xref: /titanic_41/usr/src/uts/common/fs/zfs/zil.c (revision b01c3b58f7eb7fb570f606f96f130fb9b2018b49)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev.h>
39 #include <sys/dmu_tx.h>
40 
41 /*
42  * The zfs intent log (ZIL) saves transaction records of system calls
43  * that change the file system in memory with enough information
44  * to be able to replay them. These are stored in memory until
45  * either the DMU transaction group (txg) commits them to the stable pool
46  * and they can be discarded, or they are flushed to the stable log
47  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
48  * requirement. In the event of a panic or power fail then those log
49  * records (transactions) are replayed.
50  *
51  * There is one ZIL per file system. Its on-disk (pool) format consists
52  * of 3 parts:
53  *
54  * 	- ZIL header
55  * 	- ZIL blocks
56  * 	- ZIL records
57  *
58  * A log record holds a system call transaction. Log blocks can
59  * hold many log records and the blocks are chained together.
60  * Each ZIL block contains a block pointer (blkptr_t) to the next
61  * ZIL block in the chain. The ZIL header points to the first
62  * block in the chain. Note there is not a fixed place in the pool
63  * to hold blocks. They are dynamically allocated and freed as
64  * needed from the blocks available. Figure X shows the ZIL structure:
65  */
66 
67 /*
68  * This global ZIL switch affects all pools
69  */
70 int zil_disable = 0;	/* disable intent logging */
71 
72 /*
73  * Tunable parameter for debugging or performance analysis.  Setting
74  * zfs_nocacheflush will cause corruption on power loss if a volatile
75  * out-of-order write cache is enabled.
76  */
77 boolean_t zfs_nocacheflush = B_FALSE;
78 
79 static kmem_cache_t *zil_lwb_cache;
80 
81 static int
82 zil_dva_compare(const void *x1, const void *x2)
83 {
84 	const dva_t *dva1 = x1;
85 	const dva_t *dva2 = x2;
86 
87 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
88 		return (-1);
89 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
90 		return (1);
91 
92 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
93 		return (-1);
94 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
95 		return (1);
96 
97 	return (0);
98 }
99 
100 static void
101 zil_dva_tree_init(avl_tree_t *t)
102 {
103 	avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t),
104 	    offsetof(zil_dva_node_t, zn_node));
105 }
106 
107 static void
108 zil_dva_tree_fini(avl_tree_t *t)
109 {
110 	zil_dva_node_t *zn;
111 	void *cookie = NULL;
112 
113 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
114 		kmem_free(zn, sizeof (zil_dva_node_t));
115 
116 	avl_destroy(t);
117 }
118 
119 static int
120 zil_dva_tree_add(avl_tree_t *t, dva_t *dva)
121 {
122 	zil_dva_node_t *zn;
123 	avl_index_t where;
124 
125 	if (avl_find(t, dva, &where) != NULL)
126 		return (EEXIST);
127 
128 	zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP);
129 	zn->zn_dva = *dva;
130 	avl_insert(t, zn, where);
131 
132 	return (0);
133 }
134 
135 static zil_header_t *
136 zil_header_in_syncing_context(zilog_t *zilog)
137 {
138 	return ((zil_header_t *)zilog->zl_header);
139 }
140 
141 static void
142 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
143 {
144 	zio_cksum_t *zc = &bp->blk_cksum;
145 
146 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
147 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
148 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
149 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
150 }
151 
152 /*
153  * Read a log block, make sure it's valid, and byteswap it if necessary.
154  */
155 static int
156 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp)
157 {
158 	blkptr_t blk = *bp;
159 	zbookmark_t zb;
160 	uint32_t aflags = ARC_WAIT;
161 	int error;
162 
163 	zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET];
164 	zb.zb_object = 0;
165 	zb.zb_level = -1;
166 	zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ];
167 
168 	*abufpp = NULL;
169 
170 	error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array,
171 	    arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL |
172 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb);
173 
174 	if (error == 0) {
175 		char *data = (*abufpp)->b_data;
176 		uint64_t blksz = BP_GET_LSIZE(bp);
177 		zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1;
178 		zio_cksum_t cksum = bp->blk_cksum;
179 
180 		/*
181 		 * Sequence numbers should be... sequential.  The checksum
182 		 * verifier for the next block should be bp's checksum plus 1.
183 		 */
184 		cksum.zc_word[ZIL_ZC_SEQ]++;
185 
186 		if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum)))
187 			error = ESTALE;
188 		else if (BP_IS_HOLE(&ztp->zit_next_blk))
189 			error = ENOENT;
190 		else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))
191 			error = EOVERFLOW;
192 
193 		if (error) {
194 			VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1);
195 			*abufpp = NULL;
196 		}
197 	}
198 
199 	dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid);
200 
201 	return (error);
202 }
203 
204 /*
205  * Parse the intent log, and call parse_func for each valid record within.
206  * Return the highest sequence number.
207  */
208 uint64_t
209 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
210     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
211 {
212 	const zil_header_t *zh = zilog->zl_header;
213 	uint64_t claim_seq = zh->zh_claim_seq;
214 	uint64_t seq = 0;
215 	uint64_t max_seq = 0;
216 	blkptr_t blk = zh->zh_log;
217 	arc_buf_t *abuf;
218 	char *lrbuf, *lrp;
219 	zil_trailer_t *ztp;
220 	int reclen, error;
221 
222 	if (BP_IS_HOLE(&blk))
223 		return (max_seq);
224 
225 	/*
226 	 * Starting at the block pointed to by zh_log we read the log chain.
227 	 * For each block in the chain we strongly check that block to
228 	 * ensure its validity.  We stop when an invalid block is found.
229 	 * For each block pointer in the chain we call parse_blk_func().
230 	 * For each record in each valid block we call parse_lr_func().
231 	 * If the log has been claimed, stop if we encounter a sequence
232 	 * number greater than the highest claimed sequence number.
