1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2010 Robert Milkowski */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa.h> 29 #include <sys/dmu.h> 30 #include <sys/zap.h> 31 #include <sys/arc.h> 32 #include <sys/stat.h> 33 #include <sys/resource.h> 34 #include <sys/zil.h> 35 #include <sys/zil_impl.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dsl_pool.h> 40 41 /* 42 * The zfs intent log (ZIL) saves transaction records of system calls 43 * that change the file system in memory with enough information 44 * to be able to replay them. These are stored in memory until 45 * either the DMU transaction group (txg) commits them to the stable pool 46 * and they can be discarded, or they are flushed to the stable log 47 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 48 * requirement. In the event of a panic or power fail then those log 49 * records (transactions) are replayed. 50 * 51 * There is one ZIL per file system. Its on-disk (pool) format consists 52 * of 3 parts: 53 * 54 * - ZIL header 55 * - ZIL blocks 56 * - ZIL records 57 * 58 * A log record holds a system call transaction. Log blocks can 59 * hold many log records and the blocks are chained together. 60 * Each ZIL block contains a block pointer (blkptr_t) to the next 61 * ZIL block in the chain. The ZIL header points to the first 62 * block in the chain. Note there is not a fixed place in the pool 63 * to hold blocks. They are dynamically allocated and freed as 64 * needed from the blocks available. Figure X shows the ZIL structure: 65 */ 66 67 /* 68 * This global ZIL switch affects all pools 69 */ 70 int zil_replay_disable = 0; /* disable intent logging replay */ 71 72 /* 73 * Tunable parameter for debugging or performance analysis. Setting 74 * zfs_nocacheflush will cause corruption on power loss if a volatile 75 * out-of-order write cache is enabled. 76 */ 77 boolean_t zfs_nocacheflush = B_FALSE; 78 79 static kmem_cache_t *zil_lwb_cache; 80 81 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 82 83 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 84 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 85 86 87 /* 88 * ziltest is by and large an ugly hack, but very useful in 89 * checking replay without tedious work. 90 * When running ziltest we want to keep all itx's and so maintain 91 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG 92 * We subtract TXG_CONCURRENT_STATES to allow for common code. 93 */ 94 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) 95 96 static int 97 zil_bp_compare(const void *x1, const void *x2) 98 { 99 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 100 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 101 102 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 103 return (-1); 104 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 105 return (1); 106 107 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 108 return (-1); 109 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 110 return (1); 111 112 return (0); 113 } 114 115 static void 116 zil_bp_tree_init(zilog_t *zilog) 117 { 118 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 119 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 120 } 121 122 static void 123 zil_bp_tree_fini(zilog_t *zilog) 124 { 125 avl_tree_t *t = &zilog->zl_bp_tree; 126 zil_bp_node_t *zn; 127 void *cookie = NULL; 128 129 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 130 kmem_free(zn, sizeof (zil_bp_node_t)); 131 132 avl_destroy(t); 133 } 134 135 int 136 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 137 { 138 avl_tree_t *t = &zilog->zl_bp_tree; 139 const dva_t *dva = BP_IDENTITY(bp); 140 zil_bp_node_t *zn; 141 avl_index_t where; 142 143 if (avl_find(t, dva, &where) != NULL) 144 return (EEXIST); 145 146 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 147 zn->zn_dva = *dva; 148 avl_insert(t, zn, where); 149 150 return (0); 151 } 152 153 static zil_header_t * 154 zil_header_in_syncing_context(zilog_t *zilog) 155 { 156 return ((zil_header_t *)zilog->zl_header); 157 } 158 159 static void 160 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 161 { 162 zio_cksum_t *zc = &bp->blk_cksum; 163 164 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 165 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 166 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 167 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 168 } 169 170 /* 171 * Read a log block and make sure it's valid. 172 */ 173 static int 174 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 175 char **end) 176 { 177 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 178 uint32_t aflags = ARC_WAIT; 179 arc_buf_t *abuf = NULL; 180 zbookmark_t zb; 181 int error; 182 183 if (zilog->zl_header->zh_claim_txg == 0) 184 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 185 186 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 187 zio_flags |= ZIO_FLAG_SPECULATIVE; 188 189 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 190 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 191 192 error = dsl_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 193 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 194 195 if (error == 0) { 196 zio_cksum_t cksum = bp->blk_cksum; 197 198 /* 199 * Validate the checksummed log block. 200 * 201 * Sequence numbers should be... sequential. The checksum 202 * verifier for the next block should be bp's checksum plus 1. 203 * 204 * Also check the log chain linkage and size used. 205 */ 206 cksum.zc_word[ZIL_ZC_SEQ]++; 207 208 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 209 zil_chain_t *zilc = abuf->b_data; 210 char *lr = (char *)(zilc + 1); 211 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 212 213 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 214 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 215 error = ECKSUM; 216 } else { 217 bcopy(lr, dst, len); 218 *end = (char *)dst + len; 219 *nbp = zilc->zc_next_blk; 220 } 221 } else { 222 char *lr = abuf->b_data; 223 uint64_t size = BP_GET_LSIZE(bp); 224 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 225 226 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 227 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 228 (zilc->zc_nused > (size - sizeof (*zilc)))) { 229 error = ECKSUM; 230 } else { 231 bcopy(lr, dst, zilc->zc_nused); 232 *end = (char *)dst + zilc->zc_nused; 233 *nbp = zilc->zc_next_blk; 234 } 235 } 236 237 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 238 } 239 240 return (error); 241 } 242 243 /* 244 * Read a TX_WRITE log data block. 245 */ 246 static int 247 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 248 { 249 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 250 const blkptr_t *bp = &lr->lr_blkptr; 251 uint32_t aflags = ARC_WAIT; 252 arc_buf_t *abuf = NULL; 253 zbookmark_t zb; 254 int error; 255 256 if (BP_IS_HOLE(bp)) { 257 if (wbuf != NULL) 258 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 259 return (0); 260 } 261 262 if (zilog->zl_header->zh_claim_txg == 0) 263 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 264 265 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 266 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 267 268 error = arc_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 269 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 270 271 if (error == 0) { 272 if (wbuf != NULL) 273 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 274 (void) arc_buf_remove_ref(abuf, &abuf); 275 } 276 277 return (error); 278 } 279 280 /* 281 * Parse the intent log, and call parse_func for each valid record within. 