1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 #include <sys/isa_defs.h> 38 #include <sys/types.h> 39 #include <inet/mib2.h> 40 #include <inet/nd.h> 41 #include <sys/atomic.h> 42 #include <net/if_dl.h> 43 #include <net/if.h> 44 #include <netinet/ip.h> 45 #include <netinet/igmp.h> 46 #include <sys/neti.h> 47 #include <sys/hook.h> 48 #include <sys/hook_event.h> 49 #include <sys/hook_impl.h> 50 #include <inet/ip_stack.h> 51 52 #ifdef _KERNEL 53 #include <netinet/ip6.h> 54 #include <sys/avl.h> 55 #include <sys/vmem.h> 56 #include <sys/squeue.h> 57 #include <net/route.h> 58 #include <sys/systm.h> 59 #include <sys/multidata.h> 60 #include <net/radix.h> 61 62 #ifdef DEBUG 63 #define ILL_DEBUG 64 #define IRE_DEBUG 65 #define NCE_DEBUG 66 #define CONN_DEBUG 67 #endif 68 69 #define IP_DEBUG 70 /* 71 * The mt-streams(9F) flags for the IP module; put here so that other 72 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 73 * of flags. 74 */ 75 #define IP_DEVMTFLAGS D_MP 76 #endif /* _KERNEL */ 77 78 #define IP_MOD_NAME "ip" 79 #define IP_DEV_NAME "/dev/ip" 80 #define IP6_DEV_NAME "/dev/ip6" 81 82 #define UDP_MOD_NAME "udp" 83 #define UDP_DEV_NAME "/dev/udp" 84 #define UDP6_DEV_NAME "/dev/udp6" 85 86 #define TCP_MOD_NAME "tcp" 87 #define TCP_DEV_NAME "/dev/tcp" 88 #define TCP6_DEV_NAME "/dev/tcp6" 89 90 #define SCTP_MOD_NAME "sctp" 91 92 /* Minor numbers */ 93 #define IPV4_MINOR 0 94 #define IPV6_MINOR 1 95 #define TCP_MINOR 2 96 #define TCP_MINOR6 3 97 98 #ifndef _IPADDR_T 99 #define _IPADDR_T 100 typedef uint32_t ipaddr_t; 101 #endif 102 103 /* Number of bits in an address */ 104 #define IP_ABITS 32 105 #define IPV6_ABITS 128 106 107 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 108 109 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 110 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 111 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 112 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 113 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 114 115 /* 116 * Flag to IP write side to indicate that the appln has sent in a pre-built 117 * IP header. Stored in ipha_ident (which is otherwise zero). 118 */ 119 #define IP_HDR_INCLUDED 0xFFFF 120 121 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 122 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 123 124 #define IPV4_ADDR_LEN 4 125 #define IP_ADDR_LEN IPV4_ADDR_LEN 126 #define IP_ARP_PROTO_TYPE 0x0800 127 128 #define IPV4_VERSION 4 129 #define IP_VERSION IPV4_VERSION 130 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 131 #define IP_SIMPLE_HDR_LENGTH 20 132 #define IP_MAX_HDR_LENGTH 60 133 134 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 135 136 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 137 138 /* 139 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 140 * 2 files should be cleaned up to remove all redundant definitions. 141 */ 142 #define IP_MAXPACKET 65535 143 #define IP_SIMPLE_HDR_VERSION \ 144 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 145 146 #define UDPH_SIZE 8 147 148 /* Leave room for ip_newroute to tack on the src and target addresses */ 149 #define OK_RESOLVER_MP(mp) \ 150 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 151 152 /* 153 * Constants and type definitions to support IP IOCTL commands 154 */ 155 #define IP_IOCTL (('i'<<8)|'p') 156 #define IP_IOC_IRE_DELETE 4 157 #define IP_IOC_IRE_DELETE_NO_REPLY 5 158 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 159 #define IP_IOC_RTS_REQUEST 7 160 161 /* Common definitions used by IP IOCTL data structures */ 162 typedef struct ipllcmd_s { 163 uint_t ipllc_cmd; 164 uint_t ipllc_name_offset; 165 uint_t ipllc_name_length; 166 } ipllc_t; 167 168 /* IP IRE Change Command Structure. */ 169 typedef struct ipic_s { 170 ipllc_t ipic_ipllc; 171 uint_t ipic_ire_type; 172 uint_t ipic_max_frag; 173 uint_t ipic_addr_offset; 174 uint_t ipic_addr_length; 175 uint_t ipic_mask_offset; 176 uint_t ipic_mask_length; 177 uint_t ipic_src_addr_offset; 178 uint_t ipic_src_addr_length; 179 uint_t ipic_ll_hdr_offset; 180 uint_t ipic_ll_hdr_length; 181 uint_t ipic_gateway_addr_offset; 182 uint_t ipic_gateway_addr_length; 183 clock_t ipic_rtt; 184 uint32_t ipic_ssthresh; 185 clock_t ipic_rtt_sd; 186 uchar_t ipic_ire_marks; 187 } ipic_t; 188 189 #define ipic_cmd ipic_ipllc.ipllc_cmd 190 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 191 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 192 193 /* IP IRE Delete Command Structure. */ 194 typedef struct ipid_s { 195 ipllc_t ipid_ipllc; 196 uint_t ipid_ire_type; 197 uint_t ipid_addr_offset; 198 uint_t ipid_addr_length; 199 uint_t ipid_mask_offset; 200 uint_t ipid_mask_length; 201 } ipid_t; 202 203 #define ipid_cmd ipid_ipllc.ipllc_cmd 204 205 #ifdef _KERNEL 206 /* 207 * Temporary state for ip options parser. 208 */ 209 typedef struct ipoptp_s 210 { 211 uint8_t *ipoptp_next; /* next option to look at */ 212 uint8_t *ipoptp_end; /* end of options */ 213 uint8_t *ipoptp_cur; /* start of current option */ 214 uint8_t ipoptp_len; /* length of current option */ 215 uint32_t ipoptp_flags; 216 } ipoptp_t; 217 218 /* 219 * Flag(s) for ipoptp_flags 220 */ 221 #define IPOPTP_ERROR 0x00000001 222 #endif /* _KERNEL */ 223 224 225 /* Controls forwarding of IP packets, set via ndd */ 226 #define IP_FORWARD_NEVER 0 227 #define IP_FORWARD_ALWAYS 1 228 229 #define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS) 230 231 #define IPH_HDR_LENGTH(ipha) \ 232 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 233 234 #define IPH_HDR_VERSION(ipha) \ 235 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 236 237 #ifdef _KERNEL 238 /* 239 * IP reassembly macros. We hide starting and ending offsets in b_next and 240 * b_prev of messages on the reassembly queue. The messages are chained using 241 * b_cont. These macros are used in ip_reassemble() so we don't have to see 242 * the ugly casts and assignments. 243 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 244 * them. 245 */ 246 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 247 #define IP_REASS_SET_START(mp, u) \ 248 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 249 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 250 #define IP_REASS_SET_END(mp, u) \ 251 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 252 253 #define IP_REASS_COMPLETE 0x1 254 #define IP_REASS_PARTIAL 0x2 255 #define IP_REASS_FAILED 0x4 256 257 /* 258 * Test to determine whether this is a module instance of IP or a 259 * driver instance of IP. 260 */ 261 #define CONN_Q(q) (WR(q)->q_next == NULL) 262 263 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 264 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 265 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 266 267 /* 268 * The following two macros are used by IP to get the appropriate 269 * wq and rq for a conn. If it is a TCP conn, then we need 270 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 271 * from a conn directly if it knows that the conn is not TCP. 272 */ 273 #define CONNP_TO_WQ(connp) \ 274 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 275 276 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 277 278 #define GRAB_CONN_LOCK(q) { \ 279 if (q != NULL && CONN_Q(q)) \ 280 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 281 } 282 283 #define RELEASE_CONN_LOCK(q) { \ 284 if (q != NULL && CONN_Q(q)) \ 285 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 286 } 287 288 /* "Congestion controlled" protocol */ 289 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 290 291 /* 292 * Complete the pending operation. Usually an ioctl. Can also 293 * be a bind or option management request that got enqueued 294 * in an ipsq_t. Called on completion of the operation. 295 */ 296 #define CONN_OPER_PENDING_DONE(connp) { \ 297 mutex_enter(&(connp)->conn_lock); \ 298 (connp)->conn_oper_pending_ill = NULL; \ 299 cv_broadcast(&(connp)->conn_refcv); \ 300 mutex_exit(&(connp)->conn_lock); \ 301 CONN_DEC_REF(connp); \ 302 } 303 304 /* Get the credential of an IP queue of unknown type */ 305 #define GET_QUEUE_CRED(wq) \ 306 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 307 : ((Q_TO_CONN((wq)))->conn_cred)) 308 309 /* 310 * Flags for the various ip_fanout_* routines. 311 */ 312 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 313 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 314 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 315 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 316 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 317 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 318 #define IP_FF_IPINFO 0x80 /* Used for both V4 and V6 */ 319 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 320 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 321 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 322 323 /* 324 * Following flags are used by IPQoS to determine if policy processing is 325 * required. 326 */ 327 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 328 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 329 330 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 331 332 #ifndef IRE_DB_TYPE 333 #define IRE_DB_TYPE M_SIG 334 #endif 335 336 #ifndef IRE_DB_REQ_TYPE 337 #define IRE_DB_REQ_TYPE M_PCSIG 338 #endif 339 340 #ifndef IRE_ARPRESOLVE_TYPE 341 #define IRE_ARPRESOLVE_TYPE M_EVENT 342 #endif 343 344 /* 345 * Values for squeue switch: 346 */ 347 348 #define IP_SQUEUE_ENTER_NODRAIN 1 349 #define IP_SQUEUE_ENTER 2 350 /* 351 * This is part of the interface between Transport provider and 352 * IP which can be used to set policy information. This is usually 353 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 354 * only IPSEC_POLICY_SET is there when it is found in the chain. 355 * The information contained is an struct ipsec_req_t. On success 356 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 357 * IPSEC_POLICY_SET is never returned. 358 */ 359 #define IPSEC_POLICY_SET M_SETOPTS 360 361 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 362 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 363 364 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 365 ((ire)->ire_type != IRE_BROADCAST)) 366 367 /* IP Fragmentation Reassembly Header */ 368 typedef struct ipf_s { 369 struct ipf_s *ipf_hash_next; 370 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 371 uint32_t ipf_ident; /* Ident to match. */ 372 uint8_t ipf_protocol; /* Protocol to match. */ 373 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 374 time_t ipf_timestamp; /* Reassembly start time. */ 375 mblk_t *ipf_mp; /* mblk we live in. */ 376 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 377 int ipf_hole_cnt; /* Number of holes (hard-case). */ 378 int ipf_end; /* Tail end offset (0 -> hard-case). */ 379 uint_t ipf_gen; /* Frag queue generation */ 380 size_t ipf_count; /* Count of bytes used by frag */ 381 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 382 in6_addr_t ipf_v6src; /* IPv6 source address */ 383 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 384 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 385 uint8_t ipf_ecn; /* ECN info for the fragments */ 386 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 387 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 388 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 389 } ipf_t; 390 391 #define ipf_src V4_PART_OF_V6(ipf_v6src) 392 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 393 394 typedef enum { 395 IB_PKT = 0x01, 396 OB_PKT = 0x02 397 } ip_pkt_t; 398 399 #define UPDATE_IB_PKT_COUNT(ire)\ 400 { \ 401 (ire)->ire_ib_pkt_count++; \ 402 if ((ire)->ire_ipif != NULL) { \ 403 /* \ 404 * forwarding packet \ 405 */ \ 406 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 407 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 408 else \ 409 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 410 } \ 411 } 412 #define UPDATE_OB_PKT_COUNT(ire)\ 413 { \ 414 (ire)->ire_ob_pkt_count++;\ 415 if ((ire)->ire_ipif != NULL) { \ 416 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 417 } \ 418 } 419 420 421 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 422 { \ 423 switch (ipha->ipha_protocol) { \ 424 case IPPROTO_UDP: \ 425 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 426 break; \ 427 default: \ 428 ip_proto_input(q, mp, ipha, ire, recv_ill); \ 429 break; \ 430 } \ 431 } 432 433 /* 434 * NCE_EXPIRED is TRUE when we have a non-permanent nce that was 435 * found to be REACHABLE more than ip_ire_arp_interval ms ago. 436 * This macro is used to age existing nce_t entries. The 437 * nce's will get cleaned up in the following circumstances: 438 * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim 439 * when memory is low, 440 * - ip_arp_news, when updates are received. 441 * - if the nce is NCE_EXPIRED(), it will deleted, so that a new 442 * arp request will need to be triggered from an ND_INITIAL nce. 443 * 444 * Note that the nce state transition follows the pattern: 445 * ND_INITIAL -> ND_INCOMPLETE -> ND_REACHABLE 446 * after which the nce is deleted when it has expired. 447 * 448 * nce_last is the timestamp that indicates when the nce_res_mp in the 449 * nce_t was last updated to a valid link-layer address. nce_last gets 450 * modified/updated : 451 * - when the nce is created 452 * - every time we get a sane arp response for the nce. 453 */ 454 #define NCE_EXPIRED(nce, ipst) (nce->nce_last > 0 && \ 455 ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ 456 ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > \ 457 (ipst)->ips_ip_ire_arp_interval)) 458 459 #endif /* _KERNEL */ 460 461 /* ICMP types */ 462 #define ICMP_ECHO_REPLY 0 463 #define ICMP_DEST_UNREACHABLE 3 464 #define ICMP_SOURCE_QUENCH 4 465 #define ICMP_REDIRECT 5 466 #define ICMP_ECHO_REQUEST 8 467 #define ICMP_ROUTER_ADVERTISEMENT 9 468 #define ICMP_ROUTER_SOLICITATION 10 469 #define ICMP_TIME_EXCEEDED 11 470 #define ICMP_PARAM_PROBLEM 12 471 #define ICMP_TIME_STAMP_REQUEST 13 472 #define ICMP_TIME_STAMP_REPLY 14 473 #define ICMP_INFO_REQUEST 15 474 #define ICMP_INFO_REPLY 16 475 #define ICMP_ADDRESS_MASK_REQUEST 17 476 #define ICMP_ADDRESS_MASK_REPLY 18 477 478 /* ICMP_TIME_EXCEEDED codes */ 479 #define ICMP_TTL_EXCEEDED 0 480 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 481 482 /* ICMP_DEST_UNREACHABLE codes */ 483 #define ICMP_NET_UNREACHABLE 0 484 #define ICMP_HOST_UNREACHABLE 1 485 #define ICMP_PROTOCOL_UNREACHABLE 2 486 #define ICMP_PORT_UNREACHABLE 3 487 #define ICMP_FRAGMENTATION_NEEDED 4 488 #define ICMP_SOURCE_ROUTE_FAILED 5 489 #define ICMP_DEST_NET_UNKNOWN 6 490 #define ICMP_DEST_HOST_UNKNOWN 7 491 #define ICMP_SRC_HOST_ISOLATED 8 492 #define ICMP_DEST_NET_UNREACH_ADMIN 9 493 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 494 #define ICMP_DEST_NET_UNREACH_TOS 11 495 #define ICMP_DEST_HOST_UNREACH_TOS 12 496 497 /* ICMP Header Structure */ 498 typedef struct icmph_s { 499 uint8_t icmph_type; 500 uint8_t icmph_code; 501 uint16_t icmph_checksum; 502 union { 503 struct { /* ECHO request/response structure */ 504 uint16_t u_echo_ident; 505 uint16_t u_echo_seqnum; 506 } u_echo; 507 struct { /* Destination unreachable structure */ 508 uint16_t u_du_zero; 509 uint16_t u_du_mtu; 510 } u_du; 511 struct { /* Parameter problem structure */ 512 uint8_t u_pp_ptr; 513 uint8_t u_pp_rsvd[3]; 514 } u_pp; 515 struct { /* Redirect structure */ 516 ipaddr_t u_rd_gateway; 517 } u_rd; 518 } icmph_u; 519 } icmph_t; 520 521 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 522 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 523 #define icmph_du_zero icmph_u.u_du.u_du_zero 524 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 525 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 526 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 527 528 #define ICMPH_SIZE 8 529 530 /* 531 * Minimum length of transport layer header included in an ICMP error 532 * message for it to be considered valid. 