1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/dmu.h> 29 #include <sys/zap.h> 30 #include <sys/arc.h> 31 #include <sys/stat.h> 32 #include <sys/resource.h> 33 #include <sys/zil.h> 34 #include <sys/zil_impl.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/vdev.h> 37 #include <sys/dmu_tx.h> 38 39 /* 40 * The zfs intent log (ZIL) saves transaction records of system calls 41 * that change the file system in memory with enough information 42 * to be able to replay them. These are stored in memory until 43 * either the DMU transaction group (txg) commits them to the stable pool 44 * and they can be discarded, or they are flushed to the stable log 45 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 46 * requirement. In the event of a panic or power fail then those log 47 * records (transactions) are replayed. 48 * 49 * There is one ZIL per file system. Its on-disk (pool) format consists 50 * of 3 parts: 51 * 52 * - ZIL header 53 * - ZIL blocks 54 * - ZIL records 55 * 56 * A log record holds a system call transaction. Log blocks can 57 * hold many log records and the blocks are chained together. 58 * Each ZIL block contains a block pointer (blkptr_t) to the next 59 * ZIL block in the chain. The ZIL header points to the first 60 * block in the chain. Note there is not a fixed place in the pool 61 * to hold blocks. They are dynamically allocated and freed as 62 * needed from the blocks available. Figure X shows the ZIL structure: 63 */ 64 65 /* 66 * This global ZIL switch affects all pools 67 */ 68 int zil_disable = 0; /* disable intent logging */ 69 70 /* 71 * Tunable parameter for debugging or performance analysis. Setting 72 * zfs_nocacheflush will cause corruption on power loss if a volatile 73 * out-of-order write cache is enabled. 74 */ 75 boolean_t zfs_nocacheflush = B_FALSE; 76 77 static kmem_cache_t *zil_lwb_cache; 78 79 static int 80 zil_dva_compare(const void *x1, const void *x2) 81 { 82 const dva_t *dva1 = x1; 83 const dva_t *dva2 = x2; 84 85 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 86 return (-1); 87 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 88 return (1); 89 90 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 91 return (-1); 92 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 93 return (1); 94 95 return (0); 96 } 97 98 static void 99 zil_dva_tree_init(avl_tree_t *t) 100 { 101 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 102 offsetof(zil_dva_node_t, zn_node)); 103 } 104 105 static void 106 zil_dva_tree_fini(avl_tree_t *t) 107 { 108 zil_dva_node_t *zn; 109 void *cookie = NULL; 110 111 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 112 kmem_free(zn, sizeof (zil_dva_node_t)); 113 114 avl_destroy(t); 115 } 116 117 static int 118 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 119 { 120 zil_dva_node_t *zn; 121 avl_index_t where; 122 123 if (avl_find(t, dva, &where) != NULL) 124 return (EEXIST); 125 126 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 127 zn->zn_dva = *dva; 128 avl_insert(t, zn, where); 129 130 return (0); 131 } 132 133 static zil_header_t * 134 zil_header_in_syncing_context(zilog_t *zilog) 135 { 136 return ((zil_header_t *)zilog->zl_header); 137 } 138 139 static void 140 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 141 { 142 zio_cksum_t *zc = &bp->blk_cksum; 143 144 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 145 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 146 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 147 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 148 } 149 150 /* 151 * Read a log block, make sure it's valid, and byteswap it if necessary. 152 */ 153 static int 154 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 155 { 156 blkptr_t blk = *bp; 157 zbookmark_t zb; 158 uint32_t aflags = ARC_WAIT; 159 int error; 160 161 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 162 zb.zb_object = 0; 163 zb.zb_level = -1; 164 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 165 166 *abufpp = NULL; 167 168 /* 169 * We shouldn't be doing any scrubbing while we're doing log 170 * replay, it's OK to not lock. 171 */ 172 error = arc_read_nolock(NULL, zilog->zl_spa, &blk, 173 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 174 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 175 176 if (error == 0) { 177 char *data = (*abufpp)->b_data; 178 uint64_t blksz = BP_GET_LSIZE(bp); 179 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 180 zio_cksum_t cksum = bp->blk_cksum; 181 182 /* 183 * Validate the checksummed log block. 184 * 185 * Sequence numbers should be... sequential. The checksum 186 * verifier for the next block should be bp's checksum plus 1. 187 * 188 * Also check the log chain linkage and size used. 189 */ 190 cksum.zc_word[ZIL_ZC_SEQ]++; 191 192 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, 193 sizeof (cksum)) || BP_IS_HOLE(&ztp->zit_next_blk) || 194 (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))) { 195 error = ECKSUM; 196 } 197 198 if (error) { 199 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 200 *abufpp = NULL; 201 } 202 } 203 204 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 205 206 return (error); 207 } 208 209 /* 210 * Parse the intent log, and call parse_func for each valid record within. 211 * Return the highest sequence number. 212 */ 213 uint64_t 214 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 215 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 216 { 217 const zil_header_t *zh = zilog->zl_header; 218 uint64_t claim_seq = zh->zh_claim_seq; 219 uint64_t seq = 0; 220 uint64_t max_seq = 0; 221 blkptr_t blk = zh->zh_log; 222 arc_buf_t *abuf; 223 char *lrbuf, *lrp; 224 zil_trailer_t *ztp; 225 int reclen, error; 226 227 if (BP_IS_HOLE(&blk)) 228 return (max_seq); 229 230 /* 231 * Starting at the block pointed to by zh_log we read the log chain. 