282 */ 283 int 284 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 285 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 286 { 287 const zil_header_t *zh = zilog->zl_header; 288 boolean_t claimed = !!zh->zh_claim_txg; 289 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 290 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 291 uint64_t max_blk_seq = 0; 292 uint64_t max_lr_seq = 0; 293 uint64_t blk_count = 0; 294 uint64_t lr_count = 0; 295 blkptr_t blk, next_blk; 296 char *lrbuf, *lrp; 297 int error = 0; 298 299 /* 300 * Old logs didn't record the maximum zh_claim_lr_seq. 301 */ 302 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 303 claim_lr_seq = UINT64_MAX; 304 305 /* 306 * Starting at the block pointed to by zh_log we read the log chain. 307 * For each block in the chain we strongly check that block to 308 * ensure its validity. We stop when an invalid block is found. 309 * For each block pointer in the chain we call parse_blk_func(). 310 * For each record in each valid block we call parse_lr_func(). 311 * If the log has been claimed, stop if we encounter a sequence 312 * number greater than the highest claimed sequence number. 313 */ 314 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); 315 zil_bp_tree_init(zilog); 316 317 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 318 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 319 int reclen; 320 char *end; 321 322 if (blk_seq > claim_blk_seq) 323 break; 324 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 325 break; 326 ASSERT3U(max_blk_seq, <, blk_seq); 327 max_blk_seq = blk_seq; 328 blk_count++; 329 330 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 331 break; 332 333 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 334 if (error) 335 break; 336 337 for (lrp = lrbuf; lrp < end; lrp += reclen) { 338 lr_t *lr = (lr_t *)lrp; 339 reclen = lr->lrc_reclen; 340 ASSERT3U(reclen, >=, sizeof (lr_t)); 341 if (lr->lrc_seq > claim_lr_seq) 342 goto done; 343 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 344 goto done; 345 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 346 max_lr_seq = lr->lrc_seq; 347 lr_count++; 348 } 349 } 350 done: 351 zilog->zl_parse_error = error; 352 zilog->zl_parse_blk_seq = max_blk_seq; 353 zilog->zl_parse_lr_seq = max_lr_seq; 354 zilog->zl_parse_blk_count = blk_count; 355 zilog->zl_parse_lr_count = lr_count; 356 357 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 358 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 359 360 zil_bp_tree_fini(zilog); 361 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); 362 363 return (error); 364 } 365 366 static int 367 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 368 { 369 /* 370 * Claim log block if not already committed and not already claimed. 371 * If tx == NULL, just verify that the block is claimable. 372 */ 373 if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) 374 return (0); 375 376 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 377 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 378 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 379 } 380 381 static int 382 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 383 { 384 lr_write_t *lr = (lr_write_t *)lrc; 385 int error; 386 387 if (lrc->lrc_txtype != TX_WRITE) 388 return (0); 389 390 /* 391 * If the block is not readable, don't claim it. This can happen 392 * in normal operation when a log block is written to disk before 393 * some of the dmu_sync() blocks it points to. In this case, the 394 * transaction cannot have been committed to anyone (we would have 395 * waited for all writes to be stable first), so it is semantically 396 * correct to declare this the end of the log. 397 */ 398 if (lr->lr_blkptr.blk_birth >= first_txg && 399 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 400 return (error); 401 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 402 } 403 404 /* ARGSUSED */ 405 static int 406 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 407 { 408 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 409 410 return (0); 411 } 412 413 static int 414 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 415 { 416 lr_write_t *lr = (lr_write_t *)lrc; 417 blkptr_t *bp = &lr->lr_blkptr; 418 419 /* 420 * If we previously claimed it, we need to free it. 421 */ 422 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 423 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0) 424 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 425 426 return (0); 427 } 428 429 static lwb_t * 430 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) 431 { 432 lwb_t *lwb; 433 434 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 435 lwb->lwb_zilog = zilog; 436 lwb->lwb_blk = *bp; 437 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 438 lwb->lwb_max_txg = txg; 439 lwb->lwb_zio = NULL; 440 lwb->lwb_tx = NULL; 441 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 442 lwb->lwb_nused = sizeof (zil_chain_t); 443 lwb->lwb_sz = BP_GET_LSIZE(bp); 444 } else { 445 lwb->lwb_nused = 0; 446 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 447 } 448 449 mutex_enter(&zilog->zl_lock); 450 list_insert_tail(&zilog->zl_lwb_list, lwb); 451 mutex_exit(&zilog->zl_lock); 452 453 return (lwb); 454 } 455 456 /* 457 * Create an on-disk intent log. 458 */ 459 static lwb_t * 460 zil_create(zilog_t *zilog) 461 { 462 const zil_header_t *zh = zilog->zl_header; 463 lwb_t *lwb = NULL; 464 uint64_t txg = 0; 465 dmu_tx_t *tx = NULL; 466 blkptr_t blk; 467 int error = 0; 468 469 /* 470 * Wait for any previous destroy to complete. 471 */ 472 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 473 474 ASSERT(zh->zh_claim_txg == 0); 475 ASSERT(zh->zh_replay_seq == 0); 476 477 blk = zh->zh_log; 478 479 /* 480 * Allocate an initial log block if: 481 * - there isn't one already 482 * - the existing block is the wrong endianess 483 */ 484 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 485 tx = dmu_tx_create(zilog->zl_os); 486 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 487 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 488 txg = dmu_tx_get_txg(tx); 489 490 if (!BP_IS_HOLE(&blk)) { 491 zio_free_zil(zilog->zl_spa, txg, &blk); 492 BP_ZERO(&blk); 493 } 494 495 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 496 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 497 498 if (error == 0) 499 zil_init_log_chain(zilog, &blk); 500 } 501 502 /* 503 * Allocate a log write buffer (lwb) for the first log block. 504 */ 505 if (error == 0) 506 lwb = zil_alloc_lwb(zilog, &blk, txg); 507 508 /* 509 * If we just allocated the first log block, commit our transaction 510 * and wait for zil_sync() to stuff the block poiner into zh_log. 511 * (zh is part of the MOS, so we cannot modify it in open context.) 512 */ 513 if (tx != NULL) { 514 dmu_tx_commit(tx); 515 txg_wait_synced(zilog->zl_dmu_pool, txg); 516 } 517 518 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 519 520 return (lwb); 521 } 522 523 /* 524 * In one tx, free all log blocks and clear the log header. 