533 */ 534 #define ICMP_MIN_TP_HDR_LEN 8 535 536 /* Aligned IP header */ 537 typedef struct ipha_s { 538 uint8_t ipha_version_and_hdr_length; 539 uint8_t ipha_type_of_service; 540 uint16_t ipha_length; 541 uint16_t ipha_ident; 542 uint16_t ipha_fragment_offset_and_flags; 543 uint8_t ipha_ttl; 544 uint8_t ipha_protocol; 545 uint16_t ipha_hdr_checksum; 546 ipaddr_t ipha_src; 547 ipaddr_t ipha_dst; 548 } ipha_t; 549 550 #define IPH_DF 0x4000 /* Don't fragment */ 551 #define IPH_MF 0x2000 /* More fragments to come */ 552 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 553 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 554 555 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 556 #define IPH_ECN_NECT 0x0 /* Not ECN-Capabable Transport */ 557 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 558 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 559 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 560 561 /* IP Mac info structure */ 562 typedef struct ip_m_s { 563 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 564 int ip_m_type; /* From <net/if_types.h> */ 565 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 566 uint32_t *, ipaddr_t *); 567 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 568 uint32_t *, in6_addr_t *); 569 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 570 } ip_m_t; 571 572 /* 573 * The following functions attempt to reduce the link layer dependency 574 * of the IP stack. The current set of link specific operations are: 575 * a. map from IPv4 class D (224.0/4) multicast address range to the link 576 * layer multicast address range. 577 * b. map from IPv6 multicast address range (ff00::/8) to the link 578 * layer multicast address range. 579 * c. derive the default IPv6 interface identifier from the link layer 580 * address. 581 */ 582 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 583 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 584 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 585 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 586 (((ip_m)->ip_m_v6intfid != NULL) && \ 587 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 588 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 589 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 590 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 591 592 /* Router entry types */ 593 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 594 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 595 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 596 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 597 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 598 #define IRE_CACHE 0x0020 /* Cached Route entry */ 599 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 600 /* net without any address mapping. */ 601 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 602 /* net with resolver. */ 603 #define IRE_HOST 0x0100 /* Host route entry */ 604 #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */ 605 606 /* 607 * IRE_MIPRTUN is only set on the ires in the ip_mrtun_table. 608 * This ire_type must not be set for ftable and ctable routing entries. 609 */ 610 #define IRE_MIPRTUN 0x0400 /* Reverse tunnel route entry */ 611 612 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 613 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST) 614 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 615 IRE_LOOPBACK) 616 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 617 618 /* 619 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 620 * the bucket should delete this IRE from this bucket. 621 */ 622 #define IRE_MARK_CONDEMNED 0x0001 623 /* 624 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 625 * broadcast packets received on that interface. This is marked only 626 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 627 * same subnet receiving the same broadcast packet. 628 */ 629 #define IRE_MARK_NORECV 0x0002 630 /* 631 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 632 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 633 */ 634 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 635 636 /* 637 * ire with IRE_MARK_NOADD is created in ip_newroute_ipif, when outgoing 638 * interface is specified by IP_XMIT_IF socket option. This ire is not 639 * added in IRE_CACHE. For example, this is used by mipagent to prevent 640 * any entry to be added in the cache table. We do not want to add any 641 * entry for a mobile-node in the routing table for foreign agent originated 642 * packets. Adding routes in cache table in this case, may run the risks of 643 * incorrect routing path in case of private overlapping addresses. 644 */ 645 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 646 647 /* 648 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 649 * either for forwarding a packet or has not been used for sending 650 * traffic on TCP connections terminated on this system. In both 651 * cases, this IRE is the first to go when IRE is being cleaned up. 652 */ 653 #define IRE_MARK_TEMPORARY 0x0010 654 655 /* 656 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 657 * this mark, additional atomic checks need to be performed. For eg: by the 658 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 659 * usesrc grouping could have changed in which case we want to fail adding 660 * the IRE_CACHE entry 661 */ 662 #define IRE_MARK_USESRC_CHECK 0x0020 663 664 /* 665 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 666 * routing table lookup for the destination is bypassed and the packet is 667 * sent directly to the specified nexthop. The associated IRE_CACHE entries 668 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 669 * in regular ire cache lookups. 670 */ 671 #define IRE_MARK_PRIVATE_ADDR 0x0040 672 673 /* 674 * When we send an ARP resolution query for the nexthop gateway's ire, 675 * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk 676 * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag 677 * indicates that information from ARP has not been transferred to a 678 * permanent IRE_CACHE entry. The flag is reset only when the 679 * information is successfully transferred to an ire_cache entry (in 680 * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior 681 * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will 682 * require that the resources (incomplete ire_cache and/or nce) must 683 * be cleaned up. The free callback routine (ire_freemblk()) checks 684 * for IRE_MARK_UNCACHED to see if any resources that are pinned down 685 * will need to be cleaned up or not. 686 */ 687 688 #define IRE_MARK_UNCACHED 0x0080 689 690 /* 691 * The comment below (and for other netstack_t references) refers 692 * to the fact that we only do netstack_hold in particular cases, 693 * such as the references from open streams (ill_t and conn_t's 694 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 695 * ire_t's when an ill goes away. 696 */ 697 typedef struct ire_expire_arg_s { 698 int iea_flush_flag; 699 ip_stack_t *iea_ipst; /* Does not have a netstack_hold */ 700 } ire_expire_arg_t; 701 702 /* Flags with ire_expire routine */ 703 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 704 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 705 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 706 707 /* Arguments to ire_flush_cache() */ 708 #define IRE_FLUSH_DELETE 0 709 #define IRE_FLUSH_ADD 1 710 711 /* 712 * Open/close synchronization flags. 713 * These are kept in a separate field in the conn and the synchronization 714 * depends on the atomic 32 bit access to that field. 715 */ 716 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 717 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 718 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 719 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 720 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 721 722 /* Used to check connection state flags before caching the IRE */ 723 #define CONN_CACHE_IRE(connp) \ 724 (!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED))) 725 726 /* 727 * Parameter to ip_output giving the identity of the caller. 728 * IP_WSRV means the packet was enqueued in the STREAMS queue 729 * due to flow control and is now being reprocessed in the context of 730 * the STREAMS service procedure, consequent to flow control relief. 731 * IRE_SEND means the packet is being reprocessed consequent to an 732 * ire cache creation and addition and this may or may not be happening 733 * in the service procedure context. Anything other than the above 2 734 * cases is identified as IP_WPUT. Most commonly this is the case of 735 * packets coming down from the application. 736 */ 737 #ifdef _KERNEL 738 #define IP_WSRV 1 /* Called from ip_wsrv */ 739 #define IP_WPUT 2 /* Called from ip_wput */ 740 #define IRE_SEND 3 /* Called from ire_send */ 741 742 /* 743 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 744 */ 745 #define MAX_FILTER_SIZE 64 746 747 typedef struct slist_s { 748 int sl_numsrc; 749 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 750 } slist_t; 751 752 /* 753 * Following struct is used to maintain retransmission state for 754 * a multicast group. One rtx_state_t struct is an in-line field 755 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 756 * alloc'd as needed. 757 */ 758 typedef struct rtx_state_s { 759 uint_t rtx_timer; /* retrans timer */ 760 int rtx_cnt; /* retrans count */ 761 int rtx_fmode_cnt; /* retrans count for fmode change */ 762 slist_t *rtx_allow; 763 slist_t *rtx_block; 764 } rtx_state_t; 765 766 /* 767 * Used to construct list of multicast address records that will be 768 * sent in a single listener report. 769 */ 770 typedef struct mrec_s { 771 struct mrec_s *mrec_next; 772 uint8_t mrec_type; 773 uint8_t mrec_auxlen; /* currently unused */ 774 in6_addr_t mrec_group; 775 slist_t mrec_srcs; 776 } mrec_t; 777 778 /* Group membership list per upper conn */ 779 /* 780 * XXX add ilg info for ifaddr/ifindex. 781 * XXX can we make ilg survive an ifconfig unplumb + plumb 782 * by setting the ipif/ill to NULL and recover that later? 783 * 784 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 785 * address (ipif). 786 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 787 * index (phyint->phyint_ifindex). 788 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 789 * 790 * ilg records the state of multicast memberships of a socket end point. 791 * ilm records the state of multicast memberships with the driver and is 792 * maintained per interface. 793 * 794 * Notes : 795 * 796 * 1) There is no direct link between a given ilg and ilm. If the 797 * application has joined a group G with ifindex I, we will have 798 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 799 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 800 * To delete the membership, 801 * 802 * a) Search for ilg matching on G and I with ilg_v6group 803 * and ilg_ill. Delete ilg_ill. 804 * b) Search the corresponding ilm matching on G and I with 805 * ilm_v6addr and ilm_ill. Delete ilm. 806 * 807 * In IPv4, the only difference is, we look using ipifs instead of 808 * ills. 809 * 810 * 2) With IP multipathing, we want to keep receiving even after the 811 * interface has failed. We do this by moving multicast memberships 812 * to a new_ill within the group. This is acheived by sending 813 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 814 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 815 * need to be able to delete memberships which will still come down 816 * with the ifindex of the old ill which is what the application 817 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 818 * of where we joined initially so that we can lookup even after we 819 * moved the membership. It is also used for moving back the membership 820 * when the old ill has been repaired. This is done by looking up for 821 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 822 * ilms actually move from old ill to new ill. ilgs don't move (just 823 * the ilg_ill is changed when it moves) as it just records the state 824 * of the application that has joined a group G where as ilm records 825 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 826 * we also need to keep the ilm in the right ill. 827 * 828 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 829 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 830 * a given ilm/ilg even after it fails without the support of 831 * orig_ifindex. We move ilms still to record the driver state as 832 * mentioned above. 833 */ 834 835 /* 836 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 837 * by a thread executing in the ipsq. In other words add/delete of a 838 * multicast group has to execute in the ipsq. 839 */ 840 #define ILG_DELETED 0x1 /* ilg_flags */ 841 typedef struct ilg_s { 842 in6_addr_t ilg_v6group; 843 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 844 struct ill_s *ilg_ill; /* Used by IPv6 */ 845 int ilg_orig_ifindex; /* Interface originally joined on */ 846 uint_t ilg_flags; 847 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 848 slist_t *ilg_filter; 849 } ilg_t; 850 851 852 /* 853 * Multicast address list entry for lower ill. 854 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 855 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 856 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 857 * 858 * The comment below (and for other netstack_t references) refers 859 * to the fact that we only do netstack_hold in particular cases, 860 * such as the references from open streams (ill_t and conn_t's 861 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 862 * ire_t's when an ill goes away. 863 */ 864 #define ILM_DELETED 0x1 /* ilm_flags */ 865 typedef struct ilm_s { 866 in6_addr_t ilm_v6addr; 867 int ilm_refcnt; 868 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 869 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 870 struct ilm_s *ilm_next; /* Linked list for each ill */ 871 uint_t ilm_state; /* state of the membership */ 872 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 873 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 874 uint_t ilm_flags; 875 boolean_t ilm_is_new; /* new ilm */ 876 boolean_t ilm_notify_driver; /* Need to notify the driver */ 877 zoneid_t ilm_zoneid; 878 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 879 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 880 slist_t *ilm_filter; /* source filter list */ 881 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 882 rtx_state_t ilm_rtx; /* SCR retransmission state */ 883 ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */ 884 } ilm_t; 885 886 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 887 888 /* 889 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 890 * zero. In addition it needs to block new walkers while it is unlinking ilm's 891 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 892 */ 893 #define ILM_WALKER_HOLD(ill) { \ 894 mutex_enter(&(ill)->ill_lock); \ 895 ill->ill_ilm_walker_cnt++; \ 896 mutex_exit(&(ill)->ill_lock); \ 897 } 898 899 #define ILM_WALKER_RELE(ill) { \ 900 mutex_enter(&(ill)->ill_lock); \ 901 (ill)->ill_ilm_walker_cnt--; \ 902 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 903 ilm_walker_cleanup(ill); \ 904 mutex_exit(&(ill)->ill_lock); \ 905 } 906 907 /* 908 * Soft reference to an IPsec SA. 909 * 910 * On relative terms, conn's can be persistant (living as long as the 911 * processes which create them), while SA's are ephemeral (dying when 912 * they hit their time-based or byte-based lifetimes). 913 * 914 * We could hold a hard reference to an SA from an ipsec_latch_t, 915 * but this would cause expired SA's to linger for a potentially 916 * unbounded time. 917 * 918 * Instead, we remember the hash bucket number and bucket generation 919 * in addition to the pointer. The bucket generation is incremented on 920 * each deletion. 921 */ 922 typedef struct ipsa_ref_s 923 { 924 struct ipsa_s *ipsr_sa; 925 struct isaf_s *ipsr_bucket; 926 uint64_t ipsr_gen; 927 } ipsa_ref_t; 928 929 /* 930 * IPsec "latching" state. 931 * 932 * In the presence of IPsec policy, fully-bound conn's bind a connection 933 * to more than just the 5-tuple, but also a specific IPsec action and 934 * identity-pair. 935 * 936 * As an optimization, we also cache soft references to IPsec SA's 937 * here so that we can fast-path around most of the work needed for 938 * outbound IPsec SA selection. 939 * 940 * Were it not for TCP's detached connections, this state would be 941 * in-line in conn_t; instead, this is in a separate structure so it 942 * can be handed off to TCP when a connection is detached. 943 */ 944 typedef struct ipsec_latch_s 945 { 946 kmutex_t ipl_lock; 947 uint32_t ipl_refcnt; 948 949 uint64_t ipl_unique; 950 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 951 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 952 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 953 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 954 cred_t *ipl_local_id; 955 struct ipsid_s *ipl_local_cid; 956 struct ipsid_s *ipl_remote_cid; 957 unsigned int 958 ipl_out_action_latched : 1, 959 ipl_in_action_latched : 1, 960 ipl_out_policy_latched : 1, 961 ipl_in_policy_latched : 1, 962 963 ipl_ids_latched : 1, 964 965 ipl_pad_to_bit_31 : 27; 966 967 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 968 969 } ipsec_latch_t; 970 971 #define IPLATCH_REFHOLD(ipl) { \ 972 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 973 ASSERT((ipl)->ipl_refcnt != 0); \ 974 } 975 976 #define IPLATCH_REFRELE(ipl, ns) { \ 977 ASSERT((ipl)->ipl_refcnt != 0); \ 978 membar_exit(); \ 979 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 980 iplatch_free(ipl, ns); \ 981 } 982 983 /* 984 * peer identity structure. 