1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2010 Robert Milkowski */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa.h> 29 #include <sys/dmu.h> 30 #include <sys/zap.h> 31 #include <sys/arc.h> 32 #include <sys/stat.h> 33 #include <sys/resource.h> 34 #include <sys/zil.h> 35 #include <sys/zil_impl.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/vdev.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dsl_pool.h> 40 41 /* 42 * The zfs intent log (ZIL) saves transaction records of system calls 43 * that change the file system in memory with enough information 44 * to be able to replay them. These are stored in memory until 45 * either the DMU transaction group (txg) commits them to the stable pool 46 * and they can be discarded, or they are flushed to the stable log 47 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 48 * requirement. In the event of a panic or power fail then those log 49 * records (transactions) are replayed. 50 * 51 * There is one ZIL per file system. Its on-disk (pool) format consists 52 * of 3 parts: 53 * 54 * - ZIL header 55 * - ZIL blocks 56 * - ZIL records 57 * 58 * A log record holds a system call transaction. Log blocks can 59 * hold many log records and the blocks are chained together. 60 * Each ZIL block contains a block pointer (blkptr_t) to the next 61 * ZIL block in the chain. The ZIL header points to the first 62 * block in the chain. Note there is not a fixed place in the pool 63 * to hold blocks. They are dynamically allocated and freed as 64 * needed from the blocks available. Figure X shows the ZIL structure: 65 */ 66 67 /* 68 * This global ZIL switch affects all pools 69 */ 70 int zil_replay_disable = 0; /* disable intent logging replay */ 71 72 /* 73 * Tunable parameter for debugging or performance analysis. Setting 74 * zfs_nocacheflush will cause corruption on power loss if a volatile 75 * out-of-order write cache is enabled. 76 */ 77 boolean_t zfs_nocacheflush = B_FALSE; 78 79 static kmem_cache_t *zil_lwb_cache; 80 81 static boolean_t zil_empty(zilog_t *zilog); 82 83 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 84 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 85 86 87 static int 88 zil_bp_compare(const void *x1, const void *x2) 89 { 90 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 91 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 92 93 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 94 return (-1); 95 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 96 return (1); 97 98 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 99 return (-1); 100 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 101 return (1); 102 103 return (0); 104 } 105 106 static void 107 zil_bp_tree_init(zilog_t *zilog) 108 { 109 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 110 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 111 } 112 113 static void 114 zil_bp_tree_fini(zilog_t *zilog) 115 { 116 avl_tree_t *t = &zilog->zl_bp_tree; 117 zil_bp_node_t *zn; 118 void *cookie = NULL; 119 120 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 121 kmem_free(zn, sizeof (zil_bp_node_t)); 122 123 avl_destroy(t); 124 } 125 126 int 127 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 128 { 129 avl_tree_t *t = &zilog->zl_bp_tree; 130 const dva_t *dva = BP_IDENTITY(bp); 131 zil_bp_node_t *zn; 132 avl_index_t where; 133 134 if (avl_find(t, dva, &where) != NULL) 135 return (EEXIST); 136 137 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 138 zn->zn_dva = *dva; 139 avl_insert(t, zn, where); 140 141 return (0); 142 } 143 144 static zil_header_t * 145 zil_header_in_syncing_context(zilog_t *zilog) 146 { 147 return ((zil_header_t *)zilog->zl_header); 148 } 149 150 static void 151 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 152 { 153 zio_cksum_t *zc = &bp->blk_cksum; 154 155 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 156 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 157 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 158 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 159 } 160 161 /* 162 * Read a log block and make sure it's valid. 163 */ 164 static int 165 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 166 char **end) 167 { 168 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 169 uint32_t aflags = ARC_WAIT; 170 arc_buf_t *abuf = NULL; 171 zbookmark_t zb; 172 int error; 173 174 if (zilog->zl_header->zh_claim_txg == 0) 175 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 176 177 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 178 zio_flags |= ZIO_FLAG_SPECULATIVE; 179 180 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 181 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 182 183 error = dsl_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 184 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 185 186 if (error == 0) { 187 zio_cksum_t cksum = bp->blk_cksum; 188 189 /* 190 * Validate the checksummed log block. 191 * 192 * Sequence numbers should be... sequential. The checksum 193 * verifier for the next block should be bp's checksum plus 1. 194 * 195 * Also check the log chain linkage and size used. 196 */ 197 cksum.zc_word[ZIL_ZC_SEQ]++; 198 199 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 200 zil_chain_t *zilc = abuf->b_data; 201 char *lr = (char *)(zilc + 1); 202 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 203 204 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 205 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 206 error = ECKSUM; 207 } else { 208 bcopy(lr, dst, len); 209 *end = (char *)dst + len; 210 *nbp = zilc->zc_next_blk; 211 } 212 } else { 213 char *lr = abuf->b_data; 214 uint64_t size = BP_GET_LSIZE(bp); 215 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 216 217 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 218 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 219 (zilc->zc_nused > (size - sizeof (*zilc)))) { 220 error = ECKSUM; 221 } else { 222 bcopy(lr, dst, zilc->zc_nused); 223 *end = (char *)dst + zilc->zc_nused; 224 *nbp = zilc->zc_next_blk; 225 } 226 } 227 228 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 229 } 230 231 return (error); 232 } 233 234 /* 235 * Read a TX_WRITE log data block. 