1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/spa_impl.h> 29 #include <sys/dmu.h> 30 #include <sys/zap.h> 31 #include <sys/arc.h> 32 #include <sys/stat.h> 33 #include <sys/resource.h> 34 #include <sys/zil.h> 35 #include <sys/zil_impl.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/vdev.h> 38 #include <sys/dmu_tx.h> 39 40 /* 41 * The zfs intent log (ZIL) saves transaction records of system calls 42 * that change the file system in memory with enough information 43 * to be able to replay them. These are stored in memory until 44 * either the DMU transaction group (txg) commits them to the stable pool 45 * and they can be discarded, or they are flushed to the stable log 46 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 47 * requirement. In the event of a panic or power fail then those log 48 * records (transactions) are replayed. 49 * 50 * There is one ZIL per file system. Its on-disk (pool) format consists 51 * of 3 parts: 52 * 53 * - ZIL header 54 * - ZIL blocks 55 * - ZIL records 56 * 57 * A log record holds a system call transaction. Log blocks can 58 * hold many log records and the blocks are chained together. 59 * Each ZIL block contains a block pointer (blkptr_t) to the next 60 * ZIL block in the chain. The ZIL header points to the first 61 * block in the chain. Note there is not a fixed place in the pool 62 * to hold blocks. They are dynamically allocated and freed as 63 * needed from the blocks available. Figure X shows the ZIL structure: 64 */ 65 66 /* 67 * This global ZIL switch affects all pools 68 */ 69 int zil_disable = 0; /* disable intent logging */ 70 71 /* 72 * Tunable parameter for debugging or performance analysis. Setting 73 * zfs_nocacheflush will cause corruption on power loss if a volatile 74 * out-of-order write cache is enabled. 75 */ 76 boolean_t zfs_nocacheflush = B_FALSE; 77 78 static kmem_cache_t *zil_lwb_cache; 79 80 static boolean_t zil_empty(zilog_t *zilog); 81 82 static int 83 zil_dva_compare(const void *x1, const void *x2) 84 { 85 const dva_t *dva1 = x1; 86 const dva_t *dva2 = x2; 87 88 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 89 return (-1); 90 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 91 return (1); 92 93 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 94 return (-1); 95 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 96 return (1); 97 98 return (0); 99 } 100 101 static void 102 zil_dva_tree_init(avl_tree_t *t) 103 { 104 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 105 offsetof(zil_dva_node_t, zn_node)); 106 } 107 108 static void 109 zil_dva_tree_fini(avl_tree_t *t) 110 { 111 zil_dva_node_t *zn; 112 void *cookie = NULL; 113 114 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 115 kmem_free(zn, sizeof (zil_dva_node_t)); 116 117 avl_destroy(t); 118 } 119 120 static int 121 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 122 { 123 zil_dva_node_t *zn; 124 avl_index_t where; 125 126 if (avl_find(t, dva, &where) != NULL) 127 return (EEXIST); 128 129 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 130 zn->zn_dva = *dva; 131 avl_insert(t, zn, where); 132 133 return (0); 134 } 135 136 static zil_header_t * 137 zil_header_in_syncing_context(zilog_t *zilog) 138 { 139 return ((zil_header_t *)zilog->zl_header); 140 } 141 142 static void 143 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 144 { 145 zio_cksum_t *zc = &bp->blk_cksum; 146 147 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 148 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 149 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 150 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 151 } 152 153 /* 154 * Read a log block, make sure it's valid, and byteswap it if necessary. 155 */ 156 static int 157 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 158 { 159 blkptr_t blk = *bp; 160 zbookmark_t zb; 161 uint32_t aflags = ARC_WAIT; 162 int error; 163 164 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 165 zb.zb_object = 0; 166 zb.zb_level = -1; 167 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 168 169 *abufpp = NULL; 170 171 /* 172 * We shouldn't be doing any scrubbing while we're doing log 173 * replay, it's OK to not lock. 174 */ 175 error = arc_read_nolock(NULL, zilog->zl_spa, &blk, 176 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 177 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 178 179 if (error == 0) { 180 char *data = (*abufpp)->b_data; 181 uint64_t blksz = BP_GET_LSIZE(bp); 182 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 183 zio_cksum_t cksum = bp->blk_cksum; 184 185 /* 186 * Validate the checksummed log block. 187 * 188 * Sequence numbers should be... sequential. The checksum 189 * verifier for the next block should be bp's checksum plus 1. 190 * 191 * Also check the log chain linkage and size used. 192 */ 193 cksum.zc_word[ZIL_ZC_SEQ]++; 194 195 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, 196 sizeof (cksum)) || BP_IS_HOLE(&ztp->zit_next_blk) || 197 (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))) { 198 error = ECKSUM; 199 } 200 201 if (error) { 202 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 203 *abufpp = NULL; 204 } 205 } 206 207 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 208 209 return (error); 210 } 211 212 /* 213 * Parse the intent log, and call parse_func for each valid record within. 214 * Return the highest sequence number. 215 */ 216 uint64_t 217 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 218 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 219 { 220 const zil_header_t *zh = zilog->zl_header; 221 uint64_t claim_seq = zh->zh_claim_seq; 222 uint64_t seq = 0; 223 uint64_t max_seq = 0; 224 blkptr_t blk = zh->zh_log; 225 arc_buf_t *abuf; 226 char *lrbuf, *lrp; 227 zil_trailer_t *ztp; 228 int reclen, error; 229 230 if (BP_IS_HOLE(&blk)) 231 return (max_seq); 232 233 /* 234 * Starting at the block pointed to by zh_log we read the log chain. 