1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 65 #include "zfs_prop.h" 66 67 /* 68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 69 * turned on when DEBUG is also defined. 70 */ 71 #ifdef DEBUG 72 #define ZNODE_STATS 73 #endif /* DEBUG */ 74 75 #ifdef ZNODE_STATS 76 #define ZNODE_STAT_ADD(stat) ((stat)++) 77 #else 78 #define ZNODE_STAT_ADD(stat) /* nothing */ 79 #endif /* ZNODE_STATS */ 80 81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 83 84 /* 85 * Functions needed for userland (ie: libzpool) are not put under 86 * #ifdef_KERNEL; the rest of the functions have dependencies 87 * (such as VFS logic) that will not compile easily in userland. 88 */ 89 #ifdef _KERNEL 90 /* 91 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 92 * be freed before it can be safely accessed. 93 */ 94 krwlock_t zfsvfs_lock; 95 96 static kmem_cache_t *znode_cache = NULL; 97 98 /*ARGSUSED*/ 99 static void 100 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 101 { 102 /* 103 * We should never drop all dbuf refs without first clearing 104 * the eviction callback. 105 */ 106 panic("evicting znode %p\n", user_ptr); 107 } 108 109 /*ARGSUSED*/ 110 static int 111 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 112 { 113 znode_t *zp = buf; 114 115 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 116 117 zp->z_vnode = vn_alloc(kmflags); 118 if (zp->z_vnode == NULL) { 119 return (-1); 120 } 121 ZTOV(zp)->v_data = zp; 122 123 list_link_init(&zp->z_link_node); 124 125 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 126 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 127 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 128 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 129 130 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 131 avl_create(&zp->z_range_avl, zfs_range_compare, 132 sizeof (rl_t), offsetof(rl_t, r_node)); 133 134 zp->z_dbuf = NULL; 135 zp->z_dirlocks = NULL; 136 zp->z_acl_cached = NULL; 137 return (0); 138 } 139 140 /*ARGSUSED*/ 141 static void 142 zfs_znode_cache_destructor(void *buf, void *arg) 143 { 144 znode_t *zp = buf; 145 146 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 147 ASSERT(ZTOV(zp)->v_data == zp); 148 vn_free(ZTOV(zp)); 149 ASSERT(!list_link_active(&zp->z_link_node)); 150 mutex_destroy(&zp->z_lock); 151 rw_destroy(&zp->z_parent_lock); 152 rw_destroy(&zp->z_name_lock); 153 mutex_destroy(&zp->z_acl_lock); 154 avl_destroy(&zp->z_range_avl); 155 mutex_destroy(&zp->z_range_lock); 156 157 ASSERT(zp->z_dbuf == NULL); 158 ASSERT(zp->z_dirlocks == NULL); 159 ASSERT(zp->z_acl_cached == NULL); 160 } 161 162 #ifdef ZNODE_STATS 163 static struct { 164 uint64_t zms_zfsvfs_invalid; 165 uint64_t zms_zfsvfs_recheck1; 166 uint64_t zms_zfsvfs_unmounted; 167 uint64_t zms_zfsvfs_recheck2; 168 uint64_t zms_obj_held; 169 uint64_t zms_vnode_locked; 170 uint64_t zms_not_only_dnlc; 171 } znode_move_stats; 172 #endif /* ZNODE_STATS */ 173 174 static void 175 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 176 { 177 vnode_t *vp; 178 179 /* Copy fields. */ 180 nzp->z_zfsvfs = ozp->z_zfsvfs; 181 182 /* Swap vnodes. */ 183 vp = nzp->z_vnode; 184 nzp->z_vnode = ozp->z_vnode; 185 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 186 ZTOV(ozp)->v_data = ozp; 187 ZTOV(nzp)->v_data = nzp; 188 189 nzp->z_id = ozp->z_id; 190 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 191 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 192 nzp->z_unlinked = ozp->z_unlinked; 193 nzp->z_atime_dirty = ozp->z_atime_dirty; 194 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 195 nzp->z_blksz = ozp->z_blksz; 196 nzp->z_seq = ozp->z_seq; 197 nzp->z_mapcnt = ozp->z_mapcnt; 198 nzp->z_last_itx = ozp->z_last_itx; 199 nzp->z_gen = ozp->z_gen; 200 nzp->z_sync_cnt = ozp->z_sync_cnt; 201 nzp->z_phys = ozp->z_phys; 202 nzp->z_dbuf = ozp->z_dbuf; 203 204 /* 205 * Since this is just an idle znode and kmem is already dealing with 206 * memory pressure, release any cached ACL. 207 */ 208 if (ozp->z_acl_cached) { 209 zfs_acl_free(ozp->z_acl_cached); 210 ozp->z_acl_cached = NULL; 211 } 212 213 /* Update back pointers. */ 214 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 215 znode_evict_error); 216 217 /* 218 * Invalidate the original znode by clearing fields that provide a 219 * pointer back to the znode. Set the low bit of the vfs pointer to 220 * ensure that zfs_znode_move() recognizes the znode as invalid in any 221 * subsequent callback. 222 */ 223 ozp->z_dbuf = NULL; 224 POINTER_INVALIDATE(&ozp->z_zfsvfs); 225 } 226 227 /*ARGSUSED*/ 228 static kmem_cbrc_t 229 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 230 { 231 znode_t *ozp = buf, *nzp = newbuf; 232 zfsvfs_t *zfsvfs; 233 vnode_t *vp; 234 235 /* 236 * The znode is on the file system's list of known znodes if the vfs 237 * pointer is valid. We set the low bit of the vfs pointer when freeing 238 * the znode to invalidate it, and the memory patterns written by kmem 239 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 240 * created znode sets the vfs pointer last of all to indicate that the 241 * znode is known and in a valid state to be moved by this function. 242 */ 243 zfsvfs = ozp->z_zfsvfs; 244 if (!POINTER_IS_VALID(zfsvfs)) { 245 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 246 return (KMEM_CBRC_DONT_KNOW); 247 } 248 249 /* 250 * Close a small window in which it's possible that the filesystem could 251 * be unmounted and freed, and zfsvfs, though valid in the previous 252 * statement, could point to unrelated memory by the time we try to 253 * prevent the filesystem from being unmounted. 