1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/dmu.h> 29 #include <sys/zap.h> 30 #include <sys/arc.h> 31 #include <sys/stat.h> 32 #include <sys/resource.h> 33 #include <sys/zil.h> 34 #include <sys/zil_impl.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/vdev.h> 37 #include <sys/dmu_tx.h> 38 39 /* 40 * The zfs intent log (ZIL) saves transaction records of system calls 41 * that change the file system in memory with enough information 42 * to be able to replay them. These are stored in memory until 43 * either the DMU transaction group (txg) commits them to the stable pool 44 * and they can be discarded, or they are flushed to the stable log 45 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 46 * requirement. In the event of a panic or power fail then those log 47 * records (transactions) are replayed. 48 * 49 * There is one ZIL per file system. Its on-disk (pool) format consists 50 * of 3 parts: 51 * 52 * - ZIL header 53 * - ZIL blocks 54 * - ZIL records 55 * 56 * A log record holds a system call transaction. Log blocks can 57 * hold many log records and the blocks are chained together. 58 * Each ZIL block contains a block pointer (blkptr_t) to the next 59 * ZIL block in the chain. The ZIL header points to the first 60 * block in the chain. Note there is not a fixed place in the pool 61 * to hold blocks. They are dynamically allocated and freed as 62 * needed from the blocks available. Figure X shows the ZIL structure: 63 */ 64 65 /* 66 * This global ZIL switch affects all pools 67 */ 68 int zil_disable = 0; /* disable intent logging */ 69 70 /* 71 * Tunable parameter for debugging or performance analysis. Setting 72 * zfs_nocacheflush will cause corruption on power loss if a volatile 73 * out-of-order write cache is enabled. 74 */ 75 boolean_t zfs_nocacheflush = B_FALSE; 76 77 static kmem_cache_t *zil_lwb_cache; 78 79 static int 80 zil_dva_compare(const void *x1, const void *x2) 81 { 82 const dva_t *dva1 = x1; 83 const dva_t *dva2 = x2; 84 85 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 86 return (-1); 87 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 88 return (1); 89 90 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 91 return (-1); 92 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 93 return (1); 94 95 return (0); 96 } 97 98 static void 99 zil_dva_tree_init(avl_tree_t *t) 100 { 101 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 102 offsetof(zil_dva_node_t, zn_node)); 103 } 104 105 static void 106 zil_dva_tree_fini(avl_tree_t *t) 107 { 108 zil_dva_node_t *zn; 109 void *cookie = NULL; 110 111 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 112 kmem_free(zn, sizeof (zil_dva_node_t)); 113 114 avl_destroy(t); 115 } 116 117 static int 118 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 119 { 120 zil_dva_node_t *zn; 121 avl_index_t where; 122 123 if (avl_find(t, dva, &where) != NULL) 124 return (EEXIST); 125 126 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 127 zn->zn_dva = *dva; 128 avl_insert(t, zn, where); 129 130 return (0); 131 } 132 133 static zil_header_t * 134 zil_header_in_syncing_context(zilog_t *zilog) 135 { 136 return ((zil_header_t *)zilog->zl_header); 137 } 138 139 static void 140 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 141 { 142 zio_cksum_t *zc = &bp->blk_cksum; 143 144 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 145 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 146 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 147 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 148 } 149 150 /* 151 * Read a log block, make sure it's valid, and byteswap it if necessary. 152 */ 153 static int 154 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 155 { 156 blkptr_t blk = *bp; 157 zbookmark_t zb; 158 uint32_t aflags = ARC_WAIT; 159 int error; 160 161 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 162 zb.zb_object = 0; 163 zb.zb_level = -1; 164 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 165 166 *abufpp = NULL; 167 168 /* 169 * We shouldn't be doing any scrubbing while we're doing log 170 * replay, it's OK to not lock. 171 */ 172 error = arc_read_nolock(NULL, zilog->zl_spa, &blk, 173 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 174 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 175 176 if (error == 0) { 177 char *data = (*abufpp)->b_data; 178 uint64_t blksz = BP_GET_LSIZE(bp); 179 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 180 zio_cksum_t cksum = bp->blk_cksum; 181 182 /* 183 * Validate the checksummed log block. 184 * 185 * Sequence numbers should be... sequential. The checksum 186 * verifier for the next block should be bp's checksum plus 1. 187 * 188 * Also check the log chain linkage and size used. 189 */ 190 cksum.zc_word[ZIL_ZC_SEQ]++; 191 192 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, 193 sizeof (cksum)) || BP_IS_HOLE(&ztp->zit_next_blk) || 194 (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))) { 195 error = ECKSUM; 196 } 197 198 if (error) { 199 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 200 *abufpp = NULL; 201 } 202 } 203 204 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 205 206 return (error); 207 } 208 209 /* 210 * Parse the intent log, and call parse_func for each valid record within. 211 * Return the highest sequence number. 212 */ 213 uint64_t 214 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 215 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 216 { 217 const zil_header_t *zh = zilog->zl_header; 218 uint64_t claim_seq = zh->zh_claim_seq; 219 uint64_t seq = 0; 220 uint64_t max_seq = 0; 221 blkptr_t blk = zh->zh_log; 222 arc_buf_t *abuf; 223 char *lrbuf, *lrp; 224 zil_trailer_t *ztp; 225 int reclen, error; 226 227 if (BP_IS_HOLE(&blk)) 228 return (max_seq); 229 230 /* 231 * Starting at the block pointed to by zh_log we read the log chain. 