1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2012 Joyent, Inc. All rights reserved. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/suntpi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 #include <sys/taskq.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <sys/mac.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <inet/iptun/iptun_impl.h> 101 #include <inet/ipdrop.h> 102 #include <inet/ip_netinfo.h> 103 #include <inet/ilb_ip.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/pattr.h> 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 #include <inet/rawip_impl.h> 119 #include <inet/rts_impl.h> 120 121 #include <sys/tsol/label.h> 122 #include <sys/tsol/tnet.h> 123 124 #include <sys/squeue_impl.h> 125 #include <inet/ip_arp.h> 126 127 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 139 /* 140 * Setable in /etc/system 141 */ 142 int ip_poll_normal_ms = 100; 143 int ip_poll_normal_ticks = 0; 144 int ip_modclose_ackwait_ms = 3000; 145 146 /* 147 * It would be nice to have these present only in DEBUG systems, but the 148 * current design of the global symbol checking logic requires them to be 149 * unconditionally present. 150 */ 151 uint_t ip_thread_data; /* TSD key for debug support */ 152 krwlock_t ip_thread_rwlock; 153 list_t ip_thread_list; 154 155 /* 156 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 157 */ 158 159 struct listptr_s { 160 mblk_t *lp_head; /* pointer to the head of the list */ 161 mblk_t *lp_tail; /* pointer to the tail of the list */ 162 }; 163 164 typedef struct listptr_s listptr_t; 165 166 /* 167 * This is used by ip_snmp_get_mib2_ip_route_media and 168 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 169 */ 170 typedef struct iproutedata_s { 171 uint_t ird_idx; 172 uint_t ird_flags; /* see below */ 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* Include ire_testhidden and IRE_IF_CLONE routes */ 179 #define IRD_REPORT_ALL 0x01 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, IPMP operations, most set ioctls, etc. 236 * 237 * Plumbing is a long sequence of operations involving message 238 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 239 * involved in plumbing operations. A natural model is to serialize these 240 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 241 * parallel without any interference. But various set ioctls on hme0 are best 242 * serialized, along with IPMP operations and processing of DLPI control 243 * messages received from drivers on a per phyint basis. This serialization is 244 * provided by the ipsq_t and primitives operating on this. Details can 245 * be found in ip_if.c above the core primitives operating on ipsq_t. 246 * 247 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 248 * Simiarly lookup of an ire by a thread also returns a refheld ire. 249 * In addition ipif's and ill's referenced by the ire are also indirectly 250 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 251 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 252 * address of an ipif has to go through the ipsq_t. This ensures that only 253 * one such exclusive operation proceeds at any time on the ipif. It then 254 * waits for all refcnts 255 * associated with this ipif to come down to zero. The address is changed 256 * only after the ipif has been quiesced. Then the ipif is brought up again. 257 * More details are described above the comment in ip_sioctl_flags. 258 * 259 * Packet processing is based mostly on IREs and are fully multi-threaded 260 * using standard Solaris MT techniques. 261 * 262 * There are explicit locks in IP to handle: 263 * - The ip_g_head list maintained by mi_open_link() and friends. 264 * 265 * - The reassembly data structures (one lock per hash bucket) 266 * 267 * - conn_lock is meant to protect conn_t fields. The fields actually 268 * protected by conn_lock are documented in the conn_t definition. 269 * 270 * - ire_lock to protect some of the fields of the ire, IRE tables 271 * (one lock per hash bucket). Refer to ip_ire.c for details. 272 * 273 * - ndp_g_lock and ncec_lock for protecting NCEs. 274 * 275 * - ill_lock protects fields of the ill and ipif. Details in ip.h 276 * 277 * - ill_g_lock: This is a global reader/writer lock. Protects the following 278 * * The AVL tree based global multi list of all ills. 279 * * The linked list of all ipifs of an ill 280 * * The <ipsq-xop> mapping 281 * * <ill-phyint> association 282 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 283 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 284 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 285 * writer for the actual duration of the insertion/deletion/change. 286 * 287 * - ill_lock: This is a per ill mutex. 288 * It protects some members of the ill_t struct; see ip.h for details. 289 * It also protects the <ill-phyint> assoc. 290 * It also protects the list of ipifs hanging off the ill. 291 * 292 * - ipsq_lock: This is a per ipsq_t mutex lock. 293 * This protects some members of the ipsq_t struct; see ip.h for details. 294 * It also protects the <ipsq-ipxop> mapping 295 * 296 * - ipx_lock: This is a per ipxop_t mutex lock. 297 * This protects some members of the ipxop_t struct; see ip.h for details. 298 * 299 * - phyint_lock: This is a per phyint mutex lock. Protects just the 300 * phyint_flags 301 * 302 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 303 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 304 * uniqueness check also done atomically. 305 * 306 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 307 * group list linked by ill_usesrc_grp_next. It also protects the 308 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 309 * group is being added or deleted. This lock is taken as a reader when 310 * walking the list/group(eg: to get the number of members in a usesrc group). 311 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 312 * field is changing state i.e from NULL to non-NULL or vice-versa. For 313 * example, it is not necessary to take this lock in the initial portion 314 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 315 * operations are executed exclusively and that ensures that the "usesrc 316 * group state" cannot change. The "usesrc group state" change can happen 317 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 318 * 319 * Changing <ill-phyint>, <ipsq-xop> assocications: 320 * 321 * To change the <ill-phyint> association, the ill_g_lock must be held 322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 323 * must be held. 324 * 325 * To change the <ipsq-xop> association, the ill_g_lock must be held as 326 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 327 * This is only done when ills are added or removed from IPMP groups. 328 * 329 * To add or delete an ipif from the list of ipifs hanging off the ill, 330 * ill_g_lock (writer) and ill_lock must be held and the thread must be 331 * a writer on the associated ipsq. 332 * 333 * To add or delete an ill to the system, the ill_g_lock must be held as 334 * writer and the thread must be a writer on the associated ipsq. 335 * 336 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 337 * must be a writer on the associated ipsq. 338 * 339 * Lock hierarchy 340 * 341 * Some lock hierarchy scenarios are listed below. 342 * 343 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 344 * ill_g_lock -> ill_lock(s) -> phyint_lock 345 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 346 * ill_g_lock -> ip_addr_avail_lock 347 * conn_lock -> irb_lock -> ill_lock -> ire_lock 348 * ill_g_lock -> ip_g_nd_lock 349 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 350 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 351 * arl_lock -> ill_lock 352 * ips_ire_dep_lock -> irb_lock 353 * 354 * When more than 1 ill lock is needed to be held, all ill lock addresses 355 * are sorted on address and locked starting from highest addressed lock 356 * downward. 357 * 358 * Multicast scenarios 359 * ips_ill_g_lock -> ill_mcast_lock 360 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 361 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 365 * 366 * IPsec scenarios 367 * 368 * ipsa_lock -> ill_g_lock -> ill_lock 369 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 370 * 371 * Trusted Solaris scenarios 372 * 373 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 374 * igsa_lock -> gcdb_lock 375 * gcgrp_rwlock -> ire_lock 376 * gcgrp_rwlock -> gcdb_lock 377 * 378 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 379 * 380 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 381 * sq_lock -> conn_lock -> QLOCK(q) 382 * ill_lock -> ft_lock -> fe_lock 383 * 384 * Routing/forwarding table locking notes: 385 * 386 * Lock acquisition order: Radix tree lock, irb_lock. 387 * Requirements: 388 * i. Walker must not hold any locks during the walker callback. 389 * ii Walker must not see a truncated tree during the walk because of any node 390 * deletion. 391 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 392 * in many places in the code to walk the irb list. Thus even if all the 393 * ires in a bucket have been deleted, we still can't free the radix node 394 * until the ires have actually been inactive'd (freed). 395 * 396 * Tree traversal - Need to hold the global tree lock in read mode. 397 * Before dropping the global tree lock, need to either increment the ire_refcnt 398 * to ensure that the radix node can't be deleted. 399 * 400 * Tree add - Need to hold the global tree lock in write mode to add a 401 * radix node. To prevent the node from being deleted, increment the 402 * irb_refcnt, after the node is added to the tree. The ire itself is 403 * added later while holding the irb_lock, but not the tree lock. 404 * 405 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 406 * All associated ires must be inactive (i.e. freed), and irb_refcnt 407 * must be zero. 408 * 409 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 410 * global tree lock (read mode) for traversal. 411 * 412 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 413 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 414 * 415 * IPsec notes : 416 * 417 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 418 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 419 * ip_xmit_attr_t has the 420 * information used by the IPsec code for applying the right level of 421 * protection. The information initialized by IP in the ip_xmit_attr_t 422 * is determined by the per-socket policy or global policy in the system. 423 * For inbound datagrams, the ip_recv_attr_t 424 * starts out with nothing in it. It gets filled 425 * with the right information if it goes through the AH/ESP code, which 426 * happens if the incoming packet is secure. The information initialized 427 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 428 * the policy requirements needed by per-socket policy or global policy 429 * is met or not. 430 * 431 * For fully connected sockets i.e dst, src [addr, port] is known, 432 * conn_policy_cached is set indicating that policy has been cached. 433 * conn_in_enforce_policy may or may not be set depending on whether 434 * there is a global policy match or per-socket policy match. 435 * Policy inheriting happpens in ip_policy_set once the destination is known. 436 * Once the right policy is set on the conn_t, policy cannot change for 437 * this socket. This makes life simpler for TCP (UDP ?) where 438 * re-transmissions go out with the same policy. For symmetry, policy 439 * is cached for fully connected UDP sockets also. Thus if policy is cached, 440 * it also implies that policy is latched i.e policy cannot change 441 * on these sockets. As we have the right policy on the conn, we don't 442 * have to lookup global policy for every outbound and inbound datagram 443 * and thus serving as an optimization. Note that a global policy change 444 * does not affect fully connected sockets if they have policy. If fully 445 * connected sockets did not have any policy associated with it, global 446 * policy change may affect them. 447 * 448 * IP Flow control notes: 449 * --------------------- 450 * Non-TCP streams are flow controlled by IP. The way this is accomplished 451 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 452 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 453 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 454 * functions. 455 * 456 * Per Tx ring udp flow control: 457 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 458 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 459 * 460 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 461 * To achieve best performance, outgoing traffic need to be fanned out among 462 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 463 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 464 * the address of connp as fanout hint to mac_tx(). Under flow controlled 465 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 466 * cookie points to a specific Tx ring that is blocked. The cookie is used to 467 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 468 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 469 * connp's. The drain list is not a single list but a configurable number of 470 * lists. 471 * 472 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 473 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 474 * which is equal to 128. This array in turn contains a pointer to idl_t[], 475 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 476 * list will point to the list of connp's that are flow controlled. 477 * 478 * --------------- ------- ------- ------- 479 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 480 * | --------------- ------- ------- ------- 481 * | --------------- ------- ------- ------- 482 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 483 * ---------------- | --------------- ------- ------- ------- 484 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 485 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 486 * | --------------- ------- ------- ------- 487 * . . . . . 488 * | --------------- ------- ------- ------- 489 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 490 * --------------- ------- ------- ------- 491 * --------------- ------- ------- ------- 492 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 493 * | --------------- ------- ------- ------- 494 * | --------------- ------- ------- ------- 495 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 496 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 497 * ---------------- | . . . . 498 * | --------------- ------- ------- ------- 499 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 500 * --------------- ------- ------- ------- 501 * ..... 502 * ---------------- 503 * |idl_tx_list[n]|-> ... 504 * ---------------- 505 * 506 * When mac_tx() returns a cookie, the cookie is hashed into an index into 507 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 508 * to insert the conn onto. conn_drain_insert() asserts flow control for the 509 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 510 * Further, conn_blocked is set to indicate that the conn is blocked. 511 * 512 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 513 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 514 * is again hashed to locate the appropriate idl_tx_list, which is then 515 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 516 * the drain list and calls conn_drain_remove() to clear flow control (via 517 * calling su_txq_full() or clearing QFULL), and remove the conn from the 518 * drain list. 519 * 520 * Note that the drain list is not a single list but a (configurable) array of 521 * lists (8 elements by default). Synchronization between drain insertion and 522 * flow control wakeup is handled by using idl_txl->txl_lock, and only 523 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 524 * 525 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 526 * On the send side, if the packet cannot be sent down to the driver by IP 527 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 528 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 529 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 530 * control has been relieved, the blocked conns in the 0'th drain list are 531 * drained as in the non-STREAMS case. 532 * 533 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 534 * is done when the conn is inserted into the drain list (conn_drain_insert()) 535 * and cleared when the conn is removed from the it (conn_drain_remove()). 536 * 537 * IPQOS notes: 538 * 539 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 540 * and IPQoS modules. IPPF includes hooks in IP at different control points 541 * (callout positions) which direct packets to IPQoS modules for policy 542 * processing. Policies, if present, are global. 543 * 544 * The callout positions are located in the following paths: 545 * o local_in (packets destined for this host) 546 * o local_out (packets orginating from this host ) 547 * o fwd_in (packets forwarded by this m/c - inbound) 548 * o fwd_out (packets forwarded by this m/c - outbound) 549 * Hooks at these callout points can be enabled/disabled using the ndd variable 550 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 551 * By default all the callout positions are enabled. 552 * 553 * Outbound (local_out) 554 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 555 * 556 * Inbound (local_in) 557 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 558 * 559 * Forwarding (in and out) 560 * Hooks are placed in ire_recv_forward_v4/v6. 561 * 562 * IP Policy Framework processing (IPPF processing) 563 * Policy processing for a packet is initiated by ip_process, which ascertains 564 * that the classifier (ipgpc) is loaded and configured, failing which the 565 * packet resumes normal processing in IP. If the clasifier is present, the 566 * packet is acted upon by one or more IPQoS modules (action instances), per 567 * filters configured in ipgpc and resumes normal IP processing thereafter. 568 * An action instance can drop a packet in course of its processing. 569 * 570 * Zones notes: 571 * 572 * The partitioning rules for networking are as follows: 573 * 1) Packets coming from a zone must have a source address belonging to that 574 * zone. 575 * 2) Packets coming from a zone can only be sent on a physical interface on 576 * which the zone has an IP address. 577 * 3) Between two zones on the same machine, packet delivery is only allowed if 578 * there's a matching route for the destination and zone in the forwarding 579 * table. 580 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 581 * different zones can bind to the same port with the wildcard address 582 * (INADDR_ANY). 583 * 584 * The granularity of interface partitioning is at the logical interface level. 585 * Therefore, every zone has its own IP addresses, and incoming packets can be 586 * attributed to a zone unambiguously. A logical interface is placed into a zone 587 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 588 * structure. Rule (1) is implemented by modifying the source address selection 589 * algorithm so that the list of eligible addresses is filtered based on the 590 * sending process zone. 591 * 592 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 593 * across all zones, depending on their type. Here is the break-up: 594 * 595 * IRE type Shared/exclusive 596 * -------- ---------------- 597 * IRE_BROADCAST Exclusive 598 * IRE_DEFAULT (default routes) Shared (*) 599 * IRE_LOCAL Exclusive (x) 600 * IRE_LOOPBACK Exclusive 601 * IRE_PREFIX (net routes) Shared (*) 602 * IRE_IF_NORESOLVER (interface routes) Exclusive 603 * IRE_IF_RESOLVER (interface routes) Exclusive 604 * IRE_IF_CLONE (interface routes) Exclusive 605 * IRE_HOST (host routes) Shared (*) 606 * 607 * (*) A zone can only use a default or off-subnet route if the gateway is 608 * directly reachable from the zone, that is, if the gateway's address matches 609 * one of the zone's logical interfaces. 610 * 611 * (x) IRE_LOCAL are handled a bit differently. 612 * When ip_restrict_interzone_loopback is set (the default), 613 * ire_route_recursive restricts loopback using an IRE_LOCAL 614 * between zone to the case when L2 would have conceptually looped the packet 615 * back, i.e. the loopback which is required since neither Ethernet drivers 616 * nor Ethernet hardware loops them back. This is the case when the normal 617 * routes (ignoring IREs with different zoneids) would send out the packet on 618 * the same ill as the ill with which is IRE_LOCAL is associated. 619 * 620 * Multiple zones can share a common broadcast address; typically all zones 621 * share the 255.255.255.255 address. Incoming as well as locally originated 622 * broadcast packets must be dispatched to all the zones on the broadcast 623 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 624 * since some zones may not be on the 10.16.72/24 network. To handle this, each 625 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 626 * sent to every zone that has an IRE_BROADCAST entry for the destination 627 * address on the input ill, see ip_input_broadcast(). 628 * 629 * Applications in different zones can join the same multicast group address. 630 * The same logic applies for multicast as for broadcast. ip_input_multicast 631 * dispatches packets to all zones that have members on the physical interface. 632 */ 633 634 /* 635 * Squeue Fanout flags: 636 * 0: No fanout. 637 * 1: Fanout across all squeues 638 */ 639 boolean_t ip_squeue_fanout = 0; 640 641 /* 642 * Maximum dups allowed per packet. 643 */ 644 uint_t ip_max_frag_dups = 10; 645 646 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 647 cred_t *credp, boolean_t isv6); 648 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 649 650 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 651 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 652 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 653 ip_recv_attr_t *); 654 static void icmp_options_update(ipha_t *); 655 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 656 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 657 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 658 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 659 ip_recv_attr_t *); 660 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 661 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 662 ip_recv_attr_t *); 663 664 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 665 char *ip_dot_addr(ipaddr_t, char *); 666 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 667 int ip_close(queue_t *, int); 668 static char *ip_dot_saddr(uchar_t *, char *); 669 static void ip_lrput(queue_t *, mblk_t *); 670 ipaddr_t ip_net_mask(ipaddr_t); 671 char *ip_nv_lookup(nv_t *, int); 672 void ip_rput(queue_t *, mblk_t *); 673 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 674 void *dummy_arg); 675 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 676 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 677 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 678 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 679 ip_stack_t *, boolean_t); 680 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 681 boolean_t); 682 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst, boolean_t); 688 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 689 ip_stack_t *ipst, boolean_t); 690 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 703 ip_stack_t *ipst); 704 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 705 ip_stack_t *ipst); 706 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 707 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 708 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 709 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 710 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 711 712 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 713 mblk_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 720 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 721 722 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 723 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 724 static void ip_stack_fini(netstackid_t stackid, void *arg); 725 726 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 727 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 728 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 729 const in6_addr_t *); 730 731 static int ip_squeue_switch(int); 732 733 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 734 static void ip_kstat_fini(netstackid_t, kstat_t *); 735 static int ip_kstat_update(kstat_t *kp, int rw); 736 static void *icmp_kstat_init(netstackid_t); 737 static void icmp_kstat_fini(netstackid_t, kstat_t *); 738 static int icmp_kstat_update(kstat_t *kp, int rw); 739 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 740 static void ip_kstat2_fini(netstackid_t, kstat_t *); 741 742 static void ipobs_init(ip_stack_t *); 743 static void ipobs_fini(ip_stack_t *); 744 745 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 746 747 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 748 749 static long ip_rput_pullups; 750 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 751 752 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 753 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 754 755 int ip_debug; 756 757 /* 758 * Multirouting/CGTP stuff 759 */ 760 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 761 762 /* 763 * IP tunables related declarations. Definitions are in ip_tunables.c 764 */ 765 extern mod_prop_info_t ip_propinfo_tbl[]; 766 extern int ip_propinfo_count; 767 768 /* 769 * Table of IP ioctls encoding the various properties of the ioctl and 770 * indexed based on the last byte of the ioctl command. Occasionally there 771 * is a clash, and there is more than 1 ioctl with the same last byte. 772 * In such a case 1 ioctl is encoded in the ndx table and the remaining 773 * ioctls are encoded in the misc table. An entry in the ndx table is 774 * retrieved by indexing on the last byte of the ioctl command and comparing 775 * the ioctl command with the value in the ndx table. In the event of a 776 * mismatch the misc table is then searched sequentially for the desired 777 * ioctl command. 778 * 779 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 780 */ 781 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 782 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 783 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 793 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 794 MISC_CMD, ip_siocaddrt, NULL }, 795 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 796 MISC_CMD, ip_siocdelrt, NULL }, 797 798 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 799 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 800 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 801 IF_CMD, ip_sioctl_get_addr, NULL }, 802 803 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 804 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 805 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 806 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 807 808 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 809 IPI_PRIV | IPI_WR, 810 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 811 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 812 IPI_MODOK | IPI_GET_CMD, 813 IF_CMD, ip_sioctl_get_flags, NULL }, 814 815 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 816 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 817 818 /* copyin size cannot be coded for SIOCGIFCONF */ 819 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 820 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 821 822 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 823 IF_CMD, ip_sioctl_mtu, NULL }, 824 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 825 IF_CMD, ip_sioctl_get_mtu, NULL }, 826 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 827 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 828 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 829 IF_CMD, ip_sioctl_brdaddr, NULL }, 830 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 831 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 832 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 833 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 834 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 835 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 836 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 837 IF_CMD, ip_sioctl_metric, NULL }, 838 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 839 840 /* See 166-168 below for extended SIOC*XARP ioctls */ 841 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 842 ARP_CMD, ip_sioctl_arp, NULL }, 843 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 844 ARP_CMD, ip_sioctl_arp, NULL }, 845 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 846 ARP_CMD, ip_sioctl_arp, NULL }, 847 848 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 849 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 870 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 871 MISC_CMD, if_unitsel, if_unitsel_restart }, 872 873 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 874 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 892 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 893 IPI_PRIV | IPI_WR | IPI_MODOK, 894 IF_CMD, ip_sioctl_sifname, NULL }, 895 896 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 897 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 910 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 911 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 912 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 913 IF_CMD, ip_sioctl_get_muxid, NULL }, 914 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 915 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 916 917 /* Both if and lif variants share same func */ 918 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 919 IF_CMD, ip_sioctl_get_lifindex, NULL }, 920 /* Both if and lif variants share same func */ 921 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 922 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 923 924 /* copyin size cannot be coded for SIOCGIFCONF */ 925 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 926 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 927 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 928 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 945 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 946 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 947 ip_sioctl_removeif_restart }, 948 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 949 IPI_GET_CMD | IPI_PRIV | IPI_WR, 950 LIF_CMD, ip_sioctl_addif, NULL }, 951 #define SIOCLIFADDR_NDX 112 952 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 953 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 954 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 955 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 956 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 957 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 958 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 959 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 960 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 961 IPI_PRIV | IPI_WR, 962 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 963 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 964 IPI_GET_CMD | IPI_MODOK, 965 LIF_CMD, ip_sioctl_get_flags, NULL }, 966 967 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 968 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 969 970 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 971 ip_sioctl_get_lifconf, NULL }, 972 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 973 LIF_CMD, ip_sioctl_mtu, NULL }, 974 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 975 LIF_CMD, ip_sioctl_get_mtu, NULL }, 976 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 977 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 978 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 979 LIF_CMD, ip_sioctl_brdaddr, NULL }, 980 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 981 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 982 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 983 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 984 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 985 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 986 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 987 LIF_CMD, ip_sioctl_metric, NULL }, 988 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 989 IPI_PRIV | IPI_WR | IPI_MODOK, 990 LIF_CMD, ip_sioctl_slifname, 991 ip_sioctl_slifname_restart }, 992 993 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 994 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 995 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 996 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 997 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 998 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 999 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1000 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1001 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1002 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1003 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1004 LIF_CMD, ip_sioctl_token, NULL }, 1005 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1006 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1007 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1008 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1009 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1010 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1011 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1012 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1013 1014 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1015 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1016 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1017 LIF_CMD, ip_siocdelndp_v6, NULL }, 1018 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1019 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1020 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1021 LIF_CMD, ip_siocsetndp_v6, NULL }, 1022 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1023 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1024 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1025 MISC_CMD, ip_sioctl_tonlink, NULL }, 1026 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1027 MISC_CMD, ip_sioctl_tmysite, NULL }, 1028 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1031 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1032 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1033 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1034 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1035 1036 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 1038 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1039 LIF_CMD, ip_sioctl_get_binding, NULL }, 1040 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1041 IPI_PRIV | IPI_WR, 1042 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1043 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1044 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1045 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1046 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1047 1048 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1049 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 1053 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 1055 /* These are handled in ip_sioctl_copyin_setup itself */ 1056 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1057 MISC_CMD, NULL, NULL }, 1058 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1059 MISC_CMD, NULL, NULL }, 1060 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1061 1062 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1063 ip_sioctl_get_lifconf, NULL }, 1064 1065 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1066 XARP_CMD, ip_sioctl_arp, NULL }, 1067 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1068 XARP_CMD, ip_sioctl_arp, NULL }, 1069 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1070 XARP_CMD, ip_sioctl_arp, NULL }, 1071 1072 /* SIOCPOPSOCKFS is not handled by IP */ 1073 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1074 1075 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1076 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1077 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1078 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1079 ip_sioctl_slifzone_restart }, 1080 /* 172-174 are SCTP ioctls and not handled by IP */ 1081 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1085 IPI_GET_CMD, LIF_CMD, 1086 ip_sioctl_get_lifusesrc, 0 }, 1087 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1088 IPI_PRIV | IPI_WR, 1089 LIF_CMD, ip_sioctl_slifusesrc, 1090 NULL }, 1091 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1092 ip_sioctl_get_lifsrcof, NULL }, 1093 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1094 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1095 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1096 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1097 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1098 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1099 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1100 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1101 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* SIOCSENABLESDP is handled by SDP */ 1103 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1104 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1105 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1106 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1107 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1108 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1109 ip_sioctl_ilb_cmd, NULL }, 1110 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1111 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1112 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1113 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1114 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1115 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1116 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1117 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1118 }; 1119 1120 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1121 1122 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1123 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1124 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1125 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1126 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1127 { ND_GET, 0, 0, 0, NULL, NULL }, 1128 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1130 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1131 MISC_CMD, mrt_ioctl}, 1132 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1133 MISC_CMD, mrt_ioctl}, 1134 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1135 MISC_CMD, mrt_ioctl} 1136 }; 1137 1138 int ip_misc_ioctl_count = 1139 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1140 1141 int conn_drain_nthreads; /* Number of drainers reqd. */ 1142 /* Settable in /etc/system */ 1143 /* Defined in ip_ire.c */ 1144 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1145 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1146 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1147 1148 static nv_t ire_nv_arr[] = { 1149 { IRE_BROADCAST, "BROADCAST" }, 1150 { IRE_LOCAL, "LOCAL" }, 1151 { IRE_LOOPBACK, "LOOPBACK" }, 1152 { IRE_DEFAULT, "DEFAULT" }, 1153 { IRE_PREFIX, "PREFIX" }, 1154 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1155 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1156 { IRE_IF_CLONE, "IF_CLONE" }, 1157 { IRE_HOST, "HOST" }, 1158 { IRE_MULTICAST, "MULTICAST" }, 1159 { IRE_NOROUTE, "NOROUTE" }, 1160 { 0 } 1161 }; 1162 1163 nv_t *ire_nv_tbl = ire_nv_arr; 1164 1165 /* Simple ICMP IP Header Template */ 1166 static ipha_t icmp_ipha = { 1167 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1168 }; 1169 1170 struct module_info ip_mod_info = { 1171 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1172 IP_MOD_LOWAT 1173 }; 1174 1175 /* 1176 * Duplicate static symbols within a module confuses mdb; so we avoid the 1177 * problem by making the symbols here distinct from those in udp.c. 1178 */ 1179 1180 /* 1181 * Entry points for IP as a device and as a module. 1182 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1183 */ 1184 static struct qinit iprinitv4 = { 1185 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1186 &ip_mod_info 1187 }; 1188 1189 struct qinit iprinitv6 = { 1190 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1191 &ip_mod_info 1192 }; 1193 1194 static struct qinit ipwinit = { 1195 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1196 &ip_mod_info 1197 }; 1198 1199 static struct qinit iplrinit = { 1200 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1201 &ip_mod_info 1202 }; 1203 1204 static struct qinit iplwinit = { 1205 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1206 &ip_mod_info 1207 }; 1208 1209 /* For AF_INET aka /dev/ip */ 1210 struct streamtab ipinfov4 = { 1211 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1212 }; 1213 1214 /* For AF_INET6 aka /dev/ip6 */ 1215 struct streamtab ipinfov6 = { 1216 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1217 }; 1218 1219 #ifdef DEBUG 1220 boolean_t skip_sctp_cksum = B_FALSE; 1221 #endif 1222 1223 /* 1224 * Generate an ICMP fragmentation needed message. 1225 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1226 * constructed by the caller. 1227 */ 1228 void 1229 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1230 { 1231 icmph_t icmph; 1232 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1233 1234 mp = icmp_pkt_err_ok(mp, ira); 1235 if (mp == NULL) 1236 return; 1237 1238 bzero(&icmph, sizeof (icmph_t)); 1239 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1240 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1241 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1242 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1243 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1244 1245 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1246 } 1247 1248 /* 1249 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1250 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1251 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1252 * Likewise, if the ICMP error is misformed (too short, etc), then it 1253 * returns NULL. The caller uses this to determine whether or not to send 1254 * to raw sockets. 1255 * 1256 * All error messages are passed to the matching transport stream. 1257 * 1258 * The following cases are handled by icmp_inbound: 1259 * 1) It needs to send a reply back and possibly delivering it 1260 * to the "interested" upper clients. 1261 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1262 * 3) It needs to change some values in IP only. 1263 * 4) It needs to change some values in IP and upper layers e.g TCP 1264 * by delivering an error to the upper layers. 1265 * 1266 * We handle the above three cases in the context of IPsec in the 1267 * following way : 1268 * 1269 * 1) Send the reply back in the same way as the request came in. 1270 * If it came in encrypted, it goes out encrypted. If it came in 1271 * clear, it goes out in clear. Thus, this will prevent chosen 1272 * plain text attack. 1273 * 2) The client may or may not expect things to come in secure. 1274 * If it comes in secure, the policy constraints are checked 1275 * before delivering it to the upper layers. If it comes in 1276 * clear, ipsec_inbound_accept_clear will decide whether to 1277 * accept this in clear or not. In both the cases, if the returned 1278 * message (IP header + 8 bytes) that caused the icmp message has 1279 * AH/ESP headers, it is sent up to AH/ESP for validation before 1280 * sending up. If there are only 8 bytes of returned message, then 1281 * upper client will not be notified. 1282 * 3) Check with global policy to see whether it matches the constaints. 1283 * But this will be done only if icmp_accept_messages_in_clear is 1284 * zero. 1285 * 4) If we need to change both in IP and ULP, then the decision taken 1286 * while affecting the values in IP and while delivering up to TCP 1287 * should be the same. 1288 * 1289 * There are two cases. 1290 * 1291 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1292 * failed), we will not deliver it to the ULP, even though they 1293 * are *willing* to accept in *clear*. This is fine as our global 1294 * disposition to icmp messages asks us reject the datagram. 1295 * 1296 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1297 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1298 * to deliver it to ULP (policy failed), it can lead to 1299 * consistency problems. The cases known at this time are 1300 * ICMP_DESTINATION_UNREACHABLE messages with following code 1301 * values : 1302 * 1303 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1304 * and Upper layer rejects. Then the communication will 1305 * come to a stop. This is solved by making similar decisions 1306 * at both levels. Currently, when we are unable to deliver 1307 * to the Upper Layer (due to policy failures) while IP has 1308 * adjusted dce_pmtu, the next outbound datagram would 1309 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1310 * will be with the right level of protection. Thus the right 1311 * value will be communicated even if we are not able to 1312 * communicate when we get from the wire initially. But this 1313 * assumes there would be at least one outbound datagram after 1314 * IP has adjusted its dce_pmtu value. To make things 1315 * simpler, we accept in clear after the validation of 1316 * AH/ESP headers. 1317 * 1318 * - Other ICMP ERRORS : We may not be able to deliver it to the 1319 * upper layer depending on the level of protection the upper 1320 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1321 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1322 * should be accepted in clear when the Upper layer expects secure. 1323 * Thus the communication may get aborted by some bad ICMP 1324 * packets. 1325 */ 1326 mblk_t * 1327 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1328 { 1329 icmph_t *icmph; 1330 ipha_t *ipha; /* Outer header */ 1331 int ip_hdr_length; /* Outer header length */ 1332 boolean_t interested; 1333 ipif_t *ipif; 1334 uint32_t ts; 1335 uint32_t *tsp; 1336 timestruc_t now; 1337 ill_t *ill = ira->ira_ill; 1338 ip_stack_t *ipst = ill->ill_ipst; 1339 zoneid_t zoneid = ira->ira_zoneid; 1340 int len_needed; 1341 mblk_t *mp_ret = NULL; 1342 1343 ipha = (ipha_t *)mp->b_rptr; 1344 1345 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1346 1347 ip_hdr_length = ira->ira_ip_hdr_length; 1348 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1349 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1351 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1352 freemsg(mp); 1353 return (NULL); 1354 } 1355 /* Last chance to get real. */ 1356 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1357 if (ipha == NULL) { 1358 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1359 freemsg(mp); 1360 return (NULL); 1361 } 1362 } 1363 1364 /* The IP header will always be a multiple of four bytes */ 1365 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1366 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1367 icmph->icmph_code)); 1368 1369 /* 1370 * We will set "interested" to "true" if we should pass a copy to 1371 * the transport or if we handle the packet locally. 1372 */ 1373 interested = B_FALSE; 1374 switch (icmph->icmph_type) { 1375 case ICMP_ECHO_REPLY: 1376 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1377 break; 1378 case ICMP_DEST_UNREACHABLE: 1379 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1380 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1381 interested = B_TRUE; /* Pass up to transport */ 1382 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1383 break; 1384 case ICMP_SOURCE_QUENCH: 1385 interested = B_TRUE; /* Pass up to transport */ 1386 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1387 break; 1388 case ICMP_REDIRECT: 1389 if (!ipst->ips_ip_ignore_redirect) 1390 interested = B_TRUE; 1391 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1392 break; 1393 case ICMP_ECHO_REQUEST: 1394 /* 1395 * Whether to respond to echo requests that come in as IP 1396 * broadcasts or as IP multicast is subject to debate 1397 * (what isn't?). We aim to please, you pick it. 1398 * Default is do it. 1399 */ 1400 if (ira->ira_flags & IRAF_MULTICAST) { 1401 /* multicast: respond based on tunable */ 1402 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1403 } else if (ira->ira_flags & IRAF_BROADCAST) { 1404 /* broadcast: respond based on tunable */ 1405 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1406 } else { 1407 /* unicast: always respond */ 1408 interested = B_TRUE; 1409 } 1410 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1411 if (!interested) { 1412 /* We never pass these to RAW sockets */ 1413 freemsg(mp); 1414 return (NULL); 1415 } 1416 1417 /* Check db_ref to make sure we can modify the packet. */ 1418 if (mp->b_datap->db_ref > 1) { 1419 mblk_t *mp1; 1420 1421 mp1 = copymsg(mp); 1422 freemsg(mp); 1423 if (!mp1) { 1424 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1425 return (NULL); 1426 } 1427 mp = mp1; 1428 ipha = (ipha_t *)mp->b_rptr; 1429 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1430 } 1431 icmph->icmph_type = ICMP_ECHO_REPLY; 1432 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1433 icmp_send_reply_v4(mp, ipha, icmph, ira); 1434 return (NULL); 1435 1436 case ICMP_ROUTER_ADVERTISEMENT: 1437 case ICMP_ROUTER_SOLICITATION: 1438 break; 1439 case ICMP_TIME_EXCEEDED: 1440 interested = B_TRUE; /* Pass up to transport */ 1441 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1442 break; 1443 case ICMP_PARAM_PROBLEM: 1444 interested = B_TRUE; /* Pass up to transport */ 1445 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1446 break; 1447 case ICMP_TIME_STAMP_REQUEST: 1448 /* Response to Time Stamp Requests is local policy. */ 1449 if (ipst->ips_ip_g_resp_to_timestamp) { 1450 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1451 interested = 1452 ipst->ips_ip_g_resp_to_timestamp_bcast; 1453 else 1454 interested = B_TRUE; 1455 } 1456 if (!interested) { 1457 /* We never pass these to RAW sockets */ 1458 freemsg(mp); 1459 return (NULL); 1460 } 1461 1462 /* Make sure we have enough of the packet */ 1463 len_needed = ip_hdr_length + ICMPH_SIZE + 1464 3 * sizeof (uint32_t); 1465 1466 if (mp->b_wptr - mp->b_rptr < len_needed) { 1467 ipha = ip_pullup(mp, len_needed, ira); 1468 if (ipha == NULL) { 1469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1470 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1471 mp, ill); 1472 freemsg(mp); 1473 return (NULL); 1474 } 1475 /* Refresh following the pullup. */ 1476 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1477 } 1478 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1479 /* Check db_ref to make sure we can modify the packet. */ 1480 if (mp->b_datap->db_ref > 1) { 1481 mblk_t *mp1; 1482 1483 mp1 = copymsg(mp); 1484 freemsg(mp); 1485 if (!mp1) { 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1487 return (NULL); 1488 } 1489 mp = mp1; 1490 ipha = (ipha_t *)mp->b_rptr; 1491 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1492 } 1493 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1494 tsp = (uint32_t *)&icmph[1]; 1495 tsp++; /* Skip past 'originate time' */ 1496 /* Compute # of milliseconds since midnight */ 1497 gethrestime(&now); 1498 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1499 now.tv_nsec / (NANOSEC / MILLISEC); 1500 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1501 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1502 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1503 icmp_send_reply_v4(mp, ipha, icmph, ira); 1504 return (NULL); 1505 1506 case ICMP_TIME_STAMP_REPLY: 1507 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1508 break; 1509 case ICMP_INFO_REQUEST: 1510 /* Per RFC 1122 3.2.2.7, ignore this. */ 1511 case ICMP_INFO_REPLY: 1512 break; 1513 case ICMP_ADDRESS_MASK_REQUEST: 1514 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1515 interested = 1516 ipst->ips_ip_respond_to_address_mask_broadcast; 1517 } else { 1518 interested = B_TRUE; 1519 } 1520 if (!interested) { 1521 /* We never pass these to RAW sockets */ 1522 freemsg(mp); 1523 return (NULL); 1524 } 1525 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1526 if (mp->b_wptr - mp->b_rptr < len_needed) { 1527 ipha = ip_pullup(mp, len_needed, ira); 1528 if (ipha == NULL) { 1529 BUMP_MIB(ill->ill_ip_mib, 1530 ipIfStatsInTruncatedPkts); 1531 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1532 ill); 1533 freemsg(mp); 1534 return (NULL); 1535 } 1536 /* Refresh following the pullup. */ 1537 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1538 } 1539 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1540 /* Check db_ref to make sure we can modify the packet. */ 1541 if (mp->b_datap->db_ref > 1) { 1542 mblk_t *mp1; 1543 1544 mp1 = copymsg(mp); 1545 freemsg(mp); 1546 if (!mp1) { 1547 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1548 return (NULL); 1549 } 1550 mp = mp1; 1551 ipha = (ipha_t *)mp->b_rptr; 1552 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1553 } 1554 /* 1555 * Need the ipif with the mask be the same as the source 1556 * address of the mask reply. For unicast we have a specific 1557 * ipif. For multicast/broadcast we only handle onlink 1558 * senders, and use the source address to pick an ipif. 1559 */ 1560 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1561 if (ipif == NULL) { 1562 /* Broadcast or multicast */ 1563 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1564 if (ipif == NULL) { 1565 freemsg(mp); 1566 return (NULL); 1567 } 1568 } 1569 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1570 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1571 ipif_refrele(ipif); 1572 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1573 icmp_send_reply_v4(mp, ipha, icmph, ira); 1574 return (NULL); 1575 1576 case ICMP_ADDRESS_MASK_REPLY: 1577 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1578 break; 1579 default: 1580 interested = B_TRUE; /* Pass up to transport */ 1581 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1582 break; 1583 } 1584 /* 1585 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1586 * if there isn't one. 1587 */ 1588 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1589 /* If there is an ICMP client and we want one too, copy it. */ 1590 1591 if (!interested) { 1592 /* Caller will deliver to RAW sockets */ 1593 return (mp); 1594 } 1595 mp_ret = copymsg(mp); 1596 if (mp_ret == NULL) { 1597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1598 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1599 } 1600 } else if (!interested) { 1601 /* Neither we nor raw sockets are interested. Drop packet now */ 1602 freemsg(mp); 1603 return (NULL); 1604 } 1605 1606 /* 1607 * ICMP error or redirect packet. Make sure we have enough of 1608 * the header and that db_ref == 1 since we might end up modifying 1609 * the packet. 1610 */ 1611 if (mp->b_cont != NULL) { 1612 if (ip_pullup(mp, -1, ira) == NULL) { 1613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1614 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1615 mp, ill); 1616 freemsg(mp); 1617 return (mp_ret); 1618 } 1619 } 1620 1621 if (mp->b_datap->db_ref > 1) { 1622 mblk_t *mp1; 1623 1624 mp1 = copymsg(mp); 1625 if (mp1 == NULL) { 1626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1627 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1628 freemsg(mp); 1629 return (mp_ret); 1630 } 1631 freemsg(mp); 1632 mp = mp1; 1633 } 1634 1635 /* 1636 * In case mp has changed, verify the message before any further 1637 * processes. 1638 */ 1639 ipha = (ipha_t *)mp->b_rptr; 1640 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1641 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1642 freemsg(mp); 1643 return (mp_ret); 1644 } 1645 1646 switch (icmph->icmph_type) { 1647 case ICMP_REDIRECT: 1648 icmp_redirect_v4(mp, ipha, icmph, ira); 1649 break; 1650 case ICMP_DEST_UNREACHABLE: 1651 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1652 /* Update DCE and adjust MTU is icmp header if needed */ 1653 icmp_inbound_too_big_v4(icmph, ira); 1654 } 1655 /* FALLTHRU */ 1656 default: 1657 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1658 break; 1659 } 1660 return (mp_ret); 1661 } 1662 1663 /* 1664 * Send an ICMP echo, timestamp or address mask reply. 1665 * The caller has already updated the payload part of the packet. 1666 * We handle the ICMP checksum, IP source address selection and feed 1667 * the packet into ip_output_simple. 1668 */ 1669 static void 1670 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1671 ip_recv_attr_t *ira) 1672 { 1673 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1674 ill_t *ill = ira->ira_ill; 1675 ip_stack_t *ipst = ill->ill_ipst; 1676 ip_xmit_attr_t ixas; 1677 1678 /* Send out an ICMP packet */ 1679 icmph->icmph_checksum = 0; 1680 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1681 /* Reset time to live. */ 1682 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1683 { 1684 /* Swap source and destination addresses */ 1685 ipaddr_t tmp; 1686 1687 tmp = ipha->ipha_src; 1688 ipha->ipha_src = ipha->ipha_dst; 1689 ipha->ipha_dst = tmp; 1690 } 1691 ipha->ipha_ident = 0; 1692 if (!IS_SIMPLE_IPH(ipha)) 1693 icmp_options_update(ipha); 1694 1695 bzero(&ixas, sizeof (ixas)); 1696 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1697 ixas.ixa_zoneid = ira->ira_zoneid; 1698 ixas.ixa_cred = kcred; 1699 ixas.ixa_cpid = NOPID; 1700 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1701 ixas.ixa_ifindex = 0; 1702 ixas.ixa_ipst = ipst; 1703 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1704 1705 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1706 /* 1707 * This packet should go out the same way as it 1708 * came in i.e in clear, independent of the IPsec policy 1709 * for transmitting packets. 1710 */ 1711 ixas.ixa_flags |= IXAF_NO_IPSEC; 1712 } else { 1713 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1715 /* Note: mp already consumed and ip_drop_packet done */ 1716 return; 1717 } 1718 } 1719 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1720 /* 1721 * Not one or our addresses (IRE_LOCALs), thus we let 1722 * ip_output_simple pick the source. 1723 */ 1724 ipha->ipha_src = INADDR_ANY; 1725 ixas.ixa_flags |= IXAF_SET_SOURCE; 1726 } 1727 /* Should we send with DF and use dce_pmtu? */ 1728 if (ipst->ips_ipv4_icmp_return_pmtu) { 1729 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1730 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1731 } 1732 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1734 1735 (void) ip_output_simple(mp, &ixas); 1736 ixa_cleanup(&ixas); 1737 } 1738 1739 /* 1740 * Verify the ICMP messages for either for ICMP error or redirect packet. 1741 * The caller should have fully pulled up the message. If it's a redirect 1742 * packet, only basic checks on IP header will be done; otherwise, verify 1743 * the packet by looking at the included ULP header. 1744 * 1745 * Called before icmp_inbound_error_fanout_v4 is called. 1746 */ 1747 static boolean_t 1748 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1749 { 1750 ill_t *ill = ira->ira_ill; 1751 int hdr_length; 1752 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1753 conn_t *connp; 1754 ipha_t *ipha; /* Inner IP header */ 1755 1756 ipha = (ipha_t *)&icmph[1]; 1757 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1758 goto truncated; 1759 1760 hdr_length = IPH_HDR_LENGTH(ipha); 1761 1762 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1763 goto discard_pkt; 1764 1765 if (hdr_length < sizeof (ipha_t)) 1766 goto truncated; 1767 1768 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1769 goto truncated; 1770 1771 /* 1772 * Stop here for ICMP_REDIRECT. 