1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/dnode.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/kidmap.h> 58 #endif /* _KERNEL */ 59 60 #include <sys/dmu.h> 61 #include <sys/refcount.h> 62 #include <sys/stat.h> 63 #include <sys/zap.h> 64 #include <sys/zfs_znode.h> 65 #include <sys/sa.h> 66 #include <sys/zfs_sa.h> 67 #include <sys/zfs_stat.h> 68 69 #include "zfs_prop.h" 70 #include "zfs_comutil.h" 71 72 /* 73 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 74 * turned on when DEBUG is also defined. 75 */ 76 #ifdef DEBUG 77 #define ZNODE_STATS 78 #endif /* DEBUG */ 79 80 #ifdef ZNODE_STATS 81 #define ZNODE_STAT_ADD(stat) ((stat)++) 82 #else 83 #define ZNODE_STAT_ADD(stat) /* nothing */ 84 #endif /* ZNODE_STATS */ 85 86 /* 87 * Functions needed for userland (ie: libzpool) are not put under 88 * #ifdef_KERNEL; the rest of the functions have dependencies 89 * (such as VFS logic) that will not compile easily in userland. 90 */ 91 #ifdef _KERNEL 92 /* 93 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 94 * be freed before it can be safely accessed. 95 */ 96 krwlock_t zfsvfs_lock; 97 98 static kmem_cache_t *znode_cache = NULL; 99 100 /*ARGSUSED*/ 101 static void 102 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 103 { 104 /* 105 * We should never drop all dbuf refs without first clearing 106 * the eviction callback. 107 */ 108 panic("evicting znode %p\n", user_ptr); 109 } 110 111 /*ARGSUSED*/ 112 static int 113 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 114 { 115 znode_t *zp = buf; 116 117 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 118 119 zp->z_vnode = vn_alloc(kmflags); 120 if (zp->z_vnode == NULL) { 121 return (-1); 122 } 123 ZTOV(zp)->v_data = zp; 124 125 list_link_init(&zp->z_link_node); 126 127 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 128 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 129 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 130 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 131 132 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 133 avl_create(&zp->z_range_avl, zfs_range_compare, 134 sizeof (rl_t), offsetof(rl_t, r_node)); 135 136 zp->z_dirlocks = NULL; 137 zp->z_acl_cached = NULL; 138 zp->z_moved = 0; 139 return (0); 140 } 141 142 /*ARGSUSED*/ 143 static void 144 zfs_znode_cache_destructor(void *buf, void *arg) 145 { 146 znode_t *zp = buf; 147 148 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 149 ASSERT(ZTOV(zp)->v_data == zp); 150 vn_free(ZTOV(zp)); 151 ASSERT(!list_link_active(&zp->z_link_node)); 152 mutex_destroy(&zp->z_lock); 153 rw_destroy(&zp->z_parent_lock); 154 rw_destroy(&zp->z_name_lock); 155 mutex_destroy(&zp->z_acl_lock); 156 avl_destroy(&zp->z_range_avl); 157 mutex_destroy(&zp->z_range_lock); 158 159 ASSERT(zp->z_dirlocks == NULL); 160 ASSERT(zp->z_acl_cached == NULL); 161 } 162 163 #ifdef ZNODE_STATS 164 static struct { 165 uint64_t zms_zfsvfs_invalid; 166 uint64_t zms_zfsvfs_recheck1; 167 uint64_t zms_zfsvfs_unmounted; 168 uint64_t zms_zfsvfs_recheck2; 169 uint64_t zms_obj_held; 170 uint64_t zms_vnode_locked; 171 uint64_t zms_not_only_dnlc; 172 } znode_move_stats; 173 #endif /* ZNODE_STATS */ 174 175 static void 176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 177 { 178 vnode_t *vp; 179 180 /* Copy fields. */ 181 nzp->z_zfsvfs = ozp->z_zfsvfs; 182 183 /* Swap vnodes. */ 184 vp = nzp->z_vnode; 185 nzp->z_vnode = ozp->z_vnode; 186 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 187 ZTOV(ozp)->v_data = ozp; 188 ZTOV(nzp)->v_data = nzp; 189 190 nzp->z_id = ozp->z_id; 191 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 192 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 193 nzp->z_unlinked = ozp->z_unlinked; 194 nzp->z_atime_dirty = ozp->z_atime_dirty; 195 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 196 nzp->z_blksz = ozp->z_blksz; 197 nzp->z_seq = ozp->z_seq; 198 nzp->z_mapcnt = ozp->z_mapcnt; 199 nzp->z_gen = ozp->z_gen; 200 nzp->z_sync_cnt = ozp->z_sync_cnt; 201 nzp->z_is_sa = ozp->z_is_sa; 202 nzp->z_sa_hdl = ozp->z_sa_hdl; 203 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 204 nzp->z_links = ozp->z_links; 205 nzp->z_size = ozp->z_size; 206 nzp->z_pflags = ozp->z_pflags; 207 nzp->z_uid = ozp->z_uid; 208 nzp->z_gid = ozp->z_gid; 209 nzp->z_mode = ozp->z_mode; 210 nzp->z_new_content = ozp->z_new_content; 211 212 /* 213 * Since this is just an idle znode and kmem is already dealing with 214 * memory pressure, release any cached ACL. 215 */ 216 if (ozp->z_acl_cached) { 217 zfs_acl_free(ozp->z_acl_cached); 218 ozp->z_acl_cached = NULL; 219 } 220 221 sa_set_userp(nzp->z_sa_hdl, nzp); 222 223 /* 224 * Invalidate the original znode by clearing fields that provide a 225 * pointer back to the znode. Set the low bit of the vfs pointer to 226 * ensure that zfs_znode_move() recognizes the znode as invalid in any 227 * subsequent callback. 228 */ 229 ozp->z_sa_hdl = NULL; 230 POINTER_INVALIDATE(&ozp->z_zfsvfs); 231 232 /* 233 * Mark the znode. 234 */ 235 nzp->z_moved = 1; 236 ozp->z_moved = (uint8_t)-1; 237 } 238 239 /*ARGSUSED*/ 240 static kmem_cbrc_t 241 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 242 { 243 znode_t *ozp = buf, *nzp = newbuf; 244 zfsvfs_t *zfsvfs; 245 vnode_t *vp; 246 247 /* 248 * The znode is on the file system's list of known znodes if the vfs 249 * pointer is valid. We set the low bit of the vfs pointer when freeing 250 * the znode to invalidate it, and the memory patterns written by kmem 251 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 252 * created znode sets the vfs pointer last of all to indicate that the 253 * znode is known and in a valid state to be moved by this function. 254 */ 255 zfsvfs = ozp->z_zfsvfs; 256 if (!POINTER_IS_VALID(zfsvfs)) { 257 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 258 return (KMEM_CBRC_DONT_KNOW); 259 } 260 261 /* 262 * Close a small window in which it's possible that the filesystem could 263 * be unmounted and freed, and zfsvfs, though valid in the previous 264 * statement, could point to unrelated memory by the time we try to 265 * prevent the filesystem from being unmounted. 266 */ 267 rw_enter(&zfsvfs_lock, RW_WRITER); 268 if (zfsvfs != ozp->z_zfsvfs) { 269 rw_exit(&zfsvfs_lock); 270 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 271 return (KMEM_CBRC_DONT_KNOW); 272 } 273 274 /* 275 * If the znode is still valid, then so is the file system. We know that 276 * no valid file system can be freed while we hold zfsvfs_lock, so we 277 * can safely ensure that the filesystem is not and will not be 278 * unmounted. The next statement is equivalent to ZFS_ENTER(). 279 */ 280 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 281 if (zfsvfs->z_unmounted) { 282 ZFS_EXIT(zfsvfs); 283 rw_exit(&zfsvfs_lock); 284 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 285 return (KMEM_CBRC_DONT_KNOW); 286 } 287 rw_exit(&zfsvfs_lock); 288 289 mutex_enter(&zfsvfs->z_znodes_lock); 290 /* 291 * Recheck the vfs pointer in case the znode was removed just before 292 * acquiring the lock. 293 */ 294 if (zfsvfs != ozp->z_zfsvfs) { 295 mutex_exit(&zfsvfs->z_znodes_lock); 296 ZFS_EXIT(zfsvfs); 297 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 298 return (KMEM_CBRC_DONT_KNOW); 299 } 300 301 /* 302 * At this point we know that as long as we hold z_znodes_lock, the 303 * znode cannot be freed and fields within the znode can be safely 304 * accessed. Now, prevent a race with zfs_zget(). 