232 * For each block in the chain we strongly check that block to 233 * ensure its validity. We stop when an invalid block is found. 234 * For each block pointer in the chain we call parse_blk_func(). 235 * For each record in each valid block we call parse_lr_func(). 236 * If the log has been claimed, stop if we encounter a sequence 237 * number greater than the highest claimed sequence number. 238 */ 239 zil_dva_tree_init(&zilog->zl_dva_tree); 240 for (;;) { 241 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 242 243 if (claim_seq != 0 && seq > claim_seq) 244 break; 245 246 ASSERT(max_seq < seq); 247 max_seq = seq; 248 249 error = zil_read_log_block(zilog, &blk, &abuf); 250 251 if (parse_blk_func != NULL) 252 parse_blk_func(zilog, &blk, arg, txg); 253 254 if (error) 255 break; 256 257 lrbuf = abuf->b_data; 258 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 259 blk = ztp->zit_next_blk; 260 261 if (parse_lr_func == NULL) { 262 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 263 continue; 264 } 265 266 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 267 lr_t *lr = (lr_t *)lrp; 268 reclen = lr->lrc_reclen; 269 ASSERT3U(reclen, >=, sizeof (lr_t)); 270 parse_lr_func(zilog, lr, arg, txg); 271 } 272 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 273 } 274 zil_dva_tree_fini(&zilog->zl_dva_tree); 275 276 return (max_seq); 277 } 278 279 /* ARGSUSED */ 280 static void 281 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 282 { 283 spa_t *spa = zilog->zl_spa; 284 int err; 285 286 /* 287 * Claim log block if not already committed and not already claimed. 288 */ 289 if (bp->blk_birth >= first_txg && 290 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 291 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL, 292 ZIO_FLAG_MUSTSUCCEED)); 293 ASSERT(err == 0); 294 } 295 } 296 297 static void 298 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 299 { 300 if (lrc->lrc_txtype == TX_WRITE) { 301 lr_write_t *lr = (lr_write_t *)lrc; 302 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 303 } 304 } 305 306 /* ARGSUSED */ 307 static void 308 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 309 { 310 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 311 } 312 313 static void 314 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 315 { 316 /* 317 * If we previously claimed it, we need to free it. 318 */ 319 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 320 lr_write_t *lr = (lr_write_t *)lrc; 321 blkptr_t *bp = &lr->lr_blkptr; 322 if (bp->blk_birth >= claim_txg && 323 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 324 (void) arc_free(NULL, zilog->zl_spa, 325 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 326 } 327 } 328 } 329 330 /* 331 * Create an on-disk intent log. 332 */ 333 static void 334 zil_create(zilog_t *zilog) 335 { 336 const zil_header_t *zh = zilog->zl_header; 337 lwb_t *lwb; 338 uint64_t txg = 0; 339 dmu_tx_t *tx = NULL; 340 blkptr_t blk; 341 int error = 0; 342 343 /* 344 * Wait for any previous destroy to complete. 345 */ 346 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 347 348 ASSERT(zh->zh_claim_txg == 0); 349 ASSERT(zh->zh_replay_seq == 0); 350 351 blk = zh->zh_log; 352 353 /* 354 * If we don't already have an initial log block or we have one 355 * but it's the wrong endianness then allocate one. 356 */ 357 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 358 tx = dmu_tx_create(zilog->zl_os); 359 (void) dmu_tx_assign(tx, TXG_WAIT); 360 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 361 txg = dmu_tx_get_txg(tx); 362 363 if (!BP_IS_HOLE(&blk)) { 364 zio_free_blk(zilog->zl_spa, &blk, txg); 365 BP_ZERO(&blk); 366 } 367 368 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 369 NULL, txg); 370 371 if (error == 0) 372 zil_init_log_chain(zilog, &blk); 373 } 374 375 /* 376 * Allocate a log write buffer (lwb) for the first log block. 377 */ 378 if (error == 0) { 379 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 380 lwb->lwb_zilog = zilog; 381 lwb->lwb_blk = blk; 382 lwb->lwb_nused = 0; 383 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 384 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 385 lwb->lwb_max_txg = txg; 386 lwb->lwb_zio = NULL; 387 388 mutex_enter(&zilog->zl_lock); 389 list_insert_tail(&zilog->zl_lwb_list, lwb); 390 mutex_exit(&zilog->zl_lock); 391 } 392 393 /* 394 * If we just allocated the first log block, commit our transaction 395 * and wait for zil_sync() to stuff the block poiner into zh_log. 396 * (zh is part of the MOS, so we cannot modify it in open context.) 397 */ 398 if (tx != NULL) { 399 dmu_tx_commit(tx); 400 txg_wait_synced(zilog->zl_dmu_pool, txg); 401 } 402 403 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 404 } 405 406 /* 407 * In one tx, free all log blocks and clear the log header. 408 * If keep_first is set, then we're replaying a log with no content. 409 * We want to keep the first block, however, so that the first 410 * synchronous transaction doesn't require a txg_wait_synced() 411 * in zil_create(). We don't need to txg_wait_synced() here either 412 * when keep_first is set, because both zil_create() and zil_destroy() 413 * will wait for any in-progress destroys to complete. 414 */ 415 void 416 zil_destroy(zilog_t *zilog, boolean_t keep_first) 417 { 418 const zil_header_t *zh = zilog->zl_header; 419 lwb_t *lwb; 420 dmu_tx_t *tx; 421 uint64_t txg; 422 423 /* 424 * Wait for any previous destroy to complete. 