232 * For each block in the chain we strongly check that block to 233 * ensure its validity. We stop when an invalid block is found. 234 * For each block pointer in the chain we call parse_blk_func(). 235 * For each record in each valid block we call parse_lr_func(). 236 * If the log has been claimed, stop if we encounter a sequence 237 * number greater than the highest claimed sequence number. 238 */ 239 zil_dva_tree_init(&zilog->zl_dva_tree); 240 for (;;) { 241 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 242 243 if (claim_seq != 0 && seq > claim_seq) 244 break; 245 246 ASSERT(max_seq < seq); 247 max_seq = seq; 248 249 error = zil_read_log_block(zilog, &blk, &abuf); 250 251 if (parse_blk_func != NULL) 252 parse_blk_func(zilog, &blk, arg, txg); 253 254 if (error) 255 break; 256 257 lrbuf = abuf->b_data; 258 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 259 blk = ztp->zit_next_blk; 260 261 if (parse_lr_func == NULL) { 262 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 263 continue; 264 } 265 266 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 267 lr_t *lr = (lr_t *)lrp; 268 reclen = lr->lrc_reclen; 269 ASSERT3U(reclen, >=, sizeof (lr_t)); 270 parse_lr_func(zilog, lr, arg, txg); 271 } 272 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 273 } 274 zil_dva_tree_fini(&zilog->zl_dva_tree); 275 276 return (max_seq); 277 } 278 279 /* ARGSUSED */ 280 static void 281 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 282 { 283 spa_t *spa = zilog->zl_spa; 284 int err; 285 286 /* 287 * Claim log block if not already committed and not already claimed. 288 */ 289 if (bp->blk_birth >= first_txg && 290 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 291 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL, 292 ZIO_FLAG_MUSTSUCCEED)); 293 ASSERT(err == 0); 294 } 295 } 296 297 static void 298 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 299 { 300 if (lrc->lrc_txtype == TX_WRITE) { 301 lr_write_t *lr = (lr_write_t *)lrc; 302 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 303 } 304 } 305 306 /* ARGSUSED */ 307 static void 308 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 309 { 310 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 311 } 312 313 static void 314 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 315 { 316 /* 317 * If we previously claimed it, we need to free it. 318 */ 319 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 320 lr_write_t *lr = (lr_write_t *)lrc; 321 blkptr_t *bp = &lr->lr_blkptr; 322 if (bp->blk_birth >= claim_txg && 323 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 324 (void) arc_free(NULL, zilog->zl_spa, 325 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 326 } 327 } 328 } 329 330 /* 331 * Create an on-disk intent log. 332 */ 333 static void 334 zil_create(zilog_t *zilog) 335 { 336 const zil_header_t *zh = zilog->zl_header; 337 lwb_t *lwb; 338 uint64_t txg = 0; 339 dmu_tx_t *tx = NULL; 340 blkptr_t blk; 341 int error = 0; 342 343 /* 344 * Wait for any previous destroy to complete. 345 */ 346 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 347 348 ASSERT(zh->zh_claim_txg == 0); 349 ASSERT(zh->zh_replay_seq == 0); 350 351 blk = zh->zh_log; 352 353 /* 354 * If we don't already have an initial log block or we have one 355 * but it's the wrong endianness then allocate one. 356 */ 357 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 358 tx = dmu_tx_create(zilog->zl_os); 359 (void) dmu_tx_assign(tx, TXG_WAIT); 360 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 361 txg = dmu_tx_get_txg(tx); 362 363 if (!BP_IS_HOLE(&blk)) { 364 zio_free_blk(zilog->zl_spa, &blk, txg); 365 BP_ZERO(&blk); 366 } 367 368 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 369 NULL, txg); 370 371 if (error == 0) 372 zil_init_log_chain(zilog, &blk); 373 } 374 375 /* 376 * Allocate a log write buffer (lwb) for the first log block. 377 */ 378 if (error == 0) { 379 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 380 lwb->lwb_zilog = zilog; 381 lwb->lwb_blk = blk; 382 lwb->lwb_nused = 0; 383 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 384 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 385 lwb->lwb_max_txg = txg; 386 lwb->lwb_zio = NULL; 387 388 mutex_enter(&zilog->zl_lock); 389 list_insert_tail(&zilog->zl_lwb_list, lwb); 390 mutex_exit(&zilog->zl_lock); 391 } 392 393 /* 394 * If we just allocated the first log block, commit our transaction 395 * and wait for zil_sync() to stuff the block poiner into zh_log. 396 * (zh is part of the MOS, so we cannot modify it in open context.) 397 */ 398 if (tx != NULL) { 399 dmu_tx_commit(tx); 400 txg_wait_synced(zilog->zl_dmu_pool, txg); 401 } 402 403 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 404 } 405 406 /* 407 * In one tx, free all log blocks and clear the log header. 408 * If keep_first is set, then we're replaying a log with no content. 409 * We want to keep the first block, however, so that the first 410 * synchronous transaction doesn't require a txg_wait_synced() 411 * in zil_create(). We don't need to txg_wait_synced() here either 412 * when keep_first is set, because both zil_create() and zil_destroy() 413 * will wait for any in-progress destroys to complete. 414 */ 415 void 416 zil_destroy(zilog_t *zilog, boolean_t keep_first) 417 { 418 const zil_header_t *zh = zilog->zl_header; 419 lwb_t *lwb; 420 dmu_tx_t *tx; 421 uint64_t txg; 422 423 /* 424 * Wait for any previous destroy to complete. 