1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * ZFS volume emulation driver. 28 * 29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. 30 * Volumes are accessed through the symbolic links named: 31 * 32 * /dev/zvol/dsk/<pool_name>/<dataset_name> 33 * /dev/zvol/rdsk/<pool_name>/<dataset_name> 34 * 35 * These links are created by the ZFS-specific devfsadm link generator. 36 * Volumes are persistent through reboot. No user command needs to be 37 * run before opening and using a device. 38 */ 39 40 #include <sys/types.h> 41 #include <sys/param.h> 42 #include <sys/errno.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/modctl.h> 46 #include <sys/open.h> 47 #include <sys/kmem.h> 48 #include <sys/conf.h> 49 #include <sys/cmn_err.h> 50 #include <sys/stat.h> 51 #include <sys/zap.h> 52 #include <sys/spa.h> 53 #include <sys/zio.h> 54 #include <sys/dmu_traverse.h> 55 #include <sys/dnode.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_prop.h> 58 #include <sys/dkio.h> 59 #include <sys/efi_partition.h> 60 #include <sys/byteorder.h> 61 #include <sys/pathname.h> 62 #include <sys/ddi.h> 63 #include <sys/sunddi.h> 64 #include <sys/crc32.h> 65 #include <sys/dirent.h> 66 #include <sys/policy.h> 67 #include <sys/fs/zfs.h> 68 #include <sys/zfs_ioctl.h> 69 #include <sys/mkdev.h> 70 #include <sys/zil.h> 71 #include <sys/refcount.h> 72 #include <sys/zfs_znode.h> 73 #include <sys/zfs_rlock.h> 74 #include <sys/vdev_disk.h> 75 #include <sys/vdev_impl.h> 76 #include <sys/zvol.h> 77 #include <sys/dumphdr.h> 78 79 #include "zfs_namecheck.h" 80 81 static void *zvol_state; 82 83 #define ZVOL_DUMPSIZE "dumpsize" 84 85 /* 86 * This lock protects the zvol_state structure from being modified 87 * while it's being used, e.g. an open that comes in before a create 88 * finishes. It also protects temporary opens of the dataset so that, 89 * e.g., an open doesn't get a spurious EBUSY. 90 */ 91 static kmutex_t zvol_state_lock; 92 static uint32_t zvol_minors; 93 94 #define NUM_EXTENTS ((SPA_MAXBLOCKSIZE) / sizeof (zvol_extent_t)) 95 96 typedef struct zvol_extent { 97 dva_t ze_dva; /* dva associated with this extent */ 98 uint64_t ze_stride; /* extent stride */ 99 uint64_t ze_size; /* number of blocks in extent */ 100 } zvol_extent_t; 101 102 /* 103 * The list of extents associated with the dump device 104 */ 105 typedef struct zvol_ext_list { 106 zvol_extent_t zl_extents[NUM_EXTENTS]; 107 struct zvol_ext_list *zl_next; 108 } zvol_ext_list_t; 109 110 /* 111 * The in-core state of each volume. 112 */ 113 typedef struct zvol_state { 114 char zv_name[MAXPATHLEN]; /* pool/dd name */ 115 uint64_t zv_volsize; /* amount of space we advertise */ 116 uint64_t zv_volblocksize; /* volume block size */ 117 minor_t zv_minor; /* minor number */ 118 uint8_t zv_min_bs; /* minimum addressable block shift */ 119 uint8_t zv_flags; /* readonly; dumpified */ 120 objset_t *zv_objset; /* objset handle */ 121 uint32_t zv_mode; /* DS_MODE_* flags at open time */ 122 uint32_t zv_open_count[OTYPCNT]; /* open counts */ 123 uint32_t zv_total_opens; /* total open count */ 124 zilog_t *zv_zilog; /* ZIL handle */ 125 zvol_ext_list_t *zv_list; /* List of extents for dump */ 126 uint64_t zv_txg_assign; /* txg to assign during ZIL replay */ 127 znode_t zv_znode; /* for range locking */ 128 } zvol_state_t; 129 130 /* 131 * zvol specific flags 132 */ 133 #define ZVOL_RDONLY 0x1 134 #define ZVOL_DUMPIFIED 0x2 135 #define ZVOL_EXCL 0x4 136 137 /* 138 * zvol maximum transfer in one DMU tx. 139 */ 140 int zvol_maxphys = DMU_MAX_ACCESS/2; 141 142 extern int zfs_set_prop_nvlist(const char *, nvlist_t *); 143 static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio); 144 static int zvol_dumpify(zvol_state_t *zv); 145 static int zvol_dump_fini(zvol_state_t *zv); 146 static int zvol_dump_init(zvol_state_t *zv, boolean_t resize); 147 148 static void 149 zvol_size_changed(zvol_state_t *zv, major_t maj) 150 { 151 dev_t dev = makedevice(maj, zv->zv_minor); 152 153 VERIFY(ddi_prop_update_int64(dev, zfs_dip, 154 "Size", zv->zv_volsize) == DDI_SUCCESS); 155 VERIFY(ddi_prop_update_int64(dev, zfs_dip, 156 "Nblocks", lbtodb(zv->zv_volsize)) == DDI_SUCCESS); 157 158 /* Notify specfs to invalidate the cached size */ 159 spec_size_invalidate(dev, VBLK); 160 spec_size_invalidate(dev, VCHR); 161 } 162 163 int 164 zvol_check_volsize(uint64_t volsize, uint64_t blocksize) 165 { 166 if (volsize == 0) 167 return (EINVAL); 168 169 if (volsize % blocksize != 0) 170 return (EINVAL); 171 172 #ifdef _ILP32 173 if (volsize - 1 > SPEC_MAXOFFSET_T) 174 return (EOVERFLOW); 175 #endif 176 return (0); 177 } 178 179 int 180 zvol_check_volblocksize(uint64_t volblocksize) 181 { 182 if (volblocksize < SPA_MINBLOCKSIZE || 183 volblocksize > SPA_MAXBLOCKSIZE || 184 !ISP2(volblocksize)) 185 return (EDOM); 186 187 return (0); 188 } 189 190 static void 191 zvol_readonly_changed_cb(void *arg, uint64_t newval) 192 { 193 zvol_state_t *zv = arg; 194 195 if (newval) 196 zv->zv_flags |= ZVOL_RDONLY; 197 else 198 zv->zv_flags &= ~ZVOL_RDONLY; 199 } 200 201 int 202 zvol_get_stats(objset_t *os, nvlist_t *nv) 203 { 204 int error; 205 dmu_object_info_t doi; 206 uint64_t val; 207 208 209 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); 210 if (error) 211 return (error); 212 213 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); 214 215 error = dmu_object_info(os, ZVOL_OBJ, &doi); 216 217 if (error == 0) { 218 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, 219 doi.doi_data_block_size); 220 } 221 222 return (error); 223 } 224 225 /* 226 * Find a free minor number. 