425 */ 426 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 427 428 if (BP_IS_HOLE(&zh->zh_log)) 429 return; 430 431 tx = dmu_tx_create(zilog->zl_os); 432 (void) dmu_tx_assign(tx, TXG_WAIT); 433 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 434 txg = dmu_tx_get_txg(tx); 435 436 mutex_enter(&zilog->zl_lock); 437 438 /* 439 * It is possible for the ZIL to get the previously mounted zilog 440 * structure of the same dataset if quickly remounted and the dbuf 441 * eviction has not completed. In this case we can see a non 442 * empty lwb list and keep_first will be set. We fix this by 443 * clearing the keep_first. This will be slower but it's very rare. 444 */ 445 if (!list_is_empty(&zilog->zl_lwb_list) && keep_first) 446 keep_first = B_FALSE; 447 448 ASSERT3U(zilog->zl_destroy_txg, <, txg); 449 zilog->zl_destroy_txg = txg; 450 zilog->zl_keep_first = keep_first; 451 452 if (!list_is_empty(&zilog->zl_lwb_list)) { 453 ASSERT(zh->zh_claim_txg == 0); 454 ASSERT(!keep_first); 455 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 456 list_remove(&zilog->zl_lwb_list, lwb); 457 if (lwb->lwb_buf != NULL) 458 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 459 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 460 kmem_cache_free(zil_lwb_cache, lwb); 461 } 462 } else { 463 if (!keep_first) { 464 (void) zil_parse(zilog, zil_free_log_block, 465 zil_free_log_record, tx, zh->zh_claim_txg); 466 } 467 } 468 mutex_exit(&zilog->zl_lock); 469 470 dmu_tx_commit(tx); 471 } 472 473 /* 474 * return true if the initial log block is not valid 475 */ 476 static boolean_t 477 zil_empty(zilog_t *zilog) 478 { 479 const zil_header_t *zh = zilog->zl_header; 480 arc_buf_t *abuf = NULL; 481 482 if (BP_IS_HOLE(&zh->zh_log)) 483 return (B_TRUE); 484 485 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 486 return (B_TRUE); 487 488 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 489 return (B_FALSE); 490 } 491 492 int 493 zil_claim(char *osname, void *txarg) 494 { 495 dmu_tx_t *tx = txarg; 496 uint64_t first_txg = dmu_tx_get_txg(tx); 497 zilog_t *zilog; 498 zil_header_t *zh; 499 objset_t *os; 500 int error; 501 502 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 503 if (error) { 504 cmn_err(CE_WARN, "can't open objset for %s", osname); 505 return (0); 506 } 507 508 zilog = dmu_objset_zil(os); 509 zh = zil_header_in_syncing_context(zilog); 510 511 /* 512 * Record here whether the zil has any records to replay. 513 * If the header block pointer is null or the block points 514 * to the stubby then we know there are no valid log records. 515 * We use the header to store this state as the the zilog gets 516 * freed later in dmu_objset_close(). 517 * The flags (and the rest of the header fields) are cleared in 518 * zil_sync() as a result of a zil_destroy(), after replaying the log. 519 * 520 * Note, the intent log can be empty but still need the 521 * stubby to be claimed. 522 */ 523 if (!zil_empty(zilog)) 524 zh->zh_flags |= ZIL_REPLAY_NEEDED; 525 526 /* 527 * Claim all log blocks if we haven't already done so, and remember 528 * the highest claimed sequence number. This ensures that if we can 529 * read only part of the log now (e.g. due to a missing device), 530 * but we can read the entire log later, we will not try to replay 531 * or destroy beyond the last block we successfully claimed. 532 */ 533 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 534 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 535 zh->zh_claim_txg = first_txg; 536 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 537 zil_claim_log_record, tx, first_txg); 538 dsl_dataset_dirty(dmu_objset_ds(os), tx); 539 } 540 541 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 542 dmu_objset_close(os); 543 return (0); 544 } 545 546 /* 547 * Check the log by walking the log chain. 548 * Checksum errors are ok as they indicate the end of the chain. 549 * Any other error (no device or read failure) returns an error. 550 */ 551 /* ARGSUSED */ 552 int 553 zil_check_log_chain(char *osname, void *txarg) 554 { 555 zilog_t *zilog; 556 zil_header_t *zh; 557 blkptr_t blk; 558 arc_buf_t *abuf; 559 objset_t *os; 560 char *lrbuf; 561 zil_trailer_t *ztp; 562 int error; 563 564 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 565 if (error) { 566 cmn_err(CE_WARN, "can't open objset for %s", osname); 567 return (0); 568 } 569 570 zilog = dmu_objset_zil(os); 571 zh = zil_header_in_syncing_context(zilog); 572 blk = zh->zh_log; 573 if (BP_IS_HOLE(&blk)) { 574 dmu_objset_close(os); 575 return (0); /* no chain */ 576 } 577 578 for (;;) { 579 error = zil_read_log_block(zilog, &blk, &abuf); 580 if (error) 581 break; 582 lrbuf = abuf->b_data; 583 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 584 blk = ztp->zit_next_blk; 585 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 586 } 587 dmu_objset_close(os); 588 if (error == ECKSUM) 589 return (0); /* normal end of chain */ 590 return (error); 591 } 592 593 /* 594 * Clear a log chain 595 */ 596 /* ARGSUSED */ 597 int 598 zil_clear_log_chain(char *osname, void *txarg) 599 { 600 zilog_t *zilog; 601 zil_header_t *zh; 602 objset_t *os; 603 dmu_tx_t *tx; 604 int error; 605 606 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 607 if (error) { 608 cmn_err(CE_WARN, "can't open objset for %s", osname); 609 return (0); 610 } 611 612 zilog = dmu_objset_zil(os); 613 tx = dmu_tx_create(zilog->zl_os); 614 (void) dmu_tx_assign(tx, TXG_WAIT); 615 zh = zil_header_in_syncing_context(zilog); 616 BP_ZERO(&zh->zh_log); 617 dsl_dataset_dirty(dmu_objset_ds(os), tx); 618 dmu_tx_commit(tx); 619 dmu_objset_close(os); 620 return (0); 621 } 622 623 static int 624 zil_vdev_compare(const void *x1, const void *x2) 625 { 626 uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 627 uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 628 629 if (v1 < v2) 630 return (-1); 631 if (v1 > v2) 632 return (1); 633 634 return (0); 635 } 636 637 void 638 zil_add_block(zilog_t *zilog, blkptr_t *bp) 639 { 640 avl_tree_t *t = &zilog->zl_vdev_tree; 641 avl_index_t where; 642 zil_vdev_node_t *zv, zvsearch; 643 int ndvas = BP_GET_NDVAS(bp); 644 int i; 645 646 if (zfs_nocacheflush) 647 return; 648 649 ASSERT(zilog->zl_writer); 650 651 /* 652 * Even though we're zl_writer, we still need a lock because the 653 * zl_get_data() callbacks may have dmu_sync() done callbacks 654 * that will run concurrently. 