1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/dnode.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/kidmap.h> 58 #endif /* _KERNEL */ 59 60 #include <sys/dmu.h> 61 #include <sys/refcount.h> 62 #include <sys/stat.h> 63 #include <sys/zap.h> 64 #include <sys/zfs_znode.h> 65 #include <sys/sa.h> 66 #include <sys/zfs_sa.h> 67 #include <sys/zfs_stat.h> 68 #include <sys/zfs_events.h> 69 #include <zev/zev.h> 70 71 #include "zfs_prop.h" 72 #include "zfs_comutil.h" 73 74 /* 75 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 76 * turned on when DEBUG is also defined. 77 */ 78 #ifdef DEBUG 79 #define ZNODE_STATS 80 #endif /* DEBUG */ 81 82 #ifdef ZNODE_STATS 83 #define ZNODE_STAT_ADD(stat) ((stat)++) 84 #else 85 #define ZNODE_STAT_ADD(stat) /* nothing */ 86 #endif /* ZNODE_STATS */ 87 88 /* 89 * Functions needed for userland (ie: libzpool) are not put under 90 * #ifdef_KERNEL; the rest of the functions have dependencies 91 * (such as VFS logic) that will not compile easily in userland. 92 */ 93 #ifdef _KERNEL 94 /* 95 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 96 * be freed before it can be safely accessed. 97 */ 98 krwlock_t zfsvfs_lock; 99 100 static kmem_cache_t *znode_cache = NULL; 101 102 /*ARGSUSED*/ 103 static void 104 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 105 { 106 /* 107 * We should never drop all dbuf refs without first clearing 108 * the eviction callback. 109 */ 110 panic("evicting znode %p\n", user_ptr); 111 } 112 113 /*ARGSUSED*/ 114 static int 115 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 116 { 117 znode_t *zp = buf; 118 119 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 120 121 zp->z_vnode = vn_alloc(kmflags); 122 if (zp->z_vnode == NULL) { 123 return (-1); 124 } 125 ZTOV(zp)->v_data = zp; 126 127 list_link_init(&zp->z_link_node); 128 129 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 130 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 131 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 132 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 133 134 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 135 avl_create(&zp->z_range_avl, zfs_range_compare, 136 sizeof (rl_t), offsetof(rl_t, r_node)); 137 138 zp->z_dirlocks = NULL; 139 zp->z_acl_cached = NULL; 140 zp->z_moved = 0; 141 return (0); 142 } 143 144 /*ARGSUSED*/ 145 static void 146 zfs_znode_cache_destructor(void *buf, void *arg) 147 { 148 znode_t *zp = buf; 149 150 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 151 ASSERT(ZTOV(zp)->v_data == zp); 152 vn_free(ZTOV(zp)); 153 ASSERT(!list_link_active(&zp->z_link_node)); 154 mutex_destroy(&zp->z_lock); 155 rw_destroy(&zp->z_parent_lock); 156 rw_destroy(&zp->z_name_lock); 157 mutex_destroy(&zp->z_acl_lock); 158 avl_destroy(&zp->z_range_avl); 159 mutex_destroy(&zp->z_range_lock); 160 161 ASSERT(zp->z_dirlocks == NULL); 162 ASSERT(zp->z_acl_cached == NULL); 163 } 164 165 #ifdef ZNODE_STATS 166 static struct { 167 uint64_t zms_zfsvfs_invalid; 168 uint64_t zms_zfsvfs_recheck1; 169 uint64_t zms_zfsvfs_unmounted; 170 uint64_t zms_zfsvfs_recheck2; 171 uint64_t zms_obj_held; 172 uint64_t zms_vnode_locked; 173 uint64_t zms_not_only_dnlc; 174 } znode_move_stats; 175 #endif /* ZNODE_STATS */ 176 177 static void 178 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 179 { 180 vnode_t *vp; 181 182 /* Copy fields. */ 183 nzp->z_zfsvfs = ozp->z_zfsvfs; 184 185 /* Swap vnodes. */ 186 vp = nzp->z_vnode; 187 nzp->z_vnode = ozp->z_vnode; 188 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 189 ZTOV(ozp)->v_data = ozp; 190 ZTOV(nzp)->v_data = nzp; 191 192 nzp->z_id = ozp->z_id; 193 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 194 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 195 nzp->z_unlinked = ozp->z_unlinked; 196 nzp->z_atime_dirty = ozp->z_atime_dirty; 197 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 198 nzp->z_blksz = ozp->z_blksz; 199 nzp->z_seq = ozp->z_seq; 200 nzp->z_mapcnt = ozp->z_mapcnt; 201 nzp->z_gen = ozp->z_gen; 202 nzp->z_sync_cnt = ozp->z_sync_cnt; 203 nzp->z_is_sa = ozp->z_is_sa; 204 nzp->z_sa_hdl = ozp->z_sa_hdl; 205 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 206 nzp->z_links = ozp->z_links; 207 nzp->z_size = ozp->z_size; 208 nzp->z_pflags = ozp->z_pflags; 209 nzp->z_uid = ozp->z_uid; 210 nzp->z_gid = ozp->z_gid; 211 nzp->z_mode = ozp->z_mode; 212 nzp->z_new_content = ozp->z_new_content; 213 214 /* 215 * Since this is just an idle znode and kmem is already dealing with 216 * memory pressure, release any cached ACL. 217 */ 218 if (ozp->z_acl_cached) { 219 zfs_acl_free(ozp->z_acl_cached); 220 ozp->z_acl_cached = NULL; 221 } 222 223 sa_set_userp(nzp->z_sa_hdl, nzp); 224 225 /* 226 * Invalidate the original znode by clearing fields that provide a 227 * pointer back to the znode. Set the low bit of the vfs pointer to 228 * ensure that zfs_znode_move() recognizes the znode as invalid in any 229 * subsequent callback. 230 */ 231 ozp->z_sa_hdl = NULL; 232 POINTER_INVALIDATE(&ozp->z_zfsvfs); 233 234 /* 235 * Mark the znode. 236 */ 237 nzp->z_moved = 1; 238 ozp->z_moved = (uint8_t)-1; 239 } 240 241 /*ARGSUSED*/ 242 static kmem_cbrc_t 243 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 244 { 245 znode_t *ozp = buf, *nzp = newbuf; 246 zfsvfs_t *zfsvfs; 247 vnode_t *vp; 248 249 /* 250 * The znode is on the file system's list of known znodes if the vfs 251 * pointer is valid. We set the low bit of the vfs pointer when freeing 252 * the znode to invalidate it, and the memory patterns written by kmem 253 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 254 * created znode sets the vfs pointer last of all to indicate that the 255 * znode is known and in a valid state to be moved by this function. 256 */ 257 zfsvfs = ozp->z_zfsvfs; 258 if (!POINTER_IS_VALID(zfsvfs)) { 259 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 260 return (KMEM_CBRC_DONT_KNOW); 261 } 262 263 /* 264 * Close a small window in which it's possible that the filesystem could 265 * be unmounted and freed, and zfsvfs, though valid in the previous 266 * statement, could point to unrelated memory by the time we try to 267 * prevent the filesystem from being unmounted. 268 */ 269 rw_enter(&zfsvfs_lock, RW_WRITER); 270 if (zfsvfs != ozp->z_zfsvfs) { 271 rw_exit(&zfsvfs_lock); 272 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 273 return (KMEM_CBRC_DONT_KNOW); 274 } 275 276 /* 277 * If the znode is still valid, then so is the file system. We know that 278 * no valid file system can be freed while we hold zfsvfs_lock, so we 279 * can safely ensure that the filesystem is not and will not be 280 * unmounted. The next statement is equivalent to ZFS_ENTER(). 281 */ 282 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 283 if (zfsvfs->z_unmounted) { 284 ZFS_EXIT(zfsvfs); 285 rw_exit(&zfsvfs_lock); 286 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 287 return (KMEM_CBRC_DONT_KNOW); 288 } 289 rw_exit(&zfsvfs_lock); 290 291 mutex_enter(&zfsvfs->z_znodes_lock); 292 /* 293 * Recheck the vfs pointer in case the znode was removed just before 294 * acquiring the lock. 295 */ 296 if (zfsvfs != ozp->z_zfsvfs) { 297 mutex_exit(&zfsvfs->z_znodes_lock); 298 ZFS_EXIT(zfsvfs); 299 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 300 return (KMEM_CBRC_DONT_KNOW); 301 } 302 303 /* 304 * At this point we know that as long as we hold z_znodes_lock, the 305 * znode cannot be freed and fields within the znode can be safely 306 * accessed. Now, prevent a race with zfs_zget(). 