1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #ifdef _KERNEL 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/time.h> 34 #include <sys/systm.h> 35 #include <sys/sysmacros.h> 36 #include <sys/resource.h> 37 #include <sys/mntent.h> 38 #include <sys/mkdev.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/cmn_err.h> 45 #include <sys/errno.h> 46 #include <sys/unistd.h> 47 #include <sys/mode.h> 48 #include <sys/atomic.h> 49 #include <vm/pvn.h> 50 #include "fs/fs_subr.h" 51 #include <sys/zfs_dir.h> 52 #include <sys/zfs_acl.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_rlock.h> 55 #include <sys/fs/zfs.h> 56 #endif /* _KERNEL */ 57 58 #include <sys/dmu.h> 59 #include <sys/refcount.h> 60 #include <sys/stat.h> 61 #include <sys/zap.h> 62 #include <sys/zfs_znode.h> 63 64 /* 65 * Functions needed for userland (ie: libzpool) are not put under 66 * #ifdef_KERNEL; the rest of the functions have dependencies 67 * (such as VFS logic) that will not compile easily in userland. 68 */ 69 #ifdef _KERNEL 70 struct kmem_cache *znode_cache = NULL; 71 72 /*ARGSUSED*/ 73 static void 74 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr) 75 { 76 znode_t *zp = user_ptr; 77 vnode_t *vp = ZTOV(zp); 78 79 mutex_enter(&zp->z_lock); 80 if (vp->v_count == 0) { 81 mutex_exit(&zp->z_lock); 82 vn_invalid(vp); 83 zfs_znode_free(zp); 84 } else { 85 /* signal force unmount that this znode can be freed */ 86 zp->z_dbuf = NULL; 87 mutex_exit(&zp->z_lock); 88 } 89 } 90 91 /*ARGSUSED*/ 92 static int 93 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags) 94 { 95 znode_t *zp = buf; 96 97 zp->z_vnode = vn_alloc(KM_SLEEP); 98 zp->z_vnode->v_data = (caddr_t)zp; 99 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 100 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 101 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 102 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 103 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 104 105 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 106 avl_create(&zp->z_range_avl, zfs_range_compare, 107 sizeof (rl_t), offsetof(rl_t, r_node)); 108 109 zp->z_dbuf_held = 0; 110 zp->z_dirlocks = 0; 111 return (0); 112 } 113 114 /*ARGSUSED*/ 115 static void 116 zfs_znode_cache_destructor(void *buf, void *cdarg) 117 { 118 znode_t *zp = buf; 119 120 ASSERT(zp->z_dirlocks == 0); 121 mutex_destroy(&zp->z_lock); 122 rw_destroy(&zp->z_map_lock); 123 rw_destroy(&zp->z_parent_lock); 124 rw_destroy(&zp->z_name_lock); 125 mutex_destroy(&zp->z_acl_lock); 126 avl_destroy(&zp->z_range_avl); 127 128 ASSERT(zp->z_dbuf_held == 0); 129 ASSERT(ZTOV(zp)->v_count == 0); 130 vn_free(ZTOV(zp)); 131 } 132 133 void 134 zfs_znode_init(void) 135 { 136 /* 137 * Initialize zcache 138 */ 139 ASSERT(znode_cache == NULL); 140 znode_cache = kmem_cache_create("zfs_znode_cache", 141 sizeof (znode_t), 0, zfs_znode_cache_constructor, 142 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 143 } 144 145 void 146 zfs_znode_fini(void) 147 { 148 /* 149 * Cleanup vfs & vnode ops 150 */ 151 zfs_remove_op_tables(); 152 153 /* 154 * Cleanup zcache 155 */ 156 if (znode_cache) 157 kmem_cache_destroy(znode_cache); 158 znode_cache = NULL; 159 } 160 161 struct vnodeops *zfs_dvnodeops; 162 struct vnodeops *zfs_fvnodeops; 163 struct vnodeops *zfs_symvnodeops; 164 struct vnodeops *zfs_xdvnodeops; 165 struct vnodeops *zfs_evnodeops; 166 167 void 168 zfs_remove_op_tables() 169 { 170 /* 171 * Remove vfs ops 172 */ 173 ASSERT(zfsfstype); 174 (void) vfs_freevfsops_by_type(zfsfstype); 175 zfsfstype = 0; 176 177 /* 178 * Remove vnode ops 179 */ 180 if (zfs_dvnodeops) 181 vn_freevnodeops(zfs_dvnodeops); 182 if (zfs_fvnodeops) 183 vn_freevnodeops(zfs_fvnodeops); 184 if (zfs_symvnodeops) 185 vn_freevnodeops(zfs_symvnodeops); 186 if (zfs_xdvnodeops) 187 vn_freevnodeops(zfs_xdvnodeops); 188 if (zfs_evnodeops) 189 vn_freevnodeops(zfs_evnodeops); 190 191 zfs_dvnodeops = NULL; 192 zfs_fvnodeops = NULL; 193 zfs_symvnodeops = NULL; 194 zfs_xdvnodeops = NULL; 195 zfs_evnodeops = NULL; 196 } 197 198 extern const fs_operation_def_t zfs_dvnodeops_template[]; 199 extern const fs_operation_def_t zfs_fvnodeops_template[]; 200 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 201 extern const fs_operation_def_t zfs_symvnodeops_template[]; 202 extern const fs_operation_def_t zfs_evnodeops_template[]; 203 204 int 205 zfs_create_op_tables() 206 { 207 int error; 208 209 /* 210 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 211 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 212 * In this case we just return as the ops vectors are already set up. 213 */ 214 if (zfs_dvnodeops) 215 return (0); 216 217 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 218 &zfs_dvnodeops); 219 if (error) 220 return (error); 221 222 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 223 &zfs_fvnodeops); 224 if (error) 225 return (error); 226 227 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 228 &zfs_symvnodeops); 229 if (error) 230 return (error); 231 232 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 233 &zfs_xdvnodeops); 234 if (error) 235 return (error); 236 237 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 238 &zfs_evnodeops); 239 240 return (error); 241 } 242 243 /* 244 * zfs_init_fs - Initialize the zfsvfs struct and the file system 245 * incore "master" object. Verify version compatibility. 246 */ 247 int 248 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr) 249 { 250 extern int zfsfstype; 251 252 objset_t *os = zfsvfs->z_os; 253 uint64_t version = ZPL_VERSION; 254 int i, error; 255 dmu_object_info_t doi; 256 uint64_t fsid_guid; 257 258 *zpp = NULL; 259 260 /* 261 * XXX - hack to auto-create the pool root filesystem at 262 * the first attempted mount. 263 */ 264 if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) { 265 dmu_tx_t *tx = dmu_tx_create(os); 266 267 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */ 268 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */ 269 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */ 270 error = dmu_tx_assign(tx, TXG_WAIT); 271 ASSERT3U(error, ==, 0); 272 zfs_create_fs(os, cr, tx); 273 dmu_tx_commit(tx); 274 } 275 276 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_OBJ, 8, 1, 277 &version); 278 if (error) { 279 return (error); 280 } else if (version != ZPL_VERSION) { 281 (void) printf("Mismatched versions: File system " 282 "is version %lld on-disk format, which is " 283 "incompatible with this software version %lld!", 284 (u_longlong_t)version, ZPL_VERSION); 285 return (ENOTSUP); 286 } 287 288 /* 289 * The fsid is 64 bits, composed of an 8-bit fs type, which 290 * separates our fsid from any other filesystem types, and a 291 * 56-bit objset unique ID. The objset unique ID is unique to 292 * all objsets open on this system, provided by unique_create(). 293 * The 8-bit fs type must be put in the low bits of fsid[1] 294 * because that's where other Solaris filesystems put it. 295 */ 296 fsid_guid = dmu_objset_fsid_guid(os); 297 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 298 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 299 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 300 zfsfstype & 0xFF; 301 302 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 303 &zfsvfs->z_root); 304 if (error) 305 return (error); 306 ASSERT(zfsvfs->z_root != 0); 307 308 /* 309 * Create the per mount vop tables. 