236 */ 237 static int 238 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 239 { 240 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 241 const blkptr_t *bp = &lr->lr_blkptr; 242 uint32_t aflags = ARC_WAIT; 243 arc_buf_t *abuf = NULL; 244 zbookmark_t zb; 245 int error; 246 247 if (BP_IS_HOLE(bp)) { 248 if (wbuf != NULL) 249 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 250 return (0); 251 } 252 253 if (zilog->zl_header->zh_claim_txg == 0) 254 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 255 256 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 257 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 258 259 error = arc_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 260 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 261 262 if (error == 0) { 263 if (wbuf != NULL) 264 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 265 (void) arc_buf_remove_ref(abuf, &abuf); 266 } 267 268 return (error); 269 } 270 271 /* 272 * Parse the intent log, and call parse_func for each valid record within. 273 */ 274 int 275 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 276 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 277 { 278 const zil_header_t *zh = zilog->zl_header; 279 boolean_t claimed = !!zh->zh_claim_txg; 280 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 281 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 282 uint64_t max_blk_seq = 0; 283 uint64_t max_lr_seq = 0; 284 uint64_t blk_count = 0; 285 uint64_t lr_count = 0; 286 blkptr_t blk, next_blk; 287 char *lrbuf, *lrp; 288 int error = 0; 289 290 /* 291 * Old logs didn't record the maximum zh_claim_lr_seq. 292 */ 293 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 294 claim_lr_seq = UINT64_MAX; 295 296 /* 297 * Starting at the block pointed to by zh_log we read the log chain. 298 * For each block in the chain we strongly check that block to 299 * ensure its validity. We stop when an invalid block is found. 300 * For each block pointer in the chain we call parse_blk_func(). 301 * For each record in each valid block we call parse_lr_func(). 302 * If the log has been claimed, stop if we encounter a sequence 303 * number greater than the highest claimed sequence number. 304 */ 305 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); 306 zil_bp_tree_init(zilog); 307 308 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 309 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 310 int reclen; 311 char *end; 312 313 if (blk_seq > claim_blk_seq) 314 break; 315 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 316 break; 317 ASSERT3U(max_blk_seq, <, blk_seq); 318 max_blk_seq = blk_seq; 319 blk_count++; 320 321 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 322 break; 323 324 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 325 if (error) 326 break; 327 328 for (lrp = lrbuf; lrp < end; lrp += reclen) { 329 lr_t *lr = (lr_t *)lrp; 330 reclen = lr->lrc_reclen; 331 ASSERT3U(reclen, >=, sizeof (lr_t)); 332 if (lr->lrc_seq > claim_lr_seq) 333 goto done; 334 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 335 goto done; 336 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 337 max_lr_seq = lr->lrc_seq; 338 lr_count++; 339 } 340 } 341 done: 342 zilog->zl_parse_error = error; 343 zilog->zl_parse_blk_seq = max_blk_seq; 344 zilog->zl_parse_lr_seq = max_lr_seq; 345 zilog->zl_parse_blk_count = blk_count; 346 zilog->zl_parse_lr_count = lr_count; 347 348 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 349 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 350 351 zil_bp_tree_fini(zilog); 352 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); 353 354 return (error); 355 } 356 357 static int 358 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 359 { 360 /* 361 * Claim log block if not already committed and not already claimed. 362 * If tx == NULL, just verify that the block is claimable. 363 */ 364 if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) 365 return (0); 366 367 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 368 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 369 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 370 } 371 372 static int 373 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 374 { 375 lr_write_t *lr = (lr_write_t *)lrc; 376 int error; 377 378 if (lrc->lrc_txtype != TX_WRITE) 379 return (0); 380 381 /* 382 * If the block is not readable, don't claim it. This can happen 383 * in normal operation when a log block is written to disk before 384 * some of the dmu_sync() blocks it points to. In this case, the 385 * transaction cannot have been committed to anyone (we would have 386 * waited for all writes to be stable first), so it is semantically 387 * correct to declare this the end of the log. 388 */ 389 if (lr->lr_blkptr.blk_birth >= first_txg && 390 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 391 return (error); 392 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 393 } 394 395 /* ARGSUSED */ 396 static int 397 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 398 { 399 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 400 401 return (0); 402 } 403 404 static int 405 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 406 { 407 lr_write_t *lr = (lr_write_t *)lrc; 408 blkptr_t *bp = &lr->lr_blkptr; 409 410 /* 411 * If we previously claimed it, we need to free it. 412 */ 413 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 414 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0) 415 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 416 417 return (0); 418 } 419 420 static lwb_t * 421 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) 422 { 423 lwb_t *lwb; 424 425 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 426 lwb->lwb_zilog = zilog; 427 lwb->lwb_blk = *bp; 428 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 429 lwb->lwb_max_txg = txg; 430 lwb->lwb_zio = NULL; 431 lwb->lwb_tx = NULL; 432 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 433 lwb->lwb_nused = sizeof (zil_chain_t); 434 lwb->lwb_sz = BP_GET_LSIZE(bp); 435 } else { 436 lwb->lwb_nused = 0; 437 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 438 } 439 440 mutex_enter(&zilog->zl_lock); 441 list_insert_tail(&zilog->zl_lwb_list, lwb); 442 mutex_exit(&zilog->zl_lock); 443 444 return (lwb); 445 } 446 447 /* 448 * Create an on-disk intent log. 449 */ 450 static lwb_t * 451 zil_create(zilog_t *zilog) 452 { 453 const zil_header_t *zh = zilog->zl_header; 454 lwb_t *lwb = NULL; 455 uint64_t txg = 0; 456 dmu_tx_t *tx = NULL; 457 blkptr_t blk; 458 int error = 0; 459 460 /* 461 * Wait for any previous destroy to complete. 