307 */ 308 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 309 mutex_exit(&zfsvfs->z_znodes_lock); 310 ZFS_EXIT(zfsvfs); 311 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 312 return (KMEM_CBRC_LATER); 313 } 314 315 vp = ZTOV(ozp); 316 if (mutex_tryenter(&vp->v_lock) == 0) { 317 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 318 mutex_exit(&zfsvfs->z_znodes_lock); 319 ZFS_EXIT(zfsvfs); 320 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 321 return (KMEM_CBRC_LATER); 322 } 323 324 /* Only move znodes that are referenced _only_ by the DNLC. */ 325 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 326 mutex_exit(&vp->v_lock); 327 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 328 mutex_exit(&zfsvfs->z_znodes_lock); 329 ZFS_EXIT(zfsvfs); 330 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 331 return (KMEM_CBRC_LATER); 332 } 333 334 /* 335 * The znode is known and in a valid state to move. We're holding the 336 * locks needed to execute the critical section. 337 */ 338 zfs_znode_move_impl(ozp, nzp); 339 mutex_exit(&vp->v_lock); 340 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 341 342 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 343 mutex_exit(&zfsvfs->z_znodes_lock); 344 ZFS_EXIT(zfsvfs); 345 346 return (KMEM_CBRC_YES); 347 } 348 349 void 350 zfs_znode_init(void) 351 { 352 /* 353 * Initialize zcache 354 */ 355 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 356 ASSERT(znode_cache == NULL); 357 znode_cache = kmem_cache_create("zfs_znode_cache", 358 sizeof (znode_t), 0, zfs_znode_cache_constructor, 359 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 360 kmem_cache_set_move(znode_cache, zfs_znode_move); 361 } 362 363 void 364 zfs_znode_fini(void) 365 { 366 /* 367 * Cleanup vfs & vnode ops 368 */ 369 zfs_remove_op_tables(); 370 371 /* 372 * Cleanup zcache 373 */ 374 if (znode_cache) 375 kmem_cache_destroy(znode_cache); 376 znode_cache = NULL; 377 rw_destroy(&zfsvfs_lock); 378 } 379 380 struct vnodeops *zfs_dvnodeops; 381 struct vnodeops *zfs_fvnodeops; 382 struct vnodeops *zfs_symvnodeops; 383 struct vnodeops *zfs_xdvnodeops; 384 struct vnodeops *zfs_evnodeops; 385 struct vnodeops *zfs_sharevnodeops; 386 387 void 388 zfs_remove_op_tables() 389 { 390 /* 391 * Remove vfs ops 392 */ 393 ASSERT(zfsfstype); 394 (void) vfs_freevfsops_by_type(zfsfstype); 395 zfsfstype = 0; 396 397 /* 398 * Remove vnode ops 399 */ 400 if (zfs_dvnodeops) 401 vn_freevnodeops(zfs_dvnodeops); 402 if (zfs_fvnodeops) 403 vn_freevnodeops(zfs_fvnodeops); 404 if (zfs_symvnodeops) 405 vn_freevnodeops(zfs_symvnodeops); 406 if (zfs_xdvnodeops) 407 vn_freevnodeops(zfs_xdvnodeops); 408 if (zfs_evnodeops) 409 vn_freevnodeops(zfs_evnodeops); 410 if (zfs_sharevnodeops) 411 vn_freevnodeops(zfs_sharevnodeops); 412 413 zfs_dvnodeops = NULL; 414 zfs_fvnodeops = NULL; 415 zfs_symvnodeops = NULL; 416 zfs_xdvnodeops = NULL; 417 zfs_evnodeops = NULL; 418 zfs_sharevnodeops = NULL; 419 } 420 421 extern const fs_operation_def_t zfs_dvnodeops_template[]; 422 extern const fs_operation_def_t zfs_fvnodeops_template[]; 423 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 424 extern const fs_operation_def_t zfs_symvnodeops_template[]; 425 extern const fs_operation_def_t zfs_evnodeops_template[]; 426 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 427 428 int 429 zfs_create_op_tables() 430 { 431 int error; 432 433 /* 434 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 435 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 436 * In this case we just return as the ops vectors are already set up. 437 */ 438 if (zfs_dvnodeops) 439 return (0); 440 441 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 442 &zfs_dvnodeops); 443 if (error) 444 return (error); 445 446 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 447 &zfs_fvnodeops); 448 if (error) 449 return (error); 450 451 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 452 &zfs_symvnodeops); 453 if (error) 454 return (error); 455 456 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 457 &zfs_xdvnodeops); 458 if (error) 459 return (error); 460 461 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 462 &zfs_evnodeops); 463 if (error) 464 return (error); 465 466 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 467 &zfs_sharevnodeops); 468 469 return (error); 470 } 471 472 int 473 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 474 { 475 zfs_acl_ids_t acl_ids; 476 vattr_t vattr; 477 znode_t *sharezp; 478 vnode_t *vp; 479 znode_t *zp; 480 int error; 481 482 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 483 vattr.va_type = VDIR; 484 vattr.va_mode = S_IFDIR|0555; 485 vattr.va_uid = crgetuid(kcred); 486 vattr.va_gid = crgetgid(kcred); 487 488 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 489 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 490 sharezp->z_moved = 0; 491 sharezp->z_unlinked = 0; 492 sharezp->z_atime_dirty = 0; 493 sharezp->z_zfsvfs = zfsvfs; 494 sharezp->z_is_sa = zfsvfs->z_use_sa; 495 496 vp = ZTOV(sharezp); 497 vn_reinit(vp); 498 vp->v_type = VDIR; 499 500 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 501 kcred, NULL, &acl_ids)); 502 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 503 ASSERT3P(zp, ==, sharezp); 504 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 505 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 506 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 507 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 508 zfsvfs->z_shares_dir = sharezp->z_id; 509 510 zfs_acl_ids_free(&acl_ids); 511 ZTOV(sharezp)->v_count = 0; 512 sa_handle_destroy(sharezp->z_sa_hdl); 513 kmem_cache_free(znode_cache, sharezp); 514 515 return (error); 516 } 517 518 /* 519 * define a couple of values we need available 520 * for both 64 and 32 bit environments. 521 */ 522 #ifndef NBITSMINOR64 523 #define NBITSMINOR64 32 524 #endif 525 #ifndef MAXMAJ64 526 #define MAXMAJ64 0xffffffffUL 527 #endif 528 #ifndef MAXMIN64 529 #define MAXMIN64 0xffffffffUL 530 #endif 531 532 /* 533 * Create special expldev for ZFS private use. 534 * Can't use standard expldev since it doesn't do 535 * what we want. The standard expldev() takes a 536 * dev32_t in LP64 and expands it to a long dev_t. 537 * We need an interface that takes a dev32_t in ILP32 538 * and expands it to a long dev_t. 539 */ 540 static uint64_t 541 zfs_expldev(dev_t dev) 542 { 543 #ifndef _LP64 544 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 545 return (((uint64_t)major << NBITSMINOR64) | 546 ((minor_t)dev & MAXMIN32)); 547 #else 548 return (dev); 549 #endif 550 } 551 552 /* 553 * Special cmpldev for ZFS private use. 554 * Can't use standard cmpldev since it takes 555 * a long dev_t and compresses it to dev32_t in 556 * LP64. We need to do a compaction of a long dev_t 557 * to a dev32_t in ILP32. 