254 */ 255 rw_enter(&zfsvfs_lock, RW_WRITER); 256 if (zfsvfs != ozp->z_zfsvfs) { 257 rw_exit(&zfsvfs_lock); 258 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 259 return (KMEM_CBRC_DONT_KNOW); 260 } 261 262 /* 263 * If the znode is still valid, then so is the file system. We know that 264 * no valid file system can be freed while we hold zfsvfs_lock, so we 265 * can safely ensure that the filesystem is not and will not be 266 * unmounted. The next statement is equivalent to ZFS_ENTER(). 267 */ 268 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 269 if (zfsvfs->z_unmounted) { 270 ZFS_EXIT(zfsvfs); 271 rw_exit(&zfsvfs_lock); 272 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 273 return (KMEM_CBRC_DONT_KNOW); 274 } 275 rw_exit(&zfsvfs_lock); 276 277 mutex_enter(&zfsvfs->z_znodes_lock); 278 /* 279 * Recheck the vfs pointer in case the znode was removed just before 280 * acquiring the lock. 281 */ 282 if (zfsvfs != ozp->z_zfsvfs) { 283 mutex_exit(&zfsvfs->z_znodes_lock); 284 ZFS_EXIT(zfsvfs); 285 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 286 return (KMEM_CBRC_DONT_KNOW); 287 } 288 289 /* 290 * At this point we know that as long as we hold z_znodes_lock, the 291 * znode cannot be freed and fields within the znode can be safely 292 * accessed. Now, prevent a race with zfs_zget(). 293 */ 294 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 295 mutex_exit(&zfsvfs->z_znodes_lock); 296 ZFS_EXIT(zfsvfs); 297 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 298 return (KMEM_CBRC_LATER); 299 } 300 301 vp = ZTOV(ozp); 302 if (mutex_tryenter(&vp->v_lock) == 0) { 303 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 304 mutex_exit(&zfsvfs->z_znodes_lock); 305 ZFS_EXIT(zfsvfs); 306 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 307 return (KMEM_CBRC_LATER); 308 } 309 310 /* Only move znodes that are referenced _only_ by the DNLC. */ 311 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 312 mutex_exit(&vp->v_lock); 313 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 314 mutex_exit(&zfsvfs->z_znodes_lock); 315 ZFS_EXIT(zfsvfs); 316 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 317 return (KMEM_CBRC_LATER); 318 } 319 320 /* 321 * The znode is known and in a valid state to move. We're holding the 322 * locks needed to execute the critical section. 323 */ 324 zfs_znode_move_impl(ozp, nzp); 325 mutex_exit(&vp->v_lock); 326 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 327 328 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 329 mutex_exit(&zfsvfs->z_znodes_lock); 330 ZFS_EXIT(zfsvfs); 331 332 return (KMEM_CBRC_YES); 333 } 334 335 void 336 zfs_znode_init(void) 337 { 338 /* 339 * Initialize zcache 340 */ 341 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 342 ASSERT(znode_cache == NULL); 343 znode_cache = kmem_cache_create("zfs_znode_cache", 344 sizeof (znode_t), 0, zfs_znode_cache_constructor, 345 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 346 kmem_cache_set_move(znode_cache, zfs_znode_move); 347 } 348 349 void 350 zfs_znode_fini(void) 351 { 352 /* 353 * Cleanup vfs & vnode ops 354 */ 355 zfs_remove_op_tables(); 356 357 /* 358 * Cleanup zcache 359 */ 360 if (znode_cache) 361 kmem_cache_destroy(znode_cache); 362 znode_cache = NULL; 363 rw_destroy(&zfsvfs_lock); 364 } 365 366 struct vnodeops *zfs_dvnodeops; 367 struct vnodeops *zfs_fvnodeops; 368 struct vnodeops *zfs_symvnodeops; 369 struct vnodeops *zfs_xdvnodeops; 370 struct vnodeops *zfs_evnodeops; 371 struct vnodeops *zfs_sharevnodeops; 372 373 void 374 zfs_remove_op_tables() 375 { 376 /* 377 * Remove vfs ops 378 */ 379 ASSERT(zfsfstype); 380 (void) vfs_freevfsops_by_type(zfsfstype); 381 zfsfstype = 0; 382 383 /* 384 * Remove vnode ops 385 */ 386 if (zfs_dvnodeops) 387 vn_freevnodeops(zfs_dvnodeops); 388 if (zfs_fvnodeops) 389 vn_freevnodeops(zfs_fvnodeops); 390 if (zfs_symvnodeops) 391 vn_freevnodeops(zfs_symvnodeops); 392 if (zfs_xdvnodeops) 393 vn_freevnodeops(zfs_xdvnodeops); 394 if (zfs_evnodeops) 395 vn_freevnodeops(zfs_evnodeops); 396 if (zfs_sharevnodeops) 397 vn_freevnodeops(zfs_sharevnodeops); 398 399 zfs_dvnodeops = NULL; 400 zfs_fvnodeops = NULL; 401 zfs_symvnodeops = NULL; 402 zfs_xdvnodeops = NULL; 403 zfs_evnodeops = NULL; 404 zfs_sharevnodeops = NULL; 405 } 406 407 extern const fs_operation_def_t zfs_dvnodeops_template[]; 408 extern const fs_operation_def_t zfs_fvnodeops_template[]; 409 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 410 extern const fs_operation_def_t zfs_symvnodeops_template[]; 411 extern const fs_operation_def_t zfs_evnodeops_template[]; 412 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 413 414 int 415 zfs_create_op_tables() 416 { 417 int error; 418 419 /* 420 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 421 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 422 * In this case we just return as the ops vectors are already set up. 423 */ 424 if (zfs_dvnodeops) 425 return (0); 426 427 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 428 &zfs_dvnodeops); 429 if (error) 430 return (error); 431 432 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 433 &zfs_fvnodeops); 434 if (error) 435 return (error); 436 437 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 438 &zfs_symvnodeops); 439 if (error) 440 return (error); 441 442 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 443 &zfs_xdvnodeops); 444 if (error) 445 return (error); 446 447 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 448 &zfs_evnodeops); 449 if (error) 450 return (error); 451 452 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 453 &zfs_sharevnodeops); 454 455 return (error); 456 } 457 458 int 459 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 460 { 461 zfs_acl_ids_t acl_ids; 462 vattr_t vattr; 463 znode_t *sharezp; 