xref: /titanic_41/usr/src/uts/common/fs/zfs/zil.c (revision edb432dd16be68a2fea50d9a0a1e839f16c6bc65)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_pool.h>
41 
42 /*
43  * The zfs intent log (ZIL) saves transaction records of system calls
44  * that change the file system in memory with enough information
45  * to be able to replay them. These are stored in memory until
46  * either the DMU transaction group (txg) commits them to the stable pool
47  * and they can be discarded, or they are flushed to the stable log
48  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
49  * requirement. In the event of a panic or power fail then those log
50  * records (transactions) are replayed.
51  *
52  * There is one ZIL per file system. Its on-disk (pool) format consists
53  * of 3 parts:
54  *
55  * 	- ZIL header
56  * 	- ZIL blocks
57  * 	- ZIL records
58  *
59  * A log record holds a system call transaction. Log blocks can
60  * hold many log records and the blocks are chained together.
61  * Each ZIL block contains a block pointer (blkptr_t) to the next
62  * ZIL block in the chain. The ZIL header points to the first
63  * block in the chain. Note there is not a fixed place in the pool
64  * to hold blocks. They are dynamically allocated and freed as
65  * needed from the blocks available. Figure X shows the ZIL structure:
66  */
67 
68 /*
69  * This global ZIL switch affects all pools
70  */
71 int zil_replay_disable = 0;    /* disable intent logging replay */
72 
73 /*
74  * Tunable parameter for debugging or performance analysis.  Setting
75  * zfs_nocacheflush will cause corruption on power loss if a volatile
76  * out-of-order write cache is enabled.
77  */
78 boolean_t zfs_nocacheflush = B_FALSE;
79 
80 static kmem_cache_t *zil_lwb_cache;
81 
82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
83 
84 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
85     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
86 
87 
88 /*
89  * ziltest is by and large an ugly hack, but very useful in
90  * checking replay without tedious work.
91  * When running ziltest we want to keep all itx's and so maintain
92  * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
93  * We subtract TXG_CONCURRENT_STATES to allow for common code.
94  */
95 #define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
96 
97 static int
98 zil_bp_compare(const void *x1, const void *x2)
99 {
100 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
101 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
102 
103 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
104 		return (-1);
105 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
106 		return (1);
107 
108 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
109 		return (-1);
110 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
111 		return (1);
112 
113 	return (0);
114 }
115 
116 static void
117 zil_bp_tree_init(zilog_t *zilog)
118 {
119 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
120 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
121 }
122 
123 static void
124 zil_bp_tree_fini(zilog_t *zilog)
125 {
126 	avl_tree_t *t = &zilog->zl_bp_tree;
127 	zil_bp_node_t *zn;
128 	void *cookie = NULL;
129 
130 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
131 		kmem_free(zn, sizeof (zil_bp_node_t));
132 
133 	avl_destroy(t);
134 }
135 
136 int
137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
138 {
139 	avl_tree_t *t = &zilog->zl_bp_tree;
140 	const dva_t *dva = BP_IDENTITY(bp);
141 	zil_bp_node_t *zn;
142 	avl_index_t where;
143 
144 	if (avl_find(t, dva, &where) != NULL)
145 		return (EEXIST);
146 
147 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
148 	zn->zn_dva = *dva;
149 	avl_insert(t, zn, where);
150 
151 	return (0);
152 }
153 
154 static zil_header_t *
155 zil_header_in_syncing_context(zilog_t *zilog)
156 {
157 	return ((zil_header_t *)zilog->zl_header);
158 }
159 
160 static void
161 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
162 {
163 	zio_cksum_t *zc = &bp->blk_cksum;
164 
165 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
166 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
167 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
168 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
169 }
170 
171 /*
172  * Read a log block and make sure it's valid.
173  */
174 static int
175 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
176     char **end)
177 {
178 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
179 	uint32_t aflags = ARC_WAIT;
180 	arc_buf_t *abuf = NULL;
181 	zbookmark_t zb;
182 	int error;
183 
184 	if (zilog->zl_header->zh_claim_txg == 0)
185 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
186 
187 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
188 		zio_flags |= ZIO_FLAG_SPECULATIVE;
189 
190 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
191 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
192 
193 	error = dsl_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
194 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
195 
196 	if (error == 0) {
197 		zio_cksum_t cksum = bp->blk_cksum;
198 
199 		/*
200 		 * Validate the checksummed log block.
201 		 *
202 		 * Sequence numbers should be... sequential.  The checksum
203 		 * verifier for the next block should be bp's checksum plus 1.
204 		 *
205 		 * Also check the log chain linkage and size used.
206 		 */
207 		cksum.zc_word[ZIL_ZC_SEQ]++;
208 
209 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
210 			zil_chain_t *zilc = abuf->b_data;
211 			char *lr = (char *)(zilc + 1);
212 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
213 
214 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
215 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
216 				error = ECKSUM;
217 			} else {
218 				bcopy(lr, dst, len);
219 				*end = (char *)dst + len;
220 				*nbp = zilc->zc_next_blk;
221 			}
222 		} else {
223 			char *lr = abuf->b_data;
224 			uint64_t size = BP_GET_LSIZE(bp);
225 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
226 
227 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
228 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
229 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
230 				error = ECKSUM;
231 			} else {
232 				bcopy(lr, dst, zilc->zc_nused);
233 				*end = (char *)dst + zilc->zc_nused;
234 				*nbp = zilc->zc_next_blk;
235 			}
236 		}
237 
238 		VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
239 	}
240 
241 	return (error);
242 }
243 
244 /*
245  * Read a TX_WRITE log data block.
246  */
247 static int
248 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
249 {
250 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
251 	const blkptr_t *bp = &lr->lr_blkptr;
252 	uint32_t aflags = ARC_WAIT;
253 	arc_buf_t *abuf = NULL;
254 	zbookmark_t zb;
255 	int error;
256 
257 	if (BP_IS_HOLE(bp)) {
258 		if (wbuf != NULL)
259 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
260 		return (0);
261 	}
262 
263 	if (zilog->zl_header->zh_claim_txg == 0)
264 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
265 
266 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
267 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
268 
269 	error = arc_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
270 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
271 
272 	if (error == 0) {
273 		if (wbuf != NULL)
274 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
275 		(void) arc_buf_remove_ref(abuf, &abuf);
276 	}
277 
278 	return (error);
279 }
280 
281 /*
282  * Parse the intent log, and call parse_func for each valid record within.
283  */
284 int
285 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
286     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
287 {
288 	const zil_header_t *zh = zilog->zl_header;
289 	boolean_t claimed = !!zh->zh_claim_txg;
290 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
291 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
292 	uint64_t max_blk_seq = 0;
293 	uint64_t max_lr_seq = 0;
294 	uint64_t blk_count = 0;
295 	uint64_t lr_count = 0;
296 	blkptr_t blk, next_blk;
297 	char *lrbuf, *lrp;
298 	int error = 0;
299 
300 	/*
301 	 * Old logs didn't record the maximum zh_claim_lr_seq.
302 	 */
303 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
304 		claim_lr_seq = UINT64_MAX;
305 
306 	/*
307 	 * Starting at the block pointed to by zh_log we read the log chain.
308 	 * For each block in the chain we strongly check that block to
309 	 * ensure its validity.  We stop when an invalid block is found.
310 	 * For each block pointer in the chain we call parse_blk_func().
311 	 * For each record in each valid block we call parse_lr_func().
312 	 * If the log has been claimed, stop if we encounter a sequence
313 	 * number greater than the highest claimed sequence number.