558 */ 559 dev_t 560 zfs_cmpldev(uint64_t dev) 561 { 562 #ifndef _LP64 563 minor_t minor = (minor_t)dev & MAXMIN64; 564 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 565 566 if (major > MAXMAJ32 || minor > MAXMIN32) 567 return (NODEV32); 568 569 return (((dev32_t)major << NBITSMINOR32) | minor); 570 #else 571 return (dev); 572 #endif 573 } 574 575 static void 576 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 577 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 578 { 579 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 580 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 581 582 mutex_enter(&zp->z_lock); 583 584 ASSERT(zp->z_sa_hdl == NULL); 585 ASSERT(zp->z_acl_cached == NULL); 586 if (sa_hdl == NULL) { 587 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 588 SA_HDL_SHARED, &zp->z_sa_hdl)); 589 } else { 590 zp->z_sa_hdl = sa_hdl; 591 sa_set_userp(sa_hdl, zp); 592 } 593 594 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 595 596 /* 597 * Slap on VROOT if we are the root znode 598 */ 599 if (zp->z_id == zfsvfs->z_root) 600 ZTOV(zp)->v_flag |= VROOT; 601 602 mutex_exit(&zp->z_lock); 603 vn_exists(ZTOV(zp)); 604 } 605 606 void 607 zfs_znode_dmu_fini(znode_t *zp) 608 { 609 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 610 zp->z_unlinked || 611 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 612 613 sa_handle_destroy(zp->z_sa_hdl); 614 zp->z_sa_hdl = NULL; 615 } 616 617 /* 618 * Construct a new znode/vnode and intialize. 619 * 620 * This does not do a call to dmu_set_user() that is 621 * up to the caller to do, in case you don't want to 622 * return the znode 623 */ 624 static znode_t * 625 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 626 dmu_object_type_t obj_type, sa_handle_t *hdl) 627 { 628 znode_t *zp; 629 vnode_t *vp; 630 uint64_t mode; 631 uint64_t parent; 632 sa_bulk_attr_t bulk[9]; 633 int count = 0; 634 635 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 636 637 ASSERT(zp->z_dirlocks == NULL); 638 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 639 zp->z_moved = 0; 640 641 /* 642 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 643 * the zfs_znode_move() callback. 644 */ 645 zp->z_sa_hdl = NULL; 646 zp->z_unlinked = 0; 647 zp->z_atime_dirty = 0; 648 zp->z_mapcnt = 0; 649 zp->z_id = db->db_object; 650 zp->z_blksz = blksz; 651 zp->z_seq = 0x7A4653; 652 zp->z_sync_cnt = 0; 653 zp->z_new_content = 0; 654 655 vp = ZTOV(zp); 656 vn_reinit(vp); 657 658 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 659 660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 663 &zp->z_size, 8); 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 665 &zp->z_links, 8); 666 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 667 &zp->z_pflags, 8); 668 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 670 &zp->z_atime, 16); 671 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 672 &zp->z_uid, 8); 673 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 674 &zp->z_gid, 8); 675 676 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 677 if (hdl == NULL) 678 sa_handle_destroy(zp->z_sa_hdl); 679 kmem_cache_free(znode_cache, zp); 680 return (NULL); 681 } 682 683 zp->z_mode = mode; 684 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 685 686 vp->v_type = IFTOVT((mode_t)mode); 687 688 switch (vp->v_type) { 689 case VDIR: 690 if (zp->z_pflags & ZFS_XATTR) { 691 vn_setops(vp, zfs_xdvnodeops); 692 vp->v_flag |= V_XATTRDIR; 693 } else { 694 vn_setops(vp, zfs_dvnodeops); 695 } 696 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 697 break; 698 case VBLK: 699 case VCHR: 700 { 701 uint64_t rdev; 702 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 703 &rdev, sizeof (rdev)) == 0); 704 705 vp->v_rdev = zfs_cmpldev(rdev); 706 } 707 /*FALLTHROUGH*/ 708 case VFIFO: 709 case VSOCK: 710 case VDOOR: 711 vn_setops(vp, zfs_fvnodeops); 712 break; 713 case VREG: 714 vp->v_flag |= VMODSORT; 715 if (parent == zfsvfs->z_shares_dir) { 716 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 717 vn_setops(vp, zfs_sharevnodeops); 718 } else { 719 vn_setops(vp, zfs_fvnodeops); 720 } 721 break; 722 case VLNK: 723 vn_setops(vp, zfs_symvnodeops); 724 break; 725 default: 726 vn_setops(vp, zfs_evnodeops); 727 break; 728 } 729 730 mutex_enter(&zfsvfs->z_znodes_lock); 731 list_insert_tail(&zfsvfs->z_all_znodes, zp); 732 membar_producer(); 733 /* 734 * Everything else must be valid before assigning z_zfsvfs makes the 735 * znode eligible for zfs_znode_move(). 736 */ 737 zp->z_zfsvfs = zfsvfs; 738 mutex_exit(&zfsvfs->z_znodes_lock); 739 740 VFS_HOLD(zfsvfs->z_vfs); 741 return (zp); 742 } 743 744 static uint64_t empty_xattr; 745 static uint64_t pad[4]; 746 static zfs_acl_phys_t acl_phys; 747 /* 748 * Create a new DMU object to hold a zfs znode. 749 * 750 * IN: dzp - parent directory for new znode 751 * vap - file attributes for new znode 752 * tx - dmu transaction id for zap operations 753 * cr - credentials of caller 754 * flag - flags: 755 * IS_ROOT_NODE - new object will be root 756 * IS_XATTR - new object is an attribute 757 * bonuslen - length of bonus buffer 758 * setaclp - File/Dir initial ACL 759 * fuidp - Tracks fuid allocation. 760 * 761 * OUT: zpp - allocated znode 762 * 763 */ 764 void 765 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 766 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 767 { 768 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 769 uint64_t mode, size, links, parent, pflags; 770 uint64_t dzp_pflags = 0; 771 uint64_t rdev = 0; 772 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 773 dmu_buf_t *db; 774 timestruc_t now; 775 uint64_t gen, obj; 776 int bonuslen; 777 sa_handle_t *sa_hdl; 778 dmu_object_type_t obj_type; 779 sa_bulk_attr_t sa_attrs[ZPL_END]; 780 int cnt = 0; 781 zfs_acl_locator_cb_t locate = { 0 }; 782 783 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 784 785 if (zfsvfs->z_replay) { 786 obj = vap->va_nodeid; 787 now = vap->va_ctime; /* see zfs_replay_create() */ 788 gen = vap->va_nblocks; /* ditto */ 789 } else { 790 obj = 0; 791 gethrestime(&now); 792 gen = dmu_tx_get_txg(tx); 793 } 794 795 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 796 bonuslen = (obj_type == DMU_OT_SA) ? 797 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 798 799 /* 800 * Create a new DMU object. 801 */ 802 /* 803 * There's currently no mechanism for pre-reading the blocks that will 804 * be needed to allocate a new object, so we accept the small chance 805 * that there will be an i/o error and we will fail one of the 806 * assertions below. 807 */ 808 if (vap->va_type == VDIR) { 809 if (zfsvfs->z_replay) { 810 VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj, 811 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 812 obj_type, bonuslen, tx)); 813 } else { 814 obj = zap_create_norm(zfsvfs->z_os, 815 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 816 obj_type, bonuslen, tx); 817 } 818 } else { 819 if (zfsvfs->z_replay) { 820 VERIFY0(dmu_object_claim(zfsvfs->z_os, obj, 821 DMU_OT_PLAIN_FILE_CONTENTS, 0, 822 obj_type, bonuslen, tx)); 823 } else { 824 obj = dmu_object_alloc(zfsvfs->z_os, 825 DMU_OT_PLAIN_FILE_CONTENTS, 0, 826 obj_type, bonuslen, tx); 827 } 828 } 829 830 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 831 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 832 833 /* 834 * If this is the root, fix up the half-initialized parent pointer 835 * to reference the just-allocated physical data area. 836 */ 837 if (flag & IS_ROOT_NODE) { 838 dzp->z_id = obj; 839 } else { 840 dzp_pflags = dzp->z_pflags; 841 } 842 843 /* 844 * If parent is an xattr, so am I. 845 */ 846 if (dzp_pflags & ZFS_XATTR) { 847 flag |= IS_XATTR; 848 } 849 850 if (zfsvfs->z_use_fuids) 851 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 852 else 853 pflags = 0; 854 855 if (vap->va_type == VDIR) { 856 size = 2; /* contents ("." and "..") */ 857 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 858 } else { 859 size = links = 0; 860 } 861 862 if (vap->va_type == VBLK || vap->va_type == VCHR) { 863 rdev = zfs_expldev(vap->va_rdev); 864 } 865 866 parent = dzp->z_id; 867 mode = acl_ids->z_mode; 868 if (flag & IS_XATTR) 869 pflags |= ZFS_XATTR; 870 871 /* 872 * No execs denied will be deterimed when zfs_mode_compute() is called. 