525 * If keep_first is set, then we're replaying a log with no content. 526 * We want to keep the first block, however, so that the first 527 * synchronous transaction doesn't require a txg_wait_synced() 528 * in zil_create(). We don't need to txg_wait_synced() here either 529 * when keep_first is set, because both zil_create() and zil_destroy() 530 * will wait for any in-progress destroys to complete. 531 */ 532 void 533 zil_destroy(zilog_t *zilog, boolean_t keep_first) 534 { 535 const zil_header_t *zh = zilog->zl_header; 536 lwb_t *lwb; 537 dmu_tx_t *tx; 538 uint64_t txg; 539 540 /* 541 * Wait for any previous destroy to complete. 542 */ 543 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 544 545 zilog->zl_old_header = *zh; /* debugging aid */ 546 547 if (BP_IS_HOLE(&zh->zh_log)) 548 return; 549 550 tx = dmu_tx_create(zilog->zl_os); 551 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 552 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 553 txg = dmu_tx_get_txg(tx); 554 555 mutex_enter(&zilog->zl_lock); 556 557 ASSERT3U(zilog->zl_destroy_txg, <, txg); 558 zilog->zl_destroy_txg = txg; 559 zilog->zl_keep_first = keep_first; 560 561 if (!list_is_empty(&zilog->zl_lwb_list)) { 562 ASSERT(zh->zh_claim_txg == 0); 563 ASSERT(!keep_first); 564 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 565 list_remove(&zilog->zl_lwb_list, lwb); 566 if (lwb->lwb_buf != NULL) 567 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 568 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); 569 kmem_cache_free(zil_lwb_cache, lwb); 570 } 571 } else if (!keep_first) { 572 (void) zil_parse(zilog, zil_free_log_block, 573 zil_free_log_record, tx, zh->zh_claim_txg); 574 } 575 mutex_exit(&zilog->zl_lock); 576 577 dmu_tx_commit(tx); 578 } 579 580 int 581 zil_claim(const char *osname, void *txarg) 582 { 583 dmu_tx_t *tx = txarg; 584 uint64_t first_txg = dmu_tx_get_txg(tx); 585 zilog_t *zilog; 586 zil_header_t *zh; 587 objset_t *os; 588 int error; 589 590 error = dmu_objset_hold(osname, FTAG, &os); 591 if (error) { 592 cmn_err(CE_WARN, "can't open objset for %s", osname); 593 return (0); 594 } 595 596 zilog = dmu_objset_zil(os); 597 zh = zil_header_in_syncing_context(zilog); 598 599 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 600 if (!BP_IS_HOLE(&zh->zh_log)) 601 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 602 BP_ZERO(&zh->zh_log); 603 dsl_dataset_dirty(dmu_objset_ds(os), tx); 604 dmu_objset_rele(os, FTAG); 605 return (0); 606 } 607 608 /* 609 * Claim all log blocks if we haven't already done so, and remember 610 * the highest claimed sequence number. This ensures that if we can 611 * read only part of the log now (e.g. due to a missing device), 612 * but we can read the entire log later, we will not try to replay 613 * or destroy beyond the last block we successfully claimed. 614 */ 615 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 616 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 617 (void) zil_parse(zilog, zil_claim_log_block, 618 zil_claim_log_record, tx, first_txg); 619 zh->zh_claim_txg = first_txg; 620 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 621 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 622 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 623 zh->zh_flags |= ZIL_REPLAY_NEEDED; 624 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 625 dsl_dataset_dirty(dmu_objset_ds(os), tx); 626 } 627 628 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 629 dmu_objset_rele(os, FTAG); 630 return (0); 631 } 632 633 /* 634 * Check the log by walking the log chain. 635 * Checksum errors are ok as they indicate the end of the chain. 636 * Any other error (no device or read failure) returns an error. 637 */ 638 int 639 zil_check_log_chain(const char *osname, void *tx) 640 { 641 zilog_t *zilog; 642 objset_t *os; 643 blkptr_t *bp; 644 int error; 645 646 ASSERT(tx == NULL); 647 648 error = dmu_objset_hold(osname, FTAG, &os); 649 if (error) { 650 cmn_err(CE_WARN, "can't open objset for %s", osname); 651 return (0); 652 } 653 654 zilog = dmu_objset_zil(os); 655 bp = (blkptr_t *)&zilog->zl_header->zh_log; 656 657 /* 658 * Check the first block and determine if it's on a log device 659 * which may have been removed or faulted prior to loading this 660 * pool. If so, there's no point in checking the rest of the log 661 * as its content should have already been synced to the pool. 662 */ 663 if (!BP_IS_HOLE(bp)) { 664 vdev_t *vd; 665 boolean_t valid = B_TRUE; 666 667 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 668 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 669 if (vd->vdev_islog && vdev_is_dead(vd)) 670 valid = vdev_log_state_valid(vd); 671 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 672 673 if (!valid) { 674 dmu_objset_rele(os, FTAG); 675 return (0); 676 } 677 } 678 679 /* 680 * Because tx == NULL, zil_claim_log_block() will not actually claim 681 * any blocks, but just determine whether it is possible to do so. 682 * In addition to checking the log chain, zil_claim_log_block() 683 * will invoke zio_claim() with a done func of spa_claim_notify(), 684 * which will update spa_max_claim_txg. See spa_load() for details. 685 */ 686 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 687 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 688 689 dmu_objset_rele(os, FTAG); 690 691 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 692 } 693 694 static int 695 zil_vdev_compare(const void *x1, const void *x2) 696 { 697 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 698 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 699 700 if (v1 < v2) 701 return (-1); 702 if (v1 > v2) 703 return (1); 704 705 return (0); 706 } 707 708 void 709 zil_add_block(zilog_t *zilog, const blkptr_t *bp) 710 { 711 avl_tree_t *t = &zilog->zl_vdev_tree; 712 avl_index_t where; 713 zil_vdev_node_t *zv, zvsearch; 714 int ndvas = BP_GET_NDVAS(bp); 715 int i; 716 717 if (zfs_nocacheflush) 718 return; 719 720 ASSERT(zilog->zl_writer); 721 722 /* 723 * Even though we're zl_writer, we still need a lock because the 724 * zl_get_data() callbacks may have dmu_sync() done callbacks 725 * that will run concurrently. 726 */ 727 mutex_enter(&zilog->zl_vdev_lock); 728 for (i = 0; i < ndvas; i++) { 729 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 730 if (avl_find(t, &zvsearch, &where) == NULL) { 731 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 732 zv->zv_vdev = zvsearch.zv_vdev; 733 avl_insert(t, zv, where); 734 } 735 } 736 mutex_exit(&zilog->zl_vdev_lock); 737 } 738 739 static void 740 zil_flush_vdevs(zilog_t *zilog) 741 { 742 spa_t *spa = zilog->zl_spa; 743 avl_tree_t *t = &zilog->zl_vdev_tree; 744 void *cookie = NULL; 745 zil_vdev_node_t *zv; 746 zio_t *zio; 747 748 ASSERT(zilog->zl_writer); 749 750 /* 751 * We don't need zl_vdev_lock here because we're the zl_writer, 752 * and all zl_get_data() callbacks are done. 753 */ 754 if (avl_numnodes(t) == 0) 755 return; 756 757 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 758 759 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 760 761 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 762 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 763 if (vd != NULL) 764 zio_flush(zio, vd); 765 kmem_free(zv, sizeof (*zv)); 766 } 767 768 /* 769 * Wait for all the