985 */ 986 987 typedef struct conn_s conn_t; 988 989 /* 990 * The old IP client structure "ipc_t" is gone. All the data is stored in the 991 * connection structure "conn_t" now. The mapping of old and new fields looks 992 * like this: 993 * 994 * ipc_ulp conn_ulp 995 * ipc_rq conn_rq 996 * ipc_wq conn_wq 997 * 998 * ipc_laddr conn_src 999 * ipc_faddr conn_rem 1000 * ipc_v6laddr conn_srcv6 1001 * ipc_v6faddr conn_remv6 1002 * 1003 * ipc_lport conn_lport 1004 * ipc_fport conn_fport 1005 * ipc_ports conn_ports 1006 * 1007 * ipc_policy conn_policy 1008 * ipc_latch conn_latch 1009 * 1010 * ipc_irc_lock conn_lock 1011 * ipc_ire_cache conn_ire_cache 1012 * 1013 * ipc_state_flags conn_state_flags 1014 * ipc_outgoing_ill conn_outgoing_ill 1015 * 1016 * ipc_dontroute conn_dontroute 1017 * ipc_loopback conn_loopback 1018 * ipc_broadcast conn_broadcast 1019 * ipc_reuseaddr conn_reuseaddr 1020 * 1021 * ipc_multicast_loop conn_multicast_loop 1022 * ipc_multi_router conn_multi_router 1023 * ipc_priv_stream conn_priv_stream 1024 * ipc_draining conn_draining 1025 * 1026 * ipc_did_putbq conn_did_putbq 1027 * ipc_unspec_src conn_unspec_src 1028 * ipc_policy_cached conn_policy_cached 1029 * 1030 * ipc_in_enforce_policy conn_in_enforce_policy 1031 * ipc_out_enforce_policy conn_out_enforce_policy 1032 * ipc_af_isv6 conn_af_isv6 1033 * ipc_pkt_isv6 conn_pkt_isv6 1034 * 1035 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 1036 * 1037 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 1038 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 1039 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 1040 * 1041 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 1042 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 1043 * ipc_fully_bound conn_fully_bound 1044 * 1045 * ipc_recvif conn_recvif 1046 * 1047 * ipc_recvslla conn_recvslla 1048 * ipc_acking_unbind conn_acking_unbind 1049 * ipc_pad_to_bit_31 conn_pad_to_bit_31 1050 * 1051 * ipc_xmit_if_ill conn_xmit_if_ill 1052 * ipc_nofailover_ill conn_nofailover_ill 1053 * 1054 * ipc_proto conn_proto 1055 * ipc_incoming_ill conn_incoming_ill 1056 * ipc_outgoing_pill conn_outgoing_pill 1057 * ipc_pending_ill conn_pending_ill 1058 * ipc_unbind_mp conn_unbind_mp 1059 * ipc_ilg conn_ilg 1060 * ipc_ilg_allocated conn_ilg_allocated 1061 * ipc_ilg_inuse conn_ilg_inuse 1062 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 1063 * ipc_refcv conn_refcv 1064 * ipc_multicast_ipif conn_multicast_ipif 1065 * ipc_multicast_ill conn_multicast_ill 1066 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 1067 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 1068 * ipc_orig_xmit_ifindex conn_orig_xmit_ifindex 1069 * ipc_drain_next conn_drain_next 1070 * ipc_drain_prev conn_drain_prev 1071 * ipc_idl conn_idl 1072 */ 1073 1074 /* 1075 * This is used to match an inbound/outbound datagram with 1076 * policy. 1077 */ 1078 1079 typedef struct ipsec_selector { 1080 in6_addr_t ips_local_addr_v6; 1081 in6_addr_t ips_remote_addr_v6; 1082 uint16_t ips_local_port; 1083 uint16_t ips_remote_port; 1084 uint8_t ips_icmp_type; 1085 uint8_t ips_icmp_code; 1086 uint8_t ips_protocol; 1087 uint8_t ips_isv4 : 1, 1088 ips_is_icmp_inv_acq: 1; 1089 } ipsec_selector_t; 1090 1091 /* 1092 * Note that we put v4 addresses in the *first* 32-bit word of the 1093 * selector rather than the last to simplify the prefix match/mask code 1094 * in spd.c 1095 */ 1096 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1097 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1098 1099 /* Values used in IP by IPSEC Code */ 1100 #define IPSEC_OUTBOUND B_TRUE 1101 #define IPSEC_INBOUND B_FALSE 1102 1103 /* 1104 * There are two variants in policy failures. The packet may come in 1105 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1106 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1107 */ 1108 #define IPSEC_POLICY_NOT_NEEDED 0 1109 #define IPSEC_POLICY_MISMATCH 1 1110 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1111 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1112 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1113 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1114 1115 /* 1116 * Folowing macro is used whenever the code does not know whether there 1117 * is a M_CTL present in the front and it needs to examine the actual mp 1118 * i.e the IP header. As a M_CTL message could be in the front, this 1119 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1120 * mp is not present, both first_mp and mp point to the same message. 1121 */ 1122 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1123 (first_mp) = (mp); \ 1124 if ((mp)->b_datap->db_type == M_CTL) { \ 1125 (mp) = (mp)->b_cont; \ 1126 (mctl_present) = B_TRUE; \ 1127 } else { \ 1128 (mctl_present) = B_FALSE; \ 1129 } 1130 1131 /* 1132 * Check with IPSEC inbound policy if 1133 * 1134 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1135 * 2) Or if we have not cached policy on the conn and the global policy is 1136 * non-empty. 1137 */ 1138 #define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \ 1139 ((connp)->conn_in_enforce_policy || \ 1140 (!((connp)->conn_policy_cached) && \ 1141 (ipss)->ipsec_inbound_v4_policy_present)) 1142 1143 #define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1144 ((connp)->conn_in_enforce_policy || \ 1145 (!(connp)->conn_policy_cached && \ 1146 (ipss)->ipsec_inbound_v6_policy_present)) 1147 1148 #define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \ 1149 ((connp)->conn_out_enforce_policy || \ 1150 (!((connp)->conn_policy_cached) && \ 1151 (ipss)->ipsec_outbound_v4_policy_present)) 1152 1153 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1154 ((connp)->conn_out_enforce_policy || \ 1155 (!(connp)->conn_policy_cached && \ 1156 (ipss)->ipsec_outbound_v6_policy_present)) 1157 1158 /* 1159 * Information cached in IRE for upper layer protocol (ULP). 1160 * 1161 * Notice that ire_max_frag is not included in the iulp_t structure, which 1162 * it may seem that it should. But ire_max_frag cannot really be cached. It 1163 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1164 * it. But currently, we do not do that. 1165 */ 1166 typedef struct iulp_s { 1167 boolean_t iulp_set; /* Is any metric set? */ 1168 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1169 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1170 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1171 uint32_t iulp_spipe; /* Send pipe size. */ 1172 uint32_t iulp_rpipe; /* Receive pipe size. */ 1173 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1174 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1175 uint32_t 1176 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1177 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1178 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1179 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1180 1181 iulp_not_used : 28; 1182 } iulp_t; 1183 1184 /* Zero iulp_t. */ 1185 extern const iulp_t ire_uinfo_null; 1186 1187 /* 1188 * The conn drain list structure. 1189 * The list is protected by idl_lock. Each conn_t inserted in the list 1190 * points back at this idl_t using conn_idl. IP primes the draining of the 1191 * conns queued in these lists, by qenabling the 1st conn of each list. This 1192 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1193 * of ip_wsrv successively qenables the next conn in the list. 1194 * idl_lock protects all other members of idl_t and conn_drain_next 1195 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1196 * flag of the conn_t and conn_idl. 1197 */ 1198 typedef struct idl_s { 1199 conn_t *idl_conn; /* Head of drain list */ 1200 kmutex_t idl_lock; /* Lock for this list */ 1201 conn_t *idl_conn_draining; /* conn that is draining */ 1202 uint32_t 1203 idl_repeat : 1, /* Last conn must re-enable */ 1204 /* drain list again */ 1205 idl_unused : 31; 1206 } idl_t; 1207 1208 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1209 /* 1210 * Interface route structure which holds the necessary information to recreate 1211 * routes that are tied to an interface (namely where ire_ipif != NULL). 1212 * These routes which were initially created via a routing socket or via the 1213 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1214 * traditional interface routes. When an interface comes back up after being 1215 * marked down, this information will be used to recreate the routes. These 1216 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1217 */ 1218 typedef struct ifrt_s { 1219 ushort_t ifrt_type; /* Type of IRE */ 1220 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1221 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1222 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1223 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1224 uint32_t ifrt_flags; /* flags related to route */ 1225 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1226 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1227 } ifrt_t; 1228 1229 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1230 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1231 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1232 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1233 1234 /* Number of IP addresses that can be hosted on a physical interface */ 1235 #define MAX_ADDRS_PER_IF 8192 1236 /* 1237 * Number of Source addresses to be considered for source address 1238 * selection. Used by ipif_select_source[_v6]. 1239 */ 1240 #define MAX_IPIF_SELECT_SOURCE 50 1241 1242 #ifdef IP_DEBUG 1243 /* 1244 * Tracing refholds and refreleases for debugging. Existing tracing mechanisms 1245 * do not allow the granularity need to trace refrences to ipif/ill/ire's. This 1246 * mechanism should be revisited once dtrace is available. 1247 */ 1248 #define IP_STACK_DEPTH 15 1249 typedef struct tr_buf_s { 1250 int tr_depth; 1251 pc_t tr_stack[IP_STACK_DEPTH]; 1252 } tr_buf_t; 1253 1254 typedef struct th_trace_s { 1255 struct th_trace_s *th_next; 1256 struct th_trace_s **th_prev; 1257 kthread_t *th_id; 1258 int th_refcnt; 1259 uint_t th_trace_lastref; 1260 #define TR_BUF_MAX 38 1261 tr_buf_t th_trbuf[TR_BUF_MAX]; 1262 } th_trace_t; 1263 #endif 1264 1265 /* The following are ipif_state_flags */ 1266 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1267 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1268 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1269 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1270 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1271 1272 /* IP interface structure, one per local address */ 1273 typedef struct ipif_s { 1274 struct ipif_s *ipif_next; 1275 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1276 int ipif_id; /* Logical unit number */ 1277 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1278 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1279 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1280 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1281 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1282 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1283 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1284 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1285 uint64_t ipif_flags; /* Interface flags. */ 1286 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1287 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1288 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1289 /* prevent awkward out of mem */ 1290 /* condition later */ 1291 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1292 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1293 /* on this interface so that they */ 1294 /* can survive ifconfig down. */ 1295 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1296 1297 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1298 /* will be reported on. Used when */ 1299 /* handling an igmp timeout. */ 1300 1301 /* 1302 * The packet counts in the ipif contain the sum of the 1303 * packet counts in dead IREs that were affiliated with 1304 * this ipif. 1305 */ 1306 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1307 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1308 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1309 /* Exclusive bit fields, protected by ipsq_t */ 1310 unsigned int 1311 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1312 ipif_solmcast_up : 1, /* We joined solicited node mcast */ 1313 ipif_replace_zero : 1, /* Replacement for zero */ 1314 ipif_was_up : 1, /* ipif was up before */ 1315 1316 ipif_addr_ready : 1, /* DAD is done */ 1317 ipif_was_dup : 1, /* DAD had failed */ 1318 ipif_pad_to_31 : 26; 1319 1320 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1321 uint_t ipif_seqid; /* unique index across all ills */ 1322 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1323 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1324 uint_t ipif_refcnt; /* active consistent reader cnt */ 1325 uint_t ipif_ire_cnt; /* Number of ire's referencing ipif */ 1326 uint_t ipif_saved_ire_cnt; 1327 zoneid_t 1328 ipif_zoneid; /* zone ID number */ 1329 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ 1330 #ifdef ILL_DEBUG 1331 #define IP_TR_HASH_MAX 64 1332 th_trace_t *ipif_trace[IP_TR_HASH_MAX]; 1333 boolean_t ipif_trace_disable; /* True when alloc fails */ 1334 #endif 1335 } ipif_t; 1336 1337 /* 1338 * The following table lists the protection levels of the various members 1339 * of the ipif_t. The following notation is used. 1340 * 1341 * Write once - Written to only once at the time of bringing up 1342 * the interface and can be safely read after the bringup without any lock. 1343 * 1344 * ipsq - Need to execute in the ipsq to perform the indicated access. 1345 * 1346 * ill_lock - Need to hold this mutex to perform the indicated access. 1347 * 1348 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1349 * write access respectively. 1350 * 1351 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1352 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1353 * 1354 * Table of ipif_t members and their protection 1355 * 1356 * ipif_next ipsq + ill_lock + ipsq OR ill_lock OR 1357 * ill_g_lock ill_g_lock 1358 * ipif_ill ipsq + down ipif write once 1359 * ipif_id ipsq + down ipif write once 1360 * ipif_mtu ipsq 1361 * ipif_v6lcl_addr ipsq + down ipif up ipif 1362 * ipif_v6src_addr ipsq + down ipif up ipif 1363 * ipif_v6subnet ipsq + down ipif up ipif 1364 * ipif_v6net_mask ipsq + down ipif up ipif 1365 * 1366 * ipif_v6brd_addr 1367 * ipif_v6pp_dst_addr 1368 * ipif_flags ill_lock ill_lock 1369 * ipif_metric 1370 * ipif_ire_type ipsq + down ill up ill 1371 * 1372 * ipif_arp_del_mp ipsq ipsq 1373 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1374 * ipif_igmp_rpt ipsq ipsq 1375 * 1376 * ipif_fo_pkt_count Approx 1377 * ipif_ib_pkt_count Approx 1378 * ipif_ob_pkt_count Approx 1379 * 1380 * bit fields ill_lock ill_lock 1381 * 1382 * ipif_orig_ifindex ipsq None 1383 * ipif_orig_ipifid ipsq None 1384 * ipif_seqid ipsq Write once 1385 * 1386 * ipif_state_flags ill_lock ill_lock 1387 * ipif_refcnt ill_lock ill_lock 1388 * ipif_ire_cnt ill_lock ill_lock 1389 * ipif_saved_ire_cnt 1390 */ 1391 1392 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1393 1394 #ifdef ILL_DEBUG 1395 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1396 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1397 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1398 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1399 #define ILL_TRACE_CLEANUP(ill) ill_trace_cleanup(ill) 1400 #define IPIF_TRACE_CLEANUP(ipif) ipif_trace_cleanup(ipif) 1401 #else 1402 #define IPIF_TRACE_REF(ipif) 1403 #define ILL_TRACE_REF(ill) 1404 #define IPIF_UNTRACE_REF(ipif) 1405 #define ILL_UNTRACE_REF(ill) 1406 #define ILL_TRACE_CLEANUP(ill) 1407 #define IPIF_TRACE_CLEANUP(ipif) 1408 #endif 1409 1410 /* IPv4 compatability macros */ 1411 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1412 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1413 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1414 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1415 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1416 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1417 1418 /* Macros for easy backreferences to the ill. */ 1419 #define ipif_wq ipif_ill->ill_wq 1420 #define ipif_rq ipif_ill->ill_rq 1421 #define ipif_net_type ipif_ill->ill_net_type 1422 #define ipif_resolver_mp ipif_ill->ill_resolver_mp 1423 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1424 #define ipif_bcast_mp ipif_ill->ill_bcast_mp 1425 #define ipif_type ipif_ill->ill_type 1426 #define ipif_isv6 ipif_ill->ill_isv6 1427 1428 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1429 1430 /* 1431 * mode value for ip_ioctl_finish for finishing an ioctl 1432 */ 1433 #define CONN_CLOSE 1 /* No mi_copy */ 1434 #define COPYOUT 2 /* do an mi_copyout if needed */ 1435 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1436 #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT) 1437 1438 /* 1439 * The IP-MT design revolves around the serialization object ipsq_t. 1440 * It is associated with an IPMP group. If IPMP is not enabled, there is 1441 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1442 * 1443 * ipsq_lock protects 1444 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1445 * ipsq_mphead, ipsq_mptail, ipsq_split 1446 * 1447 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1448 * ipsq_waitfor 1449 * 1450 * The fields in the last line above below are set mostly by a writer thread 1451 * But there is an exception in the last call to ipif_ill_refrele_tail which 1452 * could also race with a conn close which could be cleaning up the 1453 * fields. So we choose to protect using ipsq_lock instead of depending on 1454 * the property of the writer. 