462 */ 463 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 464 465 ASSERT(zh->zh_claim_txg == 0); 466 ASSERT(zh->zh_replay_seq == 0); 467 468 blk = zh->zh_log; 469 470 /* 471 * Allocate an initial log block if: 472 * - there isn't one already 473 * - the existing block is the wrong endianess 474 */ 475 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 476 tx = dmu_tx_create(zilog->zl_os); 477 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 478 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 479 txg = dmu_tx_get_txg(tx); 480 481 if (!BP_IS_HOLE(&blk)) { 482 zio_free_zil(zilog->zl_spa, txg, &blk); 483 BP_ZERO(&blk); 484 } 485 486 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 487 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 488 489 if (error == 0) 490 zil_init_log_chain(zilog, &blk); 491 } 492 493 /* 494 * Allocate a log write buffer (lwb) for the first log block. 495 */ 496 if (error == 0) 497 lwb = zil_alloc_lwb(zilog, &blk, txg); 498 499 /* 500 * If we just allocated the first log block, commit our transaction 501 * and wait for zil_sync() to stuff the block poiner into zh_log. 502 * (zh is part of the MOS, so we cannot modify it in open context.) 503 */ 504 if (tx != NULL) { 505 dmu_tx_commit(tx); 506 txg_wait_synced(zilog->zl_dmu_pool, txg); 507 } 508 509 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 510 511 return (lwb); 512 } 513 514 /* 515 * In one tx, free all log blocks and clear the log header. 516 * If keep_first is set, then we're replaying a log with no content. 517 * We want to keep the first block, however, so that the first 518 * synchronous transaction doesn't require a txg_wait_synced() 519 * in zil_create(). We don't need to txg_wait_synced() here either 520 * when keep_first is set, because both zil_create() and zil_destroy() 521 * will wait for any in-progress destroys to complete. 522 */ 523 void 524 zil_destroy(zilog_t *zilog, boolean_t keep_first) 525 { 526 const zil_header_t *zh = zilog->zl_header; 527 lwb_t *lwb; 528 dmu_tx_t *tx; 529 uint64_t txg; 530 531 /* 532 * Wait for any previous destroy to complete. 533 */ 534 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 535 536 zilog->zl_old_header = *zh; /* debugging aid */ 537 538 if (BP_IS_HOLE(&zh->zh_log)) 539 return; 540 541 tx = dmu_tx_create(zilog->zl_os); 542 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 543 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 544 txg = dmu_tx_get_txg(tx); 545 546 mutex_enter(&zilog->zl_lock); 547 548 ASSERT3U(zilog->zl_destroy_txg, <, txg); 549 zilog->zl_destroy_txg = txg; 550 zilog->zl_keep_first = keep_first; 551 552 if (!list_is_empty(&zilog->zl_lwb_list)) { 553 ASSERT(zh->zh_claim_txg == 0); 554 ASSERT(!keep_first); 555 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 556 list_remove(&zilog->zl_lwb_list, lwb); 557 if (lwb->lwb_buf != NULL) 558 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 559 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); 560 kmem_cache_free(zil_lwb_cache, lwb); 561 } 562 } else if (!keep_first) { 563 (void) zil_parse(zilog, zil_free_log_block, 564 zil_free_log_record, tx, zh->zh_claim_txg); 565 } 566 mutex_exit(&zilog->zl_lock); 567 568 dmu_tx_commit(tx); 569 } 570 571 int 572 zil_claim(const char *osname, void *txarg) 573 { 574 dmu_tx_t *tx = txarg; 575 uint64_t first_txg = dmu_tx_get_txg(tx); 576 zilog_t *zilog; 577 zil_header_t *zh; 578 objset_t *os; 579 int error; 580 581 error = dmu_objset_hold(osname, FTAG, &os); 582 if (error) { 583 cmn_err(CE_WARN, "can't open objset for %s", osname); 584 return (0); 585 } 586 587 zilog = dmu_objset_zil(os); 588 zh = zil_header_in_syncing_context(zilog); 589 590 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 591 if (!BP_IS_HOLE(&zh->zh_log)) 592 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 593 BP_ZERO(&zh->zh_log); 594 dsl_dataset_dirty(dmu_objset_ds(os), tx); 595 dmu_objset_rele(os, FTAG); 596 return (0); 597 } 598 599 /* 600 * Claim all log blocks if we haven't already done so, and remember 601 * the highest claimed sequence number. This ensures that if we can 602 * read only part of the log now (e.g. due to a missing device), 603 * but we can read the entire log later, we will not try to replay 604 * or destroy beyond the last block we successfully claimed. 605 */ 606 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 607 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 608 (void) zil_parse(zilog, zil_claim_log_block, 609 zil_claim_log_record, tx, first_txg); 610 zh->zh_claim_txg = first_txg; 611 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 612 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 613 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 614 zh->zh_flags |= ZIL_REPLAY_NEEDED; 615 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 616 dsl_dataset_dirty(dmu_objset_ds(os), tx); 617 } 618 619 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 620 dmu_objset_rele(os, FTAG); 621 return (0); 622 } 623 624 /* 625 * Check the log by walking the log chain. 626 * Checksum errors are ok as they indicate the end of the chain. 627 * Any other error (no device or read failure) returns an error. 628 */ 629 int 630 zil_check_log_chain(const char *osname, void *tx) 631 { 632 zilog_t *zilog; 633 objset_t *os; 634 int error; 635 636 ASSERT(tx == NULL); 637 638 error = dmu_objset_hold(osname, FTAG, &os); 639 if (error) { 640 cmn_err(CE_WARN, "can't open objset for %s", osname); 641 return (0); 642 } 643 644 zilog = dmu_objset_zil(os); 645 646 /* 647 * Because tx == NULL, zil_claim_log_block() will not actually claim 648 * any blocks, but just determine whether it is possible to do so. 649 * In addition to checking the log chain, zil_claim_log_block() 650 * will invoke zio_claim() with a done func of spa_claim_notify(), 651 * which will update spa_max_claim_txg. See spa_load() for details. 652 */ 653 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 654 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 655 656 dmu_objset_rele(os, FTAG); 657 658 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 659 } 660 661 static int 662 zil_vdev_compare(const void *x1, const void *x2) 663 { 664 uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 665 uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 666 667 if (v1 < v2) 668 return (-1); 669 if (v1 > v2) 670 return (1); 671 672 return (0); 673 } 674 675 void 676 zil_add_block(zilog_t *zilog, const blkptr_t *bp) 677 { 678 avl_tree_t *t = &zilog->zl_vdev_tree; 679 avl_index_t where; 680 zil_vdev_node_t *zv, zvsearch; 681 int ndvas = BP_GET_NDVAS(bp); 682 int i; 683 684 if (zfs_nocacheflush) 685 return; 686 687 ASSERT(zilog->zl_writer); 688 689 /* 690 * Even though we're zl_writer, we still need a lock because the 691 * zl_get_data() callbacks may have dmu_sync() done callbacks 692 * that will run concurrently. 