305 */ 306 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 307 mutex_exit(&zfsvfs->z_znodes_lock); 308 ZFS_EXIT(zfsvfs); 309 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 310 return (KMEM_CBRC_LATER); 311 } 312 313 vp = ZTOV(ozp); 314 if (mutex_tryenter(&vp->v_lock) == 0) { 315 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 316 mutex_exit(&zfsvfs->z_znodes_lock); 317 ZFS_EXIT(zfsvfs); 318 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 319 return (KMEM_CBRC_LATER); 320 } 321 322 /* Only move znodes that are referenced _only_ by the DNLC. */ 323 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 324 mutex_exit(&vp->v_lock); 325 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 326 mutex_exit(&zfsvfs->z_znodes_lock); 327 ZFS_EXIT(zfsvfs); 328 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 329 return (KMEM_CBRC_LATER); 330 } 331 332 /* 333 * The znode is known and in a valid state to move. We're holding the 334 * locks needed to execute the critical section. 335 */ 336 zfs_znode_move_impl(ozp, nzp); 337 mutex_exit(&vp->v_lock); 338 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 339 340 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 341 mutex_exit(&zfsvfs->z_znodes_lock); 342 ZFS_EXIT(zfsvfs); 343 344 return (KMEM_CBRC_YES); 345 } 346 347 void 348 zfs_znode_init(void) 349 { 350 /* 351 * Initialize zcache 352 */ 353 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 354 ASSERT(znode_cache == NULL); 355 znode_cache = kmem_cache_create("zfs_znode_cache", 356 sizeof (znode_t), 0, zfs_znode_cache_constructor, 357 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 358 kmem_cache_set_move(znode_cache, zfs_znode_move); 359 } 360 361 void 362 zfs_znode_fini(void) 363 { 364 /* 365 * Cleanup vfs & vnode ops 366 */ 367 zfs_remove_op_tables(); 368 369 /* 370 * Cleanup zcache 371 */ 372 if (znode_cache) 373 kmem_cache_destroy(znode_cache); 374 znode_cache = NULL; 375 rw_destroy(&zfsvfs_lock); 376 } 377 378 struct vnodeops *zfs_dvnodeops; 379 struct vnodeops *zfs_fvnodeops; 380 struct vnodeops *zfs_symvnodeops; 381 struct vnodeops *zfs_xdvnodeops; 382 struct vnodeops *zfs_evnodeops; 383 struct vnodeops *zfs_sharevnodeops; 384 385 void 386 zfs_remove_op_tables() 387 { 388 /* 389 * Remove vfs ops 390 */ 391 ASSERT(zfsfstype); 392 (void) vfs_freevfsops_by_type(zfsfstype); 393 zfsfstype = 0; 394 395 /* 396 * Remove vnode ops 397 */ 398 if (zfs_dvnodeops) 399 vn_freevnodeops(zfs_dvnodeops); 400 if (zfs_fvnodeops) 401 vn_freevnodeops(zfs_fvnodeops); 402 if (zfs_symvnodeops) 403 vn_freevnodeops(zfs_symvnodeops); 404 if (zfs_xdvnodeops) 405 vn_freevnodeops(zfs_xdvnodeops); 406 if (zfs_evnodeops) 407 vn_freevnodeops(zfs_evnodeops); 408 if (zfs_sharevnodeops) 409 vn_freevnodeops(zfs_sharevnodeops); 410 411 zfs_dvnodeops = NULL; 412 zfs_fvnodeops = NULL; 413 zfs_symvnodeops = NULL; 414 zfs_xdvnodeops = NULL; 415 zfs_evnodeops = NULL; 416 zfs_sharevnodeops = NULL; 417 } 418 419 extern const fs_operation_def_t zfs_dvnodeops_template[]; 420 extern const fs_operation_def_t zfs_fvnodeops_template[]; 421 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 422 extern const fs_operation_def_t zfs_symvnodeops_template[]; 423 extern const fs_operation_def_t zfs_evnodeops_template[]; 424 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 425 426 int 427 zfs_create_op_tables() 428 { 429 int error; 430 431 /* 432 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 433 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 434 * In this case we just return as the ops vectors are already set up. 435 */ 436 if (zfs_dvnodeops) 437 return (0); 438 439 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 440 &zfs_dvnodeops); 441 if (error) 442 return (error); 443 444 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 445 &zfs_fvnodeops); 446 if (error) 447 return (error); 448 449 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 450 &zfs_symvnodeops); 451 if (error) 452 return (error); 453 454 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 455 &zfs_xdvnodeops); 456 if (error) 457 return (error); 458 459 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 460 &zfs_evnodeops); 461 if (error) 462 return (error); 463 464 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 465 &zfs_sharevnodeops); 466 467 return (error); 468 } 469 470 int 471 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 472 { 473 zfs_acl_ids_t acl_ids; 474 vattr_t vattr; 475 znode_t *sharezp; 476 vnode_t *vp; 477 znode_t *zp; 478 int error; 479 480 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 481 vattr.va_type = VDIR; 482 vattr.va_mode = S_IFDIR|0555; 483 vattr.va_uid = crgetuid(kcred); 484 vattr.va_gid = crgetgid(kcred); 485 486 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 487 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 488 sharezp->z_moved = 0; 489 sharezp->z_unlinked = 0; 490 sharezp->z_atime_dirty = 0; 491 sharezp->z_zfsvfs = zfsvfs; 492 sharezp->z_is_sa = zfsvfs->z_use_sa; 493 494 vp = ZTOV(sharezp); 495 vn_reinit(vp); 496 vp->v_type = VDIR; 497 498 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 499 kcred, NULL, &acl_ids)); 500 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 501 ASSERT3P(zp, ==, sharezp); 502 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 503 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 504 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 505 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 506 zfsvfs->z_shares_dir = sharezp->z_id; 507 508 zfs_acl_ids_free(&acl_ids); 509 ZTOV(sharezp)->v_count = 0; 510 sa_handle_destroy(sharezp->z_sa_hdl); 511 kmem_cache_free(znode_cache, sharezp); 512 513 return (error); 514 } 515 516 /* 517 * define a couple of values we need available 518 * for both 64 and 32 bit environments. 519 */ 520 #ifndef NBITSMINOR64 521 #define NBITSMINOR64 32 522 #endif 523 #ifndef MAXMAJ64 524 #define MAXMAJ64 0xffffffffUL 525 #endif 526 #ifndef MAXMIN64 527 #define MAXMIN64 0xffffffffUL 528 #endif 529 530 /* 531 * Create special expldev for ZFS private use. 532 * Can't use standard expldev since it doesn't do 533 * what we want. The standard expldev() takes a 534 * dev32_t in LP64 and expands it to a long dev_t. 535 * We need an interface that takes a dev32_t in ILP32 536 * and expands it to a long dev_t. 537 */ 538 static uint64_t 539 zfs_expldev(dev_t dev) 540 { 541 #ifndef _LP64 542 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 543 return (((uint64_t)major << NBITSMINOR64) | 544 ((minor_t)dev & MAXMIN32)); 545 #else 546 return (dev); 547 #endif 548 } 549 550 /* 551 * Special cmpldev for ZFS private use. 552 * Can't use standard cmpldev since it takes 553 * a long dev_t and compresses it to dev32_t in 554 * LP64. We need to do a compaction of a long dev_t 555 * to a dev32_t in ILP32. 