1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 65 #include "zfs_prop.h" 66 67 /* 68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 69 * turned on when DEBUG is also defined. 70 */ 71 #ifdef DEBUG 72 #define ZNODE_STATS 73 #endif /* DEBUG */ 74 75 #ifdef ZNODE_STATS 76 #define ZNODE_STAT_ADD(stat) ((stat)++) 77 #else 78 #define ZNODE_STAT_ADD(stat) /* nothing */ 79 #endif /* ZNODE_STATS */ 80 81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 83 84 /* 85 * Functions needed for userland (ie: libzpool) are not put under 86 * #ifdef_KERNEL; the rest of the functions have dependencies 87 * (such as VFS logic) that will not compile easily in userland. 88 */ 89 #ifdef _KERNEL 90 static kmem_cache_t *znode_cache = NULL; 91 92 /*ARGSUSED*/ 93 static void 94 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 95 { 96 /* 97 * We should never drop all dbuf refs without first clearing 98 * the eviction callback. 99 */ 100 panic("evicting znode %p\n", user_ptr); 101 } 102 103 /*ARGSUSED*/ 104 static int 105 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 106 { 107 znode_t *zp = buf; 108 109 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 110 111 zp->z_vnode = vn_alloc(kmflags); 112 if (zp->z_vnode == NULL) { 113 return (-1); 114 } 115 ZTOV(zp)->v_data = zp; 116 117 list_link_init(&zp->z_link_node); 118 119 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 120 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 121 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 122 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 123 124 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 125 avl_create(&zp->z_range_avl, zfs_range_compare, 126 sizeof (rl_t), offsetof(rl_t, r_node)); 127 128 zp->z_dbuf = NULL; 129 zp->z_dirlocks = NULL; 130 return (0); 131 } 132 133 /*ARGSUSED*/ 134 static void 135 zfs_znode_cache_destructor(void *buf, void *arg) 136 { 137 znode_t *zp = buf; 138 139 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 140 ASSERT(ZTOV(zp)->v_data == zp); 141 vn_free(ZTOV(zp)); 142 ASSERT(!list_link_active(&zp->z_link_node)); 143 mutex_destroy(&zp->z_lock); 144 rw_destroy(&zp->z_parent_lock); 145 rw_destroy(&zp->z_name_lock); 146 mutex_destroy(&zp->z_acl_lock); 147 avl_destroy(&zp->z_range_avl); 148 mutex_destroy(&zp->z_range_lock); 149 150 ASSERT(zp->z_dbuf == NULL); 151 ASSERT(zp->z_dirlocks == NULL); 152 } 153 154 #ifdef ZNODE_STATS 155 static struct { 156 uint64_t zms_zfsvfs_invalid; 157 uint64_t zms_zfsvfs_unmounted; 158 uint64_t zms_zfsvfs_recheck_invalid; 159 uint64_t zms_obj_held; 160 uint64_t zms_vnode_locked; 161 uint64_t zms_not_only_dnlc; 162 } znode_move_stats; 163 #endif /* ZNODE_STATS */ 164 165 static void 166 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 167 { 168 vnode_t *vp; 169 170 /* Copy fields. */ 171 nzp->z_zfsvfs = ozp->z_zfsvfs; 172 173 /* Swap vnodes. */ 174 vp = nzp->z_vnode; 175 nzp->z_vnode = ozp->z_vnode; 176 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 177 ZTOV(ozp)->v_data = ozp; 178 ZTOV(nzp)->v_data = nzp; 179 180 nzp->z_id = ozp->z_id; 181 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 182 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 183 nzp->z_unlinked = ozp->z_unlinked; 184 nzp->z_atime_dirty = ozp->z_atime_dirty; 185 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 186 nzp->z_blksz = ozp->z_blksz; 187 nzp->z_seq = ozp->z_seq; 188 nzp->z_mapcnt = ozp->z_mapcnt; 189 nzp->z_last_itx = ozp->z_last_itx; 190 nzp->z_gen = ozp->z_gen; 191 nzp->z_sync_cnt = ozp->z_sync_cnt; 192 nzp->z_phys = ozp->z_phys; 193 nzp->z_dbuf = ozp->z_dbuf; 194 195 /* Update back pointers. */ 196 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 197 znode_evict_error); 198 199 /* 200 * Invalidate the original znode by clearing fields that provide a 201 * pointer back to the znode. Set the low bit of the vfs pointer to 202 * ensure that zfs_znode_move() recognizes the znode as invalid in any 203 * subsequent callback. 204 */ 205 ozp->z_dbuf = NULL; 206 POINTER_INVALIDATE(&ozp->z_zfsvfs); 207 } 208 209 /*ARGSUSED*/ 210 static kmem_cbrc_t 211 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 212 { 213 znode_t *ozp = buf, *nzp = newbuf; 214 zfsvfs_t *zfsvfs; 215 vnode_t *vp; 216 217 /* 218 * The znode is on the file system's list of known znodes if the vfs 219 * pointer is valid. We set the low bit of the vfs pointer when freeing 220 * the znode to invalidate it, and the memory patterns written by kmem 221 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 222 * created znode sets the vfs pointer last of all to indicate that the 223 * znode is known and in a valid state to be moved by this function. 224 */ 225 zfsvfs = ozp->z_zfsvfs; 226 if (!POINTER_IS_VALID(zfsvfs)) { 227 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 228 return (KMEM_CBRC_DONT_KNOW); 229 } 230 231 /* 232 * Ensure that the filesystem is not unmounted during the move. 233 * This is the equivalent to ZFS_ENTER(). 234 */ 235 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 236 if (zfsvfs->z_unmounted) { 237 ZFS_EXIT(zfsvfs); 238 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 239 return (KMEM_CBRC_DONT_KNOW); 240 } 241 242 mutex_enter(&zfsvfs->z_znodes_lock); 243 /* 244 * Recheck the vfs pointer in case the znode was removed just before 245 * acquiring the lock. 246 */ 247 if (zfsvfs != ozp->z_zfsvfs) { 248 mutex_exit(&zfsvfs->z_znodes_lock); 249 ZFS_EXIT(zfsvfs); 250 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid); 251 return (KMEM_CBRC_DONT_KNOW); 252 } 253 254 /* 255 * At this point we know that as long as we hold z_znodes_lock, the 256 * znode cannot be freed and fields within the znode can be safely 257 * accessed. Now, prevent a race with zfs_zget(). 