1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/spa_impl.h> 29 #include <sys/dmu.h> 30 #include <sys/zap.h> 31 #include <sys/arc.h> 32 #include <sys/stat.h> 33 #include <sys/resource.h> 34 #include <sys/zil.h> 35 #include <sys/zil_impl.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/vdev.h> 38 #include <sys/dmu_tx.h> 39 40 /* 41 * The zfs intent log (ZIL) saves transaction records of system calls 42 * that change the file system in memory with enough information 43 * to be able to replay them. These are stored in memory until 44 * either the DMU transaction group (txg) commits them to the stable pool 45 * and they can be discarded, or they are flushed to the stable log 46 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 47 * requirement. In the event of a panic or power fail then those log 48 * records (transactions) are replayed. 49 * 50 * There is one ZIL per file system. Its on-disk (pool) format consists 51 * of 3 parts: 52 * 53 * - ZIL header 54 * - ZIL blocks 55 * - ZIL records 56 * 57 * A log record holds a system call transaction. Log blocks can 58 * hold many log records and the blocks are chained together. 59 * Each ZIL block contains a block pointer (blkptr_t) to the next 60 * ZIL block in the chain. The ZIL header points to the first 61 * block in the chain. Note there is not a fixed place in the pool 62 * to hold blocks. They are dynamically allocated and freed as 63 * needed from the blocks available. Figure X shows the ZIL structure: 64 */ 65 66 /* 67 * This global ZIL switch affects all pools 68 */ 69 int zil_disable = 0; /* disable intent logging */ 70 71 /* 72 * Tunable parameter for debugging or performance analysis. Setting 73 * zfs_nocacheflush will cause corruption on power loss if a volatile 74 * out-of-order write cache is enabled. 75 */ 76 boolean_t zfs_nocacheflush = B_FALSE; 77 78 static kmem_cache_t *zil_lwb_cache; 79 80 static int 81 zil_dva_compare(const void *x1, const void *x2) 82 { 83 const dva_t *dva1 = x1; 84 const dva_t *dva2 = x2; 85 86 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 87 return (-1); 88 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 89 return (1); 90 91 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 92 return (-1); 93 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 94 return (1); 95 96 return (0); 97 } 98 99 static void 100 zil_dva_tree_init(avl_tree_t *t) 101 { 102 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 103 offsetof(zil_dva_node_t, zn_node)); 104 } 105 106 static void 107 zil_dva_tree_fini(avl_tree_t *t) 108 { 109 zil_dva_node_t *zn; 110 void *cookie = NULL; 111 112 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 113 kmem_free(zn, sizeof (zil_dva_node_t)); 114 115 avl_destroy(t); 116 } 117 118 static int 119 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 120 { 121 zil_dva_node_t *zn; 122 avl_index_t where; 123 124 if (avl_find(t, dva, &where) != NULL) 125 return (EEXIST); 126 127 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 128 zn->zn_dva = *dva; 129 avl_insert(t, zn, where); 130 131 return (0); 132 } 133 134 static zil_header_t * 135 zil_header_in_syncing_context(zilog_t *zilog) 136 { 137 return ((zil_header_t *)zilog->zl_header); 138 } 139 140 static void 141 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 142 { 143 zio_cksum_t *zc = &bp->blk_cksum; 144 145 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 146 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 147 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 148 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 149 } 150 151 /* 152 * Read a log block, make sure it's valid, and byteswap it if necessary. 153 */ 154 static int 155 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 156 { 157 blkptr_t blk = *bp; 158 zbookmark_t zb; 159 uint32_t aflags = ARC_WAIT; 160 int error; 161 162 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 163 zb.zb_object = 0; 164 zb.zb_level = -1; 165 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 166 167 *abufpp = NULL; 168 169 /* 170 * We shouldn't be doing any scrubbing while we're doing log 171 * replay, it's OK to not lock. 172 */ 173 error = arc_read_nolock(NULL, zilog->zl_spa, &blk, 174 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 175 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 176 177 if (error == 0) { 178 char *data = (*abufpp)->b_data; 179 uint64_t blksz = BP_GET_LSIZE(bp); 180 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 181 zio_cksum_t cksum = bp->blk_cksum; 182 183 /* 184 * Validate the checksummed log block. 185 * 186 * Sequence numbers should be... sequential. The checksum 187 * verifier for the next block should be bp's checksum plus 1. 188 * 189 * Also check the log chain linkage and size used. 190 */ 191 cksum.zc_word[ZIL_ZC_SEQ]++; 192 193 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, 194 sizeof (cksum)) || BP_IS_HOLE(&ztp->zit_next_blk) || 195 (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))) { 196 error = ECKSUM; 197 } 198 199 if (error) { 200 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 201 *abufpp = NULL; 202 } 203 } 204 205 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 206 207 return (error); 208 } 209 210 /* 211 * Parse the intent log, and call parse_func for each valid record within. 212 * Return the highest sequence number. 213 */ 214 uint64_t 215 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 216 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 217 { 218 const zil_header_t *zh = zilog->zl_header; 219 uint64_t claim_seq = zh->zh_claim_seq; 220 uint64_t seq = 0; 221 uint64_t max_seq = 0; 222 blkptr_t blk = zh->zh_log; 223 arc_buf_t *abuf; 224 char *lrbuf, *lrp; 225 zil_trailer_t *ztp; 226 int reclen, error; 227 228 if (BP_IS_HOLE(&blk)) 229 return (max_seq); 230 231 /* 232 * Starting at the block pointed to by zh_log we read the log chain. 233 * For each block in the chain we strongly check that block to 234 * ensure its validity. We stop when an invalid block is found. 