235 * For each block in the chain we strongly check that block to 236 * ensure its validity. We stop when an invalid block is found. 237 * For each block pointer in the chain we call parse_blk_func(). 238 * For each record in each valid block we call parse_lr_func(). 239 * If the log has been claimed, stop if we encounter a sequence 240 * number greater than the highest claimed sequence number. 241 */ 242 zil_dva_tree_init(&zilog->zl_dva_tree); 243 for (;;) { 244 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 245 246 if (claim_seq != 0 && seq > claim_seq) 247 break; 248 249 ASSERT(max_seq < seq); 250 max_seq = seq; 251 252 error = zil_read_log_block(zilog, &blk, &abuf); 253 254 if (parse_blk_func != NULL) 255 parse_blk_func(zilog, &blk, arg, txg); 256 257 if (error) 258 break; 259 260 lrbuf = abuf->b_data; 261 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 262 blk = ztp->zit_next_blk; 263 264 if (parse_lr_func == NULL) { 265 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 266 continue; 267 } 268 269 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 270 lr_t *lr = (lr_t *)lrp; 271 reclen = lr->lrc_reclen; 272 ASSERT3U(reclen, >=, sizeof (lr_t)); 273 parse_lr_func(zilog, lr, arg, txg); 274 } 275 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 276 } 277 zil_dva_tree_fini(&zilog->zl_dva_tree); 278 279 return (max_seq); 280 } 281 282 /* ARGSUSED */ 283 static void 284 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 285 { 286 spa_t *spa = zilog->zl_spa; 287 int err; 288 289 /* 290 * Claim log block if not already committed and not already claimed. 291 */ 292 if (bp->blk_birth >= first_txg && 293 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 294 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL, 295 ZIO_FLAG_MUSTSUCCEED)); 296 ASSERT(err == 0); 297 } 298 } 299 300 static void 301 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 302 { 303 if (lrc->lrc_txtype == TX_WRITE) { 304 lr_write_t *lr = (lr_write_t *)lrc; 305 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 306 } 307 } 308 309 /* ARGSUSED */ 310 static void 311 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 312 { 313 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 314 } 315 316 static void 317 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 318 { 319 /* 320 * If we previously claimed it, we need to free it. 321 */ 322 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 323 lr_write_t *lr = (lr_write_t *)lrc; 324 blkptr_t *bp = &lr->lr_blkptr; 325 if (bp->blk_birth >= claim_txg && 326 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 327 (void) arc_free(NULL, zilog->zl_spa, 328 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 329 } 330 } 331 } 332 333 /* 334 * Create an on-disk intent log. 335 */ 336 static void 337 zil_create(zilog_t *zilog) 338 { 339 const zil_header_t *zh = zilog->zl_header; 340 lwb_t *lwb; 341 uint64_t txg = 0; 342 dmu_tx_t *tx = NULL; 343 blkptr_t blk; 344 int error = 0; 345 346 /* 347 * Wait for any previous destroy to complete. 348 */ 349 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 350 351 ASSERT(zh->zh_claim_txg == 0); 352 ASSERT(zh->zh_replay_seq == 0); 353 354 blk = zh->zh_log; 355 356 /* 357 * If we don't already have an initial log block or we have one 358 * but it's the wrong endianness then allocate one. 359 */ 360 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 361 tx = dmu_tx_create(zilog->zl_os); 362 (void) dmu_tx_assign(tx, TXG_WAIT); 363 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 364 txg = dmu_tx_get_txg(tx); 365 366 if (!BP_IS_HOLE(&blk)) { 367 zio_free_blk(zilog->zl_spa, &blk, txg); 368 BP_ZERO(&blk); 369 } 370 371 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 372 NULL, txg, zilog->zl_logbias != ZFS_LOGBIAS_LATENCY); 373 374 if (error == 0) 375 zil_init_log_chain(zilog, &blk); 376 } 377 378 /* 379 * Allocate a log write buffer (lwb) for the first log block. 380 */ 381 if (error == 0) { 382 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 383 lwb->lwb_zilog = zilog; 384 lwb->lwb_blk = blk; 385 lwb->lwb_nused = 0; 386 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 387 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 388 lwb->lwb_max_txg = txg; 389 lwb->lwb_zio = NULL; 390 391 mutex_enter(&zilog->zl_lock); 392 list_insert_tail(&zilog->zl_lwb_list, lwb); 393 mutex_exit(&zilog->zl_lock); 394 } 395 396 /* 397 * If we just allocated the first log block, commit our transaction 398 * and wait for zil_sync() to stuff the block poiner into zh_log. 399 * (zh is part of the MOS, so we cannot modify it in open context.) 400 */ 401 if (tx != NULL) { 402 dmu_tx_commit(tx); 403 txg_wait_synced(zilog->zl_dmu_pool, txg); 404 } 405 406 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 407 } 408 409 /* 410 * In one tx, free all log blocks and clear the log header. 411 * If keep_first is set, then we're replaying a log with no content. 412 * We want to keep the first block, however, so that the first 413 * synchronous transaction doesn't require a txg_wait_synced() 414 * in zil_create(). We don't need to txg_wait_synced() here either 415 * when keep_first is set, because both zil_create() and zil_destroy() 416 * will wait for any in-progress destroys to complete. 417 */ 418 void 419 zil_destroy(zilog_t *zilog, boolean_t keep_first) 420 { 421 const zil_header_t *zh = zilog->zl_header; 422 lwb_t *lwb; 423 dmu_tx_t *tx; 424 uint64_t txg; 425 426 /* 427 * Wait for any previous destroy to complete. 