310 */ 311 312 /* 313 * Initialize zget mutex's 314 */ 315 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 316 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 317 318 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 319 if (error) 320 return (error); 321 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 322 323 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 324 &zfsvfs->z_unlinkedobj); 325 if (error) 326 return (error); 327 328 return (0); 329 } 330 331 /* 332 * define a couple of values we need available 333 * for both 64 and 32 bit environments. 334 */ 335 #ifndef NBITSMINOR64 336 #define NBITSMINOR64 32 337 #endif 338 #ifndef MAXMAJ64 339 #define MAXMAJ64 0xffffffffUL 340 #endif 341 #ifndef MAXMIN64 342 #define MAXMIN64 0xffffffffUL 343 #endif 344 345 /* 346 * Create special expldev for ZFS private use. 347 * Can't use standard expldev since it doesn't do 348 * what we want. The standard expldev() takes a 349 * dev32_t in LP64 and expands it to a long dev_t. 350 * We need an interface that takes a dev32_t in ILP32 351 * and expands it to a long dev_t. 352 */ 353 static uint64_t 354 zfs_expldev(dev_t dev) 355 { 356 #ifndef _LP64 357 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 358 return (((uint64_t)major << NBITSMINOR64) | 359 ((minor_t)dev & MAXMIN32)); 360 #else 361 return (dev); 362 #endif 363 } 364 365 /* 366 * Special cmpldev for ZFS private use. 367 * Can't use standard cmpldev since it takes 368 * a long dev_t and compresses it to dev32_t in 369 * LP64. We need to do a compaction of a long dev_t 370 * to a dev32_t in ILP32. 371 */ 372 dev_t 373 zfs_cmpldev(uint64_t dev) 374 { 375 #ifndef _LP64 376 minor_t minor = (minor_t)dev & MAXMIN64; 377 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 378 379 if (major > MAXMAJ32 || minor > MAXMIN32) 380 return (NODEV32); 381 382 return (((dev32_t)major << NBITSMINOR32) | minor); 383 #else 384 return (dev); 385 #endif 386 } 387 388 /* 389 * Construct a new znode/vnode and intialize. 390 * 391 * This does not do a call to dmu_set_user() that is 392 * up to the caller to do, in case you don't want to 393 * return the znode 394 */ 395 static znode_t * 396 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz) 397 { 398 znode_t *zp; 399 vnode_t *vp; 400 401 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 402 403 ASSERT(zp->z_dirlocks == NULL); 404 405 zp->z_phys = db->db_data; 406 zp->z_zfsvfs = zfsvfs; 407 zp->z_unlinked = 0; 408 zp->z_atime_dirty = 0; 409 zp->z_dbuf_held = 0; 410 zp->z_mapcnt = 0; 411 zp->z_last_itx = 0; 412 zp->z_dbuf = db; 413 zp->z_id = obj_num; 414 zp->z_blksz = blksz; 415 zp->z_seq = 0x7A4653; 416 zp->z_sync_cnt = 0; 417 418 mutex_enter(&zfsvfs->z_znodes_lock); 419 list_insert_tail(&zfsvfs->z_all_znodes, zp); 420 mutex_exit(&zfsvfs->z_znodes_lock); 421 422 vp = ZTOV(zp); 423 vn_reinit(vp); 424 425 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 426 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 427 428 switch (vp->v_type) { 429 case VDIR: 430 if (zp->z_phys->zp_flags & ZFS_XATTR) { 431 vn_setops(vp, zfs_xdvnodeops); 432 vp->v_flag |= V_XATTRDIR; 433 } else 434 vn_setops(vp, zfs_dvnodeops); 435 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 436 break; 437 case VBLK: 438 case VCHR: 439 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 440 /*FALLTHROUGH*/ 441 case VFIFO: 442 case VSOCK: 443 case VDOOR: 444 vn_setops(vp, zfs_fvnodeops); 445 break; 446 case VREG: 447 vp->v_flag |= VMODSORT; 448 vn_setops(vp, zfs_fvnodeops); 449 break; 450 case VLNK: 451 vn_setops(vp, zfs_symvnodeops); 452 break; 453 default: 454 vn_setops(vp, zfs_evnodeops); 455 break; 456 } 457 458 return (zp); 459 } 460 461 static void 462 zfs_znode_dmu_init(znode_t *zp) 463 { 464 znode_t *nzp; 465 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 466 dmu_buf_t *db = zp->z_dbuf; 467 468 mutex_enter(&zp->z_lock); 469 470 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_pageout_func); 471 472 /* 473 * there should be no 474 * concurrent zgets on this object. 