1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev.h> 39 #include <sys/dmu_tx.h> 40 41 /* 42 * The zfs intent log (ZIL) saves transaction records of system calls 43 * that change the file system in memory with enough information 44 * to be able to replay them. These are stored in memory until 45 * either the DMU transaction group (txg) commits them to the stable pool 46 * and they can be discarded, or they are flushed to the stable log 47 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 48 * requirement. In the event of a panic or power fail then those log 49 * records (transactions) are replayed. 50 * 51 * There is one ZIL per file system. Its on-disk (pool) format consists 52 * of 3 parts: 53 * 54 * - ZIL header 55 * - ZIL blocks 56 * - ZIL records 57 * 58 * A log record holds a system call transaction. Log blocks can 59 * hold many log records and the blocks are chained together. 60 * Each ZIL block contains a block pointer (blkptr_t) to the next 61 * ZIL block in the chain. The ZIL header points to the first 62 * block in the chain. Note there is not a fixed place in the pool 63 * to hold blocks. They are dynamically allocated and freed as 64 * needed from the blocks available. Figure X shows the ZIL structure: 65 */ 66 67 /* 68 * This global ZIL switch affects all pools 69 */ 70 int zil_disable = 0; /* disable intent logging */ 71 72 /* 73 * Tunable parameter for debugging or performance analysis. Setting 74 * zfs_nocacheflush will cause corruption on power loss if a volatile 75 * out-of-order write cache is enabled. 76 */ 77 boolean_t zfs_nocacheflush = B_FALSE; 78 79 static kmem_cache_t *zil_lwb_cache; 80 81 static int 82 zil_dva_compare(const void *x1, const void *x2) 83 { 84 const dva_t *dva1 = x1; 85 const dva_t *dva2 = x2; 86 87 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 88 return (-1); 89 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 90 return (1); 91 92 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 93 return (-1); 94 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 95 return (1); 96 97 return (0); 98 } 99 100 static void 101 zil_dva_tree_init(avl_tree_t *t) 102 { 103 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 104 offsetof(zil_dva_node_t, zn_node)); 105 } 106 107 static void 108 zil_dva_tree_fini(avl_tree_t *t) 109 { 110 zil_dva_node_t *zn; 111 void *cookie = NULL; 112 113 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 114 kmem_free(zn, sizeof (zil_dva_node_t)); 115 116 avl_destroy(t); 117 } 118 119 static int 120 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 121 { 122 zil_dva_node_t *zn; 123 avl_index_t where; 124 125 if (avl_find(t, dva, &where) != NULL) 126 return (EEXIST); 127 128 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 129 zn->zn_dva = *dva; 130 avl_insert(t, zn, where); 131 132 return (0); 133 } 134 135 static zil_header_t * 136 zil_header_in_syncing_context(zilog_t *zilog) 137 { 138 return ((zil_header_t *)zilog->zl_header); 139 } 140 141 static void 142 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 143 { 144 zio_cksum_t *zc = &bp->blk_cksum; 145 146 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 147 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 148 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 149 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 150 } 151 152 /* 153 * Read a log block, make sure it's valid, and byteswap it if necessary. 154 */ 155 static int 156 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 157 { 158 blkptr_t blk = *bp; 159 zbookmark_t zb; 160 uint32_t aflags = ARC_WAIT; 161 int error; 162 163 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 164 zb.zb_object = 0; 165 zb.zb_level = -1; 166 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 167 168 *abufpp = NULL; 169 170 error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array, 171 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 172 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 173 174 if (error == 0) { 175 char *data = (*abufpp)->b_data; 176 uint64_t blksz = BP_GET_LSIZE(bp); 177 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 178 zio_cksum_t cksum = bp->blk_cksum; 179 180 /* 181 * Sequence numbers should be... sequential. The checksum 182 * verifier for the next block should be bp's checksum plus 1. 183 */ 184 cksum.zc_word[ZIL_ZC_SEQ]++; 185 186 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum))) 187 error = ESTALE; 188 else if (BP_IS_HOLE(&ztp->zit_next_blk)) 189 error = ENOENT; 190 else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t))) 191 error = EOVERFLOW; 192 193 if (error) { 194 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 195 *abufpp = NULL; 196 } 197 } 198 199 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 200 201 return (error); 202 } 203 204 /* 205 * Parse the intent log, and call parse_func for each valid record within. 206 * Return the highest sequence number. 207 */ 208 uint64_t 209 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 210 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 211 { 212 const zil_header_t *zh = zilog->zl_header; 213 uint64_t claim_seq = zh->zh_claim_seq; 214 uint64_t seq = 0; 215 uint64_t max_seq = 0; 216 blkptr_t blk = zh->zh_log; 217 arc_buf_t *abuf; 218 char *lrbuf, *lrp; 219 zil_trailer_t *ztp; 220 int reclen, error; 221 222 if (BP_IS_HOLE(&blk)) 223 return (max_seq); 224 225 /* 226 * Starting at the block pointed to by zh_log we read the log chain. 