464 vnode_t *vp; 465 znode_t *zp; 466 int error; 467 468 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 469 vattr.va_type = VDIR; 470 vattr.va_mode = S_IFDIR|0555; 471 vattr.va_uid = crgetuid(kcred); 472 vattr.va_gid = crgetgid(kcred); 473 474 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 475 sharezp->z_unlinked = 0; 476 sharezp->z_atime_dirty = 0; 477 sharezp->z_zfsvfs = zfsvfs; 478 479 vp = ZTOV(sharezp); 480 vn_reinit(vp); 481 vp->v_type = VDIR; 482 483 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 484 kcred, NULL, &acl_ids)); 485 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, 486 &zp, 0, &acl_ids); 487 ASSERT3P(zp, ==, sharezp); 488 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 489 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 490 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 491 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 492 zfsvfs->z_shares_dir = sharezp->z_id; 493 494 zfs_acl_ids_free(&acl_ids); 495 ZTOV(sharezp)->v_count = 0; 496 dmu_buf_rele(sharezp->z_dbuf, NULL); 497 sharezp->z_dbuf = NULL; 498 kmem_cache_free(znode_cache, sharezp); 499 500 return (error); 501 } 502 503 /* 504 * define a couple of values we need available 505 * for both 64 and 32 bit environments. 506 */ 507 #ifndef NBITSMINOR64 508 #define NBITSMINOR64 32 509 #endif 510 #ifndef MAXMAJ64 511 #define MAXMAJ64 0xffffffffUL 512 #endif 513 #ifndef MAXMIN64 514 #define MAXMIN64 0xffffffffUL 515 #endif 516 517 /* 518 * Create special expldev for ZFS private use. 519 * Can't use standard expldev since it doesn't do 520 * what we want. The standard expldev() takes a 521 * dev32_t in LP64 and expands it to a long dev_t. 522 * We need an interface that takes a dev32_t in ILP32 523 * and expands it to a long dev_t. 524 */ 525 static uint64_t 526 zfs_expldev(dev_t dev) 527 { 528 #ifndef _LP64 529 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 530 return (((uint64_t)major << NBITSMINOR64) | 531 ((minor_t)dev & MAXMIN32)); 532 #else 533 return (dev); 534 #endif 535 } 536 537 /* 538 * Special cmpldev for ZFS private use. 539 * Can't use standard cmpldev since it takes 540 * a long dev_t and compresses it to dev32_t in 541 * LP64. We need to do a compaction of a long dev_t 542 * to a dev32_t in ILP32. 543 */ 544 dev_t 545 zfs_cmpldev(uint64_t dev) 546 { 547 #ifndef _LP64 548 minor_t minor = (minor_t)dev & MAXMIN64; 549 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 550 551 if (major > MAXMAJ32 || minor > MAXMIN32) 552 return (NODEV32); 553 554 return (((dev32_t)major << NBITSMINOR32) | minor); 555 #else 556 return (dev); 557 #endif 558 } 559 560 static void 561 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 562 { 563 znode_t *nzp; 564 565 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 566 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 567 568 mutex_enter(&zp->z_lock); 569 570 ASSERT(zp->z_dbuf == NULL); 571 ASSERT(zp->z_acl_cached == NULL); 572 zp->z_dbuf = db; 573 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 574 575 /* 576 * there should be no 577 * concurrent zgets on this object. 578 */ 579 if (nzp != NULL) 580 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 581 582 /* 583 * Slap on VROOT if we are the root znode 584 */ 585 if (zp->z_id == zfsvfs->z_root) 586 ZTOV(zp)->v_flag |= VROOT; 587 588 mutex_exit(&zp->z_lock); 589 vn_exists(ZTOV(zp)); 590 } 591 592 void 593 zfs_znode_dmu_fini(znode_t *zp) 594 { 595 dmu_buf_t *db = zp->z_dbuf; 596 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 597 zp->z_unlinked || 598 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 599 ASSERT(zp->z_dbuf != NULL); 600 zp->z_dbuf = NULL; 601 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 602 dmu_buf_rele(db, NULL); 603 } 604 605 /* 606 * Construct a new znode/vnode and intialize. 607 * 608 * This does not do a call to dmu_set_user() that is 609 * up to the caller to do, in case you don't want to 610 * return the znode 611 */ 612 static znode_t * 613 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 614 { 615 znode_t *zp; 616 vnode_t *vp; 617 618 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 619 620 ASSERT(zp->z_dirlocks == NULL); 621 ASSERT(zp->z_dbuf == NULL); 622 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 623 624 /* 625 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 626 * the zfs_znode_move() callback. 627 */ 628 zp->z_phys = NULL; 629 zp->z_unlinked = 0; 630 zp->z_atime_dirty = 0; 631 zp->z_mapcnt = 0; 632 zp->z_last_itx = 0; 633 zp->z_id = db->db_object; 634 zp->z_blksz = blksz; 635 zp->z_seq = 0x7A4653; 636 zp->z_sync_cnt = 0; 637 638 vp = ZTOV(zp); 639 vn_reinit(vp); 640 641 zfs_znode_dmu_init(zfsvfs, zp, db); 642 643 zp->z_gen = zp->z_phys->zp_gen; 644 645 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 646 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 647 648 switch (vp->v_type) { 649 case VDIR: 650 if (zp->z_phys->zp_flags & ZFS_XATTR) { 651 vn_setops(vp, zfs_xdvnodeops); 652 vp->v_flag |= V_XATTRDIR; 653 } else { 654 vn_setops(vp, zfs_dvnodeops); 655 } 656 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 657 break; 658 case VBLK: 659 case VCHR: 660 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 661 /*FALLTHROUGH*/ 662 case VFIFO: 663 case VSOCK: 664 case VDOOR: 665 vn_setops(vp, zfs_fvnodeops); 666 break; 667 case VREG: 668 vp->v_flag |= VMODSORT; 669 if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir) 670 vn_setops(vp, zfs_sharevnodeops); 671 else 672 vn_setops(vp, zfs_fvnodeops); 673 break; 674 case VLNK: 675 vn_setops(vp, zfs_symvnodeops); 676 break; 677 default: 678 vn_setops(vp, zfs_evnodeops); 679 break; 680 } 681 682 mutex_enter(&zfsvfs->z_znodes_lock); 683 list_insert_tail(&zfsvfs->z_all_znodes, zp); 684 membar_producer(); 685 /* 686 * Everything else must be valid before assigning z_zfsvfs makes the 687 * znode eligible for zfs_znode_move(). 