233 	 */
234 	zil_dva_tree_init(&zilog->zl_dva_tree);
235 	for (;;) {
236 		seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
237 
238 		if (claim_seq != 0 && seq > claim_seq)
239 			break;
240 
241 		ASSERT(max_seq < seq);
242 		max_seq = seq;
243 
244 		error = zil_read_log_block(zilog, &blk, &abuf);
245 
246 		if (parse_blk_func != NULL)
247 			parse_blk_func(zilog, &blk, arg, txg);
248 
249 		if (error)
250 			break;
251 
252 		lrbuf = abuf->b_data;
253 		ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1;
254 		blk = ztp->zit_next_blk;
255 
256 		if (parse_lr_func == NULL) {
257 			VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
258 			continue;
259 		}
260 
261 		for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) {
262 			lr_t *lr = (lr_t *)lrp;
263 			reclen = lr->lrc_reclen;
264 			ASSERT3U(reclen, >=, sizeof (lr_t));
265 			parse_lr_func(zilog, lr, arg, txg);
266 		}
267 		VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
268 	}
269 	zil_dva_tree_fini(&zilog->zl_dva_tree);
270 
271 	return (max_seq);
272 }
273 
274 /* ARGSUSED */
275 static void
276 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
277 {
278 	spa_t *spa = zilog->zl_spa;
279 	int err;
280 
281 	/*
282 	 * Claim log block if not already committed and not already claimed.
283 	 */
284 	if (bp->blk_birth >= first_txg &&
285 	    zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) {
286 		err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL));
287 		ASSERT(err == 0);
288 	}
289 }
290 
291 static void
292 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
293 {
294 	if (lrc->lrc_txtype == TX_WRITE) {
295 		lr_write_t *lr = (lr_write_t *)lrc;
296 		zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg);
297 	}
298 }
299 
300 /* ARGSUSED */
301 static void
302 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
303 {
304 	zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx));
305 }
306 
307 static void
308 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
309 {
310 	/*
311 	 * If we previously claimed it, we need to free it.
312 	 */
313 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) {
314 		lr_write_t *lr = (lr_write_t *)lrc;
315 		blkptr_t *bp = &lr->lr_blkptr;
316 		if (bp->blk_birth >= claim_txg &&
317 		    !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) {
318 			(void) arc_free(NULL, zilog->zl_spa,
319 			    dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT);
320 		}
321 	}
322 }
323 
324 /*
325  * Create an on-disk intent log.
326  */
327 static void
328 zil_create(zilog_t *zilog)
329 {
330 	const zil_header_t *zh = zilog->zl_header;
331 	lwb_t *lwb;
332 	uint64_t txg = 0;
333 	dmu_tx_t *tx = NULL;
334 	blkptr_t blk;
335 	int error = 0;
336 
337 	/*
338 	 * Wait for any previous destroy to complete.
339 	 */
340 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
341 
342 	ASSERT(zh->zh_claim_txg == 0);
343 	ASSERT(zh->zh_replay_seq == 0);
344 
345 	blk = zh->zh_log;
346 
347 	/*
348 	 * If we don't already have an initial log block, allocate one now.
349 	 */
350 	if (BP_IS_HOLE(&blk)) {
351 		tx = dmu_tx_create(zilog->zl_os);
352 		(void) dmu_tx_assign(tx, TXG_WAIT);
353 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
354 		txg = dmu_tx_get_txg(tx);
355 
356 		error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk,
357 		    NULL, txg);
358 
359 		if (error == 0)
360 			zil_init_log_chain(zilog, &blk);
361 	}
362 
363 	/*
364 	 * Allocate a log write buffer (lwb) for the first log block.
365 	 */
366 	if (error == 0) {
367 		lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
368 		lwb->lwb_zilog = zilog;
369 		lwb->lwb_blk = blk;
370 		lwb->lwb_nused = 0;
371 		lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk);
372 		lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz);
373 		lwb->lwb_max_txg = txg;
374 		lwb->lwb_zio = NULL;
375 
376 		mutex_enter(&zilog->zl_lock);
377 		list_insert_tail(&zilog->zl_lwb_list, lwb);
378 		mutex_exit(&zilog->zl_lock);
379 	}
380 
381 	/*
382 	 * If we just allocated the first log block, commit our transaction
383 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
384 	 * (zh is part of the MOS, so we cannot modify it in open context.)
385 	 */
386 	if (tx != NULL) {
387 		dmu_tx_commit(tx);
388 		txg_wait_synced(zilog->zl_dmu_pool, txg);
389 	}
390 
391 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
392 }
393 
394 /*
395  * In one tx, free all log blocks and clear the log header.
396  * If keep_first is set, then we're replaying a log with no content.
397  * We want to keep the first block, however, so that the first
398  * synchronous transaction doesn't require a txg_wait_synced()
399  * in zil_create().  We don't need to txg_wait_synced() here either
400  * when keep_first is set, because both zil_create() and zil_destroy()
401  * will wait for any in-progress destroys to complete.
402  */
403 void
404 zil_destroy(zilog_t *zilog, boolean_t keep_first)
405 {
406 	const zil_header_t *zh = zilog->zl_header;
407 	lwb_t *lwb;
408 	dmu_tx_t *tx;
409 	uint64_t txg;
410 
411 	/*
412 	 * Wait for any previous destroy to complete.
413 	 */
414 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
415 
416 	if (BP_IS_HOLE(&zh->zh_log))
417 		return;
418 
419 	tx = dmu_tx_create(zilog->zl_os);
420 	(void) dmu_tx_assign(tx, TXG_WAIT);
421 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
422 	txg = dmu_tx_get_txg(tx);
423 
424 	mutex_enter(&zilog->zl_lock);
425 
426 	/*
427 	 * It is possible for the ZIL to get the previously mounted zilog
428 	 * structure of the same dataset if quickly remounted and the dbuf
429 	 * eviction has not completed. In this case we can see a non
430 	 * empty lwb list and keep_first will be set. We fix this by
431 	 * clearing the keep_first. This will be slower but it's very rare.
432 	 */
433 	if (!list_is_empty(&zilog->zl_lwb_list) && keep_first)
434 		keep_first = B_FALSE;
435 
436 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
437 	zilog->zl_destroy_txg = txg;
438 	zilog->zl_keep_first = keep_first;
439 
440 	if (!list_is_empty(&zilog->zl_lwb_list)) {
441 		ASSERT(zh->zh_claim_txg == 0);
442 		ASSERT(!keep_first);
443 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
444 			list_remove(&zilog->zl_lwb_list, lwb);
445 			if (lwb->lwb_buf != NULL)
446 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
447 			zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg);
448 			kmem_cache_free(zil_lwb_cache, lwb);
449 		}
450 	} else {
451 		if (!keep_first) {
452 			(void) zil_parse(zilog, zil_free_log_block,
453 			    zil_free_log_record, tx, zh->zh_claim_txg);
454 		}
455 	}
456 	mutex_exit(&zilog->zl_lock);
457 
458 	dmu_tx_commit(tx);
459 }
460 
461 /*
462  * zil_rollback_destroy() is only called by the rollback code.