227 * For each block in the chain we strongly check that block to 228 * ensure its validity. We stop when an invalid block is found. 229 * For each block pointer in the chain we call parse_blk_func(). 230 * For each record in each valid block we call parse_lr_func(). 231 * If the log has been claimed, stop if we encounter a sequence 232 * number greater than the highest claimed sequence number. 233 */ 234 zil_dva_tree_init(&zilog->zl_dva_tree); 235 for (;;) { 236 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 237 238 if (claim_seq != 0 && seq > claim_seq) 239 break; 240 241 ASSERT(max_seq < seq); 242 max_seq = seq; 243 244 error = zil_read_log_block(zilog, &blk, &abuf); 245 246 if (parse_blk_func != NULL) 247 parse_blk_func(zilog, &blk, arg, txg); 248 249 if (error) 250 break; 251 252 lrbuf = abuf->b_data; 253 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 254 blk = ztp->zit_next_blk; 255 256 if (parse_lr_func == NULL) { 257 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 258 continue; 259 } 260 261 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 262 lr_t *lr = (lr_t *)lrp; 263 reclen = lr->lrc_reclen; 264 ASSERT3U(reclen, >=, sizeof (lr_t)); 265 parse_lr_func(zilog, lr, arg, txg); 266 } 267 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 268 } 269 zil_dva_tree_fini(&zilog->zl_dva_tree); 270 271 return (max_seq); 272 } 273 274 /* ARGSUSED */ 275 static void 276 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 277 { 278 spa_t *spa = zilog->zl_spa; 279 int err; 280 281 /* 282 * Claim log block if not already committed and not already claimed. 283 */ 284 if (bp->blk_birth >= first_txg && 285 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 286 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); 287 ASSERT(err == 0); 288 } 289 } 290 291 static void 292 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 293 { 294 if (lrc->lrc_txtype == TX_WRITE) { 295 lr_write_t *lr = (lr_write_t *)lrc; 296 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 297 } 298 } 299 300 /* ARGSUSED */ 301 static void 302 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 303 { 304 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 305 } 306 307 static void 308 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 309 { 310 /* 311 * If we previously claimed it, we need to free it. 312 */ 313 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 314 lr_write_t *lr = (lr_write_t *)lrc; 315 blkptr_t *bp = &lr->lr_blkptr; 316 if (bp->blk_birth >= claim_txg && 317 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 318 (void) arc_free(NULL, zilog->zl_spa, 319 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 320 } 321 } 322 } 323 324 /* 325 * Create an on-disk intent log. 326 */ 327 static void 328 zil_create(zilog_t *zilog) 329 { 330 const zil_header_t *zh = zilog->zl_header; 331 lwb_t *lwb; 332 uint64_t txg = 0; 333 dmu_tx_t *tx = NULL; 334 blkptr_t blk; 335 int error = 0; 336 337 /* 338 * Wait for any previous destroy to complete. 339 */ 340 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 341 342 ASSERT(zh->zh_claim_txg == 0); 343 ASSERT(zh->zh_replay_seq == 0); 344 345 blk = zh->zh_log; 346 347 /* 348 * If we don't already have an initial log block, allocate one now. 349 */ 350 if (BP_IS_HOLE(&blk)) { 351 tx = dmu_tx_create(zilog->zl_os); 352 (void) dmu_tx_assign(tx, TXG_WAIT); 353 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 354 txg = dmu_tx_get_txg(tx); 355 356 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 357 NULL, txg); 358 359 if (error == 0) 360 zil_init_log_chain(zilog, &blk); 361 } 362 363 /* 364 * Allocate a log write buffer (lwb) for the first log block. 365 */ 366 if (error == 0) { 367 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 368 lwb->lwb_zilog = zilog; 369 lwb->lwb_blk = blk; 370 lwb->lwb_nused = 0; 371 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 372 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 373 lwb->lwb_max_txg = txg; 374 lwb->lwb_zio = NULL; 375 376 mutex_enter(&zilog->zl_lock); 377 list_insert_tail(&zilog->zl_lwb_list, lwb); 378 mutex_exit(&zilog->zl_lock); 379 } 380 381 /* 382 * If we just allocated the first log block, commit our transaction 383 * and wait for zil_sync() to stuff the block poiner into zh_log. 384 * (zh is part of the MOS, so we cannot modify it in open context.) 385 */ 386 if (tx != NULL) { 387 dmu_tx_commit(tx); 388 txg_wait_synced(zilog->zl_dmu_pool, txg); 389 } 390 391 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 392 } 393 394 /* 395 * In one tx, free all log blocks and clear the log header. 396 * If keep_first is set, then we're replaying a log with no content. 397 * We want to keep the first block, however, so that the first 398 * synchronous transaction doesn't require a txg_wait_synced() 399 * in zil_create(). We don't need to txg_wait_synced() here either 400 * when keep_first is set, because both zil_create() and zil_destroy() 401 * will wait for any in-progress destroys to complete. 402 */ 403 void 404 zil_destroy(zilog_t *zilog, boolean_t keep_first) 405 { 406 const zil_header_t *zh = zilog->zl_header; 407 lwb_t *lwb; 408 dmu_tx_t *tx; 409 uint64_t txg; 410 411 /* 412 * Wait for any previous destroy to complete. 