1773 */ 1774 if (icmph->icmph_type == ICMP_REDIRECT) 1775 return (B_TRUE); 1776 1777 /* 1778 * ICMP errors only. 1779 */ 1780 switch (ipha->ipha_protocol) { 1781 case IPPROTO_UDP: 1782 /* 1783 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1784 * transport header. 1785 */ 1786 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1787 mp->b_wptr) 1788 goto truncated; 1789 break; 1790 case IPPROTO_TCP: { 1791 tcpha_t *tcpha; 1792 1793 /* 1794 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1795 * transport header. 1796 */ 1797 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1798 mp->b_wptr) 1799 goto truncated; 1800 1801 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1802 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1803 ipst); 1804 if (connp == NULL) 1805 goto discard_pkt; 1806 1807 if ((connp->conn_verifyicmp != NULL) && 1808 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1809 CONN_DEC_REF(connp); 1810 goto discard_pkt; 1811 } 1812 CONN_DEC_REF(connp); 1813 break; 1814 } 1815 case IPPROTO_SCTP: 1816 /* 1817 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1818 * transport header. 1819 */ 1820 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1821 mp->b_wptr) 1822 goto truncated; 1823 break; 1824 case IPPROTO_ESP: 1825 case IPPROTO_AH: 1826 break; 1827 case IPPROTO_ENCAP: 1828 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1829 mp->b_wptr) 1830 goto truncated; 1831 break; 1832 default: 1833 break; 1834 } 1835 1836 return (B_TRUE); 1837 1838 discard_pkt: 1839 /* Bogus ICMP error. */ 1840 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1841 return (B_FALSE); 1842 1843 truncated: 1844 /* We pulled up everthing already. Must be truncated */ 1845 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1846 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1847 return (B_FALSE); 1848 } 1849 1850 /* Table from RFC 1191 */ 1851 static int icmp_frag_size_table[] = 1852 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1853 1854 /* 1855 * Process received ICMP Packet too big. 1856 * Just handles the DCE create/update, including using the above table of 1857 * PMTU guesses. The caller is responsible for validating the packet before 1858 * passing it in and also to fanout the ICMP error to any matching transport 1859 * conns. Assumes the message has been fully pulled up and verified. 1860 * 1861 * Before getting here, the caller has called icmp_inbound_verify_v4() 1862 * that should have verified with ULP to prevent undoing the changes we're 1863 * going to make to DCE. For example, TCP might have verified that the packet 1864 * which generated error is in the send window. 1865 * 1866 * In some cases modified this MTU in the ICMP header packet; the caller 1867 * should pass to the matching ULP after this returns. 1868 */ 1869 static void 1870 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1871 { 1872 dce_t *dce; 1873 int old_mtu; 1874 int mtu, orig_mtu; 1875 ipaddr_t dst; 1876 boolean_t disable_pmtud; 1877 ill_t *ill = ira->ira_ill; 1878 ip_stack_t *ipst = ill->ill_ipst; 1879 uint_t hdr_length; 1880 ipha_t *ipha; 1881 1882 /* Caller already pulled up everything. */ 1883 ipha = (ipha_t *)&icmph[1]; 1884 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1885 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1886 ASSERT(ill != NULL); 1887 1888 hdr_length = IPH_HDR_LENGTH(ipha); 1889 1890 /* 1891 * We handle path MTU for source routed packets since the DCE 1892 * is looked up using the final destination. 1893 */ 1894 dst = ip_get_dst(ipha); 1895 1896 dce = dce_lookup_and_add_v4(dst, ipst); 1897 if (dce == NULL) { 1898 /* Couldn't add a unique one - ENOMEM */ 1899 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1900 ntohl(dst))); 1901 return; 1902 } 1903 1904 /* Check for MTU discovery advice as described in RFC 1191 */ 1905 mtu = ntohs(icmph->icmph_du_mtu); 1906 orig_mtu = mtu; 1907 disable_pmtud = B_FALSE; 1908 1909 mutex_enter(&dce->dce_lock); 1910 if (dce->dce_flags & DCEF_PMTU) 1911 old_mtu = dce->dce_pmtu; 1912 else 1913 old_mtu = ill->ill_mtu; 1914 1915 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1916 uint32_t length; 1917 int i; 1918 1919 /* 1920 * Use the table from RFC 1191 to figure out 1921 * the next "plateau" based on the length in 1922 * the original IP packet. 1923 */ 1924 length = ntohs(ipha->ipha_length); 1925 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1926 uint32_t, length); 1927 if (old_mtu <= length && 1928 old_mtu >= length - hdr_length) { 1929 /* 1930 * Handle broken BSD 4.2 systems that 1931 * return the wrong ipha_length in ICMP 1932 * errors. 1933 */ 1934 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1935 length, old_mtu)); 1936 length -= hdr_length; 1937 } 1938 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1939 if (length > icmp_frag_size_table[i]) 1940 break; 1941 } 1942 if (i == A_CNT(icmp_frag_size_table)) { 1943 /* Smaller than IP_MIN_MTU! */ 1944 ip1dbg(("Too big for packet size %d\n", 1945 length)); 1946 disable_pmtud = B_TRUE; 1947 mtu = ipst->ips_ip_pmtu_min; 1948 } else { 1949 mtu = icmp_frag_size_table[i]; 1950 ip1dbg(("Calculated mtu %d, packet size %d, " 1951 "before %d\n", mtu, length, old_mtu)); 1952 if (mtu < ipst->ips_ip_pmtu_min) { 1953 mtu = ipst->ips_ip_pmtu_min; 1954 disable_pmtud = B_TRUE; 1955 } 1956 } 1957 } 1958 if (disable_pmtud) 1959 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1960 else 1961 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1962 1963 dce->dce_pmtu = MIN(old_mtu, mtu); 1964 /* Prepare to send the new max frag size for the ULP. */ 1965 icmph->icmph_du_zero = 0; 1966 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1967 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1968 dce, int, orig_mtu, int, mtu); 1969 1970 /* We now have a PMTU for sure */ 1971 dce->dce_flags |= DCEF_PMTU; 1972 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1973 mutex_exit(&dce->dce_lock); 1974 /* 1975 * After dropping the lock the new value is visible to everyone. 1976 * Then we bump the generation number so any cached values reinspect 1977 * the dce_t. 1978 */ 1979 dce_increment_generation(dce); 1980 dce_refrele(dce); 1981 } 1982 1983 /* 1984 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1985 * calls this function. 1986 */ 1987 static mblk_t * 1988 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1989 { 1990 int length; 1991 1992 ASSERT(mp->b_datap->db_type == M_DATA); 1993 1994 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1995 ASSERT(mp->b_cont == NULL); 1996 1997 /* 1998 * The length that we want to overlay is the inner header 1999 * and what follows it. 2000 */ 2001 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2002 2003 /* 2004 * Overlay the inner header and whatever follows it over the 2005 * outer header. 2006 */ 2007 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2008 2009 /* Adjust for what we removed */ 2010 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2011 return (mp); 2012 } 2013 2014 /* 2015 * Try to pass the ICMP message upstream in case the ULP cares. 2016 * 2017 * If the packet that caused the ICMP error is secure, we send 2018 * it to AH/ESP to make sure that the attached packet has a 2019 * valid association. ipha in the code below points to the 2020 * IP header of the packet that caused the error. 2021 * 2022 * For IPsec cases, we let the next-layer-up (which has access to 2023 * cached policy on the conn_t, or can query the SPD directly) 2024 * subtract out any IPsec overhead if they must. We therefore make no 2025 * adjustments here for IPsec overhead. 2026 * 2027 * IFN could have been generated locally or by some router. 2028 * 2029 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2030 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2031 * This happens because IP adjusted its value of MTU on an 2032 * earlier IFN message and could not tell the upper layer, 2033 * the new adjusted value of MTU e.g. Packet was encrypted 2034 * or there was not enough information to fanout to upper 2035 * layers. Thus on the next outbound datagram, ire_send_wire 2036 * generates the IFN, where IPsec processing has *not* been 2037 * done. 2038 * 2039 * Note that we retain ixa_fragsize across IPsec thus once 2040 * we have picking ixa_fragsize and entered ipsec_out_process we do 2041 * no change the fragsize even if the path MTU changes before 2042 * we reach ip_output_post_ipsec. 2043 * 2044 * In the local case, IRAF_LOOPBACK will be set indicating 2045 * that IFN was generated locally. 2046 * 2047 * ROUTER : IFN could be secure or non-secure. 2048 * 2049 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2050 * packet in error has AH/ESP headers to validate the AH/ESP 2051 * headers. AH/ESP will verify whether there is a valid SA or 2052 * not and send it back. We will fanout again if we have more 2053 * data in the packet. 2054 * 2055 * If the packet in error does not have AH/ESP, we handle it 2056 * like any other case. 2057 * 2058 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2059 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2060 * valid SA or not and send it back. We will fanout again if 2061 * we have more data in the packet. 2062 * 2063 * If the packet in error does not have AH/ESP, we handle it 2064 * like any other case. 2065 * 2066 * The caller must have called icmp_inbound_verify_v4. 2067 */ 2068 static void 2069 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2070 { 2071 uint16_t *up; /* Pointer to ports in ULP header */ 2072 uint32_t ports; /* reversed ports for fanout */ 2073 ipha_t ripha; /* With reversed addresses */ 2074 ipha_t *ipha; /* Inner IP header */ 2075 uint_t hdr_length; /* Inner IP header length */ 2076 tcpha_t *tcpha; 2077 conn_t *connp; 2078 ill_t *ill = ira->ira_ill; 2079 ip_stack_t *ipst = ill->ill_ipst; 2080 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2081 ill_t *rill = ira->ira_rill; 2082 2083 /* Caller already pulled up everything. */ 2084 ipha = (ipha_t *)&icmph[1]; 2085 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2086 ASSERT(mp->b_cont == NULL); 2087 2088 hdr_length = IPH_HDR_LENGTH(ipha); 2089 ira->ira_protocol = ipha->ipha_protocol; 2090 2091 /* 2092 * We need a separate IP header with the source and destination 2093 * addresses reversed to do fanout/classification because the ipha in 2094 * the ICMP error is in the form we sent it out. 2095 */ 2096 ripha.ipha_src = ipha->ipha_dst; 2097 ripha.ipha_dst = ipha->ipha_src; 2098 ripha.ipha_protocol = ipha->ipha_protocol; 2099 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2100 2101 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2102 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2103 ntohl(ipha->ipha_dst), 2104 icmph->icmph_type, icmph->icmph_code)); 2105 2106 switch (ipha->ipha_protocol) { 2107 case IPPROTO_UDP: 2108 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2109 2110 /* Attempt to find a client stream based on port. */ 2111 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2112 ntohs(up[0]), ntohs(up[1]))); 2113 2114 /* Note that we send error to all matches. */ 2115 ira->ira_flags |= IRAF_ICMP_ERROR; 2116 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2117 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2118 return; 2119 2120 case IPPROTO_TCP: 2121 /* 2122 * Find a TCP client stream for this packet. 2123 * Note that we do a reverse lookup since the header is 2124 * in the form we sent it out. 2125 */ 2126 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2127 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2128 ipst); 2129 if (connp == NULL) 2130 goto discard_pkt; 2131 2132 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2133 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2134 mp = ipsec_check_inbound_policy(mp, connp, 2135 ipha, NULL, ira); 2136 if (mp == NULL) { 2137 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2138 /* Note that mp is NULL */ 2139 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2140 CONN_DEC_REF(connp); 2141 return; 2142 } 2143 } 2144 2145 ira->ira_flags |= IRAF_ICMP_ERROR; 2146 ira->ira_ill = ira->ira_rill = NULL; 2147 if (IPCL_IS_TCP(connp)) { 2148 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2149 connp->conn_recvicmp, connp, ira, SQ_FILL, 2150 SQTAG_TCP_INPUT_ICMP_ERR); 2151 } else { 2152 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2153 (connp->conn_recv)(connp, mp, NULL, ira); 2154 CONN_DEC_REF(connp); 2155 } 2156 ira->ira_ill = ill; 2157 ira->ira_rill = rill; 2158 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2159 return; 2160 2161 case IPPROTO_SCTP: 2162 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2163 /* Find a SCTP client stream for this packet. */ 2164 ((uint16_t *)&ports)[0] = up[1]; 2165 ((uint16_t *)&ports)[1] = up[0]; 2166 2167 ira->ira_flags |= IRAF_ICMP_ERROR; 2168 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2169 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2170 return; 2171 2172 case IPPROTO_ESP: 2173 case IPPROTO_AH: 2174 if (!ipsec_loaded(ipss)) { 2175 ip_proto_not_sup(mp, ira); 2176 return; 2177 } 2178 2179 if (ipha->ipha_protocol == IPPROTO_ESP) 2180 mp = ipsecesp_icmp_error(mp, ira); 2181 else 2182 mp = ipsecah_icmp_error(mp, ira); 2183 if (mp == NULL) 2184 return; 2185 2186 /* Just in case ipsec didn't preserve the NULL b_cont */ 2187 if (mp->b_cont != NULL) { 2188 if (!pullupmsg(mp, -1)) 2189 goto discard_pkt; 2190 } 2191 2192 /* 2193 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2194 * correct, but we don't use them any more here. 2195 * 2196 * If succesful, the mp has been modified to not include 2197 * the ESP/AH header so we can fanout to the ULP's icmp 2198 * error handler. 2199 */ 2200 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2201 goto truncated; 2202 2203 /* Verify the modified message before any further processes. */ 2204 ipha = (ipha_t *)mp->b_rptr; 2205 hdr_length = IPH_HDR_LENGTH(ipha); 2206 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2207 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2208 freemsg(mp); 2209 return; 2210 } 2211 2212 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2213 return; 2214 2215 case IPPROTO_ENCAP: { 2216 /* Look for self-encapsulated packets that caused an error */ 2217 ipha_t *in_ipha; 2218 2219 /* 2220 * Caller has verified that length has to be 2221 * at least the size of IP header. 2222 */ 2223 ASSERT(hdr_length >= sizeof (ipha_t)); 2224 /* 2225 * Check the sanity of the inner IP header like 2226 * we did for the outer header. 2227 */ 2228 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2229 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2230 goto discard_pkt; 2231 } 2232 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2233 goto discard_pkt; 2234 } 2235 /* Check for Self-encapsulated tunnels */ 2236 if (in_ipha->ipha_src == ipha->ipha_src && 2237 in_ipha->ipha_dst == ipha->ipha_dst) { 2238 2239 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2240 in_ipha); 2241 if (mp == NULL) 2242 goto discard_pkt; 2243 2244 /* 2245 * Just in case self_encap didn't preserve the NULL 2246 * b_cont 2247 */ 2248 if (mp->b_cont != NULL) { 2249 if (!pullupmsg(mp, -1)) 2250 goto discard_pkt; 2251 } 2252 /* 2253 * Note that ira_pktlen and ira_ip_hdr_length are no 2254 * longer correct, but we don't use them any more here. 2255 */ 2256 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2257 goto truncated; 2258 2259 /* 2260 * Verify the modified message before any further 2261 * processes. 2262 */ 2263 ipha = (ipha_t *)mp->b_rptr; 2264 hdr_length = IPH_HDR_LENGTH(ipha); 2265 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2266 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2267 freemsg(mp); 2268 return; 2269 } 2270 2271 /* 2272 * The packet in error is self-encapsualted. 2273 * And we are finding it further encapsulated 2274 * which we could not have possibly generated. 2275 */ 2276 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2277 goto discard_pkt; 2278 } 2279 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2280 return; 2281 } 2282 /* No self-encapsulated */ 2283 /* FALLTHRU */ 2284 } 2285 case IPPROTO_IPV6: 2286 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2287 &ripha.ipha_dst, ipst)) != NULL) { 2288 ira->ira_flags |= IRAF_ICMP_ERROR; 2289 connp->conn_recvicmp(connp, mp, NULL, ira); 2290 CONN_DEC_REF(connp); 2291 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2292 return; 2293 } 2294 /* 2295 * No IP tunnel is interested, fallthrough and see 2296 * if a raw socket will want it. 2297 */ 2298 /* FALLTHRU */ 2299 default: 2300 ira->ira_flags |= IRAF_ICMP_ERROR; 2301 ip_fanout_proto_v4(mp, &ripha, ira); 2302 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2303 return; 2304 } 2305 /* NOTREACHED */ 2306 discard_pkt: 2307 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2308 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2309 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2310 freemsg(mp); 2311 return; 2312 2313 truncated: 2314 /* We pulled up everthing already. Must be truncated */ 2315 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2316 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2317 freemsg(mp); 2318 } 2319 2320 /* 2321 * Common IP options parser. 2322 * 2323 * Setup routine: fill in *optp with options-parsing state, then 2324 * tail-call ipoptp_next to return the first option. 2325 */ 2326 uint8_t 2327 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2328 { 2329 uint32_t totallen; /* total length of all options */ 2330 2331 totallen = ipha->ipha_version_and_hdr_length - 2332 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2333 totallen <<= 2; 2334 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2335 optp->ipoptp_end = optp->ipoptp_next + totallen; 2336 optp->ipoptp_flags = 0; 2337 return (ipoptp_next(optp)); 2338 } 2339 2340 /* Like above but without an ipha_t */ 2341 uint8_t 2342 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2343 { 2344 optp->ipoptp_next = opt; 2345 optp->ipoptp_end = optp->ipoptp_next + totallen; 2346 optp->ipoptp_flags = 0; 2347 return (ipoptp_next(optp)); 2348 } 2349 2350 /* 2351 * Common IP options parser: extract next option. 2352 */ 2353 uint8_t 2354 ipoptp_next(ipoptp_t *optp) 2355 { 2356 uint8_t *end = optp->ipoptp_end; 2357 uint8_t *cur = optp->ipoptp_next; 2358 uint8_t opt, len, pointer; 2359 2360 /* 2361 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2362 * has been corrupted. 2363 */ 2364 ASSERT(cur <= end); 2365 2366 if (cur == end) 2367 return (IPOPT_EOL); 2368 2369 opt = cur[IPOPT_OPTVAL]; 2370 2371 /* 2372 * Skip any NOP options. 2373 */ 2374 while (opt == IPOPT_NOP) { 2375 cur++; 2376 if (cur == end) 2377 return (IPOPT_EOL); 2378 opt = cur[IPOPT_OPTVAL]; 2379 } 2380 2381 if (opt == IPOPT_EOL) 2382 return (IPOPT_EOL); 2383 2384 /* 2385 * Option requiring a length. 2386 */ 2387 if ((cur + 1) >= end) { 2388 optp->ipoptp_flags |= IPOPTP_ERROR; 2389 return (IPOPT_EOL); 2390 } 2391 len = cur[IPOPT_OLEN]; 2392 if (len < 2) { 2393 optp->ipoptp_flags |= IPOPTP_ERROR; 2394 return (IPOPT_EOL); 2395 } 2396 optp->ipoptp_cur = cur; 2397 optp->ipoptp_len = len; 2398 optp->ipoptp_next = cur + len; 2399 if (cur + len > end) { 2400 optp->ipoptp_flags |= IPOPTP_ERROR; 2401 return (IPOPT_EOL); 2402 } 2403 2404 /* 2405 * For the options which require a pointer field, make sure 2406 * its there, and make sure it points to either something 2407 * inside this option, or the end of the option. 2408 */ 2409 switch (opt) { 2410 case IPOPT_RR: 2411 case IPOPT_TS: 2412 case IPOPT_LSRR: 2413 case IPOPT_SSRR: 2414 if (len <= IPOPT_OFFSET) { 2415 optp->ipoptp_flags |= IPOPTP_ERROR; 2416 return (opt); 2417 } 2418 pointer = cur[IPOPT_OFFSET]; 2419 if (pointer - 1 > len) { 2420 optp->ipoptp_flags |= IPOPTP_ERROR; 2421 return (opt); 2422 } 2423 break; 2424 } 2425 2426 /* 2427 * Sanity check the pointer field based on the type of the 2428 * option. 2429 */ 2430 switch (opt) { 2431 case IPOPT_RR: 2432 case IPOPT_SSRR: 2433 case IPOPT_LSRR: 2434 if (pointer < IPOPT_MINOFF_SR) 2435 optp->ipoptp_flags |= IPOPTP_ERROR; 2436 break; 2437 case IPOPT_TS: 2438 if (pointer < IPOPT_MINOFF_IT) 2439 optp->ipoptp_flags |= IPOPTP_ERROR; 2440 /* 2441 * Note that the Internet Timestamp option also 2442 * contains two four bit fields (the Overflow field, 2443 * and the Flag field), which follow the pointer 2444 * field. We don't need to check that these fields 2445 * fall within the length of the option because this 2446 * was implicitely done above. We've checked that the 2447 * pointer value is at least IPOPT_MINOFF_IT, and that 2448 * it falls within the option. Since IPOPT_MINOFF_IT > 2449 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2450 */ 2451 ASSERT(len > IPOPT_POS_OV_FLG); 2452 break; 2453 } 2454 2455 return (opt); 2456 } 2457 2458 /* 2459 * Use the outgoing IP header to create an IP_OPTIONS option the way 2460 * it was passed down from the application. 2461 * 2462 * This is compatible with BSD in that it returns 2463 * the reverse source route with the final destination 2464 * as the last entry. The first 4 bytes of the option 2465 * will contain the final destination. 2466 */ 2467 int 2468 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2469 { 2470 ipoptp_t opts; 2471 uchar_t *opt; 2472 uint8_t optval; 2473 uint8_t optlen; 2474 uint32_t len = 0; 2475 uchar_t *buf1 = buf; 2476 uint32_t totallen; 2477 ipaddr_t dst; 2478 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2479 2480 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2481 return (0); 2482 2483 totallen = ipp->ipp_ipv4_options_len; 2484 if (totallen & 0x3) 2485 return (0); 2486 2487 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2488 len += IP_ADDR_LEN; 2489 bzero(buf1, IP_ADDR_LEN); 2490 2491 dst = connp->conn_faddr_v4; 2492 2493 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2494 optval != IPOPT_EOL; 2495 optval = ipoptp_next(&opts)) { 2496 int off; 2497 2498 opt = opts.ipoptp_cur; 2499 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2500 break; 2501 } 2502 optlen = opts.ipoptp_len; 2503 2504 switch (optval) { 2505 case IPOPT_SSRR: 2506 case IPOPT_LSRR: 2507 2508 /* 2509 * Insert destination as the first entry in the source 2510 * route and move down the entries on step. 2511 * The last entry gets placed at buf1. 2512 */ 2513 buf[IPOPT_OPTVAL] = optval; 2514 buf[IPOPT_OLEN] = optlen; 2515 buf[IPOPT_OFFSET] = optlen; 2516 2517 off = optlen - IP_ADDR_LEN; 2518 if (off < 0) { 2519 /* No entries in source route */ 2520 break; 2521 } 2522 /* Last entry in source route if not already set */ 2523 if (dst == INADDR_ANY) 2524 bcopy(opt + off, buf1, IP_ADDR_LEN); 2525 off -= IP_ADDR_LEN; 2526 2527 while (off > 0) { 2528 bcopy(opt + off, 2529 buf + off + IP_ADDR_LEN, 2530 IP_ADDR_LEN); 2531 off -= IP_ADDR_LEN; 2532 } 2533 /* ipha_dst into first slot */ 2534 bcopy(&dst, buf + off + IP_ADDR_LEN, 2535 IP_ADDR_LEN); 2536 buf += optlen; 2537 len += optlen; 2538 break; 2539 2540 default: 2541 bcopy(opt, buf, optlen); 2542 buf += optlen; 2543 len += optlen; 2544 break; 2545 } 2546 } 2547 done: 2548 /* Pad the resulting options */ 2549 while (len & 0x3) { 2550 *buf++ = IPOPT_EOL; 2551 len++; 2552 } 2553 return (len); 2554 } 2555 2556 /* 2557 * Update any record route or timestamp options to include this host. 2558 * Reverse any source route option. 2559 * This routine assumes that the options are well formed i.e. that they 2560 * have already been checked. 2561 */ 2562 static void 2563 icmp_options_update(ipha_t *ipha) 2564 { 2565 ipoptp_t opts; 2566 uchar_t *opt; 2567 uint8_t optval; 2568 ipaddr_t src; /* Our local address */ 2569 ipaddr_t dst; 2570 2571 ip2dbg(("icmp_options_update\n")); 2572 src = ipha->ipha_src; 2573 dst = ipha->ipha_dst; 2574 2575 for (optval = ipoptp_first(&opts, ipha); 2576 optval != IPOPT_EOL; 2577 optval = ipoptp_next(&opts)) { 2578 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2579 opt = opts.ipoptp_cur; 2580 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2581 optval, opts.ipoptp_len)); 2582 switch (optval) { 2583 int off1, off2; 2584 case IPOPT_SSRR: 2585 case IPOPT_LSRR: 2586 /* 2587 * Reverse the source route. The first entry 2588 * should be the next to last one in the current 2589 * source route (the last entry is our address). 2590 * The last entry should be the final destination. 2591 */ 2592 off1 = IPOPT_MINOFF_SR - 1; 2593 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2594 if (off2 < 0) { 2595 /* No entries in source route */ 2596 ip1dbg(( 2597 "icmp_options_update: bad src route\n")); 2598 break; 2599 } 2600 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2601 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2602 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2603 off2 -= IP_ADDR_LEN; 2604 2605 while (off1 < off2) { 2606 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2607 bcopy((char *)opt + off2, (char *)opt + off1, 2608 IP_ADDR_LEN); 2609 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2610 off1 += IP_ADDR_LEN; 2611 off2 -= IP_ADDR_LEN; 2612 } 2613 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2614 break; 2615 } 2616 } 2617 } 2618 2619 /* 2620 * Process received ICMP Redirect messages. 2621 * Assumes the caller has verified that the headers are in the pulled up mblk. 2622 * Consumes mp. 2623 */ 2624 static void 2625 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2626 { 2627 ire_t *ire, *nire; 2628 ire_t *prev_ire; 2629 ipaddr_t src, dst, gateway; 2630 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2631 ipha_t *inner_ipha; /* Inner IP header */ 2632 2633 /* Caller already pulled up everything. */ 2634 inner_ipha = (ipha_t *)&icmph[1]; 2635 src = ipha->ipha_src; 2636 dst = inner_ipha->ipha_dst; 2637 gateway = icmph->icmph_rd_gateway; 2638 /* Make sure the new gateway is reachable somehow. */ 2639 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2640 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2641 /* 2642 * Make sure we had a route for the dest in question and that 2643 * that route was pointing to the old gateway (the source of the 2644 * redirect packet.) 2645 * We do longest match and then compare ire_gateway_addr below. 2646 */ 2647 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2648 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2649 /* 2650 * Check that 2651 * the redirect was not from ourselves 2652 * the new gateway and the old gateway are directly reachable 2653 */ 2654 if (prev_ire == NULL || ire == NULL || 2655 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2656 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2657 !(ire->ire_type & IRE_IF_ALL) || 2658 prev_ire->ire_gateway_addr != src) { 2659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2660 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2661 freemsg(mp); 2662 if (ire != NULL) 2663 ire_refrele(ire); 2664 if (prev_ire != NULL) 2665 ire_refrele(prev_ire); 2666 return; 2667 } 2668 2669 ire_refrele(prev_ire); 2670 ire_refrele(ire); 2671 2672 /* 2673 * TODO: more precise handling for cases 0, 2, 3, the latter two 2674 * require TOS routing 2675 */ 2676 switch (icmph->icmph_code) { 2677 case 0: 2678 case 1: 2679 /* TODO: TOS specificity for cases 2 and 3 */ 2680 case 2: 2681 case 3: 2682 break; 2683 default: 2684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2685 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2686 freemsg(mp); 2687 return; 2688 } 2689 /* 2690 * Create a Route Association. This will allow us to remember that 2691 * someone we believe told us to use the particular gateway. 2692 */ 2693 ire = ire_create( 2694 (uchar_t *)&dst, /* dest addr */ 2695 (uchar_t *)&ip_g_all_ones, /* mask */ 2696 (uchar_t *)&gateway, /* gateway addr */ 2697 IRE_HOST, 2698 NULL, /* ill */ 2699 ALL_ZONES, 2700 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2701 NULL, /* tsol_gc_t */ 2702 ipst); 2703 2704 if (ire == NULL) { 2705 freemsg(mp); 2706 return; 2707 } 2708 nire = ire_add(ire); 2709 /* Check if it was a duplicate entry */ 2710 if (nire != NULL && nire != ire) { 2711 ASSERT(nire->ire_identical_ref > 1); 2712 ire_delete(nire); 2713 ire_refrele(nire); 2714 nire = NULL; 2715 } 2716 ire = nire; 2717 if (ire != NULL) { 2718 ire_refrele(ire); /* Held in ire_add */ 2719 2720 /* tell routing sockets that we received a redirect */ 2721 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2722 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2723 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2724 } 2725 2726 /* 2727 * Delete any existing IRE_HOST type redirect ires for this destination. 2728 * This together with the added IRE has the effect of 2729 * modifying an existing redirect. 2730 */ 2731 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2732 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2733 if (prev_ire != NULL) { 2734 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2735 ire_delete(prev_ire); 2736 ire_refrele(prev_ire); 2737 } 2738 2739 freemsg(mp); 2740 } 2741 2742 /* 2743 * Generate an ICMP parameter problem message. 2744 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2745 * constructed by the caller. 2746 */ 2747 static void 2748 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2749 { 2750 icmph_t icmph; 2751 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2752 2753 mp = icmp_pkt_err_ok(mp, ira); 2754 if (mp == NULL) 2755 return; 2756 2757 bzero(&icmph, sizeof (icmph_t)); 2758 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2759 icmph.icmph_pp_ptr = ptr; 2760 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2761 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2762 } 2763 2764 /* 2765 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2766 * the ICMP header pointed to by "stuff". (May be called as writer.) 2767 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2768 * an icmp error packet can be sent. 2769 * Assigns an appropriate source address to the packet. If ipha_dst is 2770 * one of our addresses use it for source. Otherwise let ip_output_simple 2771 * pick the source address. 2772 */ 2773 static void 2774 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2775 { 2776 ipaddr_t dst; 2777 icmph_t *icmph; 2778 ipha_t *ipha; 2779 uint_t len_needed; 2780 size_t msg_len; 2781 mblk_t *mp1; 2782 ipaddr_t src; 2783 ire_t *ire; 2784 ip_xmit_attr_t ixas; 2785 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2786 2787 ipha = (ipha_t *)mp->b_rptr; 2788 2789 bzero(&ixas, sizeof (ixas)); 2790 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2791 ixas.ixa_zoneid = ira->ira_zoneid; 2792 ixas.ixa_ifindex = 0; 2793 ixas.ixa_ipst = ipst; 2794 ixas.ixa_cred = kcred; 2795 ixas.ixa_cpid = NOPID; 2796 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2797 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2798 2799 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2800 /* 2801 * Apply IPsec based on how IPsec was applied to 2802 * the packet that had the error. 2803 * 2804 * If it was an outbound packet that caused the ICMP 2805 * error, then the caller will have setup the IRA 2806 * appropriately. 2807 */ 2808 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2809 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2810 /* Note: mp already consumed and ip_drop_packet done */ 2811 return; 2812 } 2813 } else { 2814 /* 2815 * This is in clear. The icmp message we are building 2816 * here should go out in clear, independent of our policy. 2817 */ 2818 ixas.ixa_flags |= IXAF_NO_IPSEC; 2819 } 2820 2821 /* Remember our eventual destination */ 2822 dst = ipha->ipha_src; 2823 2824 /* 2825 * If the packet was for one of our unicast addresses, make 2826 * sure we respond with that as the source. Otherwise 2827 * have ip_output_simple pick the source address. 2828 */ 2829 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2830 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2831 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2832 if (ire != NULL) { 2833 ire_refrele(ire); 2834 src = ipha->ipha_dst; 2835 } else { 2836 src = INADDR_ANY; 2837 ixas.ixa_flags |= IXAF_SET_SOURCE; 2838 } 2839 2840 /* 2841 * Check if we can send back more then 8 bytes in addition to 2842 * the IP header. We try to send 64 bytes of data and the internal 2843 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2844 */ 2845 len_needed = IPH_HDR_LENGTH(ipha); 2846 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2847 ipha->ipha_protocol == IPPROTO_IPV6) { 2848 if (!pullupmsg(mp, -1)) { 2849 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2850 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2851 freemsg(mp); 2852 return; 2853 } 2854 ipha = (ipha_t *)mp->b_rptr; 2855 2856 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2857 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2858 len_needed)); 2859 } else { 2860 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2861 2862 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2863 len_needed += ip_hdr_length_v6(mp, ip6h); 2864 } 2865 } 2866 len_needed += ipst->ips_ip_icmp_return; 2867 msg_len = msgdsize(mp); 2868 if (msg_len > len_needed) { 2869 (void) adjmsg(mp, len_needed - msg_len); 2870 msg_len = len_needed; 2871 } 2872 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2873 if (mp1 == NULL) { 2874 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2875 freemsg(mp); 2876 return; 2877 } 2878 mp1->b_cont = mp; 2879 mp = mp1; 2880 2881 /* 2882 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2883 * node generates be accepted in peace by all on-host destinations. 2884 * If we do NOT assume that all on-host destinations trust 2885 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2886 * (Look for IXAF_TRUSTED_ICMP). 2887 */ 2888 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2889 2890 ipha = (ipha_t *)mp->b_rptr; 2891 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2892 *ipha = icmp_ipha; 2893 ipha->ipha_src = src; 2894 ipha->ipha_dst = dst; 2895 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2896 msg_len += sizeof (icmp_ipha) + len; 2897 if (msg_len > IP_MAXPACKET) { 2898 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2899 msg_len = IP_MAXPACKET; 2900 } 2901 ipha->ipha_length = htons((uint16_t)msg_len); 2902 icmph = (icmph_t *)&ipha[1]; 2903 bcopy(stuff, icmph, len); 2904 icmph->icmph_checksum = 0; 2905 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2906 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2907 2908 (void) ip_output_simple(mp, &ixas); 2909 ixa_cleanup(&ixas); 2910 } 2911 2912 /* 2913 * Determine if an ICMP error packet can be sent given the rate limit. 2914 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2915 * in milliseconds) and a burst size. Burst size number of packets can 2916 * be sent arbitrarely closely spaced. 2917 * The state is tracked using two variables to implement an approximate 2918 * token bucket filter: 2919 * icmp_pkt_err_last - lbolt value when the last burst started 2920 * icmp_pkt_err_sent - number of packets sent in current burst 2921 */ 2922 boolean_t 2923 icmp_err_rate_limit(ip_stack_t *ipst) 2924 { 2925 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2926 uint_t refilled; /* Number of packets refilled in tbf since last */ 2927 /* Guard against changes by loading into local variable */ 2928 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2929 2930 if (err_interval == 0) 2931 return (B_FALSE); 2932 2933 if (ipst->ips_icmp_pkt_err_last > now) { 2934 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2935 ipst->ips_icmp_pkt_err_last = 0; 2936 ipst->ips_icmp_pkt_err_sent = 0; 2937 } 2938 /* 2939 * If we are in a burst update the token bucket filter. 2940 * Update the "last" time to be close to "now" but make sure 2941 * we don't loose precision. 2942 */ 2943 if (ipst->ips_icmp_pkt_err_sent != 0) { 2944 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2945 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2946 ipst->ips_icmp_pkt_err_sent = 0; 2947 } else { 2948 ipst->ips_icmp_pkt_err_sent -= refilled; 2949 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2950 } 2951 } 2952 if (ipst->ips_icmp_pkt_err_sent == 0) { 2953 /* Start of new burst */ 2954 ipst->ips_icmp_pkt_err_last = now; 2955 } 2956 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2957 ipst->ips_icmp_pkt_err_sent++; 2958 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2959 ipst->ips_icmp_pkt_err_sent)); 2960 return (B_FALSE); 2961 } 2962 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2963 return (B_TRUE); 2964 } 2965 2966 /* 2967 * Check if it is ok to send an IPv4 ICMP error packet in 2968 * response to the IPv4 packet in mp. 2969 * Free the message and return null if no 2970 * ICMP error packet should be sent. 2971 */ 2972 static mblk_t * 2973 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2974 { 2975 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2976 icmph_t *icmph; 2977 ipha_t *ipha; 2978 uint_t len_needed; 2979 2980 if (!mp) 2981 return (NULL); 2982 ipha = (ipha_t *)mp->b_rptr; 2983 if (ip_csum_hdr(ipha)) { 2984 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2985 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2986 freemsg(mp); 2987 return (NULL); 2988 } 2989 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2990 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2991 CLASSD(ipha->ipha_dst) || 2992 CLASSD(ipha->ipha_src) || 2993 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2994 /* Note: only errors to the fragment with offset 0 */ 2995 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2996 freemsg(mp); 2997 return (NULL); 2998 } 2999 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3000 /* 3001 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3002 * errors in response to any ICMP errors. 3003 */ 3004 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3005 if (mp->b_wptr - mp->b_rptr < len_needed) { 3006 if (!pullupmsg(mp, len_needed)) { 3007 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3008 freemsg(mp); 3009 return (NULL); 3010 } 3011 ipha = (ipha_t *)mp->b_rptr; 3012 } 3013 icmph = (icmph_t *) 3014 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3015 switch (icmph->icmph_type) { 3016 case ICMP_DEST_UNREACHABLE: 3017 case ICMP_SOURCE_QUENCH: 3018 case ICMP_TIME_EXCEEDED: 3019 case ICMP_PARAM_PROBLEM: 3020 case ICMP_REDIRECT: 3021 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3022 freemsg(mp); 3023 return (NULL); 3024 default: 3025 break; 3026 } 3027 } 3028 /* 3029 * If this is a labeled system, then check to see if we're allowed to 3030 * send a response to this particular sender. If not, then just drop. 3031 */ 3032 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3033 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3034 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3035 freemsg(mp); 3036 return (NULL); 3037 } 3038 if (icmp_err_rate_limit(ipst)) { 3039 /* 3040 * Only send ICMP error packets every so often. 3041 * This should be done on a per port/source basis, 3042 * but for now this will suffice. 3043 */ 3044 freemsg(mp); 3045 return (NULL); 3046 } 3047 return (mp); 3048 } 3049 3050 /* 3051 * Called when a packet was sent out the same link that it arrived on. 3052 * Check if it is ok to send a redirect and then send it. 3053 */ 3054 void 3055 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3056 ip_recv_attr_t *ira) 3057 { 3058 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3059 ipaddr_t src, nhop; 3060 mblk_t *mp1; 3061 ire_t *nhop_ire; 3062 3063 /* 3064 * Check the source address to see if it originated 3065 * on the same logical subnet it is going back out on. 3066 * If so, we should be able to send it a redirect. 3067 * Avoid sending a redirect if the destination 3068 * is directly connected (i.e., we matched an IRE_ONLINK), 3069 * or if the packet was source routed out this interface. 3070 * 3071 * We avoid sending a redirect if the 3072 * destination is directly connected 3073 * because it is possible that multiple 3074 * IP subnets may have been configured on 3075 * the link, and the source may not 3076 * be on the same subnet as ip destination, 3077 * even though they are on the same 3078 * physical link. 3079 */ 3080 if ((ire->ire_type & IRE_ONLINK) || 3081 ip_source_routed(ipha, ipst)) 3082 return; 3083 3084 nhop_ire = ire_nexthop(ire); 3085 if (nhop_ire == NULL) 3086 return; 3087 3088 nhop = nhop_ire->ire_addr; 3089 3090 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3091 ire_t *ire2; 3092 3093 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3094 mutex_enter(&nhop_ire->ire_lock); 3095 ire2 = nhop_ire->ire_dep_parent; 3096 if (ire2 != NULL) 3097 ire_refhold(ire2); 3098 mutex_exit(&nhop_ire->ire_lock); 3099 ire_refrele(nhop_ire); 3100 nhop_ire = ire2; 3101 } 3102 if (nhop_ire == NULL) 3103 return; 3104 3105 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3106 3107 src = ipha->ipha_src; 3108 3109 /* 3110 * We look at the interface ire for the nexthop, 3111 * to see if ipha_src is in the same subnet 3112 * as the nexthop. 3113 */ 3114 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3115 /* 3116 * The source is directly connected. 3117 */ 3118 mp1 = copymsg(mp); 3119 if (mp1 != NULL) { 3120 icmp_send_redirect(mp1, nhop, ira); 3121 } 3122 } 3123 ire_refrele(nhop_ire); 3124 } 3125 3126 /* 3127 * Generate an ICMP redirect message. 3128 */ 3129 static void 3130 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3131 { 3132 icmph_t icmph; 3133 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3134 3135 mp = icmp_pkt_err_ok(mp, ira); 3136 if (mp == NULL) 3137 return; 3138 3139 bzero(&icmph, sizeof (icmph_t)); 3140 icmph.icmph_type = ICMP_REDIRECT; 3141 icmph.icmph_code = 1; 3142 icmph.icmph_rd_gateway = gateway; 3143 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3144 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3145 } 3146 3147 /* 3148 * Generate an ICMP time exceeded message. 3149 */ 3150 void 3151 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3152 { 3153 icmph_t icmph; 3154 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3155 3156 mp = icmp_pkt_err_ok(mp, ira); 3157 if (mp == NULL) 3158 return; 3159 3160 bzero(&icmph, sizeof (icmph_t)); 3161 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3162 icmph.icmph_code = code; 3163 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3164 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3165 } 3166 3167 /* 3168 * Generate an ICMP unreachable message. 3169 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3170 * constructed by the caller. 3171 */ 3172 void 3173 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3174 { 3175 icmph_t icmph; 3176 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3177 3178 mp = icmp_pkt_err_ok(mp, ira); 3179 if (mp == NULL) 3180 return; 3181 3182 bzero(&icmph, sizeof (icmph_t)); 3183 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3184 icmph.icmph_code = code; 3185 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3186 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3187 } 3188 3189 /* 3190 * Latch in the IPsec state for a stream based the policy in the listener 3191 * and the actions in the ip_recv_attr_t. 3192 * Called directly from TCP and SCTP. 3193 */ 3194 boolean_t 3195 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3196 { 3197 ASSERT(lconnp->conn_policy != NULL); 3198 ASSERT(connp->conn_policy == NULL); 3199 3200 IPPH_REFHOLD(lconnp->conn_policy); 3201 connp->conn_policy = lconnp->conn_policy; 3202 3203 if (ira->ira_ipsec_action != NULL) { 3204 if (connp->conn_latch == NULL) { 3205 connp->conn_latch = iplatch_create(); 3206 if (connp->conn_latch == NULL) 3207 return (B_FALSE); 3208 } 3209 ipsec_latch_inbound(connp, ira); 3210 } 3211 return (B_TRUE); 3212 } 3213 3214 /* 3215 * Verify whether or not the IP address is a valid local address. 3216 * Could be a unicast, including one for a down interface. 3217 * If allow_mcbc then a multicast or broadcast address is also 3218 * acceptable. 3219 * 3220 * In the case of a broadcast/multicast address, however, the 3221 * upper protocol is expected to reset the src address 3222 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3223 * no packets are emitted with broadcast/multicast address as 3224 * source address (that violates hosts requirements RFC 1122) 3225 * The addresses valid for bind are: 3226 * (1) - INADDR_ANY (0) 3227 * (2) - IP address of an UP interface 3228 * (3) - IP address of a DOWN interface 3229 * (4) - valid local IP broadcast addresses. In this case 3230 * the conn will only receive packets destined to 3231 * the specified broadcast address. 3232 * (5) - a multicast address. In this case 3233 * the conn will only receive packets destined to 3234 * the specified multicast address. Note: the 3235 * application still has to issue an 3236 * IP_ADD_MEMBERSHIP socket option. 3237 * 3238 * In all the above cases, the bound address must be valid in the current zone. 3239 * When the address is loopback, multicast or broadcast, there might be many 3240 * matching IREs so bind has to look up based on the zone. 3241 */ 3242 ip_laddr_t 3243 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3244 ip_stack_t *ipst, boolean_t allow_mcbc) 3245 { 3246 ire_t *src_ire; 3247 3248 ASSERT(src_addr != INADDR_ANY); 3249 3250 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3251 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3252 3253 /* 3254 * If an address other than in6addr_any is requested, 3255 * we verify that it is a valid address for bind 3256 * Note: Following code is in if-else-if form for 3257 * readability compared to a condition check. 3258 */ 3259 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3260 /* 3261 * (2) Bind to address of local UP interface 3262 */ 3263 ire_refrele(src_ire); 3264 return (IPVL_UNICAST_UP); 3265 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3266 /* 3267 * (4) Bind to broadcast address 3268 */ 3269 ire_refrele(src_ire); 3270 if (allow_mcbc) 3271 return (IPVL_BCAST); 3272 else 3273 return (IPVL_BAD); 3274 } else if (CLASSD(src_addr)) { 3275 /* (5) bind to multicast address. */ 3276 if (src_ire != NULL) 3277 ire_refrele(src_ire); 3278 3279 if (allow_mcbc) 3280 return (IPVL_MCAST); 3281 else 3282 return (IPVL_BAD); 3283 } else { 3284 ipif_t *ipif; 3285 3286 /* 3287 * (3) Bind to address of local DOWN interface? 3288 * (ipif_lookup_addr() looks up all interfaces 3289 * but we do not get here for UP interfaces 3290 * - case (2) above) 3291 */ 3292 if (src_ire != NULL) 3293 ire_refrele(src_ire); 3294 3295 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3296 if (ipif == NULL) 3297 return (IPVL_BAD); 3298 3299 /* Not a useful source? */ 3300 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3301 ipif_refrele(ipif); 3302 return (IPVL_BAD); 3303 } 3304 ipif_refrele(ipif); 3305 return (IPVL_UNICAST_DOWN); 3306 } 3307 } 3308 3309 /* 3310 * Insert in the bind fanout for IPv4 and IPv6. 3311 * The caller should already have used ip_laddr_verify_v*() before calling 3312 * this. 3313 */ 3314 int 3315 ip_laddr_fanout_insert(conn_t *connp) 3316 { 3317 int error; 3318 3319 /* 3320 * Allow setting new policies. For example, disconnects result 3321 * in us being called. As we would have set conn_policy_cached 3322 * to B_TRUE before, we should set it to B_FALSE, so that policy 3323 * can change after the disconnect. 3324 */ 3325 connp->conn_policy_cached = B_FALSE; 3326 3327 error = ipcl_bind_insert(connp); 3328 if (error != 0) { 3329 if (connp->conn_anon_port) { 3330 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3331 connp->conn_mlp_type, connp->conn_proto, 3332 ntohs(connp->conn_lport), B_FALSE); 3333 } 3334 connp->conn_mlp_type = mlptSingle; 3335 } 3336 return (error); 3337 } 3338 3339 /* 3340 * Verify that both the source and destination addresses are valid. If 3341 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3342 * i.e. have no route to it. Protocols like TCP want to verify destination 3343 * reachability, while tunnels do not. 3344 * 3345 * Determine the route, the interface, and (optionally) the source address 3346 * to use to reach a given destination. 3347 * Note that we allow connect to broadcast and multicast addresses when 3348 * IPDF_ALLOW_MCBC is set. 3349 * first_hop and dst_addr are normally the same, but if source routing 3350 * they will differ; in that case the first_hop is what we'll use for the 3351 * routing lookup but the dce and label checks will be done on dst_addr, 3352 * 3353 * If uinfo is set, then we fill in the best available information 3354 * we have for the destination. This is based on (in priority order) any 3355 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3356 * ill_mtu/ill_mc_mtu. 3357 * 3358 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3359 * always do the label check on dst_addr. 3360 */ 3361 int 3362 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3363 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3364 { 3365 ire_t *ire = NULL; 3366 int error = 0; 3367 ipaddr_t setsrc; /* RTF_SETSRC */ 3368 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3369 ip_stack_t *ipst = ixa->ixa_ipst; 3370 dce_t *dce; 3371 uint_t pmtu; 3372 uint_t generation; 3373 nce_t *nce; 3374 ill_t *ill = NULL; 3375 boolean_t multirt = B_FALSE; 3376 3377 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3378 3379 /* 3380 * We never send to zero; the ULPs map it to the loopback address. 3381 * We can't allow it since we use zero to mean unitialized in some 3382 * places. 3383 */ 3384 ASSERT(dst_addr != INADDR_ANY); 3385 3386 if (is_system_labeled()) { 3387 ts_label_t *tsl = NULL; 3388 3389 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3390 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3391 if (error != 0) 3392 return (error); 3393 if (tsl != NULL) { 3394 /* Update the label */ 3395 ip_xmit_attr_replace_tsl(ixa, tsl); 3396 } 3397 } 3398 3399 setsrc = INADDR_ANY; 3400 /* 3401 * Select a route; For IPMP interfaces, we would only select 3402 * a "hidden" route (i.e., going through a specific under_ill) 3403 * if ixa_ifindex has been specified. 3404 */ 3405 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3406 &generation, &setsrc, &error, &multirt); 3407 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3408 if (error != 0) 3409 goto bad_addr; 3410 3411 /* 3412 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3413 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3414 * Otherwise the destination needn't be reachable. 3415 * 3416 * If we match on a reject or black hole, then we've got a 3417 * local failure. May as well fail out the connect() attempt, 3418 * since it's never going to succeed. 3419 */ 3420 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3421 /* 3422 * If we're verifying destination reachability, we always want 3423 * to complain here. 3424 * 3425 * If we're not verifying destination reachability but the 3426 * destination has a route, we still want to fail on the 3427 * temporary address and broadcast address tests. 3428 * 3429 * In both cases do we let the code continue so some reasonable 3430 * information is returned to the caller. That enables the 3431 * caller to use (and even cache) the IRE. conn_ip_ouput will 3432 * use the generation mismatch path to check for the unreachable 3433 * case thereby avoiding any specific check in the main path. 3434 */ 3435 ASSERT(generation == IRE_GENERATION_VERIFY); 3436 if (flags & IPDF_VERIFY_DST) { 3437 /* 3438 * Set errno but continue to set up ixa_ire to be 3439 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3440 * That allows callers to use ip_output to get an 3441 * ICMP error back. 3442 */ 3443 if (!(ire->ire_type & IRE_HOST)) 3444 error = ENETUNREACH; 3445 else 3446 error = EHOSTUNREACH; 3447 } 3448 } 3449 3450 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3451 !(flags & IPDF_ALLOW_MCBC)) { 3452 ire_refrele(ire); 3453 ire = ire_reject(ipst, B_FALSE); 3454 generation = IRE_GENERATION_VERIFY; 3455 error = ENETUNREACH; 3456 } 3457 3458 /* Cache things */ 3459 if (ixa->ixa_ire != NULL) 3460 ire_refrele_notr(ixa->ixa_ire); 3461 #ifdef DEBUG 3462 ire_refhold_notr(ire); 3463 ire_refrele(ire); 3464 #endif 3465 ixa->ixa_ire = ire; 3466 ixa->ixa_ire_generation = generation; 3467 3468 /* 3469 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3470 * since some callers will send a packet to conn_ip_output() even if 3471 * there's an error. 3472 */ 3473 if (flags & IPDF_UNIQUE_DCE) { 3474 /* Fallback to the default dce if allocation fails */ 3475 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3476 if (dce != NULL) 3477 generation = dce->dce_generation; 3478 else 3479 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3480 } else { 3481 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3482 } 3483 ASSERT(dce != NULL); 3484 if (ixa->ixa_dce != NULL) 3485 dce_refrele_notr(ixa->ixa_dce); 3486 #ifdef DEBUG 3487 dce_refhold_notr(dce); 3488 dce_refrele(dce); 3489 #endif 3490 ixa->ixa_dce = dce; 3491 ixa->ixa_dce_generation = generation; 3492 3493 /* 3494 * For multicast with multirt we have a flag passed back from 3495 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3496 * possible multicast address. 3497 * We also need a flag for multicast since we can't check 3498 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3499 */ 3500 if (multirt) { 3501 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3502 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3503 } else { 3504 ixa->ixa_postfragfn = ire->ire_postfragfn; 3505 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3506 } 3507 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3508 /* Get an nce to cache. */ 3509 nce = ire_to_nce(ire, firsthop, NULL); 3510 if (nce == NULL) { 3511 /* Allocation failure? */ 3512 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3513 } else { 3514 if (ixa->ixa_nce != NULL) 3515 nce_refrele(ixa->ixa_nce); 3516 ixa->ixa_nce = nce; 3517 } 3518 } 3519 3520 /* 3521 * If the source address is a loopback address, the 3522 * destination had best be local or multicast. 3523 * If we are sending to an IRE_LOCAL using a loopback source then 3524 * it had better be the same zoneid. 3525 */ 3526 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3527 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3528 ire = NULL; /* Stored in ixa_ire */ 3529 error = EADDRNOTAVAIL; 3530 goto bad_addr; 3531 } 3532 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3533 ire = NULL; /* Stored in ixa_ire */ 3534 error = EADDRNOTAVAIL; 3535 goto bad_addr; 3536 } 3537 } 3538 if (ire->ire_type & IRE_BROADCAST) { 3539 /* 3540 * If the ULP didn't have a specified source, then we 3541 * make sure we reselect the source when sending 3542 * broadcasts out different interfaces. 3543 */ 3544 if (flags & IPDF_SELECT_SRC) 3545 ixa->ixa_flags |= IXAF_SET_SOURCE; 3546 else 3547 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3548 } 3549 3550 /* 3551 * Does the caller want us to pick a source address? 3552 */ 3553 if (flags & IPDF_SELECT_SRC) { 3554 ipaddr_t src_addr; 3555 3556 /* 3557 * We use use ire_nexthop_ill to avoid the under ipmp 3558 * interface for source address selection. Note that for ipmp 3559 * probe packets, ixa_ifindex would have been specified, and 3560 * the ip_select_route() invocation would have picked an ire 3561 * will ire_ill pointing at an under interface. 3562 */ 3563 ill = ire_nexthop_ill(ire); 3564 3565 /* If unreachable we have no ill but need some source */ 3566 if (ill == NULL) { 3567 src_addr = htonl(INADDR_LOOPBACK); 3568 /* Make sure we look for a better source address */ 3569 generation = SRC_GENERATION_VERIFY; 3570 } else { 3571 error = ip_select_source_v4(ill, setsrc, dst_addr, 3572 ixa->ixa_multicast_ifaddr, zoneid, 3573 ipst, &src_addr, &generation, NULL); 3574 if (error != 0) { 3575 ire = NULL; /* Stored in ixa_ire */ 3576 goto bad_addr; 3577 } 3578 } 3579 3580 /* 3581 * We allow the source address to to down. 3582 * However, we check that we don't use the loopback address 3583 * as a source when sending out on the wire. 3584 */ 3585 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3586 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3587 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3588 ire = NULL; /* Stored in ixa_ire */ 3589 error = EADDRNOTAVAIL; 3590 goto bad_addr; 3591 } 3592 3593 *src_addrp = src_addr; 3594 ixa->ixa_src_generation = generation; 3595 } 3596 3597 /* 3598 * Make sure we don't leave an unreachable ixa_nce in place 3599 * since ip_select_route is used when we unplumb i.e., remove 3600 * references on ixa_ire, ixa_nce, and ixa_dce. 3601 */ 3602 nce = ixa->ixa_nce; 3603 if (nce != NULL && nce->nce_is_condemned) { 3604 nce_refrele(nce); 3605 ixa->ixa_nce = NULL; 3606 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3607 } 3608 3609 /* 3610 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3611 * However, we can't do it for IPv4 multicast or broadcast. 3612 */ 3613 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3614 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3615 3616 /* 3617 * Set initial value for fragmentation limit. Either conn_ip_output 3618 * or ULP might updates it when there are routing changes. 3619 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3620 */ 3621 pmtu = ip_get_pmtu(ixa); 3622 ixa->ixa_fragsize = pmtu; 3623 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3624 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3625 ixa->ixa_pmtu = pmtu; 3626 3627 /* 3628 * Extract information useful for some transports. 3629 * First we look for DCE metrics. Then we take what we have in 3630 * the metrics in the route, where the offlink is used if we have 3631 * one. 3632 */ 3633 if (uinfo != NULL) { 3634 bzero(uinfo, sizeof (*uinfo)); 3635 3636 if (dce->dce_flags & DCEF_UINFO) 3637 *uinfo = dce->dce_uinfo; 3638 3639 rts_merge_metrics(uinfo, &ire->ire_metrics); 3640 3641 /* Allow ire_metrics to decrease the path MTU from above */ 3642 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3643 uinfo->iulp_mtu = pmtu; 3644 3645 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3646 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3647 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3648 } 3649 3650 if (ill != NULL) 3651 ill_refrele(ill); 3652 3653 return (error); 3654 3655 bad_addr: 3656 if (ire != NULL) 3657 ire_refrele(ire); 3658 3659 if (ill != NULL) 3660 ill_refrele(ill); 3661 3662 /* 3663 * Make sure we don't leave an unreachable ixa_nce in place 3664 * since ip_select_route is used when we unplumb i.e., remove 3665 * references on ixa_ire, ixa_nce, and ixa_dce. 3666 */ 3667 nce = ixa->ixa_nce; 3668 if (nce != NULL && nce->nce_is_condemned) { 3669 nce_refrele(nce); 3670 ixa->ixa_nce = NULL; 3671 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3672 } 3673 3674 return (error); 3675 } 3676 3677 3678 /* 3679 * Get the base MTU for the case when path MTU discovery is not used. 3680 * Takes the MTU of the IRE into account. 3681 */ 3682 uint_t 3683 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3684 { 3685 uint_t mtu; 3686 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3687 3688 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3689 mtu = ill->ill_mc_mtu; 3690 else 3691 mtu = ill->ill_mtu; 3692 3693 if (iremtu != 0 && iremtu < mtu) 3694 mtu = iremtu; 3695 3696 return (mtu); 3697 } 3698 3699 /* 3700 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3701 * Assumes that ixa_ire, dce, and nce have already been set up. 3702 * 3703 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3704 * We avoid path MTU discovery if it is disabled with ndd. 3705 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3706 * 3707 * NOTE: We also used to turn it off for source routed packets. That 3708 * is no longer required since the dce is per final destination. 