL); 15588 #undef rptr 15589 } 15590 15591 static void 15592 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15593 t_uscalar_t err) 15594 { 15595 if (dl_err == DL_SYSERR) { 15596 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15597 "%s: %s failed: DL_SYSERR (errno %u)\n", 15598 ill->ill_name, dl_primstr(prim), err); 15599 return; 15600 } 15601 15602 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15603 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15604 dl_errstr(dl_err)); 15605 } 15606 15607 /* 15608 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15609 * than DL_UNITDATA_IND messages. If we need to process this message 15610 * exclusively, we call qwriter_ip, in which case we also need to call 15611 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15612 */ 15613 void 15614 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15615 { 15616 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15617 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15618 ill_t *ill = q->q_ptr; 15619 t_uscalar_t prim = dloa->dl_primitive; 15620 t_uscalar_t reqprim = DL_PRIM_INVAL; 15621 15622 ip1dbg(("ip_rput_dlpi")); 15623 15624 /* 15625 * If we received an ACK but didn't send a request for it, then it 15626 * can't be part of any pending operation; discard up-front. 15627 */ 15628 switch (prim) { 15629 case DL_ERROR_ACK: 15630 reqprim = dlea->dl_error_primitive; 15631 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15632 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15633 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15634 dlea->dl_unix_errno)); 15635 break; 15636 case DL_OK_ACK: 15637 reqprim = dloa->dl_correct_primitive; 15638 break; 15639 case DL_INFO_ACK: 15640 reqprim = DL_INFO_REQ; 15641 break; 15642 case DL_BIND_ACK: 15643 reqprim = DL_BIND_REQ; 15644 break; 15645 case DL_PHYS_ADDR_ACK: 15646 reqprim = DL_PHYS_ADDR_REQ; 15647 break; 15648 case DL_NOTIFY_ACK: 15649 reqprim = DL_NOTIFY_REQ; 15650 break; 15651 case DL_CONTROL_ACK: 15652 reqprim = DL_CONTROL_REQ; 15653 break; 15654 case DL_CAPABILITY_ACK: 15655 reqprim = DL_CAPABILITY_REQ; 15656 break; 15657 } 15658 15659 if (prim != DL_NOTIFY_IND) { 15660 if (reqprim == DL_PRIM_INVAL || 15661 !ill_dlpi_pending(ill, reqprim)) { 15662 /* Not a DLPI message we support or expected */ 15663 freemsg(mp); 15664 return; 15665 } 15666 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15667 dl_primstr(reqprim))); 15668 } 15669 15670 switch (reqprim) { 15671 case DL_UNBIND_REQ: 15672 /* 15673 * NOTE: we mark the unbind as complete even if we got a 15674 * DL_ERROR_ACK, since there's not much else we can do. 15675 */ 15676 mutex_enter(&ill->ill_lock); 15677 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15678 cv_signal(&ill->ill_cv); 15679 mutex_exit(&ill->ill_lock); 15680 break; 15681 15682 case DL_ENABMULTI_REQ: 15683 if (prim == DL_OK_ACK) { 15684 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15685 ill->ill_dlpi_multicast_state = IDS_OK; 15686 } 15687 break; 15688 } 15689 15690 /* 15691 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15692 * need to become writer to continue to process it. Because an 15693 * exclusive operation doesn't complete until replies to all queued 15694 * DLPI messages have been received, we know we're in the middle of an 15695 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15696 * 15697 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15698 * Since this is on the ill stream we unconditionally bump up the 15699 * refcount without doing ILL_CAN_LOOKUP(). 15700 */ 15701 ill_refhold(ill); 15702 if (prim == DL_NOTIFY_IND) 15703 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15704 else 15705 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15706 } 15707 15708 /* 15709 * Handling of DLPI messages that require exclusive access to the ipsq. 15710 * 15711 * Need to do ill_pending_mp_release on ioctl completion, which could 15712 * happen here. (along with mi_copy_done) 15713 */ 15714 /* ARGSUSED */ 15715 static void 15716 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15717 { 15718 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15719 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15720 int err = 0; 15721 ill_t *ill; 15722 ipif_t *ipif = NULL; 15723 mblk_t *mp1 = NULL; 15724 conn_t *connp = NULL; 15725 t_uscalar_t paddrreq; 15726 mblk_t *mp_hw; 15727 boolean_t success; 15728 boolean_t ioctl_aborted = B_FALSE; 15729 boolean_t log = B_TRUE; 15730 ip_stack_t *ipst; 15731 15732 ip1dbg(("ip_rput_dlpi_writer ..")); 15733 ill = (ill_t *)q->q_ptr; 15734 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15735 ASSERT(IAM_WRITER_ILL(ill)); 15736 15737 ipst = ill->ill_ipst; 15738 15739 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15740 /* 15741 * The current ioctl could have been aborted by the user and a new 15742 * ioctl to bring up another ill could have started. We could still 15743 * get a response from the driver later. 15744 */ 15745 if (ipif != NULL && ipif->ipif_ill != ill) 15746 ioctl_aborted = B_TRUE; 15747 15748 switch (dloa->dl_primitive) { 15749 case DL_ERROR_ACK: 15750 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15751 dl_primstr(dlea->dl_error_primitive))); 15752 15753 switch (dlea->dl_error_primitive) { 15754 case DL_DISABMULTI_REQ: 15755 ill_dlpi_done(ill, dlea->dl_error_primitive); 15756 break; 15757 case DL_PROMISCON_REQ: 15758 case DL_PROMISCOFF_REQ: 15759 case DL_UNBIND_REQ: 15760 case DL_ATTACH_REQ: 15761 case DL_INFO_REQ: 15762 ill_dlpi_done(ill, dlea->dl_error_primitive); 15763 break; 15764 case DL_NOTIFY_REQ: 15765 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15766 log = B_FALSE; 15767 break; 15768 case DL_PHYS_ADDR_REQ: 15769 /* 15770 * For IPv6 only, there are two additional 15771 * phys_addr_req's sent to the driver to get the 15772 * IPv6 token and lla. This allows IP to acquire 15773 * the hardware address format for a given interface 15774 * without having built in knowledge of the hardware 15775 * address. ill_phys_addr_pend keeps track of the last 15776 * DL_PAR sent so we know which response we are 15777 * dealing with. ill_dlpi_done will update 15778 * ill_phys_addr_pend when it sends the next req. 15779 * We don't complete the IOCTL until all three DL_PARs 15780 * have been attempted, so set *_len to 0 and break. 15781 */ 15782 paddrreq = ill->ill_phys_addr_pend; 15783 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15784 if (paddrreq == DL_IPV6_TOKEN) { 15785 ill->ill_token_length = 0; 15786 log = B_FALSE; 15787 break; 15788 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15789 ill->ill_nd_lla_len = 0; 15790 log = B_FALSE; 15791 break; 15792 } 15793 /* 15794 * Something went wrong with the DL_PHYS_ADDR_REQ. 15795 * We presumably have an IOCTL hanging out waiting 15796 * for completion. Find it and complete the IOCTL 15797 * with the error noted. 15798 * However, ill_dl_phys was called on an ill queue 15799 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15800 * set. But the ioctl is known to be pending on ill_wq. 15801 */ 15802 if (!ill->ill_ifname_pending) 15803 break; 15804 ill->ill_ifname_pending = 0; 15805 if (!ioctl_aborted) 15806 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15807 if (mp1 != NULL) { 15808 /* 15809 * This operation (SIOCSLIFNAME) must have 15810 * happened on the ill. Assert there is no conn 15811 */ 15812 ASSERT(connp == NULL); 15813 q = ill->ill_wq; 15814 } 15815 break; 15816 case DL_BIND_REQ: 15817 ill_dlpi_done(ill, DL_BIND_REQ); 15818 if (ill->ill_ifname_pending) 15819 break; 15820 /* 15821 * Something went wrong with the bind. We presumably 15822 * have an IOCTL hanging out waiting for completion. 15823 * Find it, take down the interface that was coming 15824 * up, and complete the IOCTL with the error noted. 15825 */ 15826 if (!ioctl_aborted) 15827 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15828 if (mp1 != NULL) { 15829 /* 15830 * This might be a result of a DL_NOTE_REPLUMB 15831 * notification. In that case, connp is NULL. 15832 */ 15833 if (connp != NULL) 15834 q = CONNP_TO_WQ(connp); 15835 15836 (void) ipif_down(ipif, NULL, NULL); 15837 /* error is set below the switch */ 15838 } 15839 break; 15840 case DL_ENABMULTI_REQ: 15841 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15842 15843 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15844 ill->ill_dlpi_multicast_state = IDS_FAILED; 15845 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15846 ipif_t *ipif; 15847 15848 printf("ip: joining multicasts failed (%d)" 15849 " on %s - will use link layer " 15850 "broadcasts for multicast\n", 15851 dlea->dl_errno, ill->ill_name); 15852 15853 /* 15854 * Set up the multicast mapping alone. 15855 * writer, so ok to access ill->ill_ipif 15856 * without any lock. 15857 */ 15858 ipif = ill->ill_ipif; 15859 mutex_enter(&ill->ill_phyint->phyint_lock); 15860 ill->ill_phyint->phyint_flags |= 15861 PHYI_MULTI_BCAST; 15862 mutex_exit(&ill->ill_phyint->phyint_lock); 15863 15864 if (!ill->ill_isv6) { 15865 (void) ipif_arp_setup_multicast(ipif, 15866 NULL); 15867 } else { 15868 (void) ipif_ndp_setup_multicast(ipif, 15869 NULL); 15870 } 15871 } 15872 freemsg(mp); /* Don't want to pass this up */ 15873 return; 15874 case DL_CONTROL_REQ: 15875 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15876 "DL_CONTROL_REQ\n")); 15877 ill_dlpi_done(ill, dlea->dl_error_primitive); 15878 freemsg(mp); 15879 return; 15880 case DL_CAPABILITY_REQ: 15881 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15882 "DL_CAPABILITY REQ\n")); 15883 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15884 ill->ill_dlpi_capab_state = IDCS_FAILED; 15885 ill_capability_done(ill); 15886 freemsg(mp); 15887 return; 15888 } 15889 /* 15890 * Note the error for IOCTL completion (mp1 is set when 15891 * ready to complete ioctl). If ill_ifname_pending_err is 15892 * set, an error occured during plumbing (ill_ifname_pending), 15893 * so we want to report that error. 15894 * 15895 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15896 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15897 * expected to get errack'd if the driver doesn't support 15898 * these flags (e.g. ethernet). log will be set to B_FALSE 15899 * if these error conditions are encountered. 15900 */ 15901 if (mp1 != NULL) { 15902 if (ill->ill_ifname_pending_err != 0) { 15903 err = ill->ill_ifname_pending_err; 15904 ill->ill_ifname_pending_err = 0; 15905 } else { 15906 err = dlea->dl_unix_errno ? 15907 dlea->dl_unix_errno : ENXIO; 15908 } 15909 /* 15910 * If we're plumbing an interface and an error hasn't already 15911 * been saved, set ill_ifname_pending_err to the error passed 15912 * up. Ignore the error if log is B_FALSE (see comment above). 15913 */ 15914 } else if (log && ill->ill_ifname_pending && 15915 ill->ill_ifname_pending_err == 0) { 15916 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15917 dlea->dl_unix_errno : ENXIO; 15918 } 15919 15920 if (log) 15921 ip_dlpi_error(ill, dlea->dl_error_primitive, 15922 dlea->dl_errno, dlea->dl_unix_errno); 15923 break; 15924 case DL_CAPABILITY_ACK: 15925 ill_capability_ack(ill, mp); 15926 /* 15927 * The message has been handed off to ill_capability_ack 15928 * and must not be freed below 15929 */ 15930 mp = NULL; 15931 break; 15932 15933 case DL_CONTROL_ACK: 15934 /* We treat all of these as "fire and forget" */ 15935 ill_dlpi_done(ill, DL_CONTROL_REQ); 15936 break; 15937 case DL_INFO_ACK: 15938 /* Call a routine to handle this one. */ 15939 ill_dlpi_done(ill, DL_INFO_REQ); 15940 ip_ll_subnet_defaults(ill, mp); 15941 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15942 return; 15943 case DL_BIND_ACK: 15944 /* 15945 * We should have an IOCTL waiting on this unless 15946 * sent by ill_dl_phys, in which case just return 15947 */ 15948 ill_dlpi_done(ill, DL_BIND_REQ); 15949 if (ill->ill_ifname_pending) 15950 break; 15951 15952 if (!ioctl_aborted) 15953 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15954 if (mp1 == NULL) 15955 break; 15956 /* 15957 * mp1 was added by ill_dl_up(). if that is a result of 15958 * a DL_NOTE_REPLUMB notification, connp could be NULL. 15959 */ 15960 if (connp != NULL) 15961 q = CONNP_TO_WQ(connp); 15962 15963 /* 15964 * We are exclusive. So nothing can change even after 15965 * we get the pending mp. If need be we can put it back 15966 * and restart, as in calling ipif_arp_up() below. 15967 */ 15968 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15969 15970 mutex_enter(&ill->ill_lock); 15971 ill->ill_dl_up = 1; 15972 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 15973 mutex_exit(&ill->ill_lock); 15974 15975 /* 15976 * Now bring up the resolver; when that is complete, we'll 15977 * create IREs. Note that we intentionally mirror what 15978 * ipif_up() would have done, because we got here by way of 15979 * ill_dl_up(), which stopped ipif_up()'s processing. 15980 */ 15981 if (ill->ill_isv6) { 15982 if (ill->ill_flags & ILLF_XRESOLV) { 15983 if (connp != NULL) 15984 mutex_enter(&connp->conn_lock); 15985 mutex_enter(&ill->ill_lock); 15986 success = ipsq_pending_mp_add(connp, ipif, q, 15987 mp1, 0); 15988 mutex_exit(&ill->ill_lock); 15989 if (connp != NULL) 15990 mutex_exit(&connp->conn_lock); 15991 if (success) { 15992 err = ipif_resolver_up(ipif, 15993 Res_act_initial); 15994 if (err == EINPROGRESS) { 15995 freemsg(mp); 15996 return; 15997 } 15998 ASSERT(err != 0); 15999 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16000 ASSERT(mp1 != NULL); 16001 } else { 16002 /* conn has started closing */ 16003 err = EINTR; 16004 } 16005 } else { /* Non XRESOLV interface */ 16006 (void) ipif_resolver_up(ipif, Res_act_initial); 16007 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16008 err = ipif_up_done_v6(ipif); 16009 } 16010 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16011 /* 16012 * ARP and other v4 external resolvers. 16013 * Leave the pending mblk intact so that 16014 * the ioctl completes in ip_rput(). 16015 */ 16016 if (connp != NULL) 16017 mutex_enter(&connp->conn_lock); 16018 mutex_enter(&ill->ill_lock); 16019 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16020 mutex_exit(&ill->ill_lock); 16021 if (connp != NULL) 16022 mutex_exit(&connp->conn_lock); 16023 if (success) { 16024 err = ipif_resolver_up(ipif, Res_act_initial); 16025 if (err == EINPROGRESS) { 16026 freemsg(mp); 16027 return; 16028 } 16029 ASSERT(err != 0); 16030 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16031 } else { 16032 /* The conn has started closing */ 16033 err = EINTR; 16034 } 16035 } else { 16036 /* 16037 * This one is complete. Reply to pending ioctl. 16038 */ 16039 (void) ipif_resolver_up(ipif, Res_act_initial); 16040 err = ipif_up_done(ipif); 16041 } 16042 16043 if ((err == 0) && (ill->ill_up_ipifs)) { 16044 err = ill_up_ipifs(ill, q, mp1); 16045 if (err == EINPROGRESS) { 16046 freemsg(mp); 16047 return; 16048 } 16049 } 16050 16051 /* 16052 * If we have a moved ipif to bring up, and everything has 16053 * succeeded to this point, bring it up on the IPMP ill. 16054 * Otherwise, leave it down -- the admin can try to bring it 16055 * up by hand if need be. 16056 */ 16057 if (ill->ill_move_ipif != NULL) { 16058 if (err != 0) { 16059 ill->ill_move_ipif = NULL; 16060 } else { 16061 ipif = ill->ill_move_ipif; 16062 ill->ill_move_ipif = NULL; 16063 err = ipif_up(ipif, q, mp1); 16064 if (err == EINPROGRESS) { 16065 freemsg(mp); 16066 return; 16067 } 16068 } 16069 } 16070 break; 16071 16072 case DL_NOTIFY_IND: { 16073 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16074 ire_t *ire; 16075 uint_t orig_mtu; 16076 boolean_t need_ire_walk_v4 = B_FALSE; 16077 boolean_t need_ire_walk_v6 = B_FALSE; 16078 16079 switch (notify->dl_notification) { 16080 case DL_NOTE_PHYS_ADDR: 16081 err = ill_set_phys_addr(ill, mp); 16082 break; 16083 16084 case DL_NOTE_REPLUMB: 16085 /* 16086 * Directly return after calling ill_replumb(). 16087 * Note that we should not free mp as it is reused 16088 * in the ill_replumb() function. 16089 */ 16090 err = ill_replumb(ill, mp); 16091 return; 16092 16093 case DL_NOTE_FASTPATH_FLUSH: 16094 ill_fastpath_flush(ill); 16095 break; 16096 16097 case DL_NOTE_SDU_SIZE: 16098 /* 16099 * Change the MTU size of the interface, of all 16100 * attached ipif's, and of all relevant ire's. The 16101 * new value's a uint32_t at notify->dl_data. 16102 * Mtu change Vs. new ire creation - protocol below. 16103 * 16104 * a Mark the ipif as IPIF_CHANGING. 16105 * b Set the new mtu in the ipif. 16106 * c Change the ire_max_frag on all affected ires 16107 * d Unmark the IPIF_CHANGING 16108 * 16109 * To see how the protocol works, assume an interface 16110 * route is also being added simultaneously by 16111 * ip_rt_add and let 'ipif' be the ipif referenced by 16112 * the ire. If the ire is created before step a, 16113 * it will be cleaned up by step c. If the ire is 16114 * created after step d, it will see the new value of 16115 * ipif_mtu. Any attempt to create the ire between 16116 * steps a to d will fail because of the IPIF_CHANGING 16117 * flag. Note that ire_create() is passed a pointer to 16118 * the ipif_mtu, and not the value. During ire_add 16119 * under the bucket lock, the ire_max_frag of the 16120 * new ire being created is set from the ipif/ire from 16121 * which it is being derived. 16122 */ 16123 mutex_enter(&ill->ill_lock); 16124 16125 orig_mtu = ill->ill_max_mtu; 16126 ill->ill_max_frag = (uint_t)notify->dl_data; 16127 ill->ill_max_mtu = (uint_t)notify->dl_data; 16128 16129 /* 16130 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16131 * clamp ill_max_mtu at it. 16132 */ 16133 if (ill->ill_user_mtu != 0 && 16134 ill->ill_user_mtu < ill->ill_max_mtu) 16135 ill->ill_max_mtu = ill->ill_user_mtu; 16136 16137 /* 16138 * If the MTU is unchanged, we're done. 16139 */ 16140 if (orig_mtu == ill->ill_max_mtu) { 16141 mutex_exit(&ill->ill_lock); 16142 break; 16143 } 16144 16145 if (ill->ill_isv6) { 16146 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16147 ill->ill_max_mtu = IPV6_MIN_MTU; 16148 } else { 16149 if (ill->ill_max_mtu < IP_MIN_MTU) 16150 ill->ill_max_mtu = IP_MIN_MTU; 16151 } 16152 for (ipif = ill->ill_ipif; ipif != NULL; 16153 ipif = ipif->ipif_next) { 16154 /* 16155 * Don't override the mtu if the user 16156 * has explicitly set it. 16157 */ 16158 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16159 continue; 16160 ipif->ipif_mtu = (uint_t)notify->dl_data; 16161 if (ipif->ipif_isv6) 16162 ire = ipif_to_ire_v6(ipif); 16163 else 16164 ire = ipif_to_ire(ipif); 16165 if (ire != NULL) { 16166 ire->ire_max_frag = ipif->ipif_mtu; 16167 ire_refrele(ire); 16168 } 16169 if (ipif->ipif_flags & IPIF_UP) { 16170 if (ill->ill_isv6) 16171 need_ire_walk_v6 = B_TRUE; 16172 else 16173 need_ire_walk_v4 = B_TRUE; 16174 } 16175 } 16176 mutex_exit(&ill->ill_lock); 16177 if (need_ire_walk_v4) 16178 ire_walk_v4(ill_mtu_change, (char *)ill, 16179 ALL_ZONES, ipst); 16180 if (need_ire_walk_v6) 16181 ire_walk_v6(ill_mtu_change, (char *)ill, 16182 ALL_ZONES, ipst); 16183 16184 /* 16185 * Refresh IPMP meta-interface MTU if necessary. 16186 */ 16187 if (IS_UNDER_IPMP(ill)) 16188 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16189 break; 16190 16191 case DL_NOTE_LINK_UP: 16192 case DL_NOTE_LINK_DOWN: { 16193 /* 16194 * We are writer. ill / phyint / ipsq assocs stable. 16195 * The RUNNING flag reflects the state of the link. 16196 */ 16197 phyint_t *phyint = ill->ill_phyint; 16198 uint64_t new_phyint_flags; 16199 boolean_t changed = B_FALSE; 16200 boolean_t went_up; 16201 16202 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16203 mutex_enter(&phyint->phyint_lock); 16204 16205 new_phyint_flags = went_up ? 16206 phyint->phyint_flags | PHYI_RUNNING : 16207 phyint->phyint_flags & ~PHYI_RUNNING; 16208 16209 if (IS_IPMP(ill)) { 16210 new_phyint_flags = went_up ? 16211 new_phyint_flags & ~PHYI_FAILED : 16212 new_phyint_flags | PHYI_FAILED; 16213 } 16214 16215 if (new_phyint_flags != phyint->phyint_flags) { 16216 phyint->phyint_flags = new_phyint_flags; 16217 changed = B_TRUE; 16218 } 16219 mutex_exit(&phyint->phyint_lock); 16220 /* 16221 * ill_restart_dad handles the DAD restart and routing 16222 * socket notification logic. 16223 */ 16224 if (changed) { 16225 ill_restart_dad(phyint->phyint_illv4, went_up); 16226 ill_restart_dad(phyint->phyint_illv6, went_up); 16227 } 16228 break; 16229 } 16230 case DL_NOTE_PROMISC_ON_PHYS: { 16231 phyint_t *phyint = ill->ill_phyint; 16232 16233 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16234 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16235 mutex_enter(&phyint->phyint_lock); 16236 phyint->phyint_flags |= PHYI_PROMISC; 16237 mutex_exit(&phyint->phyint_lock); 16238 break; 16239 } 16240 case DL_NOTE_PROMISC_OFF_PHYS: { 16241 phyint_t *phyint = ill->ill_phyint; 16242 16243 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16244 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16245 mutex_enter(&phyint->phyint_lock); 16246 phyint->phyint_flags &= ~PHYI_PROMISC; 16247 mutex_exit(&phyint->phyint_lock); 16248 break; 16249 } 16250 case DL_NOTE_CAPAB_RENEG: 16251 /* 16252 * Something changed on the driver side. 16253 * It wants us to renegotiate the capabilities 16254 * on this ill. One possible cause is the aggregation 16255 * interface under us where a port got added or 16256 * went away. 16257 * 16258 * If the capability negotiation is already done 16259 * or is in progress, reset the capabilities and 16260 * mark the ill's ill_capab_reneg to be B_TRUE, 16261 * so that when the ack comes back, we can start 16262 * the renegotiation process. 16263 * 16264 * Note that if ill_capab_reneg is already B_TRUE 16265 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16266 * the capability resetting request has been sent 16267 * and the renegotiation has not been started yet; 16268 * nothing needs to be done in this case. 16269 */ 16270 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16271 ill_capability_reset(ill, B_TRUE); 16272 ipsq_current_finish(ipsq); 16273 break; 16274 default: 16275 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16276 "type 0x%x for DL_NOTIFY_IND\n", 16277 notify->dl_notification)); 16278 break; 16279 } 16280 16281 /* 16282 * As this is an asynchronous operation, we 16283 * should not call ill_dlpi_done 16284 */ 16285 break; 16286 } 16287 case DL_NOTIFY_ACK: { 16288 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16289 16290 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16291 ill->ill_note_link = 1; 16292 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16293 break; 16294 } 16295 case DL_PHYS_ADDR_ACK: { 16296 /* 16297 * As part of plumbing the interface via SIOCSLIFNAME, 16298 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16299 * whose answers we receive here. As each answer is received, 16300 * we call ill_dlpi_done() to dispatch the next request as 16301 * we're processing the current one. Once all answers have 16302 * been received, we use ipsq_pending_mp_get() to dequeue the 16303 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16304 * is invoked from an ill queue, conn_oper_pending_ill is not 16305 * available, but we know the ioctl is pending on ill_wq.) 16306 */ 16307 uint_t paddrlen, paddroff; 16308 uint8_t *addr; 16309 16310 paddrreq = ill->ill_phys_addr_pend; 16311 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16312 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16313 addr = mp->b_rptr + paddroff; 16314 16315 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16316 if (paddrreq == DL_IPV6_TOKEN) { 16317 /* 16318 * bcopy to low-order bits of ill_token 16319 * 16320 * XXX Temporary hack - currently, all known tokens 16321 * are 64 bits, so I'll cheat for the moment. 16322 */ 16323 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 16324 ill->ill_token_length = paddrlen; 16325 break; 16326 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16327 ASSERT(ill->ill_nd_lla_mp == NULL); 16328 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16329 mp = NULL; 16330 break; 16331 } else if (paddrreq == DL_CURR_DEST_ADDR) { 16332 ASSERT(ill->ill_dest_addr_mp == NULL); 16333 ill->ill_dest_addr_mp = mp; 16334 ill->ill_dest_addr = addr; 16335 mp = NULL; 16336 if (ill->ill_isv6) { 16337 ill_setdesttoken(ill); 16338 ipif_setdestlinklocal(ill->ill_ipif); 16339 } 16340 break; 16341 } 16342 16343 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16344 ASSERT(ill->ill_phys_addr_mp == NULL); 16345 if (!ill->ill_ifname_pending) 16346 break; 16347 ill->ill_ifname_pending = 0; 16348 if (!ioctl_aborted) 16349 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16350 if (mp1 != NULL) { 16351 ASSERT(connp == NULL); 16352 q = ill->ill_wq; 16353 } 16354 /* 16355 * If any error acks received during the plumbing sequence, 16356 * ill_ifname_pending_err will be set. Break out and send up 16357 * the error to the pending ioctl. 16358 */ 16359 if (ill->ill_ifname_pending_err != 0) { 16360 err = ill->ill_ifname_pending_err; 16361 ill->ill_ifname_pending_err = 0; 16362 break; 16363 } 16364 16365 ill->ill_phys_addr_mp = mp; 16366 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 16367 mp = NULL; 16368 16369 /* 16370 * If paddrlen or ill_phys_addr_length is zero, the DLPI 16371 * provider doesn't support physical addresses. We check both 16372 * paddrlen and ill_phys_addr_length because sppp (PPP) does 16373 * not have physical addresses, but historically adversises a 16374 * physical address length of 0 in its DL_INFO_ACK, but 6 in 16375 * its DL_PHYS_ADDR_ACK. 16376 */ 16377 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 16378 ill->ill_phys_addr = NULL; 16379 } else if (paddrlen != ill->ill_phys_addr_length) { 16380 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16381 paddrlen, ill->ill_phys_addr_length)); 16382 err = EINVAL; 16383 break; 16384 } 16385 16386 if (ill->ill_nd_lla_mp == NULL) { 16387 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16388 err = ENOMEM; 16389 break; 16390 } 16391 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16392 } 16393 16394 if (ill->ill_isv6) { 16395 ill_setdefaulttoken(ill); 16396 ipif_setlinklocal(ill->ill_ipif); 16397 } 16398 break; 16399 } 16400 case DL_OK_ACK: 16401 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16402 dl_primstr((int)dloa->dl_correct_primitive), 16403 dloa->dl_correct_primitive)); 16404 switch (dloa->dl_correct_primitive) { 16405 case DL_ENABMULTI_REQ: 16406 case DL_DISABMULTI_REQ: 16407 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16408 break; 16409 case DL_PROMISCON_REQ: 16410 case DL_PROMISCOFF_REQ: 16411 case DL_UNBIND_REQ: 16412 case DL_ATTACH_REQ: 16413 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16414 break; 16415 } 16416 break; 16417 default: 16418 break; 16419 } 16420 16421 freemsg(mp); 16422 if (mp1 == NULL) 16423 return; 16424 16425 /* 16426 * The operation must complete without EINPROGRESS since 16427 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16428 * the operation will be stuck forever inside the IPSQ. 16429 */ 16430 ASSERT(err != EINPROGRESS); 16431 16432 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16433 case 0: 16434 ipsq_current_finish(ipsq); 16435 break; 16436 16437 case SIOCSLIFNAME: 16438 case IF_UNITSEL: { 16439 ill_t *ill_other = ILL_OTHER(ill); 16440 16441 /* 16442 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16443 * ill has a peer which is in an IPMP group, then place ill 16444 * into the same group. One catch: although ifconfig plumbs 16445 * the appropriate IPMP meta-interface prior to plumbing this 16446 * ill, it is possible for multiple ifconfig applications to 16447 * race (or for another application to adjust plumbing), in 16448 * which case the IPMP meta-interface we need will be missing. 16449 * If so, kick the phyint out of the group. 16450 */ 16451 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16452 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16453 ipmp_illgrp_t *illg; 16454 16455 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16456 if (illg == NULL) 16457 ipmp_phyint_leave_grp(ill->ill_phyint); 16458 else 16459 ipmp_ill_join_illgrp(ill, illg); 16460 } 16461 16462 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16463 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16464 else 16465 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16466 break; 16467 } 16468 case SIOCLIFADDIF: 16469 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16470 break; 16471 16472 default: 16473 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16474 break; 16475 } 16476 } 16477 16478 /* 16479 * ip_rput_other is called by ip_rput to handle messages modifying the global 16480 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 16481 */ 16482 /* ARGSUSED */ 16483 void 16484 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16485 { 16486 ill_t *ill = q->q_ptr; 16487 struct iocblk *iocp; 16488 16489 ip1dbg(("ip_rput_other ")); 16490 if (ipsq != NULL) { 16491 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16492 ASSERT(ipsq->ipsq_xop == 16493 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16494 } 16495 16496 switch (mp->b_datap->db_type) { 16497 case M_ERROR: 16498 case M_HANGUP: 16499 /* 16500 * The device has a problem. We force the ILL down. It can 16501 * be brought up again manually using SIOCSIFFLAGS (via 16502 * ifconfig or equivalent). 16503 */ 16504 ASSERT(ipsq != NULL); 16505 if (mp->b_rptr < mp->b_wptr) 16506 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16507 if (ill->ill_error == 0) 16508 ill->ill_error = ENXIO; 16509 if (!ill_down_start(q, mp)) 16510 return; 16511 ipif_all_down_tail(ipsq, q, mp, NULL); 16512 break; 16513 case M_IOCNAK: { 16514 iocp = (struct iocblk *)mp->b_rptr; 16515 16516 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 16517 /* 16518 * If this was the first attempt, turn off the fastpath 16519 * probing. 16520 */ 16521 mutex_enter(&ill->ill_lock); 16522 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16523 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16524 mutex_exit(&ill->ill_lock); 16525 ill_fastpath_nack(ill); 16526 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 16527 ill->ill_name)); 16528 } else { 16529 mutex_exit(&ill->ill_lock); 16530 } 16531 freemsg(mp); 16532 break; 16533 } 16534 default: 16535 ASSERT(0); 16536 break; 16537 } 16538 } 16539 16540 /* 16541 * NOTE : This function does not ire_refrele the ire argument passed in. 16542 * 16543 * IPQoS notes 16544 * IP policy is invoked twice for a forwarded packet, once on the read side 16545 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16546 * enabled. An additional parameter, in_ill, has been added for this purpose. 16547 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16548 * because ip_mroute drops this information. 16549 * 16550 */ 16551 void 16552 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16553 { 16554 uint32_t old_pkt_len; 16555 uint32_t pkt_len; 16556 queue_t *q; 16557 uint32_t sum; 16558 #define rptr ((uchar_t *)ipha) 16559 uint32_t max_frag; 16560 uint32_t ill_index; 16561 ill_t *out_ill; 16562 mib2_ipIfStatsEntry_t *mibptr; 16563 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16564 16565 /* Get the ill_index of the incoming ILL */ 16566 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16567 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16568 16569 /* Initiate Read side IPPF processing */ 16570 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16571 ip_process(IPP_FWD_IN, &mp, ill_index); 16572 if (mp == NULL) { 16573 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16574 "during IPPF processing\n")); 16575 return; 16576 } 16577 } 16578 16579 /* Adjust the checksum to reflect the ttl decrement. */ 16580 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16581 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16582 16583 if (ipha->ipha_ttl-- <= 1) { 16584 if (ip_csum_hdr(ipha)) { 16585 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16586 goto drop_pkt; 16587 } 16588 /* 16589 * Note: ire_stq this will be NULL for multicast 16590 * datagrams using the long path through arp (the IRE 16591 * is not an IRE_CACHE). This should not cause 16592 * problems since we don't generate ICMP errors for 16593 * multicast packets. 16594 */ 16595 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16596 q = ire->ire_stq; 16597 if (q != NULL) { 16598 /* Sent by forwarding path, and router is global zone */ 16599 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16600 GLOBAL_ZONEID, ipst); 16601 } else 16602 freemsg(mp); 16603 return; 16604 } 16605 16606 /* 16607 * Don't forward if the interface is down 16608 */ 16609 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16610 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16611 ip2dbg(("ip_rput_forward:interface is down\n")); 16612 goto drop_pkt; 16613 } 16614 16615 /* Get the ill_index of the outgoing ILL */ 16616 out_ill = ire_to_ill(ire); 16617 ill_index = out_ill->ill_phyint->phyint_ifindex; 16618 16619 DTRACE_PROBE4(ip4__forwarding__start, 16620 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16621 16622 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16623 ipst->ips_ipv4firewall_forwarding, 16624 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16625 16626 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16627 16628 if (mp == NULL) 16629 return; 16630 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16631 16632 if (is_system_labeled()) { 16633 mblk_t *mp1; 16634 16635 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16636 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16637 goto drop_pkt; 16638 } 16639 /* Size may have changed */ 16640 mp = mp1; 16641 ipha = (ipha_t *)mp->b_rptr; 16642 pkt_len = ntohs(ipha->ipha_length); 16643 } 16644 16645 /* Check if there are options to update */ 16646 if (!IS_SIMPLE_IPH(ipha)) { 16647 if (ip_csum_hdr(ipha)) { 16648 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16649 goto drop_pkt; 16650 } 16651 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16652 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16653 return; 16654 } 16655 16656 ipha->ipha_hdr_checksum = 0; 16657 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16658 } 16659 max_frag = ire->ire_max_frag; 16660 if (pkt_len > max_frag) { 16661 /* 16662 * It needs fragging on its way out. We haven't 16663 * verified the header checksum yet. Since we 16664 * are going to put a surely good checksum in the 16665 * outgoing header, we have to make sure that it 16666 * was good coming in. 16667 */ 16668 if (ip_csum_hdr(ipha)) { 16669 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16670 goto drop_pkt; 16671 } 16672 /* Initiate Write side IPPF processing */ 16673 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16674 ip_process(IPP_FWD_OUT, &mp, ill_index); 16675 if (mp == NULL) { 16676 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16677 " during IPPF processing\n")); 16678 return; 16679 } 16680 } 16681 /* 16682 * Handle labeled packet resizing. 16683 * 16684 * If we have added a label, inform ip_wput_frag() of its 16685 * effect on the MTU for ICMP messages. 16686 */ 16687 if (pkt_len > old_pkt_len) { 16688 uint32_t secopt_size; 16689 16690 secopt_size = pkt_len - old_pkt_len; 16691 if (secopt_size < max_frag) 16692 max_frag -= secopt_size; 16693 } 16694 16695 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16696 GLOBAL_ZONEID, ipst, NULL); 16697 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16698 return; 16699 } 16700 16701 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16702 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16703 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16704 ipst->ips_ipv4firewall_physical_out, 16705 NULL, out_ill, ipha, mp, mp, 0, ipst); 16706 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16707 if (mp == NULL) 16708 return; 16709 16710 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16711 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16712 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16713 /* ip_xmit_v4 always consumes the packet */ 16714 return; 16715 16716 drop_pkt:; 16717 ip1dbg(("ip_rput_forward: drop pkt\n")); 16718 freemsg(mp); 16719 #undef rptr 16720 } 16721 16722 void 16723 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16724 { 16725 ire_t *ire; 16726 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16727 16728 ASSERT(!ipif->ipif_isv6); 16729 /* 16730 * Find an IRE which matches the destination and the outgoing 16731 * queue in the cache table. All we need is an IRE_CACHE which 16732 * is pointing at ipif->ipif_ill. 16733 */ 16734 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16735 dst = ipif->ipif_pp_dst_addr; 16736 16737 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16738 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16739 if (ire == NULL) { 16740 /* 16741 * Mark this packet to make it be delivered to 16742 * ip_rput_forward after the new ire has been 16743 * created. 16744 */ 16745 mp->b_prev = NULL; 16746 mp->b_next = mp; 16747 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16748 NULL, 0, GLOBAL_ZONEID, &zero_info); 16749 } else { 16750 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16751 IRE_REFRELE(ire); 16752 } 16753 } 16754 16755 /* Update any source route, record route or timestamp options */ 16756 static int 16757 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16758 { 16759 ipoptp_t opts; 16760 uchar_t *opt; 16761 uint8_t optval; 16762 uint8_t optlen; 16763 ipaddr_t dst; 16764 uint32_t ts; 16765 ire_t *dst_ire = NULL; 16766 ire_t *tmp_ire = NULL; 16767 timestruc_t now; 16768 16769 ip2dbg(("ip_rput_forward_options\n")); 16770 dst = ipha->ipha_dst; 16771 for (optval = ipoptp_first(&opts, ipha); 16772 optval != IPOPT_EOL; 16773 optval = ipoptp_next(&opts)) { 16774 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16775 opt = opts.ipoptp_cur; 16776 optlen = opts.ipoptp_len; 16777 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16778 optval, opts.ipoptp_len)); 16779 switch (optval) { 16780 uint32_t off; 16781 case IPOPT_SSRR: 16782 case IPOPT_LSRR: 16783 /* Check if adminstratively disabled */ 16784 if (!ipst->ips_ip_forward_src_routed) { 16785 if (ire->ire_stq != NULL) { 16786 /* 16787 * Sent by forwarding path, and router 16788 * is global zone 16789 */ 16790 icmp_unreachable(ire->ire_stq, mp, 16791 ICMP_SOURCE_ROUTE_FAILED, 16792 GLOBAL_ZONEID, ipst); 16793 } else { 16794 ip0dbg(("ip_rput_forward_options: " 16795 "unable to send unreach\n")); 16796 freemsg(mp); 16797 } 16798 return (-1); 16799 } 16800 16801 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16802 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16803 if (dst_ire == NULL) { 16804 /* 16805 * Must be partial since ip_rput_options 16806 * checked for strict. 16807 */ 16808 break; 16809 } 16810 off = opt[IPOPT_OFFSET]; 16811 off--; 16812 redo_srr: 16813 if (optlen < IP_ADDR_LEN || 16814 off > optlen - IP_ADDR_LEN) { 16815 /* End of source route */ 16816 ip1dbg(( 16817 "ip_rput_forward_options: end of SR\n")); 16818 ire_refrele(dst_ire); 16819 break; 16820 } 16821 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16822 bcopy(&ire->ire_src_addr, (char *)opt + off, 16823 IP_ADDR_LEN); 16824 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16825 ntohl(dst))); 16826 16827 /* 16828 * Check if our address is present more than 16829 * once as consecutive hops in source route. 16830 */ 16831 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16832 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16833 if (tmp_ire != NULL) { 16834 ire_refrele(tmp_ire); 16835 off += IP_ADDR_LEN; 16836 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16837 goto redo_srr; 16838 } 16839 ipha->ipha_dst = dst; 16840 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16841 ire_refrele(dst_ire); 16842 break; 16843 case IPOPT_RR: 16844 off = opt[IPOPT_OFFSET]; 16845 off--; 16846 if (optlen < IP_ADDR_LEN || 16847 off > optlen - IP_ADDR_LEN) { 16848 /* No more room - ignore */ 16849 ip1dbg(( 16850 "ip_rput_forward_options: end of RR\n")); 16851 break; 16852 } 16853 bcopy(&ire->ire_src_addr, (char *)opt + off, 16854 IP_ADDR_LEN); 16855 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16856 break; 16857 case IPOPT_TS: 16858 /* Insert timestamp if there is room */ 16859 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16860 case IPOPT_TS_TSONLY: 16861 off = IPOPT_TS_TIMELEN; 16862 break; 16863 case IPOPT_TS_PRESPEC: 16864 case IPOPT_TS_PRESPEC_RFC791: 16865 /* Verify that the address matched */ 16866 off = opt[IPOPT_OFFSET] - 1; 16867 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16868 dst_ire = ire_ctable_lookup(dst, 0, 16869 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16870 MATCH_IRE_TYPE, ipst); 16871 if (dst_ire == NULL) { 16872 /* Not for us */ 16873 break; 16874 } 16875 ire_refrele(dst_ire); 16876 /* FALLTHRU */ 16877 case IPOPT_TS_TSANDADDR: 16878 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16879 break; 16880 default: 16881 /* 16882 * ip_*put_options should have already 16883 * dropped this packet. 16884 */ 16885 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16886 "unknown IT - bug in ip_rput_options?\n"); 16887 return (0); /* Keep "lint" happy */ 16888 } 16889 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16890 /* Increase overflow counter */ 16891 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16892 opt[IPOPT_POS_OV_FLG] = 16893 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16894 (off << 4)); 16895 break; 16896 } 16897 off = opt[IPOPT_OFFSET] - 1; 16898 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16899 case IPOPT_TS_PRESPEC: 16900 case IPOPT_TS_PRESPEC_RFC791: 16901 case IPOPT_TS_TSANDADDR: 16902 bcopy(&ire->ire_src_addr, 16903 (char *)opt + off, IP_ADDR_LEN); 16904 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16905 /* FALLTHRU */ 16906 case IPOPT_TS_TSONLY: 16907 off = opt[IPOPT_OFFSET] - 1; 16908 /* Compute # of milliseconds since midnight */ 16909 gethrestime(&now); 16910 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16911 now.tv_nsec / (NANOSEC / MILLISEC); 16912 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16913 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16914 break; 16915 } 16916 break; 16917 } 16918 } 16919 return (0); 16920 } 16921 16922 /* 16923 * This is called after processing at least one of AH/ESP headers. 16924 * 16925 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16926 * the actual, physical interface on which the packet was received, 16927 * but, when ip_strict_dst_multihoming is set to 1, could be the 16928 * interface which had the ipha_dst configured when the packet went 16929 * through ip_rput. The ill_index corresponding to the recv_ill 16930 * is saved in ipsec_in_rill_index 16931 * 16932 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16933 * cannot assume "ire" points to valid data for any IPv6 cases. 16934 */ 16935 void 16936 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16937 { 16938 mblk_t *mp; 16939 ipaddr_t dst; 16940 in6_addr_t *v6dstp; 16941 ipha_t *ipha; 16942 ip6_t *ip6h; 16943 ipsec_in_t *ii; 16944 boolean_t ill_need_rele = B_FALSE; 16945 boolean_t rill_need_rele = B_FALSE; 16946 boolean_t ire_need_rele = B_FALSE; 16947 netstack_t *ns; 16948 ip_stack_t *ipst; 16949 16950 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16951 ASSERT(ii->ipsec_in_ill_index != 0); 16952 ns = ii->ipsec_in_ns; 16953 ASSERT(ii->ipsec_in_ns != NULL); 16954 ipst = ns->netstack_ip; 16955 16956 mp = ipsec_mp->b_cont; 16957 ASSERT(mp != NULL); 16958 16959 if (ill == NULL) { 16960 ASSERT(recv_ill == NULL); 16961 /* 16962 * We need to get the original queue on which ip_rput_local 16963 * or ip_rput_data_v6 was called. 16964 */ 16965 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16966 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16967 ill_need_rele = B_TRUE; 16968 16969 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16970 recv_ill = ill_lookup_on_ifindex( 16971 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16972 NULL, NULL, NULL, NULL, ipst); 16973 rill_need_rele = B_TRUE; 16974 } else { 16975 recv_ill = ill; 16976 } 16977 16978 if ((ill == NULL) || (recv_ill == NULL)) { 16979 ip0dbg(("ip_fanout_proto_again: interface " 16980 "disappeared\n")); 16981 if (ill != NULL) 16982 ill_refrele(ill); 16983 if (recv_ill != NULL) 16984 ill_refrele(recv_ill); 16985 freemsg(ipsec_mp); 16986 return; 16987 } 16988 } 16989 16990 ASSERT(ill != NULL && recv_ill != NULL); 16991 16992 if (mp->b_datap->db_type == M_CTL) { 16993 /* 16994 * AH/ESP is returning the ICMP message after 16995 * removing their headers. Fanout again till 16996 * it gets to the right protocol. 16997 */ 16998 if (ii->ipsec_in_v4) { 16999 icmph_t *icmph; 17000 int iph_hdr_length; 17001 int hdr_length; 17002 17003 ipha = (ipha_t *)mp->b_rptr; 17004 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17005 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17006 ipha = (ipha_t *)&icmph[1]; 17007 hdr_length = IPH_HDR_LENGTH(ipha); 17008 /* 17009 * icmp_inbound_error_fanout may need to do pullupmsg. 17010 * Reset the type to M_DATA. 17011 */ 17012 mp->b_datap->db_type = M_DATA; 17013 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17014 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17015 B_FALSE, ill, ii->ipsec_in_zoneid); 17016 } else { 17017 icmp6_t *icmp6; 17018 int hdr_length; 17019 17020 ip6h = (ip6_t *)mp->b_rptr; 17021 /* Don't call hdr_length_v6() unless you have to. */ 17022 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17023 hdr_length = ip_hdr_length_v6(mp, ip6h); 17024 else 17025 hdr_length = IPV6_HDR_LEN; 17026 17027 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17028 /* 17029 * icmp_inbound_error_fanout_v6 may need to do 17030 * pullupmsg. Reset the type to M_DATA. 17031 */ 17032 mp->b_datap->db_type = M_DATA; 17033 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17034 ip6h, icmp6, ill, recv_ill, B_TRUE, 17035 ii->ipsec_in_zoneid); 17036 } 17037 if (ill_need_rele) 17038 ill_refrele(ill); 17039 if (rill_need_rele) 17040 ill_refrele(recv_ill); 17041 return; 17042 } 17043 17044 if (ii->ipsec_in_v4) { 17045 ipha = (ipha_t *)mp->b_rptr; 17046 dst = ipha->ipha_dst; 17047 if (CLASSD(dst)) { 17048 /* 17049 * Multicast has to be delivered to all streams. 17050 */ 17051 dst = INADDR_BROADCAST; 17052 } 17053 17054 if (ire == NULL) { 17055 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17056 msg_getlabel(mp), ipst); 17057 if (ire == NULL) { 17058 if (ill_need_rele) 17059 ill_refrele(ill); 17060 if (rill_need_rele) 17061 ill_refrele(recv_ill); 17062 ip1dbg(("ip_fanout_proto_again: " 17063 "IRE not found")); 17064 freemsg(ipsec_mp); 17065 return; 17066 } 17067 ire_need_rele = B_TRUE; 17068 } 17069 17070 switch (ipha->ipha_protocol) { 17071 case IPPROTO_UDP: 17072 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17073 recv_ill); 17074 if (ire_need_rele) 17075 ire_refrele(ire); 17076 break; 17077 case IPPROTO_TCP: 17078 if (!ire_need_rele) 17079 IRE_REFHOLD(ire); 17080 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17081 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17082 IRE_REFRELE(ire); 17083 if (mp != NULL) { 17084 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17085 mp, 1, SQ_PROCESS, 17086 SQTAG_IP_PROTO_AGAIN); 17087 } 17088 break; 17089 case IPPROTO_SCTP: 17090 if (!ire_need_rele) 17091 IRE_REFHOLD(ire); 17092 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17093 ipsec_mp, 0, ill->ill_rq, dst); 17094 break; 17095 case IPPROTO_ENCAP: 17096 case IPPROTO_IPV6: 17097 if (ip_iptun_input(ipsec_mp, mp, ipha, ill, ire, 17098 ill->ill_ipst)) { 17099 /* 17100 * If we made it here, we don't need to worry 17101 * about the raw-socket/protocol fanout. 17102 */ 17103 if (ire_need_rele) 17104 ire_refrele(ire); 17105 break; 17106 } 17107 /* else FALLTHRU */ 17108 default: 17109 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17110 recv_ill, 0); 17111 if (ire_need_rele) 17112 ire_refrele(ire); 17113 break; 17114 } 17115 } else { 17116 uint32_t rput_flags = 0; 17117 17118 ip6h = (ip6_t *)mp->b_rptr; 17119 v6dstp = &ip6h->ip6_dst; 17120 /* 17121 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17122 * address. 17123 * 17124 * Currently, we don't store that state in the IPSEC_IN 17125 * message, and we may need to. 17126 */ 17127 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17128 IP6_IN_LLMCAST : 0); 17129 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17130 NULL, NULL); 17131 } 17132 if (ill_need_rele) 17133 ill_refrele(ill); 17134 if (rill_need_rele) 17135 ill_refrele(recv_ill); 17136 } 17137 17138 /* 17139 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17140 * returns 'true' if there are still fragments left on the queue, in 17141 * which case we restart the timer. 17142 */ 17143 void 17144 ill_frag_timer(void *arg) 17145 { 17146 ill_t *ill = (ill_t *)arg; 17147 boolean_t frag_pending; 17148 ip_stack_t *ipst = ill->ill_ipst; 17149 time_t timeout; 17150 17151 mutex_enter(&ill->ill_lock); 17152 ASSERT(!ill->ill_fragtimer_executing); 17153 if (ill->ill_state_flags & ILL_CONDEMNED) { 17154 ill->ill_frag_timer_id = 0; 17155 mutex_exit(&ill->ill_lock); 17156 return; 17157 } 17158 ill->ill_fragtimer_executing = 1; 17159 mutex_exit(&ill->ill_lock); 17160 17161 if (ill->ill_isv6) 17162 timeout = ipst->ips_ipv6_frag_timeout; 17163 else 17164 timeout = ipst->ips_ip_g_frag_timeout; 17165 17166 frag_pending = ill_frag_timeout(ill, timeout); 17167 17168 /* 17169 * Restart the timer, if we have fragments pending or if someone 17170 * wanted us to be scheduled again. 17171 */ 17172 mutex_enter(&ill->ill_lock); 17173 ill->ill_fragtimer_executing = 0; 17174 ill->ill_frag_timer_id = 0; 17175 if (frag_pending || ill->ill_fragtimer_needrestart) 17176 ill_frag_timer_start(ill); 17177 mutex_exit(&ill->ill_lock); 17178 } 17179 17180 void 17181 ill_frag_timer_start(ill_t *ill) 17182 { 17183 ip_stack_t *ipst = ill->ill_ipst; 17184 clock_t timeo_ms; 17185 17186 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17187 17188 /* If the ill is closing or opening don't proceed */ 17189 if (ill->ill_state_flags & ILL_CONDEMNED) 17190 return; 17191 17192 if (ill->ill_fragtimer_executing) { 17193 /* 17194 * ill_frag_timer is currently executing. Just record the 17195 * the fact that we want the timer to be restarted. 17196 * ill_frag_timer will post a timeout before it returns, 17197 * ensuring it will be called again. 17198 */ 17199 ill->ill_fragtimer_needrestart = 1; 17200 return; 17201 } 17202 17203 if (ill->ill_frag_timer_id == 0) { 17204 if (ill->ill_isv6) 17205 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 17206 else 17207 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 17208 /* 17209 * The timer is neither running nor is the timeout handler 17210 * executing. Post a timeout so that ill_frag_timer will be 17211 * called 17212 */ 17213 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17214 MSEC_TO_TICK(timeo_ms >> 1)); 17215 ill->ill_fragtimer_needrestart = 0; 17216 } 17217 } 17218 17219 /* 17220 * This routine is needed for loopback when forwarding multicasts. 17221 * 17222 * IPQoS Notes: 17223 * IPPF processing is done in fanout routines. 17224 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17225 * processing for IPsec packets is done when it comes back in clear. 17226 * NOTE : The callers of this function need to do the ire_refrele for the 17227 * ire that is being passed in. 17228 */ 17229 void 17230 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17231 ill_t *recv_ill, uint32_t esp_udp_ports) 17232 { 17233 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17234 ill_t *ill = (ill_t *)q->q_ptr; 17235 uint32_t sum; 17236 uint32_t u1; 17237 uint32_t u2; 17238 int hdr_length; 17239 boolean_t mctl_present; 17240 mblk_t *first_mp = mp; 17241 mblk_t *hada_mp = NULL; 17242 ipha_t *inner_ipha; 17243 ip_stack_t *ipst; 17244 17245 ASSERT(recv_ill != NULL); 17246 ipst = recv_ill->ill_ipst; 17247 17248 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17249 "ip_rput_locl_start: q %p", q); 17250 17251 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17252 ASSERT(ill != NULL); 17253 17254 #define rptr ((uchar_t *)ipha) 17255 #define iphs ((uint16_t *)ipha) 17256 17257 /* 17258 * no UDP or TCP packet should come here anymore. 17259 */ 17260 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17261 ipha->ipha_protocol != IPPROTO_UDP); 17262 17263 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17264 if (mctl_present && 17265 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17266 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17267 17268 /* 17269 * It's an IPsec accelerated packet. 17270 * Keep a pointer to the data attributes around until 17271 * we allocate the ipsec_info_t. 17272 */ 17273 IPSECHW_DEBUG(IPSECHW_PKT, 17274 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17275 hada_mp = first_mp; 17276 hada_mp->b_cont = NULL; 17277 /* 17278 * Since it is accelerated, it comes directly from 17279 * the ill and the data attributes is followed by 17280 * the packet data. 17281 */ 17282 ASSERT(mp->b_datap->db_type != M_CTL); 17283 first_mp = mp; 17284 mctl_present = B_FALSE; 17285 } 17286 17287 /* 17288 * IF M_CTL is not present, then ipsec_in_is_secure 17289 * should return B_TRUE. There is a case where loopback 17290 * packets has an M_CTL in the front with all the 17291 * IPsec options set to IPSEC_PREF_NEVER - which means 17292 * ipsec_in_is_secure will return B_FALSE. As loopback 17293 * packets never comes here, it is safe to ASSERT the 17294 * following. 17295 */ 17296 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17297 17298 /* 17299 * Also, we should never have an mctl_present if this is an 17300 * ESP-in-UDP packet. 17301 */ 17302 ASSERT(!mctl_present || !esp_in_udp_packet); 17303 17304 /* u1 is # words of IP options */ 17305 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17306 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17307 17308 /* 17309 * Don't verify header checksum if we just removed UDP header or 17310 * packet is coming back from AH/ESP. 17311 */ 17312 if (!esp_in_udp_packet && !mctl_present) { 17313 if (u1) { 17314 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17315 if (hada_mp != NULL) 17316 freemsg(hada_mp); 17317 return; 17318 } 17319 } else { 17320 /* Check the IP header checksum. */ 17321 #define uph ((uint16_t *)ipha) 17322 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17323 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17324 #undef uph 17325 /* finish doing IP checksum */ 17326 sum = (sum & 0xFFFF) + (sum >> 16); 17327 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17328 if (sum && sum != 0xFFFF) { 17329 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17330 goto drop_pkt; 17331 } 17332 } 17333 } 17334 17335 /* 17336 * Count for SNMP of inbound packets for ire. As ip_proto_input 17337 * might be called more than once for secure packets, count only 17338 * the first time. 17339 */ 17340 if (!mctl_present) { 17341 UPDATE_IB_PKT_COUNT(ire); 17342 ire->ire_last_used_time = lbolt; 17343 } 17344 17345 /* Check for fragmentation offset. */ 17346 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17347 u1 = u2 & (IPH_MF | IPH_OFFSET); 17348 if (u1) { 17349 /* 17350 * We re-assemble fragments before we do the AH/ESP 17351 * processing. Thus, M_CTL should not be present 17352 * while we are re-assembling. 17353 */ 17354 ASSERT(!mctl_present); 17355 ASSERT(first_mp == mp); 17356 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17357 return; 17358 17359 /* 17360 * Make sure that first_mp points back to mp as 17361 * the mp we came in with could have changed in 17362 * ip_rput_fragment(). 17363 */ 17364 ipha = (ipha_t *)mp->b_rptr; 17365 first_mp = mp; 17366 } 17367 17368 /* 17369 * Clear hardware checksumming flag as it is currently only 17370 * used by TCP and UDP. 17371 */ 17372 DB_CKSUMFLAGS(mp) = 0; 17373 17374 /* Now we have a complete datagram, destined for this machine. */ 17375 u1 = IPH_HDR_LENGTH(ipha); 17376 switch (ipha->ipha_protocol) { 17377 case IPPROTO_ICMP: { 17378 ire_t *ire_zone; 17379 ilm_t *ilm; 17380 mblk_t *mp1; 17381 zoneid_t last_zoneid; 17382 ilm_walker_t ilw; 17383 17384 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17385 ASSERT(ire->ire_type == IRE_BROADCAST); 17386 17387 /* 17388 * In the multicast case, applications may have joined 17389 * the group from different zones, so we need to deliver 17390 * the packet to each of them. Loop through the 17391 * multicast memberships structures (ilm) on the receive 17392 * ill and send a copy of the packet up each matching 17393 * one. However, we don't do this for multicasts sent on 17394 * the loopback interface (PHYI_LOOPBACK flag set) as 17395 * they must stay in the sender's zone. 17396 * 17397 * ilm_add_v6() ensures that ilms in the same zone are 17398 * contiguous in the ill_ilm list. We use this property 17399 * to avoid sending duplicates needed when two 17400 * applications in the same zone join the same group on 17401 * different logical interfaces: we ignore the ilm if 17402 * its zoneid is the same as the last matching one. 17403 * In addition, the sending of the packet for 17404 * ire_zoneid is delayed until all of the other ilms 17405 * have been exhausted. 