1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 35 #include <sys/isa_defs.h> 36 #include <sys/types.h> 37 #include <inet/mib2.h> 38 #include <inet/nd.h> 39 #include <sys/atomic.h> 40 #include <net/if_dl.h> 41 #include <net/if.h> 42 #include <netinet/ip.h> 43 #include <netinet/igmp.h> 44 #include <sys/neti.h> 45 #include <sys/hook.h> 46 #include <sys/hook_event.h> 47 #include <sys/hook_impl.h> 48 #include <inet/ip_stack.h> 49 50 #ifdef _KERNEL 51 #include <netinet/ip6.h> 52 #include <sys/avl.h> 53 #include <sys/vmem.h> 54 #include <sys/squeue.h> 55 #include <net/route.h> 56 #include <sys/systm.h> 57 #include <sys/multidata.h> 58 #include <net/radix.h> 59 #include <sys/modhash.h> 60 61 #ifdef DEBUG 62 #define CONN_DEBUG 63 #endif 64 65 #define IP_DEBUG 66 /* 67 * The mt-streams(9F) flags for the IP module; put here so that other 68 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 69 * of flags. 70 */ 71 #define IP_DEVMTFLAGS D_MP 72 #endif /* _KERNEL */ 73 74 #define IP_MOD_NAME "ip" 75 #define IP_DEV_NAME "/dev/ip" 76 #define IP6_DEV_NAME "/dev/ip6" 77 78 #define UDP_MOD_NAME "udp" 79 #define UDP_DEV_NAME "/dev/udp" 80 #define UDP6_DEV_NAME "/dev/udp6" 81 82 #define TCP_MOD_NAME "tcp" 83 #define TCP_DEV_NAME "/dev/tcp" 84 #define TCP6_DEV_NAME "/dev/tcp6" 85 86 #define SCTP_MOD_NAME "sctp" 87 88 #ifndef _IPADDR_T 89 #define _IPADDR_T 90 typedef uint32_t ipaddr_t; 91 #endif 92 93 /* Number of bits in an address */ 94 #define IP_ABITS 32 95 #define IPV6_ABITS 128 96 97 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 98 99 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 100 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 101 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 102 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 103 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 104 105 /* 106 * Flag to IP write side to indicate that the appln has sent in a pre-built 107 * IP header. Stored in ipha_ident (which is otherwise zero). 108 */ 109 #define IP_HDR_INCLUDED 0xFFFF 110 111 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 112 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 113 114 #define IPV4_ADDR_LEN 4 115 #define IP_ADDR_LEN IPV4_ADDR_LEN 116 #define IP_ARP_PROTO_TYPE 0x0800 117 118 #define IPV4_VERSION 4 119 #define IP_VERSION IPV4_VERSION 120 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 121 #define IP_SIMPLE_HDR_LENGTH 20 122 #define IP_MAX_HDR_LENGTH 60 123 124 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 125 126 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 127 128 /* 129 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 130 * 2 files should be cleaned up to remove all redundant definitions. 131 */ 132 #define IP_MAXPACKET 65535 133 #define IP_SIMPLE_HDR_VERSION \ 134 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 135 136 #define UDPH_SIZE 8 137 138 /* Leave room for ip_newroute to tack on the src and target addresses */ 139 #define OK_RESOLVER_MP(mp) \ 140 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 141 142 /* 143 * Constants and type definitions to support IP IOCTL commands 144 */ 145 #define IP_IOCTL (('i'<<8)|'p') 146 #define IP_IOC_IRE_DELETE 4 147 #define IP_IOC_IRE_DELETE_NO_REPLY 5 148 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 149 #define IP_IOC_RTS_REQUEST 7 150 151 /* Common definitions used by IP IOCTL data structures */ 152 typedef struct ipllcmd_s { 153 uint_t ipllc_cmd; 154 uint_t ipllc_name_offset; 155 uint_t ipllc_name_length; 156 } ipllc_t; 157 158 /* IP IRE Change Command Structure. */ 159 typedef struct ipic_s { 160 ipllc_t ipic_ipllc; 161 uint_t ipic_ire_type; 162 uint_t ipic_max_frag; 163 uint_t ipic_addr_offset; 164 uint_t ipic_addr_length; 165 uint_t ipic_mask_offset; 166 uint_t ipic_mask_length; 167 uint_t ipic_src_addr_offset; 168 uint_t ipic_src_addr_length; 169 uint_t ipic_ll_hdr_offset; 170 uint_t ipic_ll_hdr_length; 171 uint_t ipic_gateway_addr_offset; 172 uint_t ipic_gateway_addr_length; 173 clock_t ipic_rtt; 174 uint32_t ipic_ssthresh; 175 clock_t ipic_rtt_sd; 176 uchar_t ipic_ire_marks; 177 } ipic_t; 178 179 #define ipic_cmd ipic_ipllc.ipllc_cmd 180 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 181 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 182 183 /* IP IRE Delete Command Structure. */ 184 typedef struct ipid_s { 185 ipllc_t ipid_ipllc; 186 uint_t ipid_ire_type; 187 uint_t ipid_addr_offset; 188 uint_t ipid_addr_length; 189 uint_t ipid_mask_offset; 190 uint_t ipid_mask_length; 191 } ipid_t; 192 193 #define ipid_cmd ipid_ipllc.ipllc_cmd 194 195 #ifdef _KERNEL 196 /* 197 * Temporary state for ip options parser. 198 */ 199 typedef struct ipoptp_s 200 { 201 uint8_t *ipoptp_next; /* next option to look at */ 202 uint8_t *ipoptp_end; /* end of options */ 203 uint8_t *ipoptp_cur; /* start of current option */ 204 uint8_t ipoptp_len; /* length of current option */ 205 uint32_t ipoptp_flags; 206 } ipoptp_t; 207 208 /* 209 * Flag(s) for ipoptp_flags 210 */ 211 #define IPOPTP_ERROR 0x00000001 212 #endif /* _KERNEL */ 213 214 /* Controls forwarding of IP packets, set via ndd */ 215 #define IP_FORWARD_NEVER 0 216 #define IP_FORWARD_ALWAYS 1 217 218 #define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS) 219 220 #define IPH_HDR_LENGTH(ipha) \ 221 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 222 223 #define IPH_HDR_VERSION(ipha) \ 224 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 225 226 #ifdef _KERNEL 227 /* 228 * IP reassembly macros. We hide starting and ending offsets in b_next and 229 * b_prev of messages on the reassembly queue. The messages are chained using 230 * b_cont. These macros are used in ip_reassemble() so we don't have to see 231 * the ugly casts and assignments. 232 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 233 * them. 234 */ 235 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 236 #define IP_REASS_SET_START(mp, u) \ 237 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 238 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 239 #define IP_REASS_SET_END(mp, u) \ 240 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 241 242 #define IP_REASS_COMPLETE 0x1 243 #define IP_REASS_PARTIAL 0x2 244 #define IP_REASS_FAILED 0x4 245 246 /* 247 * Test to determine whether this is a module instance of IP or a 248 * driver instance of IP. 249 */ 250 #define CONN_Q(q) (WR(q)->q_next == NULL) 251 252 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 253 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 254 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 255 #define Q_TO_ICMP(q) (Q_TO_CONN((q))->conn_icmp) 256 #define Q_TO_RTS(q) (Q_TO_CONN((q))->conn_rts) 257 258 /* 259 * The following two macros are used by IP to get the appropriate 260 * wq and rq for a conn. If it is a TCP conn, then we need 261 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 262 * from a conn directly if it knows that the conn is not TCP. 263 */ 264 #define CONNP_TO_WQ(connp) \ 265 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 266 267 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 268 269 #define GRAB_CONN_LOCK(q) { \ 270 if (q != NULL && CONN_Q(q)) \ 271 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 272 } 273 274 #define RELEASE_CONN_LOCK(q) { \ 275 if (q != NULL && CONN_Q(q)) \ 276 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 277 } 278 279 /* "Congestion controlled" protocol */ 280 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 281 282 /* 283 * Complete the pending operation. Usually an ioctl. Can also 284 * be a bind or option management request that got enqueued 285 * in an ipsq_t. Called on completion of the operation. 286 */ 287 #define CONN_OPER_PENDING_DONE(connp) { \ 288 mutex_enter(&(connp)->conn_lock); \ 289 (connp)->conn_oper_pending_ill = NULL; \ 290 cv_broadcast(&(connp)->conn_refcv); \ 291 mutex_exit(&(connp)->conn_lock); \ 292 CONN_DEC_REF(connp); \ 293 } 294 295 /* Get the credential of an IP queue of unknown type */ 296 #define GET_QUEUE_CRED(wq) \ 297 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 298 : ((Q_TO_CONN((wq)))->conn_cred)) 299 300 /* 301 * Flags for the various ip_fanout_* routines. 302 */ 303 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 304 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 305 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 306 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 307 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 308 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 309 #define IP_FF_IPINFO 0x80 /* Used for both V4 and V6 */ 310 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 311 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 312 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 313 314 /* 315 * Following flags are used by IPQoS to determine if policy processing is 316 * required. 317 */ 318 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 319 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 320 321 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 322 #define IP_FF_SCTP_CSUM_ERR 0x4000 /* sctp pkt has failed chksum */ 323 324 #ifndef IRE_DB_TYPE 325 #define IRE_DB_TYPE M_SIG 326 #endif 327 328 #ifndef IRE_DB_REQ_TYPE 329 #define IRE_DB_REQ_TYPE M_PCSIG 330 #endif 331 332 #ifndef IRE_ARPRESOLVE_TYPE 333 #define IRE_ARPRESOLVE_TYPE M_EVENT 334 #endif 335 336 /* 337 * Values for squeue switch: 338 */ 339 340 #define IP_SQUEUE_ENTER_NODRAIN 1 341 #define IP_SQUEUE_ENTER 2 342 /* 343 * This is part of the interface between Transport provider and 344 * IP which can be used to set policy information. This is usually 345 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 346 * only IPSEC_POLICY_SET is there when it is found in the chain. 347 * The information contained is an struct ipsec_req_t. On success 348 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 349 * IPSEC_POLICY_SET is never returned. 350 */ 351 #define IPSEC_POLICY_SET M_SETOPTS 352 353 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 354 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 355 356 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 357 ((ire)->ire_type != IRE_BROADCAST)) 358 359 /* IP Fragmentation Reassembly Header */ 360 typedef struct ipf_s { 361 struct ipf_s *ipf_hash_next; 362 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 363 uint32_t ipf_ident; /* Ident to match. */ 364 uint8_t ipf_protocol; /* Protocol to match. */ 365 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 366 time_t ipf_timestamp; /* Reassembly start time. */ 367 mblk_t *ipf_mp; /* mblk we live in. */ 368 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 369 int ipf_hole_cnt; /* Number of holes (hard-case). */ 370 int ipf_end; /* Tail end offset (0 -> hard-case). */ 371 uint_t ipf_gen; /* Frag queue generation */ 372 size_t ipf_count; /* Count of bytes used by frag */ 373 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 374 in6_addr_t ipf_v6src; /* IPv6 source address */ 375 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 376 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 377 uint8_t ipf_ecn; /* ECN info for the fragments */ 378 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 379 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 380 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 381 } ipf_t; 382 383 #define ipf_src V4_PART_OF_V6(ipf_v6src) 384 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 385 386 typedef enum { 387 IB_PKT = 0x01, 388 OB_PKT = 0x02 389 } ip_pkt_t; 390 391 #define UPDATE_IB_PKT_COUNT(ire)\ 392 { \ 393 (ire)->ire_ib_pkt_count++; \ 394 if ((ire)->ire_ipif != NULL) { \ 395 /* \ 396 * forwarding packet \ 397 */ \ 398 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 399 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 400 else \ 401 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 402 } \ 403 } 404 405 #define UPDATE_OB_PKT_COUNT(ire)\ 406 { \ 407 (ire)->ire_ob_pkt_count++;\ 408 if ((ire)->ire_ipif != NULL) { \ 409 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 410 } \ 411 } 412 413 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 414 { \ 415 switch (ipha->ipha_protocol) { \ 416 case IPPROTO_UDP: \ 417 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 418 break; \ 419 default: \ 420 ip_proto_input(q, mp, ipha, ire, recv_ill, 0); \ 421 break; \ 422 } \ 423 } 424 425 /* 426 * NCE_EXPIRED is TRUE when we have a non-permanent nce that was 427 * found to be REACHABLE more than ip_ire_arp_interval ms ago. 428 * This macro is used to age existing nce_t entries. The 429 * nce's will get cleaned up in the following circumstances: 430 * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim 431 * when memory is low, 432 * - ip_arp_news, when updates are received. 433 * - if the nce is NCE_EXPIRED(), it will deleted, so that a new 434 * arp request will need to be triggered from an ND_INITIAL nce. 435 * 436 * Note that the nce state transition follows the pattern: 437 * ND_INITIAL -> ND_INCOMPLETE -> ND_REACHABLE 438 * after which the nce is deleted when it has expired. 439 * 440 * nce_last is the timestamp that indicates when the nce_res_mp in the 441 * nce_t was last updated to a valid link-layer address. nce_last gets 442 * modified/updated : 443 * - when the nce is created 444 * - every time we get a sane arp response for the nce. 445 */ 446 #define NCE_EXPIRED(nce, ipst) (nce->nce_last > 0 && \ 447 ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ 448 ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > \ 449 (ipst)->ips_ip_ire_arp_interval)) 450 451 #endif /* _KERNEL */ 452 453 /* ICMP types */ 454 #define ICMP_ECHO_REPLY 0 455 #define ICMP_DEST_UNREACHABLE 3 456 #define ICMP_SOURCE_QUENCH 4 457 #define ICMP_REDIRECT 5 458 #define ICMP_ECHO_REQUEST 8 459 #define ICMP_ROUTER_ADVERTISEMENT 9 460 #define ICMP_ROUTER_SOLICITATION 10 461 #define ICMP_TIME_EXCEEDED 11 462 #define ICMP_PARAM_PROBLEM 12 463 #define ICMP_TIME_STAMP_REQUEST 13 464 #define ICMP_TIME_STAMP_REPLY 14 465 #define ICMP_INFO_REQUEST 15 466 #define ICMP_INFO_REPLY 16 467 #define ICMP_ADDRESS_MASK_REQUEST 17 468 #define ICMP_ADDRESS_MASK_REPLY 18 469 470 /* ICMP_TIME_EXCEEDED codes */ 471 #define ICMP_TTL_EXCEEDED 0 472 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 473 474 /* ICMP_DEST_UNREACHABLE codes */ 475 #define ICMP_NET_UNREACHABLE 0 476 #define ICMP_HOST_UNREACHABLE 1 477 #define ICMP_PROTOCOL_UNREACHABLE 2 478 #define ICMP_PORT_UNREACHABLE 3 479 #define ICMP_FRAGMENTATION_NEEDED 4 480 #define ICMP_SOURCE_ROUTE_FAILED 5 481 #define ICMP_DEST_NET_UNKNOWN 6 482 #define ICMP_DEST_HOST_UNKNOWN 7 483 #define ICMP_SRC_HOST_ISOLATED 8 484 #define ICMP_DEST_NET_UNREACH_ADMIN 9 485 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 486 #define ICMP_DEST_NET_UNREACH_TOS 11 487 #define ICMP_DEST_HOST_UNREACH_TOS 12 488 489 /* ICMP Header Structure */ 490 typedef struct icmph_s { 491 uint8_t icmph_type; 492 uint8_t icmph_code; 493 uint16_t icmph_checksum; 494 union { 495 struct { /* ECHO request/response structure */ 496 uint16_t u_echo_ident; 497 uint16_t u_echo_seqnum; 498 } u_echo; 499 struct { /* Destination unreachable structure */ 500 uint16_t u_du_zero; 501 uint16_t u_du_mtu; 502 } u_du; 503 struct { /* Parameter problem structure */ 504 uint8_t u_pp_ptr; 505 uint8_t u_pp_rsvd[3]; 506 } u_pp; 507 struct { /* Redirect structure */ 508 ipaddr_t u_rd_gateway; 509 } u_rd; 510 } icmph_u; 511 } icmph_t; 512 513 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 514 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 515 #define icmph_du_zero icmph_u.u_du.u_du_zero 516 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 517 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 518 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 519 520 #define ICMPH_SIZE 8 521 522 /* 523 * Minimum length of transport layer header included in an ICMP error 524 * message for it to be considered valid. 