1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 #include <sys/isa_defs.h> 38 #include <sys/types.h> 39 #include <inet/mib2.h> 40 #include <inet/nd.h> 41 #include <sys/atomic.h> 42 #include <sys/socket.h> 43 #include <net/if_dl.h> 44 #include <net/if.h> 45 #include <netinet/ip.h> 46 #include <sys/dlpi.h> 47 #include <netinet/igmp.h> 48 49 #ifdef _KERNEL 50 #include <netinet/ip6.h> 51 #include <sys/avl.h> 52 #include <sys/vmem.h> 53 #include <sys/squeue.h> 54 #include <net/route.h> 55 #include <sys/systm.h> 56 #include <sys/multidata.h> 57 58 #ifdef DEBUG 59 #define ILL_DEBUG 60 #define IRE_DEBUG 61 #define NCE_DEBUG 62 #define CONN_DEBUG 63 #endif 64 65 #define IP_DEBUG 66 /* 67 * The mt-streams(9F) flags for the IP module; put here so that other 68 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 69 * of flags. 70 */ 71 #define IP_DEVMTFLAGS D_MP 72 #endif /* _KERNEL */ 73 74 #define IP_MOD_NAME "ip" 75 #define IP_DEV_NAME "/dev/ip" 76 #define IP6_DEV_NAME "/dev/ip6" 77 78 #define UDP_MOD_NAME "udp" 79 #define UDP_DEV_NAME "/dev/udp" 80 #define UDP6_DEV_NAME "/dev/udp6" 81 82 #define TCP_MOD_NAME "tcp" 83 #define TCP_DEV_NAME "/dev/tcp" 84 #define TCP6_DEV_NAME "/dev/tcp6" 85 86 #define SCTP_MOD_NAME "sctp" 87 88 /* Minor numbers */ 89 #define IPV4_MINOR 0 90 #define IPV6_MINOR 1 91 #define TCP_MINOR 2 92 #define TCP_MINOR6 3 93 94 #ifndef _IPADDR_T 95 #define _IPADDR_T 96 typedef uint32_t ipaddr_t; 97 #endif 98 99 /* Number of bits in an address */ 100 #define IP_ABITS 32 101 #define IPV6_ABITS 128 102 103 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 104 105 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 106 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 107 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 108 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 109 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 110 111 /* 112 * Flag to IP write side to indicate that the appln has sent in a pre-built 113 * IP header. Stored in ipha_ident (which is otherwise zero). 114 */ 115 #define IP_HDR_INCLUDED 0xFFFF 116 117 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 118 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 119 120 #define IPV4_ADDR_LEN 4 121 #define IP_ADDR_LEN IPV4_ADDR_LEN 122 #define IP_ARP_PROTO_TYPE 0x0800 123 124 #define IPV4_VERSION 4 125 #define IP_VERSION IPV4_VERSION 126 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 127 #define IP_SIMPLE_HDR_LENGTH 20 128 #define IP_MAX_HDR_LENGTH 60 129 130 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 131 132 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 133 134 /* 135 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 136 * 2 files should be cleaned up to remove all redundant definitions. 137 */ 138 #define IP_MAXPACKET 65535 139 #define IP_SIMPLE_HDR_VERSION \ 140 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 141 142 #define UDPH_SIZE 8 143 144 /* 145 * Constants and type definitions to support IP IOCTL commands 146 */ 147 #define IP_IOCTL (('i'<<8)|'p') 148 #define IP_IOC_IRE_DELETE 4 149 #define IP_IOC_IRE_DELETE_NO_REPLY 5 150 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 151 #define IP_IOC_RTS_REQUEST 7 152 153 /* Common definitions used by IP IOCTL data structures */ 154 typedef struct ipllcmd_s { 155 uint_t ipllc_cmd; 156 uint_t ipllc_name_offset; 157 uint_t ipllc_name_length; 158 } ipllc_t; 159 160 /* IP IRE Change Command Structure. */ 161 typedef struct ipic_s { 162 ipllc_t ipic_ipllc; 163 uint_t ipic_ire_type; 164 uint_t ipic_max_frag; 165 uint_t ipic_addr_offset; 166 uint_t ipic_addr_length; 167 uint_t ipic_mask_offset; 168 uint_t ipic_mask_length; 169 uint_t ipic_src_addr_offset; 170 uint_t ipic_src_addr_length; 171 uint_t ipic_ll_hdr_offset; 172 uint_t ipic_ll_hdr_length; 173 uint_t ipic_gateway_addr_offset; 174 uint_t ipic_gateway_addr_length; 175 clock_t ipic_rtt; 176 uint32_t ipic_ssthresh; 177 clock_t ipic_rtt_sd; 178 uchar_t ipic_ire_marks; 179 } ipic_t; 180 181 #define ipic_cmd ipic_ipllc.ipllc_cmd 182 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 183 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 184 185 /* IP IRE Delete Command Structure. */ 186 typedef struct ipid_s { 187 ipllc_t ipid_ipllc; 188 uint_t ipid_ire_type; 189 uint_t ipid_addr_offset; 190 uint_t ipid_addr_length; 191 uint_t ipid_mask_offset; 192 uint_t ipid_mask_length; 193 } ipid_t; 194 195 #define ipid_cmd ipid_ipllc.ipllc_cmd 196 197 #ifdef _KERNEL 198 /* 199 * Temporary state for ip options parser. 200 */ 201 typedef struct ipoptp_s 202 { 203 uint8_t *ipoptp_next; /* next option to look at */ 204 uint8_t *ipoptp_end; /* end of options */ 205 uint8_t *ipoptp_cur; /* start of current option */ 206 uint8_t ipoptp_len; /* length of current option */ 207 uint32_t ipoptp_flags; 208 } ipoptp_t; 209 210 /* 211 * Flag(s) for ipoptp_flags 212 */ 213 #define IPOPTP_ERROR 0x00000001 214 #endif /* _KERNEL */ 215 216 217 /* Controls forwarding of IP packets, set via ndd */ 218 #define IP_FORWARD_NEVER 0 219 #define IP_FORWARD_ALWAYS 1 220 221 #define WE_ARE_FORWARDING (ip_g_forward == IP_FORWARD_ALWAYS) 222 223 #define IPH_HDR_LENGTH(ipha) \ 224 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 225 226 #define IPH_HDR_VERSION(ipha) \ 227 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 228 229 #ifdef _KERNEL 230 /* 231 * IP reassembly macros. We hide starting and ending offsets in b_next and 232 * b_prev of messages on the reassembly queue. The messages are chained using 233 * b_cont. These macros are used in ip_reassemble() so we don't have to see 234 * the ugly casts and assignments. 235 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 236 * them. 237 */ 238 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 239 #define IP_REASS_SET_START(mp, u) \ 240 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 241 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 242 #define IP_REASS_SET_END(mp, u) \ 243 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 244 245 #define IP_REASS_COMPLETE 0x1 246 #define IP_REASS_PARTIAL 0x2 247 #define IP_REASS_FAILED 0x4 248 249 /* 250 * Test to determine whether this is a module instance of IP or a 251 * driver instance of IP. 252 */ 253 #define CONN_Q(q) (WR(q)->q_next == NULL) 254 255 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 256 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 257 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 258 259 /* 260 * The following two macros are used by IP to get the appropriate 261 * wq and rq for a conn. If it is a TCP conn, then we need 262 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 263 * from a conn directly if it knows that the conn is not TCP. 264 */ 265 #define CONNP_TO_WQ(connp) \ 266 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 267 268 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 269 270 #define GRAB_CONN_LOCK(q) { \ 271 if (q != NULL && CONN_Q(q)) \ 272 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 273 } 274 275 #define RELEASE_CONN_LOCK(q) { \ 276 if (q != NULL && CONN_Q(q)) \ 277 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 278 } 279 280 /* "Congestion controlled" protocol */ 281 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 282 283 /* 284 * Complete the pending operation. Usually an ioctl. Can also 285 * be a bind or option management request that got enqueued 286 * in an ipsq_t. Called on completion of the operation. 287 */ 288 #define CONN_OPER_PENDING_DONE(connp) { \ 289 mutex_enter(&(connp)->conn_lock); \ 290 (connp)->conn_oper_pending_ill = NULL; \ 291 cv_broadcast(&(connp)->conn_refcv); \ 292 mutex_exit(&(connp)->conn_lock); \ 293 CONN_DEC_REF(connp); \ 294 } 295 296 /* Get the credential of an IP queue of unknown type */ 297 #define GET_QUEUE_CRED(wq) \ 298 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 299 : ((Q_TO_CONN((wq)))->conn_cred)) 300 301 /* 302 * Flags for the various ip_fanout_* routines. 303 */ 304 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 305 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 306 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 307 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 308 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 309 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 310 #define IP_FF_IP6INFO 0x80 /* Add ip6i_t if needed */ 311 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 312 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 313 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 314 315 /* 316 * Following flags are used by IPQoS to determine if policy processing is 317 * required. 318 */ 319 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 320 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 321 322 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 323 324 #ifndef IRE_DB_TYPE 325 #define IRE_DB_TYPE M_SIG 326 #endif 327 328 #ifndef IRE_DB_REQ_TYPE 329 #define IRE_DB_REQ_TYPE M_PCSIG 330 #endif 331 332 /* 333 * Values for squeue switch: 334 */ 335 336 #define IP_SQUEUE_ENTER_NODRAIN 1 337 #define IP_SQUEUE_ENTER 2 338 /* 339 * This is part of the interface between Transport provider and 340 * IP which can be used to set policy information. This is usually 341 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 342 * only IPSEC_POLICY_SET is there when it is found in the chain. 343 * The information contained is an struct ipsec_req_t. On success 344 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 345 * IPSEC_POLICY_SET is never returned. 346 */ 347 #define IPSEC_POLICY_SET M_SETOPTS 348 349 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 350 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 351 352 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 353 ((ire)->ire_type != IRE_BROADCAST)) 354 355 /* IP Fragmentation Reassembly Header */ 356 typedef struct ipf_s { 357 struct ipf_s *ipf_hash_next; 358 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 359 uint32_t ipf_ident; /* Ident to match. */ 360 uint8_t ipf_protocol; /* Protocol to match. */ 361 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 362 time_t ipf_timestamp; /* Reassembly start time. */ 363 mblk_t *ipf_mp; /* mblk we live in. */ 364 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 365 int ipf_hole_cnt; /* Number of holes (hard-case). */ 366 int ipf_end; /* Tail end offset (0 -> hard-case). */ 367 uint_t ipf_gen; /* Frag queue generation */ 368 size_t ipf_count; /* Count of bytes used by frag */ 369 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 370 in6_addr_t ipf_v6src; /* IPv6 source address */ 371 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 372 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 373 uint8_t ipf_ecn; /* ECN info for the fragments */ 374 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 375 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 376 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 377 } ipf_t; 378 379 #define ipf_src V4_PART_OF_V6(ipf_v6src) 380 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 381 382 typedef enum { 383 IB_PKT = 0x01, 384 OB_PKT = 0x02 385 } ip_pkt_t; 386 387 #define UPDATE_IB_PKT_COUNT(ire)\ 388 { \ 389 (ire)->ire_ib_pkt_count++; \ 390 if ((ire)->ire_ipif != NULL) { \ 391 /* \ 392 * forwarding packet \ 393 */ \ 394 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 395 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 396 else \ 397 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 398 } \ 399 } 400 #define UPDATE_OB_PKT_COUNT(ire)\ 401 { \ 402 (ire)->ire_ob_pkt_count++;\ 403 if ((ire)->ire_ipif != NULL) { \ 404 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 405 } \ 406 } 407 408 409 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 410 { \ 411 switch (ipha->ipha_protocol) { \ 412 case IPPROTO_UDP: \ 413 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 414 break; \ 415 default: \ 416 ip_proto_input(q, mp, ipha, ire, recv_ill); \ 417 break; \ 418 } \ 419 } 420 421 422 #endif /* _KERNEL */ 423 424 /* ICMP types */ 425 #define ICMP_ECHO_REPLY 0 426 #define ICMP_DEST_UNREACHABLE 3 427 #define ICMP_SOURCE_QUENCH 4 428 #define ICMP_REDIRECT 5 429 #define ICMP_ECHO_REQUEST 8 430 #define ICMP_ROUTER_ADVERTISEMENT 9 431 #define ICMP_ROUTER_SOLICITATION 10 432 #define ICMP_TIME_EXCEEDED 11 433 #define ICMP_PARAM_PROBLEM 12 434 #define ICMP_TIME_STAMP_REQUEST 13 435 #define ICMP_TIME_STAMP_REPLY 14 436 #define ICMP_INFO_REQUEST 15 437 #define ICMP_INFO_REPLY 16 438 #define ICMP_ADDRESS_MASK_REQUEST 17 439 #define ICMP_ADDRESS_MASK_REPLY 18 440 441 /* ICMP_TIME_EXCEEDED codes */ 442 #define ICMP_TTL_EXCEEDED 0 443 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 444 445 /* ICMP_DEST_UNREACHABLE codes */ 446 #define ICMP_NET_UNREACHABLE 0 447 #define ICMP_HOST_UNREACHABLE 1 448 #define ICMP_PROTOCOL_UNREACHABLE 2 449 #define ICMP_PORT_UNREACHABLE 3 450 #define ICMP_FRAGMENTATION_NEEDED 4 451 #define ICMP_SOURCE_ROUTE_FAILED 5 452 #define ICMP_DEST_NET_UNKNOWN 6 453 #define ICMP_DEST_HOST_UNKNOWN 7 454 #define ICMP_SRC_HOST_ISOLATED 8 455 #define ICMP_DEST_NET_UNREACH_ADMIN 9 456 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 457 #define ICMP_DEST_NET_UNREACH_TOS 11 458 #define ICMP_DEST_HOST_UNREACH_TOS 12 459 460 /* ICMP Header Structure */ 461 typedef struct icmph_s { 462 uint8_t icmph_type; 463 uint8_t icmph_code; 464 uint16_t icmph_checksum; 465 union { 466 struct { /* ECHO request/response structure */ 467 uint16_t u_echo_ident; 468 uint16_t u_echo_seqnum; 469 } u_echo; 470 struct { /* Destination unreachable structure */ 471 uint16_t u_du_zero; 472 uint16_t u_du_mtu; 473 } u_du; 474 struct { /* Parameter problem structure */ 475 uint8_t u_pp_ptr; 476 uint8_t u_pp_rsvd[3]; 477 } u_pp; 478 struct { /* Redirect structure */ 479 ipaddr_t u_rd_gateway; 480 } u_rd; 481 } icmph_u; 482 } icmph_t; 483 484 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 485 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 486 #define icmph_du_zero icmph_u.u_du.u_du_zero 487 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 488 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 489 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 490 491 #define ICMPH_SIZE 8 492 493 /* 494 * Minimum length of transport layer header included in an ICMP error 495 * message for it to be considered valid. 