1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/dnode.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/kidmap.h> 58 #endif /* _KERNEL */ 59 60 #include <sys/dmu.h> 61 #include <sys/refcount.h> 62 #include <sys/stat.h> 63 #include <sys/zap.h> 64 #include <sys/zfs_znode.h> 65 #include <sys/sa.h> 66 #include <sys/zfs_sa.h> 67 #include <sys/zfs_stat.h> 68 69 #include "zfs_prop.h" 70 #include "zfs_comutil.h" 71 72 /* 73 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 74 * turned on when DEBUG is also defined. 75 */ 76 #ifdef DEBUG 77 #define ZNODE_STATS 78 #endif /* DEBUG */ 79 80 #ifdef ZNODE_STATS 81 #define ZNODE_STAT_ADD(stat) ((stat)++) 82 #else 83 #define ZNODE_STAT_ADD(stat) /* nothing */ 84 #endif /* ZNODE_STATS */ 85 86 /* 87 * Functions needed for userland (ie: libzpool) are not put under 88 * #ifdef_KERNEL; the rest of the functions have dependencies 89 * (such as VFS logic) that will not compile easily in userland. 90 */ 91 #ifdef _KERNEL 92 /* 93 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 94 * be freed before it can be safely accessed. 95 */ 96 krwlock_t zfsvfs_lock; 97 98 static kmem_cache_t *znode_cache = NULL; 99 100 /*ARGSUSED*/ 101 static void 102 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 103 { 104 /* 105 * We should never drop all dbuf refs without first clearing 106 * the eviction callback. 107 */ 108 panic("evicting znode %p\n", user_ptr); 109 } 110 111 /*ARGSUSED*/ 112 static int 113 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 114 { 115 znode_t *zp = buf; 116 117 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 118 119 zp->z_vnode = vn_alloc(kmflags); 120 if (zp->z_vnode == NULL) { 121 return (-1); 122 } 123 ZTOV(zp)->v_data = zp; 124 125 list_link_init(&zp->z_link_node); 126 127 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 128 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 129 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 130 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 131 132 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 133 avl_create(&zp->z_range_avl, zfs_range_compare, 134 sizeof (rl_t), offsetof(rl_t, r_node)); 135 136 zp->z_dirlocks = NULL; 137 zp->z_acl_cached = NULL; 138 zp->z_moved = 0; 139 return (0); 140 } 141 142 /*ARGSUSED*/ 143 static void 144 zfs_znode_cache_destructor(void *buf, void *arg) 145 { 146 znode_t *zp = buf; 147 148 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 149 ASSERT(ZTOV(zp)->v_data == zp); 150 vn_free(ZTOV(zp)); 151 ASSERT(!list_link_active(&zp->z_link_node)); 152 mutex_destroy(&zp->z_lock); 153 rw_destroy(&zp->z_parent_lock); 154 rw_destroy(&zp->z_name_lock); 155 mutex_destroy(&zp->z_acl_lock); 156 avl_destroy(&zp->z_range_avl); 157 mutex_destroy(&zp->z_range_lock); 158 159 ASSERT(zp->z_dirlocks == NULL); 160 ASSERT(zp->z_acl_cached == NULL); 161 } 162 163 #ifdef ZNODE_STATS 164 static struct { 165 uint64_t zms_zfsvfs_invalid; 166 uint64_t zms_zfsvfs_recheck1; 167 uint64_t zms_zfsvfs_unmounted; 168 uint64_t zms_zfsvfs_recheck2; 169 uint64_t zms_obj_held; 170 uint64_t zms_vnode_locked; 171 uint64_t zms_not_only_dnlc; 172 } znode_move_stats; 173 #endif /* ZNODE_STATS */ 174 175 static void 176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 177 { 178 vnode_t *vp; 179 180 /* Copy fields. */ 181 nzp->z_zfsvfs = ozp->z_zfsvfs; 182 183 /* Swap vnodes. */ 184 vp = nzp->z_vnode; 185 nzp->z_vnode = ozp->z_vnode; 186 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 187 ZTOV(ozp)->v_data = ozp; 188 ZTOV(nzp)->v_data = nzp; 189 190 nzp->z_id = ozp->z_id; 191 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 192 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 193 nzp->z_unlinked = ozp->z_unlinked; 194 nzp->z_atime_dirty = ozp->z_atime_dirty; 195 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 196 nzp->z_blksz = ozp->z_blksz; 197 nzp->z_seq = ozp->z_seq; 198 nzp->z_mapcnt = ozp->z_mapcnt; 199 nzp->z_gen = ozp->z_gen; 200 nzp->z_sync_cnt = ozp->z_sync_cnt; 201 nzp->z_is_sa = ozp->z_is_sa; 202 nzp->z_sa_hdl = ozp->z_sa_hdl; 203 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 204 nzp->z_links = ozp->z_links; 205 nzp->z_size = ozp->z_size; 206 nzp->z_pflags = ozp->z_pflags; 207 nzp->z_uid = ozp->z_uid; 208 nzp->z_gid = ozp->z_gid; 209 nzp->z_mode = ozp->z_mode; 210 211 /* 212 * Since this is just an idle znode and kmem is already dealing with 213 * memory pressure, release any cached ACL. 214 */ 215 if (ozp->z_acl_cached) { 216 zfs_acl_free(ozp->z_acl_cached); 217 ozp->z_acl_cached = NULL; 218 } 219 220 sa_set_userp(nzp->z_sa_hdl, nzp); 221 222 /* 223 * Invalidate the original znode by clearing fields that provide a 224 * pointer back to the znode. Set the low bit of the vfs pointer to 225 * ensure that zfs_znode_move() recognizes the znode as invalid in any 226 * subsequent callback. 227 */ 228 ozp->z_sa_hdl = NULL; 229 POINTER_INVALIDATE(&ozp->z_zfsvfs); 230 231 /* 232 * Mark the znode. 233 */ 234 nzp->z_moved = 1; 235 ozp->z_moved = (uint8_t)-1; 236 } 237 238 /*ARGSUSED*/ 239 static kmem_cbrc_t 240 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 241 { 242 znode_t *ozp = buf, *nzp = newbuf; 243 zfsvfs_t *zfsvfs; 244 vnode_t *vp; 245 246 /* 247 * The znode is on the file system's list of known znodes if the vfs 248 * pointer is valid. We set the low bit of the vfs pointer when freeing 249 * the znode to invalidate it, and the memory patterns written by kmem 250 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 251 * created znode sets the vfs pointer last of all to indicate that the 252 * znode is known and in a valid state to be moved by this function. 253 */ 254 zfsvfs = ozp->z_zfsvfs; 255 if (!POINTER_IS_VALID(zfsvfs)) { 256 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 257 return (KMEM_CBRC_DONT_KNOW); 258 } 259 260 /* 261 * Close a small window in which it's possible that the filesystem could 262 * be unmounted and freed, and zfsvfs, though valid in the previous 263 * statement, could point to unrelated memory by the time we try to 264 * prevent the filesystem from being unmounted. 265 */ 266 rw_enter(&zfsvfs_lock, RW_WRITER); 267 if (zfsvfs != ozp->z_zfsvfs) { 268 rw_exit(&zfsvfs_lock); 269 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 270 return (KMEM_CBRC_DONT_KNOW); 271 } 272 273 /* 274 * If the znode is still valid, then so is the file system. We know that 275 * no valid file system can be freed while we hold zfsvfs_lock, so we 276 * can safely ensure that the filesystem is not and will not be 277 * unmounted. The next statement is equivalent to ZFS_ENTER(). 278 */ 279 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 280 if (zfsvfs->z_unmounted) { 281 ZFS_EXIT(zfsvfs); 282 rw_exit(&zfsvfs_lock); 283 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 284 return (KMEM_CBRC_DONT_KNOW); 285 } 286 rw_exit(&zfsvfs_lock); 287 288 mutex_enter(&zfsvfs->z_znodes_lock); 289 /* 290 * Recheck the vfs pointer in case the znode was removed just before 291 * acquiring the lock. 292 */ 293 if (zfsvfs != ozp->z_zfsvfs) { 294 mutex_exit(&zfsvfs->z_znodes_lock); 295 ZFS_EXIT(zfsvfs); 296 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 297 return (KMEM_CBRC_DONT_KNOW); 298 } 299 300 /* 301 * At this point we know that as long as we hold z_znodes_lock, the 302 * znode cannot be freed and fields within the znode can be safely 303 * accessed. Now, prevent a race with zfs_zget(). 