525 */ 526 #define ICMP_MIN_TP_HDR_LEN 8 527 528 /* Aligned IP header */ 529 typedef struct ipha_s { 530 uint8_t ipha_version_and_hdr_length; 531 uint8_t ipha_type_of_service; 532 uint16_t ipha_length; 533 uint16_t ipha_ident; 534 uint16_t ipha_fragment_offset_and_flags; 535 uint8_t ipha_ttl; 536 uint8_t ipha_protocol; 537 uint16_t ipha_hdr_checksum; 538 ipaddr_t ipha_src; 539 ipaddr_t ipha_dst; 540 } ipha_t; 541 542 /* 543 * IP Flags 544 * 545 * Some of these constant names are copied for the DTrace IP provider in 546 * usr/src/lib/libdtrace/common/{ip.d.in, ip.sed.in}, which should be kept 547 * in sync. 548 */ 549 #define IPH_DF 0x4000 /* Don't fragment */ 550 #define IPH_MF 0x2000 /* More fragments to come */ 551 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 552 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 553 554 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 555 #define IPH_ECN_NECT 0x0 /* Not ECN-Capable Transport */ 556 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 557 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 558 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 559 560 /* IP Mac info structure */ 561 typedef struct ip_m_s { 562 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 563 int ip_m_type; /* From <net/if_types.h> */ 564 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 565 uint32_t *, ipaddr_t *); 566 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 567 uint32_t *, in6_addr_t *); 568 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 569 } ip_m_t; 570 571 /* 572 * The following functions attempt to reduce the link layer dependency 573 * of the IP stack. The current set of link specific operations are: 574 * a. map from IPv4 class D (224.0/4) multicast address range to the link 575 * layer multicast address range. 576 * b. map from IPv6 multicast address range (ff00::/8) to the link 577 * layer multicast address range. 578 * c. derive the default IPv6 interface identifier from the link layer 579 * address. 580 */ 581 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 582 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 583 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 584 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 585 (((ip_m)->ip_m_v6intfid != NULL) && \ 586 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 587 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 588 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 589 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 590 591 /* Router entry types */ 592 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 593 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 594 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 595 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 596 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 597 #define IRE_CACHE 0x0020 /* Cached Route entry */ 598 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 599 /* net without any address mapping. */ 600 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 601 /* net with resolver. */ 602 #define IRE_HOST 0x0100 /* Host route entry */ 603 #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */ 604 605 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 606 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST) 607 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 608 IRE_LOOPBACK) 609 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 610 611 /* 612 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 613 * the bucket should delete this IRE from this bucket. 614 */ 615 #define IRE_MARK_CONDEMNED 0x0001 616 /* 617 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 618 * broadcast packets received on that interface. This is marked only 619 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 620 * same subnet receiving the same broadcast packet. 621 */ 622 #define IRE_MARK_NORECV 0x0002 623 /* 624 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 625 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 626 */ 627 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 628 629 /* 630 * An IRE with IRE_MARK_NOADD is created in ip_newroute_ipif when the outgoing 631 * interface is specified by e.g. IP_PKTINFO. The IRE is not added to the IRE 632 * cache table. 633 */ 634 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 635 636 /* 637 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 638 * either for forwarding a packet or has not been used for sending 639 * traffic on TCP connections terminated on this system. In both 640 * cases, this IRE is the first to go when IRE is being cleaned up. 641 */ 642 #define IRE_MARK_TEMPORARY 0x0010 643 644 /* 645 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 646 * this mark, additional atomic checks need to be performed. For eg: by the 647 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 648 * usesrc grouping could have changed in which case we want to fail adding 649 * the IRE_CACHE entry 650 */ 651 #define IRE_MARK_USESRC_CHECK 0x0020 652 653 /* 654 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 655 * routing table lookup for the destination is bypassed and the packet is 656 * sent directly to the specified nexthop. The associated IRE_CACHE entries 657 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 658 * in regular ire cache lookups. 659 */ 660 #define IRE_MARK_PRIVATE_ADDR 0x0040 661 662 /* 663 * When we send an ARP resolution query for the nexthop gateway's ire, 664 * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk 665 * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag 666 * indicates that information from ARP has not been transferred to a 667 * permanent IRE_CACHE entry. The flag is reset only when the 668 * information is successfully transferred to an ire_cache entry (in 669 * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior 670 * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will 671 * require that the resources (incomplete ire_cache and/or nce) must 672 * be cleaned up. The free callback routine (ire_freemblk()) checks 673 * for IRE_MARK_UNCACHED to see if any resources that are pinned down 674 * will need to be cleaned up or not. 675 */ 676 677 #define IRE_MARK_UNCACHED 0x0080 678 679 /* 680 * The comment below (and for other netstack_t references) refers 681 * to the fact that we only do netstack_hold in particular cases, 682 * such as the references from open streams (ill_t and conn_t's 683 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 684 * ire_t's when an ill goes away. 685 */ 686 typedef struct ire_expire_arg_s { 687 int iea_flush_flag; 688 ip_stack_t *iea_ipst; /* Does not have a netstack_hold */ 689 } ire_expire_arg_t; 690 691 /* Flags with ire_expire routine */ 692 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 693 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 694 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 695 696 /* Arguments to ire_flush_cache() */ 697 #define IRE_FLUSH_DELETE 0 698 #define IRE_FLUSH_ADD 1 699 700 /* 701 * Open/close synchronization flags. 702 * These are kept in a separate field in the conn and the synchronization 703 * depends on the atomic 32 bit access to that field. 704 */ 705 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 706 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 707 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 708 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 709 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 710 711 /* Used to check connection state flags before caching the IRE */ 712 #define CONN_CACHE_IRE(connp) \ 713 (!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED))) 714 715 /* 716 * Parameter to ip_output giving the identity of the caller. 717 * IP_WSRV means the packet was enqueued in the STREAMS queue 718 * due to flow control and is now being reprocessed in the context of 719 * the STREAMS service procedure, consequent to flow control relief. 720 * IRE_SEND means the packet is being reprocessed consequent to an 721 * ire cache creation and addition and this may or may not be happening 722 * in the service procedure context. Anything other than the above 2 723 * cases is identified as IP_WPUT. Most commonly this is the case of 724 * packets coming down from the application. 725 */ 726 #ifdef _KERNEL 727 #define IP_WSRV 1 /* Called from ip_wsrv */ 728 #define IP_WPUT 2 /* Called from ip_wput */ 729 #define IRE_SEND 3 /* Called from ire_send */ 730 731 /* 732 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 733 */ 734 #define MAX_FILTER_SIZE 64 735 736 typedef struct slist_s { 737 int sl_numsrc; 738 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 739 } slist_t; 740 741 /* 742 * Following struct is used to maintain retransmission state for 743 * a multicast group. One rtx_state_t struct is an in-line field 744 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 745 * alloc'd as needed. 746 */ 747 typedef struct rtx_state_s { 748 uint_t rtx_timer; /* retrans timer */ 749 int rtx_cnt; /* retrans count */ 750 int rtx_fmode_cnt; /* retrans count for fmode change */ 751 slist_t *rtx_allow; 752 slist_t *rtx_block; 753 } rtx_state_t; 754 755 /* 756 * Used to construct list of multicast address records that will be 757 * sent in a single listener report. 758 */ 759 typedef struct mrec_s { 760 struct mrec_s *mrec_next; 761 uint8_t mrec_type; 762 uint8_t mrec_auxlen; /* currently unused */ 763 in6_addr_t mrec_group; 764 slist_t mrec_srcs; 765 } mrec_t; 766 767 /* Group membership list per upper conn */ 768 /* 769 * XXX add ilg info for ifaddr/ifindex. 770 * XXX can we make ilg survive an ifconfig unplumb + plumb 771 * by setting the ipif/ill to NULL and recover that later? 772 * 773 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 774 * address (ipif). 775 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 776 * index (phyint->phyint_ifindex). 777 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 778 * 779 * ilg records the state of multicast memberships of a socket end point. 780 * ilm records the state of multicast memberships with the driver and is 781 * maintained per interface. 782 * 783 * Notes : 784 * 785 * 1) There is no direct link between a given ilg and ilm. If the 786 * application has joined a group G with ifindex I, we will have 787 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 788 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 789 * To delete the membership, 790 * 791 * a) Search for ilg matching on G and I with ilg_v6group 792 * and ilg_ill. Delete ilg_ill. 793 * b) Search the corresponding ilm matching on G and I with 794 * ilm_v6addr and ilm_ill. Delete ilm. 795 * 796 * In IPv4, the only difference is, we look using ipifs instead of 797 * ills. 798 * 799 * 2) With IP multipathing, we want to keep receiving even after the 800 * interface has failed. We do this by moving multicast memberships 801 * to a new_ill within the group. This is achieved by sending 802 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 803 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 804 * need to be able to delete memberships which will still come down 805 * with the ifindex of the old ill which is what the application 806 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 807 * of where we joined initially so that we can lookup even after we 808 * moved the membership. It is also used for moving back the membership 809 * when the old ill has been repaired. This is done by looking up for 810 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 811 * ilms actually move from old ill to new ill. ilgs don't move (just 812 * the ilg_ill is changed when it moves) as it just records the state 813 * of the application that has joined a group G where as ilm records 814 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 815 * we also need to keep the ilm in the right ill. 816 * 817 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 818 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 819 * a given ilm/ilg even after it fails without the support of 820 * orig_ifindex. We move ilms still to record the driver state as 821 * mentioned above. 822 */ 823 824 /* 825 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 826 * by a thread executing in the ipsq. In other words add/delete of a 827 * multicast group has to execute in the ipsq. 828 */ 829 #define ILG_DELETED 0x1 /* ilg_flags */ 830 typedef struct ilg_s { 831 in6_addr_t ilg_v6group; 832 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 833 struct ill_s *ilg_ill; /* Used by IPv6 */ 834 int ilg_orig_ifindex; /* Interface originally joined on */ 835 uint_t ilg_flags; 836 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 837 slist_t *ilg_filter; 838 } ilg_t; 839 840 /* 841 * Multicast address list entry for ill. 842 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 843 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 844 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 845 * 846 * The comment below (and for other netstack_t references) refers 847 * to the fact that we only do netstack_hold in particular cases, 848 * such as the references from open streams (ill_t and conn_t's 849 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 850 * ire_t's when an ill goes away. 851 */ 852 #define ILM_DELETED 0x1 /* ilm_flags */ 853 typedef struct ilm_s { 854 in6_addr_t ilm_v6addr; 855 int ilm_refcnt; 856 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 857 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 858 struct ilm_s *ilm_next; /* Linked list for each ill */ 859 uint_t ilm_state; /* state of the membership */ 860 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 861 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 862 uint_t ilm_flags; 863 boolean_t ilm_is_new; /* new ilm */ 864 boolean_t ilm_notify_driver; /* Need to notify the driver */ 865 zoneid_t ilm_zoneid; 866 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 867 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 868 slist_t *ilm_filter; /* source filter list */ 869 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 870 rtx_state_t ilm_rtx; /* SCR retransmission state */ 871 ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */ 872 } ilm_t; 873 874 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 875 876 /* 877 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 878 * zero. In addition it needs to block new walkers while it is unlinking ilm's 879 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 880 */ 881 #define ILM_WALKER_HOLD(ill) { \ 882 mutex_enter(&(ill)->ill_lock); \ 883 ill->ill_ilm_walker_cnt++; \ 884 mutex_exit(&(ill)->ill_lock); \ 885 } 886 887 /* 888 * ilm_walker_cleanup releases ill_lock 889 */ 890 #define ILM_WALKER_RELE(ill) { \ 891 mutex_enter(&(ill)->ill_lock); \ 892 (ill)->ill_ilm_walker_cnt--; \ 893 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 894 ilm_walker_cleanup(ill); \ 895 else \ 896 mutex_exit(&(ill)->ill_lock); \ 897 } 898 899 /* 900 * Soft reference to an IPsec SA. 901 * 902 * On relative terms, conn's can be persistent (living as long as the 903 * processes which create them), while SA's are ephemeral (dying when 904 * they hit their time-based or byte-based lifetimes). 905 * 906 * We could hold a hard reference to an SA from an ipsec_latch_t, 907 * but this would cause expired SA's to linger for a potentially 908 * unbounded time. 909 * 910 * Instead, we remember the hash bucket number and bucket generation 911 * in addition to the pointer. The bucket generation is incremented on 912 * each deletion. 913 */ 914 typedef struct ipsa_ref_s 915 { 916 struct ipsa_s *ipsr_sa; 917 struct isaf_s *ipsr_bucket; 918 uint64_t ipsr_gen; 919 } ipsa_ref_t; 920 921 /* 922 * IPsec "latching" state. 923 * 924 * In the presence of IPsec policy, fully-bound conn's bind a connection 925 * to more than just the 5-tuple, but also a specific IPsec action and 926 * identity-pair. 927 * 928 * As an optimization, we also cache soft references to IPsec SA's 929 * here so that we can fast-path around most of the work needed for 930 * outbound IPsec SA selection. 931 * 932 * Were it not for TCP's detached connections, this state would be 933 * in-line in conn_t; instead, this is in a separate structure so it 934 * can be handed off to TCP when a connection is detached. 935 */ 936 typedef struct ipsec_latch_s 937 { 938 kmutex_t ipl_lock; 939 uint32_t ipl_refcnt; 940 941 uint64_t ipl_unique; 942 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 943 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 944 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 945 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 946 cred_t *ipl_local_id; 947 struct ipsid_s *ipl_local_cid; 948 struct ipsid_s *ipl_remote_cid; 949 unsigned int 950 ipl_out_action_latched : 1, 951 ipl_in_action_latched : 1, 952 ipl_out_policy_latched : 1, 953 ipl_in_policy_latched : 1, 954 955 ipl_ids_latched : 1, 956 957 ipl_pad_to_bit_31 : 27; 958 959 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 960 961 } ipsec_latch_t; 962 963 #define IPLATCH_REFHOLD(ipl) { \ 964 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 965 ASSERT((ipl)->ipl_refcnt != 0); \ 966 } 967 968 #define IPLATCH_REFRELE(ipl, ns) { \ 969 ASSERT((ipl)->ipl_refcnt != 0); \ 970 membar_exit(); \ 971 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 972 iplatch_free(ipl, ns); \ 973 } 974 975 /* 976 * peer identity structure. 