1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev.h> 39 40 /* 41 * The zfs intent log (ZIL) saves transaction records of system calls 42 * that change the file system in memory with enough information 43 * to be able to replay them. These are stored in memory until 44 * either the DMU transaction group (txg) commits them to the stable pool 45 * and they can be discarded, or they are flushed to the stable log 46 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 47 * requirement. In the event of a panic or power fail then those log 48 * records (transactions) are replayed. 49 * 50 * There is one ZIL per file system. Its on-disk (pool) format consists 51 * of 3 parts: 52 * 53 * - ZIL header 54 * - ZIL blocks 55 * - ZIL records 56 * 57 * A log record holds a system call transaction. Log blocks can 58 * hold many log records and the blocks are chained together. 59 * Each ZIL block contains a block pointer (blkptr_t) to the next 60 * ZIL block in the chain. The ZIL header points to the first 61 * block in the chain. Note there is not a fixed place in the pool 62 * to hold blocks. They are dynamically allocated and freed as 63 * needed from the blocks available. Figure X shows the ZIL structure: 64 */ 65 66 /* 67 * This global ZIL switch affects all pools 68 */ 69 int zil_disable = 0; /* disable intent logging */ 70 71 /* 72 * Tunable parameter for debugging or performance analysis. Setting 73 * zfs_nocacheflush will cause corruption on power loss if a volatile 74 * out-of-order write cache is enabled. 75 */ 76 boolean_t zfs_nocacheflush = B_FALSE; 77 78 static kmem_cache_t *zil_lwb_cache; 79 80 static int 81 zil_dva_compare(const void *x1, const void *x2) 82 { 83 const dva_t *dva1 = x1; 84 const dva_t *dva2 = x2; 85 86 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 87 return (-1); 88 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 89 return (1); 90 91 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 92 return (-1); 93 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 94 return (1); 95 96 return (0); 97 } 98 99 static void 100 zil_dva_tree_init(avl_tree_t *t) 101 { 102 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 103 offsetof(zil_dva_node_t, zn_node)); 104 } 105 106 static void 107 zil_dva_tree_fini(avl_tree_t *t) 108 { 109 zil_dva_node_t *zn; 110 void *cookie = NULL; 111 112 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 113 kmem_free(zn, sizeof (zil_dva_node_t)); 114 115 avl_destroy(t); 116 } 117 118 static int 119 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 120 { 121 zil_dva_node_t *zn; 122 avl_index_t where; 123 124 if (avl_find(t, dva, &where) != NULL) 125 return (EEXIST); 126 127 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 128 zn->zn_dva = *dva; 129 avl_insert(t, zn, where); 130 131 return (0); 132 } 133 134 static zil_header_t * 135 zil_header_in_syncing_context(zilog_t *zilog) 136 { 137 return ((zil_header_t *)zilog->zl_header); 138 } 139 140 static void 141 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 142 { 143 zio_cksum_t *zc = &bp->blk_cksum; 144 145 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 146 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 147 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 148 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 149 } 150 151 /* 152 * Read a log block, make sure it's valid, and byteswap it if necessary. 153 */ 154 static int 155 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 156 { 157 blkptr_t blk = *bp; 158 zbookmark_t zb; 159 uint32_t aflags = ARC_WAIT; 160 int error; 161 162 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 163 zb.zb_object = 0; 164 zb.zb_level = -1; 165 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 166 167 *abufpp = NULL; 168 169 error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array, 170 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 171 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 172 173 if (error == 0) { 174 char *data = (*abufpp)->b_data; 175 uint64_t blksz = BP_GET_LSIZE(bp); 176 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 177 zio_cksum_t cksum = bp->blk_cksum; 178 179 /* 180 * Sequence numbers should be... sequential. The checksum 181 * verifier for the next block should be bp's checksum plus 1. 182 */ 183 cksum.zc_word[ZIL_ZC_SEQ]++; 184 185 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum))) 186 error = ESTALE; 187 else if (BP_IS_HOLE(&ztp->zit_next_blk)) 188 error = ENOENT; 189 else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t))) 190 error = EOVERFLOW; 191 192 if (error) { 193 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 194 *abufpp = NULL; 195 } 196 } 197 198 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 199 200 return (error); 201 } 202 203 /* 204 * Parse the intent log, and call parse_func for each valid record within. 205 * Return the highest sequence number. 206 */ 207 uint64_t 208 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 209 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 210 { 211 const zil_header_t *zh = zilog->zl_header; 212 uint64_t claim_seq = zh->zh_claim_seq; 213 uint64_t seq = 0; 214 uint64_t max_seq = 0; 215 blkptr_t blk = zh->zh_log; 216 arc_buf_t *abuf; 217 char *lrbuf, *lrp; 218 zil_trailer_t *ztp; 219 int reclen, error; 220 221 if (BP_IS_HOLE(&blk)) 222 return (max_seq); 223 224 /* 225 * Starting at the block pointed to by zh_log we read the log chain. 