463  * We already have a syncing tx. Rollback has exclusive access to the
464  * dataset, so we don't have to worry about concurrent zil access.
465  * The actual freeing of any log blocks occurs in zil_sync() later in
466  * this txg syncing phase.
467  */
468 void
469 zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx)
470 {
471 	const zil_header_t *zh = zilog->zl_header;
472 	uint64_t txg;
473 
474 	if (BP_IS_HOLE(&zh->zh_log))
475 		return;
476 
477 	txg = dmu_tx_get_txg(tx);
478 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
479 	zilog->zl_destroy_txg = txg;
480 	zilog->zl_keep_first = B_FALSE;
481 
482 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
483 	(void) zil_parse(zilog, zil_free_log_block, zil_free_log_record,
484 	    tx, zh->zh_claim_txg);
485 }
486 
487 int
488 zil_claim(char *osname, void *txarg)
489 {
490 	dmu_tx_t *tx = txarg;
491 	uint64_t first_txg = dmu_tx_get_txg(tx);
492 	zilog_t *zilog;
493 	zil_header_t *zh;
494 	objset_t *os;
495 	int error;
496 
497 	error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os);
498 	if (error) {
499 		cmn_err(CE_WARN, "can't process intent log for %s", osname);
500 		return (0);
501 	}
502 
503 	zilog = dmu_objset_zil(os);
504 	zh = zil_header_in_syncing_context(zilog);
505 
506 	/*
507 	 * Claim all log blocks if we haven't already done so, and remember
508 	 * the highest claimed sequence number.  This ensures that if we can
509 	 * read only part of the log now (e.g. due to a missing device),
510 	 * but we can read the entire log later, we will not try to replay
511 	 * or destroy beyond the last block we successfully claimed.
512 	 */
513 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
514 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
515 		zh->zh_claim_txg = first_txg;
516 		zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block,
517 		    zil_claim_log_record, tx, first_txg);
518 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
519 	}
520 
521 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
522 	dmu_objset_close(os);
523 	return (0);
524 }
525 
526 static int
527 zil_vdev_compare(const void *x1, const void *x2)
528 {
529 	const uint64_t *v1 = x1;
530 	const uint64_t *v2 = x2;
531 
532 	if (v1 < v2)
533 		return (-1);
534 	if (v1 > v2)
535 		return (1);
536 
537 	return (0);
538 }
539 
540 void
541 zil_add_block(zilog_t *zilog, blkptr_t *bp)
542 {
543 	avl_tree_t *t = &zilog->zl_vdev_tree;
544 	avl_index_t where;
545 	zil_vdev_node_t *zv, zvsearch;
546 	int ndvas = BP_GET_NDVAS(bp);
547 	int i;
548 
549 	if (zfs_nocacheflush)
550 		return;
551 
552 	ASSERT(zilog->zl_writer);
553 
554 	/*
555 	 * Even though we're zl_writer, we still need a lock because the
556 	 * zl_get_data() callbacks may have dmu_sync() done callbacks
557 	 * that will run concurrently.
558 	 */
559 	mutex_enter(&zilog->zl_vdev_lock);
560 	for (i = 0; i < ndvas; i++) {
561 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
562 		if (avl_find(t, &zvsearch, &where) == NULL) {
563 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
564 			zv->zv_vdev = zvsearch.zv_vdev;
565 			avl_insert(t, zv, where);
566 		}
567 	}
568 	mutex_exit(&zilog->zl_vdev_lock);
569 }
570 
571 void
572 zil_flush_vdevs(zilog_t *zilog)
573 {
574 	spa_t *spa = zilog->zl_spa;
575 	avl_tree_t *t = &zilog->zl_vdev_tree;
576 	void *cookie = NULL;
577 	zil_vdev_node_t *zv;
578 	zio_t *zio;
579 
580 	ASSERT(zilog->zl_writer);
581 
582 	/*
583 	 * We don't need zl_vdev_lock here because we're the zl_writer,
584 	 * and all zl_get_data() callbacks are done.
585 	 */
586 	if (avl_numnodes(t) == 0)
587 		return;
588 
589 	spa_config_enter(spa, RW_READER, FTAG);
590 
591 	zio = zio_root(spa, NULL, NULL,
592 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
593 
594 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
595 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
596 		if (vd != NULL)
597 			zio_flush(zio, vd);
598 		kmem_free(zv, sizeof (*zv));
599 	}
600 
601 	/*
602 	 * Wait for all the flushes to complete.  Not all devices actually
603 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
604 	 */
605 	(void) zio_wait(zio);
606 
607 	spa_config_exit(spa, FTAG);
608 }
609 
610 /*
611  * Function called when a log block write completes
612  */
613 static void
614 zil_lwb_write_done(zio_t *zio)
615 {
616 	lwb_t *lwb = zio->io_private;
617 	zilog_t *zilog = lwb->lwb_zilog;
618 
619 	/*
620 	 * Now that we've written this log block, we have a stable pointer
621 	 * to the next block in the chain, so it's OK to let the txg in
622 	 * which we allocated the next block sync.
623 	 */
624 	txg_rele_to_sync(&lwb->lwb_txgh);
625 
626 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
627 	mutex_enter(&zilog->zl_lock);
628 	lwb->lwb_buf = NULL;
629 	if (zio->io_error)
630 		zilog->zl_log_error = B_TRUE;
631 	mutex_exit(&zilog->zl_lock);
632 }
633 
634 /*
635  * Initialize the io for a log block.
636  *
637  * Note, we should not initialize the IO until we are about
638  * to use it, since zio_rewrite() does a spa_config_enter().
639  */
640 static void
641 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
642 {
643 	zbookmark_t zb;
644 
645 	zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET];
646 	zb.zb_object = 0;
647 	zb.zb_level = -1;
648 	zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
649 
650 	if (zilog->zl_root_zio == NULL) {
651 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
652 		    ZIO_FLAG_CANFAIL);
653 	}
654 	if (lwb->lwb_zio == NULL) {
655 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
656 		    ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf,
657 		    lwb->lwb_sz, zil_lwb_write_done, lwb,
658 		    ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb);
659 	}
660 }
661 
662 /*
663  * Start a log block write and advance to the next log block.
664  * Calls are serialized.