425 */ 426 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 427 428 if (BP_IS_HOLE(&zh->zh_log)) 429 return; 430 431 tx = dmu_tx_create(zilog->zl_os); 432 (void) dmu_tx_assign(tx, TXG_WAIT); 433 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 434 txg = dmu_tx_get_txg(tx); 435 436 mutex_enter(&zilog->zl_lock); 437 438 /* 439 * It is possible for the ZIL to get the previously mounted zilog 440 * structure of the same dataset if quickly remounted and the dbuf 441 * eviction has not completed. In this case we can see a non 442 * empty lwb list and keep_first will be set. We fix this by 443 * clearing the keep_first. This will be slower but it's very rare. 444 */ 445 if (!list_is_empty(&zilog->zl_lwb_list) && keep_first) 446 keep_first = B_FALSE; 447 448 ASSERT3U(zilog->zl_destroy_txg, <, txg); 449 zilog->zl_destroy_txg = txg; 450 zilog->zl_keep_first = keep_first; 451 452 if (!list_is_empty(&zilog->zl_lwb_list)) { 453 ASSERT(zh->zh_claim_txg == 0); 454 ASSERT(!keep_first); 455 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 456 list_remove(&zilog->zl_lwb_list, lwb); 457 if (lwb->lwb_buf != NULL) 458 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 459 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 460 kmem_cache_free(zil_lwb_cache, lwb); 461 } 462 } else { 463 if (!keep_first) { 464 (void) zil_parse(zilog, zil_free_log_block, 465 zil_free_log_record, tx, zh->zh_claim_txg); 466 } 467 } 468 mutex_exit(&zilog->zl_lock); 469 470 dmu_tx_commit(tx); 471 } 472 473 /* 474 * return true if the initial log block is not valid 475 */ 476 static boolean_t 477 zil_empty(zilog_t *zilog) 478 { 479 const zil_header_t *zh = zilog->zl_header; 480 arc_buf_t *abuf = NULL; 481 482 if (BP_IS_HOLE(&zh->zh_log)) 483 return (B_TRUE); 484 485 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 486 return (B_TRUE); 487 488 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 489 return (B_FALSE); 490 } 491 492 int 493 zil_claim(char *osname, void *txarg) 494 { 495 dmu_tx_t *tx = txarg; 496 uint64_t first_txg = dmu_tx_get_txg(tx); 497 zilog_t *zilog; 498 zil_header_t *zh; 499 objset_t *os; 500 int error; 501 502 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 503 if (error) { 504 cmn_err(CE_WARN, "can't open objset for %s", osname); 505 return (0); 506 } 507 508 zilog = dmu_objset_zil(os); 509 zh = zil_header_in_syncing_context(zilog); 510 511 /* 512 * Record here whether the zil has any records to replay. 513 * If the header block pointer is null or the block points 514 * to the stubby then we know there are no valid log records. 515 * We use the header to store this state as the the zilog gets 516 * freed later in dmu_objset_close(). 517 * The flags (and the rest of the header fields) are cleared in 518 * zil_sync() as a result of a zil_destroy(), after replaying the log. 519 * 520 * Note, the intent log can be empty but still need the 521 * stubby to be claimed. 522 */ 523 if (!zil_empty(zilog)) 524 zh->zh_flags |= ZIL_REPLAY_NEEDED; 525 526 /* 527 * Claim all log blocks if we haven't already done so, and remember 528 * the highest claimed sequence number. This ensures that if we can 529 * read only part of the log now (e.g. due to a missing device), 530 * but we can read the entire log later, we will not try to replay 531 * or destroy beyond the last block we successfully claimed. 532 */ 533 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 534 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 535 zh->zh_claim_txg = first_txg; 536 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 537 zil_claim_log_record, tx, first_txg); 538 dsl_dataset_dirty(dmu_objset_ds(os), tx); 539 } 540 541 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 542 dmu_objset_close(os); 543 return (0); 544 } 545 546 /* 547 * Check the log by walking the log chain. 548 * Checksum errors are ok as they indicate the end of the chain. 549 * Any other error (no device or read failure) returns an error. 550 */ 551 /* ARGSUSED */ 552 int 553 zil_check_log_chain(char *osname, void *txarg) 554 { 555 zilog_t *zilog; 556 zil_header_t *zh; 557 blkptr_t blk; 558 arc_buf_t *abuf; 559 objset_t *os; 560 char *lrbuf; 561 zil_trailer_t *ztp; 562 int error; 563 564 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 565 if (error) { 566 cmn_err(CE_WARN, "can't open objset for %s", osname); 567 return (0); 568 } 569 570 zilog = dmu_objset_zil(os); 571 zh = zil_header_in_syncing_context(zilog); 572 blk = zh->zh_log; 573 if (BP_IS_HOLE(&blk)) { 574 dmu_objset_close(os); 575 return (0); /* no chain */ 576 } 577 578 for (;;) { 579 error = zil_read_log_block(zilog, &blk, &abuf); 580 if (error) 581 break; 582 lrbuf = abuf->b_data; 583 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 584 blk = ztp->zit_next_blk; 585 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 586 } 587 dmu_objset_close(os); 588 if (error == ECKSUM) 589 return (0); /* normal end of chain */ 590 return (error); 591 } 592 593 /* 594 * Clear a log chain 595 */ 596 /* ARGSUSED */ 597 int 598 zil_clear_log_chain(char *osname, void *txarg) 599 { 600 zilog_t *zilog; 601 zil_header_t *zh; 602 objset_t *os; 603 dmu_tx_t *tx; 604 int error; 605 606 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 607 if (error) { 608 cmn_err(CE_WARN, "can't open objset for %s", osname); 609 return (0); 610 } 611 612 zilog = dmu_objset_zil(os); 613 tx = dmu_tx_create(zilog->zl_os); 614 (void) dmu_tx_assign(tx, TXG_WAIT); 615 zh = zil_header_in_syncing_context(zilog); 616 BP_ZERO(&zh->zh_log); 617 dsl_dataset_dirty(dmu_objset_ds(os), tx); 618 dmu_tx_commit(tx); 619 dmu_objset_close(os); 620 return (0); 621 } 622 623 static int 624 zil_vdev_compare(const void *x1, const void *x2) 625 { 626 uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 627 uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 628 629 if (v1 < v2) 630 return (-1); 631 if (v1 > v2) 632 return (1); 633 634 return (0); 635 } 636 637 void 638 zil_add_block(zilog_t *zilog, blkptr_t *bp) 639 { 640 avl_tree_t *t = &zilog->zl_vdev_tree; 641 avl_index_t where; 642 zil_vdev_node_t *zv, zvsearch; 643 int ndvas = BP_GET_NDVAS(bp); 644 int i; 645 646 if (zfs_nocacheflush) 647 return; 648 649 ASSERT(zilog->zl_writer); 650 651 /* 652 * Even though we're zl_writer, we still need a lock because the 653 * zl_get_data() callbacks may have dmu_sync() done callbacks 654 * that will run concurrently. 