496 */ 497 #define ICMP_MIN_TP_HDR_LEN 8 498 499 /* Aligned IP header */ 500 typedef struct ipha_s { 501 uint8_t ipha_version_and_hdr_length; 502 uint8_t ipha_type_of_service; 503 uint16_t ipha_length; 504 uint16_t ipha_ident; 505 uint16_t ipha_fragment_offset_and_flags; 506 uint8_t ipha_ttl; 507 uint8_t ipha_protocol; 508 uint16_t ipha_hdr_checksum; 509 ipaddr_t ipha_src; 510 ipaddr_t ipha_dst; 511 } ipha_t; 512 513 #define IPH_DF 0x4000 /* Don't fragment */ 514 #define IPH_MF 0x2000 /* More fragments to come */ 515 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 516 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 517 518 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 519 #define IPH_ECN_NECT 0x0 /* Not ECN-Capabable Transport */ 520 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 521 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 522 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 523 524 /* IP Mac info structure */ 525 typedef struct ip_m_s { 526 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 527 int ip_m_type; /* From <net/if_types.h> */ 528 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 529 uint32_t *, ipaddr_t *); 530 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 531 uint32_t *, in6_addr_t *); 532 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 533 } ip_m_t; 534 535 /* 536 * The following functions attempt to reduce the link layer dependency 537 * of the IP stack. The current set of link specific operations are: 538 * a. map from IPv4 class D (224.0/4) multicast address range to the link 539 * layer multicast address range. 540 * b. map from IPv6 multicast address range (ff00::/8) to the link 541 * layer multicast address range. 542 * c. derive the default IPv6 interface identifier from the link layer 543 * address. 544 */ 545 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 546 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 547 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 548 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 549 (((ip_m)->ip_m_v6intfid != NULL) && \ 550 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 551 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 552 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 553 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 554 555 /* Router entry types */ 556 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 557 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 558 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 559 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 560 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 561 #define IRE_CACHE 0x0020 /* Cached Route entry */ 562 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 563 /* net without any address mapping. */ 564 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 565 /* net with resolver. */ 566 #define IRE_HOST 0x0100 /* Host route entry */ 567 #define IRE_HOST_REDIRECT 0x0200 /* Host route entry from redirects */ 568 569 /* 570 * IRE_MIPRTUN is only set on the ires in the ip_mrtun_table. 571 * This ire_type must not be set for ftable and ctable routing entries. 572 */ 573 #define IRE_MIPRTUN 0x0400 /* Reverse tunnel route entry */ 574 575 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 576 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST | \ 577 IRE_HOST_REDIRECT) 578 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 579 IRE_LOOPBACK) 580 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 581 582 /* 583 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 584 * the bucket should delete this IRE from this bucket. 585 */ 586 #define IRE_MARK_CONDEMNED 0x0001 587 /* 588 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 589 * broadcast packets received on that interface. This is marked only 590 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 591 * same subnet receiving the same broadcast packet. 592 */ 593 #define IRE_MARK_NORECV 0x0002 594 /* 595 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 596 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 597 */ 598 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 599 600 /* 601 * ire with IRE_MARK_NOADD is created in ip_newroute_ipif, when outgoing 602 * interface is specified by IP_XMIT_IF socket option. This ire is not 603 * added in IRE_CACHE. For example, this is used by mipagent to prevent 604 * any entry to be added in the cache table. We do not want to add any 605 * entry for a mobile-node in the routing table for foreign agent originated 606 * packets. Adding routes in cache table in this case, may run the risks of 607 * incorrect routing path in case of private overlapping addresses. 608 */ 609 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 610 611 /* 612 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 613 * either for forwarding a packet or has not been used for sending 614 * traffic on TCP connections terminated on this system. In both 615 * cases, this IRE is the first to go when IRE is being cleaned up. 616 */ 617 #define IRE_MARK_TEMPORARY 0x0010 618 619 /* 620 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 621 * this mark, additional atomic checks need to be performed. For eg: by the 622 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 623 * usesrc grouping could have changed in which case we want to fail adding 624 * the IRE_CACHE entry 625 */ 626 #define IRE_MARK_USESRC_CHECK 0x0020 627 628 /* 629 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 630 * routing table lookup for the destination is bypassed and the packet is 631 * sent directly to the specified nexthop. The associated IRE_CACHE entries 632 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 633 * in regular ire cache lookups. 634 */ 635 #define IRE_MARK_PRIVATE_ADDR 0x0040 636 637 /* Flags with ire_expire routine */ 638 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 639 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 640 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 641 642 /* Arguments to ire_flush_cache() */ 643 #define IRE_FLUSH_DELETE 0 644 #define IRE_FLUSH_ADD 1 645 646 /* 647 * Open/close synchronization flags. 648 * These are kept in a separate field in the conn and the synchronization 649 * depends on the atomic 32 bit access to that field. 650 */ 651 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 652 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 653 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 654 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 655 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 656 657 /* 658 * Parameter to ip_output giving the identity of the caller. 659 * IP_WSRV means the packet was enqueued in the STREAMS queue 660 * due to flow control and is now being reprocessed in the context of 661 * the STREAMS service procedure, consequent to flow control relief. 662 * IRE_SEND means the packet is being reprocessed consequent to an 663 * ire cache creation and addition and this may or may not be happening 664 * in the service procedure context. Anything other than the above 2 665 * cases is identified as IP_WPUT. Most commonly this is the case of 666 * packets coming down from the application. 667 */ 668 #ifdef _KERNEL 669 #define IP_WSRV 1 /* Called from ip_wsrv */ 670 #define IP_WPUT 2 /* Called from ip_wput */ 671 #define IRE_SEND 3 /* Called from ire_send */ 672 673 /* 674 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 675 */ 676 #define MAX_FILTER_SIZE 64 677 678 typedef struct slist_s { 679 int sl_numsrc; 680 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 681 } slist_t; 682 683 /* 684 * Following struct is used to maintain retransmission state for 685 * a multicast group. One rtx_state_t struct is an in-line field 686 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 687 * alloc'd as needed. 688 */ 689 typedef struct rtx_state_s { 690 uint_t rtx_timer; /* retrans timer */ 691 int rtx_cnt; /* retrans count */ 692 int rtx_fmode_cnt; /* retrans count for fmode change */ 693 slist_t *rtx_allow; 694 slist_t *rtx_block; 695 } rtx_state_t; 696 697 /* 698 * Used to construct list of multicast address records that will be 699 * sent in a single listener report. 700 */ 701 typedef struct mrec_s { 702 struct mrec_s *mrec_next; 703 uint8_t mrec_type; 704 uint8_t mrec_auxlen; /* currently unused */ 705 in6_addr_t mrec_group; 706 slist_t mrec_srcs; 707 } mrec_t; 708 709 /* Group membership list per upper conn */ 710 /* 711 * XXX add ilg info for ifaddr/ifindex. 712 * XXX can we make ilg survive an ifconfig unplumb + plumb 713 * by setting the ipif/ill to NULL and recover that later? 714 * 715 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 716 * address (ipif). 717 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 718 * index (phyint->phyint_ifindex). 719 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 720 * 721 * ilg records the state of multicast memberships of a socket end point. 722 * ilm records the state of multicast memberships with the driver and is 723 * maintained per interface. 724 * 725 * Notes : 726 * 727 * 1) There is no direct link between a given ilg and ilm. If the 728 * application has joined a group G with ifindex I, we will have 729 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 730 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 731 * To delete the membership, 732 * 733 * a) Search for ilg matching on G and I with ilg_v6group 734 * and ilg_ill. Delete ilg_ill. 735 * b) Search the corresponding ilm matching on G and I with 736 * ilm_v6addr and ilm_ill. Delete ilm. 737 * 738 * In IPv4, the only difference is, we look using ipifs instead of 739 * ills. 740 * 741 * 2) With IP multipathing, we want to keep receiving even after the 742 * interface has failed. We do this by moving multicast memberships 743 * to a new_ill within the group. This is acheived by sending 744 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 745 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 746 * need to be able to delete memberships which will still come down 747 * with the ifindex of the old ill which is what the application 748 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 749 * of where we joined initially so that we can lookup even after we 750 * moved the membership. It is also used for moving back the membership 751 * when the old ill has been repaired. This is done by looking up for 752 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 753 * ilms actually move from old ill to new ill. ilgs don't move (just 754 * the ilg_ill is changed when it moves) as it just records the state 755 * of the application that has joined a group G where as ilm records 756 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 757 * we also need to keep the ilm in the right ill. 758 * 759 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 760 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 761 * a given ilm/ilg even after it fails without the support of 762 * orig_ifindex. We move ilms still to record the driver state as 763 * mentioned above. 764 */ 765 766 /* 767 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 768 * by a thread executing in the ipsq. In other words add/delete of a 769 * multicast group has to execute in the ipsq. 770 */ 771 #define ILG_DELETED 0x1 /* ilg_flags */ 772 typedef struct ilg_s { 773 in6_addr_t ilg_v6group; 774 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 775 struct ill_s *ilg_ill; /* Used by IPv6 */ 776 int ilg_orig_ifindex; /* Interface originally joined on */ 777 uint_t ilg_flags; 778 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 779 slist_t *ilg_filter; 780 } ilg_t; 781 782 783 /* 784 * Multicast address list entry for lower ill. 785 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 786 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 787 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 788 */ 789 #define ILM_DELETED 0x1 /* ilm_flags */ 790 typedef struct ilm_s { 791 in6_addr_t ilm_v6addr; 792 int ilm_refcnt; 793 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 794 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 795 struct ilm_s *ilm_next; /* Linked list for each ill */ 796 uint_t ilm_state; /* state of the membership */ 797 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 798 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 799 uint_t ilm_flags; 800 boolean_t ilm_is_new; /* new ilm */ 801 boolean_t ilm_notify_driver; /* Need to notify the driver */ 802 zoneid_t ilm_zoneid; 803 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 804 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 805 slist_t *ilm_filter; /* source filter list */ 806 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 807 rtx_state_t ilm_rtx; /* SCR retransmission state */ 808 } ilm_t; 809 810 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 811 812 /* 813 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 814 * zero. In addition it needs to block new walkers while it is unlinking ilm's 815 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 816 */ 817 #define ILM_WALKER_HOLD(ill) { \ 818 mutex_enter(&(ill)->ill_lock); \ 819 ill->ill_ilm_walker_cnt++; \ 820 mutex_exit(&(ill)->ill_lock); \ 821 } 822 823 #define ILM_WALKER_RELE(ill) { \ 824 mutex_enter(&(ill)->ill_lock); \ 825 (ill)->ill_ilm_walker_cnt--; \ 826 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 827 ilm_walker_cleanup(ill); \ 828 mutex_exit(&(ill)->ill_lock); \ 829 } 830 831 /* 832 * Soft reference to an IPsec SA. 833 * 834 * On relative terms, conn's can be persistant (living as long as the 835 * processes which create them), while SA's are ephemeral (dying when 836 * they hit their time-based or byte-based lifetimes). 837 * 838 * We could hold a hard reference to an SA from an ipsec_latch_t, 839 * but this would cause expired SA's to linger for a potentially 840 * unbounded time. 841 * 842 * Instead, we remember the hash bucket number and bucket generation 843 * in addition to the pointer. The bucket generation is incremented on 844 * each deletion. 845 */ 846 typedef struct ipsa_ref_s 847 { 848 struct ipsa_s *ipsr_sa; 849 struct isaf_s *ipsr_bucket; 850 uint64_t ipsr_gen; 851 } ipsa_ref_t; 852 853 /* 854 * IPsec "latching" state. 855 * 856 * In the presence of IPsec policy, fully-bound conn's bind a connection 857 * to more than just the 5-tuple, but also a specific IPsec action and 858 * identity-pair. 859 * 860 * As an optimization, we also cache soft references to IPsec SA's 861 * here so that we can fast-path around most of the work needed for 862 * outbound IPsec SA selection. 863 * 864 * Were it not for TCP's detached connections, this state would be 865 * in-line in conn_t; instead, this is in a separate structure so it 866 * can be handed off to TCP when a connection is detached. 