1455 * ill_g_lock protects 1456 * ipsq_refs, ipsq_phyint_list 1457 */ 1458 typedef struct ipsq_s { 1459 kmutex_t ipsq_lock; 1460 int ipsq_reentry_cnt; 1461 kthread_t *ipsq_writer; /* current owner (thread id) */ 1462 int ipsq_flags; 1463 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1464 mblk_t *ipsq_xopq_mptail; 1465 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1466 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1467 int ipsq_current_ioctl; /* current ioctl, or 0 if no ioctl */ 1468 ipif_t *ipsq_current_ipif; /* ipif associated with current op */ 1469 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1470 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1471 /* response from another module */ 1472 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1473 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1474 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1475 boolean_t ipsq_split; /* ipsq may need to be split */ 1476 int ipsq_waitfor; /* Values encoded below */ 1477 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1478 1479 #ifdef ILL_DEBUG 1480 int ipsq_depth; /* debugging aid */ 1481 pc_t ipsq_stack[IP_STACK_DEPTH]; /* debugging aid */ 1482 #endif 1483 ip_stack_t *ipsq_ipst; /* Does not have a netstack_hold */ 1484 } ipsq_t; 1485 1486 /* ipsq_flags */ 1487 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1488 1489 /* 1490 * ipsq_waitfor: 1491 * 1492 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1493 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1494 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1495 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1496 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1497 */ 1498 1499 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1500 1501 /* Flags passed to ipsq_try_enter */ 1502 #define CUR_OP 0 /* Current ioctl continuing again */ 1503 #define NEW_OP 1 /* New ioctl starting afresh */ 1504 1505 /* 1506 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1507 * There is a separate ill_t representing IPv4 and IPv6 which has a 1508 * backpointer to the phyint structure for acessing common state. 1509 * 1510 * NOTE : It just stores the group name as there is only one name for 1511 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1512 * IPv4 and IPv6 ill are grouped together when their phyints have 1513 * the same name. 1514 */ 1515 typedef struct phyint { 1516 struct ill_s *phyint_illv4; 1517 struct ill_s *phyint_illv6; 1518 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1519 uint_t phyint_notify_delay; /* SIOCSLIFNOTIFYDELAY */ 1520 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1521 uint_t phyint_groupname_len; 1522 uint64_t phyint_flags; 1523 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1524 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1525 kmutex_t phyint_lock; 1526 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1527 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1528 /* Once Clearview IPMP is added the follow two fields can be removed */ 1529 uint_t phyint_group_ifindex; /* index assigned to group */ 1530 uint_t phyint_hook_ifindex; /* index used with neti/hook */ 1531 } phyint_t; 1532 1533 #define CACHE_ALIGN_SIZE 64 1534 1535 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1536 CACHE_ALIGN_SIZE) 1537 struct _phyint_list_s_ { 1538 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1539 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1540 }; 1541 1542 typedef union phyint_list_u { 1543 struct _phyint_list_s_ phyint_list_s; 1544 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1545 } phyint_list_t; 1546 1547 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1548 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1549 /* 1550 * ILL groups. We group ills, 1551 * 1552 * - if the ills have the same group name. (New way) 1553 * 1554 * ill_group locking notes: 1555 * 1556 * illgrp_lock protects ill_grp_ill_schednext. 1557 * 1558 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1559 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1560 * It also freezes the global list of ills and all ipifs in all ills. 1561 * 1562 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1563 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1564 * global list of ills, ill_delete_glist holds ill_g_lock as writer. 1565 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1566 * that need to walk the members of an illgrp. They just hold ill_g_lock 1567 * as reader to do the walk. 1568 * 1569 */ 1570 typedef struct ill_group { 1571 kmutex_t illgrp_lock; 1572 struct ill_group *illgrp_next; /* Next ill_group */ 1573 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1574 struct ill_s *illgrp_ill; /* First ill in the group */ 1575 int illgrp_ill_count; 1576 } ill_group_t; 1577 1578 /* 1579 * Fragmentation hash bucket 1580 */ 1581 typedef struct ipfb_s { 1582 struct ipf_s *ipfb_ipf; /* List of ... */ 1583 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1584 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1585 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1586 } ipfb_t; 1587 1588 /* 1589 * IRE bucket structure. Usually there is an array of such structures, 1590 * each pointing to a linked list of ires. irb_refcnt counts the number 1591 * of walkers of a given hash bucket. Usually the reference count is 1592 * bumped up if the walker wants no IRES to be DELETED while walking the 1593 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1594 * hash bucket without stumbling up on a free pointer. 1595 * 1596 * irb_t structures in ip_ftable are dynamically allocated and freed. 1597 * In order to identify the irb_t structures that can be safely kmem_free'd 1598 * we need to ensure that 1599 * - the irb_refcnt is quiescent, indicating no other walkers, 1600 * - no other threads or ire's are holding references to the irb, 1601 * i.e., irb_nire == 0, 1602 * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 1603 */ 1604 typedef struct irb { 1605 struct ire_s *irb_ire; /* First ire in this bucket */ 1606 /* Should be first in this struct */ 1607 krwlock_t irb_lock; /* Protect this bucket */ 1608 uint_t irb_refcnt; /* Protected by irb_lock */ 1609 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1610 #define IRB_MARK_CONDEMNED 0x0001 1611 #define IRB_MARK_FTABLE 0x0002 1612 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ 1613 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1614 struct ire_s *irb_rr_origin; /* origin for round-robin */ 1615 int irb_nire; /* Num of ftable ire's that ref irb */ 1616 ip_stack_t *irb_ipst; /* Does not have a netstack_hold */ 1617 } irb_t; 1618 1619 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) 1620 1621 /* The following are return values of ip_xmit_v4() */ 1622 typedef enum { 1623 SEND_PASSED = 0, /* sent packet out on wire */ 1624 SEND_FAILED, /* sending of packet failed */ 1625 LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ 1626 LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ 1627 } ipxmit_state_t; 1628 1629 #define IP_V4_G_HEAD 0 1630 #define IP_V6_G_HEAD 1 1631 1632 #define MAX_G_HEADS 2 1633 1634 /* 1635 * unpadded ill_if structure 1636 */ 1637 struct _ill_if_s_ { 1638 union ill_if_u *illif_next; 1639 union ill_if_u *illif_prev; 1640 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1641 vmem_t *illif_ppa_arena; /* ppa index space */ 1642 uint16_t illif_mcast_v1; /* hints for */ 1643 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1644 int illif_name_len; /* name length */ 1645 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1646 }; 1647 1648 /* cache aligned ill_if structure */ 1649 typedef union ill_if_u { 1650 struct _ill_if_s_ ill_if_s; 1651 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1652 } ill_if_t; 1653 1654 #define illif_next ill_if_s.illif_next 1655 #define illif_prev ill_if_s.illif_prev 1656 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1657 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1658 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1659 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1660 #define illif_name ill_if_s.illif_name 1661 #define illif_name_len ill_if_s.illif_name_len 1662 1663 typedef struct ill_walk_context_s { 1664 int ctx_current_list; /* current list being searched */ 1665 int ctx_last_list; /* last list to search */ 1666 } ill_walk_context_t; 1667 1668 /* 1669 * ill_g_heads structure, one for IPV4 and one for IPV6 1670 */ 1671 struct _ill_g_head_s_ { 1672 ill_if_t *ill_g_list_head; 1673 ill_if_t *ill_g_list_tail; 1674 }; 1675 1676 typedef union ill_g_head_u { 1677 struct _ill_g_head_s_ ill_g_head_s; 1678 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1679 } ill_g_head_t; 1680 1681 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1682 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1683 1684 #define IP_V4_ILL_G_LIST(ipst) \ 1685 (ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1686 #define IP_V6_ILL_G_LIST(ipst) \ 1687 (ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1688 #define IP_VX_ILL_G_LIST(i, ipst) \ 1689 (ipst)->ips_ill_g_heads[i].ill_g_list_head 1690 1691 #define ILL_START_WALK_V4(ctx_ptr, ipst) \ 1692 ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst) 1693 #define ILL_START_WALK_V6(ctx_ptr, ipst) \ 1694 ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst) 1695 #define ILL_START_WALK_ALL(ctx_ptr, ipst) \ 1696 ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst) 1697 1698 /* 1699 * Capabilities, possible flags for ill_capabilities. 1700 */ 1701 1702 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1703 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1704 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1705 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1706 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1707 #define ILL_CAPAB_POLL 0x20 /* Polling Toggle */ 1708 #define ILL_CAPAB_SOFT_RING 0x40 /* Soft_Ring capability */ 1709 #define ILL_CAPAB_LSO 0x80 /* Large Segment Offload */ 1710 1711 /* 1712 * Per-ill Multidata Transmit capabilities. 1713 */ 1714 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1715 1716 /* 1717 * Per-ill IPsec capabilities. 1718 */ 1719 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1720 1721 /* 1722 * Per-ill Hardware Checksumming capbilities. 1723 */ 1724 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1725 1726 /* 1727 * Per-ill Zero-copy capabilities. 1728 */ 1729 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1730 1731 /* 1732 * Per-ill Polling/soft ring capbilities. 1733 */ 1734 typedef struct ill_dls_capab_s ill_dls_capab_t; 1735 1736 /* 1737 * Per-ill polling resource map. 1738 */ 1739 typedef struct ill_rx_ring ill_rx_ring_t; 1740 1741 /* 1742 * Per-ill Large Segment Offload capabilities. 1743 */ 1744 typedef struct ill_lso_capab_s ill_lso_capab_t; 1745 1746 /* The following are ill_state_flags */ 1747 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1748 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1749 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1750 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1751 #define ILL_SOFT_RING_ASSIGN 0x10 /* Makeing soft ring assigment */ 1752 1753 /* Is this an ILL whose source address is used by other ILL's ? */ 1754 #define IS_USESRC_ILL(ill) \ 1755 (((ill)->ill_usesrc_ifindex == 0) && \ 1756 ((ill)->ill_usesrc_grp_next != NULL)) 1757 1758 /* Is this a client/consumer of the usesrc ILL ? */ 1759 #define IS_USESRC_CLI_ILL(ill) \ 1760 (((ill)->ill_usesrc_ifindex != 0) && \ 1761 ((ill)->ill_usesrc_grp_next != NULL)) 1762 1763 /* Is this an virtual network interface (vni) ILL ? */ 1764 #define IS_VNI(ill) \ 1765 (((ill) != NULL) && \ 1766 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ 1767 PHYI_VIRTUAL)) 1768 1769 /* 1770 * IP Lower level Structure. 1771 * Instance data structure in ip_open when there is a device below us. 1772 */ 1773 typedef struct ill_s { 1774 ill_if_t *ill_ifptr; /* pointer to interface type */ 1775 queue_t *ill_rq; /* Read queue. */ 1776 queue_t *ill_wq; /* Write queue. */ 1777 1778 int ill_error; /* Error value sent up by device. */ 1779 1780 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1781 1782 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1783 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1784 char *ill_name; /* Our name. */ 1785 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ 1786 uint_t ill_name_length; /* Name length, incl. terminator. */ 1787 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1788 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1789 /* 1790 * Physical Point of Attachment num. If DLPI style 1 provider 1791 * then this is derived from the devname. 1792 */ 1793 uint_t ill_ppa; 1794 t_uscalar_t ill_sap; 1795 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1796 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1797 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1798 /* supports broadcast. */ 1799 t_uscalar_t ill_mactype; 1800 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1801 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1802 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1803 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1804 1805 ilm_t *ill_ilm; /* Multicast mebership for lower ill */ 1806 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1807 int ill_mcast_type; /* type of router which is querier */ 1808 /* on this interface */ 1809 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1810 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1811 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1812 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1813 1814 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1815 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1816 1817 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1818 /* 1819 * All non-NULL cells between 'ill_first_mp_to_free' and 1820 * 'ill_last_mp_to_free' are freed in ill_delete. 