688 */ 689 zp->z_zfsvfs = zfsvfs; 690 mutex_exit(&zfsvfs->z_znodes_lock); 691 692 VFS_HOLD(zfsvfs->z_vfs); 693 return (zp); 694 } 695 696 /* 697 * Create a new DMU object to hold a zfs znode. 698 * 699 * IN: dzp - parent directory for new znode 700 * vap - file attributes for new znode 701 * tx - dmu transaction id for zap operations 702 * cr - credentials of caller 703 * flag - flags: 704 * IS_ROOT_NODE - new object will be root 705 * IS_XATTR - new object is an attribute 706 * IS_REPLAY - intent log replay 707 * bonuslen - length of bonus buffer 708 * setaclp - File/Dir initial ACL 709 * fuidp - Tracks fuid allocation. 710 * 711 * OUT: zpp - allocated znode 712 * 713 */ 714 void 715 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 716 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids) 717 { 718 dmu_buf_t *db; 719 znode_phys_t *pzp; 720 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 721 timestruc_t now; 722 uint64_t gen, obj; 723 int err; 724 725 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 726 727 if (zfsvfs->z_replay) { 728 obj = vap->va_nodeid; 729 flag |= IS_REPLAY; 730 now = vap->va_ctime; /* see zfs_replay_create() */ 731 gen = vap->va_nblocks; /* ditto */ 732 } else { 733 obj = 0; 734 gethrestime(&now); 735 gen = dmu_tx_get_txg(tx); 736 } 737 738 /* 739 * Create a new DMU object. 740 */ 741 /* 742 * There's currently no mechanism for pre-reading the blocks that will 743 * be to needed allocate a new object, so we accept the small chance 744 * that there will be an i/o error and we will fail one of the 745 * assertions below. 746 */ 747 if (vap->va_type == VDIR) { 748 if (flag & IS_REPLAY) { 749 err = zap_create_claim_norm(zfsvfs->z_os, obj, 750 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 751 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 752 ASSERT3U(err, ==, 0); 753 } else { 754 obj = zap_create_norm(zfsvfs->z_os, 755 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 756 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 757 } 758 } else { 759 if (flag & IS_REPLAY) { 760 err = dmu_object_claim(zfsvfs->z_os, obj, 761 DMU_OT_PLAIN_FILE_CONTENTS, 0, 762 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 763 ASSERT3U(err, ==, 0); 764 } else { 765 obj = dmu_object_alloc(zfsvfs->z_os, 766 DMU_OT_PLAIN_FILE_CONTENTS, 0, 767 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 768 } 769 } 770 771 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 772 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 773 dmu_buf_will_dirty(db, tx); 774 775 /* 776 * Initialize the znode physical data to zero. 777 */ 778 ASSERT(db->db_size >= sizeof (znode_phys_t)); 779 bzero(db->db_data, db->db_size); 780 pzp = db->db_data; 781 782 /* 783 * If this is the root, fix up the half-initialized parent pointer 784 * to reference the just-allocated physical data area. 785 */ 786 if (flag & IS_ROOT_NODE) { 787 dzp->z_dbuf = db; 788 dzp->z_phys = pzp; 789 dzp->z_id = obj; 790 } 791 792 /* 793 * If parent is an xattr, so am I. 794 */ 795 if (dzp->z_phys->zp_flags & ZFS_XATTR) 796 flag |= IS_XATTR; 797 798 if (vap->va_type == VBLK || vap->va_type == VCHR) { 799 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 800 } 801 802 if (zfsvfs->z_use_fuids) 803 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 804 805 if (vap->va_type == VDIR) { 806 pzp->zp_size = 2; /* contents ("." and "..") */ 807 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 808 } 809 810 pzp->zp_parent = dzp->z_id; 811 if (flag & IS_XATTR) 812 pzp->zp_flags |= ZFS_XATTR; 813 814 pzp->zp_gen = gen; 815 816 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 817 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 818 819 if (vap->va_mask & AT_ATIME) { 820 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 821 } else { 822 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 823 } 824 825 if (vap->va_mask & AT_MTIME) { 826 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 827 } else { 828 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 829 } 830 pzp->zp_uid = acl_ids->z_fuid; 831 pzp->zp_gid = acl_ids->z_fgid; 832 pzp->zp_mode = acl_ids->z_mode; 833 if (!(flag & IS_ROOT_NODE)) { 834 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 835 } else { 836 /* 837 * If we are creating the root node, the "parent" we 838 * passed in is the znode for the root. 839 */ 840 *zpp = dzp; 841 } 842 VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 843 if (vap->va_mask & AT_XVATTR) 844 zfs_xvattr_set(*zpp, (xvattr_t *)vap); 845 846 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 847 } 848 849 void 850 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 851 { 852 xoptattr_t *xoap; 853 854 xoap = xva_getxoptattr(xvap); 855 ASSERT(xoap); 856 857 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 858 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 859 XVA_SET_RTN(xvap, XAT_CREATETIME); 860 } 861 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 862 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 863 XVA_SET_RTN(xvap, XAT_READONLY); 864 } 865 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 866 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 867 XVA_SET_RTN(xvap, XAT_HIDDEN); 868 } 869 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 870 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 871 XVA_SET_RTN(xvap, XAT_SYSTEM); 872 } 873 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 874 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 875 