226 * For each block in the chain we strongly check that block to 227 * ensure its validity. We stop when an invalid block is found. 228 * For each block pointer in the chain we call parse_blk_func(). 229 * For each record in each valid block we call parse_lr_func(). 230 * If the log has been claimed, stop if we encounter a sequence 231 * number greater than the highest claimed sequence number. 232 */ 233 zil_dva_tree_init(&zilog->zl_dva_tree); 234 for (;;) { 235 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 236 237 if (claim_seq != 0 && seq > claim_seq) 238 break; 239 240 ASSERT(max_seq < seq); 241 max_seq = seq; 242 243 error = zil_read_log_block(zilog, &blk, &abuf); 244 245 if (parse_blk_func != NULL) 246 parse_blk_func(zilog, &blk, arg, txg); 247 248 if (error) 249 break; 250 251 lrbuf = abuf->b_data; 252 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 253 blk = ztp->zit_next_blk; 254 255 if (parse_lr_func == NULL) { 256 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 257 continue; 258 } 259 260 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 261 lr_t *lr = (lr_t *)lrp; 262 reclen = lr->lrc_reclen; 263 ASSERT3U(reclen, >=, sizeof (lr_t)); 264 parse_lr_func(zilog, lr, arg, txg); 265 } 266 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 267 } 268 zil_dva_tree_fini(&zilog->zl_dva_tree); 269 270 return (max_seq); 271 } 272 273 /* ARGSUSED */ 274 static void 275 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 276 { 277 spa_t *spa = zilog->zl_spa; 278 int err; 279 280 /* 281 * Claim log block if not already committed and not already claimed. 282 */ 283 if (bp->blk_birth >= first_txg && 284 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 285 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); 286 ASSERT(err == 0); 287 } 288 } 289 290 static void 291 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 292 { 293 if (lrc->lrc_txtype == TX_WRITE) { 294 lr_write_t *lr = (lr_write_t *)lrc; 295 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 296 } 297 } 298 299 /* ARGSUSED */ 300 static void 301 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 302 { 303 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 304 } 305 306 static void 307 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 308 { 309 /* 310 * If we previously claimed it, we need to free it. 311 */ 312 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 313 lr_write_t *lr = (lr_write_t *)lrc; 314 blkptr_t *bp = &lr->lr_blkptr; 315 if (bp->blk_birth >= claim_txg && 316 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 317 (void) arc_free(NULL, zilog->zl_spa, 318 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 319 } 320 } 321 } 322 323 /* 324 * Create an on-disk intent log. 325 */ 326 static void 327 zil_create(zilog_t *zilog) 328 { 329 const zil_header_t *zh = zilog->zl_header; 330 lwb_t *lwb; 331 uint64_t txg = 0; 332 dmu_tx_t *tx = NULL; 333 blkptr_t blk; 334 int error = 0; 335 336 /* 337 * Wait for any previous destroy to complete. 338 */ 339 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 340 341 ASSERT(zh->zh_claim_txg == 0); 342 ASSERT(zh->zh_replay_seq == 0); 343 344 blk = zh->zh_log; 345 346 /* 347 * If we don't already have an initial log block, allocate one now. 348 */ 349 if (BP_IS_HOLE(&blk)) { 350 tx = dmu_tx_create(zilog->zl_os); 351 (void) dmu_tx_assign(tx, TXG_WAIT); 352 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 353 txg = dmu_tx_get_txg(tx); 354 355 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 356 NULL, txg); 357 358 if (error == 0) 359 zil_init_log_chain(zilog, &blk); 360 } 361 362 /* 363 * Allocate a log write buffer (lwb) for the first log block. 364 */ 365 if (error == 0) { 366 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 367 lwb->lwb_zilog = zilog; 368 lwb->lwb_blk = blk; 369 lwb->lwb_nused = 0; 370 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 371 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 372 lwb->lwb_max_txg = txg; 373 lwb->lwb_zio = NULL; 374 375 mutex_enter(&zilog->zl_lock); 376 list_insert_tail(&zilog->zl_lwb_list, lwb); 377 mutex_exit(&zilog->zl_lock); 378 } 379 380 /* 381 * If we just allocated the first log block, commit our transaction 382 * and wait for zil_sync() to stuff the block poiner into zh_log. 383 * (zh is part of the MOS, so we cannot modify it in open context.) 384 */ 385 if (tx != NULL) { 386 dmu_tx_commit(tx); 387 txg_wait_synced(zilog->zl_dmu_pool, txg); 388 } 389 390 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 391 } 392 393 /* 394 * In one tx, free all log blocks and clear the log header. 395 * If keep_first is set, then we're replaying a log with no content. 396 * We want to keep the first block, however, so that the first 397 * synchronous transaction doesn't require a txg_wait_synced() 398 * in zil_create(). We don't need to txg_wait_synced() here either 399 * when keep_first is set, because both zil_create() and zil_destroy() 400 * will wait for any in-progress destroys to complete. 401 */ 402 void 403 zil_destroy(zilog_t *zilog, boolean_t keep_first) 404 { 405 const zil_header_t *zh = zilog->zl_header; 406 lwb_t *lwb; 407 dmu_tx_t *tx; 408 uint64_t txg; 409 410 /* 411 * Wait for any previous destroy to complete. 