304 */ 305 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 306 mutex_exit(&zfsvfs->z_znodes_lock); 307 ZFS_EXIT(zfsvfs); 308 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 309 return (KMEM_CBRC_LATER); 310 } 311 312 vp = ZTOV(ozp); 313 if (mutex_tryenter(&vp->v_lock) == 0) { 314 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 315 mutex_exit(&zfsvfs->z_znodes_lock); 316 ZFS_EXIT(zfsvfs); 317 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 318 return (KMEM_CBRC_LATER); 319 } 320 321 /* Only move znodes that are referenced _only_ by the DNLC. */ 322 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 323 mutex_exit(&vp->v_lock); 324 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 325 mutex_exit(&zfsvfs->z_znodes_lock); 326 ZFS_EXIT(zfsvfs); 327 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 328 return (KMEM_CBRC_LATER); 329 } 330 331 /* 332 * The znode is known and in a valid state to move. We're holding the 333 * locks needed to execute the critical section. 334 */ 335 zfs_znode_move_impl(ozp, nzp); 336 mutex_exit(&vp->v_lock); 337 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 338 339 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 340 mutex_exit(&zfsvfs->z_znodes_lock); 341 ZFS_EXIT(zfsvfs); 342 343 return (KMEM_CBRC_YES); 344 } 345 346 void 347 zfs_znode_init(void) 348 { 349 /* 350 * Initialize zcache 351 */ 352 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 353 ASSERT(znode_cache == NULL); 354 znode_cache = kmem_cache_create("zfs_znode_cache", 355 sizeof (znode_t), 0, zfs_znode_cache_constructor, 356 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 357 kmem_cache_set_move(znode_cache, zfs_znode_move); 358 } 359 360 void 361 zfs_znode_fini(void) 362 { 363 /* 364 * Cleanup vfs & vnode ops 365 */ 366 zfs_remove_op_tables(); 367 368 /* 369 * Cleanup zcache 370 */ 371 if (znode_cache) 372 kmem_cache_destroy(znode_cache); 373 znode_cache = NULL; 374 rw_destroy(&zfsvfs_lock); 375 } 376 377 struct vnodeops *zfs_dvnodeops; 378 struct vnodeops *zfs_fvnodeops; 379 struct vnodeops *zfs_symvnodeops; 380 struct vnodeops *zfs_xdvnodeops; 381 struct vnodeops *zfs_evnodeops; 382 struct vnodeops *zfs_sharevnodeops; 383 384 void 385 zfs_remove_op_tables() 386 { 387 /* 388 * Remove vfs ops 389 */ 390 ASSERT(zfsfstype); 391 (void) vfs_freevfsops_by_type(zfsfstype); 392 zfsfstype = 0; 393 394 /* 395 * Remove vnode ops 396 */ 397 if (zfs_dvnodeops) 398 vn_freevnodeops(zfs_dvnodeops); 399 if (zfs_fvnodeops) 400 vn_freevnodeops(zfs_fvnodeops); 401 if (zfs_symvnodeops) 402 vn_freevnodeops(zfs_symvnodeops); 403 if (zfs_xdvnodeops) 404 vn_freevnodeops(zfs_xdvnodeops); 405 if (zfs_evnodeops) 406 vn_freevnodeops(zfs_evnodeops); 407 if (zfs_sharevnodeops) 408 vn_freevnodeops(zfs_sharevnodeops); 409 410 zfs_dvnodeops = NULL; 411 zfs_fvnodeops = NULL; 412 zfs_symvnodeops = NULL; 413 zfs_xdvnodeops = NULL; 414 zfs_evnodeops = NULL; 415 zfs_sharevnodeops = NULL; 416 } 417 418 extern const fs_operation_def_t zfs_dvnodeops_template[]; 419 extern const fs_operation_def_t zfs_fvnodeops_template[]; 420 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 421 extern const fs_operation_def_t zfs_symvnodeops_template[]; 422 extern const fs_operation_def_t zfs_evnodeops_template[]; 423 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 424 425 int 426 zfs_create_op_tables() 427 { 428 int error; 429 430 /* 431 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 432 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 433 * In this case we just return as the ops vectors are already set up. 434 */ 435 if (zfs_dvnodeops) 436 return (0); 437 438 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 439 &zfs_dvnodeops); 440 if (error) 441 return (error); 442 443 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 444 &zfs_fvnodeops); 445 if (error) 446 return (error); 447 448 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 449 &zfs_symvnodeops); 450 if (error) 451 return (error); 452 453 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 454 &zfs_xdvnodeops); 455 if (error) 456 return (error); 457 458 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 459 &zfs_evnodeops); 460 if (error) 461 return (error); 462 463 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 464 &zfs_sharevnodeops); 465 466 return (error); 467 } 468 469 int 470 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 471 { 472 zfs_acl_ids_t acl_ids; 473 vattr_t vattr; 474 znode_t *sharezp; 475 vnode_t *vp; 476 znode_t *zp; 477 int error; 478 479 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 480 vattr.va_type = VDIR; 481 vattr.va_mode = S_IFDIR|0555; 482 vattr.va_uid = crgetuid(kcred); 483 vattr.va_gid = crgetgid(kcred); 484 485 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 486 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 487 sharezp->z_moved = 0; 488 sharezp->z_unlinked = 0; 489 sharezp->z_atime_dirty = 0; 490 sharezp->z_zfsvfs = zfsvfs; 491 sharezp->z_is_sa = zfsvfs->z_use_sa; 492 493 vp = ZTOV(sharezp); 494 vn_reinit(vp); 495 vp->v_type = VDIR; 496 497 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 498 kcred, NULL, &acl_ids)); 499 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 500 ASSERT3P(zp, ==, sharezp); 501 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 502 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 503 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 504 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 505 zfsvfs->z_shares_dir = sharezp->z_id; 506 507 zfs_acl_ids_free(&acl_ids); 508 ZTOV(sharezp)->v_count = 0; 509 sa_handle_destroy(sharezp->z_sa_hdl); 510 kmem_cache_free(znode_cache, sharezp); 511 512 return (error); 513 } 514 515 /* 516 * define a couple of values we need available 517 * for both 64 and 32 bit environments. 518 */ 519 #ifndef NBITSMINOR64 520 #define NBITSMINOR64 32 521 #endif 522 #ifndef MAXMAJ64 523 #define MAXMAJ64 0xffffffffUL 524 #endif 525 #ifndef MAXMIN64 526 #define MAXMIN64 0xffffffffUL 527 #endif 528 529 /* 530 * Create special expldev for ZFS private use. 531 * Can't use standard expldev since it doesn't do 532 * what we want. The standard expldev() takes a 533 * dev32_t in LP64 and expands it to a long dev_t. 534 * We need an interface that takes a dev32_t in ILP32 535 * and expands it to a long dev_t. 536 */ 537 static uint64_t 538 zfs_expldev(dev_t dev) 539 { 540 #ifndef _LP64 541 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 542 return (((uint64_t)major << NBITSMINOR64) | 543 ((minor_t)dev & MAXMIN32)); 544 #else 545 return (dev); 546 #endif 547 } 548 549 /* 550 * Special cmpldev for ZFS private use. 551 * Can't use standard cmpldev since it takes 552 * a long dev_t and compresses it to dev32_t in 553 * LP64. We need to do a compaction of a long dev_t 554 * to a dev32_t in ILP32. 