227 */ 228 static minor_t 229 zvol_minor_alloc(void) 230 { 231 minor_t minor; 232 233 ASSERT(MUTEX_HELD(&zvol_state_lock)); 234 235 for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++) 236 if (ddi_get_soft_state(zvol_state, minor) == NULL) 237 return (minor); 238 239 return (0); 240 } 241 242 static zvol_state_t * 243 zvol_minor_lookup(const char *name) 244 { 245 minor_t minor; 246 zvol_state_t *zv; 247 248 ASSERT(MUTEX_HELD(&zvol_state_lock)); 249 250 for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++) { 251 zv = ddi_get_soft_state(zvol_state, minor); 252 if (zv == NULL) 253 continue; 254 if (strcmp(zv->zv_name, name) == 0) 255 break; 256 } 257 258 return (zv); 259 } 260 261 void 262 zvol_init_extent(zvol_extent_t *ze, blkptr_t *bp) 263 { 264 ze->ze_dva = bp->blk_dva[0]; /* structure assignment */ 265 ze->ze_stride = 0; 266 ze->ze_size = 1; 267 } 268 269 /* extent mapping arg */ 270 struct maparg { 271 zvol_ext_list_t *ma_list; 272 zvol_extent_t *ma_extent; 273 int ma_gang; 274 }; 275 276 /*ARGSUSED*/ 277 static int 278 zvol_map_block(traverse_blk_cache_t *bc, spa_t *spa, void *arg) 279 { 280 zbookmark_t *zb = &bc->bc_bookmark; 281 blkptr_t *bp = &bc->bc_blkptr; 282 void *data = bc->bc_data; 283 dnode_phys_t *dnp = bc->bc_dnode; 284 struct maparg *ma = (struct maparg *)arg; 285 uint64_t stride; 286 287 /* If there is an error, then keep trying to make progress */ 288 if (bc->bc_errno) 289 return (ERESTART); 290 291 #ifdef ZFS_DEBUG 292 if (zb->zb_level == -1) { 293 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_OBJSET); 294 ASSERT3U(BP_GET_LEVEL(bp), ==, 0); 295 } else { 296 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 297 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 298 } 299 300 if (zb->zb_level > 0) { 301 uint64_t fill = 0; 302 blkptr_t *bpx, *bpend; 303 304 for (bpx = data, bpend = bpx + BP_GET_LSIZE(bp) / sizeof (*bpx); 305 bpx < bpend; bpx++) { 306 if (bpx->blk_birth != 0) { 307 fill += bpx->blk_fill; 308 } else { 309 ASSERT(bpx->blk_fill == 0); 310 } 311 } 312 ASSERT3U(fill, ==, bp->blk_fill); 313 } 314 315 if (zb->zb_level == 0 && dnp->dn_type == DMU_OT_DNODE) { 316 uint64_t fill = 0; 317 dnode_phys_t *dnx, *dnend; 318 319 for (dnx = data, dnend = dnx + (BP_GET_LSIZE(bp)>>DNODE_SHIFT); 320 dnx < dnend; dnx++) { 321 if (dnx->dn_type != DMU_OT_NONE) 322 fill++; 323 } 324 ASSERT3U(fill, ==, bp->blk_fill); 325 } 326 #endif 327 328 if (zb->zb_level || dnp->dn_type == DMU_OT_DNODE) 329 return (0); 330 331 /* Abort immediately if we have encountered gang blocks */ 332 if (BP_IS_GANG(bp)) { 333 ma->ma_gang++; 334 return (EINTR); 335 } 336 337 /* first time? */ 338 if (ma->ma_extent->ze_size == 0) { 339 zvol_init_extent(ma->ma_extent, bp); 340 return (0); 341 } 342 343 stride = (DVA_GET_OFFSET(&bp->blk_dva[0])) - 344 ((DVA_GET_OFFSET(&ma->ma_extent->ze_dva)) + 345 (ma->ma_extent->ze_size - 1) * (ma->ma_extent->ze_stride)); 346 if (DVA_GET_VDEV(BP_IDENTITY(bp)) == 347 DVA_GET_VDEV(&ma->ma_extent->ze_dva)) { 348 if (ma->ma_extent->ze_stride == 0) { 349 /* second block in this extent */ 350 ma->ma_extent->ze_stride = stride; 351 ma->ma_extent->ze_size++; 352 return (0); 353 } else if (ma->ma_extent->ze_stride == stride) { 354 /* 355 * the block we allocated has the same 356 * stride 357 */ 358 ma->ma_extent->ze_size++; 359 return (0); 360 } 361 } 362 363 /* 364 * dtrace -n 'zfs-dprintf 365 * /stringof(arg0) == "zvol.c"/ 366 * { 367 * printf("%s: %s", stringof(arg1), stringof(arg3)) 368 * } ' 369 */ 370 dprintf("ma_extent 0x%lx mrstride 0x%lx stride %lx\n", 371 ma->ma_extent->ze_size, ma->ma_extent->ze_stride, stride); 372 dprintf_bp(bp, "%s", "next blkptr:"); 373 /* start a new extent */ 374 if (ma->ma_extent == &ma->ma_list->zl_extents[NUM_EXTENTS - 1]) { 375 ma->ma_list->zl_next = kmem_zalloc(sizeof (zvol_ext_list_t), 376 KM_SLEEP); 377 ma->ma_list = ma->ma_list->zl_next; 378 ma->ma_extent = &ma->ma_list->zl_extents[0]; 379 } else { 380 ma->ma_extent++; 381 } 382 zvol_init_extent(ma->ma_extent, bp); 383 return (0); 384 } 385 386 /* ARGSUSED */ 387 void 388 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 389 { 390 zfs_creat_t *zct = arg; 391 nvlist_t *nvprops = zct->zct_props; 392 int error; 393 uint64_t volblocksize, volsize; 394 395 VERIFY(nvlist_lookup_uint64(nvprops, 396 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); 397 if (nvlist_lookup_uint64(nvprops, 398 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) 399 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); 400 401 /* 402 * These properties must be removed from the list so the generic 403 * property setting step won't apply to them. 404 */ 405 VERIFY(nvlist_remove_all(nvprops, 406 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); 407 (void) nvlist_remove_all(nvprops, 408 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); 409 410 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, 411 DMU_OT_NONE, 0, tx); 412 ASSERT(error == 0); 413 414 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, 415 DMU_OT_NONE, 0, tx); 416 ASSERT(error == 0); 417 418 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); 419 ASSERT(error == 0); 420 } 421 422 /* 423 * Replay a TX_WRITE ZIL transaction that didn't get committed 424 * after a system failure 425 */ 426 static int 427 zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap) 428 { 429 objset_t *os = zv->zv_objset; 430 char *data = (char *)(lr + 1); /* data follows lr_write_t */ 431 uint64_t off = lr->lr_offset; 432 uint64_t len = lr->lr_length; 433 dmu_tx_t *tx; 434 int error; 435 436 if (byteswap) 437 byteswap_uint64_array(lr, sizeof (*lr)); 438 439 tx = dmu_tx_create(os); 440 dmu_tx_hold_write(tx, ZVOL_OBJ, off, len); 441 error = dmu_tx_assign(tx, zv->zv_txg_assign); 442 if (error) { 443 dmu_tx_abort(tx); 444 } else { 445 dmu_write(os, ZVOL_OBJ, off, len, data, tx); 446 dmu_tx_commit(tx); 447 } 448 449 return (error); 450 } 451 452 /* ARGSUSED */ 453 static int 454 zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap) 455 { 456 return (ENOTSUP); 457 } 458 459 /* 460 * Callback vectors for replaying records. 