XVA_SET_RTN(xvap, XAT_ARCHIVE); 876 } 877 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 878 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 879 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 880 } 881 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 882 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 883 XVA_SET_RTN(xvap, XAT_NOUNLINK); 884 } 885 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 886 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 887 XVA_SET_RTN(xvap, XAT_APPENDONLY); 888 } 889 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 890 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 891 XVA_SET_RTN(xvap, XAT_NODUMP); 892 } 893 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 894 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 895 XVA_SET_RTN(xvap, XAT_OPAQUE); 896 } 897 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 898 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 899 xoap->xoa_av_quarantined); 900 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 901 } 902 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 903 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 904 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 905 } 906 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 907 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 908 sizeof (xoap->xoa_av_scanstamp)); 909 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 910 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 911 } 912 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 913 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse); 914 XVA_SET_RTN(xvap, XAT_REPARSE); 915 } 916 } 917 918 int 919 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 920 { 921 dmu_object_info_t doi; 922 dmu_buf_t *db; 923 znode_t *zp; 924 int err; 925 926 *zpp = NULL; 927 928 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 929 930 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 931 if (err) { 932 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 933 return (err); 934 } 935 936 dmu_object_info_from_db(db, &doi); 937 if (doi.doi_bonus_type != DMU_OT_ZNODE || 938 doi.doi_bonus_size < sizeof (znode_phys_t)) { 939 dmu_buf_rele(db, NULL); 940 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 941 return (EINVAL); 942 } 943 944 zp = dmu_buf_get_user(db); 945 if (zp != NULL) { 946 mutex_enter(&zp->z_lock); 947 948 /* 949 * Since we do immediate eviction of the z_dbuf, we 950 * should never find a dbuf with a znode that doesn't 951 * know about the dbuf. 952 */ 953 ASSERT3P(zp->z_dbuf, ==, db); 954 ASSERT3U(zp->z_id, ==, obj_num); 955 if (zp->z_unlinked) { 956 err = ENOENT; 957 } else { 958 VN_HOLD(ZTOV(zp)); 959 *zpp = zp; 960 err = 0; 961 } 962 dmu_buf_rele(db, NULL); 963 mutex_exit(&zp->z_lock); 964 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 965 return (err); 966 } 967 968 /* 969 * Not found create new znode/vnode 970 * but only if file exists. 971 * 972 * There is a small window where zfs_vget() could 973 * find this object while a file create is still in 974 * progress. Since a gen number can never be zero 975 * we will check that to determine if its an allocated 976 * file. 977 */ 978 979 if (((znode_phys_t *)db->db_data)->zp_gen != 0) { 980 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 981 *zpp = zp; 982 err = 0; 983 } else { 984 dmu_buf_rele(db, NULL); 985 err = ENOENT; 986 } 987 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 988 return (err); 989 } 990 991 int 992 zfs_rezget(znode_t *zp) 993 { 994 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 995 dmu_object_info_t doi; 996 dmu_buf_t *db; 997 uint64_t obj_num = zp->z_id; 998 int err; 999 1000 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1001 1002 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 1003 if (err) { 1004 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1005 return (err); 1006 } 1007 1008 dmu_object_info_from_db(db, &doi); 1009 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1010 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1011 dmu_buf_rele(db, NULL); 1012 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1013 return (EINVAL); 1014 } 1015 1016 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 1017 dmu_buf_rele(db, NULL); 1018 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1019 return (EIO); 1020 } 1021 1022 mutex_enter(&zp->z_acl_lock); 1023 if (zp->z_acl_cached) { 1024 zfs_acl_free(zp->z_acl_cached); 1025 zp->z_acl_cached = NULL; 1026 } 1027 mutex_exit(&zp->z_acl_lock); 1028 1029 zfs_znode_dmu_init(zfsvfs, zp, db); 1030 zp->z_unlinked = (zp->z_phys->zp_links == 0); 1031 zp->z_blksz = doi.doi_data_block_size; 1032 1033 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1034 1035 return (0); 1036 } 1037 1038 void 1039 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1040 { 1041 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1042 objset_t *os = zfsvfs->z_os; 1043 uint64_t obj = zp->z_id; 1044 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1045 1046 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1047 if (acl_obj) 1048 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1049 VERIFY(0 == dmu_object_free(os, obj, tx)); 1050 zfs_znode_dmu_fini(zp); 1051 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1052 zfs_znode_free(zp); 1053 } 1054 1055 void 1056 zfs_zinactive(znode_t *zp) 1057 { 1058 vnode_t *vp = ZTOV(zp); 1059 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1060 uint64_t z_id = zp->z_id; 1061 1062 ASSERT(zp->z_dbuf && zp->z_phys); 1063 1064 /* 1065 * Don't allow a zfs_zget() while were trying to release this znode 1066 */ 1067 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1068 1069 mutex_enter(&zp->z_lock); 1070 mutex_enter(&vp->v_lock); 1071 vp->v_count--; 1072 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1073 /* 1074 * If the hold count is greater than zero, somebody has 1075 * obtained a new reference on this znode while we were 1076 * processing it here, so we are done. If we still have 1077 * mapped pages then we are also done, since we don't 1078 * want to inactivate the znode until the pages get pushed. 