555 */ 556 dev_t 557 zfs_cmpldev(uint64_t dev) 558 { 559 #ifndef _LP64 560 minor_t minor = (minor_t)dev & MAXMIN64; 561 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 562 563 if (major > MAXMAJ32 || minor > MAXMIN32) 564 return (NODEV32); 565 566 return (((dev32_t)major << NBITSMINOR32) | minor); 567 #else 568 return (dev); 569 #endif 570 } 571 572 static void 573 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 574 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 575 { 576 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 577 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 578 579 mutex_enter(&zp->z_lock); 580 581 ASSERT(zp->z_sa_hdl == NULL); 582 ASSERT(zp->z_acl_cached == NULL); 583 if (sa_hdl == NULL) { 584 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 585 SA_HDL_SHARED, &zp->z_sa_hdl)); 586 } else { 587 zp->z_sa_hdl = sa_hdl; 588 sa_set_userp(sa_hdl, zp); 589 } 590 591 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 592 593 /* 594 * Slap on VROOT if we are the root znode 595 */ 596 if (zp->z_id == zfsvfs->z_root) 597 ZTOV(zp)->v_flag |= VROOT; 598 599 mutex_exit(&zp->z_lock); 600 vn_exists(ZTOV(zp)); 601 } 602 603 void 604 zfs_znode_dmu_fini(znode_t *zp) 605 { 606 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 607 zp->z_unlinked || 608 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 609 610 sa_handle_destroy(zp->z_sa_hdl); 611 zp->z_sa_hdl = NULL; 612 } 613 614 /* 615 * Construct a new znode/vnode and intialize. 616 * 617 * This does not do a call to dmu_set_user() that is 618 * up to the caller to do, in case you don't want to 619 * return the znode 620 */ 621 static znode_t * 622 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 623 dmu_object_type_t obj_type, sa_handle_t *hdl) 624 { 625 znode_t *zp; 626 vnode_t *vp; 627 uint64_t mode; 628 uint64_t parent; 629 sa_bulk_attr_t bulk[9]; 630 int count = 0; 631 632 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 633 634 ASSERT(zp->z_dirlocks == NULL); 635 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 636 zp->z_moved = 0; 637 638 /* 639 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 640 * the zfs_znode_move() callback. 641 */ 642 zp->z_sa_hdl = NULL; 643 zp->z_unlinked = 0; 644 zp->z_atime_dirty = 0; 645 zp->z_mapcnt = 0; 646 zp->z_id = db->db_object; 647 zp->z_blksz = blksz; 648 zp->z_seq = 0x7A4653; 649 zp->z_sync_cnt = 0; 650 651 vp = ZTOV(zp); 652 vn_reinit(vp); 653 654 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 655 656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 659 &zp->z_size, 8); 660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 661 &zp->z_links, 8); 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 663 &zp->z_pflags, 8); 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 666 &zp->z_atime, 16); 667 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 668 &zp->z_uid, 8); 669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 670 &zp->z_gid, 8); 671 672 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 673 if (hdl == NULL) 674 sa_handle_destroy(zp->z_sa_hdl); 675 kmem_cache_free(znode_cache, zp); 676 return (NULL); 677 } 678 679 zp->z_mode = mode; 680 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 681 682 vp->v_type = IFTOVT((mode_t)mode); 683 684 switch (vp->v_type) { 685 case VDIR: 686 if (zp->z_pflags & ZFS_XATTR) { 687 vn_setops(vp, zfs_xdvnodeops); 688 vp->v_flag |= V_XATTRDIR; 689 } else { 690 vn_setops(vp, zfs_dvnodeops); 691 } 692 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 693 break; 694 case VBLK: 695 case VCHR: 696 { 697 uint64_t rdev; 698 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 699 &rdev, sizeof (rdev)) == 0); 700 701 vp->v_rdev = zfs_cmpldev(rdev); 702 } 703 /*FALLTHROUGH*/ 704 case VFIFO: 705 case VSOCK: 706 case VDOOR: 707 vn_setops(vp, zfs_fvnodeops); 708 break; 709 case VREG: 710 vp->v_flag |= VMODSORT; 711 if (parent == zfsvfs->z_shares_dir) { 712 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 713 vn_setops(vp, zfs_sharevnodeops); 714 } else { 715 vn_setops(vp, zfs_fvnodeops); 716 } 717 break; 718 case VLNK: 719 vn_setops(vp, zfs_symvnodeops); 720 break; 721 default: 722 vn_setops(vp, zfs_evnodeops); 723 break; 724 } 725 726 mutex_enter(&zfsvfs->z_znodes_lock); 727 list_insert_tail(&zfsvfs->z_all_znodes, zp); 728 membar_producer(); 729 /* 730 * Everything else must be valid before assigning z_zfsvfs makes the 731 * znode eligible for zfs_znode_move(). 732 */ 733 zp->z_zfsvfs = zfsvfs; 734 mutex_exit(&zfsvfs->z_znodes_lock); 735 736 VFS_HOLD(zfsvfs->z_vfs); 737 return (zp); 738 } 739 740 static uint64_t empty_xattr; 741 static uint64_t pad[4]; 742 static zfs_acl_phys_t acl_phys; 743 /* 744 * Create a new DMU object to hold a zfs znode. 745 * 746 * IN: dzp - parent directory for new znode 747 * vap - file attributes for new znode 748 * tx - dmu transaction id for zap operations 749 * cr - credentials of caller 750 * flag - flags: 751 * IS_ROOT_NODE - new object will be root 752 * IS_XATTR - new object is an attribute 753 * bonuslen - length of bonus buffer 754 * setaclp - File/Dir initial ACL 755 * fuidp - Tracks fuid allocation. 756 * 757 * OUT: zpp - allocated znode 758 * 759 */ 760 void 761 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 762 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 763 { 764 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 765 uint64_t mode, size, links, parent, pflags; 766 uint64_t dzp_pflags = 0; 767 uint64_t rdev = 0; 768 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 769 dmu_buf_t *db; 770 timestruc_t now; 771 uint64_t gen, obj; 772 int err; 773 int bonuslen; 774 sa_handle_t *sa_hdl; 775 dmu_object_type_t obj_type; 776 sa_bulk_attr_t sa_attrs[ZPL_END]; 777 int cnt = 0; 778 zfs_acl_locator_cb_t locate = { 0 }; 779 780 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 781 782 if (zfsvfs->z_replay) { 783 obj = vap->va_nodeid; 784 now = vap->va_ctime; /* see zfs_replay_create() */ 785 gen = vap->va_nblocks; /* ditto */ 786 } else { 787 obj = 0; 788 gethrestime(&now); 789 gen = dmu_tx_get_txg(tx); 790 } 791 792 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 793 bonuslen = (obj_type == DMU_OT_SA) ? 794 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 795 796 /* 797 * Create a new DMU object. 798 */ 799 /* 800 * There's currently no mechanism for pre-reading the blocks that will 801 * be needed to allocate a new object, so we accept the small chance 802 * that there will be an i/o error and we will fail one of the 803 * assertions below. 