314 	 */
315 	lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
316 	zil_bp_tree_init(zilog);
317 
318 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
319 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
320 		int reclen;
321 		char *end;
322 
323 		if (blk_seq > claim_blk_seq)
324 			break;
325 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
326 			break;
327 		ASSERT3U(max_blk_seq, <, blk_seq);
328 		max_blk_seq = blk_seq;
329 		blk_count++;
330 
331 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
332 			break;
333 
334 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
335 		if (error)
336 			break;
337 
338 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
339 			lr_t *lr = (lr_t *)lrp;
340 			reclen = lr->lrc_reclen;
341 			ASSERT3U(reclen, >=, sizeof (lr_t));
342 			if (lr->lrc_seq > claim_lr_seq)
343 				goto done;
344 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
345 				goto done;
346 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
347 			max_lr_seq = lr->lrc_seq;
348 			lr_count++;
349 		}
350 	}
351 done:
352 	zilog->zl_parse_error = error;
353 	zilog->zl_parse_blk_seq = max_blk_seq;
354 	zilog->zl_parse_lr_seq = max_lr_seq;
355 	zilog->zl_parse_blk_count = blk_count;
356 	zilog->zl_parse_lr_count = lr_count;
357 
358 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
359 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
360 
361 	zil_bp_tree_fini(zilog);
362 	zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
363 
364 	return (error);
365 }
366 
367 static int
368 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
369 {
370 	/*
371 	 * Claim log block if not already committed and not already claimed.
372 	 * If tx == NULL, just verify that the block is claimable.
373 	 */
374 	if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0)
375 		return (0);
376 
377 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
378 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
379 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
380 }
381 
382 static int
383 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
384 {
385 	lr_write_t *lr = (lr_write_t *)lrc;
386 	int error;
387 
388 	if (lrc->lrc_txtype != TX_WRITE)
389 		return (0);
390 
391 	/*
392 	 * If the block is not readable, don't claim it.  This can happen
393 	 * in normal operation when a log block is written to disk before
394 	 * some of the dmu_sync() blocks it points to.  In this case, the
395 	 * transaction cannot have been committed to anyone (we would have
396 	 * waited for all writes to be stable first), so it is semantically
397 	 * correct to declare this the end of the log.
398 	 */
399 	if (lr->lr_blkptr.blk_birth >= first_txg &&
400 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
401 		return (error);
402 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
403 }
404 
405 /* ARGSUSED */
406 static int
407 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
408 {
409 	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
410 
411 	return (0);
412 }
413 
414 static int
415 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
416 {
417 	lr_write_t *lr = (lr_write_t *)lrc;
418 	blkptr_t *bp = &lr->lr_blkptr;
419 
420 	/*
421 	 * If we previously claimed it, we need to free it.
422 	 */
423 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
424 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0)
425 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
426 
427 	return (0);
428 }
429 
430 static lwb_t *
431 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
432 {
433 	lwb_t *lwb;
434 
435 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
436 	lwb->lwb_zilog = zilog;
437 	lwb->lwb_blk = *bp;
438 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
439 	lwb->lwb_max_txg = txg;
440 	lwb->lwb_zio = NULL;
441 	lwb->lwb_tx = NULL;
442 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
443 		lwb->lwb_nused = sizeof (zil_chain_t);
444 		lwb->lwb_sz = BP_GET_LSIZE(bp);
445 	} else {
446 		lwb->lwb_nused = 0;
447 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
448 	}
449 
450 	mutex_enter(&zilog->zl_lock);
451 	list_insert_tail(&zilog->zl_lwb_list, lwb);
452 	mutex_exit(&zilog->zl_lock);
453 
454 	return (lwb);
455 }
456 
457 /*
458  * Called when we create in-memory log transactions so that we know
459  * to cleanup the itxs at the end of spa_sync().
460  */
461 void
462 zilog_dirty(zilog_t *zilog, uint64_t txg)
463 {
464 	dsl_pool_t *dp = zilog->zl_dmu_pool;
465 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
466 
467 	if (dsl_dataset_is_snapshot(ds))
468 		panic("dirtying snapshot!");
469 
470 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg) == 0) {
471 		/* up the hold count until we can be written out */
472 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
473 	}
474 }
475 
476 boolean_t
477 zilog_is_dirty(zilog_t *zilog)
478 {
479 	dsl_pool_t *dp = zilog->zl_dmu_pool;
480 
481 	for (int t = 0; t < TXG_SIZE; t++) {
482 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
483 			return (B_TRUE);
484 	}
485 	return (B_FALSE);
486 }
487 
488 /*
489  * Create an on-disk intent log.
490  */
491 static lwb_t *
492 zil_create(zilog_t *zilog)
493 {
494 	const zil_header_t *zh = zilog->zl_header;
495 	lwb_t *lwb = NULL;
496 	uint64_t txg = 0;
497 	dmu_tx_t *tx = NULL;
498 	blkptr_t blk;
499 	int error = 0;
500 
501 	/*
502 	 * Wait for any previous destroy to complete.
503 	 */
504 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
505 
506 	ASSERT(zh->zh_claim_txg == 0);
507 	ASSERT(zh->zh_replay_seq == 0);
508 
509 	blk = zh->zh_log;
510 
511 	/*
512 	 * Allocate an initial log block if:
513 	 *    - there isn't one already
514 	 *    - the existing block is the wrong endianess
515 	 */
516 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
517 		tx = dmu_tx_create(zilog->zl_os);
518 		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
519 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
520 		txg = dmu_tx_get_txg(tx);
521 
522 		if (!BP_IS_HOLE(&blk)) {
523 			zio_free_zil(zilog->zl_spa, txg, &blk);
524 			BP_ZERO(&blk);
525 		}
526 
527 		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
528 		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
529 
530 		if (error == 0)
531 			zil_init_log_chain(zilog, &blk);
532 	}
533 
534 	/*
535 	 * Allocate a log write buffer (lwb) for the first log block.
536 	 */
537 	if (error == 0)
538 		lwb = zil_alloc_lwb(zilog, &blk, txg);
539 
540 	/*
541 	 * If we just allocated the first log block, commit our transaction
542 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
543 	 * (zh is part of the MOS, so we cannot modify it in open context.)
544 	 */
545 	if (tx != NULL) {
546 		dmu_tx_commit(tx);
547 		txg_wait_synced(zilog->zl_dmu_pool, txg);
548 	}
549 
550 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
551 
552 	return (lwb);
553 }
554 
555 /*
556  * In one tx, free all log blocks and clear the log header.
557  * If keep_first is set, then we're replaying a log with no content.
558  * We want to keep the first block, however, so that the first
559  * synchronous transaction doesn't require a txg_wait_synced()
560  * in zil_create().  We don't need to txg_wait_synced() here either
561  * when keep_first is set, because both zil_create() and zil_destroy()
562  * will wait for any in-progress destroys to complete.
563  */
564 void
565 zil_destroy(zilog_t *zilog, boolean_t keep_first)
566 {
567 	const zil_header_t *zh = zilog->zl_header;
568 	lwb_t *lwb;
569 	dmu_tx_t *tx;
570 	uint64_t txg;
571 
572 	/*
573 	 * Wait for any previous destroy to complete.