556 */ 557 dev_t 558 zfs_cmpldev(uint64_t dev) 559 { 560 #ifndef _LP64 561 minor_t minor = (minor_t)dev & MAXMIN64; 562 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 563 564 if (major > MAXMAJ32 || minor > MAXMIN32) 565 return (NODEV32); 566 567 return (((dev32_t)major << NBITSMINOR32) | minor); 568 #else 569 return (dev); 570 #endif 571 } 572 573 static void 574 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 575 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 576 { 577 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 578 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 579 580 mutex_enter(&zp->z_lock); 581 582 ASSERT(zp->z_sa_hdl == NULL); 583 ASSERT(zp->z_acl_cached == NULL); 584 if (sa_hdl == NULL) { 585 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 586 SA_HDL_SHARED, &zp->z_sa_hdl)); 587 } else { 588 zp->z_sa_hdl = sa_hdl; 589 sa_set_userp(sa_hdl, zp); 590 } 591 592 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 593 594 /* 595 * Slap on VROOT if we are the root znode 596 */ 597 if (zp->z_id == zfsvfs->z_root) 598 ZTOV(zp)->v_flag |= VROOT; 599 600 mutex_exit(&zp->z_lock); 601 vn_exists(ZTOV(zp)); 602 } 603 604 void 605 zfs_znode_dmu_fini(znode_t *zp) 606 { 607 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 608 zp->z_unlinked || 609 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 610 611 sa_handle_destroy(zp->z_sa_hdl); 612 zp->z_sa_hdl = NULL; 613 } 614 615 /* 616 * Construct a new znode/vnode and intialize. 617 * 618 * This does not do a call to dmu_set_user() that is 619 * up to the caller to do, in case you don't want to 620 * return the znode 621 */ 622 static znode_t * 623 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 624 dmu_object_type_t obj_type, sa_handle_t *hdl) 625 { 626 znode_t *zp; 627 vnode_t *vp; 628 uint64_t mode; 629 uint64_t parent; 630 sa_bulk_attr_t bulk[9]; 631 int count = 0; 632 633 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 634 635 ASSERT(zp->z_dirlocks == NULL); 636 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 637 zp->z_moved = 0; 638 639 /* 640 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 641 * the zfs_znode_move() callback. 642 */ 643 zp->z_sa_hdl = NULL; 644 zp->z_unlinked = 0; 645 zp->z_atime_dirty = 0; 646 zp->z_mapcnt = 0; 647 zp->z_id = db->db_object; 648 zp->z_blksz = blksz; 649 zp->z_seq = 0x7A4653; 650 zp->z_sync_cnt = 0; 651 zp->z_new_content = 0; 652 653 vp = ZTOV(zp); 654 vn_reinit(vp); 655 656 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 657 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 661 &zp->z_size, 8); 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 663 &zp->z_links, 8); 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 665 &zp->z_pflags, 8); 666 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 667 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 668 &zp->z_atime, 16); 669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 670 &zp->z_uid, 8); 671 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 672 &zp->z_gid, 8); 673 674 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 675 if (hdl == NULL) 676 sa_handle_destroy(zp->z_sa_hdl); 677 kmem_cache_free(znode_cache, zp); 678 return (NULL); 679 } 680 681 zp->z_mode = mode; 682 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 683 684 vp->v_type = IFTOVT((mode_t)mode); 685 686 switch (vp->v_type) { 687 case VDIR: 688 if (zp->z_pflags & ZFS_XATTR) { 689 vn_setops(vp, zfs_xdvnodeops); 690 vp->v_flag |= V_XATTRDIR; 691 } else { 692 vn_setops(vp, zfs_dvnodeops); 693 } 694 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 695 break; 696 case VBLK: 697 case VCHR: 698 { 699 uint64_t rdev; 700 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 701 &rdev, sizeof (rdev)) == 0); 702 703 vp->v_rdev = zfs_cmpldev(rdev); 704 } 705 /*FALLTHROUGH*/ 706 case VFIFO: 707 case VSOCK: 708 case VDOOR: 709 vn_setops(vp, zfs_fvnodeops); 710 break; 711 case VREG: 712 vp->v_flag |= VMODSORT; 713 if (parent == zfsvfs->z_shares_dir) { 714 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 715 vn_setops(vp, zfs_sharevnodeops); 716 } else { 717 vn_setops(vp, zfs_fvnodeops); 718 } 719 break; 720 case VLNK: 721 vn_setops(vp, zfs_symvnodeops); 722 break; 723 default: 724 vn_setops(vp, zfs_evnodeops); 725 break; 726 } 727 728 mutex_enter(&zfsvfs->z_znodes_lock); 729 list_insert_tail(&zfsvfs->z_all_znodes, zp); 730 membar_producer(); 731 /* 732 * Everything else must be valid before assigning z_zfsvfs makes the 733 * znode eligible for zfs_znode_move(). 734 */ 735 zp->z_zfsvfs = zfsvfs; 736 mutex_exit(&zfsvfs->z_znodes_lock); 737 738 VFS_HOLD(zfsvfs->z_vfs); 739 return (zp); 740 } 741 742 static uint64_t empty_xattr; 743 static uint64_t pad[4]; 744 static zfs_acl_phys_t acl_phys; 745 /* 746 * Create a new DMU object to hold a zfs znode. 747 * 748 * IN: dzp - parent directory for new znode 749 * vap - file attributes for new znode 750 * tx - dmu transaction id for zap operations 751 * cr - credentials of caller 752 * flag - flags: 753 * IS_ROOT_NODE - new object will be root 754 * IS_XATTR - new object is an attribute 755 * bonuslen - length of bonus buffer 756 * setaclp - File/Dir initial ACL 757 * fuidp - Tracks fuid allocation. 758 * 759 * OUT: zpp - allocated znode 760 * 761 */ 762 void 763 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 764 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 765 { 766 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 767 uint64_t mode, size, links, parent, pflags; 768 uint64_t dzp_pflags = 0; 769 uint64_t rdev = 0; 770 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 771 dmu_buf_t *db; 772 timestruc_t now; 773 uint64_t gen, obj; 774 int bonuslen; 775 sa_handle_t *sa_hdl; 776 dmu_object_type_t obj_type; 777 sa_bulk_attr_t sa_attrs[ZPL_END]; 778 int cnt = 0; 779 zfs_acl_locator_cb_t locate = { 0 }; 780 781 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 782 783 if (zfsvfs->z_replay) { 784 obj = vap->va_nodeid; 785 now = vap->va_ctime; /* see zfs_replay_create() */ 786 gen = vap->va_nblocks; /* ditto */ 787 } else { 788 obj = 0; 789 gethrestime(&now); 790 gen = dmu_tx_get_txg(tx); 791 } 792 793 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 794 bonuslen = (obj_type == DMU_OT_SA) ? 795 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 796 797 /* 798 * Create a new DMU object. 799 */ 800 /* 801 * There's currently no mechanism for pre-reading the blocks that will 802 * be needed to allocate a new object, so we accept the small chance 803 * that there will be an i/o error and we will fail one of the 804 * assertions below. 