flushes to complete. Not all devices actually 770 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 771 */ 772 (void) zio_wait(zio); 773 774 spa_config_exit(spa, SCL_STATE, FTAG); 775 } 776 777 /* 778 * Function called when a log block write completes 779 */ 780 static void 781 zil_lwb_write_done(zio_t *zio) 782 { 783 lwb_t *lwb = zio->io_private; 784 zilog_t *zilog = lwb->lwb_zilog; 785 dmu_tx_t *tx = lwb->lwb_tx; 786 787 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 788 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 789 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 790 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 791 ASSERT(!BP_IS_GANG(zio->io_bp)); 792 ASSERT(!BP_IS_HOLE(zio->io_bp)); 793 ASSERT(zio->io_bp->blk_fill == 0); 794 795 /* 796 * Ensure the lwb buffer pointer is cleared before releasing 797 * the txg. If we have had an allocation failure and 798 * the txg is waiting to sync then we want want zil_sync() 799 * to remove the lwb so that it's not picked up as the next new 800 * one in zil_commit_writer(). zil_sync() will only remove 801 * the lwb if lwb_buf is null. 802 */ 803 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 804 mutex_enter(&zilog->zl_lock); 805 lwb->lwb_buf = NULL; 806 lwb->lwb_tx = NULL; 807 mutex_exit(&zilog->zl_lock); 808 809 /* 810 * Now that we've written this log block, we have a stable pointer 811 * to the next block in the chain, so it's OK to let the txg in 812 * which we allocated the next block sync. 813 */ 814 dmu_tx_commit(tx); 815 } 816 817 /* 818 * Initialize the io for a log block. 819 */ 820 static void 821 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 822 { 823 zbookmark_t zb; 824 825 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 826 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 827 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 828 829 if (zilog->zl_root_zio == NULL) { 830 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 831 ZIO_FLAG_CANFAIL); 832 } 833 if (lwb->lwb_zio == NULL) { 834 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 835 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), 836 zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE, 837 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 838 } 839 } 840 841 /* 842 * Define a limited set of intent log block sizes. 843 * These must be a multiple of 4KB. Note only the amount used (again 844 * aligned to 4KB) actually gets written. However, we can't always just 845 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted. 846 */ 847 uint64_t zil_block_buckets[] = { 848 4096, /* non TX_WRITE */ 849 8192+4096, /* data base */ 850 32*1024 + 4096, /* NFS writes */ 851 UINT64_MAX 852 }; 853 854 /* 855 * Use the slog as long as the logbias is 'latency' and the current commit size 856 * is less than the limit or the total list size is less than 2X the limit. 857 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. 858 */ 859 uint64_t zil_slog_limit = 1024 * 1024; 860 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ 861 (((zilog)->zl_cur_used < zil_slog_limit) || \ 862 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) 863 864 /* 865 * Start a log block write and advance to the next log block. 866 * Calls are serialized. 867 */ 868 static lwb_t * 869 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 870 { 871 lwb_t *nlwb = NULL; 872 zil_chain_t *zilc; 873 spa_t *spa = zilog->zl_spa; 874 blkptr_t *bp; 875 dmu_tx_t *tx; 876 uint64_t txg; 877 uint64_t zil_blksz, wsz; 878 int i, error; 879 880 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 881 zilc = (zil_chain_t *)lwb->lwb_buf; 882 bp = &zilc->zc_next_blk; 883 } else { 884 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 885 bp = &zilc->zc_next_blk; 886 } 887 888 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 889 890 /* 891 * Allocate the next block and save its address in this block 892 * before writing it in order to establish the log chain. 893 * Note that if the allocation of nlwb synced before we wrote 894 * the block that points at it (lwb), we'd leak it if we crashed. 895 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 896 * We dirty the dataset to ensure that zil_sync() will be called 897 * to clean up in the event of allocation failure or I/O failure. 898 */ 899 tx = dmu_tx_create(zilog->zl_os); 900 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 901 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 902 txg = dmu_tx_get_txg(tx); 903 904 lwb->lwb_tx = tx; 905 906 /* 907 * Log blocks are pre-allocated. Here we select the size of the next 908 * block, based on size used in the last block. 909 * - first find the smallest bucket that will fit the block from a 910 * limited set of block sizes. This is because it's faster to write 911 * blocks allocated from the same metaslab as they are adjacent or 912 * close. 913 * - next find the maximum from the new suggested size and an array of 914 * previous sizes. This lessens a picket fence effect of wrongly 915 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 916 * requests. 917 * 918 * Note we only write what is used, but we can't just allocate 919 * the maximum block size because we can exhaust the available 920 * pool log space. 921 */ 922 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 923 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 924 continue; 925 zil_blksz = zil_block_buckets[i]; 926 if (zil_blksz == UINT64_MAX) 927 zil_blksz = SPA_MAXBLOCKSIZE; 928 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 929 for (i = 0; i < ZIL_PREV_BLKS; i++) 930 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 931 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 932 933 BP_ZERO(bp); 934 /* pass the old blkptr in order to spread log blocks across devs */ 935 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, 936 USE_SLOG(zilog)); 937 if (!error) { 938 ASSERT3U(bp->blk_birth, ==, txg); 939 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 940 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 941 942 /* 943 * Allocate a new log write buffer (lwb). 944 */ 945 nlwb = zil_alloc_lwb(zilog, bp, txg); 946 947 /* Record the block for later vdev flushing */ 948 zil_add_block(zilog, &lwb->lwb_blk); 949 } 950 951 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 952 /* For Slim ZIL only write what is used. */ 953 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 954 ASSERT3U(wsz, <=, lwb->lwb_sz); 955 zio_shrink(lwb->lwb_zio, wsz); 956 957 } else { 958 wsz = lwb->lwb_sz; 959 } 960 961 zilc->zc_pad = 0; 962 zilc->zc_nused = lwb->lwb_nused; 963 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 964 965 /* 966 * clear unused data for security 967 */ 968 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 969 970 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ 971 972 /* 973 * If there was an allocation failure then nlwb will be null which 974 * forces a txg_wait_synced(). 