655 */ 656 mutex_enter(&zilog->zl_vdev_lock); 657 for (i = 0; i < ndvas; i++) { 658 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 659 if (avl_find(t, &zvsearch, &where) == NULL) { 660 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 661 zv->zv_vdev = zvsearch.zv_vdev; 662 avl_insert(t, zv, where); 663 } 664 } 665 mutex_exit(&zilog->zl_vdev_lock); 666 } 667 668 void 669 zil_flush_vdevs(zilog_t *zilog) 670 { 671 spa_t *spa = zilog->zl_spa; 672 avl_tree_t *t = &zilog->zl_vdev_tree; 673 void *cookie = NULL; 674 zil_vdev_node_t *zv; 675 zio_t *zio; 676 677 ASSERT(zilog->zl_writer); 678 679 /* 680 * We don't need zl_vdev_lock here because we're the zl_writer, 681 * and all zl_get_data() callbacks are done. 682 */ 683 if (avl_numnodes(t) == 0) 684 return; 685 686 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 687 688 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 689 690 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 691 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 692 if (vd != NULL) 693 zio_flush(zio, vd); 694 kmem_free(zv, sizeof (*zv)); 695 } 696 697 /* 698 * Wait for all the flushes to complete. Not all devices actually 699 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 700 */ 701 (void) zio_wait(zio); 702 703 spa_config_exit(spa, SCL_STATE, FTAG); 704 } 705 706 /* 707 * Function called when a log block write completes 708 */ 709 static void 710 zil_lwb_write_done(zio_t *zio) 711 { 712 lwb_t *lwb = zio->io_private; 713 zilog_t *zilog = lwb->lwb_zilog; 714 715 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 716 ASSERT(BP_GET_CHECKSUM(zio->io_bp) == ZIO_CHECKSUM_ZILOG); 717 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 718 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 719 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 720 ASSERT(!BP_IS_GANG(zio->io_bp)); 721 ASSERT(!BP_IS_HOLE(zio->io_bp)); 722 ASSERT(zio->io_bp->blk_fill == 0); 723 724 /* 725 * Ensure the lwb buffer pointer is cleared before releasing 726 * the txg. If we have had an allocation failure and 727 * the txg is waiting to sync then we want want zil_sync() 728 * to remove the lwb so that it's not picked up as the next new 729 * one in zil_commit_writer(). zil_sync() will only remove 730 * the lwb if lwb_buf is null. 731 */ 732 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 733 mutex_enter(&zilog->zl_lock); 734 lwb->lwb_buf = NULL; 735 if (zio->io_error) 736 zilog->zl_log_error = B_TRUE; 737 mutex_exit(&zilog->zl_lock); 738 739 /* 740 * Now that we've written this log block, we have a stable pointer 741 * to the next block in the chain, so it's OK to let the txg in 742 * which we allocated the next block sync. 743 */ 744 txg_rele_to_sync(&lwb->lwb_txgh); 745 } 746 747 /* 748 * Initialize the io for a log block. 749 */ 750 static void 751 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 752 { 753 zbookmark_t zb; 754 755 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 756 zb.zb_object = 0; 757 zb.zb_level = -1; 758 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 759 760 if (zilog->zl_root_zio == NULL) { 761 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 762 ZIO_FLAG_CANFAIL); 763 } 764 if (lwb->lwb_zio == NULL) { 765 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 766 0, &lwb->lwb_blk, lwb->lwb_buf, 767 lwb->lwb_sz, zil_lwb_write_done, lwb, 768 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb); 769 } 770 } 771 772 /* 773 * Start a log block write and advance to the next log block. 774 * Calls are serialized. 775 */ 776 static lwb_t * 777 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 778 { 779 lwb_t *nlwb; 780 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 781 spa_t *spa = zilog->zl_spa; 782 blkptr_t *bp = &ztp->zit_next_blk; 783 uint64_t txg; 784 uint64_t zil_blksz; 785 int error; 786 787 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 788 789 /* 790 * Allocate the next block and save its address in this block 791 * before writing it in order to establish the log chain. 792 * Note that if the allocation of nlwb synced before we wrote 793 * the block that points at it (lwb), we'd leak it if we crashed. 794 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 795 */ 796 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 797 txg_rele_to_quiesce(&lwb->lwb_txgh); 798 799 /* 800 * Pick a ZIL blocksize. We request a size that is the 801 * maximum of the previous used size, the current used size and 802 * the amount waiting in the queue. 803 */ 804 zil_blksz = MAX(zilog->zl_prev_used, 805 zilog->zl_cur_used + sizeof (*ztp)); 806 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 807 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 808 if (zil_blksz > ZIL_MAX_BLKSZ) 809 zil_blksz = ZIL_MAX_BLKSZ; 810 811 BP_ZERO(bp); 812 /* pass the old blkptr in order to spread log blocks across devs */ 813 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); 814 if (error) { 815 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 816 817 /* 818 * We dirty the dataset to ensure that zil_sync() will 819 * be called to remove this lwb from our zl_lwb_list. 820 * Failing to do so, may leave an lwb with a NULL lwb_buf 821 * hanging around on the zl_lwb_list. 822 */ 823 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 824 dmu_tx_commit(tx); 825 826 /* 827 * Since we've just experienced an allocation failure so we 828 * terminate the current lwb and send it on its way. 829 */ 830 ztp->zit_pad = 0; 831 ztp->zit_nused = lwb->lwb_nused; 832 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 833 zio_nowait(lwb->lwb_zio); 834 835 /* 836 * By returning NULL the caller will call tx_wait_synced() 837 */ 838 return (NULL); 839 } 840 841 ASSERT3U(bp->blk_birth, ==, txg); 842 ztp->zit_pad = 0; 843 ztp->zit_nused = lwb->lwb_nused; 844 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 845 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 846 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 847 848 /* 849 * Allocate a new log write buffer (lwb). 