17406 */ 17407 last_zoneid = -1; 17408 ilm = ilm_walker_start(&ilw, recv_ill); 17409 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17410 if (ipha->ipha_dst != ilm->ilm_addr || 17411 ilm->ilm_zoneid == last_zoneid || 17412 ilm->ilm_zoneid == ire->ire_zoneid || 17413 ilm->ilm_zoneid == ALL_ZONES || 17414 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17415 continue; 17416 mp1 = ip_copymsg(first_mp); 17417 if (mp1 == NULL) 17418 continue; 17419 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17420 0, sum, mctl_present, B_TRUE, 17421 recv_ill, ilm->ilm_zoneid); 17422 last_zoneid = ilm->ilm_zoneid; 17423 } 17424 ilm_walker_finish(&ilw); 17425 } else if (ire->ire_type == IRE_BROADCAST) { 17426 /* 17427 * In the broadcast case, there may be many zones 17428 * which need a copy of the packet delivered to them. 17429 * There is one IRE_BROADCAST per broadcast address 17430 * and per zone; we walk those using a helper function. 17431 * In addition, the sending of the packet for ire is 17432 * delayed until all of the other ires have been 17433 * processed. 17434 */ 17435 IRB_REFHOLD(ire->ire_bucket); 17436 ire_zone = NULL; 17437 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17438 ire)) != NULL) { 17439 mp1 = ip_copymsg(first_mp); 17440 if (mp1 == NULL) 17441 continue; 17442 17443 UPDATE_IB_PKT_COUNT(ire_zone); 17444 ire_zone->ire_last_used_time = lbolt; 17445 icmp_inbound(q, mp1, B_TRUE, ill, 17446 0, sum, mctl_present, B_TRUE, 17447 recv_ill, ire_zone->ire_zoneid); 17448 } 17449 IRB_REFRELE(ire->ire_bucket); 17450 } 17451 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17452 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17453 ire->ire_zoneid); 17454 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17455 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17456 return; 17457 } 17458 case IPPROTO_IGMP: 17459 /* 17460 * If we are not willing to accept IGMP packets in clear, 17461 * then check with global policy. 17462 */ 17463 if (ipst->ips_igmp_accept_clear_messages == 0) { 17464 first_mp = ipsec_check_global_policy(first_mp, NULL, 17465 ipha, NULL, mctl_present, ipst->ips_netstack); 17466 if (first_mp == NULL) 17467 return; 17468 } 17469 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17470 freemsg(first_mp); 17471 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17472 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17473 return; 17474 } 17475 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17476 /* Bad packet - discarded by igmp_input */ 17477 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17478 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17479 if (mctl_present) 17480 freeb(first_mp); 17481 return; 17482 } 17483 /* 17484 * igmp_input() may have returned the pulled up message. 17485 * So first_mp and ipha need to be reinitialized. 17486 */ 17487 ipha = (ipha_t *)mp->b_rptr; 17488 if (mctl_present) 17489 first_mp->b_cont = mp; 17490 else 17491 first_mp = mp; 17492 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17493 connf_head != NULL) { 17494 /* No user-level listener for IGMP packets */ 17495 goto drop_pkt; 17496 } 17497 /* deliver to local raw users */ 17498 break; 17499 case IPPROTO_PIM: 17500 /* 17501 * If we are not willing to accept PIM packets in clear, 17502 * then check with global policy. 17503 */ 17504 if (ipst->ips_pim_accept_clear_messages == 0) { 17505 first_mp = ipsec_check_global_policy(first_mp, NULL, 17506 ipha, NULL, mctl_present, ipst->ips_netstack); 17507 if (first_mp == NULL) 17508 return; 17509 } 17510 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17511 freemsg(first_mp); 17512 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17513 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17514 return; 17515 } 17516 if (pim_input(q, mp, ill) != 0) { 17517 /* Bad packet - discarded by pim_input */ 17518 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17519 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17520 if (mctl_present) 17521 freeb(first_mp); 17522 return; 17523 } 17524 17525 /* 17526 * pim_input() may have pulled up the message so ipha needs to 17527 * be reinitialized. 17528 */ 17529 ipha = (ipha_t *)mp->b_rptr; 17530 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17531 connf_head != NULL) { 17532 /* No user-level listener for PIM packets */ 17533 goto drop_pkt; 17534 } 17535 /* deliver to local raw users */ 17536 break; 17537 case IPPROTO_ENCAP: 17538 /* 17539 * Handle self-encapsulated packets (IP-in-IP where 17540 * the inner addresses == the outer addresses). 17541 */ 17542 hdr_length = IPH_HDR_LENGTH(ipha); 17543 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17544 mp->b_wptr) { 17545 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17546 sizeof (ipha_t) - mp->b_rptr)) { 17547 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17548 freemsg(first_mp); 17549 return; 17550 } 17551 ipha = (ipha_t *)mp->b_rptr; 17552 } 17553 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17554 /* 17555 * Check the sanity of the inner IP header. 17556 */ 17557 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17558 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17559 freemsg(first_mp); 17560 return; 17561 } 17562 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17563 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17564 freemsg(first_mp); 17565 return; 17566 } 17567 if (inner_ipha->ipha_src == ipha->ipha_src && 17568 inner_ipha->ipha_dst == ipha->ipha_dst) { 17569 ipsec_in_t *ii; 17570 17571 /* 17572 * Self-encapsulated tunnel packet. Remove 17573 * the outer IP header and fanout again. 17574 * We also need to make sure that the inner 17575 * header is pulled up until options. 17576 */ 17577 mp->b_rptr = (uchar_t *)inner_ipha; 17578 ipha = inner_ipha; 17579 hdr_length = IPH_HDR_LENGTH(ipha); 17580 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17581 if (!pullupmsg(mp, (uchar_t *)ipha + 17582 + hdr_length - mp->b_rptr)) { 17583 freemsg(first_mp); 17584 return; 17585 } 17586 ipha = (ipha_t *)mp->b_rptr; 17587 } 17588 if (hdr_length > sizeof (ipha_t)) { 17589 /* We got options on the inner packet. */ 17590 ipaddr_t dst = ipha->ipha_dst; 17591 17592 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17593 -1) { 17594 /* Bad options! */ 17595 return; 17596 } 17597 if (dst != ipha->ipha_dst) { 17598 /* 17599 * Someone put a source-route in 17600 * the inside header of a self- 17601 * encapsulated packet. Drop it 17602 * with extreme prejudice and let 17603 * the sender know. 17604 */ 17605 icmp_unreachable(q, first_mp, 17606 ICMP_SOURCE_ROUTE_FAILED, 17607 recv_ill->ill_zoneid, ipst); 17608 return; 17609 } 17610 } 17611 if (!mctl_present) { 17612 ASSERT(first_mp == mp); 17613 /* 17614 * This means that somebody is sending 17615 * Self-encapsualted packets without AH/ESP. 17616 * If AH/ESP was present, we would have already 17617 * allocated the first_mp. 17618 * 17619 * Send this packet to find a tunnel endpoint. 17620 * if I can't find one, an ICMP 17621 * PROTOCOL_UNREACHABLE will get sent. 17622 */ 17623 goto fanout; 17624 } 17625 /* 17626 * We generally store the ill_index if we need to 17627 * do IPsec processing as we lose the ill queue when 17628 * we come back. But in this case, we never should 17629 * have to store the ill_index here as it should have 17630 * been stored previously when we processed the 17631 * AH/ESP header in this routine or for non-ipsec 17632 * cases, we still have the queue. But for some bad 17633 * packets from the wire, we can get to IPsec after 17634 * this and we better store the index for that case. 17635 */ 17636 ill = (ill_t *)q->q_ptr; 17637 ii = (ipsec_in_t *)first_mp->b_rptr; 17638 ii->ipsec_in_ill_index = 17639 ill->ill_phyint->phyint_ifindex; 17640 ii->ipsec_in_rill_index = 17641 recv_ill->ill_phyint->phyint_ifindex; 17642 if (ii->ipsec_in_decaps) { 17643 /* 17644 * This packet is self-encapsulated multiple 17645 * times. We don't want to recurse infinitely. 17646 * To keep it simple, drop the packet. 17647 */ 17648 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17649 freemsg(first_mp); 17650 return; 17651 } 17652 ii->ipsec_in_decaps = B_TRUE; 17653 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17654 ire); 17655 return; 17656 } 17657 break; 17658 case IPPROTO_AH: 17659 case IPPROTO_ESP: { 17660 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17661 17662 /* 17663 * Fast path for AH/ESP. If this is the first time 17664 * we are sending a datagram to AH/ESP, allocate 17665 * a IPSEC_IN message and prepend it. Otherwise, 17666 * just fanout. 17667 */ 17668 17669 int ipsec_rc; 17670 ipsec_in_t *ii; 17671 netstack_t *ns = ipst->ips_netstack; 17672 17673 IP_STAT(ipst, ipsec_proto_ahesp); 17674 if (!mctl_present) { 17675 ASSERT(first_mp == mp); 17676 first_mp = ipsec_in_alloc(B_TRUE, ns); 17677 if (first_mp == NULL) { 17678 ip1dbg(("ip_proto_input: IPSEC_IN " 17679 "allocation failure.\n")); 17680 freemsg(hada_mp); /* okay ifnull */ 17681 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17682 freemsg(mp); 17683 return; 17684 } 17685 /* 17686 * Store the ill_index so that when we come back 17687 * from IPsec we ride on the same queue. 17688 */ 17689 ill = (ill_t *)q->q_ptr; 17690 ii = (ipsec_in_t *)first_mp->b_rptr; 17691 ii->ipsec_in_ill_index = 17692 ill->ill_phyint->phyint_ifindex; 17693 ii->ipsec_in_rill_index = 17694 recv_ill->ill_phyint->phyint_ifindex; 17695 first_mp->b_cont = mp; 17696 /* 17697 * Cache hardware acceleration info. 17698 */ 17699 if (hada_mp != NULL) { 17700 IPSECHW_DEBUG(IPSECHW_PKT, 17701 ("ip_rput_local: caching data attr.\n")); 17702 ii->ipsec_in_accelerated = B_TRUE; 17703 ii->ipsec_in_da = hada_mp; 17704 hada_mp = NULL; 17705 } 17706 } else { 17707 ii = (ipsec_in_t *)first_mp->b_rptr; 17708 } 17709 17710 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17711 17712 if (!ipsec_loaded(ipss)) { 17713 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17714 ire->ire_zoneid, ipst); 17715 return; 17716 } 17717 17718 ns = ipst->ips_netstack; 17719 /* select inbound SA and have IPsec process the pkt */ 17720 if (ipha->ipha_protocol == IPPROTO_ESP) { 17721 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17722 boolean_t esp_in_udp_sa; 17723 if (esph == NULL) 17724 return; 17725 ASSERT(ii->ipsec_in_esp_sa != NULL); 17726 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17727 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17728 IPSA_F_NATT) != 0); 17729 /* 17730 * The following is a fancy, but quick, way of saying: 17731 * ESP-in-UDP SA and Raw ESP packet --> drop 17732 * OR 17733 * ESP SA and ESP-in-UDP packet --> drop 17734 */ 17735 if (esp_in_udp_sa != esp_in_udp_packet) { 17736 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17737 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17738 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17739 &ns->netstack_ipsec->ipsec_dropper); 17740 return; 17741 } 17742 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17743 first_mp, esph); 17744 } else { 17745 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17746 if (ah == NULL) 17747 return; 17748 ASSERT(ii->ipsec_in_ah_sa != NULL); 17749 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17750 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17751 first_mp, ah); 17752 } 17753 17754 switch (ipsec_rc) { 17755 case IPSEC_STATUS_SUCCESS: 17756 break; 17757 case IPSEC_STATUS_FAILED: 17758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17759 /* FALLTHRU */ 17760 case IPSEC_STATUS_PENDING: 17761 return; 17762 } 17763 /* we're done with IPsec processing, send it up */ 17764 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17765 return; 17766 } 17767 default: 17768 break; 17769 } 17770 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17771 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17772 ire->ire_zoneid)); 17773 goto drop_pkt; 17774 } 17775 /* 17776 * Handle protocols with which IP is less intimate. There 17777 * can be more than one stream bound to a particular 17778 * protocol. When this is the case, each one gets a copy 17779 * of any incoming packets. 17780 */ 17781 fanout: 17782 ip_fanout_proto(q, first_mp, ill, ipha, 17783 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17784 B_TRUE, recv_ill, ire->ire_zoneid); 17785 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17786 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17787 return; 17788 17789 drop_pkt: 17790 freemsg(first_mp); 17791 if (hada_mp != NULL) 17792 freeb(hada_mp); 17793 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17794 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17795 #undef rptr 17796 #undef iphs 17797 17798 } 17799 17800 /* 17801 * Update any source route, record route or timestamp options. 17802 * Check that we are at end of strict source route. 17803 * The options have already been checked for sanity in ip_rput_options(). 17804 */ 17805 static boolean_t 17806 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17807 ip_stack_t *ipst) 17808 { 17809 ipoptp_t opts; 17810 uchar_t *opt; 17811 uint8_t optval; 17812 uint8_t optlen; 17813 ipaddr_t dst; 17814 uint32_t ts; 17815 ire_t *dst_ire; 17816 timestruc_t now; 17817 zoneid_t zoneid; 17818 ill_t *ill; 17819 17820 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17821 17822 ip2dbg(("ip_rput_local_options\n")); 17823 17824 for (optval = ipoptp_first(&opts, ipha); 17825 optval != IPOPT_EOL; 17826 optval = ipoptp_next(&opts)) { 17827 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17828 opt = opts.ipoptp_cur; 17829 optlen = opts.ipoptp_len; 17830 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17831 optval, optlen)); 17832 switch (optval) { 17833 uint32_t off; 17834 case IPOPT_SSRR: 17835 case IPOPT_LSRR: 17836 off = opt[IPOPT_OFFSET]; 17837 off--; 17838 if (optlen < IP_ADDR_LEN || 17839 off > optlen - IP_ADDR_LEN) { 17840 /* End of source route */ 17841 ip1dbg(("ip_rput_local_options: end of SR\n")); 17842 break; 17843 } 17844 /* 17845 * This will only happen if two consecutive entries 17846 * in the source route contains our address or if 17847 * it is a packet with a loose source route which 17848 * reaches us before consuming the whole source route 17849 */ 17850 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17851 if (optval == IPOPT_SSRR) { 17852 goto bad_src_route; 17853 } 17854 /* 17855 * Hack: instead of dropping the packet truncate the 17856 * source route to what has been used by filling the 17857 * rest with IPOPT_NOP. 17858 */ 17859 opt[IPOPT_OLEN] = (uint8_t)off; 17860 while (off < optlen) { 17861 opt[off++] = IPOPT_NOP; 17862 } 17863 break; 17864 case IPOPT_RR: 17865 off = opt[IPOPT_OFFSET]; 17866 off--; 17867 if (optlen < IP_ADDR_LEN || 17868 off > optlen - IP_ADDR_LEN) { 17869 /* No more room - ignore */ 17870 ip1dbg(( 17871 "ip_rput_local_options: end of RR\n")); 17872 break; 17873 } 17874 bcopy(&ire->ire_src_addr, (char *)opt + off, 17875 IP_ADDR_LEN); 17876 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17877 break; 17878 case IPOPT_TS: 17879 /* Insert timestamp if there is romm */ 17880 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17881 case IPOPT_TS_TSONLY: 17882 off = IPOPT_TS_TIMELEN; 17883 break; 17884 case IPOPT_TS_PRESPEC: 17885 case IPOPT_TS_PRESPEC_RFC791: 17886 /* Verify that the address matched */ 17887 off = opt[IPOPT_OFFSET] - 1; 17888 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17889 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17890 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17891 ipst); 17892 if (dst_ire == NULL) { 17893 /* Not for us */ 17894 break; 17895 } 17896 ire_refrele(dst_ire); 17897 /* FALLTHRU */ 17898 case IPOPT_TS_TSANDADDR: 17899 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17900 break; 17901 default: 17902 /* 17903 * ip_*put_options should have already 17904 * dropped this packet. 17905 */ 17906 cmn_err(CE_PANIC, "ip_rput_local_options: " 17907 "unknown IT - bug in ip_rput_options?\n"); 17908 return (B_TRUE); /* Keep "lint" happy */ 17909 } 17910 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17911 /* Increase overflow counter */ 17912 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17913 opt[IPOPT_POS_OV_FLG] = 17914 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17915 (off << 4)); 17916 break; 17917 } 17918 off = opt[IPOPT_OFFSET] - 1; 17919 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17920 case IPOPT_TS_PRESPEC: 17921 case IPOPT_TS_PRESPEC_RFC791: 17922 case IPOPT_TS_TSANDADDR: 17923 bcopy(&ire->ire_src_addr, (char *)opt + off, 17924 IP_ADDR_LEN); 17925 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17926 /* FALLTHRU */ 17927 case IPOPT_TS_TSONLY: 17928 off = opt[IPOPT_OFFSET] - 1; 17929 /* Compute # of milliseconds since midnight */ 17930 gethrestime(&now); 17931 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17932 now.tv_nsec / (NANOSEC / MILLISEC); 17933 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17934 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17935 break; 17936 } 17937 break; 17938 } 17939 } 17940 return (B_TRUE); 17941 17942 bad_src_route: 17943 q = WR(q); 17944 if (q->q_next != NULL) 17945 ill = q->q_ptr; 17946 else 17947 ill = NULL; 17948 17949 /* make sure we clear any indication of a hardware checksum */ 17950 DB_CKSUMFLAGS(mp) = 0; 17951 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17952 if (zoneid == ALL_ZONES) 17953 freemsg(mp); 17954 else 17955 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17956 return (B_FALSE); 17957 17958 } 17959 17960 /* 17961 * Process IP options in an inbound packet. If an option affects the 17962 * effective destination address, return the next hop address via dstp. 17963 * Returns -1 if something fails in which case an ICMP error has been sent 17964 * and mp freed. 17965 */ 17966 static int 17967 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17968 ip_stack_t *ipst) 17969 { 17970 ipoptp_t opts; 17971 uchar_t *opt; 17972 uint8_t optval; 17973 uint8_t optlen; 17974 ipaddr_t dst; 17975 intptr_t code = 0; 17976 ire_t *ire = NULL; 17977 zoneid_t zoneid; 17978 ill_t *ill; 17979 17980 ip2dbg(("ip_rput_options\n")); 17981 dst = ipha->ipha_dst; 17982 for (optval = ipoptp_first(&opts, ipha); 17983 optval != IPOPT_EOL; 17984 optval = ipoptp_next(&opts)) { 17985 opt = opts.ipoptp_cur; 17986 optlen = opts.ipoptp_len; 17987 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17988 optval, optlen)); 17989 /* 17990 * Note: we need to verify the checksum before we 17991 * modify anything thus this routine only extracts the next 17992 * hop dst from any source route. 17993 */ 17994 switch (optval) { 17995 uint32_t off; 17996 case IPOPT_SSRR: 17997 case IPOPT_LSRR: 17998 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17999 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18000 if (ire == NULL) { 18001 if (optval == IPOPT_SSRR) { 18002 ip1dbg(("ip_rput_options: not next" 18003 " strict source route 0x%x\n", 18004 ntohl(dst))); 18005 code = (char *)&ipha->ipha_dst - 18006 (char *)ipha; 18007 goto param_prob; /* RouterReq's */ 18008 } 18009 ip2dbg(("ip_rput_options: " 18010 "not next source route 0x%x\n", 18011 ntohl(dst))); 18012 break; 18013 } 18014 ire_refrele(ire); 18015 18016 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18017 ip1dbg(( 18018 "ip_rput_options: bad option offset\n")); 18019 code = (char *)&opt[IPOPT_OLEN] - 18020 (char *)ipha; 18021 goto param_prob; 18022 } 18023 off = opt[IPOPT_OFFSET]; 18024 off--; 18025 redo_srr: 18026 if (optlen < IP_ADDR_LEN || 18027 off > optlen - IP_ADDR_LEN) { 18028 /* End of source route */ 18029 ip1dbg(("ip_rput_options: end of SR\n")); 18030 break; 18031 } 18032 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18033 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18034 ntohl(dst))); 18035 18036 /* 18037 * Check if our address is present more than 18038 * once as consecutive hops in source route. 18039 * XXX verify per-interface ip_forwarding 18040 * for source route? 18041 */ 18042 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18043 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18044 18045 if (ire != NULL) { 18046 ire_refrele(ire); 18047 off += IP_ADDR_LEN; 18048 goto redo_srr; 18049 } 18050 18051 if (dst == htonl(INADDR_LOOPBACK)) { 18052 ip1dbg(("ip_rput_options: loopback addr in " 18053 "source route!\n")); 18054 goto bad_src_route; 18055 } 18056 /* 18057 * For strict: verify that dst is directly 18058 * reachable. 18059 */ 18060 if (optval == IPOPT_SSRR) { 18061 ire = ire_ftable_lookup(dst, 0, 0, 18062 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18063 msg_getlabel(mp), 18064 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18065 if (ire == NULL) { 18066 ip1dbg(("ip_rput_options: SSRR not " 18067 "directly reachable: 0x%x\n", 18068 ntohl(dst))); 18069 goto bad_src_route; 18070 } 18071 ire_refrele(ire); 18072 } 18073 /* 18074 * Defer update of the offset and the record route 18075 * until the packet is forwarded. 18076 */ 18077 break; 18078 case IPOPT_RR: 18079 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18080 ip1dbg(( 18081 "ip_rput_options: bad option offset\n")); 18082 code = (char *)&opt[IPOPT_OLEN] - 18083 (char *)ipha; 18084 goto param_prob; 18085 } 18086 break; 18087 case IPOPT_TS: 18088 /* 18089 * Verify that length >= 5 and that there is either 18090 * room for another timestamp or that the overflow 18091 * counter is not maxed out. 18092 */ 18093 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18094 if (optlen < IPOPT_MINLEN_IT) { 18095 goto param_prob; 18096 } 18097 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18098 ip1dbg(( 18099 "ip_rput_options: bad option offset\n")); 18100 code = (char *)&opt[IPOPT_OFFSET] - 18101 (char *)ipha; 18102 goto param_prob; 18103 } 18104 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18105 case IPOPT_TS_TSONLY: 18106 off = IPOPT_TS_TIMELEN; 18107 break; 18108 case IPOPT_TS_TSANDADDR: 18109 case IPOPT_TS_PRESPEC: 18110 case IPOPT_TS_PRESPEC_RFC791: 18111 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18112 break; 18113 default: 18114 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18115 (char *)ipha; 18116 goto param_prob; 18117 } 18118 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18119 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18120 /* 18121 * No room and the overflow counter is 15 18122 * already. 18123 */ 18124 goto param_prob; 18125 } 18126 break; 18127 } 18128 } 18129 18130 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18131 *dstp = dst; 18132 return (0); 18133 } 18134 18135 ip1dbg(("ip_rput_options: error processing IP options.")); 18136 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18137 18138 param_prob: 18139 q = WR(q); 18140 if (q->q_next != NULL) 18141 ill = q->q_ptr; 18142 else 18143 ill = NULL; 18144 18145 /* make sure we clear any indication of a hardware checksum */ 18146 DB_CKSUMFLAGS(mp) = 0; 18147 /* Don't know whether this is for non-global or global/forwarding */ 18148 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18149 if (zoneid == ALL_ZONES) 18150 freemsg(mp); 18151 else 18152 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18153 return (-1); 18154 18155 bad_src_route: 18156 q = WR(q); 18157 if (q->q_next != NULL) 18158 ill = q->q_ptr; 18159 else 18160 ill = NULL; 18161 18162 /* make sure we clear any indication of a hardware checksum */ 18163 DB_CKSUMFLAGS(mp) = 0; 18164 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18165 if (zoneid == ALL_ZONES) 18166 freemsg(mp); 18167 else 18168 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18169 return (-1); 18170 } 18171 18172 /* 18173 * IP & ICMP info in >=14 msg's ... 18174 * - ip fixed part (mib2_ip_t) 18175 * - icmp fixed part (mib2_icmp_t) 18176 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18177 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18178 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18179 * - ipRouteAttributeTable (ip 102) labeled routes 18180 * - ip multicast membership (ip_member_t) 18181 * - ip multicast source filtering (ip_grpsrc_t) 18182 * - igmp fixed part (struct igmpstat) 18183 * - multicast routing stats (struct mrtstat) 18184 * - multicast routing vifs (array of struct vifctl) 18185 * - multicast routing routes (array of struct mfcctl) 18186 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18187 * One per ill plus one generic 18188 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18189 * One per ill plus one generic 18190 * - ipv6RouteEntry all IPv6 IREs 18191 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18192 * - ipv6NetToMediaEntry all Neighbor Cache entries 18193 * - ipv6AddrEntry all IPv6 ipifs 18194 * - ipv6 multicast membership (ipv6_member_t) 18195 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18196 * 18197 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18198 * 18199 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18200 * already filled in by the caller. 18201 * Return value of 0 indicates that no messages were sent and caller 18202 * should free mpctl. 18203 */ 18204 int 18205 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18206 { 18207 ip_stack_t *ipst; 18208 sctp_stack_t *sctps; 18209 18210 if (q->q_next != NULL) { 18211 ipst = ILLQ_TO_IPST(q); 18212 } else { 18213 ipst = CONNQ_TO_IPST(q); 18214 } 18215 ASSERT(ipst != NULL); 18216 sctps = ipst->ips_netstack->netstack_sctp; 18217 18218 if (mpctl == NULL || mpctl->b_cont == NULL) { 18219 return (0); 18220 } 18221 18222 /* 18223 * For the purposes of the (broken) packet shell use 18224 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18225 * to make TCP and UDP appear first in the list of mib items. 18226 * TBD: We could expand this and use it in netstat so that 18227 * the kernel doesn't have to produce large tables (connections, 18228 * routes, etc) when netstat only wants the statistics or a particular 18229 * table. 18230 */ 18231 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18232 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18233 return (1); 18234 } 18235 } 18236 18237 if (level != MIB2_TCP) { 18238 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18239 return (1); 18240 } 18241 } 18242 18243 if (level != MIB2_UDP) { 18244 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18245 return (1); 18246 } 18247 } 18248 18249 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18250 ipst)) == NULL) { 18251 return (1); 18252 } 18253 18254 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18255 return (1); 18256 } 18257 18258 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18259 return (1); 18260 } 18261 18262 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18263 return (1); 18264 } 18265 18266 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18267 return (1); 18268 } 18269 18270 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18271 return (1); 18272 } 18273 18274 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18275 return (1); 18276 } 18277 18278 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18279 return (1); 18280 } 18281 18282 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18283 return (1); 18284 } 18285 18286 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18287 return (1); 18288 } 18289 18290 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18291 return (1); 18292 } 18293 18294 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18295 return (1); 18296 } 18297 18298 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18299 return (1); 18300 } 18301 18302 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18303 return (1); 18304 } 18305 18306 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18307 if (mpctl == NULL) 18308 return (1); 18309 18310 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18311 if (mpctl == NULL) 18312 return (1); 18313 18314 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18315 return (1); 18316 } 18317 freemsg(mpctl); 18318 return (1); 18319 } 18320 18321 /* Get global (legacy) IPv4 statistics */ 18322 static mblk_t * 18323 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18324 ip_stack_t *ipst) 18325 { 18326 mib2_ip_t old_ip_mib; 18327 struct opthdr *optp; 18328 mblk_t *mp2ctl; 18329 18330 /* 18331 * make a copy of the original message 18332 */ 18333 mp2ctl = copymsg(mpctl); 18334 18335 /* fixed length IP structure... */ 18336 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18337 optp->level = MIB2_IP; 18338 optp->name = 0; 18339 SET_MIB(old_ip_mib.ipForwarding, 18340 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18341 SET_MIB(old_ip_mib.ipDefaultTTL, 18342 (uint32_t)ipst->ips_ip_def_ttl); 18343 SET_MIB(old_ip_mib.ipReasmTimeout, 18344 ipst->ips_ip_g_frag_timeout); 18345 SET_MIB(old_ip_mib.ipAddrEntrySize, 18346 sizeof (mib2_ipAddrEntry_t)); 18347 SET_MIB(old_ip_mib.ipRouteEntrySize, 18348 sizeof (mib2_ipRouteEntry_t)); 18349 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18350 sizeof (mib2_ipNetToMediaEntry_t)); 18351 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18352 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18353 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18354 sizeof (mib2_ipAttributeEntry_t)); 18355 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18356 18357 /* 18358 * Grab the statistics from the new IP MIB 18359 */ 18360 SET_MIB(old_ip_mib.ipInReceives, 18361 (uint32_t)ipmib->ipIfStatsHCInReceives); 18362 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18363 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18364 SET_MIB(old_ip_mib.ipForwDatagrams, 18365 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18366 SET_MIB(old_ip_mib.ipInUnknownProtos, 18367 ipmib->ipIfStatsInUnknownProtos); 18368 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18369 SET_MIB(old_ip_mib.ipInDelivers, 18370 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18371 SET_MIB(old_ip_mib.ipOutRequests, 18372 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18373 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18374 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18375 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18376 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18377 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18378 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18379 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18380 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18381 18382 /* ipRoutingDiscards is not being used */ 18383 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18384 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18385 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18386 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18387 SET_MIB(old_ip_mib.ipReasmDuplicates, 18388 ipmib->ipIfStatsReasmDuplicates); 18389 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18390 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18391 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18392 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18393 SET_MIB(old_ip_mib.rawipInOverflows, 18394 ipmib->rawipIfStatsInOverflows); 18395 18396 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18397 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18398 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18399 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18400 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18401 ipmib->ipIfStatsOutSwitchIPVersion); 18402 18403 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18404 (int)sizeof (old_ip_mib))) { 18405 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18406 (uint_t)sizeof (old_ip_mib))); 18407 } 18408 18409 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18410 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18411 (int)optp->level, (int)optp->name, (int)optp->len)); 18412 qreply(q, mpctl); 18413 return (mp2ctl); 18414 } 18415 18416 /* Per interface IPv4 statistics */ 18417 static mblk_t * 18418 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18419 { 18420 struct opthdr *optp; 18421 mblk_t *mp2ctl; 18422 ill_t *ill; 18423 ill_walk_context_t ctx; 18424 mblk_t *mp_tail = NULL; 18425 mib2_ipIfStatsEntry_t global_ip_mib; 18426 18427 /* 18428 * Make a copy of the original message 18429 */ 18430 mp2ctl = copymsg(mpctl); 18431 18432 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18433 optp->level = MIB2_IP; 18434 optp->name = MIB2_IP_TRAFFIC_STATS; 18435 /* Include "unknown interface" ip_mib */ 18436 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18437 ipst->ips_ip_mib.ipIfStatsIfIndex = 18438 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18439 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18440 (ipst->ips_ip_g_forward ? 1 : 2)); 18441 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18442 (uint32_t)ipst->ips_ip_def_ttl); 18443 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18444 sizeof (mib2_ipIfStatsEntry_t)); 18445 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18446 sizeof (mib2_ipAddrEntry_t)); 18447 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18448 sizeof (mib2_ipRouteEntry_t)); 18449 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18450 sizeof (mib2_ipNetToMediaEntry_t)); 18451 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18452 sizeof (ip_member_t)); 18453 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18454 sizeof (ip_grpsrc_t)); 18455 18456 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18457 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18458 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18459 "failed to allocate %u bytes\n", 18460 (uint_t)sizeof (ipst->ips_ip_mib))); 18461 } 18462 18463 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18464 18465 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18466 ill = ILL_START_WALK_V4(&ctx, ipst); 18467 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18468 ill->ill_ip_mib->ipIfStatsIfIndex = 18469 ill->ill_phyint->phyint_ifindex; 18470 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18471 (ipst->ips_ip_g_forward ? 1 : 2)); 18472 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18473 (uint32_t)ipst->ips_ip_def_ttl); 18474 18475 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18476 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18477 (char *)ill->ill_ip_mib, 18478 (int)sizeof (*ill->ill_ip_mib))) { 18479 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18480 "failed to allocate %u bytes\n", 18481 (uint_t)sizeof (*ill->ill_ip_mib))); 18482 } 18483 } 18484 rw_exit(&ipst->ips_ill_g_lock); 18485 18486 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18487 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18488 "level %d, name %d, len %d\n", 18489 (int)optp->level, (int)optp->name, (int)optp->len)); 18490 qreply(q, mpctl); 18491 18492 if (mp2ctl == NULL) 18493 return (NULL); 18494 18495 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18496 } 18497 18498 /* Global IPv4 ICMP statistics */ 18499 static mblk_t * 18500 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18501 { 18502 struct opthdr *optp; 18503 mblk_t *mp2ctl; 18504 18505 /* 18506 * Make a copy of the original message 18507 */ 18508 mp2ctl = copymsg(mpctl); 18509 18510 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18511 optp->level = MIB2_ICMP; 18512 optp->name = 0; 18513 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18514 (int)sizeof (ipst->ips_icmp_mib))) { 18515 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18516 (uint_t)sizeof (ipst->ips_icmp_mib))); 18517 } 18518 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18519 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18520 (int)optp->level, (int)optp->name, (int)optp->len)); 18521 qreply(q, mpctl); 18522 return (mp2ctl); 18523 } 18524 18525 /* Global IPv4 IGMP statistics */ 18526 static mblk_t * 18527 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18528 { 18529 struct opthdr *optp; 18530 mblk_t *mp2ctl; 18531 18532 /* 18533 * make a copy of the original message 18534 */ 18535 mp2ctl = copymsg(mpctl); 18536 18537 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18538 optp->level = EXPER_IGMP; 18539 optp->name = 0; 18540 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18541 (int)sizeof (ipst->ips_igmpstat))) { 18542 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18543 (uint_t)sizeof (ipst->ips_igmpstat))); 18544 } 18545 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18546 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18547 (int)optp->level, (int)optp->name, (int)optp->len)); 18548 qreply(q, mpctl); 18549 return (mp2ctl); 18550 } 18551 18552 /* Global IPv4 Multicast Routing statistics */ 18553 static mblk_t * 18554 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18555 { 18556 struct opthdr *optp; 18557 mblk_t *mp2ctl; 18558 18559 /* 18560 * make a copy of the original message 18561 */ 18562 mp2ctl = copymsg(mpctl); 18563 18564 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18565 optp->level = EXPER_DVMRP; 18566 optp->name = 0; 18567 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18568 ip0dbg(("ip_mroute_stats: failed\n")); 18569 } 18570 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18571 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18572 (int)optp->level, (int)optp->name, (int)optp->len)); 18573 qreply(q, mpctl); 18574 return (mp2ctl); 18575 } 18576 18577 /* IPv4 address information */ 18578 static mblk_t * 18579 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18580 { 18581 struct opthdr *optp; 18582 mblk_t *mp2ctl; 18583 mblk_t *mp_tail = NULL; 18584 ill_t *ill; 18585 ipif_t *ipif; 18586 uint_t bitval; 18587 mib2_ipAddrEntry_t mae; 18588 zoneid_t zoneid; 18589 ill_walk_context_t ctx; 18590 18591 /* 18592 * make a copy of the original message 18593 */ 18594 mp2ctl = copymsg(mpctl); 18595 18596 /* ipAddrEntryTable */ 18597 18598 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18599 optp->level = MIB2_IP; 18600 optp->name = MIB2_IP_ADDR; 18601 zoneid = Q_TO_CONN(q)->conn_zoneid; 18602 18603 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18604 ill = ILL_START_WALK_V4(&ctx, ipst); 18605 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18606 for (ipif = ill->ill_ipif; ipif != NULL; 18607 ipif = ipif->ipif_next) { 18608 if (ipif->ipif_zoneid != zoneid && 18609 ipif->ipif_zoneid != ALL_ZONES) 18610 continue; 18611 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18612 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18613 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18614 18615 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18616 OCTET_LENGTH); 18617 mae.ipAdEntIfIndex.o_length = 18618 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18619 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18620 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18621 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18622 mae.ipAdEntInfo.ae_subnet_len = 18623 ip_mask_to_plen(ipif->ipif_net_mask); 18624 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18625 for (bitval = 1; 18626 bitval && 18627 !(bitval & ipif->ipif_brd_addr); 18628 bitval <<= 1) 18629 noop; 18630 mae.ipAdEntBcastAddr = bitval; 18631 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18632 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18633 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18634 mae.ipAdEntInfo.ae_broadcast_addr = 18635 ipif->ipif_brd_addr; 18636 mae.ipAdEntInfo.ae_pp_dst_addr = 18637 ipif->ipif_pp_dst_addr; 18638 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18639 ill->ill_flags | ill->ill_phyint->phyint_flags; 18640 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18641 18642 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18643 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18644 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18645 "allocate %u bytes\n", 18646 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18647 } 18648 } 18649 } 18650 rw_exit(&ipst->ips_ill_g_lock); 18651 18652 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18653 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18654 (int)optp->level, (int)optp->name, (int)optp->len)); 18655 qreply(q, mpctl); 18656 return (mp2ctl); 18657 } 18658 18659 /* IPv6 address information */ 18660 static mblk_t * 18661 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18662 { 18663 struct opthdr *optp; 18664 mblk_t *mp2ctl; 18665 mblk_t *mp_tail = NULL; 18666 ill_t *ill; 18667 ipif_t *ipif; 18668 mib2_ipv6AddrEntry_t mae6; 18669 zoneid_t zoneid; 18670 ill_walk_context_t ctx; 18671 18672 /* 18673 * make a copy of the original message 18674 */ 18675 mp2ctl = copymsg(mpctl); 18676 18677 /* ipv6AddrEntryTable */ 18678 18679 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18680 optp->level = MIB2_IP6; 18681 optp->name = MIB2_IP6_ADDR; 18682 zoneid = Q_TO_CONN(q)->conn_zoneid; 18683 18684 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18685 ill = ILL_START_WALK_V6(&ctx, ipst); 18686 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18687 for (ipif = ill->ill_ipif; ipif != NULL; 18688 ipif = ipif->ipif_next) { 18689 if (ipif->ipif_zoneid != zoneid && 18690 ipif->ipif_zoneid != ALL_ZONES) 18691 continue; 18692 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18693 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18694 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18695 18696 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18697 OCTET_LENGTH); 18698 mae6.ipv6AddrIfIndex.o_length = 18699 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18700 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18701 mae6.ipv6AddrPfxLength = 18702 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18703 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18704 mae6.ipv6AddrInfo.ae_subnet_len = 18705 mae6.ipv6AddrPfxLength; 18706 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18707 18708 /* Type: stateless(1), stateful(2), unknown(3) */ 18709 if (ipif->ipif_flags & IPIF_ADDRCONF) 18710 mae6.ipv6AddrType = 1; 18711 else 18712 mae6.ipv6AddrType = 2; 18713 /* Anycast: true(1), false(2) */ 18714 if (ipif->ipif_flags & IPIF_ANYCAST) 18715 mae6.ipv6AddrAnycastFlag = 1; 18716 else 18717 mae6.ipv6AddrAnycastFlag = 2; 18718 18719 /* 18720 * Address status: preferred(1), deprecated(2), 18721 * invalid(3), inaccessible(4), unknown(5) 18722 */ 18723 if (ipif->ipif_flags & IPIF_NOLOCAL) 18724 mae6.ipv6AddrStatus = 3; 18725 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18726 mae6.ipv6AddrStatus = 2; 18727 else 18728 mae6.ipv6AddrStatus = 1; 18729 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18730 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18731 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18732 ipif->ipif_v6pp_dst_addr; 18733 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18734 ill->ill_flags | ill->ill_phyint->phyint_flags; 18735 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18736 mae6.ipv6AddrIdentifier = ill->ill_token; 18737 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18738 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18739 mae6.ipv6AddrRetransmitTime = 18740 ill->ill_reachable_retrans_time; 18741 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18742 (char *)&mae6, 18743 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18744 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18745 "allocate %u bytes\n", 18746 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18747 } 18748 } 18749 } 18750 rw_exit(&ipst->ips_ill_g_lock); 18751 18752 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18753 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18754 (int)optp->level, (int)optp->name, (int)optp->len)); 18755 qreply(q, mpctl); 18756 return (mp2ctl); 18757 } 18758 18759 /* IPv4 multicast group membership. */ 18760 static mblk_t * 18761 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18762 { 18763 struct opthdr *optp; 18764 mblk_t *mp2ctl; 18765 ill_t *ill; 18766 ipif_t *ipif; 18767 ilm_t *ilm; 18768 ip_member_t ipm; 18769 mblk_t *mp_tail = NULL; 18770 ill_walk_context_t ctx; 18771 zoneid_t zoneid; 18772 ilm_walker_t ilw; 18773 18774 /* 18775 * make a copy of the original message 18776 */ 18777 mp2ctl = copymsg(mpctl); 18778 zoneid = Q_TO_CONN(q)->conn_zoneid; 18779 18780 /* ipGroupMember table */ 18781 optp = (struct opthdr *)&mpctl->b_rptr[ 18782 sizeof (struct T_optmgmt_ack)]; 18783 optp->level = MIB2_IP; 18784 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18785 18786 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18787 ill = ILL_START_WALK_V4(&ctx, ipst); 18788 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18789 if (IS_UNDER_IPMP(ill)) 18790 continue; 18791 18792 ilm = ilm_walker_start(&ilw, ill); 18793 for (ipif = ill->ill_ipif; ipif != NULL; 18794 ipif = ipif->ipif_next) { 18795 if (ipif->ipif_zoneid != zoneid && 18796 ipif->ipif_zoneid != ALL_ZONES) 18797 continue; /* not this zone */ 18798 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18799 OCTET_LENGTH); 18800 ipm.ipGroupMemberIfIndex.o_length = 18801 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18802 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18803 ASSERT(ilm->ilm_ipif != NULL); 18804 ASSERT(ilm->ilm_ill == NULL); 18805 if (ilm->ilm_ipif != ipif) 18806 continue; 18807 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18808 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18809 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18810 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18811 (char *)&ipm, (int)sizeof (ipm))) { 18812 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18813 "failed to allocate %u bytes\n", 18814 (uint_t)sizeof (ipm))); 18815 } 18816 } 18817 } 18818 ilm_walker_finish(&ilw); 18819 } 18820 rw_exit(&ipst->ips_ill_g_lock); 18821 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18822 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18823 (int)optp->level, (int)optp->name, (int)optp->len)); 18824 qreply(q, mpctl); 18825 return (mp2ctl); 18826 } 18827 18828 /* IPv6 multicast group membership. */ 18829 static mblk_t * 18830 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18831 { 18832 struct opthdr *optp; 18833 mblk_t *mp2ctl; 18834 ill_t *ill; 18835 ilm_t *ilm; 18836 ipv6_member_t ipm6; 18837 mblk_t *mp_tail = NULL; 18838 ill_walk_context_t ctx; 18839 zoneid_t zoneid; 18840 ilm_walker_t ilw; 18841 18842 /* 18843 * make a copy of the original message 18844 */ 18845 mp2ctl = copymsg(mpctl); 18846 zoneid = Q_TO_CONN(q)->conn_zoneid; 18847 18848 /* ip6GroupMember table */ 18849 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18850 optp->level = MIB2_IP6; 18851 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18852 18853 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18854 ill = ILL_START_WALK_V6(&ctx, ipst); 18855 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18856 if (IS_UNDER_IPMP(ill)) 18857 continue; 18858 18859 ilm = ilm_walker_start(&ilw, ill); 18860 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18861 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18862 ASSERT(ilm->ilm_ipif == NULL); 18863 ASSERT(ilm->ilm_ill != NULL); 18864 if (ilm->ilm_zoneid != zoneid) 18865 continue; /* not this zone */ 18866 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18867 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18868 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18869 if (!snmp_append_data2(mpctl->b_cont, 18870 &mp_tail, 18871 (char *)&ipm6, (int)sizeof (ipm6))) { 18872 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18873 "failed to allocate %u bytes\n", 18874 (uint_t)sizeof (ipm6))); 18875 } 18876 } 18877 ilm_walker_finish(&ilw); 18878 } 18879 rw_exit(&ipst->ips_ill_g_lock); 18880 18881 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18882 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18883 (int)optp->level, (int)optp->name, (int)optp->len)); 18884 qreply(q, mpctl); 18885 return (mp2ctl); 18886 } 18887 18888 /* IP multicast filtered sources */ 18889 static mblk_t * 18890 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18891 { 18892 struct opthdr *optp; 18893 mblk_t *mp2ctl; 18894 ill_t *ill; 18895 ipif_t *ipif; 18896 ilm_t *ilm; 18897 ip_grpsrc_t ips; 18898 mblk_t *mp_tail = NULL; 18899 ill_walk_context_t ctx; 18900 zoneid_t zoneid; 18901 int i; 18902 slist_t *sl; 18903 ilm_walker_t ilw; 18904 18905 /* 18906 * make a copy of the original message 18907 */ 18908 mp2ctl = copymsg(mpctl); 18909 zoneid = Q_TO_CONN(q)->conn_zoneid; 18910 18911 /* ipGroupSource table */ 18912 optp = (struct opthdr *)&mpctl->b_rptr[ 18913 sizeof (struct T_optmgmt_ack)]; 18914 optp->level = MIB2_IP; 18915 optp->name = EXPER_IP_GROUP_SOURCES; 18916 18917 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18918 ill = ILL_START_WALK_V4(&ctx, ipst); 18919 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18920 if (IS_UNDER_IPMP(ill)) 18921 continue; 18922 18923 ilm = ilm_walker_start(&ilw, ill); 18924 for (ipif = ill->ill_ipif; ipif != NULL; 18925 ipif = ipif->ipif_next) { 18926 if (ipif->ipif_zoneid != zoneid) 18927 continue; /* not this zone */ 18928 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18929 OCTET_LENGTH); 18930 ips.ipGroupSourceIfIndex.o_length = 18931 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18932 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18933 ASSERT(ilm->ilm_ipif != NULL); 18934 ASSERT(ilm->ilm_ill == NULL); 18935 sl = ilm->ilm_filter; 18936 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18937 continue; 18938 ips.ipGroupSourceGroup = ilm->ilm_addr; 18939 for (i = 0; i < sl->sl_numsrc; i++) { 18940 if (!IN6_IS_ADDR_V4MAPPED( 18941 &sl->sl_addr[i])) 18942 continue; 18943 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18944 ips.ipGroupSourceAddress); 18945 if (snmp_append_data2(mpctl->b_cont, 18946 &mp_tail, (char *)&ips, 18947 (int)sizeof (ips)) == 0) { 18948 ip1dbg(("ip_snmp_get_mib2_" 18949 "ip_group_src: failed to " 18950 "allocate %u bytes\n", 18951 (uint_t)sizeof (ips))); 18952 } 18953 } 18954 } 18955 } 18956 ilm_walker_finish(&ilw); 18957 } 18958 rw_exit(&ipst->ips_ill_g_lock); 18959 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18960 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18961 (int)optp->level, (int)optp->name, (int)optp->len)); 18962 qreply(q, mpctl); 18963 return (mp2ctl); 18964 } 18965 18966 /* IPv6 multicast filtered sources. */ 18967 static mblk_t * 18968 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18969 { 18970 struct opthdr *optp; 18971 mblk_t *mp2ctl; 18972 ill_t *ill; 18973 ilm_t *ilm; 18974 ipv6_grpsrc_t ips6; 18975 mblk_t *mp_tail = NULL; 18976 ill_walk_context_t ctx; 18977 zoneid_t zoneid; 18978 int i; 18979 slist_t *sl; 18980 ilm_walker_t ilw; 18981 18982 /* 18983 * make a copy of the original message 18984 */ 18985 mp2ctl = copymsg(mpctl); 18986 zoneid = Q_TO_CONN(q)->conn_zoneid; 18987 18988 /* ip6GroupMember table */ 18989 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18990 optp->level = MIB2_IP6; 18991 optp->name = EXPER_IP6_GROUP_SOURCES; 18992 18993 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18994 ill = ILL_START_WALK_V6(&ctx, ipst); 18995 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18996 if (IS_UNDER_IPMP(ill)) 18997 continue; 18998 18999 ilm = ilm_walker_start(&ilw, ill); 19000 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19001 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19002 ASSERT(ilm->ilm_ipif == NULL); 19003 ASSERT(ilm->ilm_ill != NULL); 19004 sl = ilm->ilm_filter; 19005 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19006 continue; 19007 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19008 for (i = 0; i < sl->sl_numsrc; i++) { 19009 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19010 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19011 (char *)&ips6, (int)sizeof (ips6))) { 19012 ip1dbg(("ip_snmp_get_mib2_ip6_" 19013 "group_src: failed to allocate " 19014 "%u bytes\n", 19015 (uint_t)sizeof (ips6))); 19016 } 19017 } 19018 } 19019 ilm_walker_finish(&ilw); 19020 } 19021 rw_exit(&ipst->ips_ill_g_lock); 19022 19023 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19024 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19025 (int)optp->level, (int)optp->name, (int)optp->len)); 19026 qreply(q, mpctl); 19027 return (mp2ctl); 19028 } 19029 19030 /* Multicast routing virtual interface table. */ 19031 static mblk_t * 19032 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19033 { 19034 struct opthdr *optp; 19035 mblk_t *mp2ctl; 19036 19037 /* 19038 * make a copy of the original message 19039 */ 19040 mp2ctl = copymsg(mpctl); 19041 19042 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19043 optp->level = EXPER_DVMRP; 19044 optp->name = EXPER_DVMRP_VIF; 19045 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19046 ip0dbg(("ip_mroute_vif: failed\n")); 19047 } 19048 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19049 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19050 (int)optp->level, (int)optp->name, (int)optp->len)); 19051 qreply(q, mpctl); 19052 return (mp2ctl); 19053 } 19054 19055 /* Multicast routing table. */ 19056 static mblk_t * 19057 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19058 { 19059 struct opthdr *optp; 19060 mblk_t *mp2ctl; 19061 19062 /* 19063 * make a copy of the original message 19064 */ 19065 mp2ctl = copymsg(mpctl); 19066 19067 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19068 optp->level = EXPER_DVMRP; 19069 optp->name = EXPER_DVMRP_MRT; 19070 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19071 ip0dbg(("ip_mroute_mrt: failed\n")); 19072 } 19073 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19074 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19075 (int)optp->level, (int)optp->name, (int)optp->len)); 19076 qreply(q, mpctl); 19077 return (mp2ctl); 19078 } 19079 19080 /* 19081 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19082 * in one IRE walk. 19083 */ 19084 static mblk_t * 19085 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19086 ip_stack_t *ipst) 19087 { 19088 struct opthdr *optp; 19089 mblk_t *mp2ctl; /* Returned */ 19090 mblk_t *mp3ctl; /* nettomedia */ 19091 mblk_t *mp4ctl; /* routeattrs */ 19092 iproutedata_t ird; 19093 zoneid_t zoneid; 19094 19095 /* 19096 * make copies of the original message 19097 * - mp2ctl is returned unchanged to the caller for his use 19098 * - mpctl is sent upstream as ipRouteEntryTable 19099 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19100 * - mp4ctl is sent upstream as ipRouteAttributeTable 19101 */ 19102 mp2ctl = copymsg(mpctl); 19103 mp3ctl = copymsg(mpctl); 19104 mp4ctl = copymsg(mpctl); 19105 if (mp3ctl == NULL || mp4ctl == NULL) { 19106 freemsg(mp4ctl); 19107 freemsg(mp3ctl); 19108 freemsg(mp2ctl); 19109 freemsg(mpctl); 19110 return (NULL); 19111 } 19112 19113 bzero(&ird, sizeof (ird)); 19114 19115 ird.ird_route.lp_head = mpctl->b_cont; 19116 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19117 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19118 /* 19119 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19120 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19121 * intended a temporary solution until a proper MIB API is provided 19122 * that provides complete filtering/caller-opt-in. 19123 */ 19124 if (level == EXPER_IP_AND_TESTHIDDEN) 19125 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19126 19127 zoneid = Q_TO_CONN(q)->conn_zoneid; 19128 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19129 19130 /* ipRouteEntryTable in mpctl */ 19131 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19132 optp->level = MIB2_IP; 19133 optp->name = MIB2_IP_ROUTE; 19134 optp->len = msgdsize(ird.ird_route.lp_head); 19135 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19136 (int)optp->level, (int)optp->name, (int)optp->len)); 19137 qreply(q, mpctl); 19138 19139 /* ipNetToMediaEntryTable in mp3ctl */ 19140 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19141 optp->level = MIB2_IP; 19142 optp->name = MIB2_IP_MEDIA; 19143 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19144 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19145 (int)optp->level, (int)optp->name, (int)optp->len)); 19146 qreply(q, mp3ctl); 19147 19148 /* ipRouteAttributeTable in mp4ctl */ 19149 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19150 optp->level = MIB2_IP; 19151 optp->name = EXPER_IP_RTATTR; 19152 optp->len = msgdsize(ird.ird_attrs.lp_head); 19153 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19154 (int)optp->level, (int)optp->name, (int)optp->len)); 19155 if (optp->len == 0) 19156 freemsg(mp4ctl); 19157 else 19158 qreply(q, mp4ctl); 19159 19160 return (mp2ctl); 19161 } 19162 19163 /* 19164 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19165 * ipv6NetToMediaEntryTable in an NDP walk. 19166 */ 19167 static mblk_t * 19168 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19169 ip_stack_t *ipst) 19170 { 19171 struct opthdr *optp; 19172 mblk_t *mp2ctl; /* Returned */ 19173 mblk_t *mp3ctl; /* nettomedia */ 19174 mblk_t *mp4ctl; /* routeattrs */ 19175 iproutedata_t ird; 19176 zoneid_t zoneid; 19177 19178 /* 19179 * make copies of the original message 19180 * - mp2ctl is returned unchanged to the caller for his use 19181 * - mpctl is sent upstream as ipv6RouteEntryTable 19182 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19183 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19184 */ 19185 mp2ctl = copymsg(mpctl); 19186 mp3ctl = copymsg(mpctl); 19187 mp4ctl = copymsg(mpctl); 19188 if (mp3ctl == NULL || mp4ctl == NULL) { 19189 freemsg(mp4ctl); 19190 freemsg(mp3ctl); 19191 freemsg(mp2ctl); 19192 freemsg(mpctl); 19193 return (NULL); 19194 } 19195 19196 bzero(&ird, sizeof (ird)); 19197 19198 ird.ird_route.lp_head = mpctl->b_cont; 19199 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19200 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19201 /* 19202 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19203 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19204 * intended a temporary solution until a proper MIB API is provided 19205 * that provides complete filtering/caller-opt-in. 19206 */ 19207 if (level == EXPER_IP_AND_TESTHIDDEN) 19208 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19209 19210 zoneid = Q_TO_CONN(q)->conn_zoneid; 19211 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19212 19213 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19214 optp->level = MIB2_IP6; 19215 optp->name = MIB2_IP6_ROUTE; 19216 optp->len = msgdsize(ird.ird_route.lp_head); 19217 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19218 (int)optp->level, (int)optp->name, (int)optp->len)); 19219 qreply(q, mpctl); 19220 19221 /* ipv6NetToMediaEntryTable in mp3ctl */ 19222 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19223 19224 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19225 optp->level = MIB2_IP6; 19226 optp->name = MIB2_IP6_MEDIA; 19227 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19228 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19229 (int)optp->level, (int)optp->name, (int)optp->len)); 19230 qreply(q, mp3ctl); 19231 19232 /* ipv6RouteAttributeTable in mp4ctl */ 19233 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19234 optp->level = MIB2_IP6; 19235 optp->name = EXPER_IP_RTATTR; 19236 optp->len = msgdsize(ird.ird_attrs.lp_head); 19237 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19238 (int)optp->level, (int)optp->name, (int)optp->len)); 19239 if (optp->len == 0) 19240 freemsg(mp4ctl); 19241 else 19242 qreply(q, mp4ctl); 19243 19244 return (mp2ctl); 19245 } 19246 19247 /* 19248 * IPv6 mib: One per ill 19249 */ 19250 static mblk_t * 19251 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19252 { 19253 struct opthdr *optp; 19254 mblk_t *mp2ctl; 19255 ill_t *ill; 19256 ill_walk_context_t ctx; 19257 mblk_t *mp_tail = NULL; 19258 19259 /* 19260 * Make a copy of the original message 19261 */ 19262 mp2ctl = copymsg(mpctl); 19263 19264 /* fixed length IPv6 structure ... */ 19265 19266 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19267 optp->level = MIB2_IP6; 19268 optp->name = 0; 19269 /* Include "unknown interface" ip6_mib */ 19270 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19271 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19272 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19273 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19274 ipst->ips_ipv6_forward ? 