461 * Only TX_WRITE is needed for zvol. 462 */ 463 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = { 464 zvol_replay_err, /* 0 no such transaction type */ 465 zvol_replay_err, /* TX_CREATE */ 466 zvol_replay_err, /* TX_MKDIR */ 467 zvol_replay_err, /* TX_MKXATTR */ 468 zvol_replay_err, /* TX_SYMLINK */ 469 zvol_replay_err, /* TX_REMOVE */ 470 zvol_replay_err, /* TX_RMDIR */ 471 zvol_replay_err, /* TX_LINK */ 472 zvol_replay_err, /* TX_RENAME */ 473 zvol_replay_write, /* TX_WRITE */ 474 zvol_replay_err, /* TX_TRUNCATE */ 475 zvol_replay_err, /* TX_SETATTR */ 476 zvol_replay_err, /* TX_ACL */ 477 }; 478 479 /* 480 * reconstruct dva that gets us to the desired offset (offset 481 * is in bytes) 482 */ 483 int 484 zvol_get_dva(zvol_state_t *zv, uint64_t offset, dva_t *dva) 485 { 486 zvol_ext_list_t *zl; 487 zvol_extent_t *ze; 488 int idx; 489 uint64_t tmp; 490 491 if ((zl = zv->zv_list) == NULL) 492 return (EIO); 493 idx = 0; 494 ze = &zl->zl_extents[0]; 495 while (offset >= ze->ze_size * zv->zv_volblocksize) { 496 offset -= ze->ze_size * zv->zv_volblocksize; 497 498 if (idx == NUM_EXTENTS - 1) { 499 /* we've reached the end of this array */ 500 ASSERT(zl->zl_next != NULL); 501 if (zl->zl_next == NULL) 502 return (-1); 503 zl = zl->zl_next; 504 ze = &zl->zl_extents[0]; 505 idx = 0; 506 } else { 507 ze++; 508 idx++; 509 } 510 } 511 DVA_SET_VDEV(dva, DVA_GET_VDEV(&ze->ze_dva)); 512 tmp = DVA_GET_OFFSET((&ze->ze_dva)); 513 tmp += (ze->ze_stride * (offset / zv->zv_volblocksize)); 514 DVA_SET_OFFSET(dva, tmp); 515 return (0); 516 } 517 518 static void 519 zvol_free_extents(zvol_state_t *zv) 520 { 521 zvol_ext_list_t *zl; 522 zvol_ext_list_t *tmp; 523 524 if (zv->zv_list != NULL) { 525 zl = zv->zv_list; 526 while (zl != NULL) { 527 tmp = zl->zl_next; 528 kmem_free(zl, sizeof (zvol_ext_list_t)); 529 zl = tmp; 530 } 531 zv->zv_list = NULL; 532 } 533 } 534 535 int 536 zvol_get_lbas(zvol_state_t *zv) 537 { 538 struct maparg ma; 539 zvol_ext_list_t *zl; 540 zvol_extent_t *ze; 541 uint64_t blocks = 0; 542 int err; 543 544 ma.ma_list = zl = kmem_zalloc(sizeof (zvol_ext_list_t), KM_SLEEP); 545 ma.ma_extent = &ma.ma_list->zl_extents[0]; 546 ma.ma_gang = 0; 547 zv->zv_list = ma.ma_list; 548 549 err = traverse_zvol(zv->zv_objset, ADVANCE_PRE, zvol_map_block, &ma); 550 if (err == EINTR && ma.ma_gang) { 551 /* 552 * We currently don't support dump devices when the pool 553 * is so fragmented that our allocation has resulted in 554 * gang blocks. 555 */ 556 zvol_free_extents(zv); 557 return (EFRAGS); 558 } 559 ASSERT3U(err, ==, 0); 560 561 ze = &zl->zl_extents[0]; 562 while (ze) { 563 blocks += ze->ze_size; 564 if (ze == &zl->zl_extents[NUM_EXTENTS - 1]) { 565 zl = zl->zl_next; 566 ze = &zl->zl_extents[0]; 567 } else { 568 ze++; 569 } 570 } 571 if (blocks != (zv->zv_volsize / zv->zv_volblocksize)) { 572 zvol_free_extents(zv); 573 return (EIO); 574 } 575 576 return (0); 577 } 578 579 /* 580 * Create a minor node (plus a whole lot more) for the specified volume. 581 */ 582 int 583 zvol_create_minor(const char *name, major_t maj) 584 { 585 zvol_state_t *zv; 586 objset_t *os; 587 dmu_object_info_t doi; 588 uint64_t volsize; 589 minor_t minor = 0; 590 struct pathname linkpath; 591 int ds_mode = DS_MODE_OWNER; 592 vnode_t *vp = NULL; 593 char *devpath; 594 size_t devpathlen = strlen(ZVOL_FULL_DEV_DIR) + strlen(name) + 1; 595 char chrbuf[30], blkbuf[30]; 596 int error; 597 598 mutex_enter(&zvol_state_lock); 599 600 if ((zv = zvol_minor_lookup(name)) != NULL) { 601 mutex_exit(&zvol_state_lock); 602 return (EEXIST); 603 } 604 605 if (strchr(name, '@') != 0) 606 ds_mode |= DS_MODE_READONLY; 607 608 error = dmu_objset_open(name, DMU_OST_ZVOL, ds_mode, &os); 609 610 if (error) { 611 mutex_exit(&zvol_state_lock); 612 return (error); 613 } 614 615 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 616 617 if (error) { 618 dmu_objset_close(os); 619 mutex_exit(&zvol_state_lock); 620 return (error); 621 } 622 623 /* 624 * If there's an existing /dev/zvol symlink, try to use the 625 * same minor number we used last time. 626 */ 627 devpath = kmem_alloc(devpathlen, KM_SLEEP); 628 629 (void) sprintf(devpath, "%s%s", ZVOL_FULL_DEV_DIR, name); 630 631 error = lookupname(devpath, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp); 632 633 kmem_free(devpath, devpathlen); 634 635 if (error == 0 && vp->v_type != VLNK) 636 error = EINVAL; 637 638 if (error == 0) { 639 pn_alloc(&linkpath); 640 error = pn_getsymlink(vp, &linkpath, kcred); 641 if (error == 0) { 642 char *ms = strstr(linkpath.pn_path, ZVOL_PSEUDO_DEV); 643 if (ms != NULL) { 644 ms += strlen(ZVOL_PSEUDO_DEV); 645 minor = stoi(&ms); 646 } 647 } 648 pn_free(&linkpath); 649 } 650 651 if (vp != NULL) 652 VN_RELE(vp); 653 654 /* 655 * If we found a minor but it's already in use, we must pick a new one. 656 */ 657 if (minor != 0 && ddi_get_soft_state(zvol_state, minor) != NULL) 658 minor = 0; 659 660 if (minor == 0) 661 minor = zvol_minor_alloc(); 662 663 if (minor == 0) { 664 dmu_objset_close(os); 665 mutex_exit(&zvol_state_lock); 666 return (ENXIO); 667 } 668 669 if (ddi_soft_state_zalloc(zvol_state, minor) != DDI_SUCCESS) { 670 dmu_objset_close(os); 671 mutex_exit(&zvol_state_lock); 672 return (EAGAIN); 673 } 674 675 (void) ddi_prop_update_string(minor, zfs_dip, ZVOL_PROP_NAME, 676 (char *)name); 677 678 (void) sprintf(chrbuf, "%uc,raw", minor); 679 680 if (ddi_create_minor_node(zfs_dip, chrbuf, S_IFCHR, 681 minor, DDI_PSEUDO, 0) == DDI_FAILURE) { 682 ddi_soft_state_free(zvol_state, minor); 683 dmu_objset_close(os); 684 mutex_exit(&zvol_state_lock); 685 return (EAGAIN); 686 } 687 688 (void) sprintf(blkbuf, "%uc", minor); 689 690 if (ddi_create_minor_node(zfs_dip, blkbuf, S_IFBLK, 691 minor, DDI_PSEUDO, 0) == DDI_FAILURE) { 692 ddi_remove_minor_node(zfs_dip, chrbuf); 693 ddi_soft_state_free(zvol_state, minor); 694 dmu_objset_close(os); 695 mutex_exit(&zvol_state_lock); 696 return (EAGAIN); 697 } 698 699 zv = ddi_get_soft_state(zvol_state, minor); 700 701 (void) strcpy(zv->zv_name, name); 702 zv->zv_min_bs = DEV_BSHIFT; 703 zv->zv_minor = minor; 704 zv->zv_volsize = volsize; 705 zv->zv_objset = os; 706 zv->zv_mode = ds_mode; 707 zv->zv_zilog = zil_open(os, zvol_get_data); 708 mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL); 709 avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare, 710 sizeof (rl_t), offsetof(rl_t, r_node)); 711 /* get and cache the blocksize */ 712 error = dmu_object_info(os, ZVOL_OBJ, &doi); 713 ASSERT(error == 0); 714 zv->zv_volblocksize = doi.doi_data_block_size; 715 716 zil_replay(os, zv, &zv->zv_txg_assign, zvol_replay_vector); 717 zvol_size_changed(zv, maj); 718 719 /* XXX this should handle the possible i/o error */ 720 VERIFY(dsl_prop_register(dmu_objset_ds(zv->zv_objset), 721 "readonly", zvol_readonly_changed_cb, zv) == 0); 722 723 zvol_minors++; 724 725 mutex_exit(&zvol_state_lock); 726 727 return (0); 728 } 729 730 /* 731 * Remove minor node for the specified volume. 