850 */ 851 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 852 853 nlwb->lwb_zilog = zilog; 854 nlwb->lwb_blk = *bp; 855 nlwb->lwb_nused = 0; 856 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 857 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 858 nlwb->lwb_max_txg = txg; 859 nlwb->lwb_zio = NULL; 860 861 /* 862 * Put new lwb at the end of the log chain 863 */ 864 mutex_enter(&zilog->zl_lock); 865 list_insert_tail(&zilog->zl_lwb_list, nlwb); 866 mutex_exit(&zilog->zl_lock); 867 868 /* Record the block for later vdev flushing */ 869 zil_add_block(zilog, &lwb->lwb_blk); 870 871 /* 872 * kick off the write for the old log block 873 */ 874 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 875 ASSERT(lwb->lwb_zio); 876 zio_nowait(lwb->lwb_zio); 877 878 return (nlwb); 879 } 880 881 static lwb_t * 882 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 883 { 884 lr_t *lrc = &itx->itx_lr; /* common log record */ 885 lr_write_t *lr = (lr_write_t *)lrc; 886 uint64_t txg = lrc->lrc_txg; 887 uint64_t reclen = lrc->lrc_reclen; 888 uint64_t dlen; 889 890 if (lwb == NULL) 891 return (NULL); 892 ASSERT(lwb->lwb_buf != NULL); 893 894 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 895 dlen = P2ROUNDUP_TYPED( 896 lr->lr_length, sizeof (uint64_t), uint64_t); 897 else 898 dlen = 0; 899 900 zilog->zl_cur_used += (reclen + dlen); 901 902 zil_lwb_write_init(zilog, lwb); 903 904 /* 905 * If this record won't fit in the current log block, start a new one. 906 */ 907 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 908 lwb = zil_lwb_write_start(zilog, lwb); 909 if (lwb == NULL) 910 return (NULL); 911 zil_lwb_write_init(zilog, lwb); 912 ASSERT(lwb->lwb_nused == 0); 913 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 914 txg_wait_synced(zilog->zl_dmu_pool, txg); 915 return (lwb); 916 } 917 } 918 919 /* 920 * Update the lrc_seq, to be log record sequence number. See zil.h 921 * Then copy the record to the log buffer. 922 */ 923 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 924 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 925 926 /* 927 * If it's a write, fetch the data or get its blkptr as appropriate. 928 */ 929 if (lrc->lrc_txtype == TX_WRITE) { 930 if (txg > spa_freeze_txg(zilog->zl_spa)) 931 txg_wait_synced(zilog->zl_dmu_pool, txg); 932 if (itx->itx_wr_state != WR_COPIED) { 933 char *dbuf; 934 int error; 935 936 /* alignment is guaranteed */ 937 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 938 if (dlen) { 939 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 940 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 941 lr->lr_common.lrc_reclen += dlen; 942 } else { 943 ASSERT(itx->itx_wr_state == WR_INDIRECT); 944 dbuf = NULL; 945 } 946 error = zilog->zl_get_data( 947 itx->itx_private, lr, dbuf, lwb->lwb_zio); 948 if (error) { 949 ASSERT(error == ENOENT || error == EEXIST || 950 error == EALREADY); 951 return (lwb); 952 } 953 } 954 } 955 956 lwb->lwb_nused += reclen + dlen; 957 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 958 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 959 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 960 961 return (lwb); 962 } 963 964 itx_t * 965 zil_itx_create(uint64_t txtype, size_t lrsize) 966 { 967 itx_t *itx; 968 969 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 970 971 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 972 itx->itx_lr.lrc_txtype = txtype; 973 itx->itx_lr.lrc_reclen = lrsize; 974 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 975 itx->itx_lr.lrc_seq = 0; /* defensive */ 976 977 return (itx); 978 } 979 980 uint64_t 981 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 982 { 983 uint64_t seq; 984 985 ASSERT(itx->itx_lr.lrc_seq == 0); 986 987 mutex_enter(&zilog->zl_lock); 988 list_insert_tail(&zilog->zl_itx_list, itx); 989 zilog->zl_itx_list_sz += itx->itx_sod; 990 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 991 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 992 mutex_exit(&zilog->zl_lock); 993 994 return (seq); 995 } 996 997 /* 998 * Free up all in-memory intent log transactions that have now been synced. 999 */ 1000 static void 1001 zil_itx_clean(zilog_t *zilog) 1002 { 1003 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 1004 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 1005 list_t clean_list; 1006 itx_t *itx; 1007 1008 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1009 1010 mutex_enter(&zilog->zl_lock); 1011 /* wait for a log writer to finish walking list */ 1012 while (zilog->zl_writer) { 1013 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1014 } 1015 1016 /* 1017 * Move the sync'd log transactions to a separate list so we can call 1018 * kmem_free without holding the zl_lock. 1019 * 1020 * There is no need to set zl_writer as we don't drop zl_lock here 1021 */ 1022 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 1023 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 1024 list_remove(&zilog->zl_itx_list, itx); 1025 zilog->zl_itx_list_sz -= itx->itx_sod; 1026 list_insert_tail(&clean_list, itx); 1027 } 1028 cv_broadcast(&zilog->zl_cv_writer); 1029 mutex_exit(&zilog->zl_lock); 1030 1031 /* destroy sync'd log transactions */ 1032 while ((itx = list_head(&clean_list)) != NULL) { 1033 list_remove(&clean_list, itx); 1034 kmem_free(itx, offsetof(itx_t, itx_lr) 1035 + itx->itx_lr.lrc_reclen); 1036 } 1037 list_destroy(&clean_list); 1038 } 1039 1040 /* 1041 * If there are any in-memory intent log transactions which have now been 1042 * synced then start up a taskq to free them. 1043 */ 1044 void 1045 zil_clean(zilog_t *zilog) 1046 { 1047 itx_t *itx; 1048 1049 mutex_enter(&zilog->zl_lock); 1050 itx = list_head(&zilog->zl_itx_list); 1051 if ((itx != NULL) && 1052 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 1053 (void) taskq_dispatch(zilog->zl_clean_taskq, 