867 */ 868 typedef struct ipsec_latch_s 869 { 870 kmutex_t ipl_lock; 871 uint32_t ipl_refcnt; 872 873 uint64_t ipl_unique; 874 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 875 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 876 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 877 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 878 cred_t *ipl_local_id; 879 struct ipsid_s *ipl_local_cid; 880 struct ipsid_s *ipl_remote_cid; 881 unsigned int 882 ipl_out_action_latched : 1, 883 ipl_in_action_latched : 1, 884 ipl_out_policy_latched : 1, 885 ipl_in_policy_latched : 1, 886 887 ipl_ids_latched : 1, 888 889 ipl_pad_to_bit_31 : 27; 890 891 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 892 893 } ipsec_latch_t; 894 895 #define IPLATCH_REFHOLD(ipl) { \ 896 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 897 ASSERT((ipl)->ipl_refcnt != 0); \ 898 } 899 900 #define IPLATCH_REFRELE(ipl) { \ 901 ASSERT((ipl)->ipl_refcnt != 0); \ 902 membar_exit(); \ 903 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 904 iplatch_free(ipl); \ 905 } 906 907 /* 908 * peer identity structure. 909 */ 910 911 typedef struct conn_s conn_t; 912 913 /* 914 * The old IP client structure "ipc_t" is gone. All the data is stored in the 915 * connection structure "conn_t" now. The mapping of old and new fields looks 916 * like this: 917 * 918 * ipc_ulp conn_ulp 919 * ipc_rq conn_rq 920 * ipc_wq conn_wq 921 * 922 * ipc_laddr conn_src 923 * ipc_faddr conn_rem 924 * ipc_v6laddr conn_srcv6 925 * ipc_v6faddr conn_remv6 926 * 927 * ipc_lport conn_lport 928 * ipc_fport conn_fport 929 * ipc_ports conn_ports 930 * 931 * ipc_policy conn_policy 932 * ipc_latch conn_latch 933 * 934 * ipc_irc_lock conn_lock 935 * ipc_ire_cache conn_ire_cache 936 * 937 * ipc_state_flags conn_state_flags 938 * ipc_outgoing_ill conn_outgoing_ill 939 * 940 * ipc_dontroute conn_dontroute 941 * ipc_loopback conn_loopback 942 * ipc_broadcast conn_broadcast 943 * ipc_reuseaddr conn_reuseaddr 944 * 945 * ipc_multicast_loop conn_multicast_loop 946 * ipc_multi_router conn_multi_router 947 * ipc_priv_stream conn_priv_stream 948 * ipc_draining conn_draining 949 * 950 * ipc_did_putbq conn_did_putbq 951 * ipc_unspec_src conn_unspec_src 952 * ipc_policy_cached conn_policy_cached 953 * 954 * ipc_in_enforce_policy conn_in_enforce_policy 955 * ipc_out_enforce_policy conn_out_enforce_policy 956 * ipc_af_isv6 conn_af_isv6 957 * ipc_pkt_isv6 conn_pkt_isv6 958 * 959 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 960 * 961 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 962 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 963 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 964 * 965 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 966 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 967 * ipc_fully_bound conn_fully_bound 968 * 969 * ipc_recvif conn_recvif 970 * 971 * ipc_recvslla conn_recvslla 972 * ipc_acking_unbind conn_acking_unbind 973 * ipc_pad_to_bit_31 conn_pad_to_bit_31 974 * 975 * ipc_xmit_if_ill conn_xmit_if_ill 976 * ipc_nofailover_ill conn_nofailover_ill 977 * 978 * ipc_proto conn_proto 979 * ipc_incoming_ill conn_incoming_ill 980 * ipc_outgoing_pill conn_outgoing_pill 981 * ipc_pending_ill conn_pending_ill 982 * ipc_unbind_mp conn_unbind_mp 983 * ipc_ilg conn_ilg 984 * ipc_ilg_allocated conn_ilg_allocated 985 * ipc_ilg_inuse conn_ilg_inuse 986 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 987 * ipc_refcv conn_refcv 988 * ipc_multicast_ipif conn_multicast_ipif 989 * ipc_multicast_ill conn_multicast_ill 990 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 991 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 992 * ipc_orig_xmit_ifindex conn_orig_xmit_ifindex 993 * ipc_drain_next conn_drain_next 994 * ipc_drain_prev conn_drain_prev 995 * ipc_idl conn_idl 996 */ 997 998 /* 999 * This is used to match an inbound/outbound datagram with 1000 * policy. 1001 */ 1002 1003 typedef struct ipsec_selector { 1004 in6_addr_t ips_local_addr_v6; 1005 in6_addr_t ips_remote_addr_v6; 1006 uint16_t ips_local_port; 1007 uint16_t ips_remote_port; 1008 uint8_t ips_icmp_type; 1009 uint8_t ips_icmp_code; 1010 uint8_t ips_protocol; 1011 uint8_t ips_isv4 : 1, 1012 ips_is_icmp_inv_acq: 1; 1013 } ipsec_selector_t; 1014 1015 /* 1016 * Note that we put v4 addresses in the *first* 32-bit word of the 1017 * selector rather than the last to simplify the prefix match/mask code 1018 * in spd.c 1019 */ 1020 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1021 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1022 1023 /* Values used in IP by IPSEC Code */ 1024 #define IPSEC_OUTBOUND B_TRUE 1025 #define IPSEC_INBOUND B_FALSE 1026 1027 /* 1028 * There are two variants in policy failures. The packet may come in 1029 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1030 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1031 */ 1032 #define IPSEC_POLICY_NOT_NEEDED 0 1033 #define IPSEC_POLICY_MISMATCH 1 1034 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1035 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1036 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1037 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1038 1039 /* 1040 * Folowing macro is used whenever the code does not know whether there 1041 * is a M_CTL present in the front and it needs to examine the actual mp 1042 * i.e the IP header. As a M_CTL message could be in the front, this 1043 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1044 * mp is not present, both first_mp and mp point to the same message. 1045 */ 1046 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1047 (first_mp) = (mp); \ 1048 if ((mp)->b_datap->db_type == M_CTL) { \ 1049 (mp) = (mp)->b_cont; \ 1050 (mctl_present) = B_TRUE; \ 1051 } else { \ 1052 (mctl_present) = B_FALSE; \ 1053 } 1054 1055 /* 1056 * Check with IPSEC inbound policy if 1057 * 1058 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1059 * 2) Or if we have not cached policy on the conn and the global policy is 1060 * non-empty. 1061 */ 1062 #define CONN_INBOUND_POLICY_PRESENT(connp) \ 1063 ((connp)->conn_in_enforce_policy || \ 1064 (!((connp)->conn_policy_cached) && \ 1065 ipsec_inbound_v4_policy_present)) 1066 1067 #define CONN_INBOUND_POLICY_PRESENT_V6(connp) \ 1068 ((connp)->conn_in_enforce_policy || \ 1069 (!(connp)->conn_policy_cached && \ 1070 ipsec_inbound_v6_policy_present)) 1071 1072 #define CONN_OUTBOUND_POLICY_PRESENT(connp) \ 1073 ((connp)->conn_out_enforce_policy || \ 1074 (!((connp)->conn_policy_cached) && \ 1075 ipsec_outbound_v4_policy_present)) 1076 1077 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp) \ 1078 ((connp)->conn_out_enforce_policy || \ 1079 (!(connp)->conn_policy_cached && \ 1080 ipsec_outbound_v6_policy_present)) 1081 1082 /* 1083 * Information cached in IRE for upper layer protocol (ULP). 1084 * 1085 * Notice that ire_max_frag is not included in the iulp_t structure, which 1086 * it may seem that it should. But ire_max_frag cannot really be cached. It 1087 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1088 * it. But currently, we do not do that. 1089 */ 1090 typedef struct iulp_s { 1091 boolean_t iulp_set; /* Is any metric set? */ 1092 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1093 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1094 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1095 uint32_t iulp_spipe; /* Send pipe size. */ 1096 uint32_t iulp_rpipe; /* Receive pipe size. */ 1097 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1098 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1099 uint32_t 1100 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1101 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1102 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1103 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1104 1105 iulp_not_used : 28; 1106 } iulp_t; 1107 1108 /* Zero iulp_t. */ 1109 extern const iulp_t ire_uinfo_null; 1110 1111 /* 1112 * The conn drain list structure. 1113 * The list is protected by idl_lock. Each conn_t inserted in the list 1114 * points back at this idl_t using conn_idl. IP primes the draining of the 1115 * conns queued in these lists, by qenabling the 1st conn of each list. This 1116 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1117 * of ip_wsrv successively qenables the next conn in the list. 1118 * idl_lock protects all other members of idl_t and conn_drain_next 1119 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1120 * flag of the conn_t and conn_idl. 1121 */ 1122 typedef struct idl_s { 1123 conn_t *idl_conn; /* Head of drain list */ 1124 kmutex_t idl_lock; /* Lock for this list */ 1125 conn_t *idl_conn_draining; /* conn that is draining */ 1126 uint32_t 1127 idl_repeat : 1, /* Last conn must re-enable */ 1128 /* drain list again */ 1129 idl_unused : 31; 1130 } idl_t; 1131 1132 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1133 /* 1134 * Interface route structure which holds the necessary information to recreate 1135 * routes that are tied to an interface (namely where ire_ipif != NULL). 1136 * These routes which were initially created via a routing socket or via the 1137 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1138 * traditional interface routes. When an interface comes back up after being 1139 * marked down, this information will be used to recreate the routes. These 1140 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1141 */ 1142 typedef struct ifrt_s { 1143 ushort_t ifrt_type; /* Type of IRE */ 1144 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1145 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1146 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1147 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1148 uint32_t ifrt_flags; /* flags related to route */ 1149 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1150 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1151 } ifrt_t; 1152 1153 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1154 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1155 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1156 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1157 1158 /* Number of IP addresses that can be hosted on a physical interface */ 1159 #define MAX_ADDRS_PER_IF 8192 1160 /* 1161 * Number of Source addresses to be considered for source address 1162 * selection. Used by ipif_select_source[_v6]. 1163 */ 1164 #define MAX_IPIF_SELECT_SOURCE 50 1165 1166 #ifdef IP_DEBUG 1167 /* 1168 * Tracing refholds and refreleases for debugging. Existing tracing mechanisms 1169 * do not allow the granularity need to trace refrences to ipif/ill/ire's. This 1170 * mechanism should be revisited once dtrace is available. 1171 */ 1172 #define IP_STACK_DEPTH 15 1173 typedef struct tr_buf_s { 1174 int tr_depth; 1175 pc_t tr_stack[IP_STACK_DEPTH]; 1176 } tr_buf_t; 1177 1178 typedef struct th_trace_s { 1179 struct th_trace_s *th_next; 1180 struct th_trace_s **th_prev; 1181 kthread_t *th_id; 1182 int th_refcnt; 1183 uint_t th_trace_lastref; 1184 #define TR_BUF_MAX 38 1185 tr_buf_t th_trbuf[TR_BUF_MAX]; 1186 } th_trace_t; 1187 #endif 1188 1189 /* The following are ipif_state_flags */ 1190 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1191 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1192 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1193 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1194 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1195 1196 /* IP interface structure, one per local address */ 1197 typedef struct ipif_s { 1198 struct ipif_s *ipif_next; 1199 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1200 int ipif_id; /* Logical unit number */ 1201 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1202 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1203 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1204 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1205 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1206 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1207 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1208 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1209 uint64_t ipif_flags; /* Interface flags. */ 1210 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1211 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1212 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1213 /* prevent awkward out of mem */ 1214 /* condition later */ 1215 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1216 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1217 /* on this interface so that they */ 1218 /* can survive ifconfig down. */ 1219 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1220 1221 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1222 /* will be reported on. Used when */ 1223 /* handling an igmp timeout. */ 1224 1225 /* 1226 * The packet counts in the ipif contain the sum of the 1227 * packet counts in dead IREs that were affiliated with 1228 * this ipif. 1229 */ 1230 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1231 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1232 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1233 /* Exclusive bit fields, protected by ipsq_t */ 1234 unsigned int 1235 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1236 ipif_solmcast_up : 1, /* We joined solicited node mcast */ 1237 ipif_replace_zero : 1, /* Replacement for zero */ 1238 ipif_was_up : 1, /* ipif was up before */ 1239 1240 ipif_pad_to_31 : 28; 1241 1242 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1243 uint_t ipif_seqid; /* unique index across all ills */ 1244 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1245 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1246 uint_t ipif_refcnt; /* active consistent reader cnt */ 1247 uint_t ipif_ire_cnt; /* Number of ire's referencing ipif */ 1248 uint_t ipif_saved_ire_cnt; 1249 zoneid_t 1250 ipif_zoneid; /* zone ID number */ 1251 #ifdef ILL_DEBUG 1252 #define IP_TR_HASH_MAX 64 1253 th_trace_t *ipif_trace[IP_TR_HASH_MAX]; 1254 boolean_t ipif_trace_disable; /* True when alloc fails */ 1255 #endif 1256 } ipif_t; 1257 1258 /* 1259 * The following table lists the protection levels of the various members 1260 * of the ipif_t. The following notation is used. 1261 * 1262 * Write once - Written to only once at the time of bringing up 1263 * the interface and can be safely read after the bringup without any lock. 1264 * 1265 * ipsq - Need to execute in the ipsq to perform the indicated access. 1266 * 1267 * ill_lock - Need to hold this mutex to perform the indicated access. 1268 * 1269 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1270 * write access respectively. 