574 	 */
575 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
576 
577 	zilog->zl_old_header = *zh;		/* debugging aid */
578 
579 	if (BP_IS_HOLE(&zh->zh_log))
580 		return;
581 
582 	tx = dmu_tx_create(zilog->zl_os);
583 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
584 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
585 	txg = dmu_tx_get_txg(tx);
586 
587 	mutex_enter(&zilog->zl_lock);
588 
589 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
590 	zilog->zl_destroy_txg = txg;
591 	zilog->zl_keep_first = keep_first;
592 
593 	if (!list_is_empty(&zilog->zl_lwb_list)) {
594 		ASSERT(zh->zh_claim_txg == 0);
595 		VERIFY(!keep_first);
596 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
597 			list_remove(&zilog->zl_lwb_list, lwb);
598 			if (lwb->lwb_buf != NULL)
599 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
600 			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
601 			kmem_cache_free(zil_lwb_cache, lwb);
602 		}
603 	} else if (!keep_first) {
604 		zil_destroy_sync(zilog, tx);
605 	}
606 	mutex_exit(&zilog->zl_lock);
607 
608 	dmu_tx_commit(tx);
609 }
610 
611 void
612 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
613 {
614 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
615 	(void) zil_parse(zilog, zil_free_log_block,
616 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
617 }
618 
619 int
620 zil_claim(const char *osname, void *txarg)
621 {
622 	dmu_tx_t *tx = txarg;
623 	uint64_t first_txg = dmu_tx_get_txg(tx);
624 	zilog_t *zilog;
625 	zil_header_t *zh;
626 	objset_t *os;
627 	int error;
628 
629 	error = dmu_objset_hold(osname, FTAG, &os);
630 	if (error) {
631 		cmn_err(CE_WARN, "can't open objset for %s", osname);
632 		return (0);
633 	}
634 
635 	zilog = dmu_objset_zil(os);
636 	zh = zil_header_in_syncing_context(zilog);
637 
638 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
639 		if (!BP_IS_HOLE(&zh->zh_log))
640 			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
641 		BP_ZERO(&zh->zh_log);
642 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
643 		dmu_objset_rele(os, FTAG);
644 		return (0);
645 	}
646 
647 	/*
648 	 * Claim all log blocks if we haven't already done so, and remember
649 	 * the highest claimed sequence number.  This ensures that if we can
650 	 * read only part of the log now (e.g. due to a missing device),
651 	 * but we can read the entire log later, we will not try to replay
652 	 * or destroy beyond the last block we successfully claimed.
653 	 */
654 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
655 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
656 		(void) zil_parse(zilog, zil_claim_log_block,
657 		    zil_claim_log_record, tx, first_txg);
658 		zh->zh_claim_txg = first_txg;
659 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
660 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
661 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
662 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
663 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
664 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
665 	}
666 
667 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
668 	dmu_objset_rele(os, FTAG);
669 	return (0);
670 }
671 
672 /*
673  * Check the log by walking the log chain.
674  * Checksum errors are ok as they indicate the end of the chain.
675  * Any other error (no device or read failure) returns an error.
676  */
677 int
678 zil_check_log_chain(const char *osname, void *tx)
679 {
680 	zilog_t *zilog;
681 	objset_t *os;
682 	blkptr_t *bp;
683 	int error;
684 
685 	ASSERT(tx == NULL);
686 
687 	error = dmu_objset_hold(osname, FTAG, &os);
688 	if (error) {
689 		cmn_err(CE_WARN, "can't open objset for %s", osname);
690 		return (0);
691 	}
692 
693 	zilog = dmu_objset_zil(os);
694 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
695 
696 	/*
697 	 * Check the first block and determine if it's on a log device
698 	 * which may have been removed or faulted prior to loading this
699 	 * pool.  If so, there's no point in checking the rest of the log
700 	 * as its content should have already been synced to the pool.
701 	 */
702 	if (!BP_IS_HOLE(bp)) {
703 		vdev_t *vd;
704 		boolean_t valid = B_TRUE;
705 
706 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
707 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
708 		if (vd->vdev_islog && vdev_is_dead(vd))
709 			valid = vdev_log_state_valid(vd);
710 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
711 
712 		if (!valid) {
713 			dmu_objset_rele(os, FTAG);
714 			return (0);
715 		}
716 	}
717 
718 	/*
719 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
720 	 * any blocks, but just determine whether it is possible to do so.
721 	 * In addition to checking the log chain, zil_claim_log_block()
722 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
723 	 * which will update spa_max_claim_txg.  See spa_load() for details.
724 	 */
725 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
726 	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
727 
728 	dmu_objset_rele(os, FTAG);
729 
730 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
731 }
732 
733 static int
734 zil_vdev_compare(const void *x1, const void *x2)
735 {
736 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
737 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
738 
739 	if (v1 < v2)
740 		return (-1);
741 	if (v1 > v2)
742 		return (1);
743 
744 	return (0);
745 }
746 
747 void
748 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
749 {
750 	avl_tree_t *t = &zilog->zl_vdev_tree;
751 	avl_index_t where;
752 	zil_vdev_node_t *zv, zvsearch;
753 	int ndvas = BP_GET_NDVAS(bp);
754 	int i;
755 
756 	if (zfs_nocacheflush)
757 		return;
758 
759 	ASSERT(zilog->zl_writer);
760 
761 	/*
762 	 * Even though we're zl_writer, we still need a lock because the
763 	 * zl_get_data() callbacks may have dmu_sync() done callbacks
764 	 * that will run concurrently.
765 	 */
766 	mutex_enter(&zilog->zl_vdev_lock);
767 	for (i = 0; i < ndvas; i++) {
768 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
769 		if (avl_find(t, &zvsearch, &where) == NULL) {
770 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
771 			zv->zv_vdev = zvsearch.zv_vdev;
772 			avl_insert(t, zv, where);
773 		}
774 	}
775 	mutex_exit(&zilog->zl_vdev_lock);
776 }
777 
778 static void
779 zil_flush_vdevs(zilog_t *zilog)
780 {
781 	spa_t *spa = zilog->zl_spa;
782 	avl_tree_t *t = &zilog->zl_vdev_tree;
783 	void *cookie = NULL;
784 	zil_vdev_node_t *zv;
785 	zio_t *zio;
786 
787 	ASSERT(zilog->zl_writer);
788 
789 	/*
790 	 * We don't need zl_vdev_lock here because we're the zl_writer,
791 	 * and all zl_get_data() callbacks are done.
792 	 */
793 	if (avl_numnodes(t) == 0)
794 		return;
795 
796 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
797 
798 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
799 
800 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
801 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
802 		if (vd != NULL)
803 			zio_flush(zio, vd);
804 		kmem_free(zv, sizeof (*zv));
805 	}
806 
807 	/*
808 	 * Wait for all the flushes to complete.  Not all devices actually
809 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
810 	 */
811 	(void) zio_wait(zio);
812 
813 	spa_config_exit(spa, SCL_STATE, FTAG);
814 }
815 
816 /*
817  * Function called when a log block write completes
818  */
819 static void
820 zil_lwb_write_done(zio_t *zio)
821 {
822 	lwb_t *lwb = zio->io_private;
823 	zilog_t *zilog = lwb->lwb_zilog;
824 	dmu_tx_t *tx = lwb->lwb_tx;
825 
826 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
827 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
828 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
829 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
830 	ASSERT(!BP_IS_GANG(zio->io_bp));
831 	ASSERT(!BP_IS_HOLE(zio->io_bp));
832 	ASSERT(zio->io_bp->blk_fill == 0);
833 
834 	/*
835 	 * Ensure the lwb buffer pointer is cleared before releasing
836 	 * the txg. If we have had an allocation failure and
837 	 * the txg is waiting to sync then we want want zil_sync()
838 	 * to remove the lwb so that it's not picked up as the next new
839 	 * one in zil_commit_writer(). zil_sync() will only remove
840 	 * the lwb if lwb_buf is null.