3709 */ 3710 uint_t 3711 ip_get_pmtu(ip_xmit_attr_t *ixa) 3712 { 3713 ip_stack_t *ipst = ixa->ixa_ipst; 3714 dce_t *dce; 3715 nce_t *nce; 3716 ire_t *ire; 3717 uint_t pmtu; 3718 3719 ire = ixa->ixa_ire; 3720 dce = ixa->ixa_dce; 3721 nce = ixa->ixa_nce; 3722 3723 /* 3724 * If path MTU discovery has been turned off by ndd, then we ignore 3725 * any dce_pmtu and for IPv4 we will not set DF. 3726 */ 3727 if (!ipst->ips_ip_path_mtu_discovery) 3728 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3729 3730 pmtu = IP_MAXPACKET; 3731 /* 3732 * Decide whether whether IPv4 sets DF 3733 * For IPv6 "no DF" means to use the 1280 mtu 3734 */ 3735 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3736 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3737 } else { 3738 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3739 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3740 pmtu = IPV6_MIN_MTU; 3741 } 3742 3743 /* Check if the PMTU is to old before we use it */ 3744 if ((dce->dce_flags & DCEF_PMTU) && 3745 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3746 ipst->ips_ip_pathmtu_interval) { 3747 /* 3748 * Older than 20 minutes. Drop the path MTU information. 3749 */ 3750 mutex_enter(&dce->dce_lock); 3751 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3752 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3753 mutex_exit(&dce->dce_lock); 3754 dce_increment_generation(dce); 3755 } 3756 3757 /* The metrics on the route can lower the path MTU */ 3758 if (ire->ire_metrics.iulp_mtu != 0 && 3759 ire->ire_metrics.iulp_mtu < pmtu) 3760 pmtu = ire->ire_metrics.iulp_mtu; 3761 3762 /* 3763 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3764 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3765 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3766 */ 3767 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3768 if (dce->dce_flags & DCEF_PMTU) { 3769 if (dce->dce_pmtu < pmtu) 3770 pmtu = dce->dce_pmtu; 3771 3772 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3773 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3774 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3775 } else { 3776 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3777 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3778 } 3779 } else { 3780 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3781 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3782 } 3783 } 3784 3785 /* 3786 * If we have an IRE_LOCAL we use the loopback mtu instead of 3787 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3788 * mtu as IRE_LOOPBACK. 3789 */ 3790 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3791 uint_t loopback_mtu; 3792 3793 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3794 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3795 3796 if (loopback_mtu < pmtu) 3797 pmtu = loopback_mtu; 3798 } else if (nce != NULL) { 3799 /* 3800 * Make sure we don't exceed the interface MTU. 3801 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3802 * an ill. We'd use the above IP_MAXPACKET in that case just 3803 * to tell the transport something larger than zero. 3804 */ 3805 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3806 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3807 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3808 if (nce->nce_common->ncec_ill != nce->nce_ill && 3809 nce->nce_ill->ill_mc_mtu < pmtu) { 3810 /* 3811 * for interfaces in an IPMP group, the mtu of 3812 * the nce_ill (under_ill) could be different 3813 * from the mtu of the ncec_ill, so we take the 3814 * min of the two. 3815 */ 3816 pmtu = nce->nce_ill->ill_mc_mtu; 3817 } 3818 } else { 3819 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3820 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3821 if (nce->nce_common->ncec_ill != nce->nce_ill && 3822 nce->nce_ill->ill_mtu < pmtu) { 3823 /* 3824 * for interfaces in an IPMP group, the mtu of 3825 * the nce_ill (under_ill) could be different 3826 * from the mtu of the ncec_ill, so we take the 3827 * min of the two. 3828 */ 3829 pmtu = nce->nce_ill->ill_mtu; 3830 } 3831 } 3832 } 3833 3834 /* 3835 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3836 * Only applies to IPv6. 3837 */ 3838 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3839 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3840 switch (ixa->ixa_use_min_mtu) { 3841 case IPV6_USE_MIN_MTU_MULTICAST: 3842 if (ire->ire_type & IRE_MULTICAST) 3843 pmtu = IPV6_MIN_MTU; 3844 break; 3845 case IPV6_USE_MIN_MTU_ALWAYS: 3846 pmtu = IPV6_MIN_MTU; 3847 break; 3848 case IPV6_USE_MIN_MTU_NEVER: 3849 break; 3850 } 3851 } else { 3852 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3853 if (ire->ire_type & IRE_MULTICAST) 3854 pmtu = IPV6_MIN_MTU; 3855 } 3856 } 3857 3858 /* 3859 * After receiving an ICMPv6 "packet too big" message with a 3860 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3861 * will insert a 8-byte fragment header in every packet. We compensate 3862 * for those cases by returning a smaller path MTU to the ULP. 3863 * 3864 * In the case of CGTP then ip_output will add a fragment header. 3865 * Make sure there is room for it by telling a smaller number 3866 * to the transport. 3867 * 3868 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3869 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3870 * which is the size of the packets it can send. 3871 */ 3872 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3873 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3874 (ire->ire_flags & RTF_MULTIRT) || 3875 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3876 pmtu -= sizeof (ip6_frag_t); 3877 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3878 } 3879 } 3880 3881 return (pmtu); 3882 } 3883 3884 /* 3885 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3886 * the final piece where we don't. Return a pointer to the first mblk in the 3887 * result, and update the pointer to the next mblk to chew on. If anything 3888 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3889 * NULL pointer. 3890 */ 3891 mblk_t * 3892 ip_carve_mp(mblk_t **mpp, ssize_t len) 3893 { 3894 mblk_t *mp0; 3895 mblk_t *mp1; 3896 mblk_t *mp2; 3897 3898 if (!len || !mpp || !(mp0 = *mpp)) 3899 return (NULL); 3900 /* If we aren't going to consume the first mblk, we need a dup. */ 3901 if (mp0->b_wptr - mp0->b_rptr > len) { 3902 mp1 = dupb(mp0); 3903 if (mp1) { 3904 /* Partition the data between the two mblks. */ 3905 mp1->b_wptr = mp1->b_rptr + len; 3906 mp0->b_rptr = mp1->b_wptr; 3907 /* 3908 * after adjustments if mblk not consumed is now 3909 * unaligned, try to align it. If this fails free 3910 * all messages and let upper layer recover. 3911 */ 3912 if (!OK_32PTR(mp0->b_rptr)) { 3913 if (!pullupmsg(mp0, -1)) { 3914 freemsg(mp0); 3915 freemsg(mp1); 3916 *mpp = NULL; 3917 return (NULL); 3918 } 3919 } 3920 } 3921 return (mp1); 3922 } 3923 /* Eat through as many mblks as we need to get len bytes. */ 3924 len -= mp0->b_wptr - mp0->b_rptr; 3925 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3926 if (mp2->b_wptr - mp2->b_rptr > len) { 3927 /* 3928 * We won't consume the entire last mblk. Like 3929 * above, dup and partition it. 3930 */ 3931 mp1->b_cont = dupb(mp2); 3932 mp1 = mp1->b_cont; 3933 if (!mp1) { 3934 /* 3935 * Trouble. Rather than go to a lot of 3936 * trouble to clean up, we free the messages. 3937 * This won't be any worse than losing it on 3938 * the wire. 3939 */ 3940 freemsg(mp0); 3941 freemsg(mp2); 3942 *mpp = NULL; 3943 return (NULL); 3944 } 3945 mp1->b_wptr = mp1->b_rptr + len; 3946 mp2->b_rptr = mp1->b_wptr; 3947 /* 3948 * after adjustments if mblk not consumed is now 3949 * unaligned, try to align it. If this fails free 3950 * all messages and let upper layer recover. 3951 */ 3952 if (!OK_32PTR(mp2->b_rptr)) { 3953 if (!pullupmsg(mp2, -1)) { 3954 freemsg(mp0); 3955 freemsg(mp2); 3956 *mpp = NULL; 3957 return (NULL); 3958 } 3959 } 3960 *mpp = mp2; 3961 return (mp0); 3962 } 3963 /* Decrement len by the amount we just got. */ 3964 len -= mp2->b_wptr - mp2->b_rptr; 3965 } 3966 /* 3967 * len should be reduced to zero now. If not our caller has 3968 * screwed up. 3969 */ 3970 if (len) { 3971 /* Shouldn't happen! */ 3972 freemsg(mp0); 3973 *mpp = NULL; 3974 return (NULL); 3975 } 3976 /* 3977 * We consumed up to exactly the end of an mblk. Detach the part 3978 * we are returning from the rest of the chain. 3979 */ 3980 mp1->b_cont = NULL; 3981 *mpp = mp2; 3982 return (mp0); 3983 } 3984 3985 /* The ill stream is being unplumbed. Called from ip_close */ 3986 int 3987 ip_modclose(ill_t *ill) 3988 { 3989 boolean_t success; 3990 ipsq_t *ipsq; 3991 ipif_t *ipif; 3992 queue_t *q = ill->ill_rq; 3993 ip_stack_t *ipst = ill->ill_ipst; 3994 int i; 3995 arl_ill_common_t *ai = ill->ill_common; 3996 3997 /* 3998 * The punlink prior to this may have initiated a capability 3999 * negotiation. But ipsq_enter will block until that finishes or 4000 * times out. 4001 */ 4002 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4003 4004 /* 4005 * Open/close/push/pop is guaranteed to be single threaded 4006 * per stream by STREAMS. FS guarantees that all references 4007 * from top are gone before close is called. So there can't 4008 * be another close thread that has set CONDEMNED on this ill. 4009 * and cause ipsq_enter to return failure. 4010 */ 4011 ASSERT(success); 4012 ipsq = ill->ill_phyint->phyint_ipsq; 4013 4014 /* 4015 * Mark it condemned. No new reference will be made to this ill. 4016 * Lookup functions will return an error. Threads that try to 4017 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4018 * that the refcnt will drop down to zero. 4019 */ 4020 mutex_enter(&ill->ill_lock); 4021 ill->ill_state_flags |= ILL_CONDEMNED; 4022 for (ipif = ill->ill_ipif; ipif != NULL; 4023 ipif = ipif->ipif_next) { 4024 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4025 } 4026 /* 4027 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4028 * returns error if ILL_CONDEMNED is set 4029 */ 4030 cv_broadcast(&ill->ill_cv); 4031 mutex_exit(&ill->ill_lock); 4032 4033 /* 4034 * Send all the deferred DLPI messages downstream which came in 4035 * during the small window right before ipsq_enter(). We do this 4036 * without waiting for the ACKs because all the ACKs for M_PROTO 4037 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4038 */ 4039 ill_dlpi_send_deferred(ill); 4040 4041 /* 4042 * Shut down fragmentation reassembly. 4043 * ill_frag_timer won't start a timer again. 4044 * Now cancel any existing timer 4045 */ 4046 (void) untimeout(ill->ill_frag_timer_id); 4047 (void) ill_frag_timeout(ill, 0); 4048 4049 /* 4050 * Call ill_delete to bring down the ipifs, ilms and ill on 4051 * this ill. Then wait for the refcnts to drop to zero. 4052 * ill_is_freeable checks whether the ill is really quiescent. 4053 * Then make sure that threads that are waiting to enter the 4054 * ipsq have seen the error returned by ipsq_enter and have 4055 * gone away. Then we call ill_delete_tail which does the 4056 * DL_UNBIND_REQ with the driver and then qprocsoff. 4057 */ 4058 ill_delete(ill); 4059 mutex_enter(&ill->ill_lock); 4060 while (!ill_is_freeable(ill)) 4061 cv_wait(&ill->ill_cv, &ill->ill_lock); 4062 4063 while (ill->ill_waiters) 4064 cv_wait(&ill->ill_cv, &ill->ill_lock); 4065 4066 mutex_exit(&ill->ill_lock); 4067 4068 /* 4069 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4070 * it held until the end of the function since the cleanup 4071 * below needs to be able to use the ip_stack_t. 4072 */ 4073 netstack_hold(ipst->ips_netstack); 4074 4075 /* qprocsoff is done via ill_delete_tail */ 4076 ill_delete_tail(ill); 4077 /* 4078 * synchronously wait for arp stream to unbind. After this, we 4079 * cannot get any data packets up from the driver. 4080 */ 4081 arp_unbind_complete(ill); 4082 ASSERT(ill->ill_ipst == NULL); 4083 4084 /* 4085 * Walk through all conns and qenable those that have queued data. 4086 * Close synchronization needs this to 4087 * be done to ensure that all upper layers blocked 4088 * due to flow control to the closing device 4089 * get unblocked. 4090 */ 4091 ip1dbg(("ip_wsrv: walking\n")); 4092 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4093 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4094 } 4095 4096 /* 4097 * ai can be null if this is an IPv6 ill, or if the IPv4 4098 * stream is being torn down before ARP was plumbed (e.g., 4099 * /sbin/ifconfig plumbing a stream twice, and encountering 4100 * an error 4101 */ 4102 if (ai != NULL) { 4103 ASSERT(!ill->ill_isv6); 4104 mutex_enter(&ai->ai_lock); 4105 ai->ai_ill = NULL; 4106 if (ai->ai_arl == NULL) { 4107 mutex_destroy(&ai->ai_lock); 4108 kmem_free(ai, sizeof (*ai)); 4109 } else { 4110 cv_signal(&ai->ai_ill_unplumb_done); 4111 mutex_exit(&ai->ai_lock); 4112 } 4113 } 4114 4115 mutex_enter(&ipst->ips_ip_mi_lock); 4116 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4117 mutex_exit(&ipst->ips_ip_mi_lock); 4118 4119 /* 4120 * credp could be null if the open didn't succeed and ip_modopen 4121 * itself calls ip_close. 4122 */ 4123 if (ill->ill_credp != NULL) 4124 crfree(ill->ill_credp); 4125 4126 mutex_destroy(&ill->ill_saved_ire_lock); 4127 mutex_destroy(&ill->ill_lock); 4128 rw_destroy(&ill->ill_mcast_lock); 4129 mutex_destroy(&ill->ill_mcast_serializer); 4130 list_destroy(&ill->ill_nce); 4131 4132 /* 4133 * Now we are done with the module close pieces that 4134 * need the netstack_t. 4135 */ 4136 netstack_rele(ipst->ips_netstack); 4137 4138 mi_close_free((IDP)ill); 4139 q->q_ptr = WR(q)->q_ptr = NULL; 4140 4141 ipsq_exit(ipsq); 4142 4143 return (0); 4144 } 4145 4146 /* 4147 * This is called as part of close() for IP, UDP, ICMP, and RTS 4148 * in order to quiesce the conn. 4149 */ 4150 void 4151 ip_quiesce_conn(conn_t *connp) 4152 { 4153 boolean_t drain_cleanup_reqd = B_FALSE; 4154 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4155 boolean_t ilg_cleanup_reqd = B_FALSE; 4156 ip_stack_t *ipst; 4157 4158 ASSERT(!IPCL_IS_TCP(connp)); 4159 ipst = connp->conn_netstack->netstack_ip; 4160 4161 /* 4162 * Mark the conn as closing, and this conn must not be 4163 * inserted in future into any list. Eg. conn_drain_insert(), 4164 * won't insert this conn into the conn_drain_list. 4165 * 4166 * conn_idl, and conn_ilg cannot get set henceforth. 4167 */ 4168 mutex_enter(&connp->conn_lock); 4169 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4170 connp->conn_state_flags |= CONN_CLOSING; 4171 if (connp->conn_idl != NULL) 4172 drain_cleanup_reqd = B_TRUE; 4173 if (connp->conn_oper_pending_ill != NULL) 4174 conn_ioctl_cleanup_reqd = B_TRUE; 4175 if (connp->conn_dhcpinit_ill != NULL) { 4176 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4177 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4178 ill_set_inputfn(connp->conn_dhcpinit_ill); 4179 connp->conn_dhcpinit_ill = NULL; 4180 } 4181 if (connp->conn_ilg != NULL) 4182 ilg_cleanup_reqd = B_TRUE; 4183 mutex_exit(&connp->conn_lock); 4184 4185 if (conn_ioctl_cleanup_reqd) 4186 conn_ioctl_cleanup(connp); 4187 4188 if (is_system_labeled() && connp->conn_anon_port) { 4189 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4190 connp->conn_mlp_type, connp->conn_proto, 4191 ntohs(connp->conn_lport), B_FALSE); 4192 connp->conn_anon_port = 0; 4193 } 4194 connp->conn_mlp_type = mlptSingle; 4195 4196 /* 4197 * Remove this conn from any fanout list it is on. 4198 * and then wait for any threads currently operating 4199 * on this endpoint to finish 4200 */ 4201 ipcl_hash_remove(connp); 4202 4203 /* 4204 * Remove this conn from the drain list, and do any other cleanup that 4205 * may be required. (TCP conns are never flow controlled, and 4206 * conn_idl will be NULL.) 4207 */ 4208 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4209 idl_t *idl = connp->conn_idl; 4210 4211 mutex_enter(&idl->idl_lock); 4212 conn_drain(connp, B_TRUE); 4213 mutex_exit(&idl->idl_lock); 4214 } 4215 4216 if (connp == ipst->ips_ip_g_mrouter) 4217 (void) ip_mrouter_done(ipst); 4218 4219 if (ilg_cleanup_reqd) 4220 ilg_delete_all(connp); 4221 4222 /* 4223 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4224 * callers from write side can't be there now because close 4225 * is in progress. The only other caller is ipcl_walk 4226 * which checks for the condemned flag. 4227 */ 4228 mutex_enter(&connp->conn_lock); 4229 connp->conn_state_flags |= CONN_CONDEMNED; 4230 while (connp->conn_ref != 1) 4231 cv_wait(&connp->conn_cv, &connp->conn_lock); 4232 connp->conn_state_flags |= CONN_QUIESCED; 4233 mutex_exit(&connp->conn_lock); 4234 } 4235 4236 /* ARGSUSED */ 4237 int 4238 ip_close(queue_t *q, int flags) 4239 { 4240 conn_t *connp; 4241 4242 /* 4243 * Call the appropriate delete routine depending on whether this is 4244 * a module or device. 4245 */ 4246 if (WR(q)->q_next != NULL) { 4247 /* This is a module close */ 4248 return (ip_modclose((ill_t *)q->q_ptr)); 4249 } 4250 4251 connp = q->q_ptr; 4252 ip_quiesce_conn(connp); 4253 4254 qprocsoff(q); 4255 4256 /* 4257 * Now we are truly single threaded on this stream, and can 4258 * delete the things hanging off the connp, and finally the connp. 4259 * We removed this connp from the fanout list, it cannot be 4260 * accessed thru the fanouts, and we already waited for the 4261 * conn_ref to drop to 0. We are already in close, so 4262 * there cannot be any other thread from the top. qprocsoff 4263 * has completed, and service has completed or won't run in 4264 * future. 4265 */ 4266 ASSERT(connp->conn_ref == 1); 4267 4268 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4269 4270 connp->conn_ref--; 4271 ipcl_conn_destroy(connp); 4272 4273 q->q_ptr = WR(q)->q_ptr = NULL; 4274 return (0); 4275 } 4276 4277 /* 4278 * Wapper around putnext() so that ip_rts_request can merely use 4279 * conn_recv. 4280 */ 4281 /*ARGSUSED2*/ 4282 static void 4283 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4284 { 4285 conn_t *connp = (conn_t *)arg1; 4286 4287 putnext(connp->conn_rq, mp); 4288 } 4289 4290 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4291 /* ARGSUSED */ 4292 static void 4293 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4294 { 4295 freemsg(mp); 4296 } 4297 4298 /* 4299 * Called when the module is about to be unloaded 4300 */ 4301 void 4302 ip_ddi_destroy(void) 4303 { 4304 /* This needs to be called before destroying any transports. */ 4305 mutex_enter(&cpu_lock); 4306 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4307 mutex_exit(&cpu_lock); 4308 4309 tnet_fini(); 4310 4311 icmp_ddi_g_destroy(); 4312 rts_ddi_g_destroy(); 4313 udp_ddi_g_destroy(); 4314 sctp_ddi_g_destroy(); 4315 tcp_ddi_g_destroy(); 4316 ilb_ddi_g_destroy(); 4317 dce_g_destroy(); 4318 ipsec_policy_g_destroy(); 4319 ipcl_g_destroy(); 4320 ip_net_g_destroy(); 4321 ip_ire_g_fini(); 4322 inet_minor_destroy(ip_minor_arena_sa); 4323 #if defined(_LP64) 4324 inet_minor_destroy(ip_minor_arena_la); 4325 #endif 4326 4327 #ifdef DEBUG 4328 list_destroy(&ip_thread_list); 4329 rw_destroy(&ip_thread_rwlock); 4330 tsd_destroy(&ip_thread_data); 4331 #endif 4332 4333 netstack_unregister(NS_IP); 4334 } 4335 4336 /* 4337 * First step in cleanup. 4338 */ 4339 /* ARGSUSED */ 4340 static void 4341 ip_stack_shutdown(netstackid_t stackid, void *arg) 4342 { 4343 ip_stack_t *ipst = (ip_stack_t *)arg; 4344 kt_did_t ktid; 4345 4346 #ifdef NS_DEBUG 4347 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4348 #endif 4349 4350 /* 4351 * Perform cleanup for special interfaces (loopback and IPMP). 4352 */ 4353 ip_interface_cleanup(ipst); 4354 4355 /* 4356 * The *_hook_shutdown()s start the process of notifying any 4357 * consumers that things are going away.... nothing is destroyed. 4358 */ 4359 ipv4_hook_shutdown(ipst); 4360 ipv6_hook_shutdown(ipst); 4361 arp_hook_shutdown(ipst); 4362 4363 mutex_enter(&ipst->ips_capab_taskq_lock); 4364 ktid = ipst->ips_capab_taskq_thread->t_did; 4365 ipst->ips_capab_taskq_quit = B_TRUE; 4366 cv_signal(&ipst->ips_capab_taskq_cv); 4367 mutex_exit(&ipst->ips_capab_taskq_lock); 4368 4369 /* 4370 * In rare occurrences, particularly on virtual hardware where CPUs can 4371 * be de-scheduled, the thread that we just signaled will not run until 4372 * after we have gotten through parts of ip_stack_fini. If that happens 4373 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4374 * from cv_wait which no longer exists. 4375 */ 4376 thread_join(ktid); 4377 } 4378 4379 /* 4380 * Free the IP stack instance. 4381 */ 4382 static void 4383 ip_stack_fini(netstackid_t stackid, void *arg) 4384 { 4385 ip_stack_t *ipst = (ip_stack_t *)arg; 4386 int ret; 4387 4388 #ifdef NS_DEBUG 4389 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4390 #endif 4391 /* 4392 * At this point, all of the notifications that the events and 4393 * protocols are going away have been run, meaning that we can 4394 * now set about starting to clean things up. 4395 */ 4396 ipobs_fini(ipst); 4397 ipv4_hook_destroy(ipst); 4398 ipv6_hook_destroy(ipst); 4399 arp_hook_destroy(ipst); 4400 ip_net_destroy(ipst); 4401 4402 ipmp_destroy(ipst); 4403 4404 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4405 ipst->ips_ip_mibkp = NULL; 4406 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4407 ipst->ips_icmp_mibkp = NULL; 4408 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4409 ipst->ips_ip_kstat = NULL; 4410 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4411 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4412 ipst->ips_ip6_kstat = NULL; 4413 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4414 4415 kmem_free(ipst->ips_propinfo_tbl, 4416 ip_propinfo_count * sizeof (mod_prop_info_t)); 4417 ipst->ips_propinfo_tbl = NULL; 4418 4419 dce_stack_destroy(ipst); 4420 ip_mrouter_stack_destroy(ipst); 4421 4422 ret = untimeout(ipst->ips_igmp_timeout_id); 4423 if (ret == -1) { 4424 ASSERT(ipst->ips_igmp_timeout_id == 0); 4425 } else { 4426 ASSERT(ipst->ips_igmp_timeout_id != 0); 4427 ipst->ips_igmp_timeout_id = 0; 4428 } 4429 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4430 if (ret == -1) { 4431 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4432 } else { 4433 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4434 ipst->ips_igmp_slowtimeout_id = 0; 4435 } 4436 ret = untimeout(ipst->ips_mld_timeout_id); 4437 if (ret == -1) { 4438 ASSERT(ipst->ips_mld_timeout_id == 0); 4439 } else { 4440 ASSERT(ipst->ips_mld_timeout_id != 0); 4441 ipst->ips_mld_timeout_id = 0; 4442 } 4443 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4444 if (ret == -1) { 4445 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4446 } else { 4447 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4448 ipst->ips_mld_slowtimeout_id = 0; 4449 } 4450 4451 ip_ire_fini(ipst); 4452 ip6_asp_free(ipst); 4453 conn_drain_fini(ipst); 4454 ipcl_destroy(ipst); 4455 4456 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4457 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4458 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4459 ipst->ips_ndp4 = NULL; 4460 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4461 ipst->ips_ndp6 = NULL; 4462 4463 if (ipst->ips_loopback_ksp != NULL) { 4464 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4465 ipst->ips_loopback_ksp = NULL; 4466 } 4467 4468 mutex_destroy(&ipst->ips_capab_taskq_lock); 4469 cv_destroy(&ipst->ips_capab_taskq_cv); 4470 4471 rw_destroy(&ipst->ips_srcid_lock); 4472 4473 mutex_destroy(&ipst->ips_ip_mi_lock); 4474 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4475 4476 mutex_destroy(&ipst->ips_igmp_timer_lock); 4477 mutex_destroy(&ipst->ips_mld_timer_lock); 4478 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4479 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4480 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4481 rw_destroy(&ipst->ips_ill_g_lock); 4482 4483 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4484 ipst->ips_phyint_g_list = NULL; 4485 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4486 ipst->ips_ill_g_heads = NULL; 4487 4488 ldi_ident_release(ipst->ips_ldi_ident); 4489 kmem_free(ipst, sizeof (*ipst)); 4490 } 4491 4492 /* 4493 * This function is called from the TSD destructor, and is used to debug 4494 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4495 * details. 4496 */ 4497 static void 4498 ip_thread_exit(void *phash) 4499 { 4500 th_hash_t *thh = phash; 4501 4502 rw_enter(&ip_thread_rwlock, RW_WRITER); 4503 list_remove(&ip_thread_list, thh); 4504 rw_exit(&ip_thread_rwlock); 4505 mod_hash_destroy_hash(thh->thh_hash); 4506 kmem_free(thh, sizeof (*thh)); 4507 } 4508 4509 /* 4510 * Called when the IP kernel module is loaded into the kernel 4511 */ 4512 void 4513 ip_ddi_init(void) 4514 { 4515 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4516 4517 /* 4518 * For IP and TCP the minor numbers should start from 2 since we have 4 4519 * initial devices: ip, ip6, tcp, tcp6. 4520 */ 4521 /* 4522 * If this is a 64-bit kernel, then create two separate arenas - 4523 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4524 * other for socket apps in the range 2^^18 through 2^^32-1. 4525 */ 4526 ip_minor_arena_la = NULL; 4527 ip_minor_arena_sa = NULL; 4528 #if defined(_LP64) 4529 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4530 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4531 cmn_err(CE_PANIC, 4532 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4533 } 4534 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4535 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4536 cmn_err(CE_PANIC, 4537 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4538 } 4539 #else 4540 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4541 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4542 cmn_err(CE_PANIC, 4543 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4544 } 4545 #endif 4546 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4547 4548 ipcl_g_init(); 4549 ip_ire_g_init(); 4550 ip_net_g_init(); 4551 4552 #ifdef DEBUG 4553 tsd_create(&ip_thread_data, ip_thread_exit); 4554 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4555 list_create(&ip_thread_list, sizeof (th_hash_t), 4556 offsetof(th_hash_t, thh_link)); 4557 #endif 4558 ipsec_policy_g_init(); 4559 tcp_ddi_g_init(); 4560 sctp_ddi_g_init(); 4561 dce_g_init(); 4562 4563 /* 4564 * We want to be informed each time a stack is created or 4565 * destroyed in the kernel, so we can maintain the 4566 * set of udp_stack_t's. 4567 */ 4568 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4569 ip_stack_fini); 4570 4571 tnet_init(); 4572 4573 udp_ddi_g_init(); 4574 rts_ddi_g_init(); 4575 icmp_ddi_g_init(); 4576 ilb_ddi_g_init(); 4577 4578 /* This needs to be called after all transports are initialized. */ 4579 mutex_enter(&cpu_lock); 4580 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4581 mutex_exit(&cpu_lock); 4582 } 4583 4584 /* 4585 * Initialize the IP stack instance. 4586 */ 4587 static void * 4588 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4589 { 4590 ip_stack_t *ipst; 4591 size_t arrsz; 4592 major_t major; 4593 4594 #ifdef NS_DEBUG 4595 printf("ip_stack_init(stack %d)\n", stackid); 4596 #endif 4597 4598 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4599 ipst->ips_netstack = ns; 4600 4601 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4602 KM_SLEEP); 4603 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4604 KM_SLEEP); 4605 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4606 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4607 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4608 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4609 4610 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4611 ipst->ips_igmp_deferred_next = INFINITY; 4612 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4613 ipst->ips_mld_deferred_next = INFINITY; 4614 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4615 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4616 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4617 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4618 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4619 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4620 4621 ipcl_init(ipst); 4622 ip_ire_init(ipst); 4623 ip6_asp_init(ipst); 4624 ipif_init(ipst); 4625 conn_drain_init(ipst); 4626 ip_mrouter_stack_init(ipst); 4627 dce_stack_init(ipst); 4628 4629 ipst->ips_ip_multirt_log_interval = 1000; 4630 4631 ipst->ips_ill_index = 1; 4632 4633 ipst->ips_saved_ip_forwarding = -1; 4634 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4635 4636 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4637 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4638 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4639 4640 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4641 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4642 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4643 ipst->ips_ip6_kstat = 4644 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4645 4646 ipst->ips_ip_src_id = 1; 4647 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4648 4649 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4650 4651 ip_net_init(ipst, ns); 4652 ipv4_hook_init(ipst); 4653 ipv6_hook_init(ipst); 4654 arp_hook_init(ipst); 4655 ipmp_init(ipst); 4656 ipobs_init(ipst); 4657 4658 /* 4659 * Create the taskq dispatcher thread and initialize related stuff. 4660 */ 4661 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4662 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4663 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4664 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4665 4666 major = mod_name_to_major(INET_NAME); 4667 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4668 return (ipst); 4669 } 4670 4671 /* 4672 * Allocate and initialize a DLPI template of the specified length. (May be 4673 * called as writer.) 4674 */ 4675 mblk_t * 4676 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4677 { 4678 mblk_t *mp; 4679 4680 mp = allocb(len, BPRI_MED); 4681 if (!mp) 4682 return (NULL); 4683 4684 /* 4685 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4686 * of which we don't seem to use) are sent with M_PCPROTO, and 4687 * that other DLPI are M_PROTO. 4688 */ 4689 if (prim == DL_INFO_REQ) { 4690 mp->b_datap->db_type = M_PCPROTO; 4691 } else { 4692 mp->b_datap->db_type = M_PROTO; 4693 } 4694 4695 mp->b_wptr = mp->b_rptr + len; 4696 bzero(mp->b_rptr, len); 4697 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4698 return (mp); 4699 } 4700 4701 /* 4702 * Allocate and initialize a DLPI notification. (May be called as writer.) 4703 */ 4704 mblk_t * 4705 ip_dlnotify_alloc(uint_t notification, uint_t data) 4706 { 4707 dl_notify_ind_t *notifyp; 4708 mblk_t *mp; 4709 4710 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4711 return (NULL); 4712 4713 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4714 notifyp->dl_notification = notification; 4715 notifyp->dl_data = data; 4716 return (mp); 4717 } 4718 4719 mblk_t * 4720 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4721 { 4722 dl_notify_ind_t *notifyp; 4723 mblk_t *mp; 4724 4725 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4726 return (NULL); 4727 4728 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4729 notifyp->dl_notification = notification; 4730 notifyp->dl_data1 = data1; 4731 notifyp->dl_data2 = data2; 4732 return (mp); 4733 } 4734 4735 /* 4736 * Debug formatting routine. Returns a character string representation of the 4737 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4738 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4739 * 4740 * Once the ndd table-printing interfaces are removed, this can be changed to 4741 * standard dotted-decimal form. 4742 */ 4743 char * 4744 ip_dot_addr(ipaddr_t addr, char *buf) 4745 { 4746 uint8_t *ap = (uint8_t *)&addr; 4747 4748 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4749 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4750 return (buf); 4751 } 4752 4753 /* 4754 * Write the given MAC address as a printable string in the usual colon- 4755 * separated format. 4756 */ 4757 const char * 4758 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4759 { 4760 char *bp; 4761 4762 if (alen == 0 || buflen < 4) 4763 return ("?"); 4764 bp = buf; 4765 for (;;) { 4766 /* 4767 * If there are more MAC address bytes available, but we won't 4768 * have any room to print them, then add "..." to the string 4769 * instead. See below for the 'magic number' explanation. 4770 */ 4771 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4772 (void) strcpy(bp, "..."); 4773 break; 4774 } 4775 (void) sprintf(bp, "%02x", *addr++); 4776 bp += 2; 4777 if (--alen == 0) 4778 break; 4779 *bp++ = ':'; 4780 buflen -= 3; 4781 /* 4782 * At this point, based on the first 'if' statement above, 4783 * either alen == 1 and buflen >= 3, or alen > 1 and 4784 * buflen >= 4. The first case leaves room for the final "xx" 4785 * number and trailing NUL byte. The second leaves room for at 4786 * least "...". Thus the apparently 'magic' numbers chosen for 4787 * that statement. 4788 */ 4789 } 4790 return (buf); 4791 } 4792 4793 /* 4794 * Called when it is conceptually a ULP that would sent the packet 4795 * e.g., port unreachable and protocol unreachable. Check that the packet 4796 * would have passed the IPsec global policy before sending the error. 4797 * 4798 * Send an ICMP error after patching up the packet appropriately. 4799 * Uses ip_drop_input and bumps the appropriate MIB. 4800 */ 4801 void 4802 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4803 ip_recv_attr_t *ira) 4804 { 4805 ipha_t *ipha; 4806 boolean_t secure; 4807 ill_t *ill = ira->ira_ill; 4808 ip_stack_t *ipst = ill->ill_ipst; 4809 netstack_t *ns = ipst->ips_netstack; 4810 ipsec_stack_t *ipss = ns->netstack_ipsec; 4811 4812 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4813 4814 /* 4815 * We are generating an icmp error for some inbound packet. 4816 * Called from all ip_fanout_(udp, tcp, proto) functions. 4817 * Before we generate an error, check with global policy 4818 * to see whether this is allowed to enter the system. As 4819 * there is no "conn", we are checking with global policy. 4820 */ 4821 ipha = (ipha_t *)mp->b_rptr; 4822 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4823 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4824 if (mp == NULL) 4825 return; 4826 } 4827 4828 /* We never send errors for protocols that we do implement */ 4829 if (ira->ira_protocol == IPPROTO_ICMP || 4830 ira->ira_protocol == IPPROTO_IGMP) { 4831 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4832 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4833 freemsg(mp); 4834 return; 4835 } 4836 /* 4837 * Have to correct checksum since 4838 * the packet might have been 4839 * fragmented and the reassembly code in ip_rput 4840 * does not restore the IP checksum. 4841 */ 4842 ipha->ipha_hdr_checksum = 0; 4843 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4844 4845 switch (icmp_type) { 4846 case ICMP_DEST_UNREACHABLE: 4847 switch (icmp_code) { 4848 case ICMP_PROTOCOL_UNREACHABLE: 4849 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4850 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4851 break; 4852 case ICMP_PORT_UNREACHABLE: 4853 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4854 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4855 break; 4856 } 4857 4858 icmp_unreachable(mp, icmp_code, ira); 4859 break; 4860 default: 4861 #ifdef DEBUG 4862 panic("ip_fanout_send_icmp_v4: wrong type"); 4863 /*NOTREACHED*/ 4864 #else 4865 freemsg(mp); 4866 break; 4867 #endif 4868 } 4869 } 4870 4871 /* 4872 * Used to send an ICMP error message when a packet is received for 4873 * a protocol that is not supported. The mblk passed as argument 4874 * is consumed by this function. 4875 */ 4876 void 4877 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4878 { 4879 ipha_t *ipha; 4880 4881 ipha = (ipha_t *)mp->b_rptr; 4882 if (ira->ira_flags & IRAF_IS_IPV4) { 4883 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4884 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4885 ICMP_PROTOCOL_UNREACHABLE, ira); 4886 } else { 4887 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4888 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4889 ICMP6_PARAMPROB_NEXTHEADER, ira); 4890 } 4891 } 4892 4893 /* 4894 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4895 * Handles IPv4 and IPv6. 4896 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4897 * Caller is responsible for dropping references to the conn. 4898 */ 4899 void 4900 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4901 ip_recv_attr_t *ira) 4902 { 4903 ill_t *ill = ira->ira_ill; 4904 ip_stack_t *ipst = ill->ill_ipst; 4905 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4906 boolean_t secure; 4907 uint_t protocol = ira->ira_protocol; 4908 iaflags_t iraflags = ira->ira_flags; 4909 queue_t *rq; 4910 4911 secure = iraflags & IRAF_IPSEC_SECURE; 4912 4913 rq = connp->conn_rq; 4914 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4915 switch (protocol) { 4916 case IPPROTO_ICMPV6: 4917 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4918 break; 4919 case IPPROTO_ICMP: 4920 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4921 break; 4922 default: 4923 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4924 break; 4925 } 4926 freemsg(mp); 4927 return; 4928 } 4929 4930 ASSERT(!(IPCL_IS_IPTUN(connp))); 4931 4932 if (((iraflags & IRAF_IS_IPV4) ? 4933 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4934 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4935 secure) { 4936 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4937 ip6h, ira); 4938 if (mp == NULL) { 4939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4940 /* Note that mp is NULL */ 4941 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4942 return; 4943 } 4944 } 4945 4946 if (iraflags & IRAF_ICMP_ERROR) { 4947 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4948 } else { 4949 ill_t *rill = ira->ira_rill; 4950 4951 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4952 ira->ira_ill = ira->ira_rill = NULL; 4953 /* Send it upstream */ 4954 (connp->conn_recv)(connp, mp, NULL, ira); 4955 ira->ira_ill = ill; 4956 ira->ira_rill = rill; 4957 } 4958 } 4959 4960 /* 4961 * Handle protocols with which IP is less intimate. There 4962 * can be more than one stream bound to a particular 4963 * protocol. When this is the case, normally each one gets a copy 4964 * of any incoming packets. 4965 * 4966 * IPsec NOTE : 4967 * 4968 * Don't allow a secure packet going up a non-secure connection. 4969 * We don't allow this because 4970 * 4971 * 1) Reply might go out in clear which will be dropped at 4972 * the sending side. 4973 * 2) If the reply goes out in clear it will give the 4974 * adversary enough information for getting the key in 4975 * most of the cases. 4976 * 4977 * Moreover getting a secure packet when we expect clear 4978 * implies that SA's were added without checking for 4979 * policy on both ends. This should not happen once ISAKMP 4980 * is used to negotiate SAs as SAs will be added only after 4981 * verifying the policy. 4982 * 4983 * Zones notes: 4984 * Earlier in ip_input on a system with multiple shared-IP zones we 4985 * duplicate the multicast and broadcast packets and send them up 4986 * with each explicit zoneid that exists on that ill. 4987 * This means that here we can match the zoneid with SO_ALLZONES being special. 4988 */ 4989 void 4990 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4991 { 4992 mblk_t *mp1; 4993 ipaddr_t laddr; 4994 conn_t *connp, *first_connp, *next_connp; 4995 connf_t *connfp; 4996 ill_t *ill = ira->ira_ill; 4997 ip_stack_t *ipst = ill->ill_ipst; 4998 4999 laddr = ipha->ipha_dst; 5000 5001 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5002 mutex_enter(&connfp->connf_lock); 5003 connp = connfp->connf_head; 5004 for (connp = connfp->connf_head; connp != NULL; 5005 connp = connp->conn_next) { 5006 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5007 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5008 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5009 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5010 break; 5011 } 5012 } 5013 5014 if (connp == NULL) { 5015 /* 5016 * No one bound to these addresses. Is 5017 * there a client that wants all 5018 * unclaimed datagrams? 5019 */ 5020 mutex_exit(&connfp->connf_lock); 5021 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5022 ICMP_PROTOCOL_UNREACHABLE, ira); 5023 return; 5024 } 5025 5026 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5027 5028 CONN_INC_REF(connp); 5029 first_connp = connp; 5030 connp = connp->conn_next; 5031 5032 for (;;) { 5033 while (connp != NULL) { 5034 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5035 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5036 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5037 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5038 ira, connp))) 5039 break; 5040 connp = connp->conn_next; 5041 } 5042 5043 if (connp == NULL) { 5044 /* No more interested clients */ 5045 connp = first_connp; 5046 break; 5047 } 5048 if (((mp1 = dupmsg(mp)) == NULL) && 5049 ((mp1 = copymsg(mp)) == NULL)) { 5050 /* Memory allocation failed */ 5051 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5052 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5053 connp = first_connp; 5054 break; 5055 } 5056 5057 CONN_INC_REF(connp); 5058 mutex_exit(&connfp->connf_lock); 5059 5060 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5061 ira); 5062 5063 mutex_enter(&connfp->connf_lock); 5064 /* Follow the next pointer before releasing the conn. */ 5065 next_connp = connp->conn_next; 5066 CONN_DEC_REF(connp); 5067 connp = next_connp; 5068 } 5069 5070 /* Last one. Send it upstream. */ 5071 mutex_exit(&connfp->connf_lock); 5072 5073 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5074 5075 CONN_DEC_REF(connp); 5076 } 5077 5078 /* 5079 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5080 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5081 * is not consumed. 5082 * 5083 * One of three things can happen, all of which affect the passed-in mblk: 5084 * 5085 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5086 * 5087 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5088 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5089 * 5090 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5091 */ 5092 mblk_t * 5093 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5094 { 5095 int shift, plen, iph_len; 5096 ipha_t *ipha; 5097 udpha_t *udpha; 5098 uint32_t *spi; 5099 uint32_t esp_ports; 5100 uint8_t *orptr; 5101 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5102 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5103 5104 ipha = (ipha_t *)mp->b_rptr; 5105 iph_len = ira->ira_ip_hdr_length; 5106 plen = ira->ira_pktlen; 5107 5108 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5109 /* 5110 * Most likely a keepalive for the benefit of an intervening 5111 * NAT. These aren't for us, per se, so drop it. 5112 * 5113 * RFC 3947/8 doesn't say for sure what to do for 2-3 5114 * byte packets (keepalives are 1-byte), but we'll drop them 5115 * also. 5116 */ 5117 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5118 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5119 return (NULL); 5120 } 5121 5122 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5123 /* might as well pull it all up - it might be ESP. */ 5124 if (!pullupmsg(mp, -1)) { 5125 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5126 DROPPER(ipss, ipds_esp_nomem), 5127 &ipss->ipsec_dropper); 5128 return (NULL); 5129 } 5130 5131 ipha = (ipha_t *)mp->b_rptr; 5132 } 5133 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5134 if (*spi == 0) { 5135 /* UDP packet - remove 0-spi. */ 5136 shift = sizeof (uint32_t); 5137 } else { 5138 /* ESP-in-UDP packet - reduce to ESP. */ 5139 ipha->ipha_protocol = IPPROTO_ESP; 5140 shift = sizeof (udpha_t); 5141 } 5142 5143 /* Fix IP header */ 5144 ira->ira_pktlen = (plen - shift); 5145 ipha->ipha_length = htons(ira->ira_pktlen); 5146 ipha->ipha_hdr_checksum = 0; 5147 5148 orptr = mp->b_rptr; 5149 mp->b_rptr += shift; 5150 5151 udpha = (udpha_t *)(orptr + iph_len); 5152 if (*spi == 0) { 5153 ASSERT((uint8_t *)ipha == orptr); 5154 udpha->uha_length = htons(plen - shift - iph_len); 5155 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5156 esp_ports = 0; 5157 } else { 5158 esp_ports = *((uint32_t *)udpha); 5159 ASSERT(esp_ports != 0); 5160 } 5161 ovbcopy(orptr, orptr + shift, iph_len); 5162 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5163 ipha = (ipha_t *)(orptr + shift); 5164 5165 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5166 ira->ira_esp_udp_ports = esp_ports; 5167 ip_fanout_v4(mp, ipha, ira); 5168 return (NULL); 5169 } 5170 return (mp); 5171 } 5172 5173 /* 5174 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5175 * Handles IPv4 and IPv6. 5176 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5177 * Caller is responsible for dropping references to the conn. 5178 */ 5179 void 5180 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5181 ip_recv_attr_t *ira) 5182 { 5183 ill_t *ill = ira->ira_ill; 5184 ip_stack_t *ipst = ill->ill_ipst; 5185 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5186 boolean_t secure; 5187 iaflags_t iraflags = ira->ira_flags; 5188 5189 secure = iraflags & IRAF_IPSEC_SECURE; 5190 5191 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5192 !canputnext(connp->conn_rq)) { 5193 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5194 freemsg(mp); 5195 return; 5196 } 5197 5198 if (((iraflags & IRAF_IS_IPV4) ? 5199 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5200 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5201 secure) { 5202 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5203 ip6h, ira); 5204 if (mp == NULL) { 5205 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5206 /* Note that mp is NULL */ 5207 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5208 return; 5209 } 5210 } 5211 5212 /* 5213 * Since this code is not used for UDP unicast we don't need a NAT_T 5214 * check. Only ip_fanout_v4 has that check. 5215 */ 5216 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5217 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5218 } else { 5219 ill_t *rill = ira->ira_rill; 5220 5221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5222 ira->ira_ill = ira->ira_rill = NULL; 5223 /* Send it upstream */ 5224 (connp->conn_recv)(connp, mp, NULL, ira); 5225 ira->ira_ill = ill; 5226 ira->ira_rill = rill; 5227 } 5228 } 5229 5230 /* 5231 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5232 * (Unicast fanout is handled in ip_input_v4.) 5233 * 5234 * If SO_REUSEADDR is set all multicast and broadcast packets 5235 * will be delivered to all conns bound to the same port. 5236 * 5237 * If there is at least one matching AF_INET receiver, then we will 5238 * ignore any AF_INET6 receivers. 5239 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5240 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5241 * packets. 5242 * 5243 * Zones notes: 5244 * Earlier in ip_input on a system with multiple shared-IP zones we 5245 * duplicate the multicast and broadcast packets and send them up 5246 * with each explicit zoneid that exists on that ill. 5247 * This means that here we can match the zoneid with SO_ALLZONES being special. 5248 */ 5249 void 5250 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5251 ip_recv_attr_t *ira) 5252 { 5253 ipaddr_t laddr; 5254 in6_addr_t v6faddr; 5255 conn_t *connp; 5256 connf_t *connfp; 5257 ipaddr_t faddr; 5258 ill_t *ill = ira->ira_ill; 5259 ip_stack_t *ipst = ill->ill_ipst; 5260 5261 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5262 5263 laddr = ipha->ipha_dst; 5264 faddr = ipha->ipha_src; 5265 5266 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5267 mutex_enter(&connfp->connf_lock); 5268 connp = connfp->connf_head; 5269 5270 /* 5271 * If SO_REUSEADDR has been set on the first we send the 5272 * packet to all clients that have joined the group and 5273 * match the port. 5274 */ 5275 while (connp != NULL) { 5276 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5277 conn_wantpacket(connp, ira, ipha) && 5278 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5279 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5280 break; 5281 connp = connp->conn_next; 5282 } 5283 5284 if (connp == NULL) 5285 goto notfound; 5286 5287 CONN_INC_REF(connp); 5288 5289 if (connp->conn_reuseaddr) { 5290 conn_t *first_connp = connp; 5291 conn_t *next_connp; 5292 mblk_t *mp1; 5293 5294 connp = connp->conn_next; 5295 for (;;) { 5296 while (connp != NULL) { 5297 if (IPCL_UDP_MATCH(connp, lport, laddr, 5298 fport, faddr) && 5299 conn_wantpacket(connp, ira, ipha) && 5300 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5301 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5302 ira, connp))) 5303 break; 5304 connp = connp->conn_next; 5305 } 5306 if (connp == NULL) { 5307 /* No more interested clients */ 5308 connp = first_connp; 5309 break; 5310 } 5311 if (((mp1 = dupmsg(mp)) == NULL) && 5312 ((mp1 = copymsg(mp)) == NULL)) { 5313 /* Memory allocation failed */ 5314 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5315 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5316 connp = first_connp; 5317 break; 5318 } 5319 CONN_INC_REF(connp); 5320 mutex_exit(&connfp->connf_lock); 5321 5322 IP_STAT(ipst, ip_udp_fanmb); 5323 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5324 NULL, ira); 5325 mutex_enter(&connfp->connf_lock); 5326 /* Follow the next pointer before releasing the conn */ 5327 next_connp = connp->conn_next; 5328 CONN_DEC_REF(connp); 5329 connp = next_connp; 5330 } 5331 } 5332 5333 /* Last one. Send it upstream. */ 5334 mutex_exit(&connfp->connf_lock); 5335 IP_STAT(ipst, ip_udp_fanmb); 5336 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5337 CONN_DEC_REF(connp); 5338 return; 5339 5340 notfound: 5341 mutex_exit(&connfp->connf_lock); 5342 /* 5343 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5344 * have already been matched above, since they live in the IPv4 5345 * fanout tables. This implies we only need to 5346 * check for IPv6 in6addr_any endpoints here. 5347 * Thus we compare using ipv6_all_zeros instead of the destination 5348 * address, except for the multicast group membership lookup which 5349 * uses the IPv4 destination. 5350 */ 5351 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5352 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5353 mutex_enter(&connfp->connf_lock); 5354 connp = connfp->connf_head; 5355 /* 5356 * IPv4 multicast packet being delivered to an AF_INET6 5357 * in6addr_any endpoint. 5358 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5359 * and not conn_wantpacket_v6() since any multicast membership is 5360 * for an IPv4-mapped multicast address. 5361 */ 5362 while (connp != NULL) { 5363 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5364 fport, v6faddr) && 5365 conn_wantpacket(connp, ira, ipha) && 5366 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5367 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5368 break; 5369 connp = connp->conn_next; 5370 } 5371 5372 if (connp == NULL) { 5373 /* 5374 * No one bound to this port. Is 5375 * there a client that wants all 5376 * unclaimed datagrams? 5377 */ 5378 mutex_exit(&connfp->connf_lock); 5379 5380 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5381 NULL) { 5382 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5383 ip_fanout_proto_v4(mp, ipha, ira); 5384 } else { 5385 /* 5386 * We used to attempt to send an icmp error here, but 5387 * since this is known to be a multicast packet 5388 * and we don't send icmp errors in response to 5389 * multicast, just drop the packet and give up sooner. 5390 */ 5391 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5392 freemsg(mp); 5393 } 5394 return; 5395 } 5396 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5397 5398 /* 5399 * If SO_REUSEADDR has been set on the first we send the 5400 * packet to all clients that have joined the group and 5401 * match the port. 5402 */ 5403 if (connp->conn_reuseaddr) { 5404 conn_t *first_connp = connp; 5405 conn_t *next_connp; 5406 mblk_t *mp1; 5407 5408 CONN_INC_REF(connp); 5409 connp = connp->conn_next; 5410 for (;;) { 5411 while (connp != NULL) { 5412 if (IPCL_UDP_MATCH_V6(connp, lport, 5413 ipv6_all_zeros, fport, v6faddr) && 5414 conn_wantpacket(connp, ira, ipha) && 5415 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5416 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5417 ira, connp))) 5418 break; 5419 connp = connp->conn_next; 5420 } 5421 if (connp == NULL) { 5422 /* No more interested clients */ 5423 connp = first_connp; 5424 break; 5425 } 5426 if (((mp1 = dupmsg(mp)) == NULL) && 5427 ((mp1 = copymsg(mp)) == NULL)) { 5428 /* Memory allocation failed */ 5429 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5430 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5431 connp = first_connp; 5432 break; 5433 } 5434 CONN_INC_REF(connp); 5435 mutex_exit(&connfp->connf_lock); 5436 5437 IP_STAT(ipst, ip_udp_fanmb); 5438 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5439 NULL, ira); 5440 mutex_enter(&connfp->connf_lock); 5441 /* Follow the next pointer before releasing the conn */ 5442 next_connp = connp->conn_next; 5443 CONN_DEC_REF(connp); 5444 connp = next_connp; 5445 } 5446 } 5447 5448 /* Last one. Send it upstream. */ 5449 mutex_exit(&connfp->connf_lock); 5450 IP_STAT(ipst, ip_udp_fanmb); 5451 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5452 CONN_DEC_REF(connp); 5453 } 5454 5455 /* 5456 * Split an incoming packet's IPv4 options into the label and the other options. 5457 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5458 * clearing out any leftover label or options. 5459 * Otherwise it just makes ipp point into the packet. 5460 * 5461 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5462 */ 5463 int 5464 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5465 { 5466 uchar_t *opt; 5467 uint32_t totallen; 5468 uint32_t optval; 5469 uint32_t optlen; 5470 5471 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5472 ipp->ipp_hoplimit = ipha->ipha_ttl; 5473 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5474 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5475 5476 /* 5477 * Get length (in 4 byte octets) of IP header options. 5478 */ 5479 totallen = ipha->ipha_version_and_hdr_length - 5480 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5481 5482 if (totallen == 0) { 5483 if (!allocate) 5484 return (0); 5485 5486 /* Clear out anything from a previous packet */ 5487 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5488 kmem_free(ipp->ipp_ipv4_options, 5489 ipp->ipp_ipv4_options_len); 5490 ipp->ipp_ipv4_options = NULL; 5491 ipp->ipp_ipv4_options_len = 0; 5492 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5493 } 5494 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5495 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5496 ipp->ipp_label_v4 = NULL; 5497 ipp->ipp_label_len_v4 = 0; 5498 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5499 } 5500 return (0); 5501 } 5502 5503 totallen <<= 2; 5504 opt = (uchar_t *)&ipha[1]; 5505 if (!is_system_labeled()) { 5506 5507 copyall: 5508 if (!allocate) { 5509 if (totallen != 0) { 5510 ipp->ipp_ipv4_options = opt; 5511 ipp->ipp_ipv4_options_len = totallen; 5512 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5513 } 5514 return (0); 5515 } 5516 /* Just copy all of options */ 5517 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5518 if (totallen == ipp->ipp_ipv4_options_len) { 5519 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5520 return (0); 5521 } 5522 kmem_free(ipp->ipp_ipv4_options, 5523 ipp->ipp_ipv4_options_len); 5524 ipp->ipp_ipv4_options = NULL; 5525 ipp->ipp_ipv4_options_len = 0; 5526 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5527 } 5528 if (totallen == 0) 5529 return (0); 5530 5531 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5532 if (ipp->ipp_ipv4_options == NULL) 5533 return (ENOMEM); 5534 ipp->ipp_ipv4_options_len = totallen; 5535 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5536 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5537 return (0); 5538 } 5539 5540 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5541 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5542 ipp->ipp_label_v4 = NULL; 5543 ipp->ipp_label_len_v4 = 0; 5544 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5545 } 5546 5547 /* 5548 * Search for CIPSO option. 5549 * We assume CIPSO is first in options if it is present. 5550 * If it isn't, then ipp_opt_ipv4_options will not include the options 5551 * prior to the CIPSO option. 5552 */ 5553 while (totallen != 0) { 5554 switch (optval = opt[IPOPT_OPTVAL]) { 5555 case IPOPT_EOL: 5556 return (0); 5557 case IPOPT_NOP: 5558 optlen = 1; 5559 break; 5560 default: 5561 if (totallen <= IPOPT_OLEN) 5562 return (EINVAL); 5563 optlen = opt[IPOPT_OLEN]; 5564 if (optlen < 2) 5565 return (EINVAL); 5566 } 5567 if (optlen > totallen) 5568 return (EINVAL); 5569 5570 switch (optval) { 5571 case IPOPT_COMSEC: 5572 if (!allocate) { 5573 ipp->ipp_label_v4 = opt; 5574 ipp->ipp_label_len_v4 = optlen; 5575 ipp->ipp_fields |= IPPF_LABEL_V4; 5576 } else { 5577 ipp->ipp_label_v4 = kmem_alloc(optlen, 5578 KM_NOSLEEP); 5579 if (ipp->ipp_label_v4 == NULL) 5580 return (ENOMEM); 5581 ipp->ipp_label_len_v4 = optlen; 5582 ipp->ipp_fields |= IPPF_LABEL_V4; 5583 bcopy(opt, ipp->ipp_label_v4, optlen); 5584 } 5585 totallen -= optlen; 5586 opt += optlen; 5587 5588 /* Skip padding bytes until we get to a multiple of 4 */ 5589 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5590 totallen--; 5591 opt++; 5592 } 5593 /* Remaining as ipp_ipv4_options */ 5594 goto copyall; 5595 } 5596 totallen -= optlen; 5597 opt += optlen; 5598 } 5599 /* No CIPSO found; return everything as ipp_ipv4_options */ 5600 totallen = ipha->ipha_version_and_hdr_length - 5601 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5602 totallen <<= 2; 5603 opt = (uchar_t *)&ipha[1]; 5604 goto copyall; 5605 } 5606 5607 /* 5608 * Efficient versions of lookup for an IRE when we only 5609 * match the address. 5610 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5611 * Does not handle multicast addresses. 5612 */ 5613 uint_t 5614 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5615 { 5616 ire_t *ire; 5617 uint_t result; 5618 5619 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5620 ASSERT(ire != NULL); 5621 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5622 result = IRE_NOROUTE; 5623 else 5624 result = ire->ire_type; 5625 ire_refrele(ire); 5626 return (result); 5627 } 5628 5629 /* 5630 * Efficient versions of lookup for an IRE when we only 5631 * match the address. 5632 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5633 * Does not handle multicast addresses. 5634 */ 5635 uint_t 5636 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5637 { 5638 ire_t *ire; 5639 uint_t result; 5640 5641 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5642 ASSERT(ire != NULL); 5643 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5644 result = IRE_NOROUTE; 5645 else 5646 result = ire->ire_type; 5647 ire_refrele(ire); 5648 return (result); 5649 } 5650 5651 /* 5652 * Nobody should be sending 5653 * packets up this stream 5654 */ 5655 static void 5656 ip_lrput(queue_t *q, mblk_t *mp) 5657 { 5658 switch (mp->b_datap->db_type) { 5659 case M_FLUSH: 5660 /* Turn around */ 5661 if (*mp->b_rptr & FLUSHW) { 5662 *mp->b_rptr &= ~FLUSHR; 5663 qreply(q, mp); 5664 return; 5665 } 5666 break; 5667 } 5668 freemsg(mp); 5669 } 5670 5671 /* Nobody should be sending packets down this stream */ 5672 /* ARGSUSED */ 5673 void 5674 ip_lwput(queue_t *q, mblk_t *mp) 5675 { 5676 freemsg(mp); 5677 } 5678 5679 /* 5680 * Move the first hop in any source route to ipha_dst and remove that part of 5681 * the source route. Called by other protocols. Errors in option formatting 5682 * are ignored - will be handled by ip_output_options. Return the final 5683 * destination (either ipha_dst or the last entry in a source route.) 5684 */ 5685 ipaddr_t 5686 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5687 { 5688 ipoptp_t opts; 5689 uchar_t *opt; 5690 uint8_t optval; 5691 uint8_t optlen; 5692 ipaddr_t dst; 5693 int i; 5694 ip_stack_t *ipst = ns->netstack_ip; 5695 5696 ip2dbg(("ip_massage_options\n")); 5697 dst = ipha->ipha_dst; 5698 for (optval = ipoptp_first(&opts, ipha); 5699 optval != IPOPT_EOL; 5700 optval = ipoptp_next(&opts)) { 5701 opt = opts.ipoptp_cur; 5702 switch (optval) { 5703 uint8_t off; 5704 case IPOPT_SSRR: 5705 case IPOPT_LSRR: 5706 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5707 ip1dbg(("ip_massage_options: bad src route\n")); 5708 break; 5709 } 5710 optlen = opts.ipoptp_len; 5711 off = opt[IPOPT_OFFSET]; 5712 off--; 5713 redo_srr: 5714 if (optlen < IP_ADDR_LEN || 5715 off > optlen - IP_ADDR_LEN) { 5716 /* End of source route */ 5717 ip1dbg(("ip_massage_options: end of SR\n")); 5718 break; 5719 } 5720 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5721 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5722 ntohl(dst))); 5723 /* 5724 * Check if our address is present more than 5725 * once as consecutive hops in source route. 