873 */ 874 pflags |= acl_ids->z_aclp->z_hints & 875 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 876 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 877 878 ZFS_TIME_ENCODE(&now, crtime); 879 ZFS_TIME_ENCODE(&now, ctime); 880 881 if (vap->va_mask & AT_ATIME) { 882 ZFS_TIME_ENCODE(&vap->va_atime, atime); 883 } else { 884 ZFS_TIME_ENCODE(&now, atime); 885 } 886 887 if (vap->va_mask & AT_MTIME) { 888 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 889 } else { 890 ZFS_TIME_ENCODE(&now, mtime); 891 } 892 893 /* Now add in all of the "SA" attributes */ 894 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 895 &sa_hdl)); 896 897 /* 898 * Setup the array of attributes to be replaced/set on the new file 899 * 900 * order for DMU_OT_ZNODE is critical since it needs to be constructed 901 * in the old znode_phys_t format. Don't change this ordering 902 */ 903 904 if (obj_type == DMU_OT_ZNODE) { 905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 906 NULL, &atime, 16); 907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 908 NULL, &mtime, 16); 909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 910 NULL, &ctime, 16); 911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 912 NULL, &crtime, 16); 913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 914 NULL, &gen, 8); 915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 916 NULL, &mode, 8); 917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 918 NULL, &size, 8); 919 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 920 NULL, &parent, 8); 921 } else { 922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 923 NULL, &mode, 8); 924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 925 NULL, &size, 8); 926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 927 NULL, &gen, 8); 928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 929 &acl_ids->z_fuid, 8); 930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 931 &acl_ids->z_fgid, 8); 932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 933 NULL, &parent, 8); 934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 935 NULL, &pflags, 8); 936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 937 NULL, &atime, 16); 938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 939 NULL, &mtime, 16); 940 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 941 NULL, &ctime, 16); 942 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 943 NULL, &crtime, 16); 944 } 945 946 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 947 948 if (obj_type == DMU_OT_ZNODE) { 949 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 950 &empty_xattr, 8); 951 } 952 if (obj_type == DMU_OT_ZNODE || 953 (vap->va_type == VBLK || vap->va_type == VCHR)) { 954 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 955 NULL, &rdev, 8); 956 957 } 958 if (obj_type == DMU_OT_ZNODE) { 959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 960 NULL, &pflags, 8); 961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 962 &acl_ids->z_fuid, 8); 963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 964 &acl_ids->z_fgid, 8); 965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 966 sizeof (uint64_t) * 4); 967 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 968 &acl_phys, sizeof (zfs_acl_phys_t)); 969 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 970 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 971 &acl_ids->z_aclp->z_acl_count, 8); 972 locate.cb_aclp = acl_ids->z_aclp; 973 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 974 zfs_acl_data_locator, &locate, 975 acl_ids->z_aclp->z_acl_bytes); 976 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 977 acl_ids->z_fuid, acl_ids->z_fgid); 978 } 979 980 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 981 982 if (!(flag & IS_ROOT_NODE)) { 983 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 984 ASSERT(*zpp != NULL); 985 } else { 986 /* 987 * If we are creating the root node, the "parent" we 988 * passed in is the znode for the root. 989 */ 990 *zpp = dzp; 991 992 (*zpp)->z_sa_hdl = sa_hdl; 993 } 994 995 (*zpp)->z_pflags = pflags; 996 (*zpp)->z_mode = mode; 997 998 if (vap->va_mask & AT_XVATTR) 999 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 1000 1001 if (obj_type == DMU_OT_ZNODE || 1002 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1003 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 1004 } 1005 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1006 } 1007 1008 /* 1009 * Update in-core attributes. It is assumed the caller will be doing an 1010 * sa_bulk_update to push the changes out. 1011 */ 1012 void 1013 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1014 { 1015 xoptattr_t *xoap; 1016 1017 xoap = xva_getxoptattr(xvap); 1018 ASSERT(xoap); 1019 1020 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1021 uint64_t times[2]; 1022 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1023 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1024 ×, sizeof (times), tx); 1025 XVA_SET_RTN(xvap, XAT_CREATETIME); 1026 } 1027 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1028 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1029 zp->z_pflags, tx); 1030 XVA_SET_RTN(xvap, XAT_READONLY); 1031 } 1032 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1033 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1034 zp->z_pflags, tx); 1035 XVA_SET_RTN(xvap, XAT_HIDDEN); 1036 } 1037 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1038 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1039 zp->z_pflags, tx); 1040 XVA_SET_RTN(xvap, XAT_SYSTEM); 1041 } 1042 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1043 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1044 zp->z_pflags, tx); 1045 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1046 } 1047 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1048 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1049 zp->z_pflags, tx); 1050 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1051 } 1052 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1053 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1054 zp->z_pflags, tx); 1055 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1056 } 1057 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1058 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1059 zp->z_pflags, tx); 1060 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1061 } 1062 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1063 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1064 zp->z_pflags, tx); 1065 