805 */ 806 if (vap->va_type == VDIR) { 807 if (zfsvfs->z_replay) { 808 VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj, 809 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 810 obj_type, bonuslen, tx)); 811 } else { 812 obj = zap_create_norm(zfsvfs->z_os, 813 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 814 obj_type, bonuslen, tx); 815 } 816 } else { 817 if (zfsvfs->z_replay) { 818 VERIFY0(dmu_object_claim(zfsvfs->z_os, obj, 819 DMU_OT_PLAIN_FILE_CONTENTS, 0, 820 obj_type, bonuslen, tx)); 821 } else { 822 obj = dmu_object_alloc(zfsvfs->z_os, 823 DMU_OT_PLAIN_FILE_CONTENTS, 0, 824 obj_type, bonuslen, tx); 825 } 826 } 827 828 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 829 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 830 831 /* 832 * If this is the root, fix up the half-initialized parent pointer 833 * to reference the just-allocated physical data area. 834 */ 835 if (flag & IS_ROOT_NODE) { 836 dzp->z_id = obj; 837 } else { 838 dzp_pflags = dzp->z_pflags; 839 } 840 841 /* 842 * If parent is an xattr, so am I. 843 */ 844 if (dzp_pflags & ZFS_XATTR) { 845 flag |= IS_XATTR; 846 } 847 848 if (zfsvfs->z_use_fuids) 849 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 850 else 851 pflags = 0; 852 853 if (vap->va_type == VDIR) { 854 size = 2; /* contents ("." and "..") */ 855 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 856 } else { 857 size = links = 0; 858 } 859 860 if (vap->va_type == VBLK || vap->va_type == VCHR) { 861 rdev = zfs_expldev(vap->va_rdev); 862 } 863 864 parent = dzp->z_id; 865 mode = acl_ids->z_mode; 866 if (flag & IS_XATTR) 867 pflags |= ZFS_XATTR; 868 869 /* 870 * No execs denied will be deterimed when zfs_mode_compute() is called. 871 */ 872 pflags |= acl_ids->z_aclp->z_hints & 873 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 874 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 875 876 ZFS_TIME_ENCODE(&now, crtime); 877 ZFS_TIME_ENCODE(&now, ctime); 878 879 if (vap->va_mask & AT_ATIME) { 880 ZFS_TIME_ENCODE(&vap->va_atime, atime); 881 } else { 882 ZFS_TIME_ENCODE(&now, atime); 883 } 884 885 if (vap->va_mask & AT_MTIME) { 886 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 887 } else { 888 ZFS_TIME_ENCODE(&now, mtime); 889 } 890 891 /* Now add in all of the "SA" attributes */ 892 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 893 &sa_hdl)); 894 895 /* 896 * Setup the array of attributes to be replaced/set on the new file 897 * 898 * order for DMU_OT_ZNODE is critical since it needs to be constructed 899 * in the old znode_phys_t format. Don't change this ordering 900 */ 901 902 if (obj_type == DMU_OT_ZNODE) { 903 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 904 NULL, &atime, 16); 905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 906 NULL, &mtime, 16); 907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 908 NULL, &ctime, 16); 909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 910 NULL, &crtime, 16); 911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 912 NULL, &gen, 8); 913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 914 NULL, &mode, 8); 915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 916 NULL, &size, 8); 917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 918 NULL, &parent, 8); 919 } else { 920 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 921 NULL, &mode, 8); 922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 923 NULL, &size, 8); 924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 925 NULL, &gen, 8); 926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 927 &acl_ids->z_fuid, 8); 928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 929 &acl_ids->z_fgid, 8); 930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 931 NULL, &parent, 8); 932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 933 NULL, &pflags, 8); 934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 935 NULL, &atime, 16); 936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 937 NULL, &mtime, 16); 938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 939 NULL, &ctime, 16); 940 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 941 NULL, &crtime, 16); 942 } 943 944 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 945 946 if (obj_type == DMU_OT_ZNODE) { 947 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 948 &empty_xattr, 8); 949 } 950 if (obj_type == DMU_OT_ZNODE || 951 (vap->va_type == VBLK || vap->va_type == VCHR)) { 952 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 953 NULL, &rdev, 8); 954 955 } 956 if (obj_type == DMU_OT_ZNODE) { 957 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 958 NULL, &pflags, 8); 959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 960 &acl_ids->z_fuid, 8); 961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 962 &acl_ids->z_fgid, 8); 963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 964 sizeof (uint64_t) * 4); 965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 966 &acl_phys, sizeof (zfs_acl_phys_t)); 967 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 968 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 969 &acl_ids->z_aclp->z_acl_count, 8); 970 locate.cb_aclp = acl_ids->z_aclp; 971 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 972 zfs_acl_data_locator, &locate, 973 acl_ids->z_aclp->z_acl_bytes); 974 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 975 acl_ids->z_fuid, acl_ids->z_fgid); 976 } 977 978 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 979 980 if (!(flag & IS_ROOT_NODE)) { 981 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 982 ASSERT(*zpp != NULL); 983 } else { 984 /* 985 * If we are creating the root node, the "parent" we 986 * passed in is the znode for the root. 987 */ 988 *zpp = dzp; 989 990 (*zpp)->z_sa_hdl = sa_hdl; 991 } 992 993 (*zpp)->z_pflags = pflags; 994 (*zpp)->z_mode = mode; 995 996 if (vap->va_mask & AT_XVATTR) 997 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 998 999 if (obj_type == DMU_OT_ZNODE || 1000 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1001 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 1002 } 1003 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1004 } 1005 1006 /* 1007 * Update in-core attributes. It is assumed the caller will be doing an 1008 * sa_bulk_update to push the changes out. 1009 */ 1010 void 1011 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1012 { 1013 xoptattr_t *xoap; 1014 1015 xoap = xva_getxoptattr(xvap); 1016 ASSERT(xoap); 1017 1018 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1019 uint64_t times[2]; 1020 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1021 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1022 ×, sizeof (times), tx); 1023 XVA_SET_RTN(xvap, XAT_CREATETIME); 1024 } 1025 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1026 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1027 zp->z_pflags, tx); 1028 XVA_SET_RTN(xvap, XAT_READONLY); 1029 } 1030 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1031 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1032 zp->z_pflags, tx); 1033 XVA_SET_RTN(xvap, XAT_HIDDEN); 1034 } 1035 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1036 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1037 zp->z_pflags, tx); 1038 XVA_SET_RTN(xvap, XAT_SYSTEM); 1039 } 1040 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1041 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1042 zp->z_pflags, tx); 1043 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1044 } 1045 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1046 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1047 zp->z_pflags, tx); 1048 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1049 } 1050 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1051 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1052 zp->z_pflags, tx); 1053 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1054 } 1055 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1056 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1057 zp->z_pflags, tx); 1058 