413 */ 414 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 415 416 if (BP_IS_HOLE(&zh->zh_log)) 417 return; 418 419 tx = dmu_tx_create(zilog->zl_os); 420 (void) dmu_tx_assign(tx, TXG_WAIT); 421 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 422 txg = dmu_tx_get_txg(tx); 423 424 mutex_enter(&zilog->zl_lock); 425 426 ASSERT3U(zilog->zl_destroy_txg, <, txg); 427 zilog->zl_destroy_txg = txg; 428 zilog->zl_keep_first = keep_first; 429 430 if (!list_is_empty(&zilog->zl_lwb_list)) { 431 ASSERT(zh->zh_claim_txg == 0); 432 ASSERT(!keep_first); 433 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 434 list_remove(&zilog->zl_lwb_list, lwb); 435 if (lwb->lwb_buf != NULL) 436 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 437 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 438 kmem_cache_free(zil_lwb_cache, lwb); 439 } 440 } else { 441 if (!keep_first) { 442 (void) zil_parse(zilog, zil_free_log_block, 443 zil_free_log_record, tx, zh->zh_claim_txg); 444 } 445 } 446 mutex_exit(&zilog->zl_lock); 447 448 dmu_tx_commit(tx); 449 450 if (keep_first) /* no need to wait in this case */ 451 return; 452 453 txg_wait_synced(zilog->zl_dmu_pool, txg); 454 ASSERT(BP_IS_HOLE(&zh->zh_log)); 455 } 456 457 int 458 zil_claim(char *osname, void *txarg) 459 { 460 dmu_tx_t *tx = txarg; 461 uint64_t first_txg = dmu_tx_get_txg(tx); 462 zilog_t *zilog; 463 zil_header_t *zh; 464 objset_t *os; 465 int error; 466 467 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os); 468 if (error) { 469 cmn_err(CE_WARN, "can't process intent log for %s", osname); 470 return (0); 471 } 472 473 zilog = dmu_objset_zil(os); 474 zh = zil_header_in_syncing_context(zilog); 475 476 /* 477 * Claim all log blocks if we haven't already done so, and remember 478 * the highest claimed sequence number. This ensures that if we can 479 * read only part of the log now (e.g. due to a missing device), 480 * but we can read the entire log later, we will not try to replay 481 * or destroy beyond the last block we successfully claimed. 482 */ 483 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 484 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 485 zh->zh_claim_txg = first_txg; 486 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 487 zil_claim_log_record, tx, first_txg); 488 dsl_dataset_dirty(dmu_objset_ds(os), tx); 489 } 490 491 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 492 dmu_objset_close(os); 493 return (0); 494 } 495 496 void 497 zil_add_vdev(zilog_t *zilog, uint64_t vdev) 498 { 499 zil_vdev_t *zv, *new; 500 uint64_t bmap_sz = sizeof (zilog->zl_vdev_bmap) << 3; 501 uchar_t *cp; 502 503 if (zfs_nocacheflush) 504 return; 505 506 if (vdev < bmap_sz) { 507 cp = zilog->zl_vdev_bmap + (vdev / 8); 508 atomic_or_8(cp, 1 << (vdev % 8)); 509 } else { 510 /* 511 * insert into ordered list 512 */ 513 mutex_enter(&zilog->zl_lock); 514 for (zv = list_head(&zilog->zl_vdev_list); zv != NULL; 515 zv = list_next(&zilog->zl_vdev_list, zv)) { 516 if (zv->vdev == vdev) { 517 /* duplicate found - just return */ 518 mutex_exit(&zilog->zl_lock); 519 return; 520 } 521 if (zv->vdev > vdev) { 522 /* insert before this entry */ 523 new = kmem_alloc(sizeof (zil_vdev_t), 524 KM_SLEEP); 525 new->vdev = vdev; 526 list_insert_before(&zilog->zl_vdev_list, 527 zv, new); 528 mutex_exit(&zilog->zl_lock); 529 return; 530 } 531 } 532 /* ran off end of list, insert at the end */ 533 ASSERT(zv == NULL); 534 new = kmem_alloc(sizeof (zil_vdev_t), KM_SLEEP); 535 new->vdev = vdev; 536 list_insert_tail(&zilog->zl_vdev_list, new); 537 mutex_exit(&zilog->zl_lock); 538 } 539 } 540 541 void 542 zil_flush_vdevs(zilog_t *zilog) 543 { 544 zil_vdev_t *zv; 545 zio_t *zio = NULL; 546 spa_t *spa = zilog->zl_spa; 547 uint64_t vdev; 548 uint8_t b; 549 int i, j; 550 551 ASSERT(zilog->zl_writer); 552 553 for (i = 0; i < sizeof (zilog->zl_vdev_bmap); i++) { 554 b = zilog->zl_vdev_bmap[i]; 555 if (b == 0) 556 continue; 557 for (j = 0; j < 8; j++) { 558 if (b & (1 << j)) { 559 vdev = (i << 3) + j; 560 zio_flush_vdev(spa, vdev, &zio); 561 } 562 } 563 zilog->zl_vdev_bmap[i] = 0; 564 } 565 566 while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) { 567 zio_flush_vdev(spa, zv->vdev, &zio); 568 list_remove(&zilog->zl_vdev_list, zv); 569 kmem_free(zv, sizeof (zil_vdev_t)); 570 } 571 /* 572 * Wait for all the flushes to complete. Not all devices actually 573 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 574 */ 575 if (zio) 576 (void) zio_wait(zio); 577 } 578 579 /* 580 * Function called when a log block write completes 581 */ 582 static void 583 zil_lwb_write_done(zio_t *zio) 584 { 585 lwb_t *lwb = zio->io_private; 586 zilog_t *zilog = lwb->lwb_zilog; 587 588 /* 589 * Now that we've written this log block, we have a stable pointer 590 * to the next block in the chain, so it's OK to let the txg in 591 * which we allocated the next block sync. 592 */ 593 txg_rele_to_sync(&lwb->lwb_txgh); 594 595 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 596 mutex_enter(&zilog->zl_lock); 597 lwb->lwb_buf = NULL; 598 if (zio->io_error) 599 zilog->zl_log_error = B_TRUE; 600 mutex_exit(&zilog->zl_lock); 601 } 602 603 /* 604 * Initialize the io for a log block. 605 * 606 * Note, we should not initialize the IO until we are about 607 * to use it, since zio_rewrite() does a spa_config_enter(). 608 */ 609 static void 610 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 611 { 612 zbookmark_t zb; 613 614 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 615 zb.zb_object = 0; 616 zb.zb_level = -1; 617 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 618 619 if (zilog->zl_root_zio == NULL) { 620 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 621 ZIO_FLAG_CANFAIL); 622 } 623 if (lwb->lwb_zio == NULL) { 624 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 625 ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf, 626 lwb->lwb_sz, zil_lwb_write_done, lwb, 627 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb); 628 } 629 } 630 631 /* 632 * Start a log block write and advance to the next log block. 