5726 * XXX verify per-interface ip_forwarding 5727 * for source route? 5728 */ 5729 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5730 off += IP_ADDR_LEN; 5731 goto redo_srr; 5732 } 5733 if (dst == htonl(INADDR_LOOPBACK)) { 5734 ip1dbg(("ip_massage_options: loopback addr in " 5735 "source route!\n")); 5736 break; 5737 } 5738 /* 5739 * Update ipha_dst to be the first hop and remove the 5740 * first hop from the source route (by overwriting 5741 * part of the option with NOP options). 5742 */ 5743 ipha->ipha_dst = dst; 5744 /* Put the last entry in dst */ 5745 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5746 3; 5747 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5748 5749 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5750 ntohl(dst))); 5751 /* Move down and overwrite */ 5752 opt[IP_ADDR_LEN] = opt[0]; 5753 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5754 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5755 for (i = 0; i < IP_ADDR_LEN; i++) 5756 opt[i] = IPOPT_NOP; 5757 break; 5758 } 5759 } 5760 return (dst); 5761 } 5762 5763 /* 5764 * Return the network mask 5765 * associated with the specified address. 5766 */ 5767 ipaddr_t 5768 ip_net_mask(ipaddr_t addr) 5769 { 5770 uchar_t *up = (uchar_t *)&addr; 5771 ipaddr_t mask = 0; 5772 uchar_t *maskp = (uchar_t *)&mask; 5773 5774 #if defined(__i386) || defined(__amd64) 5775 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5776 #endif 5777 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5778 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5779 #endif 5780 if (CLASSD(addr)) { 5781 maskp[0] = 0xF0; 5782 return (mask); 5783 } 5784 5785 /* We assume Class E default netmask to be 32 */ 5786 if (CLASSE(addr)) 5787 return (0xffffffffU); 5788 5789 if (addr == 0) 5790 return (0); 5791 maskp[0] = 0xFF; 5792 if ((up[0] & 0x80) == 0) 5793 return (mask); 5794 5795 maskp[1] = 0xFF; 5796 if ((up[0] & 0xC0) == 0x80) 5797 return (mask); 5798 5799 maskp[2] = 0xFF; 5800 if ((up[0] & 0xE0) == 0xC0) 5801 return (mask); 5802 5803 /* Otherwise return no mask */ 5804 return ((ipaddr_t)0); 5805 } 5806 5807 /* Name/Value Table Lookup Routine */ 5808 char * 5809 ip_nv_lookup(nv_t *nv, int value) 5810 { 5811 if (!nv) 5812 return (NULL); 5813 for (; nv->nv_name; nv++) { 5814 if (nv->nv_value == value) 5815 return (nv->nv_name); 5816 } 5817 return ("unknown"); 5818 } 5819 5820 static int 5821 ip_wait_for_info_ack(ill_t *ill) 5822 { 5823 int err; 5824 5825 mutex_enter(&ill->ill_lock); 5826 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5827 /* 5828 * Return value of 0 indicates a pending signal. 5829 */ 5830 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5831 if (err == 0) { 5832 mutex_exit(&ill->ill_lock); 5833 return (EINTR); 5834 } 5835 } 5836 mutex_exit(&ill->ill_lock); 5837 /* 5838 * ip_rput_other could have set an error in ill_error on 5839 * receipt of M_ERROR. 5840 */ 5841 return (ill->ill_error); 5842 } 5843 5844 /* 5845 * This is a module open, i.e. this is a control stream for access 5846 * to a DLPI device. We allocate an ill_t as the instance data in 5847 * this case. 5848 */ 5849 static int 5850 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5851 { 5852 ill_t *ill; 5853 int err; 5854 zoneid_t zoneid; 5855 netstack_t *ns; 5856 ip_stack_t *ipst; 5857 5858 /* 5859 * Prevent unprivileged processes from pushing IP so that 5860 * they can't send raw IP. 5861 */ 5862 if (secpolicy_net_rawaccess(credp) != 0) 5863 return (EPERM); 5864 5865 ns = netstack_find_by_cred(credp); 5866 ASSERT(ns != NULL); 5867 ipst = ns->netstack_ip; 5868 ASSERT(ipst != NULL); 5869 5870 /* 5871 * For exclusive stacks we set the zoneid to zero 5872 * to make IP operate as if in the global zone. 5873 */ 5874 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5875 zoneid = GLOBAL_ZONEID; 5876 else 5877 zoneid = crgetzoneid(credp); 5878 5879 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5880 q->q_ptr = WR(q)->q_ptr = ill; 5881 ill->ill_ipst = ipst; 5882 ill->ill_zoneid = zoneid; 5883 5884 /* 5885 * ill_init initializes the ill fields and then sends down 5886 * down a DL_INFO_REQ after calling qprocson. 5887 */ 5888 err = ill_init(q, ill); 5889 5890 if (err != 0) { 5891 mi_free(ill); 5892 netstack_rele(ipst->ips_netstack); 5893 q->q_ptr = NULL; 5894 WR(q)->q_ptr = NULL; 5895 return (err); 5896 } 5897 5898 /* 5899 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5900 * 5901 * ill_init initializes the ipsq marking this thread as 5902 * writer 5903 */ 5904 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5905 err = ip_wait_for_info_ack(ill); 5906 if (err == 0) 5907 ill->ill_credp = credp; 5908 else 5909 goto fail; 5910 5911 crhold(credp); 5912 5913 mutex_enter(&ipst->ips_ip_mi_lock); 5914 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5915 sflag, credp); 5916 mutex_exit(&ipst->ips_ip_mi_lock); 5917 fail: 5918 if (err) { 5919 (void) ip_close(q, 0); 5920 return (err); 5921 } 5922 return (0); 5923 } 5924 5925 /* For /dev/ip aka AF_INET open */ 5926 int 5927 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5928 { 5929 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5930 } 5931 5932 /* For /dev/ip6 aka AF_INET6 open */ 5933 int 5934 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5935 { 5936 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5937 } 5938 5939 /* IP open routine. */ 5940 int 5941 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5942 boolean_t isv6) 5943 { 5944 conn_t *connp; 5945 major_t maj; 5946 zoneid_t zoneid; 5947 netstack_t *ns; 5948 ip_stack_t *ipst; 5949 5950 /* Allow reopen. */ 5951 if (q->q_ptr != NULL) 5952 return (0); 5953 5954 if (sflag & MODOPEN) { 5955 /* This is a module open */ 5956 return (ip_modopen(q, devp, flag, sflag, credp)); 5957 } 5958 5959 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5960 /* 5961 * Non streams based socket looking for a stream 5962 * to access IP 5963 */ 5964 return (ip_helper_stream_setup(q, devp, flag, sflag, 5965 credp, isv6)); 5966 } 5967 5968 ns = netstack_find_by_cred(credp); 5969 ASSERT(ns != NULL); 5970 ipst = ns->netstack_ip; 5971 ASSERT(ipst != NULL); 5972 5973 /* 5974 * For exclusive stacks we set the zoneid to zero 5975 * to make IP operate as if in the global zone. 5976 */ 5977 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5978 zoneid = GLOBAL_ZONEID; 5979 else 5980 zoneid = crgetzoneid(credp); 5981 5982 /* 5983 * We are opening as a device. This is an IP client stream, and we 5984 * allocate an conn_t as the instance data. 5985 */ 5986 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5987 5988 /* 5989 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5990 * done by netstack_find_by_cred() 5991 */ 5992 netstack_rele(ipst->ips_netstack); 5993 5994 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5995 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5996 connp->conn_ixa->ixa_zoneid = zoneid; 5997 connp->conn_zoneid = zoneid; 5998 5999 connp->conn_rq = q; 6000 q->q_ptr = WR(q)->q_ptr = connp; 6001 6002 /* Minor tells us which /dev entry was opened */ 6003 if (isv6) { 6004 connp->conn_family = AF_INET6; 6005 connp->conn_ipversion = IPV6_VERSION; 6006 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6007 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6008 } else { 6009 connp->conn_family = AF_INET; 6010 connp->conn_ipversion = IPV4_VERSION; 6011 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6012 } 6013 6014 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6015 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6016 connp->conn_minor_arena = ip_minor_arena_la; 6017 } else { 6018 /* 6019 * Either minor numbers in the large arena were exhausted 6020 * or a non socket application is doing the open. 6021 * Try to allocate from the small arena. 6022 */ 6023 if ((connp->conn_dev = 6024 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6025 /* CONN_DEC_REF takes care of netstack_rele() */ 6026 q->q_ptr = WR(q)->q_ptr = NULL; 6027 CONN_DEC_REF(connp); 6028 return (EBUSY); 6029 } 6030 connp->conn_minor_arena = ip_minor_arena_sa; 6031 } 6032 6033 maj = getemajor(*devp); 6034 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6035 6036 /* 6037 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6038 */ 6039 connp->conn_cred = credp; 6040 connp->conn_cpid = curproc->p_pid; 6041 /* Cache things in ixa without an extra refhold */ 6042 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6043 connp->conn_ixa->ixa_cred = connp->conn_cred; 6044 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6045 if (is_system_labeled()) 6046 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6047 6048 /* 6049 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6050 */ 6051 connp->conn_recv = ip_conn_input; 6052 connp->conn_recvicmp = ip_conn_input_icmp; 6053 6054 crhold(connp->conn_cred); 6055 6056 /* 6057 * If the caller has the process-wide flag set, then default to MAC 6058 * exempt mode. This allows read-down to unlabeled hosts. 6059 */ 6060 if (getpflags(NET_MAC_AWARE, credp) != 0) 6061 connp->conn_mac_mode = CONN_MAC_AWARE; 6062 6063 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6064 6065 connp->conn_rq = q; 6066 connp->conn_wq = WR(q); 6067 6068 /* Non-zero default values */ 6069 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6070 6071 /* 6072 * Make the conn globally visible to walkers 6073 */ 6074 ASSERT(connp->conn_ref == 1); 6075 mutex_enter(&connp->conn_lock); 6076 connp->conn_state_flags &= ~CONN_INCIPIENT; 6077 mutex_exit(&connp->conn_lock); 6078 6079 qprocson(q); 6080 6081 return (0); 6082 } 6083 6084 /* 6085 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6086 * all of them are copied to the conn_t. If the req is "zero", the policy is 6087 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6088 * fields. 6089 * We keep only the latest setting of the policy and thus policy setting 6090 * is not incremental/cumulative. 6091 * 6092 * Requests to set policies with multiple alternative actions will 6093 * go through a different API. 6094 */ 6095 int 6096 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6097 { 6098 uint_t ah_req = 0; 6099 uint_t esp_req = 0; 6100 uint_t se_req = 0; 6101 ipsec_act_t *actp = NULL; 6102 uint_t nact; 6103 ipsec_policy_head_t *ph; 6104 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6105 int error = 0; 6106 netstack_t *ns = connp->conn_netstack; 6107 ip_stack_t *ipst = ns->netstack_ip; 6108 ipsec_stack_t *ipss = ns->netstack_ipsec; 6109 6110 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6111 6112 /* 6113 * The IP_SEC_OPT option does not allow variable length parameters, 6114 * hence a request cannot be NULL. 6115 */ 6116 if (req == NULL) 6117 return (EINVAL); 6118 6119 ah_req = req->ipsr_ah_req; 6120 esp_req = req->ipsr_esp_req; 6121 se_req = req->ipsr_self_encap_req; 6122 6123 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6124 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6125 return (EINVAL); 6126 6127 /* 6128 * Are we dealing with a request to reset the policy (i.e. 6129 * zero requests). 6130 */ 6131 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6132 (esp_req & REQ_MASK) == 0 && 6133 (se_req & REQ_MASK) == 0); 6134 6135 if (!is_pol_reset) { 6136 /* 6137 * If we couldn't load IPsec, fail with "protocol 6138 * not supported". 6139 * IPsec may not have been loaded for a request with zero 6140 * policies, so we don't fail in this case. 6141 */ 6142 mutex_enter(&ipss->ipsec_loader_lock); 6143 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6144 mutex_exit(&ipss->ipsec_loader_lock); 6145 return (EPROTONOSUPPORT); 6146 } 6147 mutex_exit(&ipss->ipsec_loader_lock); 6148 6149 /* 6150 * Test for valid requests. Invalid algorithms 6151 * need to be tested by IPsec code because new 6152 * algorithms can be added dynamically. 6153 */ 6154 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6155 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6156 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6157 return (EINVAL); 6158 } 6159 6160 /* 6161 * Only privileged users can issue these 6162 * requests. 6163 */ 6164 if (((ah_req & IPSEC_PREF_NEVER) || 6165 (esp_req & IPSEC_PREF_NEVER) || 6166 (se_req & IPSEC_PREF_NEVER)) && 6167 secpolicy_ip_config(cr, B_FALSE) != 0) { 6168 return (EPERM); 6169 } 6170 6171 /* 6172 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6173 * are mutually exclusive. 6174 */ 6175 if (((ah_req & REQ_MASK) == REQ_MASK) || 6176 ((esp_req & REQ_MASK) == REQ_MASK) || 6177 ((se_req & REQ_MASK) == REQ_MASK)) { 6178 /* Both of them are set */ 6179 return (EINVAL); 6180 } 6181 } 6182 6183 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6184 6185 /* 6186 * If we have already cached policies in conn_connect(), don't 6187 * let them change now. We cache policies for connections 6188 * whose src,dst [addr, port] is known. 6189 */ 6190 if (connp->conn_policy_cached) { 6191 return (EINVAL); 6192 } 6193 6194 /* 6195 * We have a zero policies, reset the connection policy if already 6196 * set. This will cause the connection to inherit the 6197 * global policy, if any. 6198 */ 6199 if (is_pol_reset) { 6200 if (connp->conn_policy != NULL) { 6201 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6202 connp->conn_policy = NULL; 6203 } 6204 connp->conn_in_enforce_policy = B_FALSE; 6205 connp->conn_out_enforce_policy = B_FALSE; 6206 return (0); 6207 } 6208 6209 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6210 ipst->ips_netstack); 6211 if (ph == NULL) 6212 goto enomem; 6213 6214 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6215 if (actp == NULL) 6216 goto enomem; 6217 6218 /* 6219 * Always insert IPv4 policy entries, since they can also apply to 6220 * ipv6 sockets being used in ipv4-compat mode. 6221 */ 6222 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6223 IPSEC_TYPE_INBOUND, ns)) 6224 goto enomem; 6225 is_pol_inserted = B_TRUE; 6226 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6227 IPSEC_TYPE_OUTBOUND, ns)) 6228 goto enomem; 6229 6230 /* 6231 * We're looking at a v6 socket, also insert the v6-specific 6232 * entries. 6233 */ 6234 if (connp->conn_family == AF_INET6) { 6235 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6236 IPSEC_TYPE_INBOUND, ns)) 6237 goto enomem; 6238 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6239 IPSEC_TYPE_OUTBOUND, ns)) 6240 goto enomem; 6241 } 6242 6243 ipsec_actvec_free(actp, nact); 6244 6245 /* 6246 * If the requests need security, set enforce_policy. 6247 * If the requests are IPSEC_PREF_NEVER, one should 6248 * still set conn_out_enforce_policy so that ip_set_destination 6249 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6250 * for connections that we don't cache policy in at connect time, 6251 * if global policy matches in ip_output_attach_policy, we 6252 * don't wrongly inherit global policy. Similarly, we need 6253 * to set conn_in_enforce_policy also so that we don't verify 6254 * policy wrongly. 6255 */ 6256 if ((ah_req & REQ_MASK) != 0 || 6257 (esp_req & REQ_MASK) != 0 || 6258 (se_req & REQ_MASK) != 0) { 6259 connp->conn_in_enforce_policy = B_TRUE; 6260 connp->conn_out_enforce_policy = B_TRUE; 6261 } 6262 6263 return (error); 6264 #undef REQ_MASK 6265 6266 /* 6267 * Common memory-allocation-failure exit path. 6268 */ 6269 enomem: 6270 if (actp != NULL) 6271 ipsec_actvec_free(actp, nact); 6272 if (is_pol_inserted) 6273 ipsec_polhead_flush(ph, ns); 6274 return (ENOMEM); 6275 } 6276 6277 /* 6278 * Set socket options for joining and leaving multicast groups. 6279 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6280 * The caller has already check that the option name is consistent with 6281 * the address family of the socket. 6282 */ 6283 int 6284 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6285 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6286 { 6287 int *i1 = (int *)invalp; 6288 int error = 0; 6289 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6290 struct ip_mreq *v4_mreqp; 6291 struct ipv6_mreq *v6_mreqp; 6292 struct group_req *greqp; 6293 ire_t *ire; 6294 boolean_t done = B_FALSE; 6295 ipaddr_t ifaddr; 6296 in6_addr_t v6group; 6297 uint_t ifindex; 6298 boolean_t mcast_opt = B_TRUE; 6299 mcast_record_t fmode; 6300 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6301 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6302 6303 switch (name) { 6304 case IP_ADD_MEMBERSHIP: 6305 case IPV6_JOIN_GROUP: 6306 mcast_opt = B_FALSE; 6307 /* FALLTHRU */ 6308 case MCAST_JOIN_GROUP: 6309 fmode = MODE_IS_EXCLUDE; 6310 optfn = ip_opt_add_group; 6311 break; 6312 6313 case IP_DROP_MEMBERSHIP: 6314 case IPV6_LEAVE_GROUP: 6315 mcast_opt = B_FALSE; 6316 /* FALLTHRU */ 6317 case MCAST_LEAVE_GROUP: 6318 fmode = MODE_IS_INCLUDE; 6319 optfn = ip_opt_delete_group; 6320 break; 6321 default: 6322 ASSERT(0); 6323 } 6324 6325 if (mcast_opt) { 6326 struct sockaddr_in *sin; 6327 struct sockaddr_in6 *sin6; 6328 6329 greqp = (struct group_req *)i1; 6330 if (greqp->gr_group.ss_family == AF_INET) { 6331 sin = (struct sockaddr_in *)&(greqp->gr_group); 6332 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6333 } else { 6334 if (!inet6) 6335 return (EINVAL); /* Not on INET socket */ 6336 6337 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6338 v6group = sin6->sin6_addr; 6339 } 6340 ifaddr = INADDR_ANY; 6341 ifindex = greqp->gr_interface; 6342 } else if (inet6) { 6343 v6_mreqp = (struct ipv6_mreq *)i1; 6344 v6group = v6_mreqp->ipv6mr_multiaddr; 6345 ifaddr = INADDR_ANY; 6346 ifindex = v6_mreqp->ipv6mr_interface; 6347 } else { 6348 v4_mreqp = (struct ip_mreq *)i1; 6349 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6350 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6351 ifindex = 0; 6352 } 6353 6354 /* 6355 * In the multirouting case, we need to replicate 6356 * the request on all interfaces that will take part 6357 * in replication. We do so because multirouting is 6358 * reflective, thus we will probably receive multi- 6359 * casts on those interfaces. 6360 * The ip_multirt_apply_membership() succeeds if 6361 * the operation succeeds on at least one interface. 6362 */ 6363 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6364 ipaddr_t group; 6365 6366 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6367 6368 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6369 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6370 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6371 } else { 6372 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6373 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6374 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6375 } 6376 if (ire != NULL) { 6377 if (ire->ire_flags & RTF_MULTIRT) { 6378 error = ip_multirt_apply_membership(optfn, ire, connp, 6379 checkonly, &v6group, fmode, &ipv6_all_zeros); 6380 done = B_TRUE; 6381 } 6382 ire_refrele(ire); 6383 } 6384 6385 if (!done) { 6386 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6387 fmode, &ipv6_all_zeros); 6388 } 6389 return (error); 6390 } 6391 6392 /* 6393 * Set socket options for joining and leaving multicast groups 6394 * for specific sources. 6395 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6396 * The caller has already check that the option name is consistent with 6397 * the address family of the socket. 6398 */ 6399 int 6400 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6401 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6402 { 6403 int *i1 = (int *)invalp; 6404 int error = 0; 6405 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6406 struct ip_mreq_source *imreqp; 6407 struct group_source_req *gsreqp; 6408 in6_addr_t v6group, v6src; 6409 uint32_t ifindex; 6410 ipaddr_t ifaddr; 6411 boolean_t mcast_opt = B_TRUE; 6412 mcast_record_t fmode; 6413 ire_t *ire; 6414 boolean_t done = B_FALSE; 6415 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6416 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6417 6418 switch (name) { 6419 case IP_BLOCK_SOURCE: 6420 mcast_opt = B_FALSE; 6421 /* FALLTHRU */ 6422 case MCAST_BLOCK_SOURCE: 6423 fmode = MODE_IS_EXCLUDE; 6424 optfn = ip_opt_add_group; 6425 break; 6426 6427 case IP_UNBLOCK_SOURCE: 6428 mcast_opt = B_FALSE; 6429 /* FALLTHRU */ 6430 case MCAST_UNBLOCK_SOURCE: 6431 fmode = MODE_IS_EXCLUDE; 6432 optfn = ip_opt_delete_group; 6433 break; 6434 6435 case IP_ADD_SOURCE_MEMBERSHIP: 6436 mcast_opt = B_FALSE; 6437 /* FALLTHRU */ 6438 case MCAST_JOIN_SOURCE_GROUP: 6439 fmode = MODE_IS_INCLUDE; 6440 optfn = ip_opt_add_group; 6441 break; 6442 6443 case IP_DROP_SOURCE_MEMBERSHIP: 6444 mcast_opt = B_FALSE; 6445 /* FALLTHRU */ 6446 case MCAST_LEAVE_SOURCE_GROUP: 6447 fmode = MODE_IS_INCLUDE; 6448 optfn = ip_opt_delete_group; 6449 break; 6450 default: 6451 ASSERT(0); 6452 } 6453 6454 if (mcast_opt) { 6455 gsreqp = (struct group_source_req *)i1; 6456 ifindex = gsreqp->gsr_interface; 6457 if (gsreqp->gsr_group.ss_family == AF_INET) { 6458 struct sockaddr_in *s; 6459 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6460 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6461 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6462 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6463 } else { 6464 struct sockaddr_in6 *s6; 6465 6466 if (!inet6) 6467 return (EINVAL); /* Not on INET socket */ 6468 6469 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6470 v6group = s6->sin6_addr; 6471 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6472 v6src = s6->sin6_addr; 6473 } 6474 ifaddr = INADDR_ANY; 6475 } else { 6476 imreqp = (struct ip_mreq_source *)i1; 6477 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6478 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6479 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6480 ifindex = 0; 6481 } 6482 6483 /* 6484 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6485 */ 6486 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6487 v6src = ipv6_all_zeros; 6488 6489 /* 6490 * In the multirouting case, we need to replicate 6491 * the request as noted in the mcast cases above. 6492 */ 6493 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6494 ipaddr_t group; 6495 6496 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6497 6498 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6499 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6500 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6501 } else { 6502 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6503 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6504 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6505 } 6506 if (ire != NULL) { 6507 if (ire->ire_flags & RTF_MULTIRT) { 6508 error = ip_multirt_apply_membership(optfn, ire, connp, 6509 checkonly, &v6group, fmode, &v6src); 6510 done = B_TRUE; 6511 } 6512 ire_refrele(ire); 6513 } 6514 if (!done) { 6515 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6516 fmode, &v6src); 6517 } 6518 return (error); 6519 } 6520 6521 /* 6522 * Given a destination address and a pointer to where to put the information 6523 * this routine fills in the mtuinfo. 6524 * The socket must be connected. 6525 * For sctp conn_faddr is the primary address. 6526 */ 6527 int 6528 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6529 { 6530 uint32_t pmtu = IP_MAXPACKET; 6531 uint_t scopeid; 6532 6533 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6534 return (-1); 6535 6536 /* In case we never sent or called ip_set_destination_v4/v6 */ 6537 if (ixa->ixa_ire != NULL) 6538 pmtu = ip_get_pmtu(ixa); 6539 6540 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6541 scopeid = ixa->ixa_scopeid; 6542 else 6543 scopeid = 0; 6544 6545 bzero(mtuinfo, sizeof (*mtuinfo)); 6546 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6547 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6548 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6549 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6550 mtuinfo->ip6m_mtu = pmtu; 6551 6552 return (sizeof (struct ip6_mtuinfo)); 6553 } 6554 6555 /* 6556 * When the src multihoming is changed from weak to [strong, preferred] 6557 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6558 * and identify routes that were created by user-applications in the 6559 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6560 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6561 * is selected by finding an interface route for the gateway. 6562 */ 6563 /* ARGSUSED */ 6564 void 6565 ip_ire_rebind_walker(ire_t *ire, void *notused) 6566 { 6567 if (!ire->ire_unbound || ire->ire_ill != NULL) 6568 return; 6569 ire_rebind(ire); 6570 ire_delete(ire); 6571 } 6572 6573 /* 6574 * When the src multihoming is changed from [strong, preferred] to weak, 6575 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6576 * set any entries that were created by user-applications in the unbound state 6577 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6578 */ 6579 /* ARGSUSED */ 6580 void 6581 ip_ire_unbind_walker(ire_t *ire, void *notused) 6582 { 6583 ire_t *new_ire; 6584 6585 if (!ire->ire_unbound || ire->ire_ill == NULL) 6586 return; 6587 if (ire->ire_ipversion == IPV6_VERSION) { 6588 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6589 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6590 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6591 } else { 6592 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6593 (uchar_t *)&ire->ire_mask, 6594 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6595 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6596 } 6597 if (new_ire == NULL) 6598 return; 6599 new_ire->ire_unbound = B_TRUE; 6600 /* 6601 * The bound ire must first be deleted so that we don't return 6602 * the existing one on the attempt to add the unbound new_ire. 6603 */ 6604 ire_delete(ire); 6605 new_ire = ire_add(new_ire); 6606 if (new_ire != NULL) 6607 ire_refrele(new_ire); 6608 } 6609 6610 /* 6611 * When the settings of ip*_strict_src_multihoming tunables are changed, 6612 * all cached routes need to be recomputed. This recomputation needs to be 6613 * done when going from weaker to stronger modes so that the cached ire 6614 * for the connection does not violate the current ip*_strict_src_multihoming 6615 * setting. It also needs to be done when going from stronger to weaker modes, 6616 * so that we fall back to matching on the longest-matching-route (as opposed 6617 * to a shorter match that may have been selected in the strong mode 6618 * to satisfy src_multihoming settings). 6619 * 6620 * The cached ixa_ire entires for all conn_t entries are marked as 6621 * "verify" so that they will be recomputed for the next packet. 6622 */ 6623 void 6624 conn_ire_revalidate(conn_t *connp, void *arg) 6625 { 6626 boolean_t isv6 = (boolean_t)arg; 6627 6628 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6629 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6630 return; 6631 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6632 } 6633 6634 /* 6635 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6636 * When an ipf is passed here for the first time, if 6637 * we already have in-order fragments on the queue, we convert from the fast- 6638 * path reassembly scheme to the hard-case scheme. From then on, additional 6639 * fragments are reassembled here. We keep track of the start and end offsets 6640 * of each piece, and the number of holes in the chain. When the hole count 6641 * goes to zero, we are done! 6642 * 6643 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6644 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6645 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6646 * after the call to ip_reassemble(). 6647 */ 6648 int 6649 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6650 size_t msg_len) 6651 { 6652 uint_t end; 6653 mblk_t *next_mp; 6654 mblk_t *mp1; 6655 uint_t offset; 6656 boolean_t incr_dups = B_TRUE; 6657 boolean_t offset_zero_seen = B_FALSE; 6658 boolean_t pkt_boundary_checked = B_FALSE; 6659 6660 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6661 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6662 6663 /* Add in byte count */ 6664 ipf->ipf_count += msg_len; 6665 if (ipf->ipf_end) { 6666 /* 6667 * We were part way through in-order reassembly, but now there 6668 * is a hole. We walk through messages already queued, and 6669 * mark them for hard case reassembly. We know that up till 6670 * now they were in order starting from offset zero. 6671 */ 6672 offset = 0; 6673 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6674 IP_REASS_SET_START(mp1, offset); 6675 if (offset == 0) { 6676 ASSERT(ipf->ipf_nf_hdr_len != 0); 6677 offset = -ipf->ipf_nf_hdr_len; 6678 } 6679 offset += mp1->b_wptr - mp1->b_rptr; 6680 IP_REASS_SET_END(mp1, offset); 6681 } 6682 /* One hole at the end. */ 6683 ipf->ipf_hole_cnt = 1; 6684 /* Brand it as a hard case, forever. */ 6685 ipf->ipf_end = 0; 6686 } 6687 /* Walk through all the new pieces. */ 6688 do { 6689 end = start + (mp->b_wptr - mp->b_rptr); 6690 /* 6691 * If start is 0, decrease 'end' only for the first mblk of 6692 * the fragment. Otherwise 'end' can get wrong value in the 6693 * second pass of the loop if first mblk is exactly the 6694 * size of ipf_nf_hdr_len. 6695 */ 6696 if (start == 0 && !offset_zero_seen) { 6697 /* First segment */ 6698 ASSERT(ipf->ipf_nf_hdr_len != 0); 6699 end -= ipf->ipf_nf_hdr_len; 6700 offset_zero_seen = B_TRUE; 6701 } 6702 next_mp = mp->b_cont; 6703 /* 6704 * We are checking to see if there is any interesing data 6705 * to process. If there isn't and the mblk isn't the 6706 * one which carries the unfragmentable header then we 6707 * drop it. It's possible to have just the unfragmentable 6708 * header come through without any data. That needs to be 6709 * saved. 6710 * 6711 * If the assert at the top of this function holds then the 6712 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6713 * is infrequently traveled enough that the test is left in 6714 * to protect against future code changes which break that 6715 * invariant. 6716 */ 6717 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6718 /* Empty. Blast it. */ 6719 IP_REASS_SET_START(mp, 0); 6720 IP_REASS_SET_END(mp, 0); 6721 /* 6722 * If the ipf points to the mblk we are about to free, 6723 * update ipf to point to the next mblk (or NULL 6724 * if none). 6725 */ 6726 if (ipf->ipf_mp->b_cont == mp) 6727 ipf->ipf_mp->b_cont = next_mp; 6728 freeb(mp); 6729 continue; 6730 } 6731 mp->b_cont = NULL; 6732 IP_REASS_SET_START(mp, start); 6733 IP_REASS_SET_END(mp, end); 6734 if (!ipf->ipf_tail_mp) { 6735 ipf->ipf_tail_mp = mp; 6736 ipf->ipf_mp->b_cont = mp; 6737 if (start == 0 || !more) { 6738 ipf->ipf_hole_cnt = 1; 6739 /* 6740 * if the first fragment comes in more than one 6741 * mblk, this loop will be executed for each 6742 * mblk. Need to adjust hole count so exiting 6743 * this routine will leave hole count at 1. 6744 */ 6745 if (next_mp) 6746 ipf->ipf_hole_cnt++; 6747 } else 6748 ipf->ipf_hole_cnt = 2; 6749 continue; 6750 } else if (ipf->ipf_last_frag_seen && !more && 6751 !pkt_boundary_checked) { 6752 /* 6753 * We check datagram boundary only if this fragment 6754 * claims to be the last fragment and we have seen a 6755 * last fragment in the past too. We do this only 6756 * once for a given fragment. 6757 * 6758 * start cannot be 0 here as fragments with start=0 6759 * and MF=0 gets handled as a complete packet. These 6760 * fragments should not reach here. 6761 */ 6762 6763 if (start + msgdsize(mp) != 6764 IP_REASS_END(ipf->ipf_tail_mp)) { 6765 /* 6766 * We have two fragments both of which claim 6767 * to be the last fragment but gives conflicting 6768 * information about the whole datagram size. 6769 * Something fishy is going on. Drop the 6770 * fragment and free up the reassembly list. 6771 */ 6772 return (IP_REASS_FAILED); 6773 } 6774 6775 /* 6776 * We shouldn't come to this code block again for this 6777 * particular fragment. 6778 */ 6779 pkt_boundary_checked = B_TRUE; 6780 } 6781 6782 /* New stuff at or beyond tail? */ 6783 offset = IP_REASS_END(ipf->ipf_tail_mp); 6784 if (start >= offset) { 6785 if (ipf->ipf_last_frag_seen) { 6786 /* current fragment is beyond last fragment */ 6787 return (IP_REASS_FAILED); 6788 } 6789 /* Link it on end. */ 6790 ipf->ipf_tail_mp->b_cont = mp; 6791 ipf->ipf_tail_mp = mp; 6792 if (more) { 6793 if (start != offset) 6794 ipf->ipf_hole_cnt++; 6795 } else if (start == offset && next_mp == NULL) 6796 ipf->ipf_hole_cnt--; 6797 continue; 6798 } 6799 mp1 = ipf->ipf_mp->b_cont; 6800 offset = IP_REASS_START(mp1); 6801 /* New stuff at the front? */ 6802 if (start < offset) { 6803 if (start == 0) { 6804 if (end >= offset) { 6805 /* Nailed the hole at the begining. */ 6806 ipf->ipf_hole_cnt--; 6807 } 6808 } else if (end < offset) { 6809 /* 6810 * A hole, stuff, and a hole where there used 6811 * to be just a hole. 6812 */ 6813 ipf->ipf_hole_cnt++; 6814 } 6815 mp->b_cont = mp1; 6816 /* Check for overlap. */ 6817 while (end > offset) { 6818 if (end < IP_REASS_END(mp1)) { 6819 mp->b_wptr -= end - offset; 6820 IP_REASS_SET_END(mp, offset); 6821 BUMP_MIB(ill->ill_ip_mib, 6822 ipIfStatsReasmPartDups); 6823 break; 6824 } 6825 /* Did we cover another hole? */ 6826 if ((mp1->b_cont && 6827 IP_REASS_END(mp1) != 6828 IP_REASS_START(mp1->b_cont) && 6829 end >= IP_REASS_START(mp1->b_cont)) || 6830 (!ipf->ipf_last_frag_seen && !more)) { 6831 ipf->ipf_hole_cnt--; 6832 } 6833 /* Clip out mp1. */ 6834 if ((mp->b_cont = mp1->b_cont) == NULL) { 6835 /* 6836 * After clipping out mp1, this guy 6837 * is now hanging off the end. 6838 */ 6839 ipf->ipf_tail_mp = mp; 6840 } 6841 IP_REASS_SET_START(mp1, 0); 6842 IP_REASS_SET_END(mp1, 0); 6843 /* Subtract byte count */ 6844 ipf->ipf_count -= mp1->b_datap->db_lim - 6845 mp1->b_datap->db_base; 6846 freeb(mp1); 6847 BUMP_MIB(ill->ill_ip_mib, 6848 ipIfStatsReasmPartDups); 6849 mp1 = mp->b_cont; 6850 if (!mp1) 6851 break; 6852 offset = IP_REASS_START(mp1); 6853 } 6854 ipf->ipf_mp->b_cont = mp; 6855 continue; 6856 } 6857 /* 6858 * The new piece starts somewhere between the start of the head 6859 * and before the end of the tail. 6860 */ 6861 for (; mp1; mp1 = mp1->b_cont) { 6862 offset = IP_REASS_END(mp1); 6863 if (start < offset) { 6864 if (end <= offset) { 6865 /* Nothing new. */ 6866 IP_REASS_SET_START(mp, 0); 6867 IP_REASS_SET_END(mp, 0); 6868 /* Subtract byte count */ 6869 ipf->ipf_count -= mp->b_datap->db_lim - 6870 mp->b_datap->db_base; 6871 if (incr_dups) { 6872 ipf->ipf_num_dups++; 6873 incr_dups = B_FALSE; 6874 } 6875 freeb(mp); 6876 BUMP_MIB(ill->ill_ip_mib, 6877 ipIfStatsReasmDuplicates); 6878 break; 6879 } 6880 /* 6881 * Trim redundant stuff off beginning of new 6882 * piece. 6883 */ 6884 IP_REASS_SET_START(mp, offset); 6885 mp->b_rptr += offset - start; 6886 BUMP_MIB(ill->ill_ip_mib, 6887 ipIfStatsReasmPartDups); 6888 start = offset; 6889 if (!mp1->b_cont) { 6890 /* 6891 * After trimming, this guy is now 6892 * hanging off the end. 6893 */ 6894 mp1->b_cont = mp; 6895 ipf->ipf_tail_mp = mp; 6896 if (!more) { 6897 ipf->ipf_hole_cnt--; 6898 } 6899 break; 6900 } 6901 } 6902 if (start >= IP_REASS_START(mp1->b_cont)) 6903 continue; 6904 /* Fill a hole */ 6905 if (start > offset) 6906 ipf->ipf_hole_cnt++; 6907 mp->b_cont = mp1->b_cont; 6908 mp1->b_cont = mp; 6909 mp1 = mp->b_cont; 6910 offset = IP_REASS_START(mp1); 6911 if (end >= offset) { 6912 ipf->ipf_hole_cnt--; 6913 /* Check for overlap. */ 6914 while (end > offset) { 6915 if (end < IP_REASS_END(mp1)) { 6916 mp->b_wptr -= end - offset; 6917 IP_REASS_SET_END(mp, offset); 6918 /* 6919 * TODO we might bump 6920 * this up twice if there is 6921 * overlap at both ends. 6922 */ 6923 BUMP_MIB(ill->ill_ip_mib, 6924 ipIfStatsReasmPartDups); 6925 break; 6926 } 6927 /* Did we cover another hole? */ 6928 if ((mp1->b_cont && 6929 IP_REASS_END(mp1) 6930 != IP_REASS_START(mp1->b_cont) && 6931 end >= 6932 IP_REASS_START(mp1->b_cont)) || 6933 (!ipf->ipf_last_frag_seen && 6934 !more)) { 6935 ipf->ipf_hole_cnt--; 6936 } 6937 /* Clip out mp1. */ 6938 if ((mp->b_cont = mp1->b_cont) == 6939 NULL) { 6940 /* 6941 * After clipping out mp1, 6942 * this guy is now hanging 6943 * off the end. 6944 */ 6945 ipf->ipf_tail_mp = mp; 6946 } 6947 IP_REASS_SET_START(mp1, 0); 6948 IP_REASS_SET_END(mp1, 0); 6949 /* Subtract byte count */ 6950 ipf->ipf_count -= 6951 mp1->b_datap->db_lim - 6952 mp1->b_datap->db_base; 6953 freeb(mp1); 6954 BUMP_MIB(ill->ill_ip_mib, 6955 ipIfStatsReasmPartDups); 6956 mp1 = mp->b_cont; 6957 if (!mp1) 6958 break; 6959 offset = IP_REASS_START(mp1); 6960 } 6961 } 6962 break; 6963 } 6964 } while (start = end, mp = next_mp); 6965 6966 /* Fragment just processed could be the last one. Remember this fact */ 6967 if (!more) 6968 ipf->ipf_last_frag_seen = B_TRUE; 6969 6970 /* Still got holes? */ 6971 if (ipf->ipf_hole_cnt) 6972 return (IP_REASS_PARTIAL); 6973 /* Clean up overloaded fields to avoid upstream disasters. */ 6974 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6975 IP_REASS_SET_START(mp1, 0); 6976 IP_REASS_SET_END(mp1, 0); 6977 } 6978 return (IP_REASS_COMPLETE); 6979 } 6980 6981 /* 6982 * Fragmentation reassembly. Each ILL has a hash table for 6983 * queuing packets undergoing reassembly for all IPIFs 6984 * associated with the ILL. The hash is based on the packet 6985 * IP ident field. The ILL frag hash table was allocated 6986 * as a timer block at the time the ILL was created. Whenever 6987 * there is anything on the reassembly queue, the timer will 6988 * be running. Returns the reassembled packet if reassembly completes. 6989 */ 6990 mblk_t * 6991 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6992 { 6993 uint32_t frag_offset_flags; 6994 mblk_t *t_mp; 6995 ipaddr_t dst; 6996 uint8_t proto = ipha->ipha_protocol; 6997 uint32_t sum_val; 6998 uint16_t sum_flags; 6999 ipf_t *ipf; 7000 ipf_t **ipfp; 7001 ipfb_t *ipfb; 7002 uint16_t ident; 7003 uint32_t offset; 7004 ipaddr_t src; 7005 uint_t hdr_length; 7006 uint32_t end; 7007 mblk_t *mp1; 7008 mblk_t *tail_mp; 7009 size_t count; 7010 size_t msg_len; 7011 uint8_t ecn_info = 0; 7012 uint32_t packet_size; 7013 boolean_t pruned = B_FALSE; 7014 ill_t *ill = ira->ira_ill; 7015 ip_stack_t *ipst = ill->ill_ipst; 7016 7017 /* 7018 * Drop the fragmented as early as possible, if 7019 * we don't have resource(s) to re-assemble. 7020 */ 7021 if (ipst->ips_ip_reass_queue_bytes == 0) { 7022 freemsg(mp); 7023 return (NULL); 7024 } 7025 7026 /* Check for fragmentation offset; return if there's none */ 7027 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7028 (IPH_MF | IPH_OFFSET)) == 0) 7029 return (mp); 7030 7031 /* 7032 * We utilize hardware computed checksum info only for UDP since 7033 * IP fragmentation is a normal occurrence for the protocol. In 7034 * addition, checksum offload support for IP fragments carrying 7035 * UDP payload is commonly implemented across network adapters. 7036 */ 7037 ASSERT(ira->ira_rill != NULL); 7038 if (proto == IPPROTO_UDP && dohwcksum && 7039 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7040 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7041 mblk_t *mp1 = mp->b_cont; 7042 int32_t len; 7043 7044 /* Record checksum information from the packet */ 7045 sum_val = (uint32_t)DB_CKSUM16(mp); 7046 sum_flags = DB_CKSUMFLAGS(mp); 7047 7048 /* IP payload offset from beginning of mblk */ 7049 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7050 7051 if ((sum_flags & HCK_PARTIALCKSUM) && 7052 (mp1 == NULL || mp1->b_cont == NULL) && 7053 offset >= DB_CKSUMSTART(mp) && 7054 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7055 uint32_t adj; 7056 /* 7057 * Partial checksum has been calculated by hardware 7058 * and attached to the packet; in addition, any 7059 * prepended extraneous data is even byte aligned. 7060 * If any such data exists, we adjust the checksum; 7061 * this would also handle any postpended data. 7062 */ 7063 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7064 mp, mp1, len, adj); 7065 7066 /* One's complement subtract extraneous checksum */ 7067 if (adj >= sum_val) 7068 sum_val = ~(adj - sum_val) & 0xFFFF; 7069 else 7070 sum_val -= adj; 7071 } 7072 } else { 7073 sum_val = 0; 7074 sum_flags = 0; 7075 } 7076 7077 /* Clear hardware checksumming flag */ 7078 DB_CKSUMFLAGS(mp) = 0; 7079 7080 ident = ipha->ipha_ident; 7081 offset = (frag_offset_flags << 3) & 0xFFFF; 7082 src = ipha->ipha_src; 7083 dst = ipha->ipha_dst; 7084 hdr_length = IPH_HDR_LENGTH(ipha); 7085 end = ntohs(ipha->ipha_length) - hdr_length; 7086 7087 /* If end == 0 then we have a packet with no data, so just free it */ 7088 if (end == 0) { 7089 freemsg(mp); 7090 return (NULL); 7091 } 7092 7093 /* Record the ECN field info. */ 7094 ecn_info = (ipha->ipha_type_of_service & 0x3); 7095 if (offset != 0) { 7096 /* 7097 * If this isn't the first piece, strip the header, and 7098 * add the offset to the end value. 7099 */ 7100 mp->b_rptr += hdr_length; 7101 end += offset; 7102 } 7103 7104 /* Handle vnic loopback of fragments */ 7105 if (mp->b_datap->db_ref > 2) 7106 msg_len = 0; 7107 else 7108 msg_len = MBLKSIZE(mp); 7109 7110 tail_mp = mp; 7111 while (tail_mp->b_cont != NULL) { 7112 tail_mp = tail_mp->b_cont; 7113 if (tail_mp->b_datap->db_ref <= 2) 7114 msg_len += MBLKSIZE(tail_mp); 7115 } 7116 7117 /* If the reassembly list for this ILL will get too big, prune it */ 7118 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7119 ipst->ips_ip_reass_queue_bytes) { 7120 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7121 uint_t, ill->ill_frag_count, 7122 uint_t, ipst->ips_ip_reass_queue_bytes); 7123 ill_frag_prune(ill, 7124 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7125 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7126 pruned = B_TRUE; 7127 } 7128 7129 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7130 mutex_enter(&ipfb->ipfb_lock); 7131 7132 ipfp = &ipfb->ipfb_ipf; 7133 /* Try to find an existing fragment queue for this packet. */ 7134 for (;;) { 7135 ipf = ipfp[0]; 7136 if (ipf != NULL) { 7137 /* 7138 * It has to match on ident and src/dst address. 7139 */ 7140 if (ipf->ipf_ident == ident && 7141 ipf->ipf_src == src && 7142 ipf->ipf_dst == dst && 7143 ipf->ipf_protocol == proto) { 7144 /* 7145 * If we have received too many 7146 * duplicate fragments for this packet 7147 * free it. 7148 */ 7149 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7150 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7151 freemsg(mp); 7152 mutex_exit(&ipfb->ipfb_lock); 7153 return (NULL); 7154 } 7155 /* Found it. */ 7156 break; 7157 } 7158 ipfp = &ipf->ipf_hash_next; 7159 continue; 7160 } 7161 7162 /* 7163 * If we pruned the list, do we want to store this new 7164 * fragment?. We apply an optimization here based on the 7165 * fact that most fragments will be received in order. 7166 * So if the offset of this incoming fragment is zero, 7167 * it is the first fragment of a new packet. We will 7168 * keep it. Otherwise drop the fragment, as we have 7169 * probably pruned the packet already (since the 7170 * packet cannot be found). 7171 */ 7172 if (pruned && offset != 0) { 7173 mutex_exit(&ipfb->ipfb_lock); 7174 freemsg(mp); 7175 return (NULL); 7176 } 7177 7178 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7179 /* 7180 * Too many fragmented packets in this hash 7181 * bucket. Free the oldest. 7182 */ 7183 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7184 } 7185 7186 /* New guy. Allocate a frag message. */ 7187 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7188 if (mp1 == NULL) { 7189 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7190 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7191 freemsg(mp); 7192 reass_done: 7193 mutex_exit(&ipfb->ipfb_lock); 7194 return (NULL); 7195 } 7196 7197 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7198 mp1->b_cont = mp; 7199 7200 /* Initialize the fragment header. */ 7201 ipf = (ipf_t *)mp1->b_rptr; 7202 ipf->ipf_mp = mp1; 7203 ipf->ipf_ptphn = ipfp; 7204 ipfp[0] = ipf; 7205 ipf->ipf_hash_next = NULL; 7206 ipf->ipf_ident = ident; 7207 ipf->ipf_protocol = proto; 7208 ipf->ipf_src = src; 7209 ipf->ipf_dst = dst; 7210 ipf->ipf_nf_hdr_len = 0; 7211 /* Record reassembly start time. */ 7212 ipf->ipf_timestamp = gethrestime_sec(); 7213 /* Record ipf generation and account for frag header */ 7214 ipf->ipf_gen = ill->ill_ipf_gen++; 7215 ipf->ipf_count = MBLKSIZE(mp1); 7216 ipf->ipf_last_frag_seen = B_FALSE; 7217 ipf->ipf_ecn = ecn_info; 7218 ipf->ipf_num_dups = 0; 7219 ipfb->ipfb_frag_pkts++; 7220 ipf->ipf_checksum = 0; 7221 ipf->ipf_checksum_flags = 0; 7222 7223 /* Store checksum value in fragment header */ 7224 if (sum_flags != 0) { 7225 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7226 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7227 ipf->ipf_checksum = sum_val; 7228 ipf->ipf_checksum_flags = sum_flags; 7229 } 7230 7231 /* 7232 * We handle reassembly two ways. In the easy case, 7233 * where all the fragments show up in order, we do 7234 * minimal bookkeeping, and just clip new pieces on 7235 * the end. If we ever see a hole, then we go off 7236 * to ip_reassemble which has to mark the pieces and 7237 * keep track of the number of holes, etc. Obviously, 7238 * the point of having both mechanisms is so we can 7239 * handle the easy case as efficiently as possible. 7240 */ 7241 if (offset == 0) { 7242 /* Easy case, in-order reassembly so far. */ 7243 ipf->ipf_count += msg_len; 7244 ipf->ipf_tail_mp = tail_mp; 7245 /* 7246 * Keep track of next expected offset in 7247 * ipf_end. 7248 */ 7249 ipf->ipf_end = end; 7250 ipf->ipf_nf_hdr_len = hdr_length; 7251 } else { 7252 /* Hard case, hole at the beginning. */ 7253 ipf->ipf_tail_mp = NULL; 7254 /* 7255 * ipf_end == 0 means that we have given up 7256 * on easy reassembly. 7257 */ 7258 ipf->ipf_end = 0; 7259 7260 /* Forget checksum offload from now on */ 7261 ipf->ipf_checksum_flags = 0; 7262 7263 /* 7264 * ipf_hole_cnt is set by ip_reassemble. 7265 * ipf_count is updated by ip_reassemble. 7266 * No need to check for return value here 7267 * as we don't expect reassembly to complete 7268 * or fail for the first fragment itself. 7269 */ 7270 (void) ip_reassemble(mp, ipf, 7271 (frag_offset_flags & IPH_OFFSET) << 3, 7272 (frag_offset_flags & IPH_MF), ill, msg_len); 7273 } 7274 /* Update per ipfb and ill byte counts */ 7275 ipfb->ipfb_count += ipf->ipf_count; 7276 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7277 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7278 /* If the frag timer wasn't already going, start it. */ 7279 mutex_enter(&ill->ill_lock); 7280 ill_frag_timer_start(ill); 7281 mutex_exit(&ill->ill_lock); 7282 goto reass_done; 7283 } 7284 7285 /* 7286 * If the packet's flag has changed (it could be coming up 7287 * from an interface different than the previous, therefore 7288 * possibly different checksum capability), then forget about 7289 * any stored checksum states. Otherwise add the value to 7290 * the existing one stored in the fragment header. 7291 */ 7292 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7293 sum_val += ipf->ipf_checksum; 7294 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7295 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7296 ipf->ipf_checksum = sum_val; 7297 } else if (ipf->ipf_checksum_flags != 0) { 7298 /* Forget checksum offload from now on */ 7299 ipf->ipf_checksum_flags = 0; 7300 } 7301 7302 /* 7303 * We have a new piece of a datagram which is already being 7304 * reassembled. Update the ECN info if all IP fragments 7305 * are ECN capable. If there is one which is not, clear 7306 * all the info. If there is at least one which has CE 7307 * code point, IP needs to report that up to transport. 7308 */ 7309 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7310 if (ecn_info == IPH_ECN_CE) 7311 ipf->ipf_ecn = IPH_ECN_CE; 7312 } else { 7313 ipf->ipf_ecn = IPH_ECN_NECT; 7314 } 7315 if (offset && ipf->ipf_end == offset) { 7316 /* The new fragment fits at the end */ 7317 ipf->ipf_tail_mp->b_cont = mp; 7318 /* Update the byte count */ 7319 ipf->ipf_count += msg_len; 7320 /* Update per ipfb and ill byte counts */ 7321 ipfb->ipfb_count += msg_len; 7322 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7323 atomic_add_32(&ill->ill_frag_count, msg_len); 7324 if (frag_offset_flags & IPH_MF) { 7325 /* More to come. */ 7326 ipf->ipf_end = end; 7327 ipf->ipf_tail_mp = tail_mp; 7328 goto reass_done; 7329 } 7330 } else { 7331 /* Go do the hard cases. */ 7332 int ret; 7333 7334 if (offset == 0) 7335 ipf->ipf_nf_hdr_len = hdr_length; 7336 7337 /* Save current byte count */ 7338 count = ipf->ipf_count; 7339 ret = ip_reassemble(mp, ipf, 7340 (frag_offset_flags & IPH_OFFSET) << 3, 7341 (frag_offset_flags & IPH_MF), ill, msg_len); 7342 /* Count of bytes added and subtracted (freeb()ed) */ 7343 count = ipf->ipf_count - count; 7344 if (count) { 7345 /* Update per ipfb and ill byte counts */ 7346 ipfb->ipfb_count += count; 7347 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7348 atomic_add_32(&ill->ill_frag_count, count); 7349 } 7350 if (ret == IP_REASS_PARTIAL) { 7351 goto reass_done; 7352 } else if (ret == IP_REASS_FAILED) { 7353 /* Reassembly failed. Free up all resources */ 7354 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7355 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7356 IP_REASS_SET_START(t_mp, 0); 7357 IP_REASS_SET_END(t_mp, 0); 7358 } 7359 freemsg(mp); 7360 goto reass_done; 7361 } 7362 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7363 } 7364 /* 7365 * We have completed reassembly. Unhook the frag header from 7366 * the reassembly list. 7367 * 7368 * Before we free the frag header, record the ECN info 7369 * to report back to the transport. 7370 */ 7371 ecn_info = ipf->ipf_ecn; 7372 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7373 ipfp = ipf->ipf_ptphn; 7374 7375 /* We need to supply these to caller */ 7376 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7377 sum_val = ipf->ipf_checksum; 7378 else 7379 sum_val = 0; 7380 7381 mp1 = ipf->ipf_mp; 7382 count = ipf->ipf_count; 7383 ipf = ipf->ipf_hash_next; 7384 if (ipf != NULL) 7385 ipf->ipf_ptphn = ipfp; 7386 ipfp[0] = ipf; 7387 atomic_add_32(&ill->ill_frag_count, -count); 7388 ASSERT(ipfb->ipfb_count >= count); 7389 ipfb->ipfb_count -= count; 7390 ipfb->ipfb_frag_pkts--; 7391 mutex_exit(&ipfb->ipfb_lock); 7392 /* Ditch the frag header. */ 7393 mp = mp1->b_cont; 7394 7395 freeb(mp1); 7396 7397 /* Restore original IP length in header. */ 7398 packet_size = (uint32_t)msgdsize(mp); 7399 if (packet_size > IP_MAXPACKET) { 7400 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7401 ip_drop_input("Reassembled packet too large", mp, ill); 7402 freemsg(mp); 7403 return (NULL); 7404 } 7405 7406 if (DB_REF(mp) > 1) { 7407 mblk_t *mp2 = copymsg(mp); 7408 7409 if (mp2 == NULL) { 7410 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7411 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7412 freemsg(mp); 7413 return (NULL); 7414 } 7415 freemsg(mp); 7416 mp = mp2; 7417 } 7418 ipha = (ipha_t *)mp->b_rptr; 7419 7420 ipha->ipha_length = htons((uint16_t)packet_size); 7421 /* We're now complete, zip the frag state */ 7422 ipha->ipha_fragment_offset_and_flags = 0; 7423 /* Record the ECN info. */ 7424 ipha->ipha_type_of_service &= 0xFC; 7425 ipha->ipha_type_of_service |= ecn_info; 7426 7427 /* Update the receive attributes */ 7428 ira->ira_pktlen = packet_size; 7429 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7430 7431 /* Reassembly is successful; set checksum information in packet */ 7432 DB_CKSUM16(mp) = (uint16_t)sum_val; 7433 DB_CKSUMFLAGS(mp) = sum_flags; 7434 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7435 7436 return (mp); 7437 } 7438 7439 /* 7440 * Pullup function that should be used for IP input in order to 7441 * ensure we do not loose the L2 source address; we need the l2 source 7442 * address for IP_RECVSLLA and for ndp_input. 7443 * 7444 * We return either NULL or b_rptr. 7445 */ 7446 void * 7447 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7448 { 7449 ill_t *ill = ira->ira_ill; 7450 7451 if (ip_rput_pullups++ == 0) { 7452 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7453 "ip_pullup: %s forced us to " 7454 " pullup pkt, hdr len %ld, hdr addr %p", 7455 ill->ill_name, len, (void *)mp->b_rptr); 7456 } 7457 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7458 ip_setl2src(mp, ira, ira->ira_rill); 7459 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7460 if (!pullupmsg(mp, len)) 7461 return (NULL); 7462 else 7463 return (mp->b_rptr); 7464 } 7465 7466 /* 7467 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7468 * When called from the ULP ira_rill will be NULL hence the caller has to 7469 * pass in the ill. 7470 */ 7471 /* ARGSUSED */ 7472 void 7473 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7474 { 7475 const uchar_t *addr; 7476 int alen; 7477 7478 if (ira->ira_flags & IRAF_L2SRC_SET) 7479 return; 7480 7481 ASSERT(ill != NULL); 7482 alen = ill->ill_phys_addr_length; 7483 ASSERT(alen <= sizeof (ira->ira_l2src)); 7484 if (ira->ira_mhip != NULL && 7485 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7486 bcopy(addr, ira->ira_l2src, alen); 7487 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7488 (addr = ill->ill_phys_addr) != NULL) { 7489 bcopy(addr, ira->ira_l2src, alen); 7490 } else { 7491 bzero(ira->ira_l2src, alen); 7492 } 7493 ira->ira_flags |= IRAF_L2SRC_SET; 7494 } 7495 7496 /* 7497 * check ip header length and align it. 7498 */ 7499 mblk_t * 7500 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7501 { 7502 ill_t *ill = ira->ira_ill; 7503 ssize_t len; 7504 7505 len = MBLKL(mp); 7506 7507 if (!OK_32PTR(mp->b_rptr)) 7508 IP_STAT(ill->ill_ipst, ip_notaligned); 7509 else 7510 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7511 7512 /* Guard against bogus device drivers */ 7513 if (len < 0) { 7514 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7515 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7516 freemsg(mp); 7517 return (NULL); 7518 } 7519 7520 if (len == 0) { 7521 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7522 mblk_t *mp1 = mp->b_cont; 7523 7524 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7525 ip_setl2src(mp, ira, ira->ira_rill); 7526 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7527 7528 freeb(mp); 7529 mp = mp1; 7530 if (mp == NULL) 7531 return (NULL); 7532 7533 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7534 return (mp); 7535 } 7536 if (ip_pullup(mp, min_size, ira) == NULL) { 7537 if (msgdsize(mp) < min_size) { 7538 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7539 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7540 } else { 7541 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7542 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7543 } 7544 freemsg(mp); 7545 return (NULL); 7546 } 7547 return (mp); 7548 } 7549 7550 /* 7551 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7552 */ 7553 mblk_t * 7554 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7555 uint_t min_size, ip_recv_attr_t *ira) 7556 { 7557 ill_t *ill = ira->ira_ill; 7558 7559 /* 7560 * Make sure we have data length consistent 7561 * with the IP header. 7562 */ 7563 if (mp->b_cont == NULL) { 7564 /* pkt_len is based on ipha_len, not the mblk length */ 7565 if (pkt_len < min_size) { 7566 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7567 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7568 freemsg(mp); 7569 return (NULL); 7570 } 7571 if (len < 0) { 7572 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7573 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7574 freemsg(mp); 7575 return (NULL); 7576 } 7577 /* Drop any pad */ 7578 mp->b_wptr = rptr + pkt_len; 7579 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7580 ASSERT(pkt_len >= min_size); 7581 if (pkt_len < min_size) { 7582 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7583 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7584 freemsg(mp); 7585 return (NULL); 7586 } 7587 if (len < 0) { 7588 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7589 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7590 freemsg(mp); 7591 return (NULL); 7592 } 7593 /* Drop any pad */ 7594 (void) adjmsg(mp, -len); 7595 /* 7596 * adjmsg may have freed an mblk from the chain, hence 7597 * invalidate any hw checksum here. This will force IP to 7598 * calculate the checksum in sw, but only for this packet. 7599 */ 7600 DB_CKSUMFLAGS(mp) = 0; 7601 IP_STAT(ill->ill_ipst, ip_multimblk); 7602 } 7603 return (mp); 7604 } 7605 7606 /* 7607 * Check that the IPv4 opt_len is consistent with the packet and pullup 7608 * the options. 7609 */ 7610 mblk_t * 7611 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7612 ip_recv_attr_t *ira) 7613 { 7614 ill_t *ill = ira->ira_ill; 7615 ssize_t len; 7616 7617 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7618 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7621 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7622 freemsg(mp); 7623 return (NULL); 7624 } 7625 7626 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7627 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7628 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7629 freemsg(mp); 7630 return (NULL); 7631 } 7632 /* 7633 * Recompute complete header length and make sure we 7634 * have access to all of it. 7635 */ 7636 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7637 if (len > (mp->b_wptr - mp->b_rptr)) { 7638 if (len > pkt_len) { 7639 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7640 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7641 freemsg(mp); 7642 return (NULL); 7643 } 7644 if (ip_pullup(mp, len, ira) == NULL) { 7645 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7646 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7647 freemsg(mp); 7648 return (NULL); 7649 } 7650 } 7651 return (mp); 7652 } 7653 7654 /* 7655 * Returns a new ire, or the same ire, or NULL. 7656 * If a different IRE is returned, then it is held; the caller 7657 * needs to release it. 7658 * In no case is there any hold/release on the ire argument. 7659 */ 7660 ire_t * 7661 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7662 { 7663 ire_t *new_ire; 7664 ill_t *ire_ill; 7665 uint_t ifindex; 7666 ip_stack_t *ipst = ill->ill_ipst; 7667 boolean_t strict_check = B_FALSE; 7668 7669 /* 7670 * IPMP common case: if IRE and ILL are in the same group, there's no 7671 * issue (e.g. packet received on an underlying interface matched an 7672 * IRE_LOCAL on its associated group interface). 7673 */ 7674 ASSERT(ire->ire_ill != NULL); 7675 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7676 return (ire); 7677 7678 /* 7679 * Do another ire lookup here, using the ingress ill, to see if the 7680 * interface is in a usesrc group. 7681 * As long as the ills belong to the same group, we don't consider 7682 * them to be arriving on the wrong interface. Thus, if the switch 7683 * is doing inbound load spreading, we won't drop packets when the 7684 * ip*_strict_dst_multihoming switch is on. 7685 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7686 * where the local address may not be unique. In this case we were 7687 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7688 * actually returned. The new lookup, which is more specific, should 7689 * only find the IRE_LOCAL associated with the ingress ill if one 7690 * exists. 7691 */ 7692 if (ire->ire_ipversion == IPV4_VERSION) { 7693 if (ipst->ips_ip_strict_dst_multihoming) 7694 strict_check = B_TRUE; 7695 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7696 IRE_LOCAL, ill, ALL_ZONES, NULL, 7697 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7698 } else { 7699 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7700 if (ipst->ips_ipv6_strict_dst_multihoming) 7701 strict_check = B_TRUE; 7702 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7703 IRE_LOCAL, ill, ALL_ZONES, NULL, 7704 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7705 } 7706 /* 7707 * If the same ire that was returned in ip_input() is found then this 7708 * is an indication that usesrc groups are in use. The packet 7709 * arrived on a different ill in the group than the one associated with 7710 * the destination address. If a different ire was found then the same 7711 * IP address must be hosted on multiple ills. This is possible with 7712 * unnumbered point2point interfaces. We switch to use this new ire in 7713 * order to have accurate interface statistics. 