975 */ 976 return (nlwb); 977 } 978 979 static lwb_t * 980 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 981 { 982 lr_t *lrc = &itx->itx_lr; /* common log record */ 983 lr_write_t *lrw = (lr_write_t *)lrc; 984 char *lr_buf; 985 uint64_t txg = lrc->lrc_txg; 986 uint64_t reclen = lrc->lrc_reclen; 987 uint64_t dlen = 0; 988 989 if (lwb == NULL) 990 return (NULL); 991 992 ASSERT(lwb->lwb_buf != NULL); 993 994 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 995 dlen = P2ROUNDUP_TYPED( 996 lrw->lr_length, sizeof (uint64_t), uint64_t); 997 998 zilog->zl_cur_used += (reclen + dlen); 999 1000 zil_lwb_write_init(zilog, lwb); 1001 1002 /* 1003 * If this record won't fit in the current log block, start a new one. 1004 */ 1005 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1006 lwb = zil_lwb_write_start(zilog, lwb); 1007 if (lwb == NULL) 1008 return (NULL); 1009 zil_lwb_write_init(zilog, lwb); 1010 ASSERT(LWB_EMPTY(lwb)); 1011 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1012 txg_wait_synced(zilog->zl_dmu_pool, txg); 1013 return (lwb); 1014 } 1015 } 1016 1017 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1018 bcopy(lrc, lr_buf, reclen); 1019 lrc = (lr_t *)lr_buf; 1020 lrw = (lr_write_t *)lrc; 1021 1022 /* 1023 * If it's a write, fetch the data or get its blkptr as appropriate. 1024 */ 1025 if (lrc->lrc_txtype == TX_WRITE) { 1026 if (txg > spa_freeze_txg(zilog->zl_spa)) 1027 txg_wait_synced(zilog->zl_dmu_pool, txg); 1028 if (itx->itx_wr_state != WR_COPIED) { 1029 char *dbuf; 1030 int error; 1031 1032 if (dlen) { 1033 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 1034 dbuf = lr_buf + reclen; 1035 lrw->lr_common.lrc_reclen += dlen; 1036 } else { 1037 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1038 dbuf = NULL; 1039 } 1040 error = zilog->zl_get_data( 1041 itx->itx_private, lrw, dbuf, lwb->lwb_zio); 1042 if (error == EIO) { 1043 txg_wait_synced(zilog->zl_dmu_pool, txg); 1044 return (lwb); 1045 } 1046 if (error) { 1047 ASSERT(error == ENOENT || error == EEXIST || 1048 error == EALREADY); 1049 return (lwb); 1050 } 1051 } 1052 } 1053 1054 /* 1055 * We're actually making an entry, so update lrc_seq to be the 1056 * log record sequence number. Note that this is generally not 1057 * equal to the itx sequence number because not all transactions 1058 * are synchronous, and sometimes spa_sync() gets there first. 1059 */ 1060 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 1061 lwb->lwb_nused += reclen + dlen; 1062 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1063 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1064 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 1065 1066 return (lwb); 1067 } 1068 1069 itx_t * 1070 zil_itx_create(uint64_t txtype, size_t lrsize) 1071 { 1072 itx_t *itx; 1073 1074 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1075 1076 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1077 itx->itx_lr.lrc_txtype = txtype; 1078 itx->itx_lr.lrc_reclen = lrsize; 1079 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 1080 itx->itx_lr.lrc_seq = 0; /* defensive */ 1081 itx->itx_sync = B_TRUE; /* default is synchronous */ 1082 1083 return (itx); 1084 } 1085 1086 void 1087 zil_itx_destroy(itx_t *itx) 1088 { 1089 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1090 } 1091 1092 /* 1093 * Free up the sync and async itxs. The itxs_t has already been detached 1094 * so no locks are needed. 1095 */ 1096 static void 1097 zil_itxg_clean(itxs_t *itxs) 1098 { 1099 itx_t *itx; 1100 list_t *list; 1101 avl_tree_t *t; 1102 void *cookie; 1103 itx_async_node_t *ian; 1104 1105 list = &itxs->i_sync_list; 1106 while ((itx = list_head(list)) != NULL) { 1107 list_remove(list, itx); 1108 kmem_free(itx, offsetof(itx_t, itx_lr) + 1109 itx->itx_lr.lrc_reclen); 1110 } 1111 1112 cookie = NULL; 1113 t = &itxs->i_async_tree; 1114 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1115 list = &ian->ia_list; 1116 while ((itx = list_head(list)) != NULL) { 1117 list_remove(list, itx); 1118 kmem_free(itx, offsetof(itx_t, itx_lr) + 1119 itx->itx_lr.lrc_reclen); 1120 } 1121 list_destroy(list); 1122 kmem_free(ian, sizeof (itx_async_node_t)); 1123 } 1124 avl_destroy(t); 1125 1126 kmem_free(itxs, sizeof (itxs_t)); 1127 } 1128 1129 static int 1130 zil_aitx_compare(const void *x1, const void *x2) 1131 { 1132 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1133 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1134 1135 if (o1 < o2) 1136 return (-1); 1137 if (o1 > o2) 1138 return (1); 1139 1140 return (0); 1141 } 1142 1143 /* 1144 * Remove all async itx with the given oid. 1145 */ 1146 static void 1147 zil_remove_async(zilog_t *zilog, uint64_t oid) 1148 { 1149 uint64_t otxg, txg; 1150 itx_async_node_t *ian; 1151 avl_tree_t *t; 1152 avl_index_t where; 1153 list_t clean_list; 1154 itx_t *itx; 1155 1156 ASSERT(oid != 0); 1157 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1158 1159 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1160 otxg = ZILTEST_TXG; 1161 else 1162 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1163 1164 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1165 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1166 1167 mutex_enter(&itxg->itxg_lock); 1168 if (itxg->itxg_txg != txg) { 1169 mutex_exit(&itxg->itxg_lock); 1170 continue; 1171 } 1172 1173 /* 1174 * Locate the object node and append its list. 1175 */ 1176 t = &itxg->itxg_itxs->i_async_tree; 1177 ian = avl_find(t, &oid, &where); 1178 if (ian != NULL) 1179 list_move_tail(&clean_list, &ian->ia_list); 1180 mutex_exit(&itxg->itxg_lock); 1181 } 1182 while ((itx = list_head(&clean_list)) != NULL) { 1183 list_remove(&clean_list, itx); 1184 kmem_free(itx, offsetof(itx_t, itx_lr) + 1185 itx->itx_lr.lrc_reclen); 1186 } 1187 list_destroy(&clean_list); 1188 } 1189 1190 void 1191 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1192 { 1193 uint64_t txg; 1194 itxg_t *itxg; 1195 itxs_t *itxs, *clean = NULL; 1196 1197 /* 1198 * Object ids can be re-instantiated in the next txg so 1199 * remove any async transactions to avoid future leaks. 1200 * This can happen if a fsync occurs on the re-instantiated 1201 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1202 * the new file data and flushes a write record for the old object. 1203 */ 1204 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1205 zil_remove_async(zilog, itx->itx_oid); 1206 1207 /* 1208 * Ensure the data of a renamed file is committed before the rename. 1209 */ 1210 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1211 zil_async_to_sync(zilog, itx->itx_oid); 1212 1213 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1214 txg = ZILTEST_TXG; 1215 else 1216 txg = dmu_tx_get_txg(tx); 1217 1218 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1219 mutex_enter(&itxg->itxg_lock); 1220 itxs = itxg->itxg_itxs; 1221 if (itxg->itxg_txg != txg) { 1222 if (itxs != NULL) { 1223 /* 1224 * The zil_clean callback hasn't got around to cleaning 1225 * this itxg. Save the itxs for release below. 