428 */ 429 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 430 431 if (BP_IS_HOLE(&zh->zh_log)) 432 return; 433 434 tx = dmu_tx_create(zilog->zl_os); 435 (void) dmu_tx_assign(tx, TXG_WAIT); 436 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 437 txg = dmu_tx_get_txg(tx); 438 439 mutex_enter(&zilog->zl_lock); 440 441 ASSERT3U(zilog->zl_destroy_txg, <, txg); 442 zilog->zl_destroy_txg = txg; 443 444 if (!list_is_empty(&zilog->zl_lwb_list)) { 445 ASSERT(zh->zh_claim_txg == 0); 446 zilog->zl_keep_first = B_FALSE; 447 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 448 list_remove(&zilog->zl_lwb_list, lwb); 449 if (lwb->lwb_buf != NULL) 450 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 451 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 452 kmem_cache_free(zil_lwb_cache, lwb); 453 } 454 } else { 455 zilog->zl_keep_first = keep_first; 456 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { 457 ASSERT(!keep_first); 458 (void) zil_parse(zilog, zil_free_log_block, 459 zil_free_log_record, tx, zh->zh_claim_txg); 460 } else { 461 /* 462 * Would like to assert zil_empty() but that 463 * would force us to read the log chain which 464 * requires us to do I/O to the log. This is 465 * overkill since we really just want to destroy 466 * the chain anyway. 467 */ 468 if (!keep_first) { 469 blkptr_t bp = zh->zh_log; 470 zio_free_blk(zilog->zl_spa, &bp, txg); 471 } 472 } 473 } 474 mutex_exit(&zilog->zl_lock); 475 476 dmu_tx_commit(tx); 477 } 478 479 /* 480 * return true if the initial log block is not valid 481 */ 482 static boolean_t 483 zil_empty(zilog_t *zilog) 484 { 485 const zil_header_t *zh = zilog->zl_header; 486 arc_buf_t *abuf = NULL; 487 488 if (BP_IS_HOLE(&zh->zh_log)) 489 return (B_TRUE); 490 491 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 492 return (B_TRUE); 493 494 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 495 return (B_FALSE); 496 } 497 498 int 499 zil_claim(char *osname, void *txarg) 500 { 501 dmu_tx_t *tx = txarg; 502 uint64_t first_txg = dmu_tx_get_txg(tx); 503 zilog_t *zilog; 504 zil_header_t *zh; 505 objset_t *os; 506 int error; 507 508 error = dmu_objset_hold(osname, FTAG, &os); 509 if (error) { 510 cmn_err(CE_WARN, "can't open objset for %s", osname); 511 return (0); 512 } 513 514 zilog = dmu_objset_zil(os); 515 zh = zil_header_in_syncing_context(zilog); 516 517 if (zilog->zl_spa->spa_log_state == SPA_LOG_CLEAR) { 518 if (!BP_IS_HOLE(&zh->zh_log)) 519 zio_free_blk(zilog->zl_spa, &zh->zh_log, first_txg); 520 BP_ZERO(&zh->zh_log); 521 dsl_dataset_dirty(dmu_objset_ds(os), tx); 522 } 523 524 /* 525 * Record here whether the zil has any records to replay. 526 * If the header block pointer is null or the block points 527 * to the stubby then we know there are no valid log records. 528 * We use the header to store this state as the the zilog gets 529 * freed later in dmu_objset_close(). 530 * The flags (and the rest of the header fields) are cleared in 531 * zil_sync() as a result of a zil_destroy(), after replaying the log. 532 * 533 * Note, the intent log can be empty but still need the 534 * stubby to be claimed. 535 */ 536 if (!zil_empty(zilog)) { 537 zh->zh_flags |= ZIL_REPLAY_NEEDED; 538 dsl_dataset_dirty(dmu_objset_ds(os), tx); 539 } 540 541 /* 542 * Claim all log blocks if we haven't already done so, and remember 543 * the highest claimed sequence number. This ensures that if we can 544 * read only part of the log now (e.g. due to a missing device), 545 * but we can read the entire log later, we will not try to replay 546 * or destroy beyond the last block we successfully claimed. 547 */ 548 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 549 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 550 zh->zh_claim_txg = first_txg; 551 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 552 zil_claim_log_record, tx, first_txg); 553 dsl_dataset_dirty(dmu_objset_ds(os), tx); 554 } 555 556 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 557 dmu_objset_rele(os, FTAG); 558 return (0); 559 } 560 561 /* 562 * Check the log by walking the log chain. 563 * Checksum errors are ok as they indicate the end of the chain. 564 * Any other error (no device or read failure) returns an error. 565 */ 566 /* ARGSUSED */ 567 int 568 zil_check_log_chain(char *osname, void *txarg) 569 { 570 zilog_t *zilog; 571 zil_header_t *zh; 572 blkptr_t blk; 573 arc_buf_t *abuf; 574 objset_t *os; 575 char *lrbuf; 576 zil_trailer_t *ztp; 577 int error; 578 579 error = dmu_objset_hold(osname, FTAG, &os); 580 if (error) { 581 cmn_err(CE_WARN, "can't open objset for %s", osname); 582 return (0); 583 } 584 585 zilog = dmu_objset_zil(os); 586 zh = zil_header_in_syncing_context(zilog); 587 blk = zh->zh_log; 588 if (BP_IS_HOLE(&blk)) { 589 dmu_objset_rele(os, FTAG); 590 return (0); /* no chain */ 591 } 592 593 for (;;) { 594 error = zil_read_log_block(zilog, &blk, &abuf); 595 if (error) 596 break; 597 lrbuf = abuf->b_data; 598 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 599 blk = ztp->zit_next_blk; 600 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 601 } 602 dmu_objset_rele(os, FTAG); 603 if (error == ECKSUM) 604 return (0); /* normal end of chain */ 605 return (error); 606 } 607 608 static int 609 zil_vdev_compare(const void *x1, const void *x2) 610 { 611 uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 612 uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 613 614 if (v1 < v2) 615 return (-1); 616 if (v1 > v2) 617 return (1); 618 619 return (0); 620 } 621 622 void 623 zil_add_block(zilog_t *zilog, blkptr_t *bp) 624 { 625 avl_tree_t *t = &zilog->zl_vdev_tree; 626 avl_index_t where; 627 zil_vdev_node_t *zv, zvsearch; 628 int ndvas = BP_GET_NDVAS(bp); 629 int i; 630 631 if (zfs_nocacheflush) 632 return; 633 634 ASSERT(zilog->zl_writer); 635 636 /* 637 * Even though we're zl_writer, we still need a lock because the 638 * zl_get_data() callbacks may have dmu_sync() done callbacks 639 * that will run concurrently. 