732 */ 733 int 734 zvol_remove_minor(const char *name) 735 { 736 zvol_state_t *zv; 737 char namebuf[30]; 738 739 mutex_enter(&zvol_state_lock); 740 741 if ((zv = zvol_minor_lookup(name)) == NULL) { 742 mutex_exit(&zvol_state_lock); 743 return (ENXIO); 744 } 745 746 if (zv->zv_total_opens != 0) { 747 mutex_exit(&zvol_state_lock); 748 return (EBUSY); 749 } 750 751 (void) sprintf(namebuf, "%uc,raw", zv->zv_minor); 752 ddi_remove_minor_node(zfs_dip, namebuf); 753 754 (void) sprintf(namebuf, "%uc", zv->zv_minor); 755 ddi_remove_minor_node(zfs_dip, namebuf); 756 757 VERIFY(dsl_prop_unregister(dmu_objset_ds(zv->zv_objset), 758 "readonly", zvol_readonly_changed_cb, zv) == 0); 759 760 zil_close(zv->zv_zilog); 761 zv->zv_zilog = NULL; 762 dmu_objset_close(zv->zv_objset); 763 zv->zv_objset = NULL; 764 avl_destroy(&zv->zv_znode.z_range_avl); 765 mutex_destroy(&zv->zv_znode.z_range_lock); 766 767 ddi_soft_state_free(zvol_state, zv->zv_minor); 768 769 zvol_minors--; 770 771 mutex_exit(&zvol_state_lock); 772 773 return (0); 774 } 775 776 int 777 zvol_prealloc(zvol_state_t *zv) 778 { 779 objset_t *os = zv->zv_objset; 780 dmu_tx_t *tx; 781 void *data; 782 uint64_t refd, avail, usedobjs, availobjs; 783 uint64_t resid = zv->zv_volsize; 784 uint64_t off = 0; 785 786 /* Check the space usage before attempting to allocate the space */ 787 dmu_objset_space(os, &refd, &avail, &usedobjs, &availobjs); 788 if (avail < zv->zv_volsize) 789 return (ENOSPC); 790 791 /* Free old extents if they exist */ 792 zvol_free_extents(zv); 793 794 /* allocate the blocks by writing each one */ 795 data = kmem_zalloc(SPA_MAXBLOCKSIZE, KM_SLEEP); 796 797 while (resid != 0) { 798 int error; 799 uint64_t bytes = MIN(resid, SPA_MAXBLOCKSIZE); 800 801 tx = dmu_tx_create(os); 802 dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes); 803 error = dmu_tx_assign(tx, TXG_WAIT); 804 if (error) { 805 dmu_tx_abort(tx); 806 kmem_free(data, SPA_MAXBLOCKSIZE); 807 (void) dmu_free_long_range(os, ZVOL_OBJ, 0, off); 808 return (error); 809 } 810 dmu_write(os, ZVOL_OBJ, off, bytes, data, tx); 811 dmu_tx_commit(tx); 812 off += bytes; 813 resid -= bytes; 814 } 815 kmem_free(data, SPA_MAXBLOCKSIZE); 816 txg_wait_synced(dmu_objset_pool(os), 0); 817 818 return (0); 819 } 820 821 int 822 zvol_update_volsize(zvol_state_t *zv, major_t maj, uint64_t volsize) 823 { 824 dmu_tx_t *tx; 825 int error; 826 827 ASSERT(MUTEX_HELD(&zvol_state_lock)); 828 829 tx = dmu_tx_create(zv->zv_objset); 830 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 831 error = dmu_tx_assign(tx, TXG_WAIT); 832 if (error) { 833 dmu_tx_abort(tx); 834 return (error); 835 } 836 837 error = zap_update(zv->zv_objset, ZVOL_ZAP_OBJ, "size", 8, 1, 838 &volsize, tx); 839 dmu_tx_commit(tx); 840 841 if (error == 0) 842 error = dmu_free_long_range(zv->zv_objset, 843 ZVOL_OBJ, volsize, DMU_OBJECT_END); 844 845 /* 846 * If we are using a faked-up state (zv_minor == 0) then don't 847 * try to update the in-core zvol state. 848 */ 849 if (error == 0 && zv->zv_minor) { 850 zv->zv_volsize = volsize; 851 zvol_size_changed(zv, maj); 852 } 853 return (error); 854 } 855 856 int 857 zvol_set_volsize(const char *name, major_t maj, uint64_t volsize) 858 { 859 zvol_state_t *zv; 860 int error; 861 dmu_object_info_t doi; 862 uint64_t old_volsize = 0ULL; 863 zvol_state_t state = { 0 }; 864 865 mutex_enter(&zvol_state_lock); 866 867 if ((zv = zvol_minor_lookup(name)) == NULL) { 868 /* 869 * If we are doing a "zfs clone -o volsize=", then the 870 * minor node won't exist yet. 871 */ 872 error = dmu_objset_open(name, DMU_OST_ZVOL, DS_MODE_OWNER, 873 &state.zv_objset); 874 if (error != 0) 875 goto out; 876 zv = &state; 877 } 878 old_volsize = zv->zv_volsize; 879 880 if ((error = dmu_object_info(zv->zv_objset, ZVOL_OBJ, &doi)) != 0 || 881 (error = zvol_check_volsize(volsize, 882 doi.doi_data_block_size)) != 0) 883 goto out; 884 885 if (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY)) { 886 error = EROFS; 887 goto out; 888 } 889 890 error = zvol_update_volsize(zv, maj, volsize); 891 892 /* 893 * Reinitialize the dump area to the new size. If we 894 * failed to resize the dump area then restore the it back to 895 * it's original size. 896 */ 897 if (error == 0 && zv->zv_flags & ZVOL_DUMPIFIED) { 898 if ((error = zvol_dumpify(zv)) != 0 || 899 (error = dumpvp_resize()) != 0) { 900 (void) zvol_update_volsize(zv, maj, old_volsize); 901 error = zvol_dumpify(zv); 902 } 903 } 904 905 out: 906 if (state.zv_objset) 907 dmu_objset_close(state.zv_objset); 908 909 mutex_exit(&zvol_state_lock); 910 911 return (error); 912 } 913 914 int 915 zvol_set_volblocksize(const char *name, uint64_t volblocksize) 916 { 917 zvol_state_t *zv; 918 dmu_tx_t *tx; 919 int error; 920 921 mutex_enter(&zvol_state_lock); 922 923 if ((zv = zvol_minor_lookup(name)) == NULL) { 924 mutex_exit(&zvol_state_lock); 925 return (ENXIO); 926 } 927 if (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY)) { 928 mutex_exit(&zvol_state_lock); 929 return (EROFS); 930 } 931 932 tx = dmu_tx_create(zv->zv_objset); 933 dmu_tx_hold_bonus(tx, ZVOL_OBJ); 934 error = dmu_tx_assign(tx, TXG_WAIT); 935 if (error) { 936 dmu_tx_abort(tx); 937 } else { 938 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ, 939 volblocksize, 0, tx); 940 if (error == ENOTSUP) 941 error = EBUSY; 942 dmu_tx_commit(tx); 943 } 944 945 mutex_exit(&zvol_state_lock); 946 947 return (error); 948 } 949 950 /*ARGSUSED*/ 951 int 952 zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr) 953 { 954 minor_t minor = getminor(*devp); 955 zvol_state_t *zv; 956 957 if (minor == 0) /* This is the control device */ 958 return (0); 959 960 mutex_enter(&zvol_state_lock); 961 962 zv = ddi_get_soft_state(zvol_state, minor); 963 if (zv == NULL) { 964 mutex_exit(&zvol_state_lock); 965 return (ENXIO); 966 } 967 968 ASSERT(zv->zv_objset != NULL); 969 970 if ((flag & FWRITE) && 971 (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY))) { 972 mutex_exit(&zvol_state_lock); 973 return (EROFS); 974 } 975 if (zv->zv_flags & ZVOL_EXCL) { 976 mutex_exit(&zvol_state_lock); 