1271 * 1272 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1273 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1274 * 1275 * Table of ipif_t members and their protection 1276 * 1277 * ipif_next ill_g_lock ill_g_lock 1278 * ipif_ill ipsq + down ipif write once 1279 * ipif_id ipsq + down ipif write once 1280 * ipif_mtu ipsq 1281 * ipif_v6lcl_addr ipsq + down ipif up ipif 1282 * ipif_v6src_addr ipsq + down ipif up ipif 1283 * ipif_v6subnet ipsq + down ipif up ipif 1284 * ipif_v6net_mask ipsq + down ipif up ipif 1285 * 1286 * ipif_v6brd_addr 1287 * ipif_v6pp_dst_addr 1288 * ipif_flags ill_lock ill_lock 1289 * ipif_metric 1290 * ipif_ire_type ipsq + down ill up ill 1291 * 1292 * ipif_arp_del_mp ipsq ipsq 1293 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1294 * ipif_igmp_rpt ipsq ipsq 1295 * 1296 * ipif_fo_pkt_count Approx 1297 * ipif_ib_pkt_count Approx 1298 * ipif_ob_pkt_count Approx 1299 * 1300 * bit fields ill_lock ill_lock 1301 * 1302 * ipif_orig_ifindex ipsq None 1303 * ipif_orig_ipifid ipsq None 1304 * ipif_seqid ipsq Write once 1305 * 1306 * ipif_state_flags ill_lock ill_lock 1307 * ipif_refcnt ill_lock ill_lock 1308 * ipif_ire_cnt ill_lock ill_lock 1309 * ipif_saved_ire_cnt 1310 */ 1311 1312 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1313 1314 #ifdef ILL_DEBUG 1315 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1316 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1317 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1318 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1319 #define ILL_TRACE_CLEANUP(ill) ill_trace_cleanup(ill) 1320 #define IPIF_TRACE_CLEANUP(ipif) ipif_trace_cleanup(ipif) 1321 #else 1322 #define IPIF_TRACE_REF(ipif) 1323 #define ILL_TRACE_REF(ill) 1324 #define IPIF_UNTRACE_REF(ipif) 1325 #define ILL_UNTRACE_REF(ill) 1326 #define ILL_TRACE_CLEANUP(ill) 1327 #define IPIF_TRACE_CLEANUP(ipif) 1328 #endif 1329 1330 /* IPv4 compatability macros */ 1331 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1332 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1333 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1334 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1335 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1336 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1337 1338 /* Macros for easy backreferences to the ill. */ 1339 #define ipif_wq ipif_ill->ill_wq 1340 #define ipif_rq ipif_ill->ill_rq 1341 #define ipif_net_type ipif_ill->ill_net_type 1342 #define ipif_resolver_mp ipif_ill->ill_resolver_mp 1343 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1344 #define ipif_bcast_mp ipif_ill->ill_bcast_mp 1345 #define ipif_type ipif_ill->ill_type 1346 #define ipif_isv6 ipif_ill->ill_isv6 1347 1348 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1349 1350 /* 1351 * mode value for ip_ioctl_finish for finishing an ioctl 1352 */ 1353 #define CONN_CLOSE 1 /* No mi_copy */ 1354 #define COPYOUT 2 /* do an mi_copyout if needed */ 1355 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1356 1357 /* 1358 * The IP-MT design revolves around the serialization object ipsq_t. 1359 * It is associated with an IPMP group. If IPMP is not enabled, there is 1360 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1361 * 1362 * ipsq_lock protects 1363 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1364 * ipsq_mphead, ipsq_mptail, ipsq_split 1365 * 1366 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1367 * ipsq_waitfor 1368 * 1369 * The fields in the last line above below are set mostly by a writer thread 1370 * But there is an exception in the last call to ipif_ill_refrele_tail which 1371 * could also race with a conn close which could be cleaning up the 1372 * fields. So we choose to protect using ipsq_lock instead of depending on 1373 * the property of the writer. 1374 * ill_g_lock protects 1375 * ipsq_refs, ipsq_phyint_list 1376 */ 1377 typedef struct ipsq_s { 1378 kmutex_t ipsq_lock; 1379 int ipsq_reentry_cnt; 1380 kthread_t *ipsq_writer; /* current owner (thread id) */ 1381 int ipsq_flags; 1382 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1383 mblk_t *ipsq_xopq_mptail; 1384 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1385 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1386 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1387 ipif_t *ipsq_current_ipif; /* ipif associated with current ioctl */ 1388 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1389 /* response from another module */ 1390 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1391 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1392 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1393 boolean_t ipsq_split; /* ipsq may need to be split */ 1394 int ipsq_waitfor; /* Values encoded below */ 1395 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1396 int ipsq_last_cmd; /* debugging aid */ 1397 #ifdef ILL_DEBUG 1398 int ipsq_depth; /* debugging aid */ 1399 pc_t ipsq_stack[IP_STACK_DEPTH]; /* debugging aid */ 1400 #endif 1401 } ipsq_t; 1402 1403 /* ipsq_flags */ 1404 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1405 1406 /* 1407 * ipsq_waitfor: 1408 * 1409 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1410 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1411 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1412 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1413 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1414 */ 1415 1416 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1417 1418 /* Flags passed to ipsq_try_enter */ 1419 #define CUR_OP 0 /* Current ioctl continuing again */ 1420 #define NEW_OP 1 /* New ioctl starting afresh */ 1421 1422 /* 1423 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1424 * There is a separate ill_t representing IPv4 and IPv6 which has a 1425 * backpointer to the phyint structure for acessing common state. 1426 * 1427 * NOTE : It just stores the group name as there is only one name for 1428 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1429 * IPv4 and IPv6 ill are grouped together when their phyints have 1430 * the same name. 1431 */ 1432 typedef struct phyint { 1433 struct ill_s *phyint_illv4; 1434 struct ill_s *phyint_illv6; 1435 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1436 uint_t phyint_notify_delay; /* SIOCSLIFNOTIFYDELAY */ 1437 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1438 uint_t phyint_groupname_len; 1439 uint64_t phyint_flags; 1440 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1441 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1442 kmutex_t phyint_lock; 1443 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1444 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1445 } phyint_t; 1446 1447 #define CACHE_ALIGN_SIZE 64 1448 1449 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1450 CACHE_ALIGN_SIZE) 1451 struct _phyint_list_s_ { 1452 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1453 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1454 }; 1455 1456 typedef union phyint_list_u { 1457 struct _phyint_list_s_ phyint_list_s; 1458 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1459 } phyint_list_t; 1460 1461 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1462 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1463 /* 1464 * ILL groups. We group ills, 1465 * 1466 * - if the ills have the same group name. (New way) 1467 * 1468 * ill_group locking notes: 1469 * 1470 * illgrp_lock protects ill_grp_ill_schednext. 1471 * 1472 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1473 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1474 * It also freezes the global list of ills and all ipifs in all ills. 1475 * 1476 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1477 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1478 * global list of ills, ill_delete_glist holds ill_g_lock as writer. 1479 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1480 * that need to walk the members of an illgrp. They just hold ill_g_lock 1481 * as reader to do the walk. 1482 * 1483 */ 1484 typedef struct ill_group { 1485 kmutex_t illgrp_lock; 1486 struct ill_group *illgrp_next; /* Next ill_group */ 1487 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1488 struct ill_s *illgrp_ill; /* First ill in the group */ 1489 int illgrp_ill_count; 1490 } ill_group_t; 1491 1492 extern ill_group_t *illgrp_head_v6; 1493 1494 /* 1495 * Fragmentation hash bucket 1496 */ 1497 typedef struct ipfb_s { 1498 struct ipf_s *ipfb_ipf; /* List of ... */ 1499 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1500 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1501 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1502 } ipfb_t; 1503 1504 /* 1505 * IRE bucket structure. Usually there is an array of such structures, 1506 * each pointing to a linked list of ires. irb_refcnt counts the number 1507 * of walkers of a given hash bucket. Usually the reference count is 1508 * bumped up if the walker wants no IRES to be DELETED while walking the 1509 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1510 * hash bucket without stumbling up on a free pointer. 1511 */ 1512 typedef struct irb { 1513 struct ire_s *irb_ire; /* First ire in this bucket */ 1514 /* Should be first in this struct */ 1515 krwlock_t irb_lock; /* Protect this bucket */ 1516 uint_t irb_refcnt; /* Protected by irb_lock */ 1517 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1518 uint_t irb_ire_cnt; /* Num of IRE in this bucket */ 1519 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1520 } irb_t; 1521 1522 #define IP_V4_G_HEAD 0 1523 #define IP_V6_G_HEAD 1 1524 1525 #define MAX_G_HEADS 2 1526 1527 /* 1528 * unpadded ill_if structure 1529 */ 1530 struct _ill_if_s_ { 1531 union ill_if_u *illif_next; 1532 union ill_if_u *illif_prev; 1533 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1534 vmem_t *illif_ppa_arena; /* ppa index space */ 1535 uint16_t illif_mcast_v1; /* hints for */ 1536 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1537 int illif_name_len; /* name length */ 1538 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1539 }; 1540 1541 /* cache aligned ill_if structure */ 1542 typedef union ill_if_u { 1543 struct _ill_if_s_ ill_if_s; 1544 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1545 } ill_if_t; 1546 1547 1548 #define illif_next ill_if_s.illif_next 1549 #define illif_prev ill_if_s.illif_prev 1550 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1551 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1552 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1553 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1554 #define illif_name ill_if_s.illif_name 1555 #define illif_name_len ill_if_s.illif_name_len 1556 1557 typedef struct ill_walk_context_s { 1558 int ctx_current_list; /* current list being searched */ 1559 int ctx_last_list; /* last list to search */ 1560 } ill_walk_context_t; 1561 1562 /* 1563 * ill_gheads structure, one for IPV4 and one for IPV6 1564 */ 1565 struct _ill_g_head_s_ { 1566 ill_if_t *ill_g_list_head; 1567 ill_if_t *ill_g_list_tail; 1568 }; 1569 1570 typedef union ill_g_head_u { 1571 struct _ill_g_head_s_ ill_g_head_s; 1572 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1573 } ill_g_head_t; 1574 1575 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1576 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1577 1578 #pragma align CACHE_ALIGN_SIZE(ill_g_heads) 1579 extern ill_g_head_t ill_g_heads[]; /* ILL List Head */ 1580 1581 1582 #define IP_V4_ILL_G_LIST ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1583 #define IP_V6_ILL_G_LIST ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1584 #define IP_VX_ILL_G_LIST(i) ill_g_heads[i].ill_g_list_head 1585 1586 #define ILL_START_WALK_V4(ctx_ptr) ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, \ 1587 ctx_ptr) 1588 #define ILL_START_WALK_V6(ctx_ptr) ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, \ 1589 ctx_ptr) 1590 #define ILL_START_WALK_ALL(ctx_ptr) ill_first(MAX_G_HEADS, MAX_G_HEADS, \ 1591 ctx_ptr) 1592 1593 /* 1594 * Capabilities, possible flags for ill_capabilities. 1595 */ 1596 1597 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1598 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1599 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1600 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1601 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1602 #define ILL_CAPAB_POLL 0x20 /* Polling Toggle */ 1603 #define ILL_CAPAB_SOFT_RING 0x40 /* Soft_Ring capability */ 1604 1605 /* 1606 * Per-ill Multidata Transmit capabilities. 1607 */ 1608 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1609 1610 /* 1611 * Per-ill IPsec capabilities. 1612 */ 1613 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1614 1615 /* 1616 * Per-ill Hardware Checksumming capbilities. 1617 */ 1618 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1619 1620 /* 1621 * Per-ill Zero-copy capabilities. 1622 */ 1623 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1624 1625 /* 1626 * Per-ill Polling/soft ring capbilities. 1627 */ 1628 typedef struct ill_dls_capab_s ill_dls_capab_t; 1629 1630 /* 1631 * Per-ill polling resource map. 1632 */ 1633 typedef struct ill_rx_ring ill_rx_ring_t; 1634 1635 /* The following are ill_state_flags */ 1636 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1637 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1638 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1639 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1640 #define ILL_SOFT_RING_ASSIGN 0x10 /* Makeing soft ring assigment */ 1641 1642 /* Is this an ILL whose source address is used by other ILL's ? */ 1643 #define IS_USESRC_ILL(ill) \ 1644 (((ill)->ill_usesrc_ifindex == 0) && \ 1645 ((ill)->ill_usesrc_grp_next != NULL)) 1646 1647 /* Is this a client/consumer of the usesrc ILL ? */ 1648 #define IS_USESRC_CLI_ILL(ill) \ 1649 (((ill)->ill_usesrc_ifindex != 0) && \ 1650 ((ill)->ill_usesrc_grp_next != NULL)) 1651 1652 /* Is this an virtual network interface (vni) ILL ? */ 1653 #define IS_VNI(ill) \ 1654 (((ill) != NULL) && !((ill)->ill_phyint->phyint_flags & \ 1655 PHYI_LOOPBACK) && ((ill)->ill_phyint->phyint_flags & \ 1656 PHYI_VIRTUAL)) 1657 1658 /* 1659 * IP Lower level Structure. 1660 * Instance data structure in ip_open when there is a device below us. 1661 */ 1662 typedef struct ill_s { 1663 ill_if_t *ill_ifptr; /* pointer to interface type */ 1664 queue_t *ill_rq; /* Read queue. */ 1665 queue_t *ill_wq; /* Write queue. */ 1666 1667 int ill_error; /* Error value sent up by device. */ 1668 1669 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1670 1671 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1672 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1673 char *ill_name; /* Our name. */ 1674 uint_t ill_name_length; /* Name length, incl. terminator. */ 1675 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1676 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1677 /* 1678 * Physical Point of Attachment num. If DLPI style 1 provider 1679 * then this is derived from the devname. 