1079 * 1080 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1081 * this seems like it would leave the znode hanging with 1082 * no chance to go inactive... 1083 */ 1084 mutex_exit(&vp->v_lock); 1085 mutex_exit(&zp->z_lock); 1086 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1087 return; 1088 } 1089 mutex_exit(&vp->v_lock); 1090 1091 /* 1092 * If this was the last reference to a file with no links, 1093 * remove the file from the file system. 1094 */ 1095 if (zp->z_unlinked) { 1096 mutex_exit(&zp->z_lock); 1097 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1098 zfs_rmnode(zp); 1099 return; 1100 } 1101 mutex_exit(&zp->z_lock); 1102 zfs_znode_dmu_fini(zp); 1103 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1104 zfs_znode_free(zp); 1105 } 1106 1107 void 1108 zfs_znode_free(znode_t *zp) 1109 { 1110 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1111 1112 vn_invalid(ZTOV(zp)); 1113 1114 ASSERT(ZTOV(zp)->v_count == 0); 1115 1116 mutex_enter(&zfsvfs->z_znodes_lock); 1117 POINTER_INVALIDATE(&zp->z_zfsvfs); 1118 list_remove(&zfsvfs->z_all_znodes, zp); 1119 mutex_exit(&zfsvfs->z_znodes_lock); 1120 1121 if (zp->z_acl_cached) { 1122 zfs_acl_free(zp->z_acl_cached); 1123 zp->z_acl_cached = NULL; 1124 } 1125 1126 kmem_cache_free(znode_cache, zp); 1127 1128 VFS_RELE(zfsvfs->z_vfs); 1129 } 1130 1131 void 1132 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1133 { 1134 timestruc_t now; 1135 1136 ASSERT(MUTEX_HELD(&zp->z_lock)); 1137 1138 gethrestime(&now); 1139 1140 if (tx) { 1141 dmu_buf_will_dirty(zp->z_dbuf, tx); 1142 zp->z_atime_dirty = 0; 1143 zp->z_seq++; 1144 } else { 1145 zp->z_atime_dirty = 1; 1146 } 1147 1148 if (flag & AT_ATIME) 1149 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1150 1151 if (flag & AT_MTIME) { 1152 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1153 if (zp->z_zfsvfs->z_use_fuids) 1154 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1155 } 1156 1157 if (flag & AT_CTIME) { 1158 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1159 if (zp->z_zfsvfs->z_use_fuids) 1160 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1161 } 1162 } 1163 1164 /* 1165 * Update the requested znode timestamps with the current time. 1166 * If we are in a transaction, then go ahead and mark the znode 1167 * dirty in the transaction so the timestamps will go to disk. 1168 * Otherwise, we will get pushed next time the znode is updated 1169 * in a transaction, or when this znode eventually goes inactive. 1170 * 1171 * Why is this OK? 1172 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1173 * 2 - Multiple consecutive updates will be collapsed into a single 1174 * znode update by the transaction grouping semantics of the DMU. 1175 */ 1176 void 1177 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1178 { 1179 mutex_enter(&zp->z_lock); 1180 zfs_time_stamper_locked(zp, flag, tx); 1181 mutex_exit(&zp->z_lock); 1182 } 1183 1184 /* 1185 * Grow the block size for a file. 1186 * 1187 * IN: zp - znode of file to free data in. 1188 * size - requested block size 1189 * tx - open transaction. 1190 * 1191 * NOTE: this function assumes that the znode is write locked. 1192 */ 1193 void 1194 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1195 { 1196 int error; 1197 u_longlong_t dummy; 1198 1199 if (size <= zp->z_blksz) 1200 return; 1201 /* 1202 * If the file size is already greater than the current blocksize, 1203 * we will not grow. If there is more than one block in a file, 1204 * the blocksize cannot change. 1205 */ 1206 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1207 return; 1208 1209 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1210 size, 0, tx); 1211 if (error == ENOTSUP) 1212 return; 1213 ASSERT3U(error, ==, 0); 1214 1215 /* What blocksize did we actually get? */ 1216 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1217 } 1218 1219 /* 1220 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1221 * be calling back into the fs for a putpage(). E.g.: when truncating 1222 * a file, the pages being "thrown away* don't need to be written out. 1223 */ 1224 /* ARGSUSED */ 1225 static int 1226 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1227 int flags, cred_t *cr) 1228 { 1229 ASSERT(0); 1230 return (0); 1231 } 1232 1233 /* 1234 * Increase the file length 1235 * 1236 * IN: zp - znode of file to free data in. 1237 * end - new end-of-file 1238 * 1239 * RETURN: 0 if success 1240 * error code if failure 1241 */ 1242 static int 1243 zfs_extend(znode_t *zp, uint64_t end) 1244 { 1245 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1246 dmu_tx_t *tx; 1247 rl_t *rl; 1248 uint64_t newblksz; 1249 int error; 1250 1251 /* 1252 * We will change zp_size, lock the whole file. 1253 */ 1254 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1255 1256 /* 1257 * Nothing to do if file already at desired length. 