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1059 } 1060 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1061 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1062 zp->z_pflags, tx); 1063 XVA_SET_RTN(xvap, XAT_NODUMP); 1064 } 1065 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1066 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1067 zp->z_pflags, tx); 1068 XVA_SET_RTN(xvap, XAT_OPAQUE); 1069 } 1070 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1071 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1072 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1073 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1074 } 1075 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1076 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1077 zp->z_pflags, tx); 1078 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1079 } 1080 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1081 zfs_sa_set_scanstamp(zp, xvap, tx); 1082 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1083 } 1084 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1085 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1086 zp->z_pflags, tx); 1087 XVA_SET_RTN(xvap, XAT_REPARSE); 1088 } 1089 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1090 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1091 zp->z_pflags, tx); 1092 XVA_SET_RTN(xvap, XAT_OFFLINE); 1093 } 1094 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1095 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1096 zp->z_pflags, tx); 1097 XVA_SET_RTN(xvap, XAT_SPARSE); 1098 } 1099 } 1100 1101 int 1102 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1103 { 1104 dmu_object_info_t doi; 1105 dmu_buf_t *db; 1106 znode_t *zp; 1107 int err; 1108 sa_handle_t *hdl; 1109 1110 *zpp = NULL; 1111 1112 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1113 1114 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1115 if (err) { 1116 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1117 return (err); 1118 } 1119 1120 dmu_object_info_from_db(db, &doi); 1121 if (doi.doi_bonus_type != DMU_OT_SA && 1122 (doi.doi_bonus_type != DMU_OT_ZNODE || 1123 (doi.doi_bonus_type == DMU_OT_ZNODE && 1124 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1125 sa_buf_rele(db, NULL); 1126 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1127 return (SET_ERROR(EINVAL)); 1128 } 1129 1130 hdl = dmu_buf_get_user(db); 1131 if (hdl != NULL) { 1132 zp = sa_get_userdata(hdl); 1133 1134 1135 /* 1136 * Since "SA" does immediate eviction we 1137 * should never find a sa handle that doesn't 1138 * know about the znode. 1139 */ 1140 1141 ASSERT3P(zp, !=, NULL); 1142 1143 mutex_enter(&zp->z_lock); 1144 ASSERT3U(zp->z_id, ==, obj_num); 1145 if (zp->z_unlinked) { 1146 err = SET_ERROR(ENOENT); 1147 } else { 1148 VN_HOLD(ZTOV(zp)); 1149 *zpp = zp; 1150 err = 0; 1151 } 1152 sa_buf_rele(db, NULL); 1153 mutex_exit(&zp->z_lock); 1154 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1155 return (err); 1156 } 1157 1158 /* 1159 * Not found create new znode/vnode 1160 * but only if file exists. 1161 * 1162 * There is a small window where zfs_vget() could 1163 * find this object while a file create is still in 1164 * progress. This is checked for in zfs_znode_alloc() 1165 * 1166 * if zfs_znode_alloc() fails it will drop the hold on the 1167 * bonus buffer. 1168 */ 1169 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1170 doi.doi_bonus_type, NULL); 1171 if (zp == NULL) { 1172 err = SET_ERROR(ENOENT); 1173 } else { 1174 *zpp = zp; 1175 } 1176 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1177 return (err); 1178 } 1179 1180 int 1181 zfs_rezget(znode_t *zp) 1182 { 1183 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1184 dmu_object_info_t doi; 1185 dmu_buf_t *db; 1186 uint64_t obj_num = zp->z_id; 1187 uint64_t mode; 1188 sa_bulk_attr_t bulk[8]; 1189 int err; 1190 int count = 0; 1191 uint64_t gen; 1192 1193 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1194 1195 mutex_enter(&zp->z_acl_lock); 1196 if (zp->z_acl_cached) { 1197 zfs_acl_free(zp->z_acl_cached); 1198 zp->z_acl_cached = NULL; 1199 } 1200 1201 mutex_exit(&zp->z_acl_lock); 1202 ASSERT(zp->z_sa_hdl == NULL); 1203 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1204 if (err) { 1205 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1206 return (err); 1207 } 1208 1209 dmu_object_info_from_db(db, &doi); 1210 if (doi.doi_bonus_type != DMU_OT_SA && 1211 (doi.doi_bonus_type != DMU_OT_ZNODE || 1212 (doi.doi_bonus_type == DMU_OT_ZNODE && 1213 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1214 sa_buf_rele(db, NULL); 1215 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1216 return (SET_ERROR(EINVAL)); 1217 } 1218 1219 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1220 1221 /* reload cached values */ 1222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1223 &gen, sizeof (gen)); 1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1225 &zp->z_size, sizeof (zp->z_size)); 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1227 &zp->z_links, sizeof (zp->z_links)); 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1229 &zp->z_pflags, sizeof (zp->z_pflags)); 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1231 &zp->z_atime, sizeof (zp->z_atime)); 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1233 &zp->z_uid, sizeof (zp->z_uid)); 1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1235 &zp->z_gid, sizeof (zp->z_gid)); 1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1237 &mode, sizeof (mode)); 1238 1239 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1240 zfs_znode_dmu_fini(zp); 1241 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1242 return (SET_ERROR(EIO)); 1243 } 1244 1245 zp->z_mode = mode; 1246 1247 if (gen != zp->z_gen) { 1248 zfs_znode_dmu_fini(zp); 1249 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1250 return (SET_ERROR(EIO)); 1251 } 1252 1253 zp->z_unlinked = (zp->z_links == 0); 1254 zp->z_blksz = doi.doi_data_block_size; 1255 1256 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1257 1258 return (0); 1259 } 1260 1261 void 1262 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1263 { 1264 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1265 objset_t *os = zfsvfs->z_os; 1266 uint64_t obj = zp->z_id; 1267 uint64_t acl_obj = zfs_external_acl(zp); 1268 1269 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1270 if (acl_obj) { 1271 VERIFY(!zp->z_is_sa); 1272 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1273 } 1274 VERIFY(0 == dmu_object_free(os, obj, tx)); 1275 zfs_znode_dmu_fini(zp); 1276 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1277 zfs_znode_free(zp); 1278 } 1279 1280 void 1281 zfs_zinactive(znode_t *zp) 1282 { 1283 vnode_t *vp = ZTOV(zp); 1284 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1285 uint64_t z_id = zp->z_id; 1286 1287 ASSERT(zp->z_sa_hdl); 1288 1289 /* 1290 * Don't allow a zfs_zget() while were trying to release this znode 1291 */ 1292 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1293 1294 mutex_enter(&zp->z_lock); 1295 mutex_enter(&vp->v_lock); 1296 vp->v_count--; 1297 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1298 /* 1299 * If the hold count is greater than zero, somebody has 1300 * obtained a new reference on this znode while we were 1301 * processing it here, so we are done. If we still have 1302 * mapped pages then we are also done, since we don't 1303 * want to inactivate the znode until the pages get pushed. 