1 : 2); 19275 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19276 ipst->ips_ipv6_def_hops); 19277 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19278 sizeof (mib2_ipIfStatsEntry_t)); 19279 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19280 sizeof (mib2_ipv6AddrEntry_t)); 19281 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19282 sizeof (mib2_ipv6RouteEntry_t)); 19283 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19284 sizeof (mib2_ipv6NetToMediaEntry_t)); 19285 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19286 sizeof (ipv6_member_t)); 19287 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19288 sizeof (ipv6_grpsrc_t)); 19289 19290 /* 19291 * Synchronize 64- and 32-bit counters 19292 */ 19293 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19294 ipIfStatsHCInReceives); 19295 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19296 ipIfStatsHCInDelivers); 19297 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19298 ipIfStatsHCOutRequests); 19299 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19300 ipIfStatsHCOutForwDatagrams); 19301 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19302 ipIfStatsHCOutMcastPkts); 19303 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19304 ipIfStatsHCInMcastPkts); 19305 19306 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19307 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19308 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19309 (uint_t)sizeof (ipst->ips_ip6_mib))); 19310 } 19311 19312 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19313 ill = ILL_START_WALK_V6(&ctx, ipst); 19314 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19315 ill->ill_ip_mib->ipIfStatsIfIndex = 19316 ill->ill_phyint->phyint_ifindex; 19317 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19318 ipst->ips_ipv6_forward ? 1 : 2); 19319 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19320 ill->ill_max_hops); 19321 19322 /* 19323 * Synchronize 64- and 32-bit counters 19324 */ 19325 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19326 ipIfStatsHCInReceives); 19327 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19328 ipIfStatsHCInDelivers); 19329 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19330 ipIfStatsHCOutRequests); 19331 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19332 ipIfStatsHCOutForwDatagrams); 19333 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19334 ipIfStatsHCOutMcastPkts); 19335 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19336 ipIfStatsHCInMcastPkts); 19337 19338 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19339 (char *)ill->ill_ip_mib, 19340 (int)sizeof (*ill->ill_ip_mib))) { 19341 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19342 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19343 } 19344 } 19345 rw_exit(&ipst->ips_ill_g_lock); 19346 19347 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19348 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19349 (int)optp->level, (int)optp->name, (int)optp->len)); 19350 qreply(q, mpctl); 19351 return (mp2ctl); 19352 } 19353 19354 /* 19355 * ICMPv6 mib: One per ill 19356 */ 19357 static mblk_t * 19358 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19359 { 19360 struct opthdr *optp; 19361 mblk_t *mp2ctl; 19362 ill_t *ill; 19363 ill_walk_context_t ctx; 19364 mblk_t *mp_tail = NULL; 19365 /* 19366 * Make a copy of the original message 19367 */ 19368 mp2ctl = copymsg(mpctl); 19369 19370 /* fixed length ICMPv6 structure ... */ 19371 19372 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19373 optp->level = MIB2_ICMP6; 19374 optp->name = 0; 19375 /* Include "unknown interface" icmp6_mib */ 19376 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19377 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19378 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19379 sizeof (mib2_ipv6IfIcmpEntry_t); 19380 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19381 (char *)&ipst->ips_icmp6_mib, 19382 (int)sizeof (ipst->ips_icmp6_mib))) { 19383 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19384 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19385 } 19386 19387 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19388 ill = ILL_START_WALK_V6(&ctx, ipst); 19389 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19390 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19391 ill->ill_phyint->phyint_ifindex; 19392 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19393 (char *)ill->ill_icmp6_mib, 19394 (int)sizeof (*ill->ill_icmp6_mib))) { 19395 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19396 "%u bytes\n", 19397 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19398 } 19399 } 19400 rw_exit(&ipst->ips_ill_g_lock); 19401 19402 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19403 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19404 (int)optp->level, (int)optp->name, (int)optp->len)); 19405 qreply(q, mpctl); 19406 return (mp2ctl); 19407 } 19408 19409 /* 19410 * ire_walk routine to create both ipRouteEntryTable and 19411 * ipRouteAttributeTable in one IRE walk 19412 */ 19413 static void 19414 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19415 { 19416 ill_t *ill; 19417 ipif_t *ipif; 19418 mib2_ipRouteEntry_t *re; 19419 mib2_ipAttributeEntry_t *iae, *iaeptr; 19420 ipaddr_t gw_addr; 19421 tsol_ire_gw_secattr_t *attrp; 19422 tsol_gc_t *gc = NULL; 19423 tsol_gcgrp_t *gcgrp = NULL; 19424 uint_t sacnt = 0; 19425 int i; 19426 19427 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19428 19429 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19430 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19431 return; 19432 } 19433 19434 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19435 return; 19436 19437 if ((attrp = ire->ire_gw_secattr) != NULL) { 19438 mutex_enter(&attrp->igsa_lock); 19439 if ((gc = attrp->igsa_gc) != NULL) { 19440 gcgrp = gc->gc_grp; 19441 ASSERT(gcgrp != NULL); 19442 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19443 sacnt = 1; 19444 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19445 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19446 gc = gcgrp->gcgrp_head; 19447 sacnt = gcgrp->gcgrp_count; 19448 } 19449 mutex_exit(&attrp->igsa_lock); 19450 19451 /* do nothing if there's no gc to report */ 19452 if (gc == NULL) { 19453 ASSERT(sacnt == 0); 19454 if (gcgrp != NULL) { 19455 /* we might as well drop the lock now */ 19456 rw_exit(&gcgrp->gcgrp_rwlock); 19457 gcgrp = NULL; 19458 } 19459 attrp = NULL; 19460 } 19461 19462 ASSERT(gc == NULL || (gcgrp != NULL && 19463 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19464 } 19465 ASSERT(sacnt == 0 || gc != NULL); 19466 19467 if (sacnt != 0 && 19468 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19469 kmem_free(re, sizeof (*re)); 19470 rw_exit(&gcgrp->gcgrp_rwlock); 19471 return; 19472 } 19473 19474 /* 19475 * Return all IRE types for route table... let caller pick and choose 19476 */ 19477 re->ipRouteDest = ire->ire_addr; 19478 ipif = ire->ire_ipif; 19479 re->ipRouteIfIndex.o_length = 0; 19480 if (ire->ire_type == IRE_CACHE) { 19481 ill = (ill_t *)ire->ire_stq->q_ptr; 19482 re->ipRouteIfIndex.o_length = 19483 ill->ill_name_length == 0 ? 0 : 19484 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19485 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19486 re->ipRouteIfIndex.o_length); 19487 } else if (ipif != NULL) { 19488 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19489 re->ipRouteIfIndex.o_length = 19490 mi_strlen(re->ipRouteIfIndex.o_bytes); 19491 } 19492 re->ipRouteMetric1 = -1; 19493 re->ipRouteMetric2 = -1; 19494 re->ipRouteMetric3 = -1; 19495 re->ipRouteMetric4 = -1; 19496 19497 gw_addr = ire->ire_gateway_addr; 19498 19499 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19500 re->ipRouteNextHop = ire->ire_src_addr; 19501 else 19502 re->ipRouteNextHop = gw_addr; 19503 /* indirect(4), direct(3), or invalid(2) */ 19504 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19505 re->ipRouteType = 2; 19506 else 19507 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19508 re->ipRouteProto = -1; 19509 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19510 re->ipRouteMask = ire->ire_mask; 19511 re->ipRouteMetric5 = -1; 19512 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19513 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19514 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19515 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19516 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19517 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19518 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19519 re->ipRouteInfo.re_flags = ire->ire_flags; 19520 19521 if (ire->ire_flags & RTF_DYNAMIC) { 19522 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19523 } else { 19524 re->ipRouteInfo.re_ire_type = ire->ire_type; 19525 } 19526 19527 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19528 (char *)re, (int)sizeof (*re))) { 19529 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19530 (uint_t)sizeof (*re))); 19531 } 19532 19533 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19534 iaeptr->iae_routeidx = ird->ird_idx; 19535 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19536 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19537 } 19538 19539 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19540 (char *)iae, sacnt * sizeof (*iae))) { 19541 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19542 (unsigned)(sacnt * sizeof (*iae)))); 19543 } 19544 19545 /* bump route index for next pass */ 19546 ird->ird_idx++; 19547 19548 kmem_free(re, sizeof (*re)); 19549 if (sacnt != 0) 19550 kmem_free(iae, sacnt * sizeof (*iae)); 19551 19552 if (gcgrp != NULL) 19553 rw_exit(&gcgrp->gcgrp_rwlock); 19554 } 19555 19556 /* 19557 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19558 */ 19559 static void 19560 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19561 { 19562 ill_t *ill; 19563 ipif_t *ipif; 19564 mib2_ipv6RouteEntry_t *re; 19565 mib2_ipAttributeEntry_t *iae, *iaeptr; 19566 in6_addr_t gw_addr_v6; 19567 tsol_ire_gw_secattr_t *attrp; 19568 tsol_gc_t *gc = NULL; 19569 tsol_gcgrp_t *gcgrp = NULL; 19570 uint_t sacnt = 0; 19571 int i; 19572 19573 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19574 19575 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19576 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19577 return; 19578 } 19579 19580 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19581 return; 19582 19583 if ((attrp = ire->ire_gw_secattr) != NULL) { 19584 mutex_enter(&attrp->igsa_lock); 19585 if ((gc = attrp->igsa_gc) != NULL) { 19586 gcgrp = gc->gc_grp; 19587 ASSERT(gcgrp != NULL); 19588 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19589 sacnt = 1; 19590 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19591 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19592 gc = gcgrp->gcgrp_head; 19593 sacnt = gcgrp->gcgrp_count; 19594 } 19595 mutex_exit(&attrp->igsa_lock); 19596 19597 /* do nothing if there's no gc to report */ 19598 if (gc == NULL) { 19599 ASSERT(sacnt == 0); 19600 if (gcgrp != NULL) { 19601 /* we might as well drop the lock now */ 19602 rw_exit(&gcgrp->gcgrp_rwlock); 19603 gcgrp = NULL; 19604 } 19605 attrp = NULL; 19606 } 19607 19608 ASSERT(gc == NULL || (gcgrp != NULL && 19609 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19610 } 19611 ASSERT(sacnt == 0 || gc != NULL); 19612 19613 if (sacnt != 0 && 19614 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19615 kmem_free(re, sizeof (*re)); 19616 rw_exit(&gcgrp->gcgrp_rwlock); 19617 return; 19618 } 19619 19620 /* 19621 * Return all IRE types for route table... let caller pick and choose 19622 */ 19623 re->ipv6RouteDest = ire->ire_addr_v6; 19624 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19625 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19626 re->ipv6RouteIfIndex.o_length = 0; 19627 ipif = ire->ire_ipif; 19628 if (ire->ire_type == IRE_CACHE) { 19629 ill = (ill_t *)ire->ire_stq->q_ptr; 19630 re->ipv6RouteIfIndex.o_length = 19631 ill->ill_name_length == 0 ? 0 : 19632 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19633 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19634 re->ipv6RouteIfIndex.o_length); 19635 } else if (ipif != NULL) { 19636 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19637 re->ipv6RouteIfIndex.o_length = 19638 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19639 } 19640 19641 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19642 19643 mutex_enter(&ire->ire_lock); 19644 gw_addr_v6 = ire->ire_gateway_addr_v6; 19645 mutex_exit(&ire->ire_lock); 19646 19647 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19648 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19649 else 19650 re->ipv6RouteNextHop = gw_addr_v6; 19651 19652 /* remote(4), local(3), or discard(2) */ 19653 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19654 re->ipv6RouteType = 2; 19655 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19656 re->ipv6RouteType = 3; 19657 else 19658 re->ipv6RouteType = 4; 19659 19660 re->ipv6RouteProtocol = -1; 19661 re->ipv6RoutePolicy = 0; 19662 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19663 re->ipv6RouteNextHopRDI = 0; 19664 re->ipv6RouteWeight = 0; 19665 re->ipv6RouteMetric = 0; 19666 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19667 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19668 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19669 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19670 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19671 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19672 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19673 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19674 19675 if (ire->ire_flags & RTF_DYNAMIC) { 19676 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19677 } else { 19678 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19679 } 19680 19681 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19682 (char *)re, (int)sizeof (*re))) { 19683 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19684 (uint_t)sizeof (*re))); 19685 } 19686 19687 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19688 iaeptr->iae_routeidx = ird->ird_idx; 19689 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19690 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19691 } 19692 19693 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19694 (char *)iae, sacnt * sizeof (*iae))) { 19695 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19696 (unsigned)(sacnt * sizeof (*iae)))); 19697 } 19698 19699 /* bump route index for next pass */ 19700 ird->ird_idx++; 19701 19702 kmem_free(re, sizeof (*re)); 19703 if (sacnt != 0) 19704 kmem_free(iae, sacnt * sizeof (*iae)); 19705 19706 if (gcgrp != NULL) 19707 rw_exit(&gcgrp->gcgrp_rwlock); 19708 } 19709 19710 /* 19711 * ndp_walk routine to create ipv6NetToMediaEntryTable 19712 */ 19713 static int 19714 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19715 { 19716 ill_t *ill; 19717 mib2_ipv6NetToMediaEntry_t ntme; 19718 dl_unitdata_req_t *dl; 19719 19720 ill = nce->nce_ill; 19721 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19722 return (0); 19723 19724 /* 19725 * Neighbor cache entry attached to IRE with on-link 19726 * destination. 19727 */ 19728 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19729 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19730 if ((ill->ill_flags & ILLF_XRESOLV) && 19731 (nce->nce_res_mp != NULL)) { 19732 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19733 ntme.ipv6NetToMediaPhysAddress.o_length = 19734 dl->dl_dest_addr_length; 19735 } else { 19736 ntme.ipv6NetToMediaPhysAddress.o_length = 19737 ill->ill_phys_addr_length; 19738 } 19739 if (nce->nce_res_mp != NULL) { 19740 bcopy((char *)nce->nce_res_mp->b_rptr + 19741 NCE_LL_ADDR_OFFSET(ill), 19742 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19743 ntme.ipv6NetToMediaPhysAddress.o_length); 19744 } else { 19745 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19746 ill->ill_phys_addr_length); 19747 } 19748 /* 19749 * Note: Returns ND_* states. Should be: 19750 * reachable(1), stale(2), delay(3), probe(4), 19751 * invalid(5), unknown(6) 19752 */ 19753 ntme.ipv6NetToMediaState = nce->nce_state; 19754 ntme.ipv6NetToMediaLastUpdated = 0; 19755 19756 /* other(1), dynamic(2), static(3), local(4) */ 19757 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19758 ntme.ipv6NetToMediaType = 4; 19759 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19760 ntme.ipv6NetToMediaType = 1; 19761 } else { 19762 ntme.ipv6NetToMediaType = 2; 19763 } 19764 19765 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19766 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19767 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19768 (uint_t)sizeof (ntme))); 19769 } 19770 return (0); 19771 } 19772 19773 /* 19774 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19775 */ 19776 /* ARGSUSED */ 19777 int 19778 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19779 { 19780 switch (level) { 19781 case MIB2_IP: 19782 case MIB2_ICMP: 19783 switch (name) { 19784 default: 19785 break; 19786 } 19787 return (1); 19788 default: 19789 return (1); 19790 } 19791 } 19792 19793 /* 19794 * When there exists both a 64- and 32-bit counter of a particular type 19795 * (i.e., InReceives), only the 64-bit counters are added. 19796 */ 19797 void 19798 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19799 { 19800 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19801 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19802 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19803 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19804 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19805 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19806 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19807 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19808 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19809 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19810 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19811 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19812 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19813 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19814 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19815 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19816 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19817 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19818 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19819 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19820 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19821 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19822 o2->ipIfStatsInWrongIPVersion); 19823 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19824 o2->ipIfStatsInWrongIPVersion); 19825 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19826 o2->ipIfStatsOutSwitchIPVersion); 19827 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19828 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19829 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19830 o2->ipIfStatsHCInForwDatagrams); 19831 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19832 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19833 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19834 o2->ipIfStatsHCOutForwDatagrams); 19835 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19836 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19837 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19838 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19839 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19840 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19841 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19842 o2->ipIfStatsHCOutMcastOctets); 19843 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19844 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19845 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19846 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19847 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19848 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19849 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19850 } 19851 19852 void 19853 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19854 { 19855 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19856 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19857 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19858 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19859 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19860 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19861 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19862 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19863 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19864 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19865 o2->ipv6IfIcmpInRouterSolicits); 19866 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19867 o2->ipv6IfIcmpInRouterAdvertisements); 19868 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19869 o2->ipv6IfIcmpInNeighborSolicits); 19870 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19871 o2->ipv6IfIcmpInNeighborAdvertisements); 19872 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19873 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19874 o2->ipv6IfIcmpInGroupMembQueries); 19875 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19876 o2->ipv6IfIcmpInGroupMembResponses); 19877 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19878 o2->ipv6IfIcmpInGroupMembReductions); 19879 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19880 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19881 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19882 o2->ipv6IfIcmpOutDestUnreachs); 19883 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19884 o2->ipv6IfIcmpOutAdminProhibs); 19885 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19886 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19887 o2->ipv6IfIcmpOutParmProblems); 19888 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19889 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19890 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19891 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19892 o2->ipv6IfIcmpOutRouterSolicits); 19893 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19894 o2->ipv6IfIcmpOutRouterAdvertisements); 19895 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19896 o2->ipv6IfIcmpOutNeighborSolicits); 19897 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19898 o2->ipv6IfIcmpOutNeighborAdvertisements); 19899 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19900 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19901 o2->ipv6IfIcmpOutGroupMembQueries); 19902 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19903 o2->ipv6IfIcmpOutGroupMembResponses); 19904 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19905 o2->ipv6IfIcmpOutGroupMembReductions); 19906 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19907 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19908 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19909 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19910 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19911 o2->ipv6IfIcmpInBadNeighborSolicitations); 19912 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19913 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19914 o2->ipv6IfIcmpInGroupMembTotal); 19915 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19916 o2->ipv6IfIcmpInGroupMembBadQueries); 19917 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19918 o2->ipv6IfIcmpInGroupMembBadReports); 19919 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19920 o2->ipv6IfIcmpInGroupMembOurReports); 19921 } 19922 19923 /* 19924 * Called before the options are updated to check if this packet will 19925 * be source routed from here. 19926 * This routine assumes that the options are well formed i.e. that they 19927 * have already been checked. 19928 */ 19929 static boolean_t 19930 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19931 { 19932 ipoptp_t opts; 19933 uchar_t *opt; 19934 uint8_t optval; 19935 uint8_t optlen; 19936 ipaddr_t dst; 19937 ire_t *ire; 19938 19939 if (IS_SIMPLE_IPH(ipha)) { 19940 ip2dbg(("not source routed\n")); 19941 return (B_FALSE); 19942 } 19943 dst = ipha->ipha_dst; 19944 for (optval = ipoptp_first(&opts, ipha); 19945 optval != IPOPT_EOL; 19946 optval = ipoptp_next(&opts)) { 19947 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19948 opt = opts.ipoptp_cur; 19949 optlen = opts.ipoptp_len; 19950 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19951 optval, optlen)); 19952 switch (optval) { 19953 uint32_t off; 19954 case IPOPT_SSRR: 19955 case IPOPT_LSRR: 19956 /* 19957 * If dst is one of our addresses and there are some 19958 * entries left in the source route return (true). 19959 */ 19960 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19961 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19962 if (ire == NULL) { 19963 ip2dbg(("ip_source_routed: not next" 19964 " source route 0x%x\n", 19965 ntohl(dst))); 19966 return (B_FALSE); 19967 } 19968 ire_refrele(ire); 19969 off = opt[IPOPT_OFFSET]; 19970 off--; 19971 if (optlen < IP_ADDR_LEN || 19972 off > optlen - IP_ADDR_LEN) { 19973 /* End of source route */ 19974 ip1dbg(("ip_source_routed: end of SR\n")); 19975 return (B_FALSE); 19976 } 19977 return (B_TRUE); 19978 } 19979 } 19980 ip2dbg(("not source routed\n")); 19981 return (B_FALSE); 19982 } 19983 19984 /* 19985 * Check if the packet contains any source route. 19986 */ 19987 static boolean_t 19988 ip_source_route_included(ipha_t *ipha) 19989 { 19990 ipoptp_t opts; 19991 uint8_t optval; 19992 19993 if (IS_SIMPLE_IPH(ipha)) 19994 return (B_FALSE); 19995 for (optval = ipoptp_first(&opts, ipha); 19996 optval != IPOPT_EOL; 19997 optval = ipoptp_next(&opts)) { 19998 switch (optval) { 19999 case IPOPT_SSRR: 20000 case IPOPT_LSRR: 20001 return (B_TRUE); 20002 } 20003 } 20004 return (B_FALSE); 20005 } 20006 20007 /* 20008 * Called when the IRE expiration timer fires. 20009 */ 20010 void 20011 ip_trash_timer_expire(void *args) 20012 { 20013 int flush_flag = 0; 20014 ire_expire_arg_t iea; 20015 ip_stack_t *ipst = (ip_stack_t *)args; 20016 20017 iea.iea_ipst = ipst; /* No netstack_hold */ 20018 20019 /* 20020 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20021 * This lock makes sure that a new invocation of this function 20022 * that occurs due to an almost immediate timer firing will not 20023 * progress beyond this point until the current invocation is done 20024 */ 20025 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20026 ipst->ips_ip_ire_expire_id = 0; 20027 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20028 20029 /* Periodic timer */ 20030 if (ipst->ips_ip_ire_arp_time_elapsed >= 20031 ipst->ips_ip_ire_arp_interval) { 20032 /* 20033 * Remove all IRE_CACHE entries since they might 20034 * contain arp information. 20035 */ 20036 flush_flag |= FLUSH_ARP_TIME; 20037 ipst->ips_ip_ire_arp_time_elapsed = 0; 20038 IP_STAT(ipst, ip_ire_arp_timer_expired); 20039 } 20040 if (ipst->ips_ip_ire_rd_time_elapsed >= 20041 ipst->ips_ip_ire_redir_interval) { 20042 /* Remove all redirects */ 20043 flush_flag |= FLUSH_REDIRECT_TIME; 20044 ipst->ips_ip_ire_rd_time_elapsed = 0; 20045 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20046 } 20047 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20048 ipst->ips_ip_ire_pathmtu_interval) { 20049 /* Increase path mtu */ 20050 flush_flag |= FLUSH_MTU_TIME; 20051 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20052 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20053 } 20054 20055 /* 20056 * Optimize for the case when there are no redirects in the 20057 * ftable, that is, no need to walk the ftable in that case. 20058 */ 20059 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20060 iea.iea_flush_flag = flush_flag; 20061 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20062 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20063 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20064 NULL, ALL_ZONES, ipst); 20065 } 20066 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20067 ipst->ips_ip_redirect_cnt > 0) { 20068 iea.iea_flush_flag = flush_flag; 20069 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20070 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20071 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20072 } 20073 if (flush_flag & FLUSH_MTU_TIME) { 20074 /* 20075 * Walk all IPv6 IRE's and update them 20076 * Note that ARP and redirect timers are not 20077 * needed since NUD handles stale entries. 20078 */ 20079 flush_flag = FLUSH_MTU_TIME; 20080 iea.iea_flush_flag = flush_flag; 20081 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20082 ALL_ZONES, ipst); 20083 } 20084 20085 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20086 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20087 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20088 20089 /* 20090 * Hold the lock to serialize timeout calls and prevent 20091 * stale values in ip_ire_expire_id. Otherwise it is possible 20092 * for the timer to fire and a new invocation of this function 20093 * to start before the return value of timeout has been stored 20094 * in ip_ire_expire_id by the current invocation. 20095 */ 20096 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20097 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20098 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20099 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20100 } 20101 20102 /* 20103 * Called by the memory allocator subsystem directly, when the system 20104 * is running low on memory. 20105 */ 20106 /* ARGSUSED */ 20107 void 20108 ip_trash_ire_reclaim(void *args) 20109 { 20110 netstack_handle_t nh; 20111 netstack_t *ns; 20112 20113 netstack_next_init(&nh); 20114 while ((ns = netstack_next(&nh)) != NULL) { 20115 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20116 netstack_rele(ns); 20117 } 20118 netstack_next_fini(&nh); 20119 } 20120 20121 static void 20122 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20123 { 20124 ire_cache_count_t icc; 20125 ire_cache_reclaim_t icr; 20126 ncc_cache_count_t ncc; 20127 nce_cache_reclaim_t ncr; 20128 uint_t delete_cnt; 20129 /* 20130 * Memory reclaim call back. 20131 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20132 * Then, with a target of freeing 1/Nth of IRE_CACHE 20133 * entries, determine what fraction to free for 20134 * each category of IRE_CACHE entries giving absolute priority 20135 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20136 * entry will be freed unless all offlink entries are freed). 20137 */ 20138 icc.icc_total = 0; 20139 icc.icc_unused = 0; 20140 icc.icc_offlink = 0; 20141 icc.icc_pmtu = 0; 20142 icc.icc_onlink = 0; 20143 ire_walk(ire_cache_count, (char *)&icc, ipst); 20144 20145 /* 20146 * Free NCEs for IPv6 like the onlink ires. 20147 */ 20148 ncc.ncc_total = 0; 20149 ncc.ncc_host = 0; 20150 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20151 20152 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20153 icc.icc_pmtu + icc.icc_onlink); 20154 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20155 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20156 if (delete_cnt == 0) 20157 return; 20158 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20159 /* Always delete all unused offlink entries */ 20160 icr.icr_ipst = ipst; 20161 icr.icr_unused = 1; 20162 if (delete_cnt <= icc.icc_unused) { 20163 /* 20164 * Only need to free unused entries. In other words, 20165 * there are enough unused entries to free to meet our 20166 * target number of freed ire cache entries. 20167 */ 20168 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20169 ncr.ncr_host = 0; 20170 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20171 /* 20172 * Only need to free unused entries, plus a fraction of offlink 20173 * entries. It follows from the first if statement that 20174 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20175 */ 20176 delete_cnt -= icc.icc_unused; 20177 /* Round up # deleted by truncating fraction */ 20178 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20179 icr.icr_pmtu = icr.icr_onlink = 0; 20180 ncr.ncr_host = 0; 20181 } else if (delete_cnt <= 20182 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20183 /* 20184 * Free all unused and offlink entries, plus a fraction of 20185 * pmtu entries. It follows from the previous if statement 20186 * that icc_pmtu is non-zero, and that 20187 * delete_cnt != icc_unused + icc_offlink. 20188 */ 20189 icr.icr_offlink = 1; 20190 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20191 /* Round up # deleted by truncating fraction */ 20192 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20193 icr.icr_onlink = 0; 20194 ncr.ncr_host = 0; 20195 } else { 20196 /* 20197 * Free all unused, offlink, and pmtu entries, plus a fraction 20198 * of onlink entries. If we're here, then we know that 20199 * icc_onlink is non-zero, and that 20200 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20201 */ 20202 icr.icr_offlink = icr.icr_pmtu = 1; 20203 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20204 icc.icc_pmtu; 20205 /* Round up # deleted by truncating fraction */ 20206 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20207 /* Using the same delete fraction as for onlink IREs */ 20208 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20209 } 20210 #ifdef DEBUG 20211 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20212 "fractions %d/%d/%d/%d\n", 20213 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20214 icc.icc_unused, icc.icc_offlink, 20215 icc.icc_pmtu, icc.icc_onlink, 20216 icr.icr_unused, icr.icr_offlink, 20217 icr.icr_pmtu, icr.icr_onlink)); 20218 #endif 20219 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20220 if (ncr.ncr_host != 0) 20221 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20222 (uchar_t *)&ncr, ipst); 20223 #ifdef DEBUG 20224 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20225 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20226 ire_walk(ire_cache_count, (char *)&icc, ipst); 20227 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20228 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20229 icc.icc_pmtu, icc.icc_onlink)); 20230 #endif 20231 } 20232 20233 /* 20234 * ip_unbind is called when a copy of an unbind request is received from the 20235 * upper level protocol. We remove this conn from any fanout hash list it is 20236 * on, and zero out the bind information. No reply is expected up above. 20237 */ 20238 void 20239 ip_unbind(conn_t *connp) 20240 { 20241 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20242 20243 if (is_system_labeled() && connp->conn_anon_port) { 20244 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20245 connp->conn_mlp_type, connp->conn_ulp, 20246 ntohs(connp->conn_lport), B_FALSE); 20247 connp->conn_anon_port = 0; 20248 } 20249 connp->conn_mlp_type = mlptSingle; 20250 20251 ipcl_hash_remove(connp); 20252 } 20253 20254 /* 20255 * Write side put procedure. Outbound data, IOCTLs, responses from 20256 * resolvers, etc, come down through here. 20257 * 20258 * arg2 is always a queue_t *. 20259 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20260 * the zoneid. 20261 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20262 */ 20263 void 20264 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20265 { 20266 ip_output_options(arg, mp, arg2, caller, &zero_info); 20267 } 20268 20269 void 20270 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20271 ip_opt_info_t *infop) 20272 { 20273 conn_t *connp = NULL; 20274 queue_t *q = (queue_t *)arg2; 20275 ipha_t *ipha; 20276 #define rptr ((uchar_t *)ipha) 20277 ire_t *ire = NULL; 20278 ire_t *sctp_ire = NULL; 20279 uint32_t v_hlen_tos_len; 20280 ipaddr_t dst; 20281 mblk_t *first_mp = NULL; 20282 boolean_t mctl_present; 20283 ipsec_out_t *io; 20284 int match_flags; 20285 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20286 ipif_t *dst_ipif; 20287 boolean_t multirt_need_resolve = B_FALSE; 20288 mblk_t *copy_mp = NULL; 20289 int err = 0; 20290 zoneid_t zoneid; 20291 boolean_t need_decref = B_FALSE; 20292 boolean_t ignore_dontroute = B_FALSE; 20293 boolean_t ignore_nexthop = B_FALSE; 20294 boolean_t ip_nexthop = B_FALSE; 20295 ipaddr_t nexthop_addr; 20296 ip_stack_t *ipst; 20297 20298 #ifdef _BIG_ENDIAN 20299 #define V_HLEN (v_hlen_tos_len >> 24) 20300 #else 20301 #define V_HLEN (v_hlen_tos_len & 0xFF) 20302 #endif 20303 20304 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20305 "ip_wput_start: q %p", q); 20306 20307 /* 20308 * ip_wput fast path 20309 */ 20310 20311 /* is packet from ARP ? */ 20312 if (q->q_next != NULL) { 20313 zoneid = (zoneid_t)(uintptr_t)arg; 20314 goto qnext; 20315 } 20316 20317 connp = (conn_t *)arg; 20318 ASSERT(connp != NULL); 20319 zoneid = connp->conn_zoneid; 20320 ipst = connp->conn_netstack->netstack_ip; 20321 ASSERT(ipst != NULL); 20322 20323 /* is queue flow controlled? */ 20324 if ((q->q_first != NULL || connp->conn_draining) && 20325 (caller == IP_WPUT)) { 20326 ASSERT(!need_decref); 20327 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20328 (void) putq(q, mp); 20329 return; 20330 } 20331 20332 /* Multidata transmit? */ 20333 if (DB_TYPE(mp) == M_MULTIDATA) { 20334 /* 20335 * We should never get here, since all Multidata messages 20336 * originating from tcp should have been directed over to 20337 * tcp_multisend() in the first place. 20338 */ 20339 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20340 freemsg(mp); 20341 return; 20342 } else if (DB_TYPE(mp) != M_DATA) 20343 goto notdata; 20344 20345 if (mp->b_flag & MSGHASREF) { 20346 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20347 mp->b_flag &= ~MSGHASREF; 20348 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20349 need_decref = B_TRUE; 20350 } 20351 ipha = (ipha_t *)mp->b_rptr; 20352 20353 /* is IP header non-aligned or mblk smaller than basic IP header */ 20354 #ifndef SAFETY_BEFORE_SPEED 20355 if (!OK_32PTR(rptr) || 20356 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20357 goto hdrtoosmall; 20358 #endif 20359 20360 ASSERT(OK_32PTR(ipha)); 20361 20362 /* 20363 * This function assumes that mp points to an IPv4 packet. If it's the 20364 * wrong version, we'll catch it again in ip_output_v6. 20365 * 20366 * Note that this is *only* locally-generated output here, and never 20367 * forwarded data, and that we need to deal only with transports that 20368 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20369 * label.) 20370 */ 20371 if (is_system_labeled() && 20372 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20373 !connp->conn_ulp_labeled) { 20374 cred_t *credp; 20375 pid_t pid; 20376 20377 credp = BEST_CRED(mp, connp, &pid); 20378 err = tsol_check_label(credp, &mp, 20379 connp->conn_mac_exempt, ipst, pid); 20380 ipha = (ipha_t *)mp->b_rptr; 20381 if (err != 0) { 20382 first_mp = mp; 20383 if (err == EINVAL) 20384 goto icmp_parameter_problem; 20385 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20386 goto discard_pkt; 20387 } 20388 } 20389 20390 ASSERT(infop != NULL); 20391 20392 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20393 /* 20394 * IP_PKTINFO ancillary option is present. 20395 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20396 * allows using address of any zone as the source address. 20397 */ 20398 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20399 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20400 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20401 if (ire == NULL) 20402 goto drop_pkt; 20403 ire_refrele(ire); 20404 ire = NULL; 20405 } 20406 20407 /* 20408 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20409 */ 20410 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20411 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20412 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20413 20414 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20415 goto drop_pkt; 20416 /* 20417 * check that there is an ipif belonging 20418 * to our zone. IPCL_ZONEID is not used because 20419 * IP_ALLZONES option is valid only when the ill is 20420 * accessible from all zones i.e has a valid ipif in 20421 * all zones. 20422 */ 20423 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20424 goto drop_pkt; 20425 } 20426 } 20427 20428 /* 20429 * If there is a policy, try to attach an ipsec_out in 20430 * the front. At the end, first_mp either points to a 20431 * M_DATA message or IPSEC_OUT message linked to a 20432 * M_DATA message. We have to do it now as we might 20433 * lose the "conn" if we go through ip_newroute. 20434 */ 20435 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20436 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20437 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20438 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20439 if (need_decref) 20440 CONN_DEC_REF(connp); 20441 return; 20442 } else { 20443 ASSERT(mp->b_datap->db_type == M_CTL); 20444 first_mp = mp; 20445 mp = mp->b_cont; 20446 mctl_present = B_TRUE; 20447 } 20448 } else { 20449 first_mp = mp; 20450 mctl_present = B_FALSE; 20451 } 20452 20453 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20454 20455 /* is wrong version or IP options present */ 20456 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20457 goto version_hdrlen_check; 20458 dst = ipha->ipha_dst; 20459 20460 /* If IP_BOUND_IF has been set, use that ill. */ 20461 if (connp->conn_outgoing_ill != NULL) { 20462 xmit_ill = conn_get_held_ill(connp, 20463 &connp->conn_outgoing_ill, &err); 20464 if (err == ILL_LOOKUP_FAILED) 20465 goto drop_pkt; 20466 20467 goto send_from_ill; 20468 } 20469 20470 /* is packet multicast? */ 20471 if (CLASSD(dst)) 20472 goto multicast; 20473 20474 /* 20475 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20476 * takes precedence over conn_dontroute and conn_nexthop_set 20477 */ 20478 if (xmit_ill != NULL) 20479 goto send_from_ill; 20480 20481 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20482 /* 20483 * If the destination is a broadcast, local, or loopback 20484 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20485 * standard path. 20486 */ 20487 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20488 if ((ire == NULL) || (ire->ire_type & 20489 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20490 if (ire != NULL) { 20491 ire_refrele(ire); 20492 /* No more access to ire */ 20493 ire = NULL; 20494 } 20495 /* 20496 * bypass routing checks and go directly to interface. 20497 */ 20498 if (connp->conn_dontroute) 20499 goto dontroute; 20500 20501 ASSERT(connp->conn_nexthop_set); 20502 ip_nexthop = B_TRUE; 20503 nexthop_addr = connp->conn_nexthop_v4; 20504 goto send_from_ill; 20505 } 20506 20507 /* Must be a broadcast, a loopback or a local ire */ 20508 ire_refrele(ire); 20509 /* No more access to ire */ 20510 ire = NULL; 20511 } 20512 20513 /* 20514 * We cache IRE_CACHEs to avoid lookups. We don't do 20515 * this for the tcp global queue and listen end point 20516 * as it does not really have a real destination to 20517 * talk to. This is also true for SCTP. 20518 */ 20519 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20520 !connp->conn_fully_bound) { 20521 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20522 if (ire == NULL) 20523 goto noirefound; 20524 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20525 "ip_wput_end: q %p (%S)", q, "end"); 20526 20527 /* 20528 * Check if the ire has the RTF_MULTIRT flag, inherited 20529 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20530 */ 20531 if (ire->ire_flags & RTF_MULTIRT) { 20532 20533 /* 20534 * Force the TTL of multirouted packets if required. 20535 * The TTL of such packets is bounded by the 20536 * ip_multirt_ttl ndd variable. 20537 */ 20538 if ((ipst->ips_ip_multirt_ttl > 0) && 20539 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20540 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20541 "(was %d), dst 0x%08x\n", 20542 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20543 ntohl(ire->ire_addr))); 20544 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20545 } 20546 /* 20547 * We look at this point if there are pending 20548 * unresolved routes. ire_multirt_resolvable() 20549 * checks in O(n) that all IRE_OFFSUBNET ire 20550 * entries for the packet's destination and 20551 * flagged RTF_MULTIRT are currently resolved. 20552 * If some remain unresolved, we make a copy 20553 * of the current message. It will be used 20554 * to initiate additional route resolutions. 20555 */ 20556 multirt_need_resolve = 20557 ire_multirt_need_resolve(ire->ire_addr, 20558 msg_getlabel(first_mp), ipst); 20559 ip2dbg(("ip_wput[TCP]: ire %p, " 20560 "multirt_need_resolve %d, first_mp %p\n", 20561 (void *)ire, multirt_need_resolve, 20562 (void *)first_mp)); 20563 if (multirt_need_resolve) { 20564 copy_mp = copymsg(first_mp); 20565 if (copy_mp != NULL) { 20566 MULTIRT_DEBUG_TAG(copy_mp); 20567 } 20568 } 20569 } 20570 20571 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20572 20573 /* 20574 * Try to resolve another multiroute if 20575 * ire_multirt_need_resolve() deemed it necessary. 20576 */ 20577 if (copy_mp != NULL) 20578 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20579 if (need_decref) 20580 CONN_DEC_REF(connp); 20581 return; 20582 } 20583 20584 /* 20585 * Access to conn_ire_cache. (protected by conn_lock) 20586 * 20587 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20588 * the ire bucket lock here to check for CONDEMNED as it is okay to 20589 * send a packet or two with the IRE_CACHE that is going away. 20590 * Access to the ire requires an ire refhold on the ire prior to 20591 * its use since an interface unplumb thread may delete the cached 20592 * ire and release the refhold at any time. 20593 * 20594 * Caching an ire in the conn_ire_cache 20595 * 20596 * o Caching an ire pointer in the conn requires a strict check for 20597 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20598 * ires before cleaning up the conns. So the caching of an ire pointer 20599 * in the conn is done after making sure under the bucket lock that the 20600 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20601 * caching an ire after the unplumb thread has cleaned up the conn. 20602 * If the conn does not send a packet subsequently the unplumb thread 20603 * will be hanging waiting for the ire count to drop to zero. 20604 * 20605 * o We also need to atomically test for a null conn_ire_cache and 20606 * set the conn_ire_cache under the the protection of the conn_lock 20607 * to avoid races among concurrent threads trying to simultaneously 20608 * cache an ire in the conn_ire_cache. 20609 */ 20610 mutex_enter(&connp->conn_lock); 20611 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20612 20613 if (ire != NULL && ire->ire_addr == dst && 20614 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20615 20616 IRE_REFHOLD(ire); 20617 mutex_exit(&connp->conn_lock); 20618 20619 } else { 20620 boolean_t cached = B_FALSE; 20621 connp->conn_ire_cache = NULL; 20622 mutex_exit(&connp->conn_lock); 20623 /* Release the old ire */ 20624 if (ire != NULL && sctp_ire == NULL) 20625 IRE_REFRELE_NOTR(ire); 20626 20627 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20628 if (ire == NULL) 20629 goto noirefound; 20630 IRE_REFHOLD_NOTR(ire); 20631 20632 mutex_enter(&connp->conn_lock); 20633 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20634 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20635 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20636 if (connp->conn_ulp == IPPROTO_TCP) 20637 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20638 connp->conn_ire_cache = ire; 20639 cached = B_TRUE; 20640 } 20641 rw_exit(&ire->ire_bucket->irb_lock); 20642 } 20643 mutex_exit(&connp->conn_lock); 20644 20645 /* 20646 * We can continue to use the ire but since it was 20647 * not cached, we should drop the extra reference. 20648 */ 20649 if (!cached) 20650 IRE_REFRELE_NOTR(ire); 20651 } 20652 20653 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20654 "ip_wput_end: q %p (%S)", q, "end"); 20655 20656 /* 20657 * Check if the ire has the RTF_MULTIRT flag, inherited 20658 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20659 */ 20660 if (ire->ire_flags & RTF_MULTIRT) { 20661 /* 20662 * Force the TTL of multirouted packets if required. 20663 * The TTL of such packets is bounded by the 20664 * ip_multirt_ttl ndd variable. 20665 */ 20666 if ((ipst->ips_ip_multirt_ttl > 0) && 20667 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20668 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20669 "(was %d), dst 0x%08x\n", 20670 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20671 ntohl(ire->ire_addr))); 20672 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20673 } 20674 20675 /* 20676 * At this point, we check to see if there are any pending 20677 * unresolved routes. ire_multirt_resolvable() 20678 * checks in O(n) that all IRE_OFFSUBNET ire 20679 * entries for the packet's destination and 20680 * flagged RTF_MULTIRT are currently resolved. 20681 * If some remain unresolved, we make a copy 20682 * of the current message. It will be used 20683 * to initiate additional route resolutions. 20684 */ 20685 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20686 msg_getlabel(first_mp), ipst); 20687 ip2dbg(("ip_wput[not TCP]: ire %p, " 20688 "multirt_need_resolve %d, first_mp %p\n", 20689 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20690 if (multirt_need_resolve) { 20691 copy_mp = copymsg(first_mp); 20692 if (copy_mp != NULL) { 20693 MULTIRT_DEBUG_TAG(copy_mp); 20694 } 20695 } 20696 } 20697 20698 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20699 20700 /* 20701 * Try to resolve another multiroute if 20702 * ire_multirt_resolvable() deemed it necessary 20703 */ 20704 if (copy_mp != NULL) 20705 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20706 if (need_decref) 20707 CONN_DEC_REF(connp); 20708 return; 20709 20710 qnext: 20711 /* 20712 * Upper Level Protocols pass down complete IP datagrams 20713 * as M_DATA messages. Everything else is a sideshow. 20714 * 20715 * 1) We could be re-entering ip_wput because of ip_neworute 20716 * in which case we could have a IPSEC_OUT message. We 20717 * need to pass through ip_wput like other datagrams and 20718 * hence cannot branch to ip_wput_nondata. 20719 * 20720 * 2) ARP, AH, ESP, and other clients who are on the module 20721 * instance of IP stream, give us something to deal with. 20722 * We will handle AH and ESP here and rest in ip_wput_nondata. 20723 * 20724 * 3) ICMP replies also could come here. 20725 */ 20726 ipst = ILLQ_TO_IPST(q); 20727 20728 if (DB_TYPE(mp) != M_DATA) { 20729 notdata: 20730 if (DB_TYPE(mp) == M_CTL) { 20731 /* 20732 * M_CTL messages are used by ARP, AH and ESP to 20733 * communicate with IP. We deal with IPSEC_IN and 20734 * IPSEC_OUT here. ip_wput_nondata handles other 20735 * cases. 20736 */ 20737 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20738 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20739 first_mp = mp->b_cont; 20740 first_mp->b_flag &= ~MSGHASREF; 20741 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20742 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20743 CONN_DEC_REF(connp); 20744 connp = NULL; 20745 } 20746 if (ii->ipsec_info_type == IPSEC_IN) { 20747 /* 20748 * Either this message goes back to 20749 * IPsec for further processing or to 20750 * ULP after policy checks. 20751 */ 20752 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20753 return; 20754 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20755 io = (ipsec_out_t *)ii; 20756 if (io->ipsec_out_proc_begin) { 20757 /* 20758 * IPsec processing has already started. 20759 * Complete it. 20760 * IPQoS notes: We don't care what is 20761 * in ipsec_out_ill_index since this 20762 * won't be processed for IPQoS policies 20763 * in ipsec_out_process. 20764 */ 20765 ipsec_out_process(q, mp, NULL, 20766 io->ipsec_out_ill_index); 20767 return; 20768 } else { 20769 connp = (q->q_next != NULL) ? 20770 NULL : Q_TO_CONN(q); 20771 first_mp = mp; 20772 mp = mp->b_cont; 20773 mctl_present = B_TRUE; 20774 } 20775 zoneid = io->ipsec_out_zoneid; 20776 ASSERT(zoneid != ALL_ZONES); 20777 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20778 /* 20779 * It's an IPsec control message requesting 20780 * an SADB update to be sent to the IPsec 20781 * hardware acceleration capable ills. 20782 */ 20783 ipsec_ctl_t *ipsec_ctl = 20784 (ipsec_ctl_t *)mp->b_rptr; 20785 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20786 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20787 mblk_t *cmp = mp->b_cont; 20788 20789 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20790 ASSERT(cmp != NULL); 20791 20792 freeb(mp); 20793 ill_ipsec_capab_send_all(satype, cmp, sa, 20794 ipst->ips_netstack); 20795 return; 20796 } else { 20797 /* 20798 * This must be ARP or special TSOL signaling. 20799 */ 20800 ip_wput_nondata(NULL, q, mp, NULL); 20801 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20802 "ip_wput_end: q %p (%S)", q, "nondata"); 20803 return; 20804 } 20805 } else { 20806 /* 20807 * This must be non-(ARP/AH/ESP) messages. 20808 */ 20809 ASSERT(!need_decref); 20810 ip_wput_nondata(NULL, q, mp, NULL); 20811 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20812 "ip_wput_end: q %p (%S)", q, "nondata"); 20813 return; 20814 } 20815 } else { 20816 first_mp = mp; 20817 mctl_present = B_FALSE; 20818 } 20819 20820 ASSERT(first_mp != NULL); 20821 20822 if (mctl_present) { 20823 io = (ipsec_out_t *)first_mp->b_rptr; 20824 if (io->ipsec_out_ip_nexthop) { 20825 /* 20826 * We may have lost the conn context if we are 20827 * coming here from ip_newroute(). Copy the 20828 * nexthop information. 