804 */ 805 if (vap->va_type == VDIR) { 806 if (zfsvfs->z_replay) { 807 err = zap_create_claim_norm(zfsvfs->z_os, obj, 808 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 809 obj_type, bonuslen, tx); 810 ASSERT0(err); 811 } else { 812 obj = zap_create_norm(zfsvfs->z_os, 813 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 814 obj_type, bonuslen, tx); 815 } 816 } else { 817 if (zfsvfs->z_replay) { 818 err = dmu_object_claim(zfsvfs->z_os, obj, 819 DMU_OT_PLAIN_FILE_CONTENTS, 0, 820 obj_type, bonuslen, tx); 821 ASSERT0(err); 822 } else { 823 obj = dmu_object_alloc(zfsvfs->z_os, 824 DMU_OT_PLAIN_FILE_CONTENTS, 0, 825 obj_type, bonuslen, tx); 826 } 827 } 828 829 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 830 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 831 832 /* 833 * If this is the root, fix up the half-initialized parent pointer 834 * to reference the just-allocated physical data area. 835 */ 836 if (flag & IS_ROOT_NODE) { 837 dzp->z_id = obj; 838 } else { 839 dzp_pflags = dzp->z_pflags; 840 } 841 842 /* 843 * If parent is an xattr, so am I. 844 */ 845 if (dzp_pflags & ZFS_XATTR) { 846 flag |= IS_XATTR; 847 } 848 849 if (zfsvfs->z_use_fuids) 850 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 851 else 852 pflags = 0; 853 854 if (vap->va_type == VDIR) { 855 size = 2; /* contents ("." and "..") */ 856 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 857 } else { 858 size = links = 0; 859 } 860 861 if (vap->va_type == VBLK || vap->va_type == VCHR) { 862 rdev = zfs_expldev(vap->va_rdev); 863 } 864 865 parent = dzp->z_id; 866 mode = acl_ids->z_mode; 867 if (flag & IS_XATTR) 868 pflags |= ZFS_XATTR; 869 870 /* 871 * No execs denied will be deterimed when zfs_mode_compute() is called. 872 */ 873 pflags |= acl_ids->z_aclp->z_hints & 874 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 875 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 876 877 ZFS_TIME_ENCODE(&now, crtime); 878 ZFS_TIME_ENCODE(&now, ctime); 879 880 if (vap->va_mask & AT_ATIME) { 881 ZFS_TIME_ENCODE(&vap->va_atime, atime); 882 } else { 883 ZFS_TIME_ENCODE(&now, atime); 884 } 885 886 if (vap->va_mask & AT_MTIME) { 887 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 888 } else { 889 ZFS_TIME_ENCODE(&now, mtime); 890 } 891 892 /* Now add in all of the "SA" attributes */ 893 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 894 &sa_hdl)); 895 896 /* 897 * Setup the array of attributes to be replaced/set on the new file 898 * 899 * order for DMU_OT_ZNODE is critical since it needs to be constructed 900 * in the old znode_phys_t format. Don't change this ordering 901 */ 902 903 if (obj_type == DMU_OT_ZNODE) { 904 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 905 NULL, &atime, 16); 906 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 907 NULL, &mtime, 16); 908 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 909 NULL, &ctime, 16); 910 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 911 NULL, &crtime, 16); 912 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 913 NULL, &gen, 8); 914 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 915 NULL, &mode, 8); 916 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 917 NULL, &size, 8); 918 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 919 NULL, &parent, 8); 920 } else { 921 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 922 NULL, &mode, 8); 923 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 924 NULL, &size, 8); 925 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 926 NULL, &gen, 8); 927 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 928 &acl_ids->z_fuid, 8); 929 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 930 &acl_ids->z_fgid, 8); 931 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 932 NULL, &parent, 8); 933 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 934 NULL, &pflags, 8); 935 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 936 NULL, &atime, 16); 937 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 938 NULL, &mtime, 16); 939 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 940 NULL, &ctime, 16); 941 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 942 NULL, &crtime, 16); 943 } 944 945 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 946 947 if (obj_type == DMU_OT_ZNODE) { 948 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 949 &empty_xattr, 8); 950 } 951 if (obj_type == DMU_OT_ZNODE || 952 (vap->va_type == VBLK || vap->va_type == VCHR)) { 953 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 954 NULL, &rdev, 8); 955 956 } 957 if (obj_type == DMU_OT_ZNODE) { 958 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 959 NULL, &pflags, 8); 960 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 961 &acl_ids->z_fuid, 8); 962 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 963 &acl_ids->z_fgid, 8); 964 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 965 sizeof (uint64_t) * 4); 966 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 967 &acl_phys, sizeof (zfs_acl_phys_t)); 968 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 969 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 970 &acl_ids->z_aclp->z_acl_count, 8); 971 locate.cb_aclp = acl_ids->z_aclp; 972 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 973 zfs_acl_data_locator, &locate, 974 acl_ids->z_aclp->z_acl_bytes); 975 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 976 acl_ids->z_fuid, acl_ids->z_fgid); 977 } 978 979 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 980 981 if (!(flag & IS_ROOT_NODE)) { 982 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 983 ASSERT(*zpp != NULL); 984 } else { 985 /* 986 * If we are creating the root node, the "parent" we 987 * passed in is the znode for the root. 988 */ 989 *zpp = dzp; 990 991 (*zpp)->z_sa_hdl = sa_hdl; 992 } 993 994 (*zpp)->z_pflags = pflags; 995 (*zpp)->z_mode = mode; 996 997 if (vap->va_mask & AT_XVATTR) 998 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 999 1000 if (obj_type == DMU_OT_ZNODE || 1001 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1002 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx); 1003 ASSERT0(err); 1004 } 1005 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1006 } 1007 1008 /* 1009 * zfs_xvattr_set only updates the in-core attributes 1010 * it is assumed the caller will be doing an sa_bulk_update 1011 * to push the changes out 1012 */ 1013 void 1014 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1015 { 1016 xoptattr_t *xoap; 1017 1018 xoap = xva_getxoptattr(xvap); 1019 ASSERT(xoap); 1020 1021 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1022 uint64_t times[2]; 1023 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1024 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1025 ×, sizeof (times), tx); 1026 XVA_SET_RTN(xvap, XAT_CREATETIME); 1027 } 1028 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1029 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1030 zp->z_pflags, tx); 1031 XVA_SET_RTN(xvap, XAT_READONLY); 1032 } 1033 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1034 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1035 zp->z_pflags, tx); 1036 XVA_SET_RTN(xvap, XAT_HIDDEN); 1037 } 1038 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1039 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1040 zp->z_pflags, tx); 1041 XVA_SET_RTN(xvap, XAT_SYSTEM); 1042 } 1043 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1044 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1045 zp->z_pflags, tx); 1046 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1047 } 1048 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1049 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1050 zp->z_pflags, tx); 1051 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1052 } 1053 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1054 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1055 