475 */ 476 ASSERT3P(nzp, ==, NULL); 477 478 /* 479 * Slap on VROOT if we are the root znode 480 */ 481 if (zp->z_id == zfsvfs->z_root) { 482 ZTOV(zp)->v_flag |= VROOT; 483 } 484 485 ASSERT(zp->z_dbuf_held == 0); 486 zp->z_dbuf_held = 1; 487 VFS_HOLD(zfsvfs->z_vfs); 488 mutex_exit(&zp->z_lock); 489 vn_exists(ZTOV(zp)); 490 } 491 492 /* 493 * Create a new DMU object to hold a zfs znode. 494 * 495 * IN: dzp - parent directory for new znode 496 * vap - file attributes for new znode 497 * tx - dmu transaction id for zap operations 498 * cr - credentials of caller 499 * flag - flags: 500 * IS_ROOT_NODE - new object will be root 501 * IS_XATTR - new object is an attribute 502 * IS_REPLAY - intent log replay 503 * 504 * OUT: oid - ID of created object 505 * 506 */ 507 void 508 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr, 509 uint_t flag, znode_t **zpp, int bonuslen) 510 { 511 dmu_buf_t *dbp; 512 znode_phys_t *pzp; 513 znode_t *zp; 514 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 515 timestruc_t now; 516 uint64_t gen; 517 int err; 518 519 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 520 521 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 522 *oid = vap->va_nodeid; 523 flag |= IS_REPLAY; 524 now = vap->va_ctime; /* see zfs_replay_create() */ 525 gen = vap->va_nblocks; /* ditto */ 526 } else { 527 *oid = 0; 528 gethrestime(&now); 529 gen = dmu_tx_get_txg(tx); 530 } 531 532 /* 533 * Create a new DMU object. 534 */ 535 /* 536 * There's currently no mechanism for pre-reading the blocks that will 537 * be to needed allocate a new object, so we accept the small chance 538 * that there will be an i/o error and we will fail one of the 539 * assertions below. 540 */ 541 if (vap->va_type == VDIR) { 542 if (flag & IS_REPLAY) { 543 err = zap_create_claim(zfsvfs->z_os, *oid, 544 DMU_OT_DIRECTORY_CONTENTS, 545 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 546 ASSERT3U(err, ==, 0); 547 } else { 548 *oid = zap_create(zfsvfs->z_os, 549 DMU_OT_DIRECTORY_CONTENTS, 550 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 551 } 552 } else { 553 if (flag & IS_REPLAY) { 554 err = dmu_object_claim(zfsvfs->z_os, *oid, 555 DMU_OT_PLAIN_FILE_CONTENTS, 0, 556 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 557 ASSERT3U(err, ==, 0); 558 } else { 559 *oid = dmu_object_alloc(zfsvfs->z_os, 560 DMU_OT_PLAIN_FILE_CONTENTS, 0, 561 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 562 } 563 } 564 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp)); 565 dmu_buf_will_dirty(dbp, tx); 566 567 /* 568 * Initialize the znode physical data to zero. 569 */ 570 ASSERT(dbp->db_size >= sizeof (znode_phys_t)); 571 bzero(dbp->db_data, dbp->db_size); 572 pzp = dbp->db_data; 573 574 /* 575 * If this is the root, fix up the half-initialized parent pointer 576 * to reference the just-allocated physical data area. 577 */ 578 if (flag & IS_ROOT_NODE) { 579 dzp->z_phys = pzp; 580 dzp->z_id = *oid; 581 } 582 583 /* 584 * If parent is an xattr, so am I. 585 */ 586 if (dzp->z_phys->zp_flags & ZFS_XATTR) 587 flag |= IS_XATTR; 588 589 if (vap->va_type == VBLK || vap->va_type == VCHR) { 590 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 591 } 592 593 if (vap->va_type == VDIR) { 594 pzp->zp_size = 2; /* contents ("." and "..") */ 595 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 596 } 597 598 pzp->zp_parent = dzp->z_id; 599 if (flag & IS_XATTR) 600 pzp->zp_flags |= ZFS_XATTR; 601 602 pzp->zp_gen = gen; 603 604 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 605 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 606 607 if (vap->va_mask & AT_ATIME) { 608 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 609 } else { 610 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 611 } 612 613 if (vap->va_mask & AT_MTIME) { 614 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 615 } else { 616 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 