1304 * 1305 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1306 * this seems like it would leave the znode hanging with 1307 * no chance to go inactive... 1308 */ 1309 mutex_exit(&vp->v_lock); 1310 mutex_exit(&zp->z_lock); 1311 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1312 return; 1313 } 1314 mutex_exit(&vp->v_lock); 1315 1316 /* 1317 * If this was the last reference to a file with no links, 1318 * remove the file from the file system. 1319 */ 1320 if (zp->z_unlinked) { 1321 mutex_exit(&zp->z_lock); 1322 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1323 zfs_rmnode(zp); 1324 return; 1325 } 1326 1327 mutex_exit(&zp->z_lock); 1328 zfs_znode_dmu_fini(zp); 1329 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1330 zfs_znode_free(zp); 1331 } 1332 1333 void 1334 zfs_znode_free(znode_t *zp) 1335 { 1336 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1337 1338 vn_invalid(ZTOV(zp)); 1339 1340 ASSERT(ZTOV(zp)->v_count == 0); 1341 1342 mutex_enter(&zfsvfs->z_znodes_lock); 1343 POINTER_INVALIDATE(&zp->z_zfsvfs); 1344 list_remove(&zfsvfs->z_all_znodes, zp); 1345 mutex_exit(&zfsvfs->z_znodes_lock); 1346 1347 if (zp->z_acl_cached) { 1348 zfs_acl_free(zp->z_acl_cached); 1349 zp->z_acl_cached = NULL; 1350 } 1351 1352 kmem_cache_free(znode_cache, zp); 1353 1354 VFS_RELE(zfsvfs->z_vfs); 1355 } 1356 1357 void 1358 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1359 uint64_t ctime[2], boolean_t have_tx) 1360 { 1361 timestruc_t now; 1362 1363 gethrestime(&now); 1364 1365 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1366 zp->z_atime_dirty = 0; 1367 zp->z_seq++; 1368 } else { 1369 zp->z_atime_dirty = 1; 1370 } 1371 1372 if (flag & AT_ATIME) { 1373 ZFS_TIME_ENCODE(&now, zp->z_atime); 1374 } 1375 1376 if (flag & AT_MTIME) { 1377 ZFS_TIME_ENCODE(&now, mtime); 1378 if (zp->z_zfsvfs->z_use_fuids) { 1379 zp->z_pflags |= (ZFS_ARCHIVE | 1380 ZFS_AV_MODIFIED); 1381 } 1382 } 1383 1384 if (flag & AT_CTIME) { 1385 ZFS_TIME_ENCODE(&now, ctime); 1386 if (zp->z_zfsvfs->z_use_fuids) 1387 zp->z_pflags |= ZFS_ARCHIVE; 1388 } 1389 } 1390 1391 /* 1392 * Grow the block size for a file. 1393 * 1394 * IN: zp - znode of file to free data in. 1395 * size - requested block size 1396 * tx - open transaction. 1397 * 1398 * NOTE: this function assumes that the znode is write locked. 1399 */ 1400 void 1401 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1402 { 1403 int error; 1404 u_longlong_t dummy; 1405 1406 if (size <= zp->z_blksz) 1407 return; 1408 /* 1409 * If the file size is already greater than the current blocksize, 1410 * we will not grow. If there is more than one block in a file, 1411 * the blocksize cannot change. 1412 */ 1413 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1414 return; 1415 1416 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1417 size, 0, tx); 1418 1419 if (error == ENOTSUP) 1420 return; 1421 ASSERT0(error); 1422 1423 /* What blocksize did we actually get? */ 1424 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1425 } 1426 1427 /* 1428 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1429 * be calling back into the fs for a putpage(). E.g.: when truncating 1430 * a file, the pages being "thrown away* don't need to be written out. 1431 */ 1432 /* ARGSUSED */ 1433 static int 1434 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1435 int flags, cred_t *cr) 1436 { 1437 ASSERT(0); 1438 return (0); 1439 } 1440 1441 /* 1442 * Increase the file length 1443 * 1444 * IN: zp - znode of file to free data in. 1445 * end - new end-of-file 1446 * 1447 * RETURN: 0 on success, error code on failure 1448 */ 1449 static int 1450 zfs_extend(znode_t *zp, uint64_t end) 1451 { 1452 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1453 dmu_tx_t *tx; 1454 rl_t *rl; 1455 uint64_t newblksz; 1456 int error; 1457 1458 /* 1459 * We will change zp_size, lock the whole file. 1460 */ 1461 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1462 1463 /* 1464 * Nothing to do if file already at desired length. 1465 */ 1466 if (end <= zp->z_size) { 1467 zfs_range_unlock(rl); 1468 return (0); 1469 } 1470 tx = dmu_tx_create(zfsvfs->z_os); 1471 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1472 zfs_sa_upgrade_txholds(tx, zp); 1473 if (end > zp->z_blksz && 1474 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1475 /* 1476 * We are growing the file past the current block size. 1477 */ 1478 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1479 ASSERT(!ISP2(zp->z_blksz)); 1480 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1481 } else { 1482 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1483 } 1484 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1485 } else { 1486 newblksz = 0; 1487 } 1488 1489 error = dmu_tx_assign(tx, TXG_WAIT); 1490 if (error) { 1491 dmu_tx_abort(tx); 1492 zfs_range_unlock(rl); 1493 return (error); 1494 } 1495 1496 if (newblksz) 1497 zfs_grow_blocksize(zp, newblksz, tx); 1498 1499 zp->z_size = end; 1500 1501 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1502 &zp->z_size, sizeof (zp->z_size), tx)); 1503 1504 zfs_range_unlock(rl); 1505 1506 dmu_tx_commit(tx); 1507 1508 return (0); 1509 } 1510 1511 /* 1512 * Free space in a file. 1513 * 1514 * IN: zp - znode of file to free data in. 1515 * off - start of section to free. 1516 * len - length of section to free. 1517 * 1518 * RETURN: 0 on success, error code on failure 1519 */ 1520 static int 1521 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1522 { 1523 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1524 rl_t *rl; 1525 int error; 1526 1527 /* 1528 * Lock the range being freed. 1529 */ 1530 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1531 1532 /* 1533 * Nothing to do if file already at desired length. 1534 */ 1535 if (off >= zp->z_size) { 1536 zfs_range_unlock(rl); 1537 return (0); 1538 } 1539 1540 if (off + len > zp->z_size) 1541 len = zp->z_size - off; 1542 1543 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1544 1545 zfs_range_unlock(rl); 1546 1547 return (error); 1548 } 1549 1550 /* 1551 * Truncate a file 1552 * 1553 * IN: zp - znode of file to free data in. 1554 * end - new end-of-file. 1555 * 1556 * RETURN: 0 on success, error code on failure 1557 */ 1558 static int 1559 zfs_trunc(znode_t *zp, uint64_t end) 1560 { 1561 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1562 vnode_t *vp = ZTOV(zp); 1563 dmu_tx_t *tx; 1564 rl_t *rl; 1565 int error; 1566 sa_bulk_attr_t bulk[2]; 1567 int count = 0; 1568 1569 /* 1570 * We will change zp_size, lock the whole file. 1571 */ 1572 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1573 1574 /* 1575 * Nothing to do if file already at desired length. 