1226 * This should be rare. 1227 */ 1228 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1229 itxg->itxg_sod = 0; 1230 clean = itxg->itxg_itxs; 1231 } 1232 ASSERT(itxg->itxg_sod == 0); 1233 itxg->itxg_txg = txg; 1234 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1235 1236 list_create(&itxs->i_sync_list, sizeof (itx_t), 1237 offsetof(itx_t, itx_node)); 1238 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1239 sizeof (itx_async_node_t), 1240 offsetof(itx_async_node_t, ia_node)); 1241 } 1242 if (itx->itx_sync) { 1243 list_insert_tail(&itxs->i_sync_list, itx); 1244 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); 1245 itxg->itxg_sod += itx->itx_sod; 1246 } else { 1247 avl_tree_t *t = &itxs->i_async_tree; 1248 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1249 itx_async_node_t *ian; 1250 avl_index_t where; 1251 1252 ian = avl_find(t, &foid, &where); 1253 if (ian == NULL) { 1254 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1255 list_create(&ian->ia_list, sizeof (itx_t), 1256 offsetof(itx_t, itx_node)); 1257 ian->ia_foid = foid; 1258 avl_insert(t, ian, where); 1259 } 1260 list_insert_tail(&ian->ia_list, itx); 1261 } 1262 1263 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1264 mutex_exit(&itxg->itxg_lock); 1265 1266 /* Release the old itxs now we've dropped the lock */ 1267 if (clean != NULL) 1268 zil_itxg_clean(clean); 1269 } 1270 1271 /* 1272 * If there are any in-memory intent log transactions which have now been 1273 * synced then start up a taskq to free them. 1274 */ 1275 void 1276 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1277 { 1278 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1279 itxs_t *clean_me; 1280 1281 mutex_enter(&itxg->itxg_lock); 1282 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1283 mutex_exit(&itxg->itxg_lock); 1284 return; 1285 } 1286 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1287 ASSERT(itxg->itxg_txg != 0); 1288 ASSERT(zilog->zl_clean_taskq != NULL); 1289 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1290 itxg->itxg_sod = 0; 1291 clean_me = itxg->itxg_itxs; 1292 itxg->itxg_itxs = NULL; 1293 itxg->itxg_txg = 0; 1294 mutex_exit(&itxg->itxg_lock); 1295 /* 1296 * Preferably start a task queue to free up the old itxs but 1297 * if taskq_dispatch can't allocate resources to do that then 1298 * free it in-line. This should be rare. Note, using TQ_SLEEP 1299 * created a bad performance problem. 1300 */ 1301 if (taskq_dispatch(zilog->zl_clean_taskq, 1302 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1303 zil_itxg_clean(clean_me); 1304 } 1305 1306 /* 1307 * Get the list of itxs to commit into zl_itx_commit_list. 1308 */ 1309 static void 1310 zil_get_commit_list(zilog_t *zilog) 1311 { 1312 uint64_t otxg, txg; 1313 list_t *commit_list = &zilog->zl_itx_commit_list; 1314 uint64_t push_sod = 0; 1315 1316 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1317 otxg = ZILTEST_TXG; 1318 else 1319 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1320 1321 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1322 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1323 1324 mutex_enter(&itxg->itxg_lock); 1325 if (itxg->itxg_txg != txg) { 1326 mutex_exit(&itxg->itxg_lock); 1327 continue; 1328 } 1329 1330 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1331 push_sod += itxg->itxg_sod; 1332 itxg->itxg_sod = 0; 1333 1334 mutex_exit(&itxg->itxg_lock); 1335 } 1336 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); 1337 } 1338 1339 /* 1340 * Move the async itxs for a specified object to commit into sync lists. 1341 */ 1342 static void 1343 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1344 { 1345 uint64_t otxg, txg; 1346 itx_async_node_t *ian; 1347 avl_tree_t *t; 1348 avl_index_t where; 1349 1350 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1351 otxg = ZILTEST_TXG; 1352 else 1353 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1354 1355 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1356 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1357 1358 mutex_enter(&itxg->itxg_lock); 1359 if (itxg->itxg_txg != txg) { 1360 mutex_exit(&itxg->itxg_lock); 1361 continue; 1362 } 1363 1364 /* 1365 * If a foid is specified then find that node and append its 1366 * list. Otherwise walk the tree appending all the lists 1367 * to the sync list. We add to the end rather than the 1368 * beginning to ensure the create has happened. 1369 */ 1370 t = &itxg->itxg_itxs->i_async_tree; 1371 if (foid != 0) { 1372 ian = avl_find(t, &foid, &where); 1373 if (ian != NULL) { 1374 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1375 &ian->ia_list); 1376 } 1377 } else { 1378 void *cookie = NULL; 1379 1380 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1381 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1382 &ian->ia_list); 1383 list_destroy(&ian->ia_list); 1384 kmem_free(ian, sizeof (itx_async_node_t)); 1385 } 1386 } 1387 mutex_exit(&itxg->itxg_lock); 1388 } 1389 } 1390 1391 static void 1392 zil_commit_writer(zilog_t *zilog) 1393 { 1394 uint64_t txg; 1395 itx_t *itx; 1396 lwb_t *lwb; 1397 spa_t *spa = zilog->zl_spa; 1398 int error = 0; 1399 1400 ASSERT(zilog->zl_root_zio == NULL); 1401 1402 mutex_exit(&zilog->zl_lock); 1403 1404 zil_get_commit_list(zilog); 1405 1406 /* 1407 * Return if there's nothing to commit before we dirty the fs by 1408 * calling zil_create(). 1409 */ 1410 if (list_head(&zilog->zl_itx_commit_list) == NULL) { 1411 mutex_enter(&zilog->zl_lock); 1412 return; 1413 } 1414 1415 if (zilog->zl_suspend) { 1416 lwb = NULL; 1417 } else { 1418 lwb = list_tail(&zilog->zl_lwb_list); 1419 if (lwb == NULL) 1420 lwb = zil_create(zilog); 1421 } 1422 1423 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1424 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1425 txg = itx->itx_lr.lrc_txg; 1426 ASSERT(txg); 1427 1428 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) 1429 lwb = zil_lwb_commit(zilog, itx, lwb); 1430 list_remove(&zilog->zl_itx_commit_list, itx); 1431 kmem_free(itx, offsetof(itx_t, itx_lr) 1432 + itx->itx_lr.lrc_reclen); 1433 } 1434 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1435 1436 /* write the last block out */ 1437 if (lwb != NULL && lwb->lwb_zio != NULL) 1438 lwb = zil_lwb_write_start(zilog, lwb); 1439 1440 zilog->zl_cur_used = 0; 1441 1442 /* 1443 * Wait if necessary for the log blocks to be on stable storage. 1444 */ 1445 if (zilog->zl_root_zio) { 1446 error = zio_wait(zilog->zl_root_zio); 1447 zilog->zl_root_zio = NULL; 1448 zil_flush_vdevs(zilog); 1449 } 1450 1451 if (error || lwb == NULL) 1452 txg_wait_synced(zilog->zl_dmu_pool, 0); 1453 1454 mutex_enter(&zilog->zl_lock); 1455 1456 /* 1457 * Remember the highest committed log sequence number for ztest. 1458 * We only update this value when all the log writes succeeded, 1459 * because ztest wants to ASSERT that it got the whole log chain. 1460 */ 1461 if (error == 0 && lwb != NULL) 1462 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1463 } 1464 1465 /* 1466 * Commit zfs transactions to stable storage. 1467 * If foid is 0 push out all transactions, otherwise push only those 1468 * for that object or might reference that object. 1469 * 1470 * itxs are committed in batches. In a heavily stressed zil there will be 1471 * a commit writer thread who is writing out a bunch of itxs to the log 1472 * for a set of committing threads (cthreads) in the same batch as the writer. 1473 * Those cthreads are all waiting on the same cv for that batch. 1474 * 1475 * There will also be a different and growing batch of threads that are 1476 * waiting to commit (qthreads). When the committing batch completes 1477 * a transition occurs such that the cthreads exit and the qthreads become 1478 * cthreads. One of the new cthreads becomes the writer thread for the 1479 * batch. Any new threads arriving become new qthreads. 1480 * 1481 * Only 2 condition variables are needed and there's no transition 1482 * between the two cvs needed. They just flip-flop between qthreads 1483 * and cthreads. 