841 	 */
842 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
843 	mutex_enter(&zilog->zl_lock);
844 	lwb->lwb_buf = NULL;
845 	lwb->lwb_tx = NULL;
846 	mutex_exit(&zilog->zl_lock);
847 
848 	/*
849 	 * Now that we've written this log block, we have a stable pointer
850 	 * to the next block in the chain, so it's OK to let the txg in
851 	 * which we allocated the next block sync.
852 	 */
853 	dmu_tx_commit(tx);
854 }
855 
856 /*
857  * Initialize the io for a log block.
858  */
859 static void
860 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
861 {
862 	zbookmark_t zb;
863 
864 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
865 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
866 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
867 
868 	if (zilog->zl_root_zio == NULL) {
869 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
870 		    ZIO_FLAG_CANFAIL);
871 	}
872 	if (lwb->lwb_zio == NULL) {
873 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
874 		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
875 		    zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE,
876 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
877 	}
878 }
879 
880 /*
881  * Define a limited set of intent log block sizes.
882  * These must be a multiple of 4KB. Note only the amount used (again
883  * aligned to 4KB) actually gets written. However, we can't always just
884  * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
885  */
886 uint64_t zil_block_buckets[] = {
887     4096,		/* non TX_WRITE */
888     8192+4096,		/* data base */
889     32*1024 + 4096, 	/* NFS writes */
890     UINT64_MAX
891 };
892 
893 /*
894  * Use the slog as long as the logbias is 'latency' and the current commit size
895  * is less than the limit or the total list size is less than 2X the limit.
896  * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
897  */
898 uint64_t zil_slog_limit = 1024 * 1024;
899 #define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
900 	(((zilog)->zl_cur_used < zil_slog_limit) || \
901 	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
902 
903 /*
904  * Start a log block write and advance to the next log block.
905  * Calls are serialized.
906  */
907 static lwb_t *
908 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
909 {
910 	lwb_t *nlwb = NULL;
911 	zil_chain_t *zilc;
912 	spa_t *spa = zilog->zl_spa;
913 	blkptr_t *bp;
914 	dmu_tx_t *tx;
915 	uint64_t txg;
916 	uint64_t zil_blksz, wsz;
917 	int i, error;
918 
919 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
920 		zilc = (zil_chain_t *)lwb->lwb_buf;
921 		bp = &zilc->zc_next_blk;
922 	} else {
923 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
924 		bp = &zilc->zc_next_blk;
925 	}
926 
927 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
928 
929 	/*
930 	 * Allocate the next block and save its address in this block
931 	 * before writing it in order to establish the log chain.
932 	 * Note that if the allocation of nlwb synced before we wrote
933 	 * the block that points at it (lwb), we'd leak it if we crashed.
934 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
935 	 * We dirty the dataset to ensure that zil_sync() will be called
936 	 * to clean up in the event of allocation failure or I/O failure.
937 	 */
938 	tx = dmu_tx_create(zilog->zl_os);
939 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
940 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
941 	txg = dmu_tx_get_txg(tx);
942 
943 	lwb->lwb_tx = tx;
944 
945 	/*
946 	 * Log blocks are pre-allocated. Here we select the size of the next
947 	 * block, based on size used in the last block.
948 	 * - first find the smallest bucket that will fit the block from a
949 	 *   limited set of block sizes. This is because it's faster to write
950 	 *   blocks allocated from the same metaslab as they are adjacent or
951 	 *   close.
952 	 * - next find the maximum from the new suggested size and an array of
953 	 *   previous sizes. This lessens a picket fence effect of wrongly
954 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
955 	 *   requests.
956 	 *
957 	 * Note we only write what is used, but we can't just allocate
958 	 * the maximum block size because we can exhaust the available
959 	 * pool log space.
960 	 */
961 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
962 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
963 		continue;
964 	zil_blksz = zil_block_buckets[i];
965 	if (zil_blksz == UINT64_MAX)
966 		zil_blksz = SPA_MAXBLOCKSIZE;
967 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
968 	for (i = 0; i < ZIL_PREV_BLKS; i++)
969 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
970 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
971 
972 	BP_ZERO(bp);
973 	/* pass the old blkptr in order to spread log blocks across devs */
974 	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
975 	    USE_SLOG(zilog));
976 	if (!error) {
977 		ASSERT3U(bp->blk_birth, ==, txg);
978 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
979 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
980 
981 		/*
982 		 * Allocate a new log write buffer (lwb).
983 		 */
984 		nlwb = zil_alloc_lwb(zilog, bp, txg);
985 
986 		/* Record the block for later vdev flushing */
987 		zil_add_block(zilog, &lwb->lwb_blk);
988 	}
989 
990 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
991 		/* For Slim ZIL only write what is used. */
992 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
993 		ASSERT3U(wsz, <=, lwb->lwb_sz);
994 		zio_shrink(lwb->lwb_zio, wsz);
995 
996 	} else {
997 		wsz = lwb->lwb_sz;
998 	}
999 
1000 	zilc->zc_pad = 0;
1001 	zilc->zc_nused = lwb->lwb_nused;
1002 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1003 
1004 	/*
1005 	 * clear unused data for security
1006 	 */
1007 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1008 
1009 	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1010 
1011 	/*
1012 	 * If there was an allocation failure then nlwb will be null which
1013 	 * forces a txg_wait_synced().
1014 	 */
1015 	return (nlwb);
1016 }
1017 
1018 static lwb_t *
1019 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1020 {
1021 	lr_t *lrc = &itx->itx_lr; /* common log record */
1022 	lr_write_t *lrw = (lr_write_t *)lrc;
1023 	char *lr_buf;
1024 	uint64_t txg = lrc->lrc_txg;
1025 	uint64_t reclen = lrc->lrc_reclen;
1026 	uint64_t dlen = 0;
1027 
1028 	if (lwb == NULL)
1029 		return (NULL);
1030 
1031 	ASSERT(lwb->lwb_buf != NULL);
1032 	ASSERT(zilog_is_dirty(zilog) ||
1033 	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1034 
1035 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1036 		dlen = P2ROUNDUP_TYPED(
1037 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1038 
1039 	zilog->zl_cur_used += (reclen + dlen);
1040 
1041 	zil_lwb_write_init(zilog, lwb);
1042 
1043 	/*
1044 	 * If this record won't fit in the current log block, start a new one.
1045 	 */
1046 	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1047 		lwb = zil_lwb_write_start(zilog, lwb);
1048 		if (lwb == NULL)
1049 			return (NULL);
1050 		zil_lwb_write_init(zilog, lwb);
1051 		ASSERT(LWB_EMPTY(lwb));
1052 		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1053 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1054 			return (lwb);
1055 		}
1056 	}
1057 
1058 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1059 	bcopy(lrc, lr_buf, reclen);
1060 	lrc = (lr_t *)lr_buf;
1061 	lrw = (lr_write_t *)lrc;
1062 
1063 	/*
1064 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1065 	 */
1066 	if (lrc->lrc_txtype == TX_WRITE) {
1067 		if (txg > spa_freeze_txg(zilog->zl_spa))
1068 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1069 		if (itx->itx_wr_state != WR_COPIED) {
1070 			char *dbuf;
1071 			int error;
1072 
1073 			if (dlen) {
1074 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1075 				dbuf = lr_buf + reclen;
1076 				lrw->lr_common.lrc_reclen += dlen;
1077 			} else {
1078 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1079 				dbuf = NULL;
1080 			}
1081 			error = zilog->zl_get_data(
1082 			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1083 			if (error == EIO) {
1084 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1085 				return (lwb);
1086 			}
1087 			if (error) {
1088 				ASSERT(error == ENOENT || error == EEXIST ||
1089 				    error == EALREADY);
1090 				return (lwb);
1091 			}
1092 		}
1093 	}
1094 
1095 	/*
1096 	 * We're actually making an entry, so update lrc_seq to be the
1097 	 * log record sequence number.  Note that this is generally not
1098 	 * equal to the itx sequence number because not all transactions
1099 	 * are synchronous, and sometimes spa_sync() gets there first.