zp->z_pflags, tx); 1056 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1057 } 1058 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1059 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1060 zp->z_pflags, tx); 1061 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1062 } 1063 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1064 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1065 zp->z_pflags, tx); 1066 XVA_SET_RTN(xvap, XAT_NODUMP); 1067 } 1068 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1069 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1070 zp->z_pflags, tx); 1071 XVA_SET_RTN(xvap, XAT_OPAQUE); 1072 } 1073 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1074 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1075 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1076 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1077 } 1078 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1079 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1080 zp->z_pflags, tx); 1081 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1082 } 1083 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1084 zfs_sa_set_scanstamp(zp, xvap, tx); 1085 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1086 } 1087 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1088 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1089 zp->z_pflags, tx); 1090 XVA_SET_RTN(xvap, XAT_REPARSE); 1091 } 1092 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1093 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1094 zp->z_pflags, tx); 1095 XVA_SET_RTN(xvap, XAT_OFFLINE); 1096 } 1097 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1098 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1099 zp->z_pflags, tx); 1100 XVA_SET_RTN(xvap, XAT_SPARSE); 1101 } 1102 } 1103 1104 int 1105 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1106 { 1107 dmu_object_info_t doi; 1108 dmu_buf_t *db; 1109 znode_t *zp; 1110 int err; 1111 sa_handle_t *hdl; 1112 1113 *zpp = NULL; 1114 1115 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1116 1117 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1118 if (err) { 1119 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1120 return (err); 1121 } 1122 1123 dmu_object_info_from_db(db, &doi); 1124 if (doi.doi_bonus_type != DMU_OT_SA && 1125 (doi.doi_bonus_type != DMU_OT_ZNODE || 1126 (doi.doi_bonus_type == DMU_OT_ZNODE && 1127 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1128 sa_buf_rele(db, NULL); 1129 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1130 return (EINVAL); 1131 } 1132 1133 hdl = dmu_buf_get_user(db); 1134 if (hdl != NULL) { 1135 zp = sa_get_userdata(hdl); 1136 1137 1138 /* 1139 * Since "SA" does immediate eviction we 1140 * should never find a sa handle that doesn't 1141 * know about the znode. 1142 */ 1143 1144 ASSERT3P(zp, !=, NULL); 1145 1146 mutex_enter(&zp->z_lock); 1147 ASSERT3U(zp->z_id, ==, obj_num); 1148 if (zp->z_unlinked) { 1149 err = ENOENT; 1150 } else { 1151 VN_HOLD(ZTOV(zp)); 1152 *zpp = zp; 1153 err = 0; 1154 } 1155 sa_buf_rele(db, NULL); 1156 mutex_exit(&zp->z_lock); 1157 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1158 return (err); 1159 } 1160 1161 /* 1162 * Not found create new znode/vnode 1163 * but only if file exists. 1164 * 1165 * There is a small window where zfs_vget() could 1166 * find this object while a file create is still in 1167 * progress. This is checked for in zfs_znode_alloc() 1168 * 1169 * if zfs_znode_alloc() fails it will drop the hold on the 1170 * bonus buffer. 1171 */ 1172 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1173 doi.doi_bonus_type, NULL); 1174 if (zp == NULL) { 1175 err = ENOENT; 1176 } else { 1177 *zpp = zp; 1178 } 1179 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1180 return (err); 1181 } 1182 1183 int 1184 zfs_rezget(znode_t *zp) 1185 { 1186 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1187 dmu_object_info_t doi; 1188 dmu_buf_t *db; 1189 uint64_t obj_num = zp->z_id; 1190 uint64_t mode; 1191 sa_bulk_attr_t bulk[8]; 1192 int err; 1193 int count = 0; 1194 uint64_t gen; 1195 1196 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1197 1198 mutex_enter(&zp->z_acl_lock); 1199 if (zp->z_acl_cached) { 1200 zfs_acl_free(zp->z_acl_cached); 1201 zp->z_acl_cached = NULL; 1202 } 1203 1204 mutex_exit(&zp->z_acl_lock); 1205 ASSERT(zp->z_sa_hdl == NULL); 1206 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1207 if (err) { 1208 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1209 return (err); 1210 } 1211 1212 dmu_object_info_from_db(db, &doi); 1213 if (doi.doi_bonus_type != DMU_OT_SA && 1214 (doi.doi_bonus_type != DMU_OT_ZNODE || 1215 (doi.doi_bonus_type == DMU_OT_ZNODE && 1216 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1217 sa_buf_rele(db, NULL); 1218 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1219 return (EINVAL); 1220 } 1221 1222 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1223 1224 /* reload cached values */ 1225 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1226 &gen, sizeof (gen)); 1227 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1228 &zp->z_size, sizeof (zp->z_size)); 1229 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1230 &zp->z_links, sizeof (zp->z_links)); 1231 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1232 &zp->z_pflags, sizeof (zp->z_pflags)); 1233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1234 &zp->z_atime, sizeof (zp->z_atime)); 1235 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1236 &zp->z_uid, sizeof (zp->z_uid)); 1237 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1238 &zp->z_gid, sizeof (zp->z_gid)); 1239 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1240 &mode, sizeof (mode)); 1241 1242 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1243 zfs_znode_dmu_fini(zp); 1244 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1245 return (EIO); 1246 } 1247 1248 zp->z_mode = mode; 1249 1250 if (gen != zp->z_gen) { 1251 zfs_znode_dmu_fini(zp); 1252 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1253 return (EIO); 1254 } 1255 1256 zp->z_unlinked = (zp->z_links == 0); 1257 zp->z_blksz = doi.doi_data_block_size; 1258 1259 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1260 1261 return (0); 1262 } 1263 1264 void 1265 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1266 { 1267 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1268 objset_t *os = zfsvfs->z_os; 1269 uint64_t obj = zp->z_id; 1270 uint64_t acl_obj = zfs_external_acl(zp); 1271 1272 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1273 if (acl_obj) { 1274 VERIFY(!zp->z_is_sa); 1275 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1276 } 1277 VERIFY(0 == dmu_object_free(os, obj, tx)); 1278 zfs_znode_dmu_fini(zp); 1279 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1280 zfs_znode_free(zp); 1281 } 1282 1283 void 1284 zfs_zinactive(znode_t *zp) 1285 { 1286 vnode_t *vp = ZTOV(zp); 1287 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1288 uint64_t z_id = zp->z_id; 1289 1290 ASSERT(zp->z_sa_hdl); 1291 1292 /* 1293 * Don't allow a zfs_zget() while were trying to release this znode 1294 */ 1295 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1296 1297 mutex_enter(&zp->z_lock); 1298 mutex_enter(&vp->v_lock); 1299 vp->v_count--; 1300 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1301 /* 1302 * If the hold count is greater than zero, somebody has 1303 * obtained a new reference on this znode while we were 1304 * processing it here, so we are done. If we still have 1305 * mapped pages then we are also done, since we don't 1306 * want to inactivate the znode until the pages get pushed. 