665  */
666 static lwb_t *
667 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
668 {
669 	lwb_t *nlwb;
670 	zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1;
671 	spa_t *spa = zilog->zl_spa;
672 	blkptr_t *bp = &ztp->zit_next_blk;
673 	uint64_t txg;
674 	uint64_t zil_blksz;
675 	int error;
676 
677 	ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb));
678 
679 	/*
680 	 * Allocate the next block and save its address in this block
681 	 * before writing it in order to establish the log chain.
682 	 * Note that if the allocation of nlwb synced before we wrote
683 	 * the block that points at it (lwb), we'd leak it if we crashed.
684 	 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done().
685 	 */
686 	txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh);
687 	txg_rele_to_quiesce(&lwb->lwb_txgh);
688 
689 	/*
690 	 * Pick a ZIL blocksize. We request a size that is the
691 	 * maximum of the previous used size, the current used size and
692 	 * the amount waiting in the queue.
693 	 */
694 	zil_blksz = MAX(zilog->zl_prev_used,
695 	    zilog->zl_cur_used + sizeof (*ztp));
696 	zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp));
697 	zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t);
698 	if (zil_blksz > ZIL_MAX_BLKSZ)
699 		zil_blksz = ZIL_MAX_BLKSZ;
700 
701 	BP_ZERO(bp);
702 	/* pass the old blkptr in order to spread log blocks across devs */
703 	error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg);
704 	if (error) {
705 		dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg);
706 
707 		/*
708 		 * We dirty the dataset to ensure that zil_sync() will
709 		 * be called to remove this lwb from our zl_lwb_list.
710 		 * Failing to do so, may leave an lwb with a NULL lwb_buf
711 		 * hanging around on the zl_lwb_list.
712 		 */
713 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
714 		dmu_tx_commit(tx);
715 
716 		/*
717 		 * Since we've just experienced an allocation failure so we
718 		 * terminate the current lwb and send it on its way.
719 		 */
720 		ztp->zit_pad = 0;
721 		ztp->zit_nused = lwb->lwb_nused;
722 		ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
723 		zio_nowait(lwb->lwb_zio);
724 
725 		/*
726 		 * By returning NULL the caller will call tx_wait_synced()
727 		 */
728 		return (NULL);
729 	}
730 
731 	ASSERT3U(bp->blk_birth, ==, txg);
732 	ztp->zit_pad = 0;
733 	ztp->zit_nused = lwb->lwb_nused;
734 	ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
735 	bp->blk_cksum = lwb->lwb_blk.blk_cksum;
736 	bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
737 
738 	/*
739 	 * Allocate a new log write buffer (lwb).
740 	 */
741 	nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
742 
743 	nlwb->lwb_zilog = zilog;
744 	nlwb->lwb_blk = *bp;
745 	nlwb->lwb_nused = 0;
746 	nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk);
747 	nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz);
748 	nlwb->lwb_max_txg = txg;
749 	nlwb->lwb_zio = NULL;
750 
751 	/*
752 	 * Put new lwb at the end of the log chain
753 	 */
754 	mutex_enter(&zilog->zl_lock);
755 	list_insert_tail(&zilog->zl_lwb_list, nlwb);
756 	mutex_exit(&zilog->zl_lock);
757 
758 	/* Record the block for later vdev flushing */
759 	zil_add_block(zilog, &lwb->lwb_blk);
760 
761 	/*
762 	 * kick off the write for the old log block
763 	 */
764 	dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg);
765 	ASSERT(lwb->lwb_zio);
766 	zio_nowait(lwb->lwb_zio);
767 
768 	return (nlwb);
769 }
770 
771 static lwb_t *
772 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
773 {
774 	lr_t *lrc = &itx->itx_lr; /* common log record */
775 	lr_write_t *lr = (lr_write_t *)lrc;
776 	uint64_t txg = lrc->lrc_txg;
777 	uint64_t reclen = lrc->lrc_reclen;
778 	uint64_t dlen;
779 
780 	if (lwb == NULL)
781 		return (NULL);
782 	ASSERT(lwb->lwb_buf != NULL);
783 
784 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
785 		dlen = P2ROUNDUP_TYPED(
786 		    lr->lr_length, sizeof (uint64_t), uint64_t);
787 	else
788 		dlen = 0;
789 
790 	zilog->zl_cur_used += (reclen + dlen);
791 
792 	zil_lwb_write_init(zilog, lwb);
793 
794 	/*
795 	 * If this record won't fit in the current log block, start a new one.
796 	 */
797 	if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
798 		lwb = zil_lwb_write_start(zilog, lwb);
799 		if (lwb == NULL)
800 			return (NULL);
801 		zil_lwb_write_init(zilog, lwb);
802 		ASSERT(lwb->lwb_nused == 0);
803 		if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
804 			txg_wait_synced(zilog->zl_dmu_pool, txg);
805 			return (lwb);
806 		}
807 	}
808 
809 	/*
810 	 * Update the lrc_seq, to be log record sequence number. See zil.h
811 	 * Then copy the record to the log buffer.
812 	 */
813 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
814 	bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen);
815 
816 	/*
817 	 * If it's a write, fetch the data or get its blkptr as appropriate.
818 	 */
819 	if (lrc->lrc_txtype == TX_WRITE) {
820 		if (txg > spa_freeze_txg(zilog->zl_spa))
821 			txg_wait_synced(zilog->zl_dmu_pool, txg);
822 		if (itx->itx_wr_state != WR_COPIED) {
823 			char *dbuf;
824 			int error;
825 
826 			/* alignment is guaranteed */
827 			lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused);
828 			if (dlen) {
829 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
830 				dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen;
831 				lr->lr_common.lrc_reclen += dlen;
832 			} else {
833 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
834 				dbuf = NULL;
835 			}
836 			error = zilog->zl_get_data(
837 			    itx->itx_private, lr, dbuf, lwb->lwb_zio);
838 			if (error) {
839 				ASSERT(error == ENOENT || error == EEXIST ||
840 				    error == EALREADY);
841 				return (lwb);
842 			}
843 		}
844 	}
845 
846 	lwb->lwb_nused += reclen + dlen;
847 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
848 	ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb));
849 	ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
850 
851 	return (lwb);
852 }
853 
854 itx_t *
855 zil_itx_create(uint64_t txtype, size_t lrsize)
856 {
857 	itx_t *itx;
858 
859 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
860 
861 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
862 	itx->itx_lr.lrc_txtype = txtype;
863 	itx->itx_lr.lrc_reclen = lrsize;
864 	itx->itx_lr.lrc_seq = 0;	/* defensive */
865 
866 	return (itx);
867 }
868 
869 uint64_t
870 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
871 {
872 	uint64_t seq;
873 
874 	ASSERT(itx->itx_lr.lrc_seq == 0);
875 
876 	mutex_enter(&zilog->zl_lock);
877 	list_insert_tail(&zilog->zl_itx_list, itx);
878 	zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen;
879 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
880 	itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq;
881 	mutex_exit(&zilog->zl_lock);
882 
883 	return (seq);
884 }
885 
886 /*
887  * Free up all in-memory intent log transactions that have now been synced.