412 */ 413 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 414 415 if (BP_IS_HOLE(&zh->zh_log)) 416 return; 417 418 tx = dmu_tx_create(zilog->zl_os); 419 (void) dmu_tx_assign(tx, TXG_WAIT); 420 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 421 txg = dmu_tx_get_txg(tx); 422 423 mutex_enter(&zilog->zl_lock); 424 425 ASSERT3U(zilog->zl_destroy_txg, <, txg); 426 zilog->zl_destroy_txg = txg; 427 zilog->zl_keep_first = keep_first; 428 429 if (!list_is_empty(&zilog->zl_lwb_list)) { 430 ASSERT(zh->zh_claim_txg == 0); 431 ASSERT(!keep_first); 432 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 433 list_remove(&zilog->zl_lwb_list, lwb); 434 if (lwb->lwb_buf != NULL) 435 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 436 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 437 kmem_cache_free(zil_lwb_cache, lwb); 438 } 439 } else { 440 if (!keep_first) { 441 (void) zil_parse(zilog, zil_free_log_block, 442 zil_free_log_record, tx, zh->zh_claim_txg); 443 } 444 } 445 mutex_exit(&zilog->zl_lock); 446 447 dmu_tx_commit(tx); 448 449 if (keep_first) /* no need to wait in this case */ 450 return; 451 452 txg_wait_synced(zilog->zl_dmu_pool, txg); 453 ASSERT(BP_IS_HOLE(&zh->zh_log)); 454 } 455 456 int 457 zil_claim(char *osname, void *txarg) 458 { 459 dmu_tx_t *tx = txarg; 460 uint64_t first_txg = dmu_tx_get_txg(tx); 461 zilog_t *zilog; 462 zil_header_t *zh; 463 objset_t *os; 464 int error; 465 466 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os); 467 if (error) { 468 cmn_err(CE_WARN, "can't process intent log for %s", osname); 469 return (0); 470 } 471 472 zilog = dmu_objset_zil(os); 473 zh = zil_header_in_syncing_context(zilog); 474 475 /* 476 * Claim all log blocks if we haven't already done so, and remember 477 * the highest claimed sequence number. This ensures that if we can 478 * read only part of the log now (e.g. due to a missing device), 479 * but we can read the entire log later, we will not try to replay 480 * or destroy beyond the last block we successfully claimed. 481 */ 482 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 483 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 484 zh->zh_claim_txg = first_txg; 485 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 486 zil_claim_log_record, tx, first_txg); 487 dsl_dataset_dirty(dmu_objset_ds(os), tx); 488 } 489 490 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 491 dmu_objset_close(os); 492 return (0); 493 } 494 495 void 496 zil_add_vdev(zilog_t *zilog, uint64_t vdev) 497 { 498 zil_vdev_t *zv, *new; 499 uint64_t bmap_sz = sizeof (zilog->zl_vdev_bmap) << 3; 500 uchar_t *cp; 501 502 if (zfs_nocacheflush) 503 return; 504 505 if (vdev < bmap_sz) { 506 cp = zilog->zl_vdev_bmap + (vdev / 8); 507 atomic_or_8(cp, 1 << (vdev % 8)); 508 } else { 509 /* 510 * insert into ordered list 511 */ 512 mutex_enter(&zilog->zl_lock); 513 for (zv = list_head(&zilog->zl_vdev_list); zv != NULL; 514 zv = list_next(&zilog->zl_vdev_list, zv)) { 515 if (zv->vdev == vdev) { 516 /* duplicate found - just return */ 517 mutex_exit(&zilog->zl_lock); 518 return; 519 } 520 if (zv->vdev > vdev) { 521 /* insert before this entry */ 522 new = kmem_alloc(sizeof (zil_vdev_t), 523 KM_SLEEP); 524 new->vdev = vdev; 525 list_insert_before(&zilog->zl_vdev_list, 526 zv, new); 527 mutex_exit(&zilog->zl_lock); 528 return; 529 } 530 } 531 /* ran off end of list, insert at the end */ 532 ASSERT(zv == NULL); 533 new = kmem_alloc(sizeof (zil_vdev_t), KM_SLEEP); 534 new->vdev = vdev; 535 list_insert_tail(&zilog->zl_vdev_list, new); 536 mutex_exit(&zilog->zl_lock); 537 } 538 } 539 540 /* start an async flush of the write cache for this vdev */ 541 void 542 zil_flush_vdev(spa_t *spa, uint64_t vdev, zio_t **zio) 543 { 544 vdev_t *vd; 545 546 if (*zio == NULL) 547 *zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 548 549 vd = vdev_lookup_top(spa, vdev); 550 ASSERT(vd); 551 552 (void) zio_nowait(zio_ioctl(*zio, spa, vd, DKIOCFLUSHWRITECACHE, 553 NULL, NULL, ZIO_PRIORITY_NOW, 554 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 555 } 556 557 void 558 zil_flush_vdevs(zilog_t *zilog) 559 { 560 zil_vdev_t *zv; 561 zio_t *zio = NULL; 562 spa_t *spa = zilog->zl_spa; 563 uint64_t vdev; 564 uint8_t b; 565 int i, j; 566 567 ASSERT(zilog->zl_writer); 568 569 for (i = 0; i < sizeof (zilog->zl_vdev_bmap); i++) { 570 b = zilog->zl_vdev_bmap[i]; 571 if (b == 0) 572 continue; 573 for (j = 0; j < 8; j++) { 574 if (b & (1 << j)) { 575 vdev = (i << 3) + j; 576 zil_flush_vdev(spa, vdev, &zio); 577 } 578 } 579 zilog->zl_vdev_bmap[i] = 0; 580 } 581 582 while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) { 583 zil_flush_vdev(spa, zv->vdev, &zio); 584 list_remove(&zilog->zl_vdev_list, zv); 585 kmem_free(zv, sizeof (zil_vdev_t)); 586 } 587 /* 588 * Wait for all the flushes to complete. Not all devices actually 589 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 590 */ 591 if (zio) 592 (void) zio_wait(zio); 593 } 594 595 /* 596 * Function called when a log block write completes 597 */ 598 static void 599 zil_lwb_write_done(zio_t *zio) 600 { 601 lwb_t *lwb = zio->io_private; 602 zilog_t *zilog = lwb->lwb_zilog; 603 604 /* 605 * Now that we've written this log block, we have a stable pointer 606 * to the next block in the chain, so it's OK to let the txg in 607 * which we allocated the next block sync. 608 */ 609 txg_rele_to_sync(&lwb->lwb_txgh); 610 611 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 612 mutex_enter(&zilog->zl_lock); 613 lwb->lwb_buf = NULL; 614 if (zio->io_error) { 615 zilog->zl_log_error = B_TRUE; 616 mutex_exit(&zilog->zl_lock); 617 return; 618 } 619 mutex_exit(&zilog->zl_lock); 620 } 621 622 /* 623 * Initialize the io for a log block. 