20829 */ 20830 ip_nexthop = B_TRUE; 20831 nexthop_addr = io->ipsec_out_nexthop_addr; 20832 20833 ipha = (ipha_t *)mp->b_rptr; 20834 dst = ipha->ipha_dst; 20835 goto send_from_ill; 20836 } 20837 } 20838 20839 ASSERT(xmit_ill == NULL); 20840 20841 /* We have a complete IP datagram heading outbound. */ 20842 ipha = (ipha_t *)mp->b_rptr; 20843 20844 #ifndef SPEED_BEFORE_SAFETY 20845 /* 20846 * Make sure we have a full-word aligned message and that at least 20847 * a simple IP header is accessible in the first message. If not, 20848 * try a pullup. For labeled systems we need to always take this 20849 * path as M_CTLs are "notdata" but have trailing data to process. 20850 */ 20851 if (!OK_32PTR(rptr) || 20852 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20853 hdrtoosmall: 20854 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20855 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20856 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20857 if (first_mp == NULL) 20858 first_mp = mp; 20859 goto discard_pkt; 20860 } 20861 20862 /* This function assumes that mp points to an IPv4 packet. */ 20863 if (is_system_labeled() && 20864 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20865 (connp == NULL || !connp->conn_ulp_labeled)) { 20866 cred_t *credp; 20867 pid_t pid; 20868 20869 if (connp != NULL) { 20870 credp = BEST_CRED(mp, connp, &pid); 20871 err = tsol_check_label(credp, &mp, 20872 connp->conn_mac_exempt, ipst, pid); 20873 } else if ((credp = msg_getcred(mp, &pid)) != NULL) { 20874 err = tsol_check_label(credp, &mp, 20875 B_FALSE, ipst, pid); 20876 } 20877 ipha = (ipha_t *)mp->b_rptr; 20878 if (mctl_present) 20879 first_mp->b_cont = mp; 20880 else 20881 first_mp = mp; 20882 if (err != 0) { 20883 if (err == EINVAL) 20884 goto icmp_parameter_problem; 20885 ip2dbg(("ip_wput: label check failed (%d)\n", 20886 err)); 20887 goto discard_pkt; 20888 } 20889 } 20890 20891 ipha = (ipha_t *)mp->b_rptr; 20892 if (first_mp == NULL) { 20893 ASSERT(xmit_ill == NULL); 20894 /* 20895 * If we got here because of "goto hdrtoosmall" 20896 * We need to attach a IPSEC_OUT. 20897 */ 20898 if (connp->conn_out_enforce_policy) { 20899 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20900 NULL, ipha->ipha_protocol, 20901 ipst->ips_netstack)) == NULL)) { 20902 BUMP_MIB(&ipst->ips_ip_mib, 20903 ipIfStatsOutDiscards); 20904 if (need_decref) 20905 CONN_DEC_REF(connp); 20906 return; 20907 } else { 20908 ASSERT(mp->b_datap->db_type == M_CTL); 20909 first_mp = mp; 20910 mp = mp->b_cont; 20911 mctl_present = B_TRUE; 20912 } 20913 } else { 20914 first_mp = mp; 20915 mctl_present = B_FALSE; 20916 } 20917 } 20918 } 20919 #endif 20920 20921 /* Most of the code below is written for speed, not readability */ 20922 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20923 20924 /* 20925 * If ip_newroute() fails, we're going to need a full 20926 * header for the icmp wraparound. 20927 */ 20928 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20929 uint_t v_hlen; 20930 version_hdrlen_check: 20931 ASSERT(first_mp != NULL); 20932 v_hlen = V_HLEN; 20933 /* 20934 * siphon off IPv6 packets coming down from transport 20935 * layer modules here. 20936 * Note: high-order bit carries NUD reachability confirmation 20937 */ 20938 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20939 /* 20940 * FIXME: assume that callers of ip_output* call 20941 * the right version? 20942 */ 20943 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20944 ASSERT(xmit_ill == NULL); 20945 if (need_decref) 20946 mp->b_flag |= MSGHASREF; 20947 (void) ip_output_v6(arg, first_mp, arg2, caller); 20948 return; 20949 } 20950 20951 if ((v_hlen >> 4) != IP_VERSION) { 20952 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20953 "ip_wput_end: q %p (%S)", q, "badvers"); 20954 goto discard_pkt; 20955 } 20956 /* 20957 * Is the header length at least 20 bytes? 20958 * 20959 * Are there enough bytes accessible in the header? If 20960 * not, try a pullup. 20961 */ 20962 v_hlen &= 0xF; 20963 v_hlen <<= 2; 20964 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20965 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20966 "ip_wput_end: q %p (%S)", q, "badlen"); 20967 goto discard_pkt; 20968 } 20969 if (v_hlen > (mp->b_wptr - rptr)) { 20970 if (!pullupmsg(mp, v_hlen)) { 20971 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20972 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20973 goto discard_pkt; 20974 } 20975 ipha = (ipha_t *)mp->b_rptr; 20976 } 20977 /* 20978 * Move first entry from any source route into ipha_dst and 20979 * verify the options 20980 */ 20981 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20982 zoneid, ipst)) { 20983 ASSERT(xmit_ill == NULL); 20984 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20985 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20986 "ip_wput_end: q %p (%S)", q, "badopts"); 20987 if (need_decref) 20988 CONN_DEC_REF(connp); 20989 return; 20990 } 20991 } 20992 dst = ipha->ipha_dst; 20993 20994 /* 20995 * Try to get an IRE_CACHE for the destination address. If we can't, 20996 * we have to run the packet through ip_newroute which will take 20997 * the appropriate action to arrange for an IRE_CACHE, such as querying 20998 * a resolver, or assigning a default gateway, etc. 20999 */ 21000 if (CLASSD(dst)) { 21001 ipif_t *ipif; 21002 uint32_t setsrc = 0; 21003 21004 multicast: 21005 ASSERT(first_mp != NULL); 21006 ip2dbg(("ip_wput: CLASSD\n")); 21007 if (connp == NULL) { 21008 /* 21009 * Use the first good ipif on the ill. 21010 * XXX Should this ever happen? (Appears 21011 * to show up with just ppp and no ethernet due 21012 * to in.rdisc.) 21013 * However, ire_send should be able to 21014 * call ip_wput_ire directly. 21015 * 21016 * XXX Also, this can happen for ICMP and other packets 21017 * with multicast source addresses. Perhaps we should 21018 * fix things so that we drop the packet in question, 21019 * but for now, just run with it. 21020 */ 21021 ill_t *ill = (ill_t *)q->q_ptr; 21022 21023 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21024 if (ipif == NULL) { 21025 if (need_decref) 21026 CONN_DEC_REF(connp); 21027 freemsg(first_mp); 21028 return; 21029 } 21030 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21031 ntohl(dst), ill->ill_name)); 21032 } else { 21033 /* 21034 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21035 * and IP_MULTICAST_IF. The block comment above this 21036 * function explains the locking mechanism used here. 21037 */ 21038 if (xmit_ill == NULL) { 21039 xmit_ill = conn_get_held_ill(connp, 21040 &connp->conn_outgoing_ill, &err); 21041 if (err == ILL_LOOKUP_FAILED) { 21042 ip1dbg(("ip_wput: No ill for " 21043 "IP_BOUND_IF\n")); 21044 BUMP_MIB(&ipst->ips_ip_mib, 21045 ipIfStatsOutNoRoutes); 21046 goto drop_pkt; 21047 } 21048 } 21049 21050 if (xmit_ill == NULL) { 21051 ipif = conn_get_held_ipif(connp, 21052 &connp->conn_multicast_ipif, &err); 21053 if (err == IPIF_LOOKUP_FAILED) { 21054 ip1dbg(("ip_wput: No ipif for " 21055 "multicast\n")); 21056 BUMP_MIB(&ipst->ips_ip_mib, 21057 ipIfStatsOutNoRoutes); 21058 goto drop_pkt; 21059 } 21060 } 21061 if (xmit_ill != NULL) { 21062 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21063 if (ipif == NULL) { 21064 ip1dbg(("ip_wput: No ipif for " 21065 "xmit_ill\n")); 21066 BUMP_MIB(&ipst->ips_ip_mib, 21067 ipIfStatsOutNoRoutes); 21068 goto drop_pkt; 21069 } 21070 } else if (ipif == NULL || ipif->ipif_isv6) { 21071 /* 21072 * We must do this ipif determination here 21073 * else we could pass through ip_newroute 21074 * and come back here without the conn context. 21075 * 21076 * Note: we do late binding i.e. we bind to 21077 * the interface when the first packet is sent. 21078 * For performance reasons we do not rebind on 21079 * each packet but keep the binding until the 21080 * next IP_MULTICAST_IF option. 21081 * 21082 * conn_multicast_{ipif,ill} are shared between 21083 * IPv4 and IPv6 and AF_INET6 sockets can 21084 * send both IPv4 and IPv6 packets. Hence 21085 * we have to check that "isv6" matches above. 21086 */ 21087 if (ipif != NULL) 21088 ipif_refrele(ipif); 21089 ipif = ipif_lookup_group(dst, zoneid, ipst); 21090 if (ipif == NULL) { 21091 ip1dbg(("ip_wput: No ipif for " 21092 "multicast\n")); 21093 BUMP_MIB(&ipst->ips_ip_mib, 21094 ipIfStatsOutNoRoutes); 21095 goto drop_pkt; 21096 } 21097 err = conn_set_held_ipif(connp, 21098 &connp->conn_multicast_ipif, ipif); 21099 if (err == IPIF_LOOKUP_FAILED) { 21100 ipif_refrele(ipif); 21101 ip1dbg(("ip_wput: No ipif for " 21102 "multicast\n")); 21103 BUMP_MIB(&ipst->ips_ip_mib, 21104 ipIfStatsOutNoRoutes); 21105 goto drop_pkt; 21106 } 21107 } 21108 } 21109 ASSERT(!ipif->ipif_isv6); 21110 /* 21111 * As we may lose the conn by the time we reach ip_wput_ire, 21112 * we copy conn_multicast_loop and conn_dontroute on to an 21113 * ipsec_out. In case if this datagram goes out secure, 21114 * we need the ill_index also. Copy that also into the 21115 * ipsec_out. 21116 */ 21117 if (mctl_present) { 21118 io = (ipsec_out_t *)first_mp->b_rptr; 21119 ASSERT(first_mp->b_datap->db_type == M_CTL); 21120 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21121 } else { 21122 ASSERT(mp == first_mp); 21123 if ((first_mp = allocb(sizeof (ipsec_info_t), 21124 BPRI_HI)) == NULL) { 21125 ipif_refrele(ipif); 21126 first_mp = mp; 21127 goto discard_pkt; 21128 } 21129 first_mp->b_datap->db_type = M_CTL; 21130 first_mp->b_wptr += sizeof (ipsec_info_t); 21131 /* ipsec_out_secure is B_FALSE now */ 21132 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21133 io = (ipsec_out_t *)first_mp->b_rptr; 21134 io->ipsec_out_type = IPSEC_OUT; 21135 io->ipsec_out_len = sizeof (ipsec_out_t); 21136 io->ipsec_out_use_global_policy = B_TRUE; 21137 io->ipsec_out_ns = ipst->ips_netstack; 21138 first_mp->b_cont = mp; 21139 mctl_present = B_TRUE; 21140 } 21141 21142 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21143 io->ipsec_out_ill_index = 21144 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21145 21146 if (connp != NULL) { 21147 io->ipsec_out_multicast_loop = 21148 connp->conn_multicast_loop; 21149 io->ipsec_out_dontroute = connp->conn_dontroute; 21150 io->ipsec_out_zoneid = connp->conn_zoneid; 21151 } 21152 /* 21153 * If the application uses IP_MULTICAST_IF with 21154 * different logical addresses of the same ILL, we 21155 * need to make sure that the soruce address of 21156 * the packet matches the logical IP address used 21157 * in the option. We do it by initializing ipha_src 21158 * here. This should keep IPsec also happy as 21159 * when we return from IPsec processing, we don't 21160 * have to worry about getting the right address on 21161 * the packet. Thus it is sufficient to look for 21162 * IRE_CACHE using MATCH_IRE_ILL rathen than 21163 * MATCH_IRE_IPIF. 21164 * 21165 * NOTE : We need to do it for non-secure case also as 21166 * this might go out secure if there is a global policy 21167 * match in ip_wput_ire. 21168 * 21169 * As we do not have the ire yet, it is possible that 21170 * we set the source address here and then later discover 21171 * that the ire implies the source address to be assigned 21172 * through the RTF_SETSRC flag. 21173 * In that case, the setsrc variable will remind us 21174 * that overwritting the source address by the one 21175 * of the RTF_SETSRC-flagged ire is allowed. 21176 */ 21177 if (ipha->ipha_src == INADDR_ANY && 21178 (connp == NULL || !connp->conn_unspec_src)) { 21179 ipha->ipha_src = ipif->ipif_src_addr; 21180 setsrc = RTF_SETSRC; 21181 } 21182 /* 21183 * Find an IRE which matches the destination and the outgoing 21184 * queue (i.e. the outgoing interface.) 21185 * For loopback use a unicast IP address for 21186 * the ire lookup. 21187 */ 21188 if (IS_LOOPBACK(ipif->ipif_ill)) 21189 dst = ipif->ipif_lcl_addr; 21190 21191 /* 21192 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21193 * We don't need to lookup ire in ctable as the packet 21194 * needs to be sent to the destination through the specified 21195 * ill irrespective of ires in the cache table. 21196 */ 21197 ire = NULL; 21198 if (xmit_ill == NULL) { 21199 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21200 zoneid, msg_getlabel(mp), match_flags, ipst); 21201 } 21202 21203 if (ire == NULL) { 21204 /* 21205 * Multicast loopback and multicast forwarding is 21206 * done in ip_wput_ire. 21207 * 21208 * Mark this packet to make it be delivered to 21209 * ip_wput_ire after the new ire has been 21210 * created. 21211 * 21212 * The call to ip_newroute_ipif takes into account 21213 * the setsrc reminder. In any case, we take care 21214 * of the RTF_MULTIRT flag. 21215 */ 21216 mp->b_prev = mp->b_next = NULL; 21217 if (xmit_ill == NULL || 21218 xmit_ill->ill_ipif_up_count > 0) { 21219 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21220 setsrc | RTF_MULTIRT, zoneid, infop); 21221 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21222 "ip_wput_end: q %p (%S)", q, "noire"); 21223 } else { 21224 freemsg(first_mp); 21225 } 21226 ipif_refrele(ipif); 21227 if (xmit_ill != NULL) 21228 ill_refrele(xmit_ill); 21229 if (need_decref) 21230 CONN_DEC_REF(connp); 21231 return; 21232 } 21233 21234 ipif_refrele(ipif); 21235 ipif = NULL; 21236 ASSERT(xmit_ill == NULL); 21237 21238 /* 21239 * Honor the RTF_SETSRC flag for multicast packets, 21240 * if allowed by the setsrc reminder. 21241 */ 21242 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21243 ipha->ipha_src = ire->ire_src_addr; 21244 } 21245 21246 /* 21247 * Unconditionally force the TTL to 1 for 21248 * multirouted multicast packets: 21249 * multirouted multicast should not cross 21250 * multicast routers. 21251 */ 21252 if (ire->ire_flags & RTF_MULTIRT) { 21253 if (ipha->ipha_ttl > 1) { 21254 ip2dbg(("ip_wput: forcing multicast " 21255 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21256 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21257 ipha->ipha_ttl = 1; 21258 } 21259 } 21260 } else { 21261 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21262 if ((ire != NULL) && (ire->ire_type & 21263 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21264 ignore_dontroute = B_TRUE; 21265 ignore_nexthop = B_TRUE; 21266 } 21267 if (ire != NULL) { 21268 ire_refrele(ire); 21269 ire = NULL; 21270 } 21271 /* 21272 * Guard against coming in from arp in which case conn is NULL. 21273 * Also guard against non M_DATA with dontroute set but 21274 * destined to local, loopback or broadcast addresses. 21275 */ 21276 if (connp != NULL && connp->conn_dontroute && 21277 !ignore_dontroute) { 21278 dontroute: 21279 /* 21280 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21281 * routing protocols from seeing false direct 21282 * connectivity. 21283 */ 21284 ipha->ipha_ttl = 1; 21285 /* If suitable ipif not found, drop packet */ 21286 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21287 if (dst_ipif == NULL) { 21288 noroute: 21289 ip1dbg(("ip_wput: no route for dst using" 21290 " SO_DONTROUTE\n")); 21291 BUMP_MIB(&ipst->ips_ip_mib, 21292 ipIfStatsOutNoRoutes); 21293 mp->b_prev = mp->b_next = NULL; 21294 if (first_mp == NULL) 21295 first_mp = mp; 21296 goto drop_pkt; 21297 } else { 21298 /* 21299 * If suitable ipif has been found, set 21300 * xmit_ill to the corresponding 21301 * ipif_ill because we'll be using the 21302 * send_from_ill logic below. 21303 */ 21304 ASSERT(xmit_ill == NULL); 21305 xmit_ill = dst_ipif->ipif_ill; 21306 mutex_enter(&xmit_ill->ill_lock); 21307 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21308 mutex_exit(&xmit_ill->ill_lock); 21309 xmit_ill = NULL; 21310 ipif_refrele(dst_ipif); 21311 goto noroute; 21312 } 21313 ill_refhold_locked(xmit_ill); 21314 mutex_exit(&xmit_ill->ill_lock); 21315 ipif_refrele(dst_ipif); 21316 } 21317 } 21318 21319 send_from_ill: 21320 if (xmit_ill != NULL) { 21321 ipif_t *ipif; 21322 21323 /* 21324 * Mark this packet as originated locally 21325 */ 21326 mp->b_prev = mp->b_next = NULL; 21327 21328 /* 21329 * Could be SO_DONTROUTE case also. 21330 * Verify that at least one ipif is up on the ill. 21331 */ 21332 if (xmit_ill->ill_ipif_up_count == 0) { 21333 ip1dbg(("ip_output: xmit_ill %s is down\n", 21334 xmit_ill->ill_name)); 21335 goto drop_pkt; 21336 } 21337 21338 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21339 if (ipif == NULL) { 21340 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21341 xmit_ill->ill_name)); 21342 goto drop_pkt; 21343 } 21344 21345 match_flags = 0; 21346 if (IS_UNDER_IPMP(xmit_ill)) 21347 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21348 21349 /* 21350 * Look for a ire that is part of the group, 21351 * if found use it else call ip_newroute_ipif. 21352 * IPCL_ZONEID is not used for matching because 21353 * IP_ALLZONES option is valid only when the 21354 * ill is accessible from all zones i.e has a 21355 * valid ipif in all zones. 21356 */ 21357 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21358 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21359 msg_getlabel(mp), match_flags, ipst); 21360 /* 21361 * If an ire exists use it or else create 21362 * an ire but don't add it to the cache. 21363 * Adding an ire may cause issues with 21364 * asymmetric routing. 21365 * In case of multiroute always act as if 21366 * ire does not exist. 21367 */ 21368 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21369 if (ire != NULL) 21370 ire_refrele(ire); 21371 ip_newroute_ipif(q, first_mp, ipif, 21372 dst, connp, 0, zoneid, infop); 21373 ipif_refrele(ipif); 21374 ip1dbg(("ip_output: xmit_ill via %s\n", 21375 xmit_ill->ill_name)); 21376 ill_refrele(xmit_ill); 21377 if (need_decref) 21378 CONN_DEC_REF(connp); 21379 return; 21380 } 21381 ipif_refrele(ipif); 21382 } else if (ip_nexthop || (connp != NULL && 21383 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21384 if (!ip_nexthop) { 21385 ip_nexthop = B_TRUE; 21386 nexthop_addr = connp->conn_nexthop_v4; 21387 } 21388 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21389 MATCH_IRE_GW; 21390 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21391 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21392 } else { 21393 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21394 ipst); 21395 } 21396 if (!ire) { 21397 if (ip_nexthop && !ignore_nexthop) { 21398 if (mctl_present) { 21399 io = (ipsec_out_t *)first_mp->b_rptr; 21400 ASSERT(first_mp->b_datap->db_type == 21401 M_CTL); 21402 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21403 } else { 21404 ASSERT(mp == first_mp); 21405 first_mp = allocb( 21406 sizeof (ipsec_info_t), BPRI_HI); 21407 if (first_mp == NULL) { 21408 first_mp = mp; 21409 goto discard_pkt; 21410 } 21411 first_mp->b_datap->db_type = M_CTL; 21412 first_mp->b_wptr += 21413 sizeof (ipsec_info_t); 21414 /* ipsec_out_secure is B_FALSE now */ 21415 bzero(first_mp->b_rptr, 21416 sizeof (ipsec_info_t)); 21417 io = (ipsec_out_t *)first_mp->b_rptr; 21418 io->ipsec_out_type = IPSEC_OUT; 21419 io->ipsec_out_len = 21420 sizeof (ipsec_out_t); 21421 io->ipsec_out_use_global_policy = 21422 B_TRUE; 21423 io->ipsec_out_ns = ipst->ips_netstack; 21424 first_mp->b_cont = mp; 21425 mctl_present = B_TRUE; 21426 } 21427 io->ipsec_out_ip_nexthop = ip_nexthop; 21428 io->ipsec_out_nexthop_addr = nexthop_addr; 21429 } 21430 noirefound: 21431 /* 21432 * Mark this packet as having originated on 21433 * this machine. This will be noted in 21434 * ire_add_then_send, which needs to know 21435 * whether to run it back through ip_wput or 21436 * ip_rput following successful resolution. 21437 */ 21438 mp->b_prev = NULL; 21439 mp->b_next = NULL; 21440 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21441 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21442 "ip_wput_end: q %p (%S)", q, "newroute"); 21443 if (xmit_ill != NULL) 21444 ill_refrele(xmit_ill); 21445 if (need_decref) 21446 CONN_DEC_REF(connp); 21447 return; 21448 } 21449 } 21450 21451 /* We now know where we are going with it. */ 21452 21453 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21454 "ip_wput_end: q %p (%S)", q, "end"); 21455 21456 /* 21457 * Check if the ire has the RTF_MULTIRT flag, inherited 21458 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21459 */ 21460 if (ire->ire_flags & RTF_MULTIRT) { 21461 /* 21462 * Force the TTL of multirouted packets if required. 21463 * The TTL of such packets is bounded by the 21464 * ip_multirt_ttl ndd variable. 21465 */ 21466 if ((ipst->ips_ip_multirt_ttl > 0) && 21467 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21468 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21469 "(was %d), dst 0x%08x\n", 21470 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21471 ntohl(ire->ire_addr))); 21472 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21473 } 21474 /* 21475 * At this point, we check to see if there are any pending 21476 * unresolved routes. ire_multirt_resolvable() 21477 * checks in O(n) that all IRE_OFFSUBNET ire 21478 * entries for the packet's destination and 21479 * flagged RTF_MULTIRT are currently resolved. 21480 * If some remain unresolved, we make a copy 21481 * of the current message. It will be used 21482 * to initiate additional route resolutions. 21483 */ 21484 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21485 msg_getlabel(first_mp), ipst); 21486 ip2dbg(("ip_wput[noirefound]: ire %p, " 21487 "multirt_need_resolve %d, first_mp %p\n", 21488 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21489 if (multirt_need_resolve) { 21490 copy_mp = copymsg(first_mp); 21491 if (copy_mp != NULL) { 21492 MULTIRT_DEBUG_TAG(copy_mp); 21493 } 21494 } 21495 } 21496 21497 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21498 /* 21499 * Try to resolve another multiroute if 21500 * ire_multirt_resolvable() deemed it necessary. 21501 * At this point, we need to distinguish 21502 * multicasts from other packets. For multicasts, 21503 * we call ip_newroute_ipif() and request that both 21504 * multirouting and setsrc flags are checked. 21505 */ 21506 if (copy_mp != NULL) { 21507 if (CLASSD(dst)) { 21508 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21509 if (ipif) { 21510 ASSERT(infop->ip_opt_ill_index == 0); 21511 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21512 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21513 ipif_refrele(ipif); 21514 } else { 21515 MULTIRT_DEBUG_UNTAG(copy_mp); 21516 freemsg(copy_mp); 21517 copy_mp = NULL; 21518 } 21519 } else { 21520 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21521 } 21522 } 21523 if (xmit_ill != NULL) 21524 ill_refrele(xmit_ill); 21525 if (need_decref) 21526 CONN_DEC_REF(connp); 21527 return; 21528 21529 icmp_parameter_problem: 21530 /* could not have originated externally */ 21531 ASSERT(mp->b_prev == NULL); 21532 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21533 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21534 /* it's the IP header length that's in trouble */ 21535 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21536 first_mp = NULL; 21537 } 21538 21539 discard_pkt: 21540 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21541 drop_pkt: 21542 ip1dbg(("ip_wput: dropped packet\n")); 21543 if (ire != NULL) 21544 ire_refrele(ire); 21545 if (need_decref) 21546 CONN_DEC_REF(connp); 21547 freemsg(first_mp); 21548 if (xmit_ill != NULL) 21549 ill_refrele(xmit_ill); 21550 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21551 "ip_wput_end: q %p (%S)", q, "droppkt"); 21552 } 21553 21554 /* 21555 * If this is a conn_t queue, then we pass in the conn. This includes the 21556 * zoneid. 21557 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21558 * in which case we use the global zoneid since those are all part of 21559 * the global zone. 21560 */ 21561 void 21562 ip_wput(queue_t *q, mblk_t *mp) 21563 { 21564 if (CONN_Q(q)) 21565 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21566 else 21567 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21568 } 21569 21570 /* 21571 * 21572 * The following rules must be observed when accessing any ipif or ill 21573 * that has been cached in the conn. Typically conn_outgoing_ill, 21574 * conn_multicast_ipif and conn_multicast_ill. 21575 * 21576 * Access: The ipif or ill pointed to from the conn can be accessed under 21577 * the protection of the conn_lock or after it has been refheld under the 21578 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21579 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21580 * The reason for this is that a concurrent unplumb could actually be 21581 * cleaning up these cached pointers by walking the conns and might have 21582 * finished cleaning up the conn in question. The macros check that an 21583 * unplumb has not yet started on the ipif or ill. 21584 * 21585 * Caching: An ipif or ill pointer may be cached in the conn only after 21586 * making sure that an unplumb has not started. So the caching is done 21587 * while holding both the conn_lock and the ill_lock and after using the 21588 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21589 * flag before starting the cleanup of conns. 21590 * 21591 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21592 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21593 * or a reference to the ipif or a reference to an ire that references the 21594 * ipif. An ipif only changes its ill when migrating from an underlying ill 21595 * to an IPMP ill in ipif_up(). 21596 */ 21597 ipif_t * 21598 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21599 { 21600 ipif_t *ipif; 21601 ill_t *ill; 21602 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21603 21604 *err = 0; 21605 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21606 mutex_enter(&connp->conn_lock); 21607 ipif = *ipifp; 21608 if (ipif != NULL) { 21609 ill = ipif->ipif_ill; 21610 mutex_enter(&ill->ill_lock); 21611 if (IPIF_CAN_LOOKUP(ipif)) { 21612 ipif_refhold_locked(ipif); 21613 mutex_exit(&ill->ill_lock); 21614 mutex_exit(&connp->conn_lock); 21615 rw_exit(&ipst->ips_ill_g_lock); 21616 return (ipif); 21617 } else { 21618 *err = IPIF_LOOKUP_FAILED; 21619 } 21620 mutex_exit(&ill->ill_lock); 21621 } 21622 mutex_exit(&connp->conn_lock); 21623 rw_exit(&ipst->ips_ill_g_lock); 21624 return (NULL); 21625 } 21626 21627 ill_t * 21628 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21629 { 21630 ill_t *ill; 21631 21632 *err = 0; 21633 mutex_enter(&connp->conn_lock); 21634 ill = *illp; 21635 if (ill != NULL) { 21636 mutex_enter(&ill->ill_lock); 21637 if (ILL_CAN_LOOKUP(ill)) { 21638 ill_refhold_locked(ill); 21639 mutex_exit(&ill->ill_lock); 21640 mutex_exit(&connp->conn_lock); 21641 return (ill); 21642 } else { 21643 *err = ILL_LOOKUP_FAILED; 21644 } 21645 mutex_exit(&ill->ill_lock); 21646 } 21647 mutex_exit(&connp->conn_lock); 21648 return (NULL); 21649 } 21650 21651 static int 21652 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21653 { 21654 ill_t *ill; 21655 21656 ill = ipif->ipif_ill; 21657 mutex_enter(&connp->conn_lock); 21658 mutex_enter(&ill->ill_lock); 21659 if (IPIF_CAN_LOOKUP(ipif)) { 21660 *ipifp = ipif; 21661 mutex_exit(&ill->ill_lock); 21662 mutex_exit(&connp->conn_lock); 21663 return (0); 21664 } 21665 mutex_exit(&ill->ill_lock); 21666 mutex_exit(&connp->conn_lock); 21667 return (IPIF_LOOKUP_FAILED); 21668 } 21669 21670 /* 21671 * This is called if the outbound datagram needs fragmentation. 21672 * 21673 * NOTE : This function does not ire_refrele the ire argument passed in. 21674 */ 21675 static void 21676 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21677 ip_stack_t *ipst, conn_t *connp) 21678 { 21679 ipha_t *ipha; 21680 mblk_t *mp; 21681 uint32_t v_hlen_tos_len; 21682 uint32_t max_frag; 21683 uint32_t frag_flag; 21684 boolean_t dont_use; 21685 21686 if (ipsec_mp->b_datap->db_type == M_CTL) { 21687 mp = ipsec_mp->b_cont; 21688 } else { 21689 mp = ipsec_mp; 21690 } 21691 21692 ipha = (ipha_t *)mp->b_rptr; 21693 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21694 21695 #ifdef _BIG_ENDIAN 21696 #define V_HLEN (v_hlen_tos_len >> 24) 21697 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21698 #else 21699 #define V_HLEN (v_hlen_tos_len & 0xFF) 21700 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21701 #endif 21702 21703 #ifndef SPEED_BEFORE_SAFETY 21704 /* 21705 * Check that ipha_length is consistent with 21706 * the mblk length 21707 */ 21708 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21709 ip0dbg(("Packet length mismatch: %d, %ld\n", 21710 LENGTH, msgdsize(mp))); 21711 freemsg(ipsec_mp); 21712 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21713 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21714 "packet length mismatch"); 21715 return; 21716 } 21717 #endif 21718 /* 21719 * Don't use frag_flag if pre-built packet or source 21720 * routed or if multicast (since multicast packets do not solicit 21721 * ICMP "packet too big" messages). Get the values of 21722 * max_frag and frag_flag atomically by acquiring the 21723 * ire_lock. 21724 */ 21725 mutex_enter(&ire->ire_lock); 21726 max_frag = ire->ire_max_frag; 21727 frag_flag = ire->ire_frag_flag; 21728 mutex_exit(&ire->ire_lock); 21729 21730 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21731 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21732 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21733 21734 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21735 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21736 } 21737 21738 /* 21739 * Used for deciding the MSS size for the upper layer. Thus 21740 * we need to check the outbound policy values in the conn. 21741 */ 21742 int 21743 conn_ipsec_length(conn_t *connp) 21744 { 21745 ipsec_latch_t *ipl; 21746 21747 ipl = connp->conn_latch; 21748 if (ipl == NULL) 21749 return (0); 21750 21751 if (ipl->ipl_out_policy == NULL) 21752 return (0); 21753 21754 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21755 } 21756 21757 /* 21758 * Returns an estimate of the IPsec headers size. This is used if 21759 * we don't want to call into IPsec to get the exact size. 21760 */ 21761 int 21762 ipsec_out_extra_length(mblk_t *ipsec_mp) 21763 { 21764 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21765 ipsec_action_t *a; 21766 21767 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21768 if (!io->ipsec_out_secure) 21769 return (0); 21770 21771 a = io->ipsec_out_act; 21772 21773 if (a == NULL) { 21774 ASSERT(io->ipsec_out_policy != NULL); 21775 a = io->ipsec_out_policy->ipsp_act; 21776 } 21777 ASSERT(a != NULL); 21778 21779 return (a->ipa_ovhd); 21780 } 21781 21782 /* 21783 * Returns an estimate of the IPsec headers size. This is used if 21784 * we don't want to call into IPsec to get the exact size. 21785 */ 21786 int 21787 ipsec_in_extra_length(mblk_t *ipsec_mp) 21788 { 21789 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21790 ipsec_action_t *a; 21791 21792 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21793 21794 a = ii->ipsec_in_action; 21795 return (a == NULL ? 0 : a->ipa_ovhd); 21796 } 21797 21798 /* 21799 * If there are any source route options, return the true final 21800 * destination. Otherwise, return the destination. 21801 */ 21802 ipaddr_t 21803 ip_get_dst(ipha_t *ipha) 21804 { 21805 ipoptp_t opts; 21806 uchar_t *opt; 21807 uint8_t optval; 21808 uint8_t optlen; 21809 ipaddr_t dst; 21810 uint32_t off; 21811 21812 dst = ipha->ipha_dst; 21813 21814 if (IS_SIMPLE_IPH(ipha)) 21815 return (dst); 21816 21817 for (optval = ipoptp_first(&opts, ipha); 21818 optval != IPOPT_EOL; 21819 optval = ipoptp_next(&opts)) { 21820 opt = opts.ipoptp_cur; 21821 optlen = opts.ipoptp_len; 21822 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21823 switch (optval) { 21824 case IPOPT_SSRR: 21825 case IPOPT_LSRR: 21826 off = opt[IPOPT_OFFSET]; 21827 /* 21828 * If one of the conditions is true, it means 21829 * end of options and dst already has the right 21830 * value. 21831 */ 21832 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21833 off = optlen - IP_ADDR_LEN; 21834 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21835 } 21836 return (dst); 21837 default: 21838 break; 21839 } 21840 } 21841 21842 return (dst); 21843 } 21844 21845 mblk_t * 21846 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21847 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21848 { 21849 ipsec_out_t *io; 21850 mblk_t *first_mp; 21851 boolean_t policy_present; 21852 ip_stack_t *ipst; 21853 ipsec_stack_t *ipss; 21854 21855 ASSERT(ire != NULL); 21856 ipst = ire->ire_ipst; 21857 ipss = ipst->ips_netstack->netstack_ipsec; 21858 21859 first_mp = mp; 21860 if (mp->b_datap->db_type == M_CTL) { 21861 io = (ipsec_out_t *)first_mp->b_rptr; 21862 /* 21863 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21864 * 21865 * 1) There is per-socket policy (including cached global 21866 * policy) or a policy on the IP-in-IP tunnel. 21867 * 2) There is no per-socket policy, but it is 21868 * a multicast packet that needs to go out 21869 * on a specific interface. This is the case 21870 * where (ip_wput and ip_wput_multicast) attaches 21871 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21872 * 21873 * In case (2) we check with global policy to 21874 * see if there is a match and set the ill_index 21875 * appropriately so that we can lookup the ire 21876 * properly in ip_wput_ipsec_out. 21877 */ 21878 21879 /* 21880 * ipsec_out_use_global_policy is set to B_FALSE 21881 * in ipsec_in_to_out(). Refer to that function for 21882 * details. 21883 */ 21884 if ((io->ipsec_out_latch == NULL) && 21885 (io->ipsec_out_use_global_policy)) { 21886 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21887 ire, connp, unspec_src, zoneid)); 21888 } 21889 if (!io->ipsec_out_secure) { 21890 /* 21891 * If this is not a secure packet, drop 21892 * the IPSEC_OUT mp and treat it as a clear 21893 * packet. This happens when we are sending 21894 * a ICMP reply back to a clear packet. See 21895 * ipsec_in_to_out() for details. 21896 */ 21897 mp = first_mp->b_cont; 21898 freeb(first_mp); 21899 } 21900 return (mp); 21901 } 21902 /* 21903 * See whether we need to attach a global policy here. We 21904 * don't depend on the conn (as it could be null) for deciding 21905 * what policy this datagram should go through because it 21906 * should have happened in ip_wput if there was some 21907 * policy. This normally happens for connections which are not 21908 * fully bound preventing us from caching policies in 21909 * ip_bind. Packets coming from the TCP listener/global queue 21910 * - which are non-hard_bound - could also be affected by 21911 * applying policy here. 21912 * 21913 * If this packet is coming from tcp global queue or listener, 21914 * we will be applying policy here. This may not be *right* 21915 * if these packets are coming from the detached connection as 21916 * it could have gone in clear before. This happens only if a 21917 * TCP connection started when there is no policy and somebody 21918 * added policy before it became detached. Thus packets of the 21919 * detached connection could go out secure and the other end 21920 * would drop it because it will be expecting in clear. The 21921 * converse is not true i.e if somebody starts a TCP 21922 * connection and deletes the policy, all the packets will 21923 * still go out with the policy that existed before deleting 21924 * because ip_unbind sends up policy information which is used 21925 * by TCP on subsequent ip_wputs. The right solution is to fix 21926 * TCP to attach a dummy IPSEC_OUT and set 21927 * ipsec_out_use_global_policy to B_FALSE. As this might 21928 * affect performance for normal cases, we are not doing it. 21929 * Thus, set policy before starting any TCP connections. 21930 * 21931 * NOTE - We might apply policy even for a hard bound connection 21932 * - for which we cached policy in ip_bind - if somebody added 21933 * global policy after we inherited the policy in ip_bind. 21934 * This means that the packets that were going out in clear 21935 * previously would start going secure and hence get dropped 21936 * on the other side. To fix this, TCP attaches a dummy 21937 * ipsec_out and make sure that we don't apply global policy. 21938 */ 21939 if (ipha != NULL) 21940 policy_present = ipss->ipsec_outbound_v4_policy_present; 21941 else 21942 policy_present = ipss->ipsec_outbound_v6_policy_present; 21943 if (!policy_present) 21944 return (mp); 21945 21946 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21947 zoneid)); 21948 } 21949 21950 /* 21951 * This function does the ire_refrele of the ire passed in as the 21952 * argument. As this function looks up more ires i.e broadcast ires, 21953 * it needs to REFRELE them. Currently, for simplicity we don't 21954 * differentiate the one passed in and looked up here. We always 21955 * REFRELE. 21956 * IPQoS Notes: 21957 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21958 * IPsec packets are done in ipsec_out_process. 21959 */ 21960 void 21961 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21962 zoneid_t zoneid) 21963 { 21964 ipha_t *ipha; 21965 #define rptr ((uchar_t *)ipha) 21966 queue_t *stq; 21967 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21968 uint32_t v_hlen_tos_len; 21969 uint32_t ttl_protocol; 21970 ipaddr_t src; 21971 ipaddr_t dst; 21972 uint32_t cksum; 21973 ipaddr_t orig_src; 21974 ire_t *ire1; 21975 mblk_t *next_mp; 21976 uint_t hlen; 21977 uint16_t *up; 21978 uint32_t max_frag = ire->ire_max_frag; 21979 ill_t *ill = ire_to_ill(ire); 21980 int clusterwide; 21981 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21982 int ipsec_len; 21983 mblk_t *first_mp; 21984 ipsec_out_t *io; 21985 boolean_t conn_dontroute; /* conn value for multicast */ 21986 boolean_t conn_multicast_loop; /* conn value for multicast */ 21987 boolean_t multicast_forward; /* Should we forward ? */ 21988 boolean_t unspec_src; 21989 ill_t *conn_outgoing_ill = NULL; 21990 ill_t *ire_ill; 21991 ill_t *ire1_ill; 21992 ill_t *out_ill; 21993 uint32_t ill_index = 0; 21994 boolean_t multirt_send = B_FALSE; 21995 int err; 21996 ipxmit_state_t pktxmit_state; 21997 ip_stack_t *ipst = ire->ire_ipst; 21998 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21999 22000 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22001 "ip_wput_ire_start: q %p", q); 22002 22003 multicast_forward = B_FALSE; 22004 unspec_src = (connp != NULL && connp->conn_unspec_src); 22005 22006 if (ire->ire_flags & RTF_MULTIRT) { 22007 /* 22008 * Multirouting case. The bucket where ire is stored 22009 * probably holds other RTF_MULTIRT flagged ire 22010 * to the destination. In this call to ip_wput_ire, 22011 * we attempt to send the packet through all 22012 * those ires. Thus, we first ensure that ire is the 22013 * first RTF_MULTIRT ire in the bucket, 22014 * before walking the ire list. 22015 */ 22016 ire_t *first_ire; 22017 irb_t *irb = ire->ire_bucket; 22018 ASSERT(irb != NULL); 22019 22020 /* Make sure we do not omit any multiroute ire. */ 22021 IRB_REFHOLD(irb); 22022 for (first_ire = irb->irb_ire; 22023 first_ire != NULL; 22024 first_ire = first_ire->ire_next) { 22025 if ((first_ire->ire_flags & RTF_MULTIRT) && 22026 (first_ire->ire_addr == ire->ire_addr) && 22027 !(first_ire->ire_marks & 22028 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22029 break; 22030 } 22031 22032 if ((first_ire != NULL) && (first_ire != ire)) { 22033 IRE_REFHOLD(first_ire); 22034 ire_refrele(ire); 22035 ire = first_ire; 22036 ill = ire_to_ill(ire); 22037 } 22038 IRB_REFRELE(irb); 22039 } 22040 22041 /* 22042 * conn_outgoing_ill variable is used only in the broadcast loop. 22043 * for performance we don't grab the mutexs in the fastpath 22044 */ 22045 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22046 connp->conn_outgoing_ill != NULL) { 22047 conn_outgoing_ill = conn_get_held_ill(connp, 22048 &connp->conn_outgoing_ill, &err); 22049 if (err == ILL_LOOKUP_FAILED) { 22050 ire_refrele(ire); 22051 freemsg(mp); 22052 return; 22053 } 22054 } 22055 22056 if (mp->b_datap->db_type != M_CTL) { 22057 ipha = (ipha_t *)mp->b_rptr; 22058 } else { 22059 io = (ipsec_out_t *)mp->b_rptr; 22060 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22061 ASSERT(zoneid == io->ipsec_out_zoneid); 22062 ASSERT(zoneid != ALL_ZONES); 22063 ipha = (ipha_t *)mp->b_cont->b_rptr; 22064 dst = ipha->ipha_dst; 22065 /* 22066 * For the multicast case, ipsec_out carries conn_dontroute and 22067 * conn_multicast_loop as conn may not be available here. We 22068 * need this for multicast loopback and forwarding which is done 22069 * later in the code. 22070 */ 22071 if (CLASSD(dst)) { 22072 conn_dontroute = io->ipsec_out_dontroute; 22073 conn_multicast_loop = io->ipsec_out_multicast_loop; 22074 /* 22075 * If conn_dontroute is not set or conn_multicast_loop 22076 * is set, we need to do forwarding/loopback. For 22077 * datagrams from ip_wput_multicast, conn_dontroute is 22078 * set to B_TRUE and conn_multicast_loop is set to 22079 * B_FALSE so that we neither do forwarding nor 22080 * loopback. 22081 */ 22082 if (!conn_dontroute || conn_multicast_loop) 22083 multicast_forward = B_TRUE; 22084 } 22085 } 22086 22087 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22088 ire->ire_zoneid != ALL_ZONES) { 22089 /* 22090 * When a zone sends a packet to another zone, we try to deliver 22091 * the packet under the same conditions as if the destination 22092 * was a real node on the network. To do so, we look for a 22093 * matching route in the forwarding table. 22094 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22095 * ip_newroute() does. 22096 * Note that IRE_LOCAL are special, since they are used 22097 * when the zoneid doesn't match in some cases. This means that 22098 * we need to handle ipha_src differently since ire_src_addr 22099 * belongs to the receiving zone instead of the sending zone. 22100 * When ip_restrict_interzone_loopback is set, then 22101 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22102 * for loopback between zones when the logical "Ethernet" would 22103 * have looped them back. 22104 */ 22105 ire_t *src_ire; 22106 22107 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22108 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22109 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22110 if (src_ire != NULL && 22111 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22112 (!ipst->ips_ip_restrict_interzone_loopback || 22113 ire_local_same_lan(ire, src_ire))) { 22114 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22115 ipha->ipha_src = src_ire->ire_src_addr; 22116 ire_refrele(src_ire); 22117 } else { 22118 ire_refrele(ire); 22119 if (conn_outgoing_ill != NULL) 22120 ill_refrele(conn_outgoing_ill); 22121 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22122 if (src_ire != NULL) { 22123 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22124 ire_refrele(src_ire); 22125 freemsg(mp); 22126 return; 22127 } 22128 ire_refrele(src_ire); 22129 } 22130 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22131 /* Failed */ 22132 freemsg(mp); 22133 return; 22134 } 22135 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22136 ipst); 22137 return; 22138 } 22139 } 22140 22141 if (mp->b_datap->db_type == M_CTL || 22142 ipss->ipsec_outbound_v4_policy_present) { 22143 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22144 unspec_src, zoneid); 22145 if (mp == NULL) { 22146 ire_refrele(ire); 22147 if (conn_outgoing_ill != NULL) 22148 ill_refrele(conn_outgoing_ill); 22149 return; 22150 } 22151 /* 22152 * Trusted Extensions supports all-zones interfaces, so 22153 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22154 * the global zone. 22155 */ 22156 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22157 io = (ipsec_out_t *)mp->b_rptr; 22158 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22159 zoneid = io->ipsec_out_zoneid; 22160 } 22161 } 22162 22163 first_mp = mp; 22164 ipsec_len = 0; 22165 22166 if (first_mp->b_datap->db_type == M_CTL) { 22167 io = (ipsec_out_t *)first_mp->b_rptr; 22168 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22169 mp = first_mp->b_cont; 22170 ipsec_len = ipsec_out_extra_length(first_mp); 22171 ASSERT(ipsec_len >= 0); 22172 /* We already picked up the zoneid from the M_CTL above */ 22173 ASSERT(zoneid == io->ipsec_out_zoneid); 22174 ASSERT(zoneid != ALL_ZONES); 22175 22176 /* 22177 * Drop M_CTL here if IPsec processing is not needed. 22178 * (Non-IPsec use of M_CTL extracted any information it 22179 * needed above). 22180 */ 22181 if (ipsec_len == 0) { 22182 freeb(first_mp); 22183 first_mp = mp; 22184 } 22185 } 22186 22187 /* 22188 * Fast path for ip_wput_ire 22189 */ 22190 22191 ipha = (ipha_t *)mp->b_rptr; 22192 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22193 dst = ipha->ipha_dst; 22194 22195 /* 22196 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22197 * if the socket is a SOCK_RAW type. The transport checksum should 22198 * be provided in the pre-built packet, so we don't need to compute it. 22199 * Also, other application set flags, like DF, should not be altered. 22200 * Other transport MUST pass down zero. 22201 */ 22202 ip_hdr_included = ipha->ipha_ident; 22203 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22204 22205 if (CLASSD(dst)) { 22206 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22207 ntohl(dst), 22208 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22209 ntohl(ire->ire_addr))); 22210 } 22211 22212 /* Macros to extract header fields from data already in registers */ 22213 #ifdef _BIG_ENDIAN 22214 #define V_HLEN (v_hlen_tos_len >> 24) 22215 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22216 #define PROTO (ttl_protocol & 0xFF) 22217 #else 22218 #define V_HLEN (v_hlen_tos_len & 0xFF) 22219 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22220 #define PROTO (ttl_protocol >> 8) 22221 #endif 22222 22223 orig_src = src = ipha->ipha_src; 22224 /* (The loop back to "another" is explained down below.) */ 22225 another:; 22226 /* 22227 * Assign an ident value for this packet. We assign idents on 22228 * a per destination basis out of the IRE. There could be 22229 * other threads targeting the same destination, so we have to 22230 * arrange for a atomic increment. Note that we use a 32-bit 22231 * atomic add because it has better performance than its 22232 * 16-bit sibling. 22233 * 22234 * If running in cluster mode and if the source address 22235 * belongs to a replicated service then vector through 22236 * cl_inet_ipident vector to allocate ip identifier 22237 * NOTE: This is a contract private interface with the 22238 * clustering group. 22239 */ 22240 clusterwide = 0; 22241 if (cl_inet_ipident) { 22242 ASSERT(cl_inet_isclusterwide); 22243 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22244 22245 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22246 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22247 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22248 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22249 (uint8_t *)(uintptr_t)dst, NULL); 22250 clusterwide = 1; 22251 } 22252 } 22253 if (!clusterwide) { 22254 ipha->ipha_ident = 22255 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22256 } 22257 22258 #ifndef _BIG_ENDIAN 22259 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22260 #endif 22261 22262 /* 22263 * Set source address unless sent on an ill or conn_unspec_src is set. 22264 * This is needed to obey conn_unspec_src when packets go through 22265 * ip_newroute + arp. 22266 * Assumes ip_newroute{,_multi} sets the source address as well. 22267 */ 22268 if (src == INADDR_ANY && !unspec_src) { 22269 /* 22270 * Assign the appropriate source address from the IRE if none 22271 * was specified. 22272 */ 22273 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22274 22275 src = ire->ire_src_addr; 22276 if (connp == NULL) { 22277 ip1dbg(("ip_wput_ire: no connp and no src " 22278 "address for dst 0x%x, using src 0x%x\n", 22279 ntohl(dst), 22280 ntohl(src))); 22281 } 22282 ipha->ipha_src = src; 22283 } 22284 stq = ire->ire_stq; 22285 22286 /* 22287 * We only allow ire chains for broadcasts since there will 22288 * be multiple IRE_CACHE entries for the same multicast 22289 * address (one per ipif). 22290 */ 22291 next_mp = NULL; 22292 22293 /* broadcast packet */ 22294 if (ire->ire_type == IRE_BROADCAST) 22295 goto broadcast; 22296 22297 /* loopback ? */ 22298 if (stq == NULL) 22299 goto nullstq; 22300 22301 /* The ill_index for outbound ILL */ 22302 ill_index = Q_TO_INDEX(stq); 22303 22304 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22305 ttl_protocol = ((uint16_t *)ipha)[4]; 22306 22307 /* pseudo checksum (do it in parts for IP header checksum) */ 22308 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22309 22310 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22311 queue_t *dev_q = stq->q_next; 22312 22313 /* 22314 * For DIRECT_CAPABLE, we do flow control at 22315 * the time of sending the packet. See 22316 * ILL_SEND_TX(). 22317 */ 22318 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22319 (DEV_Q_FLOW_BLOCKED(dev_q))) 22320 goto blocked; 22321 22322 if ((PROTO == IPPROTO_UDP) && 22323 (ip_hdr_included != IP_HDR_INCLUDED)) { 22324 hlen = (V_HLEN & 0xF) << 2; 22325 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22326 if (*up != 0) { 22327 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22328 hlen, LENGTH, max_frag, ipsec_len, cksum); 22329 /* Software checksum? */ 22330 if (DB_CKSUMFLAGS(mp) == 0) { 22331 IP_STAT(ipst, ip_out_sw_cksum); 22332 IP_STAT_UPDATE(ipst, 22333 ip_udp_out_sw_cksum_bytes, 22334 LENGTH - hlen); 22335 } 22336 } 22337 } 22338 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22339 hlen = (V_HLEN & 0xF) << 2; 22340 if (PROTO == IPPROTO_TCP) { 22341 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22342 /* 22343 * The packet header is processed once and for all, even 22344 * in the multirouting case. We disable hardware 22345 * checksum if the packet is multirouted, as it will be 22346 * replicated via several interfaces, and not all of 22347 * them may have this capability. 22348 */ 22349 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22350 LENGTH, max_frag, ipsec_len, cksum); 22351 /* Software checksum? */ 22352 if (DB_CKSUMFLAGS(mp) == 0) { 22353 IP_STAT(ipst, ip_out_sw_cksum); 22354 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22355 LENGTH - hlen); 22356 } 22357 } else { 22358 sctp_hdr_t *sctph; 22359 22360 ASSERT(PROTO == IPPROTO_SCTP); 22361 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22362 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22363 /* 22364 * Zero out the checksum field to ensure proper 22365 * checksum calculation. 22366 */ 22367 sctph->sh_chksum = 0; 22368 #ifdef DEBUG 22369 if (!skip_sctp_cksum) 22370 #endif 22371 sctph->sh_chksum = sctp_cksum(mp, hlen); 22372 } 22373 } 22374 22375 /* 22376 * If this is a multicast packet and originated from ip_wput 22377 * we need to do loopback and forwarding checks. If it comes 22378 * from ip_wput_multicast, we SHOULD not do this. 22379 */ 22380 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22381 22382 /* checksum */ 22383 cksum += ttl_protocol; 22384 22385 /* fragment the packet */ 22386 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22387 goto fragmentit; 22388 /* 22389 * Don't use frag_flag if packet is pre-built or source 22390 * routed or if multicast (since multicast packets do 22391 * not solicit ICMP "packet too big" messages). 22392 */ 22393 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22394 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22395 !ip_source_route_included(ipha)) && 22396 !CLASSD(ipha->ipha_dst)) 22397 ipha->ipha_fragment_offset_and_flags |= 22398 htons(ire->ire_frag_flag); 22399 22400 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22401 /* calculate IP header checksum */ 22402 cksum += ipha->ipha_ident; 22403 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22404 cksum += ipha->ipha_fragment_offset_and_flags; 22405 22406 /* IP options present */ 22407 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22408 if (hlen) 22409 goto checksumoptions; 22410 22411 /* calculate hdr checksum */ 22412 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22413 cksum = ~(cksum + (cksum >> 16)); 22414 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22415 } 22416 if (ipsec_len != 0) { 22417 /* 22418 * We will do the rest of the processing after 22419 * we come back from IPsec in ip_wput_ipsec_out(). 22420 */ 22421 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22422 22423 io = (ipsec_out_t *)first_mp->b_rptr; 22424 io->ipsec_out_ill_index = 22425 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22426 ipsec_out_process(q, first_mp, ire, 0); 22427 ire_refrele(ire); 22428 if (conn_outgoing_ill != NULL) 22429 ill_refrele(conn_outgoing_ill); 22430 return; 22431 } 22432 22433 /* 22434 * In most cases, the emission loop below is entered only 22435 * once. Only in the case where the ire holds the 22436 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22437 * flagged ires in the bucket, and send the packet 22438 * through all crossed RTF_MULTIRT routes. 22439 */ 22440 if (ire->ire_flags & RTF_MULTIRT) { 22441 multirt_send = B_TRUE; 22442 } 22443 do { 22444 if (multirt_send) { 22445 irb_t *irb; 22446 /* 22447 * We are in a multiple send case, need to get 22448 * the next ire and make a duplicate of the packet. 22449 * ire1 holds here the next ire to process in the 22450 * bucket. If multirouting is expected, 22451 * any non-RTF_MULTIRT ire that has the 22452 * right destination address is ignored. 22453 */ 22454 irb = ire->ire_bucket; 22455 ASSERT(irb != NULL); 22456 22457 IRB_REFHOLD(irb); 22458 for (ire1 = ire->ire_next; 22459 ire1 != NULL; 22460 ire1 = ire1->ire_next) { 22461 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22462 continue; 22463 if (ire1->ire_addr != ire->ire_addr) 22464 continue; 22465 if (ire1->ire_marks & 22466 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22467 continue; 22468 22469 /* Got one */ 22470 IRE_REFHOLD(ire1); 22471 break; 22472 } 22473 IRB_REFRELE(irb); 22474 22475 if (ire1 != NULL) { 22476 next_mp = copyb(mp); 22477 if ((next_mp == NULL) || 22478 ((mp->b_cont != NULL) && 22479 ((next_mp->b_cont = 22480 dupmsg(mp->b_cont)) == NULL))) { 22481 freemsg(next_mp); 22482 next_mp = NULL; 22483 ire_refrele(ire1); 22484 ire1 = NULL; 22485 } 22486 } 22487 22488 /* Last multiroute ire; don't loop anymore. */ 22489 if (ire1 == NULL) { 22490 multirt_send = B_FALSE; 22491 } 22492 } 22493 22494 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22495 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22496 mblk_t *, mp); 22497 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22498 ipst->ips_ipv4firewall_physical_out, 22499 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22500 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22501 22502 if (mp == NULL) 22503 goto release_ire_and_ill; 22504 22505 if (ipst->ips_ip4_observe.he_interested) { 22506 zoneid_t szone; 22507 22508 /* 22509 * On the outbound path the destination zone will be 22510 * unknown as we're sending this packet out on the 22511 * wire. 22512 */ 22513 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22514 ALL_ZONES); 22515 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22516 ire->ire_ipif->ipif_ill, ipst); 22517 } 22518 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22519 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22520 22521 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22522 22523 if ((pktxmit_state == SEND_FAILED) || 22524 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22525 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22526 "- packet dropped\n")); 22527 release_ire_and_ill: 22528 ire_refrele(ire); 22529 if (next_mp != NULL) { 22530 freemsg(next_mp); 22531 ire_refrele(ire1); 22532 } 22533 if (conn_outgoing_ill != NULL) 22534 ill_refrele(conn_outgoing_ill); 22535 return; 22536 } 22537 22538 if (CLASSD(dst)) { 22539 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22540 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22541 LENGTH); 22542 } 22543 22544 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22545 "ip_wput_ire_end: q %p (%S)", 22546 q, "last copy out"); 22547 IRE_REFRELE(ire); 22548 22549 if (multirt_send) { 22550 ASSERT(ire1); 22551 /* 22552 * Proceed with the next RTF_MULTIRT ire, 22553 * Also set up the send-to queue accordingly. 22554 */ 22555 ire = ire1; 22556 ire1 = NULL; 22557 stq = ire->ire_stq; 22558 mp = next_mp; 22559 next_mp = NULL; 22560 ipha = (ipha_t *)mp->b_rptr; 22561 ill_index = Q_TO_INDEX(stq); 22562 ill = (ill_t *)stq->q_ptr; 22563 } 22564 } while (multirt_send); 22565 if (conn_outgoing_ill != NULL) 22566 ill_refrele(conn_outgoing_ill); 22567 return; 22568 22569 /* 22570 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22571 */ 22572 broadcast: 22573 { 22574 /* 22575 * To avoid broadcast storms, we usually set the TTL to 1 for 22576 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22577 * can be overridden stack-wide through the ip_broadcast_ttl 22578 * ndd tunable, or on a per-connection basis through the 22579 * IP_BROADCAST_TTL socket option. 