235 * For each block pointer in the chain we call parse_blk_func(). 236 * For each record in each valid block we call parse_lr_func(). 237 * If the log has been claimed, stop if we encounter a sequence 238 * number greater than the highest claimed sequence number. 239 */ 240 zil_dva_tree_init(&zilog->zl_dva_tree); 241 for (;;) { 242 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 243 244 if (claim_seq != 0 && seq > claim_seq) 245 break; 246 247 ASSERT(max_seq < seq); 248 max_seq = seq; 249 250 error = zil_read_log_block(zilog, &blk, &abuf); 251 252 if (parse_blk_func != NULL) 253 parse_blk_func(zilog, &blk, arg, txg); 254 255 if (error) 256 break; 257 258 lrbuf = abuf->b_data; 259 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 260 blk = ztp->zit_next_blk; 261 262 if (parse_lr_func == NULL) { 263 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 264 continue; 265 } 266 267 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 268 lr_t *lr = (lr_t *)lrp; 269 reclen = lr->lrc_reclen; 270 ASSERT3U(reclen, >=, sizeof (lr_t)); 271 parse_lr_func(zilog, lr, arg, txg); 272 } 273 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 274 } 275 zil_dva_tree_fini(&zilog->zl_dva_tree); 276 277 return (max_seq); 278 } 279 280 /* ARGSUSED */ 281 static void 282 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 283 { 284 spa_t *spa = zilog->zl_spa; 285 int err; 286 287 /* 288 * Claim log block if not already committed and not already claimed. 289 */ 290 if (bp->blk_birth >= first_txg && 291 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 292 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL, 293 ZIO_FLAG_MUSTSUCCEED)); 294 ASSERT(err == 0); 295 } 296 } 297 298 static void 299 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 300 { 301 if (lrc->lrc_txtype == TX_WRITE) { 302 lr_write_t *lr = (lr_write_t *)lrc; 303 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 304 } 305 } 306 307 /* ARGSUSED */ 308 static void 309 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 310 { 311 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 312 } 313 314 static void 315 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 316 { 317 /* 318 * If we previously claimed it, we need to free it. 319 */ 320 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 321 lr_write_t *lr = (lr_write_t *)lrc; 322 blkptr_t *bp = &lr->lr_blkptr; 323 if (bp->blk_birth >= claim_txg && 324 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 325 (void) arc_free(NULL, zilog->zl_spa, 326 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 327 } 328 } 329 } 330 331 /* 332 * Create an on-disk intent log. 333 */ 334 static void 335 zil_create(zilog_t *zilog) 336 { 337 const zil_header_t *zh = zilog->zl_header; 338 lwb_t *lwb; 339 uint64_t txg = 0; 340 dmu_tx_t *tx = NULL; 341 blkptr_t blk; 342 int error = 0; 343 344 /* 345 * Wait for any previous destroy to complete. 346 */ 347 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 348 349 ASSERT(zh->zh_claim_txg == 0); 350 ASSERT(zh->zh_replay_seq == 0); 351 352 blk = zh->zh_log; 353 354 /* 355 * If we don't already have an initial log block or we have one 356 * but it's the wrong endianness then allocate one. 357 */ 358 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 359 tx = dmu_tx_create(zilog->zl_os); 360 (void) dmu_tx_assign(tx, TXG_WAIT); 361 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 362 txg = dmu_tx_get_txg(tx); 363 364 if (!BP_IS_HOLE(&blk)) { 365 zio_free_blk(zilog->zl_spa, &blk, txg); 366 BP_ZERO(&blk); 367 } 368 369 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 370 NULL, txg, zilog->zl_logbias != ZFS_LOGBIAS_LATENCY); 371 372 if (error == 0) 373 zil_init_log_chain(zilog, &blk); 374 } 375 376 /* 377 * Allocate a log write buffer (lwb) for the first log block. 378 */ 379 if (error == 0) { 380 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 381 lwb->lwb_zilog = zilog; 382 lwb->lwb_blk = blk; 383 lwb->lwb_nused = 0; 384 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 385 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 386 lwb->lwb_max_txg = txg; 387 lwb->lwb_zio = NULL; 388 389 mutex_enter(&zilog->zl_lock); 390 list_insert_tail(&zilog->zl_lwb_list, lwb); 391 mutex_exit(&zilog->zl_lock); 392 } 393 394 /* 395 * If we just allocated the first log block, commit our transaction 396 * and wait for zil_sync() to stuff the block poiner into zh_log. 397 * (zh is part of the MOS, so we cannot modify it in open context.) 398 */ 399 if (tx != NULL) { 400 dmu_tx_commit(tx); 401 txg_wait_synced(zilog->zl_dmu_pool, txg); 402 } 403 404 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 405 } 406 407 /* 408 * In one tx, free all log blocks and clear the log header. 409 * If keep_first is set, then we're replaying a log with no content. 410 * We want to keep the first block, however, so that the first 411 * synchronous transaction doesn't require a txg_wait_synced() 412 * in zil_create(). We don't need to txg_wait_synced() here either 413 * when keep_first is set, because both zil_create() and zil_destroy() 414 * will wait for any in-progress destroys to complete. 415 */ 416 void 417 zil_destroy(zilog_t *zilog, boolean_t keep_first) 418 { 419 const zil_header_t *zh = zilog->zl_header; 420 lwb_t *lwb; 421 dmu_tx_t *tx; 422 uint64_t txg; 423 424 /* 425 * Wait for any previous destroy to complete. 