693 */ 694 mutex_enter(&zilog->zl_vdev_lock); 695 for (i = 0; i < ndvas; i++) { 696 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 697 if (avl_find(t, &zvsearch, &where) == NULL) { 698 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 699 zv->zv_vdev = zvsearch.zv_vdev; 700 avl_insert(t, zv, where); 701 } 702 } 703 mutex_exit(&zilog->zl_vdev_lock); 704 } 705 706 void 707 zil_flush_vdevs(zilog_t *zilog) 708 { 709 spa_t *spa = zilog->zl_spa; 710 avl_tree_t *t = &zilog->zl_vdev_tree; 711 void *cookie = NULL; 712 zil_vdev_node_t *zv; 713 zio_t *zio; 714 715 ASSERT(zilog->zl_writer); 716 717 /* 718 * We don't need zl_vdev_lock here because we're the zl_writer, 719 * and all zl_get_data() callbacks are done. 720 */ 721 if (avl_numnodes(t) == 0) 722 return; 723 724 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 725 726 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 727 728 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 729 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 730 if (vd != NULL) 731 zio_flush(zio, vd); 732 kmem_free(zv, sizeof (*zv)); 733 } 734 735 /* 736 * Wait for all the flushes to complete. Not all devices actually 737 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 738 */ 739 (void) zio_wait(zio); 740 741 spa_config_exit(spa, SCL_STATE, FTAG); 742 } 743 744 /* 745 * Function called when a log block write completes 746 */ 747 static void 748 zil_lwb_write_done(zio_t *zio) 749 { 750 lwb_t *lwb = zio->io_private; 751 zilog_t *zilog = lwb->lwb_zilog; 752 dmu_tx_t *tx = lwb->lwb_tx; 753 754 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 755 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 756 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 757 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 758 ASSERT(!BP_IS_GANG(zio->io_bp)); 759 ASSERT(!BP_IS_HOLE(zio->io_bp)); 760 ASSERT(zio->io_bp->blk_fill == 0); 761 762 /* 763 * Ensure the lwb buffer pointer is cleared before releasing 764 * the txg. If we have had an allocation failure and 765 * the txg is waiting to sync then we want want zil_sync() 766 * to remove the lwb so that it's not picked up as the next new 767 * one in zil_commit_writer(). zil_sync() will only remove 768 * the lwb if lwb_buf is null. 769 */ 770 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 771 mutex_enter(&zilog->zl_lock); 772 lwb->lwb_buf = NULL; 773 lwb->lwb_tx = NULL; 774 mutex_exit(&zilog->zl_lock); 775 776 /* 777 * Now that we've written this log block, we have a stable pointer 778 * to the next block in the chain, so it's OK to let the txg in 779 * which we allocated the next block sync. 780 */ 781 dmu_tx_commit(tx); 782 } 783 784 /* 785 * Initialize the io for a log block. 786 */ 787 static void 788 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 789 { 790 zbookmark_t zb; 791 792 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 793 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 794 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 795 796 if (zilog->zl_root_zio == NULL) { 797 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 798 ZIO_FLAG_CANFAIL); 799 } 800 if (lwb->lwb_zio == NULL) { 801 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 802 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), 803 zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE, 804 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 805 } 806 } 807 808 /* 809 * Define a limited set of intent log block sizes. 810 * These must be a multiple of 4KB. Note only the amount used (again 811 * aligned to 4KB) actually gets written. However, we can't always just 812 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted. 813 */ 814 uint64_t zil_block_buckets[] = { 815 4096, /* non TX_WRITE */ 816 8192+4096, /* data base */ 817 32*1024 + 4096, /* NFS writes */ 818 UINT64_MAX 819 }; 820 821 /* 822 * Use the slog as long as the logbias is 'latency' and the current commit size 823 * is less than the limit or the total list size is less than 2X the limit. 824 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. 825 */ 826 uint64_t zil_slog_limit = 1024 * 1024; 827 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ 828 (((zilog)->zl_cur_used < zil_slog_limit) || \ 829 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) 830 831 /* 832 * Start a log block write and advance to the next log block. 833 * Calls are serialized. 834 */ 835 static lwb_t * 836 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 837 { 838 lwb_t *nlwb = NULL; 839 zil_chain_t *zilc; 840 spa_t *spa = zilog->zl_spa; 841 blkptr_t *bp; 842 dmu_tx_t *tx; 843 uint64_t txg; 844 uint64_t zil_blksz, wsz; 845 int i, error; 846 847 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 848 zilc = (zil_chain_t *)lwb->lwb_buf; 849 bp = &zilc->zc_next_blk; 850 } else { 851 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 852 bp = &zilc->zc_next_blk; 853 } 854 855 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 856 857 /* 858 * Allocate the next block and save its address in this block 859 * before writing it in order to establish the log chain. 860 * Note that if the allocation of nlwb synced before we wrote 861 * the block that points at it (lwb), we'd leak it if we crashed. 862 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 863 * We dirty the dataset to ensure that zil_sync() will be called 864 * to clean up in the event of allocation failure or I/O failure. 865 */ 866 tx = dmu_tx_create(zilog->zl_os); 867 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 868 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 869 txg = dmu_tx_get_txg(tx); 870 871 lwb->lwb_tx = tx; 872 873 /* 874 * Log blocks are pre-allocated. Here we select the size of the next 875 * block, based on size used in the last block. 876 * - first find the smallest bucket that will fit the block from a 877 * limited set of block sizes. This is because it's faster to write 878 * blocks allocated from the same metaslab as they are adjacent or 879 * close. 