617 } 618 619 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 620 zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0); 621 622 zfs_perm_init(zp, dzp, flag, vap, tx, cr); 623 624 if (zpp) { 625 kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp); 626 627 mutex_enter(hash_mtx); 628 zfs_znode_dmu_init(zp); 629 mutex_exit(hash_mtx); 630 631 *zpp = zp; 632 } else { 633 ZTOV(zp)->v_count = 0; 634 dmu_buf_rele(dbp, NULL); 635 zfs_znode_free(zp); 636 } 637 } 638 639 int 640 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 641 { 642 dmu_object_info_t doi; 643 dmu_buf_t *db; 644 znode_t *zp; 645 int err; 646 647 *zpp = NULL; 648 649 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 650 651 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 652 if (err) { 653 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 654 return (err); 655 } 656 657 dmu_object_info_from_db(db, &doi); 658 if (doi.doi_bonus_type != DMU_OT_ZNODE || 659 doi.doi_bonus_size < sizeof (znode_phys_t)) { 660 dmu_buf_rele(db, NULL); 661 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 662 return (EINVAL); 663 } 664 665 ASSERT(db->db_object == obj_num); 666 ASSERT(db->db_offset == -1); 667 ASSERT(db->db_data != NULL); 668 669 zp = dmu_buf_get_user(db); 670 671 if (zp != NULL) { 672 mutex_enter(&zp->z_lock); 673 674 ASSERT3U(zp->z_id, ==, obj_num); 675 if (zp->z_unlinked) { 676 dmu_buf_rele(db, NULL); 677 mutex_exit(&zp->z_lock); 678 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 679 return (ENOENT); 680 } else if (zp->z_dbuf_held) { 681 dmu_buf_rele(db, NULL); 682 } else { 683 zp->z_dbuf_held = 1; 684 VFS_HOLD(zfsvfs->z_vfs); 685 } 686 687 688 VN_HOLD(ZTOV(zp)); 689 mutex_exit(&zp->z_lock); 690 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 691 *zpp = zp; 692 return (0); 693 } 694 695 /* 696 * Not found create new znode/vnode 697 */ 698 zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size); 699 ASSERT3U(zp->z_id, ==, obj_num); 700 zfs_znode_dmu_init(zp); 701 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 702 *zpp = zp; 703 return (0); 704 } 705 706 void 707 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 708 { 709 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 710 int error; 711 712 ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id); 713 if (zp->z_phys->zp_acl.z_acl_extern_obj) { 714 error = dmu_object_free(zfsvfs->z_os, 715 zp->z_phys->zp_acl.z_acl_extern_obj, tx); 716 ASSERT3U(error, ==, 0); 717 } 718 error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx); 719 ASSERT3U(error, ==, 0); 720 zp->z_dbuf_held = 0; 721 ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id); 722 dmu_buf_rele(zp->z_dbuf, NULL); 723 } 724 725 void 726 zfs_zinactive(znode_t *zp) 727 { 728 vnode_t *vp = ZTOV(zp); 729 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 730 uint64_t z_id = zp->z_id; 731 732 ASSERT(zp->z_dbuf_held && zp->z_phys); 733 734 /* 735 * Don't allow a zfs_zget() while were trying to release this znode 736 */ 737 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 738 739 mutex_enter(&zp->z_lock); 740 mutex_enter(&vp->v_lock); 741 vp->v_count--; 742 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 743 /* 744 * If the hold count is greater than zero, somebody has 745 * obtained a new reference on this znode while we were 746 * processing it here, so we are done. If we still have 747 * mapped pages then we are also done, since we don't 748 * want to inactivate the znode until the pages get pushed. 749 * 750 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 751 * this seems like it would leave the znode hanging with 752 * no chance to go inactive... 753 */ 754 mutex_exit(&vp->v_lock); 755 mutex_exit(&zp->z_lock); 756 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 757 return; 758 } 759 mutex_exit(&vp->v_lock); 760 761 /* 762 * If this was the last reference to a file with no links, 763 * remove the file from the file system. 