258 */ 259 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 260 mutex_exit(&zfsvfs->z_znodes_lock); 261 ZFS_EXIT(zfsvfs); 262 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 263 return (KMEM_CBRC_LATER); 264 } 265 266 vp = ZTOV(ozp); 267 if (mutex_tryenter(&vp->v_lock) == 0) { 268 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 269 mutex_exit(&zfsvfs->z_znodes_lock); 270 ZFS_EXIT(zfsvfs); 271 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 272 return (KMEM_CBRC_LATER); 273 } 274 275 /* Only move znodes that are referenced _only_ by the DNLC. */ 276 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 277 mutex_exit(&vp->v_lock); 278 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 279 mutex_exit(&zfsvfs->z_znodes_lock); 280 ZFS_EXIT(zfsvfs); 281 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 282 return (KMEM_CBRC_LATER); 283 } 284 285 /* 286 * The znode is known and in a valid state to move. We're holding the 287 * locks needed to execute the critical section. 288 */ 289 zfs_znode_move_impl(ozp, nzp); 290 mutex_exit(&vp->v_lock); 291 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 292 293 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 294 mutex_exit(&zfsvfs->z_znodes_lock); 295 ZFS_EXIT(zfsvfs); 296 297 return (KMEM_CBRC_YES); 298 } 299 300 void 301 zfs_znode_init(void) 302 { 303 /* 304 * Initialize zcache 305 */ 306 ASSERT(znode_cache == NULL); 307 znode_cache = kmem_cache_create("zfs_znode_cache", 308 sizeof (znode_t), 0, zfs_znode_cache_constructor, 309 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 310 kmem_cache_set_move(znode_cache, zfs_znode_move); 311 } 312 313 void 314 zfs_znode_fini(void) 315 { 316 /* 317 * Cleanup vfs & vnode ops 318 */ 319 zfs_remove_op_tables(); 320 321 /* 322 * Cleanup zcache 323 */ 324 if (znode_cache) 325 kmem_cache_destroy(znode_cache); 326 znode_cache = NULL; 327 } 328 329 struct vnodeops *zfs_dvnodeops; 330 struct vnodeops *zfs_fvnodeops; 331 struct vnodeops *zfs_symvnodeops; 332 struct vnodeops *zfs_xdvnodeops; 333 struct vnodeops *zfs_evnodeops; 334 struct vnodeops *zfs_sharevnodeops; 335 336 void 337 zfs_remove_op_tables() 338 { 339 /* 340 * Remove vfs ops 341 */ 342 ASSERT(zfsfstype); 343 (void) vfs_freevfsops_by_type(zfsfstype); 344 zfsfstype = 0; 345 346 /* 347 * Remove vnode ops 348 */ 349 if (zfs_dvnodeops) 350 vn_freevnodeops(zfs_dvnodeops); 351 if (zfs_fvnodeops) 352 vn_freevnodeops(zfs_fvnodeops); 353 if (zfs_symvnodeops) 354 vn_freevnodeops(zfs_symvnodeops); 355 if (zfs_xdvnodeops) 356 vn_freevnodeops(zfs_xdvnodeops); 357 if (zfs_evnodeops) 358 vn_freevnodeops(zfs_evnodeops); 359 if (zfs_sharevnodeops) 360 vn_freevnodeops(zfs_sharevnodeops); 361 362 zfs_dvnodeops = NULL; 363 zfs_fvnodeops = NULL; 364 zfs_symvnodeops = NULL; 365 zfs_xdvnodeops = NULL; 366 zfs_evnodeops = NULL; 367 zfs_sharevnodeops = NULL; 368 } 369 370 extern const fs_operation_def_t zfs_dvnodeops_template[]; 371 extern const fs_operation_def_t zfs_fvnodeops_template[]; 372 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 373 extern const fs_operation_def_t zfs_symvnodeops_template[]; 374 extern const fs_operation_def_t zfs_evnodeops_template[]; 375 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 376 377 int 378 zfs_create_op_tables() 379 { 380 int error; 381 382 /* 383 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 384 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 385 * In this case we just return as the ops vectors are already set up. 386 */ 387 if (zfs_dvnodeops) 388 return (0); 389 390 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 391 &zfs_dvnodeops); 392 if (error) 393 return (error); 394 395 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 396 &zfs_fvnodeops); 397 if (error) 398 return (error); 399 400 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 401 &zfs_symvnodeops); 402 if (error) 403 return (error); 404 405 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 406 &zfs_xdvnodeops); 407 if (error) 408 return (error); 409 410 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 411 &zfs_evnodeops); 412 if (error) 413 return (error); 414 415 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 416 &zfs_sharevnodeops); 417 418 return (error); 419 } 420 421 int 422 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 423 { 424 zfs_acl_ids_t acl_ids; 425 vattr_t vattr; 426 znode_t *sharezp; 427 vnode_t *vp; 428 znode_t *zp; 429 int error; 430 431 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 432 vattr.va_type = VDIR; 433 vattr.va_mode = S_IFDIR|0555; 434 vattr.va_uid = crgetuid(kcred); 435 vattr.va_gid = crgetgid(kcred); 436 437 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 438 sharezp->z_unlinked = 0; 439 sharezp->z_atime_dirty = 0; 440 sharezp->z_zfsvfs = zfsvfs; 441 442 vp = ZTOV(sharezp); 443 vn_reinit(vp); 444 vp->v_type = VDIR; 445 446 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 447 kcred, NULL, &acl_ids)); 448 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, 449 &zp, 0, &acl_ids); 450 ASSERT3P(zp, ==, sharezp); 451 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 452 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 453 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 454 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 455 zfsvfs->z_shares_dir = sharezp->z_id; 456 457 zfs_acl_ids_free(&acl_ids); 458 ZTOV(sharezp)->v_count = 0; 459 dmu_buf_rele(sharezp->z_dbuf, NULL); 460 sharezp->z_dbuf = NULL; 461 kmem_cache_free(znode_cache, sharezp); 462 463 return (error); 464 } 465 466 /* 467 * define a couple of values we need available 468 * for both 64 and 32 bit environments. 