640 */ 641 mutex_enter(&zilog->zl_vdev_lock); 642 for (i = 0; i < ndvas; i++) { 643 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 644 if (avl_find(t, &zvsearch, &where) == NULL) { 645 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 646 zv->zv_vdev = zvsearch.zv_vdev; 647 avl_insert(t, zv, where); 648 } 649 } 650 mutex_exit(&zilog->zl_vdev_lock); 651 } 652 653 void 654 zil_flush_vdevs(zilog_t *zilog) 655 { 656 spa_t *spa = zilog->zl_spa; 657 avl_tree_t *t = &zilog->zl_vdev_tree; 658 void *cookie = NULL; 659 zil_vdev_node_t *zv; 660 zio_t *zio; 661 662 ASSERT(zilog->zl_writer); 663 664 /* 665 * We don't need zl_vdev_lock here because we're the zl_writer, 666 * and all zl_get_data() callbacks are done. 667 */ 668 if (avl_numnodes(t) == 0) 669 return; 670 671 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 672 673 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 674 675 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 676 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 677 if (vd != NULL) 678 zio_flush(zio, vd); 679 kmem_free(zv, sizeof (*zv)); 680 } 681 682 /* 683 * Wait for all the flushes to complete. Not all devices actually 684 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 685 */ 686 (void) zio_wait(zio); 687 688 spa_config_exit(spa, SCL_STATE, FTAG); 689 } 690 691 /* 692 * Function called when a log block write completes 693 */ 694 static void 695 zil_lwb_write_done(zio_t *zio) 696 { 697 lwb_t *lwb = zio->io_private; 698 zilog_t *zilog = lwb->lwb_zilog; 699 700 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 701 ASSERT(BP_GET_CHECKSUM(zio->io_bp) == ZIO_CHECKSUM_ZILOG); 702 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 703 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 704 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 705 ASSERT(!BP_IS_GANG(zio->io_bp)); 706 ASSERT(!BP_IS_HOLE(zio->io_bp)); 707 ASSERT(zio->io_bp->blk_fill == 0); 708 709 /* 710 * Ensure the lwb buffer pointer is cleared before releasing 711 * the txg. If we have had an allocation failure and 712 * the txg is waiting to sync then we want want zil_sync() 713 * to remove the lwb so that it's not picked up as the next new 714 * one in zil_commit_writer(). zil_sync() will only remove 715 * the lwb if lwb_buf is null. 716 */ 717 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 718 mutex_enter(&zilog->zl_lock); 719 lwb->lwb_buf = NULL; 720 if (zio->io_error) 721 zilog->zl_log_error = B_TRUE; 722 723 /* 724 * Now that we've written this log block, we have a stable pointer 725 * to the next block in the chain, so it's OK to let the txg in 726 * which we allocated the next block sync. We still have the 727 * zl_lock to ensure zil_sync doesn't kmem free the lwb. 728 */ 729 txg_rele_to_sync(&lwb->lwb_txgh); 730 mutex_exit(&zilog->zl_lock); 731 } 732 733 /* 734 * Initialize the io for a log block. 735 */ 736 static void 737 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 738 { 739 zbookmark_t zb; 740 741 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 742 zb.zb_object = 0; 743 zb.zb_level = -1; 744 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 745 746 if (zilog->zl_root_zio == NULL) { 747 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 748 ZIO_FLAG_CANFAIL); 749 } 750 if (lwb->lwb_zio == NULL) { 751 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 752 0, &lwb->lwb_blk, lwb->lwb_buf, lwb->lwb_sz, 753 zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE, 754 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 755 } 756 } 757 758 /* 759 * Start a log block write and advance to the next log block. 760 * Calls are serialized. 761 */ 762 static lwb_t * 763 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 764 { 765 lwb_t *nlwb; 766 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 767 spa_t *spa = zilog->zl_spa; 768 blkptr_t *bp = &ztp->zit_next_blk; 769 uint64_t txg; 770 uint64_t zil_blksz; 771 int error; 772 773 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 774 775 /* 776 * Allocate the next block and save its address in this block 777 * before writing it in order to establish the log chain. 778 * Note that if the allocation of nlwb synced before we wrote 779 * the block that points at it (lwb), we'd leak it if we crashed. 780 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 781 */ 782 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 783 txg_rele_to_quiesce(&lwb->lwb_txgh); 784 785 /* 786 * Pick a ZIL blocksize. We request a size that is the 787 * maximum of the previous used size, the current used size and 788 * the amount waiting in the queue. 789 */ 790 zil_blksz = MAX(zilog->zl_prev_used, 791 zilog->zl_cur_used + sizeof (*ztp)); 792 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 793 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 794 if (zil_blksz > ZIL_MAX_BLKSZ) 795 zil_blksz = ZIL_MAX_BLKSZ; 796 797 BP_ZERO(bp); 798 /* pass the old blkptr in order to spread log blocks across devs */ 799 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg, 800 zilog->zl_logbias != ZFS_LOGBIAS_LATENCY); 801 if (error) { 802 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 803 804 /* 805 * We dirty the dataset to ensure that zil_sync() will 806 * be called to remove this lwb from our zl_lwb_list. 807 * Failing to do so, may leave an lwb with a NULL lwb_buf 808 * hanging around on the zl_lwb_list. 809 */ 810 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 811 dmu_tx_commit(tx); 812 813 /* 814 * Since we've just experienced an allocation failure so we 815 * terminate the current lwb and send it on its way. 816 */ 817 ztp->zit_pad = 0; 818 ztp->zit_nused = lwb->lwb_nused; 819 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 820 zio_nowait(lwb->lwb_zio); 821 822 /* 823 * By returning NULL the caller will call tx_wait_synced() 824 */ 825 return (NULL); 826 } 827 828 ASSERT3U(bp->blk_birth, ==, txg); 829 ztp->zit_pad = 0; 830 ztp->zit_nused = lwb->lwb_nused; 831 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 832 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 833 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 834 835 /* 836 * Allocate a new log write buffer (lwb). 