633 * Calls are serialized. 634 */ 635 static lwb_t * 636 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 637 { 638 lwb_t *nlwb; 639 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 640 spa_t *spa = zilog->zl_spa; 641 blkptr_t *bp = &ztp->zit_next_blk; 642 uint64_t txg; 643 uint64_t zil_blksz; 644 int error; 645 646 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 647 648 /* 649 * Allocate the next block and save its address in this block 650 * before writing it in order to establish the log chain. 651 * Note that if the allocation of nlwb synced before we wrote 652 * the block that points at it (lwb), we'd leak it if we crashed. 653 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 654 */ 655 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 656 txg_rele_to_quiesce(&lwb->lwb_txgh); 657 658 /* 659 * Pick a ZIL blocksize. We request a size that is the 660 * maximum of the previous used size, the current used size and 661 * the amount waiting in the queue. 662 */ 663 zil_blksz = MAX(zilog->zl_prev_used, 664 zilog->zl_cur_used + sizeof (*ztp)); 665 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 666 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 667 if (zil_blksz > ZIL_MAX_BLKSZ) 668 zil_blksz = ZIL_MAX_BLKSZ; 669 670 BP_ZERO(bp); 671 /* pass the old blkptr in order to spread log blocks across devs */ 672 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); 673 if (error) { 674 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 675 676 /* 677 * We dirty the dataset to ensure that zil_sync() will 678 * be called to remove this lwb from our zl_lwb_list. 679 * Failing to do so, may leave an lwb with a NULL lwb_buf 680 * hanging around on the zl_lwb_list. 681 */ 682 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 683 dmu_tx_commit(tx); 684 685 /* 686 * Since we've just experienced an allocation failure so we 687 * terminate the current lwb and send it on its way. 688 */ 689 ztp->zit_pad = 0; 690 ztp->zit_nused = lwb->lwb_nused; 691 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 692 zio_nowait(lwb->lwb_zio); 693 694 /* 695 * By returning NULL the caller will call tx_wait_synced() 696 */ 697 return (NULL); 698 } 699 700 ASSERT3U(bp->blk_birth, ==, txg); 701 ztp->zit_pad = 0; 702 ztp->zit_nused = lwb->lwb_nused; 703 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 704 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 705 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 706 707 /* 708 * Allocate a new log write buffer (lwb). 709 */ 710 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 711 712 nlwb->lwb_zilog = zilog; 713 nlwb->lwb_blk = *bp; 714 nlwb->lwb_nused = 0; 715 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 716 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 717 nlwb->lwb_max_txg = txg; 718 nlwb->lwb_zio = NULL; 719 720 /* 721 * Put new lwb at the end of the log chain 722 */ 723 mutex_enter(&zilog->zl_lock); 724 list_insert_tail(&zilog->zl_lwb_list, nlwb); 725 mutex_exit(&zilog->zl_lock); 726 727 /* Record the vdev for later flushing */ 728 zil_add_vdev(zilog, DVA_GET_VDEV(BP_IDENTITY(&(lwb->lwb_blk)))); 729 730 /* 731 * kick off the write for the old log block 732 */ 733 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 734 ASSERT(lwb->lwb_zio); 735 zio_nowait(lwb->lwb_zio); 736 737 return (nlwb); 738 } 739 740 static lwb_t * 741 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 742 { 743 lr_t *lrc = &itx->itx_lr; /* common log record */ 744 lr_write_t *lr = (lr_write_t *)lrc; 745 uint64_t txg = lrc->lrc_txg; 746 uint64_t reclen = lrc->lrc_reclen; 747 uint64_t dlen; 748 749 if (lwb == NULL) 750 return (NULL); 751 ASSERT(lwb->lwb_buf != NULL); 752 753 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 754 dlen = P2ROUNDUP_TYPED( 755 lr->lr_length, sizeof (uint64_t), uint64_t); 756 else 757 dlen = 0; 758 759 zilog->zl_cur_used += (reclen + dlen); 760 761 zil_lwb_write_init(zilog, lwb); 762 763 /* 764 * If this record won't fit in the current log block, start a new one. 765 */ 766 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 767 lwb = zil_lwb_write_start(zilog, lwb); 768 if (lwb == NULL) 769 return (NULL); 770 zil_lwb_write_init(zilog, lwb); 771 ASSERT(lwb->lwb_nused == 0); 772 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 773 txg_wait_synced(zilog->zl_dmu_pool, txg); 774 return (lwb); 775 } 776 } 777 778 /* 779 * Update the lrc_seq, to be log record sequence number. See zil.h 780 * Then copy the record to the log buffer. 781 */ 782 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 783 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 784 785 /* 786 * If it's a write, fetch the data or get its blkptr as appropriate. 