1054 (task_func_t *)zil_itx_clean, zilog, TQ_SLEEP); 1055 } 1056 mutex_exit(&zilog->zl_lock); 1057 } 1058 1059 static void 1060 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 1061 { 1062 uint64_t txg; 1063 uint64_t commit_seq = 0; 1064 itx_t *itx, *itx_next = (itx_t *)-1; 1065 lwb_t *lwb; 1066 spa_t *spa; 1067 1068 zilog->zl_writer = B_TRUE; 1069 ASSERT(zilog->zl_root_zio == NULL); 1070 spa = zilog->zl_spa; 1071 1072 if (zilog->zl_suspend) { 1073 lwb = NULL; 1074 } else { 1075 lwb = list_tail(&zilog->zl_lwb_list); 1076 if (lwb == NULL) { 1077 /* 1078 * Return if there's nothing to flush before we 1079 * dirty the fs by calling zil_create() 1080 */ 1081 if (list_is_empty(&zilog->zl_itx_list)) { 1082 zilog->zl_writer = B_FALSE; 1083 return; 1084 } 1085 mutex_exit(&zilog->zl_lock); 1086 zil_create(zilog); 1087 mutex_enter(&zilog->zl_lock); 1088 lwb = list_tail(&zilog->zl_lwb_list); 1089 } 1090 } 1091 1092 /* Loop through in-memory log transactions filling log blocks. */ 1093 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1094 for (;;) { 1095 /* 1096 * Find the next itx to push: 1097 * Push all transactions related to specified foid and all 1098 * other transactions except TX_WRITE, TX_TRUNCATE, 1099 * TX_SETATTR and TX_ACL for all other files. 1100 */ 1101 if (itx_next != (itx_t *)-1) 1102 itx = itx_next; 1103 else 1104 itx = list_head(&zilog->zl_itx_list); 1105 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 1106 if (foid == 0) /* push all foids? */ 1107 break; 1108 if (itx->itx_sync) /* push all O_[D]SYNC */ 1109 break; 1110 switch (itx->itx_lr.lrc_txtype) { 1111 case TX_SETATTR: 1112 case TX_WRITE: 1113 case TX_TRUNCATE: 1114 case TX_ACL: 1115 /* lr_foid is same offset for these records */ 1116 if (((lr_write_t *)&itx->itx_lr)->lr_foid 1117 != foid) { 1118 continue; /* skip this record */ 1119 } 1120 } 1121 break; 1122 } 1123 if (itx == NULL) 1124 break; 1125 1126 if ((itx->itx_lr.lrc_seq > seq) && 1127 ((lwb == NULL) || (lwb->lwb_nused == 0) || 1128 (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) { 1129 break; 1130 } 1131 1132 /* 1133 * Save the next pointer. Even though we soon drop 1134 * zl_lock all threads that may change the list 1135 * (another writer or zil_itx_clean) can't do so until 1136 * they have zl_writer. 1137 */ 1138 itx_next = list_next(&zilog->zl_itx_list, itx); 1139 list_remove(&zilog->zl_itx_list, itx); 1140 zilog->zl_itx_list_sz -= itx->itx_sod; 1141 mutex_exit(&zilog->zl_lock); 1142 txg = itx->itx_lr.lrc_txg; 1143 ASSERT(txg); 1144 1145 if (txg > spa_last_synced_txg(spa) || 1146 txg > spa_freeze_txg(spa)) 1147 lwb = zil_lwb_commit(zilog, itx, lwb); 1148 kmem_free(itx, offsetof(itx_t, itx_lr) 1149 + itx->itx_lr.lrc_reclen); 1150 mutex_enter(&zilog->zl_lock); 1151 } 1152 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1153 /* determine commit sequence number */ 1154 itx = list_head(&zilog->zl_itx_list); 1155 if (itx) 1156 commit_seq = itx->itx_lr.lrc_seq; 1157 else 1158 commit_seq = zilog->zl_itx_seq; 1159 mutex_exit(&zilog->zl_lock); 1160 1161 /* write the last block out */ 1162 if (lwb != NULL && lwb->lwb_zio != NULL) 1163 lwb = zil_lwb_write_start(zilog, lwb); 1164 1165 zilog->zl_prev_used = zilog->zl_cur_used; 1166 zilog->zl_cur_used = 0; 1167 1168 /* 1169 * Wait if necessary for the log blocks to be on stable storage. 1170 */ 1171 if (zilog->zl_root_zio) { 1172 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1173 (void) zio_wait(zilog->zl_root_zio); 1174 zilog->zl_root_zio = NULL; 1175 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1176 zil_flush_vdevs(zilog); 1177 } 1178 1179 if (zilog->zl_log_error || lwb == NULL) { 1180 zilog->zl_log_error = 0; 1181 txg_wait_synced(zilog->zl_dmu_pool, 0); 1182 } 1183 1184 mutex_enter(&zilog->zl_lock); 1185 zilog->zl_writer = B_FALSE; 1186 1187 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1188 zilog->zl_commit_seq = commit_seq; 1189 } 1190 1191 /* 1192 * Push zfs transactions to stable storage up to the supplied sequence number. 1193 * If foid is 0 push out all transactions, otherwise push only those 1194 * for that file or might have been used to create that file. 1195 */ 1196 void 1197 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1198 { 1199 if (zilog == NULL || seq == 0) 1200 return; 1201 1202 mutex_enter(&zilog->zl_lock); 1203 1204 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1205 1206 while (zilog->zl_writer) { 1207 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1208 if (seq < zilog->zl_commit_seq) { 1209 mutex_exit(&zilog->zl_lock); 1210 return; 1211 } 1212 } 1213 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1214 /* wake up others waiting on the commit */ 1215 cv_broadcast(&zilog->zl_cv_writer); 1216 mutex_exit(&zilog->zl_lock); 1217 } 1218 1219 /* 1220 * Called in syncing context to free committed log blocks and update log header. 1221 */ 1222 void 1223 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1224 { 1225 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1226 uint64_t txg = dmu_tx_get_txg(tx); 1227 spa_t *spa = zilog->zl_spa; 1228 lwb_t *lwb; 1229 1230 /* 1231 * We don't zero out zl_destroy_txg, so make sure we don't try 1232 * to destroy it twice. 1233 */ 1234 if (spa_sync_pass(spa) != 1) 1235 return; 1236 1237 mutex_enter(&zilog->zl_lock); 1238 1239 ASSERT(zilog->zl_stop_sync == 0); 1240 1241 zh->zh_replay_seq = zilog->zl_replayed_seq[txg & TXG_MASK]; 1242 1243 if (zilog->zl_destroy_txg == txg) { 1244 blkptr_t blk = zh->zh_log; 1245 1246 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1247 1248 bzero(zh, sizeof (zil_header_t)); 1249 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1250 1251 if (zilog->zl_keep_first) { 1252 /* 1253 * If this block was part of log chain that couldn't 1254 * be claimed because a device was missing during 1255 * zil_claim(), but that device later returns, 1256 * then this block could erroneously appear valid. 