888  */
889 static void
890 zil_itx_clean(zilog_t *zilog)
891 {
892 	uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa);
893 	uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa);
894 	list_t clean_list;
895 	itx_t *itx;
896 
897 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
898 
899 	mutex_enter(&zilog->zl_lock);
900 	/* wait for a log writer to finish walking list */
901 	while (zilog->zl_writer) {
902 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
903 	}
904 
905 	/*
906 	 * Move the sync'd log transactions to a separate list so we can call
907 	 * kmem_free without holding the zl_lock.
908 	 *
909 	 * There is no need to set zl_writer as we don't drop zl_lock here
910 	 */
911 	while ((itx = list_head(&zilog->zl_itx_list)) != NULL &&
912 	    itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) {
913 		list_remove(&zilog->zl_itx_list, itx);
914 		zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen;
915 		list_insert_tail(&clean_list, itx);
916 	}
917 	cv_broadcast(&zilog->zl_cv_writer);
918 	mutex_exit(&zilog->zl_lock);
919 
920 	/* destroy sync'd log transactions */
921 	while ((itx = list_head(&clean_list)) != NULL) {
922 		list_remove(&clean_list, itx);
923 		kmem_free(itx, offsetof(itx_t, itx_lr)
924 		    + itx->itx_lr.lrc_reclen);
925 	}
926 	list_destroy(&clean_list);
927 }
928 
929 /*
930  * If there are any in-memory intent log transactions which have now been
931  * synced then start up a taskq to free them.
932  */
933 void
934 zil_clean(zilog_t *zilog)
935 {
936 	itx_t *itx;
937 
938 	mutex_enter(&zilog->zl_lock);
939 	itx = list_head(&zilog->zl_itx_list);
940 	if ((itx != NULL) &&
941 	    (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) {
942 		(void) taskq_dispatch(zilog->zl_clean_taskq,
943 		    (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP);
944 	}
945 	mutex_exit(&zilog->zl_lock);
946 }
947 
948 void
949 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid)
950 {
951 	uint64_t txg;
952 	uint64_t reclen;
953 	uint64_t commit_seq = 0;
954 	itx_t *itx, *itx_next = (itx_t *)-1;
955 	lwb_t *lwb;
956 	spa_t *spa;
957 
958 	zilog->zl_writer = B_TRUE;
959 	zilog->zl_root_zio = NULL;
960 	spa = zilog->zl_spa;
961 
962 	if (zilog->zl_suspend) {
963 		lwb = NULL;
964 	} else {
965 		lwb = list_tail(&zilog->zl_lwb_list);
966 		if (lwb == NULL) {
967 			/*
968 			 * Return if there's nothing to flush before we
969 			 * dirty the fs by calling zil_create()
970 			 */
971 			if (list_is_empty(&zilog->zl_itx_list)) {
972 				zilog->zl_writer = B_FALSE;
973 				return;
974 			}
975 			mutex_exit(&zilog->zl_lock);
976 			zil_create(zilog);
977 			mutex_enter(&zilog->zl_lock);
978 			lwb = list_tail(&zilog->zl_lwb_list);
979 		}
980 	}
981 
982 	/* Loop through in-memory log transactions filling log blocks. */
983 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
984 	for (;;) {
985 		/*
986 		 * Find the next itx to push:
987 		 * Push all transactions related to specified foid and all
988 		 * other transactions except TX_WRITE, TX_TRUNCATE,
989 		 * TX_SETATTR and TX_ACL for all other files.
990 		 */
991 		if (itx_next != (itx_t *)-1)
992 			itx = itx_next;
993 		else
994 			itx = list_head(&zilog->zl_itx_list);
995 		for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) {
996 			if (foid == 0) /* push all foids? */
997 				break;
998 			if (itx->itx_sync) /* push all O_[D]SYNC */
999 				break;
1000 			switch (itx->itx_lr.lrc_txtype) {
1001 			case TX_SETATTR:
1002 			case TX_WRITE:
1003 			case TX_TRUNCATE:
1004 			case TX_ACL:
1005 				/* lr_foid is same offset for these records */
1006 				if (((lr_write_t *)&itx->itx_lr)->lr_foid
1007 				    != foid) {
1008 					continue; /* skip this record */
1009 				}
1010 			}
1011 			break;
1012 		}
1013 		if (itx == NULL)
1014 			break;
1015 
1016 		reclen = itx->itx_lr.lrc_reclen;
1017 		if ((itx->itx_lr.lrc_seq > seq) &&
1018 		    ((lwb == NULL) || (lwb->lwb_nused == 0) ||
1019 		    (lwb->lwb_nused + reclen > ZIL_BLK_DATA_SZ(lwb)))) {
1020 			break;
1021 		}
1022 
1023 		/*
1024 		 * Save the next pointer.  Even though we soon drop
1025 		 * zl_lock all threads that may change the list
1026 		 * (another writer or zil_itx_clean) can't do so until
1027 		 * they have zl_writer.
1028 		 */
1029 		itx_next = list_next(&zilog->zl_itx_list, itx);
1030 		list_remove(&zilog->zl_itx_list, itx);
1031 		mutex_exit(&zilog->zl_lock);
1032 		txg = itx->itx_lr.lrc_txg;
1033 		ASSERT(txg);
1034 
1035 		if (txg > spa_last_synced_txg(spa) ||
1036 		    txg > spa_freeze_txg(spa))
1037 			lwb = zil_lwb_commit(zilog, itx, lwb);
1038 		kmem_free(itx, offsetof(itx_t, itx_lr)
1039 		    + itx->itx_lr.lrc_reclen);
1040 		mutex_enter(&zilog->zl_lock);
1041 		zilog->zl_itx_list_sz -= reclen;
1042 	}
1043 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1044 	/* determine commit sequence number */
1045 	itx = list_head(&zilog->zl_itx_list);
1046 	if (itx)
1047 		commit_seq = itx->itx_lr.lrc_seq;
1048 	else
1049 		commit_seq = zilog->zl_itx_seq;
1050 	mutex_exit(&zilog->zl_lock);
1051 
1052 	/* write the last block out */
1053 	if (lwb != NULL && lwb->lwb_zio != NULL)
1054 		lwb = zil_lwb_write_start(zilog, lwb);
1055 
1056 	zilog->zl_prev_used = zilog->zl_cur_used;
1057 	zilog->zl_cur_used = 0;
1058 
1059 	/*
1060 	 * Wait if necessary for the log blocks to be on stable storage.