837 */ 838 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 839 840 nlwb->lwb_zilog = zilog; 841 nlwb->lwb_blk = *bp; 842 nlwb->lwb_nused = 0; 843 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 844 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 845 nlwb->lwb_max_txg = txg; 846 nlwb->lwb_zio = NULL; 847 848 /* 849 * Put new lwb at the end of the log chain 850 */ 851 mutex_enter(&zilog->zl_lock); 852 list_insert_tail(&zilog->zl_lwb_list, nlwb); 853 mutex_exit(&zilog->zl_lock); 854 855 /* Record the block for later vdev flushing */ 856 zil_add_block(zilog, &lwb->lwb_blk); 857 858 /* 859 * kick off the write for the old log block 860 */ 861 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 862 ASSERT(lwb->lwb_zio); 863 zio_nowait(lwb->lwb_zio); 864 865 return (nlwb); 866 } 867 868 static lwb_t * 869 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 870 { 871 lr_t *lrc = &itx->itx_lr; /* common log record */ 872 lr_write_t *lr = (lr_write_t *)lrc; 873 uint64_t txg = lrc->lrc_txg; 874 uint64_t reclen = lrc->lrc_reclen; 875 uint64_t dlen; 876 877 if (lwb == NULL) 878 return (NULL); 879 ASSERT(lwb->lwb_buf != NULL); 880 881 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 882 dlen = P2ROUNDUP_TYPED( 883 lr->lr_length, sizeof (uint64_t), uint64_t); 884 else 885 dlen = 0; 886 887 zilog->zl_cur_used += (reclen + dlen); 888 889 zil_lwb_write_init(zilog, lwb); 890 891 /* 892 * If this record won't fit in the current log block, start a new one. 893 */ 894 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 895 lwb = zil_lwb_write_start(zilog, lwb); 896 if (lwb == NULL) 897 return (NULL); 898 zil_lwb_write_init(zilog, lwb); 899 ASSERT(lwb->lwb_nused == 0); 900 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 901 txg_wait_synced(zilog->zl_dmu_pool, txg); 902 return (lwb); 903 } 904 } 905 906 /* 907 * Update the lrc_seq, to be log record sequence number. See zil.h 908 * Then copy the record to the log buffer. 909 */ 910 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 911 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 912 913 /* 914 * If it's a write, fetch the data or get its blkptr as appropriate. 915 */ 916 if (lrc->lrc_txtype == TX_WRITE) { 917 if (txg > spa_freeze_txg(zilog->zl_spa)) 918 txg_wait_synced(zilog->zl_dmu_pool, txg); 919 if (itx->itx_wr_state != WR_COPIED) { 920 char *dbuf; 921 int error; 922 923 /* alignment is guaranteed */ 924 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 925 if (dlen) { 926 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 927 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 928 lr->lr_common.lrc_reclen += dlen; 929 } else { 930 ASSERT(itx->itx_wr_state == WR_INDIRECT); 931 dbuf = NULL; 932 } 933 error = zilog->zl_get_data( 934 itx->itx_private, lr, dbuf, lwb->lwb_zio); 935 if (error == EIO) { 936 txg_wait_synced(zilog->zl_dmu_pool, txg); 937 return (lwb); 938 } 939 if (error) { 940 ASSERT(error == ENOENT || error == EEXIST || 941 error == EALREADY); 942 return (lwb); 943 } 944 } 945 } 946 947 lwb->lwb_nused += reclen + dlen; 948 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 949 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 950 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 951 952 return (lwb); 953 } 954 955 itx_t * 956 zil_itx_create(uint64_t txtype, size_t lrsize) 957 { 958 itx_t *itx; 959 960 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 961 962 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 963 itx->itx_lr.lrc_txtype = txtype; 964 itx->itx_lr.lrc_reclen = lrsize; 965 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 966 itx->itx_lr.lrc_seq = 0; /* defensive */ 967 968 return (itx); 969 } 970 971 uint64_t 972 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 973 { 974 uint64_t seq; 975 976 ASSERT(itx->itx_lr.lrc_seq == 0); 977 978 mutex_enter(&zilog->zl_lock); 979 list_insert_tail(&zilog->zl_itx_list, itx); 980 zilog->zl_itx_list_sz += itx->itx_sod; 981 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 982 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 983 mutex_exit(&zilog->zl_lock); 984 985 return (seq); 986 } 987 988 /* 989 * Free up all in-memory intent log transactions that have now been synced. 990 */ 991 static void 992 zil_itx_clean(zilog_t *zilog) 993 { 994 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 995 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 996 list_t clean_list; 997 itx_t *itx; 998 999 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1000 1001 mutex_enter(&zilog->zl_lock); 1002 /* wait for a log writer to finish walking list */ 1003 while (zilog->zl_writer) { 1004 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1005 } 1006 1007 /* 1008 * Move the sync'd log transactions to a separate list so we can call 1009 * kmem_free without holding the zl_lock. 1010 * 1011 * There is no need to set zl_writer as we don't drop zl_lock here 1012 */ 1013 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 1014 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 1015 list_remove(&zilog->zl_itx_list, itx); 1016 zilog->zl_itx_list_sz -= itx->itx_sod; 1017 list_insert_tail(&clean_list, itx); 1018 } 1019 cv_broadcast(&zilog->zl_cv_writer); 1020 mutex_exit(&zilog->zl_lock); 1021 1022 /* destroy sync'd log transactions */ 1023 while ((itx = list_head(&clean_list)) != NULL) { 1024 list_remove(&clean_list, itx); 1025 kmem_free(itx, offsetof(itx_t, itx_lr) 1026 + itx->itx_lr.lrc_reclen); 1027 } 1028 list_destroy(&clean_list); 1029 } 1030 1031 /* 1032 * If there are any in-memory intent log transactions which have now been 1033 * synced then start up a taskq to free them. 1034 */ 1035 void 1036 zil_clean(zilog_t *zilog) 1037 { 1038 itx_t *itx; 1039 1040 mutex_enter(&zilog->zl_lock); 1041 itx = list_head(&zilog->zl_itx_list); 1042 if ((itx != NULL) && 1043 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 1044 (void) taskq_dispatch(zilog->zl_clean_taskq, 1045 (task_func_t *)zil_itx_clean, zilog, TQ_SLEEP); 1046 } 1047 mutex_exit(&zilog->zl_lock); 1048 } 1049 1050 static void 1051 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 1052 { 1053 uint64_t txg; 1054 uint64_t commit_seq = 0; 1055 itx_t *itx, *itx_next = (itx_t *)-1; 1056 lwb_t *lwb; 1057 spa_t *spa; 1058 1059 