977 */ 978 979 typedef struct conn_s conn_t; 980 981 /* 982 * The old IP client structure "ipc_t" is gone. All the data is stored in the 983 * connection structure "conn_t" now. The mapping of old and new fields looks 984 * like this: 985 * 986 * ipc_ulp conn_ulp 987 * ipc_rq conn_rq 988 * ipc_wq conn_wq 989 * 990 * ipc_laddr conn_src 991 * ipc_faddr conn_rem 992 * ipc_v6laddr conn_srcv6 993 * ipc_v6faddr conn_remv6 994 * 995 * ipc_lport conn_lport 996 * ipc_fport conn_fport 997 * ipc_ports conn_ports 998 * 999 * ipc_policy conn_policy 1000 * ipc_latch conn_latch 1001 * 1002 * ipc_irc_lock conn_lock 1003 * ipc_ire_cache conn_ire_cache 1004 * 1005 * ipc_state_flags conn_state_flags 1006 * ipc_outgoing_ill conn_outgoing_ill 1007 * 1008 * ipc_dontroute conn_dontroute 1009 * ipc_loopback conn_loopback 1010 * ipc_broadcast conn_broadcast 1011 * ipc_reuseaddr conn_reuseaddr 1012 * 1013 * ipc_multicast_loop conn_multicast_loop 1014 * ipc_multi_router conn_multi_router 1015 * ipc_draining conn_draining 1016 * 1017 * ipc_did_putbq conn_did_putbq 1018 * ipc_unspec_src conn_unspec_src 1019 * ipc_policy_cached conn_policy_cached 1020 * 1021 * ipc_in_enforce_policy conn_in_enforce_policy 1022 * ipc_out_enforce_policy conn_out_enforce_policy 1023 * ipc_af_isv6 conn_af_isv6 1024 * ipc_pkt_isv6 conn_pkt_isv6 1025 * 1026 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 1027 * 1028 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 1029 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 1030 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 1031 * 1032 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 1033 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 1034 * ipc_fully_bound conn_fully_bound 1035 * 1036 * ipc_recvif conn_recvif 1037 * 1038 * ipc_recvslla conn_recvslla 1039 * ipc_acking_unbind conn_acking_unbind 1040 * ipc_pad_to_bit_31 conn_pad_to_bit_31 1041 * 1042 * ipc_nofailover_ill conn_nofailover_ill 1043 * 1044 * ipc_proto conn_proto 1045 * ipc_incoming_ill conn_incoming_ill 1046 * ipc_outgoing_pill conn_outgoing_pill 1047 * ipc_pending_ill conn_pending_ill 1048 * ipc_unbind_mp conn_unbind_mp 1049 * ipc_ilg conn_ilg 1050 * ipc_ilg_allocated conn_ilg_allocated 1051 * ipc_ilg_inuse conn_ilg_inuse 1052 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 1053 * ipc_refcv conn_refcv 1054 * ipc_multicast_ipif conn_multicast_ipif 1055 * ipc_multicast_ill conn_multicast_ill 1056 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 1057 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 1058 * ipc_drain_next conn_drain_next 1059 * ipc_drain_prev conn_drain_prev 1060 * ipc_idl conn_idl 1061 */ 1062 1063 /* 1064 * This is used to match an inbound/outbound datagram with policy. 1065 */ 1066 typedef struct ipsec_selector { 1067 in6_addr_t ips_local_addr_v6; 1068 in6_addr_t ips_remote_addr_v6; 1069 uint16_t ips_local_port; 1070 uint16_t ips_remote_port; 1071 uint8_t ips_icmp_type; 1072 uint8_t ips_icmp_code; 1073 uint8_t ips_protocol; 1074 uint8_t ips_isv4 : 1, 1075 ips_is_icmp_inv_acq: 1; 1076 } ipsec_selector_t; 1077 1078 /* 1079 * Note that we put v4 addresses in the *first* 32-bit word of the 1080 * selector rather than the last to simplify the prefix match/mask code 1081 * in spd.c 1082 */ 1083 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1084 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1085 1086 /* Values used in IP by IPSEC Code */ 1087 #define IPSEC_OUTBOUND B_TRUE 1088 #define IPSEC_INBOUND B_FALSE 1089 1090 /* 1091 * There are two variants in policy failures. The packet may come in 1092 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1093 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1094 */ 1095 #define IPSEC_POLICY_NOT_NEEDED 0 1096 #define IPSEC_POLICY_MISMATCH 1 1097 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1098 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1099 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1100 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1101 1102 /* 1103 * Folowing macro is used whenever the code does not know whether there 1104 * is a M_CTL present in the front and it needs to examine the actual mp 1105 * i.e the IP header. As a M_CTL message could be in the front, this 1106 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1107 * mp is not present, both first_mp and mp point to the same message. 1108 */ 1109 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1110 (first_mp) = (mp); \ 1111 if ((mp)->b_datap->db_type == M_CTL) { \ 1112 (mp) = (mp)->b_cont; \ 1113 (mctl_present) = B_TRUE; \ 1114 } else { \ 1115 (mctl_present) = B_FALSE; \ 1116 } 1117 1118 /* 1119 * Check with IPSEC inbound policy if 1120 * 1121 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1122 * 2) Or if we have not cached policy on the conn and the global policy is 1123 * non-empty. 1124 */ 1125 #define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \ 1126 ((connp)->conn_in_enforce_policy || \ 1127 (!((connp)->conn_policy_cached) && \ 1128 (ipss)->ipsec_inbound_v4_policy_present)) 1129 1130 #define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1131 ((connp)->conn_in_enforce_policy || \ 1132 (!(connp)->conn_policy_cached && \ 1133 (ipss)->ipsec_inbound_v6_policy_present)) 1134 1135 #define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \ 1136 ((connp)->conn_out_enforce_policy || \ 1137 (!((connp)->conn_policy_cached) && \ 1138 (ipss)->ipsec_outbound_v4_policy_present)) 1139 1140 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1141 ((connp)->conn_out_enforce_policy || \ 1142 (!(connp)->conn_policy_cached && \ 1143 (ipss)->ipsec_outbound_v6_policy_present)) 1144 1145 /* 1146 * Information cached in IRE for upper layer protocol (ULP). 1147 * 1148 * Notice that ire_max_frag is not included in the iulp_t structure, which 1149 * it may seem that it should. But ire_max_frag cannot really be cached. It 1150 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1151 * it. But currently, we do not do that. 1152 */ 1153 typedef struct iulp_s { 1154 boolean_t iulp_set; /* Is any metric set? */ 1155 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1156 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1157 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1158 uint32_t iulp_spipe; /* Send pipe size. */ 1159 uint32_t iulp_rpipe; /* Receive pipe size. */ 1160 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1161 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1162 uint32_t 1163 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1164 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1165 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1166 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1167 1168 iulp_not_used : 28; 1169 } iulp_t; 1170 1171 /* Zero iulp_t. */ 1172 extern const iulp_t ire_uinfo_null; 1173 1174 /* 1175 * The conn drain list structure. 1176 * The list is protected by idl_lock. Each conn_t inserted in the list 1177 * points back at this idl_t using conn_idl. IP primes the draining of the 1178 * conns queued in these lists, by qenabling the 1st conn of each list. This 1179 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1180 * of ip_wsrv successively qenables the next conn in the list. 1181 * idl_lock protects all other members of idl_t and conn_drain_next 1182 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1183 * flag of the conn_t and conn_idl. 1184 */ 1185 typedef struct idl_s { 1186 conn_t *idl_conn; /* Head of drain list */ 1187 kmutex_t idl_lock; /* Lock for this list */ 1188 conn_t *idl_conn_draining; /* conn that is draining */ 1189 uint32_t 1190 idl_repeat : 1, /* Last conn must re-enable */ 1191 /* drain list again */ 1192 idl_unused : 31; 1193 } idl_t; 1194 1195 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1196 /* 1197 * Interface route structure which holds the necessary information to recreate 1198 * routes that are tied to an interface (namely where ire_ipif != NULL). 1199 * These routes which were initially created via a routing socket or via the 1200 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1201 * traditional interface routes. When an interface comes back up after being 1202 * marked down, this information will be used to recreate the routes. These 1203 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1204 */ 1205 typedef struct ifrt_s { 1206 ushort_t ifrt_type; /* Type of IRE */ 1207 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1208 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1209 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1210 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1211 uint32_t ifrt_flags; /* flags related to route */ 1212 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1213 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1214 } ifrt_t; 1215 1216 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1217 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1218 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1219 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1220 1221 /* Number of IP addresses that can be hosted on a physical interface */ 1222 #define MAX_ADDRS_PER_IF 8192 1223 /* 1224 * Number of Source addresses to be considered for source address 1225 * selection. Used by ipif_select_source[_v6]. 1226 */ 1227 #define MAX_IPIF_SELECT_SOURCE 50 1228 1229 #ifdef IP_DEBUG 1230 /* 1231 * Trace refholds and refreles for debugging. 1232 */ 1233 #define TR_STACK_DEPTH 14 1234 typedef struct tr_buf_s { 1235 int tr_depth; 1236 clock_t tr_time; 1237 pc_t tr_stack[TR_STACK_DEPTH]; 1238 } tr_buf_t; 1239 1240 typedef struct th_trace_s { 1241 int th_refcnt; 1242 uint_t th_trace_lastref; 1243 kthread_t *th_id; 1244 #define TR_BUF_MAX 38 1245 tr_buf_t th_trbuf[TR_BUF_MAX]; 1246 } th_trace_t; 1247 1248 typedef struct th_hash_s { 1249 list_node_t thh_link; 1250 mod_hash_t *thh_hash; 1251 ip_stack_t *thh_ipst; 1252 } th_hash_t; 1253 #endif 1254 1255 /* The following are ipif_state_flags */ 1256 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1257 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1258 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1259 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1260 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1261 1262 /* IP interface structure, one per local address */ 1263 typedef struct ipif_s { 1264 struct ipif_s *ipif_next; 1265 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1266 int ipif_id; /* Logical unit number */ 1267 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1268 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1269 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1270 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1271 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1272 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1273 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1274 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1275 uint64_t ipif_flags; /* Interface flags. */ 1276 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1277 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1278 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1279 /* prevent awkward out of mem */ 1280 /* condition later */ 1281 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1282 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1283 /* on this interface so that they */ 1284 /* can survive ifconfig down. */ 1285 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1286 1287 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1288 /* will be reported on. Used when */ 1289 /* handling an igmp timeout. */ 1290 1291 /* 1292 * The packet counts in the ipif contain the sum of the 1293 * packet counts in dead IREs that were affiliated with 1294 * this ipif. 1295 */ 1296 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1297 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1298 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1299 /* Exclusive bit fields, protected by ipsq_t */ 1300 unsigned int 1301 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1302 ipif_replace_zero : 1, /* Replacement for zero */ 1303 ipif_was_up : 1, /* ipif was up before */ 1304 ipif_addr_ready : 1, /* DAD is done */ 1305 1306 ipif_was_dup : 1, /* DAD had failed */ 1307 ipif_pad_to_31 : 27; 1308 1309 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1310 uint_t ipif_seqid; /* unique index across all ills */ 1311 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1312 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1313 uint_t ipif_refcnt; /* active consistent reader cnt */ 1314 1315 /* Number of ire's and ilm's referencing this ipif */ 1316 uint_t ipif_ire_cnt; 1317 uint_t ipif_ilm_cnt; 1318 1319 uint_t ipif_saved_ire_cnt; 1320 zoneid_t ipif_zoneid; /* zone ID number */ 1321 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ 1322 boolean_t ipif_trace_disable; /* True when alloc fails */ 1323 } ipif_t; 1324 1325 /* 1326 * IPIF_FREE_OK() means that there are no incoming references 1327 * to the ipif. Incoming refs would prevent the ipif from being freed. 1328 */ 1329 #define IPIF_FREE_OK(ipif) \ 1330 ((ipif)->ipif_ire_cnt == 0 && (ipif)->ipif_ilm_cnt == 0) 1331 /* 1332 * IPIF_DOWN_OK() determines whether the incoming pointer reference counts 1333 * would permit the ipif to be considered quiescent. In order for 1334 * an ipif or ill to be considered quiescent, the ire and nce references 1335 * to that ipif/ill must be zero. 1336 * 1337 * We do not require the ilm references to go to zero for quiescence 1338 * because the quiescence checks are done to ensure that 1339 * outgoing packets do not use addresses from the ipif/ill after it 1340 * has been marked down, and incoming packets to addresses on a 1341 * queiscent interface are rejected. This implies that all the 1342 * ire/nce's using that source address need to be deleted and future 1343 * creation of any ires using that source address must be prevented. 1344 * Similarly incoming unicast packets destined to the 'down' address 1345 * will not be accepted once that ire is gone. However incoming 1346 * multicast packets are not destined to the downed address. 1347 * They are only related to the ill in question. Furthermore 1348 * the current API behavior allows applications to join or leave 1349 * multicast groups, i.e., IP_ADD_MEMBERSHIP / LEAVE_MEMBERSHIP, using a 1350 * down address. Therefore the ilm references are not included in 1351 * the _DOWN_OK macros. 1352 */ 1353 #define IPIF_DOWN_OK(ipif) ((ipif)->ipif_ire_cnt == 0) 1354 1355 /* 1356 * The following table lists the protection levels of the various members 1357 * of the ipif_t. The following notation is used. 1358 * 1359 * Write once - Written to only once at the time of bringing up 1360 * the interface and can be safely read after the bringup without any lock. 1361 * 1362 * ipsq - Need to execute in the ipsq to perform the indicated access. 1363 * 1364 * ill_lock - Need to hold this mutex to perform the indicated access. 1365 * 1366 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1367 * write access respectively. 