977 return (EBUSY); 978 } 979 if (flag & FEXCL) { 980 if (zv->zv_total_opens != 0) { 981 mutex_exit(&zvol_state_lock); 982 return (EBUSY); 983 } 984 zv->zv_flags |= ZVOL_EXCL; 985 } 986 987 if (zv->zv_open_count[otyp] == 0 || otyp == OTYP_LYR) { 988 zv->zv_open_count[otyp]++; 989 zv->zv_total_opens++; 990 } 991 992 mutex_exit(&zvol_state_lock); 993 994 return (0); 995 } 996 997 /*ARGSUSED*/ 998 int 999 zvol_close(dev_t dev, int flag, int otyp, cred_t *cr) 1000 { 1001 minor_t minor = getminor(dev); 1002 zvol_state_t *zv; 1003 1004 if (minor == 0) /* This is the control device */ 1005 return (0); 1006 1007 mutex_enter(&zvol_state_lock); 1008 1009 zv = ddi_get_soft_state(zvol_state, minor); 1010 if (zv == NULL) { 1011 mutex_exit(&zvol_state_lock); 1012 return (ENXIO); 1013 } 1014 1015 if (zv->zv_flags & ZVOL_EXCL) { 1016 ASSERT(zv->zv_total_opens == 1); 1017 zv->zv_flags &= ~ZVOL_EXCL; 1018 } 1019 1020 /* 1021 * If the open count is zero, this is a spurious close. 1022 * That indicates a bug in the kernel / DDI framework. 1023 */ 1024 ASSERT(zv->zv_open_count[otyp] != 0); 1025 ASSERT(zv->zv_total_opens != 0); 1026 1027 /* 1028 * You may get multiple opens, but only one close. 1029 */ 1030 zv->zv_open_count[otyp]--; 1031 zv->zv_total_opens--; 1032 1033 mutex_exit(&zvol_state_lock); 1034 1035 return (0); 1036 } 1037 1038 static void 1039 zvol_get_done(dmu_buf_t *db, void *vzgd) 1040 { 1041 zgd_t *zgd = (zgd_t *)vzgd; 1042 rl_t *rl = zgd->zgd_rl; 1043 1044 dmu_buf_rele(db, vzgd); 1045 zfs_range_unlock(rl); 1046 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1047 kmem_free(zgd, sizeof (zgd_t)); 1048 } 1049 1050 /* 1051 * Get data to generate a TX_WRITE intent log record. 1052 */ 1053 static int 1054 zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1055 { 1056 zvol_state_t *zv = arg; 1057 objset_t *os = zv->zv_objset; 1058 dmu_buf_t *db; 1059 rl_t *rl; 1060 zgd_t *zgd; 1061 uint64_t boff; /* block starting offset */ 1062 int dlen = lr->lr_length; /* length of user data */ 1063 int error; 1064 1065 ASSERT(zio); 1066 ASSERT(dlen != 0); 1067 1068 /* 1069 * Write records come in two flavors: immediate and indirect. 1070 * For small writes it's cheaper to store the data with the 1071 * log record (immediate); for large writes it's cheaper to 1072 * sync the data and get a pointer to it (indirect) so that 1073 * we don't have to write the data twice. 1074 */ 1075 if (buf != NULL) /* immediate write */ 1076 return (dmu_read(os, ZVOL_OBJ, lr->lr_offset, dlen, buf)); 1077 1078 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 1079 zgd->zgd_zilog = zv->zv_zilog; 1080 zgd->zgd_bp = &lr->lr_blkptr; 1081 1082 /* 1083 * Lock the range of the block to ensure that when the data is 1084 * written out and its checksum is being calculated that no other 1085 * thread can change the block. 1086 */ 1087 boff = P2ALIGN_TYPED(lr->lr_offset, zv->zv_volblocksize, uint64_t); 1088 rl = zfs_range_lock(&zv->zv_znode, boff, zv->zv_volblocksize, 1089 RL_READER); 1090 zgd->zgd_rl = rl; 1091 1092 VERIFY(0 == dmu_buf_hold(os, ZVOL_OBJ, lr->lr_offset, zgd, &db)); 1093 error = dmu_sync(zio, db, &lr->lr_blkptr, 1094 lr->lr_common.lrc_txg, zvol_get_done, zgd); 1095 if (error == 0) 1096 zil_add_block(zv->zv_zilog, &lr->lr_blkptr); 1097 /* 1098 * If we get EINPROGRESS, then we need to wait for a 1099 * write IO initiated by dmu_sync() to complete before 1100 * we can release this dbuf. We will finish everything 1101 * up in the zvol_get_done() callback. 1102 */ 1103 if (error == EINPROGRESS) 1104 return (0); 1105 dmu_buf_rele(db, zgd); 1106 zfs_range_unlock(rl); 1107 kmem_free(zgd, sizeof (zgd_t)); 1108 return (error); 1109 } 1110 1111 /* 1112 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. 1113 * 1114 * We store data in the log buffers if it's small enough. 1115 * Otherwise we will later flush the data out via dmu_sync(). 1116 */ 1117 ssize_t zvol_immediate_write_sz = 32768; 1118 1119 static void 1120 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, offset_t off, ssize_t len) 1121 { 1122 uint32_t blocksize = zv->zv_volblocksize; 1123 lr_write_t *lr; 1124 1125 while (len) { 1126 ssize_t nbytes = MIN(len, blocksize - P2PHASE(off, blocksize)); 1127 itx_t *itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1128 1129 itx->itx_wr_state = 1130 len > zvol_immediate_write_sz ? WR_INDIRECT : WR_NEED_COPY; 1131 itx->itx_private = zv; 1132 lr = (lr_write_t *)&itx->itx_lr; 1133 lr->lr_foid = ZVOL_OBJ; 1134 lr->lr_offset = off; 1135 lr->lr_length = nbytes; 1136 lr->lr_blkoff = off - P2ALIGN_TYPED(off, blocksize, uint64_t); 1137 BP_ZERO(&lr->lr_blkptr); 1138 1139 (void) zil_itx_assign(zv->zv_zilog, itx, tx); 1140 len -= nbytes; 1141 off += nbytes; 1142 } 1143 } 1144 1145 int 1146 zvol_dumpio(vdev_t *vd, uint64_t size, uint64_t offset, void *addr, 1147 int bflags, int isdump) 1148 { 1149 vdev_disk_t *dvd; 1150 int direction; 1151 int c; 1152 int numerrors = 0; 1153 1154 for (c = 0; c < vd->vdev_children; c++) { 1155 if (zvol_dumpio(vd->vdev_child[c], size, offset, 1156 addr, bflags, isdump) != 0) { 1157 numerrors++; 1158 } else if (bflags & B_READ) { 1159 break; 1160 } 1161 } 1162 1163 if (!vd->vdev_ops->vdev_op_leaf) 1164 return (numerrors < vd->vdev_children ? 0 : EIO); 1165 1166 if (!vdev_writeable(vd)) 1167 return (EIO); 1168 1169 dvd = vd->vdev_tsd; 1170 ASSERT3P(dvd, !