zilog->zl_writer = B_TRUE; 1060 ASSERT(zilog->zl_root_zio == NULL); 1061 spa = zilog->zl_spa; 1062 1063 if (zilog->zl_suspend) { 1064 lwb = NULL; 1065 } else { 1066 lwb = list_tail(&zilog->zl_lwb_list); 1067 if (lwb == NULL) { 1068 /* 1069 * Return if there's nothing to flush before we 1070 * dirty the fs by calling zil_create() 1071 */ 1072 if (list_is_empty(&zilog->zl_itx_list)) { 1073 zilog->zl_writer = B_FALSE; 1074 return; 1075 } 1076 mutex_exit(&zilog->zl_lock); 1077 zil_create(zilog); 1078 mutex_enter(&zilog->zl_lock); 1079 lwb = list_tail(&zilog->zl_lwb_list); 1080 } 1081 } 1082 1083 /* Loop through in-memory log transactions filling log blocks. */ 1084 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1085 for (;;) { 1086 /* 1087 * Find the next itx to push: 1088 * Push all transactions related to specified foid and all 1089 * other transactions except TX_WRITE, TX_TRUNCATE, 1090 * TX_SETATTR and TX_ACL for all other files. 1091 */ 1092 if (itx_next != (itx_t *)-1) 1093 itx = itx_next; 1094 else 1095 itx = list_head(&zilog->zl_itx_list); 1096 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 1097 if (foid == 0) /* push all foids? */ 1098 break; 1099 if (itx->itx_sync) /* push all O_[D]SYNC */ 1100 break; 1101 switch (itx->itx_lr.lrc_txtype) { 1102 case TX_SETATTR: 1103 case TX_WRITE: 1104 case TX_TRUNCATE: 1105 case TX_ACL: 1106 /* lr_foid is same offset for these records */ 1107 if (((lr_write_t *)&itx->itx_lr)->lr_foid 1108 != foid) { 1109 continue; /* skip this record */ 1110 } 1111 } 1112 break; 1113 } 1114 if (itx == NULL) 1115 break; 1116 1117 if ((itx->itx_lr.lrc_seq > seq) && 1118 ((lwb == NULL) || (lwb->lwb_nused == 0) || 1119 (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) { 1120 break; 1121 } 1122 1123 /* 1124 * Save the next pointer. Even though we soon drop 1125 * zl_lock all threads that may change the list 1126 * (another writer or zil_itx_clean) can't do so until 1127 * they have zl_writer. 1128 */ 1129 itx_next = list_next(&zilog->zl_itx_list, itx); 1130 list_remove(&zilog->zl_itx_list, itx); 1131 zilog->zl_itx_list_sz -= itx->itx_sod; 1132 mutex_exit(&zilog->zl_lock); 1133 txg = itx->itx_lr.lrc_txg; 1134 ASSERT(txg); 1135 1136 if (txg > spa_last_synced_txg(spa) || 1137 txg > spa_freeze_txg(spa)) 1138 lwb = zil_lwb_commit(zilog, itx, lwb); 1139 kmem_free(itx, offsetof(itx_t, itx_lr) 1140 + itx->itx_lr.lrc_reclen); 1141 mutex_enter(&zilog->zl_lock); 1142 } 1143 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1144 /* determine commit sequence number */ 1145 itx = list_head(&zilog->zl_itx_list); 1146 if (itx) 1147 commit_seq = itx->itx_lr.lrc_seq; 1148 else 1149 commit_seq = zilog->zl_itx_seq; 1150 mutex_exit(&zilog->zl_lock); 1151 1152 /* write the last block out */ 1153 if (lwb != NULL && lwb->lwb_zio != NULL) 1154 lwb = zil_lwb_write_start(zilog, lwb); 1155 1156 zilog->zl_prev_used = zilog->zl_cur_used; 1157 zilog->zl_cur_used = 0; 1158 1159 /* 1160 * Wait if necessary for the log blocks to be on stable storage. 1161 */ 1162 if (zilog->zl_root_zio) { 1163 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1164 (void) zio_wait(zilog->zl_root_zio); 1165 zilog->zl_root_zio = NULL; 1166 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1167 zil_flush_vdevs(zilog); 1168 } 1169 1170 if (zilog->zl_log_error || lwb == NULL) { 1171 zilog->zl_log_error = 0; 1172 txg_wait_synced(zilog->zl_dmu_pool, 0); 1173 } 1174 1175 mutex_enter(&zilog->zl_lock); 1176 zilog->zl_writer = B_FALSE; 1177 1178 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1179 zilog->zl_commit_seq = commit_seq; 1180 } 1181 1182 /* 1183 * Push zfs transactions to stable storage up to the supplied sequence number. 1184 * If foid is 0 push out all transactions, otherwise push only those 1185 * for that file or might have been used to create that file. 1186 */ 1187 void 1188 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1189 { 1190 if (zilog == NULL || seq == 0) 1191 return; 1192 1193 mutex_enter(&zilog->zl_lock); 1194 1195 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1196 1197 while (zilog->zl_writer) { 1198 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1199 if (seq < zilog->zl_commit_seq) { 1200 mutex_exit(&zilog->zl_lock); 1201 return; 1202 } 1203 } 1204 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1205 /* wake up others waiting on the commit */ 1206 cv_broadcast(&zilog->zl_cv_writer); 1207 mutex_exit(&zilog->zl_lock); 1208 } 1209 1210 /* 1211 * Called in syncing context to free committed log blocks and update log header. 1212 */ 1213 void 1214 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1215 { 1216 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1217 uint64_t txg = dmu_tx_get_txg(tx); 1218 spa_t *spa = zilog->zl_spa; 1219 lwb_t *lwb; 1220 1221 /* 1222 * We don't zero out zl_destroy_txg, so make sure we don't try 1223 * to destroy it twice. 1224 */ 1225 if (spa_sync_pass(spa) != 1) 1226 return; 1227 1228 mutex_enter(&zilog->zl_lock); 1229 1230 ASSERT(zilog->zl_stop_sync == 0); 1231 1232 zh->zh_replay_seq = zilog->zl_replayed_seq[txg & TXG_MASK]; 1233 1234 if (zilog->zl_destroy_txg == txg) { 1235 blkptr_t blk = zh->zh_log; 1236 1237 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1238 1239 bzero(zh, sizeof (zil_header_t)); 1240 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1241 1242 if (zilog->zl_keep_first) { 1243 /* 1244 * If this block was part of log chain that couldn't 1245 * be claimed because a device was missing during 1246 * zil_claim(), but that device later returns, 1247 * then this block could erroneously appear valid. 1248 * To guard against this, assign a new GUID to the new 1249 * log chain so it doesn't matter what blk points to. 1250 */ 1251 zil_init_log_chain(zilog, &blk); 1252 zh->zh_log = blk; 1253 } 1254 } 1255 1256 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1257 zh->zh_log = lwb->lwb_blk; 1258 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1259 break; 1260 list_remove(&zilog->zl_lwb_list, lwb); 1261 zio_free_blk(spa, &lwb->lwb_blk, txg); 1262 kmem_cache_free(zil_lwb_cache, lwb); 1263 1264 /* 1265 * If we don't have anything left in the lwb list then 1266 * we've had an allocation failure and we need to zero 1267 * out the zil_header blkptr so that we don't end 1268 * up freeing the same block twice. 