22580 * 22581 * In the event that we are replying to incoming ICMP packets, 22582 * connp could be NULL. 22583 */ 22584 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22585 if (connp != NULL) { 22586 if (connp->conn_dontroute) 22587 ipha->ipha_ttl = 1; 22588 else if (connp->conn_broadcast_ttl != 0) 22589 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22590 } 22591 22592 /* 22593 * Note that we are not doing a IRB_REFHOLD here. 22594 * Actually we don't care if the list changes i.e 22595 * if somebody deletes an IRE from the list while 22596 * we drop the lock, the next time we come around 22597 * ire_next will be NULL and hence we won't send 22598 * out multiple copies which is fine. 22599 */ 22600 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22601 ire1 = ire->ire_next; 22602 if (conn_outgoing_ill != NULL) { 22603 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22604 ASSERT(ire1 == ire->ire_next); 22605 if (ire1 != NULL && ire1->ire_addr == dst) { 22606 ire_refrele(ire); 22607 ire = ire1; 22608 IRE_REFHOLD(ire); 22609 ire1 = ire->ire_next; 22610 continue; 22611 } 22612 rw_exit(&ire->ire_bucket->irb_lock); 22613 /* Did not find a matching ill */ 22614 ip1dbg(("ip_wput_ire: broadcast with no " 22615 "matching IP_BOUND_IF ill %s dst %x\n", 22616 conn_outgoing_ill->ill_name, dst)); 22617 freemsg(first_mp); 22618 if (ire != NULL) 22619 ire_refrele(ire); 22620 ill_refrele(conn_outgoing_ill); 22621 return; 22622 } 22623 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22624 /* 22625 * If the next IRE has the same address and is not one 22626 * of the two copies that we need to send, try to see 22627 * whether this copy should be sent at all. This 22628 * assumes that we insert loopbacks first and then 22629 * non-loopbacks. This is acheived by inserting the 22630 * loopback always before non-loopback. 22631 * This is used to send a single copy of a broadcast 22632 * packet out all physical interfaces that have an 22633 * matching IRE_BROADCAST while also looping 22634 * back one copy (to ip_wput_local) for each 22635 * matching physical interface. However, we avoid 22636 * sending packets out different logical that match by 22637 * having ipif_up/ipif_down supress duplicate 22638 * IRE_BROADCASTS. 22639 * 22640 * This feature is currently used to get broadcasts 22641 * sent to multiple interfaces, when the broadcast 22642 * address being used applies to multiple interfaces. 22643 * For example, a whole net broadcast will be 22644 * replicated on every connected subnet of 22645 * the target net. 22646 * 22647 * Each zone has its own set of IRE_BROADCASTs, so that 22648 * we're able to distribute inbound packets to multiple 22649 * zones who share a broadcast address. We avoid looping 22650 * back outbound packets in different zones but on the 22651 * same ill, as the application would see duplicates. 22652 * 22653 * This logic assumes that ire_add_v4() groups the 22654 * IRE_BROADCAST entries so that those with the same 22655 * ire_addr are kept together. 22656 */ 22657 ire_ill = ire->ire_ipif->ipif_ill; 22658 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22659 while (ire1 != NULL && ire1->ire_addr == dst) { 22660 ire1_ill = ire1->ire_ipif->ipif_ill; 22661 if (ire1_ill != ire_ill) 22662 break; 22663 ire1 = ire1->ire_next; 22664 } 22665 } 22666 } 22667 ASSERT(multirt_send == B_FALSE); 22668 if (ire1 != NULL && ire1->ire_addr == dst) { 22669 if ((ire->ire_flags & RTF_MULTIRT) && 22670 (ire1->ire_flags & RTF_MULTIRT)) { 22671 /* 22672 * We are in the multirouting case. 22673 * The message must be sent at least 22674 * on both ires. These ires have been 22675 * inserted AFTER the standard ones 22676 * in ip_rt_add(). There are thus no 22677 * other ire entries for the destination 22678 * address in the rest of the bucket 22679 * that do not have the RTF_MULTIRT 22680 * flag. We don't process a copy 22681 * of the message here. This will be 22682 * done in the final sending loop. 22683 */ 22684 multirt_send = B_TRUE; 22685 } else { 22686 next_mp = ip_copymsg(first_mp); 22687 if (next_mp != NULL) 22688 IRE_REFHOLD(ire1); 22689 } 22690 } 22691 rw_exit(&ire->ire_bucket->irb_lock); 22692 } 22693 22694 if (stq) { 22695 /* 22696 * A non-NULL send-to queue means this packet is going 22697 * out of this machine. 22698 */ 22699 out_ill = (ill_t *)stq->q_ptr; 22700 22701 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22702 ttl_protocol = ((uint16_t *)ipha)[4]; 22703 /* 22704 * We accumulate the pseudo header checksum in cksum. 22705 * This is pretty hairy code, so watch close. One 22706 * thing to keep in mind is that UDP and TCP have 22707 * stored their respective datagram lengths in their 22708 * checksum fields. This lines things up real nice. 22709 */ 22710 cksum = (dst >> 16) + (dst & 0xFFFF) + 22711 (src >> 16) + (src & 0xFFFF); 22712 /* 22713 * We assume the udp checksum field contains the 22714 * length, so to compute the pseudo header checksum, 22715 * all we need is the protocol number and src/dst. 22716 */ 22717 /* Provide the checksums for UDP and TCP. */ 22718 if ((PROTO == IPPROTO_TCP) && 22719 (ip_hdr_included != IP_HDR_INCLUDED)) { 22720 /* hlen gets the number of uchar_ts in the IP header */ 22721 hlen = (V_HLEN & 0xF) << 2; 22722 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22723 IP_STAT(ipst, ip_out_sw_cksum); 22724 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22725 LENGTH - hlen); 22726 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22727 } else if (PROTO == IPPROTO_SCTP && 22728 (ip_hdr_included != IP_HDR_INCLUDED)) { 22729 sctp_hdr_t *sctph; 22730 22731 hlen = (V_HLEN & 0xF) << 2; 22732 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22733 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22734 sctph->sh_chksum = 0; 22735 #ifdef DEBUG 22736 if (!skip_sctp_cksum) 22737 #endif 22738 sctph->sh_chksum = sctp_cksum(mp, hlen); 22739 } else { 22740 queue_t *dev_q = stq->q_next; 22741 22742 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22743 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22744 blocked: 22745 ipha->ipha_ident = ip_hdr_included; 22746 /* 22747 * If we don't have a conn to apply 22748 * backpressure, free the message. 22749 * In the ire_send path, we don't know 22750 * the position to requeue the packet. Rather 22751 * than reorder packets, we just drop this 22752 * packet. 22753 */ 22754 if (ipst->ips_ip_output_queue && 22755 connp != NULL && 22756 caller != IRE_SEND) { 22757 if (caller == IP_WSRV) { 22758 idl_tx_list_t *idl_txl; 22759 22760 idl_txl = 22761 &ipst->ips_idl_tx_list[0]; 22762 connp->conn_did_putbq = 1; 22763 (void) putbq(connp->conn_wq, 22764 first_mp); 22765 conn_drain_insert(connp, 22766 idl_txl); 22767 /* 22768 * This is the service thread, 22769 * and the queue is already 22770 * noenabled. The check for 22771 * canput and the putbq is not 22772 * atomic. So we need to check 22773 * again. 22774 */ 22775 if (canput(stq->q_next)) 22776 connp->conn_did_putbq 22777 = 0; 22778 IP_STAT(ipst, ip_conn_flputbq); 22779 } else { 22780 /* 22781 * We are not the service proc. 22782 * ip_wsrv will be scheduled or 22783 * is already running. 22784 */ 22785 22786 (void) putq(connp->conn_wq, 22787 first_mp); 22788 } 22789 } else { 22790 out_ill = (ill_t *)stq->q_ptr; 22791 BUMP_MIB(out_ill->ill_ip_mib, 22792 ipIfStatsOutDiscards); 22793 freemsg(first_mp); 22794 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22795 "ip_wput_ire_end: q %p (%S)", 22796 q, "discard"); 22797 } 22798 ire_refrele(ire); 22799 if (next_mp) { 22800 ire_refrele(ire1); 22801 freemsg(next_mp); 22802 } 22803 if (conn_outgoing_ill != NULL) 22804 ill_refrele(conn_outgoing_ill); 22805 return; 22806 } 22807 if ((PROTO == IPPROTO_UDP) && 22808 (ip_hdr_included != IP_HDR_INCLUDED)) { 22809 /* 22810 * hlen gets the number of uchar_ts in the 22811 * IP header 22812 */ 22813 hlen = (V_HLEN & 0xF) << 2; 22814 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22815 max_frag = ire->ire_max_frag; 22816 if (*up != 0) { 22817 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22818 up, PROTO, hlen, LENGTH, max_frag, 22819 ipsec_len, cksum); 22820 /* Software checksum? */ 22821 if (DB_CKSUMFLAGS(mp) == 0) { 22822 IP_STAT(ipst, ip_out_sw_cksum); 22823 IP_STAT_UPDATE(ipst, 22824 ip_udp_out_sw_cksum_bytes, 22825 LENGTH - hlen); 22826 } 22827 } 22828 } 22829 } 22830 /* 22831 * Need to do this even when fragmenting. The local 22832 * loopback can be done without computing checksums 22833 * but forwarding out other interface must be done 22834 * after the IP checksum (and ULP checksums) have been 22835 * computed. 22836 * 22837 * NOTE : multicast_forward is set only if this packet 22838 * originated from ip_wput. For packets originating from 22839 * ip_wput_multicast, it is not set. 22840 */ 22841 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22842 multi_loopback: 22843 ip2dbg(("ip_wput: multicast, loop %d\n", 22844 conn_multicast_loop)); 22845 22846 /* Forget header checksum offload */ 22847 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22848 22849 /* 22850 * Local loopback of multicasts? Check the 22851 * ill. 22852 * 22853 * Note that the loopback function will not come 22854 * in through ip_rput - it will only do the 22855 * client fanout thus we need to do an mforward 22856 * as well. The is different from the BSD 22857 * logic. 22858 */ 22859 if (ill != NULL) { 22860 if (ilm_lookup_ill(ill, ipha->ipha_dst, 22861 ALL_ZONES) != NULL) { 22862 /* 22863 * Pass along the virtual output q. 22864 * ip_wput_local() will distribute the 22865 * packet to all the matching zones, 22866 * except the sending zone when 22867 * IP_MULTICAST_LOOP is false. 22868 */ 22869 ip_multicast_loopback(q, ill, first_mp, 22870 conn_multicast_loop ? 0 : 22871 IP_FF_NO_MCAST_LOOP, zoneid); 22872 } 22873 } 22874 if (ipha->ipha_ttl == 0) { 22875 /* 22876 * 0 => only to this host i.e. we are 22877 * done. We are also done if this was the 22878 * loopback interface since it is sufficient 22879 * to loopback one copy of a multicast packet. 22880 */ 22881 freemsg(first_mp); 22882 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22883 "ip_wput_ire_end: q %p (%S)", 22884 q, "loopback"); 22885 ire_refrele(ire); 22886 if (conn_outgoing_ill != NULL) 22887 ill_refrele(conn_outgoing_ill); 22888 return; 22889 } 22890 /* 22891 * ILLF_MULTICAST is checked in ip_newroute 22892 * i.e. we don't need to check it here since 22893 * all IRE_CACHEs come from ip_newroute. 22894 * For multicast traffic, SO_DONTROUTE is interpreted 22895 * to mean only send the packet out the interface 22896 * (optionally specified with IP_MULTICAST_IF) 22897 * and do not forward it out additional interfaces. 22898 * RSVP and the rsvp daemon is an example of a 22899 * protocol and user level process that 22900 * handles it's own routing. Hence, it uses the 22901 * SO_DONTROUTE option to accomplish this. 22902 */ 22903 22904 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22905 ill != NULL) { 22906 /* Unconditionally redo the checksum */ 22907 ipha->ipha_hdr_checksum = 0; 22908 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22909 22910 /* 22911 * If this needs to go out secure, we need 22912 * to wait till we finish the IPsec 22913 * processing. 22914 */ 22915 if (ipsec_len == 0 && 22916 ip_mforward(ill, ipha, mp)) { 22917 freemsg(first_mp); 22918 ip1dbg(("ip_wput: mforward failed\n")); 22919 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22920 "ip_wput_ire_end: q %p (%S)", 22921 q, "mforward failed"); 22922 ire_refrele(ire); 22923 if (conn_outgoing_ill != NULL) 22924 ill_refrele(conn_outgoing_ill); 22925 return; 22926 } 22927 } 22928 } 22929 max_frag = ire->ire_max_frag; 22930 cksum += ttl_protocol; 22931 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22932 /* No fragmentation required for this one. */ 22933 /* 22934 * Don't use frag_flag if packet is pre-built or source 22935 * routed or if multicast (since multicast packets do 22936 * not solicit ICMP "packet too big" messages). 22937 */ 22938 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22939 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22940 !ip_source_route_included(ipha)) && 22941 !CLASSD(ipha->ipha_dst)) 22942 ipha->ipha_fragment_offset_and_flags |= 22943 htons(ire->ire_frag_flag); 22944 22945 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22946 /* Complete the IP header checksum. */ 22947 cksum += ipha->ipha_ident; 22948 cksum += (v_hlen_tos_len >> 16)+ 22949 (v_hlen_tos_len & 0xFFFF); 22950 cksum += ipha->ipha_fragment_offset_and_flags; 22951 hlen = (V_HLEN & 0xF) - 22952 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22953 if (hlen) { 22954 checksumoptions: 22955 /* 22956 * Account for the IP Options in the IP 22957 * header checksum. 22958 */ 22959 up = (uint16_t *)(rptr+ 22960 IP_SIMPLE_HDR_LENGTH); 22961 do { 22962 cksum += up[0]; 22963 cksum += up[1]; 22964 up += 2; 22965 } while (--hlen); 22966 } 22967 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22968 cksum = ~(cksum + (cksum >> 16)); 22969 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22970 } 22971 if (ipsec_len != 0) { 22972 ipsec_out_process(q, first_mp, ire, ill_index); 22973 if (!next_mp) { 22974 ire_refrele(ire); 22975 if (conn_outgoing_ill != NULL) 22976 ill_refrele(conn_outgoing_ill); 22977 return; 22978 } 22979 goto next; 22980 } 22981 22982 /* 22983 * multirt_send has already been handled 22984 * for broadcast, but not yet for multicast 22985 * or IP options. 22986 */ 22987 if (next_mp == NULL) { 22988 if (ire->ire_flags & RTF_MULTIRT) { 22989 multirt_send = B_TRUE; 22990 } 22991 } 22992 22993 /* 22994 * In most cases, the emission loop below is 22995 * entered only once. Only in the case where 22996 * the ire holds the RTF_MULTIRT flag, do we loop 22997 * to process all RTF_MULTIRT ires in the bucket, 22998 * and send the packet through all crossed 22999 * RTF_MULTIRT routes. 23000 */ 23001 do { 23002 if (multirt_send) { 23003 irb_t *irb; 23004 23005 irb = ire->ire_bucket; 23006 ASSERT(irb != NULL); 23007 /* 23008 * We are in a multiple send case, 23009 * need to get the next IRE and make 23010 * a duplicate of the packet. 23011 */ 23012 IRB_REFHOLD(irb); 23013 for (ire1 = ire->ire_next; 23014 ire1 != NULL; 23015 ire1 = ire1->ire_next) { 23016 if (!(ire1->ire_flags & 23017 RTF_MULTIRT)) 23018 continue; 23019 23020 if (ire1->ire_addr != 23021 ire->ire_addr) 23022 continue; 23023 23024 if (ire1->ire_marks & 23025 (IRE_MARK_CONDEMNED | 23026 IRE_MARK_TESTHIDDEN)) 23027 continue; 23028 23029 /* Got one */ 23030 IRE_REFHOLD(ire1); 23031 break; 23032 } 23033 IRB_REFRELE(irb); 23034 23035 if (ire1 != NULL) { 23036 next_mp = copyb(mp); 23037 if ((next_mp == NULL) || 23038 ((mp->b_cont != NULL) && 23039 ((next_mp->b_cont = 23040 dupmsg(mp->b_cont)) 23041 == NULL))) { 23042 freemsg(next_mp); 23043 next_mp = NULL; 23044 ire_refrele(ire1); 23045 ire1 = NULL; 23046 } 23047 } 23048 23049 /* 23050 * Last multiroute ire; don't loop 23051 * anymore. The emission is over 23052 * and next_mp is NULL. 23053 */ 23054 if (ire1 == NULL) { 23055 multirt_send = B_FALSE; 23056 } 23057 } 23058 23059 out_ill = ire_to_ill(ire); 23060 DTRACE_PROBE4(ip4__physical__out__start, 23061 ill_t *, NULL, 23062 ill_t *, out_ill, 23063 ipha_t *, ipha, mblk_t *, mp); 23064 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23065 ipst->ips_ipv4firewall_physical_out, 23066 NULL, out_ill, ipha, mp, mp, 0, ipst); 23067 DTRACE_PROBE1(ip4__physical__out__end, 23068 mblk_t *, mp); 23069 if (mp == NULL) 23070 goto release_ire_and_ill_2; 23071 23072 ASSERT(ipsec_len == 0); 23073 mp->b_prev = 23074 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23075 DTRACE_PROBE2(ip__xmit__2, 23076 mblk_t *, mp, ire_t *, ire); 23077 pktxmit_state = ip_xmit_v4(mp, ire, 23078 NULL, B_TRUE, connp); 23079 if ((pktxmit_state == SEND_FAILED) || 23080 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23081 release_ire_and_ill_2: 23082 if (next_mp) { 23083 freemsg(next_mp); 23084 ire_refrele(ire1); 23085 } 23086 ire_refrele(ire); 23087 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23088 "ip_wput_ire_end: q %p (%S)", 23089 q, "discard MDATA"); 23090 if (conn_outgoing_ill != NULL) 23091 ill_refrele(conn_outgoing_ill); 23092 return; 23093 } 23094 23095 if (CLASSD(dst)) { 23096 BUMP_MIB(out_ill->ill_ip_mib, 23097 ipIfStatsHCOutMcastPkts); 23098 UPDATE_MIB(out_ill->ill_ip_mib, 23099 ipIfStatsHCOutMcastOctets, 23100 LENGTH); 23101 } else if (ire->ire_type == IRE_BROADCAST) { 23102 BUMP_MIB(out_ill->ill_ip_mib, 23103 ipIfStatsHCOutBcastPkts); 23104 } 23105 23106 if (multirt_send) { 23107 /* 23108 * We are in a multiple send case, 23109 * need to re-enter the sending loop 23110 * using the next ire. 23111 */ 23112 ire_refrele(ire); 23113 ire = ire1; 23114 stq = ire->ire_stq; 23115 mp = next_mp; 23116 next_mp = NULL; 23117 ipha = (ipha_t *)mp->b_rptr; 23118 ill_index = Q_TO_INDEX(stq); 23119 } 23120 } while (multirt_send); 23121 23122 if (!next_mp) { 23123 /* 23124 * Last copy going out (the ultra-common 23125 * case). Note that we intentionally replicate 23126 * the putnext rather than calling it before 23127 * the next_mp check in hopes of a little 23128 * tail-call action out of the compiler. 23129 */ 23130 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23131 "ip_wput_ire_end: q %p (%S)", 23132 q, "last copy out(1)"); 23133 ire_refrele(ire); 23134 if (conn_outgoing_ill != NULL) 23135 ill_refrele(conn_outgoing_ill); 23136 return; 23137 } 23138 /* More copies going out below. */ 23139 } else { 23140 int offset; 23141 fragmentit: 23142 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23143 /* 23144 * If this would generate a icmp_frag_needed message, 23145 * we need to handle it before we do the IPsec 23146 * processing. Otherwise, we need to strip the IPsec 23147 * headers before we send up the message to the ULPs 23148 * which becomes messy and difficult. 23149 */ 23150 if (ipsec_len != 0) { 23151 if ((max_frag < (unsigned int)(LENGTH + 23152 ipsec_len)) && (offset & IPH_DF)) { 23153 out_ill = (ill_t *)stq->q_ptr; 23154 BUMP_MIB(out_ill->ill_ip_mib, 23155 ipIfStatsOutFragFails); 23156 BUMP_MIB(out_ill->ill_ip_mib, 23157 ipIfStatsOutFragReqds); 23158 ipha->ipha_hdr_checksum = 0; 23159 ipha->ipha_hdr_checksum = 23160 (uint16_t)ip_csum_hdr(ipha); 23161 icmp_frag_needed(ire->ire_stq, first_mp, 23162 max_frag, zoneid, ipst); 23163 if (!next_mp) { 23164 ire_refrele(ire); 23165 if (conn_outgoing_ill != NULL) { 23166 ill_refrele( 23167 conn_outgoing_ill); 23168 } 23169 return; 23170 } 23171 } else { 23172 /* 23173 * This won't cause a icmp_frag_needed 23174 * message. to be generated. Send it on 23175 * the wire. Note that this could still 23176 * cause fragmentation and all we 23177 * do is the generation of the message 23178 * to the ULP if needed before IPsec. 23179 */ 23180 if (!next_mp) { 23181 ipsec_out_process(q, first_mp, 23182 ire, ill_index); 23183 TRACE_2(TR_FAC_IP, 23184 TR_IP_WPUT_IRE_END, 23185 "ip_wput_ire_end: q %p " 23186 "(%S)", q, 23187 "last ipsec_out_process"); 23188 ire_refrele(ire); 23189 if (conn_outgoing_ill != NULL) { 23190 ill_refrele( 23191 conn_outgoing_ill); 23192 } 23193 return; 23194 } 23195 ipsec_out_process(q, first_mp, 23196 ire, ill_index); 23197 } 23198 } else { 23199 /* 23200 * Initiate IPPF processing. For 23201 * fragmentable packets we finish 23202 * all QOS packet processing before 23203 * calling: 23204 * ip_wput_ire_fragmentit->ip_wput_frag 23205 */ 23206 23207 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23208 ip_process(IPP_LOCAL_OUT, &mp, 23209 ill_index); 23210 if (mp == NULL) { 23211 out_ill = (ill_t *)stq->q_ptr; 23212 BUMP_MIB(out_ill->ill_ip_mib, 23213 ipIfStatsOutDiscards); 23214 if (next_mp != NULL) { 23215 freemsg(next_mp); 23216 ire_refrele(ire1); 23217 } 23218 ire_refrele(ire); 23219 TRACE_2(TR_FAC_IP, 23220 TR_IP_WPUT_IRE_END, 23221 "ip_wput_ire: q %p (%S)", 23222 q, "discard MDATA"); 23223 if (conn_outgoing_ill != NULL) { 23224 ill_refrele( 23225 conn_outgoing_ill); 23226 } 23227 return; 23228 } 23229 } 23230 if (!next_mp) { 23231 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23232 "ip_wput_ire_end: q %p (%S)", 23233 q, "last fragmentation"); 23234 ip_wput_ire_fragmentit(mp, ire, 23235 zoneid, ipst, connp); 23236 ire_refrele(ire); 23237 if (conn_outgoing_ill != NULL) 23238 ill_refrele(conn_outgoing_ill); 23239 return; 23240 } 23241 ip_wput_ire_fragmentit(mp, ire, 23242 zoneid, ipst, connp); 23243 } 23244 } 23245 } else { 23246 nullstq: 23247 /* A NULL stq means the destination address is local. */ 23248 UPDATE_OB_PKT_COUNT(ire); 23249 ire->ire_last_used_time = lbolt; 23250 ASSERT(ire->ire_ipif != NULL); 23251 if (!next_mp) { 23252 /* 23253 * Is there an "in" and "out" for traffic local 23254 * to a host (loopback)? The code in Solaris doesn't 23255 * explicitly draw a line in its code for in vs out, 23256 * so we've had to draw a line in the sand: ip_wput_ire 23257 * is considered to be the "output" side and 23258 * ip_wput_local to be the "input" side. 23259 */ 23260 out_ill = ire_to_ill(ire); 23261 23262 /* 23263 * DTrace this as ip:::send. A blocked packet will 23264 * fire the send probe, but not the receive probe. 23265 */ 23266 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23267 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23268 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23269 23270 DTRACE_PROBE4(ip4__loopback__out__start, 23271 ill_t *, NULL, ill_t *, out_ill, 23272 ipha_t *, ipha, mblk_t *, first_mp); 23273 23274 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23275 ipst->ips_ipv4firewall_loopback_out, 23276 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23277 23278 DTRACE_PROBE1(ip4__loopback__out_end, 23279 mblk_t *, first_mp); 23280 23281 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23282 "ip_wput_ire_end: q %p (%S)", 23283 q, "local address"); 23284 23285 if (first_mp != NULL) 23286 ip_wput_local(q, out_ill, ipha, 23287 first_mp, ire, 0, ire->ire_zoneid); 23288 ire_refrele(ire); 23289 if (conn_outgoing_ill != NULL) 23290 ill_refrele(conn_outgoing_ill); 23291 return; 23292 } 23293 23294 out_ill = ire_to_ill(ire); 23295 23296 /* 23297 * DTrace this as ip:::send. A blocked packet will fire the 23298 * send probe, but not the receive probe. 23299 */ 23300 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23301 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23302 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23303 23304 DTRACE_PROBE4(ip4__loopback__out__start, 23305 ill_t *, NULL, ill_t *, out_ill, 23306 ipha_t *, ipha, mblk_t *, first_mp); 23307 23308 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23309 ipst->ips_ipv4firewall_loopback_out, 23310 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23311 23312 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23313 23314 if (first_mp != NULL) 23315 ip_wput_local(q, out_ill, ipha, 23316 first_mp, ire, 0, ire->ire_zoneid); 23317 } 23318 next: 23319 /* 23320 * More copies going out to additional interfaces. 23321 * ire1 has already been held. We don't need the 23322 * "ire" anymore. 23323 */ 23324 ire_refrele(ire); 23325 ire = ire1; 23326 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23327 mp = next_mp; 23328 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23329 ill = ire_to_ill(ire); 23330 first_mp = mp; 23331 if (ipsec_len != 0) { 23332 ASSERT(first_mp->b_datap->db_type == M_CTL); 23333 mp = mp->b_cont; 23334 } 23335 dst = ire->ire_addr; 23336 ipha = (ipha_t *)mp->b_rptr; 23337 /* 23338 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23339 * Restore ipha_ident "no checksum" flag. 23340 */ 23341 src = orig_src; 23342 ipha->ipha_ident = ip_hdr_included; 23343 goto another; 23344 23345 #undef rptr 23346 #undef Q_TO_INDEX 23347 } 23348 23349 /* 23350 * Routine to allocate a message that is used to notify the ULP about MDT. 23351 * The caller may provide a pointer to the link-layer MDT capabilities, 23352 * or NULL if MDT is to be disabled on the stream. 23353 */ 23354 mblk_t * 23355 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23356 { 23357 mblk_t *mp; 23358 ip_mdt_info_t *mdti; 23359 ill_mdt_capab_t *idst; 23360 23361 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23362 DB_TYPE(mp) = M_CTL; 23363 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23364 mdti = (ip_mdt_info_t *)mp->b_rptr; 23365 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23366 idst = &(mdti->mdt_capab); 23367 23368 /* 23369 * If the caller provides us with the capability, copy 23370 * it over into our notification message; otherwise 23371 * we zero out the capability portion. 23372 */ 23373 if (isrc != NULL) 23374 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23375 else 23376 bzero((caddr_t)idst, sizeof (*idst)); 23377 } 23378 return (mp); 23379 } 23380 23381 /* 23382 * Routine which determines whether MDT can be enabled on the destination 23383 * IRE and IPC combination, and if so, allocates and returns the MDT 23384 * notification mblk that may be used by ULP. We also check if we need to 23385 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23386 * MDT usage in the past have been lifted. This gets called during IP 23387 * and ULP binding. 23388 */ 23389 mblk_t * 23390 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23391 ill_mdt_capab_t *mdt_cap) 23392 { 23393 mblk_t *mp; 23394 boolean_t rc = B_FALSE; 23395 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23396 23397 ASSERT(dst_ire != NULL); 23398 ASSERT(connp != NULL); 23399 ASSERT(mdt_cap != NULL); 23400 23401 /* 23402 * Currently, we only support simple TCP/{IPv4,IPv6} with 23403 * Multidata, which is handled in tcp_multisend(). This 23404 * is the reason why we do all these checks here, to ensure 23405 * that we don't enable Multidata for the cases which we 23406 * can't handle at the moment. 23407 */ 23408 do { 23409 /* Only do TCP at the moment */ 23410 if (connp->conn_ulp != IPPROTO_TCP) 23411 break; 23412 23413 /* 23414 * IPsec outbound policy present? Note that we get here 23415 * after calling ipsec_conn_cache_policy() where the global 23416 * policy checking is performed. conn_latch will be 23417 * non-NULL as long as there's a policy defined, 23418 * i.e. conn_out_enforce_policy may be NULL in such case 23419 * when the connection is non-secure, and hence we check 23420 * further if the latch refers to an outbound policy. 23421 */ 23422 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23423 break; 23424 23425 /* CGTP (multiroute) is enabled? */ 23426 if (dst_ire->ire_flags & RTF_MULTIRT) 23427 break; 23428 23429 /* Outbound IPQoS enabled? */ 23430 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23431 /* 23432 * In this case, we disable MDT for this and all 23433 * future connections going over the interface. 23434 */ 23435 mdt_cap->ill_mdt_on = 0; 23436 break; 23437 } 23438 23439 /* socket option(s) present? */ 23440 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23441 break; 23442 23443 rc = B_TRUE; 23444 /* CONSTCOND */ 23445 } while (0); 23446 23447 /* Remember the result */ 23448 connp->conn_mdt_ok = rc; 23449 23450 if (!rc) 23451 return (NULL); 23452 else if (!mdt_cap->ill_mdt_on) { 23453 /* 23454 * If MDT has been previously turned off in the past, and we 23455 * currently can do MDT (due to IPQoS policy removal, etc.) 23456 * then enable it for this interface. 23457 */ 23458 mdt_cap->ill_mdt_on = 1; 23459 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23460 "interface %s\n", ill_name)); 23461 } 23462 23463 /* Allocate the MDT info mblk */ 23464 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23465 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23466 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23467 return (NULL); 23468 } 23469 return (mp); 23470 } 23471 23472 /* 23473 * Routine to allocate a message that is used to notify the ULP about LSO. 23474 * The caller may provide a pointer to the link-layer LSO capabilities, 23475 * or NULL if LSO is to be disabled on the stream. 23476 */ 23477 mblk_t * 23478 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23479 { 23480 mblk_t *mp; 23481 ip_lso_info_t *lsoi; 23482 ill_lso_capab_t *idst; 23483 23484 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23485 DB_TYPE(mp) = M_CTL; 23486 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23487 lsoi = (ip_lso_info_t *)mp->b_rptr; 23488 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23489 idst = &(lsoi->lso_capab); 23490 23491 /* 23492 * If the caller provides us with the capability, copy 23493 * it over into our notification message; otherwise 23494 * we zero out the capability portion. 23495 */ 23496 if (isrc != NULL) 23497 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23498 else 23499 bzero((caddr_t)idst, sizeof (*idst)); 23500 } 23501 return (mp); 23502 } 23503 23504 /* 23505 * Routine which determines whether LSO can be enabled on the destination 23506 * IRE and IPC combination, and if so, allocates and returns the LSO 23507 * notification mblk that may be used by ULP. We also check if we need to 23508 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23509 * LSO usage in the past have been lifted. This gets called during IP 23510 * and ULP binding. 23511 */ 23512 mblk_t * 23513 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23514 ill_lso_capab_t *lso_cap) 23515 { 23516 mblk_t *mp; 23517 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23518 23519 ASSERT(dst_ire != NULL); 23520 ASSERT(connp != NULL); 23521 ASSERT(lso_cap != NULL); 23522 23523 connp->conn_lso_ok = B_TRUE; 23524 23525 if ((connp->conn_ulp != IPPROTO_TCP) || 23526 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23527 (dst_ire->ire_flags & RTF_MULTIRT) || 23528 !CONN_IS_LSO_MD_FASTPATH(connp) || 23529 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23530 connp->conn_lso_ok = B_FALSE; 23531 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23532 /* 23533 * Disable LSO for this and all future connections going 23534 * over the interface. 23535 */ 23536 lso_cap->ill_lso_on = 0; 23537 } 23538 } 23539 23540 if (!connp->conn_lso_ok) 23541 return (NULL); 23542 else if (!lso_cap->ill_lso_on) { 23543 /* 23544 * If LSO has been previously turned off in the past, and we 23545 * currently can do LSO (due to IPQoS policy removal, etc.) 23546 * then enable it for this interface. 23547 */ 23548 lso_cap->ill_lso_on = 1; 23549 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23550 ill_name)); 23551 } 23552 23553 /* Allocate the LSO info mblk */ 23554 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23555 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23556 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23557 23558 return (mp); 23559 } 23560 23561 /* 23562 * Create destination address attribute, and fill it with the physical 23563 * destination address and SAP taken from the template DL_UNITDATA_REQ 23564 * message block. 23565 */ 23566 boolean_t 23567 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23568 { 23569 dl_unitdata_req_t *dlurp; 23570 pattr_t *pa; 23571 pattrinfo_t pa_info; 23572 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23573 uint_t das_len, das_off; 23574 23575 ASSERT(dlmp != NULL); 23576 23577 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23578 das_len = dlurp->dl_dest_addr_length; 23579 das_off = dlurp->dl_dest_addr_offset; 23580 23581 pa_info.type = PATTR_DSTADDRSAP; 23582 pa_info.len = sizeof (**das) + das_len - 1; 23583 23584 /* create and associate the attribute */ 23585 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23586 if (pa != NULL) { 23587 ASSERT(*das != NULL); 23588 (*das)->addr_is_group = 0; 23589 (*das)->addr_len = (uint8_t)das_len; 23590 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23591 } 23592 23593 return (pa != NULL); 23594 } 23595 23596 /* 23597 * Create hardware checksum attribute and fill it with the values passed. 23598 */ 23599 boolean_t 23600 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23601 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23602 { 23603 pattr_t *pa; 23604 pattrinfo_t pa_info; 23605 23606 ASSERT(mmd != NULL); 23607 23608 pa_info.type = PATTR_HCKSUM; 23609 pa_info.len = sizeof (pattr_hcksum_t); 23610 23611 /* create and associate the attribute */ 23612 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23613 if (pa != NULL) { 23614 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23615 23616 hck->hcksum_start_offset = start_offset; 23617 hck->hcksum_stuff_offset = stuff_offset; 23618 hck->hcksum_end_offset = end_offset; 23619 hck->hcksum_flags = flags; 23620 } 23621 return (pa != NULL); 23622 } 23623 23624 /* 23625 * Create zerocopy attribute and fill it with the specified flags 23626 */ 23627 boolean_t 23628 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23629 { 23630 pattr_t *pa; 23631 pattrinfo_t pa_info; 23632 23633 ASSERT(mmd != NULL); 23634 pa_info.type = PATTR_ZCOPY; 23635 pa_info.len = sizeof (pattr_zcopy_t); 23636 23637 /* create and associate the attribute */ 23638 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23639 if (pa != NULL) { 23640 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23641 23642 zcopy->zcopy_flags = flags; 23643 } 23644 return (pa != NULL); 23645 } 23646 23647 /* 23648 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23649 * block chain. We could rewrite to handle arbitrary message block chains but 23650 * that would make the code complicated and slow. Right now there three 23651 * restrictions: 23652 * 23653 * 1. The first message block must contain the complete IP header and 23654 * at least 1 byte of payload data. 23655 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23656 * so that we can use a single Multidata message. 23657 * 3. No frag must be distributed over two or more message blocks so 23658 * that we don't need more than two packet descriptors per frag. 23659 * 23660 * The above restrictions allow us to support userland applications (which 23661 * will send down a single message block) and NFS over UDP (which will 23662 * send down a chain of at most three message blocks). 23663 * 23664 * We also don't use MDT for payloads with less than or equal to 23665 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23666 */ 23667 boolean_t 23668 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23669 { 23670 int blocks; 23671 ssize_t total, missing, size; 23672 23673 ASSERT(mp != NULL); 23674 ASSERT(hdr_len > 0); 23675 23676 size = MBLKL(mp) - hdr_len; 23677 if (size <= 0) 23678 return (B_FALSE); 23679 23680 /* The first mblk contains the header and some payload. */ 23681 blocks = 1; 23682 total = size; 23683 size %= len; 23684 missing = (size == 0) ? 0 : (len - size); 23685 mp = mp->b_cont; 23686 23687 while (mp != NULL) { 23688 /* 23689 * Give up if we encounter a zero length message block. 23690 * In practice, this should rarely happen and therefore 23691 * not worth the trouble of freeing and re-linking the 23692 * mblk from the chain to handle such case. 23693 */ 23694 if ((size = MBLKL(mp)) == 0) 23695 return (B_FALSE); 23696 23697 /* Too many payload buffers for a single Multidata message? */ 23698 if (++blocks > MULTIDATA_MAX_PBUFS) 23699 return (B_FALSE); 23700 23701 total += size; 23702 /* Is a frag distributed over two or more message blocks? */ 23703 if (missing > size) 23704 return (B_FALSE); 23705 size -= missing; 23706 23707 size %= len; 23708 missing = (size == 0) ? 0 : (len - size); 23709 23710 mp = mp->b_cont; 23711 } 23712 23713 return (total > ip_wput_frag_mdt_min); 23714 } 23715 23716 /* 23717 * Outbound IPv4 fragmentation routine using MDT. 23718 */ 23719 static void 23720 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23721 uint32_t frag_flag, int offset) 23722 { 23723 ipha_t *ipha_orig; 23724 int i1, ip_data_end; 23725 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23726 mblk_t *hdr_mp, *md_mp = NULL; 23727 unsigned char *hdr_ptr, *pld_ptr; 23728 multidata_t *mmd; 23729 ip_pdescinfo_t pdi; 23730 ill_t *ill; 23731 ip_stack_t *ipst = ire->ire_ipst; 23732 23733 ASSERT(DB_TYPE(mp) == M_DATA); 23734 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23735 23736 ill = ire_to_ill(ire); 23737 ASSERT(ill != NULL); 23738 23739 ipha_orig = (ipha_t *)mp->b_rptr; 23740 mp->b_rptr += sizeof (ipha_t); 23741 23742 /* Calculate how many packets we will send out */ 23743 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23744 pkts = (i1 + len - 1) / len; 23745 ASSERT(pkts > 1); 23746 23747 /* Allocate a message block which will hold all the IP Headers. */ 23748 wroff = ipst->ips_ip_wroff_extra; 23749 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23750 23751 i1 = pkts * hdr_chunk_len; 23752 /* 23753 * Create the header buffer, Multidata and destination address 23754 * and SAP attribute that should be associated with it. 23755 */ 23756 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23757 ((hdr_mp->b_wptr += i1), 23758 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23759 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23760 freemsg(mp); 23761 if (md_mp == NULL) { 23762 freemsg(hdr_mp); 23763 } else { 23764 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23765 freemsg(md_mp); 23766 } 23767 IP_STAT(ipst, ip_frag_mdt_allocfail); 23768 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23769 return; 23770 } 23771 IP_STAT(ipst, ip_frag_mdt_allocd); 23772 23773 /* 23774 * Add a payload buffer to the Multidata; this operation must not 23775 * fail, or otherwise our logic in this routine is broken. There 23776 * is no memory allocation done by the routine, so any returned 23777 * failure simply tells us that we've done something wrong. 23778 * 23779 * A failure tells us that either we're adding the same payload 23780 * buffer more than once, or we're trying to add more buffers than 23781 * allowed. None of the above cases should happen, and we panic 23782 * because either there's horrible heap corruption, and/or 23783 * programming mistake. 23784 */ 23785 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23786 goto pbuf_panic; 23787 23788 hdr_ptr = hdr_mp->b_rptr; 23789 pld_ptr = mp->b_rptr; 23790 23791 /* Establish the ending byte offset, based on the starting offset. */ 23792 offset <<= 3; 23793 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23794 IP_SIMPLE_HDR_LENGTH; 23795 23796 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23797 23798 while (pld_ptr < mp->b_wptr) { 23799 ipha_t *ipha; 23800 uint16_t offset_and_flags; 23801 uint16_t ip_len; 23802 int error; 23803 23804 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23805 ipha = (ipha_t *)(hdr_ptr + wroff); 23806 ASSERT(OK_32PTR(ipha)); 23807 *ipha = *ipha_orig; 23808 23809 if (ip_data_end - offset > len) { 23810 offset_and_flags = IPH_MF; 23811 } else { 23812 /* 23813 * Last frag. Set len to the length of this last piece. 23814 */ 23815 len = ip_data_end - offset; 23816 /* A frag of a frag might have IPH_MF non-zero */ 23817 offset_and_flags = 23818 ntohs(ipha->ipha_fragment_offset_and_flags) & 23819 IPH_MF; 23820 } 23821 offset_and_flags |= (uint16_t)(offset >> 3); 23822 offset_and_flags |= (uint16_t)frag_flag; 23823 /* Store the offset and flags in the IP header. */ 23824 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23825 23826 /* Store the length in the IP header. */ 23827 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23828 ipha->ipha_length = htons(ip_len); 23829 23830 /* 23831 * Set the IP header checksum. Note that mp is just 23832 * the header, so this is easy to pass to ip_csum. 23833 */ 23834 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23835 23836 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23837 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23838 NULL, int, 0); 23839 23840 /* 23841 * Record offset and size of header and data of the next packet 23842 * in the multidata message. 23843 */ 23844 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23845 PDESC_PLD_INIT(&pdi); 23846 i1 = MIN(mp->b_wptr - pld_ptr, len); 23847 ASSERT(i1 > 0); 23848 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23849 if (i1 == len) { 23850 pld_ptr += len; 23851 } else { 23852 i1 = len - i1; 23853 mp = mp->b_cont; 23854 ASSERT(mp != NULL); 23855 ASSERT(MBLKL(mp) >= i1); 23856 /* 23857 * Attach the next payload message block to the 23858 * multidata message. 23859 */ 23860 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23861 goto pbuf_panic; 23862 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23863 pld_ptr = mp->b_rptr + i1; 23864 } 23865 23866 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23867 KM_NOSLEEP)) == NULL) { 23868 /* 23869 * Any failure other than ENOMEM indicates that we 23870 * have passed in invalid pdesc info or parameters 23871 * to mmd_addpdesc, which must not happen. 23872 * 23873 * EINVAL is a result of failure on boundary checks 23874 * against the pdesc info contents. It should not 23875 * happen, and we panic because either there's 23876 * horrible heap corruption, and/or programming 23877 * mistake. 23878 */ 23879 if (error != ENOMEM) { 23880 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23881 "pdesc logic error detected for " 23882 "mmd %p pinfo %p (%d)\n", 23883 (void *)mmd, (void *)&pdi, error); 23884 /* NOTREACHED */ 23885 } 23886 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23887 /* Free unattached payload message blocks as well */ 23888 md_mp->b_cont = mp->b_cont; 23889 goto free_mmd; 23890 } 23891 23892 /* Advance fragment offset. */ 23893 offset += len; 23894 23895 /* Advance to location for next header in the buffer. */ 23896 hdr_ptr += hdr_chunk_len; 23897 23898 /* Did we reach the next payload message block? */ 23899 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23900 mp = mp->b_cont; 23901 /* 23902 * Attach the next message block with payload 23903 * data to the multidata message. 23904 */ 23905 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23906 goto pbuf_panic; 23907 pld_ptr = mp->b_rptr; 23908 } 23909 } 23910 23911 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23912 ASSERT(mp->b_wptr == pld_ptr); 23913 23914 /* Update IP statistics */ 23915 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23916 23917 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23918 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23919 23920 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23921 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23922 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23923 23924 if (pkt_type == OB_PKT) { 23925 ire->ire_ob_pkt_count += pkts; 23926 if (ire->ire_ipif != NULL) 23927 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23928 } else { 23929 /* The type is IB_PKT in the forwarding path. */ 23930 ire->ire_ib_pkt_count += pkts; 23931 ASSERT(!IRE_IS_LOCAL(ire)); 23932 if (ire->ire_type & IRE_BROADCAST) { 23933 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23934 } else { 23935 UPDATE_MIB(ill->ill_ip_mib, 23936 ipIfStatsHCOutForwDatagrams, pkts); 23937 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23938 } 23939 } 23940 ire->ire_last_used_time = lbolt; 23941 /* Send it down */ 23942 putnext(ire->ire_stq, md_mp); 23943 return; 23944 23945 pbuf_panic: 23946 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23947 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23948 pbuf_idx); 23949 /* NOTREACHED */ 23950 } 23951 23952 /* 23953 * Outbound IP fragmentation routine. 23954 * 23955 * NOTE : This routine does not ire_refrele the ire that is passed in 23956 * as the argument. 23957 */ 23958 static void 23959 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23960 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 23961 { 23962 int i1; 23963 mblk_t *ll_hdr_mp; 23964 int ll_hdr_len; 23965 int hdr_len; 23966 mblk_t *hdr_mp; 23967 ipha_t *ipha; 23968 int ip_data_end; 23969 int len; 23970 mblk_t *mp = mp_orig, *mp1; 23971 int offset; 23972 queue_t *q; 23973 uint32_t v_hlen_tos_len; 23974 mblk_t *first_mp; 23975 boolean_t mctl_present; 23976 ill_t *ill; 23977 ill_t *out_ill; 23978 mblk_t *xmit_mp; 23979 mblk_t *carve_mp; 23980 ire_t *ire1 = NULL; 23981 ire_t *save_ire = NULL; 23982 mblk_t *next_mp = NULL; 23983 boolean_t last_frag = B_FALSE; 23984 boolean_t multirt_send = B_FALSE; 23985 ire_t *first_ire = NULL; 23986 irb_t *irb = NULL; 23987 mib2_ipIfStatsEntry_t *mibptr = NULL; 23988 23989 ill = ire_to_ill(ire); 23990 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 23991 23992 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 23993 23994 if (max_frag == 0) { 23995 ip1dbg(("ip_wput_frag: ire frag size is 0" 23996 " - dropping packet\n")); 23997 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23998 freemsg(mp); 23999 return; 24000 } 24001 24002 /* 24003 * IPsec does not allow hw accelerated packets to be fragmented 24004 * This check is made in ip_wput_ipsec_out prior to coming here 24005 * via ip_wput_ire_fragmentit. 24006 * 24007 * If at this point we have an ire whose ARP request has not 24008 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24009 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24010 * This packet and all fragmentable packets for this ire will 24011 * continue to get dropped while ire_nce->nce_state remains in 24012 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24013 * ND_REACHABLE, all subsquent large packets for this ire will 24014 * get fragemented and sent out by this function. 24015 */ 24016 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24017 /* If nce_state is ND_INITIAL, trigger ARP query */ 24018 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24019 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24020 " - dropping packet\n")); 24021 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24022 freemsg(mp); 24023 return; 24024 } 24025 24026 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24027 "ip_wput_frag_start:"); 24028 24029 if (mp->b_datap->db_type == M_CTL) { 24030 first_mp = mp; 24031 mp_orig = mp = mp->b_cont; 24032 mctl_present = B_TRUE; 24033 } else { 24034 first_mp = mp; 24035 mctl_present = B_FALSE; 24036 } 24037 24038 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24039 ipha = (ipha_t *)mp->b_rptr; 24040 24041 /* 24042 * If the Don't Fragment flag is on, generate an ICMP destination 24043 * unreachable, fragmentation needed. 24044 */ 24045 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24046 if (offset & IPH_DF) { 24047 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24048 if (is_system_labeled()) { 24049 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24050 ire->ire_max_frag - max_frag, AF_INET); 24051 } 24052 /* 24053 * Need to compute hdr checksum if called from ip_wput_ire. 24054 * Note that ip_rput_forward verifies the checksum before 24055 * calling this routine so in that case this is a noop. 24056 */ 24057 ipha->ipha_hdr_checksum = 0; 24058 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24059 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24060 ipst); 24061 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24062 "ip_wput_frag_end:(%S)", 24063 "don't fragment"); 24064 return; 24065 } 24066 /* 24067 * Labeled systems adjust max_frag if they add a label 24068 * to send the correct path mtu. We need the real mtu since we 24069 * are fragmenting the packet after label adjustment. 24070 */ 24071 if (is_system_labeled()) 24072 max_frag = ire->ire_max_frag; 24073 if (mctl_present) 24074 freeb(first_mp); 24075 /* 24076 * Establish the starting offset. May not be zero if we are fragging 24077 * a fragment that is being forwarded. 24078 */ 24079 offset = offset & IPH_OFFSET; 24080 24081 /* TODO why is this test needed? */ 24082 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24083 if (((max_frag - LENGTH) & ~7) < 8) { 24084 /* TODO: notify ulp somehow */ 24085 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24086 freemsg(mp); 24087 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24088 "ip_wput_frag_end:(%S)", 24089 "len < 8"); 24090 return; 24091 } 24092 24093 hdr_len = (V_HLEN & 0xF) << 2; 24094 24095 ipha->ipha_hdr_checksum = 0; 24096 24097 /* 24098 * Establish the number of bytes maximum per frag, after putting 24099 * in the header. 24100 */ 24101 len = (max_frag - hdr_len) & ~7; 24102 24103 /* Check if we can use MDT to send out the frags. */ 24104 ASSERT(!IRE_IS_LOCAL(ire)); 24105 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24106 ipst->ips_ip_multidata_outbound && 24107 !(ire->ire_flags & RTF_MULTIRT) && 24108 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24109 ill != NULL && ILL_MDT_CAPABLE(ill) && 24110 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24111 ASSERT(ill->ill_mdt_capab != NULL); 24112 if (!ill->ill_mdt_capab->ill_mdt_on) { 24113 /* 24114 * If MDT has been previously turned off in the past, 24115 * and we currently can do MDT (due to IPQoS policy 24116 * removal, etc.) then enable it for this interface. 24117 */ 24118 ill->ill_mdt_capab->ill_mdt_on = 1; 24119 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24120 ill->ill_name)); 24121 } 24122 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24123 offset); 24124 return; 24125 } 24126 24127 /* Get a copy of the header for the trailing frags */ 24128 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24129 mp); 24130 if (!hdr_mp) { 24131 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24132 freemsg(mp); 24133 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24134 "ip_wput_frag_end:(%S)", 24135 "couldn't copy hdr"); 24136 return; 24137 } 24138 24139 /* Store the starting offset, with the MoreFrags flag. */ 24140 i1 = offset | IPH_MF | frag_flag; 24141 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24142 24143 /* Establish the ending byte offset, based on the starting offset. */ 24144 offset <<= 3; 24145 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24146 24147 /* Store the length of the first fragment in the IP header. */ 24148 i1 = len + hdr_len; 24149 ASSERT(i1 <= IP_MAXPACKET); 24150 ipha->ipha_length = htons((uint16_t)i1); 24151 24152 /* 24153 * Compute the IP header checksum for the first frag. We have to 24154 * watch out that we stop at the end of the header. 24155 */ 24156 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24157 24158 /* 24159 * Now carve off the first frag. Note that this will include the 24160 * original IP header. 24161 */ 24162 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24163 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24164 freeb(hdr_mp); 24165 freemsg(mp_orig); 24166 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24167 "ip_wput_frag_end:(%S)", 24168 "couldn't carve first"); 24169 return; 24170 } 24171 24172 /* 24173 * Multirouting case. Each fragment is replicated 24174 * via all non-condemned RTF_MULTIRT routes 24175 * currently resolved. 24176 * We ensure that first_ire is the first RTF_MULTIRT 24177 * ire in the bucket. 24178 */ 24179 if (ire->ire_flags & RTF_MULTIRT) { 24180 irb = ire->ire_bucket; 24181 ASSERT(irb != NULL); 24182 24183 multirt_send = B_TRUE; 24184 24185 /* Make sure we do not omit any multiroute ire. */ 24186 IRB_REFHOLD(irb); 24187 for (first_ire = irb->irb_ire; 24188 first_ire != NULL; 24189 first_ire = first_ire->ire_next) { 24190 if ((first_ire->ire_flags & RTF_MULTIRT) && 24191 (first_ire->ire_addr == ire->ire_addr) && 24192 !(first_ire->ire_marks & 24193 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24194 break; 24195 } 24196 24197 if (first_ire != NULL) { 24198 if (first_ire != ire) { 24199 IRE_REFHOLD(first_ire); 24200 /* 24201 * Do not release the ire passed in 24202 * as the argument. 24203 */ 24204 ire = first_ire; 24205 } else { 24206 first_ire = NULL; 24207 } 24208 } 24209 IRB_REFRELE(irb); 24210 24211 /* 24212 * Save the first ire; we will need to restore it 24213 * for the trailing frags. 24214 * We REFHOLD save_ire, as each iterated ire will be 24215 * REFRELEd. 24216 */ 24217 save_ire = ire; 24218 IRE_REFHOLD(save_ire); 24219 } 24220 24221 /* 24222 * First fragment emission loop. 24223 * In most cases, the emission loop below is entered only 24224 * once. Only in the case where the ire holds the RTF_MULTIRT 24225 * flag, do we loop to process all RTF_MULTIRT ires in the 24226 * bucket, and send the fragment through all crossed 24227 * RTF_MULTIRT routes. 24228 */ 24229 do { 24230 if (ire->ire_flags & RTF_MULTIRT) { 24231 /* 24232 * We are in a multiple send case, need to get 24233 * the next ire and make a copy of the packet. 24234 * ire1 holds here the next ire to process in the 24235 * bucket. If multirouting is expected, 24236 * any non-RTF_MULTIRT ire that has the 24237 * right destination address is ignored. 24238 * 24239 * We have to take into account the MTU of 24240 * each walked ire. max_frag is set by the 24241 * the caller and generally refers to 24242 * the primary ire entry. Here we ensure that 24243 * no route with a lower MTU will be used, as 24244 * fragments are carved once for all ires, 24245 * then replicated. 24246 */ 24247 ASSERT(irb != NULL); 24248 IRB_REFHOLD(irb); 24249 for (ire1 = ire->ire_next; 24250 ire1 != NULL; 24251 ire1 = ire1->ire_next) { 24252 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24253 continue; 24254 if (ire1->ire_addr != ire->ire_addr) 24255 continue; 24256 if (ire1->ire_marks & 24257 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24258 continue; 24259 /* 24260 * Ensure we do not exceed the MTU 24261 * of the next route. 24262 */ 24263 if (ire1->ire_max_frag < max_frag) { 24264 ip_multirt_bad_mtu(ire1, max_frag); 24265 continue; 24266 } 24267 24268 /* Got one. */ 24269 IRE_REFHOLD(ire1); 24270 break; 24271 } 24272 IRB_REFRELE(irb); 24273 24274 if (ire1 != NULL) { 24275 next_mp = copyb(mp); 24276 if ((next_mp == NULL) || 24277 ((mp->b_cont != NULL) && 24278 ((next_mp->b_cont = 24279 dupmsg(mp->b_cont)) == NULL))) { 24280 freemsg(next_mp); 24281 next_mp = NULL; 24282 ire_refrele(ire1); 24283 ire1 = NULL; 24284 } 24285 } 24286 24287 /* Last multiroute ire; don't loop anymore. */ 24288 if (ire1 == NULL) { 24289 multirt_send = B_FALSE; 24290 } 24291 } 24292 24293 ll_hdr_len = 0; 24294 LOCK_IRE_FP_MP(ire); 24295 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24296 if (ll_hdr_mp != NULL) { 24297 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24298 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24299 } else { 24300 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24301 } 24302 24303 /* If there is a transmit header, get a copy for this frag. */ 24304 /* 24305 * TODO: should check db_ref before calling ip_carve_mp since 24306 * it might give us a dup. 24307 */ 24308 if (!ll_hdr_mp) { 24309 /* No xmit header. */ 24310 xmit_mp = mp; 24311 24312 /* We have a link-layer header that can fit in our mblk. */ 24313 } else if (mp->b_datap->db_ref == 1 && 24314 ll_hdr_len != 0 && 24315 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24316 /* M_DATA fastpath */ 24317 mp->b_rptr -= ll_hdr_len; 24318 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24319 xmit_mp = mp; 24320 24321 /* Corner case if copyb has failed */ 24322 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24323 UNLOCK_IRE_FP_MP(ire); 24324 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24325 freeb(hdr_mp); 24326 freemsg(mp); 24327 freemsg(mp_orig); 24328 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24329 "ip_wput_frag_end:(%S)", 24330 "discard"); 24331 24332 if (multirt_send) { 24333 ASSERT(ire1); 24334 ASSERT(next_mp); 24335 24336 freemsg(next_mp); 24337 ire_refrele(ire1); 24338 } 24339 if (save_ire != NULL) 24340 IRE_REFRELE(save_ire); 24341 24342 if (first_ire != NULL) 24343 ire_refrele(first_ire); 24344 return; 24345 24346 /* 24347 * Case of res_mp OR the fastpath mp can't fit 24348 * in the mblk 24349 */ 24350 } else { 24351 xmit_mp->b_cont = mp; 24352 24353 /* 24354 * Get priority marking, if any. 24355 * We propagate the CoS marking from the 24356 * original packet that went to QoS processing 24357 * in ip_wput_ire to the newly carved mp. 24358 */ 24359 if (DB_TYPE(xmit_mp) == M_DATA) 24360 xmit_mp->b_band = mp->b_band; 24361 } 24362 UNLOCK_IRE_FP_MP(ire); 24363 24364 q = ire->ire_stq; 24365 out_ill = (ill_t *)q->q_ptr; 24366 24367 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24368 24369 DTRACE_PROBE4(ip4__physical__out__start, 24370 ill_t *, NULL, ill_t *, out_ill, 24371 ipha_t *, ipha, mblk_t *, xmit_mp); 24372 24373 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24374 ipst->ips_ipv4firewall_physical_out, 24375 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24376 24377 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24378 24379 if (xmit_mp != NULL) { 24380 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24381 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24382 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24383 24384 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24385 24386 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24387 UPDATE_MIB(out_ill->ill_ip_mib, 24388 ipIfStatsHCOutOctets, i1); 24389 24390 if (pkt_type != OB_PKT) { 24391 /* 24392 * Update the packet count and MIB stats 24393 * of trailing RTF_MULTIRT ires. 24394 */ 24395 UPDATE_OB_PKT_COUNT(ire); 24396 BUMP_MIB(out_ill->ill_ip_mib, 24397 ipIfStatsOutFragReqds); 24398 } 24399 } 24400 24401 if (multirt_send) { 24402 /* 24403 * We are in a multiple send case; look for 24404 * the next ire and re-enter the loop. 24405 */ 24406 ASSERT(ire1); 24407 ASSERT(next_mp); 24408 /* REFRELE the current ire before looping */ 24409 ire_refrele(ire); 24410 ire = ire1; 24411 ire1 = NULL; 24412 mp = next_mp; 24413 next_mp = NULL; 24414 } 24415 } while (multirt_send); 24416 24417 ASSERT(ire1 == NULL); 24418 24419 /* Restore the original ire; we need it for the trailing frags */ 24420 if (save_ire != NULL) { 24421 /* REFRELE the last iterated ire */ 24422 ire_refrele(ire); 24423 /* save_ire has been REFHOLDed */ 24424 ire = save_ire; 24425 save_ire = NULL; 24426 q = ire->ire_stq; 24427 } 24428 24429 if (pkt_type == OB_PKT) { 24430 UPDATE_OB_PKT_COUNT(ire); 24431 } else { 24432 out_ill = (ill_t *)q->q_ptr; 24433 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24434 UPDATE_IB_PKT_COUNT(ire); 24435 } 24436 24437 /* Advance the offset to the second frag starting point. */ 24438 offset += len; 24439 /* 24440 * Update hdr_len from the copied header - there might be less options 24441 * in the later fragments. 