XVA_SET_RTN(xvap, XAT_NODUMP); 1066 } 1067 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1068 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1069 zp->z_pflags, tx); 1070 XVA_SET_RTN(xvap, XAT_OPAQUE); 1071 } 1072 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1073 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1074 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1075 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1076 } 1077 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1078 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1079 zp->z_pflags, tx); 1080 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1081 } 1082 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1083 zfs_sa_set_scanstamp(zp, xvap, tx); 1084 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1085 } 1086 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1087 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1088 zp->z_pflags, tx); 1089 XVA_SET_RTN(xvap, XAT_REPARSE); 1090 } 1091 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1092 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1093 zp->z_pflags, tx); 1094 XVA_SET_RTN(xvap, XAT_OFFLINE); 1095 } 1096 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1097 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1098 zp->z_pflags, tx); 1099 XVA_SET_RTN(xvap, XAT_SPARSE); 1100 } 1101 } 1102 1103 int 1104 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1105 { 1106 dmu_object_info_t doi; 1107 dmu_buf_t *db; 1108 znode_t *zp; 1109 int err; 1110 sa_handle_t *hdl; 1111 1112 *zpp = NULL; 1113 1114 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1115 1116 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1117 if (err) { 1118 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1119 return (err); 1120 } 1121 1122 dmu_object_info_from_db(db, &doi); 1123 if (doi.doi_bonus_type != DMU_OT_SA && 1124 (doi.doi_bonus_type != DMU_OT_ZNODE || 1125 (doi.doi_bonus_type == DMU_OT_ZNODE && 1126 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1127 sa_buf_rele(db, NULL); 1128 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1129 return (SET_ERROR(EINVAL)); 1130 } 1131 1132 hdl = dmu_buf_get_user(db); 1133 if (hdl != NULL) { 1134 zp = sa_get_userdata(hdl); 1135 1136 1137 /* 1138 * Since "SA" does immediate eviction we 1139 * should never find a sa handle that doesn't 1140 * know about the znode. 1141 */ 1142 1143 ASSERT3P(zp, !=, NULL); 1144 1145 mutex_enter(&zp->z_lock); 1146 ASSERT3U(zp->z_id, ==, obj_num); 1147 if (zp->z_unlinked) { 1148 err = SET_ERROR(ENOENT); 1149 } else { 1150 VN_HOLD(ZTOV(zp)); 1151 *zpp = zp; 1152 err = 0; 1153 } 1154 sa_buf_rele(db, NULL); 1155 mutex_exit(&zp->z_lock); 1156 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1157 return (err); 1158 } 1159 1160 /* 1161 * Not found create new znode/vnode 1162 * but only if file exists. 1163 * 1164 * There is a small window where zfs_vget() could 1165 * find this object while a file create is still in 1166 * progress. This is checked for in zfs_znode_alloc() 1167 * 1168 * if zfs_znode_alloc() fails it will drop the hold on the 1169 * bonus buffer. 1170 */ 1171 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1172 doi.doi_bonus_type, NULL); 1173 if (zp == NULL) { 1174 err = SET_ERROR(ENOENT); 1175 } else { 1176 *zpp = zp; 1177 } 1178 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1179 return (err); 1180 } 1181 1182 int 1183 zfs_rezget(znode_t *zp) 1184 { 1185 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1186 dmu_object_info_t doi; 1187 dmu_buf_t *db; 1188 uint64_t obj_num = zp->z_id; 1189 uint64_t mode; 1190 sa_bulk_attr_t bulk[8]; 1191 int err; 1192 int count = 0; 1193 uint64_t gen; 1194 1195 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1196 1197 mutex_enter(&zp->z_acl_lock); 1198 if (zp->z_acl_cached) { 1199 zfs_acl_free(zp->z_acl_cached); 1200 zp->z_acl_cached = NULL; 1201 } 1202 1203 mutex_exit(&zp->z_acl_lock); 1204 ASSERT(zp->z_sa_hdl == NULL); 1205 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1206 if (err) { 1207 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1208 return (err); 1209 } 1210 1211 dmu_object_info_from_db(db, &doi); 1212 if (doi.doi_bonus_type != DMU_OT_SA && 1213 (doi.doi_bonus_type != DMU_OT_ZNODE || 1214 (doi.doi_bonus_type == DMU_OT_ZNODE && 1215 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1216 sa_buf_rele(db, NULL); 1217 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1218 return (SET_ERROR(EINVAL)); 1219 } 1220 1221 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1222 1223 /* reload cached values */ 1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1225 &gen, sizeof (gen)); 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1227 &zp->z_size, sizeof (zp->z_size)); 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1229 &zp->z_links, sizeof (zp->z_links)); 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1231 &zp->z_pflags, sizeof (zp->z_pflags)); 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1233 &zp->z_atime, sizeof (zp->z_atime)); 1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1235 &zp->z_uid, sizeof (zp->z_uid)); 1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1237 &zp->z_gid, sizeof (zp->z_gid)); 1238 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1239 &mode, sizeof (mode)); 1240 1241 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1242 zfs_znode_dmu_fini(zp); 1243 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1244 return (SET_ERROR(EIO)); 1245 } 1246 1247 zp->z_mode = mode; 1248 1249 if (gen != zp->z_gen) { 1250 zfs_znode_dmu_fini(zp); 1251 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1252 return (SET_ERROR(EIO)); 1253 } 1254 1255 zp->z_unlinked = (zp->z_links == 0); 1256 zp->z_blksz = doi.doi_data_block_size; 1257 1258 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1259 1260 return (0); 1261 } 1262 1263 void 1264 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1265 { 1266 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1267 objset_t *os = zfsvfs->z_os; 1268 uint64_t obj = zp->z_id; 1269 uint64_t acl_obj = zfs_external_acl(zp); 1270 1271 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1272 if (acl_obj) { 1273 VERIFY(!zp->z_is_sa); 1274 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1275 } 1276 VERIFY(0 == dmu_object_free(os, obj, tx)); 1277 zfs_znode_dmu_fini(zp); 1278 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1279 zfs_znode_free(zp); 1280 } 1281 1282 void 1283 zfs_zinactive(znode_t *zp) 1284 { 1285 vnode_t *vp = ZTOV(zp); 1286 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1287 uint64_t z_id = zp->z_id; 1288 1289 ASSERT(zp->z_sa_hdl); 1290 1291 /* 1292 * Don't allow a zfs_zget() while were trying to release this znode 1293 */ 1294 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1295 1296 mutex_enter(&zp->z_lock); 1297 mutex_enter(&vp->v_lock); 1298 vp->v_count--; 1299 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1300 /* 1301 * If the hold count is greater than zero, somebody has 1302 * obtained a new reference on this znode while we were 1303 * processing it here, so we are done. If we still have 1304 * mapped pages then we are also done, since we don't 1305 * want to inactivate the znode until the pages get pushed. 