655 */ 656 mutex_enter(&zilog->zl_vdev_lock); 657 for (i = 0; i < ndvas; i++) { 658 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 659 if (avl_find(t, &zvsearch, &where) == NULL) { 660 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 661 zv->zv_vdev = zvsearch.zv_vdev; 662 avl_insert(t, zv, where); 663 } 664 } 665 mutex_exit(&zilog->zl_vdev_lock); 666 } 667 668 void 669 zil_flush_vdevs(zilog_t *zilog) 670 { 671 spa_t *spa = zilog->zl_spa; 672 avl_tree_t *t = &zilog->zl_vdev_tree; 673 void *cookie = NULL; 674 zil_vdev_node_t *zv; 675 zio_t *zio; 676 677 ASSERT(zilog->zl_writer); 678 679 /* 680 * We don't need zl_vdev_lock here because we're the zl_writer, 681 * and all zl_get_data() callbacks are done. 682 */ 683 if (avl_numnodes(t) == 0) 684 return; 685 686 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 687 688 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 689 690 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 691 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 692 if (vd != NULL) 693 zio_flush(zio, vd); 694 kmem_free(zv, sizeof (*zv)); 695 } 696 697 /* 698 * Wait for all the flushes to complete. Not all devices actually 699 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 700 */ 701 (void) zio_wait(zio); 702 703 spa_config_exit(spa, SCL_STATE, FTAG); 704 } 705 706 /* 707 * Function called when a log block write completes 708 */ 709 static void 710 zil_lwb_write_done(zio_t *zio) 711 { 712 lwb_t *lwb = zio->io_private; 713 zilog_t *zilog = lwb->lwb_zilog; 714 715 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 716 ASSERT(BP_GET_CHECKSUM(zio->io_bp) == ZIO_CHECKSUM_ZILOG); 717 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 718 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 719 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 720 ASSERT(!BP_IS_GANG(zio->io_bp)); 721 ASSERT(!BP_IS_HOLE(zio->io_bp)); 722 ASSERT(zio->io_bp->blk_fill == 0); 723 724 /* 725 * Now that we've written this log block, we have a stable pointer 726 * to the next block in the chain, so it's OK to let the txg in 727 * which we allocated the next block sync. 728 */ 729 txg_rele_to_sync(&lwb->lwb_txgh); 730 731 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 732 mutex_enter(&zilog->zl_lock); 733 lwb->lwb_buf = NULL; 734 if (zio->io_error) 735 zilog->zl_log_error = B_TRUE; 736 mutex_exit(&zilog->zl_lock); 737 } 738 739 /* 740 * Initialize the io for a log block. 741 */ 742 static void 743 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 744 { 745 zbookmark_t zb; 746 747 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 748 zb.zb_object = 0; 749 zb.zb_level = -1; 750 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 751 752 if (zilog->zl_root_zio == NULL) { 753 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 754 ZIO_FLAG_CANFAIL); 755 } 756 if (lwb->lwb_zio == NULL) { 757 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 758 0, &lwb->lwb_blk, lwb->lwb_buf, 759 lwb->lwb_sz, zil_lwb_write_done, lwb, 760 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb); 761 } 762 } 763 764 /* 765 * Start a log block write and advance to the next log block. 766 * Calls are serialized. 767 */ 768 static lwb_t * 769 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 770 { 771 lwb_t *nlwb; 772 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 773 spa_t *spa = zilog->zl_spa; 774 blkptr_t *bp = &ztp->zit_next_blk; 775 uint64_t txg; 776 uint64_t zil_blksz; 777 int error; 778 779 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 780 781 /* 782 * Allocate the next block and save its address in this block 783 * before writing it in order to establish the log chain. 784 * Note that if the allocation of nlwb synced before we wrote 785 * the block that points at it (lwb), we'd leak it if we crashed. 786 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 787 */ 788 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 789 txg_rele_to_quiesce(&lwb->lwb_txgh); 790 791 /* 792 * Pick a ZIL blocksize. We request a size that is the 793 * maximum of the previous used size, the current used size and 794 * the amount waiting in the queue. 795 */ 796 zil_blksz = MAX(zilog->zl_prev_used, 797 zilog->zl_cur_used + sizeof (*ztp)); 798 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 799 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 800 if (zil_blksz > ZIL_MAX_BLKSZ) 801 zil_blksz = ZIL_MAX_BLKSZ; 802 803 BP_ZERO(bp); 804 /* pass the old blkptr in order to spread log blocks across devs */ 805 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); 806 if (error) { 807 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 808 809 /* 810 * We dirty the dataset to ensure that zil_sync() will 811 * be called to remove this lwb from our zl_lwb_list. 812 * Failing to do so, may leave an lwb with a NULL lwb_buf 813 * hanging around on the zl_lwb_list. 814 */ 815 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 816 dmu_tx_commit(tx); 817 818 /* 819 * Since we've just experienced an allocation failure so we 820 * terminate the current lwb and send it on its way. 821 */ 822 ztp->zit_pad = 0; 823 ztp->zit_nused = lwb->lwb_nused; 824 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 825 zio_nowait(lwb->lwb_zio); 826 827 /* 828 * By returning NULL the caller will call tx_wait_synced() 829 */ 830 return (NULL); 831 } 832 833 ASSERT3U(bp->blk_birth, ==, txg); 834 ztp->zit_pad = 0; 835 ztp->zit_nused = lwb->lwb_nused; 836 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 837 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 838 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 839 840 /* 841 * Allocate a new log write buffer (lwb). 