1576 */ 1577 if (end >= zp->z_size) { 1578 zfs_range_unlock(rl); 1579 return (0); 1580 } 1581 1582 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1583 if (error) { 1584 zfs_range_unlock(rl); 1585 return (error); 1586 } 1587 tx = dmu_tx_create(zfsvfs->z_os); 1588 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1589 zfs_sa_upgrade_txholds(tx, zp); 1590 error = dmu_tx_assign(tx, TXG_WAIT); 1591 if (error) { 1592 dmu_tx_abort(tx); 1593 zfs_range_unlock(rl); 1594 return (error); 1595 } 1596 1597 zp->z_size = end; 1598 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1599 NULL, &zp->z_size, sizeof (zp->z_size)); 1600 1601 if (end == 0) { 1602 zp->z_pflags &= ~ZFS_SPARSE; 1603 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1604 NULL, &zp->z_pflags, 8); 1605 } 1606 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1607 1608 dmu_tx_commit(tx); 1609 1610 /* 1611 * Clear any mapped pages in the truncated region. This has to 1612 * happen outside of the transaction to avoid the possibility of 1613 * a deadlock with someone trying to push a page that we are 1614 * about to invalidate. 1615 */ 1616 if (vn_has_cached_data(vp)) { 1617 page_t *pp; 1618 uint64_t start = end & PAGEMASK; 1619 int poff = end & PAGEOFFSET; 1620 1621 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1622 /* 1623 * We need to zero a partial page. 1624 */ 1625 pagezero(pp, poff, PAGESIZE - poff); 1626 start += PAGESIZE; 1627 page_unlock(pp); 1628 } 1629 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1630 B_INVAL | B_TRUNC, NULL); 1631 ASSERT(error == 0); 1632 } 1633 1634 zfs_range_unlock(rl); 1635 1636 return (0); 1637 } 1638 1639 /* 1640 * Free space in a file 1641 * 1642 * IN: zp - znode of file to free data in. 1643 * off - start of range 1644 * len - end of range (0 => EOF) 1645 * flag - current file open mode flags. 1646 * log - TRUE if this action should be logged 1647 * 1648 * RETURN: 0 on success, error code on failure 1649 */ 1650 int 1651 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1652 { 1653 vnode_t *vp = ZTOV(zp); 1654 dmu_tx_t *tx; 1655 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1656 zilog_t *zilog = zfsvfs->z_log; 1657 uint64_t mode; 1658 uint64_t mtime[2], ctime[2]; 1659 sa_bulk_attr_t bulk[3]; 1660 int count = 0; 1661 int error; 1662 1663 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1664 sizeof (mode))) != 0) 1665 return (error); 1666 1667 if (off > zp->z_size) { 1668 error = zfs_extend(zp, off+len); 1669 if (error == 0 && log) 1670 goto log; 1671 else 1672 return (error); 1673 } 1674 1675 /* 1676 * Check for any locks in the region to be freed. 1677 */ 1678 1679 if (MANDLOCK(vp, (mode_t)mode)) { 1680 uint64_t length = (len ? len : zp->z_size - off); 1681 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1682 return (error); 1683 } 1684 1685 if (len == 0) { 1686 error = zfs_trunc(zp, off); 1687 } else { 1688 if ((error = zfs_free_range(zp, off, len)) == 0 && 1689 off + len > zp->z_size) 1690 error = zfs_extend(zp, off+len); 1691 } 1692 if (error || !log) 1693 return (error); 1694 log: 1695 tx = dmu_tx_create(zfsvfs->z_os); 1696 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1697 zfs_sa_upgrade_txholds(tx, zp); 1698 error = dmu_tx_assign(tx, TXG_WAIT); 1699 if (error) { 1700 dmu_tx_abort(tx); 1701 return (error); 1702 } 1703 1704 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1705 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1706 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1707 NULL, &zp->z_pflags, 8); 1708 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1709 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1710 ASSERT(error == 0); 1711 1712 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1713 1714 dmu_tx_commit(tx); 1715 return (0); 1716 } 1717 1718 void 1719 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1720 { 1721 zfsvfs_t zfsvfs; 1722 uint64_t moid, obj, sa_obj, version; 1723 uint64_t sense = ZFS_CASE_SENSITIVE; 1724 uint64_t norm = 0; 1725 nvpair_t *elem; 1726 int error; 1727 int i; 1728 znode_t *rootzp = NULL; 1729 vnode_t *vp; 1730 vattr_t vattr; 1731 znode_t *zp; 1732 zfs_acl_ids_t acl_ids; 1733 1734 /* 1735 * First attempt to create master node. 1736 */ 1737 /* 1738 * In an empty objset, there are no blocks to read and thus 1739 * there can be no i/o errors (which we assert below). 1740 */ 1741 moid = MASTER_NODE_OBJ; 1742 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1743 DMU_OT_NONE, 0, tx); 1744 ASSERT(error == 0); 1745 1746 /* 1747 * Set starting attributes. 1748 */ 1749 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1750 elem = NULL; 1751 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1752 /* For the moment we expect all zpl props to be uint64_ts */ 1753 uint64_t val; 1754 char *name; 1755 1756 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1757 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1758 name = nvpair_name(elem); 1759 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1760 if (val < version) 1761 version = val; 1762 } else { 1763 error = zap_update(os, moid, name, 8, 1, &val, tx); 1764 } 1765 ASSERT(error == 0); 1766 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1767 norm = val; 1768 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1769 sense = val; 1770 } 1771 ASSERT(version != 0); 1772 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1773 1774 /* 1775 * Create zap object used for SA attribute registration 1776 */ 1777 1778 if (version >= ZPL_VERSION_SA) { 1779 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1780 DMU_OT_NONE, 0, tx); 1781 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1782 ASSERT(error == 0); 1783 } else { 1784 sa_obj = 0; 1785 } 1786 /* 1787 * Create a delete queue. 1788 */ 1789 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1790 1791 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1792 ASSERT(error == 0); 1793 1794 /* 1795 * Create root znode. Create minimal znode/vnode/zfsvfs 1796 * to allow zfs_mknode to work. 1797 */ 1798 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1799 vattr.va_type = VDIR; 1800 vattr.va_mode = S_IFDIR|0755; 1801 vattr.va_uid = crgetuid(cr); 1802 vattr.va_gid = crgetgid(cr); 1803 1804 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1805 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1806 rootzp->z_moved = 0; 1807 rootzp->z_unlinked = 0; 1808 rootzp->z_atime_dirty = 0; 1809 rootzp->z_is_sa = USE_SA(version, os); 1810 1811 vp = ZTOV(rootzp); 1812 vn_reinit(vp); 1813 vp->v_type = VDIR; 1814 1815 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1816 1817 zfsvfs.z_os = os; 1818 zfsvfs.z_parent = &zfsvfs; 1819 zfsvfs.z_version = version; 1820 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1821 zfsvfs.z_use_sa = USE_SA(version, os); 1822 zfsvfs.z_norm = norm; 1823 1824 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1825 &zfsvfs.z_attr_table); 1826 1827 ASSERT(error == 0); 1828 1829 /* 1830 * Fold case on file systems that are always or sometimes case 1831 * insensitive. 