1307 * 1308 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1309 * this seems like it would leave the znode hanging with 1310 * no chance to go inactive... 1311 */ 1312 mutex_exit(&vp->v_lock); 1313 mutex_exit(&zp->z_lock); 1314 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1315 return; 1316 } 1317 mutex_exit(&vp->v_lock); 1318 1319 /* 1320 * If this was the last reference to a file with no links, 1321 * remove the file from the file system. 1322 */ 1323 if (zp->z_unlinked) { 1324 mutex_exit(&zp->z_lock); 1325 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1326 zfs_rmnode(zp); 1327 return; 1328 } 1329 1330 mutex_exit(&zp->z_lock); 1331 zfs_znode_dmu_fini(zp); 1332 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1333 zfs_znode_free(zp); 1334 } 1335 1336 void 1337 zfs_znode_free(znode_t *zp) 1338 { 1339 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1340 1341 vn_invalid(ZTOV(zp)); 1342 1343 ASSERT(ZTOV(zp)->v_count == 0); 1344 1345 mutex_enter(&zfsvfs->z_znodes_lock); 1346 POINTER_INVALIDATE(&zp->z_zfsvfs); 1347 list_remove(&zfsvfs->z_all_znodes, zp); 1348 mutex_exit(&zfsvfs->z_znodes_lock); 1349 1350 if (zp->z_acl_cached) { 1351 zfs_acl_free(zp->z_acl_cached); 1352 zp->z_acl_cached = NULL; 1353 } 1354 1355 kmem_cache_free(znode_cache, zp); 1356 1357 VFS_RELE(zfsvfs->z_vfs); 1358 } 1359 1360 void 1361 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1362 uint64_t ctime[2], boolean_t have_tx) 1363 { 1364 timestruc_t now; 1365 1366 gethrestime(&now); 1367 1368 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1369 zp->z_atime_dirty = 0; 1370 zp->z_seq++; 1371 } else { 1372 zp->z_atime_dirty = 1; 1373 } 1374 1375 if (flag & AT_ATIME) { 1376 ZFS_TIME_ENCODE(&now, zp->z_atime); 1377 } 1378 1379 if (flag & AT_MTIME) { 1380 ZFS_TIME_ENCODE(&now, mtime); 1381 if (zp->z_zfsvfs->z_use_fuids) { 1382 zp->z_pflags |= (ZFS_ARCHIVE | 1383 ZFS_AV_MODIFIED); 1384 } 1385 } 1386 1387 if (flag & AT_CTIME) { 1388 ZFS_TIME_ENCODE(&now, ctime); 1389 if (zp->z_zfsvfs->z_use_fuids) 1390 zp->z_pflags |= ZFS_ARCHIVE; 1391 } 1392 } 1393 1394 /* 1395 * Grow the block size for a file. 1396 * 1397 * IN: zp - znode of file to free data in. 1398 * size - requested block size 1399 * tx - open transaction. 1400 * 1401 * NOTE: this function assumes that the znode is write locked. 1402 */ 1403 void 1404 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1405 { 1406 int error; 1407 u_longlong_t dummy; 1408 1409 if (size <= zp->z_blksz) 1410 return; 1411 /* 1412 * If the file size is already greater than the current blocksize, 1413 * we will not grow. If there is more than one block in a file, 1414 * the blocksize cannot change. 1415 */ 1416 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1417 return; 1418 1419 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1420 size, 0, tx); 1421 1422 if (error == ENOTSUP) 1423 return; 1424 ASSERT0(error); 1425 1426 /* What blocksize did we actually get? */ 1427 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1428 } 1429 1430 /* 1431 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1432 * be calling back into the fs for a putpage(). E.g.: when truncating 1433 * a file, the pages being "thrown away* don't need to be written out. 1434 */ 1435 /* ARGSUSED */ 1436 static int 1437 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1438 int flags, cred_t *cr) 1439 { 1440 ASSERT(0); 1441 return (0); 1442 } 1443 1444 /* 1445 * Increase the file length 1446 * 1447 * IN: zp - znode of file to free data in. 1448 * end - new end-of-file 1449 * 1450 * RETURN: 0 if success 1451 * error code if failure 1452 */ 1453 static int 1454 zfs_extend(znode_t *zp, uint64_t end) 1455 { 1456 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1457 dmu_tx_t *tx; 1458 rl_t *rl; 1459 uint64_t newblksz; 1460 int error; 1461 1462 /* 1463 * We will change zp_size, lock the whole file. 1464 */ 1465 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1466 1467 /* 1468 * Nothing to do if file already at desired length. 1469 */ 1470 if (end <= zp->z_size) { 1471 zfs_range_unlock(rl); 1472 return (0); 1473 } 1474 top: 1475 tx = dmu_tx_create(zfsvfs->z_os); 1476 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1477 zfs_sa_upgrade_txholds(tx, zp); 1478 if (end > zp->z_blksz && 1479 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1480 /* 1481 * We are growing the file past the current block size. 1482 */ 1483 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1484 ASSERT(!ISP2(zp->z_blksz)); 1485 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1486 } else { 1487 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1488 } 1489 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1490 } else { 1491 newblksz = 0; 1492 } 1493 1494 error = dmu_tx_assign(tx, TXG_NOWAIT); 1495 if (error) { 1496 if (error == ERESTART) { 1497 dmu_tx_wait(tx); 1498 dmu_tx_abort(tx); 1499 goto top; 1500 } 1501 dmu_tx_abort(tx); 1502 zfs_range_unlock(rl); 1503 return (error); 1504 } 1505 1506 if (newblksz) 1507 zfs_grow_blocksize(zp, newblksz, tx); 1508 1509 zp->z_size = end; 1510 1511 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1512 &zp->z_size, sizeof (zp->z_size), tx)); 1513 1514 zfs_range_unlock(rl); 1515 1516 dmu_tx_commit(tx); 1517 1518 return (0); 1519 } 1520 1521 /* 1522 * Free space in a file. 1523 * 1524 * IN: zp - znode of file to free data in. 1525 * off - start of section to free. 1526 * len - length of section to free. 1527 * 1528 * RETURN: 0 if success 1529 * error code if failure 1530 */ 1531 static int 1532 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1533 { 1534 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1535 rl_t *rl; 1536 int error; 1537 1538 /* 1539 * Lock the range being freed. 1540 */ 1541 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1542 1543 /* 1544 * Nothing to do if file already at desired length. 1545 */ 1546 if (off >= zp->z_size) { 1547 zfs_range_unlock(rl); 1548 return (0); 1549 } 1550 1551 if (off + len > zp->z_size) 1552 len = zp->z_size - off; 1553 1554 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1555 1556 zfs_range_unlock(rl); 1557 1558 return (error); 1559 } 1560 1561 /* 1562 * Truncate a file 1563 * 1564 * IN: zp - znode of file to free data in. 1565 * end - new end-of-file. 1566 * 1567 * RETURN: 0 if success 1568 * error code if failure 1569 */ 1570 static int 1571 zfs_trunc(znode_t *zp, uint64_t end) 1572 { 1573 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1574 vnode_t *vp = ZTOV(zp); 1575 dmu_tx_t *tx; 1576 rl_t *rl; 1577 int error; 1578 sa_bulk_attr_t bulk[2]; 1579 int count = 0; 1580 1581 /* 1582 * We will change zp_size, lock the whole file. 1583 */ 1584 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1585 1586 /* 1587 * Nothing to do if file already at desired length. 