1368 * 1369 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1370 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1371 * 1372 * Table of ipif_t members and their protection 1373 * 1374 * ipif_next ipsq + ill_lock + ipsq OR ill_lock OR 1375 * ill_g_lock ill_g_lock 1376 * ipif_ill ipsq + down ipif write once 1377 * ipif_id ipsq + down ipif write once 1378 * ipif_mtu ipsq 1379 * ipif_v6lcl_addr ipsq + down ipif up ipif 1380 * ipif_v6src_addr ipsq + down ipif up ipif 1381 * ipif_v6subnet ipsq + down ipif up ipif 1382 * ipif_v6net_mask ipsq + down ipif up ipif 1383 * 1384 * ipif_v6brd_addr 1385 * ipif_v6pp_dst_addr 1386 * ipif_flags ill_lock ill_lock 1387 * ipif_metric 1388 * ipif_ire_type ipsq + down ill up ill 1389 * 1390 * ipif_arp_del_mp ipsq ipsq 1391 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1392 * ipif_igmp_rpt ipsq ipsq 1393 * 1394 * ipif_fo_pkt_count Approx 1395 * ipif_ib_pkt_count Approx 1396 * ipif_ob_pkt_count Approx 1397 * 1398 * bit fields ill_lock ill_lock 1399 * 1400 * ipif_orig_ifindex ipsq None 1401 * ipif_orig_ipifid ipsq None 1402 * ipif_seqid ipsq Write once 1403 * 1404 * ipif_state_flags ill_lock ill_lock 1405 * ipif_refcnt ill_lock ill_lock 1406 * ipif_ire_cnt ill_lock ill_lock 1407 * ipif_ilm_cnt ill_lock ill_lock 1408 * ipif_saved_ire_cnt 1409 */ 1410 1411 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1412 1413 #ifdef DEBUG 1414 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1415 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1416 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1417 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1418 #else 1419 #define IPIF_TRACE_REF(ipif) 1420 #define ILL_TRACE_REF(ill) 1421 #define IPIF_UNTRACE_REF(ipif) 1422 #define ILL_UNTRACE_REF(ill) 1423 #endif 1424 1425 /* IPv4 compatibility macros */ 1426 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1427 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1428 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1429 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1430 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1431 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1432 1433 /* Macros for easy backreferences to the ill. */ 1434 #define ipif_wq ipif_ill->ill_wq 1435 #define ipif_rq ipif_ill->ill_rq 1436 #define ipif_net_type ipif_ill->ill_net_type 1437 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1438 #define ipif_type ipif_ill->ill_type 1439 #define ipif_isv6 ipif_ill->ill_isv6 1440 1441 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1442 1443 /* 1444 * mode value for ip_ioctl_finish for finishing an ioctl 1445 */ 1446 #define CONN_CLOSE 1 /* No mi_copy */ 1447 #define COPYOUT 2 /* do an mi_copyout if needed */ 1448 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1449 #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT) 1450 1451 /* 1452 * The IP-MT design revolves around the serialization object ipsq_t. 1453 * It is associated with an IPMP group. If IPMP is not enabled, there is 1454 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1455 * 1456 * ipsq_lock protects 1457 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1458 * ipsq_mphead, ipsq_mptail, ipsq_split 1459 * 1460 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1461 * ipsq_waitfor 1462 * 1463 * The fields in the last line above below are set mostly by a writer thread 1464 * But there is an exception in the last call to ipif_ill_refrele_tail which 1465 * could also race with a conn close which could be cleaning up the 1466 * fields. So we choose to protect using ipsq_lock instead of depending on 1467 * the property of the writer. 1468 * ill_g_lock protects 1469 * ipsq_refs, ipsq_phyint_list 1470 */ 1471 typedef struct ipsq_s { 1472 kmutex_t ipsq_lock; 1473 int ipsq_reentry_cnt; 1474 kthread_t *ipsq_writer; /* current owner (thread id) */ 1475 int ipsq_flags; 1476 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1477 mblk_t *ipsq_xopq_mptail; 1478 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1479 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1480 int ipsq_current_ioctl; /* current ioctl, or 0 if no ioctl */ 1481 boolean_t ipsq_current_done; /* is the current op done? */ 1482 ipif_t *ipsq_current_ipif; /* ipif associated with current op */ 1483 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1484 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1485 /* response from another module */ 1486 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1487 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1488 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1489 boolean_t ipsq_split; /* ipsq may need to be split */ 1490 int ipsq_waitfor; /* Values encoded below */ 1491 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1492 ip_stack_t *ipsq_ipst; /* Does not have a netstack_hold */ 1493 1494 #ifdef DEBUG 1495 int ipsq_depth; /* debugging aid */ 1496 #define IPSQ_STACK_DEPTH 15 1497 pc_t ipsq_stack[IPSQ_STACK_DEPTH]; /* debugging aid */ 1498 #endif 1499 } ipsq_t; 1500 1501 /* ipsq_flags */ 1502 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1503 1504 /* 1505 * ipsq_waitfor: 1506 * 1507 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1508 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1509 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1510 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1511 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1512 */ 1513 1514 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1515 1516 /* Flags passed to ipsq_try_enter */ 1517 #define CUR_OP 0 /* Current ioctl continuing again */ 1518 #define NEW_OP 1 /* New ioctl starting afresh */ 1519 1520 /* 1521 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1522 * There is a separate ill_t representing IPv4 and IPv6 which has a 1523 * backpointer to the phyint structure for accessing common state. 1524 * 1525 * NOTE : It just stores the group name as there is only one name for 1526 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1527 * IPv4 and IPv6 ill are grouped together when their phyints have 1528 * the same name. 1529 */ 1530 typedef struct phyint { 1531 struct ill_s *phyint_illv4; 1532 struct ill_s *phyint_illv6; 1533 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1534 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1535 uint_t phyint_groupname_len; 1536 uint64_t phyint_flags; 1537 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1538 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1539 kmutex_t phyint_lock; 1540 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1541 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1542 /* Once Clearview IPMP is added the follow two fields can be removed */ 1543 uint_t phyint_group_ifindex; /* index assigned to group */ 1544 uint_t phyint_hook_ifindex; /* index used with neti/hook */ 1545 } phyint_t; 1546 1547 #define CACHE_ALIGN_SIZE 64 1548 1549 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1550 CACHE_ALIGN_SIZE) 1551 struct _phyint_list_s_ { 1552 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1553 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1554 }; 1555 1556 typedef union phyint_list_u { 1557 struct _phyint_list_s_ phyint_list_s; 1558 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1559 } phyint_list_t; 1560 1561 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1562 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1563 /* 1564 * ILL groups. We group ills, 1565 * 1566 * - if the ills have the same group name. (New way) 1567 * 1568 * ill_group locking notes: 1569 * 1570 * illgrp_lock protects ill_grp_ill_schednext. 1571 * 1572 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1573 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1574 * It also freezes the global list of ills and all ipifs in all ills. 1575 * 1576 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1577 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1578 * global list of ills, ill_glist_delete() holds ill_g_lock as writer. 1579 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1580 * that need to walk the members of an illgrp. They just hold ill_g_lock 1581 * as reader to do the walk. 1582 * 1583 */ 1584 typedef struct ill_group { 1585 kmutex_t illgrp_lock; 1586 struct ill_group *illgrp_next; /* Next ill_group */ 1587 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1588 struct ill_s *illgrp_ill; /* First ill in the group */ 1589 int illgrp_ill_count; 1590 } ill_group_t; 1591 1592 /* 1593 * Fragmentation hash bucket 1594 */ 1595 typedef struct ipfb_s { 1596 struct ipf_s *ipfb_ipf; /* List of ... */ 1597 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1598 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1599 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1600 } ipfb_t; 1601 1602 /* 1603 * IRE bucket structure. Usually there is an array of such structures, 1604 * each pointing to a linked list of ires. irb_refcnt counts the number 1605 * of walkers of a given hash bucket. Usually the reference count is 1606 * bumped up if the walker wants no IRES to be DELETED while walking the 1607 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1608 * hash bucket without stumbling up on a free pointer. 1609 * 1610 * irb_t structures in ip_ftable are dynamically allocated and freed. 1611 * In order to identify the irb_t structures that can be safely kmem_free'd 1612 * we need to ensure that 1613 * - the irb_refcnt is quiescent, indicating no other walkers, 1614 * - no other threads or ire's are holding references to the irb, 1615 * i.e., irb_nire == 0, 1616 * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 1617 */ 1618 typedef struct irb { 1619 struct ire_s *irb_ire; /* First ire in this bucket */ 1620 /* Should be first in this struct */ 1621 krwlock_t irb_lock; /* Protect this bucket */ 1622 uint_t irb_refcnt; /* Protected by irb_lock */ 1623 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1624 #define IRB_MARK_CONDEMNED 0x0001 1625 #define IRB_MARK_FTABLE 0x0002 1626 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ 1627 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1628 struct ire_s *irb_rr_origin; /* origin for round-robin */ 1629 int irb_nire; /* Num of ftable ire's that ref irb */ 1630 ip_stack_t *irb_ipst; /* Does not have a netstack_hold */ 1631 } irb_t; 1632 1633 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) 1634 1635 /* The following are return values of ip_xmit_v4() */ 1636 typedef enum { 1637 SEND_PASSED = 0, /* sent packet out on wire */ 1638 SEND_FAILED, /* sending of packet failed */ 1639 LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ 1640 LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ 1641 } ipxmit_state_t; 1642 1643 #define IP_V4_G_HEAD 0 1644 #define IP_V6_G_HEAD 1 1645 1646 #define MAX_G_HEADS 2 1647 1648 /* 1649 * unpadded ill_if structure 1650 */ 1651 struct _ill_if_s_ { 1652 union ill_if_u *illif_next; 1653 union ill_if_u *illif_prev; 1654 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1655 vmem_t *illif_ppa_arena; /* ppa index space */ 1656 uint16_t illif_mcast_v1; /* hints for */ 1657 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1658 int illif_name_len; /* name length */ 1659 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1660 }; 1661 1662 /* cache aligned ill_if structure */ 1663 typedef union ill_if_u { 1664 struct _ill_if_s_ ill_if_s; 1665 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1666 } ill_if_t; 1667 1668 #define illif_next ill_if_s.illif_next 1669 #define illif_prev ill_if_s.illif_prev 1670 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1671 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1672 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1673 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1674 #define illif_name ill_if_s.illif_name 1675 #define illif_name_len ill_if_s.illif_name_len 1676 1677 typedef struct ill_walk_context_s { 1678 int ctx_current_list; /* current list being searched */ 1679 int ctx_last_list; /* last list to search */ 1680 } ill_walk_context_t; 1681 1682 /* 1683 * ill_g_heads structure, one for IPV4 and one for IPV6 1684 */ 1685 struct _ill_g_head_s_ { 1686 ill_if_t *ill_g_list_head; 1687 ill_if_t *ill_g_list_tail; 1688 }; 1689 1690 typedef union ill_g_head_u { 1691 struct _ill_g_head_s_ ill_g_head_s; 1692 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1693 } ill_g_head_t; 1694 1695 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1696 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1697 1698 #define IP_V4_ILL_G_LIST(ipst) \ 1699 (ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1700 #define IP_V6_ILL_G_LIST(ipst) \ 1701 (ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1702 #define IP_VX_ILL_G_LIST(i, ipst) \ 1703 (ipst)->ips_ill_g_heads[i].ill_g_list_head 1704 1705 #define ILL_START_WALK_V4(ctx_ptr, ipst) \ 1706 ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst) 1707 #define ILL_START_WALK_V6(ctx_ptr, ipst) \ 1708 ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst) 1709 #define ILL_START_WALK_ALL(ctx_ptr, ipst) \ 1710 ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst) 1711 1712 /* 1713 * Capabilities, possible flags for ill_capabilities. 1714 */ 1715 1716 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1717 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1718 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1719 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1720 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1721 #define ILL_CAPAB_POLL 0x20 /* Polling Toggle */ 1722 #define ILL_CAPAB_SOFT_RING 0x40 /* Soft_Ring capability */ 1723 #define ILL_CAPAB_LSO 0x80 /* Large Segment Offload */ 1724 1725 /* 1726 * Per-ill Multidata Transmit capabilities. 1727 */ 1728 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1729 1730 /* 1731 * Per-ill IPsec capabilities. 1732 */ 1733 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1734 1735 /* 1736 * Per-ill Hardware Checksumming capbilities. 1737 */ 1738 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1739 1740 /* 1741 * Per-ill Zero-copy capabilities. 1742 */ 1743 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1744 1745 /* 1746 * Per-ill Polling/soft ring capbilities. 1747 */ 1748 typedef struct ill_dls_capab_s ill_dls_capab_t; 1749 1750 /* 1751 * Per-ill polling resource map. 1752 */ 1753 typedef struct ill_rx_ring ill_rx_ring_t; 1754 1755 /* 1756 * Per-ill Large Segment Offload capabilities. 1757 */ 1758 typedef struct ill_lso_capab_s ill_lso_capab_t; 1759 1760 /* The following are ill_state_flags */ 1761 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1762 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1763 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1764 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1765 #define ILL_SOFT_RING_ASSIGN 0x10 /* Making soft ring assignment */ 1766 1767 /* Is this an ILL whose source address is used by other ILL's ? */ 1768 #define IS_USESRC_ILL(ill) \ 1769 (((ill)->ill_usesrc_ifindex == 0) && \ 1770 ((ill)->ill_usesrc_grp_next != NULL)) 1771 1772 /* Is this a client/consumer of the usesrc ILL ? */ 1773 #define IS_USESRC_CLI_ILL(ill) \ 1774 (((ill)->ill_usesrc_ifindex != 0) && \ 1775 ((ill)->ill_usesrc_grp_next != NULL)) 1776 1777 /* Is this an virtual network interface (vni) ILL ? */ 1778 #define IS_VNI(ill) \ 1779 (((ill) != NULL) && \ 1780 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ 1781 PHYI_VIRTUAL)) 1782 1783 /* Is this a loopback ILL? */ 1784 #define IS_LOOPBACK(ill) \ 1785 ((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK) 1786 1787 /* 1788 * IP Lower level Structure. 1789 * Instance data structure in ip_open when there is a device below us. 1790 */ 1791 typedef struct ill_s { 1792 ill_if_t *ill_ifptr; /* pointer to interface type */ 1793 queue_t *ill_rq; /* Read queue. */ 1794 queue_t *ill_wq; /* Write queue. */ 1795 1796 int ill_error; /* Error value sent up by device. */ 1797 1798 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1799 1800 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1801 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1802 char *ill_name; /* Our name. */ 1803 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ 1804 uint_t ill_name_length; /* Name length, incl. terminator. */ 1805 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1806 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1807 /* 1808 * Physical Point of Attachment num. If DLPI style 1 provider 1809 * then this is derived from the devname. 1810 */ 1811 uint_t ill_ppa; 1812 t_uscalar_t ill_sap; 1813 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1814 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1815 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1816 /* supports broadcast. */ 1817 t_uscalar_t ill_mactype; 1818 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1819 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1820 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1821 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1822 1823 ilm_t *ill_ilm; /* Multicast membership for ill */ 1824 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1825 int ill_mcast_type; /* type of router which is querier */ 1826 /* on this interface */ 1827 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1828 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1829 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1830 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1831 1832 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1833 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1834 1835 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1836 /* 1837 * All non-NULL cells between 'ill_first_mp_to_free' and 1838 * 'ill_last_mp_to_free' are freed in ill_delete. 