1832 */ 1833 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1834 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1835 1836 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1837 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1838 offsetof(znode_t, z_link_node)); 1839 1840 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1841 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1842 1843 rootzp->z_zfsvfs = &zfsvfs; 1844 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1845 cr, NULL, &acl_ids)); 1846 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1847 ASSERT3P(zp, ==, rootzp); 1848 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1849 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1850 ASSERT(error == 0); 1851 zfs_acl_ids_free(&acl_ids); 1852 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1853 1854 ZTOV(rootzp)->v_count = 0; 1855 sa_handle_destroy(rootzp->z_sa_hdl); 1856 kmem_cache_free(znode_cache, rootzp); 1857 1858 /* 1859 * Create shares directory 1860 */ 1861 1862 error = zfs_create_share_dir(&zfsvfs, tx); 1863 1864 ASSERT(error == 0); 1865 1866 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1867 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1868 } 1869 1870 #endif /* _KERNEL */ 1871 1872 static int 1873 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1874 { 1875 uint64_t sa_obj = 0; 1876 int error; 1877 1878 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1879 if (error != 0 && error != ENOENT) 1880 return (error); 1881 1882 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1883 return (error); 1884 } 1885 1886 static int 1887 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1888 dmu_buf_t **db, void *tag) 1889 { 1890 dmu_object_info_t doi; 1891 int error; 1892 1893 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) 1894 return (error); 1895 1896 dmu_object_info_from_db(*db, &doi); 1897 if ((doi.doi_bonus_type != DMU_OT_SA && 1898 doi.doi_bonus_type != DMU_OT_ZNODE) || 1899 doi.doi_bonus_type == DMU_OT_ZNODE && 1900 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1901 sa_buf_rele(*db, tag); 1902 return (SET_ERROR(ENOTSUP)); 1903 } 1904 1905 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1906 if (error != 0) { 1907 sa_buf_rele(*db, tag); 1908 return (error); 1909 } 1910 1911 return (0); 1912 } 1913 1914 void 1915 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) 1916 { 1917 sa_handle_destroy(hdl); 1918 sa_buf_rele(db, tag); 1919 } 1920 1921 /* 1922 * Given an object number, return its parent object number and whether 1923 * or not the object is an extended attribute directory. 1924 */ 1925 static int 1926 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, 1927 uint64_t *pobjp, int *is_xattrdir) 1928 { 1929 uint64_t parent; 1930 uint64_t pflags; 1931 uint64_t mode; 1932 uint64_t parent_mode; 1933 sa_bulk_attr_t bulk[3]; 1934 sa_handle_t *sa_hdl; 1935 dmu_buf_t *sa_db; 1936 int count = 0; 1937 int error; 1938 1939 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1940 &parent, sizeof (parent)); 1941 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1942 &pflags, sizeof (pflags)); 1943 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1944 &mode, sizeof (mode)); 1945 1946 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1947 return (error); 1948 1949 /* 1950 * When a link is removed its parent pointer is not changed and will 1951 * be invalid. There are two cases where a link is removed but the 1952 * file stays around, when it goes to the delete queue and when there 1953 * are additional links. 1954 */ 1955 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); 1956 if (error != 0) 1957 return (error); 1958 1959 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); 1960 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 1961 if (error != 0) 1962 return (error); 1963 1964 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1965 1966 /* 1967 * Extended attributes can be applied to files, directories, etc. 1968 * Otherwise the parent must be a directory. 1969 */ 1970 if (!*is_xattrdir && !S_ISDIR(parent_mode)) 1971 return (SET_ERROR(EINVAL)); 1972 1973 *pobjp = parent; 1974 1975 return (0); 1976 } 1977 1978 /* 1979 * Given an object number, return some zpl level statistics 1980 */ 1981 static int 1982 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 1983 zfs_stat_t *sb) 1984 { 1985 sa_bulk_attr_t bulk[4]; 1986 int count = 0; 1987 1988 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1989 &sb->zs_mode, sizeof (sb->zs_mode)); 1990 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 1991 &sb->zs_gen, sizeof (sb->zs_gen)); 1992 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 1993 &sb->zs_links, sizeof (sb->zs_links)); 1994 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 1995 &sb->zs_ctime, sizeof (sb->zs_ctime)); 1996 1997 return (sa_bulk_lookup(hdl, bulk, count)); 1998 } 1999 2000 static int 2001 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 2002 sa_attr_type_t *sa_table, char *buf, int len) 2003 { 2004 sa_handle_t *sa_hdl; 2005 sa_handle_t *prevhdl = NULL; 2006 dmu_buf_t *prevdb = NULL; 2007 dmu_buf_t *sa_db = NULL; 2008 char *path = buf + len - 1; 2009 int error; 2010 2011 *path = '\0'; 2012 sa_hdl = hdl; 2013 2014 for (;;) { 2015 uint64_t pobj; 2016 char component[MAXNAMELEN + 2]; 2017 size_t complen; 2018 int is_xattrdir; 2019 2020 if (prevdb) 2021 zfs_release_sa_handle(prevhdl, prevdb, FTAG); 2022 2023 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, 2024 &is_xattrdir)) != 0) 2025 break; 2026 2027 if (pobj == obj) { 2028 if (path[0] != '/') 2029 *--path = '/'; 2030 break; 2031 } 2032 2033 component[0] = '/'; 2034 if (is_xattrdir) { 2035 (void) sprintf(component + 1, "<xattrdir>"); 2036 } else { 2037 error = zap_value_search(osp, pobj, obj, 2038 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2039 if (error != 0) 2040 break; 2041 } 2042 2043 complen = strlen(component); 2044 path -= complen; 2045 ASSERT(path >= buf); 2046 bcopy(component, path, complen); 2047 obj = pobj; 2048 2049 if (sa_hdl != hdl) { 2050 prevhdl = sa_hdl; 2051 prevdb = sa_db; 2052 } 2053 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); 2054 if (error != 0) { 2055 sa_hdl = prevhdl; 2056 sa_db = prevdb; 2057 break; 2058 } 2059 } 2060 2061 if (sa_hdl != NULL && sa_hdl != hdl) { 2062 ASSERT(sa_db != NULL); 2063 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 2064 } 2065 2066 if (error == 0) 2067 (void) memmove(buf, path, buf + len - path); 2068 2069 return (error); 2070 } 2071 2072 int 2073 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2074 { 2075 sa_attr_type_t *sa_table; 2076 sa_handle_t *hdl; 2077 dmu_buf_t *db; 2078 int error; 2079 2080 error = zfs_sa_setup(osp, &sa_table); 2081 if (error != 0) 2082 return (error); 2083 2084 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2085 if (error != 0) 2086 return (error); 2087 2088 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2089 2090 zfs_release_sa_handle(hdl, db, FTAG); 2091 return (error); 2092 } 2093 2094 int 2095 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2096 char *buf, int len) 2097 { 2098 char *path = buf + len - 1; 2099 sa_attr_type_t *sa_table; 2100 sa_handle_t *hdl; 2101 dmu_buf_t *db; 2102 int error; 2103 2104 *path = '\0'; 2105 2106 error = zfs_sa_setup(osp, &sa_table); 2107 if (error != 0) 2108 return (error); 2109 2110 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2111 if (error != 0) 2112 return (error); 2113 2114 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2115 if (error != 0) { 2116 zfs_release_sa_handle(hdl, db, FTAG); 2117 return (error); 2118 } 2119 2120 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2121 2122 zfs_release_sa_handle(hdl, db, FTAG); 2123 return (error); 2124 } 2125