880 * - next find the maximum from the new suggested size and an array of 881 * previous sizes. This lessens a picket fence effect of wrongly 882 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 883 * requests. 884 * 885 * Note we only write what is used, but we can't just allocate 886 * the maximum block size because we can exhaust the available 887 * pool log space. 888 */ 889 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 890 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 891 continue; 892 zil_blksz = zil_block_buckets[i]; 893 if (zil_blksz == UINT64_MAX) 894 zil_blksz = SPA_MAXBLOCKSIZE; 895 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 896 for (i = 0; i < ZIL_PREV_BLKS; i++) 897 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 898 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 899 900 BP_ZERO(bp); 901 /* pass the old blkptr in order to spread log blocks across devs */ 902 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, 903 USE_SLOG(zilog)); 904 if (!error) { 905 ASSERT3U(bp->blk_birth, ==, txg); 906 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 907 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 908 909 /* 910 * Allocate a new log write buffer (lwb). 911 */ 912 nlwb = zil_alloc_lwb(zilog, bp, txg); 913 914 /* Record the block for later vdev flushing */ 915 zil_add_block(zilog, &lwb->lwb_blk); 916 } 917 918 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 919 /* For Slim ZIL only write what is used. */ 920 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 921 ASSERT3U(wsz, <=, lwb->lwb_sz); 922 zio_shrink(lwb->lwb_zio, wsz); 923 924 } else { 925 wsz = lwb->lwb_sz; 926 } 927 928 zilc->zc_pad = 0; 929 zilc->zc_nused = lwb->lwb_nused; 930 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 931 932 /* 933 * clear unused data for security 934 */ 935 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 936 937 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ 938 939 /* 940 * If there was an allocation failure then nlwb will be null which 941 * forces a txg_wait_synced(). 942 */ 943 return (nlwb); 944 } 945 946 static lwb_t * 947 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 948 { 949 lr_t *lrc = &itx->itx_lr; /* common log record */ 950 lr_write_t *lrw = (lr_write_t *)lrc; 951 char *lr_buf; 952 uint64_t txg = lrc->lrc_txg; 953 uint64_t reclen = lrc->lrc_reclen; 954 uint64_t dlen = 0; 955 956 if (lwb == NULL) 957 return (NULL); 958 959 ASSERT(lwb->lwb_buf != NULL); 960 961 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 962 dlen = P2ROUNDUP_TYPED( 963 lrw->lr_length, sizeof (uint64_t), uint64_t); 964 965 zilog->zl_cur_used += (reclen + dlen); 966 967 zil_lwb_write_init(zilog, lwb); 968 969 /* 970 * If this record won't fit in the current log block, start a new one. 971 */ 972 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 973 lwb = zil_lwb_write_start(zilog, lwb); 974 if (lwb == NULL) 975 return (NULL); 976 zil_lwb_write_init(zilog, lwb); 977 ASSERT(LWB_EMPTY(lwb)); 978 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 979 txg_wait_synced(zilog->zl_dmu_pool, txg); 980 return (lwb); 981 } 982 } 983 984 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 985 bcopy(lrc, lr_buf, reclen); 986 lrc = (lr_t *)lr_buf; 987 lrw = (lr_write_t *)lrc; 988 989 /* 990 * If it's a write, fetch the data or get its blkptr as appropriate. 991 */ 992 if (lrc->lrc_txtype == TX_WRITE) { 993 if (txg > spa_freeze_txg(zilog->zl_spa)) 994 txg_wait_synced(zilog->zl_dmu_pool, txg); 995 if (itx->itx_wr_state != WR_COPIED) { 996 char *dbuf; 997 int error; 998 999 if (dlen) { 1000 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 1001 dbuf = lr_buf + reclen; 1002 lrw->lr_common.lrc_reclen += dlen; 1003 } else { 1004 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1005 dbuf = NULL; 1006 } 1007 error = zilog->zl_get_data( 1008 itx->itx_private, lrw, dbuf, lwb->lwb_zio); 1009 if (error == EIO) { 1010 txg_wait_synced(zilog->zl_dmu_pool, txg); 1011 return (lwb); 1012 } 1013 if (error) { 1014 ASSERT(error == ENOENT || error == EEXIST || 1015 error == EALREADY); 1016 return (lwb); 1017 } 1018 } 1019 } 1020 1021 /* 1022 * We're actually making an entry, so update lrc_seq to be the 1023 * log record sequence number. Note that this is generally not 1024 * equal to the itx sequence number because not all transactions 1025 * are synchronous, and sometimes spa_sync() gets there first. 1026 */ 1027 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 1028 lwb->lwb_nused += reclen + dlen; 1029 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1030 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1031 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 1032 1033 return (lwb); 1034 } 1035 1036 itx_t * 1037 zil_itx_create(uint64_t txtype, size_t lrsize) 1038 { 1039 itx_t *itx; 1040 1041 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1042 1043 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1044 itx->itx_lr.lrc_txtype = txtype; 1045 itx->itx_lr.lrc_reclen = lrsize; 1046 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 1047 itx->itx_lr.lrc_seq = 0; /* defensive */ 1048 1049 return (itx); 1050 } 1051 1052 void 1053 zil_itx_destroy(itx_t *itx) 1054 { 1055 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1056 } 1057 1058 uint64_t 1059 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1060 { 1061 uint64_t seq; 1062 1063 ASSERT(itx->itx_lr.lrc_seq == 0); 1064 ASSERT(!zilog->zl_replay); 1065 1066 mutex_enter(&zilog->zl_lock); 1067 list_insert_tail(&zilog->zl_itx_list, itx); 1068 zilog->zl_itx_list_sz += itx->itx_sod; 1069 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1070 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 1071 mutex_exit(&zilog->zl_lock); 1072 1073 return (seq); 1074 } 1075 1076 /* 1077 * Free up all in-memory intent log transactions that have now been synced. 