1061 	 */
1062 	if (zilog->zl_root_zio) {
1063 		DTRACE_PROBE1(zil__cw3, zilog_t *, zilog);
1064 		(void) zio_wait(zilog->zl_root_zio);
1065 		DTRACE_PROBE1(zil__cw4, zilog_t *, zilog);
1066 		zil_flush_vdevs(zilog);
1067 	}
1068 
1069 	if (zilog->zl_log_error || lwb == NULL) {
1070 		zilog->zl_log_error = 0;
1071 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1072 	}
1073 
1074 	mutex_enter(&zilog->zl_lock);
1075 	zilog->zl_writer = B_FALSE;
1076 
1077 	ASSERT3U(commit_seq, >=, zilog->zl_commit_seq);
1078 	zilog->zl_commit_seq = commit_seq;
1079 }
1080 
1081 /*
1082  * Push zfs transactions to stable storage up to the supplied sequence number.
1083  * If foid is 0 push out all transactions, otherwise push only those
1084  * for that file or might have been used to create that file.
1085  */
1086 void
1087 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid)
1088 {
1089 	if (zilog == NULL || seq == 0)
1090 		return;
1091 
1092 	mutex_enter(&zilog->zl_lock);
1093 
1094 	seq = MIN(seq, zilog->zl_itx_seq);	/* cap seq at largest itx seq */
1095 
1096 	while (zilog->zl_writer) {
1097 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1098 		if (seq < zilog->zl_commit_seq) {
1099 			mutex_exit(&zilog->zl_lock);
1100 			return;
1101 		}
1102 	}
1103 	zil_commit_writer(zilog, seq, foid); /* drops zl_lock */
1104 	/* wake up others waiting on the commit */
1105 	cv_broadcast(&zilog->zl_cv_writer);
1106 	mutex_exit(&zilog->zl_lock);
1107 }
1108 
1109 /*
1110  * Called in syncing context to free committed log blocks and update log header.
1111  */
1112 void
1113 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1114 {
1115 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1116 	uint64_t txg = dmu_tx_get_txg(tx);
1117 	spa_t *spa = zilog->zl_spa;
1118 	lwb_t *lwb;
1119 
1120 	mutex_enter(&zilog->zl_lock);
1121 
1122 	ASSERT(zilog->zl_stop_sync == 0);
1123 
1124 	zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK];
1125 
1126 	if (zilog->zl_destroy_txg == txg) {
1127 		blkptr_t blk = zh->zh_log;
1128 
1129 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1130 		ASSERT(spa_sync_pass(spa) == 1);
1131 
1132 		bzero(zh, sizeof (zil_header_t));
1133 		bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq));
1134 
1135 		if (zilog->zl_keep_first) {
1136 			/*
1137 			 * If this block was part of log chain that couldn't
1138 			 * be claimed because a device was missing during
1139 			 * zil_claim(), but that device later returns,
1140 			 * then this block could erroneously appear valid.
1141 			 * To guard against this, assign a new GUID to the new
1142 			 * log chain so it doesn't matter what blk points to.
1143 			 */
1144 			zil_init_log_chain(zilog, &blk);
1145 			zh->zh_log = blk;
1146 		}
1147 	}
1148 
1149 	for (;;) {
1150 		lwb = list_head(&zilog->zl_lwb_list);
1151 		if (lwb == NULL) {
1152 			mutex_exit(&zilog->zl_lock);
1153 			return;
1154 		}
1155 		zh->zh_log = lwb->lwb_blk;
1156 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1157 			break;
1158 		list_remove(&zilog->zl_lwb_list, lwb);
1159 		zio_free_blk(spa, &lwb->lwb_blk, txg);
1160 		kmem_cache_free(zil_lwb_cache, lwb);
1161 
1162 		/*
1163 		 * If we don't have anything left in the lwb list then
1164 		 * we've had an allocation failure and we need to zero
1165 		 * out the zil_header blkptr so that we don't end
1166 		 * up freeing the same block twice.
1167 		 */
1168 		if (list_head(&zilog->zl_lwb_list) == NULL)
1169 			BP_ZERO(&zh->zh_log);
1170 	}
1171 	mutex_exit(&zilog->zl_lock);
1172 }
1173 
1174 void
1175 zil_init(void)
1176 {
1177 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1178 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1179 }
1180 
1181 void
1182 zil_fini(void)
1183 {
1184 	kmem_cache_destroy(zil_lwb_cache);
1185 }
1186 
1187 zilog_t *
1188 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1189 {
1190 	zilog_t *zilog;
1191 
1192 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1193 
1194 	zilog->zl_header = zh_phys;
1195 	zilog->zl_os = os;
1196 	zilog->zl_spa = dmu_objset_spa(os);
1197 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1198 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1199 
1200 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1201 
1202 	list_create(&zilog->zl_itx_list, sizeof (itx_t),
1203 	    offsetof(itx_t, itx_node));
1204 
1205 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1206 	    offsetof(lwb_t, lwb_node));
1207 
1208 	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1209 
1210 	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1211 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1212 
1213 	return (zilog);
1214 }
1215 
1216 void
1217 zil_free(zilog_t *zilog)
1218 {
1219 	lwb_t *lwb;
1220 
1221 	zilog->zl_stop_sync = 1;
1222 
1223 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1224 		list_remove(&zilog->zl_lwb_list, lwb);
1225 		if (lwb->lwb_buf != NULL)
1226 			zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1227 		kmem_cache_free(zil_lwb_cache, lwb);
1228 	}
1229 	list_destroy(&zilog->zl_lwb_list);
1230 
1231 	avl_destroy(&zilog->zl_vdev_tree);
1232 	mutex_destroy(&zilog->zl_vdev_lock);
1233 
1234 	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1235 	list_destroy(&zilog->zl_itx_list);
1236 	mutex_destroy(&zilog->zl_lock);
1237 
1238 	kmem_free(zilog, sizeof (zilog_t));
1239 }
1240 
1241 /*
1242  * return true if the initial log block is not valid
1243  */
1244 static int
1245 zil_empty(zilog_t *zilog)
1246 {
1247 	const zil_header_t *zh = zilog->zl_header;
1248 	arc_buf_t *abuf = NULL;
1249 
1250 	if (BP_IS_HOLE(&zh->zh_log))
1251 		return (1);
1252 
1253 	if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0)
1254 		return (1);
1255 
1256 	VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1257 	return (0);
1258 }
1259 
1260 /*
1261  * Open an intent log.