7714 */ 7715 if (new_ire != NULL) { 7716 /* Note: held in one case but not the other? Caller handles */ 7717 if (new_ire != ire) 7718 return (new_ire); 7719 /* Unchanged */ 7720 ire_refrele(new_ire); 7721 return (ire); 7722 } 7723 7724 /* 7725 * Chase pointers once and store locally. 7726 */ 7727 ASSERT(ire->ire_ill != NULL); 7728 ire_ill = ire->ire_ill; 7729 ifindex = ill->ill_usesrc_ifindex; 7730 7731 /* 7732 * Check if it's a legal address on the 'usesrc' interface. 7733 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7734 * can just check phyint_ifindex. 7735 */ 7736 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7737 return (ire); 7738 } 7739 7740 /* 7741 * If the ip*_strict_dst_multihoming switch is on then we can 7742 * only accept this packet if the interface is marked as routing. 7743 */ 7744 if (!(strict_check)) 7745 return (ire); 7746 7747 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7748 return (ire); 7749 } 7750 return (NULL); 7751 } 7752 7753 /* 7754 * This function is used to construct a mac_header_info_s from a 7755 * DL_UNITDATA_IND message. 7756 * The address fields in the mhi structure points into the message, 7757 * thus the caller can't use those fields after freeing the message. 7758 * 7759 * We determine whether the packet received is a non-unicast packet 7760 * and in doing so, determine whether or not it is broadcast vs multicast. 7761 * For it to be a broadcast packet, we must have the appropriate mblk_t 7762 * hanging off the ill_t. If this is either not present or doesn't match 7763 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7764 * to be multicast. Thus NICs that have no broadcast address (or no 7765 * capability for one, such as point to point links) cannot return as 7766 * the packet being broadcast. 7767 */ 7768 void 7769 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7770 { 7771 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7772 mblk_t *bmp; 7773 uint_t extra_offset; 7774 7775 bzero(mhip, sizeof (struct mac_header_info_s)); 7776 7777 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7778 7779 if (ill->ill_sap_length < 0) 7780 extra_offset = 0; 7781 else 7782 extra_offset = ill->ill_sap_length; 7783 7784 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7785 extra_offset; 7786 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7787 extra_offset; 7788 7789 if (!ind->dl_group_address) 7790 return; 7791 7792 /* Multicast or broadcast */ 7793 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7794 7795 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7796 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7797 (bmp = ill->ill_bcast_mp) != NULL) { 7798 dl_unitdata_req_t *dlur; 7799 uint8_t *bphys_addr; 7800 7801 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7802 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7803 extra_offset; 7804 7805 if (bcmp(mhip->mhi_daddr, bphys_addr, 7806 ind->dl_dest_addr_length) == 0) 7807 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7808 } 7809 } 7810 7811 /* 7812 * This function is used to construct a mac_header_info_s from a 7813 * M_DATA fastpath message from a DLPI driver. 7814 * The address fields in the mhi structure points into the message, 7815 * thus the caller can't use those fields after freeing the message. 7816 * 7817 * We determine whether the packet received is a non-unicast packet 7818 * and in doing so, determine whether or not it is broadcast vs multicast. 7819 * For it to be a broadcast packet, we must have the appropriate mblk_t 7820 * hanging off the ill_t. If this is either not present or doesn't match 7821 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7822 * to be multicast. Thus NICs that have no broadcast address (or no 7823 * capability for one, such as point to point links) cannot return as 7824 * the packet being broadcast. 7825 */ 7826 void 7827 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7828 { 7829 mblk_t *bmp; 7830 struct ether_header *pether; 7831 7832 bzero(mhip, sizeof (struct mac_header_info_s)); 7833 7834 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7835 7836 pether = (struct ether_header *)((char *)mp->b_rptr 7837 - sizeof (struct ether_header)); 7838 7839 /* 7840 * Make sure the interface is an ethernet type, since we don't 7841 * know the header format for anything but Ethernet. Also make 7842 * sure we are pointing correctly above db_base. 7843 */ 7844 if (ill->ill_type != IFT_ETHER) 7845 return; 7846 7847 retry: 7848 if ((uchar_t *)pether < mp->b_datap->db_base) 7849 return; 7850 7851 /* Is there a VLAN tag? */ 7852 if (ill->ill_isv6) { 7853 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7854 pether = (struct ether_header *)((char *)pether - 4); 7855 goto retry; 7856 } 7857 } else { 7858 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7859 pether = (struct ether_header *)((char *)pether - 4); 7860 goto retry; 7861 } 7862 } 7863 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7864 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7865 7866 if (!(mhip->mhi_daddr[0] & 0x01)) 7867 return; 7868 7869 /* Multicast or broadcast */ 7870 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7871 7872 if ((bmp = ill->ill_bcast_mp) != NULL) { 7873 dl_unitdata_req_t *dlur; 7874 uint8_t *bphys_addr; 7875 uint_t addrlen; 7876 7877 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7878 addrlen = dlur->dl_dest_addr_length; 7879 if (ill->ill_sap_length < 0) { 7880 bphys_addr = (uchar_t *)dlur + 7881 dlur->dl_dest_addr_offset; 7882 addrlen += ill->ill_sap_length; 7883 } else { 7884 bphys_addr = (uchar_t *)dlur + 7885 dlur->dl_dest_addr_offset + 7886 ill->ill_sap_length; 7887 addrlen -= ill->ill_sap_length; 7888 } 7889 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7890 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7891 } 7892 } 7893 7894 /* 7895 * Handle anything but M_DATA messages 7896 * We see the DL_UNITDATA_IND which are part 7897 * of the data path, and also the other messages from the driver. 7898 */ 7899 void 7900 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7901 { 7902 mblk_t *first_mp; 7903 struct iocblk *iocp; 7904 struct mac_header_info_s mhi; 7905 7906 switch (DB_TYPE(mp)) { 7907 case M_PROTO: 7908 case M_PCPROTO: { 7909 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7910 DL_UNITDATA_IND) { 7911 /* Go handle anything other than data elsewhere. */ 7912 ip_rput_dlpi(ill, mp); 7913 return; 7914 } 7915 7916 first_mp = mp; 7917 mp = first_mp->b_cont; 7918 first_mp->b_cont = NULL; 7919 7920 if (mp == NULL) { 7921 freeb(first_mp); 7922 return; 7923 } 7924 ip_dlur_to_mhi(ill, first_mp, &mhi); 7925 if (ill->ill_isv6) 7926 ip_input_v6(ill, NULL, mp, &mhi); 7927 else 7928 ip_input(ill, NULL, mp, &mhi); 7929 7930 /* Ditch the DLPI header. */ 7931 freeb(first_mp); 7932 return; 7933 } 7934 case M_IOCACK: 7935 iocp = (struct iocblk *)mp->b_rptr; 7936 switch (iocp->ioc_cmd) { 7937 case DL_IOC_HDR_INFO: 7938 ill_fastpath_ack(ill, mp); 7939 return; 7940 default: 7941 putnext(ill->ill_rq, mp); 7942 return; 7943 } 7944 /* FALLTHRU */ 7945 case M_ERROR: 7946 case M_HANGUP: 7947 mutex_enter(&ill->ill_lock); 7948 if (ill->ill_state_flags & ILL_CONDEMNED) { 7949 mutex_exit(&ill->ill_lock); 7950 freemsg(mp); 7951 return; 7952 } 7953 ill_refhold_locked(ill); 7954 mutex_exit(&ill->ill_lock); 7955 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7956 B_FALSE); 7957 return; 7958 case M_CTL: 7959 putnext(ill->ill_rq, mp); 7960 return; 7961 case M_IOCNAK: 7962 ip1dbg(("got iocnak ")); 7963 iocp = (struct iocblk *)mp->b_rptr; 7964 switch (iocp->ioc_cmd) { 7965 case DL_IOC_HDR_INFO: 7966 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7967 return; 7968 default: 7969 break; 7970 } 7971 /* FALLTHRU */ 7972 default: 7973 putnext(ill->ill_rq, mp); 7974 return; 7975 } 7976 } 7977 7978 /* Read side put procedure. Packets coming from the wire arrive here. */ 7979 void 7980 ip_rput(queue_t *q, mblk_t *mp) 7981 { 7982 ill_t *ill; 7983 union DL_primitives *dl; 7984 7985 ill = (ill_t *)q->q_ptr; 7986 7987 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7988 /* 7989 * If things are opening or closing, only accept high-priority 7990 * DLPI messages. (On open ill->ill_ipif has not yet been 7991 * created; on close, things hanging off the ill may have been 7992 * freed already.) 7993 */ 7994 dl = (union DL_primitives *)mp->b_rptr; 7995 if (DB_TYPE(mp) != M_PCPROTO || 7996 dl->dl_primitive == DL_UNITDATA_IND) { 7997 inet_freemsg(mp); 7998 return; 7999 } 8000 } 8001 if (DB_TYPE(mp) == M_DATA) { 8002 struct mac_header_info_s mhi; 8003 8004 ip_mdata_to_mhi(ill, mp, &mhi); 8005 ip_input(ill, NULL, mp, &mhi); 8006 } else { 8007 ip_rput_notdata(ill, mp); 8008 } 8009 } 8010 8011 /* 8012 * Move the information to a copy. 8013 */ 8014 mblk_t * 8015 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8016 { 8017 mblk_t *mp1; 8018 ill_t *ill = ira->ira_ill; 8019 ip_stack_t *ipst = ill->ill_ipst; 8020 8021 IP_STAT(ipst, ip_db_ref); 8022 8023 /* Make sure we have ira_l2src before we loose the original mblk */ 8024 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8025 ip_setl2src(mp, ira, ira->ira_rill); 8026 8027 mp1 = copymsg(mp); 8028 if (mp1 == NULL) { 8029 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8030 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8031 freemsg(mp); 8032 return (NULL); 8033 } 8034 /* preserve the hardware checksum flags and data, if present */ 8035 if (DB_CKSUMFLAGS(mp) != 0) { 8036 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8037 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8038 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8039 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8040 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8041 } 8042 freemsg(mp); 8043 return (mp1); 8044 } 8045 8046 static void 8047 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8048 t_uscalar_t err) 8049 { 8050 if (dl_err == DL_SYSERR) { 8051 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8052 "%s: %s failed: DL_SYSERR (errno %u)\n", 8053 ill->ill_name, dl_primstr(prim), err); 8054 return; 8055 } 8056 8057 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8058 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8059 dl_errstr(dl_err)); 8060 } 8061 8062 /* 8063 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8064 * than DL_UNITDATA_IND messages. If we need to process this message 8065 * exclusively, we call qwriter_ip, in which case we also need to call 8066 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8067 */ 8068 void 8069 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8070 { 8071 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8072 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8073 queue_t *q = ill->ill_rq; 8074 t_uscalar_t prim = dloa->dl_primitive; 8075 t_uscalar_t reqprim = DL_PRIM_INVAL; 8076 8077 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8078 char *, dl_primstr(prim), ill_t *, ill); 8079 ip1dbg(("ip_rput_dlpi")); 8080 8081 /* 8082 * If we received an ACK but didn't send a request for it, then it 8083 * can't be part of any pending operation; discard up-front. 8084 */ 8085 switch (prim) { 8086 case DL_ERROR_ACK: 8087 reqprim = dlea->dl_error_primitive; 8088 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8089 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8090 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8091 dlea->dl_unix_errno)); 8092 break; 8093 case DL_OK_ACK: 8094 reqprim = dloa->dl_correct_primitive; 8095 break; 8096 case DL_INFO_ACK: 8097 reqprim = DL_INFO_REQ; 8098 break; 8099 case DL_BIND_ACK: 8100 reqprim = DL_BIND_REQ; 8101 break; 8102 case DL_PHYS_ADDR_ACK: 8103 reqprim = DL_PHYS_ADDR_REQ; 8104 break; 8105 case DL_NOTIFY_ACK: 8106 reqprim = DL_NOTIFY_REQ; 8107 break; 8108 case DL_CAPABILITY_ACK: 8109 reqprim = DL_CAPABILITY_REQ; 8110 break; 8111 } 8112 8113 if (prim != DL_NOTIFY_IND) { 8114 if (reqprim == DL_PRIM_INVAL || 8115 !ill_dlpi_pending(ill, reqprim)) { 8116 /* Not a DLPI message we support or expected */ 8117 freemsg(mp); 8118 return; 8119 } 8120 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8121 dl_primstr(reqprim))); 8122 } 8123 8124 switch (reqprim) { 8125 case DL_UNBIND_REQ: 8126 /* 8127 * NOTE: we mark the unbind as complete even if we got a 8128 * DL_ERROR_ACK, since there's not much else we can do. 8129 */ 8130 mutex_enter(&ill->ill_lock); 8131 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8132 cv_signal(&ill->ill_cv); 8133 mutex_exit(&ill->ill_lock); 8134 break; 8135 8136 case DL_ENABMULTI_REQ: 8137 if (prim == DL_OK_ACK) { 8138 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8139 ill->ill_dlpi_multicast_state = IDS_OK; 8140 } 8141 break; 8142 } 8143 8144 /* 8145 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8146 * need to become writer to continue to process it. Because an 8147 * exclusive operation doesn't complete until replies to all queued 8148 * DLPI messages have been received, we know we're in the middle of an 8149 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8150 * 8151 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8152 * Since this is on the ill stream we unconditionally bump up the 8153 * refcount without doing ILL_CAN_LOOKUP(). 8154 */ 8155 ill_refhold(ill); 8156 if (prim == DL_NOTIFY_IND) 8157 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8158 else 8159 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8160 } 8161 8162 /* 8163 * Handling of DLPI messages that require exclusive access to the ipsq. 8164 * 8165 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8166 * happen here. (along with mi_copy_done) 8167 */ 8168 /* ARGSUSED */ 8169 static void 8170 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8171 { 8172 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8173 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8174 int err = 0; 8175 ill_t *ill = (ill_t *)q->q_ptr; 8176 ipif_t *ipif = NULL; 8177 mblk_t *mp1 = NULL; 8178 conn_t *connp = NULL; 8179 t_uscalar_t paddrreq; 8180 mblk_t *mp_hw; 8181 boolean_t success; 8182 boolean_t ioctl_aborted = B_FALSE; 8183 boolean_t log = B_TRUE; 8184 8185 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8186 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8187 8188 ip1dbg(("ip_rput_dlpi_writer ..")); 8189 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8190 ASSERT(IAM_WRITER_ILL(ill)); 8191 8192 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8193 /* 8194 * The current ioctl could have been aborted by the user and a new 8195 * ioctl to bring up another ill could have started. We could still 8196 * get a response from the driver later. 8197 */ 8198 if (ipif != NULL && ipif->ipif_ill != ill) 8199 ioctl_aborted = B_TRUE; 8200 8201 switch (dloa->dl_primitive) { 8202 case DL_ERROR_ACK: 8203 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8204 dl_primstr(dlea->dl_error_primitive))); 8205 8206 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8207 char *, dl_primstr(dlea->dl_error_primitive), 8208 ill_t *, ill); 8209 8210 switch (dlea->dl_error_primitive) { 8211 case DL_DISABMULTI_REQ: 8212 ill_dlpi_done(ill, dlea->dl_error_primitive); 8213 break; 8214 case DL_PROMISCON_REQ: 8215 case DL_PROMISCOFF_REQ: 8216 case DL_UNBIND_REQ: 8217 case DL_ATTACH_REQ: 8218 case DL_INFO_REQ: 8219 ill_dlpi_done(ill, dlea->dl_error_primitive); 8220 break; 8221 case DL_NOTIFY_REQ: 8222 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8223 log = B_FALSE; 8224 break; 8225 case DL_PHYS_ADDR_REQ: 8226 /* 8227 * For IPv6 only, there are two additional 8228 * phys_addr_req's sent to the driver to get the 8229 * IPv6 token and lla. This allows IP to acquire 8230 * the hardware address format for a given interface 8231 * without having built in knowledge of the hardware 8232 * address. ill_phys_addr_pend keeps track of the last 8233 * DL_PAR sent so we know which response we are 8234 * dealing with. ill_dlpi_done will update 8235 * ill_phys_addr_pend when it sends the next req. 8236 * We don't complete the IOCTL until all three DL_PARs 8237 * have been attempted, so set *_len to 0 and break. 8238 */ 8239 paddrreq = ill->ill_phys_addr_pend; 8240 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8241 if (paddrreq == DL_IPV6_TOKEN) { 8242 ill->ill_token_length = 0; 8243 log = B_FALSE; 8244 break; 8245 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8246 ill->ill_nd_lla_len = 0; 8247 log = B_FALSE; 8248 break; 8249 } 8250 /* 8251 * Something went wrong with the DL_PHYS_ADDR_REQ. 8252 * We presumably have an IOCTL hanging out waiting 8253 * for completion. Find it and complete the IOCTL 8254 * with the error noted. 8255 * However, ill_dl_phys was called on an ill queue 8256 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8257 * set. But the ioctl is known to be pending on ill_wq. 8258 */ 8259 if (!ill->ill_ifname_pending) 8260 break; 8261 ill->ill_ifname_pending = 0; 8262 if (!ioctl_aborted) 8263 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8264 if (mp1 != NULL) { 8265 /* 8266 * This operation (SIOCSLIFNAME) must have 8267 * happened on the ill. Assert there is no conn 8268 */ 8269 ASSERT(connp == NULL); 8270 q = ill->ill_wq; 8271 } 8272 break; 8273 case DL_BIND_REQ: 8274 ill_dlpi_done(ill, DL_BIND_REQ); 8275 if (ill->ill_ifname_pending) 8276 break; 8277 mutex_enter(&ill->ill_lock); 8278 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8279 mutex_exit(&ill->ill_lock); 8280 /* 8281 * Something went wrong with the bind. We presumably 8282 * have an IOCTL hanging out waiting for completion. 8283 * Find it, take down the interface that was coming 8284 * up, and complete the IOCTL with the error noted. 8285 */ 8286 if (!ioctl_aborted) 8287 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8288 if (mp1 != NULL) { 8289 /* 8290 * This might be a result of a DL_NOTE_REPLUMB 8291 * notification. In that case, connp is NULL. 8292 */ 8293 if (connp != NULL) 8294 q = CONNP_TO_WQ(connp); 8295 8296 (void) ipif_down(ipif, NULL, NULL); 8297 /* error is set below the switch */ 8298 } 8299 break; 8300 case DL_ENABMULTI_REQ: 8301 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8302 8303 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8304 ill->ill_dlpi_multicast_state = IDS_FAILED; 8305 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8306 8307 printf("ip: joining multicasts failed (%d)" 8308 " on %s - will use link layer " 8309 "broadcasts for multicast\n", 8310 dlea->dl_errno, ill->ill_name); 8311 8312 /* 8313 * Set up for multi_bcast; We are the 8314 * writer, so ok to access ill->ill_ipif 8315 * without any lock. 8316 */ 8317 mutex_enter(&ill->ill_phyint->phyint_lock); 8318 ill->ill_phyint->phyint_flags |= 8319 PHYI_MULTI_BCAST; 8320 mutex_exit(&ill->ill_phyint->phyint_lock); 8321 8322 } 8323 freemsg(mp); /* Don't want to pass this up */ 8324 return; 8325 case DL_CAPABILITY_REQ: 8326 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8327 "DL_CAPABILITY REQ\n")); 8328 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8329 ill->ill_dlpi_capab_state = IDCS_FAILED; 8330 ill_capability_done(ill); 8331 freemsg(mp); 8332 return; 8333 } 8334 /* 8335 * Note the error for IOCTL completion (mp1 is set when 8336 * ready to complete ioctl). If ill_ifname_pending_err is 8337 * set, an error occured during plumbing (ill_ifname_pending), 8338 * so we want to report that error. 8339 * 8340 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8341 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8342 * expected to get errack'd if the driver doesn't support 8343 * these flags (e.g. ethernet). log will be set to B_FALSE 8344 * if these error conditions are encountered. 8345 */ 8346 if (mp1 != NULL) { 8347 if (ill->ill_ifname_pending_err != 0) { 8348 err = ill->ill_ifname_pending_err; 8349 ill->ill_ifname_pending_err = 0; 8350 } else { 8351 err = dlea->dl_unix_errno ? 8352 dlea->dl_unix_errno : ENXIO; 8353 } 8354 /* 8355 * If we're plumbing an interface and an error hasn't already 8356 * been saved, set ill_ifname_pending_err to the error passed 8357 * up. Ignore the error if log is B_FALSE (see comment above). 8358 */ 8359 } else if (log && ill->ill_ifname_pending && 8360 ill->ill_ifname_pending_err == 0) { 8361 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8362 dlea->dl_unix_errno : ENXIO; 8363 } 8364 8365 if (log) 8366 ip_dlpi_error(ill, dlea->dl_error_primitive, 8367 dlea->dl_errno, dlea->dl_unix_errno); 8368 break; 8369 case DL_CAPABILITY_ACK: 8370 ill_capability_ack(ill, mp); 8371 /* 8372 * The message has been handed off to ill_capability_ack 8373 * and must not be freed below 8374 */ 8375 mp = NULL; 8376 break; 8377 8378 case DL_INFO_ACK: 8379 /* Call a routine to handle this one. */ 8380 ill_dlpi_done(ill, DL_INFO_REQ); 8381 ip_ll_subnet_defaults(ill, mp); 8382 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8383 return; 8384 case DL_BIND_ACK: 8385 /* 8386 * We should have an IOCTL waiting on this unless 8387 * sent by ill_dl_phys, in which case just return 8388 */ 8389 ill_dlpi_done(ill, DL_BIND_REQ); 8390 8391 if (ill->ill_ifname_pending) { 8392 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8393 ill_t *, ill, mblk_t *, mp); 8394 break; 8395 } 8396 mutex_enter(&ill->ill_lock); 8397 ill->ill_dl_up = 1; 8398 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8399 mutex_exit(&ill->ill_lock); 8400 8401 if (!ioctl_aborted) 8402 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8403 if (mp1 == NULL) { 8404 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8405 break; 8406 } 8407 /* 8408 * mp1 was added by ill_dl_up(). if that is a result of 8409 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8410 */ 8411 if (connp != NULL) 8412 q = CONNP_TO_WQ(connp); 8413 /* 8414 * We are exclusive. So nothing can change even after 8415 * we get the pending mp. 8416 */ 8417 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8418 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8419 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8420 8421 /* 8422 * Now bring up the resolver; when that is complete, we'll 8423 * create IREs. Note that we intentionally mirror what 8424 * ipif_up() would have done, because we got here by way of 8425 * ill_dl_up(), which stopped ipif_up()'s processing. 8426 */ 8427 if (ill->ill_isv6) { 8428 /* 8429 * v6 interfaces. 8430 * Unlike ARP which has to do another bind 8431 * and attach, once we get here we are 8432 * done with NDP 8433 */ 8434 (void) ipif_resolver_up(ipif, Res_act_initial); 8435 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8436 err = ipif_up_done_v6(ipif); 8437 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8438 /* 8439 * ARP and other v4 external resolvers. 8440 * Leave the pending mblk intact so that 8441 * the ioctl completes in ip_rput(). 8442 */ 8443 if (connp != NULL) 8444 mutex_enter(&connp->conn_lock); 8445 mutex_enter(&ill->ill_lock); 8446 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8447 mutex_exit(&ill->ill_lock); 8448 if (connp != NULL) 8449 mutex_exit(&connp->conn_lock); 8450 if (success) { 8451 err = ipif_resolver_up(ipif, Res_act_initial); 8452 if (err == EINPROGRESS) { 8453 freemsg(mp); 8454 return; 8455 } 8456 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8457 } else { 8458 /* The conn has started closing */ 8459 err = EINTR; 8460 } 8461 } else { 8462 /* 8463 * This one is complete. Reply to pending ioctl. 8464 */ 8465 (void) ipif_resolver_up(ipif, Res_act_initial); 8466 err = ipif_up_done(ipif); 8467 } 8468 8469 if ((err == 0) && (ill->ill_up_ipifs)) { 8470 err = ill_up_ipifs(ill, q, mp1); 8471 if (err == EINPROGRESS) { 8472 freemsg(mp); 8473 return; 8474 } 8475 } 8476 8477 /* 8478 * If we have a moved ipif to bring up, and everything has 8479 * succeeded to this point, bring it up on the IPMP ill. 8480 * Otherwise, leave it down -- the admin can try to bring it 8481 * up by hand if need be. 8482 */ 8483 if (ill->ill_move_ipif != NULL) { 8484 if (err != 0) { 8485 ill->ill_move_ipif = NULL; 8486 } else { 8487 ipif = ill->ill_move_ipif; 8488 ill->ill_move_ipif = NULL; 8489 err = ipif_up(ipif, q, mp1); 8490 if (err == EINPROGRESS) { 8491 freemsg(mp); 8492 return; 8493 } 8494 } 8495 } 8496 break; 8497 8498 case DL_NOTIFY_IND: { 8499 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8500 uint_t orig_mtu, orig_mc_mtu; 8501 8502 switch (notify->dl_notification) { 8503 case DL_NOTE_PHYS_ADDR: 8504 err = ill_set_phys_addr(ill, mp); 8505 break; 8506 8507 case DL_NOTE_REPLUMB: 8508 /* 8509 * Directly return after calling ill_replumb(). 8510 * Note that we should not free mp as it is reused 8511 * in the ill_replumb() function. 8512 */ 8513 err = ill_replumb(ill, mp); 8514 return; 8515 8516 case DL_NOTE_FASTPATH_FLUSH: 8517 nce_flush(ill, B_FALSE); 8518 break; 8519 8520 case DL_NOTE_SDU_SIZE: 8521 case DL_NOTE_SDU_SIZE2: 8522 /* 8523 * The dce and fragmentation code can cope with 8524 * this changing while packets are being sent. 8525 * When packets are sent ip_output will discover 8526 * a change. 8527 * 8528 * Change the MTU size of the interface. 8529 */ 8530 mutex_enter(&ill->ill_lock); 8531 orig_mtu = ill->ill_mtu; 8532 orig_mc_mtu = ill->ill_mc_mtu; 8533 switch (notify->dl_notification) { 8534 case DL_NOTE_SDU_SIZE: 8535 ill->ill_current_frag = 8536 (uint_t)notify->dl_data; 8537 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8538 break; 8539 case DL_NOTE_SDU_SIZE2: 8540 ill->ill_current_frag = 8541 (uint_t)notify->dl_data1; 8542 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8543 break; 8544 } 8545 if (ill->ill_current_frag > ill->ill_max_frag) 8546 ill->ill_max_frag = ill->ill_current_frag; 8547 8548 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8549 ill->ill_mtu = ill->ill_current_frag; 8550 8551 /* 8552 * If ill_user_mtu was set (via 8553 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8554 */ 8555 if (ill->ill_user_mtu != 0 && 8556 ill->ill_user_mtu < ill->ill_mtu) 8557 ill->ill_mtu = ill->ill_user_mtu; 8558 8559 if (ill->ill_user_mtu != 0 && 8560 ill->ill_user_mtu < ill->ill_mc_mtu) 8561 ill->ill_mc_mtu = ill->ill_user_mtu; 8562 8563 if (ill->ill_isv6) { 8564 if (ill->ill_mtu < IPV6_MIN_MTU) 8565 ill->ill_mtu = IPV6_MIN_MTU; 8566 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8567 ill->ill_mc_mtu = IPV6_MIN_MTU; 8568 } else { 8569 if (ill->ill_mtu < IP_MIN_MTU) 8570 ill->ill_mtu = IP_MIN_MTU; 8571 if (ill->ill_mc_mtu < IP_MIN_MTU) 8572 ill->ill_mc_mtu = IP_MIN_MTU; 8573 } 8574 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8575 ill->ill_mc_mtu = ill->ill_mtu; 8576 } 8577 8578 mutex_exit(&ill->ill_lock); 8579 /* 8580 * Make sure all dce_generation checks find out 8581 * that ill_mtu/ill_mc_mtu has changed. 8582 */ 8583 if (orig_mtu != ill->ill_mtu || 8584 orig_mc_mtu != ill->ill_mc_mtu) { 8585 dce_increment_all_generations(ill->ill_isv6, 8586 ill->ill_ipst); 8587 } 8588 8589 /* 8590 * Refresh IPMP meta-interface MTU if necessary. 8591 */ 8592 if (IS_UNDER_IPMP(ill)) 8593 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8594 break; 8595 8596 case DL_NOTE_LINK_UP: 8597 case DL_NOTE_LINK_DOWN: { 8598 /* 8599 * We are writer. ill / phyint / ipsq assocs stable. 8600 * The RUNNING flag reflects the state of the link. 8601 */ 8602 phyint_t *phyint = ill->ill_phyint; 8603 uint64_t new_phyint_flags; 8604 boolean_t changed = B_FALSE; 8605 boolean_t went_up; 8606 8607 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8608 mutex_enter(&phyint->phyint_lock); 8609 8610 new_phyint_flags = went_up ? 8611 phyint->phyint_flags | PHYI_RUNNING : 8612 phyint->phyint_flags & ~PHYI_RUNNING; 8613 8614 if (IS_IPMP(ill)) { 8615 new_phyint_flags = went_up ? 8616 new_phyint_flags & ~PHYI_FAILED : 8617 new_phyint_flags | PHYI_FAILED; 8618 } 8619 8620 if (new_phyint_flags != phyint->phyint_flags) { 8621 phyint->phyint_flags = new_phyint_flags; 8622 changed = B_TRUE; 8623 } 8624 mutex_exit(&phyint->phyint_lock); 8625 /* 8626 * ill_restart_dad handles the DAD restart and routing 8627 * socket notification logic. 8628 */ 8629 if (changed) { 8630 ill_restart_dad(phyint->phyint_illv4, went_up); 8631 ill_restart_dad(phyint->phyint_illv6, went_up); 8632 } 8633 break; 8634 } 8635 case DL_NOTE_PROMISC_ON_PHYS: { 8636 phyint_t *phyint = ill->ill_phyint; 8637 8638 mutex_enter(&phyint->phyint_lock); 8639 phyint->phyint_flags |= PHYI_PROMISC; 8640 mutex_exit(&phyint->phyint_lock); 8641 break; 8642 } 8643 case DL_NOTE_PROMISC_OFF_PHYS: { 8644 phyint_t *phyint = ill->ill_phyint; 8645 8646 mutex_enter(&phyint->phyint_lock); 8647 phyint->phyint_flags &= ~PHYI_PROMISC; 8648 mutex_exit(&phyint->phyint_lock); 8649 break; 8650 } 8651 case DL_NOTE_CAPAB_RENEG: 8652 /* 8653 * Something changed on the driver side. 8654 * It wants us to renegotiate the capabilities 8655 * on this ill. One possible cause is the aggregation 8656 * interface under us where a port got added or 8657 * went away. 8658 * 8659 * If the capability negotiation is already done 8660 * or is in progress, reset the capabilities and 8661 * mark the ill's ill_capab_reneg to be B_TRUE, 8662 * so that when the ack comes back, we can start 8663 * the renegotiation process. 8664 * 8665 * Note that if ill_capab_reneg is already B_TRUE 8666 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8667 * the capability resetting request has been sent 8668 * and the renegotiation has not been started yet; 8669 * nothing needs to be done in this case. 8670 */ 8671 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8672 ill_capability_reset(ill, B_TRUE); 8673 ipsq_current_finish(ipsq); 8674 break; 8675 8676 case DL_NOTE_ALLOWED_IPS: 8677 ill_set_allowed_ips(ill, mp); 8678 break; 8679 default: 8680 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8681 "type 0x%x for DL_NOTIFY_IND\n", 8682 notify->dl_notification)); 8683 break; 8684 } 8685 8686 /* 8687 * As this is an asynchronous operation, we 8688 * should not call ill_dlpi_done 8689 */ 8690 break; 8691 } 8692 case DL_NOTIFY_ACK: { 8693 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8694 8695 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8696 ill->ill_note_link = 1; 8697 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8698 break; 8699 } 8700 case DL_PHYS_ADDR_ACK: { 8701 /* 8702 * As part of plumbing the interface via SIOCSLIFNAME, 8703 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8704 * whose answers we receive here. As each answer is received, 8705 * we call ill_dlpi_done() to dispatch the next request as 8706 * we're processing the current one. Once all answers have 8707 * been received, we use ipsq_pending_mp_get() to dequeue the 8708 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8709 * is invoked from an ill queue, conn_oper_pending_ill is not 8710 * available, but we know the ioctl is pending on ill_wq.) 8711 */ 8712 uint_t paddrlen, paddroff; 8713 uint8_t *addr; 8714 8715 paddrreq = ill->ill_phys_addr_pend; 8716 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8717 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8718 addr = mp->b_rptr + paddroff; 8719 8720 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8721 if (paddrreq == DL_IPV6_TOKEN) { 8722 /* 8723 * bcopy to low-order bits of ill_token 8724 * 8725 * XXX Temporary hack - currently, all known tokens 8726 * are 64 bits, so I'll cheat for the moment. 8727 */ 8728 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8729 ill->ill_token_length = paddrlen; 8730 break; 8731 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8732 ASSERT(ill->ill_nd_lla_mp == NULL); 8733 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8734 mp = NULL; 8735 break; 8736 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8737 ASSERT(ill->ill_dest_addr_mp == NULL); 8738 ill->ill_dest_addr_mp = mp; 8739 ill->ill_dest_addr = addr; 8740 mp = NULL; 8741 if (ill->ill_isv6) { 8742 ill_setdesttoken(ill); 8743 ipif_setdestlinklocal(ill->ill_ipif); 8744 } 8745 break; 8746 } 8747 8748 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8749 ASSERT(ill->ill_phys_addr_mp == NULL); 8750 if (!ill->ill_ifname_pending) 8751 break; 8752 ill->ill_ifname_pending = 0; 8753 if (!ioctl_aborted) 8754 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8755 if (mp1 != NULL) { 8756 ASSERT(connp == NULL); 8757 q = ill->ill_wq; 8758 } 8759 /* 8760 * If any error acks received during the plumbing sequence, 8761 * ill_ifname_pending_err will be set. Break out and send up 8762 * the error to the pending ioctl. 8763 */ 8764 if (ill->ill_ifname_pending_err != 0) { 8765 err = ill->ill_ifname_pending_err; 8766 ill->ill_ifname_pending_err = 0; 8767 break; 8768 } 8769 8770 ill->ill_phys_addr_mp = mp; 8771 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8772 mp = NULL; 8773 8774 /* 8775 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8776 * provider doesn't support physical addresses. We check both 8777 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8778 * not have physical addresses, but historically adversises a 8779 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8780 * its DL_PHYS_ADDR_ACK. 8781 */ 8782 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8783 ill->ill_phys_addr = NULL; 8784 } else if (paddrlen != ill->ill_phys_addr_length) { 8785 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8786 paddrlen, ill->ill_phys_addr_length)); 8787 err = EINVAL; 8788 break; 8789 } 8790 8791 if (ill->ill_nd_lla_mp == NULL) { 8792 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8793 err = ENOMEM; 8794 break; 8795 } 8796 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8797 } 8798 8799 if (ill->ill_isv6) { 8800 ill_setdefaulttoken(ill); 8801 ipif_setlinklocal(ill->ill_ipif); 8802 } 8803 break; 8804 } 8805 case DL_OK_ACK: 8806 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8807 dl_primstr((int)dloa->dl_correct_primitive), 8808 dloa->dl_correct_primitive)); 8809 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8810 char *, dl_primstr(dloa->dl_correct_primitive), 8811 ill_t *, ill); 8812 8813 switch (dloa->dl_correct_primitive) { 8814 case DL_ENABMULTI_REQ: 8815 case DL_DISABMULTI_REQ: 8816 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8817 break; 8818 case DL_PROMISCON_REQ: 8819 case DL_PROMISCOFF_REQ: 8820 case DL_UNBIND_REQ: 8821 case DL_ATTACH_REQ: 8822 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8823 break; 8824 } 8825 break; 8826 default: 8827 break; 8828 } 8829 8830 freemsg(mp); 8831 if (mp1 == NULL) 8832 return; 8833 8834 /* 8835 * The operation must complete without EINPROGRESS since 8836 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8837 * the operation will be stuck forever inside the IPSQ. 8838 */ 8839 ASSERT(err != EINPROGRESS); 8840 8841 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8842 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8843 ipif_t *, NULL); 8844 8845 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8846 case 0: 8847 ipsq_current_finish(ipsq); 8848 break; 8849 8850 case SIOCSLIFNAME: 8851 case IF_UNITSEL: { 8852 ill_t *ill_other = ILL_OTHER(ill); 8853 8854 /* 8855 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8856 * ill has a peer which is in an IPMP group, then place ill 8857 * into the same group. One catch: although ifconfig plumbs 8858 * the appropriate IPMP meta-interface prior to plumbing this 8859 * ill, it is possible for multiple ifconfig applications to 8860 * race (or for another application to adjust plumbing), in 8861 * which case the IPMP meta-interface we need will be missing. 8862 * If so, kick the phyint out of the group. 8863 */ 8864 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8865 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8866 ipmp_illgrp_t *illg; 8867 8868 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8869 if (illg == NULL) 8870 ipmp_phyint_leave_grp(ill->ill_phyint); 8871 else 8872 ipmp_ill_join_illgrp(ill, illg); 8873 } 8874 8875 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8876 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8877 else 8878 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8879 break; 8880 } 8881 case SIOCLIFADDIF: 8882 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8883 break; 8884 8885 default: 8886 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8887 break; 8888 } 8889 } 8890 8891 /* 8892 * ip_rput_other is called by ip_rput to handle messages modifying the global 8893 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8894 */ 8895 /* ARGSUSED */ 8896 void 8897 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8898 { 8899 ill_t *ill = q->q_ptr; 8900 struct iocblk *iocp; 8901 8902 ip1dbg(("ip_rput_other ")); 8903 if (ipsq != NULL) { 8904 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8905 ASSERT(ipsq->ipsq_xop == 8906 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8907 } 8908 8909 switch (mp->b_datap->db_type) { 8910 case M_ERROR: 8911 case M_HANGUP: 8912 /* 8913 * The device has a problem. We force the ILL down. It can 8914 * be brought up again manually using SIOCSIFFLAGS (via 8915 * ifconfig or equivalent). 8916 */ 8917 ASSERT(ipsq != NULL); 8918 if (mp->b_rptr < mp->b_wptr) 8919 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8920 if (ill->ill_error == 0) 8921 ill->ill_error = ENXIO; 8922 if (!ill_down_start(q, mp)) 8923 return; 8924 ipif_all_down_tail(ipsq, q, mp, NULL); 8925 break; 8926 case M_IOCNAK: { 8927 iocp = (struct iocblk *)mp->b_rptr; 8928 8929 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8930 /* 8931 * If this was the first attempt, turn off the fastpath 8932 * probing. 8933 */ 8934 mutex_enter(&ill->ill_lock); 8935 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8936 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8937 mutex_exit(&ill->ill_lock); 8938 /* 8939 * don't flush the nce_t entries: we use them 8940 * as an index to the ncec itself. 8941 */ 8942 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8943 ill->ill_name)); 8944 } else { 8945 mutex_exit(&ill->ill_lock); 8946 } 8947 freemsg(mp); 8948 break; 8949 } 8950 default: 8951 ASSERT(0); 8952 break; 8953 } 8954 } 8955 8956 /* 8957 * Update any source route, record route or timestamp options 8958 * When it fails it has consumed the message and BUMPed the MIB. 8959 */ 8960 boolean_t 8961 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8962 ip_recv_attr_t *ira) 8963 { 8964 ipoptp_t opts; 8965 uchar_t *opt; 8966 uint8_t optval; 8967 uint8_t optlen; 8968 ipaddr_t dst; 8969 ipaddr_t ifaddr; 8970 uint32_t ts; 8971 timestruc_t now; 8972 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8973 8974 ip2dbg(("ip_forward_options\n")); 8975 dst = ipha->ipha_dst; 8976 for (optval = ipoptp_first(&opts, ipha); 8977 optval != IPOPT_EOL; 8978 optval = ipoptp_next(&opts)) { 8979 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8980 opt = opts.ipoptp_cur; 8981 optlen = opts.ipoptp_len; 8982 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8983 optval, opts.ipoptp_len)); 8984 switch (optval) { 8985 uint32_t off; 8986 case IPOPT_SSRR: 8987 case IPOPT_LSRR: 8988 /* Check if adminstratively disabled */ 8989 if (!ipst->ips_ip_forward_src_routed) { 8990 BUMP_MIB(dst_ill->ill_ip_mib, 8991 ipIfStatsForwProhibits); 8992 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8993 mp, dst_ill); 8994 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8995 ira); 8996 return (B_FALSE); 8997 } 8998 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8999 /* 9000 * Must be partial since ip_input_options 9001 * checked for strict. 9002 */ 9003 break; 9004 } 9005 off = opt[IPOPT_OFFSET]; 9006 off--; 9007 redo_srr: 9008 if (optlen < IP_ADDR_LEN || 9009 off > optlen - IP_ADDR_LEN) { 9010 /* End of source route */ 9011 ip1dbg(( 9012 "ip_forward_options: end of SR\n")); 9013 break; 9014 } 9015 /* Pick a reasonable address on the outbound if */ 9016 ASSERT(dst_ill != NULL); 9017 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9018 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9019 NULL) != 0) { 9020 /* No source! Shouldn't happen */ 9021 ifaddr = INADDR_ANY; 9022 } 9023 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9024 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9025 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9026 ntohl(dst))); 9027 9028 /* 9029 * Check if our address is present more than 9030 * once as consecutive hops in source route. 9031 */ 9032 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9033 off += IP_ADDR_LEN; 9034 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9035 goto redo_srr; 9036 } 9037 ipha->ipha_dst = dst; 9038 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9039 break; 9040 case IPOPT_RR: 9041 off = opt[IPOPT_OFFSET]; 9042 off--; 9043 if (optlen < IP_ADDR_LEN || 9044 off > optlen - IP_ADDR_LEN) { 9045 /* No more room - ignore */ 9046 ip1dbg(( 9047 "ip_forward_options: end of RR\n")); 9048 break; 9049 } 9050 /* Pick a reasonable address on the outbound if */ 9051 ASSERT(dst_ill != NULL); 9052 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9053 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9054 NULL) != 0) { 9055 /* No source! Shouldn't happen */ 9056 ifaddr = INADDR_ANY; 9057 } 9058 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9059 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9060 break; 9061 case IPOPT_TS: 9062 /* Insert timestamp if there is room */ 9063 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9064 case IPOPT_TS_TSONLY: 9065 off = IPOPT_TS_TIMELEN; 9066 break; 9067 case IPOPT_TS_PRESPEC: 9068 case IPOPT_TS_PRESPEC_RFC791: 9069 /* Verify that the address matched */ 9070 off = opt[IPOPT_OFFSET] - 1; 9071 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9072 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9073 /* Not for us */ 9074 break; 9075 } 9076 /* FALLTHRU */ 9077 case IPOPT_TS_TSANDADDR: 9078 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9079 break; 9080 default: 9081 /* 9082 * ip_*put_options should have already 9083 * dropped this packet. 9084 */ 9085 cmn_err(CE_PANIC, "ip_forward_options: " 9086 "unknown IT - bug in ip_input_options?\n"); 9087 return (B_TRUE); /* Keep "lint" happy */ 9088 } 9089 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9090 /* Increase overflow counter */ 9091 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9092 opt[IPOPT_POS_OV_FLG] = 9093 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9094 (off << 4)); 9095 break; 9096 } 9097 off = opt[IPOPT_OFFSET] - 1; 9098 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9099 case IPOPT_TS_PRESPEC: 9100 case IPOPT_TS_PRESPEC_RFC791: 9101 case IPOPT_TS_TSANDADDR: 9102 /* Pick a reasonable addr on the outbound if */ 9103 ASSERT(dst_ill != NULL); 9104 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9105 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9106 NULL, NULL) != 0) { 9107 /* No source! Shouldn't happen */ 9108 ifaddr = INADDR_ANY; 9109 } 9110 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9111 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9112 /* FALLTHRU */ 9113 case IPOPT_TS_TSONLY: 9114 off = opt[IPOPT_OFFSET] - 1; 9115 /* Compute # of milliseconds since midnight */ 9116 gethrestime(&now); 9117 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9118 now.tv_nsec / (NANOSEC / MILLISEC); 9119 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9120 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9121 break; 9122 } 9123 break; 9124 } 9125 } 9126 return (B_TRUE); 9127 } 9128 9129 /* 9130 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9131 * returns 'true' if there are still fragments left on the queue, in 9132 * which case we restart the timer. 9133 */ 9134 void 9135 ill_frag_timer(void *arg) 9136 { 9137 ill_t *ill = (ill_t *)arg; 9138 boolean_t frag_pending; 9139 ip_stack_t *ipst = ill->ill_ipst; 9140 time_t timeout; 9141 9142 mutex_enter(&ill->ill_lock); 9143 ASSERT(!ill->ill_fragtimer_executing); 9144 if (ill->ill_state_flags & ILL_CONDEMNED) { 9145 ill->ill_frag_timer_id = 0; 9146 mutex_exit(&ill->ill_lock); 9147 return; 9148 } 9149 ill->ill_fragtimer_executing = 1; 9150 mutex_exit(&ill->ill_lock); 9151 9152 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9153 ipst->ips_ip_reassembly_timeout); 9154 9155 frag_pending = ill_frag_timeout(ill, timeout); 9156 9157 /* 9158 * Restart the timer, if we have fragments pending or if someone 9159 * wanted us to be scheduled again. 9160 */ 9161 mutex_enter(&ill->ill_lock); 9162 ill->ill_fragtimer_executing = 0; 9163 ill->ill_frag_timer_id = 0; 9164 if (frag_pending || ill->ill_fragtimer_needrestart) 9165 ill_frag_timer_start(ill); 9166 mutex_exit(&ill->ill_lock); 9167 } 9168 9169 void 9170 ill_frag_timer_start(ill_t *ill) 9171 { 9172 ip_stack_t *ipst = ill->ill_ipst; 9173 clock_t timeo_ms; 9174 9175 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9176 9177 /* If the ill is closing or opening don't proceed */ 9178 if (ill->ill_state_flags & ILL_CONDEMNED) 9179 return; 9180 9181 if (ill->ill_fragtimer_executing) { 9182 /* 9183 * ill_frag_timer is currently executing. Just record the 9184 * the fact that we want the timer to be restarted. 9185 * ill_frag_timer will post a timeout before it returns, 9186 * ensuring it will be called again. 9187 */ 9188 ill->ill_fragtimer_needrestart = 1; 9189 return; 9190 } 9191 9192 if (ill->ill_frag_timer_id == 0) { 9193 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9194 ipst->ips_ip_reassembly_timeout) * SECONDS; 9195 9196 /* 9197 * The timer is neither running nor is the timeout handler 9198 * executing. Post a timeout so that ill_frag_timer will be 9199 * called 9200 */ 9201 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9202 MSEC_TO_TICK(timeo_ms >> 1)); 9203 ill->ill_fragtimer_needrestart = 0; 9204 } 9205 } 9206 9207 /* 9208 * Update any source route, record route or timestamp options. 9209 * Check that we are at end of strict source route. 9210 * The options have already been checked for sanity in ip_input_options(). 9211 */ 9212 boolean_t 9213 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9214 { 9215 ipoptp_t opts; 9216 uchar_t *opt; 9217 uint8_t optval; 9218 uint8_t optlen; 9219 ipaddr_t dst; 9220 ipaddr_t ifaddr; 9221 uint32_t ts; 9222 timestruc_t now; 9223 ill_t *ill = ira->ira_ill; 9224 ip_stack_t *ipst = ill->ill_ipst; 9225 9226 ip2dbg(("ip_input_local_options\n")); 9227 9228 for (optval = ipoptp_first(&opts, ipha); 9229 optval != IPOPT_EOL; 9230 optval = ipoptp_next(&opts)) { 9231 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9232 opt = opts.ipoptp_cur; 9233 optlen = opts.ipoptp_len; 9234 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9235 optval, optlen)); 9236 switch (optval) { 9237 uint32_t off; 9238 case IPOPT_SSRR: 9239 case IPOPT_LSRR: 9240 off = opt[IPOPT_OFFSET]; 9241 off--; 9242 if (optlen < IP_ADDR_LEN || 9243 off > optlen - IP_ADDR_LEN) { 9244 /* End of source route */ 9245 ip1dbg(("ip_input_local_options: end of SR\n")); 9246 break; 9247 } 9248 /* 9249 * This will only happen if two consecutive entries 9250 * in the source route contains our address or if 9251 * it is a packet with a loose source route which 9252 * reaches us before consuming the whole source route 9253 */ 9254 ip1dbg(("ip_input_local_options: not end of SR\n")); 9255 if (optval == IPOPT_SSRR) { 9256 goto bad_src_route; 9257 } 9258 /* 9259 * Hack: instead of dropping the packet truncate the 9260 * source route to what has been used by filling the 9261 * rest with IPOPT_NOP. 9262 */ 9263 opt[IPOPT_OLEN] = (uint8_t)off; 9264 while (off < optlen) { 9265 opt[off++] = IPOPT_NOP; 9266 } 9267 break; 9268 case IPOPT_RR: 9269 off = opt[IPOPT_OFFSET]; 9270 off--; 9271 if (optlen < IP_ADDR_LEN || 9272 off > optlen - IP_ADDR_LEN) { 9273 /* No more room - ignore */ 9274 ip1dbg(( 9275 "ip_input_local_options: end of RR\n")); 9276 break; 9277 } 9278 /* Pick a reasonable address on the outbound if */ 9279 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9280 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9281 NULL) != 0) { 9282 /* No source! Shouldn't happen */ 9283 ifaddr = INADDR_ANY; 9284 } 9285 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9286 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9287 break; 9288 case IPOPT_TS: 9289 /* Insert timestamp if there is romm */ 9290 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9291 case IPOPT_TS_TSONLY: 9292 off = IPOPT_TS_TIMELEN; 9293 break; 9294 case IPOPT_TS_PRESPEC: 9295 case IPOPT_TS_PRESPEC_RFC791: 9296 /* Verify that the address matched */ 9297 off = opt[IPOPT_OFFSET] - 1; 9298 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9299 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9300 /* Not for us */ 9301 break; 9302 } 9303 /* FALLTHRU */ 9304 case IPOPT_TS_TSANDADDR: 9305 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9306 break; 9307 default: 9308 /* 9309 * ip_*put_options should have already 9310 * dropped this packet. 9311 */ 9312 cmn_err(CE_PANIC, "ip_input_local_options: " 9313 "unknown IT - bug in ip_input_options?\n"); 9314 return (B_TRUE); /* Keep "lint" happy */ 9315 } 9316 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9317 /* Increase overflow counter */ 9318 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9319 opt[IPOPT_POS_OV_FLG] = 9320 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9321 (off << 4)); 9322 break; 9323 } 9324 off = opt[IPOPT_OFFSET] - 1; 9325 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9326 case IPOPT_TS_PRESPEC: 9327 case IPOPT_TS_PRESPEC_RFC791: 9328 case IPOPT_TS_TSANDADDR: 9329 /* Pick a reasonable addr on the outbound if */ 9330 if (ip_select_source_v4(ill, INADDR_ANY, 9331 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9332 &ifaddr, NULL, NULL) != 0) { 9333 /* No source! Shouldn't happen */ 9334 ifaddr = INADDR_ANY; 9335 } 9336 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9337 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9338 /* FALLTHRU */ 9339 case IPOPT_TS_TSONLY: 9340 off = opt[IPOPT_OFFSET] - 1; 9341 /* Compute # of milliseconds since midnight */ 9342 gethrestime(&now); 9343 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9344 now.tv_nsec / (NANOSEC / MILLISEC); 9345 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9346 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9347 break; 9348 } 9349 break; 9350 } 9351 } 9352 return (B_TRUE); 9353 9354 bad_src_route: 9355 /* make sure we clear any indication of a hardware checksum */ 9356 DB_CKSUMFLAGS(mp) = 0; 9357 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9358 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9359 return (B_FALSE); 9360 9361 } 9362 9363 /* 9364 * Process IP options in an inbound packet. Always returns the nexthop. 9365 * Normally this is the passed in nexthop, but if there is an option 9366 * that effects the nexthop (such as a source route) that will be returned. 9367 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9368 * and mp freed. 9369 */ 9370 ipaddr_t 9371 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9372 ip_recv_attr_t *ira, int *errorp) 9373 { 9374 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9375 ipoptp_t opts; 9376 uchar_t *opt; 9377 uint8_t optval; 9378 uint8_t optlen; 9379 intptr_t code = 0; 9380 ire_t *ire; 9381 9382 ip2dbg(("ip_input_options\n")); 9383 *errorp = 0; 9384 for (optval = ipoptp_first(&opts, ipha); 9385 optval != IPOPT_EOL; 9386 optval = ipoptp_next(&opts)) { 9387 opt = opts.ipoptp_cur; 9388 optlen = opts.ipoptp_len; 9389 ip2dbg(("ip_input_options: opt %d, len %d\n", 9390 optval, optlen)); 9391 /* 9392 * Note: we need to verify the checksum before we 9393 * modify anything thus this routine only extracts the next 9394 * hop dst from any source route. 9395 */ 9396 switch (optval) { 9397 uint32_t off; 9398 case IPOPT_SSRR: 9399 case IPOPT_LSRR: 9400 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9401 if (optval == IPOPT_SSRR) { 9402 ip1dbg(("ip_input_options: not next" 9403 " strict source route 0x%x\n", 9404 ntohl(dst))); 9405 code = (char *)&ipha->ipha_dst - 9406 (char *)ipha; 9407 goto param_prob; /* RouterReq's */ 9408 } 9409 ip2dbg(("ip_input_options: " 9410 "not next source route 0x%x\n", 9411 ntohl(dst))); 9412 break; 9413 } 9414 9415 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9416 ip1dbg(( 9417 "ip_input_options: bad option offset\n")); 9418 code = (char *)&opt[IPOPT_OLEN] - 9419 (char *)ipha; 9420 goto param_prob; 9421 } 9422 off = opt[IPOPT_OFFSET]; 9423 off--; 9424 redo_srr: 9425 if (optlen < IP_ADDR_LEN || 9426 off > optlen - IP_ADDR_LEN) { 9427 /* End of source route */ 9428 ip1dbg(("ip_input_options: end of SR\n")); 9429 break; 9430 } 9431 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9432 ip1dbg(("ip_input_options: next hop 0x%x\n", 9433 ntohl(dst))); 9434 9435 /* 9436 * Check if our address is present more than 9437 * once as consecutive hops in source route. 9438 * XXX verify per-interface ip_forwarding 9439 * for source route? 9440 */ 9441 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9442 off += IP_ADDR_LEN; 9443 goto redo_srr; 9444 } 9445 9446 if (dst == htonl(INADDR_LOOPBACK)) { 9447 ip1dbg(("ip_input_options: loopback addr in " 9448 "source route!\n")); 9449 goto bad_src_route; 9450 } 9451 /* 9452 * For strict: verify that dst is directly 9453 * reachable. 9454 */ 9455 if (optval == IPOPT_SSRR) { 9456 ire = ire_ftable_lookup_v4(dst, 0, 0, 9457 IRE_INTERFACE, NULL, ALL_ZONES, 9458 ira->ira_tsl, 9459 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9460 NULL); 9461 if (ire == NULL) { 9462 ip1dbg(("ip_input_options: SSRR not " 9463 "directly reachable: 0x%x\n", 9464 ntohl(dst))); 9465 goto bad_src_route; 9466 } 9467 ire_refrele(ire); 9468 } 9469 /* 9470 * Defer update of the offset and the record route 9471 * until the packet is forwarded. 9472 */ 9473 break; 9474 case IPOPT_RR: 9475 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9476 ip1dbg(( 9477 "ip_input_options: bad option offset\n")); 9478 code = (char *)&opt[IPOPT_OLEN] - 9479 (char *)ipha; 9480 goto param_prob; 9481 } 9482 break; 9483 case IPOPT_TS: 9484 /* 9485 * Verify that length >= 5 and that there is either 9486 * room for another timestamp or that the overflow 9487 * counter is not maxed out. 9488 */ 9489 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9490 if (optlen < IPOPT_MINLEN_IT) { 9491 goto param_prob; 9492 } 9493 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9494 ip1dbg(( 9495 "ip_input_options: bad option offset\n")); 9496 code = (char *)&opt[IPOPT_OFFSET] - 9497 (char *)ipha; 9498 goto param_prob; 9499 } 9500 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9501 case IPOPT_TS_TSONLY: 9502 off = IPOPT_TS_TIMELEN; 9503 break; 9504 case IPOPT_TS_TSANDADDR: 9505 case IPOPT_TS_PRESPEC: 9506 case IPOPT_TS_PRESPEC_RFC791: 9507 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9508 break; 9509 default: 9510 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9511 (char *)ipha; 9512 goto param_prob; 9513 } 9514 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9515 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9516 /* 9517 * No room and the overflow counter is 15 9518 * already. 9519 */ 9520 goto param_prob; 9521 } 9522 break; 9523 } 9524 } 9525 9526 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9527 return (dst); 9528 } 9529 9530 ip1dbg(("ip_input_options: error processing IP options.")); 9531 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9532 9533 param_prob: 9534 /* make sure we clear any indication of a hardware checksum */ 9535 DB_CKSUMFLAGS(mp) = 0; 9536 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9537 icmp_param_problem(mp, (uint8_t)code, ira); 9538 *errorp = -1; 9539 return (dst); 9540 9541 bad_src_route: 9542 /* make sure we clear any indication of a hardware checksum */ 9543 DB_CKSUMFLAGS(mp) = 0; 9544 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9545 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9546 *errorp = -1; 9547 return (dst); 9548 } 9549 9550 /* 9551 * IP & ICMP info in >=14 msg's ... 9552 * - ip fixed part (mib2_ip_t) 9553 * - icmp fixed part (mib2_icmp_t) 9554 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9555 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9556 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9557 * - ipRouteAttributeTable (ip 102) labeled routes 9558 * - ip multicast membership (ip_member_t) 9559 * - ip multicast source filtering (ip_grpsrc_t) 9560 * - igmp fixed part (struct igmpstat) 9561 * - multicast routing stats (struct mrtstat) 9562 * - multicast routing vifs (array of struct vifctl) 9563 * - multicast routing routes (array of struct mfcctl) 9564 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9565 * One per ill plus one generic 9566 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9567 * One per ill plus one generic 9568 * - ipv6RouteEntry all IPv6 IREs 9569 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9570 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9571 * - ipv6AddrEntry all IPv6 ipifs 9572 * - ipv6 multicast membership (ipv6_member_t) 9573 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9574 * 9575 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9576 * already filled in by the caller. 9577 * If legacy_req is true then MIB structures needs to be truncated to their 9578 * legacy sizes before being returned. 9579 * Return value of 0 indicates that no messages were sent and caller 9580 * should free mpctl. 9581 */ 9582 int 9583 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9584 { 9585 ip_stack_t *ipst; 9586 sctp_stack_t *sctps; 9587 9588 if (q->q_next != NULL) { 9589 ipst = ILLQ_TO_IPST(q); 9590 } else { 9591 ipst = CONNQ_TO_IPST(q); 9592 } 9593 ASSERT(ipst != NULL); 9594 sctps = ipst->ips_netstack->netstack_sctp; 9595 9596 if (mpctl == NULL || mpctl->b_cont == NULL) { 9597 return (0); 9598 } 9599 9600 /* 9601 * For the purposes of the (broken) packet shell use 9602 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9603 * to make TCP and UDP appear first in the list of mib items. 9604 * TBD: We could expand this and use it in netstat so that 9605 * the kernel doesn't have to produce large tables (connections, 9606 * routes, etc) when netstat only wants the statistics or a particular 9607 * table. 