=, NULL); 1171 direction = bflags & (B_WRITE | B_READ); 1172 ASSERT(ISP2(direction)); 1173 offset += VDEV_LABEL_START_SIZE; 1174 1175 if (ddi_in_panic() || isdump) { 1176 if (direction & B_READ) 1177 return (EIO); 1178 return (ldi_dump(dvd->vd_lh, addr, lbtodb(offset), 1179 lbtodb(size))); 1180 } else { 1181 return (vdev_disk_physio(dvd->vd_lh, addr, size, offset, 1182 direction)); 1183 } 1184 } 1185 1186 int 1187 zvol_physio(zvol_state_t *zv, int bflags, uint64_t off, 1188 uint64_t size, void *addr, int isdump) 1189 { 1190 dva_t dva; 1191 vdev_t *vd; 1192 int error; 1193 spa_t *spa = dmu_objset_spa(zv->zv_objset); 1194 1195 ASSERT(size <= zv->zv_volblocksize); 1196 1197 /* restrict requests to multiples of the system block size */ 1198 if (P2PHASE(off, DEV_BSIZE) || P2PHASE(size, DEV_BSIZE)) 1199 return (EINVAL); 1200 1201 if (zvol_get_dva(zv, off, &dva) != 0) 1202 return (EIO); 1203 1204 spa_config_enter(spa, RW_READER, FTAG); 1205 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 1206 1207 error = zvol_dumpio(vd, size, 1208 DVA_GET_OFFSET(&dva) + (off % zv->zv_volblocksize), 1209 addr, bflags & (B_READ | B_WRITE | B_PHYS), isdump); 1210 1211 spa_config_exit(spa, FTAG); 1212 return (error); 1213 } 1214 1215 int 1216 zvol_strategy(buf_t *bp) 1217 { 1218 zvol_state_t *zv = ddi_get_soft_state(zvol_state, getminor(bp->b_edev)); 1219 uint64_t off, volsize; 1220 size_t size, resid; 1221 char *addr; 1222 objset_t *os; 1223 rl_t *rl; 1224 int error = 0; 1225 boolean_t reading, is_dump = zv->zv_flags & ZVOL_DUMPIFIED; 1226 1227 if (zv == NULL) { 1228 bioerror(bp, ENXIO); 1229 biodone(bp); 1230 return (0); 1231 } 1232 1233 if (getminor(bp->b_edev) == 0) { 1234 bioerror(bp, EINVAL); 1235 biodone(bp); 1236 return (0); 1237 } 1238 1239 if (!(bp->b_flags & B_READ) && 1240 (zv->zv_flags & ZVOL_RDONLY || 1241 zv->zv_mode & DS_MODE_READONLY)) { 1242 bioerror(bp, EROFS); 1243 biodone(bp); 1244 return (0); 1245 } 1246 1247 off = ldbtob(bp->b_blkno); 1248 volsize = zv->zv_volsize; 1249 1250 os = zv->zv_objset; 1251 ASSERT(os != NULL); 1252 1253 bp_mapin(bp); 1254 addr = bp->b_un.b_addr; 1255 resid = bp->b_bcount; 1256 1257 if (resid > 0 && (off < 0 || off >= volsize)) 1258 return (EIO); 1259 1260 /* 1261 * There must be no buffer changes when doing a dmu_sync() because 1262 * we can't change the data whilst calculating the checksum. 1263 */ 1264 reading = bp->b_flags & B_READ; 1265 rl = zfs_range_lock(&zv->zv_znode, off, resid, 1266 reading ? RL_READER : RL_WRITER); 1267 1268 if (resid > volsize - off) /* don't write past the end */ 1269 resid = volsize - off; 1270 1271 while (resid != 0 && off < volsize) { 1272 1273 size = MIN(resid, zvol_maxphys); 1274 if (is_dump) { 1275 /* can't straddle a block boundary */ 1276 size = MIN(size, P2END(off, zv->zv_volblocksize) - off); 1277 error = zvol_physio(zv, bp->b_flags, off, size, 1278 addr, 0); 1279 } else if (reading) { 1280 error = dmu_read(os, ZVOL_OBJ, off, size, addr); 1281 } else { 1282 dmu_tx_t *tx = dmu_tx_create(os); 1283 dmu_tx_hold_write(tx, ZVOL_OBJ, off, size); 1284 error = dmu_tx_assign(tx, TXG_WAIT); 1285 if (error) { 1286 dmu_tx_abort(tx); 1287 } else { 1288 dmu_write(os, ZVOL_OBJ, off, size, addr, tx); 1289 zvol_log_write(zv, tx, off, size); 1290 dmu_tx_commit(tx); 1291 } 1292 } 1293 if (error) { 1294 /* convert checksum errors into IO errors */ 1295 if (error == ECKSUM) 1296 error = EIO; 1297 break; 1298 } 1299 off += size; 1300 addr += size; 1301 resid -= size; 1302 } 1303 zfs_range_unlock(rl); 1304 1305 if ((bp->b_resid = resid) == bp->b_bcount) 1306 bioerror(bp, off > volsize ? EINVAL : error); 1307 1308 if (!(bp->b_flags & B_ASYNC) && !reading && !zil_disable && !is_dump) 1309 zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ); 1310 biodone(bp); 1311 1312 return (0); 1313 } 1314 1315 /* 1316 * Set the buffer count to the zvol maximum transfer. 1317 * Using our own routine instead of the default minphys() 1318 * means that for larger writes we write bigger buffers on X86 1319 * (128K instead of 56K) and flush the disk write cache less often 1320 * (every zvol_maxphys - currently 1MB) instead of minphys (currently 1321 * 56K on X86 and 128K on sparc). 1322 */ 1323 void 1324 zvol_minphys(struct buf *bp) 1325 { 1326 if (bp->b_bcount > zvol_maxphys) 1327 bp->b_bcount = zvol_maxphys; 1328 } 1329 1330 int 1331 zvol_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblocks) 1332 { 1333 minor_t minor = getminor(dev); 1334 zvol_state_t *zv; 1335 int error = 0; 1336 uint64_t size; 1337 uint64_t boff; 1338 uint64_t resid; 1339 1340 if (minor == 0) /* This is the control device */ 1341 return (ENXIO); 1342 1343 zv = ddi_get_soft_state(zvol_state, minor); 1344 if (zv == NULL) 1345 return (ENXIO); 1346 1347 boff = ldbtob(blkno); 1348 resid = ldbtob(nblocks); 1349 if (boff + resid > zv->zv_volsize) { 1350 /* dump should know better than to write here */ 1351 ASSERT(blkno + resid <= zv->zv_volsize); 1352 return (EIO); 1353 } 1354 while (resid) { 1355 /* can't straddle a block boundary */ 1356 size = MIN(resid, P2END(boff, zv->zv_volblocksize) - boff); 1357 1358 error = zvol_physio(zv, B_WRITE, boff, size, addr, 1); 1359 if (error) 1360 break; 1361 boff += size; 1362 addr += size; 1363 resid -= size; 1364 } 1365 1366 return (error); 1367 } 1368 1369 /*ARGSUSED*/ 1370 int 1371 zvol_read(dev_t dev, uio_t *uio, cred_t *cr) 1372 { 1373 minor_t minor = getminor(dev); 1374 zvol_state_t *zv; 1375 uint64_t volsize; 1376 rl_t *rl; 1377 int error = 0; 1378 1379 if (minor == 0) /* This is the control device */ 1380 return (ENXIO); 1381 1382 zv = ddi_get_soft_state(zvol_state, minor); 1383 if (zv == NULL) 1384 return (ENXIO); 1385 1386 volsize = zv->zv_volsize; 1387 if (uio->uio_resid > 0 && 1388 (uio->uio_loffset < 0 || uio->uio_loffset >= volsize)) 1389 return (EIO); 1390 1391 rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid, 1392 RL_READER); 1393 while (uio->uio_resid > 0 && uio->uio_loffset < volsize) { 1394 uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1); 1395 1396 /* don't read past the end */ 1397 if (bytes > volsize - uio->uio_loffset) 1398 bytes = volsize - uio->uio_loffset; 1399 1400 error = dmu_read_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes); 1401 if (error) { 1402 /* convert checksum errors into IO errors */ 1403 if (error == ECKSUM) 1404 error = EIO; 1405 break; 1406 } 1407 } 1408 zfs_range_unlock(rl); 1409 return (error); 1410 } 1411 1412 /*ARGSUSED*/ 1413 int 1414 zvol_write(dev_t dev, uio_t *uio, cred_t *cr) 1415 { 1416 minor_t minor = getminor(dev); 1417 zvol_state_t *zv; 1418 uint64_t volsize; 1419 rl_t *rl; 1420 int error = 0; 1421 1422 if (minor == 0) /* This is the control device */ 1423 return (ENXIO); 1424 1425 zv = ddi_get_soft_state(zvol_state, minor); 1426 if (zv == NULL) 1427 return (ENXIO); 1428 1429 volsize = zv->zv_volsize; 1430 if (uio->uio_resid > 0 && 1431 (uio->uio_loffset < 0 || uio->uio_loffset >= volsize)) 1432 return (EIO); 1433 1434 if (zv->zv_flags & ZVOL_DUMPIFIED) { 1435 error = physio(zvol_strategy, NULL, dev, B_WRITE, 1436 zvol_minphys, uio); 1437 return (error); 1438 } 1439 1440 rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid, 1441 RL_WRITER); 1442 while (uio->uio_resid > 0 && uio->uio_loffset < volsize) { 1443 uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1); 1444 uint64_t off = uio->uio_loffset; 1445 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 1446 1447 if (bytes > volsize - off) /* don't write past the end */ 1448 bytes = volsize - off; 1449 1450 dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes); 1451 error = dmu_tx_assign(tx, TXG_WAIT); 1452 if (error) { 1453 dmu_tx_abort(tx); 1454 break; 1455 } 1456 error = dmu_write_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes, tx); 1457 if (error == 0) 1458 zvol_log_write(zv, tx, off, bytes); 1459 dmu_tx_commit(tx); 1460 1461 if (error) 1462 break; 1463 } 1464 zfs_range_unlock(rl); 1465 return (error); 1466 } 1467 1468 int 1469 zvol_getefi(void *arg, int flag, uint64_t vs, uint8_t bs) 1470 { 1471 struct uuid uuid = EFI_RESERVED; 1472 efi_gpe_t gpe = { 0 }; 1473 uint32_t crc; 1474 dk_efi_t efi; 1475 int length; 1476 char *ptr; 1477 1478 if (ddi_copyin(arg, &efi, sizeof (dk_efi_t), flag)) 1479 return (EFAULT); 1480 ptr = (char *)(uintptr_t)efi.dki_data_64; 1481 length = efi.dki_length; 1482 /* 1483 * Some clients may attempt to request a PMBR for the 1484 * zvol. Currently this interface will return EINVAL to 1485 * such requests. These requests could be supported by 1486 * adding a check for lba == 0 and consing up an appropriate 1487 * PMBR. 1488 */ 1489 if (efi.dki_lba < 1 || efi.dki_lba > 2 || length <= 0) 1490 return (EINVAL); 1491 1492 gpe.efi_gpe_StartingLBA = LE_64(34ULL); 1493 gpe.efi_gpe_EndingLBA = LE_64((vs >> bs) - 1); 1494 UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid); 1495 1496 if (efi.dki_lba == 1) { 1497 efi_gpt_t gpt = { 0 }; 1498 1499 gpt.efi_gpt_Signature = LE_64(EFI_SIGNATURE); 1500 gpt.efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 1501 gpt.efi_gpt_HeaderSize = LE_32(sizeof (gpt)); 1502 gpt.efi_gpt_MyLBA = LE_64(1ULL); 1503 gpt.efi_gpt_FirstUsableLBA = LE_64(34ULL); 1504 gpt.efi_gpt_LastUsableLBA = LE_64((vs >> bs) - 1); 1505 gpt.efi_gpt_PartitionEntryLBA = LE_64(2ULL); 1506 gpt.efi_gpt_NumberOfPartitionEntries = LE_32(1); 1507 gpt.efi_gpt_SizeOfPartitionEntry = 1508 LE_32(sizeof (efi_gpe_t)); 1509 CRC32(crc, &gpe, sizeof (gpe), -1U, crc32_table); 1510 gpt.efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 1511 CRC32(crc, &gpt, sizeof (gpt), -1U, crc32_table); 1512 gpt.efi_gpt_HeaderCRC32 = LE_32(~crc); 1513 if (ddi_copyout(&gpt, ptr, MIN(sizeof (gpt), length), 1514 flag)) 1515 return (EFAULT); 1516 ptr += sizeof (gpt); 1517 length -= sizeof (gpt); 1518 } 1519 if (length > 0 && ddi_copyout(&gpe, ptr, MIN(sizeof (gpe), 1520 length), flag)) 1521 return (EFAULT); 1522 return (0); 1523 } 1524 1525 /* 1526 * Dirtbag ioctls to support mkfs(1M) for UFS filesystems. See dkio(7I). 1527 */ 1528 /*ARGSUSED*/ 1529 int 1530 zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 1531 { 1532 zvol_state_t *zv; 1533 struct dk_cinfo dki; 1534 struct dk_minfo dkm; 1535 struct dk_callback *dkc; 1536 int error = 0; 1537 rl_t *rl; 1538 1539 mutex_enter(&zvol_state_lock); 1540 1541 zv = ddi_get_soft_state(zvol_state, getminor(dev)); 1542 1543 if (zv == NULL) { 1544 mutex_exit(&zvol_state_lock); 1545 return (ENXIO); 1546 } 1547 1548 switch (cmd) { 1549 1550 case DKIOCINFO: 1551 bzero(&dki, sizeof (dki)); 1552 (void) strcpy(dki.dki_cname, "zvol"); 1553 (void) strcpy(dki.dki_dname, "zvol"); 1554 dki.dki_ctype = DKC_UNKNOWN; 1555 dki.dki_maxtransfer = 1 << (SPA_MAXBLOCKSHIFT - zv->zv_min_bs); 1556 mutex_exit(&zvol_state_lock); 1557 if (ddi_copyout(&dki, (void *)arg, sizeof (dki), flag)) 1558 error = EFAULT; 1559 return (error); 1560 1561 case DKIOCGMEDIAINFO: 1562 bzero(&dkm, sizeof (dkm)); 1563 dkm.dki_lbsize = 1U << zv->zv_min_bs; 1564 dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs; 1565 dkm.dki_media_type = DK_UNKNOWN; 1566 mutex_exit(&zvol_state_lock); 1567 if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag)) 1568 error = EFAULT; 1569 return (error); 1570 1571 case DKIOCGETEFI: 1572 { 1573 uint64_t vs = zv->zv_volsize; 1574 uint8_t bs = zv->zv_min_bs; 1575 1576 mutex_exit(&zvol_state_lock); 1577 error = zvol_getefi((void *)arg, flag, vs, bs); 1578 return (error); 1579 } 1580 1581 case DKIOCFLUSHWRITECACHE: 1582 dkc = (struct dk_callback *)arg; 1583 zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ); 1584 if ((flag & FKIOCTL) && dkc != NULL && dkc->dkc_callback) { 1585 (*dkc->dkc_callback)(dkc->dkc_cookie, error); 1586 error = 0; 1587 } 1588 break; 1589 1590 case DKIOCGGEOM: 1591 case DKIOCGVTOC: 1592 /* 1593 * commands using these (like prtvtoc) expect ENOTSUP 1594 * since we're emulating an EFI label 1595 */ 1596 error = ENOTSUP; 1597 break; 1598 1599 case DKIOCDUMPINIT: 1600 rl = zfs_range_lock(&zv->zv_znode, 0, zv->zv_volsize, 1601 RL_WRITER); 1602 error = zvol_dumpify(zv); 1603 zfs_range_unlock(rl); 1604 break; 1605 1606 case DKIOCDUMPFINI: 1607 rl = zfs_range_lock(&zv->zv_znode, 0, zv->zv_volsize, 1608 RL_WRITER); 1609 error = zvol_dump_fini(zv); 1610 zfs_range_unlock(rl); 1611 break; 1612 1613 default: 1614 error = ENOTTY; 1615 break; 1616 1617 } 1618 mutex_exit(&zvol_state_lock); 1619 return (error); 1620 } 1621 1622 int 1623 zvol_busy(void) 1624 { 1625 return (zvol_minors != 0); 1626 } 1627 1628 void 1629 zvol_init(void) 1630 { 1631 VERIFY(ddi_soft_state_init(&zvol_state, sizeof (zvol_state_t), 1) == 0); 1632 mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL); 1633 } 1634 1635 void 1636 zvol_fini(void) 1637 { 1638 mutex_destroy(&zvol_state_lock); 1639 ddi_soft_state_fini(&zvol_state); 1640 } 1641 1642 static boolean_t 1643 zvol_is_swap(zvol_state_t *zv) 1644 { 1645 vnode_t *vp; 1646 boolean_t ret = B_FALSE; 1647 char *devpath; 1648 size_t devpathlen; 1649 int error; 1650 1651 devpathlen = strlen(ZVOL_FULL_DEV_DIR) + strlen(zv->zv_name) + 1; 1652 devpath = kmem_alloc(devpathlen, KM_SLEEP); 1653 (void) sprintf(devpath, "%s%s", ZVOL_FULL_DEV_DIR, zv->zv_name); 