1821 */ 1822 #define ill_first_mp_to_free ill_bcast_mp 1823 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1824 mblk_t *ill_resolver_mp; /* Resolver template. */ 1825 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1826 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1827 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1828 #define ill_last_mp_to_free ill_phys_addr_mp 1829 1830 cred_t *ill_credp; /* opener's credentials */ 1831 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1832 1833 uint_t ill_state_flags; /* see ILL_* flags above */ 1834 1835 /* Following bit fields protected by ipsq_t */ 1836 uint_t 1837 ill_needs_attach : 1, 1838 ill_reserved : 1, 1839 ill_isv6 : 1, 1840 ill_dlpi_style_set : 1, 1841 1842 ill_ifname_pending : 1, 1843 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1844 ill_join_allmulti : 1, 1845 ill_logical_down : 1, 1846 1847 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1848 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1849 ill_dl_up : 1, 1850 ill_up_ipifs : 1, 1851 1852 ill_note_link : 1, /* supports link-up notification */ 1853 1854 ill_pad_to_bit_31 : 19; 1855 1856 /* Following bit fields protected by ill_lock */ 1857 uint_t 1858 ill_fragtimer_executing : 1, 1859 ill_fragtimer_needrestart : 1, 1860 ill_ilm_cleanup_reqd : 1, 1861 ill_arp_closing : 1, 1862 1863 ill_arp_bringup_pending : 1, 1864 ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */ 1865 ill_arp_extend : 1, /* ARP has DAD extensions */ 1866 ill_pad_bit_31 : 25; 1867 1868 /* 1869 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1870 */ 1871 int ill_arp_muxid; /* muxid returned from plink for arp */ 1872 int ill_ip_muxid; /* muxid returned from plink for ip */ 1873 1874 /* 1875 * NIC event information attached, to be used by nic event hooks. 1876 */ 1877 hook_nic_event_t *ill_nic_event_info; 1878 1879 /* 1880 * Used for IP frag reassembly throttling on a per ILL basis. 1881 * 1882 * Note: frag_count is approximate, its added to and subtracted from 1883 * without any locking, so simultaneous load/modify/stores can 1884 * collide, also ill_frag_purge() recalculates its value by 1885 * summing all the ipfb_count's without locking out updates 1886 * to the ipfb's. 1887 */ 1888 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1889 uint_t ill_frag_count; /* Approx count of all mblk bytes */ 1890 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1891 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1892 int ill_type; /* From <net/if_types.h> */ 1893 uint_t ill_dlpi_multicast_state; /* See below IDS_* */ 1894 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ 1895 1896 /* 1897 * Capabilities related fields. 1898 */ 1899 uint_t ill_dlpi_capab_state; /* State of capability query, IDS_* */ 1900 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1901 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1902 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1903 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1904 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1905 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1906 ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */ 1907 ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */ 1908 1909 /* 1910 * New fields for IPv6 1911 */ 1912 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1913 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1914 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1915 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1916 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1917 in6_addr_t ill_token; 1918 uint_t ill_token_length; 1919 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1920 mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */ 1921 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1922 /* 1923 * Following two mblks are allocated common to all 1924 * the ipifs when the first interface is coming up. 1925 * It is sent up to arp when the last ipif is coming 1926 * down. 1927 */ 1928 mblk_t *ill_arp_down_mp; 1929 mblk_t *ill_arp_del_mapping_mp; 1930 /* 1931 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1932 * to turn off for all the logicals, it is here instead 1933 * of the ipif. 1934 */ 1935 mblk_t *ill_arp_on_mp; 1936 /* Peer ill of an IPMP move operation */ 1937 struct ill_s *ill_move_peer; 1938 1939 phyint_t *ill_phyint; 1940 uint64_t ill_flags; 1941 ill_group_t *ill_group; 1942 struct ill_s *ill_group_next; 1943 /* 1944 * Reverse tunnel related count. This count 1945 * determines how many mobile nodes are using this 1946 * ill to send packet to reverse tunnel via foreign 1947 * agent. A non-zero count specifies presence of 1948 * mobile node(s) using reverse tunnel through this 1949 * interface. 1950 */ 1951 uint32_t ill_mrtun_refcnt; 1952 1953 /* 1954 * This count is bumped up when a route is added with 1955 * RTA_SRCIFP bit flag using routing socket. 1956 */ 1957 uint32_t ill_srcif_refcnt; 1958 /* 1959 * Pointer to the special interface based routing table. 1960 * This routing table is created dynamically when RTA_SRCIFP 1961 * is set by the routing socket. 1962 */ 1963 irb_t *ill_srcif_table; 1964 kmutex_t ill_lock; /* Please see table below */ 1965 /* 1966 * The ill_nd_lla* fields handle the link layer address option 1967 * from neighbor discovery. This is used for external IPv6 1968 * address resolution. 1969 */ 1970 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1971 uint8_t *ill_nd_lla; /* Link Layer Address */ 1972 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1973 /* 1974 * We now have 3 phys_addr_req's sent down. This field keeps track 1975 * of which one is pending. 1976 */ 1977 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1978 /* 1979 * Used to save errors that occur during plumbing 1980 */ 1981 uint_t ill_ifname_pending_err; 1982 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1983 void *ill_fastpath_list; /* both ire and nce hang off this */ 1984 uint_t ill_refcnt; /* active refcnt by threads */ 1985 uint_t ill_ire_cnt; /* ires associated with this ill */ 1986 kcondvar_t ill_cv; 1987 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1988 uint_t ill_nce_cnt; /* nces associated with this ill */ 1989 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1990 /* 1991 * Contains the upper read queue pointer of the module immediately 1992 * beneath IP. This field allows IP to validate sub-capability 1993 * acknowledgments coming up from downstream. 1994 */ 1995 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1996 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1997 ip_m_t *ill_media; /* media specific params/functions */ 1998 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1999 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 2000 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 2001 #ifdef ILL_DEBUG 2002 th_trace_t *ill_trace[IP_TR_HASH_MAX]; 2003 boolean_t ill_trace_disable; /* True when alloc fails */ 2004 #endif 2005 zoneid_t ill_zoneid; 2006 ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */ 2007 } ill_t; 2008 2009 extern void ill_delete_glist(ill_t *); 2010 2011 /* 2012 * The following table lists the protection levels of the various members 2013 * of the ill_t. Same notation as that used for ipif_t above is used. 2014 * 2015 * Write Read 2016 * 2017 * ill_ifptr ill_g_lock + s Write once 2018 * ill_rq ipsq Write once 2019 * ill_wq ipsq Write once 2020 * 2021 * ill_error ipsq None 2022 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 2023 * ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq 2024 * ill_max_frag ipsq Write once 2025 * 2026 * ill_name ill_g_lock + ipsq Write once 2027 * ill_name_length ill_g_lock + ipsq Write once 2028 * ill_ndd_name ipsq Write once 2029 * ill_net_type ipsq Write once 2030 * ill_ppa ill_g_lock + ipsq Write once 2031 * ill_sap ipsq + down ill Write once 2032 * ill_sap_length ipsq + down ill Write once 2033 * ill_phys_addr_length ipsq + down ill Write once 2034 * 2035 * ill_bcast_addr_length ipsq ipsq 2036 * ill_mactype ipsq ipsq 2037 * ill_frag_ptr ipsq ipsq 2038 * 2039 * ill_frag_timer_id ill_lock ill_lock 2040 * ill_frag_hash_tbl ipsq up ill 2041 * ill_ilm ipsq + ill_lock ill_lock 2042 * ill_mcast_type ill_lock ill_lock 2043 * ill_mcast_v1_time ill_lock ill_lock 2044 * ill_mcast_v2_time ill_lock ill_lock 2045 * ill_mcast_v1_tset ill_lock ill_lock 2046 * ill_mcast_v2_tset ill_lock ill_lock 2047 * ill_mcast_rv ill_lock ill_lock 2048 * ill_mcast_qi ill_lock ill_lock 2049 * ill_pending_mp ill_lock ill_lock 2050 * 2051 * ill_bcast_mp ipsq ipsq 2052 * ill_resolver_mp ipsq only when ill is up 2053 * ill_down_mp ipsq ipsq 2054 * ill_dlpi_deferred ill_lock ill_lock 2055 * ill_dlpi_pending ill_lock ill_lock 2056 * ill_phys_addr_mp ipsq + down ill only when ill is up 2057 * ill_phys_addr ipsq + down ill only when ill is up 2058 * 2059 * ill_state_flags ill_lock ill_lock 2060 * exclusive bit flags ipsq_t ipsq_t 2061 * shared bit flags ill_lock ill_lock 2062 * 2063 * ill_arp_muxid ipsq Not atomic 2064 * ill_ip_muxid ipsq Not atomic 2065 * 2066 * ill_ipf_gen Not atomic 2067 * ill_frag_count Approx. not protected 2068 * ill_type ipsq + down ill only when ill is up 2069 * ill_dlpi_multicast_state ill_lock ill_lock 2070 * ill_dlpi_fastpath_state ill_lock ill_lock 2071 * ill_max_hops ipsq Not atomic 2072 * 2073 * ill_max_mtu 2074 * 2075 * ill_reachable_time ipsq + ill_lock ill_lock 2076 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 2077 * ill_max_buf ipsq + ill_lock ill_lock 2078 * 2079 * Next 2 fields need ill_lock because of the get ioctls. They should not 2080 * report partially updated results without executing in the ipsq. 2081 * ill_token ipsq + ill_lock ill_lock 2082 * ill_token_length ipsq + ill_lock ill_lock 2083 * ill_xmit_count ipsq + down ill write once 2084 * ill_ip6_mib ipsq + down ill only when ill is up 2085 * ill_icmp6_mib ipsq + down ill only when ill is up 2086 * ill_arp_down_mp ipsq ipsq 2087 * ill_arp_del_mapping_mp ipsq ipsq 2088 * ill_arp_on_mp ipsq ipsq 2089 * ill_move_peer ipsq ipsq 2090 * 2091 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 2092 * ill_flags ill_lock ill_lock 2093 * ill_group ipsq, ill_g_lock, ill_lock Any of them 2094 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 2095 * ill_mrtun_refcnt ill_lock ill_lock 2096 * ill_srcif_refcnt ill_lock ill_lock 2097 * ill_srcif_table ill_lock ill_lock 2098 * ill_nd_lla_mp ipsq + down ill only when ill is up 2099 * ill_nd_lla ipsq + down ill only when ill is up 2100 * ill_nd_lla_len ipsq + down ill only when ill is up 2101 * ill_phys_addr_pend ipsq + down ill only when ill is up 2102 * ill_ifname_pending_err ipsq ipsq 2103 * ill_avl_byppa ipsq, ill_g_lock write once 2104 * 2105 * ill_fastpath_list ill_lock ill_lock 2106 * ill_refcnt ill_lock ill_lock 2107 * ill_ire_cnt ill_lock ill_lock 2108 * ill_cv ill_lock ill_lock 2109 * ill_ilm_walker_cnt ill_lock ill_lock 2110 * ill_nce_cnt ill_lock ill_lock 2111 * ill_trace ill_lock ill_lock 2112 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 2113 */ 2114 2115 /* 2116 * For ioctl restart mechanism see ip_reprocess_ioctl() 2117 */ 2118 struct ip_ioctl_cmd_s; 2119 2120 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 2121 struct ip_ioctl_cmd_s *, void *); 2122 2123 typedef struct ip_ioctl_cmd_s { 2124 int ipi_cmd; 2125 size_t ipi_copyin_size; 2126 uint_t ipi_flags; 2127 uint_t ipi_cmd_type; 2128 ifunc_t ipi_func; 2129 ifunc_t ipi_func_restart; 2130 } ip_ioctl_cmd_t; 2131 2132 /* 2133 * ipi_cmd_type: 2134 * 2135 * IF_CMD 1 old style ifreq cmd 2136 * LIF_CMD 2 new style lifreq cmd 2137 * MISC_CMD 3 Misc. (non [l]ifreq, tun) cmds 2138 * TUN_CMD 4 tunnel related 2139 */ 2140 2141 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD }; 2142 2143 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2144 2145 /* Flag values in ipi_flags */ 2146 #define IPI_PRIV 0x1 /* Root only command */ 2147 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2148 #define IPI_WR 0x4 /* Need to grab writer access */ 2149 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2150 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2151 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2152 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2153 2154 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2155 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2156 extern int ip_ndx_ioctl_count; 2157 extern int ip_misc_ioctl_count; 2158 2159 #define ILL_CLEAR_MOVE(ill) { \ 2160 ill_t *peer_ill; \ 2161 \ 2162 peer_ill = (ill)->ill_move_peer; \ 2163 ASSERT(peer_ill != NULL); \ 2164 (ill)->ill_move_in_progress = B_FALSE; \ 2165 peer_ill->ill_move_in_progress = B_FALSE; \ 2166 (ill)->ill_move_peer = NULL; \ 2167 peer_ill->ill_move_peer = NULL; \ 2168 } 2169 2170 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2171 typedef struct ipmx_s { 2172 char ipmx_name[LIFNAMSIZ]; /* if name */ 2173 uint_t 2174 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2175 ipmx_notused : 31; 2176 } ipmx_t; 2177 2178 /* 2179 * State for detecting if a driver supports certain features. 2180 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2181 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2182 * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. 2183 */ 2184 #define IDS_UNKNOWN 0 /* No DLPI request sent */ 2185 #define IDS_INPROGRESS 1 /* DLPI request sent */ 2186 #define IDS_OK 2 /* DLPI request completed successfully */ 2187 #define IDS_FAILED 3 /* DLPI request failed */ 2188 #define IDS_RENEG 4 /* Driver asked for a renegotiation */ 2189 2190 /* Named Dispatch Parameter Management Structure */ 2191 typedef struct ipparam_s { 2192 uint_t ip_param_min; 2193 uint_t ip_param_max; 2194 uint_t ip_param_value; 2195 char *ip_param_name; 2196 } ipparam_t; 2197 2198 /* Extended NDP Management Structure */ 2199 typedef struct ipndp_s { 2200 ndgetf_t ip_ndp_getf; 2201 ndsetf_t ip_ndp_setf; 2202 caddr_t ip_ndp_data; 2203 char *ip_ndp_name; 2204 } ipndp_t; 2205 2206 /* 2207 * The kernel stores security attributes of all gateways in a database made 2208 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2209 * security-related credentials of the gateway. More than one gateways may 2210 * share entries in the database. 2211 * 2212 * The tsol_gc_t structure represents the gateway to credential association, 2213 * and refers to an entry in the database. One or more tsol_gc_t entities are 2214 * grouped together to form one or more tsol_gcgrp_t, each representing the 2215 * list of security attributes specific to the gateway. A gateway may be 2216 * associated with at most one credentials group. 2217 */ 2218 struct tsol_gcgrp_s; 2219 2220 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2221 2222 /* 2223 * Gateway security credential record. 2224 */ 2225 typedef struct tsol_gcdb_s { 2226 uint_t gcdb_refcnt; /* reference count */ 2227 struct rtsa_s gcdb_attr; /* security attributes */ 2228 #define gcdb_mask gcdb_attr.rtsa_mask 2229 #define gcdb_doi gcdb_attr.rtsa_doi 2230 #define gcdb_slrange gcdb_attr.rtsa_slrange 2231 } tsol_gcdb_t; 2232 2233 /* 2234 * Gateway to credential association. 2235 */ 2236 typedef struct tsol_gc_s { 2237 uint_t gc_refcnt; /* reference count */ 2238 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2239 struct tsol_gc_s *gc_prev; /* previous in list */ 2240 struct tsol_gc_s *gc_next; /* next in list */ 2241 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2242 } tsol_gc_t; 2243 2244 /* 2245 * Gateway credentials group address. 2246 */ 2247 typedef struct tsol_gcgrp_addr_s { 2248 int ga_af; /* address family */ 2249 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2250 } tsol_gcgrp_addr_t; 2251 2252 /* 2253 * Gateway credentials group. 2254 */ 2255 typedef struct tsol_gcgrp_s { 2256 uint_t gcgrp_refcnt; /* reference count */ 2257 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2258 uint_t gcgrp_count; /* number of credentials */ 2259 tsol_gc_t *gcgrp_head; /* first credential in list */ 2260 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2261 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2262 } tsol_gcgrp_t; 2263 2264 extern kmutex_t gcgrp_lock; 2265 2266 #define GC_REFRELE(p) { \ 2267 ASSERT((p)->gc_grp != NULL); \ 2268 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2269 ASSERT((p)->gc_refcnt > 0); \ 2270 if (--((p)->gc_refcnt) == 0) \ 2271 gc_inactive(p); \ 2272 else \ 2273 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2274 } 2275 2276 #define GCGRP_REFHOLD(p) { \ 2277 mutex_enter(&gcgrp_lock); \ 2278 ++((p)->gcgrp_refcnt); \ 2279 ASSERT((p)->gcgrp_refcnt != 0); \ 2280 mutex_exit(&gcgrp_lock); \ 2281 } 2282 2283 #define GCGRP_REFRELE(p) { \ 2284 mutex_enter(&gcgrp_lock); \ 2285 ASSERT((p)->gcgrp_refcnt > 0); \ 2286 if (--((p)->gcgrp_refcnt) == 0) \ 2287 gcgrp_inactive(p); \ 2288 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2289 mutex_exit(&gcgrp_lock); \ 2290 } 2291 2292 /* 2293 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2294 */ 2295 struct tsol_tnrhc; 2296 2297 typedef struct tsol_ire_gw_secattr_s { 2298 kmutex_t igsa_lock; /* lock to protect following */ 2299 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2300 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2301 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2302 } tsol_ire_gw_secattr_t; 2303 2304 /* 2305 * Following are the macros to increment/decrement the reference 2306 * count of the IREs and IRBs (ire bucket). 