24442 */ 24443 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24444 /* Loop until done. */ 24445 for (;;) { 24446 uint16_t offset_and_flags; 24447 uint16_t ip_len; 24448 24449 if (ip_data_end - offset > len) { 24450 /* 24451 * Carve off the appropriate amount from the original 24452 * datagram. 24453 */ 24454 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24455 mp = NULL; 24456 break; 24457 } 24458 /* 24459 * More frags after this one. Get another copy 24460 * of the header. 24461 */ 24462 if (carve_mp->b_datap->db_ref == 1 && 24463 hdr_mp->b_wptr - hdr_mp->b_rptr < 24464 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24465 /* Inline IP header */ 24466 carve_mp->b_rptr -= hdr_mp->b_wptr - 24467 hdr_mp->b_rptr; 24468 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24469 hdr_mp->b_wptr - hdr_mp->b_rptr); 24470 mp = carve_mp; 24471 } else { 24472 if (!(mp = copyb(hdr_mp))) { 24473 freemsg(carve_mp); 24474 break; 24475 } 24476 /* Get priority marking, if any. */ 24477 mp->b_band = carve_mp->b_band; 24478 mp->b_cont = carve_mp; 24479 } 24480 ipha = (ipha_t *)mp->b_rptr; 24481 offset_and_flags = IPH_MF; 24482 } else { 24483 /* 24484 * Last frag. Consume the header. Set len to 24485 * the length of this last piece. 24486 */ 24487 len = ip_data_end - offset; 24488 24489 /* 24490 * Carve off the appropriate amount from the original 24491 * datagram. 24492 */ 24493 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24494 mp = NULL; 24495 break; 24496 } 24497 if (carve_mp->b_datap->db_ref == 1 && 24498 hdr_mp->b_wptr - hdr_mp->b_rptr < 24499 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24500 /* Inline IP header */ 24501 carve_mp->b_rptr -= hdr_mp->b_wptr - 24502 hdr_mp->b_rptr; 24503 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24504 hdr_mp->b_wptr - hdr_mp->b_rptr); 24505 mp = carve_mp; 24506 freeb(hdr_mp); 24507 hdr_mp = mp; 24508 } else { 24509 mp = hdr_mp; 24510 /* Get priority marking, if any. */ 24511 mp->b_band = carve_mp->b_band; 24512 mp->b_cont = carve_mp; 24513 } 24514 ipha = (ipha_t *)mp->b_rptr; 24515 /* A frag of a frag might have IPH_MF non-zero */ 24516 offset_and_flags = 24517 ntohs(ipha->ipha_fragment_offset_and_flags) & 24518 IPH_MF; 24519 } 24520 offset_and_flags |= (uint16_t)(offset >> 3); 24521 offset_and_flags |= (uint16_t)frag_flag; 24522 /* Store the offset and flags in the IP header. */ 24523 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24524 24525 /* Store the length in the IP header. */ 24526 ip_len = (uint16_t)(len + hdr_len); 24527 ipha->ipha_length = htons(ip_len); 24528 24529 /* 24530 * Set the IP header checksum. Note that mp is just 24531 * the header, so this is easy to pass to ip_csum. 24532 */ 24533 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24534 24535 /* Attach a transmit header, if any, and ship it. */ 24536 if (pkt_type == OB_PKT) { 24537 UPDATE_OB_PKT_COUNT(ire); 24538 } else { 24539 out_ill = (ill_t *)q->q_ptr; 24540 BUMP_MIB(out_ill->ill_ip_mib, 24541 ipIfStatsHCOutForwDatagrams); 24542 UPDATE_IB_PKT_COUNT(ire); 24543 } 24544 24545 if (ire->ire_flags & RTF_MULTIRT) { 24546 irb = ire->ire_bucket; 24547 ASSERT(irb != NULL); 24548 24549 multirt_send = B_TRUE; 24550 24551 /* 24552 * Save the original ire; we will need to restore it 24553 * for the tailing frags. 24554 */ 24555 save_ire = ire; 24556 IRE_REFHOLD(save_ire); 24557 } 24558 /* 24559 * Emission loop for this fragment, similar 24560 * to what is done for the first fragment. 24561 */ 24562 do { 24563 if (multirt_send) { 24564 /* 24565 * We are in a multiple send case, need to get 24566 * the next ire and make a copy of the packet. 24567 */ 24568 ASSERT(irb != NULL); 24569 IRB_REFHOLD(irb); 24570 for (ire1 = ire->ire_next; 24571 ire1 != NULL; 24572 ire1 = ire1->ire_next) { 24573 if (!(ire1->ire_flags & RTF_MULTIRT)) 24574 continue; 24575 if (ire1->ire_addr != ire->ire_addr) 24576 continue; 24577 if (ire1->ire_marks & 24578 (IRE_MARK_CONDEMNED | 24579 IRE_MARK_TESTHIDDEN)) 24580 continue; 24581 /* 24582 * Ensure we do not exceed the MTU 24583 * of the next route. 24584 */ 24585 if (ire1->ire_max_frag < max_frag) { 24586 ip_multirt_bad_mtu(ire1, 24587 max_frag); 24588 continue; 24589 } 24590 24591 /* Got one. */ 24592 IRE_REFHOLD(ire1); 24593 break; 24594 } 24595 IRB_REFRELE(irb); 24596 24597 if (ire1 != NULL) { 24598 next_mp = copyb(mp); 24599 if ((next_mp == NULL) || 24600 ((mp->b_cont != NULL) && 24601 ((next_mp->b_cont = 24602 dupmsg(mp->b_cont)) == NULL))) { 24603 freemsg(next_mp); 24604 next_mp = NULL; 24605 ire_refrele(ire1); 24606 ire1 = NULL; 24607 } 24608 } 24609 24610 /* Last multiroute ire; don't loop anymore. */ 24611 if (ire1 == NULL) { 24612 multirt_send = B_FALSE; 24613 } 24614 } 24615 24616 /* Update transmit header */ 24617 ll_hdr_len = 0; 24618 LOCK_IRE_FP_MP(ire); 24619 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24620 if (ll_hdr_mp != NULL) { 24621 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24622 ll_hdr_len = MBLKL(ll_hdr_mp); 24623 } else { 24624 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24625 } 24626 24627 if (!ll_hdr_mp) { 24628 xmit_mp = mp; 24629 24630 /* 24631 * We have link-layer header that can fit in 24632 * our mblk. 24633 */ 24634 } else if (mp->b_datap->db_ref == 1 && 24635 ll_hdr_len != 0 && 24636 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24637 /* M_DATA fastpath */ 24638 mp->b_rptr -= ll_hdr_len; 24639 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24640 ll_hdr_len); 24641 xmit_mp = mp; 24642 24643 /* 24644 * Case of res_mp OR the fastpath mp can't fit 24645 * in the mblk 24646 */ 24647 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24648 xmit_mp->b_cont = mp; 24649 /* Get priority marking, if any. */ 24650 if (DB_TYPE(xmit_mp) == M_DATA) 24651 xmit_mp->b_band = mp->b_band; 24652 24653 /* Corner case if copyb failed */ 24654 } else { 24655 /* 24656 * Exit both the replication and 24657 * fragmentation loops. 24658 */ 24659 UNLOCK_IRE_FP_MP(ire); 24660 goto drop_pkt; 24661 } 24662 UNLOCK_IRE_FP_MP(ire); 24663 24664 mp1 = mp; 24665 out_ill = (ill_t *)q->q_ptr; 24666 24667 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24668 24669 DTRACE_PROBE4(ip4__physical__out__start, 24670 ill_t *, NULL, ill_t *, out_ill, 24671 ipha_t *, ipha, mblk_t *, xmit_mp); 24672 24673 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24674 ipst->ips_ipv4firewall_physical_out, 24675 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24676 24677 DTRACE_PROBE1(ip4__physical__out__end, 24678 mblk_t *, xmit_mp); 24679 24680 if (mp != mp1 && hdr_mp == mp1) 24681 hdr_mp = mp; 24682 if (mp != mp1 && mp_orig == mp1) 24683 mp_orig = mp; 24684 24685 if (xmit_mp != NULL) { 24686 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24687 NULL, void_ip_t *, ipha, 24688 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24689 ipha, ip6_t *, NULL, int, 0); 24690 24691 ILL_SEND_TX(out_ill, ire, connp, 24692 xmit_mp, 0, connp); 24693 24694 BUMP_MIB(out_ill->ill_ip_mib, 24695 ipIfStatsHCOutTransmits); 24696 UPDATE_MIB(out_ill->ill_ip_mib, 24697 ipIfStatsHCOutOctets, ip_len); 24698 24699 if (pkt_type != OB_PKT) { 24700 /* 24701 * Update the packet count of trailing 24702 * RTF_MULTIRT ires. 24703 */ 24704 UPDATE_OB_PKT_COUNT(ire); 24705 } 24706 } 24707 24708 /* All done if we just consumed the hdr_mp. */ 24709 if (mp == hdr_mp) { 24710 last_frag = B_TRUE; 24711 BUMP_MIB(out_ill->ill_ip_mib, 24712 ipIfStatsOutFragOKs); 24713 } 24714 24715 if (multirt_send) { 24716 /* 24717 * We are in a multiple send case; look for 24718 * the next ire and re-enter the loop. 24719 */ 24720 ASSERT(ire1); 24721 ASSERT(next_mp); 24722 /* REFRELE the current ire before looping */ 24723 ire_refrele(ire); 24724 ire = ire1; 24725 ire1 = NULL; 24726 q = ire->ire_stq; 24727 mp = next_mp; 24728 next_mp = NULL; 24729 } 24730 } while (multirt_send); 24731 /* 24732 * Restore the original ire; we need it for the 24733 * trailing frags 24734 */ 24735 if (save_ire != NULL) { 24736 ASSERT(ire1 == NULL); 24737 /* REFRELE the last iterated ire */ 24738 ire_refrele(ire); 24739 /* save_ire has been REFHOLDed */ 24740 ire = save_ire; 24741 q = ire->ire_stq; 24742 save_ire = NULL; 24743 } 24744 24745 if (last_frag) { 24746 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24747 "ip_wput_frag_end:(%S)", 24748 "consumed hdr_mp"); 24749 24750 if (first_ire != NULL) 24751 ire_refrele(first_ire); 24752 return; 24753 } 24754 /* Otherwise, advance and loop. */ 24755 offset += len; 24756 } 24757 24758 drop_pkt: 24759 /* Clean up following allocation failure. */ 24760 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24761 freemsg(mp); 24762 if (mp != hdr_mp) 24763 freeb(hdr_mp); 24764 if (mp != mp_orig) 24765 freemsg(mp_orig); 24766 24767 if (save_ire != NULL) 24768 IRE_REFRELE(save_ire); 24769 if (first_ire != NULL) 24770 ire_refrele(first_ire); 24771 24772 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24773 "ip_wput_frag_end:(%S)", 24774 "end--alloc failure"); 24775 } 24776 24777 /* 24778 * Copy the header plus those options which have the copy bit set 24779 * src is the template to make sure we preserve the cred for TX purposes. 24780 */ 24781 static mblk_t * 24782 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24783 mblk_t *src) 24784 { 24785 mblk_t *mp; 24786 uchar_t *up; 24787 24788 /* 24789 * Quick check if we need to look for options without the copy bit 24790 * set 24791 */ 24792 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24793 if (!mp) 24794 return (mp); 24795 mp->b_rptr += ipst->ips_ip_wroff_extra; 24796 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24797 bcopy(rptr, mp->b_rptr, hdr_len); 24798 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24799 return (mp); 24800 } 24801 up = mp->b_rptr; 24802 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24803 up += IP_SIMPLE_HDR_LENGTH; 24804 rptr += IP_SIMPLE_HDR_LENGTH; 24805 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24806 while (hdr_len > 0) { 24807 uint32_t optval; 24808 uint32_t optlen; 24809 24810 optval = *rptr; 24811 if (optval == IPOPT_EOL) 24812 break; 24813 if (optval == IPOPT_NOP) 24814 optlen = 1; 24815 else 24816 optlen = rptr[1]; 24817 if (optval & IPOPT_COPY) { 24818 bcopy(rptr, up, optlen); 24819 up += optlen; 24820 } 24821 rptr += optlen; 24822 hdr_len -= optlen; 24823 } 24824 /* 24825 * Make sure that we drop an even number of words by filling 24826 * with EOL to the next word boundary. 24827 */ 24828 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24829 hdr_len & 0x3; hdr_len++) 24830 *up++ = IPOPT_EOL; 24831 mp->b_wptr = up; 24832 /* Update header length */ 24833 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24834 return (mp); 24835 } 24836 24837 /* 24838 * Delivery to local recipients including fanout to multiple recipients. 24839 * Does not do checksumming of UDP/TCP. 24840 * Note: q should be the read side queue for either the ill or conn. 24841 * Note: rq should be the read side q for the lower (ill) stream. 24842 * We don't send packets to IPPF processing, thus the last argument 24843 * to all the fanout calls are B_FALSE. 24844 */ 24845 void 24846 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24847 int fanout_flags, zoneid_t zoneid) 24848 { 24849 uint32_t protocol; 24850 mblk_t *first_mp; 24851 boolean_t mctl_present; 24852 int ire_type; 24853 #define rptr ((uchar_t *)ipha) 24854 ip_stack_t *ipst = ill->ill_ipst; 24855 24856 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24857 "ip_wput_local_start: q %p", q); 24858 24859 if (ire != NULL) { 24860 ire_type = ire->ire_type; 24861 } else { 24862 /* 24863 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24864 * packet is not multicast, we can't tell the ire type. 24865 */ 24866 ASSERT(CLASSD(ipha->ipha_dst)); 24867 ire_type = IRE_BROADCAST; 24868 } 24869 24870 first_mp = mp; 24871 if (first_mp->b_datap->db_type == M_CTL) { 24872 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24873 if (!io->ipsec_out_secure) { 24874 /* 24875 * This ipsec_out_t was allocated in ip_wput 24876 * for multicast packets to store the ill_index. 24877 * As this is being delivered locally, we don't 24878 * need this anymore. 24879 */ 24880 mp = first_mp->b_cont; 24881 freeb(first_mp); 24882 first_mp = mp; 24883 mctl_present = B_FALSE; 24884 } else { 24885 /* 24886 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24887 * security properties for the looped-back packet. 24888 */ 24889 mctl_present = B_TRUE; 24890 mp = first_mp->b_cont; 24891 ASSERT(mp != NULL); 24892 ipsec_out_to_in(first_mp); 24893 } 24894 } else { 24895 mctl_present = B_FALSE; 24896 } 24897 24898 DTRACE_PROBE4(ip4__loopback__in__start, 24899 ill_t *, ill, ill_t *, NULL, 24900 ipha_t *, ipha, mblk_t *, first_mp); 24901 24902 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24903 ipst->ips_ipv4firewall_loopback_in, 24904 ill, NULL, ipha, first_mp, mp, 0, ipst); 24905 24906 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24907 24908 if (first_mp == NULL) 24909 return; 24910 24911 if (ipst->ips_ip4_observe.he_interested) { 24912 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 24913 zoneid_t stackzoneid = netstackid_to_zoneid( 24914 ipst->ips_netstack->netstack_stackid); 24915 24916 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 24917 /* 24918 * 127.0.0.1 is special, as we cannot lookup its zoneid by 24919 * address. Restrict the lookup below to the destination zone. 24920 */ 24921 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 24922 lookup_zoneid = zoneid; 24923 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 24924 lookup_zoneid); 24925 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, ipst); 24926 } 24927 24928 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 24929 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 24930 int, 1); 24931 24932 ipst->ips_loopback_packets++; 24933 24934 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24935 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24936 if (!IS_SIMPLE_IPH(ipha)) { 24937 ip_wput_local_options(ipha, ipst); 24938 } 24939 24940 protocol = ipha->ipha_protocol; 24941 switch (protocol) { 24942 case IPPROTO_ICMP: { 24943 ire_t *ire_zone; 24944 ilm_t *ilm; 24945 mblk_t *mp1; 24946 zoneid_t last_zoneid; 24947 ilm_walker_t ilw; 24948 24949 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24950 ASSERT(ire_type == IRE_BROADCAST); 24951 /* 24952 * In the multicast case, applications may have joined 24953 * the group from different zones, so we need to deliver 24954 * the packet to each of them. Loop through the 24955 * multicast memberships structures (ilm) on the receive 24956 * ill and send a copy of the packet up each matching 24957 * one. However, we don't do this for multicasts sent on 24958 * the loopback interface (PHYI_LOOPBACK flag set) as 24959 * they must stay in the sender's zone. 24960 * 24961 * ilm_add_v6() ensures that ilms in the same zone are 24962 * contiguous in the ill_ilm list. We use this property 24963 * to avoid sending duplicates needed when two 24964 * applications in the same zone join the same group on 24965 * different logical interfaces: we ignore the ilm if 24966 * it's zoneid is the same as the last matching one. 24967 * In addition, the sending of the packet for 24968 * ire_zoneid is delayed until all of the other ilms 24969 * have been exhausted. 24970 */ 24971 last_zoneid = -1; 24972 ilm = ilm_walker_start(&ilw, ill); 24973 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 24974 if (ipha->ipha_dst != ilm->ilm_addr || 24975 ilm->ilm_zoneid == last_zoneid || 24976 ilm->ilm_zoneid == zoneid || 24977 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24978 continue; 24979 mp1 = ip_copymsg(first_mp); 24980 if (mp1 == NULL) 24981 continue; 24982 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 24983 0, 0, mctl_present, B_FALSE, ill, 24984 ilm->ilm_zoneid); 24985 last_zoneid = ilm->ilm_zoneid; 24986 } 24987 ilm_walker_finish(&ilw); 24988 /* 24989 * Loopback case: the sending endpoint has 24990 * IP_MULTICAST_LOOP disabled, therefore we don't 24991 * dispatch the multicast packet to the sending zone. 24992 */ 24993 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24994 freemsg(first_mp); 24995 return; 24996 } 24997 } else if (ire_type == IRE_BROADCAST) { 24998 /* 24999 * In the broadcast case, there may be many zones 25000 * which need a copy of the packet delivered to them. 25001 * There is one IRE_BROADCAST per broadcast address 25002 * and per zone; we walk those using a helper function. 25003 * In addition, the sending of the packet for zoneid is 25004 * delayed until all of the other ires have been 25005 * processed. 25006 */ 25007 IRB_REFHOLD(ire->ire_bucket); 25008 ire_zone = NULL; 25009 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25010 ire)) != NULL) { 25011 mp1 = ip_copymsg(first_mp); 25012 if (mp1 == NULL) 25013 continue; 25014 25015 UPDATE_IB_PKT_COUNT(ire_zone); 25016 ire_zone->ire_last_used_time = lbolt; 25017 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25018 mctl_present, B_FALSE, ill, 25019 ire_zone->ire_zoneid); 25020 } 25021 IRB_REFRELE(ire->ire_bucket); 25022 } 25023 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25024 0, mctl_present, B_FALSE, ill, zoneid); 25025 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25026 "ip_wput_local_end: q %p (%S)", 25027 q, "icmp"); 25028 return; 25029 } 25030 case IPPROTO_IGMP: 25031 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25032 /* Bad packet - discarded by igmp_input */ 25033 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25034 "ip_wput_local_end: q %p (%S)", 25035 q, "igmp_input--bad packet"); 25036 if (mctl_present) 25037 freeb(first_mp); 25038 return; 25039 } 25040 /* 25041 * igmp_input() may have returned the pulled up message. 25042 * So first_mp and ipha need to be reinitialized. 25043 */ 25044 ipha = (ipha_t *)mp->b_rptr; 25045 if (mctl_present) 25046 first_mp->b_cont = mp; 25047 else 25048 first_mp = mp; 25049 /* deliver to local raw users */ 25050 break; 25051 case IPPROTO_ENCAP: 25052 /* 25053 * This case is covered by either ip_fanout_proto, or by 25054 * the above security processing for self-tunneled packets. 25055 */ 25056 break; 25057 case IPPROTO_UDP: { 25058 uint16_t *up; 25059 uint32_t ports; 25060 25061 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25062 UDP_PORTS_OFFSET); 25063 /* Force a 'valid' checksum. */ 25064 up[3] = 0; 25065 25066 ports = *(uint32_t *)up; 25067 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25068 (ire_type == IRE_BROADCAST), 25069 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25070 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25071 ill, zoneid); 25072 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25073 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25074 return; 25075 } 25076 case IPPROTO_TCP: { 25077 25078 /* 25079 * For TCP, discard broadcast packets. 25080 */ 25081 if ((ushort_t)ire_type == IRE_BROADCAST) { 25082 freemsg(first_mp); 25083 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25084 ip2dbg(("ip_wput_local: discard broadcast\n")); 25085 return; 25086 } 25087 25088 if (mp->b_datap->db_type == M_DATA) { 25089 /* 25090 * M_DATA mblk, so init mblk (chain) for no struio(). 25091 */ 25092 mblk_t *mp1 = mp; 25093 25094 do { 25095 mp1->b_datap->db_struioflag = 0; 25096 } while ((mp1 = mp1->b_cont) != NULL); 25097 } 25098 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25099 <= mp->b_wptr); 25100 ip_fanout_tcp(q, first_mp, ill, ipha, 25101 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25102 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25103 mctl_present, B_FALSE, zoneid); 25104 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25105 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25106 return; 25107 } 25108 case IPPROTO_SCTP: 25109 { 25110 uint32_t ports; 25111 25112 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25113 ip_fanout_sctp(first_mp, ill, ipha, ports, 25114 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25115 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25116 return; 25117 } 25118 25119 default: 25120 break; 25121 } 25122 /* 25123 * Find a client for some other protocol. We give 25124 * copies to multiple clients, if more than one is 25125 * bound. 25126 */ 25127 ip_fanout_proto(q, first_mp, ill, ipha, 25128 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25129 mctl_present, B_FALSE, ill, zoneid); 25130 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25131 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25132 #undef rptr 25133 } 25134 25135 /* 25136 * Update any source route, record route, or timestamp options. 25137 * Check that we are at end of strict source route. 25138 * The options have been sanity checked by ip_wput_options(). 25139 */ 25140 static void 25141 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25142 { 25143 ipoptp_t opts; 25144 uchar_t *opt; 25145 uint8_t optval; 25146 uint8_t optlen; 25147 ipaddr_t dst; 25148 uint32_t ts; 25149 ire_t *ire; 25150 timestruc_t now; 25151 25152 ip2dbg(("ip_wput_local_options\n")); 25153 for (optval = ipoptp_first(&opts, ipha); 25154 optval != IPOPT_EOL; 25155 optval = ipoptp_next(&opts)) { 25156 opt = opts.ipoptp_cur; 25157 optlen = opts.ipoptp_len; 25158 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25159 switch (optval) { 25160 uint32_t off; 25161 case IPOPT_SSRR: 25162 case IPOPT_LSRR: 25163 off = opt[IPOPT_OFFSET]; 25164 off--; 25165 if (optlen < IP_ADDR_LEN || 25166 off > optlen - IP_ADDR_LEN) { 25167 /* End of source route */ 25168 break; 25169 } 25170 /* 25171 * This will only happen if two consecutive entries 25172 * in the source route contains our address or if 25173 * it is a packet with a loose source route which 25174 * reaches us before consuming the whole source route 25175 */ 25176 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25177 if (optval == IPOPT_SSRR) { 25178 return; 25179 } 25180 /* 25181 * Hack: instead of dropping the packet truncate the 25182 * source route to what has been used by filling the 25183 * rest with IPOPT_NOP. 25184 */ 25185 opt[IPOPT_OLEN] = (uint8_t)off; 25186 while (off < optlen) { 25187 opt[off++] = IPOPT_NOP; 25188 } 25189 break; 25190 case IPOPT_RR: 25191 off = opt[IPOPT_OFFSET]; 25192 off--; 25193 if (optlen < IP_ADDR_LEN || 25194 off > optlen - IP_ADDR_LEN) { 25195 /* No more room - ignore */ 25196 ip1dbg(( 25197 "ip_wput_forward_options: end of RR\n")); 25198 break; 25199 } 25200 dst = htonl(INADDR_LOOPBACK); 25201 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25202 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25203 break; 25204 case IPOPT_TS: 25205 /* Insert timestamp if there is romm */ 25206 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25207 case IPOPT_TS_TSONLY: 25208 off = IPOPT_TS_TIMELEN; 25209 break; 25210 case IPOPT_TS_PRESPEC: 25211 case IPOPT_TS_PRESPEC_RFC791: 25212 /* Verify that the address matched */ 25213 off = opt[IPOPT_OFFSET] - 1; 25214 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25215 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25216 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25217 ipst); 25218 if (ire == NULL) { 25219 /* Not for us */ 25220 break; 25221 } 25222 ire_refrele(ire); 25223 /* FALLTHRU */ 25224 case IPOPT_TS_TSANDADDR: 25225 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25226 break; 25227 default: 25228 /* 25229 * ip_*put_options should have already 25230 * dropped this packet. 25231 */ 25232 cmn_err(CE_PANIC, "ip_wput_local_options: " 25233 "unknown IT - bug in ip_wput_options?\n"); 25234 return; /* Keep "lint" happy */ 25235 } 25236 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25237 /* Increase overflow counter */ 25238 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25239 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25240 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25241 (off << 4); 25242 break; 25243 } 25244 off = opt[IPOPT_OFFSET] - 1; 25245 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25246 case IPOPT_TS_PRESPEC: 25247 case IPOPT_TS_PRESPEC_RFC791: 25248 case IPOPT_TS_TSANDADDR: 25249 dst = htonl(INADDR_LOOPBACK); 25250 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25251 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25252 /* FALLTHRU */ 25253 case IPOPT_TS_TSONLY: 25254 off = opt[IPOPT_OFFSET] - 1; 25255 /* Compute # of milliseconds since midnight */ 25256 gethrestime(&now); 25257 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25258 now.tv_nsec / (NANOSEC / MILLISEC); 25259 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25260 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25261 break; 25262 } 25263 break; 25264 } 25265 } 25266 } 25267 25268 /* 25269 * Send out a multicast packet on interface ipif. 25270 * The sender does not have an conn. 25271 * Caller verifies that this isn't a PHYI_LOOPBACK. 25272 */ 25273 void 25274 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25275 { 25276 ipha_t *ipha; 25277 ire_t *ire; 25278 ipaddr_t dst; 25279 mblk_t *first_mp; 25280 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25281 25282 /* igmp_sendpkt always allocates a ipsec_out_t */ 25283 ASSERT(mp->b_datap->db_type == M_CTL); 25284 ASSERT(!ipif->ipif_isv6); 25285 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25286 25287 first_mp = mp; 25288 mp = first_mp->b_cont; 25289 ASSERT(mp->b_datap->db_type == M_DATA); 25290 ipha = (ipha_t *)mp->b_rptr; 25291 25292 /* 25293 * Find an IRE which matches the destination and the outgoing 25294 * queue (i.e. the outgoing interface.) 25295 */ 25296 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25297 dst = ipif->ipif_pp_dst_addr; 25298 else 25299 dst = ipha->ipha_dst; 25300 /* 25301 * The source address has already been initialized by the 25302 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25303 * be sufficient rather than MATCH_IRE_IPIF. 25304 * 25305 * This function is used for sending IGMP packets. For IPMP, 25306 * we sidestep IGMP snooping issues by sending all multicast 25307 * traffic on a single interface in the IPMP group. 25308 */ 25309 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25310 MATCH_IRE_ILL, ipst); 25311 if (!ire) { 25312 /* 25313 * Mark this packet to make it be delivered to 25314 * ip_wput_ire after the new ire has been 25315 * created. 25316 */ 25317 mp->b_prev = NULL; 25318 mp->b_next = NULL; 25319 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25320 zoneid, &zero_info); 25321 return; 25322 } 25323 25324 /* 25325 * Honor the RTF_SETSRC flag; this is the only case 25326 * where we force this addr whatever the current src addr is, 25327 * because this address is set by igmp_sendpkt(), and 25328 * cannot be specified by any user. 25329 */ 25330 if (ire->ire_flags & RTF_SETSRC) { 25331 ipha->ipha_src = ire->ire_src_addr; 25332 } 25333 25334 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25335 } 25336 25337 /* 25338 * NOTE : This function does not ire_refrele the ire argument passed in. 25339 * 25340 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25341 * failure. The nce_fp_mp can vanish any time in the case of 25342 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25343 * the ire_lock to access the nce_fp_mp in this case. 25344 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25345 * prepending a fastpath message IPQoS processing must precede it, we also set 25346 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25347 * (IPQoS might have set the b_band for CoS marking). 25348 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25349 * must follow it so that IPQoS can mark the dl_priority field for CoS 25350 * marking, if needed. 25351 */ 25352 static mblk_t * 25353 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25354 uint32_t ill_index, ipha_t **iphap) 25355 { 25356 uint_t hlen; 25357 ipha_t *ipha; 25358 mblk_t *mp1; 25359 boolean_t qos_done = B_FALSE; 25360 uchar_t *ll_hdr; 25361 ip_stack_t *ipst = ire->ire_ipst; 25362 25363 #define rptr ((uchar_t *)ipha) 25364 25365 ipha = (ipha_t *)mp->b_rptr; 25366 hlen = 0; 25367 LOCK_IRE_FP_MP(ire); 25368 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25369 ASSERT(DB_TYPE(mp1) == M_DATA); 25370 /* Initiate IPPF processing */ 25371 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25372 UNLOCK_IRE_FP_MP(ire); 25373 ip_process(proc, &mp, ill_index); 25374 if (mp == NULL) 25375 return (NULL); 25376 25377 ipha = (ipha_t *)mp->b_rptr; 25378 LOCK_IRE_FP_MP(ire); 25379 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25380 qos_done = B_TRUE; 25381 goto no_fp_mp; 25382 } 25383 ASSERT(DB_TYPE(mp1) == M_DATA); 25384 } 25385 hlen = MBLKL(mp1); 25386 /* 25387 * Check if we have enough room to prepend fastpath 25388 * header 25389 */ 25390 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25391 ll_hdr = rptr - hlen; 25392 bcopy(mp1->b_rptr, ll_hdr, hlen); 25393 /* 25394 * Set the b_rptr to the start of the link layer 25395 * header 25396 */ 25397 mp->b_rptr = ll_hdr; 25398 mp1 = mp; 25399 } else { 25400 mp1 = copyb(mp1); 25401 if (mp1 == NULL) 25402 goto unlock_err; 25403 mp1->b_band = mp->b_band; 25404 mp1->b_cont = mp; 25405 /* 25406 * XXX disable ICK_VALID and compute checksum 25407 * here; can happen if nce_fp_mp changes and 25408 * it can't be copied now due to insufficient 25409 * space. (unlikely, fp mp can change, but it 25410 * does not increase in length) 25411 */ 25412 } 25413 UNLOCK_IRE_FP_MP(ire); 25414 } else { 25415 no_fp_mp: 25416 mp1 = copyb(ire->ire_nce->nce_res_mp); 25417 if (mp1 == NULL) { 25418 unlock_err: 25419 UNLOCK_IRE_FP_MP(ire); 25420 freemsg(mp); 25421 return (NULL); 25422 } 25423 UNLOCK_IRE_FP_MP(ire); 25424 mp1->b_cont = mp; 25425 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25426 ip_process(proc, &mp1, ill_index); 25427 if (mp1 == NULL) 25428 return (NULL); 25429 25430 if (mp1->b_cont == NULL) 25431 ipha = NULL; 25432 else 25433 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25434 } 25435 } 25436 25437 *iphap = ipha; 25438 return (mp1); 25439 #undef rptr 25440 } 25441 25442 /* 25443 * Finish the outbound IPsec processing for an IPv6 packet. This function 25444 * is called from ipsec_out_process() if the IPsec packet was processed 25445 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25446 * asynchronously. 25447 */ 25448 void 25449 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25450 ire_t *ire_arg) 25451 { 25452 in6_addr_t *v6dstp; 25453 ire_t *ire; 25454 mblk_t *mp; 25455 ip6_t *ip6h1; 25456 uint_t ill_index; 25457 ipsec_out_t *io; 25458 boolean_t hwaccel; 25459 uint32_t flags = IP6_NO_IPPOLICY; 25460 int match_flags; 25461 zoneid_t zoneid; 25462 boolean_t ill_need_rele = B_FALSE; 25463 boolean_t ire_need_rele = B_FALSE; 25464 ip_stack_t *ipst; 25465 25466 mp = ipsec_mp->b_cont; 25467 ip6h1 = (ip6_t *)mp->b_rptr; 25468 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25469 ASSERT(io->ipsec_out_ns != NULL); 25470 ipst = io->ipsec_out_ns->netstack_ip; 25471 ill_index = io->ipsec_out_ill_index; 25472 if (io->ipsec_out_reachable) { 25473 flags |= IPV6_REACHABILITY_CONFIRMATION; 25474 } 25475 hwaccel = io->ipsec_out_accelerated; 25476 zoneid = io->ipsec_out_zoneid; 25477 ASSERT(zoneid != ALL_ZONES); 25478 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25479 /* Multicast addresses should have non-zero ill_index. */ 25480 v6dstp = &ip6h->ip6_dst; 25481 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25482 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25483 25484 if (ill == NULL && ill_index != 0) { 25485 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25486 /* Failure case frees things for us. */ 25487 if (ill == NULL) 25488 return; 25489 25490 ill_need_rele = B_TRUE; 25491 } 25492 ASSERT(mp != NULL); 25493 25494 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25495 boolean_t unspec_src; 25496 ipif_t *ipif; 25497 25498 /* 25499 * Use the ill_index to get the right ill. 25500 */ 25501 unspec_src = io->ipsec_out_unspec_src; 25502 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25503 if (ipif == NULL) { 25504 if (ill_need_rele) 25505 ill_refrele(ill); 25506 freemsg(ipsec_mp); 25507 return; 25508 } 25509 25510 if (ire_arg != NULL) { 25511 ire = ire_arg; 25512 } else { 25513 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25514 zoneid, msg_getlabel(mp), match_flags, ipst); 25515 ire_need_rele = B_TRUE; 25516 } 25517 if (ire != NULL) { 25518 ipif_refrele(ipif); 25519 /* 25520 * XXX Do the multicast forwarding now, as the IPsec 25521 * processing has been done. 25522 */ 25523 goto send; 25524 } 25525 25526 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25527 mp->b_prev = NULL; 25528 mp->b_next = NULL; 25529 25530 /* 25531 * If the IPsec packet was processed asynchronously, 25532 * drop it now. 25533 */ 25534 if (q == NULL) { 25535 if (ill_need_rele) 25536 ill_refrele(ill); 25537 freemsg(ipsec_mp); 25538 return; 25539 } 25540 25541 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25542 unspec_src, zoneid); 25543 ipif_refrele(ipif); 25544 } else { 25545 if (ire_arg != NULL) { 25546 ire = ire_arg; 25547 } else { 25548 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25549 ire_need_rele = B_TRUE; 25550 } 25551 if (ire != NULL) 25552 goto send; 25553 /* 25554 * ire disappeared underneath. 25555 * 25556 * What we need to do here is the ip_newroute 25557 * logic to get the ire without doing the IPsec 25558 * processing. Follow the same old path. But this 25559 * time, ip_wput or ire_add_then_send will call us 25560 * directly as all the IPsec operations are done. 25561 */ 25562 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25563 mp->b_prev = NULL; 25564 mp->b_next = NULL; 25565 25566 /* 25567 * If the IPsec packet was processed asynchronously, 25568 * drop it now. 25569 */ 25570 if (q == NULL) { 25571 if (ill_need_rele) 25572 ill_refrele(ill); 25573 freemsg(ipsec_mp); 25574 return; 25575 } 25576 25577 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25578 zoneid, ipst); 25579 } 25580 if (ill != NULL && ill_need_rele) 25581 ill_refrele(ill); 25582 return; 25583 send: 25584 if (ill != NULL && ill_need_rele) 25585 ill_refrele(ill); 25586 25587 /* Local delivery */ 25588 if (ire->ire_stq == NULL) { 25589 ill_t *out_ill; 25590 ASSERT(q != NULL); 25591 25592 /* PFHooks: LOOPBACK_OUT */ 25593 out_ill = ire_to_ill(ire); 25594 25595 /* 25596 * DTrace this as ip:::send. A blocked packet will fire the 25597 * send probe, but not the receive probe. 25598 */ 25599 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25600 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25601 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25602 25603 DTRACE_PROBE4(ip6__loopback__out__start, 25604 ill_t *, NULL, ill_t *, out_ill, 25605 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25606 25607 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25608 ipst->ips_ipv6firewall_loopback_out, 25609 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25610 25611 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25612 25613 if (ipsec_mp != NULL) { 25614 ip_wput_local_v6(RD(q), out_ill, 25615 ip6h, ipsec_mp, ire, 0, zoneid); 25616 } 25617 if (ire_need_rele) 25618 ire_refrele(ire); 25619 return; 25620 } 25621 /* 25622 * Everything is done. Send it out on the wire. 25623 * We force the insertion of a fragment header using the 25624 * IPH_FRAG_HDR flag in two cases: 25625 * - after reception of an ICMPv6 "packet too big" message 25626 * with a MTU < 1280 (cf. RFC 2460 section 5) 25627 * - for multirouted IPv6 packets, so that the receiver can 25628 * discard duplicates according to their fragment identifier 25629 */ 25630 /* XXX fix flow control problems. */ 25631 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25632 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25633 if (hwaccel) { 25634 /* 25635 * hardware acceleration does not handle these 25636 * "slow path" cases. 25637 */ 25638 /* IPsec KSTATS: should bump bean counter here. */ 25639 if (ire_need_rele) 25640 ire_refrele(ire); 25641 freemsg(ipsec_mp); 25642 return; 25643 } 25644 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25645 (mp->b_cont ? msgdsize(mp) : 25646 mp->b_wptr - (uchar_t *)ip6h)) { 25647 /* IPsec KSTATS: should bump bean counter here. */ 25648 ip0dbg(("Packet length mismatch: %d, %ld\n", 25649 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25650 msgdsize(mp))); 25651 if (ire_need_rele) 25652 ire_refrele(ire); 25653 freemsg(ipsec_mp); 25654 return; 25655 } 25656 ASSERT(mp->b_prev == NULL); 25657 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25658 ntohs(ip6h->ip6_plen) + 25659 IPV6_HDR_LEN, ire->ire_max_frag)); 25660 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25661 ire->ire_max_frag); 25662 } else { 25663 UPDATE_OB_PKT_COUNT(ire); 25664 ire->ire_last_used_time = lbolt; 25665 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25666 } 25667 if (ire_need_rele) 25668 ire_refrele(ire); 25669 freeb(ipsec_mp); 25670 } 25671 25672 void 25673 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25674 { 25675 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25676 da_ipsec_t *hada; /* data attributes */ 25677 ill_t *ill = (ill_t *)q->q_ptr; 25678 25679 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25680 25681 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25682 /* IPsec KSTATS: Bump lose counter here! */ 25683 freemsg(mp); 25684 return; 25685 } 25686 25687 /* 25688 * It's an IPsec packet that must be 25689 * accelerated by the Provider, and the 25690 * outbound ill is IPsec acceleration capable. 25691 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25692 * to the ill. 25693 * IPsec KSTATS: should bump packet counter here. 25694 */ 25695 25696 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25697 if (hada_mp == NULL) { 25698 /* IPsec KSTATS: should bump packet counter here. */ 25699 freemsg(mp); 25700 return; 25701 } 25702 25703 hada_mp->b_datap->db_type = M_CTL; 25704 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25705 hada_mp->b_cont = mp; 25706 25707 hada = (da_ipsec_t *)hada_mp->b_rptr; 25708 bzero(hada, sizeof (da_ipsec_t)); 25709 hada->da_type = IPHADA_M_CTL; 25710 25711 putnext(q, hada_mp); 25712 } 25713 25714 /* 25715 * Finish the outbound IPsec processing. This function is called from 25716 * ipsec_out_process() if the IPsec packet was processed 25717 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25718 * asynchronously. 25719 */ 25720 void 25721 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25722 ire_t *ire_arg) 25723 { 25724 uint32_t v_hlen_tos_len; 25725 ipaddr_t dst; 25726 ipif_t *ipif = NULL; 25727 ire_t *ire; 25728 ire_t *ire1 = NULL; 25729 mblk_t *next_mp = NULL; 25730 uint32_t max_frag; 25731 boolean_t multirt_send = B_FALSE; 25732 mblk_t *mp; 25733 ipha_t *ipha1; 25734 uint_t ill_index; 25735 ipsec_out_t *io; 25736 int match_flags; 25737 irb_t *irb = NULL; 25738 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25739 zoneid_t zoneid; 25740 ipxmit_state_t pktxmit_state; 25741 ip_stack_t *ipst; 25742 25743 #ifdef _BIG_ENDIAN 25744 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25745 #else 25746 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25747 #endif 25748 25749 mp = ipsec_mp->b_cont; 25750 ipha1 = (ipha_t *)mp->b_rptr; 25751 ASSERT(mp != NULL); 25752 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25753 dst = ipha->ipha_dst; 25754 25755 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25756 ill_index = io->ipsec_out_ill_index; 25757 zoneid = io->ipsec_out_zoneid; 25758 ASSERT(zoneid != ALL_ZONES); 25759 ipst = io->ipsec_out_ns->netstack_ip; 25760 ASSERT(io->ipsec_out_ns != NULL); 25761 25762 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25763 if (ill == NULL && ill_index != 0) { 25764 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25765 /* Failure case frees things for us. */ 25766 if (ill == NULL) 25767 return; 25768 25769 ill_need_rele = B_TRUE; 25770 } 25771 25772 if (CLASSD(dst)) { 25773 boolean_t conn_dontroute; 25774 /* 25775 * Use the ill_index to get the right ipif. 25776 */ 25777 conn_dontroute = io->ipsec_out_dontroute; 25778 if (ill_index == 0) 25779 ipif = ipif_lookup_group(dst, zoneid, ipst); 25780 else 25781 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25782 if (ipif == NULL) { 25783 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25784 " multicast\n")); 25785 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25786 freemsg(ipsec_mp); 25787 goto done; 25788 } 25789 /* 25790 * ipha_src has already been intialized with the 25791 * value of the ipif in ip_wput. All we need now is 25792 * an ire to send this downstream. 25793 */ 25794 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25795 msg_getlabel(mp), match_flags, ipst); 25796 if (ire != NULL) { 25797 ill_t *ill1; 25798 /* 25799 * Do the multicast forwarding now, as the IPsec 25800 * processing has been done. 25801 */ 25802 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25803 (ill1 = ire_to_ill(ire))) { 25804 if (ip_mforward(ill1, ipha, mp)) { 25805 freemsg(ipsec_mp); 25806 ip1dbg(("ip_wput_ipsec_out: mforward " 25807 "failed\n")); 25808 ire_refrele(ire); 25809 goto done; 25810 } 25811 } 25812 goto send; 25813 } 25814 25815 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25816 mp->b_prev = NULL; 25817 mp->b_next = NULL; 25818 25819 /* 25820 * If the IPsec packet was processed asynchronously, 25821 * drop it now. 25822 */ 25823 if (q == NULL) { 25824 freemsg(ipsec_mp); 25825 goto done; 25826 } 25827 25828 /* 25829 * We may be using a wrong ipif to create the ire. 25830 * But it is okay as the source address is assigned 25831 * for the packet already. Next outbound packet would 25832 * create the IRE with the right IPIF in ip_wput. 25833 * 25834 * Also handle RTF_MULTIRT routes. 25835 */ 25836 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25837 zoneid, &zero_info); 25838 } else { 25839 if (ire_arg != NULL) { 25840 ire = ire_arg; 25841 ire_need_rele = B_FALSE; 25842 } else { 25843 ire = ire_cache_lookup(dst, zoneid, 25844 msg_getlabel(mp), ipst); 25845 } 25846 if (ire != NULL) { 25847 goto send; 25848 } 25849 25850 /* 25851 * ire disappeared underneath. 25852 * 25853 * What we need to do here is the ip_newroute 25854 * logic to get the ire without doing the IPsec 25855 * processing. Follow the same old path. But this 25856 * time, ip_wput or ire_add_then_put will call us 25857 * directly as all the IPsec operations are done. 25858 */ 25859 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25860 mp->b_prev = NULL; 25861 mp->b_next = NULL; 25862 25863 /* 25864 * If the IPsec packet was processed asynchronously, 25865 * drop it now. 25866 */ 25867 if (q == NULL) { 25868 freemsg(ipsec_mp); 25869 goto done; 25870 } 25871 25872 /* 25873 * Since we're going through ip_newroute() again, we 25874 * need to make sure we don't: 25875 * 25876 * 1.) Trigger the ASSERT() with the ipha_ident 25877 * overloading. 25878 * 2.) Redo transport-layer checksumming, since we've 25879 * already done all that to get this far. 25880 * 25881 * The easiest way not do either of the above is to set 25882 * the ipha_ident field to IP_HDR_INCLUDED. 25883 */ 25884 ipha->ipha_ident = IP_HDR_INCLUDED; 25885 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25886 zoneid, ipst); 25887 } 25888 goto done; 25889 send: 25890 if (ire->ire_stq == NULL) { 25891 ill_t *out_ill; 25892 /* 25893 * Loopbacks go through ip_wput_local except for one case. 25894 * We come here if we generate a icmp_frag_needed message 25895 * after IPsec processing is over. When this function calls 25896 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25897 * icmp_frag_needed. The message generated comes back here 25898 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25899 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25900 * source address as it is usually set in ip_wput_ire. As 25901 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25902 * and we end up here. We can't enter ip_wput_ire once the 25903 * IPsec processing is over and hence we need to do it here. 25904 */ 25905 ASSERT(q != NULL); 25906 UPDATE_OB_PKT_COUNT(ire); 25907 ire->ire_last_used_time = lbolt; 25908 if (ipha->ipha_src == 0) 25909 ipha->ipha_src = ire->ire_src_addr; 25910 25911 /* PFHooks: LOOPBACK_OUT */ 25912 out_ill = ire_to_ill(ire); 25913 25914 /* 25915 * DTrace this as ip:::send. A blocked packet will fire the 25916 * send probe, but not the receive probe. 25917 */ 25918 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25919 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 25920 ipha_t *, ipha, ip6_t *, NULL, int, 1); 25921 25922 DTRACE_PROBE4(ip4__loopback__out__start, 25923 ill_t *, NULL, ill_t *, out_ill, 25924 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25925 25926 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25927 ipst->ips_ipv4firewall_loopback_out, 25928 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 25929 25930 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25931 25932 if (ipsec_mp != NULL) 25933 ip_wput_local(RD(q), out_ill, 25934 ipha, ipsec_mp, ire, 0, zoneid); 25935 if (ire_need_rele) 25936 ire_refrele(ire); 25937 goto done; 25938 } 25939 25940 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25941 /* 25942 * We are through with IPsec processing. 25943 * Fragment this and send it on the wire. 25944 */ 25945 if (io->ipsec_out_accelerated) { 25946 /* 25947 * The packet has been accelerated but must 25948 * be fragmented. This should not happen 25949 * since AH and ESP must not accelerate 25950 * packets that need fragmentation, however 25951 * the configuration could have changed 25952 * since the AH or ESP processing. 25953 * Drop packet. 25954 * IPsec KSTATS: bump bean counter here. 25955 */ 25956 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25957 "fragmented accelerated packet!\n")); 25958 freemsg(ipsec_mp); 25959 } else { 25960 ip_wput_ire_fragmentit(ipsec_mp, ire, 25961 zoneid, ipst, NULL); 25962 } 25963 if (ire_need_rele) 25964 ire_refrele(ire); 25965 goto done; 25966 } 25967 25968 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25969 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25970 (void *)ire->ire_ipif, (void *)ipif)); 25971 25972 /* 25973 * Multiroute the secured packet. 25974 */ 25975 if (ire->ire_flags & RTF_MULTIRT) { 25976 ire_t *first_ire; 25977 irb = ire->ire_bucket; 25978 ASSERT(irb != NULL); 25979 /* 25980 * This ire has been looked up as the one that 25981 * goes through the given ipif; 25982 * make sure we do not omit any other multiroute ire 25983 * that may be present in the bucket before this one. 25984 */ 25985 IRB_REFHOLD(irb); 25986 for (first_ire = irb->irb_ire; 25987 first_ire != NULL; 25988 first_ire = first_ire->ire_next) { 25989 if ((first_ire->ire_flags & RTF_MULTIRT) && 25990 (first_ire->ire_addr == ire->ire_addr) && 25991 !(first_ire->ire_marks & 25992 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 25993 break; 25994 } 25995 25996 if ((first_ire != NULL) && (first_ire != ire)) { 25997 /* 25998 * Don't change the ire if the packet must 25999 * be fragmented if sent via this new one. 26000 */ 26001 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26002 IRE_REFHOLD(first_ire); 26003 if (ire_need_rele) 26004 ire_refrele(ire); 26005 else 26006 ire_need_rele = B_TRUE; 26007 ire = first_ire; 26008 } 26009 } 26010 IRB_REFRELE(irb); 26011 26012 multirt_send = B_TRUE; 26013 max_frag = ire->ire_max_frag; 26014 } 26015 26016 /* 26017 * In most cases, the emission loop below is entered only once. 26018 * Only in the case where the ire holds the RTF_MULTIRT 26019 * flag, we loop to process all RTF_MULTIRT ires in the 26020 * bucket, and send the packet through all crossed 26021 * RTF_MULTIRT routes. 26022 */ 26023 do { 26024 if (multirt_send) { 26025 /* 26026 * ire1 holds here the next ire to process in the 26027 * bucket. If multirouting is expected, 26028 * any non-RTF_MULTIRT ire that has the 26029 * right destination address is ignored. 26030 */ 26031 ASSERT(irb != NULL); 26032 IRB_REFHOLD(irb); 26033 for (ire1 = ire->ire_next; 26034 ire1 != NULL; 26035 ire1 = ire1->ire_next) { 26036 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26037 continue; 26038 if (ire1->ire_addr != ire->ire_addr) 26039 continue; 26040 if (ire1->ire_marks & 26041 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26042 continue; 26043 /* No loopback here */ 26044 if (ire1->ire_stq == NULL) 26045 continue; 26046 /* 26047 * Ensure we do not exceed the MTU 26048 * of the next route. 26049 */ 26050 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26051 ip_multirt_bad_mtu(ire1, max_frag); 26052 continue; 26053 } 26054 26055 IRE_REFHOLD(ire1); 26056 break; 26057 } 26058 IRB_REFRELE(irb); 26059 if (ire1 != NULL) { 26060 /* 26061 * We are in a multiple send case, need to 26062 * make a copy of the packet. 26063 */ 26064 next_mp = copymsg(ipsec_mp); 26065 if (next_mp == NULL) { 26066 ire_refrele(ire1); 26067 ire1 = NULL; 26068 } 26069 } 26070 } 26071 /* 26072 * Everything is done. Send it out on the wire 26073 * 26074 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26075 * either send it on the wire or, in the case of 26076 * HW acceleration, call ipsec_hw_putnext. 26077 */ 26078 if (ire->ire_nce && 26079 ire->ire_nce->nce_state != ND_REACHABLE) { 26080 DTRACE_PROBE2(ip__wput__ipsec__bail, 26081 (ire_t *), ire, (mblk_t *), ipsec_mp); 26082 /* 26083 * If ire's link-layer is unresolved (this 26084 * would only happen if the incomplete ire 26085 * was added to cachetable via forwarding path) 26086 * don't bother going to ip_xmit_v4. Just drop the 26087 * packet. 26088 * There is a slight risk here, in that, if we 26089 * have the forwarding path create an incomplete 26090 * IRE, then until the IRE is completed, any 26091 * transmitted IPsec packets will be dropped 26092 * instead of being queued waiting for resolution. 26093 * 26094 * But the likelihood of a forwarding packet and a wput 26095 * packet sending to the same dst at the same time 26096 * and there not yet be an ARP entry for it is small. 26097 * Furthermore, if this actually happens, it might 26098 * be likely that wput would generate multiple 26099 * packets (and forwarding would also have a train 26100 * of packets) for that destination. If this is 26101 * the case, some of them would have been dropped 26102 * anyway, since ARP only queues a few packets while 26103 * waiting for resolution 26104 * 26105 * NOTE: We should really call ip_xmit_v4, 26106 * and let it queue the packet and send the 26107 * ARP query and have ARP come back thus: 26108 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26109 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26110 * hw accel work. But it's too complex to get 26111 * the IPsec hw acceleration approach to fit 26112 * well with ip_xmit_v4 doing ARP without 26113 * doing IPsec simplification. For now, we just 26114 * poke ip_xmit_v4 to trigger the arp resolve, so 26115 * that we can continue with the send on the next 26116 * attempt. 26117 * 26118 * XXX THis should be revisited, when 26119 * the IPsec/IP interaction is cleaned up 26120 */ 26121 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26122 " - dropping packet\n")); 26123 freemsg(ipsec_mp); 26124 /* 26125 * Call ip_xmit_v4() to trigger ARP query 26126 * in case the nce_state is ND_INITIAL 26127 */ 26128 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26129 goto drop_pkt; 26130 } 26131 26132 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26133 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26134 mblk_t *, ipsec_mp); 26135 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26136 ipst->ips_ipv4firewall_physical_out, NULL, 26137 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26138 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26139 if (ipsec_mp == NULL) 26140 goto drop_pkt; 26141 26142 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26143 pktxmit_state = ip_xmit_v4(mp, ire, 26144 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26145 26146 if ((pktxmit_state == SEND_FAILED) || 26147 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26148 26149 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26150 drop_pkt: 26151 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26152 ipIfStatsOutDiscards); 26153 if (ire_need_rele) 26154 ire_refrele(ire); 26155 if (ire1 != NULL) { 26156 ire_refrele(ire1); 26157 freemsg(next_mp); 26158 } 26159 goto done; 26160 } 26161 26162 freeb(ipsec_mp); 26163 if (ire_need_rele) 26164 ire_refrele(ire); 26165 26166 if (ire1 != NULL) { 26167 ire = ire1; 26168 ire_need_rele = B_TRUE; 26169 ASSERT(next_mp); 26170 ipsec_mp = next_mp; 26171 mp = ipsec_mp->b_cont; 26172 ire1 = NULL; 26173 next_mp = NULL; 26174 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26175 } else { 26176 multirt_send = B_FALSE; 26177 } 26178 } while (multirt_send); 26179 done: 26180 if (ill != NULL && ill_need_rele) 26181 ill_refrele(ill); 26182 if (ipif != NULL) 26183 ipif_refrele(ipif); 26184 } 26185 26186 /* 26187 * Get the ill corresponding to the specified ire, and compare its 26188 * capabilities with the protocol and algorithms specified by the 26189 * the SA obtained from ipsec_out. If they match, annotate the 26190 * ipsec_out structure to indicate that the packet needs acceleration. 26191 * 26192 * 26193 * A packet is eligible for outbound hardware acceleration if the 26194 * following conditions are satisfied: 26195 * 26196 * 1. the packet will not be fragmented 26197 * 2. the provider supports the algorithm 26198 * 3. there is no pending control message being exchanged 26199 * 4. snoop is not attached 26200 * 5. the destination address is not a broadcast or multicast address. 26201 * 26202 * Rationale: 26203 * - Hardware drivers do not support fragmentation with 26204 * the current interface. 26205 * - snoop, multicast, and broadcast may result in exposure of 26206 * a cleartext datagram. 26207 * We check all five of these conditions here. 26208 * 26209 * XXX would like to nuke "ire_t *" parameter here; problem is that 26210 * IRE is only way to figure out if a v4 address is a broadcast and 26211 * thus ineligible for acceleration... 26212 */ 26213 static void 26214 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26215 { 26216 ipsec_out_t *io; 26217 mblk_t *data_mp; 26218 uint_t plen, overhead; 26219 ip_stack_t *ipst; 26220 phyint_t *phyint; 26221 26222 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26223 return; 26224 26225 if (ill == NULL) 26226 return; 26227 ipst = ill->ill_ipst; 26228 phyint = ill->ill_phyint; 26229 26230 /* 26231 * Destination address is a broadcast or multicast. Punt. 26232 */ 26233 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26234 IRE_LOCAL))) 26235 return; 26236 26237 data_mp = ipsec_mp->b_cont; 26238 26239 if (ill->ill_isv6) { 26240 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26241 26242 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26243 return; 26244 26245 plen = ip6h->ip6_plen; 26246 } else { 26247 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26248 26249 if (CLASSD(ipha->ipha_dst)) 26250 return; 26251 26252 plen = ipha->ipha_length; 26253 } 26254 /* 26255 * Is there a pending DLPI control message being exchanged 26256 * between IP/IPsec and the DLS Provider? If there is, it 26257 * could be a SADB update, and the state of the DLS Provider 26258 * SADB might not be in sync with the SADB maintained by 26259 * IPsec. To avoid dropping packets or using the wrong keying 26260 * material, we do not accelerate this packet. 26261 */ 26262 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26263 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26264 "ill_dlpi_pending! don't accelerate packet\n")); 26265 return; 26266 } 26267 26268 /* 26269 * Is the Provider in promiscous mode? If it does, we don't 26270 * accelerate the packet since it will bounce back up to the 26271 * listeners in the clear. 26272 */ 26273 if (phyint->phyint_flags & PHYI_PROMISC) { 26274 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26275 "ill in promiscous mode, don't accelerate packet\n")); 26276 return; 26277 } 26278 26279 /* 26280 * Will the packet require fragmentation? 26281 */ 26282 26283 /* 26284 * IPsec ESP note: this is a pessimistic estimate, but the same 26285 * as is used elsewhere. 