426 */ 427 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 428 429 if (BP_IS_HOLE(&zh->zh_log)) 430 return; 431 432 tx = dmu_tx_create(zilog->zl_os); 433 (void) dmu_tx_assign(tx, TXG_WAIT); 434 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 435 txg = dmu_tx_get_txg(tx); 436 437 mutex_enter(&zilog->zl_lock); 438 439 /* 440 * It is possible for the ZIL to get the previously mounted zilog 441 * structure of the same dataset if quickly remounted and the dbuf 442 * eviction has not completed. In this case we can see a non 443 * empty lwb list and keep_first will be set. We fix this by 444 * clearing the keep_first. This will be slower but it's very rare. 445 */ 446 if (!list_is_empty(&zilog->zl_lwb_list) && keep_first) 447 keep_first = B_FALSE; 448 449 ASSERT3U(zilog->zl_destroy_txg, <, txg); 450 zilog->zl_destroy_txg = txg; 451 zilog->zl_keep_first = keep_first; 452 453 if (!list_is_empty(&zilog->zl_lwb_list)) { 454 ASSERT(zh->zh_claim_txg == 0); 455 ASSERT(!keep_first); 456 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 457 list_remove(&zilog->zl_lwb_list, lwb); 458 if (lwb->lwb_buf != NULL) 459 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 460 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 461 kmem_cache_free(zil_lwb_cache, lwb); 462 } 463 } else { 464 if (!keep_first) { 465 (void) zil_parse(zilog, zil_free_log_block, 466 zil_free_log_record, tx, zh->zh_claim_txg); 467 } 468 } 469 mutex_exit(&zilog->zl_lock); 470 471 dmu_tx_commit(tx); 472 } 473 474 /* 475 * return true if the initial log block is not valid 476 */ 477 static boolean_t 478 zil_empty(zilog_t *zilog) 479 { 480 const zil_header_t *zh = zilog->zl_header; 481 arc_buf_t *abuf = NULL; 482 483 if (BP_IS_HOLE(&zh->zh_log)) 484 return (B_TRUE); 485 486 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 487 return (B_TRUE); 488 489 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 490 return (B_FALSE); 491 } 492 493 int 494 zil_claim(char *osname, void *txarg) 495 { 496 dmu_tx_t *tx = txarg; 497 uint64_t first_txg = dmu_tx_get_txg(tx); 498 zilog_t *zilog; 499 zil_header_t *zh; 500 objset_t *os; 501 int error; 502 503 error = dmu_objset_hold(osname, FTAG, &os); 504 if (error) { 505 cmn_err(CE_WARN, "can't open objset for %s", osname); 506 return (0); 507 } 508 509 zilog = dmu_objset_zil(os); 510 zh = zil_header_in_syncing_context(zilog); 511 512 if (zilog->zl_spa->spa_log_state == SPA_LOG_CLEAR) { 513 if (!BP_IS_HOLE(&zh->zh_log)) 514 zio_free_blk(zilog->zl_spa, &zh->zh_log, first_txg); 515 BP_ZERO(&zh->zh_log); 516 dsl_dataset_dirty(dmu_objset_ds(os), tx); 517 } 518 519 /* 520 * Record here whether the zil has any records to replay. 521 * If the header block pointer is null or the block points 522 * to the stubby then we know there are no valid log records. 523 * We use the header to store this state as the the zilog gets 524 * freed later in dmu_objset_close(). 525 * The flags (and the rest of the header fields) are cleared in 526 * zil_sync() as a result of a zil_destroy(), after replaying the log. 527 * 528 * Note, the intent log can be empty but still need the 529 * stubby to be claimed. 530 */ 531 if (!zil_empty(zilog)) { 532 zh->zh_flags |= ZIL_REPLAY_NEEDED; 533 dsl_dataset_dirty(dmu_objset_ds(os), tx); 534 } 535 536 /* 537 * Claim all log blocks if we haven't already done so, and remember 538 * the highest claimed sequence number. This ensures that if we can 539 * read only part of the log now (e.g. due to a missing device), 540 * but we can read the entire log later, we will not try to replay 541 * or destroy beyond the last block we successfully claimed. 542 */ 543 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 544 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 545 zh->zh_claim_txg = first_txg; 546 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 547 zil_claim_log_record, tx, first_txg); 548 dsl_dataset_dirty(dmu_objset_ds(os), tx); 549 } 550 551 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 552 dmu_objset_rele(os, FTAG); 553 return (0); 554 } 555 556 /* 557 * Check the log by walking the log chain. 558 * Checksum errors are ok as they indicate the end of the chain. 559 * Any other error (no device or read failure) returns an error. 560 */ 561 /* ARGSUSED */ 562 int 563 zil_check_log_chain(char *osname, void *txarg) 564 { 565 zilog_t *zilog; 566 zil_header_t *zh; 567 blkptr_t blk; 568 arc_buf_t *abuf; 569 objset_t *os; 570 char *lrbuf; 571 zil_trailer_t *ztp; 572 int error; 573 574 error = dmu_objset_hold(osname, FTAG, &os); 575 if (error) { 576 cmn_err(CE_WARN, "can't open objset for %s", osname); 577 return (0); 578 } 579 580 zilog = dmu_objset_zil(os); 581 zh = zil_header_in_syncing_context(zilog); 582 blk = zh->zh_log; 583 if (BP_IS_HOLE(&blk)) { 584 dmu_objset_rele(os, FTAG); 585 return (0); /* no chain */ 586 } 587 588 for (;;) { 589 error = zil_read_log_block(zilog, &blk, &abuf); 590 if (error) 591 break; 592 lrbuf = abuf->b_data; 593 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 594 blk = ztp->zit_next_blk; 595 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 596 } 597 dmu_objset_rele(os, FTAG); 598 if (error == ECKSUM) 599 return (0); /* normal end of chain */ 600 return (error); 601 } 602 603 static int 604 zil_vdev_compare(const void *x1, const void *x2) 605 { 606 uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 607 uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 608 609 if (v1 < v2) 610 return (-1); 611 if (v1 > v2) 612 return (1); 613 614 return (0); 615 } 616 617 void 618 zil_add_block(zilog_t *zilog, blkptr_t *bp) 619 { 620 avl_tree_t *t = &zilog->zl_vdev_tree; 621 avl_index_t where; 622 zil_vdev_node_t *zv, zvsearch; 623 int ndvas = BP_GET_NDVAS(bp); 624 int i; 625 626 if (zfs_nocacheflush) 627 return; 628 629 ASSERT(zilog->zl_writer); 630 631 /* 632 * Even though we're zl_writer, we still need a lock because the 633 * zl_get_data() callbacks may have dmu_sync() done callbacks 634 * that will run concurrently. 