1839 */ 1840 #define ill_first_mp_to_free ill_bcast_mp 1841 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1842 mblk_t *ill_resolver_mp; /* Resolver template. */ 1843 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1844 mblk_t *ill_promiscoff_mp; /* for ill_leave_allmulti() */ 1845 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1846 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1847 #define ill_last_mp_to_free ill_phys_addr_mp 1848 1849 cred_t *ill_credp; /* opener's credentials */ 1850 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1851 1852 uint_t ill_state_flags; /* see ILL_* flags above */ 1853 1854 /* Following bit fields protected by ipsq_t */ 1855 uint_t 1856 ill_needs_attach : 1, 1857 ill_reserved : 1, 1858 ill_isv6 : 1, 1859 ill_dlpi_style_set : 1, 1860 1861 ill_ifname_pending : 1, 1862 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1863 ill_join_allmulti : 1, 1864 ill_logical_down : 1, 1865 1866 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1867 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1868 ill_dl_up : 1, 1869 ill_up_ipifs : 1, 1870 1871 ill_note_link : 1, /* supports link-up notification */ 1872 ill_capab_reneg : 1, /* capability renegotiation to be done */ 1873 ill_need_recover_multicast : 1, 1874 ill_pad_to_bit_31 : 17; 1875 1876 /* Following bit fields protected by ill_lock */ 1877 uint_t 1878 ill_fragtimer_executing : 1, 1879 ill_fragtimer_needrestart : 1, 1880 ill_ilm_cleanup_reqd : 1, 1881 ill_arp_closing : 1, 1882 1883 ill_arp_bringup_pending : 1, 1884 ill_mtu_userspecified : 1, /* SIOCSLIFLNKINFO has set the mtu */ 1885 ill_arp_extend : 1, /* ARP has DAD extensions */ 1886 ill_pad_bit_31 : 25; 1887 1888 /* 1889 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1890 */ 1891 int ill_arp_muxid; /* muxid returned from plink for arp */ 1892 int ill_ip_muxid; /* muxid returned from plink for ip */ 1893 1894 /* Used for IP frag reassembly throttling on a per ILL basis. */ 1895 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1896 uint_t ill_frag_count; /* Count of all reassembly mblk bytes */ 1897 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1898 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1899 int ill_type; /* From <net/if_types.h> */ 1900 uint_t ill_dlpi_multicast_state; /* See below IDS_* */ 1901 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ 1902 1903 /* 1904 * Capabilities related fields. 1905 */ 1906 uint_t ill_dlpi_capab_state; /* State of capability query, IDS_* */ 1907 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1908 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1909 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1910 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1911 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1912 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1913 ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */ 1914 ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */ 1915 1916 /* 1917 * New fields for IPv6 1918 */ 1919 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1920 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1921 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1922 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1923 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1924 in6_addr_t ill_token; 1925 uint_t ill_token_length; 1926 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1927 mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */ 1928 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1929 /* 1930 * Following two mblks are allocated common to all 1931 * the ipifs when the first interface is coming up. 1932 * It is sent up to arp when the last ipif is coming 1933 * down. 1934 */ 1935 mblk_t *ill_arp_down_mp; 1936 mblk_t *ill_arp_del_mapping_mp; 1937 /* 1938 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1939 * to turn off for all the logicals, it is here instead 1940 * of the ipif. 1941 */ 1942 mblk_t *ill_arp_on_mp; 1943 /* Peer ill of an IPMP move operation */ 1944 struct ill_s *ill_move_peer; 1945 1946 phyint_t *ill_phyint; 1947 uint64_t ill_flags; 1948 ill_group_t *ill_group; 1949 struct ill_s *ill_group_next; 1950 1951 kmutex_t ill_lock; /* Please see table below */ 1952 /* 1953 * The ill_nd_lla* fields handle the link layer address option 1954 * from neighbor discovery. This is used for external IPv6 1955 * address resolution. 1956 */ 1957 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1958 uint8_t *ill_nd_lla; /* Link Layer Address */ 1959 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1960 /* 1961 * We now have 3 phys_addr_req's sent down. This field keeps track 1962 * of which one is pending. 1963 */ 1964 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1965 /* 1966 * Used to save errors that occur during plumbing 1967 */ 1968 uint_t ill_ifname_pending_err; 1969 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1970 void *ill_fastpath_list; /* both ire and nce hang off this */ 1971 uint_t ill_refcnt; /* active refcnt by threads */ 1972 uint_t ill_ire_cnt; /* ires associated with this ill */ 1973 kcondvar_t ill_cv; 1974 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1975 uint_t ill_nce_cnt; /* nces associated with this ill */ 1976 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1977 /* 1978 * Contains the upper read queue pointer of the module immediately 1979 * beneath IP. This field allows IP to validate sub-capability 1980 * acknowledgments coming up from downstream. 1981 */ 1982 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1983 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1984 ip_m_t *ill_media; /* media specific params/functions */ 1985 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1986 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 1987 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 1988 boolean_t ill_trace_disable; /* True when alloc fails */ 1989 zoneid_t ill_zoneid; 1990 ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */ 1991 uint32_t ill_dhcpinit; /* IP_DHCPINIT_IFs for ill */ 1992 uint_t ill_ilm_cnt; /* ilms referencing this ill */ 1993 uint_t ill_ipallmulti_cnt; /* ip_join_allmulti() calls */ 1994 } ill_t; 1995 1996 /* 1997 * ILL_FREE_OK() means that there are no incoming pointer references 1998 * to the ill. 1999 */ 2000 #define ILL_FREE_OK(ill) \ 2001 ((ill)->ill_ire_cnt == 0 && (ill)->ill_ilm_cnt == 0 && \ 2002 (ill)->ill_nce_cnt == 0) 2003 2004 /* 2005 * An ipif/ill can be marked down only when the ire and nce references 2006 * to that ipif/ill goes to zero. ILL_DOWN_OK() is a necessary condition 2007 * quiescence checks. See comments above IPIF_DOWN_OK for details 2008 * on why ires and nces are selectively considered for this macro. 2009 */ 2010 #define ILL_DOWN_OK(ill) (ill->ill_ire_cnt == 0 && ill->ill_nce_cnt == 0) 2011 2012 /* 2013 * The following table lists the protection levels of the various members 2014 * of the ill_t. Same notation as that used for ipif_t above is used. 2015 * 2016 * Write Read 2017 * 2018 * ill_ifptr ill_g_lock + s Write once 2019 * ill_rq ipsq Write once 2020 * ill_wq ipsq Write once 2021 * 2022 * ill_error ipsq None 2023 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 2024 * ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq 2025 * ill_max_frag ipsq Write once 2026 * 2027 * ill_name ill_g_lock + ipsq Write once 2028 * ill_name_length ill_g_lock + ipsq Write once 2029 * ill_ndd_name ipsq Write once 2030 * ill_net_type ipsq Write once 2031 * ill_ppa ill_g_lock + ipsq Write once 2032 * ill_sap ipsq + down ill Write once 2033 * ill_sap_length ipsq + down ill Write once 2034 * ill_phys_addr_length ipsq + down ill Write once 2035 * 2036 * ill_bcast_addr_length ipsq ipsq 2037 * ill_mactype ipsq ipsq 2038 * ill_frag_ptr ipsq ipsq 2039 * 2040 * ill_frag_timer_id ill_lock ill_lock 2041 * ill_frag_hash_tbl ipsq up ill 2042 * ill_ilm ipsq + ill_lock ill_lock 2043 * ill_mcast_type ill_lock ill_lock 2044 * ill_mcast_v1_time ill_lock ill_lock 2045 * ill_mcast_v2_time ill_lock ill_lock 2046 * ill_mcast_v1_tset ill_lock ill_lock 2047 * ill_mcast_v2_tset ill_lock ill_lock 2048 * ill_mcast_rv ill_lock ill_lock 2049 * ill_mcast_qi ill_lock ill_lock 2050 * ill_pending_mp ill_lock ill_lock 2051 * 2052 * ill_bcast_mp ipsq ipsq 2053 * ill_resolver_mp ipsq only when ill is up 2054 * ill_down_mp ipsq ipsq 2055 * ill_dlpi_deferred ill_lock ill_lock 2056 * ill_dlpi_pending ill_lock ill_lock 2057 * ill_phys_addr_mp ipsq + down ill only when ill is up 2058 * ill_phys_addr ipsq + down ill only when ill is up 2059 * 2060 * ill_state_flags ill_lock ill_lock 2061 * exclusive bit flags ipsq_t ipsq_t 2062 * shared bit flags ill_lock ill_lock 2063 * 2064 * ill_arp_muxid ipsq Not atomic 2065 * ill_ip_muxid ipsq Not atomic 2066 * 2067 * ill_ipf_gen Not atomic 2068 * ill_frag_count atomics atomics 2069 * ill_type ipsq + down ill only when ill is up 2070 * ill_dlpi_multicast_state ill_lock ill_lock 2071 * ill_dlpi_fastpath_state ill_lock ill_lock 2072 * ill_max_hops ipsq Not atomic 2073 * 2074 * ill_max_mtu 2075 * 2076 * ill_reachable_time ipsq + ill_lock ill_lock 2077 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 2078 * ill_max_buf ipsq + ill_lock ill_lock 2079 * 2080 * Next 2 fields need ill_lock because of the get ioctls. They should not 2081 * report partially updated results without executing in the ipsq. 2082 * ill_token ipsq + ill_lock ill_lock 2083 * ill_token_length ipsq + ill_lock ill_lock 2084 * ill_xmit_count ipsq + down ill write once 2085 * ill_ip6_mib ipsq + down ill only when ill is up 2086 * ill_icmp6_mib ipsq + down ill only when ill is up 2087 * ill_arp_down_mp ipsq ipsq 2088 * ill_arp_del_mapping_mp ipsq ipsq 2089 * ill_arp_on_mp ipsq ipsq 2090 * ill_move_peer ipsq ipsq 2091 * 2092 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 2093 * ill_flags ill_lock ill_lock 2094 * ill_group ipsq, ill_g_lock, ill_lock Any of them 2095 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 2096 * ill_nd_lla_mp ipsq + down ill only when ill is up 2097 * ill_nd_lla ipsq + down ill only when ill is up 2098 * ill_nd_lla_len ipsq + down ill only when ill is up 2099 * ill_phys_addr_pend ipsq + down ill only when ill is up 2100 * ill_ifname_pending_err ipsq ipsq 2101 * ill_avl_byppa ipsq, ill_g_lock write once 2102 * 2103 * ill_fastpath_list ill_lock ill_lock 2104 * ill_refcnt ill_lock ill_lock 2105 * ill_ire_cnt ill_lock ill_lock 2106 * ill_cv ill_lock ill_lock 2107 * ill_ilm_walker_cnt ill_lock ill_lock 2108 * ill_nce_cnt ill_lock ill_lock 2109 * ill_ilm_cnt ill_lock ill_lock 2110 * ill_trace ill_lock ill_lock 2111 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 2112 * ill_dhcpinit atomics atomics 2113 */ 2114 2115 /* 2116 * For ioctl restart mechanism see ip_reprocess_ioctl() 2117 */ 2118 struct ip_ioctl_cmd_s; 2119 2120 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 2121 struct ip_ioctl_cmd_s *, void *); 2122 2123 typedef struct ip_ioctl_cmd_s { 2124 int ipi_cmd; 2125 size_t ipi_copyin_size; 2126 uint_t ipi_flags; 2127 uint_t ipi_cmd_type; 2128 ifunc_t ipi_func; 2129 ifunc_t ipi_func_restart; 2130 } ip_ioctl_cmd_t; 2131 2132 /* 2133 * ipi_cmd_type: 2134 * 2135 * IF_CMD 1 old style ifreq cmd 2136 * LIF_CMD 2 new style lifreq cmd 2137 * TUN_CMD 3 tunnel related 2138 * ARP_CMD 4 arpreq cmd 2139 * XARP_CMD 5 xarpreq cmd 2140 * MSFILT_CMD 6 multicast source filter cmd 2141 * MISC_CMD 7 misc cmd (not a more specific one above) 2142 */ 2143 2144 enum { IF_CMD = 1, LIF_CMD, TUN_CMD, ARP_CMD, XARP_CMD, MSFILT_CMD, MISC_CMD }; 2145 2146 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2147 2148 /* Flag values in ipi_flags */ 2149 #define IPI_PRIV 0x1 /* Root only command */ 2150 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2151 #define IPI_WR 0x4 /* Need to grab writer access */ 2152 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2153 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2154 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2155 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2156 2157 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2158 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2159 extern int ip_ndx_ioctl_count; 2160 extern int ip_misc_ioctl_count; 2161 2162 #define ILL_CLEAR_MOVE(ill) { \ 2163 ill_t *peer_ill; \ 2164 \ 2165 peer_ill = (ill)->ill_move_peer; \ 2166 ASSERT(peer_ill != NULL); \ 2167 (ill)->ill_move_in_progress = B_FALSE; \ 2168 peer_ill->ill_move_in_progress = B_FALSE; \ 2169 (ill)->ill_move_peer = NULL; \ 2170 peer_ill->ill_move_peer = NULL; \ 2171 } 2172 2173 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2174 typedef struct ipmx_s { 2175 char ipmx_name[LIFNAMSIZ]; /* if name */ 2176 uint_t 2177 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2178 ipmx_notused : 31; 2179 } ipmx_t; 2180 2181 /* 2182 * State for detecting if a driver supports certain features. 2183 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2184 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2185 * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. 2186 */ 2187 #define IDS_UNKNOWN 0 /* No DLPI request sent */ 2188 #define IDS_INPROGRESS 1 /* DLPI request sent */ 2189 #define IDS_OK 2 /* DLPI request completed successfully */ 2190 #define IDS_FAILED 3 /* DLPI request failed */ 2191 2192 /* Named Dispatch Parameter Management Structure */ 2193 typedef struct ipparam_s { 2194 uint_t ip_param_min; 2195 uint_t ip_param_max; 2196 uint_t ip_param_value; 2197 char *ip_param_name; 2198 } ipparam_t; 2199 2200 /* Extended NDP Management Structure */ 2201 typedef struct ipndp_s { 2202 ndgetf_t ip_ndp_getf; 2203 ndsetf_t ip_ndp_setf; 2204 caddr_t ip_ndp_data; 2205 char *ip_ndp_name; 2206 } ipndp_t; 2207 2208 /* 2209 * The kernel stores security attributes of all gateways in a database made 2210 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2211 * security-related credentials of the gateway. More than one gateways may 2212 * share entries in the database. 2213 * 2214 * The tsol_gc_t structure represents the gateway to credential association, 2215 * and refers to an entry in the database. One or more tsol_gc_t entities are 2216 * grouped together to form one or more tsol_gcgrp_t, each representing the 2217 * list of security attributes specific to the gateway. A gateway may be 2218 * associated with at most one credentials group. 2219 */ 2220 struct tsol_gcgrp_s; 2221 2222 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2223 2224 /* 2225 * Gateway security credential record. 2226 */ 2227 typedef struct tsol_gcdb_s { 2228 uint_t gcdb_refcnt; /* reference count */ 2229 struct rtsa_s gcdb_attr; /* security attributes */ 2230 #define gcdb_mask gcdb_attr.rtsa_mask 2231 #define gcdb_doi gcdb_attr.rtsa_doi 2232 #define gcdb_slrange gcdb_attr.rtsa_slrange 2233 } tsol_gcdb_t; 2234 2235 /* 2236 * Gateway to credential association. 2237 */ 2238 typedef struct tsol_gc_s { 2239 uint_t gc_refcnt; /* reference count */ 2240 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2241 struct tsol_gc_s *gc_prev; /* previous in list */ 2242 struct tsol_gc_s *gc_next; /* next in list */ 2243 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2244 } tsol_gc_t; 2245 2246 /* 2247 * Gateway credentials group address. 2248 */ 2249 typedef struct tsol_gcgrp_addr_s { 2250 int ga_af; /* address family */ 2251 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2252 } tsol_gcgrp_addr_t; 2253 2254 /* 2255 * Gateway credentials group. 2256 */ 2257 typedef struct tsol_gcgrp_s { 2258 uint_t gcgrp_refcnt; /* reference count */ 2259 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2260 uint_t gcgrp_count; /* number of credentials */ 2261 tsol_gc_t *gcgrp_head; /* first credential in list */ 2262 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2263 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2264 } tsol_gcgrp_t; 2265 2266 extern kmutex_t gcgrp_lock; 2267 2268 #define GC_REFRELE(p) { \ 2269 ASSERT((p)->gc_grp != NULL); \ 2270 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2271 ASSERT((p)->gc_refcnt > 0); \ 2272 if (--((p)->gc_refcnt) == 0) \ 2273 gc_inactive(p); \ 2274 else \ 2275 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2276 } 2277 2278 #define GCGRP_REFHOLD(p) { \ 2279 mutex_enter(&gcgrp_lock); \ 2280 ++((p)->gcgrp_refcnt); \ 2281 ASSERT((p)->gcgrp_refcnt != 0); \ 2282 mutex_exit(&gcgrp_lock); \ 2283 } 2284 2285 #define GCGRP_REFRELE(p) { \ 2286 mutex_enter(&gcgrp_lock); \ 2287 ASSERT((p)->gcgrp_refcnt > 0); \ 2288 if (--((p)->gcgrp_refcnt) == 0) \ 2289 gcgrp_inactive(p); \ 2290 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2291 mutex_exit(&gcgrp_lock); \ 2292 } 2293 2294 /* 2295 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2296 */ 2297 struct tsol_tnrhc; 2298 2299 typedef struct tsol_ire_gw_secattr_s { 2300 kmutex_t igsa_lock; /* lock to protect following */ 2301 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2302 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2303 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2304 } tsol_ire_gw_secattr_t; 2305 2306 /* 2307 * Following are the macros to increment/decrement the reference 2308 * count of the IREs and IRBs (ire bucket). 