1100 	 */
1101 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1102 	lwb->lwb_nused += reclen + dlen;
1103 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1104 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1105 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1106 
1107 	return (lwb);
1108 }
1109 
1110 itx_t *
1111 zil_itx_create(uint64_t txtype, size_t lrsize)
1112 {
1113 	itx_t *itx;
1114 
1115 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1116 
1117 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1118 	itx->itx_lr.lrc_txtype = txtype;
1119 	itx->itx_lr.lrc_reclen = lrsize;
1120 	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1121 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1122 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1123 
1124 	return (itx);
1125 }
1126 
1127 void
1128 zil_itx_destroy(itx_t *itx)
1129 {
1130 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1131 }
1132 
1133 /*
1134  * Free up the sync and async itxs. The itxs_t has already been detached
1135  * so no locks are needed.
1136  */
1137 static void
1138 zil_itxg_clean(itxs_t *itxs)
1139 {
1140 	itx_t *itx;
1141 	list_t *list;
1142 	avl_tree_t *t;
1143 	void *cookie;
1144 	itx_async_node_t *ian;
1145 
1146 	list = &itxs->i_sync_list;
1147 	while ((itx = list_head(list)) != NULL) {
1148 		list_remove(list, itx);
1149 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1150 		    itx->itx_lr.lrc_reclen);
1151 	}
1152 
1153 	cookie = NULL;
1154 	t = &itxs->i_async_tree;
1155 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1156 		list = &ian->ia_list;
1157 		while ((itx = list_head(list)) != NULL) {
1158 			list_remove(list, itx);
1159 			kmem_free(itx, offsetof(itx_t, itx_lr) +
1160 			    itx->itx_lr.lrc_reclen);
1161 		}
1162 		list_destroy(list);
1163 		kmem_free(ian, sizeof (itx_async_node_t));
1164 	}
1165 	avl_destroy(t);
1166 
1167 	kmem_free(itxs, sizeof (itxs_t));
1168 }
1169 
1170 static int
1171 zil_aitx_compare(const void *x1, const void *x2)
1172 {
1173 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1174 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1175 
1176 	if (o1 < o2)
1177 		return (-1);
1178 	if (o1 > o2)
1179 		return (1);
1180 
1181 	return (0);
1182 }
1183 
1184 /*
1185  * Remove all async itx with the given oid.
1186  */
1187 static void
1188 zil_remove_async(zilog_t *zilog, uint64_t oid)
1189 {
1190 	uint64_t otxg, txg;
1191 	itx_async_node_t *ian;
1192 	avl_tree_t *t;
1193 	avl_index_t where;
1194 	list_t clean_list;
1195 	itx_t *itx;
1196 
1197 	ASSERT(oid != 0);
1198 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1199 
1200 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1201 		otxg = ZILTEST_TXG;
1202 	else
1203 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1204 
1205 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1206 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1207 
1208 		mutex_enter(&itxg->itxg_lock);
1209 		if (itxg->itxg_txg != txg) {
1210 			mutex_exit(&itxg->itxg_lock);
1211 			continue;
1212 		}
1213 
1214 		/*
1215 		 * Locate the object node and append its list.
1216 		 */
1217 		t = &itxg->itxg_itxs->i_async_tree;
1218 		ian = avl_find(t, &oid, &where);
1219 		if (ian != NULL)
1220 			list_move_tail(&clean_list, &ian->ia_list);
1221 		mutex_exit(&itxg->itxg_lock);
1222 	}
1223 	while ((itx = list_head(&clean_list)) != NULL) {
1224 		list_remove(&clean_list, itx);
1225 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1226 		    itx->itx_lr.lrc_reclen);
1227 	}
1228 	list_destroy(&clean_list);
1229 }
1230 
1231 void
1232 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1233 {
1234 	uint64_t txg;
1235 	itxg_t *itxg;
1236 	itxs_t *itxs, *clean = NULL;
1237 
1238 	/*
1239 	 * Object ids can be re-instantiated in the next txg so
1240 	 * remove any async transactions to avoid future leaks.
1241 	 * This can happen if a fsync occurs on the re-instantiated
1242 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1243 	 * the new file data and flushes a write record for the old object.
1244 	 */
1245 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1246 		zil_remove_async(zilog, itx->itx_oid);
1247 
1248 	/*
1249 	 * Ensure the data of a renamed file is committed before the rename.
1250 	 */
1251 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1252 		zil_async_to_sync(zilog, itx->itx_oid);
1253 
1254 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1255 		txg = ZILTEST_TXG;
1256 	else
1257 		txg = dmu_tx_get_txg(tx);
1258 
1259 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1260 	mutex_enter(&itxg->itxg_lock);
1261 	itxs = itxg->itxg_itxs;
1262 	if (itxg->itxg_txg != txg) {
1263 		if (itxs != NULL) {
1264 			/*
1265 			 * The zil_clean callback hasn't got around to cleaning
1266 			 * this itxg. Save the itxs for release below.
1267 			 * This should be rare.
1268 			 */
1269 			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1270 			itxg->itxg_sod = 0;
1271 			clean = itxg->itxg_itxs;
1272 		}
1273 		ASSERT(itxg->itxg_sod == 0);
1274 		itxg->itxg_txg = txg;
1275 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1276 
1277 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1278 		    offsetof(itx_t, itx_node));
1279 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1280 		    sizeof (itx_async_node_t),
1281 		    offsetof(itx_async_node_t, ia_node));
1282 	}
1283 	if (itx->itx_sync) {
1284 		list_insert_tail(&itxs->i_sync_list, itx);
1285 		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1286 		itxg->itxg_sod += itx->itx_sod;
1287 	} else {
1288 		avl_tree_t *t = &itxs->i_async_tree;
1289 		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1290 		itx_async_node_t *ian;
1291 		avl_index_t where;
1292 
1293 		ian = avl_find(t, &foid, &where);
1294 		if (ian == NULL) {
1295 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1296 			list_create(&ian->ia_list, sizeof (itx_t),
1297 			    offsetof(itx_t, itx_node));
1298 			ian->ia_foid = foid;
1299 			avl_insert(t, ian, where);
1300 		}
1301 		list_insert_tail(&ian->ia_list, itx);
1302 	}
1303 
1304 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1305 	zilog_dirty(zilog, txg);
1306 	mutex_exit(&itxg->itxg_lock);
1307 
1308 	/* Release the old itxs now we've dropped the lock */
1309 	if (clean != NULL)
1310 		zil_itxg_clean(clean);
1311 }
1312 
1313 /*
1314  * If there are any in-memory intent log transactions which have now been
1315  * synced then start up a taskq to free them. We should only do this after we
1316  * have written out the uberblocks (i.e. txg has been comitted) so that
1317  * don't inadvertently clean out in-memory log records that would be required
1318  * by zil_commit().