1258 */ 1259 if (end <= zp->z_phys->zp_size) { 1260 zfs_range_unlock(rl); 1261 return (0); 1262 } 1263 top: 1264 tx = dmu_tx_create(zfsvfs->z_os); 1265 dmu_tx_hold_bonus(tx, zp->z_id); 1266 if (end > zp->z_blksz && 1267 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1268 /* 1269 * We are growing the file past the current block size. 1270 */ 1271 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1272 ASSERT(!ISP2(zp->z_blksz)); 1273 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1274 } else { 1275 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1276 } 1277 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1278 } else { 1279 newblksz = 0; 1280 } 1281 1282 error = dmu_tx_assign(tx, TXG_NOWAIT); 1283 if (error) { 1284 if (error == ERESTART) { 1285 dmu_tx_wait(tx); 1286 dmu_tx_abort(tx); 1287 goto top; 1288 } 1289 dmu_tx_abort(tx); 1290 zfs_range_unlock(rl); 1291 return (error); 1292 } 1293 dmu_buf_will_dirty(zp->z_dbuf, tx); 1294 1295 if (newblksz) 1296 zfs_grow_blocksize(zp, newblksz, tx); 1297 1298 zp->z_phys->zp_size = end; 1299 1300 zfs_range_unlock(rl); 1301 1302 dmu_tx_commit(tx); 1303 1304 return (0); 1305 } 1306 1307 /* 1308 * Free space in a file. 1309 * 1310 * IN: zp - znode of file to free data in. 1311 * off - start of section to free. 1312 * len - length of section to free. 1313 * 1314 * RETURN: 0 if success 1315 * error code if failure 1316 */ 1317 static int 1318 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1319 { 1320 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1321 rl_t *rl; 1322 int error; 1323 1324 /* 1325 * Lock the range being freed. 1326 */ 1327 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1328 1329 /* 1330 * Nothing to do if file already at desired length. 1331 */ 1332 if (off >= zp->z_phys->zp_size) { 1333 zfs_range_unlock(rl); 1334 return (0); 1335 } 1336 1337 if (off + len > zp->z_phys->zp_size) 1338 len = zp->z_phys->zp_size - off; 1339 1340 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1341 1342 zfs_range_unlock(rl); 1343 1344 return (error); 1345 } 1346 1347 /* 1348 * Truncate a file 1349 * 1350 * IN: zp - znode of file to free data in. 1351 * end - new end-of-file. 1352 * 1353 * RETURN: 0 if success 1354 * error code if failure 1355 */ 1356 static int 1357 zfs_trunc(znode_t *zp, uint64_t end) 1358 { 1359 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1360 vnode_t *vp = ZTOV(zp); 1361 dmu_tx_t *tx; 1362 rl_t *rl; 1363 int error; 1364 1365 /* 1366 * We will change zp_size, lock the whole file. 1367 */ 1368 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1369 1370 /* 1371 * Nothing to do if file already at desired length. 1372 */ 1373 if (end >= zp->z_phys->zp_size) { 1374 zfs_range_unlock(rl); 1375 return (0); 1376 } 1377 1378 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1379 if (error) { 1380 zfs_range_unlock(rl); 1381 return (error); 1382 } 1383 top: 1384 tx = dmu_tx_create(zfsvfs->z_os); 1385 dmu_tx_hold_bonus(tx, zp->z_id); 1386 error = dmu_tx_assign(tx, TXG_NOWAIT); 1387 if (error) { 1388 if (error == ERESTART) { 1389 dmu_tx_wait(tx); 1390 dmu_tx_abort(tx); 1391 goto top; 1392 } 1393 dmu_tx_abort(tx); 1394 zfs_range_unlock(rl); 1395 return (error); 1396 } 1397 dmu_buf_will_dirty(zp->z_dbuf, tx); 1398 1399 zp->z_phys->zp_size = end; 1400 1401 dmu_tx_commit(tx); 1402 1403 /* 1404 * Clear any mapped pages in the truncated region. This has to 1405 * happen outside of the transaction to avoid the possibility of 1406 * a deadlock with someone trying to push a page that we are 1407 * about to invalidate. 1408 */ 1409 if (vn_has_cached_data(vp)) { 1410 page_t *pp; 1411 uint64_t start = end & PAGEMASK; 1412 int poff = end & PAGEOFFSET; 1413 1414 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1415 /* 1416 * We need to zero a partial page. 1417 */ 1418 pagezero(pp, poff, PAGESIZE - poff); 1419 start += PAGESIZE; 1420 page_unlock(pp); 1421 } 1422 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1423 B_INVAL | B_TRUNC, NULL); 1424 ASSERT(error == 0); 1425 } 1426 1427 zfs_range_unlock(rl); 1428 1429 return (0); 1430 } 1431 1432 /* 1433 * Free space in a file 1434 * 1435 * IN: zp - znode of file to free data in. 1436 * off - start of range 1437 * len - end of range (0 => EOF) 1438 * flag - current file open mode flags. 1439 * log - TRUE if this action should be logged 1440 * 1441 * RETURN: 0 if success 1442 * error code if failure 1443 */ 1444 int 1445 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1446 { 1447 vnode_t *vp = ZTOV(zp); 1448 dmu_tx_t *tx; 1449 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1450 zilog_t *zilog = zfsvfs->z_log; 1451 int error; 1452 1453 if (off > zp->z_phys->zp_size) { 1454 error = zfs_extend(zp, off+len); 1455 if (error == 0 && log) 1456 goto log; 1457 else 1458 return (error); 1459 } 1460 1461 /* 1462 * Check for any locks in the region to be freed. 1463 */ 1464 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1465 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1466 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1467 return (error); 1468 } 1469 1470 if (len == 0) { 1471 error = zfs_trunc(zp, off); 1472 } else { 1473 if ((error = zfs_free_range(zp, off, len)) == 0 && 1474 off + len > zp->z_phys->zp_size) 1475 error = zfs_extend(zp, off+len); 1476 } 1477 if (error || !log) 1478 return (error); 1479 log: 1480 tx = dmu_tx_create(zfsvfs->z_os); 1481 dmu_tx_hold_bonus(tx, zp->z_id); 1482 error = dmu_tx_assign(tx, TXG_NOWAIT); 1483 if (error) { 1484 if (error == ERESTART) { 1485 dmu_tx_wait(tx); 1486 dmu_tx_abort(tx); 1487 goto log; 1488 } 1489 dmu_tx_abort(tx); 1490 return (error); 1491 } 1492 1493 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1494 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1495 1496 dmu_tx_commit(tx); 1497 return (0); 1498 } 1499 1500 void 1501 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1502 { 1503 zfsvfs_t zfsvfs; 1504 uint64_t moid, obj, version; 1505 uint64_t sense = ZFS_CASE_SENSITIVE; 1506 uint64_t norm = 0; 1507 nvpair_t *elem; 1508 int error; 1509 int i; 1510 znode_t *rootzp = NULL; 1511 vnode_t *vp; 1512 vattr_t vattr; 1513 znode_t *zp; 1514 zfs_acl_ids_t acl_ids; 1515 1516 /* 1517 * First attempt to create master node. 1518 */ 1519 /* 1520 * In an empty objset, there are no blocks to read and thus 1521 * there can be no i/o errors (which we assert below). 