1484 * 1485 * Using this scheme we can efficiently wakeup up only those threads 1486 * that have been committed. 1487 */ 1488 void 1489 zil_commit(zilog_t *zilog, uint64_t foid) 1490 { 1491 uint64_t mybatch; 1492 1493 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1494 return; 1495 1496 /* move the async itxs for the foid to the sync queues */ 1497 zil_async_to_sync(zilog, foid); 1498 1499 mutex_enter(&zilog->zl_lock); 1500 mybatch = zilog->zl_next_batch; 1501 while (zilog->zl_writer) { 1502 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); 1503 if (mybatch <= zilog->zl_com_batch) { 1504 mutex_exit(&zilog->zl_lock); 1505 return; 1506 } 1507 } 1508 1509 zilog->zl_next_batch++; 1510 zilog->zl_writer = B_TRUE; 1511 zil_commit_writer(zilog); 1512 zilog->zl_com_batch = mybatch; 1513 zilog->zl_writer = B_FALSE; 1514 mutex_exit(&zilog->zl_lock); 1515 1516 /* wake up one thread to become the next writer */ 1517 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); 1518 1519 /* wake up all threads waiting for this batch to be committed */ 1520 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); 1521 } 1522 1523 /* 1524 * Called in syncing context to free committed log blocks and update log header. 1525 */ 1526 void 1527 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1528 { 1529 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1530 uint64_t txg = dmu_tx_get_txg(tx); 1531 spa_t *spa = zilog->zl_spa; 1532 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 1533 lwb_t *lwb; 1534 1535 /* 1536 * We don't zero out zl_destroy_txg, so make sure we don't try 1537 * to destroy it twice. 1538 */ 1539 if (spa_sync_pass(spa) != 1) 1540 return; 1541 1542 mutex_enter(&zilog->zl_lock); 1543 1544 ASSERT(zilog->zl_stop_sync == 0); 1545 1546 if (*replayed_seq != 0) { 1547 ASSERT(zh->zh_replay_seq < *replayed_seq); 1548 zh->zh_replay_seq = *replayed_seq; 1549 *replayed_seq = 0; 1550 } 1551 1552 if (zilog->zl_destroy_txg == txg) { 1553 blkptr_t blk = zh->zh_log; 1554 1555 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1556 1557 bzero(zh, sizeof (zil_header_t)); 1558 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1559 1560 if (zilog->zl_keep_first) { 1561 /* 1562 * If this block was part of log chain that couldn't 1563 * be claimed because a device was missing during 1564 * zil_claim(), but that device later returns, 1565 * then this block could erroneously appear valid. 1566 * To guard against this, assign a new GUID to the new 1567 * log chain so it doesn't matter what blk points to. 1568 */ 1569 zil_init_log_chain(zilog, &blk); 1570 zh->zh_log = blk; 1571 } 1572 } 1573 1574 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1575 zh->zh_log = lwb->lwb_blk; 1576 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1577 break; 1578 list_remove(&zilog->zl_lwb_list, lwb); 1579 zio_free_zil(spa, txg, &lwb->lwb_blk); 1580 kmem_cache_free(zil_lwb_cache, lwb); 1581 1582 /* 1583 * If we don't have anything left in the lwb list then 1584 * we've had an allocation failure and we need to zero 1585 * out the zil_header blkptr so that we don't end 1586 * up freeing the same block twice. 1587 */ 1588 if (list_head(&zilog->zl_lwb_list) == NULL) 1589 BP_ZERO(&zh->zh_log); 1590 } 1591 mutex_exit(&zilog->zl_lock); 1592 } 1593 1594 void 1595 zil_init(void) 1596 { 1597 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1598 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1599 } 1600 1601 void 1602 zil_fini(void) 1603 { 1604 kmem_cache_destroy(zil_lwb_cache); 1605 } 1606 1607 void 1608 zil_set_sync(zilog_t *zilog, uint64_t sync) 1609 { 1610 zilog->zl_sync = sync; 1611 } 1612 1613 void 1614 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1615 { 1616 zilog->zl_logbias = logbias; 1617 } 1618 1619 zilog_t * 1620 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1621 { 1622 zilog_t *zilog; 1623 1624 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1625 1626 zilog->zl_header = zh_phys; 1627 zilog->zl_os = os; 1628 zilog->zl_spa = dmu_objset_spa(os); 1629 zilog->zl_dmu_pool = dmu_objset_pool(os); 1630 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1631 zilog->zl_logbias = dmu_objset_logbias(os); 1632 zilog->zl_sync = dmu_objset_syncprop(os); 1633 zilog->zl_next_batch = 1; 1634 1635 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1636 1637 for (int i = 0; i < TXG_SIZE; i++) { 1638 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 1639 MUTEX_DEFAULT, NULL); 1640 } 1641 1642 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1643 offsetof(lwb_t, lwb_node)); 1644 1645 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 1646 offsetof(itx_t, itx_node)); 1647 1648 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1649 1650 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1651 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1652 1653 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1654 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1655 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); 1656 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); 1657 1658 return (zilog); 1659 } 1660 1661 void 1662 zil_free(zilog_t *zilog) 1663 { 1664 lwb_t *head_lwb; 1665 1666 zilog->zl_stop_sync = 1; 1667 1668 /* 1669 * After zil_close() there should only be one lwb with a buffer. 1670 */ 1671 head_lwb = list_head(&zilog->zl_lwb_list); 1672 if (head_lwb) { 1673 ASSERT(head_lwb == list_tail(&zilog->zl_lwb_list)); 1674 list_remove(&zilog->zl_lwb_list, head_lwb); 1675 zio_buf_free(head_lwb->lwb_buf, head_lwb->lwb_sz); 1676 kmem_cache_free(zil_lwb_cache, head_lwb); 1677 } 1678 list_destroy(&zilog->zl_lwb_list); 1679 1680 avl_destroy(&zilog->zl_vdev_tree); 1681 mutex_destroy(&zilog->zl_vdev_lock); 1682 1683 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 1684 list_destroy(&zilog->zl_itx_commit_list); 1685 1686 for (int i = 0; i < TXG_SIZE; i++) { 1687 /* 1688 * It's possible for an itx to be generated that doesn't dirty 1689 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 1690 * callback to remove the entry. We remove those here. 1691 * 1692 * Also free up the ziltest itxs. 1693 */ 1694 if (zilog->zl_itxg[i].itxg_itxs) 1695 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 1696 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 1697 } 1698 1699 mutex_destroy(&zilog->zl_lock); 1700 1701 cv_destroy(&zilog->zl_cv_writer); 1702 cv_destroy(&zilog->zl_cv_suspend); 1703 cv_destroy(&zilog->zl_cv_batch[0]); 1704 cv_destroy(&zilog->zl_cv_batch[1]); 1705 1706 kmem_free(zilog, sizeof (zilog_t)); 1707 } 1708 1709 /* 1710 * Open an intent log. 1711 */ 1712 zilog_t * 1713 zil_open(objset_t *os, zil_get_data_t *get_data) 1714 { 1715 zilog_t *zilog = dmu_objset_zil(os); 1716 1717 zilog->zl_get_data = get_data; 1718 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1719 2, 2, TASKQ_PREPOPULATE); 1720 1721 return (zilog); 1722 } 1723 1724 /* 1725 * Close an intent log. 1726 */ 1727 void 1728 zil_close(zilog_t *zilog) 1729 { 1730 lwb_t *tail_lwb; 1731 uint64_t txg = 0; 1732 1733 zil_commit(zilog, 0); /* commit all itx */ 1734 1735 /* 1736 * The lwb_max_txg for the stubby lwb will reflect the last activity 1737 * for the zil. After a txg_wait_synced() on the txg we know all the 1738 * callbacks have occurred that may clean the zil. Only then can we 1739 * destroy the zl_clean_taskq. 