2309 * 2310 * 1) We bump up the reference count of an IRE to make sure that 2311 * it does not get deleted and freed while we are using it. 2312 * Typically all the lookup functions hold the bucket lock, 2313 * and look for the IRE. If it finds an IRE, it bumps up the 2314 * reference count before dropping the lock. Sometimes we *may* want 2315 * to bump up the reference count after we *looked* up i.e without 2316 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2317 * on the bucket lock being held. Any thread trying to delete from 2318 * the hash bucket can still do so but cannot free the IRE if 2319 * ire_refcnt is not 0. 2320 * 2321 * 2) We bump up the reference count on the bucket where the IRE resides 2322 * (IRB), when we want to prevent the IREs getting deleted from a given 2323 * hash bucket. This makes life easier for ire_walk type functions which 2324 * wants to walk the IRE list, call a function, but needs to drop 2325 * the bucket lock to prevent recursive rw_enters. While the 2326 * lock is dropped, the list could be changed by other threads or 2327 * the same thread could end up deleting the ire or the ire pointed by 2328 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2329 * a delete will still remove the ire from the bucket while we have 2330 * dropped the lock and hence the ire_next would be NULL. Thus, we 2331 * need a mechanism to prevent deletions from a given bucket. 2332 * 2333 * To prevent deletions, we bump up the reference count on the 2334 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2335 * both on the ire's ire_marks and the bucket's irb_marks. When the 2336 * reference count on the bucket drops to zero, all the CONDEMNED ires 2337 * are deleted. We don't have to bump up the reference count on the 2338 * bucket if we are walking the bucket and never have to drop the bucket 2339 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2340 * in the list. It is okay because addition of new ires will not cause 2341 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2342 * all of the 3 conditions are true : 2343 * 2344 * 1) The code needs to walk the IRE bucket from start to end. 2345 * 2) It may have to drop the bucket lock sometimes while doing (1) 2346 * 3) It does not want any ires to be deleted meanwhile. 2347 */ 2348 2349 /* 2350 * Bump up the reference count on the IRE. We cannot assert that the 2351 * bucket lock is being held as it is legal to bump up the reference 2352 * count after the first lookup has returned the IRE without 2353 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2354 */ 2355 2356 #ifdef DEBUG 2357 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2358 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2359 #else 2360 #define IRE_UNTRACE_REF(ire) 2361 #define IRE_TRACE_REF(ire) 2362 #endif 2363 2364 #define IRE_REFHOLD_NOTR(ire) { \ 2365 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2366 ASSERT((ire)->ire_refcnt != 0); \ 2367 } 2368 2369 #define IRE_REFHOLD(ire) { \ 2370 IRE_REFHOLD_NOTR(ire); \ 2371 IRE_TRACE_REF(ire); \ 2372 } 2373 2374 #define IRE_REFHOLD_LOCKED(ire) { \ 2375 IRE_TRACE_REF(ire); \ 2376 (ire)->ire_refcnt++; \ 2377 } 2378 2379 /* 2380 * Decrement the reference count on the IRE. 2381 * In architectures e.g sun4u, where atomic_add_32_nv is just 2382 * a cas, we need to maintain the right memory barrier semantics 2383 * as that of mutex_exit i.e all the loads and stores should complete 2384 * before the cas is executed. membar_exit() does that here. 2385 * 2386 * NOTE : This macro is used only in places where we want performance. 2387 * To avoid bloating the code, we use the function "ire_refrele" 2388 * which essentially calls the macro. 2389 */ 2390 #define IRE_REFRELE_NOTR(ire) { \ 2391 ASSERT((ire)->ire_refcnt != 0); \ 2392 membar_exit(); \ 2393 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2394 ire_inactive(ire); \ 2395 } 2396 2397 #define IRE_REFRELE(ire) { \ 2398 if (ire->ire_bucket != NULL) { \ 2399 IRE_UNTRACE_REF(ire); \ 2400 } \ 2401 IRE_REFRELE_NOTR(ire); \ 2402 } 2403 2404 /* 2405 * Bump up the reference count on the hash bucket - IRB to 2406 * prevent ires from being deleted in this bucket. 2407 */ 2408 #define IRB_REFHOLD(irb) { \ 2409 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2410 (irb)->irb_refcnt++; \ 2411 ASSERT((irb)->irb_refcnt != 0); \ 2412 rw_exit(&(irb)->irb_lock); \ 2413 } 2414 #define IRB_REFHOLD_LOCKED(irb) { \ 2415 ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ 2416 (irb)->irb_refcnt++; \ 2417 ASSERT((irb)->irb_refcnt != 0); \ 2418 } 2419 2420 void irb_refrele_ftable(irb_t *); 2421 /* 2422 * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t 2423 * is statically allocated, so that when the irb_refcnt goes to 0, 2424 * we simply clean up the ire list and continue. 2425 */ 2426 #define IRB_REFRELE(irb) { \ 2427 if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ 2428 irb_refrele_ftable((irb)); \ 2429 } else { \ 2430 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2431 ASSERT((irb)->irb_refcnt != 0); \ 2432 if (--(irb)->irb_refcnt == 0 && \ 2433 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2434 ire_t *ire_list; \ 2435 \ 2436 ire_list = ire_unlink(irb); \ 2437 rw_exit(&(irb)->irb_lock); \ 2438 ASSERT(ire_list != NULL); \ 2439 ire_cleanup(ire_list); \ 2440 } else { \ 2441 rw_exit(&(irb)->irb_lock); \ 2442 } \ 2443 } \ 2444 } 2445 2446 extern struct kmem_cache *rt_entry_cache; 2447 2448 /* 2449 * Lock the fast path mp for access, since the fp_mp can be deleted 2450 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST 2451 */ 2452 2453 #define LOCK_IRE_FP_MP(ire) { \ 2454 if ((ire)->ire_type == IRE_BROADCAST) \ 2455 mutex_enter(&ire->ire_nce->nce_lock); \ 2456 } 2457 #define UNLOCK_IRE_FP_MP(ire) { \ 2458 if ((ire)->ire_type == IRE_BROADCAST) \ 2459 mutex_exit(&ire->ire_nce->nce_lock); \ 2460 } 2461 2462 typedef struct ire4 { 2463 ipaddr_t ire4_src_addr; /* Source address to use. */ 2464 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2465 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2466 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2467 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2468 } ire4_t; 2469 2470 typedef struct ire6 { 2471 in6_addr_t ire6_src_addr; /* Source address to use. */ 2472 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2473 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2474 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2475 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2476 } ire6_t; 2477 2478 typedef union ire_addr { 2479 ire6_t ire6_u; 2480 ire4_t ire4_u; 2481 } ire_addr_u_t; 2482 2483 /* Internet Routing Entry */ 2484 typedef struct ire_s { 2485 struct ire_s *ire_next; /* The hash chain must be first. */ 2486 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2487 uint32_t ire_refcnt; /* Number of references */ 2488 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2489 queue_t *ire_rfq; /* recv from this queue */ 2490 queue_t *ire_stq; /* send to this queue */ 2491 union { 2492 uint_t *max_fragp; /* Used only during ire creation */ 2493 uint_t max_frag; /* MTU (next hop or path). */ 2494 } imf_u; 2495 #define ire_max_frag imf_u.max_frag 2496 #define ire_max_fragp imf_u.max_fragp 2497 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2498 uint32_t ire_ident; /* Per IRE IP ident. */ 2499 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2500 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2501 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2502 ushort_t ire_type; /* Type of IRE */ 2503 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2504 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2505 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2506 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2507 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2508 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2509 ipif_t *ire_ipif; /* the interface that this ire uses */ 2510 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2511 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2512 /* 2513 * Neighbor Cache Entry for IPv6; arp info for IPv4 2514 */ 2515 struct nce_s *ire_nce; 2516 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2517 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2518 2519 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2520 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2521 /* 2522 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2523 */ 2524 kmutex_t ire_lock; 2525 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2526 uint_t ire_ipif_ifindex; /* ifindex associated with ipif */ 2527 clock_t ire_last_used_time; /* Last used time */ 2528 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2529 zoneid_t ire_zoneid; /* for local address discrimination */ 2530 /* 2531 * ire's that are embedded inside mblk_t and sent to the external 2532 * resolver use the ire_stq_ifindex to track the ifindex of the 2533 * ire_stq, so that the ill (if it exists) can be correctly recovered 2534 * for cleanup in the esbfree routine when arp failure occurs. 2535 * Similarly, the ire_stackid is used to recover the ip_stack_t. 2536 */ 2537 uint_t ire_stq_ifindex; 2538 netstackid_t ire_stackid; 2539 uint_t ire_defense_count; /* number of ARP conflicts */ 2540 uint_t ire_defense_time; /* last time defended (secs) */ 2541 boolean_t ire_trace_disable; /* True when alloc fails */ 2542 ip_stack_t *ire_ipst; /* Does not have a netstack_hold */ 2543 } ire_t; 2544 2545 /* IPv4 compatibility macros */ 2546 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2547 #define ire_mask ire_u.ire4_u.ire4_mask 2548 #define ire_addr ire_u.ire4_u.ire4_addr 2549 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2550 #define ire_cmask ire_u.ire4_u.ire4_cmask 2551 2552 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2553 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2554 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2555 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2556 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2557 2558 /* Convenient typedefs for sockaddrs */ 2559 typedef struct sockaddr_in sin_t; 2560 typedef struct sockaddr_in6 sin6_t; 2561 2562 /* Address structure used for internal bind with IP */ 2563 typedef struct ipa_conn_s { 2564 ipaddr_t ac_laddr; 2565 ipaddr_t ac_faddr; 2566 uint16_t ac_fport; 2567 uint16_t ac_lport; 2568 } ipa_conn_t; 2569 2570 typedef struct ipa6_conn_s { 2571 in6_addr_t ac6_laddr; 2572 in6_addr_t ac6_faddr; 2573 uint16_t ac6_fport; 2574 uint16_t ac6_lport; 2575 } ipa6_conn_t; 2576 2577 /* 2578 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2579 * bind handler. 2580 */ 2581 typedef struct ipa_conn_extended_s { 2582 uint64_t acx_flags; 2583 ipa_conn_t acx_conn; 2584 } ipa_conn_x_t; 2585 2586 typedef struct ipa6_conn_extended_s { 2587 uint64_t ac6x_flags; 2588 ipa6_conn_t ac6x_conn; 2589 } ipa6_conn_x_t; 2590 2591 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2592 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2593 2594 /* Name/Value Descriptor. */ 2595 typedef struct nv_s { 2596 uint64_t nv_value; 2597 char *nv_name; 2598 } nv_t; 2599 2600 #define ILL_FRAG_HASH(s, i) \ 2601 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2602 2603 /* 2604 * The MAX number of allowed fragmented packets per hash bucket 2605 * calculation is based on the most common mtu size of 1500. This limit 2606 * will work well for other mtu sizes as well. 2607 */ 2608 #define COMMON_IP_MTU 1500 2609 #define MAX_FRAG_MIN 10 2610 #define MAX_FRAG_PKTS(ipst) \ 2611 MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \ 2612 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2613 2614 /* 2615 * Maximum dups allowed per packet. 2616 */ 2617 extern uint_t ip_max_frag_dups; 2618 2619 /* 2620 * Per-packet information for received packets and transmitted. 2621 * Used by the transport protocols when converting between the packet 2622 * and ancillary data and socket options. 2623 * 2624 * Note: This private data structure and related IPPF_* constant 2625 * definitions are exposed to enable compilation of some debugging tools 2626 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2627 * a temporary hack and long term alternate interfaces should be defined 2628 * to support the needs of such tools and private definitions moved to 2629 * private headers. 2630 */ 2631 struct ip6_pkt_s { 2632 uint_t ipp_fields; /* Which fields are valid */ 2633 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2634 uint_t ipp_ifindex; /* pktinfo ifindex */ 2635 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2636 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2637 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2638 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2639 uint_t ipp_hopoptslen; 2640 uint_t ipp_rtdstoptslen; 2641 uint_t ipp_rthdrlen; 2642 uint_t ipp_dstoptslen; 2643 uint_t ipp_pathmtulen; 2644 uint_t ipp_fraghdrlen; 2645 ip6_hbh_t *ipp_hopopts; 2646 ip6_dest_t *ipp_rtdstopts; 2647 ip6_rthdr_t *ipp_rthdr; 2648 ip6_dest_t *ipp_dstopts; 2649 ip6_frag_t *ipp_fraghdr; 2650 struct ip6_mtuinfo *ipp_pathmtu; 2651 in6_addr_t ipp_nexthop; /* Transmit only */ 2652 uint8_t ipp_tclass; 2653 int8_t ipp_use_min_mtu; 2654 }; 2655 typedef struct ip6_pkt_s ip6_pkt_t; 2656 2657 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2658 2659 /* 2660 * This struct is used by ULP_opt_set() functions to return value of IPv4 2661 * ancillary options. Currently this is only used by udp and icmp and only 2662 * IP_PKTINFO option is supported. 2663 */ 2664 typedef struct ip4_pkt_s { 2665 uint_t ip4_ill_index; /* interface index */ 2666 ipaddr_t ip4_addr; /* source address */ 2667 } ip4_pkt_t; 2668 2669 /* 2670 * Used by ULP's to pass options info to ip_output 2671 * currently only IP_PKTINFO is supported. 2672 */ 2673 typedef struct ip_opt_info_s { 2674 uint_t ip_opt_ill_index; 2675 uint_t ip_opt_flags; 2676 } ip_opt_info_t; 2677 2678 /* 2679 * value for ip_opt_flags 2680 */ 2681 #define IP_VERIFY_SRC 0x1 2682 2683 /* 2684 * This structure is used to convey information from IP and the ULP. 2685 * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options. 2686 * The type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2687 */ 2688 typedef struct ip_pktinfo { 2689 uint32_t ip_pkt_ulp_type; /* type of info sent */ 2690 uint32_t ip_pkt_flags; /* what is sent up by IP */ 2691 uint32_t ip_pkt_ifindex; /* inbound interface index */ 2692 struct sockaddr_dl ip_pkt_slla; /* has source link layer addr */ 2693 struct in_addr ip_pkt_match_addr; /* matched address */ 2694 } ip_pktinfo_t; 2695 2696 /* 2697 * flags to tell UDP what IP is sending; in_pkt_flags 2698 */ 2699 #define IPF_RECVIF 0x01 /* inbound interface index */ 2700 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2701 /* 2702 * Inbound interface index + matched address. 2703 * Used only by IPV4. 2704 */ 2705 #define IPF_RECVADDR 0x04 2706 2707 /* ipp_fields values */ 2708 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2709 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2710 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2711 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2712 2713 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2714 #define IPPF_HOPLIMIT 0x0020 2715 #define IPPF_HOPOPTS 0x0040 2716 #define IPPF_RTHDR 0x0080 2717 2718 #define IPPF_RTDSTOPTS 0x0100 2719 #define IPPF_DSTOPTS 0x0200 2720 #define IPPF_NEXTHOP 0x0400 2721 #define IPPF_PATHMTU 0x0800 2722 2723 #define IPPF_TCLASS 0x1000 2724 #define IPPF_DONTFRAG 0x2000 2725 #define IPPF_USE_MIN_MTU 0x04000 2726 #define IPPF_MULTICAST_HOPS 0x08000 2727 2728 #define IPPF_UNICAST_HOPS 0x10000 2729 #define IPPF_FRAGHDR 0x20000 2730 2731 #define IPPF_HAS_IP6I \ 2732 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2733 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2734 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2735 2736 #define TCP_PORTS_OFFSET 0 2737 #define UDP_PORTS_OFFSET 0 2738 2739 /* 2740 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2741 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2742 * after calling these macros. This ensures that the refcnt on the ipif or 2743 * ill will eventually drop down to zero. 2744 */ 2745 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2746 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2747 2748 #define ILL_CAN_LOOKUP(ill) \ 2749 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2750 IAM_WRITER_ILL(ill)) 2751 2752 #define ILL_CAN_WAIT(ill, q) \ 2753 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2754 2755 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2756 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2757 2758 #define IPIF_CAN_LOOKUP(ipif) \ 2759 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2760 IAM_WRITER_IPIF(ipif)) 2761 2762 /* 2763 * If the parameter 'q' is NULL, the caller is not interested in wait and 2764 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2765 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2766 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2767 * in this case 'q' is NULL 2768 */ 2769 #define IPIF_CAN_WAIT(ipif, q) \ 2770 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2771 2772 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2773 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2774 IAM_WRITER_IPIF(ipif)) 2775 2776 /* 2777 * These macros are used by critical set ioctls and failover ioctls to 2778 * mark the ipif appropriately before starting the operation and to clear the 2779 * marks after completing the operation. 