1257 * To guard against this, assign a new GUID to the new 1258 * log chain so it doesn't matter what blk points to. 1259 */ 1260 zil_init_log_chain(zilog, &blk); 1261 zh->zh_log = blk; 1262 } 1263 } 1264 1265 for (;;) { 1266 lwb = list_head(&zilog->zl_lwb_list); 1267 if (lwb == NULL) { 1268 mutex_exit(&zilog->zl_lock); 1269 return; 1270 } 1271 zh->zh_log = lwb->lwb_blk; 1272 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1273 break; 1274 list_remove(&zilog->zl_lwb_list, lwb); 1275 zio_free_blk(spa, &lwb->lwb_blk, txg); 1276 kmem_cache_free(zil_lwb_cache, lwb); 1277 1278 /* 1279 * If we don't have anything left in the lwb list then 1280 * we've had an allocation failure and we need to zero 1281 * out the zil_header blkptr so that we don't end 1282 * up freeing the same block twice. 1283 */ 1284 if (list_head(&zilog->zl_lwb_list) == NULL) 1285 BP_ZERO(&zh->zh_log); 1286 } 1287 mutex_exit(&zilog->zl_lock); 1288 } 1289 1290 void 1291 zil_init(void) 1292 { 1293 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1294 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1295 } 1296 1297 void 1298 zil_fini(void) 1299 { 1300 kmem_cache_destroy(zil_lwb_cache); 1301 } 1302 1303 zilog_t * 1304 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1305 { 1306 zilog_t *zilog; 1307 1308 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1309 1310 zilog->zl_header = zh_phys; 1311 zilog->zl_os = os; 1312 zilog->zl_spa = dmu_objset_spa(os); 1313 zilog->zl_dmu_pool = dmu_objset_pool(os); 1314 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1315 1316 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1317 1318 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1319 offsetof(itx_t, itx_node)); 1320 1321 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1322 offsetof(lwb_t, lwb_node)); 1323 1324 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1325 1326 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1327 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1328 1329 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1330 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1331 1332 return (zilog); 1333 } 1334 1335 void 1336 zil_free(zilog_t *zilog) 1337 { 1338 lwb_t *lwb; 1339 1340 zilog->zl_stop_sync = 1; 1341 1342 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1343 list_remove(&zilog->zl_lwb_list, lwb); 1344 if (lwb->lwb_buf != NULL) 1345 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1346 kmem_cache_free(zil_lwb_cache, lwb); 1347 } 1348 list_destroy(&zilog->zl_lwb_list); 1349 1350 avl_destroy(&zilog->zl_vdev_tree); 1351 mutex_destroy(&zilog->zl_vdev_lock); 1352 1353 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1354 list_destroy(&zilog->zl_itx_list); 1355 mutex_destroy(&zilog->zl_lock); 1356 1357 cv_destroy(&zilog->zl_cv_writer); 1358 cv_destroy(&zilog->zl_cv_suspend); 1359 1360 kmem_free(zilog, sizeof (zilog_t)); 1361 } 1362 1363 /* 1364 * Open an intent log. 1365 */ 1366 zilog_t * 1367 zil_open(objset_t *os, zil_get_data_t *get_data) 1368 { 1369 zilog_t *zilog = dmu_objset_zil(os); 1370 1371 zilog->zl_get_data = get_data; 1372 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1373 2, 2, TASKQ_PREPOPULATE); 1374 1375 return (zilog); 1376 } 1377 1378 /* 1379 * Close an intent log. 1380 */ 1381 void 1382 zil_close(zilog_t *zilog) 1383 { 1384 /* 1385 * If the log isn't already committed, mark the objset dirty 1386 * (so zil_sync() will be called) and wait for that txg to sync. 1387 */ 1388 if (!zil_is_committed(zilog)) { 1389 uint64_t txg; 1390 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1391 (void) dmu_tx_assign(tx, TXG_WAIT); 1392 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1393 txg = dmu_tx_get_txg(tx); 1394 dmu_tx_commit(tx); 1395 txg_wait_synced(zilog->zl_dmu_pool, txg); 1396 } 1397 1398 taskq_destroy(zilog->zl_clean_taskq); 1399 zilog->zl_clean_taskq = NULL; 1400 zilog->zl_get_data = NULL; 1401 1402 zil_itx_clean(zilog); 1403 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1404 } 1405 1406 /* 1407 * Suspend an intent log. While in suspended mode, we still honor 1408 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1409 * We suspend the log briefly when taking a snapshot so that the snapshot 1410 * contains all the data it's supposed to, and has an empty intent log. 1411 */ 1412 int 1413 zil_suspend(zilog_t *zilog) 1414 { 1415 const zil_header_t *zh = zilog->zl_header; 1416 1417 mutex_enter(&zilog->zl_lock); 1418 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1419 mutex_exit(&zilog->zl_lock); 1420 return (EBUSY); 1421 } 1422 if (zilog->zl_suspend++ != 0) { 1423 /* 1424 * Someone else already began a suspend. 1425 * Just wait for them to finish. 1426 */ 1427 while (zilog->zl_suspending) 1428 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1429 mutex_exit(&zilog->zl_lock); 1430 return (0); 1431 } 1432 zilog->zl_suspending = B_TRUE; 1433 mutex_exit(&zilog->zl_lock); 1434 1435 zil_commit(zilog, UINT64_MAX, 0); 1436 1437 /* 1438 * Wait for any in-flight log writes to complete. 