1319  */
1320 void
1321 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1322 {
1323 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1324 	itxs_t *clean_me;
1325 
1326 	mutex_enter(&itxg->itxg_lock);
1327 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1328 		mutex_exit(&itxg->itxg_lock);
1329 		return;
1330 	}
1331 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1332 	ASSERT(itxg->itxg_txg != 0);
1333 	ASSERT(zilog->zl_clean_taskq != NULL);
1334 	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1335 	itxg->itxg_sod = 0;
1336 	clean_me = itxg->itxg_itxs;
1337 	itxg->itxg_itxs = NULL;
1338 	itxg->itxg_txg = 0;
1339 	mutex_exit(&itxg->itxg_lock);
1340 	/*
1341 	 * Preferably start a task queue to free up the old itxs but
1342 	 * if taskq_dispatch can't allocate resources to do that then
1343 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1344 	 * created a bad performance problem.
1345 	 */
1346 	if (taskq_dispatch(zilog->zl_clean_taskq,
1347 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1348 		zil_itxg_clean(clean_me);
1349 }
1350 
1351 /*
1352  * Get the list of itxs to commit into zl_itx_commit_list.
1353  */
1354 static void
1355 zil_get_commit_list(zilog_t *zilog)
1356 {
1357 	uint64_t otxg, txg;
1358 	list_t *commit_list = &zilog->zl_itx_commit_list;
1359 	uint64_t push_sod = 0;
1360 
1361 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1362 		otxg = ZILTEST_TXG;
1363 	else
1364 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1365 
1366 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1367 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1368 
1369 		mutex_enter(&itxg->itxg_lock);
1370 		if (itxg->itxg_txg != txg) {
1371 			mutex_exit(&itxg->itxg_lock);
1372 			continue;
1373 		}
1374 
1375 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1376 		push_sod += itxg->itxg_sod;
1377 		itxg->itxg_sod = 0;
1378 
1379 		mutex_exit(&itxg->itxg_lock);
1380 	}
1381 	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1382 }
1383 
1384 /*
1385  * Move the async itxs for a specified object to commit into sync lists.
1386  */
1387 static void
1388 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1389 {
1390 	uint64_t otxg, txg;
1391 	itx_async_node_t *ian;
1392 	avl_tree_t *t;
1393 	avl_index_t where;
1394 
1395 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1396 		otxg = ZILTEST_TXG;
1397 	else
1398 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1399 
1400 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1401 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1402 
1403 		mutex_enter(&itxg->itxg_lock);
1404 		if (itxg->itxg_txg != txg) {
1405 			mutex_exit(&itxg->itxg_lock);
1406 			continue;
1407 		}
1408 
1409 		/*
1410 		 * If a foid is specified then find that node and append its
1411 		 * list. Otherwise walk the tree appending all the lists
1412 		 * to the sync list. We add to the end rather than the
1413 		 * beginning to ensure the create has happened.
1414 		 */
1415 		t = &itxg->itxg_itxs->i_async_tree;
1416 		if (foid != 0) {
1417 			ian = avl_find(t, &foid, &where);
1418 			if (ian != NULL) {
1419 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1420 				    &ian->ia_list);
1421 			}
1422 		} else {
1423 			void *cookie = NULL;
1424 
1425 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1426 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1427 				    &ian->ia_list);
1428 				list_destroy(&ian->ia_list);
1429 				kmem_free(ian, sizeof (itx_async_node_t));
1430 			}
1431 		}
1432 		mutex_exit(&itxg->itxg_lock);
1433 	}
1434 }
1435 
1436 static void
1437 zil_commit_writer(zilog_t *zilog)
1438 {
1439 	uint64_t txg;
1440 	itx_t *itx;
1441 	lwb_t *lwb;
1442 	spa_t *spa = zilog->zl_spa;
1443 	int error = 0;
1444 
1445 	ASSERT(zilog->zl_root_zio == NULL);
1446 
1447 	mutex_exit(&zilog->zl_lock);
1448 
1449 	zil_get_commit_list(zilog);
1450 
1451 	/*
1452 	 * Return if there's nothing to commit before we dirty the fs by
1453 	 * calling zil_create().
1454 	 */
1455 	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1456 		mutex_enter(&zilog->zl_lock);
1457 		return;
1458 	}
1459 
1460 	if (zilog->zl_suspend) {
1461 		lwb = NULL;
1462 	} else {
1463 		lwb = list_tail(&zilog->zl_lwb_list);
1464 		if (lwb == NULL)
1465 			lwb = zil_create(zilog);
1466 	}
1467 
1468 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1469 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1470 		txg = itx->itx_lr.lrc_txg;
1471 		ASSERT(txg);
1472 
1473 		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1474 			lwb = zil_lwb_commit(zilog, itx, lwb);
1475 		list_remove(&zilog->zl_itx_commit_list, itx);
1476 		kmem_free(itx, offsetof(itx_t, itx_lr)
1477 		    + itx->itx_lr.lrc_reclen);
1478 	}
1479 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1480 
1481 	/* write the last block out */
1482 	if (lwb != NULL && lwb->lwb_zio != NULL)
1483 		lwb = zil_lwb_write_start(zilog, lwb);
1484 
1485 	zilog->zl_cur_used = 0;
1486 
1487 	/*
1488 	 * Wait if necessary for the log blocks to be on stable storage.
1489 	 */
1490 	if (zilog->zl_root_zio) {
1491 		error = zio_wait(zilog->zl_root_zio);
1492 		zilog->zl_root_zio = NULL;
1493 		zil_flush_vdevs(zilog);
1494 	}
1495 
1496 	if (error || lwb == NULL)
1497 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1498 
1499 	mutex_enter(&zilog->zl_lock);
1500 
1501 	/*
1502 	 * Remember the highest committed log sequence number for ztest.
1503 	 * We only update this value when all the log writes succeeded,
1504 	 * because ztest wants to ASSERT that it got the whole log chain.
1505 	 */
1506 	if (error == 0 && lwb != NULL)
1507 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1508 }
1509 
1510 /*
1511  * Commit zfs transactions to stable storage.
1512  * If foid is 0 push out all transactions, otherwise push only those
1513  * for that object or might reference that object.
1514  *
1515  * itxs are committed in batches. In a heavily stressed zil there will be
1516  * a commit writer thread who is writing out a bunch of itxs to the log
1517  * for a set of committing threads (cthreads) in the same batch as the writer.
1518  * Those cthreads are all waiting on the same cv for that batch.
1519  *
1520  * There will also be a different and growing batch of threads that are
1521  * waiting to commit (qthreads). When the committing batch completes
1522  * a transition occurs such that the cthreads exit and the qthreads become
1523  * cthreads. One of the new cthreads becomes the writer thread for the
1524  * batch. Any new threads arriving become new qthreads.
1525  *
1526  * Only 2 condition variables are needed and there's no transition
1527  * between the two cvs needed. They just flip-flop between qthreads
1528  * and cthreads.
1529  *
1530  * Using this scheme we can efficiently wakeup up only those threads
1531  * that have been committed.
1532  */
1533 void
1534 zil_commit(zilog_t *zilog, uint64_t foid)
1535 {
1536 	uint64_t mybatch;
1537 
1538 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1539 		return;
1540 
1541 	/* move the async itxs for the foid to the sync queues */
1542 	zil_async_to_sync(zilog, foid);
1543 
1544 	mutex_enter(&zilog->zl_lock);
1545 	mybatch = zilog->zl_next_batch;
1546 	while (zilog->zl_writer) {
1547 		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1548 		if (mybatch <= zilog->zl_com_batch) {
1549 			mutex_exit(&zilog->zl_lock);
1550 			return;
1551 		}
1552 	}
1553 
1554 	zilog->zl_next_batch++;
1555 	zilog->zl_writer = B_TRUE;
1556 	zil_commit_writer(zilog);
1557 	zilog->zl_com_batch = mybatch;
1558 	zilog->zl_writer = B_FALSE;
1559 	mutex_exit(&zilog->zl_lock);
1560 
1561 	/* wake up one thread to become the next writer */
1562 	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1563 
1564 	/* wake up all threads waiting for this batch to be committed */
1565 	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1566 }
1567 
1568 /*
1569  * Called in syncing context to free committed log blocks and update log header.