469 */ 470 #ifndef NBITSMINOR64 471 #define NBITSMINOR64 32 472 #endif 473 #ifndef MAXMAJ64 474 #define MAXMAJ64 0xffffffffUL 475 #endif 476 #ifndef MAXMIN64 477 #define MAXMIN64 0xffffffffUL 478 #endif 479 480 /* 481 * Create special expldev for ZFS private use. 482 * Can't use standard expldev since it doesn't do 483 * what we want. The standard expldev() takes a 484 * dev32_t in LP64 and expands it to a long dev_t. 485 * We need an interface that takes a dev32_t in ILP32 486 * and expands it to a long dev_t. 487 */ 488 static uint64_t 489 zfs_expldev(dev_t dev) 490 { 491 #ifndef _LP64 492 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 493 return (((uint64_t)major << NBITSMINOR64) | 494 ((minor_t)dev & MAXMIN32)); 495 #else 496 return (dev); 497 #endif 498 } 499 500 /* 501 * Special cmpldev for ZFS private use. 502 * Can't use standard cmpldev since it takes 503 * a long dev_t and compresses it to dev32_t in 504 * LP64. We need to do a compaction of a long dev_t 505 * to a dev32_t in ILP32. 506 */ 507 dev_t 508 zfs_cmpldev(uint64_t dev) 509 { 510 #ifndef _LP64 511 minor_t minor = (minor_t)dev & MAXMIN64; 512 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 513 514 if (major > MAXMAJ32 || minor > MAXMIN32) 515 return (NODEV32); 516 517 return (((dev32_t)major << NBITSMINOR32) | minor); 518 #else 519 return (dev); 520 #endif 521 } 522 523 static void 524 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 525 { 526 znode_t *nzp; 527 528 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 529 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 530 531 mutex_enter(&zp->z_lock); 532 533 ASSERT(zp->z_dbuf == NULL); 534 zp->z_dbuf = db; 535 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 536 537 /* 538 * there should be no 539 * concurrent zgets on this object. 540 */ 541 if (nzp != NULL) 542 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 543 544 /* 545 * Slap on VROOT if we are the root znode 546 */ 547 if (zp->z_id == zfsvfs->z_root) 548 ZTOV(zp)->v_flag |= VROOT; 549 550 mutex_exit(&zp->z_lock); 551 vn_exists(ZTOV(zp)); 552 } 553 554 void 555 zfs_znode_dmu_fini(znode_t *zp) 556 { 557 dmu_buf_t *db = zp->z_dbuf; 558 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 559 zp->z_unlinked || 560 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 561 ASSERT(zp->z_dbuf != NULL); 562 zp->z_dbuf = NULL; 563 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 564 dmu_buf_rele(db, NULL); 565 } 566 567 /* 568 * Construct a new znode/vnode and intialize. 569 * 570 * This does not do a call to dmu_set_user() that is 571 * up to the caller to do, in case you don't want to 572 * return the znode 573 */ 574 static znode_t * 575 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 576 { 577 znode_t *zp; 578 vnode_t *vp; 579 580 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 581 582 ASSERT(zp->z_dirlocks == NULL); 583 ASSERT(zp->z_dbuf == NULL); 584 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 585 586 /* 587 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 588 * the zfs_znode_move() callback. 589 */ 590 zp->z_phys = NULL; 591 zp->z_unlinked = 0; 592 zp->z_atime_dirty = 0; 593 zp->z_mapcnt = 0; 594 zp->z_last_itx = 0; 595 zp->z_id = db->db_object; 596 zp->z_blksz = blksz; 597 zp->z_seq = 0x7A4653; 598 zp->z_sync_cnt = 0; 599 600 vp = ZTOV(zp); 601 vn_reinit(vp); 602 603 zfs_znode_dmu_init(zfsvfs, zp, db); 604 605 zp->z_gen = zp->z_phys->zp_gen; 606 607 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 608 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 609 610 switch (vp->v_type) { 611 case VDIR: 612 if (zp->z_phys->zp_flags & ZFS_XATTR) { 613 vn_setops(vp, zfs_xdvnodeops); 614 vp->v_flag |= V_XATTRDIR; 615 } else { 616 vn_setops(vp, zfs_dvnodeops); 617 } 618 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 619 break; 620 case VBLK: 621 case VCHR: 622 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 623 /*FALLTHROUGH*/ 624 case VFIFO: 625 case VSOCK: 626 case VDOOR: 627 vn_setops(vp, zfs_fvnodeops); 628 break; 629 case VREG: 630 vp->v_flag |= VMODSORT; 631 if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir) 632 vn_setops(vp, zfs_sharevnodeops); 633 else 634 vn_setops(vp, zfs_fvnodeops); 635 break; 636 case VLNK: 637 vn_setops(vp, zfs_symvnodeops); 638 break; 639 default: 640 vn_setops(vp, zfs_evnodeops); 641 break; 642 } 643 644 mutex_enter(&zfsvfs->z_znodes_lock); 645 list_insert_tail(&zfsvfs->z_all_znodes, zp); 646 membar_producer(); 647 /* 648 * Everything else must be valid before assigning z_zfsvfs makes the 649 * znode eligible for zfs_znode_move(). 650 */ 651 zp->z_zfsvfs = zfsvfs; 652 mutex_exit(&zfsvfs->z_znodes_lock); 653 654 VFS_HOLD(zfsvfs->z_vfs); 655 return (zp); 656 } 657 658 /* 659 * Create a new DMU object to hold a zfs znode. 