635 */ 636 mutex_enter(&zilog->zl_vdev_lock); 637 for (i = 0; i < ndvas; i++) { 638 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 639 if (avl_find(t, &zvsearch, &where) == NULL) { 640 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 641 zv->zv_vdev = zvsearch.zv_vdev; 642 avl_insert(t, zv, where); 643 } 644 } 645 mutex_exit(&zilog->zl_vdev_lock); 646 } 647 648 void 649 zil_flush_vdevs(zilog_t *zilog) 650 { 651 spa_t *spa = zilog->zl_spa; 652 avl_tree_t *t = &zilog->zl_vdev_tree; 653 void *cookie = NULL; 654 zil_vdev_node_t *zv; 655 zio_t *zio; 656 657 ASSERT(zilog->zl_writer); 658 659 /* 660 * We don't need zl_vdev_lock here because we're the zl_writer, 661 * and all zl_get_data() callbacks are done. 662 */ 663 if (avl_numnodes(t) == 0) 664 return; 665 666 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 667 668 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 669 670 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 671 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 672 if (vd != NULL) 673 zio_flush(zio, vd); 674 kmem_free(zv, sizeof (*zv)); 675 } 676 677 /* 678 * Wait for all the flushes to complete. Not all devices actually 679 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 680 */ 681 (void) zio_wait(zio); 682 683 spa_config_exit(spa, SCL_STATE, FTAG); 684 } 685 686 /* 687 * Function called when a log block write completes 688 */ 689 static void 690 zil_lwb_write_done(zio_t *zio) 691 { 692 lwb_t *lwb = zio->io_private; 693 zilog_t *zilog = lwb->lwb_zilog; 694 695 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 696 ASSERT(BP_GET_CHECKSUM(zio->io_bp) == ZIO_CHECKSUM_ZILOG); 697 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 698 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 699 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 700 ASSERT(!BP_IS_GANG(zio->io_bp)); 701 ASSERT(!BP_IS_HOLE(zio->io_bp)); 702 ASSERT(zio->io_bp->blk_fill == 0); 703 704 /* 705 * Ensure the lwb buffer pointer is cleared before releasing 706 * the txg. If we have had an allocation failure and 707 * the txg is waiting to sync then we want want zil_sync() 708 * to remove the lwb so that it's not picked up as the next new 709 * one in zil_commit_writer(). zil_sync() will only remove 710 * the lwb if lwb_buf is null. 711 */ 712 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 713 mutex_enter(&zilog->zl_lock); 714 lwb->lwb_buf = NULL; 715 if (zio->io_error) 716 zilog->zl_log_error = B_TRUE; 717 718 /* 719 * Now that we've written this log block, we have a stable pointer 720 * to the next block in the chain, so it's OK to let the txg in 721 * which we allocated the next block sync. We still have the 722 * zl_lock to ensure zil_sync doesn't kmem free the lwb. 723 */ 724 txg_rele_to_sync(&lwb->lwb_txgh); 725 mutex_exit(&zilog->zl_lock); 726 } 727 728 /* 729 * Initialize the io for a log block. 730 */ 731 static void 732 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 733 { 734 zbookmark_t zb; 735 736 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 737 zb.zb_object = 0; 738 zb.zb_level = -1; 739 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 740 741 if (zilog->zl_root_zio == NULL) { 742 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 743 ZIO_FLAG_CANFAIL); 744 } 745 if (lwb->lwb_zio == NULL) { 746 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 747 0, &lwb->lwb_blk, lwb->lwb_buf, lwb->lwb_sz, 748 zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE, 749 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb); 750 } 751 } 752 753 /* 754 * Start a log block write and advance to the next log block. 755 * Calls are serialized. 756 */ 757 static lwb_t * 758 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 759 { 760 lwb_t *nlwb; 761 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 762 spa_t *spa = zilog->zl_spa; 763 blkptr_t *bp = &ztp->zit_next_blk; 764 uint64_t txg; 765 uint64_t zil_blksz; 766 int error; 767 768 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 769 770 /* 771 * Allocate the next block and save its address in this block 772 * before writing it in order to establish the log chain. 773 * Note that if the allocation of nlwb synced before we wrote 774 * the block that points at it (lwb), we'd leak it if we crashed. 775 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 776 */ 777 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 778 txg_rele_to_quiesce(&lwb->lwb_txgh); 779 780 /* 781 * Pick a ZIL blocksize. We request a size that is the 782 * maximum of the previous used size, the current used size and 783 * the amount waiting in the queue. 784 */ 785 zil_blksz = MAX(zilog->zl_prev_used, 786 zilog->zl_cur_used + sizeof (*ztp)); 787 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 788 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 789 if (zil_blksz > ZIL_MAX_BLKSZ) 790 zil_blksz = ZIL_MAX_BLKSZ; 791 792 BP_ZERO(bp); 793 /* pass the old blkptr in order to spread log blocks across devs */ 794 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg, 795 zilog->zl_logbias != ZFS_LOGBIAS_LATENCY); 796 if (error) { 797 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 798 799 /* 800 * We dirty the dataset to ensure that zil_sync() will 801 * be called to remove this lwb from our zl_lwb_list. 802 * Failing to do so, may leave an lwb with a NULL lwb_buf 803 * hanging around on the zl_lwb_list. 804 */ 805 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 806 dmu_tx_commit(tx); 807 808 /* 809 * Since we've just experienced an allocation failure so we 810 * terminate the current lwb and send it on its way. 811 */ 812 ztp->zit_pad = 0; 813 ztp->zit_nused = lwb->lwb_nused; 814 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 815 zio_nowait(lwb->lwb_zio); 816 817 /* 818 * By returning NULL the caller will call tx_wait_synced() 819 */ 820 return (NULL); 821 } 822 823 ASSERT3U(bp->blk_birth, ==, txg); 824 ztp->zit_pad = 0; 825 ztp->zit_nused = lwb->lwb_nused; 826 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 827 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 828 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 829 830 /* 831 * Allocate a new log write buffer (lwb). 