1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev.h> 39 40 /* 41 * The zfs intent log (ZIL) saves transaction records of system calls 42 * that change the file system in memory with enough information 43 * to be able to replay them. These are stored in memory until 44 * either the DMU transaction group (txg) commits them to the stable pool 45 * and they can be discarded, or they are flushed to the stable log 46 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 47 * requirement. In the event of a panic or power fail then those log 48 * records (transactions) are replayed. 49 * 50 * There is one ZIL per file system. Its on-disk (pool) format consists 51 * of 3 parts: 52 * 53 * - ZIL header 54 * - ZIL blocks 55 * - ZIL records 56 * 57 * A log record holds a system call transaction. Log blocks can 58 * hold many log records and the blocks are chained together. 59 * Each ZIL block contains a block pointer (blkptr_t) to the next 60 * ZIL block in the chain. The ZIL header points to the first 61 * block in the chain. Note there is not a fixed place in the pool 62 * to hold blocks. They are dynamically allocated and freed as 63 * needed from the blocks available. Figure X shows the ZIL structure: 64 */ 65 66 /* 67 * These global ZIL switches affect all pools 68 */ 69 int zil_disable = 0; /* disable intent logging */ 70 int zil_always = 0; /* make every transaction synchronous */ 71 int zil_purge = 0; /* at pool open, just throw everything away */ 72 int zil_noflush = 0; /* don't flush write cache buffers on disks */ 73 74 static kmem_cache_t *zil_lwb_cache; 75 76 static int 77 zil_dva_compare(const void *x1, const void *x2) 78 { 79 const dva_t *dva1 = x1; 80 const dva_t *dva2 = x2; 81 82 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 83 return (-1); 84 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 85 return (1); 86 87 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 88 return (-1); 89 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 90 return (1); 91 92 return (0); 93 } 94 95 static void 96 zil_dva_tree_init(avl_tree_t *t) 97 { 98 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 99 offsetof(zil_dva_node_t, zn_node)); 100 } 101 102 static void 103 zil_dva_tree_fini(avl_tree_t *t) 104 { 105 zil_dva_node_t *zn; 106 void *cookie = NULL; 107 108 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 109 kmem_free(zn, sizeof (zil_dva_node_t)); 110 111 avl_destroy(t); 112 } 113 114 static int 115 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 116 { 117 zil_dva_node_t *zn; 118 avl_index_t where; 119 120 if (avl_find(t, dva, &where) != NULL) 121 return (EEXIST); 122 123 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 124 zn->zn_dva = *dva; 125 avl_insert(t, zn, where); 126 127 return (0); 128 } 129 130 static zil_header_t * 131 zil_header_in_syncing_context(zilog_t *zilog) 132 { 133 return ((zil_header_t *)zilog->zl_header); 134 } 135 136 static void 137 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 138 { 139 zio_cksum_t *zc = &bp->blk_cksum; 140 141 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 142 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 143 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 144 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 145 } 146 147 /* 148 * Read a log block, make sure it's valid, and byteswap it if necessary. 149 */ 150 static int 151 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 152 { 153 blkptr_t blk = *bp; 154 zbookmark_t zb; 155 uint32_t aflags = ARC_WAIT; 156 int error; 157 158 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 159 zb.zb_object = 0; 160 zb.zb_level = -1; 161 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 162 163 *abufpp = NULL; 164 165 error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array, 166 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 167 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 168 169 if (error == 0) { 170 char *data = (*abufpp)->b_data; 171 uint64_t blksz = BP_GET_LSIZE(bp); 172 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 173 zio_cksum_t cksum = bp->blk_cksum; 174 175 /* 176 * Sequence numbers should be... sequential. The checksum 177 * verifier for the next block should be bp's checksum plus 1. 178 */ 179 cksum.zc_word[ZIL_ZC_SEQ]++; 180 181 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum))) 182 error = ESTALE; 183 else if (BP_IS_HOLE(&ztp->zit_next_blk)) 184 error = ENOENT; 185 else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t))) 186 error = EOVERFLOW; 187 188 if (error) { 189 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 190 *abufpp = NULL; 191 } 192 } 193 194 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 195 196 return (error); 197 } 198 199 /* 200 * Parse the intent log, and call parse_func for each valid record within. 201 * Return the highest sequence number. 202 */ 203 uint64_t 204 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 205 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 206 { 207 const zil_header_t *zh = zilog->zl_header; 208 uint64_t claim_seq = zh->zh_claim_seq; 209 uint64_t seq = 0; 210 uint64_t max_seq = 0; 211 blkptr_t blk = zh->zh_log; 212 arc_buf_t *abuf; 213 char *lrbuf, *lrp; 214 zil_trailer_t *ztp; 215 int reclen, error; 216 217 if (BP_IS_HOLE(&blk)) 218 return (max_seq); 219 220 /* 221 * Starting at the block pointed to by zh_log we read the log chain. 