1306 * 1307 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1308 * this seems like it would leave the znode hanging with 1309 * no chance to go inactive... 1310 */ 1311 mutex_exit(&vp->v_lock); 1312 mutex_exit(&zp->z_lock); 1313 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1314 return; 1315 } 1316 mutex_exit(&vp->v_lock); 1317 1318 /* 1319 * If this was the last reference to a file with no links, 1320 * remove the file from the file system. 1321 */ 1322 if (zp->z_unlinked) { 1323 mutex_exit(&zp->z_lock); 1324 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1325 zfs_rmnode(zp); 1326 return; 1327 } 1328 1329 mutex_exit(&zp->z_lock); 1330 zfs_znode_dmu_fini(zp); 1331 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1332 zfs_znode_free(zp); 1333 } 1334 1335 void 1336 zfs_znode_free(znode_t *zp) 1337 { 1338 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1339 1340 vn_invalid(ZTOV(zp)); 1341 1342 ASSERT(ZTOV(zp)->v_count == 0); 1343 1344 mutex_enter(&zfsvfs->z_znodes_lock); 1345 POINTER_INVALIDATE(&zp->z_zfsvfs); 1346 list_remove(&zfsvfs->z_all_znodes, zp); 1347 mutex_exit(&zfsvfs->z_znodes_lock); 1348 1349 if (zp->z_acl_cached) { 1350 zfs_acl_free(zp->z_acl_cached); 1351 zp->z_acl_cached = NULL; 1352 } 1353 1354 kmem_cache_free(znode_cache, zp); 1355 1356 VFS_RELE(zfsvfs->z_vfs); 1357 } 1358 1359 void 1360 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1361 uint64_t ctime[2], boolean_t have_tx) 1362 { 1363 timestruc_t now; 1364 1365 gethrestime(&now); 1366 1367 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1368 zp->z_atime_dirty = 0; 1369 zp->z_seq++; 1370 } else { 1371 zp->z_atime_dirty = 1; 1372 } 1373 1374 if (flag & AT_ATIME) { 1375 ZFS_TIME_ENCODE(&now, zp->z_atime); 1376 } 1377 1378 if (flag & AT_MTIME) { 1379 ZFS_TIME_ENCODE(&now, mtime); 1380 if (zp->z_zfsvfs->z_use_fuids) { 1381 zp->z_pflags |= (ZFS_ARCHIVE | 1382 ZFS_AV_MODIFIED); 1383 } 1384 } 1385 1386 if (flag & AT_CTIME) { 1387 ZFS_TIME_ENCODE(&now, ctime); 1388 if (zp->z_zfsvfs->z_use_fuids) 1389 zp->z_pflags |= ZFS_ARCHIVE; 1390 } 1391 } 1392 1393 /* 1394 * Grow the block size for a file. 1395 * 1396 * IN: zp - znode of file to free data in. 1397 * size - requested block size 1398 * tx - open transaction. 1399 * 1400 * NOTE: this function assumes that the znode is write locked. 1401 */ 1402 void 1403 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1404 { 1405 int error; 1406 u_longlong_t dummy; 1407 1408 if (size <= zp->z_blksz) 1409 return; 1410 /* 1411 * If the file size is already greater than the current blocksize, 1412 * we will not grow. If there is more than one block in a file, 1413 * the blocksize cannot change. 1414 */ 1415 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1416 return; 1417 1418 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1419 size, 0, tx); 1420 1421 if (error == ENOTSUP) 1422 return; 1423 ASSERT0(error); 1424 1425 /* What blocksize did we actually get? */ 1426 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1427 } 1428 1429 /* 1430 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1431 * be calling back into the fs for a putpage(). E.g.: when truncating 1432 * a file, the pages being "thrown away* don't need to be written out. 1433 */ 1434 /* ARGSUSED */ 1435 static int 1436 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1437 int flags, cred_t *cr) 1438 { 1439 ASSERT(0); 1440 return (0); 1441 } 1442 1443 /* 1444 * Increase the file length 1445 * 1446 * IN: zp - znode of file to free data in. 1447 * end - new end-of-file 1448 * 1449 * RETURN: 0 on success, error code on failure 1450 */ 1451 static int 1452 zfs_extend(znode_t *zp, uint64_t end) 1453 { 1454 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1455 dmu_tx_t *tx; 1456 rl_t *rl; 1457 uint64_t newblksz; 1458 int error; 1459 1460 /* 1461 * We will change zp_size, lock the whole file. 1462 */ 1463 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1464 1465 /* 1466 * Nothing to do if file already at desired length. 1467 */ 1468 if (end <= zp->z_size) { 1469 zfs_range_unlock(rl); 1470 return (0); 1471 } 1472 tx = dmu_tx_create(zfsvfs->z_os); 1473 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1474 zfs_sa_upgrade_txholds(tx, zp); 1475 if (end > zp->z_blksz && 1476 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1477 /* 1478 * We are growing the file past the current block size. 1479 */ 1480 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1481 ASSERT(!ISP2(zp->z_blksz)); 1482 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1483 } else { 1484 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1485 } 1486 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1487 } else { 1488 newblksz = 0; 1489 } 1490 1491 error = dmu_tx_assign(tx, TXG_WAIT); 1492 if (error) { 1493 dmu_tx_abort(tx); 1494 zfs_range_unlock(rl); 1495 return (error); 1496 } 1497 1498 if (newblksz) 1499 zfs_grow_blocksize(zp, newblksz, tx); 1500 1501 zp->z_size = end; 1502 1503 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1504 &zp->z_size, sizeof (zp->z_size), tx)); 1505 1506 zfs_range_unlock(rl); 1507 1508 dmu_tx_commit(tx); 1509 1510 return (0); 1511 } 1512 1513 /* 1514 * Free space in a file. 1515 * 1516 * IN: zp - znode of file to free data in. 1517 * off - start of section to free. 1518 * len - length of section to free. 1519 * 1520 * RETURN: 0 on success, error code on failure 1521 */ 1522 static int 1523 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1524 { 1525 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1526 rl_t *rl; 1527 int error; 1528 ssize_t lock_off; 1529 ssize_t lock_len; 1530 1531 #ifdef _KERNEL 1532 /* 1533 * Lock the range being freed. 1534 */ 1535 if (rz_zev_active()) { 1536 /* start of this megabyte */ 1537 lock_off = P2ALIGN(off, ZEV_L1_SIZE); 1538 /* full megabytes */ 1539 lock_len = len + (off - lock_off); 1540 lock_len = P2ROUNDUP(lock_len, ZEV_L1_SIZE); 1541 } else { 1542 lock_off = off; 1543 lock_len = len; 1544 } 1545 #else 1546 lock_off = off; 1547 lock_len = len; 1548 #endif 1549 rl = zfs_range_lock(zp, lock_off, lock_len, RL_WRITER); 1550 1551 /* 1552 * Nothing to do if file already at desired length. 1553 */ 1554 if (off >= zp->z_size) { 1555 zfs_range_unlock(rl); 1556 return (0); 1557 } 1558 1559 if (off + len > zp->z_size) 1560 len = zp->z_size - off; 1561 1562 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1563 1564 zfs_range_unlock(rl); 1565 1566 return (error); 1567 } 1568 1569 /* 1570 * Truncate a file 1571 * 1572 * IN: zp - znode of file to free data in. 1573 * end - new end-of-file. 1574 * 1575 * RETURN: 0 on success, error code on failure 1576 */ 1577 static int 1578 zfs_trunc(znode_t *zp, uint64_t end) 1579 { 1580 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1581 vnode_t *vp = ZTOV(zp); 1582 dmu_tx_t *tx; 1583 rl_t *rl; 1584 int error; 1585 sa_bulk_attr_t bulk[2]; 1586 int count = 0; 1587 1588 /* 1589 * We will change zp_size, lock the whole file. 1590 */ 1591 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1592 1593 /* 1594 * Nothing to do if file already at desired length. 