9608 */ 9609 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9610 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9611 return (1); 9612 } 9613 } 9614 9615 if (level != MIB2_TCP) { 9616 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9617 return (1); 9618 } 9619 } 9620 9621 if (level != MIB2_UDP) { 9622 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9623 return (1); 9624 } 9625 } 9626 9627 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9628 ipst, legacy_req)) == NULL) { 9629 return (1); 9630 } 9631 9632 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9633 legacy_req)) == NULL) { 9634 return (1); 9635 } 9636 9637 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9638 return (1); 9639 } 9640 9641 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9642 return (1); 9643 } 9644 9645 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9646 return (1); 9647 } 9648 9649 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9650 return (1); 9651 } 9652 9653 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9654 legacy_req)) == NULL) { 9655 return (1); 9656 } 9657 9658 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9659 legacy_req)) == NULL) { 9660 return (1); 9661 } 9662 9663 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9664 return (1); 9665 } 9666 9667 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9668 return (1); 9669 } 9670 9671 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9672 return (1); 9673 } 9674 9675 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9676 return (1); 9677 } 9678 9679 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9680 return (1); 9681 } 9682 9683 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9684 return (1); 9685 } 9686 9687 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9688 if (mpctl == NULL) 9689 return (1); 9690 9691 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9692 if (mpctl == NULL) 9693 return (1); 9694 9695 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9696 return (1); 9697 } 9698 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9699 return (1); 9700 } 9701 freemsg(mpctl); 9702 return (1); 9703 } 9704 9705 /* Get global (legacy) IPv4 statistics */ 9706 static mblk_t * 9707 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9708 ip_stack_t *ipst, boolean_t legacy_req) 9709 { 9710 mib2_ip_t old_ip_mib; 9711 struct opthdr *optp; 9712 mblk_t *mp2ctl; 9713 mib2_ipAddrEntry_t mae; 9714 9715 /* 9716 * make a copy of the original message 9717 */ 9718 mp2ctl = copymsg(mpctl); 9719 9720 /* fixed length IP structure... */ 9721 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9722 optp->level = MIB2_IP; 9723 optp->name = 0; 9724 SET_MIB(old_ip_mib.ipForwarding, 9725 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9726 SET_MIB(old_ip_mib.ipDefaultTTL, 9727 (uint32_t)ipst->ips_ip_def_ttl); 9728 SET_MIB(old_ip_mib.ipReasmTimeout, 9729 ipst->ips_ip_reassembly_timeout); 9730 SET_MIB(old_ip_mib.ipAddrEntrySize, 9731 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9732 sizeof (mib2_ipAddrEntry_t)); 9733 SET_MIB(old_ip_mib.ipRouteEntrySize, 9734 sizeof (mib2_ipRouteEntry_t)); 9735 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9736 sizeof (mib2_ipNetToMediaEntry_t)); 9737 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9738 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9739 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9740 sizeof (mib2_ipAttributeEntry_t)); 9741 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9742 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9743 9744 /* 9745 * Grab the statistics from the new IP MIB 9746 */ 9747 SET_MIB(old_ip_mib.ipInReceives, 9748 (uint32_t)ipmib->ipIfStatsHCInReceives); 9749 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9750 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9751 SET_MIB(old_ip_mib.ipForwDatagrams, 9752 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9753 SET_MIB(old_ip_mib.ipInUnknownProtos, 9754 ipmib->ipIfStatsInUnknownProtos); 9755 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9756 SET_MIB(old_ip_mib.ipInDelivers, 9757 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9758 SET_MIB(old_ip_mib.ipOutRequests, 9759 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9760 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9761 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9762 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9763 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9764 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9765 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9766 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9767 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9768 9769 /* ipRoutingDiscards is not being used */ 9770 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9771 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9772 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9773 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9774 SET_MIB(old_ip_mib.ipReasmDuplicates, 9775 ipmib->ipIfStatsReasmDuplicates); 9776 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9777 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9778 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9779 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9780 SET_MIB(old_ip_mib.rawipInOverflows, 9781 ipmib->rawipIfStatsInOverflows); 9782 9783 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9784 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9785 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9786 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9787 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9788 ipmib->ipIfStatsOutSwitchIPVersion); 9789 9790 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9791 (int)sizeof (old_ip_mib))) { 9792 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9793 (uint_t)sizeof (old_ip_mib))); 9794 } 9795 9796 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9797 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9798 (int)optp->level, (int)optp->name, (int)optp->len)); 9799 qreply(q, mpctl); 9800 return (mp2ctl); 9801 } 9802 9803 /* Per interface IPv4 statistics */ 9804 static mblk_t * 9805 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9806 boolean_t legacy_req) 9807 { 9808 struct opthdr *optp; 9809 mblk_t *mp2ctl; 9810 ill_t *ill; 9811 ill_walk_context_t ctx; 9812 mblk_t *mp_tail = NULL; 9813 mib2_ipIfStatsEntry_t global_ip_mib; 9814 mib2_ipAddrEntry_t mae; 9815 9816 /* 9817 * Make a copy of the original message 9818 */ 9819 mp2ctl = copymsg(mpctl); 9820 9821 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9822 optp->level = MIB2_IP; 9823 optp->name = MIB2_IP_TRAFFIC_STATS; 9824 /* Include "unknown interface" ip_mib */ 9825 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9826 ipst->ips_ip_mib.ipIfStatsIfIndex = 9827 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9828 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9829 (ipst->ips_ip_forwarding ? 1 : 2)); 9830 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9831 (uint32_t)ipst->ips_ip_def_ttl); 9832 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9833 sizeof (mib2_ipIfStatsEntry_t)); 9834 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9835 sizeof (mib2_ipAddrEntry_t)); 9836 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9837 sizeof (mib2_ipRouteEntry_t)); 9838 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9839 sizeof (mib2_ipNetToMediaEntry_t)); 9840 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9841 sizeof (ip_member_t)); 9842 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9843 sizeof (ip_grpsrc_t)); 9844 9845 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9846 9847 if (legacy_req) { 9848 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9849 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9850 } 9851 9852 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9853 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9854 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9855 "failed to allocate %u bytes\n", 9856 (uint_t)sizeof (global_ip_mib))); 9857 } 9858 9859 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9860 ill = ILL_START_WALK_V4(&ctx, ipst); 9861 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9862 ill->ill_ip_mib->ipIfStatsIfIndex = 9863 ill->ill_phyint->phyint_ifindex; 9864 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9865 (ipst->ips_ip_forwarding ? 1 : 2)); 9866 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9867 (uint32_t)ipst->ips_ip_def_ttl); 9868 9869 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9870 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9871 (char *)ill->ill_ip_mib, 9872 (int)sizeof (*ill->ill_ip_mib))) { 9873 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9874 "failed to allocate %u bytes\n", 9875 (uint_t)sizeof (*ill->ill_ip_mib))); 9876 } 9877 } 9878 rw_exit(&ipst->ips_ill_g_lock); 9879 9880 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9881 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9882 "level %d, name %d, len %d\n", 9883 (int)optp->level, (int)optp->name, (int)optp->len)); 9884 qreply(q, mpctl); 9885 9886 if (mp2ctl == NULL) 9887 return (NULL); 9888 9889 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9890 legacy_req)); 9891 } 9892 9893 /* Global IPv4 ICMP statistics */ 9894 static mblk_t * 9895 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9896 { 9897 struct opthdr *optp; 9898 mblk_t *mp2ctl; 9899 9900 /* 9901 * Make a copy of the original message 9902 */ 9903 mp2ctl = copymsg(mpctl); 9904 9905 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9906 optp->level = MIB2_ICMP; 9907 optp->name = 0; 9908 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9909 (int)sizeof (ipst->ips_icmp_mib))) { 9910 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9911 (uint_t)sizeof (ipst->ips_icmp_mib))); 9912 } 9913 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9914 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9915 (int)optp->level, (int)optp->name, (int)optp->len)); 9916 qreply(q, mpctl); 9917 return (mp2ctl); 9918 } 9919 9920 /* Global IPv4 IGMP statistics */ 9921 static mblk_t * 9922 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9923 { 9924 struct opthdr *optp; 9925 mblk_t *mp2ctl; 9926 9927 /* 9928 * make a copy of the original message 9929 */ 9930 mp2ctl = copymsg(mpctl); 9931 9932 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9933 optp->level = EXPER_IGMP; 9934 optp->name = 0; 9935 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9936 (int)sizeof (ipst->ips_igmpstat))) { 9937 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9938 (uint_t)sizeof (ipst->ips_igmpstat))); 9939 } 9940 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9941 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9942 (int)optp->level, (int)optp->name, (int)optp->len)); 9943 qreply(q, mpctl); 9944 return (mp2ctl); 9945 } 9946 9947 /* Global IPv4 Multicast Routing statistics */ 9948 static mblk_t * 9949 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9950 { 9951 struct opthdr *optp; 9952 mblk_t *mp2ctl; 9953 9954 /* 9955 * make a copy of the original message 9956 */ 9957 mp2ctl = copymsg(mpctl); 9958 9959 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9960 optp->level = EXPER_DVMRP; 9961 optp->name = 0; 9962 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9963 ip0dbg(("ip_mroute_stats: failed\n")); 9964 } 9965 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9966 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9967 (int)optp->level, (int)optp->name, (int)optp->len)); 9968 qreply(q, mpctl); 9969 return (mp2ctl); 9970 } 9971 9972 /* IPv4 address information */ 9973 static mblk_t * 9974 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9975 boolean_t legacy_req) 9976 { 9977 struct opthdr *optp; 9978 mblk_t *mp2ctl; 9979 mblk_t *mp_tail = NULL; 9980 ill_t *ill; 9981 ipif_t *ipif; 9982 uint_t bitval; 9983 mib2_ipAddrEntry_t mae; 9984 size_t mae_size; 9985 zoneid_t zoneid; 9986 ill_walk_context_t ctx; 9987 9988 /* 9989 * make a copy of the original message 9990 */ 9991 mp2ctl = copymsg(mpctl); 9992 9993 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9994 sizeof (mib2_ipAddrEntry_t); 9995 9996 /* ipAddrEntryTable */ 9997 9998 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9999 optp->level = MIB2_IP; 10000 optp->name = MIB2_IP_ADDR; 10001 zoneid = Q_TO_CONN(q)->conn_zoneid; 10002 10003 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10004 ill = ILL_START_WALK_V4(&ctx, ipst); 10005 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10006 for (ipif = ill->ill_ipif; ipif != NULL; 10007 ipif = ipif->ipif_next) { 10008 if (ipif->ipif_zoneid != zoneid && 10009 ipif->ipif_zoneid != ALL_ZONES) 10010 continue; 10011 /* Sum of count from dead IRE_LO* and our current */ 10012 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10013 if (ipif->ipif_ire_local != NULL) { 10014 mae.ipAdEntInfo.ae_ibcnt += 10015 ipif->ipif_ire_local->ire_ib_pkt_count; 10016 } 10017 mae.ipAdEntInfo.ae_obcnt = 0; 10018 mae.ipAdEntInfo.ae_focnt = 0; 10019 10020 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10021 OCTET_LENGTH); 10022 mae.ipAdEntIfIndex.o_length = 10023 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10024 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10025 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10026 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10027 mae.ipAdEntInfo.ae_subnet_len = 10028 ip_mask_to_plen(ipif->ipif_net_mask); 10029 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10030 for (bitval = 1; 10031 bitval && 10032 !(bitval & ipif->ipif_brd_addr); 10033 bitval <<= 1) 10034 noop; 10035 mae.ipAdEntBcastAddr = bitval; 10036 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10037 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10038 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10039 mae.ipAdEntInfo.ae_broadcast_addr = 10040 ipif->ipif_brd_addr; 10041 mae.ipAdEntInfo.ae_pp_dst_addr = 10042 ipif->ipif_pp_dst_addr; 10043 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10044 ill->ill_flags | ill->ill_phyint->phyint_flags; 10045 mae.ipAdEntRetransmitTime = 10046 ill->ill_reachable_retrans_time; 10047 10048 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10049 (char *)&mae, (int)mae_size)) { 10050 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10051 "allocate %u bytes\n", (uint_t)mae_size)); 10052 } 10053 } 10054 } 10055 rw_exit(&ipst->ips_ill_g_lock); 10056 10057 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10058 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10059 (int)optp->level, (int)optp->name, (int)optp->len)); 10060 qreply(q, mpctl); 10061 return (mp2ctl); 10062 } 10063 10064 /* IPv6 address information */ 10065 static mblk_t * 10066 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10067 boolean_t legacy_req) 10068 { 10069 struct opthdr *optp; 10070 mblk_t *mp2ctl; 10071 mblk_t *mp_tail = NULL; 10072 ill_t *ill; 10073 ipif_t *ipif; 10074 mib2_ipv6AddrEntry_t mae6; 10075 size_t mae6_size; 10076 zoneid_t zoneid; 10077 ill_walk_context_t ctx; 10078 10079 /* 10080 * make a copy of the original message 10081 */ 10082 mp2ctl = copymsg(mpctl); 10083 10084 mae6_size = (legacy_req) ? 10085 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10086 sizeof (mib2_ipv6AddrEntry_t); 10087 10088 /* ipv6AddrEntryTable */ 10089 10090 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10091 optp->level = MIB2_IP6; 10092 optp->name = MIB2_IP6_ADDR; 10093 zoneid = Q_TO_CONN(q)->conn_zoneid; 10094 10095 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10096 ill = ILL_START_WALK_V6(&ctx, ipst); 10097 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10098 for (ipif = ill->ill_ipif; ipif != NULL; 10099 ipif = ipif->ipif_next) { 10100 if (ipif->ipif_zoneid != zoneid && 10101 ipif->ipif_zoneid != ALL_ZONES) 10102 continue; 10103 /* Sum of count from dead IRE_LO* and our current */ 10104 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10105 if (ipif->ipif_ire_local != NULL) { 10106 mae6.ipv6AddrInfo.ae_ibcnt += 10107 ipif->ipif_ire_local->ire_ib_pkt_count; 10108 } 10109 mae6.ipv6AddrInfo.ae_obcnt = 0; 10110 mae6.ipv6AddrInfo.ae_focnt = 0; 10111 10112 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10113 OCTET_LENGTH); 10114 mae6.ipv6AddrIfIndex.o_length = 10115 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10116 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10117 mae6.ipv6AddrPfxLength = 10118 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10119 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10120 mae6.ipv6AddrInfo.ae_subnet_len = 10121 mae6.ipv6AddrPfxLength; 10122 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10123 10124 /* Type: stateless(1), stateful(2), unknown(3) */ 10125 if (ipif->ipif_flags & IPIF_ADDRCONF) 10126 mae6.ipv6AddrType = 1; 10127 else 10128 mae6.ipv6AddrType = 2; 10129 /* Anycast: true(1), false(2) */ 10130 if (ipif->ipif_flags & IPIF_ANYCAST) 10131 mae6.ipv6AddrAnycastFlag = 1; 10132 else 10133 mae6.ipv6AddrAnycastFlag = 2; 10134 10135 /* 10136 * Address status: preferred(1), deprecated(2), 10137 * invalid(3), inaccessible(4), unknown(5) 10138 */ 10139 if (ipif->ipif_flags & IPIF_NOLOCAL) 10140 mae6.ipv6AddrStatus = 3; 10141 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10142 mae6.ipv6AddrStatus = 2; 10143 else 10144 mae6.ipv6AddrStatus = 1; 10145 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10146 mae6.ipv6AddrInfo.ae_metric = 10147 ipif->ipif_ill->ill_metric; 10148 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10149 ipif->ipif_v6pp_dst_addr; 10150 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10151 ill->ill_flags | ill->ill_phyint->phyint_flags; 10152 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10153 mae6.ipv6AddrIdentifier = ill->ill_token; 10154 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10155 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10156 mae6.ipv6AddrRetransmitTime = 10157 ill->ill_reachable_retrans_time; 10158 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10159 (char *)&mae6, (int)mae6_size)) { 10160 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10161 "allocate %u bytes\n", 10162 (uint_t)mae6_size)); 10163 } 10164 } 10165 } 10166 rw_exit(&ipst->ips_ill_g_lock); 10167 10168 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10169 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10170 (int)optp->level, (int)optp->name, (int)optp->len)); 10171 qreply(q, mpctl); 10172 return (mp2ctl); 10173 } 10174 10175 /* IPv4 multicast group membership. */ 10176 static mblk_t * 10177 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10178 { 10179 struct opthdr *optp; 10180 mblk_t *mp2ctl; 10181 ill_t *ill; 10182 ipif_t *ipif; 10183 ilm_t *ilm; 10184 ip_member_t ipm; 10185 mblk_t *mp_tail = NULL; 10186 ill_walk_context_t ctx; 10187 zoneid_t zoneid; 10188 10189 /* 10190 * make a copy of the original message 10191 */ 10192 mp2ctl = copymsg(mpctl); 10193 zoneid = Q_TO_CONN(q)->conn_zoneid; 10194 10195 /* ipGroupMember table */ 10196 optp = (struct opthdr *)&mpctl->b_rptr[ 10197 sizeof (struct T_optmgmt_ack)]; 10198 optp->level = MIB2_IP; 10199 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10200 10201 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10202 ill = ILL_START_WALK_V4(&ctx, ipst); 10203 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10204 /* Make sure the ill isn't going away. */ 10205 if (!ill_check_and_refhold(ill)) 10206 continue; 10207 rw_exit(&ipst->ips_ill_g_lock); 10208 rw_enter(&ill->ill_mcast_lock, RW_READER); 10209 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10210 if (ilm->ilm_zoneid != zoneid && 10211 ilm->ilm_zoneid != ALL_ZONES) 10212 continue; 10213 10214 /* Is there an ipif for ilm_ifaddr? */ 10215 for (ipif = ill->ill_ipif; ipif != NULL; 10216 ipif = ipif->ipif_next) { 10217 if (!IPIF_IS_CONDEMNED(ipif) && 10218 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10219 ilm->ilm_ifaddr != INADDR_ANY) 10220 break; 10221 } 10222 if (ipif != NULL) { 10223 ipif_get_name(ipif, 10224 ipm.ipGroupMemberIfIndex.o_bytes, 10225 OCTET_LENGTH); 10226 } else { 10227 ill_get_name(ill, 10228 ipm.ipGroupMemberIfIndex.o_bytes, 10229 OCTET_LENGTH); 10230 } 10231 ipm.ipGroupMemberIfIndex.o_length = 10232 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10233 10234 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10235 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10236 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10237 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10238 (char *)&ipm, (int)sizeof (ipm))) { 10239 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10240 "failed to allocate %u bytes\n", 10241 (uint_t)sizeof (ipm))); 10242 } 10243 } 10244 rw_exit(&ill->ill_mcast_lock); 10245 ill_refrele(ill); 10246 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10247 } 10248 rw_exit(&ipst->ips_ill_g_lock); 10249 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10250 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10251 (int)optp->level, (int)optp->name, (int)optp->len)); 10252 qreply(q, mpctl); 10253 return (mp2ctl); 10254 } 10255 10256 /* IPv6 multicast group membership. */ 10257 static mblk_t * 10258 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10259 { 10260 struct opthdr *optp; 10261 mblk_t *mp2ctl; 10262 ill_t *ill; 10263 ilm_t *ilm; 10264 ipv6_member_t ipm6; 10265 mblk_t *mp_tail = NULL; 10266 ill_walk_context_t ctx; 10267 zoneid_t zoneid; 10268 10269 /* 10270 * make a copy of the original message 10271 */ 10272 mp2ctl = copymsg(mpctl); 10273 zoneid = Q_TO_CONN(q)->conn_zoneid; 10274 10275 /* ip6GroupMember table */ 10276 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10277 optp->level = MIB2_IP6; 10278 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10279 10280 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10281 ill = ILL_START_WALK_V6(&ctx, ipst); 10282 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10283 /* Make sure the ill isn't going away. */ 10284 if (!ill_check_and_refhold(ill)) 10285 continue; 10286 rw_exit(&ipst->ips_ill_g_lock); 10287 /* 10288 * Normally we don't have any members on under IPMP interfaces. 10289 * We report them as a debugging aid. 10290 */ 10291 rw_enter(&ill->ill_mcast_lock, RW_READER); 10292 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10293 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10294 if (ilm->ilm_zoneid != zoneid && 10295 ilm->ilm_zoneid != ALL_ZONES) 10296 continue; /* not this zone */ 10297 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10298 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10299 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10300 if (!snmp_append_data2(mpctl->b_cont, 10301 &mp_tail, 10302 (char *)&ipm6, (int)sizeof (ipm6))) { 10303 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10304 "failed to allocate %u bytes\n", 10305 (uint_t)sizeof (ipm6))); 10306 } 10307 } 10308 rw_exit(&ill->ill_mcast_lock); 10309 ill_refrele(ill); 10310 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10311 } 10312 rw_exit(&ipst->ips_ill_g_lock); 10313 10314 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10315 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10316 (int)optp->level, (int)optp->name, (int)optp->len)); 10317 qreply(q, mpctl); 10318 return (mp2ctl); 10319 } 10320 10321 /* IP multicast filtered sources */ 10322 static mblk_t * 10323 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10324 { 10325 struct opthdr *optp; 10326 mblk_t *mp2ctl; 10327 ill_t *ill; 10328 ipif_t *ipif; 10329 ilm_t *ilm; 10330 ip_grpsrc_t ips; 10331 mblk_t *mp_tail = NULL; 10332 ill_walk_context_t ctx; 10333 zoneid_t zoneid; 10334 int i; 10335 slist_t *sl; 10336 10337 /* 10338 * make a copy of the original message 10339 */ 10340 mp2ctl = copymsg(mpctl); 10341 zoneid = Q_TO_CONN(q)->conn_zoneid; 10342 10343 /* ipGroupSource table */ 10344 optp = (struct opthdr *)&mpctl->b_rptr[ 10345 sizeof (struct T_optmgmt_ack)]; 10346 optp->level = MIB2_IP; 10347 optp->name = EXPER_IP_GROUP_SOURCES; 10348 10349 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10350 ill = ILL_START_WALK_V4(&ctx, ipst); 10351 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10352 /* Make sure the ill isn't going away. */ 10353 if (!ill_check_and_refhold(ill)) 10354 continue; 10355 rw_exit(&ipst->ips_ill_g_lock); 10356 rw_enter(&ill->ill_mcast_lock, RW_READER); 10357 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10358 sl = ilm->ilm_filter; 10359 if (ilm->ilm_zoneid != zoneid && 10360 ilm->ilm_zoneid != ALL_ZONES) 10361 continue; 10362 if (SLIST_IS_EMPTY(sl)) 10363 continue; 10364 10365 /* Is there an ipif for ilm_ifaddr? */ 10366 for (ipif = ill->ill_ipif; ipif != NULL; 10367 ipif = ipif->ipif_next) { 10368 if (!IPIF_IS_CONDEMNED(ipif) && 10369 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10370 ilm->ilm_ifaddr != INADDR_ANY) 10371 break; 10372 } 10373 if (ipif != NULL) { 10374 ipif_get_name(ipif, 10375 ips.ipGroupSourceIfIndex.o_bytes, 10376 OCTET_LENGTH); 10377 } else { 10378 ill_get_name(ill, 10379 ips.ipGroupSourceIfIndex.o_bytes, 10380 OCTET_LENGTH); 10381 } 10382 ips.ipGroupSourceIfIndex.o_length = 10383 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10384 10385 ips.ipGroupSourceGroup = ilm->ilm_addr; 10386 for (i = 0; i < sl->sl_numsrc; i++) { 10387 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10388 continue; 10389 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10390 ips.ipGroupSourceAddress); 10391 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10392 (char *)&ips, (int)sizeof (ips)) == 0) { 10393 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10394 " failed to allocate %u bytes\n", 10395 (uint_t)sizeof (ips))); 10396 } 10397 } 10398 } 10399 rw_exit(&ill->ill_mcast_lock); 10400 ill_refrele(ill); 10401 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10402 } 10403 rw_exit(&ipst->ips_ill_g_lock); 10404 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10405 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10406 (int)optp->level, (int)optp->name, (int)optp->len)); 10407 qreply(q, mpctl); 10408 return (mp2ctl); 10409 } 10410 10411 /* IPv6 multicast filtered sources. */ 10412 static mblk_t * 10413 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10414 { 10415 struct opthdr *optp; 10416 mblk_t *mp2ctl; 10417 ill_t *ill; 10418 ilm_t *ilm; 10419 ipv6_grpsrc_t ips6; 10420 mblk_t *mp_tail = NULL; 10421 ill_walk_context_t ctx; 10422 zoneid_t zoneid; 10423 int i; 10424 slist_t *sl; 10425 10426 /* 10427 * make a copy of the original message 10428 */ 10429 mp2ctl = copymsg(mpctl); 10430 zoneid = Q_TO_CONN(q)->conn_zoneid; 10431 10432 /* ip6GroupMember table */ 10433 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10434 optp->level = MIB2_IP6; 10435 optp->name = EXPER_IP6_GROUP_SOURCES; 10436 10437 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10438 ill = ILL_START_WALK_V6(&ctx, ipst); 10439 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10440 /* Make sure the ill isn't going away. */ 10441 if (!ill_check_and_refhold(ill)) 10442 continue; 10443 rw_exit(&ipst->ips_ill_g_lock); 10444 /* 10445 * Normally we don't have any members on under IPMP interfaces. 10446 * We report them as a debugging aid. 10447 */ 10448 rw_enter(&ill->ill_mcast_lock, RW_READER); 10449 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10450 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10451 sl = ilm->ilm_filter; 10452 if (ilm->ilm_zoneid != zoneid && 10453 ilm->ilm_zoneid != ALL_ZONES) 10454 continue; 10455 if (SLIST_IS_EMPTY(sl)) 10456 continue; 10457 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10458 for (i = 0; i < sl->sl_numsrc; i++) { 10459 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10460 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10461 (char *)&ips6, (int)sizeof (ips6))) { 10462 ip1dbg(("ip_snmp_get_mib2_ip6_" 10463 "group_src: failed to allocate " 10464 "%u bytes\n", 10465 (uint_t)sizeof (ips6))); 10466 } 10467 } 10468 } 10469 rw_exit(&ill->ill_mcast_lock); 10470 ill_refrele(ill); 10471 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10472 } 10473 rw_exit(&ipst->ips_ill_g_lock); 10474 10475 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10476 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10477 (int)optp->level, (int)optp->name, (int)optp->len)); 10478 qreply(q, mpctl); 10479 return (mp2ctl); 10480 } 10481 10482 /* Multicast routing virtual interface table. */ 10483 static mblk_t * 10484 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10485 { 10486 struct opthdr *optp; 10487 mblk_t *mp2ctl; 10488 10489 /* 10490 * make a copy of the original message 10491 */ 10492 mp2ctl = copymsg(mpctl); 10493 10494 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10495 optp->level = EXPER_DVMRP; 10496 optp->name = EXPER_DVMRP_VIF; 10497 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10498 ip0dbg(("ip_mroute_vif: failed\n")); 10499 } 10500 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10501 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10502 (int)optp->level, (int)optp->name, (int)optp->len)); 10503 qreply(q, mpctl); 10504 return (mp2ctl); 10505 } 10506 10507 /* Multicast routing table. */ 10508 static mblk_t * 10509 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10510 { 10511 struct opthdr *optp; 10512 mblk_t *mp2ctl; 10513 10514 /* 10515 * make a copy of the original message 10516 */ 10517 mp2ctl = copymsg(mpctl); 10518 10519 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10520 optp->level = EXPER_DVMRP; 10521 optp->name = EXPER_DVMRP_MRT; 10522 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10523 ip0dbg(("ip_mroute_mrt: failed\n")); 10524 } 10525 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10526 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10527 (int)optp->level, (int)optp->name, (int)optp->len)); 10528 qreply(q, mpctl); 10529 return (mp2ctl); 10530 } 10531 10532 /* 10533 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10534 * in one IRE walk. 10535 */ 10536 static mblk_t * 10537 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10538 ip_stack_t *ipst) 10539 { 10540 struct opthdr *optp; 10541 mblk_t *mp2ctl; /* Returned */ 10542 mblk_t *mp3ctl; /* nettomedia */ 10543 mblk_t *mp4ctl; /* routeattrs */ 10544 iproutedata_t ird; 10545 zoneid_t zoneid; 10546 10547 /* 10548 * make copies of the original message 10549 * - mp2ctl is returned unchanged to the caller for his use 10550 * - mpctl is sent upstream as ipRouteEntryTable 10551 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10552 * - mp4ctl is sent upstream as ipRouteAttributeTable 10553 */ 10554 mp2ctl = copymsg(mpctl); 10555 mp3ctl = copymsg(mpctl); 10556 mp4ctl = copymsg(mpctl); 10557 if (mp3ctl == NULL || mp4ctl == NULL) { 10558 freemsg(mp4ctl); 10559 freemsg(mp3ctl); 10560 freemsg(mp2ctl); 10561 freemsg(mpctl); 10562 return (NULL); 10563 } 10564 10565 bzero(&ird, sizeof (ird)); 10566 10567 ird.ird_route.lp_head = mpctl->b_cont; 10568 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10569 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10570 /* 10571 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10572 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10573 * intended a temporary solution until a proper MIB API is provided 10574 * that provides complete filtering/caller-opt-in. 10575 */ 10576 if (level == EXPER_IP_AND_ALL_IRES) 10577 ird.ird_flags |= IRD_REPORT_ALL; 10578 10579 zoneid = Q_TO_CONN(q)->conn_zoneid; 10580 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10581 10582 /* ipRouteEntryTable in mpctl */ 10583 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10584 optp->level = MIB2_IP; 10585 optp->name = MIB2_IP_ROUTE; 10586 optp->len = msgdsize(ird.ird_route.lp_head); 10587 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10588 (int)optp->level, (int)optp->name, (int)optp->len)); 10589 qreply(q, mpctl); 10590 10591 /* ipNetToMediaEntryTable in mp3ctl */ 10592 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10593 10594 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10595 optp->level = MIB2_IP; 10596 optp->name = MIB2_IP_MEDIA; 10597 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10598 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10599 (int)optp->level, (int)optp->name, (int)optp->len)); 10600 qreply(q, mp3ctl); 10601 10602 /* ipRouteAttributeTable in mp4ctl */ 10603 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10604 optp->level = MIB2_IP; 10605 optp->name = EXPER_IP_RTATTR; 10606 optp->len = msgdsize(ird.ird_attrs.lp_head); 10607 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10608 (int)optp->level, (int)optp->name, (int)optp->len)); 10609 if (optp->len == 0) 10610 freemsg(mp4ctl); 10611 else 10612 qreply(q, mp4ctl); 10613 10614 return (mp2ctl); 10615 } 10616 10617 /* 10618 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10619 * ipv6NetToMediaEntryTable in an NDP walk. 10620 */ 10621 static mblk_t * 10622 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10623 ip_stack_t *ipst) 10624 { 10625 struct opthdr *optp; 10626 mblk_t *mp2ctl; /* Returned */ 10627 mblk_t *mp3ctl; /* nettomedia */ 10628 mblk_t *mp4ctl; /* routeattrs */ 10629 iproutedata_t ird; 10630 zoneid_t zoneid; 10631 10632 /* 10633 * make copies of the original message 10634 * - mp2ctl is returned unchanged to the caller for his use 10635 * - mpctl is sent upstream as ipv6RouteEntryTable 10636 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10637 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10638 */ 10639 mp2ctl = copymsg(mpctl); 10640 mp3ctl = copymsg(mpctl); 10641 mp4ctl = copymsg(mpctl); 10642 if (mp3ctl == NULL || mp4ctl == NULL) { 10643 freemsg(mp4ctl); 10644 freemsg(mp3ctl); 10645 freemsg(mp2ctl); 10646 freemsg(mpctl); 10647 return (NULL); 10648 } 10649 10650 bzero(&ird, sizeof (ird)); 10651 10652 ird.ird_route.lp_head = mpctl->b_cont; 10653 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10654 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10655 /* 10656 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10657 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10658 * intended a temporary solution until a proper MIB API is provided 10659 * that provides complete filtering/caller-opt-in. 10660 */ 10661 if (level == EXPER_IP_AND_ALL_IRES) 10662 ird.ird_flags |= IRD_REPORT_ALL; 10663 10664 zoneid = Q_TO_CONN(q)->conn_zoneid; 10665 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10666 10667 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10668 optp->level = MIB2_IP6; 10669 optp->name = MIB2_IP6_ROUTE; 10670 optp->len = msgdsize(ird.ird_route.lp_head); 10671 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10672 (int)optp->level, (int)optp->name, (int)optp->len)); 10673 qreply(q, mpctl); 10674 10675 /* ipv6NetToMediaEntryTable in mp3ctl */ 10676 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10677 10678 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10679 optp->level = MIB2_IP6; 10680 optp->name = MIB2_IP6_MEDIA; 10681 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10682 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10683 (int)optp->level, (int)optp->name, (int)optp->len)); 10684 qreply(q, mp3ctl); 10685 10686 /* ipv6RouteAttributeTable in mp4ctl */ 10687 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10688 optp->level = MIB2_IP6; 10689 optp->name = EXPER_IP_RTATTR; 10690 optp->len = msgdsize(ird.ird_attrs.lp_head); 10691 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10692 (int)optp->level, (int)optp->name, (int)optp->len)); 10693 if (optp->len == 0) 10694 freemsg(mp4ctl); 10695 else 10696 qreply(q, mp4ctl); 10697 10698 return (mp2ctl); 10699 } 10700 10701 /* 10702 * IPv6 mib: One per ill 10703 */ 10704 static mblk_t * 10705 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10706 boolean_t legacy_req) 10707 { 10708 struct opthdr *optp; 10709 mblk_t *mp2ctl; 10710 ill_t *ill; 10711 ill_walk_context_t ctx; 10712 mblk_t *mp_tail = NULL; 10713 mib2_ipv6AddrEntry_t mae6; 10714 mib2_ipIfStatsEntry_t *ise; 10715 size_t ise_size, iae_size; 10716 10717 /* 10718 * Make a copy of the original message 10719 */ 10720 mp2ctl = copymsg(mpctl); 10721 10722 /* fixed length IPv6 structure ... */ 10723 10724 if (legacy_req) { 10725 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10726 mib2_ipIfStatsEntry_t); 10727 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10728 } else { 10729 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10730 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10731 } 10732 10733 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10734 optp->level = MIB2_IP6; 10735 optp->name = 0; 10736 /* Include "unknown interface" ip6_mib */ 10737 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10738 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10739 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10740 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10741 ipst->ips_ipv6_forwarding ? 1 : 2); 10742 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10743 ipst->ips_ipv6_def_hops); 10744 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10745 sizeof (mib2_ipIfStatsEntry_t)); 10746 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10747 sizeof (mib2_ipv6AddrEntry_t)); 10748 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10749 sizeof (mib2_ipv6RouteEntry_t)); 10750 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10751 sizeof (mib2_ipv6NetToMediaEntry_t)); 10752 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10753 sizeof (ipv6_member_t)); 10754 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10755 sizeof (ipv6_grpsrc_t)); 10756 10757 /* 10758 * Synchronize 64- and 32-bit counters 10759 */ 10760 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10761 ipIfStatsHCInReceives); 10762 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10763 ipIfStatsHCInDelivers); 10764 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10765 ipIfStatsHCOutRequests); 10766 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10767 ipIfStatsHCOutForwDatagrams); 10768 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10769 ipIfStatsHCOutMcastPkts); 10770 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10771 ipIfStatsHCInMcastPkts); 10772 10773 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10774 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10775 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10776 (uint_t)ise_size)); 10777 } else if (legacy_req) { 10778 /* Adjust the EntrySize fields for legacy requests. */ 10779 ise = 10780 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10781 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10782 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10783 } 10784 10785 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10786 ill = ILL_START_WALK_V6(&ctx, ipst); 10787 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10788 ill->ill_ip_mib->ipIfStatsIfIndex = 10789 ill->ill_phyint->phyint_ifindex; 10790 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10791 ipst->ips_ipv6_forwarding ? 1 : 2); 10792 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10793 ill->ill_max_hops); 10794 10795 /* 10796 * Synchronize 64- and 32-bit counters 10797 */ 10798 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10799 ipIfStatsHCInReceives); 10800 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10801 ipIfStatsHCInDelivers); 10802 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10803 ipIfStatsHCOutRequests); 10804 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10805 ipIfStatsHCOutForwDatagrams); 10806 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10807 ipIfStatsHCOutMcastPkts); 10808 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10809 ipIfStatsHCInMcastPkts); 10810 10811 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10812 (char *)ill->ill_ip_mib, (int)ise_size)) { 10813 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10814 "%u bytes\n", (uint_t)ise_size)); 10815 } else if (legacy_req) { 10816 /* Adjust the EntrySize fields for legacy requests. */ 10817 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10818 (int)ise_size); 10819 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10820 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10821 } 10822 } 10823 rw_exit(&ipst->ips_ill_g_lock); 10824 10825 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10826 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10827 (int)optp->level, (int)optp->name, (int)optp->len)); 10828 qreply(q, mpctl); 10829 return (mp2ctl); 10830 } 10831 10832 /* 10833 * ICMPv6 mib: One per ill 10834 */ 10835 static mblk_t * 10836 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10837 { 10838 struct opthdr *optp; 10839 mblk_t *mp2ctl; 10840 ill_t *ill; 10841 ill_walk_context_t ctx; 10842 mblk_t *mp_tail = NULL; 10843 /* 10844 * Make a copy of the original message 10845 */ 10846 mp2ctl = copymsg(mpctl); 10847 10848 /* fixed length ICMPv6 structure ... */ 10849 10850 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10851 optp->level = MIB2_ICMP6; 10852 optp->name = 0; 10853 /* Include "unknown interface" icmp6_mib */ 10854 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10855 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10856 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10857 sizeof (mib2_ipv6IfIcmpEntry_t); 10858 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10859 (char *)&ipst->ips_icmp6_mib, 10860 (int)sizeof (ipst->ips_icmp6_mib))) { 10861 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10862 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10863 } 10864 10865 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10866 ill = ILL_START_WALK_V6(&ctx, ipst); 10867 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10868 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10869 ill->ill_phyint->phyint_ifindex; 10870 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10871 (char *)ill->ill_icmp6_mib, 10872 (int)sizeof (*ill->ill_icmp6_mib))) { 10873 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10874 "%u bytes\n", 10875 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10876 } 10877 } 10878 rw_exit(&ipst->ips_ill_g_lock); 10879 10880 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10881 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10882 (int)optp->level, (int)optp->name, (int)optp->len)); 10883 qreply(q, mpctl); 10884 return (mp2ctl); 10885 } 10886 10887 /* 10888 * ire_walk routine to create both ipRouteEntryTable and 10889 * ipRouteAttributeTable in one IRE walk 10890 */ 10891 static void 10892 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10893 { 10894 ill_t *ill; 10895 mib2_ipRouteEntry_t *re; 10896 mib2_ipAttributeEntry_t iaes; 10897 tsol_ire_gw_secattr_t *attrp; 10898 tsol_gc_t *gc = NULL; 10899 tsol_gcgrp_t *gcgrp = NULL; 10900 ip_stack_t *ipst = ire->ire_ipst; 10901 10902 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10903 10904 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10905 if (ire->ire_testhidden) 10906 return; 10907 if (ire->ire_type & IRE_IF_CLONE) 10908 return; 10909 } 10910 10911 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10912 return; 10913 10914 if ((attrp = ire->ire_gw_secattr) != NULL) { 10915 mutex_enter(&attrp->igsa_lock); 10916 if ((gc = attrp->igsa_gc) != NULL) { 10917 gcgrp = gc->gc_grp; 10918 ASSERT(gcgrp != NULL); 10919 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10920 } 10921 mutex_exit(&attrp->igsa_lock); 10922 } 10923 /* 10924 * Return all IRE types for route table... let caller pick and choose 10925 */ 10926 re->ipRouteDest = ire->ire_addr; 10927 ill = ire->ire_ill; 10928 re->ipRouteIfIndex.o_length = 0; 10929 if (ill != NULL) { 10930 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10931 re->ipRouteIfIndex.o_length = 10932 mi_strlen(re->ipRouteIfIndex.o_bytes); 10933 } 10934 re->ipRouteMetric1 = -1; 10935 re->ipRouteMetric2 = -1; 10936 re->ipRouteMetric3 = -1; 10937 re->ipRouteMetric4 = -1; 10938 10939 re->ipRouteNextHop = ire->ire_gateway_addr; 10940 /* indirect(4), direct(3), or invalid(2) */ 10941 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10942 re->ipRouteType = 2; 10943 else if (ire->ire_type & IRE_ONLINK) 10944 re->ipRouteType = 3; 10945 else 10946 re->ipRouteType = 4; 10947 10948 re->ipRouteProto = -1; 10949 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10950 re->ipRouteMask = ire->ire_mask; 10951 re->ipRouteMetric5 = -1; 10952 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10953 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10954 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10955 10956 re->ipRouteInfo.re_frag_flag = 0; 10957 re->ipRouteInfo.re_rtt = 0; 10958 re->ipRouteInfo.re_src_addr = 0; 10959 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10960 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10961 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10962 re->ipRouteInfo.re_flags = ire->ire_flags; 10963 10964 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10965 if (ire->ire_type & IRE_INTERFACE) { 10966 ire_t *child; 10967 10968 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10969 child = ire->ire_dep_children; 10970 while (child != NULL) { 10971 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10972 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10973 child = child->ire_dep_sib_next; 10974 } 10975 rw_exit(&ipst->ips_ire_dep_lock); 10976 } 10977 10978 if (ire->ire_flags & RTF_DYNAMIC) { 10979 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10980 } else { 10981 re->ipRouteInfo.re_ire_type = ire->ire_type; 10982 } 10983 10984 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10985 (char *)re, (int)sizeof (*re))) { 10986 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10987 (uint_t)sizeof (*re))); 10988 } 10989 10990 if (gc != NULL) { 10991 iaes.iae_routeidx = ird->ird_idx; 10992 iaes.iae_doi = gc->gc_db->gcdb_doi; 10993 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10994 10995 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10996 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10997 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 10998 "bytes\n", (uint_t)sizeof (iaes))); 10999 } 11000 } 11001 11002 /* bump route index for next pass */ 11003 ird->ird_idx++; 11004 11005 kmem_free(re, sizeof (*re)); 11006 if (gcgrp != NULL) 11007 rw_exit(&gcgrp->gcgrp_rwlock); 11008 } 11009 11010 /* 11011 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11012 */ 11013 static void 11014 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11015 { 11016 ill_t *ill; 11017 mib2_ipv6RouteEntry_t *re; 11018 mib2_ipAttributeEntry_t iaes; 11019 tsol_ire_gw_secattr_t *attrp; 11020 tsol_gc_t *gc = NULL; 11021 tsol_gcgrp_t *gcgrp = NULL; 11022 ip_stack_t *ipst = ire->ire_ipst; 11023 11024 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11025 11026 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11027 if (ire->ire_testhidden) 11028 return; 11029 if (ire->ire_type & IRE_IF_CLONE) 11030 return; 11031 } 11032 11033 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11034 return; 11035 11036 if ((attrp = ire->ire_gw_secattr) != NULL) { 11037 mutex_enter(&attrp->igsa_lock); 11038 if ((gc = attrp->igsa_gc) != NULL) { 11039 gcgrp = gc->gc_grp; 11040 ASSERT(gcgrp != NULL); 11041 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11042 } 11043 mutex_exit(&attrp->igsa_lock); 11044 } 11045 /* 11046 * Return all IRE types for route table... let caller pick and choose 11047 */ 11048 re->ipv6RouteDest = ire->ire_addr_v6; 11049 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11050 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11051 re->ipv6RouteIfIndex.o_length = 0; 11052 ill = ire->ire_ill; 11053 if (ill != NULL) { 11054 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11055 re->ipv6RouteIfIndex.o_length = 11056 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11057 } 11058 11059 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11060 11061 mutex_enter(&ire->ire_lock); 11062 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11063 mutex_exit(&ire->ire_lock); 11064 11065 /* remote(4), local(3), or discard(2) */ 11066 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11067 re->ipv6RouteType = 2; 11068 else if (ire->ire_type & IRE_ONLINK) 11069 re->ipv6RouteType = 3; 11070 else 11071 re->ipv6RouteType = 4; 11072 11073 re->ipv6RouteProtocol = -1; 11074 re->ipv6RoutePolicy = 0; 11075 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11076 re->ipv6RouteNextHopRDI = 0; 11077 re->ipv6RouteWeight = 0; 11078 re->ipv6RouteMetric = 0; 11079 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11080 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11081 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11082 11083 re->ipv6RouteInfo.re_frag_flag = 0; 11084 re->ipv6RouteInfo.re_rtt = 0; 11085 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11086 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11087 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11088 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11089 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11090 11091 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11092 if (ire->ire_type & IRE_INTERFACE) { 11093 ire_t *child; 11094 11095 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11096 child = ire->ire_dep_children; 11097 while (child != NULL) { 11098 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11099 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11100 child = child->ire_dep_sib_next; 11101 } 11102 rw_exit(&ipst->ips_ire_dep_lock); 11103 } 11104 if (ire->ire_flags & RTF_DYNAMIC) { 11105 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11106 } else { 11107 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11108 } 11109 11110 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11111 (char *)re, (int)sizeof (*re))) { 11112 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11113 (uint_t)sizeof (*re))); 11114 } 11115 11116 if (gc != NULL) { 11117 iaes.iae_routeidx = ird->ird_idx; 11118 iaes.iae_doi = gc->gc_db->gcdb_doi; 11119 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11120 11121 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11122 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11123 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11124 "bytes\n", (uint_t)sizeof (iaes))); 11125 } 11126 } 11127 11128 /* bump route index for next pass */ 11129 ird->ird_idx++; 11130 11131 kmem_free(re, sizeof (*re)); 11132 if (gcgrp != NULL) 11133 rw_exit(&gcgrp->gcgrp_rwlock); 11134 } 11135 11136 /* 11137 * ncec_walk routine to create ipv6NetToMediaEntryTable 11138 */ 11139 static int 11140 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11141 { 11142 ill_t *ill; 11143 mib2_ipv6NetToMediaEntry_t ntme; 11144 11145 ill = ncec->ncec_ill; 11146 /* skip arpce entries, and loopback ncec entries */ 11147 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11148 return (0); 11149 /* 11150 * Neighbor cache entry attached to IRE with on-link 11151 * destination. 11152 * We report all IPMP groups on ncec_ill which is normally the upper. 11153 */ 11154 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11155 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11156 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11157 if (ncec->ncec_lladdr != NULL) { 11158 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11159 ntme.ipv6NetToMediaPhysAddress.o_length); 11160 } 11161 /* 11162 * Note: Returns ND_* states. Should be: 11163 * reachable(1), stale(2), delay(3), probe(4), 11164 * invalid(5), unknown(6) 11165 */ 11166 ntme.ipv6NetToMediaState = ncec->ncec_state; 11167 ntme.ipv6NetToMediaLastUpdated = 0; 11168 11169 /* other(1), dynamic(2), static(3), local(4) */ 11170 if (NCE_MYADDR(ncec)) { 11171 ntme.ipv6NetToMediaType = 4; 11172 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11173 ntme.ipv6NetToMediaType = 1; /* proxy */ 11174 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11175 ntme.ipv6NetToMediaType = 3; 11176 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11177 ntme.ipv6NetToMediaType = 1; 11178 } else { 11179 ntme.ipv6NetToMediaType = 2; 11180 } 11181 11182 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11183 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11184 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11185 (uint_t)sizeof (ntme))); 11186 } 11187 return (0); 11188 } 11189 11190 int 11191 nce2ace(ncec_t *ncec) 11192 { 11193 int flags = 0; 11194 11195 if (NCE_ISREACHABLE(ncec)) 11196 flags |= ACE_F_RESOLVED; 11197 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11198 flags |= ACE_F_AUTHORITY; 11199 if (ncec->ncec_flags & NCE_F_PUBLISH) 11200 flags |= ACE_F_PUBLISH; 11201 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11202 flags |= ACE_F_PERMANENT; 11203 if (NCE_MYADDR(ncec)) 11204 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11205 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11206 flags |= ACE_F_UNVERIFIED; 11207 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11208 flags |= ACE_F_AUTHORITY; 11209 if (ncec->ncec_flags & NCE_F_DELAYED) 11210 flags |= ACE_F_DELAYED; 11211 return (flags); 11212 } 11213 11214 /* 11215 * ncec_walk routine to create ipNetToMediaEntryTable 11216 */ 11217 static int 11218 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11219 { 11220 ill_t *ill; 11221 mib2_ipNetToMediaEntry_t ntme; 11222 const char *name = "unknown"; 11223 ipaddr_t ncec_addr; 11224 11225 ill = ncec->ncec_ill; 11226 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11227 ill->ill_net_type == IRE_LOOPBACK) 11228 return (0); 11229 11230 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11231 name = ill->ill_name; 11232 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11233 if (NCE_MYADDR(ncec)) { 11234 ntme.ipNetToMediaType = 4; 11235 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11236 ntme.ipNetToMediaType = 1; 11237 } else { 11238 ntme.ipNetToMediaType = 3; 11239 } 11240 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11241 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11242 ntme.ipNetToMediaIfIndex.o_length); 11243 11244 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11245 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11246 11247 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11248 ncec_addr = INADDR_BROADCAST; 11249 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11250 sizeof (ncec_addr)); 11251 /* 11252 * map all the flags to the ACE counterpart. 11253 */ 11254 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11255 11256 ntme.ipNetToMediaPhysAddress.o_length = 11257 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11258 11259 if (!NCE_ISREACHABLE(ncec)) 11260 ntme.ipNetToMediaPhysAddress.o_length = 0; 11261 else { 11262 if (ncec->ncec_lladdr != NULL) { 11263 bcopy(ncec->ncec_lladdr, 11264 ntme.ipNetToMediaPhysAddress.o_bytes, 11265 ntme.ipNetToMediaPhysAddress.o_length); 11266 } 11267 } 11268 11269 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11270 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11271 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11272 (uint_t)sizeof (ntme))); 11273 } 11274 return (0); 11275 } 11276 11277 /* 11278 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11279 */ 11280 /* ARGSUSED */ 11281 int 11282 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11283 { 11284 switch (level) { 11285 case MIB2_IP: 11286 case MIB2_ICMP: 11287 switch (name) { 11288 default: 11289 break; 11290 } 11291 return (1); 11292 default: 11293 return (1); 11294 } 11295 } 11296 11297 /* 11298 * When there exists both a 64- and 32-bit counter of a particular type 11299 * (i.e., InReceives), only the 64-bit counters are added. 11300 */ 11301 void 11302 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11303 { 11304 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11305 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11306 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11307 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11308 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11309 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11310 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11311 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11312 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11313 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11314 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11315 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11316 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11317 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11318 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11319 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11320 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11321 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11322 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11323 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11324 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11325 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11326 o2->ipIfStatsInWrongIPVersion); 11327 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11328 o2->ipIfStatsInWrongIPVersion); 11329 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11330 o2->ipIfStatsOutSwitchIPVersion); 11331 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11332 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11333 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11334 o2->ipIfStatsHCInForwDatagrams); 11335 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11336 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11337 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11338 o2->ipIfStatsHCOutForwDatagrams); 11339 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11340 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11341 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11342 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11343 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11344 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11345 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11346 o2->ipIfStatsHCOutMcastOctets); 11347 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11348 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11349 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11350 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11351 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11352 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11353 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11354 } 11355 11356 void 11357 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11358 { 11359 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11360 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11361 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11362 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11363 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11364 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11365 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11366 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11367 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11368 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11369 o2->ipv6IfIcmpInRouterSolicits); 11370 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11371 o2->ipv6IfIcmpInRouterAdvertisements); 11372 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11373 o2->ipv6IfIcmpInNeighborSolicits); 11374 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11375 o2->ipv6IfIcmpInNeighborAdvertisements); 11376 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11377 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11378 o2->ipv6IfIcmpInGroupMembQueries); 11379 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11380 o2->ipv6IfIcmpInGroupMembResponses); 11381 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11382 o2->ipv6IfIcmpInGroupMembReductions); 11383 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11384 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11385 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11386 o2->ipv6IfIcmpOutDestUnreachs); 11387 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11388 o2->ipv6IfIcmpOutAdminProhibs); 11389 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11390 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11391 o2->ipv6IfIcmpOutParmProblems); 11392 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11393 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11394 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11395 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11396 o2->ipv6IfIcmpOutRouterSolicits); 11397 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11398 o2->ipv6IfIcmpOutRouterAdvertisements); 11399 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11400 o2->ipv6IfIcmpOutNeighborSolicits); 11401 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11402 o2->ipv6IfIcmpOutNeighborAdvertisements); 11403 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11404 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11405 o2->ipv6IfIcmpOutGroupMembQueries); 11406 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11407 o2->ipv6IfIcmpOutGroupMembResponses); 11408 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11409 o2->ipv6IfIcmpOutGroupMembReductions); 11410 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11411 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11412 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11413 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11414 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11415 o2->ipv6IfIcmpInBadNeighborSolicitations); 11416 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11417 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11418 o2->ipv6IfIcmpInGroupMembTotal); 11419 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11420 o2->ipv6IfIcmpInGroupMembBadQueries); 11421 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11422 o2->ipv6IfIcmpInGroupMembBadReports); 11423 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11424 o2->ipv6IfIcmpInGroupMembOurReports); 11425 } 11426 11427 /* 11428 * Called before the options are updated to check if this packet will 11429 * be source routed from here. 11430 * This routine assumes that the options are well formed i.e. that they 11431 * have already been checked. 