222 * For each block in the chain we strongly check that block to 223 * ensure its validity. We stop when an invalid block is found. 224 * For each block pointer in the chain we call parse_blk_func(). 225 * For each record in each valid block we call parse_lr_func(). 226 * If the log has been claimed, stop if we encounter a sequence 227 * number greater than the highest claimed sequence number. 228 */ 229 zil_dva_tree_init(&zilog->zl_dva_tree); 230 for (;;) { 231 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 232 233 if (claim_seq != 0 && seq > claim_seq) 234 break; 235 236 ASSERT(max_seq < seq); 237 max_seq = seq; 238 239 error = zil_read_log_block(zilog, &blk, &abuf); 240 241 if (parse_blk_func != NULL) 242 parse_blk_func(zilog, &blk, arg, txg); 243 244 if (error) 245 break; 246 247 lrbuf = abuf->b_data; 248 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 249 blk = ztp->zit_next_blk; 250 251 if (parse_lr_func == NULL) { 252 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 253 continue; 254 } 255 256 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 257 lr_t *lr = (lr_t *)lrp; 258 reclen = lr->lrc_reclen; 259 ASSERT3U(reclen, >=, sizeof (lr_t)); 260 parse_lr_func(zilog, lr, arg, txg); 261 } 262 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 263 } 264 zil_dva_tree_fini(&zilog->zl_dva_tree); 265 266 return (max_seq); 267 } 268 269 /* ARGSUSED */ 270 static void 271 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 272 { 273 spa_t *spa = zilog->zl_spa; 274 int err; 275 276 /* 277 * Claim log block if not already committed and not already claimed. 278 */ 279 if (bp->blk_birth >= first_txg && 280 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 281 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); 282 ASSERT(err == 0); 283 } 284 } 285 286 static void 287 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 288 { 289 if (lrc->lrc_txtype == TX_WRITE) { 290 lr_write_t *lr = (lr_write_t *)lrc; 291 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 292 } 293 } 294 295 /* ARGSUSED */ 296 static void 297 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 298 { 299 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 300 } 301 302 static void 303 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 304 { 305 /* 306 * If we previously claimed it, we need to free it. 307 */ 308 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 309 lr_write_t *lr = (lr_write_t *)lrc; 310 blkptr_t *bp = &lr->lr_blkptr; 311 if (bp->blk_birth >= claim_txg && 312 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 313 (void) arc_free(NULL, zilog->zl_spa, 314 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 315 } 316 } 317 } 318 319 /* 320 * Create an on-disk intent log. 321 */ 322 static void 323 zil_create(zilog_t *zilog) 324 { 325 const zil_header_t *zh = zilog->zl_header; 326 lwb_t *lwb; 327 uint64_t txg = 0; 328 dmu_tx_t *tx = NULL; 329 blkptr_t blk; 330 int error = 0; 331 332 /* 333 * Wait for any previous destroy to complete. 334 */ 335 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 336 337 ASSERT(zh->zh_claim_txg == 0); 338 ASSERT(zh->zh_replay_seq == 0); 339 340 blk = zh->zh_log; 341 342 /* 343 * If we don't already have an initial log block, allocate one now. 344 */ 345 if (BP_IS_HOLE(&blk)) { 346 tx = dmu_tx_create(zilog->zl_os); 347 (void) dmu_tx_assign(tx, TXG_WAIT); 348 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 349 txg = dmu_tx_get_txg(tx); 350 351 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, txg); 352 353 if (error == 0) 354 zil_init_log_chain(zilog, &blk); 355 } 356 357 /* 358 * Allocate a log write buffer (lwb) for the first log block. 359 */ 360 if (error == 0) { 361 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 362 lwb->lwb_zilog = zilog; 363 lwb->lwb_blk = blk; 364 lwb->lwb_nused = 0; 365 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 366 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 367 lwb->lwb_max_txg = txg; 368 lwb->lwb_seq = 0; 369 lwb->lwb_state = UNWRITTEN; 370 lwb->lwb_zio = NULL; 371 372 mutex_enter(&zilog->zl_lock); 373 list_insert_tail(&zilog->zl_lwb_list, lwb); 374 mutex_exit(&zilog->zl_lock); 375 } 376 377 /* 378 * If we just allocated the first log block, commit our transaction 379 * and wait for zil_sync() to stuff the block poiner into zh_log. 380 * (zh is part of the MOS, so we cannot modify it in open context.) 381 */ 382 if (tx != NULL) { 383 dmu_tx_commit(tx); 384 txg_wait_synced(zilog->zl_dmu_pool, txg); 385 } 386 387 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 388 } 389 390 /* 391 * In one tx, free all log blocks and clear the log header. 392 * If keep_first is set, then we're replaying a log with no content. 393 * We want to keep the first block, however, so that the first 394 * synchronous transaction doesn't require a txg_wait_synced() 395 * in zil_create(). We don't need to txg_wait_synced() here either 396 * when keep_first is set, because both zil_create() and zil_destroy() 397 * will wait for any in-progress destroys to complete. 