1680 */ 1681 uint_t ill_ppa; 1682 t_uscalar_t ill_sap; 1683 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1684 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1685 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1686 /* supports broadcast. */ 1687 t_uscalar_t ill_mactype; 1688 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1689 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1690 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1691 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1692 1693 ilm_t *ill_ilm; /* Multicast mebership for lower ill */ 1694 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1695 int ill_mcast_type; /* type of router which is querier */ 1696 /* on this interface */ 1697 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1698 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1699 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1700 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1701 1702 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1703 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1704 1705 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1706 /* 1707 * All non-NULL cells between 'ill_first_mp_to_free' and 1708 * 'ill_last_mp_to_free' are freed in ill_delete. 1709 */ 1710 #define ill_first_mp_to_free ill_bcast_mp 1711 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1712 mblk_t *ill_resolver_mp; /* Resolver template. */ 1713 mblk_t *ill_detach_mp; /* detach mp, or NULL if style1 */ 1714 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1715 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1716 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1717 #define ill_last_mp_to_free ill_phys_addr_mp 1718 1719 cred_t *ill_credp; /* opener's credentials */ 1720 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1721 1722 uint_t ill_state_flags; /* see ILL_* flags above */ 1723 1724 /* Following bit fields protected by ipsq_t */ 1725 uint_t 1726 ill_needs_attach : 1, 1727 ill_reserved : 1, 1728 ill_isv6 : 1, 1729 ill_dlpi_style_set : 1, 1730 1731 ill_ifname_pending : 1, 1732 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1733 ill_join_allmulti : 1, 1734 ill_logical_down : 1, 1735 1736 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1737 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1738 ill_dl_up : 1, 1739 ill_up_ipifs : 1, 1740 1741 ill_pad_to_bit_31 : 20; 1742 1743 /* Following bit fields protected by ill_lock */ 1744 uint_t 1745 ill_fragtimer_executing : 1, 1746 ill_fragtimer_needrestart : 1, 1747 ill_ilm_cleanup_reqd : 1, 1748 ill_arp_closing : 1, 1749 1750 ill_arp_bringup_pending : 1, 1751 ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */ 1752 ill_pad_bit_31 : 26; 1753 1754 /* 1755 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1756 */ 1757 int ill_arp_muxid; /* muxid returned from plink for arp */ 1758 int ill_ip_muxid; /* muxid returned from plink for ip */ 1759 1760 /* 1761 * Used for IP frag reassembly throttling on a per ILL basis. 1762 * 1763 * Note: frag_count is approximate, its added to and subtracted from 1764 * without any locking, so simultaneous load/modify/stores can 1765 * collide, also ill_frag_purge() recalculates its value by 1766 * summing all the ipfb_count's without locking out updates 1767 * to the ipfb's. 1768 */ 1769 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1770 uint_t ill_frag_count; /* Approx count of all mblk bytes */ 1771 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1772 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1773 int ill_type; /* From <net/if_types.h> */ 1774 uint_t ill_dlpi_multicast_state; /* See below IDMS_* */ 1775 uint_t ill_dlpi_fastpath_state; /* See below IDMS_* */ 1776 1777 /* 1778 * Capabilities related fields. 1779 */ 1780 uint_t ill_capab_state; /* State of capability query, IDMS_* */ 1781 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1782 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1783 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1784 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1785 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1786 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1787 ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */ 1788 1789 /* 1790 * New fields for IPv6 1791 */ 1792 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1793 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1794 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1795 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1796 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1797 in6_addr_t ill_token; 1798 uint_t ill_token_length; 1799 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1800 mib2_ipv6IfStatsEntry_t *ill_ip6_mib; /* Per interface mib */ 1801 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1802 /* 1803 * Following two mblks are allocated common to all 1804 * the ipifs when the first interface is coming up. 1805 * It is sent up to arp when the last ipif is coming 1806 * down. 1807 */ 1808 mblk_t *ill_arp_down_mp; 1809 mblk_t *ill_arp_del_mapping_mp; 1810 /* 1811 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1812 * to turn off for all the logicals, it is here instead 1813 * of the ipif. 1814 */ 1815 mblk_t *ill_arp_on_mp; 1816 /* Peer ill of an IPMP move operation */ 1817 struct ill_s *ill_move_peer; 1818 1819 phyint_t *ill_phyint; 1820 uint64_t ill_flags; 1821 ill_group_t *ill_group; 1822 struct ill_s *ill_group_next; 1823 /* 1824 * Reverse tunnel related count. This count 1825 * determines how many mobile nodes are using this 1826 * ill to send packet to reverse tunnel via foreign 1827 * agent. A non-zero count specifies presence of 1828 * mobile node(s) using reverse tunnel through this 1829 * interface. 1830 */ 1831 uint32_t ill_mrtun_refcnt; 1832 1833 /* 1834 * This count is bumped up when a route is added with 1835 * RTA_SRCIFP bit flag using routing socket. 1836 */ 1837 uint32_t ill_srcif_refcnt; 1838 /* 1839 * Pointer to the special interface based routing table. 1840 * This routing table is created dynamically when RTA_SRCIFP 1841 * is set by the routing socket. 1842 */ 1843 irb_t *ill_srcif_table; 1844 kmutex_t ill_lock; /* Please see table below */ 1845 /* 1846 * The ill_nd_lla* fields handle the link layer address option 1847 * from neighbor discovery. This is used for external IPv6 1848 * address resolution. 1849 */ 1850 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1851 uint8_t *ill_nd_lla; /* Link Layer Address */ 1852 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1853 /* 1854 * We now have 3 phys_addr_req's sent down. This field keeps track 1855 * of which one is pending. 1856 */ 1857 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1858 /* 1859 * Used to save errors that occur during plumbing 1860 */ 1861 uint_t ill_ifname_pending_err; 1862 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1863 void *ill_fastpath_list; /* both ire and nce hang off this */ 1864 uint_t ill_refcnt; /* active refcnt by threads */ 1865 uint_t ill_ire_cnt; /* ires associated with this ill */ 1866 kcondvar_t ill_cv; 1867 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1868 uint_t ill_nce_cnt; /* nces associated with this ill */ 1869 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1870 /* 1871 * Contains the upper read queue pointer of the module immediately 1872 * beneath IP. This field allows IP to validate sub-capability 1873 * acknowledgments coming up from downstream. 1874 */ 1875 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1876 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1877 ip_m_t *ill_media; /* media specific params/functions */ 1878 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1879 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 1880 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 1881 #ifdef ILL_DEBUG 1882 th_trace_t *ill_trace[IP_TR_HASH_MAX]; 1883 boolean_t ill_trace_disable; /* True when alloc fails */ 1884 #endif 1885 } ill_t; 1886 1887 extern void ill_delete_glist(ill_t *); 1888 1889 /* 1890 * The following table lists the protection levels of the various members 1891 * of the ill_t. Same notation as that used for ipif_t above is used. 1892 * 1893 * Write Read 1894 * 1895 * ill_ifptr ill_g_lock + s Write once 1896 * ill_rq ipsq Write once 1897 * ill_wq ipsq Write once 1898 * 1899 * ill_error ipsq None 1900 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 1901 * ill_ipif_up_count ill_lock + ipsq ill_lock 1902 * ill_max_frag ipsq Write once 1903 * 1904 * ill_name ill_g_lock + ipsq Write once 1905 * ill_name_length ill_g_lock + ipsq Write once 1906 * ill_ndd_name ipsq Write once 1907 * ill_net_type ipsq Write once 1908 * ill_ppa ill_g_lock + ipsq Write once 1909 * ill_sap ipsq + down ill Write once 1910 * ill_sap_length ipsq + down ill Write once 1911 * ill_phys_addr_length ipsq + down ill Write once 1912 * 1913 * ill_bcast_addr_length ipsq ipsq 1914 * ill_mactype ipsq ipsq 1915 * ill_frag_ptr ipsq ipsq 1916 * 1917 * ill_frag_timer_id ill_lock ill_lock 1918 * ill_frag_hash_tbl ipsq up ill 1919 * ill_ilm ipsq + ill_lock ill_lock 1920 * ill_mcast_type ill_lock ill_lock 1921 * ill_mcast_v1_time ill_lock ill_lock 1922 * ill_mcast_v2_time ill_lock ill_lock 1923 * ill_mcast_v1_tset ill_lock ill_lock 1924 * ill_mcast_v2_tset ill_lock ill_lock 1925 * ill_mcast_rv ill_lock ill_lock 1926 * ill_mcast_qi ill_lock ill_lock 1927 * ill_pending_mp ill_lock ill_lock 1928 * 1929 * ill_bcast_mp ipsq ipsq 1930 * ill_resolver_mp ipsq only when ill is up 1931 * ill_down_mp ipsq ipsq 1932 * ill_dlpi_deferred ipsq ipsq 1933 * ill_phys_addr_mp ipsq ipsq 1934 * ill_phys_addr ipsq up ill 1935 * ill_ick ipsq + down ill only when ill is up 1936 * 1937 * ill_state_flags ill_lock ill_lock 1938 * exclusive bit flags ipsq_t ipsq_t 1939 * shared bit flags ill_lock ill_lock 1940 * 1941 * ill_arp_muxid ipsq Not atomic 1942 * ill_ip_muxid ipsq Not atomic 1943 * 1944 * ill_ipf_gen Not atomic 1945 * ill_frag_count Approx. not protected 1946 * ill_type ipsq + down ill only when ill is up 1947 * ill_dlpi_multicast_state ill_lock ill_lock 1948 * ill_dlpi_fastpath_state ill_lock ill_lock 1949 * ill_max_hops ipsq Not atomic 1950 * 1951 * ill_max_mtu 1952 * 1953 * ill_reachable_time ipsq + ill_lock ill_lock 1954 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 1955 * ill_max_buf ipsq + ill_lock ill_lock 1956 * 1957 * Next 2 fields need ill_lock because of the get ioctls. They should not 1958 * report partially updated results without executing in the ipsq. 1959 * ill_token ipsq + ill_lock ill_lock 1960 * ill_token_length ipsq + ill_lock ill_lock 1961 * ill_xmit_count ipsq + down ill write once 1962 * ill_ip6_mib ipsq + down ill only when ill is up 1963 * ill_icmp6_mib ipsq + down ill only when ill is up 1964 * ill_arp_down_mp ipsq ipsq 1965 * ill_arp_del_mapping_mp ipsq ipsq 1966 * ill_arp_on_mp ipsq ipsq 1967 * ill_move_peer ipsq ipsq 1968 * 1969 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 1970 * ill_flags ill_lock ill_lock 1971 * ill_group ipsq, ill_g_lock, ill_lock Any of them 1972 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 1973 * ill_mrtun_refcnt ill_lock ill_lock 1974 * ill_srcif_refcnt ill_lock ill_lock 1975 * ill_srcif_table ill_lock ill_lock 1976 * ill_nd_lla_mp ill_lock ill_lock 1977 * ill_nd_lla ill_lock ill_lock 1978 * ill_nd_lla_len ill_lock ill_lock 1979 * ill_phys_addr_pend ipsq + down ill only when ill is up 1980 * ill_ifname_pending_err ipsq ipsq 1981 * ill_avl_byppa ipsq, ill_g_lock Write once 1982 * 1983 * ill_fastpath_list ill_lock ill_lock 1984 * ill_refcnt ill_lock ill_lock 1985 * ill_ire_cnt ill_lock ill_lock 1986 * ill_cv ill_lock ill_lock 1987 * ill_ilm_walker_cnt ill_lock ill_lock 1988 * ill_nce_cnt ill_lock ill_lock 1989 * ill_trace ill_lock ill_lock 1990 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 1991 */ 1992 1993 /* 1994 * For ioctl restart mechanism see ip_reprocess_ioctl() 1995 */ 1996 struct ip_ioctl_cmd_s; 1997 1998 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 1999 struct ip_ioctl_cmd_s *, void *); 2000 2001 typedef struct ip_ioctl_cmd_s { 2002 int ipi_cmd; 2003 size_t ipi_copyin_size; 2004 uint_t ipi_flags; 2005 uint_t ipi_cmd_type; 2006 ifunc_t ipi_func; 2007 ifunc_t ipi_func_restart; 2008 } ip_ioctl_cmd_t; 2009 2010 /* 2011 * ipi_cmd_type: 2012 * 2013 * IF_CMD 1 old style ifreq cmd 2014 * LIF_CMD 2 new style lifreq cmd 2015 * MISC_CMD 3 Misc. (non [l]ifreq, tun) cmds 2016 * TUN_CMD 4 tunnel related 2017 */ 2018 2019 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD }; 2020 2021 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2022 2023 /* Flag values in ipi_flags */ 2024 #define IPI_PRIV 0x1 /* Root only command */ 2025 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2026 #define IPI_WR 0x4 /* Need to grab writer access */ 2027 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2028 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2029 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2030 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2031 2032 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2033 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2034 extern int ip_ndx_ioctl_count; 2035 extern int ip_misc_ioctl_count; 2036 2037 #define ILL_CLEAR_MOVE(ill) { \ 2038 ill_t *peer_ill; \ 2039 \ 2040 peer_ill = (ill)->ill_move_peer; \ 2041 ASSERT(peer_ill != NULL); \ 2042 (ill)->ill_move_in_progress = B_FALSE; \ 2043 peer_ill->ill_move_in_progress = B_FALSE; \ 2044 (ill)->ill_move_peer = NULL; \ 2045 peer_ill->ill_move_peer = NULL; \ 2046 } 2047 2048 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2049 typedef struct ipmx_s { 2050 char ipmx_name[LIFNAMSIZ]; /* if name */ 2051 uint_t 2052 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2053 ipmx_notused : 31; 2054 } ipmx_t; 2055 2056 /* 2057 * State for detecting if a driver supports certain features. 