624 * 625 * Note, we should not initialize the IO until we are about 626 * to use it, since zio_rewrite() does a spa_config_enter(). 627 */ 628 static void 629 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 630 { 631 zbookmark_t zb; 632 633 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 634 zb.zb_object = 0; 635 zb.zb_level = -1; 636 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 637 638 if (zilog->zl_root_zio == NULL) { 639 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 640 ZIO_FLAG_CANFAIL); 641 } 642 if (lwb->lwb_zio == NULL) { 643 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 644 ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf, 645 lwb->lwb_sz, zil_lwb_write_done, lwb, 646 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 647 } 648 } 649 650 /* 651 * Start a log block write and advance to the next log block. 652 * Calls are serialized. 653 */ 654 static lwb_t * 655 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 656 { 657 lwb_t *nlwb; 658 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 659 spa_t *spa = zilog->zl_spa; 660 blkptr_t *bp = &ztp->zit_next_blk; 661 uint64_t txg; 662 uint64_t zil_blksz; 663 int error; 664 665 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 666 667 /* 668 * Allocate the next block and save its address in this block 669 * before writing it in order to establish the log chain. 670 * Note that if the allocation of nlwb synced before we wrote 671 * the block that points at it (lwb), we'd leak it if we crashed. 672 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 673 */ 674 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 675 txg_rele_to_quiesce(&lwb->lwb_txgh); 676 677 /* 678 * Pick a ZIL blocksize. We request a size that is the 679 * maximum of the previous used size, the current used size and 680 * the amount waiting in the queue. 681 */ 682 zil_blksz = MAX(zilog->zl_prev_used, 683 zilog->zl_cur_used + sizeof (*ztp)); 684 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 685 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 686 if (zil_blksz > ZIL_MAX_BLKSZ) 687 zil_blksz = ZIL_MAX_BLKSZ; 688 689 BP_ZERO(bp); 690 /* pass the old blkptr in order to spread log blocks across devs */ 691 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); 692 if (error) { 693 /* 694 * Reinitialise the lwb. 695 * By returning NULL the caller will call tx_wait_synced() 696 */ 697 mutex_enter(&zilog->zl_lock); 698 lwb->lwb_nused = 0; 699 mutex_exit(&zilog->zl_lock); 700 txg_rele_to_sync(&lwb->lwb_txgh); 701 return (NULL); 702 } 703 704 ASSERT3U(bp->blk_birth, ==, txg); 705 ztp->zit_pad = 0; 706 ztp->zit_nused = lwb->lwb_nused; 707 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 708 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 709 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 710 711 /* 712 * Allocate a new log write buffer (lwb). 713 */ 714 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 715 716 nlwb->lwb_zilog = zilog; 717 nlwb->lwb_blk = *bp; 718 nlwb->lwb_nused = 0; 719 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 720 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 721 nlwb->lwb_max_txg = txg; 722 nlwb->lwb_zio = NULL; 723 724 /* 725 * Put new lwb at the end of the log chain 726 */ 727 mutex_enter(&zilog->zl_lock); 728 list_insert_tail(&zilog->zl_lwb_list, nlwb); 729 mutex_exit(&zilog->zl_lock); 730 731 /* Record the vdev for later flushing */ 732 zil_add_vdev(zilog, DVA_GET_VDEV(BP_IDENTITY(&(lwb->lwb_blk)))); 733 734 /* 735 * kick off the write for the old log block 736 */ 737 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 738 ASSERT(lwb->lwb_zio); 739 zio_nowait(lwb->lwb_zio); 740 741 return (nlwb); 742 } 743 744 static lwb_t * 745 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 746 { 747 lr_t *lrc = &itx->itx_lr; /* common log record */ 748 lr_write_t *lr = (lr_write_t *)lrc; 749 uint64_t txg = lrc->lrc_txg; 750 uint64_t reclen = lrc->lrc_reclen; 751 uint64_t dlen; 752 753 if (lwb == NULL) 754 return (NULL); 755 ASSERT(lwb->lwb_buf != NULL); 756 757 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 758 dlen = P2ROUNDUP_TYPED( 759 lr->lr_length, sizeof (uint64_t), uint64_t); 760 else 761 dlen = 0; 762 763 zilog->zl_cur_used += (reclen + dlen); 764 765 zil_lwb_write_init(zilog, lwb); 766 767 /* 768 * If this record won't fit in the current log block, start a new one. 769 */ 770 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 771 lwb = zil_lwb_write_start(zilog, lwb); 772 if (lwb == NULL) 773 return (NULL); 774 zil_lwb_write_init(zilog, lwb); 775 ASSERT(lwb->lwb_nused == 0); 776 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 777 txg_wait_synced(zilog->zl_dmu_pool, txg); 778 return (lwb); 779 } 780 } 781 782 /* 783 * Update the lrc_seq, to be log record sequence number. See zil.h 784 * Then copy the record to the log buffer. 785 */ 786 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 787 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 788 789 /* 790 * If it's a write, fetch the data or get its blkptr as appropriate. 