2307 * 2308 * 1) We bump up the reference count of an IRE to make sure that 2309 * it does not get deleted and freed while we are using it. 2310 * Typically all the lookup functions hold the bucket lock, 2311 * and look for the IRE. If it finds an IRE, it bumps up the 2312 * reference count before dropping the lock. Sometimes we *may* want 2313 * to bump up the reference count after we *looked* up i.e without 2314 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2315 * on the bucket lock being held. Any thread trying to delete from 2316 * the hash bucket can still do so but cannot free the IRE if 2317 * ire_refcnt is not 0. 2318 * 2319 * 2) We bump up the reference count on the bucket where the IRE resides 2320 * (IRB), when we want to prevent the IREs getting deleted from a given 2321 * hash bucket. This makes life easier for ire_walk type functions which 2322 * wants to walk the IRE list, call a function, but needs to drop 2323 * the bucket lock to prevent recursive rw_enters. While the 2324 * lock is dropped, the list could be changed by other threads or 2325 * the same thread could end up deleting the ire or the ire pointed by 2326 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2327 * a delete will still remove the ire from the bucket while we have 2328 * dropped the lock and hence the ire_next would be NULL. Thus, we 2329 * need a mechanism to prevent deletions from a given bucket. 2330 * 2331 * To prevent deletions, we bump up the reference count on the 2332 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2333 * both on the ire's ire_marks and the bucket's irb_marks. When the 2334 * reference count on the bucket drops to zero, all the CONDEMNED ires 2335 * are deleted. We don't have to bump up the reference count on the 2336 * bucket if we are walking the bucket and never have to drop the bucket 2337 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2338 * in the list. It is okay because addition of new ires will not cause 2339 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2340 * all of the 3 conditions are true : 2341 * 2342 * 1) The code needs to walk the IRE bucket from start to end. 2343 * 2) It may have to drop the bucket lock sometimes while doing (1) 2344 * 3) It does not want any ires to be deleted meanwhile. 2345 */ 2346 2347 /* 2348 * Bump up the reference count on the IRE. We cannot assert that the 2349 * bucket lock is being held as it is legal to bump up the reference 2350 * count after the first lookup has returned the IRE without 2351 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2352 */ 2353 2354 #ifndef IRE_DEBUG 2355 2356 #define IRE_REFHOLD_NOTR(ire) IRE_REFHOLD(ire) 2357 #define IRE_UNTRACE_REF(ire) 2358 #define IRE_TRACE_REF(ire) 2359 2360 #else 2361 2362 #define IRE_REFHOLD_NOTR(ire) { \ 2363 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2364 ASSERT((ire)->ire_refcnt != 0); \ 2365 } 2366 2367 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2368 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2369 #endif 2370 2371 #define IRE_REFHOLD(ire) { \ 2372 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2373 ASSERT((ire)->ire_refcnt != 0); \ 2374 IRE_TRACE_REF(ire); \ 2375 } 2376 2377 #define IRE_REFHOLD_LOCKED(ire) { \ 2378 IRE_TRACE_REF(ire); \ 2379 (ire)->ire_refcnt++; \ 2380 } 2381 2382 /* 2383 * Decrement the reference count on the IRE. 2384 * In architectures e.g sun4u, where atomic_add_32_nv is just 2385 * a cas, we need to maintain the right memory barrier semantics 2386 * as that of mutex_exit i.e all the loads and stores should complete 2387 * before the cas is executed. membar_exit() does that here. 2388 * 2389 * NOTE : This macro is used only in places where we want performance. 2390 * To avoid bloating the code, we use the function "ire_refrele" 2391 * which essentially calls the macro. 2392 */ 2393 #ifndef IRE_DEBUG 2394 #define IRE_REFRELE(ire) { \ 2395 ASSERT((ire)->ire_refcnt != 0); \ 2396 membar_exit(); \ 2397 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2398 ire_inactive(ire); \ 2399 } 2400 #define IRE_REFRELE_NOTR(ire) IRE_REFRELE(ire) 2401 #else 2402 #define IRE_REFRELE(ire) { \ 2403 if (ire->ire_bucket != NULL) \ 2404 ire_untrace_ref(ire); \ 2405 ASSERT((ire)->ire_refcnt != 0); \ 2406 membar_exit(); \ 2407 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2408 ire_inactive(ire); \ 2409 } 2410 #define IRE_REFRELE_NOTR(ire) { \ 2411 ASSERT((ire)->ire_refcnt != 0); \ 2412 membar_exit(); \ 2413 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2414 ire_inactive(ire); \ 2415 } 2416 #endif 2417 2418 /* 2419 * Bump up the reference count on the hash bucket - IRB to 2420 * prevent ires from being deleted in this bucket. 2421 */ 2422 #define IRB_REFHOLD(irb) { \ 2423 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2424 (irb)->irb_refcnt++; \ 2425 ASSERT((irb)->irb_refcnt != 0); \ 2426 rw_exit(&(irb)->irb_lock); \ 2427 } 2428 #define IRB_REFHOLD_LOCKED(irb) { \ 2429 ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ 2430 (irb)->irb_refcnt++; \ 2431 ASSERT((irb)->irb_refcnt != 0); \ 2432 } 2433 2434 void irb_refrele_ftable(irb_t *); 2435 /* 2436 * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t 2437 * is statically allocated, so that when the irb_refcnt goes to 0, 2438 * we simply clean up the ire list and continue. 2439 */ 2440 #define IRB_REFRELE(irb) { \ 2441 if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ 2442 irb_refrele_ftable((irb)); \ 2443 } else { \ 2444 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2445 ASSERT((irb)->irb_refcnt != 0); \ 2446 if (--(irb)->irb_refcnt == 0 && \ 2447 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2448 ire_t *ire_list; \ 2449 \ 2450 ire_list = ire_unlink(irb); \ 2451 rw_exit(&(irb)->irb_lock); \ 2452 ASSERT(ire_list != NULL); \ 2453 ire_cleanup(ire_list); \ 2454 } else { \ 2455 rw_exit(&(irb)->irb_lock); \ 2456 } \ 2457 } \ 2458 } 2459 2460 extern struct kmem_cache *rt_entry_cache; 2461 2462 /* 2463 * Lock the fast path mp for access, since the fp_mp can be deleted 2464 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST and IRE_MIPRTUN 2465 */ 2466 2467 #define LOCK_IRE_FP_MP(ire) { \ 2468 if ((ire)->ire_type == IRE_BROADCAST || \ 2469 (ire)->ire_type == IRE_MIPRTUN) \ 2470 mutex_enter(&ire->ire_nce->nce_lock); \ 2471 } 2472 #define UNLOCK_IRE_FP_MP(ire) { \ 2473 if ((ire)->ire_type == IRE_BROADCAST || \ 2474 (ire)->ire_type == IRE_MIPRTUN) \ 2475 mutex_exit(&ire->ire_nce->nce_lock); \ 2476 } 2477 2478 typedef struct ire4 { 2479 ipaddr_t ire4_src_addr; /* Source address to use. */ 2480 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2481 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2482 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2483 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2484 } ire4_t; 2485 2486 typedef struct ire6 { 2487 in6_addr_t ire6_src_addr; /* Source address to use. */ 2488 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2489 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2490 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2491 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2492 } ire6_t; 2493 2494 typedef union ire_addr { 2495 ire6_t ire6_u; 2496 ire4_t ire4_u; 2497 } ire_addr_u_t; 2498 2499 /* Internet Routing Entry */ 2500 typedef struct ire_s { 2501 struct ire_s *ire_next; /* The hash chain must be first. */ 2502 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2503 uint32_t ire_refcnt; /* Number of references */ 2504 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2505 queue_t *ire_rfq; /* recv from this queue */ 2506 queue_t *ire_stq; /* send to this queue */ 2507 union { 2508 uint_t *max_fragp; /* Used only during ire creation */ 2509 uint_t max_frag; /* MTU (next hop or path). */ 2510 } imf_u; 2511 #define ire_max_frag imf_u.max_frag 2512 #define ire_max_fragp imf_u.max_fragp 2513 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2514 uint32_t ire_ident; /* Per IRE IP ident. */ 2515 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2516 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2517 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2518 ushort_t ire_type; /* Type of IRE */ 2519 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2520 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2521 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2522 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2523 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2524 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2525 ipif_t *ire_ipif; /* the interface that this ire uses */ 2526 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2527 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2528 /* 2529 * Neighbor Cache Entry for IPv6; arp info for IPv4 2530 */ 2531 struct nce_s *ire_nce; 2532 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2533 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2534 2535 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2536 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2537 /* 2538 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2539 */ 2540 kmutex_t ire_lock; 2541 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2542 /* 2543 * For regular routes in forwarding table and cache table the 2544 * the following entries are NULL/zero. Only reverse tunnel 2545 * table and interface based forwarding table use these fields. 2546 * Routes added with RTA_SRCIFP and RTA_SRC respectively have 2547 * non-zero values for the following fields. 2548 */ 2549 ill_t *ire_in_ill; /* Incoming ill interface */ 2550 ipaddr_t ire_in_src_addr; 2551 /* source ip-addr of incoming packet */ 2552 clock_t ire_last_used_time; /* Last used time */ 2553 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2554 zoneid_t ire_zoneid; /* for local address discrimination */ 2555 /* 2556 * ire's that are embedded inside mblk_t and sent to the external 2557 * resolver use the ire_stq_ifindex to track the ifindex of the 2558 * ire_stq, so that the ill (if it exists) can be correctly recovered 2559 * for cleanup in the esbfree routine when arp failure occurs 2560 */ 2561 uint_t ire_stq_ifindex; 2562 uint_t ire_defense_count; /* number of ARP conflicts */ 2563 uint_t ire_defense_time; /* last time defended (secs) */ 2564 ip_stack_t *ire_ipst; /* Does not have a netstack_hold */ 2565 #ifdef IRE_DEBUG 2566 th_trace_t *ire_trace[IP_TR_HASH_MAX]; 2567 boolean_t ire_trace_disable; /* True when alloc fails */ 2568 #endif 2569 } ire_t; 2570 2571 /* IPv4 compatiblity macros */ 2572 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2573 #define ire_mask ire_u.ire4_u.ire4_mask 2574 #define ire_addr ire_u.ire4_u.ire4_addr 2575 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2576 #define ire_cmask ire_u.ire4_u.ire4_cmask 2577 2578 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2579 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2580 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2581 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2582 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2583 2584 /* Convenient typedefs for sockaddrs */ 2585 typedef struct sockaddr_in sin_t; 2586 typedef struct sockaddr_in6 sin6_t; 2587 2588 /* Address structure used for internal bind with IP */ 2589 typedef struct ipa_conn_s { 2590 ipaddr_t ac_laddr; 2591 ipaddr_t ac_faddr; 2592 uint16_t ac_fport; 2593 uint16_t ac_lport; 2594 } ipa_conn_t; 2595 2596 typedef struct ipa6_conn_s { 2597 in6_addr_t ac6_laddr; 2598 in6_addr_t ac6_faddr; 2599 uint16_t ac6_fport; 2600 uint16_t ac6_lport; 2601 } ipa6_conn_t; 2602 2603 /* 2604 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2605 * bind handler. 2606 */ 2607 typedef struct ipa_conn_extended_s { 2608 uint64_t acx_flags; 2609 ipa_conn_t acx_conn; 2610 } ipa_conn_x_t; 2611 2612 typedef struct ipa6_conn_extended_s { 2613 uint64_t ac6x_flags; 2614 ipa6_conn_t ac6x_conn; 2615 } ipa6_conn_x_t; 2616 2617 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2618 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2619 2620 /* Name/Value Descriptor. */ 2621 typedef struct nv_s { 2622 uint64_t nv_value; 2623 char *nv_name; 2624 } nv_t; 2625 2626 /* IP Forwarding Ticket */ 2627 typedef struct ipftk_s { 2628 queue_t *ipftk_queue; 2629 ipaddr_t ipftk_dst; 2630 } ipftk_t; 2631 2632 typedef struct ipt_s { 2633 pfv_t func; /* Routine to call */ 2634 uchar_t *arg; /* ire or nce passed in */ 2635 } ipt_t; 2636 2637 #define ILL_FRAG_HASH(s, i) \ 2638 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2639 2640 /* 2641 * The MAX number of allowed fragmented packets per hash bucket 2642 * calculation is based on the most common mtu size of 1500. This limit 2643 * will work well for other mtu sizes as well. 2644 */ 2645 #define COMMON_IP_MTU 1500 2646 #define MAX_FRAG_MIN 10 2647 #define MAX_FRAG_PKTS(ipst) \ 2648 MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \ 2649 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2650 2651 /* 2652 * Maximum dups allowed per packet. 2653 */ 2654 extern uint_t ip_max_frag_dups; 2655 2656 /* 2657 * Per-packet information for received packets and transmitted. 2658 * Used by the transport protocols when converting between the packet 2659 * and ancillary data and socket options. 2660 * 2661 * Note: This private data structure and related IPPF_* constant 2662 * definitions are exposed to enable compilation of some debugging tools 2663 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2664 * a temporary hack and long term alternate interfaces should be defined 2665 * to support the needs of such tools and private definitions moved to 2666 * private headers. 2667 */ 2668 struct ip6_pkt_s { 2669 uint_t ipp_fields; /* Which fields are valid */ 2670 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2671 uint_t ipp_ifindex; /* pktinfo ifindex */ 2672 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2673 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2674 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2675 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2676 uint_t ipp_hopoptslen; 2677 uint_t ipp_rtdstoptslen; 2678 uint_t ipp_rthdrlen; 2679 uint_t ipp_dstoptslen; 2680 uint_t ipp_pathmtulen; 2681 uint_t ipp_fraghdrlen; 2682 ip6_hbh_t *ipp_hopopts; 2683 ip6_dest_t *ipp_rtdstopts; 2684 ip6_rthdr_t *ipp_rthdr; 2685 ip6_dest_t *ipp_dstopts; 2686 ip6_frag_t *ipp_fraghdr; 2687 struct ip6_mtuinfo *ipp_pathmtu; 2688 in6_addr_t ipp_nexthop; /* Transmit only */ 2689 uint8_t ipp_tclass; 2690 int8_t ipp_use_min_mtu; 2691 }; 2692 typedef struct ip6_pkt_s ip6_pkt_t; 2693 2694 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2695 2696 /* 2697 * This struct is used by ULP_opt_set() functions to return value of IPv4 2698 * ancillary options. Currently this is only used by udp and icmp and only 2699 * IP_PKTINFO option is supported. 2700 */ 2701 typedef struct ip4_pkt_s { 2702 uint_t ip4_ill_index; /* interface index */ 2703 ipaddr_t ip4_addr; /* source address */ 2704 } ip4_pkt_t; 2705 2706 /* 2707 * Used by ULP's to pass options info to ip_output 2708 * currently only IP_PKTINFO is supported. 2709 */ 2710 typedef struct ip_opt_info_s { 2711 uint_t ip_opt_ill_index; 2712 uint_t ip_opt_flags; 2713 } ip_opt_info_t; 2714 2715 /* 2716 * value for ip_opt_flags 2717 */ 2718 #define IP_VERIFY_SRC 0x1 2719 2720 /* 2721 * This structure is used to convey information from IP and the ULP. 2722 * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options. 2723 * The type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2724 */ 2725 typedef struct ip_pktinfo { 2726 uint32_t ip_pkt_ulp_type; /* type of info sent */ 2727 uint32_t ip_pkt_flags; /* what is sent up by IP */ 2728 uint32_t ip_pkt_ifindex; /* inbound interface index */ 2729 struct sockaddr_dl ip_pkt_slla; /* has source link layer addr */ 2730 struct in_addr ip_pkt_match_addr; /* matched address */ 2731 } ip_pktinfo_t; 2732 2733 /* 2734 * flags to tell UDP what IP is sending; in_pkt_flags 2735 */ 2736 #define IPF_RECVIF 0x01 /* inbound interface index */ 2737 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2738 /* 2739 * Inbound interface index + matched address. 2740 * Used only by IPV4. 