2058 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2059 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2060 */ 2061 #define IDMS_UNKNOWN 0 /* No DL_ENABMULTI_REQ sent */ 2062 #define IDMS_INPROGRESS 1 /* Sent DL_ENABMULTI_REQ */ 2063 #define IDMS_OK 2 /* DL_ENABMULTI_REQ ok */ 2064 #define IDMS_FAILED 3 /* DL_ENABMULTI_REQ failed */ 2065 #define IDMS_RENEG 4 /* Driver asked for a renegotiation */ 2066 2067 /* Named Dispatch Parameter Management Structure */ 2068 typedef struct ipparam_s { 2069 uint_t ip_param_min; 2070 uint_t ip_param_max; 2071 uint_t ip_param_value; 2072 char *ip_param_name; 2073 } ipparam_t; 2074 2075 /* Extended NDP Management Structure */ 2076 typedef struct ipndp_s { 2077 ndgetf_t ip_ndp_getf; 2078 ndsetf_t ip_ndp_setf; 2079 caddr_t ip_ndp_data; 2080 char *ip_ndp_name; 2081 } ipndp_t; 2082 2083 /* 2084 * The kernel stores security attributes of all gateways in a database made 2085 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2086 * security-related credentials of the gateway. More than one gateways may 2087 * share entries in the database. 2088 * 2089 * The tsol_gc_t structure represents the gateway to credential association, 2090 * and refers to an entry in the database. One or more tsol_gc_t entities are 2091 * grouped together to form one or more tsol_gcgrp_t, each representing the 2092 * list of security attributes specific to the gateway. A gateway may be 2093 * associated with at most one credentials group. 2094 */ 2095 struct tsol_gcgrp_s; 2096 2097 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2098 2099 /* 2100 * Gateway security credential record. 2101 */ 2102 typedef struct tsol_gcdb_s { 2103 uint_t gcdb_refcnt; /* reference count */ 2104 struct rtsa_s gcdb_attr; /* security attributes */ 2105 #define gcdb_mask gcdb_attr.rtsa_mask 2106 #define gcdb_doi gcdb_attr.rtsa_doi 2107 #define gcdb_slrange gcdb_attr.rtsa_slrange 2108 } tsol_gcdb_t; 2109 2110 /* 2111 * Gateway to credential association. 2112 */ 2113 typedef struct tsol_gc_s { 2114 uint_t gc_refcnt; /* reference count */ 2115 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2116 struct tsol_gc_s *gc_prev; /* previous in list */ 2117 struct tsol_gc_s *gc_next; /* next in list */ 2118 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2119 } tsol_gc_t; 2120 2121 /* 2122 * Gateway credentials group address. 2123 */ 2124 typedef struct tsol_gcgrp_addr_s { 2125 int ga_af; /* address family */ 2126 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2127 } tsol_gcgrp_addr_t; 2128 2129 /* 2130 * Gateway credentials group. 2131 */ 2132 typedef struct tsol_gcgrp_s { 2133 uint_t gcgrp_refcnt; /* reference count */ 2134 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2135 uint_t gcgrp_count; /* number of credentials */ 2136 tsol_gc_t *gcgrp_head; /* first credential in list */ 2137 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2138 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2139 } tsol_gcgrp_t; 2140 2141 extern kmutex_t gcgrp_lock; 2142 2143 #define GC_REFRELE(p) { \ 2144 ASSERT((p)->gc_grp != NULL); \ 2145 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2146 ASSERT((p)->gc_refcnt > 0); \ 2147 if (--((p)->gc_refcnt) == 0) \ 2148 gc_inactive(p); \ 2149 else \ 2150 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2151 } 2152 2153 #define GCGRP_REFHOLD(p) { \ 2154 mutex_enter(&gcgrp_lock); \ 2155 ++((p)->gcgrp_refcnt); \ 2156 ASSERT((p)->gcgrp_refcnt != 0); \ 2157 mutex_exit(&gcgrp_lock); \ 2158 } 2159 2160 #define GCGRP_REFRELE(p) { \ 2161 mutex_enter(&gcgrp_lock); \ 2162 ASSERT((p)->gcgrp_refcnt > 0); \ 2163 if (--((p)->gcgrp_refcnt) == 0) \ 2164 gcgrp_inactive(p); \ 2165 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2166 mutex_exit(&gcgrp_lock); \ 2167 } 2168 2169 /* 2170 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2171 */ 2172 struct tsol_tnrhc; 2173 2174 typedef struct tsol_ire_gw_secattr_s { 2175 kmutex_t igsa_lock; /* lock to protect following */ 2176 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2177 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2178 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2179 } tsol_ire_gw_secattr_t; 2180 2181 /* 2182 * Following are the macros to increment/decrement the reference 2183 * count of the IREs and IRBs (ire bucket). 2184 * 2185 * 1) We bump up the reference count of an IRE to make sure that 2186 * it does not get deleted and freed while we are using it. 2187 * Typically all the lookup functions hold the bucket lock, 2188 * and look for the IRE. If it finds an IRE, it bumps up the 2189 * reference count before dropping the lock. Sometimes we *may* want 2190 * to bump up the reference count after we *looked* up i.e without 2191 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2192 * on the bucket lock being held. Any thread trying to delete from 2193 * the hash bucket can still do so but cannot free the IRE if 2194 * ire_refcnt is not 0. 2195 * 2196 * 2) We bump up the reference count on the bucket where the IRE resides 2197 * (IRB), when we want to prevent the IREs getting deleted from a given 2198 * hash bucket. This makes life easier for ire_walk type functions which 2199 * wants to walk the IRE list, call a function, but needs to drop 2200 * the bucket lock to prevent recursive rw_enters. While the 2201 * lock is dropped, the list could be changed by other threads or 2202 * the same thread could end up deleting the ire or the ire pointed by 2203 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2204 * a delete will still remove the ire from the bucket while we have 2205 * dropped the lock and hence the ire_next would be NULL. Thus, we 2206 * need a mechanism to prevent deletions from a given bucket. 2207 * 2208 * To prevent deletions, we bump up the reference count on the 2209 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2210 * both on the ire's ire_marks and the bucket's irb_marks. When the 2211 * reference count on the bucket drops to zero, all the CONDEMNED ires 2212 * are deleted. We don't have to bump up the reference count on the 2213 * bucket if we are walking the bucket and never have to drop the bucket 2214 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2215 * in the list. It is okay because addition of new ires will not cause 2216 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2217 * all of the 3 conditions are true : 2218 * 2219 * 1) The code needs to walk the IRE bucket from start to end. 2220 * 2) It may have to drop the bucket lock sometimes while doing (1) 2221 * 3) It does not want any ires to be deleted meanwhile. 2222 */ 2223 2224 /* 2225 * Bump up the reference count on the IRE. We cannot assert that the 2226 * bucket lock is being held as it is legal to bump up the reference 2227 * count after the first lookup has returned the IRE without 2228 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2229 */ 2230 2231 #ifndef IRE_DEBUG 2232 2233 #define IRE_REFHOLD_NOTR(ire) IRE_REFHOLD(ire) 2234 #define IRE_UNTRACE_REF(ire) 2235 #define IRE_TRACE_REF(ire) 2236 2237 #else 2238 2239 #define IRE_REFHOLD_NOTR(ire) { \ 2240 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2241 ASSERT((ire)->ire_refcnt != 0); \ 2242 } 2243 2244 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2245 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2246 #endif 2247 2248 #define IRE_REFHOLD(ire) { \ 2249 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2250 ASSERT((ire)->ire_refcnt != 0); \ 2251 IRE_TRACE_REF(ire); \ 2252 } 2253 2254 #define IRE_REFHOLD_LOCKED(ire) { \ 2255 IRE_TRACE_REF(ire); \ 2256 (ire)->ire_refcnt++; \ 2257 } 2258 2259 /* 2260 * Decrement the reference count on the IRE. 2261 * In architectures e.g sun4u, where atomic_add_32_nv is just 2262 * a cas, we need to maintain the right memory barrier semantics 2263 * as that of mutex_exit i.e all the loads and stores should complete 2264 * before the cas is executed. membar_exit() does that here. 2265 * 2266 * NOTE : This macro is used only in places where we want performance. 2267 * To avoid bloating the code, we use the function "ire_refrele" 2268 * which essentially calls the macro. 2269 */ 2270 #ifndef IRE_DEBUG 2271 #define IRE_REFRELE(ire) { \ 2272 ASSERT((ire)->ire_refcnt != 0); \ 2273 membar_exit(); \ 2274 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2275 ire_inactive(ire); \ 2276 } 2277 #define IRE_REFRELE_NOTR(ire) IRE_REFRELE(ire) 2278 #else 2279 #define IRE_REFRELE(ire) { \ 2280 if (ire->ire_bucket != NULL) \ 2281 ire_untrace_ref(ire); \ 2282 ASSERT((ire)->ire_refcnt != 0); \ 2283 membar_exit(); \ 2284 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2285 ire_inactive(ire); \ 2286 } 2287 #define IRE_REFRELE_NOTR(ire) { \ 2288 ASSERT((ire)->ire_refcnt != 0); \ 2289 membar_exit(); \ 2290 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2291 ire_inactive(ire); \ 2292 } 2293 #endif 2294 2295 /* 2296 * Bump up the reference count on the hash bucket - IRB to 2297 * prevent ires from being deleted in this bucket. 2298 */ 2299 #define IRB_REFHOLD(irb) { \ 2300 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2301 (irb)->irb_refcnt++; \ 2302 ASSERT((irb)->irb_refcnt != 0); \ 2303 rw_exit(&(irb)->irb_lock); \ 2304 } 2305 2306 #define IRB_REFRELE(irb) { \ 2307 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2308 ASSERT((irb)->irb_refcnt != 0); \ 2309 if (--(irb)->irb_refcnt == 0 && \ 2310 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2311 ire_t *ire_list; \ 2312 \ 2313 ire_list = ire_unlink(irb); \ 2314 rw_exit(&(irb)->irb_lock); \ 2315 ASSERT(ire_list != NULL); \ 2316 ire_cleanup(ire_list); \ 2317 } else { \ 2318 rw_exit(&(irb)->irb_lock); \ 2319 } \ 2320 } 2321 2322 /* 2323 * Lock the fast path mp for access, since the ire_fp_mp can be deleted 2324 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST and IRE_MIPRTUN 2325 */ 2326 2327 #define LOCK_IRE_FP_MP(ire) { \ 2328 if ((ire)->ire_type == IRE_BROADCAST || \ 2329 (ire)->ire_type == IRE_MIPRTUN) \ 2330 mutex_enter(&ire->ire_lock); \ 2331 } 2332 #define UNLOCK_IRE_FP_MP(ire) { \ 2333 if ((ire)->ire_type == IRE_BROADCAST || \ 2334 (ire)->ire_type == IRE_MIPRTUN) \ 2335 mutex_exit(&ire->ire_lock); \ 2336 } 2337 2338 typedef struct ire4 { 2339 ipaddr_t ire4_src_addr; /* Source address to use. */ 2340 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2341 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2342 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2343 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2344 } ire4_t; 2345 2346 typedef struct ire6 { 2347 in6_addr_t ire6_src_addr; /* Source address to use. */ 2348 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2349 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2350 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2351 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2352 } ire6_t; 2353 2354 typedef union ire_addr { 2355 ire6_t ire6_u; 2356 ire4_t ire4_u; 2357 } ire_addr_u_t; 2358 2359 /* Internet Routing Entry */ 2360 typedef struct ire_s { 2361 struct ire_s *ire_next; /* The hash chain must be first. */ 2362 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2363 uint32_t ire_refcnt; /* Number of references */ 2364 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2365 mblk_t *ire_fp_mp; /* Fast path header */ 2366 queue_t *ire_rfq; /* recv from this queue */ 2367 queue_t *ire_stq; /* send to this queue */ 2368 union { 2369 uint_t *max_fragp; /* Used only during ire creation */ 2370 uint_t max_frag; /* MTU (next hop or path). */ 2371 } imf_u; 2372 #define ire_max_frag imf_u.max_frag 2373 #define ire_max_fragp imf_u.max_fragp 2374 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2375 uint32_t ire_ident; /* Per IRE IP ident. */ 2376 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2377 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2378 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2379 ushort_t ire_type; /* Type of IRE */ 2380 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2381 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2382 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2383 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2384 mblk_t *ire_dlureq_mp; /* DL_UNIT_DATA_REQ/RESOLVER mp */ 2385 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2386 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2387 ipif_t *ire_ipif; /* the interface that this ire uses */ 2388 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2389 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2390 struct nce_s *ire_nce; /* Neighbor Cache Entry for IPv6 */ 2391 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2392 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2393 2394 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2395 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2396 /* 2397 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2398 */ 2399 kmutex_t ire_lock; 2400 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2401 /* 2402 * For regular routes in forwarding table and cache table the 2403 * the following entries are NULL/zero. Only reverse tunnel 2404 * table and interface based forwarding table use these fields. 2405 * Routes added with RTA_SRCIFP and RTA_SRC respectively have 2406 * non-zero values for the following fields. 2407 */ 2408 ill_t *ire_in_ill; /* Incoming ill interface */ 2409 ipaddr_t ire_in_src_addr; 2410 /* source ip-addr of incoming packet */ 2411 clock_t ire_last_used_time; /* Last used time */ 2412 struct ire_s *ire_fastpath; /* Pointer to next ire in fastpath */ 2413 zoneid_t ire_zoneid; /* for local address discrimination */ 2414 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2415 #ifdef IRE_DEBUG 2416 th_trace_t *ire_trace[IP_TR_HASH_MAX]; 2417 boolean_t ire_trace_disable; /* True when alloc fails */ 2418 #endif 2419 } ire_t; 2420 2421 /* IPv4 compatiblity macros */ 2422 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2423 #define ire_mask ire_u.ire4_u.ire4_mask 2424 #define ire_addr ire_u.ire4_u.ire4_addr 2425 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2426 #define ire_cmask ire_u.ire4_u.ire4_cmask 2427 2428 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2429 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2430 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2431 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2432 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2433 2434 /* Convenient typedefs for sockaddrs */ 2435 typedef struct sockaddr_in sin_t; 2436 typedef struct sockaddr_in6 sin6_t; 2437 2438 /* Address structure used for internal bind with IP */ 2439 typedef struct ipa_conn_s { 2440 ipaddr_t ac_laddr; 2441 ipaddr_t ac_faddr; 2442 uint16_t ac_fport; 2443 uint16_t ac_lport; 2444 } ipa_conn_t; 2445 2446 typedef struct ipa6_conn_s { 2447 in6_addr_t ac6_laddr; 2448 in6_addr_t ac6_faddr; 2449 uint16_t ac6_fport; 2450 uint16_t ac6_lport; 2451 } ipa6_conn_t; 2452 2453 /* 2454 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2455 * bind handler. 