787 */ 788 if (lrc->lrc_txtype == TX_WRITE) { 789 if (txg > spa_freeze_txg(zilog->zl_spa)) 790 txg_wait_synced(zilog->zl_dmu_pool, txg); 791 if (itx->itx_wr_state != WR_COPIED) { 792 char *dbuf; 793 int error; 794 795 /* alignment is guaranteed */ 796 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 797 if (dlen) { 798 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 799 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 800 lr->lr_common.lrc_reclen += dlen; 801 } else { 802 ASSERT(itx->itx_wr_state == WR_INDIRECT); 803 dbuf = NULL; 804 } 805 error = zilog->zl_get_data( 806 itx->itx_private, lr, dbuf, lwb->lwb_zio); 807 if (error) { 808 ASSERT(error == ENOENT || error == EEXIST || 809 error == EALREADY); 810 return (lwb); 811 } 812 } 813 } 814 815 lwb->lwb_nused += reclen + dlen; 816 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 817 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 818 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 819 820 return (lwb); 821 } 822 823 itx_t * 824 zil_itx_create(int txtype, size_t lrsize) 825 { 826 itx_t *itx; 827 828 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 829 830 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 831 itx->itx_lr.lrc_txtype = txtype; 832 itx->itx_lr.lrc_reclen = lrsize; 833 itx->itx_lr.lrc_seq = 0; /* defensive */ 834 835 return (itx); 836 } 837 838 uint64_t 839 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 840 { 841 uint64_t seq; 842 843 ASSERT(itx->itx_lr.lrc_seq == 0); 844 845 mutex_enter(&zilog->zl_lock); 846 list_insert_tail(&zilog->zl_itx_list, itx); 847 zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen; 848 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 849 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 850 mutex_exit(&zilog->zl_lock); 851 852 return (seq); 853 } 854 855 /* 856 * Free up all in-memory intent log transactions that have now been synced. 857 */ 858 static void 859 zil_itx_clean(zilog_t *zilog) 860 { 861 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 862 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 863 list_t clean_list; 864 itx_t *itx; 865 866 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 867 868 mutex_enter(&zilog->zl_lock); 869 /* wait for a log writer to finish walking list */ 870 while (zilog->zl_writer) { 871 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 872 } 873 874 /* 875 * Move the sync'd log transactions to a separate list so we can call 876 * kmem_free without holding the zl_lock. 877 * 878 * There is no need to set zl_writer as we don't drop zl_lock here 879 */ 880 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 881 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 882 list_remove(&zilog->zl_itx_list, itx); 883 zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen; 884 list_insert_tail(&clean_list, itx); 885 } 886 cv_broadcast(&zilog->zl_cv_writer); 887 mutex_exit(&zilog->zl_lock); 888 889 /* destroy sync'd log transactions */ 890 while ((itx = list_head(&clean_list)) != NULL) { 891 list_remove(&clean_list, itx); 892 kmem_free(itx, offsetof(itx_t, itx_lr) 893 + itx->itx_lr.lrc_reclen); 894 } 895 list_destroy(&clean_list); 896 } 897 898 /* 899 * If there are any in-memory intent log transactions which have now been 900 * synced then start up a taskq to free them. 901 */ 902 void 903 zil_clean(zilog_t *zilog) 904 { 905 itx_t *itx; 906 907 mutex_enter(&zilog->zl_lock); 908 itx = list_head(&zilog->zl_itx_list); 909 if ((itx != NULL) && 910 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 911 (void) taskq_dispatch(zilog->zl_clean_taskq, 912 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 913 } 914 mutex_exit(&zilog->zl_lock); 915 } 916 917 void 918 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 919 { 920 uint64_t txg; 921 uint64_t reclen; 922 uint64_t commit_seq = 0; 923 itx_t *itx, *itx_next = (itx_t *)-1; 924 lwb_t *lwb; 925 spa_t *spa; 926 927 zilog->zl_writer = B_TRUE; 928 zilog->zl_root_zio = NULL; 929 spa = zilog->zl_spa; 930 931 if (zilog->zl_suspend) { 932 lwb = NULL; 933 } else { 934 lwb = list_tail(&zilog->zl_lwb_list); 935 if (lwb == NULL) { 936 /* 937 * Return if there's nothing to flush before we 938 * dirty the fs by calling zil_create() 939 */ 940 if (list_is_empty(&zilog->zl_itx_list)) { 941 zilog->zl_writer = B_FALSE; 942 return; 943 } 944 mutex_exit(&zilog->zl_lock); 945 zil_create(zilog); 946 mutex_enter(&zilog->zl_lock); 947 lwb = list_tail(&zilog->zl_lwb_list); 948 } 949 } 950 951 /* Loop through in-memory log transactions filling log blocks. */ 952 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 953 for (;;) { 954 /* 955 * Find the next itx to push: 956 * Push all transactions related to specified foid and all 957 * other transactions except TX_WRITE, TX_TRUNCATE, 958 * TX_SETATTR and TX_ACL for all other files. 959 */ 960 if (itx_next != (itx_t *)-1) 961 itx = itx_next; 962 else 963 itx = list_head(&zilog->zl_itx_list); 964 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 965 if (foid == 0) /* push all foids? */ 966 break; 967 if (itx->itx_sync) /* push all O_[D]SYNC */ 968 break; 969 switch (itx->itx_lr.lrc_txtype) { 970 case TX_SETATTR: 971 case TX_WRITE: 972 case TX_TRUNCATE: 973 case TX_ACL: 974 /* lr_foid is same offset for these records */ 975 if (((lr_write_t *)&itx->itx_lr)->lr_foid 976 != foid) { 977 continue; /* skip this record */ 978 } 979 } 980 break; 981 } 982 if (itx == NULL) 983 break; 984 985 reclen = itx->itx_lr.lrc_reclen; 986 if ((itx->itx_lr.lrc_seq > seq) && 987 ((lwb == NULL) || (lwb->lwb_nused == 0) || 988 (lwb->lwb_nused + reclen > ZIL_BLK_DATA_SZ(lwb)))) { 989 break; 990 } 991 992 /* 993 * Save the next pointer. Even though we soon drop 994 * zl_lock all threads that may change the list 995 * (another writer or zil_itx_clean) can't do so until 996 * they have zl_writer. 