1588 */ 1589 if (end >= zp->z_size) { 1590 zfs_range_unlock(rl); 1591 return (0); 1592 } 1593 1594 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1595 if (error) { 1596 zfs_range_unlock(rl); 1597 return (error); 1598 } 1599 top: 1600 tx = dmu_tx_create(zfsvfs->z_os); 1601 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1602 zfs_sa_upgrade_txholds(tx, zp); 1603 error = dmu_tx_assign(tx, TXG_NOWAIT); 1604 if (error) { 1605 if (error == ERESTART) { 1606 dmu_tx_wait(tx); 1607 dmu_tx_abort(tx); 1608 goto top; 1609 } 1610 dmu_tx_abort(tx); 1611 zfs_range_unlock(rl); 1612 return (error); 1613 } 1614 1615 zp->z_size = end; 1616 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1617 NULL, &zp->z_size, sizeof (zp->z_size)); 1618 1619 if (end == 0) { 1620 zp->z_pflags &= ~ZFS_SPARSE; 1621 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1622 NULL, &zp->z_pflags, 8); 1623 } 1624 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1625 1626 dmu_tx_commit(tx); 1627 1628 /* 1629 * Clear any mapped pages in the truncated region. This has to 1630 * happen outside of the transaction to avoid the possibility of 1631 * a deadlock with someone trying to push a page that we are 1632 * about to invalidate. 1633 */ 1634 if (vn_has_cached_data(vp)) { 1635 page_t *pp; 1636 uint64_t start = end & PAGEMASK; 1637 int poff = end & PAGEOFFSET; 1638 1639 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1640 /* 1641 * We need to zero a partial page. 1642 */ 1643 pagezero(pp, poff, PAGESIZE - poff); 1644 start += PAGESIZE; 1645 page_unlock(pp); 1646 } 1647 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1648 B_INVAL | B_TRUNC, NULL); 1649 ASSERT(error == 0); 1650 } 1651 1652 zfs_range_unlock(rl); 1653 1654 return (0); 1655 } 1656 1657 /* 1658 * Free space in a file 1659 * 1660 * IN: zp - znode of file to free data in. 1661 * off - start of range 1662 * len - end of range (0 => EOF) 1663 * flag - current file open mode flags. 1664 * log - TRUE if this action should be logged 1665 * 1666 * RETURN: 0 if success 1667 * error code if failure 1668 */ 1669 int 1670 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1671 { 1672 vnode_t *vp = ZTOV(zp); 1673 dmu_tx_t *tx; 1674 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1675 zilog_t *zilog = zfsvfs->z_log; 1676 uint64_t mode; 1677 uint64_t mtime[2], ctime[2]; 1678 sa_bulk_attr_t bulk[3]; 1679 int count = 0; 1680 int error; 1681 1682 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1683 sizeof (mode))) != 0) 1684 return (error); 1685 1686 if (off > zp->z_size) { 1687 error = zfs_extend(zp, off+len); 1688 if (error == 0 && log) 1689 goto log; 1690 else 1691 return (error); 1692 } 1693 1694 /* 1695 * Check for any locks in the region to be freed. 1696 */ 1697 1698 if (MANDLOCK(vp, (mode_t)mode)) { 1699 uint64_t length = (len ? len : zp->z_size - off); 1700 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1701 return (error); 1702 } 1703 1704 if (len == 0) { 1705 error = zfs_trunc(zp, off); 1706 } else { 1707 if ((error = zfs_free_range(zp, off, len)) == 0 && 1708 off + len > zp->z_size) 1709 error = zfs_extend(zp, off+len); 1710 } 1711 if (error || !log) 1712 return (error); 1713 log: 1714 tx = dmu_tx_create(zfsvfs->z_os); 1715 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1716 zfs_sa_upgrade_txholds(tx, zp); 1717 error = dmu_tx_assign(tx, TXG_NOWAIT); 1718 if (error) { 1719 if (error == ERESTART) { 1720 dmu_tx_wait(tx); 1721 dmu_tx_abort(tx); 1722 goto log; 1723 } 1724 dmu_tx_abort(tx); 1725 return (error); 1726 } 1727 1728 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1729 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1730 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1731 NULL, &zp->z_pflags, 8); 1732 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1733 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1734 ASSERT(error == 0); 1735 1736 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1737 1738 dmu_tx_commit(tx); 1739 return (0); 1740 } 1741 1742 void 1743 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1744 { 1745 zfsvfs_t zfsvfs; 1746 uint64_t moid, obj, sa_obj, version; 1747 uint64_t sense = ZFS_CASE_SENSITIVE; 1748 uint64_t norm = 0; 1749 nvpair_t *elem; 1750 int error; 1751 int i; 1752 znode_t *rootzp = NULL; 1753 vnode_t *vp; 1754 vattr_t vattr; 1755 znode_t *zp; 1756 zfs_acl_ids_t acl_ids; 1757 1758 /* 1759 * First attempt to create master node. 1760 */ 1761 /* 1762 * In an empty objset, there are no blocks to read and thus 1763 * there can be no i/o errors (which we assert below). 1764 */ 1765 moid = MASTER_NODE_OBJ; 1766 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1767 DMU_OT_NONE, 0, tx); 1768 ASSERT(error == 0); 1769 1770 /* 1771 * Set starting attributes. 1772 */ 1773 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1774 elem = NULL; 1775 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1776 /* For the moment we expect all zpl props to be uint64_ts */ 1777 uint64_t val; 1778 char *name; 1779 1780 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1781 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1782 name = nvpair_name(elem); 1783 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1784 if (val < version) 1785 version = val; 1786 } else { 1787 error = zap_update(os, moid, name, 8, 1, &val, tx); 1788 } 1789 ASSERT(error == 0); 1790 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1791 norm = val; 1792 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1793 sense = val; 1794 } 1795 ASSERT(version != 0); 1796 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1797 1798 /* 1799 * Create zap object used for SA attribute registration 1800 */ 1801 1802 if (version >= ZPL_VERSION_SA) { 1803 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1804 DMU_OT_NONE, 0, tx); 1805 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1806 ASSERT(error == 0); 1807 } else { 1808 sa_obj = 0; 1809 } 1810 /* 1811 * Create a delete queue. 1812 */ 1813 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1814 1815 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1816 ASSERT(error == 0); 1817 1818 /* 1819 * Create root znode. Create minimal znode/vnode/zfsvfs 1820 * to allow zfs_mknode to work. 1821 */ 1822 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1823 vattr.va_type = VDIR; 1824 vattr.va_mode = S_IFDIR|0755; 1825 vattr.va_uid = crgetuid(cr); 1826 vattr.va_gid = crgetgid(cr); 1827 1828 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1829 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1830 rootzp->z_moved = 0; 1831 rootzp->z_unlinked = 0; 1832 rootzp->z_atime_dirty = 0; 1833 rootzp->z_is_sa = USE_SA(version, os); 1834 1835 vp = ZTOV(rootzp); 1836 vn_reinit(vp); 1837 vp->v_type = VDIR; 1838 1839 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1840 1841 zfsvfs.z_os = os; 1842 zfsvfs.z_parent = &zfsvfs; 1843 zfsvfs.z_version = version; 1844 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1845 zfsvfs.z_use_sa = USE_SA(version, os); 1846 zfsvfs.z_norm = norm; 1847 1848 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1849 &zfsvfs.z_attr_table); 1850 1851 ASSERT(error == 0); 1852 1853 /* 1854 * Fold case on file systems that are always or sometimes case 1855 * insensitive. 