832 */ 833 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 834 835 nlwb->lwb_zilog = zilog; 836 nlwb->lwb_blk = *bp; 837 nlwb->lwb_nused = 0; 838 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 839 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 840 nlwb->lwb_max_txg = txg; 841 nlwb->lwb_zio = NULL; 842 843 /* 844 * Put new lwb at the end of the log chain 845 */ 846 mutex_enter(&zilog->zl_lock); 847 list_insert_tail(&zilog->zl_lwb_list, nlwb); 848 mutex_exit(&zilog->zl_lock); 849 850 /* Record the block for later vdev flushing */ 851 zil_add_block(zilog, &lwb->lwb_blk); 852 853 /* 854 * kick off the write for the old log block 855 */ 856 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 857 ASSERT(lwb->lwb_zio); 858 zio_nowait(lwb->lwb_zio); 859 860 return (nlwb); 861 } 862 863 static lwb_t * 864 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 865 { 866 lr_t *lrc = &itx->itx_lr; /* common log record */ 867 lr_write_t *lr = (lr_write_t *)lrc; 868 uint64_t txg = lrc->lrc_txg; 869 uint64_t reclen = lrc->lrc_reclen; 870 uint64_t dlen; 871 872 if (lwb == NULL) 873 return (NULL); 874 ASSERT(lwb->lwb_buf != NULL); 875 876 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 877 dlen = P2ROUNDUP_TYPED( 878 lr->lr_length, sizeof (uint64_t), uint64_t); 879 else 880 dlen = 0; 881 882 zilog->zl_cur_used += (reclen + dlen); 883 884 zil_lwb_write_init(zilog, lwb); 885 886 /* 887 * If this record won't fit in the current log block, start a new one. 888 */ 889 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 890 lwb = zil_lwb_write_start(zilog, lwb); 891 if (lwb == NULL) 892 return (NULL); 893 zil_lwb_write_init(zilog, lwb); 894 ASSERT(lwb->lwb_nused == 0); 895 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 896 txg_wait_synced(zilog->zl_dmu_pool, txg); 897 return (lwb); 898 } 899 } 900 901 /* 902 * Update the lrc_seq, to be log record sequence number. See zil.h 903 * Then copy the record to the log buffer. 904 */ 905 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 906 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 907 908 /* 909 * If it's a write, fetch the data or get its blkptr as appropriate. 910 */ 911 if (lrc->lrc_txtype == TX_WRITE) { 912 if (txg > spa_freeze_txg(zilog->zl_spa)) 913 txg_wait_synced(zilog->zl_dmu_pool, txg); 914 if (itx->itx_wr_state != WR_COPIED) { 915 char *dbuf; 916 int error; 917 918 /* alignment is guaranteed */ 919 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 920 if (dlen) { 921 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 922 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 923 lr->lr_common.lrc_reclen += dlen; 924 } else { 925 ASSERT(itx->itx_wr_state == WR_INDIRECT); 926 dbuf = NULL; 927 } 928 error = zilog->zl_get_data( 929 itx->itx_private, lr, dbuf, lwb->lwb_zio); 930 if (error == EIO) { 931 txg_wait_synced(zilog->zl_dmu_pool, txg); 932 return (lwb); 933 } 934 if (error) { 935 ASSERT(error == ENOENT || error == EEXIST || 936 error == EALREADY); 937 return (lwb); 938 } 939 } 940 } 941 942 lwb->lwb_nused += reclen + dlen; 943 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 944 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 945 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 946 947 return (lwb); 948 } 949 950 itx_t * 951 zil_itx_create(uint64_t txtype, size_t lrsize) 952 { 953 itx_t *itx; 954 955 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 956 957 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 958 itx->itx_lr.lrc_txtype = txtype; 959 itx->itx_lr.lrc_reclen = lrsize; 960 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 961 itx->itx_lr.lrc_seq = 0; /* defensive */ 962 963 return (itx); 964 } 965 966 uint64_t 967 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 968 { 969 uint64_t seq; 970 971 ASSERT(itx->itx_lr.lrc_seq == 0); 972 973 mutex_enter(&zilog->zl_lock); 974 list_insert_tail(&zilog->zl_itx_list, itx); 975 zilog->zl_itx_list_sz += itx->itx_sod; 976 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 977 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 978 mutex_exit(&zilog->zl_lock); 979 980 return (seq); 981 } 982 983 /* 984 * Free up all in-memory intent log transactions that have now been synced. 985 */ 986 static void 987 zil_itx_clean(zilog_t *zilog) 988 { 989 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 990 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 991 list_t clean_list; 992 itx_t *itx; 993 994 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 995 996 mutex_enter(&zilog->zl_lock); 997 /* wait for a log writer to finish walking list */ 998 while (zilog->zl_writer) { 999 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1000 } 1001 1002 /* 1003 * Move the sync'd log transactions to a separate list so we can call 1004 * kmem_free without holding the zl_lock. 1005 * 1006 * There is no need to set zl_writer as we don't drop zl_lock here 1007 */ 1008 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 1009 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 1010 list_remove(&zilog->zl_itx_list, itx); 1011 zilog->zl_itx_list_sz -= itx->itx_sod; 1012 list_insert_tail(&clean_list, itx); 1013 } 1014 cv_broadcast(&zilog->zl_cv_writer); 1015 mutex_exit(&zilog->zl_lock); 1016 1017 /* destroy sync'd log transactions */ 1018 while ((itx = list_head(&clean_list)) != NULL) { 1019 list_remove(&clean_list, itx); 1020 kmem_free(itx, offsetof(itx_t, itx_lr) 1021 + itx->itx_lr.lrc_reclen); 1022 } 1023 list_destroy(&clean_list); 1024 } 1025 1026 /* 1027 * If there are any in-memory intent log transactions which have now been 1028 * synced then start up a taskq to free them. 1029 */ 1030 void 1031 zil_clean(zilog_t *zilog) 1032 { 1033 itx_t *itx; 1034 1035 mutex_enter(&zilog->zl_lock); 1036 itx = list_head(&zilog->zl_itx_list); 1037 if ((itx != NULL) && 1038 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 1039 (void) taskq_dispatch(zilog->zl_clean_taskq, 1040 (task_func_t *)zil_itx_clean, zilog, TQ_SLEEP); 1041 } 1042 mutex_exit(&zilog->zl_lock); 1043 } 1044 1045 static void 1046 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 1047 { 1048 uint64_t txg; 1049 uint64_t commit_seq = 0; 1050 itx_t *itx, *itx_next = (itx_t *)-1; 1051 lwb_t *lwb; 1052 spa_t *spa; 1053 1054 zilog->zl_writer = B_TRUE; 1055 ASSERT(zilog->zl_root_zio == NULL); 1056 spa = zilog->zl_spa; 1057 1058 if (zilog->zl_suspend) { 1059 lwb = NULL; 1060 } else { 1061 lwb = list_tail(&zilog->zl_lwb_list); 1062 if (lwb == NULL) { 1063 /* 1064 * Return if there's nothing to flush before we 1065 * dirty the fs by calling zil_create() 1066 */ 1067 if (list_is_empty(&zilog->zl_itx_list)) { 1068 zilog->zl_writer = B_FALSE; 1069 return; 1070 } 1071 mutex_exit(&zilog->zl_lock); 1072 zil_create(zilog); 1073 mutex_enter(&zilog->zl_lock); 1074 lwb = list_tail(&zilog->zl_lwb_list); 1075 } 1076 } 1077 1078 /* Loop through in-memory log transactions filling log blocks. */ 1079 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1080 for (;;) { 1081 /* 1082 * Find the next itx to push: 1083 * Push all transactions related to specified foid and all 1084 * other transactions except TX_WRITE, TX_TRUNCATE, 1085 * TX_SETATTR and TX_ACL for all other files. 1086 */ 1087 if (itx_next != (itx_t *)-1) 1088 itx = itx_next; 1089 else 1090 itx = list_head(&zilog->zl_itx_list); 1091 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 1092 if (foid == 0) /* push all foids? */ 1093 break; 1094 if (itx->itx_sync) /* push all O_[D]SYNC */ 1095 break; 1096 switch (itx->itx_lr.lrc_txtype) { 1097 case TX_SETATTR: 1098 case TX_WRITE: 1099 case TX_TRUNCATE: 1100 case TX_ACL: 1101 /* lr_foid is same offset for these records */ 1102 if (((lr_write_t *)&itx->itx_lr)->lr_foid 1103 != foid) { 1104 continue; /* skip this record */ 1105 } 1106 } 1107 break; 1108 } 1109 if (itx == NULL) 1110 break; 1111 1112 if ((itx->itx_lr.lrc_seq > seq) && 1113 ((lwb == NULL) || (lwb->lwb_nused == 0) || 1114 (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) { 1115 break; 1116 } 1117 1118 /* 1119 * Save the next pointer. Even though we soon drop 1120 * zl_lock all threads that may change the list 1121 * (another writer or zil_itx_clean) can't do so until 1122 * they have zl_writer. 1123 */ 1124 itx_next = list_next(&zilog->zl_itx_list, itx); 1125 list_remove(&zilog->zl_itx_list, itx); 1126 zilog->zl_itx_list_sz -= itx->itx_sod; 1127 mutex_exit(&zilog->zl_lock); 1128 txg = itx->itx_lr.lrc_txg; 1129 ASSERT(txg); 1130 1131 if (txg > spa_last_synced_txg(spa) || 1132 txg > spa_freeze_txg(spa)) 1133 lwb = zil_lwb_commit(zilog, itx, lwb); 1134 kmem_free(itx, offsetof(itx_t, itx_lr) 1135 + itx->itx_lr.lrc_reclen); 1136 mutex_enter(&zilog->zl_lock); 1137 } 1138 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1139 /* determine commit sequence number */ 1140 itx = list_head(&zilog->zl_itx_list); 1141 if (itx) 1142 commit_seq = itx->itx_lr.lrc_seq; 1143 else 1144 commit_seq = zilog->zl_itx_seq; 1145 mutex_exit(&zilog->zl_lock); 1146 1147 /* write the last block out */ 1148 if (lwb != NULL && lwb->lwb_zio != NULL) 1149 lwb = zil_lwb_write_start(zilog, lwb); 1150 1151 zilog->zl_prev_used = zilog->zl_cur_used; 1152 zilog->zl_cur_used = 0; 1153 1154 /* 1155 * Wait if necessary for the log blocks to be on stable storage. 1156 */ 1157 if (zilog->zl_root_zio) { 1158 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1159 (void) zio_wait(zilog->zl_root_zio); 1160 zilog->zl_root_zio = NULL; 1161 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1162 zil_flush_vdevs(zilog); 1163 } 1164 1165 if (zilog->zl_log_error || lwb == NULL) { 1166 zilog->zl_log_error = 0; 1167 txg_wait_synced(zilog->zl_dmu_pool, 0); 1168 } 1169 1170 mutex_enter(&zilog->zl_lock); 1171 zilog->zl_writer = B_FALSE; 1172 1173 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1174 zilog->zl_commit_seq = commit_seq; 1175 } 1176 1177 /* 1178 * Push zfs transactions to stable storage up to the supplied sequence number. 1179 * If foid is 0 push out all transactions, otherwise push only those 1180 * for that file or might have been used to create that file. 1181 */ 1182 void 1183 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1184 { 1185 if (zilog == NULL || seq == 0) 1186 return; 1187 1188 mutex_enter(&zilog->zl_lock); 1189 1190 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1191 1192 while (zilog->zl_writer) { 1193 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1194 if (seq < zilog->zl_commit_seq) { 1195 mutex_exit(&zilog->zl_lock); 1196 return; 1197 } 1198 } 1199 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1200 /* wake up others waiting on the commit */ 1201 cv_broadcast(&zilog->zl_cv_writer); 1202 mutex_exit(&zilog->zl_lock); 1203 } 1204 1205 /* 1206 * Called in syncing context to free committed log blocks and update log header. 1207 */ 1208 void 1209 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1210 { 1211 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1212 uint64_t txg = dmu_tx_get_txg(tx); 1213 spa_t *spa = zilog->zl_spa; 1214 lwb_t *lwb; 1215 1216 /* 1217 * We don't zero out zl_destroy_txg, so make sure we don't try 1218 * to destroy it twice. 1219 */ 1220 if (spa_sync_pass(spa) != 1) 1221 return; 1222 1223 mutex_enter(&zilog->zl_lock); 1224 1225 ASSERT(zilog->zl_stop_sync == 0); 1226 1227 zh->zh_replay_seq = zilog->zl_replayed_seq[txg & TXG_MASK]; 1228 1229 if (zilog->zl_destroy_txg == txg) { 1230 blkptr_t blk = zh->zh_log; 1231 1232 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1233 1234 bzero(zh, sizeof (zil_header_t)); 1235 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1236 1237 if (zilog->zl_keep_first) { 1238 /* 1239 * If this block was part of log chain that couldn't 1240 * be claimed because a device was missing during 1241 * zil_claim(), but that device later returns, 1242 * then this block could erroneously appear valid. 1243 * To guard against this, assign a new GUID to the new 1244 * log chain so it doesn't matter what blk points to. 1245 */ 1246 zil_init_log_chain(zilog, &blk); 1247 zh->zh_log = blk; 1248 } 1249 } 1250 1251 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1252 zh->zh_log = lwb->lwb_blk; 1253 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1254 break; 1255 list_remove(&zilog->zl_lwb_list, lwb); 1256 zio_free_blk(spa, &lwb->lwb_blk, txg); 1257 kmem_cache_free(zil_lwb_cache, lwb); 1258 1259 /* 1260 * If we don't have anything left in the lwb list then 1261 * we've had an allocation failure and we need to zero 1262 * out the zil_header blkptr so that we don't end 1263 * up freeing the same block twice. 