2741 */ 2742 #define IPF_RECVADDR 0x04 2743 2744 /* ipp_fields values */ 2745 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2746 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2747 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2748 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2749 2750 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2751 #define IPPF_HOPLIMIT 0x0020 2752 #define IPPF_HOPOPTS 0x0040 2753 #define IPPF_RTHDR 0x0080 2754 2755 #define IPPF_RTDSTOPTS 0x0100 2756 #define IPPF_DSTOPTS 0x0200 2757 #define IPPF_NEXTHOP 0x0400 2758 #define IPPF_PATHMTU 0x0800 2759 2760 #define IPPF_TCLASS 0x1000 2761 #define IPPF_DONTFRAG 0x2000 2762 #define IPPF_USE_MIN_MTU 0x04000 2763 #define IPPF_MULTICAST_HOPS 0x08000 2764 2765 #define IPPF_UNICAST_HOPS 0x10000 2766 #define IPPF_FRAGHDR 0x20000 2767 2768 #define IPPF_HAS_IP6I \ 2769 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2770 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2771 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2772 2773 #define TCP_PORTS_OFFSET 0 2774 #define UDP_PORTS_OFFSET 0 2775 2776 /* 2777 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2778 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2779 * after calling these macros. This ensures that the refcnt on the ipif or 2780 * ill will eventually drop down to zero. 2781 */ 2782 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2783 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2784 2785 #define ILL_CAN_LOOKUP(ill) \ 2786 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2787 IAM_WRITER_ILL(ill)) 2788 2789 #define ILL_CAN_WAIT(ill, q) \ 2790 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2791 2792 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2793 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2794 2795 #define IPIF_CAN_LOOKUP(ipif) \ 2796 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2797 IAM_WRITER_IPIF(ipif)) 2798 2799 /* 2800 * If the parameter 'q' is NULL, the caller is not interested in wait and 2801 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2802 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2803 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2804 * in this case 'q' is NULL 2805 */ 2806 #define IPIF_CAN_WAIT(ipif, q) \ 2807 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2808 2809 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2810 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2811 IAM_WRITER_IPIF(ipif)) 2812 2813 /* 2814 * These macros are used by critical set ioctls and failover ioctls to 2815 * mark the ipif appropriately before starting the operation and to clear the 2816 * marks after completing the operation. 2817 */ 2818 #define IPIF_UNMARK_MOVING(ipif) \ 2819 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2820 2821 #define ILL_UNMARK_CHANGING(ill) \ 2822 (ill)->ill_state_flags &= ~ILL_CHANGING; 2823 2824 /* Macros used to assert that this thread is a writer */ 2825 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2826 #define IAM_WRITER_ILL(ill) \ 2827 ((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2828 #define IAM_WRITER_IPIF(ipif) \ 2829 ((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2830 2831 /* 2832 * Grab ill locks in the proper order. The order is highest addressed 2833 * ill is locked first. 2834 */ 2835 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2836 { \ 2837 if ((ill_1) > (ill_2)) { \ 2838 if (ill_1 != NULL) \ 2839 mutex_enter(&(ill_1)->ill_lock); \ 2840 if (ill_2 != NULL) \ 2841 mutex_enter(&(ill_2)->ill_lock); \ 2842 } else { \ 2843 if (ill_2 != NULL) \ 2844 mutex_enter(&(ill_2)->ill_lock); \ 2845 if (ill_1 != NULL && ill_1 != ill_2) \ 2846 mutex_enter(&(ill_1)->ill_lock); \ 2847 } \ 2848 } 2849 2850 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2851 { \ 2852 if (ill_1 != NULL) \ 2853 mutex_exit(&(ill_1)->ill_lock); \ 2854 if (ill_2 != NULL && ill_2 != ill_1) \ 2855 mutex_exit(&(ill_2)->ill_lock); \ 2856 } 2857 2858 /* Get the other protocol instance ill */ 2859 #define ILL_OTHER(ill) \ 2860 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2861 (ill)->ill_phyint->phyint_illv6) 2862 2863 #define MATCH_V4_ONLY 0x1 2864 #define MATCH_V6_ONLY 0x2 2865 #define MATCH_ILL_ONLY 0x4 2866 2867 /* ioctl command info: Ioctl properties extracted and stored in here */ 2868 typedef struct cmd_info_s 2869 { 2870 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2871 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2872 sin_t *ci_sin; /* the sin struct passed down */ 2873 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2874 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2875 } cmd_info_t; 2876 2877 /* 2878 * List of AH and ESP IPsec acceleration capable ills 2879 */ 2880 typedef struct ipsec_capab_ill_s { 2881 uint_t ill_index; 2882 boolean_t ill_isv6; 2883 struct ipsec_capab_ill_s *next; 2884 } ipsec_capab_ill_t; 2885 2886 extern struct kmem_cache *ire_cache; 2887 2888 extern ipaddr_t ip_g_all_ones; 2889 2890 extern uint_t ip_loopback_mtu; /* /etc/system */ 2891 2892 extern vmem_t *ip_minor_arena; 2893 2894 /* 2895 * ip_g_forward controls IP forwarding. It takes two values: 2896 * 0: IP_FORWARD_NEVER Don't forward packets ever. 2897 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 2898 * 2899 * RFC1122 says there must be a configuration switch to control forwarding, 2900 * but that the default MUST be to not forward packets ever. Implicit 2901 * control based on configuration of multiple interfaces MUST NOT be 2902 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 2903 * and, in fact, it was the default. That capability is now provided in the 2904 * /etc/rc2.d/S69inet script. 2905 */ 2906 2907 #define ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value 2908 #define ips_ip_g_resp_to_echo_bcast ips_param_arr[1].ip_param_value 2909 #define ips_ip_g_resp_to_echo_mcast ips_param_arr[2].ip_param_value 2910 #define ips_ip_g_resp_to_timestamp ips_param_arr[3].ip_param_value 2911 #define ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value 2912 #define ips_ip_g_send_redirects ips_param_arr[5].ip_param_value 2913 #define ips_ip_g_forward_directed_bcast ips_param_arr[6].ip_param_value 2914 #define ips_ip_debug ips_param_arr[7].ip_param_value 2915 #define ips_ip_mrtdebug ips_param_arr[8].ip_param_value 2916 #define ips_ip_timer_interval ips_param_arr[9].ip_param_value 2917 #define ips_ip_ire_arp_interval ips_param_arr[10].ip_param_value 2918 #define ips_ip_ire_redir_interval ips_param_arr[11].ip_param_value 2919 #define ips_ip_def_ttl ips_param_arr[12].ip_param_value 2920 #define ips_ip_forward_src_routed ips_param_arr[13].ip_param_value 2921 #define ips_ip_wroff_extra ips_param_arr[14].ip_param_value 2922 #define ips_ip_ire_pathmtu_interval ips_param_arr[15].ip_param_value 2923 #define ips_ip_icmp_return ips_param_arr[16].ip_param_value 2924 #define ips_ip_path_mtu_discovery ips_param_arr[17].ip_param_value 2925 #define ips_ip_ignore_delete_time ips_param_arr[18].ip_param_value 2926 #define ips_ip_ignore_redirect ips_param_arr[19].ip_param_value 2927 #define ips_ip_output_queue ips_param_arr[20].ip_param_value 2928 #define ips_ip_broadcast_ttl ips_param_arr[21].ip_param_value 2929 #define ips_ip_icmp_err_interval ips_param_arr[22].ip_param_value 2930 #define ips_ip_icmp_err_burst ips_param_arr[23].ip_param_value 2931 #define ips_ip_reass_queue_bytes ips_param_arr[24].ip_param_value 2932 #define ips_ip_strict_dst_multihoming ips_param_arr[25].ip_param_value 2933 #define ips_ip_addrs_per_if ips_param_arr[26].ip_param_value 2934 #define ips_ipsec_override_persocket_policy ips_param_arr[27].ip_param_value 2935 #define ips_icmp_accept_clear_messages ips_param_arr[28].ip_param_value 2936 #define ips_igmp_accept_clear_messages ips_param_arr[29].ip_param_value 2937 2938 /* IPv6 configuration knobs */ 2939 #define ips_delay_first_probe_time ips_param_arr[30].ip_param_value 2940 #define ips_max_unicast_solicit ips_param_arr[31].ip_param_value 2941 #define ips_ipv6_def_hops ips_param_arr[32].ip_param_value 2942 #define ips_ipv6_icmp_return ips_param_arr[33].ip_param_value 2943 #define ips_ipv6_forward_src_routed ips_param_arr[34].ip_param_value 2944 #define ips_ipv6_resp_echo_mcast ips_param_arr[35].ip_param_value 2945 #define ips_ipv6_send_redirects ips_param_arr[36].ip_param_value 2946 #define ips_ipv6_ignore_redirect ips_param_arr[37].ip_param_value 2947 #define ips_ipv6_strict_dst_multihoming ips_param_arr[38].ip_param_value 2948 #define ips_ip_ire_reclaim_fraction ips_param_arr[39].ip_param_value 2949 #define ips_ipsec_policy_log_interval ips_param_arr[40].ip_param_value 2950 #define ips_pim_accept_clear_messages ips_param_arr[41].ip_param_value 2951 #define ips_ip_ndp_unsolicit_interval ips_param_arr[42].ip_param_value 2952 #define ips_ip_ndp_unsolicit_count ips_param_arr[43].ip_param_value 2953 #define ips_ipv6_ignore_home_address_opt ips_param_arr[44].ip_param_value 2954 #define ips_ip_policy_mask ips_param_arr[45].ip_param_value 2955 #define ips_ip_multirt_resolution_interval ips_param_arr[46].ip_param_value 2956 #define ips_ip_multirt_ttl ips_param_arr[47].ip_param_value 2957 #define ips_ip_multidata_outbound ips_param_arr[48].ip_param_value 2958 #define ips_ip_ndp_defense_interval ips_param_arr[49].ip_param_value 2959 #define ips_ip_max_temp_idle ips_param_arr[50].ip_param_value 2960 #define ips_ip_max_temp_defend ips_param_arr[51].ip_param_value 2961 #define ips_ip_max_defend ips_param_arr[52].ip_param_value 2962 #define ips_ip_defend_interval ips_param_arr[53].ip_param_value 2963 #define ips_ip_dup_recovery ips_param_arr[54].ip_param_value 2964 #define ips_ip_restrict_interzone_loopback ips_param_arr[55].ip_param_value 2965 #define ips_ip_lso_outbound ips_param_arr[56].ip_param_value 2966 #define ips_ipv6_drop_inbound_icmpv6 ips_param_arr[57].ip_param_value 2967 2968 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2969 #ifdef ZC_TEST 2970 extern int noswcksum; 2971 #endif 2972 2973 extern char ipif_loopback_name[]; 2974 2975 extern nv_t *ire_nv_tbl; 2976 2977 extern struct module_info ip_mod_info; 2978 2979 #define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \ 2980 ((ipst)->ips_ip4_physical_in_event.he_interested) 2981 #define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \ 2982 ((ipst)->ips_ip6_physical_in_event.he_interested) 2983 #define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \ 2984 ((ipst)->ips_ip4_physical_out_event.he_interested) 2985 #define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \ 2986 ((ipst)->ips_ip6_physical_out_event.he_interested) 2987 #define HOOKS4_INTERESTED_FORWARDING(ipst) \ 2988 ((ipst)->ips_ip4_forwarding_event.he_interested) 2989 #define HOOKS6_INTERESTED_FORWARDING(ipst) \ 2990 ((ipst)->ips_ip6_forwarding_event.he_interested) 2991 #define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \ 2992 ((ipst)->ips_ip4_loopback_in_event.he_interested) 2993 #define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \ 2994 ((ipst)->ips_ip6_loopback_in_event.he_interested) 2995 #define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \ 2996 ((ipst)->ips_ip4_loopback_out_event.he_interested) 2997 #define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \ 2998 ((ipst)->ips_ip6_loopback_out_event.he_interested) 2999 3000 /* 3001 * Hooks marcos used inside of ip 3002 */ 3003 #define IPHA_VHL ipha_version_and_hdr_length 3004 3005 #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, ipst) \ 3006 \ 3007 if ((_hook).he_interested) { \ 3008 hook_pkt_event_t info; \ 3009 \ 3010 _NOTE(CONSTCOND) \ 3011 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3012 \ 3013 _NOTE(CONSTCOND) \ 3014 if ((_ilp != NULL) && \ 3015 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 3016 info.hpe_ifp = (phy_if_t)((ill_t *) \ 3017 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 3018 else \ 3019 info.hpe_ifp = 0; \ 3020 \ 3021 _NOTE(CONSTCOND) \ 3022 if ((_olp != NULL) && \ 3023 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3024 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3025 (_olp))->ill_phyint->phyint_hook_ifindex; \ 3026 else \ 3027 info.hpe_ofp = 0; \ 3028 info.hpe_hdr = _iph; \ 3029 info.hpe_mp = &(_fm); \ 3030 info.hpe_mb = _m; \ 3031 if (hook_run(_event, (hook_data_t)&info, \ 3032 ipst->ips_netstack) != 0) { \ 3033 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3034 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3035 if (_fm != NULL) { \ 3036 freemsg(_fm); \ 3037 _fm = NULL; \ 3038 } \ 3039 _iph = NULL; \ 3040 _m = NULL; \ 3041 } else { \ 3042 _iph = info.hpe_hdr; \ 3043 _m = info.hpe_mb; \ 3044 } \ 3045 } 3046 3047 #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, ipst) \ 3048 \ 3049 if ((_hook).he_interested) { \ 3050 hook_pkt_event_t info; \ 3051 \ 3052 _NOTE(CONSTCOND) \ 3053 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3054 \ 3055 _NOTE(CONSTCOND) \ 3056 if ((_ilp != NULL) && \ 3057 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 3058 info.hpe_ifp = (phy_if_t)((ill_t *) \ 3059 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 3060 else \ 3061 info.hpe_ifp = 0; \ 3062 \ 3063 _NOTE(CONSTCOND) \ 3064 if ((_olp != NULL) && \ 3065 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3066 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3067 (_olp))->ill_phyint->phyint_hook_ifindex; \ 3068 else \ 3069 info.hpe_ofp = 0; \ 3070 info.hpe_hdr = _iph; \ 3071 info.hpe_mp = &(_fm); \ 3072 info.hpe_mb = _m; \ 3073 if (hook_run(_event, (hook_data_t)&info, \ 3074 ipst->ips_netstack) != 0) { \ 3075 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3076 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3077 if (_fm != NULL) { \ 3078 freemsg(_fm); \ 3079 _fm = NULL; \ 3080 } \ 3081 _iph = NULL; \ 3082 _m = NULL; \ 3083 } else { \ 3084 _iph = info.hpe_hdr; \ 3085 _m = info.hpe_mb; \ 3086 } \ 3087 } 3088 3089 /* 3090 * Network byte order macros 3091 */ 3092 #ifdef _BIG_ENDIAN 3093 #define N_IN_CLASSD_NET IN_CLASSD_NET 3094 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 3095 #else /* _BIG_ENDIAN */ 3096 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 3097 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 3098 #endif /* _BIG_ENDIAN */ 3099 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 3100 3101 #define IP_LOOPBACK_ADDR(addr) \ 3102 ((ntohl(addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 3103 3104 #ifdef DEBUG 3105 /* IPsec HW acceleration debugging support */ 3106 3107 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 3108 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 3109 #define IPSECHW_PKT 0x0004 /* general packet flow */ 3110 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 3111 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 3112 3113 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 3114 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 3115 3116 extern uint32_t ipsechw_debug; 3117 #else 3118 #define IPSECHW_DEBUG(f, x) {} 3119 #define IPSECHW_CALL(f, r, x) {} 3120 #endif 3121 3122 extern int ip_debug; 3123 3124 #ifdef IP_DEBUG 3125 #include <sys/debug.h> 3126 #include <sys/promif.h> 3127 3128 #define ip0dbg(a) printf a 3129 #define ip1dbg(a) if (ip_debug > 2) printf a 3130 #define ip2dbg(a) if (ip_debug > 3) printf a 3131 #define ip3dbg(a) if (ip_debug > 4) printf a 3132 #else 3133 #define ip0dbg(a) /* */ 3134 #define ip1dbg(a) /* */ 3135 #define ip2dbg(a) /* */ 3136 #define ip3dbg(a) /* */ 3137 #endif /* IP_DEBUG */ 3138 3139 /* Default MAC-layer address string length for mac_colon_addr */ 3140 #define MAC_STR_LEN 128 3141 3142 struct ipsec_out_s; 3143 3144 struct mac_header_info_s; 3145 3146 extern boolean_t ip_assign_ifindex(uint_t *, ip_stack_t *); 3147 extern const char *dlpi_prim_str(int); 3148 extern const char *dlpi_err_str(int); 3149 extern void ill_frag_timer(void *); 3150 extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *); 3151 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 3152 extern void ill_frag_timer_start(ill_t *); 3153 extern void ill_nic_info_dispatch(ill_t *); 3154 extern void ill_nic_info_plumb(ill_t *, boolean_t); 3155 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 3156 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 3157 extern char *ip_dot_addr(ipaddr_t, char *); 3158 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); 3159 extern void ip_lwput(queue_t *, mblk_t *); 3160 extern boolean_t icmp_err_rate_limit(ip_stack_t *); 3161 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t, 3162 ip_stack_t *); 3163 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t, 3164 ip_stack_t *); 3165 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *); 3166 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 3167 extern int ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t, 3168 ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t, 3169 boolean_t); 3170 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 3171 