2456 */ 2457 typedef struct ipa_conn_extended_s { 2458 uint64_t acx_flags; 2459 ipa_conn_t acx_conn; 2460 } ipa_conn_x_t; 2461 2462 typedef struct ipa6_conn_extended_s { 2463 uint64_t ac6x_flags; 2464 ipa6_conn_t ac6x_conn; 2465 } ipa6_conn_x_t; 2466 2467 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2468 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2469 2470 /* Name/Value Descriptor. */ 2471 typedef struct nv_s { 2472 uint64_t nv_value; 2473 char *nv_name; 2474 } nv_t; 2475 2476 /* IP Forwarding Ticket */ 2477 typedef struct ipftk_s { 2478 queue_t *ipftk_queue; 2479 ipaddr_t ipftk_dst; 2480 } ipftk_t; 2481 2482 typedef struct ipt_s { 2483 pfv_t func; /* Routine to call */ 2484 uchar_t *arg; /* ire or nce passed in */ 2485 } ipt_t; 2486 2487 #define ILL_FRAG_HASH(s, i) \ 2488 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2489 2490 /* 2491 * The MAX number of allowed fragmented packets per hash bucket 2492 * calculation is based on the most common mtu size of 1500. This limit 2493 * will work well for other mtu sizes as well. 2494 */ 2495 #define COMMON_IP_MTU 1500 2496 #define MAX_FRAG_MIN 10 2497 #define MAX_FRAG_PKTS \ 2498 MAX(MAX_FRAG_MIN, (2 * (ip_reass_queue_bytes / \ 2499 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2500 2501 /* 2502 * Maximum dups allowed per packet. 2503 */ 2504 extern uint_t ip_max_frag_dups; 2505 2506 /* 2507 * Per-packet information for received packets and transmitted. 2508 * Used by the transport protocols when converting between the packet 2509 * and ancillary data and socket options. 2510 * 2511 * Note: This private data structure and related IPPF_* constant 2512 * definitions are exposed to enable compilation of some debugging tools 2513 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2514 * a temporary hack and long term alternate interfaces should be defined 2515 * to support the needs of such tools and private definitions moved to 2516 * private headers. 2517 */ 2518 struct ip6_pkt_s { 2519 uint_t ipp_fields; /* Which fields are valid */ 2520 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2521 uint_t ipp_ifindex; /* pktinfo ifindex */ 2522 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2523 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2524 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2525 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2526 uint_t ipp_hopoptslen; 2527 uint_t ipp_rtdstoptslen; 2528 uint_t ipp_rthdrlen; 2529 uint_t ipp_dstoptslen; 2530 uint_t ipp_pathmtulen; 2531 ip6_hbh_t *ipp_hopopts; 2532 ip6_dest_t *ipp_rtdstopts; 2533 ip6_rthdr_t *ipp_rthdr; 2534 ip6_dest_t *ipp_dstopts; 2535 struct ip6_mtuinfo *ipp_pathmtu; 2536 in6_addr_t ipp_nexthop; /* Transmit only */ 2537 uint8_t ipp_tclass; 2538 int8_t ipp_use_min_mtu; 2539 }; 2540 typedef struct ip6_pkt_s ip6_pkt_t; 2541 2542 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2543 2544 /* 2545 * This structure is used to convey information from IP and the ULP. 2546 * Currently used for the IP_RECVSLLA and IP_RECVIF options. The 2547 * type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2548 */ 2549 typedef struct in_pktinfo { 2550 uint32_t in_pkt_ulp_type; /* type of info sent */ 2551 /* to UDP */ 2552 uint32_t in_pkt_flags; /* what is sent up by IP */ 2553 uint32_t in_pkt_ifindex; /* inbound interface index */ 2554 struct sockaddr_dl in_pkt_slla; /* has source link layer addr */ 2555 } in_pktinfo_t; 2556 2557 /* 2558 * flags to tell UDP what IP is sending; in_pkt_flags 2559 */ 2560 #define IPF_RECVIF 0x01 /* inbound interface index */ 2561 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2562 2563 /* ipp_fields values */ 2564 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2565 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2566 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2567 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2568 2569 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2570 #define IPPF_HOPLIMIT 0x0020 2571 #define IPPF_HOPOPTS 0x0040 2572 #define IPPF_RTHDR 0x0080 2573 2574 #define IPPF_RTDSTOPTS 0x0100 2575 #define IPPF_DSTOPTS 0x0200 2576 #define IPPF_NEXTHOP 0x0400 2577 #define IPPF_PATHMTU 0x0800 2578 2579 #define IPPF_TCLASS 0x1000 2580 #define IPPF_DONTFRAG 0x2000 2581 #define IPPF_USE_MIN_MTU 0x04000 2582 #define IPPF_MULTICAST_HOPS 0x08000 2583 #define IPPF_UNICAST_HOPS 0x10000 2584 2585 #define IPPF_HAS_IP6I \ 2586 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2587 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2588 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2589 2590 #define TCP_PORTS_OFFSET 0 2591 #define UDP_PORTS_OFFSET 0 2592 2593 /* 2594 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2595 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2596 * after calling these macros. This ensures that the refcnt on the ipif or 2597 * ill will eventually drop down to zero. 2598 */ 2599 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2600 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2601 2602 #define ILL_CAN_LOOKUP(ill) \ 2603 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2604 IAM_WRITER_ILL(ill)) 2605 2606 #define ILL_CAN_WAIT(ill, q) \ 2607 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2608 2609 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2610 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2611 2612 #define IPIF_CAN_LOOKUP(ipif) \ 2613 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2614 IAM_WRITER_IPIF(ipif)) 2615 2616 /* 2617 * If the parameter 'q' is NULL, the caller is not interested in wait and 2618 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2619 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2620 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2621 * in this case 'q' is NULL 2622 */ 2623 #define IPIF_CAN_WAIT(ipif, q) \ 2624 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2625 2626 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2627 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2628 IAM_WRITER_IPIF(ipif)) 2629 2630 /* 2631 * These macros are used by critical set ioctls and failover ioctls to 2632 * mark the ipif appropriately before starting the operation and to clear the 2633 * marks after completing the operation. 2634 */ 2635 #define IPIF_UNMARK_MOVING(ipif) \ 2636 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2637 2638 #define ILL_UNMARK_CHANGING(ill) \ 2639 (ill)->ill_state_flags &= ~ILL_CHANGING; 2640 2641 /* Macros used to assert that this thread is a writer */ 2642 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2643 #define IAM_WRITER_ILL(ill) \ 2644 ((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2645 #define IAM_WRITER_IPIF(ipif) \ 2646 ((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2647 2648 /* 2649 * Grab ill locks in the proper order. The order is highest addressed 2650 * ill is locked first. 2651 */ 2652 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2653 { \ 2654 if ((ill_1) > (ill_2)) { \ 2655 if (ill_1 != NULL) \ 2656 mutex_enter(&(ill_1)->ill_lock); \ 2657 if (ill_2 != NULL) \ 2658 mutex_enter(&(ill_2)->ill_lock); \ 2659 } else { \ 2660 if (ill_2 != NULL) \ 2661 mutex_enter(&(ill_2)->ill_lock); \ 2662 if (ill_1 != NULL && ill_1 != ill_2) \ 2663 mutex_enter(&(ill_1)->ill_lock); \ 2664 } \ 2665 } 2666 2667 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2668 { \ 2669 if (ill_1 != NULL) \ 2670 mutex_exit(&(ill_1)->ill_lock); \ 2671 if (ill_2 != NULL && ill_2 != ill_1) \ 2672 mutex_exit(&(ill_2)->ill_lock); \ 2673 } 2674 2675 /* Get the other protocol instance ill */ 2676 #define ILL_OTHER(ill) \ 2677 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2678 (ill)->ill_phyint->phyint_illv6) 2679 2680 #define MATCH_V4_ONLY 0x1 2681 #define MATCH_V6_ONLY 0x2 2682 #define MATCH_ILL_ONLY 0x4 2683 2684 /* ioctl command info: Ioctl properties extracted and stored in here */ 2685 typedef struct cmd_info_s 2686 { 2687 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2688 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2689 sin_t *ci_sin; /* the sin struct passed down */ 2690 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2691 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2692 } cmd_info_t; 2693 2694 extern krwlock_t ill_g_lock; 2695 extern kmutex_t ip_addr_avail_lock; 2696 extern ipsq_t *ipsq_g_head; 2697 2698 extern ill_t *ip_timer_ill; /* ILL for IRE expiration timer. */ 2699 extern timeout_id_t ip_ire_expire_id; /* IRE expiration timeout id. */ 2700 extern timeout_id_t ip_ire_reclaim_id; /* IRE recalaim timeout id. */ 2701 2702 extern kmutex_t ip_mi_lock; 2703 extern krwlock_t ip_g_nd_lock; /* For adding/removing nd variables */ 2704 extern kmutex_t ip_trash_timer_lock; /* Protects ip_ire_expire_id */ 2705 2706 extern kmutex_t igmp_timer_lock; /* Protects the igmp timer */ 2707 extern kmutex_t mld_timer_lock; /* Protects the mld timer */ 2708 2709 extern krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 2710 2711 extern struct kmem_cache *ire_cache; 2712 2713 extern uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries */ 2714 extern uint_t ip_ire_default_index; /* Walking index used to mod in */ 2715 2716 extern ipaddr_t ip_g_all_ones; 2717 extern caddr_t ip_g_nd; /* Named Dispatch List Head */ 2718 2719 extern uint_t ip_loopback_mtu; 2720 2721 extern ipparam_t *ip_param_arr; 2722 2723 extern int ip_g_forward; 2724 extern int ipv6_forward; 2725 extern vmem_t *ip_minor_arena; 2726 2727 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 2728 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 2729 #define ip_debug ip_param_arr[7].ip_param_value 2730 #define ip_mrtdebug ip_param_arr[8].ip_param_value 2731 #define ip_timer_interval ip_param_arr[9].ip_param_value 2732 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value 2733 #define ip_def_ttl ip_param_arr[12].ip_param_value 2734 #define ip_wroff_extra ip_param_arr[14].ip_param_value 2735 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value 2736 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value 2737 #define ip_output_queue ip_param_arr[20].ip_param_value 2738 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 2739 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 2740 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 2741 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 2742 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 2743 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value 2744 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 2745 #define delay_first_probe_time ip_param_arr[30].ip_param_value 2746 #define max_unicast_solicit ip_param_arr[31].ip_param_value 2747 #define ipv6_def_hops ip_param_arr[32].ip_param_value 2748 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 2749 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 2750 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 2751 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 2752 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 2753 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 2754 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 2755 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 2756 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 2757 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 2758 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 2759 #define ip_policy_mask ip_param_arr[45].ip_param_value 2760 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 2761 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 2762 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 2763 #ifdef DEBUG 2764 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 2765 #else 2766 #define ipv6_drop_inbound_icmpv6 0 2767 #endif 2768 2769 extern hrtime_t ipsec_policy_failure_last; 2770 2771 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2772 #ifdef ZC_TEST 2773 extern int noswcksum; 2774 #endif 2775 2776 extern char ipif_loopback_name[]; 2777 2778 extern nv_t *ire_nv_tbl; 2779 2780 extern time_t ip_g_frag_timeout; 2781 extern clock_t ip_g_frag_timo_ms; 2782 2783 extern mib2_ip_t ip_mib; /* For tcpInErrs and udpNoPorts */ 2784 2785 extern struct module_info ip_mod_info; 2786 2787 extern timeout_id_t igmp_slowtimeout_id; 2788 extern timeout_id_t mld_slowtimeout_id; 2789 2790 extern uint_t loopback_packets; 2791 2792 /* 2793 * Network byte order macros 2794 */ 2795 #ifdef _BIG_ENDIAN 2796 #define N_IN_CLASSD_NET IN_CLASSD_NET 2797 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 2798 #else /* _BIG_ENDIAN */ 2799 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 2800 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 2801 #endif /* _BIG_ENDIAN */ 2802 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 2803 2804 #ifdef DEBUG 2805 /* IPsec HW acceleration debugging support */ 2806 2807 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 2808 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 2809 #define IPSECHW_PKT 0x0004 /* general packet flow */ 2810 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 2811 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 2812 2813 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 2814 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 2815 2816 extern uint32_t ipsechw_debug; 2817 #else 2818 #define IPSECHW_DEBUG(f, x) {} 2819 #define IPSECHW_CALL(f, r, x) {} 2820 #endif 2821 2822 #ifdef IP_DEBUG 2823 #include <sys/debug.h> 2824 #include <sys/promif.h> 2825 2826 #define ip0dbg(a) printf a 2827 #define ip1dbg(a) if (ip_debug > 2) printf a 2828 #define ip2dbg(a) if (ip_debug > 3) printf a 2829 #define ip3dbg(a) if (ip_debug > 4) printf a 2830 #else 2831 #define ip0dbg(a) /* */ 2832 #define ip1dbg(a) /* */ 2833 #define ip2dbg(a) /* */ 2834 #define ip3dbg(a) /* */ 2835 #endif /* IP_DEBUG */ 2836 2837 extern const char *dlpi_prim_str(int); 2838 extern const char *dlpi_err_str(int); 2839 extern void ill_frag_timer(void *); 2840 extern ill_t *ill_first(int, int, ill_walk_context_t *); 2841 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 2842 extern void ill_frag_timer_start(ill_t *); 2843 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 2844 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 2845 extern char *ip_dot_addr(ipaddr_t, char *); 2846 extern void ip_lwput(queue_t *, mblk_t *); 2847 extern boolean_t icmp_err_rate_limit(void); 2848 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t); 2849 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t); 2850 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t); 2851 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 2852 extern int ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t, 2853 ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t, 2854 boolean_t); 2855 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 2856 extern int ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t, 2857 boolean_t, boolean_t, boolean_t); 2858 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 2859 extern int ip_close(queue_t *, int); 2860 extern uint16_t ip_csum_hdr(ipha_t *); 2861 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t); 2862 extern void ip_ire_fini(void); 2863 extern void ip_ire_init(void); 2864 extern int ip_open(queue_t *, dev_t *, int, int, cred_t *); 2865 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 2866 size_t); 2867 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 2868 int, int, mblk_t *); 2869 extern void ip_rput(queue_t *, mblk_t *); 2870 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 2871 extern void ip_rput_dlpi(queue_t *, mblk_t *); 2872 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 2873 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 2874 2875 extern int ip_snmpmod_close(queue_t *); 2876 extern void ip_snmpmod_wput(queue_t *, mblk_t *); 2877 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 2878 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 2879 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 2880 extern void ip_setqinfo(queue_t *, minor_t, boolean_t); 2881 extern void ip_trash_ire_reclaim(void *); 2882 extern void ip_trash_timer_expire(void *); 2883 extern void ip_wput(queue_t *, mblk_t *); 2884 extern void ip_output(void *, mblk_t *, void *, int); 2885 extern void ip_wput_md(queue_t *, mblk_t *, conn_t *); 2886 2887 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int); 2888 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 2889 int, zoneid_t); 2890 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *); 2891 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 2892 extern void ip_wsrv(queue_t *); 2893 extern char *ip_nv_lookup(nv_t *, int); 2894 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 2895 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 2896 extern ipaddr_t ip_massage_options(ipha_t *); 2897 extern ipaddr_t ip_net_mask(ipaddr_t); 2898 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 2899 2900 extern struct qinit rinit_ipv6; 2901 extern struct qinit winit_ipv6; 2902 extern struct qinit rinit_tcp; 2903 extern struct qinit rinit_tcp6; 2904 extern struct qinit winit_tcp; 2905 extern struct qinit rinit_acceptor_tcp; 2906 extern struct qinit winit_acceptor_tcp; 2907 2908 extern void conn_drain_insert(conn_t *connp); 2909 extern int conn_ipsec_length(conn_t *connp); 2910 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 2911 ire_t *); 2912 extern ipaddr_t ip_get_dst(ipha_t *); 2913 extern int ipsec_out_extra_length(mblk_t *); 2914 extern int ipsec_in_extra_length(mblk_t *); 2915 extern mblk_t *ipsec_in_alloc(); 2916 extern boolean_t ipsec_in_is_secure(mblk_t *); 2917 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 2918 extern void ipsec_out_to_in(mblk_t *); 2919 extern int ill_forward_set(queue_t *, mblk_t *, boolean_t, caddr_t); 2920 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 2921 2922 extern void ire_cleanup(ire_t *); 2923 extern void ire_inactive(ire_t *); 2924 extern ire_t *ire_unlink(irb_t *); 2925 #ifdef IRE_DEBUG 2926 extern void ire_trace_ref(ire_t *ire); 2927 extern void ire_untrace_ref(ire_t *ire); 2928 extern void ire_thread_exit(ire_t *ire, caddr_t); 2929 #endif 2930 #ifdef ILL_DEBUG 2931 extern void ill_trace_cleanup(ill_t *); 2932 extern void ipif_trace_cleanup(ipif_t *); 2933 #endif 2934 2935 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t); 2936 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t); 2937 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t); 2938 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t); 2939 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 2940 2941 extern uint8_t ipoptp_next(ipoptp_t *); 2942 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 2943 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 2944 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t); 2945 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 2946 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 2947 extern int ip_snmp_get(queue_t *q, mblk_t *mctl); 2948 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 2949 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 2950 extern void ip_quiesce_conn(conn_t *); 2951 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 2952 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 2953 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipif_t *, 2954 ipsq_t *); 2955 2956 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 2957 uint_t); 2958 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 2959 uint_t); 2960 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 2961 2962 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 2963 extern void conn_ioctl_cleanup(conn_t *); 2964 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 2965 2966 struct multidata_s; 2967 struct pdesc_s; 2968 2969 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 2970 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 2971 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 2972 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 2973 const mblk_t *); 2974 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 2975 uint32_t, uint32_t, uint32_t, uint32_t); 2976 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 2977 uint_t); 2978 extern mblk_t *ip_unbind(queue_t *, mblk_t *); 2979 2980 extern void tnet_init(void); 2981 extern void tnet_fini(void); 2982 2983 /* Hooks for CGTP (multirt routes) filtering module */ 2984 #define CGTP_FILTER_REV_1 1 2985 #define CGTP_FILTER_REV_2 2 2986 #define CGTP_FILTER_REV CGTP_FILTER_REV_2 2987 2988 /* cfo_filter, cfo_filter_fp, cfo_filter_v6 hooks return values */ 2989 #define CGTP_IP_PKT_NOT_CGTP 0 2990 #define CGTP_IP_PKT_PREMIUM 1 2991 #define CGTP_IP_PKT_DUPLICATE 2 2992 2993 typedef struct cgtp_filter_ops { 2994 int cfo_filter_rev; 2995 int (*cfo_change_state)(int); 2996 int (*cfo_add_dest_v4)(ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t); 2997 int (*cfo_del_dest_v4)(ipaddr_t, ipaddr_t); 2998 int (*cfo_add_dest_v6)(in6_addr_t *, in6_addr_t *, in6_addr_t *, 2999 in6_addr_t *); 3000 int (*cfo_del_dest_v6)(in6_addr_t *, in6_addr_t *); 3001 int (*cfo_filter)(queue_t *, mblk_t *); 3002 int (*cfo_filter_fp)(queue_t *, mblk_t *); 3003 int (*cfo_filter_v6)(queue_t *, ip6_t *, ip6_frag_t *); 3004 } cgtp_filter_ops_t; 3005 3006 #define CGTP_MCAST_SUCCESS 1 3007 3008 extern cgtp_filter_ops_t *ip_cgtp_filter_ops; 3009 extern boolean_t ip_cgtp_filter; 3010 3011 extern int ip_cgtp_filter_supported(void); 3012 extern int ip_cgtp_filter_register(cgtp_filter_ops_t *); 3013 3014 /* Flags for ire_multirt_lookup() */ 3015 3016 #define MULTIRT_USESTAMP 0x0001 3017 #define MULTIRT_SETSTAMP 0x0002 3018 #define MULTIRT_CACHEGW 0x0004 3019 3020 /* Debug stuff for multirt route resolution. */ 3021 #if defined(DEBUG) && !defined(__lint) 3022 /* Our "don't send, rather drop" flag. */ 3023 #define MULTIRT_DEBUG_FLAG 0x8000 3024 3025 #define MULTIRT_TRACE(x) ip2dbg(x) 3026 3027 #define MULTIRT_DEBUG_TAG(mblk) \ 3028 do { \ 3029 ASSERT(mblk != NULL); \ 3030 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3031 __FILE__, __LINE__, \ 3032 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3033 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3034 } while (0) 3035 3036 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3037 do { \ 3038 ASSERT(mblk != NULL); \ 3039 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3040 __FILE__, __LINE__, \ 3041 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3042 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3043 } while (0) 3044 3045 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3046 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3047 #else 3048 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3049 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3050 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3051 #endif 3052 3053 /* 3054 * Per-ILL Multidata Transmit capabilities. 3055 */ 3056 struct ill_mdt_capab_s { 3057 uint_t ill_mdt_version; /* interface version */ 3058 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3059 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3060 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3061 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3062 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3063 }; 3064 3065 struct ill_hcksum_capab_s { 3066 uint_t ill_hcksum_version; /* interface version */ 3067 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3068 }; 3069 3070 struct ill_zerocopy_capab_s { 3071 uint_t ill_zerocopy_version; /* interface version */ 3072 uint_t ill_zerocopy_flags; /* capabilities */ 3073 }; 3074 3075 /* Possible ill_states */ 3076 #define ILL_RING_INPROC 3 /* Being assigned to squeue */ 3077 #define ILL_RING_INUSE 2 /* Already Assigned to Rx Ring */ 3078 #define ILL_RING_BEING_FREED 1 /* Being Unassigned */ 3079 #define ILL_RING_FREE 0 /* Available to be assigned to Ring */ 3080 3081 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3082 #define ILL_POLLING 0x01 /* Polling in use */ 3083 3084 /* 3085 * These functions pointer types are exported by the mac/dls layer. 3086 * we need to duplicate the definitions here because we cannot 3087 * include mac/dls header files here. 3088 */ 3089 typedef void (*ip_mac_blank_t)(void *, time_t, uint_t); 3090 typedef void (*ip_dld_tx_t)(void *, mblk_t *); 3091 3092 typedef void (*ip_dls_chg_soft_ring_t)(void *, int); 3093 typedef void (*ip_dls_bind_t)(void *, processorid_t); 3094 typedef void (*ip_dls_unbind_t)(void *); 3095 3096 struct ill_rx_ring { 3097 ip_mac_blank_t rr_blank; /* Driver interrupt blanking func */ 3098 void *rr_handle; /* Handle for Rx ring */ 3099 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3100 ill_t *rr_ill; /* back pointer to ill */ 3101 clock_t rr_poll_time; /* Last lbolt polling was used */ 3102 uint32_t rr_poll_state; /* polling state flags */ 3103 uint32_t rr_max_blank_time; /* Max interrupt blank */ 3104 uint32_t rr_min_blank_time; /* Min interrupt blank */ 3105 uint32_t rr_max_pkt_cnt; /* Max pkts before interrupt */ 3106 uint32_t rr_min_pkt_cnt; /* Mix pkts before interrupt */ 3107 uint32_t rr_normal_blank_time; /* Normal intr freq */ 3108 uint32_t rr_normal_pkt_cnt; /* Normal intr pkt cnt */ 3109 uint32_t rr_ring_state; /* State of this ring */ 3110 }; 3111 3112 struct ill_dls_capab_s { 3113 ip_dld_tx_t ill_tx; /* Driver Tx routine */ 3114 void *ill_tx_handle; /* Driver Tx handle */ 3115 ip_dls_chg_soft_ring_t ill_dls_change_status; 3116 /* change soft ring fanout */ 3117 ip_dls_bind_t ill_dls_bind; /* to add CPU affinity */ 3118 ip_dls_unbind_t ill_dls_unbind; /* remove CPU affinity */ 3119 ill_rx_ring_t *ill_ring_tbl; /* Ring to Sqp mapping table */ 3120 uint_t ill_dls_soft_ring_cnt; /* Number of soft ring */ 3121 conn_t *ill_unbind_conn; /* Conn used during unplumb */ 3122 }; 3123 3124 /* 3125 * This message is sent by an upper-layer protocol to tell IP that it knows all 3126 * about labels and will construct them itself. IP takes the slow path and 3127 * recomputes the label on every packet when this isn't true. 3128 */ 3129 #define IP_ULP_OUT_LABELED (('O' << 8) + 'L') 3130 typedef struct out_labeled_s { 3131 uint32_t out_labeled_type; /* OUT_LABELED */ 3132 queue_t *out_qnext; /* intermediate detection */ 3133 } out_labeled_t; 3134 3135 /* 3136 * IP squeues exports 3137 */ 3138 extern int ip_squeue_profile; 3139 extern int ip_squeue_bind; 3140 extern boolean_t ip_squeue_fanout; 3141 extern boolean_t ip_squeue_soft_ring; 3142 extern uint_t ip_threads_per_cpu; 3143 extern uint_t ip_squeues_per_cpu; 3144 extern uint_t ip_soft_rings_cnt; 3145 3146 typedef struct squeue_set_s { 3147 kmutex_t sqs_lock; 3148 struct squeue_s **sqs_list; 3149 int sqs_size; 3150 int sqs_max_size; 3151 processorid_t sqs_bind; 3152 } squeue_set_t; 3153 3154 #define IP_SQUEUE_GET(hint) \ 3155 ((!ip_squeue_fanout) ? (CPU->cpu_squeue_set->sqs_list[0]) : \ 3156 ip_squeue_random(hint)) 3157 3158 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t); 3159 3160 extern void ip_squeue_init(void (*)(squeue_t *)); 3161 extern squeue_t *ip_squeue_random(uint_t); 3162 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3163 extern void ip_squeue_get_pkts(squeue_t *); 3164 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 3165 extern int ip_squeue_bind_get(queue_t *, mblk_t *, caddr_t, cred_t *); 3166 extern void ip_squeue_clean(void *, mblk_t *, void *); 3167 extern void ip_resume_tcp_bind(void *, mblk_t *, void *); 3168 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *, 3169 mblk_t *, size_t); 3170 3171 extern void tcp_wput(queue_t *, mblk_t *); 3172 3173 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3174 struct ip6_mtuinfo *); 3175 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3176 3177 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3178 3179 /* 3180 * Squeue tags. Tags only need to be unique when the callback function is the 3181 * same to distinguish between different calls, but we use unique tags for 3182 * convenience anyway. 3183 */ 3184 #define SQTAG_IP_INPUT 1 3185 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3186 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3187 #define SQTAG_IP_TCP_INPUT 4 3188 #define SQTAG_IP6_TCP_INPUT 5 3189 #define SQTAG_IP_TCP_CLOSE 6 3190 #define SQTAG_TCP_OUTPUT 7 3191 #define SQTAG_TCP_TIMER 8 3192 #define SQTAG_TCP_TIMEWAIT 9 3193 #define SQTAG_TCP_ACCEPT_FINISH 10 3194 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3195 #define SQTAG_TCP_ACCEPT_PENDING 12 3196 #define SQTAG_TCP_LISTEN_DISCON 13 3197 #define SQTAG_TCP_CONN_REQ 14 3198 #define SQTAG_TCP_EAGER_BLOWOFF 15 3199 #define SQTAG_TCP_EAGER_CLEANUP 16 3200 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3201 #define SQTAG_TCP_CONN_IND 18 3202 #define SQTAG_TCP_RSRV 19 3203 #define SQTAG_TCP_ABORT_BUCKET 20 3204 #define SQTAG_TCP_REINPUT 21 3205 #define SQTAG_TCP_REINPUT_EAGER 22 3206 #define SQTAG_TCP_INPUT_MCTL 23 3207 #define SQTAG_TCP_RPUTOTHER 24 3208 #define SQTAG_IP_PROTO_AGAIN 25 3209 #define SQTAG_IP_FANOUT_TCP 26 3210 #define SQTAG_IPSQ_CLEAN_RING 27 3211 #define SQTAG_TCP_WPUT_OTHER 28 3212 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3213 #define SQTAG_TCP_SEND_PENDING 30 3214 #define SQTAG_BIND_RETRY 31 3215 #define SQTAG_UDP_FANOUT 32 3216 #define SQTAG_UDP_INPUT 33 3217 #define SQTAG_UDP_WPUT 34 3218 #define SQTAG_UDP_OUTPUT 35 3219 #define SQTAG_TCP_KSSL_INPUT 36 3220 3221 #endif /* _KERNEL */ 3222 3223 #ifdef __cplusplus 3224 } 3225 #endif 3226 3227 #endif /* _INET_IP_H */ 3228