660 * 661 * IN: dzp - parent directory for new znode 662 * vap - file attributes for new znode 663 * tx - dmu transaction id for zap operations 664 * cr - credentials of caller 665 * flag - flags: 666 * IS_ROOT_NODE - new object will be root 667 * IS_XATTR - new object is an attribute 668 * IS_REPLAY - intent log replay 669 * bonuslen - length of bonus buffer 670 * setaclp - File/Dir initial ACL 671 * fuidp - Tracks fuid allocation. 672 * 673 * OUT: zpp - allocated znode 674 * 675 */ 676 void 677 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 678 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids) 679 { 680 dmu_buf_t *db; 681 znode_phys_t *pzp; 682 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 683 timestruc_t now; 684 uint64_t gen, obj; 685 int err; 686 687 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 688 689 if (zfsvfs->z_replay) { 690 obj = vap->va_nodeid; 691 flag |= IS_REPLAY; 692 now = vap->va_ctime; /* see zfs_replay_create() */ 693 gen = vap->va_nblocks; /* ditto */ 694 } else { 695 obj = 0; 696 gethrestime(&now); 697 gen = dmu_tx_get_txg(tx); 698 } 699 700 /* 701 * Create a new DMU object. 702 */ 703 /* 704 * There's currently no mechanism for pre-reading the blocks that will 705 * be to needed allocate a new object, so we accept the small chance 706 * that there will be an i/o error and we will fail one of the 707 * assertions below. 708 */ 709 if (vap->va_type == VDIR) { 710 if (flag & IS_REPLAY) { 711 err = zap_create_claim_norm(zfsvfs->z_os, obj, 712 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 713 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 714 ASSERT3U(err, ==, 0); 715 } else { 716 obj = zap_create_norm(zfsvfs->z_os, 717 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 718 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 719 } 720 } else { 721 if (flag & IS_REPLAY) { 722 err = dmu_object_claim(zfsvfs->z_os, obj, 723 DMU_OT_PLAIN_FILE_CONTENTS, 0, 724 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 725 ASSERT3U(err, ==, 0); 726 } else { 727 obj = dmu_object_alloc(zfsvfs->z_os, 728 DMU_OT_PLAIN_FILE_CONTENTS, 0, 729 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 730 } 731 } 732 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 733 dmu_buf_will_dirty(db, tx); 734 735 /* 736 * Initialize the znode physical data to zero. 737 */ 738 ASSERT(db->db_size >= sizeof (znode_phys_t)); 739 bzero(db->db_data, db->db_size); 740 pzp = db->db_data; 741 742 /* 743 * If this is the root, fix up the half-initialized parent pointer 744 * to reference the just-allocated physical data area. 745 */ 746 if (flag & IS_ROOT_NODE) { 747 dzp->z_dbuf = db; 748 dzp->z_phys = pzp; 749 dzp->z_id = obj; 750 } 751 752 /* 753 * If parent is an xattr, so am I. 754 */ 755 if (dzp->z_phys->zp_flags & ZFS_XATTR) 756 flag |= IS_XATTR; 757 758 if (vap->va_type == VBLK || vap->va_type == VCHR) { 759 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 760 } 761 762 if (zfsvfs->z_use_fuids) 763 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 764 765 if (vap->va_type == VDIR) { 766 pzp->zp_size = 2; /* contents ("." and "..") */ 767 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 768 } 769 770 pzp->zp_parent = dzp->z_id; 771 if (flag & IS_XATTR) 772 pzp->zp_flags |= ZFS_XATTR; 773 774 pzp->zp_gen = gen; 775 776 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 777 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 778 779 if (vap->va_mask & AT_ATIME) { 780 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 781 } else { 782 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 783 } 784 785 if (vap->va_mask & AT_MTIME) { 786 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 787 } else { 788 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 789 } 790 791 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 792 if (!(flag & IS_ROOT_NODE)) { 793 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 794 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 795 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 796 } else { 797 /* 798 * If we are creating the root node, the "parent" we 799 * passed in is the znode for the root. 800 */ 801 *zpp = dzp; 802 } 803 pzp->zp_uid = acl_ids->z_fuid; 804 pzp->zp_gid = acl_ids->z_fgid; 805 pzp->zp_mode = acl_ids->z_mode; 806 VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 807 if (vap->va_mask & AT_XVATTR) 808 zfs_xvattr_set(*zpp, (xvattr_t *)vap); 809 } 810 811 void 812 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 813 { 814 xoptattr_t *xoap; 815 816 xoap = xva_getxoptattr(xvap); 817 ASSERT(xoap); 818 819 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 820 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 821 XVA_SET_RTN(xvap, XAT_CREATETIME); 822 } 823 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 824 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 825 XVA_SET_RTN(xvap, XAT_READONLY); 826 } 827 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 828 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 829 XVA_SET_RTN(xvap, XAT_HIDDEN); 830 } 831 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 832 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 833 XVA_SET_RTN(xvap, XAT_SYSTEM); 834 } 835 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 836 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 837 XVA_SET_RTN(xvap, XAT_ARCHIVE); 838 } 839 