997 */ 998 itx_next = list_next(&zilog->zl_itx_list, itx); 999 list_remove(&zilog->zl_itx_list, itx); 1000 mutex_exit(&zilog->zl_lock); 1001 txg = itx->itx_lr.lrc_txg; 1002 ASSERT(txg); 1003 1004 if (txg > spa_last_synced_txg(spa) || 1005 txg > spa_freeze_txg(spa)) 1006 lwb = zil_lwb_commit(zilog, itx, lwb); 1007 kmem_free(itx, offsetof(itx_t, itx_lr) 1008 + itx->itx_lr.lrc_reclen); 1009 mutex_enter(&zilog->zl_lock); 1010 zilog->zl_itx_list_sz -= reclen; 1011 } 1012 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1013 /* determine commit sequence number */ 1014 itx = list_head(&zilog->zl_itx_list); 1015 if (itx) 1016 commit_seq = itx->itx_lr.lrc_seq; 1017 else 1018 commit_seq = zilog->zl_itx_seq; 1019 mutex_exit(&zilog->zl_lock); 1020 1021 /* write the last block out */ 1022 if (lwb != NULL && lwb->lwb_zio != NULL) 1023 lwb = zil_lwb_write_start(zilog, lwb); 1024 1025 zilog->zl_prev_used = zilog->zl_cur_used; 1026 zilog->zl_cur_used = 0; 1027 1028 /* 1029 * Wait if necessary for the log blocks to be on stable storage. 1030 */ 1031 if (zilog->zl_root_zio) { 1032 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1033 (void) zio_wait(zilog->zl_root_zio); 1034 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1035 if (!zfs_nocacheflush) 1036 zil_flush_vdevs(zilog); 1037 } 1038 1039 if (zilog->zl_log_error || lwb == NULL) { 1040 zilog->zl_log_error = 0; 1041 txg_wait_synced(zilog->zl_dmu_pool, 0); 1042 } 1043 1044 mutex_enter(&zilog->zl_lock); 1045 zilog->zl_writer = B_FALSE; 1046 1047 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1048 zilog->zl_commit_seq = commit_seq; 1049 } 1050 1051 /* 1052 * Push zfs transactions to stable storage up to the supplied sequence number. 1053 * If foid is 0 push out all transactions, otherwise push only those 1054 * for that file or might have been used to create that file. 1055 */ 1056 void 1057 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1058 { 1059 if (zilog == NULL || seq == 0) 1060 return; 1061 1062 mutex_enter(&zilog->zl_lock); 1063 1064 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1065 1066 while (zilog->zl_writer) { 1067 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1068 if (seq < zilog->zl_commit_seq) { 1069 mutex_exit(&zilog->zl_lock); 1070 return; 1071 } 1072 } 1073 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1074 /* wake up others waiting on the commit */ 1075 cv_broadcast(&zilog->zl_cv_writer); 1076 mutex_exit(&zilog->zl_lock); 1077 } 1078 1079 /* 1080 * Called in syncing context to free committed log blocks and update log header. 1081 */ 1082 void 1083 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1084 { 1085 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1086 uint64_t txg = dmu_tx_get_txg(tx); 1087 spa_t *spa = zilog->zl_spa; 1088 lwb_t *lwb; 1089 1090 mutex_enter(&zilog->zl_lock); 1091 1092 ASSERT(zilog->zl_stop_sync == 0); 1093 1094 zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; 1095 1096 if (zilog->zl_destroy_txg == txg) { 1097 blkptr_t blk = zh->zh_log; 1098 1099 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1100 ASSERT(spa_sync_pass(spa) == 1); 1101 1102 bzero(zh, sizeof (zil_header_t)); 1103 bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); 1104 1105 if (zilog->zl_keep_first) { 1106 /* 1107 * If this block was part of log chain that couldn't 1108 * be claimed because a device was missing during 1109 * zil_claim(), but that device later returns, 1110 * then this block could erroneously appear valid. 1111 * To guard against this, assign a new GUID to the new 1112 * log chain so it doesn't matter what blk points to. 1113 */ 1114 zil_init_log_chain(zilog, &blk); 1115 zh->zh_log = blk; 1116 } 1117 } 1118 1119 for (;;) { 1120 lwb = list_head(&zilog->zl_lwb_list); 1121 if (lwb == NULL) { 1122 mutex_exit(&zilog->zl_lock); 1123 return; 1124 } 1125 zh->zh_log = lwb->lwb_blk; 1126 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1127 break; 1128 list_remove(&zilog->zl_lwb_list, lwb); 1129 zio_free_blk(spa, &lwb->lwb_blk, txg); 1130 kmem_cache_free(zil_lwb_cache, lwb); 1131 1132 /* 1133 * If we don't have anything left in the lwb list then 1134 * we've had an allocation failure and we need to zero 1135 * out the zil_header blkptr so that we don't end 1136 * up freeing the same block twice. 1137 */ 1138 if (list_head(&zilog->zl_lwb_list) == NULL) 1139 BP_ZERO(&zh->zh_log); 1140 } 1141 mutex_exit(&zilog->zl_lock); 1142 } 1143 1144 void 1145 zil_init(void) 1146 { 1147 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1148 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1149 } 1150 1151 void 1152 zil_fini(void) 1153 { 1154 kmem_cache_destroy(zil_lwb_cache); 1155 } 1156 1157 zilog_t * 1158 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1159 { 1160 zilog_t *zilog; 1161 1162 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1163 1164 zilog->zl_header = zh_phys; 1165 zilog->zl_os = os; 1166 zilog->zl_spa = dmu_objset_spa(os); 1167 zilog->zl_dmu_pool = dmu_objset_pool(os); 1168 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1169 1170 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1171 1172 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1173 offsetof(itx_t, itx_node)); 1174 1175 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1176 offsetof(lwb_t, lwb_node)); 1177 1178 list_create(&zilog->zl_vdev_list, sizeof (zil_vdev_t), 1179 offsetof(zil_vdev_t, vdev_seq_node)); 1180 1181 return (zilog); 1182 } 1183 1184 void 1185 zil_free(zilog_t *zilog) 