26286 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26287 * + 2-byte trailer 26288 */ 26289 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26290 IPSEC_BASE_ESP_HDR_SIZE(sa); 26291 26292 if ((plen + overhead) > ill->ill_max_mtu) 26293 return; 26294 26295 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26296 26297 /* 26298 * Can the ill accelerate this IPsec protocol and algorithm 26299 * specified by the SA? 26300 */ 26301 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26302 ill->ill_isv6, sa, ipst->ips_netstack)) { 26303 return; 26304 } 26305 26306 /* 26307 * Tell AH or ESP that the outbound ill is capable of 26308 * accelerating this packet. 26309 */ 26310 io->ipsec_out_is_capab_ill = B_TRUE; 26311 } 26312 26313 /* 26314 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26315 * 26316 * If this function returns B_TRUE, the requested SA's have been filled 26317 * into the ipsec_out_*_sa pointers. 26318 * 26319 * If the function returns B_FALSE, the packet has been "consumed", most 26320 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26321 * 26322 * The SA references created by the protocol-specific "select" 26323 * function will be released when the ipsec_mp is freed, thanks to the 26324 * ipsec_out_free destructor -- see spd.c. 26325 */ 26326 static boolean_t 26327 ipsec_out_select_sa(mblk_t *ipsec_mp) 26328 { 26329 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26330 ipsec_out_t *io; 26331 ipsec_policy_t *pp; 26332 ipsec_action_t *ap; 26333 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26334 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26335 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26336 26337 if (!io->ipsec_out_secure) { 26338 /* 26339 * We came here by mistake. 26340 * Don't bother with ipsec processing 26341 * We should "discourage" this path in the future. 26342 */ 26343 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26344 return (B_FALSE); 26345 } 26346 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26347 ASSERT((io->ipsec_out_policy != NULL) || 26348 (io->ipsec_out_act != NULL)); 26349 26350 ASSERT(io->ipsec_out_failed == B_FALSE); 26351 26352 /* 26353 * IPsec processing has started. 26354 */ 26355 io->ipsec_out_proc_begin = B_TRUE; 26356 ap = io->ipsec_out_act; 26357 if (ap == NULL) { 26358 pp = io->ipsec_out_policy; 26359 ASSERT(pp != NULL); 26360 ap = pp->ipsp_act; 26361 ASSERT(ap != NULL); 26362 } 26363 26364 /* 26365 * We have an action. now, let's select SA's. 26366 * (In the future, we can cache this in the conn_t..) 26367 */ 26368 if (ap->ipa_want_esp) { 26369 if (io->ipsec_out_esp_sa == NULL) { 26370 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26371 IPPROTO_ESP); 26372 } 26373 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26374 } 26375 26376 if (ap->ipa_want_ah) { 26377 if (io->ipsec_out_ah_sa == NULL) { 26378 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26379 IPPROTO_AH); 26380 } 26381 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26382 /* 26383 * The ESP and AH processing order needs to be preserved 26384 * when both protocols are required (ESP should be applied 26385 * before AH for an outbound packet). Force an ESP ACQUIRE 26386 * when both ESP and AH are required, and an AH ACQUIRE 26387 * is needed. 26388 */ 26389 if (ap->ipa_want_esp && need_ah_acquire) 26390 need_esp_acquire = B_TRUE; 26391 } 26392 26393 /* 26394 * Send an ACQUIRE (extended, regular, or both) if we need one. 26395 * Release SAs that got referenced, but will not be used until we 26396 * acquire _all_ of the SAs we need. 26397 */ 26398 if (need_ah_acquire || need_esp_acquire) { 26399 if (io->ipsec_out_ah_sa != NULL) { 26400 IPSA_REFRELE(io->ipsec_out_ah_sa); 26401 io->ipsec_out_ah_sa = NULL; 26402 } 26403 if (io->ipsec_out_esp_sa != NULL) { 26404 IPSA_REFRELE(io->ipsec_out_esp_sa); 26405 io->ipsec_out_esp_sa = NULL; 26406 } 26407 26408 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26409 return (B_FALSE); 26410 } 26411 26412 return (B_TRUE); 26413 } 26414 26415 /* 26416 * Process an IPSEC_OUT message and see what you can 26417 * do with it. 26418 * IPQoS Notes: 26419 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26420 * IPsec. 26421 * XXX would like to nuke ire_t. 26422 * XXX ill_index better be "real" 26423 */ 26424 void 26425 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26426 { 26427 ipsec_out_t *io; 26428 ipsec_policy_t *pp; 26429 ipsec_action_t *ap; 26430 ipha_t *ipha; 26431 ip6_t *ip6h; 26432 mblk_t *mp; 26433 ill_t *ill; 26434 zoneid_t zoneid; 26435 ipsec_status_t ipsec_rc; 26436 boolean_t ill_need_rele = B_FALSE; 26437 ip_stack_t *ipst; 26438 ipsec_stack_t *ipss; 26439 26440 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26441 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26442 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26443 ipst = io->ipsec_out_ns->netstack_ip; 26444 mp = ipsec_mp->b_cont; 26445 26446 /* 26447 * Initiate IPPF processing. We do it here to account for packets 26448 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26449 * We can check for ipsec_out_proc_begin even for such packets, as 26450 * they will always be false (asserted below). 26451 */ 26452 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26453 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26454 io->ipsec_out_ill_index : ill_index); 26455 if (mp == NULL) { 26456 ip2dbg(("ipsec_out_process: packet dropped "\ 26457 "during IPPF processing\n")); 26458 freeb(ipsec_mp); 26459 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26460 return; 26461 } 26462 } 26463 26464 if (!io->ipsec_out_secure) { 26465 /* 26466 * We came here by mistake. 26467 * Don't bother with ipsec processing 26468 * Should "discourage" this path in the future. 26469 */ 26470 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26471 goto done; 26472 } 26473 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26474 ASSERT((io->ipsec_out_policy != NULL) || 26475 (io->ipsec_out_act != NULL)); 26476 ASSERT(io->ipsec_out_failed == B_FALSE); 26477 26478 ipss = ipst->ips_netstack->netstack_ipsec; 26479 if (!ipsec_loaded(ipss)) { 26480 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26481 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26482 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26483 } else { 26484 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26485 } 26486 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26487 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26488 &ipss->ipsec_dropper); 26489 return; 26490 } 26491 26492 /* 26493 * IPsec processing has started. 26494 */ 26495 io->ipsec_out_proc_begin = B_TRUE; 26496 ap = io->ipsec_out_act; 26497 if (ap == NULL) { 26498 pp = io->ipsec_out_policy; 26499 ASSERT(pp != NULL); 26500 ap = pp->ipsp_act; 26501 ASSERT(ap != NULL); 26502 } 26503 26504 /* 26505 * Save the outbound ill index. When the packet comes back 26506 * from IPsec, we make sure the ill hasn't changed or disappeared 26507 * before sending it the accelerated packet. 26508 */ 26509 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26510 ill = ire_to_ill(ire); 26511 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26512 } 26513 26514 /* 26515 * The order of processing is first insert a IP header if needed. 26516 * Then insert the ESP header and then the AH header. 26517 */ 26518 if ((io->ipsec_out_se_done == B_FALSE) && 26519 (ap->ipa_want_se)) { 26520 /* 26521 * First get the outer IP header before sending 26522 * it to ESP. 26523 */ 26524 ipha_t *oipha, *iipha; 26525 mblk_t *outer_mp, *inner_mp; 26526 26527 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26528 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26529 "ipsec_out_process: " 26530 "Self-Encapsulation failed: Out of memory\n"); 26531 freemsg(ipsec_mp); 26532 if (ill != NULL) { 26533 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26534 } else { 26535 BUMP_MIB(&ipst->ips_ip_mib, 26536 ipIfStatsOutDiscards); 26537 } 26538 return; 26539 } 26540 inner_mp = ipsec_mp->b_cont; 26541 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26542 oipha = (ipha_t *)outer_mp->b_rptr; 26543 iipha = (ipha_t *)inner_mp->b_rptr; 26544 *oipha = *iipha; 26545 outer_mp->b_wptr += sizeof (ipha_t); 26546 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26547 sizeof (ipha_t)); 26548 oipha->ipha_protocol = IPPROTO_ENCAP; 26549 oipha->ipha_version_and_hdr_length = 26550 IP_SIMPLE_HDR_VERSION; 26551 oipha->ipha_hdr_checksum = 0; 26552 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26553 outer_mp->b_cont = inner_mp; 26554 ipsec_mp->b_cont = outer_mp; 26555 26556 io->ipsec_out_se_done = B_TRUE; 26557 io->ipsec_out_tunnel = B_TRUE; 26558 } 26559 26560 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26561 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26562 !ipsec_out_select_sa(ipsec_mp)) 26563 return; 26564 26565 /* 26566 * By now, we know what SA's to use. Toss over to ESP & AH 26567 * to do the heavy lifting. 26568 */ 26569 zoneid = io->ipsec_out_zoneid; 26570 ASSERT(zoneid != ALL_ZONES); 26571 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26572 ASSERT(io->ipsec_out_esp_sa != NULL); 26573 io->ipsec_out_esp_done = B_TRUE; 26574 /* 26575 * Note that since hw accel can only apply one transform, 26576 * not two, we skip hw accel for ESP if we also have AH 26577 * This is an design limitation of the interface 26578 * which should be revisited. 26579 */ 26580 ASSERT(ire != NULL); 26581 if (io->ipsec_out_ah_sa == NULL) { 26582 ill = (ill_t *)ire->ire_stq->q_ptr; 26583 ipsec_out_is_accelerated(ipsec_mp, 26584 io->ipsec_out_esp_sa, ill, ire); 26585 } 26586 26587 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26588 switch (ipsec_rc) { 26589 case IPSEC_STATUS_SUCCESS: 26590 break; 26591 case IPSEC_STATUS_FAILED: 26592 if (ill != NULL) { 26593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26594 } else { 26595 BUMP_MIB(&ipst->ips_ip_mib, 26596 ipIfStatsOutDiscards); 26597 } 26598 /* FALLTHRU */ 26599 case IPSEC_STATUS_PENDING: 26600 return; 26601 } 26602 } 26603 26604 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26605 ASSERT(io->ipsec_out_ah_sa != NULL); 26606 io->ipsec_out_ah_done = B_TRUE; 26607 if (ire == NULL) { 26608 int idx = io->ipsec_out_capab_ill_index; 26609 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26610 NULL, NULL, NULL, NULL, ipst); 26611 ill_need_rele = B_TRUE; 26612 } else { 26613 ill = (ill_t *)ire->ire_stq->q_ptr; 26614 } 26615 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26616 ire); 26617 26618 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26619 switch (ipsec_rc) { 26620 case IPSEC_STATUS_SUCCESS: 26621 break; 26622 case IPSEC_STATUS_FAILED: 26623 if (ill != NULL) { 26624 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26625 } else { 26626 BUMP_MIB(&ipst->ips_ip_mib, 26627 ipIfStatsOutDiscards); 26628 } 26629 /* FALLTHRU */ 26630 case IPSEC_STATUS_PENDING: 26631 if (ill != NULL && ill_need_rele) 26632 ill_refrele(ill); 26633 return; 26634 } 26635 } 26636 /* 26637 * We are done with IPsec processing. Send it over the wire. 26638 */ 26639 done: 26640 mp = ipsec_mp->b_cont; 26641 ipha = (ipha_t *)mp->b_rptr; 26642 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26643 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26644 ire); 26645 } else { 26646 ip6h = (ip6_t *)ipha; 26647 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26648 ire); 26649 } 26650 if (ill != NULL && ill_need_rele) 26651 ill_refrele(ill); 26652 } 26653 26654 /* ARGSUSED */ 26655 void 26656 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26657 { 26658 opt_restart_t *or; 26659 int err; 26660 conn_t *connp; 26661 cred_t *cr; 26662 26663 ASSERT(CONN_Q(q)); 26664 connp = Q_TO_CONN(q); 26665 26666 ASSERT(first_mp->b_datap->db_type == M_CTL); 26667 or = (opt_restart_t *)first_mp->b_rptr; 26668 /* 26669 * We checked for a db_credp the first time svr4_optcom_req 26670 * was called (from ip_wput_nondata). So we can just ASSERT here. 26671 */ 26672 cr = msg_getcred(first_mp, NULL); 26673 ASSERT(cr != NULL); 26674 26675 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26676 err = svr4_optcom_req(q, first_mp, cr, 26677 &ip_opt_obj, B_FALSE); 26678 } else { 26679 ASSERT(or->or_type == T_OPTMGMT_REQ); 26680 err = tpi_optcom_req(q, first_mp, cr, 26681 &ip_opt_obj, B_FALSE); 26682 } 26683 if (err != EINPROGRESS) { 26684 /* operation is done */ 26685 CONN_OPER_PENDING_DONE(connp); 26686 } 26687 } 26688 26689 /* 26690 * ioctls that go through a down/up sequence may need to wait for the down 26691 * to complete. This involves waiting for the ire and ipif refcnts to go down 26692 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26693 */ 26694 /* ARGSUSED */ 26695 void 26696 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26697 { 26698 struct iocblk *iocp; 26699 mblk_t *mp1; 26700 ip_ioctl_cmd_t *ipip; 26701 int err; 26702 sin_t *sin; 26703 struct lifreq *lifr; 26704 struct ifreq *ifr; 26705 26706 iocp = (struct iocblk *)mp->b_rptr; 26707 ASSERT(ipsq != NULL); 26708 /* Existence of mp1 verified in ip_wput_nondata */ 26709 mp1 = mp->b_cont->b_cont; 26710 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26711 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26712 /* 26713 * Special case where ipx_current_ipif is not set: 26714 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26715 * We are here as were not able to complete the operation in 26716 * ipif_set_values because we could not become exclusive on 26717 * the new ipsq. 26718 */ 26719 ill_t *ill = q->q_ptr; 26720 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26721 } 26722 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26723 26724 if (ipip->ipi_cmd_type == IF_CMD) { 26725 /* This a old style SIOC[GS]IF* command */ 26726 ifr = (struct ifreq *)mp1->b_rptr; 26727 sin = (sin_t *)&ifr->ifr_addr; 26728 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26729 /* This a new style SIOC[GS]LIF* command */ 26730 lifr = (struct lifreq *)mp1->b_rptr; 26731 sin = (sin_t *)&lifr->lifr_addr; 26732 } else { 26733 sin = NULL; 26734 } 26735 26736 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26737 q, mp, ipip, mp1->b_rptr); 26738 26739 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26740 } 26741 26742 /* 26743 * ioctl processing 26744 * 26745 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26746 * the ioctl command in the ioctl tables, determines the copyin data size 26747 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26748 * 26749 * ioctl processing then continues when the M_IOCDATA makes its way down to 26750 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26751 * associated 'conn' is refheld till the end of the ioctl and the general 26752 * ioctl processing function ip_process_ioctl() is called to extract the 26753 * arguments and process the ioctl. To simplify extraction, ioctl commands 26754 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26755 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26756 * is used to extract the ioctl's arguments. 26757 * 26758 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26759 * so goes thru the serialization primitive ipsq_try_enter. Then the 26760 * appropriate function to handle the ioctl is called based on the entry in 26761 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26762 * which also refreleases the 'conn' that was refheld at the start of the 26763 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26764 * 26765 * Many exclusive ioctls go thru an internal down up sequence as part of 26766 * the operation. For example an attempt to change the IP address of an 26767 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26768 * does all the cleanup such as deleting all ires that use this address. 26769 * Then we need to wait till all references to the interface go away. 26770 */ 26771 void 26772 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26773 { 26774 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26775 ip_ioctl_cmd_t *ipip = arg; 26776 ip_extract_func_t *extract_funcp; 26777 cmd_info_t ci; 26778 int err; 26779 boolean_t entered_ipsq = B_FALSE; 26780 26781 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26782 26783 if (ipip == NULL) 26784 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26785 26786 /* 26787 * SIOCLIFADDIF needs to go thru a special path since the 26788 * ill may not exist yet. This happens in the case of lo0 26789 * which is created using this ioctl. 26790 */ 26791 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26792 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26793 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26794 return; 26795 } 26796 26797 ci.ci_ipif = NULL; 26798 if (ipip->ipi_cmd_type == MISC_CMD) { 26799 /* 26800 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26801 */ 26802 if (ipip->ipi_cmd == IF_UNITSEL) { 26803 /* ioctl comes down the ill */ 26804 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26805 ipif_refhold(ci.ci_ipif); 26806 } 26807 err = 0; 26808 ci.ci_sin = NULL; 26809 ci.ci_sin6 = NULL; 26810 ci.ci_lifr = NULL; 26811 } else { 26812 switch (ipip->ipi_cmd_type) { 26813 case IF_CMD: 26814 case LIF_CMD: 26815 extract_funcp = ip_extract_lifreq; 26816 break; 26817 26818 case ARP_CMD: 26819 case XARP_CMD: 26820 extract_funcp = ip_extract_arpreq; 26821 break; 26822 26823 case MSFILT_CMD: 26824 extract_funcp = ip_extract_msfilter; 26825 break; 26826 26827 default: 26828 ASSERT(0); 26829 } 26830 26831 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26832 if (err != 0) { 26833 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26834 return; 26835 } 26836 26837 /* 26838 * All of the extraction functions return a refheld ipif. 26839 */ 26840 ASSERT(ci.ci_ipif != NULL); 26841 } 26842 26843 if (!(ipip->ipi_flags & IPI_WR)) { 26844 /* 26845 * A return value of EINPROGRESS means the ioctl is 26846 * either queued and waiting for some reason or has 26847 * already completed. 26848 */ 26849 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26850 ci.ci_lifr); 26851 if (ci.ci_ipif != NULL) 26852 ipif_refrele(ci.ci_ipif); 26853 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26854 return; 26855 } 26856 26857 ASSERT(ci.ci_ipif != NULL); 26858 26859 /* 26860 * If ipsq is non-NULL, we are already being called exclusively. 26861 */ 26862 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26863 if (ipsq == NULL) { 26864 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 26865 NEW_OP, B_TRUE); 26866 if (ipsq == NULL) { 26867 ipif_refrele(ci.ci_ipif); 26868 return; 26869 } 26870 entered_ipsq = B_TRUE; 26871 } 26872 26873 /* 26874 * Release the ipif so that ipif_down and friends that wait for 26875 * references to go away are not misled about the current ipif_refcnt 26876 * values. We are writer so we can access the ipif even after releasing 26877 * the ipif. 26878 */ 26879 ipif_refrele(ci.ci_ipif); 26880 26881 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26882 26883 /* 26884 * A return value of EINPROGRESS means the ioctl is 26885 * either queued and waiting for some reason or has 26886 * already completed. 26887 */ 26888 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26889 26890 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26891 26892 if (entered_ipsq) 26893 ipsq_exit(ipsq); 26894 } 26895 26896 /* 26897 * Complete the ioctl. Typically ioctls use the mi package and need to 26898 * do mi_copyout/mi_copy_done. 26899 */ 26900 void 26901 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26902 { 26903 conn_t *connp = NULL; 26904 26905 if (err == EINPROGRESS) 26906 return; 26907 26908 if (CONN_Q(q)) { 26909 connp = Q_TO_CONN(q); 26910 ASSERT(connp->conn_ref >= 2); 26911 } 26912 26913 switch (mode) { 26914 case COPYOUT: 26915 if (err == 0) 26916 mi_copyout(q, mp); 26917 else 26918 mi_copy_done(q, mp, err); 26919 break; 26920 26921 case NO_COPYOUT: 26922 mi_copy_done(q, mp, err); 26923 break; 26924 26925 default: 26926 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 26927 break; 26928 } 26929 26930 /* 26931 * The refhold placed at the start of the ioctl is released here. 26932 */ 26933 if (connp != NULL) 26934 CONN_OPER_PENDING_DONE(connp); 26935 26936 if (ipsq != NULL) 26937 ipsq_current_finish(ipsq); 26938 } 26939 26940 /* Called from ip_wput for all non data messages */ 26941 /* ARGSUSED */ 26942 void 26943 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26944 { 26945 mblk_t *mp1; 26946 ire_t *ire, *fake_ire; 26947 ill_t *ill; 26948 struct iocblk *iocp; 26949 ip_ioctl_cmd_t *ipip; 26950 cred_t *cr; 26951 conn_t *connp; 26952 int err; 26953 nce_t *nce; 26954 ipif_t *ipif; 26955 ip_stack_t *ipst; 26956 char *proto_str; 26957 26958 if (CONN_Q(q)) { 26959 connp = Q_TO_CONN(q); 26960 ipst = connp->conn_netstack->netstack_ip; 26961 } else { 26962 connp = NULL; 26963 ipst = ILLQ_TO_IPST(q); 26964 } 26965 26966 switch (DB_TYPE(mp)) { 26967 case M_IOCTL: 26968 /* 26969 * IOCTL processing begins in ip_sioctl_copyin_setup which 26970 * will arrange to copy in associated control structures. 26971 */ 26972 ip_sioctl_copyin_setup(q, mp); 26973 return; 26974 case M_IOCDATA: 26975 /* 26976 * Ensure that this is associated with one of our trans- 26977 * parent ioctls. If it's not ours, discard it if we're 26978 * running as a driver, or pass it on if we're a module. 26979 */ 26980 iocp = (struct iocblk *)mp->b_rptr; 26981 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26982 if (ipip == NULL) { 26983 if (q->q_next == NULL) { 26984 goto nak; 26985 } else { 26986 putnext(q, mp); 26987 } 26988 return; 26989 } 26990 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 26991 /* 26992 * the ioctl is one we recognise, but is not 26993 * consumed by IP as a module, pass M_IOCDATA 26994 * for processing downstream, but only for 26995 * common Streams ioctls. 26996 */ 26997 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26998 putnext(q, mp); 26999 return; 27000 } else { 27001 goto nak; 27002 } 27003 } 27004 27005 /* IOCTL continuation following copyin or copyout. */ 27006 if (mi_copy_state(q, mp, NULL) == -1) { 27007 /* 27008 * The copy operation failed. mi_copy_state already 27009 * cleaned up, so we're out of here. 27010 */ 27011 return; 27012 } 27013 /* 27014 * If we just completed a copy in, we become writer and 27015 * continue processing in ip_sioctl_copyin_done. If it 27016 * was a copy out, we call mi_copyout again. If there is 27017 * nothing more to copy out, it will complete the IOCTL. 27018 */ 27019 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27020 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27021 mi_copy_done(q, mp, EPROTO); 27022 return; 27023 } 27024 /* 27025 * Check for cases that need more copying. A return 27026 * value of 0 means a second copyin has been started, 27027 * so we return; a return value of 1 means no more 27028 * copying is needed, so we continue. 27029 */ 27030 if (ipip->ipi_cmd_type == MSFILT_CMD && 27031 MI_COPY_COUNT(mp) == 1) { 27032 if (ip_copyin_msfilter(q, mp) == 0) 27033 return; 27034 } 27035 /* 27036 * Refhold the conn, till the ioctl completes. This is 27037 * needed in case the ioctl ends up in the pending mp 27038 * list. Every mp in the ill_pending_mp list and 27039 * the ipx_pending_mp must have a refhold on the conn 27040 * to resume processing. The refhold is released when 27041 * the ioctl completes. (normally or abnormally) 27042 * In all cases ip_ioctl_finish is called to finish 27043 * the ioctl. 27044 */ 27045 if (connp != NULL) { 27046 /* This is not a reentry */ 27047 ASSERT(ipsq == NULL); 27048 CONN_INC_REF(connp); 27049 } else { 27050 if (!(ipip->ipi_flags & IPI_MODOK)) { 27051 mi_copy_done(q, mp, EINVAL); 27052 return; 27053 } 27054 } 27055 27056 ip_process_ioctl(ipsq, q, mp, ipip); 27057 27058 } else { 27059 mi_copyout(q, mp); 27060 } 27061 return; 27062 nak: 27063 iocp->ioc_error = EINVAL; 27064 mp->b_datap->db_type = M_IOCNAK; 27065 iocp->ioc_count = 0; 27066 qreply(q, mp); 27067 return; 27068 27069 case M_IOCNAK: 27070 /* 27071 * The only way we could get here is if a resolver didn't like 27072 * an IOCTL we sent it. This shouldn't happen. 27073 */ 27074 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27075 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27076 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27077 freemsg(mp); 27078 return; 27079 case M_IOCACK: 27080 /* /dev/ip shouldn't see this */ 27081 if (CONN_Q(q)) 27082 goto nak; 27083 27084 /* 27085 * Finish socket ioctls passed through to ARP. We use the 27086 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27087 * we need to become writer before calling ip_sioctl_iocack(). 27088 * Note that qwriter_ip() will release the refhold, and that a 27089 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27090 * ill stream. 27091 */ 27092 iocp = (struct iocblk *)mp->b_rptr; 27093 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27094 ip_sioctl_iocack(NULL, q, mp, NULL); 27095 return; 27096 } 27097 27098 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27099 iocp->ioc_cmd == AR_ENTRY_ADD); 27100 ill = q->q_ptr; 27101 ill_refhold(ill); 27102 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27103 return; 27104 case M_FLUSH: 27105 if (*mp->b_rptr & FLUSHW) 27106 flushq(q, FLUSHALL); 27107 if (q->q_next) { 27108 putnext(q, mp); 27109 return; 27110 } 27111 if (*mp->b_rptr & FLUSHR) { 27112 *mp->b_rptr &= ~FLUSHW; 27113 qreply(q, mp); 27114 return; 27115 } 27116 freemsg(mp); 27117 return; 27118 case IRE_DB_REQ_TYPE: 27119 if (connp == NULL) { 27120 proto_str = "IRE_DB_REQ_TYPE"; 27121 goto protonak; 27122 } 27123 /* An Upper Level Protocol wants a copy of an IRE. */ 27124 ip_ire_req(q, mp); 27125 return; 27126 case M_CTL: 27127 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27128 break; 27129 27130 /* M_CTL messages are used by ARP to tell us things. */ 27131 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27132 break; 27133 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27134 case AR_ENTRY_SQUERY: 27135 putnext(q, mp); 27136 return; 27137 case AR_CLIENT_NOTIFY: 27138 ip_arp_news(q, mp); 27139 return; 27140 case AR_DLPIOP_DONE: 27141 ASSERT(q->q_next != NULL); 27142 ill = (ill_t *)q->q_ptr; 27143 /* qwriter_ip releases the refhold */ 27144 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27145 ill_refhold(ill); 27146 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27147 return; 27148 case AR_ARP_CLOSING: 27149 /* 27150 * ARP (above us) is closing. If no ARP bringup is 27151 * currently pending, ack the message so that ARP 27152 * can complete its close. Also mark ill_arp_closing 27153 * so that new ARP bringups will fail. If any 27154 * ARP bringup is currently in progress, we will 27155 * ack this when the current ARP bringup completes. 27156 */ 27157 ASSERT(q->q_next != NULL); 27158 ill = (ill_t *)q->q_ptr; 27159 mutex_enter(&ill->ill_lock); 27160 ill->ill_arp_closing = 1; 27161 if (!ill->ill_arp_bringup_pending) { 27162 mutex_exit(&ill->ill_lock); 27163 qreply(q, mp); 27164 } else { 27165 mutex_exit(&ill->ill_lock); 27166 freemsg(mp); 27167 } 27168 return; 27169 case AR_ARP_EXTEND: 27170 /* 27171 * The ARP module above us is capable of duplicate 27172 * address detection. Old ATM drivers will not send 27173 * this message. 27174 */ 27175 ASSERT(q->q_next != NULL); 27176 ill = (ill_t *)q->q_ptr; 27177 ill->ill_arp_extend = B_TRUE; 27178 freemsg(mp); 27179 return; 27180 default: 27181 break; 27182 } 27183 break; 27184 case M_PROTO: 27185 case M_PCPROTO: 27186 /* 27187 * The only PROTO messages we expect are copies of option 27188 * negotiation acknowledgements, AH and ESP bind requests 27189 * are also expected. 27190 */ 27191 switch (((union T_primitives *)mp->b_rptr)->type) { 27192 case O_T_BIND_REQ: 27193 case T_BIND_REQ: { 27194 /* Request can get queued in bind */ 27195 if (connp == NULL) { 27196 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27197 goto protonak; 27198 } 27199 /* 27200 * The transports except SCTP call ip_bind_{v4,v6}() 27201 * directly instead of a a putnext. SCTP doesn't 27202 * generate any T_BIND_REQ since it has its own 27203 * fanout data structures. However, ESP and AH 27204 * come in for regular binds; all other cases are 27205 * bind retries. 27206 */ 27207 ASSERT(!IPCL_IS_SCTP(connp)); 27208 27209 /* Don't increment refcnt if this is a re-entry */ 27210 if (ipsq == NULL) 27211 CONN_INC_REF(connp); 27212 27213 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27214 connp, NULL) : ip_bind_v4(q, mp, connp); 27215 ASSERT(mp != NULL); 27216 27217 ASSERT(!IPCL_IS_TCP(connp)); 27218 ASSERT(!IPCL_IS_UDP(connp)); 27219 ASSERT(!IPCL_IS_RAWIP(connp)); 27220 ASSERT(!IPCL_IS_IPTUN(connp)); 27221 27222 /* The case of AH and ESP */ 27223 qreply(q, mp); 27224 CONN_OPER_PENDING_DONE(connp); 27225 return; 27226 } 27227 case T_SVR4_OPTMGMT_REQ: 27228 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27229 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27230 27231 if (connp == NULL) { 27232 proto_str = "T_SVR4_OPTMGMT_REQ"; 27233 goto protonak; 27234 } 27235 27236 /* 27237 * All Solaris components should pass a db_credp 27238 * for this TPI message, hence we ASSERT. 27239 * But in case there is some other M_PROTO that looks 27240 * like a TPI message sent by some other kernel 27241 * component, we check and return an error. 27242 */ 27243 cr = msg_getcred(mp, NULL); 27244 ASSERT(cr != NULL); 27245 if (cr == NULL) { 27246 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27247 if (mp != NULL) 27248 qreply(q, mp); 27249 return; 27250 } 27251 27252 if (!snmpcom_req(q, mp, ip_snmp_set, 27253 ip_snmp_get, cr)) { 27254 /* 27255 * Call svr4_optcom_req so that it can 27256 * generate the ack. We don't come here 27257 * if this operation is being restarted. 27258 * ip_restart_optmgmt will drop the conn ref. 27259 * In the case of ipsec option after the ipsec 27260 * load is complete conn_restart_ipsec_waiter 27261 * drops the conn ref. 27262 */ 27263 ASSERT(ipsq == NULL); 27264 CONN_INC_REF(connp); 27265 if (ip_check_for_ipsec_opt(q, mp)) 27266 return; 27267 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27268 B_FALSE); 27269 if (err != EINPROGRESS) { 27270 /* Operation is done */ 27271 CONN_OPER_PENDING_DONE(connp); 27272 } 27273 } 27274 return; 27275 case T_OPTMGMT_REQ: 27276 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27277 /* 27278 * Note: No snmpcom_req support through new 27279 * T_OPTMGMT_REQ. 27280 * Call tpi_optcom_req so that it can 27281 * generate the ack. 27282 */ 27283 if (connp == NULL) { 27284 proto_str = "T_OPTMGMT_REQ"; 27285 goto protonak; 27286 } 27287 27288 /* 27289 * All Solaris components should pass a db_credp 27290 * for this TPI message, hence we ASSERT. 27291 * But in case there is some other M_PROTO that looks 27292 * like a TPI message sent by some other kernel 27293 * component, we check and return an error. 27294 */ 27295 cr = msg_getcred(mp, NULL); 27296 ASSERT(cr != NULL); 27297 if (cr == NULL) { 27298 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27299 if (mp != NULL) 27300 qreply(q, mp); 27301 return; 27302 } 27303 ASSERT(ipsq == NULL); 27304 /* 27305 * We don't come here for restart. ip_restart_optmgmt 27306 * will drop the conn ref. In the case of ipsec option 27307 * after the ipsec load is complete 27308 * conn_restart_ipsec_waiter drops the conn ref. 27309 */ 27310 CONN_INC_REF(connp); 27311 if (ip_check_for_ipsec_opt(q, mp)) 27312 return; 27313 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27314 if (err != EINPROGRESS) { 27315 /* Operation is done */ 27316 CONN_OPER_PENDING_DONE(connp); 27317 } 27318 return; 27319 case T_UNBIND_REQ: 27320 if (connp == NULL) { 27321 proto_str = "T_UNBIND_REQ"; 27322 goto protonak; 27323 } 27324 ip_unbind(Q_TO_CONN(q)); 27325 mp = mi_tpi_ok_ack_alloc(mp); 27326 qreply(q, mp); 27327 return; 27328 default: 27329 /* 27330 * Have to drop any DLPI messages coming down from 27331 * arp (such as an info_req which would cause ip 27332 * to receive an extra info_ack if it was passed 27333 * through. 27334 */ 27335 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27336 (int)*(uint_t *)mp->b_rptr)); 27337 freemsg(mp); 27338 return; 27339 } 27340 /* NOTREACHED */ 27341 case IRE_DB_TYPE: { 27342 nce_t *nce; 27343 ill_t *ill; 27344 in6_addr_t gw_addr_v6; 27345 27346 /* 27347 * This is a response back from a resolver. It 27348 * consists of a message chain containing: 27349 * IRE_MBLK-->LL_HDR_MBLK->pkt 27350 * The IRE_MBLK is the one we allocated in ip_newroute. 27351 * The LL_HDR_MBLK is the DLPI header to use to get 27352 * the attached packet, and subsequent ones for the 27353 * same destination, transmitted. 27354 */ 27355 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27356 break; 27357 /* 27358 * First, check to make sure the resolution succeeded. 27359 * If it failed, the second mblk will be empty. 27360 * If it is, free the chain, dropping the packet. 27361 * (We must ire_delete the ire; that frees the ire mblk) 27362 * We're doing this now to support PVCs for ATM; it's 27363 * a partial xresolv implementation. When we fully implement 27364 * xresolv interfaces, instead of freeing everything here 27365 * we'll initiate neighbor discovery. 27366 * 27367 * For v4 (ARP and other external resolvers) the resolver 27368 * frees the message, so no check is needed. This check 27369 * is required, though, for a full xresolve implementation. 27370 * Including this code here now both shows how external 27371 * resolvers can NACK a resolution request using an 27372 * existing design that has no specific provisions for NACKs, 27373 * and also takes into account that the current non-ARP 27374 * external resolver has been coded to use this method of 27375 * NACKing for all IPv6 (xresolv) cases, 27376 * whether our xresolv implementation is complete or not. 27377 * 27378 */ 27379 ire = (ire_t *)mp->b_rptr; 27380 ill = ire_to_ill(ire); 27381 mp1 = mp->b_cont; /* dl_unitdata_req */ 27382 if (mp1->b_rptr == mp1->b_wptr) { 27383 if (ire->ire_ipversion == IPV6_VERSION) { 27384 /* 27385 * XRESOLV interface. 27386 */ 27387 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27388 mutex_enter(&ire->ire_lock); 27389 gw_addr_v6 = ire->ire_gateway_addr_v6; 27390 mutex_exit(&ire->ire_lock); 27391 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27392 nce = ndp_lookup_v6(ill, B_FALSE, 27393 &ire->ire_addr_v6, B_FALSE); 27394 } else { 27395 nce = ndp_lookup_v6(ill, B_FALSE, 27396 &gw_addr_v6, B_FALSE); 27397 } 27398 if (nce != NULL) { 27399 nce_resolv_failed(nce); 27400 ndp_delete(nce); 27401 NCE_REFRELE(nce); 27402 } 27403 } 27404 mp->b_cont = NULL; 27405 freemsg(mp1); /* frees the pkt as well */ 27406 ASSERT(ire->ire_nce == NULL); 27407 ire_delete((ire_t *)mp->b_rptr); 27408 return; 27409 } 27410 27411 /* 27412 * Split them into IRE_MBLK and pkt and feed it into 27413 * ire_add_then_send. Then in ire_add_then_send 27414 * the IRE will be added, and then the packet will be 27415 * run back through ip_wput. This time it will make 27416 * it to the wire. 27417 */ 27418 mp->b_cont = NULL; 27419 mp = mp1->b_cont; /* now, mp points to pkt */ 27420 mp1->b_cont = NULL; 27421 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27422 if (ire->ire_ipversion == IPV6_VERSION) { 27423 /* 27424 * XRESOLV interface. Find the nce and put a copy 27425 * of the dl_unitdata_req in nce_res_mp 27426 */ 27427 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27428 mutex_enter(&ire->ire_lock); 27429 gw_addr_v6 = ire->ire_gateway_addr_v6; 27430 mutex_exit(&ire->ire_lock); 27431 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27432 nce = ndp_lookup_v6(ill, B_FALSE, 27433 &ire->ire_addr_v6, B_FALSE); 27434 } else { 27435 nce = ndp_lookup_v6(ill, B_FALSE, 27436 &gw_addr_v6, B_FALSE); 27437 } 27438 if (nce != NULL) { 27439 /* 27440 * We have to protect nce_res_mp here 27441 * from being accessed by other threads 27442 * while we change the mblk pointer. 27443 * Other functions will also lock the nce when 27444 * accessing nce_res_mp. 27445 * 27446 * The reason we change the mblk pointer 27447 * here rather than copying the resolved address 27448 * into the template is that, unlike with 27449 * ethernet, we have no guarantee that the 27450 * resolved address length will be 27451 * smaller than or equal to the lla length 27452 * with which the template was allocated, 27453 * (for ethernet, they're equal) 27454 * so we have to use the actual resolved 27455 * address mblk - which holds the real 27456 * dl_unitdata_req with the resolved address. 27457 * 27458 * Doing this is the same behavior as was 27459 * previously used in the v4 ARP case. 27460 */ 27461 mutex_enter(&nce->nce_lock); 27462 if (nce->nce_res_mp != NULL) 27463 freemsg(nce->nce_res_mp); 27464 nce->nce_res_mp = mp1; 27465 mutex_exit(&nce->nce_lock); 27466 /* 27467 * We do a fastpath probe here because 27468 * we have resolved the address without 27469 * using Neighbor Discovery. 27470 * In the non-XRESOLV v6 case, the fastpath 27471 * probe is done right after neighbor 27472 * discovery completes. 27473 */ 27474 if (nce->nce_res_mp != NULL) { 27475 int res; 27476 nce_fastpath_list_add(nce); 27477 res = ill_fastpath_probe(ill, 27478 nce->nce_res_mp); 27479 if (res != 0 && res != EAGAIN) 27480 nce_fastpath_list_delete(nce); 27481 } 27482 27483 ire_add_then_send(q, ire, mp); 27484 /* 27485 * Now we have to clean out any packets 27486 * that may have been queued on the nce 27487 * while it was waiting for address resolution 27488 * to complete. 27489 */ 27490 mutex_enter(&nce->nce_lock); 27491 mp1 = nce->nce_qd_mp; 27492 nce->nce_qd_mp = NULL; 27493 mutex_exit(&nce->nce_lock); 27494 while (mp1 != NULL) { 27495 mblk_t *nxt_mp; 27496 queue_t *fwdq = NULL; 27497 ill_t *inbound_ill; 27498 uint_t ifindex; 27499 27500 nxt_mp = mp1->b_next; 27501 mp1->b_next = NULL; 27502 /* 27503 * Retrieve ifindex stored in 27504 * ip_rput_data_v6() 27505 */ 27506 ifindex = 27507 (uint_t)(uintptr_t)mp1->b_prev; 27508 inbound_ill = 27509 ill_lookup_on_ifindex(ifindex, 27510 B_TRUE, NULL, NULL, NULL, 27511 NULL, ipst); 27512 mp1->b_prev = NULL; 27513 if (inbound_ill != NULL) 27514 fwdq = inbound_ill->ill_rq; 27515 27516 if (fwdq != NULL) { 27517 put(fwdq, mp1); 27518 ill_refrele(inbound_ill); 27519 } else 27520 put(WR(ill->ill_rq), mp1); 27521 mp1 = nxt_mp; 27522 } 27523 NCE_REFRELE(nce); 27524 } else { /* nce is NULL; clean up */ 27525 ire_delete(ire); 27526 freemsg(mp); 27527 freemsg(mp1); 27528 return; 27529 } 27530 } else { 27531 nce_t *arpce; 27532 /* 27533 * Link layer resolution succeeded. Recompute the 27534 * ire_nce. 27535 */ 27536 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27537 if ((arpce = ndp_lookup_v4(ill, 27538 (ire->ire_gateway_addr != INADDR_ANY ? 27539 &ire->ire_gateway_addr : &ire->ire_addr), 27540 B_FALSE)) == NULL) { 27541 freeb(ire->ire_mp); 27542 freeb(mp1); 27543 freemsg(mp); 27544 return; 27545 } 27546 mutex_enter(&arpce->nce_lock); 27547 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27548 if (arpce->nce_state == ND_REACHABLE) { 27549 /* 27550 * Someone resolved this before us; 27551 * cleanup the res_mp. Since ire has 27552 * not been added yet, the call to ire_add_v4 27553 * from ire_add_then_send (when a dup is 27554 * detected) will clean up the ire. 27555 */ 27556 freeb(mp1); 27557 } else { 27558 ASSERT(arpce->nce_res_mp == NULL); 27559 arpce->nce_res_mp = mp1; 27560 arpce->nce_state = ND_REACHABLE; 27561 } 27562 mutex_exit(&arpce->nce_lock); 27563 if (ire->ire_marks & IRE_MARK_NOADD) { 27564 /* 27565 * this ire will not be added to the ire 27566 * cache table, so we can set the ire_nce 27567 * here, as there are no atomicity constraints. 27568 */ 27569 ire->ire_nce = arpce; 27570 /* 27571 * We are associating this nce with the ire 27572 * so change the nce ref taken in 27573 * ndp_lookup_v4() from 27574 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27575 */ 27576 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27577 } else { 27578 NCE_REFRELE(arpce); 27579 } 27580 ire_add_then_send(q, ire, mp); 27581 } 27582 return; /* All is well, the packet has been sent. */ 27583 } 27584 case IRE_ARPRESOLVE_TYPE: { 27585 27586 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27587 break; 27588 mp1 = mp->b_cont; /* dl_unitdata_req */ 27589 mp->b_cont = NULL; 27590 /* 27591 * First, check to make sure the resolution succeeded. 27592 * If it failed, the second mblk will be empty. 27593 */ 27594 if (mp1->b_rptr == mp1->b_wptr) { 27595 /* cleanup the incomplete ire, free queued packets */ 27596 freemsg(mp); /* fake ire */ 27597 freeb(mp1); /* dl_unitdata response */ 27598 return; 27599 } 27600 27601 /* 27602 * Update any incomplete nce_t found. We search the ctable 27603 * and find the nce from the ire->ire_nce because we need 27604 * to pass the ire to ip_xmit_v4 later, and can find both 27605 * ire and nce in one lookup. 27606 */ 27607 fake_ire = (ire_t *)mp->b_rptr; 27608 27609 /* 27610 * By the time we come back here from ARP the logical outgoing 27611 * interface of the incomplete ire we added in ire_forward() 27612 * could have disappeared, causing the incomplete ire to also 27613 * disappear. So we need to retreive the proper ipif for the 27614 * ire before looking in ctable. In the case of IPMP, the 27615 * ipif may be on the IPMP ill, so look it up based on the 27616 * ire_ipif_ifindex we stashed back in ire_init_common(). 27617 * Then, we can verify that ire_ipif_seqid still exists. 27618 */ 27619 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27620 NULL, NULL, NULL, NULL, ipst); 27621 if (ill == NULL) { 27622 ip1dbg(("ill for incomplete ire vanished\n")); 27623 freemsg(mp); /* fake ire */ 27624 freeb(mp1); /* dl_unitdata response */ 27625 return; 27626 } 27627 27628 /* Get the outgoing ipif */ 27629 mutex_enter(&ill->ill_lock); 27630 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27631 if (ipif == NULL) { 27632 mutex_exit(&ill->ill_lock); 27633 ill_refrele(ill); 27634 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27635 freemsg(mp); /* fake_ire */ 27636 freeb(mp1); /* dl_unitdata response */ 27637 return; 27638 } 27639 27640 ipif_refhold_locked(ipif); 27641 mutex_exit(&ill->ill_lock); 27642 ill_refrele(ill); 27643 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27644 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27645 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27646 ipif_refrele(ipif); 27647 if (ire == NULL) { 27648 /* 27649 * no ire was found; check if there is an nce 27650 * for this lookup; if it has no ire's pointing at it 27651 * cleanup. 27652 */ 27653 if ((nce = ndp_lookup_v4(q->q_ptr, 27654 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27655 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27656 B_FALSE)) != NULL) { 27657 /* 27658 * cleanup: 27659 * We check for refcnt 2 (one for the nce 27660 * hash list + 1 for the ref taken by 27661 * ndp_lookup_v4) to check that there are 27662 * no ire's pointing at the nce. 27663 */ 27664 if (nce->nce_refcnt == 2) 27665 ndp_delete(nce); 27666 NCE_REFRELE(nce); 27667 } 27668 freeb(mp1); /* dl_unitdata response */ 27669 freemsg(mp); /* fake ire */ 27670 return; 27671 } 27672 27673 nce = ire->ire_nce; 27674 DTRACE_PROBE2(ire__arpresolve__type, 27675 ire_t *, ire, nce_t *, nce); 27676 mutex_enter(&nce->nce_lock); 27677 nce->nce_last = TICK_TO_MSEC(lbolt64); 27678 if (nce->nce_state == ND_REACHABLE) { 27679 /* 27680 * Someone resolved this before us; 27681 * our response is not needed any more. 27682 */ 27683 mutex_exit(&nce->nce_lock); 27684 freeb(mp1); /* dl_unitdata response */ 27685 } else { 27686 ASSERT(nce->nce_res_mp == NULL); 27687 nce->nce_res_mp = mp1; 27688 nce->nce_state = ND_REACHABLE; 27689 mutex_exit(&nce->nce_lock); 27690 nce_fastpath(nce); 27691 } 27692 /* 27693 * The cached nce_t has been updated to be reachable; 27694 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27695 */ 27696 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27697 freemsg(mp); 27698 /* 27699 * send out queued packets. 27700 */ 27701 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27702 27703 IRE_REFRELE(ire); 27704 return; 27705 } 27706 default: 27707 break; 27708 } 27709 if (q->q_next) { 27710 putnext(q, mp); 27711 } else 27712 freemsg(mp); 27713 return; 27714 27715 protonak: 27716 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27717 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27718 qreply(q, mp); 27719 } 27720 27721 /* 27722 * Process IP options in an outbound packet. Modify the destination if there 27723 * is a source route option. 27724 * Returns non-zero if something fails in which case an ICMP error has been 27725 * sent and mp freed. 27726 */ 27727 static int 27728 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27729 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27730 { 27731 ipoptp_t opts; 27732 uchar_t *opt; 27733 uint8_t optval; 27734 uint8_t optlen; 27735 ipaddr_t dst; 27736 intptr_t code = 0; 27737 mblk_t *mp; 27738 ire_t *ire = NULL; 27739 27740 ip2dbg(("ip_wput_options\n")); 27741 mp = ipsec_mp; 27742 if (mctl_present) { 27743 mp = ipsec_mp->b_cont; 27744 } 27745 27746 dst = ipha->ipha_dst; 27747 for (optval = ipoptp_first(&opts, ipha); 27748 optval != IPOPT_EOL; 27749 optval = ipoptp_next(&opts)) { 27750 opt = opts.ipoptp_cur; 27751 optlen = opts.ipoptp_len; 27752 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27753 optval, optlen)); 27754 switch (optval) { 27755 uint32_t off; 27756 case IPOPT_SSRR: 27757 case IPOPT_LSRR: 27758 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27759 ip1dbg(( 27760 "ip_wput_options: bad option offset\n")); 27761 code = (char *)&opt[IPOPT_OLEN] - 27762 (char *)ipha; 27763 goto param_prob; 27764 } 27765 off = opt[IPOPT_OFFSET]; 27766 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27767 ntohl(dst))); 27768 /* 27769 * For strict: verify that dst is directly 27770 * reachable. 27771 */ 27772 if (optval == IPOPT_SSRR) { 27773 ire = ire_ftable_lookup(dst, 0, 0, 27774 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27775 msg_getlabel(mp), 27776 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27777 if (ire == NULL) { 27778 ip1dbg(("ip_wput_options: SSRR not" 27779 " directly reachable: 0x%x\n", 27780 ntohl(dst))); 27781 goto bad_src_route; 27782 } 27783 ire_refrele(ire); 27784 } 27785 break; 27786 case IPOPT_RR: 27787 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27788 ip1dbg(( 27789 "ip_wput_options: bad option offset\n")); 27790 code = (char *)&opt[IPOPT_OLEN] - 27791 (char *)ipha; 27792 goto param_prob; 27793 } 27794 break; 27795 case IPOPT_TS: 27796 /* 27797 * Verify that length >=5 and that there is either 27798 * room for another timestamp or that the overflow 27799 * counter is not maxed out. 27800 */ 27801 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27802 if (optlen < IPOPT_MINLEN_IT) { 27803 goto param_prob; 27804 } 27805 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27806 ip1dbg(( 27807 "ip_wput_options: bad option offset\n")); 27808 code = (char *)&opt[IPOPT_OFFSET] - 27809 (char *)ipha; 27810 goto param_prob; 27811 } 27812 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27813 case IPOPT_TS_TSONLY: 27814 off = IPOPT_TS_TIMELEN; 27815 break; 27816 case IPOPT_TS_TSANDADDR: 27817 case IPOPT_TS_PRESPEC: 27818 case IPOPT_TS_PRESPEC_RFC791: 27819 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27820 break; 27821 default: 27822 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27823 (char *)ipha; 27824 goto param_prob; 27825 } 27826 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27827 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27828 /* 27829 * No room and the overflow counter is 15 27830 * already. 27831 */ 27832 goto param_prob; 27833 } 27834 break; 27835 } 27836 } 27837 27838 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27839 return (0); 27840 27841 ip1dbg(("ip_wput_options: error processing IP options.")); 27842 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27843 27844 param_prob: 27845 /* 27846 * Since ip_wput() isn't close to finished, we fill 27847 * in enough of the header for credible error reporting. 27848 */ 27849 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27850 /* Failed */ 27851 freemsg(ipsec_mp); 27852 return (-1); 27853 } 27854 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27855 return (-1); 27856 27857 bad_src_route: 27858 /* 27859 * Since ip_wput() isn't close to finished, we fill 27860 * in enough of the header for credible error reporting. 27861 */ 27862 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27863 /* Failed */ 27864 freemsg(ipsec_mp); 27865 return (-1); 27866 } 27867 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27868 return (-1); 27869 } 27870 27871 /* 27872 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27873 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27874 * thru /etc/system. 27875 */ 27876 #define CONN_MAXDRAINCNT 64 27877 27878 static void 27879 conn_drain_init(ip_stack_t *ipst) 27880 { 27881 int i, j; 27882 idl_tx_list_t *itl_tx; 27883 27884 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27885 27886 if ((ipst->ips_conn_drain_list_cnt == 0) || 27887 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27888 /* 27889 * Default value of the number of drainers is the 27890 * number of cpus, subject to maximum of 8 drainers. 27891 */ 27892 if (boot_max_ncpus != -1) 27893 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27894 else 27895 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27896 } 27897 27898 ipst->ips_idl_tx_list = 27899 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 27900 for (i = 0; i < TX_FANOUT_SIZE; i++) { 27901 itl_tx = &ipst->ips_idl_tx_list[i]; 27902 itl_tx->txl_drain_list = 27903 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27904 sizeof (idl_t), KM_SLEEP); 27905 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 27906 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 27907 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 27908 MUTEX_DEFAULT, NULL); 27909 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 27910 } 27911 } 27912 } 27913 27914 static void 27915 conn_drain_fini(ip_stack_t *ipst) 27916 { 27917 int i; 27918 idl_tx_list_t *itl_tx; 27919 27920 for (i = 0; i < TX_FANOUT_SIZE; i++) { 27921 itl_tx = &ipst->ips_idl_tx_list[i]; 27922 kmem_free(itl_tx->txl_drain_list, 27923 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27924 } 27925 kmem_free(ipst->ips_idl_tx_list, 27926 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 27927 ipst->ips_idl_tx_list = NULL; 27928 } 27929 27930 /* 27931 * Note: For an overview of how flowcontrol is handled in IP please see the 27932 * IP Flowcontrol notes at the top of this file. 27933 * 27934 * Flow control has blocked us from proceeding. Insert the given conn in one 27935 * of the conn drain lists. These conn wq's will be qenabled later on when 27936 * STREAMS flow control does a backenable. conn_walk_drain will enable 27937 * the first conn in each of these drain lists. Each of these qenabled conns 27938 * in turn enables the next in the list, after it runs, or when it closes, 27939 * thus sustaining the drain process. 27940 */ 27941 void 27942 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 27943 { 27944 idl_t *idl = tx_list->txl_drain_list; 27945 uint_t index; 27946 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 27947 27948 mutex_enter(&connp->conn_lock); 27949 if (connp->conn_state_flags & CONN_CLOSING) { 27950 /* 27951 * The conn is closing as a result of which CONN_CLOSING 27952 * is set. Return. 27953 */ 27954 mutex_exit(&connp->conn_lock); 27955 return; 27956 } else if (connp->conn_idl == NULL) { 27957 /* 27958 * Assign the next drain list round robin. We dont' use 27959 * a lock, and thus it may not be strictly round robin. 27960 * Atomicity of load/stores is enough to make sure that 27961 * conn_drain_list_index is always within bounds. 27962 */ 27963 index = tx_list->txl_drain_index; 27964 ASSERT(index < ipst->ips_conn_drain_list_cnt); 27965 connp->conn_idl = &tx_list->txl_drain_list[index]; 27966 index++; 27967 if (index == ipst->ips_conn_drain_list_cnt) 27968 index = 0; 27969 tx_list->txl_drain_index = index; 27970 } 27971 mutex_exit(&connp->conn_lock); 27972 27973 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27974 if ((connp->conn_drain_prev != NULL) || 27975 (connp->conn_state_flags & CONN_CLOSING)) { 27976 /* 27977 * The conn is already in the drain list, OR 27978 * the conn is closing. We need to check again for 27979 * the closing case again since close can happen 27980 * after we drop the conn_lock, and before we 27981 * acquire the CONN_DRAIN_LIST_LOCK. 27982 */ 27983 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27984 return; 27985 } else { 27986 idl = connp->conn_idl; 27987 } 27988 27989 /* 27990 * The conn is not in the drain list. Insert it at the 27991 * tail of the drain list. The drain list is circular 27992 * and doubly linked. idl_conn points to the 1st element 27993 * in the list. 27994 */ 27995 if (idl->idl_conn == NULL) { 27996 idl->idl_conn = connp; 27997 connp->conn_drain_next = connp; 27998 connp->conn_drain_prev = connp; 27999 } else { 28000 conn_t *head = idl->idl_conn; 28001 28002 connp->conn_drain_next = head; 28003 connp->conn_drain_prev = head->conn_drain_prev; 28004 head->conn_drain_prev->conn_drain_next = connp; 28005 head->conn_drain_prev = connp; 28006 } 28007 /* 28008 * For non streams based sockets assert flow control. 28009 */ 28010 if (IPCL_IS_NONSTR(connp)) { 28011 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28012 (*connp->conn_upcalls->su_txq_full) 28013 (connp->conn_upper_handle, B_TRUE); 28014 } else { 28015 conn_setqfull(connp); 28016 noenable(connp->conn_wq); 28017 } 28018 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28019 } 28020 28021 /* 28022 * This conn is closing, and we are called from ip_close. OR 28023 * This conn has been serviced by ip_wsrv, and we need to do the tail 28024 * processing. 28025 * If this conn is part of the drain list, we may need to sustain the drain 28026 * process by qenabling the next conn in the drain list. We may also need to 28027 * remove this conn from the list, if it is done. 28028 */ 28029 static void 28030 conn_drain_tail(conn_t *connp, boolean_t closing) 28031 { 28032 idl_t *idl; 28033 28034 /* 28035 * connp->conn_idl is stable at this point, and no lock is needed 28036 * to check it. If we are called from ip_close, close has already 28037 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28038 * called us only because conn_idl is non-null. If we are called thru 28039 * service, conn_idl could be null, but it cannot change because 28040 * service is single-threaded per queue, and there cannot be another 28041 * instance of service trying to call conn_drain_insert on this conn 28042 * now. 28043 */ 28044 ASSERT(!closing || (connp->conn_idl != NULL)); 28045 28046 /* 28047 * If connp->conn_idl is null, the conn has not been inserted into any 28048 * drain list even once since creation of the conn. Just return. 28049 */ 28050 if (connp->conn_idl == NULL) 28051 return; 28052 28053 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28054 28055 if (connp->conn_drain_prev == NULL) { 28056 /* This conn is currently not in the drain list. */ 28057 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28058 return; 28059 } 28060 idl = connp->conn_idl; 28061 if (idl->idl_conn_draining == connp) { 28062 /* 28063 * This conn is the current drainer. If this is the last conn 28064 * in the drain list, we need to do more checks, in the 'if' 28065 * below. Otherwwise we need to just qenable the next conn, 28066 * to sustain the draining, and is handled in the 'else' 28067 * below. 28068 */ 28069 if (connp->conn_drain_next == idl->idl_conn) { 28070 /* 28071 * This conn is the last in this list. This round 28072 * of draining is complete. If idl_repeat is set, 28073 * it means another flow enabling has happened from 28074 * the driver/streams and we need to another round 28075 * of draining. 28076 * If there are more than 2 conns in the drain list, 28077 * do a left rotate by 1, so that all conns except the 28078 * conn at the head move towards the head by 1, and the 28079 * the conn at the head goes to the tail. This attempts 28080 * a more even share for all queues that are being 28081 * drained. 28082 */ 28083 if ((connp->conn_drain_next != connp) && 28084 (idl->idl_conn->conn_drain_next != connp)) { 28085 idl->idl_conn = idl->idl_conn->conn_drain_next; 28086 } 28087 if (idl->idl_repeat) { 28088 qenable(idl->idl_conn->conn_wq); 28089 idl->idl_conn_draining = idl->idl_conn; 28090 idl->idl_repeat = 0; 28091 } else { 28092 idl->idl_conn_draining = NULL; 28093 } 28094 } else { 28095 /* 28096 * If the next queue that we are now qenable'ing, 28097 * is closing, it will remove itself from this list 28098 * and qenable the subsequent queue in ip_close(). 28099 * Serialization is acheived thru idl_lock. 28100 */ 28101 qenable(connp->conn_drain_next->conn_wq); 28102 idl->idl_conn_draining = connp->conn_drain_next; 28103 } 28104 } 28105 if (!connp->conn_did_putbq || closing) { 28106 /* 28107 * Remove ourself from the drain list, if we did not do 28108 * a putbq, or if the conn is closing. 