764 */ 765 if (zp->z_unlinked) { 766 mutex_exit(&zp->z_lock); 767 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 768 zfs_rmnode(zp); 769 VFS_RELE(zfsvfs->z_vfs); 770 return; 771 } 772 ASSERT(zp->z_phys); 773 ASSERT(zp->z_dbuf_held); 774 775 zp->z_dbuf_held = 0; 776 mutex_exit(&zp->z_lock); 777 dmu_buf_rele(zp->z_dbuf, NULL); 778 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 779 VFS_RELE(zfsvfs->z_vfs); 780 } 781 782 void 783 zfs_znode_free(znode_t *zp) 784 { 785 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 786 787 mutex_enter(&zfsvfs->z_znodes_lock); 788 list_remove(&zfsvfs->z_all_znodes, zp); 789 mutex_exit(&zfsvfs->z_znodes_lock); 790 791 kmem_cache_free(znode_cache, zp); 792 } 793 794 void 795 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 796 { 797 timestruc_t now; 798 799 ASSERT(MUTEX_HELD(&zp->z_lock)); 800 801 gethrestime(&now); 802 803 if (tx) { 804 dmu_buf_will_dirty(zp->z_dbuf, tx); 805 zp->z_atime_dirty = 0; 806 zp->z_seq++; 807 } else { 808 zp->z_atime_dirty = 1; 809 } 810 811 if (flag & AT_ATIME) 812 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 813 814 if (flag & AT_MTIME) 815 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 816 817 if (flag & AT_CTIME) 818 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 819 } 820 821 /* 822 * Update the requested znode timestamps with the current time. 823 * If we are in a transaction, then go ahead and mark the znode 824 * dirty in the transaction so the timestamps will go to disk. 825 * Otherwise, we will get pushed next time the znode is updated 826 * in a transaction, or when this znode eventually goes inactive. 827 * 828 * Why is this OK? 829 * 1 - Only the ACCESS time is ever updated outside of a transaction. 830 * 2 - Multiple consecutive updates will be collapsed into a single 831 * znode update by the transaction grouping semantics of the DMU. 832 */ 833 void 834 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 835 { 836 mutex_enter(&zp->z_lock); 837 zfs_time_stamper_locked(zp, flag, tx); 838 mutex_exit(&zp->z_lock); 839 } 840 841 /* 842 * Grow the block size for a file. 843 * 844 * IN: zp - znode of file to free data in. 845 * size - requested block size 846 * tx - open transaction. 847 * 848 * NOTE: this function assumes that the znode is write locked. 849 */ 850 void 851 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 852 { 853 int error; 854 u_longlong_t dummy; 855 856 if (size <= zp->z_blksz) 857 return; 858 /* 859 * If the file size is already greater than the current blocksize, 860 * we will not grow. If there is more than one block in a file, 861 * the blocksize cannot change. 862 */ 863 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 864 return; 865 866 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 867 size, 0, tx); 868 if (error == ENOTSUP) 869 return; 870 ASSERT3U(error, ==, 0); 871 872 /* What blocksize did we actually get? */ 873 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 874 } 875 876 /* 877 * This is a dummy interface used when pvn_vplist_dirty() should *not* 878 * be calling back into the fs for a putpage(). E.g.: when truncating 879 * a file, the pages being "thrown away* don't need to be written out. 880 */ 881 /* ARGSUSED */ 882 static int 883 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 884 int flags, cred_t *cr) 885 { 886 ASSERT(0); 887 return (0); 888 } 889 890 /* 891 * Free space in a file. 892 * 893 * IN: zp - znode of file to free data in. 894 * off - start of section to free. 895 * len - length of section to free (0 => to EOF). 896 * flag - current file open mode flags. 