11432 */ 11433 boolean_t 11434 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11435 { 11436 ipoptp_t opts; 11437 uchar_t *opt; 11438 uint8_t optval; 11439 uint8_t optlen; 11440 ipaddr_t dst; 11441 11442 if (IS_SIMPLE_IPH(ipha)) { 11443 ip2dbg(("not source routed\n")); 11444 return (B_FALSE); 11445 } 11446 dst = ipha->ipha_dst; 11447 for (optval = ipoptp_first(&opts, ipha); 11448 optval != IPOPT_EOL; 11449 optval = ipoptp_next(&opts)) { 11450 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11451 opt = opts.ipoptp_cur; 11452 optlen = opts.ipoptp_len; 11453 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11454 optval, optlen)); 11455 switch (optval) { 11456 uint32_t off; 11457 case IPOPT_SSRR: 11458 case IPOPT_LSRR: 11459 /* 11460 * If dst is one of our addresses and there are some 11461 * entries left in the source route return (true). 11462 */ 11463 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11464 ip2dbg(("ip_source_routed: not next" 11465 " source route 0x%x\n", 11466 ntohl(dst))); 11467 return (B_FALSE); 11468 } 11469 off = opt[IPOPT_OFFSET]; 11470 off--; 11471 if (optlen < IP_ADDR_LEN || 11472 off > optlen - IP_ADDR_LEN) { 11473 /* End of source route */ 11474 ip1dbg(("ip_source_routed: end of SR\n")); 11475 return (B_FALSE); 11476 } 11477 return (B_TRUE); 11478 } 11479 } 11480 ip2dbg(("not source routed\n")); 11481 return (B_FALSE); 11482 } 11483 11484 /* 11485 * ip_unbind is called by the transports to remove a conn from 11486 * the fanout table. 11487 */ 11488 void 11489 ip_unbind(conn_t *connp) 11490 { 11491 11492 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11493 11494 if (is_system_labeled() && connp->conn_anon_port) { 11495 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11496 connp->conn_mlp_type, connp->conn_proto, 11497 ntohs(connp->conn_lport), B_FALSE); 11498 connp->conn_anon_port = 0; 11499 } 11500 connp->conn_mlp_type = mlptSingle; 11501 11502 ipcl_hash_remove(connp); 11503 } 11504 11505 /* 11506 * Used for deciding the MSS size for the upper layer. Thus 11507 * we need to check the outbound policy values in the conn. 11508 */ 11509 int 11510 conn_ipsec_length(conn_t *connp) 11511 { 11512 ipsec_latch_t *ipl; 11513 11514 ipl = connp->conn_latch; 11515 if (ipl == NULL) 11516 return (0); 11517 11518 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11519 return (0); 11520 11521 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11522 } 11523 11524 /* 11525 * Returns an estimate of the IPsec headers size. This is used if 11526 * we don't want to call into IPsec to get the exact size. 11527 */ 11528 int 11529 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11530 { 11531 ipsec_action_t *a; 11532 11533 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11534 return (0); 11535 11536 a = ixa->ixa_ipsec_action; 11537 if (a == NULL) { 11538 ASSERT(ixa->ixa_ipsec_policy != NULL); 11539 a = ixa->ixa_ipsec_policy->ipsp_act; 11540 } 11541 ASSERT(a != NULL); 11542 11543 return (a->ipa_ovhd); 11544 } 11545 11546 /* 11547 * If there are any source route options, return the true final 11548 * destination. Otherwise, return the destination. 11549 */ 11550 ipaddr_t 11551 ip_get_dst(ipha_t *ipha) 11552 { 11553 ipoptp_t opts; 11554 uchar_t *opt; 11555 uint8_t optval; 11556 uint8_t optlen; 11557 ipaddr_t dst; 11558 uint32_t off; 11559 11560 dst = ipha->ipha_dst; 11561 11562 if (IS_SIMPLE_IPH(ipha)) 11563 return (dst); 11564 11565 for (optval = ipoptp_first(&opts, ipha); 11566 optval != IPOPT_EOL; 11567 optval = ipoptp_next(&opts)) { 11568 opt = opts.ipoptp_cur; 11569 optlen = opts.ipoptp_len; 11570 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11571 switch (optval) { 11572 case IPOPT_SSRR: 11573 case IPOPT_LSRR: 11574 off = opt[IPOPT_OFFSET]; 11575 /* 11576 * If one of the conditions is true, it means 11577 * end of options and dst already has the right 11578 * value. 11579 */ 11580 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11581 off = optlen - IP_ADDR_LEN; 11582 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11583 } 11584 return (dst); 11585 default: 11586 break; 11587 } 11588 } 11589 11590 return (dst); 11591 } 11592 11593 /* 11594 * Outbound IP fragmentation routine. 11595 * Assumes the caller has checked whether or not fragmentation should 11596 * be allowed. Here we copy the DF bit from the header to all the generated 11597 * fragments. 11598 */ 11599 int 11600 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11601 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11602 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11603 { 11604 int i1; 11605 int hdr_len; 11606 mblk_t *hdr_mp; 11607 ipha_t *ipha; 11608 int ip_data_end; 11609 int len; 11610 mblk_t *mp = mp_orig; 11611 int offset; 11612 ill_t *ill = nce->nce_ill; 11613 ip_stack_t *ipst = ill->ill_ipst; 11614 mblk_t *carve_mp; 11615 uint32_t frag_flag; 11616 uint_t priority = mp->b_band; 11617 int error = 0; 11618 11619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11620 11621 if (pkt_len != msgdsize(mp)) { 11622 ip0dbg(("Packet length mismatch: %d, %ld\n", 11623 pkt_len, msgdsize(mp))); 11624 freemsg(mp); 11625 return (EINVAL); 11626 } 11627 11628 if (max_frag == 0) { 11629 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11631 ip_drop_output("FragFails: zero max_frag", mp, ill); 11632 freemsg(mp); 11633 return (EINVAL); 11634 } 11635 11636 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11637 ipha = (ipha_t *)mp->b_rptr; 11638 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11639 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11640 11641 /* 11642 * Establish the starting offset. May not be zero if we are fragging 11643 * a fragment that is being forwarded. 11644 */ 11645 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11646 11647 /* TODO why is this test needed? */ 11648 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11649 /* TODO: notify ulp somehow */ 11650 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11651 ip_drop_output("FragFails: bad starting offset", mp, ill); 11652 freemsg(mp); 11653 return (EINVAL); 11654 } 11655 11656 hdr_len = IPH_HDR_LENGTH(ipha); 11657 ipha->ipha_hdr_checksum = 0; 11658 11659 /* 11660 * Establish the number of bytes maximum per frag, after putting 11661 * in the header. 11662 */ 11663 len = (max_frag - hdr_len) & ~7; 11664 11665 /* Get a copy of the header for the trailing frags */ 11666 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11667 mp); 11668 if (hdr_mp == NULL) { 11669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11670 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11671 freemsg(mp); 11672 return (ENOBUFS); 11673 } 11674 11675 /* Store the starting offset, with the MoreFrags flag. */ 11676 i1 = offset | IPH_MF | frag_flag; 11677 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11678 11679 /* Establish the ending byte offset, based on the starting offset. */ 11680 offset <<= 3; 11681 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11682 11683 /* Store the length of the first fragment in the IP header. */ 11684 i1 = len + hdr_len; 11685 ASSERT(i1 <= IP_MAXPACKET); 11686 ipha->ipha_length = htons((uint16_t)i1); 11687 11688 /* 11689 * Compute the IP header checksum for the first frag. We have to 11690 * watch out that we stop at the end of the header. 11691 */ 11692 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11693 11694 /* 11695 * Now carve off the first frag. Note that this will include the 11696 * original IP header. 11697 */ 11698 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11699 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11700 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11701 freeb(hdr_mp); 11702 freemsg(mp_orig); 11703 return (ENOBUFS); 11704 } 11705 11706 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11707 11708 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11709 ixa_cookie); 11710 if (error != 0 && error != EWOULDBLOCK) { 11711 /* No point in sending the other fragments */ 11712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11713 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11714 freeb(hdr_mp); 11715 freemsg(mp_orig); 11716 return (error); 11717 } 11718 11719 /* No need to redo state machine in loop */ 11720 ixaflags &= ~IXAF_REACH_CONF; 11721 11722 /* Advance the offset to the second frag starting point. */ 11723 offset += len; 11724 /* 11725 * Update hdr_len from the copied header - there might be less options 11726 * in the later fragments. 11727 */ 11728 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11729 /* Loop until done. */ 11730 for (;;) { 11731 uint16_t offset_and_flags; 11732 uint16_t ip_len; 11733 11734 if (ip_data_end - offset > len) { 11735 /* 11736 * Carve off the appropriate amount from the original 11737 * datagram. 11738 */ 11739 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11740 mp = NULL; 11741 break; 11742 } 11743 /* 11744 * More frags after this one. Get another copy 11745 * of the header. 11746 */ 11747 if (carve_mp->b_datap->db_ref == 1 && 11748 hdr_mp->b_wptr - hdr_mp->b_rptr < 11749 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11750 /* Inline IP header */ 11751 carve_mp->b_rptr -= hdr_mp->b_wptr - 11752 hdr_mp->b_rptr; 11753 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11754 hdr_mp->b_wptr - hdr_mp->b_rptr); 11755 mp = carve_mp; 11756 } else { 11757 if (!(mp = copyb(hdr_mp))) { 11758 freemsg(carve_mp); 11759 break; 11760 } 11761 /* Get priority marking, if any. */ 11762 mp->b_band = priority; 11763 mp->b_cont = carve_mp; 11764 } 11765 ipha = (ipha_t *)mp->b_rptr; 11766 offset_and_flags = IPH_MF; 11767 } else { 11768 /* 11769 * Last frag. Consume the header. Set len to 11770 * the length of this last piece. 11771 */ 11772 len = ip_data_end - offset; 11773 11774 /* 11775 * Carve off the appropriate amount from the original 11776 * datagram. 11777 */ 11778 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11779 mp = NULL; 11780 break; 11781 } 11782 if (carve_mp->b_datap->db_ref == 1 && 11783 hdr_mp->b_wptr - hdr_mp->b_rptr < 11784 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11785 /* Inline IP header */ 11786 carve_mp->b_rptr -= hdr_mp->b_wptr - 11787 hdr_mp->b_rptr; 11788 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11789 hdr_mp->b_wptr - hdr_mp->b_rptr); 11790 mp = carve_mp; 11791 freeb(hdr_mp); 11792 hdr_mp = mp; 11793 } else { 11794 mp = hdr_mp; 11795 /* Get priority marking, if any. */ 11796 mp->b_band = priority; 11797 mp->b_cont = carve_mp; 11798 } 11799 ipha = (ipha_t *)mp->b_rptr; 11800 /* A frag of a frag might have IPH_MF non-zero */ 11801 offset_and_flags = 11802 ntohs(ipha->ipha_fragment_offset_and_flags) & 11803 IPH_MF; 11804 } 11805 offset_and_flags |= (uint16_t)(offset >> 3); 11806 offset_and_flags |= (uint16_t)frag_flag; 11807 /* Store the offset and flags in the IP header. */ 11808 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11809 11810 /* Store the length in the IP header. */ 11811 ip_len = (uint16_t)(len + hdr_len); 11812 ipha->ipha_length = htons(ip_len); 11813 11814 /* 11815 * Set the IP header checksum. Note that mp is just 11816 * the header, so this is easy to pass to ip_csum. 11817 */ 11818 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11819 11820 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11821 11822 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11823 nolzid, ixa_cookie); 11824 /* All done if we just consumed the hdr_mp. */ 11825 if (mp == hdr_mp) { 11826 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11827 return (error); 11828 } 11829 if (error != 0 && error != EWOULDBLOCK) { 11830 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11831 mblk_t *, hdr_mp); 11832 /* No point in sending the other fragments */ 11833 break; 11834 } 11835 11836 /* Otherwise, advance and loop. */ 11837 offset += len; 11838 } 11839 /* Clean up following allocation failure. */ 11840 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11841 ip_drop_output("FragFails: loop ended", NULL, ill); 11842 if (mp != hdr_mp) 11843 freeb(hdr_mp); 11844 if (mp != mp_orig) 11845 freemsg(mp_orig); 11846 return (error); 11847 } 11848 11849 /* 11850 * Copy the header plus those options which have the copy bit set 11851 */ 11852 static mblk_t * 11853 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11854 mblk_t *src) 11855 { 11856 mblk_t *mp; 11857 uchar_t *up; 11858 11859 /* 11860 * Quick check if we need to look for options without the copy bit 11861 * set 11862 */ 11863 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11864 if (!mp) 11865 return (mp); 11866 mp->b_rptr += ipst->ips_ip_wroff_extra; 11867 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11868 bcopy(rptr, mp->b_rptr, hdr_len); 11869 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11870 return (mp); 11871 } 11872 up = mp->b_rptr; 11873 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11874 up += IP_SIMPLE_HDR_LENGTH; 11875 rptr += IP_SIMPLE_HDR_LENGTH; 11876 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11877 while (hdr_len > 0) { 11878 uint32_t optval; 11879 uint32_t optlen; 11880 11881 optval = *rptr; 11882 if (optval == IPOPT_EOL) 11883 break; 11884 if (optval == IPOPT_NOP) 11885 optlen = 1; 11886 else 11887 optlen = rptr[1]; 11888 if (optval & IPOPT_COPY) { 11889 bcopy(rptr, up, optlen); 11890 up += optlen; 11891 } 11892 rptr += optlen; 11893 hdr_len -= optlen; 11894 } 11895 /* 11896 * Make sure that we drop an even number of words by filling 11897 * with EOL to the next word boundary. 11898 */ 11899 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11900 hdr_len & 0x3; hdr_len++) 11901 *up++ = IPOPT_EOL; 11902 mp->b_wptr = up; 11903 /* Update header length */ 11904 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11905 return (mp); 11906 } 11907 11908 /* 11909 * Update any source route, record route, or timestamp options when 11910 * sending a packet back to ourselves. 11911 * Check that we are at end of strict source route. 11912 * The options have been sanity checked by ip_output_options(). 11913 */ 11914 void 11915 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11916 { 11917 ipoptp_t opts; 11918 uchar_t *opt; 11919 uint8_t optval; 11920 uint8_t optlen; 11921 ipaddr_t dst; 11922 uint32_t ts; 11923 timestruc_t now; 11924 11925 for (optval = ipoptp_first(&opts, ipha); 11926 optval != IPOPT_EOL; 11927 optval = ipoptp_next(&opts)) { 11928 opt = opts.ipoptp_cur; 11929 optlen = opts.ipoptp_len; 11930 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11931 switch (optval) { 11932 uint32_t off; 11933 case IPOPT_SSRR: 11934 case IPOPT_LSRR: 11935 off = opt[IPOPT_OFFSET]; 11936 off--; 11937 if (optlen < IP_ADDR_LEN || 11938 off > optlen - IP_ADDR_LEN) { 11939 /* End of source route */ 11940 break; 11941 } 11942 /* 11943 * This will only happen if two consecutive entries 11944 * in the source route contains our address or if 11945 * it is a packet with a loose source route which 11946 * reaches us before consuming the whole source route 11947 */ 11948 11949 if (optval == IPOPT_SSRR) { 11950 return; 11951 } 11952 /* 11953 * Hack: instead of dropping the packet truncate the 11954 * source route to what has been used by filling the 11955 * rest with IPOPT_NOP. 11956 */ 11957 opt[IPOPT_OLEN] = (uint8_t)off; 11958 while (off < optlen) { 11959 opt[off++] = IPOPT_NOP; 11960 } 11961 break; 11962 case IPOPT_RR: 11963 off = opt[IPOPT_OFFSET]; 11964 off--; 11965 if (optlen < IP_ADDR_LEN || 11966 off > optlen - IP_ADDR_LEN) { 11967 /* No more room - ignore */ 11968 ip1dbg(( 11969 "ip_output_local_options: end of RR\n")); 11970 break; 11971 } 11972 dst = htonl(INADDR_LOOPBACK); 11973 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11974 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11975 break; 11976 case IPOPT_TS: 11977 /* Insert timestamp if there is romm */ 11978 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11979 case IPOPT_TS_TSONLY: 11980 off = IPOPT_TS_TIMELEN; 11981 break; 11982 case IPOPT_TS_PRESPEC: 11983 case IPOPT_TS_PRESPEC_RFC791: 11984 /* Verify that the address matched */ 11985 off = opt[IPOPT_OFFSET] - 1; 11986 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11987 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11988 /* Not for us */ 11989 break; 11990 } 11991 /* FALLTHRU */ 11992 case IPOPT_TS_TSANDADDR: 11993 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11994 break; 11995 default: 11996 /* 11997 * ip_*put_options should have already 11998 * dropped this packet. 11999 */ 12000 cmn_err(CE_PANIC, "ip_output_local_options: " 12001 "unknown IT - bug in ip_output_options?\n"); 12002 return; /* Keep "lint" happy */ 12003 } 12004 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12005 /* Increase overflow counter */ 12006 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12007 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12008 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12009 (off << 4); 12010 break; 12011 } 12012 off = opt[IPOPT_OFFSET] - 1; 12013 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12014 case IPOPT_TS_PRESPEC: 12015 case IPOPT_TS_PRESPEC_RFC791: 12016 case IPOPT_TS_TSANDADDR: 12017 dst = htonl(INADDR_LOOPBACK); 12018 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12019 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12020 /* FALLTHRU */ 12021 case IPOPT_TS_TSONLY: 12022 off = opt[IPOPT_OFFSET] - 1; 12023 /* Compute # of milliseconds since midnight */ 12024 gethrestime(&now); 12025 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12026 now.tv_nsec / (NANOSEC / MILLISEC); 12027 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12028 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12029 break; 12030 } 12031 break; 12032 } 12033 } 12034 } 12035 12036 /* 12037 * Prepend an M_DATA fastpath header, and if none present prepend a 12038 * DL_UNITDATA_REQ. Frees the mblk on failure. 12039 * 12040 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12041 * If there is a change to them, the nce will be deleted (condemned) and 12042 * a new nce_t will be created when packets are sent. Thus we need no locks 12043 * to access those fields. 12044 * 12045 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12046 * we place b_band in dl_priority.dl_max. 12047 */ 12048 static mblk_t * 12049 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12050 { 12051 uint_t hlen; 12052 mblk_t *mp1; 12053 uint_t priority; 12054 uchar_t *rptr; 12055 12056 rptr = mp->b_rptr; 12057 12058 ASSERT(DB_TYPE(mp) == M_DATA); 12059 priority = mp->b_band; 12060 12061 ASSERT(nce != NULL); 12062 if ((mp1 = nce->nce_fp_mp) != NULL) { 12063 hlen = MBLKL(mp1); 12064 /* 12065 * Check if we have enough room to prepend fastpath 12066 * header 12067 */ 12068 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12069 rptr -= hlen; 12070 bcopy(mp1->b_rptr, rptr, hlen); 12071 /* 12072 * Set the b_rptr to the start of the link layer 12073 * header 12074 */ 12075 mp->b_rptr = rptr; 12076 return (mp); 12077 } 12078 mp1 = copyb(mp1); 12079 if (mp1 == NULL) { 12080 ill_t *ill = nce->nce_ill; 12081 12082 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12083 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12084 freemsg(mp); 12085 return (NULL); 12086 } 12087 mp1->b_band = priority; 12088 mp1->b_cont = mp; 12089 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12090 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12091 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12092 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12093 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12094 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12095 /* 12096 * XXX disable ICK_VALID and compute checksum 12097 * here; can happen if nce_fp_mp changes and 12098 * it can't be copied now due to insufficient 12099 * space. (unlikely, fp mp can change, but it 12100 * does not increase in length) 12101 */ 12102 return (mp1); 12103 } 12104 mp1 = copyb(nce->nce_dlur_mp); 12105 12106 if (mp1 == NULL) { 12107 ill_t *ill = nce->nce_ill; 12108 12109 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12110 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12111 freemsg(mp); 12112 return (NULL); 12113 } 12114 mp1->b_cont = mp; 12115 if (priority != 0) { 12116 mp1->b_band = priority; 12117 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12118 priority; 12119 } 12120 return (mp1); 12121 #undef rptr 12122 } 12123 12124 /* 12125 * Finish the outbound IPsec processing. This function is called from 12126 * ipsec_out_process() if the IPsec packet was processed 12127 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12128 * asynchronously. 12129 * 12130 * This is common to IPv4 and IPv6. 12131 */ 12132 int 12133 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12134 { 12135 iaflags_t ixaflags = ixa->ixa_flags; 12136 uint_t pktlen; 12137 12138 12139 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12140 if (ixaflags & IXAF_IS_IPV4) { 12141 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12142 12143 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12144 pktlen = ntohs(ipha->ipha_length); 12145 } else { 12146 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12147 12148 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12149 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12150 } 12151 12152 /* 12153 * We release any hard reference on the SAs here to make 12154 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12155 * on the SAs. 12156 * If in the future we want the hard latching of the SAs in the 12157 * ip_xmit_attr_t then we should remove this. 12158 */ 12159 if (ixa->ixa_ipsec_esp_sa != NULL) { 12160 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12161 ixa->ixa_ipsec_esp_sa = NULL; 12162 } 12163 if (ixa->ixa_ipsec_ah_sa != NULL) { 12164 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12165 ixa->ixa_ipsec_ah_sa = NULL; 12166 } 12167 12168 /* Do we need to fragment? */ 12169 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12170 pktlen > ixa->ixa_fragsize) { 12171 if (ixaflags & IXAF_IS_IPV4) { 12172 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12173 /* 12174 * We check for the DF case in ipsec_out_process 12175 * hence this only handles the non-DF case. 12176 */ 12177 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12178 pktlen, ixa->ixa_fragsize, 12179 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12180 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12181 &ixa->ixa_cookie)); 12182 } else { 12183 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12184 if (mp == NULL) { 12185 /* MIB and ip_drop_output already done */ 12186 return (ENOMEM); 12187 } 12188 pktlen += sizeof (ip6_frag_t); 12189 if (pktlen > ixa->ixa_fragsize) { 12190 return (ip_fragment_v6(mp, ixa->ixa_nce, 12191 ixa->ixa_flags, pktlen, 12192 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12193 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12194 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12195 } 12196 } 12197 } 12198 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12199 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12200 ixa->ixa_no_loop_zoneid, NULL)); 12201 } 12202 12203 /* 12204 * Finish the inbound IPsec processing. This function is called from 12205 * ipsec_out_process() if the IPsec packet was processed 12206 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12207 * asynchronously. 12208 * 12209 * This is common to IPv4 and IPv6. 12210 */ 12211 void 12212 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12213 { 12214 iaflags_t iraflags = ira->ira_flags; 12215 12216 /* Length might have changed */ 12217 if (iraflags & IRAF_IS_IPV4) { 12218 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12219 12220 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12221 ira->ira_pktlen = ntohs(ipha->ipha_length); 12222 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12223 ira->ira_protocol = ipha->ipha_protocol; 12224 12225 ip_fanout_v4(mp, ipha, ira); 12226 } else { 12227 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12228 uint8_t *nexthdrp; 12229 12230 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12231 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12232 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12233 &nexthdrp)) { 12234 /* Malformed packet */ 12235 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12236 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12237 freemsg(mp); 12238 return; 12239 } 12240 ira->ira_protocol = *nexthdrp; 12241 ip_fanout_v6(mp, ip6h, ira); 12242 } 12243 } 12244 12245 /* 12246 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12247 * 12248 * If this function returns B_TRUE, the requested SA's have been filled 12249 * into the ixa_ipsec_*_sa pointers. 12250 * 12251 * If the function returns B_FALSE, the packet has been "consumed", most 12252 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12253 * 12254 * The SA references created by the protocol-specific "select" 12255 * function will be released in ip_output_post_ipsec. 12256 */ 12257 static boolean_t 12258 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12259 { 12260 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12261 ipsec_policy_t *pp; 12262 ipsec_action_t *ap; 12263 12264 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12265 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12266 (ixa->ixa_ipsec_action != NULL)); 12267 12268 ap = ixa->ixa_ipsec_action; 12269 if (ap == NULL) { 12270 pp = ixa->ixa_ipsec_policy; 12271 ASSERT(pp != NULL); 12272 ap = pp->ipsp_act; 12273 ASSERT(ap != NULL); 12274 } 12275 12276 /* 12277 * We have an action. now, let's select SA's. 12278 * A side effect of setting ixa_ipsec_*_sa is that it will 12279 * be cached in the conn_t. 12280 */ 12281 if (ap->ipa_want_esp) { 12282 if (ixa->ixa_ipsec_esp_sa == NULL) { 12283 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12284 IPPROTO_ESP); 12285 } 12286 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12287 } 12288 12289 if (ap->ipa_want_ah) { 12290 if (ixa->ixa_ipsec_ah_sa == NULL) { 12291 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12292 IPPROTO_AH); 12293 } 12294 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12295 /* 12296 * The ESP and AH processing order needs to be preserved 12297 * when both protocols are required (ESP should be applied 12298 * before AH for an outbound packet). Force an ESP ACQUIRE 12299 * when both ESP and AH are required, and an AH ACQUIRE 12300 * is needed. 12301 */ 12302 if (ap->ipa_want_esp && need_ah_acquire) 12303 need_esp_acquire = B_TRUE; 12304 } 12305 12306 /* 12307 * Send an ACQUIRE (extended, regular, or both) if we need one. 12308 * Release SAs that got referenced, but will not be used until we 12309 * acquire _all_ of the SAs we need. 12310 */ 12311 if (need_ah_acquire || need_esp_acquire) { 12312 if (ixa->ixa_ipsec_ah_sa != NULL) { 12313 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12314 ixa->ixa_ipsec_ah_sa = NULL; 12315 } 12316 if (ixa->ixa_ipsec_esp_sa != NULL) { 12317 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12318 ixa->ixa_ipsec_esp_sa = NULL; 12319 } 12320 12321 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12322 return (B_FALSE); 12323 } 12324 12325 return (B_TRUE); 12326 } 12327 12328 /* 12329 * Handle IPsec output processing. 12330 * This function is only entered once for a given packet. 12331 * We try to do things synchronously, but if we need to have user-level 12332 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12333 * will be completed 12334 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12335 * - when asynchronous ESP is done it will do AH 12336 * 12337 * In all cases we come back in ip_output_post_ipsec() to fragment and 12338 * send out the packet. 12339 */ 12340 int 12341 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12342 { 12343 ill_t *ill = ixa->ixa_nce->nce_ill; 12344 ip_stack_t *ipst = ixa->ixa_ipst; 12345 ipsec_stack_t *ipss; 12346 ipsec_policy_t *pp; 12347 ipsec_action_t *ap; 12348 12349 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12350 12351 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12352 (ixa->ixa_ipsec_action != NULL)); 12353 12354 ipss = ipst->ips_netstack->netstack_ipsec; 12355 if (!ipsec_loaded(ipss)) { 12356 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12357 ip_drop_packet(mp, B_TRUE, ill, 12358 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12359 &ipss->ipsec_dropper); 12360 return (ENOTSUP); 12361 } 12362 12363 ap = ixa->ixa_ipsec_action; 12364 if (ap == NULL) { 12365 pp = ixa->ixa_ipsec_policy; 12366 ASSERT(pp != NULL); 12367 ap = pp->ipsp_act; 12368 ASSERT(ap != NULL); 12369 } 12370 12371 /* Handle explicit drop action and bypass. */ 12372 switch (ap->ipa_act.ipa_type) { 12373 case IPSEC_ACT_DISCARD: 12374 case IPSEC_ACT_REJECT: 12375 ip_drop_packet(mp, B_FALSE, ill, 12376 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12377 return (EHOSTUNREACH); /* IPsec policy failure */ 12378 case IPSEC_ACT_BYPASS: 12379 return (ip_output_post_ipsec(mp, ixa)); 12380 } 12381 12382 /* 12383 * The order of processing is first insert a IP header if needed. 12384 * Then insert the ESP header and then the AH header. 12385 */ 12386 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12387 /* 12388 * First get the outer IP header before sending 12389 * it to ESP. 12390 */ 12391 ipha_t *oipha, *iipha; 12392 mblk_t *outer_mp, *inner_mp; 12393 12394 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12395 (void) mi_strlog(ill->ill_rq, 0, 12396 SL_ERROR|SL_TRACE|SL_CONSOLE, 12397 "ipsec_out_process: " 12398 "Self-Encapsulation failed: Out of memory\n"); 12399 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12400 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12401 freemsg(mp); 12402 return (ENOBUFS); 12403 } 12404 inner_mp = mp; 12405 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12406 oipha = (ipha_t *)outer_mp->b_rptr; 12407 iipha = (ipha_t *)inner_mp->b_rptr; 12408 *oipha = *iipha; 12409 outer_mp->b_wptr += sizeof (ipha_t); 12410 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12411 sizeof (ipha_t)); 12412 oipha->ipha_protocol = IPPROTO_ENCAP; 12413 oipha->ipha_version_and_hdr_length = 12414 IP_SIMPLE_HDR_VERSION; 12415 oipha->ipha_hdr_checksum = 0; 12416 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12417 outer_mp->b_cont = inner_mp; 12418 mp = outer_mp; 12419 12420 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12421 } 12422 12423 /* If we need to wait for a SA then we can't return any errno */ 12424 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12425 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12426 !ipsec_out_select_sa(mp, ixa)) 12427 return (0); 12428 12429 /* 12430 * By now, we know what SA's to use. Toss over to ESP & AH 12431 * to do the heavy lifting. 12432 */ 12433 if (ap->ipa_want_esp) { 12434 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12435 12436 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12437 if (mp == NULL) { 12438 /* 12439 * Either it failed or is pending. In the former case 12440 * ipIfStatsInDiscards was increased. 12441 */ 12442 return (0); 12443 } 12444 } 12445 12446 if (ap->ipa_want_ah) { 12447 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12448 12449 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12450 if (mp == NULL) { 12451 /* 12452 * Either it failed or is pending. In the former case 12453 * ipIfStatsInDiscards was increased. 12454 */ 12455 return (0); 12456 } 12457 } 12458 /* 12459 * We are done with IPsec processing. Send it over 12460 * the wire. 12461 */ 12462 return (ip_output_post_ipsec(mp, ixa)); 12463 } 12464 12465 /* 12466 * ioctls that go through a down/up sequence may need to wait for the down 12467 * to complete. This involves waiting for the ire and ipif refcnts to go down 12468 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12469 */ 12470 /* ARGSUSED */ 12471 void 12472 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12473 { 12474 struct iocblk *iocp; 12475 mblk_t *mp1; 12476 ip_ioctl_cmd_t *ipip; 12477 int err; 12478 sin_t *sin; 12479 struct lifreq *lifr; 12480 struct ifreq *ifr; 12481 12482 iocp = (struct iocblk *)mp->b_rptr; 12483 ASSERT(ipsq != NULL); 12484 /* Existence of mp1 verified in ip_wput_nondata */ 12485 mp1 = mp->b_cont->b_cont; 12486 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12487 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12488 /* 12489 * Special case where ipx_current_ipif is not set: 12490 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12491 * We are here as were not able to complete the operation in 12492 * ipif_set_values because we could not become exclusive on 12493 * the new ipsq. 12494 */ 12495 ill_t *ill = q->q_ptr; 12496 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12497 } 12498 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12499 12500 if (ipip->ipi_cmd_type == IF_CMD) { 12501 /* This a old style SIOC[GS]IF* command */ 12502 ifr = (struct ifreq *)mp1->b_rptr; 12503 sin = (sin_t *)&ifr->ifr_addr; 12504 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12505 /* This a new style SIOC[GS]LIF* command */ 12506 lifr = (struct lifreq *)mp1->b_rptr; 12507 sin = (sin_t *)&lifr->lifr_addr; 12508 } else { 12509 sin = NULL; 12510 } 12511 12512 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12513 q, mp, ipip, mp1->b_rptr); 12514 12515 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12516 int, ipip->ipi_cmd, 12517 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12518 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12519 12520 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12521 } 12522 12523 /* 12524 * ioctl processing 12525 * 12526 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12527 * the ioctl command in the ioctl tables, determines the copyin data size 12528 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12529 * 12530 * ioctl processing then continues when the M_IOCDATA makes its way down to 12531 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12532 * associated 'conn' is refheld till the end of the ioctl and the general 12533 * ioctl processing function ip_process_ioctl() is called to extract the 12534 * arguments and process the ioctl. To simplify extraction, ioctl commands 12535 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12536 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12537 * is used to extract the ioctl's arguments. 12538 * 12539 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12540 * so goes thru the serialization primitive ipsq_try_enter. Then the 12541 * appropriate function to handle the ioctl is called based on the entry in 12542 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12543 * which also refreleases the 'conn' that was refheld at the start of the 12544 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12545 * 12546 * Many exclusive ioctls go thru an internal down up sequence as part of 12547 * the operation. For example an attempt to change the IP address of an 12548 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12549 * does all the cleanup such as deleting all ires that use this address. 12550 * Then we need to wait till all references to the interface go away. 12551 */ 12552 void 12553 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12554 { 12555 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12556 ip_ioctl_cmd_t *ipip = arg; 12557 ip_extract_func_t *extract_funcp; 12558 cmd_info_t ci; 12559 int err; 12560 boolean_t entered_ipsq = B_FALSE; 12561 12562 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12563 12564 if (ipip == NULL) 12565 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12566 12567 /* 12568 * SIOCLIFADDIF needs to go thru a special path since the 12569 * ill may not exist yet. This happens in the case of lo0 12570 * which is created using this ioctl. 12571 */ 12572 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12573 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12574 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12575 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12576 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12577 return; 12578 } 12579 12580 ci.ci_ipif = NULL; 12581 switch (ipip->ipi_cmd_type) { 12582 case MISC_CMD: 12583 case MSFILT_CMD: 12584 /* 12585 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12586 */ 12587 if (ipip->ipi_cmd == IF_UNITSEL) { 12588 /* ioctl comes down the ill */ 12589 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12590 ipif_refhold(ci.ci_ipif); 12591 } 12592 err = 0; 12593 ci.ci_sin = NULL; 12594 ci.ci_sin6 = NULL; 12595 ci.ci_lifr = NULL; 12596 extract_funcp = NULL; 12597 break; 12598 12599 case IF_CMD: 12600 case LIF_CMD: 12601 extract_funcp = ip_extract_lifreq; 12602 break; 12603 12604 case ARP_CMD: 12605 case XARP_CMD: 12606 extract_funcp = ip_extract_arpreq; 12607 break; 12608 12609 default: 12610 ASSERT(0); 12611 } 12612 12613 if (extract_funcp != NULL) { 12614 err = (*extract_funcp)(q, mp, ipip, &ci); 12615 if (err != 0) { 12616 DTRACE_PROBE4(ipif__ioctl, 12617 char *, "ip_process_ioctl finish err", 12618 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12619 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12620 return; 12621 } 12622 12623 /* 12624 * All of the extraction functions return a refheld ipif. 12625 */ 12626 ASSERT(ci.ci_ipif != NULL); 12627 } 12628 12629 if (!(ipip->ipi_flags & IPI_WR)) { 12630 /* 12631 * A return value of EINPROGRESS means the ioctl is 12632 * either queued and waiting for some reason or has 12633 * already completed. 12634 */ 12635 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12636 ci.ci_lifr); 12637 if (ci.ci_ipif != NULL) { 12638 DTRACE_PROBE4(ipif__ioctl, 12639 char *, "ip_process_ioctl finish RD", 12640 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12641 ipif_t *, ci.ci_ipif); 12642 ipif_refrele(ci.ci_ipif); 12643 } else { 12644 DTRACE_PROBE4(ipif__ioctl, 12645 char *, "ip_process_ioctl finish RD", 12646 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12647 } 12648 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12649 return; 12650 } 12651 12652 ASSERT(ci.ci_ipif != NULL); 12653 12654 /* 12655 * If ipsq is non-NULL, we are already being called exclusively 12656 */ 12657 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12658 if (ipsq == NULL) { 12659 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12660 NEW_OP, B_TRUE); 12661 if (ipsq == NULL) { 12662 ipif_refrele(ci.ci_ipif); 12663 return; 12664 } 12665 entered_ipsq = B_TRUE; 12666 } 12667 /* 12668 * Release the ipif so that ipif_down and friends that wait for 12669 * references to go away are not misled about the current ipif_refcnt 12670 * values. We are writer so we can access the ipif even after releasing 12671 * the ipif. 12672 */ 12673 ipif_refrele(ci.ci_ipif); 12674 12675 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12676 12677 /* 12678 * A return value of EINPROGRESS means the ioctl is 12679 * either queued and waiting for some reason or has 12680 * already completed. 12681 */ 12682 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12683 12684 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12685 int, ipip->ipi_cmd, 12686 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12687 ipif_t *, ci.ci_ipif); 12688 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12689 12690 if (entered_ipsq) 12691 ipsq_exit(ipsq); 12692 } 12693 12694 /* 12695 * Complete the ioctl. Typically ioctls use the mi package and need to 12696 * do mi_copyout/mi_copy_done. 12697 */ 12698 void 12699 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12700 { 12701 conn_t *connp = NULL; 12702 12703 if (err == EINPROGRESS) 12704 return; 12705 12706 if (CONN_Q(q)) { 12707 connp = Q_TO_CONN(q); 12708 ASSERT(connp->conn_ref >= 2); 12709 } 12710 12711 switch (mode) { 12712 case COPYOUT: 12713 if (err == 0) 12714 mi_copyout(q, mp); 12715 else 12716 mi_copy_done(q, mp, err); 12717 break; 12718 12719 case NO_COPYOUT: 12720 mi_copy_done(q, mp, err); 12721 break; 12722 12723 default: 12724 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12725 break; 12726 } 12727 12728 /* 12729 * The conn refhold and ioctlref placed on the conn at the start of the 12730 * ioctl are released here. 12731 */ 12732 if (connp != NULL) { 12733 CONN_DEC_IOCTLREF(connp); 12734 CONN_OPER_PENDING_DONE(connp); 12735 } 12736 12737 if (ipsq != NULL) 12738 ipsq_current_finish(ipsq); 12739 } 12740 12741 /* Handles all non data messages */ 12742 void 12743 ip_wput_nondata(queue_t *q, mblk_t *mp) 12744 { 12745 mblk_t *mp1; 12746 struct iocblk *iocp; 12747 ip_ioctl_cmd_t *ipip; 12748 conn_t *connp; 12749 cred_t *cr; 12750 char *proto_str; 12751 12752 if (CONN_Q(q)) 12753 connp = Q_TO_CONN(q); 12754 else 12755 connp = NULL; 12756 12757 switch (DB_TYPE(mp)) { 12758 case M_IOCTL: 12759 /* 12760 * IOCTL processing begins in ip_sioctl_copyin_setup which 12761 * will arrange to copy in associated control structures. 12762 */ 12763 ip_sioctl_copyin_setup(q, mp); 12764 return; 12765 case M_IOCDATA: 12766 /* 12767 * Ensure that this is associated with one of our trans- 12768 * parent ioctls. If it's not ours, discard it if we're 12769 * running as a driver, or pass it on if we're a module. 12770 */ 12771 iocp = (struct iocblk *)mp->b_rptr; 12772 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12773 if (ipip == NULL) { 12774 if (q->q_next == NULL) { 12775 goto nak; 12776 } else { 12777 putnext(q, mp); 12778 } 12779 return; 12780 } 12781 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12782 /* 12783 * The ioctl is one we recognise, but is not consumed 12784 * by IP as a module and we are a module, so we drop 12785 */ 12786 goto nak; 12787 } 12788 12789 /* IOCTL continuation following copyin or copyout. */ 12790 if (mi_copy_state(q, mp, NULL) == -1) { 12791 /* 12792 * The copy operation failed. mi_copy_state already 12793 * cleaned up, so we're out of here. 12794 */ 12795 return; 12796 } 12797 /* 12798 * If we just completed a copy in, we become writer and 12799 * continue processing in ip_sioctl_copyin_done. If it 12800 * was a copy out, we call mi_copyout again. If there is 12801 * nothing more to copy out, it will complete the IOCTL. 12802 */ 12803 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12804 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12805 mi_copy_done(q, mp, EPROTO); 12806 return; 12807 } 12808 /* 12809 * Check for cases that need more copying. A return 12810 * value of 0 means a second copyin has been started, 12811 * so we return; a return value of 1 means no more 12812 * copying is needed, so we continue. 12813 */ 12814 if (ipip->ipi_cmd_type == MSFILT_CMD && 12815 MI_COPY_COUNT(mp) == 1) { 12816 if (ip_copyin_msfilter(q, mp) == 0) 12817 return; 12818 } 12819 /* 12820 * Refhold the conn, till the ioctl completes. This is 12821 * needed in case the ioctl ends up in the pending mp 12822 * list. Every mp in the ipx_pending_mp list must have 12823 * a refhold on the conn to resume processing. The 12824 * refhold is released when the ioctl completes 12825 * (whether normally or abnormally). An ioctlref is also 12826 * placed on the conn to prevent TCP from removing the 12827 * queue needed to send the ioctl reply back. 12828 * In all cases ip_ioctl_finish is called to finish 12829 * the ioctl and release the refholds. 12830 */ 12831 if (connp != NULL) { 12832 /* This is not a reentry */ 12833 CONN_INC_REF(connp); 12834 CONN_INC_IOCTLREF(connp); 12835 } else { 12836 if (!(ipip->ipi_flags & IPI_MODOK)) { 12837 mi_copy_done(q, mp, EINVAL); 12838 return; 12839 } 12840 } 12841 12842 ip_process_ioctl(NULL, q, mp, ipip); 12843 12844 } else { 12845 mi_copyout(q, mp); 12846 } 12847 return; 12848 12849 case M_IOCNAK: 12850 /* 12851 * The only way we could get here is if a resolver didn't like 12852 * an IOCTL we sent it. This shouldn't happen. 12853 */ 12854 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12855 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12856 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12857 freemsg(mp); 12858 return; 12859 case M_IOCACK: 12860 /* /dev/ip shouldn't see this */ 12861 goto nak; 12862 case M_FLUSH: 12863 if (*mp->b_rptr & FLUSHW) 12864 flushq(q, FLUSHALL); 12865 if (q->q_next) { 12866 putnext(q, mp); 12867 return; 12868 } 12869 if (*mp->b_rptr & FLUSHR) { 12870 *mp->b_rptr &= ~FLUSHW; 12871 qreply(q, mp); 12872 return; 12873 } 12874 freemsg(mp); 12875 return; 12876 case M_CTL: 12877 break; 12878 case M_PROTO: 12879 case M_PCPROTO: 12880 /* 12881 * The only PROTO messages we expect are SNMP-related. 12882 */ 12883 switch (((union T_primitives *)mp->b_rptr)->type) { 12884 case T_SVR4_OPTMGMT_REQ: 12885 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12886 "flags %x\n", 12887 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12888 12889 if (connp == NULL) { 12890 proto_str = "T_SVR4_OPTMGMT_REQ"; 12891 goto protonak; 12892 } 12893 12894 /* 12895 * All Solaris components should pass a db_credp 12896 * for this TPI message, hence we ASSERT. 12897 * But in case there is some other M_PROTO that looks 12898 * like a TPI message sent by some other kernel 12899 * component, we check and return an error. 12900 */ 12901 cr = msg_getcred(mp, NULL); 12902 ASSERT(cr != NULL); 12903 if (cr == NULL) { 12904 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12905 if (mp != NULL) 12906 qreply(q, mp); 12907 return; 12908 } 12909 12910 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12911 proto_str = "Bad SNMPCOM request?"; 12912 goto protonak; 12913 } 12914 return; 12915 default: 12916 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12917 (int)*(uint_t *)mp->b_rptr)); 12918 freemsg(mp); 12919 return; 12920 } 12921 default: 12922 break; 12923 } 12924 if (q->q_next) { 12925 putnext(q, mp); 12926 } else 12927 freemsg(mp); 12928 return; 12929 12930 nak: 12931 iocp->ioc_error = EINVAL; 12932 mp->b_datap->db_type = M_IOCNAK; 12933 iocp->ioc_count = 0; 12934 qreply(q, mp); 12935 return; 12936 12937 protonak: 12938 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12939 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12940 qreply(q, mp); 12941 } 12942 12943 /* 12944 * Process IP options in an outbound packet. Verify that the nexthop in a 12945 * strict source route is onlink. 12946 * Returns non-zero if something fails in which case an ICMP error has been 12947 * sent and mp freed. 12948 * 12949 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12950 */ 12951 int 12952 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12953 { 12954 ipoptp_t opts; 12955 uchar_t *opt; 12956 uint8_t optval; 12957 uint8_t optlen; 12958 ipaddr_t dst; 12959 intptr_t code = 0; 12960 ire_t *ire; 12961 ip_stack_t *ipst = ixa->ixa_ipst; 12962 ip_recv_attr_t iras; 12963 12964 ip2dbg(("ip_output_options\n")); 12965 12966 dst = ipha->ipha_dst; 12967 for (optval = ipoptp_first(&opts, ipha); 12968 optval != IPOPT_EOL; 12969 optval = ipoptp_next(&opts)) { 12970 opt = opts.ipoptp_cur; 12971 optlen = opts.ipoptp_len; 12972 ip2dbg(("ip_output_options: opt %d, len %d\n", 12973 optval, optlen)); 12974 switch (optval) { 12975 uint32_t off; 12976 case IPOPT_SSRR: 12977 case IPOPT_LSRR: 12978 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12979 ip1dbg(( 12980 "ip_output_options: bad option offset\n")); 12981 code = (char *)&opt[IPOPT_OLEN] - 12982 (char *)ipha; 12983 goto param_prob; 12984 } 12985 off = opt[IPOPT_OFFSET]; 12986 ip1dbg(("ip_output_options: next hop 0x%x\n", 12987 ntohl(dst))); 12988 /* 12989 * For strict: verify that dst is directly 12990 * reachable. 12991 */ 12992 if (optval == IPOPT_SSRR) { 12993 ire = ire_ftable_lookup_v4(dst, 0, 0, 12994 IRE_INTERFACE, NULL, ALL_ZONES, 12995 ixa->ixa_tsl, 12996 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12997 NULL); 12998 if (ire == NULL) { 12999 ip1dbg(("ip_output_options: SSRR not" 13000 " directly reachable: 0x%x\n", 13001 ntohl(dst))); 13002 goto bad_src_route; 13003 } 13004 ire_refrele(ire); 13005 } 13006 break; 13007 case IPOPT_RR: 13008 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13009 ip1dbg(( 13010 "ip_output_options: bad option offset\n")); 13011 code = (char *)&opt[IPOPT_OLEN] - 13012 (char *)ipha; 13013 goto param_prob; 13014 } 13015 break; 13016 case IPOPT_TS: 13017 /* 13018 * Verify that length >=5 and that there is either 13019 * room for another timestamp or that the overflow 13020 * counter is not maxed out. 13021 */ 13022 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13023 if (optlen < IPOPT_MINLEN_IT) { 13024 goto param_prob; 13025 } 13026 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13027 ip1dbg(( 13028 "ip_output_options: bad option offset\n")); 13029 code = (char *)&opt[IPOPT_OFFSET] - 13030 (char *)ipha; 13031 goto param_prob; 13032 } 13033 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13034 case IPOPT_TS_TSONLY: 13035 off = IPOPT_TS_TIMELEN; 13036 break; 13037 case IPOPT_TS_TSANDADDR: 13038 case IPOPT_TS_PRESPEC: 13039 case IPOPT_TS_PRESPEC_RFC791: 13040 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13041 break; 13042 default: 13043 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13044 (char *)ipha; 13045 goto param_prob; 13046 } 13047 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13048 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13049 /* 13050 * No room and the overflow counter is 15 13051 * already. 13052 */ 13053 goto param_prob; 13054 } 13055 break; 13056 } 13057 } 13058 13059 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13060 return (0); 13061 13062 ip1dbg(("ip_output_options: error processing IP options.")); 13063 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13064 13065 param_prob: 13066 bzero(&iras, sizeof (iras)); 13067 iras.ira_ill = iras.ira_rill = ill; 13068 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13069 iras.ira_rifindex = iras.ira_ruifindex; 13070 iras.ira_flags = IRAF_IS_IPV4; 13071 13072 ip_drop_output("ip_output_options", mp, ill); 13073 icmp_param_problem(mp, (uint8_t)code, &iras); 13074 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13075 return (-1); 13076 13077 bad_src_route: 13078 bzero(&iras, sizeof (iras)); 13079 iras.ira_ill = iras.ira_rill = ill; 13080 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13081 iras.ira_rifindex = iras.ira_ruifindex; 13082 iras.ira_flags = IRAF_IS_IPV4; 13083 13084 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13085 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13086 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13087 return (-1); 13088 } 13089 13090 /* 13091 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13092 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13093 * thru /etc/system. 13094 */ 13095 #define CONN_MAXDRAINCNT 64 13096 13097 static void 13098 conn_drain_init(ip_stack_t *ipst) 13099 { 13100 int i, j; 13101 idl_tx_list_t *itl_tx; 13102 13103 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13104 13105 if ((ipst->ips_conn_drain_list_cnt == 0) || 13106 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13107 /* 13108 * Default value of the number of drainers is the 13109 * number of cpus, subject to maximum of 8 drainers. 13110 */ 13111 if (boot_max_ncpus != -1) 13112 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13113 else 13114 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13115 } 13116 13117 ipst->ips_idl_tx_list = 13118 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13119 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13120 itl_tx = &ipst->ips_idl_tx_list[i]; 13121 itl_tx->txl_drain_list = 13122 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13123 sizeof (idl_t), KM_SLEEP); 13124 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13125 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13126 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13127 MUTEX_DEFAULT, NULL); 13128 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13129 } 13130 } 13131 } 13132 13133 static void 13134 conn_drain_fini(ip_stack_t *ipst) 13135 { 13136 int i; 13137 idl_tx_list_t *itl_tx; 13138 13139 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13140 itl_tx = &ipst->ips_idl_tx_list[i]; 13141 kmem_free(itl_tx->txl_drain_list, 13142 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13143 } 13144 kmem_free(ipst->ips_idl_tx_list, 13145 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13146 ipst->ips_idl_tx_list = NULL; 13147 } 13148 13149 /* 13150 * Flow control has blocked us from proceeding. Insert the given conn in one 13151 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13152 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13153 * will call conn_walk_drain(). See the flow control notes at the top of this 13154 * file for more details. 13155 */ 13156 void 13157 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13158 { 13159 idl_t *idl = tx_list->txl_drain_list; 13160 uint_t index; 13161 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13162 13163 mutex_enter(&connp->conn_lock); 13164 if (connp->conn_state_flags & CONN_CLOSING) { 13165 /* 13166 * The conn is closing as a result of which CONN_CLOSING 13167 * is set. Return. 13168 */ 13169 mutex_exit(&connp->conn_lock); 13170 return; 13171 } else if (connp->conn_idl == NULL) { 13172 /* 13173 * Assign the next drain list round robin. We dont' use 13174 * a lock, and thus it may not be strictly round robin. 13175 * Atomicity of load/stores is enough to make sure that 13176 * conn_drain_list_index is always within bounds. 13177 */ 13178 index = tx_list->txl_drain_index; 13179 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13180 connp->conn_idl = &tx_list->txl_drain_list[index]; 13181 index++; 13182 if (index == ipst->ips_conn_drain_list_cnt) 13183 index = 0; 13184 tx_list->txl_drain_index = index; 13185 } else { 13186 ASSERT(connp->conn_idl->idl_itl == tx_list); 13187 } 13188 mutex_exit(&connp->conn_lock); 13189 13190 idl = connp->conn_idl; 13191 mutex_enter(&idl->idl_lock); 13192 if ((connp->conn_drain_prev != NULL) || 13193 (connp->conn_state_flags & CONN_CLOSING)) { 13194 /* 13195 * The conn is either already in the drain list or closing. 13196 * (We needed to check for CONN_CLOSING again since close can 13197 * sneak in between dropping conn_lock and acquiring idl_lock.) 13198 */ 13199 mutex_exit(&idl->idl_lock); 13200 return; 13201 } 13202 13203 /* 13204 * The conn is not in the drain list. Insert it at the 13205 * tail of the drain list. The drain list is circular 13206 * and doubly linked. idl_conn points to the 1st element 13207 * in the list. 13208 */ 13209 if (idl->idl_conn == NULL) { 13210 idl->idl_conn = connp; 13211 connp->conn_drain_next = connp; 13212 connp->conn_drain_prev = connp; 13213 } else { 13214 conn_t *head = idl->idl_conn; 13215 13216 connp->conn_drain_next = head; 13217 connp->conn_drain_prev = head->conn_drain_prev; 13218 head->conn_drain_prev->conn_drain_next = connp; 13219 head->conn_drain_prev = connp; 13220 } 13221 /* 13222 * For non streams based sockets assert flow control. 13223 */ 13224 conn_setqfull(connp, NULL); 13225 mutex_exit(&idl->idl_lock); 13226 } 13227 13228 static void 13229 conn_drain_remove(conn_t *connp) 13230 { 13231 idl_t *idl = connp->conn_idl; 13232 13233 if (idl != NULL) { 13234 /* 13235 * Remove ourself from the drain list. 13236 */ 13237 if (connp->conn_drain_next == connp) { 13238 /* Singleton in the list */ 13239 ASSERT(connp->conn_drain_prev == connp); 13240 idl->idl_conn = NULL; 13241 } else { 13242 connp->conn_drain_prev->conn_drain_next = 13243 connp->conn_drain_next; 13244 connp->conn_drain_next->conn_drain_prev = 13245 connp->conn_drain_prev; 13246 if (idl->idl_conn == connp) 13247 idl->idl_conn = connp->conn_drain_next; 13248 } 13249 13250 /* 13251 * NOTE: because conn_idl is associated with a specific drain 13252 * list which in turn is tied to the index the TX ring 13253 * (txl_cookie) hashes to, and because the TX ring can change 13254 * over the lifetime of the conn_t, we must clear conn_idl so 13255 * a subsequent conn_drain_insert() will set conn_idl again 13256 * based on the latest txl_cookie. 13257 */ 13258 connp->conn_idl = NULL; 13259 } 13260 connp->conn_drain_next = NULL; 13261 connp->conn_drain_prev = NULL; 13262 13263 conn_clrqfull(connp, NULL); 13264 /* 13265 * For streams based sockets open up flow control. 13266 */ 13267 if (!IPCL_IS_NONSTR(connp)) 13268 enableok(connp->conn_wq); 13269 } 13270 13271 /* 13272 * This conn is closing, and we are called from ip_close. OR 13273 * this conn is draining because flow-control on the ill has been relieved. 13274 * 13275 * We must also need to remove conn's on this idl from the list, and also 13276 * inform the sockfs upcalls about the change in flow-control. 13277 */ 13278 static void 13279 conn_drain(conn_t *connp, boolean_t closing) 13280 { 13281 idl_t *idl; 13282 conn_t *next_connp; 13283 13284 /* 13285 * connp->conn_idl is stable at this point, and no lock is needed 13286 * to check it. If we are called from ip_close, close has already 13287 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13288 * called us only because conn_idl is non-null. If we are called thru 13289 * service, conn_idl could be null, but it cannot change because 13290 * service is single-threaded per queue, and there cannot be another 13291 * instance of service trying to call conn_drain_insert on this conn 13292 * now. 13293 */ 13294 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13295 13296 /* 13297 * If the conn doesn't exist or is not on a drain list, bail. 13298 */ 13299 if (connp == NULL || connp->conn_idl == NULL || 13300 connp->conn_drain_prev == NULL) { 13301 return; 13302 } 13303 13304 idl = connp->conn_idl; 13305 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13306 13307 if (!closing) { 13308 next_connp = connp->conn_drain_next; 13309 while (next_connp != connp) { 13310 conn_t *delconnp = next_connp; 13311 13312 next_connp = next_connp->conn_drain_next; 13313 conn_drain_remove(delconnp); 13314 } 13315 ASSERT(connp->conn_drain_next == idl->idl_conn); 13316 } 13317 conn_drain_remove(connp); 13318 } 13319 13320 /* 13321 * Write service routine. Shared perimeter entry point. 13322 * The device queue's messages has fallen below the low water mark and STREAMS 13323 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13324 * each waiting conn. 13325 */ 13326 void 13327 ip_wsrv(queue_t *q) 13328 { 13329 ill_t *ill; 13330 13331 ill = (ill_t *)q->q_ptr; 13332 if (ill->ill_state_flags == 0) { 13333 ip_stack_t *ipst = ill->ill_ipst; 13334 13335 /* 13336 * The device flow control has opened up. 13337 * Walk through conn drain lists and qenable the 13338 * first conn in each list. This makes sense only 13339 * if the stream is fully plumbed and setup. 13340 * Hence the ill_state_flags check above. 13341 */ 13342 ip1dbg(("ip_wsrv: walking\n")); 13343 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13344 enableok(ill->ill_wq); 13345 } 13346 } 13347 13348 /* 13349 * Callback to disable flow control in IP. 13350 * 13351 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13352 * is enabled. 13353 * 13354 * When MAC_TX() is not able to send any more packets, dld sets its queue 13355 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13356 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13357 * function and wakes up corresponding mac worker threads, which in turn 13358 * calls this callback function, and disables flow control. 13359 */ 13360 void 13361 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13362 { 13363 ill_t *ill = (ill_t *)arg; 13364 ip_stack_t *ipst = ill->ill_ipst; 13365 idl_tx_list_t *idl_txl; 13366 13367 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13368 mutex_enter(&idl_txl->txl_lock); 13369 /* add code to to set a flag to indicate idl_txl is enabled */ 13370 conn_walk_drain(ipst, idl_txl); 13371 mutex_exit(&idl_txl->txl_lock); 13372 } 13373 13374 /* 13375 * Flow control has been relieved and STREAMS has backenabled us; drain 13376 * all the conn lists on `tx_list'. 