791 */ 792 if (lrc->lrc_txtype == TX_WRITE) { 793 if (txg > spa_freeze_txg(zilog->zl_spa)) 794 txg_wait_synced(zilog->zl_dmu_pool, txg); 795 if (itx->itx_wr_state != WR_COPIED) { 796 char *dbuf; 797 int error; 798 799 /* alignment is guaranteed */ 800 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 801 if (dlen) { 802 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 803 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 804 lr->lr_common.lrc_reclen += dlen; 805 } else { 806 ASSERT(itx->itx_wr_state == WR_INDIRECT); 807 dbuf = NULL; 808 } 809 error = zilog->zl_get_data( 810 itx->itx_private, lr, dbuf, lwb->lwb_zio); 811 if (error) { 812 ASSERT(error == ENOENT || error == EEXIST || 813 error == EALREADY); 814 return (lwb); 815 } 816 } 817 } 818 819 lwb->lwb_nused += reclen + dlen; 820 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 821 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 822 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 823 824 return (lwb); 825 } 826 827 itx_t * 828 zil_itx_create(int txtype, size_t lrsize) 829 { 830 itx_t *itx; 831 832 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 833 834 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 835 itx->itx_lr.lrc_txtype = txtype; 836 itx->itx_lr.lrc_reclen = lrsize; 837 itx->itx_lr.lrc_seq = 0; /* defensive */ 838 839 return (itx); 840 } 841 842 uint64_t 843 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 844 { 845 uint64_t seq; 846 847 ASSERT(itx->itx_lr.lrc_seq == 0); 848 849 mutex_enter(&zilog->zl_lock); 850 list_insert_tail(&zilog->zl_itx_list, itx); 851 zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen; 852 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 853 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 854 mutex_exit(&zilog->zl_lock); 855 856 return (seq); 857 } 858 859 /* 860 * Free up all in-memory intent log transactions that have now been synced. 861 */ 862 static void 863 zil_itx_clean(zilog_t *zilog) 864 { 865 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 866 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 867 itx_t *itx; 868 869 mutex_enter(&zilog->zl_lock); 870 /* wait for a log writer to finish walking list */ 871 while (zilog->zl_writer) { 872 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 873 } 874 /* no need to set zl_writer as we never drop zl_lock */ 875 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 876 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 877 list_remove(&zilog->zl_itx_list, itx); 878 zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen; 879 kmem_free(itx, offsetof(itx_t, itx_lr) 880 + itx->itx_lr.lrc_reclen); 881 } 882 cv_broadcast(&zilog->zl_cv_writer); 883 mutex_exit(&zilog->zl_lock); 884 } 885 886 /* 887 * If there are any in-memory intent log transactions which have now been 888 * synced then start up a taskq to free them. 889 */ 890 void 891 zil_clean(zilog_t *zilog) 892 { 893 itx_t *itx; 894 895 mutex_enter(&zilog->zl_lock); 896 itx = list_head(&zilog->zl_itx_list); 897 if ((itx != NULL) && 898 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 899 (void) taskq_dispatch(zilog->zl_clean_taskq, 900 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 901 } 902 mutex_exit(&zilog->zl_lock); 903 } 904 905 void 906 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 907 { 908 uint64_t txg; 909 uint64_t reclen; 910 uint64_t commit_seq = 0; 911 itx_t *itx, *itx_next = (itx_t *)-1; 912 lwb_t *lwb; 913 spa_t *spa; 914 915 zilog->zl_writer = B_TRUE; 916 zilog->zl_root_zio = NULL; 917 spa = zilog->zl_spa; 918 919 if (zilog->zl_suspend) { 920 lwb = NULL; 921 } else { 922 lwb = list_tail(&zilog->zl_lwb_list); 923 if (lwb == NULL) { 924 /* 925 * Return if there's nothing to flush before we 926 * dirty the fs by calling zil_create() 927 */ 928 if (list_is_empty(&zilog->zl_itx_list)) { 929 zilog->zl_writer = B_FALSE; 930 return; 931 } 932 mutex_exit(&zilog->zl_lock); 933 zil_create(zilog); 934 mutex_enter(&zilog->zl_lock); 935 lwb = list_tail(&zilog->zl_lwb_list); 936 } 937 } 938 939 /* Loop through in-memory log transactions filling log blocks. */ 940 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 941 for (;;) { 942 /* 943 * Find the next itx to push: 944 * Push all transactions related to specified foid and all 945 * other transactions except TX_WRITE, TX_TRUNCATE, 946 * TX_SETATTR and TX_ACL for all other files. 947 */ 948 if (itx_next != (itx_t *)-1) 949 itx = itx_next; 950 else 951 itx = list_head(&zilog->zl_itx_list); 952 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 953 if (foid == 0) /* push all foids? */ 954 break; 955 if (itx->itx_sync) /* push all O_[D]SYNC */ 956 break; 957 switch (itx->itx_lr.lrc_txtype) { 958 case TX_SETATTR: 959 case TX_WRITE: 960 case TX_TRUNCATE: 961 case TX_ACL: 962 /* lr_foid is same offset for these records */ 963 if (((lr_write_t *)&itx->itx_lr)->lr_foid 964 != foid) { 965 continue; /* skip this record */ 966 } 967 } 968 break; 969 } 970 if (itx == NULL) 971 break; 972 973 reclen = itx->itx_lr.lrc_reclen; 974 if ((itx->itx_lr.lrc_seq > seq) && 975 ((lwb == NULL) || (lwb->lwb_nused == 0) || 976 (lwb->lwb_nused + reclen > ZIL_BLK_DATA_SZ(lwb)))) { 977 break; 978 } 979 980 /* 981 * Save the next pointer. Even though we soon drop 982 * zl_lock all threads that may change the list 983 * (another writer or zil_itx_clean) can't do so until 984 * they have zl_writer. 