28109 * Note: It is possible that q->q_first is non-null. It means 28110 * that these messages landed after we did a enableok() in 28111 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28112 * service them. 28113 */ 28114 if (connp->conn_drain_next == connp) { 28115 /* Singleton in the list */ 28116 ASSERT(connp->conn_drain_prev == connp); 28117 idl->idl_conn = NULL; 28118 idl->idl_conn_draining = NULL; 28119 } else { 28120 connp->conn_drain_prev->conn_drain_next = 28121 connp->conn_drain_next; 28122 connp->conn_drain_next->conn_drain_prev = 28123 connp->conn_drain_prev; 28124 if (idl->idl_conn == connp) 28125 idl->idl_conn = connp->conn_drain_next; 28126 ASSERT(idl->idl_conn_draining != connp); 28127 28128 } 28129 connp->conn_drain_next = NULL; 28130 connp->conn_drain_prev = NULL; 28131 28132 /* 28133 * For non streams based sockets open up flow control. 28134 */ 28135 if (IPCL_IS_NONSTR(connp)) { 28136 (*connp->conn_upcalls->su_txq_full) 28137 (connp->conn_upper_handle, B_FALSE); 28138 } else { 28139 conn_clrqfull(connp); 28140 enableok(connp->conn_wq); 28141 } 28142 } 28143 28144 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28145 } 28146 28147 /* 28148 * Write service routine. Shared perimeter entry point. 28149 * ip_wsrv can be called in any of the following ways. 28150 * 1. The device queue's messages has fallen below the low water mark 28151 * and STREAMS has backenabled the ill_wq. We walk thru all the 28152 * the drain lists and backenable the first conn in each list. 28153 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28154 * qenabled non-tcp upper layers. We start dequeing messages and call 28155 * ip_wput for each message. 28156 */ 28157 28158 void 28159 ip_wsrv(queue_t *q) 28160 { 28161 conn_t *connp; 28162 ill_t *ill; 28163 mblk_t *mp; 28164 28165 if (q->q_next) { 28166 ill = (ill_t *)q->q_ptr; 28167 if (ill->ill_state_flags == 0) { 28168 ip_stack_t *ipst = ill->ill_ipst; 28169 28170 /* 28171 * The device flow control has opened up. 28172 * Walk through conn drain lists and qenable the 28173 * first conn in each list. This makes sense only 28174 * if the stream is fully plumbed and setup. 28175 * Hence the if check above. 28176 */ 28177 ip1dbg(("ip_wsrv: walking\n")); 28178 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28179 } 28180 return; 28181 } 28182 28183 connp = Q_TO_CONN(q); 28184 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28185 28186 /* 28187 * 1. Set conn_draining flag to signal that service is active. 28188 * 28189 * 2. ip_output determines whether it has been called from service, 28190 * based on the last parameter. If it is IP_WSRV it concludes it 28191 * has been called from service. 28192 * 28193 * 3. Message ordering is preserved by the following logic. 28194 * i. A directly called ip_output (i.e. not thru service) will queue 28195 * the message at the tail, if conn_draining is set (i.e. service 28196 * is running) or if q->q_first is non-null. 28197 * 28198 * ii. If ip_output is called from service, and if ip_output cannot 28199 * putnext due to flow control, it does a putbq. 28200 * 28201 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28202 * (causing an infinite loop). 28203 */ 28204 ASSERT(!connp->conn_did_putbq); 28205 28206 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28207 connp->conn_draining = 1; 28208 noenable(q); 28209 while ((mp = getq(q)) != NULL) { 28210 ASSERT(CONN_Q(q)); 28211 28212 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28213 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28214 if (connp->conn_did_putbq) { 28215 /* ip_wput did a putbq */ 28216 break; 28217 } 28218 } 28219 /* 28220 * At this point, a thread coming down from top, calling 28221 * ip_wput, may end up queueing the message. We have not yet 28222 * enabled the queue, so ip_wsrv won't be called again. 28223 * To avoid this race, check q->q_first again (in the loop) 28224 * If the other thread queued the message before we call 28225 * enableok(), we will catch it in the q->q_first check. 28226 * If the other thread queues the message after we call 28227 * enableok(), ip_wsrv will be called again by STREAMS. 28228 */ 28229 connp->conn_draining = 0; 28230 enableok(q); 28231 } 28232 28233 /* Enable the next conn for draining */ 28234 conn_drain_tail(connp, B_FALSE); 28235 28236 /* 28237 * conn_direct_blocked is used to indicate blocked 28238 * condition for direct path (ILL_DIRECT_CAPABLE()). 28239 * This is the only place where it is set without 28240 * checking for ILL_DIRECT_CAPABLE() and setting it 28241 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28242 */ 28243 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28244 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28245 connp->conn_direct_blocked = B_FALSE; 28246 } 28247 28248 connp->conn_did_putbq = 0; 28249 } 28250 28251 /* 28252 * Callback to disable flow control in IP. 28253 * 28254 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28255 * is enabled. 28256 * 28257 * When MAC_TX() is not able to send any more packets, dld sets its queue 28258 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28259 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28260 * function and wakes up corresponding mac worker threads, which in turn 28261 * calls this callback function, and disables flow control. 28262 */ 28263 void 28264 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28265 { 28266 ill_t *ill = (ill_t *)arg; 28267 ip_stack_t *ipst = ill->ill_ipst; 28268 idl_tx_list_t *idl_txl; 28269 28270 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28271 mutex_enter(&idl_txl->txl_lock); 28272 /* add code to to set a flag to indicate idl_txl is enabled */ 28273 conn_walk_drain(ipst, idl_txl); 28274 mutex_exit(&idl_txl->txl_lock); 28275 } 28276 28277 /* 28278 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28279 * of conns that need to be drained, check if drain is already in progress. 28280 * If so set the idl_repeat bit, indicating that the last conn in the list 28281 * needs to reinitiate the drain once again, for the list. If drain is not 28282 * in progress for the list, initiate the draining, by qenabling the 1st 28283 * conn in the list. The drain is self-sustaining, each qenabled conn will 28284 * in turn qenable the next conn, when it is done/blocked/closing. 28285 */ 28286 static void 28287 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28288 { 28289 int i; 28290 idl_t *idl; 28291 28292 IP_STAT(ipst, ip_conn_walk_drain); 28293 28294 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28295 idl = &tx_list->txl_drain_list[i]; 28296 mutex_enter(&idl->idl_lock); 28297 if (idl->idl_conn == NULL) { 28298 mutex_exit(&idl->idl_lock); 28299 continue; 28300 } 28301 /* 28302 * If this list is not being drained currently by 28303 * an ip_wsrv thread, start the process. 28304 */ 28305 if (idl->idl_conn_draining == NULL) { 28306 ASSERT(idl->idl_repeat == 0); 28307 qenable(idl->idl_conn->conn_wq); 28308 idl->idl_conn_draining = idl->idl_conn; 28309 } else { 28310 idl->idl_repeat = 1; 28311 } 28312 mutex_exit(&idl->idl_lock); 28313 } 28314 } 28315 28316 /* 28317 * Determine if the ill and multicast aspects of that packets 28318 * "matches" the conn. 28319 */ 28320 boolean_t 28321 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28322 zoneid_t zoneid) 28323 { 28324 ill_t *bound_ill; 28325 boolean_t found; 28326 ipif_t *ipif; 28327 ire_t *ire; 28328 ipaddr_t dst, src; 28329 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28330 28331 dst = ipha->ipha_dst; 28332 src = ipha->ipha_src; 28333 28334 /* 28335 * conn_incoming_ill is set by IP_BOUND_IF which limits 28336 * unicast, broadcast and multicast reception to 28337 * conn_incoming_ill. conn_wantpacket itself is called 28338 * only for BROADCAST and multicast. 28339 */ 28340 bound_ill = connp->conn_incoming_ill; 28341 if (bound_ill != NULL) { 28342 if (IS_IPMP(bound_ill)) { 28343 if (bound_ill->ill_grp != ill->ill_grp) 28344 return (B_FALSE); 28345 } else { 28346 if (bound_ill != ill) 28347 return (B_FALSE); 28348 } 28349 } 28350 28351 if (!CLASSD(dst)) { 28352 if (IPCL_ZONE_MATCH(connp, zoneid)) 28353 return (B_TRUE); 28354 /* 28355 * The conn is in a different zone; we need to check that this 28356 * broadcast address is configured in the application's zone. 28357 */ 28358 ipif = ipif_get_next_ipif(NULL, ill); 28359 if (ipif == NULL) 28360 return (B_FALSE); 28361 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28362 connp->conn_zoneid, NULL, 28363 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28364 ipif_refrele(ipif); 28365 if (ire != NULL) { 28366 ire_refrele(ire); 28367 return (B_TRUE); 28368 } else { 28369 return (B_FALSE); 28370 } 28371 } 28372 28373 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28374 connp->conn_zoneid == zoneid) { 28375 /* 28376 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28377 * disabled, therefore we don't dispatch the multicast packet to 28378 * the sending zone. 28379 */ 28380 return (B_FALSE); 28381 } 28382 28383 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28384 /* 28385 * Multicast packet on the loopback interface: we only match 28386 * conns who joined the group in the specified zone. 28387 */ 28388 return (B_FALSE); 28389 } 28390 28391 if (connp->conn_multi_router) { 28392 /* multicast packet and multicast router socket: send up */ 28393 return (B_TRUE); 28394 } 28395 28396 mutex_enter(&connp->conn_lock); 28397 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28398 mutex_exit(&connp->conn_lock); 28399 return (found); 28400 } 28401 28402 static void 28403 conn_setqfull(conn_t *connp) 28404 { 28405 queue_t *q = connp->conn_wq; 28406 28407 if (!(q->q_flag & QFULL)) { 28408 mutex_enter(QLOCK(q)); 28409 if (!(q->q_flag & QFULL)) { 28410 /* still need to set QFULL */ 28411 q->q_flag |= QFULL; 28412 mutex_exit(QLOCK(q)); 28413 } else { 28414 mutex_exit(QLOCK(q)); 28415 } 28416 } 28417 } 28418 28419 static void 28420 conn_clrqfull(conn_t *connp) 28421 { 28422 queue_t *q = connp->conn_wq; 28423 28424 if (q->q_flag & QFULL) { 28425 mutex_enter(QLOCK(q)); 28426 if (q->q_flag & QFULL) { 28427 q->q_flag &= ~QFULL; 28428 mutex_exit(QLOCK(q)); 28429 if (q->q_flag & QWANTW) 28430 qbackenable(q, 0); 28431 } else { 28432 mutex_exit(QLOCK(q)); 28433 } 28434 } 28435 } 28436 28437 /* 28438 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28439 */ 28440 /* ARGSUSED */ 28441 static void 28442 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28443 { 28444 ill_t *ill = (ill_t *)q->q_ptr; 28445 mblk_t *mp1, *mp2; 28446 ipif_t *ipif; 28447 int err = 0; 28448 conn_t *connp = NULL; 28449 ipsq_t *ipsq; 28450 arc_t *arc; 28451 28452 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28453 28454 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28455 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28456 28457 ASSERT(IAM_WRITER_ILL(ill)); 28458 mp2 = mp->b_cont; 28459 mp->b_cont = NULL; 28460 28461 /* 28462 * We have now received the arp bringup completion message 28463 * from ARP. Mark the arp bringup as done. Also if the arp 28464 * stream has already started closing, send up the AR_ARP_CLOSING 28465 * ack now since ARP is waiting in close for this ack. 28466 */ 28467 mutex_enter(&ill->ill_lock); 28468 ill->ill_arp_bringup_pending = 0; 28469 if (ill->ill_arp_closing) { 28470 mutex_exit(&ill->ill_lock); 28471 /* Let's reuse the mp for sending the ack */ 28472 arc = (arc_t *)mp->b_rptr; 28473 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28474 arc->arc_cmd = AR_ARP_CLOSING; 28475 qreply(q, mp); 28476 } else { 28477 mutex_exit(&ill->ill_lock); 28478 freeb(mp); 28479 } 28480 28481 ipsq = ill->ill_phyint->phyint_ipsq; 28482 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28483 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28484 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28485 if (mp1 == NULL) { 28486 /* bringup was aborted by the user */ 28487 freemsg(mp2); 28488 return; 28489 } 28490 28491 /* 28492 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28493 * must have an associated conn_t. Otherwise, we're bringing this 28494 * interface back up as part of handling an asynchronous event (e.g., 28495 * physical address change). 28496 */ 28497 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28498 ASSERT(connp != NULL); 28499 q = CONNP_TO_WQ(connp); 28500 } else { 28501 ASSERT(connp == NULL); 28502 q = ill->ill_rq; 28503 } 28504 28505 /* 28506 * If the DL_BIND_REQ fails, it is noted 28507 * in arc_name_offset. 28508 */ 28509 err = *((int *)mp2->b_rptr); 28510 if (err == 0) { 28511 if (ipif->ipif_isv6) { 28512 if ((err = ipif_up_done_v6(ipif)) != 0) 28513 ip0dbg(("ip_arp_done: init failed\n")); 28514 } else { 28515 if ((err = ipif_up_done(ipif)) != 0) 28516 ip0dbg(("ip_arp_done: init failed\n")); 28517 } 28518 } else { 28519 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28520 } 28521 28522 freemsg(mp2); 28523 28524 if ((err == 0) && (ill->ill_up_ipifs)) { 28525 err = ill_up_ipifs(ill, q, mp1); 28526 if (err == EINPROGRESS) 28527 return; 28528 } 28529 28530 /* 28531 * If we have a moved ipif to bring up, and everything has succeeded 28532 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28533 * down -- the admin can try to bring it up by hand if need be. 28534 */ 28535 if (ill->ill_move_ipif != NULL) { 28536 ipif = ill->ill_move_ipif; 28537 ill->ill_move_ipif = NULL; 28538 if (err == 0) { 28539 err = ipif_up(ipif, q, mp1); 28540 if (err == EINPROGRESS) 28541 return; 28542 } 28543 } 28544 28545 /* 28546 * The operation must complete without EINPROGRESS since 28547 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28548 * operation will be stuck forever in the ipsq. 28549 */ 28550 ASSERT(err != EINPROGRESS); 28551 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28552 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28553 else 28554 ipsq_current_finish(ipsq); 28555 } 28556 28557 /* Allocate the private structure */ 28558 static int 28559 ip_priv_alloc(void **bufp) 28560 { 28561 void *buf; 28562 28563 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28564 return (ENOMEM); 28565 28566 *bufp = buf; 28567 return (0); 28568 } 28569 28570 /* Function to delete the private structure */ 28571 void 28572 ip_priv_free(void *buf) 28573 { 28574 ASSERT(buf != NULL); 28575 kmem_free(buf, sizeof (ip_priv_t)); 28576 } 28577 28578 /* 28579 * The entry point for IPPF processing. 28580 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28581 * routine just returns. 28582 * 28583 * When called, ip_process generates an ipp_packet_t structure 28584 * which holds the state information for this packet and invokes the 28585 * the classifier (via ipp_packet_process). The classification, depending on 28586 * configured filters, results in a list of actions for this packet. Invoking 28587 * an action may cause the packet to be dropped, in which case the resulting 28588 * mblk (*mpp) is NULL. proc indicates the callout position for 28589 * this packet and ill_index is the interface this packet on or will leave 28590 * on (inbound and outbound resp.). 28591 */ 28592 void 28593 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28594 { 28595 mblk_t *mp; 28596 ip_priv_t *priv; 28597 ipp_action_id_t aid; 28598 int rc = 0; 28599 ipp_packet_t *pp; 28600 #define IP_CLASS "ip" 28601 28602 /* If the classifier is not loaded, return */ 28603 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28604 return; 28605 } 28606 28607 mp = *mpp; 28608 ASSERT(mp != NULL); 28609 28610 /* Allocate the packet structure */ 28611 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28612 if (rc != 0) { 28613 *mpp = NULL; 28614 freemsg(mp); 28615 return; 28616 } 28617 28618 /* Allocate the private structure */ 28619 rc = ip_priv_alloc((void **)&priv); 28620 if (rc != 0) { 28621 *mpp = NULL; 28622 freemsg(mp); 28623 ipp_packet_free(pp); 28624 return; 28625 } 28626 priv->proc = proc; 28627 priv->ill_index = ill_index; 28628 ipp_packet_set_private(pp, priv, ip_priv_free); 28629 ipp_packet_set_data(pp, mp); 28630 28631 /* Invoke the classifier */ 28632 rc = ipp_packet_process(&pp); 28633 if (pp != NULL) { 28634 mp = ipp_packet_get_data(pp); 28635 ipp_packet_free(pp); 28636 if (rc != 0) { 28637 freemsg(mp); 28638 *mpp = NULL; 28639 } 28640 } else { 28641 *mpp = NULL; 28642 } 28643 #undef IP_CLASS 28644 } 28645 28646 /* 28647 * Propagate a multicast group membership operation (add/drop) on 28648 * all the interfaces crossed by the related multirt routes. 28649 * The call is considered successful if the operation succeeds 28650 * on at least one interface. 28651 */ 28652 static int 28653 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28654 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28655 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28656 mblk_t *first_mp) 28657 { 28658 ire_t *ire_gw; 28659 irb_t *irb; 28660 int error = 0; 28661 opt_restart_t *or; 28662 ip_stack_t *ipst = ire->ire_ipst; 28663 28664 irb = ire->ire_bucket; 28665 ASSERT(irb != NULL); 28666 28667 ASSERT(DB_TYPE(first_mp) == M_CTL); 28668 28669 or = (opt_restart_t *)first_mp->b_rptr; 28670 IRB_REFHOLD(irb); 28671 for (; ire != NULL; ire = ire->ire_next) { 28672 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28673 continue; 28674 if (ire->ire_addr != group) 28675 continue; 28676 28677 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28678 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28679 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28680 /* No resolver exists for the gateway; skip this ire. */ 28681 if (ire_gw == NULL) 28682 continue; 28683 28684 /* 28685 * This function can return EINPROGRESS. If so the operation 28686 * will be restarted from ip_restart_optmgmt which will 28687 * call ip_opt_set and option processing will restart for 28688 * this option. So we may end up calling 'fn' more than once. 28689 * This requires that 'fn' is idempotent except for the 28690 * return value. The operation is considered a success if 28691 * it succeeds at least once on any one interface. 28692 */ 28693 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28694 NULL, fmode, src, first_mp); 28695 if (error == 0) 28696 or->or_private = CGTP_MCAST_SUCCESS; 28697 28698 if (ip_debug > 0) { 28699 ulong_t off; 28700 char *ksym; 28701 ksym = kobj_getsymname((uintptr_t)fn, &off); 28702 ip2dbg(("ip_multirt_apply_membership: " 28703 "called %s, multirt group 0x%08x via itf 0x%08x, " 28704 "error %d [success %u]\n", 28705 ksym ? ksym : "?", 28706 ntohl(group), ntohl(ire_gw->ire_src_addr), 28707 error, or->or_private)); 28708 } 28709 28710 ire_refrele(ire_gw); 28711 if (error == EINPROGRESS) { 28712 IRB_REFRELE(irb); 28713 return (error); 28714 } 28715 } 28716 IRB_REFRELE(irb); 28717 /* 28718 * Consider the call as successful if we succeeded on at least 28719 * one interface. Otherwise, return the last encountered error. 28720 */ 28721 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28722 } 28723 28724 /* 28725 * Issue a warning regarding a route crossing an interface with an 28726 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28727 * amount of time is logged. 28728 */ 28729 static void 28730 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28731 { 28732 hrtime_t current = gethrtime(); 28733 char buf[INET_ADDRSTRLEN]; 28734 ip_stack_t *ipst = ire->ire_ipst; 28735 28736 /* Convert interval in ms to hrtime in ns */ 28737 if (ipst->ips_multirt_bad_mtu_last_time + 28738 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28739 current) { 28740 cmn_err(CE_WARN, "ip: ignoring multiroute " 28741 "to %s, incorrect MTU %u (expected %u)\n", 28742 ip_dot_addr(ire->ire_addr, buf), 28743 ire->ire_max_frag, max_frag); 28744 28745 ipst->ips_multirt_bad_mtu_last_time = current; 28746 } 28747 } 28748 28749 /* 28750 * Get the CGTP (multirouting) filtering status. 28751 * If 0, the CGTP hooks are transparent. 28752 */ 28753 /* ARGSUSED */ 28754 static int 28755 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28756 { 28757 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28758 28759 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28760 return (0); 28761 } 28762 28763 /* 28764 * Set the CGTP (multirouting) filtering status. 28765 * If the status is changed from active to transparent 28766 * or from transparent to active, forward the new status 28767 * to the filtering module (if loaded). 28768 */ 28769 /* ARGSUSED */ 28770 static int 28771 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28772 cred_t *ioc_cr) 28773 { 28774 long new_value; 28775 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28776 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28777 28778 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28779 return (EPERM); 28780 28781 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28782 new_value < 0 || new_value > 1) { 28783 return (EINVAL); 28784 } 28785 28786 if ((!*ip_cgtp_filter_value) && new_value) { 28787 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28788 ipst->ips_ip_cgtp_filter_ops == NULL ? 28789 " (module not loaded)" : ""); 28790 } 28791 if (*ip_cgtp_filter_value && (!new_value)) { 28792 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28793 ipst->ips_ip_cgtp_filter_ops == NULL ? 28794 " (module not loaded)" : ""); 28795 } 28796 28797 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28798 int res; 28799 netstackid_t stackid; 28800 28801 stackid = ipst->ips_netstack->netstack_stackid; 28802 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28803 new_value); 28804 if (res) 28805 return (res); 28806 } 28807 28808 *ip_cgtp_filter_value = (boolean_t)new_value; 28809 28810 return (0); 28811 } 28812 28813 /* 28814 * Return the expected CGTP hooks version number. 28815 */ 28816 int 28817 ip_cgtp_filter_supported(void) 28818 { 28819 return (ip_cgtp_filter_rev); 28820 } 28821 28822 /* 28823 * CGTP hooks can be registered by invoking this function. 28824 * Checks that the version number matches. 28825 */ 28826 int 28827 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28828 { 28829 netstack_t *ns; 28830 ip_stack_t *ipst; 28831 28832 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28833 return (ENOTSUP); 28834 28835 ns = netstack_find_by_stackid(stackid); 28836 if (ns == NULL) 28837 return (EINVAL); 28838 ipst = ns->netstack_ip; 28839 ASSERT(ipst != NULL); 28840 28841 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28842 netstack_rele(ns); 28843 return (EALREADY); 28844 } 28845 28846 ipst->ips_ip_cgtp_filter_ops = ops; 28847 netstack_rele(ns); 28848 return (0); 28849 } 28850 28851 /* 28852 * CGTP hooks can be unregistered by invoking this function. 28853 * Returns ENXIO if there was no registration. 28854 * Returns EBUSY if the ndd variable has not been turned off. 28855 */ 28856 int 28857 ip_cgtp_filter_unregister(netstackid_t stackid) 28858 { 28859 netstack_t *ns; 28860 ip_stack_t *ipst; 28861 28862 ns = netstack_find_by_stackid(stackid); 28863 if (ns == NULL) 28864 return (EINVAL); 28865 ipst = ns->netstack_ip; 28866 ASSERT(ipst != NULL); 28867 28868 if (ipst->ips_ip_cgtp_filter) { 28869 netstack_rele(ns); 28870 return (EBUSY); 28871 } 28872 28873 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28874 netstack_rele(ns); 28875 return (ENXIO); 28876 } 28877 ipst->ips_ip_cgtp_filter_ops = NULL; 28878 netstack_rele(ns); 28879 return (0); 28880 } 28881 28882 /* 28883 * Check whether there is a CGTP filter registration. 28884 * Returns non-zero if there is a registration, otherwise returns zero. 28885 * Note: returns zero if bad stackid. 28886 */ 28887 int 28888 ip_cgtp_filter_is_registered(netstackid_t stackid) 28889 { 28890 netstack_t *ns; 28891 ip_stack_t *ipst; 28892 int ret; 28893 28894 ns = netstack_find_by_stackid(stackid); 28895 if (ns == NULL) 28896 return (0); 28897 ipst = ns->netstack_ip; 28898 ASSERT(ipst != NULL); 28899 28900 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28901 ret = 1; 28902 else 28903 ret = 0; 28904 28905 netstack_rele(ns); 28906 return (ret); 28907 } 28908 28909 static int 28910 ip_squeue_switch(int val) 28911 { 28912 int rval = SQ_FILL; 28913 28914 switch (val) { 28915 case IP_SQUEUE_ENTER_NODRAIN: 28916 rval = SQ_NODRAIN; 28917 break; 28918 case IP_SQUEUE_ENTER: 28919 rval = SQ_PROCESS; 28920 break; 28921 default: 28922 break; 28923 } 28924 return (rval); 28925 } 28926 28927 /* ARGSUSED */ 28928 static int 28929 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28930 caddr_t addr, cred_t *cr) 28931 { 28932 int *v = (int *)addr; 28933 long new_value; 28934 28935 if (secpolicy_net_config(cr, B_FALSE) != 0) 28936 return (EPERM); 28937 28938 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28939 return (EINVAL); 28940 28941 ip_squeue_flag = ip_squeue_switch(new_value); 28942 *v = new_value; 28943 return (0); 28944 } 28945 28946 /* 28947 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 28948 * ip_debug. 28949 */ 28950 /* ARGSUSED */ 28951 static int 28952 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28953 caddr_t addr, cred_t *cr) 28954 { 28955 int *v = (int *)addr; 28956 long new_value; 28957 28958 if (secpolicy_net_config(cr, B_FALSE) != 0) 28959 return (EPERM); 28960 28961 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28962 return (EINVAL); 28963 28964 *v = new_value; 28965 return (0); 28966 } 28967 28968 static void * 28969 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 28970 { 28971 kstat_t *ksp; 28972 28973 ip_stat_t template = { 28974 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 28975 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 28976 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 28977 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 28978 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 28979 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 28980 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 28981 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 28982 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 28983 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 28984 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 28985 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 28986 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 28987 { "ip_db_ref", KSTAT_DATA_UINT64 }, 28988 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 28989 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 28990 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 28991 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 28992 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 28993 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 28994 { "ip_opt", KSTAT_DATA_UINT64 }, 28995 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 28996 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 28997 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 28998 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 28999 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29000 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29001 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29002 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29003 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29004 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29005 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29006 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29007 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29008 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29009 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29010 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29011 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29012 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29013 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29014 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29015 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29016 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29017 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29018 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29019 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29020 }; 29021 29022 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29023 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29024 KSTAT_FLAG_VIRTUAL, stackid); 29025 29026 if (ksp == NULL) 29027 return (NULL); 29028 29029 bcopy(&template, ip_statisticsp, sizeof (template)); 29030 ksp->ks_data = (void *)ip_statisticsp; 29031 ksp->ks_private = (void *)(uintptr_t)stackid; 29032 29033 kstat_install(ksp); 29034 return (ksp); 29035 } 29036 29037 static void 29038 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29039 { 29040 if (ksp != NULL) { 29041 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29042 kstat_delete_netstack(ksp, stackid); 29043 } 29044 } 29045 29046 static void * 29047 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29048 { 29049 kstat_t *ksp; 29050 29051 ip_named_kstat_t template = { 29052 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29053 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29054 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29055 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29056 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29057 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29058 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29059 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29060 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29061 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29062 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29063 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29064 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29065 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29066 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29067 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29068 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29069 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29070 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29071 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29072 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29073 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29074 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29075 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29076 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29077 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29078 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29079 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29080 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29081 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29082 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29083 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29084 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29085 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29086 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29087 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29088 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29089 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29090 }; 29091 29092 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29093 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29094 if (ksp == NULL || ksp->ks_data == NULL) 29095 return (NULL); 29096 29097 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29098 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29099 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29100 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29101 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29102 29103 template.netToMediaEntrySize.value.i32 = 29104 sizeof (mib2_ipNetToMediaEntry_t); 29105 29106 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29107 29108 bcopy(&template, ksp->ks_data, sizeof (template)); 29109 ksp->ks_update = ip_kstat_update; 29110 ksp->ks_private = (void *)(uintptr_t)stackid; 29111 29112 kstat_install(ksp); 29113 return (ksp); 29114 } 29115 29116 static void 29117 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29118 { 29119 if (ksp != NULL) { 29120 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29121 kstat_delete_netstack(ksp, stackid); 29122 } 29123 } 29124 29125 static int 29126 ip_kstat_update(kstat_t *kp, int rw) 29127 { 29128 ip_named_kstat_t *ipkp; 29129 mib2_ipIfStatsEntry_t ipmib; 29130 ill_walk_context_t ctx; 29131 ill_t *ill; 29132 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29133 netstack_t *ns; 29134 ip_stack_t *ipst; 29135 29136 if (kp == NULL || kp->ks_data == NULL) 29137 return (EIO); 29138 29139 if (rw == KSTAT_WRITE) 29140 return (EACCES); 29141 29142 ns = netstack_find_by_stackid(stackid); 29143 if (ns == NULL) 29144 return (-1); 29145 ipst = ns->netstack_ip; 29146 if (ipst == NULL) { 29147 netstack_rele(ns); 29148 return (-1); 29149 } 29150 ipkp = (ip_named_kstat_t *)kp->ks_data; 29151 29152 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29153 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29154 ill = ILL_START_WALK_V4(&ctx, ipst); 29155 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29156 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29157 rw_exit(&ipst->ips_ill_g_lock); 29158 29159 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29160 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29161 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29162 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29163 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29164 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29165 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29166 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29167 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29168 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29169 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29170 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29171 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29172 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29173 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29174 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29175 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29176 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29177 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29178 29179 ipkp->routingDiscards.value.ui32 = 0; 29180 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29181 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29182 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29183 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29184 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29185 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29186 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29187 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29188 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29189 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29190 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29191 29192 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29193 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29194 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29195 29196 netstack_rele(ns); 29197 29198 return (0); 29199 } 29200 29201 static void * 29202 icmp_kstat_init(netstackid_t stackid) 29203 { 29204 kstat_t *ksp; 29205 29206 icmp_named_kstat_t template = { 29207 { "inMsgs", KSTAT_DATA_UINT32 }, 29208 { "inErrors", KSTAT_DATA_UINT32 }, 29209 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29210 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29211 { "inParmProbs", KSTAT_DATA_UINT32 }, 29212 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29213 { "inRedirects", KSTAT_DATA_UINT32 }, 29214 { "inEchos", KSTAT_DATA_UINT32 }, 29215 { "inEchoReps", KSTAT_DATA_UINT32 }, 29216 { "inTimestamps", KSTAT_DATA_UINT32 }, 29217 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29218 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29219 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29220 { "outMsgs", KSTAT_DATA_UINT32 }, 29221 { "outErrors", KSTAT_DATA_UINT32 }, 29222 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29223 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29224 { "outParmProbs", KSTAT_DATA_UINT32 }, 29225 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29226 { "outRedirects", KSTAT_DATA_UINT32 }, 29227 { "outEchos", KSTAT_DATA_UINT32 }, 29228 { "outEchoReps", KSTAT_DATA_UINT32 }, 29229 { "outTimestamps", KSTAT_DATA_UINT32 }, 29230 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29231 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29232 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29233 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29234 { "inUnknowns", KSTAT_DATA_UINT32 }, 29235 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29236 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29237 { "outDrops", KSTAT_DATA_UINT32 }, 29238 { "inOverFlows", KSTAT_DATA_UINT32 }, 29239 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29240 }; 29241 29242 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29243 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29244 if (ksp == NULL || ksp->ks_data == NULL) 29245 return (NULL); 29246 29247 bcopy(&template, ksp->ks_data, sizeof (template)); 29248 29249 ksp->ks_update = icmp_kstat_update; 29250 ksp->ks_private = (void *)(uintptr_t)stackid; 29251 29252 kstat_install(ksp); 29253 return (ksp); 29254 } 29255 29256 static void 29257 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29258 { 29259 if (ksp != NULL) { 29260 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29261 kstat_delete_netstack(ksp, stackid); 29262 } 29263 } 29264 29265 static int 29266 icmp_kstat_update(kstat_t *kp, int rw) 29267 { 29268 icmp_named_kstat_t *icmpkp; 29269 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29270 netstack_t *ns; 29271 ip_stack_t *ipst; 29272 29273 if ((kp == NULL) || (kp->ks_data == NULL)) 29274 return (EIO); 29275 29276 if (rw == KSTAT_WRITE) 29277 return (EACCES); 29278 29279 ns = netstack_find_by_stackid(stackid); 29280 if (ns == NULL) 29281 return (-1); 29282 ipst = ns->netstack_ip; 29283 if (ipst == NULL) { 29284 netstack_rele(ns); 29285 return (-1); 29286 } 29287 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29288 29289 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29290 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29291 icmpkp->inDestUnreachs.value.ui32 = 29292 ipst->ips_icmp_mib.icmpInDestUnreachs; 29293 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29294 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29295 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29296 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29297 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29298 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29299 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29300 icmpkp->inTimestampReps.value.ui32 = 29301 ipst->ips_icmp_mib.icmpInTimestampReps; 29302 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29303 icmpkp->inAddrMaskReps.value.ui32 = 29304 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29305 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29306 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29307 icmpkp->outDestUnreachs.value.ui32 = 29308 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29309 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29310 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29311 icmpkp->outSrcQuenchs.value.ui32 = 29312 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29313 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29314 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29315 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29316 icmpkp->outTimestamps.value.ui32 = 29317 ipst->ips_icmp_mib.icmpOutTimestamps; 29318 icmpkp->outTimestampReps.value.ui32 = 29319 ipst->ips_icmp_mib.icmpOutTimestampReps; 29320 icmpkp->outAddrMasks.value.ui32 = 29321 ipst->ips_icmp_mib.icmpOutAddrMasks; 29322 icmpkp->outAddrMaskReps.value.ui32 = 29323 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29324 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29325 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29326 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29327 icmpkp->outFragNeeded.value.ui32 = 29328 ipst->ips_icmp_mib.icmpOutFragNeeded; 29329 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29330 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29331 icmpkp->inBadRedirects.value.ui32 = 29332 ipst->ips_icmp_mib.icmpInBadRedirects; 29333 29334 netstack_rele(ns); 29335 return (0); 29336 } 29337 29338 /* 29339 * This is the fanout function for raw socket opened for SCTP. Note 29340 * that it is called after SCTP checks that there is no socket which 29341 * wants a packet. Then before SCTP handles this out of the blue packet, 29342 * this function is called to see if there is any raw socket for SCTP. 29343 * If there is and it is bound to the correct address, the packet will 29344 * be sent to that socket. Note that only one raw socket can be bound to 29345 * a port. This is assured in ipcl_sctp_hash_insert(); 29346 */ 29347 void 29348 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29349 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29350 zoneid_t zoneid) 29351 { 29352 conn_t *connp; 29353 queue_t *rq; 29354 mblk_t *first_mp; 29355 boolean_t secure; 29356 ip6_t *ip6h; 29357 ip_stack_t *ipst = recv_ill->ill_ipst; 29358 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29359 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29360 boolean_t sctp_csum_err = B_FALSE; 29361 29362 if (flags & IP_FF_SCTP_CSUM_ERR) { 29363 sctp_csum_err = B_TRUE; 29364 flags &= ~IP_FF_SCTP_CSUM_ERR; 29365 } 29366 29367 first_mp = mp; 29368 if (mctl_present) { 29369 mp = first_mp->b_cont; 29370 secure = ipsec_in_is_secure(first_mp); 29371 ASSERT(mp != NULL); 29372 } else { 29373 secure = B_FALSE; 29374 } 29375 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29376 29377 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29378 if (connp == NULL) { 29379 /* 29380 * Although raw sctp is not summed, OOB chunks must be. 29381 * Drop the packet here if the sctp checksum failed. 29382 */ 29383 if (sctp_csum_err) { 29384 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29385 freemsg(first_mp); 29386 return; 29387 } 29388 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29389 return; 29390 } 29391 rq = connp->conn_rq; 29392 if (!canputnext(rq)) { 29393 CONN_DEC_REF(connp); 29394 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29395 freemsg(first_mp); 29396 return; 29397 } 29398 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29399 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29400 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29401 (isv4 ? ipha : NULL), ip6h, mctl_present); 29402 if (first_mp == NULL) { 29403 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29404 CONN_DEC_REF(connp); 29405 return; 29406 } 29407 } 29408 /* 29409 * We probably should not send M_CTL message up to 29410 * raw socket. 29411 */ 29412 if (mctl_present) 29413 freeb(first_mp); 29414 29415 /* Initiate IPPF processing here if needed. */ 29416 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29417 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29418 ip_process(IPP_LOCAL_IN, &mp, 29419 recv_ill->ill_phyint->phyint_ifindex); 29420 if (mp == NULL) { 29421 CONN_DEC_REF(connp); 29422 return; 29423 } 29424 } 29425 29426 if (connp->conn_recvif || connp->conn_recvslla || 29427 ((connp->conn_ip_recvpktinfo || 29428 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29429 (flags & IP_FF_IPINFO))) { 29430 int in_flags = 0; 29431 29432 /* 29433 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29434 * IPF_RECVIF. 29435 */ 29436 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29437 in_flags = IPF_RECVIF; 29438 } 29439 if (connp->conn_recvslla) { 29440 in_flags |= IPF_RECVSLLA; 29441 } 29442 if (isv4) { 29443 mp = ip_add_info(mp, recv_ill, in_flags, 29444 IPCL_ZONEID(connp), ipst); 29445 } else { 29446 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29447 if (mp == NULL) { 29448 BUMP_MIB(recv_ill->ill_ip_mib, 29449 ipIfStatsInDiscards); 29450 CONN_DEC_REF(connp); 29451 return; 29452 } 29453 } 29454 } 29455 29456 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29457 /* 29458 * We are sending the IPSEC_IN message also up. Refer 29459 * to comments above this function. 29460 * This is the SOCK_RAW, IPPROTO_SCTP case. 29461 */ 29462 (connp->conn_recv)(connp, mp, NULL); 29463 CONN_DEC_REF(connp); 29464 } 29465 29466 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29467 { \ 29468 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29469 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29470 } 29471 /* 29472 * This function should be called only if all packet processing 29473 * including fragmentation is complete. Callers of this function 29474 * must set mp->b_prev to one of these values: 29475 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29476 * prior to handing over the mp as first argument to this function. 29477 * 29478 * If the ire passed by caller is incomplete, this function 29479 * queues the packet and if necessary, sends ARP request and bails. 29480 * If the ire passed is fully resolved, we simply prepend 29481 * the link-layer header to the packet, do ipsec hw acceleration 29482 * work if necessary, and send the packet out on the wire. 29483 * 29484 * NOTE: IPsec will only call this function with fully resolved 29485 * ires if hw acceleration is involved. 29486 * TODO list : 29487 * a Handle M_MULTIDATA so that 29488 * tcp_multisend->tcp_multisend_data can 29489 * call ip_xmit_v4 directly 29490 * b Handle post-ARP work for fragments so that 29491 * ip_wput_frag can call this function. 29492 */ 29493 ipxmit_state_t 29494 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29495 boolean_t flow_ctl_enabled, conn_t *connp) 29496 { 29497 nce_t *arpce; 29498 ipha_t *ipha; 29499 queue_t *q; 29500 int ill_index; 29501 mblk_t *nxt_mp, *first_mp; 29502 boolean_t xmit_drop = B_FALSE; 29503 ip_proc_t proc; 29504 ill_t *out_ill; 29505 int pkt_len; 29506 29507 arpce = ire->ire_nce; 29508 ASSERT(arpce != NULL); 29509 29510 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29511 29512 mutex_enter(&arpce->nce_lock); 29513 switch (arpce->nce_state) { 29514 case ND_REACHABLE: 29515 /* If there are other queued packets, queue this packet */ 29516 if (arpce->nce_qd_mp != NULL) { 29517 if (mp != NULL) 29518 nce_queue_mp_common(arpce, mp, B_FALSE); 29519 mp = arpce->nce_qd_mp; 29520 } 29521 arpce->nce_qd_mp = NULL; 29522 mutex_exit(&arpce->nce_lock); 29523 29524 /* 29525 * Flush the queue. In the common case, where the 29526 * ARP is already resolved, it will go through the 29527 * while loop only once. 29528 */ 29529 while (mp != NULL) { 29530 29531 nxt_mp = mp->b_next; 29532 mp->b_next = NULL; 29533 ASSERT(mp->b_datap->db_type != M_CTL); 29534 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29535 /* 29536 * This info is needed for IPQOS to do COS marking 29537 * in ip_wput_attach_llhdr->ip_process. 29538 */ 29539 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29540 mp->b_prev = NULL; 29541 29542 /* set up ill index for outbound qos processing */ 29543 out_ill = ire_to_ill(ire); 29544 ill_index = out_ill->ill_phyint->phyint_ifindex; 29545 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29546 ill_index, &ipha); 29547 if (first_mp == NULL) { 29548 xmit_drop = B_TRUE; 29549 BUMP_MIB(out_ill->ill_ip_mib, 29550 ipIfStatsOutDiscards); 29551 goto next_mp; 29552 } 29553 29554 /* non-ipsec hw accel case */ 29555 if (io == NULL || !io->ipsec_out_accelerated) { 29556 /* send it */ 29557 q = ire->ire_stq; 29558 if (proc == IPP_FWD_OUT) { 29559 UPDATE_IB_PKT_COUNT(ire); 29560 } else { 29561 UPDATE_OB_PKT_COUNT(ire); 29562 } 29563 ire->ire_last_used_time = lbolt; 29564 29565 if (flow_ctl_enabled || canputnext(q)) { 29566 if (proc == IPP_FWD_OUT) { 29567 29568 BUMP_MIB(out_ill->ill_ip_mib, 29569 ipIfStatsHCOutForwDatagrams); 29570 29571 } 29572 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29573 pkt_len); 29574 29575 DTRACE_IP7(send, mblk_t *, first_mp, 29576 conn_t *, NULL, void_ip_t *, ipha, 29577 __dtrace_ipsr_ill_t *, out_ill, 29578 ipha_t *, ipha, ip6_t *, NULL, int, 29579 0); 29580 29581 ILL_SEND_TX(out_ill, 29582 ire, connp, first_mp, 0, connp); 29583 } else { 29584 BUMP_MIB(out_ill->ill_ip_mib, 29585 ipIfStatsOutDiscards); 29586 xmit_drop = B_TRUE; 29587 freemsg(first_mp); 29588 } 29589 } else { 29590 /* 29591 * Safety Pup says: make sure this 29592 * is going to the right interface! 29593 */ 29594 ill_t *ill1 = 29595 (ill_t *)ire->ire_stq->q_ptr; 29596 int ifindex = 29597 ill1->ill_phyint->phyint_ifindex; 29598 if (ifindex != 29599 io->ipsec_out_capab_ill_index) { 29600 xmit_drop = B_TRUE; 29601 freemsg(mp); 29602 } else { 29603 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29604 pkt_len); 29605 29606 DTRACE_IP7(send, mblk_t *, first_mp, 29607 conn_t *, NULL, void_ip_t *, ipha, 29608 __dtrace_ipsr_ill_t *, ill1, 29609 ipha_t *, ipha, ip6_t *, NULL, 29610 int, 0); 29611 29612 ipsec_hw_putnext(ire->ire_stq, mp); 29613 } 29614 } 29615 next_mp: 29616 mp = nxt_mp; 29617 } /* while (mp != NULL) */ 29618 if (xmit_drop) 29619 return (SEND_FAILED); 29620 else 29621 return (SEND_PASSED); 29622 29623 case ND_INITIAL: 29624 case ND_INCOMPLETE: 29625 29626 /* 29627 * While we do send off packets to dests that 29628 * use fully-resolved CGTP routes, we do not 29629 * handle unresolved CGTP routes. 29630 */ 29631 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29632 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29633 29634 if (mp != NULL) { 29635 /* queue the packet */ 29636 nce_queue_mp_common(arpce, mp, B_FALSE); 29637 } 29638 29639 if (arpce->nce_state == ND_INCOMPLETE) { 29640 mutex_exit(&arpce->nce_lock); 29641 DTRACE_PROBE3(ip__xmit__incomplete, 29642 (ire_t *), ire, (mblk_t *), mp, 29643 (ipsec_out_t *), io); 29644 return (LOOKUP_IN_PROGRESS); 29645 } 29646 29647 arpce->nce_state = ND_INCOMPLETE; 29648 mutex_exit(&arpce->nce_lock); 29649 29650 /* 29651 * Note that ire_add() (called from ire_forward()) 29652 * holds a ref on the ire until ARP is completed. 29653 */ 29654 ire_arpresolve(ire); 29655 return (LOOKUP_IN_PROGRESS); 29656 default: 29657 ASSERT(0); 29658 mutex_exit(&arpce->nce_lock); 29659 return (LLHDR_RESLV_FAILED); 29660 } 29661 } 29662 29663 #undef UPDATE_IP_MIB_OB_COUNTERS 29664 29665 /* 29666 * Return B_TRUE if the buffers differ in length or content. 29667 * This is used for comparing extension header buffers. 29668 * Note that an extension header would be declared different 29669 * even if all that changed was the next header value in that header i.e. 29670 * what really changed is the next extension header. 29671 */ 29672 boolean_t 29673 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29674 uint_t blen) 29675 { 29676 if (!b_valid) 29677 blen = 0; 29678 29679 if (alen != blen) 29680 return (B_TRUE); 29681 if (alen == 0) 29682 return (B_FALSE); /* Both zero length */ 29683 return (bcmp(abuf, bbuf, alen)); 29684 } 29685 29686 /* 29687 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29688 * Return B_FALSE if memory allocation fails - don't change any state! 29689 */ 29690 boolean_t 29691 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29692 const void *src, uint_t srclen) 29693 { 29694 void *dst; 29695 29696 if (!src_valid) 29697 srclen = 0; 29698 29699 ASSERT(*dstlenp == 0); 29700 if (src != NULL && srclen != 0) { 29701 dst = mi_alloc(srclen, BPRI_MED); 29702 if (dst == NULL) 29703 return (B_FALSE); 29704 } else { 29705 dst = NULL; 29706 } 29707 if (*dstp != NULL) 29708 mi_free(*dstp); 29709 *dstp = dst; 29710 *dstlenp = dst == NULL ? 0 : srclen; 29711 return (B_TRUE); 29712 } 29713 29714 /* 29715 * Replace what is in *dst, *dstlen with the source. 29716 * Assumes ip_allocbuf has already been called. 29717 */ 29718 void 29719 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29720 const void *src, uint_t srclen) 29721 { 29722 if (!src_valid) 29723 srclen = 0; 29724 29725 ASSERT(*dstlenp == srclen); 29726 if (src != NULL && srclen != 0) 29727 bcopy(src, *dstp, srclen); 29728 } 29729 29730 /* 29731 * Free the storage pointed to by the members of an ip6_pkt_t. 29732 */ 29733 void 29734 ip6_pkt_free(ip6_pkt_t *ipp) 29735 { 29736 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29737 29738 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29739 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29740 ipp->ipp_hopopts = NULL; 29741 ipp->ipp_hopoptslen = 0; 29742 } 29743 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29744 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29745 ipp->ipp_rtdstopts = NULL; 29746 ipp->ipp_rtdstoptslen = 0; 29747 } 29748 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29749 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29750 ipp->ipp_dstopts = NULL; 29751 ipp->ipp_dstoptslen = 0; 29752 } 29753 if (ipp->ipp_fields & IPPF_RTHDR) { 29754 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29755 ipp->ipp_rthdr = NULL; 29756 ipp->ipp_rthdrlen = 0; 29757 } 29758 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29759 IPPF_RTHDR); 29760 } 29761 29762 zoneid_t 29763 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29764 zoneid_t lookup_zoneid) 29765 { 29766 ire_t *ire; 29767 int ire_flags = MATCH_IRE_TYPE; 29768 zoneid_t zoneid = ALL_ZONES; 29769 29770 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29771 return (ALL_ZONES); 29772 29773 if (lookup_zoneid != ALL_ZONES) 29774 ire_flags |= MATCH_IRE_ZONEONLY; 29775 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29776 lookup_zoneid, NULL, ire_flags, ipst); 29777 if (ire != NULL) { 29778 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29779 ire_refrele(ire); 29780 } 29781 return (zoneid); 29782 } 29783 29784 zoneid_t 29785 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29786 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29787 { 29788 ire_t *ire; 29789 int ire_flags = MATCH_IRE_TYPE; 29790 zoneid_t zoneid = ALL_ZONES; 29791 ipif_t *ipif_arg = NULL; 29792 29793 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29794 return (ALL_ZONES); 29795 29796 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29797 ire_flags |= MATCH_IRE_ILL; 29798 ipif_arg = ill->ill_ipif; 29799 } 29800 if (lookup_zoneid != ALL_ZONES) 29801 ire_flags |= MATCH_IRE_ZONEONLY; 29802 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29803 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29804 if (ire != NULL) { 29805 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29806 ire_refrele(ire); 29807 } 29808 return (zoneid); 29809 } 29810 29811 /* 29812 * IP obserability hook support functions. 29813 */ 29814 static void 29815 ipobs_init(ip_stack_t *ipst) 29816 { 29817 netid_t id; 29818 29819 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 29820 29821 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 29822 VERIFY(ipst->ips_ip4_observe_pr != NULL); 29823 29824 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 29825 VERIFY(ipst->ips_ip6_observe_pr != NULL); 29826 } 29827 29828 static void 29829 ipobs_fini(ip_stack_t *ipst) 29830 { 29831 29832 net_protocol_release(ipst->ips_ip4_observe_pr); 29833 net_protocol_release(ipst->ips_ip6_observe_pr); 29834 } 29835 29836 /* 29837 * hook_pkt_observe_t is composed in network byte order so that the 29838 * entire mblk_t chain handed into hook_run can be used as-is. 29839 * The caveat is that use of the fields, such as the zone fields, 29840 * requires conversion into host byte order first. 29841 */ 29842 void 29843 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 29844 const ill_t *ill, ip_stack_t *ipst) 29845 { 29846 hook_pkt_observe_t *hdr; 29847 uint64_t grifindex; 29848 mblk_t *imp; 29849 29850 imp = allocb(sizeof (*hdr), BPRI_HI); 29851 if (imp == NULL) 29852 return; 29853 29854 hdr = (hook_pkt_observe_t *)imp->b_rptr; 29855 /* 29856 * b_wptr is set to make the apparent size of the data in the mblk_t 29857 * to exclude the pointers at the end of hook_pkt_observer_t. 29858 */ 29859 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 29860 imp->b_cont = mp; 29861 29862 ASSERT(DB_TYPE(mp) == M_DATA); 29863 29864 if (IS_UNDER_IPMP(ill)) 29865 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 29866 else 29867 grifindex = 0; 29868 29869 hdr->hpo_version = 1; 29870 hdr->hpo_htype = htype; 29871 hdr->hpo_pktlen = htons((ushort_t)msgdsize(mp)); 29872 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 29873 hdr->hpo_grifindex = htonl(grifindex); 29874 hdr->hpo_zsrc = htonl(zsrc); 29875 hdr->hpo_zdst = htonl(zdst); 29876 hdr->hpo_pkt = imp; 29877 hdr->hpo_ctx = ipst->ips_netstack; 29878 29879 if (ill->ill_isv6) { 29880 hdr->hpo_family = AF_INET6; 29881 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 29882 ipst->ips_ipv6observing, (hook_data_t)hdr); 29883 } else { 29884 hdr->hpo_family = AF_INET; 29885 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 29886 ipst->ips_ipv4observing, (hook_data_t)hdr); 29887 } 29888 29889 imp->b_cont = NULL; 29890 freemsg(imp); 29891 } 29892