1078 */ 1079 static void 1080 zil_itx_clean(zilog_t *zilog) 1081 { 1082 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 1083 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 1084 list_t clean_list; 1085 itx_t *itx; 1086 1087 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1088 1089 mutex_enter(&zilog->zl_lock); 1090 /* wait for a log writer to finish walking list */ 1091 while (zilog->zl_writer) { 1092 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1093 } 1094 1095 /* 1096 * Move the sync'd log transactions to a separate list so we can call 1097 * kmem_free without holding the zl_lock. 1098 * 1099 * There is no need to set zl_writer as we don't drop zl_lock here 1100 */ 1101 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 1102 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 1103 list_remove(&zilog->zl_itx_list, itx); 1104 zilog->zl_itx_list_sz -= itx->itx_sod; 1105 list_insert_tail(&clean_list, itx); 1106 } 1107 cv_broadcast(&zilog->zl_cv_writer); 1108 mutex_exit(&zilog->zl_lock); 1109 1110 /* destroy sync'd log transactions */ 1111 while ((itx = list_head(&clean_list)) != NULL) { 1112 list_remove(&clean_list, itx); 1113 zil_itx_destroy(itx); 1114 } 1115 list_destroy(&clean_list); 1116 } 1117 1118 /* 1119 * If there are any in-memory intent log transactions which have now been 1120 * synced then start up a taskq to free them. 1121 */ 1122 void 1123 zil_clean(zilog_t *zilog) 1124 { 1125 itx_t *itx; 1126 1127 mutex_enter(&zilog->zl_lock); 1128 itx = list_head(&zilog->zl_itx_list); 1129 if ((itx != NULL) && 1130 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 1131 (void) taskq_dispatch(zilog->zl_clean_taskq, 1132 (task_func_t *)zil_itx_clean, zilog, TQ_NOSLEEP); 1133 } 1134 mutex_exit(&zilog->zl_lock); 1135 } 1136 1137 static void 1138 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 1139 { 1140 uint64_t txg; 1141 uint64_t commit_seq = 0; 1142 itx_t *itx, *itx_next; 1143 lwb_t *lwb; 1144 spa_t *spa; 1145 int error = 0; 1146 1147 zilog->zl_writer = B_TRUE; 1148 ASSERT(zilog->zl_root_zio == NULL); 1149 spa = zilog->zl_spa; 1150 1151 if (zilog->zl_suspend) { 1152 lwb = NULL; 1153 } else { 1154 lwb = list_tail(&zilog->zl_lwb_list); 1155 if (lwb == NULL) { 1156 /* 1157 * Return if there's nothing to flush before we 1158 * dirty the fs by calling zil_create() 1159 */ 1160 if (list_is_empty(&zilog->zl_itx_list)) { 1161 zilog->zl_writer = B_FALSE; 1162 return; 1163 } 1164 mutex_exit(&zilog->zl_lock); 1165 lwb = zil_create(zilog); 1166 mutex_enter(&zilog->zl_lock); 1167 } 1168 } 1169 ASSERT(lwb == NULL || lwb->lwb_zio == NULL); 1170 1171 /* Loop through in-memory log transactions filling log blocks. */ 1172 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1173 1174 for (itx = list_head(&zilog->zl_itx_list); itx; itx = itx_next) { 1175 /* 1176 * Save the next pointer. Even though we drop zl_lock below, 1177 * all threads that can remove itx list entries (other writers 1178 * and zil_itx_clean()) can't do so until they have zl_writer. 1179 */ 1180 itx_next = list_next(&zilog->zl_itx_list, itx); 1181 1182 /* 1183 * Determine whether to push this itx. 1184 * Push all transactions related to specified foid and 1185 * all other transactions except those that can be logged 1186 * out of order (TX_WRITE, TX_TRUNCATE, TX_SETATTR, TX_ACL) 1187 * for all other files. 1188 * 1189 * If foid == 0 (meaning "push all foids") or 1190 * itx->itx_sync is set (meaning O_[D]SYNC), push regardless. 1191 */ 1192 if (foid != 0 && !itx->itx_sync && 1193 TX_OOO(itx->itx_lr.lrc_txtype) && 1194 ((lr_ooo_t *)&itx->itx_lr)->lr_foid != foid) 1195 continue; /* skip this record */ 1196 1197 if ((itx->itx_lr.lrc_seq > seq) && 1198 ((lwb == NULL) || (LWB_EMPTY(lwb)) || 1199 (lwb->lwb_nused + itx->itx_sod > lwb->lwb_sz))) 1200 break; 1201 1202 list_remove(&zilog->zl_itx_list, itx); 1203 zilog->zl_itx_list_sz -= itx->itx_sod; 1204 1205 mutex_exit(&zilog->zl_lock); 1206 1207 txg = itx->itx_lr.lrc_txg; 1208 ASSERT(txg); 1209 1210 if (txg > spa_last_synced_txg(spa) || 1211 txg > spa_freeze_txg(spa)) 1212 lwb = zil_lwb_commit(zilog, itx, lwb); 1213 1214 zil_itx_destroy(itx); 1215 1216 mutex_enter(&zilog->zl_lock); 1217 } 1218 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1219 /* determine commit sequence number */ 1220 itx = list_head(&zilog->zl_itx_list); 1221 if (itx) 1222 commit_seq = itx->itx_lr.lrc_seq - 1; 1223 else 1224 commit_seq = zilog->zl_itx_seq; 1225 mutex_exit(&zilog->zl_lock); 1226 1227 /* write the last block out */ 1228 if (lwb != NULL && lwb->lwb_zio != NULL) 1229 lwb = zil_lwb_write_start(zilog, lwb); 1230 1231 zilog->zl_prev_used = zilog->zl_cur_used; 1232 zilog->zl_cur_used = 0; 1233 1234 /* 1235 * Wait if necessary for the log blocks to be on stable storage. 1236 */ 1237 if (zilog->zl_root_zio) { 1238 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1239 error = zio_wait(zilog->zl_root_zio); 1240 zilog->zl_root_zio = NULL; 1241 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1242 zil_flush_vdevs(zilog); 1243 } 1244 1245 if (error || lwb == NULL) 1246 txg_wait_synced(zilog->zl_dmu_pool, 0); 1247 1248 mutex_enter(&zilog->zl_lock); 1249 zilog->zl_writer = B_FALSE; 1250 1251 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1252 zilog->zl_commit_seq = commit_seq; 1253 1254 /* 1255 * Remember the highest committed log sequence number for ztest. 1256 * We only update this value when all the log writes succeeded, 1257 * because ztest wants to ASSERT that it got the whole log chain. 1258 */ 1259 if (error == 0 && lwb != NULL) 1260 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1261 } 1262 1263 /* 1264 * Push zfs transactions to stable storage up to the supplied sequence number. 1265 * If foid is 0 push out all transactions, otherwise push only those 1266 * for that file or might have been used to create that file. 1267 */ 1268 void 1269 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1270 { 1271 if (zilog->zl_sync == ZFS_SYNC_DISABLED || seq == 0) 1272 return; 1273 1274 mutex_enter(&zilog->zl_lock); 1275 1276 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1277 1278 while (zilog->zl_writer) { 1279 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1280 if (seq <= zilog->zl_commit_seq) { 1281 mutex_exit(&zilog->zl_lock); 1282 return; 1283 } 1284 } 1285 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1286 /* wake up others waiting on the commit */ 1287 cv_broadcast(&zilog->zl_cv_writer); 1288 mutex_exit(&zilog->zl_lock); 1289 } 1290 1291 /* 1292 * Report whether all transactions are committed. 1293 */ 1294 static boolean_t 1295 zil_is_committed(zilog_t *zilog) 1296 { 1297 lwb_t *lwb; 1298 boolean_t committed; 1299 1300 mutex_enter(&zilog->zl_lock); 1301 1302 while (zilog->zl_writer) 1303 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1304 1305 if (!list_is_empty(&zilog->zl_itx_list)) 1306 committed = B_FALSE; /* unpushed transactions */ 1307 else if ((lwb = list_head(&zilog->zl_lwb_list)) == NULL) 1308 committed = B_TRUE; /* intent log never used */ 1309 else if (list_next(&zilog->zl_lwb_list, lwb) != NULL) 1310 committed = B_FALSE; /* zil_sync() not done yet */ 1311 else 1312 committed = B_TRUE; /* everything synced */ 1313 1314 mutex_exit(&zilog->zl_lock); 1315 return (committed); 1316 } 1317 1318 /* 1319 * Called in syncing context to free committed log blocks and update log header. 