13377 */ 13378 static void 13379 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13380 { 13381 int i; 13382 idl_t *idl; 13383 13384 IP_STAT(ipst, ip_conn_walk_drain); 13385 13386 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13387 idl = &tx_list->txl_drain_list[i]; 13388 mutex_enter(&idl->idl_lock); 13389 conn_drain(idl->idl_conn, B_FALSE); 13390 mutex_exit(&idl->idl_lock); 13391 } 13392 } 13393 13394 /* 13395 * Determine if the ill and multicast aspects of that packets 13396 * "matches" the conn. 13397 */ 13398 boolean_t 13399 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13400 { 13401 ill_t *ill = ira->ira_rill; 13402 zoneid_t zoneid = ira->ira_zoneid; 13403 uint_t in_ifindex; 13404 ipaddr_t dst, src; 13405 13406 dst = ipha->ipha_dst; 13407 src = ipha->ipha_src; 13408 13409 /* 13410 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13411 * unicast, broadcast and multicast reception to 13412 * conn_incoming_ifindex. 13413 * conn_wantpacket is called for unicast, broadcast and 13414 * multicast packets. 13415 */ 13416 in_ifindex = connp->conn_incoming_ifindex; 13417 13418 /* mpathd can bind to the under IPMP interface, which we allow */ 13419 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13420 if (!IS_UNDER_IPMP(ill)) 13421 return (B_FALSE); 13422 13423 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13424 return (B_FALSE); 13425 } 13426 13427 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13428 return (B_FALSE); 13429 13430 if (!(ira->ira_flags & IRAF_MULTICAST)) 13431 return (B_TRUE); 13432 13433 if (connp->conn_multi_router) { 13434 /* multicast packet and multicast router socket: send up */ 13435 return (B_TRUE); 13436 } 13437 13438 if (ipha->ipha_protocol == IPPROTO_PIM || 13439 ipha->ipha_protocol == IPPROTO_RSVP) 13440 return (B_TRUE); 13441 13442 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13443 } 13444 13445 void 13446 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13447 { 13448 if (IPCL_IS_NONSTR(connp)) { 13449 (*connp->conn_upcalls->su_txq_full) 13450 (connp->conn_upper_handle, B_TRUE); 13451 if (flow_stopped != NULL) 13452 *flow_stopped = B_TRUE; 13453 } else { 13454 queue_t *q = connp->conn_wq; 13455 13456 ASSERT(q != NULL); 13457 if (!(q->q_flag & QFULL)) { 13458 mutex_enter(QLOCK(q)); 13459 if (!(q->q_flag & QFULL)) { 13460 /* still need to set QFULL */ 13461 q->q_flag |= QFULL; 13462 /* set flow_stopped to true under QLOCK */ 13463 if (flow_stopped != NULL) 13464 *flow_stopped = B_TRUE; 13465 mutex_exit(QLOCK(q)); 13466 } else { 13467 /* flow_stopped is left unchanged */ 13468 mutex_exit(QLOCK(q)); 13469 } 13470 } 13471 } 13472 } 13473 13474 void 13475 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13476 { 13477 if (IPCL_IS_NONSTR(connp)) { 13478 (*connp->conn_upcalls->su_txq_full) 13479 (connp->conn_upper_handle, B_FALSE); 13480 if (flow_stopped != NULL) 13481 *flow_stopped = B_FALSE; 13482 } else { 13483 queue_t *q = connp->conn_wq; 13484 13485 ASSERT(q != NULL); 13486 if (q->q_flag & QFULL) { 13487 mutex_enter(QLOCK(q)); 13488 if (q->q_flag & QFULL) { 13489 q->q_flag &= ~QFULL; 13490 /* set flow_stopped to false under QLOCK */ 13491 if (flow_stopped != NULL) 13492 *flow_stopped = B_FALSE; 13493 mutex_exit(QLOCK(q)); 13494 if (q->q_flag & QWANTW) 13495 qbackenable(q, 0); 13496 } else { 13497 /* flow_stopped is left unchanged */ 13498 mutex_exit(QLOCK(q)); 13499 } 13500 } 13501 } 13502 13503 mutex_enter(&connp->conn_lock); 13504 connp->conn_blocked = B_FALSE; 13505 mutex_exit(&connp->conn_lock); 13506 } 13507 13508 /* 13509 * Return the length in bytes of the IPv4 headers (base header, label, and 13510 * other IP options) that will be needed based on the 13511 * ip_pkt_t structure passed by the caller. 13512 * 13513 * The returned length does not include the length of the upper level 13514 * protocol (ULP) header. 13515 * The caller needs to check that the length doesn't exceed the max for IPv4. 13516 */ 13517 int 13518 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13519 { 13520 int len; 13521 13522 len = IP_SIMPLE_HDR_LENGTH; 13523 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13524 ASSERT(ipp->ipp_label_len_v4 != 0); 13525 /* We need to round up here */ 13526 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13527 } 13528 13529 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13530 ASSERT(ipp->ipp_ipv4_options_len != 0); 13531 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13532 len += ipp->ipp_ipv4_options_len; 13533 } 13534 return (len); 13535 } 13536 13537 /* 13538 * All-purpose routine to build an IPv4 header with options based 13539 * on the abstract ip_pkt_t. 13540 * 13541 * The caller has to set the source and destination address as well as 13542 * ipha_length. The caller has to massage any source route and compensate 13543 * for the ULP pseudo-header checksum due to the source route. 13544 */ 13545 void 13546 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13547 uint8_t protocol) 13548 { 13549 ipha_t *ipha = (ipha_t *)buf; 13550 uint8_t *cp; 13551 13552 /* Initialize IPv4 header */ 13553 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13554 ipha->ipha_length = 0; /* Caller will set later */ 13555 ipha->ipha_ident = 0; 13556 ipha->ipha_fragment_offset_and_flags = 0; 13557 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13558 ipha->ipha_protocol = protocol; 13559 ipha->ipha_hdr_checksum = 0; 13560 13561 if ((ipp->ipp_fields & IPPF_ADDR) && 13562 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13563 ipha->ipha_src = ipp->ipp_addr_v4; 13564 13565 cp = (uint8_t *)&ipha[1]; 13566 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13567 ASSERT(ipp->ipp_label_len_v4 != 0); 13568 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13569 cp += ipp->ipp_label_len_v4; 13570 /* We need to round up here */ 13571 while ((uintptr_t)cp & 0x3) { 13572 *cp++ = IPOPT_NOP; 13573 } 13574 } 13575 13576 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13577 ASSERT(ipp->ipp_ipv4_options_len != 0); 13578 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13579 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13580 cp += ipp->ipp_ipv4_options_len; 13581 } 13582 ipha->ipha_version_and_hdr_length = 13583 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13584 13585 ASSERT((int)(cp - buf) == buf_len); 13586 } 13587 13588 /* Allocate the private structure */ 13589 static int 13590 ip_priv_alloc(void **bufp) 13591 { 13592 void *buf; 13593 13594 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13595 return (ENOMEM); 13596 13597 *bufp = buf; 13598 return (0); 13599 } 13600 13601 /* Function to delete the private structure */ 13602 void 13603 ip_priv_free(void *buf) 13604 { 13605 ASSERT(buf != NULL); 13606 kmem_free(buf, sizeof (ip_priv_t)); 13607 } 13608 13609 /* 13610 * The entry point for IPPF processing. 13611 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13612 * routine just returns. 13613 * 13614 * When called, ip_process generates an ipp_packet_t structure 13615 * which holds the state information for this packet and invokes the 13616 * the classifier (via ipp_packet_process). The classification, depending on 13617 * configured filters, results in a list of actions for this packet. Invoking 13618 * an action may cause the packet to be dropped, in which case we return NULL. 13619 * proc indicates the callout position for 13620 * this packet and ill is the interface this packet arrived on or will leave 13621 * on (inbound and outbound resp.). 13622 * 13623 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13624 * on the ill corrsponding to the destination IP address. 13625 */ 13626 mblk_t * 13627 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13628 { 13629 ip_priv_t *priv; 13630 ipp_action_id_t aid; 13631 int rc = 0; 13632 ipp_packet_t *pp; 13633 13634 /* If the classifier is not loaded, return */ 13635 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13636 return (mp); 13637 } 13638 13639 ASSERT(mp != NULL); 13640 13641 /* Allocate the packet structure */ 13642 rc = ipp_packet_alloc(&pp, "ip", aid); 13643 if (rc != 0) 13644 goto drop; 13645 13646 /* Allocate the private structure */ 13647 rc = ip_priv_alloc((void **)&priv); 13648 if (rc != 0) { 13649 ipp_packet_free(pp); 13650 goto drop; 13651 } 13652 priv->proc = proc; 13653 priv->ill_index = ill_get_upper_ifindex(rill); 13654 13655 ipp_packet_set_private(pp, priv, ip_priv_free); 13656 ipp_packet_set_data(pp, mp); 13657 13658 /* Invoke the classifier */ 13659 rc = ipp_packet_process(&pp); 13660 if (pp != NULL) { 13661 mp = ipp_packet_get_data(pp); 13662 ipp_packet_free(pp); 13663 if (rc != 0) 13664 goto drop; 13665 return (mp); 13666 } else { 13667 /* No mp to trace in ip_drop_input/ip_drop_output */ 13668 mp = NULL; 13669 } 13670 drop: 13671 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13672 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13673 ip_drop_input("ip_process", mp, ill); 13674 } else { 13675 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13676 ip_drop_output("ip_process", mp, ill); 13677 } 13678 freemsg(mp); 13679 return (NULL); 13680 } 13681 13682 /* 13683 * Propagate a multicast group membership operation (add/drop) on 13684 * all the interfaces crossed by the related multirt routes. 13685 * The call is considered successful if the operation succeeds 13686 * on at least one interface. 13687 * 13688 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13689 * multicast addresses with the ire argument being the first one. 13690 * We walk the bucket to find all the of those. 13691 * 13692 * Common to IPv4 and IPv6. 13693 */ 13694 static int 13695 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13696 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13697 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13698 mcast_record_t fmode, const in6_addr_t *v6src) 13699 { 13700 ire_t *ire_gw; 13701 irb_t *irb; 13702 int ifindex; 13703 int error = 0; 13704 int result; 13705 ip_stack_t *ipst = ire->ire_ipst; 13706 ipaddr_t group; 13707 boolean_t isv6; 13708 int match_flags; 13709 13710 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13711 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13712 isv6 = B_FALSE; 13713 } else { 13714 isv6 = B_TRUE; 13715 } 13716 13717 irb = ire->ire_bucket; 13718 ASSERT(irb != NULL); 13719 13720 result = 0; 13721 irb_refhold(irb); 13722 for (; ire != NULL; ire = ire->ire_next) { 13723 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13724 continue; 13725 13726 /* We handle -ifp routes by matching on the ill if set */ 13727 match_flags = MATCH_IRE_TYPE; 13728 if (ire->ire_ill != NULL) 13729 match_flags |= MATCH_IRE_ILL; 13730 13731 if (isv6) { 13732 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13733 continue; 13734 13735 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13736 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13737 match_flags, 0, ipst, NULL); 13738 } else { 13739 if (ire->ire_addr != group) 13740 continue; 13741 13742 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13743 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13744 match_flags, 0, ipst, NULL); 13745 } 13746 /* No interface route exists for the gateway; skip this ire. */ 13747 if (ire_gw == NULL) 13748 continue; 13749 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13750 ire_refrele(ire_gw); 13751 continue; 13752 } 13753 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13754 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13755 13756 /* 13757 * The operation is considered a success if 13758 * it succeeds at least once on any one interface. 13759 */ 13760 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13761 fmode, v6src); 13762 if (error == 0) 13763 result = CGTP_MCAST_SUCCESS; 13764 13765 ire_refrele(ire_gw); 13766 } 13767 irb_refrele(irb); 13768 /* 13769 * Consider the call as successful if we succeeded on at least 13770 * one interface. Otherwise, return the last encountered error. 13771 */ 13772 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13773 } 13774 13775 /* 13776 * Return the expected CGTP hooks version number. 13777 */ 13778 int 13779 ip_cgtp_filter_supported(void) 13780 { 13781 return (ip_cgtp_filter_rev); 13782 } 13783 13784 /* 13785 * CGTP hooks can be registered by invoking this function. 13786 * Checks that the version number matches. 13787 */ 13788 int 13789 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13790 { 13791 netstack_t *ns; 13792 ip_stack_t *ipst; 13793 13794 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13795 return (ENOTSUP); 13796 13797 ns = netstack_find_by_stackid(stackid); 13798 if (ns == NULL) 13799 return (EINVAL); 13800 ipst = ns->netstack_ip; 13801 ASSERT(ipst != NULL); 13802 13803 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13804 netstack_rele(ns); 13805 return (EALREADY); 13806 } 13807 13808 ipst->ips_ip_cgtp_filter_ops = ops; 13809 13810 ill_set_inputfn_all(ipst); 13811 13812 netstack_rele(ns); 13813 return (0); 13814 } 13815 13816 /* 13817 * CGTP hooks can be unregistered by invoking this function. 13818 * Returns ENXIO if there was no registration. 13819 * Returns EBUSY if the ndd variable has not been turned off. 13820 */ 13821 int 13822 ip_cgtp_filter_unregister(netstackid_t stackid) 13823 { 13824 netstack_t *ns; 13825 ip_stack_t *ipst; 13826 13827 ns = netstack_find_by_stackid(stackid); 13828 if (ns == NULL) 13829 return (EINVAL); 13830 ipst = ns->netstack_ip; 13831 ASSERT(ipst != NULL); 13832 13833 if (ipst->ips_ip_cgtp_filter) { 13834 netstack_rele(ns); 13835 return (EBUSY); 13836 } 13837 13838 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13839 netstack_rele(ns); 13840 return (ENXIO); 13841 } 13842 ipst->ips_ip_cgtp_filter_ops = NULL; 13843 13844 ill_set_inputfn_all(ipst); 13845 13846 netstack_rele(ns); 13847 return (0); 13848 } 13849 13850 /* 13851 * Check whether there is a CGTP filter registration. 13852 * Returns non-zero if there is a registration, otherwise returns zero. 13853 * Note: returns zero if bad stackid. 13854 */ 13855 int 13856 ip_cgtp_filter_is_registered(netstackid_t stackid) 13857 { 13858 netstack_t *ns; 13859 ip_stack_t *ipst; 13860 int ret; 13861 13862 ns = netstack_find_by_stackid(stackid); 13863 if (ns == NULL) 13864 return (0); 13865 ipst = ns->netstack_ip; 13866 ASSERT(ipst != NULL); 13867 13868 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13869 ret = 1; 13870 else 13871 ret = 0; 13872 13873 netstack_rele(ns); 13874 return (ret); 13875 } 13876 13877 static int 13878 ip_squeue_switch(int val) 13879 { 13880 int rval; 13881 13882 switch (val) { 13883 case IP_SQUEUE_ENTER_NODRAIN: 13884 rval = SQ_NODRAIN; 13885 break; 13886 case IP_SQUEUE_ENTER: 13887 rval = SQ_PROCESS; 13888 break; 13889 case IP_SQUEUE_FILL: 13890 default: 13891 rval = SQ_FILL; 13892 break; 13893 } 13894 return (rval); 13895 } 13896 13897 static void * 13898 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13899 { 13900 kstat_t *ksp; 13901 13902 ip_stat_t template = { 13903 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13904 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13905 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13906 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13907 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13908 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13909 { "ip_opt", KSTAT_DATA_UINT64 }, 13910 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13911 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13912 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13913 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13914 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13915 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13916 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13917 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13918 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13919 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13920 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13921 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13922 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13923 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13924 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13925 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13926 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13927 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13928 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13929 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13930 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13931 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13932 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13933 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13934 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13935 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13936 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13937 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13938 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13939 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13940 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13941 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13942 }; 13943 13944 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13945 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13946 KSTAT_FLAG_VIRTUAL, stackid); 13947 13948 if (ksp == NULL) 13949 return (NULL); 13950 13951 bcopy(&template, ip_statisticsp, sizeof (template)); 13952 ksp->ks_data = (void *)ip_statisticsp; 13953 ksp->ks_private = (void *)(uintptr_t)stackid; 13954 13955 kstat_install(ksp); 13956 return (ksp); 13957 } 13958 13959 static void 13960 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13961 { 13962 if (ksp != NULL) { 13963 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13964 kstat_delete_netstack(ksp, stackid); 13965 } 13966 } 13967 13968 static void * 13969 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13970 { 13971 kstat_t *ksp; 13972 13973 ip_named_kstat_t template = { 13974 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13975 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13976 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13977 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13978 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13979 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13980 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13981 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13982 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13983 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13984 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13985 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13986 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13987 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13988 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13989 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13990 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13991 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13992 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13993 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13994 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13995 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13996 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13997 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13998 { "noPorts", KSTAT_DATA_UINT32, 0 }, 13999 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14000 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14001 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14002 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14003 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14004 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14005 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14006 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14007 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14008 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14009 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14010 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14011 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14012 }; 14013 14014 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14015 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14016 if (ksp == NULL || ksp->ks_data == NULL) 14017 return (NULL); 14018 14019 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14020 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14021 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14022 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14023 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14024 14025 template.netToMediaEntrySize.value.i32 = 14026 sizeof (mib2_ipNetToMediaEntry_t); 14027 14028 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14029 14030 bcopy(&template, ksp->ks_data, sizeof (template)); 14031 ksp->ks_update = ip_kstat_update; 14032 ksp->ks_private = (void *)(uintptr_t)stackid; 14033 14034 kstat_install(ksp); 14035 return (ksp); 14036 } 14037 14038 static void 14039 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14040 { 14041 if (ksp != NULL) { 14042 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14043 kstat_delete_netstack(ksp, stackid); 14044 } 14045 } 14046 14047 static int 14048 ip_kstat_update(kstat_t *kp, int rw) 14049 { 14050 ip_named_kstat_t *ipkp; 14051 mib2_ipIfStatsEntry_t ipmib; 14052 ill_walk_context_t ctx; 14053 ill_t *ill; 14054 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14055 netstack_t *ns; 14056 ip_stack_t *ipst; 14057 14058 if (kp == NULL || kp->ks_data == NULL) 14059 return (EIO); 14060 14061 if (rw == KSTAT_WRITE) 14062 return (EACCES); 14063 14064 ns = netstack_find_by_stackid(stackid); 14065 if (ns == NULL) 14066 return (-1); 14067 ipst = ns->netstack_ip; 14068 if (ipst == NULL) { 14069 netstack_rele(ns); 14070 return (-1); 14071 } 14072 ipkp = (ip_named_kstat_t *)kp->ks_data; 14073 14074 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14075 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14076 ill = ILL_START_WALK_V4(&ctx, ipst); 14077 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14078 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14079 rw_exit(&ipst->ips_ill_g_lock); 14080 14081 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14082 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14083 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14084 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14085 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14086 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14087 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14088 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14089 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14090 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14091 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14092 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14093 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14094 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14095 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14096 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14097 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14098 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14099 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14100 14101 ipkp->routingDiscards.value.ui32 = 0; 14102 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14103 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14104 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14105 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14106 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14107 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14108 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14109 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14110 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14111 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14112 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14113 14114 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14115 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14116 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14117 14118 netstack_rele(ns); 14119 14120 return (0); 14121 } 14122 14123 static void * 14124 icmp_kstat_init(netstackid_t stackid) 14125 { 14126 kstat_t *ksp; 14127 14128 icmp_named_kstat_t template = { 14129 { "inMsgs", KSTAT_DATA_UINT32 }, 14130 { "inErrors", KSTAT_DATA_UINT32 }, 14131 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14132 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14133 { "inParmProbs", KSTAT_DATA_UINT32 }, 14134 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14135 { "inRedirects", KSTAT_DATA_UINT32 }, 14136 { "inEchos", KSTAT_DATA_UINT32 }, 14137 { "inEchoReps", KSTAT_DATA_UINT32 }, 14138 { "inTimestamps", KSTAT_DATA_UINT32 }, 14139 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14140 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14141 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14142 { "outMsgs", KSTAT_DATA_UINT32 }, 14143 { "outErrors", KSTAT_DATA_UINT32 }, 14144 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14145 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14146 { "outParmProbs", KSTAT_DATA_UINT32 }, 14147 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14148 { "outRedirects", KSTAT_DATA_UINT32 }, 14149 { "outEchos", KSTAT_DATA_UINT32 }, 14150 { "outEchoReps", KSTAT_DATA_UINT32 }, 14151 { "outTimestamps", KSTAT_DATA_UINT32 }, 14152 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14153 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14154 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14155 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14156 { "inUnknowns", KSTAT_DATA_UINT32 }, 14157 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14158 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14159 { "outDrops", KSTAT_DATA_UINT32 }, 14160 { "inOverFlows", KSTAT_DATA_UINT32 }, 14161 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14162 }; 14163 14164 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14165 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14166 if (ksp == NULL || ksp->ks_data == NULL) 14167 return (NULL); 14168 14169 bcopy(&template, ksp->ks_data, sizeof (template)); 14170 14171 ksp->ks_update = icmp_kstat_update; 14172 ksp->ks_private = (void *)(uintptr_t)stackid; 14173 14174 kstat_install(ksp); 14175 return (ksp); 14176 } 14177 14178 static void 14179 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14180 { 14181 if (ksp != NULL) { 14182 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14183 kstat_delete_netstack(ksp, stackid); 14184 } 14185 } 14186 14187 static int 14188 icmp_kstat_update(kstat_t *kp, int rw) 14189 { 14190 icmp_named_kstat_t *icmpkp; 14191 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14192 netstack_t *ns; 14193 ip_stack_t *ipst; 14194 14195 if ((kp == NULL) || (kp->ks_data == NULL)) 14196 return (EIO); 14197 14198 if (rw == KSTAT_WRITE) 14199 return (EACCES); 14200 14201 ns = netstack_find_by_stackid(stackid); 14202 if (ns == NULL) 14203 return (-1); 14204 ipst = ns->netstack_ip; 14205 if (ipst == NULL) { 14206 netstack_rele(ns); 14207 return (-1); 14208 } 14209 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14210 14211 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14212 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14213 icmpkp->inDestUnreachs.value.ui32 = 14214 ipst->ips_icmp_mib.icmpInDestUnreachs; 14215 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14216 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14217 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14218 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14219 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14220 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14221 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14222 icmpkp->inTimestampReps.value.ui32 = 14223 ipst->ips_icmp_mib.icmpInTimestampReps; 14224 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14225 icmpkp->inAddrMaskReps.value.ui32 = 14226 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14227 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14228 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14229 icmpkp->outDestUnreachs.value.ui32 = 14230 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14231 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14232 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14233 icmpkp->outSrcQuenchs.value.ui32 = 14234 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14235 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14236 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14237 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14238 icmpkp->outTimestamps.value.ui32 = 14239 ipst->ips_icmp_mib.icmpOutTimestamps; 14240 icmpkp->outTimestampReps.value.ui32 = 14241 ipst->ips_icmp_mib.icmpOutTimestampReps; 14242 icmpkp->outAddrMasks.value.ui32 = 14243 ipst->ips_icmp_mib.icmpOutAddrMasks; 14244 icmpkp->outAddrMaskReps.value.ui32 = 14245 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14246 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14247 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14248 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14249 icmpkp->outFragNeeded.value.ui32 = 14250 ipst->ips_icmp_mib.icmpOutFragNeeded; 14251 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14252 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14253 icmpkp->inBadRedirects.value.ui32 = 14254 ipst->ips_icmp_mib.icmpInBadRedirects; 14255 14256 netstack_rele(ns); 14257 return (0); 14258 } 14259 14260 /* 14261 * This is the fanout function for raw socket opened for SCTP. Note 14262 * that it is called after SCTP checks that there is no socket which 14263 * wants a packet. Then before SCTP handles this out of the blue packet, 14264 * this function is called to see if there is any raw socket for SCTP. 14265 * If there is and it is bound to the correct address, the packet will 14266 * be sent to that socket. Note that only one raw socket can be bound to 14267 * a port. This is assured in ipcl_sctp_hash_insert(); 14268 */ 14269 void 14270 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14271 ip_recv_attr_t *ira) 14272 { 14273 conn_t *connp; 14274 queue_t *rq; 14275 boolean_t secure; 14276 ill_t *ill = ira->ira_ill; 14277 ip_stack_t *ipst = ill->ill_ipst; 14278 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14279 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14280 iaflags_t iraflags = ira->ira_flags; 14281 ill_t *rill = ira->ira_rill; 14282 14283 secure = iraflags & IRAF_IPSEC_SECURE; 14284 14285 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14286 ira, ipst); 14287 if (connp == NULL) { 14288 /* 14289 * Although raw sctp is not summed, OOB chunks must be. 14290 * Drop the packet here if the sctp checksum failed. 14291 */ 14292 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14293 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14294 freemsg(mp); 14295 return; 14296 } 14297 ira->ira_ill = ira->ira_rill = NULL; 14298 sctp_ootb_input(mp, ira, ipst); 14299 ira->ira_ill = ill; 14300 ira->ira_rill = rill; 14301 return; 14302 } 14303 rq = connp->conn_rq; 14304 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14305 CONN_DEC_REF(connp); 14306 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14307 freemsg(mp); 14308 return; 14309 } 14310 if (((iraflags & IRAF_IS_IPV4) ? 14311 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14312 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14313 secure) { 14314 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14315 ip6h, ira); 14316 if (mp == NULL) { 14317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14318 /* Note that mp is NULL */ 14319 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14320 CONN_DEC_REF(connp); 14321 return; 14322 } 14323 } 14324 14325 if (iraflags & IRAF_ICMP_ERROR) { 14326 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14327 } else { 14328 ill_t *rill = ira->ira_rill; 14329 14330 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14331 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14332 ira->ira_ill = ira->ira_rill = NULL; 14333 (connp->conn_recv)(connp, mp, NULL, ira); 14334 ira->ira_ill = ill; 14335 ira->ira_rill = rill; 14336 } 14337 CONN_DEC_REF(connp); 14338 } 14339 14340 /* 14341 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14342 * header before the ip payload. 14343 */ 14344 static void 14345 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14346 { 14347 int len = (mp->b_wptr - mp->b_rptr); 14348 mblk_t *ip_mp; 14349 14350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14351 if (is_fp_mp || len != fp_mp_len) { 14352 if (len > fp_mp_len) { 14353 /* 14354 * fastpath header and ip header in the first mblk 14355 */ 14356 mp->b_rptr += fp_mp_len; 14357 } else { 14358 /* 14359 * ip_xmit_attach_llhdr had to prepend an mblk to 14360 * attach the fastpath header before ip header. 14361 */ 14362 ip_mp = mp->b_cont; 14363 freeb(mp); 14364 mp = ip_mp; 14365 mp->b_rptr += (fp_mp_len - len); 14366 } 14367 } else { 14368 ip_mp = mp->b_cont; 14369 freeb(mp); 14370 mp = ip_mp; 14371 } 14372 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14373 freemsg(mp); 14374 } 14375 14376 /* 14377 * Normal post fragmentation function. 14378 * 14379 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14380 * using the same state machine. 14381 * 14382 * We return an error on failure. In particular we return EWOULDBLOCK 14383 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14384 * (currently by canputnext failure resulting in backenabling from GLD.) 14385 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14386 * indication that they can flow control until ip_wsrv() tells then to restart. 14387 * 14388 * If the nce passed by caller is incomplete, this function 14389 * queues the packet and if necessary, sends ARP request and bails. 14390 * If the Neighbor Cache passed is fully resolved, we simply prepend 14391 * the link-layer header to the packet, do ipsec hw acceleration 14392 * work if necessary, and send the packet out on the wire. 14393 */ 14394 /* ARGSUSED6 */ 14395 int 14396 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14397 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14398 { 14399 queue_t *wq; 14400 ill_t *ill = nce->nce_ill; 14401 ip_stack_t *ipst = ill->ill_ipst; 14402 uint64_t delta; 14403 boolean_t isv6 = ill->ill_isv6; 14404 boolean_t fp_mp; 14405 ncec_t *ncec = nce->nce_common; 14406 int64_t now = LBOLT_FASTPATH64; 14407 boolean_t is_probe; 14408 14409 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14410 14411 ASSERT(mp != NULL); 14412 ASSERT(mp->b_datap->db_type == M_DATA); 14413 ASSERT(pkt_len == msgdsize(mp)); 14414 14415 /* 14416 * If we have already been here and are coming back after ARP/ND. 14417 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14418 * in that case since they have seen the packet when it came here 14419 * the first time. 14420 */ 14421 if (ixaflags & IXAF_NO_TRACE) 14422 goto sendit; 14423 14424 if (ixaflags & IXAF_IS_IPV4) { 14425 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14426 14427 ASSERT(!isv6); 14428 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14429 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14430 !(ixaflags & IXAF_NO_PFHOOK)) { 14431 int error; 14432 14433 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14434 ipst->ips_ipv4firewall_physical_out, 14435 NULL, ill, ipha, mp, mp, 0, ipst, error); 14436 DTRACE_PROBE1(ip4__physical__out__end, 14437 mblk_t *, mp); 14438 if (mp == NULL) 14439 return (error); 14440 14441 /* The length could have changed */ 14442 pkt_len = msgdsize(mp); 14443 } 14444 if (ipst->ips_ip4_observe.he_interested) { 14445 /* 14446 * Note that for TX the zoneid is the sending 14447 * zone, whether or not MLP is in play. 14448 * Since the szone argument is the IP zoneid (i.e., 14449 * zero for exclusive-IP zones) and ipobs wants 14450 * the system zoneid, we map it here. 14451 */ 14452 szone = IP_REAL_ZONEID(szone, ipst); 14453 14454 /* 14455 * On the outbound path the destination zone will be 14456 * unknown as we're sending this packet out on the 14457 * wire. 14458 */ 14459 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14460 ill, ipst); 14461 } 14462 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14463 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14464 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14465 } else { 14466 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14467 14468 ASSERT(isv6); 14469 ASSERT(pkt_len == 14470 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14471 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14472 !(ixaflags & IXAF_NO_PFHOOK)) { 14473 int error; 14474 14475 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14476 ipst->ips_ipv6firewall_physical_out, 14477 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14478 DTRACE_PROBE1(ip6__physical__out__end, 14479 mblk_t *, mp); 14480 if (mp == NULL) 14481 return (error); 14482 14483 /* The length could have changed */ 14484 pkt_len = msgdsize(mp); 14485 } 14486 if (ipst->ips_ip6_observe.he_interested) { 14487 /* See above */ 14488 szone = IP_REAL_ZONEID(szone, ipst); 14489 14490 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14491 ill, ipst); 14492 } 14493 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14494 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14495 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14496 } 14497 14498 sendit: 14499 /* 14500 * We check the state without a lock because the state can never 14501 * move "backwards" to initial or incomplete. 14502 */ 14503 switch (ncec->ncec_state) { 14504 case ND_REACHABLE: 14505 case ND_STALE: 14506 case ND_DELAY: 14507 case ND_PROBE: 14508 mp = ip_xmit_attach_llhdr(mp, nce); 14509 if (mp == NULL) { 14510 /* 14511 * ip_xmit_attach_llhdr has increased 14512 * ipIfStatsOutDiscards and called ip_drop_output() 14513 */ 14514 return (ENOBUFS); 14515 } 14516 /* 14517 * check if nce_fastpath completed and we tagged on a 14518 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14519 */ 14520 fp_mp = (mp->b_datap->db_type == M_DATA); 14521 14522 if (fp_mp && 14523 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14524 ill_dld_direct_t *idd; 14525 14526 idd = &ill->ill_dld_capab->idc_direct; 14527 /* 14528 * Send the packet directly to DLD, where it 14529 * may be queued depending on the availability 14530 * of transmit resources at the media layer. 14531 * Return value should be taken into 14532 * account and flow control the TCP. 14533 */ 14534 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14535 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14536 pkt_len); 14537 14538 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14539 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14540 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14541 } else { 14542 uintptr_t cookie; 14543 14544 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14545 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14546 if (ixacookie != NULL) 14547 *ixacookie = cookie; 14548 return (EWOULDBLOCK); 14549 } 14550 } 14551 } else { 14552 wq = ill->ill_wq; 14553 14554 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14555 !canputnext(wq)) { 14556 if (ixacookie != NULL) 14557 *ixacookie = 0; 14558 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14559 nce->nce_fp_mp != NULL ? 14560 MBLKL(nce->nce_fp_mp) : 0); 14561 return (EWOULDBLOCK); 14562 } 14563 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14564 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14565 pkt_len); 14566 putnext(wq, mp); 14567 } 14568 14569 /* 14570 * The rest of this function implements Neighbor Unreachability 14571 * detection. Determine if the ncec is eligible for NUD. 14572 */ 14573 if (ncec->ncec_flags & NCE_F_NONUD) 14574 return (0); 14575 14576 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14577 14578 /* 14579 * Check for upper layer advice 14580 */ 14581 if (ixaflags & IXAF_REACH_CONF) { 14582 timeout_id_t tid; 14583 14584 /* 14585 * It should be o.k. to check the state without 14586 * a lock here, at most we lose an advice. 14587 */ 14588 ncec->ncec_last = TICK_TO_MSEC(now); 14589 if (ncec->ncec_state != ND_REACHABLE) { 14590 mutex_enter(&ncec->ncec_lock); 14591 ncec->ncec_state = ND_REACHABLE; 14592 tid = ncec->ncec_timeout_id; 14593 ncec->ncec_timeout_id = 0; 14594 mutex_exit(&ncec->ncec_lock); 14595 (void) untimeout(tid); 14596 if (ip_debug > 2) { 14597 /* ip1dbg */ 14598 pr_addr_dbg("ip_xmit: state" 14599 " for %s changed to" 14600 " REACHABLE\n", AF_INET6, 14601 &ncec->ncec_addr); 14602 } 14603 } 14604 return (0); 14605 } 14606 14607 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14608 ip1dbg(("ip_xmit: delta = %" PRId64 14609 " ill_reachable_time = %d \n", delta, 14610 ill->ill_reachable_time)); 14611 if (delta > (uint64_t)ill->ill_reachable_time) { 14612 mutex_enter(&ncec->ncec_lock); 14613 switch (ncec->ncec_state) { 14614 case ND_REACHABLE: 14615 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14616 /* FALLTHROUGH */ 14617 case ND_STALE: 14618 /* 14619 * ND_REACHABLE is identical to 14620 * ND_STALE in this specific case. If 14621 * reachable time has expired for this 14622 * neighbor (delta is greater than 14623 * reachable time), conceptually, the 14624 * neighbor cache is no longer in 14625 * REACHABLE state, but already in 14626 * STALE state. So the correct 14627 * transition here is to ND_DELAY. 14628 */ 14629 ncec->ncec_state = ND_DELAY; 14630 mutex_exit(&ncec->ncec_lock); 14631 nce_restart_timer(ncec, 14632 ipst->ips_delay_first_probe_time); 14633 if (ip_debug > 3) { 14634 /* ip2dbg */ 14635 pr_addr_dbg("ip_xmit: state" 14636 " for %s changed to" 14637 " DELAY\n", AF_INET6, 14638 &ncec->ncec_addr); 14639 } 14640 break; 14641 case ND_DELAY: 14642 case ND_PROBE: 14643 mutex_exit(&ncec->ncec_lock); 14644 /* Timers have already started */ 14645 break; 14646 case ND_UNREACHABLE: 14647 /* 14648 * nce_timer has detected that this ncec 14649 * is unreachable and initiated deleting 14650 * this ncec. 14651 * This is a harmless race where we found the 14652 * ncec before it was deleted and have 14653 * just sent out a packet using this 14654 * unreachable ncec. 14655 */ 14656 mutex_exit(&ncec->ncec_lock); 14657 break; 14658 default: 14659 ASSERT(0); 14660 mutex_exit(&ncec->ncec_lock); 14661 } 14662 } 14663 return (0); 14664 14665 case ND_INCOMPLETE: 14666 /* 14667 * the state could have changed since we didn't hold the lock. 14668 * Re-verify state under lock. 14669 */ 14670 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14671 mutex_enter(&ncec->ncec_lock); 14672 if (NCE_ISREACHABLE(ncec)) { 14673 mutex_exit(&ncec->ncec_lock); 14674 goto sendit; 14675 } 14676 /* queue the packet */ 14677 nce_queue_mp(ncec, mp, is_probe); 14678 mutex_exit(&ncec->ncec_lock); 14679 DTRACE_PROBE2(ip__xmit__incomplete, 14680 (ncec_t *), ncec, (mblk_t *), mp); 14681 return (0); 14682 14683 case ND_INITIAL: 14684 /* 14685 * State could have changed since we didn't hold the lock, so 14686 * re-verify state. 14687 */ 14688 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14689 mutex_enter(&ncec->ncec_lock); 14690 if (NCE_ISREACHABLE(ncec)) { 14691 mutex_exit(&ncec->ncec_lock); 14692 goto sendit; 14693 } 14694 nce_queue_mp(ncec, mp, is_probe); 14695 if (ncec->ncec_state == ND_INITIAL) { 14696 ncec->ncec_state = ND_INCOMPLETE; 14697 mutex_exit(&ncec->ncec_lock); 14698 /* 14699 * figure out the source we want to use 14700 * and resolve it. 14701 */ 14702 ip_ndp_resolve(ncec); 14703 } else { 14704 mutex_exit(&ncec->ncec_lock); 14705 } 14706 return (0); 14707 14708 case ND_UNREACHABLE: 14709 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14710 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14711 mp, ill); 14712 freemsg(mp); 14713 return (0); 14714 14715 default: 14716 ASSERT(0); 14717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14718 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14719 mp, ill); 14720 freemsg(mp); 14721 return (ENETUNREACH); 14722 } 14723 } 14724 14725 /* 14726 * Return B_TRUE if the buffers differ in length or content. 14727 * This is used for comparing extension header buffers. 14728 * Note that an extension header would be declared different 14729 * even if all that changed was the next header value in that header i.e. 14730 * what really changed is the next extension header. 14731 */ 14732 boolean_t 14733 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14734 uint_t blen) 14735 { 14736 if (!b_valid) 14737 blen = 0; 14738 14739 if (alen != blen) 14740 return (B_TRUE); 14741 if (alen == 0) 14742 return (B_FALSE); /* Both zero length */ 14743 return (bcmp(abuf, bbuf, alen)); 14744 } 14745 14746 /* 14747 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14748 * Return B_FALSE if memory allocation fails - don't change any state! 14749 */ 14750 boolean_t 14751 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14752 const void *src, uint_t srclen) 14753 { 14754 void *dst; 14755 14756 if (!src_valid) 14757 srclen = 0; 14758 14759 ASSERT(*dstlenp == 0); 14760 if (src != NULL && srclen != 0) { 14761 dst = mi_alloc(srclen, BPRI_MED); 14762 if (dst == NULL) 14763 return (B_FALSE); 14764 } else { 14765 dst = NULL; 14766 } 14767 if (*dstp != NULL) 14768 mi_free(*dstp); 14769 *dstp = dst; 14770 *dstlenp = dst == NULL ? 0 : srclen; 14771 return (B_TRUE); 14772 } 14773 14774 /* 14775 * Replace what is in *dst, *dstlen with the source. 14776 * Assumes ip_allocbuf has already been called. 14777 */ 14778 void 14779 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14780 const void *src, uint_t srclen) 14781 { 14782 if (!src_valid) 14783 srclen = 0; 14784 14785 ASSERT(*dstlenp == srclen); 14786 if (src != NULL && srclen != 0) 14787 bcopy(src, *dstp, srclen); 14788 } 14789 14790 /* 14791 * Free the storage pointed to by the members of an ip_pkt_t. 14792 */ 14793 void 14794 ip_pkt_free(ip_pkt_t *ipp) 14795 { 14796 uint_t fields = ipp->ipp_fields; 14797 14798 if (fields & IPPF_HOPOPTS) { 14799 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14800 ipp->ipp_hopopts = NULL; 14801 ipp->ipp_hopoptslen = 0; 14802 } 14803 if (fields & IPPF_RTHDRDSTOPTS) { 14804 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14805 ipp->ipp_rthdrdstopts = NULL; 14806 ipp->ipp_rthdrdstoptslen = 0; 14807 } 14808 if (fields & IPPF_DSTOPTS) { 14809 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14810 ipp->ipp_dstopts = NULL; 14811 ipp->ipp_dstoptslen = 0; 14812 } 14813 if (fields & IPPF_RTHDR) { 14814 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14815 ipp->ipp_rthdr = NULL; 14816 ipp->ipp_rthdrlen = 0; 14817 } 14818 if (fields & IPPF_IPV4_OPTIONS) { 14819 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14820 ipp->ipp_ipv4_options = NULL; 14821 ipp->ipp_ipv4_options_len = 0; 14822 } 14823 if (fields & IPPF_LABEL_V4) { 14824 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14825 ipp->ipp_label_v4 = NULL; 14826 ipp->ipp_label_len_v4 = 0; 14827 } 14828 if (fields & IPPF_LABEL_V6) { 14829 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14830 ipp->ipp_label_v6 = NULL; 14831 ipp->ipp_label_len_v6 = 0; 14832 } 14833 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14834 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14835 } 14836 14837 /* 14838 * Copy from src to dst and allocate as needed. 14839 * Returns zero or ENOMEM. 14840 * 14841 * The caller must initialize dst to zero. 14842 */ 14843 int 14844 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14845 { 14846 uint_t fields = src->ipp_fields; 14847 14848 /* Start with fields that don't require memory allocation */ 14849 dst->ipp_fields = fields & 14850 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14851 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14852 14853 dst->ipp_addr = src->ipp_addr; 14854 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14855 dst->ipp_hoplimit = src->ipp_hoplimit; 14856 dst->ipp_tclass = src->ipp_tclass; 14857 dst->ipp_type_of_service = src->ipp_type_of_service; 14858 14859 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14860 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14861 return (0); 14862 14863 if (fields & IPPF_HOPOPTS) { 14864 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14865 if (dst->ipp_hopopts == NULL) { 14866 ip_pkt_free(dst); 14867 return (ENOMEM); 14868 } 14869 dst->ipp_fields |= IPPF_HOPOPTS; 14870 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14871 src->ipp_hopoptslen); 14872 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14873 } 14874 if (fields & IPPF_RTHDRDSTOPTS) { 14875 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14876 kmflag); 14877 if (dst->ipp_rthdrdstopts == NULL) { 14878 ip_pkt_free(dst); 14879 return (ENOMEM); 14880 } 14881 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14882 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14883 src->ipp_rthdrdstoptslen); 14884 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14885 } 14886 if (fields & IPPF_DSTOPTS) { 14887 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14888 if (dst->ipp_dstopts == NULL) { 14889 ip_pkt_free(dst); 14890 return (ENOMEM); 14891 } 14892 dst->ipp_fields |= IPPF_DSTOPTS; 14893 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14894 src->ipp_dstoptslen); 14895 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14896 } 14897 if (fields & IPPF_RTHDR) { 14898 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14899 if (dst->ipp_rthdr == NULL) { 14900 ip_pkt_free(dst); 14901 return (ENOMEM); 14902 } 14903 dst->ipp_fields |= IPPF_RTHDR; 14904 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14905 src->ipp_rthdrlen); 14906 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14907 } 14908 if (fields & IPPF_IPV4_OPTIONS) { 14909 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14910 kmflag); 14911 if (dst->ipp_ipv4_options == NULL) { 14912 ip_pkt_free(dst); 14913 return (ENOMEM); 14914 } 14915 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14916 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14917 src->ipp_ipv4_options_len); 14918 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14919 } 14920 if (fields & IPPF_LABEL_V4) { 14921 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14922 if (dst->ipp_label_v4 == NULL) { 14923 ip_pkt_free(dst); 14924 return (ENOMEM); 14925 } 14926 dst->ipp_fields |= IPPF_LABEL_V4; 14927 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14928 src->ipp_label_len_v4); 14929 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14930 } 14931 if (fields & IPPF_LABEL_V6) { 14932 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14933 if (dst->ipp_label_v6 == NULL) { 14934 ip_pkt_free(dst); 14935 return (ENOMEM); 14936 } 14937 dst->ipp_fields |= IPPF_LABEL_V6; 14938 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14939 src->ipp_label_len_v6); 14940 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14941 } 14942 if (fields & IPPF_FRAGHDR) { 14943 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14944 if (dst->ipp_fraghdr == NULL) { 14945 ip_pkt_free(dst); 14946 return (ENOMEM); 14947 } 14948 dst->ipp_fields |= IPPF_FRAGHDR; 14949 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14950 src->ipp_fraghdrlen); 14951 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14952 } 14953 return (0); 14954 } 14955 14956 /* 14957 * Returns INADDR_ANY if no source route 14958 */ 14959 ipaddr_t 14960 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14961 { 14962 ipaddr_t nexthop = INADDR_ANY; 14963 ipoptp_t opts; 14964 uchar_t *opt; 14965 uint8_t optval; 14966 uint8_t optlen; 14967 uint32_t totallen; 14968 14969 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14970 return (INADDR_ANY); 14971 14972 totallen = ipp->ipp_ipv4_options_len; 14973 if (totallen & 0x3) 14974 return (INADDR_ANY); 14975 14976 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14977 optval != IPOPT_EOL; 14978 optval = ipoptp_next(&opts)) { 14979 opt = opts.ipoptp_cur; 14980 switch (optval) { 14981 uint8_t off; 14982 case IPOPT_SSRR: 14983 case IPOPT_LSRR: 14984 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14985 break; 14986 } 14987 optlen = opts.ipoptp_len; 14988 off = opt[IPOPT_OFFSET]; 14989 off--; 14990 if (optlen < IP_ADDR_LEN || 14991 off > optlen - IP_ADDR_LEN) { 14992 /* End of source route */ 14993 break; 14994 } 14995 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14996 if (nexthop == htonl(INADDR_LOOPBACK)) { 14997 /* Ignore */ 14998 nexthop = INADDR_ANY; 14999 break; 15000 } 15001 break; 15002 } 15003 } 15004 return (nexthop); 15005 } 15006 15007 /* 15008 * Reverse a source route. 15009 */ 15010 void 15011 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15012 { 15013 ipaddr_t tmp; 15014 ipoptp_t opts; 15015 uchar_t *opt; 15016 uint8_t optval; 15017 uint32_t totallen; 15018 15019 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15020 return; 15021 15022 totallen = ipp->ipp_ipv4_options_len; 15023 if (totallen & 0x3) 15024 return; 15025 15026 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15027 optval != IPOPT_EOL; 15028 optval = ipoptp_next(&opts)) { 15029 uint8_t off1, off2; 15030 15031 opt = opts.ipoptp_cur; 15032 switch (optval) { 15033 case IPOPT_SSRR: 15034 case IPOPT_LSRR: 15035 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15036 break; 15037 } 15038 off1 = IPOPT_MINOFF_SR - 1; 15039 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15040 while (off2 > off1) { 15041 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15042 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15043 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15044 off2 -= IP_ADDR_LEN; 15045 off1 += IP_ADDR_LEN; 15046 } 15047 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15048 break; 15049 } 15050 } 15051 } 15052 15053 /* 15054 * Returns NULL if no routing header 15055 */ 15056 in6_addr_t * 15057 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15058 { 15059 in6_addr_t *nexthop = NULL; 15060 ip6_rthdr0_t *rthdr; 15061 15062 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15063 return (NULL); 15064 15065 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15066 if (rthdr->ip6r0_segleft == 0) 15067 return (NULL); 15068 15069 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15070 return (nexthop); 15071 } 15072 15073 zoneid_t 15074 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15075 zoneid_t lookup_zoneid) 15076 { 15077 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15078 ire_t *ire; 15079 int ire_flags = MATCH_IRE_TYPE; 15080 zoneid_t zoneid = ALL_ZONES; 15081 15082 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15083 return (ALL_ZONES); 15084 15085 if (lookup_zoneid != ALL_ZONES) 15086 ire_flags |= MATCH_IRE_ZONEONLY; 15087 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15088 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15089 if (ire != NULL) { 15090 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15091 ire_refrele(ire); 15092 } 15093 return (zoneid); 15094 } 15095 15096 zoneid_t 15097 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15098 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15099 { 15100 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15101 ire_t *ire; 15102 int ire_flags = MATCH_IRE_TYPE; 15103 zoneid_t zoneid = ALL_ZONES; 15104 15105 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15106 return (ALL_ZONES); 15107 15108 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15109 ire_flags |= MATCH_IRE_ILL; 15110 15111 if (lookup_zoneid != ALL_ZONES) 15112 ire_flags |= MATCH_IRE_ZONEONLY; 15113 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15114 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15115 if (ire != NULL) { 15116 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15117 ire_refrele(ire); 15118 } 15119 return (zoneid); 15120 } 15121 15122 /* 15123 * IP obserability hook support functions. 15124 */ 15125 static void 15126 ipobs_init(ip_stack_t *ipst) 15127 { 15128 netid_t id; 15129 15130 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15131 15132 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15133 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15134 15135 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15136 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15137 } 15138 15139 static void 15140 ipobs_fini(ip_stack_t *ipst) 15141 { 15142 15143 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15144 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15145 } 15146 15147 /* 15148 * hook_pkt_observe_t is composed in network byte order so that the 15149 * entire mblk_t chain handed into hook_run can be used as-is. 15150 * The caveat is that use of the fields, such as the zone fields, 15151 * requires conversion into host byte order first. 15152 */ 15153 void 15154 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15155 const ill_t *ill, ip_stack_t *ipst) 15156 { 15157 hook_pkt_observe_t *hdr; 15158 uint64_t grifindex; 15159 mblk_t *imp; 15160 15161 imp = allocb(sizeof (*hdr), BPRI_HI); 15162 if (imp == NULL) 15163 return; 15164 15165 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15166 /* 15167 * b_wptr is set to make the apparent size of the data in the mblk_t 15168 * to exclude the pointers at the end of hook_pkt_observer_t. 15169 */ 15170 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15171 imp->b_cont = mp; 15172 15173 ASSERT(DB_TYPE(mp) == M_DATA); 15174 15175 if (IS_UNDER_IPMP(ill)) 15176 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15177 else 15178 grifindex = 0; 15179 15180 hdr->hpo_version = 1; 15181 hdr->hpo_htype = htons(htype); 15182 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15183 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15184 hdr->hpo_grifindex = htonl(grifindex); 15185 hdr->hpo_zsrc = htonl(zsrc); 15186 hdr->hpo_zdst = htonl(zdst); 15187 hdr->hpo_pkt = imp; 15188 hdr->hpo_ctx = ipst->ips_netstack; 15189 15190 if (ill->ill_isv6) { 15191 hdr->hpo_family = AF_INET6; 15192 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15193 ipst->ips_ipv6observing, (hook_data_t)hdr); 15194 } else { 15195 hdr->hpo_family = AF_INET; 15196 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15197 ipst->ips_ipv4observing, (hook_data_t)hdr); 15198 } 15199 15200 imp->b_cont = NULL; 15201 freemsg(imp); 15202 } 15203 15204 /* 15205 * Utility routine that checks if `v4srcp' is a valid address on underlying 15206 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15207 * associated with `v4srcp' on success. NOTE: if this is not called from 15208 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15209 * group during or after this lookup. 15210 */ 15211 boolean_t 15212 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15213 { 15214 ipif_t *ipif; 15215 15216 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15217 if (ipif != NULL) { 15218 if (ipifp != NULL) 15219 *ipifp = ipif; 15220 else 15221 ipif_refrele(ipif); 15222 return (B_TRUE); 15223 } 15224 15225 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15226 *v4srcp)); 15227 return (B_FALSE); 15228 } 15229 15230 /* 15231 * Transport protocol call back function for CPU state change. 15232 */ 15233 /* ARGSUSED */ 15234 static int 15235 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15236 { 15237 processorid_t cpu_seqid; 15238 netstack_handle_t nh; 15239 netstack_t *ns; 15240 15241 ASSERT(MUTEX_HELD(&cpu_lock)); 15242 15243 switch (what) { 15244 case CPU_CONFIG: 15245 case CPU_ON: 15246 case CPU_INIT: 15247 case CPU_CPUPART_IN: 15248 cpu_seqid = cpu[id]->cpu_seqid; 15249 netstack_next_init(&nh); 15250 while ((ns = netstack_next(&nh)) != NULL) { 15251 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15252 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15253 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15254 netstack_rele(ns); 15255 } 15256 netstack_next_fini(&nh); 15257 break; 15258 case CPU_UNCONFIG: 15259 case CPU_OFF: 15260 case CPU_CPUPART_OUT: 15261 /* 15262 * Nothing to do. We don't remove the per CPU stats from 15263 * the IP stack even when the CPU goes offline. 15264 */ 15265 break; 15266 default: 15267 break; 15268 } 15269 return (0); 15270 } 15271