1570  */
1571 void
1572 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1573 {
1574 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1575 	uint64_t txg = dmu_tx_get_txg(tx);
1576 	spa_t *spa = zilog->zl_spa;
1577 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1578 	lwb_t *lwb;
1579 
1580 	/*
1581 	 * We don't zero out zl_destroy_txg, so make sure we don't try
1582 	 * to destroy it twice.
1583 	 */
1584 	if (spa_sync_pass(spa) != 1)
1585 		return;
1586 
1587 	mutex_enter(&zilog->zl_lock);
1588 
1589 	ASSERT(zilog->zl_stop_sync == 0);
1590 
1591 	if (*replayed_seq != 0) {
1592 		ASSERT(zh->zh_replay_seq < *replayed_seq);
1593 		zh->zh_replay_seq = *replayed_seq;
1594 		*replayed_seq = 0;
1595 	}
1596 
1597 	if (zilog->zl_destroy_txg == txg) {
1598 		blkptr_t blk = zh->zh_log;
1599 
1600 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1601 
1602 		bzero(zh, sizeof (zil_header_t));
1603 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1604 
1605 		if (zilog->zl_keep_first) {
1606 			/*
1607 			 * If this block was part of log chain that couldn't
1608 			 * be claimed because a device was missing during
1609 			 * zil_claim(), but that device later returns,
1610 			 * then this block could erroneously appear valid.
1611 			 * To guard against this, assign a new GUID to the new
1612 			 * log chain so it doesn't matter what blk points to.
1613 			 */
1614 			zil_init_log_chain(zilog, &blk);
1615 			zh->zh_log = blk;
1616 		}
1617 	}
1618 
1619 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1620 		zh->zh_log = lwb->lwb_blk;
1621 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1622 			break;
1623 		list_remove(&zilog->zl_lwb_list, lwb);
1624 		zio_free_zil(spa, txg, &lwb->lwb_blk);
1625 		kmem_cache_free(zil_lwb_cache, lwb);
1626 
1627 		/*
1628 		 * If we don't have anything left in the lwb list then
1629 		 * we've had an allocation failure and we need to zero
1630 		 * out the zil_header blkptr so that we don't end
1631 		 * up freeing the same block twice.
1632 		 */
1633 		if (list_head(&zilog->zl_lwb_list) == NULL)
1634 			BP_ZERO(&zh->zh_log);
1635 	}
1636 	mutex_exit(&zilog->zl_lock);
1637 }
1638 
1639 void
1640 zil_init(void)
1641 {
1642 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1643 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1644 }
1645 
1646 void
1647 zil_fini(void)
1648 {
1649 	kmem_cache_destroy(zil_lwb_cache);
1650 }
1651 
1652 void
1653 zil_set_sync(zilog_t *zilog, uint64_t sync)
1654 {
1655 	zilog->zl_sync = sync;
1656 }
1657 
1658 void
1659 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1660 {
1661 	zilog->zl_logbias = logbias;
1662 }
1663 
1664 zilog_t *
1665 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1666 {
1667 	zilog_t *zilog;
1668 
1669 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1670 
1671 	zilog->zl_header = zh_phys;
1672 	zilog->zl_os = os;
1673 	zilog->zl_spa = dmu_objset_spa(os);
1674 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1675 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1676 	zilog->zl_logbias = dmu_objset_logbias(os);
1677 	zilog->zl_sync = dmu_objset_syncprop(os);
1678 	zilog->zl_next_batch = 1;
1679 
1680 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1681 
1682 	for (int i = 0; i < TXG_SIZE; i++) {
1683 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1684 		    MUTEX_DEFAULT, NULL);
1685 	}
1686 
1687 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1688 	    offsetof(lwb_t, lwb_node));
1689 
1690 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1691 	    offsetof(itx_t, itx_node));
1692 
1693 	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1694 
1695 	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1696 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1697 
1698 	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1699 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1700 	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1701 	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1702 
1703 	return (zilog);
1704 }
1705 
1706 void
1707 zil_free(zilog_t *zilog)
1708 {
1709 	zilog->zl_stop_sync = 1;
1710 
1711 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1712 	list_destroy(&zilog->zl_lwb_list);
1713 
1714 	avl_destroy(&zilog->zl_vdev_tree);
1715 	mutex_destroy(&zilog->zl_vdev_lock);
1716 
1717 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1718 	list_destroy(&zilog->zl_itx_commit_list);
1719 
1720 	for (int i = 0; i < TXG_SIZE; i++) {
1721 		/*
1722 		 * It's possible for an itx to be generated that doesn't dirty
1723 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1724 		 * callback to remove the entry. We remove those here.
1725 		 *
1726 		 * Also free up the ziltest itxs.
1727 		 */
1728 		if (zilog->zl_itxg[i].itxg_itxs)
1729 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1730 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1731 	}
1732 
1733 	mutex_destroy(&zilog->zl_lock);
1734 
1735 	cv_destroy(&zilog->zl_cv_writer);
1736 	cv_destroy(&zilog->zl_cv_suspend);
1737 	cv_destroy(&zilog->zl_cv_batch[0]);
1738 	cv_destroy(&zilog->zl_cv_batch[1]);
1739 
1740 	kmem_free(zilog, sizeof (zilog_t));
1741 }
1742 
1743 /*
1744  * Open an intent log.
1745  */
1746 zilog_t *
1747 zil_open(objset_t *os, zil_get_data_t *get_data)
1748 {
1749 	zilog_t *zilog = dmu_objset_zil(os);
1750 
1751 	ASSERT(zilog->zl_clean_taskq == NULL);
1752 	ASSERT(zilog->zl_get_data == NULL);
1753 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1754 
1755 	zilog->zl_get_data = get_data;
1756 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1757 	    2, 2, TASKQ_PREPOPULATE);
1758 
1759 	return (zilog);
1760 }
1761 
1762 /*
1763  * Close an intent log.
1764  */
1765 void
1766 zil_close(zilog_t *zilog)
1767 {
1768 	lwb_t *lwb;
1769 	uint64_t txg = 0;
1770 
1771 	zil_commit(zilog, 0); /* commit all itx */
1772 
1773 	/*
1774 	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1775 	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1776 	 * callbacks have occurred that may clean the zil.  Only then can we
1777 	 * destroy the zl_clean_taskq.
1778 	 */
1779 	mutex_enter(&zilog->zl_lock);
1780 	lwb = list_tail(&zilog->zl_lwb_list);
1781 	if (lwb != NULL)
1782 		txg = lwb->lwb_max_txg;
1783 	mutex_exit(&zilog->zl_lock);
1784 	if (txg)
1785 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1786 	ASSERT(!zilog_is_dirty(zilog));
1787 
1788 	taskq_destroy(zilog->zl_clean_taskq);
1789 	zilog->zl_clean_taskq = NULL;
1790 	zilog->zl_get_data = NULL;
1791 
1792 	/*
1793 	 * We should have only one LWB left on the list; remove it now.
1794 	 */
1795 	mutex_enter(&zilog->zl_lock);
1796 	lwb = list_head(&zilog->zl_lwb_list);
1797 	if (lwb != NULL) {
1798 		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1799 		list_remove(&zilog->zl_lwb_list, lwb);
1800 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1801 		kmem_cache_free(zil_lwb_cache, lwb);
1802 	}
1803 	mutex_exit(&zilog->zl_lock);
1804 }
1805 
1806 /*
1807  * Suspend an intent log.  While in suspended mode, we still honor
1808  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1809  * We suspend the log briefly when taking a snapshot so that the snapshot
1810  * contains all the data it's supposed to, and has an empty intent log.