842 */ 843 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 844 845 nlwb->lwb_zilog = zilog; 846 nlwb->lwb_blk = *bp; 847 nlwb->lwb_nused = 0; 848 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 849 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 850 nlwb->lwb_max_txg = txg; 851 nlwb->lwb_zio = NULL; 852 853 /* 854 * Put new lwb at the end of the log chain 855 */ 856 mutex_enter(&zilog->zl_lock); 857 list_insert_tail(&zilog->zl_lwb_list, nlwb); 858 mutex_exit(&zilog->zl_lock); 859 860 /* Record the block for later vdev flushing */ 861 zil_add_block(zilog, &lwb->lwb_blk); 862 863 /* 864 * kick off the write for the old log block 865 */ 866 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 867 ASSERT(lwb->lwb_zio); 868 zio_nowait(lwb->lwb_zio); 869 870 return (nlwb); 871 } 872 873 static lwb_t * 874 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 875 { 876 lr_t *lrc = &itx->itx_lr; /* common log record */ 877 lr_write_t *lr = (lr_write_t *)lrc; 878 uint64_t txg = lrc->lrc_txg; 879 uint64_t reclen = lrc->lrc_reclen; 880 uint64_t dlen; 881 882 if (lwb == NULL) 883 return (NULL); 884 ASSERT(lwb->lwb_buf != NULL); 885 886 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 887 dlen = P2ROUNDUP_TYPED( 888 lr->lr_length, sizeof (uint64_t), uint64_t); 889 else 890 dlen = 0; 891 892 zilog->zl_cur_used += (reclen + dlen); 893 894 zil_lwb_write_init(zilog, lwb); 895 896 /* 897 * If this record won't fit in the current log block, start a new one. 898 */ 899 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 900 lwb = zil_lwb_write_start(zilog, lwb); 901 if (lwb == NULL) 902 return (NULL); 903 zil_lwb_write_init(zilog, lwb); 904 ASSERT(lwb->lwb_nused == 0); 905 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 906 txg_wait_synced(zilog->zl_dmu_pool, txg); 907 return (lwb); 908 } 909 } 910 911 /* 912 * Update the lrc_seq, to be log record sequence number. See zil.h 913 * Then copy the record to the log buffer. 914 */ 915 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 916 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 917 918 /* 919 * If it's a write, fetch the data or get its blkptr as appropriate. 920 */ 921 if (lrc->lrc_txtype == TX_WRITE) { 922 if (txg > spa_freeze_txg(zilog->zl_spa)) 923 txg_wait_synced(zilog->zl_dmu_pool, txg); 924 if (itx->itx_wr_state != WR_COPIED) { 925 char *dbuf; 926 int error; 927 928 /* alignment is guaranteed */ 929 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 930 if (dlen) { 931 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 932 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 933 lr->lr_common.lrc_reclen += dlen; 934 } else { 935 ASSERT(itx->itx_wr_state == WR_INDIRECT); 936 dbuf = NULL; 937 } 938 error = zilog->zl_get_data( 939 itx->itx_private, lr, dbuf, lwb->lwb_zio); 940 if (error) { 941 ASSERT(error == ENOENT || error == EEXIST || 942 error == EALREADY); 943 return (lwb); 944 } 945 } 946 } 947 948 lwb->lwb_nused += reclen + dlen; 949 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 950 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 951 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 952 953 return (lwb); 954 } 955 956 itx_t * 957 zil_itx_create(uint64_t txtype, size_t lrsize) 958 { 959 itx_t *itx; 960 961 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 962 963 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 964 itx->itx_lr.lrc_txtype = txtype; 965 itx->itx_lr.lrc_reclen = lrsize; 966 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 967 itx->itx_lr.lrc_seq = 0; /* defensive */ 968 969 return (itx); 970 } 971 972 uint64_t 973 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 974 { 975 uint64_t seq; 976 977 ASSERT(itx->itx_lr.lrc_seq == 0); 978 979 mutex_enter(&zilog->zl_lock); 980 list_insert_tail(&zilog->zl_itx_list, itx); 981 zilog->zl_itx_list_sz += itx->itx_sod; 982 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 983 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 984 mutex_exit(&zilog->zl_lock); 985 986 return (seq); 987 } 988 989 /* 990 * Free up all in-memory intent log transactions that have now been synced. 991 */ 992 static void 993 zil_itx_clean(zilog_t *zilog) 994 { 995 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 996 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 997 list_t clean_list; 998 itx_t *itx; 999 1000 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1001 1002 mutex_enter(&zilog->zl_lock); 1003 /* wait for a log writer to finish walking list */ 1004 while (zilog->zl_writer) { 1005 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1006 } 1007 1008 /* 1009 * Move the sync'd log transactions to a separate list so we can call 1010 * kmem_free without holding the zl_lock. 1011 * 1012 * There is no need to set zl_writer as we don't drop zl_lock here 1013 */ 1014 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 1015 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 1016 list_remove(&zilog->zl_itx_list, itx); 1017 zilog->zl_itx_list_sz -= itx->itx_sod; 1018 list_insert_tail(&clean_list, itx); 1019 } 1020 cv_broadcast(&zilog->zl_cv_writer); 1021 mutex_exit(&zilog->zl_lock); 1022 1023 /* destroy sync'd log transactions */ 1024 while ((itx = list_head(&clean_list)) != NULL) { 1025 list_remove(&clean_list, itx); 1026 kmem_free(itx, offsetof(itx_t, itx_lr) 1027 + itx->itx_lr.lrc_reclen); 1028 } 1029 list_destroy(&clean_list); 1030 } 1031 1032 /* 1033 * If there are any in-memory intent log transactions which have now been 1034 * synced then start up a taskq to free them. 1035 */ 1036 void 1037 zil_clean(zilog_t *zilog) 1038 { 1039 itx_t *itx; 1040 1041 mutex_enter(&zilog->zl_lock); 1042 itx = list_head(&zilog->zl_itx_list); 1043 if ((itx != NULL) && 1044 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 1045 (void) taskq_dispatch(zilog->zl_clean_taskq, 1046 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 