2780 */ 2781 #define IPIF_UNMARK_MOVING(ipif) \ 2782 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2783 2784 #define ILL_UNMARK_CHANGING(ill) \ 2785 (ill)->ill_state_flags &= ~ILL_CHANGING; 2786 2787 /* Macros used to assert that this thread is a writer */ 2788 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2789 #define IAM_WRITER_ILL(ill) IAM_WRITER_IPSQ((ill)->ill_phyint->phyint_ipsq) 2790 #define IAM_WRITER_IPIF(ipif) IAM_WRITER_ILL((ipif)->ipif_ill) 2791 2792 /* 2793 * Grab ill locks in the proper order. The order is highest addressed 2794 * ill is locked first. 2795 */ 2796 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2797 { \ 2798 if ((ill_1) > (ill_2)) { \ 2799 if (ill_1 != NULL) \ 2800 mutex_enter(&(ill_1)->ill_lock); \ 2801 if (ill_2 != NULL) \ 2802 mutex_enter(&(ill_2)->ill_lock); \ 2803 } else { \ 2804 if (ill_2 != NULL) \ 2805 mutex_enter(&(ill_2)->ill_lock); \ 2806 if (ill_1 != NULL && ill_1 != ill_2) \ 2807 mutex_enter(&(ill_1)->ill_lock); \ 2808 } \ 2809 } 2810 2811 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2812 { \ 2813 if (ill_1 != NULL) \ 2814 mutex_exit(&(ill_1)->ill_lock); \ 2815 if (ill_2 != NULL && ill_2 != ill_1) \ 2816 mutex_exit(&(ill_2)->ill_lock); \ 2817 } 2818 2819 /* Get the other protocol instance ill */ 2820 #define ILL_OTHER(ill) \ 2821 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2822 (ill)->ill_phyint->phyint_illv6) 2823 2824 #define MATCH_V4_ONLY 0x1 2825 #define MATCH_V6_ONLY 0x2 2826 #define MATCH_ILL_ONLY 0x4 2827 2828 /* ioctl command info: Ioctl properties extracted and stored in here */ 2829 typedef struct cmd_info_s 2830 { 2831 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2832 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2833 sin_t *ci_sin; /* the sin struct passed down */ 2834 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2835 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2836 } cmd_info_t; 2837 2838 /* 2839 * List of AH and ESP IPsec acceleration capable ills 2840 */ 2841 typedef struct ipsec_capab_ill_s { 2842 uint_t ill_index; 2843 boolean_t ill_isv6; 2844 struct ipsec_capab_ill_s *next; 2845 } ipsec_capab_ill_t; 2846 2847 extern struct kmem_cache *ire_cache; 2848 2849 extern ipaddr_t ip_g_all_ones; 2850 2851 extern uint_t ip_loopback_mtu; /* /etc/system */ 2852 2853 extern vmem_t *ip_minor_arena_sa; 2854 extern vmem_t *ip_minor_arena_la; 2855 2856 /* 2857 * ip_g_forward controls IP forwarding. It takes two values: 2858 * 0: IP_FORWARD_NEVER Don't forward packets ever. 2859 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 2860 * 2861 * RFC1122 says there must be a configuration switch to control forwarding, 2862 * but that the default MUST be to not forward packets ever. Implicit 2863 * control based on configuration of multiple interfaces MUST NOT be 2864 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 2865 * and, in fact, it was the default. That capability is now provided in the 2866 * /etc/rc2.d/S69inet script. 2867 */ 2868 2869 #define ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value 2870 #define ips_ip_g_resp_to_echo_bcast ips_param_arr[1].ip_param_value 2871 #define ips_ip_g_resp_to_echo_mcast ips_param_arr[2].ip_param_value 2872 #define ips_ip_g_resp_to_timestamp ips_param_arr[3].ip_param_value 2873 #define ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value 2874 #define ips_ip_g_send_redirects ips_param_arr[5].ip_param_value 2875 #define ips_ip_g_forward_directed_bcast ips_param_arr[6].ip_param_value 2876 #define ips_ip_mrtdebug ips_param_arr[7].ip_param_value 2877 #define ips_ip_timer_interval ips_param_arr[8].ip_param_value 2878 #define ips_ip_ire_arp_interval ips_param_arr[9].ip_param_value 2879 #define ips_ip_ire_redir_interval ips_param_arr[10].ip_param_value 2880 #define ips_ip_def_ttl ips_param_arr[11].ip_param_value 2881 #define ips_ip_forward_src_routed ips_param_arr[12].ip_param_value 2882 #define ips_ip_wroff_extra ips_param_arr[13].ip_param_value 2883 #define ips_ip_ire_pathmtu_interval ips_param_arr[14].ip_param_value 2884 #define ips_ip_icmp_return ips_param_arr[15].ip_param_value 2885 #define ips_ip_path_mtu_discovery ips_param_arr[16].ip_param_value 2886 #define ips_ip_ignore_delete_time ips_param_arr[17].ip_param_value 2887 #define ips_ip_ignore_redirect ips_param_arr[18].ip_param_value 2888 #define ips_ip_output_queue ips_param_arr[19].ip_param_value 2889 #define ips_ip_broadcast_ttl ips_param_arr[20].ip_param_value 2890 #define ips_ip_icmp_err_interval ips_param_arr[21].ip_param_value 2891 #define ips_ip_icmp_err_burst ips_param_arr[22].ip_param_value 2892 #define ips_ip_reass_queue_bytes ips_param_arr[23].ip_param_value 2893 #define ips_ip_strict_dst_multihoming ips_param_arr[24].ip_param_value 2894 #define ips_ip_addrs_per_if ips_param_arr[25].ip_param_value 2895 #define ips_ipsec_override_persocket_policy ips_param_arr[26].ip_param_value 2896 #define ips_icmp_accept_clear_messages ips_param_arr[27].ip_param_value 2897 #define ips_igmp_accept_clear_messages ips_param_arr[28].ip_param_value 2898 2899 /* IPv6 configuration knobs */ 2900 #define ips_delay_first_probe_time ips_param_arr[29].ip_param_value 2901 #define ips_max_unicast_solicit ips_param_arr[30].ip_param_value 2902 #define ips_ipv6_def_hops ips_param_arr[31].ip_param_value 2903 #define ips_ipv6_icmp_return ips_param_arr[32].ip_param_value 2904 #define ips_ipv6_forward_src_routed ips_param_arr[33].ip_param_value 2905 #define ips_ipv6_resp_echo_mcast ips_param_arr[34].ip_param_value 2906 #define ips_ipv6_send_redirects ips_param_arr[35].ip_param_value 2907 #define ips_ipv6_ignore_redirect ips_param_arr[36].ip_param_value 2908 #define ips_ipv6_strict_dst_multihoming ips_param_arr[37].ip_param_value 2909 #define ips_ip_ire_reclaim_fraction ips_param_arr[38].ip_param_value 2910 #define ips_ipsec_policy_log_interval ips_param_arr[39].ip_param_value 2911 #define ips_pim_accept_clear_messages ips_param_arr[40].ip_param_value 2912 #define ips_ip_ndp_unsolicit_interval ips_param_arr[41].ip_param_value 2913 #define ips_ip_ndp_unsolicit_count ips_param_arr[42].ip_param_value 2914 #define ips_ipv6_ignore_home_address_opt ips_param_arr[43].ip_param_value 2915 #define ips_ip_policy_mask ips_param_arr[44].ip_param_value 2916 #define ips_ip_multirt_resolution_interval ips_param_arr[45].ip_param_value 2917 #define ips_ip_multirt_ttl ips_param_arr[46].ip_param_value 2918 #define ips_ip_multidata_outbound ips_param_arr[47].ip_param_value 2919 #define ips_ip_ndp_defense_interval ips_param_arr[48].ip_param_value 2920 #define ips_ip_max_temp_idle ips_param_arr[49].ip_param_value 2921 #define ips_ip_max_temp_defend ips_param_arr[50].ip_param_value 2922 #define ips_ip_max_defend ips_param_arr[51].ip_param_value 2923 #define ips_ip_defend_interval ips_param_arr[52].ip_param_value 2924 #define ips_ip_dup_recovery ips_param_arr[53].ip_param_value 2925 #define ips_ip_restrict_interzone_loopback ips_param_arr[54].ip_param_value 2926 #define ips_ip_lso_outbound ips_param_arr[55].ip_param_value 2927 #define ips_igmp_max_version ips_param_arr[56].ip_param_value 2928 #define ips_mld_max_version ips_param_arr[57].ip_param_value 2929 #define ips_ipv6_drop_inbound_icmpv6 ips_param_arr[58].ip_param_value 2930 2931 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2932 #ifdef ZC_TEST 2933 extern int noswcksum; 2934 #endif 2935 2936 extern char ipif_loopback_name[]; 2937 2938 extern nv_t *ire_nv_tbl; 2939 2940 extern struct module_info ip_mod_info; 2941 2942 #define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \ 2943 ((ipst)->ips_ip4_physical_in_event.he_interested) 2944 #define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \ 2945 ((ipst)->ips_ip6_physical_in_event.he_interested) 2946 #define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \ 2947 ((ipst)->ips_ip4_physical_out_event.he_interested) 2948 #define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \ 2949 ((ipst)->ips_ip6_physical_out_event.he_interested) 2950 #define HOOKS4_INTERESTED_FORWARDING(ipst) \ 2951 ((ipst)->ips_ip4_forwarding_event.he_interested) 2952 #define HOOKS6_INTERESTED_FORWARDING(ipst) \ 2953 ((ipst)->ips_ip6_forwarding_event.he_interested) 2954 #define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \ 2955 ((ipst)->ips_ip4_loopback_in_event.he_interested) 2956 #define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \ 2957 ((ipst)->ips_ip6_loopback_in_event.he_interested) 2958 #define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \ 2959 ((ipst)->ips_ip4_loopback_out_event.he_interested) 2960 #define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \ 2961 ((ipst)->ips_ip6_loopback_out_event.he_interested) 2962 2963 /* 2964 * Hooks marcos used inside of ip 2965 */ 2966 #define IPHA_VHL ipha_version_and_hdr_length 2967 2968 #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \ 2969 \ 2970 if ((_hook).he_interested) { \ 2971 hook_pkt_event_t info; \ 2972 \ 2973 _NOTE(CONSTCOND) \ 2974 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 2975 \ 2976 _NOTE(CONSTCOND) \ 2977 if ((_ilp != NULL) && \ 2978 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 2979 info.hpe_ifp = (phy_if_t)((ill_t *) \ 2980 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 2981 else \ 2982 info.hpe_ifp = 0; \ 2983 \ 2984 _NOTE(CONSTCOND) \ 2985 if ((_olp != NULL) && \ 2986 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 2987 info.hpe_ofp = (phy_if_t)((ill_t *) \ 2988 (_olp))->ill_phyint->phyint_hook_ifindex; \ 2989 else \ 2990 info.hpe_ofp = 0; \ 2991 info.hpe_protocol = ipst->ips_ipv4_net_data; \ 2992 info.hpe_hdr = _iph; \ 2993 info.hpe_mp = &(_fm); \ 2994 info.hpe_mb = _m; \ 2995 info.hpe_flags = _llm; \ 2996 if (hook_run(ipst->ips_ipv4_net_data->netd_hooks, \ 2997 _event, (hook_data_t)&info) != 0) { \ 2998 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 2999 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3000 if (_fm != NULL) { \ 3001 freemsg(_fm); \ 3002 _fm = NULL; \ 3003 } \ 3004 _iph = NULL; \ 3005 _m = NULL; \ 3006 } else { \ 3007 _iph = info.hpe_hdr; \ 3008 _m = info.hpe_mb; \ 3009 } \ 3010 } 3011 3012 #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \ 3013 \ 3014 if ((_hook).he_interested) { \ 3015 hook_pkt_event_t info; \ 3016 \ 3017 _NOTE(CONSTCOND) \ 3018 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3019 \ 3020 _NOTE(CONSTCOND) \ 3021 if ((_ilp != NULL) && \ 3022 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 3023 info.hpe_ifp = (phy_if_t)((ill_t *) \ 3024 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 3025 else \ 3026 info.hpe_ifp = 0; \ 3027 \ 3028 _NOTE(CONSTCOND) \ 3029 if ((_olp != NULL) && \ 3030 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3031 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3032 (_olp))->ill_phyint->phyint_hook_ifindex; \ 3033 else \ 3034 info.hpe_ofp = 0; \ 3035 info.hpe_protocol = ipst->ips_ipv6_net_data; \ 3036 info.hpe_hdr = _iph; \ 3037 info.hpe_mp = &(_fm); \ 3038 info.hpe_mb = _m; \ 3039 info.hpe_flags = _llm; \ 3040 if (hook_run(ipst->ips_ipv6_net_data->netd_hooks, \ 3041 _event, (hook_data_t)&info) != 0) { \ 3042 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3043 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3044 if (_fm != NULL) { \ 3045 freemsg(_fm); \ 3046 _fm = NULL; \ 3047 } \ 3048 _iph = NULL; \ 3049 _m = NULL; \ 3050 } else { \ 3051 _iph = info.hpe_hdr; \ 3052 _m = info.hpe_mb; \ 3053 } \ 3054 } 3055 3056 /* 3057 * Network byte order macros 3058 */ 3059 #ifdef _BIG_ENDIAN 3060 #define N_IN_CLASSA_NET IN_CLASSA_NET 3061 #define N_IN_CLASSD_NET IN_CLASSD_NET 3062 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 3063 #define N_IN_LOOPBACK_NET (ipaddr_t)0x7f000000U 3064 #else /* _BIG_ENDIAN */ 3065 #define N_IN_CLASSA_NET (ipaddr_t)0x000000ffU 3066 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 3067 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 3068 #define N_IN_LOOPBACK_NET (ipaddr_t)0x0000007fU 3069 #endif /* _BIG_ENDIAN */ 3070 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 3071 #define CLASSE(addr) (((addr) & N_IN_CLASSD_NET) == N_IN_CLASSD_NET) 3072 #define IP_LOOPBACK_ADDR(addr) \ 3073 (((addr) & N_IN_CLASSA_NET == N_IN_LOOPBACK_NET)) 3074 3075 #ifdef DEBUG 3076 /* IPsec HW acceleration debugging support */ 3077 3078 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 3079 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 3080 #define IPSECHW_PKT 0x0004 /* general packet flow */ 3081 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 3082 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 3083 3084 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 3085 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 3086 3087 extern uint32_t ipsechw_debug; 3088 #else 3089 #define IPSECHW_DEBUG(f, x) {} 3090 #define IPSECHW_CALL(f, r, x) {} 3091 #endif 3092 3093 extern int ip_debug; 3094 extern uint_t ip_thread_data; 3095 extern krwlock_t ip_thread_rwlock; 3096 extern list_t ip_thread_list; 3097 3098 #ifdef IP_DEBUG 3099 #include <sys/debug.h> 3100 #include <sys/promif.h> 3101 3102 #define ip0dbg(a) printf a 3103 #define ip1dbg(a) if (ip_debug > 2) printf a 3104 #define ip2dbg(a) if (ip_debug > 3) printf a 3105 #define ip3dbg(a) if (ip_debug > 4) printf a 3106 #else 3107 #define ip0dbg(a) /* */ 3108 #define ip1dbg(a) /* */ 3109 #define ip2dbg(a) /* */ 3110 #define ip3dbg(a) /* */ 3111 #endif /* IP_DEBUG */ 3112 3113 /* Default MAC-layer address string length for mac_colon_addr */ 3114 #define MAC_STR_LEN 128 3115 3116 struct ipsec_out_s; 3117 3118 struct mac_header_info_s; 3119 3120 extern boolean_t ip_assign_ifindex(uint_t *, ip_stack_t *); 3121 extern void ill_frag_timer(void *); 3122 extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *); 3123 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 3124 extern void ill_frag_timer_start(ill_t *); 3125 extern void ill_nic_event_dispatch(ill_t *, lif_if_t, nic_event_t, 3126 nic_event_data_t, size_t); 3127 extern void ill_nic_event_plumb(ill_t *, boolean_t); 3128 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 3129 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 3130 extern char *ip_dot_addr(ipaddr_t, char *); 3131 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); 3132 extern void ip_lwput(queue_t *, mblk_t *); 3133 extern boolean_t icmp_err_rate_limit(ip_stack_t *); 3134 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t, 3135 ip_stack_t *); 3136 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t, 3137 ip_stack_t *); 3138 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *); 3139 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 3140 extern int ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t, 3141 ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t, boolean_t); 3142 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 3143 extern int ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t, 3144 boolean_t, boolean_t, boolean_t); 3145 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 3146 extern int ip_close(queue_t *, int); 3147 extern uint16_t ip_csum_hdr(ipha_t *); 3148 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t, 3149 ip_stack_t *); 3150 extern void ip_ire_g_fini(void); 3151 extern void ip_ire_g_init(void); 3152 extern void ip_ire_fini(ip_stack_t *); 3153 extern void ip_ire_init(ip_stack_t *); 3154 extern int ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, 3155 cred_t *credp); 3156 extern int ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, 3157 cred_t *credp); 3158 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 3159 size_t); 3160 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 3161 int, int, mblk_t *); 3162 extern void ip_rput(queue_t *, mblk_t *); 3163 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, 3164 struct mac_header_info_s *); 3165 extern void