extern int ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t, 3172 boolean_t, boolean_t, boolean_t); 3173 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 3174 extern int ip_close(queue_t *, int); 3175 extern uint16_t ip_csum_hdr(ipha_t *); 3176 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t, 3177 ip_stack_t *); 3178 extern void ip_ire_g_fini(void); 3179 extern void ip_ire_g_init(void); 3180 extern void ip_ire_fini(ip_stack_t *); 3181 extern void ip_ire_init(ip_stack_t *); 3182 extern int ip_open(queue_t *, dev_t *, int, int, cred_t *); 3183 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 3184 size_t); 3185 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 3186 int, int, mblk_t *); 3187 extern void ip_rput(queue_t *, mblk_t *); 3188 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, 3189 struct mac_header_info_s *); 3190 extern void ip_rput_dlpi(queue_t *, mblk_t *); 3191 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 3192 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 3193 3194 extern int ip_snmpmod_close(queue_t *); 3195 extern void ip_snmpmod_wput(queue_t *, mblk_t *); 3196 extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *, 3197 mib2_ipIfStatsEntry_t *); 3198 extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *, 3199 mib2_ipv6IfIcmpEntry_t *); 3200 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3201 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3202 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 3203 extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *); 3204 extern void ip_setqinfo(queue_t *, minor_t, boolean_t, ip_stack_t *); 3205 extern void ip_trash_ire_reclaim(void *); 3206 extern void ip_trash_timer_expire(void *); 3207 extern void ip_wput(queue_t *, mblk_t *); 3208 extern void ip_output(void *, mblk_t *, void *, int); 3209 extern void ip_output_options(void *, mblk_t *, void *, int, 3210 ip_opt_info_t *); 3211 extern void ip_wput_md(queue_t *, mblk_t *, conn_t *); 3212 3213 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, 3214 zoneid_t); 3215 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 3216 int, zoneid_t); 3217 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); 3218 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 3219 extern void ip_wsrv(queue_t *); 3220 extern char *ip_nv_lookup(nv_t *, int); 3221 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3222 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3223 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *); 3224 extern ipaddr_t ip_net_mask(ipaddr_t); 3225 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 3226 zoneid_t, ip_stack_t *); 3227 extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, 3228 boolean_t); 3229 extern int ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *); 3230 3231 extern struct qinit rinit_ipv6; 3232 extern struct qinit winit_ipv6; 3233 extern struct qinit rinit_tcp; 3234 extern struct qinit rinit_tcp6; 3235 extern struct qinit winit_tcp; 3236 extern struct qinit rinit_acceptor_tcp; 3237 extern struct qinit winit_acceptor_tcp; 3238 3239 extern void conn_drain_insert(conn_t *connp); 3240 extern int conn_ipsec_length(conn_t *connp); 3241 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 3242 ire_t *); 3243 extern ipaddr_t ip_get_dst(ipha_t *); 3244 extern int ipsec_out_extra_length(mblk_t *); 3245 extern int ipsec_in_extra_length(mblk_t *); 3246 extern mblk_t *ipsec_in_alloc(boolean_t, netstack_t *); 3247 extern boolean_t ipsec_in_is_secure(mblk_t *); 3248 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 3249 extern void ipsec_out_to_in(mblk_t *); 3250 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 3251 3252 extern void ire_cleanup(ire_t *); 3253 extern void ire_inactive(ire_t *); 3254 extern boolean_t irb_inactive(irb_t *); 3255 extern ire_t *ire_unlink(irb_t *); 3256 #ifdef IRE_DEBUG 3257 extern void ire_trace_ref(ire_t *ire); 3258 extern void ire_untrace_ref(ire_t *ire); 3259 extern void ire_thread_exit(ire_t *ire, caddr_t); 3260 #endif 3261 #ifdef ILL_DEBUG 3262 extern void ill_trace_cleanup(ill_t *); 3263 extern void ipif_trace_cleanup(ipif_t *); 3264 #endif 3265 3266 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *); 3267 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *); 3268 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *); 3269 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *); 3270 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 3271 3272 extern uint8_t ipoptp_next(ipoptp_t *); 3273 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 3274 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 3275 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t, 3276 ip_stack_t *); 3277 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 3278 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 3279 extern int ip_snmp_get(queue_t *q, mblk_t *mctl); 3280 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 3281 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3282 extern void ip_quiesce_conn(conn_t *); 3283 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3284 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 3285 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *); 3286 3287 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 3288 uint_t); 3289 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 3290 uint_t); 3291 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 3292 3293 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 3294 extern void conn_ioctl_cleanup(conn_t *); 3295 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 3296 extern ill_t *ip_newroute_get_dst_ill(ill_t *); 3297 3298 struct multidata_s; 3299 struct pdesc_s; 3300 3301 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 3302 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 3303 extern mblk_t *ip_lsoinfo_alloc(ill_lso_capab_t *); 3304 extern mblk_t *ip_lsoinfo_return(ire_t *, conn_t *, char *, 3305 ill_lso_capab_t *); 3306 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 3307 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 3308 const mblk_t *); 3309 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 3310 uint32_t, uint32_t, uint32_t, uint32_t); 3311 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 3312 uint_t); 3313 extern mblk_t *ip_unbind(queue_t *, mblk_t *); 3314 3315 extern phyint_t *phyint_lookup_group(char *, boolean_t, ip_stack_t *); 3316 extern phyint_t *phyint_lookup_group_ifindex(uint_t, ip_stack_t *); 3317 3318 extern void tnet_init(void); 3319 extern void tnet_fini(void); 3320 3321 /* Hooks for CGTP (multirt routes) filtering module */ 3322 #define CGTP_FILTER_REV_1 1 3323 #define CGTP_FILTER_REV_2 2 3324 #define CGTP_FILTER_REV CGTP_FILTER_REV_2 3325 3326 /* cfo_filter, cfo_filter_fp, cfo_filter_v6 hooks return values */ 3327 #define CGTP_IP_PKT_NOT_CGTP 0 3328 #define CGTP_IP_PKT_PREMIUM 1 3329 #define CGTP_IP_PKT_DUPLICATE 2 3330 3331 typedef struct cgtp_filter_ops { 3332 int cfo_filter_rev; 3333 int (*cfo_change_state)(int); 3334 int (*cfo_add_dest_v4)(ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t); 3335 int (*cfo_del_dest_v4)(ipaddr_t, ipaddr_t); 3336 int (*cfo_add_dest_v6)(in6_addr_t *, in6_addr_t *, in6_addr_t *, 3337 in6_addr_t *); 3338 int (*cfo_del_dest_v6)(in6_addr_t *, in6_addr_t *); 3339 int (*cfo_filter)(queue_t *, mblk_t *); 3340 int (*cfo_filter_fp)(queue_t *, mblk_t *); 3341 int (*cfo_filter_v6)(queue_t *, ip6_t *, ip6_frag_t *); 3342 } cgtp_filter_ops_t; 3343 3344 #define CGTP_MCAST_SUCCESS 1 3345 3346 /* 3347 * The separate CGTP module needs these as globals. It uses the first 3348 * to unregister (since there is no ip_cgtp_filter_unregister() function) 3349 * and it uses the second one to verify that the filter has been 3350 * turned off (a ip_cgtp_filter_active() function would be good for that.) 3351 */ 3352 extern cgtp_filter_ops_t *ip_cgtp_filter_ops; 3353 extern boolean_t ip_cgtp_filter; 3354 3355 extern int ip_cgtp_filter_supported(void); 3356 extern int ip_cgtp_filter_register(cgtp_filter_ops_t *); 3357 3358 /* Flags for ire_multirt_lookup() */ 3359 3360 #define MULTIRT_USESTAMP 0x0001 3361 #define MULTIRT_SETSTAMP 0x0002 3362 #define MULTIRT_CACHEGW 0x0004 3363 3364 /* Debug stuff for multirt route resolution. */ 3365 #if defined(DEBUG) && !defined(__lint) 3366 /* Our "don't send, rather drop" flag. */ 3367 #define MULTIRT_DEBUG_FLAG 0x8000 3368 3369 #define MULTIRT_TRACE(x) ip2dbg(x) 3370 3371 #define MULTIRT_DEBUG_TAG(mblk) \ 3372 do { \ 3373 ASSERT(mblk != NULL); \ 3374 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3375 __FILE__, __LINE__, \ 3376 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3377 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3378 } while (0) 3379 3380 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3381 do { \ 3382 ASSERT(mblk != NULL); \ 3383 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3384 __FILE__, __LINE__, \ 3385 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3386 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3387 } while (0) 3388 3389 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3390 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3391 #else 3392 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3393 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3394 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3395 #endif 3396 3397 /* 3398 * Per-ILL Multidata Transmit capabilities. 3399 */ 3400 struct ill_mdt_capab_s { 3401 uint_t ill_mdt_version; /* interface version */ 3402 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3403 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3404 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3405 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3406 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3407 }; 3408 3409 struct ill_hcksum_capab_s { 3410 uint_t ill_hcksum_version; /* interface version */ 3411 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3412 }; 3413 3414 struct ill_zerocopy_capab_s { 3415 uint_t ill_zerocopy_version; /* interface version */ 3416 uint_t ill_zerocopy_flags; /* capabilities */ 3417 }; 3418 3419 struct ill_lso_capab_s { 3420 uint_t ill_lso_version; /* interface version */ 3421 uint_t ill_lso_on; /* on/off switch for LSO on this ILL */ 3422 uint_t ill_lso_flags; /* capabilities */ 3423 uint_t ill_lso_max; /* maximum size of payload */ 3424 }; 3425 3426 /* Possible ill_states */ 3427 #define ILL_RING_INPROC 3 /* Being assigned to squeue */ 3428 #define ILL_RING_INUSE 2 /* Already Assigned to Rx Ring */ 3429 #define ILL_RING_BEING_FREED 1 /* Being Unassigned */ 3430 #define ILL_RING_FREE 0 /* Available to be assigned to Ring */ 3431 3432 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3433 #define ILL_POLLING 0x01 /* Polling in use */ 3434 3435 /* 3436 * These functions pointer types are exported by the mac/dls layer. 3437 * we need to duplicate the definitions here because we cannot 3438 * include mac/dls header files here. 3439 */ 3440 typedef void (*ip_mac_blank_t)(void *, time_t, uint_t); 3441 typedef void (*ip_dld_tx_t)(void *, mblk_t *); 3442 3443 typedef void (*ip_dls_chg_soft_ring_t)(void *, int); 3444 typedef void (*ip_dls_bind_t)(void *, processorid_t); 3445 typedef void (*ip_dls_unbind_t)(void *); 3446 3447 struct ill_rx_ring { 3448 ip_mac_blank_t rr_blank; /* Driver interrupt blanking func */ 3449 void *rr_handle; /* Handle for Rx ring */ 3450 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3451 ill_t *rr_ill; /* back pointer to ill */ 3452 clock_t rr_poll_time; /* Last lbolt polling was used */ 3453 uint32_t rr_poll_state; /* polling state flags */ 3454 uint32_t rr_max_blank_time; /* Max interrupt blank */ 3455 uint32_t rr_min_blank_time; /* Min interrupt blank */ 3456 uint32_t rr_max_pkt_cnt; /* Max pkts before interrupt */ 3457 uint32_t rr_min_pkt_cnt; /* Mix pkts before interrupt */ 3458 uint32_t rr_normal_blank_time; /* Normal intr freq */ 3459 uint32_t rr_normal_pkt_cnt; /* Normal intr pkt cnt */ 3460 uint32_t rr_ring_state; /* State of this ring */ 3461 }; 3462 3463 struct ill_dls_capab_s { 3464 ip_dld_tx_t ill_tx; /* Driver Tx routine */ 3465 void *ill_tx_handle; /* Driver Tx handle */ 3466 ip_dls_chg_soft_ring_t ill_dls_change_status; 3467 /* change soft ring fanout */ 3468 ip_dls_bind_t ill_dls_bind; /* to add CPU affinity */ 3469 ip_dls_unbind_t ill_dls_unbind; /* remove CPU affinity */ 3470 ill_rx_ring_t *ill_ring_tbl; /* Ring to Sqp mapping table */ 3471 uint_t ill_dls_soft_ring_cnt; /* Number of soft ring */ 3472 conn_t *ill_unbind_conn; /* Conn used during unplumb */ 3473 }; 3474 3475 /* 3476 * This message is sent by an upper-layer protocol to tell IP that it knows all 3477 * about labels and will construct them itself. IP takes the slow path and 3478 * recomputes the label on every packet when this isn't true. 3479 */ 3480 #define IP_ULP_OUT_LABELED (('O' << 8) + 'L') 3481 typedef struct out_labeled_s { 3482 uint32_t out_labeled_type; /* OUT_LABELED */ 3483 queue_t *out_qnext; /* intermediate detection */ 3484 } out_labeled_t; 3485 3486 /* 3487 * IP squeues exports 3488 */ 3489 extern int ip_squeue_profile; 3490 extern int ip_squeue_bind; 3491 extern boolean_t ip_squeue_fanout; 3492 extern boolean_t ip_squeue_soft_ring; 3493 extern uint_t ip_threads_per_cpu; 3494 extern uint_t ip_squeues_per_cpu; 3495 extern uint_t ip_soft_rings_cnt; 3496 3497 typedef struct squeue_set_s { 3498 kmutex_t sqs_lock; 3499 struct squeue_s **sqs_list; 3500 int sqs_size; 3501 int sqs_max_size; 3502 processorid_t sqs_bind; 3503 } squeue_set_t; 3504 3505 #define IP_SQUEUE_GET(hint) \ 3506 ((!ip_squeue_fanout) ? (CPU->cpu_squeue_set->sqs_list[0]) : \ 3507 ip_squeue_random(hint)) 3508 3509 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t); 3510 3511 extern void ip_squeue_init(void (*)(squeue_t *)); 3512 extern squeue_t *ip_squeue_random(uint_t); 3513 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3514 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 3515 extern void ip_squeue_clean_all(ill_t *); 3516 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *, 3517 mblk_t *, struct mac_header_info_s *); 3518 3519 extern void ip_resume_tcp_bind(void *, mblk_t *, void *); 3520 extern void tcp_wput(queue_t *, mblk_t *); 3521 3522 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3523 struct ip6_mtuinfo *, netstack_t *); 3524 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3525 3526 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3527 3528 /* 3529 * Squeue tags. Tags only need to be unique when the callback function is the 3530 * same to distinguish between different calls, but we use unique tags for 3531 * convenience anyway. 3532 */ 3533 #define SQTAG_IP_INPUT 1 3534 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3535 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3536 #define SQTAG_IP_TCP_INPUT 4 3537 #define SQTAG_IP6_TCP_INPUT 5 3538 #define SQTAG_IP_TCP_CLOSE 6 3539 #define SQTAG_TCP_OUTPUT 7 3540 #define SQTAG_TCP_TIMER 8 3541 #define SQTAG_TCP_TIMEWAIT 9 3542 #define SQTAG_TCP_ACCEPT_FINISH 10 3543 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3544 #define SQTAG_TCP_ACCEPT_PENDING 12 3545 #define SQTAG_TCP_LISTEN_DISCON 13 3546 #define SQTAG_TCP_CONN_REQ_1 14 3547 #define SQTAG_TCP_EAGER_BLOWOFF 15 3548 #define SQTAG_TCP_EAGER_CLEANUP 16 3549 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3550 #define SQTAG_TCP_CONN_IND 18 3551 #define SQTAG_TCP_RSRV 19 3552 #define SQTAG_TCP_ABORT_BUCKET 20 3553 #define SQTAG_TCP_REINPUT 21 3554 #define SQTAG_TCP_REINPUT_EAGER 22 3555 #define SQTAG_TCP_INPUT_MCTL 23 3556 #define SQTAG_TCP_RPUTOTHER 24 3557 #define SQTAG_IP_PROTO_AGAIN 25 3558 #define SQTAG_IP_FANOUT_TCP 26 3559 #define SQTAG_IPSQ_CLEAN_RING 27 3560 #define SQTAG_TCP_WPUT_OTHER 28 3561 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3562 #define SQTAG_TCP_SEND_PENDING 30 3563 #define SQTAG_BIND_RETRY 31 3564 #define SQTAG_UDP_FANOUT 32 3565 #define SQTAG_UDP_INPUT 33 3566 #define SQTAG_UDP_WPUT 34 3567 #define SQTAG_UDP_OUTPUT 35 3568 #define SQTAG_TCP_KSSL_INPUT 36 3569 #define SQTAG_TCP_DROP_Q0 37 3570 #define SQTAG_TCP_CONN_REQ_2 38 3571 3572 #define NOT_OVER_IP(ip_wq) \ 3573 (ip_wq->q_next != NULL || \ 3574 (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || \ 3575 strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname, \ 3576 IP_MOD_NAME) != 0 || \ 3577 ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) 3578 3579 #endif /* _KERNEL */ 3580 3581 #ifdef __cplusplus 3582 } 3583 #endif 3584 3585 #endif /* _INET_IP_H */ 3586