1262  */
1263 zilog_t *
1264 zil_open(objset_t *os, zil_get_data_t *get_data)
1265 {
1266 	zilog_t *zilog = dmu_objset_zil(os);
1267 
1268 	zilog->zl_get_data = get_data;
1269 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1270 	    2, 2, TASKQ_PREPOPULATE);
1271 
1272 	return (zilog);
1273 }
1274 
1275 /*
1276  * Close an intent log.
1277  */
1278 void
1279 zil_close(zilog_t *zilog)
1280 {
1281 	/*
1282 	 * If the log isn't already committed, mark the objset dirty
1283 	 * (so zil_sync() will be called) and wait for that txg to sync.
1284 	 */
1285 	if (!zil_is_committed(zilog)) {
1286 		uint64_t txg;
1287 		dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1288 		(void) dmu_tx_assign(tx, TXG_WAIT);
1289 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1290 		txg = dmu_tx_get_txg(tx);
1291 		dmu_tx_commit(tx);
1292 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1293 	}
1294 
1295 	taskq_destroy(zilog->zl_clean_taskq);
1296 	zilog->zl_clean_taskq = NULL;
1297 	zilog->zl_get_data = NULL;
1298 
1299 	zil_itx_clean(zilog);
1300 	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1301 }
1302 
1303 /*
1304  * Suspend an intent log.  While in suspended mode, we still honor
1305  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1306  * We suspend the log briefly when taking a snapshot so that the snapshot
1307  * contains all the data it's supposed to, and has an empty intent log.
1308  */
1309 int
1310 zil_suspend(zilog_t *zilog)
1311 {
1312 	const zil_header_t *zh = zilog->zl_header;
1313 
1314 	mutex_enter(&zilog->zl_lock);
1315 	if (zh->zh_claim_txg != 0) {		/* unplayed log */
1316 		mutex_exit(&zilog->zl_lock);
1317 		return (EBUSY);
1318 	}
1319 	if (zilog->zl_suspend++ != 0) {
1320 		/*
1321 		 * Someone else already began a suspend.
1322 		 * Just wait for them to finish.
1323 		 */
1324 		while (zilog->zl_suspending)
1325 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1326 		ASSERT(BP_IS_HOLE(&zh->zh_log));
1327 		mutex_exit(&zilog->zl_lock);
1328 		return (0);
1329 	}
1330 	zilog->zl_suspending = B_TRUE;
1331 	mutex_exit(&zilog->zl_lock);
1332 
1333 	zil_commit(zilog, UINT64_MAX, 0);
1334 
1335 	/*
1336 	 * Wait for any in-flight log writes to complete.
1337 	 */
1338 	mutex_enter(&zilog->zl_lock);
1339 	while (zilog->zl_writer)
1340 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1341 	mutex_exit(&zilog->zl_lock);
1342 
1343 	zil_destroy(zilog, B_FALSE);
1344 
1345 	mutex_enter(&zilog->zl_lock);
1346 	zilog->zl_suspending = B_FALSE;
1347 	cv_broadcast(&zilog->zl_cv_suspend);
1348 	mutex_exit(&zilog->zl_lock);
1349 
1350 	return (0);
1351 }
1352 
1353 void
1354 zil_resume(zilog_t *zilog)
1355 {
1356 	mutex_enter(&zilog->zl_lock);
1357 	ASSERT(zilog->zl_suspend != 0);
1358 	zilog->zl_suspend--;
1359 	mutex_exit(&zilog->zl_lock);
1360 }
1361 
1362 typedef struct zil_replay_arg {
1363 	objset_t	*zr_os;
1364 	zil_replay_func_t **zr_replay;
1365 	void		*zr_arg;
1366 	uint64_t	*zr_txgp;
1367 	boolean_t	zr_byteswap;
1368 	char		*zr_lrbuf;
1369 } zil_replay_arg_t;
1370 
1371 static void
1372 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1373 {
1374 	zil_replay_arg_t *zr = zra;
1375 	const zil_header_t *zh = zilog->zl_header;
1376 	uint64_t reclen = lr->lrc_reclen;
1377 	uint64_t txtype = lr->lrc_txtype;
1378 	char *name;
1379 	int pass, error, sunk;
1380 
1381 	if (zilog->zl_stop_replay)
1382 		return;
1383 
1384 	if (lr->lrc_txg < claim_txg)		/* already committed */
1385 		return;
1386 
1387 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1388 		return;
1389 
1390 	/* Strip case-insensitive bit, still present in log record */
1391 	txtype &= ~TX_CI;
1392 
1393 	/*
1394 	 * Make a copy of the data so we can revise and extend it.
1395 	 */
1396 	bcopy(lr, zr->zr_lrbuf, reclen);
1397 
1398 	/*
1399 	 * The log block containing this lr may have been byteswapped
1400 	 * so that we can easily examine common fields like lrc_txtype.
1401 	 * However, the log is a mix of different data types, and only the
1402 	 * replay vectors know how to byteswap their records.  Therefore, if
1403 	 * the lr was byteswapped, undo it before invoking the replay vector.
1404 	 */
1405 	if (zr->zr_byteswap)
1406 		byteswap_uint64_array(zr->zr_lrbuf, reclen);
1407 
1408 	/*
1409 	 * If this is a TX_WRITE with a blkptr, suck in the data.
1410 	 */
1411 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
1412 		lr_write_t *lrw = (lr_write_t *)lr;
1413 		blkptr_t *wbp = &lrw->lr_blkptr;
1414 		uint64_t wlen = lrw->lr_length;
1415 		char *wbuf = zr->zr_lrbuf + reclen;
1416 
1417 		if (BP_IS_HOLE(wbp)) {	/* compressed to a hole */
1418 			bzero(wbuf, wlen);
1419 		} else {
1420 			/*
1421 			 * A subsequent write may have overwritten this block,
1422 			 * in which case wbp may have been been freed and
1423 			 * reallocated, and our read of wbp may fail with a
1424 			 * checksum error.  We can safely ignore this because
1425 			 * the later write will provide the correct data.