897 * 898 * RETURN: 0 if success 899 * error code if failure 900 */ 901 int 902 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 903 { 904 vnode_t *vp = ZTOV(zp); 905 dmu_tx_t *tx; 906 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 907 zilog_t *zilog = zfsvfs->z_log; 908 rl_t *rl; 909 uint64_t end = off + len; 910 uint64_t size, new_blksz; 911 int error; 912 913 if (ZTOV(zp)->v_type == VFIFO) 914 return (0); 915 916 /* 917 * If we will change zp_size then lock the whole file, 918 * otherwise just lock the range being freed. 919 */ 920 if (len == 0 || off + len > zp->z_phys->zp_size) { 921 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 922 } else { 923 rl = zfs_range_lock(zp, off, len, RL_WRITER); 924 /* recheck, in case zp_size changed */ 925 if (off + len > zp->z_phys->zp_size) { 926 /* lost race: file size changed, lock whole file */ 927 zfs_range_unlock(rl); 928 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 929 } 930 } 931 932 /* 933 * Nothing to do if file already at desired length. 934 */ 935 size = zp->z_phys->zp_size; 936 if (len == 0 && size == off && off != 0) { 937 zfs_range_unlock(rl); 938 return (0); 939 } 940 941 /* 942 * Check for any locks in the region to be freed. 943 */ 944 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 945 uint64_t start = off; 946 uint64_t extent = len; 947 948 if (off > size) { 949 start = size; 950 extent += off - size; 951 } else if (len == 0) { 952 extent = size - off; 953 } 954 if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) { 955 zfs_range_unlock(rl); 956 return (error); 957 } 958 } 959 960 tx = dmu_tx_create(zfsvfs->z_os); 961 dmu_tx_hold_bonus(tx, zp->z_id); 962 new_blksz = 0; 963 if (end > size && 964 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 965 /* 966 * We are growing the file past the current block size. 967 */ 968 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 969 ASSERT(!ISP2(zp->z_blksz)); 970 new_blksz = MIN(end, SPA_MAXBLOCKSIZE); 971 } else { 972 new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 973 } 974 dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz)); 975 } else if (off < size) { 976 /* 977 * If len == 0, we are truncating the file. 978 */ 979 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 980 } 981 982 error = dmu_tx_assign(tx, zfsvfs->z_assign); 983 if (error) { 984 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) 985 dmu_tx_wait(tx); 986 dmu_tx_abort(tx); 987 zfs_range_unlock(rl); 988 return (error); 989 } 990 991 if (new_blksz) 992 zfs_grow_blocksize(zp, new_blksz, tx); 993 994 if (end > size || len == 0) 995 zp->z_phys->zp_size = end; 996 997 if (off < size) { 998 objset_t *os = zfsvfs->z_os; 999 uint64_t rlen = len; 1000 1001 if (len == 0) 1002 rlen = -1; 1003 else if (end > size) 1004 rlen = size - off; 1005 VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx)); 1006 } 1007 1008 if (log) { 1009 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1010 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1011 } 1012 1013 zfs_range_unlock(rl); 1014 1015 dmu_tx_commit(tx); 1016 1017 /* 1018 * Clear any mapped pages in the truncated region. This has to 1019 * happen outside of the transaction to avoid the possibility of 1020 * a deadlock with someone trying to push a page that we are 1021 * about to invalidate. 1022 */ 1023 rw_enter(&zp->z_map_lock, RW_WRITER); 1024 if (off < size && vn_has_cached_data(vp)) { 1025 page_t *pp; 1026 uint64_t start = off & PAGEMASK; 1027 int poff = off & PAGEOFFSET; 1028 1029 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1030 /* 1031 * We need to zero a partial page. 1032 */ 1033 pagezero(pp, poff, PAGESIZE - poff); 1034 start += PAGESIZE; 1035 page_unlock(pp); 1036 } 1037 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1038 B_INVAL | B_TRUNC, NULL); 1039 ASSERT(error == 0); 1040 } 1041 rw_exit(&zp->z_map_lock); 1042 1043 return (0); 1044 } 1045 1046 void 1047 zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx) 1048 { 1049 zfsvfs_t zfsvfs; 1050 uint64_t moid, doid, roid = 0; 1051 uint64_t version = ZPL_VERSION; 1052 int error; 1053 znode_t *rootzp = NULL; 1054 vnode_t *vp; 1055 vattr_t vattr; 1056 1057 /* 1058 * First attempt to create master node. 1059 */ 1060 /* 1061 * In an empty objset, there are no blocks to read and thus 1062 * there can be no i/o errors (which we assert below). 