398 */ 399 void 400 zil_destroy(zilog_t *zilog, boolean_t keep_first) 401 { 402 const zil_header_t *zh = zilog->zl_header; 403 lwb_t *lwb; 404 dmu_tx_t *tx; 405 uint64_t txg; 406 407 /* 408 * Wait for any previous destroy to complete. 409 */ 410 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 411 412 if (BP_IS_HOLE(&zh->zh_log)) 413 return; 414 415 tx = dmu_tx_create(zilog->zl_os); 416 (void) dmu_tx_assign(tx, TXG_WAIT); 417 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 418 txg = dmu_tx_get_txg(tx); 419 420 mutex_enter(&zilog->zl_lock); 421 422 ASSERT3U(zilog->zl_destroy_txg, <, txg); 423 zilog->zl_destroy_txg = txg; 424 zilog->zl_keep_first = keep_first; 425 426 if (!list_is_empty(&zilog->zl_lwb_list)) { 427 ASSERT(zh->zh_claim_txg == 0); 428 ASSERT(!keep_first); 429 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 430 list_remove(&zilog->zl_lwb_list, lwb); 431 if (lwb->lwb_buf != NULL) 432 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 433 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 434 kmem_cache_free(zil_lwb_cache, lwb); 435 } 436 mutex_exit(&zilog->zl_lock); 437 } else { 438 mutex_exit(&zilog->zl_lock); 439 if (!keep_first) { 440 (void) zil_parse(zilog, zil_free_log_block, 441 zil_free_log_record, tx, zh->zh_claim_txg); 442 } 443 } 444 445 dmu_tx_commit(tx); 446 447 if (keep_first) /* no need to wait in this case */ 448 return; 449 450 txg_wait_synced(zilog->zl_dmu_pool, txg); 451 ASSERT(BP_IS_HOLE(&zh->zh_log)); 452 } 453 454 int 455 zil_claim(char *osname, void *txarg) 456 { 457 dmu_tx_t *tx = txarg; 458 uint64_t first_txg = dmu_tx_get_txg(tx); 459 zilog_t *zilog; 460 zil_header_t *zh; 461 objset_t *os; 462 int error; 463 464 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os); 465 if (error) { 466 cmn_err(CE_WARN, "can't process intent log for %s", osname); 467 return (0); 468 } 469 470 zilog = dmu_objset_zil(os); 471 zh = zil_header_in_syncing_context(zilog); 472 473 /* 474 * Claim all log blocks if we haven't already done so, and remember 475 * the highest claimed sequence number. This ensures that if we can 476 * read only part of the log now (e.g. due to a missing device), 477 * but we can read the entire log later, we will not try to replay 478 * or destroy beyond the last block we successfully claimed. 479 */ 480 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 481 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 482 zh->zh_claim_txg = first_txg; 483 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 484 zil_claim_log_record, tx, first_txg); 485 dsl_dataset_dirty(dmu_objset_ds(os), tx); 486 } 487 488 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 489 dmu_objset_close(os); 490 return (0); 491 } 492 493 void 494 zil_add_vdev(zilog_t *zilog, uint64_t vdev, uint64_t seq) 495 { 496 zil_vdev_t *zv; 497 498 if (zil_noflush) 499 return; 500 501 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 502 zv = kmem_alloc(sizeof (zil_vdev_t), KM_SLEEP); 503 zv->vdev = vdev; 504 zv->seq = seq; 505 list_insert_tail(&zilog->zl_vdev_list, zv); 506 } 507 508 void 509 zil_flush_vdevs(zilog_t *zilog, uint64_t seq) 510 { 511 vdev_t *vd; 512 zil_vdev_t *zv, *zv2; 513 zio_t *zio; 514 spa_t *spa; 515 uint64_t vdev; 516 517 if (zil_noflush) 518 return; 519 520 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 521 522 spa = zilog->zl_spa; 523 zio = NULL; 524 525 while ((zv = list_head(&zilog->zl_vdev_list)) != NULL && 526 zv->seq <= seq) { 527 vdev = zv->vdev; 528 list_remove(&zilog->zl_vdev_list, zv); 529 kmem_free(zv, sizeof (zil_vdev_t)); 530 531 /* 532 * remove all chained entries <= seq with same vdev 533 */ 534 zv = list_head(&zilog->zl_vdev_list); 535 while (zv && zv->seq <= seq) { 536 zv2 = list_next(&zilog->zl_vdev_list, zv); 537 if (zv->vdev == vdev) { 538 list_remove(&zilog->zl_vdev_list, zv); 539 kmem_free(zv, sizeof (zil_vdev_t)); 540 } 541 zv = zv2; 542 } 543 544 /* flush the write cache for this vdev */ 545 mutex_exit(&zilog->zl_lock); 546 if (zio == NULL) 547 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 548 vd = vdev_lookup_top(spa, vdev); 549 ASSERT(vd); 550 (void) zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 551 NULL, NULL, ZIO_PRIORITY_NOW, 552 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 553 mutex_enter(&zilog->zl_lock); 554 } 555 556 /* 557 * Wait for all the flushes to complete. Not all devices actually 558 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 559 */ 560 if (zio != NULL) { 561 mutex_exit(&zilog->zl_lock); 562 (void) zio_wait(zio); 563 mutex_enter(&zilog->zl_lock); 564 } 565 } 566 567 /* 568 * Function called when a log block write completes 569 */ 570 static void 571 zil_lwb_write_done(zio_t *zio) 572 { 573 lwb_t *prev; 574 lwb_t *lwb = zio->io_private; 575 zilog_t *zilog = lwb->lwb_zilog; 576 uint64_t max_seq; 577 578 /* 579 * Now that we've written this log block, we have a stable pointer 580 * to the next block in the chain, so it's OK to let the txg in 581 * which we allocated the next block sync. 582 */ 583 txg_rele_to_sync(&lwb->lwb_txgh); 584 585 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 586 mutex_enter(&zilog->zl_lock); 587 lwb->lwb_buf = NULL; 588 if (zio->io_error) { 589 zilog->zl_log_error = B_TRUE; 590 mutex_exit(&zilog->zl_lock); 591 cv_broadcast(&zilog->zl_cv_seq); 592 return; 593 } 594 595 prev = list_prev(&zilog->zl_lwb_list, lwb); 596 if (prev && prev->lwb_state != SEQ_COMPLETE) { 597 /* There's an unwritten buffer in the chain before this one */ 598 lwb->lwb_state = SEQ_INCOMPLETE; 599 mutex_exit(&zilog->zl_lock); 600 return; 601 } 602 603 max_seq = lwb->lwb_seq; 604 lwb->lwb_state = SEQ_COMPLETE; 605 /* 606 * We must also follow up the chain for already written buffers 607 * to see if we can set zl_ss_seq even higher. 