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 840 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 841 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 842 } 843 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 844 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 845 XVA_SET_RTN(xvap, XAT_NOUNLINK); 846 } 847 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 848 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 849 XVA_SET_RTN(xvap, XAT_APPENDONLY); 850 } 851 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 852 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 853 XVA_SET_RTN(xvap, XAT_NODUMP); 854 } 855 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 856 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 857 XVA_SET_RTN(xvap, XAT_OPAQUE); 858 } 859 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 860 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 861 xoap->xoa_av_quarantined); 862 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 863 } 864 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 865 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 866 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 867 } 868 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 869 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 870 sizeof (xoap->xoa_av_scanstamp)); 871 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 872 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 873 } 874 } 875 876 int 877 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 878 { 879 dmu_object_info_t doi; 880 dmu_buf_t *db; 881 znode_t *zp; 882 int err; 883 884 *zpp = NULL; 885 886 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 887 888 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 889 if (err) { 890 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 891 return (err); 892 } 893 894 dmu_object_info_from_db(db, &doi); 895 if (doi.doi_bonus_type != DMU_OT_ZNODE || 896 doi.doi_bonus_size < sizeof (znode_phys_t)) { 897 dmu_buf_rele(db, NULL); 898 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 899 return (EINVAL); 900 } 901 902 zp = dmu_buf_get_user(db); 903 if (zp != NULL) { 904 mutex_enter(&zp->z_lock); 905 906 /* 907 * Since we do immediate eviction of the z_dbuf, we 908 * should never find a dbuf with a znode that doesn't 909 * know about the dbuf. 910 */ 911 ASSERT3P(zp->z_dbuf, ==, db); 912 ASSERT3U(zp->z_id, ==, obj_num); 913 if (zp->z_unlinked) { 914 err = ENOENT; 915 } else { 916 VN_HOLD(ZTOV(zp)); 917 *zpp = zp; 918 err = 0; 919 } 920 dmu_buf_rele(db, NULL); 921 mutex_exit(&zp->z_lock); 922 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 923 return (err); 924 } 925 926 /* 927 * Not found create new znode/vnode 928 */ 929 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 930 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 931 *zpp = zp; 932 return (0); 933 } 934 935 int 936 zfs_rezget(znode_t *zp) 937 { 938 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 939 dmu_object_info_t doi; 940 dmu_buf_t *db; 941 uint64_t obj_num = zp->z_id; 942 int err; 943 944 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 945 946 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 947 if (err) { 948 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 949 return (err); 950 } 951 952 dmu_object_info_from_db(db, &doi); 953 if (doi.doi_bonus_type != DMU_OT_ZNODE || 954 doi.doi_bonus_size < sizeof (znode_phys_t)) { 955 dmu_buf_rele(db, NULL); 956 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 957 return (EINVAL); 958 } 959 960 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 961 dmu_buf_rele(db, NULL); 962 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 963 return (EIO); 964 } 965 966 zfs_znode_dmu_init(zfsvfs, zp, db); 967 zp->z_unlinked = (zp->z_phys->zp_links == 0); 968 zp->z_blksz = doi.doi_data_block_size; 969 970 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 971 972 return (0); 973 } 974 975 void 976 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 977 { 978 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 979 objset_t *os = zfsvfs->z_os; 980 uint64_t obj = zp->z_id; 981 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 982 983 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 984 if (acl_obj) 985 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 986 VERIFY(0 == dmu_object_free(os, obj, tx)); 987 zfs_znode_dmu_fini(zp); 988 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 989 zfs_znode_free(zp); 990 } 991 992 void 993 zfs_zinactive(znode_t *zp) 994 { 995 vnode_t *vp = ZTOV(zp); 996 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 997 uint64_t z_id = zp->z_id; 998 999 ASSERT(zp->z_dbuf && zp->z_phys); 1000 1001 /* 1002 * Don't allow a zfs_zget() while were trying to release this znode 1003 */ 1004 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1005 1006 mutex_enter(&zp->z_lock); 1007 mutex_enter(&vp->v_lock); 1008 vp->v_count--; 1009 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1010 /* 1011 * If the hold count is greater than zero, somebody has 1012 * obtained a new reference on this znode while we were 1013 * processing it here, so we are done. If we still have 1014 * mapped pages then we are also done, since we don't 1015 * want to inactivate the znode until the pages get pushed. 