1047 } 1048 mutex_exit(&zilog->zl_lock); 1049 } 1050 1051 static void 1052 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 1053 { 1054 uint64_t txg; 1055 uint64_t commit_seq = 0; 1056 itx_t *itx, *itx_next = (itx_t *)-1; 1057 lwb_t *lwb; 1058 spa_t *spa; 1059 1060 zilog->zl_writer = B_TRUE; 1061 ASSERT(zilog->zl_root_zio == NULL); 1062 spa = zilog->zl_spa; 1063 1064 if (zilog->zl_suspend) { 1065 lwb = NULL; 1066 } else { 1067 lwb = list_tail(&zilog->zl_lwb_list); 1068 if (lwb == NULL) { 1069 /* 1070 * Return if there's nothing to flush before we 1071 * dirty the fs by calling zil_create() 1072 */ 1073 if (list_is_empty(&zilog->zl_itx_list)) { 1074 zilog->zl_writer = B_FALSE; 1075 return; 1076 } 1077 mutex_exit(&zilog->zl_lock); 1078 zil_create(zilog); 1079 mutex_enter(&zilog->zl_lock); 1080 lwb = list_tail(&zilog->zl_lwb_list); 1081 } 1082 } 1083 1084 /* Loop through in-memory log transactions filling log blocks. */ 1085 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1086 for (;;) { 1087 /* 1088 * Find the next itx to push: 1089 * Push all transactions related to specified foid and all 1090 * other transactions except TX_WRITE, TX_TRUNCATE, 1091 * TX_SETATTR and TX_ACL for all other files. 1092 */ 1093 if (itx_next != (itx_t *)-1) 1094 itx = itx_next; 1095 else 1096 itx = list_head(&zilog->zl_itx_list); 1097 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 1098 if (foid == 0) /* push all foids? */ 1099 break; 1100 if (itx->itx_sync) /* push all O_[D]SYNC */ 1101 break; 1102 switch (itx->itx_lr.lrc_txtype) { 1103 case TX_SETATTR: 1104 case TX_WRITE: 1105 case TX_TRUNCATE: 1106 case TX_ACL: 1107 /* lr_foid is same offset for these records */ 1108 if (((lr_write_t *)&itx->itx_lr)->lr_foid 1109 != foid) { 1110 continue; /* skip this record */ 1111 } 1112 } 1113 break; 1114 } 1115 if (itx == NULL) 1116 break; 1117 1118 if ((itx->itx_lr.lrc_seq > seq) && 1119 ((lwb == NULL) || (lwb->lwb_nused == 0) || 1120 (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) { 1121 break; 1122 } 1123 1124 /* 1125 * Save the next pointer. Even though we soon drop 1126 * zl_lock all threads that may change the list 1127 * (another writer or zil_itx_clean) can't do so until 1128 * they have zl_writer. 1129 */ 1130 itx_next = list_next(&zilog->zl_itx_list, itx); 1131 list_remove(&zilog->zl_itx_list, itx); 1132 zilog->zl_itx_list_sz -= itx->itx_sod; 1133 mutex_exit(&zilog->zl_lock); 1134 txg = itx->itx_lr.lrc_txg; 1135 ASSERT(txg); 1136 1137 if (txg > spa_last_synced_txg(spa) || 1138 txg > spa_freeze_txg(spa)) 1139 lwb = zil_lwb_commit(zilog, itx, lwb); 1140 kmem_free(itx, offsetof(itx_t, itx_lr) 1141 + itx->itx_lr.lrc_reclen); 1142 mutex_enter(&zilog->zl_lock); 1143 } 1144 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1145 /* determine commit sequence number */ 1146 itx = list_head(&zilog->zl_itx_list); 1147 if (itx) 1148 commit_seq = itx->itx_lr.lrc_seq; 1149 else 1150 commit_seq = zilog->zl_itx_seq; 1151 mutex_exit(&zilog->zl_lock); 1152 1153 /* write the last block out */ 1154 if (lwb != NULL && lwb->lwb_zio != NULL) 1155 lwb = zil_lwb_write_start(zilog, lwb); 1156 1157 zilog->zl_prev_used = zilog->zl_cur_used; 1158 zilog->zl_cur_used = 0; 1159 1160 /* 1161 * Wait if necessary for the log blocks to be on stable storage. 1162 */ 1163 if (zilog->zl_root_zio) { 1164 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1165 (void) zio_wait(zilog->zl_root_zio); 1166 zilog->zl_root_zio = NULL; 1167 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1168 zil_flush_vdevs(zilog); 1169 } 1170 1171 if (zilog->zl_log_error || lwb == NULL) { 1172 zilog->zl_log_error = 0; 1173 txg_wait_synced(zilog->zl_dmu_pool, 0); 1174 } 1175 1176 mutex_enter(&zilog->zl_lock); 1177 zilog->zl_writer = B_FALSE; 1178 1179 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1180 zilog->zl_commit_seq = commit_seq; 1181 } 1182 1183 /* 1184 * Push zfs transactions to stable storage up to the supplied sequence number. 1185 * If foid is 0 push out all transactions, otherwise push only those 1186 * for that file or might have been used to create that file. 1187 */ 1188 void 1189 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1190 { 1191 if (zilog == NULL || seq == 0) 1192 return; 1193 1194 mutex_enter(&zilog->zl_lock); 1195 1196 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1197 1198 while (zilog->zl_writer) { 1199 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1200 if (seq < zilog->zl_commit_seq) { 1201 mutex_exit(&zilog->zl_lock); 1202 return; 1203 } 1204 } 1205 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1206 /* wake up others waiting on the commit */ 1207 cv_broadcast(&zilog->zl_cv_writer); 1208 mutex_exit(&zilog->zl_lock); 1209 } 1210 1211 /* 1212 * Called in syncing context to free committed log blocks and update log header. 1213 */ 1214 void 1215 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1216 { 1217 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1218 uint64_t txg = dmu_tx_get_txg(tx); 1219 spa_t *spa = zilog->zl_spa; 1220 lwb_t *lwb; 1221 1222 mutex_enter(&zilog->zl_lock); 1223 1224 ASSERT(zilog->zl_stop_sync == 0); 1225 1226 zh->zh_replay_seq = zilog->zl_replayed_seq[txg & TXG_MASK]; 1227 1228 if (zilog->zl_destroy_txg == txg) { 1229 blkptr_t blk = zh->zh_log; 1230 1231 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1232 ASSERT(spa_sync_pass(spa) == 1); 1233 1234 bzero(zh, sizeof (zil_header_t)); 1235 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1236 1237 if (zilog->zl_keep_first) { 1238 /* 1239 * If this block was part of log chain that couldn't 1240 * be claimed because a device was missing during 1241 * zil_claim(), but that device later returns, 1242 * then this block could erroneously appear valid. 