608 */ 609 while (lwb = list_next(&zilog->zl_lwb_list, lwb)) { 610 if (lwb->lwb_state != SEQ_INCOMPLETE) 611 break; 612 lwb->lwb_state = SEQ_COMPLETE; 613 /* lwb_seq will be zero if we've written an empty buffer */ 614 if (lwb->lwb_seq) { 615 ASSERT3U(max_seq, <, lwb->lwb_seq); 616 max_seq = lwb->lwb_seq; 617 } 618 } 619 zilog->zl_ss_seq = MAX(max_seq, zilog->zl_ss_seq); 620 mutex_exit(&zilog->zl_lock); 621 cv_broadcast(&zilog->zl_cv_seq); 622 } 623 624 /* 625 * Initialize the io for a log block. 626 * 627 * Note, we should not initialize the IO until we are about 628 * to use it, since zio_rewrite() does a spa_config_enter(). 629 */ 630 static void 631 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 632 { 633 zbookmark_t zb; 634 635 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 636 zb.zb_object = 0; 637 zb.zb_level = -1; 638 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 639 640 ASSERT(lwb->lwb_zio == NULL); 641 lwb->lwb_zio = zio_rewrite(NULL, zilog->zl_spa, 642 ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf, 643 lwb->lwb_sz, zil_lwb_write_done, lwb, 644 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 645 } 646 647 /* 648 * Start a log block write and advance to the next log block. 649 * Calls are serialized. 650 */ 651 static lwb_t * 652 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 653 { 654 lwb_t *nlwb; 655 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 656 spa_t *spa = zilog->zl_spa; 657 blkptr_t *bp = &ztp->zit_next_blk; 658 uint64_t txg; 659 uint64_t zil_blksz; 660 int error; 661 662 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 663 664 /* 665 * Allocate the next block and save its address in this block 666 * before writing it in order to establish the log chain. 667 * Note that if the allocation of nlwb synced before we wrote 668 * the block that points at it (lwb), we'd leak it if we crashed. 669 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 670 */ 671 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 672 txg_rele_to_quiesce(&lwb->lwb_txgh); 673 674 /* 675 * Pick a ZIL blocksize. We request a size that is the 676 * maximum of the previous used size, the current used size and 677 * the amount waiting in the queue. 678 */ 679 zil_blksz = MAX(zilog->zl_prev_used, 680 zilog->zl_cur_used + sizeof (*ztp)); 681 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 682 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 683 if (zil_blksz > ZIL_MAX_BLKSZ) 684 zil_blksz = ZIL_MAX_BLKSZ; 685 686 error = zio_alloc_blk(spa, zil_blksz, bp, txg); 687 if (error) { 688 /* 689 * Reinitialise the lwb. 690 * By returning NULL the caller will call tx_wait_synced() 691 */ 692 mutex_enter(&zilog->zl_lock); 693 ASSERT(lwb->lwb_state == UNWRITTEN); 694 lwb->lwb_nused = 0; 695 lwb->lwb_seq = 0; 696 mutex_exit(&zilog->zl_lock); 697 txg_rele_to_sync(&lwb->lwb_txgh); 698 return (NULL); 699 } 700 701 ASSERT3U(bp->blk_birth, ==, txg); 702 ztp->zit_pad = 0; 703 ztp->zit_nused = lwb->lwb_nused; 704 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 705 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 706 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 707 708 /* 709 * Allocate a new log write buffer (lwb). 710 */ 711 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 712 713 nlwb->lwb_zilog = zilog; 714 nlwb->lwb_blk = *bp; 715 nlwb->lwb_nused = 0; 716 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 717 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 718 nlwb->lwb_max_txg = txg; 719 nlwb->lwb_seq = 0; 720 nlwb->lwb_state = UNWRITTEN; 721 nlwb->lwb_zio = NULL; 722 723 /* 724 * Put new lwb at the end of the log chain, 725 * and record the vdev for later flushing 726 */ 727 mutex_enter(&zilog->zl_lock); 728 list_insert_tail(&zilog->zl_lwb_list, nlwb); 729 zil_add_vdev(zilog, DVA_GET_VDEV(BP_IDENTITY(&(lwb->lwb_blk))), 730 lwb->lwb_seq); 731 mutex_exit(&zilog->zl_lock); 732 733 /* 734 * kick off the write for the old log block 735 */ 736 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 737 if (lwb->lwb_zio == NULL) { 738 /* 739 * This can only happen if there are no log records in this 740 * block (i.e. the first record to go in was too big to fit). 