985 */ 986 itx_next = list_next(&zilog->zl_itx_list, itx); 987 list_remove(&zilog->zl_itx_list, itx); 988 mutex_exit(&zilog->zl_lock); 989 txg = itx->itx_lr.lrc_txg; 990 ASSERT(txg); 991 992 if (txg > spa_last_synced_txg(spa) || 993 txg > spa_freeze_txg(spa)) 994 lwb = zil_lwb_commit(zilog, itx, lwb); 995 kmem_free(itx, offsetof(itx_t, itx_lr) 996 + itx->itx_lr.lrc_reclen); 997 mutex_enter(&zilog->zl_lock); 998 zilog->zl_itx_list_sz -= reclen; 999 } 1000 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1001 /* determine commit sequence number */ 1002 itx = list_head(&zilog->zl_itx_list); 1003 if (itx) 1004 commit_seq = itx->itx_lr.lrc_seq; 1005 else 1006 commit_seq = zilog->zl_itx_seq; 1007 mutex_exit(&zilog->zl_lock); 1008 1009 /* write the last block out */ 1010 if (lwb != NULL && lwb->lwb_zio != NULL) 1011 lwb = zil_lwb_write_start(zilog, lwb); 1012 1013 zilog->zl_prev_used = zilog->zl_cur_used; 1014 zilog->zl_cur_used = 0; 1015 1016 /* 1017 * Wait if necessary for the log blocks to be on stable storage. 1018 */ 1019 if (zilog->zl_root_zio) { 1020 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1021 (void) zio_wait(zilog->zl_root_zio); 1022 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1023 if (!zfs_nocacheflush) 1024 zil_flush_vdevs(zilog); 1025 } 1026 1027 if (zilog->zl_log_error || lwb == NULL) { 1028 zilog->zl_log_error = 0; 1029 txg_wait_synced(zilog->zl_dmu_pool, 0); 1030 } 1031 1032 mutex_enter(&zilog->zl_lock); 1033 zilog->zl_writer = B_FALSE; 1034 1035 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1036 zilog->zl_commit_seq = commit_seq; 1037 } 1038 1039 /* 1040 * Push zfs transactions to stable storage up to the supplied sequence number. 1041 * If foid is 0 push out all transactions, otherwise push only those 1042 * for that file or might have been used to create that file. 1043 */ 1044 void 1045 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1046 { 1047 if (zilog == NULL || seq == 0) 1048 return; 1049 1050 mutex_enter(&zilog->zl_lock); 1051 1052 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1053 1054 while (zilog->zl_writer) { 1055 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1056 if (seq < zilog->zl_commit_seq) { 1057 mutex_exit(&zilog->zl_lock); 1058 return; 1059 } 1060 } 1061 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1062 /* wake up others waiting on the commit */ 1063 cv_broadcast(&zilog->zl_cv_writer); 1064 mutex_exit(&zilog->zl_lock); 1065 } 1066 1067 /* 1068 * Called in syncing context to free committed log blocks and update log header. 1069 */ 1070 void 1071 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1072 { 1073 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1074 uint64_t txg = dmu_tx_get_txg(tx); 1075 spa_t *spa = zilog->zl_spa; 1076 lwb_t *lwb; 1077 1078 mutex_enter(&zilog->zl_lock); 1079 1080 ASSERT(zilog->zl_stop_sync == 0); 1081 1082 zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; 1083 1084 if (zilog->zl_destroy_txg == txg) { 1085 blkptr_t blk = zh->zh_log; 1086 1087 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1088 ASSERT(spa_sync_pass(spa) == 1); 1089 1090 bzero(zh, sizeof (zil_header_t)); 1091 bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); 1092 1093 if (zilog->zl_keep_first) { 1094 /* 1095 * If this block was part of log chain that couldn't 1096 * be claimed because a device was missing during 1097 * zil_claim(), but that device later returns, 1098 * then this block could erroneously appear valid. 1099 * To guard against this, assign a new GUID to the new 1100 * log chain so it doesn't matter what blk points to. 1101 */ 1102 zil_init_log_chain(zilog, &blk); 1103 zh->zh_log = blk; 1104 } 1105 } 1106 1107 for (;;) { 1108 lwb = list_head(&zilog->zl_lwb_list); 1109 if (lwb == NULL) { 1110 mutex_exit(&zilog->zl_lock); 1111 return; 1112 } 1113 zh->zh_log = lwb->lwb_blk; 1114 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1115 break; 1116 list_remove(&zilog->zl_lwb_list, lwb); 1117 zio_free_blk(spa, &lwb->lwb_blk, txg); 1118 kmem_cache_free(zil_lwb_cache, lwb); 1119 } 1120 mutex_exit(&zilog->zl_lock); 1121 } 1122 1123 void 1124 zil_init(void) 1125 { 1126 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1127 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1128 } 1129 1130 void 1131 zil_fini(void) 1132 { 1133 kmem_cache_destroy(zil_lwb_cache); 1134 } 1135 1136 zilog_t * 1137 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1138 { 1139 zilog_t *zilog; 1140 1141 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1142 1143 zilog->zl_header = zh_phys; 1144 zilog->zl_os = os; 1145 zilog->zl_spa = dmu_objset_spa(os); 1146 zilog->zl_dmu_pool = dmu_objset_pool(os); 1147 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1148 1149 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1150 1151 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1152 offsetof(itx_t, itx_node)); 1153 1154 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1155 offsetof(lwb_t, lwb_node)); 1156 1157 list_create(&zilog->zl_vdev_list, sizeof (zil_vdev_t), 1158 offsetof(zil_vdev_t, vdev_seq_node)); 1159 1160 return (zilog); 1161 } 1162 1163 void 1164 zil_free(zilog_t *zilog) 1165 { 1166 lwb_t *lwb; 1167 zil_vdev_t *zv; 1168 1169 zilog->zl_stop_sync = 1; 1170 1171 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1172 list_remove(&zilog->zl_lwb_list, lwb); 1173 