1320 */ 1321 void 1322 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1323 { 1324 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1325 uint64_t txg = dmu_tx_get_txg(tx); 1326 spa_t *spa = zilog->zl_spa; 1327 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 1328 lwb_t *lwb; 1329 1330 /* 1331 * We don't zero out zl_destroy_txg, so make sure we don't try 1332 * to destroy it twice. 1333 */ 1334 if (spa_sync_pass(spa) != 1) 1335 return; 1336 1337 mutex_enter(&zilog->zl_lock); 1338 1339 ASSERT(zilog->zl_stop_sync == 0); 1340 1341 if (*replayed_seq != 0) { 1342 ASSERT(zh->zh_replay_seq < *replayed_seq); 1343 zh->zh_replay_seq = *replayed_seq; 1344 *replayed_seq = 0; 1345 } 1346 1347 if (zilog->zl_destroy_txg == txg) { 1348 blkptr_t blk = zh->zh_log; 1349 1350 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1351 1352 bzero(zh, sizeof (zil_header_t)); 1353 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1354 1355 if (zilog->zl_keep_first) { 1356 /* 1357 * If this block was part of log chain that couldn't 1358 * be claimed because a device was missing during 1359 * zil_claim(), but that device later returns, 1360 * then this block could erroneously appear valid. 1361 * To guard against this, assign a new GUID to the new 1362 * log chain so it doesn't matter what blk points to. 1363 */ 1364 zil_init_log_chain(zilog, &blk); 1365 zh->zh_log = blk; 1366 } 1367 } 1368 1369 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1370 zh->zh_log = lwb->lwb_blk; 1371 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1372 break; 1373 list_remove(&zilog->zl_lwb_list, lwb); 1374 zio_free_zil(spa, txg, &lwb->lwb_blk); 1375 kmem_cache_free(zil_lwb_cache, lwb); 1376 1377 /* 1378 * If we don't have anything left in the lwb list then 1379 * we've had an allocation failure and we need to zero 1380 * out the zil_header blkptr so that we don't end 1381 * up freeing the same block twice. 1382 */ 1383 if (list_head(&zilog->zl_lwb_list) == NULL) 1384 BP_ZERO(&zh->zh_log); 1385 } 1386 mutex_exit(&zilog->zl_lock); 1387 } 1388 1389 void 1390 zil_init(void) 1391 { 1392 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1393 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1394 } 1395 1396 void 1397 zil_fini(void) 1398 { 1399 kmem_cache_destroy(zil_lwb_cache); 1400 } 1401 1402 void 1403 zil_set_sync(zilog_t *zilog, uint64_t sync) 1404 { 1405 zilog->zl_sync = sync; 1406 } 1407 1408 void 1409 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1410 { 1411 zilog->zl_logbias = logbias; 1412 } 1413 1414 zilog_t * 1415 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1416 { 1417 zilog_t *zilog; 1418 1419 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1420 1421 zilog->zl_header = zh_phys; 1422 zilog->zl_os = os; 1423 zilog->zl_spa = dmu_objset_spa(os); 1424 zilog->zl_dmu_pool = dmu_objset_pool(os); 1425 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1426 zilog->zl_logbias = dmu_objset_logbias(os); 1427 zilog->zl_sync = dmu_objset_syncprop(os); 1428 1429 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1430 1431 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1432 offsetof(itx_t, itx_node)); 1433 1434 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1435 offsetof(lwb_t, lwb_node)); 1436 1437 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1438 1439 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1440 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1441 1442 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1443 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1444 1445 return (zilog); 1446 } 1447 1448 void 1449 zil_free(zilog_t *zilog) 1450 { 1451 lwb_t *lwb; 1452 1453 zilog->zl_stop_sync = 1; 1454 1455 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1456 list_remove(&zilog->zl_lwb_list, lwb); 1457 if (lwb->lwb_buf != NULL) 1458 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1459 kmem_cache_free(zil_lwb_cache, lwb); 1460 } 1461 list_destroy(&zilog->zl_lwb_list); 1462 1463 avl_destroy(&zilog->zl_vdev_tree); 1464 mutex_destroy(&zilog->zl_vdev_lock); 1465 1466 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1467 list_destroy(&zilog->zl_itx_list); 1468 mutex_destroy(&zilog->zl_lock); 1469 1470 cv_destroy(&zilog->zl_cv_writer); 1471 cv_destroy(&zilog->zl_cv_suspend); 1472 1473 kmem_free(zilog, sizeof (zilog_t)); 1474 } 1475 1476 /* 1477 * Open an intent log. 1478 */ 1479 zilog_t * 1480 zil_open(objset_t *os, zil_get_data_t *get_data) 1481 { 1482 zilog_t *zilog = dmu_objset_zil(os); 1483 1484 zilog->zl_get_data = get_data; 1485 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1486 2, 2, TASKQ_PREPOPULATE); 1487 1488 return (zilog); 1489 } 1490 1491 /* 1492 * Close an intent log. 1493 */ 1494 void 1495 zil_close(zilog_t *zilog) 1496 { 1497 /* 1498 * If the log isn't already committed, mark the objset dirty 1499 * (so zil_sync() will be called) and wait for that txg to sync. 1500 */ 1501 if (!zil_is_committed(zilog)) { 1502 uint64_t txg; 1503 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1504 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 1505 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1506 txg = dmu_tx_get_txg(tx); 1507 dmu_tx_commit(tx); 1508 txg_wait_synced(zilog->zl_dmu_pool, txg); 1509 } 1510 1511 taskq_destroy(zilog->zl_clean_taskq); 1512 zilog->zl_clean_taskq = NULL; 1513 zilog->zl_get_data = NULL; 1514 1515 zil_itx_clean(zilog); 1516 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1517 } 1518 1519 /* 1520 * Suspend an intent log. While in suspended mode, we still honor 1521 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1522 * We suspend the log briefly when taking a snapshot so that the snapshot 1523 * contains all the data it's supposed to, and has an empty intent log. 1524 */ 1525 int 1526 zil_suspend(zilog_t *zilog) 1527 { 1528 const zil_header_t *zh = zilog->zl_header; 1529 1530 mutex_enter(&zilog->zl_lock); 1531 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1532 mutex_exit(&zilog->zl_lock); 1533 return (EBUSY); 1534 } 1535 if (zilog->zl_suspend++ != 0) { 1536 /* 1537 * Someone else already began a suspend. 1538 * Just wait for them to finish. 