1264 */ 1265 if (list_head(&zilog->zl_lwb_list) == NULL) 1266 BP_ZERO(&zh->zh_log); 1267 } 1268 mutex_exit(&zilog->zl_lock); 1269 } 1270 1271 void 1272 zil_init(void) 1273 { 1274 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1275 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1276 } 1277 1278 void 1279 zil_fini(void) 1280 { 1281 kmem_cache_destroy(zil_lwb_cache); 1282 } 1283 1284 void 1285 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1286 { 1287 zilog->zl_logbias = logbias; 1288 } 1289 1290 zilog_t * 1291 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1292 { 1293 zilog_t *zilog; 1294 1295 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1296 1297 zilog->zl_header = zh_phys; 1298 zilog->zl_os = os; 1299 zilog->zl_spa = dmu_objset_spa(os); 1300 zilog->zl_dmu_pool = dmu_objset_pool(os); 1301 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1302 zilog->zl_logbias = dmu_objset_logbias(os); 1303 1304 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1305 1306 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1307 offsetof(itx_t, itx_node)); 1308 1309 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1310 offsetof(lwb_t, lwb_node)); 1311 1312 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1313 1314 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1315 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1316 1317 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1318 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1319 1320 return (zilog); 1321 } 1322 1323 void 1324 zil_free(zilog_t *zilog) 1325 { 1326 lwb_t *lwb; 1327 1328 zilog->zl_stop_sync = 1; 1329 1330 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1331 list_remove(&zilog->zl_lwb_list, lwb); 1332 if (lwb->lwb_buf != NULL) 1333 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1334 kmem_cache_free(zil_lwb_cache, lwb); 1335 } 1336 list_destroy(&zilog->zl_lwb_list); 1337 1338 avl_destroy(&zilog->zl_vdev_tree); 1339 mutex_destroy(&zilog->zl_vdev_lock); 1340 1341 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1342 list_destroy(&zilog->zl_itx_list); 1343 mutex_destroy(&zilog->zl_lock); 1344 1345 cv_destroy(&zilog->zl_cv_writer); 1346 cv_destroy(&zilog->zl_cv_suspend); 1347 1348 kmem_free(zilog, sizeof (zilog_t)); 1349 } 1350 1351 /* 1352 * Open an intent log. 1353 */ 1354 zilog_t * 1355 zil_open(objset_t *os, zil_get_data_t *get_data) 1356 { 1357 zilog_t *zilog = dmu_objset_zil(os); 1358 1359 zilog->zl_get_data = get_data; 1360 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1361 2, 2, TASKQ_PREPOPULATE); 1362 1363 return (zilog); 1364 } 1365 1366 /* 1367 * Close an intent log. 1368 */ 1369 void 1370 zil_close(zilog_t *zilog) 1371 { 1372 /* 1373 * If the log isn't already committed, mark the objset dirty 1374 * (so zil_sync() will be called) and wait for that txg to sync. 1375 */ 1376 if (!zil_is_committed(zilog)) { 1377 uint64_t txg; 1378 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1379 (void) dmu_tx_assign(tx, TXG_WAIT); 1380 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1381 txg = dmu_tx_get_txg(tx); 1382 dmu_tx_commit(tx); 1383 txg_wait_synced(zilog->zl_dmu_pool, txg); 1384 } 1385 1386 taskq_destroy(zilog->zl_clean_taskq); 1387 zilog->zl_clean_taskq = NULL; 1388 zilog->zl_get_data = NULL; 1389 1390 zil_itx_clean(zilog); 1391 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1392 } 1393 1394 /* 1395 * Suspend an intent log. While in suspended mode, we still honor 1396 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1397 * We suspend the log briefly when taking a snapshot so that the snapshot 1398 * contains all the data it's supposed to, and has an empty intent log. 1399 */ 1400 int 1401 zil_suspend(zilog_t *zilog) 1402 { 1403 const zil_header_t *zh = zilog->zl_header; 1404 1405 mutex_enter(&zilog->zl_lock); 1406 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1407 mutex_exit(&zilog->zl_lock); 1408 return (EBUSY); 1409 } 1410 if (zilog->zl_suspend++ != 0) { 1411 /* 1412 * Someone else already began a suspend. 1413 * Just wait for them to finish. 1414 */ 1415 while (zilog->zl_suspending) 1416 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1417 mutex_exit(&zilog->zl_lock); 1418 return (0); 1419 } 1420 zilog->zl_suspending = B_TRUE; 1421 mutex_exit(&zilog->zl_lock); 1422 1423 zil_commit(zilog, UINT64_MAX, 0); 1424 1425 /* 1426 * Wait for any in-flight log writes to complete. 1427 */ 1428 mutex_enter(&zilog->zl_lock); 1429 while (zilog->zl_writer) 1430 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1431 mutex_exit(&zilog->zl_lock); 1432 1433 zil_destroy(zilog, B_FALSE); 1434 1435 mutex_enter(&zilog->zl_lock); 1436 zilog->zl_suspending = B_FALSE; 1437 cv_broadcast(&zilog->zl_cv_suspend); 1438 mutex_exit(&zilog->zl_lock); 1439 1440 return (0); 1441 } 1442 1443 void 1444 zil_resume(zilog_t *zilog) 1445 { 1446 mutex_enter(&zilog->zl_lock); 1447 ASSERT(zilog->zl_suspend != 0); 1448 zilog->zl_suspend--; 1449 mutex_exit(&zilog->zl_lock); 1450 } 1451 1452 typedef struct zil_replay_arg { 1453 objset_t *zr_os; 1454 zil_replay_func_t **zr_replay; 1455 void *zr_arg; 1456 boolean_t zr_byteswap; 1457 char *zr_lrbuf; 1458 } zil_replay_arg_t; 1459 1460 static void 1461 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1462 { 1463 zil_replay_arg_t *zr = zra; 1464 const zil_header_t *zh = zilog->zl_header; 1465 uint64_t reclen = lr->lrc_reclen; 1466 uint64_t txtype = lr->lrc_txtype; 1467 char *name; 1468 int pass, error; 1469 1470 if (!zilog->zl_replay) /* giving up */ 1471 return; 1472 1473 if (lr->lrc_txg < claim_txg) /* already committed */ 1474 return; 1475 1476 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1477 return; 1478 1479 /* Strip case-insensitive bit, still present in log record */ 1480 txtype &= ~TX_CI; 1481 1482 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1483 error = EINVAL; 1484 goto bad; 1485 } 1486 1487 /* 1488 * Make a copy of the data so we can revise and extend it. 1489 */ 1490 bcopy(lr, zr->zr_lrbuf, reclen); 1491 1492 /* 1493 * The log block containing this lr may have been byteswapped 1494 * so that we can easily examine common fields like lrc_txtype. 