ip_rput_dlpi(queue_t *, mblk_t *); 3166 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 3167 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 3168 3169 extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *, 3170 mib2_ipIfStatsEntry_t *); 3171 extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *, 3172 mib2_ipv6IfIcmpEntry_t *); 3173 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3174 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *, 3175 uint32_t); 3176 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 3177 extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *); 3178 extern void ip_setpktversion(conn_t *, boolean_t, boolean_t, ip_stack_t *); 3179 extern void ip_trash_ire_reclaim(void *); 3180 extern void ip_trash_timer_expire(void *); 3181 extern void ip_wput(queue_t *, mblk_t *); 3182 extern void ip_output(void *, mblk_t *, void *, int); 3183 extern void ip_output_options(void *, mblk_t *, void *, int, 3184 ip_opt_info_t *); 3185 3186 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, 3187 zoneid_t); 3188 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 3189 int, zoneid_t); 3190 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); 3191 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 3192 extern void ip_wsrv(queue_t *); 3193 extern char *ip_nv_lookup(nv_t *, int); 3194 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3195 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3196 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *); 3197 extern ipaddr_t ip_net_mask(ipaddr_t); 3198 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 3199 ip_stack_t *); 3200 extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, 3201 boolean_t); 3202 extern int ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *); 3203 3204 extern struct qinit iprinitv6; 3205 extern struct qinit ipwinitv6; 3206 3207 extern void conn_drain_insert(conn_t *connp); 3208 extern int conn_ipsec_length(conn_t *connp); 3209 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 3210 ire_t *); 3211 extern ipaddr_t ip_get_dst(ipha_t *); 3212 extern int ipsec_out_extra_length(mblk_t *); 3213 extern int ipsec_in_extra_length(mblk_t *); 3214 extern mblk_t *ipsec_in_alloc(boolean_t, netstack_t *); 3215 extern boolean_t ipsec_in_is_secure(mblk_t *); 3216 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 3217 extern void ipsec_out_to_in(mblk_t *); 3218 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 3219 3220 extern void ire_cleanup(ire_t *); 3221 extern void ire_inactive(ire_t *); 3222 extern boolean_t irb_inactive(irb_t *); 3223 extern ire_t *ire_unlink(irb_t *); 3224 3225 #ifdef DEBUG 3226 extern boolean_t th_trace_ref(const void *, ip_stack_t *); 3227 extern void th_trace_unref(const void *); 3228 extern void th_trace_cleanup(const void *, boolean_t); 3229 extern void ire_trace_ref(ire_t *); 3230 extern void ire_untrace_ref(ire_t *); 3231 #endif 3232 3233 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *); 3234 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *); 3235 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *); 3236 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *); 3237 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 3238 3239 extern uint8_t ipoptp_next(ipoptp_t *); 3240 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 3241 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 3242 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t, 3243 ip_stack_t *); 3244 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 3245 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 3246 extern int ip_snmp_get(queue_t *q, mblk_t *mctl, int level); 3247 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 3248 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3249 extern void ip_quiesce_conn(conn_t *); 3250 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3251 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 3252 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *); 3253 3254 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 3255 uint_t); 3256 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 3257 uint_t); 3258 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 3259 3260 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 3261 extern void conn_ioctl_cleanup(conn_t *); 3262 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 3263 extern ill_t *ip_newroute_get_dst_ill(ill_t *); 3264 3265 struct multidata_s; 3266 struct pdesc_s; 3267 3268 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 3269 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 3270 extern mblk_t *ip_lsoinfo_alloc(ill_lso_capab_t *); 3271 extern mblk_t *ip_lsoinfo_return(ire_t *, conn_t *, char *, 3272 ill_lso_capab_t *); 3273 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 3274 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 3275 const mblk_t *); 3276 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 3277 uint32_t, uint32_t, uint32_t, uint32_t); 3278 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 3279 uint_t); 3280 extern mblk_t *ip_unbind(queue_t *, mblk_t *); 3281 3282 extern phyint_t *phyint_lookup_group(char *, boolean_t, ip_stack_t *); 3283 extern phyint_t *phyint_lookup_group_ifindex(uint_t, ip_stack_t *); 3284 3285 extern void tnet_init(void); 3286 extern void tnet_fini(void); 3287 3288 /* Hooks for CGTP (multirt routes) filtering module */ 3289 #define CGTP_FILTER_REV_1 1 3290 #define CGTP_FILTER_REV_2 2 3291 #define CGTP_FILTER_REV_3 3 3292 #define CGTP_FILTER_REV CGTP_FILTER_REV_3 3293 3294 /* cfo_filter and cfo_filter_v6 hooks return values */ 3295 #define CGTP_IP_PKT_NOT_CGTP 0 3296 #define CGTP_IP_PKT_PREMIUM 1 3297 #define CGTP_IP_PKT_DUPLICATE 2 3298 3299 /* Version 3 of the filter interface */ 3300 typedef struct cgtp_filter_ops { 3301 int cfo_filter_rev; /* CGTP_FILTER_REV_3 */ 3302 int (*cfo_change_state)(netstackid_t, int); 3303 int (*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t, 3304 ipaddr_t, ipaddr_t); 3305 int (*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t); 3306 int (*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *, 3307 in6_addr_t *, in6_addr_t *); 3308 int (*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *); 3309 int (*cfo_filter)(netstackid_t, uint_t, mblk_t *); 3310 int (*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *, 3311 ip6_frag_t *); 3312 } cgtp_filter_ops_t; 3313 3314 #define CGTP_MCAST_SUCCESS 1 3315 3316 /* 3317 * The separate CGTP module needs this global symbol so that it 3318 * can check the version and determine whether to use the old or the new 3319 * version of the filtering interface. 3320 */ 3321 extern int ip_cgtp_filter_rev; 3322 3323 extern int ip_cgtp_filter_supported(void); 3324 extern int ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *); 3325 extern int ip_cgtp_filter_unregister(netstackid_t); 3326 extern int ip_cgtp_filter_is_registered(netstackid_t); 3327 3328 /* Flags for ire_multirt_lookup() */ 3329 3330 #define MULTIRT_USESTAMP 0x0001 3331 #define MULTIRT_SETSTAMP 0x0002 3332 #define MULTIRT_CACHEGW 0x0004 3333 3334 /* Debug stuff for multirt route resolution. */ 3335 #if defined(DEBUG) && !defined(__lint) 3336 /* Our "don't send, rather drop" flag. */ 3337 #define MULTIRT_DEBUG_FLAG 0x8000 3338 3339 #define MULTIRT_TRACE(x) ip2dbg(x) 3340 3341 #define MULTIRT_DEBUG_TAG(mblk) \ 3342 do { \ 3343 ASSERT(mblk != NULL); \ 3344 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3345 __FILE__, __LINE__, \ 3346 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3347 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3348 } while (0) 3349 3350 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3351 do { \ 3352 ASSERT(mblk != NULL); \ 3353 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3354 __FILE__, __LINE__, \ 3355 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3356 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3357 } while (0) 3358 3359 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3360 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3361 #else 3362 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3363 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3364 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3365 #endif 3366 3367 /* 3368 * IP observability hook support 3369 */ 3370 3371 /* 3372 * ipobs_hooktype_t describes the hook types supported 3373 * by the ip module. IPOBS_HOOK_LOCAL refers to packets 3374 * which are looped back internally within the ip module. 3375 */ 3376 3377 typedef enum ipobs_hook_type { 3378 IPOBS_HOOK_LOCAL, 3379 IPOBS_HOOK_OUTBOUND, 3380 IPOBS_HOOK_INBOUND 3381 } ipobs_hook_type_t; 3382 3383 typedef void ipobs_cbfunc_t(mblk_t *); 3384 3385 typedef struct ipobs_cb { 3386 ipobs_cbfunc_t *ipobs_cbfunc; 3387 list_node_t ipobs_cbnext; 3388 } ipobs_cb_t; 3389 3390 /* 3391 * This structure holds the data passed back from the ip module to 3392 * observability consumers. 3393 * 3394 * ihd_mp Pointer to the IP packet. 3395 * ihd_zsrc Source zoneid; set to ALL_ZONES when unknown. 3396 * ihd_zdst Destination zoneid; set to ALL_ZONES when unknown. 3397 * ihd_htype IPobs hook type, see above for the defined types. 3398 * ihd_ipver IP version of the packet. 3399 * ihd_ifindex Interface index that the packet was received/sent over. 3400 * For local packets, this is the index of the interface 3401 * associated with the local destination address. 3402 * ihd_stack Netstack the packet is from. 3403 */ 3404 typedef struct ipobs_hook_data { 3405 mblk_t *ihd_mp; 3406 zoneid_t ihd_zsrc; 3407 zoneid_t ihd_zdst; 3408 ipobs_hook_type_t ihd_htype; 3409 uint16_t ihd_ipver; 3410 uint64_t ihd_ifindex; 3411 netstack_t *ihd_stack; 3412 } ipobs_hook_data_t; 3413 3414 /* 3415 * Per-ILL Multidata Transmit capabilities. 3416 */ 3417 struct ill_mdt_capab_s { 3418 uint_t ill_mdt_version; /* interface version */ 3419 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3420 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3421 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3422 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3423 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3424 }; 3425 3426 struct ill_hcksum_capab_s { 3427 uint_t ill_hcksum_version; /* interface version */ 3428 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3429 }; 3430 3431 struct ill_zerocopy_capab_s { 3432 uint_t ill_zerocopy_version; /* interface version */ 3433 uint_t ill_zerocopy_flags; /* capabilities */ 3434 }; 3435 3436 struct ill_lso_capab_s { 3437 uint_t ill_lso_version; /* interface version */ 3438 uint_t ill_lso_on; /* on/off switch for LSO on this ILL */ 3439 uint_t ill_lso_flags; /* capabilities */ 3440 uint_t ill_lso_max; /* maximum size of payload */ 3441 }; 3442 3443 /* Possible ill_states */ 3444 #define ILL_RING_INPROC 3 /* Being assigned to squeue */ 3445 #define ILL_RING_INUSE 2 /* Already Assigned to Rx Ring */ 3446 #define ILL_RING_BEING_FREED 1 /* Being Unassigned */ 3447 #define ILL_RING_FREE 0 /* Available to be assigned to Ring */ 3448 3449 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3450 #define ILL_POLLING 0x01 /* Polling in use */ 3451 3452 /* 3453 * These functions pointer types are exported by the mac/dls layer. 3454 * we need to duplicate the definitions here because we cannot 3455 * include mac/dls header files here. 3456 */ 3457 typedef void (*ip_mac_blank_t)(void *, time_t, uint_t); 3458 typedef void (*ip_dld_tx_t)(void *, mblk_t *); 3459 3460 typedef void (*ip_dls_chg_soft_ring_t)(void *, int); 3461 typedef void (*ip_dls_bind_t)(void *, processorid_t); 3462 typedef void (*ip_dls_unbind_t)(void *); 3463 3464 struct ill_rx_ring { 3465 ip_mac_blank_t rr_blank; /* Driver interrupt blanking func */ 3466 void *rr_handle; /* Handle for Rx ring */ 3467 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3468 ill_t *rr_ill; /* back pointer to ill */ 3469 clock_t rr_poll_time; /* Last lbolt polling was used */ 3470 uint32_t rr_poll_state; /* polling state flags */ 3471 uint32_t rr_max_blank_time; /* Max interrupt blank */ 3472 uint32_t rr_min_blank_time; /* Min interrupt blank */ 3473 uint32_t rr_max_pkt_cnt; /* Max pkts before interrupt */ 3474 uint32_t rr_min_pkt_cnt; /* Mix pkts before interrupt */ 3475 uint32_t rr_normal_blank_time; /* Normal intr freq */ 3476 uint32_t rr_normal_pkt_cnt; /* Normal intr pkt cnt */ 3477 uint32_t rr_ring_state; /* State of this ring */ 3478 }; 3479 3480 struct ill_dls_capab_s { 3481 ip_dld_tx_t ill_tx; /* Driver Tx routine */ 3482 void *ill_tx_handle; /* Driver Tx handle */ 3483 ip_dls_chg_soft_ring_t ill_dls_change_status; 3484 /* change soft ring fanout */ 3485 ip_dls_bind_t ill_dls_bind; /* to add CPU affinity */ 3486 ip_dls_unbind_t ill_dls_unbind; /* remove CPU affinity */ 3487 ill_rx_ring_t *ill_ring_tbl; /* Ring to Sqp mapping table */ 3488 uint_t ill_dls_soft_ring_cnt; /* Number of soft ring */ 3489 conn_t *ill_unbind_conn; /* Conn used during unplumb */ 3490 }; 3491 3492 /* 3493 * IP squeues exports 3494 */ 3495 extern int ip_squeue_profile; 3496 extern int ip_squeue_bind; 3497 extern boolean_t ip_squeue_fanout; 3498 extern boolean_t ip_squeue_soft_ring; 3499 extern uint_t ip_threads_per_cpu; 3500 extern uint_t ip_squeues_per_cpu; 3501 extern uint_t ip_soft_rings_cnt; 3502 3503 typedef struct squeue_set_s { 3504 kmutex_t sqs_lock; 3505 struct squeue_s **sqs_list; 3506 int sqs_size; 3507 int sqs_max_size; 3508 processorid_t sqs_bind; 3509 } squeue_set_t; 3510 3511 #define IP_SQUEUE_GET(hint) \ 3512 ((!ip_squeue_fanout) ? (CPU->cpu_squeue_set->sqs_list[0]) : \ 3513 ip_squeue_random(hint)) 3514 3515 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t); 3516 3517 extern void ip_squeue_init(void (*)(squeue_t *)); 3518 extern squeue_t *ip_squeue_random(uint_t); 3519 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3520 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 3521 extern void ip_squeue_clean_all(ill_t *); 3522 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *, 3523 mblk_t *, struct mac_header_info_s *); 3524 3525 extern void ip_resume_tcp_bind(void *, mblk_t *, void *); 3526 extern void tcp_wput(queue_t *, mblk_t *); 3527 3528 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3529 struct ip6_mtuinfo *, netstack_t *); 3530 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3531 extern void ipobs_register_hook(netstack_t *, ipobs_cbfunc_t *); 3532 extern void ipobs_unregister_hook(netstack_t *, ipobs_cbfunc_t *); 3533 extern void ipobs_hook(mblk_t *, int, zoneid_t, zoneid_t, const ill_t *, int, 3534 uint32_t, ip_stack_t *); 3535 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3536 3537 /* 3538 * Squeue tags. Tags only need to be unique when the callback function is the 3539 * same to distinguish between different calls, but we use unique tags for 3540 * convenience anyway. 3541 */ 3542 #define SQTAG_IP_INPUT 1 3543 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3544 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3545 #define SQTAG_IP_TCP_INPUT 4 3546 #define SQTAG_IP6_TCP_INPUT 5 3547 #define SQTAG_IP_TCP_CLOSE 6 3548 #define SQTAG_TCP_OUTPUT 7 3549 #define SQTAG_TCP_TIMER 8 3550 #define SQTAG_TCP_TIMEWAIT 9 3551 #define SQTAG_TCP_ACCEPT_FINISH 10 3552 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3553 #define SQTAG_TCP_ACCEPT_PENDING 12 3554 #define SQTAG_TCP_LISTEN_DISCON 13 3555 #define SQTAG_TCP_CONN_REQ_1 14 3556 #define SQTAG_TCP_EAGER_BLOWOFF 15 3557 #define SQTAG_TCP_EAGER_CLEANUP 16 3558 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3559 #define SQTAG_TCP_CONN_IND 18 3560 #define SQTAG_TCP_RSRV 19 3561 #define SQTAG_TCP_ABORT_BUCKET 20 3562 #define SQTAG_TCP_REINPUT 21 3563 #define SQTAG_TCP_REINPUT_EAGER 22 3564 #define SQTAG_TCP_INPUT_MCTL 23 3565 #define SQTAG_TCP_RPUTOTHER 24 3566 #define SQTAG_IP_PROTO_AGAIN 25 3567 #define SQTAG_IP_FANOUT_TCP 26 3568 #define SQTAG_IPSQ_CLEAN_RING 27 3569 #define SQTAG_TCP_WPUT_OTHER 28 3570 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3571 #define SQTAG_TCP_SEND_PENDING 30 3572 #define SQTAG_BIND_RETRY 31 3573 #define SQTAG_UDP_FANOUT 32 3574 #define SQTAG_UDP_INPUT 33 3575 #define SQTAG_UDP_WPUT 34 3576 #define SQTAG_UDP_OUTPUT 35 3577 #define SQTAG_TCP_KSSL_INPUT 36 3578 #define SQTAG_TCP_DROP_Q0 37 3579 #define SQTAG_TCP_CONN_REQ_2 38 3580 3581 #define NOT_OVER_IP(ip_wq) \ 3582 (ip_wq->q_next != NULL || \ 3583 (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || \ 3584 strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname, \ 3585 IP_MOD_NAME) != 0 || \ 3586 ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) 3587 3588 #endif /* _KERNEL */ 3589 3590 #ifdef __cplusplus 3591 } 3592 #endif 3593 3594 #endif /* _INET_IP_H */ 3595