741 * XXX - would be nice if we could avoid this IO 742 */ 743 ASSERT(lwb->lwb_nused == 0); 744 zil_lwb_write_init(zilog, lwb); 745 } 746 zio_nowait(lwb->lwb_zio); 747 748 return (nlwb); 749 } 750 751 static lwb_t * 752 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 753 { 754 lr_t *lrc = &itx->itx_lr; /* common log record */ 755 lr_write_t *lr = (lr_write_t *)lrc; 756 uint64_t seq = lrc->lrc_seq; 757 uint64_t txg = lrc->lrc_txg; 758 uint64_t reclen = lrc->lrc_reclen; 759 uint64_t dlen; 760 761 if (lwb == NULL) 762 return (NULL); 763 ASSERT(lwb->lwb_buf != NULL); 764 765 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 766 dlen = P2ROUNDUP_TYPED( 767 lr->lr_length, sizeof (uint64_t), uint64_t); 768 else 769 dlen = 0; 770 771 zilog->zl_cur_used += (reclen + dlen); 772 773 /* 774 * If this record won't fit in the current log block, start a new one. 775 */ 776 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 777 lwb = zil_lwb_write_start(zilog, lwb); 778 if (lwb == NULL) 779 return (NULL); 780 ASSERT(lwb->lwb_nused == 0); 781 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 782 txg_wait_synced(zilog->zl_dmu_pool, txg); 783 mutex_enter(&zilog->zl_lock); 784 zilog->zl_ss_seq = MAX(seq, zilog->zl_ss_seq); 785 mutex_exit(&zilog->zl_lock); 786 return (lwb); 787 } 788 } 789 790 if (lwb->lwb_zio == NULL) 791 zil_lwb_write_init(zilog, lwb); 792 793 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 794 795 /* 796 * If it's a write, fetch the data or get its blkptr as appropriate. 797 */ 798 if (lrc->lrc_txtype == TX_WRITE) { 799 if (txg > spa_freeze_txg(zilog->zl_spa)) 800 txg_wait_synced(zilog->zl_dmu_pool, txg); 801 if (itx->itx_wr_state != WR_COPIED) { 802 char *dbuf; 803 int error; 804 805 /* alignment is guaranteed */ 806 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 807 if (dlen) { 808 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 809 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 810 lr->lr_common.lrc_reclen += dlen; 811 } else { 812 ASSERT(itx->itx_wr_state == WR_INDIRECT); 813 dbuf = NULL; 814 } 815 error = zilog->zl_get_data( 816 itx->itx_private, lr, dbuf, lwb->lwb_zio); 817 if (error) { 818 ASSERT(error == ENOENT || error == EEXIST || 819 error == EALREADY); 820 return (lwb); 821 } 822 } 823 } 824 825 mutex_enter(&zilog->zl_lock); 826 ASSERT(seq > zilog->zl_wait_seq); 827 zilog->zl_wait_seq = seq; 828 mutex_exit(&zilog->zl_lock); 829 lwb->lwb_nused += reclen + dlen; 830 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 831 ASSERT3U(lwb->lwb_seq, <, seq); 832 lwb->lwb_seq = seq; 833 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 834 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 835 836 return (lwb); 837 } 838 839 itx_t * 840 zil_itx_create(int txtype, size_t lrsize) 841 { 842 itx_t *itx; 843 844 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 845 846 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 847 itx->itx_lr.lrc_txtype = txtype; 848 itx->itx_lr.lrc_reclen = lrsize; 849 itx->itx_lr.lrc_seq = 0; /* defensive */ 850 851 return (itx); 852 } 853 854 uint64_t 855 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 856 { 857 uint64_t seq; 858 859 ASSERT(itx->itx_lr.lrc_seq == 0); 860 861 mutex_enter(&zilog->zl_lock); 862 list_insert_tail(&zilog->zl_itx_list, itx); 863 zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen; 864 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 865 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 866 mutex_exit(&zilog->zl_lock); 867 868 return (seq); 869 } 870 871 /* 872 * Free up all in-memory intent log transactions that have now been synced. 873 */ 874 static void 875 zil_itx_clean(zilog_t *zilog) 876 { 877 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 878 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 879 uint64_t max_seq = 0; 880 itx_t *itx; 881 882 mutex_enter(&zilog->zl_lock); 883 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 884 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 885 list_remove(&zilog->zl_itx_list, itx); 886 zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen; 887 ASSERT3U(max_seq, <, itx->itx_lr.lrc_seq); 888 max_seq = itx->itx_lr.lrc_seq; 889 kmem_free(itx, offsetof(itx_t, itx_lr) 890 + itx->itx_lr.lrc_reclen); 891 } 892 if (max_seq > zilog->zl_ss_seq) { 893 zilog->zl_ss_seq = max_seq; 894 cv_broadcast(&zilog->zl_cv_seq); 895 } 896 mutex_exit(&zilog->zl_lock); 897 } 898 899 void 900 zil_clean(zilog_t *zilog) 901 { 902 /* 903 * Check for any log blocks that can be freed. 904 * Log blocks are only freed when the log block allocation and 905 * log records contained within are both known to be committed. 906 */ 907 mutex_enter(&zilog->zl_lock); 908 if (list_head(&zilog->zl_itx_list) != NULL) 909 (void) taskq_dispatch(zilog->zl_clean_taskq, 910 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 911 mutex_exit(&zilog->zl_lock); 912 } 913 914 /* 915 * Push zfs transactions to stable storage up to the supplied sequence number. 916 */ 917 void 918 zil_commit(zilog_t *zilog, uint64_t seq, int ioflag) 919 { 920 uint64_t txg; 921 uint64_t max_seq; 922 uint64_t reclen; 923 itx_t *itx; 924 lwb_t *lwb; 925 spa_t *spa; 926 927 if (zilog == NULL || seq == 0 || 928 ((ioflag & (FSYNC | FDSYNC | FRSYNC)) == 0 && !zil_always)) 929 return; 930 931 spa = zilog->zl_spa; 932 mutex_enter(&zilog->zl_lock); 933 934 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 935 936 for (;;) { 937 if (zilog->zl_ss_seq >= seq) { /* already on stable storage */ 938 mutex_exit(&zilog->zl_lock); 939 return; 940 } 941 942 if (zilog->zl_writer == B_FALSE) /* no one writing, do it */ 943 break; 944 945 cv_wait(&zilog->zl_cv_write, &zilog->zl_lock); 946 } 947 948 zilog->zl_writer = B_TRUE; 949 max_seq = 0; 950 951 if (zilog->zl_suspend) { 952 lwb = NULL; 953 } else { 954 lwb = list_tail(&zilog->zl_lwb_list); 955 if (lwb == NULL) { 956 mutex_exit(&zilog->zl_lock); 957 zil_create(zilog); 958 mutex_enter(&zilog->zl_lock); 959 lwb = list_tail(&zilog->zl_lwb_list); 960 } 961 } 962 963 /* 964 * Loop through in-memory log transactions filling log blocks, 965 * until we reach the given sequence number and there's no more 966 * room in the write buffer. 