1811  */
1812 int
1813 zil_suspend(zilog_t *zilog)
1814 {
1815 	const zil_header_t *zh = zilog->zl_header;
1816 
1817 	mutex_enter(&zilog->zl_lock);
1818 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1819 		mutex_exit(&zilog->zl_lock);
1820 		return (EBUSY);
1821 	}
1822 	if (zilog->zl_suspend++ != 0) {
1823 		/*
1824 		 * Someone else already began a suspend.
1825 		 * Just wait for them to finish.
1826 		 */
1827 		while (zilog->zl_suspending)
1828 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1829 		mutex_exit(&zilog->zl_lock);
1830 		return (0);
1831 	}
1832 	zilog->zl_suspending = B_TRUE;
1833 	mutex_exit(&zilog->zl_lock);
1834 
1835 	zil_commit(zilog, 0);
1836 
1837 	zil_destroy(zilog, B_FALSE);
1838 
1839 	mutex_enter(&zilog->zl_lock);
1840 	zilog->zl_suspending = B_FALSE;
1841 	cv_broadcast(&zilog->zl_cv_suspend);
1842 	mutex_exit(&zilog->zl_lock);
1843 
1844 	return (0);
1845 }
1846 
1847 void
1848 zil_resume(zilog_t *zilog)
1849 {
1850 	mutex_enter(&zilog->zl_lock);
1851 	ASSERT(zilog->zl_suspend != 0);
1852 	zilog->zl_suspend--;
1853 	mutex_exit(&zilog->zl_lock);
1854 }
1855 
1856 typedef struct zil_replay_arg {
1857 	zil_replay_func_t **zr_replay;
1858 	void		*zr_arg;
1859 	boolean_t	zr_byteswap;
1860 	char		*zr_lr;
1861 } zil_replay_arg_t;
1862 
1863 static int
1864 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1865 {
1866 	char name[MAXNAMELEN];
1867 
1868 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1869 
1870 	dmu_objset_name(zilog->zl_os, name);
1871 
1872 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1873 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1874 	    (u_longlong_t)lr->lrc_seq,
1875 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1876 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1877 
1878 	return (error);
1879 }
1880 
1881 static int
1882 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1883 {
1884 	zil_replay_arg_t *zr = zra;
1885 	const zil_header_t *zh = zilog->zl_header;
1886 	uint64_t reclen = lr->lrc_reclen;
1887 	uint64_t txtype = lr->lrc_txtype;
1888 	int error = 0;
1889 
1890 	zilog->zl_replaying_seq = lr->lrc_seq;
1891 
1892 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1893 		return (0);
1894 
1895 	if (lr->lrc_txg < claim_txg)		/* already committed */
1896 		return (0);
1897 
1898 	/* Strip case-insensitive bit, still present in log record */
1899 	txtype &= ~TX_CI;
1900 
1901 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
1902 		return (zil_replay_error(zilog, lr, EINVAL));
1903 
1904 	/*
1905 	 * If this record type can be logged out of order, the object
1906 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
1907 	 */
1908 	if (TX_OOO(txtype)) {
1909 		error = dmu_object_info(zilog->zl_os,
1910 		    ((lr_ooo_t *)lr)->lr_foid, NULL);
1911 		if (error == ENOENT || error == EEXIST)
1912 			return (0);
1913 	}
1914 
1915 	/*
1916 	 * Make a copy of the data so we can revise and extend it.
1917 	 */
1918 	bcopy(lr, zr->zr_lr, reclen);
1919 
1920 	/*
1921 	 * If this is a TX_WRITE with a blkptr, suck in the data.
1922 	 */
1923 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
1924 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
1925 		    zr->zr_lr + reclen);
1926 		if (error)
1927 			return (zil_replay_error(zilog, lr, error));
1928 	}
1929 
1930 	/*
1931 	 * The log block containing this lr may have been byteswapped
1932 	 * so that we can easily examine common fields like lrc_txtype.
1933 	 * However, the log is a mix of different record types, and only the
1934 	 * replay vectors know how to byteswap their records.  Therefore, if
1935 	 * the lr was byteswapped, undo it before invoking the replay vector.
1936 	 */
1937 	if (zr->zr_byteswap)
1938 		byteswap_uint64_array(zr->zr_lr, reclen);
1939 
1940 	/*
1941 	 * We must now do two things atomically: replay this log record,
1942 	 * and update the log header sequence number to reflect the fact that
1943 	 * we did so. At the end of each replay function the sequence number
1944 	 * is updated if we are in replay mode.
1945 	 */
1946 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
1947 	if (error) {
1948 		/*
1949 		 * The DMU's dnode layer doesn't see removes until the txg
1950 		 * commits, so a subsequent claim can spuriously fail with
1951 		 * EEXIST. So if we receive any error we try syncing out
1952 		 * any removes then retry the transaction.  Note that we
1953 		 * specify B_FALSE for byteswap now, so we don't do it twice.
1954 		 */
1955 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
1956 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
1957 		if (error)
1958 			return (zil_replay_error(zilog, lr, error));
1959 	}
1960 	return (0);
1961 }
1962 
1963 /* ARGSUSED */
1964 static int
1965 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1966 {
1967 	zilog->zl_replay_blks++;
1968 
1969 	return (0);
1970 }
1971 
1972 /*
1973  * If this dataset has a non-empty intent log, replay it and destroy it.
1974  */
1975 void
1976 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
1977 {
1978 	zilog_t *zilog = dmu_objset_zil(os);
1979 	const zil_header_t *zh = zilog->zl_header;
1980 	zil_replay_arg_t zr;
1981 
1982 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
1983 		zil_destroy(zilog, B_TRUE);
1984 		return;
1985 	}
1986 
1987 	zr.zr_replay = replay_func;
1988 	zr.zr_arg = arg;
1989 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
1990 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
1991 
1992 	/*
1993 	 * Wait for in-progress removes to sync before starting replay.
1994 	 */
1995 	txg_wait_synced(zilog->zl_dmu_pool, 0);
1996 
1997 	zilog->zl_replay = B_TRUE;
1998 	zilog->zl_replay_time = ddi_get_lbolt();
1999 	ASSERT(zilog->zl_replay_blks == 0);
2000 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2001 	    zh->zh_claim_txg);
2002 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2003 
2004 	zil_destroy(zilog, B_FALSE);
2005 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2006 	zilog->zl_replay = B_FALSE;
2007 }
2008 
2009 boolean_t
2010 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2011 {
2012 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2013 		return (B_TRUE);
2014 
2015 	if (zilog->zl_replay) {
2016 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2017 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2018 		    zilog->zl_replaying_seq;
2019 		return (B_TRUE);
2020 	}
2021 
2022 	return (B_FALSE);
2023 }
2024 
2025 /* ARGSUSED */
2026 int
2027 zil_vdev_offline(const char *osname, void *arg)
2028 {
2029 	objset_t *os;
2030 	zilog_t *zilog;
2031 	int error;
2032 
2033 	error = dmu_objset_hold(osname, FTAG, &os);
2034 	if (error)
2035 		return (error);
2036 
2037 	zilog = dmu_objset_zil(os);
2038 	if (zil_suspend(zilog) != 0)
2039 		error = EEXIST;
2040 	else
2041 		zil_resume(zilog);
2042 	dmu_objset_rele(os, FTAG);
2043 	return (error);
2044 }
2045