1856 */ 1857 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1858 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1859 1860 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1861 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1862 offsetof(znode_t, z_link_node)); 1863 1864 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1865 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1866 1867 rootzp->z_zfsvfs = &zfsvfs; 1868 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1869 cr, NULL, &acl_ids)); 1870 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1871 ASSERT3P(zp, ==, rootzp); 1872 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1873 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1874 ASSERT(error == 0); 1875 zfs_acl_ids_free(&acl_ids); 1876 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1877 1878 ZTOV(rootzp)->v_count = 0; 1879 sa_handle_destroy(rootzp->z_sa_hdl); 1880 kmem_cache_free(znode_cache, rootzp); 1881 1882 /* 1883 * Create shares directory 1884 */ 1885 1886 error = zfs_create_share_dir(&zfsvfs, tx); 1887 1888 ASSERT(error == 0); 1889 1890 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1891 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1892 } 1893 1894 #endif /* _KERNEL */ 1895 1896 static int 1897 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1898 { 1899 uint64_t sa_obj = 0; 1900 int error; 1901 1902 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1903 if (error != 0 && error != ENOENT) 1904 return (error); 1905 1906 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1907 return (error); 1908 } 1909 1910 static int 1911 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1912 dmu_buf_t **db, void *tag) 1913 { 1914 dmu_object_info_t doi; 1915 int error; 1916 1917 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) 1918 return (error); 1919 1920 dmu_object_info_from_db(*db, &doi); 1921 if ((doi.doi_bonus_type != DMU_OT_SA && 1922 doi.doi_bonus_type != DMU_OT_ZNODE) || 1923 doi.doi_bonus_type == DMU_OT_ZNODE && 1924 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1925 sa_buf_rele(*db, tag); 1926 return (ENOTSUP); 1927 } 1928 1929 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1930 if (error != 0) { 1931 sa_buf_rele(*db, tag); 1932 return (error); 1933 } 1934 1935 return (0); 1936 } 1937 1938 void 1939 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) 1940 { 1941 sa_handle_destroy(hdl); 1942 sa_buf_rele(db, tag); 1943 } 1944 1945 /* 1946 * Given an object number, return its parent object number and whether 1947 * or not the object is an extended attribute directory. 1948 */ 1949 static int 1950 zfs_obj_to_pobj(sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp, 1951 int *is_xattrdir) 1952 { 1953 uint64_t parent; 1954 uint64_t pflags; 1955 uint64_t mode; 1956 sa_bulk_attr_t bulk[3]; 1957 int count = 0; 1958 int error; 1959 1960 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1961 &parent, sizeof (parent)); 1962 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1963 &pflags, sizeof (pflags)); 1964 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1965 &mode, sizeof (mode)); 1966 1967 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1968 return (error); 1969 1970 *pobjp = parent; 1971 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1972 1973 return (0); 1974 } 1975 1976 /* 1977 * Given an object number, return some zpl level statistics 1978 */ 1979 static int 1980 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 1981 zfs_stat_t *sb) 1982 { 1983 sa_bulk_attr_t bulk[4]; 1984 int count = 0; 1985 1986 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1987 &sb->zs_mode, sizeof (sb->zs_mode)); 1988 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 1989 &sb->zs_gen, sizeof (sb->zs_gen)); 1990 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 1991 &sb->zs_links, sizeof (sb->zs_links)); 1992 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 1993 &sb->zs_ctime, sizeof (sb->zs_ctime)); 1994 1995 return (sa_bulk_lookup(hdl, bulk, count)); 1996 } 1997 1998 static int 1999 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 2000 sa_attr_type_t *sa_table, char *buf, int len) 2001 { 2002 sa_handle_t *sa_hdl; 2003 sa_handle_t *prevhdl = NULL; 2004 dmu_buf_t *prevdb = NULL; 2005 dmu_buf_t *sa_db = NULL; 2006 char *path = buf + len - 1; 2007 int error; 2008 2009 *path = '\0'; 2010 sa_hdl = hdl; 2011 2012 for (;;) { 2013 uint64_t pobj; 2014 char component[MAXNAMELEN + 2]; 2015 size_t complen; 2016 int is_xattrdir; 2017 2018 if (prevdb) 2019 zfs_release_sa_handle(prevhdl, prevdb, FTAG); 2020 2021 if ((error = zfs_obj_to_pobj(sa_hdl, sa_table, &pobj, 2022 &is_xattrdir)) != 0) 2023 break; 2024 2025 if (pobj == obj) { 2026 if (path[0] != '/') 2027 *--path = '/'; 2028 break; 2029 } 2030 2031 component[0] = '/'; 2032 if (is_xattrdir) { 2033 (void) sprintf(component + 1, "<xattrdir>"); 2034 } else { 2035 error = zap_value_search(osp, pobj, obj, 2036 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2037 if (error != 0) 2038 break; 2039 } 2040 2041 complen = strlen(component); 2042 path -= complen; 2043 ASSERT(path >= buf); 2044 bcopy(component, path, complen); 2045 obj = pobj; 2046 2047 if (sa_hdl != hdl) { 2048 prevhdl = sa_hdl; 2049 prevdb = sa_db; 2050 } 2051 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); 2052 if (error != 0) { 2053 sa_hdl = prevhdl; 2054 sa_db = prevdb; 2055 break; 2056 } 2057 } 2058 2059 if (sa_hdl != NULL && sa_hdl != hdl) { 2060 ASSERT(sa_db != NULL); 2061 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 2062 } 2063 2064 if (error == 0) 2065 (void) memmove(buf, path, buf + len - path); 2066 2067 return (error); 2068 } 2069 2070 int 2071 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2072 { 2073 sa_attr_type_t *sa_table; 2074 sa_handle_t *hdl; 2075 dmu_buf_t *db; 2076 int error; 2077 2078 error = zfs_sa_setup(osp, &sa_table); 2079 if (error != 0) 2080 return (error); 2081 2082 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2083 if (error != 0) 2084 return (error); 2085 2086 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2087 2088 zfs_release_sa_handle(hdl, db, FTAG); 2089 return (error); 2090 } 2091 2092 int 2093 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2094 char *buf, int len) 2095 { 2096 char *path = buf + len - 1; 2097 sa_attr_type_t *sa_table; 2098 sa_handle_t *hdl; 2099 dmu_buf_t *db; 2100 int error; 2101 2102 *path = '\0'; 2103 2104 error = zfs_sa_setup(osp, &sa_table); 2105 if (error != 0) 2106 return (error); 2107 2108 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2109 if (error != 0) 2110 return (error); 2111 2112 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2113 if (error != 0) { 2114 zfs_release_sa_handle(hdl, db, FTAG); 2115 return (error); 2116 } 2117 2118 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2119 2120 zfs_release_sa_handle(hdl, db, FTAG); 2121 return (error); 2122 } 2123