967 */ 968 for (;;) { 969 itx = list_head(&zilog->zl_itx_list); 970 if (itx == NULL) 971 break; 972 973 reclen = itx->itx_lr.lrc_reclen; 974 if ((itx->itx_lr.lrc_seq > seq) && 975 ((lwb == NULL) || (lwb->lwb_nused + reclen > 976 ZIL_BLK_DATA_SZ(lwb)))) 977 break; 978 979 list_remove(&zilog->zl_itx_list, itx); 980 txg = itx->itx_lr.lrc_txg; 981 ASSERT(txg); 982 983 mutex_exit(&zilog->zl_lock); 984 if (txg > spa_last_synced_txg(spa) || 985 txg > spa_freeze_txg(spa)) 986 lwb = zil_lwb_commit(zilog, itx, lwb); 987 else 988 max_seq = itx->itx_lr.lrc_seq; 989 kmem_free(itx, offsetof(itx_t, itx_lr) 990 + itx->itx_lr.lrc_reclen); 991 mutex_enter(&zilog->zl_lock); 992 zilog->zl_itx_list_sz -= reclen; 993 } 994 995 mutex_exit(&zilog->zl_lock); 996 997 /* write the last block out */ 998 if (lwb != NULL && lwb->lwb_nused != 0) 999 lwb = zil_lwb_write_start(zilog, lwb); 1000 1001 zilog->zl_prev_used = zilog->zl_cur_used; 1002 zilog->zl_cur_used = 0; 1003 1004 mutex_enter(&zilog->zl_lock); 1005 if (max_seq > zilog->zl_ss_seq) { 1006 zilog->zl_ss_seq = max_seq; 1007 cv_broadcast(&zilog->zl_cv_seq); 1008 } 1009 /* 1010 * Wait if necessary for our seq to be committed. 1011 */ 1012 if (lwb && zilog->zl_wait_seq) { 1013 while (zilog->zl_ss_seq < zilog->zl_wait_seq && 1014 zilog->zl_log_error == 0) 1015 cv_wait(&zilog->zl_cv_seq, &zilog->zl_lock); 1016 zil_flush_vdevs(zilog, seq); 1017 } 1018 1019 if (zilog->zl_log_error || lwb == NULL) { 1020 zilog->zl_log_error = 0; 1021 max_seq = zilog->zl_itx_seq; 1022 mutex_exit(&zilog->zl_lock); 1023 txg_wait_synced(zilog->zl_dmu_pool, 0); 1024 mutex_enter(&zilog->zl_lock); 1025 zilog->zl_ss_seq = MAX(max_seq, zilog->zl_ss_seq); 1026 cv_broadcast(&zilog->zl_cv_seq); 1027 } 1028 /* wake up others waiting to start a write */ 1029 zilog->zl_wait_seq = 0; 1030 zilog->zl_writer = B_FALSE; 1031 mutex_exit(&zilog->zl_lock); 1032 cv_broadcast(&zilog->zl_cv_write); 1033 } 1034 1035 /* 1036 * Called in syncing context to free committed log blocks and update log header. 1037 */ 1038 void 1039 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1040 { 1041 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1042 uint64_t txg = dmu_tx_get_txg(tx); 1043 spa_t *spa = zilog->zl_spa; 1044 lwb_t *lwb; 1045 1046 mutex_enter(&zilog->zl_lock); 1047 1048 ASSERT(zilog->zl_stop_sync == 0); 1049 1050 zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; 1051 1052 if (zilog->zl_destroy_txg == txg) { 1053 blkptr_t blk = zh->zh_log; 1054 1055 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1056 ASSERT(spa_sync_pass(spa) == 1); 1057 1058 bzero(zh, sizeof (zil_header_t)); 1059 bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); 1060 1061 if (zilog->zl_keep_first) { 1062 /* 1063 * If this block was part of log chain that couldn't 1064 * be claimed because a device was missing during 1065 * zil_claim(), but that device later returns, 1066 * then this block could erroneously appear valid. 1067 * To guard against this, assign a new GUID to the new 1068 * log chain so it doesn't matter what blk points to. 1069 */ 1070 zil_init_log_chain(zilog, &blk); 1071 zh->zh_log = blk; 1072 } 1073 } 1074 1075 for (;;) { 1076 lwb = list_head(&zilog->zl_lwb_list); 1077 if (lwb == NULL) { 1078 mutex_exit(&zilog->zl_lock); 1079 return; 1080 } 1081 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1082 break; 1083 list_remove(&zilog->zl_lwb_list, lwb); 1084 zio_free_blk(spa, &lwb->lwb_blk, txg); 1085 kmem_cache_free(zil_lwb_cache, lwb); 1086 } 1087 zh->zh_log = lwb->lwb_blk; 1088 mutex_exit(&zilog->zl_lock); 1089 } 1090 1091 void 1092 zil_init(void) 1093 { 1094 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1095 sizeof (struct lwb), NULL, NULL, NULL, NULL, NULL, NULL, 0); 1096 } 1097 1098 void 1099 zil_fini(void) 1100 { 1101 kmem_cache_destroy(zil_lwb_cache); 1102 } 1103 1104 zilog_t * 1105 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1106 { 1107 zilog_t *zilog; 1108 1109 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1110 1111 zilog->zl_header = zh_phys; 1112 zilog->zl_os = os; 1113 zilog->zl_spa = dmu_objset_spa(os); 1114 zilog->zl_dmu_pool = dmu_objset_pool(os); 1115 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1116 1117 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1118 offsetof(itx_t, itx_node)); 1119 1120 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1121 offsetof(lwb_t, lwb_node)); 1122 1123 list_create(&zilog->zl_vdev_list, sizeof (zil_vdev_t), 1124 offsetof(zil_vdev_t, vdev_seq_node)); 1125 1126 return (zilog); 1127 } 1128 1129 void 1130 zil_free(zilog_t *zilog) 1131 { 1132 lwb_t *lwb; 1133 zil_vdev_t *zv; 1134 1135 zilog->zl_stop_sync = 1; 1136 1137 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1138 list_remove(&zilog->zl_lwb_list, lwb); 1139 if (lwb->lwb_buf != NULL) 1140 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1141 kmem_cache_free(zil_lwb_cache, lwb); 1142 } 1143 list_destroy(&zilog->zl_lwb_list); 1144 1145 while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) { 1146 list_remove(&zilog->zl_vdev_list, zv); 1147 kmem_free(zv, sizeof (zil_vdev_t)); 1148 } 1149 list_destroy(&zilog->zl_vdev_list); 1150 1151 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1152 list_destroy(&zilog->zl_itx_list); 1153 1154 kmem_free(zilog, sizeof (zilog_t)); 1155 } 1156 1157 /* 1158 * return true if the initial log block is not valid 1159 */ 1160 static int 1161 zil_empty(zilog_t *zilog) 1162 { 1163 const zil_header_t *zh = zilog->zl_header; 1164 arc_buf_t *abuf = NULL; 1165 1166 if (BP_IS_HOLE(&zh->zh_log)) 1167 return (1); 1168 1169 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 1170 return (1); 1171 1172 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 1173 return (0); 1174 } 1175 1176 /* 1177 * Open an intent log. 1178 */ 1179 zilog_t * 1180 zil_open(objset_t *os, zil_get_data_t *get_data) 1181 { 1182 zilog_t *zilog = dmu_objset_zil(os); 1183 1184 zilog->zl_get_data = get_data; 1185 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1186 2, 2, TASKQ_PREPOPULATE); 1187 1188 return (zilog); 1189 } 1190 1191 /* 1192 * Close an intent log. 1193 */ 1194 void 1195 zil_close(zilog_t *zilog) 1196 { 1197 /* 1198 * If the log isn't already committed, mark the objset dirty 1199 * (so zil_sync() will be called) and wait for that txg to sync. 1200 */ 1201 if (!zil_is_committed(zilog)) { 1202 uint64_t txg; 1203 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1204 (void) dmu_tx_assign(tx, TXG_WAIT); 1205 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1206 txg = dmu_tx_get_txg(tx); 1207 dmu_tx_commit(tx); 1208 txg_wait_synced(zilog->zl_dmu_pool, txg); 1209 } 1210 1211 taskq_destroy(zilog->zl_clean_taskq); 1212 zilog->zl_clean_taskq = NULL; 1213 zilog->zl_get_data = NULL; 1214 1215 zil_itx_clean(zilog); 1216 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1217 } 1218 1219 /* 1220 * Suspend an intent log. While in suspended mode, we still honor 1221 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1222 * We suspend the log briefly when taking a snapshot so that the snapshot 1223 * contains all the data it's supposed to, and has an empty intent log. 1224 */ 1225 int 1226 zil_suspend(zilog_t *zilog) 1227 { 1228 const zil_header_t *zh = zilog->zl_header; 1229 lwb_t *lwb; 1230 1231 mutex_enter(&zilog->zl_lock); 1232 if (zh->zh_claim_txg != 0) { /* unplayed log */ 1233 mutex_exit(&zilog->zl_lock); 1234 return (EBUSY); 1235 } 1236 if (zilog->zl_suspend++ != 0) { 1237 /* 1238 * Someone else already began a suspend. 1239 * Just wait for them to finish. 1240 */ 1241 while (zilog->zl_suspending) 1242 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1243 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1244 mutex_exit(&zilog->zl_lock); 1245 return (0); 1246 } 1247 zilog->zl_suspending = B_TRUE; 1248 mutex_exit(&zilog->zl_lock); 1249 1250 zil_commit(zilog, UINT64_MAX, FSYNC); 1251 1252 mutex_enter(&zilog->zl_lock); 1253 for (;;) { 1254 /* 1255 * Wait for any in-flight log writes to complete. 1256 */ 1257 for (lwb = list_head(&zilog->zl_lwb_list); lwb != NULL; 1258 lwb = list_next(&zilog->zl_lwb_list, lwb)) 1259 if (lwb->lwb_seq != 0 && lwb->lwb_state != SEQ_COMPLETE) 1260 break; 1261 1262 if (lwb == NULL) 1263 break; 1264 1265 cv_wait(&zilog->zl_cv_seq, &zilog->zl_lock); 1266 } 1267 1268 mutex_exit(&zilog->zl_lock); 1269 1270 zil_destroy(zilog, B_FALSE); 1271 1272 mutex_enter(&zilog->zl_lock); 1273 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1274 zilog->zl_suspending = B_FALSE; 1275 cv_broadcast(&zilog->zl_cv_suspend); 1276 mutex_exit(&zilog->zl_lock); 1277 1278 return (0); 1279 } 1280 1281 void 1282 zil_resume(zilog_t *zilog) 1283 { 1284 mutex_enter(&zilog->zl_lock); 1285 ASSERT(zilog->zl_suspend != 0); 1286 zilog->zl_suspend--; 1287 mutex_exit(&zilog->zl_lock); 1288 } 1289 1290 typedef struct zil_replay_arg { 1291 objset_t *zr_os; 1292 zil_replay_func_t **zr_replay; 1293 void *zr_arg; 1294 void (*zr_rm_sync)(void *arg); 1295 uint64_t *zr_txgp; 1296 boolean_t zr_byteswap; 1297 char *zr_lrbuf; 1298 } zil_replay_arg_t; 1299 1300 static void 1301 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1302 { 1303 zil_replay_arg_t *zr = zra; 1304 const zil_header_t *zh = zilog->zl_header; 1305 uint64_t reclen = lr->lrc_reclen; 1306 uint64_t txtype = lr->lrc_txtype; 1307 int pass, error; 1308 1309 if (zilog->zl_stop_replay) 1310 return; 1311 1312 if (lr->lrc_txg < claim_txg) /* already committed */ 1313 return; 1314 1315 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1316 return; 1317 1318 /* 1319 * Make a copy of the data so we can revise and extend it. 1320 */ 1321 bcopy(lr, zr->zr_lrbuf, reclen); 1322 1323 /* 1324 * The log block containing this lr may have been byteswapped 1325 * so that we can easily examine common fields like lrc_txtype. 1326 * However, the log is a mix of different data types, and only the 1327 * replay vectors know how to byteswap their records. Therefore, if 1328 * the lr was byteswapped, undo it before invoking the replay vector. 