1243 * To guard against this, assign a new GUID to the new 1244 * log chain so it doesn't matter what blk points to. 1245 */ 1246 zil_init_log_chain(zilog, &blk); 1247 zh->zh_log = blk; 1248 } 1249 } 1250 1251 for (;;) { 1252 lwb = list_head(&zilog->zl_lwb_list); 1253 if (lwb == NULL) { 1254 mutex_exit(&zilog->zl_lock); 1255 return; 1256 } 1257 zh->zh_log = lwb->lwb_blk; 1258 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1259 break; 1260 list_remove(&zilog->zl_lwb_list, lwb); 1261 zio_free_blk(spa, &lwb->lwb_blk, txg); 1262 kmem_cache_free(zil_lwb_cache, lwb); 1263 1264 /* 1265 * If we don't have anything left in the lwb list then 1266 * we've had an allocation failure and we need to zero 1267 * out the zil_header blkptr so that we don't end 1268 * up freeing the same block twice. 1269 */ 1270 if (list_head(&zilog->zl_lwb_list) == NULL) 1271 BP_ZERO(&zh->zh_log); 1272 } 1273 mutex_exit(&zilog->zl_lock); 1274 } 1275 1276 void 1277 zil_init(void) 1278 { 1279 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1280 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1281 } 1282 1283 void 1284 zil_fini(void) 1285 { 1286 kmem_cache_destroy(zil_lwb_cache); 1287 } 1288 1289 zilog_t * 1290 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1291 { 1292 zilog_t *zilog; 1293 1294 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1295 1296 zilog->zl_header = zh_phys; 1297 zilog->zl_os = os; 1298 zilog->zl_spa = dmu_objset_spa(os); 1299 zilog->zl_dmu_pool = dmu_objset_pool(os); 1300 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1301 1302 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1303 1304 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1305 offsetof(itx_t, itx_node)); 1306 1307 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1308 offsetof(lwb_t, lwb_node)); 1309 1310 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1311 1312 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1313 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1314 1315 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1316 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1317 1318 return (zilog); 1319 } 1320 1321 void 1322 zil_free(zilog_t *zilog) 1323 { 1324 lwb_t *lwb; 1325 1326 zilog->zl_stop_sync = 1; 1327 1328 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1329 list_remove(&zilog->zl_lwb_list, lwb); 1330 if (lwb->lwb_buf != NULL) 1331 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1332 kmem_cache_free(zil_lwb_cache, lwb); 1333 } 1334 list_destroy(&zilog->zl_lwb_list); 1335 1336 avl_destroy(&zilog->zl_vdev_tree); 1337 mutex_destroy(&zilog->zl_vdev_lock); 1338 1339 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1340 list_destroy(&zilog->zl_itx_list); 1341 mutex_destroy(&zilog->zl_lock); 1342 1343 cv_destroy(&zilog->zl_cv_writer); 1344 cv_destroy(&zilog->zl_cv_suspend); 1345 1346 kmem_free(zilog, sizeof (zilog_t)); 1347 } 1348 1349 /* 1350 * Open an intent log. 1351 */ 1352 zilog_t * 1353 zil_open(objset_t *os, zil_get_data_t *get_data) 1354 { 1355 zilog_t *zilog = dmu_objset_zil(os); 1356 1357 zilog->zl_get_data = get_data; 1358 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1359 2, 2, TASKQ_PREPOPULATE); 1360 1361 return (zilog); 1362 } 1363 1364 /* 1365 * Close an intent log. 1366 */ 1367 void 1368 zil_close(zilog_t *zilog) 1369 { 1370 /* 1371 * If the log isn't already committed, mark the objset dirty 1372 * (so zil_sync() will be called) and wait for that txg to sync. 1373 */ 1374 if (!zil_is_committed(zilog)) { 1375 uint64_t txg; 1376 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1377 (void) dmu_tx_assign(tx, TXG_WAIT); 1378 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1379 txg = dmu_tx_get_txg(tx); 1380 dmu_tx_commit(tx); 1381 txg_wait_synced(zilog->zl_dmu_pool, txg); 1382 } 1383 1384 taskq_destroy(zilog->zl_clean_taskq); 1385 zilog->zl_clean_taskq = NULL; 1386 zilog->zl_get_data = NULL; 1387 1388 zil_itx_clean(zilog); 1389 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1390 } 1391 1392 /* 1393 * Suspend an intent log. While in suspended mode, we still honor 1394 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1395 * We suspend the log briefly when taking a snapshot so that the snapshot 1396 * contains all the data it's supposed to, and has an empty intent log. 1397 */ 1398 int 1399 zil_suspend(zilog_t *zilog) 1400 { 1401 const zil_header_t *zh = zilog->zl_header; 1402 1403 mutex_enter(&zilog->zl_lock); 1404 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1405 mutex_exit(&zilog->zl_lock); 1406 return (EBUSY); 1407 } 1408 if (zilog->zl_suspend++ != 0) { 1409 /* 1410 * Someone else already began a suspend. 1411 * Just wait for them to finish. 1412 */ 1413 while (zilog->zl_suspending) 1414 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1415 mutex_exit(&zilog->zl_lock); 1416 return (0); 1417 } 1418 zilog->zl_suspending = B_TRUE; 1419 mutex_exit(&zilog->zl_lock); 1420 1421 zil_commit(zilog, UINT64_MAX, 0); 1422 1423 /* 1424 * Wait for any in-flight log writes to complete. 1425 */ 1426 mutex_enter(&zilog->zl_lock); 1427 while (zilog->zl_writer) 1428 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1429 mutex_exit(&zilog->zl_lock); 1430 1431 zil_destroy(zilog, B_FALSE); 1432 1433 mutex_enter(&zilog->zl_lock); 1434 zilog->zl_suspending = B_FALSE; 1435 cv_broadcast(&zilog->zl_cv_suspend); 1436 mutex_exit(&zilog->zl_lock); 1437 1438 return (0); 1439 } 1440 1441 void 1442 zil_resume(zilog_t *zilog) 1443 { 1444 mutex_enter(&zilog->zl_lock); 1445 ASSERT(zilog->zl_suspend != 0); 1446 zilog->zl_suspend--; 1447 mutex_exit(&zilog->zl_lock); 1448 } 1449 1450 typedef struct zil_replay_arg { 1451 objset_t *zr_os; 1452 zil_replay_func_t **zr_replay; 1453 void *zr_arg; 1454 boolean_t zr_byteswap; 1455 char *zr_lrbuf; 1456 } zil_replay_arg_t; 1457 1458 static void 1459 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1460 { 1461 zil_replay_arg_t *zr = zra; 1462 const zil_header_t *zh = zilog->zl_header; 1463 uint64_t reclen = lr->lrc_reclen; 1464 uint64_t txtype = lr->lrc_txtype; 1465 char *name; 1466 int pass, error; 1467 1468 if (!zilog->zl_replay) /* giving up */ 1469 return; 1470 1471 if (lr->lrc_txg < claim_txg) /* already committed */ 1472 return; 1473 1474 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1475 return; 1476 1477 /* Strip case-insensitive bit, still present in log record */ 1478 txtype &= ~TX_CI; 1479 1480 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1481 error = EINVAL; 1482 goto bad; 1483 } 1484 1485 /* 1486 * Make a copy of the data so we can revise and extend it. 1487 */ 1488 bcopy(lr, zr->zr_lrbuf, reclen); 1489 1490 /* 1491 * The log block containing this lr may have been byteswapped 1492 * so that we can easily examine common fields like lrc_txtype. 