1186 { 1187 lwb_t *lwb; 1188 zil_vdev_t *zv; 1189 1190 zilog->zl_stop_sync = 1; 1191 1192 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1193 list_remove(&zilog->zl_lwb_list, lwb); 1194 if (lwb->lwb_buf != NULL) 1195 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1196 kmem_cache_free(zil_lwb_cache, lwb); 1197 } 1198 list_destroy(&zilog->zl_lwb_list); 1199 1200 while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) { 1201 list_remove(&zilog->zl_vdev_list, zv); 1202 kmem_free(zv, sizeof (zil_vdev_t)); 1203 } 1204 list_destroy(&zilog->zl_vdev_list); 1205 1206 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1207 list_destroy(&zilog->zl_itx_list); 1208 mutex_destroy(&zilog->zl_lock); 1209 1210 kmem_free(zilog, sizeof (zilog_t)); 1211 } 1212 1213 /* 1214 * return true if the initial log block is not valid 1215 */ 1216 static int 1217 zil_empty(zilog_t *zilog) 1218 { 1219 const zil_header_t *zh = zilog->zl_header; 1220 arc_buf_t *abuf = NULL; 1221 1222 if (BP_IS_HOLE(&zh->zh_log)) 1223 return (1); 1224 1225 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 1226 return (1); 1227 1228 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 1229 return (0); 1230 } 1231 1232 /* 1233 * Open an intent log. 1234 */ 1235 zilog_t * 1236 zil_open(objset_t *os, zil_get_data_t *get_data) 1237 { 1238 zilog_t *zilog = dmu_objset_zil(os); 1239 1240 zilog->zl_get_data = get_data; 1241 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1242 2, 2, TASKQ_PREPOPULATE); 1243 1244 return (zilog); 1245 } 1246 1247 /* 1248 * Close an intent log. 1249 */ 1250 void 1251 zil_close(zilog_t *zilog) 1252 { 1253 /* 1254 * If the log isn't already committed, mark the objset dirty 1255 * (so zil_sync() will be called) and wait for that txg to sync. 1256 */ 1257 if (!zil_is_committed(zilog)) { 1258 uint64_t txg; 1259 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1260 (void) dmu_tx_assign(tx, TXG_WAIT); 1261 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1262 txg = dmu_tx_get_txg(tx); 1263 dmu_tx_commit(tx); 1264 txg_wait_synced(zilog->zl_dmu_pool, txg); 1265 } 1266 1267 taskq_destroy(zilog->zl_clean_taskq); 1268 zilog->zl_clean_taskq = NULL; 1269 zilog->zl_get_data = NULL; 1270 1271 zil_itx_clean(zilog); 1272 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1273 } 1274 1275 /* 1276 * Suspend an intent log. While in suspended mode, we still honor 1277 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1278 * We suspend the log briefly when taking a snapshot so that the snapshot 1279 * contains all the data it's supposed to, and has an empty intent log. 1280 */ 1281 int 1282 zil_suspend(zilog_t *zilog) 1283 { 1284 const zil_header_t *zh = zilog->zl_header; 1285 1286 mutex_enter(&zilog->zl_lock); 1287 if (zh->zh_claim_txg != 0) { /* unplayed log */ 1288 mutex_exit(&zilog->zl_lock); 1289 return (EBUSY); 1290 } 1291 if (zilog->zl_suspend++ != 0) { 1292 /* 1293 * Someone else already began a suspend. 1294 * Just wait for them to finish. 1295 */ 1296 while (zilog->zl_suspending) 1297 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1298 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1299 mutex_exit(&zilog->zl_lock); 1300 return (0); 1301 } 1302 zilog->zl_suspending = B_TRUE; 1303 mutex_exit(&zilog->zl_lock); 1304 1305 zil_commit(zilog, UINT64_MAX, 0); 1306 1307 /* 1308 * Wait for any in-flight log writes to complete. 1309 */ 1310 mutex_enter(&zilog->zl_lock); 1311 while (zilog->zl_writer) 1312 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1313 mutex_exit(&zilog->zl_lock); 1314 1315 zil_destroy(zilog, B_FALSE); 1316 1317 mutex_enter(&zilog->zl_lock); 1318 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1319 zilog->zl_suspending = B_FALSE; 1320 cv_broadcast(&zilog->zl_cv_suspend); 1321 mutex_exit(&zilog->zl_lock); 1322 1323 return (0); 1324 } 1325 1326 void 1327 zil_resume(zilog_t *zilog) 1328 { 1329 mutex_enter(&zilog->zl_lock); 1330 ASSERT(zilog->zl_suspend != 0); 1331 zilog->zl_suspend--; 1332 mutex_exit(&zilog->zl_lock); 1333 } 1334 1335 typedef struct zil_replay_arg { 1336 objset_t *zr_os; 1337 zil_replay_func_t **zr_replay; 1338 void *zr_arg; 1339 uint64_t *zr_txgp; 1340 boolean_t zr_byteswap; 1341 char *zr_lrbuf; 1342 } zil_replay_arg_t; 1343 1344 static void 1345 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1346 { 1347 zil_replay_arg_t *zr = zra; 1348 const zil_header_t *zh = zilog->zl_header; 1349 uint64_t reclen = lr->lrc_reclen; 1350 uint64_t txtype = lr->lrc_txtype; 1351 char *name; 1352 int pass, error, sunk; 1353 1354 if (zilog->zl_stop_replay) 1355 return; 1356 1357 if (lr->lrc_txg < claim_txg) /* already committed */ 1358 return; 1359 1360 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1361 return; 1362 1363 /* 1364 * Make a copy of the data so we can revise and extend it. 1365 */ 1366 bcopy(lr, zr->zr_lrbuf, reclen); 1367 1368 /* 1369 * The log block containing this lr may have been byteswapped 1370 * so that we can easily examine common fields like lrc_txtype. 1371 * However, the log is a mix of different data types, and only the 1372 * replay vectors know how to byteswap their records. Therefore, if 1373 * the lr was byteswapped, undo it before invoking the replay vector. 