1522 */ 1523 moid = MASTER_NODE_OBJ; 1524 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1525 DMU_OT_NONE, 0, tx); 1526 ASSERT(error == 0); 1527 1528 /* 1529 * Set starting attributes. 1530 */ 1531 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE) 1532 version = ZPL_VERSION; 1533 else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1534 version = ZPL_VERSION_USERSPACE - 1; 1535 else 1536 version = ZPL_VERSION_FUID - 1; 1537 elem = NULL; 1538 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1539 /* For the moment we expect all zpl props to be uint64_ts */ 1540 uint64_t val; 1541 char *name; 1542 1543 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1544 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1545 name = nvpair_name(elem); 1546 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1547 if (val < version) 1548 version = val; 1549 } else { 1550 error = zap_update(os, moid, name, 8, 1, &val, tx); 1551 } 1552 ASSERT(error == 0); 1553 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1554 norm = val; 1555 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1556 sense = val; 1557 } 1558 ASSERT(version != 0); 1559 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1560 1561 /* 1562 * Create a delete queue. 1563 */ 1564 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1565 1566 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1567 ASSERT(error == 0); 1568 1569 /* 1570 * Create root znode. Create minimal znode/vnode/zfsvfs 1571 * to allow zfs_mknode to work. 1572 */ 1573 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1574 vattr.va_type = VDIR; 1575 vattr.va_mode = S_IFDIR|0755; 1576 vattr.va_uid = crgetuid(cr); 1577 vattr.va_gid = crgetgid(cr); 1578 1579 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1580 rootzp->z_unlinked = 0; 1581 rootzp->z_atime_dirty = 0; 1582 1583 vp = ZTOV(rootzp); 1584 vn_reinit(vp); 1585 vp->v_type = VDIR; 1586 1587 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1588 1589 zfsvfs.z_os = os; 1590 zfsvfs.z_parent = &zfsvfs; 1591 zfsvfs.z_version = version; 1592 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1593 zfsvfs.z_norm = norm; 1594 /* 1595 * Fold case on file systems that are always or sometimes case 1596 * insensitive. 1597 */ 1598 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1599 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1600 1601 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1602 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1603 offsetof(znode_t, z_link_node)); 1604 1605 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1606 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1607 1608 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1609 rootzp->z_zfsvfs = &zfsvfs; 1610 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1611 cr, NULL, &acl_ids)); 1612 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids); 1613 ASSERT3P(zp, ==, rootzp); 1614 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1615 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1616 ASSERT(error == 0); 1617 zfs_acl_ids_free(&acl_ids); 1618 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1619 1620 ZTOV(rootzp)->v_count = 0; 1621 dmu_buf_rele(rootzp->z_dbuf, NULL); 1622 rootzp->z_dbuf = NULL; 1623 kmem_cache_free(znode_cache, rootzp); 1624 1625 /* 1626 * Create shares directory 1627 */ 1628 1629 error = zfs_create_share_dir(&zfsvfs, tx); 1630 1631 ASSERT(error == 0); 1632 1633 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1634 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1635 } 1636 1637 #endif /* _KERNEL */ 1638 /* 1639 * Given an object number, return its parent object number and whether 1640 * or not the object is an extended attribute directory. 1641 */ 1642 static int 1643 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1644 { 1645 dmu_buf_t *db; 1646 dmu_object_info_t doi; 1647 znode_phys_t *zp; 1648 int error; 1649 1650 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1651 return (error); 1652 1653 dmu_object_info_from_db(db, &doi); 1654 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1655 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1656 dmu_buf_rele(db, FTAG); 1657 return (EINVAL); 1658 } 1659 1660 zp = db->db_data; 1661 *pobjp = zp->zp_parent; 1662 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1663 S_ISDIR(zp->zp_mode); 1664 dmu_buf_rele(db, FTAG); 1665 1666 return (0); 1667 } 1668 1669 int 1670 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1671 { 1672 char *path = buf + len - 1; 1673 int error; 1674 1675 *path = '\0'; 1676 1677 for (;;) { 1678 uint64_t pobj; 1679 char component[MAXNAMELEN + 2]; 1680 size_t complen; 1681 int is_xattrdir; 1682 1683 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1684 &is_xattrdir)) != 0) 1685 break; 1686 1687 if (pobj == obj) { 1688 if (path[0] != '/') 1689 *--path = '/'; 1690 break; 1691 } 1692 1693 component[0] = '/'; 1694 if (is_xattrdir) { 1695 (void) sprintf(component + 1, "<xattrdir>"); 1696 } else { 1697 error = zap_value_search(osp, pobj, obj, 1698 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1699 if (error != 0) 1700 break; 1701 } 1702 1703 complen = strlen(component); 1704 path -= complen; 1705 ASSERT(path >= buf); 1706 bcopy(component, path, complen); 1707 obj = pobj; 1708 } 1709 1710 if (error == 0) 1711 (void) memmove(buf, path, buf + len - path); 1712 return (error); 1713 } 1714