1493 * However, the log is a mix of different data types, and only the 1494 * replay vectors know how to byteswap their records. Therefore, if 1495 * the lr was byteswapped, undo it before invoking the replay vector. 1496 */ 1497 if (zr->zr_byteswap) 1498 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1499 1500 /* 1501 * If this is a TX_WRITE with a blkptr, suck in the data. 1502 */ 1503 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1504 lr_write_t *lrw = (lr_write_t *)lr; 1505 blkptr_t *wbp = &lrw->lr_blkptr; 1506 uint64_t wlen = lrw->lr_length; 1507 char *wbuf = zr->zr_lrbuf + reclen; 1508 1509 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1510 bzero(wbuf, wlen); 1511 } else { 1512 /* 1513 * A subsequent write may have overwritten this block, 1514 * in which case wbp may have been been freed and 1515 * reallocated, and our read of wbp may fail with a 1516 * checksum error. We can safely ignore this because 1517 * the later write will provide the correct data. 1518 */ 1519 zbookmark_t zb; 1520 1521 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1522 zb.zb_object = lrw->lr_foid; 1523 zb.zb_level = -1; 1524 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1525 1526 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1527 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1528 ZIO_PRIORITY_SYNC_READ, 1529 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1530 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1531 } 1532 } 1533 1534 /* 1535 * We must now do two things atomically: replay this log record, 1536 * and update the log header sequence number to reflect the fact that 1537 * we did so. At the end of each replay function the sequence number 1538 * is updated if we are in replay mode. 1539 */ 1540 for (pass = 1; pass <= 2; pass++) { 1541 zilog->zl_replaying_seq = lr->lrc_seq; 1542 /* Only byteswap (if needed) on the 1st pass. */ 1543 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1544 zr->zr_byteswap && pass == 1); 1545 1546 if (!error) 1547 return; 1548 1549 /* 1550 * The DMU's dnode layer doesn't see removes until the txg 1551 * commits, so a subsequent claim can spuriously fail with 1552 * EEXIST. So if we receive any error we try syncing out 1553 * any removes then retry the transaction. 1554 */ 1555 if (pass == 1) 1556 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1557 } 1558 1559 bad: 1560 ASSERT(error); 1561 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1562 dmu_objset_name(zr->zr_os, name); 1563 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1564 "dataset %s, seq 0x%llx, txtype %llu %s\n", 1565 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, 1566 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1567 zilog->zl_replay = B_FALSE; 1568 kmem_free(name, MAXNAMELEN); 1569 } 1570 1571 /* ARGSUSED */ 1572 static void 1573 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1574 { 1575 zilog->zl_replay_blks++; 1576 } 1577 1578 /* 1579 * If this dataset has a non-empty intent log, replay it and destroy it. 1580 */ 1581 void 1582 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1583 { 1584 zilog_t *zilog = dmu_objset_zil(os); 1585 const zil_header_t *zh = zilog->zl_header; 1586 zil_replay_arg_t zr; 1587 1588 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 1589 zil_destroy(zilog, B_TRUE); 1590 return; 1591 } 1592 1593 zr.zr_os = os; 1594 zr.zr_replay = replay_func; 1595 zr.zr_arg = arg; 1596 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1597 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1598 1599 /* 1600 * Wait for in-progress removes to sync before starting replay. 1601 */ 1602 txg_wait_synced(zilog->zl_dmu_pool, 0); 1603 1604 zilog->zl_replay = B_TRUE; 1605 zilog->zl_replay_time = lbolt; 1606 ASSERT(zilog->zl_replay_blks == 0); 1607 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1608 zh->zh_claim_txg); 1609 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1610 1611 zil_destroy(zilog, B_FALSE); 1612 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1613 zilog->zl_replay = B_FALSE; 1614 } 1615 1616 /* 1617 * Report whether all transactions are committed 1618 */ 1619 int 1620 zil_is_committed(zilog_t *zilog) 1621 { 1622 lwb_t *lwb; 1623 int ret; 1624 1625 mutex_enter(&zilog->zl_lock); 1626 while (zilog->zl_writer) 1627 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1628 1629 /* recent unpushed intent log transactions? */ 1630 if (!list_is_empty(&zilog->zl_itx_list)) { 1631 ret = B_FALSE; 1632 goto out; 1633 } 1634 1635 /* intent log never used? */ 1636 lwb = list_head(&zilog->zl_lwb_list); 1637 if (lwb == NULL) { 1638 ret = B_TRUE; 1639 goto out; 1640 } 1641 1642 /* 1643 * more than 1 log buffer means zil_sync() hasn't yet freed 1644 * entries after a txg has committed 1645 */ 1646 if (list_next(&zilog->zl_lwb_list, lwb)) { 1647 ret = B_FALSE; 1648 goto out; 1649 } 1650 1651 ASSERT(zil_empty(zilog)); 1652 ret = B_TRUE; 1653 out: 1654 cv_broadcast(&zilog->zl_cv_writer); 1655 mutex_exit(&zilog->zl_lock); 1656 return (ret); 1657 } 1658