1595 */ 1596 if (end >= zp->z_size) { 1597 zfs_range_unlock(rl); 1598 return (0); 1599 } 1600 1601 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1602 if (error) { 1603 zfs_range_unlock(rl); 1604 return (error); 1605 } 1606 tx = dmu_tx_create(zfsvfs->z_os); 1607 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1608 zfs_sa_upgrade_txholds(tx, zp); 1609 error = dmu_tx_assign(tx, TXG_WAIT); 1610 if (error) { 1611 dmu_tx_abort(tx); 1612 zfs_range_unlock(rl); 1613 return (error); 1614 } 1615 1616 zp->z_size = end; 1617 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1618 NULL, &zp->z_size, sizeof (zp->z_size)); 1619 1620 if (end == 0) { 1621 zp->z_pflags &= ~ZFS_SPARSE; 1622 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1623 NULL, &zp->z_pflags, 8); 1624 } 1625 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1626 1627 dmu_tx_commit(tx); 1628 1629 /* 1630 * Clear any mapped pages in the truncated region. This has to 1631 * happen outside of the transaction to avoid the possibility of 1632 * a deadlock with someone trying to push a page that we are 1633 * about to invalidate. 1634 */ 1635 if (vn_has_cached_data(vp)) { 1636 page_t *pp; 1637 uint64_t start = end & PAGEMASK; 1638 int poff = end & PAGEOFFSET; 1639 1640 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1641 /* 1642 * We need to zero a partial page. 1643 */ 1644 pagezero(pp, poff, PAGESIZE - poff); 1645 start += PAGESIZE; 1646 page_unlock(pp); 1647 } 1648 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1649 B_INVAL | B_TRUNC, NULL); 1650 ASSERT(error == 0); 1651 } 1652 1653 zfs_range_unlock(rl); 1654 1655 return (0); 1656 } 1657 1658 /* 1659 * Free space in a file 1660 * 1661 * IN: zp - znode of file to free data in. 1662 * off - start of range 1663 * len - end of range (0 => EOF) 1664 * flag - current file open mode flags. 1665 * log - TRUE if this action should be logged 1666 * 1667 * RETURN: 0 on success, error code on failure 1668 */ 1669 int 1670 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1671 { 1672 vnode_t *vp = ZTOV(zp); 1673 dmu_tx_t *tx; 1674 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1675 zilog_t *zilog = zfsvfs->z_log; 1676 uint64_t mode; 1677 uint64_t mtime[2], ctime[2]; 1678 sa_bulk_attr_t bulk[3]; 1679 int count = 0; 1680 int error; 1681 1682 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1683 sizeof (mode))) != 0) 1684 return (error); 1685 1686 if (off > zp->z_size) { 1687 error = zfs_extend(zp, off+len); 1688 if (error == 0 && log) 1689 goto log; 1690 else 1691 return (error); 1692 } 1693 1694 /* 1695 * Check for any locks in the region to be freed. 1696 */ 1697 1698 if (MANDLOCK(vp, (mode_t)mode)) { 1699 uint64_t length = (len ? len : zp->z_size - off); 1700 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1701 return (error); 1702 } 1703 1704 if (len == 0) { 1705 error = zfs_trunc(zp, off); 1706 } else { 1707 if ((error = zfs_free_range(zp, off, len)) == 0 && 1708 off + len > zp->z_size) 1709 error = zfs_extend(zp, off+len); 1710 } 1711 if (error || !log) 1712 return (error); 1713 log: 1714 tx = dmu_tx_create(zfsvfs->z_os); 1715 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1716 zfs_sa_upgrade_txholds(tx, zp); 1717 error = dmu_tx_assign(tx, TXG_WAIT); 1718 if (error) { 1719 dmu_tx_abort(tx); 1720 return (error); 1721 } 1722 1723 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1724 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1725 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1726 NULL, &zp->z_pflags, 8); 1727 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1728 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1729 ASSERT(error == 0); 1730 1731 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1732 1733 dmu_tx_commit(tx); 1734 return (0); 1735 } 1736 1737 void 1738 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1739 { 1740 zfsvfs_t zfsvfs; 1741 uint64_t moid, obj, sa_obj, version; 1742 uint64_t sense = ZFS_CASE_SENSITIVE; 1743 uint64_t norm = 0; 1744 nvpair_t *elem; 1745 int error; 1746 int i; 1747 znode_t *rootzp = NULL; 1748 vnode_t *vp; 1749 vattr_t vattr; 1750 znode_t *zp; 1751 zfs_acl_ids_t acl_ids; 1752 1753 /* 1754 * First attempt to create master node. 1755 */ 1756 /* 1757 * In an empty objset, there are no blocks to read and thus 1758 * there can be no i/o errors (which we assert below). 1759 */ 1760 moid = MASTER_NODE_OBJ; 1761 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1762 DMU_OT_NONE, 0, tx); 1763 ASSERT(error == 0); 1764 1765 /* 1766 * Set starting attributes. 1767 */ 1768 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1769 elem = NULL; 1770 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1771 /* For the moment we expect all zpl props to be uint64_ts */ 1772 uint64_t val; 1773 char *name; 1774 1775 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1776 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1777 name = nvpair_name(elem); 1778 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1779 if (val < version) 1780 version = val; 1781 } else { 1782 error = zap_update(os, moid, name, 8, 1, &val, tx); 1783 } 1784 ASSERT(error == 0); 1785 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1786 norm = val; 1787 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1788 sense = val; 1789 } 1790 ASSERT(version != 0); 1791 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1792 1793 /* 1794 * Create zap object used for SA attribute registration 1795 */ 1796 1797 if (version >= ZPL_VERSION_SA) { 1798 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1799 DMU_OT_NONE, 0, tx); 1800 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1801 ASSERT(error == 0); 1802 } else { 1803 sa_obj = 0; 1804 } 1805 /* 1806 * Create a delete queue. 1807 */ 1808 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1809 1810 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1811 ASSERT(error == 0); 1812 1813 /* 1814 * Create root znode. Create minimal znode/vnode/zfsvfs 1815 * to allow zfs_mknode to work. 1816 */ 1817 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1818 vattr.va_type = VDIR; 1819 vattr.va_mode = S_IFDIR|0755; 1820 vattr.va_uid = crgetuid(cr); 1821 vattr.va_gid = crgetgid(cr); 1822 1823 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1824 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1825 rootzp->z_moved = 0; 1826 rootzp->z_unlinked = 0; 1827 rootzp->z_atime_dirty = 0; 1828 rootzp->z_is_sa = USE_SA(version, os); 1829 1830 vp = ZTOV(rootzp); 1831 vn_reinit(vp); 1832 vp->v_type = VDIR; 1833 1834 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1835 1836 zfsvfs.z_os = os; 1837 zfsvfs.z_parent = &zfsvfs; 1838 zfsvfs.z_version = version; 1839 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1840 zfsvfs.z_use_sa = USE_SA(version, os); 1841 zfsvfs.z_norm = norm; 1842 1843 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1844 &zfsvfs.z_attr_table); 1845 1846 ASSERT(error == 0); 1847 1848 /* 1849 * Fold case on file systems that are always or sometimes case 1850 * insensitive. 