1016 * 1017 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1018 * this seems like it would leave the znode hanging with 1019 * no chance to go inactive... 1020 */ 1021 mutex_exit(&vp->v_lock); 1022 mutex_exit(&zp->z_lock); 1023 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1024 return; 1025 } 1026 mutex_exit(&vp->v_lock); 1027 1028 /* 1029 * If this was the last reference to a file with no links, 1030 * remove the file from the file system. 1031 */ 1032 if (zp->z_unlinked) { 1033 mutex_exit(&zp->z_lock); 1034 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1035 zfs_rmnode(zp); 1036 return; 1037 } 1038 mutex_exit(&zp->z_lock); 1039 zfs_znode_dmu_fini(zp); 1040 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1041 zfs_znode_free(zp); 1042 } 1043 1044 void 1045 zfs_znode_free(znode_t *zp) 1046 { 1047 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1048 1049 vn_invalid(ZTOV(zp)); 1050 1051 ASSERT(ZTOV(zp)->v_count == 0); 1052 1053 mutex_enter(&zfsvfs->z_znodes_lock); 1054 POINTER_INVALIDATE(&zp->z_zfsvfs); 1055 list_remove(&zfsvfs->z_all_znodes, zp); 1056 mutex_exit(&zfsvfs->z_znodes_lock); 1057 1058 kmem_cache_free(znode_cache, zp); 1059 1060 VFS_RELE(zfsvfs->z_vfs); 1061 } 1062 1063 void 1064 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1065 { 1066 timestruc_t now; 1067 1068 ASSERT(MUTEX_HELD(&zp->z_lock)); 1069 1070 gethrestime(&now); 1071 1072 if (tx) { 1073 dmu_buf_will_dirty(zp->z_dbuf, tx); 1074 zp->z_atime_dirty = 0; 1075 zp->z_seq++; 1076 } else { 1077 zp->z_atime_dirty = 1; 1078 } 1079 1080 if (flag & AT_ATIME) 1081 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1082 1083 if (flag & AT_MTIME) { 1084 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1085 if (zp->z_zfsvfs->z_use_fuids) 1086 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1087 } 1088 1089 if (flag & AT_CTIME) { 1090 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1091 if (zp->z_zfsvfs->z_use_fuids) 1092 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1093 } 1094 } 1095 1096 /* 1097 * Update the requested znode timestamps with the current time. 1098 * If we are in a transaction, then go ahead and mark the znode 1099 * dirty in the transaction so the timestamps will go to disk. 1100 * Otherwise, we will get pushed next time the znode is updated 1101 * in a transaction, or when this znode eventually goes inactive. 1102 * 1103 * Why is this OK? 1104 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1105 * 2 - Multiple consecutive updates will be collapsed into a single 1106 * znode update by the transaction grouping semantics of the DMU. 1107 */ 1108 void 1109 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1110 { 1111 mutex_enter(&zp->z_lock); 1112 zfs_time_stamper_locked(zp, flag, tx); 1113 mutex_exit(&zp->z_lock); 1114 } 1115 1116 /* 1117 * Grow the block size for a file. 1118 * 1119 * IN: zp - znode of file to free data in. 1120 * size - requested block size 1121 * tx - open transaction. 1122 * 1123 * NOTE: this function assumes that the znode is write locked. 1124 */ 1125 void 1126 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1127 { 1128 int error; 1129 u_longlong_t dummy; 1130 1131 if (size <= zp->z_blksz) 1132 return; 1133 /* 1134 * If the file size is already greater than the current blocksize, 1135 * we will not grow. If there is more than one block in a file, 1136 * the blocksize cannot change. 1137 */ 1138 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1139 return; 1140 1141 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1142 size, 0, tx); 1143 if (error == ENOTSUP) 1144 return; 1145 ASSERT3U(error, ==, 0); 1146 1147 /* What blocksize did we actually get? */ 1148 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1149 } 1150 1151 /* 1152 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1153 * be calling back into the fs for a putpage(). E.g.: when truncating 1154 * a file, the pages being "thrown away* don't need to be written out. 1155 */ 1156 /* ARGSUSED */ 1157 static int 1158 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1159 int flags, cred_t *cr) 1160 { 1161 ASSERT(0); 1162 return (0); 1163 } 1164 1165 /* 1166 * Increase the file length 1167 * 1168 * IN: zp - znode of file to free data in. 1169 * end - new end-of-file 1170 * 1171 * RETURN: 0 if success 1172 * error code if failure 1173 */ 1174 static int 1175 zfs_extend(znode_t *zp, uint64_t end) 1176 { 1177 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1178 dmu_tx_t *tx; 1179 rl_t *rl; 1180 uint64_t newblksz; 1181 int error; 1182 1183 /* 1184 * We will change zp_size, lock the whole file. 1185 */ 1186 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1187 1188 /* 1189 * Nothing to do if file already at desired length. 