1654 error = lookupname(devpath, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp); 1655 kmem_free(devpath, devpathlen); 1656 1657 ret = !error && IS_SWAPVP(common_specvp(vp)); 1658 1659 if (vp != NULL) 1660 VN_RELE(vp); 1661 1662 return (ret); 1663 } 1664 1665 static int 1666 zvol_dump_init(zvol_state_t *zv, boolean_t resize) 1667 { 1668 dmu_tx_t *tx; 1669 int error = 0; 1670 objset_t *os = zv->zv_objset; 1671 nvlist_t *nv = NULL; 1672 uint64_t checksum, compress, refresrv; 1673 1674 ASSERT(MUTEX_HELD(&zvol_state_lock)); 1675 1676 tx = dmu_tx_create(os); 1677 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 1678 error = dmu_tx_assign(tx, TXG_WAIT); 1679 if (error) { 1680 dmu_tx_abort(tx); 1681 return (error); 1682 } 1683 1684 /* 1685 * If we are resizing the dump device then we only need to 1686 * update the refreservation to match the newly updated 1687 * zvolsize. Otherwise, we save off the original state of the 1688 * zvol so that we can restore them if the zvol is ever undumpified. 1689 */ 1690 if (resize) { 1691 error = zap_update(os, ZVOL_ZAP_OBJ, 1692 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, 1693 &zv->zv_volsize, tx); 1694 } else { 1695 error = dsl_prop_get_integer(zv->zv_name, 1696 zfs_prop_to_name(ZFS_PROP_COMPRESSION), &compress, NULL); 1697 error = error ? error : dsl_prop_get_integer(zv->zv_name, 1698 zfs_prop_to_name(ZFS_PROP_CHECKSUM), &checksum, NULL); 1699 error = error ? error : dsl_prop_get_integer(zv->zv_name, 1700 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &refresrv, NULL); 1701 1702 error = error ? error : zap_update(os, ZVOL_ZAP_OBJ, 1703 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1, 1704 &compress, tx); 1705 error = error ? error : zap_update(os, ZVOL_ZAP_OBJ, 1706 zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum, tx); 1707 error = error ? error : zap_update(os, ZVOL_ZAP_OBJ, 1708 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, 1709 &refresrv, tx); 1710 } 1711 dmu_tx_commit(tx); 1712 1713 /* Truncate the file */ 1714 if (!error) 1715 error = dmu_free_long_range(zv->zv_objset, 1716 ZVOL_OBJ, 0, DMU_OBJECT_END); 1717 1718 if (error) 1719 return (error); 1720 1721 /* 1722 * We only need update the zvol's property if we are initializing 1723 * the dump area for the first time. 1724 */ 1725 if (!resize) { 1726 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1727 VERIFY(nvlist_add_uint64(nv, 1728 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 0) == 0); 1729 VERIFY(nvlist_add_uint64(nv, 1730 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 1731 ZIO_COMPRESS_OFF) == 0); 1732 VERIFY(nvlist_add_uint64(nv, 1733 zfs_prop_to_name(ZFS_PROP_CHECKSUM), 1734 ZIO_CHECKSUM_OFF) == 0); 1735 1736 error = zfs_set_prop_nvlist(zv->zv_name, nv); 1737 nvlist_free(nv); 1738 1739 if (error) 1740 return (error); 1741 } 1742 1743 /* Allocate the space for the dump */ 1744 error = zvol_prealloc(zv); 1745 return (error); 1746 } 1747 1748 static int 1749 zvol_dumpify(zvol_state_t *zv) 1750 { 1751 int error = 0; 1752 uint64_t dumpsize = 0; 1753 dmu_tx_t *tx; 1754 objset_t *os = zv->zv_objset; 1755 1756 if (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY)) 1757 return (EROFS); 1758 1759 /* 1760 * We do not support swap devices acting as dump devices. 1761 */ 1762 if (zvol_is_swap(zv)) 1763 return (ENOTSUP); 1764 1765 if (zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, 1766 8, 1, &dumpsize) != 0 || dumpsize != zv->zv_volsize) { 1767 boolean_t resize = (dumpsize > 0) ? B_TRUE : B_FALSE; 1768 1769 if ((error = zvol_dump_init(zv, resize)) != 0) { 1770 (void) zvol_dump_fini(zv); 1771 return (error); 1772 } 1773 } 1774 1775 /* 1776 * Build up our lba mapping. 1777 */ 1778 error = zvol_get_lbas(zv); 1779 if (error) { 1780 (void) zvol_dump_fini(zv); 1781 return (error); 1782 } 1783 1784 tx = dmu_tx_create(os); 1785 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 1786 error = dmu_tx_assign(tx, TXG_WAIT); 1787 if (error) { 1788 dmu_tx_abort(tx); 1789 (void) zvol_dump_fini(zv); 1790 return (error); 1791 } 1792 1793 zv->zv_flags |= ZVOL_DUMPIFIED; 1794 error = zap_update(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, 8, 1, 1795 &zv->zv_volsize, tx); 1796 dmu_tx_commit(tx); 1797 1798 if (error) { 1799 (void) zvol_dump_fini(zv); 1800 return (error); 1801 } 1802 1803 txg_wait_synced(dmu_objset_pool(os), 0); 1804 return (0); 1805 } 1806 1807 static int 1808 zvol_dump_fini(zvol_state_t *zv) 1809 { 1810 dmu_tx_t *tx; 1811 objset_t *os = zv->zv_objset; 1812 nvlist_t *nv; 1813 int error = 0; 1814 uint64_t checksum, compress, refresrv; 1815 1816 /* 1817 * Attempt to restore the zvol back to its pre-dumpified state. 1818 * This is a best-effort attempt as it's possible that not all 1819 * of these properties were initialized during the dumpify process 1820 * (i.e. error during zvol_dump_init). 1821 */ 1822 1823 tx = dmu_tx_create(os); 1824 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 1825 error = dmu_tx_assign(tx, TXG_WAIT); 1826 if (error) { 1827 dmu_tx_abort(tx); 1828 return (error); 1829 } 1830 (void) zap_remove(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, tx); 1831 dmu_tx_commit(tx); 1832 1833 (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, 1834 zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum); 1835 (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, 1836 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1, &compress); 1837 (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, 1838 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, &refresrv); 1839 1840 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1841 (void) nvlist_add_uint64(nv, 1842 zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum); 1843 (void) nvlist_add_uint64(nv, 1844 zfs_prop_to_name(ZFS_PROP_COMPRESSION), compress); 1845 (void) nvlist_add_uint64(nv, 1846 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), refresrv); 1847 (void) zfs_set_prop_nvlist(zv->zv_name, nv); 1848 nvlist_free(nv); 1849 1850 zvol_free_extents(zv); 1851 zv->zv_flags &= ~ZVOL_DUMPIFIED; 1852 (void) dmu_free_long_range(os, ZVOL_OBJ, 0, DMU_OBJECT_END); 1853 1854 return (0); 1855 } 1856