1495 * However, the log is a mix of different data types, and only the 1496 * replay vectors know how to byteswap their records. Therefore, if 1497 * the lr was byteswapped, undo it before invoking the replay vector. 1498 */ 1499 if (zr->zr_byteswap) 1500 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1501 1502 /* 1503 * If this is a TX_WRITE with a blkptr, suck in the data. 1504 */ 1505 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1506 lr_write_t *lrw = (lr_write_t *)lr; 1507 blkptr_t *wbp = &lrw->lr_blkptr; 1508 uint64_t wlen = lrw->lr_length; 1509 char *wbuf = zr->zr_lrbuf + reclen; 1510 1511 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1512 bzero(wbuf, wlen); 1513 } else { 1514 /* 1515 * A subsequent write may have overwritten this block, 1516 * in which case wbp may have been been freed and 1517 * reallocated, and our read of wbp may fail with a 1518 * checksum error. We can safely ignore this because 1519 * the later write will provide the correct data. 1520 */ 1521 zbookmark_t zb; 1522 1523 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1524 zb.zb_object = lrw->lr_foid; 1525 zb.zb_level = -1; 1526 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1527 1528 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1529 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1530 ZIO_PRIORITY_SYNC_READ, 1531 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1532 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1533 } 1534 } 1535 1536 /* 1537 * We must now do two things atomically: replay this log record, 1538 * and update the log header sequence number to reflect the fact that 1539 * we did so. At the end of each replay function the sequence number 1540 * is updated if we are in replay mode. 1541 */ 1542 for (pass = 1; pass <= 2; pass++) { 1543 zilog->zl_replaying_seq = lr->lrc_seq; 1544 /* Only byteswap (if needed) on the 1st pass. */ 1545 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1546 zr->zr_byteswap && pass == 1); 1547 1548 if (!error) 1549 return; 1550 1551 /* 1552 * The DMU's dnode layer doesn't see removes until the txg 1553 * commits, so a subsequent claim can spuriously fail with 1554 * EEXIST. So if we receive any error we try syncing out 1555 * any removes then retry the transaction. 1556 */ 1557 if (pass == 1) 1558 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1559 } 1560 1561 bad: 1562 ASSERT(error); 1563 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1564 dmu_objset_name(zr->zr_os, name); 1565 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1566 "dataset %s, seq 0x%llx, txtype %llu %s\n", 1567 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, 1568 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1569 zilog->zl_replay = B_FALSE; 1570 kmem_free(name, MAXNAMELEN); 1571 } 1572 1573 /* ARGSUSED */ 1574 static void 1575 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1576 { 1577 zilog->zl_replay_blks++; 1578 } 1579 1580 /* 1581 * If this dataset has a non-empty intent log, replay it and destroy it. 1582 */ 1583 void 1584 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1585 { 1586 zilog_t *zilog = dmu_objset_zil(os); 1587 const zil_header_t *zh = zilog->zl_header; 1588 zil_replay_arg_t zr; 1589 1590 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 1591 zil_destroy(zilog, B_TRUE); 1592 return; 1593 } 1594 1595 zr.zr_os = os; 1596 zr.zr_replay = replay_func; 1597 zr.zr_arg = arg; 1598 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1599 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1600 1601 /* 1602 * Wait for in-progress removes to sync before starting replay. 1603 */ 1604 txg_wait_synced(zilog->zl_dmu_pool, 0); 1605 1606 zilog->zl_replay = B_TRUE; 1607 zilog->zl_replay_time = lbolt; 1608 ASSERT(zilog->zl_replay_blks == 0); 1609 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1610 zh->zh_claim_txg); 1611 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1612 1613 zil_destroy(zilog, B_FALSE); 1614 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1615 zilog->zl_replay = B_FALSE; 1616 } 1617 1618 /* 1619 * Report whether all transactions are committed 1620 */ 1621 int 1622 zil_is_committed(zilog_t *zilog) 1623 { 1624 lwb_t *lwb; 1625 int ret; 1626 1627 mutex_enter(&zilog->zl_lock); 1628 while (zilog->zl_writer) 1629 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1630 1631 /* recent unpushed intent log transactions? */ 1632 if (!list_is_empty(&zilog->zl_itx_list)) { 1633 ret = B_FALSE; 1634 goto out; 1635 } 1636 1637 /* intent log never used? */ 1638 lwb = list_head(&zilog->zl_lwb_list); 1639 if (lwb == NULL) { 1640 ret = B_TRUE; 1641 goto out; 1642 } 1643 1644 /* 1645 * more than 1 log buffer means zil_sync() hasn't yet freed 1646 * entries after a txg has committed 1647 */ 1648 if (list_next(&zilog->zl_lwb_list, lwb)) { 1649 ret = B_FALSE; 1650 goto out; 1651 } 1652 1653 ASSERT(zil_empty(zilog)); 1654 ret = B_TRUE; 1655 out: 1656 cv_broadcast(&zilog->zl_cv_writer); 1657 mutex_exit(&zilog->zl_lock); 1658 return (ret); 1659 } 1660 1661 /* ARGSUSED */ 1662 int 1663 zil_vdev_offline(char *osname, void *arg) 1664 { 1665 objset_t *os; 1666 zilog_t *zilog; 1667 int error; 1668 1669 error = dmu_objset_hold(osname, FTAG, &os); 1670 if (error) 1671 return (error); 1672 1673 zilog = dmu_objset_zil(os); 1674 if (zil_suspend(zilog) != 0) 1675 error = EEXIST; 1676 else 1677 zil_resume(zilog); 1678 dmu_objset_rele(os, FTAG); 1679 return (error); 1680 } 1681