1063 */ 1064 moid = MASTER_NODE_OBJ; 1065 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1066 DMU_OT_NONE, 0, tx); 1067 ASSERT(error == 0); 1068 1069 /* 1070 * Set starting attributes. 1071 */ 1072 1073 error = zap_update(os, moid, ZPL_VERSION_OBJ, 8, 1, &version, tx); 1074 ASSERT(error == 0); 1075 1076 /* 1077 * Create a delete queue. 1078 */ 1079 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1080 1081 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1082 ASSERT(error == 0); 1083 1084 /* 1085 * Create root znode. Create minimal znode/vnode/zfsvfs 1086 * to allow zfs_mknode to work. 1087 */ 1088 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1089 vattr.va_type = VDIR; 1090 vattr.va_mode = S_IFDIR|0755; 1091 vattr.va_uid = 0; 1092 vattr.va_gid = 3; 1093 1094 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1095 rootzp->z_zfsvfs = &zfsvfs; 1096 rootzp->z_unlinked = 0; 1097 rootzp->z_atime_dirty = 0; 1098 rootzp->z_dbuf_held = 0; 1099 1100 vp = ZTOV(rootzp); 1101 vn_reinit(vp); 1102 vp->v_type = VDIR; 1103 1104 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1105 1106 zfsvfs.z_os = os; 1107 zfsvfs.z_assign = TXG_NOWAIT; 1108 zfsvfs.z_parent = &zfsvfs; 1109 1110 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1111 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1112 offsetof(znode_t, z_link_node)); 1113 1114 zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0); 1115 ASSERT3U(rootzp->z_id, ==, roid); 1116 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx); 1117 ASSERT(error == 0); 1118 1119 ZTOV(rootzp)->v_count = 0; 1120 kmem_cache_free(znode_cache, rootzp); 1121 } 1122 #endif /* _KERNEL */ 1123 1124 /* 1125 * Given an object number, return its parent object number and whether 1126 * or not the object is an extended attribute directory. 1127 */ 1128 static int 1129 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1130 { 1131 dmu_buf_t *db; 1132 dmu_object_info_t doi; 1133 znode_phys_t *zp; 1134 int error; 1135 1136 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1137 return (error); 1138 1139 dmu_object_info_from_db(db, &doi); 1140 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1141 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1142 dmu_buf_rele(db, FTAG); 1143 return (EINVAL); 1144 } 1145 1146 zp = db->db_data; 1147 *pobjp = zp->zp_parent; 1148 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1149 S_ISDIR(zp->zp_mode); 1150 dmu_buf_rele(db, FTAG); 1151 1152 return (0); 1153 } 1154 1155 int 1156 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1157 { 1158 char *path = buf + len - 1; 1159 int error; 1160 1161 *path = '\0'; 1162 1163 for (;;) { 1164 uint64_t pobj; 1165 char component[MAXNAMELEN + 2]; 1166 size_t complen; 1167 int is_xattrdir; 1168 1169 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1170 &is_xattrdir)) != 0) 1171 break; 1172 1173 if (pobj == obj) { 1174 if (path[0] != '/') 1175 *--path = '/'; 1176 break; 1177 } 1178 1179 component[0] = '/'; 1180 if (is_xattrdir) { 1181 (void) sprintf(component + 1, "<xattrdir>"); 1182 } else { 1183 error = zap_value_search(osp, pobj, obj, component + 1); 1184 if (error != 0) 1185 break; 1186 } 1187 1188 complen = strlen(component); 1189 path -= complen; 1190 ASSERT(path >= buf); 1191 bcopy(component, path, complen); 1192 obj = pobj; 1193 } 1194 1195 if (error == 0) 1196 (void) memmove(buf, path, buf + len - path); 1197 return (error); 1198 } 1199