1539 */ 1540 while (zilog->zl_suspending) 1541 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1542 mutex_exit(&zilog->zl_lock); 1543 return (0); 1544 } 1545 zilog->zl_suspending = B_TRUE; 1546 mutex_exit(&zilog->zl_lock); 1547 1548 zil_commit(zilog, UINT64_MAX, 0); 1549 1550 /* 1551 * Wait for any in-flight log writes to complete. 1552 */ 1553 mutex_enter(&zilog->zl_lock); 1554 while (zilog->zl_writer) 1555 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1556 mutex_exit(&zilog->zl_lock); 1557 1558 zil_destroy(zilog, B_FALSE); 1559 1560 mutex_enter(&zilog->zl_lock); 1561 zilog->zl_suspending = B_FALSE; 1562 cv_broadcast(&zilog->zl_cv_suspend); 1563 mutex_exit(&zilog->zl_lock); 1564 1565 return (0); 1566 } 1567 1568 void 1569 zil_resume(zilog_t *zilog) 1570 { 1571 mutex_enter(&zilog->zl_lock); 1572 ASSERT(zilog->zl_suspend != 0); 1573 zilog->zl_suspend--; 1574 mutex_exit(&zilog->zl_lock); 1575 } 1576 1577 typedef struct zil_replay_arg { 1578 zil_replay_func_t **zr_replay; 1579 void *zr_arg; 1580 boolean_t zr_byteswap; 1581 char *zr_lr; 1582 } zil_replay_arg_t; 1583 1584 static int 1585 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 1586 { 1587 char name[MAXNAMELEN]; 1588 1589 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 1590 1591 dmu_objset_name(zilog->zl_os, name); 1592 1593 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1594 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 1595 (u_longlong_t)lr->lrc_seq, 1596 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 1597 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1598 1599 return (error); 1600 } 1601 1602 static int 1603 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1604 { 1605 zil_replay_arg_t *zr = zra; 1606 const zil_header_t *zh = zilog->zl_header; 1607 uint64_t reclen = lr->lrc_reclen; 1608 uint64_t txtype = lr->lrc_txtype; 1609 int error = 0; 1610 1611 zilog->zl_replaying_seq = lr->lrc_seq; 1612 1613 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1614 return (0); 1615 1616 if (lr->lrc_txg < claim_txg) /* already committed */ 1617 return (0); 1618 1619 /* Strip case-insensitive bit, still present in log record */ 1620 txtype &= ~TX_CI; 1621 1622 if (txtype == 0 || txtype >= TX_MAX_TYPE) 1623 return (zil_replay_error(zilog, lr, EINVAL)); 1624 1625 /* 1626 * If this record type can be logged out of order, the object 1627 * (lr_foid) may no longer exist. That's legitimate, not an error. 1628 */ 1629 if (TX_OOO(txtype)) { 1630 error = dmu_object_info(zilog->zl_os, 1631 ((lr_ooo_t *)lr)->lr_foid, NULL); 1632 if (error == ENOENT || error == EEXIST) 1633 return (0); 1634 } 1635 1636 /* 1637 * Make a copy of the data so we can revise and extend it. 1638 */ 1639 bcopy(lr, zr->zr_lr, reclen); 1640 1641 /* 1642 * If this is a TX_WRITE with a blkptr, suck in the data. 1643 */ 1644 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1645 error = zil_read_log_data(zilog, (lr_write_t *)lr, 1646 zr->zr_lr + reclen); 1647 if (error) 1648 return (zil_replay_error(zilog, lr, error)); 1649 } 1650 1651 /* 1652 * The log block containing this lr may have been byteswapped 1653 * so that we can easily examine common fields like lrc_txtype. 1654 * However, the log is a mix of different record types, and only the 1655 * replay vectors know how to byteswap their records. Therefore, if 1656 * the lr was byteswapped, undo it before invoking the replay vector. 1657 */ 1658 if (zr->zr_byteswap) 1659 byteswap_uint64_array(zr->zr_lr, reclen); 1660 1661 /* 1662 * We must now do two things atomically: replay this log record, 1663 * and update the log header sequence number to reflect the fact that 1664 * we did so. At the end of each replay function the sequence number 1665 * is updated if we are in replay mode. 1666 */ 1667 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 1668 if (error) { 1669 /* 1670 * The DMU's dnode layer doesn't see removes until the txg 1671 * commits, so a subsequent claim can spuriously fail with 1672 * EEXIST. So if we receive any error we try syncing out 1673 * any removes then retry the transaction. Note that we 1674 * specify B_FALSE for byteswap now, so we don't do it twice. 1675 */ 1676 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1677 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 1678 if (error) 1679 return (zil_replay_error(zilog, lr, error)); 1680 } 1681 return (0); 1682 } 1683 1684 /* ARGSUSED */ 1685 static int 1686 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1687 { 1688 zilog->zl_replay_blks++; 1689 1690 return (0); 1691 } 1692 1693 /* 1694 * If this dataset has a non-empty intent log, replay it and destroy it. 1695 */ 1696 void 1697 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1698 { 1699 zilog_t *zilog = dmu_objset_zil(os); 1700 const zil_header_t *zh = zilog->zl_header; 1701 zil_replay_arg_t zr; 1702 1703 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 1704 zil_destroy(zilog, B_TRUE); 1705 return; 1706 } 1707 1708 zr.zr_replay = replay_func; 1709 zr.zr_arg = arg; 1710 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1711 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1712 1713 /* 1714 * Wait for in-progress removes to sync before starting replay. 1715 */ 1716 txg_wait_synced(zilog->zl_dmu_pool, 0); 1717 1718 zilog->zl_replay = B_TRUE; 1719 zilog->zl_replay_time = ddi_get_lbolt(); 1720 ASSERT(zilog->zl_replay_blks == 0); 1721 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1722 zh->zh_claim_txg); 1723 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 1724 1725 zil_destroy(zilog, B_FALSE); 1726 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1727 zilog->zl_replay = B_FALSE; 1728 } 1729 1730 boolean_t 1731 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 1732 { 1733 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1734 return (B_TRUE); 1735 1736 if (zilog->zl_replay) { 1737 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1738 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 1739 zilog->zl_replaying_seq; 1740 return (B_TRUE); 1741 } 1742 1743 return (B_FALSE); 1744 } 1745 1746 /* ARGSUSED */ 1747 int 1748 zil_vdev_offline(const char *osname, void *arg) 1749 { 1750 objset_t *os; 1751 zilog_t *zilog; 1752 int error; 1753 1754 error = dmu_objset_hold(osname, FTAG, &os); 1755 if (error) 1756 return (error); 1757 1758 zilog = dmu_objset_zil(os); 1759 if (zil_suspend(zilog) != 0) 1760 error = EEXIST; 1761 else 1762 zil_resume(zilog); 1763 dmu_objset_rele(os, FTAG); 1764 return (error); 1765 } 1766