1374 */ 1375 if (zr->zr_byteswap) 1376 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1377 1378 /* 1379 * If this is a TX_WRITE with a blkptr, suck in the data. 1380 */ 1381 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1382 lr_write_t *lrw = (lr_write_t *)lr; 1383 blkptr_t *wbp = &lrw->lr_blkptr; 1384 uint64_t wlen = lrw->lr_length; 1385 char *wbuf = zr->zr_lrbuf + reclen; 1386 1387 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1388 bzero(wbuf, wlen); 1389 } else { 1390 /* 1391 * A subsequent write may have overwritten this block, 1392 * in which case wbp may have been been freed and 1393 * reallocated, and our read of wbp may fail with a 1394 * checksum error. We can safely ignore this because 1395 * the later write will provide the correct data. 1396 */ 1397 zbookmark_t zb; 1398 1399 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1400 zb.zb_object = lrw->lr_foid; 1401 zb.zb_level = -1; 1402 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1403 1404 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1405 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1406 ZIO_PRIORITY_SYNC_READ, 1407 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1408 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1409 } 1410 } 1411 1412 /* 1413 * We must now do two things atomically: replay this log record, 1414 * and update the log header to reflect the fact that we did so. 1415 * We use the DMU's ability to assign into a specific txg to do this. 1416 */ 1417 for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) { 1418 uint64_t replay_txg; 1419 dmu_tx_t *replay_tx; 1420 1421 replay_tx = dmu_tx_create(zr->zr_os); 1422 error = dmu_tx_assign(replay_tx, TXG_WAIT); 1423 if (error) { 1424 dmu_tx_abort(replay_tx); 1425 break; 1426 } 1427 1428 replay_txg = dmu_tx_get_txg(replay_tx); 1429 1430 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1431 error = EINVAL; 1432 } else { 1433 /* 1434 * On the first pass, arrange for the replay vector 1435 * to fail its dmu_tx_assign(). That's the only way 1436 * to ensure that those code paths remain well tested. 1437 */ 1438 *zr->zr_txgp = replay_txg - (pass == 1); 1439 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1440 zr->zr_byteswap); 1441 *zr->zr_txgp = TXG_NOWAIT; 1442 } 1443 1444 if (error == 0) { 1445 dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); 1446 zilog->zl_replay_seq[replay_txg & TXG_MASK] = 1447 lr->lrc_seq; 1448 } 1449 1450 dmu_tx_commit(replay_tx); 1451 1452 if (!error) 1453 return; 1454 1455 /* 1456 * The DMU's dnode layer doesn't see removes until the txg 1457 * commits, so a subsequent claim can spuriously fail with 1458 * EEXIST. So if we receive any error other than ERESTART 1459 * we try syncing out any removes then retrying the 1460 * transaction. 1461 */ 1462 if (error != ERESTART && !sunk) { 1463 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1464 sunk = B_TRUE; 1465 continue; /* retry */ 1466 } 1467 1468 if (error != ERESTART) 1469 break; 1470 1471 if (pass != 1) 1472 txg_wait_open(spa_get_dsl(zilog->zl_spa), 1473 replay_txg + 1); 1474 1475 dprintf("pass %d, retrying\n", pass); 1476 } 1477 1478 ASSERT(error && error != ERESTART); 1479 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1480 dmu_objset_name(zr->zr_os, name); 1481 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1482 "dataset %s, seq 0x%llx, txtype %llu\n", 1483 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype); 1484 zilog->zl_stop_replay = 1; 1485 kmem_free(name, MAXNAMELEN); 1486 } 1487 1488 /* ARGSUSED */ 1489 static void 1490 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1491 { 1492 zilog->zl_replay_blks++; 1493 } 1494 1495 /* 1496 * If this dataset has a non-empty intent log, replay it and destroy it. 1497 */ 1498 void 1499 zil_replay(objset_t *os, void *arg, uint64_t *txgp, 1500 zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1501 { 1502 zilog_t *zilog = dmu_objset_zil(os); 1503 const zil_header_t *zh = zilog->zl_header; 1504 zil_replay_arg_t zr; 1505 1506 if (zil_empty(zilog)) { 1507 zil_destroy(zilog, B_TRUE); 1508 return; 1509 } 1510 1511 zr.zr_os = os; 1512 zr.zr_replay = replay_func; 1513 zr.zr_arg = arg; 1514 zr.zr_txgp = txgp; 1515 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1516 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1517 1518 /* 1519 * Wait for in-progress removes to sync before starting replay. 1520 */ 1521 txg_wait_synced(zilog->zl_dmu_pool, 0); 1522 1523 zilog->zl_stop_replay = 0; 1524 zilog->zl_replay_time = lbolt; 1525 ASSERT(zilog->zl_replay_blks == 0); 1526 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1527 zh->zh_claim_txg); 1528 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1529 1530 zil_destroy(zilog, B_FALSE); 1531 } 1532 1533 /* 1534 * Report whether all transactions are committed 1535 */ 1536 int 1537 zil_is_committed(zilog_t *zilog) 1538 { 1539 lwb_t *lwb; 1540 int ret; 1541 1542 mutex_enter(&zilog->zl_lock); 1543 while (zilog->zl_writer) 1544 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1545 1546 /* recent unpushed intent log transactions? */ 1547 if (!list_is_empty(&zilog->zl_itx_list)) { 1548 ret = B_FALSE; 1549 goto out; 1550 } 1551 1552 /* intent log never used? */ 1553 lwb = list_head(&zilog->zl_lwb_list); 1554 if (lwb == NULL) { 1555 ret = B_TRUE; 1556 goto out; 1557 } 1558 1559 /* 1560 * more than 1 log buffer means zil_sync() hasn't yet freed 1561 * entries after a txg has committed 1562 */ 1563 if (list_next(&zilog->zl_lwb_list, lwb)) { 1564 ret = B_FALSE; 1565 goto out; 1566 } 1567 1568 ASSERT(zil_empty(zilog)); 1569 ret = B_TRUE; 1570 out: 1571 cv_broadcast(&zilog->zl_cv_writer); 1572 mutex_exit(&zilog->zl_lock); 1573 return (ret); 1574 } 1575