1269 */ 1270 if (list_head(&zilog->zl_lwb_list) == NULL) 1271 BP_ZERO(&zh->zh_log); 1272 } 1273 mutex_exit(&zilog->zl_lock); 1274 } 1275 1276 void 1277 zil_init(void) 1278 { 1279 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1280 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1281 } 1282 1283 void 1284 zil_fini(void) 1285 { 1286 kmem_cache_destroy(zil_lwb_cache); 1287 } 1288 1289 void 1290 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1291 { 1292 zilog->zl_logbias = logbias; 1293 } 1294 1295 zilog_t * 1296 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1297 { 1298 zilog_t *zilog; 1299 1300 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1301 1302 zilog->zl_header = zh_phys; 1303 zilog->zl_os = os; 1304 zilog->zl_spa = dmu_objset_spa(os); 1305 zilog->zl_dmu_pool = dmu_objset_pool(os); 1306 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1307 zilog->zl_logbias = dmu_objset_logbias(os); 1308 1309 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1310 1311 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1312 offsetof(itx_t, itx_node)); 1313 1314 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1315 offsetof(lwb_t, lwb_node)); 1316 1317 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1318 1319 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1320 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1321 1322 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1323 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1324 1325 return (zilog); 1326 } 1327 1328 void 1329 zil_free(zilog_t *zilog) 1330 { 1331 lwb_t *lwb; 1332 1333 zilog->zl_stop_sync = 1; 1334 1335 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1336 list_remove(&zilog->zl_lwb_list, lwb); 1337 if (lwb->lwb_buf != NULL) 1338 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1339 kmem_cache_free(zil_lwb_cache, lwb); 1340 } 1341 list_destroy(&zilog->zl_lwb_list); 1342 1343 avl_destroy(&zilog->zl_vdev_tree); 1344 mutex_destroy(&zilog->zl_vdev_lock); 1345 1346 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1347 list_destroy(&zilog->zl_itx_list); 1348 mutex_destroy(&zilog->zl_lock); 1349 1350 cv_destroy(&zilog->zl_cv_writer); 1351 cv_destroy(&zilog->zl_cv_suspend); 1352 1353 kmem_free(zilog, sizeof (zilog_t)); 1354 } 1355 1356 /* 1357 * Open an intent log. 1358 */ 1359 zilog_t * 1360 zil_open(objset_t *os, zil_get_data_t *get_data) 1361 { 1362 zilog_t *zilog = dmu_objset_zil(os); 1363 1364 zilog->zl_get_data = get_data; 1365 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1366 2, 2, TASKQ_PREPOPULATE); 1367 1368 return (zilog); 1369 } 1370 1371 /* 1372 * Close an intent log. 1373 */ 1374 void 1375 zil_close(zilog_t *zilog) 1376 { 1377 /* 1378 * If the log isn't already committed, mark the objset dirty 1379 * (so zil_sync() will be called) and wait for that txg to sync. 1380 */ 1381 if (!zil_is_committed(zilog)) { 1382 uint64_t txg; 1383 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1384 (void) dmu_tx_assign(tx, TXG_WAIT); 1385 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1386 txg = dmu_tx_get_txg(tx); 1387 dmu_tx_commit(tx); 1388 txg_wait_synced(zilog->zl_dmu_pool, txg); 1389 } 1390 1391 taskq_destroy(zilog->zl_clean_taskq); 1392 zilog->zl_clean_taskq = NULL; 1393 zilog->zl_get_data = NULL; 1394 1395 zil_itx_clean(zilog); 1396 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1397 } 1398 1399 /* 1400 * Suspend an intent log. While in suspended mode, we still honor 1401 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1402 * We suspend the log briefly when taking a snapshot so that the snapshot 1403 * contains all the data it's supposed to, and has an empty intent log. 1404 */ 1405 int 1406 zil_suspend(zilog_t *zilog) 1407 { 1408 const zil_header_t *zh = zilog->zl_header; 1409 1410 mutex_enter(&zilog->zl_lock); 1411 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1412 mutex_exit(&zilog->zl_lock); 1413 return (EBUSY); 1414 } 1415 if (zilog->zl_suspend++ != 0) { 1416 /* 1417 * Someone else already began a suspend. 1418 * Just wait for them to finish. 1419 */ 1420 while (zilog->zl_suspending) 1421 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1422 mutex_exit(&zilog->zl_lock); 1423 return (0); 1424 } 1425 zilog->zl_suspending = B_TRUE; 1426 mutex_exit(&zilog->zl_lock); 1427 1428 zil_commit(zilog, UINT64_MAX, 0); 1429 1430 /* 1431 * Wait for any in-flight log writes to complete. 1432 */ 1433 mutex_enter(&zilog->zl_lock); 1434 while (zilog->zl_writer) 1435 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1436 mutex_exit(&zilog->zl_lock); 1437 1438 zil_destroy(zilog, B_FALSE); 1439 1440 mutex_enter(&zilog->zl_lock); 1441 zilog->zl_suspending = B_FALSE; 1442 cv_broadcast(&zilog->zl_cv_suspend); 1443 mutex_exit(&zilog->zl_lock); 1444 1445 return (0); 1446 } 1447 1448 void 1449 zil_resume(zilog_t *zilog) 1450 { 1451 mutex_enter(&zilog->zl_lock); 1452 ASSERT(zilog->zl_suspend != 0); 1453 zilog->zl_suspend--; 1454 mutex_exit(&zilog->zl_lock); 1455 } 1456 1457 typedef struct zil_replay_arg { 1458 objset_t *zr_os; 1459 zil_replay_func_t **zr_replay; 1460 void *zr_arg; 1461 boolean_t zr_byteswap; 1462 char *zr_lrbuf; 1463 } zil_replay_arg_t; 1464 1465 static void 1466 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1467 { 1468 zil_replay_arg_t *zr = zra; 1469 const zil_header_t *zh = zilog->zl_header; 1470 uint64_t reclen = lr->lrc_reclen; 1471 uint64_t txtype = lr->lrc_txtype; 1472 char *name; 1473 int pass, error; 1474 1475 if (!zilog->zl_replay) /* giving up */ 1476 return; 1477 1478 if (lr->lrc_txg < claim_txg) /* already committed */ 1479 return; 1480 1481 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1482 return; 1483 1484 /* Strip case-insensitive bit, still present in log record */ 1485 txtype &= ~TX_CI; 1486 1487 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1488 error = EINVAL; 1489 goto bad; 1490 } 1491 1492 /* 1493 * Make a copy of the data so we can revise and extend it. 1494 */ 1495 bcopy(lr, zr->zr_lrbuf, reclen); 1496 1497 /* 1498 * The log block containing this lr may have been byteswapped 1499 * so that we can easily examine common fields like lrc_txtype. 