if (lwb->lwb_buf != NULL) 1174 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1175 kmem_cache_free(zil_lwb_cache, lwb); 1176 } 1177 list_destroy(&zilog->zl_lwb_list); 1178 1179 while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) { 1180 list_remove(&zilog->zl_vdev_list, zv); 1181 kmem_free(zv, sizeof (zil_vdev_t)); 1182 } 1183 list_destroy(&zilog->zl_vdev_list); 1184 1185 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1186 list_destroy(&zilog->zl_itx_list); 1187 mutex_destroy(&zilog->zl_lock); 1188 1189 kmem_free(zilog, sizeof (zilog_t)); 1190 } 1191 1192 /* 1193 * return true if the initial log block is not valid 1194 */ 1195 static int 1196 zil_empty(zilog_t *zilog) 1197 { 1198 const zil_header_t *zh = zilog->zl_header; 1199 arc_buf_t *abuf = NULL; 1200 1201 if (BP_IS_HOLE(&zh->zh_log)) 1202 return (1); 1203 1204 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 1205 return (1); 1206 1207 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 1208 return (0); 1209 } 1210 1211 /* 1212 * Open an intent log. 1213 */ 1214 zilog_t * 1215 zil_open(objset_t *os, zil_get_data_t *get_data) 1216 { 1217 zilog_t *zilog = dmu_objset_zil(os); 1218 1219 zilog->zl_get_data = get_data; 1220 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1221 2, 2, TASKQ_PREPOPULATE); 1222 1223 return (zilog); 1224 } 1225 1226 /* 1227 * Close an intent log. 1228 */ 1229 void 1230 zil_close(zilog_t *zilog) 1231 { 1232 /* 1233 * If the log isn't already committed, mark the objset dirty 1234 * (so zil_sync() will be called) and wait for that txg to sync. 1235 */ 1236 if (!zil_is_committed(zilog)) { 1237 uint64_t txg; 1238 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1239 (void) dmu_tx_assign(tx, TXG_WAIT); 1240 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1241 txg = dmu_tx_get_txg(tx); 1242 dmu_tx_commit(tx); 1243 txg_wait_synced(zilog->zl_dmu_pool, txg); 1244 } 1245 1246 taskq_destroy(zilog->zl_clean_taskq); 1247 zilog->zl_clean_taskq = NULL; 1248 zilog->zl_get_data = NULL; 1249 1250 zil_itx_clean(zilog); 1251 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1252 } 1253 1254 /* 1255 * Suspend an intent log. While in suspended mode, we still honor 1256 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1257 * We suspend the log briefly when taking a snapshot so that the snapshot 1258 * contains all the data it's supposed to, and has an empty intent log. 1259 */ 1260 int 1261 zil_suspend(zilog_t *zilog) 1262 { 1263 const zil_header_t *zh = zilog->zl_header; 1264 1265 mutex_enter(&zilog->zl_lock); 1266 if (zh->zh_claim_txg != 0) { /* unplayed log */ 1267 mutex_exit(&zilog->zl_lock); 1268 return (EBUSY); 1269 } 1270 if (zilog->zl_suspend++ != 0) { 1271 /* 1272 * Someone else already began a suspend. 1273 * Just wait for them to finish. 1274 */ 1275 while (zilog->zl_suspending) 1276 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1277 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1278 mutex_exit(&zilog->zl_lock); 1279 return (0); 1280 } 1281 zilog->zl_suspending = B_TRUE; 1282 mutex_exit(&zilog->zl_lock); 1283 1284 zil_commit(zilog, UINT64_MAX, 0); 1285 1286 /* 1287 * Wait for any in-flight log writes to complete. 1288 */ 1289 mutex_enter(&zilog->zl_lock); 1290 while (zilog->zl_writer) 1291 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1292 mutex_exit(&zilog->zl_lock); 1293 1294 zil_destroy(zilog, B_FALSE); 1295 1296 mutex_enter(&zilog->zl_lock); 1297 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1298 zilog->zl_suspending = B_FALSE; 1299 cv_broadcast(&zilog->zl_cv_suspend); 1300 mutex_exit(&zilog->zl_lock); 1301 1302 return (0); 1303 } 1304 1305 void 1306 zil_resume(zilog_t *zilog) 1307 { 1308 mutex_enter(&zilog->zl_lock); 1309 ASSERT(zilog->zl_suspend != 0); 1310 zilog->zl_suspend--; 1311 mutex_exit(&zilog->zl_lock); 1312 } 1313 1314 typedef struct zil_replay_arg { 1315 objset_t *zr_os; 1316 zil_replay_func_t **zr_replay; 1317 void *zr_arg; 1318 uint64_t *zr_txgp; 1319 boolean_t zr_byteswap; 1320 char *zr_lrbuf; 1321 } zil_replay_arg_t; 1322 1323 static void 1324 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1325 { 1326 zil_replay_arg_t *zr = zra; 1327 const zil_header_t *zh = zilog->zl_header; 1328 uint64_t reclen = lr->lrc_reclen; 1329 uint64_t txtype = lr->lrc_txtype; 1330 char *name; 1331 int pass, error, sunk; 1332 1333 if (zilog->zl_stop_replay) 1334 return; 1335 1336 if (lr->lrc_txg < claim_txg) /* already committed */ 1337 return; 1338 1339 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1340 return; 1341 1342 /* 1343 * Make a copy of the data so we can revise and extend it. 1344 */ 1345 bcopy(lr, zr->zr_lrbuf, reclen); 1346 1347 /* 1348 * The log block containing this lr may have been byteswapped 1349 * so that we can easily examine common fields like lrc_txtype. 1350 * However, the log is a mix of different data types, and only the 1351 * replay vectors know how to byteswap their records. Therefore, if 1352 * the lr was byteswapped, undo it before invoking the replay vector. 