1190 */ 1191 if (end <= zp->z_phys->zp_size) { 1192 zfs_range_unlock(rl); 1193 return (0); 1194 } 1195 top: 1196 tx = dmu_tx_create(zfsvfs->z_os); 1197 dmu_tx_hold_bonus(tx, zp->z_id); 1198 if (end > zp->z_blksz && 1199 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1200 /* 1201 * We are growing the file past the current block size. 1202 */ 1203 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1204 ASSERT(!ISP2(zp->z_blksz)); 1205 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1206 } else { 1207 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1208 } 1209 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1210 } else { 1211 newblksz = 0; 1212 } 1213 1214 error = dmu_tx_assign(tx, TXG_NOWAIT); 1215 if (error) { 1216 if (error == ERESTART) { 1217 dmu_tx_wait(tx); 1218 dmu_tx_abort(tx); 1219 goto top; 1220 } 1221 dmu_tx_abort(tx); 1222 zfs_range_unlock(rl); 1223 return (error); 1224 } 1225 dmu_buf_will_dirty(zp->z_dbuf, tx); 1226 1227 if (newblksz) 1228 zfs_grow_blocksize(zp, newblksz, tx); 1229 1230 zp->z_phys->zp_size = end; 1231 1232 zfs_range_unlock(rl); 1233 1234 dmu_tx_commit(tx); 1235 1236 return (0); 1237 } 1238 1239 /* 1240 * Free space in a file. 1241 * 1242 * IN: zp - znode of file to free data in. 1243 * off - start of section to free. 1244 * len - length of section to free. 1245 * 1246 * RETURN: 0 if success 1247 * error code if failure 1248 */ 1249 static int 1250 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1251 { 1252 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1253 rl_t *rl; 1254 int error; 1255 1256 /* 1257 * Lock the range being freed. 1258 */ 1259 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1260 1261 /* 1262 * Nothing to do if file already at desired length. 1263 */ 1264 if (off >= zp->z_phys->zp_size) { 1265 zfs_range_unlock(rl); 1266 return (0); 1267 } 1268 1269 if (off + len > zp->z_phys->zp_size) 1270 len = zp->z_phys->zp_size - off; 1271 1272 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1273 1274 zfs_range_unlock(rl); 1275 1276 return (error); 1277 } 1278 1279 /* 1280 * Truncate a file 1281 * 1282 * IN: zp - znode of file to free data in. 1283 * end - new end-of-file. 1284 * 1285 * RETURN: 0 if success 1286 * error code if failure 1287 */ 1288 static int 1289 zfs_trunc(znode_t *zp, uint64_t end) 1290 { 1291 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1292 vnode_t *vp = ZTOV(zp); 1293 dmu_tx_t *tx; 1294 rl_t *rl; 1295 int error; 1296 1297 /* 1298 * We will change zp_size, lock the whole file. 1299 */ 1300 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1301 1302 /* 1303 * Nothing to do if file already at desired length. 1304 */ 1305 if (end >= zp->z_phys->zp_size) { 1306 zfs_range_unlock(rl); 1307 return (0); 1308 } 1309 1310 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1311 if (error) { 1312 zfs_range_unlock(rl); 1313 return (error); 1314 } 1315 top: 1316 tx = dmu_tx_create(zfsvfs->z_os); 1317 dmu_tx_hold_bonus(tx, zp->z_id); 1318 error = dmu_tx_assign(tx, TXG_NOWAIT); 1319 if (error) { 1320 if (error == ERESTART) { 1321 dmu_tx_wait(tx); 1322 dmu_tx_abort(tx); 1323 goto top; 1324 } 1325 dmu_tx_abort(tx); 1326 zfs_range_unlock(rl); 1327 return (error); 1328 } 1329 dmu_buf_will_dirty(zp->z_dbuf, tx); 1330 1331 zp->z_phys->zp_size = end; 1332 1333 dmu_tx_commit(tx); 1334 1335 /* 1336 * Clear any mapped pages in the truncated region. This has to 1337 * happen outside of the transaction to avoid the possibility of 1338 * a deadlock with someone trying to push a page that we are 1339 * about to invalidate. 1340 */ 1341 if (vn_has_cached_data(vp)) { 1342 page_t *pp; 1343 uint64_t start = end & PAGEMASK; 1344 int poff = end & PAGEOFFSET; 1345 1346 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1347 /* 1348 * We need to zero a partial page. 1349 */ 1350 pagezero(pp, poff, PAGESIZE - poff); 1351 start += PAGESIZE; 1352 page_unlock(pp); 1353 } 1354 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1355 B_INVAL | B_TRUNC, NULL); 1356 ASSERT(error == 0); 1357 } 1358 1359 zfs_range_unlock(rl); 1360 1361 return (0); 1362 } 1363 1364 /* 1365 * Free space in a file 1366 * 1367 * IN: zp - znode of file to free data in. 1368 * off - start of range 1369 * len - end of range (0 => EOF) 1370 * flag - current file open mode flags. 1371 * log - TRUE if this action should be logged 1372 * 1373 * RETURN: 0 if success 1374 * error code if failure 1375 */ 1376 int 1377 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1378 { 1379 vnode_t *vp = ZTOV(zp); 1380 dmu_tx_t *tx; 1381 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1382 zilog_t *zilog = zfsvfs->z_log; 1383 int error; 1384 1385 if (off > zp->z_phys->zp_size) { 1386 error = zfs_extend(zp, off+len); 1387 if (error == 0 && log) 1388 goto log; 1389 else 1390 return (error); 1391 } 1392 1393 /* 1394 * Check for any locks in the region to be freed. 1395 */ 1396 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1397 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1398 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1399 return (error); 1400 } 1401 1402 if (len == 0) { 1403 error = zfs_trunc(zp, off); 1404 } else { 1405 if ((error = zfs_free_range(zp, off, len)) == 0 && 1406 off + len > zp->z_phys->zp_size) 1407 error = zfs_extend(zp, off+len); 1408 } 1409 if (error || !log) 1410 return (error); 1411 log: 1412 tx = dmu_tx_create(zfsvfs->z_os); 1413 dmu_tx_hold_bonus(tx, zp->z_id); 1414 error = dmu_tx_assign(tx, TXG_NOWAIT); 1415 if (error) { 1416 if (error == ERESTART) { 1417 dmu_tx_wait(tx); 1418 dmu_tx_abort(tx); 1419 goto log; 1420 } 1421 dmu_tx_abort(tx); 1422 return (error); 1423 } 1424 1425 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1426 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1427 1428 dmu_tx_commit(tx); 1429 return (0); 1430 } 1431 1432 void 1433 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1434 { 1435 zfsvfs_t zfsvfs; 1436 uint64_t moid, obj, version; 1437 uint64_t sense = ZFS_CASE_SENSITIVE; 1438 uint64_t norm = 0; 1439 nvpair_t *elem; 1440 int error; 1441 znode_t *rootzp = NULL; 1442 vnode_t *vp; 1443 vattr_t vattr; 1444 znode_t *zp; 1445 zfs_acl_ids_t acl_ids; 1446 1447 /* 1448 * First attempt to create master node. 1449 */ 1450 /* 1451 * In an empty objset, there are no blocks to read and thus 1452 * there can be no i/o errors (which we assert below). 