1740 */ 1741 mutex_enter(&zilog->zl_lock); 1742 tail_lwb = list_tail(&zilog->zl_lwb_list); 1743 if (tail_lwb != NULL) 1744 txg = tail_lwb->lwb_max_txg; 1745 mutex_exit(&zilog->zl_lock); 1746 if (txg) 1747 txg_wait_synced(zilog->zl_dmu_pool, txg); 1748 1749 taskq_destroy(zilog->zl_clean_taskq); 1750 zilog->zl_clean_taskq = NULL; 1751 zilog->zl_get_data = NULL; 1752 } 1753 1754 /* 1755 * Suspend an intent log. While in suspended mode, we still honor 1756 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1757 * We suspend the log briefly when taking a snapshot so that the snapshot 1758 * contains all the data it's supposed to, and has an empty intent log. 1759 */ 1760 int 1761 zil_suspend(zilog_t *zilog) 1762 { 1763 const zil_header_t *zh = zilog->zl_header; 1764 1765 mutex_enter(&zilog->zl_lock); 1766 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1767 mutex_exit(&zilog->zl_lock); 1768 return (EBUSY); 1769 } 1770 if (zilog->zl_suspend++ != 0) { 1771 /* 1772 * Someone else already began a suspend. 1773 * Just wait for them to finish. 1774 */ 1775 while (zilog->zl_suspending) 1776 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1777 mutex_exit(&zilog->zl_lock); 1778 return (0); 1779 } 1780 zilog->zl_suspending = B_TRUE; 1781 mutex_exit(&zilog->zl_lock); 1782 1783 zil_commit(zilog, 0); 1784 1785 zil_destroy(zilog, B_FALSE); 1786 1787 mutex_enter(&zilog->zl_lock); 1788 zilog->zl_suspending = B_FALSE; 1789 cv_broadcast(&zilog->zl_cv_suspend); 1790 mutex_exit(&zilog->zl_lock); 1791 1792 return (0); 1793 } 1794 1795 void 1796 zil_resume(zilog_t *zilog) 1797 { 1798 mutex_enter(&zilog->zl_lock); 1799 ASSERT(zilog->zl_suspend != 0); 1800 zilog->zl_suspend--; 1801 mutex_exit(&zilog->zl_lock); 1802 } 1803 1804 typedef struct zil_replay_arg { 1805 zil_replay_func_t **zr_replay; 1806 void *zr_arg; 1807 boolean_t zr_byteswap; 1808 char *zr_lr; 1809 } zil_replay_arg_t; 1810 1811 static int 1812 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 1813 { 1814 char name[MAXNAMELEN]; 1815 1816 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 1817 1818 dmu_objset_name(zilog->zl_os, name); 1819 1820 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1821 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 1822 (u_longlong_t)lr->lrc_seq, 1823 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 1824 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1825 1826 return (error); 1827 } 1828 1829 static int 1830 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1831 { 1832 zil_replay_arg_t *zr = zra; 1833 const zil_header_t *zh = zilog->zl_header; 1834 uint64_t reclen = lr->lrc_reclen; 1835 uint64_t txtype = lr->lrc_txtype; 1836 int error = 0; 1837 1838 zilog->zl_replaying_seq = lr->lrc_seq; 1839 1840 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1841 return (0); 1842 1843 if (lr->lrc_txg < claim_txg) /* already committed */ 1844 return (0); 1845 1846 /* Strip case-insensitive bit, still present in log record */ 1847 txtype &= ~TX_CI; 1848 1849 if (txtype == 0 || txtype >= TX_MAX_TYPE) 1850 return (zil_replay_error(zilog, lr, EINVAL)); 1851 1852 /* 1853 * If this record type can be logged out of order, the object 1854 * (lr_foid) may no longer exist. That's legitimate, not an error. 1855 */ 1856 if (TX_OOO(txtype)) { 1857 error = dmu_object_info(zilog->zl_os, 1858 ((lr_ooo_t *)lr)->lr_foid, NULL); 1859 if (error == ENOENT || error == EEXIST) 1860 return (0); 1861 } 1862 1863 /* 1864 * Make a copy of the data so we can revise and extend it. 1865 */ 1866 bcopy(lr, zr->zr_lr, reclen); 1867 1868 /* 1869 * If this is a TX_WRITE with a blkptr, suck in the data. 1870 */ 1871 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1872 error = zil_read_log_data(zilog, (lr_write_t *)lr, 1873 zr->zr_lr + reclen); 1874 if (error) 1875 return (zil_replay_error(zilog, lr, error)); 1876 } 1877 1878 /* 1879 * The log block containing this lr may have been byteswapped 1880 * so that we can easily examine common fields like lrc_txtype. 1881 * However, the log is a mix of different record types, and only the 1882 * replay vectors know how to byteswap their records. Therefore, if 1883 * the lr was byteswapped, undo it before invoking the replay vector. 1884 */ 1885 if (zr->zr_byteswap) 1886 byteswap_uint64_array(zr->zr_lr, reclen); 1887 1888 /* 1889 * We must now do two things atomically: replay this log record, 1890 * and update the log header sequence number to reflect the fact that 1891 * we did so. At the end of each replay function the sequence number 1892 * is updated if we are in replay mode. 1893 */ 1894 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 1895 if (error) { 1896 /* 1897 * The DMU's dnode layer doesn't see removes until the txg 1898 * commits, so a subsequent claim can spuriously fail with 1899 * EEXIST. So if we receive any error we try syncing out 1900 * any removes then retry the transaction. Note that we 1901 * specify B_FALSE for byteswap now, so we don't do it twice. 1902 */ 1903 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1904 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 1905 if (error) 1906 return (zil_replay_error(zilog, lr, error)); 1907 } 1908 return (0); 1909 } 1910 1911 /* ARGSUSED */ 1912 static int 1913 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1914 { 1915 zilog->zl_replay_blks++; 1916 1917 return (0); 1918 } 1919 1920 /* 1921 * If this dataset has a non-empty intent log, replay it and destroy it. 1922 */ 1923 void 1924 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1925 { 1926 zilog_t *zilog = dmu_objset_zil(os); 1927 const zil_header_t *zh = zilog->zl_header; 1928 zil_replay_arg_t zr; 1929 1930 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 1931 zil_destroy(zilog, B_TRUE); 1932 return; 1933 } 1934 1935 zr.zr_replay = replay_func; 1936 zr.zr_arg = arg; 1937 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1938 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1939 1940 /* 1941 * Wait for in-progress removes to sync before starting replay. 1942 */ 1943 txg_wait_synced(zilog->zl_dmu_pool, 0); 1944 1945 zilog->zl_replay = B_TRUE; 1946 zilog->zl_replay_time = ddi_get_lbolt(); 1947 ASSERT(zilog->zl_replay_blks == 0); 1948 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1949 zh->zh_claim_txg); 1950 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 1951 1952 zil_destroy(zilog, B_FALSE); 1953 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1954 zilog->zl_replay = B_FALSE; 1955 } 1956 1957 boolean_t 1958 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 1959 { 1960 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1961 return (B_TRUE); 1962 1963 if (zilog->zl_replay) { 1964 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1965 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 1966 zilog->zl_replaying_seq; 1967 return (B_TRUE); 1968 } 1969 1970 return (B_FALSE); 1971 } 1972 1973 /* ARGSUSED */ 1974 int 1975 zil_vdev_offline(const char *osname, void *arg) 1976 { 1977 objset_t *os; 1978 zilog_t *zilog; 1979 int error; 1980 1981 error = dmu_objset_hold(osname, FTAG, &os); 1982 if (error) 1983 return (error); 1984 1985 zilog = dmu_objset_zil(os); 1986 if (zil_suspend(zilog) != 0) 1987 error = EEXIST; 1988 else 1989 zil_resume(zilog); 1990 dmu_objset_rele(os, FTAG); 1991 return (error); 1992 } 1993