1353 */ 1354 if (zr->zr_byteswap) 1355 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1356 1357 /* 1358 * If this is a TX_WRITE with a blkptr, suck in the data. 1359 */ 1360 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1361 lr_write_t *lrw = (lr_write_t *)lr; 1362 blkptr_t *wbp = &lrw->lr_blkptr; 1363 uint64_t wlen = lrw->lr_length; 1364 char *wbuf = zr->zr_lrbuf + reclen; 1365 1366 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1367 bzero(wbuf, wlen); 1368 } else { 1369 /* 1370 * A subsequent write may have overwritten this block, 1371 * in which case wbp may have been been freed and 1372 * reallocated, and our read of wbp may fail with a 1373 * checksum error. We can safely ignore this because 1374 * the later write will provide the correct data. 1375 */ 1376 zbookmark_t zb; 1377 1378 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1379 zb.zb_object = lrw->lr_foid; 1380 zb.zb_level = -1; 1381 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1382 1383 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1384 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1385 ZIO_PRIORITY_SYNC_READ, 1386 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1387 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1388 } 1389 } 1390 1391 /* 1392 * We must now do two things atomically: replay this log record, 1393 * and update the log header to reflect the fact that we did so. 1394 * We use the DMU's ability to assign into a specific txg to do this. 1395 */ 1396 for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) { 1397 uint64_t replay_txg; 1398 dmu_tx_t *replay_tx; 1399 1400 replay_tx = dmu_tx_create(zr->zr_os); 1401 error = dmu_tx_assign(replay_tx, TXG_WAIT); 1402 if (error) { 1403 dmu_tx_abort(replay_tx); 1404 break; 1405 } 1406 1407 replay_txg = dmu_tx_get_txg(replay_tx); 1408 1409 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1410 error = EINVAL; 1411 } else { 1412 /* 1413 * On the first pass, arrange for the replay vector 1414 * to fail its dmu_tx_assign(). That's the only way 1415 * to ensure that those code paths remain well tested. 1416 */ 1417 *zr->zr_txgp = replay_txg - (pass == 1); 1418 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1419 zr->zr_byteswap); 1420 *zr->zr_txgp = TXG_NOWAIT; 1421 } 1422 1423 if (error == 0) { 1424 dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); 1425 zilog->zl_replay_seq[replay_txg & TXG_MASK] = 1426 lr->lrc_seq; 1427 } 1428 1429 dmu_tx_commit(replay_tx); 1430 1431 if (!error) 1432 return; 1433 1434 /* 1435 * The DMU's dnode layer doesn't see removes until the txg 1436 * commits, so a subsequent claim can spuriously fail with 1437 * EEXIST. So if we receive any error other than ERESTART 1438 * we try syncing out any removes then retrying the 1439 * transaction. 1440 */ 1441 if (error != ERESTART && !sunk) { 1442 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1443 sunk = B_TRUE; 1444 continue; /* retry */ 1445 } 1446 1447 if (error != ERESTART) 1448 break; 1449 1450 if (pass != 1) 1451 txg_wait_open(spa_get_dsl(zilog->zl_spa), 1452 replay_txg + 1); 1453 1454 dprintf("pass %d, retrying\n", pass); 1455 } 1456 1457 ASSERT(error && error != ERESTART); 1458 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1459 dmu_objset_name(zr->zr_os, name); 1460 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1461 "dataset %s, seq 0x%llx, txtype %llu\n", 1462 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype); 1463 zilog->zl_stop_replay = 1; 1464 kmem_free(name, MAXNAMELEN); 1465 } 1466 1467 /* ARGSUSED */ 1468 static void 1469 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1470 { 1471 zilog->zl_replay_blks++; 1472 } 1473 1474 /* 1475 * If this dataset has a non-empty intent log, replay it and destroy it. 1476 */ 1477 void 1478 zil_replay(objset_t *os, void *arg, uint64_t *txgp, 1479 zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1480 { 1481 zilog_t *zilog = dmu_objset_zil(os); 1482 const zil_header_t *zh = zilog->zl_header; 1483 zil_replay_arg_t zr; 1484 1485 if (zil_empty(zilog)) { 1486 zil_destroy(zilog, B_TRUE); 1487 return; 1488 } 1489 1490 zr.zr_os = os; 1491 zr.zr_replay = replay_func; 1492 zr.zr_arg = arg; 1493 zr.zr_txgp = txgp; 1494 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1495 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1496 1497 /* 1498 * Wait for in-progress removes to sync before starting replay. 1499 */ 1500 txg_wait_synced(zilog->zl_dmu_pool, 0); 1501 1502 zilog->zl_stop_replay = 0; 1503 zilog->zl_replay_time = lbolt; 1504 ASSERT(zilog->zl_replay_blks == 0); 1505 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1506 zh->zh_claim_txg); 1507 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1508 1509 zil_destroy(zilog, B_FALSE); 1510 } 1511 1512 /* 1513 * Report whether all transactions are committed 1514 */ 1515 int 1516 zil_is_committed(zilog_t *zilog) 1517 { 1518 lwb_t *lwb; 1519 int ret; 1520 1521 mutex_enter(&zilog->zl_lock); 1522 while (zilog->zl_writer) 1523 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1524 1525 /* recent unpushed intent log transactions? */ 1526 if (!list_is_empty(&zilog->zl_itx_list)) { 1527 ret = B_FALSE; 1528 goto out; 1529 } 1530 1531 /* intent log never used? */ 1532 lwb = list_head(&zilog->zl_lwb_list); 1533 if (lwb == NULL) { 1534 ret = B_TRUE; 1535 goto out; 1536 } 1537 1538 /* 1539 * more than 1 log buffer means zil_sync() hasn't yet freed 1540 * entries after a txg has committed 1541 */ 1542 if (list_next(&zilog->zl_lwb_list, lwb)) { 1543 ret = B_FALSE; 1544 goto out; 1545 } 1546 1547 ASSERT(zil_empty(zilog)); 1548 ret = B_TRUE; 1549 out: 1550 cv_broadcast(&zilog->zl_cv_writer); 1551 mutex_exit(&zilog->zl_lock); 1552 return (ret); 1553 } 1554