1426 			 */
1427 			zbookmark_t zb;
1428 
1429 			zb.zb_objset = dmu_objset_id(zilog->zl_os);
1430 			zb.zb_object = lrw->lr_foid;
1431 			zb.zb_level = -1;
1432 			zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp);
1433 
1434 			(void) zio_wait(zio_read(NULL, zilog->zl_spa,
1435 			    wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL,
1436 			    ZIO_PRIORITY_SYNC_READ,
1437 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb));
1438 			(void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen);
1439 		}
1440 	}
1441 
1442 	/*
1443 	 * We must now do two things atomically: replay this log record,
1444 	 * and update the log header to reflect the fact that we did so.
1445 	 * We use the DMU's ability to assign into a specific txg to do this.
1446 	 */
1447 	for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) {
1448 		uint64_t replay_txg;
1449 		dmu_tx_t *replay_tx;
1450 
1451 		replay_tx = dmu_tx_create(zr->zr_os);
1452 		error = dmu_tx_assign(replay_tx, TXG_WAIT);
1453 		if (error) {
1454 			dmu_tx_abort(replay_tx);
1455 			break;
1456 		}
1457 
1458 		replay_txg = dmu_tx_get_txg(replay_tx);
1459 
1460 		if (txtype == 0 || txtype >= TX_MAX_TYPE) {
1461 			error = EINVAL;
1462 		} else {
1463 			/*
1464 			 * On the first pass, arrange for the replay vector
1465 			 * to fail its dmu_tx_assign().  That's the only way
1466 			 * to ensure that those code paths remain well tested.
1467 			 *
1468 			 * Only byteswap (if needed) on the 1st pass.
1469 			 */
1470 			*zr->zr_txgp = replay_txg - (pass == 1);
1471 			error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf,
1472 			    zr->zr_byteswap && pass == 1);
1473 			*zr->zr_txgp = TXG_NOWAIT;
1474 		}
1475 
1476 		if (error == 0) {
1477 			dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx);
1478 			zilog->zl_replay_seq[replay_txg & TXG_MASK] =
1479 			    lr->lrc_seq;
1480 		}
1481 
1482 		dmu_tx_commit(replay_tx);
1483 
1484 		if (!error)
1485 			return;
1486 
1487 		/*
1488 		 * The DMU's dnode layer doesn't see removes until the txg
1489 		 * commits, so a subsequent claim can spuriously fail with
1490 		 * EEXIST. So if we receive any error other than ERESTART
1491 		 * we try syncing out any removes then retrying the
1492 		 * transaction.
1493 		 */
1494 		if (error != ERESTART && !sunk) {
1495 			txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
1496 			sunk = B_TRUE;
1497 			continue; /* retry */
1498 		}
1499 
1500 		if (error != ERESTART)
1501 			break;
1502 
1503 		if (pass != 1)
1504 			txg_wait_open(spa_get_dsl(zilog->zl_spa),
1505 			    replay_txg + 1);
1506 
1507 		dprintf("pass %d, retrying\n", pass);
1508 	}
1509 
1510 	ASSERT(error && error != ERESTART);
1511 	name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
1512 	dmu_objset_name(zr->zr_os, name);
1513 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1514 	    "dataset %s, seq 0x%llx, txtype %llu %s\n",
1515 	    error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype,
1516 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1517 	zilog->zl_stop_replay = 1;
1518 	kmem_free(name, MAXNAMELEN);
1519 }
1520 
1521 /* ARGSUSED */
1522 static void
1523 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1524 {
1525 	zilog->zl_replay_blks++;
1526 }
1527 
1528 /*
1529  * If this dataset has a non-empty intent log, replay it and destroy it.
1530  */
1531 void
1532 zil_replay(objset_t *os, void *arg, uint64_t *txgp,
1533 	zil_replay_func_t *replay_func[TX_MAX_TYPE])
1534 {
1535 	zilog_t *zilog = dmu_objset_zil(os);
1536 	const zil_header_t *zh = zilog->zl_header;
1537 	zil_replay_arg_t zr;
1538 
1539 	if (zil_empty(zilog)) {
1540 		zil_destroy(zilog, B_TRUE);
1541 		return;
1542 	}
1543 
1544 	zr.zr_os = os;
1545 	zr.zr_replay = replay_func;
1546 	zr.zr_arg = arg;
1547 	zr.zr_txgp = txgp;
1548 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
1549 	zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
1550 
1551 	/*
1552 	 * Wait for in-progress removes to sync before starting replay.
1553 	 */
1554 	txg_wait_synced(zilog->zl_dmu_pool, 0);
1555 
1556 	zilog->zl_stop_replay = 0;
1557 	zilog->zl_replay_time = lbolt;
1558 	ASSERT(zilog->zl_replay_blks == 0);
1559 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
1560 	    zh->zh_claim_txg);
1561 	kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE);
1562 
1563 	zil_destroy(zilog, B_FALSE);
1564 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1565 }
1566 
1567 /*
1568  * Report whether all transactions are committed
1569  */
1570 int
1571 zil_is_committed(zilog_t *zilog)
1572 {
1573 	lwb_t *lwb;
1574 	int ret;
1575 
1576 	mutex_enter(&zilog->zl_lock);
1577 	while (zilog->zl_writer)
1578 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1579 
1580 	/* recent unpushed intent log transactions? */
1581 	if (!list_is_empty(&zilog->zl_itx_list)) {
1582 		ret = B_FALSE;
1583 		goto out;
1584 	}
1585 
1586 	/* intent log never used? */
1587 	lwb = list_head(&zilog->zl_lwb_list);
1588 	if (lwb == NULL) {
1589 		ret = B_TRUE;
1590 		goto out;
1591 	}
1592 
1593 	/*
1594 	 * more than 1 log buffer means zil_sync() hasn't yet freed
1595 	 * entries after a txg has committed
1596 	 */
1597 	if (list_next(&zilog->zl_lwb_list, lwb)) {
1598 		ret = B_FALSE;
1599 		goto out;
1600 	}
1601 
1602 	ASSERT(zil_empty(zilog));
1603 	ret = B_TRUE;
1604 out:
1605 	cv_broadcast(&zilog->zl_cv_writer);
1606 	mutex_exit(&zilog->zl_lock);
1607 	return (ret);
1608 }
1609