1329 */ 1330 if (zr->zr_byteswap) 1331 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1332 1333 /* 1334 * If this is a TX_WRITE with a blkptr, suck in the data. 1335 */ 1336 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1337 lr_write_t *lrw = (lr_write_t *)lr; 1338 blkptr_t *wbp = &lrw->lr_blkptr; 1339 uint64_t wlen = lrw->lr_length; 1340 char *wbuf = zr->zr_lrbuf + reclen; 1341 1342 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1343 bzero(wbuf, wlen); 1344 } else { 1345 /* 1346 * A subsequent write may have overwritten this block, 1347 * in which case wbp may have been been freed and 1348 * reallocated, and our read of wbp may fail with a 1349 * checksum error. We can safely ignore this because 1350 * the later write will provide the correct data. 1351 */ 1352 zbookmark_t zb; 1353 1354 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1355 zb.zb_object = lrw->lr_foid; 1356 zb.zb_level = -1; 1357 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1358 1359 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1360 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1361 ZIO_PRIORITY_SYNC_READ, 1362 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1363 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1364 } 1365 } 1366 1367 /* 1368 * We must now do two things atomically: replay this log record, 1369 * and update the log header to reflect the fact that we did so. 1370 * We use the DMU's ability to assign into a specific txg to do this. 1371 */ 1372 for (pass = 1; /* CONSTANTCONDITION */; pass++) { 1373 uint64_t replay_txg; 1374 dmu_tx_t *replay_tx; 1375 1376 replay_tx = dmu_tx_create(zr->zr_os); 1377 error = dmu_tx_assign(replay_tx, TXG_WAIT); 1378 if (error) { 1379 dmu_tx_abort(replay_tx); 1380 break; 1381 } 1382 1383 replay_txg = dmu_tx_get_txg(replay_tx); 1384 1385 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1386 error = EINVAL; 1387 } else { 1388 /* 1389 * On the first pass, arrange for the replay vector 1390 * to fail its dmu_tx_assign(). That's the only way 1391 * to ensure that those code paths remain well tested. 1392 */ 1393 *zr->zr_txgp = replay_txg - (pass == 1); 1394 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1395 zr->zr_byteswap); 1396 *zr->zr_txgp = TXG_NOWAIT; 1397 } 1398 1399 if (error == 0) { 1400 dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); 1401 zilog->zl_replay_seq[replay_txg & TXG_MASK] = 1402 lr->lrc_seq; 1403 } 1404 1405 dmu_tx_commit(replay_tx); 1406 1407 if (error != ERESTART) 1408 break; 1409 1410 if (pass != 1) 1411 txg_wait_open(spa_get_dsl(zilog->zl_spa), 1412 replay_txg + 1); 1413 1414 dprintf("pass %d, retrying\n", pass); 1415 } 1416 1417 if (error) { 1418 char *name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1419 dmu_objset_name(zr->zr_os, name); 1420 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1421 "dataset %s, seq 0x%llx, txtype %llu\n", 1422 error, name, 1423 (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype); 1424 zilog->zl_stop_replay = 1; 1425 kmem_free(name, MAXNAMELEN); 1426 } 1427 1428 /* 1429 * The DMU's dnode layer doesn't see removes until the txg commits, 1430 * so a subsequent claim can spuriously fail with EEXIST. 1431 * To prevent this, if we might have removed an object, 1432 * wait for the delete thread to delete it, and then 1433 * wait for the transaction group to sync. 1434 */ 1435 if (txtype == TX_REMOVE || txtype == TX_RMDIR || txtype == TX_RENAME) { 1436 if (zr->zr_rm_sync != NULL) 1437 zr->zr_rm_sync(zr->zr_arg); 1438 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1439 } 1440 } 1441 1442 /* 1443 * If this dataset has a non-empty intent log, replay it and destroy it. 1444 */ 1445 void 1446 zil_replay(objset_t *os, void *arg, uint64_t *txgp, 1447 zil_replay_func_t *replay_func[TX_MAX_TYPE], void (*rm_sync)(void *arg)) 1448 { 1449 zilog_t *zilog = dmu_objset_zil(os); 1450 const zil_header_t *zh = zilog->zl_header; 1451 zil_replay_arg_t zr; 1452 1453 if (zil_empty(zilog)) { 1454 zil_destroy(zilog, B_TRUE); 1455 return; 1456 } 1457 1458 zr.zr_os = os; 1459 zr.zr_replay = replay_func; 1460 zr.zr_arg = arg; 1461 zr.zr_rm_sync = rm_sync; 1462 zr.zr_txgp = txgp; 1463 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1464 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1465 1466 /* 1467 * Wait for in-progress removes to sync before starting replay. 1468 */ 1469 if (rm_sync != NULL) 1470 rm_sync(arg); 1471 txg_wait_synced(zilog->zl_dmu_pool, 0); 1472 1473 zilog->zl_stop_replay = 0; 1474 (void) zil_parse(zilog, NULL, zil_replay_log_record, &zr, 1475 zh->zh_claim_txg); 1476 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1477 1478 zil_destroy(zilog, B_FALSE); 1479 } 1480 1481 /* 1482 * Report whether all transactions are committed 1483 */ 1484 int 1485 zil_is_committed(zilog_t *zilog) 1486 { 1487 lwb_t *lwb; 1488 1489 if (!list_is_empty(&zilog->zl_itx_list)) 1490 return (B_FALSE); 1491 1492 /* 1493 * A log write buffer at the head of the list that is not UNWRITTEN 1494 * means there's a lwb yet to be freed after a txg commit 1495 */ 1496 lwb = list_head(&zilog->zl_lwb_list); 1497 if (lwb && lwb->lwb_state != UNWRITTEN) 1498 return (B_FALSE); 1499 ASSERT(zil_empty(zilog)); 1500 return (B_TRUE); 1501 } 1502