1500 * However, the log is a mix of different data types, and only the 1501 * replay vectors know how to byteswap their records. Therefore, if 1502 * the lr was byteswapped, undo it before invoking the replay vector. 1503 */ 1504 if (zr->zr_byteswap) 1505 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1506 1507 /* 1508 * If this is a TX_WRITE with a blkptr, suck in the data. 1509 */ 1510 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1511 lr_write_t *lrw = (lr_write_t *)lr; 1512 blkptr_t *wbp = &lrw->lr_blkptr; 1513 uint64_t wlen = lrw->lr_length; 1514 char *wbuf = zr->zr_lrbuf + reclen; 1515 1516 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1517 bzero(wbuf, wlen); 1518 } else { 1519 /* 1520 * A subsequent write may have overwritten this block, 1521 * in which case wbp may have been been freed and 1522 * reallocated, and our read of wbp may fail with a 1523 * checksum error. We can safely ignore this because 1524 * the later write will provide the correct data. 1525 */ 1526 zbookmark_t zb; 1527 1528 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1529 zb.zb_object = lrw->lr_foid; 1530 zb.zb_level = -1; 1531 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1532 1533 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1534 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1535 ZIO_PRIORITY_SYNC_READ, 1536 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1537 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1538 } 1539 } 1540 1541 /* 1542 * We must now do two things atomically: replay this log record, 1543 * and update the log header sequence number to reflect the fact that 1544 * we did so. At the end of each replay function the sequence number 1545 * is updated if we are in replay mode. 1546 */ 1547 for (pass = 1; pass <= 2; pass++) { 1548 zilog->zl_replaying_seq = lr->lrc_seq; 1549 /* Only byteswap (if needed) on the 1st pass. */ 1550 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1551 zr->zr_byteswap && pass == 1); 1552 1553 if (!error) 1554 return; 1555 1556 /* 1557 * The DMU's dnode layer doesn't see removes until the txg 1558 * commits, so a subsequent claim can spuriously fail with 1559 * EEXIST. So if we receive any error we try syncing out 1560 * any removes then retry the transaction. 1561 */ 1562 if (pass == 1) 1563 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1564 } 1565 1566 bad: 1567 ASSERT(error); 1568 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1569 dmu_objset_name(zr->zr_os, name); 1570 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1571 "dataset %s, seq 0x%llx, txtype %llu %s\n", 1572 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, 1573 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1574 zilog->zl_replay = B_FALSE; 1575 kmem_free(name, MAXNAMELEN); 1576 } 1577 1578 /* ARGSUSED */ 1579 static void 1580 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1581 { 1582 zilog->zl_replay_blks++; 1583 } 1584 1585 /* 1586 * If this dataset has a non-empty intent log, replay it and destroy it. 1587 */ 1588 void 1589 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1590 { 1591 zilog_t *zilog = dmu_objset_zil(os); 1592 const zil_header_t *zh = zilog->zl_header; 1593 zil_replay_arg_t zr; 1594 1595 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 1596 zil_destroy(zilog, B_TRUE); 1597 return; 1598 } 1599 1600 zr.zr_os = os; 1601 zr.zr_replay = replay_func; 1602 zr.zr_arg = arg; 1603 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1604 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1605 1606 /* 1607 * Wait for in-progress removes to sync before starting replay. 1608 */ 1609 txg_wait_synced(zilog->zl_dmu_pool, 0); 1610 1611 zilog->zl_replay = B_TRUE; 1612 zilog->zl_replay_time = lbolt; 1613 ASSERT(zilog->zl_replay_blks == 0); 1614 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1615 zh->zh_claim_txg); 1616 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1617 1618 zil_destroy(zilog, B_FALSE); 1619 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1620 zilog->zl_replay = B_FALSE; 1621 } 1622 1623 /* 1624 * Report whether all transactions are committed 1625 */ 1626 int 1627 zil_is_committed(zilog_t *zilog) 1628 { 1629 lwb_t *lwb; 1630 int ret; 1631 1632 mutex_enter(&zilog->zl_lock); 1633 while (zilog->zl_writer) 1634 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1635 1636 /* recent unpushed intent log transactions? */ 1637 if (!list_is_empty(&zilog->zl_itx_list)) { 1638 ret = B_FALSE; 1639 goto out; 1640 } 1641 1642 /* intent log never used? */ 1643 lwb = list_head(&zilog->zl_lwb_list); 1644 if (lwb == NULL) { 1645 ret = B_TRUE; 1646 goto out; 1647 } 1648 1649 /* 1650 * more than 1 log buffer means zil_sync() hasn't yet freed 1651 * entries after a txg has committed 1652 */ 1653 if (list_next(&zilog->zl_lwb_list, lwb)) { 1654 ret = B_FALSE; 1655 goto out; 1656 } 1657 1658 ASSERT(zil_empty(zilog)); 1659 ret = B_TRUE; 1660 out: 1661 cv_broadcast(&zilog->zl_cv_writer); 1662 mutex_exit(&zilog->zl_lock); 1663 return (ret); 1664 } 1665 1666 /* ARGSUSED */ 1667 int 1668 zil_vdev_offline(char *osname, void *arg) 1669 { 1670 objset_t *os; 1671 zilog_t *zilog; 1672 int error; 1673 1674 error = dmu_objset_hold(osname, FTAG, &os); 1675 if (error) 1676 return (error); 1677 1678 zilog = dmu_objset_zil(os); 1679 if (zil_suspend(zilog) != 0) 1680 error = EEXIST; 1681 else 1682 zil_resume(zilog); 1683 dmu_objset_rele(os, FTAG); 1684 return (error); 1685 } 1686