1851 */ 1852 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1853 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1854 1855 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1856 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1857 offsetof(znode_t, z_link_node)); 1858 1859 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1860 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1861 1862 rootzp->z_zfsvfs = &zfsvfs; 1863 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1864 cr, NULL, &acl_ids)); 1865 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1866 ASSERT3P(zp, ==, rootzp); 1867 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1868 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1869 ASSERT(error == 0); 1870 zfs_acl_ids_free(&acl_ids); 1871 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1872 1873 ZTOV(rootzp)->v_count = 0; 1874 sa_handle_destroy(rootzp->z_sa_hdl); 1875 kmem_cache_free(znode_cache, rootzp); 1876 1877 /* 1878 * Create shares directory 1879 */ 1880 1881 error = zfs_create_share_dir(&zfsvfs, tx); 1882 1883 ASSERT(error == 0); 1884 1885 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1886 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1887 } 1888 1889 #endif /* _KERNEL */ 1890 1891 static int 1892 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1893 { 1894 uint64_t sa_obj = 0; 1895 int error; 1896 1897 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1898 if (error != 0 && error != ENOENT) 1899 return (error); 1900 1901 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1902 return (error); 1903 } 1904 1905 static int 1906 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1907 dmu_buf_t **db, void *tag) 1908 { 1909 dmu_object_info_t doi; 1910 int error; 1911 1912 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) 1913 return (error); 1914 1915 dmu_object_info_from_db(*db, &doi); 1916 if ((doi.doi_bonus_type != DMU_OT_SA && 1917 doi.doi_bonus_type != DMU_OT_ZNODE) || 1918 doi.doi_bonus_type == DMU_OT_ZNODE && 1919 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1920 sa_buf_rele(*db, tag); 1921 return (SET_ERROR(ENOTSUP)); 1922 } 1923 1924 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1925 if (error != 0) { 1926 sa_buf_rele(*db, tag); 1927 return (error); 1928 } 1929 1930 return (0); 1931 } 1932 1933 void 1934 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) 1935 { 1936 sa_handle_destroy(hdl); 1937 sa_buf_rele(db, tag); 1938 } 1939 1940 /* 1941 * Given an object number, return its parent object number and whether 1942 * or not the object is an extended attribute directory. 1943 */ 1944 static int 1945 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, 1946 uint64_t *pobjp, int *is_xattrdir) 1947 { 1948 uint64_t parent; 1949 uint64_t pflags; 1950 uint64_t mode; 1951 uint64_t parent_mode; 1952 sa_bulk_attr_t bulk[3]; 1953 sa_handle_t *sa_hdl; 1954 dmu_buf_t *sa_db; 1955 int count = 0; 1956 int error; 1957 1958 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1959 &parent, sizeof (parent)); 1960 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1961 &pflags, sizeof (pflags)); 1962 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1963 &mode, sizeof (mode)); 1964 1965 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1966 return (error); 1967 1968 /* 1969 * When a link is removed its parent pointer is not changed and will 1970 * be invalid. There are two cases where a link is removed but the 1971 * file stays around, when it goes to the delete queue and when there 1972 * are additional links. 1973 */ 1974 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); 1975 if (error != 0) 1976 return (error); 1977 1978 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); 1979 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 1980 if (error != 0) 1981 return (error); 1982 1983 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1984 1985 /* 1986 * Extended attributes can be applied to files, directories, etc. 1987 * Otherwise the parent must be a directory. 1988 */ 1989 if (!*is_xattrdir && !S_ISDIR(parent_mode)) 1990 return (SET_ERROR(EINVAL)); 1991 1992 *pobjp = parent; 1993 1994 return (0); 1995 } 1996 1997 /* 1998 * Given an object number, return some zpl level statistics 1999 */ 2000 static int 2001 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 2002 zfs_stat_t *sb) 2003 { 2004 sa_bulk_attr_t bulk[4]; 2005 int count = 0; 2006 2007 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 2008 &sb->zs_mode, sizeof (sb->zs_mode)); 2009 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 2010 &sb->zs_gen, sizeof (sb->zs_gen)); 2011 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 2012 &sb->zs_links, sizeof (sb->zs_links)); 2013 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 2014 &sb->zs_ctime, sizeof (sb->zs_ctime)); 2015 2016 return (sa_bulk_lookup(hdl, bulk, count)); 2017 } 2018 2019 static int 2020 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 2021 sa_attr_type_t *sa_table, char *buf, int len) 2022 { 2023 sa_handle_t *sa_hdl; 2024 sa_handle_t *prevhdl = NULL; 2025 dmu_buf_t *prevdb = NULL; 2026 dmu_buf_t *sa_db = NULL; 2027 char *path = buf + len - 1; 2028 int error; 2029 2030 *path = '\0'; 2031 sa_hdl = hdl; 2032 2033 for (;;) { 2034 uint64_t pobj; 2035 char component[MAXNAMELEN + 2]; 2036 size_t complen; 2037 int is_xattrdir; 2038 2039 if (prevdb) 2040 zfs_release_sa_handle(prevhdl, prevdb, FTAG); 2041 2042 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, 2043 &is_xattrdir)) != 0) 2044 break; 2045 2046 if (pobj == obj) { 2047 if (path[0] != '/') 2048 *--path = '/'; 2049 break; 2050 } 2051 2052 component[0] = '/'; 2053 if (is_xattrdir) { 2054 (void) sprintf(component + 1, "<xattrdir>"); 2055 } else { 2056 error = zap_value_search(osp, pobj, obj, 2057 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2058 if (error != 0) 2059 break; 2060 } 2061 2062 complen = strlen(component); 2063 path -= complen; 2064 ASSERT(path >= buf); 2065 bcopy(component, path, complen); 2066 obj = pobj; 2067 2068 if (sa_hdl != hdl) { 2069 prevhdl = sa_hdl; 2070 prevdb = sa_db; 2071 } 2072 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); 2073 if (error != 0) { 2074 sa_hdl = prevhdl; 2075 sa_db = prevdb; 2076 break; 2077 } 2078 } 2079 2080 if (sa_hdl != NULL && sa_hdl != hdl) { 2081 ASSERT(sa_db != NULL); 2082 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 2083 } 2084 2085 if (error == 0) 2086 (void) memmove(buf, path, buf + len - path); 2087 2088 return (error); 2089 } 2090 2091 int 2092 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2093 { 2094 sa_attr_type_t *sa_table; 2095 sa_handle_t *hdl; 2096 dmu_buf_t *db; 2097 int error; 2098 2099 error = zfs_sa_setup(osp, &sa_table); 2100 if (error != 0) 2101 return (error); 2102 2103 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2104 if (error != 0) 2105 return (error); 2106 2107 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2108 2109 zfs_release_sa_handle(hdl, db, FTAG); 2110 return (error); 2111 } 2112 2113 int 2114 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2115 char *buf, int len) 2116 { 2117 char *path = buf + len - 1; 2118 sa_attr_type_t *sa_table; 2119 sa_handle_t *hdl; 2120 dmu_buf_t *db; 2121 int error; 2122 2123 *path = '\0'; 2124 2125 error = zfs_sa_setup(osp, &sa_table); 2126 if (error != 0) 2127 return (error); 2128 2129 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2130 if (error != 0) 2131 return (error); 2132 2133 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2134 if (error != 0) { 2135 zfs_release_sa_handle(hdl, db, FTAG); 2136 return (error); 2137 } 2138 2139 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2140 2141 zfs_release_sa_handle(hdl, db, FTAG); 2142 return (error); 2143 } 2144