1439 */ 1440 mutex_enter(&zilog->zl_lock); 1441 while (zilog->zl_writer) 1442 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1443 mutex_exit(&zilog->zl_lock); 1444 1445 zil_destroy(zilog, B_FALSE); 1446 1447 mutex_enter(&zilog->zl_lock); 1448 zilog->zl_suspending = B_FALSE; 1449 cv_broadcast(&zilog->zl_cv_suspend); 1450 mutex_exit(&zilog->zl_lock); 1451 1452 return (0); 1453 } 1454 1455 void 1456 zil_resume(zilog_t *zilog) 1457 { 1458 mutex_enter(&zilog->zl_lock); 1459 ASSERT(zilog->zl_suspend != 0); 1460 zilog->zl_suspend--; 1461 mutex_exit(&zilog->zl_lock); 1462 } 1463 1464 typedef struct zil_replay_arg { 1465 objset_t *zr_os; 1466 zil_replay_func_t **zr_replay; 1467 void *zr_arg; 1468 boolean_t zr_byteswap; 1469 char *zr_lrbuf; 1470 } zil_replay_arg_t; 1471 1472 static void 1473 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1474 { 1475 zil_replay_arg_t *zr = zra; 1476 const zil_header_t *zh = zilog->zl_header; 1477 uint64_t reclen = lr->lrc_reclen; 1478 uint64_t txtype = lr->lrc_txtype; 1479 char *name; 1480 int pass, error; 1481 1482 if (!zilog->zl_replay) /* giving up */ 1483 return; 1484 1485 if (lr->lrc_txg < claim_txg) /* already committed */ 1486 return; 1487 1488 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1489 return; 1490 1491 /* Strip case-insensitive bit, still present in log record */ 1492 txtype &= ~TX_CI; 1493 1494 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1495 error = EINVAL; 1496 goto bad; 1497 } 1498 1499 /* 1500 * Make a copy of the data so we can revise and extend it. 1501 */ 1502 bcopy(lr, zr->zr_lrbuf, reclen); 1503 1504 /* 1505 * The log block containing this lr may have been byteswapped 1506 * so that we can easily examine common fields like lrc_txtype. 1507 * However, the log is a mix of different data types, and only the 1508 * replay vectors know how to byteswap their records. Therefore, if 1509 * the lr was byteswapped, undo it before invoking the replay vector. 1510 */ 1511 if (zr->zr_byteswap) 1512 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1513 1514 /* 1515 * If this is a TX_WRITE with a blkptr, suck in the data. 1516 */ 1517 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1518 lr_write_t *lrw = (lr_write_t *)lr; 1519 blkptr_t *wbp = &lrw->lr_blkptr; 1520 uint64_t wlen = lrw->lr_length; 1521 char *wbuf = zr->zr_lrbuf + reclen; 1522 1523 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1524 bzero(wbuf, wlen); 1525 } else { 1526 /* 1527 * A subsequent write may have overwritten this block, 1528 * in which case wbp may have been been freed and 1529 * reallocated, and our read of wbp may fail with a 1530 * checksum error. We can safely ignore this because 1531 * the later write will provide the correct data. 1532 */ 1533 zbookmark_t zb; 1534 1535 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1536 zb.zb_object = lrw->lr_foid; 1537 zb.zb_level = -1; 1538 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1539 1540 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1541 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1542 ZIO_PRIORITY_SYNC_READ, 1543 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1544 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1545 } 1546 } 1547 1548 /* 1549 * We must now do two things atomically: replay this log record, 1550 * and update the log header sequence number to reflect the fact that 1551 * we did so. At the end of each replay function the sequence number 1552 * is updated if we are in replay mode. 1553 */ 1554 for (pass = 1; pass <= 2; pass++) { 1555 zilog->zl_replaying_seq = lr->lrc_seq; 1556 /* Only byteswap (if needed) on the 1st pass. */ 1557 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1558 zr->zr_byteswap && pass == 1); 1559 1560 if (!error) 1561 return; 1562 1563 /* 1564 * The DMU's dnode layer doesn't see removes until the txg 1565 * commits, so a subsequent claim can spuriously fail with 1566 * EEXIST. So if we receive any error we try syncing out 1567 * any removes then retry the transaction. 1568 */ 1569 if (pass == 1) 1570 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1571 } 1572 1573 bad: 1574 ASSERT(error); 1575 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1576 dmu_objset_name(zr->zr_os, name); 1577 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1578 "dataset %s, seq 0x%llx, txtype %llu %s\n", 1579 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, 1580 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1581 zilog->zl_replay = B_FALSE; 1582 kmem_free(name, MAXNAMELEN); 1583 } 1584 1585 /* ARGSUSED */ 1586 static void 1587 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1588 { 1589 zilog->zl_replay_blks++; 1590 } 1591 1592 /* 1593 * If this dataset has a non-empty intent log, replay it and destroy it. 1594 */ 1595 void 1596 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1597 { 1598 zilog_t *zilog = dmu_objset_zil(os); 1599 const zil_header_t *zh = zilog->zl_header; 1600 zil_replay_arg_t zr; 1601 1602 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 1603 zil_destroy(zilog, B_TRUE); 1604 return; 1605 } 1606 1607 zr.zr_os = os; 1608 zr.zr_replay = replay_func; 1609 zr.zr_arg = arg; 1610 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1611 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1612 1613 /* 1614 * Wait for in-progress removes to sync before starting replay. 1615 */ 1616 txg_wait_synced(zilog->zl_dmu_pool, 0); 1617 1618 zilog->zl_replay = B_TRUE; 1619 zilog->zl_replay_time = lbolt; 1620 ASSERT(zilog->zl_replay_blks == 0); 1621 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1622 zh->zh_claim_txg); 1623 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1624 1625 zil_destroy(zilog, B_FALSE); 1626 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1627 zilog->zl_replay = B_FALSE; 1628 } 1629 1630 /* 1631 * Report whether all transactions are committed 1632 */ 1633 int 1634 zil_is_committed(zilog_t *zilog) 1635 { 1636 lwb_t *lwb; 1637 int ret; 1638 1639 mutex_enter(&zilog->zl_lock); 1640 while (zilog->zl_writer) 1641 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1642 1643 /* recent unpushed intent log transactions? */ 1644 if (!list_is_empty(&zilog->zl_itx_list)) { 1645 ret = B_FALSE; 1646 goto out; 1647 } 1648 1649 /* intent log never used? */ 1650 lwb = list_head(&zilog->zl_lwb_list); 1651 if (lwb == NULL) { 1652 ret = B_TRUE; 1653 goto out; 1654 } 1655 1656 /* 1657 * more than 1 log buffer means zil_sync() hasn't yet freed 1658 * entries after a txg has committed 1659 */ 1660 if (list_next(&zilog->zl_lwb_list, lwb)) { 1661 ret = B_FALSE; 1662 goto out; 1663 } 1664 1665 ASSERT(zil_empty(zilog)); 1666 ret = B_TRUE; 1667 out: 1668 cv_broadcast(&zilog->zl_cv_writer); 1669 mutex_exit(&zilog->zl_lock); 1670 return (ret); 1671 } 1672