1453 */ 1454 moid = MASTER_NODE_OBJ; 1455 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1456 DMU_OT_NONE, 0, tx); 1457 ASSERT(error == 0); 1458 1459 /* 1460 * Set starting attributes. 1461 */ 1462 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE) 1463 version = ZPL_VERSION; 1464 else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1465 version = ZPL_VERSION_USERSPACE - 1; 1466 else 1467 version = ZPL_VERSION_FUID - 1; 1468 elem = NULL; 1469 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1470 /* For the moment we expect all zpl props to be uint64_ts */ 1471 uint64_t val; 1472 char *name; 1473 1474 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1475 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1476 name = nvpair_name(elem); 1477 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1478 if (val < version) 1479 version = val; 1480 } else { 1481 error = zap_update(os, moid, name, 8, 1, &val, tx); 1482 } 1483 ASSERT(error == 0); 1484 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1485 norm = val; 1486 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1487 sense = val; 1488 } 1489 ASSERT(version != 0); 1490 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1491 1492 /* 1493 * Create a delete queue. 1494 */ 1495 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1496 1497 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1498 ASSERT(error == 0); 1499 1500 /* 1501 * Create root znode. Create minimal znode/vnode/zfsvfs 1502 * to allow zfs_mknode to work. 1503 */ 1504 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1505 vattr.va_type = VDIR; 1506 vattr.va_mode = S_IFDIR|0755; 1507 vattr.va_uid = crgetuid(cr); 1508 vattr.va_gid = crgetgid(cr); 1509 1510 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1511 rootzp->z_unlinked = 0; 1512 rootzp->z_atime_dirty = 0; 1513 1514 vp = ZTOV(rootzp); 1515 vn_reinit(vp); 1516 vp->v_type = VDIR; 1517 1518 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1519 1520 zfsvfs.z_os = os; 1521 zfsvfs.z_parent = &zfsvfs; 1522 zfsvfs.z_version = version; 1523 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1524 zfsvfs.z_norm = norm; 1525 /* 1526 * Fold case on file systems that are always or sometimes case 1527 * insensitive. 1528 */ 1529 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1530 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1531 1532 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1533 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1534 offsetof(znode_t, z_link_node)); 1535 1536 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1537 rootzp->z_zfsvfs = &zfsvfs; 1538 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1539 cr, NULL, &acl_ids)); 1540 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids); 1541 ASSERT3P(zp, ==, rootzp); 1542 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1543 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1544 ASSERT(error == 0); 1545 zfs_acl_ids_free(&acl_ids); 1546 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1547 1548 ZTOV(rootzp)->v_count = 0; 1549 dmu_buf_rele(rootzp->z_dbuf, NULL); 1550 rootzp->z_dbuf = NULL; 1551 kmem_cache_free(znode_cache, rootzp); 1552 1553 /* 1554 * Create shares directory 1555 */ 1556 1557 error = zfs_create_share_dir(&zfsvfs, tx); 1558 1559 ASSERT(error == 0); 1560 } 1561 1562 #endif /* _KERNEL */ 1563 /* 1564 * Given an object number, return its parent object number and whether 1565 * or not the object is an extended attribute directory. 1566 */ 1567 static int 1568 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1569 { 1570 dmu_buf_t *db; 1571 dmu_object_info_t doi; 1572 znode_phys_t *zp; 1573 int error; 1574 1575 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1576 return (error); 1577 1578 dmu_object_info_from_db(db, &doi); 1579 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1580 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1581 dmu_buf_rele(db, FTAG); 1582 return (EINVAL); 1583 } 1584 1585 zp = db->db_data; 1586 *pobjp = zp->zp_parent; 1587 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1588 S_ISDIR(zp->zp_mode); 1589 dmu_buf_rele(db, FTAG); 1590 1591 return (0); 1592 } 1593 1594 int 1595 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1596 { 1597 char *path = buf + len - 1; 1598 int error; 1599 1600 *path = '\0'; 1601 1602 for (;;) { 1603 uint64_t pobj; 1604 char component[MAXNAMELEN + 2]; 1605 size_t complen; 1606 int is_xattrdir; 1607 1608 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1609 &is_xattrdir)) != 0) 1610 break; 1611 1612 if (pobj == obj) { 1613 if (path[0] != '/') 1614 *--path = '/'; 1615 break; 1616 } 1617 1618 component[0] = '/'; 1619 if (is_xattrdir) { 1620 (void) sprintf(component + 1, "<xattrdir>"); 1621 } else { 1622 error = zap_value_search(osp, pobj, obj, 1623 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1624 if (error != 0) 1625 break; 1626 } 1627 1628 complen = strlen(component); 1629 path -= complen; 1630 ASSERT(path >= buf); 1631 bcopy(component, path, complen); 1632 obj = pobj; 1633 } 1634 1635 if (error == 0) 1636 (void) memmove(buf, path, buf + len - path); 1637 return (error); 1638 } 1639